{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 159 }, "id": "93m5XpTDfSRF", "outputId": "00d1e375-8717-4660-8207-135932844141" }, "outputs": [ { "ename": "SyntaxError", "evalue": "invalid syntax (, line 29)", "output_type": "error", "traceback": [ "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m29\u001b[0m\n\u001b[0;31m rom Bio import SeqIO\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" ] } ], "source": [ "import numpy as np\n", "from sklearn.svm import SVC\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.metrics import accuracy_score\n", "from Bio import SeqIO\n", "from Bio.SeqUtils import ProtParam\n", "#from Bio.Alphabet import generic_protein\n", "#from Bio.Seq import Seq\n", "import numpy as np\n", "\n", "def extract_pssm_features(pssm_file):\n", " # read in PSSM file\n", " with open(pssm_file) as f:\n", " pssm_lines = f.readlines()[3:-6]\n", "\n", " # extract features\n", " features = []\n", " for line in pssm_lines:\n", " values = line.split()[22:42]\n", " features.append(list(map(float, values)))\n", " features = np.array(features)\n", "\n", " return features\n", "# Convert PSSM features to a numpy array\n", "X = np.array(pssm_features)\n", "\n", "# Convert labels to a numpy array\n", "y = np.array(labels)\n", "rom Bio import SeqIO\n", "import numpy as np\n", "\n", "def extract_fasta_features(fasta_file):\n", " # read in FASTA sequence\n", " fasta_record = SeqIO.read(\"/content/Plant_sequences.fasta\", \"fasta\")\n", " seq = str(fasta_record.seq)\n", "\n", " # compute features\n", " hydrophobicity = []\n", " polarity = []\n", " charge = []\n", " for aa in seq:\n", " # compute hydrophobicity feature\n", " hydrophobicity.append(hydrophobicity_dict[aa])\n", "\n", " # compute polarity feature\n", " polarity.append(polarity_dict[aa])\n", "\n", " # compute charge feature\n", " charge.append(charge_dict[aa])\n", "\n", " # combine features into a single vector\n", " features = np.hstack((hydrophobicity.reshape(-1, 1), polarity.reshape(-1, 1), charge.reshape(-1, 1)))\n", "\n", " return features\n", "print(features)" ] }, { "cell_type": "markdown", "metadata": { "id": "GNy0UPKj0uB6" }, "source": [ "**CNN RBF Bi-LSTM**" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "background_save": true, "base_uri": "https://localhost:8080/" }, "id": "9HjquMHnfQtq", "outputId": "38896d36-6332-4199-e6ad-2fcd1e774c74" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "141/141 [==============================] - 1s 4ms/step\n", "36/36 [==============================] - 0s 4ms/step\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n", " warnings.warn(\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/5\n", "141/141 [==============================] - 6989s 49s/step - loss: 0.6195 - accuracy: 0.6891 - val_loss: 0.6113 - val_accuracy: 0.6922\n", "Epoch 2/5\n", " 78/141 [===============>..............] - ETA: 50:04 - loss: 0.6038 - accuracy: 0.6911" ] } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.cluster import KMeans\n", "from keras.models import Sequential\n", "from keras.layers import Dense, Conv1D, MaxPooling1D, Flatten, Bidirectional, LSTM\n", "\n", "# Load the data from a CSV file\n", "data = pd.read_csv(\"/content/stressinput.csv\", header=None)\n", "\n", "# Split the data into features and labels\n", "features = data.iloc[:, :-1].values\n", "labels = data.iloc[:, -1].values\n", "\n", "# Scale the features using StandardScaler\n", "scaler = StandardScaler()\n", "features = scaler.fit_transform(features)\n", "\n", "# Split the data into training and test sets\n", "train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size=0.2, random_state=42)\n", "\n", "# Define the CNN layers for feature extraction\n", "cnn_model = Sequential([\n", " Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(train_features.shape[1], 1)),\n", " MaxPooling1D(pool_size=2),\n", " Conv1D(filters=64, kernel_size=3, activation='relu'),\n", " MaxPooling1D(pool_size=2),\n", " Flatten()\n", "])\n", "\n", "# Reshape the data for CNN input\n", "train_features_cnn = train_features.reshape(train_features.shape[0], train_features.shape[1], 1)\n", "test_features_cnn = test_features.reshape(test_features.shape[0], test_features.shape[1], 1)\n", "\n", "# Extract features using CNN layers\n", "train_features_cnn = cnn_model.predict(train_features_cnn)\n", "test_features_cnn = cnn_model.predict(test_features_cnn)\n", "\n", "# Define the RBF network (same as provided)\n", "# Define the RBF network\n", "class RBFNet:\n", " def __init__(self, input_dim, output_dim, hidden_dim):\n", " self.input_dim = input_dim\n", " self.output_dim = output_dim\n", " self.hidden_dim = hidden_dim\n", " self.centers = None\n", " self.weights = None\n", "\n", " def fit(self, X, y):\n", " kmeans = KMeans(n_clusters=self.hidden_dim)\n", " kmeans.fit(X)\n", " self.centers = kmeans.cluster_centers_\n", "\n", " # Calculate the width parameter for the RBFs\n", " dmax = np.max([np.linalg.norm(self.centers[i] - self.centers[j]) for i in range(self.hidden_dim) for j in range(self.hidden_dim)])\n", " self.sigma = dmax / np.sqrt(2 * self.hidden_dim)\n", "\n", " # Calculate the hidden layer activations\n", " X_transformed = np.zeros((X.shape[0], self.hidden_dim))\n", " for i in range(X.shape[0]):\n", " for j in range(self.hidden_dim):\n", " X_transformed[i, j] = self.rbf(X[i], self.centers[j])\n", "\n", " # Add a bias term to the hidden layer activations\n", " X_transformed = np.concatenate((X_transformed, np.ones((X.shape[0], 1))), axis=1)\n", "\n", " # Solve for the weights using least squares regression\n", " self.weights = np.linalg.lstsq(X_transformed, y, rcond=None)[0]\n", "\n", " def predict(self, X):\n", " # Calculate the hidden layer activations\n", " X_transformed = np.zeros((X.shape[0], self.hidden_dim))\n", " for i in range(X.shape[0]):\n", " for j in range(self.hidden_dim):\n", " X_transformed[i, j] = self.rbf(X[i], self.centers[j])\n", "\n", " # Add a bias term to the hidden layer activations\n", " X_transformed = np.concatenate((X_transformed, np.ones((X.shape[0], 1))), axis=1)\n", "\n", " # Perform the prediction\n", " return np.dot(X_transformed, self.weights)\n", "\n", " def rbf(self, x, c):\n", " return np.exp(-np.linalg.norm(x - c) ** 2 / (2 * self.sigma ** 2))\n", "\n", "# Create the RBF network\n", "rbf = RBFNet(input_dim=train_features_cnn.shape[1], output_dim=1, hidden_dim=50)\n", "\n", "# Fit the RBF network on the CNN-extracted features\n", "rbf.fit(train_features_cnn, train_labels)\n", "\n", "# Predict using RBF network\n", "train_rbf_predictions = rbf.predict(train_features_cnn)\n", "test_rbf_predictions = rbf.predict(test_features_cnn)\n", "\n", "# Concatenate RBF predictions with CNN-extracted features\n", "train_features_with_rbf = np.concatenate((train_features_cnn, train_rbf_predictions.reshape(-1, 1)), axis=1)\n", "test_features_with_rbf = np.concatenate((test_features_cnn, test_rbf_predictions.reshape(-1, 1)), axis=1)\n", "\n", "# Reshape the data for Bi-LSTM input\n", "train_features_with_rbf = train_features_with_rbf.reshape(train_features_with_rbf.shape[0], train_features_with_rbf.shape[1], 1)\n", "test_features_with_rbf = test_features_with_rbf.reshape(test_features_with_rbf.shape[0], test_features_with_rbf.shape[1], 1)\n", "\n", "# Define the Bi-LSTM network for classification\n", "bi_lstm_model = Sequential([\n", " Bidirectional(LSTM(64, return_sequences=True), input_shape=(train_features_with_rbf.shape[1], train_features_with_rbf.shape[2])),\n", " Bidirectional(LSTM(128, return_sequences=True)),\n", " Bidirectional(LSTM(128)),\n", " Dense(1, activation='sigmoid')\n", "])\n", "\n", "# Compile the Bi-LSTM network\n", "bi_lstm_model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n", "\n", "# Train the Bi-LSTM network\n", "bi_lstm_model.fit(train_features_with_rbf, train_labels, epochs=5, validation_data=(test_features_with_rbf, test_labels))\n", "\n", "# Evaluate the Bi-LSTM model on the training and test data\n", "train_loss, train_accuracy = bi_lstm_model.evaluate(train_features_with_rbf, train_labels)\n", "test_loss, test_accuracy = bi_lstm_model.evaluate(test_features_with_rbf, test_labels)\n", "\n", "print(\"Hybrid Model (CNN + RBF + Bi-LSTM):\")\n", "print(\"Training Accuracy:\", train_accuracy)\n", "print(\"Test Accuracy:\", test_accuracy)\n", "# Evaluate the Bi-LSTM model on the test data and obtain predictions\n", "test_predictions = bi_lstm_model.predict(test_features_with_rbf)\n", "test_predictions = (test_predictions > 0.5).astype(int)\n", "\n", "# Compute the confusion matrix for the test predictions\n", "conf_matrix = confusion_matrix(test_labels, test_predictions)\n", "\n", "# Create a heatmap for the confusion matrix\n", "plt.figure(figsize=(8, 6))\n", "sns.set(font_scale=1.2)\n", "sns.heatmap(conf_matrix, annot=True, fmt=\"d\", cmap=\"Blues\", cbar=False,\n", " xticklabels=[\"Predicted Negative\", \"Predicted Positive\"],\n", " yticklabels=[\"Actual Negative\", \"Actual Positive\"])\n", "plt.xlabel(\"Predicted Label\")\n", "plt.ylabel(\"True Label\")\n", "plt.title(\"Confusion Matrix - Hybrid Model (CNN + RBF + Bi-LSTM)\")\n", "plt.show()\n", "\n", "print(\"Hybrid Model Confusion Matrix:\")\n", "print(conf_matrix)\n", "true_positive = conf_matrix[1, 1]\n", "false_positive = conf_matrix[0, 1]\n", "true_negative = conf_matrix[0, 0]\n", "false_negative = conf_matrix[1, 0]\n", "\n", "sensitivity = true_positive / (true_positive + false_negative)\n", "specificity = true_negative / (true_negative + false_positive)\n", "\n", "print(\"Sensitivity:\", sensitivity)\n", "print(\"Specificity:\", specificity)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 472 }, "id": "vNU9YVm-GHBB", "outputId": "111f5e53-c06d-4b17-97f0-b71743714da7" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydZXgTWReA30lSd2pAgQLF3Rd3XdzdWRwWd5fFFlt0cS3u7u4OxbVQSp26JpnvR9q0adLS4uw37/P0gblz750zk0nmzD0miKIoIiEhISEhISEhoUX2owWQkJCQkJCQkPjZkBQkCQkJCQkJCYlkSAqShISEhISEhEQyJAVJQkJCQkJCQiIZkoIkISEhISEhIZEMSUGSkJCQkJCQkEiGpCBJSEhISEhISCRDUpAkJCQkJCQkJJIhKUgSEhISEhISEsmQFCSJ/xTr1q1DEATevHnz08lRtWpVqlat+t1l+VHHTQ++vr60aNECe3t7BEFgwYIFP1qk/2sEQWDSpEna7a/9vXrz5g2CILBu3bqvMp+ExLdAUpD+o1y+fJlJkyYRHByc5jHh4eFMnDiRQoUKYWFhgb29PcWKFePPP//E29tb22/SpEkIgoCzszORkZF682TPnp0GDRrotAmCkOJf7969U5SpUaNGmJubExYWlmKf9u3bY2xsTGBgYJrP9b/Go0ePmDRp0g9XDD+XwYMHc+zYMUaPHs3GjRupW7duin3Tep8ePnxY5yH/q5Dw/Ur4Mzc3p0CBAowbN47Q0NAfLV66cHd3/+mU3S5duqT4W3T06NFvcsyf8TpIfBrFjxZA4ttw+fJlJk+eTJcuXbC1tf1k/7i4OCpXrsyTJ0/o3LkzAwYMIDw8nIcPH+Lu7k7Tpk3JnDmzzhg/Pz+WLVvG0KFD0yRTrVq16NSpk157njx5UhzTvn17Dhw4wJ49ewyOjYyMZN++fdStWxd7e3s6duxImzZtMDExSZNM35Pjx49/s7kfPXrE5MmTqVq1KtmzZ/9ux/1anD59msaNGzNs2LBU+6XnPj18+DBLliz5JZUkgGXLlmFpaUl4eDjHjx9n+vTpnD59mkuXLiEIwneV5XO/V+7u7nh4eDBo0CCddldXV6KiojAyMvqKUqYdExMTVq1apddetGjRb3K8lK6DxM+NpCBJALB3717u3LnD5s2badeunc6+6OhoYmNj9cYUK1aMOXPm0LdvX8zMzD55jDx58tChQ4d0ydWoUSOsrKxwd3c3qCDt27ePiIgI2rdvD4BcLkcul6frGN8LY2Pj/6vjpgc/P780KfKfc5+mBaVSiVqt/qmuVYsWLXBwcACgd+/eNG/enN27d3P16lXKlStncExkZCTm5uZfXZav/b0SBAFTU9OvNl96USgU6f4t+hn5Vp+3hAbJxPYfZNKkSQwfPhyAHDlyaJePUzO/vHz5EoAKFSro7TM1NcXa2lqvfcKECfj6+rJs2bKvI7gBzMzMaNasGadOncLPz09vv7u7O1ZWVjRq1Agw7Ctx8+ZN6tSpg4ODA2ZmZuTIkYNu3bpp9589exZBEDh79qzO3Ib8JO7fv0+XLl3ImTMnpqamZMyYkW7duqXJvJfcFyh79uwpLvUnyOLp6Unfvn3JmzcvZmZm2Nvb07JlS53zW7duHS1btgSgWrVqenMY8kHy8/Oje/fuODs7Y2pqStGiRVm/fr3B8//7779ZsWIFbm5umJiYULp0aW7cuPHJ8wV49eoVLVu2JEOGDJibm1O2bFkOHTqkI7sgCIiiyJIlS7Syp0Ra79MuXbqwZMkSQNe8m/y8FixYoD2vR48eAfDkyRNatGhBhgwZMDU1pVSpUuzfv1/nWHFxcUyePJncuXNjamqKvb09FStW5MSJE9o+Pj4+dO3alSxZsmBiYkKmTJlo3LjxZ5tBq1evDsDr168BzedaqFAhbt26ReXKlTE3N2fMmDEAxMTEMHHiRHLlyoWJiQlZs2ZlxIgRxMTE6MwZExPD4MGDcXR01H6PvLy89I6dkg/SkSNHqFKlClZWVlhbW1O6dGnc3d218h06dAhPT0/t9U9Y3UzJB+n06dNUqlQJCwsLbG1tady4MY8fP9bpk2CCfPHihXaF3MbGhq5duxo0+X8OarWaBQsWULBgQUxNTXF2dqZXr158/PhRp9++ffuoX78+mTNnxsTEBDc3N6ZOnYpKpdL2Se06pHRdDf0mfY3P+8SJE1SsWBFbW1ssLS3Jmzevdg4JfaQVpP8gzZo149mzZ2zZsoX58+dr30IdHR1THOPq6grAhg0bGDduXJqW8CtVqkT16tWZPXs2ffr0+eQqUnR0NAEBAXrt1tbWqb65t2/fnvXr17N9+3b69++vbQ8KCuLYsWO0bds2xWP7+flRu3ZtHB0dGTVqFLa2trx584bdu3d/8vwMceLECV69ekXXrl3JmDEjDx8+ZMWKFTx8+JCrV6+my/SxYMECwsPDddrmz5/P3bt3sbe3B+DGjRtcvnyZNm3akCVLFt68ecOyZcuoWrUqjx49wtzcnMqVKzNw4ED++ecfxowZQ/78+QG0/yYnKiqKqlWr8uLFC/r370+OHDnYsWMHXbp0ITg4mD///FOnv7u7O2FhYfTq1QtBEJg9ezbNmjXj1atXqZpIfH19KV++PJGRkQwcOBB7e3vWr19Po0aN2LlzJ02bNqVy5cps3LiRjh07pmiCTUpa79NevXrh7e3NiRMn2Lhxo8E+a9euJTo6mp49e2JiYkKGDBl4+PAhFSpUwMXFhVGjRmFhYcH27dtp0qQJu3btomnTpoDmIT1jxgx69OhBmTJlCA0N5ebNm9y+fZtatWoB0Lx5cx4+fMiAAQPInj07fn5+nDhxgrdv3+qZQdNCgnKYcG8ABAYGUq9ePdq0aUOHDh1wdnZGrVbTqFEjLl68SM+ePcmfPz8PHjxg/vz5PHv2jL1792rH9+jRg02bNtGuXTvKly/P6dOnqV+/fprkWbduHd26daNgwYKMHj0aW1tb7ty5w9GjR2nXrh1jx44lJCQELy8v5s+fD4ClpWWK8508eZJ69eqRM2dOJk2aRFRUFIsWLaJChQrcvn1b75q1atWKHDlyMGPGDG7fvs2qVatwcnJi1qxZaZI/+W+RkZERNjY2gOb+WbduHV27dmXgwIG8fv2axYsXc+fOHS5duqS979etW4elpSVDhgzB0tKS06dPM2HCBEJDQ5kzZw5Auq9DanzJ5/3w4UMaNGhAkSJFmDJlCiYmJrx48YJLly59liz/F4gS/0nmzJkjAuLr16/T1D8yMlLMmzevCIiurq5ily5dxNWrV4u+vr56fSdOnCgCor+/v3ju3DkREOfNm6fd7+rqKtavX19nDJDi35YtW1KVTalUipkyZRLLlSun0758+XIREI8dO6ZtW7t2rc5579mzRwTEGzdupDj/mTNnREA8c+aMTvvr169FQFy7dq3OdUrOli1bREA8f/58inKIoihWqVJFrFKlSopybN++XQTEKVOmpHq8K1euiIC4YcMGbduOHTsMnoOh4y5YsEAExE2bNmnbYmNjxXLlyomWlpZiaGiozvnb29uLQUFB2r779u0TAfHAgQMpnosoiuKgQYNEQLxw4YK2LSwsTMyRI4eYPXt2UaVSadsBsV+/fqnOJ4rpu0/79esnGvqJSzgva2tr0c/PT2dfjRo1xMKFC4vR0dHaNrVaLZYvX17MnTu3tq1o0aJ693hSPn78KALinDlzPnlOyUn4fj19+lT09/cXX79+Lf7777+iiYmJ6OzsLEZERIiiqPlcAXH58uU64zdu3CjKZDKd6y6Kid+XS5cuiaIoinfv3hUBsW/fvjr92rVrJwLixIkTtW3J7+fg4GDRyspK/O2338SoqCid8Wq1Wvv/+vXri66urnrnaOi7VaxYMdHJyUkMDAzUtt27d0+UyWRip06d9K5Pt27ddOZs2rSpaG9vr3es5HTu3Nng71DCd+TChQsiIG7evFln3NGjR/XaDX0/e/XqJZqbm+vcQyldB0O/E6Jo+DfpSz/v+fPna3+3JdKGZGKTADSmrGvXrmlNc+vWraN79+5kypSJAQMG6C3VJlC5cmWqVavG7NmziYqKSvUYjRs35sSJE3p/1apVS3WcXC6nTZs2XLlyRWcp2t3dHWdnZ2rUqJHi2AS/loMHDxIXF5fqcdJC0pWqhBWxsmXLAnD79u3PnvfRo0d069aNxo0bM27cOIPHi4uLIzAwkFy5cmFra/vZxzt8+DAZM2akbdu22jYjIyMGDhxIeHg4586d0+nfunVr7OzstNuVKlUCNOazTx2nTJkyVKxYUdtmaWlJz549efPmjdaklR4+9z41RPPmzXVWVYOCgjh9+jStWrUiLCyMgIAAAgICCAwMpE6dOjx//pz3798Dmvvq4cOHPH/+PEU5jY2NOXv2rJ5ZJq3kzZsXR0dHcuTIQa9evciVKxeHDh3S8TkxMTGha9euOuN27NhB/vz5yZcvn/YcAgICtCa6M2fOAJrPB2DgwIE649PiSHzixAnCwsIYNWqUni/R5ziQf/jwgbt379KlSxcyZMigbS9SpAi1atXSypqU5NGvlSpVIjAwME2Rfqampnq/Q3PnzgU018/GxoZatWrpXL+SJUtiaWmpvX6g+/1MuGcqVapEZGQkT548Sfd1+BRf8nkn/Bbu27cPtVr91WX7LyIpSP9nBAUF4ePjo/0LCQnR7rOxsWH27Nm8efOGN2/esHr1avLmzcvixYuZOnVqinNOmjQJHx8fli9fnuqxs2TJQs2aNfX+nJ2dPyl3ghN2gn+Dl5cXFy5coE2bNqk6j1apUoXmzZszefJkHBwcaNy4MWvXrk3XgzQpQUFB/Pnnnzg7O2NmZqZ9gAE61zI9hIaG0qxZM1xcXNiwYYPOAyYqKooJEyaQNWtWTExMcHBwwNHRkeDg4M8+nqenJ7lz50Ym0/36J5jkPD09ddqzZcums52gLH3qwe/p6UnevHn12lM6Tlr53Ps0OQmfWwIvXrxAFEXGjx+Po6Ojzt/EiRMBtH5wU6ZMITg4mDx58lC4cGGGDx/O/fv3tXOZmJgwa9Ysjhw5grOzM5UrV2b27Nn4+PikWb5du3Zx4sQJzp49y4sXL/Dw8KBkyZI6fVxcXPTM08+fP+fhw4d655AQLZpwDp6enshkMtzc3HTGG/rMkpNg7itUqFCazyc1Eu6FlO6XgIAAIiIidNo/974EzUtX8t+hhGv7/PlzQkJCcHJy0ruG4eHhOr6QDx8+pGnTptjY2GBtbY2jo6PW+ftzv5+p8SWfd+vWralQoQI9evTA2dmZNm3asH37dklZSgXJB+n/jGbNmumsEHTu3NlgsjZXV1e6detG06ZNyZkzJ5s3b2batGkG56xcuTJVq1Zl9uzZqeY0+hJKlixJvnz52LJlC2PGjGHLli2IoqhVnFJCEAR27tzJ1atXOXDgAMeOHaNbt27MnTuXq1evYmlpmeIbb1JHywRatWrF5cuXGT58OMWKFcPS0hK1Wk3dunU/+4emS5cueHt7c/36dT1n+AEDBrB27VoGDRpEuXLlsLGxQRAE2rRp891+2FJSQEVR/C7HT4303KfJSe63lnA9hw0bRp06dQyOyZUrF6C551++fMm+ffs4fvw4q1atYv78+SxfvpwePXoAmpWYhg0bsnfvXo4dO8b48eOZMWMGp0+fpnjx4p+Ur3Llylr/wbSeQ8J5FC5cmHnz5hkckzVr1k8e+1fgW92XarUaJycnNm/ebHB/wqpjcHAwVapUwdramilTpuDm5oapqSm3b99m5MiRafp+pue3B77s8zYzM+P8+fOcOXOGQ4cOcfToUbZt20b16tU5fvz4Txv9+yORFKT/KCl98ebOnavzhpU8t1Fy7OzscHNzw8PDI9V+kyZNomrVqvz777/pFzaNtG/fnvHjx3P//n3c3d3JnTs3pUuXTtPYsmXLUrZsWaZPn467uzvt27dn69at9OjRQ/vmmTypZvIVjo8fP3Lq1CkmT57MhAkTtO0pmVnSwsyZM9m7dy+7d+8mX758evt37txJ586dtcv/oDHtJZc1PWYNV1dX7t+/j1qt1llFSjAJJDhCfymurq48ffpUr/1rHwcM36fpNfXkzJkT0Jgba9as+cn+GTJkoGvXrnTt2pXw8HAqV67MpEmTtAoSgJubG0OHDmXo0KE8f/6cYsWKMXfuXDZt2pQu2dKDm5sb9+7do0aNGqleA1dXV9RqNS9fvtRZuTH0mRk6BoCHh4dWaTREWj+DhHshpfvFwcEBCwuLNM31pbi5uXHy5EkqVKiQauDJ2bNnCQwMZPfu3VSuXFnbnhBlmJSUrkNaf3s+JW9aPm8AmUxGjRo1qFGjBvPmzeOvv/5i7NixnDlzJk33/P8bkontP0rCj0nyL17JkiV1lpULFCgAwL179wxGmHl6evLo0aNPLrtXqVKFqlWrMmvWLKKjo7/OSSQjYbVowoQJ3L1795OrR6BRapK/URYrVgxAa2ZzdXVFLpdz/vx5nX5Lly7V2U54w0o+3+dmyD158iTjxo1j7NixNGnSxGAfuVyud7xFixbpvWGm9Hkb4vfff8fHx4dt27Zp25RKJYsWLcLS0pIqVaqk70RSOc7169e5cuWKti0iIoIVK1aQPXt27b2XHtJzn6bnmgA4OTlplfwPHz7o7ff399f+P3laB0tLS3LlyqW9pyIjI/W+B25ublhZWX22eTettGrVivfv37Ny5Uq9fVFRUVpTVb169QD4559/dPqk5X6uXbs2VlZWzJgxQ+88k96vFhYWaTI1ZcqUiWLFirF+/Xqdz8vDw4Pjx4/z+++/f3KOr0WrVq1QqVQGzbVKpVIrn6Hfg9jYWL3fDUj5OiQomkl/e1QqFStWrEiXvGn5vIOCgvT2J/8tlNBFWkH6j5JgTx87dixt2rTByMiIhg0bpvgWduLECSZOnEijRo0oW7YslpaWvHr1ijVr1hATE5OmbMQTJ05M1eH62bNnBt+cnZ2dtaHRqZEjRw7Kly/Pvn37ANKkIK1fv56lS5fStGlT3NzcCAsLY+XKlVhbW2t/dG1sbGjZsiWLFi1CEATc3Nw4ePCgXt4la2trrS9JXFwcLi4uHD9+3OAbY1po27Ytjo6O5M6dW++61KpVC2dnZxo0aMDGjRuxsbGhQIECXLlyhZMnT+qEeoPmh04ulzNr1ixCQkIwMTGhevXqODk56R23Z8+e/Pvvv3Tp0oVbt26RPXt2du7cyaVLl1iwYAFWVlafdT7JGTVqFFu2bKFevXoMHDiQDBkysH79el6/fs2uXbv0fKDSQnru04TvwMCBA6lTp47W2T81lixZQsWKFSlcuDB//PEHOXPmxNfXlytXruDl5cW9e/cAKFCgAFWrVqVkyZJkyJCBmzdvsnPnTm0aimfPnlGjRg1atWpFgQIFUCgU7NmzB19f30/K8KV07NiR7du307t3b86cOUOFChVQqVQ8efKE7du3c+zYMUqVKkWxYsVo27YtS5cuJSQkhPLly3Pq1ClevHjxyWNYW1szf/58evToQenSpWnXrh12dnbcu3ePyMhIbU6tkiVLsm3bNoYMGULp0qWxtLSkYcOGBuecM2cO9erVo1y5cnTv3l0b5m9jY/Nds6FXqVKFXr16MWPGDO7evUvt2rUxMjLi+fPn7Nixg4ULF9KiRQvKly+PnZ0dnTt3ZuDAgQiCwMaNGw2a+FK6DgULFqRs2bKMHj2aoKAgMmTIwNatW1EqlWmWN62f95QpUzh//jz169fH1dUVPz8/li5dSpYsWXQCKSSS8KPC5yS+PVOnThVdXFxEmUz2yZD/V69eiRMmTBDLli0rOjk5iQqFQnR0dBTr168vnj59Wqdv0jD/5CSEoqYnzD+10PfkLFmyRATEMmXKGNyfPGz29u3bYtu2bcVs2bKJJiYmopOTk9igQQPx5s2bOuP8/f3F5s2bi+bm5qKdnZ3Yq1cv0cPDQy8U2cvLS2zatKloa2sr2tjYiC1bthS9vb0/GRadcG2Snmtq1yQhvPfjx49i165dRQcHB9HS0lKsU6eO+OTJE9HV1VXs3LmzzjmsXLlSzJkzpyiXy3XmMJRewNfXVzuvsbGxWLhwYZ3zFMXEUGxDoerJzzclXr58KbZo0UK0tbUVTU1NxTJlyogHDx40OF9awvzTc58qlUpxwIABoqOjoygIgjbkP7XzSpC5U6dOYsaMGUUjIyPRxcVFbNCggbhz505tn2nTpollypQRbW1tRTMzMzFfvnzi9OnTxdjYWFEURTEgIEDs16+fmC9fPtHCwkK0sbERf/vtN3H79u2fPMfUvl9JqVKliliwYEGD+2JjY8VZs2aJBQsWFE1MTEQ7OzuxZMmS4uTJk8WQkBBtv6ioKHHgwIGivb29aGFhITZs2FB89+5dmu5nURTF/fv3i+XLlxfNzMxEa2trsUyZMjppO8LDw8V27dqJtra22tQMomg4zF8URfHkyZNihQoVtPM1bNhQfPToUZquT0oyJqdz586ihYVFqn1EURRXrFghlixZUjQzMxOtrKzEwoULiyNGjBC9vb21fS5duiSWLVtWNDMzEzNnziyOGDFCPHbsmF6IfkrXQRQ191vNmjW1aRzGjBkjnjhxwmCY/5d83qdOnRIbN24sZs6cWTQ2NhYzZ84stm3bVnz27Nknr8X/K4Io/gSelhISEhISEhISPxGSD5KEhISEhISERDIkBUlCQkJCQkJCIhmSgiQhISEhISEhkQxJQZKQkJCQkJCQSIakIElISEhISEhIJENSkCQkJCQkJCQkkiElikyCWq3G29sbKyurz6pILSEhISEhIfH9EUWRsLAwMmfO/FlJaA0hKUhJ8Pb2/s8UcpSQkJCQkPh/4927d2TJkuWrzCUpSElIKLHw7t07varqEhISEhISEj8noaGhZM2a9auVSgJJQdIhwaxmbW0tKUgSEhISEhK/GF/TPUZy0paQkJCQkJCQSIakIElISEhISEhIJENSkCQkJCQkJCQkkiEpSBISEhISEhISyZAUJAkJCQkJCQmJZEgKkoSEhISEhIREMiQFSUJCQkJCQkIiGZKCJCEhISEhISGRDElBkpCQkJCQkJBIhqQgSUhISEhISEgkQ1KQJCQkJCQkJCSSISlIEhISEl8B/8eP2dmuHRdnzfrRokhISHwFpGK1EhISEl/ImzNnWF+9OgAPt2zh/saN9PXw+MFSSUhIfAmSgiQhIfFNubpoER9fvMA2Z05uLV9OBjc3Wu/bh1wu/9GifTW2NW+us+3/8OEPkkRCQuJrISlIEhIS34w5jo5EBgTotAU+ecL8LFkY9uHDD5Lq6xMTEvKjRZCQkPjKSD5IEhIS3wS/hw/1lKMEInx8vrM03xbHAgV0tp2LFfsxgkhISHw1JAVJQkLi+yMIP1qCr0qr3bvJVLo0xlZWFOnShV63bv1okSQkJL4QycQmISHxTXAqWBBTW1uig4P19tWYMeP7C/QNsc+dm57Xr/9oMSQkJL4ikoIkISHxzRj58SNnJ08m+PVr6i5YgKmt7Y8WSeI/yJN9+9jVti3K6GiylC1L14sXkckkA4nElyGIoij+aCF+FkJDQ7GxsSEkJARra+sfLY6EhITED+HVwzf8M24bJcu70XF4ix8tzieZamyMOi4ONQIiAhUG/0mdefN+tFgS35Fv8fyWVpAkJCQkfnF8PTy4v2kTNtmzo46JwdbVFbfatTEyN0/3XOf3XaZak6OokcNeD9b9e5klc6tgYm1N9qpVEX5C/zF1XBzXKc0x6iACjTY9oI6kH0l8IZKCJCEh8cMIef+eO6tWkb1aNbJXrvyjxfklub5kCUf699drdyxUiB5Xr2JsYZGu+fp3344aW+326ZdWbGvSBICSvXrRYPnyLxFXB1EUEVUqZIovexSpM+Xl8IffAY3ytte/OFeP3KBsvdJfQUqJ/1ckI62EhMQP4fnhwyzIkoVzkyaxvkoVdnfs+KNF+iU5OXKkwXZ/Dw9eHDmS7vkUMt0VoqRbt/79l6iPH9M9ZwJvL15kX/funBozhqf79jHH0ZFpJiYc6NkTn7t3WV+9Outr1MD/8eN0zVth1j/JJIX3b/w+W04JCZBWkCQkJH4Q+3v00Nl+sHkzzTZu/EHS/Lz43r+P961bHBkwgLjISKxdXOj37BnGZmafHGuUztUjgHW7u1Oi0jZU8Y+HslzV7pMpFMiNjdM9J8C7q1dZW6mSdluQyxHVahBFbq9cyZ3VqzXbwPIiRRju759mp/6ISCUgkqAkmRDN7x2rf5acEhIJSCtIEhI/OVcXLWJhzpxsbdr0R4uSKp6ewTRuvJVSpVawcuWn8wDpxYf8oHiR4OBoYmOVKe6Pi43jlcdr4mLjvqNUGk6PG8fyokXZ360bcRERIIqEenmxplw5bZ8aM2caHFuobVty1amT7mMWqViIAP+hzBuShQv76zC8gxOgUWjqL1uWbpNdAgeSKcSiSqXzmScoRwBqpZKnBw+mee5DO24ikDiXEgVmlp9WICUkUkOKYkuCFMUm8bNxcswYLiXJGSQoFAx8/RrbLFm+uyxqtZrbK1eijIqiVO/eKExNdfYXK7ac+/d9tc+8kyc7UqNGzhTne7xnD9ubNdNuF2jRgpY7dnwT2aMjo/mjzgyu3w/BN8qMkDhjjFDjlMma9x8iARgzphLTp+uuOty/6EG1ausIUlqRQRHGyRMdKV616DeRMTkxYWHMtLExqDgaW1szOkl5E18PDx5s3ky2ihWxyZoVc0dHrDJl+mqyRPj5oTAzw8TK6rPnmG5ujjIqKrFBELTnZmxtTWxoqE7/3vfu4VykSJrmXjp2A/3+eq2ZFjVZzUPxjJj/2bJK/Hp8i+e3pCAlQVKQJH42/rK01KwcJGPohw9YZsz43eRQxsWx0NWV8Pj6aWYZMjDkwwcU8eYWURSRyabojKlVKyfHj6fuVxTw7Bm3li8nZ82a5P79928jPNCl6iTWnwNdPxVRb7tTVYGVR0ZjbKo5r6o5h3L+tSUiMgTUlM8WzkXPud9MzqTERkQw09paZ2UlAbe6denwGf5FP5IF2bMT4ump3XYpU4byw4cT7utL/qZNuThrFjeWLAGg3JAh1Jo9O81zq9Vq/mwymx3H/HC2VrNx7x8UqVBQu//9S2/Gdl9BVJSSUbNafjclV+L7ISlI3xhJQZL42Zjt6EiUgXpmOWvXpuOxY99FhrjYONaUL4dPsvIZvy9ZQum+fbXbCsUUVKrEnxMHB3P8/Yd/Fxk/RWGHwXgE2qahp0jnKrDu7CQASmYczG1fGzSKlJqijqHc9ft+KxOX587lxLBhuo2CwEQDStPPzuszZ9hcty6q2FhM7ezoeesWdjlyfPPjxsXGkd16JB9iNKtfZkIMjx/3I1verN/82BLfj2/x/JZ8kCQkfmK6XbxosN0sQ4ZvfuzoaCWNG27C2GQ6I29Vwgdnnf2KZE7CmTJZprr9IylbPAOaFaOkf4YQuHo3WLs1aEgFZGiUERkigwaXS2Hct6H80KFYJzOnuvz223eV4WuRo1o1hn74QM9btxji5fVdlCMAj8uP8I6xQUSGiIxI0YxDm85+l2NL/NpICpKExE+MQ968NE0W2SXI5TT5DtFey5bd4MDBl4BAKNbspYl2n23OnBTt3Fmn/+7drTEz00Q+WVkZs3Nnq28uY1pZemgUPesocDaPiW9JMK2JGBFHgsIkoKZUocS3z44jWnD5aCNm9HXm0uGGdBn9fc9JrVIRnczEmpJT9q+AWYYMZCpR4rMSWH4u2Qtkw5hYQE2Cclzktzzf7fgSvy6SgiQh8ROwbZsHvXod4N9/b6JW665uPNy+XWfbtXJlFF+YWC8t+PiEIwgaWURkhKExUbhWr86fL1/q1boqXdqFiIgx+PgMZfbsmowbd5phw47z8mWQ3tyiKOpHsX1DjIyNGL9qILEmtiT1O5KjZv/GanSpKpDP9iPtKoisPDpaZ+xvdUoxaknvH5J0MDY8nNhkeYdC3rz57nJ8KbEREdzbsIH7mzezo3VrZmXIwJrvlBjUzsmO9fNLk8kkjAyKcKb+4UiFBr/mKpzE90XKgyQh8QPx8gpl/PjTrFt3D4VCxooVt/H3j2TcuMSHh13OnJqcMSoVglxOhly5vots7dsXYcG8y8QqNc7MZdBUq89WvnyKY6KilBQrthwfn8RVj7Vr7/DkSX8cHTXh4QsXXmXUqFPI5QL//FOPbt2Kf9PzSKBXr4MEB0frtE2eVpO6HSpTt0ON7yJDejGxtiZ7tWp4njsHgoCRuTk5qn/f/D5eXqFcufKO/PkdKVTIKd3jVbGxrK1YEZ+7d3Xa3124wLwsWRji5fWVJIVHO3dyfto0TG1tabZpk9Y82WZQE9oMavLVjiPx/8Evs4KUPXt2BEHQ++vXrx8AVeNrBCX969279w+WWkJCn5B373jg7s61AxcpVGgp69bdA0Cp1Pi67Nv3RKd/tSlTyNOgAaZ2duSqU4eayUws4eGxNGjgTsGCS5g507DP0udQpIgzt252p57sOO3YTGXOA1CwdesUx2zb5qGjHAEEBUWzf/9TAJ4+DWDQoGNERyuJiIjjjz8O8OFD2FeTOTVevAjSiZhXKARu3vQmNDTGYH9RrebspEksK1yYnW3bEhkYCIDPvXvc/PdfTo8fz6Z69biUjmir9CIIAm0PHKDGjBmUHz6cP27cwCbr93Muvn/fl3z5FtOq1U6KFFnG1q0e6Z7j/fXrespRAmHv33+hhIm8OX+eHS1b4nvvHp7nzrGkQAHUv6Azu8TPwy+zgnTjxg1UKpV228PDg1q1atGyZUtt2x9//MGUKYmhxubf0c4tIZEWPLZuZW+XLqhiYrhARUKpTtL3FLlcoHBhXWdoE2tr2uzdqzdXZGQcY8ac4t9/bxEdrUl0OHr0Kby8Qnj/PhwLCyMmTapKrlyf79BdqGgW1txexv5u3VBGF6D6X3/hXKhQiv1VKsMPpB49DrBu3V3++kt3pUatFvH3jyRTps/Pr5NWOnYswvjxZ7Tpd5RKkf37nzFhwhkWLKiLKIqcP/+Wj75BVK2SjRd7d3Ju8mQA/B8/RhUTQ+7ff+fAH3/ozPvy6FE+3LlDiy1bvoncxhYWVBgx4rPHi6LIyVGjuLV8OZaZMtFs0yYylyqVprHLlt3Q3luiCDNmXKBNm5Q/f0OYOzikvDMdhW/XVa+O59mzyBQKGq5aRbFOnXT239+wQWc7NiyMMC8vbLJlS5e8EhIJ/DIKkqOjo872zJkzcXNzo0qVKto2c3NzMn7H3DASEunh0uzZOnWzzIlE1CpHInK5QMuWBZg/P23Zj4cMOcbKlbf1fJaWLr0Zv4oKZ8++4dWrPzE2ln+23BmLFqXnrU9nxgbo0KEIo0efIiAgSm/fxYvvWLz4OgUKOPLokT8AZcpkpmBBR72+34KxYythEf6OUbMeEIsmAk+tFjl/3pO7115RsepGIuItcFaE0rfAQ8wVCkSlElGl4sPt27w8ftzg3I927IBvpCB9KU/27OFy/CpXbHg425s3Z1CSfESpYWmZWFZEJhOwsjJJ9/Ed8uWjxsyZnBk3DrUoQpIX3cZr1mj/v6VxY96cOYN97tx0u3ZNx8/u1OjReJ45A4A6Lo59nTtTuH175HLNfX1/82ae7t+ve2CZDKvMmdMtr4REAr+MiS0psbGxbNq0iW7duiEkeQPZvHkzDg4OFCpUiNGjRxMZGZnqPDExMYSGhur8SUh8K85N0U2kWIy7FEBjsjAjik1zCrNlSwtsbDQZqtfXrMlkQdD+xYaH64y/dOmdnnIEmjd9tVpEpRJ5/z6M9++/331tamrEixcDmTyuPNXL668cbN/+iKVLf2fZsvqsXNmQ06c7I5cn/gypVCq6N1lC6dxTWDxtv974L0EQBMK2/U0suhnAX78KokqF5VrlCCAMa2Y9KouHMg+CXA6CQO7ff0cVG2twbjHJQz8yMJAr8+bhde3aV5X/cwn29NSu1IhqNaFeXgaTTxpi+PAK5M2r+Rzt7ExZuLDuZ8lQceRIxkRGMj46momiqP0r1qULAGsrV+bZ/v3EhoXx4fZt5jnrrqK+OnlSb85wHx9As7q3p2NHIv39tfuMLCxotmkTsu8QzCDx3+WXvHv27t1LcHAwXeK/XADt2rXD1dWVzJkzc//+fUaOHMnTp0/ZvXt3ivPMmDGDyfFL6BIS3xojc3OdrNhy1LRiJ3HsxczchJb9pur0f3PqlM72guzZGZEkaWSNGjl4+NBP61cjkwmUKJGRO3c+oFZrtp2cLHBx+bKkaVeP3GDS0J28DTamSLm8dO1anEplnVM0ndw7e5uZ008TJZqin60aPnwIo3dvwyae3/JO59ZLTSj2zfG3CQuNYvTslH2e0svlj9n05ImJVhKlMmyOv21WjbYtSuKQPz/lhw4lzNubp/v26fVzKVsWgHdXrrAmiRN7/ubNabVz51eT/3PI27AhZ8aNQxkTg6hSUahtWwRZ2t6NnZwsePCgDzv+PYHnY08sxHCD/dRqNQd79cLz7FkyFi9Oc3d3PeVEbmSU4nHeXb6ssx0VFMT1JUsoE+9jWrRzZ7xv3kzsIJPxbP9+vG/cwD5vXr1yLH0ePPhueZYk/rv8kpm069Spg7GxMQcOHEixz+nTp6lRowYvXrzAzc3NYJ+YmBhiYhIdNENDQ8maNauUSVvim/Bk3z62NW+uY2JIoECrVjRz38LMmRc5fvwVRQvZYb20BUYkFlGVGRkxPskKRmysiunTz3Pvni+1auWkb9/SCILAmTOvmTPnMubmRkyfXl27AvA5vH/pTe7ci4gSdU0rrryha8VYJpzfrLOKC1DVbRjnX1nEmw/1FSR//2E4OBgueCoXJqJOYnbMbq/idcBUg30/h6l/LGXCKn+dtjxuVjx7GaonJ0AuhSfP49botJ0YOZLXp09jky0byqgobLNnp/r06ZjZ2bHQzY3gV690+o9XKpHJP9/E+TUIePKEh9u3Y5kpE8W7dsX/0SO2t2iBKiaGqlOnYmZri13OnDgZ8C+b3nsp4/71AwSMiWHTFFdaju+l02d3p048SJKbK0fNmnQ6cSLN8s2wsdGrxWaWIQMj4h3jAY4OGsTt1asxMjNDplBoy94ACKamoFSCKOKQNy+979//4ddc4vsilRoBPD09yZkzJ7t376Zx48Yp9ouIiMDS0pKjR49SJ40VraVSIxLfmtjwcI4OHszdtWsR1WoEmYys5cvTcvt2Vm55zZAhGh8XAZHSXON3jmrHFu7YkWbJHFG/NRtm7aDzqEfJWhOTKh5elJe6/dvr7E2qIAmoMVeoiFQZIZfL+OefuvTpk3I+ITPFOKJVCjTKikjZvHKuPBmv3X/q1CtGjjyJsbGcFSsaUKiQc4pzGUKtFqlaYTkXrvoB0LJlAc6efYO/vyFzvIirVSQe3tN0fHFSI3m9MYDxcXHfzNSjjI3l3eXLZC1bVq94cErERUfzl7m5wSK4DVeupESPHjptzkaD8VNqyq0IqCgju82lqN3IjROvyTwXF8K8vbXbCnNzmqxbR7YKFdLkBxTw9ClL8ufXkcnKxcVgCoDz06dzZtw4vXbHQoXI17gxZQcNSt0xPAmiKOJ57hyR/v4EvXqFIAj8NnBgmq+lxM+DVGoEWLt2LU5OTtSvXz/Vfnfjw0ozfcWK1hISX4qxpSWNVq5kglLJRLWaCUolXc+fxzJjRq5efY9MFu8rgsA7dKNvDClHx4YOZVW5cjw/elRv39egeKUCyFChW55DQKPCyZm59LnemGnzW2AqaFa6jFDivqwiavVE4uLGp6ocAWxcVQuFoMl4nMEsjgNnB2j3PX8eSK1aG7l16wNXrnhRosQKli69Tvnyq2nTZife3p9OFyCTCZy/0ofY2HHExIzD3b15CsqRBs8wC9q12/XJeROov3y5zna2SpW+mXJ0d906ppuYsKFaNaabmXF14cI0jXu8a5dB5Qjg7KRJem1mciVCks/eSB1NTLLVngy5c+tsKyMjmdVqFEVcxlLIbgDHt5xNVSaHvHkZHRpK5jJlAJCbmFB/2TKDfQOfPjXY7u/hQa569VhSoADTTE3Z2rSpXp/Fi6+TKdPf5MmziDNnXnNkwADWV6vGjlatODVqFCdHjuQvKytio6MNHEHi/41fSkFSq9WsXbuWzp0760Q4vHz5kqlTp3Lr1i3evHnD/v376dSpE5UrV6ZIkSI/UGKJH8WGmjWZYmTEDBsbXp8+/aPFSROVKmXTOl0LAuTgtXafkaV+XbOFOXNydd483l+9inu9elyPr4SelMP9+2udvP8tWTLdMhUuX5DlE/NiZxSJIRNUtJl+BFrFRmV5/WYw+1b+xotnfWjUI3XH3suX39K+3XaaVZ1HwPPXREaNQxQnsf9EL5avus/Dh5rVni1bPHSe63Fxavr1O8KVK15s2/aQOnXSXn7FyEiOsbEchUJGvXq5Uog21zSeOPHK0E6D5K5bl/5Pn1Kqb1+abNhA1/Pn0zw2vRzo2VNn+/iQIWkal1otN6Nk9fUA5s2qgikahcEJX1qWUWFmb6/Tp93BgzgVLozc2BjByIhgbNhMe96QjUfBGWjS/hghASEAvD5/kZ2zN/Dsvu5Km7GlJT2uXGHgy5cM9/Mjb8OG2n0qlZqJE89QtOhyVj8rQBSGV3g21a5NpL8/qpgYnu7dy+nxiauPN296M2DAEXx8InjxIohGDd25vORfvTlEpZLNBqwOoiiya9cj5s+/wosX+tnhJf57/FImtuPHj1OnTh2ePn1KnjyJtXTevXtHhw4d8PDwICIigqxZs9K0aVPGjRuXrqU2ycT232BFqVJ8SBaWPi4mRsck8LPg7R3GixdBFC3qjLW1CQsXXuP06deUKJGJJnn9OD9xHHY5ctD20CG98iKTkz3Vja2sGJ3kzT7c15e5ydJeVJs6lcoGzBOfIjZWiZ3dbCIjE+uWgcCMGTUYNapiuudL4MCBpzRqtFWnrazLR37v1ZQJE85q23bubIm1tQm1a29Kdb537waTJUv6vruRkXFMnXqOmTMv6e2TySBvXgcOH25P9uy26Zr3WzNZJtNbCZqYhp/zmLAw9nXtqllJSkbHEyfIWbOmXrv3g0ecXbIW11wZyVa/GQ0q/8PjAHNy2UZw+PIQsudPXO1cWbo0526GsBld0+vlQ/UIu3qU7lPf4kVWQGTuXxUZMlr/eJEfP7KieHHCPnzAIW9elD3+ZeCfGvOzTAYF1PdpgW4AjomNDTEhITptDgUL0s9DEym6Y8dDWrXSdZgfyt9Yoe94buvmxp8vXui0jRhxgjlzLiMIYGZmxK1bPRGfXiLm40dtNJ7Ej0PyQfrGSArSf4PkigNAh+PHcatV6wdIkzJHj76gceOtxMaqcHQ058qV7ri5pT2po955CgKmtraU6tOHGtOn8/L4cTYlexPOXb8+7Q4e/Cx5/fzCGTjwKE+e+JM5szW1a7sxcOBvWrPg51Ag7wIePwsm+eqUsQJiE/3TyZ07A8+eDWDw4KMsXXoTURSJi9MPVZ8ypSrjx1fRa08LbdrsZNu2hwC4uFhhbW3C69fBREcrkckENm1qStu2hT9r7m/B5vr1eXH4sHY7W6VKn1yxen74MNubN0cZHY1z0aIEPH6sSV0gCDRavZriXbt+8riNi43mwD1jrY9ZtVwRnHr+t3b/++vXWVqrKX+HdiYOTeSatSyK9x8n0tmhKrviGmj7GskhKmY80UGB7OnUiQ83b+JWpw4vjx/XCds/Yd+Vq8HZUak0jyt7AhjAYgBekYOAjGXpvmQsz/+oTHRQ4uqOIJMxIjAQU1tb/PwiyJ9/CSEh0ajVIi7iO7qz2sC6KNSYPZuKw4frtFlbzyAsTGM6lssFqhtfpkLUMc1xjIwYExn5XWokShhG8kGSkEgDMgMrRQm+DT+K4DdvmKJQaM1d9zZsYOzY08TFaSLagoKiWLDgarrmzPX777oNokj0x49c/Osvri9bRvYaNfTCucsPH45SqWbz5vssXnydSQM2IBMmIgiTyGAyiri4OHzu3mV50aLMcXLi3JQp2qKyTk6WbN3agrt3+3DwYFvu7TuGtWIUWcyGcHLbuTTL/dbjBW89NG/nb14GGOgh6ihHAEZGmvOYP78uMTHjGDSorMG5ra0/37nW3b05R460Z/fuVjx/PoCWLQtoPx+1WmTUKP1cPD+S9ocOUWn8eDLkyUO5YcM+qRy9vXyZrU2booz3r/G9d48aM2ZochKp1akqR4927dLev8/ueyKS6Cv33l/3w3IpU4bJfq/YsaQ0lbKHUyNPJGfPdMDC2gIE3fsx4e386MCBvDpxgsiAADy2bNFRjgCyhN5FpRKRyTQJUOvVy42ZvT3PzUqwgc4c889H8+Y7CW6gm2tMVKu1/lJOThbcvPkHY8ZUomdtGR3ZqKMcBWHHBePa3LOvz4eHz3h39SpnJ09mbubMrChdGscMxtqXAZVKxDTKX3sOCckrJf5bSOquxH+O5u7u7GjRQrtdZeJEzGxsfqBE8G+JEjrJBPd26YKspK5D76dWYs5Onsy1hQsxs7en540btD90CL+HD3l25Ainkr3t3lm5kjJ9+tD38WO2NmpEXGQkNWfPJnuVKrRqtYMdOx7Fl9xICMMX+BhrRpmcE+ks26xNJnh24kTMc+bj8qHrGPs8okSzepTp359/J25m3VkAcyKj1bTucIDA1p9euame+Q/OfHAB4Pes75Cr7IHk+XESroNGNrlcYMWKhjo9GjTIzZw5l0lO8+b5tf+/ceM9gwYdRSYTWLas/icj3mQygbp1EwsBy+UyrQVLENBJaPm5qJXKr+q0XX3KFKonS0BqiDMTJ3I+eT9BIC5KP+O5IXa2bq29fwuJ93lCXgTUiMho3TSnXn+FiQmN+jalUd9ER+ld7dqRN/YOGSmGD5rItr/+qo5cLiPw2TOd74fc2FgnKWflPLE0GtOMw4efU6iQE0OHlsPIaCCtW+9EtvORdmXp9GMjOuTOTdBzTfBArt9/xzpJ7brs2W1p4PSQB6FH8CJx/jAsWUFPYmJNEAMF7qx/TddNlRBVGuUv/MMHauDNAYf++ATEopDDE5XmGhyjLkoUNL/lQ/M0XU2JXwXJxJYEycT230GtVqOMjsb4J6nHN9XYGHVcnE5bpVOvaNDAnagoJZkzW3H5cjdcXW0Njr8wcyanR4/WbgsKBRPi51OpVExL9tAt3a8fvy9erDdPaGgMNjYz9do1iFgq4hiqnKGNWgrAnlWy3kSrjQCNScvMREbjssZsPRdDgjIjoCYubgJyheHcMxERsbRruIL9ZwJ12mWo4/MeJY2QS6Ry5WwcONDW4MrQtGnnmDjxHGq1iCDA7Nm1GDZMk6TR2zuUrFkX6GQab9++MGvWNE5z2ZWAgEjKl1/N8+dBGBnJ2LmzFY0a5U11jI9POM2bb+fWLW+qVHHln3H5+HD6MCY2NpwdP16bDd21WjW6fKfggcjAQOYYCHs3Mjen/7NnWLu4fHKO5OZcL8sixJVsSsXqeekxoW2a5Jhubo4yKgolcj6QiYxZMjDtnaZQ8+W//+bE8OHIFArUSiX1ly/nzIQJRAUGYuPqSt+HDzEyEHo/cuQJ5s69gkqlKdXTqlVB1iytwePdu1GYmVGgRQudBJX3N21iT8eOevM8Ni/LtkjdYIIRzMIcXQVyv9CIe7KSqFRivIIICS8YALdu9aRECSly+kfwLZ7f0gqSxDdDVKu5uXy5Jk9LhQqU6t1bL6ngt0Imk/00yhGAa+XKvE6SGds0QwaqV8/Bu3eDefMmmPz5HTE3TznT8NX583W2RaUSpVKJQqFALpdTb+lSjg4YgKhSkalECYPKEYCZmQIzMwVRUUnNIolKRLjSmOeFepLn4QoEmYxdqhbxyhEkWOSjYkR2XYpFgQoVMkQEyriEpagcAXTtuo8DyZQjQJsUslI+gQtPEmRJvEesrIxTNJuNG1eFceOqEBOjxMRE96ds167HemVY3N0fULSoM8OHV0hRzqQ4OJjz4EEfHj8OwMXFCkdHw8ktkzJs2HGuXfNCpRI5dfIVXU5upZ5wTGd1BMDzzBkuzpxJxVGj0iTLF5HCO3CTDRvSpByB5n5N6tvTvHs16i6YlC4xTKytUUZFoUBFVrxwSXLsckOHYuXigs+dO+SoXh23OnVwqNMaCwsj7XUPCYmmX7/DeHmFMnRoORo2zMu4cZV5+jSQ06dfU6pUZubPr4OprSXFu3UzKMO7y5e1ShiAdbZsDPb0ZM+/h9nW+0Z8LzUmxGJCjN74j6KtdrVKNOCh4uNjONO4xK+J5IMk8c24Mm8eh/v1w2PrVg737av3kP9/otPJk+Rt2hRjS0ucihRhqK8vAPb25pQsmTlV5QjAOksWvbakDqFl+vRhVHgkkW3+5rRRPY5sMOwvY2Qkx8lJ90FvJCQ4O2sUk+vRBSgweCIx5TsRoDCU5E8gTilyYE1Z2pRTM7i5BacfT0tV/uPHX5LaUvWcdd05fryD3gqap6duvh1VXBwnRozg35IlOdy/P3FRUXrKEUCpUvpyy2QCL19+TFXO5JiYKChWLGOalCONvCHaB6haLRKittJTjhJ4e/FiumT5XMwdHKiYZPXROksW2h48SIHmaTcIDfb0xKlIEcwyZKBUv37UXbAg3XK02rVLm4DRLEMGnRIsgiBQuG1bas2eTY5atWnefDs5ciwkY8a5LF58HYBixf5l8+YHnDvnSaNGWzl27AVWVibs3duG0NDRnD7dGWdn/XQYSclaoYJWOUIQsMqYkY21amHicYQ+dQTMhSgyCCG0V+xEjn4QQHETjelOLtd8V/Lnd0iYihw5bKlUKZveGIlfF2kFSeKbcd/dHUgs5Pny+HHKpTFXy3+RNqnUBfwU3a9dY6aVFap4B9sSf/yh16d+0bGcfGaBgJwd185zxEhB7bZV9folROKA5oe+QqWcnDvnqV1o8PcNpc08JWpcAV3lKWG1yYRoMht9xP1y2sqAlCiRifPnPbXKQ9KVImNjOcWLZ8TYWMHo0RXp3fuQdpyHhx9RUXGYmWkUyIszZnD5779BFPG9e5f3169jnSULZfr3J0f16tpx5cplZciQcsyffwVR1DzA1GpRx0fpW9C1azEuXnyLTCagVkMRNCakeIcvnb4F27T5prIkpcZff1GkY0fiIiLIWLx4ustweJ4/T9Dz5yijovC9d4+4yEiMkq3Qvr9xAxNraxzyGjZDOuTNyzA/P4wsLJClUgvuyJEX7NnzBNB8ZoMGHaV9+8K8eROs02/x4uvkM//AkYEDUUZGUmXiRAq3a6fdHxUUhMzICBMrK21bgRYtuLdxI+8uXkSQyXh/XaN8vT59mmrNm7NUvR2Ak6PNuDx7traoryCTYZkxI+6Pj3L83AeuXvWiUiVXqlbNzpYtD4iKUtKmTSGsrHRL8kj82kgKksQ3IbnPjSCTkbF48R8okQYfn3AGDTrKq1cf6dy5KP36/djotrSiUCgY9wmH2vPPjNFkuBYANVtXnjOoIP3xRwlmzbqETCZgZCRn0KCynD2bmLQvJEwFJDxAExSZRIVGQGQA/2Cd9Uia5d+ypTmDBh3lxYsg2rcvgouLFRMnnsXc3Ih16xpjbKz5KSpaNDFvk1wu4Opqi6lp4s/Uh9u3tYqGqFbjfeMG3jdu8GTPHjI2645jjcbUblcNS1tL5s6tzd9/12LTpvs8fOhP3bq5qFo1e5pl/hy6dSuOi4sVN296U6F8FiK2+3B/83vscuQgT+PG3Fi8GGQyKo0eTdEOHb6pLMlxzP/5yuGBnj210W/vLl3i9urV/DZAk+VcrVSyKG9ebQ26PI0a0TZJQV9RFDnYqxe3V65EkMupt2gRpfv00e73vX8f3wcPyFq+PHY5chAdrRsVlxC9plDIUCoTV3WUcUo21P0ddVQEiCK7O3QgY/HiOOTLx+G+fbm5fLne8c5OnMir48f1lFVRrebx7t0c7t+fSmPHUm3yZGQKBe+vXSN71apUGDlSq1Q2bGhNw4Z5UatF3r0LoWXLgmkuRSPxayE5aSdBctL+Ouz/4w/urFql02aTIwf9Hz364TWOKldey+XL77QrGXv3tqZenZwccz/D+0ARt2K5qVIle5odeX8mspgNwTvaSusb8VcfZ0Yv7a3XT5MR+DGvX3+kQYM8bJq/n79WJq95pVGIBNTkzhDOmyBTYjEGRJrKDzJwXAOqGihLkV7u3fNhxoyL2NqaMnFiFTJlsmLjxnssXHgNJycLFi6sS+7ciVmbry1axNGBAxFkMu3bPcBNSnKQBoBARuMQ7jwbSUbX9NVp+xQqlYrjQ4YQ+OwZ1adNI/NnZCb/EkS1mqf79xMZGEjeRo2wcNTPYv6tmGFtTWyYppSLIJNRffp0rf/UlXnzOD50qE7/AS9ekCG+SPibs2dZX61a4k5BoMZff1G4fXu8rl5lZ+vWIIooTE3pcu4cGQoXp0KFNdy54wPA4MFlmTevDps23adr170olYmPrDw8pS1btOubbfbtw9TWlnVVEiMqk+ZCWlupUuqmTZkM+9y56ffokV6KjKSEhcVQq9ZGrl17j5mZgt27W+tEQEp8f6REkd8YSUH6cuKiophpZ4c6RtfBMXPp0vwRv5z9I7GymkF4eGKyt9/yKfB4/JFQdaLvQvnyWThzpssvpyRdPXKDNi3cCYgy4fdScrZcnpKq4zTA01vPKFBqU7yztL4DvZkQzamDTclZKDtH3c+Rr3gOfqtTSqfP4z172NGiBaJajZGlJQNfvcLyEw/vlydOcGj1YQZts9X6JtnYmPDmzSBsbVNWokVR5OayZXieO8ejnTu1StIMRhGjLT8hMqS5BXN3Dk9xns9hftashCYpnlpz9mzKDx2a6oP0a7K/Rw/urF4NgGWmTPS+d++7KEn3Nm5kb+fO2lUXc0dHet+9qy1Ce3byZM4lU5Z737vH/dPXuTxlPIroEJTJVz/jk5raZMuG7z2NGVKQyynSoQNN1q0jJkbJ+fOe2NiYUrp0Zm1wx+HDz6lf311nKluCsCCCBvJjzP1wm/fXrrGloW5aiIGenthly8bp8eO5MC11fzmAP1+/5uTo0aiVShqtXYtpslI/8+ZdYdiw4xrzLSI2sjBmFjtL92vXpGSRPwhJQfrGSArSlxEXFcXqcuW0P3hJGeDpSYZsP86BUa1W07Lev+w+rqnrZcAlRIcxYyoxfXr1lDv8B4iOVlK36jLOXTNUV0oE1Dy42ZVCJXOkOMeezp25n6yIrrG1NcW7dqXSmDFYODnpjXl18iQba9dmr9iYuxTT2bd/fxsaNtT4sIhqNXfWrSM6KIhSvXtjnOwhdXf9evZ17QqiyExGEo0pCebAYS0tmbN9WBquQtpQxcYyzUTfv6RgmzbU/nctQ4ceJyIijqlTq6UrG3paUUZHMz1ZnTSnIkUIffeOzKXLEN1iOidPvqZEiYwMHVoehSJ9StvRwYN5efw4LqVL02jNGq2P0KZN9+jRaTtKUUYx7tBIdoRyQ4dSa/Zs7djo0FDmZc5MXEQEALa58rA1si5XvTMgQ0VDDlCcuwaPa583L0EvXiCqVAhyOaX79aOegaK7Hz6E8ddfF3j9OphDh5IXSBYRELE0UhIUORUxLoa/LCx0vuA22bIxyNMTVVwcF/76iwebNxMTGorc2JjQd++0/QS5XBOxFxiYuEIpCIyNjNRZ/Z427TyTJp3VrkSbE8EI5mBiY8Oo4OC0XnaJr4iUSVvip+bl8eMGlaNWu3f/MOVIpVKzbZsH+V0maZUjEBEETcRKSvz11wVevvz5ClKq1fqRNZ/LrFkXuXA94RxFQMSEaCxkUWQwimTFzFKpKkcPt2/XU44AYkNDub54MRtq1MDQ+9fT/fuRyeVYEQLJYtuyZUtM6LmsSBEOdO/OieHDmZspEzHxJp4EinXuzPi4OEr17Ut94zPa3E0upiGMmPeVsxqn4NT8YOtWXLPNZ9WqO2zZ4kG+fEvw9g412DcpAQGRhIXph5GnhMzISKMgJkmT4Xf/PtEfP7LjuD89ex5k585HjB59ivHj05df6UDPnlxbsICAR4+4t3497vEZ2iMjY+nUaS8xohEq5NyiFB7q/JgkS7pqam3NEG9vqk2bxu9LliBvMZqr3holUY2cgzRASZLrl+QcSvXpo1WiHfLlo9KYMXryqVRqqlVbz7JlNzly5DkKhRCfuDNhHgERGWFxxoSERGsK7ia770Lfvwc0zuavT53CsUABul28yCBPTwa+ekXD1avJUq4cOWvVIl/jxjrmW0SRIwMH6szXpUsx7O0TndSrchZArxacxK+NpCBJfDWMLZKFQgsC7Y8dI3/TpoYHfEXUapFZsy5So8Z6Gjfeqs2D07HjHtq02cUzn6S3uoBaLZLVJgbBQChvAkeOvEhx3/dm7do7KBRTkMunkifPImKT1+L4DJ4/D0rysBKwMRO5dbUT4aqZePmOpkpBGb4PHqQ4/v2NGynuE1Uq/Dw8iArUz33kkC8faqWSilzCicQVvREjymudtP0ePsT/4UPtmNjwcK7Mnas3l0wup/6SJeyMucajG+05uqkSLwJn4Jjl65qe5HI5BZJkZ0/gPdkIDkmMClQq1SxffkuvXwKiKNKjx34cHedgZzeLFStS7psUmVxOM3d3ve+YCLzADQE1arWIKMLx4xpn6Qg/P0KSrI6kxPMk9dwgMf3As2eB8XqGoP3ztyuq42CdgKm1NZXHjqV0376Eh0br7FOh0Oa7UlhaYuHoiEyhoHS/fvw2cCCD375lmJ8ffe7fx9JZ32/sw4dwnj4NRKUSUatBqRTZuLEpjx/3w9zcCLlcQCYTKF06MxkyaFbZkpcbMsuQAa+rV9lYsyZvL1zg6b59rChVCmV0NHY5clCiWze6X75MhyNHsIv3nUqKcZJIOIAsWax5/LgfnW0O04vllCHl74LEr4ukIEl8NXJUr07R+KrWgkzG74sXk6t27e9y7PnzrzBq1ClOn37D/v1PadFiO+3b72LLFo/4Hrr+NXmyGrPraE/y2YZgJUTgaK7/Nl+jRsqrJ9+bnj0Papfznz8Pol+/w58Y8WmaN8+PWi1qzTEjx9ek4G/5CfXyYkn+/Gxp2JDlRYpwY9kyg+OLdemisxqQFEEuxypzZkzt7PT2lezVi7KDB+OY1Zm/a7/E50VXVKoJzJqVWEw4eQg5gCKZiSk5+UrloU776piaf5tAgJY7djDE25t8zZoBmnu84aTBev1y5UrZxHb69GtWr74DaKKz+vQ+yHtPQ/Xo9MnbsCEjg4MZGxWF3NQUfxxYwCAeU1BbGy1BUbg4cyZ/OzuzIFs29nburF3JU8XG8urkSd5evKhts8upWyokwbeoUCFnnQhCgOn7p2OWIXUTYo+xLXEySlxF+42rGKOJaFWGh9Pl/HnGxcTw++LFCIKATKHAwtExRV8uJycLrI3j4l9mRGSCJm1E7tz2XLnSnb59SzNmTEWOHeug9VXqc/8+8niTqLG1NQNeveLKvHk688aEhPAxPvIuKZVGjUKR5P6TmZhQY9YsvX4ZMpixwGMXmeWJdeOqz5iR6rWR+LWQfJCSIPkgfR3CfX1RmJhgamv73Y7ZrNk2be6UpJiYyImNVemsuGe3ieTemwlY2ya+jW/ceI9OnfZqt0uWzMTNmz2/pcjpQhAm62zXrp2TY8f0Syakl6NHX3Dy5CuKFctI+/aFEQSB89OmcXbSJG3+KgsnJ4bFJ7ZMzqtTpzg9dixGFhY0XrOG99eucfnvvzG1taXO/Pk4FSz42bIlrVZvnSULA16+RGGgEPGPIDIgAJmREaY2Nvz55xH++UcTgFCjRg5OnuyU4ri9e5/QtOk2nbYsZqEcvz6M3Pmc0+w79PrcOapXXYsnrojIEADnjBY0aZKfySOKsSynbmLRLufOkaVsWdbXqMG7+BWiYl270njNGqKDg1lVtixBL15glSkT3S5dwibeJP70aQCdO+8lPDyWSZOq0qJFAQCiPn7k1enT5K1f32BkapBPEO4LD3B7zlSyqV7qvJ60O3yY3PXqpek8AY78+Sf7/9nGMWoTiwkVuchW8XGaxydwfNgwnVVIQSZjVEiInm9bAnfXrUMZG0upnj/P74BEykhO2t8YSUH6dZkz5xIjRuhnj86Vyw4/v0jCw2Pp07sEo4eWwCWnfpZlURRZuPAae/Y8oWBBR2bOrIm19c+T9K1o0WXcv++n3T5+vAO1aumbAr4Gl+fO5eSIEYhqNUoE7F2zMejNm29yrE/he/8+UR8/4lqp0neLFlPFxhITGoqZvX2aS+Oo1WpWT93G6b3XcIl5TvVq2am7cKFeYdrIyDgKF/iHV576JSly5crAuXNdyJzZSm+fIQoWXMqjR5rVC7lcoFu34qxY0ZBQLy/mJynQCtDh2DEEmYyNtWoZmgqFmTkjAgM0/jufILmi0XLXLgrEr6olZ0nBggQ8epTYIAiMCAzEzMDKYkrMc3EhzNtbp21EUFC65gBwb9SI5wcOaLdlRkb0uH6dTMWKpWseiZ8TyUlbQsIAoijy+rXhEhIxMSqCg0cSEzOOxUsaGFSOQFPqYNCgspw714WlS+t/E+UoJkZJ8eL/IpNNxtLyL44de4FKpSJLlnkIwmQEYTJjxpwyOPbWrV4MGvQbDRrk5tSpTt9MORJFkWMfCzNDPZJJTGQaExju2YHXj95+k+N9CuciRchepUqalKNgT0/eXrxIXGTkZx/v9enTzHZwYI6jIxtq1EjzXJO7L6bnpGdsu2vD3MdlWL/0DMuKFNHrZ25uxG73+iR3Tgd4/fojs2alvfzIoEG/af8vl8vo3l2TiNU6SxaKJalFlrVCBbJXrZpiDrLbFGdK1J9YWvzFsmWf9qVJ7gu2p337FPs2WbtWxwxb5s8/U1Vsjh9/Sf367rRvv0v7nbYw4JeUXuXo0e7dOsoRgDoujrWVKqVrHon/LyQFSeKXZ82aOyxbZtjZ1csrlGPHXqY77Plb0Lv3Qe7e9UEUISIijiZNttG+/R7ev0+Mzpox4yIqA7W7FAoZ8+fX5cCBdlSvnnbfKD8PDw4PGMCpsWOJNOAwnZx9+54yZfoVoklQEAWUKKhQ4svr6F05fJ3a+YZTN/8Ibp6688XzJeX+5s38kzMnaytVYmnBggR/5orXvu7diQ3XrO68OXuW28kSnqbE1t2vADE+SafIfYoQ8NiwGaho+Xz82cRM61OTVFmKiIgzOMYQf/xRkgsXujJ7fHHG5j7JzW51eBhf36zRqlV0vXiRjidO0Pn0aeTGxmStUIGinXWj+0Kw5gANicWEWFFBv36H0x29qU6h1hyAx7ZtOmVNnuzalWLfJ08CqF/fnSNHnrNt20Nq1NjALEdnfO4kuVcEgbr//JMu+QDub9pksD0hNYGEhCF+/FNDQuILWT73FIbeyBNYujRtESaBgZHMnXuZJUuu65Q0+Fo8faqroERHK3n2TF9piYz8/Ag1URTZuvkOrrajMBbGUqbwXM4s3cilWbPYWLOmbviyAZ49C0QmS4xsSyA8LvViup/Cx9OXmg12c/KpOcefmFGt9lY++qVcODbUy4vAFy84OXo0ezp14uWJE6nOfyLeJAgQ/OYNC3Pk4Miff6Y5LYIqNpb5rq6EvHmjDREXZDKi0xi2nclBoU0zICBiQwhCKvXOFuwZSaDvINatrIdcrvkZNjVVMGBAGV4cPcrZyZN5dcrwamJSypZ2JmZWS8SH5wh49IidLVviffMmgiCQrUIFctasiTzeb0sQBJqsW8cgT0+G+vggGBkRgYVOVXpRBF/f1JWG5CWDisUHZhjCwslJq0AJcrnBKLUEbt3yRqlUI4oaB/bXr4MJCNCVJXPp0toSJykR/OYN7g0asLx4cW4uXw5Amf79Dfa1dXVNdS6J/28kBUnil+fx05TfeEURzp/3ZMKEM6jVKStRwcHR5Mq1iGHDTtC//xHc3P4xmMPnS/jjjxI62/nzOzByZAWdNjMzxRcVvJwx4yJtO+znbYgpcRjjSTYOqesgqlT43L1LhL9/quPr1csVn18maVFZ6FDHJsUxaeH8/mtEimaIyBCREa4259rx23r9RFHkYO/ezM+alcW5c3Np5kzub9rEpjp1tIVFDWHIBHf9n3+YYWnJo1RWLRJYkj8/oW91zYimNjYU7ZSyw3UCH1+9onctkZwmfiiIw42XVJOdp0H8wzkl7Jzs6NzjNx496seePa159mwA4p2jbK5Xj/NTp7KxZk0ebt+e6hw+d+6gio3VafPYujXVMTbZsmHp7MwIPz9yZzUmk8yXhM+5YEFHSpbMlOr4XrdvU27YMJwKF6bekiU0XLEixb6/DRhArniHbGsXFxrFZwI3RKlSmVEoZNocR65ZzDFH18T5KQUfYGvjxrw4ehTfu3c51KcPL0+cIGf16pQbNkzjEyYIyE1MyFy6NP2fPk11rqigILY2acI8Fxf2de1K3CfqIUr8t5CctJMgOWn/mjgaDSVAaYVuUdXE4qoJTBpfjq6di5DNLaPeHCtX3qJnz4M6bUmzOn8t1q69w4oVt3Bzy8CqVY0wNVWwZs1tpk27gKOjOcePd8DG5tOOsimRNet8vLx0ExU684G+spWY2tkx9MMH5EaprwbduPGeTZvusW/9eWKiYujaIit/bR7y2TIBvLz/inxF16KMj7gyQsmrF/1wcdP1CXt/4waryhguIFxz1iwqjBhhcN+jnTvZ2aaNNvIuKXITE0YGBRlMHZDAFLlc7+Hbx8Pjk1F44b6+LMmfn5jQUBBFXMqWpdvFiyk6dx8eMICH27Zh4eREm337tPXKElhfvTpvzpzRbAgCeRo0oO3+/SkePzo0lFm2tjqJEVvv3Uu+xo1TlTspYWExbN78ALVapH37wtjYfP00Caq4OGQKxSed3k+efMXChVextTVj6tRqbC2WXSf54p+vX2ObPXuK40VRZKpCoZMFu9bs2ZQf9nlZ1fd26cL9TZu091XhDh1otnHjZ80l8W2RnLQlJAwwZUQxAwkfBWxtdVdiJk29gmuu5dQo/pfeHNbW+g+FDx/C9Nq+lK5di3PlSg82bWqmzTHTrVsJXr36k2vX/vhs5SjCz49D/fphGumTxCdW89AsbfmKzKVL0+Ho0U8qRwClS7uwcOHvvAmeyYeY+V+sHAG4FcnJ+rklyGUVQm6bENyXltdTjgBtxXhDOBctmuK+Ai1aMMTLixw1a+rtU8XE6GXh1iPZg1uQy3EsUCD1MWj8lKI/fkRUqRDVarwuXyYihZQIF2fO5MbixUT6++P/8KFBRdDW1VVrmhNkMmw+YQIytbamyfr1GFtZoTA1pczAgXrKUWx4OK9PnyY6hRIYVlYm9O5dir59S38T5QhAbmSUpojA3wqa0dF4FxUeTMZ712pGfvxIxTFjKNiuPd1feH3yegiCQI4aNRDkcs2fIJA9aaHcdOL/6JGO0v1g0yYe7tjx2fNJ/FpIK0hJkFaQfl2e3nlJvhK6jpilSmXi5s0PBnqLZDYN4eT53uQvnZcx7eezftc7AuMsiFEnhmUbGcnw9h6Kg0PKKw8/CytKlsTn3j381A5sEVvxUbAni53IgE5ZGTq3q7a21s+OWqlkY506vDmtWy4ja4UKdEutCnvCeJUKj61bOTJwINFBGtNrnoYNU12FEdVqpiTzF6owciQ1Z8785PESVrxuUgJvXChj9oRFHx+gMFC3bV3VqnieO6fTNjHZz2+Evz87W7fm/bVrZKtUieZbtqQ7Yispb86fZ0P16pqHvCDQateu75LZ/nNZW7ky7y5f1iolLXfuJCZneapX30BwcDRFizpz+nRnbcZsQ8SEhnJhxgzCvb0p0qkTOWvU+Gx5Ls2ezcmRI3XabHPk4E8DCSYlfizSCpKERArkLe5G69Yac4hMJmBlZcz48ZVT6C3gHW1Nx0bLcZ+3hxnuoXjH2BCr1v06xMWp2bTpfrplOT9tGn9ZWjLTxoYH27Z9esAXEhcVxYfbtxFVKhxFXwayiGtLnHgbOInh87t/M+XI/9Ej1lerxtLChbmzZs1XmVOmUNDx2DGqTJ6sXUlxLFCATif1c1wZHC+XU6R9ewY8fcrvS5fSdONGWn3CB0mQycjdoAGCTIagUCAzMqJIhw5pOp5L6dKcLzadgzTiNiVZHtWeoyfeGOybI9mD2tRARmoLR0c6nz7NmIgIOhw9qqccpTd44ED37okrIKLIod690zX+a/LyxAn+zpiRGTY2nEimdCTgc/euVl5BLsfn7l3q1NlEcLBmZfHePV8mTDiT6nFMrK2pOWMGTdavT5dytLF2bSYLApMFgSODBgFQfvhwvX7Jy45I/HeRFCSJ/wwbNzZl1aqGTJtWjTt3etGgQV7q1EkpX5AMn2C4cfE5CaYo0cDXIX9+h3TJ8PLECc6MH09cRAQxoaHsbtOG8E84Rn8pClNT7PPkSYyaEgQylyz5TY8piiKb6tbF88IF/D082N+9O++uXPkqc8sUCqpOmMCY8HCG+frSx8MjxRw+CbKcHDWKWXZ2LClQgA+3b2Pu4EDpPn0o0qGDjllRpVQR5KPv1N9y2zaqTZ1Kqd696XbxIk6FCqVZ3nMPdKMOp0w5b7Bf5XHjKN69O6Z2dtjnzUuPdFwvT89gChVaipHRVMqWXUVAQNryMymTOXCr4tKWRkCtVBL08uVXK46sVirZXK8eEb6+xIaGcnn2bB7FpyRISq66dTWKarxPWKYKVfH31z3XBw8MmzDTLZNKxZEBA5iVIQPzsmblVZJIyesLFxLw9CmCIFAqSe05QaGg3eHDiKJI6Pv3qaY4kPj1kRQkif8MRkZyuncvwejRlXBzy4BMJnDwYDtWLjNcD67V75lo1K4cMtQI8X+2xjFad5Q2bQpSp06udMlwd906vbane/ca7Bv08iV7OnfmooE6T+lh85JjDHnWkomqcSySDaLOyvW4pODo/LWIi4gg9N07Hf+MpMVlvwYKU1MsnJw+6bvyZM8eLs2aRXRwMIFPn7IthazOZ3ddxN5kNPaZFpHbehC+bxMzkxuZm1NpzBh+X7Qo3dfOyEjXPPfkSQALF17l6sKFbG3ShHvxOXgEQaDRqlWMDAqi/5Mn2OfJk+ZjDBt2nCdPNDXbrl9/T9euew32E0WRWytXcrh/f3zu3aPKhAk6+1Nyck/g2cGDrCxThqnGxizKlYu/zMzwvnkzzXKmxMfXrxFVKoKwIwB7RODl8eN6/ZqsW0elsWMp3K4dbQ8cIE+tapiZ6WYjb9bs075haeHu2rVcX7yY6I8fCfPy0tt/Kf57WX/pUkYEBtL92jXGRkejjIxkhqUl87NkYZqJiV6xX4n/DpIPUhIkH6T/JqHBkdjYzY7f0jxsC2dTcd9zCgA7Fh/g33/O4+RgyvytA3DO5vTZx3q0axc7klV9H+Tpqa1tlcD7mzdZVbq0djtDnjwM+ETIsSHalBvHtqsKEiP2RMrnU3Dp8bh0zxXw9CnuDRoQ6e9P/qZNabx2bar9V5cvrw29l8nl9HnwIF0P/bQQFxvH4+tPyV4gG9YZdL+Tvg8esKJkSdTJVkUEuZzxcXF6ilVu60G8DLOJr12mpn1F2HhBt8bd57B69W3++OMAyX9J27CFfGg+0xozZlBx1CiD45VKNUOGHOXt21C6di1KjhwZKFxYVzGsVGkNFy++i9/SRGiO7ZmFaf9215lrS6NGPEuSMbrDiROY2tjwZM8ectSujVOBApg7OBg0u/rcu8eKEiX0ovns8+T5ZDj8p1Cr1VQyqs9ldVkAinCXnUd6kbtu3RTHBL95w7V//uHOOyNmnbAlLDyOrl2LsWJFQ4NKs0qpYtHo9fi+D6bbiMbkLpZ6tvlTY8ZwafZsg5GPAM23b6dQy5Z67StKleLDrcTEtGYZMjAiDUlYJb4tkg+ShMRnYG1rTu1ytvFbIhbGKm6/THyzbtm/ISefzcH98tQvUo4ACjRvTrFu3RDkcmRGRtSYOVNPOQI42KuXznbQs2fEprNEhlKpjFeOdLn6VEnRosu5d88nXfOtLleOjy9eEBMSwt116zg7OXXlod2hQ5QfPpzi3brR5fz5r64cvXn8lmxWIylaaRfO9jPZu+KIzv4VpUrpKUcAhVq3NvgADYuRac2oAiIfg6NRqVRsb9mSJQULcnnu3DTl2UlO9+4liI4eq7PSIaDGh8R0EjeXLTM4VqVS4+w8h0WLbrBv31OaNNlO0aLLadVqp07erj59EpTpxPQVq1fe0klkKarVOsoRwNmJE3EpXZoCrVqxpV495jo7M93UlHeXL+vJ4n3jhsHzjwnXrxuXXt6+DdUqRwD3KcbHDIVT7B8TFsbqcuW49s8/xO6ZywSrpUSGDGXlykYprij+Xng0g/9+x8wtoRQvsZLnd1+mKlO+pk0RBEFrmjZ3SvzuZypVioLNmxsclzx5qJQb6b+LpCBJ/F9w7PIgoqPG4v1uAOExU1Ao9BWLr0Xj1auZoFQyPjaWiik4oxryqUle2DTtJK4egYBaFHj40I/mzVNPMpic6I+6ma1fJ4skS46ZnR01Z8yg4YoVZPntt1T7fg6juq7AN1bjEBuDEX8O1jXJqJP51yAI1F++nMYGzJwAPVonKqoyRPqPrM0sGxse79xJwKNHnBg2jP09enyWrMbGCurWzYVMJiCXC4gI5OC1dr+Zvb3BcTdueBMUpJ/aYOfOR1y9mmj2adeuME1qJM4hoMZG/EiEX6KZEEHQu4fkxsa8PH6cHS1balMoqOPi2Nmmjd4xXcqUMZhws9yQT6d5ePP4LZvn7k5RKTHkXJ6aw/nTAwcI9/HRpE9QqQj18kqxdAtAdGQ0x58kRJsKRIimrJm9L1WZXUqXptvly1QYOZKGq1Yx1NubYb6+DPL0pOeNGynW/6uQzHG7SMeOqR5H4tfl2z0lJCR+MkxMjciUxfCD6nvTYvt2Frq6apf3c9aqhSK+JERaUSgUFLAL5tFH/TBwlUrE0zMEURTTXJHe3MGByIAA7Xae+vVT7Bvy7h272rTBz8OD3A0a0Hj16lQdqT+HqCglArL4amUCsUrd8zCxsdFJImjr6kqpZCtzSZm2YRAlKxzmzpUX1GtRCv99a/Vqcd3fuJHfBg3SmJpUKgSZjO5Xr+KSxByaEhs3NmXGjIt4eoZQo6gMr3EzUcVooqpSiqQzN085L1Vy74eV61vzNNdInkW74IwvXQq9xS5nTu1+QRCoPW8eRwcOBEBhZsbbixfZVKeO3tyxBvJCORcpQtuDB7mxdCmxYWFYZsxI4Q4dyNugQaoyzm/ch9EHMhCLCQpus3VJWZr31R3j5mZH167FWLv2LgANGuTht99cUpzzZDJfKbmxcao5kIxNjTETYogSjdG89wtkyvLp9AgupUvrfLYWTp9eQS7Zsyc2rq54bN2Ka5UqFE+l1IrEr43kg5QEyQdJ4nuiUip54O6OU8GCXxR1Nr7TQp4+8aPdn/Vp0/00SqUatVqkQrZQGoStI1OJEjTbtCnVOlgAwZ6ebG3cmHAfHwq2bk29hQsN9hPVatZWqaIx06jVIAhUnzaNSmPGfPY5GOLSwWvUbLgvvnCuyMz+mRi5KFEBiomIYFGuXET6+2ObPTt9nzxJ08qgKIqsrVmHd6f167uZ2tujjIxEmcRsIjcxYVwqCSxTQxkbm6riK4oilSqt5dKldzrtTZvmY+fOVknq4mkI+/CBu+vWoTAxocQff2BiIOQ8NiKCkHfvONK/P69TqOdWfsQIan1hcABoHK2b1FnBQwpqfbsK2YdwP2CBXl9RFLl9+wNxcWrKlHHRO7cEYkJDmWmjW9qm7ODB1Jk3L1VZ1s3YTt+xd4gWjamdL4pDD2YgV6RcD0/iv8W3eH5LClISJAVJ4lfn/n1ftm3zIPzOeWyP/oVMVCLI5eRv1oyWn6jrlRZiwsJYnD8/4e/f67Tb5sxJrjp18Hv4ELmREdWnT/8qZrdXHq854n6BYuXzUqFB2uZLbdXswQNfGtR35+27UNx4QWu2YUy8H5Mg0Pv+fZYXKUJyj+vkCR2/Ns+fB+DjE46NjSlKpUixYhlTVCDSinv9+pw6/IALVEJATTXOkiuTpvRG0U/keYqIiMXd/QFKpZq2bQtja2t4dfDOmjV06X6QBxTWKkhFHYK5429YuU4LoiiysnRpfO7eBTQBAL3v38ch76fL/qjVamKjYzE1/zYZwSV+XiQF6RsjKUgS/xV2d+iAx5YtWqfbjMWK0evOnS+e171hQ54fPKi/QxA0SoUgIAgCRhYWDH73DtNkKwFxkZEoo6MxM5Ak8Uvx94+gSeMtXL3mTalSmdm7tzWZMumusPz22ypu3fJGpRLjlYYzVOYCtefO1frazHZwICpJVJKxlRWjQ3Xr2xnCyyuUxYuvAyLd27rhVjDbF/iVfTlXtx2iUpvLqOI9KUyIYYjsH6arUg8GUKnUVKiwhmvXNEpw3rz23LnTCzMzfXNguI8PE/KU59+wFkRigSnR7HOvQ+22Vb9I9sjAQC789RfRQUGU6NmTrOXKfdF8oPF52r//KdHRSho1youlZfpM2hI/N1IUm4SERJoo0LIlolqNEP+ALtSu3VeZ1/vGDcM7Et6zRBFRrSY2LIzg1691utzftImZdnbMtrdna5MmvD59mthkPkCfiyoujnZlx3DlyjvUapFbN98zapR+9m0/vwhUKo2sAqC0ykSdBQt0HJFzVK+uM8Yu16dzYUVExFK27Cr+/vsys2ddpHSxRUw0teLFsWPaPpGRcZw+/Vqbz+hb89wzCiXGiGii96IxI0ht88lxT54EaJUjgKdPA7l08Q3hvr56UW6WGTMy8eE59kyyZXUfePPmzy9Wjo4MHswcBweuzpvHsyNHyPQVkp6KokjTpltp3nw77dvvJlOmudy65f3F80r8t5EUJAmJ/yD5Gjemw/HjlB86lOZbtnx2NfPk2OfOnXqH+LBpC2dnMiTpq4yJYX/37trIs6f79rGhRg2WFSqkG4mVRpTR0ezr3p25mTMz3cKCaSYmvH3lhxgf0adSi7x/r++IPHBgYhJIIxMj5p9dQNk//9Tpk7lUKW3xWkEmI1v58p+U5949X96/D0OlEhGREYItvqoM7G7fHoDAwEiKFFlGjRobyJ9/CUuWXE/Teb69eJGLc+akWsQ3JSr+XgpjYrVJUE2J4kHWNrRrt4s7dwzVKNTg4GCuZ97bV7cSczNmZIqREU+SpRKwyZqV2hPH0G3pRJxdM/IlRIeGcn3BAu12pK+vwYi79Bo+3rwJ5uDB59rt8PBYatXaSFyclAlbImUkBUlCIo28PHGC+dmyMcfJict///2jxfkkbrVqUXPmTAq1aZPmSLY107bibDwUe8UwZvZbrre/wcqVyJI5HRuZm5OpRAkKtW1L4XbtKNalC10vXMDYwkLbRx0Xhyp5WD4ax/ALaSgKm5zz06dzb906wj98QBkZCaJIce7G79WkO+jevbjeuMGDy3HyZEcWL67HvXu9KVEik16fckOHUnn8eLKUK0fpfv2oNWfOJ+XJnt0WIyNZ/LFFZKiwIUQbJbdp031evUpMozB6tGHn6aSsLFOGtZUqcWrECKabmeFnIFN5qLc3C7JnZ4pCwaLcuYlMYhrMUSg7+zZUp5RzEMUs32FkZsaV97Zs2eJBqVIr2bHDg/PTprGqbFkO9elDbHy+I2dnS9aubYylpTFmZgoaWl7EQR1f3kOtZkezZulWUNKKoRVKv3v3tP9Xq1Ts696dacbGzM+WDa9r17T7Tp16Re/eB5gz5xKxsbqKj5WVCcm/Ah8/RuPn93VWMCX+m0g+SEmQfJAkUiI2PJyZNjY6JoZOp0+To1q1L57X2NLyS8X7YtRqkQF99rF0xV1tm4DIjVNNKVm9mE7fgDdeHJqxhPAbp8iYLxcNV6xI0zkc6tOHm8v1lS5BJqPz2bO4VqqUZnl3tGzJo1279Jyp35GFt2SjXvsqDN70V5rn+xrs2/eEgT13EuHnQ21OkJdnFOnUiabr1zNn2nFGjL+MxrAnYi6PI0I5PdX5Jid7oltlycKQd7rRbksLF8bfw0O77fLbb/S4elVvrrt3fShe/F+dNrkMBqrnYUMogkxG0S5daLx6tXZ/wqPhLwsLnag+gNHh4ToK8NciOjSUWcn81iqOHk2NvzSf5d3169kXH1YvyGTYuLry56tXTJx4RqcGXpcuRVm7tonOPDNmXGDMGE1uL0EAN7cMPHnSD7n8664TvL14kT2dOhEZGEjZP/+k6uTJaX5Bkfh8JB8kCYlvTMCzZ0w3N2eyIDDd3JyAZ88A8L1/X8//4vmhQ599nHdXrjDN1JQZVlb8ZWGB38OHvH7wgo29RnKgT1+DmY6/JatX32bpintoHuCaPxEZHtef6/R79iyQwuW20WWFKVO9W1Fwwj9pVvB+X7qUjidOUHbwYN0dgsCdVavSJW+eRo20TuFJKVPCiaVHxjNoY+rKx7egceN8ePqO4+LeWjRrXZy6//xDk/iklcL6wWRC4/MiQ0091X4CX71K1/yGVuBCkylMwW/eGBybM6cdlpa6TtYqNQTKNHl/RLUar2TFc4V4h/uCrVvrtFtmyvRNlCPA4LwWSdJThH/4oE3gKKrVhH34QEBAJNOmXdAZs2uXflLJ0aMrcf58F1q3LkjPniU5e7bzV1eORLWarU2bEuLpSWxoKOenTjVYc07i1+CXUZAmTZqk/cIm/OXLl0+7Pzo6mn79+mFvb4+lpSXNmzfH1/frVH2W+HV4+TKIwYOPxkcTpZ81FSpo35aVUVGsifc/cS5SRFuSIIE8DRt+tpw7WrVCFRMDaCK7+pYfiFuRjXRaYc7w5R9ZVakKH75C1NmH27fZ1rw5B/v0SdWP5cmTAHRPT8RKFkHddlV0+k2adBZ/f41ZIiAgkvHjz6RZFkEQyFmzJnXmzSNH9eo6mYrNHBzSPA9A0Y4dablzJyV79SJHzZo4FipEqT596HHjhqYi/Dd8Y//9983IZJNRKKYwd66+IpuvcWNabN3KbwMGaOWQRYfyB6voyxKGMpfCeLAkXz4dE1FyLDLq+vM0WLFCr0/2qlV1tnPWNlyY2drahHFV3yFHiSbtpoiFKTipvTV+YzIZbrVqAZooNpUq8WWgydq1VBg1ChtXV9zq1KHPgwcpypwUpVLJfFdXpigUzHVxSZMflUwuxzZHDp3vWtISNvmbN0eeJCGpTC7n6ZV7OmVZALJmNeyMXqmSK1u3tmD58ga4uHx9K4EyJoaogACdl6kQT8+vfhyJ78MvoyABFCxYkA8fPmj/Ll68qN03ePBgDhw4wI4dOzh37hze3t40S6Gqt8R/k4cP/ciTZzELFlxjwIAjVK6cerFVQ8Qkq7OUsG1saUmHY8ewcXXFwtmZOvPnk71KFUNTpEo+hxGYCmNZ6lVV2xaHgj2hFbR1wp6Sj2fqXF/05unn4cEcZ2dWlCzJk927ubV8OYtSqZXWoEEe1GrQ6CwiuZxFLl/solebLjIyLknAmkhUlH4ttNT4+Po1+7p2xTpbNm1m5MwlS35WkkmnKvU4LDTgVoEhdLh0g/pLlxoswvo1Wb78JkeOvEAUNdnKhw07QXh4zCfHNVy5EhkiTvhjQXyYvUrFtSQOyckZ9uEDZYcMwbVKFXpcv07+xo31+rTavZvi3bvjUKAApfv21a5YiaLI5cvv2L//KeHhsXjfvEn0weX0ZzHFuIMlYUREw6YMo7Co0ZYqEydSa84cVq68haXlDMzMpjNnziXtcWrOmMGgN2/ocPQo5imUTUnOwmzZCH37FlGlItzbm7kuhjNnJ6fNvn1kKl4cKxcXasyYQe569bT77HPnRmFmpt2Oi4zk2byxlC2bOLeZmYJdu1ql6VjJUcXG4nXtGkEvU67j5uHhx4EDT/F67sXpsWPZ1b49m+vX59jQoYgqFfmaNgU0JkATa2tyJZFf4tfilyo1olAoyJhRP0oiJCSE1atX4+7uTvX4EN21a9eSP39+rl69StmyZfXGSPz3mDjxrM6b5IULb1Eq1SgUaX9oZipeXFuhHjT5gxLIWaMGg1IwYaQFB+MRBMZZACIvycUyetKHFaiRoU72rhKHAsf8+T/7WGsqVtRT9kLfvSPcxwdLA9+hatVycOJER/bseUKePPb07VsauQxenTpFXEQEOWvVwvPCBSqb3eGowpKYWBEjIzkjRlTQzhEbHcvIdgt48iSApq2K0nNSe51jBL99y6LcuXWqpzfbtInC7XX7pYXw8FiyZp1HdLRmrvXr7xEQMCJdn3VSnjwJ4MmTAMqWzULGjJY67Y8f+1O2bBYyZbLCw0M/4s7bO5w8eUxSnT933bp0u3yZzb//TkxwsKYxPl9UatSZOzfV/TKZjEYGzJOjR59i1iyNgpM7dwbWjdSU3bAjmAx85B6ac/QPEdkZVo1hE3rw4UMYvXsf0n6HRow4SYMGecif3zFVGVIi3CexWPIrcnAzqBQvex5g8uSqevmpEoiNVXHwehyhbRbSpk0hvVWe9dWrE53EER1RJDowgMnN/dgS8gKLLNmZuGEQjhk/nc4gOTFhYSzOm5fwD5oIP9ucORn44oXOauTKlbfo2VOTB8yCCLLxhle44YA5LY6sI+z9e1ps3cqdNWuIDAigcLt22GTNmm5ZJH4OfikF6fnz52TOnBlTU1PKlSvHjBkzyJYtG7du3SIuLo6aNWtq++bLl49s2bJx5cqVFBWkmJgYYmIS3/5C05AMTuLnxc5ON3uuICSsiKSdrpcvs7VRI95fv07mUqVoaygp4mcSGJdYTBNE/MhIgZYtyde0Kc/merDrliY6zBlfeoxr+dkmPD+/CA6GlEaJgtLcwIHEB4ppKgkaa9TISY0aibW99nTqxP2NGwGNuSci/oHXF2tcek6k5djuZMuW+CBqXX4ie++YIMOUo5NfIAju/DGxHZ7nz/P67FkuTJumoxyBJqFlyLt3VBw1KkW5Dh58xrZtD8me3YbRoythbm7EzJkXtcoRQEhIDIcOPaNx43wpzmOIDRvuMWLECXx9NWZDU2O4frMXhQtnZNeuR7RqtRO1WsTS0pjLl7vRu3cpli69oV1Fs7MzJVeuT9f8ArDLkYPm7u7s7dKFSD8/bLJmpcqECemSNy3ExCiZMyfR9Pf8eRCPlL+hMDNDGRVFBBYIiIhoVsESzj0oKErPVOXvH8nn6unGVlbEhobihyOb6ICIwNM1d7h8+R0PHvQxaAZt3nw7Bw8+QxBg6vhj7JqemRqDexESEs3q1Xc4fhEKY4ElidFnjgUKcGXSWLIDPIYjHa/S6YR+GZlPcWfNGq1yBBD86hXnpkyh6sSJ2raJE89q/x+BOY8pAAh4k5l9YkOynD2K3NiYUr17p/v4Ej8fv4yC9Ntvv7Fu3Try5s3Lhw8fmDx5MpUqVcLDwwMfHx+MjY2xtbXVGePs7IxPkreY5MyYMYPJkyd/Y8klvhfz59dl376n+PtrTBijR1dKt8lFLpfT/gucr1NDQB1vRtM8GOSoaLl9O7dueXMzwAe5LJRyxWzYf/RP7BxtP+sYSqWaypXX8ozygMg9ijKARVgQSZlBg9JcEDfcx0erHAFa5QjAhlDUe2aS7V/dKu/n7scBpqiRI0PFvp33KJsbbS6glDg1ejShRvacuPSRjC42DJnbDSNjI+LiVPTvf5gVK24jCBofpptnPaj9Zg6bPtQDdE026fUpuXTpLZ07743f0qQGiI6FWiVn4RM7n2nTLmgjuaKi4li8+Dr//tuQCxe6MnHiWWxtTVmxokGa7rEr8+ZxfNgwEEXyNWlCrblzsc2W9kzbqnjFUh7vm6NUKtnZsiVRgYE0WrMG+yTJLOVyGUZGMmJiEhVImwwWtHrxguNDh2IaYMTd80bExGr8ZBJyQ+XL50CFClm1deEKFXKiTJm0mcUM0efhQxbnzo1XdBbUyOPPQ+ThQ39CQ2OwsdF9ofn4MYqDBzVBEaIIIVEylg5Zwvtj+5j7oREPHviCWJlrFKEvS7UlYuIidTODvz55Ej8PD5wKFUqXvIZ8pALjgzQSMDc30iaN16C5b0RkfMSOrBUqJJ9C4hfml/FBqlevHi1btqRIkSLUqVOHw4cPExwczPYvqC81evRoQkJCtH/vkkWESPycqJVKnuzbx/WlS3m0axfqeIdIS0tjfHyG8uhRXwIDhzN9evVPzPR9WT0rIS+PJlfOoW11AWjbdhfv3oWhUsPF2yHsO/Tms4/x5k0wT58GxmdPlhONGV5kIV+zZtSbPz/N88hNTHScqJOjMNE3KWW3VyGg+SzUyMif35HbaYhOC8GaFsNesmBPJKMW+1CnwGhEUePfs2LFbUDzQFKrRc5c9CH0/XtMVWForqOGTJksKVUqc5rPD2D79qR5hRJXM3zjbMmbax5qtVpnlcPcXBMFVqFCNtaubYy1tQk9ex7k7Nk3qR4nJjRUqxwBPNm7l8CnT1NVjqKi4jh58hWH1h1lmqkp0xQKpikU7O3WDYAZ5uY83buXtxcusDh3bgKfJ0YbKhQyVq5sqDU3NmqUh8aN8nBtwQK8rlzBRebLpRPNWLy4HidPdmTwYE0ZD7lcxokTHVm3rjGrVjXk3Mm27O/QhulmZqwoVYq3V66wrUULTo0di7d3GPPmXWHNmjt6OYcSsM2ShXFRUUy+c1gbbCiXC7i52WFtrX//WFgYY2lpjJDkc7UijGvHbnL/vi+iqHEvD8YOL7KATEb7Y8dwLFhQb66Qt29T+0gMUqpPH23m+QTK9Ouns710aX1tyRUHmcaEnXDPV8zkR+M1a9J9XImfl19mBSk5tra25MmThxcvXlCrVi1iY2MJDg7WWUXy9fU16LOUgImJCSYGfuglfl5iw8OZny0b0R8Tk+4ZWVgwMigIubExMpnss30mvjVdRzSl64imeu0fPoRrTRtyucD7959v6s2UyRIrK2MiIuJQq0VkMhh6ehclq6T+Nh3u48O5qVOJCQ6mVN++ZKtQgboLF3L0zz8R1Wpy1qrFq5MnQRQR5HIaGXgQ7Dw1kJY1/8EzUE714ib8telP9rTTz8mTnGfkIQpTEpSUMy8tmWJmyW4rXbObIICz+AFEkQpc4iVuKDHCxETOjh0tU5z/1pWXuC85Ri43Oz6auPDPP9dxcrKgc+diJKwAJOf5qzCsrWOxtjYmODgGN7cMjBxZEdAoajVqbODVq4+IIuzf/xQPj77kyaPrvBwZGcft2x8IvXJUL1+ToZD9BMLCYihffo3W36kK5ajGWQDurV1LnoYNUcfpOsfv6dhRJ/9RiwbZqHqvHYK1Ay4u1txeuZLL8QkvQ728UKv+pN9J/VIsZmZG8dcFzk2dypM9exDVanzu3mVtfERnBOY0nqEkSrBArRbZu/cJ+/e3TfF8ihXLyO7drVm48BoODmbMmlXLoHnN2FjOzp0tafH7SqLVRlTgEjl4QwTmGBnJiItLiAwTsSYURBGnggXJWb069zdtIszLCwDLzJnJWqECgYGRrFx5mzt3PuDkZIlcLhAVFUfdurlo2lTfbmhqbc0If392t29PTHg4VSdNImuyLOq1a7vh6zsMf/8IXF1t2ThxBUePvaZo6eyMWDT+mwcJSHxfflkFKTw8nJcvX9KxY0dKliyJkZERp06donnz5gA8ffqUt2/fUu4rFDn8f+D9+1AePPDDwsIIL69Q8uZ1wMhIRs6cdlhY/DxFHc9MmKCjHAHERURwbNgwfv/nnx8k1ZfRvXtxFi68hkwmYGKioEWLAnp9DvTuzaPt27FwdKT13r0pOnBbWBhz5Eh7Bg48SnR0HBMnVqVkFf037KSIajUbatYk4MkTEEUe7dxJHw8PyvTvT9FOnVDGxGDh6EhsZCS+9+/jVLAgJlb6TrY5C+Xglo/uKlWuevV4vGuXweMqzMwwsrCgQL7iHLqY8MBUY0Y0YkwkNjH3+SAvrK2dVqSIM51NLxB6XcBVeM9IO3dKLNpBmUq5yZLFsHntyrlnVKq6CTUCIv6AxmTi7x/J339fxlSIJVo0JrmSJIoav6b37wcTG6smSxZr7YpMQEAkz58Hafuq1SLXr7/XUZB8fcMpW3Y1b94EI6CmGYUojCaho7GVFbnq1DH8YQB79jzRcQY/T2UqcQEFmpWa5OkmAJ2iwLdWruRQ796IajX5mzWjxfbtBDx5gkyhQK1UIqpU+D96pDdHgjkxQXkJffdOm2cqqe/YS9yIEM21St+BA8/4+DEKOzszUqJJk3w0afJp/7A6dXIx2mIZcWGJZWKyF8yB+6Tm9Oq2k6iwCGpyUuNXJ8Krkycp1rkz/R494s7q1SijoynWpQuYWFCu9DKdzwlAJhNYseI2u3a1olkzA0qSrS3tPmFit7Q01ha67Ty1FzUaXOPmsmUcH/KESmPGYOHklOp4iV+HX0ZBGjZsGA0bNsTV1RVvb28mTpyIXC6nbdu22NjY0L17d4YMGUKGDBmwtrZmwIABlCtXTopgSwOXL7+jZs0NREUp9fbZ25tx9mwXChX6Ob70qmRvzipkBOCAn3/qFcp/ZubNq0P58ll5+zaExo3zkju37krExZkzuf2vJgty9MePrClfnpHJlMSkVKiQjVu3eqb5+FFBQfgnKWOhio3F6+pV7HPnxsTamoQ1VmNzc7Km8/uUr3FjDvzxBypRiPfUSFxJMbW1xdrFhfbze/K4204OPzDGjChasBMBaMBB8tasyXNvNY0b52XSpKqoYzpxe/VqYsPDKdqxI9ZZsqR6/BWzj6AGbQqFBNRqER+fcPatqUbXnsf4qLSIr+OmqyitX3+PihWz6Shg9vZmuLra4OUVGr9KJ+iVLFm58jZv32pMMCICJ6ilVZBsc+RAYarrf5MUY2NdBUgWr96BRqnM36gRVlmzEhbvEiDI5bTZtw/Q+NEc7tdPm4fn1u4jvB2+kYyZK6BSLkCmUCCqVORPkgJFFRfH9ubNeX74MEYWFjRZt478TZtSqG1b7qxejSCX6yhIViQqL4KgMT1+rZcoZXS0jnIE4Fa7NrWb5SNw+h587t7V2edauTIAJlZWlB00SNt+9aqXnnIEms9dLhc4dOiZQQUpvby/fp3V5cppk5a+Pn2a3vfuSZmz/yP8MgqSl5cXbdu2JTAwEEdHRypWrMjVq1dxdNSYU+bPn49MJqN58+bExMRQp04dli5d+oOl/jUYMuSoQeUIIDg4mkmTzrJz5+flFQGNg+mKRRcJCFXTpGkBChd2/vSgFKg6cSJ316whLjKSGIxZSxd8yMy/20RC8+xg4OSUTS0/KzKZQKtWKa/yvEwWkROdECb+lTC1s8M6SxbCPnzQPlidixQBwO/hQzbWqkVkQACZSpSg89mzGKXycE+OuYMDoR2Ws2CjlyaDNEcoicavKPzDByJ8fdnSoAH7vb1RxsbRPV8btnpqipO2dPFg274uyI2MNDXDygzHuXBhig8dy/p/jnNz/jH6Te+IsWnKD+dMmSwQSVAm1YCgfXjVr5+bRl1rEdi1FsuX36BPn8N64xNKU9SokYOjRzugUMiQy2WcPNmJUaNOEhISw6BBv1GggK5ZN3mx16T+UpXHjgU0isntVasI9/GhUJs22lXBZs3yU7NmTk6efIUgQAvHm5hGmuNYsCCd481iQ96+5fmZc0R9eE+Rdu20c6uVSoLizAnHEmtCWElPwuZrEhX2aPkvTZ3uYZ8nD6X79gU05rYlBQoQG6+UxIaGsrNNG0YGBZGjWjW6X7nCyxMnsHB05GCvXgBk5w21be5yPqYU1tYmbNjQRE+pA82KVMjbt0T4+vLhzh0cCxT4ZDkZuYkJ2GXiykdX1Mgoxl3c6tQh6OVLPeXot0GDsMuRw+A8mTNbIZMJelF5oFGSChb88he+2PBw1lWpQpLEYPg9eEBUYCDm6Ux8KvFzItViS8L/Yy220NAY7OxmGfwhSaBx47zs3atfUTst+Hv5k8dtLsGxZiQ8JAo6RjByeFk6Dm/+WXPGhodze80alq96wPoHLiSEzZsRxet77bUP96/B8yNHuDhzJsZWVtSaOTPdkTFfg8tz53Ji2DDttqmdHSOD9N+OP8Wh9SeYNfEoxsYy/l7VkWKVE69TwNOnHBsyhOiPHyk3dCgF4k3Vc5yciPT31/Yr0KoVLbdtS/U4ypgYIvz9scmSBQ8PPwoXXqbdJwiwvoMvrzYu0xkzKiQEn49qcuRYqH3eCAJ4eg7C99AWDvXpA0CszJQVYk8CRE26gpIZg7n+fm6Kvh/RUbHUyD+GK57maKKNNKtELpZRvPCfhqmp5h3Rw8OPokWXkayajA5Dh5ZDrRb5/ffc1KyZM+WOaMxwFSqs4dmzQBQKGWMaxVBAfESJP/7QJj7c2bYtD7duRZDLkZuY0PvuXexz5wY0ysWLF0HY2pri6KibK0kURfr3P8Ly5TextjbB3b0Z9eppxk3s+g9T1gWR8J2Iv5KAxr8tOnqcTq6o7S1aGDSBDvH2xiqT7qqYMjqas1Om4FykCIXbpP57oFYq2dqkiV45nvrLlqUaAh8bHUsOm+F4x9ohIGIrC+OF93jMjOFvZ2cd36ve9+6l+l3fuPEegwcfIzQ0BmNjOY6O5shkAo0a5WXOnNqfnTMrgdenT7OhRg2dNpmREWOjopAZMINKfFu+xfP7l1lBkvg2BAREpqocgebt+XMZ03U5wbEJKw6aH+2H/hZ0GnGfrceCKFomJ1OmVEvXj5WxpSVlBw7kctxlGJaQbVpAjYw3Z89+NQXp1JgxXJwxQ7v94tAh2h48SJ769b/K/Gml/NChhLx9i8eWLVg4OWnNKQmIosjV+fO5u3YttjlyUH/pUj3T05Obz2ja5RzK+ASB1apvxDt4CmaWGr8Rh7x5DaY3iEqalA90THGG2N+jB3fiC54qzM0pvUO3OrsoQp5OPXm7a72m1IookqV8eYytrPjw6L2OL7Mogo9POD63b2vNPK/UrgSQmMvplo8tByfPI1tORwq2bImRubnO8UzNjLn05m+mdl/IhDXB2vb34WYEffAncw6NElCokBPHj3fk778v8/ChPxkzWnLjhrfOXHPnXkGhkDF//lWOHGlP3bq5SAkHB3Pu3+/Nw4f+uLhY4eysW69OVKt5FB+BK6pUKKOieH7oEPaDBiGKIkuW3MDd/QG5c9szd25tHBwSz+vgwWcsXaq5riEh0bRuvZMpU6px44Y32939SfxZ113FsrAwRi5PbIuMjMPzVSBqBB3TZ8YSJQwmE1WYmlLzr7QVAH564IDBWoXHBg/G88IFSvToAYJAlt9+wyhJZuzLh67jHav5fEUEPqptOOZ+lraDm9Js82YO9u6NKiaGalOnfvJ73rFjUTp2LJomeT8HQ+bdDG5uxEVEYPJ/8oL9X0dyuf8/J3t2W5ycUs/m+6n9qREamrwMQ4Kfh4zDp7yZMeMiBQos+ay5O3cphoNRePyWSE1O4lS48GfLmpxL8VE/SdkfH2b9vam3cCHD/fzo6+FBBjc3nX1P9+3j+NCh+Hl48PzwYXa01Dczntl3jTiM4r2AZASrLHl47YlOH2VsLFcXLuTqwoUo46OsHAvoOownlFFQq1TcXLOes5Mn65g+7iSpBq+MjMRz1gAKFkw0P1WqlI3S1YvS48oVyvTvT5WJE2l/6BCCIFC8eEYKFHCMz3mkUVqKFs1Izpo1EVUqBJkMc5JWlReRoeLKlHHs69KF9dWro1YaNhW7FcymM86YWG2uqZgYJW3b7qRRo634+kZw9mwXrl//gwkTKmtHWFhoQruVSjUCKqa3n0psZOp+b48fB/DiRZDWyVwURRYuvErdupsYPeY0Zi6uiakURBHbeHPR7t2PGTDgCFeueLF58306dNitM6+fX2KSRFGEsLBYBg8+xtatD1Cm8M5rZqZgw4YmWvPiyZOvcHKaw4g7VVlDN2LQmCkzlSpF98uXv9iHJiaFpLvK6Gg8tmxhQ/XqbKhWjZk2Nrw5d067P3uBbMhQkbj6JZKrsKYkTcGWLel404OezzwpF1/wODyVPHffGvs8eXCtVk2nLeDJE+ZlyaKTjV/i10UysSXh/9HEBnDrljcVKqwmJkbfviCTCQQFjdBL6maIp7efU+G35XxUWuBsEkbHJlnYsv8d76OstYniki/7J+DrOxQnp7RVhU+K14MnLO02HuMQLxoM6ZzuDLZqpZK3ly7h//AhWcqWJVOJEtp9U+RynaKTkDbz1uvTp9nSqBFxkZE45s9Pz1u3UnXK/VLOTp7M+alTtY60RhYWjAkP1+lz9/x9SlbZiRoBATATYvANGoelreaaq5VK5rm4EOGniZ6yyJiRIe/eoYyJYVe7dgQ+e0aB5s2pPm0aHh5+1Ci/GL8wOTl5RTvFTvpeu4BT0aJMS5ZHxrFQITpcusmuXY9QKGS0bFkQj0sPWDXnEJmz2jF6SU+MjBOrzAcHR7Np030AOnYsor3v7m/axPPDh7HPl4+lB6PZecMIGf9j76zjotjb9/+eXbpRRFAQFMVCxe7u7u7u9hjnHFuPdexjd3d3NyaKioKigoqUdNfu/P4YWHbZBfXE8zzn++N6vXzJzn5mdmZ2dub+3Pd1X5eStpzBneeq9Yc9fYp9xYpkh1KppH/9uRy4q8RISGXNvIoM+lUqEy1bdo9p064iilIZql49J65f7w/A588xpKQo6Nd2HQ980zPI3iLNuEzvJqY5Kjbv2PGMQYNOA5JR7MOHQ7h9+yPDh0vK7DKZQN9ORaj6ehnxwcFUGTmShvPnc/asH8uXe3D37idVuc/a2ojIyGmkxMXxYs8ewqPTGbAqmbCvSRnbIltpUFO6oExxE556T8TQMOu7cXFZg79/VCa3mJGt9Pl5VhMKV6um83h0IezVK9KTkrCrWFGrpJQSF8fi77iHpqKP3LE0s/2fIZdLweKKiVuZvcYPpSgwqa8983eNR6lU0qnSL5x6boSAkiG1Eyh8L8uGpfnKlRok7f8kPt27x5WpUwm8f1+SwZDJcG7QgH7Xrv1X9uf/V+SV2PLwj6By5UJ8/DiR+/cDcXXNz/z5tzh58g3m5vqcPNnzu4IjgAY1NxCRbgEIBKdYsvRQPGClY6QS0LyhZrbN/igcypXit8dH/tS6wU+fsqV6dUS1rEOtqVNpumQJILWoZy8TVMkgt+aGg+3bk5YgzfK/vn7NyYED6XLgwJ/ax9ygUChZuPAOZ45ZoqdoShPZDfRJw0VHC7l7vfJsX/SGxUvuYaQvsGJ9J1VwBPDq0CFVcBSLOV9CZDw/dJSKvXvQM1tJb+jQM3yNkx7A/jjjoahKg2PHsK9UCdOCBUkIDVWNbbpkCRYWhgwcKAUtnte9qN3kKGnoIRLO7Vs/c/VtVqbOysqIMWO0H9Ll+/ShfJ8+ADSYBfHR8cQHfmJTuQVZgwQhRyNVmUzGnjtz2aPjvU+fYpDLBdLTRRQKEX//rA7BTFf4RqFbCaU+YdhSCl+q85BwH3sdW5OwcOEd1d8JCals3uxJREQScrmAQiFK0gCvEtj5OqtkuXy5B1OmXNFQapbJBBo3LooiLY2d9eoR8lwKBie4VCBx2DIWLLyXa3AEMKyMn0ZwlLlP6p9RoEqtHIMjUakk8P59DK2ssM0QZbw8ZQr3M3ziXJo3p9fZsxrCl4bm5nTat4+TAwagTEsjX4kSRPr5oX5w/jizn16kfTbgdOXN3LjRH2trYyatHMKkbJqm53Zc4dRzo4wjlLHlnhlT1CxHLk2aROS7dwTev0+lYcOokkEo13k8oogiNVWn2OmfQZHatbFxdeXLw4eICgWiKOaYyczDvwt5JbY8AFCwoBkdOpSiTJkCHDjQhaSkXwgLm0qtWt9vtBiRaozmzTnzZp2dMCpQqlTWg+ynn2phYmLA1asfqF59KzVqbP2mOvHfgRP9+mkERwAPVqxQ/d39xAns1DJKbr160XjBAr6F1IQEjddRuTiD/whSUtK5du0DT59KflFL5l9h9uybPHkZwyOhBk9dR1H311/puHu3zvX7T++KT9QqnoWtpGEXzW4igwxdoxeUYyUT2cIwus74SFRUktZ2wsISVG3zAiLxoglWTlIZRK5mZeJBTRoOfU2VKpt59kza512rL5KaUeoDuOFnrFJC/xGYWZlh51aGZitWINPXR25gQMu1a7EsUuTbK2dD9+5uquwRoArm1GGaHkU/9jCF5bThHHKUONWvn+M2zc0NVZ1sogjm5gbUrOmgKrfJZFKmSh1btz5TjZfJBIoWtWLKlJrs2NGBMG9vqZQpiiCKpL7zQoj9ijY0f38CSkyttDWrZs7MKh9aWxsxcKC7zuNIjolhoYkJ2+vUYYObG/tatyY+JEQVHAG8v3QJr127SM5mjlyuVy9mpqYyWxQZ+/YtXY8epXSnTlgXkwju52hNWsYc/eXLMP74I+eyVOTX7CU7gTSyMo+IIo/XrSP46VPOjRjB9ZkzVW/5eb3n8NrThH4KI/DhQ5bb27PQyIiDHTqQnpKdAvDnUHPyZJU2mNzAgPpq/m15+PciL4OUh78NRvogNZlkBkYima3V6kGSsSwdWeg7BjezZc2JKZiYGBASEk+bNvtJTVUgCAKtWu3j06eJGuTUvxtp2QKZ7JDr6zPs8WNCnj/HwMxM1WH0LdhVqkSIp6fqdaUhQ3Icu7lqVYKfPAEkfZzxHz7oHJeQkErt2tt5/lzKzozs5cDt/RcRKIOIDKUIYWalaDhX0j+K/vgRv3PncKpfXzXrzw0l27XDrlIllj5tnNHpBf5fUtixw4tJkzTFVseNq8aECZcAKUDq2bEYFQcPJvL9e0lcEMm9/TLNISiBkNBE2rQ5QGDgRJxdCgCBGesqsZAn5ao+fOnSO44d86F48XxMmFBDq5285sSJVB83DuBPdw7VqVOE+/cHc+HCO0qXttEp1Glub0+Emj6PlbMzHffoykdJWL++Fa1a7Sc6Ohl394JMmFADKysjEhJSuXDhHe7udsyfr8lfcXKyxM8vQhVEDRjgzqxZUhCmtLVFkMlUJV8v3Hl+SpNErgsiMkbuNkYscZiiNapQokQ+nJysGD26GjVrOhIQEE29ek45/s4Oduggkekz8O78eRLCw7XGnRkyhLPDhtFx717K9exJfGgoSRER5C9ZUvW9lOncmTKdOyOKIgE3b7Kx8x2IyhSnJEepkdDQePQdimNv9IDgZKl0UprXWBGd43E/XreORvPns3PRYYb8/BIFepiM98CeEMLE3hTjA21OnaPYli1UGzPmm+fxW7B1c2Psu3eEvniBTcmSmBf6MdubPPxvIi+DlIe/hOTkdF68CCUqKgmFXmY3ihQMNalmRinLGJq4JtCzmQW2pmlY6iWTrNTjdZQ12y6nUbX0Mnx9JTJrSopC5bmVlJTOhw8/3sr+I6gzY4bWshqTNA1YBZkM+4oVvzs4Ahj64AHuAwfiUKsWbbdupfIw3aKNfhcvqoIjgGh/f27nkKE6c+atKjgC2Lj/Mw58VnFiQKRhQ4nk++bsWVYXLcr50aPZ4ObGw7Vrv2u/h3t6YmhpRWYWQlQqebZrF4nZOtnGj6/BtWv9WLeuFa98xzPh+B/I5HLk+tKMPhZzztJGNV6hEAkKiiMlRcH4pQNoXyEZOekYCOl06VqWtDTdXl7Xr/vTsuU+tm9/xvTpVxk1SrfCsUwu/2ZwlJSUxuvXX0lMTNP5ftWqhZk1qz5du5bVIignx8RomZY2WbIk18CuZk1HQkIm8+XLJB4/Hoa1tTGCIDB5ci3Onu1FUFAcdnbLqVNnO4GBUnZkw4bWlC9fEENDOe3auTJhTCUe/fEHz3fvxszennbbtmFoYUGYcXFO0gH/T/F8D5c6HT1GzHxF06Z7KF58LWfOvAGgUiV7IryfU6PEbMrZTePmWU+tdZN0BEOmBQpQ5+eftZaLSiWnBw3Ca+dOVhQqxPqyZdlRrx5pSZpZSEEQKNqwIb8tb6vafysrI4YOraS1TT+/CEqXXkfvvqcJTraghp4nvdlLV44gCAJfTVw4btCbY3QijKxmgMwusrkL76PIKOcnika8F52Jw4IXlOc29Uj4qisL9+dgkj8/RRs2zAuO/g8hj6Sthv9fSdq6kJqcmqsAn4fHZ3r3PsbHjzGIIhgby3F1tcHbO0w1AzYRkkkUjZChYNXUYoxdMgB7w0mEpGbaIkjjChQw5dKlPlSvvlXNb0l6YIwYUeUfO0aAgJs3ebFnD3omJlQcOFCDpP1P4+rPP3NPTUYAoHirVjrb7Y8f96Fz5yxjZhlKZvAbnlTGn6LYE8yZiJOY5bNiraurxPfIgKGlJdO/U1xy1y4vBg48hShCfsIZzDbM9NOZkZiIXi7mqqIocnnOb5z8bRPX0+vwlhJkzr8EAZo0Kcbly30BuH37Iw0a7EQul6FQKBk+vAobNmRJJ5weMgSvHTu4LDbhgVAThVJ6itrYmPD1609anx0bGMid337D0NKSBnPnomeged36+Hylfv2dfP2aiIWRktWDZfRaPBmlnhG7dz8nNjaFXr3KUaiQdikKJLf4xVZWGho8vc6do0SrVt91TrNjwYLbzJ59U6Xq3LJlCc6c0fQyS01MZEXhwqRkfG8FypZllLekxL1zp/Qd5Q51LlJWeVsQoEKFgjx7NoJHFx9Rs+VZlMgQEDGSpREeOxsT0yxuzusTJziiprpt7uDApIwsYfjbt2xwc9PyhdM3NdXIzrbdupVKgwfr3Etv7zDev4+kdu0iOrNYP/10mZUrH6juKbYmKYxOXoIoiiSIxqw3nk5SssT7MSKZCazCkFRGv3mDjasrxcwmEJBgqTaRyDonZQRfbvvOI7+rK4byWaQqpevVykRJVMK8b5zfPPyv4Z94fudlkPKggQtHn2Cu9zOGxotwNJnEB29/1XuxsSls2vSETZue0KbNfgICYlREz6QkBS9fhmJgIMfVNT9ViipIEqUHlRIZ81e+BKBSCX2y85G+fk2kUqXNGsGRXC7g66s9e/274dygAe22baPV2rXfHRyJosjfMa+oM3Wq1rLG2QKmTLRt66rS3ZHJBMa0ENEnnRo8pCcHacAtZGKGV1f2tIKONMP7Fx9o7z6DJq4/cXFvVrdN//7u7BgQw2C2MoKNmJCEMi2NZfnyaW1DHefWHabjvFg2pg/GL1twVLGiPSdOdFeNPXPaF5kgtcyLIhw7luUL9v7KFZ5t24aoVGIlRqqCI4D4+FQiIjRb6+OCgljl5MSTDRu4t3gxq3RwkObOvUVEhJTFiEuGpetes69tO5rX38Dw4WeZNu0qFStuIjxcd9u+vokJrdevV3mgufXsSfEWLXI9H7khICBa9ZUoFCLv32tnSh+tWaMKjkDSnwp+KimQ16vnhLGxHpmZQ90QdP4tgKpb7P5Fz4zuUskEJklpyAefLxpbcW3VCuvi0nUnNzKi55kzqvcsHRy0giMzOzvSs2WMnm7ZksM+SlIO7duXyrHEZ2pqoEEmty1amJpTplCmc2dKz15HQpISpZix/5iQbOPKsGfPsHF1BeC3hQ1VHnaGSNIVkoyAQJeeFcnv6kqL2qtIVcpV5yk6Uca2NXkdaHnIC5DyoIahQ0/TqutZ4hVSYBOYZMGILpLicUpKOrVqbWPEiHOMGHGOqKhkrfWVSqnk9vFjNEWzKflnekkdujuTthXTVa91QSaTOn2+pVb8n0JqfDxh3t68OnqUzZUrM08mY76eHveWLv1L2zWysmLQ/fuYFCyIsY0N3U6exC4H8Tt9fTnnz/fCz28swcGT+f3YdGzUDGsrDxum6uBq+ccfGkFRk8WLNbaVlppG7ap/cOa5Adf9TGjb9wbe97OCFLcapXAkEH0kTkg6cm7ElWNY/0PcuhWgc/9Wb/MjmcwuIwlyuYAowvz5DTW8upTeN1FkxMICCorkywqMQ549U/0diTXqAUBycjo7d3ppfO6ZYcM0pBgSQkMJzmZJIZVus7aTjpzXNx9x+5EUmCiVImFhCVy7ppv/BRKPbFpkJJODg+m8f3+WflEOOD1kCBvc3Xl9/LjWe926lVVlj0CSM8gOPWNt41d5RtdVsWLW3LkzMOM3pB381qhgQSHDGCT+n6TbVMBKKn/KxVRqBe0kLiiIxh2rYUAKAkoElOTTi8e1nGZTxrGePYl69w4ARXIy+9WyZvomJhJRPUO4SpDJiA8P15LG+PLwIW/Pns35ZOWCceOqU66cdDMxMzNgw8a2NF2yhK5HjtBqZBeMjfWQyQRkMgErKyPmvH+Cvbu7av0e49vj/24UF/fWJTj0JxYML0CbCmmsmerE3H3TAHjpq04ulyZtp0+9RhRFfI4f58Hq1X+7vc/NuXNZYm3NGheXv33befj7kBcg5QGAWbNuZHTRqBt2CgRFSA/Jx4+DePXq2/V6UZQeSENndMRaT0qzy1Ew/+fKgNR9dPrpAm7fGUTLlsWpUEHTl00QoHv3shw50pU2bVxz/ayw16/Z37o1Bzt2JDYw8IeO93ugVCg42rsPs8wLsL5cOY527aqaxYtKJVenTSNRB0fje+Fz4gRXJk/GqU4dxn/4QOn27XMdLwgCxYvnw9bWFH0TE4Z5etLj9Gn637hB640bVeNsy5al5uTJ1J4xg7Hv3mm1PL9/4U9oqqVKNDIdfS4d9lC9X2noUA1H8tO05QpN2b7vDY0a7eb+/c9a+2Ziq6m87GiRiJOTJYaGcpYv99DIzhT9fIba3MWSaIrykeFlswQry/XqpQo+YrEkO7Jnx3S1U5tm88GaOrUWhgbSNuUoqMtdDElBn1TUAzB1Q1pdMLSwQM/q2x5bKxwceLZtG2HPn3Okc2c81DojAZo1c+HWrQHMmFGHQ4e6MH16Ha1tVBs9GgvHrGDFuWFDbMuWJTk5ncGDT9Gq5d4MMn32iYbIxoUVuPNkLK3dkqldJJ6Da6owv/RFRgkbmMxybMIecXfJEtzqV+bo+irUc4iguWsst24PxMBQX2NroS9eaLzOfr33PHOGmpMn41y/PsVbtoQc2tuD1Lh2P4J8+Yx5+nQ4Hz9OICRkMnXqZGUICxY04+rVfjRr5kLr1iW4dq0fFhZZ5cG0xEQ+3rmDiSyF5r0bYW1rzS8bR3HKaxFjlwxQjVu7tjlZ2Tjp38YdXdnVsCGHO3fm0oQJ/G5nR/THj3/qGLLj9qJF3Jozh+ToaKI+fGBpgQLfXulPYGzXNZSwmc60ARu/PTgPOpHHQVLD/88cpCpVNuPpGay2RLosVk0ryvjF/fHzi8DV9Q8da2rPYgsXNufjxwkkxMRz7+wjSlUuTtGyzjo/NyoqiSpVtvDhg6Q98+uvdZk/vxGdOh3i3Dk/TE31mdEqiftXvAjWd6brmHZMmt6I+NBQVhQurBJH1DM2Zlpk5N8qyHh+8Tr6z/AhnALkI4K+7ME6W+fMaB8fbEqVUr2O8PMj6v17ClerhnEuZan3ly+zV02vyLxwYSb9DUFewI0b7GrUSPW6dNeudDt8WGNMUnwSBSzmkCgaISIgIHLzZHPqta+lGqNITWVJ/vykxcfzG9NJzcgOyeUCP/9cl3nzNDuwnj4Npl7dbSQkKjDSh5atXTl9xg+FQsqUDBjgztat7QA4OXAgL/bskb47QaDZ779TU40cH/z0KZenTOF5tC0rn2VlyWxsjHF3tyM2NpXJk2vSrVtZvnh6srVKFk8tf6lSjPHx0TovQUFxHJ6/mdgLOxE/SlwePySycyoG/DKzIbPnNcnxvIaExNOy5T68vEIoW7YAFy/2yTGgmpstiDOwsGBGthb474FSqSTg+nUMLSxUGkXz5t1i7txbudoDRYRPIV0B9+59onjxfJQrV5DNlSsT/OyZJGQol1Nx8GDabtr0zX04M3w4TzdvVr0uXKMGQ+7fV72ODwlhQ/nyGn59WhAERnp7Y1tGuztQtZ3wcNY4O5OWkIDM0JBR3t7kL56zlcu3kBAWxtYaNYj290eQyWi/YwcV+vXLcfz0fmtZticMAZFe7KFp05J8yCYCWr5v3xwlNH4EywoWJDFDcywTv6Sl5crx+1HULjETj3eZZUORlpVknPec9bdt/38ReUKRefjHUL26g0aAJCCw9Bc3xi+QTEtLlMjPqlXNmTDhItr8Bk117N9+a4RcLsMinwUt++X80AGwtjbGy2s4N24EYGtrSo0aDixceJsTJ6SsQmqqgqn7RMAdEHgw4w7nrnxmXsuvquAIID0piXeXL1OqXbu/dB7UsWDpEyKQZqxRWHOVxnQly9jTzM6O/K5ZWS7vgwc53rs3olKJiY0NQx4+VGm+ZMeTjZqzurgvX0hPTdUiGP8oTvTvr/Ha54i2iKaxmTFnDrdh9LBjJKYITBhVTiM4AknL5ee4OMK8vTnT/w5ez7+iUEhCiqVLa2dRKlWyJ+DjJLy9wyhTpgCDBp1SEWsl8cVo1diWq1cjyGQEe3pSonVrqo8fr7Et+0qV6H/9OgAdbgXwx9StJL28z72Yqty4noxCKdKjx1Hkgc/pOK4bQ5884cXevVgXK6Zyqc+OQoXMmbBhMjCZfW3a8O7cOUrwjp/4HeN8+RgxPHcB0Jkzr/PypdRF6OsbzvTpV9m7t1Ou62Qip+/0WO/eeO/fD0j8nulxcRoPSZlMRrEmmr+ft281OwolZE1SJk6sQURkMtWrbyUqKhlBgB072lNv1iwOd+6MqFBgYGpK9bFjv2vfW61diyIlhQ9XrlDQ3Z1uR49qvO976lSOwZGesTH2lSvTaP58VXCkSE0lyt8fK2dnDaHGdSVKqIjdypQUNpYrxy9J2hpc34tn27cTk5HxEZVKLk2dnmuAVCb4NLO4qnrtf017siLT19da9mdg4eCgFSD9ncERwP13mkH65ae6uzfzkDvySmx5AGDt2ha0aVMCU1N9LMxkFLJM5+plP1KSU1Vjxo6thhz1lmxNsrVcBkO6O/6wQaS5uSHt2pWkRg0HlEqRPXteZBuhXvaD69cDCNZz1tqOjWvuJbkfRZJgouYIJZCExAvJ5+qK+8CBjPXz0+Ci3Jg5E1GpJAUDPkbK8fgj59S2rZubxmtBrU3+r+B7E8INu9TldeQqAhJWMmFZzv5ytm5uHD3Wk/r1nXB2tmTWrHr06OGmc6yNjQkNGjhja2tKnz4SryaTZ9OvXxbP5vlDP25GlURoN4WG8+fn2qJv/cWDso8WUibpPlFpxiiUmb5msHfyUn4zNcXv/Hk+3rrFu5v3WLLgGjNmXMXHJ+eMRu+zZ6k5bZqKp5UUHc2OOnVyFQ0MC8sydVYoREJDc9bQKpnhV5eJvjosJ5RKpSo4Aonfs71mTa1x2dGxYymUSlFl7tygohGTu5hxeF8bnjwZyvLlzdi4/hExGQKfoigyc8YlSrVvzxhfX3qeOcOYt2+1rr+cIDcwoMPOnUz68oXe585pGMuC1PKvgiBgaGFBwwULaLxoEZMCAxl05w7ODRoA8OHaNRaamLCuVCkWmZvz5XGWkXFyNu+29GRtjuOPIPN3mYo+e+nNtNBhuLquzbHxI3vpVqanh1vPrM5CA3NzGn+nUe+3MPjhQw2OWeUftEf6HuihyQPTF35cjDUPeQFSHjIgk8k4c6YX/dvYEBuv5EuMnEuPU6joslA1RpGcTAfb7MFLFhRKkZBD67k1d+6f3o8RvXbw5k32WbI2EfVVjA3levdWEUSrT5yoUer6OzB+Sn2Vy7mASHUeYZw/P6Nfv6b99u0YmGl6x8mNjAjEgRVMYp1yJAO3mfDpk+7SSv05c3CqVw8EAbmhIR1270YQBJKS0vjwIYr09JxvaBcvvqNevR1UqrSJ1asfaGj7ZC+buP4NGTVnZyuuXeuPv/8E5s5t+F1Gpj16uHHlSl9+/bUeFy70pn9/dwBun/KgdrMTrDqRyIj57xnUKPd26sh37xDkcoxJwpZQFaFYTjqOfEaRmsrNWbMIefaMOcf1+WWOB8uWeVClyhYNy5DscGnUKMvPQ6kkOiCAyAwysi4MH15ZddyCAKNG5Sw/0eP4ccZ//kzXY8f4JS1NJ/FeVwAQ9+WL1rLs6Ny5DGfP9mTMmKrs3Nme655T+f3IFLr2qkzlyoUQBIEY3xeIatdteoSUGc5XvDiubdrweP165spkzBUE9uiwpQGJ23VxwgRWFinC3hYtiAsO1jmuVIcOkhBqRnDU5dAh6v3yC3WmT8fI2loj6DzRt68q66tMS+N4hnUMgLmdJofN0FKbf6a1j0qRV6/CCAyMRalQ8O7yZYI8PRFFkUpDhpC/ZEnuU5P3uAACHz5EMXz4GZ3bqvvrrxqNDVXHjKHz/v2MePGCnmfP8tPXr5gVLKhz3R+Fnp4evyQmMlsUmS2KtNmw4W/ZrjrWLNBUg9+xLmfV9zzkjDwOkhr+f+YgZcLB6le+xOihrhfy8uUo3Nxs8fj9d65MnUq4mA8PavGUSmgGL5KJZ13Dp/ySlPTDjuDJicmYmS7MEHbTZVmShQULGvLLL/VUGZO/6j6eE34qUJa34YYUIgg7QtEzMtKZ+heVSl7s2UOHQXf4qCyMiAy5XGDYsMqsX99ax5a18fRpME2b7iYyMhkXF2tu3RpA4cKa1+GDB4HUrLlNY1mNGoW5e3eQqn078v17Hq9bh3ODBpRs1w5v7zD27HmOkZEeFy++4+nTEGrXduTYsW7kz6/ZXr1jxzN+++0uFhaGrFvXiho1HDTe/3TvHudHjSI1Pp66v/xCxUGDuHbtA7t3v8De3owZM+rk6t3Xu/YsDngIKqsREyGJBOXiHMeHeHmxpVo1RKWSOIUR942bE5ckUoUnFCGLLJ6GHgv5VWPdTZvaMGxYZZ3bjQ4IYG2JEigVknK7zNCIyUFfMLayynFfnj0L5v79QKpVK0yVKn9dDHCevr6G1U3LP/6g2ujRf3m7Z6bNYejSUEKxw4AUBlmcZUOMNLFJDA9nWTZScNstW7TU3h/98QcXMspwglyOS9Om9L5wIcfPVKSmokhLI/LdO6ycnYn08+NAu3bEBwdTok0buh05wu8FC5KililS592lp6eztlgx4oKCMM6Xj7EfPmCUbQKiDr9rN+nS9yIvgqVMTBuTO1RJlDJ1RZs0oe/lyyjT0hjc5wB7j39UlXuLF8+Hn5/u8mLQkye8u3SJAmXKUKpDh3/snvKfQLs6yzhzTzKsHta5IJuOfttD8t+OPA5SHv5xOBc24kuMZidK165H8PEZTWJ4OIJMho0ighZcwJvypKr5IZmQQDleYmBm9qduLhHBkSh0XpLawVK7diWld77jcyLevePS+PF8vH2b1Ph4DC0t6X3hAo7fUdKo1rAsZmo8nvw6slTpycnsbdGCj7dukcAI1cNfoRBJSvr+2v/kyZeJjpZm3AEB0SxefJe1azXFCA8ceKm13oMHX/DxCcfNTeo8y+fiQvOMzqkPH6KoXn0LKSkK1UMC4O7dT8yceUMjeFu27B5Tp0o8DEGAli33ERw8GSMjvazjbN5cxRU5PXgwQbLCtBv8UOVB6ukZxJUrOXM97OzNETMMRgWUWBqk5jgWwM7dncH37/P6yBEsnZzoZ2XF8V69tMbpC0pMxXgSMVVZpbi4WOe4XStnZ7odO8aNWbM4G1CYSzEVWWi9lPnjijJl9VCd61SsaE/Fijkb1P4opkZFsbVKFZIiIqg6diyONWuiSE3V8LP7M6g9tA/jNlThaxyYkEiL6VkZ3RgdjQDhGaT2gJs3OdSxIylxcRiYmqreFxUKQjNEKnNCzOfP7Khbl/jgYAzMzTEpUEBlWux37hyPN2yg8ogReKhJY9T6KUv0U09Pj4mfPn3X8YW+eMHMZmN5oeyiWnYusTYVuIU+6fhfvUqIlxf2FSsyYlJj9p/cgVIpIoowenTVHLdbqEoVClXJOTP4ZyGK4n802Dq05QZn7iWQed/cfCyM8V4BlHF3/o/tw/8V5JXY/uU4duw1jo4rsbdfzq5dXn95exc8JmYaTWQsEfDzk+r2Ffr1UxEr0zDQCI4AGnKTfCZKOuzcqVoWGxTEjTlzeL537zc/276oHWWso8hstRU06ujSaxtrAw4d6kK5ct+X7k6KjGRjuXL4nT9PdLyC/fRkfswwWtZeRWTIt61MOh84gGvbthjnz49DzZrUnj6dW/PnEx0QoBrjfegQH2/dAiAGK9RbrzMFCrMj7NUrvA8dIkbtoZCYmKbBc/nyJU5rPV0PaEFAS2jvq48PATdvcuGcL4mJ6RrBEUjliUyLC5DI8L/8cl31WhQhOjpZoz0/MSJCy79u+y9bJXf0DIf6a9f8ifkaSXRAAIpU7eBn3vZRVC8cC4hYyhPZsS3LkuTW/Plsr1uXp9s0M2SFKlemyeLFVB05knI9e9L099+1xC8LVanMssEmlClTgIIFTVmwoCHXr/vTosVeli/30Nn1VbJdO4rPWM25mGqko08yBkxb85mQj6FaY9WRnpLCsV69WGRuzpaqVYny9891fE4wMjNjjK8vDRYs4Nbs2WyuXJkFxsaEvXr13dtIiYsj9ssXDe5ZvuLFGfPam37bVzL0xmXqqlnqFCxfHiPrrMBRkMmoMmoUoiiyr2VLkqOjERUKjUwPgHH+/OSGe0uWkJBBPE5LSCD28+csPSRR5PKkSRRt0oTOhw5RaehQel24QI1s5Pzvhf+NGyoumjpEtYlUpvxDjRoOPH06nBUrmnPpUh8mTKjxpz7zzyDy3TuW2tgwTybjdzs7ncHpP4HH9/3J4m1K/54/zFnjKw85Iy+D9C/G168J9Ox5TKVAPWjQKerWdaJYMekGKCqVpCYkqFymAR49+sKFC36ULl2Arl3LaM1s0lNSERBVWRAAuSjdbIwcXbD97Qyxb73p2a4MJ8b44O8flSF6J2Puzb1UqOykarWP8PNjfZkyqpvVi9276Xv5MnFRcUzttYag4HgGj21Au8ESD0Imk+Hxdi6zhmwkOjqZAs72LN+VyX0QcLRW8DFS2wMqN3zy8FDxPa7QBD9KICLjtViKYW2Wc/TJwlzXl8nl9Dx9GoBTgwZxvEcPAG7NmcMgDw8cqlfXCARSMUA946WLg/T62DGOduuGqFSiZ2zMwDt3KFS5Mq1aFefRoyweyoMH2jfUAQPcOXHCh9OnJW8wuVxg06Y22NlllSNuzpmj4oF9MioDdANQZXky/x8wwF21Tnx0nIaSOYCjo4WG/Ya5vX3WyhkoqAxCFDMJvyKiKJDfdiXtOUUdhyj637xJPhcX1XhTC1MeBK4gLTUNfYOsAHtP8+Z8uHwZgM937xL+5g3NchDirDV5Mnd/+42kSCnAFeRyirdsScO5cxmZMaZnz6McPCgFGpcuvcfAQM7YsdW1thXwRt3wVWI3BfuHYOeUcwD+cPVqvA8eBFEk+NkzzgwdSr+rV3Mc/y2cV++8UyrZWr06P8fH57qOIi2NY7164XPsGIgiLi1a0PPUKVX2ycLBgYoDB2qtJ5PJGP/hA+fHjCElNpaG8+eTz8WFtMTEXInRad/YH3U9KlGpxMDMjJRsKtv7W7ZkSmwSi0/rcW3gK6pXj2bHjvZYW2uLYuYGuwoVKMkbChFIEFIJuKHePQzSpc/LX6oUEW/fkt/VFSNLS9zcbFXZ1f8k9rVuTVKGj2FCaCgH27dnuKe2393fjVE/NWfFjs2qgFFPUNK+d61vrJUHXcjLIP2LERwcr/FQUyrh82fpgRz89CnLCxVisYUFO+rXJyUujtu3A6hZcxvz59+me/ejzJ9/W2N7yYnJuDvPQ6lxWYhY6yeRkJBK9epbGTrhDpPXRzFzexRt27oiCJLKcyUXOX17HGLEsNMkJ0s3y+u//KJx4/xw5QpKpZLGZWex8WIaZ5/r03HIPa4fuaMaY2ljyeqT09h1czaXrmcFRwCfon7crV1dSyWC/KrAT0TgU5Bua4mc8HzXLtXfolLJlYwSQdlu3chfUir52aBJMO/QQbskd3fRItXsWpGayuN166R9zcYHCg6O10nWPnWqJ7Gx04mKmkZq6kwGD86ySBGVSg2SfJHk13Qq/JpChcwpX74gGze25rffGnP79gA6dcrSGIp8+oDiZPm3GZDE6b1NkMnUbCpkMq0SRMd+ddi4sTVF7A3J/J4UyDlFeyKDvuZI2FcPjgD8swUYnt8grlZTa1PXMzKinFrZ7eXLUA4d0szC3LunLW4J0GFIM/LpxZGZ9XO1iKJCvXLEh4TwZONGXh87pqUMHf3xo8p2RFQotDJIqQkJBD15QuCjR7l2xqmQXXk6wZRHj76gUOgm6od5e7PS0RGfo0dVwer7ixd5lU3vKicYWVnRae9eep4+jV0FqeNU38QEq6JFtXcNgWDsiLUskWuHZM3JkzW6MFPi4rSyfKJCwbx5tzhwwJuQkHjOnn3LlClXsm/qm3Bu0ICOm9czo9wTZlZ/xb3zbdh8fhqmtrbI9PWJ8PXlRJ8+LCtQgJDnz394+38XEkJCNF7HBwXlMPLvRbHShbl1sROVigpUd5Xj7TUEE7MsXmBsZCzx0bkHvHmQkJdB+hejdGkbSpe2wdcnHBERm3wGKvLomeHDVfokH+/co0vDFZx7qjH5Z+dOL2bNyupuWPLTAT4lWWl9zoyxZbl2zR8fn6wW2cOHX6uNSOfRGwABnz0+nLu8kuCQnzR4DOrwDDYnc7YuoOTozjs06lpXa5yzoynenzWDmDNn3tC2bclcz4s6bEqVwszenvjgYNx4xSeckaFAiZxaLrnzX7JDkMk0HpaZ5UYjS0uGP33KZw8P+phaM26BL+/eRdKlSxnmzGkAQEREIgsW3Obr10QcFEUwkT1DqVSSJBohN5WyNM2auWBkpEdKSjqiCK1bl1C1c2eHuXmWhkxiYhqGhnKJpK2D61Al5jzH4g6pXivT05Fl010JiNTL6PYRERCxIhbXsppE5OSYGA3FcqcGDWi6ZAkA8b5eTFmVmf0SUKBHmlJGaoJ2O7y/fxReXiGEhSVQqZI9VasWRpDLNc/tNwQ/68+eTeHq1Yn296d4y5ZYqz3cL1x4R/Znea1ajuiCTaH8eL2ewNIxm/C9eptPsfY4yYdS0+AFZVMl9eeKgwfTbutW1Tpu3bvjuXGjtM8KhUamJvDBA3Y1aqThR5a/dGmaLVuGc4MGOn8TFo6OxGYYwF6mCR7UYX31rTRuXJQLF3qjr581MUiKjGRz5co6y5e6zvWPYMTz55zo14/oDx+I/PCBlPgEDtGdN5SCpxA2/iJr1rTUua5t2bI41qqFf4Z+FaKIoKenQULXNzHh+dsIVaClUIj4+n5bnV8XKg8dSuWhQzM+SmS5nR2J2WxOlGlpXBw/ngE3b/6pz/irKN6yJa8OZf3uSquZ/v7TqNu8Ap4ftOVWBjeex47rUifh2PbGrD45/T+2T/9G5GWQ/sUIDo7HKC4oo6VXIDwylZL2s9ix6hJJERGISiUe1GCVOJaznprBkVwu4OxspXrtkH8uc9ZnJ0mK7F5SjvHLBmJlldsDS1OnKCQ0kRcvQmm+ciWybITT9xcvYmsQr+IXicgoV1H3w+vI1XHkN1XXXRLo3//kDxvF9r1yBbmBAVV5TFcOU4MH9GQ/ju+0fbJyQ73Zs1V/yw0NaaOmMKxvYkKxJk0o6OJI14QtjBHXUjPqGF47dxIbGEirVvtZu/YRBw54s+xFBdYylvn8yhLlT/TfZ8/Dh4E4OVlSvLi16nu6fz+Q2FjNssfJgQOZKwjSPwMjevU8gqnpb1hZLeH8eT8EQUAh08eTStylNtFYYpuRJUiOjWWFgwPz9fWZp6eHt9rN+32cVUZ2TeowC6MgopGmu/3V6dOJV2v3/nT7tuqB1G9ye/KRxemqgBcmshRqTpyosY1Fi+5QrNgaOnU6zIgR56hWbSsHD3rTYvXqrEGCQBcdApfquPbzz5waMIBHa9eSlqgZRLu6avJlChQwYcyYajluy9pcjyJem3mudMOPkgTiyJHUNnxCui6fbd+uEZA41avHIA8P6s2cSZfDh6n7yy+q9y5NmqRl1hrh48OBNm1Ymi8fr3Qc1zh/f2zLlSPF0BoPsmxHrl3z59o1zeyU//XrOoMj43z5KNu1a47H+D0wNDenx4kTjHj+nOkxMeQfOEsKjjKwdu2jHGUrQOoeUwXoGW3/6ijdrRuuhaT7UKZ8WJHQGyw0NmZDxjWampTEy0OHfojXpUhJISEsTCvTBxAbGMjro0d1vvdPo/P+/dSYPJlC1apRf/ZsWmVkiv9buHv6AduviyqLoTWnUnj1UFt1Pg9ZyGvzV8O/qc3fw+MzjRvvzihnqbfBS1/nzI7pPDxxjctk6pxoZhbc3QtSo4YDYWGJuBY1ZfFyTa8kgXQmd7Vk2eEp0lZFkfHjL7J27SMde6Pdhh8cPBk7OzN+L1SIhIyHqkxPjyqjRmHdog/9uu8jIlGPLk2s2HD+Z2Q5mH+uXfuQ8eMvqoIGQYCtW9sxaFBFneNzQnpqKpenTOHx2rWqDeVzcWGsn1/uK2ZDzOfPfPXxwblePZ1Zjt/t7fEKMSMYe5wJoAifkZlbMysud0Jq4cLmGBrK+fAhWmN5jx5lOXCgCx4en5k+/Sr+d+7SkJu48AFvynKUrpmHg6WlEZGRU2nZcCOXboUiIGIkS+NNwFQcHa041KkTvidOqLadKVng89iXGjW2E6s0ydiW5Pn25s0YDY7a7iZN8FcXPRQEZqWnq0T5dnbozplTPhiRTHHeUaRWTQbfu6caHheXgpXVEi3CdM2aDnh4DCY5JobwN2+wLVuWtIQEUhMSsHJ21uLJPd26lTNDszrNDMzMmBGXRWgXRZEFC26zefNTHBws2L69HaVLa7a2p6YqWLPmIe/ehCI7+Rs24U+Zj6YVQ0vOU51H6Bkb83NCwnd1Im2uXFnl16cL+mZmzIiJQZDJ+PL4Mf7Xr2Pn7k7x5s0JD0+kQIFlGuMvXepDs2ZZHK7ABw/Ylq37ski9evQ4dUpDoiA1Pp71bm7EBgZiZmfHyBcvcrW+0YW7dz9Rt+4OjWUfP06gSBHdGkVKhQKPZcv4dOcODrVqEfbypRScZGgfpTQdx6Ir1mSq7ze2eE6d2JNZd45s/LZq48bRUj1wzkBaUhLpyckYWVmpvpP9bdvid+6cNEDHI618nz503LPnh47//xoOrj1Dz3Ga1+aNo41p0FnbC/DfiLw2/zyosHLlfVJTFTrekW4+J5/ooSzRBfy0a80jR1YhJiaZzZufIoqirvsJHZvYsexwliaLIAisWdOShQsbYWv7u4pnJAjgXtKUZ75xkJGBGDmyioo0XKhiRd6FhSEqFCjT0ylYrhyVWlblbWzO7bbq6NatLIsW3SU4WDoOUYTBg0/j5RVCnz7luXTpHWXKFKBTp9K5PsD0DAxovGABQY8e8eXhQ/RNTGjzHV5U2WHp6Iilo+6MF8DNEAfO0QYBJSICvdlH8bh32BrGE5FurtVNlgldHWsA4eGJREcn07z5XqnLDQf204vxrM5Q9paCU1GE2NgUYmNTuHQrTFqGQJLSkCtX/Bk0qKKW2F8mP6Zh7c3EKi3IvHZM5alcutRH63y69eihESDZVaqkoSTeZeNqPp11IE0BD6nOJQ8LrNadpvNoSaxSFHUrfWdyr4wsLXGoVo1DnTvje1zK7rm0akWv06c11LbfnNEU+0uNj9coGwqCwMyZ9Zk5M2dxvKFDz7Bnz3NkAiiVrRhIKA585guFVWOKIGVUf0S2ot6sWRzu1CnHjEV6UhKiUon/9esqLz5RqaTVunVUHTWKWbPqMW+exA1s06YEjRpp8oIcatSg7i+/cG/JEgSZjOoTJqjKnOrY6O6ustqI+/KFDeXL/7DXX61ajnTuXJpjx6Qsw4QJ1XMMjkBqaKgzfTpMl8o2yTExGJiaEvL8OSXbtWPEyqwMo4BIcKy+5rQq27XxaO1ajQBJFEWOdu/O64wsnNzQkGGentiWLUu3I0fw3LyZhK9fsSlVirdnz/Lq4EHVui/27qVUp06UzqZy/qMQRRFRodAqUf8vYmjn9ew9GYS+HNataIBvsBHqk1kBJWmpeRYkueF//1vOg06Ymhqo0U2y37wFijgYY+HszCu/LP0SY2M9du7sQJcuZShUaLlqJq+nJwNlOulKWcbaSjbu6YMumJsbMm1abebOldrabWxMOHN1OIULWxAdnYyRkZ5KNweg/Y4dnBs1iq+vX1Oma1cqDsrZ1kIXChY0w9t7FMWKrSYmJovwumnTE9atk6wKlEqR335rxIwZ2jwmdRhaWDDYw0MSo8ufX8s24e+AJJ4plQ4FlLygPCV4R4+UbfjUXUhMij5BQbEEBmoGRDKZFlcXgJkz6xEQEE18fGZZRYYCGRHkpzQ+3DdrQ2RGDDx6dFXMzAywsjIiJiZZ9bxxdJRmU7WmTOFIlyztGKf6UgARlWaM+jUkV6ZStKjUCXnypC8TJ15CqRRZsqQJTZYs4cXevRQoW5bW69dr7KvcwABRoeA0HXhBBWQo6TbuGQ+qVaZq1cJYWBjSs70j+0+qE6ZF5s2urXr1eMMGVXAE8P78ed5dvIhr6yy9puItWvA2o7MQpPLmjz6wTp3yRRRBIUpH/o7i9OQAt6hPAqZU4in2hIAgYGRrz4YNj/n6NZGePd0oUSLnlvdS7dsz5u1bfE+e5MujR8R++ULY8+ekZnSB1Z46FZmeHi/27AFBUGVXPLdsoeqoUcyd25B+/SqQkJCGm5utBkk+E40WLKDRggW5Hl/MZ01Senw2wvD3QCYTOHKkKy9fhmFgIKdUKW0Pvtxw5egDhu21JC6tCT0swcJEQIgWVd1VxnzDTiRbwOR/7ZoqOAKptHa4UyfGvHmDnpER1ceNU72nb2ysESABXJo48bsCpMTwcF499mPMHG98fSPo0KEUW7a0JezpY/Y0b05qbCwONWrg1rMn1i4ulGjV6psBdMDNm7y/fJmC5ctTtnv3f1wXadfay2w9HgbokayE/mPv0CYbd1NEYNTwU/j1bKh7I3nIC5D+rZg1qz7Xrn4g8EtWB04m7C3SOXx5GnoGevj6fuX58zAsLQ25cKE31atLbbHVqztw7txbFAqR9HQl8+Y1Ys3KeyQkKZgypTYF7HKeKc6Z04AGDZwJDIyleXMXChSQiKe6eEqmtrZaBpc/inz5jHFwsCAmRp3QKWU7MoO8n3++xrWTT7j6MIvzIiqVIAgaNyNBJsPCQVMdWheuX/dn+XIPnJysWLWqOQYG3/dTKWSjR0i4UtUtZ4GkJ5OPKKbW/kSTRYtYufI+kyZd1lgvMziSyQSsrAwpW9aWFSuaUaVKYRIT07C3NyMsTCLhGogpFLVOp8n0OUztP5Jz5/woWNCUJk2KcefOJ+bPb8iSJfeIikpi4sQaNGkiGeaW6tiJEksO4nvmLHXrOdNo7mxeHztGUZMI3iTakzm7rFxMOqehofF063aE9HQlogh9+hznw4fx1J46VeexG+fLR4nWrfE9V5pMEr5cEDh/3o+qVaXMTPUSAvs11hI0HpTqzvGZUGTrBKs6ciQRb99KXYWCINlEqCEtKQm5gUGuHm+lSxfg8eMvKBQSJ8POKB6z1GRaKS9gZGWFhYMDYd5SVuuCzQgujDqPXC6wbJkHnp7DiI5Oxt7eDEdH7d9JPhcXak2erHqdHBOD/7VrmNra4lhbCgbNChVSBQCCXK6RlXRx+XYpLDk6mvSUlBztL6ycnYl8+1b12rxwYZ3jvgVBEChf/sctNpRKJb2GXidBNEdExvbrInMGufBhtz/h6RbYGcbx+9qe3Bqm2/oDwKmh5oM7MULbqDdT6iE7SnXogH2VKgQ/yaIOqHfU6sKbM2e4//vvfLp7lx3KPnzCGSUy9ux5TrlytqTMbKySQgh88IDABw8AqPPzzzReqCkXcnfxYu4tXYqxtTWVhg/n2vTpUpNHRtdj3RkzeHngAO/On6dA2bJaXYB/FRfPvkZ90iMi4FbKgjNnpPtm5nsJqXk05NyQx0FSw7+JgwTQym0aF14ZIZW2pIvewkTg6YvRuLhoznI9PD5z5cp7ypcvSIcOpYiOTmby5Mu8eBGKjY0JHh6fiI9PU03asnMf0lLTiAiOJCxG5PTptzg7W9GrVzmtGa6Pz1eGDj1DcHA8o0dXZczw8sgNDP7yj9/X9ytVqmwhISENmUygopslni+iyAyUMjG8lxMb9vTn3MiRPN22DRMbG7oePiz5nn0nrl/3p3Hj3arXpUrZ4OPzfRYQPo/f0LrhBj4lmFMUf7pwFCOkB/zAO3coUqcOt24F0KDBLo311q5tyZUr73F2tmLevIZadh3+/lEsXXoPL68QAgNjKVTIgs2b21ChguRhlZ6upFmzPdy4EQBI5ZGbN/urOqBEUaRLlyMcPy6VS1q0KM6oovd5umEdCgROCp0IkRehakl9TnktRE9PD0/PIKpU2aKxHwuafGL4H1OxKam7k1CRmopbid95+zmNTKrRgQOdVQa3n958pkzpdSSKhogIuJhH8zZ6BTKZjE9377KnaVMtPZ6fExO1sn3J0dEsyZdPFWSYFyrEuPfv2VylCl8zhBbrzJiRo8Hox4/RDBlymvfvo+jXrwKzZ9dHkZpKzMePWDg6omdkREJoKHIzS0zMNfWYCljr8TUqHZlMYNu2dhp6Ut+LlLg4jnTtiv+1a9i6udH95EmsnJy+a92Ha9dyacIERKWSioMH03bLFq2MRGpSEpvc3Yn298fC0ZGRz59reQd+CzfnzuX2vHmISiUuzZvT5+LF7143ITYBM8vfNZZN72nOwr0T+BoYTgEHGw3eoSiK+Bw/zvtLl4j68IFSHTpQbcwYjfWTY2JYWaQIqWoilnV/+SXHbFpcUBBbqlWTPO5kMjrs3EmFvn11jg24dYtdGaa6AKsYTzRSFlVPT8aQgeWw26I7+2Rgbs4MtX36ePs2O+tnlXdlenoolUrVLKhAmTLUnz2bo927S0GTKFJtzBiqjxvH4S5diHjzhpIdOuDcqBHnR45EVCiwKlaMMW/fIs8l6FfHuUP3adPjkuq1HCWJyTOZOfEYyzb4ZEzgROYPLcCvm/+6vc3/Av6J53degKSGf1uAVNRsIgEJVhmvsmYFVmYCDz1Hq7p5Lpx/S6vWB1Rjxg0rTbNa1lRuWo0KFbcQEZGoxY3544+WjB4tdf6c3naJnkNvkCgaS8wWmQylUmTcuOqsXt1CY73ixdcQEBCt2l4f9lCc95Ro04ZeZ3KeLX4PFAol/v7R2NqaUqLQfMIS1D3jpHPgVEDGuT9KcbR7d2mRTIZpgQJM+YESQ5s2+zl3TpO8rVDMzJFIro705GT2tW5NwPXrIJMhk8uR6+tT5+efqZfR7bRjxzMGDTqtsV5MzHQsLAx1bVIF9cBKLhewszPj8+eJCILAzZsBNGyoGXQ1b+7CxYtSqdTbO4xy5TS1hYbKt1NYkdG5KAg0+/13ak6apHo/JSUdN7cNfHgfiSgqsSCW0azDQEhn6LNn2Li6YqCjTPn+fSQDB54iICCaAQPcmTu3AYIg8NkvkGVT9hIbk0Jqajo2BUyZs2kY+ezyoUhL43dbW5KjozW2lb9kScb4+mp9xva6dfl8967GsopDh/Jsi2ZAN+HjRyyLFMn5pH4Doihib7+csLAEtYpP1m/N0tKA6OgZOa3+lyAqldyaN48P165RtFEjGsyeTXJMDMtsbDQ4Tv1v3sRZ7YH8dyAxMpJl2dSz227dSqXBg797G5XtJvI01BIBEX3SeXynJ+XruH17xVyQFBXFpYkTCff1pfKwYd8s2SfHxPDq8GGsixalWJMmWu+Lokiknx9PNm7k4Zo1qpLnDRpwiwbIBBEEGVcu9+JOkxJa6wsyGVZFizJOzej4+Z49nOyn225HkMtxbdMGkwIF8NqxQ1Itx4BLZr3wT7XDMfUtbTiDgZCuVWIs2b49PU6e/NYpUmHZjCP8vtYLIwOBvQe6Ure51CnodfsF5/bfpXKdkrTo0/i7t/e/jjyS9v9HSE1N/2ZZp24lCwLuZFmCSBCJjhepWXMb796NxcBAzuhBB1G/qa/Z7MOazVDQ8DJhKZqzSpkMDA31aN48S2BxxOhLJInmGVsHMSM1sHOnl0aApFAo+fAhSuNBEo4NxXmP39mzRPn7a+jV/CjkchnFi0vlB32NU5N1DhrXLyyRkTM7YpRKlT6K8B0BDqBSIs/6XOG7giOQVJYDMrVglEqUSiWD79+nUOUs09TMYwBpN/PnN8bU9NsZNl/fLB2qTCuS5OR0jI31MTTUnlleuvSeuJhEzC1NNHhhquNSqJWuRBGzDEf1e/c+0anTYWJikmnQwAnHgNMo09OpwhMMSAMRtri7AxL/Z0poqEZ2wsUlH7dva6o4x4THUKnMSsLTzQABB6N43kfNxMBIkoFIiY3VGRz1Pn9e57lIT9QW+czOuwFI+PpVK0BSpKZyYexY3pw+jW358nTctUt17NkhCAInT/agWbM9xMVl8sCyfmtZy3JHWlISfufPk694cZU4YyY+XL3KiX79SIqMxLRgQdx69KDhvHlcHD8ez4xGgs9375IQFkaD2bO1COCp31C5zg0xnz5xMUOaoO2WLVgUkrSv4r580Rr79fVrrWW54fbbBcwatJ6vYfGMmtHhLwVHW2vW5MuDBwgyGS3XrdOwM8oJSoWCE/36qfhqtX76iaZq6uxKhYK9zZtrdmZmoAE3cbBWUqjfJDp2r0TNmo6YrlnDxQyek8zAAGVqKiY2NlrdcboCsQJlyxIXFETBcuVovX49PidOqIKxa0ITvBKcUIoC0bhhSjwt5de1SoI/YkED8NOirvy0SFv6wb1eedzrlf+hbf3/iu8uQKalpTF16lSKFy9OtWrV2L59u8b7oaGh353+y0POuHv3E0ZGCzA0XIil5WL8/aNyHLvt6q+Mbm2IuSwJ9SABBCIjkzh61AdHx5X4h2q34QOEagRHSuQyKSv08OEQjYd4QpqemvWItB25XKBIEc0oXS6X0bx5cWQyARlKZCgpRpYHUITaLOtH8eiKJ2WsJ1DQYDITOy1l67Z2kI17ZZdfzrYjgyndsSNGlpYqTZZKgwd/d3AEsGJFc9zcCmQck2Tl8b2I8vfnKzZsZTArmcBdahOhxgUBqFvXiRUrmmFvb0bZsgU4e7aXJPL4DTRuXAwjI72MgE2gUSNnjI2lwKpGDQeaNSumNlpETjoN8vfl6PIDFC+ej2nTssjQLV2jsBOyOF2mdnaU7d4dhUJJkyZ7CAtLICVFwaVLH0hKl9GQm5ij/SBOS0xkd7Nmqtfx8al8/Bit1cp/Ye8NwtMtyOx0DEy24t7Zh6r3DS0sKFyzpsQZk8sxtLSk//XrWBcrhi502q/JZNIzNqbJokUaQpnmhQpRsLz2g+DBqlV4btlCfEgI/teucXbECJ2fkYkaNRwoUdSM7NcbCNqLdCDK358l+fJxpEsXNrm7c3bkSNV76amp7G3RgvjgYBQpKcR++oTH0qVc/+UXXmfj7r3Ytw/jAgWo0L+/apl9pUoUa/znsgDJ0dGsLlYM32PHeHf+PCsLFybyg/R7LVC2rIZnGzIZVXI4T+nJydxesIBTAwfipxbQmlqYsvzoT+y+PZcaLb+va1UXzo0axZcMvo+oVHJ+5EjSv8EnSktKwvvQIQ0yv8eyZRqdnM9379YKjgzMzSnesiVdjxxh28ezLF3Vnpo1JX5Y9bFj+TUtjSlhYfyanMyvKSlMDgnRMr02t7fHrmJFjWux4bx5TIuMZMCtW5gXKkTVkSOpN3MmBcuXJ6mgG0ox0wFT4CsFEJVKLQ05d7XvPQ//GXx3iW3OnDls3LiRKVOmEB0dzR9//EH37t3ZlDHDCQ0Nxd7eXqq1/kvxv1Bis7dfTkhI1oOocmV7njwZlus6kSGRtKm1jPv+WXYP+voyGjZ05sqVD9kytZrBUkWe4kcJ9EljeM1IFnloa4VM7LSUVSck8TsZCgwM9SlaLJ9O09iEhFRWrXrAjXW7KRZ8gcJkyevPUih+KFBRh73hJEJTzVWB2vYFpbj1Vp89e19qdH9ZWhqycGEj+rS1w+fECczt7SnTpUuOnxsensiiRXeIikpm+PDKKhL7n0Xgo0dUqL6XKKxV+3pkV3O69Pt7TDK9vELYudMLGxsTJkyogZlZ1k1UFEXGjDnP1i1PSE9ToERAAOQo8PWbgEtxG4KC4hBFkadzp/Bs+3ZEhQJBLqdEy5b0PHOG6OhkrK0128aLyIMYpNAmT2fCvHBhJgUGcv68H126HCYpKZ2aNR24cqUvpqbS/j264kn1ZmfI5IzJUOL3ciDF3IryeMMGzo8eDaKIgZkZlUeMoMrw4eTLsInxOXmSUxtO80lRiK5TetGwRRkAogMDOTtsGBaFCql4OCHPn3Nv6VJMbW1ptGCBTuXq00OG4LVzp2oGn1MZD6Qy4/Pnocwes4eLj7PbhojkN1EQnjA/l28MDrRrx9ts5eVMXlXk+/esVbPDyUThatVIio7WIFqDlLmYGh5O0OPHpCYk4NK06TdVx3Xhs4cHtxcu5F22DF1Bd3dGPHsGSOWs86NGqTzb7CtlWdqkp6TweP16Yj9/JtzHh3eXLqFAjiAqGHDtKkUbNfrhfcoJq4sW1TCHBhjx4gUFy5XTOT746VN2NmhAqpo2ViYmBQVJnoJIbgO6mgJm/w2sk9jAQM6NHEmUvz/uAwZQc/LkHDvX/vjjEWPHXkBPT0Z6upI2nKEKnhjly4extTXJ0dFUGjyYJjrkHPKQhf9qiW3fvn1s3bqVNm2k2fSAAQNo2bIlAwcOVGWT/unWxf8fEBeneRNWd1PPCfns8uHxYRF37nxkypQrpKcrmT+/IWvXPtKhcZT1HTkZhNEq9TyGelKHR7sh27IPBmDl8anU2XCOV57+dB7amLLVSxMfEsLBDu25GhSEW8+eKi0WU1MDfvmlHlMnVWVD+fJEvQOZvj4D79z508GRUqnUCI5A5Nkjfyo3aciu3S81xsbEpDBmzAXc3PpT/xtu4aIo0qzZHl68kNzb9+17ibf3yFzbuL+FQlWqEiVc0BC2/BT+99H83N3tWLWqhc73BEFg3brWdCweRNNJUmAqAunIuHf3Iy7FbVTms2YzZ+J//TpR799jWqCA6uZraWmInZ2ZRpDef1IrZKt2oEzTrZniUEsywhw27IxKH+vBg0C2bn3K+PE1ePkylKfvRfo3N+XQpUjkgsjM0UUp5iaVWy+OG6fiW6TGxxP7+bMqOHqycSPLR67iIJJJ8IZrR9iztTl9BtfAysGBPtke8HYVKtB5375cz2Gpjh15tm2bRJ5NT6dst246x0VFJVGr1nZ8fcOzObhI+2pBLAdWfVtkL1P5WvI1s0efrPNo5eyM3MBASx3buWFDijZpwt6mTTWWK1NTOdGvHz3UBD8zER+fyuLFd/n0KYZevcrRooV24AXw/vJl9rbQfQ2pl++Mra3pfOCAznGnBg7E++BBiY+oUHCNxtyjNnIUJPx2ht+/M0ASRZEHK1fy5tQpSrRpQ+0Mf0N1lOrUiQcrVmgsy1+6tNa4TJwfM0ZncFRt/HiO7PTgwr4buBeV07JTDe0A6W96hlk4ONDzOzmXo0dXxdraCI97nwjb+DNlRemelhwZScN586g2+v8GifrfiO8OkL58+YKbW1YNuXjx4ty8eZNGjRrRt29flubgvJ2HH0OPHm5s2/ZM9XrUqO9PTdet68TDh0NUr83NDbhx/QMpqVk3vYYucSzf2pegj2E06VYP36M1+PLoEU516+b4oADoPLI1ndVeb6pUSWU74ZExY1dvbdY3NmbcD6pU5wSZTEZ5mxhehEuET4D2vWvRoHNV/P2jWbnygdY6r19/pX5951y3GxOTwrNnWeRthULBvXufNQKkt28jePToC5Uq2VOmTAFdm8m2rwJt27py9qwfgiC9Vu8G/Dvw9GkwnTodIjo6mV69yrF+fWuN96v1bI/ZlOUkKI0QM7JI7pU0M2OWjo6MefOG+OBgTAsWVHUZCoLAixcj6NLlMIGBcfToUZa5CxohLk7m0TkP4rDg9a+DiH6R5UpeNaP0kpiY1QUpijBhwiXWr3/M+/dRKBQiggAHDvame3dNLkp2rkVCWJjq7xd796q0pTKzT2t+v0GfwTVIS0ri/vLlxHz+TLlevXIkKn+4do37y5ejNDTjvnUnvkSIlKzYGdNnxwAI9vJSjQ0MjOXKlfcUK2bNkydBvHkTrjoeYwMwVcZirpfM+GaptB3bXSffJDuaLluG39Ub7FF0xx/pWrCc78FvvzVGJpcz6P59TvTuTVxQEOaFC1O6UydkenrcXbRI+mzAh9LEYEkpfLWsTDLRu/dxzp59iyDA3r0vuHNnILVraxPUvQ8cULWcZ0ez3zU7zxRpaYT7+mJub4+JTZYOks/x45AhmvgZR+4iaZClI7DqugWzYlO+2XQAcHb4cJ5u2cJbSrDn9hkaXXrFL1d3aoxpvnw5oS9e4H/tGjI9PTrs3o1eLrpXyVG6aQnHrkay7ZU3Avk5+kpGwIvDdJk8mQfLl2cNEkVuzZ9P/Zkzc93vhLAwNlaqREJICPlcXRn+7Bn6ht8+Xl0QBIHevcvTq1c5lh0eQFJklqK4qa3tn9pmHv4efHeJrVixYmzZsoXG2erdQUFBNGzYECcnJ65du4ZCx4/u34L/hRIbwOrVD1i61IOQkHgMDeVs3tyGPn20jQe/B0FBcdy+5ovX5Yc4OVsybHYv5Hp/nSs2N9tMq1DNmgz18PjL282Ow2tPc+uiNzUalOTauZd8CU4g1dKRRy/jKFLYhAlV/Tn+woKrr7NIznK5QKdOpalRw4Fx46rnaPiqVIoUKbKSkJB41QP88eOhVK4sEVVv3gygWbM9pKUpkcsFTp3qQevWrhrbCLh5kzdnzlB94kSsMvSVkpLSWL36IcHBcfTpU16lAfR3wczsNxISsrIQa9a0YOzY6qrXoijys3N1Dn4qQwqG1BY8WPfiALZqE5wLF/wYOPAUycnp/PRTbX75JXeRzR07njFkyGmUSijqZM4vFR7D149UGjpUZda6Zo1kC5Mb6tQpwp07mgTunQ0b8lHNULRfRtcWwIn+/VmwO4pnVFSJb7apa8Xp2xM53KWLZJ2SQcgf/OABhatqTiiiPnzgj1KlUKans0EcTigFyQy0unOQ0rwBoNe5c1CiOlWqbCE2Vsritm5dgvPn/VRBn42NCV+/amc4vgfH9z+mc2/NbFd4+E8qFXF1nOzfnxd79wJSRucCLXhIDUDEgFQ8rncn8sI+Hq9fj6mtLZ327cOxZk2MjReqMngymcCcObrVxG/Mns2dBQukxgW5HJsyZShSpw6VhwzRKKMlRUWxo25dvr56hUxfny6HDqmEFte7uRHu64uoUOBLSQ7SU+MzAgMnUrjwt++hC01MuJdUjgu0yvBnFLh0uS9Nm/75ScWLvXs5oaOdfzsD+IQTmd9/KXx5Fr2Ju0uXci+bHETZHj34cPkyBcqWpfP+/VraacsKFCAxPKtpIp+rK2PfvPnT+5yJtxcvc6Rnb9JjInDv359227b96cz7/2/4J57f333mGzVqxP5sxEiAQoUKcf36dfx/wFwwD7nDyEiPoKA4lEqRpKR0+vU7SWpq7qTEnFCokDk9+lZl8Z4xjJzf928JjnQh8gduDmFhCZw9+5a3b7WF39SxZOwmuo97xvrzqfSb+pKYmBSuvzXm9uNIkpPT8XsfzfyDKdT2XUy/gndp07o4jRo5o1CIHD/uw5Qpl5ky5XKO25fJBC5f7kuDBs5UrGjHnj0dVcERSNyATLkCpVJk1aqHGuvvbdGCXQ0b8mDFClY7OuJ9+DAAxsb6TJ9eh9WrW+oMjrwPHWKBkRFzZTK2162rk7fXvPkeBGEucvlc5sy5oVquVCo1giOQutXUkRoXh9GnxwxgF8PZjJvoTeDDrH1PSEildev9hIYmEBOTwq+/Xufy5dwJ9FOnXlVxvT5+jieyzhgGe3hoONmPG1edp09z5svJ5QK2tlkBweG1p5k3dB3Vlm6g8aJFlOvbl8EPHuDUoCGfPsWQmJhG8+XL6V4mhEIZXDZny2TW7xvItSN3+O1YOqeVLYlWmCIqlbw5c4bQly9JU8uwhHh5oUxLI1XUIxQ7skrMAvfUjGEj/PzYteu5Ronbw+OzSipDJhNYvjyLjP6jMMlnrbUsJ0qC3/nziEqlqvPSkyqqfU6XGbF/50M8li0jLSGBmI8fJWsTUaRChYLI5dI2lUoRd3fdnXl1pk2jZIcO6JuaUqhKFXqfO0eb9es1giMAz82bCfeRdLOU6emqDi6AbseOUbhaNcwLF6ZNt6oaRsXNGhbC1taY38zNVcbK50aN0rkvckNDDfV5ENm796XOsQCR79+zumhRFhgZsaN+fRQ6yNrl+/Shw549CNmahqyJVmWgBUQKWogYWliQ9PWr1jZeHTxIUmQknz08ODNM+5pWD44AIv+GbPnhw6+o2PkJM6PHcFFsjteu3dxbtoyYT584NXgwR3v04PM/MAnNQ8747gBp5syZdMuhBFO4cGFu3bql1dmWhz+Hhw81W2xFEUJCEv5Le/N90FXz1wVf33BKlvyDtm0PULr0Oo4ezbl1ePc+H9RJ5Se9DFFmdEGBdEONwRJBqaBY6FV2ra6Bq2t+9PRkkkKyCKdP5x64vXwZyrNnIbx7F0lUlKZAoYWFoYqSIJMJWFpqptDfX7qk8fr0d2rEnOjTR1KHFkU+373LjWxK0Fu3PuXyZambSKmEuXNvExmZmLEfMq3SRYcOpTReG5ibk79kSekBIQgIMplGZmXDhsda3LTz53UHSJcnT2aevj5J4WGot2zpssAAqFjRHicnTXXpTNmE4sXz8fvvUpAxsuVCuo97xuyt4VSuvgvjai3otHs3FqXdqVFjK05Oq7C1Xcb957FMffWIgOQ/iPs6hvdRi0mJjaVZt8s8xx1PqrCK8cRgzr2lS9lYvjxrXFyIyujGsq9UCbmhIQaCAjmZxs4STJF+U3JDQ9z79+fNm3CN85KaqsDLawT37w/G3388/fr9uSwuQJMmxTQ4QaO62fL1zmWdwbFdxYqqh7uoVFIgv5HqfCuVIoYJoaqxolJJfGgookLB0aPdaNu2JO7uBVm9ugVt2+oW89Q3MaH7sWP8HB/PkAcPtLwF40NC2NO0qUpiQPogUaMUalOyJIM9PJgUGEjvQ3t49moCS6aWZNfWFpy9NIgdNWuSpiY/8GSDpgZXJtrv3IkV0RnZIxAEmcoaRxd21KtHdEAAipQUPt2+zZYqVVDqqFpU6NOHiV++aARJzbiMm30qhrJ03AvGsfPWHARBoNZPP+WYpREVCiJ1dN/KsxHj/6oQbmJiGn37npDK1MADavBBdOLa9OlsrlEDr+3beXXoENtr12Zf69Yak4A8/HP47gDJycmJ5s2b5/h+oUKF6J/Xhvi3ILtTvbm5AQ4O5j+8nfR0JefP+/HqVdi3B/8ghGwcANMcdGSyY926R6pZulIpMnz4GaKidP/Yba31VDO+rEBJ88FcjpcIMhmGlpaY29vj5mZLerp0s5XLc7dJCA9PpE+fE0RGJhEXl8rYsRfw8cmaTc6d20D1cHdwsGDx4m/wTb6jg1OpVGpxbrLry/j4aM5OAT59ilH9/eTJUNzcCmBnZ8rPP9elW8uC7GrUiN8LFuTsiBEo09Ppe/kybj164NK8OT1On9Zod79wQfuG36qVtgjeg1WruL9iBWJ6Oi24qPouSpe2YfDgSlrjQeLwREYmqQLLsmUL8O7dWBITf8bHZ7TK4233payAOkU04I/5pwApePP0lLhtiYlpjBwpObTrGRry8cZ1llhbM6N8W5RkioQKiMg5SheUGZYkCWFh3Mng71g5O9P3yhVKtW/HuNrhKjmFfNZG/NTNjHJ9+zLu3TuMrKyQx4WiHkAZ6ikxMtKjRg2HXE1as0MXa0FPT8a5c7146jmUXx2OY3t4FAc7dGB96dJaQVLHPXso1b49tm5uNFywgKOn+2JnZ4ZMJtC/bzmMzy3WGF+qY0dkeno4OFhw4kR3nj0bwbhx1dGFCD8/bsyZo9GOr47UpCRWODjw4epVov39s0jbgkDjjHOqC0XKFGXqkh70G1ydr8+fEfz0qdYYXa35pdu35/ijeZQpaoyBgYxWrV2ZPl2b+J6eriQiIpG4YE3B19Dnz9ndqJHKeFkdZra26JtkZSxNSeTX2u+4scyae69/xdldInrnL1GCYU+farXVZ17E5Xr31tp270uXNAjdbXR0wwF8vHOHhaamzBUEVhQurNMuBaRrPbv5eCLSvidmM5l+ff4KB8fP1Hmd5eHvxb9GKHLRokUcP34cX19fjI2NqVWrFkuWLKGkmuVBgwYNuHXrlsZ6w4cPZ+PGjf/p3f1LqFOnCMePd2PBgttYWxuze3eH7xYqzER0dDLOzqtUBq8DB7qzfXv7v20fe587p3IjB4gLDCTg5k2c1eT6dcHISE9jlh4ZmUzfvic4e7aX1titJ0bRtNYa/BOsyCmW95FXoGuFJLqvW4y+iQkjRlTh8+dYTpzwpVw5WzZsaK1zPYCvXxNUwVQmvnyJo3RpiYzt6GiJr+8YwsMTyZ/fWEurqFDVqgQ9fqx63eQ7GhVkMhkWjo7EqokaVh4+XGPMqFFVWLXqgUpLyNraSCPQK1EiPy9fZpUsdjVsSEAGh8dz0yZMbW1pOG8enTJ4LNlhb2+OTCaotl+lir0WkTw9OZkr06apXpfDG2cCqDJ3OZ1nDFZZmCQnp2uIUF69+kFDPPHVq6/ExqZoWaeYyNNISjdERIaIgHU+SZE7ISFN9dwRRVQmvckxMRzv3RtlWhpmRGsdUwKagqei2sPYqW5dnOrWpTuwKCWd0NAEChUy1+KmFfl6DygNKAAZVayC+BHcvBlAz57HiIhIZNSoqqxc2VyjjCaTCei/vY1e4AvVsoi3b3l34YKGGa9ZwYJ0O3ZMY9sB70YS+f4DYd4vOb5Hs7PVsc63O+liPn/m8717HOvVS0UArjxiBG02bCA6OpmWLffy/n0UbvYp1FUoNH5tpbt0ocnixeRzka4RRVoa0f7+mBQowL5WrVQaRYWqVmXg7dtcnjJFSwVakMtzJFaXqVoC7w/Tc9z3x4+/0KrVPsLDkyiiP5xeadtV9j0gWXv4nTtH6U6dND9TEGixejVnhgxBVCqRGxnhc+wYvseP47l5MyO8vFQSCalxcSizdRI61KxJ1ZEjdQZIRevV46ewML48fkz+EiVUXZfZcahjR5WoaVxQEEe6daO/DmFKGxsTunYtw5Ej0mTJiiiKoz2R8aM4h+lG2hYDNr3ewaVLfVRSGnn4+/GvYX/dunWL0aNH8+DBA65cuUJaWhrNmjUjIUGz9DR06FCCg4NV//6t3XUdO5bG03M4V6/2o1ChHyecTZ16RRUcAezY4aUVDPwVZG9LRhQ52qPHN9ebPLkWpiaaN8prV3SXd1zKF+PV12XoErnMRLxogrLHQhxqSDpDcrmMxYub8ObNGI4e7aYy0s2O8+f9aNv2gEqBWhCkUlDNmppkTJlMwNbWVKeQ49BHj2i1bh0l2rZlkIfHd7fjjn79mjJdu+JYuzb5XV3Z36oVcwWB3wsVIiogABeXfHh6DqVNmxL06uXGhw/jcw2QPzx+wVMq8pzypKGHdzYX8+xYsqQJbm5Sd0ylSvacOaMdnKbGx2s9MCxkiXQY1w19fTmBgbFYWy/B2HghBgbzuXRJ+g7VBUZlMoH8+Y01tJoysX5lA4wEaftu+aKZs0XqhBs8uKKG6fHs2RLJODk6WiUzUIRPWKpxXgDcCqWryin6pqbUULNMUYehoR5FiljqJO4Xs4OCBKOHksIEMrBOzmUMURRJS0zk4+3beB86RFpKCl26HCY0NJ60NCWrVz/UWd7VNefProydHRF+fqwpVoyN5dw4ly2YBihQqpSOtSQE3LzJMltbVhUpwrGePTUCl6dbtwJQu/Z2Hjz4wtevidx4oeAUmhOpYk2aqIKj+JAQ1pctyx8lS/J7wYKq4Agg6PFjbv/2m9RlpxYY6puaMukHrH6yY8SIc0RGZpjEKgryUK47IIwLDuZI165srlKFh2vXAlBx4EDG+ftTb84cFMnJUuedUknEmze8OXOGO4sW8Wz7dt6oCUpmonjLlpTv0ydHrpiJjQ0lWrbMMTgCSSFeYx91KJRn4sCBzhw50pXOJlcYziZVEFiwYlZF4QxtSUMq53l4fNboeM7D349/TQbpYjajxJ07d2Jra4unpyf11IxITUxMsPvOcs//ZaSkaKezpVT+3xMTFyxfHkEu12gVTgwPRxTFXPWw7OzMKFMggYfxmQ9NkbQMArqoVHJs0iwuHLxLqRLWDD/4B2b2hbCyMiI6Wp0flKUaLoriD8+g3r2LoHVrzYaDX36py/jxNX54W1VHjaJqDgTUnGBgZkbXw4c50LMfb+49JbMIkBAczM569Zj46RPu7roDl+zwu+XBhsSefEXKej2lEtPNcya5AhQubMHz5yNITVVgYKCbtG+cPz/FW7bk3YULgKRl1e/aNYysrADo3v2o6jtJS1PSseMhDhzoTLt2JVm+vBnLlnmQL58xW7e21Rlcdh3TlvZDmhMVFk3BIlmtzE5OVvj6juHu3U8ULWqlMuO1LFIE50aNCLh+HUEQaJ3Pm/0RWb/7h0FWNEQhhdJK5Z8ST9z40JawDIHPLzhwI0REV8gf5u3NrsaNSVSTI5CZWRKZMFEjcRIUpM3LK9utG9emTyfm40cA8hUvjmub3JXa7yxYQEIGkTg1IQELBwdiAwMBKNmhAyVattS5Xmp8PPtbtyZNhy0LoAq6373TDDYD9EpCxu0jn6srVdSCsvsrVqj4Xbp0sd5fvIilkxNBnp6ICgUG5uYMunsXMzWJAHUolUq8PV5jXdAKxxK6RVqjopJU2U5BECg3YjxuEQVUE4EidetSonVr9jRpwuf79xEVCoI9Pbk2YwaK1FQMLS1JykaqRhA4NXAg6UlJiEqlaoKljltz5lCuZ09VcPgjSE9J4eGaNVgUKUL0+6wmiso6CN+ZkMtldOlShtZNz7GhTBniQkIwNDen1dq1PN+9G6/t20lNNyBzwigIAgkJ32d1k4c/h39NgJQdMTESJyNfvnway/ft28fevXuxs7Ojbdu2zJw5ExMT7VZagJSUFFLUatex2aL9fzMWLmzMwYOvVHXt5s1dvunt9iOwLFKEjnv2cKJvX1WQVHHgQJ3BUWJiGgMGnOTChXdUqFCQQvnl4J/FKVKgx9Z5B7CWxdFntYIUGiKEKgloPol13ofo1dSC9UeSyGzPNZWnky43IiVVQd26Tgwc6P5D+z516lWtZUWKWGJjo3mdREQk4u0dRqlSNhQsmFXCSUlJZ+3aR3z8GE23bmWpW/f7XNjVsX37M4YeLIqSaVTkKW05gwwx1xlmdqQmJLC09XC+il1Uyz7ijNPglqx2cSE640Gmro6sjszgKDU+ns8eHlg4OFCgjKRSLQgC3U+c4MWePaTExuLWs6dKgRikc6OOpKR0OnQ4xOzZ9ZkzpwGTJmnaL+iCgZGBRnCUCRsbEy3iuSAI9D53jpf795OWlIRVYln2T80qp6eijxIZcpSkxsdzf/ly2vxgaf1LrL5KjFRAScCXZJ3j9rZqpREcASjjY6hVOIJ7X/IjCGBlZaSTJC2TyRj34QOvjx5FJpNRulOnbwrsKlJTUReYsilVitG+virl8ZwQFxycY3AE0Cijtd3Z2UqjozQm3QSXHY/o3M4F44z7q9euXXgfPKjll5cdQY8fE/z0KaJSScP586k0ZEiOPnepyalUd5qGV5gVAkp+7mvNgt0TAEiMiCDa3x+b0qWZPr0Ow4efBaQS/bCR1Slbti0N5s0jOToa+0qVkMnlBD97pjFhS8uoLmQPjgwtLXFt04aXaoKigQ8e4NK8uUbjhahQEPH2LdbFivH53j3SU1Jwqlfvm4RsRVoaf7i6EvMpwwhaJsOhZk0qDRr0TXNdgJiAAMkSRRRJjYtjf+vWTAkJoe2mTZivesDEidI+Fihg8pcaB/LwbfzpJ2ZqaiphYWFaBMMif8E5+3uhVCqZMGECtWvX1hCv7NWrF05OThQqVIgXL14wbdo03rx5w/Hjx3VuZ9GiRcydO/cf39//BhwcLAgOnsT27V4ULWpF585lvrlOcnI6Y8acJygojunTa1OvnnOu48v17IlD9er4HD+Omb09bjmU2JYuvcexYz4olSIPHgTSuEFR4KPaCCVPPN4TFJpEakb6WETguK8tq9OVHDnxDsgkqQsIyjS+BE8lMVnEwcHihxXc9fW1Mxr16mkGOc+fh1Cv3k5iY1MwNJRTv74zDg7mVHAxYNrsBySnC8gEgfXrn+DhMeiHLEoSE9MYMeJsRkcePKMSZXlFcd4j/sCxxH35gn6C5oNaJkB6aIAqOAII9fLC59QpSrfX5qDFhYSwpmhR0pOlYKDRokXUnS7xQfQMDak0ZIjWOgATJtRQEajVsWHDE+bMafDdx6CxL8HB3Fm4kJTYWKqOGqU1q9czMlI9YIp+TWDZ6qd8+SJlaWpyHzlq9yId5zHw4UOuTpuGnrExbTdt0jKxbVnDjD13JDsdJXK699ZNRI/TYYrrTVmefDFDT09GkybF2LSpDQ4OukvjMpkMj2gXli3zwHrpNjZubEOlSvY6xwLUnDyZN2fOkJaQgExfn7q//KLTQiU7rIsWJX+pUkS8eaMKsIo2akTNn36iYPnyKmPae/cGUaLEWo0s7catL+kzQOp8vDhxIg9Xrcraf319yaJGJqPG5MmS35kgkBQZSWJYmMq+JvbLlxyDI4D1M/fiFWYFSB2pi/dE8sv6JEKfPGRfq1akJyVhZm8vyUk8GsKbNxHUr++Eo6NEmM9fQrOxoFiTJrw9c+abJctR3t4EeXpqBEggSUKYFiyoauE3NDenUJUqHGjbFr9z0rVepE4d+l2/nmOQJIoiXjt2ZAVHAEolDtWrf1dwBBmSARnfl6hUkhITQ2J4OBYODkyYUIO6dYvw6VMM9es7ky+Du5eHfwbfLRSZCT8/PwYNGoRHNj2GzNLKf0IocuTIkVy4cIG7d+/i4JDzg+n69es0btyYd+/e4aIjTaorg+To6PhfF4r8byG7D9yDB4P/sjcZwIABJ9m794VKU8jNzRZZ8BteREg3OgE4vb02py9+ZuvhTyo9FJlAhomjttnuiU3V6DBMd2nhW7hxw5/GjXerJuVt2rhy5oym0F2vXsc4fPiVap8BZDLUTFgz09wwa1b9HwoKIiOTyJ9fkxvXlcOU5TUONWsyOAetE/9XARibGWPnJBG2FWlprCtVijP+hbkuNkCGktUrmmJ1axXXTnkiR0EhghCAGpMm0VxdMTgDGytWJFRNSRpBYHbGA0YURebPv80ffzzC3t6cnTvbU7Fi1oP8xAkf5s69yfPnUpAmlwuUK1eQZ8+0eTKiKLJmzUN27nxOsWLWrF3bkrgnNzg/dixpiYlUGjKEN6dOqYx9ZXp6jH79Okez2szzeOnSOyyNlLyd1JGYAEmLzcjamqGPH2uURr76+rJezZ5Cz9iYadHR6Kl1LinSFcwfth7vFyG0716Jvj+pa8dnYa5MpsHlScaQpUzVkKB49GhIjgKhDx8GUqOGZOsjkwnY2JgQFDRJVYpMjY9HkZqqyt6AxP0J8fLC1s1NS7QwNyR8/cqDVauI9vfHtW1bynbrhkyHqfjo0efYtMkThUJELhdo27YkJ05058Hq1VyaMEFjbJBBUaIbTqFQUVvmLG6jIuDvbdGCD1evSlkcQaDJkiUa1iFpqWksG7+VT/4RDJrckmsnHvPzhlC1LYvEREzicMumfHn8WHWOXVq0oE9GqTc3+F24wIE2bXINkGpPm0bj334j5MULTvTty1dvb60xxVu2xKpoUaqNGUPsly9adi/qQqbqSEtMZEe9egR7emq9Z1qwICOeP8esYM5dtZmIDwnhj1KlSE1IAKWSghUqMOzJkzzByG/gv+rFlokBAwagp6fH2bNnsbe3/4/7r40ZM4azZ89y+/btXIMjgOrVpVbXnAIkQ0NDDP+kPPz/NTx8GKgRHAGsXPmAgwe75LDG96NHDzd2736OXC6gUIj071+BQX26M7bzKoJDE+nRrypyu6L0GunK9fuHeP85GRDIMoTXvsYKFf3zEvwNGxbl3r1BXL78nrJlbencWdvXSRdvRrrvau6LKEKpUhK/QqlQEO7jg4GFhaQtI4o6b2r58hkzaJA727d7AeCYT0kl4yQKlWpMex1aYkqlktZu07noY4qAknEdTFh1YhpyfX3yDZ7Lk1+fIkdBuwrJDB1Tm+bHfLiBOwCV8KQdZ3RaJ4iiSNSnwOwLVX+eP+/H7Nk3AYiISKJ9+4N8+jRR9X7HjqVp1aoEffue4NgxH5ycrNi9u4PW5/gcP86m+UdY7SWVzV6+DCXocyQtHme52t9brNm6rlAoCHz4UCtAEkWRw4df4eMTTosWxenZUzIsbdHOj9Dnz0lNSMC+YkVV6UlUKjk/ejRP1DV9gPSkJAI9PDS6LuV6cuZsH6u1/9lRvm9fXuzerXqdjBFKNIOO7L8ldfj6ZpV8lEqRsLAEYmNTsLY25smmTZwfPRpRoaDy8OG0XLuW2MBAzO3tKZ6Df1om7p5+gL9vIG0GNMbaVpJTMC1QgMYLF37zmGbPboCHRyBeXiEULWqtEsW8OWeOxriv2LAttQ9cDUcUw/F8Fcft25JYaNstWzjeqxdhr19Tqn17amTzQmzn/ovqGt5+6TgXDjbDfvtbglOkiVKPGgos8llIMhhq1+H7ixd5d+kSxXORmQF4uHq1zuXuAwdSe+pU5AYGWBYpwv7WrXmXwWkVZDJEpRJPKuFJJayIZZxcj3K1anGwfXuNbtNMyHN4ZmyuWpXw17p13RK+fuXW3Lm0Xr8+12MAMLOzY+ijR3hu2YKBmRnVx43LC47+S/jhAMnLywtPT09K5dI58U9AFEXGjh3LiRMnuHnzJkWLFv3mOl4ZM2N7+5zT13mQcP36B61lJUrk0zHyx9GiRXFu3RrA1asfKF++IJ06lUYQBPbdm0dISDxVqmzmy2zJTX3gQHdMngTx8qW2dpOAEgGRka2Nqda08l/ap5o1HalZ0zHH93/5pS4XL75TmQVntZ5rJlwH9StD9+5lSQwPZ0OFCsQHSa3hMj09EATq/vwzDbI9ZAC2bGlH9+5uxMQkU7lIKkZ67bCvWFHnjfDExvNc9JFKKiIyVp9MYtKbzziUKMzwX71JEiUj32PPDfhl+C5u3MualT+lMmuPTVCRqzNx8eI7evU6RnTUaKryiJZcQAAs1EQD37+PynTxQKkUCfwcywqnoqBIo9HChbj374+hoR6HD3dFzOgOujRhAhf278faxYVO+/bxcPVqHq9bhxcNEHBFRBLx9PIKQdfjXpDJVNloXW7tCxbcZtasm8jlAvPn3+b69X7Ur++MTC7XUoIGeHPmDE9y4CLlc3XVufxb6LhrF2YFC/Jk40YMzc2p2bsPXg8Kc/OOxB9zdraiQQPnHNevX98ZExN9UlLSEUWoXr0wVlZGJMfEqIIjkCQbvHbsQJGaikxfn/43blCkdm2d25zUeSkrj0tdd/l/ecCz1xNyJD3rgq2tKU+fDiMhIQ1TU33VxDf7BDgAZxTIISOzeufOJ5XUg6WjIwPv3MnxM674SIGFiIx09Ng6dy/H19biVYgRdkVsaN1fytS4DxqkpaP0aO3abwZIesbGWT9UQcDS0ZE6P/9M5WHDVMfx8NBZ9l6MQo/KVOA5+sp0wp0ac+ajZLUTjJLlD9Ppfa6vllQBSHIFjhnmzOqI8vfPMTgCaVqVFBmZ4/vZkd/VlWbLln33+Dz8M/jhAKlMmTKEZ+8I+A9g9OjR7N+/n1OnTmFubk5IRtuopaUlxsbGvH//nv3799OqVSvy58/PixcvmDhxIvXq1aO8mkheHnSjVClNI1YjIzlz5zb427Zft66TTjLzzp1eBAdnzbZ37PDSub6LizWPHw7CxEQfQ+Mfy/q9fRvBwYPe2NmZMXCgu0rDJzeUKmWDv/943r6NIDAwhhUrHmBoKMfNScbmnT4oRfhpVBnmrJbU5e8tW6YKjiDLgPXW3Lm4NG+OY01N0nKmie35MWPYs24dAAXKV6D/9WuY5s+vMTY2KruKukB0aATn+/cgUdS0vwj+rC1EV6RaFY3XCoWS7t2PEheXgojAI6pTxjyM2mX06KNGUm3ZsjjTp+uRmqpAqRQpKfoQ9ykAgFMDBpCSkED1jA4+QRB4tmMHj/74A5B0i0706UNQRrmhKP7cor4U5MrklC8YB9mSVwBO9euTnpxMrSlTsHVzQxRFFi++y549LzA21uPp05CMY5BKQYcOvcrVlDhRh42EIJfTYO5cFQcnNygUCvY0bky4ry9ODRvSYOZM8pcsSdOlS2mqJiFSPyWdAwe8SUpKo1u3spibG5KWpmD48LMcPfoaV9f8HDrUBReXfDg7W3H//mC2bXuKtbUxEyfWQBAEqaMqG0UhU05DmZbG8V69mPDxI7qw7ngMIJULI9LNWDFtPyuPT8312ERRxOP333mxe7cktCgIFGvShFYZ3yFA06VLOTN0aMaJE+i7fDrnJkllKblcwMHBAkNDOfHR8QxpsZjX7+JpVNeeFcd+0pKmsNRLIirdNEP7Skaqz0MuDdtKhf79aT1zp2pcuZ49uTB2rEaA8u7iRbbWrIlMLqfO9Ok6O/8aLVjA53v3SPz6FTM7O/pdu6Zqwb+3bBlP9h9jvm9DIjJC85eUYwA7MW4xAGHTO0QERGQERBnoDI5AIm6nJyVpCFACmpyjDFi7uBCV0cEmyGRaemd5+N/HD3OQrl+/zq+//spvv/1GuXLl0M9GVvunuDs5lfJ27NjBgAED+Pz5M3369MHb25uEhAQcHR3p2LEjv/7663fv0/+KWe1/A6IoMm/eLbZseYqDgwU7drRXCSb+k1i16gGTJl3K6X6EkZGcUaOqMnt2AywsDBFFkcjIJKysjHSWwbLjw4coypffQHJyOgqFSI8eZTlw4K+XDbPj3OjRPMkhfd7t+HGVyac6oj9+ZLWzMwB3qMNNGiAXlKxZ0YShY+upuCIJsQmUtf+Vj4lWANR1imVY6de8v3iRw3ThNW4IKDEglZklb+BTZSr79kmt/jNm1OG33zQNppOS0jAx0TTn3LKlLUOGaGdgvL3D2L//JcJXf2RbR6BH1gNc0NNjllqr99UZM/D4/XeVSKNx/vykxMSogsW3lOAl5Wj78yh614EjrTSVyS2KFGFitgDg0CFvevTQFE1Ux89jSrJwbc76W/GhoWwsX56EjK4z90GDaL9tGwqFgooVN+PrG46trSnPng2jQAHtjjD1bsBMONSsSb+rV7UektmxcsV9Jk2WvABlMoGaNR24ezd3ou7xPn1U5OHsMhqG1tZMzyELYSKbQZJoSGan59Tu5iw5ODnXz3p15AhHddhHFapalaGPHqleR3/8yOe7dynauDFmdnZs2eLJqlUPKVjQlHXrWlG6dAFau03jwisjxIzO1J97W/LzplFMnHgJD4/PNG5cjIblBAaPvEJsuhHuPKMVF5AhgiDwa3IycjU+2MsDBzjep4+mOn3GM0AmlzPq1Svy68gApicnE/P5M5ZFiqBnaEhccDD3V6zg/u+/8wZXDqApnTGBVYh2JVgT2hpBEBAEqF+nME2fTdLSMALJpmVGfLwU0CYnc2/ZMiLfvqV4ixZcnjKF+IyJu1G+fEwOCuLrq1cEP32KY61aqg7RPPwz+Cee3z8cIGXOCrIHLP9JkvY/hf+fA6T/FuLjU2nUaBePH2urFr98ORInBxNauc/m/kcTbAwSsXAojN+HOAoVMufy5T6ULZs7F2ntWslhPvMql8kEUlN//a7g6kcQ4efHejc3LXFFyyJFGPHiBUaW2lYVMZ8+scrJiRAKspFMPo6IDCXzHA4y8uaFLIG+6Hj2LD+BmbkxvSZ1ZE1RZ2IDA1Egwwt3EjGhLK/IRxSj37whSsiPgYEcJycrnfvbv/8Jdu+WFJ0LFDDh5cuRGlIG2REfFsZyNYJpCgZEko+lMQEqb7gvjx6xvXZtqdymUFBt7FjMChfm+vQsleSqY8bQKkPE7+nWrdyYNYu0hARcWrSgzcaNGFtrmrr++ut1Fi++q0GWzzxPZsQzQVjDgEvncMlGpNXY99BQHq1dK/luTZ2Kobk5Vatu4cmTrGvOxsaYr1+1My5zc5iYtd2yJccOv0xYGM0mLiXrOsufz5DwCE3FaFEUmT37Jps3e+LoaMnOHe0w/OJFWkICz3bswO/sWY3xvc6do0SrVlqftWzcZqavDUSJHGfTaJ5+mKXiIeWE6zNncnfRIq2sFcDsH7SxsDecREhqZtOFknrFEijfujHr1j1GqRSRyQR+/bUuc+c25M3p0xxU66jUMzJiWnQ0SRERKBUKlTfcrkaN+Hj7ts79y2nSoY5rv/7KXTX+VRD2bCYziyMiR8FPLMOIFFxWn+esRwIODhbMnFmPBD9vtlSvrtM+aEpoKKa2tpwaPJjnO3dKW1MqabFmDfEhIegbG1NlxAhMdGg/RQcEcKJfPyLfvaNc7940XbIkj1/0N+F/IkDKbuWRHfXr1/9LO/TfRF6A9Ofx9tw5LowbhyI1lcYLF1KhX7/vXlepFPH1/crChXc4cMAbQRBYurQJBolfmTjLE4WqOyirg0wuF6hf35lr13L/nNOn39C+vSQoJ5MJ2NmZ8uVL7jPrP4v4sDA8N25E39QUQ3NzlOnplO3WTeeNMhNnR47k0MYr7KWvxvJxsj+o06kBXY8c0bne3hYtNDRb0tAjBUNMSWDI/fs6he/UoVAoOXr0NeHhiXTqVBp7+297/WW2e3/Fhh0MJBFTjIz02LmzPd27S3IbXx4/xvfkSayLFcN9wABkcjkR797xbMsWyvXpo5NXlBtu3/5IgwY7kckEtSBJ+r8HBygtf0+5Xr3oqEaaTgwP58mmTdL579oVv/PnuZLRTWXt4sLQR48oUGQjCQlZ2S9BAKVyttbnLzA2lhSYs6H1hg1UGTFCa7koinh4fCY+PoUWLfahTup3LCDjU5gmWf7Ysdd06SJ9x3K5gKtrfl6/lhTZT/Trx4s9ezTGG1hYMCMmBl349OYzX94HU6VJRfQNvm2e+vH2bXY2aKBtCyKTMStbUBLz6RP3V64EUaTGhAlYZWQ+M9GyzFQu+RirdKSm9zTnzicr7t3LIjm3b1+Skyd7IIoiW6tX17Dp0TMxUVlyVB09mpZr1xLm7c2eZs1ICAmRWkgzmh7kBgaMefNGy2RXHbFBQawsrN1FeJfa3KIBeqTTltOUEXyRGxgw8fNnTAtkZcwj379ndfESpKGPIZqTHn0TEzofPMjZYcNUGaNMsp6+qSndjh7VSagP8/Zme506UmYq45y327btu9v/85A7/ie62P7NAVAe/n5sX3CQibOfkqzUow6FqccdTg4YgEPNmlo6JTnh8sbDtBn9SiJ/Ap06laJv77IUtF+JpvJ3VpCkUIg5mtyqo21bV2bMqMPaVR4YJH2lVdBm5gpT6HXhAiW+0RWUHcnx8WwqX56Er19x696ddhlWDZkws7Wl/qxZP7TNNhs2YGC/iPNzQogUrQEBJwKwVkbkKsrXaPFiVYDkQymO0Zl09ClrGsi0cu7f/Fy5XKYKar4XLVauxM7dnRGT7pIUKZWXkpPT6dHjGA4OFtSuXYTCVatSuGpVjfXyFy9OkyVLfuizMlGvnhMXLvTmyJHXODpa8OFDNE/O3aF85AVKiW8BOeZqD0L/69fZ06yZKutw57ffNPoOKXzu1AABAABJREFUoz584OWBA5QokR8vryz7C2tr3crbvc+dY2+LFhqq0flLlsxR82vIkNOq7kQJWRIVtdy1M3R+fpEqXzyFQuTDh6isz9FRQtIVrGWiSElHipTMOWh48yacY8d8cHCwoHfvcjjVq0evc+fw3LRJQz+o2YoV0p4rlbw5fZq4kBBuz52rUvN+degQY96+xdA8K6g+dPdXBjVbgs+HBBrWKsjCvRNYvPge9+59VnWvZvr9CYKgIWEAqIIjgMfr1lFp6FDsKlSgVLt2eGYawYoiTvXq0WTJklyDI4CE0FCdy+twj9VHJyLIZFybfgJBXopmy5drBEcAb0L1WSGfTrzCkGK8oweHMEC6BtISEzneqxdF6tbl/eXL0rWWEfCkJSRwqFMnJnz8qLHNuOBgNrq7a2TDBLlcJWuRh/9N/CmhyOjoaLZt24aPjw8AZcuWZdCgQVjqKCPk4f8e4sPDWVeiBHHR8SxlKmmYAALXaYwzARQRPxPz8eN3BUjhb94wfPQlFGSK9okcO+aD//twdLX3S9pI0oRtyhTtbpLsEASB335rjNHS5ohq/JlD7dvzqw4H8NywzMZG5Rj/bJukY5M9SMoJG2buYc4SSc16zrSKjJyflTFqNmsGfmMSWT/vOJ5/rKKs4jkyuYwaEyfmtDkKubtjYmNDQng4p2hPesZP+VWCA0eOvclRYTfCz49Ha9di7eJCtbFjVSXzyPfvMTA1zVXYD8C9f3+KXjTj4UFN/ZidO72oXTtLePH2woX4X71KidatqTVlitZ2Hj4MZMcOLyIjE7l8+QOJiWnUqePI9esDtMY2b16c5s2z/K6iP1bkUMcbhHnrU7RRI+rOmKF678pPP2k8hJSpqZpt2aKI3MCAhw8HUa7cet6/j8LGxgRPz6E6j7doo0bMzCibfvXxIT4kBIcaNdA31hboCwyMzRYcZQb0Ivbm6ew8pW1JU6+yOYIyPWOkjGa1sspitaZM4em2bcQEBKiWlfpGWSknvH0bQaVKm0lOTkepFLl37zObNrWhRMuWlGjZElGpJMrfHxMbGwwyAp9TgwbxfNcurW3Fh4QQ9vKlRjeXRT4Ljj6RylmiKOK5eTNFPM7SzU7Gu0hjXK0iqSorCEjBs3ODBhoZ0OzIVAD3O39eWqBUItPTw9bNTSsA1wVbNzfkBgbanpFIROsynTtTrEkTBEEg4u1b/ihVirigICoOHkzz5csZMvQsiaJ03XzAhSdUoRb3VdtITUigTYasQaiXlwZfKT0pid9tbZHp6VFx0CBarV/Pi717tUqFokKBa9u23zyWPPz38MMB0pMnT2jevDnGxsZUq1YNgBUrVrBw4UIuX75MJR2ttnn4v4U1zs6kJSSQgilpaHqXxQmWmNmlU0jHTSw2NoXo6GQcHbPUr4NevCIa9XSo9Kj4EKBOkJRmZyPamjJp+UDu3/+Cm5ttrurD2aHVHaTDR+pbUGYLqF4dPvzNACk1MZEnp64zZoEfyozjHLPAj2ZdP+BSPkvjJ18+E35d1YeIUdX48ugR9pUqfZPU+dPXrzxcv4GFY0NBmSVcGRurO/C7NW8eN2dnlZG8Dx/GxtWVl/v3q7hT5fr2pZNauUoXpk2rzZEjWSKagiB57GXi9JAhqgAy4OZNYgMDaaGmxLxnz3P69Tuptd0bNz7So8fRb2pvWTk5MTxbG3gmBzKTEK6OCv378zQjCyE3MkJuYIC+vow3b76teaSOAqVLUyBDbDLw4UPenDpFvuLFcR8wAEEm0+lrd+NGf6pVscfETHeGKu7CLgYLh/EWy2BBLM0j0wCpxJYcE0PFQYN4sW8fkW/fgijy5vRpAm7dwvkHM/knTviogiOA7VufMHd0EewyOnwFmQzBPB81XefwPMwCW4M4uqWeQaOfMuM3K9fXz1XA03PzZs5llB/LZPwjAs6PvIJ10aIUb96cWj/9RGJ4uKpsl73Md2XqVBr/9ht27u7EBQcjKhQo09OxVSvRJkZEcHb4cL48foyRpSXODRrQcP58jCwtkevr0/faNY51706cWnep3MAAA0tL5snlqoyZgZUVabGxiEolD1etwqFGDcLDE1X0I5kASaJmQOzSvDnPtm7l0+3bOZ4HZXq6FCjWq4etm3a21rZcOVLj4gjx8sLO3T3H7eThv4cfZodNnDiRdu3aERAQwPHjxzl+/Dj+/v60adOGCdkUV/PwfxOZHkemJFCM90jGIEpMSaDryBYMffRIi5Q8a9YNLC0X4+S0ClfXP0hJSUehUDJ2dTixSKWlLAi4lc1MT0slir6dndlw+idKlLChX78KPxQcAVo3qMIZIqJ/Baa2uRPEfU6cYJG5Odt7jcwQEpQ6fJTIef3YT+c6+V1dcevVi2uX37Js3Ga+vNcmr6uj+qiRTP85y7S1UCFzunUrqzVud9OmGsERwBcPD57v3KlBLH+5Zw+xQbl/pru7HffuDcLRUQr4mjQpxtSpWfo8Psc0u84yTUUzsWrVwxy3ffu21MV2/bo/ffocY+zYC9mMijURcPMmC42NmSeT8budHbV++knSoMqAW48eJEZkSR8okpM5NWAAD9QCtuwQlUp8T5/m0717Ot//fP8+22vX5t7SpZwePJjLGRkyW1tTFi3K6hjs37+CpHmUQ3D04X0ED57HkF/8SjOuUIOHkCYda2pCApsqVeLmrFlEqlmFpCcnc0uHrta34OhomWX4ihIzZTSbKlQgIINTGhIST+u6a/AKs0BERliqOWfIlt0QRayLFqXHqVO5Zhof5nJuXx06BEidaM1+/50Rz55RZ8YMnBo2lHhGGfh89y4769VD0NenaOPG2JQqRb1Zs6g0eLBqzPnRo/E5fpzYT58Ie/mSR2vX8rutLckZ2RynOnWY9OULI54/x7lRI4o1bcpIb28Otm2robadGh2tei3IZMR8/MiUKVmyHCYmBrSoYqAKEJ0bNaLX2bM8WrNGNSYnorUgkxH35QslWrakfDZeZtjLl+xr2ZJNFStyduRInevn4b+LP5VB2rJlC3pqNyE9PT2mTp1KlSpVclkzD/9XIDcyQpGcjAD05ADehtUp1Kgl4+b1plQVbd5ESko68+dnzbTevYtk3rzbdOhQktv3grONFjESUrl0uS/r1j3m6dMQGjVy1tmC/iMY+fIlh7p04dPt2xRr2pTO2XyYvgeNFi3iekY5R25oyDB1iw4dODN0qGQVQCgWxBCX4SdnKU+kXvucSdR9685hv4eUjViwbhVeL0ZRtKxzjuPnz29Es2YuhITE06RJMaytNWe7R/Y+Yf1VPexwxx0vHYVLTaTExMA3NIKqV3fg06eJKBRKrY5AExsbDf5U9kDSxsZEJUCZHbVqOXLlynuaNdurWrZ793PevRtLgQLa/mOHO3dW+cglhIbydNs2xvv7E/n+PXbu7hhZWjI/mxTJK8qwc+Ynip/fw8qVzXFzy9q/tORkltnYqCYBNqVLMzqbAKBPhrdjZlby5b59NM/g7UyfXodBgyqSkpKu8gzLjsj375lcfwy7vlRDpAgWjGYIW7EgTtW1GHDjhoaulgqiqBFIfA9EUcTVNT+dOpXi1PGXWBJLF44CcHbECLrefEyFChsJCxPJnDOLyIgTLLP6IjKQFBWVq6J3WmIi4W/e5Pi+czaLjoLly5MUGUm4r6/OjrE3J04AkmSETC7n/vLlfPLwwLpoUYKfPdO6iBSpqXgsW0aj+fM1PqP/tWsoFQo8li3T4JOpQ5DLkRsYULJ9e2qXLEnVqoV5/z6SJk2K4eT0M0qFAkVqqqq8alKgAMkZwZUoilgWKaKphyQI6BkbU7pTJwA67NzJy337dHbleW7cSI0JE7ApqW1wnIf/Hn44QLKwsODTp09aStqfP3/G3PzbnTB5+PdjjI8P68qWJT0xEXMrMw5+vohRLq7iMTHaJZ+Lxx7Tqb22/UtJ6zh2HeiJiYkBP/2kWzX4z6L70aN/af2606erjFy/B4qMkpwBaQxhK56GdbGvWInZa4diaaP74alIV3BQzYotVmnC+jlHWHbkJ53jVftW14nQly95uWEllkWKUKJlS0zy5+fw4Vd073sOGVVRIiceM+pyFwBDKytSshHBrV1cVGWk74EuuYQep0+zvVYtkqOjMc6fnx6nTmm8v2ZNC5o02UNgYCwymdRdCFClSiGOHu3GqFGare2xsSkcPOjN2LHaWb+UuDiN1/FBQVg4OKj8ysKyeW2FYssRukCCwOcb/jRtuofPnyeipycdx+XJk1XBEUC4jw+Bjx7hkEEnALAuVkz1kBPkcqyz2RjZ2uZuJHt+9GiOfymToRkEcZjjSWUaye9gkkHsTYnP2aoku8nutzBq1Hk2bnwCgAsf6cV+lbGvTC7n/7F31mFRpu37/zwzQ6eggqKCAbZiBwaK3d3d3a1rrt3t2t2B3Z3YhYGiAkp318zz+2NgmAJx3903vr89j2OPlaen7vu6r+u8zvPMmY+EhiagzfmrIj7RvpTGe6MPgkSiVEPXCgIEqZSqw4ZRsVcvje2v9u7Fs29fVXYm0/pDG0kRERoZUEEq1VGH/xkerFjB9RkzdLab5c9Pw4ULiQsKokynTqogxd3dSUMRXSKVIlHjnrXbs4fDbduSEBJCqbZt6Xj4MD+8vAh+9QqZsTEpMTGUat9eFfQebtdOb3CUiYD79/8JkP7L8MsBUteuXRk4cCArVqygdgZJ7/79+0yePJnu3bv/5Ox/8H8B1k5OzPzJQKmOfPlMKVrUmq9fo1Xbnn9Mpr37Gvp0qczeo18QBJgzpz5z5rj/9Q/8H0K1UaNUHmOWxLF6cycq9e+f4zmCRMBISCNJzJQ2ELDKY8q+pk35ckUpOmhsbc3UqCiN8x5v3MjFUaOyriOV0vXUKTw9UzO6pJQZqXeUobH1W4a+eoUiLY1ddesSHxyMsZUV1UePzrELL/bHD460b098cDAV+/Sh4e+/6z0uX+nSOs+njpIl8+LvP07H1iITzs62OueYmOhvWy/RrBk+Z8+q/q4ybBgBATHs3PkCeUwEio39MVCblEKwIzNLIpeLBAfHExGRqNKAStUjDpikVqIDqDJ4MKGvX/P26FFsS5SgvVYrPiizNpGfPiEzNtYJaOJ+/ECC5gJTggKZkRHVMz5Dp3r1dIQiM/H20CHa7dql9/3QRkBAjCo4AvClBP4UoSjfAGi7cydPg9QDOhEp6XThKCXRLQOXVNMv0geZsTHN1q7l0pgxiAoFxZo0oZunp15SO6DRoYYgUKh2be7c+44PLuQlnEq8UIpJakGUy0nWI3cgMzHR8YDLhP+9exoZJ0EiobCbG32uX0dqkLMsgkIu58qkSXgfOYKtszPt9u6lUI0aTAwKQp6aiiyjEcCxXj0c69XTe43PmYTzbJD/FyUw/sHfj1/WQUpNTWXy5Mls2bKF9AxCpIGBAcOHD2fJkiX/0+av/+gg/X1ITEyla+sdnLuh67HWqGQih+/PxtY255X3X4lMvZqUFDl16xbJlf2INp4/D2LLlqdYWhoxdaqb3hLQx3Pn+Hr9OmU6dcrWR0sbm2fuY8yij6RjQIk88Zw4359TtTV5RaU6dlRlxL57ebGzdm2dlbe1kxPR/XYxf/4dFAqlNUfbxgU4fn7gnxKnW2Fnp1KkBmi2di01xoz55ev8DGlpclq1OsiVK0oF65o1C3HzZl+MjWV8/x7L7t0vMTGRMWRIFczNDbk1Zw4/Hj+mXPfuOLbpQqlSG4mISEShELEXAxnMNiSIyExM6Pran/Ll/yAtTRl4lCyZlzdvhquyWAlhYay0t88i8FpYMDU6Wsc2IyeICgXHu3fn3dGjANSfM0fDj+/Jpk2sGrmOo3RRCjsWMODAouKUa+SmynwB+F69yrmhQ4n98SOLJyYImOXLx6Rs2ti1oU+JfO/8ohSSf8G1b1+sChcmKTqGSb89ZOvW55hI02mXdghnPquOL9O5M2lJSTjWq4fb5JwzmZmIDwnhy8OnHFh/GSNDCWPWjSKvcwmN/c+3b8f7yBHC3r1DlMsRpFIM2oxl5ilLBBQokODGPRpzTef6glSqLGn5+ak+K6cGDeh2+rSG/IA67i5axI1Zs1TBWKWBA3GfOxdLPXpJ2ni2bRvnhgxR/S0xMsKqSBHKd+uGbcmSlGjWDFNb3cBeHQtNTUlPypImMTA1xcbFhbT4eOrMmPHTxdOfQWJ4OJ8uXMAsf36KN236bzeX/3fiv0IoMhOJiYn4ZvjMFC9eHNOfyO7/L+CfAOmvQ3q6AplMQnJyOgMHnub48fekp8v10QwAeHihBTWb/7x9969Cv36e7NnzCoD69R25erV3roOk9ORkbu8/R+sxH0lNVU60Zcrk4+XLYaqJNjc4d86H1asfkSePMUuXNqJ48SxtmEf3v9K46SHiE9IwNBDolrabYnxV7c9Xtiwj3r4lLSmJVQUL6tVMsixUiOGfvjJy5HkuX/alSpWC7NzZBlvbP/db1VaVdmrQgL43bvzSNUa1WszW8/EYCHIWTnRh3PLsRfJiYpKJikrG0dEKQRCIjEyiTJmNhIcnIopQtWoBHj4cpPGenz37kTZtNEnhY1mDjTSOvCVLMsLbm8ePf7Bp0xMsLY2YMaOuRgceQEJEBFcnTsQ4Tx4aL1umN7tw+PBbvL1DGTiwMk5O1gC8ehVMUFA8hUU/jmvZqHQ4dAipgQGfzp0jb5ky5CtThqtL1+P71g+nAga02bAWpwYN9L4P8tRUjnXtykdPTwzNzel8/PhPjVsBUlPl5M27jLi4LBJ+w4ZOXL3aB4lEIPDZMw40b05iWBgONWrQ9ex5kiPD2VSmjAYfqMeFC7w7epSkqCjqz51LgVx0XEUGhlG2yHyC5UqR1ArGvjwJ34yhmRmpCQlsKluW2IAARFFEamSEIjWVInXr8qjEGHbs8SY9XXn/wg5mrB9lybR5T4hKluKe9yuNSsSSr1QpGi5ahNfatfjduYNjvXo0mD9fZVfy4/FjHqxciczQkHqzZ2Pr7IwiPZ07Cxfy7eZNor5+JdbfHwSB5uvWqTJ32eHK5Mk8Wr062xKZRcGCDH35UkdPSR0rHRw0eGXVx46leQ6E9n8VCaGhbHF1JT5IyfOsMWYMzdau/dvu95/Gf4VQZCZMTU0p/09K8B9o4dWrYNq0OYy/fwxt2rhgZCTj2DFtl+ss8bxMyOXZRE4/QVpqOmvneWJkbMCIGa2QSn8e5Pj5RauCI4Dbt/24e9efhg2L/vTcdydPcqxjR15TniQ6qra/eRNKeHjiT/knAJ8+RfDgQQD9+p1GEJQcnGfPgvD1HaOa7P/Y/pqkZGWGNi1d5Db1NQKkRhmlu/jgYP2CkoKAx+LFGBvL6NatHN7eYSQlpZGUlNUGHxgYS8WKfxAenoipqQE3bvShRo3sHeC1dWWK1K3709eqjmtHbrPxfCpgSJooMmnFN7qPDsWuiP5uQCsrY6yssjrA7t3zJyQkq7T7+HEgT5780HjmokWzdIQEAQwkIlZGYOvoQsdDhwCoXt2B6tWzzxqY2drSLsNCQh/atz+Mp6eSiLxo0T2ePRvMtWtfmTz5KgCF7I3ogQmmZGULTmbQD4SM9nKn+vUJv3sLKyAqCvZ4eDDwwQO9CuhSQ0O6nTpFckwMBqamPy0HZSI+PlUjOALo399V9R07P3y4qnwY+OQJTzeso8G8efS/c4fTAwaQGhtLrUmT8OzbV2X6+/HsWUa+e/dTroznnjuq4AjgdXJx3tx9RZVmtQl8+pQYNc89eXIyQ168oICrKzFrHyGXK30EpVKBUmXsmLwzmi9phZGj4Eh4AVqOK07bmUouU+bvQB1xQUHsadCA9ORk/CjCoTNDWOh1iCIFTak/ezZ5S5XiRKbQpyhyecIEqgwZouEFp42SbdrwcMWKbPfHBQby/sQJverqmVAXwxSkUky1xDL/VSRFRRH99Su2Li4Ympvz/uRJHgXZ8Ib6WBNNyvptNFm5UqPL8x/kjFy9Ux06dGD37t1YWlrSIYORnx1OZnR4/IP/XcQHB5MUGUneUqV+uRTTv/9pfvxQ8jjOnvXByEj3K6bkxGT93aB4HLVa/Hr2KC01nXyWc4hJUQ5si5Y/5nvUfJ0gKTkxmW615/HgXSouBUQ2HdfVvzE2zt2gcbJnTwDyE0pmi49UKsHW1hQbG/08C3X06nVSZSQLymy/XC7y7Vs0kZFJ5M2rzO7IZFkBpCAIONauhXXgbVLj46kxdiyfL1/m+6NH1Bg7FtuSJYn8/BlRoUBqZESrzZtxrFePPMWK8fJlkEZHWKlSG4iNnYZEIqFjx6OEhysH7cTENNq3P0JgoH4bls+XL+uI7qkLNOYGX95/V/tLQI6UoG/B2QZI2nB01CW2jx9/mWvn2hP07BkONWpQrlx+tmxpydy5tzA2NmDz5pY0azZX45yQ1695c+gQLq1bU6T2z8VG1SGKoio4AqVNzrRp17l7N2vC/xGSgm/eBpQP1+KcqJGXA7V0nBBFXh84kKNFjD4/v4SISPbM3IxZHit6/T5c47ufJ48xTZoU5+pVZaZfIsDG1feoXLkgZcrkIzkqKqssKwiqQLuImxujMzrRIn19uaou9KlQ8HjDBpWfXnawcy4CZBHkBRQUKKlcgFgVLqzsxMu4t8TAQFXm6tbUlqOWn/GKcUQul/HFNwLfLzGqqwAcnrWeRi3KEvfjB6/27sWiYEHqz5mj8vELfvmStMREvKjORVpALHiW2cAgcRvly+WnilYQk9mFpo34kBBiAwLIX64cjnXrYl+pEsEvXmT7mo21fAS1UWPsWG7Pmwcoy2vl/kLObsDDh+xv0oTU+HjM8uen/7173LgdwHE6o5RhEYkUbVmYiwXkP8hCrmY/KysrVe3Sysoqx//+wf82nm/fzioHBzaVLcuu+vVVLdS5RXBwvEpAUCIRyJfPFPXKjKWlkar9uVABEw5urMk1n2W/xPHIxJo5p1TBEUBwnCHd6/5O4FdN6YBxHVZw+pURYWmWPPC3YEy3DSxYkFXO6NfPlVq1ss+cqCPTqd6eEDpyAjtCcHMrwpUrvVSdUEFBcRw9+pagIM0Oq9jYZI3gKBNSqUDJkrYaAda0aXVU2Shzc0OWr2rJ2C9fGPL0Ked/X8eKjW/ZuugkB1q0oO+tW9QcN46qw4cz5OlTXPv1Uwn5aSo7Q0JCGm/fKrMB6tkYIFu9oeTkdNYvu4YPJTS2h73TzgxCuI8PS21tmScILDAy4qYa96b9oCbkkcaTqS7tbBlFhTq6AnopsbG8eOqPl9d3jcxixYr2NG+u+QyvXwayPG9e9jdpwrI8efh64wbNmhTj2KZqvLjVjmbNNI/3Wr+eLRUrcn/JEna5uXF16lS9rzknaJdRzcwMMDTMCrBFESp06ah9miogEKRS8pfV1aqy+Im0gjbiQ8Ookn8MI/9Ip9+SCGrbDkKhtvIQBIHTp7sxfqQroigiV4h4PQ+lgdsWFAoRN7XXLjMy0mu+a6qnZGTr4kLwy5d49u3L2SFDiPqqzGwq0tMJevGCb298mTgrS+tKQMGiyWUoWFSpXZanWDHa7dqFeYECWBYqRMdDh4j89ImPZ85wZewozGO/IkcGCHz9Go2FhQECCgQUSJDjyDcOt2vHodateXfsGI/Xr+dopyxx0fzlyiE1MuIBWcFvuqg0dQ59+5YfXl7YV6qk2uc+b56KZJ35OtaVKMFKe3u2VavGuhIlSAgNpcH8+dkuGMt06UKZjno+czXUnzOHnpcu0XLLFoa/eZNrK6bc4MbMmSr18cSICO4tWcLdF5m/NQERCb4U08ko/oOc8ac5SP8X8e/gIMlTU3m0di0RPj6UatcOl5Yt/5b7/BmICgWLzMxITk7FBxcsiWXUnsV6jWcTwsI4M2AAwS9f4tK6Nc3WrOGLXxz16u0mOFjZomxkJOXs2e6sX/+YZ8+CqFzZnu3b25AvnxlRUUnkyWPyS5wdbaydd4pxc1/rbLeVxfHBbzp5CypJk/WcJnLPz1xlpOlgHM33pNUEB8eTmiqnSBH9gX16ejqzZ9/C1taUiROVg61n//4qB28A+8qVGfrsmervbdueMWRIVpv6+PE1WbVKyRcJDY3Hzm6lxj2KFbPG3d2JefMaUKiQ5ncuKSmNz58jcXS0xtJSOYCfWLKTztP9VK+lDN48CduUrSHu3r2v6NvXU2NbXNx0zM0NWbjwDrNm3VRt79q1rI6KdXR0MkWKrFYNrEX5Ql/2IpHJmJ6QgEyrLDHf0BBRS2em2+nTlGzTBoBv7/1ZM+MQpqaGTFs/EEsb5Wu+ffsbQ4eeI+x7GFYJX/mKsjXaw6MoFy/2VPHD1M1rRRHKGnyiY0pWhuyRdVsuRSsnv3K8YdWyBhz7VARf3yh69ChH6Lj6pKq10EtkMn77RVX13367we+/3wWUwevnz6O5desbvXufIi1NQZ06hZnfKoo70zQtVqqOHMm3GzfIX748LTdtwvvIEa7PmEFKbCzOLVvS+cgRDNS4nMnR0YS9e4eti4vez3d93xmM2avZFHPvTBPcWtfS2Daj80IWH9dUGI+Kmoq1tTE/njwh/MMHnOrXz1Y+4Pb8+dyaOxdEkSL16tH5yBHWFCuGXI1w3Hb3bh6vX0/Qs2fcF9y4RmNVw1j+/GaEhOjazWRi95DpzNoWRhQ2VJR4o1DIeUL1DHFVpfhpudQnhEUk4yq+wBE/nWsIUimz1VTUv92+TYPW5/CLM0NEQEBBA25Sj7vkLV0ajyVLCH7+HOcWLXBQk3AAONKpEx+0xE7rz52L+5w5hHp7c2ncOL5eyyKO15k5E49sOjr/Xdjt7o7/3buICgWCVIplhRpMeVGfNDK/H8oPo23bUnh66vcR/F/HfwVJOykpCVEUVaRsPz8/Tp06RZkyZWjSpMlf8lD/Kfw7AqRzw4bxbOtWlVZI55MnKfMn/ZX+aijkcn4zsmK5fEzGD0ukXkUTbr/UXWUf69yZ96dOKUsGgkCjJUuYcjpvxqpf+ZWaPr0OixZ56Jz7ZxAfn8offzwlISGNfv1cKVLECrlcjoP1HELidTkZc4cVolyjWlSuXIAjK44wfVMIoAAEGpdJ44r3whzvl5ycjpnZIpX6sJmZAfHxSg2Vq1Om8GrfPhwzJgt1mJktJDFRczIKCpqIiYmMkyffs3DhXXx9lS3wRkZSvn0bp0MSzgmN6mzm+v0QsjhcIvK0WTnyCnr0OMHRo97IZBJWrWrKiBFZ5czt259z7Jg3bm5FmD07y74iOTmdkyffs2/fKy5d8lW7msiCIkfpc2ArRerU0bmXNpEblK33rTZvzvb5kpPTyZ9/OfHxqXrFIy9d6qnhxXbhwieOHPHGyckK2bquKKKVGbE4zFmJ5kTsIAQSLHFQfSf7GJ+kWHJWUP1nAiRQ8re+fImmZk0HZDLlRB4VlURERBLFiuXh5m+zuLdokcY502JjVR1WqfHxnOrbl9iAAKqNHIlr374ax4a9e8fOunVJjozEwNSUXleu6HRBbh+5kMGbNL9rT661pqqHpqjqsZkr6b4oGkVGUF1AFsn31HV/uqPp08WLHGzRItv993DjOh6qID6nACk9JQVH49EEUUB1fD1uc486GYUhCfPmuTN+sAs3Z88mzNub7w8f6lynYLVqDH78WGPbs2eBtGhxkNDQBJz4SncOYUSqRnnPxtmZIc+eaXS+rbC31zG7rTd7Ng3mzSPg4UO+P3rEl2vXiPH3x7lFCxr+/nuueWF/F77dusWB5s1JT07GOE8eTsXXxyvNVec4S0tDYmJ+rTT+M4gKBa/27iX840dcWrXKdbfuX42/Y/7+5bpG27Zt2Zvh1RQdHU316tVZuXIlbdu2ZXMOg+A/UOLj6dMgiiouwrEOHdjwE8+tfxckUilPyk9VW3UI3HmVTGKiblo21Ns7SyxPIiH8wwf8/WOy/LmQc3PxcuZLpQS/1s3y/ApEUaRp031MnnyV+fNvU6XKVsLDE5FKpfyInsfWpVWQIEdd9nfBtu906nSMUqU2UrGVBxIUZH7dr74z4P2rbznes2fPE6rgCJSlqUWLbuN35w6PVq8mITiYd0eP8lzLiy3z9asjJCSeatW2MWDAGXx9oyhXKg8dXQJpbnCDQZUGc2Fnzvoo6jA2UQ+ElP5jPyNdHjzYkfT02SQnz9IIjgAGDarM5cu9NYIjuVxBkyb76NnzpFZwBCAw5MljHgfb4Oq6hdq1d/DkyQ+13bqTbql27XJ8vsjIJOLi9AdHoFvSatHCmT172jFvXgMq9+yi2q7QM5yFinlVn4lUKiDU0Vw918hGMwfg0+XLbK5YkQcZKtnqKFjQkjp1iqiCI4A8eUwoUcIGiUTApVUrjeOtixbVmIQ3lS/Ph5MnCXzyhNP9+vFWK9C+v3SpUtEcZdfkLT32In1XTaK6WZYbfPOiwTrBEUCbaUOYVOoRFXlFLckTju1wRxAEFe8mNT6evY0ascbJiYu5kG3I9AgMpAAPqYkfmpmnyjwnjxANKD+7FSsaa+yPi0uhRYsDyGTzKV9mPRHYqoIjAQVF6tRjzxRrpo0ux4kTXfjtt3pYFChAm23baLxsmc7z2Li40M3TU2d7lSoFOTFRZDqL6MceZXAEGh16kZ8+8fniRY3z7CrqGj1XHTaMN4cOsbN2ba5MmMDnCxcIe/uW+OBgpAYGJEdHc6h1axZbWLC6SBHeZyiA/7vg5O7O2K9f6Xf7NmM+fyZYrr+brmLFnM2o/wyuz5jB6f79ebB8Obvq1VPZ1/xfwC8HSM+fP6duRvfK8ePHsbe3x8/Pj71797JOzZvmH+hH/gxzSHVEvH+vFDH7L0CKpS4XR1/dukxGzV8ikyHK5ZRs25b+/V0BMvgCUBZvRIWCnbVq6Zz/KwgMjOPBg+8qQnN4eCK3b38DQCqVMnhKK34f4YCgCpBE1aSYmipn1rRLapOnUnxx/e/ntG+jgcw2Y3XMnHmLhVOOaxA6H2/cqHGMuocTKNWh/fyi+fQpUrXt7YcoPvuE4BlfnwvBLrQe+AjPdcd+/kYAjROOYUBWxqNz9ZyzHw8fBrBjx3Pi4vQb2OrD+/fh3L3rr3dfixYliIxMpmvX47x6FYKX1w+aNt1PUpLyOXqc031fn2i9R5m4efMr8+bd4tWrYGrWdEAiEZSCiWqvr1Urlxy7CwuocUmsiKUqWerPRflC1TKmSKXKAEsuF+k2sTODHj+m5oQJ9L19mybZdCad6tePg82aEfr6NVcnTmS1o2O2z6APhWvVosOBAxR2c6N0x470vZlVyhRFkZhv3zSOzzT31QdRoVC2pGvBwMiIBzF7uXO0Do8vNefCF/0LVCMLCxZ7X+aaz3KuRxzEoXgBWpWdhKFsHgULrGBa+VZ8vX6dGD8/Hq9fz9UpU3J8bdaOjoQWbsA2BnOZpuxiAO/Na6uEDk1J4tSK4jx4MICvX8fSu7dmwLF06X0uX/ZFLhf5+CUOI5JREonlCAiMXNqfXksnsGhdZzp0UKq6Bz57RuDTpxSqXTtLe0siwbV/f0a9f58tf+vN/n1ZgVE2eH/qFHcXL2ZPw4bsdnenypAhqutJZDJ6Xb2KRYECervYXu/dS2xgIBdGjcLn3DlS4+OJDQjgaIcOvMilmOdfBXN7exzr1cPExoaKpcxAbTxULqbg2LHOf/l932TYNolyORKJRGXF838Bv9zvl5iYqLIUuXLlCh06dEAikVCzZk38/HRrw/9AE+337GFTuXI66rwhb9/qLVn8uzF9eh3u3Dmo+tvYWKa3dd197lwsCxcm9M0bijdtikvLlsxrIyq7iLqOwJlPFERJls6J6O3p+Z6OHY+hUIjky2dKYOB4DZ8/ABsbE8zMDEhMTFNlGTK1ZzJRoFoNRNQtLbJKUJ9ffwGsNLaXLZNz59SePe2xsVmqk9U4+tqGCZlXkkoxt7PT2P/77x40aFCUHTteULeuI4MHV9bMsAAS5LyndMbTSQAFq8duRu7l+VOPOMO4IKaxmG84YStE07Bi9gPegAGn2bXrJQAjR17g48fRejvBtJEnj7GOV9rKlU2oXt2BOnWKsLjfUlV2TaEQiYpKJiQkAScna+z0aOR8vnRJZ9vx4+/o3PkYUqmAXC6yYUNz2rYtRXREPO5FwpEZG5OvmhsVKtrnWAqyKaFJwm7JeRYemU5sRAz1GvbAyL4wv/12ky9foujevZyKtO1QLeeuydd79mj8rS9A+RnK9+hB+R49dLYLgoDUyEhlRQOQT8tMudbkybzen8WtivDx4eOZMyouVyakUil1O/+8jC1IJNg6OxP+4QNT6w/lvFy5wAkOjmcr1ZjEbdUv5tOFC3ozNeoIqzkcArxR/p5E/MsPYPDNXgQ9e4aZnZ3KXkMfAgPjVIlGEQlGpNCKc0SRhwom36hUPquTUhRFTvbqxduDyjGpbNeudDx0iAa//45EJstWoTsTeYoXVwlRZgfvw4fxVjNU9r97l5EfPmBkaYmJjY2qfJZJRtdG7PfvfPfSNWB+9scfGuKPQc+f83r/fszt7ak+evRPn/1fwe6bs/GotJgXgaZkjnkjRlRTKcbnFoGBcXz4EE7FinbZ6qfZODsTFxSEKJejkMtVDSL/F/DLGaQSJUrg6elJQEAAly9fVvGOQkND/xFXzAXM7e3pp5WC3MRQqg8PRhDmUqFI9lYP/w40a+bMtm2tKVzYkkqV7Hn5cqjeCUqQSKgyeDDN161TEc1/PHmC30h36gt3VcER5Cyh3779UdVkGxaWSJUq23SOMTExwNOzG05O1uTLZ8q6dc2oUkVzxXjzpvrgJWj8OxlDWtm+zMgwidQrmc7wOZpkZG1YWxsTGzuVqlWz7iMIYJ3PUhXI2pQoQYsNG3TO9fAoxsGDHRk+vCoymYSaNQsxfXodJBIBY2MZPey8yEM0QoYflogEa6J5e/Agn24/0NtynIma48cjRaQ4X7E1TNTbeZSJzOAIICVFzsSJl3WOEUURX99IAgOzLDYcHCxZv745hoYSpFKBxYs9mDChFnXqFMHv9m0i9vyOISmqziLn4tYqgrk+fywjPePCgQOvEYSskuTRo++YNq0OS5Y3o9noXjQa3ImKrgVyDI7CwxPxjrPHom5W0ODapw+NO9em0/AW5C/pjJWVMSuXujO19jes72/5j2Rq05KSeH/qFJ8uXkSRMVF3OXECAzMzld1Fk+XLNc65t2iRjjL66YEDNbrU/gy+3b5NrNyUzOyCiEAiZipfOAD7XAhB2tubI8nw4ZNKJTg4WCAzMqJw7do5BkcAvXtXUIpZZzxDVZ5RlWc05hp2SZ+J+5G1oAjz9lYFRwDeR44Q8uoVRhYW2QYYH06f5vyIETz94w9arF9P4dq1EX6hvV1UKPC9cgVzO7tccYvM8uWjuB7+rXqgEP7hAztq18Zr7VquTZ3KFldX0jJI7unJyQQ8eJBtAPZnkCd/Hmq2ra/hlXjt2pdfusaNG18pVmwtHh57KV58HW/e6Fdvb7trF4Vq1MDExobSHTvyeONGluXLx10tDt7/In45gzR79mx69OjB+PHj8fDwoFZG+eTKlStUUkt3/4Pskb9sWfrfvYtnv37ciSxBaFRWXfhNgIQj227SdbB+Vd2/Cz+ePePx2rU4NmjAoEH9GTRIl8vwM+yooWkmKjEwoEi9evS9pmsVkB0yCczaaNSoGF++6OeLnD/vw9692fOcUjGhrOjNaflJ0lPTMTTOXhBOHYIgoUYNBz59iiAmJgVjYxlbt7WlSZMJKNLTcy24JggCixZ5MHeuO1KpQGJIf1Y26s6W9xCNNRV4TUk+sIMBzHW/SpEij7l4sSdlyujyCCoNGEC+MmUI9fbGsV69f6lVWC5X0Lz5Aa5eVQ6c+fObcv16H8qVs2PkyOoMGVIFUQRDQ+XkIk9L4+HatVgQz0B28IRqyEhn7rB2KokDQ1NTak2cyMOVym49QSql3927OvcuUsQKiUSZPZJKBYoWtdbYr5DL+XjmDEkREZTp1Ekn8Hr/PoyaNXcQG5uCTFaVjQv70sLDAYfq1XWCqlO9e/Ph1CmQSHi2dSuDvLwoWKVKju9N2W7dNLIK2ZVwvt26xdM//qBglSrUnqRLRE5PSWFX3boEPXtGOlLKd2xH52PHcGnZkhnZGNImhofzNkPUUh1J4eF4rVtHrXHjcnz2nGBXvjwl+cgNGpKKISISenQqgc0zJ+KDgihUq1aOIpmZmDOnPs+eBfHgQQBly+ZXdWrmBg0aFMXLaxAnd90ieO9yHONfKndIJORxctIILPS11eekzfbu+HGOde6MRCZDkZ5O3OzZ9L9zh4OtWvH50iVlJkkiwdjSkuTYWLKT9teXBanYty9eWsrXBapWxdrRkRYbNhD7/bvSF1AUyVumDE1Xr1Yd9/nyZY2MYaSPD3saNKDH+fPsrF2bCB8fkEhovXUrlQcOzPb1/Qry5TNVZYGlUgE7u1+zcpo377bKKSA+PpWVKx+ye3c7neOsHR0ZcP8+ieHhLFeThbgxcybxISE0/x9W7/5Tbf7BwcEEBQVRsWJFlX7N48ePsbS0pFSpUj85+78X/wmrkfrlf+fOW830b99WNuw+qytm+Hfh9YEDnFJz2S7etCm99JRFcsKP58/ZrjXpFKhShSFPs4wyH6xcydXJk0EUsShUiLHfvmFktFCD2NykSTEuX+6tc/2IiEQWL75HZGQSgwdXplatwoAyA1KmzEY+fIjQOUcd8xt+5bfru3W2nz37kStXfKlY0Z4BAyppEIL79vVk//7XqgzXtm2tcxU4enuH0rXrcaKjkxk+vCozZ+o3r0yOjWVlgQKkJyZyDQ/u44aIMmtTt64jN2/21XtebqFeYjMykuqU2K5c8aVp0/0a5xgYSPDxGa1TwozIGNDj1KwSMjHG11fvhKJQKLLVt4qOTqZ79xPcueNHtWoFOXq0s0Yp90iHDsqgBuWE2PfmTZUJaFqanBIl1uPvn2VWWqGCHa9e6Vcx/t3YWDU5CRIJDX7/PVcil2+PHuX2nDmU7d4ddz0mvq/37+dU76zvqmn+/EzW6n7yvXqVbU3acJDuBOCIDRGc2N8c957Ns71vakICS/PkQZFNd53U2JgR3t7YaL3n16594eHDAGrXLoyHR/Zljhc7d3J++VbeyUtSf0gPBo1vrJFp+BXI5Yo/fS4oA+HnW7fy9sgRbEqUoMH8+ZjY2CAzViqoi6LI+eHDefbHHwBUGjSI1lu3ZptZ9Ozbl9cHDqhKavnLlWP4mzdE+Piwr0kTYvz8sKtQgQ4HDvD0jz/wPnJEpRKeCYcaNRj44IFOIJbZrRX04gXylBRsnJ2pMmRItt5v6siu869ku3b4nDmjyhYa58nD1EglXzE1IQGpoeGf7pCLjU2hXbvD3Lz5DScna86f76F30ZUdPDz2cuvWN6WPowRchVe0lZ6n+siRNNXTuHDjt9+4qyV3IDEy4rdf1NL7s/ivaPP/v4z/RIB05/Ir6jfT7Hjw+zSMIiX++m6D7KCvrXVODl+LS5c+c/SoNyVL2jJ8eDUsLY040rEjH7TIeW5TptBo6VLV39ot4C5t21Jl2XaqVdtGQkIaVaoUwMtrsM79RFGkevXtvHihLNtJpRJevx6Gvb05jRvv48kT3Uk740wA7MxS+PB5Itb2mloyJ0++p2PHo8hkEtLTFcydW585c9xV+4sWXcO3b8pJWCaTMHBgJbZs0exOEhUKFHK5xiBmbr6IhISsye3w4Y507aoriAhKPanrM2aw8a411z9bqILFsmXz8fbtiGxeV+7x8GEA796F0aVLWSwsNDVzzp3zoXVr3UzFhg3NGTlSUxvmaKdOfPD0VMk6IIoIUin1fvsN9zlzcv088fGpjB9/iUePftC4cTGWLm2k44EXHxLCSnvN77910aKM/aLMdGXyl9RRrVpBHj/W/e4AbKlYUaPrsqunJ6V+4kqfG6xxctKwzADoe/s2Tmpu7t+9vOhSczaPqImIBAEF5W2jeRWuuaoOef2a1/v3Y5Y/P9VGjuT9iRN49u2rU2bLhMzUlJkJWUKfBw68plevUxkq9SIHD3age/e/xgoqMTyce0uWkBQVRZUhQyiklSn+V3B/+XKuZZDCpYaGKNLTERUKDExNGfP1K+b58yOKIpGfPiGKIrYuLjmWXe8uXsyNmTNV388ynTrRKSMTKCoUpMTFYWRpqbqGqFAQ+PQp8aGhpCcmYmRpSbFGjf4WO44TPXroZAbzlChBlK+vivBnYmOD8ZzzrJ1/FqOIz7QyvE6Z2uUxtbHB//59FGlpNFiwgGojcj82pKSkY2go/WVZBy+v7zRpsp/Y2BTMiWMAO7FBmeHvcvIkpbXkabzWr+eSVhekgbk5M+I0BXP/LvxXeLElJCSwZMkSrl+/TmhoqE5N/MuXX6tz/v+Oek0rsmbOF6YteIZEAjs3efxbgyNAdzDI4Yc0f/5t5sy5pfp7x44XSjf0jBp/Aqa8oTxS5Eyek7Wa8NOjXfLDy4vuLnl/qssRF5fK06dZQZBcLufAgTdERCTy7FmQzvGbN7fg8+dIXrwIxs2tCBMm1MLa2ljnuNOnPyKVCqqOtePH32sESPXqOeHvr8wgpacrKF5IszT37vhxPPv1Iz0piZoTJtB42TISEtI0giOAEyfeZxsgmeXLR5tt27Dz+s6teruRZ0zi48ZlbzmhDc+tFxk88jpx6YZ0rmPAnttzVJmbWrUKq7Jt2mjcuBiFC1sSEBCrsd3R0Vrjb4VcTlJEhGqyFgSBku3b0zVDTC8tTU5oaAL29ubZZhPCwxNJTExjyZJ77Nr1ErlcxNs7FBsbE2bN0sywGZiaKnXC1MaWtIQEFTfk7spTgGbJa8kSTXNYdXQ5eZKzQ4YQ4+dH5UGDVETn5OR03N138+JFMAUKmHPzZl8NL7efQWpkpLPt0tixdDl2TEUed6heHbllAch4i0UEohM136P5086wdOl9jEmhDRvwu32b7mfPUrJ9e/Y3bkzg06c62SR1X6+gFy9YO/csgCrbuXfv678kQBJFkf1NmxL8Suld+ObAAUa8fatDjv+zeKRWhlK3sklLTGRz+fJMDglBEARsXVxydb3aEycSGxDApwsXsHd1pYVaB6UgkejYtQgSiY5Q5K8iPSWF0/3788HTE9uSJTU+f3V0OHCAuB8/8LtzR3VvJ3d3ZEZGhHl7I0gkGPVZyNixlwFDBEoRn2rOwFs7Na5zYeRIHOvX16vGrg/67J5ygxo1ChEQMJ7tPUYQcX4fhmrdpW8PHqRUu3YcaN4c38uXEaRS3BcswNzBgXg1Dpl6mfF/Eb/8zg0aNIjbt2/Tu3dvChTImUT5D3KHsXPbM3buf04sssP+/exRcxKvOnx4tscuXqxJcv30KZJnz4JoumoVb85cYlvKAKKxBqBRo73cuzcAiURA0JORcqxfX2ebPlhYGFK4kAUB32PJJGAvWHBH5zhTUwO2bWtNjx65mxhKlbLVqNGXLauZft60qQXf33/lxpMYQGDWb7ep7GKMR5d6eL/+QcMuN4kQx1OKD6SuWINzixYUbdAAQ0OpqnYP0KRJzqRVUA5Gr18P4/ZtP8qWzYebm35VY20oFAp6DbtFomiGiIT996DegsMMnqPbPaUNIyMZnz6NZuzYixw65E16upyxY2vSsqWS1+R/7x6HWrfWMcOVyGTUzNAP+vAhHA+PvQQGxuFUxJwbN/pStHhegl++xP/ePQpUrsy0jUEcPKj05TIxkWmUVF+90iV+GllY0GDBAmUmIAOpCQnMzwjCjTDBmNEko+yqGTu6ql4pAFEUefkymLg4GT0uXdHJVHXvfhwvL+Vg7ucXg7v7bvz8xv/0fctEj7Nn2aBl2hry8iV/VKrEpJAQZaAnCIyf356e456RqRDWv1tW+evBgwDmLH0BmJKIMYfoTuFzy1Ckp2NkZsbABw8AWFGwIAlBWYuBTE7W4w0buDh6NHJaI1BJVaJVL6XeOf2A6WOOY2ttyMHbszC31t/JlGnroh7kJkdHE6TmGyeXy/G/d+8vC5DM8uUjISREb6YsMTRU4+/Ply7x3csLWxcXXFq21Ev+lxoa0nLTpj/1LDEBAZwdMoTvDx+SGh+PqFBgbGNDy40bKde1q+o4URQ5N3Qobw8dwsDMDJfWrXl7+DCIIqFv3nBm0CD63bqlc31BEOhx4QLnhg3D79YtCru50XTlSmTGxoS8eYNFgQKs2uaDRAhBISqbN4LRv1iODQjIdYD0r8DS0ojK1R25fV4zQC/brRtPNm/G97Ky8UOUy7k5YwZTIiMJef2awKdPcWnV6qemxv/t+OUA6eLFi5w/fx63/5Ba5j/4Ofzu3OH2ggVIZDIaLlhAwapVNfbHhMdgbm2ONEPkzsndnSmRkXgfPUqRunXJn4NwpT59IDs7MywL2VD9yEOi2x1XbX/48Du+vpE4O9tSpHZtbEqVIvLDBwBkZma0zxAc/RkEQaCwQQgB6G8zzcSaNU11giMfnwiuXPHFxcVWJ1CZOLE2fn4xXLjwiUqVCrBhgyZH4Nt5Tz4++wgZg1QaUpbOPotHl3oMHnKOMDEvIhK8KUtBAumewWW4dasvXbocIy4ulT59KjJoUGWuX//CmDEXSUpKZ/78BvTqpauHVbJkXkqW1G8Zkh2SE5JJEDXfl88fdLNq2cHISMaWLa3ZsqW1zr69jRppEEtBqVjc6fBhFedo6tRrKs+5b/5xNC47kxPb6nC6f39EuZworDjIODID26QkpfJzZnt/48b6uTJ1Z8ygTOfOfLl+nScbNhDm7a3a95DapJCZERT5du0yoGvZM2nSFVategSAm1thrl/vo7Ga9vbW5J4EB2t60/0Mti4uTImO5mDz5hrqzqnx8TxYsYL6GbylbmPbYl/IlvNHHlHTvRQdR2SVab98UW9KkJCCMYYFi+pkdcd+/cr64sWJDwrCJF8+Rn/+DMDNjHt4cJ1IbPhOYerVL8HChQ0BeHTpCe7tLiNiCf4ChW3nESXX7JgDWLPmEVOnXkUUYWT/kkyYVJvCzoUwtrLCwsGB+OBgVXk1fzn92dA/gzY7dnCodWvig4NVxOpMSI2zsr7Pd+zgrFrHpkQmo8uJEzqyB/8KTnTrRsDDhxr6FskREZzs0YNCNWti7ehI7I8fHGzVipCXLwHlZ/1ixw6VM4IolxOtpXGljlTRgG+VRpBYcjA1+7mqgjxbFxcCnzyhWimTDPc05ThbDM2KjCCRYOHgQOHatUmKjEQhl2Omxy/vr0T1ESO4t2iRaiyQGRtTvHFjrunh8cUFBeFUvz5OuVz8/rfjlwOkPHnyYGNj83c8yz/4CxAXFMRutS+n7+XLTIuOxsjSkoTYBOqXnMWzYGtMhST2bqxLx+HKicUkTx6qDh360+vb2ppomJzWr1+E4sWV3wen4po/VAMDiYZ2xkhvb94fO0ZaUhIVevXKdZ1/028HefA1szVZN2M5ZUptunQpq9P6rxQg3EFysnLQXbq0EVOmZAX2hoZSHU5RJkJev+Z4t27IxL4IiBlt0AImRsqg8kdQkkr9V4KCZItCqlbfWrUKExAwQXWt2NgU2rQ5TFKSUsepT59TVKtWUCcYSklJZ8KEK9y48RU3t8KsXdsMM7OcO+5MLUyp4RCD1w9LBEQMSaPnqOwlDH48eYLP2bPYurhQvkePbDuCFAqFTnAEyglBo305PCFDlkD5ufimFODU9MUIGRmBBMzQ/syaNStO3rxmuLs7MmBAJe4uWsTN2bMRFQrKdetGx4y2bltnZ2ydnbkzf77G+eq2FCDw7pNuN1hERKIqOAK4fz+AK1d8ad06a0XbsqUza9Zk6deUL5+zNpY+mFhZ0XLzZv5Qb40XBGICAjSOc+9YB/eOujpnHh5FlZISMckoRBEX83AGntMVDTUwMmLC9+862zMz+GYk0o89WBYqxPjrWfeeO+EYIlnk92iFOd5e7ylbo7Rqm69vJOPHZ0lArNn6nnVb37JigiPjVw6k95UrXBw9msTISGpPnKiz4FLH8+3bebV/P5aFC9NszRrMbG2zPRagYNWqTAgMJD05mShfXzarSYKoBz+vtHSpFOnpnBs69JcCpITQUGL8/clXtqxeiYDQt2/RET5DyVOK8fdHVCjYUrEiqdqcmkxnhAxuXqVsutAUCpHGjffi5fUDQRDYsOEx796NRJYUyfYaNYj78QNBImHdhM3c87PALCWU5va2hHtVwMzeHofq1TGysKBinz54rV/Pzd9+A1GkxtixNF29+m+r5mhrdqUnJ+Nz7hzmWjxBiYEB+f6Hm7T04ZfbDxYsWMDs2bNJVKuB/4P/DAIePmRb9epsr1lTlQa/t3ix5kGiyNOtWwGYP3QLz4KVqfck0YihY27yq5g3z131bzMzAzZtygowypXLz+rVTTEzM8DGxpj9+ztoONRLJBLKdu2Ka79+v0SCvHnlAwJy9AVHDg4WLF7soauLdPwutSqvIzk5KzW8fv1j7dNViIxMxMVlPTLZfAoXXs3Lm89BFGnK5QylX7CRxbNsp3LwGzRIKWkhEUCQSJl/bLZeDSBQivGpi1yKon45gwUL7rBly1M+fAhn166XTJ6UfSehKIrs2vWC7t1PULROLRpVNqZnPQn3rnWmgpv+1PuLnTvZXr06dxYs4FTv3lyfMSPb60skEoy0+BqAzuDfsWMZsj4XZRAZI1qoeGwFCcSSrG4zIyMpBw50YN++9gwcWJmEkBBuzJypnGBEkbeHDuF9/LjGPcp26aLxd3F8M+6mDMLK5Y1BG1KpRIdKlylFkInVq5sxdmwNSpSwoU0bF+7dG6D3vQB4+/Ado1sv4sj60zr77CtWpGomaTbjpuW7d8/2WuooUMCCZ8+GMHNmHVauaMKLkNUa6uA/QxN1jodEQquMbq9MFCms3mGl1AErWFRzYgsP1x3LFUiYvVppY5KvTBn6XL/OsBcvqKDW7aoN72PHODt4MP63b/N2/35W5M3Li507sz0+E4IgYGBigp+WHMSHkydVulHWTk463Mg0NbPcn+HjmTOsLFCAbdWqsSJ/fiL1cGWdW+lfLFk4OFCgUiXeHj6sYXSs9gKU/xdFrJyccNOjRO7l9Z1t257x6NEPRFEZLIWEJHD3rh/Pt20jPjhYeQmFgrSjv7N8vCPdSv2gaNUKDHn+nN6XL9NwwQLcpkxBnpbGzVmzVMGc19q1PP2TZcXcQGpoiFTLlNrI0pKA+/c1tinS0lRctf8r+OUM0sqVK/H19cXOzg4nJycMtFoQn6vVq//B34fQt2/Z6eam+pFsq16dKeHhxOhR/I34+BGA8NAEVTZEREJ8eu70gNQxdGhVKlUqgI9PBPXrO1K4sOYkOm5czV8iGOcGddyLc/zxN737Nm9uqdFKHhebxIiOGzh+LZJkDMmcvAWBHHVAWrc+pLID+f49ltHroK+xMQ5poUwS1yB1LMv0tw+QCCKXJ0zA4clTFvRojKRsfVq0cMHVVTnpKBQiS5fe49w5H1xdC7B0aSOKFctDmTL5+PAhHEFQenbVrKlr6fL6dYiGQvX5LaeYt6UtTVatotb4LG5MerrSK+3mTc33xNRExtpKmjX/+PhUvL1DCTiwAe/1SzX2Pd+5k0ZLlmT7nox4+5Zt1asTn8F9KdutG7UnTtQ4ZvjwqqxYcougsBQERKyJof+6mdyfO5PQt2+RAGNYx31ZQ8oPH8vMWfWxscnKKkZmlIrUEfziBWU7ZWXBmq1Zg6GZGW8OHsTK0RH3Jk2RzTyFP0VwMgxl3xtd36v0ED88xGtcQ0neLiXxwbVgstLtXO37smZNM9asaZbtewDgufUCHYZ6ISJhw7kXHN71iFPPNRciLTZsoHjjxoS+fUuxxo1z3ekV7uPD/nLlkKalEQdcfduPtr9gUeHapw9O7u4EPXuGY716mGplbDadn84li8kEJCt/pz3rKMiTX5OIXrlyASpXtuf582C1rQLyX1w/P9XjxXl26FAqDcg+8FSHdru8zMRE9Vk1WbGCyE+f+P4oKyvoPm9erp/t9MCBKp5Tanw8p3r1UvG7MtF2xw7iAgPx0+IP9bhwAUNzc+V7q5Vh0s6uxHz7RvCLFxSqmTUGLlx4h1mz1BejWb6QVsQqF4vqZb2oKOXYnpGRCn37luZqNl5pepITF0aNwiRvXg2u1K/iwujRvN63D+M8eeh78yZ5nJwAkBkZ0Xr7ds4MGoQiNZUKvXrh3KIFH/T438X4+f1SgP/fjl9u85/3ky/lnF9o+f1vw3+izf/PQCGXs8bRUUNxFpRk6wJVq7JRK805MSgIc3t7nt14iZvHUVIyzGj71hfZfWuuxrGpqXJu3/6GsbGMOnWK/FeQ8EVRpGv+lhwLr0ZmliKz3HbzZl9OnXrPlSu+GVpIosb+TJgaijx4PAwTeRz3LjyjdrPKlKqa1RlTsOBKgoKyVocWFoa8v96Ip5s3Y2RlRd3p0zHLn58LI0fydMsW1WDbdPVqaqoJ980fs485630BAalUoE+fiuzc2ZaIiETWr39McnI6Q4dW0dsttXnzE0aMuICAAhEJHlyjLvdAEJijRmJdv96LMWP0Z5f6dS7CrqNKe4OvX6OoXXsnwcHxyEijBwcpRpZar5GlJdNidLMvv4rQ0ATWLLlKfFAQoye641xVWb65t3Qp9xYvxtDcnDbbt1OimW4gIk9PZ6mVVdagLwiM8vHB9ick4PTUVJIjI3XS/Jm4NXcut+fNIxYLUjHElggElI0BvS5dUunsAKTExvJ8504K1axJ4Zq6wX1xi3F8ibcm83slQYFcnK9z3J/B0rx5SdayHRr58SN51bq2UpOS2FK+PFFfvmBuZ8fQFy80XndwcDxduhwjJCSB4cOr6l2gxEfHY2xurGPjk4l9+17Rp4+nxrYpXc1Zenii3uP1YXf9+qoOLXXkJBmiDnlaGkc6dODTuXNIjYzocOAAZTp21DgmOSYG/7t3sSxcGHs9prLZYZGZmUZgYZo/P5OCg3XGt7NDh/I8I+OeiUlhYZjlzYs8NZXj3brx4dQpZMbGlO/Zk5rjxrG5QoWsAEcQGPP5s0YZ2sRkoarMDyLGJCFBpD63qWX4kjG+vqwpUkRveQ/A0Nyc6WplPVEUOdqxo0onLPO+Jdu00WvamxvcXrCAW2paX1IjI2Zp6RelJSaSnpxManw8H0+fxsjamsvjxpGUodtkmjcvoz5+xOQ/RMH5r2jz/18OgP6vIMbPTyc4AqWqa96SJel+9iye/fohCAIdjxxRDaZVGrry7JERhzZepkTpgvSZqslVSU2V07DhHu7fV3IY+vSpyJ497bJ9DkV6Oj8eP0ZmYoK9q+svB1M+PhF063ackJAEhgypzOzZ9fXbmggCSw5PJKXpDM7IMwX2BBYvbkjv3qcIDIxTZV40yz2gnNDknN3fmK9eL+gy9D5pGCD77S2HN9VScbBatHBmx44XqnvWq+eIQ7VqGp5dTzZv5smWLSr1XUEi4YeaB9P5ESM4tTkQgQqISJHLRR4+VPJGbG1NmTvXHVDq/Bzr0oWIT58o36MHtSdNQhAEhg2ripGRjPWDFuAgBlCFZxkvQXPg/Pw5kuwQcPsGoAyQVq16SFiYki+WjpRreDCE7apj7bVWeu+OH+fatGkIUilNV61SWcj8DPnzm7FoVTud7XWmTqXO1Kk5niuVyRj54QNnhwwhPTGRhosX/zQ4ApAZGmYbHP3wDWThzmAC6EZFXlGG96p9frdv4330KBX79AGULfJbK2eJf5bu2JEuWiU+XeUCkWfbtvHx9Gnyli6N+9y5GJr9mkpxJpKjdEutYe/ekdfFBXlqKvLUVP6oXFmplQPEBwezzsWFGbFZ0gwVKmwmLEw5+Y8ff5l8+czo2VOzWSG7zrVMqHddZmLB3nG/9FpSEzRJ7j8oyAe7lsRPvsK0aXWy9fLKhNTAgO5nzpAQEoKRpSUGprrHG1tZ4ZJNKSwnlO7UiddqTSGJoaHcX7qUOtOmaRxXfdQonm/bpvrN5S9XDrO8Sq5ganw8aUlJmBcsSKk2bWi2di1SQ0NabNzIlYkTQRRpvHy5jmiqqalMLUASaMJVKqMcaxSpGRl+USQCG7wpiznxVOQV0owSsnZ5SxAEOh87xoEWLfh67ZoqK2qdkfH5M3i9b5/G3/KUFB2hVwNTU+KCgthcrpzKX9PO1RWpoSHJMTE4NWz4HwuO/i78KQnU6Ohotm/fzvTp04nMiB6fP3/ODz2T9j/462GWP7/O4FF91ChVS6VLq1ZMCQ9nclgYxRo21DiubI3S/L53HP2md9FROb5zx08VHAHs3fuKo+PncnHsWFYWLMjSPHlUXTOK9HT2N2vGTjc3tlaurCMQ9jMkJaVRufIfvHgRTGBgHHPn3ubIEe9sjy/m4cF+/1O8PluHu9e6kJb2G02alOD791i14EgX1QrEcPt0Sxp2rseiuVdIJ8M2AykL52ZZoGzf3oZx42pQtmw+Bg6sxJkz3TSuE/TiBRdGjNCwJhAVCoqoiQI+27oVJ74hIkWpeKPAw0O3/fxU7968P3mSwJevuTZlirJFGOXAN2BAJaa0FanGUyQZjeHWWgNu+/alyXLqzoIBqbTK503gs2c6nTSCIEE9oybIZHTNEPYMev6cyxMncqxLF6J8fYn89ImjHTqQoKUwDMrS7rnhw7k8YQJxQbnrltvTsCFLbW3x7NdP736rwoVpd+gYhUcuQGrnlO11RFHk8uXPHDnyltjYrLKGQiFq+Nc1qbaM6wF2fKQkR+nKNxw1rqOut3NcqyTxPkPbSR3b93ZBQtbn3qVcBOeGDOHT+fM8WrWK83pkMeRyOdtq1OB3IyNWFSlCvJ73EiBv6dI624o3bcqbQ4dYbGnJYgsLIj990tifpkUSzgyOMnHwoK7tzuONG1lsaclSGxveqHmbZaJdu1IUKZJVLh83robKYia3MC9QQPXvSPKwkwE8CC/E6tWPaOyxh683b+qQ17UhCALm9vZ6gyNQyg4kqwWHuUW7XbsooKX0/1KPpYpd+fIMevyYSgMHUn/OHAY/fcr58z7UrbuTKkVm8ODSc+IDA3m6ZQv3M/zzqg0fzoz4eGYkJFB91CjVteKj47lz+gGrlzfEKKO5oyi+VEDz88lfrhzWHh35g6HcpAFnaIsn7VT7K+nxW5RIpXQ8cACnhg0xtLCgRLNmv1Ry1EYBtUUCAIKgVwX/1Z49GubjIS9fEh8cTHpSEu+OHuXMYP1irf+r+OUM0uvXr2nUqBFWVlZ8+/aNwYMHY2Njw8mTJ/H392dvLlu3/8Gfh6G5Od3OnOHCyJGkJSbiPnduruv8OcHERPfr8GTNCszJWhneWbCAAlWqYGhmxtfr11XbH2/YQJ3p07EoWJAJEy6xerUys2JubkhU1GSd1P65cz46goqvXgXTrVv2LcQWBQtSXs0Ty8nJOmN1JtcTJIlULpzG/c/LMDBU8uQMZJrZKQOtl7t6dfZclDN6BqnSHTpQdZiavYUgUJFXpCPjMyUoYBDF0kW6hE1fr9fslvfGDyfyEkahi480SL3dT53i0rhxeB87hkP16nQ7pcmxcXd3Ir9RPKEp5mSWfewIYgjbkKW7sK1qVRAEGs5Zw1FbU0JDEzAykvHHvmEUSqxDanw8VQYNQmpoyHcvL3bVqaMsGaqxyOWpqcQGBGi0EMcHB7PTzU2VKfA5d46R797lSLhfVaiQKtv5as8e4oOC6JWhnZKUlMa+fa/5+jGQLWvvEC03R8YVdi6rRO/JHXWuNWTIWbZvV668nZ1tePp0CFu2POW3325iYCBh48YW9O3ryocoC7UuNwXRReqCv1LxOm+pUpTp3Fl1TfW28uxQr21twoJKsW+lJ3WaVyb4xDaef5CpVJ+/6dG82Va5MiGvlRNhXEAAqwsVYlZSkk7X4NBnz9ji6krEhw9IDQ3pdvYsEkHgdL9+GoFcTjA2Vs9QoBIGTQwPx/vYMVLi4riulsk72bMnL/bs4evVqyrF6WrDh/P86SKu3fAjb15TvbpSP0ObHTvY4OJCSkwMfjgiRwYZmlcvXoXyR8MJmMnS/3R7/oEWLfh88SIAJZo3p+eFCwDExCRz6dJn8uQxoXHjYtmaa5dq357gFy+UGRepNFvXeYeqVXHYrsy0+vhE0K7dEaVGlGiHH32YwGpkyAlQ4zBpf66v772lnvseYuTmGJHC/s11qeJRiQMViyNPysrW1Z48GXM7O8QW40m9nrVge0t5RtcMokTjRiq5CG2Y5s1Ln6tXc/PWERQUx4ULnyhUyJImTYrrvEcdDh4k5M0bwt+9Q5DJsvXjMzTPORP5wdOTNtt0Dcf/V/HLAdKECRPo168fy5Ytw0KNVNeiRQt69Pi5ON0/+GtQzMODURmaQn8VatcuTKsaBpzzUgYuHlzTCI4y8fnSJb1kwEzH7MzgCJQk4Vq1dvHkiebKQrujCKBp018Tn7OxMeH8+Z5MmXKVxMQ0rK2NsbMzo39/VypVKoCDg2Ydeu68hrQfcIcEzDARklm+qXM2V9aFvnb4xitWaAw0bpMmcW/JEpU7OWmwtVxp+t+9i7VjVhbjnrQ+/iiFICOwZf3FaLQbg5utWUMzLWNMdezd0YIOvS6TiCky0qnmKKfJiCVZE6Eo4r14Cj7Bkbx7H0GxYnmwszMHNFeK3kePKnub1DJjglSKtaMj+bT0sL57eZGitnqP/PSJGH//bCcaQKcU/PXGjYzHE2ne/AC3b/uhzIYpS1TpSJk++55OgBQTk6wKjkApUPrHH0+ZOlU5qaSmyhk48AwtWjhjbZhGZGpm9kOCQZnaDDs7mYTQUAq7uWm0eLfeupV9jRur/s5OvNTG3oaxy5WLkFc/aqq6hgSplCJ1dNv3Q96+1fhbkZpKTECAxvcAlATYUe/fa2xLjo7OMTjSfsbLl3vSocNR4uJSadXKmVmz6pEcE8PWKlX0Nm0AfL1yRfVvUS7n8YYNWDk50XVi7jlH2jDPn58pkZFEfPzI5zADTtc/AIBEEDET4zAiBYUcbsyahV3lylweOxbbkiVplAvX9683bqiCI4DPFy+y0NSUXo9e0rD9JZWe1PDhVdm0SX9puNaECYS+ecOn8+fJX64crbZs+el937wJUdN+k5CIOfGYY00MhWvVIvDpU+4tXYpEJqPerFkq8cZpQ/cRK1dmwVIxYNa0yzx5VxFBIqjI1+/yNWPpamPEVbNoVDerXCyRCNjbWzD44QPtx/lTCAiIoVKlP4iIUHb9TZ3qpqM8L5FIGOmdfQY/EzXGjcNr3Tq9FA9Ap0ngfx2/HCA9efKEP7RaSQEcHBwIDg7Wc8Y/+F/Bq1chxHx4S00iqcZjbNHlRwCUatcOx3r1KN2xo6okUW/2bOVKSA/R0M8vWmfbo0eami4jR1bD3d1JY5uyU243MTHJNGlSHE9PzbIXQIUK+Zk61Y1atQpRsGD2xLznN19wctJcRvOGWKywkSVQvoJ+c1N9qD9nDodbZ4kp2lWsSJ6imqtsj8WLKdejB0fatyf661dEhYK4wEDuLVlCK7UOnxTT/GS+tSICUcnZdxPK5QrkclGn3BEh5CNNMAJRJB0DzvkVpti572gwAEQRCwsjvVYjh1q3xufcOY1tglSKub09rv37U33UKA0iM0C+0qURpFKVpxmAZ//+tN66NXvF3IzJIBOZ1/T3j8kIjkBTvkFAIWqublNiYwl5+gIDAwlpaVmBnLZoqVwuEhGRRMmKjjx8kqXCHKOwwK6CpjDn+1OnOD9iBIq0NGpNmUJqXBxF3Nyo0LOn/tehhgq9epEcFcUHT0/ylSmDh5a0hiiKOlYpQO4zQtbWVOzbV6X9k6dYMRotX87bgwexq1CBurNmaRxfr54T4eGamcqv169nGxxlh/C/YMElkUjIV7o0+UrD3r3tWLnyIUT+wO3HQSQKZeOEPDWVtYWzvpPP/viDqVpEdW3E6tGASk9KYmLVHnxJy/pdbt78lOXLG+vVDzMwMVH5suUW1ao5YGIiIzVVjqhQYCVGYUEcCAK35sxRahEJAoJEwperVxn37RuG5uakqn1PRQTS5AL+9++TnpF9fUU5ToXVQPndl3DuVjgtPBy44xWOnZ0ZBw50+KXnzAlHjngTFZVVFlu71itHa56cIDM0ZNy3b7w7eZKgZ894sGyZxv5eucxo/a/glwMkIyMjYvXUgH18fMj3Nyt6/oO/D1++RFG79g5SkpwRgR84MBClhomhuTkSQ0PkKSlUGTaMEk2bAtD52DEiPn5EZmysIggKgoBEokHVYfhwTWG5Na0HsOyc5kp6/Hjdzpvy5TeRmqq80OnTHxk+/BybN2cRNK9f/0KTJvtRKEQEQTkg9+ql29nS1nU6Z14ZAa0xojFjWYMsLZnAJ090gpzsULJVK/revMmzrVuxKVGC748escjMjEK1a9Pp8GHVyil/uXJIZDKNyVFbcHHAwMo8mP8VMaPTrl8XJ733PHz4LQMHniE5OZ2JE2uxdGkjBEHg48dwevU6iShm8YokyAlMNKNM5coEZ0htNF6+XOWRp4748HCd4AiJhPzlytH56FEN3yu/O3fwu3OHgtWqUaJpU8p07Yq3GofF/84dtlSsyNSoKFVm5ruXF8+3bcPExobGK1dydUKGaKYg0Pf2bUCZ/dO2ZFG+DgUzJ7iq/t7t7o5fxjmtqMAZoR1yUUL//q6MHl2DvXtf8+FDOAB16xYh+OhmZE9uAXUACRIBatRw0LhHcnQ0Rzt2VAVuD5cto/+9exTJpTuAIAjUGDOGGtnw7qJ8fRG1SndG1ta5/q4BtN25kzKdOpEcE4NLq1YYW1lRpoNy0hQVChLDwzHOk0fv5wvoivgZGpKvdGlCXr1C5weagZJqC4C/Ar17V6R374rE/vjBTrd9xPgpA+Q0LTJ3cmQk8eHhmOfNXkW+bJcuXBg1Skek0SBNU5fIyEj6y9ypnFCkiBW3bvVj3TovTE0NqBJyjOAzChDJWgxmCEUmRUQQ+fkz9q6uzFrclvudLpCMERIUzJpWU7mIyFgw3KIh2g0lhqkxxMXl7EuZHBND9Ldv2Lq46BW71AdbWxMVBUEpM6LrS/kzfL15k6Dnz7Fxdubc0KEkBAcjSCQUbdyY7/fvI5HJaLZuHdaFdRdj/8v45QCpTZs2zJ8/n6NHjwLKwcLf35+pU6fSsaMub+Af/G/g1q1vGTYQylJSAEVIwYiu+7YT9PQpXmuV7uOPVq7E2tGRGqNHIwgCebUkBa5c8UUmk5CaqkAQYMAAV+bNy/J5uzJ5Mu/OXQaGaJynzUeKj09VBUeZuHhRUzNn2LDzqh++KMK4cZd1AqT09PSM4EiJFIy5RDM6Ss9ip6dNODEukSPrz2JuYULHka00iIpO7u44ubtzbtgwvt64gSiX8+3mTa7PmEHrjKzq9enTVbpToOxAqZHhW5aJwikfGcJu/HCkgDScEWN1dXwSElLp2/eU6j1YvvwBrVq5UK+eI76+URlze1amRYGEdt2r0W3MfIKeP8c0b15siuv3gIvQkymwdXFhWIZ9QiY+eHpypH17VTbEbdo0jeAoE/KUFK7PnEmzVauI+PSJ3fXqqQT+ClSuzGyFQofzYGFhxOHDHRk8+CwJCamMH1OZcnYpVKhVknK1lKU9r/XrVcERQAk+013cj2u9CkzcqeymffRoIEeOeGNoKKVLlzIsNzemPhIUSPDDkWplLXTMcH88eaLbGXjpUq4CpNgfPwh98wa7ihWxUCMlq0MfwbjD/v2/JI4qSCR6u7Xig4PZ26gRYd7eWDg40PvqVfLpIXoXrl2burNmcX/pUmTGxrTduZOSbdrwZPNm7i9dqhQmzHgPjKys6HDgQK67Fn8Vlg4OjPrwgfAPH7AqUoTd9evrZIT2N25M3I8fOLdsSTs9OlAyY2PG+/uzqlAhjQCrtOE3enYuz4EDbzA0lLJ7dzsdzz1tRIVG8ce8IxgZGzB8fg+MzXIONKpXd2D3jpb4nD/PqZ66KucACALG1tbkyfjNuXesw/t3Rbjl+Yiq7uUoV6sM6cnJNF21iiebNmHxXUJUkrokCbTpkLOHZMDDh+xv0oTU+HgsChak/717uQq6e/WqwMWLnzl27B1WVkoBX1B25cUFBZGnqK61jTpe7NzJGT3q4KJCwderV5mVno40m0D9fx2/3MW2cuVK4uPjyZ8/P0lJSdSvX58SJUpgYWHBwoUL/45n/D8HhULBtenT2d+sGW+PHPlPPw4ApUtnrd4kEoF8tobMigiiYq9ePFZzxAa4MXMm79+HUbbsJoyMfqd9+8Ns2ODFjRtfmD79uqoMIggCxsaaQqKv9++nAEE4qXkMNWnsRLlymjYPpqYGaNN+atXSFFfUV2LJHllt/6KhOd1On9YpCyXGJVK+4AwGzPxAlzEvaFxSf4t6jJ+fqswkyuU837qVHbVq4Xv1KveXaooxlmjaVEOvRZ6aysOVK7EnhBo8pojiq8Z3QJ6WxtkhQ1hSuLhOgBgcrFw916jhgK2tCRKJ8lWZGcrZMMuFUw/TMTdfTNFa5+lUZwlvL93S+/xFMkXo1NDw9991jnu9bx8Igiob9nDVKr3XA5SZCZQZJ3lqqsqXKvDJE1Lj4wkIiOH06Q98/ZpVtm3coDBFpEEkJ8vZtOIWeQvkUQVHoBSMzEQgBVjLWPbTh+l3ynB2h5LobWVlzJAhVejXzxVjY6Xgngw5jbnGIHZQ9es2Yr9odoE51KihwynLDWnY7+5d1pcowYHmzVlVsCDba9ZELtdtj7coWJCGixap3uNqI0fi3KKFznGxsSlcvvyZp08Df3rvTNxZuFBVCosLDOSimgaXNqqPGsXQFy+YGhVFmU6dkBoaUnPsWA1CviCVUnnw4H85OEqJi8Pn3DkCnz7Vu19mbIy9qysmNjZ0V+MSASCREPLyJYlhYbzavZvdasbZ6jC2tmZKeDimGZUKAzMzxnz8wP79HYiImEJ09NRsmzxEUWTRors4Oq7G3n4V0zeFMGHVd6o5TkehJ5umDnlqKrvr1eNYx44aHVyZMLO3p2TbtvS9eVND7NKpdBH6Tu1EwfxGfL50iRX29lwePx5DCwtO3xylEcg1q2ND/3HKzHxqQgJz2k2ntfNI1o7PorNcGjtWpeQdHxysM9ZoPHNaGrE/fqCQyzEwkHL0aGcSEmYQETGFhg2L4nfnDisLFGCDiwubypUjQcsYWB1Pf8LVSshlN+v/In45QLKysuLq1aucPXuWdevWMWrUKC5cuMDt27cx+5NaIH81Nm7ciJOTE8bGxtSoUYPHj7O3mPhPYF/jxpxasoPJl52o3u05zRyHIE/XHWj/nahVqzBbtrTE2dmG6tUduHq9P6Y2umKGAAgC/fqd5uPHcFJT5Xh6fmT06Et4eOzjy5dI1eJcoRA5fPgt8fFZ3Av7ChWQINKb/fTgAD3Zz/kLvYn4+IHNFSqw2MKCs0OGgELO6dPdMTaWIghQpUoBDh3S1G1assRD4+/fftPMFADIZDIq5otW/S1BwfZz4/ROCEfWn+VLfNZrvvHZnI/PPukcV16P3cL3R484pGeSzatFdP5y/bpm55QoariSP9m4kefbtyOL+k4pNf0eCSJdux5HEOYyqtM6Hj8ezMSJtZn1Wz2evhrDzPX+nDjxnuRUBemilJvBhajU/BrPH+g+vyAIjP3yBcsiRZRu5Zs36wjyAVgWLqwKJASpFKmaan4qBtygASdpjw/OOGe8n3ZqXlqCVIpl4cI8fxtNyZIbaNfuCC4l1jKqUD1O9OjB1B6reRGqbC2PVZgwYICmjUcVNW/Ae9QhDeX905Exd6auUKZEItFoNQcIT5AypGJfzh64p9pmbGlJ76tXsS5WDItChWi9bZuG3lUm0pOTSY6OznqGJUs0JsgfXl5sKa9/1V93+nQmh4UxKSSEFhs26GTQgoPjcXFZT7NmB6hWbRvFiq0lOlp38tVGSnR0FgdMFPl65YreCez8iBGstLdnc7lybCxdmnS1Mm+F3r2BrKYKfZ99JpLj4wl+rSsboI6kyEj+cHXlUOvWbKtWjR1ubpweMECZqdMD60KFmJmUhNv06XQ4dEin3Od36xbJ2QiYyoyNmRwayhxRZEZ8vKq0b2NjgomJgd5zADw9PzBz5g38/WNJFbOyJW8j8vD0Ws7uD3537vAjmzmkwcKFjPfzo9upU6qF0JGOHdlYtixvjxxhh5ubMqhu0ULV4BDy8iUxlw+QmDgTr5tduL3KlmXD86rGhdHuE5l/2pgLn20ZtyaYxWN3Idey8RAVCpL0aGgBhLx5w+rChVldqBCbypQhLlAZgCsXncrv4cWxY1XCmZGfP/NQ3bJGC5YODqrvijYEiQTLQrquAP9X8Kd0kADq1KnDiBEjmDJlCo0a/TnC19+BI0eOMGHCBObMmcPz58+pWLEiTZs2JTSHCPnfhfTkZG7Mns23Gzc4TidCsCMJUy77O7B09NafX+BvxtChVfHxGc3DhwOpWDGLw+A2aZLGcU1WrCAgIEZvxiY6WpNvExGRxKlTWRN9r8uXMS9YECkKXPjEkN/7IZNJONmzJ2Hv3pEaH8/zbdt4sXMnrVq5kJQ0C4ViDk+fDtG+FV27luPNm+G0betCw4ZOpKSkc/++P4MHn2HatGtERSm7Nl6GrmHZmAL0bwA+r/pRvXEVnWsBmFtop9pFTMx16/UVevakhJ6MgFxrdWlesCB1tfzO9KWyXdX0gSI/f1YFJZ05Rp+8N6lc0giFSkEcDt9K5tPDFyxb1pj58xuwa9cLYmIy3/esiTgdA/oO0OIaZcDayYnxfn5MjYjQlCpQg/vcuRT18EBmbEyhmjXpcf68at8p2nOXuryhPAfpQXpVZdreoXp12u3Zg52rK07u7vS6dIk1a7xISVFO6ukKkYs/nPA+epRPT94hZJQXRCTEpmpOcIVq1KDnpUtIjYxUx6nex2w0SVupqSCHY8tGRnIqtQVtel1nxYqsrqCiDRsy1teXCQEBVNYj4XBxzBgWmpiwNE8etri6olAodAT7AMK1OtDUYWpri1l+XQPciIhEWrc+qGH6/PVrNC4u6zl06E221wOyPN/UcH74cDaULMm7DIHLhLAw7m3eyT3cuEEDvnwKVZXIARovXUrb3bupM306Ax880LDFUMeRTp1YamHBHxUrMk8iIVoPURqUnZBRat5m3x884OWePeyuV09juzpkxsY0WrSI8t266S1JXp82TW/DR27x4+lTdtWvz9YqVfh49izv34erggN1CCjIVzDnzisDPQt/y8KF6Xj4MPVmzND4XizNk4cPJ08S/u4dJ7p140emNYooaqhtp8bHkxodya2Odbg5YQwne/bkWDdlE8qNV+mAiCJDT+3UWV/ig4JQaJH8C9eqpfd5r0ycSGK4kpcX8fkzx7p04ekff2goiacnJeXIk1RH0zVryF+uHIJEQr5y5TCxtUWQSDDNl49hPwme/9fxyxwkUHay3bx5k9DQUJ305Koc0vD/DqxatYrBgwfTv79STXjLli2cP3+enTt3Mk1LNfXfBVGh4PmOHdxbupToDEXcKPKotFoEFHz++J8P4LKDx+LFlOnalQ+nTlG+Z0/yurgw+PtN5s/XtRUAkMlAPUmiTZqcqKdFNMbfX7UyFqRSov38dI7Rh3v3/Dl92gdBQMObTBRh+/bnvHs3kvz5zZi8VjfA0kbHka1ouO4ONz5bACIjWhpSpKR+0mHBqlX5nKHDog95ihWj1+XLOgrLRRs2pGTbtnw8rcyW1J83D3M7O9X+0h078mTTJmXGRi6nc9/aXNmRQpZ1ipKzcOHYY5r2VIqAfvkSne1zfPCNy8jelGTRIg+kurLQ2cLY2prely9rbJsaF8edefNYut4CMUU54EulAjdufKNuXUdu3fpGsEElulx/oDIqNjHxUVX0BEBGGqJcTlUzX26GFyc943V189D04gJlibLz0aMEth2ML8VIxhQjUlm4qq3eZy7ZqhUdDx3izKBBvEqoqMo6gZLHNWlS7Z++7sTwcB6vX6/6O+TVKx6tXk2D+fP5qG3l8Avq8aIoIioU9OhxgmfPdMsSYWGJ9Ox5krJl81Ohgp2eK2hm6NQR4ePD8W7dGPP5M0kxseylD0Eos2lPqUqtb1njiyCR4Nq370+f94O6aKYosrZwYcwLFGC0j4+GHo5MH1lYoSA9OZmABw9ylIEA6H//Pjtq1dJYYDzdsoUSLVr8KeJ48OvXbFfLCB5u0wa7Qb8hCDJkMkFVmpegYHI3K4qWy5nHU6hmTaqNGKH8XUokNF6+nFqZjQdaUM84ZgcjCwsqDx7MgxUrVDYdoHy/U2JjcSpojK+f0jNTQMSlZH7MCxTAslAhYgMDQRSRyGSUbNsWUaEgxt8fE1tbjCwsiI+OZ+9DEwLlHXDBB1fFKwLu3yfgwQNe79tH/zt3ECQS3OfN42SPHogKBUZWVlTVI3aaCWtHR4a9fKnjY/j/A3751S5atIgaNWqwa9cunj59yosXL1T/vdQief67kZqayrNnzzQyWhKJhEaNGvHw4cP/yDMp5HI2V6zIuSFDVMERQHmUK0UBBQIiPYfpr7v/t6CAqysN5s1TeUTNnevO8eOdmTGjjobApJmZAZUrF1TNG40bF6NDB00S6cuXwbi4rCd//uXMmaM0cVRP+wsSSY5pf3XcuPEViURQLdDUF2oREUn06KGrjJwdJBIJ1z+t4P2T7vh9GMjGc9m73debPRuTbLpuhr1+zejPn7HRY5khkUrpeuoUva5excjSkttz5jBfJuN9hhhk0QYN6HfrFrUmTqTtrl2ciKhOcDRot8LXqJfFn+rXT51srrnqTk8X8fGJYPnyB2zY8Gul5m+3bnGgeXOOdOxI2Lt3ABibm9Nk+XIqVSmEVKp8JrlcxNXVnhkzrtOw4V569DhJ+fKbCQ1VZkhmz65PgQLK4MeURBpLbgHQqHdTHl7ryJSuFuz8vRRbr/ym9zlKtmnDom+POfN7Po4sduKb33iadHfP9rnLdetGv9u3sc1rhpjZ5ScRsLXNXddPop6W89jv37ErX55aWtnU4hkdnTnB784dVtjbM18i4XdDQ+7d8s3OdgtRhHfvdFW3U1LSkcsVGJqbZ1vuEOVyor58IdnCgUAcEJEgIiERM1WG72dISEjVUCnXRnxQENu1MhflunWjqIdauVsVDQvkL5e98GsmCri6MvbrV53tp/v31wggcgNRFDmkh9wesnMht2/3Y+jQqixZ0ojQwLHExU5jyaGf6z7dWbCAl3v2YGhhQdM1a7INjvRBPaCoPWUKnY8dY+T799g6O6syfhrHS6XsvTWLakWSMZelUr+CERsPD0FqYEDfmzcp17UrLq1a0fvKFUxsbdlarRprixZleb58fDxzhg415nE93pV3lMaT9nhTJvONIeD+faIy3udyXbsy8v17epw/z+iPH7F1ds7Va3m8YQNbKlbkUNu2Kj7U/2X8slmtnZ0dS5cupV82tgH/SQQGBuLg4MCDBw+opfYjnjJlCrdv38ZLzTcLICUlhRS11GJsbCyFCxf+S83u/O/fZ5ceITk5El5QCaGoK6MW9spxwP9XERAQw9ev0VSqZI+FhdHPT/hFtG59kHPndLkuU6e6sXixhwb/Ij1dgYXFYg3l34MHO9KtaxneHDxI1JcvlGzTBntX11zde9my+0ybdg1RVE6C2oraefOaEhY2+c+9sFzg1b59eGb4emVixLt3ejuL1LG1alWCnj3T2DbkxQsKaL1uZ+d1fP6cyTVQEpCn9srD7/s0B+k+lcdw9IUpqRhlBAUCUilk0lWkUoH+/V3Zti13CsbRfn5scHFBnpamTKfb2jLOz0+lYxQYGMeoURf4+jWKvn1dGT26OiYmC9UI+rB+fXNGjqwOKIUcAwJiOLfpBHeuvqd6dQcm/zEu2zZ1baTGx5MUE4OVg8PPD85AYmIabdse5tq1L+TNa8KZM935+jWaKVOuYmws4+TJrtlmalYXKUKsli2GxMCAasOHIzU25vOFCxSoXJlm69ZhbGWl9xoA0d++sa5ECQ3tqJ30J0BwVAVJNjbGREenIAjKNvX370epbD9EUWT8+MusW+eFiYkBu3a1pX4Zkb0eHiRFRiKRSFQdg5lmoXKZCfnzLycpMU0VIL58OVSjbK4Pa9c+YsKEKygUIlOnumG9pRMperhAhhYWTNeSehFFkRh/f+KCgrg5axbJ0dHUnjSJchllo8jIJK5d+4K9vTn16jnqXBPgaKdOOlYvbXft0ihB/wzJ0dEszaOHO6ll+AwQ6evL1SlTkBoY0GzNGr3efvrG7/EBAdnybvY3a4ZvZtZVEBj+9i0x375hWbiwTvZvj4cH3zKEUzOR246wxIgINpcvT7waQdrMzo6F4b2JliuzexLkVOY5rVCWxiUGBkwODcXY2vqn18+E/717XJ44keSoKByqV+fNgQOqfXmKF2fM5885nP3vxX+FWa1EIsEtl3oh/+1YvHgx8/4F/5rcILuUpBQFs9b3o4aad8/fgVOn3tOly3HS0xUULGjBo0cDKVw4+wH9z0C7/T4TXl7fdcipfn7RGsERwKVLn+jevRwV9JCff4YJE2oRF5fClStfqFZNmbnasEFJDpVIoGlTZdvtyz17ODNoEGJ6OnmcnRnx+rWOEOKfQfkePfA+coRPGfycsl276kgf6EMmR0AdZwYMYOhzTcJovXqOfPkSnRH4CWzb1ZF+/Vx1zt39ZDXDVq/m7l5PPiiccevTnnfBhqxZ44VEIiCXizRrlnul8pDXr1XChqJcTkJoKLHfv6uyYgULWnDyZJaauiiKmJkZqojGoggv1iwlqPYsClSqhKGhlEePvjNuVSBSqTUn38RjWeU5hQpZEhQUT6tWLhQsqFtiAzjcvr2qtGVkZcXk0FC9fCBtmJoacPVqb2JjUzAzM+DJkx/07HlStd/VdQvJybP06uaM/vyZE2NmcH3HSfKm/8CIVBRpaXitW0ejZcsY/iZnrlAmjnXurBEcvaeUUkU9Izga3suJfJdmc01REhPHkiw5OlnDE+3Gja+sXatc2CUmptGnzymioqYyOSQEUBofe61bhyI9nWojRqiCtTNnujNs2Dni49OYO7f+T4OjoKA4xo+/rArali69z5Mn3pyvphsIFK6tW6YUBAFrR0esHR3pc+2axr6QkHgqV95KYKCyC3PWrLosWNBQ5xodDhxgydmzGoKa2ZmfhoUlMHv2TYKD4xk4sDKtWikz24YWFpjmy0eilvedvZakR2JkJOtKlSUu3RBz4vl45gxTIyN1xgR1mYlM/HjyJNsAqdelS8SHhRHm7Y1TfaX5dn6tRo1MdD99muX585OepORKlu/VK8fg6Obxu/h9CqLtwMa83LBWKdWghvTkZEoVkOP1XYGIBAVSqlZ1wOCdKVJjY1r/8ccvBUfJ0dHsa9JE9XzanoBRahWR/6v45RLb+PHj2ajV9v3fgrx58yKVSgnJGDwyERISgr2e1cH06dOJiYlR/RfwEyPFP4NCNWpQTM3KwNDamtKdOtHV0/NvD44Apk27rvQRQjlQbdyov7PkX4GBge7XSCoV9K7O7e3NVaWZTLRo8fP0rjYyV6symYQFCxri5TWIDRtasH59C06e7ELPnuWZNase27a1JuTNG07366cS74v69CnbVuJfhUQqpdvp0/S7fZv+9+7R8eBBvV5Q2qg8RJcTJTXSze6tX9+C8eNr0rRpcdata0bfvrraTZnPUXvSJKa+vseut7sYNKUNy5Y1YeXKJvTtW5FjxzrTsaP+gRrgzp1v1Kixjbp1d/L+fRj2rq7IjI01Avz1Li4sMjfn/ooVOka1giCwZ087jI2VA3wp3lPwsydbK1fGN2PCPHpUaWWQSe6fMe4kbdocZujQc1SosJnv33UFaFPj4zV4PykxMZzMKMdmQqFQcG7ECLbVqMErtRVuJiwtjZBKJSxfrmndIIpw9uzHjH9rZh5v3Aqg7y5rtqX3ZT2jicJate+J2viXFBXFu+PHNXy51BGaUZpUnUsWN0ZA5O6pu0gjv9OEq9T134jiyVmN48PDNY1oU1LkJCZmaYbJrGx5YtEcz/h6eH/P+t55eBTj06cxBAVNZOjQqhzt3Jl5UikLDA15tmOHznPGxaXqlP3i4lIppBUMOdSsSa9Luh2EOeHYsXcEBWUJPC5del+vwbTMyIgOBw+qOE2u/fvr1YICaNv2MNu2Pef06Y+0aXOIx4+VvEaJVEqP8+fJV748MlNTjPPkoVS7dgzS6kI7s3wXq9JHsoqJbGAUEUkG+Kg1IWSidAfN0qQgkeBYT7dbVh3m+fJR1N39p+OAobk5MxMTGf35M9Pj4uiwb1+2x45qtZiGnW/Qf8Z7XAr9TmhQtM7i233uXE7dm4qHcyJFzaIZ1kzGRq/NzEhIYGpEBGU6ddK5bnx8Kq1bH8LQcAGVK/+h4XoQ7eenCo70QR95/f8afjmDNGnSJFq2bEnx4sUpU6YMBgaanScnT57M5sy/H4aGhlSpUoXr16/Trl07QDl4Xr9+nVF6ghEjIyOM9ExKfyUEiYRely8T+vYtivR07F1dczWB/qtQyOVsnbYVvy/hiGrWDfo6Of5V7NzZlh49lJ+7IICDgyWNGhVj4UIPnWPNzAw5e7Y7/fqdJikpjREjqtG16895CpkQRZEzAwaonLjd58+n/m+a3JX27UtnON4rcVvPhBD6L3ZfyOUKFeFZIpX+dNDURr0ZM3hz4ADhGROoIJHQWY8mlqmpAStWNPlTzyiTSRg/Xn+nizq+fo3C3X2PaoKsWHEL0dFT6XP9Og9XreLzpUtKcT5RJC0hgWuTJ3Nv8WKGvXiBVZEiquu0aVOStVWv4XvvMaZkDaw3pk+neKNGFC9ug1QiIFeICCiITs3KAkVGJnH8+DvGjdPsqHqwcqXO86qXFUSFgqXW1iqFZc9evYj68gX333T5TG5uRTh5UlMk00EIYr60vKqjp82OHVQaMIDp06+TmqbM/CRgyiNq0hxlYJBpWxIfEsLWypVVbdT6vosuLVrw7sQJFTHOlAQExIzSl4hxWozq3oJEopP5aNq0BI6OVvj5KUtdXbqUwdY2q+urd+9TnDjxDolE4I8/nuHlNYgqVQpqXOPBypW8z+C7KBQKzg0aRNmuXTFWI1o7O9vQqpWzqlRetWoB3NyKUP/uXbzWrCHK15fqY8ZkbymTAywtjTSCL3NzQwRBKXwY/e0bRRs2VDUqlOnYkZJt2iBPSdExRhVFkSVL7rFx4xN+/MgKuAQB7t/3p3p1ZfnVoVo1Rvzk9731pox4lNePIg+3qc9UPa8tb6lSdPX05NqUKUhkMlpu2fKX+41lJ+iaCYVCwR/nE8mcrsPTLHjwQ6SgpSXJUVEgCDSYP5+aGZpYV32WK89LT0eenIxET5dgJpYuvceFC59QKERevw5h5MgLnDun9FS1dXHByNJSw38xE1IjI3rk0KTyfwW/HCCNGTOGmzdv0qBBA2xtbf8tk/2vYMKECfTt25eqVatSvXp11qxZQ0JCgqqr7T8BQRCy7T75u7B34ERG7rFEgYTMDigraQJtXHPnB/Ur6N69PM2bOxMWlkDx4jY/DcKaN3cmJGRSjsdkh+8PH6qCI4Bbs2dTedCgbFWNQdlxpo08egjUP0NYWAK9ep3i1q2vpKYqqFAhP+fO9fjTJcuR3t4EPHpE6Js3uPbti9TQkKVL77F2rRf585uxc2dbKlfO/nX9VTh48I3GBJaWpuDmzW+0bFmbwrVr87ueUmRyZCRe69bRZMUKje3GJoYawRGgIrPPnevOu2dfuH3Hj0J8J5ACJGIGKEn2+fJpDuSh3t7cnjtX596N1e7pf/++jv3EgyVL9AZIEybU4sSJdzx4oGxXHzqkEpc7N9HQ4TkzcCCVBgzQOE9QI8ib2dvT/cwZAN4eOqQKjgDuLVpEvVmzNMbEdnv2kK9sWe78/juiXClgGYI9YeTHThLO1BGl8V6jPNbAxITyWl5w1tbGPH8+FE/PD1hZGdGunbJ8q0hP58mmTZw+FYkoKkuoEonA5cu+OgHSqz17iMKaE3QknLyU5j1tz17AtXuXrNcoCJw61Y0LFz6RmiqnZUtnVenxV0jJ+tCtWzmOHfPm3LlPmJjI2L27HY9Wr+ZKhjGusY0NQ589U2kaSQ0MNDS3MnHx4mdmzLihs10UUQVHuYXcyApRzWvSvEQZ7MqVw/vYMe4tXoyhhQXNVq+mQOXKlGrbllJt9XdNqiM1VU54eCL29uZ/+UJUipx0pGR2slrktWbUx48EPHiArbOzylhaLlcwbNh5du96jrk8ms4cxYFALBwcGOvnp1PC+/49TsWpl8tFDSFXAxMT+t+7x14PD53Avf2+fTj94qLwfxG/HCDt2bOHEydO0PJvkqX/V9G1a1fCwsKYPXs2wcHBuLq6cunSJezs9JMx/6/i9vHbKGinsa1L6m6u9VlLuXrf9BIS/xVYWxtjbf2vc3r04cyZjxw8+IYiRaxwN9AtZfzMBLRCr168OXhQ5QZuZGlJ3xu6A+3PMHLkBa5ezepAevMmlEmTrnDkSGeN4y5e/MSwYecIDooln1k6G9d40Lavu95rFq5Zk8IZOjRXr/oybdp1QFkObd36EN+/j//LFiEfPoQzebLSxX3uXHfVRFqzpi6fonz5rN9LvjJlNFStM/Fw5Uryly+v0TLebu9eVqsFq4JUSvu9e/G/d4+Ha9awsHczbrzbQVJUFF9EJ46KnUkSjenZs7yOCrLfHV0Zibq//Uah6tVVf+v77IUcbBPu38+yTIjw8WHDVv0qykuWeNC69SFSUuTYFbDk8INDODlZaxwT8vatxt9SExOdz8rA1BT3uXN5uXs3MX5+WBHLSDaRhoz+ly5QrFEjXJu5Ef3tGyWaNcPaUUlg9vT8wJIl97CwMGLVqiYMGFBJ47qXxo3jyaZN2IjDCCWfknOiEDUU8TNRsl07lr3x50dGZ9sLKnHla15ctY6TySS0afPrGaKfwdBQytmzPQgLS8DCwghjYxnL82URn1NiYni5Zw/uc+ZonPfkyQ9GjrxATEwK06fXITo6Wdv7GHd3R4YOrYqbWxF+BZMn1+b+fX+lEbSRAYv3DCLU25vjXbtChtnwviZNmBgYmCu+28uXwTRpso+wsETKlMnHhlHm+O7dTIy/P4amplTo3VsZPP+JNnmJRMLcEUWYuSkQBVKsDJI55mVD0LQHrF3bHHPzrOc7cOAN27creYwxWHKCjoxhPXE/frC/cWOdca9Xr/Ls3ftKldUs8m4fS21nq8yD7cqXZ1JwMP737nFj1ixiAgKo1L+/3nLd/0X8coBkY2ND8Z+kBP/TGDVqlN6S2v9PKO1khIF3KukZH7EFceQlAnmKnIhPn/7yAOmvQPDLlzzeuBFDMzPqTJuGub09t29/o23bw8oVmShyWvxAD7VzKvbtq5pUckLPjHSwIj39lzyx1PHuXZjG4CyKEBio2eoaH59Khw5HSU5OAwR+RMto1+8WW4OiGDytfY7XV1f0VSiUnWKpqXKMjP7c84qiyMNVq5SaS0XKM+SwHekZ/J+LFz/z4cMoSpSwwcOjGKNHV2fLlqdIJAILFjTQIAoPevKEXW5u/NDqAgW4OmWKRoBkaW/PjMREvDZuxMzGhkoDBnB3yRJuTFeacH44cYJCbm7kL1OGSsDyCf2wcCqutAnRgnOLFmjMiIKgI2pZtEEDDMzNSVNrOe6ayzK/RcGCaM+4kozMRePGxfH3H8/Xr1GULZtfYxICZWnv1Z49Gtv0ZSozUbZbNx5kWEMIMhnD79/HISPQK6ElFfD+fRgdOx5FFJVZoUaN9hEQMF6V0QkMjGXU1nRixRGU4y0mFCXJsjBjpzVWZZjU0XD+fOKWTUNMUU7OUonA9+DsW/n/FZwfMQKfc+fIU6wY3Tw9NUjB+fJlcVaMLC2VcgoZ2lBGWl1HaWlymjc/QFRUMgqFSP/+p9m6REn2T09XoFCItGlTEk9PZZecKIosnXKE29c+4OZWmJnrB+S4sGjVyoW3b0fw6lUw1as7ULRoHryPHVN9F0SFgqSICBLCwrDMRefkuHGXiIhQZk4/fAhjxogzNOORav+tOXMwL1CAKoMH//RaL18GMXToeczNDTl2rDM2NiZM2ziMnuO+M2/eHXYd+kyMTyS+vlGYmBiwYUOWaO2PH7Gqbl4RCXFkNT58u3mTc8OH03LjRlWg5uFRjBObKrNh2FLsCMGFTyRHwoXRo2mRoQWWybvqr2fB8n8dvxzOzp07lzlz5pCYmPjzg//B34K0pKQcvXMA+h/bxSTne1SUfaCy9A39hT0YSJVdIf/ucl9uEPv9Ozvd3Hi5axePN2xgt7s7Crmcmze/IZUqf/AKEb6iKTrXVo+xJUCIfygNS0zCwXgCPd1mk5aqJLb+2eAIoHNnXZLzsGGaqtwvXwZndOlpDs6z5usGF9owe+2JAakIKACR0sYBfzo4Ani5ezdXJ03C/+5d9h98qwqOQJlOv3EjS3tm3brmpKb+RnLyLCZP1uxSlUqlDHr0CH3QNwkZmJhQZ9IkValKu0z2/f59Wm/dSuutW8lXqqTe4AiUAnXdzpzBxtkZG2dnepw/j2VBzfKRIJEwLToat6lTKd+rF2P8/Cjmoct90wdDc3N6Xb6MJCNDIDU0ZKCaXtqpU+/ZtOkJXl66CtIKuVxF+s9EdoTWSF9fVXAEIKanE5pgyIULnwgJ0dWSefMmVDnBicrPKTQ0gbCwLNXt8uU38zXNngjycht3qvOIc8scmD69brZBwbBJSh6bVCogItCpU/aE/Zzw5sgRzg4ZQqKe9v8rkyfzdPNmYgMC8Lt9m+3ZKHSDkuuV6VvmVL8+VdVsZSLC4zk4ZCIREUkaZO7L02bSL2UTPZtZs2xZYw4fzspizByyk+krPnL5pchvG78zof0SzgwZwqG2bfmejU1IqVJ56dq1HEWLKmUBCteqhYGpqVKLTSolb+nSuV5IxsamZD2rQkEqmgG1IJGo/Apzgo9POJUqbeXx4x/cuPEVe/sVKr+/ws6FiEiQqhoK5HKRc1s8+d3YmLNDhpASH0/79qUwNpaplOcrodkV+2zLFu4vX66xzT7pM3W5hwtZXWph3t65et3/1/HLo++6devw9fXFzs4OJycnHZL2c6025X/w1+L9qVOc6N4deUqKckUydCh1Z8zQqdnnK12aRT63WQREffnC/eXLERUKak2YkOtWz6CgOPr1O423dyjt2pVizZpmyGR/j5Lq90ePNKTwIz5+ZJGZGeZ9Fqq6ngQUFEDT2DO7CaFL/aXc/WaOiISDD0Tyd1vN6pNTcnwGr3XreLZtG8WbNKHJihU61/7tt/o4OFhy9aovlpZG9O3rSp06mqn9M2fUScCZ6tdgmotegJjrxxhEHl5TAVMSqSW+BrbneM61a18YP+4iKYkpzJ9Xn269swK2H48fI5HJUKSnYy7qEi31lWOyw+fPkVygOQIitXiINcoJsrEWB+mvRslWrSiZ0cmUFBND1NevOg7mEqmURkuWaGxbMXYbly/54FohP4sOjMPAUL9PV/HGjfktJQV5WhoSmUz1mffpc5J9+5St/Hv3vmbfvnb06pXVQSg1MMCuYkWNSS87mQptdWUfnKnm4YlcFDCWybl1rQc16mdlfmpUL4ihTKkZJgI2RPF23WIKLllEWpqcyMhk1M2Xfzh30muXoo4FCxpQqlRePnwIp2VLZ2rV0q8Qn4n09HT2eXgQ8fEjlQYOxGPhQtYULUrMt28APN+2jb537uBUt67qnM8XL/KSilyiGQBNfK6RXR7fyd2dyWFhJMfEYJo3L4IgIJcr6NPHk4MH3yDFAmsiicGaTP2vIvhjRSzG9+cw6ZymD9m5sz6AaYY7gci5M++wFvcr3++zZxny/LmOxpg2LAsVYsCDBzzZtAlDc3PcpkzJtU7X1KludO9+AlEEmRSqyTW7hUWFgmK5sOSaNeumxt9paQouXPhE69bK70ezZsXx9PyQ0eygoLj8A3J5Cs+3beP5tm0IUinH1+zjTWJhRP+3pO64jULL4u/bzZvUmZplxF111Cgujx+vcUxzNSV5jdchijw9eZnN+74g5CnAqDE1qVTp7+dJ/qfwywFSZnfYP/j3QaUDIwgIEolKVyU+KIjb8+aREhND0xwsXvIUK0arzZt/+b6DBp3l+vUvyOUimzY9wSo9jJqK+5Tt0iVXP/ZfQb6yZZWvTcsfKGHbJFpSlQ9W7pSrWZISl7Nep3MOPLiPgahZuYi8fpNzxu10//4q8nfY27d8vXGDYVq8G4lEYNCgygwaVFm1TSGXE/fjBxYODkikUoyMZEgkmv6bEhRcuavroaUNRXo6doTSGGVbvEySs/JzVFQSrVsdJDlFmcno0ecMjuax1GqvlDBwrFePZxlGpq7CWwIKNuXFDxMkEoHRo6tTt+7PS5MA0dHJ1Kq1g0iqIQLvKc1o1tPj+OFcKZ43WbmSi2ol75Ltcy416sOBFi2yOGRWVkyOiMhWM2bJyC1M3xSCgAnXfBJYdWIhDRoW4+jRzir7k0y8vPOaji13EpxgTL1SCk4//x1DY0MOH9ZcQS9Zcl8jQAIY5OXFuaFDCf/4kYq9emlkQdRh7+pKkbp18b97F4D7Ro2RZ1S4UtIFpvffwo0va1THB53eS9/0rTymOoakUpe7PFoWh0vTxhRt2BADA4lKkBMEghX5KF5iA126lGHp0sbogyAI9OpVQWd7fHwqs2bd4N27MNq2LcmIEdUQBIFV9vYkZfBQ7i1aRFJEhCo4ysThVq2YppZJMipdg9PehVRCpWfEVnh7h1K2rK4fHUBwWDIdOpzm+fNAXFxscXGxxdNTKbsgR0o8Frhxj1SMqMIzrFAG+fp4Zy6ORrwNUer/CIjYiWoaQaKI15o1tFNr7sgO9hUr0vqPP356nDa6di1HmTL5ePcuDNdS5twfeZ3vj8IQpFLyly1LnWnTKKU1d8bFpXD9+lfy5jXFza0wgiDg7Kyr+1SsWNa2IUOqIBVEtoxdhV2yL1V5qnGsKJfzdHwffktLA+oQOb4x26pWzQrSBUFV2s2ETCZjbEAA+zw8kKek0G7vXvKXLau8niiqRHgBzg4dxuBtUsLIh0AIh46848OHURol+f9L+OUAaY4Wke4f/L14c+hQlg6MKGqIzmVu871y5W+594cPYVnZG1HBlT+OYch5nm/bRrWRI2mxYcO/fI8zZz4ybtwl0tMVjBq9FXHvZGXrqhqq8ZRqsc9o5LGUGuei+HLxInaVK+eoquxW3oiTz8QM8qGExk30d619eOrDqB7bCPiUQlWcVWnmkFzY5gQ8fMju+vVRpKUhMTCg/507jB5dgyNHvPn0KRIjIymzJ1Zg8twWOplWfbBydNSYhAr/RJD1+/dYklPkZGYTRASOzV6nCpDKdetGWkICPufOka9MGWb99htywQBDQ+kvddm8fBmcocejDDhjsaLe/kuU6ai/lBXw8CHytDRS8rqwZ783pqbl6fX4NR92baZ0p04Ua5glEiiKIp8vX8bb6yOlPOrgVK64ToYzMTxcFRyBktTr2acPHfVoHgFcvPAJAXNElAGUQoRbt77x22832LhRM6ju2nonX+OtEJFw6b3IzD7rWLxvNDLSSVMzCNbXgCAzMtKYdIO+BtK76Wo+Bypo6m7PptMTkUolSKRSel+9is9ZpcbRsVFPEEKyWv3TozWtTb4/eEAhSTAOCk+N7ZnaU0eOdGLgwNMkJKRjYCDB11f5e1m27AEWFkbMmpX77qJhw85x+PBb5HKRq1e/YGVlTK9eFVTBUSZe7d2rc662D2eFKfMRj6tnPAX69z/N48f6eTcTJlzm2bNA5HKRd+/CefcuXOPcdGTU5w6GUs1xT59h7/ZzE4isNpvX/gJl8ydQN+SWxn59tj9/NcqXt1M1N5S8d0/vManx8aTExZFubE21attUn92UKbVZurQxCxd6sH//a/z9lcFgkybFNAJMQRBoXdOIH8mHs30ORXo6r599Y/KMe4SHJzJq5VXsX+3jx+PHONWvT71Zs3TOsS5UiNEfP2psm9P1d5YcTUKOlLH9i/H7yrbc2XaQUJQdyCKQlJTOgwcB/wRI/+A/gzAtoTl9yM6N+19F585lWbr0PlIJyBUSSpL1A3qyadO/FCAlx8Swp3NfRl4tjzyjfXX6+jiubtvB3YG6vlGCREJCaCgymQyXXBhYHrgzmwmdVvLuQyRNmpZg2kZdx3qFQoFHnS0EpVgg4sInnBnKH9gToueKujjZoweKNCW3SZGWxokePRj75Qtv347g06cIHBwsf6mzr9quS8zq9DsGsYF0qiWoiOXqSEhIZdKkqzx69B0Pj6LYWaQREpfV/rvxXTmmhsRjZ2eOIAhUHjRIo/zy8zBNF87ONhgYSFQmnyYmMqq10FVTTk1KYlmePMhTUojHjI2MIlVqiijCqVN2PHmyUScwOzVgEFN3J/MZF4S5Z2jDGcbObkMDNYX7T3qECWP8/bN93jKlbLjzLVNMUVnmVChE1aSjjqB4Q1WmUYKCL18iubd4MW3SjnOUTogImBgoOHjw55myjm6LeRRkg4iErecTsRu+nflblYKgMiMjVefPnC/J9Jn6lmRMsCSOEX00eXWF3dzwPnpUY5txfntGbkrgYd/5yOUiggDbt7dh0KAzGsd5en74pQDp7l0/1SJIgoItwxfRsLSuNY+huTkyIyONcmHr7ZrlX1dXewoWNNdoXHjyJJCUlHS9XLqAgFjVvfXBzfw9xSvXptWWLaTExvLu6FEcGzRQlVzVYZ3Pmhvf1qn+vr+8JNenTUNUKChYvTp1ZmT5Kh7v0QPvQ4cAsK9USUe9PhOiKHJzzhwC7t2jZJs21Bg79l/qKH175Ain+vRBkZpKYMV++Po6qfYtX/6A+fMbYGQkw89vPPHxqRgaSklNlbN58xPS0xX06lWBPHlMsCxUCKmREfIU/UR7EWjV7gSBQQnI5SIDBp7n0aPJNF+rX/1bH56dvsqCo6mIGAACq3b50aFPKObSVEzl8SRhqjTTFQTKlMmX6+tm8qlyY6fy34BcBUg2Njb4+PiQN29e8uTJk+OXJPIXzQX/Qc6oPGgQdxcu1Oxt1YK7Hq2YvwILFzakaFFrzq49SJ73ZyiBmrS8IPD1xg3enzyJa//+FKxSJfsL6cGtuXN5df0JcrLalxUKEUmxStSaPJnH69YhKhSqAERqYEDprj0ZO/YiAQGxTJvmRvXq2f/gjU2N2XRhZo7PEBMeQ2BK1spHROA7hbAnhDoZXVc5QdusMTVBSaQ1NJRmW1bQRlqaHEEQ+Pw5koZNj6FQOKNQOCMzK05/EYY3WcCj5xEkpEBUkgypgSERKUrhvVevghk1oAzrd/hkPYNCxogRFzhxoksOd9XEnTvfiI1NoUULZyR62pAdHCzx9OzGrFk3kMkkLFvWmDx5skpVwa9f82DZMvzu3FEN2v4UIQkTyJgAnz8P5vv3WI2VZnJ0NId3P+IzymcVkXCOVlSY/zvle/RQiRJqE7MB6s3M/rNdfWIiwW7zuP5GJE5uourq6dNHWWJKS0rCs18/Pp0/T2WTxtxOcEVAgYhAjwG1Cb2+i9LCe34T55OAGaUql6NIkZ9bEvmEyNTKunKeegWQlpTEviZNCMjIKJjmy8eEHz8oUdScp6dvUt6tLDWGavKHqo8aRXpKCl+uXkVmbIyTuzu/nbXi3q0ssrgowuDBZ8iTx4TIyCxyeLVquu9VTqha1pwA/2iU0p0S7OLfsa1aNWpNmsTDTH6ZIDDw0SNsihXj3PDhBD57RsuNG3GoVk3jWgYGUjZvbkXbtsrshkQiULCghV4rF4CBAyvx8KEuAd7N1o/p28fRou1sjbmmUI0auX5dbpMn4zZZN9AL9/FRBUcAwS9e8GDlSmpP1DWtPdyuHT4Zmlffbt4kITQUj0WLcv0M6hAVCs4MHIgiozwY+eoJ4JS5F4mYjs8bf8pVKYogCJibG5KerqB+/d08fx6kslB6+XIoJjY2dDt9msvjxys77bQadqzKuBLwTnNsevMmlBo1chcgJSSk0mngHUSt8CAkJIE2WzYSMnQOFxVNEPLYs2hD92z9DLVxsFUrlSWTjbMzo318fnLGfx65CpBWr16NRUbHwZo1a/7O5/kHaoiPT2XD6rs8ldaibPpzrMxlVOzXjydamRv/Bw8o1yX3E2JuIZVKGDq0KvXtf3Ck3WqNfYIgsDejW+jJxo00Xb1apeSaG8T4+WGrCMGWcCKxAQQcCllRpUoBLNyX0WTZMgB8r14lwseH4k2aULvVZXx8lKl/T88PeHkN/uUJQR1Wea2wN4whJNVCVe5oN7ojPeZeydYDSh3VRo3S6NCqMXr0L91/yZJ7/PbbTSQSgbZtS5KamlVGuHjxM8NbLGbHdQWobC4EVcCRiaCY/8feWUe3cW5b/DeSzGzHcdh2mJkdZmZumDlpw9g03LRJ04aZmZmZmeOw7cSxHTOjpHl/jDwW2XF623fvfa97rawVSaPRSJZm9nfOPnurMJ6YkywGsgcfnw2ycWK+fI74+Y0xK8Rv0aKI2UiYV0eOsMeMLtGV9IWSNKpua2tpYAR55Mgrhg8/QTiGBnxaFIgIBuaPnnXq4NWwIf4XJI+okl26ULhZM5PXvHrVn6FDj5Mjhx1nb83B2lrF+fMfuH07kFq1ClCvnhcAt5YswXf/fkStlnqKY+TPk4a6QAW69qtJu8HNeWQdiu/BgyiVShw0CRRrYxjwG/H2LZdmziQ1Pp6a48bhVa8eAJW81Jz7oNW9ayWNmxbkyIABMjkCSAwLY2+nTnQ/coQKnU0/N5CqpWV79sS1cGHcS5YkR7FiXJ08x2Q7rRaOHOlKjx4HCQtLpE6dAqxY0YLUVDWzZl0hMjKRqVPrZNn+aMUJgkgmDHeK84oyPANRIiM/iiLq1FRUej5AX9MytmlTjCVLmshmp+vWtc50QT1gQEU8PZ3ZvOgQp84FkIAdpXlOw4gTWN/Pg9DOUDOVmpjI7rZtCX/5kgJ16tBhxw6Z0McGBnJ/1SpcChemQhamwMFm/LyC7pmPX3prFD3ydNs26s2Zw8yZl0lJUTNnTn1sbL7ukQQSQVInZ6ilS+BLMV7xmuIIiGhRUrbKNho1KsiJEz2wtFTi6xvGw4dSW1UU4c2bCO7e/Uzdul4UbtqUwi9fIooi+7t25eW+fQAUbtmS5suWsbPLOR49knRYCoVgMkySFbauvYF/hD41EMlhlUyTlqWxt6/I0q5d+TU5GTv37FeOQp8/N/g8I9++5cqcOSbO8/9pEETjEKL/x/g70oD/LNRqLdWqrefhQ2lqy41whinWU3/KeEJfvJC8bURR9nHptGcPpf4GkpSOG4sWcXPJEhBFkiIjTUaczSV8Z4WX+/ezr3NnEhX23NNWpHCrNsxaMzjTwNKUFDXW1vMM7uvcuSR793Y2u3128eKOL8O7rScqTsuwIRUZNq/X15+kh5cHDvD2xAmKtm5NiW8QH798GUapUivNPqZUChQo4IRDnB9Pw80kk5Nh37N6dUvOnfvAgQO+8v0//liXadPqfHXi8OHDYCpVWmtw37JlzRk5smomzzDFb/nzExtoWgUAeEBFHubpjqOTDStXtpQJSmRkErlzL9YjhBnTfrW5StcSwQx79sxggkir0fD57l1U1tZm43quXvWnbt0MXyILC4HU1Jns2PFUvlgvXdqM/ftfMnPaOdRakbwE0Zl9eBfxMFjNiqLIs5078b90iTxVqlBp0CDZN0aTlsbv3t7Eh4TIuhgrJycsbG3RCCru2jUhKNGelq1L0L1jIbY1aWJS/c1RogQjsmidf3n2jI01a5IaH4+gUNB+1x7KdjUdu1YqBYKfduLhhg1YOzlRbcwYfD8kUrv2JhISMkjy3bsDqVLFvF5vV5s2sjZKH2MDAgxiZP5OLHRyMomzyN+yA9cSyhIVncLY6S2o17EW66pVI8hoZL9Ex440XLCAFSVKyH8PSwcHJoSHGxC7dGhSU5lrY2MwRTH40SOzE27Gx5W7ag1+eNFK/mwtLRVER0/KNkm6MHUq1xcskG4IAqIoEosDyxit86uTvtPbtrWnZ8+yhITEky/fEl2WpvTY5mFq+qw0JctxwcEE3bvHwZ49SY2Lw65UFQLrTScmQWTQoIrUrJn11CJIWsPvvz/D21chfA7JIHMCGu4erEXl9n8u8gjg7sqVnBoxwuC+4h060PXAgT+9T2P8Hdfvb9YgxcTEcO7cOfz9/REEgYIFC9KwYcN/O6H4v4aXL9NXD9IPIwJ3PpMHTWoq3Q4dYkXJkoT7+sok6dXhw38rQfKZOBGfidKY/E/mVoTf2Jsv2akTvc6fJ+DqVQZUrUr+mjXRpCTw4kUSz5+HUqNGfoOVr4WFwsRF19jZWBRFQkLicXCwMjH2ywylqpXgip9p3le230fHjiaTXPEhIdxduRKnvHmpOHiwycVcFEXevzdtRY8fX4MDB3zx8LBn/frWLBm9mqcXM06OhvuA5cubM3hwJYYMqczy5Xf5/vszaDRaZs26gr9/NJs2tZO3/3TzJoG3b1N+wABsdInvaWkak/3qV7GyA9FIqIsgkLtSJWxz5GDCzp3YupgSvNDQBKPXEWji8ICCqS+o07gknfY9NBmvViiV5K+Rea7csGGGq/20NJEtWx7Rt6/UIlEqBRo02MynT3GgGwUPJB+rGcyRnobVQkEQKPvdd5Q1iv0AaXI07vNng/tSYmJI0U1zlRE2svrlS7RaLat0k0DGiAsKIi44GIVKRXxICO4lShj4c91dvpw0naeSKIpcmz8fS8v2pKYaftZdOhRifbVq0raiyOUD15jzohbGcxz16m1m9+5OtG5t6pJdd+ZM/C9fNqjYVR09+n+NHAEm5w4RmHsxD/5JWgRUnOx0ivvXXQh99szkqb4HDpCWnGwg4k6Ni2Nfly501ws5TofS0pIRvr7s7dgRdXIyzX//PdPx/y4HD7KjZUu0KSnY58lDSpd5JIzPMEtMTdUye/Y1FiyQKunq1FSuzZ1LckwMtadMMfFQajBvHkVatmRnixakxMUhAPYkoJUjRCRIPmpSsPf0HnYs3BaOFgWNOYf/qnvEzxxhsm+H3Lm5MG2a3PZPeHGPWmV20UnXTozy8+PE0KHEfPpEpcGDqT52LKJWS+Dt29i6ueHgXZgmTbYRGZmk04VlLFrauz2gXLOvSw6ygosZc+lyegaz/6n4JoK0fft2Ro4cSawR23dycmL16tV07dr1Lz24/89wd7eVtRPpyOGkpPKwYQC4FSsmESSQJtnOnOHNqVO83LOHhNBQKg8datIa+KuQ7q2jjzp/olRasGFDCjZsyO3ff2d3mza80BZjn9AFURRQKgU8POyoVi0fu3d3xNJSxeLFTRg37iyiCC4uVgiCSFRUEi4uNqSlaejYcS/Hjr3B0lLJ9u3t6dzZ/AXq70TMx4/8UbiwrJ16tGmTgcliWFgCjRtv48mTL6hUGcLnOnU8+fnnxvzyS8YqrXTLRnDxnO5WxgkLRCwtlUybdpG5c6+xZk0rUlLUaLVamUBu3/6MjRvbIggCu9u1kyqOwNnx4xny6BG5ypWjWrV8lC7tzvPnUs6Sm5sNw4cb6kq+hgbz5nFE19JQqFS03bzZLLHQR64clkbvB2p2b86Pa45m+pyvIUcO00DOkJAMc0WNRtSRo3RIr52EPU7NpKqhKIrEfvqEpYMDNmaIHYB97tw45stHbFCQoZdDOkSRKD8/Tu26xjsK4UkAFhj+VlJiY7kwZQrPduyQrB3KlqXv1atY64irpV5KuiAI3IovZkCObG1VLFrUmNrObzm0T7ogisC6p16Yo7eJiWratNnNxo1t6NfPMLIkT+XKjA0IIOL1a3IUL54tj7TYwECuL1xIYng4Zb77jmLZGJrICk2XLOHowIFyxEeFcdP56ReF/L60KDm8+TI5vL3NDq1o0kxbyp9u3GC2SoWo1VKoWTN66g085ChalOFmyJYxCjZsyPSkJDSpqaisrNizx/Q5trYZl9BlhQsT++kTIBky/vD5M7Y5MrzGBEGggI+PdLy6H6pSEOnX2JoNZyVtUtGibgYmnsXjrjOFwwCoUXKFOjzqvpc+oxsbBHIDkpu83gryxe7d1PjhB/JWqcKedu0IffECUaPhzPff4+TpycmRI4nXZQnmbtOTsDD9ST+BgY0VNCwj0HryZixssrYc+RryVamChZMTabqFhG3OnBRu8ucrUv9byLbr38OHD+nXrx/t2rXj0aNHJCUlkZiYyP3792ndujW9evXiSTacQv9B9pA7twMbN7bB0dEKW1sVPw734qf3d3Hx9kYURZKNxPBJkZHsatGCJ1u28O7UKXa3a0fQgwd/y7H1vXYNC72TOMDFadOI/5K96S99JEVGcvaHHxC1Wq7jI/++NRqRoKB4Dh16RbNm0jj399/X4NWrEVhYCMTGprJ48W1attzJ8eOvsbWdz7FjUpskNVVD//5H+bu6x1qtyKFDvmzY8FA3/p6By7Nny+QI4POdOyTrecUsWHCd588lUaUoipQsmYPt29tz5kxPkwmvufOMR4Wl9yNNt2iJiUnhy5d4unTZh7u7rXy9VigE8uVzkCtX6eRI96JS3pQOT54MZefODqxb15qgoB+wtlah1YqEhycakPPMUL5vX0b4+vLdqVOMDw39KjkCsLBU6tzCM+Bgl72KX2Y4c6YXFhYZp7OKFXPRunUxVCoFSqVEuMuX9zD5jC0sBLy8XNCkpbG7bVuWenryi7s7jzZuNPs6SgsL+ly6RIkOHVAZhfgKSiV2OXPyx7FUxmyzYju9WM8AUo1nB0UR30OH5EXGl2fPeLRhg/ywz8SJcsK7lbMzygpNUakyjtvd3Y4RI6riVrSofN9HwYsgshbhTpp0nqQkQzKh0Wi5eDOM24GOaC3tMnlmBu4uX85v+fNzb8UKXuzZw+42bQi4do0F32+jsMNYqrkP5f7RS1/djz4q9O/PmA8f6H/jBlMTEmg+dzp2QqLBd6RC9cL0vnTJNGRaoaDj7t0IRhXHpPBwqaokirw/dYorc0zbUsZITU4hLigIra4a9fLAAVaVLcumWrX4eOMGXbuWIUeODKIgCFKWGUDww4cyOQKplXf799/Nvk6tyZPl/9t7ePDb5r7cvz+Ikyd78PDhYIPJ1yp6lgYnaMkl6nH8WjQdOuzl5Mm3hvs1M7iQHg8U5utrUGU71Lu3TI4APh/dQbGiLvJvxdbWghnrR9Nt8fQstUZpqWnMHricwU3mcPuUeS0XSAkOg+/cofLw4VQdPZrB9++b/H7+E5FtgrRs2TLatWvH5s2bKVeuHFZWVlhbW1OxYkW2bt1KmzZt+D2TL8Q/+HPo06c80dGTiI+fyqwVfeRV7Ydz58wGeRpAFM1mZ/0ZaNLS+HTzJqG6cM781asbRDIAaFNTuZWFWaUx7q5Ywc7Wrfl044bcprEiRbbIN9j2bkZL4+rVj6SliWg00r9btwLp1GmfXIlJR3KyOlsX+D+DAQOO0KHDXgYOPEa5cqsNSJKVvb3J9iqrDBvt6OiM3r5GI2JtbcF335U1G7dhSPAEqlTJS0zMZHbv7qy3DaSkaKhVqwBjx1bD3t6SQoVc2Lcv83arVu9EqVAo6N69DAMHVsTSUsWDB0HkzbsEd/dfKFJkGf7+0V/7OMhRvDiFmzXLtOpiDDtHO77v6EA64SvhEsWw2T2yfhLS5+HrG2aQOJ4Oa2sVqakzeP58GGFh43jwYAglS7pz4UJv2rYtxoABFTh/vjc3b/ancGEXrK2VFCzowrFjPciZ047XR4/KWhxRo+HEsGFmKxMgeep02bePMf7+NFy4kAbz51NnxgxqTZlClws3WL7qsbztF3LzFp24XUdYi7ZubdBSEwTBoCJrnysXw1+8YIy/P+M+f6ZTn5qo1SJKpYAgIAfK5q1ShZarV+Ps7Y1lrq+3xMLCElm2LEPDI4oiXbvup1WrXXTuvI8aNdbL7R1zSIqM5PSYMYZ3CgI7fj/O1KUfeB/vzL1wDzq232WwKMgOnL28yF+zJipraywsLdi/tQkFbGNxU8UxpYcjrQc0xcrBwfRirdVyasQIak2bRr6aNXH29qaomcr5iz17Mn3tL1/iqVDmd6xsFlIs708sKFaJTzdvsr9LF8KePyf44UN2NG9Oanw8jRoVlEm2QiEwa5Z0HrY2M9Rh6+Zm9vXqzpxJv+vX6bRnD8OeP8chd24qVcpD8+ZFsDNaKBRq3Jhmf/yBjasr7xTFAQUajYhKpeDcufcG21YaOBC3YsUgfRJVEMirm/wr3LSppKPTfQfTjCZwFYjMbhpMVfEO5XnCbz1TyZkNa6MWZaby44YI1p9TU6fFYe6ey3xRnqNYMVquWEHz33/HKf/XNVH/Ccg2Qbpx4wZDMnGKBRg6dCjXMzHH+gd/HoIgmGhYsnXy0ftx/CtQp6SwpX59Nvr4sKpMGS7qTMbMZRRZOWXPLGxtpUqcGjmSt8ePs6tNG9nZtSlnsVeZXpT0tUalS2eMzyuVAnnzOpCSYtpYmDixJkql6df7/dmzbGvcmN3t2xOW3qL8Cu4sW8aaihXZ17kzsZFxbN6cUSkNCorj+PEMgW/t6dMNqmsVBw9GZW1NaqqG0NAEhgypJIunBQHGjctcV1OjhmFFICQkHkdHKxo08CJ3zozVl52dBcnJGn77rRlxcVN482YUlStnTPflr1XLYD+ZOQW/ehVOjRobCAmRTp7+/tFMm3Yh0+NLiYszmMz5FizePwHfez24crgxz0IXY2OfdQlfqxXp3HkfJUuupGDBP+jXdCHXf/6ZR5s380eRImyqVw+1Wk2pUjnJkUMiqaIoMn78WQ4efMXatQ8ZOPAo1arl4+3b0bx4MYKKFXOxaNENjhx5ZRBzA9KiIDkqitNjx7KzVSuebNtmckz2Hh7UmjSJ2lOmUHfWLPK07YWFozNKpeHvNXeJIpTv25fQZrNZpvqBH68UJPd3Y+SLlZOnJ+WNJq8UKhXOnp6orK1p1aooR492o3//Cixe3IQlSzLCbSsPGcKYDx9oUN+TPHoxPDmsEti1q6MB8VYqBflvC5IPUbq4H+Dp01AunM189DotKclUcyaK+MXY66o9AiIKPms9svSpyg6a9WyIf8JvhKf9yvwdUgzG7nbtCDRamAG82LWL63PnolSpGP3+Pe3NGIiW7Jz5MMf06Rd5+lwi3SHkYt97bzbXqye/V1GrJTUujrjgYKKikuWFi1YrtfgBNGZ+B7mrZN6uLuDjQ6kuXTIlUfqoNmoUEyMiqN2snPzdUqu1lCtneg7uc/Ei5Xv3pnDz5nQ9dEi2Yui4ezd1ZszAtXBheeBAH24lSuC7bCFNtSdprTlI8Nqf+NnZmUtfMYa++Eb63YooUKNi6+9/j2nxvwvZ1iAFBQVRVK+ka4yiRYvy2Ui8+A/+HhRu1gy3okWJyMRHIleFCtSbNeubvYnM4e3Jk3y6cUO+fW3+fGpOmICduzvl+vSRE83t8+Sh2sjMkpcMEWxkzBb6/Dl9Ll0iNSGBJXXqERiSTJcue/H1jcDT05nz53vL21avno8NG9qwZMktcuSwZenSplSoYDiJ1bx5IebNM3V5jnz3jp0tW6LVaBAUCu5feYm6Tj/KVfGm3zRT/Zw6JYXNdety5U4452mE+Eig1eXm2Nm1MJgS0te/nBw+XAotVShAFKk4YAA3bnykVatdREcnU9wjjZHOx0jwKEfPxZPwaZS5Tqpr19KcPPkOkHaXPqp7flh/KoS+JRhdRllSGt267efp02Fm99P/2jUeb91K4K1b1Bw/Xm7fGGPlynt6ERbpFwDTE78oipweM4aly+5xnsaIKGnRsgjHj3+9CqSP4pWLUrxy5ucUfVy9GmBwMd98NgW3s7/igHTBj3r3joX29kzXu1Dt2PGMe/cySMPhw695/DiYsmVz0bjxNgICotFqRS5fDuDEBqOLmSiyp0MHAm/fRtRoeHviBDYuLhQ1Y1IYGxlLtUIzeRXtgoo0urbIy+7TYWi1Ih06lGDJ3hlsWbCXlZtfA45ExmoZvzoG39eviQ0MJG/Vqga6I3No3bqYWZF1Opxz52SAYhnvtZ5YKjQ0alSSbt1KExAQzeTJFxAEUKkU9OqVMTqvSI3X+T9lXDBjfR9DG/NBto5581KmRw+e7dwJgIWtLQ0WLCCuYH3Wnz8gt8QKWYXgVsTUEuJfRVZhr6JWS8DVq6TExmLt5ETTP/7g7PffSxlojRtTL4sLfXBwvNzMExGIw15uk6dXXRzy5uXTjRv071yI8+el+CWlUsGoUdLizly7yOorf9NvxebNbRkx4iS+vuF06VKSPn3KmWzjkCeP2QBvSzs76s2ahWuRIhzq2VOOdcpbvTrl+/bFqUABdrZoYfK8q7NnU7BJEzwzcfV3UiYSrbFDRIGIAq9C2c93/G9AtglSYmIi1ln0DK2srEj+k6vJf/BtsHJwYND9+7w6dIhnO3cS/vo1Lt7eFGwsZTV9i6Ha12A8TSTo8uAA2m3eTI0ffiAhLIz8NWv+aSGfoFDIXjIARRzsePTI/MUeoH//CvTvnyE27dixOAcOSCGxNjYqVq82LxoNefJEbmV81uRkQ1QXNEeS4cgr7t+cz4oTUw22v7FoEa/vPGcX3+vcvmFzeA6WL/VhwvQbJCSkMXhwJVq2zLgYvDl+XF55CgoF78+eZfhuV2JjJQPF11+U5MGJuuE7+bQiDhodyvR99upVlsjIJI4ceUWpUjlZsKAhAVev8nzXLhKpK1/ctFr48MG07fT62DE+3bhBvho1KN+7N+V79zbzKhmwsTHNkRszxvS79PH6da4tW81ZMj6vEyfesnbtAwYP/tdJuTlIo86GEI2m+zQpKSTHxWGt82wLDY03ec6XLwnExCQbfF6iKLJpzEKMaYH+wkChUhFw7ZpZgjRv+DpeRTsDoEbFsdN+fPkyi4SEVAoUcEIQBJ7c9yddmC6iIDzNHmfvgv8Skbg8axY3Fi0CQaD2tGl41ayK8vp13IoWp8Ufktxh0qRalC+fi9evI2jSpBDFi2dcwNxzOtBCOM1JsRkiCqpxm8plM7d4ELVanLy8sPPwwCFPHjrv2YOr7vi3LPvCmiXncXfQ8vu2CX+LvsS+YDH2falICLkoyhtqchOFrk0rKBTYuLlhqWtxVx81iurZ9CUbOLAiJ0+8RdTtqxLSAk5QKslRogQu3t68OX6cI/36obSy4sy243xOc6dKlTyUKCG1/Jy9vKgzYwZXdVqnqiNH4lHOlMAA+F++zMUZMxAEgYbz51PAqMKbGdzd7bJtaxL6/DmR799TwMfHQChepkcPtGo170+fJmeZMtScMAGlhQWp8fE4FihArJnK387mzZkSG0taUhJKCwuD9vC2DU3pO+g0MWk2NC+r5vvF/bN1fP8t+KYptjNnzuCUSRsl2iix+h/8vbBycKBc796U+8pF719F4ebNKdSkiZz31mD+fKwcMryKPMqaBmB+DYWaNuX9mTPy7bZbtmSx9dexa1cnNm9+TFhYIl27lsrUGC9P5coorazQpqXxRFsOrV7W1q4zUaww2j7o/n2icUaj9zPRoCKXTSLR0ZNJS9Niba3i5f79vDp6lKItW+Ls7U24btImUWvBtat+REfbGuihUrBC1GgIe2HqbaMPQRAYO7Y6Y8dmRMk81wnvi/Gaq9QBNIgo6drVsBL1eMsWjvTti6BSIarVtF63LtPE94CAaObPv0Z0dDL58zsREBCDtbWK9etb07SpaYZVclQUsTiCEUF59ixzkf6p0aO5u3w5iCKlunWTx4+NodVo8Lt4EU1qKoUaN0ap87KpW9eLRo0Kcv78BwCqcgdH4kyer9Ij6YMGVWLGjMskJkrVAHd3W2JjU9iy5TGFC7vg5xeNVqNFQIt7bNaRPlq1OtNIn/i4FF3mn/R9StWqyJHD1qCy2KFPbZYfkb7zIgLl3GNRqr49biHi7VvurVxJfHCwga7m0rRpjHzzBmcvL5RGuX9NmxY2+3e0cnRk2uJulPthMloEKnZqTaEsJouebN3KdZ2TdGJ4OEcHDaLPpUu8eRNB447V6D3y6wHWGo2G/V278vn2bUp17UrTxdm32LhRYCj3br1CRMFHPLEihSFDK/P+5ElsXF1ptXatyYIuK8SHhPD57l3qlC7JrdsDOHfoPtw5iObySwSlElGrpemSJVyaPl2eDtOq1cSd2U5vM8G39WfPpsqIEYhaLQ65zSfcx3/5wo4WLWTH+e1NmzLs+XOOT5jO/VsfqNigIt+tX2KgW8wuNGlpEhnfulWeCrSws2PArVt4lJHE5IIgUL5PH8objdhb2tsz9PFjdrdpw0cjqUxqXByHevfm6bZtWNja0m7rVtnapGWfxoT1MR+Q/H8B2TaKNBdBYLIzQZCzVv4b8Z9kFPmfBFGrJczXFysHh7/MH8X/6lXeHDtG1TFjcM4naW1SUtQsXXqbu3c/06pVUfr2NTUE/Ffx6eZNbv76KxuORnJeU1eX/q0lvyqU03saU6JDRg7c/h49eLRrP8sYRTzSytReSMQ/aAquuSRR5tW5c1k1Yzv+eJGXz1TzCCfxSwiPKcdh2gGCgV2DFckMUWzAVRtGrSlTaDh/PuHhifTrd4QHD4Jo3rwwK1a0NCvaBvh87x7rq1UDUSSI3LyyrEDnX6YzdHg1A2PIHS1aGAS85qtenf43b5KUpGb8+LPcvfuZJk0KMX16HUqUWMHnz5J1h7W1inPnelGuXC5sbc0nt6UmJLC2clUmvGpNMlKlQBAEnj4dSp48jpw48QZXVxuaNy+CQiEQ5uvLypKG9ZkeJ09SpHlzg/tEUWRf58746szjrFxdGXT/Pm7e3oBURbp79zMht6/zftE4UhMTSIuLky9eXvXq0eeS4QRVVFQS8+Zdw8pKSVxcCsuW3UMQwMbGggY13Xh//iJVuEdB/My+V5W1NVZOTnjVr0/HHTtM9BsxHz/y6PQNWg99RLwotVSGt7AwqUYCHNtwhrW/XyKXhx2/7hqNU45vC/hMDA9nWbFiUpizmdN2l4MHv8msNB0JoaGkJiTg7OVl9vf25vhxHq5fT5SfH6FPn8r3axUW3G+2iZMn3yEI8NtvTRkzJutcyGXFihGpJw3IU60ag/RsMLJC8eLLef1actJXCCKdWuZjzzHzpD8daWkaRBGTuJMvT5+y0cdHMuNUKuly4ADF27ZFFEWebt9O2IsXFG7enPy1avNL7fZE3bmErVYi5HmrV2fgrVssWHCNxYtv4eJiw6ZNbbPlVv3x+nU21a5tcJ9rww5MveBNPA4o0PBTNyXTd2U/FP727UA6tNhIeFQKVRUPaeV4h5TojAqpnYcHPwQGGlR+MoMoipyfPJmbuiQDc1BZWzM5JoaDa8/w6NY72vauTbWmlbN9vH8X/o7r9z9O2nr4hyD9OWg0Go4PGULsp080/uUXcpmpKj3ZupWHGzbgXrIkLZYtM/tj7dhxDwcPvpJvd+tWml27vh4SanI8qak8XL+e+JAQSnfvjnsJQ7+QDxcusKFRc/bRibcUxYUoegh7cBe/0PXQIYrrojMebdrE0f79icaJ21RHaWXFyvPzKFurtLyvrrbV2JvUAgUatChpxmmqc5v5TCYVK9KrLMWLuzFzZl1sX5zk+eJZqJOTKdOzJ+02beK7XkfYt+8FGo0Uy/Hjj3WZObNupu/vzYkT3F+1CitHR5otXcrxS6Hs3PkMH58CTJwoaQVOjR7NvZUrDUZ7Czdvzk2v4axa/UC+vtar58Xly/4G+1851Zt2ncqQu4KhZ44+UuPjubPzMLM3haOxcWH27PqULOlO+fKr+fRJIluDBlVk7drW+B46xF494gnQ+NdfTfKvIt6+ZbkZnWP177+naRYTkuGvX2OfNy/WRhOEGo3WQKhvZzdfriYpFAIThhbFZmX3TPebDkGpRNRoaLRokUG+16vDh9nXubPUtnXLh3WHHyhVoxSt+plWYaJCozi87ix5C3rQpHs9g8ci378nOSqKXOXLo1Cp+Pw5lmnTLhIWlsiwYZVp1Ur6TN6ePMnOli0zPc4JERFoUlKkCs3duzjkzk23Y8fwKF060+d8DTIhB0lUrtd/fUUxdpPx+SmVArGxUzIl1mDeZPbHbF6Chg8/wZo1D+TFhjlfp8ePQzhx4g1FirgRHp6gM08VmT27PlOnZhCTo4MGSVYOuvdj4+bGD4GBBq3BhIRU6tXZwP2HoSjQ0I7DlEXyQkqt1pX5d6TzikIh4OxszYenPXlz9Ai2bm6U6NjRoJqVEBbGzV9+ITE8nJf79xsYc160bMm11Eo6LZhIXodUAmOzl/kmiiK5PRYRGpYoa8m6spsSvDLYbsijR+TKxBBTFEXUSUlY2GZUPHe1bSvn0JlDfMcF/HpAqoIpUXNsS12a9/56BfHvxH+Ek/Y/+AfGWOzhQVKEtLJbc/YsA+/eNQiyPD5sGA9Wrwbg49WrhDx6RN/rNzl0yJfAZ69xuL0JOys4ctJwFbJ793OWLWtu1gQwKxz87jteHjiAoFBwa/Fihj59aiBMdsqfH0tBzXfiLrQIko5BBEGl4t3p0zJBKtShG4+WvODdy0Ca5A5gwrGV5K5geLF5kVoYdFlKAC8oRXXhDlrRVLvVvXsZluRrjloXWPls+3YKNW7Mq1eJBqnm6avkzFC0ZUuK6i6Uy5bdYfRoKe3+6NE3PHwYzO7dnag/Zw7+V64YrPjfnTrF9WINDYoPly/7Y2OjIiVZjShKkaWv5o9l7fworJydUSgUWLu6kr9GDWpPnUqO4sUBqSRfe3BPzg3O2NeWLY9lcgSwbt1Dli5tRpHmzVHZ2EjidSQ9T9leppEu+idofdz+7bcsCVJ6qG060kXrx469wcvLmSNHulGmjAceHnYEBMSg1YpotSK2aVFmTCUkQlS6a1fCfH0JefRIJpkfzp41IEgXpk6VLROE6GAqOH6mSb/vTfYXEvCFckUWEZrmCLxiwIarrD8/E4Abv/zC+YkTCceNY3a9iVa6o1QpiIlJQasVOX36HffvD6JChdyS3sfYTl4PCSEhnJsyhY/XrgEQ7e/P6jJlaLt5s0lLJR3np07l4Zo12OfJQ7/r12WX9XQE3rqV8XpGr5uuy0uHViua1YoZIIvj/xqWLGmKq6sNz559oVmzwvTtW97g8Xv3PuPjsxGNRjSx+Jg27SJt2xaTQ6QtjOJGkiIiONyvHx137pSraBvW3Ob+wy+gC/I9SQuZIL248wYoIb/vyMgkllWohiZMit0p3r49XQ8eBKQK/Jb69Ql/9Uq+rQ9tqr52V8TKwdQqJDNotSKh4cl6QnuRGEwrk/o6JH1E+/uzvWlTIt68wbVIEbodPox7yZI0nD+f96dPo9Gdq/RRtndvhu4KAxx1ryiw4pdz/3aC9Hcg22P+/+AfpCMtMZF7K1dyc/FiQl++lMlROs58n3GRSImNlclROgLv3KVDhz106bKfH+Y8Y/I5L16cOIe9aOjQnj55kx34XbzItqZN2dW2LS8PHABRRNRoSEtK4q2eiy6AW9GitF67Flt3dyysLOW2iahWk1NvtV29xkaOPHfghbYES4Oa8VljmlpdtHhO2btJQEtepzRyli5NnRz+6Gt0Zs2qy5Ejr3gfqrcKVyhICA2lSxdJP6RSKdBqRdq3L56t9wxSwrc+Dh+WTsLWTk7krFKD9xQkmIxx4FqVTL2K8imC8BLfk5+PdGcXrkjl+ZToaJIiI4l6946n27ezqXZtOcrAHFxcDEX6trYWWFoqUVlbM+rdO4p36EDRNm0Y9vw59jlzmjzfMW9eKg8danbfSwoUYLZKxe+FCxPyFUPaBQuucfToG0QR/Pyi6dPnMAA7d3YkVy57BAEKFnThte8XUxNHpAtY++3bKZTuHYMkAs6lq6ip1WrUarVJFTSzFsaKmbt15EjCpgtqUpNTUScnc2GKFOFwkA58THAgJjaVyMhkNBoRUZQugHfuSNPBbkWK0Gn37kzft1ajIVznVaaPI337ctOM1ufUmDHcWLCApMhIwp4/Z4kZ6448egsdYzPGorwhDxmTy5Mn18LBIWvtTL3Zsw1uF2raNJMtTWFtrWLu3AYcOdKdYcOqmLQD9+59IZNfc9D3K/OZNEnWt6Xjxe7dXNabdgt+pq9LEwwIYSGFH05OVrI3VY3SVjI5Anh16JAcjBsXHEyYzsU63bxSH1W5iyPSuU+JljHtv74gDH/9muCHD1EqFfToXkp3hFosSaVeZQcsjCooL3RhtsY4O2ECke+kSdnIt29ZXb48wQ8f8mTLFrM+YO23baPdpk04WmvkqUURATfXf81p+z8V/1SQ/sE3QdRq2dakCZ9u3pRiEMys7G30vD2Sokynq+IUzrLrNUAEOfggetKDbexyHEt0rPTDXLSosYGrbGaIePuW7c2aoVWr5bFcQRCklZoo4qLTsOij4sCBVBw4kMTwcE4MG8aXZ88o3r69HOWSmqrG1zc8432LIgvnXWL/IUOn6A0XZxJaZQ5PPllQ0DGWOjH7CH2WRF3lS8pX7ISq0QCaNy9M27Z7dJNsAyjDMzpyEGtHR0p26kQNT0/y5HHg8eMQGjYsKLdUsgN3d1vevMkgqOkZdLGxKUw6V5D3SCL++lykZe63TNnQk2efdnDtmjStIgiQP+EZdbiW9QuJIonh4US8eUPuihXNbtKqVVH69y/Pxo2PsbFRsXVrO1QqBRqNFt9PWopOX0758rmy1JW1XLUKBIH7RqnxcTqX4uj379netCnjQ0Iy3ce+fYaC67dvJdf56tXzsX9/Z3x8NhIQEI2/v4IidKQ7RqRDFFmcOzcdtm8nLT4e/ytXyFWhAiGPHzNbJ94Fyb9IZWWFOjkZp/z5qWZsoqiDtY0+CRNRokWpUiLqVQ1D8DAYt9f/iKpVywiaLdWlCypbW3YbxXuU7t6dnKVLU6pr14xAVD3cX7XKpKX5cK2hPYa+p5UoisyefYW1ax/iVngh3dyuU7yQIwpLS57oBMoWqOnPRtLKt6brxpVUqGBemKyPutOnU6pzZx6uX49HuXKU69nzq88BqQK0cOF1RFGyTti/39QINV8+R5kcpbtBx8VJFZBy5TyoXj3DV8wxb17qzJjBJaOIpPurVlFfR+K6ti/Ems2+RCHpDRuS4QnWeelshjX/ju3bn+LqakP9/KEcNOwi83L/fnJXqICduzsWjo6kZRLm7UgcI1lOGO44EYPTy2rA2Ew/C319oWvRomx89oI6Pnl5dvEuTWs40mzETOYbWQzcXbaMGt8bVjfjgoIIvHnToKKlTUvj+sKFEokzInJ2OXNSVvf3Wr+lM+06HyZaY09Rpxh+3WHq4v1/Af8QpH+QLWjVag706EHgnTvyKKgoisQHBZGnalU5ZdvC1paOeqvcUDOTWhbaJBRo0epdEOwUyXg6awj+MILgSC22thZ4eHy91Pzm+HH2duok+5akt0OcCxcmOTKSKiNGUCQL3YZtjhx0NrO6kgzZtGQUWQVU0dIK8fXrcH755SYAEybU5HqARBLPTZzI7d/S0Kql48j18QITft7NsGHH5TF/EHhGWVb9Xp/S7dvKjrLVq+dj8eJbrF79gGbNCjF7dn1KlXInMVGNnZ1FpqRi795OlC69iqioZCwtlfIY8IEDL3n/MUne7opQn2Mvj2FpbcnZs72YOvUCt28HUqdmbmz+WADqr7c+rBwdcSlY0OT+x1efImpFKtQrx4YNbfnjj+ZYWiqxsFCi0Whp1WoXp09Lq9RhwyqzcmXmfw+AlitXUqhZM67Ono2VszP+FwzNKhO+fEGr0WQ6sWRhYXi/t7ez/P8LF/x0wyTSe/W3Kom1rYskfDZ6jYM9e8pEbEONGgQaiYljAgLovH8/roULk6NYsUxH28cu6sOOvdPwjXJBQGTmoNzSBJtKScMFC5gw8azcok1Hzpx2hIUlUqSIK+7uhhe7Yq1aMfLNG3wPHsTO3R2PsmXJXakSgiDQYN48Qp484Z1e1VRQKnHImxdjZOYUDnDkyGtmzboCwBelwDZVU3x3jCTowQOZIAGo0NCse41skaN05ChWjCa//JLt7QMDY5k/P4PAHzjgy/79Lw0yywCGDavCvXtBHDjgS+HCLuzY0YEXL8JQq7W0b18CjUYkPj5VXkTUnjaNiDdveKozARUUChzyZBislmvdiM1jz3Pwj204KhJwU0vfhVwVK1J1xAgUCgWzZtUDpHPhSRfD75G9h1Rx1gqCCTkq3qEDSeHhciKCBWryEAyAwqiypY/QFy8Mhi8i37zhyfq1DB4+HIZnmM7mKFHCYErWuFUW7e/PRh8f4owXGgoFEW/eSJ5T6e1QQcCjXDk66vyvAOq29yEitQaJsYnYOxuepzfWqsWnW7dQWlhg6eBAalwceatWpc/Fi9kSiv8n4Z8W2z/IEsnR0fzs6socCwte7ttn1iej9Zo1jAsNZeiTJ0xNSMBSb9T69ZEjJqV5G5JpwxGsrJQIArQrEU6zrj70u3IFaycnvL1dskWO3r4NZ2n3cfLILOhOcnnzMuLFCyZGRFB/9uw/NQmnUChoZHmL9DgMB2IZ0dGF2NgUfHw2snnzYzZvfkytWptk8uPdoIFcxRIUCrzq1wcwMF9MR6XBQw3s9vv2PcLLl2EkJ6s5fPg1ZcuuxtFxIQ4OC6hceR1hYQkm+0hOVjNy5CliYlLw8nLm/v1BNGggVcusrAxPRBaWKqx12gZraxVLljTl5s0BLPy1Bd3278UxXz7sPDxo9scftFi1ijabNuFWrBhKGxts3Nwo2Lgxvc6fNwgz1Wq1tCk3mQp1D1Gx/mFalp6EVqvFzs5SJinXr3+UyRHAqlX3+fjx607wxdu0YfD9+7Rdv97kMVt39yzHudO9mNIjISaNLc+lH3/k4owZFM1vaVBlKFcuNxMjIhgXEmKSZZXw5Qta3eraHNEHCH/1ilzlymVKjtJSpWDS3ZcncXhbIwLeDGL62hHy4z4TJhBRqAXGlglhYVIW3rt3kYwceRJjuBUpQq1Jk6jQvz95KleWv+OCIPDdiRNMjoujcPPmCAoFrkWK0NqoWgSmLcECderI/3/zJkL+/DQakffvpQt/nkqVKKHnSp27UiV8Jk40+94NPoekJF4fO4bfxYvfnJH47l2kyX0nTryhYcOtNGy4lZs3peqiFFLdgYSEKazpm0Tw5kV4Bp+jvIUvmzY9wtFxAY6OC5gy5TwgfVZt1q+nVNeuCAoFTp6etNu6VX4NQRBo89vPLA++KZMjgJCHD7mzdKl8OzU+nvOTJuGQJw+C7jMt2qYNlQZLAr1XOi2SPgJv36bvlSt0MyOE/nDmTKYO9eZa3ClmKlMtV60yiBZJr4wDvNi7l98LFiTOTOCyysqK1ATduUZHjnJXrMh3J0+aDLsoFAoTcnRs8GDJP0yrRZOSQlJ4OJqUFD5eu8ahv9mS5u9Atunc3bt3qVSpEspMTkwpKSkcOXKELl0yz4D6B/99+L1gQZPVNUhExNLenrqzZsnTEfZmQg3dihQxESUKSiW1coayx28SIoLJxTw7yBj57YECNVOZiwpJM9Fhxw4TfcG3QhAElmzux+ZeI4nTWFO5ZiGqD5jL/cehRERkVGbCwxPx9Q2jWrV8FG7WjJarV3P2hx9IS0zk3ZkzfL57l7lzG7B9+1M5EqVp00ImY/wfP8YYCLUB2a37yZMQ5s69yu+/G47Fr1hxl8OHXyGK8OlTDG18fqVv/GIEQaDW3AXUrp6Ta7dDUQiwYkULeaIrNT4eC1tbWV9TrE0bipnJr6rQt2+Wn9Gd0/c59jSDDJ98YctvPx1nxJQW8vszF/diHMWRFZy9vPAoV052URaUSkb5mR/JT8fIkVXJl8+R+/eDqOOTB98RLXivI/YOebbw68/b2bL9Bd7ezixf3gJBELD38MDOjJA1OSoKWzc3irZqxXOdd1MiNnzBgxyEm7St9LFi6la+X/CaNCxIJ0BVquTh7t1BBts1b1WCN7/fAT3JeDrh0WhEPnyIIioqidWr75OSomHAgAokPLqC3/nzFG7e3MQuAaRMwO9OnpSE95ksEEp3786TLVtkQt/8jz/kx1q0KML06Rd1g2uGurgue/dm+p7NIS0piY0+PoToNDnl+valnRm358xQq1YB7O0tiI/PmEDcvfs5qanSeaVJk20EBIzFzU3S7qwpX57QZ8/k58dhz2LGkf43WLjwBp06laRSpTwoLS3ptHs34q5dBp9TtL8/qfHxuJcqZfb8d2vxYi5MnUqBWrWwtLc3DIQGrJ2dZdKsTzzTkd6mzsxMMsrPz4SQAOSrVg1nb2+idb8BS3t7qppJMChQqxY1xo3j0YYNWNjaGgQbHx04EK0IaVhiha6ypKsWqVNSiHr3TnbaRhQJfvCAVWXKMOThw6/avGSVEfo17eB/IrJ9ZapRowbBwcHk1IkrHR0defz4MQV1Jffo6Gi6d+/+D0H6P4bkTAxAC9SuTd/Ll7/6/GqjRxP59i2vjhzBNkcOtFot9jlz0nzZMiytMh8HzgovXoQaTHppUbGLHgzLdZHuR49iZ0YADLB582PmzLmKvb0ly5c3p3Ztzyxfp0z37sxt2pSkyEhcChZEUCgoXNhVmvrSkR1raxWFCmUEVYY+e4ZaV9FKi4/n3IQJ9L1yhdDQ8WzZ8gRPT2c5bFQ+fq1IrVr52bs3c7PC8PAkk/tCQuJRKAQ5uDc8TgRERFHk2tRJuKsqk5Mq2InxKG7uIqVLEXa1akXA1avY58rFd6dOZTr6awxRFElJ0RgQu+TEFJPtxs9+xPajwdy40R9bWwtq1sxP166l2LNHqsBMmuRD3ryOqFNSeH/+PHvbtUOrVqOytWWkr6/ZE/DQx49Jjo4m/ssXk4m1zNCuXXHatStO0P373PTz4wY+3KMKDp/i2Jw3mXFmYlny1dDLxRMEbFxcsNZNdbXduJGcpUtz69QDfr5RlCTRGktLBS1uBstVO32kJqeakCOAe/eCuHnzIzVrZrzPpUubcXH7KV5EOKFETR0uc0HTFKVS+tv26VOOevW28Px5KIIAvy+6yJCkX7AhmbvLltFwwQKDhHh9ZFU9bb12LXmrVCHm40dKdelCLr2LdenSObl1awC7dj0nb14Hhg/PPFcMIDEyEpW1NZZmJhH9LlyQyRHAk82babRggdk8R3NQqRS8fTuaESNOkJiYRteupenXL4OQJCSk8fZtJG5utsSHhhqQI4BULDGu0OmHRoP0OSWGh3N13jz8L12SCblr0aJ416+PXa5cJKS3owRBak1ptfhfvmw22+zZjh201xngOuXOTaFmzXh/Wpo2tXZxoYcuGFm/pSdDoSDw5k2snZ2xc3fn2a5dJISGUrJTJ5w9PRn15g13ly8nNT6e6mPHyu7h+jg6YACPdSQ0KTKSA927k7tCBVwLF+Z1nBu7GUEK1hTlNT1sjmNrb01iWJhUUVIqcfb2Jur9e7ntnhwVxfPdu79aLSzRsaNsJmoMcy70/+n4JqPIkJAQmSA5ODjw5MkTmSB9+fKF3LlzyyXp/0b844Nkip9dXExIkoW9PeODg83+MP83cPHiBxo2NAwPLe5lyYN7gzIdZ3327Avlyq1GFKUVqL29JSEh47CxsUCj0fB02zasHBxkh9iscO1aADNmSIaEc+bUl4lWQlgY5yZO5Om2bZIWShDIW6UKA+/cyXJ/w4efYNWq+4B0MVCrjcreKgXnz/eibl0vg/sfPw6hevX1pKZKZng5CCMnodTnEknYsJEBSDMmIi5CLAd+dObq7NmIWi2CQkHuSpUYdPcuWUEURfr0Ocy2bZJdQI0a+bhwoTc2NhZotVp8PMdzO9B0rHjPnk7ydJ4oirx+HUHwnZsoPkrahuvz58tj/+lwzJ+f7z9+JDk6mlVlyhAbGIjSyorux45RqPGfc+uN//KFYXnrsV3TDZAmffLnc+To8e8oXTqnSYXr7ooV3Pj5Z6ydnWm9dq2Je/aAAUfYsuUJGo2IIICPT36uXTONV4gJj8HZfanZY9q2rT09exp6hf1RuLB0QUKqklm1Gk5yhQ6UK5eLEiVyULy4oc/7d2ynCFLr0jZHDiaEhRHz6RNX585FnZhI1dGjyVulCu/PncPv/HkqDR1qdljhX4VGo2FpgQLEB0mZdyU7d6azUYXJ79IltjZoIN8WFAomRkQYtGu/BTExyRQs+DsxMRJBd3a25sOHMTg6WpEaH88CPad/kOpyO+nBW6QqSoUKubh1a4BJ5Xpd1aoEP3xo4B2WcdAC5fv1Q5OWRsSbNwSl/6YFAaWVlUlYraBSMejuXTzKlv2qu/f1hQvlacZ053sAa1dXvOrW5dWhQwgKBVaOjgx9+tSgNW8OCaGh/OphOnGbbs7qajmJqDRr0PkuzRyUB+83O/l4/bp83mq0cCF3fv+duOBgmSRl5cavj4O9euF74ACW9va4Fi1KQnAwxdq2zdKq46/Af7wP0l/tevwP/v0Y4+fH4rx5UeulnTddvPjfRo4AGjQoiEoloFZncPsdB/pkSo5AmmRKXwpotSKxsSmEhSWSN5cNP7u4yGnujvny8b1uYioz1K7tyeXLfQGIjEzi+bHTHGjbQj6RpOsQFEoldb+Shp2WpmHNmgfybbVay+TJPrRqVRSFQuD581B8fApQsqRp+7J8+Vw8fjyU3bufM2/uFSI0bkTgRgCe1Ca91C0gIhApOhMTFkV62Jqo1ZrYM5jDiRNvZXIEcOtWICtX3mPcuJooFAqu+/3CgTWn6T76voGcwcoq46IgCALJt49ztV+/jNK9GaQfz4EePYgNlATxmpQU9nXqxOSYr+uWzMHew4O8vX+ATZ9Jz0H7GBhP+fJrqFPHk7NnexpcKKuOGEHVESMy3Z++7YQgCKjMxIWkpmpQ2djQoHA8F98Z/k5UKgVdu5qGwZbt1Ysrs2bJERddRrfDu0E9QCIE1tYqUlLUuq+YiDPR8nOtnJzQqtVsrluXGF0r8eWBA3g3bMjb48cBKVew+7Fjma7iHz8OYfLk8yQlqZk6tZbZaBJzODlsmEyOAEmnGBiIY76MiTGvevUo378/jzduRFAoaPb77wbkSJOaSuCtW9jlypWtCqGTkzXXr/dn0SJpUGLSJB8cHSV7AUt7eyoOGcLDNWvk7QWgG7vx+uUI9gW8adWqqAk5SktMJOieoWWGAXRTnN5Dp7N++HoSsKU6t7EVkyjbsyePjLRyolrN2ooVye/jQ+/z57PMpqs1ebJcAVzg5ESqTlOUHBXFq0NSVqOo1ZIcHc2bY8eoMnx4lp+P0tLSxG/K0t5e9qZLs3ICnUBfIQhYe5egzaQN7O3UiYhXryjWti3Vxowhd6VK7O3YkZSYGIq1bZvtWKsO27bBtm1f3/C/AP9dkvJ/8L8Oa2dnpiUk8OrwYT5ev45LkSKcHDmS40OGgCDQ5dAhSrRt+79+XHFxU2nWbDtRUUls2tSWihXNlKr14OOTHxcXa1lQnTevA7/9dgu3j5fQ6JG/2MBA3p48SREzydb60GpFBg8+xoYNj1CgoTXlqMBjQDo5ttmwAe8GDXD28spyPyqVAgcHS2JjU+TzWaVKefDxkVowNWpkvVosXjwHVavmRa2B9JmLBOxpOKgz59bHo9XttEJpV6oNasfzjWtR61ao1X/4AYDId+94vncv+WvUwFsnLE/Hp0+mxOTLlwyhqFKlpMuIloThzujRp9FqRVq3LkrLloZWBY917YbMyBGAd+PGiFotH/VCYoEM0agOH69fZ1uTJmhSU/GsU4c+Fy9muk+AXuPasmT7Gp2RYcZF4+rVAA4ffkXXrtl3mp440YejR98QEhKPra0F8+dnVEZ27nzG+NFHCI5QAwLVSuXg9wk5efE6kgcfbXFytWPnzg48XL2Ka/PmgSBQa/Jkqo8ZQ92ZM3ErUoSwly8p3KyZQYCpk5M1hw51ZcSIkyQnq+lXV4vFLsmCQmllRac9e4gNDJR1KQDqpCSZHKXj2JAhjPv8GWMkJaXRqNFWoqKSEUWR1q0/8fr1SLy9TT2zjBHx7p3JfQnh4TjkyYMmNRWVtTWCINB2wwYaLViA0spKblsCpMTF8bu3t0yOK/TvT5sNG776uiVKuLNpk/nzTuvVq8lRrBhndd9vgFrjf6DJ+MxbPCobG1wKFSLa3998BQkIDU+mf4tDpJALyMU7VSmunmpHoUYNUVla8lBHANXJybL4+dONG/geOkSZ7l93bAfpfJuaHp8jiigtLaVpQ93v2Nw0orl9NFu6lNNjx4Io4lasGN0OH5YXkOPH15QnFJ1drOnRowyuns4M1WuDAhRs2JCJERGkJSYa5G/+f8I3tdguXryIq6ukt6hZsyZ79+4ln26lEB4eTuPGjf/JYvs/jp/d3EiOzJgqERQKZv6Jv/nro0dJCA2lbM+ef0vytzm8fRvB2rUPePgwmIsX/eV2Vld244U/16hNAnaMm9OBXtNNnZ71ce7ce5o02S7fVqBhMguxRFqZ9bt+nQI+Ptk6rpMn39Kt237i4lLp21calVcoBOLjU3nxIpSCBV1MRr318flzLEWKLCMlRYMgQI4ctvj7j+Xevc+sX/8Id3dbpk6tjaurDVEfPuB36RI5ihWjQK1afDh/nm1NmsgnYONYj0+fYihadBnJydLfWKkUePp0mNmKVlhYArGxKRQs6GJSTT7cty9Pt2+XS/jmLAVmaDQE3b3LBn0tEJC/Zk3665Em47iKsr17y3oPfUS+f8+NRb+QphFxaNaXI5ejWLnynsFL79jRgR49ymT20ZpFYmIab95E4OXlLPt0HTv2mjZtdiM1dDKOb+vahvQalEF2rs6bJ4Wf6uG7U6f48vQpb0+exKtePer++ONXq/EJoaHEf/mCe6lSKBQK1Ckp/JY/P0kREYiiiEKplCJQ9GCfJ48BQQp68IB3p07h1qInpSsZfn49FHsoqvXFvVQphpsxn0yHcftMaW3NdydOsLdTJ5KjoijVtSsdtm/PdLz71Jgx3NUThwNMS07+U2GtxogLDib4wQM869TBKhvn88h37zg9dizxISF8efpUtg5Jh2W/X5i6yZCsv7zbjRJVMqpemtRU5tnaGpCs9tu3U/Y7Q/+0zOB/+TJ72rcnOTpaqrbqiJKgUFB11Cia/vZbtjs1iRERqJOTcdSRKq1WS1hgOC45nbl+8zMfP8bQtGkhcuf+v0F+/q1ZbAqFQjLfM7N5+v3/hNX+38ccCwuTE292s5TSsaluXT7qph0sHRz4PjAQ63/x81artTx6FIyLiw2FC7tmuW3Zsqt49iwUkC74pbVPiRId+YRUrVGqVDx8OJgyZUz7+Ok4cOAlnToZ+idN5GdsScLSwYFJ0dHZCnhOh1YrkpqaIYL284uiZs2NhITEY2Oj4vjxHuSJe0rc58+U69vXRAx78+YnFi26gbW1ilmz6lG8eObtRn2srVSJ4IcP5dsKCwtmGHmm+PlFMX/+NVJSNEyfXoeiRd0MHl+27A4XLvjRqVMJevY0P5UTF/KF0XXG8uZDHLXK2dBjTGuODR6MJiWFUNwJr9Cbmn060aqiyPY6NQ2eO/LtW9wKSy2fjzdusEmvugIZGhx9pMbHMyJ/PbZHNyIZaypbveRK8FqGNJ7F9gdSZcSDIGrWKIBF3kIUCTmF/bMj5K5UiU67dpkI/YNevOb7jr8QEqGhZ/9qDPrZ0PF73Lgz/PbbbRPeN2NsSWb/ljEW/2uuXCR8+WKwTc4yZbjzLI4TtCQVS9p6BbDV74D8eHRAAOG+vuSuWDHTAQSAL8+ecW7iRFLj46k1eTJPt23jxZ498uM9TpyQK6M7WraUvZLUKNnoPocvkbq2iyaFUSzDESkvrFi7dnTTtXpA+q5+//0Ztm9/gpeXC3MHuuK3aja2rq50O3qUFcWKEf/li0yCs4o6OTpwII+MKkaTY2MNKhZanfv0/6aHzqc7d9hSp47sH1SkTRvy9B5P/U6SJ5eAiBVphEVNNRl1v7FoEecnTQKkqdq+ly9nGqNjDlq1mvOTJnH7998NiFbx9u1pv20blnaZL5YyQ2xkLD5FZvI80gUbIZmty2rSaUTrLJ8jiiJJERFYOjj8JYT178a/lSAFBARka4eenllPBv0n4/8iQdJoNNxZuhRLe3tyV6xITEAAXvXqZanXyQobfXz4dPOmfNvK2ZnJZsZgvzx/ziYfH1JiY7F2cWHQvXu4FipEbGAgvxmJDGtOnEjjn3/+U8cDkh9Qw4ZbuHlT0q0sXNiQSZNqZbp9ly77OHjQVw6HnTq5BnPn3zTYZvny5owYUTXTfcTHp1KlyjpevZJaHU3LamgWu42cpUvTac8es9M834KRI0+yevV9WQzsZR9LnzipsmNhZ8fYjx+xdc2aCGYH62vU4LOeAaLSyorpmXiwmMPgwcdYty6DYM2f34ApU2qbbDdlynkWLrwha8dOnfqORg0KcHnzEdqMfU1qqlZuz/WxP84zPVM6h7x5Ge3vz+uDB9nftavJvgu1aEHPEyfk2/HxqQzsvpW9xz8hIpBe0Vk5uwyJa0bj9zmFZKw5RTOCySNXtAazljzKMEp17UrHHTvk/YmiSBWnfjyI89LFKwjsX1WVDkMzDC937nzGd98Z+t0oBQ1BQePImSujpbSmUiVC9AgpgODoxrzYwbrYE+l4L+5rQP1Otbmz+yg9ehzkk5gXb9Vnjl8ZTZGa5p3MQaoS+F+5gjo5mUJNmvDx2jX8Llyg0qBBBhOCxlW4BPt8RHdfSVKSGtvtI2TTQjAloJs3P5anyJRKAW9vF6ZOrUXnzqWwt7dkrrW17E0mKBQ0WrQoUzuEmE+f+KNQIblak7d6dQbeuiU/fn/NGk6PGYNWo6F8375UGzUKDzNh2OY/C5Hnz0Oxs7MwmDTNLrRaLYE3b2Lj5iaP3M8euJxlW/ywttDyx2+NaT/EfCs+4s0bEiMiyFO5MkqLb5/WvbtiBadGjTKotAoKBbWmTKHB3Llmn5OWnMydeyGkqUUqVMjF/v2+qNVauncvzax+f7D0UCIgIKDFzSKesFTT+Jl0qFNS2FSrFkH374MgUO+nn6hr5Dr+n4Z/q0j7v5n4/H+FJjWVhU5OJqZjtu7uDH7w4KvTEMZ4uGEDwY8fS1EeCgXOBQsy/KX50fQ97drJBmbJUVHsbttWKtWbqaoEP3zIQhcXUmJiUFpY0OTXX6k6alS2j+vo0dcyOQKYOvUiY8ZUNxhJv3fvMy9ehFGnjifLl7cgLi6VR4+CadasMNNm1Gfv/te8fx8pa1TKlct6BNne3pJ79wZx+vQ7HBwsady4EArF7Cyf8y0wXrek6KV/pyUkcHXOHJr99tu//Dqt161jbcWK8gUqs5NvZti1y7D9smrVfbMEae9eacxfrRZRqRQcPvyKZs0K8zrNk6SkjO/Q0aNv2Ju8hed798rTPHGfP7PYwwOPMqatMJdChQzIEcCkSefZdzLIILoDRJIsnHhuU5N7iOTkC0HkS38IEPhIAXJrQogy0tVoUlN5FpcHqW6gREDLqaMvDQhS9+6l+fIlnm1bHhH2OZyi+VSs3THQgBwBtNu0iW1NmpDw5QsKlYrqY8dy9/g1UmMNV+jP7r6jfqfajB99FD/RExEFb9WefD9oJ8dfmCdIWrWaxXnzkhgaKt/XYfduGsyZY3Z7fTiLUSxaK1UUftpumJnh3cgwhPTDhyjZgkCjkcws+/c/yvDhJ3j7dhTVRo/mps4p28rZmVJ61i+atDSebttGQlgYpbt2xdnLi+8/fuT+qlU45MtHxQED5G3jgoI4OXy4rFt7tH49j9avz9LWIB1qtZa2bXdx8qT0t5wxow6zZ9fP8jnGUCgUBlowgJnrRzLT1LvUBG5Fi+L29c0yRaVBgwi8eZNnu3ZlkCRBIMZMoUIURU6NGsXUFYE8QcoLdHCwlGNWflt8nZLCBwQ8dDOtChLUlkzvvRSVSskPv/bB0dWQUNxdvlwiR9ILcHnmTD6cPUuprl2pMmLE/5uBrGwTpI9mHJTNocBXjKT+wf8ezk+dataRNTE8nCdbt1LHyDk4K8SHhXFMb8RT1Gho8uuvqDIpeycaTUgl6E7ajnnyUKhpU96fOQNILTa/8+fl7TSpqZwaPZqCjRvLyfHfCuPf7saNjxgwQHKstbZWcf16P06dMtQEnDjRgzFjThESksCIEVWoVcv0exwZmYi1tQpbW8mE0t7e0iTu4K/A/ftBFCrkirOzNRERSVhaKGmYahi38erYCYKe+9Jy8SJ5Rf3h/HkerluHrbs7dX/8ETszxp0AIY8fE/PpE561a+NRujSTo6Pxu3QJjzJl5CrD461bOT9xIkorK7oePEieSpXM7svR0Yr4+IyWXLpZnzGKF3cnICBGd1HVym06/ZW9QiHg4WGHpaVSJkfpSIiM5taDcBSKvHhoP6NQKqkwYACt9aaV0vH4cbBJYKmrkwUKazs2vyuFgJYXlMKGRFKwliNv8ipCQAtljPLBVFZW5LVPwj/eAhEFIgqqNMgQdl+9GsDnz7H06lWO77831E8Zw6NsWcaHhKDVC7utMuoTKzznEYLU0rUmhdZ9pIt5RJqdrgomGTaEJWRugHrnjz8MyBHA4d69KWOm6pazdGlC9bRFDfTy2747e5bdrVujSU0lT5UqdNIZZKajXbviLFx4HcBA9J6crGH8+HPs2vUzXvXrE/f5M0VatDDw+jnYsycv9+5FUCi4sXAhw549wzFfPur99JPJMSZFRpoV9V+cPp2aEyZkOT5/8aKfTI4A5sy5ypgx1TL9fv6nQWlpSYcdO8hTpQpnvv9enm4sbUbs/f7MGc6t2M4TMrLW0skRwJt3MZTmBpa0IgVJM6dAy7xt0YDAjv0zeRW5WIq/0SHGzPX+4/XrfLx+HWtnZzmT7f86sk2QvLy8zLJGfadWQRDkCZl/8O9BcrKavn0Pc+LEW3KIGtrhhDNGk0ii+M1j+m+NVukgmaEVN+PADFKopn4YZhk9kWLP06f5eP068SEhxAUFcdpMyOe7s2ezRZC2bXvCyZPv8PJywt9fep/e9jG8f/SK3MUK0aXLPi5cyJjuSUvTsG7dQypVMpx6K1zYlRMnzAsptVot5cqt5vlzqc0wenRVE1frrPDuzBkO9+5NQmgodh4e9Dx9OlODxvXrHzJokGQiZ2dnwbZt7Skk+HG25wd5m2eU5sj7tmjeK6lWbgKnAtaREh3N9mbN5HiAz3fu0PPsWfyvXMHa2RnvevUAuP3775wZOxaQTOoG3b+PQ+7cFNXLq/O/epUjepqRdVWqMMUoQiYd+/d3pkGDrSQnq3F0tGL//s4m20jvqzV9+hzm+fNQ2rUrzqhRUvuyadNCzJ5dj2XL7pIzpx2bN7eTzic6OwKQNDJb6MOneN1kHzcZUCU208pI/Wqu3LwZKO+iR4/S/PprEyZMOIdCIaDVSoTI1VFFhRpeRMZp6VTHhrKKnuSpXJkS7dsTHZ1MQkIqefNKK+tT18fwXdsNfI7U8F2XolRtUIau7bfi+z6eZ8+k70XOnHY8ejSEPHky9DOiKPLp5k1p4q52bZkU6etpnAvk56H/T0zts4KkFC0TF3THu5QXAANG1mH83OcIaBFRMHhcE7PvGZCtKvRhTDTTMezZM67Om4ffhQvUnj6dgnpC68KNG2fZZq1YMTe3bg3gwAFfFiy4bvK4IAiyu/eznTs53K8f2rQ0POvWJUBnLiuPrR8/TuWhQ032AVKeWP5atfh03fA1RK32qxUMdZrp+05LSQXME6Tjw4bx+e5d6s+aRdHWrUlLSuL20qXEBQVR9rvvTPyw/rdQbcwYnL28CHn8GO8GDfA048qdGB6Okqy1v7kJYQQr+OxYntwNW7I0Q1LGuzgXljTuwfC9y+VFVdWRI7m3fLkJQVWoVHy6dev/DUHKtgbpSSY24aIosnv3bv744w/s7e0JNVrB/Dfh/4IGaf78a8yYcQmtVkSBFm8+0IvtBttYOjgwPiTkm4SD8SEhLM5tGEjZ5eBBSrRvn+lzri9axIdz5yjSooVJknQ6wl+/ZkWJEiZTTaM+fMD1K8Z227c/pVevQ7qLnoiSNDSk9/sziLv+rpVKgQkTarJgQSPTHWaCBQuuMXWq4Sh5VNQkeYIpK3x59ozVRpoJlY0N08xczOLjUylRYgWBgRnZSoMGVaSN4gQPdJWSVCz4mUloUJKurZnTNISmbctyMgt/FGsXF8YFBbE4d27Z+FNQKGi4YIGJO+7eTp3wPXDA4L5Oe/dSqrN58gOQmqrG0tL8eksURT4/eMSYATu5/VpL8fxKdl+aiHs+8xWuDxcusE2vrfOaouyih8E24eETzFYDoj58YEWZstxOKkWgmIeald1ZcXeNFB2z5Bbjx59FFKXvQZ8+0sTgl6dPOTJgAAlfvlB11CjuJJdmwo930YrQuXNJdu3qaGAoGfDsHSXKbyRZa2GgcRIEWLy4iVxFEkWRQ7168UynZ/Ju2JCep09/s9j46MFnXD3/ikYty9CsZeaLhtT4eH52dTWYvirSsiU9jMb9/yw0ag2H151Gq9HSbnAzLCwt6NXrINu3S87VVlZK3r4dRf78Ulvxy8uXrC5VymAfgkolXXR1F97ux48bkHNjqJOT2d+jB6/1ROKOBQrwvZlWU2JiGkFBcXh6OnFu0mRG/faFDxQCwIfrTBpSiNarV5s8b0m+fMTpTfc1X76cD+fP8+boUTnPbNC9ewZO438ldnfoIL8/16JFGfX6dabbxsencvfuZ/Lnd6RIEakKmxQZyepy5TgaWIjLSJXHmjXzc//WB7QiNOQCNZB0hnmrVaP4tKXUbnNG3qeAlvGKpZSqW8nAMiPk8WMuTJtG2IsXUkVJdyLtsHNntm0L/jfxb9UglTPz5Th//jyTJ0/mzZs3TJw4kXFZ5BL9g/8dBAREyy0mLQqicTbZpu7Mmd9EjgDsc+Wi+cqVnP3hB0SNhsrDhmVJjgBqTZxIra9Y0+coVowBt26xpUED2YyyZJcuXyVHAGfPvpe1EIAeOQIQzIbTu7raULq04SSQVivi6xuGq6uN2ZHXoKA4k/uiopKyRZBu64VapkOdlESUn5+Bs/GjR8E0aLBVF4GQPioucvHUc/r9kDFGnIYFGqOfbYqlk5ztBMjVFy0CCjKiAs5OmIDKxgZiYkCUIklUZqpCnnXrmhCkfNWqZfk+MyVHWi37Ondm3cEvnKcRIBD8Tkv3Bos4/8Y00V2TmsrNX381sAJQYJTlJ5jPeAN4e/IkiYlppGCBA3Eo719D1KxEUKno0aM0799HcuvWJ8qWdGXaEE9EUWRnq1bEBQUhajScmjiVBUxBi9Ru2LfvJb17l6NVqwxfp93TfydJazrkIIrIhoUAb+69ZNIOCGY8RXlDywsn+HTrFp61TTVaWaFNhzK06fB1KwJLe3smRUezv3t3Qp8+pWyvXjSY/dfo4rRaLbW8J8iu6cXHHWRCDX8W/LyQYcMq8+ZNBB07lsTBIeP9HzBDqEW1GitHRzRpaVQbPVqeqouPT+X163C5tZwOlbU17bdsYWdEBB+vXsXGzY2uRt9NgNu3A2nWbDsxMSkUKeLKxFIh9GQHweTGgjRyEkZMgPnvaJyRN9SFqVOlUFidoSqCwPuzZ/8WghT64oUB+Yt884bzU6fSyCiuI/7LF47N+Jkxu+wIi5feR+PGBRk/viYNGnhTqGlT6m3YQCUeYJXDgykHb7A4T160olY+B4AUYpu7QgVGtLrE6uOJKNDSgpPYaWP5bOSqn6t8eb47cYLUhAQuzZxJuK8vxdq2pXS3bn/55/Cfij81N/nw4UMmTZrEtWvXGDhwICdPnpQjSP7Bvxddu5Zm/fqHMnGonT8SAqWLjaWDAxUHDqTGV4jsjV9/xf/CBQq3bEmVYcPkXn/VYcOoOsw0w+pfRb5q1ZiWkEBCWBhWjo7ZGim9e/kl+3Y+RKPJqKQYe9CYQ2RkEj17HsLSUsmnT7HMmHGR5GSNVHFTCKxc2YIhQyobPGf8+JqsXv1AjgDx9HTKlokekGneVLKRM/S0aRdlE8sMCKSEhlB15K8E3rrFy/37sRMTKSW85IUoaZ9chGhGr5yKez53Ou7axd3ly0lzyMXc004Ekp88BNGdXTgQT1JkJK3WrGFf585oUlLIV706FfqbxmRUGzWKl/v3S1YMgkDVUaOyDKlMDA+Xc9KMqyMB167he/AgX+iAgCiLRF9/Mt/6OTZkiJxZBboqV538xDsV48gRaWW9YEHDTMmpk6cnO+nBR6TjvSdUY2JwAsePv2HkyFNotSJVvVIpsGME23Zosc+dm/jgjIktLQqZHKUj/NMXIIMgeVjFY4ETapS6S49URWrRogi9emVcRCfOusd7CiGi4BHlcSGKod84Lp2alMTtxYtx9vLKVlvD0taWHkbBqeaQlpiIysYm22Lb68duG0TKvEr14vaVs3yqUYORr19Ts2YFg+1DHj8m8sMH490A0t9o2NMMd/bXr8OpVWsT4eGJODhYcv58b6pWzTBEtHJwoN+VK6TExmJpb282++yHH87IupsPH6K4X70ZudlOXjJcvmvp4jy+Bv0Kl3SHJElYU6kSqXFx1JoyhQr9+n11P6Gh8dy/H0ytWvlxdDT/ff1gxuQ0vQ2pfzxbGzTgkK8b4WKG0PzcuQ+cO/cBe3sLOidcwBNwIB7C43l16BB2Od0z8uMAhaUluStIf6flx6Yw5sxZtjdrhkIAQaHEq25ds8doaWdH08WZT7z9X8Y3EaT3798zdepUDhw4QJcuXXj58qWcxfYP/jPQoIE316/358yZ95QunZOOHUsgCDu+/kQdVlesyBedo+q706eJePWKFsuX/12Ha4DMRMXGEEWROo12kWJAjiAzclS7dn4CA+Pw84tGoxFRKgW2b3/K0aNvDLbTakXGjDnNwIEVDSoUnp7OvHkzkvnzr5Ejhy0//VQvW8eZnKzmQ+5mPLO/TpH4O1gjESArJydyG2mQJPKlX/KSyF5NV3+UFhZ03ruXtKQk4kNCmOyRi1U/7iI6IoHBMwbLrarS3bpRuls3hg07TpBwH0SBYHJzjsZ0EA5j7eTE4T59cCpQgMaLFlGsTRuzFxuAfleuZOs9+h48yP5u3dCmpeFRtix9r141cEpO1zAU5APPKKvT0gjUrmBeA/dyn6G3lEfZsnTZu4e+OXLw9m0kdnYWsi7IHNx9GhJAxhh9imjJuXMfZJdvgLv+lnhTlBK8Ij44GCdPT2I+fkRQKLBGQzXNbe4gaU7c+UJpxxCD12g6eRR9j3bjQkp1NAjU5Cb5+UyzSuOxtMwgV+/8E+RJOgEQC1YhT5WsQ1/1ER8WxuJcueSL9dFBg/g+ICBLL6SvITEyktVlyhAXFITSyooex45RUC/nTqvVcqRvXwKuXsWjbFk679uHysoKGzvTC7wSyZ/o0caNNNITeaclJbG1USN51N8Y7iUNBxsWLLhOVJSUy5eQkMaMGRfZ8nMZ7q9ejZWjIzUnTMDO3T1Ls8fExDSDyU+FvTODHz3iQI8eJEdFkRAWxpZ69chXvTr9rl+XPco+XjfVUBmXnm1z5uTM99/L7+do//44e3rirafbMsb27U/o3fuwvCtLSwWVKuXh4sU+BtO15fv148zo0QbPrT11qsHt+JAQwl6+RMDQH0x+PD6Nw0J7xghL5WO3cXVl1Lt3LM2fn+SoKFQ2NgzVI6UARZo2oeu+vTzbuRMnT0/qzZqV6fv5/4psO9kNHz6ckiVLEhMTw/3799m5c+f/Gjny9/dnwIABeHt7Y2NjQ6FChfjxxx9J1TO08/f3RxAEk3+39Txe/r+gRo38zJpVj06dSn7TOGZsYKBMjtLxxIxDcWJimnxC+3fgjz/ukKJR8bVqEUjdpgULGlGtWl6UygxNkoWF+QkYrVY025rz9nZh3bo2LFjQKNN2kvF+GtZazeBRFzkQ34BdHtPJXbcRFQcNYoKZDLTp0+vI+7VAQyXu09NiP/O3ZOSCWdjYkGSVgzPnP9JmWHtmbRxFHu/cJvsKDo43mHwSPYrQZv167q9aRXJUFFHv33Ni2DDTcb8/gZMjR8qal9Dnz3m4bp3B45516lC4WTPK85h2HKKyYwAjW1mx+aJ5TxVjV/VCzZph5+6OIAgULeqWJTkCcHS0xtXVBoUi4715ejqh0Ri26dR6a8MCtWrRcMECqo0ZQ5+LF2mhPE8/NtKdnQxiPQXKG17Qc1esyK/vL1EsRzIBFGQXPblFDe6tMAyUregoTQIp0CCiIF/wpSyP3RhH+/UzqGRokpM5nYmWL7s41LMncbrsNE1KCnuN2mCHe/fm6bZtxAQE8ObYMVkLVqVRRTpWyjjfVuYeHkiGl8YDB7GBgVJ0iN4PSWVjg6BSkadKFdpt3Wqwvf7EoSiKJMcnsdHHh4fr13NryRK2NmyYZUQNwMyZdeW/ub29JSNGVCF3+fKMfPlSSqnXmU0G3rrFRb1K0tuTJ+XsRJBsCYx/Fxa2tiZk77lRIK8xRo8+bXAeSU3VcutWIJ07Gz7P2t6eXhcuYOXkhIWdHY1//dUkL8/W3R1bd3cqKx7jjqEhajrUtq6ybKLMd99RomNHrOzsmBQZyY+iyLTERNlsVR8lO3Wi68GDNPvtN4OFjTE0aWn4HjzIC91C7f8Lsl1BWr16NdbW1oSGhtLfTFk+HQ+NTND+Crx69QqtVsuaNWsoXLgwz58/Z9CgQSQkJPDrr78abHv+/HlK6QkD3dz+FTeKf2Bj9Plt3vyYwYOPkZamZcCACqxb1/qbSFh4UAQzBqwmNjaFH+Z0oFKD8t98TIcPv/rqNoIg6Y1++qkePj4FKF48BykpGh4+DKZ58yJMm1aLQ4demYyDz5lT3yCQ9M/i3pl73HyQQYQCvmjw3raaxo0Lmd2+Th1P3r8fzcuXYZQs5owi8hNO+fNj4+pKQkIqFy74MWXKBXx9wxBFKcPt6NFuNG5QgJu//II6JQWfCROwcnSkf/8KHD36WifjEZi6tBdpERkVIVGrJV43av5nTOz0YeyqbnxboVTS/fhxgh88QGVtTc4yZQy+L+/eRbJt2xNcXGwYMqSSwWNyrpUREsPD0aSmGoyPp0OlUnD8eHcGDTpGZGQSkyb50LBhQSZN8mHhQimuJK9NDMWSpHadQqWi/pw5BnqwAbducmrUKFITEqgzfRs5jYTGAL7PgzkVnnH/NepQ2zbSYJuaiaeJQ8EXPCjEewolvePVkSOUaNfOZH/G0Gg0+Jlpvxi7cBsjOTaWM2PGkBwTQ73Zs/EobZgzlx4CnI40o5w7/0uGJC5Yb8G0//48Xtzx5dHGzdxZd5/7YkU6tS9CaSMbAWdPTxzz55eJmMramlFv3+KQ25TMA4wfV539Ox+QhAVKMZXSr1cbTOSFPntGmK8vt3/7jWh/f8r16UO5XoZRQB06lODlyxG8fh1O1ap58fCQKpSiVmuSrRb2KuP8kaN4cXnST1AqUVlakmJEhhrMm8fhXr0MSFpm7ah0pLfjjfHihSnBKdigAZN1gxPmoLSwoNe5c5wZO5ZZMXcRmg1n7ek0Hj8OkUnYxMl1mDx5MuqUlD/ltJ0VRK2WnS1b8uHcOUByB+986gKPnobj5eWcbbnBfyOyTZB+/Eoq+d+JZs2a0axZM/l2wYIFef36NatWrTIhSG5ubuTKRPfxD7KGY7580iiurr0iqFT01NODJCamyeQIYMOGR3TtWirTi346goLi+PQphtKl3alWbC5+8Y6AwKFGe3j22JFCZb+tElmypDvXrn008GAxhihKeqPx48/RpUsp3N3tOHjQ8ER+6VJvRo48hVqtZdCgijRtWthsxtifQdTDG3I7Kb3SlcPNVBCtjzx5HDJGxPNL/kCPH4fQsOEWIiMNiYJGo2X+/Gu87D+NeJ3O4M7SpYwLCaFNm2LcvDmAGzc+Uq1aPmrVKkCUnx3n7exQJycjajSU6Njxm8iRJi1N3l7Uarm/ejWBt2+Tr0YN3hyVPKYc8uUzq2lSKJXkrWrqSh4YGEulSmtJSEhFqxU5deodPStUwO/iRUSNBlGrJWdpSVg9ffpFYmNTaZzbn5iN00EUqTR4MC1XrzYh6DVq5Of5c8OJvgULGtGxY0miopLw8cnP03WexH78SLUxY0z0VXmrVGHgVyrPMZHxJveVHjTC4HZ+n5pUeGY4NXV55kzCX77EZ9KkLH18tjdpgtrMSj0rA1WtVsuyQoVIDJfc3V8fOcLIN29wLZTx+6w0dCinRmQcp5dROLF7yZIysQFMwpZLVSvBHxtrsVaUqhUnDkHh6x8NfMOUlpb0u3aNa/PmoU5OpvrYsZmSIwDnuPeM0iwhlJzkIBz7iAzSJigU2Li5cXTgQElErNXid+EC9h4eFGpiaHlQtKibSQyOoFBILVS9qbcqejrKsj17Ev76Nc927EChUhH1/r38mMLCgkH375OrbFks7ew40q8f6uRkKgwY8NUprkmTfJg+3bRi2KDB14dPzCFXuXL00SOvQ+dL59WzZ9/j6elE/frSfi3/hjiW8FevZHKUhDVL73ky3OM31DqX/507O9KtW/YDn/+bkO0x//80TJ8+ndOnT3Nf5/bp7++Pt7c3+fPnJzk5maJFizJx4kTaZOLTA5CSkmKwWoiNjSV//vz/1WP+fwXenztH/JcvlOrSBZVlhjFdZGQSbm6LDLbdt69zlmaJBw68pFu3A6jVWvLlsyMw0HDF6mkbTdvGuajYvimxsSl06lRSniRrX3EKxx6pUKBlUq+czNkq+SXFxqYwZMgxrl//REqKmvDwRLNtsXTcvTuQKlW+noIdF5dCjx4HuXTJj4oVc7N3b2dy5fo2v6h0vDt9mgnNJ3OClmhQ0tzlCccjvy6eNUbz5js4e/a9SaVLEKBWRWcaPhhrcH/T336j+ljD+9IR/vo1z3fvxi5nTioOGIDSMnPTQbVajUqlIi4oiJ0tWxLy+DG5KlSgx4kTPNm6lQt6TsbB5OIZZfDIacu2tzuwc8zeCnbTpkf073/U4L7Pb/py5YeRhL16RamuXakzcxaFiyzn8+dYtFoRQdQwghW4IVVr+t+8SX6jcNt/BSGPH3N3xQos7eyoNXlypiJ7jVpDhVzjeBYhrZ5Lu0bxMPgXLCwzSKdWq+W3fPkMROAACAIN5s410Zro45ecOaXWkB5qz5iR5VTal+fPWW3kNm4cPgzweMsWnm7bRq4KFWj8888GOrTUxES21KtH6LNnOHt50ffKFRPNk0Lxk8HvLV8+Rz59+vOtP/8rV9ii8+lKR+nu3Ql98QJrJydylinD/ZUrMx4UBOrNmkXdmTOztf+0xESODhxIbGAgNcaNo3jbtma3O9SnD0+N2n+Vhg6l1apV3/R+0nHy5Bvat99LaqpUwSpY0Jm3b0fJ+ietVsuhXr14f+YMTvnz892pU5l+3/4dEEWReytX8mzHDgJ18S976cRLSqE/GJPXw4rAkOwJ4P9O/FvH/DPDlStXSEhIoEaNGri4/O+U2t69e8eyZcsMqkf29vYsXrwYHx8fFAoFBw4coF27dhw+fDhTkrRgwQJ+MuPg+v8dhfREm/pwdbWhX7/ybNr0GIBixdxo1sy0r50OrVbLwH4HUKs1gMDnzwkYT5oFJDrxx5FkOHIEQYC5c6/x7Nkwjqw6wuFH0sSPBiVzt0UxZGYQ+QrnwdHRil27OgHw5Us8PXoc4Nq1j6SlabG0VGBjYyG7O+fMaUfJku7EBgezsnhxUmJjUVha8t3JkxRs2NDgeOfMucrJk2/RakVu3vzEDz+cYefOjvLjMZ8/s6VePZIiIijXuzfNzIzwp6Nws2aM//kptZYtxyF3btpt3JDptlkhNVVtNiDaycmamePLcsNoIWvcEtVHjmLFqPeVSnB8SAhL8uWT2xI5SpQg4o0kZv/y9CkXpk6VT5YAobiznoFoERBDFTQoPo07QUuz9d4KFsw4XwgC2FvDw98X8+bECRBFrs+fT5xoz8ePGYsYESVB5JEJknGVRZ2SwoUpU/h8/z5Vhg0zu9LXajR8efIEG1dXgwpJbGAgG318UOsWTe9On2b4ixdmKz0v9+5heuMwPtnlwsXLi57jOxiQI5CiKr7/+JGX+/dz6ccfidR9jogiH69dy/KzSavQllVnVaRgSR2uUZFHlOzYMcvnOJi5uLoWKWJyX/k+fUzCYxPDw3l1+DDWLi4MuHXL5D1fvOjH0KHHiY9PNVmMSL9vQ4haLY82biTM15eirVrhbVSp0odn7dq4FCxIlG7qzcLOjvpz5hD88CGW9vbsbGGUdyaK5PfxITkmhm2NGxPy6BFWjo50OXAALyOiBZKGqKNetl9mcDNjTGvccvwWHDnyWiZHAB8+RJOSosHaWuDSjBnc/v130uKlSmRSRATrq1dnrL9/tvcfeOcOF6dPJzUujiojRlCuVy8CAqIZPPg4fn5R9OlTjqlTa39zLEhqfDwP1q4l8PbtjKEJne1GEHkx1n4mfQnm9dGjFMuiGPHfimxXkH7++Wfi4+OZo3OvFUWR5s2bc/bsWQBy5szJhQsXDPQ/X8PkyZP5+Sshpb6+vhTX++J+/vyZunXrUq9ePdavzzoUp3fv3vj5+XEtk5PRPxWkb4dWK3L27HtiY1No3rywge+JPo4efU2v7nuITRTR9/WRIGBMlPSxaVNbzq49wK5bhvx99x/l6TrK/OpPFEWCguJwcrImLCyBpUtvIwgC339fHU9PZxY4OpKql2eGIDAjLc3gQtC16372738pV2uqVcvL7dsZ8SrzbGwMNDF1Z836KuHILtTJyaytVIkwX18sbG3pfuwY3vXrc/GiH82b7yA1VYOlpYK2bYvx3Xdladq0MNbWKoNU9lwVKjD4wQODE+LLAwd4fewYlQYNooCPz1ePw9g0D8jwJBIEKaLi2TP5oZvU4CxNkM0S0aLW/Civkr+GhQuvM2/GKazUcbTlCAUwjDjQoGBDjtl8idJZMSAyXFyGG5Hk9/Ghz6VLBq3CdVWrEnTvnny7yZIlBial6uRktjZuLLszN1m8mBo//CB9Vvv3s89ItNz74kWTi/u+rl15qSfSbb5sGVVHjszyfV6cMYNr8+bJn2Nm4Z9hYQmsWfOAefOukpycrucS2DkzJ91/+rrFxsVp07i2YAGIIp716tE3Gxf4pMhIVpUtK//dy/ToQQe9sN6kpDTc3X/RTYqZPn/Xrg506yZVrsKDIpjWfxWBz95QKOgE7qpYtBoNvc6epaBRpltsUBDJUVHkLFUKrUbD/dWrSY2Lo2ibNmxt2NBgRF0fPpMn02jBAna1bSu3d0EKWp4cE/Onk+fVajXzjNrOxt+fb0G/fofZvNnQYDkpaRpv9u/mkJGGCqR24ExN1o7Y6Qh//ZqVpUoZ6KtU1tYcKPIzT19Gy/KDPXs60aVL9q/JoiiyrmpVgtNz2PRg7Z6LpYpxhHzR7wJo+E6xl069qlPr15WsXn2f3LntGTAg80Dlvwv/1grSnj17mDRpknx7//79XL16lWvXrlGiRAl69+7NTz/9xN6vqPv1MW7cOPr27ZvlNvqTckFBQdSvX5+aNWuyVi/GIjNUq1aNc7reqTlYWVlh9Sd/TP9XEBqaQEqKWna/zQyR795x/eefEdVqaowbR87Smfecg4Jiaddut67yoec0rPPBQXcrM/0SpssAAOmJSURBVJKUO7c9g35owq7OGfljSjS07NXQZNt0CIIgTzjZ21uaRIEYkCMAUST81SsDAW6PHqXZu/eF7CHVt295g6cYC4afbt/+lxGkw/36EaYL/k1LSGB327ZMiY2lQQNv3r4dxbOnwZQv50He/IZV2u9OnCDa3x9NaipuRYsaPHawVy+ebZdc1J9u2ZJl+y0dKUb+TMYwjqhxJRJ9cuSmis82OQIY9p0nKVPmZ/q4Ei0D7Q/wrsl0YmOTGTumGoVU9VCnpOBdv76Jjiro3j0CycsjKmBLIsz91eAC53vokEF0xflJk6gyYgQqKyvcS5VCUChI1SpIxhp74tnaoAHOBQvS78oVHPNJ4bbGVgSXZs78KkGqO3MmgiDw6cYNCtSpQ20znjyJiWlUq7aegIAYHUnP+G2oSptGTJhDXNVebMyfg7Q0LQv6Zv570cfbkycNSPGznTtpuWqVPFb/4fEbEhLSDJ4zalQVYmNTGDOmOhUqSPoirVZLtWJz8It3AryxZDAj1ctxVCXz6vBhA4K0rFgxuaKmtLZmclwcVXXaqJuLF2dKjjzr1KG+rs2onyUH0lReUkSEWfF+dqBSqfju1Cn2dOyINi2Ncr17f5UcvTtzhrcnT1J56FDcS5SQjiM1laODB1M5OIGdlmVJTZU0my1aSIua8NevpWw1PXLjhyd3LBsROPgYf/zR3MAKwBz8L182EZ+rk5N5+TwUjSj9JpRKgfPbTpO8Voorafrbb1g5mBrh6iMuKMgsORIUClJKNyPkkqFEYiAbyCcGo/X4jrx5l8gVs3XrHhosLv9bkW2C5OfnR1m9yISTJ0/SqVMnfHSr0unTp9M5iygCc3B3d8c9m943nz9/pn79+lSqVIlNmzZl6yT8+PFjcmchDvz/jh+G7uG3NdJEh6dDPO8iFxAenszt24EUK+ZGiRLS3yYtMZFNtWuToNNEvDp8mFHv3mGbSTvn0qUA3UpTn/yIOCkTidZk6FNcLZOJTE0f65a2HTCgAk2aFEIQCrNyqh9zFz/GUqVl09bO2Dv/OT0QYJDtlQ7HvIa6pLZti3PpUh8uX/ancuU8Bu7J0iEKBqPLHkYRIv8KIt++NbidGh9PSlwcVg4OhJ/dx6ORI3mgVlN35kwT7YWxkDYdz4zaCpdnzfoqQao4eDC39TQrlg4O9L5wQRJkV6/O+zNnDFpsxXhNfS5yjyo4EMfO3aYr46xg6+aGhZ2dNLWUSTE7jwv8tEM/YT7zoYBwwZ1NYj+0OmL+Ob4IBhTW6DX0C+juJUqQb/pGhs95S4poQQEC6Ml2oj984HC/fvTWLbYEQTB4nmCmBRf5/j1nx41DUChotnQpTgUKyBf2zHD/fhB+ftEG9ykU4OBgRe3angQGxnL27Hu8vJzNin0jIhLp3HkfarUWUYR+/Y7g41OAwoVdTbbVh63ROdjC1lZ2WL/566+cmTCRvAwgiLwolAqcna2ZMaMu7u52fPoUQ/fuB/jyJZ72LQrwIT6DwKdgTQCelNa8NGj1BT14kNFuRLIvONitG13275eeF5sRtZOOTnv3Yu/hQf6aNWUz0hIdO3Lrlww3dmcvr39Zw1O4WTOmGU32ZYYDPXvyXFdpu/vHH3TYsYMyPXqwwMEBjc6CZizHcZl1mFIVvWjdWnLEL9qqFdfnz5fPSZ8tCrIlrRckC7xa95CLF/149250pq8LmJ2sBCiues9TdXGUSgUajRbt8aX4IU0uvjt9mj6XLvFg7VoQBGI/fiT0+XOKtGxJw3nzUKhU2LiaflecPD0p0bEjIcr8cMlwAeWRw5rybfpxKrocqakZE4937nwmMjIRV9f/jnDgzJBtgqRWqw2qLbdu3WKs3sk2T548hOumJ/5qfP78mXr16uHp6cmvv/5KmJ54MX1ibcuWLVhaWlJB5xR68OBBNm7c+NU23H8qLkydyq3ffkOhUNBw4UKqZTG98mcQFpYgkyOAgDh7WpWdyq3PrsTGphhMJ0S8eSNPSgEkR0fzS44cKFQqWq1da+IqW7eup96tjLZajMaWagUScM7pRvkKuVm4tg/rFh1n+s9P0SpULFzYCMXW75lr1QkrJyeGP3vGsHm9/5L3227LFg7rlbXbbNyItbOzyXb16nlRr56X2X2037qVw/36IarVuBYpQqdvqJZ+DZUGD+b4kCEZd4gii1xdabJkCWfGjpVHjC//+CPF2rTJNOxWH4IgGFhPZmYKqY+mixdjYWfHwzVrcPL2pt/166hUKvLqDA5zlStHXEgI93WePwJQl6vU5SpKKyvqdVyT3bcMSBfjrocOcXzIEGICAkz9bgSBNhs3Znt/yqZD0ZzOICwfUnOTnKyWV+TF27cnb7VqfL5zB5BGuFVWVoSGJtCr10HOnw9Aq1uBf6QAD6hEDW4bXNBrTpzIjYUL5dvtNm0CJP3Tng4d+HzvHkl656jXR47wQ0gI9l9ZDObL52jAwRUK8PCwIzg4geLFl5OaqiEpSWq7zZ1bn2nTDKtKwcHx8oQpSPv5+DHGgCAlJaURGZlEnjwOciu2UJMmUjjpypVY2NrSfts2lBYWpCUmcn7SJBSI9GIb96lM4fY9mPRLD9zdpYVOy5Y7efkyDI1G5PJlfyxJJQ2VbJCZ21FD5e+GytUhgGgzOWqxehWsIi1acNWITOYoXhwPIwF644ULsbK359GmTVja2dHs99+z9R3/q/DcaAFyaswYLPTIEYAtybgem0brHzOqMvmqVaPvlSu83L8fZy8vFl3JBYcz8tfev4+iVKkVaDQiP//ciLZtTbVRBWrVosmSJZybONEgkHj2YA9e5muIv380TrfWY/s0w9Yh7vNn1laqRFpiIqJGQzJWvKAUZ1+cReWcg/pTJmBhY0PuSpUIfvBAfl6HHTso4OPDPFs7qlKHu1QHRNrnf8vcj9LU3/UJZ02OMTt+cf/pyLYGqXz58owdO5a+ffvy8eNHvLy8eP78OSV1rqg3b96kS5cuBBr5bPwV2Lx5M/0ysXZPP/wtW7bw888/ExAQgEqlonjx4kyYMIFOnTpl+3X+E8JqowMC2N6sGRGvDL1+xgYEZBn3kB3ExCQzc+Ylli+/a1xMAcDdKp6INHv5sRIl3Hj5ciTJMTH8lj8/aQkJJhcwQalkppnE8B07njFu3BkiQuNQixlttsIOUbyNXQrAtfnzuThtGgAuBQvi5OWFv573i8LCghl6J5vMcPGiH5s2PSZXLjumTq2Ni0vm4/Ratfqbw0L/SiRFRXG4Tx8Cb93Cq3592m7cKLetHq5fz83Fiw3+9goLC4PwUYBe586Rr059Zs26zI0bn6hXz5Pp0+uYmF9emDZNWqnq0Hn//q8KfbOLX9zd5XFykPyEuh4+nGXw6NcQcO0am+vVkyt9SisrBt2/b+LlkxWuXQugTp3N0vOVAvnyOeLnN8ZAl6VJSyP44UNsXFzktmS3bpL+TN86QkBLXa5Qjyv4TJpEIz1SFPn+PX4XL1KyY0dsXF1RJyfzW4ECJpNn6bB1d2dCNoK8l/50hFmLHqFSKalRpxDHj781u52rqw0REYY5h2lpGipUWIOvbziCALlzO/Dy5XBZJ3j+/AfatNlJUpKGkiVzcOfOIOztMyYZNampKFQqmWSkJiSw0NGR19pCBJKPAnxk8t4FcmhxWpoGS8u5BscwoHN+Thx5TpJayZDOufh5t/lYo9lKpcG5ZMiTJ+TSVWRFUWR/t26yzqt0jx5UGTGCuMBAvBs2NKhc3/z1V85NmCAfc6/z57MUhP+V+EmhMKhI2ri60nHvXrYbaa3cihdnpK9vpvsZPvwEq1aZtrVAKlr7+o6gWDHT7D+QxPBX580j4MoVirZuTfUxY+THNtevbxJbko40VKxhCOHkAASKuyfxImQBCoVAckwMV+fMkVr+goCLtzc1x49nebFiaFJTicdOCkIvV5Shjx8DUmqAp+dvhIZK/lW9e5dly5asszr/avwd1+9sE6R169bx/fff07VrV27fvo2zszM3btyQH587dy537tzh2LFjf8mB/Tvwn0CQzIpkga6HD2c6npodrF91i2Gjz6FWZ/7nrlJQy70PGWRGIYhs3yFVkT7fvcvFqVMJefJEcsnVwwyNJtOW56Tui1m0O172BBrQUMH68zMRtVrm2dgYrLbMkYEfv/L1fPw4hMqVM/RotWoV4PLlvlk+J7sQRZF7q1YR8eYN1UePxuVPOMdH+fmxsmRJSb+kUJC/Zk0Cb91C1GgQFAqqf/89TXTTmKIocm7iRG4ZeXvpT/i4lyrF4Pv3mTn7Bj//fEMafUekgeIybbw+0eXAAYPqUvibN3w4e5aSXbt+tYLxNfwyei0/Lf+ARhRo5XyPMrGX5DDPxosWUXP8eJPnvH0bQbduB3j/PpJu3UqzfHmLLI04U+LiWFGihPwbqD9nDnWmTzfd7+P3XDp8m+qNylG2liGBWrPmPkuX3sHDw46VK1tmy9uqQoXVPH5saMLobK9gcZsQyjeoSIV+/eSLcHx8Kleu+OPubidnhr09eZKdXyGHX/suf7p9m416lgXn8ozkRpD+hVHSJQlo8fZy5r2fqT4mKiqJNWuk3MABAyoYhC/ny7eYz58z/JuqV8/HrVsDsjymie1m88sRUff7VbBtc2t69skQ4Fapso5Hj4Kl76EgcO/eICpW/LqsITk+nh1NmpASG0vbzZvJW9kw/1DUagnSDRy8OnaMa7qKkm3OnAx99EjWGa0oUYJw3YJCUCop368fbYzc3P8u7OvWjZd79si37XLm5IegIOZaWhqQv+/OnqWwbjJYnZLCgzVreH/2LM7e3tSbNYsmbY9w48anTF9nwYKGTJ5cy+C+u6tW8Wz7doo0b2729wHSgMY+vQKBlZOT1L4URfzwYgt9Dbd/OVyWVSRHR/NH4cIkR0cjarVY2NhQuEULfHVtUICWq1dTecgQRK1W8qhSKPBP9SB3bgcKFcq6rft34N8q0h40aBBKpZJjx45Rp04dE+PIoKCgLB22/8HXEeXnZ5YcKVQqE0O37CI1OZX6RSdz85MT5kXRIvaKJMa2UfE03BU+ZJxAtaJAjx4Hefr0CwsWNKL3hQv4XbzIVr3xeJdChbLUgy3Y8T2Wlsu4du0jFSt48Mse3YpSEFBaWRkQJGsXFxKzscoWRRG/ixeJDwnhXEBug1X/lSsBaDTaTNPevwVrKlTgyxNpCuXu778z5PHjb070Xl+9eoa4W6s1EAiLokjku3fy7ZPDh3N/9WrjXfD+QxTBnt2o0rI2/eb3RGVtzY0bn+RpOxH4pM1DdMB1DvbsyXA98WqOokXJoSfefvEilFatdhERkUirVkUNbAyygt8LfyYvC0SLNSCwP7oW3i4B2EW9o2CjRlQZPtzkOeenTmXArzEEqt3RigJr1jygQoVcJmHA+ri7bJnBb+DSjBnUHD/eIILkzI6LtOl5gVQsUfz0mg3zX9J3Shf58SFDKpt9jfDXrzk7bhwKCwua//67QUW2e/cyPH78BZVKgVqtZdy4Gkya5CO3ktIRHZ1MlSrrePdOshn48ce6zJpVz6zjtz6U2RgGOWpUJS8UdIIb6I/jZ8THlHA0jasBcHGxMbmYpiN9dZ+OO3e+Xu2/H+sJ+Mstsz37XxsQpBMnevDjj5cIDU1gwICKVKyYm7srV/Jw7VqKtm5NA93UszGs7e0ZcPMmIFWuAq5exdrFRW6jCQoFeatUITUhgWt6JqOJoaE83bEDnwkTELVaLB0dM/SFoohT/vxffU9/FYq1bm1AkBJCQ0mKiGDsx4/s7tCB5MhI6s+eLZOjxIgIlhUpQnJUlPycRxs28ECcJt9WKAQTzzNDyYLUyrv7xx8ABN68yadbt/juxAlS4+PlsGeXQoXoc+UK7bdv5/GmTdjnzk2LZct4e/Ikl3/8kTTRHTI8MVEoBFxdMyrvxgvhtMREfPfvxza9ciyKnBo5EvtcuXi4fj1vjx8HoHz//vj8l8pazOGbeg39+/fPlASt1Dfy+gd/CsYxDQCO+fPT7fBhrP8kI/5j0hYdOQLD1HvptiAITJ7dkmnT6jCs82ogXm8bafuNGx+zYIFUNvZu0ICeZ89y85dfcMyXj5ZmLuj6UCgUzNkyxuR+QRBovXYth3r3RpuWhleDBnQ9eJDfChQgNTYWBIHOZjQ+wQ8fcqhXL3niyx9PQLqwKJUCxYrl+EvIUbpXjj6ODhzIYL0R8uwgOTLS7P0KlQqtWk0JXctLk5rKytUPOMcURBRU5xaNuEgErqxmKGkBFuxbGcZni5ssXdqMevU8uXYtQG4xF+AjokZj4IJsDrVqbSI6WrqY79r1HG9vF+bNyzx0Mx0BrwKNUu4Fyk37mS7DmskZUPrY3707L3bvJpwJOsG09PcxFiEbI/zVK1KxQIMSG6Tj1KSlGRCkBTNOkIbUltQisPDnmzJB+vw5lrQ0LV5ezgb7TQwPZ1Xp0vJv7N2pU0yMjMRSd+wTJtQkXz5HnXO5N02bmvp7nRk3jhVLLvOODL+XefOuMX16HYPAV30kYIvC2p7++7+uo9KP1wAoiB/HjnVn9OhThPiHkiIq0aIABE48teD27UCqV8/31f2mo1AhF169yrjoZccfx9vbhatXA+SQZ29vZ4PHc+a0Y9WqjOywI/3781inyfry5Al+588zQE/Ub4y0pCRWlSkjO1jnqVKFsJcvscuZkw47dkjRKHqVtxgc6b80kfdTZlMyRzwtvzzBGi0oFBRt29ZsFfPvQp5KlaTfsa4a7FSgADZubiiUSgbrNG76ODV6tAE5AsnHq4jLF16m5UAUJRuVCRNqsmbNAzQaLZMn16JGDUPS98iIgLzXpR1sbdRI1tYlRUbyi5sb0xITKfvdd/K2ZXr0oEyPHgA4/XKD6dMvoVIpWL68uRzPApI20HjSDjBoIWvVai5On06Y3oLs8caN1J461cC9/b8Z/5IYo2XLlqxfv/6fSbG/CK6FC1OuTx85IDZ/zZr0u3btXxIeRobHY65yZKkU8cjjRNu2xZkwwYdPbwN58+gdSmzQ6H0tlEoBT09DC4BCjRtnaiaZXVzaf42NK3zJ024O42a3x71YEQRBYEoWY+ZRfn6sq1LFMBOJANpwhI9lB5Df05Xff2+W6fO/BeY+8281XAPwqFCBYH1SpVDQavVqIt68wbN2bdlcLSgkkZNkGOJdpzaFeccnCuiCVaXXXrv2AUuXNmPGjLpYWiq5cs4XxY1dVFNLF6FKgwdneTzp5CgdV6/6y/9PSEhlyZJbBAbG0rNnWWrXzli51mxZlfw2B/iUJFUic6jiadWnoVlyBOB74AAAZXnKbWogoEUQVHToUCLL4/uQpwUL8UKLkvI8okeuuyajyZaWGX8bAUiLieAnQeCysjGXNdJUbb9+5dmwoY38N3u6Y4fBAkSTksLb48cp1UUiVoIg0KNHGXr0MBQCpyPi3TtuL1mCBYaPW1oqUSgEVA4ONJg3T9bUAdygJudpgpgM4Yc0rGshZvkdqjF+PKf1kt09ypenVauitGpVlGub9lGn/0uD7T99ivkmgnT8eA9KlFghC7nHjfu6A/miRY349CmGW7cCqVPHk9mzMyrZydHRfLp5E6cCBWTbjyfbthk8P/ArkS2batc2iPdI97CKCQhgd7t2stVAOk7TjHdBWrQoeP7FBnvq0pSzoNXiM358pt/HvwM5ihenx4kT3Pn9d6ycnWkwd26W8THpbXJjdGQ/jcds4uPHWHr2LEPbtsVZtCjz86vS2tqATKdrKj8bkTJ1UhLxYWGZttYnTPDhhx9qIAiCHPSr1Wg4NnAgj7dsyXSq1Pg1jJHVZ/Dfhn+JIF29epWk/0fJvn83BEGg7aZNVB01Cq1aTd4qVf7lqYzB0zuyYvdyYrUZrQIL0jizpzn1OmaU4lvWXMzzcEe5lJ7uU2RrpWDr1r9WbHf1yE0adz6LFgUiydx7uJaL73796vMerFljNtW7Io+YOlBLtVFZ5yPp496qVTzauBG3okVpu2mTQaQKSH+LPFWqZJgOfuM0VToG3LrF1vr1+Xz3LjYuLnQ9dox8lU3bP48ef8GYxKoa9Mf98VXESOlvolAI5HBWsb97dzzKlmXatClMm1aH8Nf1eHPsGM7e3pTo0MFk3+lITEzD2lpJcnLGqjB99BigR4+DHD/+BkGQcvbu3s3Qk1haW/LgzVQWjNmEWq1l/KKBOOXIIM6hL16wtnJlNMnJ2ObIgdLSEm1aGk04iwdfiMKFxbe2U7ly5h41SUlpTP3trVypekwFZiw2jeNYtLYX9RpsI0ZjjxXJNOY8MTjK5Ahg06bHDB5cSSYQ5ny7nu7YQc7SpXEvmXlUTjpe6FopJXnJE8rxnsIoBC1r17aSLy4qa2sc8uVDZWVF3jbd+WmpSr7GbNjwiL59yxtklhmj2qhRqKyseLxlCzlLlaKlXlW+Vt9O1N2wjis3glEoBNzdbb8516tQIVciIydx5Igv7xZ+j/WGPziR0I2WuolEc3Bzs+Xs2V7Eh4RwaswYHi55RYPZs4n9/Jk1FSrIFQWllRVDnz5FoVSi0a+EZ0EIw169MpiW0oeo1ZIYGmrSco/FUa5IAsSRQZ6zamNemTOHm4sWobKxoe2mTf/SMIE+CjVpYpAJN2vWZX755SYKhcCiRY0YNqyK/Fj53r35bIYwFq1dhe6Lm2b7NbscOMDWBg1kAtNyjTQ5auXkZOJjZuOUtb9dWnwcwQ8e4FKwIM5eXtxfvZrHmzdn+1ii3r+nULNmchWrxvjxmdqO/Dfiv38O7/8YBEEgT6VKf9n+vEoU4Pmr0WxbcozY6ERc3e1p3aseJaoUM9jubbi1HjnKqDglJKopXvx/2Dvr8KjOrYv/zszEXSGBAEGCu2txt+JWnOLuUIqUQvFixd3d3TU4IZAQgQAJJECEuM7M+f6YZDIWgba3t/fLep4+5cy8RzJz5rz73XvttQx3UHwr9q67mh4cqc5383X2Jq4Z0BUp1EShOnVyff6H69ZxNp0zE/boEZ9fvGC4TjkNYPD9+3jv3k2Enx/Vhg79pi5CqVTKgJs3cxxnairTavEWBJiyfhRFi87CbMgpdu3yxtFWSouw1fjs/4DP/v28vXaNHy5exLFkSRxLlsz+BMC8eTfUonUAFSs6M2VKZlBx7lygmv8goGRm3b60LRqKnbs7zZYswal0aZYfmaJ3XID1lSsjphPsEyMiMHd2Ji0hAQkilfGi0fz5BoOj+M+fubNwIUZWVlQcPUnr+gDSpPoZgUoNKuDzdAAh7xM41bouxqQRhb7NkabNQ9EmTajQty/eu3apP+TAM2cIvn2bsUFBmOYwkVTo149rP/2EDAV92E0MNnTesJp6vVWdV0GXL3NxoopfJ0ilRB06iih20zpGUlKa3nF1UfXHHw1mAQVB4PzlgWzf7kVcXAq9e1fAwSHrbElkYCCXp00jJSaG2hMmUKxlS1AqsbQ05v2YxhAVRTLw6I8/SI6OprOGcrYuIvz9WavhZvBw7VpqjR2rVW5RpKSwpVYt2m/dyjGNkk6pjh2JDQ3F2oB4Y/SbNwbPJ0gkiEolherVI1iDswdQhSd8oKAq7hIFKqL63Vb58UdcqhhWbw66coXr6dphqfHx7G/fnqnR0TmKJn4tPD1DmDv3hnp7xIiztGtXkk9n93NhwgREhULbOFcQKFS/Pj1PfJ1Ho3vDhvyUlkZUQAD2Hh5I0zM2gx89Yl2ZMupGl4oDBmTrtxj99i2ba9Yk4fNnBKmULvv3q8jWOnAuVw5LV1ci/f2JCw3VbqQRBIo2bUqrlSuRyGTf1Mjy34w/FSAVLlwYo69wBM/DPwO3EgWZsS57mwJH81TeJ2aswDJXaH8BnUcPxUvmQ7wQmn4mJQ5GiTnsoUKdKVO4tWCBwbRuok5tPztkcCQyoGmdoQlBEKhowBLgr4afXwRt2+5VCxCamck4dqw7JUqo2pm3bu3Ali3t2VqvHu8jMgnMQZcvZ3vcl8eOcaRnTxQpKTiVK8dL9+laBFBra1Ot8aVLO+Hj8xmFQkREgl1yMBG+AUT4+vL22jWmxcRkKZEg6nQfJkdFMVsUif/4MUvxvtjQUFYWKaJ+4Hpt3cqgQX+wZYtKcM7Dw4HWrbW9xLy2b+eEBpnZWCoFBdjxhYp48YxKADRtWpQ6dbS5G9/v2EH14cPZkt4pJioUJEdFEe7rq2V4mxQTw+pixUiKjERmasqA27dxrVqVFitWcGnyZERRpFH/LtQbknlvRGhIM4gKBcJ7X3p282DfQZV+Uu3aBfnuuyIGP4fcwtRUxrBhWRPcM6BUKNjZpAlxoaGISiVvrl5VB4X2Hh56vLiXR49me7wDOlnJ5KgotV+d1utfvlChVy882rfn7pIl3PrlF/yOHcPv2DHabd5MlUHaHXPFmjXDxNpaSxiy55kzfHz6FMt8+SjfuzcbqlTRkr2oyhPcizngMnAmjZoUo3TBIarAo1Ah3l6/jueKFRhbWtJo3jw1D+atTqu7qFTy4f59PeuTb0Vqqpw2bfZy965+J9qtSy8I0NA3i3n3jlZr1uBSpQoFatTIVTnq7fXrPNu5E0sXF+pNnYqJtTVSqVSt3J0Bx+LFmZWaSmpSElJjY3XglBU8ly9XS3WICgUXp07DJ9KaOEpRjNcYk4bMzIzO+/apM7CiKLK5Zk3CnjxR85PcatfWU/H/X8FXB0jBwcG4ubkhCAIvNMhZoigSEhJCoT+p1ZOHfwYuLta8f63PVVq+4K9zSs/AhBWDuH93FqcfKbE3SWH37tyV8GTGxkz+/JmFBlZ+D9eupVguH3gOHh5afl3ZZab+Csjlcpbnz09SZCSCVEr/69cpVK8eoiiyfbsXu3d7awn8JSXJ9UoxgiDouapntzoE1MERQPiLFxS2uw/Yqzu12rUtTlxoKJb58yNIJBw92o3v6ywk9HMyVXlMSTLFEdMSE3l3+zbuBsxAASQmJig1Jk2bwir+UlbBkTwlhU3Vq2utRuM+fGDOj/np1q0PMTHJtGyp7/V3crC+fYFdiRIkhYezbFR5zFsPJDVVQd26hQzKCdiXKIGRhYU6yJaZmuKgY+i6uUYNdQePPDmZ7Q0aMCMhgVrjxmWpRF60WTMkxsYoNboy6z6fz+DLJ0hNg8aN3TE2/npuhiiK+Bw8yIcHDyjy3Xe5MgRNjIggNsRw27im4GUGTHK4/w1N4hUHDuR2uudbBozTf5emlpaqdnBRJB4LTtCe5UNe0uvRGVaubKn+HCQyGePevePChAnIU1JosmABtoUL46FhTjvc25sL48fz6vx5TG1tqdSvH8GensSenYlRvgFY11QFXVGvX7OreXMVYVoQCLl9mzGvXyORySjVvj235mvrNX16/pzbCxeSEh+vFsp8sHo1gWfO4FqtGs2XL891hqldu31cvqyfDZNKBUo7xKP7iceFhmoJZ2aHsKdP2ZnxXBNFQh8+5IeL+qKMmjA2M0NUKjk3dizvbt6kaJMmNFuyRL0AC330iNgPH/QoC3tCa/AoWZWJduYTg9nMiCdPcNLIHgqCQM9Tp7gyYwZxoaFUGTQIx1KlSIyMzNJZ4d+Mrw6Q3N3dCQsLw1nnYR0VFYW7uzuKXJrt5eG/C63blODhKl1ROoEx0+9z/0US27Z1yFa/5msgkUg49PDXb9rX2NISYysrPW81RwNO3Fmh/datfH7xgk/Pn2NsYUHP9BbV3CAtKYmjP/zA+7t3KdG2Le0NeALe/PVX7i5bhqmNDe03beL00KHqCVdUKNjWoAGzlUoWLLjFTz9dQyrVyNhJBdzcbDA318/Mdty2jdV375L4+TOCREK7HPwIFTqr/KpSbw4cWMP1a0EUd0gm4aemLJ+aikX+/Izy86NYMXt+aROpl2HLgG4Hjta1XXvCwsZ9sU8OpmhBE0boCJ3q4vaiRcQb6LizcHKieY2suTW6XTUolYwxMOlnBXMHB364eJFr6TIlDefMwdxRu4Sse11pueBZOpYsSevVq7XU0CNe+lLWOUlPAVoX584F4usbTrNmxahQIZ/We57LlnFp8mQQBO4tX873u3drdSUZgoWTE/bFi/PlzRv9z0sHgkTCkBw6M3uePctKjfZ5K1dXHNPbyHc2aoSoUCAxNmaoBp8oI/A9QxteUQJRlLBhwyOKFLFh6tRM7qOprS0ddLh9olKp5l5KjYxovWaN+r2tdevy/v59RIWCkDt3iPD3J8LPj7j379XnFIGY4GDiwsKwcXPDqmBBPZugi+kGxQChDx7weMMGdfv6p+fPUSqVdNiyJdvPJQNPn2r7xkkkUK5cPjZsaEOZ8vac0tF3K/MV4sVvrl5VBTHp1/7myhVEMXuyP8CRXr3UvLlPXl4kRkbScds2Lk2ejOeyZYjAS0qrBUAL8l4dHAF8Jh9BFOXFvn00mjtX69iW+fKpP5vrc+aoDZ7rTZ9OEw1h2v8FfHWAlNWXEx8fj6mpqYE98vBvwJyVvTh9cRGP/bS7nEQRdu/2plGjIgwcWPkfujpttNu0iSM9eqi381WqRONfsw64RFHE3z8SmUxC8eL2yIyN1QqwXwNRFFldooRap+fppk189vZmsAbxckeTJmo18JQvX9jfsaNeoIIoIk9O5uBBVVeSQiEiCCoNm5o1C/D77y0N/sZMbW2Z/OkTybGxGFta5uhH6FS2LOE+PurtyoMG4bVxLPmuXCFOY8JI+PiRrXXrMuLFC8r37m0wQBJkMkpkQWx9/DiU+k2OkZTcDolE4MjqbsiyUStPiYvTW9GDylvLzj174nGBWrW0iK6F6tfPdrwhuNWpo/ZVM4RCDRrw6uxZ9bauZ58uAs+dU4lEanb9CAISmQyrbDp8FampjOu0hDVn5AgCSKVXuHmzv1Zb9+2FC1X/SD/2061bcwyQBImEvlevcn32bIIuX1Znk5QIPKYqYbgwcuVYBo7JnZmtbcGCTE9I4Prs2TiXLUuldIPxIvXrG1TRB2i6aBEHO3UiHCc111AiEfD3N6zfBPDl7Vs2VatGUmQkJra2DL53T49bF/r4sVbQp/Zi0/0tCAKp8SrJkviwMP2OLB1vxsTwcBX3SRQRFQqtDHNOqFQpP5cuZXao1a7txu3bmXI4Qx494uTAgciTkmj0yy+4VM79czRfhQrqaxfSy2q56aZ9feGC1nbg6dMkx8TguWwZAI+oxhnaIkHBXerShlN6GkzGpGJkljU/NOr1a25oBE+3Fy6kfJ8+OOei6eHfglynBCZMmMCECRMQBIFZs2aptydMmMDYsWPp3r07lXLhD5WH/1488JlMjRr6ZEqJRCAsLM7AHv8MynXvzsyUFEYFBDBLoWDY06dZBguiKNK373FKl15LiRKrGTv2/DefNz4sTE/IU5PU+NnHR8sqBSAtIQFLAwTV2NBQSpVyUGePBEFg3LianD3bGw8P7VR1REQix4/74e2tUno2tbbOlVnz0CdPqDxoEIUbNqTr4cN8efOGt9euqd7UmTAyODRFmzSh/datWOpM7E0XLdLr9MvAmjUP1YRoURT57bfbBsdlIDEiQk8xvXyfPmqz0uww2NOTKkOGYO3mRrXhwxlw40aO+3wtep85g0f79pja2pK/cmVGZpOh+vziBXtbt9YLjqwLFKDLgQN62SlNnB83jr1nVN+pKKoyJ7t2eavfT4mLIykqilSM1MplOWWEMmDj5qZa0WcEWMBNGnCGNnhRmUFjb7Nnj3c2R9CGsbk5zZcsUQdHOaH0998zwteXNo1VJVaZTIJCIdKhg3bAc2fJEuabmDBPJmNj5crqTGtKdDT7DJQTi3z3nX4wBHpG1AgCz3bu5JO3N6GPH2OdnkUSJBJV2deAZZI6cyUIWepaGcLJkz1p3LgIdnam1K9fiIsX+2i9n79CBX589IgRPj7ZdpkaQrFmzWi9di3O5ctTrFkzeuSS0G1dUFv+wapAAZWNTHq51AeV2a2qY1QkEA+65X+s/mgr84TaFW2oNjxr7mqaAVPfpzlk3Q517co8qZT5pqYq09z/cuQ6g/T0qYo4KYoiz58/x1jjYWlsbEzFihWZ9B8U6coDpKaman0PfxYSiYT794cQG5vM7Nk3+P33ewgCmJnJ6NbNsHv0PwWZsbEed8QQHj8OY/fuzIlg1ar7jBlT45uk8A2Z22ryMxI+fdJ7X2Zmxih/fxY7OCBP1y6RmpmxulgxqhSvQGzjcXj7fKFVq+JaHWUZePPmC9WrbyIyUlXm2bixLUOGVEWRlsbzPXtIjonByMKCC+PGIU9JwaNNG3ocP646j7Ex7TVE5c7duKHuENKFsUWmDETlAQO4oMO1ebhmDXU0yhKasLAwytQeFZXE+Dzl6syZNPzlF4OBnG3hwjiXL69Fjs/QI8rAq3PnCLl7l3K9eumRUXMqLRpCREQilpbGatPanJDbzqKD6eUFTQgSCeOz4ABpwv/UKaxpwhfsEJGgVIq4uGTygS7+tooN/EgYrtgTSR920yWX3JXH6aVdRBGbQoUoWK8eW0+6QLyAEpXuzdmzr+id3oX3VyI1MZH1FSqoWsBNTPl17EY+iY60aFFci3QfHRzM5SmZXZHJ0dFaxzGkqt/lwAGODxiAf/o9niWUSkLu3uXOokVawau5szPFW7XC1t0dnwMHiH73DnMHB1quWsWHe/e4/dtvIIrcX7mSkh06UKRBg2xOooKpqYwrV/rlOO5r8fbmTR6uWYNH27YM9859MAvQ6+xZttSuTVxoKFYuLvQ6fRpjCwtaLF/O+XHjcBAjCaYISgQEROyJovSnyywvG0qXE6cxU8Rh6+6eLYncuVw5LPLl03ru6XYdauLJ5s34pi+CFCkpnB42jIp9+2qJwP63IdcB0rX0leeAAQNYuXLlP+ZVlgd4sn07pzQ6eRotXEiDadP+suNbW5uyfHlzGjQoRHBwDO3alaRoUf026n8DFAr9YODFgYMUmzHsq49lZG5Oy5UrOa9hCNleY8VU2BCBWRQxMjVlRlwc4b6+nBo6VF0iSnnjw5jWXrS6uDLLc27Z8lRL3HHu3BsMGVKVQ926GZwk/E+c4M6SJdSdPFnvvYr9+qlWbbplEYmE3jopeYlOd2p2hPCpk2qyf+05InHEjEQaxh/h1oJPvLt1y6DEgSCR6KnGnx46lJLt2gEqxeEHq1cDKj5Xr7NneSstQWxsCi1aFNcyWM0KKXFxvL54EYdyFRk86QGnTwdiZiZj//4utG+vymLExqZw4cIr7O3NaNzY/ZuEQA21qudGB+bl0aPEf/xIW06znx5E4kDd8mZMmJDZFLH5bAIfUWVgvmDHZVkbfs8lf+XKtGnqwCD2/XtcK1emkVFxdu/2VnUpiiJly/45b74MDBx4giNHfLG3N+fkyR68nDtSLf6oTElGunk4K+Pj9faLzkI4MQOldIyVFampnBkxgoBTpzCysDCYwdBE8K1bepnShE+feLZzJ6a2tox59Upr0XNh/Hj1eFGh4PgPPzAuoyX/PwzP5cvVshG+hw7xePNmBuZCLiQDNm5uTNAxjv/o5cXFSZNAFGkmuYZdrRY8fBqBa5I/jbim6up8/5oC7vmATC7cu1u3eLJ5M0EXL2Lh7Ez7rVtxrVoVQSKhYt++3F26VPW5SSTqbraPz55xctAg4sPCqD5qFPWnTydUV/NKFIkJCcnVQvefwldzkLZlQeDMw38Op3Q8m65Nn/6XBkigKvl8/332qseaSIyIYHa7Sdz3TaZaDTcWn/k1y5LMfxLVqxegisNnnkSqmgoq84Tnv1yiwzcESAA1x4yh5pgxJH75grmddtCYFBGBIJMhakz+puljBIkE53LlUKamoukPnUE2T0tTEBAQiaurFXZ2mXX/hIRULa85S0tjkqOjs11BZ8WfcK1alWHPnvHm6lUcS5XCvVEjFAqFwXbg1mvWcKRXLxBFBImEZosXZ3m+BO87jGQtcVhhQQIyVGWgjNWk1/btBJw6hUOpUjT46SeMzMz0SPaak92jdOE7AESRAb0PcCeqCAClSzvy4MGQLIMkURQ5+sMPvEjX9fGiIqdRdUkmJcnp3/84YWETSUhIo3r1TQQFqYjno0bVYPXqVln+jVmhXI8eauV7AHMnJ8Zo+OsZQlpiIkd69UKUy3EkklGspULffnTctlVLGFaSvxgiwaq/CwFpwZLqIC4lNpYrM2cSGRBAmc6dqfrjj+xt107tiaUZ4IqiiEQm4/ffW5KcLOfRo1BatSrBpEm51w7LCr/9dptt27wAiI1NpW7drSwtqR1UGJLlAChQowYyU1MtH7saY8bwycuLok2b0mDWLK3xjzdu5MX+/SCKpCUlYeboSFJUlH55LQOiqEXOjseCDxTAURGBQ2Qkn7y9KayRIdINuHStX/6TuKrzt4fcuqW1nZqYyJvLl8lXsSK26R2jEX5+nBkxgg/37yNIJNSdOlVtZJvw+TMbq1ZVZ49NlQk0ejaNnXdusbnmAkSlElGhWkRpYomzs5beVfzHj+xv357x798jCALfzZ5N9Lt3BJ49iyIlhRd79xJ06RKCRELC588oFQrOzphL/kqVqDJoEI81rKlMrK2x+y+3JMkTiszDX4Kf2k1lxT13JCi4dVlKQodlbDg3/Z++LCQSgUEF71I18jMSlOTnI6L8z9/2usFRckyM6gGkERxJTUzop6PBUnfaNA5364YoikiNjak+ciTh4QnUq7eNgIBITE1lnDjRg+bNi/HuXTSbNj3R2n/hwiYIEgmvJR7cU1bDlGQacxU7otVjKukE0JrQFZXMSiulXI8eCDIZR3r2RJTLOdqnDwNu3iS/Ds8wLSkJ30OHkCBiQ6zWe1JjY3wOHlTpFgkq37/4sDA6bN1KjTFjtMorlTU0ciRSKRlTXiJm6uAI4OXLCE6fDqBHD31lbIDXFy+qgyOAFEzQFD6Njk7GzOxXTEy0FcXXrHnA/Nl1tNTBs8KECRc4dy6Q5s2LsXzTJgrUrElsSAhlu3fPlZlxSmysHnG/ZPt2eqr5fQbX5vj5jCyAQI8hmZP5iUGD8Dt2DFGhIOjiReLCwtTBEai6yDLKqfnKl6fSgAGY2piyf3/uO6hygytXtLNAcXGpVB8xgpManp2uGmazmjAyN2eEry+nhgwhNSGBxvPnU7RJ1sTxuNBQ1d+kUIBSiahQYGRmphXYSIyM1DwtW3d3FGlpxAYH8wlntjCIVEwQUNJDcogHa9bgc+gQ9WfMwMrFhdoTJnB56lT1sWpqZIo1ce5cINOmXQFg0aKmtGyZ6dunVCj+EquN7LKZAWfPsk+jYaLmhAk0XbCA7Q0bapW7rs2aRcHatSnapAmP1q/XK62nJSXhUrkyQx4+xP/ECWzd3bUaAF4cOKAVHGUgLjQURWoqMhMTjC0saDh7Nr4avpkZ1xCBA7v4gRhsOfbjY24/nUDv8+e5PmcOpjY2dNy+PVdcyn8SeQHSvxBWrq5apqQmBrgx/2nc8lEioFTbRFx6oJ9S/6fQ5Jd5hGsQPsv2zL0lSW7x9vp1lbGmBkYHBuq5i5fp3Jlh3t6E+/hQsFYtbAoV4uefr/H6tUq8LyVFzrhx5/H1HcnFi69JSNAmM69b94j4G0fYo+yezh+AUFkRljZ4RnJkBHUnT6ZEK1UmJPTRI14cOIBL5cqU69kz1yWk1Ph4Xhw4wKN169STTVpiIvdWrKCjRrYEVG2+L/bu1TuGIJHQYcsW/E+dUq/iRVEk6IpqYqk7eTL2xYvjd/QoRZs1o2Lfvup9my1ZwrlRowAwNpIgEwXk8sws2sSJF2nc2B1nZwt0kSF8l4Gy+HCbesShogRkJO80gyMQkSFnXemSjHj6SI/gqokOHfZx8qSKtO3nF4m/fyTnz2cvwqoLi3z5KN66tapTLp3QbSgwuH07GKlUQKEQkUgELlx4zYwZqiAp+NYt9XcjkckMioZWGjiQmqNH41SmTJYCn38W7duX0tIAsrMzpfKAAciMjXm8eTPOZcrQMr1cagh27u70zUHwNAPlevTAc/lyFOlt78WaN8e1enUuaXBflWlp2Ht4ULBWLVquWEFCeDgBp08zY1kAaWGqrJqIwHVlfUodVZXHgy5dYoSPD3WnTMG5XDn8Tp7Eo21bSrZtS2p8PPdWriQxIoJK/fpB/uJ07HiAtDTVZ9+hw36Cg8dhY6rgwPff8/baNZzKlKHnqVPYFS2K75EjBJ4+jWPp0tQaPx5BIslVANVm/XqOa4jUFtQQMtUlr99fvpzqw4YZ5EBGv32r+psNZNkEVDIC7o0bGwzsdZ9nGSjRpg0yDVuXe7//bnDcGdoQm/67exWq5Ndfb7JiRUuKt8i9rco/jbwA6V+ICR8+sKlGDT56eeFQsiQjslCC/k+iTMUCPE7n5wkoKVPmr+E3fCtSYmMJ8fTExs1Nz5/o1flv72TLCrqt4FITE8zsDPO2nMuWxblsJuld0xJDFCElRbVtiEj+6FEoJWODUaI6nwhEyq1pve8EZmYyVq68z/aJF6jjHMaLaZmZpOd799IrF3pP7x88YEvNmgbfkxgomX569kzr4WtfogTdjx3DuWxZUmJjOTNypBYPpED1TG+q0t9/T+nvv0//u0Xu3AkhKSmN74YMo2y3bnx+/hy3OnVw3/uSQYNOqvf7+DGOVavuM39+Y73rKdG6NaYODiSnd0NZksDscrco+NNWnj37xMKF+iRSKQrac5KUiE9srVtXLTBoCOfPa5fPrlwxbJehC6VSSY9aszj2UMBCmsLQUmBlaoqFkxODHjww2ACgGRwrlSIxMZlZp8INGvDy6FFEhQKlXE6VQYMI0SHI1p8xI0fZhOvX3/LLLzdwcDBn48Z22Np+HWF29OgafPgQy86dz3B2tmDXro4olSLle/emvAE5AqVczq4WLdTdnk7lyzPo7t0cxSpB1fI++P599rVtS+z792qStS6iAgOJCgjArkgR7ixejDw5mWRaQjqfS0BERpo6wIz09yfh0yesXF0p0bo1JTSEKg98/z1BV67yWXDm/B8HabX7iNbvNTVVwaPz9wnbMEvNLYzw9+fs6NFUHTKEzV0GcoKORPCRqgv6UD/mMLYFXel+/Hi2llIV+/TBtXp17i5aROGGDamksYDAQCejqa0tli4uxH/8qP69GVtaqn3iqg4dite2bcQEB6v3EUWR08OGMTqLLs0aY8dyecoUrd93gzlzqK+RZQMws9d/TgVQgje4k5G5FZVKnp25xpfRHv8qOxJBFHVYbP+PERsbi42NDTExMXkk9K9EYkIKPZqt4K53IhXK2HHo3NBsvaL+TsR//Mim6tXVKyBzZ2e9jpjZf8Ntf3vRIm7Om4fMzIz2mzdjXagQO5s0QZ6URMW+ffW6rxQKJdu2efH4cSj79z8nOjoVEHE0SeTi+d7IHPJTocJ6rX0a1bSnzINfWCcOU2eQXOwlhIT/TKNGO7h9OxhBAIkyjRHiGq3S2/j373PU9Pm9SJFMrygNWBUowIBbt/Qm3PurVnF+7FhVm7RCQfNly6id3u12auNpFg1diQ0xVOUxUpT0u35d1aqtg8GDT6otRmrXLsj16/21lKeLF1/F69cqvpBUKjBhQm09x3OlXI5EJiMxMhLPFSt4c+UKJdu1o/4MleFtREQiFSuuJzRUxX+qiBctuIAMOcZkBiPDX7zQCmA1YWe3SIs0b21tTExMzqXkDT/vZtgvGa71SsxIYgpLEACL/PmZFBamt4+X10dq195CcrKqbOvgYMaDB0MoWtSOlNhYrs6aRaS/P2W6dKHK4MGEeXlxpGdPlHI57bdsybED6+HDD9Sokdnl6ORkzufP+uT+3CAxMY2OHfdz6VIQjo5mDBtWjXPnXpEvnwUrV7aieHHVJLq/Uyf8jx3T2texTBlGauh1ZYegK1fYpaOYb2xtTWpsbBZ7qBCLFdsZQBT2mJJEH3ZTkA8IUinmjo6MDwlBqtOYIE9O5hczcw7TGV9UJd3v65ly77WMz59VZT17awlDvszTun9Apc1WsGZNRm9I4R2F1FpQbTlFdclT7EuUoMqQIciTkqg0YECOv0tNLHFxIfFjpjilzNSUGYmJRAUGcnXWLCJevsS1WjXqz5iBffHM8l9qQgJnR43Ce9cudXBo6eLCRAOCrRlIS0pif8eOyJOT+X7PHmwNZFfjwsL4vXBhLemONcJoIkR7MgIkASUDJTsokz+N0a9eZauv9K34O+bvvAxSHv4SmFuYcPLunyeKKxRKxow5x8WLrylfPh/793f5aosGr+3btUqQut5TuUVKipw5c67z+HEYzZoVZeLEOmrndk3sWXYU74dv+L5fY2YkZK6u5mqUtJ5s2oS1mxvfaZAvJ068yMqV95HJBBRykQyuTGSKGd+328m2k6P0zlUj6ghmYji92cN9amImlXPs0QYSElK5eTMzsFEg4w3u2PFU/drzB4Fg9J7aratnWftX6OgTAYzw9cXO3Z1fF91jy5bjODmZc/RodwoXtqXG6NEYWVgQcvs2BevUoUq6FYiX10c6jXyCgjqICITiSmeT8wYDj9DQOHVwBODp+Z6rV99ocTsmDXZnxPRIRCSYKOJpVjTzOw08e5b9HTuiTEvD3MmJ4S9e0GT+fNARo3R0NMfLaygnTvgjxHwkeNJcJGgHyoJEgmU+bTVrTZw+3ZMGDbajVKrKXidO9MhyrCbevvpMJhdKQhIWKJAiQ0GCxmSniVJFTKlawQ7PR+EolSr+1Pz5N9m6tQMm1ta0Wqnd/ehSqRKjXr7M1fUA/PHHI63t8PBEPn6MJ39+VTbn8GFfevY8gkKhpHJlFx4/1jfRzcD69Y+4fFnFR4qMTGL+fBWpWCoVaN16DwEBowEI0umWBIjw9UWRlqYXoGQg7MkTYkJC8GjTxqD9R2psrNooNfLVK4OkbRtpIpOs9/IpWsRCjMWYNGwKF8ahRAmaL19u8NxSExOinSrhG57Jdzt2O5lbt/pz7JhKN8zq8GSEL/q/mVIdO2Lh5EQEQergSEBBBI6ISiVRr16pFNJRLTJG+ftnmXHWxWh/f7bUrk1kQADWbm4Mun0bQRBw8PCga7p69suX4RSuvJn4+FScnMwJDByFjY2KLxRw6pRab0qXCK8LIzMzfjDwnWnCysWFCaGhnBwwgKjXryn9/fesXZJMZsyopDJPcFO+Iy4Uol69ylFd/r8F/90MqTz8v8PIkWf5449HvHr1hWPH/KhTbU3OO+lAamyc2SkmCJg7OWn5rdUcP54n27bxYN06rQ4aTWzZ8gRHxyX89tsdLl0KYsqUy6xdq+90Pb7TYvpMes7iA/HUa32S87tVHJuM2r8mnmhoEgHs3asqjcrlIqLGRC0i4V28FSkpCsqXz7T0adiwCAWkqkxYMYLoxT66SE/g7m7H+6sXsJYlI2gcJ59JJg/srks/6nW6Qb1256lfZBIKuWHBwZY6fIIijRvjVLo023f7MmfODUJCYnny5COVK6s6zQRBoMqgQXTYto2qQ4aoeU6nTvmrxA+RAAK+Qnl6nDhhUDjR2FiKLj3KzEx77abcM4PRrKYPuxjNap7+lKkHdKRnT/XqNTE8nKO9ehn82wCcnCwYPLgKgya2xt69iN77tu7u2Yo71q1bCIXiZ+TynwgPn8SnTwm8exetN04pl/P60iXeXLuGqFTSd3wbTIUUMgSjJCgIINPg8/J07SzUjXnzWGRnx4cHD7TUjTOySX8FypTR/jsFAeztM0tsXbseQi5XIorw5EkYvXsfyfJYUVFJ6sWDZnJWoRAJDIwiJUV13aaGggCJJMuS5uEePdhYtSoHOnZkkYMDLw4cwMhcPzOtlMtJCA+neMuWBo9j5uCAibkJdmKkKtsjkVC0aVN+uHQpy8laEASaLV2m97qrqzXLlrVg2bIWOJnrB0cIAjITE6oNG0bTauaAiERQGUCXxB9IF/wURRBFEsPDc1X2V8jlRAYGIkiljPTx4ee0NHqdOkVkQIDec6xWLVVwBKrAt1q1TYBKgmLky5d0O3qUoU+fUj0LIUilUsnnkM/4+HwyeH/rwsLRkZ6nTjHS15fGv/7KjLFlkaS3WlgRz3fcRJBIMLayUnfd/RuQFyDl4b8KFy681tp++jxSTezNLaoMHkz+dDl/qZERbdatY3pcHNMTE/kpJQXfAwc4NXAg50aM4FczM77oaNm8ePGZIUNOqR8woJo87tzRF//bdSqzdCcisG6JysLC0kAq2qVKFa3t4sXtNXzYMv6fObts2fKUO3cGsn17B/bs6cT5871pPHeO1jHKdu+Oz+HDHOzYgR7yHeQnDFshmlUrW7A+4SXDnz+n9ZnbXAzLLI3dDbFh5WztMof6eF27MuTRI8r16kXbjRvpl/7ZHzniqzXuyxfDgaXm35YhTyCVCniUdcmSnOnoaM6iRU3VQdIPP1SgQQPth+izcFuO05FHVAVELTd53XbseANkVUMYGxRELY1OOkEqpWCtWuptpVJk6dK7NG26k6lTL2kFJ/fufcDJaSk9ehyhSJGVrFmTGTwrFQp2t2zJ7ubN2dm4MYe6daNUNQ/Wr21BxvesRMIROpOKKnNx57ff+FVDrPN6uoVDfW6pJxoTE5mWTtK3IDUhgYT0cvPkyXVp0kR1X8hkElataoWxsSpQMRSIZce36tu3opZ/oEQiIJWq/qtb1w0TExmiKFJr+RZS0Oay1Z82zWADQWpiotpPDFSZonvLl6u+bwPjk6OjMbO1pfny5XrvJX7+rN2RpVTydMsWfjU31/v9Z+D9+1jOecZjq1GmrsZDpO8zOZ/tNm/WvxZRxNbdHUEi4ZDnHNasac2o0TU5trMpw1eOp4UBUnNSDlnusKdP+dXUlDUeHvxmaclCa2tu/vor68qVY0ejRmysWpUUjTJjXFyq1v6hoZmLJQsnJ0p//71eR2oGAr1eU9BsEvkKraNcufUUKbKSefO+TrF+3JKBPLvbgwOrKnNtX13K1S1Pofr1+eHSJUz+RfSVPA6SBv7tHKQQT092NWuGIiWFYi1b0uvUqX/6kr4abdvu5cyZAFQTiYgVcezsG6HXPZUTlAoFX16/xsLZWYsAG3znDtvq1dMaa124MOM1Mj4nT/rTocN+vWOuWtWS0aO1CczFrMbxJt4GEQkCSgY0lrLlys8AXJo6lbvp+kFWBQroCbcFBX2hd++jvHoVRffuZXni+QrPJ1GAgEQCgwdXYcOGdnrX8e7mTZ7v20e+ChUo3qoVa0qU0BJejMeC2N7rUJjaMHx4NYySoqhYX3v1b2Is4dXrsRQsmLv7fPHiO0ydmtltZG5uRELCDINjAwMjqV17C5GRSQgClC3rzKFDXSlVKuvMDEB4eAIpKQq9a7p9O5j69beRETyak8CJaTKaptto7OvQgYCTmSTudps3U0VDNiA7pCUmcnLIEIIuXcK1WjW+37lTnUFau/YBo0adA1QT/ogR1dVaSRUrrldbv4BKnyouTpUFCvH0ZGsdbY2hkS9fctNXpHPng1qvT2QpVmROXt1OnKB0+/Za5dkv2CKr1poJJ9bj6po7h3lDeL53L8cHDECZmkqZrl3pvG9flh1Ve/Z406ePdhDdu3d5du/O2iojODiGy5eDKFrUDolEYMuWpzg5mTNjhsovr0iR39UTd10PBdMah1OxXz/cNIJSTaTGx7NQt6SmoWskyGSqdv/0kpogkVCyfXu6HztG7Pv3HOnd26BYpC4M8XDS0hSULLmG4OAYlAoFMuT0Yg9FeEf14cNp88cf6rG7W7bU8j6zcHZm7Lt3GGWhEJ0SF8cSJyctqYcRPj44ZeNhtrZMGSJyKJ9q3veFCq0gJCQzYKpXz401Q2QkfP5MmS5dtMRM/U+dwjPdXLvZkiX07rCZC35m6OZPwsMn4+j4z/BKc4O/Y/7OyyD9D2FrnTqkJSSglMsJPH2aMyNG/NOX9NU4dKgrRWwSkaDAkjj6scugl1lOkEilOHh46HUHmTs46I3VFYirW9cNR0dzpFIBQQArK2N++60JI0fq67ls2d4FW6kqg1HGPoYlezJ5Q80WLWK2KDJbFPWCI4CiRe3w9BxEePhk1qxpze5DP1C8uOr6ypRxZs6chgb/tsINGtB23TqqDx9O8K1bWsGREoEd9GPLvjds3/aU+vW3YeNWkO+Ka2dZUlKV3L9vuI3XEKZMqUu/fhWxtDSmYEErrl/P2lqhfft9amuUDK2+nIIjUJW/DAVs69ZlCF8KgEAillSZnMmd6HniBI3mz6dkhw7UmzmT+6tWqbo8nz0DICE8HN+jRwl7+lTv2Ebm5nTes4fJnz/T++xZrfLa0X2PyQjKlEpRm+Olo9CuWQYzRECVmanUut3crNUJhwqOX7DUCI4gU5fKXaPt306I4cc5vf5UcKSUyzk5aBDKVFWA4nvoEP7Z2KmsX6+temxnZ5ptcPTu5k0u92qDuHkkhZVBNGhQmB07OrJ0aXPs7c0YMOC4VlbjToCUkhPmZxkcgaoLy12DkC01NkYilar8xASBCr170/fqVaTpLedSY2Nqp7f8WxcsiF16FicnGNL6efs2mjdvolWq40hIw5g0jBEAt7p1SY2PJ+rVK5RyOdV1nrMJnz+zs3Fj5MnJKA10nJlYWdHz1CnsS5TAumBB2m/dmm1wBOgJqxpCRpkyJTaWw7844VHEDCsrYxo1KsxYt2sc79ePy1Onsr5SJWLSrXA++/hwoGNH3t28ScCZM+xs2pToOMNlXM17/P8L8kja/yMwxKV5efSo1krn3wAzMyOeeo1gf8eOfH7xgqJNmlB/+l8nOOlYqhTmTk5aD8W6GmUWAAcHcx4+HMLmzU8wM5MxcmSNLNufG3auR0RqHVISUzCz/HOdGUWL2hEQMIq4uFSsrIxzpVukK9OfgAXhOEP6wywpSc618z6c8/6F/M5LiI1XPfwkEuGrpRi2b+/I9u0dcxz36VOCznZmEPDy2DHOjx3LtZjSnImrg1KE774rzNWrffWI45GBgXz08qJMSe02YkFA7/toMHMmn318WFcuk1C7qXp1hjx8yNa6ddVBsHHd7zknaUdUVBITJ9ZmwADDzurh78O5decDkFE2EqlcPpM/s2RJM9q02atOTkyfnpmVzFexIjVGj1bbpXw3e7aad/H48Y8cPOiDpaUx37ctwgqnVZlt2dbWeKQLAPa9fBnP5cu5tXAhSRER7GvXjrbr16NIS+PBmjVYubrSdt06tbVDTlDK5VplSUCrJKMLV1dLtQaTVCrQu3fWpNrEyEi2tWzLiaTGvKI4BZpt4/zzohQpU0Q9JqPrSxMhITGUKKG/YNFEp2NnCL50ltjgd1QaMIBIf398Dh7EtnBhqg4ditTIiNEBAXx89oz8lSph4+ZGbGgoXlu34lyhAo4lSxLu66unHacJTY2hDBQoYI2trSmxsSkqQj5K8hnHUW3gMGwKFWKxgwOK1FSkxsb0OHGC7seOcSBdsgLgvacnC21sQBRpNG8e9dKdDkI8PQk4fRojMzP6XLig1xUaGRjIqcGDiXz1ilIdOtBqzRokEgl1pkzh/JgxWmPL9eyJz4EDiEolbnXrUq57d1JiY9lYtSpRr17RC3Dv0ofOm0ex1E4l3CkqlaTExBBw6hTVR4zgo5eXOgMnKhTEhoQw5OcKPJgXpNW+MG5cTYO6Y//ryAuQ/kdgyPDPJRudjewQ/f69wXZOQ1AqFHjv2oVEJqNcr17ZKqMqUlORGBnlOPHbFinCMC8vRFH8Jn+snDD582dODB7MxydPqDlmjEGH8iJFbA3q7BiCRCLRC45CPD3xPXwY2yJFqDZsWJYdOuEvX3J99mwKf/cdNUaORBAErK1N9Ma9vngRzxUrkMhk1J06lcLpZcKCtWrReu1a7ixahKmdHX3XrmND/eMkiKaI6XwXid8tzMzq0rN3RTZsUGUG+vWrSOnS2gFSWmoaE7su4+mzcL5r4Ma87WO+Sem2bVsPLVf6zp1Vq+OE8HAOd+9OapqSUwwko6vrxo13LFvmyeTJmWa91+fO5cacOarrNzKiQe2V3Lr3GSMjKX/80Vp9XZEBAZwfN47EiAhsdMifyrQ0rv38szo4UiKw8I47CZJglEoYOPAkZcs6U6OGfov101s+pKH5nQk0rpi53apVCV6/HsOxY37Ur1+I6tUzj6EpiAkQp9Gl5uRkwciRNUiOjmZDlSrq4MjU0ZFJOhO4kYUFSRnCl6LIuTFj1GWZSD8/9rRunaOtyevXUXz4EEe1aq7UHDOG+xmdbxIJb69fV9/7qQkJRPj5Yefujpm9PUuXNsffPxJv70/UrFlQL5sZEhLDmzfRVK6cn9igIG4kVeEZFRGREKC0YOzY85y4lGnns3BhExo12qneNjc34rvvimR53UlJaXTseICLF1/j5GTOqVM9MbW2pkD16lpaWgA2hQphU6gQAJ+8vdlQuXKmpYadHeM/fMDKxYWwx48J9/XF3sODE/37Ex8WRuFGjeiebqCqCXNzIy5e7MOkSZdISkpj1qwGtGun4oWtKlECRXomTpGaysHOnRlt4HvIyNZdmT4dj7Ztif/4kV3Nm6u/81WzDpJWvz+NO9dh1KgaSKUSDnbuzOcXL0AUebRuHWFeXrTbuBErFxetY+erVIkWv/9Oi+XLSYqKwrFUKaJevWJ/x45EvXqFHCkH6E7g4eL8eHghfSzK4pbooz53avpvomDNmkiNjVVZaEFAamzMh18HM8rEFer3xr1eLRp1qEnFioY7O+8sWULAqVNUGTKEihrClv8ryOMgaeDfzkG6t3o1F8aOVZEEixRhbBbkw6zgvXcvxzTE3Tru2KGlcKwLpULBikKFiE9/sNsVLcqowEC9SVWenMzhHj3wP3ECSxcXep48iWu1al91bf8tCDx7lnsrVmBqZ0eThQux1/ES8rrpzfgfNhEZHEodyX1cxFAqDRhABw1T2wwc799fy8fLoXRpRvn66o27s3ixlgUCQMtVq3Dr3J/nzz9Rvnw+rfLLRMdyHI2sSgqm1OUOE5YPwqpZb8qXX6ceIwgQEjKeAgUy7/N+381h502VkJ6IhOm9rFmwZ3yuP5v4+FQ6dtzPlStvsLIyplgxOzp3LsNPP6n0eD4+e8aGSpWIxZLlTNLad8CASmzd2kG9/YuxsZauSqEGDRhw4waiKOJz8CCRAQGYWFlxceJEgyrBGagyZAhPNqk6eJIx4Te0s5Gj+hbB585z7GyN+X3fCNxKqBYGEaGRFC64hCRRFawaIcffdyhFShfK8XMw9H1NDg/XKt9trVePkDt3tMYUbd5cq6X60YYNnBmm4Rmowb/JwKy0tCw7wDZvfsKPP55CFKFYMVU5d0uJAlrCqd/NmUPFvn3ZWrcu8WFhGJmb0/v8eQrXV/GGFAolUqn27/nYsZd063YYuVyJi4sl1y91p2WlX3gjz08Ga6NiBSe8nmmXnu7cCWbatMs4O1uwbVtHgwuBDCxf7smkSRdVJVpEHIhgFGsRZDKMLS1xq1WL73fv1iuZ72zWjDc6ytxNFy82aN6cFT48fEjg2bM4lixJ2e7d9RZpyzIEGTUwIzGRB2vWqL53A1Nq3ytXeL53L0+3bgVRxJvyHKUzAkpEJMyYUY9ff23CfBMTdfClBwPff+0JE2i+TNVp90fZsoT7+YFSySOqcpq2ZHA5rYV4JslWqX9TEiMjRrx4gYOHB8G3b/NgzRrCnj4lSkM0UpBI+NlAiTADm2rVIvT+ffV2uV696Kxh8/OfRh4HKQ8GIU9N5fZvv5EaG8v0+Hhmi+JXB0cAJ3SMCk/mQHR9vmePOjgC+BIUxKtz5/TGPVq/nssnnvCMCoR9TOS4jlfYnTvB9O59lJEjzxAWlnOt/Z/CZx8f9rVvT9CVK7w8epRdTZtqcQwSYhNo2HgXN4LteUE5tir7ESta8tLACjX85Uut4Agg0gAJUxRFrszQJ0NvHr+c4sVX0bLlHooXX8WdO5kKuYM2zGWg0T6GspGmlYyoMmgQX75oG4aKIlqChwA3H8egmo4kgJJrN/W79gwhNVXOwYM+TJ58gWvX3qo+i4Q0jI1l6uAIwKlMGRxLl8ZGkogF8WTwewRBZRar+3drbad/ztdnz+ZIjx7cmDuXC+PHG7ZQkEqRmpjQdPFimi5apO6aMSGFQkaf1N1VRkYCf+x8zfXXFhx7bESDykvVx3B0deDcsfbUdoujumscx3c0UgdHz/fuZXfLljxYY1iCQnfyBEj68kVrO8PtXhO6JsPle/UiX4UKZHxIuorFlq6u2VqITJ16WT2fvnkTzY4dz/RU5YMuXeLu0qXqzjZ5crJWcKcbHAFMm3ZFzcH6+DGe2g328Ebuimo6UZ2wew/9klzduoW4dWsgR450zzY4AoiMTMyUDUAgCVWGVpTLSYmO5vWlS1oWI6ASkcwQh31PATYyhNWMYuvmR8w3NWVpvny8ykLTJzo4mG0NG7K1bl0216jBzV9+4UjPnlxPz2Jqov7MmVrbhRo04POLF8SFhtJ+yxYmhoVpmeA6li5Nwdq11VkugEBKqIMjgFOnVIFJkYYNs/5QDARensuXo1QqEUWRCH9/tQZUEmYakh8CyaL2gkOZlsa7mzdV11+vHl3279ejaYhKJanxWVtGaQZHAC/27tX73f7bkVdi+5dDqVTyu5ub+gHnuWwZEz9+RGbAFiLHY+msFgwRDDUhMVA2MvTA3nUmki2ogi0TMZkxHzIDhlevomjceCdyuRJBgOvX3/HixfC/pbT2ZxH25Il6ohYVCqLfviUpKgoLJ1Wp6oXnS2IUmXpLaRjzUXClZAl9GwVDvkmGkJaYqD6nJm4raqotSVJSFCxadIcTJ9xIjIigZPv2TAwLI+HTJxw8PJDIZNSsaUHVqi48fqxSbG7SxF2vxFamiDHvfJRq7aLypXMWrouKSqRw4ZVakgigInS+fRut9ZrUyIiWK1dyd+lSdpcW2BdcgugEJT///B1VqmiXEKoPH67m8AgSibp122vbNgCDn4kaosjMpCT1PTQ5PJxHGzciCAI/tu7Emk2+REUlkRrsz7ZzmRPA2wQ7vnz+gp2zHb8XLkxMcDAtJBI6bNtGxb4qsvDFKVPwXLIEgNcXLnBu7FisXFzotGePWiG89qRJPFizRj0h2bq7a3HF3t+/T5oBh3tnDf4UqMi8Qx4+JOzpUyzz5ePZifMMHXeDYApRmGD2rx+odwxNyGSZwY0oiqCUY2pnR7JGsFa0WTPiNVS8RVHMNiMHaEhTqBAVpTmxCvTvX4lp07Q7Rb8WfftWZOXK+2q7leIEar0vKhREBma+9mDtWrV/nxwpe+hNMqoy89YAB4ZyE5fPH9nbpg0SmUxliXPkCA4eHkS9fs1qDcXpjOODSnS2UbrkQgZqjBqFXbFieG3fjnO5ctiXKMFmDUPeqkOH0ufCBXwOHkSRmkrZbt0wMjOjzuTJfHjwgMAzZ8jHJ56jCiKlUoFKlVQ2KN2PH2dH48Zq2xIABRIkKMnqiaiUy5EZG1OidWsCz5wBQaC88gV3xTokoeo6q8NdzJ2dSYqMVP9tzuXK8eXNG04NHkzo48d6HDWA6HfvslSV10VuCPH/Nvzv/UX/z+B/4oQ6OAJI/vIF7127vulYbnXram0XzKbDBFQaPJodZkJ655gujjzLDBBSMSa0fGat2tMzhNRUBUqliEIh4usbTlRU5uSxcuU9ihZdSa1am7Xaqv8JFKhRQxUASiQIUin2JUpopfhLV/fAXEhCQIlK6UZB2bJOdNmvLxlQsFYtvYxAhnaTJowtLLRELtWvG8vU3VCCAFJByabq1Vnq7MwyV1ei37xRm5S+vXmToS4NsPM+SJ+K4Yyr/oZB9ueICvDXOubuq9NoXiqJAqbRdKmWxqrjOZclpk69rBccZSAyMpHIyMzuuVNDh7K7eXOCLl7k2colzO1nyYULP1C3rn7ZqtWqVQy4eZMWK1YwLjgY20KFuDRliipoz+FBLCqVvLuRqdsiNTam5qhR1Bg5Eld3FxYsaML69W2pXjdjUhQRUGIvi8PG0YYdjRurPatEpZLjGpnVR2vXap9MqSQuNJSDnTurV8/Wrq6MDQqi+qhRNJg9W+11lZaaxprp25nQcIyWrxqAbfHi9DGQ3ZAaG1OwZk1sixThYIAbgZJSJGFOoKQ0my8aECnUwMKFTdRZmGJupkRNb6UKjgQBE1tbqgwZQsPZs6k1fjymNjbq8zX65Zdsj7tsWXO1ur2Tkz5x99ChF7x48VnvdYCU+Hh2tWjBqmLFuDBxYpbnKFnSkaFDVRxKASXPqIwvpbXGlOuRqWL+UON7ScKMJMzVgT4IRKAqb4oKBYqUFCJevuREeib7WBbcGUEqxU6jHV4TJVq1ouuBA3w3axa3FyzQes9r2zZkpqZU7NuXKoMHqzOYRmZmyNI7HGvjSS08cXc1pnv3cmr5CCMzMwbdvcsof3/63LjFEVkPfmEWS5lElJO2jhqAW7166sVwl/37aThvHlWHDmXs1WNMK3iSjhyjn7CDdq6B9Dp9msINGuBcvjztt26lYK1a7O/QgTdXr5ISE4NCJ4Nk5uCgRyHQRKWB2gF64wUL/isXtn8GeRmkfzkMydMbMg/MDQbeusXp4cMJPHOGEm3a0HbdumzHSyQSLb6RqFBwdsQIeqeX2QLPnuXa7NlI4hsiCJaqDLEgoXzrTPJzxYr51RO9RCLg4mLF3Z+nEup5B0WDfoxbGQ2oNFbatt3Lu3fj9H6EDx584Pz5V5Qu7UiXLmW++ke6buYurl3yo17D4oxZPCDLcY4lS9Ln4kUerFmD1NKG0iMmoxQhQ0nG2t6ak/tbM2HkUVLSYPq0uvSbNs/gsa7OnKklDufRrh09NbR8NNHvxg221qmjpZuydENPek/xJTw8ETs7M9q5+PH+jBegslY5O3Ikg+/fR5GWxuAmc7kib46AEuGZyECOE/jkIx9uXGXcu3dqgr+dsx3nXy7+ik8OtRhkVu+FhcWrPfkyuEAZODl4MKU6dDC0K4rUVNzq1aNQ/foo5XL+KFuWqPSylABIzcyQG8jCZGBn06YMffo0S5Xkd++imbzQR03rMJcpOHOyOxKJRC0PYAhSY2M9YUpEkaTISBSpqWqXc+uCBWmt42Lf2GMat99ZA62xoxZD2YApKbTduJGqQ4Zkec4MvHoVpXbRUChFXr36kuXY5GQ5S5fcUbdmJ7wPRqZMVl+vjZub2hvQsWRJxrx+zSdvb+xLlNAjBPv7R/Ddd9uJiUmhadOinDrVk/fvJxAcHEOpUg5UrboRP79I9fjERDnz59/kwIGuete1pWZNwtN5dveWL0dmbEyTdD0rXVy6pLIuydAYCzQqT7fuVbF2daVA9eqU7txZPdbK1ZXIgABEhYI0jLEwEUlIUcl0GImpFCK9BJ3+hYsKhToINjKwAJGamuJcpgztt27N8jPOgJGFdpBoKLOeAf/037gUJS25iLXMj+IWLXh1IIIqgwcjSCRq25AV88/yXF4KgETM2R3VkMOz2/Hh3j2MLC0p1qwZ1YYOzbwOc3MazJzJi/372dumDaSkUN3CFHNHR1r+vpZk+2LUWHuAUqUcEQQBURQJN+CBZ+3mRrHmzak/Y4bB5p8MdNiyhbrTpxN4+jTlevbEKhuLnn8r8gKkfzmKNGxIoQYNCE6vJ7tUrap2SP8W5BQU6SIxMlJrO2MSiwkOVvljyeW05jN7xJ4kY0b5QjByZGYXSoUK+Th8uBvLl3tia2tKjbcbefKHavX/8KkUaAuoJtuQkFhSUxWYmGTetjdvvqNRox3qiSB/fguePRue65bUeUPWMntzBBKkHHoYzMcPK7IlJrs3akS8YxmaNt3F550HKVHCnmvX+qnJzk26NeBZt+xNQkGVutfEhwf6NiYZcK1ShemxsTz44w/i3r+nbPfuFKhenXfdm/PmTTRFithyY/okMlSNRKWS5OhoAFJiYngor6h6HQmg4AXlKKj4QMLnz0S/fYtjqVJZnvve779zZcYMRIWCqkOH0mrVKq33Fyxowr59L9TKyyYmUrU9hYeHAyVLZtPGbaCUk5aYqCox3L+PRb58/HDxIsaWlkTqOI53OXCAA506IcoNa7aICgVvr13LMkC6fDlIXb4BgQS5EcoQHxSpFflcpgvrb9ugREJjrlJDyPQs67Rnj2ry0UG5nj3VwZEhhAS+Tw+OVPiCPUFCcSpZvFM7rueEbt3KcvFiEDKZBLlcSdeuWWvnzBuzi5caQUuY0pnPOOOCih+VmNEdlw5TW1st3owmKlZcry7nnj4dwODBJ9m8ub1aNNDHZwQ1a27m0SNVqU4QhCw1cyL8tbOW/qdPZxkglSnjhK9vOAqFiCCR0mXOKDqni06GeHry5soVijRujEQioc26dexr25aIgEAOmA0hOVXFhxJFWLWoHhWMHEmKiuLOb78hpotLVk73Dey4fTsr3NzU96OVqysTPnxQX8euxYe5fsGXhi3L8sPkznrX+f2OHayvWFHF4REEWutmGTVgZG5OigYJOzY4mKfbtvFk0yaSoqIo2qwZjzdswNTWltBgEwQkiOn/xStMKNGqFY0M8KIykJaUxJGePTO3ExKISUhgSNdN3JarAv+ePcuxe3cnJBKBok2b8vriRa1jFKxVi/Y6tkhZwbF4cRzHjcvV2H8j8gKk/wEMuHGDCH9/lHJ5ruvFfxVcq1dXB2cAxVupUsWRAQFqDoYbwUxmCSmYYPYuiWVWcyjbowdd9u0DoFOn0nTqpEqfzxUyu+iKEoQMOciMUSpFGjd21wqOAA4ceKH1MP74MYH8+ZeSkDAdM7OceVjHTrwCbFCm54GOn33Hgux3YeLEi+rS0evACMZ0W8Ph29O/KnNlYmOjlUHSFbTUhdTYmNo6DyIzMyO1llHVIUN4umWLuqW9brruipmDAzZCHHGilfpBa0WcyqPO0VGvNV4TPocPc2F8ZrD4YPVqijZtSsn27dWv5c9vSXj4ZPbs8aZIEVvKl8/Hpk2PkckkDB9eHSOjTKXm8r1783z3bvV2s6WZpOgMHO/fnw/p5M+ET5841K0bQ588wcTamtT4eESlEkEiwbFkySyDoww4pwdHGb54murBGe7yoCrhmJHEhaEDebJrL6vv1ycNBSBwljZMObBIPbZE69ZMT0wk5PZtrF1dCTx3DnMnJypodH8agrWdFVIUKNRlHyhRqyJFXUriuXw5DWbNwiIbDziAQYOq4Ohozt27IdSp40aHDoYD2/DwBBZvegPqc6l+HxZkahGV05hEc0JGcJSBixczCeYKhZILF17TuXMZfH3DSUyUY2FhxPTp9UlKSmP16gd8+hTPDz9UpFKl/Fg4O2txnvJXrJjledesaU1iYhpeXh9p1aoEEyeq9Iq21q1LyN27gOo7Hf3qFQ4lSjDK35/4uGTmWi9S/80Al39bQf+3hzGxtqZM584Enj2LQ8mSlO6kEr60dnVlekwMPumyHO4aROmFI9YzY90nBJRsvfqC0OAIpq7OzNoAOHh4MC0ujvAXL7ArXhwTAxmpDLRYvpyTmqUpQVDfxz4HD3Jj3jx1F1sh96oY0YRUjAGBGjzk2c4YCtasaeDIKoR4euq9Fo0Nt+WZHKl9+14wenQNatd2o+vhw6wrX56Yd5kiqF9zb/yvIy9A+h+BY8mS/8h5ux0+zJEePfjo5UWxVq1olm6t4VKlCqb29qTExCAqFEhRYk5mScRn/35KduhA+R49ePkynHPnXtG8eVEEqVRNInQgijH5TqPosRAnJ3PGjdPnRBUqZKP3mijCqlUPmDo1Z6Jo4QKmPAsXEREQUFLYJeegKj4+Nb2LR9Un8vruQ17s20f5bExSddHt8GG21quHPCkJI3NzuhrodPsaOJcrx8iXLwk4dQrHkiXVSsyCIPBTb0tm7o4kCntK4UcNHlCidWuaLV5sUPU5A7qt6qCyatEMkEBlszF0aKZsw+zZDQ0er9OuXZTr2ZNX585RedAgXAx4Qb27dUtrOzYkRN16fmHcONISE/lu9mwcPDyw9/DQakvWhHWhQhRp2JBzo0eru81qjB5Ny5UrEQSB774rwuC6CRy4o8CMJNpzEgkifrefkkZd0KDEptlpB5HGZmYUa9YMAKdcLkhsHG2YP8KVn/74gAIprUvGIru3Hz9RlbV4sGoVzZYupU42vByADh1KZRkYZeDdu2gUSDVeEfihsTH1Cn6P906VFtGTjRupMmgQjqVL4+cXgampDHd3w6R8mUxALs8MOGrWVEkhiKJI9+6HOXJE1X1Zrpwzy5c3p3JlFxwdzWnXbi9nzgQikQisXfuQZ8+G0f/GDXY2bUrCp08UrFWLjjqZVE2kvvVlRpPPuE6tQaF0fmToo0fq4AhUwe/jTZuoni6HYGllSsVyDni/yBSCdfryjEPduxP68CESIyNqjh5N6U6dtBY0xpaWVDagh7b3gB9gm559Fdl34CVTV+sNQyqTZeltponKAwZQoEYNPnp58d7Tk0fr1qn03qRSTG1stMrGwqsH/FxGxl1fOTZEU1J4hWX+7LPTBQwET6IBqnHGojKjEeDixIlEvX5N+V69/lQF4n8NeTpIGvi36yD9tyHCz487K1by9IInae98VS7aGijWqhXKHgvp1++4+rXpva0w2aOaJASplOHPn+NUWpucqYnkZDllyqzlzZtordf37OlEr15Zq/9mIPx9OG1rLuRFmDGlnVM4fX8a+QtnX0s/ccKP7zvuQ0SCjDQGSXfSaXx3mqd3N30N5MnJWnX+1FQFly69RiaT0LRpUYNt1i+PHePkoEEoUlKo8uOPtFyxAqVSyZEho/DZug5BEGiyYIFavTc1Vc6kYo2Ifx+MGyFU7t+PjundYNlhdalSRKWXRORIuU9NXLv9SL9hDWjUyJ24uBRu3QrGxcWSypVdcjiaPoJv3yYuNJSiTZuqeXPbGzXi3fXr6jGF6tdngEaGUhPPdu1SEah1HmFmjo4MffKE1Lg4/tAJYMydnBgfHIzM1JSHf/zB2ZEjtd5XInCqwmq8nkcgCAKFCtnw/PlwQq9f5MLEidgUKkSvc+eQZdNenx2SE5NJSUzhzuwZPDSgcj8hNFSPA/S1SEpKo0j+XwmPVX0ulpIk/F6O4HCrJnwJClKPEyVSnrbcwsmzbwGYObO+QXHUO3eCadlyN4mJcqpUyc/Dhz8CKl5g4cK/a409f743LVoURy5XYmSkTfY25GWYFQLPnmVv27bq77bT3r2U79mT4Nu32Zau0ZSBFitXUktDZTrk9Ue6eAwhQWlKVR5TFH3Jk5rjx9PSgKmtLpqXmsxlf3M1D6pF6STO+X4dT2/t2gfs2PEMd3dbfv+9JS4uKs0yeXIyF8aP5/WlSxSsVYuqP/7I9oYNIT1gsnBy4ofLlznw/fdEvXqFa9WqCDIZZnZ2dNi6Fcv8qs63qNev+fL6Na7Vq2NmZ8fz/fs5NWgQirQ0bAoXpnC9ehxNaMzOQ6rvvm1bD44f727w2fJvxt8xf+cFSBrIC5D+WkRFJdGo0Q68vT9haiTSPW0H7rxVv9/1yBGaj3nLhw+Z2kfOzuaEhk4gKSoKS6fcWWGIooit7SJiY1UkZjc3a4KDcy9w+C1Y1bY/d84+ogAfsBGjKdOtG+89PbEvUYI+Fy+qPbW+BnK5kiZNdnDzpoo82q6dBydO9NBa6cqTk1lgYaHVit1sy15GLf/EU58YrImhD7txJpwJoaGYO+ejdeu96rJI5w7FOHSsd67KgS+PHeNgly6gVHKcjjwTKqn5JeXKOREZmURYmKpNftGipkyZUjeHI2bi+pw53MhonxYEmi5ejImlJfLkZO6vXk10UBCOpUsz4NYtrU7BL2/ecG7MGKLfvCHi5Uutz0HXpPajlxcbDHQGmjk4MCWdg7OjSRPeXr2qvo6Wv/9OmQFD2b7di9RUBX37ViT8xjkOdc0kHMtMTel+/DgFa9VSd399LW7++ivXfvpJ7/VRAQF69jHfgvfvY/hl0mFS4uKY+kt7SlcpysaqVQl78kQ95i2F2Y52U0Jo6AT1BJ4dZs26yqJFd0hL0+aR3b07kNq13QAoXPh3PnyIVRP5M4Kn3OBg5868PHZMHSBpCoWuKVVKnTk0s7dnQmioHv/L9/BhTv34I2mJiVrNDRnISQQxA8H+IbSotYxX0VaUsI3jwoNJajHR3ODUKX/at1d1sUqlArVqFeT27azlGbx37+bukiWY2tnRatUqtQ7Wh8eP2Vy9eqYtjZUVU6OjeXn4MId79ABRRGJsTJt166gyUP/4oijy7NknUlMVVKvmqu5u/F9CXoD0NyMvQPprMXfudX755SYKhYhEAm4OIgOj5oMoUnnQINpt3EjhwisIDs70hHJxsSQ0NPsyQ1YICIhAKpVQrNi3dfF9DdISE7m1YAFRr16REhfHq7Nn1e+Z2tmpROEEgQp9+lCpf3+DJrm62DF7C/3naRvI+vqO0NIrCn/5kj90jC2fV5rMMW8LlEoVn6Yw7+jPDsa8fo3fJyPq1NHuxPHzG0nJkjmbx4KKbP8lKIhKHe/ptaZrwsxMRkLCjFzzsOZKJFm6rJfu1InO+/cbtGf5o1w5Ivz8DOog5a9cmaEaAYAoihzq2pWXR47ojZ2tc+60pCQEicQg0Xp5wYLEaZB2M2Dp4sKQhw+xLqCyGTGkOp0VlEol6ytWJPzFC/VrJTt0oPuxY39Lq3Ryspzty89wdeYMSuKPDAVBuLMTbXHYkJDxBg2DNfHgwXtq1tRXhh8zpia//94CRJEHa9Zw69QDtviVJB4LRo2qkauSdwbOjBjB440bERUKBKmUMl26qOUylEol3rt2kZaQQOVBg5CZmCCKItFv32JkZqbOrIiiSNjTp2zKwnJJ8x4QlUrOjR7Nky1bsMyfny779+coc5IVvHbs4Oa8eRhbWnLPriM7b2SWuYyFNFKU83l//z5RgYEUadRIff9kh7MjR+plHEf4+rKvXTs90dF8lSoxzIAx8/86/o75O4+DlIdc4cgRXxYsuI2JiZTNm9tRpoxzjvskJWm4zCtBYmnHz5+1ibWrVrXi++8PqF3ff/+95Tdfo4dH7ib9vwJG5uY0nj8fgCU6ma7kL1/UYnyXvLx49McfDHv2zKCekSbuzZsJDNd6zcJCmxPlUKIEUmNjLTsCaYHiCM8/AiouVSJmlO3RA1t3d0yi9VWdt259yqJFzQxeQ0xICN67duFcoQIOJUrw9to1nMuVo0wZJ+7ff2+o8QxAjzyfHZRKZZbBEahMllNiY/WCSlGpVLWIZ7GvVEccVRAEuh48yAIrK+QarflG5uZ6+xqZmbF8wSVWrHyAo6MF2/b0UIv3mdraGgyQEj5/5snmzTh1GU69eluJjk7B1FTGyZM9aNZMWz8mKiqJoKAvlCrliKWlMRKJhBHPnxMbGkrwnTuYWFpSrHnzvyU4SktT0KjRdu7d+wB0owhv6MtOCvMOD+MQAlJVGZ+RI6tnGRyJoshPP11lw4bHBq9x/PiaLF+u+u16/v47FydMAEGgByrSr21MBJ997PSaSERR1OtMBWg4dy5hT57w4f59nMuWpbkGoV8ikVBJQ5sq+PZtjvXtS3S6e0CGtYggCLhUrozM3Fzr+wewKVyYt9evs69dO1ITErAuWJDYdIf72JAQDnXrxvjgYL4Wn1+8UOkrpT/QBDEGkQHp2mhQRHzNgU6d8Dt2DFBlgoY8fJgjhzR/FR0NJEHAxs3N4NhPXl74HDxI2W7dvvr686CN/60iZB7+Fty5E0yXLod48iQMT8/3lC27Dk9P1cPkxo23NGq0g3Ll/mDu3Oukpmau7IcMqYKNjYpfIwgwe/Z3esfu0KEUoaET2b+/M+/fj6dbt7+vC+/k5vP0qPUTM/v8Tlpq9iJ7oCpn3VmyhGWtBtCs6Gi61/yJYH99+w2L9BVrVvgSFIT3vn2sKFSI32xtuTBhgsFx+flEbTL8uUSaym7okdAlMpmeWnmxt0c1MhcCIwaUodPu3QiCQOXK+alUSZtTtXv3c4PnD/PyYmWRIlydOZP97dqxtnRpzgwfzrb69ZnZPpV69QqR1fy9cWPb3E/uOSg1g0ogUxeCREKRRo0QpFIEqRQEAUl6UCQxMjIocChIJIz090eazvOSmpgwwoD2y+k9t5g48y7vP8t55vuFpt9tUhNZB96+bVglWBSRGhvTteshoqNV2bXkZDkdOx7Qsly4cyeYQoVWUL36JooVW8WrV5ndi9aurpTr2hVTW1tODBhAUEa57y/E48dh6cGRCm9xJ1zigl2hgnjHrMXTcxCPHw8hf34LRo8+S3BwjN4xjh/3Y8GC20RGJmkJuWagf//MUuabjL9BFEEUebF3L7cXLmRduXJaVkR1625FIpmHqemvlC27VktU1MLJicH37jErLY1hz55hnYV5drivL9sbNlQHR6BqLsiwdhEEgQE3bqgFGgWplGItWzLixQv2tW+vstIQRXVwBKpAPP7jx2+yzYh69SozgBdFivCOHuylCG8pQQCtOKdld5KWkKDyZ8sBVQYNonTnzggSCVJjY1qtWoWxpSUtsuBR6cqv5OHb8K8JkIoUKYIgCFr//fbbb1pjvL29qV+/Pqampri5ubF48deR6fJgGJptvRkYNuw0b99G06zZLq5ff4uPTzhz5tygd+/MckaxYvb4+4/ixIkePH8+nH79Khk8fv78lnTvXg5X17+vrHlqywU6DvHk0H0JC/bE0KnarBz3OdqnD4en/Mr0865ceWPPoQdS6lRajkKuXd7pf/26eqLOCmeHDyc2JISUmBjurVjB3XSDSU1IjI1pwSWmsIipLKJ/c+0OM4VCyahRZ5mXOIZ1DCM8XR3YLOAqz58PZ0IbBYPYDNvGcLBLF5QKBYIg0Lt3hcxzSATy5TOsEXVp8mRtmwmNCeLtztXcuDEAL69htGql4pFkxEO//NKIrl1zDmwVCiW/T91Jd5f2xEltsx2blUBd96NHqT1xIuV79aLv5ctMDA2l75UrjA0KUneW6cK2YEF+SkpitijyU3KyVrt/Bq7uzCyRikiIjFWSkKDK0pna2vKzQsGQx49Vpb/0MpxTmTJUGzaM8PAErWMlJqZpcXNmzryqzqZGRiby28KbWjpEl6ZOZWudOnjv2sWuJk04bqCbKgOZHZS5h62t/mc5NciH8e/eYWJqQq1aBenT5xizZl1nzZqHFCu2infvorXGBwV9UQuYK5UigqAqq5qbG7F0aTMqVMgMwl2rVcvSduJEuvbQkCEnuXs3Myjx9Y1g/nx9Mn52XnMAb69f1y+3iqKW71j+KlXoF/CRmWkKfpbL6XPuHMaWloZ9xtJv6kr9+4MoEhcaqmXBIU9OzjZwcqtTB1M7O1UQL5GAREIoBXhDUQIoxRYGIxTIdBsQlUr8jh3LVTDW7fBhflYo+CklhRrptiol27en59mzCBqfk4mNDZV1/C7z8G341wRIAPPmzSMsLEz93+jRo9XvxcbG0rx5cwoXLszjx49ZsmQJc+bMYWO6Wmwevh116uinclNTldy+8EyPpHn48EutB7ijoznt25ekbNmcS3LZ4fr1t7RsuZuOHffz/PnXW47s3XwbAVGtd3T1RQ47oFK9DaYQaRirNYQ+JNvyzk879R72+DHKrBy4pVIazp2r9xDXFYq8Pneu+hjmJFGmaT16nT6Nn18EAQGRiKLIzp3PWLv2ISmY8hlnDtMFUE3gBWwVWJ/5Bbd0uUj/48fZu+I4zZrt5NGjUFq2VAU1rq5WbN1qWL06WcdQNQOCVIqFs+r7q1AhH2fP9ubevUHMm9eI48e7M3NmfYP76WLAD4cYv/gNhyNq8IdiCHFY4mKAH1KwbtZk79cXL/L26lXiQkMxd3LC3MEB98aNs8ww5BY1ypojI02lNo6S4hYRWFlp85Fcq1ShXPfuTPr4kZEvXzL06VPM7OwYPry61rhmzYqqrTgAbdFEUcRrx06WODmxr0MHFGlpeOoEy8927GBTjRp80DCvTU6W06bNHqysFuLktIRbt96RW5Qq5cgvvzRCIlGZ9C5d2ozChW3V73/+HM/Ll5kBm1yu5Lffbmsdo21bD4yNZWofth49ypGYOJOEhBlMnFhHa2z9GTOoPWkStkWL6l1LRhv7lSv6nWXh4Yl6r+UEtZmvBqoNH66+X9+9i8bGZhFubiswMZnP4cO+mfsaassXRUp16kTDuXNZW6YMywsU4FdTU1Z7eLC+YkV+NTNjgbk5S5ycuDxtmp5vnYWzM0MePKDW+PE0mDWLYc+ecVeS2ZqfIFgR7KotDBoVGMjn54azurmBR6tWzEhIoNH8+TSYPZsJ799nq4Cdh9zjX8VBsrKyIn8W5Yw9e/aQmprK1q1bMTY2pmzZsnh5ebF8+XJ+/PHH//CV/m+hRYvidO9elgMHMksTU0aU4vSIkUAXNDVjAJ49+6RnPvo18PQM4fLlICpWzE+7dh68fx9Ly5a7SU1VIJEI3L4dTEjIeMzMspb010VxD0eU96IBFZE5n3ly9jug4vs4vYxQZ1IERMyFFFyLav9t0e/0J6vOBw5QoHp1bNMzn9dnz9Z6X5MAKk9O5oaOOq5DyVIMHHiS7du9ABg+vBqOjuZIpQIKhYiIhGhskZiYMNzXV080MZiCzJmcGQW6uVmTmvoTMpkky1JY6S5dCHv8WO916wIFaKNDEK1Zs6BaDyc3SE1VsHu/X/qWQBIW+FOSUcuWEXz7NveWL0diZETTJUuolIU3VtCVKxzW4FVsrFIFuxIlaPbbb3raTF+L7+eMZeaVrpz3lmBlJrDq5MwsxxpbWuLg4aHOksyb14hixexYP/8olsGetHq1ixDP4rjVrq1+v1WrPSQnyzERk6ilVGk9BZw8yQsdn75EzEjCDPHRY/a0asXEsDCkRkZs2fKEc+deARAdncyAASd49WoMucVPPzVgwoTa6Zkf7d+Nubl+9tPKSvu1kiUdefhwCAcOvMDV1YrBg/V9wTIgNTKi2aJF1J8xg0U6AqhN06UwmjYtyqZNT7TeGzRIv+MwJxSqV492mzZxf+VKJMbG1J0yRYt706fPUbVXoFIpMnDgCbp0UTU5DL53j9M//oj/yZNai4P4sDDuLlmipd4epWGMK09OVpXfFy3CuVw5KvTpg1IuV2WNBAH74sXVkh+iKGJjd5aoqKSMiiNmEv3y/p8NaGTGxjSYmfU9m4dvw78qg/Tbb7/h4OBA5cqVWbJkCXKNScHT05MGDRpgrFHqaNGiBf7+/nzJYmWckpJCbGys1n//n5ASG0vQlSucGDSI+6sNqJ9pYP/+LgQGjmLHjo48ezaMT7cucUCpHxyByKhRZw0dIle4dOk1detuZc6cG3TosJ/ff7/HixefSUlRIIoqy5HIyCTevdPnSWSHnzeNoEPFZCyEJIpYxHDwRL8c9+l29Cg16hSlu+Ul8kmjKGoVw9E9LTE1136YFW/ZEhNrazUvpmSHDpTr1g07d3d1MNJ+2zZ1Gjx/5cq01/Ale2/AZuTmqQfq4Ahg3bpHVKqUX50FABg8sj6zkpOxdHTEMn9+amoobb/Ip50lCgmJJS1NkS1PqHL//phq+PhVHjSIGYmJjH37FqcyWdta5AZGRhJsbEzSpTVVcLI3waVKFRrMnMmUyEgmffyYZXAU4efHLp0SmlIuJ/LlS/Z36MBnA7yirHBhwgRWFivGUY1zmVhbM9vrPFfDd3E+5gSlGxvOYl2dNYv5pqYstLbmeboSPEBth/e0fPUL9VIvE/fuDQc6dlSXTRo2LMLbt2O5eaMfY6VrcSI9WyMIpMTGUitdrfwZFVjCZFYzhu1iX2IjY9Rq61FRSerWbFHEIA8oJ5ibGxlcVFhaGjN6dA2t17Zvf0ZgoDaPpVw5Z375pbGeQrohKFJTubt0Ka41amBsY4OpvT2t16+naroMw8aN7WjevCgymYCZmYw9e76nUSN3rWOE+/pytHdvDnfvriVPoIsqgwcz/Plzhj5+TLnu3bXu8QxuWAYyLHFAFVR03L6d2umEclBx1lyrVSMlLo6cIEilRAQEcG7MGOabmLDY3p7As9rPPkEQ2L69o/pzb9fOg2HTtK1qbIsWxcHDA6VSybG+fdn23Xd8fqkS30yOicHn4EGCLl/+Jk5UHv4c/jVt/suXL6dKlSrY29tz9+5dpk+fzoABA1ieTlJr3rw57u7ubNiwQb2Pr68vZcuWxdfXl9IGxAbnzJnD3AwtFg38f2jzf3P1KnvbtFH5B6XDuXx5hnt752r/FpXmcPEZ6AdIUKGMHc98cr+61cSAASfYteuZhgmqqD6HIKg4NE5OFrx5MxZT0/+eBGjU69c837sXc0dHqgwapNdRlR3kcjm/6rS0Fxj1K0PWaK80fXxGkJIi59gxP4oUsaVfv4p6beWfvL1JS0piw6kE5v+aqUotCCCXz9IyFzaEuLAw/I4fx8LJSaU2nMP4r8GlS6/p0V1FaG5bRcmOY0Owdcs6CxUXl8KuXd6IoojDwy3478i6XN5g9uxsPaoycKBLF/w02v5dq1dnSDY+eJoI8fRka53McpLEyIgpkZGYWFkZFJ38KSVF7z64MnOm2v3dqkABhj55goWzM+9u3aJko0ukKDKtSPoVfsq2N6q2/6CgL1SpskEttTC0rTnudxYikclovX4jNz4WwM8vgnbtPPQ66HKL2rU38+BBKEqliFQqMGhQZTZsaKd+PykqisebNoEo4t6kCVvr10eZkoLU1JRRgYHYapQ5L0+fzt3Fi1UlKEGg6W+/UXfKlFxfS2p8PL8XKUJydDTJSiOU5nb8FOSFpfPXler37HlOnz5H1ds//FCenTs7aY1RpKVxZcYM3ly+TMHatWm+dCkR/v5srl0bpaaGUoazcfq/JVIpzZYu5ULGwkQQMLawYGp0NBIdHbTkZDnx8alq/7qXR4/yZMsWbAoWpNmSJZhYW7PAyoo0DV7UD1eucGrwYDUBvfrIkbROV4XPgz7+59r8p02bxqJFi7Id8/LlS0qVKsUEjc6fChUqYGxszNChQ1m4cCEm2ZhEZofp06drHTc2Nha3LFon/9dwbswYreAI+Ko6eMXG1bj47JHB977EpBITk6zuYPsaFCpkrcHZyAyOQPVs6ty5DPPnN/qvCo4A7IsV47tZORO/DUEmk9Ht+HGO9OiBUi6nbLdudFo1nYufDnPokIoz8cMPFShd2jG9My3r8mUGJ2NudSVXrr7B0/M9MpmEtWtb5xgcAVi5uFB9+PAcx30LmjUrRkTk1PQJOPtrSUtTUK/eNjXfzM3Wib5IkWFY3K9w/dzxoPyPH9fafvfwKV++JGFnl7XlSgYSw8O1tpVpaaTExmJiZUWJNm0wnjaNtIQERKWSMt26GQySG8+fT/EWLYgLC6NY8+aY2ansPdzq1kOU3gA1V02k2tgJ6mxI0aJ2+PiM4OLF18g+BxA0rQcZv97BnddxjzrIZAKrVz/g4sU+3xQk6X4noghJX74QcPo0xpaWXJ42jS+vVGU+cfp09ThFcjLrypRhukYGPvjWrUx+jigSfOcOuZcRhcjAQJIiI3lGBY7TATFByvnvdvHQe1yO2StN9O5dHhcXS3bt8qZ27YL8+KM+501qZKSngu9SuTJjAgPx3rWLpKgoirdqpQpkb9xQl9TLdOmikp3IgCiSGh+PIiUFiY6UhKmpTOuZVbpTJ7UXHEDQ5ctawRHAsT59tHzrHv7xB82WLMnWHigPfy3+0Vlm4sSJ9M+mYwOgqAGiH0DNmjWRy+W8ffuWkiVLkj9/fj590ibvZmxnxVsyMTH55uDq3w7d4Ohr8fO85hw8Esg7tchjRlAj8D40ga1bnzJ+fG0UCgX926/Fx/cLP/Qtz/i5nbI6JABTptTl1rVXXLsViqHs1Jw531GiRM6ii5GvXmFTsOC/hqxYukMHfkrSLpvs39+FKVPCkEhU7fo5tdGnJSby6vx5jCwsKNasGXfvDsp2/D8BQcgsEWYHb+9PeHtn/p6DvxgRZV0S51jVhGTt5kbSly+ICgU1Ro+maLr3XI7QSJh7U54TdOBX+8X06VOBHTs6ZqswXKRRI+yKFlXbdZRo0wYrV1cAbAsXZuiTJ7w4cAALZ2dVF5QBCIJA4Qb6floSicDcuQ2ZPv0KoNL06jNAu+xVoIA1AwZUZmt97eysL6oOQrlcRCaTcPKkf5YB0qJFt9m61YsCBaw4fLgb9vaZk+38+Y1p3XoPSUlybG1NGTWkLBsqV9YyMs0Kuh1hse+1BU8LpvOxcgv7YsUwsrHjZEw7tcjiM794arqOpVvaboo1b06HbdsMykHoonFjdxo3ds9xnC5s3NyoP2OG1mv5ymvbF9kVLYpFvnwkpM815Xv3NqizlR1igoPZ37Gj3usynUBIZmJiUDw1D38f/tEAycnJCadc2knowsvLC4lEgnN6yrV27drMnDmTtLQ0jNJvokuXLlGyZEns7AybMP5/RqN58zjap4/WhFGsRYtc729paUzQm3Hs3PmMU6f8OXs2kOTkzNV9RhaoWvH5eL0FEHk6zxs/7xCWbRuEpa1h0UQLC2POX+yHi9UMouQWZAZJAubmRkybdpnGjd0ZM6amwYAhOTqaxY6O6q6xYq1a0efst3Oi/klIJALVqrnmamxaYiKba9VSZwHL9+5Np927/87L+1vh7GyBRCKo7yNBgLGel7BMCsPO3V3t3fa1cKtbl+Bbt5Aj5QQd1Kauu3d7061bGdq1K8knb2/e3rhBhd69tc5jYmXFkEeP8D18GGMLC8p07ap1D9oXL26QKPvZxwe/48epMnQolo5Zi5lOm1aP1q1L8PFjPPXqFcLc3PBkaFO4MCG3M7vMnAgnXmKDUqnqQCtVyvA51q17yLRpqgAsICCSihXXERKSmUFXcaXG8epVFGXLOvHu1OFcBUcAFvky2/yDb9/W2+/t9evUT/cGzA1MrK1pOH8BitFhaC6UvCPs6EAML48cwcHDQy3W+k/BwsmJYc+e4XfsGGb29pTu3Pmrj/Hm2jXSEhL0Xh98/z4Xxo7l+d69SE1M6LB9e46yB3n4a/GvIGl7enry+++/8+zZM4KCgtizZw/jx4+nT58+6uCnV69eGBsbM2jQIHx8fDhw4AArV67UKqHlIRPle/VilJ8f3Y4do9myZQz09KTP+fNfdQyJRKB//0ocOdKdNWtaq3VxihWzp3//SgB4v81og1W9ufF4NC4Ov3Dv3EP9A6bD2NSY8+d7kc80CQlKTIwEihWzJTExjZMnAxg37gKrVxvmjWyuU0erpf61hjDdn0Hkq1dcnzuXyPQSQ04QRZHI4FBalpxAPrOptKrxm9or7u/AvZUrtUqkz/fsIf6jvor2vwVubjZs2tQOKytjLC2NWb++LR5lXHGtWvWbgyNQacmU6doVh7LlUSBDc/KNiUlhX4cOrK9YkfNjxrDYwYE3Gsa5AGZ2dlQdMoTyvXrlajV/vH9/1pUrx7WffmKZkxPee/dmO75ChXw0b14sy+AIoMmvv6qFLwH6uD6kaRN33NysGTu2JkOHVjO43/792toW79/rE5GdnS2oU8cNGxtTTHUWlhIjIyzy5cMiXz7abdqEVYECCFIp1oUKMU5DaDH+k74Mx0cvLwCC79zB59AhNfk8O7w+eZTiaGqwiViSmanSFIf8J2GZLx/Vhg2jbLduetyj3EDLe08QMLa0ZHpyMhaOjnTas4cpkZFM/fKFct27/4VXnYmdzZqxvGBBbunoCubhX0LSfvLkCSNGjMDPz4+UlBTc3d354YcfmDBhglaJzNvbm5EjR/Lw4UMcHR0ZPXo0U6dOzfV58rzYcg9RFPnw4AEpsbGYlazC8dNBpKYqqFQpPzVrFlB3bZjLfiJJkTERqThFAkrqFo7n1lt9scQMVC84mUcfMtPngiBo8iPp2LEUR4/qPzCWuriQoBMYzExLy5X7+t527Xh98SLGlpYMffxYLSh49eefuaWh0lx/1iwaz5uX5XF8jxzh5MCBnI+twk0aqJ3AuzRz5ODF0Vnu92cwVzebJghM/fLlm81U/9uQkJDK06cfcXOz1tLwAXhx4AAP167FIl8+mi9dim3hwrk65vDhZ1i/XsWjK1rUjnX9U/D8WZtIbFWgABN0ykUAfidO4LVtG5YuLjT+5RfMs8gM6X4vUlNTvVLqtyApKoq3169j7uBAoQYNcqViPnHiBZYvv6fetrQ0Ii5uRpbjRaWSU0OH8nTzZmSmpnTcuZOyGqa9WUEpl/OLiYmWYnrZbt1wKltWLXdh6eLC0CdP1L5phrCvXTtenrnAHrEHQRTFSpZKV/luCktDERUKuh8/TqkOhjW9/m24v3o1dxcvxszennabNlGgRo2cd/oLsNjRkSQN1e1aEybQwoCI7b8BeWa1fzPyAqTc4/y4cdxfuZJEzNggG0OMXFUv79q1DAcPZj5ET+y+Q9e+50kTM1ZWqgCpkHUy+UuXoFw5Z9avb4tMlpnMVCqVyKRz1dyDDGQ0kQgC/PprY6ZP1yfmPtu5k+MaPk0yc3NmGkhf6+Jonz4837Mn81wabt/zpFItQbjsnMBTExJY7OCAIiWFg3TFl9JkJGpLuSh5GarfNRnh50fAmTPYFytGyQ4dvtqPK+zZMzbqiN5pOtb/GyCKIh8/xmNpaYyVlQmfXrzg7KhRRAcFYVOzCfMeVOBdcCwSicDOnR3V6uDv791jSzq/RZBKcfDwYKQmcTaHc16+HERUVBItWxZnQ7GCWpMFqEpHk3QC7hBPT7ami1kKEgludeow4Ka+CjQYCJCMjfnJgLs8wO3bwTx5EkaDBoXVPnBfgy9BQRzo0oVP6UalJTt2pEe65xeofldt2uzl6tW32NiYcOpUz1xpWaXGxyP9Sv5LRGAgW2vXJiU2lkL16vHDxYsstLZWC0UiCDRftoza6RIHhvDp+XN2NGpEUmQk5i4FGHD9Kp+fP+fj06e4N26Me+PGub6e/zaE+/ryJSiIgrVr58rI+u+C7v1pZGHBDEMK4/8C/M91seXh34nk6Gjur1wJQCAl1MERwKFDvlodbB361CW1T10OrTlFr9EPkCNDQORdrDnv7n/g/v0P+PqGaxGKJRIJttJEvigyOUjOdjJ69q3KgwcfaNq0KJMnG+6Jqdi3L0bm5lyeNg2bQoXoffFirv6mgNOntbY1AyLdNUR2a4qU2FgU6RNgCQLxpSwSFCiR0rq5fmbjk7c3m2rUUJnPiiINZs2iUTbZKUNQGgjWCtXLvXP6Pw25XEmrVru5fFlVMmn2XX5q3xiOJJ34fyokiGAKARKUSpE+fY7h5fWRxYubaenjiAoFES9fIk9JQZaL5gtBELTIzKY2NnoBUov0+1wTIXfS/fJEEVGhIOTOHURRNBjYFqxdm/eenurtWhMnGryWnTuf0a/fcVD9lfQ1PkjN0iYMfvQoV9nPj15ebKpZU0vR3f/4cc5PnEjL9IyARCLh3Lk+OR5LFzmZLOvCa8cOPjx8yI+PHmnZuhhbWKiaQ9IVE01ymMTylS/P+JAQYkNCsClcGJmJCY4eHpT5Bp7PtyIyIIAbc+ciT02l7uTJfzqzk5aYyK6WLQm5pZLgMHNw0Puc/kl8LcH8fx3/Cg5SHv67IJHJVKKIoMUJyMDJk/56r3Ud1Q7vB33YNNeD4sW1OSQPHnxg+YQtuJhMwNVkAu0qTKNHc1scjeKRIqeUiwLvl2P4/feW3L2rsrjQzDjpokyXLox59Yp+V6/manIBVddMViirU/vX3daEZf78FG/dGoBKeNHN9AzfFfrCz0NcWLJV3x/pxf79KOVyNVn+0fr1ubpeTYhp+sq8jX/99auPk1sE37nDr+bmzBUE5goCO/7kSv7o0Zfq4Ajg0o2PPKeceltTXDIDS5d6cvXqG9zq1FH7XglSKa7VquUqODKEdps3qydty/z5GXj3LuUNfNcFatTQam4wtbfX2tbEoLt3abZ0KYUaNKDrkSM0TddA0sW6dZmcPBF4lFqWT8+esco9d91XT7ZsMWh3c3/5coI1CN1/N7bUqcOJ/v15tHYtv7u7s23pSTZtekxoaBwdtm1Td5UWa9GCCn1yDtaMzMxw8PD45u/0zyAtKYltDRrw4sAB/I4eZUejRsRptN3nFicGDmSuVMpciYQ/ypdXB0eQri31D9ph1Rij0REpCAy8e/cfu5b/RuRlkPLw1TC2tKTFihVcGDeOosog8luk8DEh8wE2btgRjKPf0n20Nj+gdPWSlK5ektNP9hPwKlMJW6EQmbgiBFBNTqefA8/ltK8g48QzfYd2Qwi6fJnXFy+Sr2JFyvfq9dVlqoH377M8f35VBkEQaLNunfq9Lvv2UaJVK55u3Uql/v2zbOEGVVaix7FjvNi/n9T4eKZ062aQn+Jz8CCBZ8+qWtXTs1WCVIqVS9YaR1/evOH1xYuU7dpVi6jsWq0aRZs1I+jSJUBVWvmzytfZYW/r1pmlEuDttWtcmjqVZjlommWFDFPYTIhEkll2qMpjnlKZL2gH1p8+JdCkSSV6nzvHk02bMHdyomEuxCKzgnujRkwOD1fx6hwcsryHCjdogCCTqe1dkiIiOD18OO00RGo1UWfiROpkkTnKQP78VmobGQALVGXhOAP8J0Mwy6ZT95O3938ko/jhQyw+nj5ksN4u0Jx7k58CT7G3N8XLaxhTo6JIiY3F3Mnpq3+j/2lEv32rbt8HVfbn07Nn2f5GdfF8/368tm3LPGa6RIQaoviPSpG0WrmSVitXkhwdjamOLUwe8jhIWsjjIH0dEsLDSUtIYMZiHzZseJTOycwQdxSZO8iRnzeP0tsvMTGVqlU34ucXqfeeJqTIkYs5B0gBp0+zr107JDIZSrmcxr/+qqdfkhMuTp7Mw7VrkRoZ0WrtWirmYnX7rfA9coRDXbogSKWICgVmjo4kRUQgNTFhwJ07FDBg4Hp11ixuabQ0dz9xglIa/mNKuZy3168jSCQU/u67b+qm0UR8eDgJYWF6ZqCRkYm0d+xICiZU4xEuqPg5+SpVYtjTp8SFhnK4e3cSIyKoNX48VXPhgxgdnUyhQiuIi1MFSoIAEwuewzLkvmpbKqX9rr1M2pKsNjl1dbXi+fPhWjo+WSHw/Hki/f0p1bFjrgnc2UGhUDBfJzNpYmPDtOjobz7m27fRtGmzF1/fcNwIpif7MCcpW86SJpJjYvi9SBFSdK9BImH4s2c4lytncL+/CpoE8Fp40oIL/MIstTm0IMCyZc0ZP/7r9JD+SaQlJrKiUCGSv3xBBCRSKS5VqmBkZkbjBQvUXnvZ4czIkTzS8THUhKWLCyN8fLINcPOQO+SRtP9m5AVI34axY8+zatX99K3MAMlEkBPwdjKFChnupLp//z21am3J4qhK7KSJRMmXZPF+Jo7374/37t3q9n7ncuUY/hWq4IFnz7K3jYY/0t/cAXZyyBC8tm3TkiPIQFYkyXkymdZ4U3t7pkZmH2B+K3Y2b86b9GyU1NSUKVFRGJuZIYoiVaps5JlXKCAiRcFI/sCOaJr89hv1pk5lkZ0dyRqTtG4glwGFQsnG+Yf4EPyF/hPbYp/fnqlTL5OQkMbYsTWpWbMgybGxGJubq7Vf5HIlhw75EB2dTJcuZXByyl4kUKlUstrDg+jXma3inffto1yPHn/6M9IltzqWLp1rcnh28L/9iNkN+mEiJuHOWwbeupnr7E9idDTLnJ1RppdczZ2c6HbkSK5Vxr8Vfn4RlC69Vuu1EaxlB/1IFCzV1cedOzvyww8V/9Zr+avx+cULrv70EylxcYTcvq0qh6Pi6owLDs4xsHl36xbbdYRBa44bR/KXLziUKkWdSZOQ5mkb/SXII2nn4b8S27c/Nfh6iiijWbNd+PmNNJhOr1rVFZlMQC7XjNFV/7YWkti+Pnt1ZP9Tp0j4/BlrNzc1BySjk+lr8FZH6wZRJNzXN1crxG9B/ooVDQZHAGkJCSgVCkLu3lV1SNWujSCR6BPFNYya/0qkxMaqgyNQ2Ujsb9+evpcuER6eiJfXRzKoi3KkvJcWoXH/qtSbOpW0pCSt4Ajg+a5dBgOk76vM5JS3KSCyfPsfPPMaxqZN2uNMdR5yMpmEnj21lYyzQ8CpU1rBEaiC6b8iQKr84488TeeOSIyNGfzIsO3O1yAuLoUOg+/hL6rc6IcNq/ZVpTFzW1tmJCXhe/gwDsWL42ogE/l3ICVF/16sPm4ibRu1oXf/M3z5kkzPnuW+6rvLCe9u3eLx+vWY2tnRYNYsLDWEKv9KOJUtS+s1a/js48Oeq1fVr6fGx7OiYEEsXVyoNGAA9aZONSjiWLh+fTps28alqVNBqaTRL79Qbdiwv+Va8/DXIy9AysOfhqmpEbGxujwSVUAUEBBJTEwKtrb6dXaZTMLZs71p2XKPWjG5Th03du36nqJFDYsBpqUpWLz4DsdW7Mcl8gFVeYyJlRVlunQh6MoV8leqROu1aw3umxXK9ejBXQ0vJomRES5/4+RSbfhw4sLC8D9xgui3b/VUdNeVK0eEnx8ALlWrMuThQ8r16MELDZHB79L1ZAA+PntGwNmzVPvxxz/dMpzhIq6JDNsIe3sznJ0tiIhIRKkUEQSY+fCs2htOZmqqLnNmoKCGuWsGUhOTOOOd0TIukKQ0ZuPCYyzZO/ZPXbsudL2tQGVM+leg/YYNtPnjD1Lj4zH7izKNZ84E4u+fmRVcv/4Rv/3WBBsbU+TJycR/+oR1wYLZlk+lUqlBYvmfQXKyHIlEwNjY8HnLl89Hx44lOX5c1ZzRrp0HfZf1QCIRiIgoS2qq4i/zTox89YqjvXsTmm4wLEilBN+6xVAvr7+M05SckMSDS08oUiI/V4YPIPjWLZWvnqZZLaoS3JfXr7n2009EvXpFRw2ukSZy4i3m4b8XeSU2DeSV2L4N9+6FUKfO1vRnh0hGmU0qlVC8uD0vXxrOIGUgMDCSCxdeU7y4PS1bFs/2XJMmXWT5ck9EUQlIaMdJqvKEejNm0CSHzi1RFBFFDPpt+R4+zNVZszAyM6Pj9u163JtvQZiXFw9WrcKxVClqT5pk0Cw2ITKSZfnyqTNKBWvV4v29e1pjel+4QPHmzfE5dIiA06epPGgQRdLT9gc6dcJPQ+vmz4rnpSYksFCnrbvb8eOUTj+ml9dHxow5x5cvyUydWpc+fbQ/p8Bz5zjSqxfyxERKfv89Xffv1zuHIi0NG+OZJGBGRjZqyTg3Jq0YaPCaRKWSpKgozOztEXJhuJsBpVzOAgsLlYRCOgo3aUL/y5dzfYz/JM6cCaBt233qbWNjCTEx04l8/pTdLVqQ/OUL5k5OdDl4EPeGDf8j19S8+S4uXVIRi/v0Kc+uXYa9FBUKJXfuqNS069Z1y9GM+FsQ//Ejy1xdDXYMTo2O/ktK4m9fBlOz4ko+p1kjI42e7KMYQTnuJzUx4ac/6W+Zhz+HPA7S34y8AOnboVAoOPjzaj7sWc17k1L45muHi3t+5s9vhJubDfLkZI4PGIAiLY0O27dj+pXaKhmoWHG92sRUQEk5XtCZoznqB21bfYXRU+6QKocZMxswZ07Dbzq/KIosXnyHffte4OHhwJo1rXF21ufCvL9/XyVgmP7zcqtXj4Ea7b26SI6ORmZpyalBg/DeuVPrvWojRtAmi6yYntCbpSUz4vQtJL4G7x894mDHjqQmJNBw/nzeyEoD0G3wd0j/JPk7A9t+3sbIX/xIwoyG7jFc9FuMkbG+EOGXoCB2Nm1K9Js32JcoQd8rV7Bxc8vx+NN7LWfn0ffYWyjpmv8xpp/98GjXjvabNxsMVDWRGBHBvZUrkScnU2XwYBIjIpDIZBSoUSPbQP/Gjbf06nWUyMhERo2qwZIlzXKd1Qi5d487O4+y7YEdFx+nYmQkYePGdvTvX4ktdeqogmaNR7V5vny0XbeO0t9/n6vjZ4djx17i5xfBgAGVyZ8/83d59OhLOnc+qDdeIoEePcqxdWsHTEwyM0PbGjQgOP0eL9OtG10PHPim6/HasYMbc+diZG5O67VrKfLddwCcGjqUJ7ot8YKATaFCjA0K+qrgOSv0bTCH3bfEdJFaESfCGUnWJOsM2Jcsyej0rG8e/hnkBUh/M/ICpL8eSrmcc+PH82jNmswXBYGpsbHfFCQNHXqazZufpJfkRFpwgcYOgYwPCcHIzHBHk9+VW5RrejHdmFQ1YXl6DqJWrZxVhHWxd+9zevc+CqgminKOcawebUvdqVO1lIb3tGnDKx2T3Nk6PzVFaip/lC/Pl9evMbOzY/CDB8S+f69H6ux15gwl0rWVdKEbIMnMzJiZmPjVf5chKBQKCjvM5kOM6u9yMk+hoGUScUkiI4dWYNwSwxmf3CI1MZHkuASs82VtWH24e3d8jxxBVChIFMwp1fF7BhzN3oR3z7Kj9JmkIukLKHE2juNjyvJcXZNSLmd9xYpE+KvKRYJEoiY9V+jTh447dxoMekRRxNHhN758SVWrNp082YN27UrmeE7/6540bbSF97hhQjKTm8cz9cgyLC2NAVhfsSKfvL319pMYGTHh/Xss0g27vwXffbeNmzeDAVXJ29d3BCVKqMq0K1Z4MmFC1kKrCxc2Ydo0FUfq6fbtnBygrfM15NGjr+ZBffbxYV358qSnejE2N8elalU+v3iBuZMTkTpBSMFatei4c6e2n9mfQM86P3PAU1AHSPZ8YQyrMgcIAhKpFPemTQn38SHh0yfsihWjy4ED5Cv/13Gs8vD1+Dvm7zyhyDz8rXi0fr12cAQgipwfpd/+nxssX96coUOrUqOGK6P6uLFo71gmhoVlGRylpSlYMOWgnjHpx4/fJqfv5fVRLVKpVMKLz+Z8N0uOzPhXpk7NJDdbOGlP+oZWt1tq1yYqIEA1+UdEsKFyZQrXr0+VoUPVY0p36ULxVq2yvJ58OhYjmtykP4s9666qgyOA8EQTvD5b8yrOlvFLg7l84MafOr6xuXm2wRGg1om6QQMWi5MZeKwE3WrMzHafh7cDySD7i0j4lGpDWmruuEfR794R7uuLqFAgKhTq4AjAe/duorIwK76+cDFRX1K0JC0/fMhdJm/pvHN8oAAAqRiz4bKgDo4A6v/0k8H9lGlpxIWG5nh8v+PHOfXjj9xfvVpLdf3OnWB1cASqLsGpUzPLj/37V8LEJOuMYVDQF/W/QwyIUWoqiOcWUa9eZWbKlEpS4+N5d+MGSZGRRPr5IdUQjHStXp1Bnp5/WXAEMH1pDywkKlkFAZGJg4vR7ehRBj98SM/Tp2m+dCnDnj2jz7lzjA8O5qeUFEb6+uYFR/+jyCNp5+FvRUQWaWfpN4qjWVgY88cfbXIemA4PjzW8feuApvyAo2kKjRvnTqFYF02bFmXJkrtIEFGCWucFRBYvvsvYsTVxcbGixqhRBJw5Q1K6H1rTxYv1jhWuQ4hOiVGJZ7Zbv542a9agVChyVBAe9vQpt377jaALF6g7dSrFW7b8pr/LEORpSr3XNP3x7l5+QdPuqvLHu3fRbNnylAoV8tGly18nUllz7FgeX37ENTLVug89NOb4sl10nPiD+rWl+fOrRf1cGnZHggdiekBcyi7GYPnOECzz58fY0pLUhASDXJe1ZcrQ//p1CtXVtrq5M2825WnDcyoASkxJpW3b3HVTihb2gCrYEJGQJtW2eyjbtStGZ85wavBg4jOUnAUBBw+PHAVBXx49ysHOndWaW3EfPtA03bX9yBF9Qr5mQGRnZ0ZQ0BhmzrzK9u3P9MZ27lxa/e86kybxdIuGZIcgfBMx2a1OHUzt7VW/BVHUsvzJwKTPn5EYG/9l5HhNVKhThsCgCVw8cIuy1YpRtXEl7QFtcv/sycO/H3klNg3kldj+ery6cIE9BibtfjdvUiQX+ixRH6MY3mE5wR8S6da9LOOXDcpxnwz8/vs9xo+/oPVaZbNX7L8yCY/a367Hcvy4H+vnH8X38StC0BYe9PQcyOfNc9WTRbmePWm/bRtGOoFOxsT1hiKE4UIhgilun/S3aRt9CxQKBUayeRpBUbqUAiICIn26laBaPQ+MlckMH3ddnT1p2rAAl64N/suu49Tq/bQfo21fM8xsDyvCHmJqY8P+zp3xP3qUZEwIpASmJNNm6W9s2XCPfE5m/H5gNE4Fs89UaeLtjRvsbd2atCxKlYJUys86Mgu/GBmRJlfynPIkYEE5qT/L5bkzCw4MiKByhTUkpKgCukU/V2PKXMMTcVxYGE82bUKQSqk2bFiOXYsnBw/mydbthIgu2BBD0ZKujEpftKxefZ8xY86rx0okAp8+TcLRUd+PS7MUB7BtW3v696+sNebVhQucGT4ciUxGl4MHcdHJburiy5s3HOrShfCXLynatCmF6tXDxMaGQnXr4r17NzIzMzyXLyc1Nla9j6WLCxNzkTUDFbk/9MkT0hISKFiz5j+qWJ2Hvx95HKS/GXkB0t+DWwsWcHWmRllEImF6TEyuTDBrFJjAo1Cr9MlXwrYFpek/vVuuztup036OHdOeWI8c6UqnTn8+w6FUKDg4cR69VpKeqRCwtTXh5Y3WbKioHXwNf/6chPBwgi5fplTHjhSoXp29bdty6MwHjtORjCMc3teWTj2q/elryy0SElJZt+4RX74k0a9fJTw89CdbR6NJRMotyci+uVtGE6+0IDzRWGNUxiMks4TZ1COeCy8X5UiIzg0UcgWVncbwPFrFtSnCG35gF4Nv3aBQvXqsKl6csNfv2ciPRKVblPToWJh9x/p/0/l8jxzhQJeuJGCBOYlI0c9izEhKwkhjwl1gaakn1zDm9WvsihbN3TnvenP4j7N4lMlP92l9/xLCMcClBUtpPzOcZMwBkTYlIjgdoCp5p6UpGDHiDAcO+ODqasnJk70M3gMZ2LjxMa9eRTFqVI0sxV+/BruaN+fN1at6mmBOZcsy/PlzBEHg84sXrKtYkXSZfjzat6fznj05PjvkyclsqlmTz+ncLTMHB4Z7e2Pl6vqnrzsP/53I4yDl4V+J+jNm8N2cOZjY2GDh7EyPY8dy7RD+PNQ0PYMhQUDJzLn36F7rJz4Ff85x3+7dte0VjI2lfP996SxGfx0kUimFC9kwjHWUwp8KeLF/vMQggffR+vXsbNyY2wsWsLlGDZ5u24ZVgQI8piqapb8Vs47+JdeWG4iiSLt2+5gy5RKLFt2hWrWNvH8fqzduxYLaGKPi4eQ3TaD9gKY6wVEGtP/uywGWHPrj3F9yrVKZlJvPZ9JHspde7OEHdiFFie+RIwDUnjSJQEqogyOA/cffER39bW3XpxesZTWjWcYkVjKWCPSDBt3skiGRwM21aukJZxpCZEAAx5vVhn0z8Z85gAvjx3/TdRvC3sDi6cGRCmcCnVCmBxtGRlI2bWpPbOx0/PxGZxscAfz4Y1UWL272lwRHoPI6MySYGu7jQ8idOwDcXLBAHRwBBJw8yZWZ2XPQAJ7v26cOjgCSIiPxXLHiL7jqPPx/Ql6AlIf/CBrOns206GgmffpESQPKylmhqF0iQvoKXkRCaIrV/7V332FRHG8Ax7939F6kowKCYkGNFbF3LLEmxhZb1NhiYjQaE2NN/GnURKMxauw99hJj74kFG1ixoCiKIDZEpHPz++Pk5OBAEBDLfJ6HR293dnaWBe692Zl5WRegRzmvqZRxGUPvtlkvCtmxow/TpjXBw8OaKlWcs1zR+1WF7NqFI/fpxF+0ZzNR/+7BwceH8l27asqU79qVc8uXax13aNw4Gv70E1b68VqZ6pNDAkkpoLVUIiKeEhb2hKClS5mgp8f3ShMOHLiJEOpkwU+fJrFvn3q9F1VqKr/+tAMz04n0+SGYnn2q0bxJcSITzPlt1ukMNWfdAf3ZiMDnK2/nnXVRF2p/YE4prml6dB4/XyW7Wv/+VO2sPd3d0FCZ7QDj7Gy86kw01gA8xYK9aK/obleuHKbpkgUDVB88OFM9cffvExGoe5X5NEIINnbrRnJcnGa8zZkFC17axkchIQQuXszdl6zgrT0ZQf2zn5KSuUcsfXuSk3Wv8p7fKvV+/rhc1/pgz8fuXdm8OdO+BzlI6aLr90hVQKvPS+8uGSBJb7R/jgyltnssNnpPUb8ZKxEoeZhszuUIJYu2PKBx5UmZjnsc9ZjAg2f5cnA1btz4ilOnPsfDI38TQjpXqqR5FKJQKnGqXBmFQkG75cv5/MwZPj9zhnbLl6M00B4grGdkhJm9PT2rPMCJSBSoKE4Y9cjbrLCsjB17ABeXX3Fzm0HvnhtQqVQYkoQJcVoBmqenLYkxMcyoXIthowOIi08mKSmVPxecZceeMJ11W1sZUdRA91ibhEQV48cfzFPbI2/do0vN0fiXGUF8yfrAi96aUh9+qCn37crx9OmjHhNjaKjHwoVtMDHJ2cDsjFRmL3pSBAoSMabJL79QffBgGk2axAAdU+4b/vgjzWbNUq+2DOrp4Pr62Hp6ZnuufwYO1KwKncb8JY+B7gQE8IePD1s/+4z51apxbkXWyx40bZr5/A8exOsse/DgTRwcpmJk9BO9em0mNTXrQCo/1Boxgk82bqTe6NEYpOtRNjA1xe15ihUjC4tMx3nnYCFUn06dMHdyelGnmRm+X36ZD62W3idyDFI6cgzSm2vVr5voOiztjUl7zIuxMpn41J/Y8Mc2Pv/qIDEpxqSiRKCHoSKZ2bOb02dALZ315kVKQgJ7hg/n5qFDuNWtS9Np03QOBL24di3rO3UCIVDo6dHj4EHcatcm/ORJFvr5oUpNRQFU7Nkzy3QFufUsKorjv/1G5MNkPp2nvZBlH+ZTlHBuU5S/9dqjtC/O8OE1GTrUjyNTp7JgxB8soWe29Q8aVA1fX1e6dClPckIivsW/5dyjtMBC/dhQqVTw4Ycl2bKls+a4pLg41rRrx4PgYDwaNqT1okXZjlMqaTmE60+tUPcfCpZ+bYJVXBhudevi07lzph7BJ08SMDLSz1Nqi7WzttLly5Okoo8CFRM7Cb5bnfUipOmFHjjA7mHDUCUn03DixJf2ls5wc+NJmHbw2ffkSVyqZj0WbUvv3pxdulTzeMqpUiX6nTmjs+yNG48pXXoWycnq1DCenrZcvjxI50rXTk7TiIp6ppm8t3Jle7p0eT3T16Nv3eLIlCmkJiXh9/XXmtl5986dY17lyppr9Rs2jCZTp+aoJzjp2TOCN24kNTGRsh06FFjyaenNIJPVSu+tLkPbcfHMLZZtuMWDRBMSRNo4GIG1mTpz+6eDjpCAGek7RpOEPn0H7qGIk22+jT9Ko29sTPNZs15artwnn1CiSRPunT2LS/XqGJqqx4S4VqvGkLAwgtevx6FChXxLH5GanMziOnV4dP06j4Q1oP34J/X50gTFuMP8ns9ovWCYZl9KQgJFFeEoRYpmCQOFQsGXX1Zn5swTCAH9+lVh1qzmmjcpPTMTAu/P4Oi2E0Q8UvHZ4EPExiZhYqLPqFHai14urV+fuydPAnB26VIUCgVtsggKnzx4QsjTF71+qcClKFMmrpib5bVbWeV9ptIng1vjWa44+zefoHazD/BrUT3Hx3o0aJBlsKKLXenSWgGSjZdXtsERkCmDfGRgIP8zN2dEdDT6GcZClShhw8GDvZg16wQWFoaMGVNPZ3B0/Pht7t3THmQeFfUsU7mCYu3mpnO1eMcKFTLNGMwpQzMzKnbr9vKCkpQF2YOUjuxBejvcvBpB5Yq/8zjBAHODFH6f3YJpP+3hgu6nQICggk8Rzp7PPE6koAmVirunT6PU18fpgw/ydQxUVu4HB/PH80/gAthIO86jnlnn94El/pe+h5QkiteuTa9D2o/1YsLDmV+1KtcjU9lKG0xd3Znx5ye0aFGSBw/iSElRaaWj0OXBgzguXoyibFl77O21e68mmphojQ+xdnfnq9BQnfWoVCrsDEcQnWqmmSm4cW412vXTvar42yg+Opol9erx4NIlLIsWpefhwy9NpRL38CErmjYlIkMg5lipEv1fEpw9ehRHQkIKLi4v/r6dPBlO9eqZxz2FhQ2hWDHZ6yK9HeQ0/wImA6S3z8KFZ+jT5+8MWzNPOweBrbUhH1R2ZcGC1rkej/QkPJwF1aoR9+ABRby96RcU9NK8ZEKlYk379lzZsgWAyn370ipjLqkCkPDkCb+6uJAcH69e7FChpPpf/2Fs70SdOm6alcCzPD46mrAjR7B2c8PBxyfbsrnVyaoe/8RUQ4mKZuykbeuSdH7+/dHlyLYA+nRbzZN4JX06uTNhiRxHAurB1BMyPJo0sbNjxP37WR7To8cmli1TP6YuX96BoKB+KJVK/P2Xs3t35oSsXbr4sHLlR/nbcEkqIDJAKmAyQHr7eHj8xs2b0VnszRwo6ekp+OADJ06d+jxX5/nZxkZryrZr9er0CQjI9pjbx46xqGZNrW3p18ZJTUpCz1DXlPnMYh7FMHPkclQqweD/dcXGIfsAL3T/fnYOGUJqYiINfvyRcp/kbO2o7LRqtYpt264BYGVlxM6dn+Yqn93p/UFUbbSJtPuhRMXVs93xrOCV57bpIlQqzq9eTfjVW5Rp3Qr3Ku9WOogJBgaIdI+f6oweTcMsEjbfuPEYT8+ZWttmzmzG4MG+NGy4lAMHbuo87tatIfk2rV+SCpJcB0mSMjA1TT/mQmj+1ddPC4oUWvtSUwXBwTlb4Ti9jOvZ3M/BVGNdi/0plEoCly1jvELBT0ZGjFcqiQwKyraepIQkPnAby+j5Dxi78CEV3ScQH6t7JlIaj4YNGXDuHF9cuZIvwdGaNRc0wRHAkyeJtG69mtx8vrp27ibqPznqx2Uq9Ai7GpHntmVlx5df0e/TZbSYkEyJqusZ0upHTs2bl6O1id4GI+7fx9rDA0NLS2oOH55lcASwZUvmlD937qhzxY0ZUy/LJREeP87+50yS3mUyQJLeKseP36Fhw6U4OU3FymoSSUnpB3AqsLQ04JNPylG6tD0ZFy9UKtWzsFu1ylmOrPSMrK21XtuVefmAb9fq1fHp0kXzusbXX2Pt7q6d9VwIFtetq+PoFzYtOUho7Ivz3463Zs9fWS8JsGfPdXx8/qBkyVmsW3cx27qFEIwffxAnp2lUqjSXs2d1r1sUHJz50c39+3Fs3XqFHj02sXx55lxdGTXtVBcbvVgUqFCgwsnwCX4tqr30uFe1bdFOjqPuwRMombkthbX9h7LA1zfLNCJvE2Nra766cYPvnjyhiY5cf+k5O2eeLt+/fxUA6td358aNr1i37uNMZXQtHipJ7ws5i016a+zaFUKzZiu1tsXEJGm9TkxUsWZNB/788zT9+m1DoVAPwxnzQx3uP0zAzc2Kr76qketzD7hwgflVqhD/8CFFvL35LAeZyhUKBe1XrKDe6NHqNXG8nj9KypCAMzk++0/pSzfe4cWK22ouHo46yz5+HE+bNn+RkJCCENC50wZuTh+BYcQl3Bs2pNX8+VrT6rdtu8q4cepg68GDONq1W8ONG19lqrdPnyr8+OO/qFQveow++MCRtm3XALBs2TlOnbrLb781z/I6bJ1sORU0kElfr0BfX8noP4ZjbFpw+bGURVzhzovXAiVJGPLw6lXCjhzBs0mTfD/nmQULODN/PvomJhiYmmLu7Ez9ceNeOvC6oLVqVQofHwcuXFCvQD9wYFWtcXguLha0aVM603G3bj15bW2UpDeNHIOUjhyD9GYrWXIWISGPstyvUICfXzGOHPkMgJ07QzhzJoJ69dyoVav462rmS/1StCix4eGa10Vr1sSqeHEurl2LAvBs3pzOW7dqApkaNRYQEJBWXlDSRY+r4aN11n3xYhQ+PnO0tnVjGZ6oB+G6VKtG33QLE06ffoxhw3Zr1r5RKhUkJ49Gqcw82y44+D6DB28nKiqOnj0/YObMAK03UHNzA54+/T63344Cc+vEaWrXXcadRPWq16UJpiNrUAD9z53DsXz+jkm6sXcvy3UFXQoFn6xfT5n27fP1fLmVkJDCoUM3sbExoXp1V51lPvlkHevWXUJPT4GJiQHnzw/A3d369TZUkl6BXAdJeq/dCs06OAJwdjZn/foOmtfNmnnRrFnBDADOi69v3mRR7drcDw7GvV49ivr5sf97dWAhgJB//mFD5850WKPunenWrQIBAeHo6SlITYUpsztkWXfJkkXw8rIlNPQxIjUVE+Jw4UX287Q1iNK0aFGS77/fT3JyKiqVoF270jqDI4AyZezZu7eH5vXSpUFa+01Nczbg/FU8eBDHvXuxeHvbvXQWXhq36lW4+rgC//xzjYijh3kybxqkGFJ/woR8D46ATNPuNYRgXceOjIqLQ8/g1Vb3zg/Gxvr4+2f/+7ByZXsaNfIgKuoZnTr5yOBIeq/JHqR0ZA/SmysuLhk7m/8Rn5R1mcWL29Cz5wevrU3phf33H1e2bqVIqVJU+uyzXGVjX9WqFde2bdPaZmRlxch0g4m3bLnM6dMRNGjgToMGHtnWFxX1jJkzAwiY8yflHu3Chmit/aPi47VW/D537h6rVp3H2dmc/v2rYmSUs89Nly7dp2rVP4mPT0FfX8mOHV1p3Dhn2etzY8OGS3TuvIHkZBUVKjhy+HDPV1oQUgihXs08F/cmN8JPnGCBr2+W+4dFRmLuqPvR6Lvk0Y0bLK5dm2f37mHj6UmfgIBMi1tKUn6T0/wLmAyQ3lzaj4K0x+OAwNvbjsuXv8h1vatXn6d3760kJqZQzT2V6V/YUG3AAJ0pQ7Jy6/BhljRooH6hUlFj6FD8f/lFq8zduzH06fM3Dx/GUbeuG40alcDf3xOFQsHJP/5g+6BBWuXtypZl0MXsB1i/zJmFC/m7T59M2+19fPjsyBGM8+FnXAhBZGQsDg5mOldozqvb1+7gVWY+SanqmW9KpYIpUxozbFjNlx5bGFb4+3N9926d+0YlJqKfw2Ud0kuIjsbQ0jLblCxvkt88PYm+8WJdJbe6del5KOtJBZKUH+Q0f+m99fhxQrpHPwpAYMETLImhjq8Du3Z9mus6VSoVn366ifj4FFQqCLihx9ih69V503IheNMm9QrZzwdfB8yYQVS64EalUuHt/Ts7doRw4sRdpk07RvPmKxk37iAA1QYOxD7dgox6Rkb0zfAo7FVU7t2bpr/8gkW65KdR2LPvgoKJ5WqT9CzvqSQUCgXOzhavFBwlJ6fSr9827OymUKfOYsLCMg8IbuY7TRMcAQiVyDYbvS4JCSn8++8trl59mOs25tZHa9ei0M/cA1ehR49cB0cxd+4w0dSUn21s+FFPj7kVKxIbqXuW4ZskYxsfZ7FSuiS96WSAJL0VuneviLn5izeYCaOqE7SnBXejRnL4+EDc3KxzXWdMTJLWrCyACJy5smULqlzkf7L18tIk0wT1AoU7vnjRm3X6dASxscmZjvvttxcLTQ48f57PT5+m13//8UNCgiZfW175DR1Kn+eDsoMpzRwGsJGPmHSnDWt/XZcv53hVs2efZP6fp3n4MJ6j/92kVY1JpCZpP0O9+tic9L2FpkbQq1elHJ8jJiaRqlX/pG7dJXh7/85vvx3Pr+brZGJlxcjHj6nUty9FSpfGumRJ6o4Z80pJiOf7+pKSbobjvXPn2P5F7ntJXze3OnW0Xnu3aVPg57x97BixD3K/vpkkZUcO0pbeCl5etly8OJB9+0Lx8LCmTh23PNdpbW1MkSImPHwYT9pCklU4g2XRoihekkYkvar9+nHqjz+0Fo+MS/fH2tMz8/gLhYJMecqcK1fW/P/20aPE3LmDR6NGmBYpkuW5//78c+5duECt4cMp066dzjKWrq7UGzeOhePCnuc0AxVK1uyN4VPdk+Fei+vXH6FQqBBCiQoltyISCZg1i5rD1MlzUxIS8LJ8wpUYW00utumjyuDgYJZ9xemsXn2eixdfrOE0cuQ+Bg/2zXIgen4wNDendR5SyqhSU9k+cCCxd+9m2vfw6tW8NO216LxtG9v69ePuyZOUbNmSxpMmFdi5Yu7dY7qTk+a1e8OG9Ni3r8DOJ71fZA+S9NZwdbWke/eK+RIcpbl8+QuaN/eitKuC7la7qVHRkk5bt740qWxKioovv9xB8eLTadlqDTWmzUXPyEizv8bQoZr/29qaMm1aE/T0XtRpZ2fKsmVtdda9euiPfFzrJ3p3XMz/ytTgaUTm1abj4pIZ61aRU/MXEH7sGGvbtydwyZIs21t/7FiKlvFA8TwQVCgUuJbJerC3EIKNn37KZGtrZnl78yCf3pgTElK4cuUBKpWK9u3LIIQCBeretwqKizx+PnYlJjyc3729aR2zkCqKQMpZ3mfSQEf6js7dquAZH/0plQpeQ77gPLmwejWnswiwfDp3fs2tyT09fX3aLFzIgHPnCjQ4ApjzPClzmpv79xfo+aT3ixyknY4cpC3l1G+/Hefrr3chhDq/W7NmXnTVX8vNAwewe76QZFbJbBMTUzA01NMZhD15koCL9VjiMQIUWPCUzZNcaDDyG02Z//4Lo0WLlTx9moQD9+jJEkyJx6p4cYbcuqXznFeuPKBly1Vcv/4YgJIlbVk/z487G5diaGaG37BhmNnba8rvGTGCo1Onal6b2Noy4mHexvCsXHmebt02IgSYmhpw4cIAto6fzrqlx7BXPKSCCKLnvr14NGzItoEDOT3nxXpO9j4+DDx/nrgHD1AaGGBslbP8YHFxyTRosIQTJ+6iVCr4888P6d278ssPLET/TZ7M/lGjEOkXFFUoaPi//1H7229fGry/TzLmowMYlZyMvo5xYNK7TQ7SlqQ3xOXLDzQ9QqmpghMHLnB1yxaSYmK4e/Ikc9INus7IyEg/yze5oKBI4jBFoIdASQxW3H2mPR7piy+28+yZekzTfew5hh8AxtlMpe7Va4smqa9CAd0/8eKfNg05NXcuR6dNY2mDBlpvyLcyzDqKf/RI+w07GxfXrWNly5bsHj4cVbpj+vX7W7MgZVxcMt26beLLxeP5fWk3PmlVjBazZuLRsCEANw8c0Krz6d27bB80iKn29kyxteX4jBkvbcc/AwbwaxFL2lwdye5Vdbl9++tMwdHOnSF89tkWJkw4RHx85nFihaFM+/boGxtrliMo/+mnjE5Joc7IkTI4yqB4rVpar5WGhjI4kvKN/EmSpFfQurU3c+eeRl9fSUqKitJJQVr7H1658kr1ennZoq+veD5TS2CoFDQZ2EWrzLNnyVqDy1PQR2loyKc7d2ZZ7507MaSmqo/R01NwJeg6Xk+favbfv3iRp3fvYlm0KAAlmjYlPN2K22ZOTjlaP+jssmVs7qFeTDJk+3bC/v2XPsfVA6OTklK1ysbEJJL87Bl/9+2LKimJq1u3cnbxYj4/fRqjDJ8ALZycOPnHH4B6EPyuoUMp37WrVq9XegfGjOHU3LkApCYkcLRLQxomJqqPF4ItW66wefNlli49i56eAiHUK4WvXp05H9nrVqRUKfoFBXF50yYsixXDp2PHAlu7qSA8Cgnh2K+/gkJBzWHDsCmR/2tjpen899+sad+esH//xcLVlQF5XBpDktJ7e37rJOk1EkJwcs4cljZqxPzq1dnYrRuLatdmYc2aXNuxg+bNS7JzZ1cGDKjKnDktaeOk/YfZwMRE8//UVFWm2XJZcXW1ZOvWzlT6wIlKFR3ZsacnDs7WWmXGjq2nGUdjZWXCrAPTGJ2YiHm6waoZ9e2r7jlRj8FR0KVLBdIqUSiVGNvYYJou2GgwYQJV+vXDzNERp8qV+TyHyw6kBSVpwgMCNLnmPv20gta+MWPqsalHD1TpZq5FnDnDkoYNX8xbe97GMh9nCFyE0JrhlVGQjlljoc97pWbODKBduzUsW6ZOsJuaKlCpBDt2hGR7barUVK0esYJUpGRJao0YQfnOnd/o4Cg1NZVr27fzJCwMgMSYGBb4+XF4zhK++OMZdp5L8LL4ihsXCmaqv5GFBd337OGHhAS+un4dw1ysXyZJL/NWjEE6ePAgDdIW4svgxIkTVKtWjZs3b+LhkXnQ6bFjx6hRI2fJSeUYJCnN8d9+Y9eQIZl3KBQo9fUZfPUq1u7ums1PwsOZ7e1N8rNnKA0M6Hn4MMVq1OCHH/bz889HMDbWZ+HC1nzySbk8tWvNmgvs2nUdR0czqld3pVat4jg4mPHsWRKLFgUSH59C9+4VcXIy1zpOCMHmzZe5cuUhzZt7UbGiE+dXreLfiRMxtLCg+cyZuFavnqe2AWzo0oULq1drXiv09PghMRHl8/FYK1ac5ejRO3TrVgE/v2KsaN6c6xl7vhQKFEolpkWKUP3LL3GrWxfX6tVZXKeOJlVKuY4d+Wj16iwfOa1o0YLrO3ZobRsWFYW5vT1VqszjzBnttXqUqChuEMlgh38o0bgxrRct0lqYcWWLFoQ8r6/aF1/QYtasV/sGvUMeh4Yyy8tL8+i1Yq9eVO7dm8W1a/MPLThFVQRKFKio7/mM/SHTCrnF0rvsvV1JOykpiUePtPNwjR49mn379nH9+nUUCoUmQNq7dy/lyr14EypSpAgGOcx/JAMkKc2qli25tn17lvu77tiBV7NmWe4XKhVzBk5m0LwX41oMDfV4+HCE1npOuhw4EMrKlecpWdKWb76pqZmJtWrVebp23fg8J5vg++9rM3FiI1QqQbVqf3LmTCRKpQJnZ3MuXhyYZTqO86tW8ffnn6NKTqZy3760+P33bNuTG8lxccwpX149G02ppNWff1K5d+8syz++cYOZnp5Z7h8aHq5Z6DIlIYHru3ejb2xMicaNs+1ZSU1OZoabG7HPZwBWHzyY5jNnAvDxx2vZvPkyqanqxQNMeEYxbtOSf7BE/djxg169aLNoEQAX1qxhQ4bFQ7+8cQMbHR/I3id/lC/P/QsXtLYNi4zkVxcXVqk+4QrepC3qWto6muDHMwqjmdJ74r1NVmtoaIhTuscHycnJbNmyhcGDB2f6BFmkSBGtspL0KpwqV+bajh2Q4fODQk8PQzMzrTWLMhIqFcd+/ZVD81YAHTXbk5JSiYlJzDZA2rfvBo0bL9e83rz5MseOqdOF7NgRogmOAP7++yo//dSQnj03a3pEVCpBePhT/v03jA8/LJWp/qTYWDZ27ap5fXL2bIrWqIFD47aEhDyiQgVHLC2NMh2XUwampnx5/TqJMTHoGxujl2716AdXr7L/++8JP3mSojVq0Hr+fKKzmHWn0NPDqlgxzBwcNNv0jY3xbt06R+3QMzBgmI51hABmzmxOZGQsZ8/ew8fuCQ1vzsAQ7QHaNw8e1Pz/0bVrmeqIDg197wOk5Li4TNvMHR3xGzqUi9P+4QqlUaBCoOTTjpl/FiXpTfdWBEgZbd26lYcPH9KrV69M+1q3bk1CQgKlSpVixIgRtM7mD2piYiKJzwdugjoClSSAuj/8QNLTp1zasIGUhATsy5XDytUVPWNjagwZovXGnd6d48dZ3bo1cffvUwIjrHlMNNaAgubNSuDsbK7zuDTz5p3Wen38eDgBAXcoWtSS8uUdWLFCHRwplVDaw5SfqrVk+enMCVKLFdP9CerW4cOZtq2a+Q/Te98kKSkVExN9+vevytix9di69QrR0Ql06FAu0yO7l0kbZJ0cH8+WXr24vGmT1irZweHhmNjYUKFbt0zHlmjSBDMHBxr8+CPKApiR5OJiwX//fQbAxbVrWd8x8+w1xwovxktV7tOHQ+PHa1ZXN7Kywq1+/Xxv19vGf/p01qRbJduhfHkAGk+ZQhFvbzxnbyMk1oZWfVvQbUSHwmqmJL2yt+IRW0YtWrQAYHu6RyAPHjxg2bJl1KpVC6VSyYYNG5gyZQqbN2/OMkgaN24c48ePz7RdPmKTXtXssmV5eOWKZlxGHCZcoiyGJDFqyQgq98g+Z9yQITu1UpCkV6+eG4cOvehx6ev6L4qIK/yp0k5I27SqCRv3D8bM4sVAcSEEFy/eR5GSyPpKxbXKL7P9jtDHRlqdZZaWRsTEJKJQgKOjOefPD8DOLvfpTw5NmMDBceMy9cQBFK9dm56HDrGpe3fOr1wJQN3Ro2kwYUKuz5MXq9u04erWrZrXBqamjHj8WCt32qPr19n3/fcYmJrSbPp0jK2tX2sb31S3jx/nyOTJOFepQr3Rhbgsu/Tee+fGII0cOZKff/452zLBwcGULl1a8/rOnTu4ubmxdu1aPvroo2yP7d69O6Ghofz777869+vqQSpWrJgMkKRXNtXBgbj76tQWVynJPhqhREVTdvPT8b8o6utLUmwsj0JCsPH0xMjCQuv4hIQUSpacxZ07L+/NrMhZ2rCZ1XTiGt5a+4pbJnAxfDzm5oakpqro0GEdmzZdBqBnC0tMdvxMmCiGMxFspwV3cSF9zrOMli9vl2kWWk5s6tGDc8uW6dzX9Jdf8Bs6FCEEj2/cQM/QEKtixXJ9jvxwYs4cTs2ejamdHbW/+w7Ppk3lmkOS9BZ55xaKHDZsGMHBwdl+lciwhsbixYspUqRIto/O0vj6+hISkvXUXSMjIywtLbW+JCkv/J6nGHmCJX/RiXs4EoETq/W6Y1aqAvcvXeI3Dw/mVarEjOLFiQgM1Dre2Fif0NCvOHy4JwsXZv8zbl3MFT2lgi566+mmWAG8mIIeFmPMxnXnAPXK22nBEcCS7THMFf34hw9ZQF9KcB09UjNWr+VljwazEvN8+nd6BqamtF60iBpffw2o057YenrmOjiKCQ/n4tq1xEZFvVLb0vP+8ENiIyO5degQK5s1Y9/33+e5zrxKiI5mub8/PxkZsaBGDZ5mMaZKkqSCUahjkOzt7bHPYqE3XYQQLF68mO7du+doZlpQUBDOzs55aaIk5UrtkSNxrV6d3duDUf2SlrBWQVIqhIU94fqUicQ/Vqf7OPykFFNqrsfZ8xh//tmKmjXVAYK+vpI6ddyoWbMY69dfynJ9nsAnLpTzH0fLEvcoZ+nO8kmxWvtNzdWP2LJfg0kQigdD+ZXw9nNYtVF7vRp9fQXDhtWkYcNXG5AcnnH9JKWST3fvzrQCsqY1QnBl61YiAwPxaNRIKzN8cnw8p+bOJe7BAwzMzDgwapRm38fr1lEu41pJuWjj6latiE+XSiVgxowCzyP2MocmTCB03z5Eaip3T51i19ChfPzXX4XaJkl6n7xVg7T3799PaGgoffr0ybRv6dKlGBoaUqlSJQA2btzIokWLWLBgwetupvSe82jYkI6Va/LD0lk8fqxezNDV1RJvbzuupqSAENzBle2iBSTA40v3adJkOR9+WIqKFR0ZPrwmBgZ66Okp+fvvzrRrt4a//76KQqE9lCcmJok/dkDnf0dw/kgYCvaStluphDZt1Y+m69Z1o3lzL02g5ekEoZHqtLUKBOY8o2z96kzZ0J26804xZMguVCrBpEmNGDKkBkrlqz9qsvP25kLgLQJFRZyIZPjMgVkGRwAnZs1i51dfodDT49CECXT++29KtWwJwNr27QnZtQuFUolI1e7x2tCxI+VSs+8F0+V+cDALdKz/9CaMMXoSFqa5TpGaSvTNm4XbIEl6z7xVAdLChQupWbOm1pik9H788Udu3bqFvr4+pUuXZs2aNXz8ip8qJSkvrK2NOXasNzNnBqCvr2ToUD+MjfWpNWIEIdu3ExrrrikrhDo32bp1F1m79iLz5p3G1dWCESNq0aaNNzt3hmjKZQySAHbvvk7x4laI52OIFApwcbHEwEC9OKOenpJt27pw+vRdDn0/gqi9W1lJF+7igoutkvlzPqPOJ00A6NevKn37VkEIoVl/CdTrCoXu349DhQpY5qJXtsSoP+j/0Y4XbTvkwNpBWZcPWrpUfa2pqSiUSi6sXk2pli1Jjosj5PmCkhmDIyDHeeIyOpIuIW8aPSMj2q1Y8Ur15Sf9DKtC6wranty+ze0jR7AvW1Zr5p0kSXn3VgVIq1atynJfjx496PE8B5QkvQm8vGwZ3BxuH/mXuLMpULQlLlWq8OWNG9wcvIV9a8K1yqcFPmFhT7h9+wkffbSWc0GfY2drxL378ahUuoOkVq1KUbGiE9u3X2PTpstYWRmzfHk7rbqVSgXVqrmy+7+NmJHA5/xJssKQJkN+0ARH6cumH7D94MoV/ihbVhOE5GYl6UmzL2uCI4D16y9lW97Gw4N7Z89qgiArNzdAHSyY2tsT//ChzmDIMMNg95yyep57Lr12y5dTolGjV6ovP5xfvZpzy5dz/5L29yo5Lo7bR49yacMGbEqUQKmvz64hQ0hJSACFgvYrVlC+S5csapUkKbfe3CQ/kvSW2/7rIuq22EKTiUpafbiSo3MXAmBmb0/dVhkf62h3CwmhHjv0W5s+tLg3C3PVE/T1oH//quzY0RUPD2uKFrVgwYJWVKvmiqGhHhs3diQ29jsePBhO/fruOttk7+Ojfv4GGIgkHHx8Xnodq1u31gpKTuZi5W1TU+1FMV/2uK75zJkUrVEDA3NzvNu0oc533wHqfHFdtm3DrnRpTO3tqTduHOaurqBQYGpnx5fZTMbITrWhI0guWpHk558VPf39Kdeh8NbsubFvHxu7dCFkxw5NfjMAFAqESsWiWrU4/uuv7PjiC/7p318dHAEIwb//+1/hNFqS3lFv5TpIBUWmGpHyixCCcub9uBznrMlH1cbjDptuqIMklUrwzTe7Wbw4iGLFLDE8/w/huPIYW5JQBxWGBkoGJM/AmmgATIoUYcSDB1mdMks7dlzjzJkI6tVzI3L2SC4+H+jr2awZXbdvf+l09l+LFePpnTta28bm8M/G3btPKVVqFs+eqRdjHDeuHmPH1s/1NRSEa9ceUq/eEiIiYrGzM2H/3k8pX9GlUNt06McfOTRunCYgVerrU7JlS+zLluW/7AaNK5UU9fWl99Gjr6mlkvRmeW9TjUjS2yZw0SIexBkg0nXSRuvZsW7dRRwczKhb141vvqlJmTJ2FC1qSUCLgSiAGCz4lzok65nwxaAa3PntCalCyU3cMUowJTVVpTU2SJekpFR27LjGtWuPWLbsLOfPq6fBKxTQUZwhhmpEY03ZnedpExmJxUvGFDWePJlNn75Y4NIpmzQrGbm4WPDo0QgCAsIpUcIGV9c354PHuHGHiIp6BsDjxwmMHf8vGzd2fMlR+WvJpLXMnHEMS3M9fl/xGUVr1NAERwo9PYrXqUOnzZt5FBKSbYBkZG5Oc5lAV5LylQyQJKkARAYGUkURyE7h/zwfFVx8UoRPPlkPQP/+VViz5iKPH6sfkTS0bE/dmI1Y8pSWbKfW8JHU/KYXf26Zy++hflzHC57B/Y/WsmlTxyx7fVJTVTRtulxrxe00CgXsFM2IxgYFguPUoOupu9RvlX2AVKFrVyycnTn6yy8U9fWl3pgxufpeGBrqU6eOW66OSfMwJISoixcpky6lRX6Jj0/WjOUSQpCQkJLv58jOf1uP0/v7C6iwRBEFDestJCJuCu2WL+fs8uVYFS+uWWrAxtOTki1aaBIoKw0M1KlPhMChfHnsypblweXLuFSp8lqvQZLeZfIRWzryEZuUXy5v2cKatm25pvAmUthj80F11ge9+JlKi2/SfvtMTPRZ0T6Y8JMnqfH111Tr3x+AI4dCqF1/pVbdXbqUY+pUf1xcMg9MPnkynOrVs17aQk+hIlWoe6CUCsEPo+sxfnyDvFxqgZlfvTp3062j1HLuXKp8/nm+rXB97NhtGjVaRnx8CkZGeuza9Sn16rnnS905MaHvbMYu0H5kGna1N8VKZh44DqBKSeHqtm2kJiVRolkLZsw4zvnN23EP/B0jhTpY+mj1anw6dXodzZekN4p8xCZJb4nSbdrw0V9/cXXrVoqULs1ttw9Z3+NFvi9DQz0SE9UztRQKsLExob2OqeWWtpmDoFWrLrJq1UV69qzI7NktMTV9sWiqpaVRlm3y9y/B3fCnXLp0n1QVqISCkiWL5OUyC0xKSopWcATwT//+xEZEUH/cuHw5h59fMa5eHUxQUCQVKjhSvLhVvtSbE7GxSejbuwJRgAIFgiL6sbh4OPP4xg2CN2/G2s2NsunSKSn19Sndti0qlQo3t9+ep6OxwohhDBPTMCSF7YMGUaJxY0zt7F7btUjSu0rOYpOkAuLTsSPtV66k3ujRdOpSkXbt1Ot3GRnpsXRpWzp0KAuo10xaubK97jp8HBgyxFfnviVLzjJixB6tbd7edowdW09rm0IBU6Y0ZufObqzf0JGq1VxxcDBjxIiadOlSPq+XWSA0s7MyCFqyJF/PU7SoJR9+WOq1BkdBQRHY2PzMqElnASVOpgnULB7LvgO9eHjlMr+XLs2eYcNY83EHRpZvybFjtxFCkJKiIjk5lSlTjmjl6kvEmDOox4XFP37Mfy/JbylJUs7IR2zpyEdsUkG7f/8ZZmaGml6fhIQUDA31Xjr9/fTpu1StOj/T9qpVXTh5sm+m7TEx6iTM5uYGKJVv5+eg/1lYkBybLn2KQoF7/fr02L+/8BqVD3x953PixIu8asbGetSr505w8H0q20RQ4ew0AK0kxG5ulty6lXUC47Zs5APOgUKBXZky6BsZERsRQZmPPqLZjBko9eXDAund9s4lq5Wk9429vZnWIzFjY/0cpfKoUsWF8uUdMm1v2rSEjtLqR22WlkZZBkd37sTQsuVKXM1GUNmkCxNafJHDK3h9Rjx+jHfbthjb2qJnYoJLlSq0fgdSByUnay90mZCQyq5d1wkLi2HzWVNOU4W7uGiCIyDb4KhkMUMqoE5MjBA8uHSJyMBAYiMjOfnHH5yaO7dArkOS3nXyY4UkFaBfhy5k9IxrpAolgz+2Yeq64a9c17lzA5gy5T82bryMmZkBTZp48s03NXNdT0qKCm/v34mLSwLMuEspAncoiK/bh0mH35wARF9fn06bNhV2M/LdyJG16dhxfRZ7BQ+wpyh3stivbfz4enwzqDxT7b7XuV+hp8fDq1dfsaWS9H6TPUiSVEBuX7vD8Om3iBPGJGLEtPVxHN6St4X8RoyozfHjfdi3rwcjR9ZGXz/3v8JHj4YRF5fMi3QiCkDF7mNPcl3XtZ07Ga9UMl6h4EdDQ6Lv5OyN/X22dOlZsp6Ip8SGRzgRSSvfF59f9fUzH/DRR2X47rs6JD7Rfd/SkvqWbts2742WpPeQ7EGSpAJy59pdVOhpbbtx6Q51839Jn1zx8rJ9/j9B+iDJySI513Wt/vBDzVoFquRk5lWsyLcPH+ZLO99Vly/fz5Rw+AXBLvxx5B4TBhRlxqrW6OkpMDLSZ8SI3QBMntwEa2tjzaNaaw8PjKystAIlhb4+1b/4gtJt2uBev37BXpAkvaNkD5IkFZCqjSvhbvYYdSCiwlb/Ka17NS7sZuHiYsnXX9dAHRwJlKRQSf8iS8/kPMdamrSksmmy6s14G13asIFfXV2Z5uzMmYULc3TMjQuhDO8wlYn9/yAhTvdMvI4d1fnv0nr/tHuT1PfkoqICHg0aUKKEDW5u1jg5mbNsWXuWLWuPi4uF1jg2hUJB7+PH0TN6scRD+xUraDZ9ugyOJCkP5Cy2dOQsNim/PYp8xKTBC0lMSmXo5C64lymebfmk+HimFy1KwqNHoFDg/+uv1BgyJF/btGPHNTp12kBsbCIKhQJTUwNCQr7EwcEs13X9bGNDQnS05rVz5cp8fvp0Pra2cMTcvcv0okVJ39Uz4Pz5bJP73r52B5/SM4lRmQIKqjlHc+Lu9EzlVCrBokWBXLp0n5YtS3JucHsmB/sRhQM8z9vX3S+RJUcn56rNCU+eEHH6NDYlSmDt7p6rYyXpbScXipSkt4ytk22uBmav9PdXB0cAQrBr6NB8DZBWrz5Ply4b020RPH2aRGBgBP7+Xrmub1hEBH/4+BATHo5L1ap89u+/+dbWwnTr8GEyPge7vmdPtgHSyhnbiFG9CDJPRlhzNzQCFw/tVC5KpYI+fV7ks7tXoihdLq9hnfiIKBzwsYhk5rbMgdXLGFtZ4dGwYa6PkyRJN/mITZLeIE9u39bekM8dvMuXn8u0zcBASenS6pWXU1NT2fvtt2zq2ZPYyMiX1qdvbMyXISH8EB+vCY6W1K/PeIWCCXp6HJ8xI1/b/7q41a2b8dkXnk2bZntMsRLpl2EQGJCEjb31S8/V4vffKV3RjX4GS1ncPJBj4TOwtJU92JJU2GSAJElvkOpfaK9HZGxrm0XJV+PmZoWe3os3fkdHM7Zu7YybmzUAvzg5cWTKFM4tXcovLi48CQ/PVf37Ro3i1qFDAAiVil1ff53lqthvMksXFzqsW4dF0aKYOzvTetEiHMqVy/aYzl+3pVONFJSkYqJIZNboMpiYm7z0XNbu7vQLDGR0UhJdt2/HyCJzehlJkl4/OQYpHTkGSXoTHP3lF07MmoVlsWJ8uns3hiYvf5PNqYcP4+jYcT1HjtzGz68oa9d2wM7OFIB7584xt2JFrfLebdrQafPmHNf/e9myPAwO1trW+e+/KfXhh3lu+9siNSUVhVLx1q5gLklvIzkGSZLeAzWHDaPmsGEFUneRIqbs3dtd5z4Ds8yDtHVty075zp05OGaM1rYSjQt/5t7rpKev9/JCkiS98eRHHEmSALD19MTpgw80r/WNjWmVy9Qe9UaPxqtFC1AoUOrr03LePPSNjfO5pZIkSQVPPmJLRz5ikyS4ffw4T8PD8W7bFj092RsiSdKbTz5ikySpwBWrUaOwmyBJklTo5CM2SZIkSZKkDGSAJEmSJEmSlIEMkCRJkiRJkjKQAZIkSZIkSVIGMkCSJEmSJEnKQAZIkiRJkiRJGcgASZIkSZIkKQMZIEmSJEmSJGUgAyRJkiRJkqQMZIAkSZIkSZKUgQyQJEmSJEmSMpABkiRJkiRJUgYyWW06QghAnRVYkiRJkqS3Q9r7dtr7eH6QAVI6T58+BaBYsWKF3BJJkiRJknLr6dOnWFlZ5UtdCpGf4dZbTqVScffuXSwsLFAoFJrtMTExFCtWjNu3b2NpaVmILXx95DXLa35XvW/X/L5dL8hrfh+v2cLCgqdPn+Li4oJSmT+jh2QPUjpKpZKiRYtmud/S0vK9+cFLI6/5/SCv+d33vl0vyGt+X6Rdc371HKWRg7QlSZIkSZIykAGSJEmSJElSBjJAygEjIyPGjh2LkZFRYTfltZHX/H6Q1/zue9+uF+Q1vy8K+prlIG1JkiRJkqQMZA+SJEmSJElSBjJAkiRJkiRJykAGSJIkSZIkSRnIAEmSJEmSJCkDGSClM3HiRGrWrImpqSnW1tY6y4SFhdGyZUtMTU1xcHBg+PDhpKSkaJU5ePAglStXxsjICC8vL5YsWVLwjc8nBw8eRKFQ6Pw6efIkADdv3tS5//jx44Xc+lfn7u6e6XomT56sVebcuXPUqVMHY2NjihUrxpQpUwqptXl38+ZNevfujYeHByYmJnh6ejJ27FiSkpK0yrxr93n27Nm4u7tjbGyMr68vJ06cKOwm5ZtJkyZRrVo1LCwscHBwoG3btly5ckWrTP369TPdz/79+xdSi/Nu3Lhxma6ndOnSmv0JCQkMGjSIIkWKYG5uzkcffcS9e/cKscV5p+tvlUKhYNCgQcDbf48PHz5Mq1atcHFxQaFQsHnzZq39QgjGjBmDs7MzJiYmNG7cmGvXrmmVefToEV27dsXS0hJra2t69+5NbGxsrtsiA6R0kpKS6NChAwMGDNC5PzU1lZYtW5KUlMTRo0dZunQpS5YsYcyYMZoyoaGhtGzZkgYNGhAUFMSQIUPo06cPu3btel2XkSc1a9YkIiJC66tPnz54eHhQtWpVrbJ79+7VKlelSpVCanX+mDBhgtb1DB48WLMvJiaGpk2b4ubmxunTp5k6dSrjxo3jzz//LMQWv7rLly+jUqmYN28eFy9eZPr06cydO5fvv/8+U9l35T6vWbOGoUOHMnbsWM6cOUPFihXx9/cnKiqqsJuWLw4dOsSgQYM4fvw4e/bsITk5maZNm/Ls2TOtcn379tW6n29zoA9Qrlw5rev577//NPu+/vpr/v77b9atW8ehQ4e4e/cu7du3L8TW5t3Jkye1rnfPnj0AdOjQQVPmbb7Hz549o2LFisyePVvn/ilTpjBz5kzmzp1LQEAAZmZm+Pv7k5CQoCnTtWtXLl68yJ49e9i2bRuHDx/m888/z31jhJTJ4sWLhZWVVabt27dvF0qlUkRGRmq2zZkzR1haWorExEQhhBAjRowQ5cqV0zquY8eOwt/fv0DbXFCSkpKEvb29mDBhgmZbaGioAERgYGDhNSyfubm5ienTp2e5/48//hA2Njaa+yyEEN9++63w9vZ+Da17PaZMmSI8PDw0r9+1+1y9enUxaNAgzevU1FTh4uIiJk2aVIitKjhRUVECEIcOHdJsq1evnvjqq68Kr1H5bOzYsaJixYo690VHRwsDAwOxbt06zbbg4GABiGPHjr2mFha8r776Snh6egqVSiWEeLfuMSA2bdqkea1SqYSTk5OYOnWqZlt0dLQwMjISq1evFkIIcenSJQGIkydPasrs2LFDKBQKER4enqvzyx6kXDh27Bjly5fH0dFRs83f35+YmBguXryoKdO4cWOt4/z9/Tl27NhrbWt+2bp1Kw8fPqRXr16Z9rVu3RoHBwdq167N1q1bC6F1+Wvy5MkUKVKESpUqMXXqVK1Hp8eOHaNu3boYGhpqtvn7+3PlyhUeP35cGM3Nd0+ePMHW1jbT9nfhPiclJXH69Gmt302lUknjxo3f2t/Nl3ny5AlApnu6cuVK7Ozs8PHx4bvvviMuLq4wmpdvrl27houLCyVKlKBr166EhYUBcPr0aZKTk7XueenSpSlevPg7c8+TkpJYsWIFn332mVaC9XftHqcJDQ0lMjJS655aWVnh6+uruafHjh3D2tpa64lH48aNUSqVBAQE5Op8MlltLkRGRmoFR4DmdWRkZLZlYmJiiI+Px8TE5PU0Np8sXLgQf39/rSS+5ubm/PLLL9SqVQulUsmGDRto27YtmzdvpnXr1oXY2lf35ZdfUrlyZWxtbTl69CjfffcdERER/Prrr4D6vnp4eGgdk/7e29jYvPY256eQkBBmzZrFtGnTNNvepfv84MEDUlNTdf5uXr58uZBaVXBUKhVDhgyhVq1a+Pj4aLZ36dIFNzc3XFxcOHfuHN9++y1Xrlxh48aNhdjaV+fr68uSJUvw9vYmIiKC8ePHU6dOHS5cuEBkZCSGhoaZxpM6Ojpq/l6/7TZv3kx0dDQ9e/bUbHvX7nF6afdN1+9x+vdgBwcHrf36+vrY2trm+r6/8wHSyJEj+fnnn7MtExwcrDWw7130Kt+HO3fusGvXLtauXatVzs7OjqFDh2peV6tWjbt37zJ16tQ36o0zN9ec/noqVKiAoaEh/fr1Y9KkSW/V0v2vcp/Dw8Np1qwZHTp0oG/fvprtb8t9ljIbNGgQFy5c0BqPA2iNwyhfvjzOzs40atSI69ev4+np+bqbmWfNmzfX/L9ChQr4+vri5ubG2rVr37oPo69i4cKFNG/eHBcXF822d+0eF6Z3PkAaNmyYVnStS4kSJXJUl5OTU6ZZL2kzIpycnDT/Zpwlce/ePSwtLQv1F/ZVvg+LFy+mSJEiOXoz9PX11QwWfFPk5d77+vqSkpLCzZs38fb2zvK+wot7/ybI7TXfvXuXBg0aULNmzRwNOH8T73NO2NnZoaenp/Mevkn3Lz988cUXmoGp6Xt+dfH19QXUPYjvwpuntbU1pUqVIiQkhCZNmpCUlER0dLRWL9K7cs9v3brF3r17X9oz9C7d47T7du/ePZydnTXb7927xwcffKApk3HiRUpKCo8ePcr1fX/nAyR7e3vs7e3zpS4/Pz8mTpxIVFSUpgtvz549WFpaUrZsWU2Z7du3ax23Z88e/Pz88qUNryq33wchBIsXL6Z79+4YGBi8tHxQUJDWD+ybIC/3PigoCKVSqbnPfn5+jBo1iuTkZM33Y8+ePXh7e79Rj9dyc83h4eE0aNCAKlWqsHjxYpTKlw9JfBPvc04YGhpSpUoV9u3bR9u2bQH1Y6h9+/bxxRdfFG7j8okQgsGDB7Np0yYOHjyY6ZGwLkFBQQBv5T3VJTY2luvXr9OtWzeqVKmCgYEB+/bt46OPPgLgypUrhIWFFfrf4/ywePFiHBwcaNmyZbbl3qV77OHhgZOTE/v27dMERDExMQQEBGhmn/v5+REdHc3p06c1M27379+PSqXSBIs5lpcR5u+aW7duicDAQDF+/Hhhbm4uAgMDRWBgoHj69KkQQoiUlBTh4+MjmjZtKoKCgsTOnTuFvb29+O677zR13LhxQ5iamorhw4eL4OBgMXv2bKGnpyd27txZWJf1Svbu3SsAERwcnGnfkiVLxKpVq0RwcLAIDg4WEydOFEqlUixatKgQWpp3R48eFdOnTxdBQUHi+vXrYsWKFcLe3l50795dUyY6Olo4OjqKbt26iQsXLoi//vpLmJqainnz5hViy1/dnTt3hJeXl2jUqJG4c+eOiIiI0Hyledfu819//SWMjIzEkiVLxKVLl8Tnn38urK2ttWalvs0GDBggrKysxMGDB7XuZ1xcnBBCiJCQEDFhwgRx6tQpERoaKrZs2SJKlCgh6tatW8gtf3XDhg0TBw8eFKGhoeLIkSOicePGws7OTkRFRQkhhOjfv78oXry42L9/vzh16pTw8/MTfn5+hdzqvEtNTRXFixcX3377rdb2d+EeP336VPPeC4hff/1VBAYGilu3bgkhhJg8ebKwtrYWW7ZsEefOnRNt2rQRHh4eIj4+XlNHs2bNRKVKlURAQID477//RMmSJUXnzp1z3RYZIKXTo0cPAWT6OnDggKbMzZs3RfPmzYWJiYmws7MTw4YNE8nJyVr1HDhwQHzwwQfC0NBQlChRQixevPj1Xkg+6Ny5s6hZs6bOfUuWLBFlypQRpqamwtLSUlSvXl1rKu3b5vTp08LX11dYWVkJY2NjUaZMGfG///1PJCQkaJU7e/asqF27tjAyMhKurq5i8uTJhdTivFu8eLHOn/X0n5netfsshBCzZs0SxYsXF4aGhqJ69eri+PHjhd2kfJPV/Uz7+xMWFibq1q0rbG1thZGRkfDy8hLDhw8XT548KdyG50HHjh2Fs7OzMDQ0FK6urqJjx44iJCREsz8+Pl4MHDhQ2NjYCFNTU9GuXTutDwFvq127dglAXLlyRWv7u3CPDxw4oPPnuEePHkII9VT/0aNHC0dHR2FkZCQaNWqU6fvw8OFD0blzZ2Fubi4sLS1Fr169NB0duaEQQohX6OmSJEmSJEl6Z8l1kCRJkiRJkjKQAZIkSZIkSVIGMkCSJEmSJEnKQAZIkiRJkiRJGcgASZIkSZIkKQMZIEmSJEmSJGUgAyRJkiRJkqQMZIAkSdJbb8mSJZmytr+JevbsqUl1IknSm00GSJL0nqlfvz5DhgzJUdn58+dTsWJFzM3Nsba2plKlSkyaNEmzf9y4cSgUCvr37691XFBQEAqFgps3bwJw8+ZNFAqFzq/jx49nef705czMzChZsiQ9e/bk9OnTWuU6duzI1atXc/YNKES//fYbS5YsKfDzTJw4kZo1a2JqavpWBI6S9CaSAZIkSTotWrSIIUOG8OWXXxIUFMSRI0cYMWIEsbGxWuWMjY1ZuHAh165de2mde/fuJSIiQusrLaFkVhYvXkxERAQXL15k9uzZxMbG4uvry7JlyzRlTExMNImF32RWVlavJWBJSkqiQ4cOmgSekiS9grxnTpEk6W2hK99gaGiozrJt2rQRPXv2zLa+sWPHiooVK4omTZqIDh06aLanJZpMqzs0NFQAIjAwMFftBcSmTZsybe/evbuwsLAQjx49EkKoc8tZWVllatfChQtFsWLFhJmZmRgwYIBISUkRP//8s3B0dBT29vbip59+0qr38ePHonfv3sLOzk5YWFiIBg0aiKCgoEz1Llu2TLi5uQlLS0vRsWNHERMToymzbt064ePjI4yNjYWtra1o1KiRiI2NFUKov/9t2rTRlE1ISBCDBw8W9vb2wsjISNSqVUucOHFCsz8tL9XevXtFlSpVhImJifDz8xOXL1/O0fcv4/dFkqSckz1IkvQe+e233/Dz86Nv376aHpxixYrpLOvk5MTx48e5devWS+udPHkyGzZs4NSpU/ndZJ2+/vprnj59yp49e7Isc/36dXbs2MHOnTtZvXo1CxcupGXLlty5c4dDhw7x888/88MPPxAQEKA5pkOHDkRFRbFjxw5Onz5N5cqVadSoEY8ePdKqd/PmzWzbto1t27Zx6NAhJk+eDEBERASdO3fms88+Izg4mIMHD9K+fXtEFikvR4wYwYYNG1i6dClnzpzBy8sLf39/rfMBjBo1il9++YVTp06hr6/PZ599lpdvnyRJOSADJEl6j1hZWWFoaIipqSlOTk44OTmhp6ens+zYsWOxtrbG3d0db29vevbsydq1a1GpVJnKVq5cmU8++YRvv/022/PXrFkTc3Nzra9XUbp0aQDNGCddVCoVixYtomzZsrRq1YoGDRpw5coVZsyYgbe3N7169cLb25sDBw4A8N9//3HixAnWrVtH1apVKVmyJNOmTcPa2pr169dr1btkyRJ8fHyoU6cO3bp1Y9++fYA6QEpJSaF9+/a4u7tTvnx5Bg4cqPM6nz17xpw5c5g6dSrNmzenbNmyzJ8/HxMTExYuXKhVduLEidSrV4+yZcsycuRIjh49SkJCwit97yRJyhn9wm6AJEmFr1y5cpqeojp16rBjxw6cnZ05duwYFy5c4PDhwxw9epQePXqwYMECdu7ciVKp/fnqp59+okyZMuzevTvL8UBr1qyhTJkyeW5vWo+MQqHIsoy7uzsWFhaa146Ojujp6Wm129HRkaioKADOnj1LbGwsRYoU0aonPj6e69evZ1mvs7Ozpo6KFSvSqFEjypcvj7+/P02bNuXjjz/GxsYmU/uuX79OcnIytWrV0mwzMDCgevXqBAcHa5WtUKGC1vkAoqKiKF68eJbXL0lS3sgASZIktm/fTnJyMqAe8Jyej48PPj4+DBw4kP79+1OnTh0OHTpEgwYNtMp5enrSt29fRo4cmakHJE2xYsXw8vLKc3vTAggPD48syxgYGGi9VigUOrel9YjFxsbi7OzMwYMHM9WVfmB1dnXo6emxZ88ejh49yu7du5k1axajRo0iICAg27a+TPpzpgWFunryJEnKP/IRmyS9ZwwNDUlNTdXa5ubmhpeXF15eXri6umZ5bNmyZQH14yFdxowZw9WrV/nrr7/yr8E6zJgxA0tLSxo3bpxvdVauXJnIyEj09fU134u0Lzs7uxzXo1AoqFWrFuPHjycwMBBDQ0M2bdqUqZynpyeGhoYcOXJEsy05OZmTJ09qvs+SJBUe2YMkSe8Zd3d3AgICuHnzJubm5tja2mZ6XAYwYMAAXFxcaNiwIUWLFiUiIoKffvoJe3t7/Pz8dNbt6OjI0KFDmTp1qs79Dx8+JDIyUmubtbU1xsbGWbY3OjqayMhIEhMTuXr1KvPmzWPz5s0sW7YsX6fMN27cGD8/P9q2bcuUKVMoVaoUd+/e5Z9//qFdu3ZUrVr1pXUEBASwb98+mjZtioODAwEBAdy/f1/nY0UzMzMGDBjA8OHDsbW1pXjx4kyZMoW4uDh69+6dp2sJCwvj0aNHhIWFkZqaSlBQEABeXl6vPO5Lkt43MkCSpPfMN998Q48ePShbtizx8fGEhobi7u6eqVzjxo1ZtGgRc+bM4eHDh9jZ2eHn58e+ffsyjdPJWP+cOXN0DiLW1eOzevVqOnXqlGV9vXr1AtTrLbm6ulK7dm1OnDhB5cqVc3C1OadQKNi+fTujRo2iV69e3L9/HycnJ+rWrYujo2OO6rC0tOTw4cPMmDGDmJgY3Nzc+OWXX2jevLnO8pMnT0alUtGtWzeePn1K1apV2bVrl84xS7kxZswYli5dqnldqVIlAA4cOED9+vXzVLckvS8UIqv5p5IkSZIkSe8pOQZJkiRJkiQpAxkgSZIkSZIkZSADJEmSJEmSpAxkgCRJkiRJkpSBDJAkSZIkSZIykAGSJEmSJElSBjJAkiRJkiRJykAGSJIkSZIkSRnIAEmSJEmSJCkDGSBJkiRJkiRlIAMkSZIkSZKkDGSAJEmSJEmSlMH/AV6odNBsuAkEAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "from sklearn.manifold import TSNE\n", "import matplotlib.pyplot as plt\n", "\n", "# Load your data\n", "data = pd.read_csv(\"/content/stressinput.csv\", header=None)\n", "features = data.iloc[:, :-1].values\n", "labels = data.iloc[:, -1].values\n", "\n", "# Apply t-SNE for manifold learning\n", "tsne = TSNE(n_components=2, random_state=42)\n", "features_tsne = tsne.fit_transform(features)\n", "\n", "# Plot the manifold\n", "plt.scatter(features_tsne[:, 0], features_tsne[:, 1], c=labels, cmap='jet', s=5)\n", "plt.xlabel(\"t-SNE Dimension 1\")\n", "plt.ylabel(\"t-SNE Dimension 2\")\n", "plt.title('t-SNE Visualization of Stress Prediction Features')\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "cyY10mtf00tt" }, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from keras.models import Sequential\n", "from keras.layers import Dense\n", "from sklearn.manifold import MDS\n", "import matplotlib.pyplot as plt\n", "\n", "# Load the data from a CSV file\n", "data = pd.read_csv(\"/content/stressinput.csv\", header=None)\n", "\n", "# Split the data into features and labels\n", "features = data.iloc[:, :-1].values\n", "labels = data.iloc[:, -1].values\n", "\n", "# Scale the features using StandardScaler\n", "scaler = StandardScaler()\n", "features = scaler.fit_transform(features)\n", "\n", "# Split the data into training and test sets\n", "train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size=0.2, random_state=42)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "ToP0hlTN09Px", "outputId": "9b187814-82f2-4800-fb3c-2e9834bac867" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Collecting MDA-learn\n", " Downloading MDA_learn-0.1.1-py3-none-any.whl (17 kB)\n", "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from MDA-learn) (1.25.2)\n", "Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from MDA-learn) (1.11.4)\n", "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from MDA-learn) (1.2.2)\n", "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from MDA-learn) (3.7.1)\n", "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from MDA-learn) (1.5.3)\n", "Collecting umap-learn (from MDA-learn)\n", " Downloading umap-learn-0.5.5.tar.gz (90 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m90.9/90.9 kB\u001b[0m \u001b[31m2.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->MDA-learn) (1.2.0)\n", "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->MDA-learn) (0.12.1)\n", "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->MDA-learn) (4.49.0)\n", "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->MDA-learn) (1.4.5)\n", "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->MDA-learn) (23.2)\n", "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->MDA-learn) (9.4.0)\n", "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->MDA-learn) (3.1.1)\n", "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib->MDA-learn) (2.8.2)\n", "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->MDA-learn) (2023.4)\n", "Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->MDA-learn) (1.3.2)\n", "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->MDA-learn) (3.3.0)\n", "Requirement already satisfied: numba>=0.51.2 in /usr/local/lib/python3.10/dist-packages (from umap-learn->MDA-learn) (0.58.1)\n", "Collecting pynndescent>=0.5 (from umap-learn->MDA-learn)\n", " Downloading pynndescent-0.5.11-py3-none-any.whl (55 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m55.8/55.8 kB\u001b[0m \u001b[31m5.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from umap-learn->MDA-learn) (4.66.2)\n", "Requirement already satisfied: llvmlite<0.42,>=0.41.0dev0 in /usr/local/lib/python3.10/dist-packages (from numba>=0.51.2->umap-learn->MDA-learn) (0.41.1)\n", "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib->MDA-learn) (1.16.0)\n", "Building wheels for collected packages: umap-learn\n", " Building wheel for umap-learn (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for umap-learn: filename=umap_learn-0.5.5-py3-none-any.whl size=86832 sha256=aac8220f44bb602a829092f76f3c94eb629d706981d231bc3287c3b0132217cd\n", " Stored in directory: /root/.cache/pip/wheels/3a/70/07/428d2b58660a1a3b431db59b806a10da736612ebbc66c1bcc5\n", "Successfully built umap-learn\n", "Installing collected packages: pynndescent, umap-learn, MDA-learn\n", "Successfully installed MDA-learn-0.1.1 pynndescent-0.5.11 umap-learn-0.5.5\n" ] } ], "source": [ "pip install MDA-learn" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "h5LtpwgB3vyc" }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 561 }, "id": "p6I21h05NZ0a", "outputId": "54b080ec-40d4-4185-d74a-2a06aa96d43d" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "141/141 [==============================] - 0s 1ms/step\n", "36/36 [==============================] - 0s 1ms/step\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.10/dist-packages/sklearn/manifold/_mds.py:299: FutureWarning: The default value of `normalized_stress` will change to `'auto'` in version 1.4. To suppress this warning, manually set the value of `normalized_stress`.\n", " warnings.warn(\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD2xUlEQVR4nOzddXxV5R/A8c+5d93BEsY2xmB0d0tLgyiIgICAgpKiKD/AQgFREKSVkBClQwnpGt0do8eCdce9z++Pu112F7DBxhg879drL7jnPOec7+3vfVIRQggkSZIkSZJeA6rCDkCSJEmSJOlFkYmPJEmSJEmvDZn4SJIkSZL02pCJjyRJkiRJrw2Z+EiSJEmS9NqQiY8kSZIkSa8NmfhIkiRJkvTakImPJEmSJEmvDZn4SJIkSZL02pCJj5QrS5YsQVEUbt++/dLF0bRpU5o2bfrCYyms6+ZFcHAwb731Fo6OjiiKwowZMwo7pAJXFJ6XF+327dsoisK0adMKO5RX3ldffYWiKIUdhvQEMvHJZ+lfzIqicPDgwSz7hRB4eHigKArt27c32Jd+nKIoGBkZ4eDgQI0aNRg+fDiXLl3K9nqhoaEMHz4cPz8/zM3NcXZ2pnbt2nz++efExsbmGGfHjh2xsLAgJiYmxzK9evXCxMSEsLCwXN77V8+lS5f46quvCj3he1YjR45k+/btfPHFFyxbtow2bdrkWDb9tffTTz9l2Zf+uj5x4kRBhvtCeXl5oSgKn3zySZZ9e/fuRVEU1qxZk+fzBgYG8tVXX3HmzJl8iPLlkPGzKfPfhx9+mOfzzZkzhyVLluR/oLn0MjxH77//fo6P6bZt2wrkmitXrnwtfvw8jVFhB/CqMjMzY+XKlTRs2NBg+759+7h//z6mpqbZHteyZUv69OmDEIKoqCjOnj3L0qVLmTNnDlOmTGHUqFH6suHh4dSsWZPo6Gj69++Pn58fYWFhnDt3jrlz5/LRRx9hZWWV7XV69erF5s2bWb9+PX369MmyPz4+no0bN9KmTRscHR3p3bs3PXr0yDHuwrRjx44CO/elS5f4+uuvadq0KV5eXi/suvll9+7ddOrUiU8//TTXx/z444989NFHWFhYFGBkL4+FCxfyxRdf4O7uni/nCwwM5Ouvv8bLy4uqVavmyzlfBumfTZmVKVMmz+eaM2cOxYoV4/3338+HyPLuZXmOTE1N+e2337Jsr1KlSoFcb+XKlVy4cIERI0YUyPmLCpn4FJA333yT1atXM3PmTIyMHj/MK1eupEaNGjx69Cjb48qUKcN7771nsG3y5Ml06NCB0aNH4+fnx5tvvgnA77//zt27dzl06BD169c3OCY6OhoTE5Mc4+vYsSPW1tasXLky2w+zjRs3EhcXR69evQBQq9Wo1erc3fkX7En381W8bl6EhIRgZ2eX6/JVq1blzJkzzJs3zyDJLixCCBITEzE3Ny+Q81eoUIGrV68yefJkZs6cWSDXKExarZbk5OR8OVd2n00vQlxcHJaWli/8ui+CkZFRoTym+S0+Pr5I/VCSTV0FpGfPnoSFhfHff//ptyUnJ7NmzRrefffdPJ3L0dGRVatWYWRkxKRJk/Tbb968iVqtpm7dulmOsbGxwczMLMdzmpub07VrV3bt2kVISEiW/StXrsTa2pqOHTsC2fetOXHiBK1bt6ZYsWKYm5vj7e1N//799fvTmwv27t1rcO70/gYZq7rPnTvH+++/T6lSpTAzM8PV1ZX+/fvnqpktc5+O9CaM7P7SY7lz5w5DhgyhbNmymJub4+joSPfu3Q3u35IlS+jevTsAzZo1y3KO7PqShISEMGDAAFxcXDAzM6NKlSosXbo02/s/bdo0FixYgI+PD6amptSqVYvjx48/9f4CBAQE0L17dxwcHLCwsKBu3br8888/BrErioIQgtmzZ+tjf5oGDRrwxhtvMHXqVBISEp5a/sqVK7z11ls4ODhgZmZGzZo12bRpk0GZnPo8ZPea8vLyon379mzfvp2aNWtibm7O/PnzAVi8eDFvvPEGzs7OmJqaUr58eebOnfvUGJ/Ey8uLPn36sHDhQgIDA59a/sGDB/Tv3x8XFxdMTU2pUKECixYt0u/fu3cvtWrVAqBfv376x33JkiXMnDkTtVpNZGSkvvxPP/2EoigGSaZGo8Ha2prPP/9cvy0uLo7Ro0fj4eGBqakpZcuWZdq0aQghDOJTFIWPP/6YFStWUKFCBUxNTXNsNhFCMGjQIExMTFi3bl2uHq8nuXz5Mubm5ll+SB08eBC1Wq2/P15eXly8eJF9+/bpH5/091H6a2Lfvn0MGTIEZ2dnSpQoAeTuPZsuMjKSkSNH4uXlhampKSVKlKBPnz48evToic9RuqNHj9KmTRtsbW2xsLCgSZMmHDp0KMt1Dh48SK1atTAzM8PHx0f/Ws0vWq2WGTNmUKFCBczMzHBxcWHw4MFEREQYlNu4cSPt2rXD3d0dU1NTfHx8+Pbbb9FoNPoyTZs25Z9//uHOnTv6+5xei51TH87sPsObNm1KxYoVOXnyJI0bN8bCwoIvv/wSgKSkJCZOnEjp0qUxNTXFw8ODzz77jKSkJIPz/vfffzRs2BA7OzusrKwoW7as/hwvgqzxKSBeXl7Uq1ePP//8k7Zt2wKwdetWoqKi6NGjR55/XZYsWZImTZqwZ88eoqOjsbGxwdPTE41Gw7Jly+jbt2+eY+zVqxdLly7l77//5uOPP9ZvDw8PZ/v27fTs2TPHX9ohISG0atUKJycnxo4di52dHbdv337mD9D//vuPgIAA+vXrh6urKxcvXmTBggVcvHiRI0eO5Kmz4IwZM7L0b5o+fTpnzpzB0dERgOPHj3P48GF69OhBiRIluH37NnPnzqVp06ZcunQJCwsLGjduzLBhw5g5cyZffvkl5cqVA9D/m1lCQgJNmzblxo0bfPzxx3h7e7N69Wref/99IiMjGT58uEH5lStXEhMTw+DBg1EUhalTp9K1a1cCAgIwNjbO8f4FBwdTv3594uPjGTZsGI6OjixdupSOHTuyZs0aunTpQuPGjVm2bBm9e/fOsYkiJ1999RWNGzdm7ty5T6z1uXjxIg0aNKB48eKMHTsWS0tL/v77bzp37szatWvp0qVLrq+Z0dWrV+nZsyeDBw9m4MCBlC1bFoC5c+dSoUIFOnbsiJGREZs3b2bIkCFotVqGDh36TNcCGDduHH/88cdTa32Cg4OpW7euPrlwcnJi69atDBgwgOjoaEaMGEG5cuX45ptvmDBhAoMGDaJRo0YA1K9fn6ioKLRaLQcPHtT37ztw4AAqlYoDBw7or3P69GliY2Np3LgxoEtQOnbsyJ49exgwYABVq1Zl+/btjBkzhgcPHjB9+nSDOHfv3q1/TxcrVixLEy3okqv+/fvz119/sX79etq1a/fUxykxMTHbmmobGxtMTEwoV64c3377LWPGjOGtt96iY8eOxMXF8f777+Pn58c333wD6N6fn3zyCVZWVowbNw4AFxcXg3MOGTIEJycnJkyYQFxcHJC79yxAbGwsjRo14vLly/Tv35/q1avz6NEjNm3axP3795/4HKU/fm3btqVGjRpMnDgRlUqlT7oPHDhA7dq1ATh//rz+M/Crr74iNTWViRMnZrkvT5P5MTU2NsbW1haAwYMHs2TJEvr168ewYcO4desWv/76K6dPn+bQoUP6z4klS5ZgZWXFqFGjsLKyYvfu3UyYMIHo6Gh+/PFHQPc6j4qK4v79+/rXTE5dIZ4mLCyMtm3b0qNHD9577z1cXFzQarV07NiRgwcPMmjQIMqVK8f58+eZPn06165dY8OGDYDuc6N9+/ZUrlyZb775BlNTU27cuJFtYllghJSvFi9eLABx/Phx8euvvwpra2sRHx8vhBCie/fuolmzZkIIITw9PUW7du0MjgXE0KFDczz38OHDBSDOnj0rhBAiKChIODk5CUD4+fmJDz/8UKxcuVJERkbmKtbU1FTh5uYm6tWrZ7B93rx5AhDbt2/Pcr9u3bolhBBi/fr1+vuZkz179ghA7Nmzx2D7rVu3BCAWL16s35b+GGX0559/CkDs378/xziEEKJJkyaiSZMmOcbx999/C0B88803T7yev7+/AMQff/yh37Z69eps70N2150xY4YAxPLly/XbkpOTRb169YSVlZWIjo42uP+Ojo4iPDxcX3bjxo0CEJs3b87xvgghxIgRIwQgDhw4oN8WExMjvL29hZeXl9BoNPrtT3tNZZSxbLNmzYSrq6v+ccr4uk7XvHlzUalSJZGYmKjfptVqRf369YWvr69+28SJE0V2HzXZPZeenp4CENu2bctSPrvnrHXr1qJUqVIG2572esh4rfT3YL9+/YSZmZkIDAwUQjx+7a5evVpffsCAAcLNzU08evTI4Dw9evQQtra2+viOHz+e5fUthBAajUbY2NiIzz77TAihe6wcHR1F9+7dhVqtFjExMUIIIX7++WehUqlERESEEEKIDRs2CEB89913Bud76623hKIo4saNG/ptgFCpVOLixYsGZdNfcz/++KNISUkR77zzjjA3Nzd4jz8JkOPfn3/+aXAfGzZsKFxcXMSjR4/E0KFDhZGRUZbPiQoVKmT7HKW/Jho2bChSU1MN9uX2PTthwgQBiHXr1mUpr9VqhRA5P0darVb4+vqK1q1b68umX9vb21u0bNlSv61z587CzMxM3LlzR7/t0qVLQq1WZ/t6z6xv377ZPp7pj8uBAwcEIFasWGFw3LZt27Jsz+6xGTx4sLCwsDB4f7Zr1054enpmKZvde1GI7D/DmzRpIgAxb948g7LLli0TKpXK4HNJiMffJ4cOHRJCCDF9+nQBiNDQ0Bwfm4Imm7oK0Ntvv01CQgJbtmwhJiaGLVu25LmZK6P07Dx9JJaLiwtnz57lww8/JCIignnz5vHuu+/i7OzMt99+m6UaPDO1Wk2PHj3w9/c3qOJcuXIlLi4uNG/ePMdj0/uNbNmyhZSUlGe+T+ky1iyl/7JMb8I7derUM5/30qVL9O/fn06dOvG///0v2+ulpKQQFhZG6dKlsbOze+br/fvvv7i6utKzZ0/9NmNjY4YNG0ZsbCz79u0zKP/OO+9gb2+vv53+yzMgIOCp16ldu7ZBx3krKysGDRrE7du3cxwBmBdfffUVQUFBzJs3L9v94eHh7N69m7fffpuYmBgePXrEo0ePCAsLo3Xr1ly/fp0HDx4807W9vb1p3bp1lu0Zn7OoqCgePXpEkyZNCAgIICoq6pmule5///sfqampTJ48Odv9QgjWrl1Lhw4dEELo7++jR49o3bo1UVFRT33dqFQq6tevz/79+wFd01BYWBhjx45FCIG/vz+gqwWqWLGi/j3277//olarGTZsmMH5Ro8ejRCCrVu3Gmxv0qQJ5cuXzzaG5ORkunfvzpYtW/j3339p1arVUx+bdJ06deK///7L8tesWTOD+7hkyRJiY2Np27Ytc+bM4YsvvqBmzZq5vg7AwIEDs/QpzO17du3atVSpUiXbGsen1RyfOXOG69ev8+677xIWFqZ/juPi4mjevDn79+9Hq9Wi0WjYvn07nTt3pmTJkvrjy5Url+1rNydmZmZZHs/0UZWrV6/G1taWli1bGrzeatSogZWVFXv27Mn2sUl/PzZq1Ij4+HiuXLmS63hyy9TUlH79+hlsW716NeXKlcPPz88g3jfeeANAH2/663rjxo1otdp8jy03ZOJTgJycnGjRogUrV65k3bp1aDQa3nrrrWc+X3rzjbW1tX6bm5sbc+fO5eHDh1y9epWZM2fqq4h///33p54zvfPyypUrAbh//z4HDhygR48eT+zM3KRJE7p168bXX39NsWLF6NSpE4sXL87Slptb4eHhDB8+HBcXF8zNzXFycsLb2xvgmb/UoqOj6dq1K8WLF+ePP/4w+NBLSEhgwoQJ+j4TxYoVw8nJicjIyGe+3p07d/D19UWlMnxbpTeN3blzx2B7xg9MQJ8EZW6/z+466c0/ubnOs2jcuDHNmjXLsa/PjRs3EEIwfvx4nJycDP4mTpwIkG3fsdxIf94zO3ToEC1atMDS0hI7OzucnJz0/QKeN/EpVaoUvXv3ZsGCBTx8+DDL/tDQUCIjI1mwYEGW+5v+BZCb+9uoUSNOnjxJQkICBw4cwM3NjerVq1OlShV9c9fBgwf1STDonk93d3eD9z3k/Hzn9PgB/PDDD2zYsIE1a9bkea6jEiVK0KJFiyx/mZt2fHx8+Oqrrzh+/DgVKlRg/PjxebpOTvcht+/ZmzdvUrFixTxfE+D69esA9O3bN8vz/Ntvv5GUlERUVBShoaEkJCTg6+ub5RzZvTdzolarszyeNWrU0McSFRWFs7NzllhiY2MNXm8XL16kS5cu2NraYmNjg5OTk77T9PO+N7JTvHjxLIM7rl+/zsWLF7PEmj7qLz3ed955hwYNGvDBBx/g4uJCjx49+Pvvv19oEiT7+BSwd999l4EDBxIUFETbtm3zNMImswsXLqBWq7P9UFAUhTJlylCmTBnatWuHr68vK1as4IMPPnjiOWvUqIGfnx9//vknX375JX/++SdCCH1ClJP0OU6OHDnC5s2b2b59O/379+enn37iyJEjWFlZ5fjrKmOHu3Rvv/02hw8fZsyYMVStWhUrKyu0Wi1t2rR55jfE+++/T2BgIMeOHcPGxsZg3yeffMLixYsZMWIE9erVw9bWFkVR6NGjxwt7A+aUWD6tpu5FmThxIk2bNmX+/PlZXrfpj9Gnn36a4y/c0qVLAzn/ys7udQBk26/s5s2bNG/eHD8/P37++Wc8PDwwMTHh33//Zfr06fnynI0bN45ly5YxZcoUOnfubLAv/fzvvfdejv3pKleu/NRrNGzYkJSUFPz9/Tlw4IA+wWnUqBEHDhzgypUrhIaGGiQ+efWkEXCtW7dm27ZtTJ06laZNmz5xAMTzSJ/qITAwkLCwMFxdXfN0fHb34UW8Z9PP8+OPP+Y4zN3KyuqZf+DlNRZnZ2dWrFiR7X4nJydA15G7SZMm2NjY8M033+Dj44OZmRmnTp3i888/z9Vjkx/vUa1WS6VKlfj555+zPcbDw0N/7P79+9mzZw///PMP27Zt46+//uKNN95gx44dL2T0sEx8CliXLl0YPHgwR44c4a+//nrm89y9e5d9+/ZRr169LL/8MitVqhT29vbZ/nLNTq9evRg/fjznzp1j5cqV+Pr66kc9PE3dunWpW7cukyZNYuXKlfTq1YtVq1bxwQcf6GswMo5igay/UCMiIti1axdff/01EyZM0G9P//X1LCZPnsyGDRtYt24dfn5+WfavWbOGvn37GkzWl5iYmCXWvHSq9vT05Ny5c2i1WoNan/SqZk9Pzzzei5yvc/Xq1Szb8/s6TZo0oWnTpkyZMsXgeQHdawx0TXktWrR44nkyvg4yJlB5qZnavHkzSUlJbNq0yaCmLGN1//Py8fHhvffeY/78+dSpU8dgn5OTE9bW1mg0mqfe3ye9ZmrXro2JiQkHDhzgwIEDjBkzBtDVsC1cuJBdu3bpb6fz9PRk586dxMTEGLz3n+X5rlu3Lh9++CHt27ene/furF+/3mC6jfwwb948/vvvPyZNmsQPP/zA4MGD2bhxo0GZZ5nZOLfvWR8fHy5cuPDEc+V0fR8fH0DXYftJz7OTkxPm5ubZfkZl9958Fj4+PuzcuZMGDRo8MZndu3cvYWFhrFu3zuB1c+vWrSxlc7rfuf2sflq8Z8+epXnz5k99flUqFc2bN6d58+b8/PPPfP/994wbN449e/Y89f2VH2RTVwGzsrJi7ty5fPXVV3To0OGZzhEeHk7Pnj3RaDT6URCgG3KZPuIho2PHjhEWFpbrKtf02p0JEyZw5syZp9b2gC5ZyVwzkf4LKf3XkKenJ2q1Wt+nId2cOXMMbqdn+JnP96wzjO7cuZP//e9/jBs3Lssv94zXzHy9WbNmZfmFkz5/SOYPhOy8+eabBAUFGSS4qampzJo1CysrK5o0aZK3O/KE6xw7dkzfJwR0w50XLFiAl5dXjv07nkV6X58FCxYYbHd2dtbXBuXUNJQu/csk4+sgLi4uyzD/J8nuNRIVFcXixYtzfY7c+N///kdKSgpTp07Ncv1u3bqxdu3abL9UM97fJ71mzMzMqFWrFn/++Sd37941qPFJSEhg5syZ+Pj44Obmpj/mzTffRKPR8Ouvvxqca/r06SiKoh81mlstWrRg1apVbNu2jd69e+drDeetW7cYM2YM3bp148svv2TatGls2rSJP/74w6CcpaVlrt5TGeX2PdutWzfOnj3L+vXrs5wj/ficnqMaNWrg4+PDtGnTsp35Pv15VqvVtG7dmg0bNnD37l39/suXL7N9+/Y83a+cvP3222g0Gr799tss+1JTU/WxZ/feSE5OzvI5C7r7nV3TV3bvUY1Gk+V9/7R4Hzx4wMKFC7PsS0hI0H9XhYeHZ9mf+bujoMkanxcgL0PNr127xvLlyxFCEB0dzdmzZ1m9ejWxsbH8/PPPBksOLFu2jBUrVtClSxdq1KiBiYkJly9fZtGiRZiZmeV6XgRvb2/q16+v/1WWm8QnfTbpLl264OPjQ0xMDAsXLsTGxkY/waKtrS3du3dn1qxZKIqCj48PW7ZsydIXwsbGhsaNGzN16lRSUlIoXrw4O3bsyPYXS2707NkTJycnfH19Wb58ucG+li1b4uLiQvv27Vm2bBm2traUL18ef39/du7cqR/unq5q1aqo1WqmTJlCVFQUpqam+rlkMhs0aBDz58/n/fff5+TJk3h5ebFmzRoOHTrEjBkznlpTl1tjx47VT5MwbNgwHBwcWLp0Kbdu3WLt2rVZ+hg9jyZNmtCkSZMsHbMBZs+eTcOGDalUqRIDBw6kVKlSBAcH4+/vz/379zl79iwArVq1omTJkgwYMIAxY8agVqtZtGgRTk5OBl8aT9KqVStMTEzo0KEDgwcPJjY2loULF+Ls7Jzrms3cSK/1yS4pmzx5Mnv27KFOnToMHDiQ8uXLEx4ezqlTp9i5c6f+A93Hxwc7OzvmzZuHtbU1lpaW1KlTR99E3ahRIyZPnoytrS2VKlUCdIlk2bJluXr1apbZjDt06ECzZs0YN24ct2/fpkqVKuzYsYONGzcyYsQI/ZdWXnTu3JnFixfTp08fbGxscjX/TPpnU2YuLi60bNkSIQT9+/fH3NxcP7/S4MGDWbt2LcOHD6dFixb62bFr1KjB3Llz+e677yhdujTOzs76TrA5ye17dsyYMaxZs4bu3bvTv39/atSoQXh4OJs2bWLevHlUqVLlic/Rb7/9Rtu2balQoQL9+vWjePHiPHjwgD179mBjY8PmzZsB+Prrr9m2bRuNGjViyJAh+h85FSpU4Ny5c7l6Hp6kSZMmDB48mB9++IEzZ87QqlUrjI2NuX79OqtXr+aXX37hrbfeon79+tjb29O3b1+GDRuGoigsW7Ys2ybzGjVq8NdffzFq1Chq1aqFlZUVHTp0oEKFCtStW5cvvviC8PBwHBwcWLVqFampqbmOt3fv3vz99998+OGH7NmzhwYNGqDRaLhy5Qp///23fm6ub775hv3799OuXTs8PT0JCQlhzpw5lChRIstKBwXmRQ8je9VlN+w3OzkNZ0//U6lUws7OTlSrVk0MHz48y/BUIYQ4d+6cGDNmjKhevbpwcHAQRkZGws3NTXTv3l2cOnUqT3HPnj1bAKJ27dpPvF/pwx1PnTolevbsKUqWLClMTU2Fs7OzaN++vThx4oTBcaGhoaJbt27CwsJC2Nvbi8GDB4sLFy5kGUp6//590aVLF2FnZydsbW1F9+7dRWBgoADExIkTc4xDiKzDl8lmiGj6X/qwzIiICNGvXz9RrFgxYWVlJVq3bi2uXLkiPD09Rd++fQ3uw8KFC0WpUqX0w1TTz5HdsOng4GD9eU1MTESlSpWyDJnNOLQ4s8z3Nyc3b94Ub731lrCzsxNmZmaidu3aYsuWLdme71mGs2eUPqQ1u9f1zZs3RZ8+fYSrq6swNjYWxYsXF+3btxdr1qwxKHfy5ElRp04dYWJiIkqWLCl+/vnnHIezZ35fpNu0aZOoXLmyMDMzE15eXmLKlCli0aJFeZ7e4GnXun79uv65zjicXQjd8zt06FDh4eEhjI2Nhaurq2jevLlYsGCBQbmNGzeK8uXLCyMjoyyv9X/++UcAom3btgbHfPDBBwIQv//+e5aYYmJixMiRI4W7u7swNjYWvr6+4scffzQYci1Ezs9hTq+5OXPmCEB8+umn2T9IGc6b01/6Y/3LL78IQKxdu9bg2Lt37wobGxvx5ptv6rcFBQWJdu3aCWtra4NzPOnzMy/v2bCwMPHxxx+L4sWLCxMTE1GiRAnRt29fg6kInvQcnT59WnTt2lU4OjoKU1NT4enpKd5++22xa9cug+vs27dP1KhRQ5iYmIhSpUqJefPm5Th9Q2Z9+/YVlpaWTy23YMECUaNGDWFubi6sra1FpUqVxGeffaafekEIIQ4dOiTq1q0rzM3Nhbu7u/jss8/E9u3bswxFj42NFe+++66ws7MTgMHQ9ps3b4oWLVoIU1NT4eLiIr788kvx33//ZTucvUKFCtnGmpycLKZMmSIqVKggTE1Nhb29vahRo4b4+uuvRVRUlBBCiF27dolOnToJd3d3YWJiItzd3UXPnj3FtWvXnvpY5BdFiJekJ6UkSZIkSVIBk318JEmSJEl6bcjER5IkSZKk14ZMfCRJkiRJem3IxEeSJEmSpNeGTHwkSZIkSXptyMRHkiRJkqTXhpzAMBOtVktgYCDW1tbPNK26JEmSJEkvnhCCmJgY3N3dnziRq0x8MgkMDNQvpiZJkiRJUtFy7949SpQokeN+mfhkkr6swL1797Ks6C1JkiRJ0sspOjoaDw+Ppy4PJBOfTNKbt2xsbGTiI0mSJElFzFNXh39BcUiSJEmSJBU6mfhIkiRJkvTakImPJEmSJEmvDZn4SJIkSZL02pCJjyRJkiRJrw2Z+EiSJEmS9NqQiY8kSZIkSa8NmfhIkiRJkvTakImPJEmSJEmvDZn4SJIkSZL02pCJjyRJkiRJrw2Z+EhSIYm6e5ermzcTdfduYYciSZL02pCLlEpSIbhz4ADLW7UiNTERIzMz3tuxA89GjQo7LEmSpFeerPGRpEJw+Mcf0SQnA6BJTubwjz8WckSSJEmvB5n4SFIhMDI3B0XR3VAU3W1JkiSpwMnER5IKQbNvvsHSyQkASycnmn3zTSFHJEmS9HqQfXwkKR9oNFpu3AjHxcUKOzuzp5YvVrYsw2/fJuruXWw9PDAye/oxkiRJ0vOTNT6S9JwiIxOpUWMBfn6zcXWdxj//XMvVcUampjj6+sqkR5Ik6QWSiY8kPacFC05y/nwIAMnJGoYO/beQI5IkSZJyIhMfSXpOSUmp+n7KQkBSkqZwA5IkSZJyJBMfSXpO/ftXw9nZEtAN1Pruu2aFHJEkSZKUE9m5WZKeU/HiNly+PJQjR+7j6WmHn1+xwg5JkiRJyoFMfCQpH9jamtG6denCDkOSJEl6CtnUJUmSJEnSa6PIJD4ajYbx48fj7e2Nubk5Pj4+fPvttwgh9GWEEEyYMAE3NzfMzc1p0aIF169fL8SoJUmSJEl6mRSZxGfKlCnMnTuXX3/9lcuXLzNlyhSmTp3KrFmz9GWmTp3KzJkzmTdvHkePHsXS0pLWrVuTmJhYiJFLkiRJkvSyUETGKpOXWPv27XFxceH333/Xb+vWrRvm5uYsX74cIQTu7u6MHj2aTz/9FICoqChcXFxYsmQJPXr0yNV1oqOjsbW1JSoqChsbmwK5L5IkSZIk5a/cfn8XmRqf+vXrs2vXLq5d082Ke/bsWQ4ePEjbtm0BuHXrFkFBQbRo0UJ/jK2tLXXq1MHf3z/H8yYlJREdHW3wJ0mSJEnSq6nIjOoaO3Ys0dHR+Pn5oVar0Wg0TJo0iV69egEQFBQEgIuLi8FxLi4u+n3Z+eGHH/j6668LLnBJkiRJkl4aRabG5++//2bFihWsXLmSU6dOsXTpUqZNm8bSpUuf67xffPEFUVFR+r979+7lU8SSJEmSJL1sikyNz5gxYxg7dqy+r06lSpW4c+cOP/zwA3379sXV1RWA4OBg3Nzc9McFBwdTtWrVHM9ramqKqalpgcYuSZIkSdLLocjU+MTHx6NSGYarVqvRarUAeHt74+rqyq5du/T7o6OjOXr0KPXq1XuhsUqSJEmS9HIqMjU+HTp0YNKkSZQsWZIKFSpw+vRpfv75Z/r37w+AoiiMGDGC7777Dl9fX7y9vRk/fjzu7u507ty5cIOXJEmSJOmlUGQSn1mzZjF+/HiGDBlCSEgI7u7uDB48mAkTJujLfPbZZ8TFxTFo0CAiIyNp2LAh27Ztw8zMrBAjl6SXj9BqOTF/PoHHj+PVrBmV33sPJX2JeUmSpFdYkZnH50WR8/hIr4MD33/P7nHjUNRqhEZDh99+o/qAAYUdliRJ0jN75ebxkSQp/1zdtAkAodGAonBj69ZCjkiSJOnFkImPJL2GXKtWRVGrAV3/OOeKFQs5IkmSpBejyPTxkSQp/7T88UdSExK4f+QIpVq2pOEXXxR2SJIkSS+ETHwk6TVkam1N5+ec/FOSJKkokk1dkiRJkiS9NmTiI0mSJEnSa0MmPpIkSZIkvTZk4iNJkiRJ0mtDJj6SJEmSJL02ZOIjSZIkSdJrQyY+kiRJkiS9NmTiI0mSJEnSa0MmPpIkSZIkvTZk4iNJkiRJ0mtDJj6SJEmSJL02ZOIjSdIrKTIykTNngkhISCnsUCRJeonIxEeSpEJ34kQgf/xxltu3I/PlfPv336F48Z+pVm0+vr6zuHMnf84rSVLRJxMfSZIK1ZIlZ6hVayF9+26gfPnZnD798LnP+fnnO0lMTAUgKCiWadMOP/c5JUl6NcjER5KkQjV16iH9/5OTNSxceOq5z5maqkUIYXBbkiQJZOIjSVIhc3Q0R6VS9Lft7c2e+5zfftsMIyPdx5utrRkjR9Z77nNKkvRqUETGn0US0dHR2NraEhUVhY2NTWGHI0mvvLNng2jTZgVBQbHUquXO9u3vYW9v/tznffAgmuvXw6lSxSVfzidJ0sstt9/fMvHJRCY+kvTiaTRaoqOTsLMzQ1GUpx8gSZKUSW6/v41eYEySJEnZUqtVslZGkqQXQvbxkSRJknIlLCye/v030rTpEhYsOFnY4UjSM5E1PpIkSVKuvPvuWnbtuoVGI9i37w6urlZ07Fi2sMOSpDyRNT6SJElSrhw9+gCNRtctVK1WOHr0fiFHJEl5JxMfSZIkKVeaNPFCrVZQFNBoBI0bexZ2SJKUZ7KpS5IkScqVZcu6MHHiHm7diuSddyrQunXpwg5JkvJMJj6SJElSrtjYmDJ9epvCDkOSnots6pIkSZIk6bVRpBKfBw8e8N577+Ho6Ii5uTmVKlXixIkT+v1CCCZMmICbmxvm5ua0aNGC69evF2LEkiRJkiS9TIpM4hMREUGDBg0wNjZm69atXLp0iZ9++gl7e3t9malTpzJz5kzmzZvH0aNHsbS0pHXr1iQmJhZi5JIkSZIkvSyKzJIVY8eO5dChQxw4cCDb/UII3N3dGT16NJ9++ikAUVFRuLi4sGTJEnr06JGr68glKwpXQkQED0+exKF0aey8vAo7HEmSJKmIyO33d5Gp8dm0aRM1a9ake/fuODs7U61aNRYuXKjff+vWLYKCgmjRooV+m62tLXXq1MHf3z/H8yYlJREdHW3wJxWO8Js3+bVMGZa1bMksX1+ubNhQ2CFJRYgQgqOzZvFnx47sHj+e1KSkwg5JkqSXUJFJfAICApg7dy6+vr5s376djz76iGHDhrF06VIAgoKCAHBxcTE4zsXFRb8vOz/88AO2trb6Pw8Pj4K7E9ITHZs1i4SICAC0Gg27//e/Qo5IKkpOzp/PtmHDuLZ5Mwe//56dn39e4NeMjU3m+PEHhIXFF/i1JEnKH0Um8dFqtVSvXp3vv/+eatWqMWjQIAYOHMi8efOe67xffPEFUVFR+r979+7lU8RSXqmMjQ1uqzPdll5eMYGBPDx1Ck1KSqHFcPfAARSV7iNNaLXc2rOnQK9382Y4pUvPpHbt3yhZcjr7998p0OtJ+SsuJIR/P/mEdb16cSeHLhTSq6nIJD5ubm6UL1/eYFu5cuW4e/cuAK6urgAEBwcblAkODtbvy46pqSk2NjYGf1LhqDdqFLYlSwJgbG5O6+nTCzkiKTfOLlvGdA8PFtSowYIaNUiMiiqUOIrXqYPQagFQVCpKNmhQoNebNu0wjx7panoSEzWMG7erQK8n5R8hBMtbt+bE3LlcWLWKP5o359GVK4UdlvSCFJkJDBs0aMDVq1cNtl27dg1PT92U6d7e3ri6urJr1y6qVq0K6Do6HT16lI8++uhFhys9A2s3N4Zevkz49evYlCiBmZ1dYYck5cK24cP1CUfIhQucXbqUOsOGvfA4an/8Mcmxsdzcvh3X6tVpPmlSgV5Pq308LkQIoV/DSio8QggSIyIws7PT1/5lJzkmhqAzZx4fp9Vy7/Bhivn5vYAopcJWZGp8Ro4cyZEjR/j++++5ceMGK1euZMGCBQwdOhQARVEYMWIE3333HZs2beL8+fP06dMHd3d3OnfuXLjBS7lmZGqKc8WKMukpSjINDE1Pgl40RaWi0Zdf8v6+fbSZPh1jC4sCvd7o0fWxszMDwNTUiG+/bVag15OeLDYoiLmVKjHV0ZFfSpUi7Nq1HMuaWFtj5+WFolbrNigKLlWqvKBIpcJWZIazA2zZsoUvvviC69ev4+3tzahRoxg4cKB+vxCCiRMnsmDBAiIjI2nYsCFz5syhTJkyub6GHM4uSXlz6rff2DxoEAiBY9myDPD3xzzD/FqvsqioRM6fD6F0aQdcXa0KO5zX2j9DhnBywQKERoOiVuP75pv03LQpx/Jh16+zY9Qo4sPCqDtiBBXefvsFRisVhNx+fxepxOdFkImPJOVdxK1bxAQG4l6jBkZmZoUdjvQaWtuzJxf//ltX46goeNSvT/+DBws7LOkFeuXm8ZEk6eVl7+1NyQYNZNIjFZqaQ4Y8broC6o4cWYjRSC+zItO5WZIkSZJy4tmoER+dP899f39cq1bFNW2QiyRlJhMfSZIk6ZVQrGxZipUtW9hhSC852dQlSZIkSdJrQyY+kiRJkiS9NmTiI0mSJEnSa0MmPpIkSZIkvTZk4iNJkiRJ0mtDJj6SJEmSJL02ZOIjSZIkSdJrQyY+kiRJkiS9NmTiI0mSJEnSa0MmPpIkSZIkvTbkkhWSJElSjg4cuMOePbepXt2N9u3LFHY4kvTcZOIjSZIkZWvLlmt07PgniqKg1Qpmz36TIUNqFXZYkvRcZFOXJEmSlK2VK8/rkx6AxYvPFG5AkpQPZOIjSZIkZatkSVsURfd/tVrBy8uuUOORpPwgEx9JkqR8oklJIfTSJRIjIws7lHwxblwj2rb1xdzciDp1SvDLL20KOyRJem6yj48kSVIu+fvfIzg4jmbNvLC1NTPYFx8WxuJGjXh0+TJGZma8s349pdsU7UTB2tqUzZt7FnYYkpSvZI2PJElSLkycuIf69RfRpctfVKkyj7CweIP9x2fPJuzqVQBSk5LYOmxYYYQpSdJTyMRHkiTpKTQaLT/8cFB/+86dKP7++6JhmeRk9B1ihECTlPQiQ5QkKZdk4iNJkvQUKpWCmZlhzwBLSxOD2zUGD8bSySn9AN6YNOlFhSdJUh7IPj6SJElPoSgKv//ekffeW09ysoa2bUvTo0dFgzK2Hh4MvXyZB8eOYeftjaOvbyFFK0nSkyhCCFHYQbxMoqOjsbW1JSoqChsbm8IOR5Kkl0hsbDJRUYm4u1ujpDdrSZL0Usjt97es8ZEkScolKysTrKxMnl5QkqSXluzjI0mSJEnSa0MmPpIkSZIkvTZk4iNJkiRJ0mtDJj6SJGUrLjSUe4cPkxgVVdihSJIk5RvZuVmSpCzu7N/P8jZtSE1IwNzRkf4HD1LMz6+ww5IkSXpuRbbGZ/LkySiKwogRI/TbEhMTGTp0KI6OjlhZWdGtWzeCg4MLL0hJKqL2jB+vn3k4MTKSw9OmFXJEkiRJ+aNIJj7Hjx9n/vz5VK5c2WD7yJEj2bx5M6tXr2bfvn0EBgbStWvXQopSkqTMUpOSdEs7PIPz54NZs+YSgYEx2e7XpqZydNYs/v3kEwJ27nyeMCVJeoUVucQnNjaWXr16sXDhQuzt7fXbo6Ki+P333/n555954403qFGjBosXL+bw4cMcOXKkECOWpKKn2XffYWSmW33c3N6e+mPGPNf5UhMTmVOxIpPMzPjO1JTd48fn6fgVK85Rpco8undfjZ/fr1y8GJKlzPZRo9g2fDgn581jWatWBOza9VwxS5L0aipyic/QoUNp164dLVq0MNh+8uRJUlJSDLb7+flRsmRJ/P39X3SYklSkeTZqxIg7dxhw5AjDbt6kWNmyz3W+XePGEXrx8aKeB777jugHD3J9/KRJB0ifYz4+PoV5805kKXN57VoQAm1qKiq1mmubNz9XzJIkvZqKVOfmVatWcerUKY4fP55lX1BQECYmJtjZ2Rlsd3FxISgoKMdzJiUlkZRhFeXo6Oh8i1eSijKLYsWwKFYsX84Vdfdulm2JkZHYFC+eq+OtrU1RqRS0Wl32k93sycXKlyc2OBih0aBNTS2ynbEjAgKIDwvDtWpV1MbGhR2OJL1yikyNz7179xg+fDgrVqzALK0KPj/88MMP2Nra6v88PDzy7dySJOnUGT7c4LadtzdO5crl+vhZs9pia2sKQLlyToweXT9Lmc5LluDdvDk2Hh7UGz2a6gMHPl/QheDIL78w08eH32rXZlGDBqTExxd2SJL0yikyi5Ru2LCBLl26oFar9ds0Gg2KoqBSqdi+fTstWrQgIiLCoNbH09OTESNGMHLkyGzPm12Nj4eHh1ykVCpUQgj2f/st55Yvx9HXl/YLFuS6duRlde/IEY7OmIGNhwfNvv0W4zz+gElKSuXRo3jc3KxRqV69BUK1qalMsrREm6Hzd9V+/VCbmOD9xhtUePvtQoxOkl5+uV2ktMgkPjExMdy5c8dgW79+/fDz8+Pzzz/Hw8MDJycn/vzzT7p16wbA1atX8fPzw9/fn7p16+bqOnJ1dqmwJUZFsahhQ0IvXABAUasp2bAh7+/dW+DXTk1MZNe4cTw4epRSLVrQePx4VBl+bEgFJ7vEB0AxMkKkptJ56VKq9OlTSNFJ0svvlVud3dramooVKxpss7S0xNHRUb99wIABjBo1CgcHB2xsbPjkk0+oV69erpMeSXoZ7PvmG4OOwEKjIeT8+Rdy7Z1jx3Js1iyEVsu9w4cxtrCgwWefvZBrv+5URka0+vFHtqU1CxpbWpISF4dITQVF4dqWLTLxkaR8UGQSn9yYPn06KpWKbt26kZSUROvWrZkzZ05hhyVJeRJ97x5kqogt06HDC7n2fX9/hFarv/3g2LEXcl1Jp86wYZTp0IH4R484PmcO55YtQ6Q16TuVL1/Y4UnSK6FIJz57M1X9m5mZMXv2bGbPnl04AUlSPqjcuzeX1qzR3RCCcl270n7+/Bdybe/mzXlw/Lgu8RICzyZNXsh1pcfsvb2x9/bGccYMUhMSuH/0KD6tWtHwiy8KOzRJeiUUmT4+L4rs4yO9DO4ePMid/ftxq1GD0q1bv7DralJSODRlCoEnTuDVrBl1hg1DUQqvI3FKfDyX1q5FURTKdeuGsbl5ocUiSdLL7ZXr3PyiyMRHkl4OmpQUFtWvT+AJ3WSFJerVo9/+/aiMinRFtZSDiFu3ODR1KtrUVOqNGpWn6Q4kCV7Bzs2SJL1eHp46pU96QNf/KPjcOdyqVy/EqKSCkBIfz6IGDYgL0S1FcnntWobduIG5g0MhRya9iorMBIaSJL1eLBwdDTcoCuaZt0mvhLBr14h9+BCh0SA0GhIjIgg+d66ww5JeUTLxkXIt7Pp17h0+/Myra0tSXjiULk3LadNQGRujMjamzYwZ2Hl6FnZYuRb94AH7vvmGg1OmkBgZWeDXiwkMZNvIkfwzdCiPrlwp8OvlJzsvL0ysrFBUKlAU1KamOJYpU9hhSa+oPPfxuX//PnZ2dlhZWRlsT0lJwd/fn8aNG+drgC+a7OOTvSMzZrA9bfZrlypV6H/wICaZXgNS0ZAUE8PmgQO5e+AAJRs1osPChZhaWxd2WDnSpKToZmgvQn17EiMjmV2+vK7pRgicK1Vi0MmTBTYZpCY5mV/9/PRropna2PDJtWv5ttbai3Dv8GF2ffEFmpQUmn3zDaUyLUQtSU+T2+/vXNf4PHz4kNq1a+Pp6YmdnR19+vQhNjZWvz88PJxmzZo9X9TSS0mr0bDz88/1t4PPnuXi338XYkTS89j9v/9xac0aYgIDubR6NXvGjy/skJ5IbWxcpJIegHv+/o+bbrRags+eJeLmzQK7XvjNm0TeumXQVBR48mSBXa8geNSvz/v79jHg8GGZ9EgFKteJz9ixY1GpVBw9epRt27Zx6dIlmjVrRkREhL6MHCD2alIURVcFnXGbSraSFlWPrlxBaDQACK2Wa4dPv3Tv3YTwcH1H16LIzssL0qcBSGu6sXRxKbDr2ZQoYdBUpDIykk1FkpSDXH977dy5k5kzZ1KzZk1atGjBoUOHcHNz44033iA8PBygUOf7kAqOolLRevp0/Qd58Tp15IKJRVi5Ll0A0Ka9/f84bsPHH299YddPTUzk1O+/c+zXX4l/9CjL/oOTJzO1WDGmubiw9ZNPsiRlx47cpWHZidRwHMLcPp+RmmGR4YJya88eZpcvz/SSJTn1++9PLe9UrhwdFizAytUVW09P3l67FjNb2wKLz9Taml7btuFesyYuVarQfc0a7L29C+x6klSU5bqPj5WVFadPn8bX11e/LTU1le7duxMQEMDy5cupWrUqmrRfkkWV7OOTs6h790gIC8O5YsUi1/QgPSaEYNGon1kzYzX38OAiFQCFiIjPsbPL24rpz3LtP5o35/aePaAo2JYsSf+DB7m8fj1Cq6VUy5bMrVDB4JgPjh2jeK1aADx6FE/J4j+SmKxbVsOUJFZ+oqHLzB8LLObkuDimubiQEh+vm9FaUfjw7FlcKlUqsGtKkpR3+T6PT6lSpTh37pxB4mNkZMTq1avp3r077du3f76IpZeerYcHth4ehR2G9JwURcG9VUe2zXjcR8/ISIWJSf51vBVabbbNoVF37+qSHgAhiLpzh0UNG+o75dp5eWU5JiUuTv//y5dDSUiG9MrqRMw5ve8oXfIt8qziQ0MNYkAIIm7ezDHxCQ6OZciQf7h8+RE9elRk/PjGsjZckl4iuW7qatu2LQsWLMiyPT35qVq1an7GJUlSAWrdujQ9e1YEQK1WmD37TSwsjAFd0hJ8/jzhN27k+byJUVEsbd6cb4yMmFOxIhG3bhnsN7e3R2VsbLAt6s4d/dpgkbdu4dm0qX6fR8OGeDRooL9drpwT5iagoEVBixkJ1G5bK89x5oVtyZK4Vq2KolKhqNWYOzoaxJRZ374b2LjxKpcvP2LixL0sXXq2QOOTJClvct3UlZqaSnx8fI7VR6mpqTx48ADPIjTPRnZkU5f0Onn4MAYLC2NsbXVNXFqNhr86d+bali0ANBo3jje++y7X5/vv88/xnzZNV+OjVlO6TRveTTtXuourV7N54EBSExOpN3Ikh6ZOfbwivKLwyfXrRN66hSY5mVItWqA2MTE4/vix+4z5YCkJYY/46C0n+vz0WYE3vSZGRnLs119JjoujxsCB2JcqlWNZV9dpBAfraoiMjFQMG1abn37Srbd2/PgDvv/+IEZGKiZMaEylSgXX4VmSXjdyra5nJBMf6XUWsGsXyzINJf40OBhLZ+dcHT+nZVeCd25AhUAA1r7lGX3tYpZy6R87iqJwdtkytg0fjhCCllOnUmPgwOe+H08SsHMnJ+bNw9zBgaZff421m1u+nn/gwE0sWnQGRQGNRrB9+3u0auVDaGgc3t6/kJCQiqKAra0pt2+PwNraNF+vL0mvK7lWlyRJeaavecm4LQ+/jfZE+lEeEIACXLGqn225jH1eqvTuTZXevfMY6bMJuXiR5W3aIIRAURTu+/vz4blz+doHZ/bsdvj4OHDtWhhduvjRqpUPABcvhhIXl6IvFx6eyI0b4VSrlr+JlyRJTyYTH0mS9LybNcOnVStu7tgBQL3Ro7HKy/wzXtX4/dRgPLS3CFW50qBSuwKKNHtHj94nICCCZs28cXXNOrP4fX//x3MYASEXLpAcG5uvM1ebmKgZO7Zhlu3lyzthaWmsr/GxsTGldOkXuwhnSnw8f0z8jdBHifT537u4+5R4odeXpJeBbOrKRDZ1Sa87rUbDw1OnMDY3x7lixTwde+1aGM2b/8H9+9F4edmxZ09fvLzsciwvhGDn559z7NdfsXB0pOvKlXg2avRMcc+YcYSRI7cD4OBgxokTg/D2tjco8/D0aRbUqAFCoKjV2Ht78/G1ay9s1NWxYw+YNGk/RkZqJk5sQuXKz9bHJyVFQ2BgDO7u1hgb5240ntBq6eT5Ppvv62qg7NWxnL8xhuJeuWvGlKSXnezj84xexcRHaLXs/+47rqxfj3OlSrT55RfM7e2ffqAkPYPUVC3BwbG4uFhhZPTkgaNXN29mVceOuhsqFRaOjnwaHJwlERFCsGnTVc6eDaZFi1LUr591WgUXlx8JCYkHdCPVxo1rxNdfZ11G58qGDRydNQsLR0daTJmS40R/l9asYV3v3miSkihepw79Dx1C9RLMWH7jRjhNmy7hwYMYihe3Zs+evvj6Pn3V+kfXruNSdhla0hMlwcQhXnw1+/0CjVeSXpQC7eMTGRnJsWPHCAkJQZupT0CfPn2e5ZRSATq5cCF7J04EIPj8eVITE+ku19qSCoiRkYrixXP3oyH6/v3HN7Ra4kNDWdy4Me5Df0Dl4EbTpl6YmKiZMeMIo0btwE0VwuGJp3m7bz16zfrKoInKxsaUR4/i0WpBqxXY2GTfadivc2f8Ond+amxr330XbYquT86DI0fY+fnntPox/yZK1GoFU6ceYvPmq1St6saUKS2wsjJ56nETJ+4hKEg3B1NQUCzjx+9h1aq3nnqcpVMxjEkhCRW6HlgKju5FZxFTScoveU58Nm/eTK9evYiNjcXGxsbgl5miKDLxeQkFnT6NYmSESE1FaDQEnjhR2CFJEgBl2rdn1xdfkBQdrZvLB7hz8CAnD3ZlHh9Sp54ne/b0ZdGiM9gRQT/tQtRouLv0CH/ePsn7e/fqz/Xbbx3p2HEV0dFJNGrkyYcf1nyu2NKTnnShly491/kyW7DgJF98sQuAo0cfkJCQwqJFnZ56XGxssr7DuVYriI1NztX1zO3tmTzal09/uo0GNXX9jBg8pu2z3wFJKqLyXG87evRo+vfvT2xsLJGRkUREROj/0tfskl4upVq0QKSm6iZgU6ko3aZNYYckSYDux1LbWbMMJi1UAc6EUooATvtfZ/fuW3h72+Gj3MKEFNRoURDc2bePpJgY/XFNmngRGjqGkJBP2bu3L5aWT689eZLMs0jX/PDD5zpfZseOPUCt1v1w1GgEhw/fy9Vxo0bVw8hI11xlbKxm9Oh6ub7miGn9iYr9Hw8ejOLwpS/zdbZuSSoq8tzHx9LSkvPnz1PqCRN4FWWvYh8fgPMrV3L9n38oVq4cDT77LMukcJL0ou375ht9E6zK2BhtSgqCx0PhFSAFIzwHfUnrcSMZXeoNKmpOQ1oZtZER/0tKynZpjJysXXuJ6dOP4OBgzrRprShTJmvfmKSkVIQAlTaZTQMGEH3vHnVHjqR8t27PfZ8zWrr0DO+/vxEAlUrhww9rMnv2m7k69tatCE6deki1am6UKiX760kSFGDn5q5du9KjRw/efkVX535VEx9Jetl8Y2SkH1oOYOPhQezDhySlKqhJQYUuwTEyNeXRhxuw+6UtmcdeTcz08TV//gmmTfPHwcGcuXPbUb364zlyzpwJonr1+YAu0ShRwoaAgOGoVI/POnv2MUaO3I5GI5gwoTETJzYFIObhQwJ27sTO0xPPxo3z5f4LIVi48BRbt96gUiVnxo1rhKmpnGFEkp5VgXVubteuHWPGjOHSpUtUqlQJ40zr7nRMH6EhSdJrIez6da5u3IiNhwcVunfPfQ1MpqTFoXRpRt69y8LatXlw/Digq/URWi1z5hzni7RyOQ08P3LkPh9++A+gS2zatl1BYOAo1GpdPGfOBOkvqdEI7tyJIjIyEQcHc0C3fMcnn2zVl/nqq3107VoOD+sE5levTmJEBABvfP89jb74guelKAqDBtVg0KAaz32ul0Vysob9++9gaWlM3bol5OKs0kspz4nPwLTp5L/55pss+xRFQZPhF5wkSa+2R1evsqB6dVITExFaLfcOHaLtzJm5OrZir16cX7YMAEWlosWUKQC0+uknljRpok+Mag0div1Kcw6F1KMh/vrjK/Xqpf+/VqNh2/y1j29rBaqQG3zV/AM8q1Wg/08jqVevBMbGKjQagaKAn18x7O3NSElI4Owff3D9VkzmXIzw8AQiNi7Xdb5Oc3jq1HxJfF41SUmpNGu2FH9/3Ui9Dz+sydy5L3YCS0nKjTwnPpmHr0uS9Pq6vG6dPukBOP3777lOfLr+8Qflu3Uj6MwZqr7/PnZpCxx7NmrEsJs3ubhqFcXr1sW7WTNWtg+ge3cNlyPK8Y7XTT6c+wVl2rTWn+u/MWOIXLIYY4aQipriPKQfi1D2CR7sE3x94gxfH1jGzp19mDv3BPb2ZkyY0ASAFW3bcmffPrQo+Kj6clPrBUDVqq7UrVuCs+ftDBZRNZNzYGVr165b+qQHYN68E3z1VRNcXLLOoC1JhUk2KEvSC5ASH8/G/v25sW0brtWq0W3lynxfHLMwWLu765MCRaXC2t09T8f7deqEX6esQ7jtvb1pmKFWpXnzUoSFfUZysibbfjAX/vwTeyIZwO+cVmpQ3uIBxIEKXRVOwmFdJ+LGjT1p3NhTf1zknTvc2bcP0JXtqV3GFfzQomLc2K8wNTWi+gcfcG3zZm7u2IGpjQ2dFi3K0318UW7v28e/Q4eSEhdH4wkTqNavHwBh166RkpCAS6VKeeoInldmZobPi6KQ61mlJelFeqZ3wb59++jQoQOlS5emdOnSdOzYkQMHDuR3bJL0yjg4ZQqXVq8mKSqKuwcOsPXjjws7pHxR+b33qDZgACpjY2xLlqTbn3/my3kvXw6lR481dO70J/8rXpFvjIz4uXhxREpituUdSpdGUatxJZi24l98SjugQpeQaVEQJpZE37+PVqtl86BBzCpThjU9emBqY4Pa9PFEh0ZoqMhFKnOei4t0HaGNzMx4b/t2Po+I4LNHj/DKMPT+ZZESH8+f7dsTevkykbdvs2nAAEIuXGDn2LH8WrYs86tWZVWnTmgLsCtC06Ze9OhRAdAlPVOmtND3n5Kkl0meE5/ly5fTokULLCwsGDZsGMOGDcPc3JzmzZuzcuXKgohRkoq8yIAA3bcBIDQawm/cKOSI8odKrabjb78xPjmZSr/v5u+DqZw9G/Rc50xISKFJkyWsWXOJB5tWYBx4Ea1GQ+zDh/zs6prtl3enJUtwrlABUzs7ag0Zwoi9G4nxakwqahQEVolBzCpThpXt23Nq4ULCr1/n4l9/seadd3hr1SrMHbMOay9WpozBbTM7O1RGz19JrtUKVqw4x6RJ+9m37zaffrqDwQPWcOrE/acfnIO40FCSY2MhvUlOCB4cP86htH5TANe2bNHXbhUElUph5cpu3L49nIcPRzNmTIMCu5YkPY88v4snTZrE1KlTGTlypH7bsGHD+Pnnn/n2229599138zVASSpoQqvl/MqVRN65Q7kuXXAqXz7fr1HhnXc4t3w5ilqN0Gio9N57+X6NwjRv3gk++ugfFAXUahW7dvUxaFLKi1u3IgkN1a255cNN/bw+AClxcax99126//WXvrw2NZWtn3xC8LlzABhbWWFuY0Vy+7H8OscfC200b7GGEgkPCPjvP4NrBezcycNTp/B9803OpXW0Bt0w+pO/L+LY7NlYODkx8s4djMzMnun+ZPbppzuYPv0IarWCVqPlTf6hFidYt8iYuHm/0Whw3me/t/XwwKVKFULOnwdFwdTWluK1amUpV9BLMyqKgqenXYFeQ5KeV57n8TE1NeXixYuULl3aYPuNGzeoWLEiiYnZV0UXFXIen9fP1k8+4divv6Ko1aiMjBh08iTOFSrk+3Vu7d5NwK5duFapQvnu3YvkUF+tRsPhH3/k3uHDeDRoQP1PP0WlVlOp0lwuXAgBdAuE9ulTJVfLL2Tnv68m0enrKBIxpzH7aMq+LEPYRwUGEnT6NPf8/TG2sGD3l18a7Bdl6rH+mgvnqQxAZzZQhXO5uv5xarKDVgC0YRs1OIWliwufBj1fTVY6e/spREbqPid9uUYvdDXlAlCZmDIuJvqZJhhNiIjg2KxZJMfFUWPQIBx8fNjx6af4//QTAKXbtqXnpk35UmslSS+jApvHx8PDg127dmVJfHbu3ImHR9YVk/PLDz/8wLp167hy5Qrm5ubUr1+fKVOmULZsWX2ZxMRERo8ezapVq0hKSqJ169bMmTMHFxeXAotLKvrOLF0K6JqgtMDltWsLJPHxfuMNvN94I9/P+6LEx6ew45vJnJkyEQXBtS1bEBoNjb78End3ay5fDkWjEQgBrq6GI3mEVktEQADmDg6YOzg88TonfprM+1iwl6ZcxRczkqjMOSyJ15c5MmMGh6dOzfEcyjV/ugLluMxqulOZcwY1RzkJx55/aKcvuYX2lOYGhIY+5cjcK1nSlpiYJDQagTkJj2MGRHISqUlJz5T4mNvb02TCBINtraZNo1r//qQkJOBWrVqBdm6WpKLimdbqGjZsGB999BHLli1j2bJlfPjhh4wYMYJPP/20IGIEdB2qhw4dypEjR/jvv/9ISUmhVatWxMXF6cuMHDmSzZs3s3r1avbt20dgYCBdu3YtsJheRtf//ZfD06bpq/2lp7MpUQJFrRt9IjQabEuWLOSIXj5r1lzCwWEKXaZoWcU7aFCBENzZvx+AOXPepEwZRxQFmjXzYsTgCoTfvInQaklJSGBxkybM8vVlmqsrF1ateuK1FLUaF0LoxlpCcOU/WhokCADHZs3K9lhNptTGj6uo0PUJyrgnp+c4DkuDkgIVcVhino9D2Fes6EqZMo5YWBjj+2Y7EkweJ4JV+vY1WHE+PziVL497jRoy6ZGkNHlu6gJYv349P/30E5cvXwagXLlyjBkzhk7ZDEstKKGhoTg7O7Nv3z4aN25MVFQUTk5OrFy5krfeeguAK1euUK5cOfz9/albt26uzluUm7oOT5vGf2PGgKKgUqt5f/9+POrlfgHD11XwuXOsfucdou/epUqfPrT99VdUajkMN51WK7C1nWywCnhX1lJZuUDj8eNp9vXX+u0ajZZLf//Fhj590Kam4tm4MeXfeYetQ4fqy5ja2vJ5RESOTX3nV61iXc+eJGHCD3yJgpax/IAJKfqURG1qiiYpyeC4LbSnJHeozHn9NgEU//pPgr7rY7Daer8DB9j37bcE7NgBgHmxYry9di1Xtu+i/0/RPEyyBcCVIIZa/8Wnd29hZmf3LA/fU8WHhXF10ybM7e0p27FjgScoYdevs+d//yM5Lo56o0fj3axZgV5Pkl6UAlur62Vx48YNfH19OX/+PBUrVmT37t00b96ciIgI7DJ8QHl6ejJixAiDztgZJSUlkZThAzQ6OhoPD48imfjM9PUlIm20kMrIiOqDBtFu9uxCjkoq6lJTtZiZfYdGk/5RIehd+irvv+NDk4kTUWdYtkYIwWRbW5IzrJpesWdPXS1P2keN2swc11kHOX78AU2aeNGzZ8UsSVBcaChXNmzgqxlX2HLJhvJcpCvrMELDPYrjoQQaLHkhgAC82EAXhjELY1IBMPUsQ+rD22g1GoRGg4WTE722bcO9enXdcVotBydP5sqGDbhUqkTtYcP4pWodzlMJBUElztPv3w34tm2rv9aD48eJunsXr6ZNscg0Guyevz/nly+nZKNGVOzR47kf+/ymSUnhF29vYoOCEFotKiMjPr5yBftXdNFp6fVSYH18XgZarZYRI0bQoEEDKlasCEBQUBAmJiYGSQ+Ai4sLQU/olPjDDz/wdYZfrEWZTfHiRN66hdBoEFptnieTk6SMbv73H5sHDSIlLo5+dfqw+3AI9ymBa0lnfvb/nWLFLLI9TpP8uGYIRcG1WjXuHzlC5K1bAAQ1H8/4gZsxMlKxYMEpEhJSaF0xhTXvvENccDDV+ven7axZ1Bg4kI0DtIzuPo0Z6ypwHV+MSeEt1iCEMGi6UgAHIojBlhmMoCIXaMFOPCuU486da/pyCWFhOPr66m+f+v13do8bB8CD4ye4dfoi5upUamlO6MtYOjnp/3/4p5/4L61J39LZmUGnTmFTvDgAF1evZk3a4s3H58zh1u7ddFiwIO8PfAGKCQwk5sED/W1tSgoPT5+WiY/0WslVnaqDgwOPHj0CwN7eHgcHhxz/XoShQ4dy4cIFVj2lr0BufPHFF0RFRen/7t27lw8RFo4OCxbgWKYMikqFb7t21MuhlkuSniYlPp6/unQh6s4d4kNDKXH4J/qwjIlOf+C/q1uOSY+iKDTN8EPCvlQpqn/wAR+dO0evrVsZfOYMZ6N0gw1SU3VzzmzZcp3V3bsTfe8eqYmJHJ8zh4t//w3AjX//xXzdeGyJJBUjErAgpyrqIFwAQRxWWBFL+RHjufPvRoMyQqtlcaNG+jUFH548SXoKpSCIOH0UpwbNURkbo6jVNJ4wATsvLwJPniQlPp4D332nP1f8o0cGQ+D3Z1q/8Gxap/mXibW7u75Pm6JSoTYxwS2t9kuSXhe5qvGZPn061mkd7qZPn16ow3A//vhjtmzZwv79+ylRooR+u6urK8nJyURGRhrU+gQHB+Pq6prj+UxNTTHNMHNrUeZYpgxDL13S/RougkOlpWeXHBtL5N27FCtbNl/6JyWEh5OSYeBAupRHgWzt8w5NJkygdJs22R7b8PPPKd26NbFBQZRs1AgTS0sAffmKFe/j738fjUagUimUK1eM2H+CHq+HpVIRdfcugSdOcGL+fEyVFAaKhZymGiq0lOBBtqOzynGNwcwjCTO8uIPRPRf9vEkZBZ89y2QbG7ouX45X06acnD/fYH/I/h36/4devMh0Dw9SExOxKVFCN5ePooAQCCEwsdKNXjs4ZQqhly4ZnCe7kVnHZs/myPTpWDo7037+fFwqVcr2MSwoamNj+u7dy54JE0iOjaXeqFHYe3u/0BgkqbAVmT4+Qgg++eQT1q9fz969e/HNUF0N6Ds3//nnn3Tr1g2Aq1ev4ufn99p0bpaKrrjQUNTGxs/UgfbE/Pn889FHkPZFPOTyZWwz/Ch4FkIIFjVowP0jR8i8ZLmiUiG0Wnpt3Zpj8pOTQ4fusnjxGU6cCCQqKomy5g+pe2sOqpR4XYKiKBiZm+NcsSKBx449c/ynqEK8qQvFk65gQzSORGZbrsbgwfz72xZOaCqTjCm1OYY7gYaJVVqio6jVlO3YkZvbt5MSH6/brjLCuH4XUg78neXcbWfPpvaQIfrbd/bv1606j27kmrWbGyPu3pU/UiQpn+T2+zvPwwdOnTrF+fOPR01s3LiRzp078+WXX5KcsW0/nw0dOpTly5ezcuVKrK2tCQoKIigoiIQE3TBXW1tbBgwYwKhRo9izZw8nT56kX79+1KtXL9dJj/TySU1MZNuIEfxWpw67vvwSTYaROQXpRf0eEELwz0cfMc3ZmamOjvhPn57nc2wbPlyfnCTHxrKpf//njktRFHrv2EHLH3+k/NtvG0x6l94p9to//wC6SQ2Dz58n5uHDJ57z9OmHNG26lKVLz3L+fAilbB5R7/IUlMSYx7UyQlBv5MhcJT1mDo4U79Qzy/a9NGITXdiZVJ+VvEcwLhymTrbnOD5/If84f8wJanGOyiymH1HY5nhN25IleXvt2rRQBUKTQnI2SY+iVnMpbXbpmMBATv32GxfXrNHvFxoN0ffvk1rEJ3yVpKIoz4nP4MGDuXZN11kwICCAd955BwsLC1avXs1nn32W7wGmmzt3LlFRUTRt2hQ3Nzf9318Zpq6fPn067du3p1u3bjRu3BhXV1fWrVtXYDFJBW/XuHEcmzWLB8eOcXDyZIO1hwpC+M2bzK1UiW+NjVnZvj3J2TT35Kd7hw9zYt48QJdQ7Bg9mvi0/nS5pU1NNbidFB2dL7GZWFlRf/Rouv/1F6ODgijZsCGkDbXWpqbiVK4cKfHxLGrYkHmVKzO9RAlOZ7NyeWBgDG+8sZRGjRaTmqolNVWLj/YSjc59l6WsFoUNh+LZTTMCcWMvTZjGaJIxzlI2NkHLiI3unKeibiHStO1nqKYvo0HNXbywJSrbvkFxihV3HyYhUCFQkYox98nQhF6jhj7pS1RZMupvK1b8pPtMUTL8ZT630Gi4d/QY4bduM6dSJTYPHMjxWbN0fWvS+td4NW2KsblcxFOSXrQ8Jz7Xrl2jatWqAKxevZomTZqwcuVKlixZwtq0X0IFQaS1qWf+e//99/VlzMzMmD17NuHh4cTFxbFu3bon9u+RXn4Pjh593PdDCAJPnHjyAc/pnw8/JPTyZYRGw42tWzn8448Fer0s/WiEICUhIfvCmVy9+oiBAzex3/Njwng8sKDpV1/lY4Q6Fo6OdF+9Gt82bbD18qLuqFHUGDyYC6tW8eDIEV3oWi1bhw3LUls2cOBm9u+/Q1zc49q67mT/WbGVNszaa8sBGrGQgVylDP1YjII2S3JhlBCBDzdYy1t8w0T+oA+xWGJOIkrayuwCBXMSKM+VtNuGSYqFiMWS2LTyAgUtzuiW3kClwsrFhQ/PnmWP90impw7l8kNjpu80g7REK/0vY2NV+ra7SQ6M6zSepMhI/T6VkRE1P/qIxhMm0GPTpqc+7tH37+M/fTpnly0jNiiINT16MK9KFfZPmvTCaiUl6VWT5+HsQgi0aV9EO3fupH379oBuKYtHefylKklPU6pFC+4dPqy7IQReBTzZWvT9+4+bXRSFmMDAAr2eZ5MmuNeqReDx44BuzhvbXCz9EhWVSIMGi9LWfHLglPUIFvQIocGH/QpslI6VqyvvpjVvpQu/edPgtjY1VdfslqHfyrVrj/RzAKlUClZWxqijRbYdlNPX1hKoAC3e3MKBcH1ZDbpfa+m3PXjAOaoCCrfxYiMdacl2/qInSZjhwT3qcDRLYpJOjZbe/MF2WpOIGVU4izVpNWZaLTf+/Zcb//6LikYk0hyAKBzZTWPeUA4QL0wxIyHL0HoBROBAwPloOqUlYSgKFo6OvJnDrNOZhVy4wOImTUiMiAAhsHJzIy4kBKHREHzuHDbFi1M1ww8/SZJyJ8+JT82aNfnuu+9o0aIF+/btY+7cuQDcunVLrokl5bvG48djbGHBg2PH8GzShNoff1yg16sxeDDbR47Uf3FXLuBV1I1MTem3fz8BO3diZG6e61l0L1wIISzscc1QRIyg5AdjcatevKBCzeLKhg0c/P57g23Nf/ghy8zDVaq4cuNGBKCbBXrBgg4oa05xOa3PS3qNiRYFG6JJwjQt8VFRjDCDpCICO8JwojiBWBFHKE6o0KJFjUBFMC54cYfPmYIWBTXaLAlW5tuuhNCXZQaxZNaQQ+zhDf3e/TSjJmcpW7M0Nu7uunXLtFr98QKFcBw4SxU6Op1DCb2NiZUVXZYv158zITwcTUoKVtl8bh6cPJldX3xhsC02Qx8qlZERQWfPZhOpJElPk+fEZ8aMGfTq1YsNGzYwbtw4/WKla9asoX79+vkeoPR6U6nVNCjAvmOZ1R0xAseyZQm5cIFSLVrgVq3a0w96TkZmZpRJqznNLV9fR8zNjUhK0tVOmZkZ4eOTf+tJAUTcusXSZs2IffgQ1+rVeX/vXowyTP1wfM4cUBSShZokTKnQtJbB3FE3b4YzY8ZR1q69rN+mKHD4QADOaTVHGZuKBKT11dElTubEUYEL+nLXKMNfvIMWNaYk0p9FlOYGx6iDggaBirJcBRRUmRrGMl4DHic3GW8/aRFTVXqtTRpz4rAQMTw8cYIoZ2e6rV7Nhl69SElMJBU11yjDQRqiRc3XoX3pwjqqxF7QTxR4+Kef2PnZZwitlhqDBtFu3jz96K6Yhw+zJD0ZH0BFUdCmplKqefMcopUk6UnybTh7YmIiarUaY+OsnRCLEjmcXSoq9u69zfjxu1EUhUmT3qBRI898Pf8MT0+i7t7V3/br0oV3MgwWWPfee+xcsRNrojEilbPGdVgR+h+2tmbs3XubVq2WkZJimDAYkcpn1oswidE1ISZhjILAhFQCcWEBHxmU780f+BAAwAI+IJDigIKClmqcpiObuUoZrlGGYjyiNsdQZ0pSniQUB4qlNaVlTI4yJ0ACOOg+gF2BHiho+YSZOGQYIn+eSvxHc5wIpafTER62/5ElS8+h0eqOdiSMT/iVBmPHUmvIEGZkWiS1xY8/0iBtRuiIgABm+vhkiVVRq3GrUQNHX1/8unShfNq0HZIk6RT4khXJycmEhITo+/ukKylXts5WdHQSKSkaHB2zn/FWkvKqaVMvDhx4/qHrOck8PD3kwgWD23VGjODMij9RpTUn1Uo5yJRBM/j+r7H8/LM/Gk3WBMSdh5jEPV5CxpQUorBhFR0IxI3MaYcZuuHeQThjhAYFoZ9p2ShtPa6yXKMsj5elyCwFI05TjSRMqcw5bNP68MRiyQM8cCRCPybs8WpkhsmPAjQM/J12pctiW6IE9/ZG6vcJoAxX8OAO22nDitAGdEh+hKM2mDAc0aLCFN16gA6lS7Mym9q9PePGUeujjzCxtMTO25sKPXpwMdPM9EKjocagQVQfMCDH+ypJ0tPlOfG5du0aAwYM4HB6h9M06bMFazLNkirBL78cYdSoHWi1go8/rs3MmW3kpGXSS8+lcmUenjypvy2EYJqrKyXq1qXTokVokpKy1K7E3AlACIGNjWnaa/xxhbKnpy2D/R6QuF1rMJzUlmjashUnwjlKLbbTBi0q6nOIY9QkBWMC8KE2R3mIGymYYE00DTj01PsggJW8yy28URD4U5ehzMGSeFJQs49GlOUK5iSl9QnKvgL8Jt64EQQ3rhJ946pBKQUwIQWTtHXENtIR5/UjGEI8kdiyknd5k3+xLVkSK1dXQs6dy3J+TXIyCWFhmFhaEnb1Kg0//5zqAweSGB7OtS1bCL10Cb8uXajWvz8ajYbLa9di5+lJiTrZz08kSVLO8tzU1aBBA4yMjBg7dixubm5ZvsCrVKmSrwG+aPnd1BUSEoer6zSDyW/9/QdQt+7zzawrSblxfetWXX8RRaHl1Kn4tGyZ62NTEhNZ3b07jy5dIjEqioSwMN0ORaFy7950WryYL61cMUsIBSAGazSoqFjHj3qzV9Ks2R+Exig4WqTyz7a+lC7jQMUSXzM4dWaOfWlAV0MjUDAmBQ0qpjOCPizHhRCSMeYKZSnPZdRo0KLSJ1+Z+++ArlZnGmMMzt+eTbgQhAZjLlKeN9mabZ8fMmxLwBzzDKO30stllyzFmzlhmRym7+wsMvQ5cq9dO+vkjIqCpbcff0S2pFLcfsoknQGgXNeudF+92qCzeHJsLFMdHfULwbrXqsXA55jhWpJeJbn9/s5z4mNpacnJkyfx8/N77iBfRvmd+Ny+HYm39y8G23bseI+WLbO24UtSfop5+JBfvLz0s10bmZoy4u5dg9XGATQpKUTfu4e1u7tuLao0cSEhhF66RFJMDKs6djQ4JszUg7magZR0M+Gj0ie5d/QEpvHBWBJPqmLCFodBPAxLwY2HvMkWTDLNw5OX+s7zlKcShutgBePECt4jGlt8uUZ3/gYExmgMkpNUjJjKGFIwJn3asgH8hgf3WUsXnAmlIQcNjklv5sopGRLZ/D+9TCKmmJOkX+Yii0zbrVxdMXX3ZOypRhiRwkgMPyv6HTigmzgyzaouXbi6YYNBmdFBQdmODJOk102B9fEpX768nK8nDzw9bXnrrfKsWaP74K5Z053GjfO3E6okZSciIEBfMwC65T8ib982SHyi7t5lSZMmRN6+jbmjI3127sS1alXuHz3KH2+8QUp8PEbZzC58JakEauIJuKfld8smDHE/TfiNeADOi/JUCPuXzmmdknMaSZVRTiOqBFCW6wbbtCispzMx6BZOvo4vx6jDdUojUHib1VgQj4LAmFTe4W820ZEkTGnEATy4jwDKcYUDNKQhBw2u/xBXivO4H1JOcwAlY4wxKQblzNP68qQnN4parZtoMMMknABqU1O0qanEhYRwJdiYOKywzWE9sYxS4uOzbsvlhJeSJOnkeebmKVOm8Nlnn7F3717CwsKIjo42+JMMKYrCqlXd2Lq1F+vXv8OBA/0wNX3mPuWSlGsulStj5eqqXybBunhxnCtUMChz4Pvvibp3D4DEyEj+G6NrFjowaZJ+HSlNUhLGaSusg64pqgH+fM4U3mQziXeu0uDzz/X7q3EG37SkB3JOaDLOoixQuEB5EjHV708/Ng5zg6al3TQFFEpym978QV+WEIcFD3DHmBSsiEPF4wkSS3OTUUznCybTMK1fkAJ4cJcgXFhHF/11b+FJCFlrTwS6RCceUxTgHiWYx4dEpyVf2VIUKvboQVClXsxUj2I2QwjAG0WtxsrVFaHRILRaiokQzIknGhuOUkt/eNlOnShRr57BKdvPm2cwOaSVmxv2Xl45xyBJUhZ5/gZu0aIFAM0zzSEhOzfnTK1W0aZN6cIOQ3rNmFpbM8DfnyO//IKiKNQdMQJjC8NRhakZaguEVquvPci4KCkYLq2RPppKhaAWJ6mVeJrbe3ti4eREfGjoE2PKrmbnFFXYSStasx0TdDVUGWuH7IjW336AOy3YQwv2GCRH3twhAntCcc6xSS3zta2JYzgzOUIdpvIZarQ48oj+ZF1v7HEHZl0z2w5aEoEdt/GiCuezb7oTgqPHHjDvelP9Ff+kJ59qpmGU4XEyV6fyidNWjpi3JF40pNaIT6jWuCKuVapkmQzS3tubEffusWfcOGxKluSNb77J7sqSJD1BnhOfPXv2FEQckiTlIyEEO0aP5sS8eVi6uNBh/nwOTp5M2NWrlH/7bWoOHgxA7WHDuLRmDSnx8ajUahp9+SUATSZO5PbevSRGRGBiZWWw8GmWvi5Cy/kVK3IVV9bOwSocCSMe8yyTBGZXvgQPsuxL31+KW1yhPBvpRDN2Y0OMwbk0KBhlamizI5rW/IcDoViRgC/XMU6L4w4l2EQnUjGmGsdpyiG20xJ/GqQdG04Vzud4XwUw73pVg3uTggmxWGGaEIFrtWqYWFlh4ehI5d69KT9rFprUVPwqvKmfODMlPp5/PvqI2/v24dGgAe3nzcO2eHE6L1mS43UlSXqyPCc+TZo0KYg4JEnKR1fWr+fI9OkARN+9yx/tOzMj5UM0VKfZ7oVMKVaM8t264V6jBh9fu8bDkydxqlABh7SJ81yrVGHEnTuE37iBracnS5s0yTKPz7NOyKBfxJOSBONCHY5Ti+Mcpj5luIYpydnOowOgzeG6CvAwbR6gFIwIxwHbTInPUerQgCMG2xIwYzutaMhBihGu356KmlX0JAFdDdleWuDJPRKwwIO73CN385XFZmoKa8B+HAgHoath67d/P0nR0fxcogQpcXEIIVjZrh3DAgKwdndnVdeuBGzfDkDUvXuYOzjkeq0vSZKyl+c+PgAHDhzgvffeo379+jx4oPsFtmzZMg4ePJivwUmS9Gyi7t3T9wURWi2kJBKDFXFYsYUOHNpyVF/WysWF6//+y/xq1ZhXrRqPrl4FdE1lbtWqYeHgQPm33zboW6IyMsIirZO0bl3zxwS6vjJX8eUqvlygvEFsCrCYfiznPSyI4QwVOUEtHuLOTIaxnZb6FbZ0Q8mN9f/PbkZlDSoOUp/TVAUgDjNcCDGoP3qAO/7UT5sC8TEjUjlDNRbRn2QezzofhS0JWPJ4fJdCAD50ZiMDWERbtvAh84nBKtvHP/0x0KLWb3EklBbs1t+H0IsXiX/0iMjbt0mOidE9T0KgSU4m7OpVjv7yiz7p0T3QWkIvXsz2epIk5V6eE5+1a9fSunVrzM3NOXXqFElJulEMUVFRfJ9pwUJJkgpH2Y4dMbGy0vcROUtlhP5LGPCoqP/v6UWLODl/PskxMYScP8+6bBZmzdznx9zRkYSPV/OtMoGLVMg0HFxhGb35k3dZzds8oDhJmOiPvUJZ7lGSVIzYR3PKcE3ftycOK6pzWj/vjQIYozEYYh6POZHohqrexoupfMZOWulL3MaXBQxiP004RD3+oDeL6E8sNmymHSJD8nOeioBCPFaE4aDfbk8ENkTyuH5KUIrHK9HX4QRmJGFNrH5bxlmfd/IGf9BPv8WYZNqzxSBx06am0rzWNMo13co+q86g0nVCN7Ozw6VKFa5t3pzlecjrmm6S9LIQQnBuxQp2ffkld/bvL9RY8tzU9d133zFv3jz69OnDqgxTqjdo0IDvvvsuX4OTJOnZ2Ht7M/j0aS6tXo2FszMbf4lHOaebhqKYnRFvj35bXzby9m3dsGuNBqHREHnrlsG5NCkp/LrwIodFf5wIpRU76DJtGl+tC0KLirV0w4YYPLhHMM6AQIsRClo+Yq6uaQddzcwh6rOXZqQnKdHYYEoyxiSRhCmg6JMg0CURRhnqbtInEzxAI8Kw5yHupGZIqgCcCaYqp9lHU5IwI2N91BmqU53TePAALeDLdcyJJxkTivF4mg4VgkEsYC4fkooJDTmAN3fJSebaqAYc5hCNceUh9TlMDevbpMQYNr1FY8Wx28ZoSWQPVanV3IP6nnHUGzUKC0fHLMmm2tSUHaNHc2XjRnpu2oSZrW2O8WT06FE8R47cx8fHnnLlnJ5+gCQVgP3ffsveiRNR1GoOTp7Me9u352lC1fyU58Tn6tWrNG7cOMt2W1tbIiMj8yMmSXppaFNTiQkMxNLFxWBl8qLAwceHhmPHArD3rSQWLDhJUlIq/fpVw9b28USF5bp25fC0aYBuPagqffoYnOfn/63m71u+AGm1N6Z82awZpY6fpJNYhxe3uUtJljOWFExx4BFmxFOBizhm6DejRksk9mnNP7pUoRLn2UhHYkn/EhfsowkdyVrbkd6sZUEc9kRwhir4cp36HCYOK05QjYeUoB+L2UI7ktMSIgWBLZEIFLSoKZnWQVpBN7LLm1sE40QMNtgTob+eFfF8ys/62zFYcYaqGJFKdU5hSjJHqMlDSlCfAzgTpq+VUqPBklj6sRhjUkiNV4FKpV/bUIOapfRBm/YRrKAlNMGM9vN+Qp220HN6k2M6TVrt+r2DBzk0ZQrNc1HDHhAQQe3aCwkLS0BRYOnSzvTuXbRn15eKpnPLlwO6zxhFrebSmjVFJ/FxdXXlxo0beGWaO+LgwYOUKlUqv+KSpEIX/eABS5s2JfzGDSycnOizcyculSsXdli5Enb9OkGnT+NWowYOPj7Y2Jjy6af1sy3rXrMmHxw5wpWNG3Hw8aHye+9x/XoYP//sD0BoQCQqNGhRI1BxnxKsXnOZ8zMnU5fzqBDYcJG6pVKZGVAPF0KxJpKqnM1SE2JMEmpS6c5qynANBcFKemQooXCKGlTnJO48RIUwGLa+nN7cxjttixY3HpKEGVcoSwiutGcj5iSiyfTR5s1N3mQ78xhMCkYYkaqPKwpbwnDmCHV5k61oMixDkV4mEVMWMIhYrBAoBOJGV9bjRhCHaERVTgNh+uuF4IwLwZim1V6JtGk+zlMBU5KJwYb6+HOQhkRijxoNFocX853pNKr260fH334zmEXbgKIQFxKS/b5M5s8/QWSkbj4mIWDixL0y8ZEKhaOvLxEBAfr5q+wLMV/Ic+IzcOBAhg8fzqJFi1AUhcDAQPz9/fn0008ZP358QcQoSYXiwKRJRKQ1+ySEh7Nj9Gh6//dfIUf1dAE7d7KibVu0qamojI3p/d9/eD1lNKZb9eq4Va/O+ZUrmeVXjqsBcfwr2vJA8cDS0lhfS6MgqFHOksGjDzOAW9zEiwtUxpQELgRUIh4rgnCnF8uwJcZgOQcFaMMO6nMYG2L1+9rxLzMom6GUwIwkfT8fAcRhyTbapCU9unSqJHdwJoRV9ERBi0BhPd0ow1TqcYgblMaUeHqyguLoVpr/gN+4QAX8uIoKLftpzAOKA4Jj1CQZE0pxk3JcxgiNPqK7lCQmrV+RI4/oxCYAPLnPSKaThJlBgleCB3Rgc5bErzIXDR6TKpzjCHXw5QZOPAIBZxYtIi4kBNMcmrIUlYpq/fs/8flMZ25urF8hQ6UCCwtjg/1CCE7MncvltWtx9POjxQ8/YJoPS/VIUmbt589nXa9eBF+4QNn27ak7YkShxZLnxGfs2LFotVqaN29OfHw8jRs3xtTUlE8//ZRPPvmkIGKUpEKRcdI+odWSnOH2y+zwTz+hTathEBoNP45awjWHu3h52fLDDy0oVswi2+NCLl7UdWwWgmIovMsypvEp0dGCiRMbc+rILcr62lOumhenByzhX9oShDsa1GnzJOu+4lMxYinv05M/Kct1gy96AJsMHYIVwIo4nAk2mDH5JDVozY60bsUq7uCFQMGMBGyJIBh37uLNXTzTkh6V/oypqPHkPh8zExVarInTJx/mJFGNs2hQuEw5IrAHoB2bqcI5FAQBlCIIN/3SFgBmxONGIDU5gQNhqDOsCaYCzEg0eCwVwD6bJSi0KOykBZcojzOhdGQTDTmcpdz1LVtQ1Bk6oysKNQYNwqVyZbyaNsWpfPksx2Tnk09qs3btZS5cCMHc3JhZs9oa7L/411/8O3QoALf37SM+NJRuf/6JNiUl5xqnl0BSTAxqE5Mi1/z8OrMpUYL39+0r7DCAZ1ikNF1ycjI3btwgNjaW8uXLY2WV/bDOoia/FymViq7AEydY3LgxqQkJKGo176xbR9lMi3W+jFa//TaX161DaDTcVPmyTNsLALVaoXFjT3bv7pvtcZfXr+fvrl0Ntv2ijCTRzJG7d0fqE6azZ4OoW3VG2jIPTx4Y2pul+HDriWVu4sVBGnKbUmkJjMCGKHy5jjUxJGHCG+zBOK0G5hJ+/G3QPKaj68GTihY1ntymBPd4g71p+x7LPLPzHUpQkvsGZQJxwZ1gffkU1GnpXXoqlrO7FOceJSnBAzy4a1D2ODX5h3aAgoIGHwJ4j8eTP16kPDcojQvBtPIKJfrOLf36Xr22bqV0mzYkROj6IZnb2z8hisc0Gi23b0fi4mKFlZVhR/Ctw4dzYs4ctKm62bjN7O3RpqSQHBtL1f796bhwYZbZowuT0GrZMngwp377DbWpKZ0WL6ZSz56FHZb0ksjt9/czv6JNTEwoX748tWvXfmWSHknKyL1mTT6+epXua9Yw5OLFIpH0ALwxaRLWbm4AhFqXQ6XSfaVrNIIjR+7neJxHvXqY2trqahpUKmLM3fGrXZZ//nnXoJaoYnlHaqvP0JtltGQ7piSCfuSV4Yw+9yiR5ToZ1+h6gDvL6ZOW9CiYE0cX1gIKJ6nBPprwkOIYodHPwaPNlMYYk4Q5cbgShCOhaFFzi1JcoJLBKusZo0vfrkFFCR5kmR8oY22NbrkKDWq0qHJIejIOZb9HSRrgT8lsRoGF4qSfoVqgJgRn/b4LVGA1b3OGKmyjDVtjahosaupcqRK7J0xgqoMDUx0c2DNhQjaRZKVWq/DxcciS9ACUbNhQn/QoajVJMTH6ms0zixZxJdNK8IXt5o4dnPrtN0DX2Xvj+++TmtbpW5JyK89NXYmJicyaNYs9e/YQEhKiH6WQ7tSpU/kWnCQ9jwsXQpgy5RCKAmPHNqR8+bwP5bX18MDWw6MAois4jr6+DAsIIC44mKOXEtjWeiWgq/Fp2DDnGYetXF354MgRjs+di7G5OSFXr2O14SN2trEh/pdFtPuwK8fmzGXDsDE00+iaj0pxiwpcYAl9MCOZINx5PLhb4TTVaMxBlAyLhmZs+rqObrRYejqRijGVuIgKWEs3jEmhHJcJxoVkjLlOaRpxgHdZThKmOBBBcQJJxphV9CAMB/1VInAgAG9KZahxyrzchhptloUyBBlWWU+TccbonGasTsKYm/hQkXP6cullb1CKf2hPPBZoUad1FldRjsv646/jm9Zsp2viOhNWLG1xDN2X/H+ffcaFlSv15fd/+y2V33sPxzJlssRy4kQgJ08GUrduCapUcc0hYqjQvTtJCxdyed06HH19OTpzpsH++EePcjiycKTXdqXTJCeTmpgom7yKiNv79umGtKtUvDFpEh6ZFuF9UfKc+AwYMIAdO3bw1ltvUbt2bRQlp48BSSo8EREJdG4wmbIxh0jGlJabz3D5zpfY2LweH5BqY2NsSpSgZQn4889uLFt2Di8vW7799o0nHlfMz4+2v/zCmSVLODRlCgpglBzNzo/6s2JHDJvW3+TjDP1bFMCOGMpzhfJcYg1vEYlj2l5BFPZspBPt+Ac1GgJxx4P7aXvBkTB90qOgpRiPSMKE8LTh7amouUQ5KnIBS+IJwhk1gtLc0F8fwJgUOrCJXxhBxsRrBb2ozBk6sSXLfU1Pvm7jSSnu6LcrwAPcMCVJPxxfBeynAWW5hguhWc4ThgPFCKccV/Tb0mNLwYiVvJvWQVy3tSxX8OIONTmBBhVbaUsAXrzJvzgQziXKk2pijZKqIlmr4gIV0KxclXEKSgCSY2PJbO3aS3TvvhohdMnuP/+8S+vWOS+SXP2DD6j+wQe6xzspiZPz5wO6RNivc+ccjysMvm++iX2pUkQEBABQtV+/XM9nJBWu2OBgVrRtq5+WYVnLloy8dy/XTbb5Kc+Jz5YtW/j3339p0KDB0wtLUiE5te88b0fPxogUFKB05DUuX/qAOnWLVu1NfujRoyI9elR8esEMju46hxYlrWlHYEkcf66/DVgRihMe3DOo+ajNcf6jpUHSk163c5aqxGKJC8GU4RrwOCmowAVCcOYMVbEjguqc5ic+JRVj0idCvIsn/9GSpuwmkBLUJmutsgKYkowZiVgTRWhaR2kNRpiTlCEaw5oYgGRMDJrAANx4CCgkYUoAXpyhGvfxYDct+ZJJmJCiPz4FI8xJ0B+fudNkImb6+XrSVeQiFbgEwGHqcYKa9GCVfoi/DwFYeVfCyqo6ky/W4V6iPVU5a3AOtasXkxcH8maojUFiM/eXA9QThzAliTOaqsyff/KJiU9G7ebMwffNN4kLDaVshw5YOjs//aAXyMzWlkGnTnFtyxbM7Ozwbdv26QdJL4Wwa9dITUjQ306JiyMiIADzGjVeeCx5TnyKFy+OtbX10wtKUiGyCLuqn0MFwJVg3G2Sn3CElO7ixRAm/AUDMMaEZBTgOLXS9iqspRv9+R2bDMPVdTUzFTKcRcGaSJqwjzCc9CO00iVgxt905zbeuBDEAH7DkhgO04jqnOAqfkRhB+iawS7jhyOPuEtJNKhQ9A1Uin7Y+yHqU42TNOEAu2jOaaqRijFOGWpoFCAFVYaOyuDH9SyPgSrtymYkcZDGBFJcv28fjWnJLv1tE1KJx9zgGvA4ybIklhLc4z4lUBCYkYAnt/Xlw3BEhUjrCP34UUq6H0DrIwHcrjSXypwlGZPH8wIZmTIlqCuJ804z89eTbNnSE/eQQ9zZt486J//FmFAECrU5RqRF7r9YFJXqpe/LZmZrS+VevQo7DCmPnCtWxMzenqToaADMHRwoVrbsU44qGHlOfH766Sc+//xz5s2bh6enZ0HEJEnPrVStKujm7NV9/ZjY2OJe+tWu7ZlToQKhl3S1CNbu7oy8f5/be/aQFB1NqZYtMbG0fOo5du4MoF27FSSn2DKHIZTlKtHYcBW/tBKCKGzT+u4c0CcP0dhmqemIwY5dtKQPiwFdEqBFIQYLTlKT23ghUBGMK9towzv8TWN0a/iU5D5r6K4fqp6EOYmYE44jy3mPeviThClHqIstUURiRyDutGdTWrImUKHFjDhOUh2AKpxFQXCa6qgQ2BOOB/f1tTeZa33SEzonQkjClLC02qwg3LI8bhbEGdz/ZIwxTqttVAEd2chu3sCVYKpyBiviAVhNN+yrN0R7Koq7lKRsWo2PArhUrkyxYhY4KY/oItZniFFhi+twYu9bQKoWtVph9zffY3NsKYB+AQ8FgTmJtG+YuRdT9oRWy4VVqwgPCMCvUydcKlXK1XEFRQjBpUu6pLV8eSfZraKIM7e3p//BgxyeNg1FpaLBZ59hUkgDo/Kc+NSsWZPExERKlSqFhYUFxsaGE2KFh4fncKQkvTgulSvT+Y+lHPz+e0ysrXnz119Rm2Qd1fKquLh6tT7pAYgJDGRe1aqEnNN1tHUqX54Pjh596gfN8OFbSU7WfVFGYcdxpQ4ONmoqqR5yLsIJMxJpwzYqp815k4gxarRcoBImJJGCKQIVntwmGitiscYpw4zGILAkgWbsw5vbrKAXKRgTja1B81NFLmJBPHcpyRXKEok9lTlLIG7cxhsfblCeyzRmH5vpSCzWlOQONTjNWSpzgprYE0E01tzHg/uUJABvurGeMlzjDFWJwBZ7wrElilAcicKesml9h0CXAJ2nAq3YjgWJCCAJE+7jSgpq/fB6ABO0nKQ6RqSgwYgzVOFtVmOVlhD5U59obOjB3/qRabFYcYkKiFNRfD2uNvumHqBUSgAmpKCo1bz7zz+Y21sx7l1rIldkeHAQVLIP48xDSzQagVYrsHt4zKCTdsY+Ri4ln95cJYRgYe3aPDx5EoB9X33FwOPHcatW7anHFgQhBAMGbGLx4jMA9O1bhcWLO8nkp4hzKl+eTosWFXYYeU98evbsyYMHD/j+++9xcXGRL0TppVWld2+q9O5d2GG8EOeWLcuyLT3pAQi9dIkb27ZR/q23spQ79fvvHJo6FSMTE2zDmwKOpH9tlippQZs7U9lCO8CJ91mMM6HsowkXqIA5CbjykDuUxIcAOrGJRMywJoozVCMZE4NFRnX9a3S3PblDdU5xlLqU5A7/0JZ2bNWXLcUtSnELJ0KowGUE0JtlJGGqH3VlRySd2cByelOWq2hRSMCcT5iFPZEkYsoyevOAElymHIL12BJNU/aTvpK8CnAmDBfCssy0fBU/ShOg7xdkTjKluZtlZJcAXAniNz5Iu63iVz7GjUAicCAybaLE9XSmAYeIw5KttNV37A5bv4DGKY+bz4RGw+ImTajw1ltE/jkly3NW6uoyWjebzdnL0XTq5EexG+cIvnc564gzRSHozBl833wzyzkyurl9uz7pSb/+xb/+KrTE5+LFUH3SA7B06VlGjapH5couOR8kSbmU58Tn8OHD+Pv7U6WKXO9Fkl4Wb0yezLXNhgt7KioVIsN0E9nV9tw5cIDNaSN6AFpzgRYo3KMkO2iJd0ISTml9awBSMOE01ThCXSyJozQ3aYpuNtaHuBCPOY9wIgI77lKSWKwoxxXsiNLFlOn65blESe6wnq5YEEcr/sOIVH1ZAVRIG/L9OPl4PNRchcAZ3bpVYTiiRlCFc/qZlE1IphXbWUx/tKiZwXDasF0/+kqlbzzK2jfnIuVxIxhrDEdOZfdTTwGKE8hwZvAAd/ypz31KcgsfjEmmL0v4m7e5gh+t2MExautnqi7BPWwuZV2UNfT8efaeP5/N1UCbnMzyBc2x99atW1at3CVq4Y87D1GAcOxxJAJFUXJV0xkbFJRlm6VL7pIMIQS7//c/js+ejaWLC12XLaN47dq5OlaSCkOeJzD08/MjIUPP7JfR7Nmz8fLywszMjDp16nDs2LHCDkmSCpRL+fI0/eYbUBRQFKoNGkT7+fNRGel+21Tu3RufVq1ITdUSH/94RFJwhlqhdGoEXtxhIL+RGPIQoaj0S1LcpBQaVHzKNIYxS5/0ALgRzGY6sJJeLOV9zlKVm5RmEf1JzTIQW5cseHIXO6JIxZho7FhGbx7pR4Zln2Ro9f/qehjdx53qHKMYIWgBMxJ43BtGYJyWSGlREYUdq+lOLJYG5878/xX0ZDVvUSLT6LWnsSOa8lyhH4txIxCAuhzBkzu8wW6siMWSeNrxDwP4jYHMpz+L9OuCZfSkKfVL1K2LXYY+lkmKOQsZzAxG8BsDWJhW8+RcsSLVBw4EICUhgfAbN9CkpGQ5n++bb2Lu+PhxV5uacmLuXE6kDW1/kmubN3Pw++9Jiooi4sYN/urShWdcEECvQgUn+vR5/OO6d+/KVKr0co0wk4quPC9ZsWPHDr7++msmTZpEpUqVsvTxKexlHv766y/69OnDvHnzqFOnDjNmzGD16tVcvXoV51wMzZRLVkivkqSYGFITE7F0cmLdusv07r2e+PgUBgyoxoIFHXh0+RJzK2Y/1F0A4TjwoPYnPAyMxv++LWW5RAf+wYK4bH81/UFvAvDJsn0ov1KMR/rzKkAgrjjzCAGcojqe3MGJR6RgjBmJ2SYcSRhzgQrcxos2bMeChCzlNKhQp6VHWuAW3gTjynFqEZE2weFg5uFGkL5M5tmdz1GJM1SnNkcox9U8JT/p5wjEjQQs8OEmADfwwZRkSnJPt2KoNnedjjMrVq4cA/z9Deav2b79Bm3brtAvSPrdxPoMeqcEjr6+qIyMCDxxgmWtWpEYEYGdtzf99u/HpoThrNqxQUFc/Ptv9k6cSFJMjH5F+f6HDuFRv36O8RydNYt5w37iGLUxJYmm7GVaSpg+6X5WQgjOn9fV5lWq5Cy7VUhPldvv7zwnPqq0dVsyvwiFECiKgkaT9ZfLi1SnTh1q1arFr7/+CoBWq8XDw4NPPvmEsWPHPvV4mfhIr6LUVC22tpMNans2bepBhw5lOfX77/wzZAjaZMPh/gIIxZG5DOHPVW8TG5vMyg9G0IgD2SYCD3DjdwZkmbPGlERG8TOmJCPQzWLsQjB/8zaN2M8jXHAiBF9u5JhgCHRNaVtoRxw2CBR6s0y3onkm6fMPCXRJUHpzViKmzGYIpqQwhDn6WpbblMCRMKzS5uJJrytSMjSDPU3mvkHZ7UtPsPTlckh+0uNWZ1qcI6O2v/5K7bTFRdPduRPF5k1XUPn/Rcz2pdh7edF1xQqK+fmxpGlT7h44gNBqUdRqan70EW/OmpXlvEkxMUzO9LnX4bffqD5gQE53nRO7zlC3xTp9tK5WKdyPmqRfKkWSXpTcfn/nOSXfs2fPcwVWkJKTkzl58iRffPGFfptKpaJFixb4+/sXYmSSVLiSkzUGSQ9AeLjui776gAFU6dOHmMBAdo4dy8VVq/RlnAljHN/zRe+H/Pj7ABpxwOAcGScGFCiUIoB2/EsgbmynNdHY0okNGKfNP6MAVyjPEerzAYtZTTcuUpEObEaLgjpDA48Ww7Z4a2IZhG5EyBV8uUPJbBOfjAlLxo7VFiQymumkYGTQtOTF/UzH6+5Z5kkPs5PxV2MKCsZpWzQZ7kvGVdwzrlN2VetLKE74cBN3HmJiY0t4jIY4YUEU1pTidrZNYKhUhF64kGWzp6ctDW2usPHP6QAERUWxpmdPPjx9mpT4eIPmp9QcuiuYWFnh0aAB9/39QVFQGxvj1bRpDvc+7X4EqdBkaMp8GGvKo0fxODs/ffoESSoMeU58mjRpUhBx5ItHjx6h0WhwydQpz8XFhStXrmR7TFJSEkkZFrmLTptc6VWi1WiIuHkTSxcXOb37a8rCwpgPPqjOb7/pZj0uUcKGDh0eTx6mNjbG1NqaWzt3QqZO0Wo0tEtZz5A+aoZkOm8KakzSlrAoQSC90K0lZU8kFbhMIiakYkRq2rw2F6jIaXQjhS5SnotUBBTOU5FqnDJIMjImPQpgRZz+th/Xs+0Dk12SYnhOYTDrcuZyGf9Nv37GTs+38SQeS8pxCVXavlgsWUpfIrGhFLfRoGBFLO35ByO0WeYHAjhEA3bSEgUtu3mDD8xWUXbwBPb/uJw32UYxQlEjcK1Tj6CjmX60abVc+Osvag4ZkmWunYiAABS1GqHRIDQaItOWdmg8fjx/d+2KNjUVYwsL6gwblu1jANBj40aO/vILCeHhVBswAAefrE2XAIEnT/Lg2DG8nP7f3n2HN1m9DRz/Pkl3S0v3gAJl7w1l7w0yZYhsBBkqr7jF7U8RxIkMFSkqIjjYe2+QWWYps5TRvXeb5Lx/pH1oaAstFELp+VxXL02edZ6ENnfOuO/qaLUKBoNAo1Hw8SmDq6ttvsdI0pOgUIHP6dOnqVu3LhqNhtP5TIbMrX79+sXSsMdl5syZfPzxx+ZuxiOTHh/PkvbtiTh9GgsbG4asXPnEp3k36HRsfeMNgteuxathQ5758Ufs3NzM3awS78cf+9C3b3ViY9N45pkauLiYfjjdOHhQLUp5d/BgRQYJOGLINQQExjk9I/hTTRqoYKwyvo+2WJFJDzZTjtuEZPfOVCCUqlwigbL8y0AAmnKU7mzBgJY0bNGiZx9tScWOxpygIqH5BjS5A5K7n8stBTs1YaBxf4XLVKQsSbjns4S9oN6d89RiNf1pyCm13ITIvt8YXKjCZa5RgUxsALhFeSbyszq5Ove5j9Mk+3gNCnpOi7qU+3IEPbLPmdNbFH70v3zbkpGYyOb/+z9G79hh8nzN/v3ZP3Om8dx6PfWGDwegxjPPMPXCBaKDgvBp2hQHr7yFS4PXrmXVyJFkJifT/OWX6Tl3boHzai6sWcOKAQOM1eMVhSXvLSDggA1OTjZ88UUXtNoir5uRpMemUIFPw4YNCQ8Px8PDg4YNG6IoSr6z9s09x8fNzQ2tVktERITJ8xEREXjl84sO8M477zB9+nT1cWJiIr4lrBr3vRxdsIDI7G5xXUYGG196iWlXrpi5Vff239y5/PfddyAECdevoygKQ/75x9zNKvE0GsWkl+duzpUrG1eFCZGnl+IwLRjD7+SEGQYUNtEdWzLZSVvqcBFLssjEgn94NvtYwVJGMIW5VCIUso8ewt9coBr/MAwn4unNBvU6DiSziPHcphwChdPUZwI/4UO4ydBX7mAl90dzBhZYoVOf06NhL63pxTbAmIl5MWO5TXlA0JCT9GdtnvPcTQA22Qkaj9EUS7JozHFu4cN2umJAyyVqomDAl5sIFG5Rjmv4UY1LeZbK52SbFtn9RvYZUfm3oYAJ0EKvJyMhIc/z3o0a8cLhw5z/5x8SQo0B48UNG6jeuzcuVark6b0JaNuW0P3785znv+++o2rPnlTt3j3f6x9buNDksebEOnbsyFsIVpKeRIUKfK5du4a7u7v6/08qKysrmjRpwo4dO+ifXVXYYDCwY8cOXnrppXyPsba2xtr66a3Yrc/IMH6YAQiBPj3dvA0qhKjz5405aLK76yMLyGUiPbjDh2+yfv1FatRw5fnn66PRKLjXrs0zP//MKxP/4bihARboaMduLlKNWNzoxnb1eC2CppzgBI04SiuO0IrebMgu1pkzS0YhDTu+ZTqW6OjOFhoRiAV6dtIVCzKxJ9nkw16HBbe488VDoHCeWvgQTirW2JOBAqRiwyZ6EYEX1QmmI7vQYcke2tKF7eowlIKBZpxUA469tM0OegAUAmlEF7bgkCs3UEFyEi8KNBykNaeojxWZ6LKvpmDgeZZSFePw0jlq4U5kvkNvfVnLCoYSjRvVuUhLDmVfo5AUhdZvvpnvJu/GjTn/zz+c+eMPNBYWHF+4kGcWLSIjMRF7d3fqDhuGxsKCmMuX8w16cqRERha4zd7DQ/0dVTSaYitmKoTg4vr1JIeHU+OZZ/LtmZKkh1WowCd3Ta4nvT7X9OnTGT16NE2bNqV58+Z8++23pKSkMHbsWHM3zSwav/ACxxYuJCUiAhSFjp9+au4m3Ve1Xr04uWgRioUFQqejRnYQm1t6fDzRwcG41aiBTdmyj72NTzIhBHs++YSzy5bhWr06fX78kTI+Pur2/ftDad9+CYoCer3g559PMGtWFzzsM5nx6X+cNNQjHVtAsIlefMin6hTh3BN+/2WQWgXdgiwacZJkHLLLNtyZ2qvHAj0WrKUvlbhGGnbE4YxAwfuuicUW6FDQqz0hYOxpAYjFDXtuAbCAKSRTBlCIIvtLGX5U4epdy+wVrHIVq00g7xw361xDUeprmOs+c4KRA7TGWDvM+EwKZUhDR33OYksaGVjiR4h6TAVCicGVNGzxJlxd0ZWFBhfimMzCfK95v6XutYcMod17792zllbQv/8CxmFjNBo2Tp2KPjMThODy5s0MXLqUiFOnCjzewdv7ntmeO3/+OeEnTxJ55gwederQ6X//K3Dfotg8bRpHsleb7XRzY9KpUyb/diWpOBR5cvPOnTtZuXIlISEhKIqCn58fzz77LO3atXsU7SuyoUOHEhUVxQcffEB4eDgNGzZk8+bNeSY8lxaO5cvz0oUL3Dx8GKeKFXGvVcvcTbqvWgMGMHT1ai5v2oRH3bo0nTzZZHt4YCBLOnQgIyEBaycnRu/aZbbU+k+igz//xsyPtqDDk0aX95M5YgSjd+5Ut//zz3k0GtDpjKHJvn3XGdfqDfqylhak0QQLljGca1RGoMmzQkkAW+iGM/H4cJtTNESPlh+YSiY26DDm9rImlQzs1OsKFHbQiUvUyJ7bYsCGTPSYTmTWoM+1SuhOFfUy2b1DmVjQjGOkYM8JGqNHQwoOpGFDY06YvBZRuJOGFU4kIoBO7OQs9dBn/+mrzBV15VRO4JGFRl0NllOfy4ZMurOZ3XTgKlWyA0Pozyrqcw4BxOCiznMy3n8m63iGqcw36clJwxbLXBO188xfMhiwdXUlLSZ3jbM7rm7bxuAVK/LdlsO9Th1ir1wx5uIxGIw9v9nO/PEHfX/5her9+qlDmznavvcejuXKUWvgQOxyJTS8m2O5ckw+fRpdejoWNjb3bEthGfR6js6frz5OjYkhaOVKmhfQWy9JD6pIgc+kSZP46aefcHZ2pnr16gghOHjwIPPmzWPKlCnMzScvhDm89NJLBQ5tlUY2ZctStUcPczejSGr260fNfv3y3bb300/JTEoCIDMpib2ffMLQVaseZ/OeWAaDYOwHV7hMVwCOGJrz+qnlJvv4+ZVFr7+zhmkAK2nAneFELTq6sJ2fmYCTJpkyHp6k5ippoAB+1lG4ZUSygb7ZZ9EQj+kHZQZ2WJCpBkIOJBGHCxnYkBPQ1CGIKNzxIko9biCr+JshaLKDj6pcJh5HrMgiNbtOV9vsyvBVucwynqcql9ViogBxOOJMIh5EkpFdr9w4tyaJ15jDCZpQljjqcp67pWObawWZQgiVqMlFPIgBlOz2G0PA9OzATgFScMANY5HmnCKkGVireYRyy2+OkklwFBODjYsL6fkUfTbo9cReuVLgaiuAPgsXYsjK4uaJE6Tevm2yzdbFBa2VFYqiMC00lF87dCArJYVeP/xA7UGDCjxnfoor6AFjiRWbsmVJi401BmNCYJc9xUKSilOhp96vWrWKgIAAFi9eTHR0NIcOHeLw4cNERUXx888/89NPP7F27dpH2VZJAsgzsf5h0+M/TUJC4rkUoUWgQaAhmTJkNjINIKdMaca4cY2wsNDgSoxJ0AM5c2MEdTVBTDHMNQl6cqRm6CjPbZMhqbu5Ek0tztGUo/RgM5OZzzgC8CACZ2Jow16ciMeJOykkBOBKLFqyqM8pRrMEW9JxJAl7UrHLnuOTU0SjOpd4lr+oyzlAkIIdB2nJ90zjOr4ogE124sQcdqTTmgNU56LJEvacBHxnuDOElIYttyinPg7DWy0sqiC4jbd6DkcSOEMdNejZSHeysjP75L6+Iykmk50FkIppBnwwrtwCULSm5T4yExOZW7UqF+7x99bew4Pn1q2jYj4Zl/1ffVVdrVW2fHmmXb7M62FhRQ56ipuiKAxatkxNuVF/1Kh8i+pK0sMqdI9PQEAA06dPZ8yYMSbPazQaxo0bR3BwML/88gt9+/Yt7jZKpdDlLVvYOWMGikZDly++wK9TJ3Vbu/fe49qOHWQkJmJpb0+79983Y0ufLG5udmg0xpwqOWzamX54WFpqWbSoLx9+2J7hPX+Ac6bn0KPhmkdnOkZuxBrTbM45MrHGk0hsSSENO3J6QIyPHWhAIP1ZnWeejAAqcxVvblOfM9ykPL7Z83xyMi4H0gA9lpA9cORIknrd/Ja11+V89pyjZ7lCVQAGspKK3FD3yS8002IgFmccSMkuwiqoxhWqcoUAxmBHCrUJojbn+Z3hpGOLJxHEZQ9p2ZJGQwLV8zlnF2I9QlOysOJZVvIHz7Oe3vRmI+QaBru7XXb55BYSOuPcIwtra7JSU/NsXz9xIjXv8/c2Mzk5z3NOd5WqeJJU6daNN2Ni0GdlYfEULzqRzKvQgc+JEyd47733Ctw+cOBABpn5G4P0dEgKC2N5377GYoqKwrI+fXg1NFTN5ePduDHTrl0jKigIt5o17zkXobRxdLTG1dWWqCjjB6VGoxAWnvdDE8DX14lKjWpx7FxTmnIMgEtUYw19SYtxZB8TeIl5OCgp6jyQnB6KMHxQgEksZDnDiKMslbnGs/xDFO5qXa4cOUvRFYwlLHJ6mcplT1a+QiVSKMMNfDlKMwDOUAdXYjCg4Mf17OsrpGOBBYKs7D9fdtl1vexJQUFQljjqc++VgArGwCcVO1YyiFuUZwI/AeBBFKP4DQWBNjuD8wBWs4AphOFFZ3ZgSyqNOaFmY87hTAItOKo+Hk/APdtxN42lJYa7iojmF/QYb+L+a8D6L1nCV7lWRimWljS868vrk0bRaGTQIz1ShQ58oqOjKX+Pbwrly5cnpoDJeJJUFHFXrhhXoAAIgS4tjfiQEJMkhrYuLlRo3dpMLXyy9exZjaVLT2MwCAwGQdu2FfLsc+BAKAsWHGPrlktk0Yr9tEKDgViyX2O9QI8tiX7tqVUugeSwMOKuXFFXJlUglKtUwo8QxrKEG5TDhTg0gGeu+ToGFHbSkepcxIVYonEjA2uuUYlKhJCKFRF4ocXASgahJYu+rKU6FwnHk1UMxB+BH9fVRfJajPW+nEgiBTuqcQUBdGYHEXjhSN78NvkRQHluMYYlHKcx5bgzF8YCA+lYE45rdh2vVKpzkZM0ojX782SVLoj/q69ybMGCAtNIXMMXO9LV1+zuoOdeenz/PetefBGA7t9+i5Vt3mzJDp6evBYVxZrRo7F2cqL/b78V+vyS9LQqdOCTmZmZpxK7yYksLMjMzL9bXJKKwrN+fezc3UmLjVUrRO+bOZNn//wTrZWVmVv35FuwoDeenvYc3xdEI7dYmjjdgOx5KzqdgXr15nPhgvFLinHllUuB55q8chH16nnwmdWd330BNCYQHQrX8GUNA0nAmTqcYTD/qvsowEWqc4Im+HMEB1JxIJQY3PiV0bzIAryIpEp2b86z/EUG1jTiJApQmWv0Zj3nqGsyAdiSLGpwMU8yQ0eSmMzCXOkL7y1nL0t0tOCI+vx/NMGJRFYzkHRssSGNMSwhGXscSCYDa2yy5xrdT+jevejT0wnDi1M0oBoXqYwxF9otyvEbo9EAE/gZLyLyHG9hZ4c+I0P9PQCo2LEjfX/6iXm1a6uBUuCSJbyblJTv74eDmxvPb9hQqNdEkkqDIq3qev/997Gzs8t3W2pB3bGSVETWjo6MP3SIRf7+6pLeC6tWcezHH/F/+WUzt+7JZ2dnyehm8dh/OQ1Fq+XP9Xq1wvaUKRvUoAcgA1vKkEgyDojschQVyztg0FgyY0Zbqld3pX37JdQ0+FCOW+py7TSsWcJYIvAiZ7DnHHVxIZYO7FZXMqVhQw2CKcOduSZNOMEmeuLKnRVLAtQVVndqZQncicaHW3kySecOeu6WMzxlmhhRywkak4od9TmFM/EFBi5NOc7fDCED6+zXyJqN9MCTSHqxEW1+hUMLEHXuHNG4sogXMKCQiSU6LFiVHVQBGDBwntp5Ah9bNzemnDnDrx07Ep2r1mDMxYusGj3apHfIkJnJoW++oc1bbxW6bZJUWhU68GnXrh3BwcH33UeSioNLlSomdYIUjYbksDAztqhkObNsGSiK2lNw+rffaDx+PJcu3T0creDpZkMNi0SS0gQvT2nM1M9HqVt//PEYBw7cIJBhdGE75biJB9Hspy2R3J2tV2Ef7UmiDP2yy0DU4GL2xGEjAWRihR4tGnUd1d1nuTMnKBkHWnLYZL+cvEI5w24559WjIQo3vDHNOCyAFQzhEtVREBykJS8zlzIF5NIxztsxbZkdafRmk0liw7uP3U8LqnLFZGm+Lj2dYBqhx4I27KMLO9CjwZFEMrBWV9853TU8Z2Fjw5tRxvNYOTqabEu+dYvkW7fUx1lYkIYtVo6yALEkFUahA5/du3c/wmZIUl5NJ09m76efgqKgtbSk7nPPmbtJJYZThQp3SgpotZT18wNg8uRm7N59Xd3PxTaLT3vH4lXJkxb/9395smCnp+tQFEgRDqyhP7U5xxD+JpOChxyvUoVD+FOOWxymBReoSUMCqcgNMrHiXwbhTBxZWGJRQKmInEnDfoQApoGJMc+OaQ+zMVjSqkFP7v0TceASNbKfV8jEhqv40YCzJsfnEEB79nCNymRijSVZ1M+1eis/BsCNOKLwMAl8AHWidy2CAOOk6oH8y98MJoGy1OWMyeowQE3aadDrib18ucDrXqcCyxhOBjb883ow//WKwKti6UzWKkmFpQiZBMVEYmIiTk5OJCQk4HjXNy3p8RJCELx2LXFXr1KtZ0/catY0d5NKjPT4eP4dPpzre/dSrnlznl2xAvvsZHArVpxl3ryjVPLUUmPTS+jTU0EIvJs04YX//iM5OZM9e67j6WmPn58zzZr9TEhIPAAasniXmcTgxiJeIAsr7oQZBhxIYTLzsSMNBThPTQ7RkpEsJQMrvmY6Ai1jWEwFbqDJHpbKyi4umkMAUbjgQSyZWGCZPXPHgEIcZXElzuR+7x4Ky+0KlVjBc9k5dYyDZNP56r7L5NOwJhJP3InCjrR898ktEws0CDUTdG4HaYkTCdQiKN+Ehjnsvb3p/vXX1B06FEVRSLx5k2/yKZqsaLW41ajBp5e6EpHlpGbCHtdZy6LtH9yjlZL09Crs53eRS1ZI0uOiKEqB2Zule7MpW5bnN27Md9vQoXUZOrQup5cuZdU/dz78bx89yu1LN2jcdgVRkcn4cp2uLZxZufJNBg36i8SEdKomn8Ii04AnkbzED9zAlzA8OUBbHDTpVDVcxp409Zy1uYAX4Vigw4osqnORYGriRKIaABhQCMcTV2LVgMlY4NQeiOUi1bEmk6pcRkHgSlye3ECnaMAe2jOS33HODooU4BoV+ZuhlOMm8TiThi0tOWQS9OQnpxp7BULzzayc3/6W95hW3Sq7CClgUgIkN0WjYcqZMybpGezc3Y0ZnOPi1JQCrjVr4lajBj2+/Zb3qs4zGZZLTi7cApPLl6L5avwXpBzdRvNKWQxesRzP+vULdawklXQy8JGkUigtLo49n3xy5wmNBltnZ35ZdpnoyERGsIwqXIXD0LtJOmHCmAumLHZq0OFEIk6c4yY+KAhqGwLvLIcnp86VNbakqvW2BrCKVQzkNPVpz97sWT4KV6iCD2HquY35eOIBqEEwf/A8TsTjfld+IIAo3FhNfwB+YyQ92II9yRyjKadpgACuUYXqXKADu/EhPE/vTe48QzlSscOGtDxBSn4FTMnn8d1yzpJf0AMgDAasypQxec7C2pqRW7aw6ZVXyExKou2MGdQdNkzdPvX58vzvt3gAbJRMXv9syD1aYHTxYgwN688nLcMBGEhI8H6UYcOYej5v+Y6i2PXhhxycPRsrBwf6//rrPYucSpI5ycBHkp4gKZGRbH/7bRJCQ2k4Zgz1R4x4JNc5MncucVeuqI8trKx4fuNGvv07nspcMwY9GHtjwoQXWrJwJ4o4nAnHU12BZJwPs5fWHMSBFIKpzkFa0JyjpGPDSgaSgRWj+Q0rskjHmutUIIQKhOGNG9FcoTJ+hKDlTkXyq/ixmZ7osKAjuxjF7xhyZc8JoRLnqE0Gltmrr4whRzwuLOfOXDAHkhAopODAJarjTTg+GEtwpGDDeeoQiQe3KMcYfsUqVwbl/bSiK9tNXrdbeHOe2jTiJG7E5gl2rJ2c8G7alJAdO/K85oVZ/m7IzGTpX0Hcvp3MxIlNKFvWBp+mTRl/8GC++3/66zTa99rDmSOX6Te2E5Xr+t33GsuXnyUj807Lj4im9Ag9dO+D7iNkzx72ZgfSuowM/h4yhDdjYmQiQumJJAMfSXqC/PXss4QeOAAGA9d27MDB25vKnTsX+3UyU1JMMv/aubmRnpDAlDE1WDlHy6+MJB1bWnEQH26Qij3h+ACwmR6kYo0huzDpOBbjTbhaO2snnfgfOVneFVyIZitdSMWBC9TAkP1n5wLGOVuVCKEde9XAIIhqrGRwdmZmhZUMwIfbuGFckXaNSvzKaPX8RneqbuX0xvRgCy34D4DdtOcwLWjAKTVYsScdazJwI4YTNOZ7XqES17DMDvI6sMdk2fxxGrOevigYOEhrxrCEioSqrVCAjIQEru/a9UDviU+zZnTq8RcHDhhLbXz44W6uX5+Gu7s9UefOoWg0WDs5cfynn9Botdi6uRG8ejVlK1XixZkzC53B3NPTnpyKJgoG7EmhwahR9z7oPpJyF0IVgqyUFDKTk2XgIz2RipS5OSUlhYoVK6rPnTt3jjlz5pCSkkL//v0ZPnz4I2mkJD3JEm/eJD0hAfdatVA0ha77m6+bhw+D4U7Px8GvvnokgU+TCRM4sWiRWv07KSyMpd26YelYlkTnN4mJS0eg8C+DaMIRjuOvHhtKRUBk51AGe1LV+TrGOTgxWJJJFlb4cZURLEWLAT0a/mA4V7PraSkIqhHMcFYAd4aKXInNnjSdQyEWZ1yzA58L1ECDAQNak31AYIGOQfzFLXzVoAegA3toylGT1WACqMdZDCj8hz+xOHOW+igYaMdetBiIwhUnErEii910zD5OgwY9F6ipBj65iVzvX6EoCtWfeQbLijU4MDeUnGAuPV3HJ5/soVP8n5z54w8ALO3tyUrLngeVfR1FqyXu2jVGbdtWqMuNG9eIXbtC+Ouvc7g4aPjm/+rS88PxRWvzXap07Yq9pycpkZEgBNX69Mk3EAsPDGTdxImkRkfTcvp0mr/00kNdV5IeRKEDn5dffhkfHx+++uorACIjI2nbti0+Pj5UqVKFMWPGoNfrGTly5CNrrCQ9aQ598w1bp08HoFKnTozYtOmhsks7+foSd/Wq+jh0794in0MYDBxbuJDwwECqdOuWb4Vrl6pVeSkoiBsHD7L7ww+JOGOsbZWYrCPakAm5hpWCqWV6/rsGbY7SjK5sVwOXRgTiTiSLmEALDqPJHsLSYKATO7lGZQQKAg01uYge0/k1rsThRhQxGD84rcjAm9tkYok1WbgRk2vYy3Q9lxtR1OAytci7BNyB1Dx5eIw1uwQ92cRyhqFHgwux1CSIubxMAmWxIY1nWEsVLlKfs2gQ7KG9Ook6DWsEArsCCrrelxBcXLsWHVoUZpi8vtrECDXoAchKSTG5awCh13PzrqGwhIR0srIMuLnlTThraall+fJnWbp0IFqtYpIv60HZubnx4smTnF2+HBsnp3yHaIUQ/NGrFykREQiDgU0vv4xngwZUbNv2oa8vSUVR6K+nhw8fNqm8/ttvv+Hi4kJgYCBr1qzh888/Z968eY+kkZL0JNKlp7PtjTfUxyE7dxK8bt1DnbPxxIkmj60fIKXC7o8+YuPUqZxcvJi/Bw/m7PLlCIOBfZ9/zi+tWrFh8mQyk5Ox9/CgZv/+2Dg7qx9+tqTh52paLyoZ+3yucqc85wFa8QfPcYa67KEd85jCZnoACo4kmhxVljjas4daBNGb9dTjNGA6/0WLAT8uYUUGHoTzIj9m99Qo/EdzMrCiMcdxIIncIUANgunC9nv+Ucu5ThYWxOKkHl2Ny7zBbF7iOyYzn+M0JRHja5+ODf8wmHPUR6BQkeuM5HeaZBd2tSWDvXS4x1ULxwI9vbKruAO4udnxyou173+gRoNVmTJ8amXFD7Vq8b931uDiMht39y+ZOnUjBWUssbDQFEvQk6OMtzctX32VRuPG5Rv8Z6WmkhwWZtIjljsjtSQ9LoXu8QkPD6dSpUrq4507dzJw4EAsLIyn6Nu3LzNnziz2BkrSk0oYDOoS4xwGna6AvQvH/+WXubRhA6H79mFha8szP/9c5HMEr1ljbF928sJLGzaQFhvLzhkzALh15AhZaWn0X7IEgC6zZrG0WzcyEhMp4+3F1jUjeO/Ls/z11zmEAA0ayhJFLO4m19EoYBDG0hK38cGKNM5TPztXjqAte/DOnkgMxp6iQBrRnj1qz0sEnngSkc/y9MZkYkMD9lCWeAQKvzOSm5RHQeBAMt7cJgxvJjOXOJzRY0GFXIVGC1p9BcYgowypJtttyMQmu9dGd9efRg8iiMeZTfTkZeaRE5zkZIyOuUe9s7tZOTgwfPNm0qKjiThzht3vv69ua8Yx2rXwpMn/vqdjx0ooikKdYcM4t3w5ABU7dCD28mW0FhbUHDCA6AsXSE9I4OahQyAENy7eYvYXJ9U7nj//KCNG1KNly7y5gB43K3t7KnXowPW9e0GjQWtpiV+nTuZullQKFTrwcXR0JD4+Xp3jc+TIEcaPvzMurCgKGRn5Z2GVpKeRpZ0d7T74gD0ffQQYJ6fWyNUr+qDnHLNnD4k3b2Lr4oKVfX69LffmUa8ekefOIfR6hMGAe5063D52DEWrNT6n1xvnEmUr7+/PqzdvkhAaikuVKugVCzIyAhECnJ1tGOWwjjI3DrGM4VylCjkfqgaRk4dHQwoOeBBDV74jDmf20JZOmE7yNQA76EQyZfDlBqH45slYnBNGVuIal6hBCH604jAxOHMT3+x9FJJwJBVbKhKCPVnYE5nvIvGcZeoJOGJNBtbZxUU1CCwpuBJ6Ja5yntpkYo0GA13YwTlqE4KfyXUUjDmEcuqMAWitrWk0bhzHf/wxz3yfGgMGMGzlSvVxzX792P/55+jS7uQ+mrJuCQ5ud9ICDFq2jDZvvYVBryd0/35iL1+m1oABatCwZfp0bh05gtDpyDTcvSi/8Ll9cruwejWhBw7g26oVtQYMKPLxBRm2di3/ffcdqdHRNBw7FpcqVYrt3JJUWIUOfFq0aMH333/Pzz//zMqVK0lKSqJTrmj94sWL+OaTYVSSnmYdPvyQ2s8+S3pcHOX8/dFaWt7/oPtQFAWnh/hd6jl3LvqsLMJOnKBaz560nD6dM3/+SWBAACjGOR2Vu3QxOca6TBk86tQBYMHc/1i92liXLy4unXkJnRnDley5OjkfqgY06DFgvN96nKY9+wBwJJF++RQBjcENUDhCcyLwxAB439Xbk/PfIazgC2ZwkRocogUNCUSLDj1ada8JLMLjruNzy1lpdZCWbKU7DQhkAKvzBEh5c/oobKELk5lPFB64E4Uz8ZymHs35zyTLtMBYj8whV92vrIwsxv7uSgtDQ5pwwuRacVevkhIVpWbRBngnOZltb71FSkQkvebPw8bBwfQ+FAWvhg3ZMGUKxxYuRNFoODpvHqN37qRShw7Ufe45jvzwA2g0OBkS6FgXdmVX42jWzId27SpSFCcXL2bt+PFoLCw4NGcOfX76iSYTJhTpHAWxLlOGdu+9d/8dJekRKnTg8+mnn9K5c2eWLl2KTqfj3XffxdnZWd2+fPly2rdv/0gaWdIJIdi3L5To6FS6dKmMo6Nc4vk0yQkYnhS2zs4MXmFcKaXTGYiJTaP+yJHoMzO5snkz7nXr0vbddws8PirKtA6WzqBwmNZcpnr2MwLjVOU7E4zdiMKAkl1y0zgUdXeA8SsjUYAR/E7l7BpckLfoJ4AWqMolgqnJVroRhhd9WcsWupOFJa04gFd20HO3m/hgQMMFanKZKkRiTL54igYIFPy4hiWZuarBK1ynPBW5gQC20ZU0HAmmJs05ggbBVSqRiQXb6IoFeppxVA2sHEjB1qcCabeNK7x2056oZC3reAZfbuCRq3ZX5KlTrB0/nufWGou4hp86ReCvv/HHr8dZEduKMn9+xLIlvej+fN4hoKB//wUhEHo9GgsLLm7YQKUOHSjXrBkTjx3j0qZNuNWowfvP9GXHjmukp+vo1q0K1tZFy1py/u+/gTvDtuf//rvYAh9JehIU+jeifv36BAUFceDAAby8vPD39zfZPmzYMGrXLsREvFLozTe3MWeOMUFY5crOHD8+kbJlbczcKqm4JUdEsP2tt4zJB8eOpYGZVzgGBobTvftSIiNTaNDAkx07RhXqA2z48Hp8+qnparJUbFEwZM/fMe1fsUCnDkMZUFAQWKIjEy2p2KPHgnX0Jg07HEhGn8+fndxzbXKGpwbzNydpxG3KUYMgVvCcmul5Dx2Jw5n+rDY5zwkasi47i7PpLB/jVU5Tn/LcpBGB6NFwmrocoC3RuFGVi3RlKx3YiSXJRODO97yEM/EkYUc0XoDCVroABmpxASsyyMCGr2NG4665TrrBEj+uMZ5FpGFLJnl7AEP37SMlMpK0uDh+adGCrIxMqggDgwhnhW4oo8etJzyfwMetVi1SY2IQej0Gnc6kdp1n/fomJSe6dXvwISSXatVQtm1T54i5VKv2wOeSpCeRLFJ6l+IuUpqZqcfW9jMMhjsv8+LFfRk7ttFDn1t6PFJjYtgweTIRp09Ts39/On32GRqtNs9+i9u04ebhwwi9sUjlyO3bH0kOnsJq23YxBw/exGAQaLUKr73Wklmzuhbq2Fmz9vP228bsw+U8rekQsYg/GZ4deJium3qWv2j33nt89b+tDOZv7ElRC4oG0pC19ENRhLG3IjswmshP6sRnAejQosWg5gMS2T8GtNzCm/204zY+pGBP7sCrASc5S12cSMCTMIKod8/7qsQ1xvCreg0DGmbxJjak8398p5bW0KNhNq+TiR25B8O0ZGUHbsaAyp5k+nmcYVlkK2ORUBZTnpsm18xvGM6pQgWaTZ3K9rffVifIC+ATPsCaTNJE3oUiCTdusGbcOGIuXqTusGF0mTnzofNG5ScjMZHVY8cSuncvFdq0od+SJdg4ORX7dSSpuD2SIqUGg4ElS5awcuVKQkJCUBQFPz8/nn32WUaOHFmsSyOfFlqtgrW1lrS0O6t9HBwePM+L9Pitf/FFLqxejdDrOTBrFmV8fPB/5ZU8+906ckQNehSNhlv//WfWwCc+PsMk4E5MLPzig7feasPgwXW4dSuRpk19uHqyD+W+WsP1DDdOHbnGhShbAMpzg5XKYC6sjuP5d0dw6/Pd2OWqzeXu7cKCD3ozefIGckIAgcINfPEmnDC8CMOTTKypwA28CVOHkIwhlp6/GEoq9mpl9dxu4ssrzMWJRGJw4RYVSOTOh7Sxl0qhCceoxxlC8c21zbh03o4UOrDbpGq6BQZeZw7LeZ6rVEHBQG/Ws4le5J6RVJ9TCK01FmThQDK+dwU9BUkIDTVmz1YniCsk4ohAwzPN8g9mnHx9C52k8GFYOzoy9N9/H/j49Ph4oi9cwLV6dWxdCr/aTZIel0J/XRBC0LdvX1544QVu3bpFvXr1qFOnDtevX2fMmDEMKMaZ/08TrVbDL7/0xdLS+FIPGFCTAQNq3eco6UkSHhh4J6DRaok8ezbf/Sq0aYOS3RMkDAYcy5d/bG3Mz1tvtVarUlhZaXnxxaZFOr5yZWfatq2Ira0lFWtXIuvIeqptmEqPhN+Z3EOLG1HcpByK0BNz9hS13FLZSjcCqU8Ao/mHQbR+ZRID29pSs5pTdjBk/KDfTXvm8Bo/Mom19GczvfiJCVzCdFhFj0IqdrmCnjvBiTVpdGUbZbIrrTtn5wjK4cNNanOOrmyjNxupSChtOIAu1589PQrTmEt9zqjP5VzBEkN2Xh3jfKNGBOZJ3uhONNXCNtKXtWRiga7AEqR5ZaWl0fHTT3Hw9sapSnU0Dboys8Vx3vu/Only79w+fpyr27ejS08v5NnNI+LMGb6rXJlfWrbk24oVuXXkiLmbJEl5FHqoKyAggGnTprFmzRo6duxosm3nzp3079+fH374gVEPWfPF3Ip7qCtHSkomycmZeHo63H9n6YmyZfp0Dn/7LYpGg9DrGfLvv9QaODDPfmmxsWx85RXO//UXhizjUuneCxbQdNKkx91kVWBgOOfPR9G6tS8VK5Z94PN81msKWZsWqENYsfZVmJc6AjuRzDgW44qx9MUBWrKN7pCdm9lLE8WLhgUk4Mhvdi8Tk5ozTJTbndk9NbjIMIw5awxo+IdBBGGcPJ4zx6gbW3AnCnciSKQsvtxQ23We2vzDYADe4XOsyVTXoiXgyK+M4nmW4kwCGgTJ2HOaurTOLm+RO6OzwJi88CQNsSSLZhxnP63ZjnG40JMwxhGANZmkY81PTMSdSJ5hPTakkWHlTNV6lYi9coWyFSsSe/UqWUlJJnfu1agRI7duJeLMGX7r0gVFURB6PR0++YT22fl9dsyYwf7PPzdes0EDxh048EBpDh6Hf4cP59xffxnnB2k0VOnRg+c3bDB3s6RSorCf34Xu8fnzzz9599138wQ9AJ06deLtt9/mj1yp1SVT9vZWMugpobrOnk23OXNoMHo0g//5J9+gB8DWxYUyXl5q0AOw6ZVXzPotvWFDL4YPr6cGPWeXL+crb2/meHpy6rffCn2epJs31N4ODQKrlEgCvmvNBM1iXLKDnpxtOYGMQEOYwRMDCk4kUic1vwrjpovZ7bOXhcdSlgVMVoMegGpc5HmW0opDVOUyGgwcoKXaLgMajtAcY82uLCzQqRXEFIzL7F/kJ1yIR5N9lAMp1MmVg0eHBYdpwQ46EY0bNqTTisM04zgAbTjAVH6gD2uwIItFjOcU9YjEg1pcIBYX5vAG8+3epVL/YYQdP05GfDwRp07hUrlynruPOH2afZ9/zrm//lKDHoBTvxrnIWWlprI/V2LYiFOnCM5eESZJ0oMp9Byf06dPM3v27AK39+zZk++//75YGiVJTxKNhQUts+tx3U/GXd/oDVlZ3D52jApt2jyKphVJ0u3brBwxQv1wXTN2LBXbtaNsrozsBWk3dRyHJ23MXnEliMGFkFe6Uvau/SoQSs7UZAUoxy117kwb9pOicaSsIYYIPDhLPUx7fxTaZQ9VnacOCdz5xladCwxlhTp3SADJlCGY2ixgMl6Ec5PyxOGMJVkMYCVp2LKGvkThTgNO0YE9ambm3Oy4E5hmYUljTnCQVvzERKYwH2fija2zsSM+XYOWTLbSnSysECisYiD9W9vS7eRndE7djuJanin7trKoeTOT60ScPm3sNbwrqWFabCxutWqZFB11zg6SFI0GjVZrkhH8YWrBPWpt3n6by5s2kR4fj6WdHe0/+MDcTZKkPAod+MTGxuLp6Vngdk9PT+Li4oqlUZJUUvm//DInfvrJ5Lkn5YMqKSxMDXrAOA8p8datQgU+vV4cQOjuqRxevhZLdFTKlYcnt3LcZjh/csrSH5/yZWl47U91mxVZPGNYo/bxxCru3Bbe6nYHkihLInoU7EklCys8uUV3tlKJUDQIdtCRC9SiFxspz00cSSAaN6Jxy06waKAcIeymPc04Sne2cJPynKARHXPN/4E7fU1X8KMmFwGwIQ0N0JHdXMOPK1ShteMlMhITEempOAGJlCET03QUw6f1oXenF4i7ehW3mjWxLlMGK3t7spKTc11Q5Jm7o9FqafLii3g3bkzkmTMEr12Le+3aaqkSCxsbenz/PZteeglhMFC1V6+Hzg7+KHnWr88rV68SHRSEa40a+VZolyRzK/QcH61WS3h4OO7u7vluj4iIwMfHB32uP6wl0aOa4yOVHicXL2bjSy+pZQgs7ewYsWWL2Xt9dBkZ/NiwITEXjR/yZf38mHzmDJa2toU6PuLMGX5q0gRhMJgEUHfTWtvw/KaNeNarxxxvb0QB9cvicOY7pgFgTxLjCKAs8Wgx8AfDuUQ1XIghnrJYkYkH4YRSGRAMZTk1CCYJRw7QGh1avLnNTjqRhgMd2EU79qJBZC+rb0BNgrHD+J4Ye4zsMVRuTplbR9FkJOdp378MpCGBVOGqyfMGFBYyiSjcUQBLjYEj2/tTv2MTk/1C9uxhabdu6DMzsbC1NQ55CoGi0WDt5ESXWbOo1L49rtWrcz8pkZFkJCbiXKWKXD0rSQUo7Od3oQMfjUZDz549sbbOP+twRkYGmzdvloGPJAFrxo3j1G+/GQMEjYZK7doxeteu+x/4iKXFxnLil18QBgONx4/HLldNqMK4dfQoZ5Yu5diPP6LPVZtPsbImgPHoM9NRXMuz8PeRLF16mpiQUJoffA0thjzn0jt6MjvjJTIy9FhoFV6vsJnj1xSuUCW7JpgpY4kM46o5Py4ziFU4kEIKdmygJ+3Yx0KmAMaSF7UIUgfSblCeTCypwjUA9tCGXRjLdvwxOYNDC37ElnTsSEWgkI4Np6hPy+xJz3dLwY6DtCITK5ppTlKntitTzpzJd9+M5GSsHRw4s2wZ+2fNwsbJiZ7ff49Xw4aFes0lSSqcYg98xo4dW6gLBwQEFK6FTygZ+EjFIXfgo2g0VHxCAp/ikhITw7KePYm9coVKHTrwY3hn9hyOxmAQWCo6bKwUUnUWCAGVxFVGiN9M8uRY2tszYssWDOXqcOzYbRo29CJ28zJmvfwjF6lBELXyZHhW0DOZBYCGi1THi9tUze6NCaIaPtziXwYSShUac4K+rEOPghZBNK64EQPAXtqwkzu1yho39iIwMBzFoKO5coxO9iewTI4s8N7da9emrJ8flzZtgux5OVYODrxz1/yuByWEICUiAhtnZywK+KIpSVJexR74mFNISAiffvopO3fuJDw8HB8fH0aMGMGMGTOwyjV/4vTp00ydOpWjR4/i7u7Oyy+/zJtvvlmka8nARyoO0RcusLhNG9JiYp6Yoa5HqX37Jezfd53OYgst+A8tBo7SlA30BhRGW/+FX8Z5yvr5Me7AAcp4e5scr8/KYnGrVtw+dgyA61QggDGQK39PTYIYxl+gKKBowJC3d1kAp6jHagbSioO05CDp2LCPtjiQQlv2YUs6gdRnLf0woMXKSkNmZvbEYgS1CGIIf+U5t6WDAyO2b0dkZKDPyuKPnj3VYb8mEyfS58cfH/p1TE9I4PeuXbl99CjWTk4M37CBCq1bP/R5Jak0eCSZm83lwoULGAwGfvzxR6pWrcrZs2eZMGECKSkpzJkzBzDecLdu3ejSpQsLFy7kzJkzjBs3jrJlyzJx4kQz34FU2rjVrMkrV64QHRSES9WqRR5SKmk+/bQjn3UaRSv9IfW5ZhwjSKlDmE013j+2GQd9PK7Vq2NhbY0uPZ2o8+eJDg4m7upV7Nzd1aAHoCKheBJJRHaBUUcSGMgq40YhQOQ/pK4ADThDLYKxJhNd7c58E9RGnVR8Gx/G8CsNOM1NfDlGU7SGLMiuQSaycwGlYmOy2qv+qFE0f+kllnbvTnpcHBY2NvSaN4+E69dxqliRRuPGFcvreGTuXMKOG5fOZyYlsX7SpAKH0CRJejCFDnzGFfIXe/HixQ/cmIL06NGDHj16qI8rV65McHAwCxYsUAOfP/74g8zMTBYvXoyVlRV16tQhMDCQr7/+WgY+klnYODlRvkULczfjsWjXriIH7E+RmWj6fMuGTkz6fiRVavtCdrmIpLAwFrdqRXxIiHEnRVFLN+SWnmvllE5rR4beGguME6Wt3b1xdHZQJ2rnpgDWZIKicE1fHmPVDmPPUQiVsuuNGTM9eygxROryrjz6kYm8yp30HP6vvMLRefPISDTeoD4zk20//YthwAy8LRxoIJTCJ0W7h4ykJHLSbQuDgYyEhGI4qyRJuRX6d3XJkiXs2rWL+Ph44uLiCvx5XBISEnDJVQfm0KFDtGvXzmToq3v37gQHB9+zXRkZGSQmJpr8SJJklBYby7I+ffjSw4N/hw8nMyWFW0eO8H2VKnxub8/mV19Ve1PKeHuZHGvn7s4ve/5HYmIGFSt+g6fnHH788RhH5s4l4caNOztmr3TybNgQNBr0aNhMdxJyZQly9XFlES9wiJYcpBU7HYflG/Tkpmg0VPG8U6FdwYA7UWgQaDUKry96kyjhyp3KYGqD8uT7yUpJMSkIGiuc+ehEc95/fxfjxq1l4sR1hX5N76Xx+PFYOdxJdNp2xoxiOa8kSXcUOvCZPHkyCQkJXLt2jY4dO/LLL7+watWqPD+Pw+XLl5k7dy4vvvii+lx4eHiePEM5j8PDwws818yZM3FyclJ/fH19C9xXkkqi+OvX2fjSS6yfNInoCxeKdOyW6dO5vHkzqVFRnFuxgr3/+x9/DRpEfEgIWamp/PfttwRlF7Ts/+uv2Gf/znk3bcqUc+fIEFYMGvQXN24kEhmZwqRJG4iMyH8ScNUePZhwLZK51u9wGH9AoEVHa+uTtG5VAQXBDjqxk04kJ+Rdfp5Dm70838HLi1d+nkHFisaxfoGCB5HE1+7L2P376Ta+H652OnKCoqYcpR+raWN/jmkd73wBqtC2LeVbtqT1W2+peWkuWdYlU2jVIrC//37aJEePTmcgPDzZpEhsYbhWr87UoCBaf7uIQP9PGDNXz4IFR4t0juJ0dP58FjZqxPL+/UkIDTVbOySpOBU68Jk3bx5hYWG8+eabrFu3Dl9fX4YMGcKWLVvyJOUqrLfffhtFUe75c+GuP9S3bt2iR48eDB48mAkTJjzQdXN75513SEhIUH9u5P4mKkklnC49nYA2bTi2cCEnFi3il1atSIuNvf+B2WIuXlRz9gghiL10yZgIMSf7sKKoH4jl/f15LSyM9zIymHj0KPbu7kRFpZCerjMZybJuMwh7Dw/1scbCgqo9etBg1ChSg47xz7d1aM9euivbeIvZvDHcBZewQ8TjjAELBAphejeTHhhy5bbRp6Xh4+/PtGvXcK1eHT8/FzQa4xyeC9p66Dq9iG/LlgCsWT8Cb4cM2rCfPmygkeYMXVL+ofOgVozcto3hGzcyavt2tJaWuFarxitXrzLx+HGGL5yt3pNGo+DjU0bNr3P65E0qVvwWb++vqF17HrdvGwM9nc7A9OlbqFHjB5577h/i4tLyfc3LeHvz8sI01h0TnDsXxZQpG9mx42q++z5KB2bPZuPUqUQEBhK8di0rZCFq6SlRpMnN1tbWPPfcczz33HNcv36dJUuWMGXKFHQ6HefOncPBoWi1qF577TXGjBlzz30q56pvc/v2bTp27EirVq346a7suF5eXkRERJg8l/PYy8u0C/7ueyooN5EkPQlOnQpnz57rNGrkRdu2FYt0bMzFiyTevKk+To+LIzwwEL9OnQp1fJ0hQ7h56BAaCwsMOh21Bg3CqkwZTi1ZgqLRYGFrS41+/dT9k8PD+WfIEMJPncKzXj2GrF1H48bexuXiCri729NpQAtsnw0m/ORJyvr54eTry/FFi1hQrx5Cr8fKwYEv588mPDAQ58p9afF//8e3dr1RaI1Ag0BDRKIFzV6Zxq1DB6nYoQMHZ80yafftI0fQWloCMHt2F7p1+534+AwqVSrLO++0Vfdr1bEmt5NmEtCuHaH7UFeKXdm6leZTpwIQHZ3K7Nl7SEzMYNKkpjRs3JjnGgqOnY7lp59O4O3twLJlg0iNjuaPXr348mg1wqgKaLh8OZZPP93DggV9+OabQ3z77WGEgMuXY0lOzmLduufyvOZ6vYHg4Bg1sFIUOHs2ks6d89b6epT2fPLJnQdCEH7q1GO9viQ9Kg+8qkuj0RiL6gnxwEkL3d3dC8wEfbdbt27RsWNHmjRpQkBAQPY3uDtatmzJjBkzyMrKwjL7D962bduoUaMGzs7OD9Q+STK3nTuv0a3b7+j1xk/BgIB+jBnTsNDHO1WsiJWDA1mpqQgh0FhYFCpTcA7/adNw8PLi1tGj+HXsSPU+fagzeDAV27UjOSyM2oMH41LlTrLBf4cNI3T/fgBuHDxIQMsW7Dp2hh9/PEZ6uo5x4xpRtqwNYEPFdu0AOPDll2zPlXYiMzmZGwcOMOC339RenUbO4eyNEZBdob2G/jS3a7/LC998jUGvzxP4aLTGRIcpKZlMGvcP8fEZgKBPF+98e6i9GjXixoEDCIPBON+oXj0ADAZB586/ce6cMa/P77+fIijoJSpUcOKbb3rwzTd3Fl1s/r//I+zECTKoqxZOBUhMNM4XOnMmUv2baTAI1q+/yPLlZxk2rK5JW7RaDZ06+bFrV4hx5b6i0LGjX6Hfs+IghMhTXNe1WrXH2gZJelSKtBAhIyODP//8k65du1K9enXOnDnDDz/8QGhoaJF7e4ri1q1bdOjQgQoVKjBnzhyioqIIDw83mbszfPhwrKysGD9+POfOnWPFihV89913TC9kcUlJehItXnzS5PH8+UWb72Hj5MSILVso37Il5Zo1o++iRZz76y9O/f67SeHLgiiKQt1hw+j+1VdU79MHMA5NNRo7lrbvvpvnwzDirqXXsZcuYaPV8cYbrXn//faUK5c3t8bO997L89yZP/5gZpkynMxOiPrcJ1OYwM+0Yy/9WE1/1hC025hVWaPVqkFUjmdXrADg57l7OXH2zuKG7348T5Uq37Nz5zWT/a1b9qPygMG41axJ00mTaJfdptOnwzl9OgK9XqDXC1JTdRw4kP9cl9ToaBCCVhxUi6laWGh46SVjsdJevarlmfPzySd78pwHYOXKobzzThvGjGnIzp2jqF+/4DqJj4KiKDSdNEl9rLWxYcjKlY+1DZL0qBS6x2fKlCksX74cX19fxo0bx59//onbY8pNsm3bNi5fvszly5cpX768ybacb29OTk5s3bqVqVOn0qRJE9zc3Pjggw/kUnapRPP0tFf/X6tV8PIq+hcM31atGLd/P4k3b7Kgfn3S4+NBCK5u3cqA338vxtaCX+fOBP3zj/rY1sUFSzu7ex9kyFvOAiArNZV1L7xAtV69qNKtG95MxRvjlx0BNPA0zp1JCA0l8tw59bhOn39OrYEDATh95HKuMxp7YTIydEyYsJYrV6YRF53IJPeW1OY8OrQEVX6eqfPmqUe88ELe1Vq1a+ffS914wgTOrVhBTUMwk1lAhSmfMPi1oVSubOxxHjasLn/+eZZ164IRwjiEZWdnme+5HB2t+d//Cjcc+aj0/P57/Dp3JjksjBp9++J4199eSSqpilSrq0KFCjRq1OieRfJWlvBvBTJzs5SbLj0dRatV54s8bnFxafTrt5x9+0KpVcuNDRuG4+f3YEO3xxYuZMPkyXeeUBTeS08v1urxBp2Of4YN48rWrTh4ezN4xYr71qT6e+hQzv+VN1NyjinnzuFeuza7//c5e96foVZV11hY8FJwMGeWLWP3hx+qE65tXVx4MyaGCxeiqV9/AVlZeu5erg4K0dFv8GLTF6kXslR9NgtLXgmLxtPL+LtfvvzX3Lp1ZxWajY0FaWkFLzGPPHeOq1u3cnnLFmKvXKFy1670+v57NBbG75iRkSl06LCEoKBoHB2t2bTpeVq1kitJJak4FHvm5lGjRsmqwCWEEEK+Vw9JCMHW11/n8DffoLWyou+iRdQfMeKxt8PZ2Za9e8ei0xmwsHi4FHllfHzuPFAUbF1c0GQHdEIIUlKysLe3fKh/OxoLC4bk6vEpjAG//krslSuEZ2cstnF2Jj0795Zv69Y4VTEOp9V9diB73p+hhjAGnY7o4GCsHR3vzNtRFKyy/+Dt2HGVrCwDpkEP6uOrV+PISEo2edYCHQmxyWrgM3RoHb7++rC6T9++954f5VGnDvs+/5wrW7YAcPzyZWIvXmTU9u3G7R72nD49mRs3EvD0dCiwx0eSpEenRNTqepxKco/PraNH+fvZZ0m6fZv6I0fyzE8/qd80paK5vm8fS3LNG9FYWvJmTAzWZcqYsVUPRwjBlldf5ej8+di5ujLozz+p1KEDN28m0rbpd4REGPCxS2HzpuHUa9fwkbQhZM8edmYn5ev0v/9RqUMHtW1n/viDdS++iC41FZ/mzak9+gU+WW3N1m3XqFSpLGtWDmLXwLZq8kMrBwdevngRKwcHlvXuTcju3Vg5ODB09Woqd+7Mzp3X6Nz5NwA0GtMRNQcHKxIS3mLb3wfYPOwZymLMkHxC688a3Z1AB2DmzH2sX3+RNm0qMGtW1/ve4/dVqhB31XT5+cuXL5tMAs/P/PlHWbPmAm3bVuTdd9ui0cgvL5JUFE9VkdLHqSQHPt9XrUr8tWtql3+/gAAa3iddgJS/C6tX58lbMv327TzFNUuiu3sEB3SZx5odkQg0KBho5nid/xKWAMZelbTYWOzc7sqb8wBSoqL4tmJF9BkZAGitrfm/kBDsPTwQBgNfODmRmXynB0Yz7CM++kvBYBBotQrNmpVjy9/dOTB7NrqMDPxfeQWPOnXUe0qNisLaycmkovn33//H3LlH8PS0Z/LkpixadAIHByt+/rmvOl9qz7ojfP/Sdzj7eLBw35dY3OfLwtXTV1g09k306an0+99btBrQwWT7qlGjOH3X3KnJZ8+qbc3P229vZ9asA+rjESPq8fvvA+/ZDnNIT9exdesVrK21dOlSGa22OAp1SFLxeKqKlEqFkxwergY9ikZD0u3bZm5RyeXXuTMuVasSe9k4ObbmgAFPRdAD5BnKCr8Vpy6/FijEJuoQQhB55gy/d+tGSkQEHvXqMWrHDuzvkX4iIymJ4DVrsLC1pWa/fnl6G+OuXEGXdidpny4tjdgrV7D38MCg05GVmmqyf1JkDBqNOwaDcUVVREQyjuXL0/P777mboigmSRFzvPKKP6+84q8+fv75+nn2af9Mc9o/80eB95VbZnom85q2wiErCgsUNgzciWfgOao0qKru88zPP3PryBFigoMB478d99q173neu1fvrV5dtAzbj0Nmpp527QI4etT4d+XZZ2vz11/PymF1qcSR4fpTpPELLxj/R6PBwsaG2s8+a94GlWDWZcow4dgx+i1ZwuB//mHwPSbfFhchBJkpKQ+cCf1BTZnSTF1+rSDo39TYI7R52jTjEm0g6vx59n/xRYHnyEpNZZG/P6tGjuTvZ59lxcCBee7DvU4d7NzdUbRaFK0WOzc3tRdEa2VFs+yEgWCcj9T/nQkmwz0vv9wcMH4Anz0bWWDm40fpwpEgHLMijfW+MGBFJnsXreD3bt34ulw5Nr70EhqtlilnzzJy+3ZG7dzJ4L//vm9w4Opqd8/HT4K9e6+rQQ/AP/+cJyQk3nwNkqQHJHt8niLdv/4a39atSQgNpWa/frhUrXr/g6QC2Tg50XD06MdyraSwMP7o0YOI06dxrVGDEVu2ULZi0bI0P6iRL3fH3RE2BGylQW0nRn1pzIqenpCglqsA7lkpPGT3bqKDgtTHF9etI/HGDZwqVFCfsy5ThnEHDnBwzhwAWr3+Ota5uqN7fPcd1Xr1IiUqimq9emHn6sqpU95s336VmjXd6NKlMhERybRpE8Dly7HY2lqwZs0wuna999yZ4uRXrzLpii1WIh0FgUAh7dA6ogOPIfR6js6fj0u1arSYNo3KnTsX+rz//juEFi0WkZSUSZkyVvlmdDa3MmVMV/8pCtjbF9+KQEl6XOQcn7uU5Dk+Usm1buJETi5ejNDrUbRaag8apCbhM5ezy5fz7/DhIAQWtraM3bcPnyZN8t335uHD/JJd/wpA0Wp5IyoK22LOmv7eezv54ov96PUCRTHm1Dl7dkqxXiM/aXFxHP7mGzKSkkhxr82+L2aj6NKpN/U1Ev/5joSQEMB4300mTqT3/PlFvoYQgrQ03RO70ksIwbRpm5k79wgajcKXX3Zl+vSW9z9Qkh4TOcdHkkqQ1OhodX6W0OtJiYoyc4ug7rBhuNWqRdS5c/i2akXZSpUK3Lecvz+t33qLg19+icbCgt4LFhR70APGYa4cQpg+flSEwcBvnTsTceoUKAqWdnZ8euGCmh5gmyaMg7Nnq/XMctcuKwpFUe4Z9Jw9G8n77+8kI0PP22+3oV27x9MjmENRFL7/vicfftgeCwsNTk42j/X6klRcZI/PXWSPj2QOV7Zu5Y9evYxDS4rCkH//pVYJrIadk/Dx+t693PrvP3xbt6ZS+/bFdv6QkHj8/RcRGZmCVqvw55+DGDy44NVSxSEpLIyvc+dAwlgSo86QIQAY9HpO/vILUUFBVO/dm8pduhR7G1JTs6hQ4Rvi49MRQmBlZcGlSy9Tvrz8GyVJOWSPjySVIFW6dePFkye5eegQPk2b4t24sbmbBEBmSgoX161Da2VF9WeeuW8GawsbG079/jurR41C0WgQBgONX3wRodNRo39/amTX+3pQlSqVJTj4JY4du02VKs4PnMW6KOxcXbFxdiYjIcHYK6coJoVeNdnDW7mlRkdzefNmHLy98evUqVArn3Tp6cRcvIijr2+e3rLQ0ARiYu5M5k5P13HmTMQjC3z0WVmkRETg4O2tFnyVpKeF7PG5i+zxkSQjXUYGi/z9jUM8QNWePRm+YcN9P8R/7dSJkF278t3W8rXX6JY9ubmw9JmZbH39da5s2UK55s3pNW+eyaToooo6f57AX38l4fp1yjVvTrOpU01y/+R3/VO//86hr79Gn5FB2xkzaDR2bIH7J4eHs7BhQ1IiIgBo/dZbdLnHijiAxFu3WNy6NQnXr2NhZ8fw9evx69hR3Z6erqNSpW+Jjk5FCLC21nL58iv4+BR/Qs2o8+f5rXNnksPDcalaldG7dsk6XVKJUNjPb7mcXZKkfIXu368GPQCXN20i7sqV+x7nVLEiSgG9BIe/+QaD3nReTnJEBBGnTxdYLX7/rFkcnTePmIsXOfPnn2x97bUi3IWp0P37WdCgAQdnz+bcihVsff11Vt8jyWdGUhI/N2vGuhdeIDooiFavv37PoAfg3N9/kxIZqT4+9PXX6vytuxkMghkzdlCjzk/Mu96WRMqgS0/Pc482Nhbs3TuWYcPqMnBgTXbtGv1Igh6ArW+8oc4xi7t2jT2ffvpIriNJ5iIDH0mS8nX3cIui0RSqp6XrrFn4tmyJ1soqTxJDxcLCpMfo7PLlfFO+PAsbNOCnpk3JSEzMc77IM2fUnEBCryc8VzBWVCcWLTJZoo8QXFi1qsD9zyxbRsTp0+q+W1977b55lmycnIwzrwEUxfiaFdBLtmRJIJ9/vp/wBA1XqMxKBoAQGLKy8uxbvborS5cO5O+/h+Dv/+h6YDKTkkwCtaxc2bQl6WkgAx9JkvLl3bgxbd59F0WjQWNhQc8ffsg3O/Ld7D08GLtvH+9lZDBy+3YsbO6s/umzcKFJ6YtNL7+s9vREnD7NyYCAPOer2rMnCKH2IlV/iHlCdm5upkGIouBSrdoDny8/dZ97jloDjeUmLO3s6P/rrwUODwYFRanFZwUaovBAo9XS6bPPirVNRdH6zTfV90hraUnzl182W1sk6VGQc3zuIuf4SJKprNRUlOxs4A9CGAzEXrmCrbOzMfDIZZaLi1qJHUWh65df0uquYR4hBGeWLePazp14N25Ms8mTH7huWFpsLH/07s2tw4dRtFo869dn0J9/4ly1GqdPR+DkZEPlynd6ujKSkgho21Zdyt5n4cI8E5kLkh4fj6WdHVqrgpP87dplLKSq1WrQ6w0M6+XFgvk9TRI/mkN0cDARp05Rrnnze6YxkKQniSxS+oBk4CNJj8/xn35i/aRJIATOVarwwuHDeYKjRyErLQ0LGxsURSEzU0+PHkvZtSsEgJkzO/P2223UffVZWYQHBmLv4fFIsmlv3XqF1asvULWqCy+/3BxLS7mKSpIehAx8HpAMfCTp8Yq5dImkW7co17w5lnaPv0bVypVBDBp0pxabRqOQmPi2LMcgSSWMXNUlSdJjJ4Qg8dYtMoswIda1WjUqdejw0EFP7OXL/NalC/Nq1eK/fCq4FyS/737y66AkPb1k4CNJUrHQZWSwtHt3vilfntmurgStXPlYr7+8Xz9jsdQLF9g8bRqXt2wp1HE9ulWic1M7yK5Q/9FH7XFwkL09kvS0koGPJJUQEadPE7hkCdEXLpi7Kfk6s2wZV7dtA4xJ/9aOH3/fpd/FRQhB9IULd5aqKwqRZ8/e97gTixYxx8mBtsfe5H8O33By7yDef7/4SmxIkvTkkYGPJJUAF1avZmHDhqwZO5YF9eoRsnu3uZuUR1ZKislS8azU1Mc2ZqQoClW6dUPRaFC0WjRaLZU7d77vcRunTlXbqEtO5OznbzzqpkqSZGYy8JGkEuDwt9+qH9DCYODo/PnmbVA+6gwdalLaoO2MGQ+87PxBDP77b9q+9x6Nxo1j1M6deDVseN9j9HclCkyLjX1ErYOoqBT+7/82M2rUKvbvD31k15Ek6d5kkVJJKgFsXV1RtFq1eruN86MvzllU9u7uTD5zhpBdu3Dw9qa8v/9jvb6VgwMdP/64SMdUf+YZLq5dqz5u9/77xd0swDgU1737Uk6fNtbvWr78LKdPT6ZmzUe/dF+SJFMy8JGkEqDrrFmEnzxJ/LVruNWoQYcPPzR3k/Jl4+REzf79zd2MQhu2ejVH588n/ORJGk+Y8MiCtaSkTE6eDFcf6/WCAwdCZeAjSWYgAx9JKgFcqlbllcuXSY+Px8bZOU8JhNToaFaNGsWtI0eo3KULfX/5BSt7ezO1tuRQFIXmU6c+8uuUKWNFxYpO3LyZiF4vUBSoX9/zkV9XkqS85BwfSSohFI0GWxeXfOs+bZk+nStbt5IWE8P5v/9m7//+Z4YWSgVRFIUtW0bQrVsVmjXzYenSgTRrVs7czZKkUkn2+EjSUyDm4kV1KbcQgrgrV8zcoqeTEKLAgqP3U6OGGxs3Pl/MLZIkqahkj48kPQXqPvccABoLCxCC2s8+a+YWPV30mZn8M2wYn1pY8G2lSoSdPGnuJkmS9IBkj48kPQX8X3mFMt7e3D52jEodO1KtZ09zN+mpcmLRIs799RcIQeKNG6waNYopZ86Yu1mSJD0AGfhI0lNAURTqDBlCnSFDzN2Up1JSWBiKRoPQ6xEGA8lhYeZukiRJD6jEDXVlZGTQsGFDFEUhMDDQZNvp06dp27YtNjY2+Pr6Mnv2bPM0UpKkAiWEhhJ37Zq5m1EkdYcNQ2tlpWambjppkplbJEnSgypxgc+bb76Jj49PnucTExPp1q0bFStW5Pjx43z55Zd89NFH/PTTT2ZopSQ9HTKSklg9dizzatdm87Rp6DMzH+p8W994g28rVuT7ypVZN3HiY6vl9bA86tRhUmAg3b76iqGrVtHx00/N3SRJkh5QiRrq2rRpE1u3buXff/9l06ZNJtv++OMPMjMzWbx4MVZWVtSpU4fAwEC+/vprJk6caKYWS1LJtu311zn9++8IvZ6Y4GBsXV1p/8EHD3SuuKtXOTRnjvr4xM8/03TSJLwbNy6u5j5SrtWr07J6dXM3Q5Kkh1RienwiIiKYMGECv//+O3Z2dnm2Hzp0iHbt2mFlZaU+1717d4KDg4mLi3ucTZWkp0bYyZMmy+QjH2JCb369RQ/bgyRJklRUJSLwEUIwZswYJk2aRNOmTfPdJzw8HE9P00yoOY/Dw8PzOwQwzhlKTEw0+ZEkyaj6M88AoGi1IARVevR44HO51qhB3eHD1cfV+vShXPPmD91GSZKkojDrUNfbb7/NrFmz7rlPUFAQW7duJSkpiXfeeafY2zBz5kw+LmJhQ0kqLdrNmIGts7O6TL7BqFEPfC5FURi4dCn+L7+MQaejfMuWj7V6uyRJEoAizDi7MCoqipiYmHvuU7lyZYYMGcK6detMMqbq9Xq0Wi3PP/88v/76K6NGjSIxMZHVq1er++zatYtOnToRGxuLcwHVrDMyMsjIyFAfJyYm4uvrS0JCAo6Ojg93g1Kpd2HNGvZ/8QVWDg50mzMHrwYNzN0ks9JnZpIeH4+du/sDZ0CWJEnKT2JiIk5OTvf9/DZr4FNYoaGhJkNQt2/fpnv37vzzzz/4+/tTvnx5FixYwIwZM4iIiMDS0hKAd999l5UrV3LhwoVCX6uwL5wk3U/0hQvMr1PHWOYgu87W9Js3jcuinwC6jAy2Tp/OtZ078W3dmh7fffdIC5veOHSIZb17kx4XRzl/f0Zs2YKNk9Mju54kSaVLYT+/S0Q/c4UKFahbt676Uz17ZUWVKlUoX748AMOHD8fKyorx48dz7tw5VqxYwXfffcf06dPN2XSpFIs8exZhMIAQCL2e1KgoUiIjzd0s1d5PP+XYwoVEX7hAYEAAOx7BUHJuGyZPJiMhAYDbR4/y3/ffP9LrSZIk5adELWe/FycnJ7Zu3crUqVNp0qQJbm5ufPDBB3Ipu2Q25fz9sbC1VVcuOVeujIO3t5lbdUfE6dPGwAwQBgPhdyUELW4ZCQnq9VAUMuRCAkmSzKBEBj6VKlXKN/FZ/fr12bdvnxlaJEl5Ofn6MnbvXo788ANWDg60eecdNFqtuZulqtqzJxfXrUPRahF6PdV6936k12v99ttsyM54bGlnR+Px4x/p9SRJkvJTIub4PE5yjo9UWgghCFyyhNC9eynn70+TiRMf+SqrW0ePEnvpEhXbt8exXLlHei1JkkqXp2py8+MkAx9JkiRJKnmeqsnNkiRJkiRJxaFEzvGRJOnpkB4fz9nly9FYWlJv+HAsbW3N3SRJkp5yMvCRJMksstLS+KVlS6Kz82ydXLyYcfv2PdQ8o5yRe5kcUZKkgsihLkmSzOLmoUNq0ANw8+BBk8dFdfCrr/jczo5ZZctyZtmy4miiJElPIRn4SJJkFvZ3FRVWNBrs3Nwe6FwRZ86w7fXX0aWnk5GYyOrRo0m9TzkcSZJKJxn4SJJkFh516tDtq6+wsLHB0t6evosXY+/h8UDnSg4PN3ls0OlIk4GPJEn5kMvZ7yKXs0vS4yUMBlCUh5qXk5mSwo8NGxJ75QoIgW/r1ozdu1dWf5ekUqSwn99ycrMkmcn1ffvYMHkymcnJtHv//VKbybg4ghMre3te+O8/zvz5J1orK+qPGCGDHkmS8iV7fO4ie3ykx0GXns4cT08yk5PV+lUvBgbi1aCBmVsmSZJUMskEhpL0BEuNjiYjMfFO0U4g9vJlM7ZIkiSpdJCBjySZQRkfH7wbN0bRaFC0WmycnanQpo25myVJkvTUk3N8JMkMFI2GUTt28N/cuWQmJ9P4hRdwuGt5tyRJklT85Byfu8g5PpIkSZJU8sg5PlKplRYXR+TZs+gzM83dFEmSJOkJIwMf6alyecsWvvbxYUG9esyvW5eUqChzN0mSJEl6gsjAR3qqbJ42DV1GBgBxV69yZO5cM7dIkiRJepLIwEd6qhh0Osg1bc2g05mxNZIkSdKTRgY+0lOl02efqRl77d3daTppkplbJEmSJD1J5HJ26alSd+hQyjVvTtzVq/g0bYqNk5O5myRJkiQ9QWTgIz11nP38cPbzM3czJEmSpCeQHOqSJEmSJKnUkIGPVCIl3b7NhTVriLl0ydxNkSRJkkoQOdQllTjhgYEsbtOGrJQUFK2WoStXUqNvX3M3S5IkSSoBZI+PVOL8N3cuuvR0AITBwL7PPzdzi6SiSomKYv2kSfzZrx8X1qwxd3MkSSpFZI+PVOJY2tqq/68oCpZ2dmZsjVQYq1dfYM+eEJo3L8ewYXVZ3q8ft44cQRgMXFy3jvEHD1K+RQtzN1OSpFJABj5SidPmnXe4vGkTcVevYlO2LN3mzDF3k6R7+O23U4wevRoLCw063X9ERiQTf/jwnUSTisINGfhIkvSYyMBHKnEcy5Vj6oULJN68SRlvbyxsbMzdJOkeVq4MAkCnMwDwz78XGNWkCWEnTyL0ehCCcs2bm7OJkiSVInKOj1QiaS0tcfbzk0FPCVC9uisajQKAVqtQs6Ybw9aupd7w4fh16sSg5cup0KaNmVspSVJpoQiRq7CRRGJiIk5OTiQkJODo6Gju5khSiZeSksmECevYufMaLVqUZ8mS/pQtKwNWSZKKV2E/v0tUj8+GDRvw9/fH1tYWZ2dn+vfvb7I9NDSU3r17Y2dnh4eHB2+88QY6WaRSkszK3t6KZcsGER7+OqtXD5NBjyRJZlVi5vj8+++/TJgwgc8//5xOnTqh0+k4e/asul2v19O7d2+8vLw4ePAgYWFhjBo1CktLSz6Xy50lSZIkSaKEDHXpdDoqVarExx9/zPjx4/PdZ9OmTfTp04fbt2/j6ekJwMKFC3nrrbeIiorCysqqUNeSQ12S9GTKSExky/TphJ08SfU+fWj/wQdotFpzN0uSpCfEUzXUdeLECW7duoVGo6FRo0Z4e3vTs2dPkx6fQ4cOUa9ePTXoAejevTuJiYmcO3euwHNnZGSQmJho8iNJ0pNn40svEbhkCeEnTrD3k084On++uZskSVIJVCICn6tXrwLw0Ucf8d5777F+/XqcnZ3p0KEDsbGxAISHh5sEPYD6ODw8vMBzz5w5EycnJ/XH19f3Ed2FJEkP4/bRo8bl74Ci1RJ+4oSZWyRJUklk1sDn7bffRlGUe/5cuHABg8GY/2PGjBkMGjSIJk2aEBAQgKIo/P333w/VhnfeeYeEhAT158aNG8Vxa5IkFbMqPXqAoqBoNAi9Hr/Onc3dJEmSSiCzTm5+7bXXGDNmzD33qVy5MmFhYQDUrl1bfd7a2prKlSsTGhoKgJeXF0eOHDE5NiIiQt1WEGtra6ytrR+k+ZIkPUZdZ8/G3t2dyDNnqNK9O/Wef97cTZIkqQQya+Dj7u6Ou7v7ffdr0qQJ1tbWBAcH0yY70VlWVhYhISFUrFgRgJYtW/LZZ58RGRmJh4cHANu2bcPR0dEkYJKkxy3q/HmSIyIo36KFSZ0xqWi0lpa0ffddczfjiSEMBnbMmMGZP/7ApVo1+gcE4FShgrmbJUlPvBIxx8fR0ZFJkybx4YcfsnXrVoKDg5k8eTIAgwcPBqBbt27Url2bkSNHcurUKbZs2cJ7773H1KlTZY+OZDYHv/qK+XXq8FunTvzUuDHp8fHmbpL0lDj1228c+OILEm/c4PqePayUPWCSVCglIvAB+PLLLxk2bBgjR46kWbNmXL9+nZ07d+Ls7AyAVqtl/fr1aLVaWrZsyYgRIxg1ahSffPKJmVsulVbCYGDXe++pj6MvXODsihVmbJH0NIm+cAHFwthpL/R6ooKCzNwiSSoZSkwCQ0tLS+bMmcOce1TirlixIhs3bnyMrZKke1AUlLvyzGgsSsyvnPSEq9a7Nwdmz0axsEDo9dQeNMjcTZKkEkH+FZakR0RRFHrNm8faceMQBgPlW7Wi3vDh5m6W9JSo2LYto3fuJGjlSpyrVKHZlCnmbpIklQglInPz4yQzN0vFLSUyktToaNxq1kTRlJjRZUmSpBKlsJ/fssdHkorAoNMVebjK3sMD++yVhpIkSZJ5ya+fUqkQd/Uq2995hz2ffEJaXFzRj792jXm1a/OppSWL27QhLTtjuCRJklSyyB4f6amXGh3Nz82bG5eSC0HQv/8y8cSJIhW43PLqq8RcvAjAzcOH2fPpp/T45ptH1GJJkiTpUZE9PtJT78bBg6TFxCD0eoTBQMTp0yRkZ/wurOSwMLVOFEKQkp0VXJIkSSpZZOAjPfWcq1QBRTE+UBQs7e2LPOemae4VM4pCo/Hji7GFkiRJ0uMih7qkp55HnTr0W7yY3R99hKWdHb3mzcPK3r5I52g4ejTOlSsTHhhIxbZt8WrY8NE0VpIkSXqk5HL2u8jl7JIkSZJU8hT281sOdUmSJEmSVGrIwEeSJEmSpFJDBj6SJEmSJJUaMvCRJEmSJKnUkIGPJEmSJEmlhgx8JEmSJEkqNWTgI0mSJElSqSEDH0mSJEmSSg0Z+EiSVGxC9+/n6/Ll+cTSkq/LlePsX3+Zu0mSJEkmZOAjSVKxEAYDy/v1I+nWLYROR9Lt2/w7dCjhp06Zu2mSJEkqGfhIklQsdOnppMXG5nk+8swZM7RGkiQpfzLwkSSpWFja2VG9b1+T5zRWVpRv2dJMLZIkScpLVmeXJKnYDP7rL/777juCVq2ijLc3rd98E5cqVczdLEmSJJWszn4XWZ1dKsmiolL4779bVK/uSvXqruZujiRJ0mNT2M9v2eMjSU+J4OBoWrb8hbi4dDQahT//HMSQIXXM3SxJkqQnipzjI0lPiQULjpGYmAGAwSD46KPd5m2QJEnSE0gGPpL0lLCxudOBq9Eo2NpamrE1kiRJTyYZ+EjSU2L69JZUreoCgL29Jd9918PMLZIkSXryyDk+kvSU8PCw5+zZKYSExOPt7YC9vZW5myRJkvTEkYGPJD1FLCw0aq+PJEmSlJcc6pIkSZIkqdQoMYHPxYsX6devH25ubjg6OtKmTRt27dplsk9oaCi9e/fGzs4ODw8P3njjDXQ6nZlaLEmSJEnSk6bEBD59+vRBp9Oxc+dOjh8/ToMGDejTpw/h4eEA6PV6evfuTWZmJgcPHuTXX39lyZIlfPDBB2ZuuSRJkiRJT4oSkbk5Ojoad3d39u7dS9u2bQFISkrC0dGRbdu20aVLFzZt2kSfPn24ffs2np6eACxcuJC33nqLqKgorKwKN9FTZm6WJEmSpJKnsJ/fJaLHx9XVlRo1avDbb7+RkpKCTqfjxx9/xMPDgyZNmgBw6NAh6tWrpwY9AN27dycxMZFz584VeO6MjAwSExNNfiRJkiRJejqViFVdiqKwfft2+vfvT5kyZdBoNHh4eLB582acnZ0BCA8PNwl6APVxznBYfmbOnMnHH3/86BovSZIkSdITw6w9Pm+//TaKotzz58KFCwghmDp1Kh4eHuzbt48jR47Qv39/nnnmGcLCwh6qDe+88w4JCQnqz40bN4rp7iRJkiRJetKYtcfntddeY8yYMffcp3LlyuzcuZP169cTFxenjtvNnz+fbdu28euvv/L222/j5eXFkSNHTI6NiIgAwMvLq8DzW1tbY21t/XA3IkmSJElSiWDWwMfd3R13d/f77peamgqARmPaQaXRaDAYDAC0bNmSzz77jMjISDw8PADYtm0bjo6O1K5du5hbLkmSJElSSVQiJje3bNkSZ2dnRo8ezalTp7h48SJvvPEG165do3fv3gB069aN2rVrM3LkSE6dOsWWLVt47733mDp1quzRkSRJkiQJKCGBj5ubG5s3byY5OZlOnTrRtGlT9u/fz5o1a2jQoAEAWq2W9evXo9VqadmyJSNGjGDUqFF88sknZm69JEmSJElPihKRx+dxknl8JEmSJKnkKeznd4lYzv445cSBMp+PJEmSJJUcOZ/b9+vPkYHPXZKSkgDw9fU1c0skSZIkSSqqpKQknJycCtwuh7ruYjAYuH37NmXKlEFRFPX5xMREfH19uXHjxlM9BCbv8+lTWu61tNwnlJ57LS33CaXnXh/lfQohSEpKwsfHJ88q8Nxkj89dNBoN5cuXL3C7o6PjU/2PMoe8z6dPabnX0nKfUHrutbTcJ5See31U93mvnp4cJWJVlyRJkiRJUnGQgY8kSZIkSaWGDHwKydramg8//PCpT4Yo7/PpU1rutbTcJ5Seey0t9wml516fhPuUk5slSZIkSSo1ZI+PJEmSJEmlhgx8JEmSJEkqNWTgI0mSJElSqSEDH0mSJEmSSg0Z+Nzls88+o1WrVtjZ2VG2bNl89wkNDaV3797Y2dnh4eHBG2+8gU6nM9ln9+7dNG7cGGtra6pWrcqSJUsefeMfwu7du1EUJd+fo0ePAhASEpLv9sOHD5u59UVTqVKlPPfwxRdfmOxz+vRp2rZti42NDb6+vsyePdtMrX1wISEhjB8/Hj8/P2xtbalSpQoffvghmZmZJvs8De8pwLx586hUqRI2Njb4+/tz5MgRczfpocycOZNmzZpRpkwZPDw86N+/P8HBwSb7dOjQIc97N2nSJDO1+MF99NFHee6jZs2a6vb09HSmTp2Kq6srDg4ODBo0iIiICDO2+MHk97dHURSmTp0KlOz3c+/evTzzzDP4+PigKAqrV6822S6E4IMPPsDb2xtbW1u6dOnCpUuXTPaJjY3l+eefx9HRkbJlyzJ+/HiSk5OLv7FCMvHBBx+Ir7/+WkyfPl04OTnl2a7T6UTdunVFly5dxMmTJ8XGjRuFm5ubeOedd9R9rl69Kuzs7MT06dPF+fPnxdy5c4VWqxWbN29+jHdSNBkZGSIsLMzk54UXXhB+fn7CYDAIIYS4du2aAMT27dtN9svMzDRz64umYsWK4pNPPjG5h+TkZHV7QkKC8PT0FM8//7w4e/as+PPPP4Wtra348ccfzdjqotu0aZMYM2aM2LJli7hy5YpYs2aN8PDwEK+99pq6z9Pyni5fvlxYWVmJxYsXi3PnzokJEyaIsmXLioiICHM37YF1795dBAQEiLNnz4rAwEDRq1cvUaFCBZN/q+3btxcTJkwwee8SEhLM2OoH8+GHH4o6deqY3EdUVJS6fdKkScLX11fs2LFDHDt2TLRo0UK0atXKjC1+MJGRkSb3uG3bNgGIXbt2CSFK9vu5ceNGMWPGDLFy5UoBiFWrVpls/+KLL4STk5NYvXq1OHXqlOjbt6/w8/MTaWlp6j49evQQDRo0EIcPHxb79u0TVatWFc8991yxt1UGPgUICAjIN/DZuHGj0Gg0Ijw8XH1uwYIFwtHRUWRkZAghhHjzzTdFnTp1TI4bOnSo6N69+yNtc3HKzMwU7u7u4pNPPlGfy/mQPHnypPkaVgwqVqwovvnmmwK3z58/Xzg7O6vvpxBCvPXWW6JGjRqPoXWP1uzZs4Wfn5/6+Gl5T5s3by6mTp2qPtbr9cLHx0fMnDnTjK0qXpGRkQIQe/bsUZ9r3769mDZtmvkaVUw+/PBD0aBBg3y3xcfHC0tLS/H333+rzwUFBQlAHDp06DG18NGYNm2aqFKlivrl8ml5P+8OfAwGg/Dy8hJffvml+lx8fLywtrYWf/75pxBCiPPnzwtAHD16VN1n06ZNQlEUcevWrWJtnxzqKqJDhw5Rr149PD091ee6d+9OYmIi586dU/fp0qWLyXHdu3fn0KFDj7WtD2Pt2rXExMQwduzYPNv69u2Lh4cHbdq0Ye3atWZo3cP74osvcHV1pVGjRnz55ZcmQ5WHDh2iXbt2WFlZqc91796d4OBg4uLizNHcYpOQkICLi0ue50vye5qZmcnx48dNfuc0Gg1dunQpUb9z95OQkACQ5/37448/cHNzo27durzzzjukpqaao3kP7dKlS/j4+FC5cmWef/55QkNDATh+/DhZWVkm72/NmjWpUKFCiX5/MzMzWbp0KePGjTMpiP20vJ+5Xbt2jfDwcJP30MnJCX9/f/U9PHToEGXLlqVp06bqPl26dEGj0fDff/8Va3tkkdIiCg8PNwl6APVxeHj4PfdJTEwkLS0NW1vbx9PYh/DLL7/QvXt3k4KtDg4OfPXVV7Ru3RqNRsO///5L//79Wb16NX379jVja4vmlVdeoXHjxri4uHDw4EHeeecdwsLC+PrrrwHj++fn52dyTO732NnZ+bG3uThcvnyZuXPnMmfOHPW5p+E9jY6ORq/X5/s7d+HCBTO1qngZDAb+7//+j9atW1O3bl31+eHDh1OxYkV8fHw4ffo0b731FsHBwaxcudKMrS06f39/lixZQo0aNQgLC+Pjjz+mbdu2nD17lvDwcKysrPLMufT09FT/5pZEq1evJj4+njFjxqjPPS3v591y3qf8fkdzf256eHiYbLewsMDFxaXY3+dSEfi8/fbbzJo16577BAUFmUyme1o8yL3fvHmTLVu28Ndff5ns5+bmxvTp09XHzZo14/bt23z55Zdm/5Asyn3mvof69etjZWXFiy++yMyZM0tEuvgHeU9v3bpFjx49GDx4MBMmTFCff5LfU+mOqVOncvbsWfbv32/y/MSJE9X/r1evHt7e3nTu3JkrV65QpUqVx93MB9azZ0/1/+vXr4+/vz8VK1bkr7/+KhFfFB/EL7/8Qs+ePfHx8VGfe1rezyddqQh8XnvtNZOoOj+VK1cu1Lm8vLzyrBbJWV3g5eWl/vfuFQcRERE4Ojo+9l/iB7n3gIAAXF1dC/XB5+/vz7Zt2x6micXiYd5jf39/dDodISEh1KhRo8D3D+68x+ZU1Hu9ffs2HTt2pFWrVvz000/3Pf+T8p4WlpubG1qtNt/37El4vx7WSy+9xPr169m7d69JD2x+/P39AWPvXkn+oCxbtizVq1fn8uXLdO3alczMTOLj4016fUry+3v9+nW2b99+356cp+X9zHmfIiIi8Pb2Vp+PiIigYcOG6j6RkZEmx+l0OmJjY4v9fS4VgY+7uzvu7u7Fcq6WLVvy2WefERkZqXbLbdu2DUdHR2rXrq3us3HjRpPjtm3bRsuWLYulDUVR1HsXQhAQEMCoUaOwtLS87/6BgYEm/5DN5WHe48DAQDQajfp+tmzZkhkzZpCVlaW+Btu2baNGjRpPxDBXUe711q1bdOzYkSZNmhAQEIBGc/9pfU/Ke1pYVlZWNGnShB07dtC/f3/AODS0Y8cOXnrpJfM27iEIIXj55ZdZtWoVu3fvzjP8mp/AwECAEvX+5Sc5OZkrV64wcuRImjRpgqWlJTt27GDQoEEABAcHExoaapa/qcUhICAADw8Pevfufc/9npb308/PDy8vL3bs2KEGOomJifz3339MnjwZMP7djY+P5/jx4zRp0gSAnTt3YjAY1ACw2BTrVOmnwPXr18XJkyfFxx9/LBwcHMTJkyfFyZMnRVJSkhDiznL2bt26icDAQLF582bh7u6e73L2N954QwQFBYl58+Y98cvZc2zfvl0AIigoKM+2JUuWiGXLlomgoCARFBQkPvvsM6HRaMTixYvN0NIHc/DgQfHNN9+IwMBAceXKFbF06VLh7u4uRo0ape4THx8vPD09xciRI8XZs2fF8uXLhZ2dXYlbzn7z5k1RtWpV0blzZ3Hz5k2TJbI5nob3VAjjcnZra2uxZMkScf78eTFx4kRRtmxZk9WXJc3kyZOFk5OT2L17t8l7l5qaKoQQ4vLly+KTTz4Rx44dE9euXRNr1qwRlStXFu3atTNzy4vutddeE7t37xbXrl0TBw4cEF26dBFubm4iMjJSCGFczl6hQgWxc+dOcezYMdGyZUvRsmVLM7f6wej1elGhQgXx1ltvmTxf0t/PpKQk9fMSEF9//bU4efKkuH79uhDCuJy9bNmyYs2aNeL06dOiX79++S5nb9Sokfjvv//E/v37RbVq1eRy9sdh9OjRAsjzk5NnQQghQkJCRM+ePYWtra1wc3MTr732msjKyjI5z65du0TDhg2FlZWVqFy5sggICHi8N/KAnnvuuQLzYyxZskTUqlVL2NnZCUdHR9G8eXOTJaYlwfHjx4W/v79wcnISNjY2olatWuLzzz8X6enpJvudOnVKtGnTRlhbW4ty5cqJL774wkwtfnABAQH5/lvO/X3naXhPc8ydO1dUqFBBWFlZiebNm4vDhw+bu0kPpaD3LudvSWhoqGjXrp1wcXER1tbWomrVquKNN94oMXlfchs6dKjw9vYWVlZWoly5cmLo0KHi8uXL6va0tDQxZcoU4ezsLOzs7MSAAQNMAviSZMuWLQIQwcHBJs+X9Pdz165d+f57HT16tBDCuKT9/fffF56ensLa2lp07tw5z2sQExMjnnvuOeHg4CAcHR3F2LFj1U6H4qQIIUTx9iFJkiRJkiQ9mWQeH0mSJEmSSg0Z+EiSJEmSVGrIwEeSJEmSpFJDBj6SJEmSJJUaMvCRJEmSJKnUkIGPJEmSJEmlhgx8JEmSJEkqNWTgI0lSiRMSEoKiKGpK/yfVkiVL8lQVlyTJvGTgI0ml2JgxY1AUhUmTJuXZNnXqVBRFMSmImrO/oihYWlri6elJ165dWbx4MQaDweT4U6dO0bdvXzw8PLCxsaFSpUoMHTo0TyHC3Dp06KCe39ramnLlyvHMM8/kKebo6+tLWFgYdevWfbgX4BEbOnQoFy9efOTXWblyJd26dcPV1bVEBISSZE4y8JGkUs7X15fly5eTlpamPpeens6yZcuoUKFCnv179OhBWFgYISEhbNq0iY4dOzJt2jT69OmDTqcDICoqis6dO+Pi4sKWLVsICgoiICAAHx8fUlJS7tmeCRMmEBYWxpUrV/j333+pXbs2w4YNY+LEieo+Wq0WLy8vLCye7DrLtra2avHbRyklJYU2bdowa9asR34tSSrpZOAjSaVc48aN8fX1NelVWblyJRUqVKBRo0Z59re2tsbLy4ty5crRuHFj3n33XdasWcOmTZtYsmQJAAcOHCAhIYFFixbRqFEj/Pz86NixI9988819q4zb2dnh5eVF+fLladGiBbNmzeLHH3/k559/Zvv27UDeoa7du3ejKApbtmyhUaNG2Nra0qlTJyIjI9m0aRO1atXC0dGR4cOHk5qaql7LYDAwc+ZM/Pz8sLW1pUGDBvzzzz/q9pzz7tixg6ZNm2JnZ0erVq0IDg5W9zl16hQdO3akTJkyODo60qRJE44dOwbkP9S1YMECqlSpgpWVFTVq1OD333832a4oCosWLWLAgAHY2dlRrVo11q5de8/XbOTIkXzwwQd06dLlnvtJkiQDH0mSgHHjxhEQEKA+Xrx4MWPHji308Z06daJBgwZq8OTl5YVOp2PVqlUURznA0aNH4+zsnGfI624fffQRP/zwAwcPHuTGjRsMGTKEb7/9lmXLlrFhwwa2bt3K3Llz1f1nzpzJb7/9xsKFCzl37hyvvvoqI0aMYM+ePSbnnTFjBl999RXHjh3DwsKCcePGqduef/55ypcvz9GjRzl+/Dhvv/02lpaW+bZv1apVTJs2jddee42zZ8/y4osvMnbsWHbt2mWy38cff8yQIUM4ffo0vXr14vnnnyc2NraoL5skSfkp9rKnkiSVGKNHjxb9+vUTkZGRwtraWoSEhIiQkBBhY2MjoqKiRL9+/dTqyrn3z8/QoUNFrVq11MfvvvuusLCwEC4uLqJHjx5i9uzZIjw8/J7tad++vZg2bVq+2/z9/UXPnj2FEEJcu3ZNAOLkyZNCiDuVobdv367uP3PmTAGIK1euqM+9+OKLonv37kIIIdLT04WdnZ04ePCgyXXGjx8vnnvuuQLPu2HDBgGItLQ0IYQQZcqUEUuWLMm3zQEBAcLJyUl93KpVKzFhwgSTfQYPHix69eqlPgbEe++9pz5OTk4WgNi0aVO+18jt7tdFkqS8ZI+PJEm4u7vTu3dvlixZQkBAAL1798bNza1I5xBCoCiK+vizzz4jPDychQsXUqdOHRYuXEjNmjU5c+bMA7Xx7vPnp379+ur/e3p6YmdnR+XKlU2ey5lcffnyZVJTU+natSsODg7qz2+//caVK1cKPK+3tzeAep7p06fzwgsv0KVLF7744os8x+YWFBRE69atTZ5r3bo1QUFBBV7P3t4eR0fHe04KlySp8GTgI0kSYBzuWrJkCb/++qvJUE5hBQUF5Zm/4+rqyuDBg5kzZw5BQUH4+PgwZ86cIp9br9dz6dKl+84Pyj3ElLPyLDdFUdTVZ8nJyQBs2LCBwMBA9ef8+fMm83zyOy+gnuejjz7i3Llz9O7dm507d1K7dm1WrVpV5Hss6Hp3t1uSpIcjAx9JkgDjaq3MzEyysrLo3r17kY7duXMnZ86cYdCgQQXuY2VlRZUqVe67qis/v/76K3Fxcfc8f1HVrl0ba2trQkNDqVq1qsmPr69vkc5VvXp1Xn31VbZu3crAgQNN5kvlVqtWLQ4cOGDy3IEDB6hdu/YD34ckSUXzZK8FlSTpsdFqteqQi1arLXC/jIwMwsPD0ev1REREsHnzZmbOnEmfPn0YNWoUAOvXr2f58uUMGzaM6tWrI4Rg3bp1bNy4scCgIEdqairh4eHodDpu3rzJqlWr+Oabb5g8eTIdO3YstvstU6YMr7/+Oq+++ioGg4E2bdqQkJDAgQMHcHR0ZPTo0fc9R1paGm+88QbPPvssfn5+3Lx5k6NHjxYYoL3xxhsMGTKERo0a0aVLF9atW8fKlSvV1WoPKjY2ltDQUG7fvg2grjrz8vLCy8vroc4tSU8bGfhIkqRydHS87z6bN2/G29sbCwsLnJ2dadCgAd9//z2jR49GozF2IteuXRs7Oztee+01bty4gbW1NdWqVWPRokWMHDnynuf/+eef+fnnn7GyssLV1ZUmTZqwYsUKBgwYUCz3mNunn36Ku7s7M2fO5OrVq5QtW1Zdol8YWq2WmJgYRo0aRUREBG5ubgwcOJCPP/443/379+/Pd999x5w5c5g2bRp+fn4EBATQoUOHh7qPtWvXmqzCGzZsGAAffvghH3300UOdW5KeNooQxbDWVJIkSZIkqQSQc3wkSZIkSSo1ZOAjSZIkSVKpIQMfSZIkSZJKDRn4SJIkSZJUasjAR5IkSZKkUkMGPpIkSZIklRoy8JEkSZIkqdSQgY8kSZIkSaWGDHwkSZIkSSo1ZOAjSZIkSVKpIQMfSZIkSZJKDRn4SJIkSZJUavw/urMlDkcey3oAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#a simple feedforward neural network is used for feature extraction\n", "import numpy as np\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from keras.models import Sequential\n", "from keras.layers import Dense\n", "from sklearn.manifold import MDS\n", "import matplotlib.pyplot as plt\n", "\n", "# Load the data from a CSV file\n", "data = pd.read_csv(\"/content/stressinput.csv\", header=None)\n", "\n", "# Split the data into features and labels\n", "features = data.iloc[:, :-1].values\n", "labels = data.iloc[:, -1].values\n", "\n", "# Scale the features using StandardScaler\n", "scaler = StandardScaler()\n", "features = scaler.fit_transform(features)\n", "\n", "# Split the data into training and test sets\n", "train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size=0.2, random_state=42)\n", "\n", "# Create a simple feedforward neural network for 1D input\n", "input_dim = train_features.shape[1]\n", "output_dim = train_features.shape[1] # Set the output dimension to match the input dimension\n", "\n", "model = Sequential([\n", " Dense(128, activation='relu', input_dim=input_dim),\n", " Dense(64, activation='relu'),\n", " Dense(32, activation='relu'),\n", " Dense(output_dim) # Adjust the output dimension\n", "])\n", "\n", "# Compile the model\n", "model.compile(optimizer='adam', loss='mse')\n", "\n", "# Fit the model on the training data\n", "model.fit(train_features, train_features, epochs=10, batch_size=32, verbose=0)\n", "\n", "# Extract features using the trained model\n", "train_features_nn = model.predict(train_features)\n", "test_features_nn = model.predict(test_features)\n", "\n", "# Perform Manifold Discovery and Analysis (MDA)\n", "mds = MDS(n_components=2, random_state=42)\n", "train_features_mds = mds.fit_transform(train_features_nn)\n", "\n", "# Visualize the MDA results\n", "plt.scatter(train_features_mds[:, 0], train_features_mds[:, 1], c=train_labels, cmap='jet', s=5)\n", "plt.xlabel(\"MDS Dimension 1\")\n", "plt.ylabel(\"MDS Dimension 2\")\n", "plt.title('MDS Visualization of Neural Network Extracted Features')\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 544 }, "id": "oWozWQXvY31C", "outputId": "1a33938a-bd23-4dfe-bd49-e5a1cc285a4c" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "141/141 [==============================] - 0s 3ms/step\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.10/dist-packages/sklearn/manifold/_mds.py:299: FutureWarning: The default value of `normalized_stress` will change to `'auto'` in version 1.4. To suppress this warning, manually set the value of `normalized_stress`.\n", " warnings.warn(\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACMGUlEQVR4nOzddXgUVxfA4d/sxj0hhgQSggSKNrhLkOJarEULlKKFClSQrwK0tKVIodBixb1Ai0uhQHF3l4QQQjwhtjvfHyELSxKSQISQ8z7Pttk7d2bOLJvdkztXFFVVVYQQQggh8iFNbgcghBBCCJFbJBESQgghRL4liZAQQggh8i1JhIQQQgiRb0kiJIQQQoh8SxIhIYQQQuRbkggJIYQQIt+SREgIIYQQ+ZYkQkIIIYTItyQREvnOggULUBSFmzdvvnJxNGjQgAYNGuR4LLl13sy4f/8+nTp1okCBAiiKwtSpU3M7JJGD8sJ7VORNkgiJNCV/USuKwr///ptiu6qqeHh4oCgKrVq1MtqWvJ+iKJiYmODk5ISvry/Dhw/n/PnzqZ7vwYMHDB8+HB8fHywtLXF1daVatWp8+umnREVFpRlnmzZtsLKyIjIyMs06PXr0wMzMjIcPH2bw6l8/58+fZ/z48bmeAL6oDz/8kK1btzJmzBj++OMPmjdv/tz6sbGx/PTTT1SvXh17e3ssLCwoVaoUQ4YM4fLly4Z648ePR1EU3NzciImJSXEcT0/PNN/fP/zwQ4r6yb83R48efW58e/bsMfo9efaxfPny5+7/rJiYGMaPH8+ePXsytV9WOnDgAOPHjycsLCzXYvD09EzzNY2Njc2Wc3777besX78+W44tsp9JbgcgXn0WFhYsXbqUOnXqGJX/888/3L17F3Nz81T3a9KkCT179kRVVcLDwzl16hQLFy7kl19+YfLkyYwcOdJQNyQkhCpVqhAREUHfvn3x8fHh4cOHnD59mlmzZjFo0CBsbGxSPU+PHj3YuHEj69ato2fPnim2x8TE8Oeff9K8eXMKFCjAu+++S9euXdOMOzdt27Yt2459/vx5JkyYQIMGDfD09Myx82aVXbt20bZtWz766KN06wYHB9O8eXOOHTtGq1at6N69OzY2Nly6dInly5czZ84c4uPjjfYJCgpi1qxZjBo1KsMxff/99wwaNAgrK6tMX0+yYcOGUbVq1RTlNWvWzNRxYmJimDBhAkCutZwcOHCACRMm0Lt3bxwcHHIlBoBKlSql+u9oZmaWLef79ttv6dSpE+3atcuW44vsJYmQSFeLFi1YtWoV06ZNw8TkyVtm6dKl+Pr6EhwcnOp+pUqV4p133jEqmzRpEq1bt2bUqFH4+PjQokULAH7//Xdu377N/v37qVWrltE+ERERz/0Aa9OmDba2tixdujTVROjPP/8kOjqaHj16AKDVatFqtRm7+ByWXR/Ur+p5MyMoKCjDX669e/fmxIkTrF69mo4dOxpt++qrr/j8889T7FOpUiW+//57PvjgAywtLdM9R6VKlTh58iSzZ882Suozq27dunTq1OmF939R0dHRWFtb5/h5c0LhwoVTfPbkNXq9nvj4eCwsLHI7lNee3BoT6erWrRsPHz5k+/bthrL4+HhWr15N9+7dM3WsAgUKsHz5ckxMTPjmm28M5deuXUOr1VKjRo0U+9jZ2T33w8DS0pIOHTqwc+dOgoKCUmxfunQptra2tGnTBki9b87Ro0dp1qwZzs7OWFpa4uXlRd++fQ3bk29jPHvb4ebNmyiKwoIFCwxlp0+fpnfv3hQvXhwLCwvc3d3p27dvhm7LPdsP4nnN/Mmx3Lp1iw8++IDSpUtjaWlJgQIF6Ny5s9H1LViwgM6dOwPQsGHDFMdIrf9FUFAQ/fr1w83NDQsLCypWrMjChQtTvf4pU6YwZ84cvL29MTc3p2rVqhw5ciTd6wW4fv06nTt3xsnJCSsrK2rUqMFff/1lFLuiKKiqysyZMw2xp+XQoUP89ddf9OvXL0USBGBubs6UKVNSlI8dO5b79+8za9asDMVdu3ZtGjVqxHfffcejR48ytM+LmD9/PoqiMG/ePKPyb7/9FkVR+Pvvv7l58yYuLi4ATJgwwfAajR8/HkhKDG1sbLh27RotWrTA1tbW8IfBvn376Ny5M0WLFsXc3BwPDw8+/PDDVK/p4sWLvP3227i4uGBpaUnp0qUNSeX48eP5+OOPAfDy8jLE8PT7cPHixfj6+mJpaYmTkxNdu3blzp07Kc6T/F6ytLSkWrVq7Nu376Vfx6eFhYUxYsQIPDw8MDc3p0SJEkyePBm9Xm9Ub8qUKdSqVYsCBQpgaWmJr68vq1evNqqjKArR0dEsXLjQcM29e/cGkl73Z1tf4cnt2GePM2TIEJYsWcIbb7yBubk5W7ZsAcDf35++ffvi5uaGubk5b7zxRor3A8D06dN54403sLKywtHRkSpVqrB06dKXeKXyB2kREuny9PSkZs2aLFu2jLfeeguAzZs3Ex4eTteuXZk2bVqmjle0aFHq16/P7t27iYiIwM7OjmLFiqHT6fjjjz/o1atXpmPs0aMHCxcuZOXKlQwZMsRQHhISwtatW+nWrVuaf+UHBQXRtGlTXFxcGD16NA4ODty8eZO1a9dmOg6A7du3c/36dfr06YO7uzvnzp1jzpw5nDt3jv/++++5X+LPmjp1aor+UT/99BMnT56kQIECABw5coQDBw7QtWtXihQpws2bN5k1axYNGjTg/PnzWFlZUa9ePYYNG8a0adP47LPPKFOmDIDh/8969OgRDRo04OrVqwwZMgQvLy9WrVpF7969CQsLY/jw4Ub1ly5dSmRkJAMHDkRRFL777js6dOjA9evXMTU1TfP67t+/T61atYiJiWHYsGEUKFCAhQsX0qZNG1avXk379u2pV68ef/zxB++++67hduvzbNiwAYB33333+S/uM+rWrWtIbAYNGpShVqHx48dTr149Zs2a9cKtQpGRkam2qiZ3Cu/Tpw9r165l5MiRNGnSBA8PD86cOcOECRPo168fLVq0IDo62nALuX379nTo0AGAChUqGI6XmJhIs2bNqFOnDlOmTDHczlu1ahUxMTEMGjSIAgUKcPjwYaZPn87du3dZtWqVYf/Tp09Tt25dTE1NGTBgAJ6enly7do2NGzfyzTff0KFDBy5fvsyyZcv46aefcHZ2BjAkaN988w1ffvklb7/9Nu+99x4PHjxg+vTp1KtXjxMnThha+37//XcGDhxIrVq1GDFiBNevX6dNmzY4OTnh4eGRodc0ISEhxWtqZWWFlZUVMTEx1K9fH39/fwYOHEjRokU5cOAAY8aM4d69e0ad8H/++WfatGlDjx49iI+PZ/ny5XTu3JlNmzbRsmVLAP744w/ee+89qlWrxoABAwDw9vbOUJzP2rVrl+EzzNnZGU9PT+7fv0+NGjUMiZKLiwubN2+mX79+REREMGLECADmzp3LsGHD6NSpE8OHDyc2NpbTp09z6NChTP/Bmu+oQqRh/vz5KqAeOXJEnTFjhmpra6vGxMSoqqqqnTt3Vhs2bKiqqqoWK1ZMbdmypdG+gDp48OA0jz18+HAVUE+dOqWqqqoGBgaqLi4uKqD6+Pio77//vrp06VI1LCwsQ7EmJiaqBQsWVGvWrGlUPnv2bBVQt27dmuK6bty4oaqqqq5bt85wnWnZvXu3Cqi7d+82Kr9x44YKqPPnzzeUJb9GT1u2bJkKqHv37k0zDlVV1fr166v169dPM46VK1eqgPq///3vuec7ePCgCqiLFi0ylK1atSrVa0jtvFOnTlUBdfHixYay+Ph4tWbNmqqNjY0aERFhdP0FChRQQ0JCDHX//PNPFVA3btyY5rWoqqqOGDFCBdR9+/YZyiIjI1UvLy/V09NT1el0hvL03lPJ2rdvrwJqaGhounVVVVXHjRunAuqDBw/Uf/75RwXUH3/80bA9vfd3w4YNVXd3d8O/w9O/N8+T/J5K63Hv3j1D3Xv37qlOTk5qkyZN1Li4OLVy5cpq0aJF1fDwcEOdBw8eqIA6bty4FOfq1auXCqijR49OsS2198/EiRNVRVHUW7duGcrq1aun2traGpWpqqrq9XrDz99//32K97SqqurNmzdVrVarfvPNN0blZ86cUU1MTAzl8fHxqqurq1qpUiU1Li7OUG/OnDkq8NzfjWTFihVL9fVMfl2++uor1draWr18+bLRfqNHj1a1Wq16+/btNF+b+Ph4tVy5cmqjRo2Myq2trdVevXqliKVXr15qsWLFUpQnv+eeBqgajUY9d+6cUXm/fv3UggULqsHBwUblXbt2Ve3t7Q0xtm3bVn3jjTdSviAiXXJrTGTI22+/zaNHj9i0aRORkZFs2rTppf7KSO74nDzSy83NjVOnTvH+++8TGhrK7Nmz6d69O66urnz11Veoqvrc42m1Wrp27crBgweNmuKXLl2Km5sbjRs3TnPf5L9EN23aREJCwgtfU7KnWxJiY2MJDg423PI7fvz4Cx/3/Pnz9O3bl7Zt2/LFF1+ker6EhAQePnxIiRIlcHBweOHz/f3337i7u9OtWzdDmampKcOGDSMqKop//vnHqH6XLl1wdHQ0PK9bty6QdNsrvfNUq1bNqCO+jY0NAwYM4ObNm2mOMHyeiIgIAGxtbTO9b7169WjYsGGmbneNHz+ewMBAZs+enenzQdItue3bt6d4ODk5Geq4u7szc+ZMtm/fTt26dTl58iTz5s3Dzs4uU+caNGhQirKn3z/R0dEEBwdTq1YtVFXlxIkTQNKIzr1799K3b1+KFi1qtH9GWjjXrl2LXq/n7bffJjg42PBwd3enZMmS7N69G0i6RR0UFMT7779v1G+td+/e2NvbZ/g6q1evnuL1TG5JXLVqFXXr1sXR0dEoFj8/P3Q6HXv37k31tQkNDSU8PJy6deu+1O/x89SvX5+yZcsanquqypo1a2jdujWqqhrF26xZM8LDww2xODg4cPfu3QzfkhZPSCIkMsTFxQU/Pz+WLl3K2rVr0el0L9XBM/l2z9NfVgULFmTWrFncu3ePS5cuMW3aNFxcXBg7diy///57usdM7vOQfE/87t277Nu3j65duz63c3T9+vXp2LEjEyZMwNnZmbZt2zJ//nzi4uJe6NpCQkIYPnw4bm5uWFpa4uLigpeXFwDh4eEvdMyIiAg6dOhA4cKFWbRokdGXz6NHjxg7dqyhv4OzszMuLi6EhYW98Plu3bpFyZIl0WiMPyKSb6XdunXLqPzZL8fkpCg0NDTd85QuXTpFeVrnyYjk5OB50yk8T2YTmxdJnp5Wvnx5/Pz8Ujye7cDetWtXWrZsyeHDh+nfv/9zk/vUmJiYUKRIkRTlt2/fpnfv3jg5OWFjY4OLiwv169cHnrxfkxPacuXKZfr6AK5cuYKqqpQsWRIXFxejx4ULFwx9+5L/vUuWLGm0v6mpKcWLF8/w+ZydnVO8nsn7X7lyhS1btqSIw8/PD8Con+GmTZuoUaMGFhYWODk54eLiwqxZs1749yo9yZ8TyR48eEBYWBhz5sxJEW+fPn2M4v3000+xsbGhWrVqlCxZksGDB7N///5sifN1I32ERIZ1796d/v37ExgYyFtvvfVSw2PPnj2LVqtN8YsPSX9hlipVilKlStGyZUtKlizJkiVLeO+99557TF9fX3x8fFi2bBmfffYZy5YtQ1VVQ4KUFkVRWL16Nf/99x8bN25k69at9O3blx9++IH//vsPGxubNP/q1el0KcrefvttDhw4wMcff0ylSpWwsbFBr9fTvHnzFJ0xM6p3794EBARw+PDhFK0AQ4cOZf78+YwYMYKaNWtib2+Poih07dr1hc+XWWklmum15GUHHx8fAM6cOWNomcqMevXq0aBBA7777jvef//9DO0zbtw4GjRowK+//pptw8YfPnxomJvo/Pnz6PX6FInq85ibm6eor9PpaNKkCSEhIXz66af4+PhgbW2Nv78/vXv3zrL3j16vR1EUNm/enOp7Ja2pMbKDXq+nSZMmfPLJJ6luL1WqFJDUibxNmzbUq1ePX375hYIFC2Jqasr8+fMz3AE5M58bQIp+acmv/zvvvJNm38nkfmBlypTh0qVLbNq0iS1btrBmzRp++eUXxo4da5hWQaROEiGRYe3bt2fgwIH8999/rFix4oWPc/v2bf755x9q1qyZ7u2L4sWL4+joyL179zJ07B49evDll19y+vRpli5dSsmSJVOdoyU1NWrUoEaNGnzzzTcsXbqUHj16sHz5ct577z1DC8ezE8U922IRGhrKzp07mTBhAmPHjjWUX7lyJUMxpGbSpEmsX7+etWvXGr7kn7Z69Wp69eplNLlfbGxsilgz00m7WLFinD59OsWX7cWLFw3bs0KxYsW4dOlSivKXOU/r1q2ZOHEiixcvfqFECJJahZITm4yoX78+DRo0YPLkyUb/7llp8ODBREZGMnHiRMaMGcPUqVONOmhn5t832ZkzZ7h8+TILFy406oT+9AhRwNCacvbs2eceL60YvL29UVUVLy8vQ6KRmuR/7ytXrtCoUSNDeUJCAjdu3KBixYrPv6AM8Pb2JioqytAClJY1a9ZgYWHB1q1bjeYcmz9/foq6aV23o6NjqpNLZrSl08XFBVtbW3Q6XbrxAlhbW9OlSxe6dOlCfHw8HTp04JtvvmHMmDEyDP855NaYyDAbGxtmzZrF+PHjad269QsdIyQkhG7duqHT6Yzmcjl06BDR0dEp6h8+fJiHDx+mevskNcmtP2PHjuXkyZPptgZBUvLybMtFpUqVAAy3x4oVK4ZWqzXqPwDwyy+/GD1P/mv32eO96HIQO3bs4IsvvuDzzz9Pc7I2rVab4nzTp09P8Vdn8pwxGZn1t0WLFgQGBholvImJiUyfPh0bGxvDrZOX1aJFCw4fPszBgwcNZdHR0cyZMwdPT0+j/hIZVbNmTZo3b85vv/2W6my/8fHx6U7K+HRik9HZiJNvqc2ZMyfTMadn9erVrFixgkmTJjF69Gi6du3KF198YTRDdvIosMzM6pza+1VVVX7++Wejei4uLtSrV4958+Zx+/Zto21P75vWe6xDhw5otVomTJiQ4r2qqqphaokqVarg4uLC7NmzjSa8XLBgQZbNVv32229z8OBBtm7dmmJbWFgYiYmJQNJroyiK0e/RzZs3U31PWVtbpxqft7c34eHhnD592lB279491q1bl6FYtVotHTt2ZM2aNakmoQ8ePDD8/Oz0HGZmZpQtWxZVVbOk7+PrTFqERKZkZmj75cuXWbx4MaqqEhERwalTp1i1ahVRUVH8+OOPRksk/PHHHyxZsoT27dvj6+uLmZkZFy5cYN68eVhYWPDZZ59l6JxeXl7UqlWLP//8EyBDiVDybNft27fH29ubyMhI5s6di52dnWHCR3t7ezp37sz06dNRFAVvb282bdqUYt4iOzs76tWrx3fffUdCQgKFCxdm27Zt3LhxI6Mvm5Fu3brh4uJCyZIlWbx4sdG2Jk2a4ObmRqtWrfjjjz+wt7enbNmyHDx4kB07dhiG1yerVKkSWq2WyZMnEx4ejrm5OY0aNcLV1TXFeQcMGMCvv/5K7969OXbsGJ6enqxevZr9+/czderUF+qInJrRo0cbpmUYNmwYTk5OLFy4kBs3brBmzZpM3fp52qJFi2jatCkdOnSgdevWNG7cGGtra65cucLy5cu5d+9eqnMJPW3cuHE0bNgww+esX78+9evXT9GRPD379u1LNdmqUKECFSpUICgoiEGDBtGwYUPD1BAzZsxg9+7d9O7dm3///ReNRoOlpSVly5ZlxYoVlCpVCicnJ8qVK/fcfj0+Pj54e3vz0Ucf4e/vj52dHWvWrEm1b9e0adOoU6cOb775JgMGDMDLy4ubN2/y119/cfLkSSDp9jTA559/TteuXTE1NaV169Z4e3vz9ddfM2bMGG7evEm7du2wtbXlxo0brFu3jgEDBvDRRx9hamrK119/zcCBA2nUqBFdunThxo0bzJ8/P1N9hJ7n448/ZsOGDbRq1YrevXvj6+tLdHQ0Z86cYfXq1dy8eRNnZ2datmxp+Jzq3r07QUFBzJw5kxIlShglNsnXvWPHDn788UcKFSqEl5cX1atXp2vXrnz66ae0b9+eYcOGERMTw6xZsyhVqlSGO1xPmjSJ3bt3U716dfr370/ZsmUJCQnh+PHj7Nixg5CQEACaNm2Ku7s7tWvXxs3NjQsXLjBjxgxatmyZZb+vr62cHqYm8o6MDgNOa3hx8kOj0agODg5q5cqV1eHDh6cYHqqqqnr69Gn1448/Vt98803VyclJNTExUQsWLKh27txZPX78eKbinjlzpgqo1apVe+51JQ/xPX78uNqtWze1aNGiqrm5uerq6qq2atVKPXr0qNF+Dx48UDt27KhaWVmpjo6O6sCBA9WzZ8+mGD5/9+5dtX379qqDg4Nqb2+vdu7cWQ0ICEgxtDkjw+dJZRhw8iN5GHxoaKjap08f1dnZWbWxsVGbNWumXrx4US1WrFiKIb1z585Vixcvrmq1WqNjpDZs//79+4bjmpmZqeXLlze6TlV9Mnz++++/T/E6P3u9abl27ZraqVMn1cHBQbWwsFCrVaumbtq0KdXjZWT4fLKYmBh1ypQpatWqVVUbGxvVzMxMLVmypDp06FD16tWrhnpPD59/Vv369VUgw9NDPD0k/mWHzye/dh06dFBtbW3VmzdvGu2fPEXB5MmTDWUHDhxQfX19VTMzM6Nj9OrVS7W2tk41jvPnz6t+fn6qjY2N6uzsrPbv3189depUive1qqrq2bNnDe9tCwsLtXTp0uqXX35pVOerr75SCxcurGo0mhTv7zVr1qh16tRRra2tVWtra9XHx0cdPHiweunSJaNj/PLLL6qXl5dqbm6uVqlSRd27d2+6U0skS+3z6FmRkZHqmDFj1BIlSqhmZmaqs7OzWqtWLXXKlClqfHy8od7vv/+ulixZUjU3N1d9fHzU+fPnpzr0/eLFi2q9evVUS0tLFTD6vdu2bZtarlw51czMTC1durS6ePHiNIfPp/X+vn//vjp48GDVw8NDNTU1Vd3d3dXGjRurc+bMMdT59ddf1Xr16qkFChRQzc3NVW9vb/Xjjz82mmJBpE5R1VzozSiEEEII8QqQPkJCCCGEyLckERJCCCFEviWJkBBCCCHyLUmEhBBCCJFvSSIkhBBCiHxLEiEhhBBC5FsyoWI69Ho9AQEB2NravtAU9kIIIYTIeaqqEhkZSaFChZ47OaskQukICAjAw8Mjt8MQQgghxAu4c+cORYoUSXO7JELpSJ6a/M6dOylW/RZCCCHEqykiIgIPD490lxiRRCgdybfD7OzsJBESQggh8pj0urVIZ2khhBBC5FuSCAkhhBAi35JESAghhBD5liRCQgghhMi3JBESQgghRL4liZAQQggh8i1JhIQQQgiRb0kiJIQQQoh8SxIhIYQQQuRbkggJIYQQIt+SREgIIYQQ+ZYkQkIIIYR4aWG3bnFiwQIeXr6c26Fkiiy6KoQQQoiXcvmvv1jWqpXhufdbb/HO33/nYkQZJy1CQgghhHgpa955x+j5tc2bOb96dS5FkzmSCAkhhBDihcVFRREfFpaifF3PnkT4++d8QJkkiZAQQgghXtjOMWNSLU989IjpJUqwvH17DvzwA/rExByOLGPyXCI0c+ZMPD09sbCwoHr16hw+fDjNunPnzqVu3bo4Ojri6OiIn5/fc+sLIYQQIuNUVeXM8uVpbk+MjeXSn3+y/aOPWN6uHXERETkYXcbkqURoxYoVjBw5knHjxnH8+HEqVqxIs2bNCAoKSrX+nj176NatG7t37+bgwYN4eHjQtGlT/PNAU50QQgjxqptduTKxwcHPr6SqAFz56y9+9fUlISYmByLLOEVVH0eYB1SvXp2qVasyY8YMAPR6PR4eHgwdOpTRo0enu79Op8PR0ZEZM2bQs2fPDJ0zIiICe3t7wsPDsbOze6n4hRBCiNfFudWrWd25c6b367FlCyWaNcuGiIxl9Ps7z7QIxcfHc+zYMfz8/AxlGo0GPz8/Dh48mKFjxMTEkJCQgJOTU3aFKYQQQrz2VFVlQ//+L7SvtYtLFkfzcvLMPELBwcHodDrc3NyMyt3c3Lh48WKGjvHpp59SqFAho2TqWXFxccTFxRmeR7yC9zOFEEKI3LTQzy/VkWLpsXJ15e6hQ4RcvUrIjRu4lStHyRYtUBQl64PMoDyTCL2sSZMmsXz5cvbs2YOFhUWa9SZOnMiECRNyMDIhhBAi7wi8fJ2bu3aRZuqiKIZ+Qc+KCQri7w8+MCqzcnVllL8/GpPcSUnyzK0xZ2dntFot9+/fNyq/f/8+7u7uz913ypQpTJo0iW3btlGhQoXn1h0zZgzh4eGGx507d146diGEEOJ1EHjqFLNKl0w7CYI0k6C0xAQFMadKFXTx8S8V24vKM4mQmZkZvr6+7Ny501Cm1+vZuXMnNWvWTHO/7777jq+++ootW7ZQpUqVdM9jbm6OnZ2d0UMIIYTI7xJjY5nb+C0U9Fl+7PunTnH48UConJanbo2NHDmSXr16UaVKFapVq8bUqVOJjo6mT58+APTs2ZPChQszceJEACZPnszYsWNZunQpnp6eBAYGAmBjY4ONjU2uXYcQQgiRl9w5dIh5NWqgwvNbg16URkPYzZvZceR05alEqEuXLjx48ICxY8cSGBhIpUqV2LJli6ED9e3bt9FonjRyzZo1i/j4eDp16mR0nHHjxjF+/PicDF0IIYTIkxLj4phXuzaQTUmQoqAAZV9gKH6WnD4vzSOUG2QeISGEEPnV9b17+aN+/ew5uKJQbehQLBwcKNmiBUWqV8/Sw2f0+ztPtQgJIYQQImdc3bGDJU2aZOkx/aZMoWitWuji43EpUwZrV9csPf6LkERICCGEEEaCL1/OsiTIwdubtr//TtG6dY26r7wqJBESQgghhMGCRo24tXv3Sx3DtUIFmk6ZglejRmi02iyKLHtIIiSEEEIIAGZXr0ng4f+AjHeMTu5orAAaU1MGHD+OW7ly2RFetnj12qiEEEIIkeOWtu/AvcP/oZD5JEhnakPVwYMZHR6ep5IgkBYhIYQQIt/7rXZt7hw4kKJ1JL15g1TAssX7jP5rVvYFl80kERJCCCHysRllyvDw4sVUbxE9LwnybtaMt9eswczaOrtCyxGSCAkhhBD51M8lSvDw2jUy1Z1Zo6HrunWUbtMmu8LKUZIICSGEEPmMXq9nvEd59gQUwwsdXtwE0ukbZGJCk8mTqT50KFpT05wIM0dIIiSEEELkI6qqMtHBASUyisacz9D6Yaa2tgw6fRpHT88ciDBnyagxIYQQIp+Ii47mfyYmJEZGonk85iu9JMinQwc+i4h4LZMgkBYhIYQQIl84uPJvtnRpmakWkP5Hj1LI1zfbYnoVSCIkhBBCvOamlSlDSBojw9K6NTYyMBBbN7dsjiz3SSIkhBBCvMamFCpE9L17qSY76jM/K4BFgQIMv34di+es2P46kURICCGEeE19X6gQMffupbldARLRchsPQnCivnsAHz2n/utIOksLIYQQr5mYkBC+trZ+bhKULICC7KAJPcf3y3dJEEiLkBBCCPFa2fXzL+weMQQtaobWDCtAMFdCJmPl6Jjtsb2KpEVICCGEeE0cW7KCvSMGY5KBJEgFbIp68Z36KN8mQSAtQkIIIcRrYVaNWtw/dDDD9VvOnEnVDz7IxojyBkmEhBBCiDwsOjSMoU7lKIZ/hm6FoSh86O+PXcGC2R1aniC3xoQQQog86uHVq3zl5EIx/NOtqwO05erxZUKCJEFPkURICCGEyINW/u8XGpccRTjp9+/RAxWmLOGLM/+g0WZqrfnXntwaE0IIIfKY/jbl+C26I/Amj7CmM6swJdGw/dnZor949AhTC4ucDjNPkBYhIYQQIo/Q6/WMVixYH92A5FTnMqU4QlWjegqPZ41WFD5PSJAk6DkkERJCCCHyAF18PKO0DlgSRywWJCdCCirRWANPlsyIxYwSLVowTq/HxERu/jyPJEJCCCHEK+7Yqg18ZW6OA5EAVOfQ4y0qWnRU4LRR/WGnj/LOX3/lcJR5k6SJQgghxCts/5QpbP/4Y6M+P3X5l4LcIwQnvLlGAUKApDai3vv2UbB8+VyJNS+SREgIIYR4RU31KUPYpYupbivBNeAakHRLzNzeno+Dg+VWWCbJqyWEEEK8gr71Kkf8zYvpTpKoB3rv2YNX/fo5EdZrRxIhIYQQ4hUSHhDAD4ULcwNvgqhBGS5iTzjK467QzyZGI+7cwbFIkZwP9DUhiZAQQgjxiji3fTermjbiX+qxm0YA7KYRA5iDC8HoUNAmjw3TavkyLk4mSHxJMmpMCCGEeAUs7NqPVU2Tkp9DVDeUJ2LCaSqgRyGApKUxfDp2ZFxioiRBWUBahIQQQohcpNPp6GtWGjt9KAUel1kTzSMsUdGgoqBHw1nKYUYcPp060WXVqlyN+XUiiZAQQgiRS/R6Pe+ZeFEMf7ToDeVtWc9yuhGFLYW4C6hcwYvtZ7/F7Y03ci/g15AkQkIIIUQuuLhxIwPaTMUHnaEjdPIaYUUIYBQ/oEOLFh0JTsX45uHN3Az3tSV9hIQQQogcdm3nTpa2acMBamFGvCERAkhEy24aEI8pWnQ0/O57SYKykbQICSGEEDloYuWGhJ88gCXgRgB2RBiGxOvRMIf3eIgLddhHw6+/pv7HH+VmuK89SYSEEEKIHKCqKl9bWaGLjcXycVl/5hnXAYJxpS1/MvC//XhUr57iOCJrSSIkhBBCZDNdYiJNzfy4qXaiJ4sN5Qo8dVMMNOgZoZnBlMSHKEp6c0qLrJDn+gjNnDkTT09PLCwsqF69OocPH06z7rlz5+jYsSOenp4oisLUqVNzLlAhhBACWPvxeLqblmOX2pBQnFJsT053VCBBY80PuhBJgnJQnkqEVqxYwciRIxk3bhzHjx+nYsWKNGvWjKCgoFTrx8TEULx4cSZNmoS7u3sORyuEECI/U1WVGTUbcWrKBMJwogi3acZW7uOCinFLUCIKThUr860uKrfCzbcUVVXV9Ku9GqpXr07VqlWZMWMGkDT/goeHB0OHDmX06NHP3dfT05MRI0YwYsSITJ0zIiICe3t7wsPDsbOze9HQhRBC5CNhd+7ws6cn6JPmBgqmAPaEo0UHQDymLKMLVTiOD+dp9ut86g7olYsRv34y+v2dZ/oIxcfHc+zYMcaMGWMo02g0+Pn5cfDgwSw7T1xcHHFxcYbnERERWXZsIYQQr7+4qCh+LlrUqMyZh0bPLYinMqcpzWU+exiMlVPKW2YiZ+SZW2PBwcHodDrc3NyMyt3c3AgMDMyy80ycOBF7e3vDw8PDI8uOLYQQ4vV2cuMORtkV5xLeT80TnZIKVLK6xjdqvCRBuSzPJEI5ZcyYMYSHhxsed+7cye2QhBBC5AFflKrL+jZNcFEfUJpraX7BqoBlgQKMi47MyfBEGvLMrTFnZ2e0Wi337983Kr9//36WdoQ2NzfH3Nw8y44nhBDi9aZLSGCoVXFcE++S3livRBQ8qldjwH//5UhsIn15pkXIzMwMX19fdu7caSjT6/Xs3LmTmjVr5mJkQggh8qvw4FAamjXFLQNJ0BnK0uCH6ZIEvWLyTIsQwMiRI+nVqxdVqlShWrVqTJ06lejoaPr06QNAz549KVy4MBMnTgSSOlifP3/e8LO/vz8nT57ExsaGEiVK5Np1CCGEyPt2T53Nqg+/IJLa6dYN1rixOOwQFrY2ORCZyIw8lQh16dKFBw8eMHbsWAIDA6lUqRJbtmwxdKC+ffs2Gs2TRq6AgAAqV65seD5lyhSmTJlC/fr12bNnT06HL4QQ4jXxRfGqmNw4ihvQmo2GVeOfljw3jbZeF6ZsWYi5pXS7eBXlqXmEcoPMIySEEOJpfW0rYREVgCsPDEtkpHZbLBGFRl9+QcP//S+HIxSQ8e/vPNNHSAghhMhNYQH36KcUYm1UA1x4YLQtEa1htmgVCMWWYZcuShKUB0giJIQQQqTj0pZtfFTYlzW8TTymJGBm2KYAe6jHA5zRo2BSojJT1QhcSpXKvYBFhuWpPkJCCCFETvumemtiD//FOoYQgT1e3MCceKM61/HGgjiWXVuCc3HP3AlUvBBJhIQQQohUxEVFMcnWFpWkL0tvrnKE6oThgB4F5XF3aD0aKnGatVG7Mbe2ytWYRebJrTEhhBDiGQEnTjDJ1hZ40hG6JZspyzlCceRP2qJHgwq4lC3LX+ohSYLyKGkREkIIIZ6y7ZNPOPD996kOh6/PHlwJogznUdDTcc06KnRolwtRiqwiiZAQQgjx2JHf5qWaBEFSy5ArD3DlHxTgw6Ag7FxccjhCkdUkERJCCJHvqarKN9Y2JD6KSbeuUqQcY2+fRlHSW1RD5AXSR0gIIUS+9vDWXcZrzdE9ikEh7RmiVaDaiBGMu3NGkqDXiLQICSGEyLcu/PUXi1u1xQxdqtuTZ402c3Bg2JUrWDs752h8IvtJIiSEECJfOrZ+G9PaD8ICF1wJxATj5TJUIB4tcVjyQ2ho7gUqspUkQkIIIfIVVVX5n1MhEsPuU/zxja/k219PJ0Eh2IOLF9OCTuRGmCKHSB8hIYQQ+UbAmXMM0xSAsMDHq4OlTgE+PbpTkqB8QFqEhBBC5As7J37PH59Nx4uk21xPd3d+uiUowcSG/8WEoDU1zekQRS6QREgIIcRrTZeYSC+zsniot/EiLs164VhjUcSbb++cysHoRG6TW2NCCCFeWzf37WOYaUGKqLcxf5wEpXZDLAwbOv34lSRB+ZC0CAkhhHgtLX/7bf5edRhvgo1GgykYJ0Mq8KMuHEUjbQP5kSRCQgghXit6vZ7xZlZodHEUf1yW2vSHsZjjVsydD2/ezMHoxKtG0l8hhBCvja1fTeJ/Wi1aXVyKWaLVpx4xmNNj5R+SBAlpERJCCPF6+NrLh8Sbl1Jt/XmabamyjL90LkdiEq8+aRESQgiRp6l6PaMVUx7cvJdmEpTcJ6h8/w8YJUmQeIq0CAkhhMizdnz1LTvGfo45CpZEpFrnITZcxIfVARuwK1gwhyMUrzpJhIQQQuRJH5oXRBMfRTiFKYJ/qnVUoGS1N5l26J+cDU7kGZIICSGEyFPuXvPnuxJlcCISBbDkkWF4/NPD4nVoGBcfi4nMEC2eQ/oICSGEyDM2DBrE3BJFKPA4CQIwQYf6VO+gBxQgskBpvlJ1kgSJdEmLkBBCiFeeXq/nS9cSmD68kepf8CepxA28qM9u+i6bjW/XTjkeo8ibJBESQgjxSruxdy8L69fHjNSXx1CAM7xBBc7zXaQ/VjaWORyhyMskERJCCPHK+sypKKahd9CQehLE4/Jv+9rR7fdjORiZeF1IIiSEEOKVkxATw8fWhXAg3GiNsGfFYELP3f/yRoPqORmeeI1IIiSEEOKVcmjZn2zq3g7HVLapgJ6kkT6xJrZMjAtDI4ulipcgiZAQQohXwqOwMMYW8OS0vjS10qhzmRIkoqVu04oM3boiR+MTrydJhIQQQuS6ffOW06PfZuLpQldWGOYFSpbcEnRUqcn5+PmYmGhzJ1Dx2pFESAghRK5JSEhghFVxbBIf0I84fuF9TEk0SoL0QAQ2JNgW5XLEotwKVbym5MaqEEKIXLFvziJGmznimngXK+IA8OYae6lrqBOHKTtoTPsfv2JGhCyWKrKetAgJIYTIUaqq8mvLt7m7eS226I22+bGTf6nNdvzw4A53FQ/2JmxBq5VbYSJ7SCIkhBAix1y7HMjY0tXwxh8T9CmGxGvRU44zXKAMM+7tp4B7gVyJU+QfkggJIYTIEeP8+vHfzjMUQkGTShIESZ2itZY2bIvej6KkVkOIrCV9hIQQQmSr+Ng43japSMDOLTgTQjFuG5Kg5NFg+sc/v9GrLz/F3JEkSOQYaRESQgiRbQ5u/Jdv2wzDnYc4EYoTIagoKI8XzNCjeTwqzJrJUfextJZ1wkTOynMtQjNnzsTT0xMLCwuqV6/O4cOHn1t/1apV+Pj4YGFhQfny5fn7779zKFIhhMi/4mLjGWVblLltulGFExTBH0seYUEsGlT0j1Ohy5QgsVAlfkoIkSRI5Io8lQitWLGCkSNHMm7cOI4fP07FihVp1qwZQUFBqdY/cOAA3bp1o1+/fpw4cYJ27drRrl07zp49m8ORCyFE/rFw9E9MsLTEKuouxbhrKFd48qWjQ0MENnyx/Tcm+R9DayI3KETuUFRVTWtB31dO9erVqVq1KjNmzABAr9fj4eHB0KFDGT16dIr6Xbp0ITo6mk2bNhnKatSoQaVKlZg9e3aGzhkREYG9vT3h4eHY2dllzYUIIcRr6pt2I7n752LceZDqdhWIxhJzLXwZFoS5jU3OBijyjYx+f+eZFqH4+HiOHTuGn5+foUyj0eDn58fBgwdT3efgwYNG9QGaNWuWZn2AuLg4IiIijB5CCCGe7/y6dXykWBH95wzcnkqCnv5LOxEtiYB35158nRgjSZB4JeSZtsjg4GB0Oh1ubm5G5W5ubly8eDHVfQIDA1OtHxgYmOZ5Jk6cyIQJE14+YCGEyAf0Oh2TXNyID32I7eOyp5Mf47FfOvqdOI9XpTI5Fp8Q6ckzLUI5ZcyYMYSHhxsed+7cye2QhBDilXT3xgPeNylEfOhDHlDAkAA9nfzoHneKtqvVlP/p9ZIEiVdOphOhu3fvEhUVlaI8ISGBvXv3ZklQqXF2dkar1XL//n2j8vv37+Pu7p7qPu7u7pmqD2Bubo6dnZ3RQwghxBN6nY4PK3ZiQPEWaIA4zNGjSTFB4mYaE4ENb63Zzof7t8rcQOKVlOFE6N69e1SrVo1ixYrh4OBAz549jRKikJAQGjZsmC1BApiZmeHr68vOnTsNZXq9np07d1KzZs1U96lZs6ZRfYDt27enWV8IIcTzXd1/mA6mVTl5OhgvbuLGAyyIw5VgorBCJenWWCIaynOR7+OCqd7BL73DCpFrMpwIjR49Go1Gw6FDh9iyZQvnz5+nYcOGhIaGGupk9wC0kSNHMnfuXBYuXMiFCxcYNGgQ0dHR9OnTB4CePXsyZswYQ/3hw4ezZcsWfvjhBy5evMj48eM5evQoQ4YMydY4hRDidbRr8k90rTOOG2pRTIkjDgs0j2+IKaiE4kgojjykALe92jNXvYupmVkuRy3E82W4s/SOHTtYt24dVapUAWD//v107tyZRo0aGVpdsrvZs0uXLjx48ICxY8cSGBhIpUqV2LJli6FD9O3bt9FonuR2tWrVYunSpXzxxRd89tlnlCxZkvXr11OuXLlsjVMIIV4n/ucu8XO5KpgQR2sSUIFTlOMipfDgLjoUtKhEYYMjoXxx+yL2Hh65HbYQGZLheYRsbGw4ceIEJUuWNJQlJibSuXNnrl+/zuLFi6lUqRI6nS7bgs0NMo+QECI/2/zpF2z7bhqWxGCGDoUno8JW0wFL4iiMP7cpSpXC0cy+uQWNTI4oXgFZPo9Q8eLFOX36tFGZiYkJq1atonjx4rRq1erFoxVCCPFK8b8bTk3HXmz7bhp2RKJFNXSGVh4/CnOXo1ThL96iR2dv5tzdIUmQyHMynAi99dZbzJkzJ0V5cjJUqVKlrIxLCCFELlD1ev74aBJdPNqhDfMnFktisMQEvaElSAXiMCUOU1qWe8T9B58xauWPuRm2EC8sw7fGEhMTiYmJSbN5KTExEX9/f4oVK5alAeY2uTUmhMgv7t+PZGIRb+wTg1lPWzqw3mi7CsRgQSKmWBCD2/CfGT51cK7EKkR6Mvr9neE2TBMTk+cfyMTktUuChBAiP0iIi2OCVyUe3btDJA5cpRIuBKNHMYwKg6TbYdbEEoVCl73HqFi3Yu4FLUQWkZu5QgiRj507cZuJbzaiJNfQAnZEUxR/juCLBhU9CspT/YMsHB0Z+/ChTI4oXhuSCAkhRD6kqiod7BvzMFJPecIB406jb3Kcs5SlCHexIgZTEinxdg/eWbE4dwIWIptIIiSEEPnM6c276NjiN65SHw06nAjHhWDD0PjkUWFa9DgQwSPMaPP3Qaq/VSN3AxciG0giJIQQ+YSqqnxTpwOHDtziKm0B0KNlI615g3PoSUp+TNERiDtuBBBVpgWTz2xAo9XmbvBCZJMXSoTCwsI4fPgwQUFB6PV6o209e/bMksCEEEJknbOHr/BFze7E6k3wIIi3+Jsd+JGAGXq06NBymVLcohCuPMDZ3pwJFzfj7i6jZcXrLdOJ0MaNG+nRowdRUVHY2dkZdZhTFEUSISGEeIXo9XoavTGO6xdv8yaJ1OAoClCIAAA20wJfjmJJLN5c5RrF2Rh3ABNZI0zkExmeUDHZqFGj6Nu3L1FRUYSFhREaGmp4hISEZEeMQgghXsCxNX/hrh3KPxdNCMEV3VOD4TWoeHGd8pykBJdJQMNWbRv2hS+TJEjkK5lOhPz9/Rk2bBhWVlbZEY8QQoiXpKoqS1q1YlSnKQTjDEAMVhymOhpAT1KnaFMSSERLIO5U+WQspxOXYWdnkZuhC5HjMn1rrFmzZhw9epTixYtnRzxCCCFewq4NR1nQpS/esWeIpJVhBiAVhURMiMQaPVpMiOdfalOYIFaHbsHeQf64FflTphOhli1b8vHHH3P+/HnKly+Pqamp0fY2bdpkWXBCCCEyRq/TsePXlfwz+F280QFQjSOcpgKJmAEKtdmPLdGogB6F2vY3+PHhGbQyIkzkYxleayyZRpP23TRFUdDpdC8d1KtE1hoTQrzq1v7yJ4cHdwFULIk32haKA7cohjPBFMEfSLot5tb1AwYtm5nzwQqRQ7J8rbFkzw6XF0IIkTsi793j5wbtSLh8GMs06jgShiNhhucqUO2TMbSY/G1OhCjEK08mVBRCiDzo9oEDzK9dG8BoRui0qECimR3DLp7F1csjByIUIm/I9KgxgH/++YfWrVtTokQJSpQoQZs2bdi3b19WxyaEEOIZEQ/D+NLCgZ9qtyAGC25RxLAkRloeYU6NDz/kq0ehkgQJ8YxMJ0KLFy/Gz88PKysrhg0bxrBhw7C0tKRx48YsXbo0O2IUQggBxMTEM8XZCW1cOObEsoq32Ugb9CiowLMdPh9hRnzlNkzUP6L5jz+iPKePpxD5VaY7S5cpU4YBAwbw4YcfGpX/+OOPzJ07lwsXLmRpgLlNOksLIXJbbGwin733G38u2U849ljyiDjMeIAboODNFRqwB4+nOkMH44Sm6SB+3vKV0QoAQuQXGf3+znQiZG5uzrlz5yhRooRR+dWrVylXrhyxsbEvFvErShIhIURumla/Jbf37iIEF2yI5hQV2Uu9p2o86SFUi32U5TxhJu4M2bSI+s3K5VLUQuS+jH5/Z7qd1MPDg507d6Yo37FjBx4ecu9ZCCGygl6vp71NA1btfUQ8lnhwlwKE0IjduHIfjHoGKbzJUUpykdLfLmFl/DFJgoTIoEyPGhs1ahTDhg3j5MmT1KpVC4D9+/ezYMECfv755ywPUAgh8ht//wgqe3zGA7UhAHXZb1glTI+CO/cJwv1xbT2OhGJFNJ+s+4Wy7RrmUtRC5E2ZToQGDRqEu7s7P/zwAytXrgSS+g2tWLGCtm3bZnmAQgiRn1y5EszgUq14wFuGsouUpgJnAFBQCcMB0ONAGIUIoEPzQozfuA2ticyIIkRmvdBvTfv27Wnfvn1WxyKEEPnW/h1n6NdkItGY0wR/FPSoj3svbKAtRfDHiRAisOE2RXEmiPKai/xxfBqFK8ptMCFelIylFEKIXKSqKv0LN6ZFk9+5RCnuUoxldKcxO1FImsm/HGdwJBQAMxJwJYgvJjRnl26XJEFCvKQMtQg5OTlx+fJlnJ2dcXR0fO5QzJCQkCwLTgghXmerJ83nyzF/Y4odETgaymOxwo4IPmEycZhjQgIaVHQonLWpz9kr3+Li7pB7gQvxGslQIvTTTz9ha2tr+FnmpBBCiBen1+lY8P5YfvztElfxIREtT6ZDTPp8dSAME3TEoGUfdfHkBp/M/Zj/vdc7t8IW4rWU6XmE8huZR0gIkZW+7D+H07/9ggv3uUdh/qb1MzWS5oh2IAwFPWU4jw4L1hyZQOEqVXIjZCHypGxbff748eOYmppSvnx5AP7880/mz59P2bJlGT9+PGZmZi8etRBCvKZiYxP59L15aJd8zJtEoAKaVFcIU9CQSDWOoCWBmn6V+HL73JwOV4h8I9OdpQcOHMjly5cBuH79Ol26dMHKyopVq1bxySefZHmAQgiR1wUcP8EAy1LcWTIDWyIBOEw15tMX0INhpbCkBnpTEnmTY4xeMEaSICGyWaYTocuXL1OpUiUAVq1aRf369Vm6dCkLFixgzZo1WR2fEELkWbHh4aweOIT/+TbjAmXQPh4FtpUmbKYFiZiS9DH8ZIZogEZOl/hfbAT1enXIlbiFyE8yfWtMVVX0+qRf5h07dtCqVSsgaemN4ODgrI1OCCHyqM/afsGSDXeIxpbGOOPNdS5SGnfucZDaKep7cxk9JnTqUp7vlq/LhYiFyJ8ynQhVqVKFr7/+Gj8/P/755x9mzZoFwI0bN3Bzc8vyAIUQIq8Z/GYffjvhTnFiacdGHAgDwIsbzKdXivoWxFBJOU/nn8bTZXi7nA1WiHwu04nQ1KlT6dGjB+vXr+fzzz83rEK/evVqw9pjQgiRH82bd5zJo1ehe5CAFj0mJOL0eCJEAAvicOceEdjzCGsATIhncL1IJu86jlYrc9wKkdMynQhVqFCBM2fOpCj//vvv0Wq1WRKUEELkJSG37tK14XecvRFNAhY8xBsVhSuUJBYzzEhAQUUlabLER1jRmvU8oABfbfoRv5YVcvsShMi3XniFvvj4eIKCggz9hZIVLVr0pYMSQoi8QK/T8VmLj9m87ToX8aEap/iXRgBo0NGSvzEnHhWIx4wNtOIGxXmLzbxZ1oEh//yJs7N17l6EEPlcphOhy5cv069fPw4cOGBUrqoqiqKg0+myLDghhHhVXT9/mwFv9OABLlzCBxUtNsTSnSVcphQKespzxjAezIx42vEnpZo0osH4nygqXQmEeCVkOhHq06cPJiYmbNq0iYIFC+bYchshISEMHTqUjRs3otFo6NixIz///DM2NjZp7jNnzhyWLl3K8ePHiYyMJDQ0FAcHhxyJVwjxelJVlb0bDvFWu7U8ws9Q3pZ1VOQ0CiqluMIFSqOioKCikDRD0COH4vTcti3XYhdCpJTpROjkyZMcO3YMHx+f7IgnTT169ODevXts376dhIQE+vTpw4ABA1i6dGma+8TExNC8eXOaN2/OmDFjcjBaIcTraNHCE/TvvZp4TAArQ7kDoZTmEprHEyLq0KBHiw4tCokoQKTWie8enM+dwIUQacp0IlS2bNkcny/owoULbNmyhSNHjlDl8Vo706dPp0WLFkyZMoVChQqlut+IESMA2LNnTw5FKoR4Xc3/9V+Wvf8JtTFhN40N5Q6E8D6zMSfeUKZFzw08OUkFWmq20/KzITT+3zhZsFqIV1Cmx2pOnjyZTz75hD179vDw4UMiIiKMHtnh4MGDODg4GJIgAD8/PzQaDYcOHcrSc8XFxeXINQkh8o5D/91hyvvTqM1B9lPnqS0qYTgxkyHcx+1xCURhRSv+ZnRdf74NvoLfV+MlCRLiFZXpFiE/v6R74o0bNzYqz87O0oGBgbi6uhqVmZiY4OTkRGBgYJaea+LEiUyYMCFLjymEyJs+/3wHkycfQKfT44PKSjoRjxlaEinNJS5QBhWFKGzYREv6MQ+AWCx4Z+EsKrzzDopG5gYS4lWW6URo9+7dWXby0aNHM3ny5OfWuXDhQpadLyPGjBnDyJEjDc8jIiLw8PDI0RiEELlv5Mit/PTTwcfPFC5S7vHPeipz/PFoMPXxfzXEYE08pvynrcuy4z/hVkHmBhIiL8h0IlS/fv0sO/moUaPo3bv3c+sUL14cd3d3goKCjMoTExMJCQnB3d09y+IBMDc3x9zcPEuPKYTIO/Q6HbV9JnDsaiIKJqg8O1GshjjMqcF/nKAyiY+3v8kRivywlZ0fNpDbYELkIS80oeK+ffv49ddfuX79OqtWraJw4cL88ccfeHl5UadOnfQP8JiLiwsuLi7p1qtZsyZhYWEcO3YMX19fAHbt2oVer6d69eovcglCCJHC7X//pWP97zmqfxMeJzgKiajPfFQG4oYLwQxiFjfxJAw7pq0fQ5m2DXMhaiHEy8j0zes1a9bQrFkzLC0tOX78OHFxcQCEh4fz7bffZnmAAGXKlKF58+b079+fw4cPs3//foYMGULXrl0NI8b8/f3x8fHh8OHDhv0CAwM5efIkV69eBeDMmTOcPHmSkJCQbIlTCJE3RUfH0+qNj6hSdylH9ZVJvuUFYIqOOuw1PPfiOu+whDOUI5gCOFVrwNoHmyjTtk0uRC6EeFmZToS+/vprZs+ezdy5czE1NTWU165dm+PHj2dpcE9bsmQJPj4+NG7cmBYtWlCnTh3mzJlj2J6QkMClS5eIiYkxlM2ePZvKlSvTv39/AOrVq0flypXZsGFDtsUphMhb3m40BRubb/jrvC0PcAWUxw8VBT2e3KAxuxjMDN5jDu/yB/ZE4ssJbEuWY8GhH2SZDCHyMEVVVTX9ak9YWVlx/vx5PD09sbW15dSpUxQvXpzr169TtmxZYmNjsyvWXBEREYG9vT3h4eHY2dnldjhCiCzyMDCUrtU/Z8ftpBGpJiTSgr/x4gYHqcEx3qQCZ2jOVsyJR09SehSAOybo0JWsw4xzqzA1lcWmhXgVZfT7O9N9hNzd3bl69Sqenp5G5f/++y/FixfPdKBCCJHT1q04QdeuK7DCBB6P/2rFJipyCgVozlYK8BAL4jAlAUhqPj9MVVq2KEHX6V/jJJ93QrwWMp0I9e/fn+HDhzNv3jwURSEgIICDBw/y0Ucf8eWXX2ZHjEIIkSWW/L6fke8tIRhn9JgTjwUA9oQQjwkL6YUeDQ3YgytBLKM7cZjjwgOCKMCIrUtp2rRELl+FECIrZToRGj16NHq9nsaNGxMTE0O9evUwNzfno48+YujQodkRoxBCvJTIe/f4d9Fa+owOIIHkyVmfDHEPx4m/aUVyJ+mldKcCp1CBc5TBtUgDdl/8GmtrsxyPXQiRvTLdRyhZfHw8V69eJSoqirJlyz53Ffi8TPoICZF36fUqKz8cz8VpX3GUyvxFZkZ2qdhrY+jzQV2m/NQSrVZmiBYiL8m2PkLJzMzMKFu27IvuLoQQ2er27TCaew6ioboDhQIUJgATEkg0fOwljQxL6+dxX9Zj/P8a5XTYQogclulEKDY2lunTp7N7926CgoLQ6/VG27NzCL0QQmTElpUH6NVlIQNZiYYnn1E9WcgS3iHucd+gp2lIxAQdJUq5sXRlVypWzNpZ64UQr6ZMJ0L9+vVj27ZtdOrUiWrVqslU8kKIV0ZiXBxNyo5h73VLipCAFuM/1Ipyl7rsYwdN0KBDj5YWbKAggVynOGYlq7Ll0ojcCV4IkSsynQht2rSJv//+m9q1a2dHPEIIkWmqqnLixD06VR/PjcTCQNIyGJHYYE00yuPbXgpQm/1YE809CuLJTbbRCBti6fquL98vGpSLVyGEyA2ZToQKFy6Mra1tdsQihBCZFhQURcmSM4iIiAMKkdTXRyEeC37jPapxmKocxoxEwz6VOUklThKNNb6NqrBla09MTKQztBD5UaZ/83/44Qc+/fRTbt26lR3xCCFEhk36eid13N4jIiJ5Rvvk5TGShOPAdpqyl/qGMj0adChEY8WjhkMkCRIin8t0i1CVKlWIjY2lePHiWFlZGa03BsiCpkKIHDF58r/M+3IuV/Dh6eQnuUXoyf/hX+riT2EcCaUEF7mqKcfYn9+h7ZAOOR+4EOKVkulEqFu3bvj7+/Ptt9/i5uYmnaWFEDlKVVV2rj/CtNELCXgmCUoaHq/FghhisQJ0QNJaYDfwIhR7hg6swLsz/yfzAgkhgBdIhA4cOMDBgwepWLFidsQjhBCpUlWV0aN3MOeHLTjqggjgyVIXGhIpyD3isKA0F7lNUe5QFA08HjemogWWbBpMi5alc+cChBCvpEwnQj4+Pjx69Cg7YhFCiDQ1rPgN/5zRAXaEYceTCRBVnAghgMKoaAjGhSZs5Q7F0D9uDerS5Q0WLWqPmdkLzyErhHhNZbpteNKkSYwaNYo9e/bw8OFDIiIijB5CCJFVVFVlerv+tFMq88+ZxGe2Jt8S0xCJHerjjzMNOsKxJylRUnm3Y1GWLu0kSZAQIlWZ/mRo3rw5AI0bNzYqV1UVRVHQ6XRZE5kQIt/SJSRwYe1aFs3Yxs5/73MRP4w7RCdLKjMhnjjMUAA9WuIwR0HP1j/b0aTNmzkZuhAij8l0IrR79+7siEMIIVBVldNLlrB5yBDWhNfiLOWJpSjJt8GceIgf2zlLec5TFlBQ0GNPOGW5QAyW2BHJddtqhN39DDu7lEtpCCHE0zKdCNWvXz/9SkIIkUnz559g/5QpeJxfCkA85sRi+XhrUltPe9ZSkHt4cx0FPRcpQyku04Y/0aPwG/1466MBHPi+Wa5dhxAib8lQInT69GnKlSuHRqPh9OnTz61boUKFLAlMCJE/JCbq6dl5IVfXr6Iuew3l/hR+pqbC7/THhfv0ZiGdWcNa2tOSTSiATmPJrbufY1uwYI7GL4TI2zKUCFWqVInAwEBcXV2pVKkSiqKgqmqKetJHSAiRGaqq0qzeL4Qd3EoprmFBHPGYch0vTEhIdZ9gXNhPLRqzixAc2UYjmpaI5ZM/f5EkSAiRaRlKhG7cuIGLi4vhZyGEeBkPHkTzzTf7+G3OYaIfqYAvZbiICTo0qJTmMnfx4D4FeTJM/qn9ceUkFXHiIZ4d+zJ2cQcsLGRUmBAi8zL0yVGsWLFUfxZCiMwKOHmacjVXEBprypORYAqOhKJ5Kulx4z6pjRRT0eDEQ8q7x7L62lLMrKxyJG4hxOsp039C7dq1i7Vr13Lz5k0URcHLy4tOnTpRr1697IhPCPGa0Ccmcnb5cga+u4hQaqfYfpfCOPPQ8LwQ/pgST+LjjykFHZ7coiSX+XreB/j2ehdFI8tkCCFeTqYSoffff585c+bg6OhIqVKlUFWVAwcOMHPmTD744AOmT5+eXXEKIfKwS5u38kW7L7gd78IlyjwuTW79SVogNZgC6Ema5VUBHAjHmSCcCUGPhlocoLBlFC3m/EaVdzrnxmUIIV5DGU6E1q1bx/z585k3bx69evUyLLaq1+tZsGABgwYNokmTJrRp0ybbghVC5D0XLjygbotNPKQVyYug1mYf5ylLKAUe11K4Tgkasefx2mBwlRLcowiVOUEhAvFtUYd35k/H2tU1dy5ECPFaUtTUhn+lok2bNrzxxhtMnDgx1e2ffvopFy9e5M8//8zSAHNbREQE9vb2hIeHY2dnl9vhCJGnbPljO6177iGRp/sDqZTgMlcpxbN9gLy4TgVOE4Ed+6mNObFEYk/LliXZuLGb4Q8wIYRIT0a/vzPcInT8+HG++OKLNLd36NCBjh07Zi5KIcRr6eL69VzavoePfwkk0XArLJmKMw+5TTzxmJGcDHViJQ9x5k/aAuBjGYhLlep0716O99+vmrMXIITINzKcCAUHB1OkSJE0txcpUoSHDx+muV0I8XpTVZVHISGcXrKEecMnoSWBKwx+thauBNGIXVgTxS4ao6KlMscpywU0qNzAi5t4sezAeCpVcs+VaxFC5B8ZToTi4+MxNTVN+0AmJsTHx2dJUEKIvOVRaCi/1W/MgzOnOEkFDtIOHSakHP6uUpe9mJFIXQ5QmAA8uIMpTyZitSWSoUOrShIkhMgRmRo19uWXX2KVxpwdMTExWRKQECJv2bjxEvPfGUKpiHNcpzT+eBBCAfRoU9S1JobynDc8L85NHuJEAUJQATNHZ/7+7yeKlCqag1cghMjPMpwI1atXj0uXLqVbRwjx+ktI0DF27G5Wr77A1ash9OIKlsTjw0XKcoHjvMnTnaNTmxgxmUP1RrQZ2IK48HDe6NJFlskQQuSoDCdCe/bsycYwhBB5yeTJ+5k86V98uEAD7mNOLCqgfTw3UFFucZuUs9BHY8Ne6lKPfQBEulbgu/3L0WhTth4JIUROkMV5hBDp0un0bN9+nfh4Hdevh/LVV3tx4iHN2YINUVzAh0AKUYYLmJDweDZoBQ06NCSS+NTosD3U4yxl6NWjPN8tHCRJkBAiV0kiJIRI040boaxbd5EVK85x8/Bx3mIzFsRSmlqcpRzL6IYjoVygLAB7aIAn1wkgaYSpHg16zI2OWdhOx/XgmZiYysePECL3ySeRECJV16+HUO6NX3gUm4iCykj+wJpoFFQ6sJYHuBCIO4E86dMTgT2nqcSTfkEKT68er6Cw99SnkgQJIV4ZsmKhECKFiIg4atT4nUexiYCCBbHYEoUG1ZDeuBJE8u2vp5MdC2Iw5clUGmU4jwmJlPS0YeOmbnh6OuTsxQghxHPIn2VCCCN//XWZDh1WEB+fSPLfSo+w4B7uuHEfAB1a7uABqFTgJKephB4N1kThxn0asYvzlCUBE0q3bsvuue/g5maTexclhBBpyNTM0tHR0RQr9mQkyLlz55gyZQrR0dG0a9eO7t27Z0uQQojsdfNmGHt3XSF413o+WmLyVLtPMg1/8C51+BcLYjlKFUJxwpYIinKHa3jTleU4E8IlSlGEAGKwxqznt8xf2Cm3LksIIdKV4URo6NChFCpUiB9++AGAoKAg6tatS6FChfD29qZ3797odDrefffdbAtWCJE1dDo9+/ff4cqVEPbuvcniP06jV0GDFhUNGnTYEU4Yjo/3UIjHjMO8STgFUFEowzne4i/0mFKBM5g8nh36MiU5Yt+all1rMmt269y7SCGEyIAMJ0L//fcfCxYsMDxftGgRTk5OnDx5EhMTE6ZMmcLMmTOzLREKCQlh6NChbNy4EY1GQ8eOHfn555+xsUm9uT0kJIRx48axbds2bt++jYuLC+3ateOrr77C3t4+W2IU4lWnqiqnNu2kXtcDRMYk9euxIBo9loAG/ePOze/yB0W5zXb8OMcb2BLJOyzGkljiMWUVHfHmGrbEGE2bqKJQs1sb5iztnTsXKIQQmZThRCgwMBBPT0/D8127dtGhQwdMTJIO0aZNGyZOnJjlASbr0aMH9+7dY/v27SQkJNCnTx8GDBjA0qVLU60fEBBAQEAAU6ZMoWzZsty6dYv333+fgIAAVq9enW1xCvEq2/XFF/T4NphIChnKYrHmSWdnBQse4cVNAJqzjeZsQ8+TkRVmJNCJdTwk6Q+Kp+eNTizfnF+X9Mr+CxFCiCyS4VFjdnZ2hIWFGZ4fPnyY6tWrG54rikJcXFyWBpfswoULbNmyhd9++43q1atTp04dpk+fzvLlywkICEh1n3LlyrFmzRpat26Nt7c3jRo14ptvvmHjxo0kJiZmS5xCvKpUVUWv0/HvpMkkprIG2NP9gZ5dI+we7hyimlFNc+I4QjWjnkT2PhWZcHgtipL2chpCCPGqyXAiVKNGDaZNm4Zer2f16tVERkbSqFEjw/bLly/j4eGRLUEePHgQBwcHqlSpYijz8/NDo9Fw6NChDB8nPDwcOzs7QytWauLi4oiIiDB6CJFXqarKjtGj+cbCgsku7lzTF6UwdynJ0+sGqjzdImTOkz9owrFlLv0JxZEorA3lx/AlClv0KOhQ0Clauq5YgomFRY5clxBCZJUM3xr76quvaNy4MYsXLyYxMZHPPvsMR0dHw/bly5dTv379bAkyMDAQV1dXozITExOcnJwIDAzM0DGCg4P56quvGDBgwHPrTZw4kQkTJrxwrEK8Sq5v387+yZMBSIgPpggRnOUNvLjJFUqRctJDlcocM9wK+4d66NHiwyW244cWPTFYEYsZ93AlqHR7irsrtB03goIV3siVaxRCiJeR4USoQoUKXLhwgf379+Pu7m50Wwyga9eulC1bNlMnHz16NJMff0in5cKFC5k6ZmoiIiJo2bIlZcuWZfz48c+tO2bMGEaOHGm0b3a1dAmRlVRV5bvvDvDNN3uJiUnAzExD69gVJP9WagBz4gmkEKW4nLzX4/8n3c4qhD8N2Gu43eXNNY5ThXsUog0buEchVFSuUYICvrWZvOsb7OyMl9AQQoi8JFMTKjo7O9O2bdtUt7Vs2TLTJx81ahS9e/d+bp3ixYvj7u5OUFCQUXliYiIhISG4u7s/d//IyEiaN2+Ora0t69atw9TU9Ln1zc3NMTeXD3aRd6h6PTd27eKvDef5fPoDdI9/rR890rGfqoRiyxucx4FwzlGWexTib1qRlARpABUbIojCjvKcBZ70+/HAH1DYTX006CjGbXRFKjB/zx8U9XJGo5H+QEKIvC1TiZBer2fBggWsXbuWmzdvoigKXl5edOrUiXfffTfTnSRdXFxwcXFJt17NmjUJCwvj2LFj+Pr6Akmj1vR6fYqWqadFRETQrFkzzM3N2bBhAxbSf0HkYSEhjwgLi8XLy8Hwu6aqKqu7duX8qlUA9KYwVymBDdGcpgJ3KIY/RdlHPfrzK3uoB0AkdiS3BimoFOcGejREYIvyuFyPQjj2VOM/CnEXv59/5c2qHlSvXkQSICHEa0NRVVVNv1rSB27r1q35+++/qVixIj4+PqiqyoULFzhz5gxt2rRh/fr12RboW2+9xf3795k9e7Zh+HyVKlUMw+f9/f1p3LgxixYtolq1akRERNC0aVNiYmJYt24d1tZPOnq6uLig1aY2cialiIgI7O3tDR2thcgNixadom/fP9HpVBo39uKvv7pjbm7CiZ3H2OBXxaiuHgwzQ8+lv2FR1Koc5iSVSMDsqdoqCirvsBgtidzAE2+uU5BAQnDiINXx4TLnSvTh9JVPc+x6hRDiZWX0+zvDLUILFixg79697Ny5k4YNGxpt27VrF+3atWPRokX07NnzxaN+jiVLljBkyBAaN25smFBx2rRphu0JCQlcunSJmJgYAI4fP24YUVaiRAmjY924ccNoTiQhXmV6vcqgQX+h0yX9zbJz5w2WLj3Do0eJjBu1lp7YYkekoX7SUFAVFZXiXDckQkceD4HXaBQ++KAKR2dMw5ZIvLiBO4GcoTyHqME/NDI6/02H2mxb+k5OXKoQQuS4DLcINW3alEaNGjF69OhUt3/77bf8888/bN26NUsDzG3SIiRym79/BEWLTkWvVzEjlmZsw9s6hJXRfgRQBICa7KcZ24nBAgtiDfNiLKH749FhT0yZ0oRRo2oxuM8S4hZ8ShH8uUdBjlCFRuxGg56dNKbp6GH06lURDw97rK3NEEKIvCTLW4ROnz7Nd999l+b2t956y6iFRgjxckJCHjFw4EbWr7+EXp/090pB7lGZEwRHOxuSIICD1OYklbAkltZsxI4IjuGbIglSFAgPT5onqHz10gxa0B8FPZY8YhQ/GBbZaM1GhvaZQoFS6ffhE0KIvCzDiVBISAhubm5pbndzcyM0NDRLghIiv4t+8IChXeexbncMOvXJvKd38UBFITGVX91HWPMIaxbSO83jKorC/PknOHPmPu+99yZWVqY8epSAtRqNFv2TekD4nTsUKFUqzWMJIcTrIMOJkE6ne+6MzFqtVpauEOIlHD9+j19/PYr/hes4/DuLINWZEhThEmUA0JJILxaiRY87gZTiEpcpDUAxbvAAF2KwwdJSi+ejM/hylChs2cxbxGGBgoperxJ39zp/+keyefNVChe25cGDGMpVfpPE815og2+iaBTsPTwo8pwRmUII8brIcCKkqiq9e/dOc46d7FpnTIjXTVRUPCtXniMqKp727X3w8LBnwYKT9OnzJ0+WMO1C8mw+WhLQYYKX5g5F9XcA0KDSleXcohgKKkW4w3F8+ZuWzJtQkouffAkkjQlz5T5HqUIQrpTkMk6EskbtRFycjuvXwwDYvfcugxevoGDgXvSJiVTu0wczG5scf22EECKnZTgR6tUr/RWls2vEmBCvi/h4Hb6+v3L5cggAw4dv4YMPqvDLL0cxXsf9ye0wHaa0Zh0n9b5Gx9KgoqDDkzvcpChbaQbAokkrqEby4hkqrjzgOG8CCncpijPGk5NC0kiyq3fj6PjpqCy/ZiGEeJVlOBGaP39+dsYhRL4watQ2QxKULCkJgqdXgH8iaUHUklxnD404xpv4chwV2EljVMCTO6ylA7rHq8afCS1ANcOeCltoxtNrioXh8Mzxk/oOvfVWySy7TiGEyCsyNbO0ECJter3KxYvB2NmZc/VqCJs3X6F8eTd69ChvmAl6zpxjae5vSRSPsHn8cwwdWEsR7hKEC2bEEa+1YaOuDXuojw4tMdgAKoep9niSxKRz3FWLsNOlL5UfrEeHlov4PHUWBQ06CnOfAApjSwR6NIyd2IEKFdIeDCGEEK+rDCdCffv2zVC9efPmvXAwQuQVj0JCuHfiBAVKlSLewok1a86zcOFp/vvvrqGOooCqwpUrD5kwIWkS0uRh8M+aOrUpP0zZz5270QA0YTveXEODigd3OU9ZSr9RkMaNi7Nr43Ee3bhEiO4RwTiTQMp+e/8+KMq/DKM05x+vPfaktakYt+nBMvQoaFD5r9QIhg6VjtFCiPwpUzNLFytWjMqVK5PBORiFeO1c2byZ43PmcGXLFnSxsdzTFmGu+h56fcq6yb8m06YdYuwXdZjaaRiJiSkXCf7kk1oMH16TZs1KUqbMTACcCEHz1FpgJiRy+nQQrVqVYtYgc1aOWs9uGhDMs/P8PN3PCC5RFi1PRnMqCtSpUQQOJvUxsn+zNmv3TsTCQhqHhRD5U4Y//QYNGsSyZcu4ceMGffr04Z133sHJySk7YxMiR4VcvUro9esUqloVS0fHFNtv7d3L0pYtk548znK26BpTgCBCcESHaarHjYiIZ//02RzfsAvobrRtw4ZutG6dNFePj48zQ4ZUZcaMI5yhPJ7cMrTanOMNAP7++ypVq19jPn0If2rh1CcjzBJTxJG8Gr2igI2NGZ//MRTryO4kPHpE4WrV0GRw3T0hhHgdZTgRmjlzJj/++CNr165l3rx5jBkzhpYtW9KvXz+aNm2a6ZXnhchNMQ8four1WLsktaicXb6ctT16oOr1WLm40P/wYRyeWY/u2vbtKBoNqk4HJK3O/jYrseYR4djyEx/y9GivZHq9yh9/3sNTcxtHfQihOAIKjRt70apVUgflhAQdbdosY8uWawAcowrRWFMYf25RjKsk1fPwsMWmxluE/5p6XyPdM7/SZsQSjwWjR9fG3d2Gtm198PR0AOSPGCGEgNQ+tZ/D3Nycbt26sX37ds6fP88bb7zBBx98gKenJ1FRUdkVoxBZ6p///Y/vnZ2Z4urKto8+AmDXF1+g6vXEY8q2YB8GdPmN8+cfGO3nXrGiIQnSoXAHD35kJHuohwkJpPXrpCgQaefFIapTT/mXlmzik5bx/PVXd8MfEDNnHjYkQckuKWU45tDCkAQBbNt2nWjHElgSw5PWoGc9KY/HghIlnPjyy/oMH17jcRIkhBAi2Qt3DNBoNCiKgqqq6B5/OYiMUfV6js6eTcDRo3g1akT5Hj2kRS0bqarKnf37SXj0CIdixdgzbpxh28EffqBiz55ozc1BUVimduWm6oVyROGvqnP5/fc21KrlQdGi9hRs3JIDNi0pHnWEUJz4mxboMGUPjXDjPqbEPx69ZczcXMuaLYHo1IaoKvRr7cCkP4fx4EEM3323i+joeC5ffphiv27d3uDRIx3r1l00lMXH63j/nT8oyi3DjNPGnryPLC1NGDjwTb76qjFWVqnfthNCiPwuU4lQXFyc4dbYv//+S6tWrZgxYwbNmzdHo8lU41K+tu/bb9n95ZcoWi0n589HFx9P5QyOynvV7Np1g8OH/albtyi1axfN7XDQ61XOng3C1tYML6+kfj4b3nuPk49HM7pXqpRin0PTp1O+Wzd2fDuFG4+8gaQuQDExCXTrtgYTEw0rV3ZCr1fZFlUVqPrMEVQeUgAnQriPcWdoa2tTypRx4dixAEPn6UVbIvgpKp6GDRdy6VIwkDSh4dOsrEz56KPavPnmHOMzqRAT9YiCxKT7WsTF6ShWzBEbG1k5Xggh0pLhROiDDz5g+fLleHh40LdvX5YtW4azs3N2xvbaurRhA0DSbRZF4ermzXkyEVq06BS9eq1Ho0lqGVy7tgvt2vmkv2MGqaqaoZYynU7PwoWnuHgxmH//vc3Bg0lD2MuVc4XIYDrdejKlQ+DJkxSuVg3/w4cNZSfmzQO9nqbffc/syYk8DI03Guau0+kZM2Yn8+a1TStSDlKTaGyxJ5RwnnS0jolJMEqCABIS9Pz0039Gt950OhVf34IcO3YPKytT1q59+5mh9smjwVSqcIRynOE8ZYnD0iiS+vWL8c8/t4CkpHDkyK28804FnJ2t0n0dhRAiP8pwIjR79myKFi1K8eLF+eeff/jnn39Srbd27dosC+515V6pEveOH0fV6VAUBZdy5XI7pBfy++8ngKQvXEVJSoyyIhFKSNDRq9d6Vq48h4eHPWvXvk3lygXTrP/226tYu/ZiivKzZ4MwI/aZAeXQeNIk9ImJbBv3LXsPBmKnD6cQ97iwaiV/bV7He+9t5Pr1UKKj4w0JjKmphlq1PBg/vj5ffbUXnU6PBj2F8ac5m0nEFC06ChHAFD6mMHe4QmlSm2lCo1HQ61UKFLAkNDTW8PotXNiOokXtsbQ0xcREg6qqtGlTig0bLlOVw3hznd00YBd+7KYRdkQQhwXJCVKlN5wYM6aOIRGCpBakR48SXujfQQgh8oMMJ0I9e/aUfixZpOmUKSTGxuJ/6BDFmzSh7pgxuR3SCyla1B6tVkGnU9FoFAoXts2S486de5xly84CcPt2OO++u46zZz9Ita5er6aaBCWLx4LtNKEJ21GAKO+GeDZoQEBAJJ+fqk/o4xSpubKVnkWT+gKdPDmQwMAoateex40bYVibqXzZzRL/I0cYN64BY8fW5+fi3oTfvJHqOUc3vE/k7j/5gVHojTpQJ53LycmSjh3L0KJFCUaO3EZkZByffVaXN95wNTqOoig4O1uj0Sg46x8ShY3h1puKQjj2Tx1ZpWaNQjRo4EnVqoU4ciQAgG7dyuHhYY8QQojUZWpCRZE1zO3saL9oUW6H8dK+/74J166FcPRoAHXrFjXMnvyy7t2LNCRYer3KvXtpj0jUaBTMzbXExaXdYf8AtTlJJcw0OtrWqYuiKCxadIrwWA3JI6x2axpzaKc1oe4/ULVqIbZte5fz5wdz7sQtDvRtw4XPz3Phc6gzZgyNv/2WGiOGs3XEiKQTJE8hDXg3bYped5cbxNCZVWyhOXo0+LGDAjzkodadO54DqFBhNi4uVmze3ANf30Jpxv7w1l1K689zl0KE4MSTti2Fp0eH2VhqGPFJQ8zNTdi7tw/bt1/D0tKURo28MvCKCyFE/qWoMk30c0VERGBvb094eDh2dna5HU6+cO5cEFWrziU2NhFVhSG9ijN9wbuG7bGxidy8GUbRovZYWZnyyy9HGDz4b6Nj2Nqa0b//m1y/HsqmTVdITNTj6GjBvn19eOMNV6ZNO8SIEVtQ1aQ8xsREY0i8NBqFL7+sx/jxDTi9ZAnr3nnHcFxFo2FMVBSmlpbc3LOH4IsXKVKzJg/OnUNrZkbptm3ZNmoUR2bORNXrUZIHESgKqk7HhQpDWXXW2XAeX9+CHD7cP9XX4cGFC8z2rYb+URRXKMES3jHa3qZpIT4aVJaHibbUru+Ni4t1Fv0LCCFE3pfR72+ZV1+8ct54w5UdKxvzdcfR2MXfp8DCixytEU2V99/nypWH1K+/gHv3oihQwJLdu3vxwQdVOXEikN9/P46qJrUSffBBVSZN8gMgKCiaS5eCKVfOFUfHpM7F/fpVZuXKc+zffwdLS1Ps7c0NLU+KAhERcQCYWFgYxaaYmBhmYvZs0ADPBg2ApDmGIOlWndqwL/Ynb6C7cRKvBg2oMngwlzdswK5IEUIueqKcO2qoGxLyKM3X4eisWagJsQRTgI20SrG9SIlC1G1X+0VfZiGEEEgiJF5RkbtWUkP3LypJt7z2f/cdVd5/n6+/3kdQUNLCpGFhsXzxxS7+/LMb06Y1x8REw969t2jQwJPx4xsYjuXqao2ra1JrycqV5/j4420oisKUKU1ZtqwjTk6WLF9+lvfe2wgk9c0pViypX41P27aUbNWKK5s2oWg0tJgxA61Z6sPRVVWle/c1rFhxDqhCpUotmTu8DVZeDjT+tgYAFmfu89vvJ4mJSerA/MknaScyptbWoKqsoz0RpPxrplmzEpl4RYUQQqRGEiHxSrJwcDD0u1E0GsPaX3FxiYaRWKqadJsMwNLSlFmzWj73mHfvRtC9+xp0uqQDdOu2htu3R2Btbca771Zk7NjdBAREkZioZ8SIrWi1CkOGVKfz2vVcOHSBot6uOBR0fe7xk5KgJCdP3qdq1bmYmWlZvbozrVqVYsmSM5iba3FxsWLSJD/atCnNtWshFCvmgImJhoQEHYoCQUExVBk6nMsbNhB23oFnZ61+80132rQpnYlXVAghRGpkFkTxSqoxYgSFayS1olg6OdFy9mwARo2qaVgp3dRUw5gxdTN8zNu3ww1JEEBiop67dyMAOHHiHgEBxp2yf/nlKLduhVGq1Awq1l2DT+VFnDsXlOqxIyPj2L37BqkNrExI0DFs2BZWrDjH5Mn7CQ2N5e7dCD77bCeFCv1AiRLTKVt2Jn36/Im5+deYm39N4cI/UqLCIiJ7zqZbzyopjmk8x5AQQogXJS1CItddvvyQ2bOPYmlpwogRNXBxscbczo6+//5LbGgo5vb2hn45VasW5sqVoZw6FUi5cq6ZGhpeqZI7np4O3LkTjqqCp6cD5cu7ARhunT3Ny8uBr77ay5074QA8eBBDrVrz0GgUuncvz7RpzdFqNYSHx1K16lyuXAkx2j95MJmqJiVd166FGOYQ0ulUbt4MM0xJce1aqGH/5Bavhw8fMXr0LqwstfTrW4nf5500HLNfvzcz9yILIYRIlYwaS4eMGsteQUHRlPT+iajoRFAUfHxcOHXqfUxMsqexMjAwil9/PYqiKLz/fhWjBOiHHw7yySfb0etVvLwcWL68I927r+XatdBUjzV3bmvee+9N/vjjFD17rjeUKwocPvwe7dqtwN8/Eo1GYdGidpQv70aVKnPQ6fTo9WBvb054eFKn7OQEyZiKBY8Yzs9YaBLx7jmYOyU7UbGiGy1blsrql0YIIV4rMmpM5Akrf1xJRJQOUECF8+cfcPt2OMWLO6a774twd7dh3LgGqW4bNaomH36YdDsuMVFPyZLTuXs3PNW6Wq3CjRtJCZKtrbnRNjMzLRUrunPhwmCOHg2gWDEHw/X8+29funZdzY0bYYSHxz3VaqRia2tKZKTxLNCxWDGbQXTXL0VZMI0++zpTtI4kQUIIkVWkj5DIVYmndqGgkjRXsh4LTSLu7ja5Fo9Go6DRKNy+Hc7t2+Ho9U+2NWzoCSQlQYqi0L590urvrVuXonPnsgCYmCiMH9+AsLBYbG3NadjQyyipu3cvkhs3wgzPn+74HROTyDffNKQ41/DkmqFOBHZspDUAUYGB2XDVQgiRf0kiJHLMv//eZuHCk4YOygDlKhamo7KWAjzEjft80Thp0dGccuxYAN9/v59t264ZlRcubEuBApaPk56kCRd//bUVv//ehtGj63DwYD+qVEmaEVqr1bByZWeuXx9G5coFGTNmJwUL/sDixadTnC8xUZ+iLJlOp1K/vicdOpbFjQcoJNVV0RCNNdaFClPczy8Lr14IIYTcGhM54qefDjJy5DYA7OzMOXKkP6VKFaDel18Scu0aVXYuoVCVKnRYsiTHYtq9+wZNmvyRNAmiCjNntuCDD6oCScPxd+zoySefbOfRowQ+/7weJUsWoGTJAmkeb/v264Y1vnQ6lcGD/6ZHj/JGa/S1bFmKGjUK899//gA4OJgTGRkPgLOzFTNmHKGAewUqNo7lyE69YRENGyKp88eWpGkFhBBCZBlJhESO+O67A4afo6PjWbjwJN980xgza2veXrUqV2JatCipxSb59tSvvx41JEKQNMps27Z3U9s1VfHxuqeXHSMxMeX6ZxYWSWuBHTrkj729Oc7OVnza9UcCTpykwP0rbF/ZhDDFkZIlnfEsruP69TAAXN6sTpV6ZV/sQoUQQqRJEiGRI5ycLAgKikavT1rPK3mpi9xUsKCNIWnRahWKFHm5UYE9epRn2rRDhmHw33zT2Kg1KJmpqZaEBB3799+hZPxpvPeOxxvQo2CvD2UuA7h48SGXLw9h+/braDQK77xTIdtG0gkhRH4miZDIEXPntqF162WEhDyiQQNPBg1KOUlgThszpg7Hjt1jx47rlC3rwowZLTJ9DL1eZceO60RHx9OsWQlOnnyf//67i7u7DWXLuqRav0+f9YbWKD+TvdTVaFH1OjSoOBOMVqvg6mqNl5ejUQuVEEKIrCfzCKVD5hHKOomJeqKi4rG3N0+1pSS3qKr6wvH06LGWpUvPAFCxohsHD/bD0jLtzt5Dh25mxozDhucFlUAG8CtarRa9TkeAUzVuVRnCjz82SzWREkIIkTEyj5B45ZiYaHBwsEi/Yg570SQoICDSkAQBnDp1n127bjx3ssPffjtu9DwQd0zfm0Zls4vYFytG9WHDMDE3T2NvIYQQWU0SISFekKWlSYoZoZ+dXPFZrq7WhiU+AEqXdmbET/2xtk59RXshhBDZS3pfCpGGkKtXeXj5MmndPXZ0tGT69LfQapNalAYO9KVu3aLPPeaIEdV5+nAlSzpJEiSEELlIWoSEeIaqqmweMoQjv/wCQOX33qP1nDmp3kL74IOqvPtuBeLjdRQoYJXusYODY9BqFXS6pGzon39uoaoqiYl6TE21WXshQggh0iUtQkI84+GlS4YkCODEb78RdOZMmvVtbc0zlAQBVKtW2JAEabUKZcs6U6zYVMzMvuatt5YQE5OQzhGEEEJkpTyTCIWEhNCjRw/s7OxwcHCgX79+REVFPXefgQMH4u3tjaWlJS4uLrRt25aLFy/mUMQir9LrUk6EqE9MNPwcH6/j3r3IVFaLT1/btj7Mnt2SunWL8u67FYmNTSQgIBKAbduuMX36oRcPXAghRKblmUSoR48enDt3ju3bt7Np0yb27t3LgAEDnruPr68v8+fP58KFC2zduhVVVWnatCm6VL7ohEjmUrYs5Xv0MDwv27kz7pUrA3DkiD+FCv1AoUI/Urnyrzx8GJPp4w8cWIW9e/swf35bQkJiDS1EigJBQdFZcxFCCCEyJE/MI3ThwgXKli3LkSNHqFIlaSK+LVu20KJFC+7evUuhQoUydJzTp09TsWJFrl69ire3d4b2kXmE8idVVbl3/DiqXk8hX18UTdLfDNWr/8bRowHo9SparcLHH9di4kQ/wz6bNl3mzp0IWrUqRdGi9umeZ8qUA3z88XYgafmNgwf7UamSe/ZdmBBC5BOv1TxCBw8exMHBwZAEAfj5+aHRaDh06BDt27dP9xjR0dHMnz8fLy8vPDw8sjNc8RpQFIVCvr4pyiMj44xuiSUvmArw6ac7+P77pDXVxozZycmTA/HycnzueT76qBaVKrlz6VIwTZp4U6pU2ou6CiGEyHp54tZYYGAgrq6uRmUmJiY4OTkRGBj43H1/+eUXbGxssLGxYfPmzWzfvh0zs7SHK8fFxREREWH0ECLZmDF1SB48ZmlpysCBT5KlmTOPGH6Oiopn5cpzRvs+Cg0l6v79FMcsV86VevWKUbz485MmIYQQWS9XE6HRo0ejKMpzHy/bublHjx6cOHGCf/75h1KlSvH2228TGxubZv2JEydib29veEjrkXjau+9W5OTJ91mypAPvvVeZ6tV/w9n5OzZsuISzsxUaTVKWpNeruLpaG/Y7+OOPfO/szA/u7mzo398wN9GiRacoXPhHKlSYTY0avxEVFZ/qeYUQQmSPXO0j9ODBAx4+fPjcOsWLF2fx4sWMGjWK0NBQQ3liYiIWFhasWrUqQ7fGAOLj43F0dOS3336jW7duqdaJi4sjLi7O8DwiIgIPDw/pIyQMVq8+zzvvrCUu7kmnewsLE9av78K7767jwYMYunUrx6JF7TEx0RATHMz3rq48PZNi7717KVqnDg4Ok4mISHq/KQr88ktL3n8/9xekFUKIvC5P9BFycXHBxSX9hSVr1qxJWFgYx44dw/dxv41du3ah1+upXr16hs+nqiqqqholOs8yNzfHXNZ6EmlITNTTq9d6oyQIIDY2kebNl+DrW5CjRwcYdZROjI01SoIAEqKjDcd79vhCCCFyTp7oI1SmTBmaN29O//79OXz4MPv372fIkCF07drVMGLM398fHx8fDh9OWtn7+vXrTJw4kWPHjnH79m0OHDhA586dsbS0pEWLFrl5OSIPi4/XPXfSw5MnAxk3bo9RmV2RIlR45x3D80JVq+LZsCGKojB5sp+hvFSpAvToUT7LYxZCCJG2PJEIASxZsgQfHx8aN25MixYtqFOnDnPmzDFsT0hI4NKlS8TEJM3rYmFhwb59+2jRogUlSpSgS5cu2NracuDAgRQdr4XIKCsr4w7SDg4WlCnjbOhArdOprFp1Dm/vaSxb9mQ26nYLF9Jz5066bdpEn717DSvMDxlSjYsXB7NnTy9OnBiIo6Nljl6PEELkd3liHqHcJPMIiWepqsrmzVcJCXlEy5Yl2bPnJh07rjTc/VKUpDthGo3CxYuDKVlShsQLIUROy+j3d55pERLiVaEoCi1alOSddyrg6GhJ+/ZlOHCgH59+Wht40h1Ir1fZsuVqLkYqhBAiPdIilA5pERIZlZCgo0KF2Vy6FGzUN9rS0oQhQ6oxebJfqivYCyGEyHrSIiREDjM11bJvXx+srY0n7Hz0KJHvvz/A2rUXcikyIYQQaZFESIgs5OxsRYUKbqTW8HP6dMpZpYUQQuQuSYSEyGILF7ZLdc2wtm1L50I0QgghnkcSISGyWIkSTly8OISVKzvh7e1IiRKOrF7dmTffLJTboQkhhHhGnlh9Xoi8JDw8ls8/38XVqyF89lld+vatnNshCSGESIMkQkJksZ491/PXX5fR6VS2br1GgQKWtG3rk9thCSGESIXcGhMii/377210uqTx8yYmGg4cuJPLEQkhhEiLJEJCZLE6dYqi1SYNG0tM1FOrlkcuRySEECItcmtMiCy2aFE7Qx+hzp3Lym0xIYR4hUkiJPKV8PBYRozYwvHjgbRpU4rx4xug1WZtw6i9vQUzZrTI0mMKIYTIHpIIiXxlyJDNLFt2Bp1O5fTp+zg7WzF8eI0cjSEgIJJffjkCwODBVSlY0DZHzy+EEOIJSYREvnL0aIChI7NWq3DyZM7O9hwdHU+NGr8REBAJwOLFpzl/fjBWVqY5GocQQogk0lla5CtvvVUCRQGNRkGnU/Hz88rR858+fZ87dyLQ6VR0OpVbt8I5c0aW3hBCiNwiLUIiX5k82Q9XV2vOnAmieXNvevSokKPnL1bMAVNTDYmJeiBpeH3RovY5GoMQQognJBES+YqpqZbRo+vk2vkLFbJl5crOfPzxdhQFvv++ifQREkKIXKSoqqrmdhCvsoiICOzt7QkPD8fOzi63wxFCCCFEBmT0+1v6CAkhhBAi35JESAghhBD5liRCQmShLVuu0rPnOj7/fCdRUfG5HY4QQoh0SGdpIbLIgQN3aNFiCRqNgqrCmTNBbNjQLbfDEkII8RySCAmRRXbtuoGiKIYJG7dvv57LEQkhhEiP3BoTIotUquSOXv9k1uoKFdxyOSIhhBDpkURIiCzSqlUppk1rTqVKbrRuXZo1a97O7ZCEEEKkQ+YRSofMIySEEELkPTKPkBBCCCFEOiQREkIIIUS+JYmQEEIIIfItSYSEEEIIkW9JIiSEEEKIfEsSISGEEELkW5IICSGEECLfkkRICCGEEPmWrDUmRCY9epTA9OmHCQyM4t13K1C5csGXPmZYWCy7dt2gYEEbatb0yIIohRBCZIQkQkJk0ttvr+bvv6+gKPDLL0c4efJ9fHycX/h4QUHR+PrO4e7dCAAmTGjA2LH1syhaIYQQzyO3xoTIBJ1Oz19/XUavV9HpVOLjdWzbdu2ljrlixVn8/SMMz7/5Zh+y8o0QQuQMSYSEyAStVoOnpwNarQKAqkLp0gVe6pg2NmY8nfdYW5u+1PGEEEJknCRCQmTShg3d8PUthIeHHZMn+9GsWYmXOl737uVp1swbAHNzLfPmtUVRlKwIVQghRDryzOrzISEhDB06lI0bN6LRaOjYsSM///wzNjY26e6rqiotWrRgy5YtrFu3jnbt2mX4vLL6vMgJqqoSGBiFnZ051tZmuR2OEELkea/d6vM9evTg3LlzbN++nU2bNrF3714GDBiQoX2nTp0qf2GLV5qiKBQsaCtJkBBC5LA8MWrswoULbNmyhSNHjlClShUApk+fTosWLZgyZQqFChVKc9+TJ0/yww8/cPToUQoWfPlhzkIIIYR4feSJFqGDBw/i4OBgSIIA/Pz80Gg0HDp0KM39YmJi6N69OzNnzsTd3T1D54qLiyMiIsLoIYQQQojXU55IhAIDA3F1dTUqMzExwcnJicDAwDT3+/DDD6lVqxZt27bN8LkmTpyIvb294eHhIZPbCSGEEK+rXE2ERo8ejaIoz31cvHjxhY69YcMGdu3axdSpUzO135gxYwgPDzc87ty580LnF0IIIcSrL1f7CI0aNYrevXs/t07x4sVxd3cnKCjIqDwxMZGQkJA0b3nt2rWLa9eu4eDgYFTesWNH6taty549e1Ldz9zcHHNz84xeghBCCCHysFxNhFxcXHBxcUm3Xs2aNQkLC+PYsWP4+voCSYmOXq+nevXqqe4zevRo3nvvPaOy8uXL89NPP9G6deuXD14IIYQQeV6eGDVWpkwZmjdvTv/+/Zk9ezYJCQkMGTKErl27GkaM+fv707hxYxYtWkS1atVwd3dPtbWoaNGieHl55fQlCCGEEOIVlCc6SwMsWbIEHx8fGjduTIsWLahTpw5z5swxbE9ISODSpUvExMTkYpRCCCGEyEvyzMzSuUVmlhZCCCHyntduZmkhhBBCiKwmiZAQQggh8i1JhIQQQgiRb0kiJF57qqpy9WoIt2+H53YoQgghXjGSCInXmqqq9Oq1npIlp1Os2FQ++2xnbockhBDiFSKJkHit/fffXf7447Th+cSJ/3LnjrQMCSGESCKJkHitJSbqM1QmhBAif5JESLzWatXyoFkzb8Pzfv0q4+XlmIsRCSGEeJXkiSU2hHhRWq2Gv/7qzn//3cXMTEuVKoVyOyQhhBCvEEmExGtPq9VQu3bR3A5DCCHEK0hujQkhhBAi35JESAghhBD5liRCQgghhMi3JBESIoN27rzOzJmHuXQpGFVV0elkGL4QQuR10llaiAyYOvU/PvxwKwAmJhqcnCx48CCGTp3KsnhxB8zMtLkcoRBCiBchLUJCZMD06YcNPycm6nnwIAZVhdWrz/P778dzMTIhhBAvQxIhITLAzc0arVYxPFfVpP9rNAqBgVG5FJUQQoiXJYmQEBkwZ05rihSxA8DLywEARQFzcxO6dSufi5EJIYR4GdJHSIgMKFfOlZs3R5CQoMPERMNff13hxo1QWrQoibe3U26HJ4QQ4gVJIiREJpiaJnWKbtWqVC5HIoQQIivIrTEhhBBC5FuSCAkhhBAi35JESIhccOpUIH/9dZmIiLjcDkUIIfI16SMkRA77+ef/GDEiaXJGDw87jhzpj5ubTS5HJYQQ+ZO0CAmRw8aN22P42d8/kj/+OJ17wQghRD4niZAQOczc/ElDrKqqWFhIw6wQQuQWSYSEyGG//trKsDZZjRpF6NOnUu4GJIQQ+Zj8KSpEDmvXzoegoI8IDo7By8sRjUZJfychhBDZQhIhIXKBvb0F9vYWuR2GEELke3JrTAghhBD5liRCQgghhMi3JBESQgghRL4liZAQQggh8i1JhIQQQgiRb0kiJIQQQoh8SxIhIYQQQuRbkggJIYQQIt+SREgIIYQQ+ZYkQkIIIYTItyQREkIIIUS+JYmQEEIIIfItWXQ1HaqqAhAREZHLkQghhBAio5K/t5O/x9MiiVA6IiMjAfDw8MjlSIQQQgiRWZGRkdjb26e5XVHTS5XyOb1eT0BAALa2tiiKkql9IyIi8PDw4M6dO9jZ2WVThK+m/HztkL+vPz9fO+Tv68/P1w75+/pfxWtXVZXIyEgKFSqERpN2TyBpEUqHRqOhSJEiL3UMOzu7V+aNkdPy87VD/r7+/HztkL+vPz9fO+Tv63/Vrv15LUHJpLO0EEIIIfItSYSEEEIIkW9JIpSNzM3NGTduHObm5rkdSo7Lz9cO+fv68/O1Q/6+/vx87ZC/rz8vX7t0lhZCCCFEviUtQkIIIYTItyQREkIIIUS+JYmQEEIIIfItSYSEEEIIkW9JIpTFQkJC6NGjB3Z2djg4ONCvXz+ioqKeu0+DBg1QFMXo8f777+dQxFnnRa49maqqvPXWWyiKwvr167M30GzwItc+cOBAvL29sbS0xMXFhbZt23Lx4sUcijhrZfb6Q0JCGDp0KKVLl8bS0pKiRYsybNgwwsPDczDqrPEi//Zz5syhQYMG2NnZoSgKYWFhORNsFpg5cyaenp5YWFhQvXp1Dh8+/Nz6q1atwsfHBwsLC8qXL8/ff/+dQ5Fmvcxc+7lz5+jYsSOenp4oisLUqVNzLtBskpnrnzt3LnXr1sXR0RFHR0f8/PzSfa/kFkmEsliPHj04d+4c27dvZ9OmTezdu5cBAwaku1///v25d++e4fHdd9/lQLRZ60WvHWDq1KmZXsLkVfIi1+7r68v8+fO5cOECW7duRVVVmjZtik6ny6Gos05mrz8gIICAgACmTJnC2bNnWbBgAVu2bKFfv345GHXWeJF/+5iYGJo3b85nn32WQ1FmjRUrVjBy5EjGjRvH8ePHqVixIs2aNSMoKCjV+gcOHKBbt27069ePEydO0K5dO9q1a8fZs2dzOPKXl9lrj4mJoXjx4kyaNAl3d/ccjjbrZfb69+zZQ7du3di9ezcHDx7Ew8ODpk2b4u/vn8ORZ4Aqssz58+dVQD1y5IihbPPmzaqiKKq/v3+a+9WvX18dPnx4DkSYfV702lVVVU+cOKEWLlxYvXfvngqo69aty+Zos9bLXPvTTp06pQLq1atXsyPMbJNV179y5UrVzMxMTUhIyI4ws8XLXvvu3btVQA0NDc3GKLNOtWrV1MGDBxue63Q6tVChQurEiRNTrf/222+rLVu2NCqrXr26OnDgwGyNMztk9tqfVqxYMfWnn37Kxuiy38tcv6qqamJiompra6suXLgwu0J8YdIilIUOHjyIg4MDVapUMZT5+fmh0Wg4dOjQc/ddsmQJzs7OlCtXjjFjxhATE5Pd4WapF732mJgYunfvzsyZM/PsX00v8++eLDo6mvnz5+Pl5YWHh0d2hZotsuL6AcLDw7Gzs8PEJO8sgZhV154XxMfHc+zYMfz8/AxlGo0GPz8/Dh48mOo+Bw8eNKoP0KxZszTrv6pe5NpfJ1lx/TExMSQkJODk5JRdYb6wvPOJkwcEBgbi6upqVGZiYoKTkxOBgYFp7te9e3eKFStGoUKFOH36NJ9++imXLl3i/+3dfVBUdRcH8O8+wC5ssrwKy5sFCASmDNoEoYkYBgpGavIiIUKJNTXDEFKMNYE5BTQ0ZjZFA+MizTjUGDtihBihNq7lSLMSKZUghNQuKjSkvFjAef54hn1ceZF9AcQ9n5k747337O+ec5edOXPv73orKyunO2Wj0bf2zMxMhIaGIjY2drpTnDb61g4AH3/8MV577TX09fXBz88P33zzDYRC4XSma3SG1D/q+vXr2LNnz5Rvpd4rjFH7XHH9+nUMDw/D2dlZa7uzs/OEc9vUavW48XPt3OhT+/3EGPW//vrrcHV1HdMY3wv4itAU5OTkjJnMfOdiyI8hPT0dkZGRWLx4MZKSklBeXg65XI7W1lYjVqGf6ay9qqoK9fX19+wkwun+3oH/zS9RKpU4deoUfH19ERcXh8HBQSNVYJiZqB8A/v77b0RHRyMgIAB5eXmGJ24EM1U7Y6agoKAAFRUVkMvlsLS0nO10xuArQlOQlZWFbdu2TRrj5eUFqVQ6ZuLY0NAQenp6dLrtExwcDABoaWmBt7e3zvka03TWXl9fj9bWVtja2mpt37RpE5544gmcPHnSgMwNNxPfu42NDWxsbODj44OQkBDY2dlBLpcjMTHR0PQNNhP137hxA1FRUbC2toZcLoeFhYWhaRvFTP/m5wJHR0eYmZmhq6tLa3tXV9eEtUqlUp3i71X61H4/MaT+oqIiFBQUoK6uDkuWLJnONPU325OU7iejEycbGho022pra3WeNHr69GkCQI2NjdOR5rTQp3aVSkVNTU1aCwDat28fXb58eaZSN5ixvvfBwUGysrIimUw2DVlOH33r7+3tpZCQEAoLC6O+vr6ZSNXoDP3u5+Jk6VdeeUWzPjw8TG5ubpNOlo6JidHa9vjjj8/ZydK61H67+2WytK71FxYWkkQioe+//34mUtQbN0JGFhUVRUFBQXT27Fk6ffo0+fj4UGJiomZ/Z2cn+fn50dmzZ4mIqKWlhd5++21qaGigtrY2OnLkCHl5edHKlStnqwS96Vr7eDAHnxoj0r321tZWevfdd6mhoYF+//13UigUtH79erK3t6eurq7ZKkNvutbf29tLwcHBtHjxYmppaSGVSqVZhoaGZqsMvejzd69SqUipVFJJSQkBoO+++46USiV1d3fPRglTVlFRQSKRiMrKyujixYuUnp5Otra2pFariYgoOTmZcnJyNPEKhYLMzc2pqKiImpubKTc3lywsLKipqWm2StCbrrXfunWLlEolKZVKcnFxoZ07d5JSqaRLly7NVgkG0bX+goICEgqFdPjwYa3f940bN2arhAlxI2Rk3d3dlJiYSPPmzSOJREKpqalaX3xbWxsBoBMnThARUUdHB61cuZLs7e1JJBLRwoULKTs7m3p7e2epAv3pWvt45mojpGvtf/zxB61du5acnJzIwsKC3N3dacuWLfTLL7/MUgWG0bX+0Ssh4y1tbW2zU4Se9Pm7z83NHbf2uXA1cP/+/bRgwQISCoX02GOP0Q8//KDZFxYWRikpKVrxX3zxBfn6+pJQKKRFixZRdXX1DGdsPLrUPvq937mEhYXNfOJGokv9Dz744Lj15+bmznzidyEgIprWe2+MMcYYY/cofmqMMcYYYyaLGyHGGGOMmSxuhBhjjDFmsrgRYowxxpjJ4kaIMcYYYyaLGyHGGGOMmSxuhBhjjDFmsrgRYozdF9rb2yEQCHD+/PnZTmVSZWVlY96vxxibPdwIMca0bNu2DQKBAC+++OKYfS+//DIEAoHWC0lH4wUCASwsLODs7Iw1a9bgwIEDGBkZ0fp8Y2Mjnn76aTg5OcHS0hIPPfQQ4uPjx7y49HarVq3SjC8SieDm5ob169ejsrJSK87DwwMqlQqPPPKIYSdgmsXHx+O3336b9uNUVlbiqaeegoODw5xoEBmbLdwIMcbG8PDwQEVFBQYGBjTbBgcHcejQISxYsGBMfFRUFFQqFdrb21FTU4Pw8HBkZGQgJiYGQ0NDAIBr167hySefhL29PWpra9Hc3AyZTAZXV1f09fVNms/27duhUqnQ2tqKL7/8EgEBAUhISEB6eromxszMDFKpFObm5kY6C9PDysoKTk5O036cvr4+rFixAoWFhdN+LMbmMm6EGGNjLF26FB4eHlpXXSorK7FgwQIEBQWNiReJRJBKpXBzc8PSpUuxa9cuHDlyBDU1NSgrKwMAKBQK9Pb2orS0FEFBQfD09ER4eDj27t0LT0/PSfMRi8WQSqVwd3dHSEgICgsL8emnn6KkpAR1dXUAxt4aO3nyJAQCAWpraxEUFAQrKyusXr0aV69eRU1NDfz9/SGRSLBlyxb09/drjjUyMoL8/Hx4enrCysoKgYGBOHz4sGb/6LjffvstHn30UYjFYoSGhuLXX3/VxDQ2NiI8PBzW1taQSCRYtmwZGhoaAIx/a+yTTz6Bt7c3hEIh/Pz88Nlnn2ntFwgEKC0txYYNGyAWi+Hj44OqqqpJz1lycjLeeustRERETBrHmKnjRogxNq60tDTIZDLN+oEDB5Camjrlz69evRqBgYGaZkoqlWJoaAhyuRzGeMVhSkoK7Ozsxtwiu1NeXh4++ugjnDlzBleuXEFcXBw++OADHDp0CNXV1Th+/Dj279+vic/Pz0d5eTmKi4tx4cIFZGZm4rnnnsOpU6e0xn3jjTfw/vvvo6GhAebm5khLS9PsS0pKgru7O86dO4cff/wROTk5sLCwGDc/uVyOjIwMZGVl4eeff8aOHTuQmpqKEydOaMXt3r0bcXFx+Omnn7Bu3TokJSWhp6dH19PGGLvTLL/0lTF2j0lJSaHY2Fi6evUqiUQiam9vp/b2drK0tKRr165RbGys1lumR+PHEx8fT/7+/pr1Xbt2kbm5Odnb21NUVBS99957pFarJ80nLCyMMjIyxt0XHBxMa9euJaL/v+1bqVQS0f/fcF9XV6eJz8/PJwDU2tqq2bZjxw6KjIwkIqLBwUESi8V05swZreM8//zzlJiYOOG41dXVBIAGBgaIiMja2prKysrGzVkmk5GNjY1mPTQ0lLZv364Vs3nzZlq3bp1mHQC9+eabmvWbN28SAKqpqRn3GLe787wwxrTxFSHG2Ljmz5+P6OholJWVQSaTITo6Go6OjjqNQUQQCASa9XfeeQdqtRrFxcVYtGgRiouL8fDDD6OpqUmvHO8cfzxLlizR/NvZ2RlisRheXl5a20Yna7e0tKC/vx9r1qzBvHnzNEt5eTlaW1snHNfFxQUANOO8+uqreOGFFxAREYGCgoIxn71dc3Mzli9frrVt+fLlaG5unvB4DzzwACQSyaSTzBljU8ONEGNsQmlpaSgrK8PBgwe1bv1MVXNz85j5Pw4ODti8eTOKiorQ3NwMV1dXFBUV6Tz28PAwLl26dNf5Rbffkhp9su12AoFA83TbzZs3AQDV1dU4f/68Zrl48aLWPKHxxgWgGScvLw8XLlxAdHQ06uvrERAQALlcrnONEx3vzrwZY/rjRogxNqGoqCj8888/+PfffxEZGanTZ+vr69HU1IRNmzZNGCMUCuHt7X3Xp8bGc/DgQfz111+Tjq+rgIAAiEQidHR0YOHChVqLh4eHTmP5+voiMzMTx48fx8aNG7XmW93O398fCoVCa5tCoUBAQIDedTDGpu7efs6UMTarzMzMNLdozMzMJoy7desW1Go1hoeH0dXVhWPHjiE/Px8xMTHYunUrAOCrr75CRUUFEhIS4OvrCyLC0aNH8fXXX0/YJIzq7++HWq3G0NAQOjs7IZfLsXfvXrz00ksIDw83Wr3W1tbYuXMnMjMzMTIyghUrVqC3txcKhQISiQQpKSl3HWNgYADZ2dl49tln4enpic7OTpw7d27Chi07OxtxcXEICgpCREQEjh49isrKSs3TcPrq6elBR0cH/vzzTwDQPNUmlUohlUoNGpux+wk3QoyxSUkkkrvGHDt2DC4uLjA3N4ednR0CAwPx4YcfIiUlBf/5z/8uPAcEBEAsFiMrKwtXrlyBSCSCj48PSktLkZycPOn4JSUlKCkpgVAohIODA5YtW4bPP/8cGzZsMEqNt9uzZw/mz5+P/Px8XL58Gba2tpr/EmAqzMzM0N3dja1bt6KrqwuOjo7YuHEjdu/ePW78M888g3379qGoqAgZGRnw9PSETCbDqlWrDKqjqqpK6ym/hIQEAEBubi7y8vIMGpux+4mAyAjPsTLGGGOMzUE8R4gxxhhjJosbIcYYY4yZLG6EGGOMMWayuBFijDHGmMniRogxxhhjJosbIcYYY4yZLG6EGGOMMWayuBFijDHGmMniRogxxhhjJosbIcYYY4yZLG6EGGOMMWayuBFijDHGmMn6L0B7JnbNLue+AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from keras.models import Sequential\n", "from keras.layers import Conv1D, MaxPooling1D, Flatten, Dense\n", "from sklearn.manifold import MDS\n", "import matplotlib.pyplot as plt\n", "\n", "# Load the data from a CSV file\n", "data = pd.read_csv(\"/content/stressinput.csv\", header=None)\n", "\n", "# Split the data into features and labels\n", "features = data.iloc[:, :-1].values\n", "labels = data.iloc[:, -1].values\n", "\n", "# Scale the features using StandardScaler\n", "scaler = StandardScaler()\n", "features = scaler.fit_transform(features)\n", "\n", "# Split the data into training and test sets\n", "train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size=0.2, random_state=42)\n", "\n", "# Reshape the data for CNN input\n", "train_features_cnn = train_features.reshape(train_features.shape[0], train_features.shape[1], 1)\n", "test_features_cnn = test_features.reshape(test_features.shape[0], test_features.shape[1], 1)\n", "\n", "# Create a simple CNN model\n", "model = Sequential([\n", " Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(train_features_cnn.shape[1], 1)),\n", " MaxPooling1D(pool_size=2),\n", " Flatten(),\n", " Dense(64, activation='relu'),\n", " Dense(1, activation='sigmoid') # Assuming binary classification, adjust for your task\n", "])\n", "\n", "# Compile the model\n", "model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n", "\n", "# Fit the model on the training data\n", "model.fit(train_features_cnn, train_labels, epochs=10, batch_size=32, verbose=0)\n", "\n", "# Extract features using the trained CNN model\n", "extracted_features = model.predict(train_features_cnn)\n", "\n", "# Perform Manifold Discovery and Analysis (MDA)\n", "mds = MDS(n_components=2, random_state=42)\n", "extracted_features_mds = mds.fit_transform(extracted_features)\n", "\n", "# Visualize the MDA results\n", "plt.scatter(extracted_features_mds[:, 0], extracted_features_mds[:, 1], c=train_labels, cmap='jet', s=5)\n", "plt.xlabel(\"MDS Dimension 1\")\n", "plt.ylabel(\"MDS Dimension 2\")\n", "plt.title('MDS Visualization of CNN Extracted Features')\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "DjSNFj7rSF1B", "outputId": "0e57f9a9-e846-4bdc-9f9a-202d4c70dfe4" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mounted at /content/drive\n" ] } ], "source": [ "from google.colab import drive\n", "drive.mount('/content/drive')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 544 }, "id": "eN-KV2NbeXv1", "outputId": "4375681b-d842-46ff-cc20-cc922fe7a84e" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "141/141 [==============================] - 0s 3ms/step\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.10/dist-packages/sklearn/manifold/_mds.py:299: FutureWarning: The default value of `normalized_stress` will change to `'auto'` in version 1.4. To suppress this warning, manually set the value of `normalized_stress`.\n", " warnings.warn(\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHHCAYAAAC88FzIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACLm0lEQVR4nOzdd3gUVRfA4d/sppNGSSEQCL33DkLoRaR3QXpREVAsgPpRVaqAItJUUIp0lCIgHUWk9yYl9FAD6aTs3u+PkCVLEkhCkk057/PsA3vnzuyZyWb35M4tmlJKIYQQQgiRTeksHYAQQgghhCVJMiSEEEKIbE2SISGEEEJka5IMCSGEECJbk2RICCGEENmaJENCCCGEyNYkGRJCCCFEtibJkBBCCCGyNUmGhBBCCJGtSTIksqz69etTv359S4cRL46rV6+iaRqLFi1K1zgs9brJtWXLFipWrIidnR2apvH48WNLh5SqFi1ahKZpXL161dKhpImxY8eiaZpFXtvSv/MrV64kV65chISEWCyGl5k7dy4FChQgIiLC0qFkKJIMZXOxH8yapvH333/H266UwtvbG03TeOONN8y2xe6naRpWVlbkypWLKlWqMGzYMM6ePfvC1/3+++/RNI0aNWokKc579+5hZWVFjx49Eq0THByMvb097du3T9Ixs6ply5Yxc+ZMS4eRIg8fPqRz587Y29sze/ZsFi9eTI4cOfjqq6/47bff0jWW2Pf2119/HW9b7O/N4cOH0zWmlIpNUGIf1tbW+Pj4MHTo0EyXbJ49e5axY8dmuGTSYDAwZswYhgwZgqOjY7xtCxcupH79+uTKlQtbW1t8fHzo06eP2Xso9n1lZ2fHrVu34r1G/fr1KVu2rFmZj48PmqYxZMiQePV3796NpmmsXr3aVNa7d28iIyOZN2/eq55y1qJEtrZw4UIFKDs7O/XOO+/E275r1y4FKFtbW9WyZUuzbYBq0qSJWrx4sfrll1/UrFmzVP/+/ZWLi4uysrJSX3/9daKvW7t2beXj46MAdfHixSTF2rx5c+Xo6KhCQ0MT3L5o0SIFqDVr1iillIqIiFARERFJOnZa8vX1Vb6+vqbnRqNRhYeHq+jo6DR5vZYtW6qCBQvGK0/r100NmzdvVoDatm2bWXmOHDlUr1690jUWQAHKw8Mj3nsu9vfm0KFDyT5udHS0Cg8PV0ajMbVCfakxY8YoQM2ZM0ctXrxYzZ07V3Xq1EkBqk6dOmnyWmll1apVClC7du2Kt82Sv/Pr1q1TmqapmzdvmpWHhYWp5s2bK0DVq1dPTZ06Vf3444/qf//7nypRooTSNE3duHFDKfXsfQWo9957L95r+Pr6qjJlypiVFSxY0PQZfevWLbNtsZ/fq1atMiv/5JNPVMGCBdP1PZjRScuQAOD1119n1apVREdHm5UvW7aMKlWq4OnpmeB+xYsXp0ePHrz11lu89957LFiwgMuXL1OtWjU+/PBD/vjjj3j7+Pn58c8//zB9+nTc3NxYunRpkmLs3r07ISEhrF+/PsHty5Ytw8XFhZYtWwJgY2ODjY1Nko6dnmL/8tPr9dnidZPj3r17ALi6uqb5az158gSj0fjCOhUrVuTu3bvMnTs31V5Xr9ebbgGmt44dO9KjRw8GDRrEypUr6dKlC/v27ePgwYPpHktasOTv/MKFC6lTpw758uUzK//444/ZsmULM2bMYM+ePXz00Uf07duX8ePHc+bMGaZMmRLvWBUrVmTBggXcvn07Sa9dpkwZDAYDkyZNSlL9zp07c+3aNXbt2pWk+tmBJEMCgG7duvHw4UO2bdtmKouMjGT16tW8+eabyTpW7ty5Wb58OVZWVnz55Zfxti9dupScOXPSsmVLOnbsmORkqF27duTIkYNly5bF23bv3j127NhBx44dsbW1BRLuPzBr1izKlCmDg4MDOXPmpGrVqmbH6927Nz4+PvGOn1A/iIULF9KwYUPc3d2xtbWldOnSzJkz56Xn8Xzfndim7IQecWP5/fffadmyJV5eXtja2lKkSBEmTJiAwWAw1alfvz6bNm3i2rVr8Y6RWJ+hnTt3UrduXXLkyIGrqytt2rTh3LlzCZ7/pUuX6N27N66urri4uNCnTx/CwsJees5//fUXnTp1okCBAtja2uLt7c0HH3xAeHi4Wey9evUCoFq1amiaRu/evdE0jdDQUH7++WfTOfXu3du0361bt+jbty8eHh7Y2tpSpkwZfvrpJ7PXj73Gy5cv5/PPPydfvnw4ODgQFBT0wrjr1KlDw4YNmTJlilmsiUnKtUyoz9Dhw4dp1qwZefLkwd7enkKFCtG3b1+z/YxGIzNnzqRMmTLY2dnh4eHBoEGDePTo0UvjSkzdunUBuHz5sln5gQMHaN68OS4uLjg4OODr68u+ffvi7f/3339TrVo17OzsKFKkSIK3Xl7UV03TNMaOHWtWduvWLfr162d6nxcqVIh33nmHyMhIFi1aRKdOnQBo0KCB6f2we/duIOHf+Xv37tGvXz88PDyws7OjQoUK/PzzzwnGOG3aNObPn0+RIkWwtbWlWrVqHDp06EWXEIhJrLds2ULjxo3Nym/evMm8efNo0qQJ77//frz99Ho9H330Efnz5zcr//TTT5OV3Pj4+NCzZ88kJ1BVqlQhV65c/P7770k6fnZgZekARMbg4+NDrVq1+PXXX2nRogUAmzdvJjAwkK5du/Ltt98m63gFChTA19eXXbt2ERQUhLOzs2nb0qVLad++PTY2NnTr1o05c+Zw6NAhqlWr9sJj5siRgzZt2rB69WoCAgLIlSuXaduKFSswGAx079490f0XLFjA0KFD6dixI8OGDePJkyecPHmSAwcOJDvhA5gzZw5lypShdevWWFlZsWHDBt59912MRiODBw9O8nFKlSrF4sWLzcoeP37M8OHDcXd3N5UtWrQIR0dHhg8fjqOjIzt37mT06NEEBQUxdepUAD777DMCAwO5efMmM2bMAIjXfyGu7du306JFCwoXLszYsWMJDw9n1qxZ1KlTh6NHj8ZLDDt37kyhQoWYOHEiR48e5YcffsDd3Z3Jkye/8BxXrVpFWFgY77zzDrlz5+bgwYPMmjWLmzdvsmrVKlPsJUqUYP78+YwfP55ChQpRpEgRGjduTP/+/alevToDBw4EoEiRIgDcvXuXmjVromka7733Hm5ubmzevJl+/foRFBQU7wtowoQJ2NjY8NFHHxEREZGkVoSxY8dSr1495syZw/Dhw1PtWsa6d+8eTZs2xc3NjZEjR+Lq6srVq1dZu3atWb1BgwaxaNEi+vTpw9ChQ/Hz8+O7777j2LFj7Nu3D2tr65eey/NiE7KcOXOaynbu3EmLFi2oUqUKY8aMQafTmRL/v/76i+rVqwNw6tQpU9xjx44lOjqaMWPG4OHhkew4Yt2+fZvq1avz+PFjBg4cSMmSJbl16xarV68mLCyMevXqMXToUL799ls+/fRTSpUqBWD693nh4eHUr1+fS5cu8d5771GoUCFWrVpF7969efz4McOGDTOrv2zZMoKDgxk0aBCapjFlyhTat2/PlStXXnh9jxw5QmRkJJUrVzYr37x5M9HR0bz11lvJug6FChUyJTcjR47Ey8vrpft89tln/PLLL0yaNClJn9eVK1dOMMHNtix9n05YVty+D999951ycnJSYWFhSimlOnXqpBo0aKCUirkvnVCfocGDByd67GHDhilAnThxwlR2+PBhsz4hRqNR5c+fXw0bNixJ8W7atEkBat68eWblNWvWVPny5VMGg8FU9nxfnTZt2sS73/68Xr16JdjfJqF+ELHXKa5mzZqpwoULm5U9H4efn58C1MKFCxOMwWg0qjfeeEM5OjqqM2fOvPD1Bg0apBwcHNSTJ09MZYn1GUrodStWrKjc3d3Vw4cPTWUnTpxQOp1O9ezZ01QWe/59+/Y1O2a7du1U7ty5EzyPuBKKfeLEiUrTNHXt2jVTWWJ9cRLrM9SvXz+VN29e9eDBA7Pyrl27KhcXF9PrxvadKFy4cIKxJCTu+7tBgwbK09PTtG9CcSb1Wsbu6+fnp5SK6WuS0DnH9ddffylALV261Kx8y5YtCZY/L/bnd+HCBXX//n119epV9dNPPyl7e3vl5uZm6hNlNBpVsWLFVLNmzcz6k4SFhalChQqpJk2amMratm2r7OzszH5+Z8+eVXq93ux35UXvd0CNGTPG9Lxnz55Kp9MleC1i43lRn6Hnf9dmzpypALVkyRJTWWRkpKpVq5ZydHRUQUFBZjHmzp1bBQQEmOr+/vvvClAbNmyI91px/fDDDwpQp06dMiv/4IMPFKCOHTv2wv1jxX1fXb58WVlZWamhQ4eanV9CfYZiP5v79Omj7Ozs1O3bt5VSifcZUkqpgQMHKnt7+yTFlR3IbTJh0rlzZ8LDw9m4cSPBwcFs3LgxRS0msWJbJIKDg01lS5cuxcPDgwYNGgAxzeRdunRh+fLlZrd7EhP7l2jcW1t+fn78+++/dOvWDZ0u8be0q6srN2/eTFKzd1LY29ub/h8YGMiDBw/w9fXlypUrBAYGpvi4EyZMYOPGjSxatIjSpUsn+HrBwcE8ePCAunXrEhYWxvnz55P9Ov7+/hw/fpzevXubtbKVL1+eJk2aJNjf6+233zZ7XrduXR4+fPjS201xYw8NDeXBgwfUrl0bpRTHjh1LduwQM9JxzZo1tGrVCqUUDx48MD2aNWtGYGAgR48eNdunV69eZrEk1dixY7lz506ifYdSci1jxfaP2rhxI1FRUQnWWbVqFS4uLjRp0sTsPKtUqYKjo2OS+36UKFECNzc3fHx86Nu3L0WLFmXz5s04ODgAcPz4cS5evMibb77Jw4cPTa8TGhpKo0aN2Lt3L0ajEYPBwNatW2nbti0FChQwHb9UqVI0a9YsSbE8z2g08ttvv9GqVSuqVq0ab3tK+lj98ccfeHp60q1bN1OZtbU1Q4cOJSQkhD179pjV79Kli1krWextxCtXrrzwdR4+fAiYt7ABpt8LJyenZMdeuHBh3nrrLebPn4+/v3+S9vn888+Jjo5O0u21nDlzEh4enqTb3NmBJEPCxM3NjcaNG7Ns2TLWrl2LwWCgY8eOKT5e7FwbsR8EBoOB5cuX06BBA/z8/Lh06RKXLl2iRo0a3L17lx07drz0mFZWVnTp0oW//vrLNPQ0NjF60S0ygBEjRuDo6Ej16tUpVqwYgwcPfqVm4n379tG4cWNT/xA3Nzc+/fRTgBQnQ1u2bGHcuHGMGjWKDh06mG07c+YM7dq1w8XFBWdnZ9zc3ExTDaTk9a5duwbEfEE+r1SpUqYvwbjifvHBsw//l/VbuX79uilRcHR0xM3NDV9f3xTHDnD//n0eP37M/PnzcXNzM3v06dMHeNYhO1ahQoVS9Fr16tWjQYMGifYdSsm1jOXr60uHDh0YN24cefLkoU2bNixcuNBsHpiLFy8SGBiIu7t7vHMNCQmJd56JWbNmDdu2bWPZsmXUrFmTe/fumSWHFy9eBGKSxudf54cffiAiIoLAwEDu379PeHg4xYoVi/caCV2DpLh//z5BQUHxho6/imvXrlGsWLF4fyTF3laL/bnFSun7O5ZSyux5bPeAuH8QJkdykhtIXgIVG6ul5oTKaKTPkDDz5ptvMmDAAO7cuUOLFi1eaVTP6dOn0ev1pi+gnTt34u/vz/Lly1m+fHm8+kuXLqVp06YvPW6PHj347rvv+PXXX/noo4/49ddfKV26NBUrVnzhfqVKleLChQts3LiRLVu2sGbNGr7//ntGjx7NuHHjgMQ/GJ5vtbp8+TKNGjWiZMmSTJ8+HW9vb2xsbPjjjz+YMWPGS0cpJcTPz4/u3bvTpEkTvvjiC7Ntjx8/xtfXF2dnZ8aPH0+RIkWws7Pj6NGjjBgxIkWvlxKJjUR7/ksgLoPBQJMmTQgICGDEiBGULFmSHDlycOvWLXr37p3i2GP369Gjh6nj9fPKly9v9jwlrUKxxowZQ/369Zk3b16qjnaLnQfm33//ZcOGDWzdupW+ffvy9ddf8++//+Lo6IjRaMTd3T3RwQZubm5Jeq169eqRJ08eAFq1akW5cuXo3r07R44cQafTma7p1KlTE/19cnR0TNaEfUn9ncoIUvL+hphBIxCTNMXtDF2yZEkgpn/Vyz6fElK4cGF69OjB/PnzGTlyZJL2+eyzz1i8eDGTJ0+mbdu2idZ79OgRDg4Or/Q7kZVIMiTMtGvXjkGDBvHvv/+yYsWKFB/n+vXr7Nmzh1q1aplahpYuXYq7uzuzZ8+OV3/t2rWsW7eOuXPnvvSXs0aNGhQpUoRly5bRpEkTzpw5k+CotYTkyJGDLl260KVLFyIjI2nfvj1ffvklo0aNws7Ojpw5cyY4Cd3zf0Fu2LCBiIgI1q9fb/bXZEqHqoaHh9O+fXtcXV359ddf4/0lu3v3bh4+fMjatWupV6+eqdzPzy/esZL6l17BggUBuHDhQrxt58+fJ0+ePOTIkSM5p5GgU6dO8d9///Hzzz/Ts2dPU3nckYsvk9A5ubm54eTkhMFgiDeKJy34+vpSv359Jk+ezOjRo822pca1rFmzJjVr1uTLL79k2bJldO/eneXLl9O/f3+KFCnC9u3bqVOnTqp9eTk6OjJmzBj69OnDypUr6dq1q6ljurOz8wuvqZubG/b29qaWpLievwaxrSvP/149/zvl5uaGs7Mzp0+ffmHcyWnJKFiwICdPnsRoNJr9TsXeVo79ub2q2KTHz8+PcuXKmcpbtGiBXq9nyZIlye5EHevzzz9nyZIlLx2kEKtIkSL06NGDefPmvXBSWz8/v0Q7nmdHcptMmHF0dGTOnDmMHTuWVq1apegYAQEBdOvWDYPBwGeffQbEfNmvXbuWN954g44dO8Z7vPfeewQHByc6h9DzunfvzrFjxxgzZgyapiWpb1Psff1YNjY2lC5dGqWUqa9GkSJFCAwM5OTJk6Z6/v7+rFu3zmzf2L8g4/7FGBgYyMKFC5MU//Pefvtt/vvvP9atWxev30FirxcZGcn3338fr26OHDmSdOspb968VKxYkZ9//tnsi+r06dP8+eefvP766yk4k/gSil0pxTfffJPkY+TIkSPel6ler6dDhw6sWbMmwS/Q+/fvpyzgF4jtOzR//nyz8le5lo8ePYrX8hDbihDbAtO5c2cMBgMTJkyIt390dHSKZ5Hu3r07+fPnN33RVqlShSJFijBt2rQEl5SIvaZ6vZ5mzZrx22+/cf36ddP2c+fOsXXrVrN9nJ2dyZMnD3v37jUrf/69q9PpaNu2LRs2bEhwZu/YaxSbVCblnF9//XXu3Llj9odddHQ0s2bNwtHR0XSr9lVVqVIFGxubeHF7e3szYMAA/vzzT2bNmhVvP6PRyNdff83NmzcTPXbc5ObOnTtJiufzzz8nKioqwTmMYh09epTatWsn6XjZgbQMiXgSu+WQkP/++48lS5aglCIoKIgTJ06watUqQkJCmD59Os2bNwdg/fr1BAcH07p16wSPU7NmTdMEjF26dHnp6/bo0YPx48fz+++/U6dOnUSHLcfVtGlTPD09qVOnDh4eHpw7d47vvvuOli1bmlqvunbtyogRI2jXrh1Dhw4lLCyMOXPmULx4cbPOuE2bNsXGxoZWrVoxaNAgQkJCWLBgAe7u7knu7Bhr06ZN/PLLL3To0IGTJ0+aJWKOjo60bduW2rVrkzNnTnr16sXQoUPRNI3Fixcn2HxfpUoVVqxYwfDhw6lWrRqOjo6JJrZTp06lRYsW1KpVi379+pmGg7u4uMSb/yWlSpYsSZEiRfjoo4+4desWzs7OrFmzJlnz41SpUoXt27czffp0vLy8KFSoEDVq1GDSpEns2rWLGjVqMGDAAEqXLk1AQABHjx5l+/btBAQEpMo5xPL19cXX1zdex1tI+bX8+eef+f7772nXrh1FihQhODiYBQsW4OzsbEqifH19GTRoEBMnTuT48eM0bdoUa2trLl68yKpVq/jmm29S1L/P2tqaYcOGmSYGbN68OT/88AMtWrSgTJky9OnTh3z58nHr1i127dqFs7MzGzZsAGDcuHFs2bKFunXr8u6775qSjDJlypi9hwH69+/PpEmT6N+/P1WrVmXv3r38999/8eL56quv+PPPP/H19WXgwIGUKlUKf39/Vq1axd9//42rqysVK1ZEr9czefJkAgMDsbW1Nc339byBAwcyb948evfuzZEjR/Dx8WH16tXs27ePmTNnpqhjc0Ls7Oxo2rQp27dvZ/z48Wbbvv76ay5fvszQoUNNfxDmzJmT69evs2rVKs6fP0/Xrl1fePzYW18XLlygTJkyL40nNoF6fj6lWEeOHCEgIIA2bdok/SSzuvQfwCYykqQuK5DY0PrYh06nU66urqpSpUpq2LBhZkPClVKqVatWys7OLtGlNJRSqnfv3sra2jreMOnEVKtWTQHq+++/T3D788Ns582bp+rVq6dy586tbG1tVZEiRdTHH3+sAgMDzfb7888/VdmyZZWNjY0qUaKEWrJkSYJD69evX6/Kly+v7OzslI+Pj5o8ebL66aefzIZNJxTH80ON407B//wj7hD5ffv2qZo1ayp7e3vl5eWlPvnkE7V169Z4w4xDQkLUm2++qVxdXc2OkdgQ5+3bt6s6deooe3t75ezsrFq1aqXOnj1rVif2/O/fv29W/vww8cScPXtWNW7cWDk6Oqo8efKoAQMGqBMnTsSLJ7H34/nz51W9evWUvb29AsyG2d+9e1cNHjxYeXt7K2tra+Xp6akaNWqk5s+fb6rzoiHGiSGRqSNij5VQnEm5ls9fs6NHj6pu3bqpAgUKKFtbW+Xu7q7eeOMNdfjw4XivPX/+fFWlShVlb2+vnJycVLly5dQnn3xiGkqdmMR+fkopFRgYqFxcXMzeo8eOHVPt27c3/a4ULFhQde7cWe3YscNs3z179qgqVaooGxsbVbhwYTV37txEp6Ho16+fcnFxUU5OTqpz587q3r178YbWK6XUtWvXVM+ePZWbm5uytbVVhQsXVoMHDzZbZmPBggWqcOHCpmH8se//53/XlIp5f/Tp00flyZNH2djYqHLlysX7HYj93Zg6dWq865NQjAlZu3at0jRNXb9+Pd626Oho9cMPP6i6desqFxcXZW1trQoWLKj69OljNuz+RZ/HvXr1UsALh9bHdfHiRdP1ef59P2LECFWgQAFZjiMOTamX9AwTQgghxAsZDAZKly5N586dE7ydmVFERETg4+PDyJEj4006mZ1JnyEhhBDiFen1esaPH8/s2bMT7G+VUSxcuBBra+t4c4Zld9IyJIQQQohsTVqGhBBCCJGtSTIkhBBCiGxNkiEhhBBCZGuSDAkhhBAiW5NJF1/CaDRy+/ZtnJycZEE7IYQQIpNQShEcHIyXl1e8JY6eJ8nQS9y+fRtvb29LhyGEEEKIFLhx44bZAroJkWToJWKna79x4wbOzs4WjkYIIYQQSREUFIS3t3eSll2RZOglYm+NOTs7SzIkhBBCZDJJ6eIiHaiFEEIIka1JMiSEEEKIbE2SISGEEEJka5IMCSGEECJbk2RICCGEENmaJENCCCGEyNYkGRJCCCFEtibJkBBCCCGyNUmGhBBCCJGtSTIkhBBCiGxNkiEhhBBCZGuSDAmRTpRSXN+3j8t//kl0RISlwxFCCPGULNQqRDrZ9M47HJk3DwCvatXos3cvVnZ2Fo5KCCGEtAwJkQ5C790zJUIAtw8d4sr27RaMSAghRCxJhoRIB3obGzSd+a+btAoJIUTGIMmQEOnAztWVJlOngqYBULZbNwo1bGjhqIQQQgBoSill6SAysqCgIFxcXAgMDMTZ2dnS4Yh08vBhGD/+eAylFP36VSZPHodUOW7o/ftEh4fjUqBAqhxPCCFEwpLz/S0dqIV4TkRENLVr/8SlSwEA/PDDMU6degc7u1f/dcnh5vbKxxBCCJG65DaZEM85efIu//33EKNRYTQqLl0K4PjxO5YOSwghRBqRliEhnuPl5YRer2EwxNxB1uk08uVzsnBUyRcdbWTVqjMEBkbQoUMp3NxyWDokIYTIkKRlSIjn5MvnzOLF7fD0dMTTMwc//9wWb28XS4eVJJGhoSxv04YvbG35PE8R3n3zR955ZxOVKs0jICDc0uEJIUSGJMmQEAno1q0c/v4f4u//ET16lLd0OEn2z7Rp/LdxI4bISGwDr9GSTQDcuhXM1q2XLBydEEJkTJIMCZGFBN24YRq+r0PhymPTNg8PRwtFJYQQGZskQ0JkIeW6dwelTBM8nrGtjl6v8fHHtWnQwMeywQkhRAYlHaiFyCKUUpwK9iLXiIUU5gpFalVh9BtvYDAorKzk7x4hhEiMJENCZBHDhm1h1qyDAOTO7cCJwb5omoaVlZai4x0/foeVK8/g7e1M//6VsbbWp2a4QgiRYUgyJEQWYDQq5sw5bHoeEBDOmjXnGDq0RoqOd/r0PWrU+AGDwYjBoDhw4BaLFrVNpWiFECJjkbZzIbIATQNXV7vYvtMoBW5uKV9CZMOGC0RHG01zLa1YcSY1whRCiAxJkiEhsgBN0/j11w64uNgB0LNneTp3LpPi4xUunBOjMSYR0us1fHwyxzxLQgiREnKbTIgsonHjwjx8+AlRUQZsbV/tV7tz5zIcPerPjz8ew9vbmcWL26dSlEIIkfHIqvUvIavWCyGEEJlPcr6/M9Vtsr1799KqVSu8vLzQNI3ffvvthfV3796NpmnxHnfuyKKbQgghhIiRqZKh0NBQKlSowOzZs5O134ULF/D39zc93N3d0yhCIYQQQmQ2marPUIsWLWjRokWy93N3d8fV1TX1AxJCCCFEppepWoZSqmLFiuTNm5cmTZqwb98+S4cjhBBCiAwkU7UMJVfevHmZO3cuVatWJSIigh9++IH69etz4MABKleunOA+ERERREREmJ4HBQWlV7hCvBKlFOHh0Tg4WFs6FCGEyFSydDJUokQJSpQoYXpeu3ZtLl++zIwZM1i8eHGC+0ycOJFx48alV4hCpIqzZ+/TvPkSbtwIonbt/Gza1B1XVztLhyWEEJlCtrhNFlf16tW5dOlSottHjRpFYGCg6XHjxo10jM5yIiMNlg5BvILBg//g9u1gAP799xZTpsjtYCGESKpslwwdP36cvHnzJrrd1tYWZ2dns0dWduNGIOXKzcHW9guqVp3PvXuhlg5JpMC9e6GmpTM0DR48CLNwREIIkXlkqmQoJCSE48ePc/z4cQD8/Pw4fvw4169fB2JadXr27GmqP3PmTH7//XcuXbrE6dOnef/999m5cyeDBw+2RPgZ0scfb+PcuftAzCrlo0fvsnBEIiU++KCm6f96vY7+/RPuEyeEECK+TNVn6PDhwzRo0MD0fPjw4QD06tWLRYsW4e/vb0qMACIjI/nwww+5desWDg4OlC9fnu3bt5sdI7uL26JgNCppGcqk+vevTKlSeThz5j6+vgUpUSKPpUMSQohMQ5bjeImsvhzHqlVn6NJlNUqBTqexcWM3WrQoZumwhBBCiFeSnO/vTNUyJFJfp05lKFDAhUOHblO7tjeVKyfen0oIIYTIiiQZEtSokZ8aNfJbOgyRBE8eP2ZV585c3b2bvJUr02XtWpy8vCwdlhBCZGqZqgO1ENnd7nHj8Nu5E2NUFLcPH2brhx9aOiQhhMj0JBkSIhMJvnkTZTQCoAwGAq9ds3BEQgiR+UkyJEQmUv7p1BGaLuZXt3L//vHqTJ78N97eM6hWbQGnTt1N1/iEECIzktFkL5HVR5OJzOf6vn1c27sXr6pVKdKkidm2LVsu0aLFUgD0eg1vbxf8/IZZIkwhhLAoGU0mRBZWoE4dCtSpk+C2//57aPq/waC4du0x0dFGrKykEVgIIRIjn5BCZCHNmhXB1laPlZUOTYOWLYtJIiSEEC8hLUNCZEJKKfZNnszp5cvJU7IkLWbNIoebGyVK5GH//n4sWXISDw9HhgypbulQhRAiw5NkSIhM6NTSpewYNQqAe6dPExEYSPfNmwGoVCkvlSrJ5JlCCJFU0n4uRCbkf+wYOquYv2WUwYD/0aMWjkgIITIvSYYs4MyZe5Qs+R02NhN48801REYaLB2SyGTca9bDGB2NEQ2FRsHGTS0dkhBCZFqSDFlAr16/celSAFFRRpYvP83cuYctHVK2YjQqpk7dR+vWv/LVV38RHW20dEjJNmszrNR15TRl2aP5csijq6VDEkKITEv6DFnAjRtBGAwx0zvpdBq3bgVZOKLsZdq0fxgxYjsAGzf+R1SUgTFj6ls2qGT677+HnDWW5Cwl0YBc10ItHZIQQmRa0jJkAQMHVgZiEiG9XkfXrmUtHFH2smfPsyUslILduzPfkhZdupQBwMpKh1LQvn1JC0ckhBCZl7QMWcD48Q2oWNGTy5cf8frrxShb1t3SIWUrNWvmY/PmiygFmhbzPLN5773qeHg4cvDgLXx9C9KqVQlLhySEEJmWLMfxErIcR9YTFWVg/Pg97N59jdde82bcuAbY2OhN22/dCmLhwuPY21sxYEAVnJ1tLRitEEKIlEjO97ckQy8hyVD28uhROKVLf8/9+6EoBZUre3LgwAB0Os3SoQkhhEiG5Hx/S58hIeLYt+8Gd+6EYDAojEbF4cP+XL362NJhCSGESEPSZ0iIOAoWdDH9X9PA1tYKNzcHC0YUX1hYFN9+e4D790Pp2bMCFSp4WjokIYTI1KRlSKRIYOATihb9Fk0bh5PTV/z1V+qPyDqzciVre/Rg7xdfEB0RkerHT0i5ch58//3ruLvnwNvbmTVrOuPklLH6DHXosJLPPtvJN98coGbNH7l48eHLdxJCCJEoaRkSKdKp0youX34EQEhIFK1b/8qjRyNT7fjnf/+d1V26oOl0KKUIvHGDVvPmpdrxX+Sdd6rxzjvV0uW1kisy0sCWLZdMzw2GaLZtu0KxYrktGJUQQmRu0jIkUsTP75HZ86CgyFQ9/pVt29BZWaGMRlCKS08XIc3urK115M/vbNahu0QJSYSEEOJVSDIkUqR79/Jmz+vWLZCqx/esWBFjdDQAml5P3sqVU/X4GUlwcAT//nuT+/dfPou0pmls3NiNypXzUqCAC9OmNaFRo8LpEKUQQmRdcptMpMiYMb44OdmyZs1ZKlfOyzffNE/SfpGRBlatOkNoaBSdOpUmZ077BOtV6tuXYH9/zq1ejVuZMrSYNSs1w7eI3buvsnLlGQoWdOH992tia2vF5csB1K79E/fuhWJvb8WmTW/SoEGhFx6nQgVPDh0akE5RCyFE1ifzDL2EzDOUepRSvP76MlOfl8KFc3L8+KAM10E5KYxGxaJFxzl//gGvv16M+vV9Xlh///4bvPbaQjQtZt833yzHkiXteffdTcyffwSDQaFpUKNGPvbv758+JyGEEFmYzDMkMqRbt4LNOv9eufKI3buvpuhYhw/fZs2aszx8GJZK0SXP55/vpF+/9cyY8S8NG/7Mjh1XXlh/y5ZLaBoYDAqlYP36CwnWS8qfJoGBTxg+fCsdO65k3bpzKQlfCCFEHJIMiXTj7GyLtbX5W87dPUeyjzNjxn6qVVtAx46rKFVqNjdvBqVWiEn266+nAIiONqLXa6xbd/6F9UuVcsNgiMl09HqNUqXcABg+vBa5c8fMY2Rra8VXXzV66Wt367aGb789wNq152jffiV79lx9hTMRQgghyZBIN87Otvz8c1ty5LDGykrH//5Xjxo18pvVuXQpgOHDtzJq1Hbu3g1J8DhffPGX6f8PH4Yzffr+NI07IcWK5UavjxnRZTAoihTJ+cL6XbqUYdy4+hQu7EqDBj6sWNERgKJFc3Hp0hD27+/HtWvv07Dhi/sLAezaddXUwqTTaezZk/pzPAkhRHYifYZeQvoMpT6jMWapCysr81z84cMwihf/jsDAJ0BMn6IzZ97F2lpvVq9AgRncvBlkdktp+PCafP11s1SNc+3ac4wZsxs7Oz3Tpzejbt2Cpm03bwbRo8dazp69T7t2pfjuuxbx4kwrdesuZP/+G6aWpj/+eJMWLYqly2sLIURmIQu1piJJhtLPli2XaNFiqVnZ+fODKVEij1nZ1q2XaNt2BU+eRJuVX7/+PmFhUXzwwVYePgzngw9q0rVr2Re+5n+bNvHPlCnYOjvTeMoU3EqVAuDy5QBKlPgOo1GhaRoODtbcvj08Q3T2vnMnhA8/3MrVq4/Jm9eJTZsuomnwwQe1+PLLhmzffoV//71JnTreLx2ZJoQQWVVyvr9laL3IMIoWzYVOp2E0KnQ6DXt7K7y8nOLVa9asKBs2dKNJk8Vm5dHRRpo2XcKtW0EYDIo331xDsWK5yJ3bgQ8+2MrduyG8+241evSImSPpwYULLG/TBmU0oul03D5yhPevXUNvbc3FiwGmlhelFCEhkdy+HUyJEs+SoWvXHnPgwC3KlXM39QGKKyAgnJCQSLy9ndG0hFe99/cPZscOP3x8XHnttaTN1eTp6cjSpR04dsyfypXnm8q/+uov9u27bnbbbMWKjnTuXCZJxxVCiOxK+gyJDKNo0VwsX96BUqXyUKGCB5s2vZloS0yDBj60alXc9Pydd6qSM6c9168HxkliYPXqs7z++lLWrz/P/v03eeutdezbdx2AuydOoAwGopWODYbmjPfvyhuvL+b+/VCqVvUiZ0479HoNvV6jSJGcFC78rF/QoUO3KFVqNl26rKZs2Tn89pt5B+oFC47g5jaVggVn0r79CqKjjfHOwc/vEWXKfM9bb62jbt2FTJ78d7Ku1+3bwfHKnu8/tGDB0WQdUwghsiNJhkSG0qlTGc6eHczRo4Pw9fVJtJ5er+O337py6NAATpx4m9mzX8fFxZaKFT2J2wgzadI+zp17gDFOLnL0qD8AXtWqobe15V+tFoepShAubNt1k8GD/0Cv1xgypDr16hVk8OBq/PVXH7M+QbNmHSQy0gDEtBxNnrzPtO3Jk2gGD/4DozEmKfvttwts3PhfvHNYsuQkQUHPFqCNe4ykSLwlSZn+vX0rkPPn7yfruEIIkd1IMiQyLZ1Oo2pVL8qX90DTNDRN488/e7x0uH5sR+ichQrRa+dODD5ViV3qy2BQnDp1j1q1fmTChL3s3n2V/ftvxjumk5ONWRxxnxsMxngtQeHhUfHicHW1MyVMmgauLnZJP3lg7974o8g0orEmkpiESOPsuYeUKjWbtWtlPiIhhEiMJEMiS3Fzy4Gvb0HTsPfnubrGtB7F8q5dmyFfD8SoNNPoturVvbhw4SFKxdxqO3ToNmfPxrSuGI2KJUtOkiOHDfnyxfRnyp3bga+/bmo6Zo4cNgwfXsv0vEwZN1q1KhEvlu7tC1HM5hYANuoJfUu+eK6iuEJDIxk0aGMCW3REYQ3EPX+Nzz7bmeRjCyFEdiMdqEWWM2NGc27eDObIkdtERBjMtn3xRcN49du0KcmHH9Zi//4btGhRjA4dSvHLLyfj1FBsXriVQ2XL8c8/N/jxx2NP+xLp2LbtLerWLYBeb/53xdSpTejYsTSPHoVTv74Pd+6E0KzZEi5efEjXrmWZMaMZN3ZsoVvEAp5ghw2RGLYYiQyZio2j4wvP78KFB9Stu5D79+PPvq0S+fvGwUF+1YUQIjHyCSmyHC8vJ/bt6wvAzp1+zJp1kIiIaD76qBYNG8Zf4X3IkM18//0hdDqN48fv0qlTKWJvM8XQGDHDD/Az7RMz6aGBpUtP8uaba3jwIIy33irPjz+2wcpKh6ZplC/vwbRp/7B69Vn27r3GlSuPMBpj+huVKeNGg/y50QB7YuZVsrK3R29r3mE8dmRddLQRnU5Dp9P46qu/CQgIf8EViO0zFBO/TqcxZ84byb6OQgiRXUgyJLK0hg0LvXRW559+OgbEJB5PnkTzzTcHML/NlDCjEZYsOWXqH/TLLydp1KgwPXtWAKBnz3WsXXsu3npjer3G5cuPGDjwdUq0bs2F9evR29jQbvFi9NbWQMz6Yx06rGTHDj/y5HHg0aNw7O2tWbiwTYIj08yZx96mTQmqV8/30vMRQojsSvoMiWzPy8sJ3dMe1Eajwt39xbep4oqbmOh0mtkSIn/8cTHBhVeNRkWbNiW4tmcP/23ciKbXY4iM5JtRy2jWbDF79lxl4sS/2bXrKgAPHoRhMMTMddSjx1qGDKlGjhwxHbbt7a344IMaeHgk3mk8dl4lIYQQCZNkSGR7y5d3oEABF2xs9AwcWIXPPqtLhw6lkn0cR0drOnWKmeDwv/8emhKs523c2I06dQpwdvVq0OlQhph+TfYXd7Jt2xWaN1/K5csBJDRPY0SEgcKFc3H58lB27uxJ586lmTHjAHfvhib4WmPH1qN9+5hzeXTlCoe+/55LW7ciE88LIcQzcptMZHvVquXDz2+YWdnKlZ345pt/GT78T7NyV1c7AgOfmFp89DpopNuNVXQoFfT3cYrsALjSsePKBIfTDx1anddfj5ks0qVgQVMiZEQjgJwoFTNPUalSbqxZE384fJs2JUzD/CtU8OTnn0/GqxPXtGn76d69Ai5Rd1lQtSpRYTGdrhtMmEC9zz9/+cURQohsQNYmewlZmyz7ioiIpkGDn9m//yYAH35Yi8GDq/HTT8e4fTuYwoVzYlg7GXV8CxiNaHo9FXv3pvUPP2Bn90W8kWwAlSvnxc3NgaNH/Xn8IJj3Cu7F7eExroe7stLYgUDNFTs7K6pU8eLvv6+ZJots0aIoefI4YG2to27dgvTqVYHAwAhy5pz80vNwcbHl2zdDWDF3O3oVRXlO4uKWk4/v3UvV6yWEEBmJLNSaiiQZyt6iogz8888NnJ1tqVQpb7ztC+vV48a+fTHrm+n1VOjVizY//ki7diviLdGRmO++a0HBgq789NMxbGz0fPRRbZo3X8LDh/FHjOn1GgaDYtasFrz3XnW+/HIvn3++66WvYa2HKEPMCDkvbvJxoZ28f+VykuITQojMKDnf39JnSIgXsLbW4+vrk2AiBNDwiy9Mw+HtXF2p8/HHACxe3A5HR+uXHl+ng6+/3k+rVr+ybt15rB9dx1kLSXQW7dh11zZtugjAZ5/Vw89vGO+9V810vBiKuMtyRBkgdpTZbfJz5VowAZclGRJCCJBkSIhXUrBePd6/epW++/Yx9PJl8pQsCYCjow1//92Xhg198PZ2pnx5DwoUcIk3M7aVlQ4/v8em50v/DGR+1UpcO3c10dfU6TTKlXM3PffxceXbb1vQKf8pqhn38/w8QzGeJUY6DNgbQzj0/fcpPm8hhMhKpAO1EK8oh7s7Odzd45VXqODJjh29TM/v3Qtl2LAtXLr0kHLl3ClTxh29XscHH2w12+8XehJG/JYhTYuZBqB586KMHVvfbFtYYDBlbq4hFx4coNbzewIKPVFYYaAlm3AgHIN6+VxKQgiRHUgyJEQ6cXfPwa+/djArCw+PYvny0xw4ELNGWT328jev8fzEibVq5Wf9+m7kyeOQ4LGNSiMCG9y5hy3hRGDH8+uTvcUvFOAGGhCFFVa1O6beyQkhRCYmt8mEsCB7e2v++qsP09/NyTvMpgG7ceExz25rxTh27A7Ll582rXJ/dfduDs+bx8OLMX2HnHI6cSNfMyKxZQDz4r2OpsEyXS+20pw9+DJP9y7BmjPffXeQQ4dupfVpCiFEhiajyV5CRpOJ9HL130O832cxm847Eo1tgnV69ixPDafLXJs9GgfCsbKzo+8//5C3UiWiIyNZMmYB168+ZOwKZTb7tbXOwMxZbzBt6j9cvfYYFecWmabBggWt6dmzPNbW+rQ+TSGESBcymkyITMinZjVWnZzBuC9bkCNHwiPRfvnlJINnhzKFEaymHdGRURxftAgAKxsbek8cTM7azcxup9kRTgfjShxWfoJT2M04s0/H/KsU9O+/ngIFZnL27P20PEUhhMiQpM+QEBmItbWeTz+ti6bBp5/ufGHd01Qg3OiA4yNXmj1d3X7jxv8YOnSLWb0n2LGcrhzZ8x8XcSSxRWjv3w/lk0+2sXHjm6l1OkIIkSlIy5AQGZCXl1OS6l2mGB8t1lGr1g9ERERz5MjtBGppgMZFiiew7dm9NKNRERwcmaJ4hRAiM5NkSIgMqHv38jRvXiRJdW0Jx/ngz7ydvyFndh18QU2NZ61C6rnnMbfL+vatmLKAhRAiE5MO1C8hHaiFJZ09e5+dO/0oXNiV33+/wPz5R5+roejPDxjRCMOB1XQimsRmvo5NgBKmaZAjhzXFi+fmf//zpW3bkql1GkIIke5kbbJUJMmQyEg2bfqPN9741fTcljDyEMAt8j8tMRK3wVevB0Oc9WKdeEwBrnMPN+4Tu8RIbJKkyIs/OozcxouTp96lbFmPND4jIYRIGzKaTIgsqmXL4hw40J8pUxpjY6MjArs4iRDEb/nRePvtKhQvnguAYFw4Q3kekYea7CcP957WMtCG3xjEfAbwA51ZyZjRL+7ALYQQWYW0DL2EtAyJjOrKlQBee20h/v4hcUpffCssrrx5HanhvxhnArmDJ7X512z7j7r++OsK8P77NZgypQmaJst3CCEyjyzbMrR3715atWqFl5cXmqbx22+/vXSf3bt3U7lyZWxtbSlatCiLns7JIkRmV7hwLq5cGUalSp5xSpOesNy/F4on/hTiKrX5lwsUZy3t2EV9IrEm2qgjOtrItGn7+f3386l/AkIIkUFkqmQoNDSUChUqMHv27CTV9/Pzo2XLljRo0IDjx4/z/vvv079/f7Zu3frynYXIBOzsrDh4cAADB1Y2leXPn9iwfPNG4GiDwoUgNOAKhfiVNzlFOfZSj5/pib+pTxGMGrUjDaIXQoiMIdPeJtM0jXXr1tG2bdtE64wYMYJNmzZx+vRpU1nXrl15/PgxW7ZsSXS/uOQ2mcgsAgLCAejXbz2//faylhyFFZG8zzc4EsY2GrHPbIFYRQGu4c49zlOKEJw4dGgAVat6peUpCCFEqsmyt8mSa//+/TRu3NisrFmzZuzfvz/RfSIiIggKCjJ7CJEZ5MplT65c9jRuXOhpyYv+ztGIxpbveZdAnHDjPs/PQXQdHy5RjN78hB1h1Ks1lx65fFnesz/RT56k6bkIIUR6ytLJ0J07d/DwMB8a7OHhQVBQEOHh4QnuM3HiRFxcXEwPb2/v9AhViFTz7rvV+P7712nfuij5bAKelioSSo7CcOAEFQgmR5zSZ/2OHpOTu+TFhkjCo/UsfdSQQYud+XPsV2l6DkIIkZ6ydDKUEqNGjSIwMND0uHHjhqVDEiJZNE3jnXeqseb3HtyM+IZTR3rzbu9iWFkltCK9xqmczTjj2pTYZElHNHETJwfC8Oam6XkQLgz79gF//309bU9ECCHSSZZOhjw9Pbl7965Z2d27d3F2dsbe3j7BfWxtbXF2djZ7CJGZla1ckEnfdiQ62pjAVo0HjyKp+XgdOYlpRSrHSfRPE6Ka7KcgV2nKn9gTZtorKjyMJnW/5+DBW+lzEkIIkYaydDJUq1YtduwwHwWzbds2atWqZaGIhLAMJydbOnQoleA2hZ7faQNAfq4SQG4MWGNPOGU4gw5wJog32AhAFQ7Tm595m7msWfJvgscUQojMJFMlQyEhIRw/fpzjx48DMUPnjx8/zvXrMc31o0aNomfPnqb6b7/9NleuXOGTTz7h/PnzfP/996xcuZIPPvjAEuELYVG//tqBRYvaULCgS7xtCj2PyM1NfLhBAQCeYMd6WgExvYg8uIsn/rRiIxrgSiCXZn9J0SIzWbr0VCItT0IIkfFlqmTo8OHDVKpUiUqVKgEwfPhwKlWqxOjRowHw9/c3JUYAhQoVYtOmTWzbto0KFSrw9ddf88MPP9CsWTOLxC+EJVlb6+nVqyJTpjR5botK8P8KHU+wx4CGAi5QnHKcMKtdzngM5yu76NFjLdbWE/j0U5mPSAiR+WTaeYbSi8wzJLKiPXuuMn36fk4cv4P/9ftEYk1M+4+GFVHErnxfgKtU5AT3cOcg1WnGFmpwyOxYXzGKSGxNz//5py+1askoTCGEZSXn+9sqnWISQmQgvr4++Pr6AHDkyG061P6CsEiN1/gLH67hRyHCsWUrr3Mdn6d7Kf6jhCkZMgJR2FCIK+QgjP8oTghO3L8fltBLCiFEhpWpbpMJIVJflSpeXI34nhJeGhU4hRNBlOck94g7R1dMA/JlivA3tTGgIxwHruBDN1bQmg28zffY8ISOHVfSsuVS7t0LSfgFhRAig5HbZC8ht8lEdhEcHEHtnL0oZTjFY1zZRX2isQHAiUCCie14bcSaSKKx4X9MQPc0UTpMJTY+HZUGinzc4INKF+mz8idyFS2a/ickhMjWZDkOIUSyOTnZsvLULP7O25dtNDUlQqB4jb8B0DACGsW5hJ4owrHDCERgw04axTmaxi28uXLsHAvqP99hWwghMhZJhoQQJqVKuXHr1nBmzmyGtXXMx0MRLlODQ7zJEuqzm94sfDor9Q3W04pIbDlNWcLMlvQA0NhIK57cusrVS/fS/2SEECKJ5DbZS8htMpFd3bgRyMmTd/m82xTaBv/IE2yxI4ILFGclnTFgBainA++NKPTEXdcMwJYndGIlVV4rydt/rsPO3iahlxJCiFQnt8mEEK/M29uFli2L8/4373CJIhyhEl/yKb/y5tNECEBDoXsuEVKmfyOwZRndCfh7M9Vd+rJ+/YX0PxEhhHgJSYaEEC/Uq08V/nd+P3lbdCIKa+ImO+bU00dsUhQzb5ERPdMYzqmoorRps5zvvjuQTpELIUTSSDIkhHip4iXc+PmP4QwaVBXzZEfF+b+GLWFoGJ6WKdP2cJxM9YcO2UJYWFT6BS+EEC8hyZAQIsnmzn2Dli2LoZm6Bpn3EYrAARXnY+VZYvSsRAHF847lwIGbaRmqEEIkmSRDQohk+fHH1rz2WoGnz+LeMou9RfYsQYrpSxTfrSBr6tZewKlt+9IwUiGESBpJhoQQyeLh4cjevX1Ytqw9Pl62uPCIGhwgL/7ELNIRyzwxAshBCD1YzMdMoZVxHUOajmL3uHHpGb4QQsSTrGTojz/+oH///nzyySecP3/ebNujR49o2LBhqgYnhMi4unUrh9+tUaz6xJY3bHbSmRXk4yZx+wo9rzmbKcwVchBOWU6jx8h7Y0/zOCA0XWMXQoi4kpwMLVu2jNatW3Pnzh32799PpUqVWLp0qWl7ZGQke/bsSZMghRAZV5PJk/k8IgK7jiPoxRL68tPTLXETopj/5+GhafkOAFeCOEMZfHJ/zsCBG9IvaCGEiCPJq9ZPnTqV6dOnM3ToUABWrlxJ3759efLkCf369UuzAIUQmUO/rwZS808DT4KC4m3LzUNqs4/op32IDGjoUZyl9NPB99EsWHCUwMfhrFjZOb1DF0Jkc0megdrR0ZFTp05RqFAhU9muXbto3bo1U6dOpV27dnh5eWEwPD96JHOTGaiFSLq7d0P45psDTJmyj1aGNVgTwTrakZtHPMGOcpzkMbnw5A5+FOIyRYmZxdpo6mzdqVMpfv21I3q9dGkUQqRccr6/k9wy5OzszN27d82SoQYNGrBx40beeOMNbt6UYbJCZHceHo589VUjPvigJo1KBfDGw++xI4q7eAIaf+MLGDhNuad7GNGhMMYZdbZq1TnOnZvLgQMDcHCwtsRpCCGymST/6VW9enU2b94cr9zX15cNGzYwc+bM1IxLCJGJubnl4MT9GXh8sY4Q04SLsWI+djzxZzgzGM0EurEMK2ImYrQiirOn7zBw4AZWrDhNQEB4+p+AECJbSXIy9MEHH2BnZ5fgtvr167NhwwZ69uyZaoEJITI3TdMY9llLmjQpjPkIs5jEqC2/4UgIAMX5j2ocAqAU52jDOpYuPUXXrqsoU2Y2d++GpP8JCCGyDVm1/iWkz5AQryY0NJLBA9bw86/nifv314dMw+lpMmRE41+q8yctAMjNfbryKyvpQgC5qV80nO0Xp1kifCFEJiWr1gshMowcOWxYtKwbn3/uixc3TOUHqQ7EtBcZ0HOcyqZtD3HjBBV4g00YsGLHJSeWTVmR3qELIbKJJHegFkKIVzFhQkOaNStC3boLAY2/qMdt8pKLR1ymCAHkNqt/nlJU5jg6DNTlL85P/ZmND0/j8npfKlb2wsnJ1jInIoTIcuQ22UvIbTIhUteuXX60azafJlHrWUsHs5Fksf2KrImiNn8TiR1PsCOAXICiIbuIRs9R11ZsPDYOHx9XS5yCECITkNtkQogMq0GDQpzZ1x4jGjkI4fmlO/REY0BHCM48wJWTlOc6BbhOQZbQgzDsufc4igXVqnL5zz8tcxJCiCxFkiEhRLrzqlqVPoMb0pQ/0T8dUm/DE+x4ggE9Rqw4QlUCyIMBKxQ6FDqisOEyxbiPB/cfhLG4WTOWdO/Pf5s2YYiKsvBZCSEyq2TfJgsNDWXSpEns2LGDe/fuYTQazbZfuXIlVQO0NLlNJkTa+W/jRpa1asVf1OE0pQjAg2hiJlqMWaYjimhsiJmlGqyIfrqkh8YHzMCJYNMMRo5eXrx7+jT2OXNa6GyEEBlJmsxAHat///7s2bOHt956i7x586Jp2st3EkKIBBR/4w1afPstjhMnUdT/EvupzSkqoGFEQxFNbCdpDQVEPU2MAEKxx5pITlGeQFwoc/sMR3/4gToff2yp0xFCZFLJbhlydXVl06ZN1KlTJ61iylCkZUiI9BES/ISfJ6/mh2VXuHwXgsNe9NFkvk1DoaGYN9iW/t99lraBCiEyhTTtQJ0zZ05y5cqV4uCEECIhjk52DP6iB8eujObM+WE4Oz3fcK3iPDSzRy4eAooPFjyhaMGpjB29A6NRBsoKIZIm2cnQhAkTGD16NGFhYWkRjxBC4OXlRGR4JOYtQHETIHPt+I3a/ENIpJ7L10MZN+EvivhMZfXqM+kUsRAiM0t2n6Gvv/6ay5cv4+HhgY+PD9bW5qtKHz16NNWCE0JkTxERBp5Em/+tZsMTorB52pX6WUKUn+vkJIB91KEZW6nIcQJxYe2N9nTqtJrFiw306FE+nc9ACJGZJDsZatu2bRqEIYQQzzg4WPNWj7IsXnIaUNgQSS3+4S6eXKEwkdgBRtqzjlKcIwwHynGaWvwLgC0RdGQ13zOYt9/eSNOmRXB3z2HRcxJCZFwyA/VLSAdqISzDYDCydu05/G88JFceRxb9fBLDniVcNnhzkwIodNRkP83ZigIe40IOwrhJfpwJAhTfMRSAypXzsndvb3LksLHoOQkh0k9yvr9TnAwdOXKEc+fOAVCmTBkqVaqUksNkeJIMCZFxzHmtEVf3/cN0hj+dj0gjNw8oz0mqcpgFDOAxOXnW10gDFDXYj0due+ZtH4tnxYoWi18IkX7SdDTZvXv3aNiwIdWqVWPo0KEMHTqUKlWq0KhRI+7fv5/ioIUQ4mWajfsUB300dkSYyh6SmwisOU5FAnF5Whq3k7WGH0XI+/Bf5lWpwrlNW9M1ZiFExpfsZGjIkCEEBwdz5swZAgICCAgI4PTp0wQFBTF06NC0iFEIIQAo3KgRQ86fo6JnqKnMnnBq8y86DE87V8Oz4fcx7uHGYt4iyqjxv1Yfs2bN2fQNXAiRoSX7NpmLiwvbt2+nWrVqZuUHDx6kadOmPH78ODXjszi5TSZExnN6xQqmdh3JZQpTj7+xJZIwbJnNe4TixPPJUKz67MSaKLbRjCNHBlK5ct50j10IkT7S9DaZ0WiMN5wewNraOt46ZUIIkRaKv/EGpVweUZyL2BIJQAB5niZCEJsI6YgCYj+XjFyhCNcpgDWRVKkyn5Ejt6d77EKIjCfZyVDDhg0ZNmwYt2/fNpXdunWLDz74gEaNGqVqcEIIkRCbHDl49/RpOg3vwk3b4kDM7TJzik6sxIEwQNGcrfRlId1YwVC+wZYwJk/eR+WKc3j06Pl9hRDZSbKToe+++46goCB8fHwoUqQIRYoUoVChQgQFBTFr1qy0iFEIIeJxzp+fFl9P5eu7x/nZ7l028TolOPd0kVcjBfCjENeozDFsiKAmB0z7OhFKJ1ajI5oSJ2ZQIde7/PvvDQuejRDCkpI96aK3tzdHjx5l+/btnD9/HoBSpUrRuHHjVA9OCCFextnFnsO3pvLJJ9tZuvQk6okBHdE8Ig92RPIaf7GfmhjR0MVZ3iMftzBixW+0oztLaflaLh5Gf23BMxFCWIpMuvgS0oFaiMzj2rXHLF16ip/GL8Uvwo3hzEDDyFRG0IZ1VOIEENO9+hreLKIfGkYKc4VSnKWs60M6zPySqr26W/ZEhBCvLDnf30lqGfr2228ZOHAgdnZ2fPvtty+sK8PrhRCWUrCgK59+Wpc2DXNTpdZifqEn3fgVB0JYTxuisKY0Z3mAG+toizOBlOMkt8nLeUpieHwJevfBzs6Ksl26WPp0hBDpJEktQ4UKFeLw4cPkzp2bQoUKJX4wTePKlSupGqClScuQEJlT6OMg+nb4ges7/6Qyh1lIP8JxiFPDiDXRRD2dyTqGojJHqW+9n7Lz/uSttypgZZXsrpVCiAwgXZbjyC4kGRIi8woNjSS/52QahaygFOf4la5cpphpu4Z6OlHjszmJXHjEUGbxiJwE1H6XJX+PQ9Piz1kkhMjY0nSeoecZDAaOHz/Oo0ePXvVQQgiRqnLksOHqzY+pNW0+jwetpkSL5gDoMFCdg3zGl9RnF8/WMlOE4cBxypOLh+T+5zsa1/+B8PAoi52DECLtJbtl6P3336dcuXL069cPg8FAvXr12L9/Pw4ODmzcuJH69eunUaiWIS1DQmQdRqPC02Y4hQ3naEHMGmXR6PmTphymCsan3SgdeUxuHnGNQoCR4l56LtwabcHIhRDJlaYtQ6tXr6ZChQoAbNiwgatXr3L+/Hk++OADPvvss5RFLIQQ6UCn0zhw8X+U5ZSpzAoDr7MZT+4+LVGE4MI1fNAwYkcErW5PpZtNJQ7+e90ygQsh0lSyk6EHDx7g6ekJwB9//EGnTp0oXrw4ffv25dSpUy/ZWwghLKtQoVzctitNSJzO1LfJywNy4UAIlTlCPm7iwV1AYccTruNNyajjvF/vPXZ8+imGKLltJkRWkuxJFz08PDh79ix58+Zly5YtzJkzB4CwsDD0en2qByiEEKnts+0/0rfe/yhlPMEd8nKfPHzKZC5TGD98qMM/lOIcj3EhJ4EY0VBAVJSBjyeeZkz0l7SZMtbSpyGESCXJTob69OlD586dyZs3L5qmmWaePnDgACVLlkz1AIUQIrXVqVOAc1GLeOR/n57FuuEefoazlGIlXdAwotDRgj+owUGi0GONAQMa5ylFCI70m/oQyu+jYZuqODnZWvp0hBCvKNm3ycaOHcsPP/zAwIED2bdvH7a2MR8Eer2ekSNHpnqAQgiRFnQ6jdz53Fl1fQXu1iGcoYwpEQI4SXkAIrBBETP43pfdaCgekoe2b/1J7txTmDXrQOIvIoTIFGSeoZeQ0WRCZH1n9x6mie98/MmLQoeGkbKcphJHKcRV4NlMRGtpx0liBpE4EowH/vy05yvq1StomeCFEAlK9eU4nrdjxw527NjBvXv3MBqNZtt++umnlBxSCCEspnS9qqza507r13/hcWAELgSSl1scpSIFuY6emM85IxrOBMHTtqIQnFBojPtsM9v3DpLJGYXIpJJ9m2zcuHE0bdqUHTt28ODBAx49emT2EEKIzKh27QI8ePw5yz+2YyizqM0BLlGcaxQAYtKfaPScpYTZfqE4svPvu7zX+FOMBoMFIhdCvKpktwzNnTuXRYsW8dZbb6VFPEIIYVHtvvyE6+uWEHzpPBrwO214j+8AxQFqYMA6wf1W7AzCLkd+Bu/8ncK1q6drzEKIV5PslqHIyEhq166dFrEIIYTF6a2t+eC/s7T+6SfaVoNAcjKfQfxJc3bRkEByJrjfQ9zQRQTxS50aNLFpyD+r/0znyIUQKZXsZKh///4sW7YsLWJJktmzZ+Pj44OdnR01atTg4MGDidZdtGgRmqaZPezs7NIxWiFEZqRpGpX69GHpgUmsXNmR2r7FuURhjKZu1An1DdK4QX6uUYAqUfup2+kv/t5xNj3DFkKkULJvkz158oT58+ezfft2ypcvj7W1eZPx9OnTUy24561YsYLhw4czd+5catSowcyZM2nWrBkXLlzA3d09wX2cnZ25cOGC6bl0cBRCJJWmaXTqVIbWrUvgaj8a1POfH88G41oTxSbeIARnbIgAoG/7BZwL+Bq9/pXXxBZCpKFk/4aePHmSihUrotPpOH36NMeOHTM9jh8/ngYhPjN9+nQGDBhAnz59KF26NHPnzsXBweGFI9g0TcPT09P08PDwSNMYhRBZj62tFVtWNsWGyKclsUmQhi1PsCKKKKwJwRlQRGKLESsuBrnSMN8gHl+9apnAhRBJkuyWoV27dqVFHC8VGRnJkSNHGDVqlKlMp9PRuHFj9u/fn+h+ISEhFCxYEKPRSOXKlfnqq68oU6ZMovUjIiKIiIgwPQ8KCkqdExBCZGq+Hevjd8KNVs1/5Ki/E3m4TxdWsJTuPCYnJHALzZYn5Lh7kpmFClH7o49oOnWqRWIXQrxYittuL126xNatWwkPDwcgredufPDgAQaDIV7LjoeHB3fu3ElwnxIlSvDTTz/x+++/s2TJEoxGI7Vr1+bmzZuJvs7EiRNxcXExPby9vVP1PIQQmZdX+TIcuT2dWbNepzBXOELl5xKhWApQtOZ3qnEIgP3TpnF2zZr0DlkIkQTJToYePnxIo0aNKF68OK+//jr+/v4A9OvXjw8//DDVA3wVtWrVomfPnlSsWBFfX1/Wrl2Lm5sb8+bNS3SfUaNGERgYaHrcuHEjHSMWQmQGVavm4zoFOU8pEutMXYjLFOQaOpSpxvoBg2QuIiEyoGQnQx988AHW1tZcv34dBwcHU3mXLl3YsmVLqgYXV548edDr9dy9e9es/O7du3h6eibpGNbW1lSqVIlLly4lWsfW1hZnZ2ezhxBCxFWtmhclfGsSTsKjUzWMFOMiAeQyK7/wyJEhTsW5k8b9K4UQyZPsZOjPP/9k8uTJ5M+f36y8WLFiXLt2LdUCe56NjQ1VqlRhx44dpjKj0ciOHTuoVatWko5hMBg4deoUefPmTaswhRDZgF6vY/v2nowaVh6IuySRoiLH+IwvqcUBvLn5tDTmsZkW/BjeiX6V+tOpaB/8bz1O/+CFEPEkuwN1aGioWYtQrICAANMK9mll+PDh9OrVi6pVq1K9enVmzpxJaGgoffr0AaBnz57ky5ePiRMnAjB+/Hhq1qxJ0aJFefz4MVOnTuXatWv0798/TeMUQmR9VlY6xszszusdztO46TJCnxjx5jpt+D3ejbPY5234DS/uYEBDf/kIU/KvZVrUQ/RWKVomUgiRSpL9G1i3bl1++eUXJkyYAMQMXTcajUyZMoUGDRqkeoBxdenShfv37zN69Gju3LlDxYoV2bJli6lT9fXr19HpnjV2PXr0iAEDBnDnzh1y5sxJlSpV+OeffyhdunSaximEyD6q1S1JYPh47l29xZxC+ROsE7OsK3gRM9hD93RovgtBjPIsw5QHFxLcTwiRPjSVzGFgp0+fplGjRlSuXJmdO3fSunVrzpw5Q0BAAPv27aNIkSJpFatFBAUF4eLiQmBgoPQfEkIkSinFQl9fbvz1V9LqP31EYsNwvyu4+eRL0/iEyG6S8/2d7GQIIDAwkO+++44TJ04QEhJC5cqVGTx4cJbsiyPJkBAiqSJDQ9k75WsWj1/EdfITjBO2RNGUbfHq/ksNbIkgCh0XKUalovZM3vQFPsUlKRIiNaR5MpSdSDIkhEiuv/++Tq/uK7hx/RHRWNOR1ZQhZp2ya3izl3r4UYgaHOA/ivOQPABoKOZ9W58BQ9K2y4EQ2UGaJ0NPnjzh5MmT3Lt3D6PRaLatdevWyT1chibJkBAipUZ2mcLkleFoGPHiFmDkFt5oKBQ62rKO32j/3F5G/P0/wtPTyRIhC5FlJOf7O9kdqLds2ULPnj158OBBvG2apmGQCcWEEAKAics/5kLEcjb/fpIn2GFPKIXxIyePKM1ZvLiNDgNGdDwbc6bjjWYLOXxiqCVDFyJbSfY8Q0OGDKFTp074+/tjNBrNHpIICSHEM5qmse63bmyaVoAhzKY9v3MbL/JwnyJcwY4ntGMtOow4EkxVDlGeYxhP/snMxp15cCPhpYaEEKkr2S1Dd+/eZfjw4bL6uxBCJFGjD9/Bq5AHSzt0JAJbttKc8pwiGj0nKI8VUbRkIyW5YGofurfDhqkF1nO94Rcs2/4hmpbQsh9CiNSQ7Jahjh07snv37jQIRQghsq5S7dvTde06XAgEFFFYsYXmXKIEkdiygq74UQiA3fgykVFMZQSndv5LifzjCQ+PsuwJCJGFJbsDdVhYGJ06dcLNzY1y5cphbW1ttn3o0Kx1n1s6UAshUtPahbsZ3HclHvhzltJEYQOAhoGqHKE6B5nNe2b76InA09WKnXv6Ury8jwWiFiLzSdPRZD/++CNvv/02dnZ25M6d26zpVtM0rly5krKoMyhJhoQQaaFrqYFsOO9CGDmI6TytaMpWcvKI7TQhGCciiV3iKGYOax3RbJtTgoZv97Bc4EJkEmmaDHl6ejJ06FBGjhxptvRFViXJkBAiLSilmPbpKj6fdJxIbLAiipr8QyVOkpsAIrBhKd25TkGz/XREM/3rpgwbXtdCkQuROSTn+zvZ2UxkZCRdunTJFomQEEKkFU3T+HhiZ64cf5OynMGLW9gTSU4eAWBNFM3YCsT+vRrzrxE9n364njlDplomcCGyoGRnNL169WLFihVpEYsQQmQ7+SqUZf/9udQtakCPwZT6aCisiObZ/EPPhOHAp9/dJCyB+d6EEMmX7KH1BoOBKVOmsHXrVsqXLx+vA/X06dNTLTghhMgOHPPkZvF/v/Ba3sFE3j2BPU9QaOzGN4HaGqDxmFxM9i5M62+/psqAAekdshBZSrKToVOnTlGpUiUgZgX7uGQeDCGESBlN0/jbfzYLJzdh8/fLOX4DLlGa2M7TGkbU08Z8DUVe/NGeBLNo4EhCHgTgO2qEReMXIjOThVpfQjpQCyEsoaZdRw5ElKMOf1GSC+TkETfw5ghVcCKYhuzEkZCnqRJ0/XMnJZvIAq9CxErTDtRCCCHS3oJNH1GKUzRkF97cxJFQSnGezqygFRtwIgSAe7hjRGN88/f47r2vkb9vhUi+JN0ma9++PYsWLcLZ2Zn27Z9fYdnc2rVrUyUwIYTIzso1qsmc799g67sb0BFp6kb9N3WpwAlcecwZSnOQ6vTnJ+4Yc/PZ7Jtsm1eHny6vJncBL4vGL0RmkqRkyMXFxdQfyMXFJU0DEkIIEcP3nd6cPnyVuz9NQI+RyxRmH3XYa+pYrXAkmCfY4stfvMbfHI8uR+NSIznwaCE2NnqLxi9EZiF9hl5C+gwJISzt10X7eafPCgJxIXY02TNGdE+H4dsRDoA7dwlwLME1/xE4OtpZImQhLC7N+ww9ePCAw4cPc+TIER4+fJiiIIUQQiRNt961WLdzCHqMcUpj/47VYURPJDYE4UIQLlyiOAEh4OL0Jb98u9USIQuRqSQrGTpz5gz16tXDw8ODGjVqUL16ddzd3WnYsCHnz59PqxiFECLba9CgCFHG8XRr4oQN4YCGM4/j1IhpMbLi2er2RvQMGrZLOlUL8RJJvk12584dypYti5ubG2+//TYlS5ZEKcXZs2dZsGABDx8+5PTp07i7u6d1zOlKbpMJITKaBw9CqeAzHrfQC1zDh8dPb5/l5yZ38CQaK2IXfwWNi6f74ZzHBTd3R5kPTmQbabJQ64gRI9i+fTv79u3Dzs78HnR4eDivvfYaTZs2ZeLEiSmPPAOSZEgIkREFPg6jas4BtOM3TlIePQYqcpw/aM5xqsSpqRjI99hgJEifm/+d2E7RMt4Wi1uI9JImfYa2bdvGiBEj4iVCAPb29nz88cds3Sr3poUQIj24uDpw4vFcrtuXoTJHqM4hbIjidbbgRGCcmhqL6c13DGGVoS0Dyr7F3bshFotbiIwoycnQlStXqFy5cqLbq1atypUrV1IlKCGEEC/n4OLEr6EHiOo5i31UZz2t+I73CMZ8CpQI7KjAMVx5zD/Uonr+jzAYjIkcVYjsJ8nJUHBw8AubmZycnAgJkb82hBAiPWmaxtSfB/Hex825QkHycgs37sZsw0hd9tKTXyjKRcpwGlce8yDakbHWdvy3baeFoxciY0jWaLLg4GCCgoISfciIBSGEsIxWk8fSq0oAfhThCXa4EkAN/qUhO3EhkA20YQeNuYcnYTjxu2rGyKZDmTFxm6VDF8LiktyBWqfTvXAUglIKTdMwGAypFlxGIB2ohRCZyc0bjxlTtS3Ge1cIx4ES/MdBqrOF5phP1hgz0iwHgSxf+SZvdKpqoYiFSBvJ+f5O0nIcALt27XrlwIQQQqSt/N6u/HBnF5+Ufh2b83+iQ+FEMM8SISNxk6KynGVT55YccVYMO3EQVx8fC0QthGXJchwvIS1DQojMaubbUzg8bx5F8GMLzTlCFXQYiMKG2ITIhce8z0yMwENyUvHTqQz4sp9F4xYiNaT5chxCCCEyvvfnfsI3d44QkiM/r7OZ//EFDXnWaVrDSB4eADFfBiG48NFXp3m9/GcWilgIy5BkSAghsrDcHq5MfvAfFfv1w48CVOQIVTlMDkIoyFVas9609Gt+btKUzdw5dYJuFQYTHRFh6fCFSBdym+wl5DaZECKr2LLlIn+2qIwLMdOgxHShfiYUB/6hNlFY40AI57RyHLkxkXz55LNPZD5ym0wIIUQ8zZsX492jh7mn8zCtea+ePoxoLKQP/1CbQ1ThEbkors5TK//7XN4mw+9F1pYqyZBSis2bN9OxY8fUOJwQQog0UrRSCWZF3eZG/f/xJZ/yG60BCMSFB7ih0NGQ3bTjdxqwi978zNymrTk0Z46FIxci7bxSMuTn58f//vc/ChQoQLt27Xjy5ElqxSWEECKN6HQ6ftw1nksnexOpdwLAkRBseYKGkcocjamHQkPhwBOGv7uKbwfPsGTYQqSZZCdDERERLF26lIYNG1KiRAm++uorhg8fzr1799i4cWNaxCiEECINFCxXjGNBCwjQu2NFND1YQl78CcXBdBtNQ6EDDlGDYd8H8U6vpZYMWYg0keRk6MiRI7z77rt4enoyc+ZM2rZty40bN9DpdDRr1kw6FwshRCZk62DP1yHXwDUv3txkAAtwfzrcHmI6WN/Ai+JcoBzHuf3LVH7qOghjdLTlghYilSV5NJmVlRVDhgzh7bffpkSJEqZya2trTpw4QenSpdMsSEuS0WRCiOxAKcWIXEVxeHwFDYhG42/qcJUihJCD6hyiOodM9SN0DowLeYC1vb3lghbiBdJkNFmjRo348ccfGT9+PFu2bJFFWYUQIgvRNI0pjy7TcNZ8jlCZP2nGIWpyjYI8wJ0/aIkfPqb6NsYwXvN6l1tX71suaCFSSZKToa1bt3LmzBlKlCjBO++8Q968eRk2bBjACxdwFUIIkXnUe28AVfr34yDVCcXxaY8hAMU93E31rlCI649teLNQZ45s3W+ZYIVIJcnqQO3t7c3o0aPx8/Nj8eLF3L9/HysrK9q0acOnn37K0aNH0ypOIYQQ6WTMgnc5tfN18nMdDSM8HVXmw1UAbuHFUnpwFw/24kvH5nM5feqORWMW4lWkeGh9kyZNWLZsGbdv32bIkCFs3ryZatWqpWZsQgghLKRsgxoc859GLgKIHVN2k3wY0LhAiafpkR7QuIYPVcvPpHOHZZYOW4gUeeVJF3PmzMmQIUM4duwYhw4devkOQgghMoU8njnxC5qGp30oAGcpgx5FTh6Z3T5TaERgx6q1/7F+6d+WC1iIFErW2mRGo5FFixaxdu1arl69iqZpFCpUiI4dO/LWW29lyb5DMppMCJHdGY1GZnb5kBOrf6Mg19CAP2mKAR0lOY8OI3/SFH/yUZnD1Glbl8/nDMLd08XSoYtsLDnf30lOhpRStGrVij/++IMKFSpQsmRJlFKcO3eOU6dO0bp1a3777bfUiD9DkWRICCFi/PvNN2x5/33g2QKvsV8gRjSm8AkR2AHgTDD//PUWZV6rmN5hCgEk7/vbKqkHXbRoEXv37mXHjh00aNDAbNvOnTtp27Ytv/zyCz179kxZ1EIIITK0msOGEa2zY8vQ97AmZtLFZ/cDNCJ4NudQEM6Uq7uWzz4PYMKEhukeqxDJkeQ+Q7/++iuffvppvEQIoGHDhowcOZKlS2WadiGEyMpeGzKILnsOEYiDqUw9fegw8KytCBR6Jn2xnZ++25nucQqRHElOhk6ePEnz5s0T3d6iRQtOnDiRKkEJIYTIuMrVq8jU6CD88CEaPQB6jLRjHXY8wYooYlOk1/iHS0OaMVTvTlhYhEXjFiIxSU6GAgIC8PDwSHS7h4cHjx49SpWghBBCZGx6vZ5Fyo/i01ZheNrjohyn+YQpNOFPYm6gaVyhMDZEYzRGUzdHe+7/d9GicQuRkCQnQwaDASurxLsY6fV6omXhPiGEyFbe+rAdo8OC8M/fiGsU4ALF2UYTADSM5OcmAHl4xEVK8HGJJtw/d86SIQsRT5I7UCul6N27N7a2tgluj4iQ5k8hhMiOrO3tmXNtG90qDeXfk0HU4ABX8cGbmzRgl6mTtRf+hOLItNKVqfXuQNrO/saicQsRK8lD6/v06ZOkAy5cuPCVAspoZGi9EEIk3fIf9/Bz/48oz2nseYLGsy7V8xmAFzdpyjYMWBGYszRzA45YMlyRhaXJPEPZlSRDQgiRPE8CA/k4VwnyGO8CMcnQeYpTjMtYYTCNPgvBkUMOzdj2YCm29gnfdRAipZLz/f3Ky3EIIYQQcdm5uPBN5C086zYgAivW0pqCXEePAYjpWq0DnAmhcth2PnbwJPDmTYvGLLK3JPcZ6tu3b5Lq/fTTTykORgghRNag0+sZtHcny8Yt4PLYaVgTbTZrdez/XQnkCbZU9f6Ev67NwLNA4qOWhUgrSW4ZWrRoEbt27eLx48c8evQo0YcQQggR680xA5h/YwdhOfKZyuKuYqkB9kTwGFe6FOzGkk8mpXuMQiQ5GXrnnXcIDAzEz8+PBg0a8OOPP7Ju3bp4j7Q2e/ZsfHx8sLOzo0aNGhw8ePCF9VetWkXJkiWxs7OjXLly/PHHH2keoxBCiGdc8udneshVzhXsxHI6E4iTqd8QT/+tzT/YEMm+qV8zuWJdC0YrsqMkJ0OzZ8/G39+fTz75hA0bNuDt7U3nzp3ZunUr6dUHe8WKFQwfPpwxY8Zw9OhRKlSoQLNmzbh3716C9f/55x+6detGv379OHbsGG3btqVt27acPn06XeIVQgjxzK9+K6hb3MBOGqDitA8poDIneI19ePCAwBP/8mUjWedSpJ8Ujya7du0aixYt4pdffiE6OpozZ87g6OiY2vGZqVGjBtWqVeO7774DwGg04u3tzZAhQxg5cmS8+l26dCE0NJSNGzeaymrWrEnFihWZO3dukl5TRpMJIUTqmj1oPNvmr6EiJ01D7+P2J4pl5+7J8CuXsMmRI/2DFJleuowm0+l0aJqGUgqDwZDSwyRZZGQkR44coXHjxmYxNG7cmP379ye4z/79+83qAzRr1izR+hAzeWRQUJDZQwghROoZPG80005vYjXtiUQfrw9R7OPJvTtM8/Ag9P59ywQqso1kJUMRERH8+uuvNGnShOLFi3Pq1Cm+++47rl+/nuatQg8ePMBgMMRbH83Dw4M7d+4kuM+dO3eSVR9g4sSJuLi4mB7e3t6vHrwQQggzRcvk50T0SsJyliCx2xMaEBUayiR3d64dOJCe4YlsJsnJ0LvvvkvevHmZNGkSb7zxBjdu3GDVqlW8/vrr6HRZZ7qiUaNGERgYaHrcuHHD0iEJIUSWpNfrmRFwhiLdB3ENrxcmRRNqtmNog+HpGZ7IRpI8z9DcuXMpUKAAhQsXZs+ePezZsyfBemvXrk214OLKkycPer2eu3fvmpXfvXsXT0/PBPfx9PRMVn0AW1vbRNdfE0IIkfreWjIXarTji6E/0YnVWGE09SWKSZB0hOCEtns5rQsHs/7KAovGK7KeJDfp9OzZkwYNGuDq6mp2G+n5R1qxsbGhSpUq7Nixw1RmNBrZsWMHtWrVSnCfWrVqmdUH2LZtW6L1hRBCWMZbQ5rx19mx6J4mQvBspmo9Ro5Qlcc44+93k4ZaHZ6EhFgwWpHVJLllaNGiRWkYRtIMHz6cXr16UbVqVapXr87MmTMJDQ01LSLbs2dP8uXLx8SJEwEYNmwYvr6+fP3117Rs2ZLly5dz+PBh5s+fb8nTEEIIkQD3UqV47+pNJviUIhfPkp1orLhDXkDPG2zBCLzvVJSvA86TI6erpcIVWUim6uzTpUsXpk2bxujRo6lYsSLHjx9ny5Ytpk7S169fx9/f31S/du3aLFu2jPnz51OhQgVWr17Nb7/9RtmyZS11CkIIIV7AvWA+Zqkgyo6azAWKc4bSLKIXT7CjCJdNw/Dzcpe+uWoScFdWPhCvTlatfwmZZ0gIISzjo+7f8ceyvVgTRQ0Oko/bpm1GwJ+8nKAsP+yZTLl6lSwXqMiQkvP9LcnQS0gyJIQQlmOMjmZCscqoq6fQACMaujjjziKxJhxb6r//Nq1nTLVcoCLDSZdJF4UQQoi0prOyYozfSQLtvVHAbTzNhuDbEIUzIUyfeYj32k+3VJgik5NkSAghRIY3PeQqV90bYssTorGKNydRUS7xeN1sKmtt0m29TJF1SDIkhBAiw9N0Ohbd3UGOoQu4TCEUmtmq9+E44Mld3mAjLXQ1iI6KsmS4IpORZEgIIUSmMfmbDky6epDd1OABuQAIxJVHuOJEKHqMlOUMnWyqcPvydQtHKzILSYaEEEJkKgULurLpzm/YEsYC+hKEI9U5ZGopciSMCpzi06J1ObH3uCVDFZmEJENCCCEyHUcPD6YZQunpvBkD1ig0s5mrNaAQ11nnW4k/v/3RgpGKzECSISGEEJmSptPxVeBtBs37HBJd5hX+GdafEytWpV9gItORZEgIIUSmVntgX5rPmIEhgW2xrUUrur7JRDf39AxLZCKSDAkhhMj0ar3/Ph/dvRuvfSh2+Q4bogl78JB37IvI0HsRjyRDQgghsgRnd3eG+/tj5NlNs7j9iKww4vrkBiNzFbVMgCLDkmRICCFEluHs6clnISEEkBOA6Oe+5myJwvbxVcZZWxP64IElQhQZkCRDQgghshSbHDn4VgUQ4lKYAHKa3TrTAB1GiI5mkpsH537/3VJhigxEkiEhhBBZ0tTHlylVpShGs6Vdn90602NkRdu2rOjUyRLhiQxEkiEhhBBZ1nuH/8W7bTcM6DCY0iDzPkXnVq9mWaduFolPZAySDAkhhMjSBqxbQt35KwjCiSAcAVBmiZHGkdUbGJWvooUiFJYmyZAQQogsr+mAjoy9epLLFCUcG4JxMrUO6VA4Esq/t13oqy+MwZDQjEUiK5NkSAghRLbgWrAg64xH0emsOENpiNM6pAG+7CWv8SbjrKy4c/W2xeIU6U+SISGEENmGpml8ZQjFliccoDrG2PKnD2ui0AEzChVi79pdlgtUpCtJhoQQQmQ769Uxyue8RzTWQPxJGh2IZGeHhizq0sci8Yn0JcmQEEKIbGlKwBV83mjLQ5zNyuPOWn115SK2jJuU7rGJ9CXJkBBCiGxrwIaVvH/hPP9SFQNavLXNNODfsaOYXbmKJcIT6USSISGEENla4eJ5WX3vD4JwirdNAffJxR/HNEY45kv/4ES6kGRICCFEtufo5sZMFWjqUB2XOwFU5wg3Qh0Y7+Aoq95nQZIMCSGEEE+Nj5PoKOIOvocSXCIqPIzxOh1RT56ke2wi7UgyJIQQQsQxRil0Dg48wjXeNqunvYq+sLcnPDAwnSMTaUWSISGEEOI5/wsNxcFG4xreCW43Ap+6FmDbp5+mb2AiTUgyJIQQQiRgYkQAgQXrEZXANivAhSC2T5zOndOn0zs0kcokGRJCCCESsebqErpu3hVvyD3E9CdyIIJZ5cpz+Icf0js0kYokGRJCCCFeoGzz+jT6ZQ2RaCS0hKs1ig0DBjDBI+FbaiLjk2RICCGEeIm6b7XnfyEhGNDH2xa7rpnh3k0+t3FI99jEq5NkSAghhEgCuxwODDx2NMG5iEwLvUaFM04nX62ZjfzEhBBCiCQqWLE8g44fJwi7BPsRAaAU46ysMBgSuqkmMiJJhoQQQohk8KpQgSlRwdwnNwriJUUKMBgUH1nlJiI83AIRiuSSZEgIIYRIJr2VFbPVA55gZ1bujyezGMIUPuEIVRjoUJKwx48tE6RIMkmGhBBCiBT6yhBqGmGmgKV05xE5icCOv6jHeUoxKWdObp/7z5JhipeQZEgIIYRIIZ1Ox3ijkQisMKIjBEeU6atVcZHigI7BpTuwc+3flgxVvIAkQ0IIIcQr0DSNr1QURjRKcwZQaBixIpq3WIweI+U5zQcdvubY+m2WDlckwMrSAQghhBBZwRcqGhsnV9aHhBGBHb7sIRePgZhh9y35g1ltjtB17lSaDupi0ViFOUmGhBBCiFQyOvgxDkVLEXL5vFm5Au6TB2uimPP2l9w5fJieC6ZaJkgRj9wmE0IIIVLRR5fOYZc3P/Bs2H0YDnjhT17uUJFT7PhhFasHvmO5IIUZSYaEEEKIVDby9g2KtWoFwB3csOcJOhQaMQlSYa5xesFc3nEpa9E4RQxJhoQQQog00H39eqxK1+YBeYjC2tRKpMX51yPoDJ9pthaKUMSSZEgIIYRII5+f2UfFgsZ4693HTYxsiGSce8F0j008I8mQEEIIkYY+u3oe59feMCvTnqtjvH+dcQVKpV9QwowkQ0IIIUQaG/nXOsqMno4CwtHH264D1I3z/NKiRbrHJiQZEkIIIdJFp3Ef0OirrwjGJcEV7zXgypYtfKpZYTQa0zu8bE2SISGEECKd1B01inFXj/EkkWn+NMAWA6P1VihJiNKNJENCCCFEOspTsABtZn+TYOtQrEBc6aMvQOCjkHSLKzuTZEgIIYRIZ7XefZdKH32aaEKUh0cU4haf5vIh9NGjdI0tO5JkSAghhLCANlO/pNqYiS9sIXLnIVNz5SLozp10iys7kmRICCGEsJCWY0dSedjwFyZEADPy5pWEKA1JMiSEEEJYUOuZX9Pnn38STIgUcIbSGNGYkLcQD+4Fpnd42YIkQ0IIIYSFFaxVi2FXr8ZLiDRgK83ZyBs48oTJHnlZ3OttS4SYpUkyJIQQQmQAOQsWpNv69WYJ0TlKEowTx6iEEY0chHP5l3lMLSazVacmSYaEEEKIDKJEq1b4zlnIDfKxnC6sohMaCkdCTKvea8CjS5f5wL2SpcPNMiQZEkIIITKQBm/35rOD63EgZo4hJ4LpxCrTdgXYEoXL/eNMyO1hoSizlkyTDAUEBNC9e3ecnZ1xdXWlX79+hIS8eDKq+vXro2ma2ePtt+VeqxBCiIytULXKbLs6m9FMYDgzKMAN0zYtzr+GgHus7NbNIjFmJZkmGerevTtnzpxh27ZtbNy4kb179zJw4MCX7jdgwAD8/f1NjylTpqRDtEIIIcSryVWwIJ9HRoL2/Br3z2jA2eXL2Trq0/QLLAvKFMnQuXPn2LJlCz/88AM1atTgtddeY9asWSxfvpzbt2+/cF8HBwc8PT1ND2dn53SKWgghhHg1emtrRhsML6yjAXsnTeXfZb+lS0xZUaZIhvbv34+rqytVq1Y1lTVu3BidTseBAwdeuO/SpUvJkycPZcuWZdSoUYSFhaV1uEIIIUSq0TSNz6KiXljHmmhmdB/JvYuX0ymqrCVTJEN37tzB3d3drMzKyopcuXJx5wUzcr755pssWbKEXbt2MWrUKBYvXkyPHj1e+FoREREEBQWZPYQQQghLsrKyYuQL+slqQEku8Fnx2myf9n36BZZFWDQZGjlyZLwOzs8/zp8/n+LjDxw4kGbNmlGuXDm6d+/OL7/8wrp167h8OfHMeeLEibi4uJge3t7eKX59IYQQIrXY5shBxQEDEt2uA/Jzj78+Hsy4UnXSL7AsQFNKvWxJlDRz//59Hj58+MI6hQsXZsmSJXz44Yc8irNyb3R0NHZ2dqxatYp27dol6fVCQ0NxdHRky5YtNGvWLME6ERERREREmJ4HBQXh7e1NYGCg9DcSQghhcYfnz2fjoEEk1q1aAQqN0ModmXZkZXqGlqEEBQXh4uKSpO9vq3SKKUFubm64ubm9tF6tWrV4/PgxR44coUqVKgDs3LkTo9FIjRo1kvx6x48fByBv3ryJ1rG1tcXW1jbJxxRCCCHSU9WBA7m2Zw+nly1LcHtMkqRwPLqKSV4FGHn7enqGlyllij5DpUqVonnz5gwYMICDBw+yb98+3nvvPbp27YqXlxcAt27domTJkhw8eBCAy5cvM2HCBI4cOcLVq1dZv349PXv2pF69epQvX96SpyOEEEK8kg5Ll1Jt+PBEt8fOVP3E/wbfFC2abnFlVpkiGYKYUWElS5akUaNGvP7667z22mvMnz/ftD0qKooLFy6YRovZ2Niwfft2mjZtSsmSJfnwww/p0KEDGzZssNQpCCGEEKnm9a+/puuWLYluP0ZFpvMB4y63pI1WBQv2isnwLNpnKDNIzj1HIYQQIr1d2r2bpQ0amJXdJw+zGfz0mcIKA+/xPV8bHqDTZZp2kFeSnO/v7HFFhBBCiCyqaP36tF9lvnbZY1x5drNMRzTWRKMxwcbeMkFmcBbtQC2EEEKIV1euY0c8//uP74sXRwPyc5P8XOd1/iA3AVyhMLkIAAN8pDky1RiM9oJlPrIbaRkSQgghsgC3YsUYdOoUAPY8oTc/k5c72BJJSc6bvvAdCWWkzl76EMUhyZAQQgiRRXiWLcuAY8dQgBUGsxXuifN/ByIYrdMT9eRJ+geZAUkyJIQQQmQhXhUr8smjR0S8pCeMHsVX9tKHCCQZEkIIIbIcB1dXJkSGPe1InbDY1qJxmkaAn1+6xJVRSTIkhBBCZEF6a2umGwMIx/rpEh3PPN9b6NvChTm1flM6RpexSDIkhBBCZFGapjFJRRL93Nf98+PINGBNmzfY/r/R6RZbRiLJkBBCCJHFfaEMPNTc47UIPW/dF3PZO/3bdIkpI5FkSAghhMgGZhnvovKXeWFCdIxKdP/wBJO8fdIrrAxBkiEhhBAimxh34zQe9RolmBBFo+ccJbiHOytuVuA9zS3d47MUSYaEEEKIbOSdPdvxqFrVrCwKK6ww8D6zeI/vuEgR5jOQ97VcGKKjLRRp+pFkSAghhMhm3jl0iBIdOpieW/Es4XEmhKF8hw4jlynMF9bWRIaFWSLMdCPJkBBCCJENdV29mhbff4/i2ZKusWyJYjDfkZsHAEzMkSNLL98hyZAQQgiRTVV/5x0GHT+eYB8iZ0IoxDXT8/E6HQaDIf2CS0eSDAkhhBDZWN4KFeh7+OhLh90rYIKVFZd3706HqNKXJENCCCFENlegSiUGHDnywjqxt9IWN2jAsVVr0yWu9CLJkBBCCCHIV7kyg06ceGk9Dfi9cwfG2WWdfkSSDAkhhBACAM/y5fk0PPyl9TSAiDDG63ScWbcuzeNKa5IMCSGEEMLE2s6O0UYjSZ1daHX79qzp2TNNY0prkgwJIYQQwoymaUxQioinK96/zOnFi/mladM0jyutSDIkhBBCiAR9ER0eb4X7xPht28Y4Lam1MxZJhoQQQgiRIJ1ez2ij0fQ8Ka1E4zSNY7/8knZBpQFJhoQQQgiRKE3T+OzJEzQrqyTvs75XL2YWKYIxTiKVkUkyJIQQQogXsrK15bOwMO7p88fbllhrUeCVK0ywtsYQFZW2waUCSYaEEEII8VJ6a2tmhl4iiBxJ38loZJqHB9f++ivtAksFkgwJIYQQIklsbG2Z8Ogmybn59eTRIxbVq8dEV9cMe9tMkiEhhBBCJJmDqyvtliwjBAcMyUgjIgMDmaDXM7tsWa7v35+GESafJENCCCGESJaK3bvhO7gvFyiBSvLg+xgPzpxhYe3ajLeyYl3v3gTdumXxZT00ZekIMrigoCBcXFwIDAzE2dnZ0uEIIYQQGcbkPHl48vDhKx+ncJMmdNuwAStb21SIKkZyvr+lZUgIIYQQKTLs6tVUOc6Vbds4tWxZqhwrJSQZEkIIIUSK2Dk68u6FC69+IE0jMiTk1Y+TQpIMCSGEECLF3IoXp0z37q90DOf8+SnbtWsqRZR8kgwJIYQQ4pV0XLIkRfvlKl6cTmvW8M6pU+Rwc0vlqJIu6XNrCyGEEEKklKbRa/dudn72GY8uX6ZQo0a8MWcONo6Olo5MkiEhhBBCvDq9jQ2GyEizsjylSxPi74/exoZmM2bgU68efTPgbNSSDAkhhBDilXVYvpxVHTuijEasc+RgyOXLOHl4WDqsJJFkSAghhBCvrFS7dox49IjQ+/fJWagQmi7zdEuWZEgIIYQQqcLW2RnbTDhBceZJ24QQQggh0oAkQ0IIIYTI1iQZEkIIIUS2JsmQEEIIIbI1SYaEEEIIka1JMiSEEEKIbE2SISGEEEJka5IMCSGEECJbk2RICCGEENmaJENCCCGEyNYkGRJCCCFEtibJkBBCCCGyNVmo9SWUUgAEBQVZOBIhhBBCJFXs93bs9/iLSDL0EsHBwQB4e3tbOBIhhBBCJFdwcDAuLi4vrKOppKRM2ZjRaOT27ds4OTmhaVqCdYKCgvD29ubGjRs4Ozunc4QZi1wLc3I9npFrYU6uxzNyLczJ9XjmVa6FUorg4GC8vLzQ6V7cK0hahl5Cp9ORP3/+JNV1dnbO9m/cWHItzMn1eEauhTm5Hs/ItTAn1+OZlF6Ll7UIxZIO1EIIIYTI1iQZEkIIIUS2JslQKrC1tWXMmDHY2tpaOhSLk2thTq7HM3ItzMn1eEauhTm5Hs+k17WQDtRCCCGEyNakZUgIIYQQ2ZokQ0IIIYTI1iQZEkIIIUS2JsmQEEIIIbI1SYaS4Msvv6R27do4ODjg6ur60vpRUVGMGDGCcuXKkSNHDry8vOjZsye3b982q+fj44OmaWaPSZMmpdFZpJ7kXg+ImQl09OjR5M2bF3t7exo3bszFixfN6gQEBNC9e3ecnZ1xdXWlX79+hISEpMEZpJ7kxnz16tV4P/PYx6pVq0z1Etq+fPny9DilV5KSn2H9+vXjnevbb79tVuf69eu0bNkSBwcH3N3d+fjjj4mOjk7LU3llyb0WAQEBDBkyhBIlSmBvb0+BAgUYOnQogYGBZvUyy3tj9uzZ+Pj4YGdnR40aNTh48OAL669atYqSJUtiZ2dHuXLl+OOPP8y2J+UzJKNKzrVYsGABdevWJWfOnOTMmZPGjRvHq9+7d+9474HmzZun9WmkmuRcj0WLFsU7Vzs7O7M6qfLeUOKlRo8eraZPn66GDx+uXFxcXlr/8ePHqnHjxmrFihXq/Pnzav/+/ap69eqqSpUqZvUKFiyoxo8fr/z9/U2PkJCQNDqL1JPc66GUUpMmTVIuLi7qt99+UydOnFCtW7dWhQoVUuHh4aY6zZs3VxUqVFD//vuv+uuvv1TRokVVt27d0ugsUkdyY46Ojjb7efv7+6tx48YpR0dHFRwcbKoHqIULF5rVi3utMqqU/Ax9fX3VgAEDzM41MDDQtD06OlqVLVtWNW7cWB07dkz98ccfKk+ePGrUqFFpfTqvJLnX4tSpU6p9+/Zq/fr16tKlS2rHjh2qWLFiqkOHDmb1MsN7Y/ny5crGxkb99NNP6syZM2rAgAHK1dVV3b17N8H6+/btU3q9Xk2ZMkWdPXtWff7558ra2lqdOnXKVCcpnyEZUXKvxZtvvqlmz56tjh07ps6dO6d69+6tXFxc1M2bN011evXqpZo3b272HggICEivU3olyb0eCxcuVM7OzmbneufOHbM6qfHekGQoGRYuXJjkL//nHTx4UAHq2rVrprKCBQuqGTNmpE5wFpDU62E0GpWnp6eaOnWqqezx48fK1tZW/frrr0oppc6ePasAdejQIVOdzZs3K03T1K1bt1I99tSQWjFXrFhR9e3b16wMUOvWrUutUNNFSq+Hr6+vGjZsWKLb//jjD6XT6cw+AOfMmaOcnZ1VREREqsSe2lLrvbFy5UplY2OjoqKiTGWZ4b1RvXp1NXjwYNNzg8GgvLy81MSJExOs37lzZ9WyZUuzsho1aqhBgwYppZL2GZJRJfdaPC86Olo5OTmpn3/+2VTWq1cv1aZNm9QONV0k93q87Hsmtd4bcpssnQQGBqJpWrzbSpMmTSJ37txUqlSJqVOnZvim/5Tw8/Pjzp07NG7c2FTm4uJCjRo12L9/PwD79+/H1dWVqlWrmuo0btwYnU7HgQMH0j3mpEiNmI8cOcLx48fp169fvG2DBw8mT548VK9enZ9++gmVwacEe5XrsXTpUvLkyUPZsmUZNWoUYWFhZsctV64cHh4eprJmzZoRFBTEmTNnUv9EUkFqvZ8DAwNxdnbGysp8GcmM/N6IjIzkyJEjZr/vOp2Oxo0bm37fn7d//36z+hDzM46tn5TPkIwoJdfieWFhYURFRZErVy6z8t27d+Pu7k6JEiV45513ePjwYarGnhZSej1CQkIoWLAg3t7etGnTxuz3PrXeG7JQazp48uQJI0aMoFu3bmYLzQ0dOpTKlSuTK1cu/vnnH0aNGoW/vz/Tp0+3YLSp786dOwBmX2axz2O33blzB3d3d7PtVlZW5MqVy1Qno0mNmH/88UdKlSpF7dq1zcrHjx9Pw4YNcXBw4M8//+Tdd98lJCSEoUOHplr8qS2l1+PNN9+kYMGCeHl5cfLkSUaMGMGFCxdYu3at6bgJvXdit2VEqfHeePDgARMmTGDgwIFm5Rn9vfHgwQMMBkOCP7Pz588nuE9iP+O4nw+xZYnVyYhSci2eN2LECLy8vMy+7Js3b0779u0pVKgQly9f5tNPP6VFixbs378fvV6fqueQmlJyPUqUKMFPP/1E+fLlCQwMZNq0adSuXZszZ86QP3/+VHtvZNtkaOTIkUyePPmFdc6dO0fJkiVf6XWioqLo3LkzSinmzJljtm348OGm/5cvXx4bGxsGDRrExIkT030a9vS6HplBUq/FqwoPD2fZsmX873//i7ctblmlSpUIDQ1l6tSpFvnCS+vrEffLvly5cuTNm5dGjRpx+fJlihQpkuLjpoX0em8EBQXRsmVLSpcuzdixY822ZaT3hkhbkyZNYvny5ezevdus03DXrl1N/y9Xrhzly5enSJEi7N69m0aNGlki1DRTq1YtatWqZXpeu3ZtSpUqxbx585gwYUKqvU62TYY+/PBDevfu/cI6hQsXfqXXiE2Erl27xs6dO81ahRJSo0YNoqOjuXr1KiVKlHil106utLwenp6eANy9e5e8efOayu/evUvFihVNde7du2e2X3R0NAEBAab900tSr8Wrxrx69WrCwsLo2bPnS+vWqFGDCRMmEBERke6Jcnpdj1g1atQA4NKlSxQpUgRPT894o03u3r0LkCXfG8HBwTRv3hwnJyfWrVuHtbX1C+tb8r2RkDx58qDX600/o1h3795N9Nw9PT1fWD8pnyEZUUquRaxp06YxadIktm/fTvny5V9Yt3DhwuTJk4dLly5l6GToVa5HLGtraypVqsSlS5eAVHxvJLl3kUhWB+rIyEjVtm1bVaZMGXXv3r0k7bNkyRKl0+kyzaiA5HagnjZtmqksMDAwwQ7Uhw8fNtXZunVrpuhAndKYfX19440USswXX3yhcubMmeJY00Nq/Qz//vtvBagTJ04opZ51oI472mTevHnK2dlZPXnyJPVOIBWl9FoEBgaqmjVrKl9fXxUaGpqk18qI743q1aur9957z/TcYDCofPnyvbAD9RtvvGFWVqtWrXgdqF/0GZJRJfdaKKXU5MmTlbOzs9q/f3+SXuPGjRtK0zT1+++/v3K8aS0l1yOu6OhoVaJECfXBBx8opVLvvSHJUBJcu3ZNHTt2zDQE+tixY+rYsWNmQ6FLlCih1q5dq5SKSYRat26t8ufPr44fP242JDB29Ms///yjZsyYoY4fP64uX76slixZotzc3FTPnj0tco7JkdzroVTM0EdXV1f1+++/q5MnT6o2bdokOLS+UqVK6sCBA+rvv/9WxYoVyxRD618U882bN1WJEiXUgQMHzPa7ePGi0jRNbd68Od4x169frxYsWKBOnTqlLl68qL7//nvl4OCgRo8enebn86qSez0uXbqkxo8frw4fPqz8/PzU77//rgoXLqzq1atn2id2aH3Tpk3V8ePH1ZYtW5Sbm1umGFqfnGsRGBioatSoocqVK6cuXbpk9rkRHR2tlMo8743ly5crW1tbtWjRInX27Fk1cOBA5erqahoR+NZbb6mRI0ea6u/bt09ZWVmpadOmqXPnzqkxY8YkOLT+ZZ8hGVFyr8WkSZOUjY2NWr16tdl7IPbzNTg4WH300Udq//79ys/PT23fvl1VrlxZFStWLMP+cRBXcq/HuHHj1NatW9Xly5fVkSNHVNeuXZWdnd3/27vXmCayPgzgT6GIlUpR6bZeWtCAWxWEopHExHpjEQWiH9YLEeSS1IgseIsajBfiBzUmxmt0XZZS12uMF8y6gay6SLLdqIhRUQm6roCJilFiggIq5ewHX+Z1LCqIrmifX9KEmfnPOWdOBvJkOjOI69evSzUf49xgGGqH5ORkAcDlU1xcLNXgf+/+EEKIO3futFn/+j5lZWUiMjJSaDQa0b17dzFkyBCxbt26L+Jk7uh8CPEqva9atUrodDrh7e0tJk6cKCorK2XtPn78WCQkJAi1Wi18fX1FamqqLGB1Re8bc+u58PrcCCFEdna2MBgMwul0urRZWFgowsPDhVqtFj4+PiIsLEz8+OOPbdZ2NR2dj5qaGmGxWETv3r2Ft7e3CAoKEkuXLpW9Z0gIIaqqqsTkyZOFSqUS/v7+YsmSJbLHzbuijs5FcXHxW/9u3LlzRwjxZZ0b27dvF0ajUXTr1k2MGjVKnDt3Tto2duxYkZycLKs/fPiwGDx4sOjWrZsYNmyY+O2332Tb2/M3pKvqyFwEBAS0eQ6sWbNGCCFEQ0ODiI6OFlqtVnh5eYmAgABhtVpd3r3TlXVkPhYuXCjV6nQ6MWXKFHHp0iVZex/j3FAI0YWeySQiIiL6j/E9Q0REROTWGIaIiIjIrTEMERERkVtjGCIiIiK3xjBEREREbo1hiIiIiNwawxARERG5NYYhIvoqpKSkYNq0aZ97GO8VGBiILVu2fO5hENFrGIaISJKSkgKFQoF58+a5bMvIyIBCoZD9o9LWeoVCAS8vL+h0Onz33Xew2WxoaWlps49JkybB09MTpaWl7x3P2bNnpfY9PDyg0WhgNpuxbNky3L9/X1a7detW2O32Dh3v51BaWoq5c+d+0j6ampqQkpKC0NBQKJXKLyIkEn1ODENEJGMwGHDo0CE0NjZK65qamnDgwAEYjUaX+piYGNy/fx9VVVUoLCzE+PHjsWDBAsTFxaG5uVlWW1NTg7/++gs//PADbDZbu8dUWVmJe/fuobS0FMuXL8fp06cREhKC8vJyqUaj0cDPz6/jB/wf02q16NGjxyftw+l0QqVSISsrC1FRUZ+0L6KvAcMQEclERETAYDDg2LFj0rpjx47BaDTCbDa71Ht7e0Ov16N///6IiIjAihUrcOLECRQWFrpcqcnPz0dcXBzS09Nx8OBBWeB6l2+++QZ6vR6DBw/GrFmz4HA4oNVqkZ6eLtW8+TXZuHHjkJmZiYULF6JXr17Q6XTIzc3Fs2fPkJqaip49eyIoKAiFhYWyvq5du4bJkydDrVZDp9MhKSkJjx49krWblZWFZcuWoXfv3tDr9cjJyZG2CyGQk5MDo9EIb29v9OvXD1lZWdL2N78mq6mpwdSpU6FWq+Hr64sZM2agtrZW2p6Tk4Pw8HDs3bsXgYGB0Gg0mDVrFurr6986Xz4+Pti1axesViv0en275pjInTEMEZGLtLQ05OfnS8s2mw2pqant3n/ChAkICwuTBSohBPLz85GYmAiTyYSgoCAcOXLkg8anUqkwb948OBwOPHz48K11e/bsgb+/Py5cuIDMzEykp6dj+vTpGD16NC5duoTo6GgkJSWhoaEBAPDkyRNMmDABZrMZFy9eRFFREWprazFjxgyXdn18fHD+/Hls3LgRa9euxalTpwAAR48exebNm7F7927cunULBQUFCA0NbXN8LS0tmDp1Kurq6lBSUoJTp07hn3/+wcyZM2V1t2/fRkFBAU6ePImTJ0+ipKQEGzZs+KC5IyJXDENE5CIxMRF//vknqqurUV1dDYfDgcTExA61YTKZUFVVJS2fPn0aDQ0NmDRpktRHXl7eB4/RZDIBgKyPN4WFhWHlypUIDg5GdnY2unfvDn9/f1itVgQHB2P16tV4/Pgxrl69CgDYsWMHzGYz1q1bB5PJBLPZDJvNhuLiYty8eVNqd/jw4VizZg2Cg4MxZ84cjBw5EmfOnAHw6kqPXq9HVFQUjEYjRo0aBavV2ub4zpw5g/Lychw4cAAjRoxAZGQkfvnlF5SUlMjuqWppaYHdbkdISAjGjBmDpKQkqT8i6jyGISJyodVqERsbC7vdjvz8fMTGxsLf379DbQghoFAopGWbzYaZM2dCqVQCABISEuBwOHD79u0PGqMQAgBkfbxp+PDh0s+enp7o06eP7CqNTqcDAOnq0pUrV1BcXAy1Wi19WkPX6+N8vV0A6Nu3r9TG9OnT0djYiEGDBsFqteL48eMu9061qqiogMFggMFgkNYNHToUfn5+qKiokNYFBgaiZ8+ebfZHRJ3HMEREbUpLS4PdbseePXuQlpbW4f0rKiowcOBAAEBdXR2OHz+OnTt3QqlUQqlUon///mhubu7QjdRvtg+8Cgpv4+XlJVtufert9WUA0pNvT58+RXx8PC5fviz73Lp1CxaL5Z3ttrZhMBhQWVmJnTt3QqVSYf78+bBYLHj58uUHHef7+iOizlN+7gEQUdcUExODFy9eQKFQSF9ttdcff/yB8vJyLFq0CACwf/9+DBgwAAUFBbK633//HZs2bcLatWvh6enZ7vYbGxvx008/wWKxQKvVdmhs7xIREYGjR48iMDBQuoL1IVQqFeLj4xEfH4+MjAyYTCaUl5cjIiJCVjdkyBDcvXsXd+/ela4O3bhxA0+ePMHQoUM7dSxE1H4MQ0TUJk9PT+nqy7uCyvPnz/HgwQM4nU7U1taiqKgI69evR1xcHObMmQMAyMvLw/fff4+QkBDZvgaDAdnZ2SgqKkJsbOxb+3j48CGamppQX1+PsrIybNy4EY8ePZLdoP0xZGRkIDc3FwkJCdLTYn///TcOHTqEn3/+uV2BzW63w+l0IjIyEj169MC+ffugUqkQEBDgUhsVFYXQ0FDMnj0bW7ZsQXNzM+bPn4+xY8di5MiRnTqWGzdu4MWLF6irq0N9fT0uX74MAAgPD+9Uu0RfI4YhInorX1/f99YUFRWhb9++UCqV6NWrF8LCwrBt2zYkJyfDw8MDZWVluHLlCnJzc1321Wg0mDhxIvLy8t4Zhr799lsoFAqo1WoMGjQI0dHRWLx48Ud/bLxfv35wOBxYvnw5oqOj8fz5cwQEBCAmJgYeHu27q8DPzw8bNmzA4sWL4XQ6ERoail9//RV9+vRxqVUoFDhx4gQyMzNhsVjg4eGBmJgYbN++vdPHMmXKFFRXV0vLra9FaL3Xioj+TyH4m0FERERujDdQExERkVtjGCIiIiK3xjBEREREbo1hiIiIiNwawxARERG5NYYhIiIicmsMQ0REROTWGIaIiIjIrTEMERERkVtjGCIiIiK3xjBEREREbo1hiIiIiNzav/UdMcjl0f11AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import RobustScaler\n", "from sklearn.decomposition import PCA\n", "from sklearn.manifold import MDS\n", "from keras.models import Sequential\n", "from keras.layers import Conv1D, MaxPooling1D, Flatten, Dense\n", "import matplotlib.pyplot as plt\n", "\n", "# Load the data from a CSV file\n", "data = pd.read_csv(\"/content/stressinput.csv\", header=None)\n", "\n", "# Split the data into features and labels\n", "features = data.iloc[:, :-1].values\n", "labels = data.iloc[:, -1].values\n", "\n", "# Identify and handle outliers using RobustScaler\n", "scaler = RobustScaler()\n", "features_scaled = scaler.fit_transform(features)\n", "\n", "# Split the data into training and test sets\n", "train_features, test_features, train_labels, test_labels = train_test_split(features_scaled, labels, test_size=0.2, random_state=42)\n", "\n", "# Reshape the data for CNN input\n", "train_features_cnn = train_features.reshape(train_features.shape[0], train_features.shape[1], 1)\n", "test_features_cnn = test_features.reshape(test_features.shape[0], test_features.shape[1], 1)\n", "\n", "# Create a simple CNN model\n", "model = Sequential([\n", " Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(train_features_cnn.shape[1], 1)),\n", " MaxPooling1D(pool_size=2),\n", " Flatten(),\n", " Dense(64, activation='relu'),\n", " Dense(1, activation='sigmoid') # Assuming binary classification, adjust for your task\n", "])\n", "\n", "# Compile the model\n", "model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n", "\n", "# Fit the model on the training data\n", "model.fit(train_features_cnn, train_labels, epochs=10, batch_size=32, verbose=0)\n", "\n", "# Extract features using the trained CNN model\n", "extracted_features = model.predict(train_features_cnn)\n", "\n", "# Perform Robust Scaling on the extracted features\n", "scaler_extracted = RobustScaler()\n", "extracted_features_scaled = scaler_extracted.fit_transform(extracted_features)\n", "\n", "# Perform PCA for noise reduction\n", "pca = PCA()\n", "extracted_features_pca = pca.fit_transform(extracted_features_scaled)\n", "\n", "# Perform Manifold Discovery and Analysis (MDA)\n", "mds = MDS(n_components=2, random_state=42)\n", "extracted_features_mds = mds.fit_transform(extracted_features_pca)\n", "\n", "# Visualize the MDA results after noise reduction\n", "plt.scatter(extracted_features_mds[:, 0], extracted_features_mds[:, 1], c=train_labels, cmap='jet', s=5)\n", "plt.xlabel(\"MDA Dimension 1\")\n", "plt.ylabel(\"MDA Dimension 2\")\n", "plt.title('MDA Visualization after Noise Reduction (CNN)')\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "ogI00HXdgGK5" }, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "\n", "# Load your CSV file\n", "csv_file_path = '/content/stressinput.csv'\n", "df = pd.read_csv(csv_file_path)\n", "\n", "# Extract features (X) and labels (Y) from the DataFrame\n", "# Modify this based on the structure of your CSV file\n", "X = df.iloc[:, :-1].values\n", "Y = df.iloc[:, -1].values\n", "\n", "# Save the data as NumPy arrays\n", "np.save('features.npy', X)\n", "np.save('labels.npy', Y)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "FQu2Mq9OgTT-" }, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "from sklearn.manifold import MDS\n", "from keras.applications import DenseNet201\n", "from keras.models import Model\n", "from keras.preprocessing import image\n", "from keras.applications.densenet import preprocess_input\n", "import matplotlib.pyplot as plt\n", "\n", "# Number of neighbors in MDA analyses\n", "neighborNum = 5" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "f3-JDZI4iOzm", "outputId": "47cf87cf-fe2f-431b-9966-0cfb19ea5a4b" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/10\n", "127/127 [==============================] - 5s 32ms/step - loss: 0.6235 - accuracy: 0.6898 - val_loss: 0.6247 - val_accuracy: 0.6822\n", "Epoch 2/10\n", "127/127 [==============================] - 4s 29ms/step - loss: 0.6200 - accuracy: 0.6898 - val_loss: 0.6244 - val_accuracy: 0.6822\n", "Epoch 3/10\n", "127/127 [==============================] - 3s 27ms/step - loss: 0.6153 - accuracy: 0.6898 - val_loss: 0.6385 - val_accuracy: 0.6822\n", "Epoch 4/10\n", "127/127 [==============================] - 3s 27ms/step - loss: 0.6158 - accuracy: 0.6898 - val_loss: 0.6265 - val_accuracy: 0.6822\n", "Epoch 5/10\n", "127/127 [==============================] - 4s 30ms/step - loss: 0.6161 - accuracy: 0.6898 - val_loss: 0.6226 - val_accuracy: 0.6822\n", "Epoch 6/10\n", "127/127 [==============================] - 3s 27ms/step - loss: 0.6143 - accuracy: 0.6898 - val_loss: 0.6247 - val_accuracy: 0.6822\n", "Epoch 7/10\n", "127/127 [==============================] - 3s 27ms/step - loss: 0.6138 - accuracy: 0.6898 - val_loss: 0.6221 - val_accuracy: 0.6822\n", "Epoch 8/10\n", "127/127 [==============================] - 4s 31ms/step - loss: 0.6138 - accuracy: 0.6898 - val_loss: 0.6375 - val_accuracy: 0.6822\n", "Epoch 9/10\n", "127/127 [==============================] - 3s 27ms/step - loss: 0.6147 - accuracy: 0.6898 - val_loss: 0.6242 - val_accuracy: 0.6822\n", "Epoch 10/10\n", "127/127 [==============================] - 3s 27ms/step - loss: 0.6138 - accuracy: 0.6898 - val_loss: 0.6220 - val_accuracy: 0.6822\n", "36/36 [==============================] - 0s 9ms/step - loss: 0.6091 - accuracy: 0.6922\n", "Test Accuracy: 0.6921707987785339\n" ] } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from keras.models import Sequential\n", "from keras.layers import Conv1D, GlobalAveragePooling1D, Dense\n", "from keras.utils import to_categorical\n", "\n", "# Load your dataset\n", "# Assuming your CSV file has features in columns 0 to (n-2) and target values in the last column (n-1)\n", "data = pd.read_csv('/content/stressinput.csv', header=None)\n", "\n", "# Separate features and labels\n", "features = data.iloc[:, :-1].values\n", "labels = data.iloc[:, -1].values\n", "\n", "# Scale features using StandardScaler\n", "scaler = StandardScaler()\n", "features_scaled = scaler.fit_transform(features)\n", "\n", "# Convert labels to one-hot encoding\n", "num_classes = len(np.unique(labels))\n", "labels_one_hot = to_categorical(labels, num_classes=num_classes)\n", "\n", "# Split the data into training and test sets\n", "X_train, X_test, Y_train, Y_test = train_test_split(features_scaled, labels_one_hot, test_size=0.2, random_state=42)\n", "\n", "# Define the 1D CNN model\n", "model = Sequential()\n", "model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(features.shape[1], 1)))\n", "model.add(Conv1D(filters=128, kernel_size=3, activation='relu'))\n", "model.add(GlobalAveragePooling1D())\n", "model.add(Dense(256, activation='relu'))\n", "model.add(Dense(num_classes, activation='softmax'))\n", "\n", "model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n", "\n", "# Reshape the input data for 1D CNN\n", "X_train_reshaped = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)\n", "X_test_reshaped = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)\n", "\n", "# Train the model\n", "model.fit(X_train_reshaped, Y_train, epochs=10, batch_size=32, validation_split=0.1)\n", "\n", "# Evaluate the model on the test set\n", "test_loss, test_accuracy = model.evaluate(X_test_reshaped, Y_test)\n", "print(\"Test Accuracy:\", test_accuracy)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 926 }, "id": "1KbG3jPYjRnw", "outputId": "e6d87220-f274-4893-fda8-9e68f4e254b7" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/10\n", "127/127 [==============================] - 5s 32ms/step - loss: 0.5977 - accuracy: 0.6953 - val_loss: 0.5824 - val_accuracy: 0.7067\n", "Epoch 2/10\n", "127/127 [==============================] - 4s 31ms/step - loss: 0.5588 - accuracy: 0.7230 - val_loss: 0.5811 - val_accuracy: 0.7267\n", "Epoch 3/10\n", "127/127 [==============================] - 4s 28ms/step - loss: 0.5510 - accuracy: 0.7262 - val_loss: 0.5641 - val_accuracy: 0.7133\n", "Epoch 4/10\n", "127/127 [==============================] - 6s 45ms/step - loss: 0.5403 - accuracy: 0.7292 - val_loss: 0.5517 - val_accuracy: 0.7289\n", "Epoch 5/10\n", "127/127 [==============================] - 3s 26ms/step - loss: 0.5381 - accuracy: 0.7428 - val_loss: 0.5554 - val_accuracy: 0.7311\n", "Epoch 6/10\n", "127/127 [==============================] - 4s 29ms/step - loss: 0.5237 - accuracy: 0.7467 - val_loss: 0.5569 - val_accuracy: 0.7200\n", "Epoch 7/10\n", "127/127 [==============================] - 4s 29ms/step - loss: 0.5212 - accuracy: 0.7457 - val_loss: 0.5190 - val_accuracy: 0.7511\n", "Epoch 8/10\n", "127/127 [==============================] - 3s 27ms/step - loss: 0.5157 - accuracy: 0.7477 - val_loss: 0.5234 - val_accuracy: 0.7378\n", "Epoch 9/10\n", "127/127 [==============================] - 3s 26ms/step - loss: 0.5127 - accuracy: 0.7549 - val_loss: 0.5367 - val_accuracy: 0.7400\n", "Epoch 10/10\n", "127/127 [==============================] - 4s 31ms/step - loss: 0.5095 - accuracy: 0.7559 - val_loss: 0.5467 - val_accuracy: 0.7489\n", "36/36 [==============================] - 0s 10ms/step - loss: 0.5434 - accuracy: 0.7420\n", "Test Accuracy: 0.7419928908348083\n", "36/36 [==============================] - 0s 9ms/step\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.10/dist-packages/sklearn/manifold/_mds.py:299: FutureWarning: The default value of `normalized_stress` will change to `'auto'` in version 1.4. To suppress this warning, manually set the value of `normalized_stress`.\n", " warnings.warn(\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1TUlEQVR4nOydd3gU1deA3zuzu9n0HnovgiiiqAioIFVQKQoIIohYUFCxK3Y/e68U4aeASlEQRVCkKIIFVEQFpUrvJb1um/v9McmSTXY3m5CAkPs+zyqZuXPvubOzM2fOPUVIKSUKhUKhUCgU1QDtZAugUCgUCoVCcaJQio9CoVAoFIpqg1J8FAqFQqFQVBuU4qNQKBQKhaLaoBQfhUKhUCgU1Qal+CgUCoVCoag2KMVHoVAoFApFtUEpPgqFQqFQKKoNSvFRKBQKhUJRbVCKj6LaMm3aNIQQ7Ny58z8nR+fOnencufMJl+VkjVseDh06xIABA0hMTEQIwZtvvnnCZejcuTNnnXXWcfXx/fffI4Tg+++/D2m8//L38tRTTyGEqNCxI0aMoGHDhpUrkEIRBKX4KMqk6MEshODHH38stV9KSb169RBCcOWVV/rsKzpOCIHFYiEhIYG2bdsyduxYNmzY4He8I0eOMHbsWFq0aEF4eDgpKSlceOGFPPTQQ+Tk5ASUs0+fPkRERJCdnR2wzdChQ7HZbKSmpoY4+9OPDRs28NRTT510ha+i3HPPPSxevJhx48bx0UcfcfnllwdsK4Tgjjvu8Luv6Lpes2ZNVYl6wmnYsCFCCLp16+Z3/5QpU7y/x1Nt3p07d/a5nxT/bNq0qUrGnDBhAtOmTauSvhUnD8vJFkBx6mC325k5cyYXX3yxz/YVK1awd+9ewsLC/B7XvXt3hg8fjpSSzMxM/vrrL6ZPn86ECRN46aWXuPfee71t09LSOP/888nKymLkyJG0aNGC1NRU1q1bx8SJE7n99tuJioryO87QoUNZsGABn3/+OcOHDy+1Py8vj/nz53P55ZeTmJjIsGHDGDx4cEC5TyZLliypsr43bNjA008/TefOnUu9aVfluJXFd999R9++fbn//vtPtijHxaWXXkp+fj42m61S+7Xb7SxfvpyDBw9Ss2ZNn30zZszAbrdTUFBQqWOeKOrWrcsLL7xQanvt2rWrZLwJEyaQlJTEiBEjqqR/xclBKT6KkOnduzdz5szh7bffxmI5dunMnDmTtm3bcvToUb/HNW/enOuvv95n24svvshVV13FfffdR4sWLejduzcA77//Prt37+ann36iQ4cOPsdkZWUFfUj06dOH6OhoZs6c6VfxmT9/Prm5uQwdOhQAXdfRdT20yZ9gKvth+F8ftzwcPnyYuLi4ky1GhSkoKMBms6FpGna7vdL779ixI7/99huffPIJY8eO9W7fu3cvP/zwA/379+ezzz6r9HFPBLGxsaXuJacaUkoKCgoIDw8/2aJUW9RSlyJkhgwZQmpqKkuXLvVuczqdzJ07l+uuu65cfSUmJjJ79mwsFgvPPfecd/u2bdvQdZ2LLrqo1DExMTFBHxTh4eFcffXVfPvttxw+fLjU/pkzZxIdHU2fPn0A/741a9asoWfPniQlJREeHk6jRo0YOXKkd38gv4ydO3cihPAxi69bt44RI0bQuHFj7HY7NWvWZOTIkSEts5X06ShawvD3KZJl165djB49mjPOOIPw8HASExMZOHCgz/ymTZvGwIEDAbjssstK9eHPl+Tw4cPcdNNN1KhRA7vdzjnnnMP06dP9zv/VV19l8uTJNGnShLCwMC644AJ+++23MucLsH37dgYOHEhCQgIRERFcdNFFfPXVVz6yCyGQUjJ+/Hiv7JXF1KlTEULwxx9/lNr3/PPPo+s6+/bt89n++++/06FDB++1MmnSJJ/9RdfL7Nmzeeyxx6hTpw4RERFkZWUFvJaKzl94eDgXXnghP/zwQ7nmYbfbufrqq5k5c6bP9lmzZhEfH0/Pnj39Hvfdd99xySWXEBkZSVxcHH379mXjxo2l2v34449ccMEF2O12mjRpwnvvvRdQlo8//pi2bdsSHh5OQkICgwcPZs+ePeWaT3lwOBw8+eSTNG3alLCwMOrVq8eDDz6Iw+HwaTd16lS6dOlCSkoKYWFhnHnmmUycONGnTcOGDfnnn39YsWKF91or+m0E8mnyd09p2LAhV155JYsXL+b8888nPDzce84yMjK4++67qVevHmFhYTRt2pSXXnoJwzB8+p09ezZt27YlOjqamJgYzj77bN56661KOGPVE2XxUYRMw4YNad++PbNmzaJXr14ALFq0iMzMTAYPHszbb79drv7q169Pp06dWL58OVlZWcTExNCgQQM8Hg8fffQRN9xwQ7llHDp0KNOnT+fTTz/18e1IS0tj8eLFDBkyJOCb1uHDh+nRowfJyck8/PDDxMXFsXPnTubNm1duOQCWLl3K9u3bufHGG6lZsyb//PMPkydP5p9//mH16tXlemi/+eabpfyb3njjDf78808SExMB+O233/j5558ZPHgwdevWZefOnUycOJHOnTuzYcMGIiIiuPTSS7nrrrt4++23eeSRR2jZsiWA9/8lyc/Pp3Pnzvz777/ccccdNGrUiDlz5jBixAgyMjJ8LApgKpfZ2dmMGjUKIQQvv/wyV199Ndu3b8dqtQac36FDh+jQoQN5eXncddddJCYmMn36dPr06cPcuXPp378/l156KR999BHDhg3zLp+GQkFBgV9rZMnzOWDAAMaMGcOMGTM499xzffbNmDGDzp07U6dOHe+29PR0evfuzaBBgxgyZAiffvopt99+OzabzUdZBnjmmWew2Wzcf//9OByOgJa1999/n1GjRtGhQwfuvvtutm/fTp8+fUhISKBevXohzRfguuuuo0ePHmzbto0mTZoA5nczYMAAv9/DsmXL6NWrF40bN+app54iPz+fd955h44dO7J27Vrvkuj69eu9v5GnnnoKt9vNk08+SY0aNUr1+dxzz/H4448zaNAgbr75Zo4cOcI777zDpZdeyh9//FEhq53H4yn1XdrtdqKiojAMgz59+vDjjz9y66230rJlS9avX88bb7zBli1b+OKLL7zHTJw4kVatWtGnTx8sFgsLFixg9OjRGIbBmDFjAPM3d+eddxIVFcWjjz4K4HeeobB582aGDBnCqFGjuOWWWzjjjDPIy8ujU6dO7Nu3j1GjRlG/fn1+/vlnxo0bx4EDB7xO+0uXLmXIkCF07dqVl156CYCNGzfy008/lfr9KUJEKhRlMHXqVAnI3377Tb777rsyOjpa5uXlSSmlHDhwoLzsssuklFI2aNBAXnHFFT7HAnLMmDEB+x47dqwE5F9//SWllPLgwYMyOTlZArJFixbytttukzNnzpQZGRkhyep2u2WtWrVk+/btfbZPmjRJAnLx4sWl5rVjxw4ppZSff/65d56BWL58uQTk8uXLfbbv2LFDAnLq1KnebUXnqDizZs2SgFy5cmVAOaSUslOnTrJTp04B5fj0008lIP/v//4v6HirVq2SgPzwww+92+bMmeN3Dv7GffPNNyUgP/74Y+82p9Mp27dvL6OiomRWVpbP/BMTE2VaWpq37fz58yUgFyxYEHAuUkp59913S0D+8MMP3m3Z2dmyUaNGsmHDhtLj8Xi3l3VNFQco81P8+x4yZIisXbu2z3hr164t9d126tRJAvK1117zbnM4HLJNmzYyJSVFOp1OKeWx66Vx48alvp+S15LT6ZQpKSmyTZs20uFweNtNnjxZAkGvhyKKfoNut1vWrFlTPvPMM1JKKTds2CABuWLFCp/fcxFFcqempnq3/fXXX1LTNDl8+HDvtn79+km73S537drl3bZhwwap67os/jjZuXOn1HVdPvfccz7yrV+/XlosFp/tN9xwg2zQoEGZcys65yU/N9xwg5RSyo8++khqmuZzDUl57Lf/008/ebf5+6307NlTNm7c2Gdbq1at/J73J5980me+Rfj7LTdo0EAC8ptvvvFp+8wzz8jIyEi5ZcsWn+0PP/yw1HVd7t69W0pp3iNjYmKk2+0ufVIUFUItdSnKxaBBg8jPz2fhwoVkZ2ezcOHCci9zFafIUbkoEqtGjRr89ddf3HbbbaSnpzNp0iSuu+46UlJSeOaZZ5BSBu1P13UGDx7MqlWrfMzNM2fOpEaNGnTt2jXgsUVvoAsXLsTlclV4TkUUtywVWR2KlvDWrl1b4X43bNjAyJEj6du3L4899pjf8VwuF6mpqTRt2pS4uLgKj/f1119Ts2ZNhgwZ4t1mtVq56667yMnJYcWKFT7tr732WuLj471/X3LJJYC5jFXWOBdeeKGP43xUVBS33norO3fuDBgBGAp9+/Zl6dKlpT4PPPBAqbbDhw9n//79LF++3LttxowZhIeHc8011/i0tVgsjBo1yvu3zWZj1KhRHD58mN9//92n7Q033FCmT8eaNWs4fPgwt912m49FaMSIEcTGxpZrzrquM2jQIGbNmuWdQ7169bzfR3EOHDjAn3/+yYgRI0hISPBub926Nd27d+frr78GTGvL4sWL6devH/Xr1/e2a9myZanls3nz5mEYBoMGDeLo0aPeT82aNWnWrJnP+S0PDRs2LPU9PvjggwDMmTOHli1b0qJFC58xu3TpAuAzZvHvIjMzk6NHj9KpUye2b99OZmZmhWQLRqNGjUqdozlz5nDJJZcQHx/vI2+3bt3weDysXLkSMO9Lubm5Pi4GiuNDKT6KcpGcnEy3bt2YOXMm8+bNw+PxMGDAgAr3V7TcEB0d7d1Wq1YtJk6cyIEDB9i8eTNvv/02ycnJPPHEE7z//vtl9lnkvFzk41Dk1Dl48OCgzsydOnXimmuu4emnnyYpKYm+ffsyderUUv4BoZKWlsbYsWOpUaMG4eHhJCcn06hRI4AK31yzsrK4+uqrqVOnDh9++KHPcll+fj5PPPGE118gKSmJ5ORkMjIyKjzerl27aNasGZrme6soWhrbtWuXz/biD0TAqwSlp6eXOc4ZZ5xRanugccpD3bp16datW6nPmWeeWapt9+7dqVWrFjNmzADAMAxmzZpF3759fa5RMCOJIiMjfbY1b94coFSqgKLvPRhFc2zWrJnPdqvVSuPGjcs8viTXXXcdGzZs4K+//mLmzJkMHjzY7/Jq0biBzv/Ro0fJzc3lyJEj5Ofnl5LP37Fbt25FSkmzZs1ITk72+WzcuNGvD14oREZGBvwet27dyj///FNqvKLvpPiYP/30E926dfP6MyUnJ/PII48AFf9tBsPf979161a++eabUvIWpSIoknf06NE0b96cXr16UbduXUaOHMk333xT6TJWJ5SPj6LcXHfdddxyyy0cPHiQXr16HVeEzd9//42u635vDEIImjdvTvPmzbniiito1qwZM2bM4Oabbw7aZ9u2bWnRogWzZs3ikUceYdasWUgpvQpRIIQQzJ07l9WrV7NgwQIWL17MyJEjee2111i9ejVRUVEB/XI8Hk+pbYMGDeLnn3/mgQceoE2bNl4/hMsvv7yU82KojBgxgv379/Prr78SExPjs+/OO+9k6tSp3H333bRv357Y2FiEEAwePLjC45WXQIplWZa6/wq6rnPdddcxZcoUJkyYwE8//cT+/fuPO5LoZETwtGvXjiZNmnD33XezY8eO47LMlhfDMBBCsGjRIr/XRKCUFMc75tlnn83rr7/ud3+Rj9S2bdvo2rUrLVq04PXXX6devXrYbDa+/vpr3njjjZB+K+W5D4D/798wDLp37+61WJWkSGFLSUnhzz//ZPHixSxatIhFixYxdepUhg8fXirIQBEaSvFRlJv+/fszatQoVq9ezSeffFLhfnbv3s2KFSto3759qbfpkjRu3Jj4+HgOHDgQUt9Dhw7l8ccfZ926dcycOZNmzZpxwQUXhHTsRRddxEUXXcRzzz3HzJkzGTp0KLNnz+bmm2/2WjAyMjJ8jilpkUhPT+fbb7/l6aef5oknnvBu37p1a0gy+OPFF1/kiy++YN68ebRo0aLU/rlz53LDDTfw2muvebcVFBSUkrU8TtUNGjRg3bp1GIbhY/UpShjXoEGDcs4i8DibN28utb2yxwmF4cOH89prr7FgwQIWLVpEcnKy30io/fv3k5ub62P12bJlC0CFMhEXzXHr1q3e5Rkwly137NjBOeecU+4+hwwZwrPPPkvLli1p06ZN0HEDnf+kpCQiIyOx2+2Eh4f7vYZLHtukSROklDRq1Mj7AK9qmjRpwl9//UXXrl2DXuMLFizA4XDw5Zdf+lgo/S2/Beqn+H2g+ItfeSyTTZo0IScnJ2CyyeLYbDauuuoqrrrqKgzDYPTo0bz33ns8/vjjNG3aNOQxFSZqqUtRbqKiopg4cSJPPfUUV111VYX6SEtLY8iQIXg8Hm/EBMAvv/xCbm5uqfa//vorqampfs3x/iiy7jzxxBP8+eefZVp7wFRWSlomih4WRctdDRo0QNd17/p7ERMmTPD5u+gtt2R/FS2vsGzZMh577DEeffRR+vXr57eNruulxnvnnXdKvYUWPahLKkT+6N27NwcPHvRRcN1uN++88w5RUVF06tSpfBMJMs6vv/7KqlWrvNtyc3OZPHkyDRs29LssVVW0bt2a1q1b87///Y/PPvuMwYMH++StKsLtdvuEcjudTt577z2Sk5Np27Ztucc9//zzSU5OZtKkSTidTu/2adOmhfRd+ePmm2/mySef9FGGS1KrVi3atGnD9OnTfcb5+++/WbJkiTfHlq7r9OzZky+++ILdu3d7223cuJHFixf79Hn11Vej6zpPP/10qWtSSlklmdMHDRrEvn37mDJlSql9+fn53vuKv99mZmYmU6dOLXVcZGSk33NfFClX/D6Qm5tbLgvMoEGDWLVqValzB+Zv0+12A5Q6V5qm0bp1a4AKL8NXd5TFR1EhyhNqvmXLFj7++GOklGRlZfHXX38xZ84ccnJyeP31131KDnz00UfMmDGD/v3707ZtW2w2Gxs3buSDDz7Abrd71+HLolGjRnTo0IH58+cDhKT4FGWT7t+/P02aNCE7O5spU6YQExPjvfnHxsYycOBA3nnnHYQQNGnShIULF5byWYiJieHSSy/l5ZdfxuVyUadOHZYsWcKOHTtCPW0+DBkyhOTkZJo1a8bHH3/ss6979+7UqFGDK6+8ko8++ojY2FjOPPNMVq1axbJly7zh7kW0adMGXdd56aWXyMzMJCwszJvTpCS33nor7733HiNGjOD333+nYcOGzJ07l59++ok333yzTEtdqDz88MPeNAl33XUXCQkJTJ8+nR07dvDZZ5+V8jGqaoYPH+7NDB1omat27dq89NJL7Ny5k+bNm/PJJ5/w559/Mnny5KCh+4GwWq08++yzjBo1ii5dunDttdeyY8cOpk6dWiEfHzAV9aeeeqrMdq+88gq9evWiffv23HTTTd5w9tjYWJ/jn376ab755hsuueQSRo8e7VWCW7Vqxbp167ztmjRpwrPPPsu4cePYuXMn/fr1Izo6mh07dvD5559z6623Vnrm7WHDhvHpp59y2223sXz5cjp27IjH42HTpk18+umn3jw6PXr08FpQRo0aRU5ODlOmTCElJaWURblt27ZMnDiRZ599lqZNm5KSkkKXLl3o0aMH9evX56abbuKBBx5A13U++OADkpOTfZTCYDzwwAN8+eWXXHnllYwYMYK2bduSm5vL+vXrmTt3Ljt37iQpKYmbb76ZtLQ0unTpQt26ddm1axfvvPMObdq0CZiGQlEGJyeYTHEq4S/81R+BwtmLPpqmybi4OHnuuefKsWPHyn/++adUH+vWrZMPPPCAPO+882RCQoK0WCyyVq1acuDAgXLt2rXlknv8+PESkBdeeGHQeRWFnq5du1YOGTJE1q9fX4aFhcmUlBR55ZVXyjVr1vgcd+TIEXnNNdfIiIgIGR8fL0eNGiX//vvvUiHPe/fulf3795dxcXEyNjZWDhw4UO7fv18C8sknnwwoh5Slw8rxE8Zb9CkKh05PT5c33nijTEpKklFRUbJnz55y06ZNskGDBt6Q3yKmTJkiGzdu7A1DLurDXxj9oUOHvP3abDZ59tln+8xTymPh7K+88kqp81xyvoHYtm2bHDBggIyLi5N2u11eeOGFcuHChX77K084e6C2wa7rAwcOSF3XZfPmzf0e26lTJ9mqVSu5Zs0a2b59e2m322WDBg3ku+++69OuKGR9zpw5pfoIlBphwoQJslGjRjIsLEyef/75cuXKlWWmNyjC32+wJIHmvWzZMtmxY0cZHh4uY2Ji5FVXXSU3bNhQ6vgVK1bItm3bSpvNJhs3biwnTZoUMLz7s88+kxdffLGMjIyUkZGRskWLFnLMmDFy8+bN3jblCWdv1apV0DZOp1O+9NJLslWrVjIsLEzGx8fLtm3byqefflpmZmZ623355ZeydevW0m63y4YNG8qXXnpJfvDBB6V+hwcPHpRXXHGFjI6OLpVS4Pfff5ft2rWTNptN1q9fX77++usBw9kDfSfZ2dly3LhxsmnTptJms8mkpCTZoUMH+eqrr3pTIsydO1f26NFDpqSkeMcaNWqUPHDgQJnnTOEfIeUp4nWoUCgUJ4ijR49Sq1YtnnjiCR5//PGTLY5CoahElI+PQqFQlGDatGl4PB6GDRt2skVRKBSVjPLxUSgUikK+++47NmzYwHPPPUe/fv0qFJ2lUCj+26ilLoVCoSikc+fO/Pzzz3Ts2JGPP/7YpzaXQqE4PVCKj0KhUCgUimqD8vFRKBQKhUJRbVCKj0KhUCgUimqDcm4ugWEY7N+/n+jo6HKl9lcoFAqFQnHykFKSnZ1N7dq1gyY9VYpPCfbv3+8tZqdQKBQKheLUYs+ePdStWzfgfqX4lKAoBf+ePXtKVb9WKBQKhULx3yQrK4t69eqVWUpHKT4lKFreiomJUYqPQqFQKBSnGGW5qSjnZoVCoVAoFNUGpfgoFAqFQqGoNijFR6FQKBQKRbVBKT4KhUKhUCiqDUrxUSgUCoVCUW1Qio9CoVAoFIpqg1J8FAqFQqFQVBuU4qNQKBQKhaLaoBQfhUKhUCgU1QaVuVmhUCgUihOANDIhbxYy/zMwUkGrgYi4FsIHIrTIky1etUEpPgqFQqFQVDHScxCZOgSMA4BhbvTkIrNfgPw5kDADocWdTBGrDWqpS6FQKBSKKkZmPADGQbxKj7nV/Li3I7OePkmSVT+U4qNQKBQKRRUi3f+C6xfAE6CFBwoWIT1HTqRY1Ral+CgUCoVCUZU414XQyADX31UuikIpPgqFQqFQVC0ixEet0KtWDgWgFB+FQqFQKKoW20WU/bgNA+u5J0Kaao9SfBQKhUKhqEKEXhPsvQj8yBUQMRihRZ9IsaotSvFRKBQKhaKKETHPgLVN4V9Fj97CpS1bJ0T0AydBquqJyuOjUCgUCkUVI7QoSPgYHN8h878A4zBotRERA8B2MSJUPyDFcaMUH4VCoVAoTgBCWMDeA2HvcbJFqdYoFVOhUCgUCkW1QSk+CoVCoVAoqg1K8VEoFAqFQlFtUIqPQqFQKBSKaoNSfBQKhUKhUFQblOKjUCgUCoWi2qAUH4VCoVAoFNUGpfgoFAqFQqGoNijFR6FQKBQKRbVBKT4KhUKhUCiqDUrxUSgUCoVCUW1Qio9CoVAoFIpqg1J8FAqFQqFQVBuU4qNQKBQKhaLaoBQfhUKhUCgU1Qal+CgUCoVCoag2KMVHoVAoFApFtUEpPgqFQqFQKKoNSvFRKBQKhUJRbVCKj0KhUCgUimqDUnwUCoVCoVBUG5Tio1AoFAqFotqgFB+FQqFQKBTVBqX4KBQKhUKhqDYoxUehUCgUCkW1QSk+CoVCoVAoqg1K8VEoFAqFQlFtUIqPQqFQKBSKasMpq/i8+OKLCCG4++67vdsKCgoYM2YMiYmJREVFcc0113Do0KGTJ6RCoVAoFIr/FKek4vPbb7/x3nvv0bp1a5/t99xzDwsWLGDOnDmsWLGC/fv3c/XVV58kKRUKhUKhUPzXOOUUn5ycHIYOHcqUKVOIj4/3bs/MzOT999/n9ddfp0uXLrRt25apU6fy888/s3r16pMosUKhUCgUiv8Kp5ziM2bMGK644gq6devms/3333/H5XL5bG/RogX169dn1apVJ1pMhUKhUCgU/0EsJ1uA8jB79mzWrl3Lb7/9VmrfwYMHsdlsxMXF+WyvUaMGBw8eDNinw+HA4XB4/87Kyqo0eRUKhUKhUPy3OGUUnz179jB27FiWLl2K3W6vtH5feOEFnn766UrrT6E4nSjIc/DD3NXs23qAyNgILr6mHbUa1TjZYikUCkWFEVJKebKFCIUvvviC/v37o+u6d5vH40EIgaZpLF68mG7dupGenu5j9WnQoAF3330399xzj99+/Vl86tWrR2ZmJjExMVU2H4Xiv86KT3/mtVsmkp9dgG7VkR4DQ0p6jriMsRNvwWqznmwRFQqFwktWVhaxsbFlPr9PGYtP165dWb9+vc+2G2+8kRYtWvDQQw9Rr149rFYr3377Lddccw0AmzdvZvfu3bRv3z5gv2FhYYSFhVWp7ArFqcaaJX/x3JA3kZjvRR6Xx7tvyfTvkVLywAdjgvYhpeSfnzaxeuHvuBxump7XiE4D22Oz26pUdoVCoQjGKaP4REdHc9ZZZ/lsi4yMJDEx0bv9pptu4t577yUhIYGYmBjuvPNO2rdvz0UXXXQyRFYoTlmmPzEbBGCU3icNyZLp33P94wMCLnulH8rgiX4vs+mXregWHSHA7fIw4e6pPP7JvZzXrbXf4xQKhaKqOeWiuoLxxhtvcOWVV3LNNddw6aWXUrNmTebNm3eyxVIoTimO7E1l06//Io3Aq+CaprHiU//Rkh6Ph3GXP8vW37eZf7s9uAstRrmZeTx65QvsWL+r8gVXKBSKEDhlLD7++P77733+ttvtjB8/nvHjx58cgRSK04DczLwy22iaCNju16//YNtf/hUbaUikYfDpq1/y0PQ7j0tOhUKhqAinlcVHoVAcP8l1E7BY9aBt3G4PdZrV8rvvh89Wo1kC31o8boOVc1ZxisRVKBSK0wyl+CgUCh8iYyPpPLgjehDlxR4RRqdB/oMG8rLzMTx+nIOK4SxwYRjB2ygUCkVVoBQfhUJRipHPXUdsUkwp5UdoAgSMnXgr4ZH+82nVO6MOmhb81lKzYYpPagqFQqE4USjFR6FQlCK5biLv/voina/tiG45pqA0PbcRzy4YR7frLw14bO+buwa15ghN0GfM5ZUq74lEOn/DSB+NcbA1xsGzMFKHIguWqqU7heIU4ZRJYHiiCDUBkkJRXchOz+HInlQiYsKp2TAlpGM+eXk+/3v4Y4QmfKLDNE3Q4qLmvLLsiVMyn4/Mm4XMehLQgaLcRhpgQMRIRPRDCCFOnoAKRTXmtEtgqFAoTg7R8VFEx0eV65hrH+xLzYbJzHphnjfCKzohiqtu68GQR64+NZUe93Zk1lOFf3mK7Sm0buV9AGHtIazTiRVMoVCUC6X4KBSKKqHToA50GtSBtIPpuBxuEmvHY7GeurccmTcb07rjCdBCR+Z+iFCKj0Lxn+bUvQspFIpTgoSa8SdbhMrB9QeBlR7Mfa6/TpQ0CoWigijnZoVCoQiJEJbnhCrcqlD811GKj0KhUISACOuMWcAsEDqEdTlB0igUioqiFB+FQqEIhYgBIKLwf9s0FSIRMfyEiqRQKMqPUnwUCoUiBIQWj4j/AEQkpqJTZP3RAAsi7k2E9YyTJ6BCoQgJ5dysUCgUISJs50Dy95D/OdLxE+BG2M6D8IEIPbQcRwqF4uSiFB+FQqEoB0KLhsjhiEi1rKVQnIqopS6FQqFQKBTVBqX4KBQKhUKhqDYoxUdRLZFSIqXrZIuhUCgUihOM8vFRVCuk629kzhRwLAXcSL0OIuJ6iBiGEKde/SiFQqFQlA9l8VFUG2TBcmTqIHAsAdzmRs8+ZPbLyLQbkdJxUuVTKBQKRdWjFB9FtUAaucjMezBrLZWstyTB9Tvk/u8kSKZQKBSKE4lSfBTVg4IFIPMAGaCBgcz7GCmDFaFUKBQKxamOUnwU1QLp2kSZLm1GKhhpJ0QehUKhUJwclOKjqB6E6risHJwVCoXitEYpPopqgVlZ2x2khQbWNggt9gRJpFAoFIqTgVJ8FNUDW3uwnAnoARoYiMjbTqRECoVCoTgJqDw+ilMKj9vDd7N+5MsJi9mzaR/hUXYuG9yRfnf2IqV+csDjhBAQPxmZPhLcWzAVIIOiCtsi+lGEvcsJmYNCoVAoTh5CShkozKVakpWVRWxsLJmZmcTExJxscRTFcLvcPHXNq/yy8HeEJpCGeelqukZYhI1Xlj3JGRc0DdqHlB5wfI8sWAIyHyxNEBGDEHqtEzEFhUKhUFQRoT6/lcVHccrw6Stf8uvXawG8Sg+A4TFw5Dl4ot/LzNg5AYs18GUthA72rgh71yqXV6FQKBT/PZSPj+KUwOPx8MU7X/soPMUxPJK0A+ms+nLNCZZMoVAoFKcSSvFRnBIc3ZtG+qHMoG10q84/P28+QRIpFAqF4lREKT6KUwJND+FSlaBbAkVtKRQKhUKhFB/FKUJSnQTqNKtZFITlF4/bQ9vurU+cUAqFQqE45VCKj+KUQAjBoAf6BSy1pVk0GrSqx7ldzz6hcikUCoXi1EJFdSlOGXrd1IXdG/fy2RsL0S0aHreBEAIpJcl1E3l2wcNmvp4qRMoCKFiMdG9HiAiw90BYGlXpmAqFQqGoPFQenxKoPD7/fTb9upWvJi9jx9+7iYyNoPOgDlw25GLsEWFVOq4sWILMHAcyG/OdwTA/9isQsS8ghL1Kx1coFApFYFQeH8UpRfrhTJZO/549m/cTER3OJQMuolWHM/xacFpc2IwWFzY7ofJJ56/IjLs4ttZWrO5XwSKk9CDi3z6hMikUCoWi/CjFR3HSWfjeUt69630Mj4GmmW5n8976inMua8XT8x4gMjbyJEsIMuedon/52WuA4xukayvCemIVMoVCoVCUD+XcrDiprFqwhrdun4zH5UEaEo/bg8ftAWD9yo3836DXT7KEII00cP6CubQVCB1ZsOhEiaRQKBSKCqIUH8VJ5eNn5iI0/w7Jhsdg7dJ1bF27/QRLVVKQnBAaaSBDaadQKBSKk4la6lKcNNIOprNlzbagbXSLxk+f/0qz8xqfIKn8CZEC2IGCII3cCL1+lYohjTQoWAJGGuh1zIgyEV6lY55MpGMFMncaOH8HIcDWARF5I8J24ckWTaFQnMIoxUdx0ijIdZTZRghBQV7Z7aoSIezI8P6Q/yngCdDKBuF9qmR8KQ1kzluQO6VwfB1wQ9aTEP04IuKaKhn3ZGJkvwW54zHn6jFdqxzfIx3fQvRjiMjhJ1lChUJxqqKWuhQnjaQ6CYRHBw8Bd7s8NDyrai0poSCi7gStBuaD2GeP+d+YJxFa2ekPpOcA0rEa6VqPlMF8hoodk/MO5E7EjCSTeCPKZB4yaxyy4JtQp3FKIB2/FCo94Ktomv+W2c8hXaomm0KhqBhK8VGcNGx2G71Gdg1ch0tAeLSdToPan1jB/ImiJ0HCp2C7DB/lx9ICETcRETEg6PHSvRMj7Sbkkc7I9OHI1GuQRy5D5s8LfpyRVWjpCSgZMvtVKjsdl/TsM5Uzz6FK7TeksfM+pLSCWRwNmTfrRImjUChOM5TiozipDHtyIPVa1Cml/Gi6hqZpPDT9TsIjT35iQJn/FaRfB85lmJYHAbaLEHFvI+xdgx/r3o1MHQTOn/EJhzcOIDMfNv1YAuH4FnAG6x08u8G9MeS5BJXVuQYj9VpTKUu9BnnkUoy0kUjXpkrpPyRcfxJ4SRFzn2vtCRJGoVCcbijFR3FSiYqL5K0fn2HQA32Jjjfz9QgB51/ehjdW/h8d+518R1aZNwuZeQ949hTfCs7fkKkDke7dwY/PebMw27P/h7nMfgVppPs/2MgkpJ+pkVV2mzKQjp+QacPA9VfxreBchUy9FunacNxjhEYorofWKpdCoVCcnijnZsVJJzI2kpuev44Rz1xLTnouYRFhVV5+IlSkkYXMer7orxJ7PSCzkdmvIeLfCnB8DhQsIrgFww35C8Cfw65en+D5g4ra1Sm7TRCkNJCZjxSO5WeeOJBZTyESPz2ucULCfhnkfULgc6Yh7JdV2nBSusHxLTL/CzBSQa+LCB9oWvSquPabQqE48SjFR/GfQdd1YpP+G/XRpHSB8ydk/kIgWFSZBxxLkEYmQost3Y9nL8GVHgAd6dmP30ds2CWgJZoh7H6zRutgOx9hqVfGGGXgXA3GgSANDHD9iXRvQ1iaHN9YZSAihiHzPsV0HC85Zw1EGIQPqpSxpJGFTBsJ7nVm3xjgWo8sWAhhvSDuNYRQt0mF4nTilFnqeuGFF7jggguIjo4mJSWFfv36sXmzb2RHQUEBY8aMITExkaioKK655hoOHTrxzpmKE4s00pC5H2Jkv4LM/eC4HXJl/kLkkUuQ6bdCwZchHOEBz2G/cpFxTwjHGwgt3u8eIayImGcxlYCSP1cdRBgi+vEQxigDT/DlOi9lLOtVBsLSBBH3DuZyVvE5CxB2RPwUhJ5SKWPJzIfA/U/hX0WWtUJF1fENMufdShlHoVD8dzhlFJ8VK1YwZswYVq9ezdKlS3G5XPTo0YPc3Fxvm3vuuYcFCxYwZ84cVqxYwf79+7n66qtPotSKqkRKicyZhDx8MTL7Ocidisx+GXmkE0aASCcpPUjXJqRrHdLILr2/YBEy895CC0s58GftyXwYPDtDmQmEXxlwr7B3RcR/AJZWxbeCrSMiYQ7C2rx8svrDj/zH1e44EfauiOTliKi7wNYRbJcgoh80t1VSAkPp3lXoPB7IIichbzpS5lfKeAqF4r+BkJUdB3uCOHLkCCkpKaxYsYJLL72UzMxMkpOTmTlzJgMGmKHFmzZtomXLlqxatYqLLroopH5DLWuvqFqkkQOuvwEDrK38LyPlfozM/r+AfYiouxFRo822UkL+LGTOJDAOFrawQXhfRPQDCC3O9HM5clkZSz4l0cDaFi1xhq9s7t3Io91C6yJ8KFrskyE1le7dYKSDXhOh1yiHnGX0a+QiD3cAgjzktRqI5O8RIlioeSXI4t6JzPsICpaCdIL1LETk9WDrVKk+NzJvFjLrKfwvIR5DJMxA2C6otHEVCkXVEOrz+5RdvM7MzAQgISEBgN9//x2Xy0W3bsceNi1atKB+/fpBFR+Hw4HDccyHIyvr+KNjFBVHSicy+1XIm82xEhE2ZHh/RPTDCC3yWDtvxfQAfeW+BxE3ILRIZM7rkPteiRZOyJ+HdK6FxE/BvbmcSo8ABCL67tK7nL+F1kVYD0TMo6GPaKkPVH5CR6FFQtRtyJw3AreJvqfqlR7HD8j02zGtMIWWGOdPSOdKiBgO0Y9WnvIjy/K9Kmc7hUJxSnDKLHUVxzAM7r77bjp27MhZZ50FwMGDB7HZbMTFxfm0rVGjBgcPHvTTi8kLL7xAbGys91Ov3nE6iSoqjJQeZPpoyJuOb10sJ+TPQaaPQMrCnDbOtSADhIB7O8wH549I93Y/Sk8RHvDsQOZONSN6QsAoeg6KBET8xADWgNAMqSJi0H/HeTbyNoi8A/N9SHDsvchuZqYOr9plY2lkItPvAFz4y9hM3odQ8HXlDWg7h7K/JytYW1TemAqF4qRzSio+Y8aM4e+//2b27NnH3de4cePIzMz0fvbs2VP2QYqqwbEcnCvx/zAyzPwy+fPNP2Vp/xy/GDnI/LkEzwRsQP5s0GqG1OWimQk8OaIhf29+DxHW2RRHSqTzd2TORGTOBKQnsLJ9DAtYzw5pzBOBEAIt+i5Eyo+ImKcQUaMRMS8gUn5GRAytegHy52EqvIGUEQ2ZN63ShhPWs8FyNoGvDR3sfRFaXKWNqVAoTj7/kVfN0LnjjjtYuHAhK1eupG7dut7tNWvWxOl0kpGR4WP1OXToEDVrBn6ghYWFERb238gZU92R+XPwFqX0i0Dmf4KIGAiWRqF1amkIju8pMxeOcRRpaQl6Q6R7F0KUfvgaBqQetPLuuLogdM7uuoPWl7Y2yzukjwH3hkL5ZdnjAYT3DxjNVVVIaYBxBLCAluB32UhoCRAx5ITKBZhLjkExwLUOKQ2EqJx3NhH3BjJtSKG1r+g7KzwnljMQMeMqZRyFQvHf4ZSx+EgpueOOO/j888/57rvvaNTI98HXtm1brFYr3377rXfb5s2b2b17N+3bn/xaT4oQKDPnjQTPPgCEpSlY2xD4EtZAbwjW80CLCdKuiLDC0PEnAXFsOasQwzAfh+MfrYNhCKSU6BYdaeQgU4ea/kHmJAhJ6QGIHB1au0pAShcyZwrySCczVP9Ie2TqVcj8+ZVe58sfO//Zw6sjx3NV9PX0tAxi5JljmT/+G1xO17FGQgP/2YyKIUJoEzrCUh+RtAARNQa0OiAiQG+CiH4UkTgLoUVX2lgKheK/wSlj8RkzZgwzZ85k/vz5REdHe/12YmNjCQ8PJzY2lptuuol7772XhIQEYmJiuPPOO2nfvn3IEV2Kk4yWBGwjsOIgzGR+RX/F/B8ybTBIB74Kkw7oiNgX2fzbv6z/VnLNjcEUKh3C+5jWj7COGDGTOfDnndRtcizCaf9OG5OfqsMvy8xIAWlIzu95DuR/XugQXX7lQRiHgOPLuBwKUnqQGXeaS4nF5XRvRWY+AO7tiOhQ8g1VjLXfruexK5/H8Bh43OZ3u2fzfsbf9T4/ffErzy4chy3MirC1RxYsCtKTDrYLKz2bstASIOpORNSdldqvQqH4b3LKKD4TJ04EoHPnzj7bp06dyogRIwB444030DSNa665BofDQc+ePZkwYcIJllRRUUR4P6RzVRltjjnYCmsLSJyLzH4dHN9hKkxmfhsZOZZ37l7NwklL0C2CpmdEctaFueilrngNhA0RebN3izXyUn7+4UlWjH6fxJou0g9b2fJXOEWWBk3XOK/b2TQ4sx5G6oLjmPAJWmItmF94fkpSqATlTkTaeyKsZ1b+0HkO/m/gq7hdHqRRTOmS5uh/Lv+bOa98ydDHrgH7VZD9Osgs/Cu/HkTkyEqXUaFQVC9O2Tw+VYXK43PykNKJTL0G3P9SeslLN3PXJH7pd/lBGhlgHDX9VrQE5rz6JZMf/Mi7PyLKw/1v7aZjrywMD0gEui5Bq42IewthO8enP8MweOPWSXzzwXJ0i4bHbaDpGobHoNl5jXlx8WPEJEZjHOkRYpLCEmgpiOQVfsPDpcwHxwoziaJWC8IuRoiKF+U0jl5TmJ04kCVNh/BBiMibTOfh/K/MiDhLY9OpObx/hSPPFk9bzqsjg798xNeIZdbe99B1Helaj0y7sdB5vejWZPp9iegHfRRUhUKhKE6oz2+l+JRAKT4nF2mkIzMeBOcK3x3W8xFxryP0siOv3C43Q+rdRsbhzFL76jR2cGHXLGxhBlfecRc1mvUPmJtGSsmGVVtY9L9v2b/tIDFJ0XS97hI69L0A3WIeY6SPAsdKyq7HVYLw4Yjwq8zkfIXjSykh7yMzl448lpEcLdEMJ7dfXr4xCjEOtQGZF7yRpTm49wBOjs2lsFaW7VJE/ASEsJV77HfvfJ+Fk5ficQU/P7P2TCKpjrmMKY00yPsM6VhmLmNaWyMihiCsLcs9vkKhqD6c9gkMFacnQotHJExBuneahTORYG1brrIMO//e41fpAdi3PYzPtyejaYLYuge45v5chPD/AxFC0KrDGbTqcEZgecMHIx3Ly5CouGN1odUl/0Nk/oegpUDUGAgfbOYSynmx9OFGKjJjLMRNQNi7ljGWXyHLUHwEuLcXylbcKlT4TuT8AXLfh6jbyz20xWYJyf3JYjt2KzJ9bm5BRN1S7vEUCoWiLJTio/hPIiwNzVD0EJDSAQWLkPlfgcwiMTqJM87NZfMfkUEGMHBnzYbD72BYWkHcRDRLaHl8fAjrBGGXg2Mxfp/w1vPA0hKMQ+D4GTNPTTHlwjiMzHoS3Hsh7/1gs0RmvwRhXRBCmGHpzlVI508gPQjrOWDv5t8qY78C8mYQtCYV7uBj530EkbeWO3Pzhb3P47M3FgbcLzRBk3MaEpcciyPfwU9f/MaBbYeIio/k4qvbkVjrxIb7KxSK0x+11FUCtdR1aiE9h5Bpw8GzA9OyYiDREXj44v1EJj5eh0Dhzy99uo02F+cU/hUGScvQLOWvfyWlG3InI3OngcwwN4pYCB8M9p6gxZuZo/PnUO4lsZKIBDPkWuaBTOPYu4sbtCRE3MRS/kpm3bCrAAel/Xx0EHaQBWXLFv8hwtrSb920QEgpue28B9j5zx4Mt38fo8c+uRdpGLx522RyM/PQLTqGx0Bogr53XM6oV4ej61VbKkOhUJz6KB+fCqIUn1MHKSUydUBh4kD/D+13H6nDgmlJPts0XVKrgYP3f9iMT2S09Xy0xJnHIY8T3DvMQqI574BnU4X7qhgaiHBE0kKE7hsmL52/m+VAZDo+ypLeGKznQ8E8glt9io0R1gURfa+ZSykEju5L5cHuz7Bn0z40TWAY0nQUNwxuen4ojVs34NErny8U1PdYIaD/2Cu4/fURIY2lUCiqL0rxqSBK8Tl1kM4/kGnXBt5vwOH9Vm64qCXSKApFl0REe3j1s200allQ4ggBKf+gaeVfAZZGGtKTA45vIeeFch9feegQMRzNT8ZhKZ1Q8A3S9SdgQYRdAraO5pJZ+o1l9rx7axgr5seRk2mhVkODrje9TmzNtiFJ5Xa5+emL3/hh7grysw5Tv2UNeo+6nnpn1OG28x5g+7pdvuHuxdB0jZm7J6llL4VCERSl+FQQpficOhjZb0PuRMpaonl4cGPWr4okKsZD1wHp9Lv5KCl1XP4bJy1Hs5jWEsPxg5lXxrMHsJr+PDEPomkJ3ubSsRqZ8za41lTSrCoBLRmR/CO41pgJAd2HgBzQapi+U/Y+CMuxci9SGsjUPuDehr9z6XQIXr+3Hss/j0fTJZom8bgFulUw+o2buer2nmWKZLh3Qfrt4Pm32FYr+w70Y2TbLUGPFZpg9Js30u+OXqHNX6FQVEtUVJeiGuAhlPIFL87eHnqXmvljMdJvN603xSmYBwVfYMT/Dy3sYmTBImTG3SHJcEKReabfk+sXvCHpRbsQkPMWMuJGMy+O0My6V/GTC32ldpc65q0H6/L9/DgADI/A8JjzdTvh7TH/IyYphk4DA5eFMdz74GhvzKrrxXGRc2ghEDxiT9M0cjPKCMdXKBSKEDllanUpFCUR1jaE5pcSaofJaFq0aUkqqfR4MSD9FozcmciMewm5IOkJo7DeldcCVdKgK81P3gemw3UhQq+NSPoKEfsS2DqDbtbCO7jbxrK58d6lwpIIAdOf/CR4va/Muymt9Jik1HH5LQhbHI/bQ63GKUHbKBQKRagoxUdx6hJ2KWi1MTP7VgLR95n/z5tWRkMPZD/F8URoGQZIaX6Ol9SDFr7+OIF5k5NY830khicnJNlk7mQzSzQgPUch9wNk3hwzMs3SBICfv4khWGksKWHPpn3s3bLf737DcIHrr4DHxye7adc9M6jyExETTsf+F5Y5H4VCoQgFtdT1H0YauVAwH5k/H4x00BsiIq6FsMvM5Ynj7V86wfkbGJlgqQ+WVpVeALIqEUKH+AnItGGFCfqOI1Q88g60iKsxjGyQOWW3Pw5mv5NMx16Z1G3iDKpUlIXLKRj/WG0Wz0rEMEATYBiClDpOHh6/i1YXlrE8JHPBsRopwpHpo/ANdzevrxp1nWgaeMowauXtvhEjHjOXUOQwhF7L3GEcKHMeNz16gD9/jKYgz1eBFcK0T909aRRh4SeorplCoTjtUc7NJfivODdLz0Fk2vUlfC7MmkWEdUXEvV3h+k1SSsificx+61jeGQBLc0TMc6XywPzXkZ4DZoK9/C9NpUXEg7Gv7AMtLcByNsTcj6aZEUOGJxWOBPZXOS45JWSm6tzerTmz/tx43P29OKYe338Rj5Sm9tSueyZX33qEVhfkIYREt1CmYrVk3mV07fsTmu5C+EnAKCWM7tGc7f+EB+xDt0hm//UPMfFFiqcOcePR7F0wjBw4fF5QGdxu+PHrWGa8VpPdW8Mo8pmy2Cw8Mec+2l91fvBJKBQKBcq5+ZRHZtwJnqKHd9EDqfDB4vgOmTMBET22Yp3nfWBmAS6J+19T2UqchbCeVbG+TwJCr4WIfhCiHwRAygLk4Y6Flht/er0OYZehxfspniniMX8Wlec7JKWpgORmC964vy72iOP3Cdq5yc7yz49Flw1/4ABD7zmMx423An0orzQ1a/0KOIO6Zw+8/TAv31nfq2AVR9Mll16VUUzpAfBAxu0YSd+jWWphiBSQhwP2b7HAJVdk0vHyLLIzdPZttzF3Ugqrl8RSu2n5s2lL1wZkwVdgpCP0umaR1SILlEKhqPYoi08J/gsWH+lab1YpD4aIQaT8hBDlWwKQRqapFOAM0EID20VoCdPK1e9/CSPzKcj/BP9LXzqISETiZwhLA6DQupb3aaEvisUsL+HeUGnyFCk+RezbbqNGPSeWihdc54MXajJ3Qgp1Gju49cl9XNCl6pbnnA5B36ZnA3gjusBUehKSXbz99VYSa/pRFO190OJexcj/EjLv99t3yXMDpv+TAB4f3oiRr7xBk9aJoMWVea1L6URmPACORZjWUYG5dCcRUXdB5OhTailXoVCUD2XxOZVx/kJR+YWAyCxwb4XyWmYKFhEowsbEAOfPSM/BkCqh/9cwjvQAz87ADcI6I6IfPqb05C9EZj7IsQKdRcuKviHd5UMzy1RgBeNgqQd77Yam0ul2m9aOipCdbuGcjtk8PW0nFlvF3138KR4lsYVJXp23lY9fr8naFebNxGY36DYgnevvO0hijQDWsYLvke5dZpRY+GDIn11qXH9ja5qp/Dz07m6i4q5GHjEAG9LeBxF9B0Kv7X8uWU+B45vCv3yVXpnzFkJLhIjBx7a5NhYquxrYOvjkNlIoFKcvSvGpYqR7GzJvBjhWgPSA7QJExPXB/WhCNsJV4IFnHMF8Gy5jKcc4CqeY4mNkvRRc6QGwtjum9Lj+Rmbej9+K5ADYMBXQwgzPoibIg8H7jxiKiLoX0JFHOvhtUuSXroHP0lR5qNXQwY3jDqBbJdpx+LmHagBpdUE+L8zaQV6OICuzKXHx20JYsstCHu0ecFzDIKDsmgbRccWVFycUfI50fAuJcxCW+j7tpecg5M8j2G9C5kyA8IHgOYDMvA9cfxSXCBnWAxH7PEKLLmNex4eUBZC/AJn/ufl71GsjwgeCvWeF/fYUCkXoKMWnCpEFi5EZ92DejAtv4gULkQXzIXocIjJAmQDbBZSZG0ZEgqVZ+eSREmnkEZL/ipZUdptKQho55gNAi0UUy4pcbvJmlN0mdzxEjTDHzZ1K4OSDEnAhoh9DRA7zbjWyXjRz4PhYhAr/HT4EIm6B/E+RzjWFkWaB0TTIzNSIijEobw3OXtelEh134vMHRURJIqL2URm5i/wpXS6nwJEviIg2/ChFHpBZyKwnECWXYh3LKfNFwDiIdP4KmQ+air0PEhzLkOmHIGEmQlTNrVEaaWaiSPcWvNeNZw/SuQryLoSEKQgR2JFcoVAcP0rxqSKkZ3+h0uPB94ZsKkAy+wWwno2w+YlYsZ4Dllbg3oR/PxUNIq5DCHvo8rh3IjPuKLzhBkMD24UnZJlLuvcgc94sXH4zlTFp64CIuqeCkWUla2/5GzTz2L8dyykrBF46VvgoPiL6IbC2QOb+79i51BtD5I3g3ARHLzOzI4dIbLyBR5wJIh2MDCA/pOOi44yQlqmqhsrJolxc9q3rwpn9dgo/L47F8Aii49z0HpbKoNGHiYotrmR5zKVY9x6Epd6xzTKfkJYnCxYUWj39KW4ecP0Jju/A3qOi0wqKzHi4sDQIHJO1UBbXGmTWi4jYp6tkbIVCYaISGFYRMm82RY6V/tGRudP87hFCIOLeBi0FX4tE4ddl64CICj2iS3pSkWnXFbvhBkIDdES0f0fUykS6d5kO3AVf42OBcq5Gpg1BOn6qopGLnU9ZluVLUuQEnnognWUfr2Tx1OXs2HouWtJCSP4dYieDVg+ynoOCjzmWyTl0i4guNxbmuwlN6fHOJASlx+OpvESJVcXvK6K4+6qmXqUHIDvDwpzxKdzTpxnZGX7MYZ4S17KlGWWfcw0cP5XRTkPmfxG68OVAuneB83sCK9sG5H+GNDID7FcoFJWBsvhUFc5fCH6D9YDz14B7haUeJC2A/DnFEhg2QEQMBvvl5TLFy7wZYKSVIQ9m/7HPIaytQ+67osisZ0BmU/ohYCqLMvNhSP7eTFIYKiLW16LjDy0Fmf+lGe5c5uWvU+A6i/Ejx7Pso5UYxbL4ndm+MePG/0lKzR2hyxeQqtVKlnwaR89rM6p0jIridAheGN0Aj1uUCpc3DMHe7WFMf6kmd7xQIi+TiPD929bRzOJtHMT/da5DWHdw/lCGRIafZbBKwvlbKI3AtR7CLq4aGRQKhbL4VB2hrEEEbyO0GETkTWhJX6Kl/ICW+DEi/Mry+x8UfEFwpUeApQ0i6Rv/S2+VjPQcLHwABXrzlWZIeZkPqcKcPflfInPeBVsIiQcNTIdmxwogeAi4YRj83/Asln24wkfpAcjL+IfY2J1lj3eykdD0rBCWAEsedoIsRD8viiU73eI3RxCY4fNLPkmgIK/YrUrEg7WNTzshNETca4CV0iVMdNCSEDGPgFaT4L87HfSqiu6qwqAFhUIRMkrxqSps7Ql+enUI8x/1U+mUaTqXgPvE5Thx76Lsm7sG7p1BW8j8hcjDHZCZ95sRO47FwbsUcUDR23zZS1GZmY3549tN6BYPsQluLNZjx9z98h5s9v/+A0q3QJNWBbjLkY+xLN+hylKKDAO2b6qJbg1u1XMUaBzaeyzaSUTdjhC2Uu2ErS0icS6E9cCr/Ihw0x8ucR5Cr2laTIPiQYQPKOdMQsTWNoRGVrCeXTXjKxQKQC11VRki4lpk7hTMnDn+nhQGImLEiRFGrwfujQHkANChMMT7hKBFhtDIABEVcK90fG+GJHvnVPLJHoHp7CxAqwURIyDn2XKJGRe3jde/jKDpWflYbRJHgWDZnHhWLoyjZdvy+eOcTNxucDtB10PzCwqlTWU4VgsB9vA0pGGjLOtnmB2zTeTtEHFDoQwGOH8s9AczENZzwN4DLf4tM2TcyAUtxjdEPHwg5M8F97+UtjgKczksFMthBRCWxkjbxeBc5WdsAM3MMq3FVcn4CoXCRFl8qgih10TEv4upWxZ/ozUzyoqYp05YTSzzLTfYa7oHET7ohMgCgOVMUxkJ3gjsXQLuldlvlHF8ASJ5JVrNjWgp3yHIpCJV3Fucm4e1MEFgmF3Sc0gaT75fGX49Jw6LBewRlRsBlnHUwrSXajK0bUuuanw2N11yBp+9l0R+7rFbipTgcoLhMa07hufYdjDl6dAzyycbdGkkCSku0jO7IpK/R4u+GyEE0r0bebQ3Mv1myPsI8mYgM+9FHumEdP6FEHaEnlgqL47QIhAJM8B+FT7vfSIcIm9GxL1RpZZPEfsy6PUxFb2icQrPmbU1InpclY2tUChMVMmKElR2yQrp3ovMn1UigeF1CGuLSpA2RBmk08wd4vqT0ks8AuxXImJfPaHp/GX+58jMhwLsFRAxAi3G9yEg3duR+fPA9S84vytjBOGTg8fIfhNyJ1MZNbhOXhj58RNMdsOAvGyN8KjgeYX2bbdxb7+mZKVbjiktQiIENDyjgFfn/esNQV/+eRzb/g6n5fk5dOyV7Xf8x4c3ZM3ymDIUIHh01t3UbV4bZAH1Um7HajlEacuJBiIckbQQodcJ2p800sC1EdDN1BIhWSKPH2nkQcEXyLy5hYlC6yAiBoH9Cr9LeAqFIjRCfX4rxacE/4VaXVWBlPnI7Ncg71OOZSKORUSOgMjbyhc9VVky5U5HZr+MqYzoeMP/w4cgYh7zOnFLKc28R3nTfNsFxYKIGoOIGmP2UfAdMuO2KprJqYGU4HSA1eY/Y7JhwEevpXDd2CPoFv8ZoaWEMT2bsWNjuF9FRdMlXQekc/8be5AGLPgwke3/hDP25b0BFS6nAz6fksyMN2rgKNAggKOz0ATSML/36Dg3/W4+ypC7DvnJfK1DxA1oMQ8HORsKheJ0Qyk+FeR0VXyKkEau6d8gNLCccdLfMKWRDvkLkZ59CC3efOstUTNJ5kxB5rxS/s7DrjCXE8M6g14PeaRrkHDnU5tg5R+KkBK+mJJIo1YF6BbJGW3ysYVJDI95Ofz8TQzP3tqQjr0yeOjd3eg6aCX04U1/hDP2iuZBx9F1yaTlm6jXxIkjX6BbJBZr2Q7ThgGfTUri/eeCW2qKEEJy8RWZPDJpV+m5ayloKT+G1I9CoTg9UEVKFX4RWiQE8S0yK5V/DPlfmSUXLE0REdeBvRdCVL5LmNDiIXJY4MIR0onMnVyxzh2LkI5FkP286bQa+wpkjCrM8hs8Y/OphJQw+ela3Pb0gTLb7dtpZ9JTpmIZFeum381HuKh7FgumJ7Hmu2jueH4v3QakYbUdO6a4wrL5jwiEkAHDzwF6DE6jXmMnhgfsEaG9VwlhOl8PGnOUbX9H8P38eCKiPNRp7GDrugi/x0gp+GFhHGuWp3Fh1+wSO08d53OFQnFiUc7NCi/S9TfyaG/IfR+MfSDTwfU7MvMeZMZYZJmZjqsA159lJyUMSLEMyo5vIedtSFxgRgVpSYAdRApm7pfinFoOPJ+8m8z3X8TjKePr0TTY9vexOlA5mRY+fq0Wd1x+Br99G8NbX/3L5delEVasVFRJK41uCb7I2OSsPMa+tBehVaz4qpRwy5P7ueHB/cz66x/sEQaaFnhETZd8/XGinx0p5R9coVBUC5TiowBAShcyfVRhYc3i1pAixWEJ5E0/CYKVP/mefwxw/YLw7EGLedjM96LXBHmYY/MtfMprdSitDP13KL447XQIZr1dg/QjVn5cFBswX4/HDXu32WjaOpcrhh2lVgOHz/6bHttPQg1XmcVSz7s0O+j+viOP4jmOlUQhIKmmmyF3HcEeLtm3IwzDCKyIGh7B3m1hpXdIR+ltCoVCgVrqUhThWFZYvDEQ0qwtFjEiqCO0NHJMZUWLD8lhWho5UDAf6TBLfAjb+YW5TGLNBpbmhFR8MiR0ZMECsF2ITLsZPHsKtxc9qQvHMPZWwlhVQ5EvjFYYDf3Pr5EU5JrnecKjdWjeOp+UOk4fa4vbDQW5Gnu3h3H7/5nLYZoGPy2K4bV76gPQqU9GSBXiazd00qFnJquXxvp1bj734hwslXBXKVpVjY5zk3bIQiArnBCSmAQ/2p6xF+nehTiR+akUCsUpgbL4KACQzj8oUw82DoFx2P/xjp8x0oYhD5+HPNIBebg9RvYbZuhukDHlkU7IrP8zsy47liKzXzC3FRUp9RwCEV3BWZWagJnF2vkDePwlsKsYbnfo2Yyz0nW+nRvHo0Mb8vTIBvz9i3//lUAU+cIsmJ4IEnKzj/2EM45aubN3M2a/k0LGUVOLycvR+OrDREZ3P4PkWi407ZgT9EXds3huxnZqNXB4fXpC4f4393BGG/N71XRz4nrh/61hx6+gFj+XXa9JJ5hrmZTQ5ep0/zuNtOOWRaFQnH4oxUdRSKiXQul2Mn8+Mv1G3yKMMgNy30OmXW9GkpU8xnMEmT4SZC6mpaXYR+Yj02/DyP8GmTa0sJhpZaCZ0V2OFRyvsVMaZuXzvByNnxfFUpAX3C9ISpj+ck0GtjqL1+6pz5rlsaxaEst9/Zvy41fljx7888coHhjQmMyjvvPITrfw4Su1uLb1WfSu35r+zc9i0pN1iE1006REzS7dAi3b5tH8nMDKqT8iog1e++JfRjy0n9hEN0JIDAlNzs7j0N7jN/cU9yvqNTSNhGS3V8HyRQKC7+bFk5Ppe13u3BzG67d/R7/4G+gdPoTR5z/IN1OX4/GcPk7tCoWiYqhw9hKc7uHsgZCOFcj0W4K0EGb19qTFPokOpZGOPHwxZmkOf2gQeTta9Fjf8XLGI3PeIXhoeRjgpDKLNoqkr5G50yH/MyqSzFBK83Nwt437+jcl7ZAV3Wow959/iIgKPJelc+J5dWx9v/t0i8Hguw4x7L7DISdGnDMxmfefrVUYXVV0fvzn1YmI8vD6/H9p0Ly034vHbS55teuWTVh42ed54hO1qFHPieERTPm/Omi6LLbkZSoi9ggPXa5JZ8BtR6jTyBnahIKwf6eNhwY15vBeP748mHNs0zGbF2abGbXXfB/LkyMaIg0Nj9v8TopyAHXodwFPfHofuuXE561SKBRVS6jPb2XxUZjYLgG9IYHLOkhE5M2lszvnzye4AmFA3gwM936M7DcxjvTGONIVmTuVsvPpOCif0mM3K3cHuqwjb0FYmiKsZ5Uhc2CO7Lfyv2dqMaZnc9IOmQ7QhkeQk+l73gryNH5fEcUvy6I5vM/KJ++kIIT/uXjcGjNer8W6VaFnDu55bRo2uyzss3j5A1+6DUhj/OKtfpUeMK0+tRo4sdiCn2cp4cAuG/PfT+a9J+sy5f/MXDu+fj7mvwvydBbPTGR09+Zs/jPcT2+BcTlNa9a6VZHeiuy1GzqJjvMEPH+GR7B2ZQxb14WTl2Ph2Vvq43ELr9IDeBMfrpq/hvnjvymXTAqF4vRCOTcrAMwcPfFTkGnDTF8ewFQ6dMBjhoCHDyx1nHRvLWwTRJGQGZDaqzDSppKTB1ragJ4CngPg/tt/FJiWgogcBRHXm3/br4Ss54Hy5Xpxu+C+/k1KWR4SUlzEp5gWL48bPn69JvOmJHmdjsvKewOgWyRrlsdwTofSy4L+iEnw8MT7O3lqREM8HkpZXYq49o4jpNQNbHXxeKBhi4Kgjs1FuXzef65sC9OxfgVGgcbTIxvy7qIthEVIIqPL/u6FBo8Na4TLoWGP9HDVDalceYOZ2ycYui75+ZsYEmsnk5+nBXS6kkg+f/tr+t/V+4SWaFEoFP8dlMVH4UVYGiCSvkbEPAHW88HS0qzjlTAbLeZR/w8KEaJzblUoPQCR14F7C7g3UNo6JMDaFuJnIo1UZNpQjNShZli+Xq9cw0hpWkcmLt3idewFiIjy8Opn29B1M9rq9fvqMeutFK/SYx4bygNWBgxFD8T5nbOZvnojdzy/l7pNCoiIKt3B51OS2L/D5uMEXRxdx+vYbBiwemk0btex6DEwHahfGVuPHxbGFTuy7DlJQ5B60MZ1bVtxdYuz+PCVGmU6gVssEBlt+uEU5OrMnZjMm/eX/V0JTeIs0NmytozoNAkHdxwmN7N8fk0KheL0QVl8FD4ILQoihiIihobW3t4dGTS/T5GFoAqUHhEJnv3g2R2gfwmu3yG1R+HfZhvpWkMoS2jFsxYX/T88yuD5WdsY3u5McrN0eg1NpWYDJ5oGn7ybxLI5CRWaisetccY55c82nFjTzRXD0rhiWBpff5zAO+Pq+Cw/LfwwkYUfJqHrkkuuyuCGBw9Su2FpC5CUZoHSp25sRESUQYfLM4lNdHNkn5VVS2JxFlT8HUkW5uGZ8UZN4pLc9LkxNWBbtwufZUMpBX/8EI3NbgSVwe3SaNginw2/R2B+z8Hl1a3Kx0ehqK4oi4/i+LBeANZz8e8bVKT0VM2SgogaC/mfU7ZSZZRoE3oZhZLouhnV1H2gGSrdY/CxkOlvZiYigmQZBrNMxMtz/+XaOw4Rm2guj2maJDbRRcfeFc1QbdJraBqjn9lfchaAufS0ckEcd/Zqxu6t/p2Ed2+1Iw1BbpbO0k8TmDsxhRVfxvtROCr6fUpmvVUjaIZpTYPIGN/IK02XJNVyBojsMpcSI6I9XHJlBhd0zsbjDnxb0zTBmR3OIDzSXqEZKBSKUx+l+CiOCyEEIn4SWIvqf1kKPwKwFSpFZT8ojZAMQkWXqx0R/ZDpdxQ06WLVIIDe16dy5fCjJKS4vHlxPB6BLGMeOZkWzr4olxEPHWT66k2c0yEba5jBk+/vxBrAwVhKM7Jp+wZ7wCUrMBW1K4anolv8C1HkhH1b1+a8O64O+7bbfI4NNH7lIUg7bOXfv4M4PAvo1DfDZ5PhEYRFGDRoXuAtX2GxGnTqm86j7+3kmY92MH7xZuwRknbds6jV0BFQSTIMybUP9q2sCSkUilMQtdSlOG6EFg8Js8C1BlmwFGQBwtIUwvtBwVdI1x8Bj/W4YfsGOw1bOBAWGThZXeTtCC0GtEQI62YuyQFSSwTPifXXEBrUb+5gzPP70LRjS2INWxRwdL+NYKliouLcXkUpzG7w7Mc7SD1soVZ90/pT5ANTZG1auSCWj16rye4tpoXCajO47Op0bnrkIHFJx0wnudkai2Yk8sX7SUEtHiDwuAULP0pkyScJPDdrO2e3Mx2qG7XMJy7JRcbR8pTrKL9FL/WgBbcLLH6GMdwQn+RrEtI0SVJNN+Mm7GLOhBRWLY7hsSm7qNfEgeHxrSCvW+D5mdt5aFATDu+1ecPYNV3DMAxufWkYHfpcUC55iyOlBNdv4PoHsELYpQiL/zQFCoXiv4nK41OC6prHp6qQRg7ySKfCRIX+LRHP3NIAt0vw2ORd6BaBphW1MyPKRNR9iKhRfo81Mh6AgvlVInuoFCk+a5ZH8ujQpt7tFqtBh8uzaNc9C5vNYPvGcHTdYNj9h0sd6+/v+R8kMuGxuqWiwjRdklLHydtfbSU20UP6EQv39W/C/h1hhYpTaIqIpknsEQZtO2exe4udiGiD2EQ3q5fElmf2hf43ulfOhBou2nXNwh5hsHOznT9/jComv6ko6RZJy/Nyadwqny5Xp9OyrenfZBjw27fRbFkXwfrVkfz1UxQgGDdxF50LLUEllUN/OPI1Vn7/Ij9/uYWC3AIand2AK0d1p27z2uWYW4mZujYhM8aCZwem9bFQkLAeiNgXvMq4QqE4OYT6/FaKTwmU4lP5SOdaZNoNGIbDa+1wu80InllvpTDtpVoA1G1awOC78ul+rQHSDba2iIjrEba2Afs2Mh+F/DkVkmvrOjuLZyVyaK+NmAQ3Xfqnc+6lOcCxsg7lQUp4fHgj1iyPJqWOkxdnb6d2Iydud2FtLUxrUUlF58AuGxMeq0N8sptbn9pHdKxBxlEL1513Jh53gKe7kHTum8G4Cbt5fFgjdm4K46obU7GHG4x/tG655D6mWEmEAIvNwOUI1flXclHPLEaOO8CST+Kp38xBtwHpaLqZ3VrTzfm9dEd9Nv5eFAF4bE5Ck2gCnp2xnfMKz72nsASIxQq7Nocx9cWaPPre7vItxYVdhhb/Xujty5qlZx/yaB8/RXzBTO7ZDCKHI7RkCOuIEOWoAaJQKCoFpfhUEKX4BMY08/+JLFgCMh9haQLhfc0lqGDH5byDzHmHlQtiqd+sAJtdsuWvcBZMTeLvX0u/JS9yzMJiDW0V1sh8EvI/pbx1t6QBq5fG8NytDXC5NHRd4vEIzm6fw/1v7OLvX6LoNjADjxtvwc+S1hmf/gr3OQsEEx6vzaA7jpBSxxlSwc4tf4VzZ6/mWCwGC3auR9MKMzM/V8sbERVgVO57Yze/LIvhnlf3Eh5pkJejM6TNmbicFXff03SJNArtGWWG4pu3j+dnbqfNJTloWulz5PGAyym4q3czdm0u7d8jNEnNek4++GmTV+F0FgiWzY3nq48SObLfim6R1G7o5Pr7DtKmY27ZGa4TF6BZzwhluiFhZD0DeTMJ6ToTcYiYhxHhV1fa+AqFomxCfX4rHx9FSEgjC5k+Bly/YC5BCSQeyH4ZYp9HhF/l/zjnH4WlKeCXZTG8MLqB36reRehWvVzlBITtHGT+rPJMxTxOg/Y9s2jXI4sfv4rDUyjT379EMvLilnjcgpUL4+h301FanJdHeKQR9GFbtM9ml9z9yr6Q5XC7zTEBDCm8D/79O21omsQTVPERTHi0LrPXbSAs3JQvOs7D1aOO8Mm7KSEoLf4p+n5qNXBwYFcYwf14BEJIZr6VQtvOOX5b6DpIq2TI2MO8OLp0tXRpCA7sCmPDb5Gc1S6X3GyNhwY2Yeu6cITAa41KO2Tl+dsaMP6bLaTUDZ70SGjxSGmAzAdhR4jjDF/P/4KQlWuZgcx82JRDKT8KxX8OFdWlKBMpZaHSs6ZwiwczU7MEHMjM+5GOVaWPc+9Cpo/2/t3x8szgSo9F4+L+F5Yvo669N4hYKnIpe9xwxTDfnDLSEIXOwYJflsYybnAT+jc/m0N7rUGT71XEbiqluaS28MMkwFQ48nI0pISoGINQfHXy8zS+/yLORym74cGD9B15FETx4q/lQ7cYXNg1i0cm7aRm/eD10qQUtG6fiztQuTbMZc1LrszAGuYpVNLM/hq2yGfI2EOMeOgARcbniU/UYds/4YAo5htkluXITrfw6j1lOBOLBGTOFOTh85GHz0UeaoOR+SjSvTvk+fvOT1aoUK7Mfhkpg5wUhUJxUjgtFZ/x48fTsGFD7HY77dq149dffz3ZIp3auP4stPQce+Pdu83Gb8uj2bQ2AsMQyNwJPodIz35k6iCQxxSLdt2zqN+8wCfUODLGQ6OW+dSsb9aSGnh/+UKNhbAj4icANnxzCZV9aesWqNvYfw2rkjx8bWMeH96I95+rxf6dpf03KlL9QEp484G67Nt+LK/OjwtjEQIuvSojsH9PMXSLLFQSim3TYfQz+/nwl4106pNBRfPuCA069cnk/MuyA4aHF7F4dgLOguDjWCzwyfp/+HLber7Yuo4Pf93Ae99tYdh9Bxk4+jBnX5SHYZhRX4EUZCkFf/0Uzc5N/nMRmXN1Qv7HIIssUA7In4dM7Yd0bQo+aX89CgFazXIfh5EGztIvBAqF4uRy2ik+n3zyCffeey9PPvkka9eu5ZxzzqFnz54cPny47IMVfpEFSyhSKrb9Y+eevk246ZKWPDa0MWOvbMbwdmfw3ezNSOPYW7HMmQAyy6cf3QIvzNpGg+YFJNZ08eA7u/hk3d9M+nYL01dvYs7GVJqftbPc8gnbBYikhRAxFLQkM6OztTWI4L5HhgHZmaEtgRzYGcZv30Yzd1IyN3Zswef/Syq3nMWREua/n8jiWYk+2999tA5uFzQ9O5/2PTO9eWuCYQvzHy1Xo66LRybt5vp7DwJmPSugWLHPwH173BpnXWiGuTdsURDUUgeQetDGSp+SFqWREiKjzDHtEZBSx7SG6JZjoe1CwP9N30njVsGzWP/9a6RPiQ/DKLS6idgADsgekPnIjPuoiFujiBhMhW6XxtHyH6NQKKqU007xef3117nlllu48cYbOfPMM5k0aRIRERF88MEHJ1u0UxeZDwh2bLRzb9+mbFrrW0X8yD4rL93RgIXvLTGbS2dh1fbSPhFJtdxMWLqFaas2clm/DG+dKIDIyD3IjNuReZ+VW0RhqY8W8xhays9oNf5AxL1dSvHyx7dz4/1u7zogjZQ6zmKKh7nUYngESMGkJ+qweml0ueUsQhqQfsQ3kU1EtFmUsyDPVDIeHr+LZucU5SgKXNn9oh7B5zns/kNM+nYzvYel0rp9Nu26ZXFZ/7SA7TVdklDDRUGe4OU76/HnD0UO6MEUBsm3cwOX6/DnGO639JswnZ0H33Go9M5iFORqPo7jhgErFsQijQwCZ/L2gGeracEsLxHDQW+E/wzlQaiIpUihOA2RUiKda5A5k5A57yGdf1boJaQyOK2cm51OJ7///jvjxo3zbtM0jW7durFqlTI5VxRhaYLEw/+eqYfTofl5+zf/fu+BeXQb1ht7RD4QeAlJ08AW5u+CN7fJrKeQnr3g/MEsbmptjYgYirCeGbrQ+XOD7va4Ie2whcWzfR/Wmiap09jBxb0zgj7IhSb55N0ULupeft8PMMO8t/x1rMBrfLKL1z7/l1oNnebDX5jnae82O4GdiyXJtV2c1a7siu6NWhZwx/P7vAqImWRRsPzzeBq2zOesC3KREtavjmTvtjAyU3VevbsBQpPFg8+DjCDYtdlcfgqWmygULBboeEUmukX6X+4Tkg6Xl7Am6tC5T4glP9ybwXZu6AJRWMMucSYy60UoWIDp4xb0CNBSwNauXOMoFKcj0r0bmXEHuDdx7OXBA5azIP5dhF7x/FoV4bRSfI4ePYrH46FGjRo+22vUqMGmTf7X9h0OBw7HsYd0VlbZVoLTDSk94FgJ7o0gbBDW2cy8XER4X1L/fY01K6KDRgo58p2snLuaHjd0xLy0yllu/FhPkDsBr4XB/S8yfw4ESWRYak6ujUH3799l48nhjXwKYmq6WfPp0ck7WTg9KfCDF9MJesNvUfz1cwTndPDNHC0lOPIFtjDpk1W4CI8bDu6x8eePx0L573tzDzXqO33yB61eGkNuVjALg+DIfhsHdtm8hUfLUjKEgB++jkEAna5KZ+Qj+0ip4zGXiaTp17N2ZRQv3VGfjKMa0hDF7DzBszRnpll4Z1wdrht7iMSa5ndfMrNyqFgs5hJevtv3YE0zy1LUbuRbaNWM/gpRwapgjh2hxSPiXsLIuxCyxpXdPuaJ448mUyhOcaSRiUwbWmzZt9hKgHujuS9xwQlNAHraLXWVlxdeeIHY2Fjvp169eidbpBOKdP6FPHIZMmOUmW8n+1Xk0d4Yabd4fXaEFkNaztgyw6N1Xefw7qNm8jb7FZR7WcBXsmL/Nn8oMuc1ZMHy0A4XNoI9pBNSXHQblE5ybRdCSKJi3fQdeZSJS7fQqIUDt7OowGpwxg1uwvpffJf+hICX76rH9g12DI9vHTKPG/JzNT54rqY3Yql2IwcXXJZdKufPkf3WYv44gTmy/9iSWbAHv2GYn0t6Z3Fx7yzaX55Ncm2P97iiciGtO+TwymfbCAsvuWRUllYhWDg9iesvOJM7ezXj/qub8PjwhmXK74+MVJ383NK3p8at8rnvjT3+Rw/JqqSD7dIKyeQl/1PKvHWGX4Owdz++cRSK04H8uWAcxn86CA949p/w7PunleKTlJSEruscOuTrH3Do0CFq1vS/1j5u3DgyMzO9nz17/N9UT0ekewcybXjhRQnmhVn4sHP+iEy/xcyFAsTVvbLM/gyPh9iYX80yEsIOhFG5l5iOzAvNV0uEdSGY4hIRJblu7GE+XrORRXvX8dnGf7jt6f1eh9umrfO9uX2C4fEI3ri3bqlw9r3/hnNvv6a8/1wtDu624XZDZprO/A+SGNOjOfWaOXnygx2EhRu0PM//UlVsoiekMPnYxNKWNSlNa4vHY/4f8C6hFcefsmCxQL2mDrpcnV724H4wPIItf0WwfnUU61dHk59TvmvA44GvPkzCV9GSNGqZxxtf/kt0XPmSVR5Dg/ABCL3ijulmEs+/COxHVIhR/SzHCoU/ZP4XlPUSKfNPAcXHCFBK2zAMdu+uWK6MysBms9G2bVu+/fZbH5m+/fZb2rdv7/eYsLAwYmJifD7VBZn7P8CJ/5u4B1xrveG4NRok07J9c4QWWBnQLQaXdF8EBQsLfWzyQJR0ALaBVoOKXXoecP7qVcaCMf99ycHdVp/InyJKKhP+Hv5dr0knPMIo2+IiBft2hLH5DzOk3DDg4G4ru7facOTrzJ2Uwo0dWnJF/XMYdNZZvPdUHQ7uCWPZnHjadc/i3td3YwRIUlizgYPgVhaJxWpQr6l/fyqXSyCAvBzhzbETqq+NNKD7oEAO0DLAv0vjyNeY+16y36r12/6xM+WZWrx+b11mvJHC4b1WPG7Ys9XO3InJPm0vviKDZz7aEcA3LBAC8zortDyGdUfEPF6O44P1G8q4CoUCoyzfOwlGxomQxEu5fp1ZWVkMGjSIyMhIatSowRNPPIGnWCnqI0eO0KhRo0oXsjzce++9TJkyhenTp7Nx40Zuv/12cnNzufHGG0+qXP81pJSQv4CystHK/AXef9/8wlA0TQRMMDhozGFiE52FfRb2KzNNs3/Mi4jYNxEpPyNiXyk8onz5ZUzfGCuH9xwJGg2QeiCdCXd/zMPXNuHIPtOfw+02H+ZFvixGGUaDiCiDR9/bFbhaPKa/Sd+bjjBt1SZanJdfuM30H5Iy+E8rN1tH1+G8S3LYuSnMrzzrV0WVoXgJ3C6N/TtK57QRAsLspo/R0QM2LNbyORhrOtRr4qBGPf9KVWJNJzc9GixD9bHEiTPfqMHXM0xHcbcLCvIEz42qz+juZ/D55GSWzY3n49drMrxdS54c0ZB7+jYlL8d3mXT7hgiSa5fTZ0yrAXpjsPdDJH6GFv/OcdfQEkKA7QKCL+NKRNhFxzWOQnHaoDcguKqhg+XE6g3lUnwef/xx/vrrLz766COee+45PvzwQ/r27YvTeczR8GSX/rr22mt59dVXeeKJJ2jTpg1//vkn33zzTSmHZ4UHKCi7mfuYU3jrS8/kmS8fJrF2YQh44YM0zG5ww4MHGP5AgBDkgq/B3hMR3huhxSDCLkLEvQVE+m9fApdTMPPNFK47rxU3tGvJ9Q3v4MYWY1n0/relrreMI5k83udFpCE5sCuMmy89g+dGNeCHBXGma26hL4seglv/BV2yufOFvX73CSF5aPwubn96PzXqFb/+4bxLcnnls60B+xVCUrOeg/efq8WQc89kx8Zwvp8fh6fEc93tFGUmDgTz/ASjwRmhJWksjpQQHe9h+qpN3P3qHizW4iYbQepBK2tXRpdRzNWUyzAEbz9Uj1FdmvPF+8k8OaIRPxTm/PF4zEzZhsfM0vzbd7HkZZdWKvbvCGPtyig8ARTWosvA53IwDoJnOxTMA+efIc68bETkTQR+YdDM/FH2PpU2nkJxKiMihhB8adiDCL/2RIkDlLNIaYMGDZg+fTqdO3cGzCiqK664gri4OL788ksyMjKoXbu2jxXoVKM6FSk1DramTOVHJKLV8E0F4PF4WLtsPQe3HyIycgcXtH+TyOgylp/i3kazX+47ftZLkPd+0MM8bnjihkb8/n10sfIFmM9UCQPvu4pbXxkOQMaRVO666CEO7sr0u7Qy5rm99LkxtfSOILhdMLhNK7LTfTWlTn3TeWRi8GXd526rx8ov/YXES5qelc+/f4dTpByER3p4dsZ2zrowz1sY9aevY/i/m4O/CdkjPHyybgP2iGMTLm/4eFkYHvhmVgJvPVjc8b94fqMTQ1ItJ298+S+JNV3oJXSj4nexQHMX8ZMRYZ0rRRaZMwWZ8wqm5afofqeBiEDEf4CwtamUcRSKUx0pPcj028C5ktJL48Jcgo57GxHMvB4ioT6/yzXSkSNHaNDgWJHBpKQkli1bRnZ2Nr179yYvLy/I0Yr/HJr/5H0+yNKOt7quc0HPNlx1e08uG1i3bKUHIOM+jNShGFkvIfNmY7gPQN6MMg9b/kUca5bH+Co94P39zHltAZt+3YrMncaMR6/j0O4Mv0oPwKQn65CRWr5Isx0b7X4tKn1GHC1loSmO2w0XdDFLJmi6pP3lmdz9yh7uf2s3vYam+ig9APm5Og9c05Rnbm7Ab99Fs+1vOxf1yCKxpitg9mZNl1w+JM0bfVXkehesgnxF0HS4/Lo0kusUDyEXVFzpqZggRw/YGNOzObPeqsHRAzpuN2Sl6+zaYsMw/DtvH0ND5kyuoLylEVG3IBK/gPCrwdIcLGcjosYikpZ6lR4zYdvvyPyFSMfPSFnR9A4KxamLEDoifjxE3ubr8yliEVF3IOLerBSlpzyUK49P/fr12bhxo48fT3R0NEuWLKFHjx7079+/0gVUVCF6EzAOBG+jlZGd2NI8xMFc4PoNXL9hpsTTCSXPz7/roxAaAZUZ3aLx1YQ3afR/y1g8q1XQ0gqGAcvmJDDgtiMhSSwlpB6y4naU7rNhi4Kgy2UWC9RrYlrTht59kOvvO4zbZT6YM45avHOyWA3OviiXyBgP+3eG8ePXcfz4dRwAV914hMcm7+ThaxvjdmrFoswkQoNGLfO59Kp0fv4mhrhENzXqOUmqFficHo8VSEq4uHcmn09JLrtxFaLrkr3bwpj6Qm02/xnBob02Pl33TykLUGkMcK1BGnkILaKsxiEhrGciYp/zu086fkBmPQWeYlGiWjJEP4QIV8tgiuqFEDZE9D3IqNHg3mZutDQ9bp+7ilIuxadHjx5MnTqV3r17+2yPiopi8eLFdO+u8lacSoiIq5CZPwZpoZXpqyCszZHWNuBaT1mO0seQhJrcMDsjPKDSA+BxG+zesIOsNJ383OBPP02TfguMBkIIaNctmy7XZLDkE98lK0e+RlRsYMEMA688n4yvQf9bjhIZY7bPTtfRdYNew9MZdv9BYhOOnbejByx8Mzuef36NYsnsBA7vtXH3K3tYtyqa7+bF4cjXCY80iIjykJVq4dGhjTnz/Dx+XxnFp+s2VPoyVxHSMAvKVg7lF1C3GNz98l66Dkj3UTg3/xlOeFQIFkcvVV8tXTp+QqbfQinLlnEEmXk/4EaEX13lcigU/zWECIPyZOCvIsql+Dz99NPs37/f777o6GiWLl3K2rVrK0UwxQnA3htyJha+lZZ8qBX6K0QOK7MbEfsiMvXawmrYlevfdXBvHGbIfYCxNYiINsyHn5BlJFkUoS3LFcMwoM/Io6UUn5UL4uhz49GAVh8h4MevYgFwOgQrFsTRe6gZHp5S10X/W45y82MHfY756+dIxj9ah12bw4tti+KXpbHoFuld8srP9VXysjN0Ji3bTGxi1fnWWaz4jR6rCNFxbnKz9IBh/EXUqOukRdtcDI9pJes6ML2UZafpWcGLmfqg1SqzcO3xIqVEZj1H8ai2Um2yXgT7lSftbVehqO6US/GJj48nPj6wX0h0dDSdOnU6bqEUJwYhwiDhQ2T6aHD/jU8NFZEI8RNCqqEiLI0h8XNk7uTCrLblUy78o4O1DWdc1IMNv36N4fHfpzSgU58sIqIMLrgsm99XRAdc7vK4BZ36ZJRPCh0aNC/tAP7F+0n0GpoKQpZ6GLvdkHHEwnfzzN+KxSI5vPfYQ65zvzTC7L7HrFsVybhrm2CUeFYW5Jlr3+dekk1mqoWt6yIoWTpiy7oIVn0TS6OWoS3hlRfTeqXx49exaLo0fYmCKpjmJMIjDR8FLSbezY3jDtDgjAIevrYJbhd+v6voOBf3v7WHdl2zvekEPB5KnefUgxZ+XhxLfq5G3SYO2nXNCrL8KBCRwwOmYqg03BvB82/wNjLDLBFj71Z6l5EDBfORBUvN4sDWVojwIQhrs6qRV6GohpS7VpdhGEybNo158+axc+dOhBA0atSIAQMGMGzYsKq/sSgqFaHXhMTPkM41kPsBuH43b8zyCGSMQkYMg8hbynw7FZa6iNj/w5COwvTj5VF+ND/tJeg1GTC2BV//bxmOPGcp5Ue3aKTUtXqVmevvPcTaFdEIIUs5Q2uaoG2nTJqUx0JQiKuUj48kLsnNHz9EcWFXs6yHx236wViscGSfjUeHNvY+9D0eQUz8saW9qBjp42gsJYx/tA6GNGuA+Q5lhq/9uz6cGb9vwO0ya4C53YLVS2KYOymZzX9E8t38eIaMPRI071BF8HhM69UX/0viimFHObTXxs+L4so4StD07Fze/vpfDuyykX7YgsulcXa7XKw2c+LvfL2VmW+l8OPCODweQVi4gSNfwx7u4Y0F26jVwOEzl+JKj8spmPhEbb7+ONFbX8zwCOJTXDzw1m7adsopLZLtYrPCelXjzYJeVrvSSqp0/1uYSb0o8lCCax0y72OIegARdUvlyalQVGPKdZuUUtKnTx9uvvlm9u3bx9lnn02rVq3YtWsXI0aMUM7NpyhCCHD+BM5vzYSDRRhpyJy3kemjkDI03wgRfgXltvjYe1NaBzeg4BsSbDcw6ef2xCWbSxQWq45uMZ+C9VvW5ZVl9xAWbioVLc7L46lpO4iKNZd8dIvhXR7qeHU7+t7Zr9z+L24X/FC4ZAVmJNWD7+zmrYX/ckHXbHSLGe6tW+DoQSvPjarPyItbsG+777LQpVdl+PxdXI7tG+zs3BReWuk51pqMo1Z+XxFNWLiZlNAWJulweSZvfvkvnfqm02NQegVjpXwpqudVxJY/I3j0ukYsmxvP9/Pj+HlRbOCDC2l0Zj73vb4XXYe6jZ2cfVEe512S41V6wHQOf2Tibr7Yup5P1//NlcNNRaDX9WnUaeQoVbesOG89WJevP0o0C6hK4bUaZRy18Piwxmz6I7xYaxtE3Y+In4QQVv8dViZaSojtfJ3EpXQi00aCkY7vMllRnbpXkAXfVZqYCkV1plwWn2nTprFy5Uq+/fZbLrvsMp993333Hf369ePDDz9k+PAT8GalqDSka3NhNXQo7ZcgTaUofx5EhJBkynYxhOzsrIPtAkTUGGTB1372m8fXTHyLGds+5+evMtm4eiu6RaNtj3Noc9lZCCEwMgcWlsiQXNg1m5l/bODnRbHs2hKOPUJw8XUvUO/M9hjOdZD2RtlzKIbQYN7kZDRNYhiCGx48yGX9MwC8D+ei6uMptV2ce0kOKxcUWw4Wkn4jjwaNtjp6IJQHsuToAauPwmSxmkrKg2/vJjtTLyOZYGhoGjx5Q0MO7AojN1vj6AHT0me1GVxz22HW/hBFZJTk8D4r+3eElbKs1W1SwOtf/EuYPcDSZAnna5tdYg3zkJ9rbrz8uuB5lvZus7H0U3+5kUxrmRSSj16tyXMzj0D0U2bSTFFuw3bFsbQ0oyU92wkYti9iIaxEodSCJWbCxYBoyNwpCHuXypJUoai2lOtWOWvWLB555JFSSg9Aly5dePjhh5kxo+zcLIr/FjJ/NsFT8AtkCDl3AITQEPGTwXZh4ZZAl5gOIhwR/TgybybBI300NOcsLh3QnlGvDufmF6/n3C5ne5dVRczTEDECMBUIW5ikc78MbnjYxrWP3EHdphFIWYDQaxeG0oeOrsMNDx7kjHPzCI/00O+mIwEVDE2HHoPTiE10ARJdlwy47Qi3POkbEGAUlc4oJC4plAg34bedVpiFOjr2+Bybi2qaTXqiNquXxrJri530I1Y69U3nxU+2MeX7TbTtlM1r87YREe1hXwBH57Pa5WKzGyFlxnY6BF99lMCVDVuxZ1sEfUceIbGGK6gC9/38+KDZrA2PYM330WSnO8Cz6cQqPZjWUxHzKMHyHInoh0stHUvnjwT/DRrg+h0pi2UJ9+xD5v4PI/tVZN5spJF93PIrFNWBct0V1q1bx8svvxxwf69evXj77bePWyjFCcb9L8GtMxLc20PuTmhxiITpSNcGcHyPdO8E19/FnD41CLsMEX0/wtIYmbGqjPE94Pw58HjCgogZh4y6DRwrkUYWuP4Ax3eQ9Yj53i2iKJADOLy9KXXqbw3pwVxEx15ZdOyVhdtlWlmCYbGYxT3rNnbSrkcmCcml5yUE5GVr3vD25ufkU6uBg4O7baUTNRYSFevmgssCP9g8HrO8RepBKysXxJKVbqFGPSedrsogMsYIGOYupVk769u5CSz8MJEdG81lorBwg2c+2s45HXLxeCAvWyelbh5LPkngp69jAeHHniFZPDuBofcc8la5L4nhgU8nJPPp+JTC0hSmUP/8Gsn6VVFYwyQ3PXogoPKTna6b1rcg+ZqQgtwsQXT8bGTUvSde+Qm7GOLfK8zjU6yemZaIiH4IEd6v9EEyVMXVg5RuZNYzkD+booKoEg9kPQcxjyFCscwqFNWYct0R0tLSgta8qlGjBunp6cctlOIEI6Lx72BcvE1odbV8DrGeCdYzve+90nPI9GHQUxCa/+WKwJTtwSK0eKT9Cki/pVBRKu5BnIPNmEba/kgSEjXskYaPH0ko+W/KUnqKuOqGVFLqBrZcCIFX6Sn6e9RT+3lqZENKRmwVMfKRA9jsgc+BNCSTnqzNl1OTADPRn9stmPh4HW57eh9d+qcTHiVxu03lrChKavfWMB4c0ISMo1aKn6+bH9/PWe2OZe2OjPGgaTD/g6QgCSUFAsmiGQnc8KD/um2GhOhYg7xs31tPkSIzd2IKbS7O5oLL/DgoAzXqO4slcvSP1WYQl+QC6TSrPutJQdtXBSKsEyR9awYLeA6ClgC2dgGVMGE9B1nwZbAeQW+MEOEYmf9XqPQU+QIVfRkOZNbjoMUiSpSHUSgUxyjXUpfH48ESxOtQ13XcbpWW/VTDvEkGc0jWIfyK4x9Hr4Gwtiit9IS1J7iZXwdbh9AGKfjG9EnyoyhpGrS5OJepL9Vi7Ypon4e3I7/yohFXLYnhqRsb8vxt9Vn+eRxOP5mfS9K+ZxaPTd5FfLLv7ycq1s1dL+3himFpAY8VAmxhsGBaocOvYVZtRwqcBRpvP1SPH7+O5f9urs9PX8Xy73o7f/4YxStj6zGmZ/NCpQeKCqBFxni4fEiaqei8n+T1QZISdm22B3HCNpfxtv0THnC/Jkwn8MBIPnk3xW85EI8HajdwoAVZC9N0yWVXp2OPKFQgRWBZqhohNITtAkT4VYiwjsEtT+H9CmUNdG4lInIE0nMY8mcS+EVAILPfOOnFohWK/zLlsvhIKRkxYgRhYf7X9x2O8leBVvwHsF8OOe8GTmSIDRFxQ5UNLyKuK8OHyEBElJ1IEUDmzSaY9crjhnZds3h8WGMSa7qoUdeJ1Wbw4iehL+UFlNKAjb9HMPnpOhgeU9Fa8WU8tRo4ePHTbaQetPLl1CQ2/xHBxGVbCI/0lfGSKzLp0DOTtT9Ec2S/lbhEN+dflo0trOyHmKZD576Z3txBvkhmvFGTbgPTeGFMA/+Ki5DExHm4sFsmaYes2MIkk56ozef/S6bX9ale65XFJnEWBFZ8NI2glimhwbdzg9WIE/y9OopVS2LpcHmmd1y3C5Z8ksCUZ+pzbpfWrFnyF0XWMZvdQNdNuWISPAy//xCgge1ihFZ+S+XJQGhREPeuWcwRDz6FTzHA3hfCBxaz9ARCgmeHuXytcv8oFH4pl+IzfHjZCcBURNephxC2wkSGt4J7E8cuCzdocYi48QhLg2BdHN/4liYQ+2phOn/BsZu+DkhEzPMI6xmljpPSA+6tgAv0RubDw7ObYNYr3QK1G5kKeupBK6kHrVzWP90bmVVRDMMMp375zvreZZuisPBDe23c2as5WWkWdF0Sn+IqpfQUly+YL0+w8fvceJTv5sVR2mogOLArjNhEN20vzWbN9zE+uY6EkIRHGjz07i6euaUhZ16Qy7/rw/n8f2bIdXaGTmIN0wTTvkcmP34VF3C5yTAE512S7TfhIMDcickc3hc8J5SUgmdubkhKXQftumeRkOzii/+lkJlmQdMF53RuRZehl7BuyfN0H3iIsy40iyOnHbZgsRrExBuAhogaHaB/CTLd9KvREk94gcRAiLCLIWk+Mvcj03KJEywtEBHXg70XQohCB2aNMiMmpf+lQoVCUYFwdsXpiZnIcD44f0E6fwDpQlhbg73HCUmtL8KvBGsL0/LjKFyqsnVARAxFWH0LoUopIe9jM1O0UeRLYkOGXw1aTOE2/2/Fhgey0nwv+0DVz8uiqCI4wPfz4/jf/9Ui9VDpc2V4hHdMj0d4szFXJpoGLdvmsXDHen5aFMOciSn8u963GOeurWE8PX0H382L58tpSezdFkZ4hEGnPhlcfesRln0Wj6NAY8ufESz8KAGLxWDgmCNEx7mRhmmtGXD7EX74Ki5IeRDJZ5OSadC8gFaFCglATpbGJ+/U4NPxwYucarpZmkPX4YIu2Vw39hDb/okgs/D8GR6D9n0voH79xXTtvsMnOi4hpWh9TIfYtxC283wlkxIKvkDmTDnmaK/VgsgbIOIGhDhO7bcSEJYmiNinIPYp/w0sDSk7TYQGet1KlUuhOJ0QshyLwSNHjiy7QyF4//33j0uok0lWVhaxsbFkZmYSE1O1dX0UFcPIegny/F1juulEahwlYJ0kCe88XIevPjrm8Fq7oYOpP28qtxzrVkXS6oJc3C5Bnyaty2jt67T88tx/OevC3HJFl4VKkZvdMzc3ZPWSwoSDQvLRrxsDRlsB3NuvCf/8GgkI6jXN58obUuk7MtWr3BmGqWD98FUsL42pj9stvDPyV3erXtMC6jcrID9PY/3qKFyO4gqfHyduIbFYJK/O+5dGLR3YI0yr2L4dNkZ2bImma7S74jyenjsQebQXwZZ8ROxLiHDfhKpG9quQO5kiX6ZirSGsJyLuzf+M9ScQUjqRhy8xs6v7nb8OYZehxU/ws0+hOL0J9fldrl/5tGnTWL58ORkZGaSnp/v9pKUFdsJUKI4X6doSQOkB8BQqPf6dZ91u2L/DxrISPiYHdtnZu7NJueTIyxGccW4eugXc7lAco33bzHyzhllqIcCqnNsFf/wQyfwPEnnvqVrs32Ej1FcUi8VUUMZN2EVEtAeE5PzO2UGVHiiKrCpc/tIk/W5K9Yl0K/K3ubh3JjN+38DIRw5w/mVZAfPq7PnXzk+L4li7IsZH6RGaxGKVCGF+QCI0idUqeWzyLlq2zfcqPR4PbPrd9NNpfn5jHvrwzmJ+XP7xeGD7L8+zf/uxhIDSta5Q6QG/STod34DfJJr/LYSwIWJfpCiM3RcdRAwi+uGTINmJQTltKyqDcr1v3n777cyaNYsdO3Zw4403cv3115OQUN6wZIWi4sj8uZi+P4HM/ZJA1dz3bQtj3JAmuJ3mA0O3SDxuQedrW1PnvJshva/p+xECR/bZaHCG6SsUEWVQo56DQ3tsBE/EeIw/f4zm5Tvrc8+re7CFSTzGsUzQh/dauL37GeRl66biIeCrjxL58JeNxCZ6Qiq7UeRk3PWadBZMS2TkI/vLPKbVBbls/jMCwyPoek2mN/S9JEJAbKKH/jcfoX6zfH79tuwyFgBntMll0B2HOe/SbNIOWXhnXF3+XR+BENDivFxGPbWfek2PfXd//hjFxCdqs3OTGZm16Zd/uav9I7z2xW5iogMv9+g61G6QxdUt72HalrepUT8ZmVuUpDPQcRoyb4a55PofR9gvg4SPkNlvgGtN4Vbd9AOKuhdhOb2WuaTMh7wZZqJTzz6kiAB7H0TkyCr1PVScvpTL4jN+/HgOHDjAgw8+yIIFC6hXrx6DBg1i8eLFShNXnBj8Rp6FRv3mDh56dxddB6Rz/mVZ9BycxpsLtvLQ5AaIgqlmNewQKW7lEAL63XQ0iEJSvPbSMZZ/Hs/gNq0Y/1httv8TjpSwYU04wy5sRU6mBcMQeDwCj1vgyNe5+6pm5GSG/pM1PND07HzAPL4sBt91qNDfSZJUs+zabFYb6Hpoit61dxzi7a//pUPPLOzhkjqNXTzx/i5aXZBHdobOmuUx3H1VM7b8ZSo5//wWwbghjdm1xbeM/Z5N+9mwenfARI9FOB0abqebF68vTKjq3kzw68YodJSvHNwuNyvnruKNWyfx2k0TWPT+txTkVV7Uq7BdgJY4E5H8AyLxK0TKL2hxr59+So+Rg0y9Dpn9Cnj2AhJkLuR/ikztg3T+dbJFVJyClHtBOywsjCFDhrB06VI2bNhAq1atGD16NA0bNiQnR0USKKoYEUPwnD9BDhVwTodc7ntjD8/N2MHYl/fSsm0eIv9DyJsOFPg5yv9PpHZDJxlHj8nR58ajXNg1C7zLN4VH67IwYsz/gzo/R2PJ7ERsYQYrF8Ty7C0NCeS7cmBXGDdd3IKjBy0Bl8hKUlRZPliZhyKi4wwmLN2CEJCRqoeSM5JmrfPK7ltIeg1NK5TD/AgB4ZEGT3ywgzPa5COlIC9H55HrGpObrfHa3XWRUpQKvZdSsuqbWIIJ53bBj4WFZf/5aROGYYBm+i4FlzMi+P4Q2bVxLzc0u5NnBr3O4mnfs/Sjlbx+yyQG172Vv1b8UyljFGHmxmqG0E5Pf0SZ8xa4N1L6+/aAdCAz7jCjOxWKcnBcnnyappkhllLi8aiLT1H1mNXfK/la8+wicAh84LDz3cWsERYrPPnBTu56cS/1mxcghMRqM+jUJ513vt7K7f9nli7QdV+lyGKVtDw/h9u7n8HztzUsjAoL/IDOTLNyW9czWDA9ESkJ6vdjscIvy2KIjHXTvHV+SD5CDZo7mLhsC9npekiZquOSPHTpnx5Q+dF0SbuuWdRqUHr5schn6No7zcg8wyPITtf5fGo79u0ID5AdGpZ/EcfRA1a/SQ4NjxkO//kUM3pMSshKzS5M0hnsBOhg7x1kf2jkZuXxQJenOLrPVPQ8bg8et3m95mXl82jv59m/LVgxUkURUuZD/qcE/W0ah8Cx4kSKpTgNKLfi43A4mDVrFt27d6d58+asX7+ed999l927dxMVFVUVMipOc6RrA0bGAxiHzsU4eBZG6gBk/pdIf08+28VgPQ//l66GaQ0K9bLWgSjKKpCKSPTb5qyLclm3yrQSuN2mMnT5kDQmL9/CWwu3MmnZZh4ev4emZ+fT7+ajTFiymR6D06jXrIBGLfMZePthGrXMZ93P0aVqT1ksBkPvOcj4JZuZ9O0mxr68h6hY80mfnW5hwqN1cTkDl9lwu2HXljDWroxi9DP7vFaWUGjUsoAbx/kvOeGP0c/to+lZ+RQ5KQNep+W6TQq49409AY+1WOCiHllYrEbhcYJfv60ddDxHvsaDA5uQeshUPN0uc77SAEeBxpM3NPRZIouMjTATAGo18W8t1ECEmflyjpNlH60k/XAmhqf0tSsNidvlZv673xz3ONUC964Qlp8tSNffJ0QcxelDuZybR48ezezZs6lXrx4jR45k1qxZJCWd+Do4itMHWbAEmTG28K9CS47rbzOZoeMHiH3JJ8RYCA3ipyAz7wPH95hKTmHSQ70WRN0JmePKGLUwG66lJbi3EdwSYIBeB/S24Fji24sGrdvnsWtLGFlpOvYIA5dT49AeK6/eU5+vdq73ad/krALufmWv9++VC2L55N3Ste9aXZjNS5/uwGqTXitNo5YOLr8ujYmP1+bLqUW5cMywbCmP5RSShqmAHdxl49HrGtPqwlwu659RxvkoHyXrmkVGG7z2xb8s/zyOb2YmcHi/jYQUNz0Hp9FtQFph+YjA6LrpiO12mX3rlrIV1/07wvj0g9tJ3zWPtp2zsVglm/+M4LvP4snLOabc1GiYjNVmBaymQ3D6zYUWvmJJOkUsIv69SvGP+eGz1UH3e9wGK+eu4vY3Rhz3WKc9IpTiePKE5BlTnF6US/GZNGkS9evXp3HjxqxYsYIVK/ybGOfNm1cpwilOb6SRhsy4F9OUXfzhWPi2XDAfbO0gYoDPcUKLRsRPRrr/Nc3c0gnWVmaJAqGZrsSZj+CbBRrMxG71QG9gVsi290Ae6QZGsLdKDfREtPh3MZzbIa108ccGzR0l/taIjHKXWfh0yScJaLpvpfGoWDcvz93uzXpc/HghYPSz+9nzr50/fohm09oIWl1g5gLyuODIARt7t4Xx8+JY9m23MeLhg3Tum+43g3JFcLsA4T/SyxYm6Tk4nZ6Dy1+kOOOoTn6OqewIDS7sfS6Hdh0hdX/gvmKTYxj12kgG1/6FH7/ODdju9teOlVoRlgaQ9A04ViCdqwA3wnoe2HtW2sOzILegTN8oRyU6OZ/W6I1Aqw1GsIhED4R1OmEiKU4PKr1khUIRMnmfAS6CFlzMm44oofh491qagqVp6e3hV4P1fGT+bHD+DljMatkRA0oVSJXhfSD3fQL7DRkI+1UAaLbGGKWS35UmMsbgrtf817MrztED1lJLXLc8sR89wLKUEKZFZNRT+7itawu++F8SrdubD32bHeo0clKnkZN23bJDqjYfKh63maBQ02WlKVHevj2w8MMkM0pLSHSLRu+bu1GrUQ1eKIrI8sPNL15PmD2MyeteY/T5D5FxONNnv9AEo9+8kY792/luFzrYuyDsXSp3IoU0bdOIf//Ygcft3y9F0zUatVYh2KEghAZRtyGzngjQQgfbhQhryxMql+LUR5WsUJw0pGt9WS3AvRkp3cErWwOHdh0hOz2HlHpJxCRGIyz1EdEPlimDiBiGzPsUZDZ+C7RqNZC4wb0dYWkMelPwlBH2HNaLjldmB0on5CWplotdW+w+yk+7blnB5RV48wf9tCiWzyYlcc1tR/EU+hhBsWWvCio/bre5jGd4TAfpvdvDSlm1KgOPB3ZssDNnQrLp9C3g0Wltia8RR5frLsHt8jDp3mlkp+d6ky1HxUVyy8vDuPzGywBIrpvInIP/Y9WCNSyYuBhHvouW7Zoy7KmBhNnLVj4rmytv68FXU5YF3G94DPqMLm01VAQg/FozjD13MsfyMBX+33ImIu7Nkyqe4tSkXCUrqgOqZMWJw8i4tzBbbrDYbA1RY0PAUgJrlvzF1MdmsWXNNrO1rnFx/wu5+aXrqdXI139GSgcULEI61wICEXYRhHUD905kxuhC3w+dY0tvJaw71gshrD3kvBVEXoFI+gaZ9Tg4fw06/xVfxvL8bQ19tn22cT1RscFj1aWEy+ucU/QXF3bNpu/II7Q4Lw+LVWKPOOYbVF7FR0r47L0katZzkZOl8/0XcbS5OJtrRh3BWomuFG6Xqbi991Rt3E6N9pdn0u+m9P9v787jo6ruPo5/zkySyQIJCYSEJUAABVFUFkFUUAQJFhcUaX0UFEUUxB0rUCqIj4oFq49SFbAV1FqhWLUuRaXiUhVFscqiUCmiSEgAIQuQde55/phkICSTDBIyGeb7fr3mRebeOze/uWT55pxzz6FV72Xs2uYlNsFDy4wWlJaU8dmyf/NT9h5SWjWjz/k9iIlt3GM6npu5lGdn/hWXy+A4lf8RgIVBV/bnrmduwuU6ohtqI44t+xZbtNQ34NnVFBM7DDwDGsX6atJ4BPv7+yisFCQSHOPpjy1+vZYj3L6FSgOEnveXruT+yx+pcsOV43X48JVVfPnuev7w6SxadfSFH1v6lW/1ebuHyi97W/QCuNIwyX/CtHgbSldiS7+E4mXg/Q/VurTKVoN3sy8AlX12yH7fgGnT5E5MVCY26qSKbraau9C8Xjj+lH2c2Gcv33ye4F/ramd2NAmJJQEDi7VQUnTwTsOqdxJZ9Y7vm3z8zB+5ZNxP/hYfOLDGVjCMgY/fTPKv2QXQ7bR91PcSVlHRcPZF+Zx9ka+Lam++i0UPD+PtCyZRUuRrKut0agdGTx/JmcP71O8nP8pGzxhJu25t+eucv/sDeZvOrRhx2zCG3XCeQs/PYKKPw0T/JtRlyDFC34ESOrG/AFdLAk9I6MUkXFfjntLiUh65YR4Wi3WqBhSn3GFv3j4W/PpZAKw3B7vnGrCV40DKKx6Aswu7ezTYfIznDIznDPBupOZxPF5w9kD0iZgmt4ProJXGo7phms3FNBmHdfLBxGBrmW/I7YbNX8dx35+/Y9BlB+bB+fPD6bW20hgD776SHGCvZd6Mtry6sLn/WHvIpNEHz/1zaFtv5fP2XXyzPVda9c/EGgc0H47Kc5eVuqrNz2MtRHvg29Ub/aEHYPOa77nn0jm8Pn/5kX3yEDh7ZD8eX/UgrxY8yyt7FrFww6NcOCFLoUekEVBX1yHU1dWwbPkm7O6rwdnJga4lX3eTSZyJib+8xte9u/gjHrji/2o9t3EZ/rr9KRJj/1QxRiBQF5LBNL0LkzAWJ39GxaRptUySaJJwpX3mm2fI+QlMNMbVzPd+it/C5t0JlPJTbhTN08qqjL/xen2hp3i/ISbWYowvoOzZGcX6zxKwDvQZXIAntuq3ZeV3ad4uN6NO6+Zfb6wmUdEOL3z5NYnJXv9rc3+M5p0Xk9m9I5rk1HIGjdhT46SC1sKenW5mXpvJzuwYhl+3k/NG7iGpebm/1sNhHSjIc/P5e01pf3wxmV2La1yR3lsOP/7Xw/UDu3DonEnuaDeLf5xPs9Tg1gQTkcikri4JCyaqM7RYDsWvYUveBVvsa1GJ+xUmql3A1237djvuKLd/VtyaWMeS+/0uEtsvo/ZxRBZbvAyTMLYigNUxM7TNx1qvb3yB+0Crjy39qmJOIl8zy87sKGbfnMFl43fS8+xC3G747ptYkpqXk5xaXqX7KTm1nLN+4WuRchzfGJgqMydb+OJfTZh+dSblpbWnD2+54d2Xkrl47C4cB/50XytenJ+Ky+WbWNBaw3O/T+OSsbu4/p7sat1gKS29PPr6JkqKDFHR1h9UDudPJIth89dx3HFRZ1JaljJuxjY6n1TTkiA+7ijfoO2uPfez4YuEKvscr8M/n/uAy+64MPgCREQCUPCRkDOueIj/FSb+V0G/pklygm8NpjokJMUHt/ho5TH+rrfaWnya1Tio0u5bgK+1wldX6/alrFnZhC8/bIoxvtad7qfvY/aL/621lMI9LkaddiIduhTTJrOYHdkx/OfLWBzHjbe87iYXd5Rl+w++AcBL/tCSF+e1BHx3aR3cmvLyH1vQpJmXUXccmKX54BYdT1zVpHNgnwGTCnZHwBoMlr88kkrLNiU88tq3xCX4rom1sOGLeNZ+kuC7Hv320uXUIv+52x1XUi34uNwufvzP9jrftzQevlnXjaY/kUZJHc4Sls66tG+t+40xdDy5PW06p0NUV2pf2NRdcQyYuEuovcXHDfEjq2211oGSFVVem5jipf8FebjcvlYWxzF077fXNxFgLZKaO6S1LeU/X8WxcU0yI27YyfCxP/HLiTv43+dqD03gm3OnabNyivcblsxtWcuRhqVPpFK8v+qPgfI6bsP3rZC9B5pWThJ58LX1nevLT0/i4zeTuf33W4mLd3C7fd1tN59/HLddeBwLZ7Xi6VmtuHXY8dwy7Dh2/Ohr3iraV8OPJAsJiXF1FSUhZq2DLXoJZ9fF2NwTsLndcHZfhy2pfTZrkYam4CNhqUXrFC66MSvgX5QWyzX3/Q/GGEz8FdQeZryY+P/xfRh9MsQOo+b1u9zgSsHEX1PjOWr6HDfMyCalZZl/Datgu4sGXJjHnz7cwMIP13Dm+QVcd3cOYybn0GfQXnr0L6x1RXTHazjn4jy++rgJRfsCB75oj8PpQwrYmX2gT628DDZ/ExdEnWVQthaSHgPPQCAGcEN0d0zSw/zzlYG071JMt977cUfBvgIXd17Smc3rfQHGcYx//qJNa+O4c0Qndu90s/q9ptU+k7fcy4BfnlFXQRJC1lps/m+w+VOgvPLmAC+UfoTdcxV2/wuhLlHET8FHwtaEh8dw4Y1DMC6DcRnc0b5f8nFNYrlr0U2cfkEv34GegRBbOftz1VvBAYi/FhPT27fFGEi8xzdxGofMFxPTB9P8rxh39fXpjIkGdzsODUzN08uZu+xb2nYqASzrPmlS56rnJUWGq36dS5vMmptervr1ds4Yms/IG3M5/4qfSEo5sEy5MZbzfrmbNh1LKa6p9aTCWcPyWPzleqY+8QNtOvomJ7TWt2TElx8Gudhw8RtQMAWTcAOu9HWYtK9xNV+KibuAU8/pTpvMA12Mby1JYWd2NF5v9UDpeA25P8bw8B3tqqyzBb5urtOGnkqX3p2Cq0lCo/gNKK5cqujgLuiKAfYF92DLf2joqkRqpLu6DqG7usLPzh9/4oOlK9mbt49WHdPof9npxCXEVjnGWgeK/ord9zR4t/g2Rh3vu10+9mKMMdiy9di9j1d0WTlArG+tMM9gjKcvJqpDrXXYfc9gCx+gplvhH5zYjvf/3gzHgfkrNtK2c0mNt4gfzmzL3ooZlr1eePmpVBY+mM6Q/3Ex8cEE1q1KZOZVuygqrN6v1nNAIff/ZTMGqs3PYx1479VkBg4Pds0tl2+Rz5YfYMyBmZJL9m7moatuZuoTvlmuJ2Ydx6a1cdTckubb7HIZHK8lKtqN41gcr0O/C3sz9flbiGuirq7GzPnpV1D2FYFvInBDwjW4gphNXeTnCvb3t4LPIRR8jm3W2or5fAyYRH9XmS35BLtnLL4f3Ad3WbnB1bKipaf6SupVz12K3XMDlH7MoZMbLpnbgoW/a4V1oFX7Eub8bRPN08v94cN/y7srDZxd1HlnWbXPDUX7E0no+Jn/PZUUlTCh511s+3b7gRmEgf97/VuOP2V/wHW3HAcK955CUuK6oOswSXMwcRf7ujz2/h72PcWmtXG0ziwmvonDVX1OIPfH2mdcTuuQytUzf8X367cSmxDLmZf0IfOkwHf2SePh5JwMBL5rD4CY03GlPNsg9UhkCvb3t7q6JKIYYzCuZhhX0oHQY8ux+ZOoeZyOF5wd2MIHgzh3DCZ5vm+NMFerAzti+pJ1w3RcFUlj+/cebji3KwtmtubbtXFkb4lh9ftN+ejdMWDia6ghmPcF8Ql7K27H9/HEeZj+4p3ENY3DHeX7Vk9tXcoJPQOHHgAsJLU6B6JPqeWgg0VhSz/3fbh/UcWcSZbO3ffjMr7A1TqzpNZxSS63i4zjW3Pe6LO57sFRjLr7MoWecGLq6L/FAA2/dppITRR8REo+qAgMgZrpvVD8JtbZXeepjInBJIzFpL6HafkFJm0trpRnSGk3hDsWjPd16bhd7Ctw8/JTqdx8/vFce1Y3XvzThfS99NdgEur8HIFZKH6zypYOJ2bw+GcPcs7lZ+KOctMkqe5QZVxRQBkm5XlIeiS4z4vL1+K1d16VPbEJvrAzbPRP1VaiP5jjdRh2w3lBfC5plDznUvudkxYTe25DVSNSKwUfkfJvqf2HNoAXDmNwpq9lqUmVcS9Drj6H2cunc+rAE/3bWrRJ4dr7/ocHlk0jxhONiQt0R1kw3Fgnr9rWNp1bMeXZW3gl7xkeeGsuto73akw5xt0OY9yY2F9A1PF11OSFqA6+MR625rFBZ5yfT59BBRhTvdXHGMPpF/ai30W9a61LGi+TUHmnY6C7IVtA7EUNWZJIQJrAUMTEUfvMzgcfd2R6nNudHud2p7S4lLKSMuIT46vekh93Gez7Izh5HH6XVzkmqm3AvbHxHmLjM3Hyhla0DAU4v4mD2KG+D42BhOuw+XUMSt37BDbxtwF3u90w/U9b+PPDaby6qA37C3x3oiUkxXPxxKGMmn4Z7lr736QxM9HdoNmj2Lw7gMoB9RWTebpSMMkLMa4jac0UqT8a3HwIDW6OPNa7DbvzXGpemLSCuy2mxT8DrhRfr/WUb8LuHgfONg78bVKO7/b6cgKGNBOHSV3pmwm7tvN7t2F/GgFOPlXDj2+tNJM0GxM3/MDx1mLzboOSZbWc1Q2xl0Dx36j1OgKlcYv4YZNvoHiHEzOIia190LOED+vshv0vYsvWgonCePpD7C8wJrbuF4scIa3VJRIk426DjR0OxX8nUKgwTW5qkNADFeuXpS6HkvewpZ8AFhNzGtbdCXZfDnY/NQaWpjPqDD3ge7+kvIgtnA0lb+N/z1HHY5rcXm0shjEG60rA1zNeyziokrchZgCUfkjNrUkucLfHk9iP43tpKYNjkXGlQJPrf3ZnrUhDUPARAUzSvVhbXNGq4ebgNbdM0zsxcZc2bD0mCmIHY2IHH9gG2OZLsQUPQOm/8LesuDMxTW/HxGYFf/6otpjkx3x/oXuzwTQFd7vAays5u6mzO9AWQOIM2P1LcPZQbVoAE4Np9pDWbxKRkFLwEQGM8WCSH8WWTcAWvw5OPsadAXHDMe7a1rtqWCaqIyblj1hvDnh/BJMEUZ1/dpgwrhRwpdR9oLsVdS7e6krFFdUW2/xl7L55sP8loAiIgthhmCbjMVHhMQOzdfJg/1Js8au+LsGoTEz85eAZUuMCtSISPjTG5xAa4yNSnS1bj/3pklqOcEHCjbia3nLgNbYMbCGYJhgTPuN4bPn32N1XVEwkWfnjsaKbz3Muptlc3xIlItKoaAJDiSj78veRtzMfxwni7iw5bCb6RIirviq9jxvcGZiEq6u+xkRjXCnhFXqsxe65saJr7+C/CSu+rkrexe59IhSliUg9CYvgs2XLFsaOHUtmZiZxcXF06tSJGTNmUFpadRHHNWvW0L9/f2JjY8nIyGD27NkhqlgaysevfsYtZ05jePIYRqZdxxXtJ7D4d69QVlp9jSo5MibxfzFNbvONB/JzgScLk7IY40oKVWn1p+wz8H5L4C49C/v/jLU1LyArIo1fWIzx2bBhA47jMH/+fDp37sy6desYN24c+/bt46GHHgJ8TVxDhgxh8ODBzJs3j7Vr13LttdfSrFkzrr/++hC/AzkaXvq/N3jyjkUY14HxLT9t283T0/7ClyvW8r+vTSE6Rl0S9cUYFzS5ERLGQtkasKUQ1aXG1erDVunn1DmWyeZD+WaI7tpQVYlIPQrbMT5z5szhySefZPPmzQA8+eSTTJs2jZycHGJifE3rU6ZM4ZVXXmHDhg1Bn1djfMLD9u9yubrzzQT68jUGbpp7HRfdGPydTiJ275PYvY9R1+SRpvlrmOguDVOUiATlmB/jk5+fT0rKgbtRVq5cyYABA/yhByArK4uNGzeyZ0/N0+gDlJSUUFBQUOUhjd8/nnqnSktPTf7+eG0T7onUIKYPdc6YbZIhqmODlCMi9S8sg8+mTZuYO3cuN9xwg39bTk4OaWlpVY6rfJ6TkxPwXLNmzSIpKcn/yMjIODpFS736/uutON7AA5mtha0btgVsEQpn1rsLu/dJnN2jcXaPwil81Hd7uxy56J4QdQKB124zmISrdVeXSBgLafCZMmWKbzHHWh6HdlNt27aNoUOHMnLkSMaNG3fENUydOpX8/Hz/Y+vWrUd8Tjn6YhM8uNy1f/lGx8Ycc5Pl2ZKPsDsHYvc+CqWfQukq2PckducgbPHyUJcX9owxmGaPgysN35SRlV8/FUHIkwUJGjMoEs5COrh50qRJjBkzptZjOnY80KScnZ3NwIEDOeOMM1iwYEGV49LT08nNza2yrfJ5enp6wPN7PB48Hk/A/dI4nXlxH9594aOA+91RLvqP6NuAFR191rsdu2c8UEr1W60tNu9WaPE6Rt0wR8REtYUWr0PRywdNYNgRE/cr8JzdYEuXiMjREdLgk5qaSmpqalDHbtu2jYEDB9KrVy8WLlyIy1X1h0+/fv2YNm0aZWVlREf7mqGXL19Oly5dSE5OrvfaJbTOGH4abY9vRfbmXJzyql1ela2FIyddFKLqjg67/wV8K1/X1H1nAYvd/zwm8e6GLewYZFxNIGE0JmF0qEsRkXoWFn+6bNu2jXPOOYd27drx0EMPsXPnTnJycqqM3bniiiuIiYlh7NixrF+/niVLlvDoo49yxx13hLByOVqiY6L53fLpZHRpA4A72o07yg3G1w12z8t30emUDqEtsr6VvE/t62V5oeTdhqpGRCQshcU8PsuXL2fTpk1s2rSJtm3bVtlXOXg1KSmJt99+m4kTJ9KrVy9atGjB9OnTNYfPMaxlRgsWfPUQq5evYdUbX1BWUsZxvTpy7hVnEdckLtTlHQXldR9igzhGRCSChe08PkeL5vGRxsrJnw5FSwl8u7UbYofiavZIQ5YlItIoHPPz+IhEGhN/JXV1dZl4jUkREamNgo9ImDDRXTBNKwcuHzzPjO9j02QSJqZng9clIhJOwmKMj4j4mIRREH0Cdt8iKP0YsBDTBxN/NcbTL9TliYg0ego+ImHGxPTCxPQKdRkiImFJXV0iIiISMRR8REREJGIo+IiIhJB19mPLt2Cd3aEuRSQiaIyPiEgIWG8OtvBRKH4N3/prYGNOxzS5GRNzWmiLEzmGqcVHRKSBWW8O9qcRUPwKlaEHgNJV2N2jscUrQlWayDFPLT5hwJZvxRYthtIvwLgxMQMg/jKMKyXUpYnIz2ALfwfObqrPwu0ABps/BTwfYkxMCKoTObYp+DRytujv2PzJgKHyh6Qt/Qz2PQHJf8TE9A5pfSJyeKyzB4rfJPDSIxZsHhT/E+J+0YCViUQGdXU1YrZsXUXocaj6Q9KCLcbuGacBkSLhxruNwKGnUhR4v2uIakQijoJPI2b3LcLX0lMTB+x+2P9iA1YkIkfMJARxkBPkcSJyuBR8GrOS96n9L0OLLf1XQ1UjIvXB3QHcnQj8Rw2AhdjzGqggkcii4NOo1bYSdwVbfvTLEJF6Y4zBNL0NsIGOgNhLMe42DViVSORQ8GnMok+l6irch3KDVuMWCTsmNguTeC8Qg6/lJwr/93rsxZikmaErTuQYp7u6GjGTMKaOriyLibu8weoRkfpj4i+H2F9A8WvY8h8wriSI/QUmqkOoSxM5pin4NGLG0x+bMAH2PYnvr8HK8T5uwGKSfoeJyghdgSJyRIwrEeKvrHW0j4jULwWfRs7V9HZsTC/svmeh7N+AGzwDMAlXY6K7h7o8ERGRsKLgEwaMZwDGMyDUZUiQrHcHFP8D6+zGuFv5ui9cSaEuS0REUPARqTfWOti9D8O+P+K7Y8eNxQsF90PTOzEJY0JcoYiI6K4ukXpi9/4B9i3ANw2BBcor/i3FFj6A3b80pPWJiIhafESCtmvbT7yx4J989d56MNBjYHfOHzeIFq1TsE4h7Huq1tfbvY9C3KUYU9sUBSIicjQp+IgEYeVrn3PvyN/jeB0cr29iyfUfbWTx715m+ot30mdgNlBS+0mcHVD2leZeEhEJIXV1idRh26bt3HvZQ5SXlftDD4DjdSgrKeOeS+ew/buc4E5mC49SlSIiEgwFH5E6vPr4WzjW1rjCgLW+APTaH3cFdzJ3+/otTkREDouCj0gdPv3HapzywOumOV6Hz97OBXcbAn9LucC0wBbcg5N3J7bkA6wNYi02ERGpVwo+InXw1hJ6KpWXezGJs/B9S9X0beWA3Q2lH0PxG9g912H3jME6++q7XBERqYWCj0gduvc/AXdU4G8Vd5SL7medgPGcjkl5AWL6BDiyMkBVLD1SugpbcHe91ioiIrVT8BGpw8UTh9ba6uMtd7h44lAATMwpuFKexaR+CClLwcTXcmbH1/rj3V7PFYuISCAKPiJ16HJaZ2546CqAKi0/lR9PfPRaOvfIrPIa426JscVg99dxdgslH9VrvSIiEpjm8REJwmV3XMjxvTvx8qNv8OW768AYepzbnUtvG8ZJZ3YN8KqyIM8e7HEiInKkFHxEgnTygG6cPKBb8C+I6oqvUbWOwdHR3Y+kLBEROQzq6hI5Soy7BcSeDwRaosINUd0x0Sc1ZFkiIhFNwUfkKDKJd4O7HdW/1dzgaoZp9vtQlCUiErEUfESOIuNKwTR/EdPkNnC1AaLA1RwSxmKav4qJ6hDiCkVEIovG+IgcZcbVFJqMxzQZH+pSREQinlp8REREJGIo+IiIiEjEUPARERGRiKExPiJhJH9XAavf/oqSolI6ntKBLr07hbokEZGwouAjEgbKSsuYN+kZ3pj/T7zlXv/2Tqd2YMpzt9DhxIwQViciEj7U1SUSBn531R947cm3q4QegO/W/sDt/e8mZ8uOEFUmIhJeFHxEGrmNn/+X9//6Mdax1fY5XoeivUUs+d0rDV+YiEgYUvARaeT++dz7uKMCLXsB3nKH5c++j+PUsSaYiIgo+Ig0dnk7C7B1hJqSolJKikobqCIRkfAVdsGnpKSEU089FWMMX375ZZV9a9asoX///sTGxpKRkcHs2bNDU6RIPUptk4JxmVqPiU+MIzbe00AViYiEr7ALPnfddRetW7eutr2goIAhQ4bQvn17Vq9ezZw5c7jnnntYsGBBCKoUqT9DxgzEWx64xcfldnH+2EEYU3s4EhGRMAs+y5Yt4+233+ahhx6qtu/555+ntLSUp59+mhNPPJHLL7+cW265hYcffjgElYrUnw4nZnDhhCE17nO5XSSnJfHLX1/UwFWJiISnsAk+ubm5jBs3jueee474+Phq+1euXMmAAQOIiYnxb8vKymLjxo3s2bMn4HlLSkooKCio8hBpbG6aO5Yx915OfOJBX/sGeg05hcc+vp+U9OSjXoN19mP3PYOzaxhObm+cnUOx+/6IdQqP+ucWEakvYTGBobWWMWPGMH78eHr37s2WLVuqHZOTk0NmZmaVbWlpaf59yck1/2KYNWsWM2fOrPeaReqTy+Xiyt+O4LJJF7D+o42UFpeR2b0dae1TG+TzW2cPdvcoKN9UuQW8BdjCObB/MaS8gHE3TC0iIkcipC0+U6ZMwRhT62PDhg3MnTuXwsJCpk6dWu81TJ06lfz8fP9j69at9f45ROqLJ85Dz8Enc/oFvRos9ADY/JlQvhmwFQ//HvBuw+ZPbrBaRESOREhbfCZNmsSYMWNqPaZjx46sWLGClStX4vFUvWuld+/eXHnllTzzzDOkp6eTm5tbZX/l8/T09IDn93g81c4rIgdYby6UvAkEGmDthdIPseVbMFEdGrAyEZHDF9Lgk5qaSmpq3X+1PvbYY9x3333+59nZ2WRlZbFkyRL69u0LQL9+/Zg2bRplZWVER0cDsHz5crp06RKwm0tEglC2lsCh5+DjvgQFHxFp5MJijE+7du2qPG/SpAkAnTp1om3btgBcccUVzJw5k7FjxzJ58mTWrVvHo48+yiOPPNLg9YocWwLPGv3zjhMRCZ2wCD7BSEpK4u2332bixIn06tWLFi1aMH36dK6//vpQlyYS3mJ6ANFAWS0HuSDmtAYqSETk5wvL4NOhQwesrb5g48knn8y//vWvEFQkcuwyrmbYuMugaAk1d3m5IHYYxh14LJ2ISGMRNvP4iEjomMSpENOv4llll1bFj4/oUzGJmhJCRMJDWLb4iEjDMiYWkv8IJR9gi14Ebza40zBxl4BnEMboR4mIhAf9tBKRoBjjhtiBmNiBoS5FRORnU1eXiIiIRAwFHxEREYkYCj4iIiISMRR8REREJGIo+IiIiEjEUPARERGRiKHgIyIiIhFDwUdEREQihoKPiIiIRAwFHxEREYkYCj4iIiISMRR8REREJGIo+IiIiEjEUPARERGRiKHgIyIiIhFDwUdEREQihoKPiIiIRAwFHxEREYkYCj4iIiISMRR8REREJGIo+IiIiEjEUPARERGRiKHgIyIiIhFDwUdEREQihoKPiIiIRAwFHxEREYkYCj4iIiISMRR8REREJGIo+IiIiEjEUPARERGRiKHgIyIiIhFDwUdEREQihoKPiIiIRAwFHxEREYkYCj4iIiISMRR8REREJGIo+IiIiEjEUPARERGRiKHgIyIiIhFDwUdEREQihoKPiIiIRAwFHxEREYkYCj4iIiISMRR8REREJGKEVfB544036Nu3L3FxcSQnJzN8+PAq+3/44QeGDRtGfHw8LVu25Ne//jXl5eWhKVZEREQanahQFxCsv/3tb4wbN44HHniAc889l/LyctatW+ff7/V6GTZsGOnp6Xz88cds376dq666iujoaB544IEQVi4iIiKNhbHW2lAXUZfy8nI6dOjAzJkzGTt2bI3HLFu2jAsuuIDs7GzS0tIAmDdvHpMnT2bnzp3ExMQE9bkKCgpISkoiPz+fxMTEensPIiIicvQE+/s7LLq6vvjiC7Zt24bL5aJHjx60atWK888/v0qLz8qVK+nevbs/9ABkZWVRUFDA+vXrA567pKSEgoKCKg8RERE5NoVF8Nm8eTMA99xzD7/97W95/fXXSU5O5pxzzmH37t0A5OTkVAk9gP95Tk5OwHPPmjWLpKQk/yMjI+MovQsREREJtZAGnylTpmCMqfWxYcMGHMcBYNq0aYwYMYJevXqxcOFCjDEsXbr0iGqYOnUq+fn5/sfWrVvr462JiIhIIxTSwc2TJk1izJgxtR7TsWNHtm/fDkC3bt382z0eDx07duSHH34AID09nVWrVlV5bW5urn9fIB6PB4/H83PKFxERkTAT0uCTmppKampqncf16tULj8fDxo0bOeusswAoKytjy5YttG/fHoB+/fpx//33s2PHDlq2bAnA8uXLSUxMrBKYREREJHKFxe3siYmJjB8/nhkzZpCRkUH79u2ZM2cOACNHjgRgyJAhdOvWjdGjRzN79mxycnL47W9/y8SJE9WiIyIiIkCYBB+AOXPmEBUVxejRoykqKqJv376sWLGC5ORkANxuN6+//joTJkygX79+JCQkcPXVV3PvvfeGuPKjwzoFsH8xtuhFcHaBqyUm/pcQ90uMq0moyxMREWmUwmIen4YUDvP4WG8udvcV4P0RqPzvM75/3B0xzZ/HuFJCVZ6IiEiDO6bm8ZGqbP5U8GZzIPRQ8bEF7xZs/owQVSYiItK4KfiEGVu+BUo/BLwBjvBCyXKsN/DcRSIiIpFKwSfclH0VxEEOlK096qWIiIiEGwWfsOMO8riwGbcuIiLSYBR8wk1MH+r+b4uGmB4NUY2IiEhYUfAJM8bdEmIvIvB/navilvZmDViViIhIeFDwCUMmcQZE96p45q76b8yZmMQpoShLRESk0dNAkDBkXAmQ8iyUvIstehmcXHC1xsRfCjEDMEZ5VkREpCYKPmHKGDfEDsbEDg51KSIiImFDTQMiIiISMRR8REREJGIo+IiIiEjEUPARERGRiKHgIyIiIhFDwUdEREQihoKPiIiIRAwFHxEREYkYCj4iIiISMRR8REREJGJoyYpDWGsBKCgoCHElIiIiEqzK39uVv8cDUfA5RGFhIQAZGRkhrkREREQOV2FhIUlJSQH3G1tXNIowjuOQnZ1N06ZNMcbUeExBQQEZGRls3bqVxMTEBq7w2KPrWb90PeuXrmf90vWsP7qWVVlrKSwspHXr1rhcgUfyqMXnEC6Xi7Zt2wZ1bGJior7Y6pGuZ/3S9axfup71S9ez/uhaHlBbS08lDW4WERGRiKHgIyIiIhFDwedn8Hg8zJgxA4/HE+pSjgm6nvVL17N+6XrWL13P+qNr+fNocLOIiIhEDLX4iIiISMRQ8BEREZGIoeAjIiIiEUPBR0RERCKGgs/PVFJSwqmnnooxhi+//LLKvjVr1tC/f39iY2PJyMhg9uzZoSmykduyZQtjx44lMzOTuLg4OnXqxIwZMygtLa1ynK5n8B5//HE6dOhAbGwsffv2ZdWqVaEuKSzMmjWL0047jaZNm9KyZUuGDx/Oxo0bqxxTXFzMxIkTad68OU2aNGHEiBHk5uaGqOLw8eCDD2KM4bbbbvNv07U8fNu2bWPUqFE0b96cuLg4unfvzueff+7fb61l+vTptGrViri4OAYPHsy3334bwoobLwWfn+muu+6idevW1bYXFBQwZMgQ2rdvz+rVq5kzZw733HMPCxYsCEGVjduGDRtwHIf58+ezfv16HnnkEebNm8dvfvMb/zG6nsFbsmQJd9xxBzNmzOCLL77glFNOISsrix07doS6tEbv/fffZ+LEiXzyyScsX76csrIyhgwZwr59+/zH3H777bz22mssXbqU999/n+zsbC699NIQVt34ffbZZ8yfP5+TTz65ynZdy8OzZ88ezjzzTKKjo1m2bBlff/01v//970lOTvYfM3v2bB577DHmzZvHp59+SkJCAllZWRQXF4ew8kbKymH7xz/+Ybt27WrXr19vAfvvf//bv++JJ56wycnJtqSkxL9t8uTJtkuXLiGoNPzMnj3bZmZm+p/regavT58+duLEif7nXq/Xtm7d2s6aNSuEVYWnHTt2WMC+//771lpr8/LybHR0tF26dKn/mG+++cYCduXKlaEqs1ErLCy0xx13nF2+fLk9++yz7a233mqt1bX8OSZPnmzPOuusgPsdx7Hp6el2zpw5/m15eXnW4/HYF154oSFKDCtq8TlMubm5jBs3jueee474+Phq+1euXMmAAQOIiYnxb8vKymLjxo3s2bOnIUsNS/n5+aSkpPif63oGp7S0lNWrVzN48GD/NpfLxeDBg1m5cmUIKwtP+fn5AP6vxdWrV1NWVlbl+nbt2pV27drp+gYwceJEhg0bVuWaga7lz/Hqq6/Su3dvRo4cScuWLenRowdPPfWUf/93331HTk5OlWualJRE3759dU1roOBzGKy1jBkzhvHjx9O7d+8aj8nJySEtLa3KtsrnOTk5R73GcLZp0ybmzp3LDTfc4N+m6xmcXbt24fV6a7xWuk6Hx3EcbrvtNs4880xOOukkwPe1FhMTQ7Nmzaocq+tbs8WLF/PFF18wa9asavt0LQ/f5s2befLJJznuuON46623mDBhArfccgvPPPMMcOBnob7/g6PgA0yZMgVjTK2PDRs2MHfuXAoLC5k6dWqoS27Ugr2eB9u2bRtDhw5l5MiRjBs3LkSVi/haKtatW8fixYtDXUpY2rp1K7feeivPP/88sbGxoS7nmOA4Dj179uSBBx6gR48eXH/99YwbN4558+aFurSwFBXqAhqDSZMmMWbMmFqP6dixIytWrGDlypXV1kXp3bs3V155Jc888wzp6enV7k6ofJ6enl6vdTdWwV7PStnZ2QwcOJAzzjij2qBlXc/gtGjRArfbXeO10nUK3k033cTrr7/OBx98QNu2bf3b09PTKS0tJS8vr0pLha5vdatXr2bHjh307NnTv83r9fLBBx/whz/8gbfeekvX8jC1atWKbt26Vdl2wgkn8Le//Q048LMwNzeXVq1a+Y/Jzc3l1FNPbbA6w4WCD5Camkpqamqdxz322GPcd999/ufZ2dlkZWWxZMkS+vbtC0C/fv2YNm0aZWVlREdHA7B8+XK6dOlSZQT+sSzY6wm+lp6BAwfSq1cvFi5ciMtVtRFS1zM4MTEx9OrVi3feeYfhw4cDvr8S33nnHW666abQFhcGrLXcfPPNvPzyy7z33ntkZmZW2d+rVy+io6N55513GDFiBAAbN27khx9+oF+/fqEoudEaNGgQa9eurbLtmmuuoWvXrkyePJmMjAxdy8N05plnVpte4T//+Q/t27cHIDMzk/T0dN555x1/0CkoKODTTz9lwoQJDV1u4xfq0dXh7Lvvvqt2V1deXp5NS0uzo0ePtuvWrbOLFy+28fHxdv78+aErtJH68ccfbefOne2gQYPsjz/+aLdv3+5/VNL1DN7ixYutx+OxixYtsl9//bW9/vrrbbNmzWxOTk6oS2v0JkyYYJOSkux7771X5etw//79/mPGjx9v27VrZ1esWGE///xz269fP9uvX78QVh0+Dr6ry1pdy8O1atUqGxUVZe+//3777bff2ueff97Gx8fbP//5z/5jHnzwQdusWTP797//3a5Zs8ZefPHFNjMz0xYVFYWw8sZJwecI1BR8rLX2q6++smeddZb1eDy2TZs29sEHHwxNgY3cwoULLVDj42C6nsGbO3eubdeunY2JibF9+vSxn3zySahLCguBvg4XLlzoP6aoqMjeeOONNjk52cbHx9tLLrmkSkiXwA4NPrqWh++1116zJ510kvV4PLZr1652wYIFVfY7jmPvvvtum5aWZj0ejx00aJDduHFjiKpt3Iy11oaipUlERESkoemuLhEREYkYCj4iIiISMRR8REREJGIo+IiIiEjEUPARERGRiKHgIyIiIhFDwUdEREQihoKPiIiIRAwFHxEJO2PGjMEYw/jx46vtmzhxIsYY/0K5lccaY4iOjiYtLY3zzjuPp59+Gsdxqrx2wYIFnHPOOSQmJmKMIS8vrwHejYg0JAUfEQlLGRkZLF68mKKiIv+24uJi/vKXv9CuXbsqxw4dOpTt27ezZcsWli1bxsCBA7n11lu54IILKC8v9x+3f/9+hg4dym9+85sGex8i0rC0OruIhKWePXvy3//+l5deeokrr7wSgJdeeol27dpVW13d4/GQnp4OQJs2bejZsyenn346gwYNYtGiRVx33XUA3HbbbQC89957DfY+RKRhqcVHRMLWtddey8KFC/3Pn376aa655pqgXnvuuedyyimn8NJLLx2t8kSkEVLwEZGwNWrUKD788EO+//57vv/+ez766CNGjRoV9Ou7du3Kli1bjl6BItLoqKtLRMJWamoqw4YNY9GiRVhrGTZsGC1atAj69dZajDFHsUIRaWwUfEQkrF177bXcdNNNADz++OOH9dpvvvmm2nggETm2qatLRMLa0KFDKS0tpaysjKysrKBft2LFCtauXcuIESOOYnUi0tioxUdEwprb7eabb77xf1yTkpIScnJy8Hq95Obm8uabbzJr1iwuuOACrrrqKv9xOTk55OTksGnTJgDWrl1L06ZNadeuHSkpKUf/zYjIUafgIyJhLzExsdb9b775Jq1atSIqKork5GROOeUUHnvsMa6++mpcrgMN3/PmzWPmzJn+5wMGDABg4cKF/gkRRSS8GWutDXURIiIiIg1BY3xEREQkYij4iIiISMRQ8BEREZGIoeAjIiIiEUPBR0RERCKGgo+IiIhEDAUfERERiRgKPiIiIhIxFHxEREQkYij4iIiISMRQ8BEREZGIoeAjIiIiEeP/AQV+Xl5kbQtzAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from keras.models import Sequential, Model\n", "from keras.layers import Conv1D, GlobalAveragePooling1D, Dense, Input, concatenate\n", "from keras.utils import to_categorical\n", "from sklearn.manifold import MDS\n", "import matplotlib.pyplot as plt\n", "\n", "# Load your dataset\n", "# Assuming your CSV file has features in columns 0 to (n-2) and target values in the last column (n-1)\n", "data = pd.read_csv('/content/stressinput.csv', header=None)\n", "\n", "# Separate features and labels\n", "features = data.iloc[:, :-1].values\n", "labels = data.iloc[:, -1].values\n", "\n", "# Scale features using StandardScaler\n", "scaler = StandardScaler()\n", "features_scaled = scaler.fit_transform(features)\n", "\n", "# Convert labels to one-hot encoding\n", "num_classes = len(np.unique(labels))\n", "labels_one_hot = to_categorical(labels, num_classes=num_classes)\n", "\n", "# Split the data into training and test sets\n", "X_train, X_test, Y_train, Y_test = train_test_split(features_scaled, labels_one_hot, test_size=0.2, random_state=42)\n", "\n", "# Define the 1D CNN model\n", "model_cnn = Sequential()\n", "model_cnn.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(features.shape[1], 1)))\n", "model_cnn.add(Conv1D(filters=128, kernel_size=3, activation='relu'))\n", "model_cnn.add(GlobalAveragePooling1D())\n", "model_cnn.add(Dense(256, activation='relu'))\n", "\n", "# Define a simple neural network (you can replace this with a part of GoogleNet)\n", "input_nn = Input(shape=(features.shape[1],))\n", "dense_nn = Dense(128, activation='relu')(input_nn)\n", "\n", "# Concatenate outputs of the CNN and the neural network\n", "merged = concatenate([model_cnn.output, dense_nn])\n", "\n", "# Output layer\n", "output_layer = Dense(num_classes, activation='softmax')(merged)\n", "\n", "# Create the hybrid model\n", "model_hybrid = Model(inputs=[model_cnn.input, input_nn], outputs=output_layer)\n", "model_hybrid.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n", "\n", "# Reshape the input data for 1D CNN\n", "X_train_reshaped = X_train.reshape(X_train.shape[0], X_train.shape[1], 1)\n", "X_test_reshaped = X_test.reshape(X_test.shape[0], X_test.shape[1], 1)\n", "\n", "# Train the hybrid model\n", "model_hybrid.fit([X_train_reshaped, X_train], Y_train, epochs=10, batch_size=32, validation_split=0.1)\n", "\n", "# Evaluate the hybrid model on the test set\n", "test_loss, test_accuracy = model_hybrid.evaluate([X_test_reshaped, X_test], Y_test)\n", "print(\"Test Accuracy:\", test_accuracy)\n", "\n", "# Extract features for MDA from the model\n", "feature_extraction_model = Model(inputs=model_hybrid.input, outputs=model_hybrid.layers[-2].output)\n", "features_extracted = feature_extraction_model.predict([X_test_reshaped, X_test])\n", "\n", "# Apply MDS for dimensionality reduction\n", "mds = MDS(n_components=2)\n", "features_2d = mds.fit_transform(features_extracted)\n", "\n", "# Plot MDS results\n", "plt.scatter(features_2d[:, 0], features_2d[:, 1], c=np.argmax(Y_test, axis=1), cmap='viridis')\n", "plt.title('MDS Visualization of Hybrid Model Features')\n", "plt.xlabel('MD1')\n", "plt.ylabel('MD2')\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "lJLWrfZDkABg", "outputId": "bcf72967-5957-4431-b2a9-0b9eb109c011" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/10\n", "127/127 [==============================] - 7s 31ms/step - loss: 0.6230 - accuracy: 0.6898 - val_loss: 0.6260 - val_accuracy: 0.6822\n", "Epoch 2/10\n", "127/127 [==============================] - 3s 22ms/step - loss: 0.6175 - accuracy: 0.6898 - val_loss: 0.6228 - val_accuracy: 0.6822\n", "Epoch 3/10\n", "127/127 [==============================] - 3s 22ms/step - loss: 0.6146 - accuracy: 0.6898 - val_loss: 0.6225 - val_accuracy: 0.6822\n", "Epoch 4/10\n", "127/127 [==============================] - 3s 21ms/step - loss: 0.6137 - accuracy: 0.6898 - val_loss: 0.6243 - val_accuracy: 0.6822\n", "Epoch 5/10\n", "127/127 [==============================] - 3s 26ms/step - loss: 0.6142 - accuracy: 0.6898 - val_loss: 0.6213 - val_accuracy: 0.6822\n", "Epoch 6/10\n", "127/127 [==============================] - 3s 22ms/step - loss: 0.6132 - accuracy: 0.6898 - val_loss: 0.6220 - val_accuracy: 0.6822\n", "Epoch 7/10\n", "127/127 [==============================] - 3s 22ms/step - loss: 0.6133 - accuracy: 0.6898 - val_loss: 0.6214 - val_accuracy: 0.6822\n", "Epoch 8/10\n", "127/127 [==============================] - 3s 22ms/step - loss: 0.6129 - accuracy: 0.6898 - val_loss: 0.6212 - val_accuracy: 0.6822\n", "Epoch 9/10\n", "127/127 [==============================] - 3s 26ms/step - loss: 0.6126 - accuracy: 0.6891 - val_loss: 0.6218 - val_accuracy: 0.6822\n", "Epoch 10/10\n", "127/127 [==============================] - 3s 22ms/step - loss: 0.6122 - accuracy: 0.6898 - val_loss: 0.6215 - val_accuracy: 0.6822\n", "36/36 [==============================] - 0s 9ms/step - loss: 0.6042 - accuracy: 0.6922\n", "Test Accuracy: 0.6921707987785339\n" ] } ], "source": [ "#simple and custom densenet architecture\n", "import numpy as np\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from keras.models import Sequential, Model\n", "from keras.layers import Dense, Input, concatenate\n", "from keras.utils import to_categorical\n", "from sklearn.manifold import MDS\n", "import matplotlib.pyplot as plt\n", "\n", "# Load your dataset\n", "data = pd.read_csv('/content/stressinput.csv', header=None)\n", "\n", "# Separate features and labels\n", "features = data.iloc[:, :-1].values\n", "labels = data.iloc[:, -1].values\n", "\n", "# Scale features using StandardScaler\n", "scaler = StandardScaler()\n", "features_scaled = scaler.fit_transform(features)\n", "\n", "# Convert labels to one-hot encoding\n", "num_classes = len(np.unique(labels))\n", "labels_one_hot = to_categorical(labels, num_classes=num_classes)\n", "\n", "# Define the custom DenseNet-like architecture\n", "def create_custom_densenet(input_shape, num_dense_blocks=3, num_layers_per_block=3, growth_rate=32):\n", " input_layer = Input(shape=input_shape)\n", " x = input_layer\n", "\n", " for _ in range(num_dense_blocks):\n", " for _ in range(num_layers_per_block):\n", " # Dense layer\n", " x = Dense(growth_rate, activation='relu')(x)\n", " # Concatenate with previous layers\n", " x = concatenate([x, input_layer])\n", "\n", " # Global average pooling\n", " x = GlobalAveragePooling1D()(x)\n", "\n", " # Output layer\n", " output_layer = Dense(num_classes, activation='softmax')(x)\n", "\n", " model = Model(inputs=input_layer, outputs=output_layer)\n", " return model\n", "\n", "# Reshape features to simulate an image\n", "features_reshaped = features_scaled.reshape(features_scaled.shape[0], features_scaled.shape[1], 1)\n", "\n", "# Split the data into training and test sets\n", "X_train, X_test, Y_train, Y_test = train_test_split(features_reshaped, labels_one_hot, test_size=0.2, random_state=42)\n", "\n", "# Create the custom DenseNet-like model\n", "input_shape = (features_scaled.shape[1], 1)\n", "model_densenet = create_custom_densenet(input_shape=input_shape)\n", "\n", "model_densenet.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n", "\n", "# Train the model\n", "model_densenet.fit(X_train, Y_train, epochs=5, batch_size=32, validation_split=0.1)\n", "\n", "# Evaluate the model on the test set\n", "test_loss, test_accuracy = model_densenet.evaluate(X_test, Y_test)\n", "print(\"Test Accuracy:\", test_accuracy)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 891 }, "id": "na8OHx8bnXof", "outputId": "a595a602-d88c-4ba3-cf97-2579b87d4399" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/10\n", "127/127 [==============================] - 6s 25ms/step - loss: 0.6213 - accuracy: 0.6844 - val_loss: 0.6240 - val_accuracy: 0.6822\n", "Epoch 2/10\n", "127/127 [==============================] - 3s 22ms/step - loss: 0.6169 - accuracy: 0.6898 - val_loss: 0.6226 - val_accuracy: 0.6822\n", "Epoch 3/10\n", "127/127 [==============================] - 3s 22ms/step - loss: 0.6152 - accuracy: 0.6898 - val_loss: 0.6241 - val_accuracy: 0.6822\n", "Epoch 4/10\n", "127/127 [==============================] - 3s 26ms/step - loss: 0.6147 - accuracy: 0.6898 - val_loss: 0.6232 - val_accuracy: 0.6822\n", "Epoch 5/10\n", "127/127 [==============================] - 3s 22ms/step - loss: 0.6138 - accuracy: 0.6898 - val_loss: 0.6211 - val_accuracy: 0.6822\n", "Epoch 6/10\n", "127/127 [==============================] - 3s 22ms/step - loss: 0.6131 - accuracy: 0.6898 - val_loss: 0.6212 - val_accuracy: 0.6822\n", "Epoch 7/10\n", "127/127 [==============================] - 3s 22ms/step - loss: 0.6132 - accuracy: 0.6898 - val_loss: 0.6211 - val_accuracy: 0.6822\n", "Epoch 8/10\n", "127/127 [==============================] - 3s 26ms/step - loss: 0.6136 - accuracy: 0.6898 - val_loss: 0.6239 - val_accuracy: 0.6822\n", "Epoch 9/10\n", "127/127 [==============================] - 3s 22ms/step - loss: 0.6128 - accuracy: 0.6898 - val_loss: 0.6213 - val_accuracy: 0.6822\n", "Epoch 10/10\n", "127/127 [==============================] - 3s 22ms/step - loss: 0.6129 - accuracy: 0.6898 - val_loss: 0.6212 - val_accuracy: 0.6822\n", "36/36 [==============================] - 1s 8ms/step\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.10/dist-packages/sklearn/manifold/_mds.py:299: FutureWarning: The default value of `normalized_stress` will change to `'auto'` in version 1.4. To suppress this warning, manually set the value of `normalized_stress`.\n", " warnings.warn(\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOoUlEQVR4nOzdd3hT1RvA8e+5SZPuRRd7I6IoCrJUQGWIiIITHAgq4gb158CJE7c4wY3IUEEEF0sRB4ILERFEQKZQVvdOcs/vj9DQ0KRJSyd9P8+TR3vvuee+SVvu2zOV1lojhBBCCFEPGTUdgBBCCCFETZFESAghhBD1liRCQgghhKi3JBESQgghRL0liZAQQggh6i1JhIQQQghRb0kiJIQQQoh6SxIhIYQQQtRbkggJIYQQot6SREjUWVOnTkUpxdatW2tdHH369KFPnz7VHktN3bc89uzZw0UXXUSDBg1QSjFp0qSaDkkIUY9JIlQPFD+olVL88MMPpc5rrWnatClKKc4991yvc8XXKaWwWq3Ex8fTuXNnxo4dy7p163zeb9++fYwdO5b27dsTFhZGUlISXbt25e677yYnJ8dvnOeddx7h4eFkZ2f7LXP55Zdjs9k4cOBAkO/+6LNu3TomTJhQ4wlgRd12220sWrSI8ePH8/7773P22WeXWb6goIAXXniBbt26ERMTQ2hoKO3atePmm2/mn3/+qZIYa+tnvHXrVq/fyZCQEBISEujZsyf33nsv27dvr+kQy23ChAkopUhOTiYvL6/U+RYtWpT6dylYr732GlOnTg26fMnPtuQrJSWlQvcPJC8vjwkTJrBs2bIqqV8Ex1rTAYjqExoaysyZMznttNO8jn/77bfs3LkTu93u87p+/foxYsQItNZkZmbyxx9/8N577/Haa6/x1FNPcfvtt3vKpqWl0aVLF7Kysrj66qtp3749Bw4cYM2aNUyePJkbbriByMhIn/e5/PLL+eyzz/jkk08YMWJEqfN5eXnMnz+fs88+mwYNGnDllVcybNgwv3HXpMWLF1dZ3evWrePhhx+mT58+tGjRotruW1mWLl3K+eefz//+97+AZffv38/ZZ5/Nb7/9xrnnnstll11GZGQkGzZs4IMPPuCNN96gqKio0mMs6zOuDYYPH84555yDaZqkp6fzyy+/MGnSJF588UXefvtthg0bVtMhltvevXuZPHkyd9xxR6XV+dprr5GQkMDIkSODvqb437uSwsLCKi2mkvLy8nj44YcBan1L7tFMEqF65JxzzmH27Nm89NJLWK2HvvUzZ86kc+fO7N+/3+d17dq144orrvA69uSTTzJ48GDuuOMO2rdvzznnnAPA22+/zfbt21m+fDk9e/b0uiYrKwubzeY3vvPOO4+oqChmzpzpMxGaP38+ubm5XH755QBYLBYsFktwb76alfU+j8b7lsfevXuJjY0NquzIkSP5/fffmTNnDhdeeKHXuUcffZT77ruvCiKs/U4++eRSv5Pbtm2jf//+XHXVVRx77LGceOKJNRRdxXTq1IlnnnmGG2+8scoSj2D4+veurnE6nZimWSf+PagVtDjqvfvuuxrQs2fP1kop/eWXX3rOFRYW6ri4OP3cc8/p5s2b60GDBnldC+ibbrrJZ73btm3TVqtV9+zZ03NszJgx2mKxaJfLVaFYr7rqKm21WvWePXtKnTv33HN1VFSUzsvL83pfW7Zs8ZT55ZdfdP/+/XWDBg10aGiobtGihR41apTn/DfffKMB/c0333jVvWXLFg3od99913Psjz/+0FdddZVu2bKlttvtOjk5WY8aNUrv37/f61pfcfTu3Vv37t3b83Xz5s014PNVHMvWrVv1DTfcoNu1a6dDQ0N1fHy8vuiii7zqLb6XvzoOv6/WWu/Zs0dfffXVOikpSdvtdn3CCSfoqVOn+nz/zzzzjH799dd1q1attM1m0126dNE///xzqe+FL5s3b9YXXXSRjouL02FhYbpbt276888/Dxi7PytXrtSAHj16dFD39/XetXb/TDVv3tzr2KxZs/TJJ5+sIyMjdVRUlD7++OP1pEmTyoyz5M/Mq6++qjt06KBtNptu2LChvvHGG3V6enqpeI477jj9xx9/6F69eumwsDDdunVrPXv2bK211suWLdNdu3bVoaGhul27dnrJkiUB32PJ75MvP/74owb0ZZdd5nU8PT1djx07Vjdp0kTbbDbdunVr/eSTT3r9npbnZ2D37t165MiRunHjxtpms+mUlBR93nnnef2saq31l19+qU877TQdHh6uIyMj9TnnnKPXrl3rVeahhx7SgJ47d64G9HPPPed13te/Sy6XS7/wwgu6Q4cO2m6366SkJH3dddfptLQ0r+sO/x76+vkoqax/74rt3LlTjxo1SiclJWmbzaY7dOig3377ba8yhYWF+oEHHtAnn3yyjo6O1uHh4fq0007TS5cu9ZQp/rwPfz300ENa6+B/nkt+31544QXdqlUrbRiG/v3337XWWq9fv15feOGFOi4uTtvtdt25c2c9f/58rzqLior0hAkTdJs2bbTdbtfx8fH61FNP1YsXLy7zszhaSItQPdKiRQt69OjBrFmzGDhwIAALFiwgMzOTYcOG8dJLL5WrvmbNmtG7d2+++eYbsrKyiI6Opnnz5rhcLt5//32uuuqqcsd4+eWX89577/HRRx9x8803e46npaWxaNEihg8f7vevxb1799K/f38SExO55557iI2NZevWrcydO7fccQAsWbKEf//9l1GjRpGSksJff/3FG2+8wV9//cXKlStRSgVd16RJk0qNj3rhhRdYvXo1DRo0AOCXX37hxx9/ZNiwYTRp0oStW7cyefJk+vTpw7p16wgPD6dXr17ceuutvPTSS9x7770ce+yxAJ7/Hi4/P58+ffqwadMmbr75Zlq2bMns2bMZOXIkGRkZjB071qv8zJkzyc7OZsyYMSilePrpp7ngggv4999/CQkJ8fv+9uzZQ8+ePcnLy+PWW2+lQYMGvPfee5x33nnMmTOHoUOH0qtXL95//32uvPJKn90Ph/v0008BuPLKK8v+cMtpyZIlDB8+nLPOOounnnoKgPXr17N8+XLGjh0b8DOeMGECDz/8MH379uWGG25gw4YNTJ48mV9++YXly5d7fU7p6emce+65DBs2jIsvvpjJkyczbNgwZsyYwbhx47j++uu57LLLeOaZZ7jooovYsWMHUVFRFX5vPXr0oHXr1ixZssRzLC8vj969e/Pff/8xZswYmjVrxo8//sj48ePZvXt3qcHqwfwMXHjhhfz111/ccssttGjRgr1797JkyRK2b9/u6Uos/jdgwIABPPXUU+Tl5TF58mROO+00fv/991JdjqeffjpnnnkmTz/9NDfccEOZrUJjxoxh6tSpjBo1iltvvZUtW7bwyiuv8Pvvv3u+B5MmTeKWW24hMjLS03KYnJwc8DMsKCgo1ToeFRWF3W5nz549dO/eHaUUN998M4mJiSxYsIBrrrmGrKwsxo0bB7hbv9966y2GDx/O6NGjyc7O5u2332bAgAH8/PPPdOrUicTERM9wgaFDh3LBBRcAcMIJJwSM0Zd3332XgoICrrvuOux2O/Hx8fz111+ceuqpNG7cmHvuuYeIiAg++ugjhgwZwscff8zQoUMB98/0xIkTufbaa+natStZWVn8+uuvrFq1in79+lUonjqlpjMxUfWK/8L95Zdf9CuvvOLVqnLxxRfrM844Q2vt+y8vAvyFNHbsWA3oP/74Q2utdWpqqk5MTNSAbt++vb7++uv1zJkzdUZGRlCxOp1O3bBhQ92jRw+v41OmTNGAXrRoUan3VfxX6CeffOJ5n/6Up0Wo+DMqadasWRrQ3333nd84tPb/11yxjz76SAP6kUceKfN+K1as0ICeNm2a59js2bN9vgdf9500aZIG9PTp0z3HioqKdI8ePXRkZKTOysryev8NGjTw+qt6/vz5GtCfffaZ3/eitdbjxo3TgP7+++89x7Kzs3XLli11ixYtvFoeAv1MFRs6dKgGSrW0+BPsX9Bjx47V0dHR2ul0+q3L32e8d+9ebbPZdP/+/b3e0yuvvKIB/c4773jFA+iZM2d6jv39998a0IZh6JUrV3qOL1q0qNTPny+BWoS01vr888/XgM7MzNRaa/3oo4/qiIgI/c8//3iVu+eee7TFYtHbt2/3qjvQz0B6enrAGLKzs3VsbGyp1rzU1FQdExPjdby4RWjfvn3622+/1YB+/vnnPecP/3fp+++/14CeMWOGV90LFy4sdfy4444L2ApUEn5abYu/L9dcc41u2LBhqVbhYcOG6ZiYGM/vsNPp1IWFhV5l0tPTdXJysr766qs9x/bt2+fVClRSeVuEoqOj9d69e73KnnXWWbpjx466oKDAc8w0Td2zZ0/dtm1bz7ETTzyx1L/99YnMGqtnLrnkEvLz8/n888/Jzs7m888/57LLLqtwfcUDn4tneiUnJ/PHH39w/fXXk56ezpQpU7jssstISkri0UcfRWtdZn0Wi4Vhw4axYsUKrxk7M2fOJDk5mbPOOsvvtcXjTj7//HMcDkeF31Oxkn+RFv+V2L17dwBWrVpV4XrXrVvH1Vdfzfnnn8/999/v834Oh4MDBw7Qpk0bYmNjK3y/L7/8kpSUFIYPH+45FhISwq233kpOTg7ffvutV/lLL72UuLg4z9enn346AP/++2/A+3Tt2tVrIH5kZCTXXXcdW7du9TvDsCxZWVkAR9RC4ktsbCy5ublerSbB+uqrrygqKmLcuHEYxqF/PkePHk10dDRffPGFV/nIyEivgcvHHHMMsbGxHHvssXTr1s1zvPj/A33OwTj8d3L27NmcfvrpxMXFsX//fs+rb9++uFwuvvvuO6/rA/0MhIWFYbPZWLZsGenp6T5jWLJkCRkZGQwfPtzrnhaLhW7duvHNN9/4vK5Xr16cccYZPP300+Tn5/ssM3v2bGJiYujXr59X3Z07dyYyMtJv3cE6//zzWbJkiddrwIABaK35+OOPGTx4MFprr3sPGDCAzMxMz++pxWLxjM8xTZO0tDScTiddunQ5on87ynLhhReSmJjo+TotLY2lS5dyySWXkJ2d7Yn1wIEDDBgwgI0bN/Lff/8B7t+Jv/76i40bN1ZJbLWdJEL1TGJiIn379mXmzJnMnTsXl8vFRRddVOH6irt7Sj6sGjZsyOTJk9m9ezcbNmzgpZdeIjExkQcffJC33347YJ3Fg6FnzpwJwM6dO/n+++8ZNmxYmYOje/fuzYUXXsjDDz9MQkIC559/Pu+++y6FhYUVem9paWmMHTuW5ORkwsLCSExMpGXLlgBkZmZWqM6srCwuuOACGjduzLRp07y61/Lz83nwwQdp2rQpdrudhIQEEhMTycjIqPD9tm3bRtu2bb0e2nCom2fbtm1ex5s1a+b1dfED0d8Dr+R9jjnmmFLH/d0nGNHR0QBlLqdQETfeeCPt2rVj4MCBNGnShKuvvpqFCxcGdW3x+zj8vdpsNlq1alXqfTZp0qRUF2pMTAxNmzYtdQwCf87BOPx3cuPGjSxcuJDExESvV9++fQF3l3JJgX4G7HY7Tz31FAsWLCA5OZlevXrx9NNPk5qa6rmm+IF65plnlrrv4sWLS92zpAkTJpCamsqUKVN8nt+4cSOZmZkkJSWVqjsnJ6fMuoPRpEkT+vbt6/Vq2LAh+/btIyMjgzfeeKPUfUeNGgV4f5bvvfceJ5xwAqGhoTRo0IDExES++OKLCv8uB1L8b1OxTZs2obXmgQceKBXvQw895BXvI488QkZGBu3ataNjx47ceeedrFmzpkrirI1kjFA9dNlllzF69GhSU1MZOHBg0DN4fFm7di0Wi6XULyG41+Ro164d7dq1Y9CgQbRt25YZM2Zw7bXXllln586dad++PbNmzeLee+9l1qxZaK09CZI/SinmzJnDypUr+eyzz1i0aBFXX301zz33HCtXriQyMtLvuB6Xy1Xq2CWXXMKPP/7InXfeSadOnYiMjMQ0Tc4++2xM0ywzFn9GjhzJrl27+Pnnnz0P+mK33HIL7777LuPGjaNHjx7ExMSglGLYsGEVvl95+Us0A7XkVYX27dsD8Oeff3paJcqilPIZ5+Hf26SkJFavXs2iRYtYsGABCxYs4N1332XEiBG89957lRP8Qf4+z6r8nNeuXUtSUpLn58s0Tfr168ddd93ls3y7du3KHdu4ceMYPHgw8+bNY9GiRTzwwANMnDiRpUuXctJJJ3l+Xt9//32fa/CUnLV6uF69etGnTx+efvpprr/++lLnTdMkKSmJGTNm+Ly+ZKtIZSp+T1dccYXf8Y/F43umT5/OyJEjGTJkCHfeeSdJSUlYLBYmTpzI5s2bg7pfsD/PxQ4fU1Uc7//+9z8GDBjg85o2bdoA7s988+bNzJ8/n8WLF/PWW2/xwgsvMGXKlID/Xh8NJBGqh4YOHcqYMWNYuXIlH374YYXr2b59O99++y09evQI2H3RqlUr4uLi2L17d1B1X3755TzwwAOsWbOGmTNn0rZtW0455ZSgru3evTvdu3fn8ccfZ+bMmVx++eV88MEHXHvttZ6/bjMyMryuOfwv+fT0dL7++msefvhhHnzwQc/xI2k6fvLJJ5k3bx5z5871PORLmjNnDldddRXPPfec51hBQUGpWMszSLt58+asWbMG0zS9WoX+/vtvz/nK0Lx5czZs2FDq+JHcZ/DgwUycOJHp06cHlQjFxcX57Fry1Rpls9kYPHgwgwcPxjRNbrzxRl5//XUeeOAB2rRp4/czLn4fGzZsoFWrVp7jRUVFbNmyxdPKUlNWrFjB5s2bvaZ/t27dmpycnEqPrXXr1txxxx3ccccdbNy4kU6dOvHcc88xffp0WrduDbiTzorcd8KECfTp04fXX3/d532/+uorTj311IDT7MvzuxJIYmIiUVFRuFyugO9pzpw5tGrVirlz53rFUNwSE0x85fl59qX45zMkJCSo70F8fDyjRo1i1KhR5OTk0KtXLyZMmFAvEiHpGquHIiMjmTx5MhMmTGDw4MEVqiMtLY3hw4fjcrm81nL56aefyM3NLVX+559/5sCBAz67T3wpbv158MEHWb16dcDWIHAnL4f/BdWpUycAT/dY8+bNsVgspcZFvPbaa15fF/9VfHh9Fd0O4quvvuL+++/nvvvuY8iQIT7LWCyWUvd7+eWXS/0FGBERAZRO5nw555xzSE1N9Up4nU4nL7/8MpGRkfTu3bt8b6SM+/z888+sWLHCcyw3N5c33niDFi1a0KFDh3LX2aNHD84++2zeeust5s2bV+p8UVGR16KMrVu35u+//2bfvn2eY3/88QfLly/3uu7wVckNw/D8JV/8c+LvM+7bty82m42XXnrJ63v19ttvk5mZyaBBg8r9PivLtm3bGDlyJDabjTvvvNNz/JJLLmHFihUsWrSo1DUZGRk4nc5y3ScvL4+CggKvY61btyYqKsrz+Q0YMIDo6GieeOIJn+P1Sn6PfOnduzd9+vThqaeeKnWvSy65BJfLxaOPPlrqOqfT6fU9i4iICOr3JBgWi4ULL7yQjz/+mLVr15Y6X/I9+fr346effvL6/QAIDw8HfP8uB/vz7E9SUpInmfT1B2jJeg//nYiMjKRNmzYVHlZQ10iLUD1Vnqnt//zzD9OnT0drTVZWFn/88QezZ88mJyeH559/3muLhPfff58ZM2YwdOhQOnfujM1mY/369bzzzjuEhoZy7733BnXPli1b0rNnT+bPnw8QVCJUvNr10KFDad26NdnZ2bz55ptER0d7FnyMiYnh4osv5uWXX0YpRevWrfn8889LjSuIjo72jH1wOBw0btyYxYsXs2XLlmA/Ni/Dhw8nMTGRtm3bMn36dK9z/fr1Izk5mXPPPZf333+fmJgYOnTowIoVK/jqq6880+uLderUCYvFwlNPPUVmZiZ2u50zzzyTpKSkUve97rrreP311xk5ciS//fYbLVq0YM6cOSxfvpxJkyZV2kDke+65x7Msw6233kp8fDzvvfceW7Zs4eOPPy41RilY06ZNo3///lxwwQUMHjyYs846i4iICDZu3MgHH3zA7t27efbZZwG4+uqref755xkwYADXXHMNe/fuZcqUKRx33HGegdcA1157LWlpaZx55pk0adKEbdu28fLLL9OpUyfPmKayPuPx48fz8MMPc/bZZ3PeeeexYcMGXnvtNU455ZRqW4hv1apVTJ8+HdM0ycjI4JdffuHjjz9GKcX777/vNQX7zjvv5NNPP+Xcc89l5MiRdO7cmdzcXP7880/mzJnD1q1bSUhICPre//zzD2eddRaXXHIJHTp0wGq18sknn7Bnzx7PwPDo6GgmT57MlVdeycknn8ywYcNITExk+/btfPHFF5x66qm88sorZd7noYce4owzzih1vHfv3owZM4aJEyeyevVq+vfvT0hICBs3bmT27Nm8+OKLnnGPnTt3ZvLkyTz22GO0adOGpKQkzjzzzKDf6+GefPJJvvnmG7p168bo0aPp0KEDaWlprFq1iq+++oq0tDQAzj33XObOncvQoUMZNGgQW7ZsYcqUKXTo0MFrGY2wsDA6dOjAhx9+SLt27YiPj+f444/n+OOPD/rnuSyvvvoqp512Gh07dmT06NG0atWKPXv2sGLFCnbu3Mkff/wBQIcOHejTpw+dO3cmPj6eX3/9lTlz5ngtYXJUq/6JaqK6lZw+XxZ/0+eLX4Zh6NjYWH3SSSfpsWPH6r/++qtUHWvWrNF33nmnPvnkk3V8fLy2Wq26YcOG+uKLL9arVq0qV9yvvvqqBnTXrl3LfF/F09ZXrVqlhw8frps1a+ZZZO3cc8/Vv/76q9d1+/bt0xdeeKEODw/XcXFxesyYMXrt2rWlpi/v3LlTDx06VMfGxuqYmBh98cUX6127dpWa7hrM9Hn8TMulxBTt9PR0PWrUKJ2QkKAjIyP1gAED9N9//62bN2+ur7rqKq/38Oabb+pWrVppi8US1IKKxfXabDbdsWPHUtO0y5qWffj79ad4QcXY2FgdGhqqu3bt6rWgYsn6gpk+XywvL08/++yz+pRTTtGRkZHaZrPptm3b6ltuuUVv2rTJq+z06dM9CwF26tRJL1q0qNR04zlz5uj+/ft7FsRr1qyZHjNmjN69e7dXXf4+Y63d0+Xbt2+vQ0JCdHJysr7hhhv8Lqh4OF+/Z8F+Locvwme1WnV8fLzu1q2bHj9+vN62bZvP67Kzs/X48eN1mzZttM1m0wkJCbpnz5762Wef1UVFRV51B/oZ2L9/v77pppt0+/btdUREhI6JidHdunXTH330UanrvvnmGz1gwAAdExOjQ0NDdevWrfXIkSO9fidLTp8/XPESBL4+rzfeeEN37txZh4WF6aioKN2xY0d911136V27dnnKpKam6kGDBumoqKhKW1Bxz549+qabbtJNmzbVISEhOiUlRZ911ln6jTfe8JQxTVM/8cQTunnz5tput+uTTjpJf/755z4X9/zxxx91586dtc1mK/W7FszPc6AlFTZv3qxHjBihU1JSdEhIiG7cuLE+99xz9Zw5czxlHnvsMd21a1cdGxurw8LCdPv27fXjjz/u+dk42imta2AUpBBCCCFELSBjhIQQQghRb0kiJIQQQoh6SxIhIYQQQtRbkggJIYQQot6SREgIIYQQ9ZYkQkIIIYSot2RBxQBM02TXrl1ERUVV6nLtQgghhKg6Wmuys7Np1KhRmYu6SiIUwK5du0rtFC2EEEKIumHHjh00adLE73lJhAIo3oJgx44dpXYLF0IIIUTtlJWVRdOmTQNuJSSJUADF3WHR0dGSCAkhhBB1TKBhLTJYWgghhBD1liRCQgghhKi3JBESQgghRL0liZAQQggh6i1JhIQQQghRb0kiJIQQQoh6SxIhIYQQQtRbkggJIYQQot6SREgIIYQQ9ZasLF1LaV0AeXPQ+R+AaxcYsaiwCyD8MpQRX9PhCSGEEEcFSYRqIW3moNOuBOe64iPgykHnvAJ5H0D8TJS1WY3GKIQQQhwNpGusFtLZT4Lzb0AffBUzwTyAzrithiITQgghji6SCNUy2syE/E8Al58SLnD+iXb8WZ1hCSGEEEclSYRqG+cGwBGgkIKi36sjGiGEEOKoJolQrRPkt0TJ8C4hhBDiSEkiVNuEHA8qIkAhDbYe1RKOEEIIcTSTRKiWUSoUwkcAyk8JC9j7oKwtqzMsIYQQ4qgkiVAtpCJvAfuAg19ZDv734LfK2h4V80xNhCWEEEIcdWSgSS2klBViX4SiFej82eDaAUYDVOj5ENoPpUJqOkQhhBDiqCCJUC2llAJ7T5S9Z02HIoQQQhy1pGtMCCGEEPWWJEJCCCGEqLckERJCCCFEvSWJkBBCCCHqLUmEhBBCCFFvSSIkhBBCiHpLps9XM61dUPgduuBL0DlgaY4KvwRlbVXToQkhhBD1jiRC1Uib6ei0a8C5FveK0S7Ags57Bx1xEyryVvf6QUIIIYSoFtI1Vo10+i3gXH/wK5f3f3Nfhfy5NRGWEEIIUW9JIlRNtGMtOH7mUAJ0OIXOnYLWujrDEkIIIeo1SYSqS+EyDm2g6osG1zb3vmJCCCGEqBaSCFUTrR1AMON/iqo6FCGEEEIcJIlQNVEhHQBngEIRYGlSLfEIIYQQQhKh6mM/E4wE/H/kBoRdglKh1RmVEEIIUa9JIlRNlApBxb4M2Cg9VkiB9ThU5K01EJkQQghRf0kiVI2UrTMqYR6EXQCEuQ9aGqOi7kQ1mI4yImoyPCGEEKLekQUVq5mytkLFPA4xj6O1iVKSiwohhBA1RZ7CNUiSICGEEKJmyZNYCCGEEPWWJEJCCCGEqLckERJCCCFEvVVnEqGJEydyyimnEBUVRVJSEkOGDGHDhg0Br5s9ezbt27cnNDSUjh078uWXX1ZDtEIIIYSoC+pMIvTtt99y0003sXLlSpYsWYLD4aB///7k5ub6vebHH39k+PDhXHPNNfz+++8MGTKEIUOGsHbt2mqMXAghhBC1ldJ1dLvzffv2kZSUxLfffkuvXr18lrn00kvJzc3l888/9xzr3r07nTp1YsqUKUHdJysri5iYGDIzM4mOjq6U2IUQQghRtYJ9fteZFqHDZWZmAhAfH++3zIoVK+jbt6/XsQEDBrBixQq/1xQWFpKVleX1EkIIIcTRqU4mQqZpMm7cOE499VSOP/54v+VSU1NJTk72OpacnExqaqrfayZOnEhMTIzn1bRp00qLWwghhBC1S51MhG666SbWrl3LBx98UOl1jx8/nszMTM9rx44dlX4PIYQQQtQOdW6LjZtvvpnPP/+c7777jiZNmpRZNiUlhT179ngd27NnDykpKX6vsdvt2O32SolVCCGEELVbnWkR0lpz880388knn7B06VJatmwZ8JoePXrw9ddfex1bsmQJPXr0qKowhRBCCFGH1JkWoZtuuomZM2cyf/58oqKiPON8YmJiCAtz7+Q+YsQIGjduzMSJEwEYO3YsvXv35rnnnmPQoEF88MEH/Prrr7zxxhs19j6EEEIIUXvUmRahyZMnk5mZSZ8+fWjYsKHn9eGHH3rKbN++nd27d3u+7tmzJzNnzuSNN97gxBNPZM6cOcybN6/MAdZCCCGEqD/q7DpC1UXWERJCCCHqnqN+HSEhhBBCiCMliZAQQggh6i1JhIQQQghRb0kiJIQQQoh6SxIhIYQQQtRbkggJIYQQot6SREgIIYQQ9ZYkQkIIIYSotyQREkIIIUS9JYmQEEIIIeotSYSEEEIIUW9JIiSEEEKIeksSISGEEELUW5IICSGEEKLekkRICCGEEPWWJEJCCCGEqLckERJCCCFEvSWJkBBCCCHqLUmEhBBCCFFvSSIkhBACrTXazENrR02HIkS1stZ0AEIIIWqO1kWQ+x46bzqYuwGFtvVGRY5B2TrXdHhCVDlpERJCiHpK60J02tXonGcPJkEAGoq+R6ddjs7/okbjE6I6SCIkhBD1Ve674PgF0IedcAEanXk32syo/riEqEaSCAkhRD2ktXZ3h5VKgjwlAAfkz6u+oISoAZIICSFEfaSzwNwboJCBdm6olnCEqCmSCAkhRH2kbMEUAuxVHYkQNUoSISGEqIeUCgNbT8BSRiknKvSs6gpJiBohiZAQQtRTKmIMYPo5awFre7CdWp0hCVHtJBESQoh6Stl7oKIn4l5Szjj4Ori8nLU1Ku4tlJLHhDi6yYKKQghRj6nwC8DeG/LnoJ0bQdlRof3AdjpKldVtJsTRQRIhIYSo55SlAUSOQdV0IELUAEmEhBBCiAoqyCvk+zkr2f3vHiLjIuh1UXcSGjeo6bBEOUgiJIQQot7Trt0Huwe3gIpChQ4EWzeU8t9O9vWM73nxxjfIzy7AEmLBdJlMueM9zr/pbK5/7iosVularAskERJCCFGv6dy30dnPlDhioPNnQUhniHsdZUSXumbFZ7/y5JUveb52OVye/5//ygKUUtw4aVRVhi0qiUwHEEIIUW/p/M/R2U/hXkag+OV0n3SsRmeMLX2N1rxz30y/rUVaw/xXF3Jgd3pVhS0qkSRCQggh6iWtNTrnNfA7TNwFRcvRjnVeR//buJuta3egtb992tx1/zD3p8oLVlQZ6RoTQghRYdrMhcIl4NoLlgSw90cZkTUdVnDMXeDaFKCQBQq/hpAOniM5GbkBqzYMI6hyouZJIiSEEKJCdN4MdPbToPNxb9XhAiZA1DgIH1XmQONaQRcEUUihdaFXm1Fy80SUodCm/xYhl9NFo9YpRxyiqHrSNSaEEKLcdN4cdNbDB5MgcCdBAAXo7Cchb0ZNhRY8S2NQYQEKOVHW9l5H4pJj6TG4C4bF/yM0IjacU4ecUglBiqomiZAQQohy0dqBznmu7DI5k9C6qJoiqhilQiHsEvw/ChWoWAjtX+rMmGdHEBETXioZUoZCKcVtr1+PLdRW6TGLyieJkBBCiPIp+hXMA2WX0VlQuLx64jkCKvJWsLal9OPQAlhRsS+gVOmEplHrFF75aSI9zz8FZRzqOGt7ciueWHAfvS/uUaVxi8ojY4SEEEKUj84MslxGlYZRGZQRBfGz0LnvQP6sgwmeBewDUJHXoUoMkj5co9YpPDTnf2Tuz2LfjgNExIbTsGVy9QUvKoUkQkIIIcrH0qRyy9UwZUSiom5FR97iHvOkbCgV/OMxJiGamITSiy6KukG6xoQQQpSP9Tg/3UnFFFiaQUiX6ozqiCmlUEZ4uZIgUfdJIiSEEKJclFKo6Edwj6M5/DFiAAYq+pHaP31eCCQREkIIUQHK1hkVPxNCTvI+EdIRFT8NZe9ZM4EJUU7S/ieEEKJClO1EVINZaOcOMPeCkYiyNqvpsIQoF0mEhBBCHBFlbQo0rekwhKgQ6RoTQgghRL0liZAQQggh6i1JhIQQQghRb0kiJIQQQoh6q04lQt999x2DBw+mUaNGKKWYN29emeWXLVvmXu/isFdqamr1BCyEEKLW0I71mJkPYu4fgnngUnTOG2gzrabDEjWsTs0ay83N5cQTT+Tqq6/mggsuCPq6DRs2EB19aPnzpKSkqghPCCFELaVz30ZnP4V7EUiX+5hjNeS+DvHvokJOqMnwRA2qU4nQwIEDGThwYLmvS0pKIjY2tvIDEkIIUevpwu8OJkFQnAQdPAM6F512LSR+gzIiaiI8UcPqVNdYRXXq1ImGDRvSr18/li9fXmbZwsJCsrKyvF5CCCHqLp37Nu6WIF9M0BlQ8Fk1RiRqk6M6EWrYsCFTpkzh448/5uOPP6Zp06b06dOHVatW+b1m4sSJxMTEeF5Nm8oiYUIIUVdpraHoJ7xbgg5noItWVFdIopZRWmtd00FUhFKKTz75hCFDhpTrut69e9OsWTPef/99n+cLCwspLCz0fJ2VlUXTpk3JzMz0GmckhBCi9tPaRO85FijrUafA3g8j7pXqCktUg6ysLGJiYgI+v+vUGKHK0LVrV3744Qe/5+12O3a7vRojEkIIUVWUMtAhJ4DjT8D0X87WufqCErXKUd015svq1atp2LBhTYchhBCimqjwkfhPghRgh7Ch1ReQqFXqVItQTk4OmzZt8ny9ZcsWVq9eTXx8PM2aNWP8+PH8999/TJs2DYBJkybRsmVLjjvuOAoKCnjrrbdYunQpixcvrqm3IIQQorqFngOO3yFvGiWnz7v/34KKewVlxNZYeKJm1alE6Ndff+WMM87wfH377bcDcNVVVzF16lR2797N9u3bPeeLioq44447+O+//wgPD+eEE07gq6++8qpDCCHE0U0pBVH3gf10dO50dzeZskFoP1T4FShrSwB04XJ03vvg+AOwQeiZqPArUdZWNfsGRJWqs4Olq0uwg62EEELUXWb2s5D7BqVbjBQq9lVUqPwBXdcE+/yud2OEhBBCiJJ0wVcHkyDwnmbvAlzojFtlK46jmCRCQgghjhpam2jXLvdL+58l5nVN7lT8Pw414IC8OZUUoaht6tQYISGEEMIXrU3Im4bOfRfM3e6DKhytosFo6O7aCr8EZcSXvtixirKm1oOJLvoNVRWBixoniZAQQog6TWuNzrwHCuYddiLP/TJT0Tmr3d1fcW+jbCcdVkOgzhEFSjpQjlbynRVCCFG3FX1bOgkqRYPOQ6dfizYP20PS1gP/e5G5KVuPI4lQ1GKSCAkhhKjTdN4HBEpk3EzQOZA/z+uoihiF/73IDFCRsuDiUUwSISGEEHWbcyNlb6rqTRcu9/pa2Xuiou49+FXJhMoAFYaKexNlRB1xmKJ2kjFCQggh6jZVniRF4ytpUhEjwdYDnTfTvQq1sqHsZ0HYJShLg8qKVNRCkggJIYSo01ToIHTOesreYb6Y4XeDVRVyDCrm4UqNTdR+0jUmhBCibgu/CIx4Ao8TUoAVwi6qhqBEXSGJkBBCiDpNGXGo+PfB0qj4iI9SBzdYjZ2EsiRWY3SitpOuMSGEqGL7d6WxZtlfuJwmx3RtQ7P2jWs6pKOOsraBhMVQ+B3a8Qs4d4JrJzh3gGEDe19UxJXuckKUIImQEEJUkX07DzBh6NP889u/XsdPPOM47n7vFhKbyCDcyqSUBULPkA1SRblI15gQQlSBdSs2cEXLG0slQQBrvl3HuNPuJystuwYiE0KUJImQEEJUspyMXO7u/yimy/f+VdrU7Nt5gM8mL67myIQQh5NESAghKtni95ZRkFtYZhltaha8/XU1RSSE8EcSISGEqGS/Lv4jqHKZ+7ICFxJCVClJhIQQopK5HM6gyjVoFF/FkQghApFESAghKtmx3dqhDF9r2XgbNLpvNUQjhCiLJEJCCFHJzrmuLypAHpTQOJ5zrpNESIiaJomQEEJUsqSmCdw97VZQ+EyIGrVJYfKqp4mIDq/+4IQQXmRBRSGEqAJnDj+NJu0aMvfFL1j5+W84Chw0btuQC8YNYsDIM1CBmoyEENVCaa2D2a633srKyiImJobMzEyio6NrOhwhhBBCBCHY57d0jQkhhBCi3pJESAghhBD1lowREkIIUa0cRQ5Wfr6K3ZtTiYyLpOf5XYhNjKnpsEQ9JYmQEEKIavPj/F94fvRkMvdnY1gMTNPk5ZssXDDuXK5+YjgWi8XvtUUFRfy2ZA1ZB7JJaZFEx17HYhjSsSGOjCRCQgghqsWqr/9kwoXPUDxHp3hTWqfDxUfPzsc0TcY8M8LntfNfXcjUBz4gJyPXcyy5RSLjpoyhS/8Tqz54cdSSVFoIIUS1eOfeme7/8TVXWcPcSV+Qlppe6tTcF7/glVve9kqCAPZu2899g55g9TdrqyBaUV9IIiSEEKLKpW7dy4ZfNqFN/yu2aK35bs5Kr2N52fm8c98sv+W11rxx1/uAu+ts0dRvuL33g4xsdwt39n2YpTO/xxnk3m+ifpKuMSGEEFUu60B2wDKGxSD7QI7XsR/n/0JhXqHfa7Sp2fjbv6z/6R9evOFNNq/eijIU2tTs/ncPq5eu5dPJi5i44D7CIsOO+H2Io4+0CAkhhKhyiU0TAq6m7XK4SG6R6HUsfU8mhiXwo+qNu95ny5/bATytTubB/65fuZHXxr1bkbBFPSCJkBBCiCoXlxRD98Gdy0xqQiPsnH5Rd69jCY3jPYOqy7L2+7/9ljNdJkumfUfm/qzyBS3qBUmEhBBCVIvRT11BWGRoqWSouKHoppeuISwi1Otcj/O6EBblfawkw1A0apMS8N4up4v1KzeWP2hx1JNESAghRLVoekxjXl75BCf3PQFK9JI1bteIB+f8j7NHnVHqmtBwO9c/e5XP+pShMCwGZww/Naj7y9aawhfZdDUA2XRVCCEq376dB9izdS8RsRG0OK5pwPFDS6Z9y1vjZ5C2+9D0+hbHN2Xsa6Np0CieEW1v9j0t/yCL1WDWzjeIS5IVrOuLYJ/fMmtMCCFEtUts0oDEJg2CLt9vRG/OvOw01i7/m6wDOaS0SKTNSS09CVT3QZ35ecHvPscJGRaDMy87XZIg4ZO0CAUgLUJCCFH5tHMnODeCsoOtM0rZy3e9KxVcqWDEoqwtyNyfxf/OmMDWdTtQKLTWnmn0x5zShqeWPEBEdHgVvRtRG0mLkBBCiFpHO3eisx6Eoh8OHVRREDEaIq5DqbKHrmrHRnT2RChaTnFfmLZ2IDrqf7z800S+nv4dC95ZStrudJKaJjDw2rM4Y/hp2OwhVfiuRF0mLUIBSIuQEEJUDu3agz4wFMx0wFW6QPgIjOj7/V/v+AeddgnowsOud3ePqdhXUKH9KjVmUXcF+/yWWWNCCCGqhNYm2kxHm+7VonXuG/6TIIC8aWjnFv/1ZT/mIwkCT8tQ5v1o7TjywEW9Il1jQgghKpXWRZD7DjpvOph73cesJ4PzL/wmQQBY0PlzUVF3lK7TuROKVvq4xlMCdDoULoPQfmjndjDTwJKMsjQ8krcjjnKSCAkhhKg0Wheh00cfTFpKjLxw/k6Z89uLuXb7Of5fEHc30IU/oHOmgPPPQzHZeqKi7kaFHBtEHf5p1y4wM8CSgjLij6guUXtIIiSEEKLy5M0qnQSBj6/9MBL8HA9mjKYJ+R/gtVojQNFK9IFLocEsVMhxwcVRgi5cgc55Hhx/FAeDtvdFRd2JsjYvd32idpExQkIIISqNznv/CK52ocLO933K2h4sLSiV5Ph0+FpCJlCEznq43BHpgiXo9FHg+LPEURMKv0YfuBDt3FruOkXtIomQEEKISqG1E1zbCbr1x4uC0MF+u6+UUqio/wVRt7/zJjhWo53/Bh2R1kXozPsO1nl4cuUCnYvOeiLo+kTtJImQEEKISmIBAq3XY4A6vJvLCuFXomKeLPNKFdofFfM0qMgS91Pu622nBxeia0dw5QAKvwGdgf/kygVF36Jde4KvU9Q6MkZICCFEpVBKoe19oXAx/meHmRD9OMqSAs5/QIWC/TSUERfcPcKGQOgAKPgKXDvBiIPQ/lC4Al30fRAVxAb5bgDnNtzJVlkz3bR7ILclOfh6Ra0iiZAQQohKoyJHowsX426pObwlxQKWFqjQs1DKCrYTK3YPFQZhg72OaXtvIBQo8H+h0QhCOgZ/IyOa0l1ivgKKCr5OUetI15gQQohKo0KOR8W+gjspOdhtVfw3t7U1Kv5ddxJU2fc1IlGRN5ZdJup/Abfw8GLvS9mPSQWWVmBtE3ydotaRFiEhhBCVSoWeBUnLoWA+2rEOlB1lPwNsp5YvESmviDEonOicyYATdxLjAhWOiroXFXZuuapTlgR0+FWQ9y6+xwlpVNRtKBXMTLbKobVGFyyA/NnuVbZDTobImzCMsGqL4Wgje40FIHuNCSFE3aLNDChYdHBl6YZg748yKrbzvNYudPaT4FkWwACcoMJQUQ+iwi+srLADMp1b4cDFoDMPO2NA1AMYEZdXWyx1QbDPb0mEApBESAghaoY2MyD/U7RrC6goVOjZqJAONROLKxUKFqHNDJSlCYSejTIiqu/+ugC9pxuQ779Q7OsYoWdUW0y13VG56ep3333H4MGDadSoEUop5s2bF/CaZcuWcfLJJ2O322nTpg1Tp06t8jiFEEIcGZ03G733VHT245D3IeS+iT4wBDP9erSZV+3xKEsKKuIqjKixqPALqzUJAtA5b1BmEgSQ9Xi1xHK0qVOJUG5uLieeeCKvvvpqUOW3bNnCoEGDOOOMM1i9ejXjxo3j2muvZdGiRVUcqRBCiIrSBUvRWfcBDtxjc5x4prAXLkNn3lVzwdWU/E8ClzG3o82cqo/lKFOhwdKmaWIYpXMo0zTZuXMnzZo1O+LAfBk4cCADBw4MuvyUKVNo2bIlzz33HADHHnssP/zwAy+88AIDBgyokhiFEEIcGZ3zMu6/031NXTehcDHauQlVgdlaWmv3Ioi5M8G5HlQ4hA5EhQ9zr21UW+ngWsH03m5onEAI2PtA9AQMi5/92wRQzhahrKwsLrnkEiIiIkhOTubBBx/E5Tq00NS+ffto2bJlpQdZUStWrKBv375exwYMGMCKFSv8XlNYWEhWVpbXSwghRPXQrlRw/kXZ6/dYoGBx+evWGp11Pzr9Oij6Hsw94NoCuVPQ+89BF/0RuJKaYmkYZMHiVrQi98KW+3pjOrdUYWB1X7kSoQceeIA//viD999/n8cff5xp06Zx/vnnU1RU5ClTm8Zep6amkpzsvdpncnIyWVlZ5Of77mudOHEiMTExnlfTpk2rI1QhhBAAOjeIQgodVLnD5H/knnYOeK8WbYLOQ2eMQevCoKrS2kQXLMQ8cCXmnu6Ye8/AzH4G7dpd/riCEXFzBS90wIErKjWUo025EqF58+bx+uuvc9FFF3Httdfy66+/sm/fPgYPHkxhofuHpzrXU6gK48ePJzMz0/PasaMc+9IIIYQ4MkZDwB6gkBNlbV2uarXW6Nx38L97vemebl+wMIi6XOjM/6EzbgXHL6DTwPwPct+pspYlFXoWWDtV7GK9D7Po90qN52hSrkRo3759NG/e3PN1QkICX331FdnZ2Zxzzjnk5VX/SP6ypKSksGeP92Z4e/bsITo6mrAw34tP2e12oqOjvV5CCCGqhzLCIWwo7j2+fJZwb7oaGvx4UQB0lrsbrMzd663ool8D15U3Awq+OPhFyS48F+j8gy1LRb6urDClFKrBBxBa1mdThiASvPqqXIlQs2bNWL9+vdexqKgoFi9eTH5+PkOHDq3U4I5Ujx49+Prrr72OLVmyhB49etRQREIIIQJRUePA0pjSD3wDUKiYJ937jZWv1kopp7VG+11pGg61LFX+7GSlDIzYpyBpDcS+CzGvQNjwIK+uU5PEq1W5Ppn+/fvz7rvvljoeGRnJokWLCA0NrbTAfMnJyWH16tWsXr0acE+PX716Ndu3bwfc3VojRozwlL/++uv5999/ueuuu/j777957bXX+Oijj7jtttuqNE4hhKhrtHMrZtZTmGlXudfqyZuD1gHWrakiyohHNfgIwi+HkgmPrTsq/n1UaP8KVBoF1naUneg4UbZuZdej0927zZfJinb8Vs4Ag2cYIRihp2KE9Xd/RsEIq10NFbVJuVaWTk9PZ9euXRx33HE+z2dnZ7Nq1Sp69+5daQGWtGzZMs44o/SqmVdddRVTp05l5MiRbN26lWXLlnldc9ttt7Fu3TqaNGnCAw88wMiRI4O+p6wsLYQ42unc99DZT+DZm6t453gjBRU/DWVtUXOx6SIwD4CKQBlH9m+wzv8EnXm3n7MWMBqgEpeilM1/HWY6em+AZAkrhA/DiH6wwrGWh7m3L5jb/RcwmmMkLamWWGoT2WKjkkgiJIQ4munCZe7p5D5ZwJKCSliMUiHVGldV0Fof3DfsXdzdbsUzxxSoGHfSF9Le57WmYx1kPwmOTe5WIa9ZZ6Wp2NdQoX3LLFNZTOd+2N8f8LGYooqEhMX1ci2hYJ/f5V5Q0TRNpk6dyty5c9m6dStKKVq2bMlFF13ElVdeWednjQkhRH2ic97E/+KFLnc3UOFX5R+cXAsppSDqHrS9F+TNAeff7s1TQwdC+EUoI87ndWbmA5D/YZB3sRzc6LX69vwyrAmYST9CziTIn+degkBFuLvDIsdiGFU7bKWuK1cipLXmvPPO48svv+TEE0+kY8eOaK1Zv349I0eOZO7cuUHt/yWEEKLmaV3knv5dJgu68Ht3slCHaec2dO6bkD8fKAQVC+GXoiKuQRmxfq8zc2cGmQQdbAQw4lFxb6JUBWZ2HQHDCIXoe9wvUS7lSoSmTp3Kd999x9dff11qrM7SpUsZMmQI06ZN8xqwLIQQopbSzmAKgXZUeShVSTv+QqddAboAT5eWznBv5FrwJcR/iPLXdZTzcuAbqBiwtnUni2FDUUZkZYUuqkG5Zo3NmjWLe++91+eA5TPPPJN77rmHGTNmVFpwQgghqpAKA0tzyp5JpVEhHasrokqntUZnjAOdT+lxPSa4dh0cKO7jWjMd9IEg7mLFaDATFXGlJEF1ULkSoTVr1nD22Wf7PT9w4ED++KMW79UihBDCQymFihhZVgkgtG5PvS76GVzb8L93mQsKFqDNtNKngtxuI9DAaW3moItWox1rKn2hRXHkytU1lpaWVmrvrpKSk5NJT08/4qCEEEJUk7BhUPgzFC7Ae9C0BVCo2EkoI6rm4jtSzvX4HwxezAXOzWCL9z5sJOB+TAboQrS29XlYm3nonOch7yOgwH1QxUDEVRBxPUqVe76SqALlahFyuVxYrf6/cRaLBaczmD5nIYQQtYFSFlTsC6iYp8B6HGBzLz4YOgTV4BNUaPXNfqoSyk7Z22oUK712kFJWCB0U+NLI/5U6pHUROv1qyJuOJwkC0JnonJfRmXfWqk3K67NyzxobOXIkdrvvDfGKN14VQghRdyhluAf51uUuMH/svQKXMRpASAefp1TMI+iilWDu8XmesEsw7CeVPp4/Fxyr/NxQu/cqC7sY7D0DxyeqVLkSoREjRgRcJ0hmjAkhhKgtlKUxOnQwFHyOv+4xFXGd3wUjlQqDxCXozAkH6zg4xkclQtTNGOG+9/rSeR/iWaHbJws67yOUJEI1TlaWDkBWlhZCiLpN63x0+i1Q9B3usU8ad5LigvCrUVF3B70YsNaFQIi7Fa0M5p4u7h3vy2I9DiPhk6DuK8qvSlaWvvrqqwOWUUrx9ttvl6daIYQQosooFQZxb4JjFTr/M/cWGZbGqLALUdbW5azL99CQUowYcJWVCBlgxJdxXlSXci+o2Lx5c0466SQZ5CWEEKLOUEqBrTPK1rl67hc2BJ3zKv5nq5mosPOrJRZRtnIlQjfccAOzZs1iy5YtjBo1iiuuuIL4eMlohRBCCC/hl0PeLDB9bdBqAWtrCPW/Lp+oPuWaPv/qq6+ye/du7rrrLj777DOaNm3KJZdcwqJFi6SFSAghhDhIGfGo+JlgbXPwiIHnkRtyinune1V6yr6ofkc0WHrbtm1MnTqVadOm4XQ6+euvv4iMPLqWF5fB0kIIISpKa+2eRu9YDRhg64kKOaamw6oXqmSw9OEMw0AphdYal6vsJcaFEEKI+qZ4bBLVNDZJlF+5usbAvWjirFmz6NevH+3atePPP//klVdeYfv27Udda5AQQgghjm7lahG68cYb+eCDD2jatClXX301s2bNIiEhoapiE0IIIYSoUuUaI2QYBs2aNeOkk04qc/GpuXPnVkpwtYGMERJCCCHqnioZIxTMFhtCCCGEEHVFuRdUFEIIIYQ4WpR7sLQQQgghxNFCEiEhhBBC1FtHtI6QEEIIcTTR2gWu3aAUGA0D7jIv6j5JhIQQQtR7Wrsgbyo6dyqYe9wHjUYQcTWEXyEJ0VFMEiEhhBD1mtYmOvN/UPCF9wlzFzr7MXD8DTGPy6zpo5QkQkIIIeq3wqWlk6CSCuZA2CCwn1rloWjndnT+R+D8F1Q4KvRssJ+BUpYqv3d9JYmQEEKIek3nzQQsgL89My3ovJmoKk6EdM6b6Jxncc9jcrnvW/ApWI+BuHdRFtnJoSpIIiSEEKJ+c27CfxKE+5xz0xHdQutCKFiILlgCOg+s7VDhl6KsLd3nCxagc545dL+S/3VuQmdcD/GzpXuuCkgiJIQQon5TQWwYHkwZP7RzJzp9BLh24m7tMaFoBTrvXYi6E8KvQee8BijA165XLnCsAcdvYOtS4TiEbzIMXgghRL2mws6l7MehOlim/LR2odOvcU/JB8A8+F8XoNHZT6PzPwbnBnwnQcWs6MJvKhSDKJu0CAkhhKiXtGs/FMxDO7cBNqCIQ4lKMQsY8RB2YcVuUvgduLaUUcCAvOkBqzFNTc6+A8RGVSwMX7Tjb3TuO1C4BHThwe66KyFsSL0anC2JkBBCiHpH576Dzn4GdyvMwe4qTxJU/Gh0gqUJKu4NlOF79/LdW/awdMYPZOzNJLFpA866ohcNGsYduk/Rdwfrc/qJxATnOlAxoDN9lnA6YMXiSN5/di15eddz88vX0GNwlyMaL6QLvkFn3IT7/RePRfobnTUeCr+F2BfqTTKktNZltcXVe1lZWcTExJCZmUl0tO9fBCGEEHWHzp+HzrzLz1kFljYQ2gdl6wq2030upuhyuZg8birzX1uIYRgYhsJ0aVBwxQMXccUDF6GUwsy8H/Ln4j8ROih8FOS9x+EtUn/9Es6j17YgfV8I7qTFnfwc07UNj3wyiri4bYAVbJ39Jmul3r+Zhd57GlCI7+44hYp+EBV+eVD11VbBPr9ljJAQQoh6Q2sTnfNSWSXAtQkVfjnK3tvvitJT7/+A+a8tBA2my8TpcGGaJqbLZNqEj5j/ykIAVEhHAiZBRkOIHAchnQBFcfPEf//aGD+sFZkHiluoDrUAbfxtI/f0ux3n/pvQGWPQe3tiZj2G1kWBP4T8efhPgg5+CrlTqS/tJJIICSGEqD+cmw7O3gqg4Cu/p7LTc/h40udljm2e/tgcnA4nhJ4LKoKSSYw3hYoYgWGEoeLfQ0XdTfo+9wy1j15LoqjQwDRLX2u6FFvWhbFySXFLRxHkvY/OuDVgAqMdayj78a/BtQ10fpn1HC0kERJCCFF/BPVwN9xr/fjxy8LVOArLbuXJ3JfFXz9uQBkRqNiXcY8TKjnm5mByY+8D4SPcR5QdFXE19488i7Mbn8DCmfFoH0mQJ0qL5rtPY0sc0e5VsotWlBkbylb2eU+5Q8OItSsVnfs2ZvYz6LwZaDMjuDrqABksLYQQov6wNqXsVaRxn7O28Xu2IKcgqFsVl1P206DBPHTuu1C4EHQBWNugwq+AsAtQyvtRnNIiiS1/bke7Dp/B5s10KSKiS78Pnfseyt6z1HGnw8nPX/7OfxviiLJH02NAFlGxvj4HA2ynoJTNPf0/+ynIm+Y5p3FB1hMQdScqYmQwH0WtJomQEEKIekMZ8ejQs6FgIb6TIcM9Xd7ex28dTds3DupeTY5pdOi+IW1RsU8ATwS8buA1Z7J83s8By5192QFumfhf6RNF36ALFqFCBwDucVHL5/3CpDGvk7k/G8OiMF1NCbFpzhu1nzOGphMT7yKpieNgBSYqYrT72pxJkDe1ROXFyZkDnf0EqGhU+AUBY63NZNZYADJrTAghji7atQd94GIw9+GdDFkAAxX3ps8WFc/1WjOq/Vh2b07FNEs/Qg2LQcfTj+XZpRMqFJ9pmjw05GlWfvGb33FIrY/P45WFG1EKfM+iNyBiDBQu57ev/uW+y1u5q9KHFz40E639yXmMumc3Jw0ch4oYgTYz0XtPxb2+kh9GCirxm1o51V5mjQkhhBA+KEsyqsHHEH4pEFp8FOy9UQ0+KDMJAlBKcdd7N2O1hWBYvB+jFqtBRHQYYyePrnB8hmHwwOw7GHrLOSjDR5ajNOdfvR+0vyQIwITcyeBcw4evJrkPlUqCoOQg7g2rw7lnWBt+XNLefaDwG8pMggDMVHCsDfCOajdpEQpAWoSEEOLopXURmGmgIlFG+fYT+3fNNqZN+IgfP/0FbWosVgt9hvXkqgmX0rBVcqXEl74ng9fGvcuKz36jMK8QgEYtCnltyT+ERZQ9hghAa/h3XShjB7XFUeS77UMpTfcBWZw7Yj/N2xZSkB9C4+OvxDA3QtHSgPdQce+i7KeW741Vg2Cf35IIBSCJkBBCiLLkZuWRnZZDTGI0YRGhgS+ogKJCB3u27sWil5Mcc38ZLUG+PXlTM775JK7UccPQ3PXKds4YkoHLCRYrnnWMgr2HSvgaZW1avoCqgXSNCSGEEFVEm9lo1y60LiQiOpyUFkmlkiBtpqEda9HO7Ue8OKHNHkLTYxrT8JghKCOmXNe6XND3ojSf5y64bh+9z8sA3EkQUMa4o8NZwNa9ViZB5SGzxoQQQogg6aI/0DkvQ9H3uAcah6LDLkBF3oSyJLrLOHe6p5wXLsEzy8raHiJvQ4WecUT3V8oGMY+jM24O+hqLBWITSq97ZBiaS2/ZW+7WpYO1ggpHRT9UkYtrFWkREkIIIYKgC79Hpw2HouUcms5VAPkfog9c6J6N5tyJPnAhFH6F175hzg3ojOvR+Z8ecRwqtD8q7l0wgpvGrzXs2WnDsHi3SvW7JI3oOFfFEiF7P1SDj1HW1hW4uHaRFiEhhBAiAK0d6Mw7cU+3P7ybywXmPnT206AdoLMovUaR+xqd9SDY+6KMcLRz+8FVoE0IOQkV0j7IWIrASEDFTXbXkfMKuP72W14paH18Pid0z2H18ihPPJfdtieo+x1WG9j7YsSVtV9b3SKJkBBCCBFI4VL37DK/XFDwJe6Ep4zZXDoPnT8PXfSdu86Sp0I6o2KfQ1ka+b5UOyH3dXTOu0CW+6CKgbBhUGQD51q/905p6uCp2f+yZ2cIqdtt7NqaSEpTh8+yZVOokA4VuK72klljAcisMSGEEDrnNffYoDK35giGFVQc6DQfdVnASEYlzC81IFprE512DTiW+67WdjpYGkP+XDxr/6gIsHYC139gbsO7JUtRumUrGAYq8VuUpXKWB6hKMmtMCCGEqCwqnIolDodzgT58ResS58xUyPuw1BmdO91/EgRQ9D3K3gOVtAIVPwMV/wEqaQXYOoK51Ufs5Xsv+mC6oKIfqhNJUHlIIiSEEEIEYu9L2cmDAksLsB5P2Y/WQ1ta+Gaic17HTLsKM/0WzKI17sO5gcfk6JyZKCMKZTsFZTsZzCzIfSPgdT7r0mCW6GXb8nc8zvBXUeHDK1RfbSZjhIQQQogAlLUJOvR8KPgU3+NwNCryVjBi0OnX4rvrSYGKBZ0e4G7ZBwdRA4WLMI2mBwdgly0/eyMRCSUOeMYslY82QRnw5E1N+f37KBxFBgW5Vi66PZXRT5e7ulqvzrUIvfrqq7Ro0YLQ0FC6devGzz/736F36tSpKKW8XqGhVbPqpxBCiKObinkUQs8++JUFd1uCAqyoqPtRYeei7KejYl4AVbxdR3EZA8KGQ0jng9eWg7kjYBGtYcbzYeze4p4Jpl0H0I51VCQR2rsrhEevbc6yefFkHgghL9uCaWo+e30xhfmF5a6vtqtTLUIffvght99+O1OmTKFbt25MmjSJAQMGsGHDBpKSknxeEx0dzYYNGzxfq4qtHCWEEKKeU8qOip2EdtyELvgCdBbK0hTCzkcZ8YfKhZ0DoWdCwWJwbQcVBaEDUJYUdOG36KKvqiA22LvTyuOXPsKLC3JQjpWUJwlaODOOX7+JJm2flXW/RKB9bNCan13Azn920/rEFpUXeC1QpxKh559/ntGjRzNq1CgApkyZwhdffME777zDPffc4/MapRQpKSnVGaYQQoijmAppiwoZV3YZFQph55U+YTsd7Gce3Nm9nAOWy9htvjBfcXKvLM4c+hXKUf5WoPT9ISxfGIPpKruxwGItZ2tWHVBnusaKior47bff6Nu3r+eYYRj07duXFStW+L0uJyeH5s2b07RpU84//3z++uuvMu9TWFhIVlaW10sIIYQIlnbuQOdOQ+e8ji74Bq0PzRBTykDFvgShF5S73rI6NByFir4Xp2MLrdjMts69swMmQfEN42h6jO81juqyOpMI7d+/H5fLRXKy97S95ORkUlNTfV5zzDHH8M477zB//nymT5+OaZr07NmTnTt3+r3PxIkTiYmJ8byaNq3bm8kJIUR9obUmNzOXooKiGrp/PmbGHej9fdHZj6NzJqEzxqD39UEX/eIpp5QNjGjK+wguyFMU5itME5wOPP/duCaU0EgTa7n7eA617rQ7MZ8TT82i9XF5NG1TgFKlE6qL7xh8VLYI1amusfLq0aMHPXr08Hzds2dPjj32WF5//XUeffRRn9eMHz+e22+/3fN1VlaWJENCCFGLFRU6mDvpC+a/soD9/6WhFJzc9wSGj7+AE/scV21x6IzbD+vyOtgSZO5Dp42CBh+DtQ0U/QCFP1DmCtQ+WKyaa05rT6fTc0hs5CBjv5Wfvorine83lD8JsrSB+Pcg8y7PNh9PfbgFdTA327szhA9fTWLBjHhcToNB1/XlgnGDynmTuqHOJEIJCQlYLBb27PHeG2XPnj1BjwEKCQnhpJNOYtOmTX7L2O127Hb7EcUqhBCiehQVOhh/9mP8+f16tHlwPy8Nvy9dy29freGuqTfT78reVR6HdqyBwq/9nDUBFzprIri2grmLstcS8i3EBv2HpTP9uWTPYOZGLQsr1h3m2oRyrEJH3QcHBgN4kiCAxMYObpn4H90HxhLR+HGO63nMUTvZqM50jdlsNjp37szXXx/6QTNNk6+//tqr1acsLpeLP//8k4YNG1ZVmEIIIarRJy9+6ZUEFTNdJmh4/trJZOzLrPI4dP4XlD0t3gWOH90rR7uvCLLmkIMvt2G37KHHAPfYVcOiyc+p+GNc585wb9jqY5Xr4pznlF5/cVxXDc5/MDMnYO4fgnngEvf4pzL3Xqs76kyLEMDtt9/OVVddRZcuXejatSuTJk0iNzfXM4tsxIgRNG7cmIkTJwLwyCOP0L17d9q0aUNGRgbPPPMM27Zt49prr63JtyGEEKISaK2Z98qCUklQSS6XyeKpy7jkzvOrOJhgk61gusMUYGPH7huY/kw+vy5cielycXzXXIZcu48H3trKjwtj+GJaPDv/DeXfv0JpeWyBV4tOUBx/ArkBChnorIfBsQp3oudOmrTjD/eq1XHvoGwnlvPGtUudSoQuvfRS9u3bx4MPPkhqaiqdOnVi4cKFngHU27dvxzAO/SSkp6czevRoUlNTiYuLo3Pnzvz444906HB07ZwrhBD1UX5OAft3HiizjFKKLWu3V3ksytIEXSl7kQGWViz85ApeuGEeFouBywlg4ddlUfz8dTRX3pHKFXfs4bRzipOv4LustIYvZ8Tzzdw4bnxsFy2PLXs2GpgHkyDwbjnSoHPR6ddA4jKUEenr4jpBdp8PQHafF0KI2slR5GBQ2GWU9RSzWC2cPeoMxr0+pkpj0a5d6H1ncEQbs1qPQUU/xM4tDbnmuNvKbOl6avYmOp1aAJiomIlACDrzfiDf7zWmC7IzLFzV/VgK8w2+2L4G44gHyCj3Rqzhlx1pRZVOdp8XQghxVAuxhdDl7JMwLP4fZS6nix7nn1LlsShLI1TkOD9nLQR+3FrAdirK1oXPpyxBGf6baSwWzfx3GkLo2aj4j1BhF6DCBqOSlqOiH4OQLqWuMU3IzbZw72WtyM+1YFh0JSRBbrrQ/1p+dYEkQkIIIeqs4fcM9dtyYrEatOzYjC4DqmcMi4q8ARX9OBglFx20gq03EBbgahdYmqG1i7XL/8Z0+h9L5HIp/vq1IUbsC17jc5QRiQq/BKPBTAi/znPc4YB3nkhh1Knt2fRnOABOh8GOTXavHeYrrvRg67pEEiEhhBB1VsfTj+We6bditVlRhsKwGJ5F/5p3aMrEhfdjsVTfIoAq/GJU4lJUg89Q8bMhfh4UfY+/QcnF3XqzJyfy93dPofedhcUSeGPTQAsbqqhbQTUAYPkXscx+LZnsdO9hwfPeTqjAJH4f97J1roRaak6dGiwthBBCHO7M4afRpf+JLH5vGf/+uQ17qI2e559C5/4nek2gqS5KGRByDAA67VrAUUZZmPtGAu88nsIxJ+Uz6bMt9Dl3Fa3aWbCEmPyzOpy/V4VTckC0xWrQ7ZyTAkQRAioC9AF6Dc6gW78sfv46io9fT2TD7xEAfPl+A046PZtTB2ahTTDKnS+6Z7cRVv7tQmoTSYSEEELUedENorjo9sE1HUZpRT+WedrphOg4J6ZpsG1DKHk5Judfvds9KQswDNj8VygTb2jOjk2hgLsVacgt5/itU2uNznoQTPdsOcMCYREmpw7M5PRzM3nm1mYsnRuHaSoev64FA4alcf41+2nRviDADLKS3OOeVNwrKCMu2ItqJekaE0IIIaqMs8yzViskN3WglObhaVsIi9Ao5V7lubgxq/kxBTz7ySYSGrmwWA3GT7+VVic0919pwQLI/7D0vQ6uy3jHpO0kNnLvx2aaikUfxvPe0ynlS4LCh6MSPkPZD63aXXJz2bpEWoSEEEKIKmNQ1iKKLiek7bXS5YxsTujuexyR1QpRsSb3TAklpcN4kloe7zm3f1ca38xaTtrudOIbxnHmZacRZ3vP730Nw92iNPDyNKY9k0yI3WTQiDSuvXdX0O9HRd6KirwBAO1KRee+A/kfg85Gq1gIvwQVcTXKiA+yzpoliZAQQghxkJk/F/I+BhwQchJEjsUwwiteYcjJ4PjV72mLFb6eE8+ZF6Tjcrq/9lnOounY5VfgQvT+VuiIG3jviTw+eGoeaI1hMTBdJm/dM53Pt67BYvGffFks0P7kXFp2yOfxGVtokFx2q1WJK8GIhfBLAdDOLegDw0Bn4Zk5pjMg9y10/mfQ4EOUJbi9QGuSdI0JIYSo90znZsw9J0PmPeD4BRyrIe9d2HsSZu7Milcc8yj+HrUuF6xZEcEvSyOJaeD0mwSVvnALH018mplPzMV0mZimxulwYZoa02VSVBB4UcfOvXOY8tXGciRBgKUpKn6Gp6VHZ97pnQR5mGDuRWc+GHzdNUgSISGEEPWaaRbA/iGgc3yc1ZA9AbPg2wrVbVhbQ9x0IML7ni747tNYHriyJVFxLloe639F6MMV5sOsF5P9nv/56yic5chvghMCsVNQ1lYAaMd6cKzB/xpCLij6Fu36r7IDqXSSCAkhhKjfcl8FAqzdkz2xwtUb9i4YKb9DzIsQOgSHGspPKx4kK28Q90zOZuaqdcQnBT/QeM3KCPJy/M91//j1RM9YoMpjQv70Q1861gdxjQbH35UZRJWQMUJCCCHqt/zPA5dx/evzsNYmFC1HF3wBZhZYmrsXVTzYclKSETYQwgZiB0696ND1uuBLyLw96HA7dMkjMsZJTqbvR/iG3yN45tZm3PnS9nLMBAvEBQWLIPpgd5eyBXdZsOVqkLQICSGEqN90QVDFzMP2o9BmJjptuHsH9vz5UPg15E1F7z8bM/sFgtnTXCkDVc5kITzSZMSdqWWWWTo3ju1bTy9XvQHpEq1m9p4EbEtR4RBS+1edlkRICCFE/RbUzCZLqVWqdcbtB8fJgHusjMYzZiZ3MuR/FNz9Df/jfXxRCgaNOIA9zHd3mmFoWndqRIv2ldk3psDa9tBXRjyEXQx+N+lQED4SdSQz7qqJJEJCCCHqt8hbApex93av2Fz0B2b2JMyMuw/uIeZvbI9C505xd50FEnICWFriP6kozWqF5sfkY1i8kx3Dogmxm9z+xnAoWhl0fYFpcKxG57zuaelS0feB/ayD5y244z84dil0KCqYz7UWkDFCQggh6jUj9EzMkC5lrPcTDlH3oNOucE+tx4JpmpS9jZkG13/g2gLW1v5LmbmQP+vgjLXyteA8+OY2XnugMSsWx6BNhTI0PfpnMuKuVFq0mQUFlT11zIXOeQ6l7BAx0t2lF/sqOH5H588Dcz9YUlBhF6JCjqvke1cdpYPpxKzHsrKyiImJITMzk+jo6JoORwghRBUwTROy7oeCeXhtixHSEWKmQMYN4PwL/y1AvqkG81Ehx/o85x5jdAU4/6G8SVBJ2RkWMg9YiGngIiq2OL4wIPgp+eWiolBJP7oTolos2Oe3tAgJIYSo9wzDgNgnMM3H3C1DOg9sJ2MY0ejC79HONYErKSUULM38ntVZE8G5iYokQVrjmREWFVsyASpWRUkQgM6Gwh8h9Iyqu0c1kkRICCGEOMgwDLB39TqmCxbiHvsSfGuQaSqMyAtRRoTP89rMgIJPy1XnoboPjiYKMKQoN8sgPMo84in0RYUwc1IKf66MwDA0J/fOYeB1e4hvcWT11hYyWFoIIYQoi84l2FYbrd2rRu9PbYCKvMN/Qec/BNqZ3heXC9L3WlFBPL2//TQGl/PIFlbU2r0u0YcvJ7H2p0jWrIjkvadTGHHcfFZ/8zO6cDm68Fu0a3/Fb1LDJBESQgghymJpWeZpraF4ctj+3SFMezaFVb/egzIiy7gq+A6ZzDQLLifs2xXCjOeTGXNmOzb/FYorQB51zhXpvPZAI7b/c2RjeRIaFmGaxc1KCotFc+Ud22nXfAQ6fRQ6fTR632mYGbejzfSA9eXn5PPLotWs+OxX9u6o+QRKusaEEEKIMqjwi9C5r/k9r02Y9kwKH76ShNYG9nAbH+7qV3alIceBij64aal/WkNMvLv7LCvdws5/7WRnhPDw1S2Y/NU/hEf67/pyOuDEnrmMObMdn2xYS1hk+ZuGlILIaBddz8rCdMG638K5/fmdnDow87BZcyYUfI4u+gndYD6GJaFUXS6ni6kPfMAnLy+gMK/wYP2K7oM7M27KdcSnxJU7vsogs8YCkFljQgghdO7b6OyncA/MOfTYdLlg859h/O/C1jgdISileGT+3Zxy9kmB68x5FZ3zYtllSgyKNl3gdCieuKEZKxbF0qFLDh2753LOFWmkNCvyeX36PitXdj2WF7/4h9YdAuyn5uv+JqAOxVBUBLZAC2GrWFTCp6gSC1VqrZl4xUss+2B5qRW3DYtBUrMEXv3lSaLjo8odoz/BPr8lEQpAEiEhhBAAumABOufVg+N7wOEI5Zv5TXn9wQhMM5TTL+zOhbedS8vj/c8U86pPu9CZ90HBXIIZjL17m427L2nFnh02bKEmziIDlDtBOueKAxQVGuRmWWjSqpCzLztAk9ZFpO218N+/IRzfrSDgoGmtIXV7CB+9lkREtIvLx+0hNFyXuq5kcuaX9XhUg49RBwuuW7GBsafe77e4YTG4/L4LGTHhkgAVB08SoUoiiZAQQohiWmsw94Auci8eeISbimp9cMXm/NlQ9Ae4tgGlW3dcTrihXzt6DMhi8Mj9JKQ4cTph+YIYPnoliU1/hqMMjTbBsIChNC8t+IdWHQrLNWvskWubs3JxNOdfs5/RD+wOsGhk2VT8LJTNvdfYC9dNYdHUb3A5/a+03aBRHB/sfKPiNzxMsM9vGSwthBBCBEkphbKkoKzNjjgJKq6PkI5gZoBrI+DwWe6nr6O5/bkdXHVnKg2S3aOkrVY4dWAmL36+kS5nZKFNBSgMpXl3xXpalaMrzHTB37+HsWJRDC6nwdnD0o7wnVmg6EfPV/v+SyszCQJIS804wntWjCRCQgghRDlpbaILv8XMHI+Zfqt7t3nnjopVlvu2e+d6d80+i1itmrYn5mNYvLulrFYwDLh38jbsYe5E45andpLYyIlSQXRhHbRxbRj3Dm+N6XJfkNDQcUStQaC89lmLT47FYi27wugGlTc+qDwkERJCCCHKQZtp6AMXo9NHQ/48KFwEuW+g9/dF57xZvrq0C533HoHWKTqhRw4Wi+9zhgXCo0x6n5cBQJ8hGeWKAWDGc8nkZh26QcZ+6xGtPwROlO1kz1d9r+zls0XIMExsoSaGxeDsUTWzUrUkQkIIIUSQtNbo9JvBue7gERfuJMb9X53zDDr/i+ArdO12b1YaQGh42VmJ0wGtOuQDJvbQ0gOcy6JNeGTaVi65eY/n2KIP4tFl9GTlZhtkHrBg+ixjuLcWsZ3qOXJin+Poes5JKMMdWN+L05j+6198ueNPPvv3Tz7bsporxi3DNHODD7ySyDpCQgghRLAca8rYpR5AoXMnQ+g5nhlTh9NmOuR/jC5YBGbZ6wgFSykoKlRUpH2jeJXqa+5N5b/NdpYviOWL9xsw6MoDNGjowFoiU/hxYTQfvpLE36vcW4c0SCliyDX7ueC6fVhDiktFomJfQ5VY/lopxYOz7+DVW9+hUfIMLr5pryduAItFY+U72NcbM3EZRpmLUVYuaRESQgghgqQLv8E91d1vCff0enOP77OO9eh9A9DZz4DjD3BtCe7GKgqt/TfzWENg5eIYAPb9V7FuLZcLLr3FnaDkZVt4/PrmbFgV5jk//914Zk5KpqhAYRjuGxxIDeGdJxry0FUtcRaP87Y2AktiqfrtYXbGTT6fi2/2ToK8/l9nQcat5Q/+CEgiJIQQQgStiIC7nQLo0jO2zPzP0QcuBJ1B8DvOW8DSGqInopTva1xO+OvncNb9Gg7Ae8+4FzIsbzJkscAxnfK5/PZUpv+6jpe+2MRxXfPJy1EUFsDAy9J5ZeFGJn+1kfd+Ws+gK/cfvI/i12+jWPRBvLsi50Z0+ljfN8l+CkWAQdxFP2Ka5d+HraIkERJCCCGCpKzHEnCzVBUJloZeh8zsZyHz9sDXHqoEUGSkJbP402uY/6aT7ZvCPPuamaa7BQdg09owHrm2OdYQd+bz54pI/vkjtDxvy8sVt+8hPvlQnOGRGnso2OyHMquEhg5ufeo/rror1RPtp+8Ub6vhAsdKtGMdpTjXBxGBCeZ/FY6/vGSMkBBCCBGs0P6QFXNwj7DSTS5aG6iI4V5rDOnClZBbjoUCLW1xmdG88WgzPntjGy7nhyhDoc12HHNSLvdO2UZKU4enxadZ23w+XONOMFwu/M4uc8cXeEp9MNPmi8tcNm4vX82J579/7WzfVDL5skDhMgjp4H2hCiE44UGWO3LSIiSEEEIESSk7KvZFIATTPPQI1dq9KOE/f9h565FoXK5D22XovOmUPa7osHs0+IhXHuzN/MlbcDnd9WjTnfX880c415zWno1rwjwJTWiJnMEw/HeJmS53N1pl7ifhdMKAYQcAsNlLTiFTaO1j/7PQQYErVZEY1tJjjKqKJEJCCCFEOSh7T35acS9L50bjKHRnI/t2hfDuUynceWEbZj//Fe/cOxMA7fwXCn8g0D5iB2sGS1t2/ZvFl29+XWpzUgBtKkxT8fWc2ENXHTbo2NfeYFq71xuyBtsgEyRDQcNmRVgsmtPPzSxxxok6vDUIIPw6IMCK3BHXVmaIAUnXmBBCCFEOpmnyyu0/sHdbc565VWOxgsvpnX3MffFLLrkxiyh72bvLe9OoiFF8M2U5hsXAdPleyMd0KZq1Kyizm+vwXeN9ztCqBKYJiY2LePDtLXTsUWINICMR7GeWKm8YVsz4WZA2DJ/biYSeixF5Y+UFGARpERJCCCHKYdPvW9i7bd/Br1SpJAjAWeRkxbxpQdXnPDgu+Yv347m09QL++XUzhlF2ttLm+LJ3k1cGnunslZn4HM4aAu1Pyqdbv2wiokokbuHXoZTvthbD1hGSfnO3DhnNwEgBW1eIn4MR+3zVBeuHtAgJIYQQ5ZCbmRewjDIgN7vsR+yBPe7zm9eG8dnUBH7+OgrIYsVnZS3Y6FaQbwQc+GwNCW5w9OF8XePvGBxakNFLztPo0LNQ1iY+72EYoRD9P/erhkmLkBBCCFEOjdukBCyjTWjSqsDveacDli+I4aGrWrJjk51egzO48n97SG4aeMd4w6LZvzskYIJT0ZagogL3hY6iQ61KLuehuM0Sw53838OBTh+N6dznr0CtIS1CQgghRDkkNUukc78T+H3pWp/jeJShiE8s4uTe2WXW0/XMLM4becCdbCj3WjyXj9vDzBeTmfZMMr4WbjQsmqgYF8d3ywkq1ookQ6/c15hBVxzgmE75KAMK8hSfvx/Pht8jaNS8iKJCxaArD9CktY9ZYSW5NsP+UzGjX8QIH1j+QKqJ0r6GpQuPrKwsYmJiyMzMJDo6uqbDEUIIUQvs/GcXt/S4l7ysfK9kyLAYKKW4741d9Oif6ndNHs9MLj/nXx7fmM/fSzjsqKZJ60Lue30brToUeOqp7DFAjiL3FhqWEk0lLiekbrdx23ltsYWavP7N30RElSN9SFiIYW1VuYEGEOzzWxKhACQREkII4ct/m3bz7n2z+H7uT55kqNOZxzPykWHs3/gcp/Zb5jPRMV3ucTV+Z3xp9/ihK7t0wDQPFep1XjrJTRzs2mIjN8fAMBRb/7Yz7ae/CbH5f5QHmyxtWB1K45ZFhEeaGD6WPXI64fvPYzixZy6xCc6gFl70UIkYycvLccGRC/b5LV1jQgghRAU0btOQ+z+8nez0HNJSM4iOjyQuORaAdz4/HataRfd+WWgTT2LhdAIaLO4dNHxSChJSnLQ+Pp+Naw6tltitbxZnDMnAYoV9u608dVNz0vbY+PmrKLr1z/LaJf7w+gJZsyKCz95rwH1TtvstY7VCr8GZUEZLll96H9rxNyqkfTkvrHoyWFoIIYQ4AlFxkTQ/toknCdJa0/vS03nk6hY8f0cTNq8Lo6hAkZ1hYfEH8Xz8eiJmEH0x9lDv8Ueh4Ye6q+KTnDwx619aHZfPx28kYimjCy4Q04TnbmtKs7aFh3aQ98NiwavLrFz3K/ohcDA1QFqEhBBCiEqgC5ehc9+Bol9omaw57dwTWPJRPIs/aOBV7uTeWVx6c9mzqVxO2LHZ7vnaZjc56fRDg68tFlBKc9m4VB4b3ZJJdzVh7FM7vbrcgkmCtIY1P0aSut1OQZ7heyp8ZdEBsqwaIi1CQgghxBHSOZPR6ddB0S+4t9MwuXPSn5x1YTpKaZShsVjcmcnW9aEUFvjvryoei5N54NB+GOFRLn5aEu2V3BgGnHZOFvYwJwtnNuD+K1qwb1eIe4q76Xu7jcMpBTv/tQOalYujy9yw1fS90HXwQk44wgqqhiRCQgghxBHQjj/ROS8c/OrQIju2UBd3vriD935az/UTdnHlnak89M4Wpv+6noJcg6JC5VlVupjLCQdSQ3h9QmNK7m6fsd/KUzc357bz2rBxTZjnuFJwYk/31ha//xDNlad0YNdWW7lmkkVEuQDFzs2hfPdZDC4/26IZBqRuD/FaR+hwvu+rwNIMbD2CD6oaSdeYEEIIcQR07gzcu8v7zhCSmzgYcu1+z9d5OQZjB7fFHmpyyU176X1eBtYQyM02WDgjng9fSSYz7fDHszvDWP9bBDef3Y6uZ2Vx75RthIabnDook5+/jsF0KcIinTRtXVSuRKjrWVmE2E0chQbPjmuKPcykW9/sQ1t0GIfGdefluLvPTLP0gOmSrVXe97eiYl9GVWm/W8VJIiSEEEIcCccaAu8uX5woWVj0QRyp22xorXj6luY8f3tTQsNN8rItXtPly/LrN1FMvKEZj0zbSsNmhxY2PG/kgXKP84mINrn4hn3MnJREYb6FB0e0ou0JeTRpVcj6VeHs+8+GNUTT67wMLhyzD6UOrYPkoWHJ7Di2rA9l4OVpNGpR6BlUrZQDdOBtSWqKJEJCCCHEkVC2wGUsjVHRD4NjFUvm/IbWh3ZqdzoMcjLLl72YpuKnr2LY9GcomfsPPcobtwq8RYcvV/4vFUehYs7riWgNG/8MOzh1XwMKl0ux9OM4ls6N48G3t9C936GB2y4nXH9WO7ZvdHfZzX0jCYDu/TM45qR8Lhu7F50zBRX/ZoViq2q1s51KCCGEqCNU6FmU/Ti1gL0fyn4qKvIWMg/YyygbPItF8+PCGJbOi6P18Xk88/EmzrwwPajZYoczDLj2gd1M/2Udpw/KAA1xiQ6G37qX+9/Yyj2vbqPXeRlYLCZPXN+C7IxDo6otVmiQ4j3YybBoTFPxxbQGFOQpKPoWM+N2tA6wLUcNqHOJ0KuvvkqLFi0IDQ2lW7du/Pzzz2WWnz17Nu3btyc0NJSOHTvy5ZdfVlOkQggh6oWwS0GF4vuRqgArKvwyz5HkFkkYxpHvi6EMzX9bbCQ1LuTVRRvp2D2XkJAj23IjoaGTbRvCOGNoOtN/XceIO1M59ZxMeg3O4J5Xt/PW9xtokFLE5V2OZVDzjlxz+jHMfTMBpbyzL63BHqp5bPoW1v4U4T5Y8CU684EjeMdVo04lQh9++CG33347Dz30EKtWreLEE09kwIAB7N2712f5H3/8keHDh3PNNdfw+++/M2TIEIYMGcLatWurOXIhhBBHK2VJQsW9AyoCd+JT4qXCUHGvo6xNPeUHje6LGcyKigE4HYq1P0VwwyO73XFUwp5jRYWKiGgXd728A8PiXhHbMA4topiQ4uDJD//FdCqcDoOd/9p5Y0Ij/vgx0qsew4DYBk5atC8gPqV4/SATCuahXf8deaCVqE7tNdatWzdOOeUUXnnlFQBM06Rp06bccsst3HPPPaXKX3rppeTm5vL55597jnXv3p1OnToxZcqUoO4pe40JIYQIhjZzIH8euugnQKNsXSBsKMqI8SrnKHJwd79H+evHDT52ry9+JAfKatzlxr+2ld7nZ5W5b1l5EiSnA1YuiaZ7vyysIf7LPXlTM775JK7Mup6fv5EOXfIO21xWoaLuRUVcFXxQFRTs87vOtAgVFRXx22+/0bdvX88xwzDo27cvK1as8HnNihUrvMoDDBgwwG95gMLCQrKysrxeQgghRCDKiERFXIER9zJG3CuoiJGlkiCAEFsIj395L+eO6UdI6KFswx5mo9XxgccPGYZGGTDumZ10KzFo2WdM5WwlsoYQMAlyOaFbP//PRsPQnHJmFh265KHU4dPsjVo3g6zOzBrbv38/LpeL5ORkr+PJycn8/fffPq9JTU31WT41NdXvfSZOnMjDDz985AELIYQQfoRFhHLLK9dy9ePD2bhqC0op2nZuRUHObl4Zcx3ffx7nHnDsKs5k3LO3ADr2yOHy2/Z4FlL0p7ytQcXKSoLAva6Q/93uNX2GpDP26Z1+7u0CayscRflk799NWEw8YRGx5Q+yEtWZRKi6jB8/nttvv93zdVZWFk2bNi3jCiGEEKJiImIi6HTG8Z6vw8LD+d/LeZw5NIPP3mvA1g1hhEe46DU4g54DM0lp5iAqNtCaRW4VHTO0a6uNlKZFGH6229AaNq8N83nuiVmb6dzbf4KWsd/GrAkfsnDGGxTkGhiGpvtAO5c/MJJ2XftVLOAjVGcSoYSEBCwWC3v27PE6vmfPHlJSUnxek5KSUq7yAHa7Hbu9cqY2CiGEEMHSWqPTxxBqT6fnQBc9B9bM0IyM/VYaNvc9zb14IcWFs+IPP0N8kpNOp+Z6lUXjWeAxba+Vsee2Zv/uLEyX+6BpKlYuLOTnxVN44rN0Tup/SRW8o7LVmTFCNpuNzp078/XXX3uOmabJ119/TY8evvcv6dGjh1d5gCVLlvgtL4QQQtSYop/AuZ7Aq1RXrV1bQlj+pXuD15L7ijmdh3arH3rtPtqfnEvJwd0X37gXi9W9/YbW7v++dE8jz/VvPdqQ/btDSnT3uZku94KNE0d8gNNRsQUhj0SdSYQAbr/9dt58803ee+891q9fzw033EBubi6jRo0CYMSIEYwfP95TfuzYsSxcuJDnnnuOv//+mwkTJvDrr79y880319RbEEIIIXzShd9S0x01055J5pmxLXh8THNevKsJ2ze6e0hcrkO72XfskcMF1+3jxc838dTszUREuxg8cj9DR7v3UyseHG264MeFMRTmK7LSLSybH1cqCSqmTUX6Xgs/zXu/Wt5nSXWmawzc0+H37dvHgw8+SGpqKp06dWLhwoWeAdHbt2/HKDE8vWfPnsycOZP777+fe++9l7Zt2zJv3jyOP/54f7cQQgghaogzcJEqtPmvUGa84B46YpoGC2Y0YMGMBpx4ajZPfvgv4E6EQkoMpj6hey7Tf11HeKT3MgBKudceOv/q/ezYFIrTCS5n2YOWLBbNtnWbOLVy31ZAdSoRArj55pv9tugsW7as1LGLL76Yiy++uIqjEkIIIY6MCjkeHSAZKs9MsPLOGvv1mygsFhOXy7uzaNgte9HmoUUVSzIslEqCipkuiE1wUZCviYwJvGShaUJoePWP0a1TXWNCCCHE0Urb+1HWQoqmq3yJjVKgzUNjezz30bD6h0jefKQhkx9oxFdz4igqUFx68z5eXrCRVh3yPWXDI12c3CvHZxIUOADIz7Gw6tsomrUtJKVZIYfGFJWmgR5DL6zAjY6MJEJCCCFELaBcmwDtmZlVzDTdCc22f8rfWjLt2WSWfhzH2p/d+33t323hxn7tuPuS1nzyViKfvdeAZ25txmUnd2D18ghatC/guU82eXaxt4f5bu0JhtUKf/4Uzg8L4jAMuOKOPfhL9JShOfOiCBq2OaHC96uoOtc1JoQQQhyNCnLSefv+Rvy5MoJzrzpAn/MzCA03KSpU2MM0LY8NfkZV6nYbcyYnsmBmPE6HAWhOOSuLXVvs7N52cAC0s3hPNMjJsnD/Fa14bfE/NGpZyGXjUnnm1uZkplnJzrAEvXZRSVrDsZ3zWLEolr07bfS7OJ2M/VG880TswWn1GrR7xliPgXZue/flct+jMkiLkBBCCFHDHEUO7j3vSz6bmsC/68J56e6mvPtkQyxW95YVX0xrwOg+x7BpbSiuAGOqN/8Vyo392vHF9AYHkyCIaeAkJ8PCf/+G+py5pU2F6VTMfSMRqxX6nJ+BLdTEdCm+eL8BZgUahpSCM4ZmAJB64CpU3PtcMmEJM7ZMZOSDbel3WSwX3NyI1366noc/m0FoeM3s5ymJkBBCCFHDvp7+PWuX/4tpupOURi0Luemx/3AUKSaMaskr9zVmx0Y7z9/elKJCw28ypDU8cX1z8vMMTJfCHmYy7tkdzPp9HYmNnBiG/zE6Lpdi2bxYwL3NRmS0uxVo8YdxFV6lOizCnUFFRoOyd0MpRUKTtgx/cCJ3TH2b6154ibannFWxyiuJJEJCCCFEDfv89cUo41C2MejKA5gmfPx6Ir9/HwVaobVi89owXrqnMTv/tftspflzZQQ7N7tbfZTSPPj2FvpfmobFCvm5hifR8qewwJ0WOIoU2ZnuPTZOOyezQi1CWsOOzTYatyygZasvyl9BNZExQkIIIUQNS92yF20eaq1p0zEPZcD8txM8A6cTGxfx0DtbadsxH6fTPYvMMLynyW9aG4YyNNpUnNwrmy59cjx1NmtbwG/fRvld1FApTZPWhTid8PXHsTgK3UlRo5ZFaBPws/eYP0rBup8jGXVvKkrnBL6ghkgiJIQQQtSw6AZRZO7P9nxdVGCQttdK2l736oWh4S6e/XgTCY0cAGxZF8bsyYn8tCQap0PRqkMBQ67dhzVEe2ao9704HZfz0Po/Ay9P4+PXk8qM45wr9vPjghjeevTQ1hi5mYEzoJLJWHHiphQcc3IOHbvlg9EgmI+hRkjXmBBCCFHD+o3o49U19tOSaGwhh1qI+l6cTnITB1YrfPdZDLcOasv3n8dSkGfB6TDYuCaMp29pzo8Loj2JSIMUh9f6P03bFHLV3bsBd+tPScrQtDoun1kvJvP4mBZkZxy68NtPY7GG4JfpgoLcQ7Gn7bXywctJmCZ07JaP1gpCh6Adf6Ida9A6339lNUASISGEEKKGDRrTlwYN4zCs7sfy1x/H4TIVbU/IQxmaM4amo3HvDP/ULc0wXXh1cWmtiEt00LxdIS3aF4DS7NsVgvOwQdWXjd3L+Mnb3GUOik1wcPbwA2zbEEpWeumOog2rw/j56yhcPmbQmy73IOv/Xdiayzsfy5WnHMsVnTsw9cmG5GRaDi7maEDeB+gDF6IPXITe2xMz+xm09r3DfXWTREgIIYSoYdHxUTz/3SO0PrEFAAX5Vu4Z1ppBV+5Hm4qoWBeGAYtmxeNyHFr/x00z6p7dzPhtHWMm7OKZjzdx0mk5LPkoHquPATB9zs9g8lf/8MEff/H+L+uYuWod+3fbME2F9jmYWvHYdc35cUEMAC4nON09dGRlWHhwREs2/RnB/t029v5n8wzIttk1B3aHYBguILdEuLmQ+zY6fQxa1+z+agBKax14A5B6LCsri5iYGDIzM4mOrpk1DoQQQtQPWms2/LKJdT/+gzIU29ZtIsI6h/ad8+jWL4uHr27Bz19FUzIRumzcHq66K/WwemDNinAiok1adSjAKKPZIzvDwkXHHQe6rBllGlA0aV1AjwFZ2MNMtv4dysrF0Z61ioopQ9OhSy7PfbKZokKwh/rf90zFPI8KOzfwB1MBwT6/ZbC0EEIIUUsopWjftS3tu7YlLTWdsd3f5L2VqezfbWXl4hh+Wer9QA+LcHHpLXt81AMn9swD3HuNKeV/n7KcTEuAJAiKE6+dm0OZ/VpoGeXcM9Yuv20PSoGtzF1BDHTerCpLhIIlXWNCCCFELfTtRyuIjHGPo8nYH8LjY5q7p7GXaA065cxsQsPK7tixWuGx65qyZ4cV08c4n9gEJ9aQiu8pdojGYoFxz+ygc2/3dHmlvPdN82aCa3sl3PfISCIkhBBC1ELb1+9k364QTBPmTEk8mP54t9xERAW3B5ij0Mr05xuifDz1wyJMzhiagWE5spEyHbvn8v6v6xh4eZrX8bJaozBij+ielUESISGEEKIWyk7LIfNACD8tiWbFomhcPhZC/G9LcDvSXzhmL7//EMFmP3uVXXFHKlExLh/JUDDJkUYpTctj82mQXJ7BzwoVNqQc5auGJEJCCCFELdT8uKYAvPVYQ5wO300qf66MYPc2W8AtME7omcuzH2/m8THN+XFhjFd50wR7qMmLX2ykyxnZUGKNoej4QC1OGmVoouKcLJjZgJzMYNMKBUYKhF0cZPmqI4OlhRBCiFrohF4dAPcA5RC7iVLavThhCVornrutCc98/K/fmVngPp7U2MG5I9J47LoWJDYu4viu7intf/0cwfPzN5HSrIhHp21h364Q/ttiIzzSpMWx+TxweSvWrIj0sU+ZJj7ZyauLNrB3p41V30WxYXW4Z3yQp5RJ6S45IwUVPwNl1PxsbJk+H4BMnxdCCFETtNZc3WEc//2zm7Ie1fHJDmb9vi6oOnOzDS469viDSY27TqVgwY41PscPARTkKaY81JjFH8bjch4cqWRoep6dybind3pajVxOd8Jz+FR9nwla/DwMW4egYq4omT4vhBBC1GFKKR6cfQd39H6Q7IxcbDaTokKFMvAsfGhYtFdXViARUSbhUS5yMq2E2DWnnZNJVprFbxIEEBquGfv0Tq66ezfrf43ANBVtO+aR3NThVc5i9T1DzDsJskBIxypPgspDEiEhhBCilmp5fDNe/+M5PnnxCxZPW8b5F2/ml6VRbP07DMPQnNw7m4tvKL2OkD9OBxTkubMel0Pxv0nbKcgzfHdflaAUxCW46Hl2Vpn1+50dVsyIR8U8H3S81UESISGEEKIWS2zSgOueGcF1z4xAF/3BtWnDcTlNlGGWuWL04ZxO+O7TWM9K0Kap+P7zWHqfn1FmElSWQAmUNwVhQ1DWJhW7WRWRWWNCCCFEHaFsJ6Li3sVib1SuJMh0uVuAPng52ev4h68konVZix6Wfc5fEuT7Gg0FSwPGWt0kERJCCCHqEGXvhkr4ChU/Hez9OXyRRV9MEybd1YRt/xxad0gpTeOWRRTmq8BdWuXgdEDGfovvkzrX9/EaJImQEEIIUccoZaBsXVGxk8DeD8CzUKLW7hYg04VnvSBrCNz98g5mr/2LMRP+o1u/THqenUnj1oWk7Qnx1Ht4S06g9Ym0j/PWEJj3VoLXsdcnNGThzAQKitqW521WC5k+H4BMnxdCCFGbmaaLiRedy4Bhe2jWtpDcLINvPokjP9fghkd3eco5ihTP3NqUbz+Nw2LVnqTHdCkuuG4f1z20y6tlyFGk+PTdBvS7OJ2IaBeWAKOKXU73zLFpzySzcFY8M1et9xwf1LwjWiuatI3j2WVP06BhXGV/DKXI9HkhhBCiHnA6TJbNi2TZvMjDzmgiY51cecdenE6Y8lAjvvssFsCzHlCxuW8kEpfoYPDI/cx9PZE+QzNo2LyI7RtDufeyVkz84F8iolwowz0zrDjp8dxJQ26WhYk3NmPVd9E0alnoHYl2d0Dt3pLFY5c+zwvfPVrZH0OFSSIkhBBC1GE2ewhxKbGkp2Ycdkbx0avJfP9ZLL3Oy+DL9xuUWpm6pA9fTeK7z2LYvDac47rm0bBZEeOe2clv30Yx+YFGND+mgC5nZBOX6DzYQnSoQ0kp93YcSrnXNjp9kDsWrSEv28Bi1bicCpfTZO0Pf7Pp9y20Oall5X8YFSBjhIQQQog6bvCY/hiW0o/0qFgnrY/PZ/pzyT62yPCWk2Fl45/hmKbiqzlxntafLn2yuevlHVx68z5aH1dAfJITe2jpUTVOJ5x5YTo2u8m5Iw54jkfGmjw67V+sIe4BRYah+H3p2iN8x5VHEiEhhBCijrvgtkE0bd/4sAlkmkff38Idk3Zwyc17CWon+YNFls2PZds/dp871ftjtUJ8kpPHZ2whoZF71Wml3K+TeuVwwZh97oIKdKBR2NVIEiEhhBCijouIDmfS949yzCltPMdOPDWH1scVYLVCt77ZBDPNvriMo9Dg49cTPa1IwUyrMk04oUcOx3fLxTC8r1EKhly9H6U0pktz/Gnty/HuqpYkQkIIIcRRIDI2gkfn343F6n60d+6djfPgdmAduuTRrG0+huE7o7FYtNe5bn2zuP3ZnVithzZmDcQw3FPni5W8RilokOIkLslB6xMTObZ7u/K9uSokiZAQQghxlIhLjuWu925BGQpriPK0yigF97y6ndBw071RawmGRROT4OTYLrm4+8Y01z6wC015ts8IznGn5PHg7DtRlbmC4xGSREgIIYQ4ipw5/DQm/fAYWDsSYjt0vPXxBbyy6B/6XZJGiM09Rics0sU5VxwgIcXBXz+7p9+3Oq6AZm0Ly7WFRzC0hntfT6Vhq+TAhauRLKgYgCyoKIQQoi7Sugi9rw+YaYD34GSXy70LfViEyWPXNWfFohhMl7uV5uRe2Uz84N+qiQkwoh9FhV9aJfWXFOzzW1qEhBBCiKOQUjZU7GRQoYD33l8WC0REmfzydSTLFxxKggD2/hdCVdEucOR8X2X1V4QkQkIIIcRRStlORDX4DMKvBBVT6vyn7yaUmlW/c3Mo61eF43L5rvNI+5G2/rX9yCqoZJIICSGEEEcxZW2KEX0vRvIvqMRvIPyqg0mRwun0vcHE5AcauVeCPiwZMs3gZpD5DwaWzc2jIK8wcNlqIomQEEIIUU8oS2OM6Pswkn/BSNlAu+598LW+0IbfI/jfBa3Z+EeY1/F9/4VUuEXIdEFhvsGX70ezf+eBwBdUE0mEhBBCiHrqmgfs2MNc+Fp1esPvEdx2flveejwFcA+wjkt2BN0iVDJhcjnB6VA8ck0LcrMs2MPtlRB95ZBESAghhKiHdNFqyH2V8VO2Yhh4L7aoNEppmrcr4NKb3FtjKAWqjE1bfcnPMdj7XwifvpvAmDOP4fcfomndqQWJTRpU4js5MrL7vBBCCFEP6bwZgIUe/XJ4/Zv1fPdpPIs+iCcr3UJCQweDrjzAwMvTCIsonnpvsOe/MBo1z8WwlFWzm8vp3rNs0p1NS96VKx+8uAreTcVJIiSEEELUR44/Afdo6GZtHVxxxx6uuGOP3+KGYdCkQy8oWBD0LXKzrVisFkzTxDAUN066mlOHdD3SyCuVJEJCCCFEfaRCy3mBE7QD95pEfubWl2ANARV2Lv1GxNCkXSP6X9WbuOTYCgRatSQREkIIIeohFdoPnfM3h6867ZsBtlPB8S/BJEFggP1MLr77niMLshrIYGkhhBCiPgq7FFQ4ZacCB8/Zz0TFvgRGkO0noYNQsc8faYTVQlqEhBBCiHpIWRIg7l10+mjQGRxKiEwgFELPRllbQWhflLUNANreG5yb8d8qpCD0fIzYp6s8/soiiZAQQghRTynbiZC4DAo+Rxf9BGiUrQuEnocyIkuXDxuOzn0Pd7Lka2VFCyryhqoNupJJIiSEEELUY8oIh/BLUOGXBC5rbQJxr6LTbwYcHBpfZAAWVOwklLVlFUZb+SQREkIIIUTQlL03JH6FzvsQilYAGmzdUeGXoiwNazq8cpNESAghhBDloizJqKhbgVtrOpQjJrPGhBBCCFFvSSIkhBBCiHqrziRCaWlpXH755URHRxMbG8s111xDTk5Omdf06dMHpZTX6/rrr6+miIUQQghR29WZMUKXX345u3fvZsmSJTgcDkaNGsV1113HzJkzy7xu9OjRPPLII56vw8PDqzpUIYQQQtQRdSIRWr9+PQsXLuSXX36hS5cuALz88succ845PPvsszRq1MjvteHh4aSkpFRXqEIIIYSoQ+pE19iKFSuIjY31JEEAffv2xTAMfvrppzKvnTFjBgkJCRx//PGMHz+evLy8MssXFhaSlZXl9RJCCCHE0alOtAilpqaSlJTkdcxqtRIfH09qaqrf6y677DKaN29Oo0aNWLNmDXfffTcbNmxg7ty5fq+ZOHEiDz/8cKXFLoQQQojaq0YToXvuuYennnqqzDLr16+vcP3XXXed5/87duxIw4YNOeuss9i8eTOtW7f2ec348eO5/fbbPV9nZWXRtGnTCscghBBCiNqrRhOhO+64g5EjR5ZZplWrVqSkpLB3716v406nk7S0tHKN/+nWrRsAmzZt8psI2e127HZ70HUKIYQQou6q0UQoMTGRxMTEgOV69OhBRkYGv/32G507dwZg6dKlmKbpSW6CsXr1agAaNqx7S4ALIYQQovLViTFCxx57LGeffTajR49mypQpOBwObr75ZoYNG+aZMfbff/9x1llnMW3aNLp27crmzZuZOXMm55xzDg0aNGDNmjXcdttt9OrVixNOOCHoe2vt3l1XBk0LIYQQdUfxc7v4Oe6XriMOHDighw8friMjI3V0dLQeNWqUzs7O9pzfsmWLBvQ333yjtdZ6+/btulevXjo+Pl7b7Xbdpk0bfeedd+rMzMxy3XfHjh0akJe85CUveclLXnXwtWPHjjKf80rrQKlS/Waa5v/bu/+YqOs/DuDPOzhODQ8kkIPq7FCDrRgFTTr/QAnqruGSZLYIC5QgDDf7uYytmG3NRm5tOjfyD4+1lRYbzWXpZkfUtOtSokmKLBhg/DhauDMaEAqv7x/O63tJyB3dD+7zfGy3ce97v8/X+7W37732vs/dB4ODg1i6dClUKlWww5nVjQu7f/31V+h0umCHs6Awd/PD/PmOuZsf5s934Z47EcHo6CiSk5OhVv/7rwUtiI/GgkmtVuPOO+8Mdhhe0el0YbmoA4G5mx/mz3fM3fwwf74L59zFxMTcss+C+EFFIiIiIn9gIURERESKxUIojGi1WtTW1vJ3kHzA3M0P8+c75m5+mD/fMXfX8WJpIiIiUiyeCBEREZFisRAiIiIixWIhRERERIrFQoiIiIgUi4XQAtXb24vy8nIYjUYsXrwYK1euRG1tLSYnJ2cdt379eqhUKo9HVVVVgKIOHb7mb2JiAtXV1bj99tsRHR2NoqIiDA8PByjq0PHOO+9g7dq1WLJkCWJjY+c0pqys7Ka1Z7FY/BtoiPIlfyKCt956C0lJSVi8eDHy8/Pxyy+/+DfQEHX58mWUlJRAp9MhNjYW5eXl+PPPP2cdo9S978CBA7j77ruxaNEiZGdn44cffpi1f2NjI9LS0rBo0SKkp6fjyy+/DFCkwcNCaIG6ePEipqen8cEHH+D8+fN4//33UV9fj5qamluOraiowNDQkPtRV1cXgIhDi6/5e+mll/D555+jsbER33zzDQYHB7Fp06YARR06JicnsXnzZmzfvt2rcRaLxWPtHT582E8RhjZf8ldXV4d9+/ahvr4eDocDt912G8xmMyYmJvwYaWgqKSnB+fPncfLkSRw7dgzffvstKisrbzlOaXvfJ598gpdffhm1tbX48ccfkZGRAbPZjN9++23G/t999x2Ki4tRXl6OtrY2FBYWorCwED///HOAIw8wr+5ASiGtrq5OjEbjrH3WrVsnO3fuDExAC8yt8udyuUSj0UhjY6O7raOjQwCI3W4PRIghx2q1SkxMzJz6lpaWysaNG/0az0Iz1/xNT0+LXq+X9957z93mcrlEq9XK4cOH/Rhh6Llw4YIAkDNnzrjbjh8/LiqVSgYGBv51nBL3vjVr1kh1dbX7+dTUlCQnJ8uePXtm7P/kk09KQUGBR1t2drY8//zzfo0z2HgiFEauXLmCuLi4W/b76KOPEB8fj/vuuw9vvPEGxsbGAhBd6LtV/lpbW3H16lXk5+e729LS0mAwGGC32wMR4oLX0tKC5cuXIzU1Fdu3b8fIyEiwQ1oQenp64HQ6PdZeTEwMsrOzFbf27HY7YmNj8eCDD7rb8vPzoVar4XA4Zh2rpL1vcnISra2tHmtGrVYjPz//X9eM3W736A8AZrM57NcYb7oaJrq6urB//37s3bt31n5PP/00VqxYgeTkZJw7dw6vv/46Ojs70dTUFKBIQ9Nc8ud0OhEVFXXTNR2JiYlwOp1+jnDhs1gs2LRpE4xGI7q7u1FTU4PHHnsMdrsdERERwQ4vpN1YX4mJiR7tSlx7TqcTy5cv92iLjIxEXFzcrLlQ2t73+++/Y2pqasY1c/HixRnHOJ1ORa4xngiFmF27dt10Qd8/H/9cxAMDA7BYLNi8eTMqKipmff/KykqYzWakp6ejpKQEH374IT777DN0d3f7c1oB4+/8hTNfcueNp556Co8//jjS09NRWFiIY8eO4cyZM2hpafnvJhFE/s5fuPN3/sJ97yPf8UQoxLzyyisoKyubtU9KSor778HBQeTm5mLt2rU4ePCg1/9ednY2gOsnIitXrvR6fKjxZ/70ej0mJyfhcrk8ToWGh4eh1+vnE3ZI8DZ385WSkoL4+Hh0dXUhLy/vP3vfYPFn/m6sr+HhYSQlJbnbh4eHcf/99/v0nqFmrvnT6/U3Xex77do1XL582av/h+G29/1TfHw8IiIibvpW62z7lV6v96p/uGAhFGISEhKQkJAwp74DAwPIzc1FVlYWrFYr1GrvD/h++uknAPDYXBcyf+YvKysLGo0GNpsNRUVFAIDOzk5cunQJJpNp3rEHmze5+y/09/djZGREkWvPW0ajEXq9HjabzV34/PHHH3A4HF5/cy9UzTV/JpMJLpcLra2tyMrKAgA0NzdjenraXdzMRbjtff8UFRWFrKws2Gw2FBYWAgCmp6dhs9mwY8eOGceYTCbYbDa8+OKL7raTJ0+Gxf42q2BfrU2+6e/vl1WrVkleXp709/fL0NCQ+/H/fVJTU8XhcIiISFdXl7z99tty9uxZ6enpkaNHj0pKSork5OQEaxpB40v+RESqqqrEYDBIc3OznD17Vkwmk5hMpmBMIaj6+vqkra1Ndu/eLdHR0dLW1iZtbW0yOjrq7pOamipNTU0iIjI6Oiqvvvqq2O126enpka+++koyMzNl9erVMjExEaxpBI23+RMReffddyU2NlaOHj0q586dk40bN4rRaJTx8fFgTCGoLBaLPPDAA+JwOOTUqVOyevVqKS4udr/Ove+6I0eOiFarlYaGBrlw4YJUVlZKbGysOJ1OERF55plnZNeuXe7+p0+flsjISNm7d690dHRIbW2taDQaaW9vD9YUAoKF0AJltVoFwIyPG3p6egSAfP311yIicunSJcnJyZG4uDjRarWyatUqee211+TKlStBmkXw+JI/EZHx8XF54YUXZNmyZbJkyRJ54oknPIonpSgtLZ0xd/+fKwBitVpFRGRsbEweffRRSUhIEI1GIytWrJCKigr3hqw03uZP5PpX6N98801JTEwUrVYreXl50tnZGfjgQ8DIyIgUFxdLdHS06HQ62bp1q0cRyb3vb/v37xeDwSBRUVGyZs0a+f77792vrVu3TkpLSz36f/rpp3LPPfdIVFSU3HvvvfLFF18EOOLAU4mIBOjwiYiIiCik8FtjREREpFgshIiIiEixWAgRERGRYrEQIiIiIsViIURERESKxUKIiIiIFIuFEBERESkWCyEiIiJSLBZCRLTglZWVQaVSoaqq6qbXqquroVKp3Df0vNFXpVJBo9EgMTERjzzyCA4dOoTp6WmPsQcPHsT69euh0+mgUqngcrkCMBsiCiQWQkQUFu666y4cOXIE4+Pj7raJiQl8/PHHMBgMHn0tFguGhobQ29uL48ePIzc3Fzt37sSGDRtw7do1d7+xsTFYLBbU1NQEbB5EFFi8+zwRhYXMzEx0d3ejqakJJSUlAICmpiYYDAYYjUaPvlqtFnq9HgBwxx13IDMzEw899BDy8vLQ0NCA5557DgDcd+FuaWkJ2DyIKLB4IkREYWPbtm2wWq3u54cOHcLWrVvnNPbhhx9GRkYGmpqa/BUeEYUgFkJEFDa2bNmCU6dOoa+vD319fTh9+jS2bNky5/FpaWno7e31X4BEFHL40RgRhY2EhAQUFBSgoaEBIoKCggLEx8fPebyIQKVS+TFCIgo1LISIKKxs27YNO3bsAAAcOHDAq7EdHR03XU9EROGNH40RUVixWCyYnJzE1atXYTab5zyuubkZ7e3tKCoq8mN0RBRqeCJERGElIiICHR0d7r9n8tdff8HpdGJqagrDw8M4ceIE9uzZgw0bNuDZZ59193M6nXA6nejq6gIAtLe3Y+nSpTAYDIiLi/P/ZIjI71gIEVHY0el0s75+4sQJJCUlITIyEsuWLUNGRgb27duH0tJSqNV/H5TX19dj9+7d7uc5OTkAAKvV6v6BRiJa2FQiIsEOgoiIiCgYeI0QERERKRYLISIiIlIsFkJERESkWCyEiIiISLFYCBEREZFisRAiIiIixWIhRERERIrFQoiIiIgUi4UQERERKRYLISIiIlIsFkJERESkWCyEiIiISLH+B+SHdVZebJDWAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from keras.models import Sequential, Model\n", "from keras.layers import Dense, Input, concatenate, GlobalAveragePooling1D\n", "from keras.utils import to_categorical\n", "from sklearn.manifold import MDS\n", "import matplotlib.pyplot as plt\n", "\n", "# Load your dataset\n", "data = pd.read_csv('/content/stressinput.csv', header=None)\n", "\n", "# Separate features and labels\n", "features = data.iloc[:, :-1].values\n", "labels = data.iloc[:, -1].values\n", "\n", "# Scale features using StandardScaler\n", "scaler = StandardScaler()\n", "features_scaled = scaler.fit_transform(features)\n", "\n", "# Convert labels to one-hot encoding\n", "num_classes = len(np.unique(labels))\n", "labels_one_hot = to_categorical(labels, num_classes=num_classes)\n", "\n", "# Define the custom DenseNet-like architecture\n", "def create_custom_densenet(input_shape, num_dense_blocks=3, num_layers_per_block=3, growth_rate=32):\n", " input_layer = Input(shape=input_shape)\n", " x = input_layer\n", "\n", " for _ in range(num_dense_blocks):\n", " for _ in range(num_layers_per_block):\n", " # Dense layer\n", " x = Dense(growth_rate, activation='relu')(x)\n", " # Concatenate with previous layers\n", " x = concatenate([x, input_layer])\n", "\n", " # Global average pooling\n", " x = GlobalAveragePooling1D()(x)\n", "\n", " # Output layer\n", " output_layer = Dense(num_classes, activation='softmax')(x)\n", "\n", " model = Model(inputs=input_layer, outputs=output_layer)\n", " return model\n", "\n", "# Reshape features to simulate an image\n", "features_reshaped = features_scaled.reshape(features_scaled.shape[0], features_scaled.shape[1], 1)\n", "\n", "# Split the data into training and test sets\n", "X_train, X_test, Y_train, Y_test = train_test_split(features_reshaped, labels_one_hot, test_size=0.2, random_state=42)\n", "\n", "# Create the custom DenseNet-like model\n", "input_shape = (features_scaled.shape[1], 1)\n", "model_densenet = create_custom_densenet(input_shape=input_shape)\n", "\n", "model_densenet.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n", "\n", "# Train the model\n", "model_densenet.fit(X_train, Y_train, epochs=5, batch_size=32, validation_split=0.1)\n", "\n", "# Extract features for MDS from the model\n", "feature_extraction_model = Model(inputs=model_densenet.input, outputs=model_densenet.layers[-2].output)\n", "features_extracted = feature_extraction_model.predict(X_test)\n", "\n", "# Apply MDS for dimensionality reduction\n", "mds = MDS(n_components=2)\n", "features_2d = mds.fit_transform(features_extracted)\n", "\n", "# Plot MDS results\n", "plt.scatter(features_2d[:, 0], features_2d[:, 1], c=np.argmax(Y_test, axis=1), cmap='viridis')\n", "plt.title('MDS Visualization of Custom DenseNet Features')\n", "plt.xlabel('MD1')\n", "plt.ylabel('MD2')\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 891 }, "id": "2UK9M2DMoC0O", "outputId": "e8345920-5f8b-4043-de90-1aa49a742704" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/10\n", "127/127 [==============================] - 6s 30ms/step - loss: 0.6238 - accuracy: 0.6790 - val_loss: 0.6255 - val_accuracy: 0.6822\n", "Epoch 2/10\n", "127/127 [==============================] - 3s 22ms/step - loss: 0.6168 - accuracy: 0.6898 - val_loss: 0.6228 - val_accuracy: 0.6822\n", "Epoch 3/10\n", "127/127 [==============================] - 3s 23ms/step - loss: 0.6150 - accuracy: 0.6898 - val_loss: 0.6272 - val_accuracy: 0.6822\n", "Epoch 4/10\n", "127/127 [==============================] - 3s 23ms/step - loss: 0.6149 - accuracy: 0.6898 - val_loss: 0.6221 - val_accuracy: 0.6822\n", "Epoch 5/10\n", "127/127 [==============================] - 3s 27ms/step - loss: 0.6154 - accuracy: 0.6898 - val_loss: 0.6221 - val_accuracy: 0.6822\n", "Epoch 6/10\n", "127/127 [==============================] - 3s 23ms/step - loss: 0.6139 - accuracy: 0.6898 - val_loss: 0.6213 - val_accuracy: 0.6822\n", "Epoch 7/10\n", "127/127 [==============================] - 3s 23ms/step - loss: 0.6131 - accuracy: 0.6898 - val_loss: 0.6212 - val_accuracy: 0.6822\n", "Epoch 8/10\n", "127/127 [==============================] - 3s 25ms/step - loss: 0.6120 - accuracy: 0.6898 - val_loss: 0.6233 - val_accuracy: 0.6822\n", "Epoch 9/10\n", "127/127 [==============================] - 3s 24ms/step - loss: 0.6131 - accuracy: 0.6898 - val_loss: 0.6213 - val_accuracy: 0.6822\n", "Epoch 10/10\n", "127/127 [==============================] - 3s 22ms/step - loss: 0.6129 - accuracy: 0.6898 - val_loss: 0.6216 - val_accuracy: 0.6822\n", "36/36 [==============================] - 1s 9ms/step\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.10/dist-packages/sklearn/manifold/_mds.py:299: FutureWarning: The default value of `normalized_stress` will change to `'auto'` in version 1.4. To suppress this warning, manually set the value of `normalized_stress`.\n", " warnings.warn(\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHHCAYAAABTMjf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADUw0lEQVR4nOydd3gU1deA35ndzab3CoSEjqDSQVDpiIAgNoogiKJiRfksYEHUn11sKCKooBSRIhYEaaKgIKIISO8llIT0nuzO3O+PzW6yye5mE0LT+z5PHt2ZO/eemR12zpyqCCEEEolEIpFIJP9B1AstgEQikUgkEsmFQipCEolEIpFI/rNIRUgikUgkEsl/FqkISSQSiUQi+c8iFSGJRCKRSCT/WaQiJJFIJBKJ5D+LVIQkEolEIpH8Z5GKkEQikUgkkv8sUhGSSCQSiUTyn0UqQpIaZ9asWSiKwpEjRy46Obp27UrXrl3PuywXat2qkJyczK233kpERASKovDuu++edxkulntHIpH8d5CK0AXE/qOvKAq//vprhf1CCOLj41EUhRtuuMFpn/04RVEwGo2Eh4fTpk0bxo4dy65du1yud+bMGcaOHUvTpk3x8/MjOjqa9u3b89RTT5Gbm+tWzgEDBuDv709OTo7bMcOGDcPHx4e0tDQvz/7fx65du5g0adIl+xB/7LHHWLFiBRMmTGD27Nlcf/31bsfa773JkydX2Ge/r//8889zKW6NomkaM2fOpGvXroSHh2M2m0lMTGTUqFHn7DxOnjzJpEmT2Lp16zmZ/2yozu/LxYz9nvT19eXEiRMV9nft2pXLL7+8WnPPmzevSi8NiYmJTte37F9hYWG1ZKiMV155hW+++eaczP2vQEguGDNnzhSA8PX1Fffff3+F/WvXrhWAMJvNol+/fk77ANGrVy8xe/Zs8cUXX4gpU6aI0aNHi5CQEGE0GsXkyZOdxqelpYm6deuK0NBQMW7cODF9+nTx6quviqFDh4qgoCBx+PBht3LOnz9fAOLzzz93uT8vL08EBASI/v37CyGEsFqtoqCgQOi6XsUrUrPYr2/ZcysqKhJFRUXnZL2FCxcKQKxdu7bCvnO5bk0RExMjhg0b5tVYQAAiJiZG5OXlOe2zX/fNmzdXWYYLce/k5+eL66+/XgCic+fO4s033xSffvqpeO6550STJk2Eoiji+PHjNb7u5s2bBSBmzpxZ43OfLVX9fbnYsd+TgHjooYcq7O/SpYto3rx5tebu16+fSEhI8Hp8QkKCaNmypZg9e3aFP03TqiVDZQQEBIiRI0eek7n/DRgvhPIlcaZv374sXLiQ999/H6Ox9CuZN28ebdq0ITU11eVxjRs3Zvjw4U7bXnvtNfr378///d//0bRpU/r27QvAp59+yrFjx/jtt9/o1KmT0zHZ2dn4+Pi4lW/AgAEEBQUxb948RowYUWH/t99+S15eHsOGDQPAYDBgMBi8O/nzjKfz/DeuWxVSUlIIDQ31enzLli3ZunUr06ZNY9y4cTUiw4W4d5544gl+/PFH3nnnHR599FGnfc8//zzvvPPOeZXnYqEqvy+XCi1btmTGjBlMmDCBWrVqXTA5ateuXeHaXmrouk5xcTG+vr4XWpSz50JrYv9l7G8pCxcuFIqiiGXLljn2FRUVibCwMDF58mSRkJDg0iL04IMPupz36NGjwmg0ik6dOjm23XfffcJgMFT7jWPkyJHCaDSK5OTkCvtuuOEGERQUJPLz853Oq6wlZvPmzeK6664TERERwtfXVyQmJopRo0Y59tutX+WtKYcPH67w1rxt2zYxcuRIUa9ePWE2m0VMTIwYNWqUSE1NdTrWlRxdunQRXbp0cXxOSEhwvCmW/7PLcuTIEXH//feLxo0bC19fXxEeHi5uvfVWp3nLvnG6mqP8ukIIkZycLO666y4RHR0tzGazuPLKK8WsWbNcnv+bb74pPv74Y1G/fn3h4+Mj2rZtK/74448K34UrDh48KG699VYRFhYm/Pz8RIcOHcTSpUsrld0T9vuve/fuIiYmxvHdl52vvEVozZo14pprrhH+/v4iJCREDBgwQOzatctpTFXvHV3XRUJCghgwYEAFGQsKCkRwcLC499573Z7H8ePHhdFoFL169fJ4vnZGjhzp8u3/+eefr3DNVq5cKa6++moREhIiAgICROPGjcWECROEEKX3e/m/svf5ggULROvWrYWvr6+IiIgQw4YNE0lJSRXkCQgIEEePHhX9+vUTAQEBolatWuKDDz4QQgixfft20a1bN+Hv7y/q1q0r5s6d69V5VvX3RQghCgsLxcSJE0WDBg2Ej4+PqFOnjnjiiSdEYWGhy7mXLFkimjdvLnx8fESzZs3E8uXLncZlZ2eLsWPHioSEBOHj4yOioqJEz549xV9//eU07vfffxe9e/cWwcHBws/PT3Tu3Fn8+uuvTmPs99WCBQuE0WgUDz/8sNN+dxah2bNnO76DsLAwMXjwYHHs2DGn48p/h5VZh1z9npcnIyNDjB07VtSpU0f4+PiIBg0aiNdee63C7/ebb74pOnbsKMLDw4Wvr69o3bq1WLhwodMYV/eZ3TpUlfvZ/r3NmTNHNGvWTBiNRrFkyRIhhBBJSUli1KhRIjo62vF9fvrppxXmff/990WzZs2En5+fCA0NFW3atPH6njyXSIvQRUBiYiIdO3bkyy+/pE+fPgAsX76crKwshgwZwvvvv1+l+erWrUuXLl1Yu3Yt2dnZBAcHk5CQgKZpzJ49m5EjR1ZZxmHDhvH555+zYMECHnroIcf29PR0VqxYwdChQ/Hz83N5bEpKCtdddx1RUVGMHz+e0NBQjhw5wtdff11lOQBWrVrFoUOHGDVqFLGxsezcuZPp06ezc+dOfv/9dxRF8Xqud999t0J81DvvvMPWrVuJiIgAYPPmzWzYsIEhQ4ZQp04djhw5wkcffUTXrl3ZtWsX/v7+dO7cmUceeYT333+fp59+mssuuwzA8d/yFBQU0LVrVw4cOMBDDz1EvXr1WLhwIXfeeSeZmZmMHTvWafy8efPIycnhvvvuQ1EU3njjDW6++WYOHTqEyWRye37Jycl06tSJ/Px8HnnkESIiIvj8888ZMGAAixYt4qabbqJz587Mnj2bO+64g169erm0+rlj0qRJdO7cmY8++sijVWj16tX06dOH+vXrM2nSJAoKCpgyZQpXX301W7ZsITEx0eVxld07iqIwfPhw3njjDdLT0wkPD3cc+/3335Odne3xzXv58uVYrVbuuOMOr8/ZG3bu3MkNN9zAlVdeyYsvvojZbObAgQP89ttvgO2+ePHFF5k4cSL33nsv1157LYDDWjtr1ixGjRpFu3btePXVV0lOTua9997jt99+4++//3ay3GmaRp8+fejcuTNvvPEGc+fO5aGHHiIgIIBnnnmGYcOGcfPNNzNt2jRGjBhBx44dqVevXrXPzdXvi67rDBgwgF9//ZV7772Xyy67jH/++Yd33nmHffv2VYhP+fXXX/n666954IEHCAoK4v333+eWW27h2LFjjn93Y8aMYdGiRTz00EM0a9aMtLQ0fv31V3bv3k3r1q0B+Omnn+jTpw9t2rTh+eefR1VVZs6cSffu3Vm/fj3t27d3WrdevXqMGDGCGTNmMH78eI9WoZdffpnnnnuOQYMGMXr0aM6cOcOUKVPo3Lmz4zt45plnyMrKIikpyWE5DAwMrPQaWiyWCpZ+f39//P39yc/Pp0uXLpw4cYL77ruPunXrsmHDBiZMmMCpU6ec4pHee+89BgwYwLBhwyguLmb+/PncdtttLF26lH79+gEwe/ZsRo8eTfv27bn33nsBaNCgQaUyuuKnn35yPAMiIyNJTEwkOTmZq666CkVReOihh4iKimL58uXcfffdZGdnO6ysM2bM4JFHHuHWW29l7NixFBYWsn37djZt2sTtt99eLXlqjAutif2XKfvm/MEHHzhZVW677TbRrVs3IYTrNwg8vLEJIcTYsWMFILZt2yaEEOL06dMiKipKAKJp06ZizJgxYt68eSIzM9MrWa1Wq4iLixMdO3Z02j5t2jQBiBUrVlQ4L/tb/ZIlSyqNGamKRais9cHOl19+KQCxbt06t3II4doyU5YFCxYIQLz44ose19u4caMAxBdffOHY5ilGqPy67777rgDEnDlzHNuKi4tFx44dRWBgoMjOznY6/4iICJGenu4Y++233wpAfP/9927PRQghHn30UQGI9evXO7bl5OSIevXqicTERKc3zMruqbKUHdutWzcRGxtbwSJY9vtu2bKliI6OFmlpaY5t27ZtE6qqihEjRji2Vefe2bt3rwDERx995LR9wIABIjEx0WO80WOPPSYA8ffff3t13t6+Qb/zzjsCEGfOnHE7l7sYoeLiYhEdHS0uv/xyUVBQ4Ni+dOlSAYiJEyc6yQOIV155xbEtIyND+Pn5CUVRxPz58x3b9+zZIwDx/PPPV3qeVf19mT17tlBV1ek+E6L09+G3335zmtvHx0ccOHDAsW3btm0CEFOmTHFsCwkJ8SiDruuiUaNGonfv3k7fcX5+vqhXr56Tla/sPXnw4EFhNBrFI4884thf3iJ05MgRYTAYxMsvv+y05j///COMRqPT9urECOHCSmP/Xl566SUREBAg9u3b53Tc+PHjhcFgcLJIlf9tKi4uFpdffrno3r2703Z3MUJVtQipqip27tzptP3uu+8WcXFxFSzyQ4YMESEhIQ4Zb7zxxmrHYZ1rZNbYRcKgQYMoKChg6dKl5OTksHTp0rPSku1vJfZMr5iYGLZt28aYMWPIyMhg2rRp3H777URHR/PSSy8hhPA4n8FgYMiQIWzcuNEpK2revHnExMTQo0cPt8fa316XLl2KxWKp9jnZKWt5KiwsJDU1lauuugqALVu2VHveXbt2cdddd3HjjTfy7LPPulzPYrGQlpZGw4YNCQ0NrfZ6y5YtIzY2lqFDhzq2mUwmHnnkEXJzc/nll1+cxg8ePJiwsDDHZ7sF4dChQ5Wu0759e6655hrHtsDAQO69916OHDlSIxlAkyZN4vTp00ybNs3l/lOnTrF161buvPNOJ4vNlVdeSa9evVi2bJnbub25dxo3bkyHDh2YO3euY1t6ejrLly9n2LBhHi2E2dnZAAQFBbkdUx3scn/77bfoul6lY//8809SUlJ44IEHnOIv+vXrR9OmTfnhhx8qHDN69GintZs0aUJAQACDBg1ybG/SpAmhoaGV3jPeUP73ZeHChVx22WU0bdqU1NRUx1/37t0BWLt2rdPxPXv2dLJKXHnllQQHBzvJFhoayqZNmzh58qRLGbZu3cr+/fu5/fbbSUtLc6yZl5dHjx49WLdunctrX79+fe644w6mT5/OqVOnXM799ddfo+s6gwYNcjqf2NhYGjVqVOF8qkqHDh1YtWqV05/dErtw4UKuvfZawsLCnNbu2bMnmqaxbt06xzxlf5syMjLIysri2muvPavfQU906dKFZs2aOT4LIVi8eDH9+/dHCOEkb+/evcnKynLIEhoaSlJSEps3bz4nsp0NUhG6SIiKiqJnz57MmzePr7/+Gk3TuPXWW6s9n93dU/YHPi4ujo8++ohTp06xd+9e3n//faKiopg4cSKffvpppXPag6HnzZsHQFJSEuvXr2fIkCEeA1y7dOnCLbfcwgsvvEBkZCQ33ngjM2fOpKioqFrnlp6eztixY4mJicHPz4+oqCiHqT8rK6tac2ZnZ3PzzTdTu3ZtvvjiC6eHZ0FBARMnTiQ+Ph6z2UxkZCRRUVFkZmZWe72jR4/SqFEjVNX5n6DdlXb06FGn7XXr1nX6bFeKMjIyKl2nSZMmFba7W6c6dO7cmW7duvHGG29QUFDgUgbArRz2h5crvL13RowYwW+//eZYa+HChVgslkpdXsHBwQAeS0NUh8GDB3P11VczevRoYmJiGDJkCAsWLPBKKfJ0vZo2bVrhO/P19SUqKsppW0hICHXq1KmgBIaEhFR6z3hD+d+X/fv3s3PnTqKiopz+GjduDNhcnGUpfz+D7Z4uK9sbb7zBjh07iI+Pp3379kyaNMlJUdq/fz8AI0eOrLDuJ598QlFRkdt/n88++yxWq5XXXnvN5f79+/cjhKBRo0YV5t69e3eF86kqkZGR9OzZ0+mvfv36jrV//PHHCuv27NkTcL6WS5cu5aqrrsLX15fw8HCioqL46KOPqv27VBnlXapnzpwhMzOT6dOnV5B31KhRTvI+9dRTBAYG0r59exo1asSDDz7ocBVfaGSM0EXE7bffzj333MPp06fp06dPlTJ4yrNjxw4MBoPLWABFUWjcuDGNGzemX79+NGrUiLlz5zq9VbqiTZs2NG3alC+//JKnn36aL7/8EiGEQ0Fyh6IoLFq0iN9//53vv/+eFStWcNdddzF58mR+//13AgMD3b61a5pWYdugQYPYsGEDTzzxBC1btiQwMBBd17n++uur/PZt58477+TkyZP88ccfjoejnYcffpiZM2fy6KOP0rFjR0JCQlAUhSFDhlR7variTtGszJJ3vnj++efp2rUrH3/88Vndt+Xx5t4BGDJkCI899hhz587l6aefZs6cObRt29alMlGWpk2bAvDPP//QsmVLr+RxRfn71M/Pj3Xr1rF27Vp++OEHfvzxR7766iu6d+/OypUrazQzzt1c5/KeKf/7ous6V1xxBW+//bbL8fHx8VWWbdCgQVx77bUsWbKElStX8uabb/L666/z9ddf06dPH8e/vTfffNPtd+cuXqd+/foMHz6c6dOnM378+Ar7dV1HURSWL1/uUlZv4oCqi67r9OrViyeffNLlfrtyuX79egYMGEDnzp2ZOnUqcXFxmEwmZs6c6XhZrYyq/O4CFeJA7d/B8OHD3caeXnnllYDtpWfv3r0sXbqUH3/8kcWLFzN16lQmTpzICy+84JW85wqpCF1E3HTTTdx33338/vvvfPXVV9We59ixY/zyyy907NixUpN//fr1CQsLc2siLs+wYcN47rnn2L59O/PmzaNRo0a0a9fOq2OvuuoqrrrqKl5++WXmzZvHsGHDmD9/PqNHj3ZYODIzM52OKf/2m5GRwZo1a3jhhReYOHGiY7v97bA6vPbaa3zzzTd8/fXXjgdjWRYtWsTIkSOdigcWFhZWkLUqQdoJCQls374dXdedrEJ79uxx7K8JEhIS2Lt3b4XtNb1Oly5d6Nq1K6+//rrT91J2DXdyREZGEhAQ4HF+T/cOQHh4OP369WPu3LkMGzaM3377zasid3369MFgMDBnzhyvAqbDwsIqfO/g2rKmqio9evSgR48evP3227zyyis888wzrF27lp49e7q9X8peL7tryc7evXtr7DurLq5+Xxo0aMC2bdvo0aNHlf4dVEZcXBwPPPAADzzwACkpKbRu3ZqXX36ZPn36OFxrwcHBDmtJVXj22WeZM2cOr7/+eoV9DRo0QAhBvXr1HIqHO2ryfO1r5+bmVnpOixcvxtfXlxUrVmA2mx3bZ86c6bWMVbmfXREVFUVQUBCapnn1HQQEBDB48GAGDx5McXExN998My+//DITJky4oGn40jV2EREYGMhHH33EpEmT6N+/f7XmSE9PZ+jQoWiaxjPPPOPYvmnTJpfuhz/++IO0tLRK35zt2K0/EydOZOvWrZVag8CmvJR/C7W/wdldHAkJCRgMBif/N8DUqVOdPtvfzsrPV912EKtXr+bZZ5/lmWeeYeDAgS7HGAyGCutNmTKlwluT/WHu6oelPH379uX06dNOCq/VamXKlCkEBgbSpUuXqp2Ih3X++OMPNm7c6NiWl5fH9OnTSUxMdPL3ny32WKHp06c7bY+Li6Nly5Z8/vnnTtdmx44drFy50mMtGm/uHTt33HEHu3bt4oknnnDEtFVGfHw899xzDytXrmTKlCkV9uu6zuTJk0lKSgJsD6msrCy2b9/uGHPq1CmWLFnidFx6enqFucrL7e5+adu2LdHR0UybNs3pHJcvX87u3bsd2UAXAne/L4MGDeLEiRPMmDGjwjEFBQVuXZ/u0DStgnsnOjqaWrVqOa5JmzZtaNCgAW+99ZbLyvhnzpzxuEaDBg0YPnw4H3/8MadPn3bad/PNN2MwGHjhhRcq3H9CCKcK+gEBATXqiho0aBAbN25kxYoVFfZlZmZitVoB2++SoihOv0NHjhxxWUE6ICDA5e+St/ezOwwGA7fccguLFy9mx44dFfaX/Q7Kdx3w8fGhWbNmCCFqJHb0bJAWoYuMqqS279u3jzlz5iCEIDs7m23btrFw4UJyc3N5++23nVokzJ49m7lz53LTTTfRpk0bfHx82L17N5999hm+vr48/fTTXq1Zr149OnXqxLfffgvglSL0+eefM3XqVG666SYaNGhATk4OM2bMIDg42PEQDAkJ4bbbbmPKlCkoikKDBg1YunRpBV98cHCwI03YYrFQu3ZtVq5cyeHDh729bE4MHTqUqKgoGjVqxJw5c5z29erVi5iYGG644QZmz55NSEgIzZo1Y+PGjaxevdqR5munZcuWGAwGXn/9dbKysjCbzXTv3p3o6OgK69577718/PHH3Hnnnfz1118kJiayaNEihyWjpoJ3x48f7yjL8MgjjxAeHs7nn3/O4cOHWbx4cYUYpbOhS5cudOnSpUKgN9jcF3369KFjx47cfffdjvT5kJAQJk2a5HZOb+4dO/369SMiIoKFCxfSp08fl9fdFZMnT+bgwYM88sgjfP3119xwww2EhYVx7NgxFi5cyJ49exxK1ZAhQ3jqqae46aabeOSRR8jPz+ejjz6icePGTgGqL774IuvWraNfv34kJCSQkpLC1KlTqVOnjiNwvUGDBoSGhjJt2jSCgoIICAigQ4cO1KtXj9dff51Ro0bRpUsXhg4d6kifT0xM5LHHHvPqvM6Wqvy+3HHHHSxYsIAxY8awdu1arr76ajRNY8+ePSxYsIAVK1bQtm1br9fOycmhTp063HrrrbRo0YLAwEBWr17N5s2bHZZZVVX55JNP6NOnD82bN2fUqFHUrl2bEydOsHbtWoKDg/n+++89rvPMM88we/Zs9u7dS/PmzR3bGzRowP/+9z8mTJjAkSNHGDhwIEFBQRw+fJglS5Zw77338vjjjwM2heyrr75i3LhxtGvXjsDAwGq/yIKtwOd3333HDTfcwJ133kmbNm3Iy8vjn3/+YdGiRRw5coTIyEj69evn+B5uv/12UlJS+PDDD2nYsKGTYmOXcfXq1bz99tvUqlWLevXq0aFDB6/vZ0+89tprrF27lg4dOnDPPffQrFkz0tPT2bJlC6tXr3a8FFx33XXExsZy9dVXExMTw+7du/nggw/o169fjScrVJnznaYmKcXbVgTu0uftf6qqitDQUNGqVSsxduzYCumNQtgKqz3xxBOidevWIjw8XBiNRhEXFyduu+02sWXLlirJ/eGHHwpAtG/f3uN52VOgt2zZIoYOHSrq1q0rzGaziI6OFjfccIP4888/nY47c+aMuOWWW4S/v78ICwsT9913n9ixY0eFFOOkpCRx0003idDQUBESEiJuu+02cfLkyQqpwd6kz+MijdX+Z0+Dz8jIEKNGjRKRkZEiMDBQ9O7dW+zZs0ckJCRUSEmdMWOGqF+/vjAYDF4VVLTP6+PjI6644ooKqdRlCyqWp/z5usNeUDE0NFT4+vqK9u3bOxVULDtfddLny1K2UGD5+3r16tXi6quvFn5+fiI4OFj079+/0oKK3t47dh544AEBiHnz5nl1HnasVqv45JNPxLXXXitCQkKEyWQSCQkJYtSoURVS61euXCkuv/xy4ePjI5o0aSLmzJlTId14zZo14sYbbxS1atUSPj4+olatWmLo0KEVUqK//fZbR3G68vf5V199JVq1aiXMZrMIDw/3WFCxPO4KBHpTzE+Iqv++CGFL3X799ddF8+bNhdlsFmFhYaJNmzbihRdeEFlZWU5zu7p3yv57KioqEk888YRo0aKFCAoKEgEBAaJFixZi6tSpFY77+++/xc033ywiIiKE2WwWCQkJYtCgQWLNmjWOMZ5+a+0lCFxdr8WLF4trrrlGBAQEiICAANG0aVPx4IMPir179zrG5Obmittvv12EhobWWEHFnJwcMWHCBNGwYUPh4+MjIiMjRadOncRbb70liouLHeM+/fRT0ahRI2E2m0XTpk3FzJkzXaa+79mzR3Tu3Fn4+fk5FVQUwrv7WQjPvw/JycniwQcfFPHx8cJkMonY2FjRo0cPMX36dMeYjz/+WHTu3NnxPTVo0EA88cQTTvfGhUIR4iKJtpRIJJKz5LHHHuPTTz/l9OnT+Pv7X2hxJBLJJYCMEZJIJP8KCgsLmTNnDrfccotUgiQSidfIGCGJRHJJk5KSwurVq1m0aBFpaWkV2pNIJBKJJ6QiJJFILml27drFsGHDiI6O5v333/eqHpBEIpHYuaRcY+vWraN///7UqlULRVFcpgmW5+eff6Z169aYzWYaNmzIrFmzzrmcEonk/NG1a1eEECQnJzs1BJZIJBJvuKQUoby8PFq0aMGHH37o1fjDhw/Tr18/unXrxtatW3n00UcZPXq0y/oMEolEIpFI/ntcslljiqKwZMkSt0XwwNbb5IcffnAq9DRkyBAyMzP58ccfz4OUEolEIpFILmb+1TFCGzdurFD2u3fv3jz66KNez6HrOidPniQoKKjGS6lLJBKJRCI5NwghyMnJoVatWh6Lx/6rFaHTp08TExPjtC0mJobs7GwKCgoqNJADW/n7smXtT5w4UaNtCCQSiUQikZw/jh8/Tp06ddzu/1crQtXh1VdfddkJ9/jx4xW6kkskEolEIrk4yc7OJj4+vtIWHv9qRSg2Npbk5GSnbcnJyQQHB7u0BgFMmDCBcePGOT7bL2RwcLBUhCQSiUQiucSoLKzlX60IdezYkWXLljltW7VqFR07dnR7jNlsxmw2n2vRJBKJRCKRXARcUunzubm5bN26la1btwK29PitW7dy7NgxwGbNGTFihGP8mDFjOHToEE8++SR79uxh6tSpLFiw4Lx1b5ZIJBKJRHJxc0kpQn/++SetWrWiVatWAIwbN45WrVoxceJEAE6dOuVQigDq1avHDz/8wKpVq2jRogWTJ0/mk08+oXfv3hdEfolEIpFIJBcXl2wdofNFdnY2ISEhZGVlyRghiUQikUguEbx9fl9SFiGJRCKRSCSSmkQqQhKJRCKRSP6zSEVIIpFIJBLJfxapCEkkEolEIvnPIhUhiUQikUgk/1n+1QUVJRKJRCI5VwghQBSAYkRRfNyPsx5D5M+GwmUgCsHYCMV/OPj2RVGkPeJCIxUhiUQikUiqgBBWyJ+HyP8CNFvtOuFzFfjfjSIyEPkLQDsFhkgwtYH8eYAF0GwTWLYisrZA4SoIfRtFMVywc5FIRUgikUgkkkoRQrB17Q62/7ydLtfPJ77ePpxaWBVvguLfsRXmUwEd9JNg2eZiNt32n6LlkN8aAkaea/ElHpCKkEQikUgkHjh1OJnnBrzO0Z3H6XtHOvH1jlOxj2fZ2sS6i22uUBD5s8B/RKWNQSXnDqkISSQSieQ/ixBFUPAN1uz5FOcfw2qB4qIAfIPrExjVnQLtev6v6/OkncoAoP/IMwgdasabJUA7gSjeBMZ6KIaYmphUUkWkIiSRSCSS/yRCz0Gkj0BYdqLo4OcPtqZTOcBp9OwNGCxvEVO7NmeOBwKCxKaFqDUd35wxAgEInw4ogY+j+LTwUv58KFoJ2glQw8DcG8UQUcPC/fuR4eoSiUQi+U8isl9AWHajKKCWWHgUxflPNRTy8pxDRMYVAwqWonPowirejEgfiij+o3LZ8xcjznRCZD2JyP3Qdi5nrkXPeQsh9EqPl5QiFSGJRCKR/OsRej5CT0fXitn84998/Nhk9LzvUZRSpeH0MR9mvR7LS/ck8Naj8fy+KggAk1kwYFQqADNerMWRPeZzJKUO6IisCXjqhy4Kf0RkTwCRX7LFii0eyQp50xG5758j+f6dSNeYRCKRSC55hCgAPRvUUBSlVFERxVsRuR9C8TpAkJ9r5OBvYaQd80c1lCobi6ZF8clLcSgqCB1UFVYtCKdB83xe+fIwtz1wBrOf4Is3Y/n+80iu7JTDE+8eJ7qOpXQt4OztRTpoxxHFm1DMV7k4T4HIeatkJTfKUt5UdOsh8LsRxdxVpudXgiI8qZ0SsrOzCQkJISsri+Dg4AstjkQikUjKIKwHEDkfQNEKbHV6fMC3P0rQQ2DZi8h8sGSk5jhGs0Jasono2jYlZv3SEP53b6LL+VWDoEnLfN757gC6BkmHzDw2oBEFeSphURY+WL6P4HANown0EgVKiJJYo5L//rQklEZXFJLYtND7EzO2QIn4qkLBRWHZjUi70ft5lHCUkJdRfHt4f8y/BG+f39I1JpFIJJJLEmHZgUi7pYwSBFAMhd8gzgxEZI3D5m7SnI4zGCEixkJBvoKmwdx3Y1BU1zYBXVPY/VcAuzb7YzBCnfpFDHowBV1TSE828f74eFYvDiPjjMFhoFEUm0KkGmx/PW/J5KOJtVizONT7k7Nug8LvXAiU5f0cACIdkfkAouiXCrvSTmXw+fNfcXfzR7k94X6eHfAafyz/26Nb7t+IdI1JJBKJ5JJDCIHIfAJEEaV1e+xoQLY9BcwlBiNQpDDyqiacOeE55sdgFGxaHUzz9vkYjNDvjjQ+fz0WXVf4fVUwdz9zkrAozeWxigKaBoMeTOGZYfVpdGUBdRsVeXGGCiL3EzA2AENtFDXcttkY78Wx5RGI7NcQgRoUzAXrLvZvC+CpQZEU5Oromu06pZ9KZ9PSv+h7b08e/eje/0xtI2kRkkgkEsmlh2UraAepqATZqdyq4RegY/LxxvohKC4qfVwGhWoEhtoUH0WB2vWLPR5tMEKbLrn4mHWWfu5tersAbR8i7RZESif0jLEI7SSKoTaZ2R2ZPyWGh65vxOjOTXjtoXh2bvb3PJ12ELLGQPEGigvSeXZYIAU5VocSBKBZbddy2fTVLP9kjZdyXvpIRUgikUgklx7WAzUyTVFB5YHEmlWlweUFjs9CQNtu2bb/1+GX70LQXBuEnFBV+PvXQMdnS7HCL9+FMOv1WOa9F83h3b5ujtShaCUi7Vb2//kHozsKZr0ew/7tfhw/4Mu6b8MYd2MjPnsl1pMRzH42/PpDCJmpJnTdtcVHUWDh29//Z1xk0jUmkUgkkksPxe+sDtc0OLTTj7TTppItbnK+FEFAkEbnGzKdNj815TgBQRrfz4pi39YAugxwH7uj65CWbKQgT3W05vh7fSCv3p9AVroRg1FHCIXPX4+jXfdsJkw9SkBwRXdfcX4mT/ebTF42iDJKjKbZ/v+rD2Ko36yArgM9xxH9sykAg1FHs7q2hQgBSXtPkpORS3B4kMe5/g1Ii5BEIpFILjpST6Yz46k53BZ7N9f7DGZY4v3Me+Vr8rJttXOEzzUU5pvRPdYOdB/jYjDA3HdiXIwtZwURcE3fLEzm0u12Zea+SacIDrdw5pSxNFPMBaoKUXFWXl94kF63ZXBwhy/PDq9HdqbNGqVZVfQSZeavX4KYdFc9l3OtWxpE5hkdXXN90ooqMFbi6jt5xMTBHX5urUFO8/1HYoSkRUgikUgkFxVJ+07y6LXPkZOe63jopxxLZdbE+ayYtZYOfVuzevYv5GQ0xces0+3mDAY/mOIiVqdM/ItWWh9I12Hqs7XZuCLE7fhSFFbMD0dR4NG3kpyarRqMgg9+3E9MHYtDIROiVFGy/39etsoPsyP48ctwMlONzHs3Bs2qIERFRUPXFLZvCGTHpgCuuCrPad+23wJRDcKhNJWnXtNCrumb7XKfbW74dVko+7b6u1zbccaKQt3LahMYGuB2zL8JqQhJJBKJ5KJBCMHLQ991UoIc+3TByQOnWfL+Mse24iKV1QvCWfddKG8uPkKjK/NxFUCdfMyHbRsCSTpkZtWCMLLSTE77FUWUWGFcKQgKP34ZQe+h6TRrm++0J6qWrRaRq/5jimJzif3fwIacPuZTZn7PpRcNRsEv34VWUIQqC9npNSgdqwWMJtf7VQP0uT2dT/8X53EeIQS3PT7gP2MRkq4xiUQikVw07PvzIAf+PuzW/eMKTVMoKjDw6gNNET49XY6JiS/m6xmRLJke5UEJco/BIFg+1znjS1VdK0BlmfxoHVKSfEosMHbFwrOCIQTk51ScuHm7PHQPQdlRtSyOnmnuCArVXGTK2T4bSiptD7wviF63R3me6F+EVIQkEolEctGwZ/OeavWp0HU4ccjCstlGXDk7DEZ4bf4h6jYuLPmsYzDqoAh8fHWMJs9WGk1TOHnEp8pyHdnr7whm9hoBtRKd3Xy6Dl1uzLDVP3JDRmrlTp78XBXNaptr0sxDDB17moQmhQSHW2nfM4s3Fh1gzMSNkH4rosBFQcd/IdI1JpFIJJKLAmHZhbHwbRDhVLdr1wePn6B+Qz8ua5NTYV9ErJWpq/bx97pAfl8VQnGRQoPmBfS4NYPRnZuSnuzeNqAaBCHh1lJZy1SR9oSPueqd4IWA64akO62Rm2Xg7f+LR7NWXNAeN1SUr1ZqocrPUXlryUGat8tH06Bj7xzufCoZTbNd8bIWJZH1JJhaoVSriOOlg1SEJBKJRHLBEXoWIv1OWnfOR1HCPbqq/AI1CvNUlwG/Qof3nozjo9U5LpUUVYU2XXNp0zXXaXvPWzNYNC3KbSCyril0GZDpFAxdmRJktUDqKTcBOy6wuegU7n7mFNG1LRTmKaxcEM6OTQFs+DEES7GzlmP21QgI1ml0ZT4D7kqlTZdcNzOXEh5jJTLOptAZyig9BoPrGCRRMB8l6Amvz+FSRCpCEolEIrnwFCwGkUVMHUHn/pmsXxrqMsVbUQS33HuG72ZFkp1e8REmBBze7ce+bQEYjRo5mUai6xQTW9fmarI3RS2vxAy8+ww/zgsnN9vgQhkSBARrJF5W4LUSBGApUrC6sOCUn9tu/apdv4iuAzPIzjDy4TO1WLkgjMI814/pNl2y+d+cw6BUHqdUFk9jK56TDkW/glSEJBKJRCI5t4jC1diDdh99K4mMVBPbN5SmixsMAk1T6HFLBrc/lsyiaZ6DeZ8dXp/s9NKnfkx8EY+9dZzmHfLwcRHqExFr5a0lB3hpdCLHD5Sv8KzQ74406jby3ErDcS4llhXfAEG3gRn8/E2Ya6VOFVw/NJ2Bo89gKVKY9nxt5kyOw2AU6BouLV6qQXBZ6zwef+9YlZWgamHdjZ56G0roqyjGhud4sQuDIv4rNbSrSXZ2NiEhIWRlZREcHHyhxZFIJJJLmiM7j7Nm7npy0nKITojiupFdiKwdgZ56M1h3OMbpOmxZF8RPi0PJSDUSU8dC7yHpNLoyn+0bA5kwpEGV1lUNAh+zzrvf7yexqa3paXkLiK7BlvWBPDu8vlPlZr8Ajfnbd+DrRTFrXYODO31JOmTm2H5fju3zYfuGYLIzjNitP3blrnWXbF6YeQSTWfDYgIbs3erv0hoFNjfYuLeT6Hh9Nmbf8/3YVkAJRIlYgmKse57Xrj7ePr+lRUgikUgk5xxLsYXJd3/EmrnrMRhVUBSELpg1cT4jJw1m6MOXg3U3ts7xNktH2645tO1aGvRsr948//0YN6s4RlI+2FrXFIqLVD6eVJvXvjrE6eMmwiKtmP1sSkVhvsIPsyOY+VqckxIE0KZLjldKENiWzThj4rUHEirIYDQJYuoUkdi0kN5D02nXPQdVhaSDPlxxVR4BQRp//RJUzhJkU5xad8mttHXGuUOAyEfkTkUJfe0CyXDukIqQRCKRSM45Ux+dyU9f/gqUdjm3M2vifOIb9uOarp47l2pWeOvRumzbEOhxXHkFxGTW6TYwk+sGpxMWbaGoUOHAP35MfrQuDS4vQAg4uMOPgryKRXgSmhTgG+BFR9USVLWkHo9CiY+sTE8wq8LJo2YeePmkk4JXu14xdz51CoMRko+beHlMAnv/Lq3qrGsKm1aFYClWXNQAOl9oUPgdQryAopgvkAznBllHSCKRSCTnlLRTGSybsQahu3+If/TERkTAuJJPpY8m+xE7N/szpEUz1i4JK3OUAAQGo46iCFTV9t+yxNQtYurKfYx7+zjN2+VRp34xPmZBYb6B/FwD//weyI5NgS6VIIBhjyVz492pXp+rEPD++Dol6o9Sbp8CAqaMr+WUoaWoOOoDRcZZeH3BIeo0KHQ6VtcViotqptKz3bL245dhPNCrEf0SrmDF/DA0a2VHWhGWXTUiw8WEtAhJJBKJ5JwhRDHb16wkOKyIzFT3qeSpJ9I5sKcnja9ogsj7FCybAYFibEYRQ1ixeCsFefsd44PDrdww4gzhMRoZKUbCY6y2gONJtQCo37yAEY+f5qrrskszvUp0HUWB8GiLV/JHxlpodEVh5QNL2LXZn9PH3FtMhFCIjLO6zTozGMEkdG69P4V3Hy+NxwmNtOAfWPWaRKXrOsdEKQoc3evLoV1+CKFw5qSXxSLT70NEfYNiqFVtWS42pCIkkUgkkhpH6HmIvKmQP58uPXPosh32bfVj3nsxLpqd2ijMK0Lx7Ybi2w0hNEBHUUz4Fm9m3GvPc894heMHfFENOg2aF2HyEeg6FBWo+Pjq5GUZ+OR/cTRukc/rCw5iMAq3CkeLq3MJj7aQnmLEZfFGRRAbX8xlJb3F7IqEq9T7snijUHS/KRNdd5/xZTRB95szeffxeEBBVQX9R6ZVmrKv6zYXn6VYIb5hEUGhpS698koQwH2TTrHzj0D2bvVnzaIwho9LrlR2yEHkfogS8rIXYy8NpGtMIpFIJDWK0PMR6XdA3qcgSmNhGlxRwKSZRxgwqqKrSVEV6jQptTIoigFFMSGEQGS9BAiCQnWatc2naatCLEUK01+I5dbLLmdgoyu4tVlzvp4RydV9M3jivWMYTMJjOwqDAe5/6QSlTVDLCmP7POaFk6i2uG6v6gcJAWb/yuOJgkLdW4TsmH0FJrNAUQX1mxdwy5gzHsfrGqxZFMZD1zfmsQGNGNKiGVt/C/BYmNJqgRvvts178oiZJZ9EVNpzDTQo+BpdO1XZwEuGS04R+vDDD0lMTMTX15cOHTrwxx9/uB07a9YsFEVx+vP1LV8fQiKRSCQ1Sv5MsO6ifBd4eyXjMS+cICLWgqoK2nTJ5ub7Unnw9UCX7iqR8wZoe5y3CbBaFVJOmMnPVYlLKKLv8HT6Dk9nwtQkatUrdqqa7I7O/bN4dvoRIuOc142pU8wLM4/QsXe2V6drtcDijyMZ0eEyJt1Z3y6lm9GCdC96gmWmGjAadW67/wxvfX0QvwDPbjFFhe2/lwZYWy0qYVGeFS6jCa7oUNrh/uPna7N/m593ytCZ7ujZr5VY7i5tLinX2FdffcW4ceOYNm0aHTp04N1336V3797s3buX6Ohol8cEBwezd+9ex2fFm3KgEolEIqkWQghE/lzKK0FOKHDH/52mdZccYupY0DVQ1BOIM50R5h7gdzsY4qBoBeR/WuHwXZv9eXZ4fQryVISAU0fNfP1xFEtmRPHUB0fp3D/Lq8rPANfekEW7ntns+9uf9BQTkbEWmrXL87pQodUCz99Zj79+DiqnQLgSwJZFFhVn8SifroHBKPjqn11e1QzSNcjPU/nl2zCn7a76kpVH0xRMPjr+QRp52QY2rw2mweUFHq1pJUdC/mcINJTgZ5z2CCFAZNg0VjX8on/uXlKK0Ntvv80999zDqFGjAJg2bRo//PADn332GePHj3d5jKIoxMbGnk8xJRKJ5L+LyAe9kiwrAb2HpDs+ljb61KFole3PDZlpBp4ZXp/CfOdeY7qugC547cEE6jTYR4PmlQc4axqcON6OezoVMeOXvTRrl4exik/FZXMiSpQgTw97mwIUGKJx78RTXN3HvaVJs4IuICBId2qA6glNg//dk0hRgbP2tvmnIBIaF7pVajSrTZFbsm8HJh9BcaHCxpXBXihBZcj/AhFwN4oh1qYAFSxG5H0C2iHbfkM8+I8C/9tRlIvTCXVxSuWC4uJi/vrrL3r27OnYpqoqPXv2ZOPGjW6Py83NJSEhgfj4eG688UZ27tzpcZ2ioiKys7Od/iQSiUTiJYoP4PkJrhptMUHePujLsmJehE0JctGyAhQU4JtPI72a69BOPx4foBERY2Xv3/4YSp6IdsuON30Xvv0s0q0TDGy90dp1z2bip4f5cusueg+1dZW3lHjj9DKeJasVUk8bMZmo0rV57YEE/l4fVGH7D19EomkKugvjnK7b1LPYhGJHbSIfX8HVfbMoLlK8OncbAgqX2/4v5xVE9tOgHS7drSUhcl5EZI3nYm1kcckoQqmpqWiaRkyMc0XRmJgYTp8+7fKYJk2a8Nlnn/Htt98yZ84cdF2nU6dOJCUluV3n1VdfJSQkxPEXHx9fo+chkUgk/ybST2cw46k53BpzN72Ngxha9yGOHWqC8KAMKVCh3o+3/PFTEMKD103TFDatsrVTsBQrrP8hhPlTovl+VgRpyc6mjk/+F4fZXMCU5fvofnMGdoOFN9lhYFMmkg76ggdrkAB8zIKr+2TjYxaO+U0mmPVqDDc1uZz7ezVi7A0NGdKiGTNfjav0GpSlqEDhz58rKkEAyUk+vHBXIpZiBa2MwqVpNrfZK/clkJ3mfE2MRjD5uM+2c3mO2hlE8WbI/9y+pexe238Kv4Gin7yf9DxySbnGqkrHjh3p2LGj43OnTp247LLL+Pjjj3nppZdcHjNhwgTGjRvn+JydnS2VIYlEInHByYOnefSaZ8lKzUHXbNpJ2ol03nrIytvf6RiMCkoFe4mLLK0qYIt78fyU1jSF31cGM/mxeLIzjBgMtjT7qc/Vpt8daYx54QRGE+RlG3j4tSRCIq0V3EHeKEOKAkaTjtXi3qagqjZLS3msFggK0yjMVzm009+xPSejao/lzDQjhfnulc4/1wYzqtNl9BmWRqtrc1AU2L4hkB/mRHDmhA/3Tjrp8ryqhobI/xKbJdBd8LQBkT8XxbdHVSc/51wyilBkZCQGg4HkZOc6B8nJyV7HAJlMJlq1asWBAwfcjjGbzZjN/67y4RKJRHIueG34+05KkJ29W/148e56PD3tOOnJCl9/HMPab0IoyFWp06iQj1buq1ocShkua5vHnr/93bjGbM1V4xsU8cLdiQ7LkVbSyFRosPTzCDSrrWJ0doaBdt1ycBe6YlcI/ndvXbremMk1/bIr7O90fRa/LQt1rFEeXVM4uNOXz9+Ioe/wdKJqWcjNUjm230x+noHySt3W3wLJSjcQEu5dNlZ0bQtXdsph+4bACnPZSTttYs7kWOZMdn5W+vjqtnYgZ4uxFce2TuHrj+JYvzSEokKVxCaFDBiVSo9bM0oy+DSw7q1spgvCJeMa8/HxoU2bNqxZs8axTdd11qxZ42T18YSmafzzzz/ExVXN9CiRSCQSZw5uO8LuTfsrKEF2Nq0K4rbmTbm/1+X8MCec3CwDmqZwdK8vK+aHO7lqqkL3mzNKFBzXD3BdU8jPVUvaSFRUDIRQWD43gk9eqkVC4yK3SlBZAoI1dF1xKfNtD5wpkcSVPLYWIMf2+TH//RhGXnUZT95Wn8FXNuexAY0rKCZgS3uf+UrVnlG2FHh3Zhz3io6lSOGh6xuTdNDLqtLlZ9ZtVrNlH0/j/m5+rJwfTm6WEUuRyoEdfkx+LJ7/3ZNY2rpDCfA434XiklGEAMaNG8eMGTP4/PPP2b17N/fffz95eXmOLLIRI0YwYcIEx/gXX3yRlStXcujQIbZs2cLw4cM5evQoo0ePvlCnIJFIJP8K9v15sNIxxYUqRQW6U0AwQmHO27FkpRmdt3uBZoV/NtotH+Uf/LYHfsMr8jm618+txcjO2m9CKSr0zgdUVGAgNMrqsjZR4xYFPDXlqJMMpZTKqesKmhW2/Rbo0ZUGsHxeBB88XZv8XNs4TzHGGWeMfPWB6/IxpTKUYjTpdB2YwcOvJvHgyydoeU0urzyQUGENIaCwALLSDW6VVkWFwnyVGc+rWC04WcVs119h44pgvp0ZCajg28+DnBeOS8Y1BjB48GDOnDnDxIkTOX36NC1btuTHH390BFAfO3YMtUzxh4yMDO655x5Onz5NWFgYbdq0YcOGDTRr1uxCnYJEIpH8KzD6ePf4cNVoNe20iUf6NeLhV5Jo3zPHq5gUzQpZ6UYWfuTqoV/a5f3AP36Vy1RiKcrNcq+QnDjkw3czI9mwIoQzJ0wkHTRz19Mnad05r8LYfEfD1spOxPvgm+9nRbLyqzBuGJHK6OdOO66RXWGxf/7luxB0N2658jS8Ip+XvjhMeIwVa0nWWv8700g9ZeTgTl8aXl5acmDzT0G883/xmHwEU1fvJSBId/k9rV0SWqKwuZZBAN98EsVN9xSi+g/xSs7zjSIu1ny2i4Ts7GxCQkLIysoiODj4QosjkUgkFwVppzK4ve4Yt64xb/lk3W7iGxZXOu7v9YG883gdko/XXAxn/zvP8ODLJys84P9YE8QLdyWi64pDyVAUgRAKtz96mpFPOseqPn17Pbb8Ulktoapj8tGYu2W3y3gheyD3lnWBTBjSoNK5wqIszPhlL/6BWoX4LM1qq9Rt9hWOzvTC5tVj/pRout+cTmxd11Wq33m8DqsWhKFZPVu5Fp9+guDo9pXKWZN4+/y+pCxCEolEIrk4iIgLo+fwzqye/Qu6C6sP2AraVvau7amC877tfnz1fjSHdvtx8nBVFaBSK5G77T4+FWXLTDPw0j2JaFbFSbGx//+8d2Np0iqfq3qV9lCzVbiuGSVINQh0TUE16Nzxf8lug6btWW0tOuXi6695zBwD6HtHGv5Bmkv3nsEIqlqa2l9W4Rn2WIrH7DmD0d11dsbod0WlYy4Ul1SMkEQikUguHh7+cDSte7UAQC2pRmgw2v7btncLz0qQIoitW0RcYkVrkP2wgECNX5eFVkMJArOfjlouI8pWu0ihfvN8QPDTkrAKcUor5kVgKVbcKjaqQfD19CinbfWbFdZA9pUARdDqmhxe+fIgszfvZtBDnhutKopNiblrQsUU+PJ07p/puf+aG12mshICbbvmeGzloagKl3VohH9Q5S7LC4VUhCQSiURSLXz9zbyy7GneWD2RHsOvpd31Lel9Zzfe2/AyD38wmuBI14X+ABAKgx9KcWkRsj94a9cvpnn73AoKTWW075HNxz/to0PPLBS19Nja9Yt4etoR3l96gPBoKxlnTBzZ69yI+58/AjwWbNQ1hV2bA7CU0d/6Dk9zmz7vPQpvLT7IK18epk2XXCJjK+9Qb6dtj2x8K+l6X2nTVjdrVSZD+x7ZxCUWgZsCmUIXXNnl4o7Lla4xiUQikVQbRVFo1f0KWnUvdX2cPHiahzpMIC8rr8w4W4yNwSDQNIXbHkihz7B0V1M68fCrJ3hsQEOKCtVyQcH2B2/FJ/XA0WeIrl3MpJlHyThj5NRRHwKCNeo2KkJRbJWV+wxLY+47sVgtzsd7VfFasTV6rduoCIAGzQsZPu40c96ORVFFmYy1UreR/fxdu+wEBoPAZC5VVryqbK3BsQNmls+JYODoVBZOjcLsJyjML3+t4NAuPyJiLVXupVYZRhN06Z/B/CkxbscsmbKcIeNvIjBUps9LJBKJ5D/AR+NmkZeVj64JGl6RT/eb02l5TS5tumRzw8hUpq3Zy+hnT3ll8ah3WSHv/bCfdt2ynZSUxKaFuPPnNG+X5wgIDouy0qxtvq1mUMlwVYVm7fLw8dWJb1jkdGyra3I9yqUaBC2vzqV2vSKnlPM7Hk9mwtSj1L+swLHN7KfjY9YIDrPQpms2t4xJdjEjgIKuKzxze32yM2z+q7IyuPMwKgp8NzOS4HArtz+azKJdO1mydwffHfyHx987Rp0GpVlgGSmGGleC7LL9tCTc4xhLoYVVX/xS84vXENIiJJFIJJJKEXo2FK4GkQ5qLPj2RFF8K4xLO5XB79//hX+gxjPTj9C2a64jVdtgrE77BkhoXMSLXxwh44yBzDMmAkOtRNWyMn9KNDNfjXNYmcCmqJRaXtydjO0B3ntwOv6Bzi6jXoMy+OKtWLeNXXVN4Zb7zqAaKp5L14GZdB2YSU6mAV0XBIc5p5xv2xDAxh9DOHmk4nUTQiEv28DqhWHcfG9qme2ur5kQcPq4iU2rgpm+di9Gk8Bc0srD5CPodlMG1/TN4qXRCbTtlkOfYRnur8dZUFigkJLkuSCjoirs//vQOVm/JpCKkEQikUjcIoSAvOmI3ClAMY5+UtmBEPwsit/NjrEpx1N5595pADw74wgtr84FbO6T0vmqpwwBhEVphEWVxsIMeTiFKzvm8t3MSHb+EYDBJOh4XTaV9TITwPH9vox6+lRpp3nd1vE9METjpS8O8+zwehQXquglypBd2bpv0glaXZvrdD5nTpp467E6+PkJrumXRef+GZhdxAZf3j6PKT/u5/GbGnJ4d8UBQsCmVcHceHcqh3b40ahFgcfYnfBoKw++nITZX68QCG00gsGg8/K8w9W+3t6geuFKVBQFHx9TpeMuFFIRkkgkEol78j9F5E4us6FEERG5iKzxgC+KX19Sjp3hoQ4TyErNoXGLfNp0yXU1m8tmpmejHDVrm0+ztse8Hq9rtgrIfYen4lvS6/SbTyNK3F3FmMyC5u3y+ODHvfzyXTi/rwzGUqRwWdt8+o9MpUGZooP284mubcFshk2rg/l9VQhh0RbadKnoYjMYwc9fZ/zUo9zXrQkVXXsKmekq93RuQs/bMqjXrMBJiSyP2U9wVa8cVDfZYPb1i4vA5xy10DT7wZWdctmxKcBtYUfNqtHhhjbnRoAaQCpCEolEInGJ0PMQOVM8j8l9E3yvZ/pTc8hKszVgvaZfJlYLbh/i9gf0e0/WJijUyh2Pp2A0iXNqubCjGmzuM1OJN0cI6HlbBoHButOYOvUtDB+XzPBx7uJ6SrFaocuATP5YE0x4jIXWnd3HGRmMsH+7v+udCI7u8Udgq03kzfVwpwTZ0TX44s044hsW0nvIuXGPDX4ohe0b6rvdH1ErjPZ9W52TtWsCGSwtkUgkEtcU/QwUeB6jnSAvdRO/Lv4d3WpTJvwC9EqcUzb+WBPMVx/EMrTVZaScuDCuE80Kf6wO5vWH6rB3W2nsjjfNWO0YDOAfZLOUJTYp9FgkMi9b5f2n6rjZq5RUdFZY8GEMD/RuzI/zwtFdZL47qj9XgqJCbqbK2+Pq8vM3oZUfUA3ads3h4deSUFVRUpjRWbCs1BzyMvPPydo1gVSEJBKJROIakeXVsMzko2jW0qf18QO+nov3AXk5KpmpNqdEToYRo/HCdHtSVbBaFG69P5UmLQorP8AFugZJh2y+p+JKGrn+tCQMS5GrprEQEmFh6NgUPlyxj0/W7WHwgyn8/WsAG38MrqD0lK8A7Q6hwx8/hQCCT/4X51KpOhs0DU4eMeEfpPHQq0kMfiiZkHCr8xirxopZP9fswjWIVIQkEolE4hpDba+GGf0SnT6vWRyGpVhx+9DVrLB8boSjC7uiQESs1fXg88B1gzOISyji529DWfJJJL98F0JRgfd+OoMRfpwXAcDerf7kZLjXAk8cMrssENnoynw++3UPIx4/TYPLC4hvWESXAZlMmHqc/DyVr2dEeKXErF4cyrrvbfLrGqxcEEbaaROgYDILMs7UTESMXTEzGCC6joXuN2WSnW7khzmR5GY7n78C7PvrYI2sey6QMUISiUQicY3P1aBGgZ6K60wsFUxXEFO/A4mXx3N0ZxJCCPKyDbz7eDxPvn8MTcPJOqRpcPygmXnvxmDy0WnePg9ff52iQsWR/n0+sAdoKyos/SKCT/8XR36uwVEQ0T9I456JJ+nroeijrtssSl+8FcOJEouQpVhlwdRo7n7mlMtj/IO0Cu07zH46/5t7CL8A3Snmx14LqddtmXw8Kc6jyw1sCuaxfb58NSUG/yCN7jdnsGK+rcZP267ZTJp1pMYsb2WtUfb6REPHprDnbz9+XxnqPFZVMJkvXnVDWoQkEolE4hJFMaIEv4Ttnb68hUQFTCjBE1EUhVEvDXXqLfbT12E8fXt9dm0urSacl6PyzSeRPDO0Hn2GpfHl1l28vuAQL8w6cl6VICh9kC+fF86U8XXIz7VpIPbaQfk5Ku89Ec+qBWFu5zh52Ic3H4ln7tuxADS8Ip/rhqRx5oSR5XPtxzlft843ZFXIruoyIJOQ8Ipd4e1oGvQeUnkVbiHAaBIO+Zd+HomlSCU43MpznxzBYBBVin2qKpoVbron1cV2nQ59ZdaYRCKRSC4x9v55kN+WnCYyahCd+/xKcEhS6U5TW5TgCSim5gghCAoP5NpbrmLDd5vQLDpGk2DLukC2rAskIETD7KuTlWZEs6rc9fRJBlfSUNQduu59fExlWIoVZr4S52avrSjj2iWh9Lg1o4I1RtPg40lx/LEmhIQmBTzx3nEaXVkaWO5o5qrUAZGEZhVYLAoJTQqp1yyfw7tKM8eu7JiLruFWETIYILFpEYX5OFL+XWE0wQFHRlrpBep1Wzo+vqJSi9LZYjBC83aug6J9fGUdIYlEIpFcIuRl5fHioLfZsmo7BqOKoihM+b8IGjQPY8xb/WnRvQeKMR6ApP2nePHWtzj8zzFUg4rQbb20/IOsZKebSuYzklcSd+0XqHH90MqtG65wuLNqKM1+62+BZGe4fwwmNi1k4mdHXGZnGQzwwudHWf99CG275eDr7xzAY3dxnTmZxf/uacCeLTbLWJ0GhaSnGHHuQ+advCsXRNBveJpLhUmzQlqyic0/VWx0GxjquSFrVahuzadXbn+X+SemExDsQZO7QEjXmEQikUgcCCGYdMtbbP1pB2Bza1gtGgg4uFPlyb7L2LHRViwxKzWbcV0mcnS3zVKka7pDachOtz/snSnMU3m0fyOy0ytJK3NDTdYaqkyGEU+cxmQSbjPgFAW63JhFQLDu1poTFZft5ApLOmgmP8eIokDzdrm07ZZFVrrqsR6QpsGBf3z57OU4Du3yRZQLmrZaoahQ5X/3JDoqYZclL8twXmo0Wa2w9dfAMltKv//CvCJWz1537oWoBlIRkkgkEomD3b/vY+tPO9A1V8VrbO0S5v5vEQBLp60iMyUL3aoTFGrl5nvP8MzHRxj39jG3D3YhFE4f92H25Ngqy1bTD/PoOha3+wJDrHTsne1WwQFbanplmVxWC3S/pWwhQ4Wo2sVMW7OXt789yAuzjjBwdJrHczMYYNG0aAryDPzfTQ05sMPWnkMIW9zV8jkRPHhdY/ZudW1tEdTMtcvLVsjPVdHcGJiMRli9uGxMlfOie/88cPZCnAOkIiSRSCT/ITRNoyC3wCmwuSzrFv2OwejePKFrOn+t3k5+TgGrZv+C0AVtu2Uz589d3DPxJNf0zSqTOu/66atrCivmh7tNUfemUGBN0LxdHrF1i5y62tsJDtcqjamxZ415QlUhLKq0NIDJrPP6goPUKel6bzRRac2lpIM+rF0SiqoKzH6ChMa2eke6Bvd1b8IHT9fm5BH3PTRCI601ck03rAjluTvqUVTgrAzZ59Z1eGrKMe59/kSFa2owCBpdthsh3CufFwqpCEkkEsl/gON7T/DmqA+5IWA4A4JHcHPEKGY8NYfstByncYW5XhQVFFCUX0ROei7xDQuZNPMIPmZbMK5qgBOHfDFUkqZdVKCSnuI6gFbTYMOPwUx9thYpSecuyFZV4aFXk0ChwoM7K81QGvDsBoOxcqVNNUB07SLH52v7ZVG7XrEj5dwb4hKKCQjWMPvpvPj5YXxKMuxST5uIrlWMO4XTjtlXR6uBMk3Z6QZ2/xnAXVc35c+1pbFIdmuTqtr+br43lTsed25NomkKMbGbEBmjEaKIiwmpCEkkEsm/nD1/7OeBtk+xZu46rMW2J2JuZh6L3v6eB9uPJyM50zE2vmlt9Er8PYGhAQRHBFGrQQw33p2KogonV5ivv+ZIQ/eEX4DrdY7u9cVSrLBsXjhjejbmyN5z0zFU0yAixorZT8c/0FnriUso5vBuX48KhLeB283aFnBN30wAru6b6da15A6DEQY/mML0tXu5rE0++7f7Mm5gA0Z1bMrOzYFujirV0JIOmSvtSeYOeysPXYeoWhZ0XSE7w0jTVu5bZigK3DompcI11XWgeBMi13P/uvONVIQkEonkX4yu67xy+3sUFxY7tcEAm5vrzPFUPnpslmNbrxFdaNKykHFvH+PT9bv5eO0e7n72JDF1igFQDSr97u2JwWig333X0al3VgXrxjX9KtbKKYuqCpq1yyU00lnL2LfNjweua8QDvZrwyphELIUG8rINTBhcv8bcZfZ5MtNUvnwvhnE3NuTWMWf4eu9OPlq9h9HPnqRd9yyMJsGSGZFYipWztqZoGtz6gK1cgH+gXqkrzBWDHz7jiGlqdGUhwx5LpknrssqI7cTqNCzgmemHKWsl+mlxGFaLUuVrWDZLT1Xhql7ZBIZYad4ul5AIz9qc2U/w5badTJp5mBadclENgiat8gEd8uddVFYhqQhJJBLJv5ita3dy6lAyuub6KahZddYt2kjmGVt+e5DvIt5buocet2ZQp0ExiU2KuOXeM3yyfg/teuQS37Q2QyfcBECPYdfgG1DxMdKgeSFXXZdV0oCzPAJdwPDHnF0nB3f48n83NeTwLr9y4xXSU3x4+d66NaIM2ec48I8/89+Ppk6DIu74v2SsFpj3biyf/K8WW34JZs+WAFYtDOexGxs5gpPt5GapLJkR6fWaBgNc1jofk4/O0b2+WGvATdWmSy7vfHuQr/75h3eX7sOu+CQd8KX1tbncMiYFsLn8crOMTJlQG0XBa2uUEGApdt7m4yt48OUT+AV617DM10/Qrkc2byw6yOPvHSMipuTERS7CcpBdv+9j/eLf2fHr7kqtkOcSWUdIIpFI/sUc3HoEVVU9Pmg0q07S3pOEhOxF5LwK4GTlMRhBUQWTPjuKJehjAkJsNXFMPiaU0DYIy8YKFYvHf3iM1x6sy+8rQ0oqGgusVgWzWfDoW8dp0zXXafynL8dhtSgu078Bfl0eSnb6iUotEZVhD25ufW0utz+aTFi0BasF5rwdy68/hNiuh8OapXBopx+P9G1EvcsKqNOgmIJclW0bA9EsClf3zSIyzlKlQoXL5kS4rL7sDa5q+IRG6Pj5F2A06SW92xQO7vLjnudOkdCoiAVTo0g66MvK+RFoFoW7nz1VqpB4QFHA5FNxe/ebMwmJ8F6Ts99HPW7OdGz76+dAPnjuPU4eLK0nFV03kjGTR3LtLVd5PXdNIRUhiUQi+Rdj9vNBlC884wKTrw8ibxZgACoqG7ZAWA2jYQkwtnS7X0fQNlYY7xeg88KsIxza5cv6paEU5Ck0aVVAh15Z+Ac4m3bSU4z8tS4IhHt3mtDht+Uh9B1evWKMFc7HAP3vTCP5uBGrReGbTyIr9AArReHwbn8O7/ajrMvp8zdieeK94zb5PBQaFDoc2OFLWJSVu54+xZJPIrhpdBq6Vlp40W6p8hRz5G6f0QQdr8/it2Wh6JrCrj8CuLx9Hr2HpnPdkHTSThvRNIXIOAsGg3OAt7s5NSv883sALa/Jq7CvTZdcr+R1xV8/B/LM8PogMpy2pxxL5cXbJvPMl4/SdfDVVZv0LJGuMYlEIvkX06FfayrLKgqPC6Nhy0Qo/h1XSlApAvI+Rlj2lG4q/sfj3PWbFTLyydOMeeEU3QZmVlCCANKTTR6VIDt/rQuq0dT6oFANXSjs2+pPQV5lgTsCf4dLyCbE6oXhTJ0YV2kMkaLC5p+CSTnhwzefRjL9hdq8MqYuh3b7OsakJRs5cdjkVYd5J6mEzWI38snT+AdqqAbB8rkRpWsrEBlnJaaOxRGbZI/7cau4lRS9fu/JeJKPm1xe8+pU+BYCPny2NgjFbfmGqY/ORLPWXCVsb5CKkEQikfyLiUmIovvt16Cq7p9aQyfcVFI7yBstw4rIuBOhl7i2rFuqLZsQkHTIyBuPxHsxWuH3FcFs+620iWtykokje8xVVh7KkpNp8CpuRlFg5JOneGn2IR565QRXXJVDi6tzuOXeVI9FF8FW7ycm3hYcvPXXIHRN4ZfvwnjwuibcdnlzhrZsxn3dmlA7sWpuNrtcAPENinn72wM0aZlPcpIPU8bXAaigpJXVP5bNsXWmLxuzZLXaxrw9Lp7k4z4cP1BzGXv7tvlx4pCvR2U2IzmLLau319ia3iBdYxKJRPIv59GP7yM3K59NS//CYDTY3sYV0K06Q8bfxI0PXm8b6NMBin7Bs1UI0DOg8Dvwvx2bK636bF4TwtG95QOkXWO1qHz2Shwjnkzm89dj2bfNnwdfSSK+YVG1XuuFgFbX5JGbaSgTY+N+bFRtC+172Ooudb8lA7Ov7oiN8mQdUQ0Ql2AvJFjaYwzsrUggqlbxWXWGz05X+XNtEDF1igmJsOJj1tmxyZ/L2pZmlpV3333yUi3WfR/KjXelcnmHPHQN/vw5iCUzothf0rz11FEzkIsnvO0/lpbWHsisdFzqiZpxf3qLVIQkEonkX46vv5mXvn2KPX8c4Ke568lKyyY2MZreo7pRu2Fp93XF/05E0U9ezSkK16L43w7mzlCwiMJ8hY0rQkhJ8iE43MrVfbMIDtM8x84IuKJjxRgUV/QZnkrqKRPpySaeHVYPFDCadK4bnF6pRcYddvdOcLhGj1syWLkg3G39I9UAL9+byFMfHqXLgCwCgnSvFQDNCpmpRsx+GkUFrrWdzFQjhfkKvv5V9/1lnDEwon0zLMVKSXFIW/XuDT+G8Or8Q8Q3LELXITPVQGCIjo/ZtoZfoMbf64P4e33FRq1gyzjb/Zcf/e90v7YQcPqoidgES6XXIrxOW2B1pecTHhta6ZiaRCpCEolE8i9EiGIoXIWw7kNRfMHcg8s6NOayDo3cHqOYr4KgpxA5r1c2O1BSB8b3BlZ9sYapz9QmP9eAwSDQdPjg6drM3LCH6NruWyqoKtRKLC63TThljvkHatz+WDI333MGVYV3nqjDwZ1+oCsEhlvx9Tv7oCHNCuExtge5u9lsdZEErz+YQKMr91ArsdjrGBmDEdYsDqPP7el882mUyzGWYpUV88O5YYTr7vKeePORuhQXKyAUmrbKY+DdqVzRMRehK+zY5E907SLMfhAWpXH6mIno2hYMRug2MJPF06Pc1nzyRlFVFIiJr1wJAmjSeDJxiS04fdRdRW5BcIQfrXtdWflkNYhUhCQSieRfhij6DZE5riQzx4hAQO47CHNXlJC3UVR31YhBCbgbkf8NaHs9rGAA0xUArP+ukLfG1sWuQthTz60WhUO7fImKs3h0+eTnOO988JUk6jYqJDnJTGCwRqtrcxxWEl2HR15L4vaxyQSFaqScMHnV78sTug6vPViX9UtDPWSN2VEQCH74IoJ7Jp7yan7NCgd3+ZHQpIDh41LYvjGQI3t9XSofc9+OpUPPbKJqWZyUIU+Wp5VfhdosOkKhTZdsJnx0DL8ADWNJZ5LOA7Ic18eutIAtk23AXan8MCeCwny1gjwGgyC6TjHdBmZWfpJeKoSKAmMmHeH5UQm2Y5yut81leO9z+zGKLUAH7yatAWSwtEQikfyLEJZdiIx7QWSWbLHiiPkpWo/IeMBtxo4dJfD+ylZB8RuCEILPnv665EFY8Wn4y7dhHpUgzWqzlNgx+2lcNyiDKzvm0+u2DDr2znZyFamqzboSW9dCQLBOQpMimxXnLIxCm38KYt33YV4oQTZ0TeHvX90rknbsMiUn+RARXcyIx1NQVXjm4yMEhVpRDWWFFoAgK93I2BsasWphmM3NVUJBnnNVaHvbi02rg5j8WN0SC5rgr1+CGNqyGXPfiXUEkJevYq2qJS5BFaJrW3hj4UHCo23KkcEoHD3i6jYu5I2FBz266jQNUk6aKu3JVparrsvi+U+OEBHjbCkMibDy+HvH6DUoE5E72fsJawBFVPYv4j9OdnY2ISEhZGVlERwcfKHFkUgkEgdCz4fCZQjrXlDMKOaeiLzPoGgVngKelfB5KD5t3c8rBCL7WShYiO192Z6WZQB0lOAXUfwHc+Dvw9zf5km385h8dD5cuY/4hkUVrDaaFfJzDYzp0ZjUU7bKfZFxxcz5c7dHN4srC5C3sTqueH5kIn/8FOyxJUh5Glyez9SV+z2O8SRTeoqRbz+LZOVX4eRkGgiLtJJywrl6oX+gRkx8MdcPTePGu9MqzLX11wAmDGlQovCUX0gw+KEU7nr6tFfno1lh06pgdv0VgMEoaN05hys75jmUTCHcW92+nh7JzfdWvUCkpsH2DYGknjIRGmWl1TU5DisWgBL5E4qxTpXnLYu3z2+pCFWCVIQkEsmFQggrFC5H5H8J2mFQglD8BoDfULBsR2SNA5GHLcpBUGm2F9jG+g9BDZ5YydoCCr9H5H0O1p2AAczXogTcjeLTDoAta/7hqV4vepwnIraYKcv3O6oZ2xWEU0d9ePHuRA6Va6lRt1Eh494+zmVtXDf1PBulxxV3X9uEpIO+lQ8sweynMW7ycboOzHJZVLCywopC2Kwx5cdMfqwOqxaEO1mmAoI15m/d6eg2b2f/dj/GD65PbpYBd34p1SD48u9dFfq5VQVdh+0bAohvVER4tBWh24LGrVZbxejPXollySdRzN+2E78A/axclOVRIhahmM4uVsjb57eMEZJIJJKLECGKERkPQvEvlFpl0hC5H0DeLBC5lIb2VuVhJ0DPqXSUoijgNwDFbwBCCNvncsQmug78LUtAkE5xYemxigIH9nThoR4ZLt1Rxw+YeX98bT5csd/lg7UmlSCA4DANRRFeucZCIiy8vuAQ9S4rdCuLq22aBt/PimDWa3EYfXS+2rarQkD0o28mER5jZcmMKEdmWYee2RWUoC3rAnl2eD00q2etQ+iw7vsQBoxKq/S83KGqcGUnW7D0tt8CsBQr+PgKDu3yY9nsCI7ttymQ7z9Vh/EfHHOqlH12KKDGVT6shrjkYoQ+/PBDEhMT8fX1pUOHDvzxxx8exy9cuJCmTZvi6+vLFVdcwbJly86TpBKJRFJ9RO5HULyu5FPZioE6iJySbdUx6AsUY6LnEaIYYdmLsOxBiGKXShBArQaxXNH5MlSDSmCIlUEPpjDjlz0s3LGDD1fu5blPDjPjl73E1nWOB6nf5G/qNCh2OacQCjfdk1qjFaQ90e2mDK+uomoQjJ96jMQmhVWaXy+xAi2aFk1BnoGO1+W4VBYMRhg1/jTzt+3khc8PERJhISjM6lQs0lKs8NqDdcv0QvMkL2RnnL2twx5T1OLqPJq3y2PeuzFMm1jboQQB/PxNGM/fWY+j+0q3uf/+3FuxHPt9OqMYKleya4pLShH66quvGDduHM8//zxbtmyhRYsW9O7dm5SUFJfjN2zYwNChQ7n77rv5+++/GThwIAMHDmTHjh3nWXKJRCLxHiGKIX8O7hWds9QS/G5xs64FkfsBIuUaRFp/RNoARMrV6DnvI4TrNPiH3r+buESdqSv3MWr8Keo0KCI4XKN+s0Ku6ZsNuLCSiFxennfQEZhbbiddBmRWCPI9V/S8LYOYOsXlgpdLUASqQVC7XhF3PnWK1tfmVqnooT22JumgmWv7ZXLrmBQua5PrsRK2f6DOVb1yyE43cvKw2ckq9vvKYLLSvGtHolkhunZFZdOTgulun73ekm+A4KUvDlO7flHZowDYtDqYMT0aM7pLYyYMSSQv25WMKiiBEPCgGwlUW6xb0BPuhTwHXFIxQh06dKBdu3Z88MEHAOi6Tnx8PA8//DDjx4+vMH7w4MHk5eWxdOlSx7arrrqKli1bMm3aNK/WlDFCEonkfCOsBxCpfc9yFlsmUfnPStBTKAF3V1xT6IjMh6FoNRUVLQXM3VBCP0RRKmooeUf74WPcX2Xl5X/3JrB+aajTNoNRsOzY2bdYqEpT0JQkEy+OTmT/dn+HQqRrColNC3j+syMVah1VVxZdw6saQUJAn/grURSY+9cuwqKsKAp88WYM86dEV+oWA4Gvv878bbvwC3CtdVU31spqhWVzIvjwaU+BzILAUI3Zf+wu058NMMSjhM9FMcQiCpbassO0E6X7Te1QgieimJpUXTAX/OtihIqLi/nrr7+YMGGCY5uqqvTs2ZONGyt2PgbYuHEj48aNc9rWu3dvvvnmm3MpqkQikZwlZxsIo4DpSrDsBUpcOYZ6KIEPofjd4PqQop9Kss1cIaDoJ0TeFwg9CayHQA1G8e2DMNTFz+w5g8oVVgu06ZpTQRHSrAqpp4xExForfVBXVrXa2wd9dB0LU5bvZ/df/mzbEGgrJNghj8s75NVITJJ9Dm9rA5045IPQFQTw8aQ4Jky1dbg3++luK1+XW5ExL5x0qwSVlamqGI1w7Q2ZJYqQc7uQsuvnZhr49rNIhj5SxmOjZ6MYYm0j/G4A3762QHw926YkGetWT6iz5JJRhFJTU9E0jZiYGKftMTEx7Nmzx+Uxp0+fdjn+9Gn3KYVFRUUUFZWa/bKzs89CaolEIqkGhgRQI0GvelqyDQUl9ANQgmxv3IrZ9qDx8PQT+fOxxW+4yzxTIPfVMmNUROFyUKOrKyIGF+4ok4/OySNmImIrDwDPyTCwe4s/QkDTVgVOGVKqarPAuDBguRZHgWZt82nW1nW2Wk3jSRHJzy0VOv10aU55x97ZfPZKLY/zGow6T75/nK7eFEKsJvYWHZ4VdoWvPoii200ZxMbb3arOX4aiqI7CnBeSSypG6Hzw6quvEhIS4viLj/emK7JEIpHUHIpiRAm4y8MIA+BLxQeR7SddCXoWxRCDovqjmBqhGOt6VIIAW3q+x/R7+8PPPqbE2qCf8TyvGwwG2Pu3v9M21SB44fPDXN7esyWmMF/l3SfqMLRVMyaOqM/zI+sztFUz3ngknrxstcx8tliZ7AzvHnX2mjllKd+9/VxTkK+wfmkw9utdr3mhQ6a6jYrodH2m63imEv7vHe+VoOoExmhWOLrXF2/i1ApyDTzStxGZafYAaQN6+mhE3iyEnlX1xc8Rl4wiFBkZicFgIDk52Wl7cnIysbGxLo+JjY2t0niACRMmkJWV5fg7fvz42QsvkUguSoSejyhcgchfgCjaiBAeoljPN/53ge9NJR/sb9J2H0scRHwNAaNtVh87xuYooR+hBAx3O60QOqJoHSJ3GiLvM4T1YMnUIdUUtOpPU6ErFOarrF0SQmBIqabRZUAmbbrkekzB1qzw3B31WPFluFO3eF1TWLskjKcGNXBK1zcY4Y52zZgwtD7//O5fqWKzfF44j/RtxCv31+XpofUY2Lg5G5YHV1AazlV07Y5NASyYWurJsBSpTpf4ySnHad3ZVv7AYBQYDAJVFSiq4J6JJ+lxS6bXa1XHPWYwQnKSibbdslGUyi6CQlaakW8/jQQEiDNQvA6R8yriTHdE8daqC3AOuOSCpdu3b8+UKVMAW7B03bp1eeihh9wGS+fn5/P99987tnXq1Ikrr7xSBktLJP9hhBCQ/xkidwqIMq4QNQ4l5BUU89UXTrgyCCGgeAMi/yvQDoESguLXH3z7o6gBJWOKS6wyZhRDpOf5LP8gMh4G/SQ25UoAOpi7gak15L7NWWekVYJmVdA0eP7Oemz5JYgJUw8TFKqTn2ugbbds/ALcr6/rsH5pCK+MSXTabjAKLm+fR0CwxskjJgbenUafYekIAWdOmrijXTMArrouk0kzjwIVlQAhoDBPZcRVl5Gdbo8aETzx/jG635xZsZq1DhaLwqmjPnz3WSTrfwjh6r5Z3HLvGbelAbxl/Q8hvP9UbXRNITBEY+aGPU7rC2Gzpv38bSh52QbiEou4blC6V3FVZeeojiJkP27nZn/G3diwZKvniSJii5m3ZXe5rSoo/ihRa1DUMJfHnS3/umBpgHHjxjFy5Ejatm1L+/bteffdd8nLy2PUqFEAjBgxgtq1a/Pqq68CMHbsWLp06cLkyZPp168f8+fP588//2T69OkX8jQkEsmFJm8aIveditv104iM0RD+haN68oVEURQwX+1RMVMUHzDUrnQuYT2KSL8DhL0OThk3WNEvYD0IBAD5ONctqjmEgJ+/DeHL92I4fsBWc2bLumDGvZ3k1fGqCiu+DHfqUN/vjlRGPHGa0MjS8zm234zVAr8tC2HWG3YPgKBDrxw0zRbw64pNa4LKKEFweYc8et6aWWFccZHCc8PrsW1DYMl52WRZMS+CNQvDeXneIa64ynPXdk9c2y+Lq6/PIjPNyNx3Ylj/fQjX3JDlyMpTFGjaOp+mrasez2RXZMr2aKuKQmQf26xtPnF1izl1zFzpMVlpri64bquKXrDYZtm8gFwyrjGwWXjeeustJk6cSMuWLdm6dSs//vijIyD62LFjnDpV2hG4U6dOzJs3j+nTp9OiRQsWLVrEN998w+WXX36hTkEikVxghJ5lq87sei8gEDlvnk+Rzgsi71MQRbhWcnTQjuGsBNliOmyc/aNC0yAvW2XVwnCHEgRwcKefh6OcEQJSTvg4lKBb7kvhkddPOClBALXrF6FrCl++H8PJw6UP6veeiOfdx+PRXIRCbVoVzFcfOCfXGAyCtJSKfroFH0SzbWMgQihOFak1TcFSrPDi6ESKi84u3Uw1QHi0lYdfPUHH3llYLTVXUnvHH7bYLLtSUx2/0CcvxXmlBIGo0GC17D5R9HPVF69hLinX2IVAusYkkn8XIn8BIvs5KnMBKZGrL1g677lAT24BoqBqB/l0Rgm8D1G4FvI/o7qWIl2Hma/EsmBqDD6+Ou26ZRNZy8K670LJOGPko1X7SGhaWGkdIiHgqUH12b4xkIAgjfnbdmHycf09alb465cgnrujvvMORXDnU6ed0rqXzw3n3SfiUVThlJ6uqoLYusW8t3Q/weGaY94hLZs7WY5c8dQHR+l+c6bnE8LZKqNpsPmnIBSgfc+cCpaaM6eMpJ4yUZSvkpZsIu20iU7XZzm54oSOx6KPmhUe7tuQKcsPYDDY1ve2vlFZ3h5XhxXzIyof6OJ6O2FqhRrxVdUW9xJvn9+XlEVIIpFIzho9Da9++vT0cy7K+SA7LYelH6+ouhIEYNkCpitQgh4BU6tqy6CqsP13mxupuFBl48oQ1n0XyusLD9Dq2lzefSIea7HiMZDZntHVa1AGQlfo3D/LTWVqGwYjtOuWQ2hkOWuEUPj64ygsxTYtIzvdwAdP1wZEhRo9uq5w+rgPc98ttRSlnjZVqgQZTDr7tvl7HGPHruzs3ebLyA6X8fzI+uz6K6CC1Wr90hBGtm/GuBsb8dSghrzxcAIzX4vjni5N+enrUMe4gzvdN5DVNFi1MIyDOwKcMvYUtepWoaAwjdadczCaPCnHgloJRQy4010ZCAOYWlZt4XOAVIQkEsl/C0MsXnVpN8RUPuYiRgjBnJcWMbjWPbz/wKeknjJV3QUicqFoPYriC2EfgVr1ciJWK5w6ZmLQgym8ufgAY984TsPLC8hKNzJ9Um1emHWY1NMmHh3QiC3rgyibuGe3VoBNYVBV6Nw/E0UVRMZZXLq4yqKoEB5TUbvKzjByeLdNYVjzdRiaVcFdwK+uKfz4ZbhDcfKkfJUKrmA0eX+xFQWmPVebtJKaQcf3m53imJIO+vDq/Qlouk2esrLpOrw5ti7H9tvcVLu3+LPkE5ulxmq1KT/WEl1w06pgPiipCJ2XY3Csbf/zBvs9dM9zp3h1/iHm/b2Lfne4UHQUQac+Wbzz3UECgt0pSzqK/1DvFj6HXFLB0hKJ5N9N0v5T/Dz/N7LTcohNjKb7sGsIjapuWrcbzNcBkwB3FhIVfNqjGM5f9+tzwVdvfMvnz5e6HJZ+EcEdj5+ueg8ve72XnHdAP+F5bDk0DRAQV9dCdG0LBgM0a5tH3+HpfPNpBB9NrEVaipG+w9OYPTmWSXc2JDi8kNAIKzF1iqnbuAgBbPs1iF6D0+k/Ms0W5KsrZJwxenUumamuH3M25QdOHDSjGoTjsysK8wxkphqJqmUhIsZK3caFHN9vdtuxXrMqtOtetWK8FotCUJiVXoMySGxSSFGhgskkUA3w/eeRNkeuy/VsrVO++yySh149Qe16xUwY0oBlsyO5bkg60bWLyUozsmZxGHu2+GNX+GollhYOrqoSVJaQcI1HXj9Bx+uzOHXETHqKkcxUI8PHJRMZ587EZwB0lOCXKm0AfD6QipBEIrngWC1W3ntgBj9++hOqQUVVFTRNZ/qTsxn92jBuHde/xtZS1AAIHo/Ift7FXhUwoQQ9VWPrXQgKcgvY++unvDT7JI1b5mMtVti0JphTR3yISyiuUjyIAFsLhILFVCVGSNMg9aTR8TC0Ky3GkkLJA+9O48RhM0kHfGnXLZuls5uQlZpNerIP6ck+HNrlz8aVpfMdP+hD95vS8Q8SBARbWfddKGNeOFEhrd2xvhW2bwwkPdlUYZ+Pr05CSRd5/2ANb1qa+AXYzE+KAkMfSeb1hxJcjlMNgnqXFXBlx6pljbXrmsOwccm2itjCJpFaEsOzd6ufkyWoPLqm8OfPtnpSLa/JJbp2MccPmvnkpYpVqFWDoHm7PGrXq16KvzulqW3XXKwWWw0oe8d6OyknfDhzwkhQGMQ3AsV8DUrAXSg+raslQ00jXWMSieSC89G4Waz4bC0AuqZjtWgIXaBZNT5+/AtWzFpbo+sp/kNRQl4HtZz7y9gcJWIuiql5ja53PhFCkLbvCZ6bsZc2XXIIjdCIjLPSe0g6MfHF/PVLkFPBwUrJfhqR+ThQtQfnkQMtiIm3ulW6dB1uu/8MPr4adRpHk3kmG10rb3IQdBmQwZRl+1iydycBwQJFgeuHppOTZWDee67dl5pmi++Z+WpFq55qEPQenO5oBnptvyyP1iDVIGjdOZvAkFIlsPvNmdzxf6cd+8EWWA1Qu14RL35+uMo1ekY+lYzBaFN+jEbn4OUH/3eCyoL77dYaVbVVl1bVUpnKnktIhIXxU49WTbgSPJ2TooDJx6bw2scd2ePL+CHNuKPdZYwb2Ih7ujTi/t492Lzx4lGCQGaNVYrMGpNIzi3ppzMYWncMutW9tSE6IYrZBz9Adff6X02E0MDyt839Y4hHMTWu0fnPF0IIKPoZkT8XLNtBZLocp2tgKVYY3aUJoREa97x2PVe2+BiwUqO1gwLuoSjfiNHyUaXWp6J8yCtqy9DmFVOs73r6JIMfOoOm4eQGS08x8mDvxmSmGrh1TCpDxyY7dTlPOuTDO/8Xz45NgY5t9irIjVvk8/rCQ04NSSeOSGTzT8GOtPzSgwSqAm8sPsgVHSpaeA7848uqBeEcO2AmIEjnmn5ZXN0ny20mm9CBcvE4QsfmBjMLj66+x25swK7NgS73GQyCnoPSGTe5tB7Trj/9mfV6LNt+s1mKFFVw65gURk2ohnu0GhzZ48uj/RtSVGhwxHnZ5FAQQvDcV+PofGvHcyrDv7KgokQi+ffx+/d/oWueH8IpR89waNtRGraqV6NrK4oBfNrW6JznGyF0RNZ4KPwGz01TbdYGk1lwbb8sFn8cTWidgSgR3RBZL4P1r5oRKPhFVP8h+CpTsGba4lc84eMHBflbAOfmm5e3z2XwQ7Y+ZuUf3OHRVt79fj/vPVGHBR9G8+1nkbTukkNgsMbJIz6knjThF6hh9tUpKlRRFEFMfDE333OG64akV6hePX7qMSaNSmTbb0GoJS0rrBYF/wCdJ947xhUd8rAUKwgdfHwFug4nD/vw1QfRPD3tmPfWHwXyclQCywQPKyr4+nu+RlYLXNMn260ipOlw413OAcvN2ubzxsJDpCUbyUozEhlbTHD4+WshM+35WhQVqk5KEIDQbef67n3Tuap/W3zMFV2X5xupCEkkkgtKfk4BqqpWqgzlZZ+fruCXHPlzSpQg8CobDmjePp9//mpA3YanEQU/gur6AVt1jBTn7mfDt7+i52fRvZ93DofQSJ3WnbPZ+muQwypzw51pWC2lMUXlialj4ZUvD7Nrsx+P3diYjT+G0OraHO59/iRNW9kC4XUNNq4I5rNX4yjIU9m9xZ9egzMQQqBZccQXrV4YxoEdvnywYi+b1wRTkGfA6KMz+MEUtm0I5PGbG/BPSfp/3caF3HzPGTatDib1lMlhrSpbnNCTYuQfqDuNyThjICyq8u/Nx1enVKm0HawabErZ2NeTaNC80OVxETFWIlxkzlUHzeq+3pDVYvvz9bf1Ivt7fZDrgSXkZOSyaelfXHvLVTUi29kgFSGJRHJBiW9au1IlSFEUaje6tLO4zgVC6Ii8z6p4EKiqwiuzf4aMr2tUno0rgnjr0R3kZm3HZFZpdoUPUbU8B2fbFYKHXzvB3dc2RVEEQig0bpnnVgkqS/3mRaiqoHP/TMZPPea0TzXAVddlc2WnPB7p14i1S8LZ8GMI1/bLIjahmLwsA+t/CCH1lA8Ae7f4c/ujtsJ/edkKL9yVyJZ1wU6xNsf3m3n3iTq065HN+8v2O5Spsq0rXOFqvxAQGKKTm6U6xSCVx2CEE4d9uLpvJgHBOn+vKwmMvjaXG0el0ujKatSIqiJrFofSuX8WiiZcNsWd9Xosxw/4MmnmEVKSfCqdTzWonD7spsjieUYGS0skkgtK294tiKwdjqK6foKoBpWr+rchslb4eZbsEkBPKWmg6j2KCm26ZhMUUrMFI4sKFF4eU4e8bNsD3VKk8+LoBAryVfRKPDJCQFiUlZvvO0NgqM064uvrnTXJ11+n16A0npxiU4LKKyIGI/gHaoyZdKJETgOrF4UzZ3IsSz6JcihBAGsWl95jqad92LLOFldSNnbIljKvsHlNCOuXlpZ2KN+uomyNI3dWIkWxxe6cOGyutCZSt4GZbFoVwr6t/rzz3QHm/Lmbx985fs6VoMxUA9Oer8UbD8czfnA9Thx2bquRk2lg2dwwOl2fzQuzjqAoEBRauYVL13WCIjxbjc4XUhGSSCQXFIPBwJOfP4TBoKIanH+SDEaVoPBA7n/nzgsj3EVP1VKThFBRFCM+5qrGiqiVrmX2E1zVK9up1szBHf6M6dGYrDTP0bk2S4lg0dRocjKMhMcU4+uve10A8v6XTmIwurfGGIzQrkcO4dHuel7Z2LvV31E4cdnsCAwG9wKoquDbzyJdnktxocKRPb7oOk4FIl1hNEL9ZgXkZRvcnq+iQJNWBVx7QxbH9/vy1KD6DjlrCnvlbk2DJZ9E8ORt9XlsQANub92cJTOiAJUdm4IY3bkJj/ZvyGsP1uXZ4fX45pNI+g7LoEmrUtd1QpNC6jYqdASou8LkY+TqgRe+sTFIRUgikVwEtOp+Be/++j/aXNfC8bw1+hjpMawzUze/Rly9S7vK8zlDjQYl1MvBiq2GkpdxRGWPs2WUVRLQa4UOPZ2LCDZrm8eLs454FQOTk1nqP8tIMZGXY/A6CLl88LMrVBVi4os8jtGsCvk5tsfivu1+aJ5q9+gKh9w0jPXxFXz2Shx9469k/3a/Ss/DaKrciqJp0HtIGpqmcOKQLxt+rNksZkWBZXPCGd62GdMm1mHbb0Hs+jPARWkBhd1/BbB2SRjpKUbueDwZcA5oVxS46+lTJXeM6++mbe+WBIXVVGza2SFjhCQSyUVBk3YNeeWHp8nJyCU3M4/Q6BD8Atz3TZIAxb+7TZUvxQimK1F8eyJ8roa0G6uwQOVZX46Rij2g10aTVnm8seigo86OJzQNVi0Ic3wWQuHwbl8i4yxuCyZWh9wsz5YpH1+dgOAS15yfcMQruR1vdn9uNouWwr5t/tS/vMCpZUZ5vFH4DAaIqmWzaKmq4LdlIXQZkFX5gZVgd9st+iiSGS/VLi+Zx2NvGOE+oL1j72zGf3CMKRNqk5dtdAR2G42CG+9OZf3yI+i6XuMlMaqDVIQuAEJLg8JlCD0dxRADvn1RVFmjSCIBCAoLvGjeFC92RN6nVJYyT+D9qIEP2/5fz/VOrVECwZAI1h1ey6KAk4Xk3udPoho818YBmyUpN9PAdzNL3Uy1Eosw+eg1qgQVFSocP+BesVYNgl6D0h0P9U59stiy3v19aDAIrrkh0+1+s5/tO1n6RQQ3jEyrlsxl0TRIPWUTTtehILdmFYjwGAuqKirWUvJAoyvzPQa0d7spk6v7ZLFhRQjJx00Eh2lc3SeL3GwDi6elcvifYzRokXj2wp8lUhE6jwghELnvQd7H2EzNBgQaZP8Pgp5ECRhxoUWUSCQXCcLyDxStRwgriukKMHe21T2y7xcCijfg2dWlgGV/6Sc1EGHqAJZNnhf36QJFP1RNXlRWL7IpM7F1i7i8vXflDpKP+/DcHfXIOGN7oiY2LWDyNwfw9a/ZmjczX43FaLLVByqPahAEhVoZ8nBpFlOPWzKY+3YMWenGCu0tFEWgqIKBd1dsNmq3sDz5fhLDx6WQdNDMxpXBdLwu2yn9XNepoOh5Sr03GGDF/AjH5zOnKs/M8gb7et0GZrHn71S+/TTK62OLClSEbgvAd4ePr6DrjZmOz5oG35TEVhXkuk75P99ceJvUf4m8jyBvKrYfLoGtmqsAihE5/0PkL76g4kkkkguP0NLQ025HpN2CyJ0CedMQmfchzvRAWHaWG12ZsmD/nSlFCX4Gjz/9ShAY4rBZmrxFodDwHBiiMRhVImI9ByWXpXa9Yp6bcZQmrWyVmx9/9zh+/rpHV1JVEAL2bPFjyYxoatcv4q6nTzrcX3ZadMrl3e8PEF27VG7/QJ3XFx50BFirBmFz8ykCs6/OpFlHqNvIc8xRrcRi9mzxZ9Kd9Xjm9nps3xjoyKA7sN2P6S/FUZBbLsPMxVeqWW3nsO57e5aawuHdfo6O8zWCAndNOMWEqYc9BjnbiYi1cPKo2UvHqQ2rFbLTjSz9PALVoF40JTGkReg8IfRcRO40z2Ny3wG/gU5vfRKJ5Nwg9GwQOaBGoCgXRyySEBZExp1gPVCypcwTUj+NSL8DIr9HMdRGURSE6XKw/IPHOB7F+WGpmJoiwuZB5piK8UWGBhA+G/I+8V5oJRwlbApBPu2Y8nsfPp0wl32/r/H+eGxFCt9cdJC3H69T4+ngimKzvLTpkk1ykg+DHzrDTaNT2bk5gKIClbqNC6mV6NxHzZ5BldC4iFe+PMSMF+MoyDMQVcvCZa3z6XlbOgHBrpXQ1NMGouJs31tKkol579oC/f/8OZg/fw62WZMUCAzVeOe7/Zj9cNTlURRbw1XKWIY0K6z7PpT3x9fBailVYFWD4Kevw7jzqdMVZNd15+Dlyoo82tf29Rd0HZjNmq9z+HNtkMtGrwHBGo+8dpzOA7Iq1FAqL4eilCh5wmYJSzpo5qXRieRkmbl6YHvCokMqzH8hkIrQ+aJoHVCJGVBPActW8GlzPiSSSP6TiOJtNktL8XpsCoQZ4XcTSuBDKIboCytc0Wqw7nWzUwdRgMj7HCX4adsmv+FgebKSOX9HCM3pBUs1t0ZEb0IUbYCitaD4gv8tKNa9iMz7wbLNS4FVlPDpKKYrAYisFc5Tnz9MbuZdFGYPxmw6gKJU7uIyGACTYPCDZ7xc10ZejmrLbLIoNLwij8g4127CBlcU8PLcw7zxSDzJx01E1bbQ6tpct/Pm56oUF6js/DOAV8YkIAR06JXN+A+PuT1G1+DYfl8mjkzgi02273DlgnAUFYRTTSEFIWzWl7i6xRWKE6qqba78PIX3nornn98DSU+uGIijKILM1NJHuBC2PnIP923Ekd1+RNcpZvi401w3OKPKDWDvfvoU2zcEEBFjod+INK7uk4XRR7B/ux/xDYuolVDs5NYrW0NJ12yKXX6ugWnP1yE0woKi6Oz6M4B/fg/AYDQQFh3CmLdHVk2oc4hUhM4XIrvyMQC6l+Mkkn8xxUUWNv2whbQT6YTFhNDhhjb4+p+9G0AU/YrIuBebAmS3ohRBwUJE0U8QsQjFEHvW61RbvoIfsLmt3CkPGhR8B8FP22KE9BwvJk2D4s1gLm1lIPR0RN4nkP+VzSqGGYrXI6y78T5iwg982iMyxiIQ4NMRJeAOFFMzAkMDEP4TEekj8TbzzGCEek29ixnRrPDZK3F8NyuS4kKbvIoqeHnuQVp3zqtYVNFgs5KMfSOJz16N44GX3BehLMhTGNuvEScOmxG6vUCiwqZVwZw66kNU7WKXbjvVAAunRlGYV7rzzAlTiZvJWSD/QI0et2a4rbitGiAgWKBZFJdKENgUqsi4UldeygkTr96fwJHdtoD1lCQTdeoXVbAOeUNi00I+WrWXqNpWVFU45IyIyam0A/2ev/1ZsyiMn7+NIDSmFvFNa7Hphy0IXeDja6LXiK4Mn3jrRVUgVSpC5wtDgnfjjHXPrRwSyUXOqtm/8NGjM8nJyLN1qtYFfkG+3P3KMG588PpqzyuEBZH1BKUxemXRQE9D5LyOEvrO2Yh/dogsKo37EbmI4j8QWZNAO+B5rB29NGtJaCmItEGgJ1PqeisC62774MrnU6NtFuziX0vnKPwGUfg1IvBJFIoR1n3g09E2r+5d1pSigi6MqIr73lhCwBuPxPPLt2FOqe0+Zp0rOuS7fVCrqq3oo2aF+VOiGfJwiiP1294v7Nh+H/7vpgZkp9sDkUuVGF1TeHZ4Pd5YeJDwaCuiZE6r1VYUccHUKNYuCaXX4AzHmsHhGrhIv49NKPaYeg+2vl0JTQv5dZnr/boOvQalYymCVx9MYMPyYIQoVWLrNCiieUnAeuopI8vmRPDXL0FomsIVV+Vyw4g0atcrdj05EJdoU7LKXs/KLEuaZotx+mG2LRg6L/sUE+aOZcKcseRl5RMSGYSPb80EedckUhE6X/h0ALUW6Kdw/XakgqkFirHB+ZZMIrlo+GXBBt4Y+YHjs71TdUFOIR88/CmqqtD//t7Vm7zo50oeyBoU/ojQn0NRL9DbqqEe8CfuM8EUUCMR6XfilcLimLfUyiWyXyynBFVRPvN1kD+9ZEPZOUr+P/d1BLY2FLY/DQx1wNgMilZWsoCC6ns9FC11OyL5uImfv6n4/UTVsuBTSVsORYExL5xkwYfR3Ne9Mb2HpFOrXhGWIpusV3bKZeGO3WSlG7ivWxNHJpudpIO+jO7clJ63ZdC5fyZ+ARqHd/ux9IsI9vztj6rilEnW/eYMFnxY0d1aVFC51c1eKVs1CJexOoMfTCGmjoWfvg7lt2WhFfbb457++jmQSXfVw1qsOFLjD+7w45tPovi/d47T4xZn11lxocKm1UFc3Te7yuULDAaIiHNWYo/uPE6Ttg3wD3JdfPJiQGaNnScURUUJeRVbJkb5y24AxYwSPOn8CyaRXCTous70J2d7HPPZM19SXOj+LdYj1oNUngmlgfV4ha3CegiRPx+R/yXCsq9663uB4j+IyhUUvcxfpTOCoS6YWgMgtDO2OKTqKEFqHGrUihJXWmWPDlEiX8k62imwHsHzu7cBTB1tRSI9sGJ+mMvWF3nZ3vl/TD4wdGwKN40+w8eTavPh03W4rE0+na7PIiTcJm9IuEZwuHur1KmjPiyeHsWkuxJ569F49m71x2gSPPPxUepdVureq3dZId1uSq+QhXXikA9JB3089mBTFLhucDotOjnHMgWFWrln4klGTThNZpqBrb8F4Orl+swpE2mnjUy6qx6WMkoQ2KxbugZvPRrPgR2lCoquw4ujEz2mw3tC0yDtlPN3bK4Bl/a5RlqEziOKuSOEz0XkTAbLH/at4HMtStATKKZGF1Q+ieRCsmvjPlKOVazLUpbczDz+XLmNTgOq0aNI8ccr5UHxd/yv0NMRmU+UBFaXIkxtUULfrvF4IsV0OcL/Tsif5WKvCsYmZVxYlc4GKCjBE1Hsr/zW/VTJkuQ0XUlmXfHvVF2R0kDbB743Q6GrjvcqtgrYV4Blg8eZmrfLd9n6IuOMiZ2b/WnaOr/SmBhVhetvz+DbmVHcO/EkoVHWCvE6La/O5fgBX4c1xmjSGTXhNP1HpmL2K2keocOev/3Y9ac/XQdmERFTUXn6v3eSCAjWWTYnAl2zKThCKPzwRQT3vXDKpXz2jKuYOhZe++oQp476cHSfGV9/nebt8tn5hx+P39yAHZvsBR8rKkKHd/nx0j0JWIsVhMsiiQqqIvj200gef9em/P+9PpDNPwXTe0j1GvIaDPDjl6W1jky+Jtr0urJac51PpCJ0nlF8WqFEzEFop0FPBzUGxRBR+YESyb+c7FQvAn+BrDPVTCjw7Qk5L3sYUGI9MTYEQIgiRPqIEktSOSx/I9KHQcS3KGrNVsFWgiaAoS4ib0aJKx1QAsBvCPi0h8z7vJvIUB8l+FkU89WOTYLqvZ3ruoLqf51dwmrNAUZQ/FGCnkbkfuCcQKJGAgbI/7jSWS7vkOfWXTRnciwvzzvkslhheYSA28eedps9dsPINL6bFYldyXjqg2Nc0y/LOVtKhcvaFHBZG/cp/yYfwcOvnmDYY8lsXhNMYYFCXGIRzdvlO5qsCt2WNq+Ay+axcQnFxCWUWkKbtCygU+8sjh8wk5Vmwt13svsvz/empin8uba0A/yqheGoBsHW3wK5pm/V2ndoVji404+fvwkFbOdw08N9CQwNqNI8FwLpGrtAKIZYFFMzqQRJJCVE163YyftsxpVHMdQC35tw/7Mn2PpHN/5cuQ1N06BgKVj34dr6oYGWBAWLqiWLRzkVBSVgOErUWpTIH1EilqJEb0QNfsp2Dt4Q+DhK5DInJQgAa/mCjJWjaVBUoLBjw3701FtA5FJ9ZagYJeBOlOjfUMJmQMhbYGpnC7zWT1d+OLb+Xq6UIIAt64J47cG6FBV4J1+nPu6V6rqNinj83eMoqk356tw/66xafoRHW/EL1Fi9MJznhjfg5iZXcE+XJiyfF44AslKNHDvgnaLqFygYODqVIQ8nV1+gEsq6zNJOmdA1hZ8Wh5GXozoUtcrQrLBuaQhP314fFAMde2fxv69M3PX0CUTReoSrKpEXEdIiJJFILgoatEwk8fJ4ju5KcgRJl0VRIKJWOC27X17tNZSQFxEUQ+FSbPFCCkJoaFaY/mIc3376N/A3EbXCeOSNHK7q7jn1WxR8jRJwZ7Xl8SirooKxvvNGY2Pbn3W/e7mUAFsaezmzghBapYUS7Q8+vUT3Uw22nlaT7qxHUNghLv/sCFVpxOqMFcXY1CaiYgZzF8ifh7D8aV/dq1kUFVpdm8O23wIr9MVSFMEv34axaVUQC3bswuwheFpRKk8r7zIgk6haRWhWxak9RnX44s0Y5r4Ti6KWypR00Mx7T8Sz5y9/HpucRESs+7ik8hiMcOAffxRVuHF9eTGHQdDw8nzeHBtPUKiGyayjGgT5uQaeHV6fNxYdxOQjKs0WO3PKxPH9vgy4J46b79pMYHAWkAQFWxEFn9r61oVNRzEmVkvOc420CEkkkosCRVF4+IPRqKqKopZ/wNniXR7+cDSGqhZFcZrHBzX0bZTIZRAwhoP7ruLjSXHc3qqZU4+l9FMZTLrDwp8/e3ItCJdZaEIIhJaK0NJstX5qEEVRbK4zR0aWizFBj6MoLjJ0rIfcWl20kufvplVBTJlQm7XfhPHzt6G8/1QdhrVpxj+bAtn/j33O6p6TAYGOyJ2OKFiKEIWI3M+rPJ+iwKSZh+lxa0aFzvaBIRqKKijMN7J8bgTWSvQKd1+P1QKz347m5qaXs/fvAFpdm3dWStC+bX7MfccWT1ZWabGn/6+YH8HGH6vXeNu7YomuT1TTFIY8ksJfvwTx3cxI/vo52GFt2/1XACOvasrRfeYSWXH6bykGYuOtjHj+RkY89ieBwXZXoxVHexftOCL9DoQ3da8uAIqo6X+p/zKys7MJCQkhKyuL4GDZIV4iOdfs+HU3Ux+bxf6/Djm2JTSrw32TR9Kud8saW6cgt4DbYu+hKN91vyhFhYTGhUxbs9fNw0YBUwvUiAUANvN/wZeIvJmglVQgNiSgBNwNfoMrWGjOBlH0CyLredDLFAZUQlCC/g/Ff4jrYyy7EGkDXe77+ZsQvp4Rxd6//XGnYNWuX8hnv7qreu0N9nlVQLPFPYm8CqOy0gz8/G0oqad8CI200PXGTLeWkrRkI9t+C8RqUWjcooB3n6jD7r9sMSmRccVMXbWPgGCtyn3LNCvk5RgYe0NDPlq1D1//s3tMvv1/dVi9INxlkDfYUuRbdMrlta8Oudzvju8/j+CDp2u7rFUEgCIICbeSlWa/APZxtvpIfYal8uibJ3jgukYc3OFfZl/pWEURXHVdNv1GpFK3YRGRcRYK81VWLw4j9VQUUYmN6Tb8boL9VyNyP8R9ML6CEvTMeW0u7u3zWypClSAVIYnkwnB0dxKpSWn8f3v3HR9Vlf5x/HPuTDLpCQmhE6qKveCqWEEQEAULYl9BsGDZtSu4Nmysq7u6sra1gKhgWbErFmw/V8SKuCgoKC1IJ73OzPn9cVNJZjKBFMJ8369XXjozd+59ZsTch3Oec552HdPotW9WkyYSAB/O+j+mnvtgg8c99uFSeobY8dik/BWTcKo7CpR3ExS/RO2po4p/jz8TkzKlaZMhG3R3jA5mg2kHviMwJvRmdTZYiN0wgPpa/Tx3fwee+XunkFMsjscy5tINjJ8cWR3P9nrp4Uxm3NOJgN/g8dqqxGHMJRs5f/LvDdbo3Hdldz58uV3V+7r2LuX6B1fR76CiqmMqN1FsSMAP//dWKgNPirxoOFRPr9qJRv1SM/y8+EPjariKChzOPmgvigscQiWw3pggAb+ptfkkuAlOrM/y+KdLuOaUvmzMrvlnx+KNsdW9zYzF41iGnrmVpJQA/3nMHT31eHD/W8UYnv9+Dcmp4VZ9Gog5ACfjhUZ9xh0R6f1bNUIislPqsWc3euzZrdnOn7MhD8cxBOupR6p13Kb6fk26G6ASf6L7sOzTiiQIak9DVPx78fMQNxx8h29XrDaY4/YECxaCt5fbzsI44Ds04nMYJxGbMAaKnmPbv7WPOHcLLz/ageJCp27djWOJ9QUZOa5xfcAa661n0nnizupicH95dRwvPpSJLy7IudeELw4+/pzNvP9i9WaL2b/6uOLE3ei9VzG99y6mvMxw8MA8hp6RA4RvRurxQv+jQ/cjq0+oc8XFB6m5S3V9fHGNLyhOSAoy+eGV3HJerxDntxXfY93rWmsoL4cZ93TaJglyP8fld6/hwKMKSEkPUFzg8N1nSXz/eRIvPZJZdT5/Rcj+MktZcQ6E7aEaYUuYVqAaIRGJSu27pTeYBAG0730iULM7fSzEn45p91TVCIwtmk34zRo92KJZjY7R2gDB/HuxG47A5t6Azb8Du/V87MZjsaULGn0+k3QVePdk2xtju0zL3S+sJTHNHbVwPA6OxwEsCUkB7p71a1VH9ebgL4eZ94bbk8nw4kMdKCoIf8va6+Aijj9nM7V7ycGvP8bz4cvt2LwuhoEn51bVuTQ0QJeYEqgqHN8RR56QG/Zajsdy1Ik5jT6vte4u0TWe2eaI0LVk4G6s+N+30uo8P/CUrQw7aysdu5WTkBQko5OfY0/J4Zp/rGHU+PpHfVb+HFdVa1Y/D3h3zr3ylAiJSFQ67MT+VTf++jiOYc8Bu5N10O2YDp9j2s3EtHsa0+FznNTbMU6N/VHKlxJ+k8EA+Jc0OkabPxUKHwcqm2tWLuta5yZE5YsafU7iT4GYA8Ak494kkyDhTPYc8iKzVj3O1Y9PZNBZRzDozCP4899TeO6bn6p6Vm2PSIovVv0SR86m8PNVpSUOX32YHPYYY+DP96zholvXkt6h+q6ckBTg1Is2cvesX6t6fFnbcGzGcX92tIBk6BlbSEn31ynudq9hiYkNMur8yPqx1bR0YRx5Wz2MvngjDSU9IRn3+pW69Czl+gdXYwy1dph2KvL8y+5cyx4H1q3temtmRgMF5QFMwlmNj68FaGpMRKKKtRbKvyfGruGyvx/B3ya8X+cYxzE4Xg+X/GMcgLtpYo3u7XXfkNDwhs2mcRsv2sBaKArVcsS9mM1/AJP+VGTnK3kXm3s92GKqf/VbiOmHSfozxmlHnBeOnzCY4ycMdq+SezcU/7dRcW8rkrKo3HqnH+sqyg+/YjAYhDXLfJx60SZOnrCJ1ct9BPyGbr1Lq3aDjjSmyuO2JwnadsotKTXI3176lRvP7s3mdTF4vBasu0dTQlKAKU+voFNWZK1jAgF49/l0XnuyPSuXxuHxWtI7luM4ts60ZkM8HsuAYXlcfnc2D/2lKx+90q7BWix/OZw8fhP3/Kn2Ron/fSeVT15P5eiRIUa/4k93e27uhJQIiUjUcLu23wyB3wAYfDx4H+vCE3f2YMPq6lGPPgf05PJpE9jz0MiG8k3cCGzBNMKumIkb0bhgi98k/J49QSj7Lza4pcEmsbbsW2zOFTXOVWMOo/w77NaJkP58nWJu48nc7sXy4HZmN6aieWiYm2tG5/LQL9bQtXf9K/zA3fRxyvie/PRNIs99+yNx8UF67hH6+Erh6oSg9msFuQ4fvJTO8sXxxPiCHDokj4MH5Te4HxFAz34lPP3FT3z2Virf/l8SNmjY+w+FDDolh7iEyOqDAgG4e2IPPnsrFcexJKYEKC1x2LAmlu0ZDQoEDKPO30RiSoBJD63CX2bof0z4Oh5vDOx/ZN3aKWsNf72sBwcM9JKatsbdJBPA0xWTMAESzm7yBQ9NRavGGqBVYyK7Blv2LXbLudTXsDQYhJ+XXkZ+0ZF0yGpPr317NO7cgU3YTcdXNCTd9qbmuEvbM99pVFf7YN49UPQ0tZKWepj2czHbbry47bm2XFTRLy309J1p9wxmm+JrG/gdu3Egjdnrp2b9zaL5icz7TzuuuHcN2OrplYojap13/ZoYSosdvvu/JN6Y0Z7Vy6rrsoxj6dS9jOmfLwmZtPzjmm68/0I6waDhoGPymTLjNxyPbfTS+VD++04Kf72sB+Wlxk3qjLtiKmv3Eu567lc6dK2dzDWUYK1e5qNb79KwDU5fn57Bqp/j6NSjjCGnbeXzuSk8dltnxly6iRPHbiItI0AwCF/NS2b2gx0aaKlRXUxd2aLkvOt+55yr3IQlGIStG72kZ/obbLq6aZ2Xcw7au9Zzjsey18GF/OPjSRB7pNto1xhwOruF/a1Ay+ebiBIhkV1DcPPpUL6I0KM28W7rh+3sHWbLf8JuvbDib8KVd1+/eyNo9zgmZvfGna9wJjb/LsInIR5Mhy8xTujaGWtLsev3a+A8Xkg4Eyfllhrvs1A0A5v/D6DhkRVwe2ZhYO6sdF6f3p5ff3QLeQ8emMf4v/xOn71rLN2PPQIC6yGwrNY5/H73dv23P2fx8avtcDwWx7H89cVf2ffQurUp4N7Azz5or1qtN7r3LeHkCRs54bwtEU+FhbJ0YTxXjtzN7Ra/zTJ0x7G061DOcWO2EhNrOXhQPnscWBTymn4/rFkWxxN3duaOmb+BqZswBQPw9cfJ3DauFxh3ystxILNrKTc9tpLee5fUGoWq/M7uuKgn8+fWXbplHEuHrmVsXufWYe1zSCGnXryRQ4fUHf1pqE+b3w8fzmnH36/Mqv4OPJa4+CD3v1VAryPntlris61I7987R7QR2LJlC+eccw4pKSmkpaUxYcIECgrCL20cOHCguxNrjZ+JEye2UMQisrOw/lVQvpDwhTzFUFq3XihSJmZPtz9Y2oOQcCYknIVJm4bJ/KDRSRBQsTQ//Eo04obXSoJssABb9ALB/PuwBY9j/WvAltDwiI4FW7sg2hb8wy3WjiAJqqxNKSp0uOfyLB64rntVEgTw9ccpXHrc7kw4ag/efnkcJvMTSDi3ThIE4PW6RbrXP7iK7n1LOPCoYu5/fVnIJAhg4WdJdfqPrV4Wx7TJ3VnyXQKBHVz59eJDHdyxlHo2LgwGDZvXxfLiwx147oGOXHHiblx9Ul+2bqweivKXU7XL9c8LE5h0Rm+++jCFe6/oXhVbzeLtbz5J5u6JPQgEDAG/gw0aAn7DiHO21EmCoPo7u2HaKuISan9Yx2NJy/DzwBvLeGvlD7y18gfueenXepMggLUrYsPWRXk8sPTb6v+2xrEcPiyPf76zgV4DHt5pkqDGaDMjQscffzy///47jz32GOXl5Zx//vn84Q9/YNas0EtSBw4cyO67787tt99e9VxCQkKjRnY0IiTS9tmyb7BbGlqx4sEkXYVJuqhFYoqELXwKm//Xel7xuD3FMl7GeN1pPFv0EjbvdqDMfZ2KvWvixrgJnt0a5koOJukaTNKF7rn8q7CbjiN0AuVA3GhIHE/+uvf5+ctv+fg/K/jk9SRKi7dN3twpmVhfkDOu8PHHqc9hjCG46STw/xT6s1soK/Hgi284i3n/pXbcd0VWva8dM2orNz66qsFzhIvjhB77EfBHPqzkeCxZu5Xw0Ls/442B9atj+OydVD55La3O7t0p7fzMXPAjcYmWzes9/LIoAWMMG9bEMHd2etVGjN6YIC8sWkxSauhk3lr453VdeWdWeyq/9z57F/GXR1fStU9kxdiP3NKFS25fW+9r7nSfB1LuIGf1G+RuWEm7jgmkdhkJCWc0auq3JexSGyr+9NNPzJ07l6+++oqDDz4YgGnTpjFixAjuu+8+unQJ3ZE5ISGBTp3C7U8hIrs8J7PhYwiAJ5LjWo5JHA8mBVvwTwjW2Eww9lBMyi3VSVDJu9i8v9R4Z426opKXwLsP+HMJPSLmQPypVY9s8StUtcKoVxBb/CbT7+nHC3+b5/aHM+0I+Gsf7/EG2eeQQo47fQuHD88nqccMjDHY4Fbw1x0NqvXZDRVJkCdMHK49Dgi9vP+T19PY8+BCTrlgc63GqQ3V8FR90gCNSoLc9xhWLInn87nuKqqMzuUcfWIuzz/YETAkJAfI6FhOQa6HnE1e5s5OZ+gZW2nfKUBaRj4er7uz9ajzN/Pm0+n868ZutOvgD5sEgbsJ5cjzN7Nn/2JKigx7HlzE7vsXR/R5AwF3tOrVJ9rTuUcpJ0/YXGuaLBh0pz49sRmY+FGk73Ea6Xs06mvZabWJRGj+/PmkpaVVJUEAQ4YMwXEcFixYwCmnnBLyvc899xzPPvssnTp1YuTIkdx8880kJITeO6S0tJTS0uqh4Ly8vKb5ECI7AVv+C7Z4FpR9ByYW4xsE8WMwnvatHVod1pZDYA1gwNPd/ZvodjLeLGzMAQ3WCOE7bruv0VxMwmnu3j/l/wNbAJ4sjLd71evWWmz+A4ReYWbBvxg8fSumomp+fgcIYlJuw3gyqp8O0Zy1pv88ksQL97zuHh6oPGd1L6sjRuRx9d+zSUr1AzGY1HswvkPdnmdbxlK9N9KOy9qtlP0OL+B/CxKrpshiYoMkpQbYujGGR2/pyiuPZ9L/mHxGX7yR9p3Lay2nD8fjhS69Svh9ha9Om4pwHMfyyWtpHD0yF68X0juWc9YV60lN93PMqJyqNh//+zKBjI7lJCS732Hl85X/POG8LazPjuXdWRn1XKXuNXvuUVK7FisCAT8Egw6P3NINMDxyc1e+/TSZkydsYvf9i/CXG+a/l8qvi+O47K61UDIX4kc16ho7szaRCK1bt44OHTrUes7r9ZKens66daH/hz377LPp0aMHXbp0YdGiRdxwww0sXbqUOXPmhHzP1KlTmTJlSpPFLrKzsIXPYPPvpObf9G35Iij8N7R7EhN7UKvGV8nacih8HFs0E4Jb3CedjpA4HhLGbncNgkmeVLFqDOpLhkzyNdtdKN3cjPFA7P71vxhY7v6EZd0RH7sFip4HW/EXvJj9MUmXYnzH1D68gSmOYADKywxp7ctDbIRo+HJeGib+QEzynhB/MsZJcwu3t06oWF0XAadL7cayYVz3wCquOqkvBbkezvrzBoacvpnzB+xVFc/61T7eftbHO89lcMkd2WE3MNx29GT0RRv5cl4KHi8s+yGeDdmhe7pVCgYNBbnVybvH4+6/E7TUWsm2Z/8iHCf0aI0xbq+1OY9l8tM3Cex+QFHI5frhNjQMNxr04zcJrF5zHku/m195NAveT2XB+7ULr6c8/SvgYEvewSgRahqTJk3innvuCXvMTz+FnkNuyEUXVc/177vvvnTu3JnBgwezfPly+vTpU+97Jk+ezNVXX131OC8vj+7du9d7rEhbYUsXYPPvqHhUc5ohCLbYXe2U+RHGad06OGsD2Jw/uX21ao5uBNe7hbvlSyF16nbtR2JiD4L0GbX2EXJfSMMkXx2ya3vIWMt/xhY95zY+NR7wHY1JOBvj6dro2HZIMJJ+WB4MpZjka7FJV0BwM5g4jJNW79EmbiS28PGQZzMOnPmnDZx2yUbuvKhHnRsmQHmp5dsvTuKY02v0Vyt52712pFLugPw7IbCShnas7NCtnIffW0pxoYcOXcu57fyelJXWTZqtNTx8UzdSMwIMPCmnntfrJg0nnLeFE8e6SbkNwpfzkrltfK+K9hv1/1n0eCzd+9YuNDcOeM22xzW8aWPeFg+pGX5uv6AnR47I5dhTt9LvoNor0yKd6tvWM/d15O1Z/cja002O69uY0RjLoUPyOGRwRQIb3LVmSlo1EbrmmmsYN25c2GN69+5Np06d2LBhQ63n/X4/W7ZsaVT9z6GHuntkLFu2LGQi5PP58Pl8EZ9TpC2wRU8RutYi6E65FL8CiWNbOLJtlLwLpR+GeX2OOyS/nc1LTewh0H4ulH/vTrs5qW69TZiu7fWxRc9j826lVh2N/xds4dPQ7qG6IyzNyJYtjOAov9usFTAmBjzhf2+amH7YuJFQ8ib1TbcZ4+Z+XmO5+fGVTBy8O2uWx9U5rmjT89jyDEyMW0xiS78gkpofALx7YbydsSl3wdZzQxzkTu1VSs0IkpoRZN3qGBZ8EGbfGGOZeW9HjhmVU5U85G72MHdWBl17lzBgWF6t0ZWaCYZxoP+gfM69ah0z7wv9PQYCpqLvmStcohLqeWvhyTs789IjHagsfn5jRgavT2/PoUNyueGhlcTFWzze7UuCrIUTztvMxq378e70TwE46sQc5r+bWpVExiUGGDVuM+ddt66iXsgD3vrvn21VqyZCmZmZZGY2XJw4YMAAcnJy+Oabb+jfvz8AH374IcFgsCq5icTChQsB6Ny583bFK9JmlX5OQzcfW/o5ppUTIbcxae2bW20ebNHzmO1MhAB3NCn2AOCA7Xq/LVtYkQRZ6oyuUY7dejlkfoDxdNzuGCOOpfQLKJjawFEGTCr4jm3UuU3qVKxJhuLZhFo95jgQdCwnjd/EQ3/pVuf1Hj0/w25+j2Lv7bz3fDJvP7aaTWv70a69n6FnbmHEOZtJTAnx39q/FLvpVPB0IfSuyUHwjQRvTyj9P/AvBGD+u6l12mN4Y4Lsvn8xMb4gq36OI/vXOFYv85G1Wyk/fx/PpDN6U1TgocfuxRx5QvgRD68XTrt0I998msxPXyfWHkExFqzhtIkb6LNPda3O9iQqrzzRviIJgsrvoLJO6ct5KTx8Uzeu++fqxp+4RkzpHfwkJf2K43EIBoIkJAeZvXAxvy2JxzGWPvuUbLPzdaDRo6c7uzZRI7TnnnsyfPhwLrzwQh599FHKy8u5/PLLOfPMM6tWjGVnZzN48GBmzpzJIYccwvLly5k1axYjRowgIyODRYsWcdVVV3H00Uez3377tfInEmlpDW3hv+1NvZUEfiV8rIEI6mGaly2cQegVVRYoxxa9gEn+cwvE8u8wsVQzqVMbPeplTCwm9TaC5QvB/2PI47xeOGxoHg/VWLRWuXx8jwMLyNvq4frTZrJiSbybTlkv+Vs9PHlnZ96amcGjHy4lrt7C5QBuQ65fwwda+oa71ZEnC/eW5qe40MHxUNEN3XLaJRs5/bINpKa731PAD//7KpH0DuUEg+401rlXryc5zc9u+xWzca2XzC7+sKM4vjjL1Nm/8uw/OvHWMxkU5rmFO526l3H6ZRsYce6W8HE3wF8Ozz/YIeTr1hrmvdyOcTesI7PLjhWeF27dUlXw/t4L6RwzKof9Dy+otRN41QqyxAswMXvVf6I2qk0kQuCu/rr88ssZPHgwjuMwevRoHnzwwarXy8vLWbp0KUVF7jLK2NhYPvjgAx544AEKCwvp3r07o0eP5qabbmqtjyDSemIOgvKvCLd82sT2b8mI6meSgU3hDqg4phWVNTS6Fqw4pnkTIWvLoey/NLhZYuxRmLjBO3ClhvtgeWOqY/B4LLFxQa77p9vB/KG/dGXlz3Hb1MEYrIXCPA9eb7j4I+vBBUBgNZXfRfe+pVVL3kedv4mtG7385ezeJKUGOGbUVo47fSv7DyisSnR67VVCn31KaiU+kdTc+OItE/7yO3+8dh3rVsXi8Vo69ygLuzNzpH5ZlEDu5voK0avZIHz1YfIOJ10lRWU4jiEYtAT8hpv/2IuzrtjAyHGbSGnn/lnf9HsCHfe8EeLH7NC1dkZtJhFKT08Pu3liz549qbk3ZPfu3fnkk09aIjSRnZ5JHIfNWRDqVcC7U/yCM/EjsQX/ItwN0MSPbLmAtltL7FMbiOA6jlsHtSNiDgL/L4RK/gIBU7FJoJsEHTUyh3OuWk/WbqVs2eDl0zfS6uz6XKlzj7KqZeI7rvq7OOy4PFLa+QkG4fXpmXg8lkDAYIyla69Sjj/H3VyyMtGpTFxq1QKZyAuQY32WrN3q34HbWigqMCQmN/xnIhh0V+R5Y2DLxoZvz8aBspLwWVfN3m/1Xc9x4NBjf+XjOdUbUpaXOcy8txOzHuhAh67lBAOGk6+8gNH928L/e43XZhIhEdl+Jm4wNvEid6l8rWJVD2AwaQ82y15CpcWlrF66FsdxyNqzK96YBn7lxJ8Fhc9ULO/e9sbrAacDxJ3U5HE2SuwhUDqP0KNCDsRGXru4/XzudFCNkZC67A5PY5iEs7DFs0O+7vFYDh4cz6xvF5OYEiAuoTqWnxcmhEyCAEpLmqcbeUwsHD0qhzefdv9MBwKV9TUweuLGBvtpVWqKZunGQGKybTCpyt3s4S/n9OaXRQk4niDBgEPNRqn1sUFDr72KQ77+/kvpFOQYThy7BcextQrAA37I2eQlEDAcdWIOc/7dnuWLk2rsCQX+cof1a+LpkJXJ8Ak7Mqq4c2t7TUFEZLs4yddi2k0H3zFg0t29eeLPwLR/HRPXuELahpSVlPH4Dc9yeucLueSg67n4gGs5s9vFzJ76CoEwjZ+MJwOT8RxULUH3UvX3NW8fTPqzrb7Xj1tQHuozGMBpkWJSYwwm4Y/hjgBiau0YvV3XidkDk1xZAFRzA5uKf0+8hJiUwWR0srWSIHBrhcJZuTSODdkxDS4fb6xg0MMvP8Qz/sa1TP/8J2Z/t5i7nlvOkNO20qVn46au6outZl+wSDWUVN01sQfLF7s9vNwkCMIlQY7H0rVXCfsNqL8Hm3V68/gdvXj01m5cNnR3Pn0zrarfWUmR4a1nMvjzibvxznMZxMRapj7/G4cNz6hzyf2O2Zt/fHo7iSmhNyJu69pMr7HWol5jIo3jL/dz44i7WfjR/7DBbX69GDj2rCOZ9Myfw+4FZG0Qyj7Dln0DGEzsYRXL3JtnBKGxbOGT2Px7qL2bc0USlPYAJm5Yy8Rhy7E5l0Ppx5XPVPzTA1hM2v2YuOOb5lqlC7BF0ytWIAYhtj8mYRwmbhDWvwy76US2ndLMz/Fw1gF7UV4WOvMY8cdNXHFPdsXncWteXnuyPT9/n4A31jJgWC4nT9gUcuqpPht/95KYHMQXF6waBanZXqMx6hvJCTfdFMn7t7Xsh3guGxZ5Y97KOqx7X17Obvu5I0IBP6z8OY6A37j7F8Xsy0k9ar8vxhckISlAQa6XgN9gHMsxI3OY/MgqwAuJ41i/aSzff/wjNhhk7yP6kdWvhffFakK7VK8xEWk7Ppz1Gd/N+6H+F637+rBxgzhoSOjVm8Y47gaFvqObKcodFHsEkAxsu0NyAFu+uMUSIWNiIO0hKH4BW/hMxQorL/iOxSReiAm1G/X2XMt3KMZX/5Sf8faF1L9hc68HghQXOnz3aRJFhR4OG5rH/72VWm/ndsdjKcx1kyRr4bHbuvDK45k4Hls1pfbOcxm8OzudW55cEbJj+rbSO7hDHzV3YK6ZBEU6NQb1JzGNyccjOfarj5JrfeZwPF4YMiaHMZeso3vfMoJBeOVxd5n91g1uwZUvPsiws/LxeJMrVs65yksdcmtsMuk4loSUytHNAMbTnc69OtK5V/Nv/bAzUSIkIk3qzcfexzim7mhQBY/X4e3HPwibCO3MrC3Dbr0A2LbRZ8XnLXwU690DE39Ci8RjjBcSzsEknIO1AcBplZEzEz+KAGnMvu1GXnyoAyVF1VlIXGKAkkJP1c2+8p+771/EFfe6o0GfvZXKK4+7+8rVTAiCAYMNwp0X9uSZr38kLaPhbR5CtaAAd6VVpF9PY0Z+ttWYZMtfZiK8hiUuKZEDjrasX7OF7n3LeOjGrrw5s3YfstJihzdnJJGU6qcg11Nnp+hKAb9TY3ftWIhrmT+zOxslQiLSpNYu+z1kEgQQ8AdZ/XNk/aN2SiXvQXBDmAMcbOETLZYI1bQjjWmbwlM3f81L/6i7YW1ZsUNMbJC9Di6gIM9LRic/Q0/fwoBhuVWrxub8O7Pe9g7g7plTXg7vPZ/O6Zdt3KEYa7aq23baqrHL50MJ+OGjV9N465kM7nt5eYNTcrvtVxxhh3tDYU4Rf7/Cg7+sN+27lLNpbf37QwWDhvwcD8axGMctrK7J8Vj2OaSQ/Qa4Cb1J+Uurt9hpLSqWFpEmldQufDGzcQypGa28F9AOsGXzCf93yCD4F2OD9RexthRrrdvpvfQLrH/NDpynDFv0MsHNpxFcfwjBjUOxBQ9jg7X3rtmwehP/uf+Les8RDBoCAUNSapCH3/uFO2b+xlEnVidB1sKS7xJCjlxUHvPj14nb/TnqO9+2iY4xHoLBOIoLHLZu2oHbo4H9Dy9g9bI45r3crsHC6j8MzqN95zJ3V+oI+MuCgAmZBNXUvpOftIyKqUJvEMdxr3HwwHxum/4bxtsDk/rALrdbdGNoREhEmtSQc4/mmSkvEgwxKmSDlmPPab3aH7cQ+0t3h2qTAL5jMA10W9/mDES2T1DrrUOxJXOx+fdBYFX1c7EDMMk3YWJ2i/w8tgS75QIo/5Kq1ieBHGzBg1D0LKTPxnjditwPZ33mTokG6v/cwYDh83dTKcxz6m2r0dDoi6HhVWiRqEyA6r9eAMeB+CRDfFIjNnPchscDGR39jBy7iV8WxXPUyK3Eh1h0tfF3h0XzUzj+7M3M+mfHyEaGatboh2GtIWeTl1d+/oEv3k/l18VxxMZZDjsuj557d8GkvQHevjvNIoTWokRIRJrUiROP4/WH55K7Kb/WniTg1gd17t2RQWduf6+wHWHLvnULegOrqL6beLEJ52KSr3frbRpgYg7CFv8n3BHg6V21zN9a6zZ5LfvKvfvG/AFi9mu2m48tehmbN5k666DLvsRuOR0yXnKLmyM5V/79UP51xaOa/y2DENzqrljLeB1jDFvX5bi7E4cp4bFBQ+4WL4kpZbWeNwYOPCqfbz9NDlkwbC0ceFRBRHGH0/DXHiDiTCPcdRw464oNxMTaekeEyv1duXPi7ix4Z3NV/7CINSK0hOQA3hg4ckQuR47IrYwOPB0alRTvyjQ1JiJNKi0zlb9/PIVuu7u1Io7HwfG4v2p2P7gv9354G754X4vHZcuXYLeMdbvOu89U/NMPRU9j826r855AIMDiz5ey4O1vWfPL7+6T8Se4TUxD/vq0mMTz3X8LZGM3j8ZuOR1b8Hds/n3YLWOwm0/DBpq+TsoGi7D5d1TFsc2nAVuCzbsn4nNR/Dyhd/kOgH8plH8DQEaXdnUS3205Hktqhr/e106buDFkEuR4DMlphsGj8wEvmObeS6puplEzmYlk0xlj3B2njalbNG0tFOSs5+v3tzY+CWoEx2MZctrWel6xmLgRzXbdtkYjQiLS5Lrv0ZUn/nc/iz75kcWfL8VxDAcO3pc9/hDZSERzsAXTAD/139gtFL+ITbwA4+0JwLszPmLGzc+zKbu6FmafI/vxp39dQK9+j2K3jgdbRu1dugNuq5L4MdhgPnbzORBcX/F6jev6f8RuOdcdTWnKDSJL3wO77Wq2mgJQ9ik2sBHjyQx/rsAysKF3LXYZKPsOYg/m2HOO4onJz4U80vFYjhyRQ2Jy/cnSgUcVMPH2bB69tatbNB1wR2WMY4hPjufuuTeR1NcdwQjmXAslb9FSjYKthcVfJtC1dxllJYbiQoee/Uq3u6DaGGjX3s/Bg3L44r0dbIESguOxJCQFOGnCtr37Kndo3zXbZWwPJUIi0iyMMew/cG/2H7h3a4eCDRZUtMUIN2LhwRa/jkn+M69Oe4eHrniqzhE/zv+ZK4+8iWlf3E3WHm9ji2ZByTtgS8DbD5NwLvgGYYzBFr0Mwd+pfx4jAIFsKH4FEsPtDt1IgWwqO7CHZiGwFhpIhKyNpEbGVjWBaN8lnbNvPJXn7ny5zlGOx+KLD/LHa9fXea16GiqWUy4s48CjlvLm0xks+S6BWJ9lwNBchv2xC6l9ulS/I+F0bMnrEcTXNJb/L55rTqk9jTTsrM1c/fftL0L3l0O/A4vqT4QMeDwOAX/j65Qqm6d26pnOzY8voUPXcqpv9X7wZGHaPY5xmq7wvK1TIiQiuzzr/5mGO5kbsFsoyCnk3zc8U+8RwUCQ0uIynpj8HHe8NgmTfB0kX1f/NYtfo6FiDlvyGqYpEyGnHRGNkjjtGj4muO1IQqhzVS+5HjvlDBJTEph19xwKcqpXze22XxFX3rum/t2hnW6Y5D9jC58D/w/03CPA5Xdnb3PQZmz+XzGpFdN+MX+AuJOh5NXIYtxB2b/VXZ317ux0/jAonyNG5NazX1AENUamugdaHRYcj9sHMOCPbNSr9/49OWbMYYCh3yF9OeDYfTAmAKUfYMu+BTwY3+EQe6S7YalUUSIkIrssa/3YvClQ/GIERwcxThc+fWE+5aXloY8KBFnw5rds3ZBLuw5hpjWC9dVm1IougmMayTcMuJPQI0IGvPtivFkhXq9xpM2PqCbX1Ohub4xhzLWjOOny4Sz69CcKV19B9z5b6NmvJEw8vcG7B/gXhrlKEIpfwSZfi3FS3ULz1Kng7Y0tfApsTsVxHvfYJl6x13uvYoaeuZkF76WSu6XytmmYemkPzrlqPSdN2EhS1Uq4OHd6tORtsJtDntPrha8/CrGNhIF2HVPZsCrCZBT4bdEKBp1xOGdOOqXGsw7EHd9kbVZ2VUoLRWSXZfPurkiCIrwxxp/EhtWb8HjDb0xorWXz2i1hj8Hbg/C/Yj3g6RlZXBEyngwI25bEQsKYyE7mdGn4GABP3eNi42I5eOj+HHXaQHr2C51UukW7w6D82wguVAblP1Y9MsaDSZqI6fAZJuNVTMZ/IGUqkf23NtRq6NvArbBbnzKu/vsaZn23mAtvya7aiyfgN8y8txNn7r8315++D/6kZzEdPsdJvRmT/KeQ5/P7Ycl38fz0Tf1r6g2WUy/cRIce6VULDRpiLbz8wFsRjyBJNSVCIrJLsoGNUDyLSJMgk/QnjKcjaZmpDa5+AkjLDL8Lr7tBXbjzBDAJZ0QUW6SsLXWX6YfkuDVNkYj9Q0UyFKoa2ICnD3j3DXkKkzgWN9kIfauxpZ9UtAaJpOq47nmMicXE7IWJ2c/dzdvpjDsyFIJvMCbzY5xOP+J0+hGT8SrEnw7ePUN/jop9h7wxcOpFm5h4e+2pu/JSh0NH7IY3+BGUzHVX3MWfBQnjKo6ojMeNf+1vPqaM71X/J/RYsnYvYfhZi7nr2V9JbZ8U8VYLORtyyV62LqJjpZoSIRHZNZXOI6IkyKRhUm6FxEsBOOb0AThO6BuP43Hoe1AvPn3pC16d9g4rfwpRMOsbCrHHUP8N3oDvWPANaTi+xij5AGy4xqRBKPscG/i9wVMZ42BSb8eNf9vP4AAeTMptYW/SxtsL0+4JMGG2Syh9H0r/S8M1NfEQs08DMce413PStom5IhFJnIhJexjjqW4DYmL2wkm9Haf9axA7kLBJFO5S+JHjNtOpRwBjDN4YGHv975w69vWKbRhuxG48HErn4qTciMl4GeJPg5iDwTeI1589jsuH92PL+hh67FGCN6Y6WTaO5Yjjc7nv5eXEJ/jJ6rOSJ78+hEvuH0dm94wwUVWzkaztl1pUIyQiuyZbgHvDbmCqIG1ara7q7TqmMebak3j+r6/UOdQYQzAQZNm3v7F84Qqw7o3noOP2Y/KzfyYts2a9jAfaPYQt+Je7C7Ot2AzQJEPCuZiky5q+aDWQTdUy/rDHrQVP3Z5g2zK+o6Hdk9j8qeD/ufoF716YlMmY2D80HFPsIeB0g8AvIQ4IQtlHEHNIxZ5E9cVuIP5sMPFYf8Wyfk+PentjmZjdoP27bk1RyVx3OwHvnpjEszEx1Y1+rQ1CydvYomfd/ZBMHPiOAdMebH2r22pGY/jz3zuz9rdCjjn+K1LSt5n+s8XYnKugXTrGdygmtXrUbNOmZ/GXvwEEufaB1XTsVsaPXycSDMIeBxTRvnPt+q5Ezz84aewY+ux3Dtcc+2DYuFIzU+jat1PYY6QuJUIismvy9KLhFVQG4607RXH+nWcSGxfDC/e8Smlx9S7IxjFu8hO0tRrLLvzwf1w/5Hb+9eVfifXFVB9vYjHJV2OTLgX/L7jFwbthwo2Q7AgnjYZXx1UeFxnjOwJi33DjD24ET8eId6YG3A0sQyZBVVcB36Fg88C/hKp2HpVJXewx4OmJ3TSkxoaYMdi4kZiU6+u0SDFOCiSOrZiaqytYvgzypkD5gupr2UIofo1IJkqM46H/sYn0L3k/xBHupgK28F+1kmyAoeMG8cLfXgMgJd1PakaAAcPywlzNQvHL7LPXZ+x9+J78tGBLvVO3xsCpV5yAN0a39cbS1JiI7Jp8x4DTntC1Jx7wHYvxdKjziuM4/PGWMbzw++PcOOtKrnjkIoadP4hgMFgrAaoUDAT57YdVfPrS/HqvZEwcJmZfTMw+zZcEAcQdR/i/3xp3hZand6NOa4zBxOyO8R3RuCQI3ASjQQ7YICbjP5jUeyH2MPDu7vaBS3sMYg6A/JtrJEEA5VDyGnbzGdhgTmShlH1NcNNo2DyiIgmC2oljgPB7MNU4LriZ8NNoQShbUCe2rH5dOeny4YBbKxSI5HIEILieO2YlkNYh1U3IK1QWUx956qGccf1JkZxMtqHUUUR2ScZ4IXUqdutE3L+h17zhecCkYJInhz1HYkoCg848AoCX738zbBmL4xg+eOYThpy7Yw1lbfliKP0MCEDMfhB7eMRTaMZph028CAofCn1M8rUt22TT05WGN3n0u/VEJhbiT8LEV9/QbWAt5EwM8b4ABNZgCx9393QKw5Z9id0yjoZHzCr/I1eOStUnpmK1XATfoy0E0mo9dekD55PeqR0fvvIkBx3d0GhZpQCJse/x+KJ5zH1qPh/O/oyCrYV026MLIycOZcCog3HqbmgkEVAiJCK7LOM7BtKfxRb8E8q+qHjWC3EjMElXYrzdIj5X3uZwRcgQDFpyNoab4gjPBjZjc/5U0eTUwb3JBsCTBWkPYWL2iOg8JulP7q288N9AOVU3dJOGSZ3ifidNoLigmE9enM+an9cSnxzP0acdRvc9utaNx0nGxp0IJW8Qsv7HJEHcsBAXepnwtV4BKHoBm3S1W5dVwZZ+gS16Bsp/AGLcaTcCRLaK0MG9PQbqva5Jvh5wsA1NvZr4ilHJbc7uOJx946mUFR9PXvZYkhO/x5hI4iolObWI0687idOv0+hPU1EiJCK7NBPbH5M+ExvYDDYXnA7b1d+rU68O5G8tqHdqDMDxOnTps32FqtaWYbeOA/+yimdqjEQEst2+ZO3fwHgaPr8xDib5CmziWCiZ52426OlW0fqj7g7J2+Oj5//L/Rc9SnFhCV6vh2DQMuPm5xl45hFc99SlxMbVvo5JvhZbtgCCG6idWLgjGCb1ryGnDK1/VcMB2Tx35MWkYK3FFvy9IhGMoHC8Xo67os/mQ9lnVCVPnq5uAh1/EjaYB/n3APXslu0eDPGnhZ0KjY2PJ6ZPRaJeOAM3cW2AUWuMpqZxNBGJCsaTgfH23u4mpydcOCRkEgQQ9Ac5/oLB2xdcyXvuyqV6b9oBsAXu6EYjGCcNkzAakzgBEzesyZKgb97/nqnn/JPiwhKw4C8PVBXvfvri59w7/uG6sXg6uBsexo8BasQRewgm/RlM3HGhL1hnKXx9PO6qL3Abzxb+u+L57d1c0I+JPx4n/UlM5seYds9gMl7BtJ9XNW1nnBRM6pTKIOvG4+mKSbqswSsZE4uTfB1kvNDAkQ7EHNhws1xpNCVCIhKVbPlSgvn3E8y7HVs4s8GC2yHnHcNeh+9R706/xhiOPPVQDh66//bFUvIW4X8dBypWNLW+p2970e24Xk9OGAxaPn7+v6xeum2vMDCeTJzU2zEdv8K0/wDT4Quc9JkNLsE3cScQvr7IA3HDqxI9WzidHbu1uUkMvsEVcXd2l8DH7F2nVsvEn4pp92+IqbmpZBzEn4HJeLHOarZwnJh9wDc8ROzuF26S/tzoTyMNUyIkIlHF2hKCWy/Hbh7pjhwUPY/Nvwu74Qhs0fMh3xfri+Gv797EiRcfR2xc9RL5hJR4zpp8Cn+ZfeX2FyEHc2iwiDfsRoktY/PvW/lp/s8Ew4yMOR6HT1/6IuTrxsRjvFmRJwkx+0Ps0dR/u6rY2DHxYqBib6Dy74hoC4FQnAxMuyfdYvsIGN9AnIyXMJmfYdq/h+m4ACf1tkYlQVXnSvsbxA2veOShqnrFxGFS/+5uZSBNbrtqhILBYL3V6cFgkDVr1pCV1XBDPxGR1mBzJ0HpBxWPak6dlGPzbgGnPSau/h2f4xPj+NO/LmD83Wfz2w+rcBxDnwN64ovfwSXxnp5QvpDQUzkGPN137BpNoCivqMFjHMdEdFykjDGQ9mDFf7e51CokdzIwafdjYvpVHk1End/r4+nj7jsUNxLjNL4Op75tGBp9DhOHSXsA6/8TlLyHtQUYTy+3cep2xCSRaVQilJeXxwUXXMAbb7xBSkoKF198Mbfeeisej1upv3HjRnr16kUgoKZvIrLzsf7f3K7gIRm3cNU3OOzoTmJKAvsc0S/k641lEs7Alrwc5giLSTi7ya63vdp3TSfG56W8NPRUld8foOvuETZsjZBxEjDtHsT6V0Dph2BLq/cZqjFyY4zBxv6hot9aQ6NClavpEjBJ12ISz23SmHeE8faBpEsi6r4mO65RidDNN9/M999/zzPPPENOTg533nkn3377LXPmzCE2tmJ+Vn1ORGRnVfIe4feHsW7RciAbGrG0fkeZ2AOw8WdB8ex6XnXcDQXjT2uxeEKJT4pnyLlH8+7THxP01/8d+uJ9DDzj8Ga5vvH2BO/48MckjHdXqNXLARIg5S8YmwdOprupplN/F3iJDo2qEXr11Vd57LHHOO2007jgggv4+uuv2bhxIyNHjqS01F1C2KIbdYmINIK1RUT0a8823dROpEzKrZjkSe7NuerJBEgYi0mf3mSrvnbUuDvOpH2X9DpF48YxYOCqxy4mITm+laIDEzcIk3RVxaOaOz87bq1N+hM4CaMxiedj4k9UEiSNS4Q2btxIjx49qh63b9+eDz74gPz8fEaMGEFRUcv/8hARiZTx9qbhFgqxFbsGtyxjHEzieEzmJ5iMNzEZr2I6zMdJmYwxrZdYbCu9UzumfXE3Q8cOJMZXPamwx8F9uPvtvzD4nKNaMTqXSbrEXa4fdxJ4+rhNYpMux7R/HxN7UGuHJzsZYxsxl9WvXz/+8Y9/MGLEiFrPFxQUMHToUIqKivjhhx92qRqhvLw8UlNTyc3NJSWlbqdjEWk7rC3BbjiiohN8fb/6PBB3Ck7a3U173bLvsUWzwP8D4HP3zYk/HeOpu+twW1JcUMzGNVtISImnfZfGr5ISaU6R3r8bNSI0dOhQpk+fXuf5pKQk3n33XeLi4hofqYhICzEmDpN6D+7Kovo2weuESb56h69j/auxxW9iS94hmHcvdssYKHnd3Tnavxhb8CB201Bs2fc7fK3WFJ8UT1a/rkqCpE1r1IjQ1q1bWbt2LXvvvXe9r+fn5/Ptt99yzDFN08tmZ6ARIZFdjy37GlvwLyj7vOKZOEg4FZP4J4wnY/vPG9iEzfsLlH5Mw0u4HTDJ7s7FWhot0uQivX83KhGKRkqERHZdNpjr9qhyMsL2hIrsXAXYzadCYDWNae1gUm7HJJy5Q9cWkbqaZWoM3E0Tn3rqKU488UT22Wcf9t13X0aNGsXMmTObden8XXfdxeGHH05CQgJpaWkRvcdayy233ELnzp2Jj49nyJAh/PLLL80Wo4i0LcZJxXi67HASBEDxCxBYSeP6WznYstC7MItI82tUImStZdSoUVxwwQVkZ2ez7777svfee7Ny5UrGjRvHKaec0lxxUlZWxpgxY7jkkksifs/f/vY3HnzwQR599FEWLFhAYmIiw4YNo6SkpNniFJHoZIv+w3btaLxd7xGRptKoDRVnzJjBp59+yrx58xg0aFCt1z788ENOPvlkZs6cyXnnndekQQJMmTKlKoZIWGt54IEHuOmmmzjpJLdb8MyZM+nYsSOvvvoqZ56poWiRtsracrf3lknaafbXIbhxO95kMTHhm46KSPNq1IjQ7NmzufHGG+skQQDHHnsskyZN4rnnnmuy4HbEb7/9xrp16xgypLpnUGpqKoceeijz588P+b7S0lLy8vJq/YjIzsEG1hHMvRW7/iDshsOw6w8gmHMt1v9ra4cGTgdoVFMEx90wMf7kZgpIRCLRqERo0aJFDB8+POTrxx9/PN9/v3MsB123bh0AHTt2rPV8x44dq16rz9SpU0lNTa366d699RsdikjFkvTNp0Dxi0BpxbN+KHkLu/lUbPni1gwPkzCmEUd7gFhM2iMYJ6m5QhKRCDQqEdqyZUudxKKmjh07snXr1ojPN2nSJIwxYX+WLFnSmBB32OTJk8nNza36Wb16dYteX0TqZ/Nug2AOdYuRA2BLsDnXtm6vw/gx4OlF7bYOlQyYdu6okScLEs/HtH8b4zuspaMUkW00qkYoEAjg9YZ+i8fjwe9vaPv6atdccw3jxo0Le0zv3r0jPl9NnTp1AmD9+vV07ty56vn169dzwAEHhHyfz+fD52uCFSQi0mSsfw2UfUbowuIgBJZD+XfQSi0UjJMEGbOwuTdB6TyqY/VC/CmYlJt2qlYZIuJqVCJkrWXcuHEhE4XKxquRyszMJDMzs+EDt0OvXr3o1KkT8+bNq0p88vLyWLBgQaNWnonITiCwjIhWV/l/abVECMA46Zh2D2MDa6F8EeBA7MEYRzsvi+ysGpUInXfeeQ12l2+OFWMAq1atYsuWLaxatYpAIMDChQsB6Nu3L0lJ7hx7v379mDp1KqeccgrGGK688kruvPNOdtttN3r16sXNN99Mly5dOPnkk5slRhFpLhGOpOwkIy7G06VVGreKSOM1evl8a7nlllt4+umnqx4feOCBAHz00UcMHDgQgKVLl5Kbm1t1zPXXX09hYSEXXXQROTk5HHnkkcydO1c90UTamtgDwaSCzQ1zkBd8rd/5XETalka12Bg/fnzDJzSGJ598coeC2pmoxYbIzsEWPonNvyfEqwYS/oiTclOLxiQiO69I79+NHhHq0aMHBx54YOuuzhCR6JMwHoJboPAJai94DUDcyZjkG1orMhFpwxqVCF1yySXMnj2b3377jfPPP59zzz2X9HQVAYpI8zPGYJKvw8afiS1+BYLrwEnHxJ2EidmttcMTkTaq0d3nS0tLmTNnDk899RSff/45J5xwAhMmTGDo0KENFlK3RZoaExERaXsivX83OhGqaeXKlcyYMYOZM2fi9/tZvHhx1QquXYUSIRERkbYn0vt3o3aWrvNmx8EYg7WWQGDb3V5FREREdm6NToRKS0uZPXs2xx13HLvvvjs//PAD//rXv1i1atUuNxokIiIiu7ZGFUtfeumlPP/883Tv3p3x48cze/Zs2rdv31yxiYiIiDSrRtUIOY5DVlYWBx54YNjC6Dlz5jRJcDsD1QiJiIi0Pc2yj1AkLTZERERE2oo202JDREREpKnt0KoxERERkbZMiZCIiIhELSVCIiIiErWUCImIiEjUUiIkIiIiUUuJkIiIiEQtJUIiIiIStZQIiYiISNRSIiQiIiJRS4mQiIiIRC0lQiIiIhK1lAiJiIhI1FIiJCIiIlFLiZCIiIhELSVCIiIiErWUCImIiEjUUiIkIiIiUUuJkIiIiEQtJUIiIiIStZQIiYiISNRSIiQiIiJRS4mQiIiIRC0lQiIiIhK1lAiJiIhI1FIiJCIiIlFLiZCIiIhErTaTCN11110cfvjhJCQkkJaWFtF7xo0bhzGm1s/w4cObN1ARERFpM7ytHUCkysrKGDNmDAMGDODJJ5+M+H3Dhw9n+vTpVY99Pl9zhCciIiJtUJtJhKZMmQLAjBkzGvU+n89Hp06dmiEiERERaevazNTY9vr444/p0KEDe+yxB5dccgmbN28Oe3xpaSl5eXm1fkRERGTXtEsnQsOHD2fmzJnMmzePe+65h08++YTjjz+eQCAQ8j1Tp04lNTW16qd79+4tGLGIiIi0pFZNhCZNmlSnmHnbnyVLlmz3+c8880xGjRrFvvvuy8knn8ybb77JV199xccffxzyPZMnTyY3N7fqZ/Xq1dt9fREREdm5tWqN0DXXXMO4cePCHtO7d+8mu17v3r1p3749y5YtY/DgwfUe4/P5VFAtIiISJVo1EcrMzCQzM7PFrrdmzRo2b95M586dW+yaIiIisvNqMzVCq1atYuHChaxatYpAIMDChQtZuHAhBQUFVcf069ePV155BYCCggKuu+46vvjiC1asWMG8efM46aST6Nu3L8OGDWutjyEiIiI7kTazfP6WW27h6aefrnp84IEHAvDRRx8xcOBAAJYuXUpubi4AHo+HRYsW8fTTT5OTk0OXLl0YOnQod9xxh6a+REREBABjrbWtHcTOLC8vj9TUVHJzc0lJSWntcERERCQCkd6/28zUmIiIiEhTUyIkIiIiUUuJkIiIiEQtJUIiIiIStZQIiYiISNRSIiQiIiJRS4mQiIiIRC0lQiIiIhK1lAiJiIhI1FIiJCIiIlFLiZCIiIhELSVCIiIiErWUCImIiEjUUiIkIiIiUUuJkIiIiEQtJUIiIiIStZQIiYiISNRSIiQiIiJRS4mQiIiIRC0lQiIiIhK1lAiJiIhI1FIiJCIiIlFLiZCIiIhELSVCIiIiErWUCImIiEjUUiIkIiIiUUuJkIiIiEQtJUIiIiIStZQIiYiISNRSIiQiIiJRS4mQiIiIRC0lQiIiIhK1lAiJiIhI1FIiJCIiIlFLiZCIiIhErTaRCK1YsYIJEybQq1cv4uPj6dOnD7feeitlZWVh31dSUsJll11GRkYGSUlJjB49mvXr17dQ1CIiIrKzaxOJ0JIlSwgGgzz22GMsXryY+++/n0cffZQbb7wx7Puuuuoq3njjDV566SU++eQT1q5dy6mnntpCUYuIiMjOzlhrbWsHsT3uvfdeHnnkEX799dd6X8/NzSUzM5NZs2Zx2mmnAW5CteeeezJ//nwOO+ywiK6Tl5dHamoqubm5pKSkNFn8IiIi0nwivX+3iRGh+uTm5pKenh7y9W+++Yby8nKGDBlS9Vy/fv3Iyspi/vz5Id9XWlpKXl5erR8RERHZNbXJRGjZsmVMmzaNiy++OOQx69atIzY2lrS0tFrPd+zYkXXr1oV839SpU0lNTa366d69e1OFLSIiIjuZVk2EJk2ahDEm7M+SJUtqvSc7O5vhw4czZswYLrzwwiaPafLkyeTm5lb9rF69usmvISIiIjsHb2te/JprrmHcuHFhj+ndu3fVv69du5ZBgwZx+OGH8+9//zvs+zp16kRZWRk5OTm1RoXWr19Pp06dQr7P5/Ph8/kiil9ERETatlZNhDIzM8nMzIzo2OzsbAYNGkT//v2ZPn06jhN+MKt///7ExMQwb948Ro8eDcDSpUtZtWoVAwYM2OHYRUREpO1rEzVC2dnZDBw4kKysLO677z42btzIunXratX6ZGdn069fP7788ksAUlNTmTBhAldffTUfffQR33zzDeeffz4DBgyIeMWYiIiI7NpadUQoUu+//z7Lli1j2bJldOvWrdZrlav/y8vLWbp0KUVFRVWv3X///TiOw+jRoyktLWXYsGE8/PDDLRq7iIiI7Lza7D5CLUX7CImIiLQ9u/w+QiIiIiI7SomQiIiIRC0lQiIiIhK1lAiJiIhI1FIiJCIiIlFLiZCIiIhELSVCIiIiErWUCImIiEjUUiIkIiIiUUuJkIiIiEQtJUIiIiIStZQIiYiISNRSIiQiIiJRS4mQiIiIRC0lQiIiIhK1lAiJiIhI1FIiJCIiIlFLiZCIiIhELSVCIiIiErWUCImIiEjUUiIkIiIiUUuJkIiIiEQtJUIiIiIStZQIiYiISNRSIiQiIiJRS4mQiIiIRC0lQiIiIhK1lAiJiIhI1FIiJCIiIlFLiZCIiIhELSVCIiIiErWUCImIiEjUUiIkIiIiUUuJkIiIiEQtJUIiIiIStdpEIrRixQomTJhAr169iI+Pp0+fPtx6662UlZWFfd/AgQMxxtT6mThxYgtFLSIiIjs7b2sHEIklS5YQDAZ57LHH6Nu3L//73/+48MILKSws5L777gv73gsvvJDbb7+96nFCQkJzhysiIiJtRJtIhIYPH87w4cOrHvfu3ZulS5fyyCOPNJgIJSQk0KlTp+YOUURERNqgNjE1Vp/c3FzS09MbPO65556jffv27LPPPkyePJmioqIWiE5ERETagjYxIrStZcuWMW3atAZHg84++2x69OhBly5dWLRoETfccANLly5lzpw5Id9TWlpKaWlp1eO8vLwmi1tERER2LsZaa1vr4pMmTeKee+4Je8xPP/1Ev379qh5nZ2dzzDHHMHDgQJ544olGXe/DDz9k8ODBLFu2jD59+tR7zG233caUKVPqPJ+bm0tKSkqjriciIiKtIy8vj9TU1Abv362aCG3cuJHNmzeHPaZ3797ExsYCsHbtWgYOHMhhhx3GjBkzcJzGzewVFhaSlJTE3LlzGTZsWL3H1Dci1L17dyVCIiIibUikiVCrTo1lZmaSmZkZ0bHZ2dkMGjSI/v37M3369EYnQQALFy4EoHPnziGP8fl8+Hy+Rp9bRERE2p42USydnZ3NwIEDycrK4r777mPjxo2sW7eOdevW1TqmX79+fPnllwAsX76cO+64g2+++YYVK1bw+uuvc95553H00Uez3377tdZHERERkZ1ImyiWfv/991m2bBnLli2jW7dutV6rnNkrLy9n6dKlVavCYmNj+eCDD3jggQcoLCyke/fujB49mptuuqnF4xcREZGdU6vWCLUFkc4xioiIyM4j0vt3m5gaExEREWkOSoREREQkaikREhERkailREhERESilhIhERERiVpKhERERCRqKRESERGRqKVESERERKKWEiERERGJWkqEREREJGopERIREZGopURIREREopYSIREREYlaSoREREQkaikREhERkailREhERESilre1AxCJJtYGoWQutuhZ8C8FEwdxwzAJYzHeHq0dnohI1FEiJNJCrA1ic6+DkjdwB2ODYPOhaDa26CVo9wTGd2hrhykiElU0NSbSUoqfr0iCAII1XggA5dicS7HBwlYITEQkeikREmkB1lps4XTAhDiiYnSo5M2WDEtEJOopERJpCbYQAisBG+YgD7Z8YQsFJCIioERIpIVE+r+ap1mjEBGR2pQIibQA4ySAdz/C/y8XwMQe3lIhiYgISoREWoxJupDaRdI1ecDpAnHHtWRIIiJRT4mQSAsxccMwSVdWPKqcAjPuj5OOSX8SY2JaJzgRkSilfYREWpBJuhR8g7BFz4P/JzDxmLihEHcSxklq7fBERKKOEiGRFmZi9sSkTmntMEREBE2NiYiISBRTIiQiIiJRS4mQiIiIRC0lQiIiIhK1lAiJiIhI1FIiJCIiIlFLiZCIiIhELSVCIiIiErWUCImIiEjUUiIkIiIiUUstNhpgrQUgLy+vlSMRERGRSFXetyvv46EoEWpAfn4+AN27d2/lSERERKSx8vPzSU1NDfm6sQ2lSlEuGAyydu1akpOTMca0djjbLS8vj+7du7N69WpSUlJaO5xdgr7T5qHvtXnoe20e+l6bR1N8r9Za8vPz6dKlC44TuhJII0INcByHbt26tXYYTSYlJUX/szYxfafNQ99r89D32jz0vTaPHf1ew40EVVKxtIiIiEQtJUIiIiIStZQIRQmfz8ett96Kz+dr7VB2GfpOm4e+1+ah77V56HttHi35vapYWkRERKKWRoREREQkaikREhERkailREhERESilhIhERERiVpKhKJYaWkpBxxwAMYYFi5c2NrhtHmjRo0iKyuLuLg4OnfuzB//+EfWrl3b2mG1WStWrGDChAn06tWL+Ph4+vTpw6233kpZWVlrh9bm3XXXXRx++OEkJCSQlpbW2uG0WQ899BA9e/YkLi6OQw89lC+//LK1Q2rzPv30U0aOHEmXLl0wxvDqq682+zWVCEWx66+/ni5durR2GLuMQYMG8eKLL7J06VJefvllli9fzmmnndbaYbVZS5YsIRgM8thjj7F48WLuv/9+Hn30UW688cbWDq3NKysrY8yYMVxyySWtHUqb9cILL3D11Vdz66238u2337L//vszbNgwNmzY0NqhtWmFhYXsv//+PPTQQy13UStR6e2337b9+vWzixcvtoD97rvvWjukXc5rr71mjTG2rKystUPZZfztb3+zvXr1au0wdhnTp0+3qamprR1Gm3TIIYfYyy67rOpxIBCwXbp0sVOnTm3FqHYtgH3llVea/ToaEYpC69ev58ILL+SZZ54hISGhtcPZJW3ZsoXnnnuOww8/nJiYmNYOZ5eRm5tLenp6a4chUa6srIxvvvmGIUOGVD3nOA5Dhgxh/vz5rRiZbA8lQlHGWsu4ceOYOHEiBx98cGuHs8u54YYbSExMJCMjg1WrVvHaa6+1dki7jGXLljFt2jQuvvji1g5FotymTZsIBAJ07Nix1vMdO3Zk3bp1rRSVbC8lQruISZMmYYwJ+7NkyRKmTZtGfn4+kydPbu2Q24RIv9dK1113Hd999x3vvfceHo+H8847D6vN22tp7HcKkJ2dzfDhwxkzZgwXXnhhK0W+c9ue71VE1GJjl7Fx40Y2b94c9pjevXtz+umn88Ybb2CMqXo+EAjg8Xg455xzePrpp5s71DYl0u81Nja2zvNr1qyhe/fufP755wwYMKC5QmxzGvudrl27loEDB3LYYYcxY8YMHEd/f6vP9vxZnTFjBldeeSU5OTnNHN2upaysjISEBP7zn/9w8sknVz0/duxYcnJyNBLcRIwxvPLKK7W+4+bgbdazS4vJzMwkMzOzweMefPBB7rzzzqrHa9euZdiwYbzwwgsceuihzRlimxTp91qfYDAIuNsUSLXGfKfZ2dkMGjSI/v37M336dCVBYezIn1VpnNjYWPr378+8efOqbtLBYJB58+Zx+eWXt25w0mhKhKJMVlZWrcdJSUkA9OnTh27durVGSLuEBQsW8NVXX3HkkUfSrl07li9fzs0330yfPn00GrSdsrOzGThwID169OC+++5j48aNVa916tSpFSNr+1atWsWWLVtYtWoVgUCgah+xvn37Vv1OkPCuvvpqxo4dy8EHH8whhxzCAw88QGFhIeeff35rh9amFRQUsGzZsqrHv/32GwsXLiQ9Pb3O/avJNPu6NNmp/fbbb1o+3wQWLVpkBw0aZNPT063P57M9e/a0EydOtGvWrGnt0Nqs6dOnW6DeH9kxY8eOrfd7/eijj1o7tDZl2rRpNisry8bGxtpDDjnEfvHFF60dUpv30Ucf1ftnc+zYsc12TdUIiYiISNTShLuIiIhELSVCIiIiErWUCImIiEjUUiIkIiIiUUuJkIiIiEQtJUIiIiIStZQIiYiISNRSIiQiIiJRS4mQiLR548aNwxjDxIkT67x22WWXYYxh3LhxtY41xhATE0PHjh057rjjeOqpp6r6w1X697//zcCBA0lJScEYo+akIrsgJUIiskvo3r07zz//PMXFxVXPlZSUMGvWrDo9ioYPH87vv//OihUreOeddxg0aBBXXHEFJ554In6/v+q4oqIihg8fzo033thin0NEWpaarorILuGggw5i+fLlzJkzh3POOQeAOXPmkJWVRa9evWod6/P5qhq3du3alYMOOojDDjuMwYMHM2PGDC644AIArrzySgA+/vjjFvscItKyNCIkIruM8ePHM3369KrHTz31VMTdwI899lj2339/5syZ01zhichOSImQiOwyzj33XD777DNWrlzJypUr+e9//8u5554b8fv79evHihUrmi9AEdnpaGpMRHYZmZmZnHDCCcyYMQNrLSeccALt27eP+P3WWowxzRihiOxslAiJyC5l/PjxXH755QA89NBDjXrvTz/9VKeeSER2bZoaE5FdyvDhwykrK6O8vJxhw4ZF/L4PP/yQH374gdGjRzdjdCKys9GIkIjsUjweDz/99FPVv9entLSUdevWEQgEWL9+PXPnzmXq1KmceOKJnHfeeVXHrVu3jnXr1rFs2TIAfvjhB5KTk8nKyiI9Pb35P4yINDslQiKyy0lJSQn7+ty5c+ncuTNer5d27dqx//778+CDDzJ27Fgcp3qg/NFHH2XKlClVj48++mgApk+fXrVBo4i0bcZaa1s7CBEREZHWoBohERERiVpKhERERCRqKRESERGRqKVESERERKKWEiERERGJWkqEREREJGopERIREZGopURIREREopYSIREREYlaSoREREQkaikREhERkailREhERESi1v8DIMLHtPcf0QgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from keras.models import Sequential, Model\n", "from keras.layers import Dense, Input, concatenate, GlobalAveragePooling1D\n", "from keras.utils import to_categorical\n", "from sklearn.manifold import MDS\n", "import matplotlib.pyplot as plt\n", "\n", "# Load your dataset\n", "data = pd.read_csv('/content/stressinput.csv', header=None)\n", "\n", "# Separate features and labels\n", "features = data.iloc[:, :-1].values\n", "labels = data.iloc[:, -1].values\n", "\n", "# Scale features using StandardScaler\n", "scaler = StandardScaler()\n", "features_scaled = scaler.fit_transform(features)\n", "\n", "# Convert labels to one-hot encoding\n", "num_classes = len(np.unique(labels))\n", "labels_one_hot = to_categorical(labels, num_classes=num_classes)\n", "\n", "# Define the custom DenseNet-like architecture\n", "def create_custom_densenet(input_shape, num_dense_blocks=3, num_layers_per_block=3, growth_rate=32):\n", " input_layer = Input(shape=input_shape)\n", " x = input_layer\n", "\n", " for _ in range(num_dense_blocks):\n", " for _ in range(num_layers_per_block):\n", " # Dense layer\n", " x = Dense(growth_rate, activation='relu')(x)\n", " # Concatenate with previous layers\n", " x = concatenate([x, input_layer])\n", "\n", " # Global average pooling\n", " x = GlobalAveragePooling1D()(x)\n", "\n", " # Output layer\n", " output_layer = Dense(num_classes, activation='softmax')(x)\n", "\n", " model = Model(inputs=input_layer, outputs=output_layer)\n", " return model\n", "\n", "# Reshape features to simulate an image\n", "features_reshaped = features_scaled.reshape(features_scaled.shape[0], features_scaled.shape[1], 1)\n", "\n", "# Split the data into training and test sets\n", "X_train, X_test, Y_train, Y_test = train_test_split(features_reshaped, labels_one_hot, test_size=0.2, random_state=42)\n", "\n", "# Create the custom DenseNet-like model\n", "input_shape = (features_scaled.shape[1], 1)\n", "model_densenet = create_custom_densenet(input_shape=input_shape)\n", "\n", "model_densenet.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n", "\n", "# Train the model\n", "model_densenet.fit(X_train, Y_train, epochs=10, batch_size=32, validation_split=0.1)\n", "\n", "# Extract features for MDS from the model\n", "feature_extraction_model = Model(inputs=model_densenet.input, outputs=model_densenet.layers[-2].output)\n", "features_extracted = feature_extraction_model.predict(X_test)\n", "\n", "# Add Gaussian noise to the features\n", "noise_level = 0.1 # You can adjust this based on your preference\n", "noisy_features = features_extracted + noise_level * np.random.normal(size=features_extracted.shape)\n", "\n", "# Apply MDS for dimensionality reduction on noisy features\n", "mds = MDS(n_components=2)\n", "features_2d = mds.fit_transform(noisy_features)\n", "\n", "# Plot MDS results for noisy features\n", "plt.scatter(features_2d[:, 0], features_2d[:, 1], c=np.argmax(Y_test, axis=1), cmap='viridis')\n", "plt.title('MDS Visualization of Noisy Custom DenseNet Features')\n", "plt.xlabel('MD1')\n", "plt.ylabel('MD2')\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "Im6u77MOo3BW", "outputId": "5b7934ff-1d36-458d-aaf2-65d1f6cccff9" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/10\n", "127/127 [==============================] - 9s 43ms/step - loss: 0.6206 - accuracy: 0.6901 - val_loss: 0.6299 - val_accuracy: 0.6822\n", "Epoch 2/10\n", "127/127 [==============================] - 3s 27ms/step - loss: 0.6178 - accuracy: 0.6898 - val_loss: 0.6238 - val_accuracy: 0.6822\n", "Epoch 3/10\n", "127/127 [==============================] - 3s 22ms/step - loss: 0.6166 - accuracy: 0.6898 - val_loss: 0.6233 - val_accuracy: 0.6822\n", "Epoch 4/10\n", "127/127 [==============================] - 3s 26ms/step - loss: 0.6144 - accuracy: 0.6898 - val_loss: 0.6232 - val_accuracy: 0.6822\n", "Epoch 5/10\n", "127/127 [==============================] - 3s 22ms/step - loss: 0.6140 - accuracy: 0.6898 - val_loss: 0.6222 - val_accuracy: 0.6822\n", "Epoch 6/10\n", "127/127 [==============================] - 3s 22ms/step - loss: 0.6137 - accuracy: 0.6898 - val_loss: 0.6225 - val_accuracy: 0.6822\n", "Epoch 7/10\n", "127/127 [==============================] - 3s 22ms/step - loss: 0.6133 - accuracy: 0.6898 - val_loss: 0.6217 - val_accuracy: 0.6822\n", "Epoch 8/10\n", "127/127 [==============================] - 3s 26ms/step - loss: 0.6132 - accuracy: 0.6898 - val_loss: 0.6248 - val_accuracy: 0.6822\n", "Epoch 9/10\n", "127/127 [==============================] - 3s 22ms/step - loss: 0.6136 - accuracy: 0.6898 - val_loss: 0.6211 - val_accuracy: 0.6822\n", "Epoch 10/10\n", "127/127 [==============================] - 3s 22ms/step - loss: 0.6122 - accuracy: 0.6898 - val_loss: 0.6262 - val_accuracy: 0.6822\n", "36/36 [==============================] - 0s 9ms/step - loss: 0.6070 - accuracy: 0.6922\n", "Test Accuracy: 0.6921707987785339\n", "36/36 [==============================] - 1s 9ms/step\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.10/dist-packages/sklearn/manifold/_mds.py:299: FutureWarning: The default value of `normalized_stress` will change to `'auto'` in version 1.4. To suppress this warning, manually set the value of `normalized_stress`.\n", " warnings.warn(\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACAGElEQVR4nO3dd3hTZfvA8e9zkjbdLS3QFihThqKCoCwHqCAgoChDQGW64RXE8RO3r6/ihlfFgQooiCjKUFQQEPRFcQIOcLERaFndOznP74+0oaFJm5TOcH+uKxfNyXPOuU96SO4+U2mtNUIIIYQQAcKo6QCEEEIIISqTJDdCCCGECCiS3AghhBAioEhyI4QQQoiAIsmNEEIIIQKKJDdCCCGECCiS3AghhBAioEhyI4QQQoiAIsmNEEIIIQKKJDeiys2bNw+lFLt37651cfTq1YtevXpVeyw1dV5/pKSkMHToUOLi4lBKMXPmzJoO6ZS0fv16lFKsX7/etW3s2LE0b97c9Xz37t0opXj22WerP8BqoJTikUce8Xu/4vdl3rx5lR6TqN0kualFir98lVJs2LCh1Otaa5KSklBKMXDgQLfXivdTSmG1WomNjaVz585MnjyZbdu2eTzf4cOHmTx5Mu3atSM0NJSGDRvSpUsX/u///o+srCyvcV5xxRWEhYWRmZnptcy1115LcHAwR48e9fHqA8+2bdt45JFHajypq6g77riDVatWMW3aNObPn0+/fv28lq3I/VebFf9fDAkJYf/+/aVe79WrF2eeeWaFjr1w4cI6mSiezOdTbVecQHp6jBgxokrOWdc/H2o7a00HIEoLCQlh4cKFXHDBBW7bv/zyS/755x9sNpvH/fr06cPo0aPRWpOens7PP//MW2+9xcsvv8xTTz3F1KlTXWWPHTvGueeeS0ZGBuPHj6ddu3YcPXqUX375hVdeeYVbb72ViIgIj+e59tpr+fjjj1m6dCmjR48u9XpOTg7Lly+nX79+xMXFcf311zNixAivcdekzz//vMqOvW3bNh599FF69erl9ld2VZ+3snzxxRdceeWV3HXXXT6V9+f+qyvy8/N58sknefHFFyvtmAsXLuS3335jypQpFT7G66+/jmmalRaTPyr6+VQX3H777Zx33nlu2078v1tZyvp8ECdPkpta6PLLL2fx4sW88MILWK3Hf0ULFy6kc+fOHDlyxON+bdq04brrrnPb9uSTTzJo0CDuvPNO2rVrx+WXXw7Am2++yd69e/n666/p0aOH2z4ZGRkEBwd7je+KK64gMjKShQsXekxuli9fTnZ2Ntdeey0AFosFi8Xi28VXs7KuMxDP649Dhw4RExPjc3l/7r+6omPHjrz++utMmzaNRo0a1XQ4LkFBQTV27op+PtUFF154IUOHDq3pME5KdnY24eHhNR1GjZNmqVpo5MiRHD16lNWrV7u2FRQU8MEHHzBq1Ci/jhUXF8eiRYuwWq08/vjjru07duzAYrHQrVu3UvtERUUREhLi9ZihoaFcffXVrF27lkOHDpV6feHChURGRnLFFVcAnvu6/Pjjj/Tt25f69esTGhpKixYtGD9+vOt1T/0MwHMb+i+//MLYsWNp2bIlISEhJCQkMH78eJ+axE7s+9K8eXOv1dPFsezZs4fbbruNtm3bEhoaSlxcHMOGDXO7vnnz5jFs2DAALr744lLH8NTn5tChQ0yYMIH4+HhCQkLo0KEDb731lsfrf/bZZ5k9ezatWrXCZrNx3nnn8cMPP5R7vQA7d+5k2LBhxMbGEhYWRrdu3fjkk0/cYldKobVm1qxZrtgrwtv9B85akYcffpjTTjsNm81GUlIS99xzD/n5+W7llFJMmjSJZcuWceaZZ2Kz2Wjfvj0rV650K5eZmcmUKVNo3rw5NpuNhg0b0qdPHzZt2uRW7rvvvqNfv35ER0cTFhZGz549+frrrz3Gf9999+FwOHjyySd9ut4FCxbQuXNnQkNDiY2NZcSIEezbt8/1eq9evfjkk0/Ys2eP632tyF/tJ/a58URrzU033URwcDBLlizxOcbyVOTzKTs7mzvvvJOkpCRsNhtt27bl2WefRWvtVi4/P5877riDBg0auD5D/vnnH4/H3L9/P+PHjyc+Pt51T8yZM8fn66gIX+6dyvh88NbHqHnz5owdO9btOEopvvzyS2677TYaNmxIkyZNXK9/9tlnXHjhhYSHhxMZGcmAAQPYunWr2zGTk5MZN24cTZo0wWazkZiYyJVXXlnnm8uk5qYWat68Od27d+fdd9+lf//+gPMmTU9PZ8SIEbzwwgt+Ha9p06b07NmTdevWkZGRQVRUFM2aNcPhcDB//nzGjBnjd4zXXnstb731Fu+//z6TJk1ybT927BirVq1i5MiRhIaGetz30KFDXHbZZTRo0IB7772XmJgYdu/e7fYB7I/Vq1ezc+dOxo0bR0JCAlu3bmX27Nls3bqVb7/91q8v5pkzZ5bqbzRjxgy2bNlCXFwcAD/88APffPMNI0aMoEmTJuzevZtXXnmFXr16sW3bNsLCwrjooou4/fbbeeGFF7jvvvs4/fTTAVz/nig3N5devXqxfft2Jk2aRIsWLVi8eDFjx44lLS2NyZMnu5VfuHAhmZmZ3HzzzSilePrpp7n66qvZuXNnmX/Vp6Sk0KNHD3Jycrj99tuJi4vjrbfe4oorruCDDz7gqquu4qKLLmL+/Plcf/31rqamk+Hp/jNNkyuuuIINGzZw0003cfrpp/Prr78yY8YM/vrrL5YtW+Z2jA0bNrBkyRJuu+02IiMjeeGFFxgyZAh79+51/V5uueUWPvjgAyZNmsQZZ5zB0aNH2bBhA7///judOnUCnE1t/fv3p3Pnzjz88MMYhsHcuXO55JJL+N///keXLl3cztuiRQtGjx7N66+/zr333ltm7c3jjz/Ogw8+yPDhw7nhhhs4fPgwL774IhdddBGbN28mJiaG+++/n/T0dP755x9mzJgB4LX592Q4HA7Gjx/Pe++9x9KlSxkwYIDPMZbH388nrTVXXHEF69atY8KECXTs2JFVq1Zx9913s3//ftf7AHDDDTewYMECRo0aRY8ePfjiiy9csZeUkpJCt27dXIlvgwYN+Oyzz5gwYQIZGRkVbvLLzMwsVfMUGxuLYRg+3ztV8flQnttuu40GDRrw0EMPkZ2dDeD6bO/bty9PPfUUOTk5vPLKK1xwwQVs3rzZlRwPGTKErVu38q9//YvmzZtz6NAhVq9ezd69e+t2c5kWtcbcuXM1oH/44Qf90ksv6cjISJ2Tk6O11nrYsGH64osv1lpr3axZMz1gwAC3fQE9ceJEr8eePHmyBvTPP/+stdY6OTlZN2jQQAO6Xbt2+pZbbtELFy7UaWlpPsVqt9t1YmKi7t69u9v2V199VQN61apVpa5r165dWmutly5d6rpOb9atW6cBvW7dOrftu3bt0oCeO3eua1vxe1TSu+++qwH91VdfeY1Da6179uype/bs6TWO999/XwP63//+d5nn27hxowb022+/7dq2ePFij9fg6bwzZ87UgF6wYIFrW0FBge7evbuOiIjQGRkZbtcfFxenjx075iq7fPlyDeiPP/7Y67VorfWUKVM0oP/3v/+5tmVmZuoWLVro5s2ba4fD4dpe3j1Vkr/33/z587VhGG5xaH38/vn666/djh0cHKy3b9/u2vbzzz9rQL/44ouubdHR0WXGYJqmbt26te7bt682TdO1PScnR7do0UL36dPHta3k/8UdO3Zoq9Wqb7/9dtfrPXv21O3bt3c93717t7ZYLPrxxx93O+evv/6qrVar2/YBAwboZs2aeY3zRJ7+L4wZM8btGMX3xTPPPKMLCwv1Nddco0NDQ93+H/oToycV/XxatmyZBvR//vMft+MNHTpUK6Vcv9ctW7ZoQN92221u5UaNGqUB/fDDD7u2TZgwQScmJuojR464lR0xYoSOjo52xeXp88KT4vfY02PXrl1+3TuV8flw4vUWa9asmR4zZozrefHv5IILLtB2u921PTMzU8fExOgbb7zRbf/k5GQdHR3t2p6amuq6bwKNNEvVUsOHDyc3N5cVK1aQmZnJihUr/G6SKqn4r8PiEU7x8fH8/PPP3HLLLaSmpvLqq68yatQoGjZsyGOPPVaquvhEFouFESNGsHHjRrfqy4ULFxIfH8+ll17qdd/ivw5XrFhBYWFhha+pWMkaory8PI4cOeJqbjuxScIf27ZtY/z48Vx55ZU88MADHs9XWFjI0aNHOe2004iJianw+T799FMSEhIYOXKka1tQUBC33347WVlZfPnll27lr7nmGurVq+d6fuGFFwLOJqfyztOlSxe3zqARERHcdNNN7N69u8pGNp14/y1evJjTTz+ddu3aceTIEdfjkksuAWDdunVu+/fu3ZtWrVq5np999tlERUW5XW9MTAzfffcdBw4c8BjDli1b+Pvvvxk1ahRHjx51nTM7O5tLL72Ur776ymMn3ZYtW3L99dcze/ZsDh486PHYS5YswTRNhg8f7nY9CQkJtG7dutT1VJWCggKGDRvGihUr+PTTT7nsssuqJEZ/Pp8+/fRTLBYLt99+u9v2O++8E601n332mascUKrcibUwWms+/PBDBg0ahNba7Vr69u1Lenp6hf8fPvTQQ6xevdrtkZCQ4Ne9UxWfD+W58cYb3fo1rl69mrS0NEaOHOn2/lgsFrp27er6XYeGhhIcHMz69etJTU2tkthqijRL1VINGjSgd+/eLFy4kJycHBwOx0l1dCtuaomMjHRtS0xM5JVXXuHll1/m77//ZtWqVTz11FM89NBDJCYmcsMNN5R5zGuvvZYZM2awcOFC7rvvPv755x/+97//cfvtt5fZgbhnz54MGTKERx99lBkzZtCrVy8GDx7MqFGjKjTS4tixYzz66KMsWrSoVB+g9PR0v48Hzk7VV199NY0bN+btt992a9rKzc1l+vTpzJ07l/3797slghU93549e2jdujWG4f73RnE19Z49e9y2N23a1O15caJT3gfUnj176Nq1a6ntJc9T0SHOZTnx/vv777/5/fffadCggcfyJ/4eT7xecF5zyet9+umnGTNmDElJSXTu3JnLL7+c0aNH07JlS9c5gTKbYdPT092SxmIPPPAA8+fP58knn+S///1vqdf//vtvtNa0bt3a43F96QCcnJzs9jw6Otpr064306dPJysri88++6xUn67KiLGYP59Pe/bsoVGjRm6fPVD63t6zZw+GYbglsQBt27Z1e3748GHS0tKYPXs2s2fP9nhOT30BfXHWWWfRu3fvUtv9uXeq4vOhPC1atPAYb/EfCyeKiooCwGaz8dRTT3HnnXcSHx9Pt27dGDhwIKNHjyYhIaFKYq0uktzUYqNGjeLGG28kOTmZ/v37+zVy5US//fYbFoul1H8CcHZea9OmDW3atGHAgAG0bt2ad955p9zkpnPnzrRr1453332X++67j3fffRettWuUlDdKKT744AO+/fZbPv74Y1atWsX48eN57rnn+Pbbb4mIiPDaT8bhcJTaNnz4cL755hvuvvtuOnbsSEREBKZp0q9fvwoPlx07diwHDhzg+++/d30QFPvXv/7F3LlzmTJlCt27dyc6Oto1H0Z1Dc/1ljyWV+NWU068/0zT5KyzzuL555/3WD4pKcntuS/XO3z4cC688EKWLl3K559/zjPPPMNTTz3FkiVL6N+/v+t388wzz9CxY0ePx/PW/6Vly5Zcd911zJ49m3vvvbfU66ZpopTis88+8xirL/1qEhMT3Z7PnTvXrfOoL/r27cvKlSt5+umn6dWrl9vAgMqIsaTK/HzyR/Hv8brrrvOabJx99tlVck5f7p2q/Hzw9PkHlEqCi88zf/58j0lKyVFuU6ZMYdCgQSxbtoxVq1bx4IMPMn36dL744gvOOeeck4q3JklyU4tdddVV3HzzzXz77be89957FT7O3r17+fLLL+nevXupv55O1LJlS+rVq+e1+v1E1157LQ8++CC//PILCxcupHXr1qXmifCmW7dudOvWjccff5yFCxdy7bXXsmjRIm644QbXX89paWlu+5xYg5GamsratWt59NFHeeihh1zbi/9yqYgnn3ySZcuWsWTJEtq1a1fq9Q8++IAxY8bw3HPPubbl5eWVitWfjszNmjXjl19+wTRNt9qbP/74w/V6ZWjWrBl//vlnqe2VfZ6SPN1/rVq14ueff+bSSy+t8EgsTxITE7ntttu47bbbOHToEJ06deLxxx+nf//+rhqBqKgoj3+dl+eBBx5gwYIFPPXUU6Vea9WqFVprWrRoQZs2bco8jrfrLTn6CKB9+/Z+x9itWzduueUWBg4cyLBhw1i6dKnri8yfGH3h6+dTs2bNWLNmDZmZmW6fPyfec82aNcM0TXbs2OFWW3Pi/Vo8ksrhcFTo91gR/tw7lfH5UK9evVLlCwoKfP5cLo63YcOGPr1HrVq14s477+TOO+/k77//pmPHjjz33HMsWLDAp/PVRtLnphaLiIjglVde4ZFHHmHQoEEVOsaxY8cYOXIkDoeD+++/37X9u+++c/WqL+n777/n6NGjpaqCvSmupXnooYfYsmVLubU24ExITqxhKP5rqHgYcLNmzbBYLHz11Vdu5V5++WW358V/gZ54vIrOALtmzRoeeOAB7r//fgYPHuyxjMViKXW+F198sdRfVcVzTZz4IeXJ5ZdfTnJystuXhN1u58UXXyQiIoKePXv6dyFlnOf7779n48aNrm3Z2dnMnj2b5s2bc8YZZ1TKeYp5u/+GDx/O/v37ef3110vtk5ub6/HeLIvD4ShV5d+wYUMaNWrkuqc6d+5Mq1atePbZZz3OwH348OEyz9GqVSuuu+46XnvttVJNSFdffTUWi4VHH3201L2htXabliA8PNxj80Tv3r3dHifW5Piqd+/eLFq0iJUrV3L99de7/or3J0Zf+Pr5dPnll+NwOHjppZfcts+YMQOllGvEVfG/J462OvH/ssViYciQIXz44Yf89ttvpc5X3u+xIvy5dyrj86FVq1alPvtmz57ttebmRH379iUqKoonnnjCY7/G4nhzcnLIy8srde7IyMhSUzLUNVJzU8v5M0z7r7/+YsGCBWitycjI4Oeff2bx4sVkZWXx/PPPu02fP3/+fN555x2uuuoqOnfuTHBwML///jtz5swhJCSE++67z6dztmjRgh49erB8+XIAn5Kb4llrr7rqKlq1akVmZiavv/46UVFRrkneoqOjGTZsGC+++CJKKVq1asWKFStKtaVHRUVx0UUX8fTTT1NYWEjjxo35/PPP2bVrl69vm5uRI0fSoEEDWrduXeqvlj59+hAfH8/AgQOZP38+0dHRnHHGGWzcuJE1a9a4hiQX69ixIxaLhaeeeor09HRsNhuXXHIJDRs2LHXem266iddee42xY8fy008/0bx5cz744AO+/vprZs6cWW6Nm6/uvfde1xDe22+/ndjYWN566y127drFhx9+WKrPjz/8uf+uv/563n//fW655RbWrVvH+eefj8Ph4I8//uD9999n1apVnHvuuT6fOzMzkyZNmjB06FA6dOhAREQEa9as4YcffnD9BW0YBm+88Qb9+/enffv2jBs3jsaNG7N//37WrVtHVFQUH3/8cZnnuf/++5k/fz5//vmnW81Kq1at+M9//sO0adPYvXs3gwcPJjIykl27drF06VJuuukm10zPnTt35r333mPq1Kmcd955REREVPiPF28GDx7M3LlzGT16NFFRUbz22mt+xegrXz6fBg0axMUXX8z999/P7t276dChA59//jnLly9nypQprlqGjh07MnLkSF5++WXS09Pp0aMHa9euZfv27aWO+eSTT7Ju3Tq6du3KjTfeyBlnnMGxY8fYtGkTa9as4dixY35dR3n8uXcq4/Phhhtu4JZbbmHIkCH06dOHn3/+mVWrVlG/fn2f4o2KiuKVV17h+uuvp1OnTowYMYIGDRqwd+9ePvnkE84//3xeeukl/vrrLy699FKGDx/OGWecgdVqZenSpaSkpFTZshPVphpHZolylBxqWRZvQ8GLH4Zh6JiYGH3OOefoyZMn661bt5Y6xi+//KLvvvtu3alTJx0bG6utVqtOTEzUw4YN05s2bfIr7lmzZmlAd+nSpczrKh6CvWnTJj1y5EjdtGlTbbPZdMOGDfXAgQP1jz/+6Lbf4cOH9ZAhQ3RYWJiuV6+evvnmm/Vvv/1WamjnP//8o6+66iodExOjo6Oj9bBhw/SBAwdKDaf0ZSg4XoaDUmLIZmpqqh43bpyuX7++joiI0H379tV//PFHqWGaWmv9+uuv65YtW2qLxeJ2DE9D0FNSUlzHDQ4O1meddVapIawlh/ye6MTr9WbHjh166NChOiYmRoeEhOguXbroFStWeDyeP0PB/bn/tHYOdX/qqad0+/bttc1m0/Xq1dOdO3fWjz76qE5PTy83jpLvd35+vr777rt1hw4ddGRkpA4PD9cdOnTQL7/8cqn9Nm/erK+++modFxenbTabbtasmR4+fLheu3atq0xZ/xfHjBmjAbeh4MU+/PBDfcEFF+jw8HAdHh6u27VrpydOnKj//PNPV5msrCw9atQoHRMTo4Fyh4X7OxS8pJdfflkD+q677vIrRk9O5vMpMzNT33HHHbpRo0Y6KChIt27dWj/zzDNuw6q11jo3N1fffvvtOi4uToeHh+tBgwbpffv2eby3U1JS9MSJE3VSUpIOCgrSCQkJ+tJLL9WzZ88u9b74OhR88eLFZZbz5d6pjM8Hh8Oh/+///k/Xr19fh4WF6b59++rt27d7HQru7Xeybt063bdvXx0dHa1DQkJ0q1at9NixY12ftUeOHNETJ07U7dq10+Hh4To6Olp37dpVv//++2W+D3WB0rqW9kAUQgghhKgA6XMjhBBCiIAiyY0QQgghAookN0IIIYQIKJLcCCGEECKgSHIjhBBCiIAiyY0QQgghAsopN4mfaZocOHCAyMjISp32XQghhBBVR2tNZmYmjRo1KnfC0VMuuTlw4ECpRfmEEEIIUTfs27ePJk2alFnmlEtuiqex37dvX6nVnoUQQghRO2VkZJCUlOTTcjSnXHJT3BQVFRUlyY0QQghRx/jSpUQ6FAshhBAioEhyI4QQQoiAIsmNEEIIIQKKJDdCCCGECCiS3AghhBAioEhyI4QQQoiAIsmNEEIIIQKKJDdCCCGECCiS3AghhBAioJxyMxQLIYSoHXTBj+jseVDwHaAguBsqfCwquFNNhybqOKm5EUIIUe109lz0sVGQvxZ0Oug0yF+NPjYCnb2gpsMTdZwkN0IIIaqVLvwFnTm96JmjxCvOn3XmY+jCbdUelwgcktwIIYSoVjp7PmApo4SBzllYXeGIACTJjRBCiOpV+BPuNTYnckDBD9UVjQhAktwIIYSoZj589SgZ7yIqTpIbIYQQ1cvWi7KbpSwQfFE1BSMCkSQ3QgghqpUKuxZQRY9SrwIGKmxU9QYlAookN0IIIaqVsrZAxbyAc6q1kl9DBhCEqjcLZU2qmeBEQJBGTSGEENVOhfSGBmvROYug4Fuck/h1R4UNR1kSajo8UcdJciOEEKJGKEsCKnJKTYchApA0SwkhhBAioEhyI4QQQoiAIsmNEEIIIQKKJDdCCCGECCiS3AghhBAioNRocjN9+nTOO+88IiMjadiwIYMHD+bPP/8sd7/FixfTrl07QkJCOOuss/j000+rIVohhBBC1AU1mtx8+eWXTJw4kW+//ZbVq1dTWFjIZZddRnZ2ttd9vvnmG0aOHMmECRPYvHkzgwcPZvDgwfz222/VGLkQQgghaiultdY1HUSxw4cP07BhQ7788ksuusjzuiLXXHMN2dnZrFixwrWtW7dudOzYkVdffbXcc2RkZBAdHU16ejpRUVGVFrsQQgghqo4/39+1qs9Neno6ALGxsV7LbNy4kd69e7tt69u3Lxs3bqzS2IQQQghRN9SaGYpN02TKlCmcf/75nHnmmV7LJScnEx8f77YtPj6e5ORkj+Xz8/PJz893Pc/IyKicgIUQQghRK9WampuJEyfy22+/sWjRoko97vTp04mOjnY9kpJkMTYhhBAikNWK5GbSpEmsWLGCdevW0aRJkzLLJiQkkJKS4rYtJSWFhATPC61NmzaN9PR012Pfvn2VFrcQQgghap8aTW601kyaNImlS5fyxRdf0KJFi3L36d69O2vXrnXbtnr1arp37+6xvM1mIyoqyu0hhBBCiMBVo31uJk6cyMKFC1m+fDmRkZGufjPR0dGEhoYCMHr0aBo3bsz06dMBmDx5Mj179uS5555jwIABLFq0iB9//JHZs2fX2HUIIYQQovao0ZqbV155hfT0dHr16kViYqLr8d5777nK7N27l4MHD7qe9+jRg4ULFzJ79mw6dOjABx98wLJly8rshCyEEEKIU0etmuemOsg8N0IIIUTdU2fnuRFCCCGEOFmS3AghhBAioEhyI4QQQoiAIsmNEEIIIQKKJDdCCCGECCiS3AghhBAioEhyI4QQQoiAIsmNEEIIIQKKJDdCCCGECCiS3AghhBAioEhyI4QQQoiAIsmNEEIIIQKKJDdCCCGECCiS3AghhBAioEhyI4QQQoiAIsmNEEIIIQKKJDdCCCGECCiS3AghhBAioEhyI4QQQoiAIsmNEEIIIQKKJDdCCCGECCiS3AghhBAioEhyI4QQQoiAIsmNEEIIIQKKJDdCCCGECCiS3AghhBAioEhyI4QQQoiAIsmNEEIIIQKKJDdCCCGECCiS3AghhBAioEhyI4QQQoiAIsmNEEIIIQKKJDdCCCGECCiS3AghhBAioEhyI4QQQoiAIsmNEEIIIQKKJDdCCCGECCiS3AghhBAioEhyI4QQQoiAIsmNEEIIIQKKJDdCCCGECCiS3AghhBAioEhyI4QQQoiAIsmNEEIIIQKKJDdCCCGECCiS3AghhBAioEhyI4QQQoiAIsmNEEIIIQKKJDdCCCGECCiS3AghhBAioEhyI4QQQoiAIsmNEEIIIQKKJDdCCCGECCiS3AghhBAioEhyI4QQQoiAIsmNEEIIIQKKJDdCCCGECCiS3AghhBAioNRocvPVV18xaNAgGjVqhFKKZcuWlVl+/fr1KKVKPZKTk6snYCGEEELUejWa3GRnZ9OhQwdmzZrl135//vknBw8edD0aNmxYRREKIYQQoq6x1uTJ+/fvT//+/f3er2HDhsTExFR+QEIIIYSo8+pkn5uOHTuSmJhInz59+Prrr2s6HFGC1gXo3BWYqbdjHpuAmfEk2r6zpsMSQghxCqnRmht/JSYm8uqrr3LuueeSn5/PG2+8Qa9evfjuu+/o1KmTx33y8/PJz893Pc/IyKiucE852nEQfWwMOHbjzJtNKPgGnTMHIu5ERdxcwxEKIYQ4FdSp5KZt27a0bdvW9bxHjx7s2LGDGTNmMH/+fI/7TJ8+nUcffbS6QjxlaW2iU28Ex76iLWbRvw7n61nPgbUZKqRfjcQnhBDi1FEnm6VK6tKlC9u3b/f6+rRp00hPT3c99u3b57WsOAkF34D9L4qTmdIMdNZr1RmREEKIU1SdqrnxZMuWLSQmJnp93WazYbPZqjGiU5PO/wrn7WT3UsIE+1a0mYoy6lVjZEIIIU41NZrcZGVludW67Nq1iy1bthAbG0vTpk2ZNm0a+/fv5+233wZg5syZtGjRgvbt25OXl8cbb7zBF198weeff15TlyBcCnwrpgurNgwhhBCnvBpNbn788Ucuvvhi1/OpU6cCMGbMGObNm8fBgwfZu3ev6/WCggLuvPNO9u/fT1hYGGeffTZr1qxxO4aoGcp6FpqFZRcyGoARVz0BCSGEOGUprbWu6SCqU0ZGBtHR0aSnpxMVFVXT4QQMrXPRhy4AnQV4uqUUKuIOVMQt1R2aEEKIAODP93ed71AsagelQlExLwJBgKXkK85/LK3Q9l2Y6fejcz9Fax+bsYQQQgg/1fkOxaL2ULYeUH8ZOnsu5H0KOg+MRDAPg2M7OHYBCp27GDITIfZNlPW0mg67ztBmDuQtR+cuBfMoWJJQocMh5DKUkv/KQghRTJqlRJXR9j3oIwOBQo7Pe1PMAkY9VP3PUUZEDURXt2jHYfSxa4smSFQ4m/6KJkoM7oGq9xpKyahAIUTgkmYpUSvonLdxDg0/MbEBcDhrH3KXVW9QdZROm1pigsTiv0eK3teCb9GZz9VEWEIIUStJciOqTt5KvE/q56TzZRh/eXThX1D4Hd7fSxNyFqHN7OoMSwghai1JbkTV0XnlFQCdWy2h1GkF3+PqmO1VHti3VUc0QghR60lyI6qOtR1l32IWsJ5eXdHUYadUtzghhDhpMsQiAB3ae5gv399IxrEsEls0pOc1PQiPCqv2OFT4dei0H8oo4UCFjai2eOqs4C6Un+CESKIohBBFJLmpRlprtn79B2vmf0Xa4XTqN46j3/hLOO2cFpVyfIfdwawpc1nxyucoBYbFwG538PKUudz23/FcfsOllXIen9n6QsiVkLec4yN8oHiUj4qYjAo6o3pjqoNUUFt00HlQuAnP/W4MCLtGRp0JIUQRGQpeTQryCnjsmuf59uOfsFgNHA4Ti8XAYTfpN/5iprx2MxaLpfwDleHlKXNZ9uKnePuNPvj+VC4a2v2kzuEvrU3IfR+dPadoGDNgPRsVcSMqpG+1xlKXaUcK+th14ChejqTkUPBuqHqzUSqkBiMUQoiq5c/3tyQ31eT5G19h5dx1aNPD263g+geHMfqR4RU+/rHkVEYm3YLp8DTsGpSCxm0aMWfbTJQqr3Nq5dNag84GDJRR/U1kgUCb2ZC7FJ27BMxUsDR2NuuF9EWpoJoOTwghqpTMc1PLpKakseqt9Z4TGwANH85cQX5ufoXP8fWyH7wfH9Aa/vnzAHu2/VPhc5wMpRTKiJDE5iQoIxwVfh1G/SUYDddhxC1AhQ6UxEYIIU4gyU01+PHznzHtnmtUiuVk5LL1m78qfI7s9BwMS/k1MtnpORU+hxBCCFEXSHJTDQrz7T6WK6zwORq3TsRRTgKllCKhRcMKn0MIIYSoCyS5qQatO5U/GkopRcuzm1X4HN0GdiIqLhJv3WkMi0G3QZ2JS6xX4XMIIYQQdYEkN9WgdaeWtO7UAsPi+e02rM7Eo0GTuAqfIyg4iLvm3IYyDAzDPcMxLAbh0WHc8tyYCh9fCCGEqCskuakm9y6YTERMOIbV/S03LAYNGsdx+8s3nvQ5ug86l6dXP8QZPdq6tlmsBhcO7casH56kUauEkz6HEEIIUdvJUPBqdPifo3zw3MesmreO7PQcoutHcvmNvRlyx0Ci61duLEcOHCPzWBb1G8cSWU8mdxNCCFG3yTw3ZajJ5KYkh8Nx0pP2CSGEEKcKmeemDpDERgghhKgaktwIIYQQIqBIciOEEEKIgCKrggtRhqy0bPZvTyYkLJikdo0xDPl7QAghajtJboTwIO1wOq/fs4AvFv4Pe6EDgIQWDbnuwaH0HXtxDUcnhBCiLJLcCHGCjKOZTO5xP8l7DrutCZa86xDPjn+Z1OQ0Rtx7VQ1GKIQQoixSxy7ECRY9uZTk3Ye9LnY654F3ObTvSDVHJYQQwleS3AhRgsPh4NM31mI6vC9CqpTi83nrqy8oIYQQfpHkRogSstNzyE7PKbuQgoO7UqonICGEEH6TPjfilKPNHHDsBRUElhYodTzHDwkPwbAYZdfcoIiIDq+OUIUQQlSA1NyIU4Y2szAzHkMf6oY+egX6SH/0kUvROe9RvApJsC2IC67ugsXq/b+Gw+7g4pHnV1fYQggh/CTJjTglaDMbfexayHkHyDv+guMAOuNBdNYM16Zr7x+KYTEwDFXqOIbFoMvlnWh73mnVELUQQoiKkORGnBpyFoD9T+DE5qaidWOzX0XbdwDQ8uxmTF/5ADENowGwWA1UUaJzwdVdeOC9O1CqdOIjhBCidpA+N6JW02Ym5C5DF3wD2oEKPgdCh6Es9f07Ts5CSic2JVnQOYtRUfcC0KFnexbufZXvPtnErt/2YgsNpvsV59L4tMSKX4wQQohqoXRxZ4NThD9LpouapQt+RqdOAJ1ZvAVnZaMVIu9CqVDnz7buKEsj78fRJjqlXfkntF2KUe+VSohcCCFEZfPn+1tqbkStpM1UdOp40Nm4mo4AZ+1LAWQ+UWKrQtv6oaIfRxkRpY6llIFWoaBzyzijBZQku0IIEQikz42onXI/BJ1F2U1JxTTkr0Kn3ojWDs9FQgYBljKO4UCFDvA/TiGEELWOJDeiVtJ5X+BeY1MeEwp/gvz1Hl9V4ROAYDzf8hYI6gjBF/gbphBCiFpIkhtRSxVUYB8LOneZ65nWGp23FvPYOPSxUaAigJCiV624anKCu6Hqve42mZ8QQoi6S/rciNopqCMUbgW8NDN55ADzMFCU2GQ8ALmLcSYxxccxgGAIGYiyNgdbL1SQD52NhRBC1Bnyp6qolVTYSHzrb1OSBSyNnT/mLi5KbMA9QTIBO+SvgfAxktgIIUQAkuRG1ErK2goV+WDRs7I6ApfkQIUOBUBnzwW8TbRngs6A3BUnGaUQQojaSJIbUWup8OtQ9eaD7SKcnYEtOPvMeLptFdgug+BuaDMbHDsou0OyBV24qQqiFkIIUdOkz42o1ZStK8rW1fVcm2nojMcg71NczU0qFMKuQ0VMQSmF1r4sjaDwXrMjhBCiLpPkRtQpyohBxTyHdtwH9m04h3F3QBnhJcqEoa1nFr3urd+OHRXcvTpCFkIIUc2kWUr4rCCvgJ2/7GHXr3uwF9prNBZliUPZLkTZerglNq7XwyfgPbGxgNEAQvpWaYxCCCFqhtTciHIV5Bey4N+L+ejlVWSn5wAQ3SCKIVMGMvyeK7BYfO3wW31U6AC0/S/IfgX3oeAKVBSq3psoFVyDEQohhKgqsnCmKJPD7uCBQU/y0+qf0eYJt4qCi0dcwLQFt6NU7ey/ogt+Rue862yiUqGokL4QejXKiKnp0IQQQvhBFs4UlWb9e9/w46otnl/UsO7dDfQZ3ZPz+naszrB8poI7oII71HQYQgghqpH0uRFl+vjVzzEM77UyhsXg09fXVGNEQgghRNkkuRFlOrD9IOaJzVElmA6Tv3/aiWn6O5uwEEIIUTUkuRFliogpPRLpRCl7DvN/fR4jNyu3GiISQghRG2n7XszM5zBTb8NMuwud9zla18zIWkluRJkuve4iVBnNUsV++Wobz93wajVEJIQQorbR2W+ij/SB7Deca/flfYJOm4Q+OhjtOFTt8UhyI8o08OY+xDSIKjfBMR0mXy3eSMqew9UUmRBCiNpA561CZz6Fc8mb4mk3iv6170Cn3kJ1D8yW5OYUoB0H0Xlr0Plfos0sv/aNrh/F81/+m4ZN65d/Hq29j6wSQggRkHTWq3hPJxxg/w0Kf6jOkGQoeCDTjkPojIcgfx3HF5EMQYdfX7QOU9DxsmY25H2MLvwZMFC2C8DWG6WCaNKmEVNfv5X/6/PvMs+nlKKwoGZnLhZCCFF9tHkM7FvLKWVF561DBXeplpicZxQBSZtp6GMjwHEQ99Wx8yD7DbR9P8TMcC40mb8RnTYRdBbO2XxB5y4GoxHEvomytqLl2U2xWA0cdu+jorTWtDm3VZVelxBCiFpEF/hY0NdylUOSmwCls98GxwE8r6+kIf9TKByNNmLRqTcChUWvOY4XM1PQx0ZD/VXENIim5/AerH/vG0xH6WMaFoNmZzTh9K6tfYqvIK+Arz74lp0/7yY4JJhugzrT9rzTau1Mx0IIITww6oOKBX2sjEJ2lLV9tYUEktwErtzFeF84EsCCzv0QVDDOhMZTZy8HmIch7yMIG8VtM8fx90872f+3+9w3hsUgPDqM+xfd4VNy8tPqn/nPiBlkpWZjDbKgteadxz/krAtP55EldxMVF+nnxQohhKgJSlkh/Fp01iw8f+coUBEQ2r9a46rRDsVfffUVgwYNolGjRiilWLZsWbn7rF+/nk6dOmGz2TjttNOYN29elcdZJ5lHyingAEcy5K3CrbamFIXO+xxwdi5+8dsnGP3oNTRoEocyFJGxEVx1++W8tuVZmp3epNywdvy8mwcGPUl2mnMBTnuhw9XUtfWbP7l/wBMyIaAQQtQl4TdBUGdAFT2KWQArKua/KBVarSHVaM1NdnY2HTp0YPz48Vx99dXllt+1axcDBgzglltu4Z133mHt2rXccMMNJCYm0rdv32qIuA4xYsA8WkYBi7M6UeeVcyAN+vjkfOHR4Vx7/xCuvX9IhcJa9NRStGl6HBZoOkz++H47m9b8yrmXyXpQQghRFyhlg9i5kPMOOucdcOwFbBDSDxU+ARXUrtpjqtHkpn///vTv73tV1auvvkqLFi147rnnADj99NPZsGEDM2bMkOTmRKFDIPtNvNfKOFChV6Ede6FwM96bsCxgPd31TOtCyP8CXbARNKjgzhDSF6WCyw3JNE3+9+F3ZXZKtlgtfLV4oyQ3QghRhygVDOHjUOHj0NoEVI32oaxT89xs3LiR3r17u23r27cvGzdurKGIai8VNhaMWIpHP7kzIPgiCO6KCruOsvvmOFBhIwHQhX+jD/dBp/0Lct6H3PfR6XeiD/dEF/5Sbkz2AjuOwrKawECbpizjIIQQdZhSRo0PDqlTyU1ycjLx8fFu2+Lj48nIyCA31/MXYn5+PhkZGW6P6qYdh9H2HX5PoHcylKU+KnYRBHU84RULhA5B1XvJefOF9IeQgcV7lSjnvDVUxB2ooLZoMx2dOhrMlKLX7UUPwExFHxuLdiSXGVOQLYi4RvXKCVzRpE2j8i9QCCGE8KJOJTcVMX36dKKjo12PpKSkaju3zv8O8+go9OHz0Uf6ow91wUz7v3KTgMqirEkYce+i4j5BRT+Jin4e1WADRvTjKBXiLKMMVPSzqKhHwNL0+M5BZ6FiXkRF3Op8nvsBmMfw3Mxlgs5B57xbdjxKMejWvmUu5aC1pv+ES/y7UCGEEKKEOpXcJCQkkJKS4rYtJSWFqKgoQkM998SeNm0a6enprse+ffuqI1R03mp06hgo3FRiqx3yPkIfHYJ2HKyWOABUUGtU6NWo0IEoS1zp15WBChuFqv85quEmVMMtGHGLUSHH+zHpvJV4Hi5ezIS8T8uN5eopA2h9TgsMi/utV1yFeeNT19OwaQOfrksIIYTwpELJjbehuqZpsnfv3pMKqCzdu3dn7dq1bttWr15N9+7dve5js9mIiopye1Q1rfPR6dNwJgMnvlcOMI+hM5+u8jj8pZRCGREoI6z0i2Z2+QfQOeUWCQ0P4dl1jzB06iDCoo6fp/mZSTzw3lSG3TnIn5CFEEKIUvxKbjIyMhg+fDjh4eHEx8fz0EMP4XAcb6Y4fPgwLVq08Pl4WVlZbNmyhS1btgDOod5btmxxJUjTpk1j9OjRrvK33HILO3fu5J577uGPP/7g5Zdf5v333+eOO+7w5zKqXt5q0Bl4r+lwQN5KtJlanVGdnBLrUHlmgLWtT4cKjQjlxqeuY3HKG7z194u8u+9VXtvyLD2HeU9ShRBCCF/5NRT8wQcf5Oeff2b+/PmkpaXxn//8h02bNrFkyRKCg51Dgf1Z1vzHH3/k4osvdj2fOnUqAGPGjGHevHkcPHjQrSaoRYsWfPLJJ9xxxx3897//pUmTJrzxxhu1bxi4YzfOt7asRSQdzuURjHI62NYCzoXR/iqnlIkKu9av4wbbgmjUKqHigQkhhBAeKO1HNtKsWTPeeustevXqBcCRI0cYMGAAMTExfPTRR6SlpdGoUSO32pzaJiMjg+joaNLT06usiUpnz0VnPkXZQ6xB1V+NsjarkhhcsWgNBd86l1pw7AejPip0MNh6oZSnYeIejpH9NjrzCcq+HgUNvsewRFdG2EIIIYQbf76//WqWOnz4MM2aHf8yrl+/PmvWrCEzM5PLL7+cnJzy+1ycEkIuo+zOtwqsbdxHJ1UBrQvRabc7OzbnfQKFP0H+GnTarehj1/k8NF2byZR/q2iULm/JByGEEKLq+ZXcNG3alN9//91tW2RkJJ9//jm5ublcddVVlRpcXaUsjZ0zBONtyLNGRUyu8kmOdNZMyP+86JnD/d/Czej0+306jjLiKK8WClSdaGITQggR+PxKbi677DLmzp1bantERASrVq0iJCSk0gKr61TUIxBSnOwZOPvgKMCGinoCFdKnSs+vzWzIWYD3GiQT8leiHQfKP1jIgHIKGBB8IcqI9TNKIYQQovL51aH40Ucf5cABz1+GkZGRrF69mk2bNnl8/VSjVDAq5km0/VbI+wytM1GWJAgZgDIiqz6Awp/dFrz0TEP+RggrexFMZUlAh42FnDkeXnUmbipyis+haV0A+V+AfS8YUWDr43H+HSGEEKIi/Epu6tWrR7163pseIiMj6dmz50kHFUiUtRlE3OK1garq+Nqpu6wRXcepyHvQKhSy3wDyj79gaYKKno4KOtOn4+i8z9HpD4BOw7nulQn8Gx0+FhVxp8+dnIUQQghv/F4V3DRN5s2bx5IlS9i9ezdKKVq0aMHQoUO5/vrra3yxLFHEejrO5KGcJCfIt9W3lTJQkZPR4eMh/0vQWWBtCUHn+fw71/lfOxfddCmOzQ7Zb6C1iYq616djCSGEEN741edGa80VV1zBDTfcwP79+znrrLNo3749e/bsYezYsdKhuBZRlvoQcjmeVwXHuT3oHFRQO/+Oa0Q6l3EIG4EK7uJXMqszn8fZ78hLP6CceWjHYb/iEUIIIU7kV83NvHnz+Oqrr1i7dq3b5HsAX3zxBYMHD+btt992m1VY1BwV9SDa/jvYd+CeUBjO+W6in6u2WLR9H9h/La8U5K2E8OurJSYhhBCBya+am3fffZf77ruvVGIDcMkll3DvvffyzjvvVFpw4uQoIwYVuxgVeQ9YmgMhYDRCRUxE1V+Osjbx6Thaa3TBz+i8z9D536K1b/103A+S7kMhS1FfHCGEEKLi/Kq5+eWXX3j6ae8LPvbv358XXnjhpIMSlUcZ4RA+ARU+oUL76/xv0RmPgGPn8Y1GA4i82znTsa+MRMpskgLADhbfEi4hhBDCG79qbo4dO0Z8fLzX1+Pj40lNrUOLQYoy6YIf0KnjwLHL/QXzMDr9HnTOYp+PpSxxYLsE732AABUGIf0qFqwQQghRxK/kxuFwYLV6r+yxWCzY7RVoshC1ks54AmdNi+faFp35JFrne3zNExV5jzOBKZXgODslq6iHUSq0QrEKIYQQxfxqltJaM3bsWGw2m8fX8/N9/6ITtZu2bwf71nIKZTon4wvp79MxlbUFxH3gTJoKvsKVNFlaoiKnVvmszUIIIU4NfiU3o0ePLnfor4yUChCOQz4UMnwsd5yytkDFvo52pBStUh4FllYyP5IQQohK4/dQcHGKMBr4UMgEo36FDq8s8WDx3n9LCCGEqCi/kpvx48eXW0YpxZtvvlnhgEQtYT0NrG3B/hdeRzipcAi5pFrDEkIIIcrjd81Ns2bNOOecc9C6rCG9oq7QjiPonIWQ9xGYGWBtjgobASGDUJH3OUdLOUuW2ldF3u2xA7DO/xqd/SYUfOfcL6gzKnwcShIhIYQQ1cCv5ObWW2/l3XffZdeuXYwbN47rrruO2NjYqopNVDFt344+dh2YaTgXsAQKf0Gnb4Hcj1D1ZqPqvY7OeMjZP6aYikFF3okKu6b0MbPfRGc+hdu6VoU/oNO+Q4ffhuHH6uFCCCFERSjtZxVMfn4+S5YsYc6cOXzzzTcMGDCACRMmcNlll9WJTqEZGRlER0eTnp5OVFRUTYdTY7TW6CP9wLEXz4trGhB+I0bknWhtQuFPRR2A60Fwd5QKLn3Mwq3oo2WvL6bqvY2ydaucixBCCHHK8Of72+/kpqQ9e/Ywb9483n77bex2O1u3biUiIqKih6sWktw46fxv0Kljyy6kIlENv0Gp40P/tZmNznkLst8GnQpYwNoKIu+E3M8hbyneVyK3gO1SjHovVdJVCCGEOFX48/3tV7PUiQzDQCmF1hqHw9sXmqiVCjfh1nTkic4E+y4oWjlcm2noo8PAsadEITvY/4TUm0BFlX08HFD488nHDmidB7kfoXMXg30fGJFg6wURUzCM8Eo5hxBCiLrJrxmKwdks9e6779KnTx/atGnDr7/+yksvvcTevXtrfa2NKKmMZRC8lNPpj56Q2JxAZ5R/OBXk43nLOI2Zij46DJ3xgDNZ0secceW8BYfOxcz54KTPIYQQou7yq+bmtttuY9GiRSQlJTF+/Hjeffdd6tev2DwnooYF9wBmlF3GqA/WFgBox1HI/+wkT2oBW++TPAbo9PuKhqh74oCM+9BGJCqk70mfSwghRN3jV58bwzBo2rQp55xzTpmdh5csWVIpwVUF6XPjpLVGHxsGhVvx1pSkIu5GRdzoLJ+/AZ1a/jxHRXtSeui4AoJQ9T9BWZtVMGrQ9n3oI709HP8ERiKqwTqU8rtyUgghRC1UZX1ufFl+QdQNSimIeQl97PqipqbihKSoH07IYAifUGIPX5uxAMKAnKKfddGxbah6s04qsQGco7bKS2wAzINQ+CsEdzi58wkhhKhzZPmFU5iyJED9jyD3E3Tex875biwtnPPXBHdzT2SDzgaCgMKyD2ppArFLUXnL0AUbQWtU8LkQNgRlVPOcSOax6j2fEEKIWuGkRkuJuk+pUAgbigobWnY5Ixwddh3kzC27XPiNKEs0hI9BhY+pzFCdgjr7XFRnz0NbT8ewJlR+HEIIIWot6ZAgfKYi74KgLt4LhAyC0Guc/XnMDLSZXfkxWJMg+GLfChduhCO9MPN/qPQ4hBBC1F6S3AifKRWEip0P0c+D5TQg2Pmwng7RL0HUk5AzH33kEvShc9GHzsE8Ohydt6Zy44h5EoxGPpY2IXUcWss8TEIIcao4qRmK6yIZLVU1tHag026H/OJEpvi2MgATFXkPKvyGSjxfHjrzGch5H8gvf4fI+zDCx1ba+YUQQlQvf76/peZGVI7c5ZC/GmdSUzJfdi7IqTOfRtt3VtrplArBiHoQomf6tkPe6ko7txBCiNpNkhtRKXTOfMq+nSzonEWVf2Lla8XjKVVBKYQQpzRJbkTlsP9NcS2NZw7nGlSVLcjHFcZtPnZCFkIIUedJciMqhwoprwCosEo/rWGJgKCu5ZSyVs2wdCGEELWSJDeicoT0pexZjDXK1qdqzl1vNihva5wpiHkZpYKr5txCCCFqHUluRKVQ4eNwJjeeluewOIduh15eJec2jFBo8CWEjQcVjfO2DoLgCyDuU4yQXlVyXiGEELWTzFAcwHThb+jsBVD4I84VuXuiwq49+fWdPFDW06Dea+i0SaCzOZ7o2MHSBFXvTVS5TVcVZxhBEHWv8yGEEOKUJslNgNLZb6EzH8e1ECZAzl50zjsQ8xIqpPI72Crb+dBgA+R9jC78BQhC2S4EWy+UkltNCCFE9ZBJ/AKQLvgRfWyUl1cVEIRqsMa5cKYQQghRB8gkfqc4nT0P7517NWBH57xXfQEJIYQQ1UjaCuo47TgA9u2gQiGog3NUUMF3uJqiPDKLygghhBCBR5KbOko79qPTH4GCr3DNvquiIeKWmgxLCCGEqHGS3NRB2pGCPjoMzFTclhXQ6ejMp8DSHBxZeK+9MSC4vInvhBBCiLpJkps6SGe/WpTYeEleHLvL2FsBVlTYNZUfmBBCCFELSIfiOkZrO+Qsoew+NRbnBHbFP5fcjhUV86KMlBJCCBGwpOamrtFZQG755YwGqLil6Oz5RZP4WUtM4te0qqMUQgghaowkN3WNCsP5a7OXXc4Shwpqj4p5sjqiEkIIIWoNSW7qGKWC0SEDIG8F3pumHKiQKz2+sveP/Wz86Efyc/JpcVZTul9xLtYgz7eBNtMgbzWYx8DSGEJ6l1pCQZtZzteNaJQRXfELE0IIISqJJDd1kIq4DZ2/GnQ+pRMcBSEDUUFt3bbmZuXy1OiX+HrZ9xgWA2UoHIUOYhpGc/+7U+h48ZmuslpryH4JnfUqzhoiw3mejAiIegAVejXavgedNRPyVhbFoNC2i1ERt6OCzqjKyxdCCCHKJB2K6yBlbYGKfcc55NuNFUJHoaKnu23VWvPo0OfY+PGPAJgOE0ehMylKP5LBtP6Ps33LruM7ZL+CznoRKMQ51LwogdJZ6PR7MbPnoo9eXSKxwVku/0v00eHogs2Ve8FCCCGEH2RtqTpMaw2Fm8D+N6gQsF2EMmJLldu28U8mn/+A1+NYrAbnX9WFB9+7E21mog/1APK9lFZAMM4aHU/NYgZYklD1P0cp5f9FCSGEEB748/0tzVJ1mFIKgjs7H2VYt+hrLFYLDrvnPjoOu8mGJd9TWFCI1bEO74kNOGtyynrdBMce5wit4PPKuwQhhBCi0kmz1CkgOz2H8iroTIdJfk4BmGk4a2dOkn1X+WWEEEKIKiDJzSmgUavyJ+yLiAknLCoULEm4LelQUSr85I8hhBBCVIAkN6eAvuMuLrPmxrAYXH5jbwzDANuFYMThvfZG4XCU15ppA9tFFQ1XCCGEOCmS3AQQXfgXOmcROmcx2r7Xtb1BkzgmPHGt88kJOYthMWjUKp4R9w52vqysqKj/4LEwBkeTw5n3VBMAfvgiknuvacmAZmcxsPlZTBvZgh/WRULYOJQRWfkXKIQQQvhAOhQHAO1IRqdNLVpmoZhC2y5FRU9HGdFcc8+VxDWqx4LHPmD/3wcBCAoJos91FzFh+rVE1os4vmfIpVBvDjrzGbBvO37I4G4sXdCRD1/5ht9/bMWv30ZgWDSmw5kEbdkQyaYvo7hsTDB3z62OKxdCCCFKk6HgVaCwoJDP563n41c/5+COFMKjw7j0uou4clI/6jcqPVT7ZGgzHX1kMJjJlB6abQFrO1TceygV7CyvNfv/Pkh+bgEJLRoSHhVW9vHtu5wrkFsSUZZEhsZPIP1wRrlxvfjtE7Tr0rpiFyWEEEKcwJ/v71rRLDVr1iyaN29OSEgIXbt25fvvv/dadt68eSil3B4hISFey1e3/Nx8/u+yx5h562x2/ryHnMxcDv9zlPefWc5NZ9/Jrt/2ln8Qf+S8B+YBPM854wD7VnTOB+isWZjHRqNTx9K40XJanhlRbmIDRRMGBndCWRIByErNKn8fQ7P8hbfQuqyVy4UQQoiqUePJzXvvvcfUqVN5+OGH2bRpEx06dKBv374cOnTI6z5RUVEcPHjQ9dizZ081Rly2tx56j60b/gSNWyde02GSnZ7DI1c/g2malXY+nfshZY9uUpD5qHPG4YJvoWAjOuu/6MMXo/M3+H2++o3jyo/JVGzb+Av6SG904bZyywshhBCVqcaTm+eff54bb7yRcePGccYZZ/Dqq68SFhbGnDlzvO6jlCIhIcH1iI+Pr8aIvcvPzWfF7NVekxfTYXJgezKb1/5aeSc1U8spoIseJWMygQJ06q1oxwG/Tjfw5j5eX4upX0iL03OJqV9IULAJjmT0sevRjmS/ziGEEEKcjBpNbgoKCvjpp5/o3bu3a5thGPTu3ZuNGzd63S8rK4tmzZqRlJTElVdeydatW6sj3HL989dBcjPzyixjsRr8/u3flXdSSyIVm3RPA4XonHf92mvQbX2JjItw29ayfS7/WbCTRVu28erav1i0ZRsPvbkbcIDOQefMLz8abUfnrUNnvYbOfhvt2O9XXEIIIUSxGk1ujhw5gsPhKFXzEh8fT3Ky57/227Zty5w5c1i+fDkLFizANE169OjBP//847F8fn4+GRkZbo+qYljKfzu1BovVUmnnVGHXUPFJ90zIeQ8z8zl04S8+7REeFcbTqx8qulZN2445zPzobzpdlIkqunxlQOMWBUV7OCB3eZnH1PnfoQ/3QqfdjM6aic58HH34Esy0e9C67GRRCCGEOFGNN0v5q3v37owePZqOHTvSs2dPlixZQoMGDXjttdc8lp8+fTrR0dGuR1JSUpXF1rRdY+olxJRZxnSYdOpzduWdNPRqsLanwr9KnQbZb6CPDsU8NgZtlp/8ndaxBdM/ux9bqGbKs/uwBmssJ0wq4LZmpnm8E3JBfqHbGle6cBs6dQKYR4q2OHA1peV9hE67u2LXJYQQ4pRVo8lN/fr1sVgspKSkuG1PSUkhIaH8JQMAgoKCOOecc9i+fbvH16dNm0Z6errrsW/fvpOO2xuL1cKwO6/w+rphNWh/fjvantuq0s6pVAgq9m0IuQr3aYtCwNIS8KWWqCjZKPgenXpbuetQAZxzaXsWbtpKyzPysJRzCodp5aOZ9zP+9FsYEDqK/rYR/N9l/2bTml/QWS8Xnd9TPyUT8ldJp2QhhBB+qdHkJjg4mM6dO7N27VrXNtM0Wbt2Ld27d/fpGA6Hg19//ZXExESPr9tsNqKiotweVWnIHQPof8OlgLN/DYAynNUYSW0a8dDiqZV+TmVEYsRMRzXcgKo3B1VvHqrhN6joJ/E8RNwbBxR+D4WbfShrEBHtW3PYT+tMXrzzT/75y1k7ozVsWbeV/7vsMVa8vqmcGC3ovE98Oo8QQggBtWCG4qlTpzJmzBjOPfdcunTpwsyZM8nOzmbcuHEAjB49msaNGzN9+nQA/v3vf9OtWzdOO+000tLSeOaZZ9izZw833HBDTV6Gi2EY3PHazVw2phefvr6Gf/46SGRsBJeOuoALhnQj2BZUdSdXMRB8Pqq4TSi4I0Tchc56FmcNji+JjhWdtxIV3KnsUymFtp4N9p/LPWKH87MJCTXJyzlexWM6nDU1L93XiHMvTichqdDbmYpWKhdCCCF8U+PJzTXXXMPhw4d56KGHSE5OpmPHjqxcudLVyXjv3r3OBR2LpKamcuONN5KcnEy9evXo3Lkz33zzDWeccUZNXUIpSinOPL8dZ57frsrPpbUdct9HZ88Hxw4gCG27BBV+Ayq4AyriJgg6E53zFhR8BzrHh4Nmu340zTzIeRvy14POA+tpqNCrILgbRN4BqWPLPVywTdNrcBorF5aeI0ebiruHtOLZJTuIb+IpwTFRlqrrJyWEECLwyPILdZjWdnTaRMhfh3M4ePGv0gJoVMxMVEi/EuUd6ENdQGeWfWBbf4x6/8XMXgCZTwD20mWCL0LVewmdOhkK1pV5uMICxUdz6jP73428XQmx8XZmrfqL2IYezkWwc/mHsBEQOgJlhJcdvxBCiIBT55ZfEBWU846zRgVwHw7uHHGk0+5Cl5zkL3cZ6PKXTyD/M8yjIyDz33hMbAAK/odOfxRcK4h7pwxNbo77rdaoRT6jpqRwy6P7ueqGI2gTlrzWwMsRCsCxB535NPrYCJ9GdAkhhDh11XizlKgYrTU65+2ySgAFzkn6wm+Gwp/QGffh85w4hZvKiwDylqIip6KDOkDhL16PbbXC/1ZEA2CxaiY/tY++I1Nx2ME0FRaL5saHDvDF0npofcIw8hPPad+OzngCFfOkb9chhBDilCM1N3VWHjj2UW6ykjUTfagzOu3/qNhMxmUxoeAbVMS/vJbQGjZ+Hsnev20MHHOE9375jb4jnbVJFisEBWsMi/PnPsNSy0hsijmc899IJ2MhhBBeSHJTZ1nwOVnROWDux/NcMidJF6JsF0HUdDxVBCoFSmkefH0Pkx7fT0R0ZcRgh8I/K+E4QgghApE0S1Uj077X2UG3YDNggrUdRP4fRvCZfh9LqWB0cHfnCCi/5rKpZEFnonUB5CzEW/+cbn2yymluqgAlt64QQgjPpOammpg5C+FIb8j/AnQq6HQo/A6OXY2Z8XSFjqnCb6JKamNwNid5G0dnOmDX7yHk5bcES1N0xqNgL2dtqkpNbKIgyP+EUAghxKlBkptqYBb+DRmPeC+Q8wZm3ud+H1fZeqCiHsP5a6y87KE4qVEKTNPza4tfbsChvfvRh7tD7gflx1pp0SlU+BiUslXaEYUQQgQWSW6qQ+Z0H8o8X6FDa/su3Oe48c2h/UEcTbZ6raH57z2NeXR8cw4f8DCjsoJ7XtxHwyYFoHP9Prd/itOiotmNQ66A8Nuq8HxCCCHqOum4UB0KfFirybHL78Oa6Q9C7nt+9WdxmCE8NKYlP651Ji3tOmUzafpBmrfNJijYWWbvX8F89k59QDPk5hTiEgqxFt0pzg7Czp9DQn1LahxFXXFOXDm8bBYI6gxGHOhjYGmCCh0GQeccX15CCCGE8ECSm2pR+f1iTPMY5L4H+NdRd8FzDdi03uaK6Y9N4fyr32loNPe+tJeLr0qjWdsCzrskg8x0C2d2zT3pWN+f1YBrJh3GNMHwqa7QAsqGin4UZa28FdSFEEKcGqRZqjpYm5VfRsX6d8zMF8storWz1qS45uR/K09n0QtxrkUrS5ZDw4vTGlOQ58yUpr2yh0Gjj2D3tp6lj9KOWpj/XCJPTmqKw64wHeBwHI8pO1NRWHDCTpbmqNh3JLERQghRIVJzUx0ipkLaTWWXCR8LgDbTwb4LVDBY26KUxXN5x55yT6sU/PpdOCn/BNO8bS7/mRDsfQgUiuwMK9+siqbXlWmER5pcOjTNe3EfbfshHIdd8eXyemzZEEHfEamcdlYOhfkG362J4puVUYSGmzz24fmc0bUpWE+TpichhBAnRZKbamCE9MIMGQh5KzwXCDoHFTYMM+3/IO9jXPPFGA2dSyeEXVf6y97wraanQ49slHKu8v3SZ38x54lENn0V6bGsxaJJ2RuM87bQKGWilL/ZTShwvCnLGnS8lij9aBDvz2pYao/MNIOU5G60D7vAz3MJIYQQpUmzVDUxYp6HyIedCUsxFQ3hE3GEzcKeMhyd9xFuE+GZh9CZj6Gzni19wIiyRwwVj4IqmRO1ap/L4+/spHu/dI/7OExFVJPrIHQYhAyE8Mmg6vlxlaWdd0kWk5/ZR5CtjH5HCs7o3uakziOEEEIUk5qbamSEXwvh17qeZxzNZMGDH1AvYhhDb92PtxYosl9Hhw5BWVseP5a1JWbQuVD4Y6niJeepcTu/xTlvzZRn9vH9migcdvcCVquFC4aNwog+vpS8tnVBH7sO3ztFu3dAVgr6jTxGTJydR8c358QZbwyLQdfLO5HQvHSNjhBCCFERUnNTQ9KPZPCvbtNYPusz+o5IxuItsQHAgvY0UV69tyHoPEyzqPNw0SoMJYdrn8gwICbOQZfeGaVeG373lUTXj3LbpoLPheCerucl++AUdwrOz1Nl9s0xDOjRL4O2nXKON3Mp56NJm0SmvnGL952FEEIIP0lyU0PmPrCI5N2HsVgcxNQvb20oE+z/lNpqGFaMuHcwGq4j5XBfdm4N8+ncDgckNi3AsBigwBpsZdR9VzPm39e4ymit0fbtmFkvQ8E6flofwb8nNGPrD2GYprMGaOsP4axbFo01SJc7HF1rmPrsPlqdmU9Mg2Band2cif8dz0vfTSemQbRPcQshhBC+kGapGpCblcvqt9djOkxMhyI/V2Erc0I8CxjeEwDD2pjEtsNIaLjKp/MbBpzT08Lvv7QkKy2HRi3jaX5mUxx2B0awgc7fgM58Eux/ufaJjbdz5GAQdw5u7ap90VoxZ8Pv5dQ6OSkFzdsVMmt1JiqsP4SNRBkn159HCCGE8ERqbmrAob1HKMgrnkBG8cWSetg9L6hdxI4KHVTmMXX2XFxLFJTDdMBTt0Xx1w/b2ffHAX5YuYUnRs3klnPuJuPgcnTqDWD/222fpq3zeHbJDtqek43WCq2dVTXhUf6sSG6CeQCd9QL6yJVoxwE/9hVCCCF8I8lNDQiNCHF7/v7LDSnMN1x9WNwZENwdgs5z26rNbHTeOnTeSrR9NxT8BJSfaGgNi16MJyvd6uqjY5rOmpgDOw7gSH0Q51pR7jVJFitYgjQTH9/vtn3f9hAvcZfFBPMwOu1Of3cUQgghyiXJTQ1okFSfVh2aoQxn7ceBXTbuGdqKQ/udizs57M7aFa0BWx9UzMuueW60dmBmzkQf7oFOuxmddjv6yGXAidP8lqY1ZKZZmP9sA4+vd+yRTnRsHt4WwrRYoG3HXJq2znNtW/F2nJ9rRhVzQOFP6MK/yi8qhBBC+EGSmxqglOL6h4ejzeNJxF8/hzGuRzumjWjJvKca8fmH3TEarMGo9yLKCHeV0xkPQ/bLRatxl1T+UG2lIKqeg6TTPK+pEJ9U4NOMxPFJxxOprz6KYePnkZgVXT6rcEsFdxRCCCE8k+Smhpw/uAuTX7kJa5AFZSisQRYMi4VNX0Wyd08/Lp7wGsra1G0fXfgX5L5/0ueOque5HSkj1erTIpwJTfM575IMGjQqAAX/uak5e/+yVTAa6dMuhBCicsk3SzXQZhbkfwU6G6zNIehclFIMvLkPFw3txuq3v2T/3wcJiwql5/AetO7U0vNxcpfi7DTsTyfe0g4fCPa4/fu1keRmK0LDPVffFC+wOekJZ0dg04Q/N4dhGCbN2+VXIBIFtm4V2E8IIYTwTpKbKqS1ic56EbLfAEp8+VuaQfRTqOBORMVFMuSOgb4d0DyEt/4wvko9bOHQgSC3bYahuWzEMQbfcISQMO/HV0UT7x3fD07vnFPBSAywXYayNKrg/kIIIYRn0ixVhXTmM5A9C7fEBsCxD31sNLpwm38HNOpz4vIF/oqIcnBW12yU0iilMQzNtFf2MOWZf2jWJs+nZqmTU3TLBZ2Nin6iqk8mhBDiFCTJTRXRjmTImePlVRNwoDNn+nVMFXolZTVJaU25HXuDbPD4wp1MfGI/zdrkcfnoo1w4MB2lnDUxVUOBpRUEdQDbJaiYWajYhSgjoqpOKIQQ4hQmzVJVJfdjnLUs3pp5HFDwJdpM9XmmXhV0BjpkMOQtL3Xc4lFO9kIICnY+95asBNs0g8YcZdCYoz6dt+KK+gcFdQJLC6AAFXQ6BHdGKbn1hBBCVA35hqki2jyK88u9rKoUDWYalJPcaG2H/LXo3CVgTwZsQJ5bmeLmJMMC+3cGk5NloWHjAh/WraoCRiOwJIIRB4VbofAn15BvnfcxZD7v7HMU6mNfIyGEEMIPktxUgbycfHZtyqJNGzuqzKYew5kAlEGbWejUG50JAgaekqWCPMWqRbF8Mj+OlH+CiYx2kJerGD7xEENuPuK1H402gTJWEK8oFXErhA5FHxkEZnLR1pJJViE6/S6wJDhXHRdCCCEqkSQ3leyHlZt5fORMrNZ0Fm7SWL0mNxbnaCEjypnAFHzvbMoq+BpnU05HVPhodO4KKNxctE/pxCY32+D/hrdk39824pMKiIyxk7IvGKXgg1ca0v2yDBq3LD17sdaAgqMpVuLi7ZWb4AR3gfz14NheRiGFznoVoh4GIxxlxFZiAEIIIU5lSmtf5qQNHBkZGURHR5Oenk5UVFSlHnv75l38q9s0HA4TbWpG/CuFcdOSPZS0gAqF6Och90PI/5zSfXN8m89mzuMJNGmVz8VXpxEU7DzGjq0hzH8ugW8/j6JJy3xe+PRvwiJKJ0YOB2xcGcX5l2dUUnJjgeAeGLFvYqbfB7lLfboGwDn3T8QklK1HZQQihBAiwPjz/S2jpSrRoqeXobV2Lauw6MWGvHRfY9KOnLBad1AHiHoM0iZD/mo8dzouPynIzlIMHHuUS4amuhIbgBbt8nhkzm76jjjGvu0hDDn9TJ6alMTBPe6T91ksYJqq8mptLC1QMc84f9be16jyqHATOnWcs6ZKCCGEOAlSc1NJTNPk8tBROApLJyUWq+aMc7OJiNG0OKs9Yx65DDKfBnM/vqwJ5c2xQ1aiYu1YPTQuag2FBYqRHc8gK92KYdGERTiY8dF2mrbOd5Upa1SV32JmYYT0cR476zV01gz8uz4FKgTV4Bu39bSEEEIIf76/pc9NJbEX2D0mNgAOu+LXbyNQhiY4+GdI/7hSzhlT3+41MVEKrEGaS65O4+CeICbcf5CmrfNLdXA+mcRG65KdkQ2UY+/xF0OHQNZ/8S+50c4FQfM+gbDhFQ9MCCHEKU2apSpJkC2I+o3L7hSrgKTTKrIGk2flJSYOu6L30KM8Nn83zdvlY7E69ymuqzuZ5ijThJULY5n3VAL2QgDt7EdURFnqo6L/g/OqLV6O4okVbd9Z8cCEEEKc8qTmppIopbjitn7MffBdV5+bE2kNfUce8+u4W7+PZPncBmz93obFqunaO5Mrxh3xKUkyDE2bjnlF8ZWM1ffzu9fOHHc0OYi50xPJSLWw9y8bD7y+D4vtErcyKvRqMBqjs2dDwQZ864OjpUlKCCHESZHkphJdNflyvl72PX9v2onpON4cowyNNhU3PXyAho0LS+2ntXPOGeOECo53X2jIvCcTsVgVDrszMVjxdjCfzI/jgdm7OffiDCwWsHj5LVqs3pMTX5iOov2N47VEWoPDDveOaEHbc3Lo2juDIJvJvl1taJ4QVuoYytYVZeuK1gWgC9DHxoH9V7w3VznA1q9iAQshhBBIh+JKP35udh4L//MhK15bTVZaNgCtzsxl5OQULhyQ7n2/LIUtVKMMZzKy+X+R3HtNS8+FlcZq1bzz0zai45z9fE5MYBwOZ3ISFOxhfx847O6zHpdkmmAvUASHaGeTlHKOvFLKhop5FhXS1+txdf7/0Kk34LkWxwDbpRj1ZlUsaCGEEAHLn+9vSW6qSGFBIUcPpGItfJPYyLllltUaFjzfkOx0C63PziE2wc68p9vw12aN6fD86zm9czb3v7abBo3sx49jFo1+ssAXS2I475IMIqJNv5uhdv0ewt6/bPQa7D0Z814jpCD2fYzgDt73zV2GTn8QKMBZeehcSBRbb1T0syijdA2QEEKIU5skN2Wo7OTGdDgg86GixSyLZgI26kPkQ6jgDujDVwDekwQo6uCrIT3VwrRrWrFzW2iZ5U/vnM0zH+7AYtFutSraBFPDuzMbMv/5BB5fsJPOvbJ8Tm60Caveq8eMO5vywOzddO+X7nGYebksrTEafFLOubIg72O0fReocFRIP1RQ2wqcTAghxKlAhoJXE9PhgCMXgD5hdW3zCKTfjjZaAVnlHkcpQEFktIMn3t3JmG6nk59btNGDSdP/wTghsYGivjEarrvzEL2HpfHDugjA9343poa50xMBaNikoGKJDYDjb0xHBobF+82njAgIG+nlCoUQQoiKk6HgJyPtptKJTUnmDnxefgBnB+CY+nZ6DU7FmdiUrlRrcXoup52Zh8XL6OriJCahaQGDxhxD+bEwpsVyfKh66mErDns5O5Qlf91J7CyEEEJUnCQ3J6NwQ6UfUptwbq/Momels5L4pNKLYFamq248TLM2eaxZHIvFCvt3BrP4lQYseC6e/62IprDAt0xJkVOlcQohhBDeSLNUBZmOLPxaO8lXyrlcgzdZab5PiFeyOcrXpqlufTLo0TeD/30SzSfzY/liST22/RCGMhQOuyI61s7/vbSHzr3KaW6zJPkcpxBCCFGZpOamwvyZddcPGv7YfHy0kGHRPP7udho2zqflGTmc1T2L8rqAe5qB2OemKauz786FA9PpP+oYzy3dwatf/EWTls7mqoxUCw+NacGfW8ro9KwaQnB3304ohBBCVDJJbirIsITi29unfCznnD/GYVesete5jIPFojm/fzodz8/mP+/sIjjEpNtlGeUmKpWxyrdSx+e3adIyn2eXbCcuoRCtFaapWDgz3tueqJgnUKqKkj8hhBCiHJLcnIzg3uWXiXkVrKedsNGZfZTssGsvdCY3T9zajPSjQShDowzNNZMOYbVC09b5NG2Tz7erok+uo28FWKwQHuXgyvGHATAdiu9WR5GXc8LtY22Hip2Psl1UvQEKIYQQJUhycxKM2JfA0th7gbBbMUIuRsV9jIpdjIp6AhX9PF99+RKP3diMbT+Gk5ttkJlm4Ysl9fhXvzZ8s9I5fDoswsEj83bT+uxcwNnR+NIhqRgWXW6zVFWwWKHP8FTXc60VudnFt4+CyIcx6n+ECu5S/cEJIYQQJUiH4pNkNFiHmTEDct4CcnD2CE6CqMcxbF0B56KaBHeA4A7s/GUP06+7G9MRzYZPYrwet1ufjBKjppxNRDH17fy+KRxr0MnH7bA714tSfqS3EdHHh7WHhjuIjLEDCsLGYYRfe/JBCSGEEJVAam4qgRF1B0bCFoyEvzAS/sRosMaV2JSktebfQx4uWlSz7I4xaz+MZfmb9V3PTRMO7rax+asIDuwOwvR9+pxSUvZZeWlaY+x253F9YZqQss+5UJVh0fQdeQxrkHP7khc2MLbNv3h2/Cz++mlHxQMTQgghKoEkN9Xol69+Yv+ObMpLbIq9/WwCBXnOsoYBny2M5ZKrjpHQtBBl4HPz1O4/bbz5eAJrP4ghJ9MgPsnO5Gf2uzoM233ow6MU/PpdOIZF07BxASMnpxTFpVm/1GT/9mTWLPiKiefdy5KZZS+9IIQQQlQlSW6q0Q8fve1X+ewMC5v+F4HWcDTZisWiufvFf5zNST7MPOyww3N3NOHmi9sREe3g0qFphEYcr6qxWJx9efJyDL5dHcGfW0LLTJguv/YYd83Yy39XbCcmzoHdDn9sCuXPoqHrDrvz2K9MnccvX23z61qFEEKIyiLJTTXRZibh4Xv93i/jmBWlYO6TCdz7sn/7v/lEIqvfj6VRi3yumeQc6XRiQmSxQmiYyd6/Qpn3ZAJ//xLiMcEp3u/SoWlEx9nR2tlM9diNzTmxJspiNaT2RgghRI2R5KaKaUcKZtrd6ENdGXDtHwTZfOzkUiSxeQG52YouvdMJtmmf57DJTLPw0Zz6aK3oO+JYmcPHLVYYeuthpi/aRZsOeeWeIzvD4L/3NObW3m04cjC41OsOu8mWdb/5FqgQQghRySS5qULakYI+OhTyVgB2IqJNBo8/glLld5ZRStOoeT7tz8smJExz0cBMvybn++nLSAoLnL/e+KSCcrv5GH7cCTu3hfDZO/XJz/Vtoj6tNbu37mPbt3+Reijd9xMJIYQQFSBDwauQzpwJ5hFKrgw+btpBMtMsrHw3DsPQJUYrHc8+DENjWDRTnt3nV9JRUn7u8eNlplnQJpW2YkRUrKMods8Zk8Vq0KFXewDWLfqaeQ8t4sD2ZACUoTh/cBdufX4MDZs2qJyAhBBCiBKk5qaKaDMb8j6iZGIDziagO577h9e//INhEw/RtU8GDZu4r/R9+rnZPPPhDjr0yHY/ph+T97U4Pc/189oP6pGTZam0yf8at8zHEqS91kA57CZXTxnA8lkreWLUTA7sSHa9pk3Nxo9+YFLXaRzad6RyAhJCCCFKqBXJzaxZs2jevDkhISF07dqV77//vszyixcvpl27doSEhHDWWWfx6aefVlOkfjBTgEKvLzdtnc/4acn8+63dzP/+D+Z/v43/rvibt77bxvPLdnDGuTlu5X1d1btY67NzSUjKBzR/bApnWPszubbz6bw/qwGFBccPVJGEJygIHl+wE4vVWcNUzGJ13k43PzuaFmc25dU73yo6ifv+DrtJ+pFM3nroPf9PLoQQQpSjxpOb9957j6lTp/Lwww+zadMmOnToQN++fTl06JDH8t988w0jR45kwoQJbN68mcGDBzN48GB++62WdWBVkX4Vb9ikkHadckhIKp0Q+ZvYAHw8L470Y1YaNC7AFups+zqaHMScJxJ5aHRz8vPKOUCJc3vS4fxsXv/yT6664QhNWhWQ2LIhl4y6kJe+m87QqYP4YuEGHIXeZxo0HSZfvLuB3Kxc/y5MCCGEKIfSuiZWKjqua9eunHfeebz00ksAmKZJUlIS//rXv7j33ntLlb/mmmvIzs5mxYoVrm3dunWjY8eOvPrqq+WeLyMjg+joaNLT04mKiqq8C/HAcWQEOn+Ta7K86nI0xcofm8LoflkGhgUKCxTrlsaw4LkEUv4JBjQTHjjIkJsPu+bM8cQ0na/ZC+G71VG8+0JD0o4EEZ9UQP9Rx+g1OJOgYFD1XkHZerrt++rUeSyftRJ7GQkOwLy/XqDxaYmVdOVCCCEClT/f3zXaobigoICffvqJadOmubYZhkHv3r3ZuHGjx302btzI1KlT3bb17duXZcuWVWWoPvlx5SesfXsRuZn51EuI4aKhF3DWmZswzdKjkSpSG+Or6Fg7XftkuJKqoGDNJUNS6dYng8kDW3NgTzCr3o1l+G2HcTjwmOAUJzbpRy3ccWVrDu4OdrYuacXRlCC2fh/BZ4uCeeLTuwmzdSwVQ2RsJKZZft4cERN+0tcrhBBClFSjzVJHjhzB4XAQHx/vtj0+Pp7k5GSP+yQnJ/tVPj8/n4yMDLdHZcvJTOfeS69m2uXz+GJxLt+tcvDJ3GNMG7SeJyc1JTfL+TYXFjiTmspKbDzVuTkczsUwrSekrVYrhEU5mDT9H9CKf3aE8PcvIVgszlhOPFbxDMhP3NKMlL3BaK1AO4PWRaOkfv/ezuv3/eAxtp7X9ChaQ8szw2LQqfdZRNev2tozIYQQp54a73NT1aZPn050dLTrkZSUVOnneGLYBDatd76VpkNhtxtoU+GwK75cXo+JfVvz9L+S2P5bKFB5NTaejmOxOB+eWK3QuWcW8UUdjf91eRvWL48BIHlPEI/d2IxnpyRx51Wt+O27UHb/aePnbyJxODwHbJomq+auIystu9RrTVonctnYXs4V0U+M21AoBaMfucbXSxVCCCF8VqPJTf369bFYLKSkpLhtT0lJISEhweM+CQkJfpWfNm0a6enprse+ffsqJ/gif/3wLd+vwVmz4ZHm4B4baz+MZev34T6PTqpoTyhf9ktqlQ8otAlP/6sph/4J4tN34tjwSQyr34/lt+8iWPB8Ilu/D6fUUKcTFOYX8tdPOz2+NuXVmxhwc++iZEa5RlNF14/isY/upX2Ptn5enRBCCFG+Gu1zExwcTOfOnVm7di2DBw8GnLUBa9euZdKkSR736d69O2vXrmXKlCmubatXr6Z79+4ey9tsNmw2W2WH7rLmrfnlfP8fT3rSjlh9Sj5SD1uIjnP4XMOTlW7wz44QwqPsJJ1WUG753JzinFahTc2yN+uzenGs63WLRaM1fP5erOcDnMBbnEHBQUx++SauvX8IXy/7gdzMXJq0bUS3gZ2xBsn8kUIIIapGjX/DTJ06lTFjxnDuuefSpUsXZs6cSXZ2NuPGjQNg9OjRNG7cmOnTpwMwefJkevbsyXPPPceAAQNYtGgRP/74I7Nnz66R+PNz8lAG6LIHBXFurwx+XBfFhPu89CXaF8SmryKxFyj+2BTGxMf3ExJuem1iAshItfD6Y4l88WE97IUGkTF23t2yjaBg7xlU6mErv/90vBOvaSo+mR9HXs7xEzkcivbnZvHd2mjKW7fBFhpMm3NblVmmfuM4rpzYr8wyQgghRGWp8eTmmmuu4fDhwzz00EMkJyfTsWNHVq5c6eo0vHfvXowSQ4169OjBwoULeeCBB7jvvvto3bo1y5Yt48wzz6yR+Bu3bo7p+KXMMoahueu/+wiNcJDyTxDxSYWu2o6cLIPn70jif59Ggy7u3Ks4uNfG4+/sJCTMdHXudTic/Wm0dnZOvuvqVuzbHoJZ1CcmM83K8jmxXH3TUa/LNrwzI95V3kmXSGw0oLhi/GEuvz6V2HgHG1fZ2bwhCtND8qYMxeU39iY8Ksyv90wIIYSoSjU+z011q+x5bgpyc7i22SjSj1o99rtRShMSZmILNWncMp+Bo4/S84o0LFZnsnLP0FZs+zGcoGBNzytTaX12LvYCxdoPYziaHET/647RrU8GQcGaPzaF8fFb9WnXKZt/Td/Plx9F8+RtzSiuXWnXKZsH39hN/QTnEuBaHx8JZTqcic07M+Jxr43Rruex8YUMn3iIwROOkJ1hYFigIN/K3cM6svePfJRSaK0xLAamw+ScS8/iPx/fS3BI6ZXBhRBCiMrkz/e3JDeV4KMXnueVu77G1KpUrYiTc5tSGq0VnXtl8Mic3WzeEMFDo1vS6aJM7p+9m/BIE4cdsjMMxnQ7g7wcw2tH5bv+u5c+w1K5c3Arfvs+gkYt8nn5878IDindlGWasOv3ECb1beO22KUynInXw3N2ERPnoGmbPFfNkL0QgopyloLg6axbGsPnb39JanIaCS0acvkNl3L+4C5YrNU8Q6EQQohTUp2ZxC9QJJ3Zh9O7fIHNVsiP6yOd88EoXZTblFzHyfnzT+sjWfjfhhzYZaPFGbn8++1dWCwapcAaBOuX13N2+vWS2ChDs3R2fS6+KpW+I4/x2/cRDL35MEE2z310DANatc/jvEsz+G51NKBRBoSEOhObcy5wH8qtVHFiY4CKwlZvIP0n2Og/4dJKeb+EEEKIqiTJzUk69M8RpvV7nLtmHuKiK9LIzzH4dk0UT09qVqKUpn2XbC69Oo3oODuHDwSxZnE9AK6+8TDK0G5LNGz7MRxDgbcJfrWp2LE1DG0q4pOco6Muviq11MR9JTkccPm1R8k4ZsVi1XS5JJO+o44SHevwOIOyUxCq3iyUqrrRZkIIIURlk+TmJD08+GlCw/O56Io0rFawRpns+C2U4r4sQTaTB2bvplufTOyFYFic/V+uuvEIj45vxoUD00slJRaLLm+QEgDa1KQettJr8DFCI7zPBuw8JnTtk0m3yzLdtpsO56irkHCTkNCS2ZSC0CGo4PN8eh+EEEKI2iLgZyiuSrt+3cP2Tbto2KTQLUHZv+N4TcekJ/7hvEucCYU1yFlDYg1yvjb0lkOuFbtLOufCrBP67rgzLJozu2YRHAJZ6RamvezbxISe5qMxLM7h4VOvOK30i+ZRn44rhBBC1CaS3JyEz9/6EnB2AC6pQeMCQBEbX0ifYale56o547xcjh2yYp6Q31w0KI2Y+oUYFs/tUqZDMeSmw2z9MYy+I1KBii/pYLfD/l02mrbJOyEOA1RoxQ4qhBBC1CBJbk7C0YPHQEHKPhtHU47PPtzpoiwAOvfMwFJGw59SENvQXioxsYVqnli4k5AwB+7THzt/Dg4x2fl7CBtXRjmbsE6C1QrL58Sxbmksm/8XUeIVByqk70kdWwghhKgJktychNiEehiGIjjEJDzq+HIJXXtncPq5mfQdeazcYxgGOOzHVwsvFpdgRyl1QuLjfFKQp5j/bCL1E+1eF7UsT/G5lr0Zxy/fRGGxajZ8Gl2ihAUd7HlJCyGEEKI2k+TmJPQZ3RPToTmza7ZbZ1yLFWZ+tJOzuuaUewzTAccOWVyzEBf7bGEsOVne5rkpnpHYgmFUrOYm45iFZ6c0Yc5054KjWkNedsn2Mwcqf22Fji2EEELUJEluTkKrDs25bEwvbCFlj1TyRmv4emUU9sLSnXI2fBKNLuewXy6PKbPZqyx3XHkaq9+P44L+GcTULwQNTdvklShhRRduqtjBhRBCiBokyc1Jmvr6LZxx4cAK7asUfP1JDN+vjcJhd38tP9egvPHg+7aHsOaDmFIdkqF0M1fJ7R/Ni+PAbhvdLkvnzhn7mPvNH7Tvms1l15zYjCa3hxBCiLpHvr1OksVqYcR9t+MwunhMJsqiTWjQpICP5tZ3rv9UIkk57axcnzoLz7gziVWLYjFN5/72Quf2zDQL+7a7T76nNfz1cyivP5rIgOuPcv9re7BYwRZqMv3dHcTFl8yw7CjpcyOEEKIOkkn8Kok1djr6iH/LE2igMM9g/04b/7m5GQ+8tsfV92bQmCOsW1qv3GPYCw1m3pXEO8/H071fOqFhJvu2h/DdmigcdkWztrk0b5dHv5HHOOfCLDJSLSz48Xei444v822xcMJwdQtYEsF2sV/XI4QQQtQGktxUEmVNIjcvBpstza1jcPHK3J4YBny3NhKlNN0vy8AadLwpqX2XHK6ZlMJ7L8WjDI02y26iOnwgmI/mNCi1fc+foRzYZeP2J/9Bazi3V1Y5c+IoMGJR9d5AKVkUUwghRN0jzVKVZMPS71j035BS/V+8JRIOB3z9aRRhESZzN/7OZcNLT8Y3bloy017ZQ+uzck8qtmG3HWLjqih2bgspO7FRkajI+1H1V6GsLU/qnEIIIURNkeSmEmiteXPaO3w0rz4HdweX6hx8vJwzqQH45ZsInpnclAaNC0hsWojy8JtQCnpdmcaLn/1Nn2uO+jDsW7v9awsxGTftINfflULLM3JpeUae910xUOFjUeGjUUZEGeWEEEKI2k2apSrBrl/38s9fBwELUwefxsQn9nPh5eluK30X+35NFEtmN+CXjeGAIiTEt17IQ285zLol9YpGQZ1Y/eJcpDMyxs64aQdx2A0iYxx07ZNBWNGCmi3b55dRa6MAC4QO9ykWIYQQojaT5KYSZKZmuX5OPxrEEzc3Jza+kFbtcxg/7SB7/grhs4Vx7N9pI7KeA6u1aNVvrdm7PdinczRvm8/Dc3bzn5uaUZBnoAznIRwORf3EQtp0zKLrpVlcfFUatlB/hm1ZAIWKeR5liffnsoUQQohaSZKbShAVF+n62bBo+gw/xuXXH+Xh0S24a8hpZGdYMQyNaSqOHNQoBXHxhVx1w2EMi7OpytvimiV1uTSThZu2sWZxLH9sDsNi1ZzbK5Me/dL5Y3MY9ww9jRl3NeWcCzMZ8a9DdLzgeNLludbGCqFDUWHXo4Jan/wbIYQQQtQCktxUAovVUvSv5pG5uzjvkkznHDaNCvj7lzAATNdoJ4XWkHo4iHVL6zHr879RquxRVSVFRJsMGneEwTe4b+/QI5uGjQs4tD+Yn7+JYPOGCO6asY/ew1K9HlfFzJDFMYUQQgQc6VBcCSLrhQMw7NZDnHtxJkqBvVCx589QvM0ybDoUO7aGsW5ZDJs3hLlmFDYdHov7JC6h0HVsNMy4K4n0oyfmr0VVROETJbERQggRkCS5qQT14mM4u2dbrpxwBKPoHd3zVwgF+eW9vZqnJjZj4YxEDMNZc3Nov7XcmY4NLzUxqYdLJjIK04RVi0pMBGg0hJArULGLMSInl3dZQgghRJ0kyU0lueGJvsQ2PD4G3JcmpmKNW+S7fs7OtLLirTivw8mdB3d/6nDAth/DSN7rvtyCUhTVHgG2S1EN1mPEPIUK7uB7cEIIIUQdI8lNJWnXpZ3b86Zt8oiIKStDcTrtrBwaNC5wPW/VPo/GLfNIO2rF7mX3komT6XA2Z735n8TS5YDg0HBU1MOomBdRSrpYCSGECHzybVdZjPpgOQ3t2IFCE2zTDB5/hHdmxHuYlwYuGJDGhPsP0qh5QanXOl2UTU6W4siBIOKbHJ/gr7i5qmRyk/JPMDPuasJv35eeeM/hUJw/4mFUWKdKuUQhhBCiLpDkppIopSDiJki/x7Vt5OQU/vw5hB/WxlA80R5A72HHuPu/+0ot1VByxFRYhCYsovCEczj/nTs9gaMpQaTsC3JOBuihDcxi0TQ9oynn9pUmKCGEEKcWaZaqTCFXQuhQ11NlwF8/h4M6ntjYQk1u+89+tMbV+dhVXlFuZ2KAP7eEsWZxPX77PoIxd6cQFKRRSuNMoJwHaHZ6FNNXPojFlwl0hBBCiAAiyU0lUkqhoh4HoxEAi15sQPqRICjRLNWjXzrhkab3uWfK6YhsL4SdW0MIDtHc/9oeRk45xDs/bSMuoQBnAqW4febpvLz5deIS65V9MCGEECIASbNUJVNKQdRD6LRbWf1+HCWbowAaNC7AbgdrBd5503TW2oy6I4U+w1IJj3K2a0XWc5B2JMhV7px+t0iNjRBCiFOWJDdVwdoKgnqRn5tc6qWMY1YsFawvMwxof14O7c/LKbXdGqSxF0LDZg1odFpCxU4ghBBCBABplqpkOuc99JG+UPglLdrlYTkhffz602jsdj8mwSnvfBqOJFvJy3H+Kkf832CMEzvzCCGEEKcQ+RasRLrgB3TGQ4AJmIz5v2QcJyQymWlW3n2hYSWeFFbMqw8oht45gIE396m8YwshhBB1kCQ3lUhnz6HkW9q2Yy59rjlWNJLpuHeej+etZ+IpyDv5GhyHA3JzDF7ZeAk3PzPW2edHCCGEOIVJn5vKlP8/wH3lyzue3UdcfCHL3qhPXk5xJ1/FHz+FkX7UwpGDVk4/N6/Cp7QGwW0zJqDCr6943EIIIUQAUVr7MrNK4MjIyCA6Opr09HSioqIq9dhm8hmA5zUTcrMNfvsunIJ8RYvT8zzOTOwvhx0soedixC086WMJIYQQtZk/399Sc1OZgs6Cwp9x9rlxFxpuct4lmZV6OosVVPjoSj2mEEIIUddJn5tKpMLG4CmxqQyOEq1dpukcJbX1pzZgu6xKzieEEELUVZLcVKaQ/hB6bdGTynlrTQf8/lMoO7eGurYd3BPMrPubEBw/A6XkVyiEEEKUJM1Slah4dmJsPdDZb4P9V8AKwRdD8DkoI7Jo+88+HU9rhd0OL9zbjJ1bbYRFOAiyKTJSDabOvpW257au2gsSQggh6iBJbiqZUgpC+qBCvMw3Yx5FZ/5C8QKXXo4CaJQRTa7l33S7MhWLbTMOu8nZF53BoNv60rRd4yqIXgghhKj7ZLRUNdNmBvrwxaCz8do/J+QKlK0XhFyGUsHVGZ4QQghRK8loqVpMGVFQ70106gTQWRyvwbEAJirq36iwa2owQiGEEKJuk+SmBqjgjtBgNeQuQeevB10IQR1RYSNQ1hY1HZ4QQghRp0lyU0OUEQvhN6DCb6jpUIQQQoiAIuOIhRBCCBFQJLkRQgghRECR5EYIIYQQAUWSGyGEEEIEFEluhBBCCBFQJLkRQgghRECR5EYIIYQQAUWSGyGEEEIEFEluhBBCCBFQJLkRQgghREA55ZZfKF4EPSMjo4YjEUIIIYSvir+3i7/Hy3LKJTeZmZkAJCUl1XAkQgghhPBXZmYm0dHRZZZR2pcUKICYpsmBAweIjIxEKVXT4VSajIwMkpKS2LdvH1FRUTUdTp0j79/Jkffv5Ml7eHLk/Tt5tf091FqTmZlJo0aNMIyye9WccjU3hmHQpEmTmg6jykRFRdXKm7KukPfv5Mj7d/LkPTw58v6dvNr8HpZXY1NMOhQLIYQQIqBIciOEEEKIgCLJTYCw2Ww8/PDD2Gy2mg6lTpL37+TI+3fy5D08OfL+nbxAeg9PuQ7FQgghhAhsUnMjhBBCiIAiyY0QQgghAookN0IIIYQIKJLcCCGEECKgSHJTh8yaNYvmzZsTEhJC165d+f7778ssv3jxYtq1a0dISAhnnXUWn376aTVFWjv58/7NmzcPpZTbIyQkpBqjrV2++uorBg0aRKNGjVBKsWzZsnL3Wb9+PZ06dcJms3Haaacxb968Ko+ztvL3/Vu/fn2p+08pRXJycvUEXMtMnz6d8847j8jISBo2bMjgwYP5888/y91PPgOPq8h7WJc/ByW5qSPee+89pk6dysMPP8ymTZvo0KEDffv25dChQx7Lf/PNN4wcOZIJEyawefNmBg8ezODBg/ntt9+qOfLawd/3D5yzdB48eND12LNnTzVGXLtkZ2fToUMHZs2a5VP5Xbt2MWDAAC6++GK2bNnClClTuOGGG1i1alUVR1o7+fv+Ffvzzz/d7sGGDRtWUYS125dffsnEiRP59ttvWb16NYWFhVx22WVkZ2d73Uc+A91V5D2EOvw5qEWd0KVLFz1x4kTXc4fDoRs1aqSnT5/usfzw4cP1gAED3LZ17dpV33zzzVUaZ23l7/s3d+5cHR0dXU3R1S2AXrp0aZll7rnnHt2+fXu3bddcc43u27dvFUZWN/jy/q1bt04DOjU1tVpiqmsOHTqkAf3ll196LSOfgWXz5T2sy5+DUnNTBxQUFPDTTz/Ru3dv1zbDMOjduzcbN270uM/GjRvdygP07dvXa/lAVpH3DyArK4tmzZqRlJTElVdeydatW6sj3IAg91/l6NixI4mJifTp04evv/66psOpNdLT0wGIjY31WkbuwbL58h5C3f0clOSmDjhy5AgOh4P4+Hi37fHx8V7b4JOTk/0qH8gq8v61bduWOXPmsHz5chYsWIBpmvTo0YN//vmnOkKu87zdfxkZGeTm5tZQVHVHYmIir776Kh9++CEffvghSUlJ9OrVi02bNtV0aDXONE2mTJnC+eefz5lnnum1nHwGeufre1iXPwdPuVXBhfBF9+7d6d69u+t5jx49OP3003nttdd47LHHajAycSpo27Ytbdu2dT3v0aMHO3bsYMaMGcyfP78GI6t5EydO5LfffmPDhg01HUqd5et7WJc/B6Xmpg6oX78+FouFlJQUt+0pKSkkJCR43CchIcGv8oGsIu/fiYKCgjjnnHPYvn17VYQYcLzdf1FRUYSGhtZQVHVbly5dTvn7b9KkSaxYsYJ169bRpEmTMsvKZ6Bn/ryHJ6pLn4OS3NQBwcHBdO7cmbVr17q2mabJ2rVr3bLqkrp37+5WHmD16tVeyweyirx/J3I4HPz6668kJiZWVZgBRe6/yrdly5ZT9v7TWjNp0iSWLl3KF198QYsWLcrdR+5BdxV5D09Upz4Ha7pHs/DNokWLtM1m0/PmzdPbtm3TN910k46JidHJyclaa62vv/56fe+997rKf/3119pqtepnn31W//777/rhhx/WQUFB+tdff62pS6hR/r5/jz76qF61apXesWOH/umnn/SIESN0SEiI3rp1a01dQo3KzMzUmzdv1ps3b9aAfv755/XmzZv1nj17tNZa33vvvfr66693ld+5c6cOCwvTd999t/7999/1rFmztMVi0StXrqypS6hR/r5/M2bM0MuWLdN///23/vXXX/XkyZO1YRh6zZo1NXUJNerWW2/V0dHRev369frgwYOuR05OjquMfAaWrSLvYV3+HJTkpg558cUXddOmTXVwcLDu0qWL/vbbb12v9ezZU48ZM8at/Pvvv6/btGmjg4ODdfv27fUnn3xSzRHXLv68f1OmTHGVjY+P15dffrnetGlTDURdOxQPTT7xUfyejRkzRvfs2bPUPh07dtTBwcG6ZcuWeu7cudUed23h7/v31FNP6VatWumQkBAdGxure/Xqpb/44ouaCb4W8PTeAW73lHwGlq0i72Fd/hxUWmtdffVEQgghhBBVS/rcCCGEECKgSHIjhBBCiIAiyY0QQgghAookN0IIIYQIKJLcCCGEECKgSHIjhBBCiIAiyY0QQgghAookN0IIIYQIKJLcCCFqpbFjx6KU4pZbbin12sSJE1FKMXbsWLeySimCgoKIj4+nT58+zJkzB9M03fadPXs2vXr1IioqCqUUaWlp1XA1QojqJMmNEKLWSkpKYtGiReTm5rq25eXlsXDhQpo2bepWtl+/fhw8eJDdu3fz2WefcfHFFzN58mQGDhyI3W53lcvJyaFfv37cd9991XYdQojqZa3pAIQQwptOnTqxY8cOlixZwrXXXgvAkiVLaNq0aalVjW02GwkJCQA0btyYTp060a1bNy699FLmzZvHDTfcAMCUKVMAWL9+fbVdhxCieknNjRCiVhs/fjxz5851PZ8zZw7jxo3zad9LLrmEDh06sGTJkqoKTwhRC0lyI4So1a677jo2bNjAnj172LNnD19//TXXXXedz/u3a9eO3bt3V12AQohaR5qlhBC1WoMGDRgwYADz5s1Da82AAQOoX7++z/trrVFKVWGEQojaRpIbIUStN378eCZNmgTArFmz/Nr3999/L9U/RwgR2KRZSghR6/Xr14+CggIKCwvp27evz/t98cUX/PrrrwwZMqQKoxNC1DZScyOEqPUsFgu///6762dP8vPzSU5OxuFwkJKSwsqVK5k+fToDBw5k9OjRrnLJyckkJyezfft2AH799VciIyNp2rQpsbGxVX8xQogqJ8mNEKJOiIqKKvP1lStXkpiYiNVqpV69enTo0IEXXniBMWPGYBjHK6lfffVVHn30Udfziy66CIC5c+e6JgUUQtRtSmutazoIIYQQQojKIn1uhBBCCBFQJLkRQgghRECR5EYIIYQQAUWSGyGEEEIEFEluhBBCCBFQJLkRQgghRECR5EYIIYQQAUWSGyGEEEIEFEluhBBCCBFQJLkRQgghRECR5EYIIYQQAUWSGyGEEEIElP8HqBMi2Pap0fQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "36/36 [==============================] - 0s 3ms/step\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAHHCAYAAABOTAltAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/30lEQVR4nO3deVwVdf///+cRZRVwA5FEQNz31CJ3zQUNTTPXNNHIvMxSU0utK3dFM02zsuUqcCkzM61vXe7LlaUtWmparom44JILiCYgzO8Pf5xPR/Yjchh93G+3uem8z/vMvM4w5/Bk5j1zLIZhGAIAADCZYo4uAAAAwB6EGAAAYEqEGAAAYEqEGAAAYEqEGAAAYEqEGAAAYEqEGAAAYEqEGAAAYEqEGAAAYEqEmLvApEmTZLFYCmVdrVu3VuvWra3zW7dulcVi0eeff14o6x84cKCCgoIKZV32SkpK0tNPPy0/Pz9ZLBaNHDnS0SXdNWJjY2WxWBQTE+PoUu4JWb3fLBaLJk2a5JB6gFsRYoqYmJgYWSwW6+Tq6ip/f3+FhYXpzTff1JUrVwpkPadPn9akSZO0e/fuAlleQSrKteXFjBkzFBMTo6FDh2rJkiV68skns+0bFBRk8/P+53T9+vU7Vt/q1avvyLLNqHXr1qpTp45dz92+fbsmTZqky5cvF2xRd6Hff/9dkyZNUmxsbIEut7D/kCps7du3l8Vi0XPPPefoUoqk4o4uAFmbMmWKgoODlZqaqjNnzmjr1q0aOXKk5s6dq6+++kr16tWz9v33v/+tcePG5Wv5p0+f1uTJkxUUFKQGDRrk+Xnr16/P13rskVNtH3zwgdLT0+94Dbdj8+bNeuihhzRx4sQ89W/QoIFGjx6dqd3Z2bmgS5N0M8T06NFD3bp1uyPLv5MCAwP1999/q0SJEo4uRdLNEDN58mQNHDhQpUqVcnQ5heLvv/9W8eL5/9Xx+++/a/LkyWrdunWRP5paVHzxxRfasWOHo8so0ggxRVSnTp3UuHFj6/z48eO1efNmde7cWY8++qj++OMPubm5SZKKFy9u14dKfly7dk3u7u537BdrXhWVX145OXfunGrVqpXn/vfdd5/69+9/Byu689LT05WSkiJXV9c7up6Mo5N3u4z3W1F0L2z/O8kwDF2/ft36+Z2d69eva/To0Ro7dqwmTJhQSNWZD6eTTOThhx/Wq6++quPHj2vp0qXW9qzGxGzYsEHNmzdXqVKlVLJkSVWvXl0vv/yypJuHXx944AFJ0qBBg6ynLzLGGWQcXt+1a5datmwpd3d363NvHROTIS0tTS+//LL8/Pzk4eGhRx99VCdOnLDpExQUpIEDB2Z67j+XmVttWZ2jv3r1qkaPHq2AgAC5uLioevXqev3113XrF7RnHJJdvXq16tSpIxcXF9WuXVtr167NeoPf4ty5c4qMjFT58uXl6uqq+vXra9GiRdbHMw5rHzt2TN9884219ts9fH758mWNHDnS+vqqVKmiWbNmZToi9frrr6tp06YqW7as3Nzc1KhRo0yH2C0Wi65evapFixZZ68v4mWQ33iir/StjW3788ceqXbu2XFxcrNvx1KlTeuqpp1S+fHnrNv7oo48yLXfBggWqXbu23N3dVbp0aTVu3FiffPJJjtsiqzExAwcOVMmSJXXq1Cl169ZNJUuWlI+Pj8aMGaO0tLQcl5edvOwrkyZN0osvvihJCg4OzvLnvXTpUjVq1Ehubm4qU6aM+vTpk+l9kd37LeO1vv7663r77bdVuXJlubu7q0OHDjpx4oQMw9DUqVNVsWJFubm5qWvXrrp48WKm17JmzRq1aNFCHh4e8vT0VHh4uPbv35+pX8ZrdXV1VZ06dbRq1apst80/x8QcP35czz77rKpXry43NzeVLVtWPXv2tNkOMTEx6tmzpySpTZs21m21devWfNdpr7y8P1q1aqX69etn+fzq1asrLCzMOp+enq558+apdu3acnV1Vfny5TVkyBBdunTJ5nlBQUHq3Lmz1q1bp8aNG8vNzU3vvfdervW+9tprSk9P15gxY+x4tfcOjsSYzJNPPqmXX35Z69ev1+DBg7Pss3//fnXu3Fn16tXTlClT5OLioiNHjuj777+XJNWsWVNTpkzRhAkT9Mwzz6hFixaSpKZNm1qXceHCBXXq1El9+vRR//79Vb58+Rzrmj59uiwWi8aOHatz585p3rx5ateunXbv3p3rXxz/lJfa/skwDD366KPasmWLIiMj1aBBA61bt04vvviiTp06pTfeeMOm/3fffacvvvhCzz77rDw9PfXmm2/q8ccfV1xcnMqWLZttXX///bdat26tI0eO6LnnnlNwcLBWrFihgQMH6vLlyxoxYoRq1qypJUuW6IUXXlDFihWtp4h8fHxyfM2pqan666+/bNrc3d3l7u6ua9euqVWrVjp16pSGDBmiSpUqafv27Ro/frzi4+M1b94863Pmz5+vRx99VP369VNKSoo+/fRT9ezZU19//bXCw8MlSUuWLNHTTz+tBx98UM8884wkKSQkJMf6srN582Z99tlneu6551SuXDkFBQXp7Nmzeuihh6whwMfHR2vWrFFkZKQSExOtg5w/+OADDR8+XD169NCIESN0/fp17d27Vz/++KOeeOKJfNeSlpamsLAwhYaG6vXXX9fGjRs1Z84chYSEaOjQoXa9vtz2le7du+vQoUNatmyZ3njjDZUrV07S//28p0+frldffVW9evXS008/rfPnz2vBggVq2bKlfv31V5vTTzm93z7++GOlpKTo+eef18WLF/Xaa6+pV69eevjhh7V161aNHTtWR44c0YIFCzRmzBibwLhkyRJFREQoLCxMs2bN0rVr17Rw4UI1b95cv/76qzW0rl+/Xo8//rhq1aqlqKgoXbhwQYMGDVLFihVz3U4///yztm/frj59+qhixYqKjY3VwoUL1bp1a/3+++9yd3dXy5YtNXz4cL355pt6+eWXVbNmTUmy/pvXOm9HXt4fTz75pAYPHqx9+/bZjJP6+eefdejQIf373/+2tg0ZMkQxMTEaNGiQhg8frmPHjumtt97Sr7/+qu+//97mqPHBgwfVt29fDRkyRIMHD1b16tVzrDUuLk4zZ87URx99lK/Pz3uSgSIlOjrakGT8/PPP2fbx9vY27r//fuv8xIkTjX/+KN944w1DknH+/Plsl/Hzzz8bkozo6OhMj7Vq1cqQZLz77rtZPtaqVSvr/JYtWwxJxn333WckJiZa2z/77DNDkjF//nxrW2BgoBEREZHrMnOqLSIiwggMDLTOr1692pBkTJs2zaZfjx49DIvFYhw5csTaJslwdna2aduzZ48hyViwYEGmdf3TvHnzDEnG0qVLrW0pKSlGkyZNjJIlS9q89sDAQCM8PDzH5f2zr6RM08SJEw3DMIypU6caHh4exqFDh2yeN27cOMPJycmIi4uztl27ds2mT0pKilGnTh3j4Ycftmn38PDI8udw67bNcOv+ZRg3t2WxYsWM/fv327RHRkYaFSpUMP766y+b9j59+hje3t7WGrt27WrUrl078wbJxbFjxzLtGxEREYYkY8qUKTZ977//fqNRo0a5LrNVq1aZasnrvjJ79mxDknHs2DGb58fGxhpOTk7G9OnTbdp/++03o3jx4jbt2b3fMl6rj4+PcfnyZWv7+PHjDUlG/fr1jdTUVGt73759DWdnZ+P69euGYRjGlStXjFKlShmDBw+2We6ZM2cMb29vm/YGDRoYFSpUsFnP+vXrDUmZ9ol/7p+GkXm/MwzD2LFjhyHJWLx4sbVtxYoVhiRjy5YtNn3zU2dWMj6DVqxYkWO/vLw/Ll++bLi6uhpjx4616Tt8+HDDw8PDSEpKMgzDMLZt22ZIMj7++GObfmvXrs3UnvEeX7t2bY71/VOPHj2Mpk2bWuclGcOGDcvz8+8lnE4yoZIlS+Z4lVLGX3hffvml3YNgXVxcNGjQoDz3HzBggDw9Pa3zPXr0UIUKFfTf//7XrvXn1X//+185OTlp+PDhNu2jR4+WYRhas2aNTXu7du1sjjzUq1dPXl5e+vPPP3Ndj5+fn/r27WttK1GihIYPH66kpCT973//s/s1hIaGasOGDTbTgAEDJEkrVqxQixYtVLp0af3111/WqV27dkpLS9O3335rXc4//2K7dOmSEhIS1KJFC/3yyy9215aTVq1a2Yz9MQxDK1euVJcuXWQYhk29YWFhSkhIsNZSqlQpnTx5Uj///HOB1fOvf/3LZr5Fixa5/lxzYu++It0ckJmenq5evXrZbAc/Pz9VrVpVW7Zssemf0/utZ8+e8vb2ts6HhoZKkvr3728zFi40NFQpKSk6deqUpJunlC9fvqy+ffva1ODk5KTQ0FBrDfHx8dq9e7ciIiJs1tO+ffs8je36536XmpqqCxcuqEqVKipVqlSe9r281nm78vL+8Pb2VteuXbVs2TLr6ei0tDQtX75c3bp1k4eHh6Sb70tvb2+1b9/epuZGjRqpZMmSmWoODg62ORWVky1btmjlypU2R1mRvbvmdNK3336r2bNna9euXYqPj9eqVavyffWFYRiaM2eO3n//fR0/flzlypXTs88+q1deeeXOFG2npKQk+fr6Zvt479699Z///EdPP/20xo0bp7Zt26p79+7q0aOHihXLW26977778jWIt2rVqjbzFotFVapUKfDLKW91/Phx+fv72wQo6f8OUx8/ftymvVKlSpmWUbp06UznsbNaT9WqVTNtv+zWkx/lypVTu3btsnzs8OHD2rt3b7anpM6dO2f9/9dff61p06Zp9+7dSk5OtrbfqXsIBQcH28yfP39ely9f1vvvv6/3338/x3rHjh2rjRs36sEHH1SVKlXUoUMHPfHEE2rWrJldtbi6umbaRnn5uebE3n1FuvlzMwwj0/siw60D1HN6v91aR0bQCAgIyLI9o77Dhw9LujmWLiteXl6S/m/fzarW6tWr5xpE/v77b0VFRSk6OlqnTp2yGYuWkJCQ43PzU+ftyuv7Y8CAAVq+fLm2bdumli1bauPGjTp79qzNrRIOHz6shISEbD+H//m+lDK/V7Jz48YNDR8+XE8++aR1bCBydteEmKtXr6p+/fp66qmn1L17d7uWMWLECK1fv16vv/666tatq4sXL2Y5UM6RTp48qYSEBFWpUiXbPm5ubvr222+1ZcsWffPNN1q7dq2WL1+uhx9+WOvXr5eTk1Ou67kT52Gz+2WalpaWp5oKQnbrMW4ZBFxUpKenq3379nrppZeyfLxatWqSpG3btunRRx9Vy5Yt9c4776hChQoqUaKEoqOjcx0smyGnn09Wbt1HMo769e/fXxEREVk+J+PWADVr1tTBgwf19ddfa+3atVq5cqXeeecdTZgwQZMnT85Tvf90J/af29lX0tPTZbFYtGbNmiyXU7JkSZv5nN5v2dWRW30ZP48lS5bIz88vU7+CuqLx+eefV3R0tEaOHKkmTZrI29tbFotFffr0ydOR4MKoMz/vj7CwMJUvX15Lly5Vy5YttXTpUvn5+dn8oZGeni5fX199/PHHWa7v1kCd18/TxYsX6+DBg3rvvfcy/QF45coVxcbGytfXt8heueYId02I6dSpkzp16pTt48nJyXrllVe0bNkyXb58WXXq1NGsWbOsV8X88ccfWrhwofbt22cddJXX9FyYlixZIkm5HposVqyY2rZtq7Zt22ru3LmaMWOGXnnlFW3ZskXt2rUr8L/OM/6aymAYho4cOWJzP5vSpUtneVOw48ePq3Llytb5/NQWGBiojRs36sqVKzZHYw4cOGB9vCAEBgZq7969Sk9PtzkaU9DruVVISIiSkpKyPVKTYeXKlXJ1ddW6devk4uJibY+Ojs7UN7vtm9PPJy98fHzk6emptLS0XOuVJA8PD/Xu3Vu9e/dWSkqKunfvrunTp2v8+PGmuYw3u20ZEhIiwzAUHBxsDZqFLeNUmK+vb44/j4x999b3sHRzQGpuPv/8c0VERGjOnDnWtuvXr2fal3LaVnmp83bk5/3h5OSkJ554QjExMZo1a5ZWr16twYMH24TGkJAQbdy4Uc2aNSvQP/ji4uKUmpqa5RHJxYsXa/HixXadZbib3TNjYp577jnt2LFDn376qfbu3auePXuqY8eO1jfu//t//0+VK1fW119/reDgYAUFBenpp58uUkdiNm/erKlTpyo4OFj9+vXLtl9WNWfcNC7jMGrGud2CutPo4sWLbcbpfP7554qPj7cJliEhIfrhhx+UkpJibfv6668zXXKan9oeeeQRpaWl6a233rJpf+ONN2SxWHIMtvnxyCOP6MyZM1q+fLm17caNG1qwYIFKliypVq1aFch6btWrVy/t2LFD69aty/TY5cuXdePGDUk3P3gtFovNUZPY2Ngs78zr4eGR5bYNCQlRQkKC9u7da23LODWbF05OTnr88ce1cuVK7du3L9Pj58+ft/7/woULNo85OzurVq1aMgxDqampeVpfUZDdvtq9e3c5OTlp8uTJmY7cGIaR6fXfCWFhYfLy8tKMGTOy3KYZP48KFSqoQYMGWrRokc3pnw0bNuj333/PdT1OTk6ZXuOCBQsyHcHLblvltc7bkZ/3h3TzKqVLly5pyJAhSkpKynQfp169eiktLU1Tp07N9NwbN27Y/bnap08frVq1KtMk3fwMWrVqlXVMFG66a47E5CQuLk7R0dGKi4uTv7+/JGnMmDFau3atoqOjNWPGDP355586fvy4VqxYocWLFystLU0vvPCCevTooc2bNxd6zWvWrNGBAwd048YNnT17Vps3b9aGDRsUGBior776Kse/VKdMmaJvv/1W4eHhCgwM1Llz5/TOO++oYsWKat68uaSbv7BKlSqld999V56envLw8FBoaKjdR5/KlCmj5s2ba9CgQTp79qzmzZunKlWq2FwG/vTTT+vzzz9Xx44d1atXLx09elRLly7NdIlvfmrr0qWL2rRpo1deeUWxsbGqX7++1q9fry+//FIjR460+/LhWz3zzDN67733NHDgQO3atUtBQUH6/PPP9f3332vevHmZxuQUlBdffFFfffWVOnfurIEDB6pRo0a6evWqfvvtN33++eeKjY1VuXLlFB4errlz56pjx4564okndO7cOb399tuqUqWKTSiRpEaNGmnjxo2aO3eu/P39FRwcrNDQUPXp00djx47VY489puHDh1svc61WrVqeBwfPnDlTW7ZsUWhoqAYPHqxatWrp4sWL+uWXX7Rx40ZrwO7QoYP8/PzUrFkzlS9fXn/88YfeeusthYeH37FteSc0atRIkvTKK6+oT58+KlGihLp06aKQkBBNmzZN48ePV2xsrLp16yZPT08dO3ZMq1at0jPPPHPH7//h5eWlhQsX6sknn1TDhg3Vp08f+fj4KC4uTt98842aNWtmDf9RUVEKDw9X8+bN9dRTT+nixYvW+/gkJSXluJ7OnTtryZIl8vb2Vq1atbRjxw5t3Lgx0y0LGjRoICcnJ82aNUsJCQlycXHRww8/LF9f3zzXmZOVK1daj4z+U0RERL7eH5J0//33q06dOlqxYoVq1qyphg0b2jzeqlUrDRkyRFFRUdq9e7c6dOigEiVK6PDhw1qxYoXmz5+vHj165FrzrWrUqKEaNWpk+VhwcDBHYLJS+BdE3XmSjFWrVlnnv/76a0OS4eHhYTMVL17c6NWrl2EYhjF48GBDknHw4EHr83bt2mVIMg4cOFBotWdcYp0xOTs7G35+fkb79u2N+fPn21zKm+HWS2A3bdpkdO3a1fD39zecnZ0Nf39/o2/fvpku0/3yyy+NWrVqGcWLF7e5bDWrS04zZHeJ9bJly4zx48cbvr6+hpubmxEeHm4cP3480/PnzJlj3HfffYaLi4vRrFkzY+fOnZmWmVNtWV0GfOXKFeOFF14w/P39jRIlShhVq1Y1Zs+ebaSnp9v0UzaXKWZ36fetzp49awwaNMgoV66c4ezsbNStWzfLy8Dze4l1bn2vXLlijB8/3qhSpYrh7OxslCtXzmjatKnx+uuvGykpKdZ+H374oVG1alXDxcXFqFGjhhEdHZ3l5dEHDhwwWrZsabi5uRmSbF77+vXrjTp16hjOzs5G9erVjaVLl2Z7iXV2l3yePXvWGDZsmBEQEGCUKFHC8PPzM9q2bWu8//771j7vvfee0bJlS6Ns2bKGi4uLERISYrz44otGQkJCjtsiu0usPTw8MvXNqu6sZHeJdV73lalTpxr33XefUaxYsUyXW69cudJo3ry59TOnRo0axrBhw2w+Z7J7v2W81tmzZ9u0Z3dJcXa3Z9iyZYsRFhZmeHt7G66urkZISIgxcOBAY+fOnTb9Vq5cadSsWdNwcXExatWqZXzxxRdZvt90yyXWly5dsr4vSpYsaYSFhRkHDhzIclt98MEHRuXKlQ0nJ6dMl1vntc5bZWyP7KZt27YZhpH390eG1157zZBkzJgxI9t1v//++0ajRo0MNzc3w9PT06hbt67x0ksvGadPn7b2yc/nQXZyer/d6yyGUURHNN4Gi8Vic95w+fLl6tevn/bv359pMFzJkiXl5+eniRMnZjqc+ffff8vd3V3r169X+/btC/MlAAAcaP78+XrhhRcUGxub5ZVqKBruidNJ999/v9LS0nTu3DnrHWBv1axZM924cUNHjx61noI4dOiQpDs3aBMAUPQYhqEPP/xQrVq1IsAUcXdNiElKStKRI0es88eOHdPu3btVpkwZVatWTf369dOAAQM0Z84c3X///Tp//rw2bdqkevXqKTw8XO3atVPDhg311FNPad68eUpPT9ewYcPUvn17h11dAAAoPFevXtVXX32lLVu26LffftOXX37p6JKQi7vmdNLWrVvVpk2bTO0RERGKiYlRamqqpk2bpsWLF+vUqVMqV66cHnroIU2ePFl169aVJJ0+fVrPP/+81q9fLw8PD3Xq1Elz5sxRmTJlCvvlAAAKWWxsrIKDg1WqVCk9++yzmj59uqNLQi7umhADAADuLffMfWIAAMDdhRADAABMydQDe9PT03X69Gl5enresS+5AwAABcswDF25ckX+/v55/mLirJg6xJw+fTrTN7kCAABzOHHihCpWrGj3800dYjJuT37ixIkC+7p2AABwZyUmJiogIOC2v2bE1CEm4xSSl5cXIQYAAJO53aEgDOwFAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmVNzRBQC4+wSN+ybXPrEzwwuhEgB3M47EAAAAUyLEAAAAUyLEAAAAUyLEAAAAU3JoiAkKCpLFYsk0DRs2zJFlAQAAE3Do1Uk///yz0tLSrPP79u1T+/bt1bNnTwdWBQAAzMChIcbHx8dmfubMmQoJCVGrVq0cVBEAADCLInOfmJSUFC1dulSjRo2SxWLJsk9ycrKSk5Ot84mJiYVVHgAAKGKKzMDe1atX6/Llyxo4cGC2faKiouTt7W2dAgICCq9AAABQpBSZEPPhhx+qU6dO8vf3z7bP+PHjlZCQYJ1OnDhRiBUCAICipEicTjp+/Lg2btyoL774Isd+Li4ucnFxKaSqAABAUVYkjsRER0fL19dX4eF8lwoAAMgbh4eY9PR0RUdHKyIiQsWLF4kDQwAAwAQcHmI2btyouLg4PfXUU44uBQAAmIjDD3106NBBhmE4ugwAAGAyDj8SAwAAYA9CDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCWHh5hTp06pf//+Klu2rNzc3FS3bl3t3LnT0WUBAIAirrgjV37p0iU1a9ZMbdq00Zo1a+Tj46PDhw+rdOnSjiwLAACYgENDzKxZsxQQEKDo6GhrW3BwsAMrAgAAZuHQ00lfffWVGjdurJ49e8rX11f333+/Pvjgg2z7JycnKzEx0WYCAAD3JoeGmD///FMLFy5U1apVtW7dOg0dOlTDhw/XokWLsuwfFRUlb29v6xQQEFDIFQMAgKLCYhiG4aiVOzs7q3Hjxtq+fbu1bfjw4fr555+1Y8eOTP2Tk5OVnJxsnU9MTFRAQIASEhLk5eVVKDUDyF3QuG9y7RM7M7wQKgFQFCUmJsrb2/u2f3879EhMhQoVVKtWLZu2mjVrKi4uLsv+Li4u8vLyspkAAMC9yaEhplmzZjp48KBN26FDhxQYGOigigAAgFk4NMS88MIL+uGHHzRjxgwdOXJEn3zyid5//30NGzbMkWUBAAATcGiIeeCBB7Rq1SotW7ZMderU0dSpUzVv3jz169fPkWUBAAATcOh9YiSpc+fO6ty5s6PLAAAAJuPwrx0AAACwByEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYkkNDzKRJk2SxWGymGjVqOLIkAABgEsUdXUDt2rW1ceNG63zx4g4vCQAAmIDDE0Px4sXl5+fn6DIAAIDJOHxMzOHDh+Xv76/KlSurX79+iouLc3RJAADABBx6JCY0NFQxMTGqXr264uPjNXnyZLVo0UL79u2Tp6dnpv7JyclKTk62zicmJhZmuQAAoAhxaIjp1KmT9f/16tVTaGioAgMD9dlnnykyMjJT/6ioKE2ePLkwSwQAAEWUw08n/VOpUqVUrVo1HTlyJMvHx48fr4SEBOt04sSJQq4QAAAUFUUqxCQlJeno0aOqUKFClo+7uLjIy8vLZgIAAPcmh4aYMWPG6H//+59iY2O1fft2PfbYY3JyclLfvn0dWRYAADABh46JOXnypPr27asLFy7Ix8dHzZs31w8//CAfHx9HlgUAAEzAoSHm008/deTqAQCAiRWpMTEAAAB5RYgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmZFeI+fPPPwu6DgAAgHyxK8RUqVJFbdq00dKlS3X9+vWCrgkAACBXdoWYX375RfXq1dOoUaPk5+enIUOG6Keffiro2gAAALJlV4hp0KCB5s+fr9OnT+ujjz5SfHy8mjdvrjp16mju3Lk6f/58QdcJAABg47YG9hYvXlzdu3fXihUrNGvWLB05ckRjxoxRQECABgwYoPj4+IKqEwAAwMZthZidO3fq2WefVYUKFTR37lyNGTNGR48e1YYNG3T69Gl17dq1oOoEAACwUdyeJ82dO1fR0dE6ePCgHnnkES1evFiPPPKIihW7mYmCg4MVExOjoKCggqwVAADAyq4Qs3DhQj311FMaOHCgKlSokGUfX19fffjhh7dVHAAAQHbsCjGHDx/OtY+zs7MiIiLsWTwAAECu7BoTEx0drRUrVmRqX7FihRYtWnTbRQEAAOTGrhATFRWlcuXKZWr39fXVjBkzbrsoAACA3NgVYuLi4hQcHJypPTAwUHFxcbddFAAAQG7sCjG+vr7au3dvpvY9e/aobNmyt10UAABAbuwKMX379tXw4cO1ZcsWpaWlKS0tTZs3b9aIESPUp0+fgq4RAAAgE7uuTpo6dapiY2PVtm1bFS9+cxHp6ekaMGAAY2IAAEChsCvEODs7a/ny5Zo6dar27NkjNzc31a1bV4GBgQVdHwAAQJbsCjEZqlWrpmrVqhVULQAAAHlmV4hJS0tTTEyMNm3apHPnzik9Pd3m8c2bN+d7mTNnztT48eM1YsQIzZs3z56yAADAPcSuEDNixAjFxMQoPDxcderUkcViua0ifv75Z7333nuqV6/ebS0HAADcO+wKMZ9++qk+++wzPfLII7ddQFJSkvr166cPPvhA06ZNu+3lAQCAe4Ndl1g7OzurSpUqBVLAsGHDFB4ernbt2hXI8gAAwL3BrhAzevRozZ8/X4Zh3NbKP/30U/3yyy+KiorKU//k5GQlJibaTAAA4N5k1+mk7777Tlu2bNGaNWtUu3ZtlShRwubxL774ItdlnDhxQiNGjNCGDRvk6uqap/VGRUVp8uTJ9pQMAADuMhbDjsMpgwYNyvHx6OjoXJexevVqPfbYY3JycrK2paWlyWKxqFixYkpOTrZ5TLp5JCY5Odk6n5iYqICAACUkJMjLyyufrwLAnRI07ptc+8TODC+ESgAURYmJifL29r7t3992HYnJS0jJTdu2bfXbb7/ZtA0aNEg1atTQ2LFjMwUYSXJxcZGLi8ttrxsAAJif3Te7u3HjhrZu3aqjR4/qiSeekKenp06fPi0vLy+VLFky1+d7enqqTp06Nm0eHh4qW7ZspnYAAIBb2RVijh8/ro4dOyouLk7Jyclq3769PD09NWvWLCUnJ+vdd98t6DoBAABs2H2zu8aNG2vPnj0qW7astf2xxx7T4MGD7S5m69atdj8XAADcW+wKMdu2bdP27dvl7Oxs0x4UFKRTp04VSGEAAAA5ses+Menp6UpLS8vUfvLkSXl6et52UQAAALmxK8R06NDB5ksaLRaLkpKSNHHixAL5KgIAAIDc2HU6ac6cOQoLC1OtWrV0/fp1PfHEEzp8+LDKlSunZcuWFXSNAAAAmdgVYipWrKg9e/bo008/1d69e5WUlKTIyEj169dPbm5uBV0jAABAJnbfJ6Z48eLq379/QdYCAACQZ3aFmMWLF+f4+IABA+wqBgAAIK/svk/MP6WmpuratWtydnaWu7s7IQYAANxxdl2ddOnSJZspKSlJBw8eVPPmzRnYCwAACoVdISYrVatW1cyZMzMdpQEAALgTCizESDcH+54+fbogFwkAAJAlu8bEfPXVVzbzhmEoPj5eb731lpo1a1YghQEAAOTErhDTrVs3m3mLxSIfHx89/PDDmjNnTkHUBQAAkCO7Qkx6enpB1wEAAJAvBTomBgAAoLDYdSRm1KhRee47d+5ce1YBAACQI7tCzK+//qpff/1Vqampql69uiTp0KFDcnJyUsOGDa39LBZLwVQJ4K4TNO6bXPvEzgwvhEoAmJVdIaZLly7y9PTUokWLVLp0aUk3b4A3aNAgtWjRQqNHjy7QIgEAAG5l15iYOXPmKCoqyhpgJKl06dKaNm0aVycBAIBCYVeISUxM1Pnz5zO1nz9/XleuXLntogAAAHJjV4h57LHHNGjQIH3xxRc6efKkTp48qZUrVyoyMlLdu3cv6BoBAAAysWtMzLvvvqsxY8boiSeeUGpq6s0FFS+uyMhIzZ49u0ALBAAAyIpdIcbd3V3vvPOOZs+eraNHj0qSQkJC5OHhUaDFAQAAZOe2bnYXHx+v+Ph4Va1aVR4eHjIMo6DqAgAAyJFdIebChQtq27atqlWrpkceeUTx8fGSpMjISC6vBgAAhcKuEPPCCy+oRIkSiouLk7u7u7W9d+/eWrt2bYEVBwAAkB27xsSsX79e69atU8WKFW3aq1atquPHjxdIYQAAADmx60jM1atXbY7AZLh48aJcXFxuuygAAIDc2BViWrRoocWLF1vnLRaL0tPT9dprr6lNmzYFVhwAAEB27Dqd9Nprr6lt27bauXOnUlJS9NJLL2n//v26ePGivv/++4KuEQAAIBO7jsTUqVNHhw4dUvPmzdW1a1ddvXpV3bt316+//qqQkJCCrhEAACCTfB+JSU1NVceOHfXuu+/qlVdeuRM1AQAA5CrfR2JKlCihvXv33olaAAAA8syu00n9+/fXhx9+WNC1AAAA5JldA3tv3Lihjz76SBs3blSjRo0yfWfS3LlzC6Q4AACA7OQrxPz5558KCgrSvn371LBhQ0nSoUOHbPpYLJaCqw4AACAb+QoxVatWVXx8vLZs2SLp5tcMvPnmmypfvvwdKQ4AACA7+RoTc+u3VK9Zs0ZXr14t0IIAAADywq6BvRluDTX5tXDhQtWrV09eXl7y8vJSkyZNtGbNmttaJgAAuDfkK8RYLJZMY15uZwxMxYoVNXPmTO3atUs7d+7Uww8/rK5du2r//v12LxMAANwb8jUmxjAMDRw40Polj9evX9e//vWvTFcnffHFF3laXpcuXWzmp0+froULF+qHH35Q7dq181MaAAC4x+QrxERERNjM9+/fv8AKSUtL04oVK3T16lU1adKkwJYLAADuTvkKMdHR0QVewG+//aYmTZro+vXrKlmypFatWqVatWpl2Tc5OVnJycnW+cTExAKvBwAAmMNtDewtCNWrV9fu3bv1448/aujQoYqIiNDvv/+eZd+oqCh5e3tbp4CAgEKuFgAAFBUW43YvMSpg7dq1U0hIiN57771Mj2V1JCYgIEAJCQny8vIqzDIB5CBo3DcFspzYmeEFshwARUtiYqK8vb1v+/e3XV87cCelp6fbBJV/cnFxsQ4qBgAA9zaHhpjx48erU6dOqlSpkq5cuaJPPvlEW7du1bp16xxZFgAAMAGHhphz585pwIABio+Pl7e3t+rVq6d169apffv2jiwLAACYgENDzIcffujI1QMAABNz+NVJAAAA9iDEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAU3JoiImKitIDDzwgT09P+fr6qlu3bjp48KAjSwIAACbh0BDzv//9T8OGDdMPP/ygDRs2KDU1VR06dNDVq1cdWRYAADCB4o5c+dq1a23mY2Ji5Ovrq127dqlly5YOqgoAAJhBkRoTk5CQIEkqU6aMgysBAABFnUOPxPxTenq6Ro4cqWbNmqlOnTpZ9klOTlZycrJ1PjExsbDKAwAARUyRORIzbNgw7du3T59++mm2faKiouTt7W2dAgICCrFCAABQlBSJEPPcc8/p66+/1pYtW1SxYsVs+40fP14JCQnW6cSJE4VYJQAAKEocejrJMAw9//zzWrVqlbZu3arg4OAc+7u4uMjFxaWQqgMAAEWZQ0PMsGHD9Mknn+jLL7+Up6enzpw5I0ny9vaWm5ubI0sDAABFnENPJy1cuFAJCQlq3bq1KlSoYJ2WL1/uyLIAAIAJOPx0EgAAgD2KxMBeAACA/CLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAU3JoiPn222/VpUsX+fv7y2KxaPXq1Y4sBwAAmIhDQ8zVq1dVv359vf32244sAwAAmFBxR668U6dO6tSpkyNLAAAAJsWYGAAAYEoOPRKTX8nJyUpOTrbOJyYmOrAaAADgSKY6EhMVFSVvb2/rFBAQ4OiSAACAg5gqxIwfP14JCQnW6cSJE44uCQAAOIipTie5uLjIxcXF0WUAAIAiwKEhJikpSUeOHLHOHzt2TLt371aZMmVUqVIlB1YGAACKOoeGmJ07d6pNmzbW+VGjRkmSIiIiFBMT46CqAACAGTg0xLRu3VqGYTiyBAAAYFKmGtgLAACQgRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMqbijCwCA7ASN+ybXPrEzwwuhEgBFEUdiAACAKRFiAACAKRFiAACAKRFiAACAKRFiAACAKRFiAACAKRWJEPP2228rKChIrq6uCg0N1U8//eTokgAAQBHn8BCzfPlyjRo1ShMnTtQvv/yi+vXrKywsTOfOnXN0aQAAoAizGIZhOLKA0NBQPfDAA3rrrbckSenp6QoICNDzzz+vcePG5fjcxMREeXt7KyEhQV5eXoVRLnDPy8sN6IoabogHFC0F9fvboUdiUlJStGvXLrVr187aVqxYMbVr1047duxwYGUAAKCoc+jXDvz1119KS0tT+fLlbdrLly+vAwcOZOqfnJys5ORk63xCQoKkm4kOQM7qTFzn6BIcptILK3Lts29yWCFUAkD6v9/bt3syyFTfnRQVFaXJkydnag8ICHBANQDuJt7zHF0BcO+5cuWKvL297X6+Q0NMuXLl5OTkpLNnz9q0nz17Vn5+fpn6jx8/XqNGjbLOp6en6+LFiypbtqwsFssdr9cMEhMTFRAQoBMnTjBOqICwTQse27TgsU0LHtu04GVs07i4OFksFvn7+9/W8hwaYpydndWoUSNt2rRJ3bp1k3QzmGzatEnPPfdcpv4uLi5ycXGxaStVqlQhVGo+Xl5evOkKGNu04LFNCx7btOCxTQuet7d3gWxTh59OGjVqlCIiItS4cWM9+OCDmjdvnq5evapBgwY5ujQAAFCEOTzE9O7dW+fPn9eECRN05swZNWjQQGvXrs002BcAAOCfHB5iJOm5557L8vQR8s/FxUUTJ07MdNoN9mObFjy2acFjmxY8tmnBK+ht6vCb3QEAANjD4V87AAAAYA9CDAAAMCVCDAAAMCVCDAAAMCVCzF1k+vTpatq0qdzd3bO9CWBcXJzCw8Pl7u4uX19fvfjii7px40bhFmpiQUFBslgsNtPMmTMdXZapvP322woKCpKrq6tCQ0P1008/ObokU5s0aVKmfbJGjRqOLstUvv32W3Xp0kX+/v6yWCxavXq1zeOGYWjChAmqUKGC3Nzc1K5dOx0+fNgxxZpEbtt04MCBmfbbjh075ns9hJi7SEpKinr27KmhQ4dm+XhaWprCw8OVkpKi7du3a9GiRYqJidGECRMKuVJzmzJliuLj463T888/7+iSTGP58uUaNWqUJk6cqF9++UX169dXWFiYzp075+jSTK127do2++R3333n6JJM5erVq6pfv77efvvtLB9/7bXX9Oabb+rdd9/Vjz/+KA8PD4WFhen69euFXKl55LZNJaljx442++2yZcvyvyIDd53o6GjD29s7U/t///tfo1ixYsaZM2esbQsXLjS8vLyM5OTkQqzQvAIDA4033njD0WWY1oMPPmgMGzbMOp+Wlmb4+/sbUVFRDqzK3CZOnGjUr1/f0WXcNSQZq1atss6np6cbfn5+xuzZs61tly9fNlxcXIxly5Y5oELzuXWbGoZhREREGF27dr3tZXMk5h6yY8cO1a1b1+ZuyGFhYUpMTNT+/fsdWJm5zJw5U2XLltX999+v2bNnczouj1JSUrRr1y61a9fO2lasWDG1a9dOO3bscGBl5nf48GH5+/urcuXK6tevn+Li4hxd0l3j2LFjOnPmjM1+6+3trdDQUPbb27R161b5+vqqevXqGjp0qC5cuJDvZRSJO/aicJw5cybT1zlkzJ85c8YRJZnO8OHD1bBhQ5UpU0bbt2/X+PHjFR8fr7lz5zq6tCLvr7/+UlpaWpb74IEDBxxUlfmFhoYqJiZG1atXV3x8vCZPnqwWLVpo37598vT0dHR5ppfx2ZjVfsvnpv06duyo7t27Kzg4WEePHtXLL7+sTp06aceOHXJycsrzcggxRdy4ceM0a9asHPv88ccfDOS7DfnZxqNGjbK21atXT87OzhoyZIiioqK4NTkcolOnTtb/16tXT6GhoQoMDNRnn32myMhIB1YGZK9Pnz7W/9etW1f16tVTSEiItm7dqrZt2+Z5OYSYIm706NEaOHBgjn0qV66cp2X5+flluhLk7Nmz1sfuVbezjUNDQ3Xjxg3FxsaqevXqd6C6u0e5cuXk5ORk3ecynD179p7e/wpaqVKlVK1aNR05csTRpdwVMvbNs2fPqkKFCtb2s2fPqkGDBg6q6u5TuXJllStXTkeOHCHE3E18fHzk4+NTIMtq0qSJpk+frnPnzsnX11eStGHDBnl5ealWrVoFsg4zup1tvHv3bhUrVsy6PZE9Z2dnNWrUSJs2bVK3bt0kSenp6dq0aRNfAFuAkpKSdPToUT355JOOLuWuEBwcLD8/P23atMkaWhITE/Xjjz9meyUo8u/kyZO6cOGCTVDMC0LMXSQuLk4XL15UXFyc0tLStHv3bklSlSpVVLJkSXXo0EG1atXSk08+qddee01nzpzRv//9bw0bNoxTIXmwY8cO/fjjj2rTpo08PT21Y8cOvfDCC+rfv79Kly7t6PJMYdSoUYqIiFDjxo314IMPat68ebp69aoGDRrk6NJMa8yYMerSpYsCAwN1+vRpTZw4UU5OTurbt6+jSzONpKQkmyNXx44d0+7du1WmTBlVqlRJI0eO1LRp01S1alUFBwfr1Vdflb+/vzWMI7OctmmZMmU0efJkPf744/Lz89PRo0f10ksvqUqVKgoLC8vfim77+iYUGREREYakTNOWLVusfWJjY41OnToZbm5uRrly5YzRo0cbqampjivaRHbt2mWEhoYa3t7ehqurq1GzZk1jxowZxvXr1x1dmqksWLDAqFSpkuHs7Gw8+OCDxg8//ODokkytd+/eRoUKFQxnZ2fjvvvuM3r37m0cOXLE0WWZypYtW7L87IyIiDAM4+Zl1q+++qpRvnx5w8XFxWjbtq1x8OBBxxZdxOW0Ta9du2Z06NDB8PHxMUqUKGEEBgYagwcPtrn9R15ZDMMwbjdxAQAAFDbuEwMAAEyJEAMAAEyJEAMAAEyJEAMAAEyJEAMAAEyJEAMAAEyJEAMAAEyJEAMA/7/WrVtr5MiRji4DQB4RYoB7wMCBA2WxWDJNBfUlgTExMSpVqlSBLMseXbp0UceOHbN8bNu2bbJYLNq7d28hVwXgTiPEAPeIjh07Kj4+3mYKDg52dFmZpKam5vs5kZGR2rBhg06ePJnpsejoaDVu3Fj16tUriPIAFCGEGOAe4eLiIj8/P5vJyclJkvTll1+qYcOGcnV1VeXKlTV58mTduHHD+ty5c+eqbt268vDwUEBAgJ599lklJSVJkrZu3apBgwYpISHBeoRn0qRJkiSLxaLVq1fb1FGqVCnFxMRIkmJjY2WxWLR8+XK1atVKrq6u+vjjjyVJ//nPf1SzZk25urqqRo0aeuedd7J9bZ07d5aPj491uRmSkpK0YsUKRUZG6sKFC+rbt6/uu+8+ubu7q27dulq2bFmO2yy3+iXpxIkT6tWrl0qVKqUyZcqoa9euio2NzXG5AAoGIQa4x23btk0DBgzQiBEj9Pvvv+u9995TTEyMpk+fbu1TrFgxvfnmm9q/f78WLVqkzZs366WXXpIkNW3aVPPmzZOXl5f1CM+YMWPyVcO4ceM0YsQI/fHHHwoLC9PHH3+sCRMmaPr06frjjz80Y8YMvfrqq1q0aFGWzy9evLgGDBigmJgY/fPr4FasWKG0tDT17dtX169fV6NGjfTNN99o3759euaZZ/Tkk0/qp59+smOr3ZSamqqwsDB5enpq27Zt+v7771WyZEl17NhRKSkpdi8XQB4V9DdXAih6IiIiDCcnJ8PDw8M69ejRwzAMw2jbtq0xY8YMm/5LliwxKlSokO3yVqxYYZQtW9Y6Hx0dbXh7e2fqJ8lYtWqVTZu3t7cRHR1tGIZhHDt2zJBkzJs3z6ZPSEiI8cknn9i0TZ061WjSpEm2Nf3xxx+ZvrW9RYsWRv/+/bN9Tnh4uDF69GjrfKtWrYwRI0bkuf4lS5YY1atXN9LT062PJycnG25ubsa6deuyXS+AglHcsREKQGFp06aNFi5caJ338PCQJO3Zs0fff/+9zZGXtLQ0Xb9+XdeuXZO7u7s2btyoqKgoHThwQImJibpx44bN47ercePG1v9fvXpVR48eVWRkpAYPHmxtv3Hjhry9vbNdRo0aNdS0aVN99NFHat26tY4cOaJt27ZpypQp1tc0Y8YMffbZZzp16pRSUlKUnJx8W/Xv2bNHR44ckaenp0379evXdfToUbuXCyBvCDHAPcLDw0NVqlTJ1J6UlKTJkyere/fumR5zdXVVbGysOnfurKFDh2r69OkqU6aMvvvuO0VGRiolJSXHEGCxWGxO70hZD9zNCFQZ9UjSBx98oNDQUJt+GWN4shMZGannn39eb7/9tqKjoxUSEqJWrVpJkmbPnq358+dr3rx51vE9I0eOzPG0T271JyUlqVGjRtZxPP/k4+OTY60Abh8hBrjHNWzYUAcPHswy4EjSrl27lJ6erjlz5qhYsZvD6D777DObPs7OzkpLS8v0XB8fH8XHx1vnDx8+rGvXruVYT/ny5eXv768///xT/fr1y9dr6dWrl0aMGKFPPvlEixcv1tChQ2WxWCRJ33//vbp27ar+/ftLktLT03Xo0CHVqlUr2+XlVn/Dhg21fPly+fr6ysvLK1+1Arh9hBjgHjdhwgR17txZlSpVUo8ePVSsWDHt2bNH+/bt07Rp01SlShWlpqZqwYIF6tKli77//nu9++67NssICgpSUlKSNm3apPr168vd3V3u7u56+OGH9dZbb6lJkyZKS0vT2LFjVaJEiVxrmjx5soYPHy5vb2917NhRycnJ2rlzpy5duqRRo0Zl+7ySJUuqd+/eGj9+vBITEzVw4EDrY1WrVtXnn3+u7du3q3Tp0po7d67Onj2bY4jJrf5+/fpp9uzZ6tq1q6ZMmaKKFSvq+PHj+uKLL/TSSy+pYsWKub5WAPbj6iTgHhcWFqavv/5a69ev1wMPPKCHHnpIb7zxhgIDAyVJ9evX19y5czVr1izVqVNHH3/8saKiomyW0bRpU/3rX/9S79695ePjo9dee02SNGfOHAUEBKhFixZ64oknNGbMmDyNQXn66af1n//8R9HR0apbt65atWqlmJiYPN3XJjIyUpcuXVJYWJj8/f2t7f/+97/VsGFDhYWFqXXr1vLz81O3bt1yXFZu9bu7u+vbb79VpUqV1L17d9WsWVORkZG6fv06R2aAQmAxbj3hCwAAYAIciQEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKb0/wEn9zvNejVF4gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "36/36 [==============================] - 0s 3ms/step\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAHHCAYAAABOTAltAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/30lEQVR4nO3deVwVdf///+cRZRVwA5FEQNz31CJ3zQUNTTPXNNHIvMxSU0utK3dFM02zsuUqcCkzM61vXe7LlaUtWmparom44JILiCYgzO8Pf5xPR/Yjchh93G+3uem8z/vMvM4w5/Bk5j1zLIZhGAIAADCZYo4uAAAAwB6EGAAAYEqEGAAAYEqEGAAAYEqEGAAAYEqEGAAAYEqEGAAAYEqEGAAAYEqEGAAAYEqEmLvApEmTZLFYCmVdrVu3VuvWra3zW7dulcVi0eeff14o6x84cKCCgoIKZV32SkpK0tNPPy0/Pz9ZLBaNHDnS0SXdNWJjY2WxWBQTE+PoUu4JWb3fLBaLJk2a5JB6gFsRYoqYmJgYWSwW6+Tq6ip/f3+FhYXpzTff1JUrVwpkPadPn9akSZO0e/fuAlleQSrKteXFjBkzFBMTo6FDh2rJkiV68skns+0bFBRk8/P+53T9+vU7Vt/q1avvyLLNqHXr1qpTp45dz92+fbsmTZqky5cvF2xRd6Hff/9dkyZNUmxsbIEut7D/kCps7du3l8Vi0XPPPefoUoqk4o4uAFmbMmWKgoODlZqaqjNnzmjr1q0aOXKk5s6dq6+++kr16tWz9v33v/+tcePG5Wv5p0+f1uTJkxUUFKQGDRrk+Xnr16/P13rskVNtH3zwgdLT0+94Dbdj8+bNeuihhzRx4sQ89W/QoIFGjx6dqd3Z2bmgS5N0M8T06NFD3bp1uyPLv5MCAwP1999/q0SJEo4uRdLNEDN58mQNHDhQpUqVcnQ5heLvv/9W8eL5/9Xx+++/a/LkyWrdunWRP5paVHzxxRfasWOHo8so0ggxRVSnTp3UuHFj6/z48eO1efNmde7cWY8++qj++OMPubm5SZKKFy9u14dKfly7dk3u7u537BdrXhWVX145OXfunGrVqpXn/vfdd5/69+9/Byu689LT05WSkiJXV9c7up6Mo5N3u4z3W1F0L2z/O8kwDF2/ft36+Z2d69eva/To0Ro7dqwmTJhQSNWZD6eTTOThhx/Wq6++quPHj2vp0qXW9qzGxGzYsEHNmzdXqVKlVLJkSVWvXl0vv/yypJuHXx944AFJ0qBBg6ynLzLGGWQcXt+1a5datmwpd3d363NvHROTIS0tTS+//LL8/Pzk4eGhRx99VCdOnLDpExQUpIEDB2Z67j+XmVttWZ2jv3r1qkaPHq2AgAC5uLioevXqev3113XrF7RnHJJdvXq16tSpIxcXF9WuXVtr167NeoPf4ty5c4qMjFT58uXl6uqq+vXra9GiRdbHMw5rHzt2TN9884219ts9fH758mWNHDnS+vqqVKmiWbNmZToi9frrr6tp06YqW7as3Nzc1KhRo0yH2C0Wi65evapFixZZ68v4mWQ33iir/StjW3788ceqXbu2XFxcrNvx1KlTeuqpp1S+fHnrNv7oo48yLXfBggWqXbu23N3dVbp0aTVu3FiffPJJjtsiqzExAwcOVMmSJXXq1Cl169ZNJUuWlI+Pj8aMGaO0tLQcl5edvOwrkyZN0osvvihJCg4OzvLnvXTpUjVq1Ehubm4qU6aM+vTpk+l9kd37LeO1vv7663r77bdVuXJlubu7q0OHDjpx4oQMw9DUqVNVsWJFubm5qWvXrrp48WKm17JmzRq1aNFCHh4e8vT0VHh4uPbv35+pX8ZrdXV1VZ06dbRq1apst80/x8QcP35czz77rKpXry43NzeVLVtWPXv2tNkOMTEx6tmzpySpTZs21m21devWfNdpr7y8P1q1aqX69etn+fzq1asrLCzMOp+enq558+apdu3acnV1Vfny5TVkyBBdunTJ5nlBQUHq3Lmz1q1bp8aNG8vNzU3vvfdervW+9tprSk9P15gxY+x4tfcOjsSYzJNPPqmXX35Z69ev1+DBg7Pss3//fnXu3Fn16tXTlClT5OLioiNHjuj777+XJNWsWVNTpkzRhAkT9Mwzz6hFixaSpKZNm1qXceHCBXXq1El9+vRR//79Vb58+Rzrmj59uiwWi8aOHatz585p3rx5ateunXbv3p3rXxz/lJfa/skwDD366KPasmWLIiMj1aBBA61bt04vvviiTp06pTfeeMOm/3fffacvvvhCzz77rDw9PfXmm2/q8ccfV1xcnMqWLZttXX///bdat26tI0eO6LnnnlNwcLBWrFihgQMH6vLlyxoxYoRq1qypJUuW6IUXXlDFihWtp4h8fHxyfM2pqan666+/bNrc3d3l7u6ua9euqVWrVjp16pSGDBmiSpUqafv27Ro/frzi4+M1b94863Pmz5+vRx99VP369VNKSoo+/fRT9ezZU19//bXCw8MlSUuWLNHTTz+tBx98UM8884wkKSQkJMf6srN582Z99tlneu6551SuXDkFBQXp7Nmzeuihh6whwMfHR2vWrFFkZKQSExOtg5w/+OADDR8+XD169NCIESN0/fp17d27Vz/++KOeeOKJfNeSlpamsLAwhYaG6vXXX9fGjRs1Z84chYSEaOjQoXa9vtz2le7du+vQoUNatmyZ3njjDZUrV07S//28p0+frldffVW9evXS008/rfPnz2vBggVq2bKlfv31V5vTTzm93z7++GOlpKTo+eef18WLF/Xaa6+pV69eevjhh7V161aNHTtWR44c0YIFCzRmzBibwLhkyRJFREQoLCxMs2bN0rVr17Rw4UI1b95cv/76qzW0rl+/Xo8//rhq1aqlqKgoXbhwQYMGDVLFihVz3U4///yztm/frj59+qhixYqKjY3VwoUL1bp1a/3+++9yd3dXy5YtNXz4cL355pt6+eWXVbNmTUmy/pvXOm9HXt4fTz75pAYPHqx9+/bZjJP6+eefdejQIf373/+2tg0ZMkQxMTEaNGiQhg8frmPHjumtt97Sr7/+qu+//97mqPHBgwfVt29fDRkyRIMHD1b16tVzrDUuLk4zZ87URx99lK/Pz3uSgSIlOjrakGT8/PPP2fbx9vY27r//fuv8xIkTjX/+KN944w1DknH+/Plsl/Hzzz8bkozo6OhMj7Vq1cqQZLz77rtZPtaqVSvr/JYtWwxJxn333WckJiZa2z/77DNDkjF//nxrW2BgoBEREZHrMnOqLSIiwggMDLTOr1692pBkTJs2zaZfjx49DIvFYhw5csTaJslwdna2aduzZ48hyViwYEGmdf3TvHnzDEnG0qVLrW0pKSlGkyZNjJIlS9q89sDAQCM8PDzH5f2zr6RM08SJEw3DMIypU6caHh4exqFDh2yeN27cOMPJycmIi4uztl27ds2mT0pKilGnTh3j4Ycftmn38PDI8udw67bNcOv+ZRg3t2WxYsWM/fv327RHRkYaFSpUMP766y+b9j59+hje3t7WGrt27WrUrl078wbJxbFjxzLtGxEREYYkY8qUKTZ977//fqNRo0a5LrNVq1aZasnrvjJ79mxDknHs2DGb58fGxhpOTk7G9OnTbdp/++03o3jx4jbt2b3fMl6rj4+PcfnyZWv7+PHjDUlG/fr1jdTUVGt73759DWdnZ+P69euGYRjGlStXjFKlShmDBw+2We6ZM2cMb29vm/YGDRoYFSpUsFnP+vXrDUmZ9ol/7p+GkXm/MwzD2LFjhyHJWLx4sbVtxYoVhiRjy5YtNn3zU2dWMj6DVqxYkWO/vLw/Ll++bLi6uhpjx4616Tt8+HDDw8PDSEpKMgzDMLZt22ZIMj7++GObfmvXrs3UnvEeX7t2bY71/VOPHj2Mpk2bWuclGcOGDcvz8+8lnE4yoZIlS+Z4lVLGX3hffvml3YNgXVxcNGjQoDz3HzBggDw9Pa3zPXr0UIUKFfTf//7XrvXn1X//+185OTlp+PDhNu2jR4+WYRhas2aNTXu7du1sjjzUq1dPXl5e+vPPP3Ndj5+fn/r27WttK1GihIYPH66kpCT973//s/s1hIaGasOGDTbTgAEDJEkrVqxQixYtVLp0af3111/WqV27dkpLS9O3335rXc4//2K7dOmSEhIS1KJFC/3yyy9215aTVq1a2Yz9MQxDK1euVJcuXWQYhk29YWFhSkhIsNZSqlQpnTx5Uj///HOB1fOvf/3LZr5Fixa5/lxzYu++It0ckJmenq5evXrZbAc/Pz9VrVpVW7Zssemf0/utZ8+e8vb2ts6HhoZKkvr3728zFi40NFQpKSk6deqUpJunlC9fvqy+ffva1ODk5KTQ0FBrDfHx8dq9e7ciIiJs1tO+ffs8je36536XmpqqCxcuqEqVKipVqlSe9r281nm78vL+8Pb2VteuXbVs2TLr6ei0tDQtX75c3bp1k4eHh6Sb70tvb2+1b9/epuZGjRqpZMmSmWoODg62ORWVky1btmjlypU2R1mRvbvmdNK3336r2bNna9euXYqPj9eqVavyffWFYRiaM2eO3n//fR0/flzlypXTs88+q1deeeXOFG2npKQk+fr6Zvt479699Z///EdPP/20xo0bp7Zt26p79+7q0aOHihXLW26977778jWIt2rVqjbzFotFVapUKfDLKW91/Phx+fv72wQo6f8OUx8/ftymvVKlSpmWUbp06UznsbNaT9WqVTNtv+zWkx/lypVTu3btsnzs8OHD2rt3b7anpM6dO2f9/9dff61p06Zp9+7dSk5OtrbfqXsIBQcH28yfP39ely9f1vvvv6/3338/x3rHjh2rjRs36sEHH1SVKlXUoUMHPfHEE2rWrJldtbi6umbaRnn5uebE3n1FuvlzMwwj0/siw60D1HN6v91aR0bQCAgIyLI9o77Dhw9LujmWLiteXl6S/m/fzarW6tWr5xpE/v77b0VFRSk6OlqnTp2yGYuWkJCQ43PzU+ftyuv7Y8CAAVq+fLm2bdumli1bauPGjTp79qzNrRIOHz6shISEbD+H//m+lDK/V7Jz48YNDR8+XE8++aR1bCBydteEmKtXr6p+/fp66qmn1L17d7uWMWLECK1fv16vv/666tatq4sXL2Y5UM6RTp48qYSEBFWpUiXbPm5ubvr222+1ZcsWffPNN1q7dq2WL1+uhx9+WOvXr5eTk1Ou67kT52Gz+2WalpaWp5oKQnbrMW4ZBFxUpKenq3379nrppZeyfLxatWqSpG3btunRRx9Vy5Yt9c4776hChQoqUaKEoqOjcx0smyGnn09Wbt1HMo769e/fXxEREVk+J+PWADVr1tTBgwf19ddfa+3atVq5cqXeeecdTZgwQZMnT85Tvf90J/af29lX0tPTZbFYtGbNmiyXU7JkSZv5nN5v2dWRW30ZP48lS5bIz88vU7+CuqLx+eefV3R0tEaOHKkmTZrI29tbFotFffr0ydOR4MKoMz/vj7CwMJUvX15Lly5Vy5YttXTpUvn5+dn8oZGeni5fX199/PHHWa7v1kCd18/TxYsX6+DBg3rvvfcy/QF45coVxcbGytfXt8heueYId02I6dSpkzp16pTt48nJyXrllVe0bNkyXb58WXXq1NGsWbOsV8X88ccfWrhwofbt22cddJXX9FyYlixZIkm5HposVqyY2rZtq7Zt22ru3LmaMWOGXnnlFW3ZskXt2rUr8L/OM/6aymAYho4cOWJzP5vSpUtneVOw48ePq3Llytb5/NQWGBiojRs36sqVKzZHYw4cOGB9vCAEBgZq7969Sk9PtzkaU9DruVVISIiSkpKyPVKTYeXKlXJ1ddW6devk4uJibY+Ojs7UN7vtm9PPJy98fHzk6emptLS0XOuVJA8PD/Xu3Vu9e/dWSkqKunfvrunTp2v8+PGmuYw3u20ZEhIiwzAUHBxsDZqFLeNUmK+vb44/j4x999b3sHRzQGpuPv/8c0VERGjOnDnWtuvXr2fal3LaVnmp83bk5/3h5OSkJ554QjExMZo1a5ZWr16twYMH24TGkJAQbdy4Uc2aNSvQP/ji4uKUmpqa5RHJxYsXa/HixXadZbib3TNjYp577jnt2LFDn376qfbu3auePXuqY8eO1jfu//t//0+VK1fW119/reDgYAUFBenpp58uUkdiNm/erKlTpyo4OFj9+vXLtl9WNWfcNC7jMGrGud2CutPo4sWLbcbpfP7554qPj7cJliEhIfrhhx+UkpJibfv6668zXXKan9oeeeQRpaWl6a233rJpf+ONN2SxWHIMtvnxyCOP6MyZM1q+fLm17caNG1qwYIFKliypVq1aFch6btWrVy/t2LFD69aty/TY5cuXdePGDUk3P3gtFovNUZPY2Ngs78zr4eGR5bYNCQlRQkKC9u7da23LODWbF05OTnr88ce1cuVK7du3L9Pj58+ft/7/woULNo85OzurVq1aMgxDqampeVpfUZDdvtq9e3c5OTlp8uTJmY7cGIaR6fXfCWFhYfLy8tKMGTOy3KYZP48KFSqoQYMGWrRokc3pnw0bNuj333/PdT1OTk6ZXuOCBQsyHcHLblvltc7bkZ/3h3TzKqVLly5pyJAhSkpKynQfp169eiktLU1Tp07N9NwbN27Y/bnap08frVq1KtMk3fwMWrVqlXVMFG66a47E5CQuLk7R0dGKi4uTv7+/JGnMmDFau3atoqOjNWPGDP355586fvy4VqxYocWLFystLU0vvPCCevTooc2bNxd6zWvWrNGBAwd048YNnT17Vps3b9aGDRsUGBior776Kse/VKdMmaJvv/1W4eHhCgwM1Llz5/TOO++oYsWKat68uaSbv7BKlSqld999V56envLw8FBoaKjdR5/KlCmj5s2ba9CgQTp79qzmzZunKlWq2FwG/vTTT+vzzz9Xx44d1atXLx09elRLly7NdIlvfmrr0qWL2rRpo1deeUWxsbGqX7++1q9fry+//FIjR460+/LhWz3zzDN67733NHDgQO3atUtBQUH6/PPP9f3332vevHmZxuQUlBdffFFfffWVOnfurIEDB6pRo0a6evWqfvvtN33++eeKjY1VuXLlFB4errlz56pjx4564okndO7cOb399tuqUqWKTSiRpEaNGmnjxo2aO3eu/P39FRwcrNDQUPXp00djx47VY489puHDh1svc61WrVqeBwfPnDlTW7ZsUWhoqAYPHqxatWrp4sWL+uWXX7Rx40ZrwO7QoYP8/PzUrFkzlS9fXn/88YfeeusthYeH37FteSc0atRIkvTKK6+oT58+KlGihLp06aKQkBBNmzZN48ePV2xsrLp16yZPT08dO3ZMq1at0jPPPHPH7//h5eWlhQsX6sknn1TDhg3Vp08f+fj4KC4uTt98842aNWtmDf9RUVEKDw9X8+bN9dRTT+nixYvW+/gkJSXluJ7OnTtryZIl8vb2Vq1atbRjxw5t3Lgx0y0LGjRoICcnJ82aNUsJCQlycXHRww8/LF9f3zzXmZOVK1daj4z+U0RERL7eH5J0//33q06dOlqxYoVq1qyphg0b2jzeqlUrDRkyRFFRUdq9e7c6dOigEiVK6PDhw1qxYoXmz5+vHj165FrzrWrUqKEaNWpk+VhwcDBHYLJS+BdE3XmSjFWrVlnnv/76a0OS4eHhYTMVL17c6NWrl2EYhjF48GBDknHw4EHr83bt2mVIMg4cOFBotWdcYp0xOTs7G35+fkb79u2N+fPn21zKm+HWS2A3bdpkdO3a1fD39zecnZ0Nf39/o2/fvpku0/3yyy+NWrVqGcWLF7e5bDWrS04zZHeJ9bJly4zx48cbvr6+hpubmxEeHm4cP3480/PnzJlj3HfffYaLi4vRrFkzY+fOnZmWmVNtWV0GfOXKFeOFF14w/P39jRIlShhVq1Y1Zs+ebaSnp9v0UzaXKWZ36fetzp49awwaNMgoV66c4ezsbNStWzfLy8Dze4l1bn2vXLlijB8/3qhSpYrh7OxslCtXzmjatKnx+uuvGykpKdZ+H374oVG1alXDxcXFqFGjhhEdHZ3l5dEHDhwwWrZsabi5uRmSbF77+vXrjTp16hjOzs5G9erVjaVLl2Z7iXV2l3yePXvWGDZsmBEQEGCUKFHC8PPzM9q2bWu8//771j7vvfee0bJlS6Ns2bKGi4uLERISYrz44otGQkJCjtsiu0usPTw8MvXNqu6sZHeJdV73lalTpxr33XefUaxYsUyXW69cudJo3ry59TOnRo0axrBhw2w+Z7J7v2W81tmzZ9u0Z3dJcXa3Z9iyZYsRFhZmeHt7G66urkZISIgxcOBAY+fOnTb9Vq5cadSsWdNwcXExatWqZXzxxRdZvt90yyXWly5dsr4vSpYsaYSFhRkHDhzIclt98MEHRuXKlQ0nJ6dMl1vntc5bZWyP7KZt27YZhpH390eG1157zZBkzJgxI9t1v//++0ajRo0MNzc3w9PT06hbt67x0ksvGadPn7b2yc/nQXZyer/d6yyGUURHNN4Gi8Vic95w+fLl6tevn/bv359pMFzJkiXl5+eniRMnZjqc+ffff8vd3V3r169X+/btC/MlAAAcaP78+XrhhRcUGxub5ZVqKBruidNJ999/v9LS0nTu3DnrHWBv1axZM924cUNHjx61noI4dOiQpDs3aBMAUPQYhqEPP/xQrVq1IsAUcXdNiElKStKRI0es88eOHdPu3btVpkwZVatWTf369dOAAQM0Z84c3X///Tp//rw2bdqkevXqKTw8XO3atVPDhg311FNPad68eUpPT9ewYcPUvn17h11dAAAoPFevXtVXX32lLVu26LffftOXX37p6JKQi7vmdNLWrVvVpk2bTO0RERGKiYlRamqqpk2bpsWLF+vUqVMqV66cHnroIU2ePFl169aVJJ0+fVrPP/+81q9fLw8PD3Xq1Elz5sxRmTJlCvvlAAAKWWxsrIKDg1WqVCk9++yzmj59uqNLQi7umhADAADuLffMfWIAAMDdhRADAABMydQDe9PT03X69Gl5enresS+5AwAABcswDF25ckX+/v55/mLirJg6xJw+fTrTN7kCAABzOHHihCpWrGj3800dYjJuT37ixIkC+7p2AABwZyUmJiogIOC2v2bE1CEm4xSSl5cXIQYAAJO53aEgDOwFAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmVNzRBQC4+wSN+ybXPrEzwwuhEgB3M47EAAAAUyLEAAAAUyLEAAAAUyLEAAAAU3JoiAkKCpLFYsk0DRs2zJFlAQAAE3Do1Uk///yz0tLSrPP79u1T+/bt1bNnTwdWBQAAzMChIcbHx8dmfubMmQoJCVGrVq0cVBEAADCLInOfmJSUFC1dulSjRo2SxWLJsk9ycrKSk5Ot84mJiYVVHgAAKGKKzMDe1atX6/Llyxo4cGC2faKiouTt7W2dAgICCq9AAABQpBSZEPPhhx+qU6dO8vf3z7bP+PHjlZCQYJ1OnDhRiBUCAICipEicTjp+/Lg2btyoL774Isd+Li4ucnFxKaSqAABAUVYkjsRER0fL19dX4eF8lwoAAMgbh4eY9PR0RUdHKyIiQsWLF4kDQwAAwAQcHmI2btyouLg4PfXUU44uBQAAmIjDD3106NBBhmE4ugwAAGAyDj8SAwAAYA9CDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCWHh5hTp06pf//+Klu2rNzc3FS3bl3t3LnT0WUBAIAirrgjV37p0iU1a9ZMbdq00Zo1a+Tj46PDhw+rdOnSjiwLAACYgENDzKxZsxQQEKDo6GhrW3BwsAMrAgAAZuHQ00lfffWVGjdurJ49e8rX11f333+/Pvjgg2z7JycnKzEx0WYCAAD3JoeGmD///FMLFy5U1apVtW7dOg0dOlTDhw/XokWLsuwfFRUlb29v6xQQEFDIFQMAgKLCYhiG4aiVOzs7q3Hjxtq+fbu1bfjw4fr555+1Y8eOTP2Tk5OVnJxsnU9MTFRAQIASEhLk5eVVKDUDyF3QuG9y7RM7M7wQKgFQFCUmJsrb2/u2f3879EhMhQoVVKtWLZu2mjVrKi4uLsv+Li4u8vLyspkAAMC9yaEhplmzZjp48KBN26FDhxQYGOigigAAgFk4NMS88MIL+uGHHzRjxgwdOXJEn3zyid5//30NGzbMkWUBAAATcGiIeeCBB7Rq1SotW7ZMderU0dSpUzVv3jz169fPkWUBAAATcOh9YiSpc+fO6ty5s6PLAAAAJuPwrx0AAACwByEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYkkNDzKRJk2SxWGymGjVqOLIkAABgEsUdXUDt2rW1ceNG63zx4g4vCQAAmIDDE0Px4sXl5+fn6DIAAIDJOHxMzOHDh+Xv76/KlSurX79+iouLc3RJAADABBx6JCY0NFQxMTGqXr264uPjNXnyZLVo0UL79u2Tp6dnpv7JyclKTk62zicmJhZmuQAAoAhxaIjp1KmT9f/16tVTaGioAgMD9dlnnykyMjJT/6ioKE2ePLkwSwQAAEWUw08n/VOpUqVUrVo1HTlyJMvHx48fr4SEBOt04sSJQq4QAAAUFUUqxCQlJeno0aOqUKFClo+7uLjIy8vLZgIAAPcmh4aYMWPG6H//+59iY2O1fft2PfbYY3JyclLfvn0dWRYAADABh46JOXnypPr27asLFy7Ix8dHzZs31w8//CAfHx9HlgUAAEzAoSHm008/deTqAQCAiRWpMTEAAAB5RYgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmZFeI+fPPPwu6DgAAgHyxK8RUqVJFbdq00dKlS3X9+vWCrgkAACBXdoWYX375RfXq1dOoUaPk5+enIUOG6Keffiro2gAAALJlV4hp0KCB5s+fr9OnT+ujjz5SfHy8mjdvrjp16mju3Lk6f/58QdcJAABg47YG9hYvXlzdu3fXihUrNGvWLB05ckRjxoxRQECABgwYoPj4+IKqEwAAwMZthZidO3fq2WefVYUKFTR37lyNGTNGR48e1YYNG3T69Gl17dq1oOoEAACwUdyeJ82dO1fR0dE6ePCgHnnkES1evFiPPPKIihW7mYmCg4MVExOjoKCggqwVAADAyq4Qs3DhQj311FMaOHCgKlSokGUfX19fffjhh7dVHAAAQHbsCjGHDx/OtY+zs7MiIiLsWTwAAECu7BoTEx0drRUrVmRqX7FihRYtWnTbRQEAAOTGrhATFRWlcuXKZWr39fXVjBkzbrsoAACA3NgVYuLi4hQcHJypPTAwUHFxcbddFAAAQG7sCjG+vr7au3dvpvY9e/aobNmyt10UAABAbuwKMX379tXw4cO1ZcsWpaWlKS0tTZs3b9aIESPUp0+fgq4RAAAgE7uuTpo6dapiY2PVtm1bFS9+cxHp6ekaMGAAY2IAAEChsCvEODs7a/ny5Zo6dar27NkjNzc31a1bV4GBgQVdHwAAQJbsCjEZqlWrpmrVqhVULQAAAHlmV4hJS0tTTEyMNm3apHPnzik9Pd3m8c2bN+d7mTNnztT48eM1YsQIzZs3z56yAADAPcSuEDNixAjFxMQoPDxcderUkcViua0ifv75Z7333nuqV6/ebS0HAADcO+wKMZ9++qk+++wzPfLII7ddQFJSkvr166cPPvhA06ZNu+3lAQCAe4Ndl1g7OzurSpUqBVLAsGHDFB4ernbt2hXI8gAAwL3BrhAzevRozZ8/X4Zh3NbKP/30U/3yyy+KiorKU//k5GQlJibaTAAA4N5k1+mk7777Tlu2bNGaNWtUu3ZtlShRwubxL774ItdlnDhxQiNGjNCGDRvk6uqap/VGRUVp8uTJ9pQMAADuMhbDjsMpgwYNyvHx6OjoXJexevVqPfbYY3JycrK2paWlyWKxqFixYkpOTrZ5TLp5JCY5Odk6n5iYqICAACUkJMjLyyufrwLAnRI07ptc+8TODC+ESgAURYmJifL29r7t3992HYnJS0jJTdu2bfXbb7/ZtA0aNEg1atTQ2LFjMwUYSXJxcZGLi8ttrxsAAJif3Te7u3HjhrZu3aqjR4/qiSeekKenp06fPi0vLy+VLFky1+d7enqqTp06Nm0eHh4qW7ZspnYAAIBb2RVijh8/ro4dOyouLk7Jyclq3769PD09NWvWLCUnJ+vdd98t6DoBAABs2H2zu8aNG2vPnj0qW7astf2xxx7T4MGD7S5m69atdj8XAADcW+wKMdu2bdP27dvl7Oxs0x4UFKRTp04VSGEAAAA5ses+Menp6UpLS8vUfvLkSXl6et52UQAAALmxK8R06NDB5ksaLRaLkpKSNHHixAL5KgIAAIDc2HU6ac6cOQoLC1OtWrV0/fp1PfHEEzp8+LDKlSunZcuWFXSNAAAAmdgVYipWrKg9e/bo008/1d69e5WUlKTIyEj169dPbm5uBV0jAABAJnbfJ6Z48eLq379/QdYCAACQZ3aFmMWLF+f4+IABA+wqBgAAIK/svk/MP6WmpuratWtydnaWu7s7IQYAANxxdl2ddOnSJZspKSlJBw8eVPPmzRnYCwAACoVdISYrVatW1cyZMzMdpQEAALgTCizESDcH+54+fbogFwkAAJAlu8bEfPXVVzbzhmEoPj5eb731lpo1a1YghQEAAOTErhDTrVs3m3mLxSIfHx89/PDDmjNnTkHUBQAAkCO7Qkx6enpB1wEAAJAvBTomBgAAoLDYdSRm1KhRee47d+5ce1YBAACQI7tCzK+//qpff/1Vqampql69uiTp0KFDcnJyUsOGDa39LBZLwVQJ4K4TNO6bXPvEzgwvhEoAmJVdIaZLly7y9PTUokWLVLp0aUk3b4A3aNAgtWjRQqNHjy7QIgEAAG5l15iYOXPmKCoqyhpgJKl06dKaNm0aVycBAIBCYVeISUxM1Pnz5zO1nz9/XleuXLntogAAAHJjV4h57LHHNGjQIH3xxRc6efKkTp48qZUrVyoyMlLdu3cv6BoBAAAysWtMzLvvvqsxY8boiSeeUGpq6s0FFS+uyMhIzZ49u0ALBAAAyIpdIcbd3V3vvPOOZs+eraNHj0qSQkJC5OHhUaDFAQAAZOe2bnYXHx+v+Ph4Va1aVR4eHjIMo6DqAgAAyJFdIebChQtq27atqlWrpkceeUTx8fGSpMjISC6vBgAAhcKuEPPCCy+oRIkSiouLk7u7u7W9d+/eWrt2bYEVBwAAkB27xsSsX79e69atU8WKFW3aq1atquPHjxdIYQAAADmx60jM1atXbY7AZLh48aJcXFxuuygAAIDc2BViWrRoocWLF1vnLRaL0tPT9dprr6lNmzYFVhwAAEB27Dqd9Nprr6lt27bauXOnUlJS9NJLL2n//v26ePGivv/++4KuEQAAIBO7jsTUqVNHhw4dUvPmzdW1a1ddvXpV3bt316+//qqQkJCCrhEAACCTfB+JSU1NVceOHfXuu+/qlVdeuRM1AQAA5CrfR2JKlCihvXv33olaAAAA8syu00n9+/fXhx9+WNC1AAAA5JldA3tv3Lihjz76SBs3blSjRo0yfWfS3LlzC6Q4AACA7OQrxPz5558KCgrSvn371LBhQ0nSoUOHbPpYLJaCqw4AACAb+QoxVatWVXx8vLZs2SLp5tcMvPnmmypfvvwdKQ4AACA7+RoTc+u3VK9Zs0ZXr14t0IIAAADywq6BvRluDTX5tXDhQtWrV09eXl7y8vJSkyZNtGbNmttaJgAAuDfkK8RYLJZMY15uZwxMxYoVNXPmTO3atUs7d+7Uww8/rK5du2r//v12LxMAANwb8jUmxjAMDRw40Polj9evX9e//vWvTFcnffHFF3laXpcuXWzmp0+froULF+qHH35Q7dq181MaAAC4x+QrxERERNjM9+/fv8AKSUtL04oVK3T16lU1adKkwJYLAADuTvkKMdHR0QVewG+//aYmTZro+vXrKlmypFatWqVatWpl2Tc5OVnJycnW+cTExAKvBwAAmMNtDewtCNWrV9fu3bv1448/aujQoYqIiNDvv/+eZd+oqCh5e3tbp4CAgEKuFgAAFBUW43YvMSpg7dq1U0hIiN57771Mj2V1JCYgIEAJCQny8vIqzDIB5CBo3DcFspzYmeEFshwARUtiYqK8vb1v+/e3XV87cCelp6fbBJV/cnFxsQ4qBgAA9zaHhpjx48erU6dOqlSpkq5cuaJPPvlEW7du1bp16xxZFgAAMAGHhphz585pwIABio+Pl7e3t+rVq6d169apffv2jiwLAACYgENDzIcffujI1QMAABNz+NVJAAAA9iDEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAU3JoiImKitIDDzwgT09P+fr6qlu3bjp48KAjSwIAACbh0BDzv//9T8OGDdMPP/ygDRs2KDU1VR06dNDVq1cdWRYAADCB4o5c+dq1a23mY2Ji5Ovrq127dqlly5YOqgoAAJhBkRoTk5CQIEkqU6aMgysBAABFnUOPxPxTenq6Ro4cqWbNmqlOnTpZ9klOTlZycrJ1PjExsbDKAwAARUyRORIzbNgw7du3T59++mm2faKiouTt7W2dAgICCrFCAABQlBSJEPPcc8/p66+/1pYtW1SxYsVs+40fP14JCQnW6cSJE4VYJQAAKEocejrJMAw9//zzWrVqlbZu3arg4OAc+7u4uMjFxaWQqgMAAEWZQ0PMsGHD9Mknn+jLL7+Up6enzpw5I0ny9vaWm5ubI0sDAABFnENPJy1cuFAJCQlq3bq1KlSoYJ2WL1/uyLIAAIAJOPx0EgAAgD2KxMBeAACA/CLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAU3JoiPn222/VpUsX+fv7y2KxaPXq1Y4sBwAAmIhDQ8zVq1dVv359vf32244sAwAAmFBxR668U6dO6tSpkyNLAAAAJsWYGAAAYEoOPRKTX8nJyUpOTrbOJyYmOrAaAADgSKY6EhMVFSVvb2/rFBAQ4OiSAACAg5gqxIwfP14JCQnW6cSJE44uCQAAOIipTie5uLjIxcXF0WUAAIAiwKEhJikpSUeOHLHOHzt2TLt371aZMmVUqVIlB1YGAACKOoeGmJ07d6pNmzbW+VGjRkmSIiIiFBMT46CqAACAGTg0xLRu3VqGYTiyBAAAYFKmGtgLAACQgRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMqbijCwCA7ASN+ybXPrEzwwuhEgBFEUdiAACAKRFiAACAKRFiAACAKRFiAACAKRFiAACAKRFiAACAKRWJEPP2228rKChIrq6uCg0N1U8//eTokgAAQBHn8BCzfPlyjRo1ShMnTtQvv/yi+vXrKywsTOfOnXN0aQAAoAizGIZhOLKA0NBQPfDAA3rrrbckSenp6QoICNDzzz+vcePG5fjcxMREeXt7KyEhQV5eXoVRLnDPy8sN6IoabogHFC0F9fvboUdiUlJStGvXLrVr187aVqxYMbVr1047duxwYGUAAKCoc+jXDvz1119KS0tT+fLlbdrLly+vAwcOZOqfnJys5ORk63xCQoKkm4kOQM7qTFzn6BIcptILK3Lts29yWCFUAkD6v9/bt3syyFTfnRQVFaXJkydnag8ICHBANQDuJt7zHF0BcO+5cuWKvL297X6+Q0NMuXLl5OTkpLNnz9q0nz17Vn5+fpn6jx8/XqNGjbLOp6en6+LFiypbtqwsFssdr9cMEhMTFRAQoBMnTjBOqICwTQse27TgsU0LHtu04GVs07i4OFksFvn7+9/W8hwaYpydndWoUSNt2rRJ3bp1k3QzmGzatEnPPfdcpv4uLi5ycXGxaStVqlQhVGo+Xl5evOkKGNu04LFNCx7btOCxTQuet7d3gWxTh59OGjVqlCIiItS4cWM9+OCDmjdvnq5evapBgwY5ujQAAFCEOTzE9O7dW+fPn9eECRN05swZNWjQQGvXrs002BcAAOCfHB5iJOm5557L8vQR8s/FxUUTJ07MdNoN9mObFjy2acFjmxY8tmnBK+ht6vCb3QEAANjD4V87AAAAYA9CDAAAMCVCDAAAMCVCDAAAMCVCzF1k+vTpatq0qdzd3bO9CWBcXJzCw8Pl7u4uX19fvfjii7px40bhFmpiQUFBslgsNtPMmTMdXZapvP322woKCpKrq6tCQ0P1008/ObokU5s0aVKmfbJGjRqOLstUvv32W3Xp0kX+/v6yWCxavXq1zeOGYWjChAmqUKGC3Nzc1K5dOx0+fNgxxZpEbtt04MCBmfbbjh075ns9hJi7SEpKinr27KmhQ4dm+XhaWprCw8OVkpKi7du3a9GiRYqJidGECRMKuVJzmzJliuLj463T888/7+iSTGP58uUaNWqUJk6cqF9++UX169dXWFiYzp075+jSTK127do2++R3333n6JJM5erVq6pfv77efvvtLB9/7bXX9Oabb+rdd9/Vjz/+KA8PD4WFhen69euFXKl55LZNJaljx442++2yZcvyvyIDd53o6GjD29s7U/t///tfo1ixYsaZM2esbQsXLjS8vLyM5OTkQqzQvAIDA4033njD0WWY1oMPPmgMGzbMOp+Wlmb4+/sbUVFRDqzK3CZOnGjUr1/f0WXcNSQZq1atss6np6cbfn5+xuzZs61tly9fNlxcXIxly5Y5oELzuXWbGoZhREREGF27dr3tZXMk5h6yY8cO1a1b1+ZuyGFhYUpMTNT+/fsdWJm5zJw5U2XLltX999+v2bNnczouj1JSUrRr1y61a9fO2lasWDG1a9dOO3bscGBl5nf48GH5+/urcuXK6tevn+Li4hxd0l3j2LFjOnPmjM1+6+3trdDQUPbb27R161b5+vqqevXqGjp0qC5cuJDvZRSJO/aicJw5cybT1zlkzJ85c8YRJZnO8OHD1bBhQ5UpU0bbt2/X+PHjFR8fr7lz5zq6tCLvr7/+UlpaWpb74IEDBxxUlfmFhoYqJiZG1atXV3x8vCZPnqwWLVpo37598vT0dHR5ppfx2ZjVfsvnpv06duyo7t27Kzg4WEePHtXLL7+sTp06aceOHXJycsrzcggxRdy4ceM0a9asHPv88ccfDOS7DfnZxqNGjbK21atXT87OzhoyZIiioqK4NTkcolOnTtb/16tXT6GhoQoMDNRnn32myMhIB1YGZK9Pnz7W/9etW1f16tVTSEiItm7dqrZt2+Z5OYSYIm706NEaOHBgjn0qV66cp2X5+flluhLk7Nmz1sfuVbezjUNDQ3Xjxg3FxsaqevXqd6C6u0e5cuXk5ORk3ecynD179p7e/wpaqVKlVK1aNR05csTRpdwVMvbNs2fPqkKFCtb2s2fPqkGDBg6q6u5TuXJllStXTkeOHCHE3E18fHzk4+NTIMtq0qSJpk+frnPnzsnX11eStGHDBnl5ealWrVoFsg4zup1tvHv3bhUrVsy6PZE9Z2dnNWrUSJs2bVK3bt0kSenp6dq0aRNfAFuAkpKSdPToUT355JOOLuWuEBwcLD8/P23atMkaWhITE/Xjjz9meyUo8u/kyZO6cOGCTVDMC0LMXSQuLk4XL15UXFyc0tLStHv3bklSlSpVVLJkSXXo0EG1atXSk08+qddee01nzpzRv//9bw0bNoxTIXmwY8cO/fjjj2rTpo08PT21Y8cOvfDCC+rfv79Kly7t6PJMYdSoUYqIiFDjxo314IMPat68ebp69aoGDRrk6NJMa8yYMerSpYsCAwN1+vRpTZw4UU5OTurbt6+jSzONpKQkmyNXx44d0+7du1WmTBlVqlRJI0eO1LRp01S1alUFBwfr1Vdflb+/vzWMI7OctmmZMmU0efJkPf744/Lz89PRo0f10ksvqUqVKgoLC8vfim77+iYUGREREYakTNOWLVusfWJjY41OnToZbm5uRrly5YzRo0cbqampjivaRHbt2mWEhoYa3t7ehqurq1GzZk1jxowZxvXr1x1dmqksWLDAqFSpkuHs7Gw8+OCDxg8//ODokkytd+/eRoUKFQxnZ2fjvvvuM3r37m0cOXLE0WWZypYtW7L87IyIiDAM4+Zl1q+++qpRvnx5w8XFxWjbtq1x8OBBxxZdxOW0Ta9du2Z06NDB8PHxMUqUKGEEBgYagwcPtrn9R15ZDMMwbjdxAQAAFDbuEwMAAEyJEAMAAEyJEAMAAEyJEAMAAEyJEAMAAEyJEAMAAEyJEAMAAEyJEAMA/7/WrVtr5MiRji4DQB4RYoB7wMCBA2WxWDJNBfUlgTExMSpVqlSBLMseXbp0UceOHbN8bNu2bbJYLNq7d28hVwXgTiPEAPeIjh07Kj4+3mYKDg52dFmZpKam5vs5kZGR2rBhg06ePJnpsejoaDVu3Fj16tUriPIAFCGEGOAe4eLiIj8/P5vJyclJkvTll1+qYcOGcnV1VeXKlTV58mTduHHD+ty5c+eqbt268vDwUEBAgJ599lklJSVJkrZu3apBgwYpISHBeoRn0qRJkiSLxaLVq1fb1FGqVCnFxMRIkmJjY2WxWLR8+XK1atVKrq6u+vjjjyVJ//nPf1SzZk25urqqRo0aeuedd7J9bZ07d5aPj491uRmSkpK0YsUKRUZG6sKFC+rbt6/uu+8+ubu7q27dulq2bFmO2yy3+iXpxIkT6tWrl0qVKqUyZcqoa9euio2NzXG5AAoGIQa4x23btk0DBgzQiBEj9Pvvv+u9995TTEyMpk+fbu1TrFgxvfnmm9q/f78WLVqkzZs366WXXpIkNW3aVPPmzZOXl5f1CM+YMWPyVcO4ceM0YsQI/fHHHwoLC9PHH3+sCRMmaPr06frjjz80Y8YMvfrqq1q0aFGWzy9evLgGDBigmJgY/fPr4FasWKG0tDT17dtX169fV6NGjfTNN99o3759euaZZ/Tkk0/qp59+smOr3ZSamqqwsDB5enpq27Zt+v7771WyZEl17NhRKSkpdi8XQB4V9DdXAih6IiIiDCcnJ8PDw8M69ejRwzAMw2jbtq0xY8YMm/5LliwxKlSokO3yVqxYYZQtW9Y6Hx0dbXh7e2fqJ8lYtWqVTZu3t7cRHR1tGIZhHDt2zJBkzJs3z6ZPSEiI8cknn9i0TZ061WjSpEm2Nf3xxx+ZvrW9RYsWRv/+/bN9Tnh4uDF69GjrfKtWrYwRI0bkuf4lS5YY1atXN9LT062PJycnG25ubsa6deuyXS+AglHcsREKQGFp06aNFi5caJ338PCQJO3Zs0fff/+9zZGXtLQ0Xb9+XdeuXZO7u7s2btyoqKgoHThwQImJibpx44bN47ercePG1v9fvXpVR48eVWRkpAYPHmxtv3Hjhry9vbNdRo0aNdS0aVN99NFHat26tY4cOaJt27ZpypQp1tc0Y8YMffbZZzp16pRSUlKUnJx8W/Xv2bNHR44ckaenp0379evXdfToUbuXCyBvCDHAPcLDw0NVqlTJ1J6UlKTJkyere/fumR5zdXVVbGysOnfurKFDh2r69OkqU6aMvvvuO0VGRiolJSXHEGCxWGxO70hZD9zNCFQZ9UjSBx98oNDQUJt+GWN4shMZGannn39eb7/9tqKjoxUSEqJWrVpJkmbPnq358+dr3rx51vE9I0eOzPG0T271JyUlqVGjRtZxPP/k4+OTY60Abh8hBrjHNWzYUAcPHswy4EjSrl27lJ6erjlz5qhYsZvD6D777DObPs7OzkpLS8v0XB8fH8XHx1vnDx8+rGvXruVYT/ny5eXv768///xT/fr1y9dr6dWrl0aMGKFPPvlEixcv1tChQ2WxWCRJ33//vbp27ar+/ftLktLT03Xo0CHVqlUr2+XlVn/Dhg21fPly+fr6ysvLK1+1Arh9hBjgHjdhwgR17txZlSpVUo8ePVSsWDHt2bNH+/bt07Rp01SlShWlpqZqwYIF6tKli77//nu9++67NssICgpSUlKSNm3apPr168vd3V3u7u56+OGH9dZbb6lJkyZKS0vT2LFjVaJEiVxrmjx5soYPHy5vb2917NhRycnJ2rlzpy5duqRRo0Zl+7ySJUuqd+/eGj9+vBITEzVw4EDrY1WrVtXnn3+u7du3q3Tp0po7d67Onj2bY4jJrf5+/fpp9uzZ6tq1q6ZMmaKKFSvq+PHj+uKLL/TSSy+pYsWKub5WAPbj6iTgHhcWFqavv/5a69ev1wMPPKCHHnpIb7zxhgIDAyVJ9evX19y5czVr1izVqVNHH3/8saKiomyW0bRpU/3rX/9S79695ePjo9dee02SNGfOHAUEBKhFixZ64oknNGbMmDyNQXn66af1n//8R9HR0apbt65atWqlmJiYPN3XJjIyUpcuXVJYWJj8/f2t7f/+97/VsGFDhYWFqXXr1vLz81O3bt1yXFZu9bu7u+vbb79VpUqV1L17d9WsWVORkZG6fv06R2aAQmAxbj3hCwAAYAIciQEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKb0/wEn9zvNejVF4gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "36/36 [==============================] - 0s 3ms/step\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAHHCAYAAABOTAltAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/30lEQVR4nO3deVwVdf///+cRZRVwA5FEQNz31CJ3zQUNTTPXNNHIvMxSU0utK3dFM02zsuUqcCkzM61vXe7LlaUtWmparom44JILiCYgzO8Pf5xPR/Yjchh93G+3uem8z/vMvM4w5/Bk5j1zLIZhGAIAADCZYo4uAAAAwB6EGAAAYEqEGAAAYEqEGAAAYEqEGAAAYEqEGAAAYEqEGAAAYEqEGAAAYEqEGAAAYEqEmLvApEmTZLFYCmVdrVu3VuvWra3zW7dulcVi0eeff14o6x84cKCCgoIKZV32SkpK0tNPPy0/Pz9ZLBaNHDnS0SXdNWJjY2WxWBQTE+PoUu4JWb3fLBaLJk2a5JB6gFsRYoqYmJgYWSwW6+Tq6ip/f3+FhYXpzTff1JUrVwpkPadPn9akSZO0e/fuAlleQSrKteXFjBkzFBMTo6FDh2rJkiV68skns+0bFBRk8/P+53T9+vU7Vt/q1avvyLLNqHXr1qpTp45dz92+fbsmTZqky5cvF2xRd6Hff/9dkyZNUmxsbIEut7D/kCps7du3l8Vi0XPPPefoUoqk4o4uAFmbMmWKgoODlZqaqjNnzmjr1q0aOXKk5s6dq6+++kr16tWz9v33v/+tcePG5Wv5p0+f1uTJkxUUFKQGDRrk+Xnr16/P13rskVNtH3zwgdLT0+94Dbdj8+bNeuihhzRx4sQ89W/QoIFGjx6dqd3Z2bmgS5N0M8T06NFD3bp1uyPLv5MCAwP1999/q0SJEo4uRdLNEDN58mQNHDhQpUqVcnQ5heLvv/9W8eL5/9Xx+++/a/LkyWrdunWRP5paVHzxxRfasWOHo8so0ggxRVSnTp3UuHFj6/z48eO1efNmde7cWY8++qj++OMPubm5SZKKFy9u14dKfly7dk3u7u537BdrXhWVX145OXfunGrVqpXn/vfdd5/69+9/Byu689LT05WSkiJXV9c7up6Mo5N3u4z3W1F0L2z/O8kwDF2/ft36+Z2d69eva/To0Ro7dqwmTJhQSNWZD6eTTOThhx/Wq6++quPHj2vp0qXW9qzGxGzYsEHNmzdXqVKlVLJkSVWvXl0vv/yypJuHXx944AFJ0qBBg6ynLzLGGWQcXt+1a5datmwpd3d363NvHROTIS0tTS+//LL8/Pzk4eGhRx99VCdOnLDpExQUpIEDB2Z67j+XmVttWZ2jv3r1qkaPHq2AgAC5uLioevXqev3113XrF7RnHJJdvXq16tSpIxcXF9WuXVtr167NeoPf4ty5c4qMjFT58uXl6uqq+vXra9GiRdbHMw5rHzt2TN9884219ts9fH758mWNHDnS+vqqVKmiWbNmZToi9frrr6tp06YqW7as3Nzc1KhRo0yH2C0Wi65evapFixZZ68v4mWQ33iir/StjW3788ceqXbu2XFxcrNvx1KlTeuqpp1S+fHnrNv7oo48yLXfBggWqXbu23N3dVbp0aTVu3FiffPJJjtsiqzExAwcOVMmSJXXq1Cl169ZNJUuWlI+Pj8aMGaO0tLQcl5edvOwrkyZN0osvvihJCg4OzvLnvXTpUjVq1Ehubm4qU6aM+vTpk+l9kd37LeO1vv7663r77bdVuXJlubu7q0OHDjpx4oQMw9DUqVNVsWJFubm5qWvXrrp48WKm17JmzRq1aNFCHh4e8vT0VHh4uPbv35+pX8ZrdXV1VZ06dbRq1apst80/x8QcP35czz77rKpXry43NzeVLVtWPXv2tNkOMTEx6tmzpySpTZs21m21devWfNdpr7y8P1q1aqX69etn+fzq1asrLCzMOp+enq558+apdu3acnV1Vfny5TVkyBBdunTJ5nlBQUHq3Lmz1q1bp8aNG8vNzU3vvfdervW+9tprSk9P15gxY+x4tfcOjsSYzJNPPqmXX35Z69ev1+DBg7Pss3//fnXu3Fn16tXTlClT5OLioiNHjuj777+XJNWsWVNTpkzRhAkT9Mwzz6hFixaSpKZNm1qXceHCBXXq1El9+vRR//79Vb58+Rzrmj59uiwWi8aOHatz585p3rx5ateunXbv3p3rXxz/lJfa/skwDD366KPasmWLIiMj1aBBA61bt04vvviiTp06pTfeeMOm/3fffacvvvhCzz77rDw9PfXmm2/q8ccfV1xcnMqWLZttXX///bdat26tI0eO6LnnnlNwcLBWrFihgQMH6vLlyxoxYoRq1qypJUuW6IUXXlDFihWtp4h8fHxyfM2pqan666+/bNrc3d3l7u6ua9euqVWrVjp16pSGDBmiSpUqafv27Ro/frzi4+M1b94863Pmz5+vRx99VP369VNKSoo+/fRT9ezZU19//bXCw8MlSUuWLNHTTz+tBx98UM8884wkKSQkJMf6srN582Z99tlneu6551SuXDkFBQXp7Nmzeuihh6whwMfHR2vWrFFkZKQSExOtg5w/+OADDR8+XD169NCIESN0/fp17d27Vz/++KOeeOKJfNeSlpamsLAwhYaG6vXXX9fGjRs1Z84chYSEaOjQoXa9vtz2le7du+vQoUNatmyZ3njjDZUrV07S//28p0+frldffVW9evXS008/rfPnz2vBggVq2bKlfv31V5vTTzm93z7++GOlpKTo+eef18WLF/Xaa6+pV69eevjhh7V161aNHTtWR44c0YIFCzRmzBibwLhkyRJFREQoLCxMs2bN0rVr17Rw4UI1b95cv/76qzW0rl+/Xo8//rhq1aqlqKgoXbhwQYMGDVLFihVz3U4///yztm/frj59+qhixYqKjY3VwoUL1bp1a/3+++9yd3dXy5YtNXz4cL355pt6+eWXVbNmTUmy/pvXOm9HXt4fTz75pAYPHqx9+/bZjJP6+eefdejQIf373/+2tg0ZMkQxMTEaNGiQhg8frmPHjumtt97Sr7/+qu+//97mqPHBgwfVt29fDRkyRIMHD1b16tVzrDUuLk4zZ87URx99lK/Pz3uSgSIlOjrakGT8/PPP2fbx9vY27r//fuv8xIkTjX/+KN944w1DknH+/Plsl/Hzzz8bkozo6OhMj7Vq1cqQZLz77rtZPtaqVSvr/JYtWwxJxn333WckJiZa2z/77DNDkjF//nxrW2BgoBEREZHrMnOqLSIiwggMDLTOr1692pBkTJs2zaZfjx49DIvFYhw5csTaJslwdna2aduzZ48hyViwYEGmdf3TvHnzDEnG0qVLrW0pKSlGkyZNjJIlS9q89sDAQCM8PDzH5f2zr6RM08SJEw3DMIypU6caHh4exqFDh2yeN27cOMPJycmIi4uztl27ds2mT0pKilGnTh3j4Ycftmn38PDI8udw67bNcOv+ZRg3t2WxYsWM/fv327RHRkYaFSpUMP766y+b9j59+hje3t7WGrt27WrUrl078wbJxbFjxzLtGxEREYYkY8qUKTZ977//fqNRo0a5LrNVq1aZasnrvjJ79mxDknHs2DGb58fGxhpOTk7G9OnTbdp/++03o3jx4jbt2b3fMl6rj4+PcfnyZWv7+PHjDUlG/fr1jdTUVGt73759DWdnZ+P69euGYRjGlStXjFKlShmDBw+2We6ZM2cMb29vm/YGDRoYFSpUsFnP+vXrDUmZ9ol/7p+GkXm/MwzD2LFjhyHJWLx4sbVtxYoVhiRjy5YtNn3zU2dWMj6DVqxYkWO/vLw/Ll++bLi6uhpjx4616Tt8+HDDw8PDSEpKMgzDMLZt22ZIMj7++GObfmvXrs3UnvEeX7t2bY71/VOPHj2Mpk2bWuclGcOGDcvz8+8lnE4yoZIlS+Z4lVLGX3hffvml3YNgXVxcNGjQoDz3HzBggDw9Pa3zPXr0UIUKFfTf//7XrvXn1X//+185OTlp+PDhNu2jR4+WYRhas2aNTXu7du1sjjzUq1dPXl5e+vPPP3Ndj5+fn/r27WttK1GihIYPH66kpCT973//s/s1hIaGasOGDTbTgAEDJEkrVqxQixYtVLp0af3111/WqV27dkpLS9O3335rXc4//2K7dOmSEhIS1KJFC/3yyy9215aTVq1a2Yz9MQxDK1euVJcuXWQYhk29YWFhSkhIsNZSqlQpnTx5Uj///HOB1fOvf/3LZr5Fixa5/lxzYu++It0ckJmenq5evXrZbAc/Pz9VrVpVW7Zssemf0/utZ8+e8vb2ts6HhoZKkvr3728zFi40NFQpKSk6deqUpJunlC9fvqy+ffva1ODk5KTQ0FBrDfHx8dq9e7ciIiJs1tO+ffs8je36536XmpqqCxcuqEqVKipVqlSe9r281nm78vL+8Pb2VteuXbVs2TLr6ei0tDQtX75c3bp1k4eHh6Sb70tvb2+1b9/epuZGjRqpZMmSmWoODg62ORWVky1btmjlypU2R1mRvbvmdNK3336r2bNna9euXYqPj9eqVavyffWFYRiaM2eO3n//fR0/flzlypXTs88+q1deeeXOFG2npKQk+fr6Zvt479699Z///EdPP/20xo0bp7Zt26p79+7q0aOHihXLW26977778jWIt2rVqjbzFotFVapUKfDLKW91/Phx+fv72wQo6f8OUx8/ftymvVKlSpmWUbp06UznsbNaT9WqVTNtv+zWkx/lypVTu3btsnzs8OHD2rt3b7anpM6dO2f9/9dff61p06Zp9+7dSk5OtrbfqXsIBQcH28yfP39ely9f1vvvv6/3338/x3rHjh2rjRs36sEHH1SVKlXUoUMHPfHEE2rWrJldtbi6umbaRnn5uebE3n1FuvlzMwwj0/siw60D1HN6v91aR0bQCAgIyLI9o77Dhw9LujmWLiteXl6S/m/fzarW6tWr5xpE/v77b0VFRSk6OlqnTp2yGYuWkJCQ43PzU+ftyuv7Y8CAAVq+fLm2bdumli1bauPGjTp79qzNrRIOHz6shISEbD+H//m+lDK/V7Jz48YNDR8+XE8++aR1bCBydteEmKtXr6p+/fp66qmn1L17d7uWMWLECK1fv16vv/666tatq4sXL2Y5UM6RTp48qYSEBFWpUiXbPm5ubvr222+1ZcsWffPNN1q7dq2WL1+uhx9+WOvXr5eTk1Ou67kT52Gz+2WalpaWp5oKQnbrMW4ZBFxUpKenq3379nrppZeyfLxatWqSpG3btunRRx9Vy5Yt9c4776hChQoqUaKEoqOjcx0smyGnn09Wbt1HMo769e/fXxEREVk+J+PWADVr1tTBgwf19ddfa+3atVq5cqXeeecdTZgwQZMnT85Tvf90J/af29lX0tPTZbFYtGbNmiyXU7JkSZv5nN5v2dWRW30ZP48lS5bIz88vU7+CuqLx+eefV3R0tEaOHKkmTZrI29tbFotFffr0ydOR4MKoMz/vj7CwMJUvX15Lly5Vy5YttXTpUvn5+dn8oZGeni5fX199/PHHWa7v1kCd18/TxYsX6+DBg3rvvfcy/QF45coVxcbGytfXt8heueYId02I6dSpkzp16pTt48nJyXrllVe0bNkyXb58WXXq1NGsWbOsV8X88ccfWrhwofbt22cddJXX9FyYlixZIkm5HposVqyY2rZtq7Zt22ru3LmaMWOGXnnlFW3ZskXt2rUr8L/OM/6aymAYho4cOWJzP5vSpUtneVOw48ePq3Llytb5/NQWGBiojRs36sqVKzZHYw4cOGB9vCAEBgZq7969Sk9PtzkaU9DruVVISIiSkpKyPVKTYeXKlXJ1ddW6devk4uJibY+Ojs7UN7vtm9PPJy98fHzk6emptLS0XOuVJA8PD/Xu3Vu9e/dWSkqKunfvrunTp2v8+PGmuYw3u20ZEhIiwzAUHBxsDZqFLeNUmK+vb44/j4x999b3sHRzQGpuPv/8c0VERGjOnDnWtuvXr2fal3LaVnmp83bk5/3h5OSkJ554QjExMZo1a5ZWr16twYMH24TGkJAQbdy4Uc2aNSvQP/ji4uKUmpqa5RHJxYsXa/HixXadZbib3TNjYp577jnt2LFDn376qfbu3auePXuqY8eO1jfu//t//0+VK1fW119/reDgYAUFBenpp58uUkdiNm/erKlTpyo4OFj9+vXLtl9WNWfcNC7jMGrGud2CutPo4sWLbcbpfP7554qPj7cJliEhIfrhhx+UkpJibfv6668zXXKan9oeeeQRpaWl6a233rJpf+ONN2SxWHIMtvnxyCOP6MyZM1q+fLm17caNG1qwYIFKliypVq1aFch6btWrVy/t2LFD69aty/TY5cuXdePGDUk3P3gtFovNUZPY2Ngs78zr4eGR5bYNCQlRQkKC9u7da23LODWbF05OTnr88ce1cuVK7du3L9Pj58+ft/7/woULNo85OzurVq1aMgxDqampeVpfUZDdvtq9e3c5OTlp8uTJmY7cGIaR6fXfCWFhYfLy8tKMGTOy3KYZP48KFSqoQYMGWrRokc3pnw0bNuj333/PdT1OTk6ZXuOCBQsyHcHLblvltc7bkZ/3h3TzKqVLly5pyJAhSkpKynQfp169eiktLU1Tp07N9NwbN27Y/bnap08frVq1KtMk3fwMWrVqlXVMFG66a47E5CQuLk7R0dGKi4uTv7+/JGnMmDFau3atoqOjNWPGDP355586fvy4VqxYocWLFystLU0vvPCCevTooc2bNxd6zWvWrNGBAwd048YNnT17Vps3b9aGDRsUGBior776Kse/VKdMmaJvv/1W4eHhCgwM1Llz5/TOO++oYsWKat68uaSbv7BKlSqld999V56envLw8FBoaKjdR5/KlCmj5s2ba9CgQTp79qzmzZunKlWq2FwG/vTTT+vzzz9Xx44d1atXLx09elRLly7NdIlvfmrr0qWL2rRpo1deeUWxsbGqX7++1q9fry+//FIjR460+/LhWz3zzDN67733NHDgQO3atUtBQUH6/PPP9f3332vevHmZxuQUlBdffFFfffWVOnfurIEDB6pRo0a6evWqfvvtN33++eeKjY1VuXLlFB4errlz56pjx4564okndO7cOb399tuqUqWKTSiRpEaNGmnjxo2aO3eu/P39FRwcrNDQUPXp00djx47VY489puHDh1svc61WrVqeBwfPnDlTW7ZsUWhoqAYPHqxatWrp4sWL+uWXX7Rx40ZrwO7QoYP8/PzUrFkzlS9fXn/88YfeeusthYeH37FteSc0atRIkvTKK6+oT58+KlGihLp06aKQkBBNmzZN48ePV2xsrLp16yZPT08dO3ZMq1at0jPPPHPH7//h5eWlhQsX6sknn1TDhg3Vp08f+fj4KC4uTt98842aNWtmDf9RUVEKDw9X8+bN9dRTT+nixYvW+/gkJSXluJ7OnTtryZIl8vb2Vq1atbRjxw5t3Lgx0y0LGjRoICcnJ82aNUsJCQlycXHRww8/LF9f3zzXmZOVK1daj4z+U0RERL7eH5J0//33q06dOlqxYoVq1qyphg0b2jzeqlUrDRkyRFFRUdq9e7c6dOigEiVK6PDhw1qxYoXmz5+vHj165FrzrWrUqKEaNWpk+VhwcDBHYLJS+BdE3XmSjFWrVlnnv/76a0OS4eHhYTMVL17c6NWrl2EYhjF48GBDknHw4EHr83bt2mVIMg4cOFBotWdcYp0xOTs7G35+fkb79u2N+fPn21zKm+HWS2A3bdpkdO3a1fD39zecnZ0Nf39/o2/fvpku0/3yyy+NWrVqGcWLF7e5bDWrS04zZHeJ9bJly4zx48cbvr6+hpubmxEeHm4cP3480/PnzJlj3HfffYaLi4vRrFkzY+fOnZmWmVNtWV0GfOXKFeOFF14w/P39jRIlShhVq1Y1Zs+ebaSnp9v0UzaXKWZ36fetzp49awwaNMgoV66c4ezsbNStWzfLy8Dze4l1bn2vXLlijB8/3qhSpYrh7OxslCtXzmjatKnx+uuvGykpKdZ+H374oVG1alXDxcXFqFGjhhEdHZ3l5dEHDhwwWrZsabi5uRmSbF77+vXrjTp16hjOzs5G9erVjaVLl2Z7iXV2l3yePXvWGDZsmBEQEGCUKFHC8PPzM9q2bWu8//771j7vvfee0bJlS6Ns2bKGi4uLERISYrz44otGQkJCjtsiu0usPTw8MvXNqu6sZHeJdV73lalTpxr33XefUaxYsUyXW69cudJo3ry59TOnRo0axrBhw2w+Z7J7v2W81tmzZ9u0Z3dJcXa3Z9iyZYsRFhZmeHt7G66urkZISIgxcOBAY+fOnTb9Vq5cadSsWdNwcXExatWqZXzxxRdZvt90yyXWly5dsr4vSpYsaYSFhRkHDhzIclt98MEHRuXKlQ0nJ6dMl1vntc5bZWyP7KZt27YZhpH390eG1157zZBkzJgxI9t1v//++0ajRo0MNzc3w9PT06hbt67x0ksvGadPn7b2yc/nQXZyer/d6yyGUURHNN4Gi8Vic95w+fLl6tevn/bv359pMFzJkiXl5+eniRMnZjqc+ffff8vd3V3r169X+/btC/MlAAAcaP78+XrhhRcUGxub5ZVqKBruidNJ999/v9LS0nTu3DnrHWBv1axZM924cUNHjx61noI4dOiQpDs3aBMAUPQYhqEPP/xQrVq1IsAUcXdNiElKStKRI0es88eOHdPu3btVpkwZVatWTf369dOAAQM0Z84c3X///Tp//rw2bdqkevXqKTw8XO3atVPDhg311FNPad68eUpPT9ewYcPUvn17h11dAAAoPFevXtVXX32lLVu26LffftOXX37p6JKQi7vmdNLWrVvVpk2bTO0RERGKiYlRamqqpk2bpsWLF+vUqVMqV66cHnroIU2ePFl169aVJJ0+fVrPP/+81q9fLw8PD3Xq1Elz5sxRmTJlCvvlAAAKWWxsrIKDg1WqVCk9++yzmj59uqNLQi7umhADAADuLffMfWIAAMDdhRADAABMydQDe9PT03X69Gl5enresS+5AwAABcswDF25ckX+/v55/mLirJg6xJw+fTrTN7kCAABzOHHihCpWrGj3800dYjJuT37ixIkC+7p2AABwZyUmJiogIOC2v2bE1CEm4xSSl5cXIQYAAJO53aEgDOwFAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmVNzRBQC4+wSN+ybXPrEzwwuhEgB3M47EAAAAUyLEAAAAUyLEAAAAUyLEAAAAU3JoiAkKCpLFYsk0DRs2zJFlAQAAE3Do1Uk///yz0tLSrPP79u1T+/bt1bNnTwdWBQAAzMChIcbHx8dmfubMmQoJCVGrVq0cVBEAADCLInOfmJSUFC1dulSjRo2SxWLJsk9ycrKSk5Ot84mJiYVVHgAAKGKKzMDe1atX6/Llyxo4cGC2faKiouTt7W2dAgICCq9AAABQpBSZEPPhhx+qU6dO8vf3z7bP+PHjlZCQYJ1OnDhRiBUCAICipEicTjp+/Lg2btyoL774Isd+Li4ucnFxKaSqAABAUVYkjsRER0fL19dX4eF8lwoAAMgbh4eY9PR0RUdHKyIiQsWLF4kDQwAAwAQcHmI2btyouLg4PfXUU44uBQAAmIjDD3106NBBhmE4ugwAAGAyDj8SAwAAYA9CDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCWHh5hTp06pf//+Klu2rNzc3FS3bl3t3LnT0WUBAIAirrgjV37p0iU1a9ZMbdq00Zo1a+Tj46PDhw+rdOnSjiwLAACYgENDzKxZsxQQEKDo6GhrW3BwsAMrAgAAZuHQ00lfffWVGjdurJ49e8rX11f333+/Pvjgg2z7JycnKzEx0WYCAAD3JoeGmD///FMLFy5U1apVtW7dOg0dOlTDhw/XokWLsuwfFRUlb29v6xQQEFDIFQMAgKLCYhiG4aiVOzs7q3Hjxtq+fbu1bfjw4fr555+1Y8eOTP2Tk5OVnJxsnU9MTFRAQIASEhLk5eVVKDUDyF3QuG9y7RM7M7wQKgFQFCUmJsrb2/u2f3879EhMhQoVVKtWLZu2mjVrKi4uLsv+Li4u8vLyspkAAMC9yaEhplmzZjp48KBN26FDhxQYGOigigAAgFk4NMS88MIL+uGHHzRjxgwdOXJEn3zyid5//30NGzbMkWUBAAATcGiIeeCBB7Rq1SotW7ZMderU0dSpUzVv3jz169fPkWUBAAATcOh9YiSpc+fO6ty5s6PLAAAAJuPwrx0AAACwByEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYkkNDzKRJk2SxWGymGjVqOLIkAABgEsUdXUDt2rW1ceNG63zx4g4vCQAAmIDDE0Px4sXl5+fn6DIAAIDJOHxMzOHDh+Xv76/KlSurX79+iouLc3RJAADABBx6JCY0NFQxMTGqXr264uPjNXnyZLVo0UL79u2Tp6dnpv7JyclKTk62zicmJhZmuQAAoAhxaIjp1KmT9f/16tVTaGioAgMD9dlnnykyMjJT/6ioKE2ePLkwSwQAAEWUw08n/VOpUqVUrVo1HTlyJMvHx48fr4SEBOt04sSJQq4QAAAUFUUqxCQlJeno0aOqUKFClo+7uLjIy8vLZgIAAPcmh4aYMWPG6H//+59iY2O1fft2PfbYY3JyclLfvn0dWRYAADABh46JOXnypPr27asLFy7Ix8dHzZs31w8//CAfHx9HlgUAAEzAoSHm008/deTqAQCAiRWpMTEAAAB5RYgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmZFeI+fPPPwu6DgAAgHyxK8RUqVJFbdq00dKlS3X9+vWCrgkAACBXdoWYX375RfXq1dOoUaPk5+enIUOG6Keffiro2gAAALJlV4hp0KCB5s+fr9OnT+ujjz5SfHy8mjdvrjp16mju3Lk6f/58QdcJAABg47YG9hYvXlzdu3fXihUrNGvWLB05ckRjxoxRQECABgwYoPj4+IKqEwAAwMZthZidO3fq2WefVYUKFTR37lyNGTNGR48e1YYNG3T69Gl17dq1oOoEAACwUdyeJ82dO1fR0dE6ePCgHnnkES1evFiPPPKIihW7mYmCg4MVExOjoKCggqwVAADAyq4Qs3DhQj311FMaOHCgKlSokGUfX19fffjhh7dVHAAAQHbsCjGHDx/OtY+zs7MiIiLsWTwAAECu7BoTEx0drRUrVmRqX7FihRYtWnTbRQEAAOTGrhATFRWlcuXKZWr39fXVjBkzbrsoAACA3NgVYuLi4hQcHJypPTAwUHFxcbddFAAAQG7sCjG+vr7au3dvpvY9e/aobNmyt10UAABAbuwKMX379tXw4cO1ZcsWpaWlKS0tTZs3b9aIESPUp0+fgq4RAAAgE7uuTpo6dapiY2PVtm1bFS9+cxHp6ekaMGAAY2IAAEChsCvEODs7a/ny5Zo6dar27NkjNzc31a1bV4GBgQVdHwAAQJbsCjEZqlWrpmrVqhVULQAAAHlmV4hJS0tTTEyMNm3apHPnzik9Pd3m8c2bN+d7mTNnztT48eM1YsQIzZs3z56yAADAPcSuEDNixAjFxMQoPDxcderUkcViua0ifv75Z7333nuqV6/ebS0HAADcO+wKMZ9++qk+++wzPfLII7ddQFJSkvr166cPPvhA06ZNu+3lAQCAe4Ndl1g7OzurSpUqBVLAsGHDFB4ernbt2hXI8gAAwL3BrhAzevRozZ8/X4Zh3NbKP/30U/3yyy+KiorKU//k5GQlJibaTAAA4N5k1+mk7777Tlu2bNGaNWtUu3ZtlShRwubxL774ItdlnDhxQiNGjNCGDRvk6uqap/VGRUVp8uTJ9pQMAADuMhbDjsMpgwYNyvHx6OjoXJexevVqPfbYY3JycrK2paWlyWKxqFixYkpOTrZ5TLp5JCY5Odk6n5iYqICAACUkJMjLyyufrwLAnRI07ptc+8TODC+ESgAURYmJifL29r7t3992HYnJS0jJTdu2bfXbb7/ZtA0aNEg1atTQ2LFjMwUYSXJxcZGLi8ttrxsAAJif3Te7u3HjhrZu3aqjR4/qiSeekKenp06fPi0vLy+VLFky1+d7enqqTp06Nm0eHh4qW7ZspnYAAIBb2RVijh8/ro4dOyouLk7Jyclq3769PD09NWvWLCUnJ+vdd98t6DoBAABs2H2zu8aNG2vPnj0qW7astf2xxx7T4MGD7S5m69atdj8XAADcW+wKMdu2bdP27dvl7Oxs0x4UFKRTp04VSGEAAAA5ses+Menp6UpLS8vUfvLkSXl6et52UQAAALmxK8R06NDB5ksaLRaLkpKSNHHixAL5KgIAAIDc2HU6ac6cOQoLC1OtWrV0/fp1PfHEEzp8+LDKlSunZcuWFXSNAAAAmdgVYipWrKg9e/bo008/1d69e5WUlKTIyEj169dPbm5uBV0jAABAJnbfJ6Z48eLq379/QdYCAACQZ3aFmMWLF+f4+IABA+wqBgAAIK/svk/MP6WmpuratWtydnaWu7s7IQYAANxxdl2ddOnSJZspKSlJBw8eVPPmzRnYCwAACoVdISYrVatW1cyZMzMdpQEAALgTCizESDcH+54+fbogFwkAAJAlu8bEfPXVVzbzhmEoPj5eb731lpo1a1YghQEAAOTErhDTrVs3m3mLxSIfHx89/PDDmjNnTkHUBQAAkCO7Qkx6enpB1wEAAJAvBTomBgAAoLDYdSRm1KhRee47d+5ce1YBAACQI7tCzK+//qpff/1Vqampql69uiTp0KFDcnJyUsOGDa39LBZLwVQJ4K4TNO6bXPvEzgwvhEoAmJVdIaZLly7y9PTUokWLVLp0aUk3b4A3aNAgtWjRQqNHjy7QIgEAAG5l15iYOXPmKCoqyhpgJKl06dKaNm0aVycBAIBCYVeISUxM1Pnz5zO1nz9/XleuXLntogAAAHJjV4h57LHHNGjQIH3xxRc6efKkTp48qZUrVyoyMlLdu3cv6BoBAAAysWtMzLvvvqsxY8boiSeeUGpq6s0FFS+uyMhIzZ49u0ALBAAAyIpdIcbd3V3vvPOOZs+eraNHj0qSQkJC5OHhUaDFAQAAZOe2bnYXHx+v+Ph4Va1aVR4eHjIMo6DqAgAAyJFdIebChQtq27atqlWrpkceeUTx8fGSpMjISC6vBgAAhcKuEPPCCy+oRIkSiouLk7u7u7W9d+/eWrt2bYEVBwAAkB27xsSsX79e69atU8WKFW3aq1atquPHjxdIYQAAADmx60jM1atXbY7AZLh48aJcXFxuuygAAIDc2BViWrRoocWLF1vnLRaL0tPT9dprr6lNmzYFVhwAAEB27Dqd9Nprr6lt27bauXOnUlJS9NJLL2n//v26ePGivv/++4KuEQAAIBO7jsTUqVNHhw4dUvPmzdW1a1ddvXpV3bt316+//qqQkJCCrhEAACCTfB+JSU1NVceOHfXuu+/qlVdeuRM1AQAA5CrfR2JKlCihvXv33olaAAAA8syu00n9+/fXhx9+WNC1AAAA5JldA3tv3Lihjz76SBs3blSjRo0yfWfS3LlzC6Q4AACA7OQrxPz5558KCgrSvn371LBhQ0nSoUOHbPpYLJaCqw4AACAb+QoxVatWVXx8vLZs2SLp5tcMvPnmmypfvvwdKQ4AACA7+RoTc+u3VK9Zs0ZXr14t0IIAAADywq6BvRluDTX5tXDhQtWrV09eXl7y8vJSkyZNtGbNmttaJgAAuDfkK8RYLJZMY15uZwxMxYoVNXPmTO3atUs7d+7Uww8/rK5du2r//v12LxMAANwb8jUmxjAMDRw40Polj9evX9e//vWvTFcnffHFF3laXpcuXWzmp0+froULF+qHH35Q7dq181MaAAC4x+QrxERERNjM9+/fv8AKSUtL04oVK3T16lU1adKkwJYLAADuTvkKMdHR0QVewG+//aYmTZro+vXrKlmypFatWqVatWpl2Tc5OVnJycnW+cTExAKvBwAAmMNtDewtCNWrV9fu3bv1448/aujQoYqIiNDvv/+eZd+oqCh5e3tbp4CAgEKuFgAAFBUW43YvMSpg7dq1U0hIiN57771Mj2V1JCYgIEAJCQny8vIqzDIB5CBo3DcFspzYmeEFshwARUtiYqK8vb1v+/e3XV87cCelp6fbBJV/cnFxsQ4qBgAA9zaHhpjx48erU6dOqlSpkq5cuaJPPvlEW7du1bp16xxZFgAAMAGHhphz585pwIABio+Pl7e3t+rVq6d169apffv2jiwLAACYgENDzIcffujI1QMAABNz+NVJAAAA9iDEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAU3JoiImKitIDDzwgT09P+fr6qlu3bjp48KAjSwIAACbh0BDzv//9T8OGDdMPP/ygDRs2KDU1VR06dNDVq1cdWRYAADCB4o5c+dq1a23mY2Ji5Ovrq127dqlly5YOqgoAAJhBkRoTk5CQIEkqU6aMgysBAABFnUOPxPxTenq6Ro4cqWbNmqlOnTpZ9klOTlZycrJ1PjExsbDKAwAARUyRORIzbNgw7du3T59++mm2faKiouTt7W2dAgICCrFCAABQlBSJEPPcc8/p66+/1pYtW1SxYsVs+40fP14JCQnW6cSJE4VYJQAAKEocejrJMAw9//zzWrVqlbZu3arg4OAc+7u4uMjFxaWQqgMAAEWZQ0PMsGHD9Mknn+jLL7+Up6enzpw5I0ny9vaWm5ubI0sDAABFnENPJy1cuFAJCQlq3bq1KlSoYJ2WL1/uyLIAAIAJOPx0EgAAgD2KxMBeAACA/CLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAU3JoiPn222/VpUsX+fv7y2KxaPXq1Y4sBwAAmIhDQ8zVq1dVv359vf32244sAwAAmFBxR668U6dO6tSpkyNLAAAAJsWYGAAAYEoOPRKTX8nJyUpOTrbOJyYmOrAaAADgSKY6EhMVFSVvb2/rFBAQ4OiSAACAg5gqxIwfP14JCQnW6cSJE44uCQAAOIipTie5uLjIxcXF0WUAAIAiwKEhJikpSUeOHLHOHzt2TLt371aZMmVUqVIlB1YGAACKOoeGmJ07d6pNmzbW+VGjRkmSIiIiFBMT46CqAACAGTg0xLRu3VqGYTiyBAAAYFKmGtgLAACQgRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMqbijCwCA7ASN+ybXPrEzwwuhEgBFEUdiAACAKRFiAACAKRFiAACAKRFiAACAKRFiAACAKRFiAACAKRWJEPP2228rKChIrq6uCg0N1U8//eTokgAAQBHn8BCzfPlyjRo1ShMnTtQvv/yi+vXrKywsTOfOnXN0aQAAoAizGIZhOLKA0NBQPfDAA3rrrbckSenp6QoICNDzzz+vcePG5fjcxMREeXt7KyEhQV5eXoVRLnDPy8sN6IoabogHFC0F9fvboUdiUlJStGvXLrVr187aVqxYMbVr1047duxwYGUAAKCoc+jXDvz1119KS0tT+fLlbdrLly+vAwcOZOqfnJys5ORk63xCQoKkm4kOQM7qTFzn6BIcptILK3Lts29yWCFUAkD6v9/bt3syyFTfnRQVFaXJkydnag8ICHBANQDuJt7zHF0BcO+5cuWKvL297X6+Q0NMuXLl5OTkpLNnz9q0nz17Vn5+fpn6jx8/XqNGjbLOp6en6+LFiypbtqwsFssdr9cMEhMTFRAQoBMnTjBOqICwTQse27TgsU0LHtu04GVs07i4OFksFvn7+9/W8hwaYpydndWoUSNt2rRJ3bp1k3QzmGzatEnPPfdcpv4uLi5ycXGxaStVqlQhVGo+Xl5evOkKGNu04LFNCx7btOCxTQuet7d3gWxTh59OGjVqlCIiItS4cWM9+OCDmjdvnq5evapBgwY5ujQAAFCEOTzE9O7dW+fPn9eECRN05swZNWjQQGvXrs002BcAAOCfHB5iJOm5557L8vQR8s/FxUUTJ07MdNoN9mObFjy2acFjmxY8tmnBK+ht6vCb3QEAANjD4V87AAAAYA9CDAAAMCVCDAAAMCVCDAAAMCVCzF1k+vTpatq0qdzd3bO9CWBcXJzCw8Pl7u4uX19fvfjii7px40bhFmpiQUFBslgsNtPMmTMdXZapvP322woKCpKrq6tCQ0P1008/ObokU5s0aVKmfbJGjRqOLstUvv32W3Xp0kX+/v6yWCxavXq1zeOGYWjChAmqUKGC3Nzc1K5dOx0+fNgxxZpEbtt04MCBmfbbjh075ns9hJi7SEpKinr27KmhQ4dm+XhaWprCw8OVkpKi7du3a9GiRYqJidGECRMKuVJzmzJliuLj463T888/7+iSTGP58uUaNWqUJk6cqF9++UX169dXWFiYzp075+jSTK127do2++R3333n6JJM5erVq6pfv77efvvtLB9/7bXX9Oabb+rdd9/Vjz/+KA8PD4WFhen69euFXKl55LZNJaljx442++2yZcvyvyIDd53o6GjD29s7U/t///tfo1ixYsaZM2esbQsXLjS8vLyM5OTkQqzQvAIDA4033njD0WWY1oMPPmgMGzbMOp+Wlmb4+/sbUVFRDqzK3CZOnGjUr1/f0WXcNSQZq1atss6np6cbfn5+xuzZs61tly9fNlxcXIxly5Y5oELzuXWbGoZhREREGF27dr3tZXMk5h6yY8cO1a1b1+ZuyGFhYUpMTNT+/fsdWJm5zJw5U2XLltX999+v2bNnczouj1JSUrRr1y61a9fO2lasWDG1a9dOO3bscGBl5nf48GH5+/urcuXK6tevn+Li4hxd0l3j2LFjOnPmjM1+6+3trdDQUPbb27R161b5+vqqevXqGjp0qC5cuJDvZRSJO/aicJw5cybT1zlkzJ85c8YRJZnO8OHD1bBhQ5UpU0bbt2/X+PHjFR8fr7lz5zq6tCLvr7/+UlpaWpb74IEDBxxUlfmFhoYqJiZG1atXV3x8vCZPnqwWLVpo37598vT0dHR5ppfx2ZjVfsvnpv06duyo7t27Kzg4WEePHtXLL7+sTp06aceOHXJycsrzcggxRdy4ceM0a9asHPv88ccfDOS7DfnZxqNGjbK21atXT87OzhoyZIiioqK4NTkcolOnTtb/16tXT6GhoQoMDNRnn32myMhIB1YGZK9Pnz7W/9etW1f16tVTSEiItm7dqrZt2+Z5OYSYIm706NEaOHBgjn0qV66cp2X5+flluhLk7Nmz1sfuVbezjUNDQ3Xjxg3FxsaqevXqd6C6u0e5cuXk5ORk3ecynD179p7e/wpaqVKlVK1aNR05csTRpdwVMvbNs2fPqkKFCtb2s2fPqkGDBg6q6u5TuXJllStXTkeOHCHE3E18fHzk4+NTIMtq0qSJpk+frnPnzsnX11eStGHDBnl5ealWrVoFsg4zup1tvHv3bhUrVsy6PZE9Z2dnNWrUSJs2bVK3bt0kSenp6dq0aRNfAFuAkpKSdPToUT355JOOLuWuEBwcLD8/P23atMkaWhITE/Xjjz9meyUo8u/kyZO6cOGCTVDMC0LMXSQuLk4XL15UXFyc0tLStHv3bklSlSpVVLJkSXXo0EG1atXSk08+qddee01nzpzRv//9bw0bNoxTIXmwY8cO/fjjj2rTpo08PT21Y8cOvfDCC+rfv79Kly7t6PJMYdSoUYqIiFDjxo314IMPat68ebp69aoGDRrk6NJMa8yYMerSpYsCAwN1+vRpTZw4UU5OTurbt6+jSzONpKQkmyNXx44d0+7du1WmTBlVqlRJI0eO1LRp01S1alUFBwfr1Vdflb+/vzWMI7OctmmZMmU0efJkPf744/Lz89PRo0f10ksvqUqVKgoLC8vfim77+iYUGREREYakTNOWLVusfWJjY41OnToZbm5uRrly5YzRo0cbqampjivaRHbt2mWEhoYa3t7ehqurq1GzZk1jxowZxvXr1x1dmqksWLDAqFSpkuHs7Gw8+OCDxg8//ODokkytd+/eRoUKFQxnZ2fjvvvuM3r37m0cOXLE0WWZypYtW7L87IyIiDAM4+Zl1q+++qpRvnx5w8XFxWjbtq1x8OBBxxZdxOW0Ta9du2Z06NDB8PHxMUqUKGEEBgYagwcPtrn9R15ZDMMwbjdxAQAAFDbuEwMAAEyJEAMAAEyJEAMAAEyJEAMAAEyJEAMAAEyJEAMAAEyJEAMAAEyJEAMA/7/WrVtr5MiRji4DQB4RYoB7wMCBA2WxWDJNBfUlgTExMSpVqlSBLMseXbp0UceOHbN8bNu2bbJYLNq7d28hVwXgTiPEAPeIjh07Kj4+3mYKDg52dFmZpKam5vs5kZGR2rBhg06ePJnpsejoaDVu3Fj16tUriPIAFCGEGOAe4eLiIj8/P5vJyclJkvTll1+qYcOGcnV1VeXKlTV58mTduHHD+ty5c+eqbt268vDwUEBAgJ599lklJSVJkrZu3apBgwYpISHBeoRn0qRJkiSLxaLVq1fb1FGqVCnFxMRIkmJjY2WxWLR8+XK1atVKrq6u+vjjjyVJ//nPf1SzZk25urqqRo0aeuedd7J9bZ07d5aPj491uRmSkpK0YsUKRUZG6sKFC+rbt6/uu+8+ubu7q27dulq2bFmO2yy3+iXpxIkT6tWrl0qVKqUyZcqoa9euio2NzXG5AAoGIQa4x23btk0DBgzQiBEj9Pvvv+u9995TTEyMpk+fbu1TrFgxvfnmm9q/f78WLVqkzZs366WXXpIkNW3aVPPmzZOXl5f1CM+YMWPyVcO4ceM0YsQI/fHHHwoLC9PHH3+sCRMmaPr06frjjz80Y8YMvfrqq1q0aFGWzy9evLgGDBigmJgY/fPr4FasWKG0tDT17dtX169fV6NGjfTNN99o3759euaZZ/Tkk0/qp59+smOr3ZSamqqwsDB5enpq27Zt+v7771WyZEl17NhRKSkpdi8XQB4V9DdXAih6IiIiDCcnJ8PDw8M69ejRwzAMw2jbtq0xY8YMm/5LliwxKlSokO3yVqxYYZQtW9Y6Hx0dbXh7e2fqJ8lYtWqVTZu3t7cRHR1tGIZhHDt2zJBkzJs3z6ZPSEiI8cknn9i0TZ061WjSpEm2Nf3xxx+ZvrW9RYsWRv/+/bN9Tnh4uDF69GjrfKtWrYwRI0bkuf4lS5YY1atXN9LT062PJycnG25ubsa6deuyXS+AglHcsREKQGFp06aNFi5caJ338PCQJO3Zs0fff/+9zZGXtLQ0Xb9+XdeuXZO7u7s2btyoqKgoHThwQImJibpx44bN47ercePG1v9fvXpVR48eVWRkpAYPHmxtv3Hjhry9vbNdRo0aNdS0aVN99NFHat26tY4cOaJt27ZpypQp1tc0Y8YMffbZZzp16pRSUlKUnJx8W/Xv2bNHR44ckaenp0379evXdfToUbuXCyBvCDHAPcLDw0NVqlTJ1J6UlKTJkyere/fumR5zdXVVbGysOnfurKFDh2r69OkqU6aMvvvuO0VGRiolJSXHEGCxWGxO70hZD9zNCFQZ9UjSBx98oNDQUJt+GWN4shMZGannn39eb7/9tqKjoxUSEqJWrVpJkmbPnq358+dr3rx51vE9I0eOzPG0T271JyUlqVGjRtZxPP/k4+OTY60Abh8hBrjHNWzYUAcPHswy4EjSrl27lJ6erjlz5qhYsZvD6D777DObPs7OzkpLS8v0XB8fH8XHx1vnDx8+rGvXruVYT/ny5eXv768///xT/fr1y9dr6dWrl0aMGKFPPvlEixcv1tChQ2WxWCRJ33//vbp27ar+/ftLktLT03Xo0CHVqlUr2+XlVn/Dhg21fPly+fr6ysvLK1+1Arh9hBjgHjdhwgR17txZlSpVUo8ePVSsWDHt2bNH+/bt07Rp01SlShWlpqZqwYIF6tKli77//nu9++67NssICgpSUlKSNm3apPr168vd3V3u7u56+OGH9dZbb6lJkyZKS0vT2LFjVaJEiVxrmjx5soYPHy5vb2917NhRycnJ2rlzpy5duqRRo0Zl+7ySJUuqd+/eGj9+vBITEzVw4EDrY1WrVtXnn3+u7du3q3Tp0po7d67Onj2bY4jJrf5+/fpp9uzZ6tq1q6ZMmaKKFSvq+PHj+uKLL/TSSy+pYsWKub5WAPbj6iTgHhcWFqavv/5a69ev1wMPPKCHHnpIb7zxhgIDAyVJ9evX19y5czVr1izVqVNHH3/8saKiomyW0bRpU/3rX/9S79695ePjo9dee02SNGfOHAUEBKhFixZ64oknNGbMmDyNQXn66af1n//8R9HR0apbt65atWqlmJiYPN3XJjIyUpcuXVJYWJj8/f2t7f/+97/VsGFDhYWFqXXr1vLz81O3bt1yXFZu9bu7u+vbb79VpUqV1L17d9WsWVORkZG6fv06R2aAQmAxbj3hCwAAYAIciQEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKb0/wEn9zvNejVF4gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "36/36 [==============================] - 0s 3ms/step\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjEAAAHHCAYAAABOTAltAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/30lEQVR4nO3deVwVdf///+cRZRVwA5FEQNz31CJ3zQUNTTPXNNHIvMxSU0utK3dFM02zsuUqcCkzM61vXe7LlaUtWmparom44JILiCYgzO8Pf5xPR/Yjchh93G+3uem8z/vMvM4w5/Bk5j1zLIZhGAIAADCZYo4uAAAAwB6EGAAAYEqEGAAAYEqEGAAAYEqEGAAAYEqEGAAAYEqEGAAAYEqEGAAAYEqEGAAAYEqEmLvApEmTZLFYCmVdrVu3VuvWra3zW7dulcVi0eeff14o6x84cKCCgoIKZV32SkpK0tNPPy0/Pz9ZLBaNHDnS0SXdNWJjY2WxWBQTE+PoUu4JWb3fLBaLJk2a5JB6gFsRYoqYmJgYWSwW6+Tq6ip/f3+FhYXpzTff1JUrVwpkPadPn9akSZO0e/fuAlleQSrKteXFjBkzFBMTo6FDh2rJkiV68skns+0bFBRk8/P+53T9+vU7Vt/q1avvyLLNqHXr1qpTp45dz92+fbsmTZqky5cvF2xRd6Hff/9dkyZNUmxsbIEut7D/kCps7du3l8Vi0XPPPefoUoqk4o4uAFmbMmWKgoODlZqaqjNnzmjr1q0aOXKk5s6dq6+++kr16tWz9v33v/+tcePG5Wv5p0+f1uTJkxUUFKQGDRrk+Xnr16/P13rskVNtH3zwgdLT0+94Dbdj8+bNeuihhzRx4sQ89W/QoIFGjx6dqd3Z2bmgS5N0M8T06NFD3bp1uyPLv5MCAwP1999/q0SJEo4uRdLNEDN58mQNHDhQpUqVcnQ5heLvv/9W8eL5/9Xx+++/a/LkyWrdunWRP5paVHzxxRfasWOHo8so0ggxRVSnTp3UuHFj6/z48eO1efNmde7cWY8++qj++OMPubm5SZKKFy9u14dKfly7dk3u7u537BdrXhWVX145OXfunGrVqpXn/vfdd5/69+9/Byu689LT05WSkiJXV9c7up6Mo5N3u4z3W1F0L2z/O8kwDF2/ft36+Z2d69eva/To0Ro7dqwmTJhQSNWZD6eTTOThhx/Wq6++quPHj2vp0qXW9qzGxGzYsEHNmzdXqVKlVLJkSVWvXl0vv/yypJuHXx944AFJ0qBBg6ynLzLGGWQcXt+1a5datmwpd3d363NvHROTIS0tTS+//LL8/Pzk4eGhRx99VCdOnLDpExQUpIEDB2Z67j+XmVttWZ2jv3r1qkaPHq2AgAC5uLioevXqev3113XrF7RnHJJdvXq16tSpIxcXF9WuXVtr167NeoPf4ty5c4qMjFT58uXl6uqq+vXra9GiRdbHMw5rHzt2TN9884219ts9fH758mWNHDnS+vqqVKmiWbNmZToi9frrr6tp06YqW7as3Nzc1KhRo0yH2C0Wi65evapFixZZ68v4mWQ33iir/StjW3788ceqXbu2XFxcrNvx1KlTeuqpp1S+fHnrNv7oo48yLXfBggWqXbu23N3dVbp0aTVu3FiffPJJjtsiqzExAwcOVMmSJXXq1Cl169ZNJUuWlI+Pj8aMGaO0tLQcl5edvOwrkyZN0osvvihJCg4OzvLnvXTpUjVq1Ehubm4qU6aM+vTpk+l9kd37LeO1vv7663r77bdVuXJlubu7q0OHDjpx4oQMw9DUqVNVsWJFubm5qWvXrrp48WKm17JmzRq1aNFCHh4e8vT0VHh4uPbv35+pX8ZrdXV1VZ06dbRq1apst80/x8QcP35czz77rKpXry43NzeVLVtWPXv2tNkOMTEx6tmzpySpTZs21m21devWfNdpr7y8P1q1aqX69etn+fzq1asrLCzMOp+enq558+apdu3acnV1Vfny5TVkyBBdunTJ5nlBQUHq3Lmz1q1bp8aNG8vNzU3vvfdervW+9tprSk9P15gxY+x4tfcOjsSYzJNPPqmXX35Z69ev1+DBg7Pss3//fnXu3Fn16tXTlClT5OLioiNHjuj777+XJNWsWVNTpkzRhAkT9Mwzz6hFixaSpKZNm1qXceHCBXXq1El9+vRR//79Vb58+Rzrmj59uiwWi8aOHatz585p3rx5ateunXbv3p3rXxz/lJfa/skwDD366KPasmWLIiMj1aBBA61bt04vvviiTp06pTfeeMOm/3fffacvvvhCzz77rDw9PfXmm2/q8ccfV1xcnMqWLZttXX///bdat26tI0eO6LnnnlNwcLBWrFihgQMH6vLlyxoxYoRq1qypJUuW6IUXXlDFihWtp4h8fHxyfM2pqan666+/bNrc3d3l7u6ua9euqVWrVjp16pSGDBmiSpUqafv27Ro/frzi4+M1b94863Pmz5+vRx99VP369VNKSoo+/fRT9ezZU19//bXCw8MlSUuWLNHTTz+tBx98UM8884wkKSQkJMf6srN582Z99tlneu6551SuXDkFBQXp7Nmzeuihh6whwMfHR2vWrFFkZKQSExOtg5w/+OADDR8+XD169NCIESN0/fp17d27Vz/++KOeeOKJfNeSlpamsLAwhYaG6vXXX9fGjRs1Z84chYSEaOjQoXa9vtz2le7du+vQoUNatmyZ3njjDZUrV07S//28p0+frldffVW9evXS008/rfPnz2vBggVq2bKlfv31V5vTTzm93z7++GOlpKTo+eef18WLF/Xaa6+pV69eevjhh7V161aNHTtWR44c0YIFCzRmzBibwLhkyRJFREQoLCxMs2bN0rVr17Rw4UI1b95cv/76qzW0rl+/Xo8//rhq1aqlqKgoXbhwQYMGDVLFihVz3U4///yztm/frj59+qhixYqKjY3VwoUL1bp1a/3+++9yd3dXy5YtNXz4cL355pt6+eWXVbNmTUmy/pvXOm9HXt4fTz75pAYPHqx9+/bZjJP6+eefdejQIf373/+2tg0ZMkQxMTEaNGiQhg8frmPHjumtt97Sr7/+qu+//97mqPHBgwfVt29fDRkyRIMHD1b16tVzrDUuLk4zZ87URx99lK/Pz3uSgSIlOjrakGT8/PPP2fbx9vY27r//fuv8xIkTjX/+KN944w1DknH+/Plsl/Hzzz8bkozo6OhMj7Vq1cqQZLz77rtZPtaqVSvr/JYtWwxJxn333WckJiZa2z/77DNDkjF//nxrW2BgoBEREZHrMnOqLSIiwggMDLTOr1692pBkTJs2zaZfjx49DIvFYhw5csTaJslwdna2aduzZ48hyViwYEGmdf3TvHnzDEnG0qVLrW0pKSlGkyZNjJIlS9q89sDAQCM8PDzH5f2zr6RM08SJEw3DMIypU6caHh4exqFDh2yeN27cOMPJycmIi4uztl27ds2mT0pKilGnTh3j4Ycftmn38PDI8udw67bNcOv+ZRg3t2WxYsWM/fv327RHRkYaFSpUMP766y+b9j59+hje3t7WGrt27WrUrl078wbJxbFjxzLtGxEREYYkY8qUKTZ977//fqNRo0a5LrNVq1aZasnrvjJ79mxDknHs2DGb58fGxhpOTk7G9OnTbdp/++03o3jx4jbt2b3fMl6rj4+PcfnyZWv7+PHjDUlG/fr1jdTUVGt73759DWdnZ+P69euGYRjGlStXjFKlShmDBw+2We6ZM2cMb29vm/YGDRoYFSpUsFnP+vXrDUmZ9ol/7p+GkXm/MwzD2LFjhyHJWLx4sbVtxYoVhiRjy5YtNn3zU2dWMj6DVqxYkWO/vLw/Ll++bLi6uhpjx4616Tt8+HDDw8PDSEpKMgzDMLZt22ZIMj7++GObfmvXrs3UnvEeX7t2bY71/VOPHj2Mpk2bWuclGcOGDcvz8+8lnE4yoZIlS+Z4lVLGX3hffvml3YNgXVxcNGjQoDz3HzBggDw9Pa3zPXr0UIUKFfTf//7XrvXn1X//+185OTlp+PDhNu2jR4+WYRhas2aNTXu7du1sjjzUq1dPXl5e+vPPP3Ndj5+fn/r27WttK1GihIYPH66kpCT973//s/s1hIaGasOGDTbTgAEDJEkrVqxQixYtVLp0af3111/WqV27dkpLS9O3335rXc4//2K7dOmSEhIS1KJFC/3yyy9215aTVq1a2Yz9MQxDK1euVJcuXWQYhk29YWFhSkhIsNZSqlQpnTx5Uj///HOB1fOvf/3LZr5Fixa5/lxzYu++It0ckJmenq5evXrZbAc/Pz9VrVpVW7Zssemf0/utZ8+e8vb2ts6HhoZKkvr3728zFi40NFQpKSk6deqUpJunlC9fvqy+ffva1ODk5KTQ0FBrDfHx8dq9e7ciIiJs1tO+ffs8je36536XmpqqCxcuqEqVKipVqlSe9r281nm78vL+8Pb2VteuXbVs2TLr6ei0tDQtX75c3bp1k4eHh6Sb70tvb2+1b9/epuZGjRqpZMmSmWoODg62ORWVky1btmjlypU2R1mRvbvmdNK3336r2bNna9euXYqPj9eqVavyffWFYRiaM2eO3n//fR0/flzlypXTs88+q1deeeXOFG2npKQk+fr6Zvt479699Z///EdPP/20xo0bp7Zt26p79+7q0aOHihXLW26977778jWIt2rVqjbzFotFVapUKfDLKW91/Phx+fv72wQo6f8OUx8/ftymvVKlSpmWUbp06UznsbNaT9WqVTNtv+zWkx/lypVTu3btsnzs8OHD2rt3b7anpM6dO2f9/9dff61p06Zp9+7dSk5OtrbfqXsIBQcH28yfP39ely9f1vvvv6/3338/x3rHjh2rjRs36sEHH1SVKlXUoUMHPfHEE2rWrJldtbi6umbaRnn5uebE3n1FuvlzMwwj0/siw60D1HN6v91aR0bQCAgIyLI9o77Dhw9LujmWLiteXl6S/m/fzarW6tWr5xpE/v77b0VFRSk6OlqnTp2yGYuWkJCQ43PzU+ftyuv7Y8CAAVq+fLm2bdumli1bauPGjTp79qzNrRIOHz6shISEbD+H//m+lDK/V7Jz48YNDR8+XE8++aR1bCBydteEmKtXr6p+/fp66qmn1L17d7uWMWLECK1fv16vv/666tatq4sXL2Y5UM6RTp48qYSEBFWpUiXbPm5ubvr222+1ZcsWffPNN1q7dq2WL1+uhx9+WOvXr5eTk1Ou67kT52Gz+2WalpaWp5oKQnbrMW4ZBFxUpKenq3379nrppZeyfLxatWqSpG3btunRRx9Vy5Yt9c4776hChQoqUaKEoqOjcx0smyGnn09Wbt1HMo769e/fXxEREVk+J+PWADVr1tTBgwf19ddfa+3atVq5cqXeeecdTZgwQZMnT85Tvf90J/af29lX0tPTZbFYtGbNmiyXU7JkSZv5nN5v2dWRW30ZP48lS5bIz88vU7+CuqLx+eefV3R0tEaOHKkmTZrI29tbFotFffr0ydOR4MKoMz/vj7CwMJUvX15Lly5Vy5YttXTpUvn5+dn8oZGeni5fX199/PHHWa7v1kCd18/TxYsX6+DBg3rvvfcy/QF45coVxcbGytfXt8heueYId02I6dSpkzp16pTt48nJyXrllVe0bNkyXb58WXXq1NGsWbOsV8X88ccfWrhwofbt22cddJXX9FyYlixZIkm5HposVqyY2rZtq7Zt22ru3LmaMWOGXnnlFW3ZskXt2rUr8L/OM/6aymAYho4cOWJzP5vSpUtneVOw48ePq3Llytb5/NQWGBiojRs36sqVKzZHYw4cOGB9vCAEBgZq7969Sk9PtzkaU9DruVVISIiSkpKyPVKTYeXKlXJ1ddW6devk4uJibY+Ojs7UN7vtm9PPJy98fHzk6emptLS0XOuVJA8PD/Xu3Vu9e/dWSkqKunfvrunTp2v8+PGmuYw3u20ZEhIiwzAUHBxsDZqFLeNUmK+vb44/j4x999b3sHRzQGpuPv/8c0VERGjOnDnWtuvXr2fal3LaVnmp83bk5/3h5OSkJ554QjExMZo1a5ZWr16twYMH24TGkJAQbdy4Uc2aNSvQP/ji4uKUmpqa5RHJxYsXa/HixXadZbib3TNjYp577jnt2LFDn376qfbu3auePXuqY8eO1jfu//t//0+VK1fW119/reDgYAUFBenpp58uUkdiNm/erKlTpyo4OFj9+vXLtl9WNWfcNC7jMGrGud2CutPo4sWLbcbpfP7554qPj7cJliEhIfrhhx+UkpJibfv6668zXXKan9oeeeQRpaWl6a233rJpf+ONN2SxWHIMtvnxyCOP6MyZM1q+fLm17caNG1qwYIFKliypVq1aFch6btWrVy/t2LFD69aty/TY5cuXdePGDUk3P3gtFovNUZPY2Ngs78zr4eGR5bYNCQlRQkKC9u7da23LODWbF05OTnr88ce1cuVK7du3L9Pj58+ft/7/woULNo85OzurVq1aMgxDqampeVpfUZDdvtq9e3c5OTlp8uTJmY7cGIaR6fXfCWFhYfLy8tKMGTOy3KYZP48KFSqoQYMGWrRokc3pnw0bNuj333/PdT1OTk6ZXuOCBQsyHcHLblvltc7bkZ/3h3TzKqVLly5pyJAhSkpKynQfp169eiktLU1Tp07N9NwbN27Y/bnap08frVq1KtMk3fwMWrVqlXVMFG66a47E5CQuLk7R0dGKi4uTv7+/JGnMmDFau3atoqOjNWPGDP355586fvy4VqxYocWLFystLU0vvPCCevTooc2bNxd6zWvWrNGBAwd048YNnT17Vps3b9aGDRsUGBior776Kse/VKdMmaJvv/1W4eHhCgwM1Llz5/TOO++oYsWKat68uaSbv7BKlSqld999V56envLw8FBoaKjdR5/KlCmj5s2ba9CgQTp79qzmzZunKlWq2FwG/vTTT+vzzz9Xx44d1atXLx09elRLly7NdIlvfmrr0qWL2rRpo1deeUWxsbGqX7++1q9fry+//FIjR460+/LhWz3zzDN67733NHDgQO3atUtBQUH6/PPP9f3332vevHmZxuQUlBdffFFfffWVOnfurIEDB6pRo0a6evWqfvvtN33++eeKjY1VuXLlFB4errlz56pjx4564okndO7cOb399tuqUqWKTSiRpEaNGmnjxo2aO3eu/P39FRwcrNDQUPXp00djx47VY489puHDh1svc61WrVqeBwfPnDlTW7ZsUWhoqAYPHqxatWrp4sWL+uWXX7Rx40ZrwO7QoYP8/PzUrFkzlS9fXn/88YfeeusthYeH37FteSc0atRIkvTKK6+oT58+KlGihLp06aKQkBBNmzZN48ePV2xsrLp16yZPT08dO3ZMq1at0jPPPHPH7//h5eWlhQsX6sknn1TDhg3Vp08f+fj4KC4uTt98842aNWtmDf9RUVEKDw9X8+bN9dRTT+nixYvW+/gkJSXluJ7OnTtryZIl8vb2Vq1atbRjxw5t3Lgx0y0LGjRoICcnJ82aNUsJCQlycXHRww8/LF9f3zzXmZOVK1daj4z+U0RERL7eH5J0//33q06dOlqxYoVq1qyphg0b2jzeqlUrDRkyRFFRUdq9e7c6dOigEiVK6PDhw1qxYoXmz5+vHj165FrzrWrUqKEaNWpk+VhwcDBHYLJS+BdE3XmSjFWrVlnnv/76a0OS4eHhYTMVL17c6NWrl2EYhjF48GBDknHw4EHr83bt2mVIMg4cOFBotWdcYp0xOTs7G35+fkb79u2N+fPn21zKm+HWS2A3bdpkdO3a1fD39zecnZ0Nf39/o2/fvpku0/3yyy+NWrVqGcWLF7e5bDWrS04zZHeJ9bJly4zx48cbvr6+hpubmxEeHm4cP3480/PnzJlj3HfffYaLi4vRrFkzY+fOnZmWmVNtWV0GfOXKFeOFF14w/P39jRIlShhVq1Y1Zs+ebaSnp9v0UzaXKWZ36fetzp49awwaNMgoV66c4ezsbNStWzfLy8Dze4l1bn2vXLlijB8/3qhSpYrh7OxslCtXzmjatKnx+uuvGykpKdZ+H374oVG1alXDxcXFqFGjhhEdHZ3l5dEHDhwwWrZsabi5uRmSbF77+vXrjTp16hjOzs5G9erVjaVLl2Z7iXV2l3yePXvWGDZsmBEQEGCUKFHC8PPzM9q2bWu8//771j7vvfee0bJlS6Ns2bKGi4uLERISYrz44otGQkJCjtsiu0usPTw8MvXNqu6sZHeJdV73lalTpxr33XefUaxYsUyXW69cudJo3ry59TOnRo0axrBhw2w+Z7J7v2W81tmzZ9u0Z3dJcXa3Z9iyZYsRFhZmeHt7G66urkZISIgxcOBAY+fOnTb9Vq5cadSsWdNwcXExatWqZXzxxRdZvt90yyXWly5dsr4vSpYsaYSFhRkHDhzIclt98MEHRuXKlQ0nJ6dMl1vntc5bZWyP7KZt27YZhpH390eG1157zZBkzJgxI9t1v//++0ajRo0MNzc3w9PT06hbt67x0ksvGadPn7b2yc/nQXZyer/d6yyGUURHNN4Gi8Vic95w+fLl6tevn/bv359pMFzJkiXl5+eniRMnZjqc+ffff8vd3V3r169X+/btC/MlAAAcaP78+XrhhRcUGxub5ZVqKBruidNJ999/v9LS0nTu3DnrHWBv1axZM924cUNHjx61noI4dOiQpDs3aBMAUPQYhqEPP/xQrVq1IsAUcXdNiElKStKRI0es88eOHdPu3btVpkwZVatWTf369dOAAQM0Z84c3X///Tp//rw2bdqkevXqKTw8XO3atVPDhg311FNPad68eUpPT9ewYcPUvn17h11dAAAoPFevXtVXX32lLVu26LffftOXX37p6JKQi7vmdNLWrVvVpk2bTO0RERGKiYlRamqqpk2bpsWLF+vUqVMqV66cHnroIU2ePFl169aVJJ0+fVrPP/+81q9fLw8PD3Xq1Elz5sxRmTJlCvvlAAAKWWxsrIKDg1WqVCk9++yzmj59uqNLQi7umhADAADuLffMfWIAAMDdhRADAABMydQDe9PT03X69Gl5enresS+5AwAABcswDF25ckX+/v55/mLirJg6xJw+fTrTN7kCAABzOHHihCpWrGj3800dYjJuT37ixIkC+7p2AABwZyUmJiogIOC2v2bE1CEm4xSSl5cXIQYAAJO53aEgDOwFAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmVNzRBQC4+wSN+ybXPrEzwwuhEgB3M47EAAAAUyLEAAAAUyLEAAAAUyLEAAAAU3JoiAkKCpLFYsk0DRs2zJFlAQAAE3Do1Uk///yz0tLSrPP79u1T+/bt1bNnTwdWBQAAzMChIcbHx8dmfubMmQoJCVGrVq0cVBEAADCLInOfmJSUFC1dulSjRo2SxWLJsk9ycrKSk5Ot84mJiYVVHgAAKGKKzMDe1atX6/Llyxo4cGC2faKiouTt7W2dAgICCq9AAABQpBSZEPPhhx+qU6dO8vf3z7bP+PHjlZCQYJ1OnDhRiBUCAICipEicTjp+/Lg2btyoL774Isd+Li4ucnFxKaSqAABAUVYkjsRER0fL19dX4eF8lwoAAMgbh4eY9PR0RUdHKyIiQsWLF4kDQwAAwAQcHmI2btyouLg4PfXUU44uBQAAmIjDD3106NBBhmE4ugwAAGAyDj8SAwAAYA9CDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCVCDAAAMCWHh5hTp06pf//+Klu2rNzc3FS3bl3t3LnT0WUBAIAirrgjV37p0iU1a9ZMbdq00Zo1a+Tj46PDhw+rdOnSjiwLAACYgENDzKxZsxQQEKDo6GhrW3BwsAMrAgAAZuHQ00lfffWVGjdurJ49e8rX11f333+/Pvjgg2z7JycnKzEx0WYCAAD3JoeGmD///FMLFy5U1apVtW7dOg0dOlTDhw/XokWLsuwfFRUlb29v6xQQEFDIFQMAgKLCYhiG4aiVOzs7q3Hjxtq+fbu1bfjw4fr555+1Y8eOTP2Tk5OVnJxsnU9MTFRAQIASEhLk5eVVKDUDyF3QuG9y7RM7M7wQKgFQFCUmJsrb2/u2f3879EhMhQoVVKtWLZu2mjVrKi4uLsv+Li4u8vLyspkAAMC9yaEhplmzZjp48KBN26FDhxQYGOigigAAgFk4NMS88MIL+uGHHzRjxgwdOXJEn3zyid5//30NGzbMkWUBAAATcGiIeeCBB7Rq1SotW7ZMderU0dSpUzVv3jz169fPkWUBAAATcOh9YiSpc+fO6ty5s6PLAAAAJuPwrx0AAACwByEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYEiEGAACYkkNDzKRJk2SxWGymGjVqOLIkAABgEsUdXUDt2rW1ceNG63zx4g4vCQAAmIDDE0Px4sXl5+fn6DIAAIDJOHxMzOHDh+Xv76/KlSurX79+iouLc3RJAADABBx6JCY0NFQxMTGqXr264uPjNXnyZLVo0UL79u2Tp6dnpv7JyclKTk62zicmJhZmuQAAoAhxaIjp1KmT9f/16tVTaGioAgMD9dlnnykyMjJT/6ioKE2ePLkwSwQAAEWUw08n/VOpUqVUrVo1HTlyJMvHx48fr4SEBOt04sSJQq4QAAAUFUUqxCQlJeno0aOqUKFClo+7uLjIy8vLZgIAAPcmh4aYMWPG6H//+59iY2O1fft2PfbYY3JyclLfvn0dWRYAADABh46JOXnypPr27asLFy7Ix8dHzZs31w8//CAfHx9HlgUAAEzAoSHm008/deTqAQCAiRWpMTEAAAB5RYgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmRIgBAACmZFeI+fPPPwu6DgAAgHyxK8RUqVJFbdq00dKlS3X9+vWCrgkAACBXdoWYX375RfXq1dOoUaPk5+enIUOG6Keffiro2gAAALJlV4hp0KCB5s+fr9OnT+ujjz5SfHy8mjdvrjp16mju3Lk6f/58QdcJAABg47YG9hYvXlzdu3fXihUrNGvWLB05ckRjxoxRQECABgwYoPj4+IKqEwAAwMZthZidO3fq2WefVYUKFTR37lyNGTNGR48e1YYNG3T69Gl17dq1oOoEAACwUdyeJ82dO1fR0dE6ePCgHnnkES1evFiPPPKIihW7mYmCg4MVExOjoKCggqwVAADAyq4Qs3DhQj311FMaOHCgKlSokGUfX19fffjhh7dVHAAAQHbsCjGHDx/OtY+zs7MiIiLsWTwAAECu7BoTEx0drRUrVmRqX7FihRYtWnTbRQEAAOTGrhATFRWlcuXKZWr39fXVjBkzbrsoAACA3NgVYuLi4hQcHJypPTAwUHFxcbddFAAAQG7sCjG+vr7au3dvpvY9e/aobNmyt10UAABAbuwKMX379tXw4cO1ZcsWpaWlKS0tTZs3b9aIESPUp0+fgq4RAAAgE7uuTpo6dapiY2PVtm1bFS9+cxHp6ekaMGAAY2IAAEChsCvEODs7a/ny5Zo6dar27NkjNzc31a1bV4GBgQVdHwAAQJbsCjEZqlWrpmrVqhVULQAAAHlmV4hJS0tTTEyMNm3apHPnzik9Pd3m8c2bN+d7mTNnztT48eM1YsQIzZs3z56yAADAPcSuEDNixAjFxMQoPDxcderUkcViua0ifv75Z7333nuqV6/ebS0HAADcO+wKMZ9++qk+++wzPfLII7ddQFJSkvr166cPPvhA06ZNu+3lAQCAe4Ndl1g7OzurSpUqBVLAsGHDFB4ernbt2hXI8gAAwL3BrhAzevRozZ8/X4Zh3NbKP/30U/3yyy+KiorKU//k5GQlJibaTAAA4N5k1+mk7777Tlu2bNGaNWtUu3ZtlShRwubxL774ItdlnDhxQiNGjNCGDRvk6uqap/VGRUVp8uTJ9pQMAADuMhbDjsMpgwYNyvHx6OjoXJexevVqPfbYY3JycrK2paWlyWKxqFixYkpOTrZ5TLp5JCY5Odk6n5iYqICAACUkJMjLyyufrwLAnRI07ptc+8TODC+ESgAURYmJifL29r7t3992HYnJS0jJTdu2bfXbb7/ZtA0aNEg1atTQ2LFjMwUYSXJxcZGLi8ttrxsAAJif3Te7u3HjhrZu3aqjR4/qiSeekKenp06fPi0vLy+VLFky1+d7enqqTp06Nm0eHh4qW7ZspnYAAIBb2RVijh8/ro4dOyouLk7Jyclq3769PD09NWvWLCUnJ+vdd98t6DoBAABs2H2zu8aNG2vPnj0qW7astf2xxx7T4MGD7S5m69atdj8XAADcW+wKMdu2bdP27dvl7Oxs0x4UFKRTp04VSGEAAAA5ses+Menp6UpLS8vUfvLkSXl6et52UQAAALmxK8R06NDB5ksaLRaLkpKSNHHixAL5KgIAAIDc2HU6ac6cOQoLC1OtWrV0/fp1PfHEEzp8+LDKlSunZcuWFXSNAAAAmdgVYipWrKg9e/bo008/1d69e5WUlKTIyEj169dPbm5uBV0jAABAJnbfJ6Z48eLq379/QdYCAACQZ3aFmMWLF+f4+IABA+wqBgAAIK/svk/MP6WmpuratWtydnaWu7s7IQYAANxxdl2ddOnSJZspKSlJBw8eVPPmzRnYCwAACoVdISYrVatW1cyZMzMdpQEAALgTCizESDcH+54+fbogFwkAAJAlu8bEfPXVVzbzhmEoPj5eb731lpo1a1YghQEAAOTErhDTrVs3m3mLxSIfHx89/PDDmjNnTkHUBQAAkCO7Qkx6enpB1wEAAJAvBTomBgAAoLDYdSRm1KhRee47d+5ce1YBAACQI7tCzK+//qpff/1Vqampql69uiTp0KFDcnJyUsOGDa39LBZLwVQJ4K4TNO6bXPvEzgwvhEoAmJVdIaZLly7y9PTUokWLVLp0aUk3b4A3aNAgtWjRQqNHjy7QIgEAAG5l15iYOXPmKCoqyhpgJKl06dKaNm0aVycBAIBCYVeISUxM1Pnz5zO1nz9/XleuXLntogAAAHJjV4h57LHHNGjQIH3xxRc6efKkTp48qZUrVyoyMlLdu3cv6BoBAAAysWtMzLvvvqsxY8boiSeeUGpq6s0FFS+uyMhIzZ49u0ALBAAAyIpdIcbd3V3vvPOOZs+eraNHj0qSQkJC5OHhUaDFAQAAZOe2bnYXHx+v+Ph4Va1aVR4eHjIMo6DqAgAAyJFdIebChQtq27atqlWrpkceeUTx8fGSpMjISC6vBgAAhcKuEPPCCy+oRIkSiouLk7u7u7W9d+/eWrt2bYEVBwAAkB27xsSsX79e69atU8WKFW3aq1atquPHjxdIYQAAADmx60jM1atXbY7AZLh48aJcXFxuuygAAIDc2BViWrRoocWLF1vnLRaL0tPT9dprr6lNmzYFVhwAAEB27Dqd9Nprr6lt27bauXOnUlJS9NJLL2n//v26ePGivv/++4KuEQAAIBO7jsTUqVNHhw4dUvPmzdW1a1ddvXpV3bt316+//qqQkJCCrhEAACCTfB+JSU1NVceOHfXuu+/qlVdeuRM1AQAA5CrfR2JKlCihvXv33olaAAAA8syu00n9+/fXhx9+WNC1AAAA5JldA3tv3Lihjz76SBs3blSjRo0yfWfS3LlzC6Q4AACA7OQrxPz5558KCgrSvn371LBhQ0nSoUOHbPpYLJaCqw4AACAb+QoxVatWVXx8vLZs2SLp5tcMvPnmmypfvvwdKQ4AACA7+RoTc+u3VK9Zs0ZXr14t0IIAAADywq6BvRluDTX5tXDhQtWrV09eXl7y8vJSkyZNtGbNmttaJgAAuDfkK8RYLJZMY15uZwxMxYoVNXPmTO3atUs7d+7Uww8/rK5du2r//v12LxMAANwb8jUmxjAMDRw40Polj9evX9e//vWvTFcnffHFF3laXpcuXWzmp0+froULF+qHH35Q7dq181MaAAC4x+QrxERERNjM9+/fv8AKSUtL04oVK3T16lU1adKkwJYLAADuTvkKMdHR0QVewG+//aYmTZro+vXrKlmypFatWqVatWpl2Tc5OVnJycnW+cTExAKvBwAAmMNtDewtCNWrV9fu3bv1448/aujQoYqIiNDvv/+eZd+oqCh5e3tbp4CAgEKuFgAAFBUW43YvMSpg7dq1U0hIiN57771Mj2V1JCYgIEAJCQny8vIqzDIB5CBo3DcFspzYmeEFshwARUtiYqK8vb1v+/e3XV87cCelp6fbBJV/cnFxsQ4qBgAA9zaHhpjx48erU6dOqlSpkq5cuaJPPvlEW7du1bp16xxZFgAAMAGHhphz585pwIABio+Pl7e3t+rVq6d169apffv2jiwLAACYgENDzIcffujI1QMAABNz+NVJAAAA9iDEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAU3JoiImKitIDDzwgT09P+fr6qlu3bjp48KAjSwIAACbh0BDzv//9T8OGDdMPP/ygDRs2KDU1VR06dNDVq1cdWRYAADCB4o5c+dq1a23mY2Ji5Ovrq127dqlly5YOqgoAAJhBkRoTk5CQIEkqU6aMgysBAABFnUOPxPxTenq6Ro4cqWbNmqlOnTpZ9klOTlZycrJ1PjExsbDKAwAARUyRORIzbNgw7du3T59++mm2faKiouTt7W2dAgICCrFCAABQlBSJEPPcc8/p66+/1pYtW1SxYsVs+40fP14JCQnW6cSJE4VYJQAAKEocejrJMAw9//zzWrVqlbZu3arg4OAc+7u4uMjFxaWQqgMAAEWZQ0PMsGHD9Mknn+jLL7+Up6enzpw5I0ny9vaWm5ubI0sDAABFnENPJy1cuFAJCQlq3bq1KlSoYJ2WL1/uyLIAAIAJOPx0EgAAgD2KxMBeAACA/CLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAUyLEAAAAU3JoiPn222/VpUsX+fv7y2KxaPXq1Y4sBwAAmIhDQ8zVq1dVv359vf32244sAwAAmFBxR668U6dO6tSpkyNLAAAAJsWYGAAAYEoOPRKTX8nJyUpOTrbOJyYmOrAaAADgSKY6EhMVFSVvb2/rFBAQ4OiSAACAg5gqxIwfP14JCQnW6cSJE44uCQAAOIipTie5uLjIxcXF0WUAAIAiwKEhJikpSUeOHLHOHzt2TLt371aZMmVUqVIlB1YGAACKOoeGmJ07d6pNmzbW+VGjRkmSIiIiFBMT46CqAACAGTg0xLRu3VqGYTiyBAAAYFKmGtgLAACQgRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMiRADAABMqbijCwCA7ASN+ybXPrEzwwuhEgBFEUdiAACAKRFiAACAKRFiAACAKRFiAACAKRFiAACAKRFiAACAKRWJEPP2228rKChIrq6uCg0N1U8//eTokgAAQBHn8BCzfPlyjRo1ShMnTtQvv/yi+vXrKywsTOfOnXN0aQAAoAizGIZhOLKA0NBQPfDAA3rrrbckSenp6QoICNDzzz+vcePG5fjcxMREeXt7KyEhQV5eXoVRLnDPy8sN6IoabogHFC0F9fvboUdiUlJStGvXLrVr187aVqxYMbVr1047duxwYGUAAKCoc+jXDvz1119KS0tT+fLlbdrLly+vAwcOZOqfnJys5ORk63xCQoKkm4kOQM7qTFzn6BIcptILK3Lts29yWCFUAkD6v9/bt3syyFTfnRQVFaXJkydnag8ICHBANQDuJt7zHF0BcO+5cuWKvL297X6+Q0NMuXLl5OTkpLNnz9q0nz17Vn5+fpn6jx8/XqNGjbLOp6en6+LFiypbtqwsFssdr9cMEhMTFRAQoBMnTjBOqICwTQse27TgsU0LHtu04GVs07i4OFksFvn7+9/W8hwaYpydndWoUSNt2rRJ3bp1k3QzmGzatEnPPfdcpv4uLi5ycXGxaStVqlQhVGo+Xl5evOkKGNu04LFNCx7btOCxTQuet7d3gWxTh59OGjVqlCIiItS4cWM9+OCDmjdvnq5evapBgwY5ujQAAFCEOTzE9O7dW+fPn9eECRN05swZNWjQQGvXrs002BcAAOCfHB5iJOm5557L8vQR8s/FxUUTJ07MdNoN9mObFjy2acFjmxY8tmnBK+ht6vCb3QEAANjD4V87AAAAYA9CDAAAMCVCDAAAMCVCDAAAMCVCzF1k+vTpatq0qdzd3bO9CWBcXJzCw8Pl7u4uX19fvfjii7px40bhFmpiQUFBslgsNtPMmTMdXZapvP322woKCpKrq6tCQ0P1008/ObokU5s0aVKmfbJGjRqOLstUvv32W3Xp0kX+/v6yWCxavXq1zeOGYWjChAmqUKGC3Nzc1K5dOx0+fNgxxZpEbtt04MCBmfbbjh075ns9hJi7SEpKinr27KmhQ4dm+XhaWprCw8OVkpKi7du3a9GiRYqJidGECRMKuVJzmzJliuLj463T888/7+iSTGP58uUaNWqUJk6cqF9++UX169dXWFiYzp075+jSTK127do2++R3333n6JJM5erVq6pfv77efvvtLB9/7bXX9Oabb+rdd9/Vjz/+KA8PD4WFhen69euFXKl55LZNJaljx442++2yZcvyvyIDd53o6GjD29s7U/t///tfo1ixYsaZM2esbQsXLjS8vLyM5OTkQqzQvAIDA4033njD0WWY1oMPPmgMGzbMOp+Wlmb4+/sbUVFRDqzK3CZOnGjUr1/f0WXcNSQZq1atss6np6cbfn5+xuzZs61tly9fNlxcXIxly5Y5oELzuXWbGoZhREREGF27dr3tZXMk5h6yY8cO1a1b1+ZuyGFhYUpMTNT+/fsdWJm5zJw5U2XLltX999+v2bNnczouj1JSUrRr1y61a9fO2lasWDG1a9dOO3bscGBl5nf48GH5+/urcuXK6tevn+Li4hxd0l3j2LFjOnPmjM1+6+3trdDQUPbb27R161b5+vqqevXqGjp0qC5cuJDvZRSJO/aicJw5cybT1zlkzJ85c8YRJZnO8OHD1bBhQ5UpU0bbt2/X+PHjFR8fr7lz5zq6tCLvr7/+UlpaWpb74IEDBxxUlfmFhoYqJiZG1atXV3x8vCZPnqwWLVpo37598vT0dHR5ppfx2ZjVfsvnpv06duyo7t27Kzg4WEePHtXLL7+sTp06aceOHXJycsrzcggxRdy4ceM0a9asHPv88ccfDOS7DfnZxqNGjbK21atXT87OzhoyZIiioqK4NTkcolOnTtb/16tXT6GhoQoMDNRnn32myMhIB1YGZK9Pnz7W/9etW1f16tVTSEiItm7dqrZt2+Z5OYSYIm706NEaOHBgjn0qV66cp2X5+flluhLk7Nmz1sfuVbezjUNDQ3Xjxg3FxsaqevXqd6C6u0e5cuXk5ORk3ecynD179p7e/wpaqVKlVK1aNR05csTRpdwVMvbNs2fPqkKFCtb2s2fPqkGDBg6q6u5TuXJllStXTkeOHCHE3E18fHzk4+NTIMtq0qSJpk+frnPnzsnX11eStGHDBnl5ealWrVoFsg4zup1tvHv3bhUrVsy6PZE9Z2dnNWrUSJs2bVK3bt0kSenp6dq0aRNfAFuAkpKSdPToUT355JOOLuWuEBwcLD8/P23atMkaWhITE/Xjjz9meyUo8u/kyZO6cOGCTVDMC0LMXSQuLk4XL15UXFyc0tLStHv3bklSlSpVVLJkSXXo0EG1atXSk08+qddee01nzpzRv//9bw0bNoxTIXmwY8cO/fjjj2rTpo08PT21Y8cOvfDCC+rfv79Kly7t6PJMYdSoUYqIiFDjxo314IMPat68ebp69aoGDRrk6NJMa8yYMerSpYsCAwN1+vRpTZw4UU5OTurbt6+jSzONpKQkmyNXx44d0+7du1WmTBlVqlRJI0eO1LRp01S1alUFBwfr1Vdflb+/vzWMI7OctmmZMmU0efJkPf744/Lz89PRo0f10ksvqUqVKgoLC8vfim77+iYUGREREYakTNOWLVusfWJjY41OnToZbm5uRrly5YzRo0cbqampjivaRHbt2mWEhoYa3t7ehqurq1GzZk1jxowZxvXr1x1dmqksWLDAqFSpkuHs7Gw8+OCDxg8//ODokkytd+/eRoUKFQxnZ2fjvvvuM3r37m0cOXLE0WWZypYtW7L87IyIiDAM4+Zl1q+++qpRvnx5w8XFxWjbtq1x8OBBxxZdxOW0Ta9du2Z06NDB8PHxMUqUKGEEBgYagwcPtrn9R15ZDMMwbjdxAQAAFDbuEwMAAEyJEAMAAEyJEAMAAEyJEAMAAEyJEAMAAEyJEAMAAEyJEAMAAEyJEAMA/7/WrVtr5MiRji4DQB4RYoB7wMCBA2WxWDJNBfUlgTExMSpVqlSBLMseXbp0UceOHbN8bNu2bbJYLNq7d28hVwXgTiPEAPeIjh07Kj4+3mYKDg52dFmZpKam5vs5kZGR2rBhg06ePJnpsejoaDVu3Fj16tUriPIAFCGEGOAe4eLiIj8/P5vJyclJkvTll1+qYcOGcnV1VeXKlTV58mTduHHD+ty5c+eqbt268vDwUEBAgJ599lklJSVJkrZu3apBgwYpISHBeoRn0qRJkiSLxaLVq1fb1FGqVCnFxMRIkmJjY2WxWLR8+XK1atVKrq6u+vjjjyVJ//nPf1SzZk25urqqRo0aeuedd7J9bZ07d5aPj491uRmSkpK0YsUKRUZG6sKFC+rbt6/uu+8+ubu7q27dulq2bFmO2yy3+iXpxIkT6tWrl0qVKqUyZcqoa9euio2NzXG5AAoGIQa4x23btk0DBgzQiBEj9Pvvv+u9995TTEyMpk+fbu1TrFgxvfnmm9q/f78WLVqkzZs366WXXpIkNW3aVPPmzZOXl5f1CM+YMWPyVcO4ceM0YsQI/fHHHwoLC9PHH3+sCRMmaPr06frjjz80Y8YMvfrqq1q0aFGWzy9evLgGDBigmJgY/fPr4FasWKG0tDT17dtX169fV6NGjfTNN99o3759euaZZ/Tkk0/qp59+smOr3ZSamqqwsDB5enpq27Zt+v7771WyZEl17NhRKSkpdi8XQB4V9DdXAih6IiIiDCcnJ8PDw8M69ejRwzAMw2jbtq0xY8YMm/5LliwxKlSokO3yVqxYYZQtW9Y6Hx0dbXh7e2fqJ8lYtWqVTZu3t7cRHR1tGIZhHDt2zJBkzJs3z6ZPSEiI8cknn9i0TZ061WjSpEm2Nf3xxx+ZvrW9RYsWRv/+/bN9Tnh4uDF69GjrfKtWrYwRI0bkuf4lS5YY1atXN9LT062PJycnG25ubsa6deuyXS+AglHcsREKQGFp06aNFi5caJ338PCQJO3Zs0fff/+9zZGXtLQ0Xb9+XdeuXZO7u7s2btyoqKgoHThwQImJibpx44bN47ercePG1v9fvXpVR48eVWRkpAYPHmxtv3Hjhry9vbNdRo0aNdS0aVN99NFHat26tY4cOaJt27ZpypQp1tc0Y8YMffbZZzp16pRSUlKUnJx8W/Xv2bNHR44ckaenp0379evXdfToUbuXCyBvCDHAPcLDw0NVqlTJ1J6UlKTJkyere/fumR5zdXVVbGysOnfurKFDh2r69OkqU6aMvvvuO0VGRiolJSXHEGCxWGxO70hZD9zNCFQZ9UjSBx98oNDQUJt+GWN4shMZGannn39eb7/9tqKjoxUSEqJWrVpJkmbPnq358+dr3rx51vE9I0eOzPG0T271JyUlqVGjRtZxPP/k4+OTY60Abh8hBrjHNWzYUAcPHswy4EjSrl27lJ6erjlz5qhYsZvD6D777DObPs7OzkpLS8v0XB8fH8XHx1vnDx8+rGvXruVYT/ny5eXv768///xT/fr1y9dr6dWrl0aMGKFPPvlEixcv1tChQ2WxWCRJ33//vbp27ar+/ftLktLT03Xo0CHVqlUr2+XlVn/Dhg21fPly+fr6ysvLK1+1Arh9hBjgHjdhwgR17txZlSpVUo8ePVSsWDHt2bNH+/bt07Rp01SlShWlpqZqwYIF6tKli77//nu9++67NssICgpSUlKSNm3apPr168vd3V3u7u56+OGH9dZbb6lJkyZKS0vT2LFjVaJEiVxrmjx5soYPHy5vb2917NhRycnJ2rlzpy5duqRRo0Zl+7ySJUuqd+/eGj9+vBITEzVw4EDrY1WrVtXnn3+u7du3q3Tp0po7d67Onj2bY4jJrf5+/fpp9uzZ6tq1q6ZMmaKKFSvq+PHj+uKLL/TSSy+pYsWKub5WAPbj6iTgHhcWFqavv/5a69ev1wMPPKCHHnpIb7zxhgIDAyVJ9evX19y5czVr1izVqVNHH3/8saKiomyW0bRpU/3rX/9S79695ePjo9dee02SNGfOHAUEBKhFixZ64oknNGbMmDyNQXn66af1n//8R9HR0apbt65atWqlmJiYPN3XJjIyUpcuXVJYWJj8/f2t7f/+97/VsGFDhYWFqXXr1vLz81O3bt1yXFZu9bu7u+vbb79VpUqV1L17d9WsWVORkZG6fv06R2aAQmAxbj3hCwAAYAIciQEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKZEiAEAAKb0/wEn9zvNejVF4gAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from keras.models import Sequential, Model\n", "from keras.layers import Dense, Input, concatenate, GlobalAveragePooling1D\n", "from keras.utils import to_categorical\n", "from sklearn.manifold import MDS\n", "import matplotlib.pyplot as plt\n", "\n", "# Load your dataset\n", "data = pd.read_csv('/content/stressinput.csv', header=None)\n", "\n", "# Separate features and labels\n", "features = data.iloc[:, :-1].values\n", "labels = data.iloc[:, -1].values\n", "\n", "# Scale features using StandardScaler\n", "scaler = StandardScaler()\n", "features_scaled = scaler.fit_transform(features)\n", "\n", "# Convert labels to one-hot encoding\n", "num_classes = len(np.unique(labels))\n", "labels_one_hot = to_categorical(labels, num_classes=num_classes)\n", "\n", "# Define the custom DenseNet-like architecture\n", "def create_custom_densenet(input_shape, num_dense_blocks=3, num_layers_per_block=3, growth_rate=32):\n", " global model # Declare model as a global variable\n", " input_layer = Input(shape=input_shape)\n", " x = input_layer\n", "\n", " intermediate_layer_indices = [] # Indices of layers for which the distribution will be visualized\n", " for _ in range(num_dense_blocks):\n", " for _ in range(num_layers_per_block):\n", " # Dense layer\n", " x = Dense(growth_rate, activation='relu')(x)\n", " if len(intermediate_layer_indices) < 4:\n", " intermediate_layer_indices.append(len(model.layers) - 1) # Save the index of this layer\n", " # Concatenate with previous layers\n", " x = concatenate([x, input_layer])\n", "\n", " # Global average pooling\n", " x = GlobalAveragePooling1D()(x)\n", "\n", " # Output layer\n", " output_layer = Dense(num_classes, activation='softmax')(x)\n", "\n", " model = Model(inputs=input_layer, outputs=output_layer)\n", " return model, intermediate_layer_indices\n", "\n", "# Reshape features to simulate an image\n", "features_reshaped = features_scaled.reshape(features_scaled.shape[0], features_scaled.shape[1], 1)\n", "\n", "# Split the data into training and test sets\n", "X_train, X_test, Y_train, Y_test = train_test_split(features_reshaped, labels_one_hot, test_size=0.2, random_state=42)\n", "\n", "# Create the custom DenseNet-like model\n", "input_shape = (features_scaled.shape[1], 1)\n", "model_densenet, intermediate_layer_indices = create_custom_densenet(input_shape=input_shape)\n", "\n", "model_densenet.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n", "\n", "# Train the model\n", "model_densenet.fit(X_train, Y_train, epochs=10, batch_size=32, validation_split=0.1)\n", "\n", "# Evaluate the model on the test set\n", "test_loss, test_accuracy = model_densenet.evaluate(X_test, Y_test)\n", "print(\"Test Accuracy:\", test_accuracy)\n", "\n", "# Extract features for MDA from the model\n", "feature_extraction_model = Model(inputs=model_densenet.input, outputs=model_densenet.layers[-2].output)\n", "features_extracted = feature_extraction_model.predict(X_test)\n", "\n", "# Apply MDS for dimensionality reduction\n", "mds = MDS(n_components=2)\n", "features_2d = mds.fit_transform(features_extracted)\n", "\n", "# Plot MDS results\n", "plt.scatter(features_2d[:, 0], features_2d[:, 1], c=np.argmax(Y_test, axis=1), cmap='viridis')\n", "plt.title('MDS Visualization of DenseNet-like Model Features')\n", "plt.xlabel('MD1')\n", "plt.ylabel('MD2')\n", "plt.show()\n", "\n", "# Visualize feature distribution in intermediate layers\n", "for index in intermediate_layer_indices:\n", " intermediate_layer_output = Model(inputs=model_densenet.input, outputs=model_densenet.layers[index].output)\n", " intermediate_features = intermediate_layer_output.predict(X_test)\n", "\n", " # Plot the distribution for the current intermediate layer\n", " plt.figure()\n", " plt.hist(intermediate_features.flatten(), bins=50)\n", " plt.title(f'Distribution of Features in Intermediate Layer {index}')\n", " plt.xlabel('Feature Value')\n", " plt.ylabel('Frequency')\n", " plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 332 }, "id": "bUCBAd5MsX0w", "outputId": "4296ed4f-b04c-4d62-c52f-a3c76bc14ec1" }, "outputs": [ { "ename": "NameError", "evalue": "name 'model' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;31m# Create the custom DenseNet-like model\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[0minput_shape\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mfeatures_scaled\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 59\u001b[0;31m \u001b[0mmodel_densenet\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mintermediate_layer_indices\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcreate_custom_densenet\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput_shape\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minput_shape\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 60\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0mmodel_densenet\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcompile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moptimizer\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'adam'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mloss\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'categorical_crossentropy'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmetrics\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'accuracy'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m\u001b[0m in \u001b[0;36mcreate_custom_densenet\u001b[0;34m(input_shape, num_dense_blocks, num_layers_per_block, growth_rate)\u001b[0m\n\u001b[1;32m 36\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mDense\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgrowth_rate\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mactivation\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'relu'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 37\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mintermediate_layer_indices\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0;36m4\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 38\u001b[0;31m \u001b[0mintermediate_layer_indices\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlayers\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# Save the index of intermediate layers\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 39\u001b[0m \u001b[0;31m# Concatenate with previous layers\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 40\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mconcatenate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput_layer\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: name 'model' is not defined" ] } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from keras.models import Sequential, Model\n", "from keras.layers import Dense, Input, concatenate, GlobalAveragePooling1D\n", "from keras.utils import to_categorical\n", "from sklearn.manifold import MDS\n", "import matplotlib.pyplot as plt\n", "\n", "# Load your dataset\n", "data = pd.read_csv('/content/drive/MyDrive/stressinput.csv', header=None)\n", "\n", "# Separate features and labels\n", "features = data.iloc[:, :-1].values\n", "labels = data.iloc[:, -1].values\n", "\n", "# Scale features using StandardScaler\n", "scaler = StandardScaler()\n", "features_scaled = scaler.fit_transform(features)\n", "\n", "# Convert labels to one-hot encoding\n", "num_classes = len(np.unique(labels))\n", "labels_one_hot = to_categorical(labels, num_classes=num_classes)\n", "\n", "# Define the custom DenseNet-like architecture\n", "def create_custom_densenet(input_shape, num_dense_blocks=3, num_layers_per_block=3, growth_rate=32):\n", " global model # Declare model as a global variable\n", " input_layer = Input(shape=input_shape)\n", " x = input_layer\n", "\n", " intermediate_layer_indices = [] # Indices of intermediate layers for which the distribution will be visualized\n", " for _ in range(num_dense_blocks):\n", " for _ in range(num_layers_per_block):\n", " # Dense layer\n", " x = Dense(growth_rate, activation='relu')(x)\n", " if len(intermediate_layer_indices) < 4:\n", " intermediate_layer_indices.append(len(model.layers) - 1) # Save the index of intermediate layers\n", " # Concatenate with previous layers\n", " x = concatenate([x, input_layer])\n", "\n", " # Global average pooling\n", " x = GlobalAveragePooling1D()(x)\n", "\n", " # Output layer\n", " output_layer = Dense(num_classes, activation='softmax')(x)\n", "\n", " model = Model(inputs=input_layer, outputs=output_layer)\n", " return model, intermediate_layer_indices\n", "\n", "# Reshape features to simulate an image\n", "features_reshaped = features_scaled.reshape(features_scaled.shape[0], features_scaled.shape[1], 1)\n", "\n", "# Split the data into training and test sets\n", "X_train, X_test, Y_train, Y_test = train_test_split(features_reshaped, labels_one_hot, test_size=0.2, random_state=42)\n", "\n", "# Create the custom DenseNet-like model\n", "input_shape = (features_scaled.shape[1], 1)\n", "model_densenet, intermediate_layer_indices = create_custom_densenet(input_shape=input_shape)\n", "\n", "model_densenet.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n", "\n", "# Variables to store data for visualization\n", "intermediate_layer_distributions = []\n", "\n", "# Train the model and visualize the distribution at intermediate layers\n", "for epoch in range(1, 11): # Adjust the number of epochs as needed\n", " print(f'Training Epoch {epoch}/{10}')\n", " model_densenet.fit(X_train, Y_train, epochs=1, batch_size=32, validation_split=0.1)\n", "\n", " # Extract features from intermediate layers\n", " intermediate_layer_outputs = [Model(inputs=model_densenet.input, outputs=model_densenet.layers[idx].output)\n", " for idx in intermediate_layer_indices]\n", " intermediate_layer_features = [output.predict(X_test) for output in intermediate_layer_outputs]\n", "\n", " # Store data for visualization\n", " intermediate_layer_distributions.append(intermediate_layer_features)\n", "\n", "# Apply MDS for dimensionality reduction and plot results\n", "for layer_idx, layer_features in enumerate(intermediate_layer_distributions[0]):\n", " mds = MDS(n_components=2)\n", " features_2d = mds.fit_transform(layer_features)\n", "\n", " plt.figure()\n", " plt.scatter(features_2d[:, 0], features_2d[:, 1], c=np.argmax(Y_test, axis=1), cmap='viridis')\n", " plt.title(f'MDS Visualization of Intermediate Layer {layer_idx + 1} Features')\n", " plt.xlabel('MD1')\n", " plt.ylabel('MD2')\n", " plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "_Z9TFbExY7fz", "outputId": "08f8524d-427d-4599-e695-de480d32de7c" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m13.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m4.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Building wheel for pyDeepInsight (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Building wheel for grad_cam (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n" ] } ], "source": [ "pip -q install git+https://github.com/alok-ai-lab/pyDeepInsight.git#egg=pyDeepInsight\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "ACUctspMbmbp", "outputId": "ea6325e3-1e2a-4d55-ab8d-60cbdbce5392" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[33mWARNING: Skipping umap as it is not installed.\u001b[0m\u001b[33m\n", "\u001b[0mCollecting umap-learn\n", " Downloading umap-learn-0.5.5.tar.gz (90 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m90.9/90.9 kB\u001b[0m \u001b[31m2.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from umap-learn) (1.25.2)\n", "Requirement already satisfied: scipy>=1.3.1 in /usr/local/lib/python3.10/dist-packages (from umap-learn) (1.11.4)\n", "Requirement already satisfied: scikit-learn>=0.22 in /usr/local/lib/python3.10/dist-packages (from umap-learn) (1.2.2)\n", "Requirement already satisfied: numba>=0.51.2 in /usr/local/lib/python3.10/dist-packages (from umap-learn) (0.58.1)\n", "Collecting pynndescent>=0.5 (from umap-learn)\n", " Downloading pynndescent-0.5.11-py3-none-any.whl (55 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m55.8/55.8 kB\u001b[0m \u001b[31m6.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from umap-learn) (4.66.2)\n", "Requirement already satisfied: llvmlite<0.42,>=0.41.0dev0 in /usr/local/lib/python3.10/dist-packages (from numba>=0.51.2->umap-learn) (0.41.1)\n", "Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.10/dist-packages (from pynndescent>=0.5->umap-learn) (1.3.2)\n", "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.22->umap-learn) (3.3.0)\n", "Building wheels for collected packages: umap-learn\n", " Building wheel for umap-learn (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for umap-learn: filename=umap_learn-0.5.5-py3-none-any.whl size=86832 sha256=79cf2ab83b2f3273ad4b88efcb8902673ce26baed9cdf3e32c8f0fc27ec9caeb\n", " Stored in directory: /root/.cache/pip/wheels/3a/70/07/428d2b58660a1a3b431db59b806a10da736612ebbc66c1bcc5\n", "Successfully built umap-learn\n", "Installing collected packages: pynndescent, umap-learn\n", "Successfully installed pynndescent-0.5.11 umap-learn-0.5.5\n" ] } ], "source": [ "!pip uninstall umap\n", "!pip install umap-learn" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "4FuPt5snb9PA", "outputId": "ef1baaf2-7cd9-4ee0-81b6-9dff54fcc7a2" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Collecting timm\n", " Downloading timm-0.9.16-py3-none-any.whl (2.2 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.2/2.2 MB\u001b[0m \u001b[31m19.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (from timm) (2.1.0+cu121)\n", "Requirement already satisfied: torchvision in /usr/local/lib/python3.10/dist-packages (from timm) (0.16.0+cu121)\n", "Requirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from timm) (6.0.1)\n", "Requirement already satisfied: huggingface_hub in /usr/local/lib/python3.10/dist-packages (from timm) (0.20.3)\n", "Requirement already satisfied: safetensors in /usr/local/lib/python3.10/dist-packages (from timm) (0.4.2)\n", "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface_hub->timm) (3.13.1)\n", "Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub->timm) (2023.6.0)\n", "Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface_hub->timm) (2.31.0)\n", "Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub->timm) (4.66.2)\n", "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub->timm) (4.9.0)\n", "Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface_hub->timm) (23.2)\n", "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch->timm) (1.12)\n", "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch->timm) (3.2.1)\n", "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch->timm) (3.1.3)\n", "Requirement already satisfied: triton==2.1.0 in /usr/local/lib/python3.10/dist-packages (from torch->timm) (2.1.0)\n", "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from torchvision->timm) (1.25.2)\n", "Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from torchvision->timm) (9.4.0)\n", "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch->timm) (2.1.5)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface_hub->timm) (3.3.2)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface_hub->timm) (3.6)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface_hub->timm) (2.0.7)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface_hub->timm) (2024.2.2)\n", "Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch->timm) (1.3.0)\n", "Installing collected packages: timm\n", "Successfully installed timm-0.9.16\n" ] } ], "source": [ "!pip install timm" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "HRymkXeXbSg-" }, "outputs": [], "source": [ "from pyDeepInsight import ImageTransformer, CAMFeatureSelector\n", "\n", "import pandas as pd\n", "import numpy as np\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import MinMaxScaler, LabelEncoder\n", "import umap.umap_ as umap\n", "import torch\n", "import torchvision.transforms as transforms\n", "import timm\n", "from torch.utils.data import TensorDataset, DataLoader\n", "import torch.nn as nn\n", "import torch.optim as optim\n", "from sklearn.metrics import accuracy_score\n", "\n", "from IPython.display import display, clear_output" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "nl4sP5kddTdl" }, "outputs": [], "source": [ "# Load your dataset\n", "data = pd.read_csv('/content/stressinput.csv', header=None)\n", "\n", "# Separate features and labels\n", "features = data.iloc[:, :-1].values\n", "labels = data.iloc[:, -1].values" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "XlcMMXHyd4je" }, "outputs": [], "source": [ "genes = data.iloc[:, 2:].columns.to_numpy()\n", "\n", "random_state=1515\n", "X_train, X_test, y_train, y_test = train_test_split(\n", " features,labels, test_size=0.2, random_state=23, stratify=labels)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "pZ-tm5nReD1E" }, "outputs": [], "source": [ "var_filter = X_train.var(0) >= np.percentile(X_train.var(0), 30., method='nearest')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "3MD0C9IkeD_e" }, "outputs": [], "source": [ "mms = MinMaxScaler()\n", "X_train_norm = mms.fit_transform(X_train[:, var_filter])\n", "X_test_norm = mms.transform(X_test[:, var_filter])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "QjV6yvJIeEC1" }, "outputs": [], "source": [ "le = LabelEncoder()\n", "y_train_enc = le.fit_transform(y_train)\n", "y_test_enc = le.transform(y_test)\n", "\n", "le_mapping = dict(zip(le.transform(le.classes_), le.classes_))\n", "num_classes = np.unique(y_train_enc).size" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "fm0ey17_eEGQ" }, "outputs": [], "source": [ "reducer = umap.UMAP(\n", " n_components=2,\n", " #min_dist=0.8,\n", " metric='cosine',\n", " n_jobs=-1\n", ")\n", "\n", "pixel_size = (224,224)\n", "it = ImageTransformer(\n", " feature_extractor=reducer,\n", " pixels=pixel_size)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 486 }, "id": "4VWFABrXfKOR", "outputId": "bd56ef41-1426-4563-f947-f137faf869bf" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.10/dist-packages/pyDeepInsight/image_transformer.py:270: UserWarning: No data for colormapping provided via 'c'. Parameters 'cmap' will be ignored\n", " plt.scatter(x_new[:, 0], x_new[:, 1], s=1,\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhIAAAGdCAYAAABHM5ovAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYhklEQVR4nO3dd3xUVd4G8GdKZtJmhiQQSCAUpQlISbB3RcBVQSygIsS+tl1dXXRRV9f19UXXyrqIDV8LKpZXXNR37WIXV8qKiqCASAktwNzUSZn7/nEyYZJMb/fce5/v53M/QDLJHOYmc597zu+cY1FVVQURERFRAqxaN4CIiIj0i0GCiIiIEsYgQURERAljkCAiIqKEMUgQERFRwhgkiIiIKGEMEkRERJQwBgkiIiJKmD3TT+j3+7Ft2za4XC5YLJZMPz0RERFFoaoqampqUFpaCqs1cp9DxoPEtm3bUFZWlumnJSIiojht3rwZffr0ifiYjAcJl8sFQDTO7XZn+umJiIgoCkVRUFZW1n7NjiTjQSIwnOF2uxkkiIiIJBZLCQKLLYmIiChhDBJERESUMAYJIiIiShiDBBERESWMQYKIiIgSxiBBRERECWOQICIiooQxSBAREVHCGCSIiIgoYQwSRERElDAGCSIiIkoYgwQRERElLOObdslMVVWs3rkaOfYcuJ1uuJ1uZNuzY9q0hIiIyIwYJILM/2Y+rv6/qzt8zG61t4eKwOFxerp8LNrncrNyGUiIiMhwGCSCrNm1BgMLB+LJ05+E4lPaD6/P2+Hfik/B9trtWFe9rsPnG1saw35vm8XWNWBYsuG258GdVwh3XiE82d3CB5RsEVDysvIYSIiISBoMEkGUJgW98nvhuP7HJfT1Ta1NqPHVhA4hjV4oWzdA2bAGys8boOz6FkpTDXY5gfVOQHECSrYFihOoz1LDPocVFrgs2XBbc+DOyhdHthue7AK48wpEKMkvgjuoZyQQQoKPfEc+rBaWyBARUXIYJIIoPgVupzvhr3fYHCjKLUJRbhHQ0gKsXAl89g3w6afAZ58Bu3YBFgswahRwzIX49aAx2NJkQ1lWC8rsLUBNDaAoaPF6UVNTDW/DXigN+0QQaVKgtNRBaamHojZCyWqA17lHBBAnsMcJ/BIIJE7Amw3UOSK31wUnPNYcuG15IpA4XSKA5HaDO7cQblcRPPnd4Q4RRALDOPmOfNistoRfMyIi0jcGiSCKT0FxXnHCX7939Ro0Pf0sClYsg+PfXwN1dUB2NnDYYcDllwPHHAMcfjjg8QAA8mp9cHsbkevJBvKd7d/HDqCg7QhJVQGfrz14hPuztcaLmprdUGr3iEDSsA9KUw2U5lp4W+ugtDZAgRdK1r72AKI4gc3Z6PDvGme4hgj5qkMM09hyxFCNwyWCRk5bIMkrhNvVXfSUtIWSzrUkLqcLdit/HImI9Ibv3EEUn4KBBQMT++L6euScfSbyt25Fw5FHwXHbbSI4lJcDztBX4qJ8J4ryo1ylQ7FYREDJzgZ69Aj7MBuAbm1HWKoKNDZGDCV+7z7U1u6BUrMbSv1eeNt7SWqgtNRCaW3rJVFr4HWq7QGkytkxkChOQI1Q3pGr2uFGdlsvSa7oJXG4RPgI9JLkF8HjLobb1XH4JvjIsmXF/5oSEVFCGCSCJDW0cd11cG7ehJ/f+giFh4zu0MMgNYsFyMkRR3Ho3hgrAHfbEVEglEQIJHU11SKQ1O2FUr9X1I74lP29JP4GKKoCxbIbikOEkp2B4ZqgQOKPUN6R47fBDef+XhJbp16SnAK489t6SdzF7T0lnWtJHLYoY0NERMQgESzhIPHSS8ATT8Dy5JMYdMJhqW+YXgSHkp49u3zaCsDVdvSO9r1UFWhoCBlIVK8X9TXVUJRdYtimbg+8jftEKAn0kgRqSVALxbIVXiewsVPviDcbaI0QSJx+K9yqA+4OtSR5cDvccGe7RSDJK9jfS+Ip7jB8E7wWCRGRUTFIBEkoSGzcKOofpk0DLr44PQ0zI4sFyM0VR6dQYgGQ13aUxPK9VBWor+8SSlRFQaO3Gl5lZ9uwzR7RU+LzQmns3EtSAwXVUKzN+LVTGPE6gZYI9aYOvwVuf5boJUFQLUmWC26nC56cArhzuokQ4uoOt7sH3N167u8paRvC4eJoRCQjBok2za3NqG+uhyfbE8cXNQPnngsUFQGPPSYufkGqa32o8jaixJOdWC0EpYbFAuTliaNXr/0fBpDTdvQK97WdBUJJp0Di81ZD8e6EUhPUS9KwT4SStgJXpbUeir8RCnZDsWzDVnsL1nTqJfFF+I20+y1wt9rbe0nc1mx4AjNu2oZu3Dnd2qcAe9w9RC9JQS+487tzcTQiSgsGiTY1TTUAEF+PxK23AitWAJ9/3j4TI1iVtxE/7agFgIwGCQaYNAoOJSWiP8QCILvtiGvOj6qKmT1BPSW+fbtR490Fr3cHlJpqKHXVUOr3QWkMFLjWQmmpg9dfD0WthWLZg+3WZqyzt+7vJXECjRHqTa0q4G6xweN3iFASWJckMOPG4epYS5LfHW5PD7g9PeEuFKHEk+3h4mhEBIBBop3iUwDEESTefRf429+Ae+8FDj005ENKPNkd/swUrQIMxcliAfLzxdEWSpxtR/d4v5ff3yGUNHn3oGbvdijeXaKWpK4aSp2YBuxt7NxL0gAFu7Hbsg3r7S1Q7P72UFIfod7UogLuZqsYtgkM3Vhz4AnMuMlytdWStPWS5HXqJSnoBberOxdHI9I5Bok2cQWJ7duBGTOACROA668P+7CEp3cmSasAQxqyWgGXSxylpXAAKGo74hYIJYqCFu9eEUj27YTi3Qlv7W4otdX7Z9w0tU0Dbq2Dt7UeilqHPZY9+MXaDMXWAiVLzLypjfJr4GoSwzae1iy44dhfS2LLg9uRD7ejbYXW3IL965J42gpcC0vgLiyBK6+Qi6MRaYBBok08QaJpxkxYYEHN/CdQaJXvTkqrAEMGERRK7L17owAjwi+OFo3fD9TWotW7DzV7qqDs2yGOmt3t65IoDXvhtXih+IPWJfE3QFGrscVaBcXaAm9WKxSHGn1xtCYL3C1WUUviD64lyYXbHrQuSbanrZakUMy4cfcQPSS9+sFV0IuLoxHFgb8tbWIOEt98A8f772HZ3x5DnsONwgy0jUi3rFbA7YbN7Ua3sr6RF0eLprUV/hoFtXu2Q9lTJYpbvTvhDRS4NuyFYm2rJVFrofjroPjr4W2tR1XzXijWZii+FiiNYuhG3Rf+qXJbbaJ2xOmCJ7dQ9HzkFsS1EzAXRyOzYJBoE3OQmD8frWVlyJt2NocOiDLJZoO1WwHc3QrgPuCgpL6Vv6UZ9Xt3wlu9Dco+MXSzdstmbN/6K7K9m6F6t0HZvRXexu1QnNuhOH+A0i0HO7vlQMm1QXGo8Fp8UFrq4Ff9YZ8nx54TfkffCCGEi6ORnjBItPE2emG1WJGXlRf+QXv3Ai++CNstt2BE3/T3RWgx+6Lzc3IGCBmR1Z6F/B69kd+jd/viaAND/azX1ABr1gDffw989x2w+nvx9y1bAACq1YL6IQOhjBgEZWh/KAf0gdK3GEoPj1iDJGgn4OBj476NHXcJbvSiVW0N216nzRk+aDgih5Dgw2lzcqYNpRyDRJvAYlQRf8mefVasHXHJJRlpkxazLzo/J2eAkFmErC1yucSsrM4zs/btA374AZbvv0de21HyxGJRiA0AdjsweDAwfHjbcSgwYgQwcKD4XCeqqqKxpXF/sPB5w4YQb6DI1afgV++vXT7X7G8O+3/MsmaFDxqOyCEkuBeFi6NRMAaJNlFXtVRV4NFHgTPP7LCoUTppMfui83NyBghRCN26AUceKY5ge/aIHotAD8b33wPz5gG7donPOxzAkCEiVLSHjOGwHHAAcrJykJOVg575XZeXj0dwIAkZQoI/1hZIttVsw4++Hzt83tfqC/scdqs97nqRUJ/n4mjGwCDRJmqQWLoU+PFHESYyRIvZF52fkzNASE80H4orLBS7/h5zTMeP79y5P2AEQsbbb4vhUkDs5HvQQfANGYq9BwxF7tgxcB9aDpSWdlkxN5psezay7dkozotrebQufC0+1DTVhA8hnQKJt9GL7bXbsa56XYfPNbQ0hH0Oq8UavV4kWkDh4miaY5BoozRFCRLz5wPDhgHHHpu5RhFRXKQdiisuFscJJ+z/mKqKoZCg3ovWld+i6I03kFUn/g8oLARGjux4DB8u9qBJM6fdCafdie65cS+P1kFza3P4ABJmGGd3/W5s2Luhw+frm+vDPocFlvBFq47IIST431wcLTEMEm0i9khUVQGLFwMPPBD33QERZY6uhuIsFrGiaUkJMG4cAKCh1ocNe+vR27sDBevXAqtXA99+C7zzDvDwwyJ8WCzAoEFdA0a/fmK6rWSybFkoyi1CUW5Cy6O1a/G3oMZXEzWEBB97Gvbgl32/dPhYbVNtxOdxte1b06VeJI6iVpfDZarF0Rgk2ig+BYU5YWZiPPmkGNucOTOzjSKiuOh9KK69/WUFwIihwOTJ+z9ZXw/88IMIFoHjoYdEXQYAuFxoHjYc+0YfAtufbkJh/94hn0Ov7FY7CnIKUJCT8PJoAIBWfytqm2qjhpD2oZy2OpItypYOnwvszxROviM/saGaoM+7nC5dLI4mfwszRPEp6O/p3/UTLS3A448D558fcmMuGWg+LpwkvbefKCNyc4GxY8URoKqix7QtWNR9tRye55+BbdGzwJ13AldeGXKWiJnZrDZ4sj3x7fQcgl/1o7apNrai1qBAUlVT1eVzKtSwz5OblRsxhBTlFOHGo25ETlZOUv+fZPAnrI230Rv6B+utt8Sc8SuvzHyjYiTtuHCMUtV+BhIyHYtFFGSWlgITJ6K11of16zdjwENzYLv2WuCxx4C5c4GTTtK6pYYTKBSNuohhFKqqoq65LnIICTGUs7NuJxSfgtU7V6NHXg9cdchVKfqfxY9Bok3YGon588Uc8vLyzDcqRroaFw4hVe3Xe6CizDBy4CzKd6Jo1EDgfxYAv7sa+P3vRf3FlCnA/fcDAwZo3UTqxGKxIN+Rj3xHPkpdpXF9bau/FfY77ci2a/veL19ljkZCBon160WR01XaJb1YFOU7MaK3R7dviqlqf4knG4N65us2UFFmBAJnlbdR66akV3k58OmnwPPPA19/DRx0EHDrrWJnVzKEQJ1Gsr0iyWKQgEh1dc11XU/GY48BBQXA1KnaNIziovdARZlhqsBpsYj6rrVrgVmzgPvuEwtivfCCqK8gXQvsEeVxalu/xyCBMKmusRF46ingoouAHO2KWIgotfQaOKtrffhuqxfVteFXnAwrL08UX65ZI4Zqp08Xi2atWJH6hlLGxLzZZJoxSCDMyXjlFaC6GrjiCo1aJbek3tSIKG4pGZIZMAB47TXg/ffFfiFjxwKXXSZW3iTdYZCQSMiTMX++KFIaNEijVsnNNOPMRJJI6ZDMSScBq1aJGR2vvio2GHvoIbEpIekGg4REvI1eAEHjTP/5D/Dll1JP+dSaqcaZKaPY2xVayodk7Hbgd78DfvoJOO884IYbgFGjgHffTc33p7QLXLsYJCTQJdXNny/mZU+apGGr5KbXcWaSH3u7Mqx7d/Get3w50KMHMGGCWFFz/XqtW0ZRKD4FFliQ58jTtB0MEugUJBQFWLgQuPxyrghHpAH2dmlk9Gixy/FLLwErV4pNCmfPBmoj701B2lF8ClxOl+YbjTFIoFOqW7hQzNi49FIA7GYlyjT2dmnIYhHT3X/8EfjTn0TdxODBwHPPAX6/1q2jThSfovnUT4BBAkBQqoMFeOQR0a3XW2x4o8duVoYfIkpKbi5wxx0iUBx1lNiw8KijgH//W+uWUZCIu1ZnEIMEgk7GZ58B33/fochSj92segw/RCShfv3EVPgPPxQrYh52GHDJJcCOHVq3jMAgIZX2kzF/vpjueeKJ7Z/TYzerHsMPEUnshBPE4lX/+Afw+utiuOP++4GmJq1bZmpKE4OENLw+L9zWHDGf+oorAGt6X5Z0Dz3oMfxoiUNBRDGw28W+Qz/9BMyYAdx4IzByJPCvf2ndMtPyNnoZJGSh+BR4diqAzQZceGHan8/MQw8yXrTNfD6I4lZYKHomVq0S0+R/8xvgtNNEwKCM4tCGRJRGL9wbtgLnnit+SdLMzEMPMl60zXw+aD8ZQ67UDj4Y+OAD0ZP73XfA8OGil0JRtG6ZaTBISETZuRnuvfUJr2QZ7xuQmYceZLxom/l80H4yhlzpWSzAWWeJzcBuvVX0VAwZAjz9NKeLZgCDhES8u7Yg19Ud1QeNTOjr+QYUO160KRqtegZkDLm6kZMD3HabmC563HFi1+QjjgCWLdO6ZYbGdSQkoliaYMvtgSolsTcuvgERpY5WwZwhN35dQl/fvsCiRcDHHwM+H3D44aLurKpK03YakV/1o6aphj0SsqhxAr127Ek4CPANiCh1GMz1I2zoO/ZYsXfHo48Cb74ppov+7W8iXFBK1DaJpcsZJCTgV/2osTajaOtOFFlbtW4OkekxmOtHxNBnswG//a2YzXHxxcDNNwMjRohgoaqZb6zByLKFOMAggRpfDQDA06AC336rcWuI9IuzHswnptBXUADMnQv85z9A//7A6aeLKaNr12asnUYkyxbiAIPE/lTXahMrtxFRQlh0TBENHw68+y6weLEIESNGADfcAHi9WrdMl9gjIZH2k9H7QDGmR0QJYW0DRWWxAGecAfzwA/CXv4gaisGDgQULOF00TgwSEmk/GYMPZo+EjrAbXT6sbaCYZWcDt9wieibGjQMuvRQ49FDgiy+0bpluBK5dnmydT/+8++67YbFYcN1116WoOZnXHiSGjxGrs7GqWBfYjU5kAH36AM8/L3ZeVlXgqKPgO+98/LhyHW8Soghcu/Id+Rq3JIkg8e9//xuPPfYYRo5MbBEnWbQHidGHAy0twOrVGreIYsFudCIDOeoo4OuvgSeegO3dd3HACYeh/pmFnN0RgeJT4HK4YLVoP7CQUAtqa2sxffp0PPHEEygoKEh1mzKqPdWNOUxMV+Lwhi6wG53IYGw24NJLoSz/D+qPOxFl11wKnHkmsH271i2TkizLYwMJBomrr74ap556KsaNGxf1sT6fD4qidDhk4vV5ke/Ihy0vHxg2jAWXREQaKuzfG93++b9iM7DPPxezPV58kb0TnXh9cmwhDiQQJBYtWoQVK1Zgzpw5MT1+zpw58Hg87UdZWVncjUynDmuVV1SwR4KISAZnnSVmd5x8MnD++eyd6ES3PRKbN2/Gtddei+effx7Z2bGNTc+ePRter7f92Lx5c0INTZcOJ6O8XCxK1dysbaOIiAjo3l3s3cHeiS50GySWL1+OnTt3ory8HHa7HXa7HR9//DH+/ve/w263o7W16xLTTqcTbre7wyGTDiejogJoagK+/17bRhER0X7snehCt0HipJNOwurVq7Fq1ar2Y+zYsZg+fTpWrVoFm82WrnamTYeTMWqUWDCFwxtERHIJ6p3wf/Y5Wg4eib0rv9O6VZqRZQtxIM4g4XK5MGLEiA5HXl4eioqKMGLEiHS1Ma06BIm8PGDoUBZcEhHJ6qyzsPb9L1Dv6oa8yaeadoty3fZIGFGXk8GCSyLD48qo+lZ8YBmqFr0GW2srcMopptyvQ6YgYU/2GyxdujQFzdBOl5NRXg787/+KxansSb88FEZ1rQ9V3kaUeLK5FgRlXGBlVAD8+dOhonwnig4dAbzzNnDMMaJm4v/+D3Ca51zqevqn0Xh93o7jTBUVQEMD8OOP2jXKBLjENWmJK6MaxIgRwJIlYkbHzJmm2fjLr/pR46uRJkiY/pa7S4/E6NHizxUrxA8ppUXgDZxv5JRuoXq/ivKd7IkwimOOEVNCzz4b6NkTmDtXFM0bWF1THVSo0gQJU/dIhEx1bjcwaJDpCy7TPYbMJa4pU9j7ZQJTpgCPPAI8/DBwzz1atybtZNpCHDB5j0TYVMeCS44hk2Gw98uYuvQ0/fa3YgbH7NlAr17AhRdq3cS0kWkLccDkQSJsqisvB954A2htFRvJmBDffMko9DCMweLj+IW82bn9dhEmLr0UKC4GfvMbDVuYPuyRkEjYk1FRAdTVAT/9JNaVMCE9vPkSGQV7AOMX8mbHYgHmzQN27ADOOQf48EPgsMM0amH6yBYkTF0jEfZkjBkj/jR5nQRRuqSiBsdIa0FwFkn8wtZZ2e2i+HLMGODUU4G1a7VpYBoxSEjE6xOLmHQ5GQUFwAEHmL5OQlZGuoCYVSoKII1URMni4xTLyRHTQnv2BCZMALZt07pFKRW4drkcLo1bIpg6SEQsWCkvZ5CQlJEuIGaVijtw3sVTRIWFwNtvi1q3iROBffu0blHKKD4FeVl5sFnlqOFjkECYVBcIEiZZ4ERPeAHRv1TcgafqLp49XAZWVga88w78W7Zg3yW/Ncw5lml5bIBBInyqq6gAFAXYsCHzDaOI2A1MqcQeLoMbNgw7r7wOrrf+iR2bd2jdmpRQfIo0Uz8BBonwqa68XPzJgksyAN51h8ceLuNzXDgD1uZm9H3/Ta2bkhLskZBIxJPRvTvQty/rJMgQeNcdHnu4jK9w0ABYxo1D/ssvat2UlGCQkEjUk8GCSzIIs991s0eGUFkJfPYZsH691i1JGoOERGIKEsuXA6qauUYRpYHZ77rZI0M44wzA5QKefVbrliRNpi3EAZMHCa/PG7lgpaIC2LsX2LQpc40iopQze48MAcjNBaZOFUFC57PxFJ8Ct4NBQgox9UgALLgk0jmz98hQm5kzgV9+EUMcOsahDYlETXW9egGlpayTIKK4sS5DQkcfDQwYADzzjNYtSQqDhERiOhmBOgkiojiwLkNCVqvolXjlFaC+XuvWJERVVa4jIZOYgkRFheiRYMElEcWBdRmSmjkTqKkBFi/WuiUJqW+uh1/1s0dCBoFUF1OPxK5dwNatmWkYERkC6zIkdcABwDHH6HZ4Q7adPwETB4mYUx0LLomIjGXmTOD993V5gxh212oNmTZIxHwyevcGiotZcJkGLEYj0o6pf//OOQdwOoGFC7VuSdzYIyGRiFuIB7NYWHCZgFjepFiM1pGp39gp40z9++fxAFOmiOENndW/MUhIJK6TESi4pJjF8ibFYrSO4n1jZ/CgZJj+96+yElizBvjmG61bEhcGCYnEdTLKy4GqKnFQTGJ5k2Ix2n7VtT54G5pQ7HbG/MZu6jtKilvn4Gn6379x44CSEt0tmc0gIZG4gwTAXok4mP5NKk5V3kbsVJrgycmK+TUz/R0lxYXBsxObDbjgAuDFF4GmJq1bEzPFpyA3Kxd2q13rprQzfZBwOVzRH9yvH1BYyCChETN04ScSChjWKB4MniFUVgLV1cBbb2ndkpjJtqolAMgTaTJM8SnIsecgy5YV/cEsuNRU4E4KgGEvmkX5TsP+30gO/BkLYfhwUQP3zDOi+FIHZAwSpu2R8DbGuQ0rCy41wzsp0pIZesRMbeZM0SOxa5fWLYlJ3NeuDDBtkIh7rfLycmDzZt38sBkJu/BJS6wtMLjzzhN/LlqkbTtipDSxR0IacXcPVVSIP9krQWQq7BEzuB49gFNP1c2S2RzakEjcqe6AA8QiJgwScWPXMOkZe8RMoLJS1MB9/73WLYmKQUIicZ8MiwUYM4YFlwlg1zARSe3UU8XMPB30Sig+BR6nPFuIAwwS8X0RCy4Twq5hIpKawyFqJRYuBFpbtW5NROyRkIjiU+B2xHkyysuBjRuBPXtS2hajd/2za5jMzOi/34ZRWSlWL37/fa1bEhGDhEQS7pEAgJUrU9oWdv0TGRd/v3Vi7FjgoIOkHt5QVZXTP2WS0MkYNAjIz095nQS7/uXEO0lKBf5+64TFgrpzp8P/2mLs2bpT69aE1NDSgFa1lUFCBqqqxr+OBABYrcDo0Smvk2DXv5x4J0mpwN9v/dh8yhRYmnxoePElrZsSkowbdgEmDRJJpToWXJoG7ySJjCOWHsYeBx2IumOOR/FiBol4mDJIJHUyysuBn34CvN4Ut4pkwztJMjKzDd3F0sNYlO9E/uWXIOuLz4ENGzLYutgErl2c/imBpIJEoOBy1arUNYiIKMPMNnQXcw/jlCmiFu7ZZzPTsDiwR0IiSZ2MIUOAnBwuTEVEuma2obuYexhzc4FzzhFBwu/PTONixCAhkaROht2eloJLIqJM4tBdBJWVYs2gzz/XuiUdeBvFkLrL6dK4JR2ZMkgETkbCqa68nD0SRERGdcwxQP/+0q0pofgUZNuz4bA5tG5KB6YMEkl3D5WXA2vXArW1KWwVERFJwWoFZs4EXn4ZqK/XujXtZFzVEjBxkEgq1VVUAKoK/Oc/qW0YERHJYeZMoKYGeP11rVvSjkFCIkmfjGHDAKeTwxsUN7NNuSPSrQMPBI46SqrZGzLu/AkwSCQmKwsYOTJkwSUvFBSJ2abcEelaZSXw3nvAtm1atwQAoDSxR0IaKekeClNwyQtFZuktuJltyh2Rrk2dKrYYX7hQ65YA4NCGVFKS6srLgR9+6FKIwwtFZuktuHHKHemJ3oJ6ynk8wBlniNkbqqp1axgkZJKSk1FRIRYrWb26w4d5ocgsBjftmf5iY2CxBHXDn/+ZM8VNowRrB8m4hThg0iCRkpMxYoSolWDBpaYY3LSnt14hil0sQd3w5//kk4FevaRYU4I9EhJJSeWr0ynChAQplboy/F2SRNgrZFyxBHWjnv/295DGVuCCC4AXXgCamjRtE4OERFJ2MmJY4ZIXNG1k6i6J55e9QmZn1PPf4T2kshKorgb+7/80a4+qqgwSMknZyaioAL77DvCFv4gYvttPUpm6S+L5JTKmDu8hI0YAY8ZoOrzha/Wh2d8s5ToSdq0bkGkpTXXl5UBLiyi4HDs25EMCFzKjdfvJrijfmZE7JJ5fImPq8h5SWQnMmgXs3g10757x9si68ydgwh6JQKpLyckYORKw2SLWSRi1248Enl8ikzj/fDEFdNEiTZ6eQUIiKT0ZOTliuWwWXGYE6xFC4+tClAE9egC/+Y1mwxtJ71qdRqYLEik/GdxSPGNYjxAaXxdjYCDUgcpK4JtvxLoSGcYeCYkETkbKClYqKoBvvwWam1Pz/Sgso04zSxZfF2MweyDURZA69VSgoECTjbwYJCSS8pNRXi7mFn//fWq+H4XFeoTQ+LoYg9kDoS6ClNMJnHce8NxzQGtrRp/aMEFi/vz5GDlyJNxuN9xuN4444gj861//Slfb0iLlJ2PUKMBiYZ0EkYFl4m7Z7IFQN0GqslLsBvrBBxl9WsWnwGlzwmmX7+cjriDRp08f3H333Vi+fDm++eYbnHjiiZg8eTK+19HdeMqDRH4+MHQo6ySI4qSLruw2urhbzoB0njPdBKlDDhHv+RkuupR1MSogznUkTj/99A7/vuuuuzB//nx89dVXGD58eEobli6KT4HD5khtqisvZ48E6UZ1rQ9V3kaUeLI1fdMOXJwBSH/x4Hohgp7OWdpYLGIjrzvvBBQFcGfm4i5zkEi4RqK1tRWLFi1CXV0djjjiiFS2Ka3ScjIqKoD//EcsTkUkOVnurtPRlZ2uO2bd3C2nmW6GH9JtxgygsRF49dWMPaXXJ+fOn0ACK1uuXr0aRxxxBBobG5Gfn4/Fixdj2LBhYR/v8/ngC1pCWlGUxFqaImk5GeXlQEMD8OOPYilVIonJcnedjtVHececXplaMVZ6ffoAJ50khjcuvjgjT2moHokhQ4Zg1apVWLZsGa688kpUVlbihwhzaufMmQOPx9N+lJWVJdXgZKXlZIwZI/7k8AbpgJHvrnnHTBlTWQl88gmwcWNGns5QQcLhcGDgwIGoqKjAnDlzMGrUKMydOzfs42fPng2v19t+bN68OakGJyslW4h35nYDgwax4JJIY0YOSSSZKVNEsX2G1pQwVJDozO/3dxi66MzpdLZPFw0cWkrbyWDBJUlMTzMkiHQhLw84+2wRJFQ17U9nmCAxe/ZsfPLJJ/jll1+wevVqzJ49G0uXLsX06dPT1b6US9vJqKgAVq7M+CIlFBovnB3JUmBJZCiVlcCGDcDnn6f9qdLSm54icRVb7ty5EzNnzkRVVRU8Hg9GjhyJd955ByeffHK62pdyae2RqKsDfvpJzDEmTbHoriNZCizjIcs0VaKwjj0W6NdPFF0efXRan0rmHom4gsSCBQvS1Y6MSWuQAMTwBoNE0qJdRKJ9Xo8XznTSY7U9wyBJz2oVa0rMnQv8/e9iR+g0kTlImHKvjbScjIICYMCAkAWX7GaPX7Su+GifZ9Gd/nEGBunCjBliYap//jNtT+Fr8cHX6pM2SMS9joTepXVRj4qKkAWXvLOKX7QeBfY4GJ8ee1GMjENNYQwaBBx5pBjeOPfctDyFzBt2ASbrkfC1+NDU2pS+gpXAzA2/v8OHeWcVv2g9CrL1OLDXiYwi3M8yC3YjqKwE3n1XbOaVBgwSEkn7ySgvF11cGzZ0+LBsFz1KPb7JyoGBLnnhfpZ5QxTB1KlAVhbw/PNp+fYMEhLJSJAAuJ6ECfFNVg4MdMkL97PMG6IIunUDJk8WwxtpWFMicO3yZMs5/ZNBIpV69ADKyrjCpQnxTVYODHTJ489ygiorge+/F+sJpRh7JCSSkZMRpuAyFuyWJUoOL4KkmfHjgV69RK9EijFISCQjJ6O8XPRIJNC9xW5ZczFScDTS/4UoIXY7MH068MILQFNTSr+11+dFljULTpucAdlUQcLr8wLIQJDYuxfYtCnuL2W3rLkYKTga6f9ClLCZM4Hdu4F//Sul3zaw/pHFYknp900VUwUJxafAbrUj257GC3VFhfgzgToJdsvqS7J34UYKjkb6vxAlbORIYPTolO8IKvOqloAJg4TH6UlvquvVCygp4cwNE0j2LtxIwdFI/xfSH6mG1iorgTfeAKqrU/YtGSQkkrGTkUTBJekH78KJ5JDuobW4gsr554sauUWLUvb8DBISydjJSKLgMhWkSucGxrtwIjmkO9THFVSKi4FTTknp7A3Fp0i7hgTAIJEeFRXArl3A1q3pf64QWPhGRGaS7lAfd1CZORP497+BNWtS8vzskZBIRnskAM0WpmKXO5Gc2FuoT3EHldNPFztCp6jo0uvzwu1gkJBCxoJE795ilUuN6iTY5U4kJ/YWmoTTKXYCfe45oLU16W/HHgmJpHUL8WAWixje4FLZRNLLZC8BewtNpLJSDG9/+GHS34pBQiKB6Z8ZEdhSnIiklsleAvYW6ltcofPQQ4HBg1NSdMkgIZGMnoyKCqCqShxEJC2ZewlYUyGXuEKnxSJ6JV57DaipSfg5m1qb0NjSyCAhi4wGCW4pTiakxwufzL0Eeqip0OM5T1TcoXPGDKCxEXj11YSfs8YnQginf0og46muXz9RtZvCIGGmX1jSJz1c+PRE5t6SADOd87hDZ1kZcOKJSQ1vyL7zJwDYtW5ApgRSXcZOhsWCptFj0Pj5V2iu9aXkbifwCwtAyrsnosAFT+YLn54U5Tul/13nOY+islKsK7FxIzBgQNxfrocgYZoeCS1Oxr6Dy5Hz6ceoXvVDSr6fHu5OksVeF32TeZiA0oPnPIopU4C8PGDhwoS+PCO7VifJNEFCi5Nhv3EW/MU9ccDVF4lxsiSZ4RfWTN2kRGQC+fnA2WeLxakS2DaBPRIS0eJkFPYuhvP112Bftxa49tqUfV8j37WbodeFiEymshL4+Wfgiy/i/lIGCYkETkbGK19HjQL+8Q/g8ccT7trqLJm7dtlDiBl6XYjIZI47DujbN6GiS8WnwGaxIceek4aGpYbpgoQmqe7ii0Ui/e1vge+/T/rbJXPXzqEDItKK7DcyaWO1iqmgL78MNDTE9aWBnT8tFkuaGpc8UwUJzVKdxQLMmycqds85B6itTerbJXPXzqEDItKKqW9kZs4EvF5gyZK4vkz2VS0BkwUJt9OtXarLyxOLkmzeDFxxRUJFN6nAoQMi0oqpb2QGDwaOOCLu4Q0GCYlIcTKGDhW1Es8/L/4kIjIR09/IVFYC77wT19YJGdtsMgkMEpl23nnAlVcCv/89l88mIjKTqVOBrCxxMxkjaa5dEZgmSEiV6h58EDj4YFEvsW+f1q0hIqJMKCgAJk0SwxsxDm8zSEgkUPkqBacTeOUVoLoauOgizeoliIgowyorge++A1atiunhik+B28EgIQXpUt2AASKVvv468NBDWreGKCTTTtcjSpcJE4CePWMuupTu2hWCuYKEbKlu8mTgj38EbrwxoRXPiNLN1NP1iNLBbgemTwdeeAFobo76cKl608MwV5CQMdX9938Dhx0GTJsG7N6tdWuIOjD1dD2idJk5E9i1C3j77agPlfbaFYRBQmtZWcCiRWJTrwsuAPx+rVtE1M700/WIUqy61ofvuveHb/jB8D76ZMRhw+bWZtQ318t57QrCICGDPn1EN9e774oeCiIiMqTAcOHGI0+Ec9mXEYcNa5pqAMi9YRdgkiChi1R38snAbbcBt98OfPih1q0hkg4LP8kISjzZKHY74S8sQlZdbcRhQz3s/AmYJEjoJdXhz38GTjxRLFoVx8pnRGbAwk8ygqJ8Jzw5WWjIzoetsQFFzvCXYQYJiWi2hXi8bDax4pndDpx7LtDSonWLiKTBwk/So1A9aSWebPTo3V38o6Ym7NcySEhELycDAFBcLIovP/9c9FAQEQD9Fn5ySMbcQvWkFeU70XdAifiHooT92vabYKfcN8EMEjI65hhRdHn33cCbb2rdGiJKAodkzC1sT5q77XoUQ5CQ/dpl17oBmaCXk9HBH/8IfPaZmG+8ciXQr5/WLSKiBAQuIBySMaeifGfoXrRAkPB6w36tt9ELq8WK3KzcNLUuNdgjISurVSyh6vGIHeOamrRuERElQK9DMpRmMfZIuJ1uWCyWDDUqMaYIEt5GLyywIC8rT+umxKegQGzutWqV6KEgIiJj8LTVPcQQJGRniiChl1QX0tixwAMPAA8/LEIFERHpX26u6HlmkNAHPWx6EtFVV4npoJdcAqxbp3VriIgogphm6lgsYngjUpBoYpCQhl5SXVgWC/D440BJCXDOOUBDg9YtIiLSjOxTamOeqRMtSOjk2mWOIKGTVBeRywW8+irw00/A736ndWuIiDQj+5TamBdPiyFIyL6GBGCWIKGTVBfVwQcDjzwCLFggZnRQxsl+JyR7+4hSQfZVTmOeqeN2R5z+qZdrl2nWkSjMKdS6Galx4YXAp58CV14JlJeLcEEZE7gTAiDldD7Z20cUq+paH6q8jSjxZHf5WQ67NoPeROmR8DZ6dREkzNMj4ZD/ZMTs4YeBgQNFvUSEddr1QG930LLfCcnePqJYyT58kRIeD2sk9EIvqS5mubmiXmLbNuDyywFV1bpFUYULDKHeLGQOF7IvLiR7+4hiZYpQbJBiS9MMbejhZMRl8GDgySeBadPE3hxXXaV1iyIK1+Ueavlgds8TUbqHLyINnWRMhCDR6m9FXXOdLq5dpgkSul5HIpypU0W9xB/+ABx6qFi8SlLh9hsI9WbBvQmIKN2kuGGJECRqmsSwNYOEBPSU6hJy333AsmWiXmLFCrGstoTiubswTCEVEUlLihuWCEFCL1uIAyaokdBTqkuI0wm8/LKYQnThhbqolyAiyrTOtVdS1BO53UBdHdDS0uVTetps0vBBQk8nI2H9+wPPPgssWSJ6KIiI0kTmYuhIpJwFEtgBNMTsO2+jWF9CD9cuBgmjOO004KabgNmzgc8+07o1un2zIZKVLL9TUl6QYyDlLJAIW4nr6dpl+BoJPaW6pP3XfwFffCFmcqxcCRQXa9YUKQqZiAwklt+pTMxEkKK2IAFS1l5F2EqcQUIiejoZSbPbgUWLgDFjgOnTgbffBmw2TZqi1zcbIlnF8juViQAv5QVZr6L0SFhgQZ4jL8ONip9phjb0UPmaEqWlwAsvAB98IHooNCJFIZOBydLNTZkTy+9UPN33/BmSQJQg4XK6YLXIf5mOq4Vz5szBIYccApfLheLiYpxxxhlYu3ZtutqWEnpKdSlz0knAHXeI4733tG4NpYFex6kpveIJ8PwZkkCUIKGXnvS4gsTHH3+Mq6++Gl999RXee+89NDc3Y/z48airq0tX+5Kmp1SXUrfcAowfL4Y4tm7VujWUYlIWjpGu8GdIAnl5gMUSNkjopSc9rhqJt99+u8O/n376aRQXF2P58uU49thjU9qwVNFTqkspqxV47jlRL3HuucCHHwJZWVq3ilKE49SULP4MScBqBVyukFuJe3362SMqqdt0b9t/vrAw/BbdPp8PiqJ0ODLJtEECAHr0EItVffWV6KEwAY77aoevPVECwqxuqadrV8JBwu/347rrrsNRRx2FESNGhH3cnDlz4PF42o+ysrJEnzIhejoZaXHkkcA99wD33isWrDK4RMZ9eQFMDY65EyUgzFbierp2JRwkrr76anz33XdYtGhRxMfNnj0bXq+3/di8eXOiT5kQPXUPpc0f/gCccQZQWQls3Kh1a9IqkXFfXgBTg2PuRAkwQI9EQutIXHPNNXjzzTfxySefoE+fPhEf63Q64XRqNw5n2J0/42GxAP/zP0BFhdgx9LPPxB4dBpTIuC/XvEgNjrkTJcAAQSKuHglVVXHNNddg8eLF+PDDDzFgwIB0tStl9FT5mlbdugGvvAJ8+y1w/fVat0YqXPOCiDRjtiBx9dVXY+HChXjhhRfgcrmwfft2bN++HQ0NDelqX9L0dDLSrrwcmDsXeOQRsQJmBrEOgYgohAhBQi83wXEFifnz58Pr9eL4449HSUlJ+/HSSy+lq31JY5Do5Le/Bc4/H7j0UuDHHzP2tKxDIDIn3kRE4XZ3mf7pV/2oaarRzbUrrhoJVVXT1Y60YZDoxGIBHnsMWLECOOccYNkyIDc37U/LOgQic+IGflGE6JGo8YltxfVy7TL0co96S3UZk58PvPoqsGEDcNVVQAYCIusQiMwp226FxaIi227oy03iQgQJvW02aegzq7dUl1HDhwOPPgo884yY0UFElAaNLX6oqgWNLX6tmyInjweorQVaW9s/pLcgYehtxPV2MjJuxgzg00+Bq68WU0NHjdK6RURkMBzWjCKwcVdtrQgV0N+1y9A9EqbbQjwRc+cCQ4eKeokML19ORMbHYc0oQuwAyiAhEb2dDE3k5Ij1JXbsEDM5dFhQS0SpwRkWGogQJPSymCKDBAEDBwJPPSUCxT/+oXVriEgjnKatgUCQCJoCGrh25TvytWhR3BgkSDjrLODaa4EbbhBTQiPgXUtm8fWmTOF+KRoI0SPh9XnhcrhgtejjEq2PViZIb6lOc3/72/79OPbsCfsw3rVkFl9vyhSz1jNoGtbDDG3o6QbY8EEi35EPm9WmdVP0weEAXnpJVA/PnAn4Q0/X4l1LZvH1JkovTcO6yyX+ZJCQE7cQT0DfvsDChcBbb4keihDMeteiFS1fbw6ryI/nKHmahnWrVYQJBgk56e1kSOOUU4CbbwZuuQX4+GOtW0Ma4rBK8tJ9oec5Sp7mN0edVrfU27XL8AtScQ2JBN1xB/DFF8B55wErVwI9e2rdItIAFxNKXrr3moj1HFXX+lDlbUSJJ5u9ibLReZBgjwSFZrcDL74o6iTOP7/D8q1kHprfqaVRpoYE0t1tHus5Ys+FxDrtAKq3m2AGCQqvVy9g0SJg6VLgL3/RujVEKZXOC2twSJEljOmpaNd0dR+deiT0Vt9n+KGNUlep1s3Qt+OPB+68U9RLHHUUMHGi1i0iSol0DtvIuHV2Ub5TmrZEI+Prl1Y6H9owfJDQ08mQ1p/+BHz2GXDBBaJeoqxM6xYRJS2dF1bWliTHdK+fxwNs3dr+T71duww9tKG37iFpWa3Ac88BubnAtGlAc7PWLSKSmizDGXplutcvqEfCr/pR46vR1bXL0EFCb6lOakVFwMsvA998I3ooiIgoNYKCRF1THVSourp2GTZIBFKdnipfpXf44cC99wIPPAAsXqx1a4iIjCEoSOhxjyjDBgk9pjpd+P3vxQZfF14IrF+vdWuIiPTP7QZqagC/X3dbiAMGDhJ6THW6YLEACxYAxcXAOecAjZyTTkT6IeXUUrcbUFWgtlaX1y4GCYqfxwO88grwww/Adddp3RoiophJuTBX0A6gXp9YmEpP1y4GCUrM6NHAww8Djz0GPP+81q0hIoqJlAtzBQUJPV67DLuOhB5Tne5ceinw6afA5ZcDY8YAw4Zp3SIikpzWe35IuTCXp60eQlGgOEWQcDlcGjYoPuyRoMRZLMD8+UD//qJeoq5O6xYRkeSkHFrQWqceibysPNisNm3bFAfDBwmXUz+pTpfy8oBXXwU2bQKuuEIUDBFlgJRFcxSVlEMLEWTk56xTkNDbDbChg0ReVh7sVsOO3sjjoIOAxx8HFi4EnnxS69aQSej1ztbsAUhvq1Zm5OfM1XbD6/XqMkgY9iqrx5Oha+efL+olfvc7YOxYUTMRI63HTEmf9Lofg+k2pNK5jPyc2Wyid7etR0JPa0gADBKUSg8+CHz9taiXWL58fwFRFHxj7YrhKjopi+ZioNcAZFaRfs5S+nvatrqlHveIMvTQht5Ohu5lZ4v1JXbvBi66KOZ6Cb2NmWZCprrtzd7NrgW9de1TeCn9PW0LEnq8djFIUGodcADw9NNiL465c2P6Er6xdpWpcBXrGyEDB1FXKf099Xh0GyQMO7Shx+4hwzjjDOCGG4BZs4DDDgOOOELrFulOprrtY+1m5/ATUVcp/T0N7pFw6OvaZdggofgU9MzrqXUzzGvOHODLL4GpU4GVK4Hu3bVuEYUQ6xshx/WJ0oxDG/JRfAq3ENdSVhbw0ktiU68ZMwC/X+sWURI4/ESUZm63bqd/GjpI6O1kGE6fPmIfjnfeET0UREQUmtsNVfHqcvongwSl1/jxwK23ArfdBnz0kdatISKSk9uNunov/Kpfd9cuQwYJVVUZJGRy++3ACScA550HVFVp3RoiIvm43brdI8qQQaK+uV6Xqc6wbDYxxGG1ijDR0gKAUwoTwdeMyKDcbihNNeKvOrt2GTJIcAtxCfXsCSxaBHz2mRjmgH73StASXzOi5Egbxj0eKG21zHq7dhly+qdeu4cM79hjgbvuAv70J+Doo1Fy7EkAOKUwHpyGSZQcaddEcbsZJGTCICGxWbNEr8SMGShauRJFfftq3SJd0ev+EkTJSOWeFtKGcR0HCUMObQSChN6m0JiC1Qo884zYNnfqVKCpSesWEZHkUjmkJ+2aKEFBwuVwaduWOBk6SOgt1ZlGYSHw8svAihXAjTfG/eXSjnESUVqYYmO/tiCRa3Uiy5aldWviYuggobdUZyqHHgo88IDY2OvVV+P6UhYcEmkvk4Fe2l6ETpJ6TdxueJ2A25qT+oalmWFrJHLsObpLdaZz9dXAJ58AF18MjBoFDBoU05dJO8ZJZCLSFi1qKKnXxOWC4gTc0N9radggwWENHbBYgCefBMaOBc4+G/jqKyAnehpnwSGR9hjou0rqNcnKgpJnh1t1pLhV6WfIoQ1vI7cQ1w23WwxtrFsH/P73WreGiJJgtvqlzv/fZIdglDw73K36u783ZJBgj4TOjBwJPPKI6J149lmtW5MRZnvDJeMJVatktvqlVP9/lVwb3C22lHyvTNJf9ImB0qS/3dNM76KLRL3EFVcA5eXAiBFatyitOL5MeheqG99swx0p/f9WV0OxNqN3nYrqWp+u3heMGSTYI6FP8+YBy5eLeolvvgHy87VuUdrI8IabykV+yHxC1SqZrX4pZf/f9euBU06Bd3wrevQ5CFXeRl29jhzaIHnk5gKvvAJs3Qpcfjmgqlq3KG1kmM5mtm5oIiktWwYccQQAYF+/nuh+4FDd9egYN0g4GCR0acgQUSvx4ovAo4+m7WlYo2CSRX6I4pDx94V//hM44QQx9f2LL1Drb8DA7j101RsBGDlIsEdCv6ZNE2tMXHedGOpIA96Ny9ErIjsGTnPJ6PvCP/4BTJkC/OY3wPvvQy0q0u21y5BBgtM/DeD++8VsjnPOAfbuTfm35904xYKBU58SDYAZeV/w+4E//hH43e/EzdLLLwM5OWhoaUCr2qrLa5fhii1VVdVtqqMgTqf4BSsvFzM6Fi8WC1iliNmKwigxMhTFUvwSnRWV9veFxkZg5kyxds7cuR3WztHzHlGGCxJ6TnXUyYABYl2JSZPEvhw33KB1i8hkGDj1ScoAWF0NTJ4shmv/93/FsEYQBgmJcAtxgzn9dLFD6E03AYcfDhx1lNYtoiCcQkoyki4AbtgAnHIKsGcP8NFH4r2sk/Zrl1N/1y7D1UjoOdVRGP/1X2J61LRpwK5dWreGgrCGgLSgqyLYr78WwcHvB778MmSIAERtH6DPaxeDBMkvKwtYtAhoagIuuABobdW6RdSGRaukBd0E2CVLgOOPBwYOFCFi4MCwD9XztYtBgvShd2/ghReA994D7ror7MN0dadiAJxCSloIBNhsu1Xe3/d580QdxCmnAB98AHTvHvHhgWuXy+nKROtSikGC9GPcOOD224G//AV4//2QD9HNnQoRJSwQYBtb/PL9vvv9wKxZwDXXANde2z69MxrFpyDbng2HTX/biBuu2DIwzuRy6C/VUQxuvRX4/HPg/POBlStFT0UQmaq1WYhIlF4y/b4D6Di986GHRJCIkZ6XLYi7R+KTTz7B6aefjtLSUlgsFrz++utpaFbiFJ8Cp80Jp51v3IZkswHPPw84HMC55wItLR0+LVNXO3tH9INDYvok0+87qqtFr+kbb4jpnXGECMBkQaKurg6jRo3CvHnz0tGepCk+biFueD16iOLLL78EbrlF69aExUJE/WDoo6Rs2CCmpq9dK6Z3dlojIhZ6DhJxD22ccsopOOWUU9LRlpTQ88mgOBx9NHD33cCsWdg0eCTyp50tx11JEOnmslNY0nWRk378+9/AaacBbnfUmRmRKE2KLteQADJQI+Hz+eDz7e8uVBQlrc/HIGEiN9wA74efoPTaK7Bx4GAUHXeI1i0inWLoo4QsWSKGWEeNEn/v0SPhb6XnPaLSPmtjzpw58Hg87UdZWVlan09pYpAwDYsFLQueQmvvPjjwsgsAr1frFhGRWQSmd06cCHz4YVIhAtD3TXDag8Ts2bPh9Xrbj82bN6f1+fR8Mih+RSXdkf3mEth27gBmzBBTr4iI0sXvF8v2X3ON2HTrlVdimt4ZjZ6vXWkPEk6nE263u8ORTnruHqIEDRokZnK8+SZw551at4aIjKqxUUw9v+8+4MEHxWGzpeRbM0hIRPEpcDv0eTIoCaeeCvz1r2KxqiVLtG5N3Dj9kEgbMf/u7dkDnHwy8M9/inUirrsupe3Qc5CIu9iytrYWP//8c/u/N27ciFWrVqGwsBB9+/ZNaeMSoeeTQUm6+WZgxQqxH8fXXwNDh4Z8mIwLRQWmHwKQpk1EZhDT797GjWKp6927RT3EEUektA2qqur62hV3kPjmm29wwgkntP/7+uuvBwBUVlbi6aefTlnDEsV1JEzMagWeeQY47DBRBLVsmZiS1YmMF21OPyTSRtTfvc7TOwcNSnkbfK0+NPubzTP98/jjj4eqquloS9L0nuooBVwuYPFi4NBDxVK1r70mAkYQGS/anH5IpI2Iv3tvvCGmd44cmfT0zkj0vIU4YLAaiUCq0+vJoBQZMkQUX/7znyF3CpVqWV0iktP8+cAZZwATJojdO9MUIgD9bzZpqCCh95NBKXTaacAdd4jdQt98U+vWEJFe+P3ATTcBV10F/O53Ynpnbm5an1Lv1y5DBQm9dw9Rit16KzBpEjB9OrBundatkRpnjVAkpvn5CEzvvPdeMbXzoYdSNr0zEgYJiej9ZFCKWa3As88CpaWiizLNy7PrGTetokhM8fOxZw8wfrwYEn3llZRP74xE79cuBgkyNrcbeP11YMsWoLJSypUvZbjb406lFInhfz42bgSOPBL44QdRD3HWWRl9er1fuwwZJPQ6hYbSZMgQYOFCESj++7+1bk0XMtztsQCVIjHsz4eqAq+9Bv9hh8PX2IS9738sAkWGKT4FDpsDTrs+X19DBgm9pjpKo0mTxKqXt90GvPWW1q3pwPB3e0Qy+uUX4PTTgbPOQu2oMXh/wevY2qOPJk3x+ry6vgFO+zbimaT3VEdp9uc/i5Uvp08Xi8ykYWGZRHANCaIMam4GHnhAzOoqKgIWL0bzSRPRT/FpFub1vv6R4Xok9HwyKM0CxZe9eoniy5oarVtERJn0+edAeblYTv+KK0RNxBlnoMiVrenQjd6vXQwSZC4ej6iV2LwZuPBCMUZKRMa2Zw9w2WXA0UeLNSG++Ub0SrhcWrcMgP6vXYYKEl4ftxCnGAwdCjz3nFg+e84crVuTNjLMBiHjk/rnTFVFL+SQIWJK5yOPAF98AYwZo3XLOmCQkIjeTwZl0OTJovDy1luBf/1L69akRSKzQaS+KJCUZJh1FNLatcBJJ4lp3+PGAT/+CFx5ZUYWmIqX3q9dhiu21PPJoAy7/XZRfHn++aL4cuBArVuUUolsTibjzqgkN+k2wWtsFNO877kHKCsD3nlHLDQlMb1fuwwXJPq4tZm+QzpktYr1JQ49VBRffvUVkJ+vdatSJpHZINJdFEh6Us06eu89sUfGpk1iv4ybbwZycrRuVVSKT9H19E8ObZC5eTxi2/FNm4CLLjJ98aVhFx6imOh2aGv7dtGzOH480KcP8O23wJ136iJEAPqv72OQIBo2TBRkvfqq6A6NkW7fdInCkLbeIRy/X2z3PXSo6I145hngww/Fv3VE79cuBgkiAJgyRRRe3nwz8PbbMX2J7t50iaKQfZXVDuF91SqxnPVVVwHnnCOKKWfOBCwWrZsZF1+LD02tTbq+dhmqRkLv3UOksTvuEMWX550n5pkfeGDEh7OegIxGqnqHEKq8jdiwcQd6Pfd3YMGjoufh00/F+hA6ZYStHQwTJIyQ6khjVivw/PPAIYeI4ssvv4xYfCn7my4ZU3WtD1XeRpR4sk3389f3k3cx5IY/wL5vD3DXXcAf/gA4HFo3KylGCBKGGdowwskgCXTrJla+/OUX4OKLTV98SfIx5ZDapk3A5Mlwnz8VWWNGwfL992JWhs5DBGCMa5fhgoSep9CQJIYPF0Vbr7wC3Huv1q0h6iDZOgZdFQk3NwP33ScKor/5RhREv/kmMGCA1i1LGQYJiRjhZJBEzjxTFF7Ong28+67WrSFql+wUXd30aHz5JTB2rOh5uOwyYM0a4KyzdFdMGY3X5wUAeLL1exPMIEEUzl//CkyYAJx7LrBhg9atIUoJ2WdmYO9esTPnUUeJoYuvvwYeeghwG/O93QjXLsMUWxrhZJBkbLauxZd5eVq3iigp0hUJ19cD69YBP/6I+lXfwrHgSVh9jbD+/e/S7o2RSopPQZY1C06bROckTgwSRJEUFIjiy8MPBy65BHjxRcN1rRKlnaoCO3eKtR46H5s2tRc1Z/UoxrZDjkb9nf+NoRX6WlQqUYH1jyw6fl8xTJDw+rywW+3ItkvaXUf6NWIE8PTTYtGbigpg1qyIDzfz9DwyueZmYONGUc/QOTDs2yceY7OJNVoOOgiYNk2sBTF0KDBkCJSsXChtvztmYYSFFA0TJIyQ6khiZ58tCi//9Cdg9Gjg5JPDPpQ7aJLheb1im+7OYeHnn0WYAACXS4SFoUOBSZP2B4YDDww7bbMI5vudYZCQiBFOBknuzjvFypfnniumooWZgsYVL8kQVBXYsqVrWFizBqiq2v+4sjIREMaNA665Rvz9oIOAXr04DBgDI1y7DBUkuIYEpZXNBrzwwv7iyy++CFl8KUsxW7xDLBySManGRtGT0Hk4Yu1aoK5OPMbpBAYPFiHh0kv39y4MHhxx9VeKzuvz6nrqJ2CwIKH3VEc6UFi4v/jy0ktFsJD0riveIRYOyRjc7t2hix03bhS7aAJA9+4iIJSXi225A4Ghf3/Dz57QiuJTUOoq1boZSWGQIIrXwQcD//M/olBs7Fjghhu0blFI8Q6xcEjGAFpbxfLuwcMQgb9XV4vHWK1iWG7oUNGzFhiKGDJEBAnKKMWnYGiRvmeoGCZINPub8eHGDzH44cFwO91wO93wZHvE3x3u9o91+Vynw2HT/9rtlAFTp4p6iRtvBEaNEuPDkol3iEWWIRmKQW1t6GLHdeuApibxmLy8/T0KEyfu//vAgUA2w6IsjHATbJggMXfiXCz6bhEUn9J+eH1ebNi7oePHGr1oVVvDfh+nzRk+aDgih5D2kOL0wGnnG7Lh3XUXmr5ZDuvZ56D5kkuRc/qpwJFHGmIjIZKAqoqixlDDEZs3739caakICMceC1x++f7A0Lu36H0gqTFISGRg4UDceuytUR+nqioaWxrh9Xk7BIzOYaP9303iz1+9v3b4vNfnRYu/JezzOGyOsCEjWggJ/ne2PZtTWmVls2H9Q08g76YbUPrM08AD94m7wBNOEEtrjx8PDBokbQ0FxSbtRahNTcD69aGHI2pqxGPsdvGzNHQocMEFHYcjDLp0tFkwSOiQxWJBTlYOcrJy0Cu/V8LfR1VV+Fp9kUNI8NEWSLYoW7p8ztcafhc+u9WecAgJPnKzchlI0qC4fwmqHn8KeS4Hitb/CLzzjjiuv17Mp+/fX4SKCROAE08EPPquzjajlBWh7t0bundh/XpR2wCIbeyHDhWLoJ199v7ehQEDgKys5P8zJJWm1iY0tjQySJiVxWJBtj0b2fZsFOcVJ/W9fC0+1DTVhA8hbcM0wf/eXrsd66rXdfh8Y0v43fxsFlvCISR4KCcvK4+BJEiHuoIxY8Txpz+JMeylS0WoePdd4LHHRNX74Yfv760YO5aV8DoQVxGq3w/8+mvowLBjh3iMxQL06ycCwm9+sz8sDB0KFBezB8tEanyix4nTPylpTrsTTrsT3XOTq5huam1Cja8maggJPnbX78b6ves7fKy+uT7sc1gtVrgcrtBFq3EUteY78mG1GHj8Nj8fOO00cQBiit2774pgcd99wG23iamk48aJUDFhAtCnj7ZtppBCFqE2NLRvNNVhOGLdOvE5QBQ0DhkiAsLxx+9f5XHQICA3N+P/D5JPYAtx9kiQNBw2B4pyi1CUW5TU92nxt7QHkkghJPjzexr24Jd9v3T4XG1TbdjnsMACl9MVuhckhqLWQA9KviMfNqsO7uoHDAB++1txtLQAy5btDxaXXw74/Wjq3QeWfv2Q1b8f0LevWDEw+M9u3UxztyrF4lgxbjSF4mIREg4/HLjwwv29C337stiRIjLKZpMMEtSF3WpHQU4BCnIKkvo+rf5W1DR17SEJW0sSVEcS/PmappqIz5PvyI9vqCbE51xOF+zWDP062O3AUUeJ4447gD178OvLS9Dw9XL03LcT3bZsEatmbtkiQkf7fzS/a7gI/Nm3r+jRyOC0vnRe7DO6OFZLC7BhQ+jAsHeveExgo6mhQ8XU36CNplBYmN72kWExSBBFYbPa0C27G7pld0vq+/hVP2qbaqMXtHbqJdlWs63L51SoYZ8nNys3oRDS+ciyxVkUV1iIvAvOg3L6FLR6soHAhbO1VYyr//qrmO4X/OfKlcCSJeKOOVhxceiQEfh7z54pq8tI58U+LYtjKcr+tReCZ0Z03mgqEBJOO23/cESEjaaIEsUgQZQhVou1/SKdDL/qR11TXUwhJPjYWbezy+f8qj/s8+TYc8IXrYaoIwn+vLfZDbU+aHG00lJxHH546CdrbBQ9F8EhI/D3994Tfw/slwCI3pA+fSKHDY8npiGUdK6EmfDiWOE2mvrxR2Dbtv2P69NHhITgjaaGDgVKSkwzfETaY5Ag0hmrxQqX0wWX04Xe6J3w91FVFfXN9TEXtCa7OFrIepFOgcTT3QN37wK4j+vX6XEuZNc2hu7V+PVX4LPPxIW3Nagd+fnhQ0ZZWfsQiqYrYQY2mgoVGALByeHYv9HUxRd33GjK5dKm3URBFJ8Cm8WGHHuO1k1JCoMEUZwsFgvyHHnIc+ShxFWS8PeJZXG0DkM5qVocbYgb7pFuuJ1lcDuGw+N0wd1khbu2GW5vI9x76uDepcBdtQeetV/A/c5rcG+rRnYL0H6vXlwcOmQE/uzVKzWFhtXVXYciOm80VVgoehdGjxZbvAcWa+JGUyS5wGJUep9SzyBBpJF0L44Wrah1q7IVa3xrQi+O5m47hux/HrvFDrctB27VCXerBW7fZnjqfoFbaYL703q461rg9kEcLTZ48grhLugFd/fecPfsC3fpAXCXDURu/0GwBA+hdN5oKvjYvVs8eaiNpgIHN5oinfI26n8LcYBBgkj3Mr04WuehnO0+Bet8CpSGfVAa9sHbVINGtQnArrZjtfjmu8VhXS7ChqfJArc/S/SENKoigLTa4M4rgmd0T7hPPgTukv5wlw2Eu98QuF3dOwz1cHE00rtAj4TeMUgQUbu0Lo7WsBfKjl/h3fErlN1boezdjh3e3djRywpfgRO7XXash6+tx2QXFN961G/7F7ANwLKuz2GBJeGiVlMtjkbSUpoYJIiIQgq7ONrQjv+MthZF8OJo0YpaE10cDUD7aq2Rilqj7frrcrj0sTgaSYM9EkRESYo28yMTi6OFrCVJ4eJosaw/Evz5jC6ORppSfErSw5Ey4E8rERleuhZHi7ZAWqCXpKqmKqHF0eINIUkvjkYZpfgUDCwYqHUzksYgQUQUo1QujlbfXB/Xjr+pXBwtpqXkg4ZyHDau6pkOHNogIqKEWC1W5Dvyke/IT/niaLHUkmzctzHhxdG6BI04dv112pycaROE0z+JiEhTqV4cLWoISXJxtCxrVvigEceuv9n2bEMEEvZIEBGRIQQvjtYzv2fC3ycti6OFYLfa4x+qCfG53KxczQJJc2szGloaGCSIiIgC0rE4WqwFrYpPwfba7VhXva7D5xtaGsI+R3DNSzK7/uY78uMOJIEZQAwSREREaZDWxdGi1JLsrt+N9XvXd/hYfXN92OcItzhapBDS2NIIgEGCiIhIamEXR4tTIouj7W3ci03eTWEXR8vLysOAbgOS/S9qjkGCiIgoinQsjuawOZLasE8WDBJEREQZkqrF0WTCnWqIiIgoYQwSRERElDAGCSIiIkoYgwQRERElLKEgMW/ePPTv3x/Z2dk47LDD8PXXX6e6XURERKQDcQeJl156Cddffz1uv/12rFixAqNGjcKECROwc+fOdLSPiIiIJBZ3kHjggQdw2WWX4aKLLsKwYcPw6KOPIjc3F0899VQ62kdEREQSiytINDU1Yfny5Rg3btz+b2C1Yty4cfjyyy9T3jgiIiKSW1wLUu3evRutra3o2bPj7nA9e/bEjz/+GPJrfD4ffL79u7gpipJAM4mIiEhGaZ+1MWfOHHg8nvajrKws3U9JREREGRJXkOjevTtsNht27NjR4eM7duxAr16h1wufPXs2vF5v+7F58+bEW0tERERSiStIOBwOVFRU4IMPPmj/mN/vxwcffIAjjjgi5Nc4nU643e4OBxERERlD3Jt2XX/99aisrMTYsWNx6KGH4qGHHkJdXR0uuuiidLSPiIiIJBZ3kJg2bRp27dqF2267Ddu3b8fo0aPx9ttvdynADEdVVQAsuiQiIpJV4BoduGZHYlFjeVQKbdmyhQWXREREOrB582b06dMn4mMyHiT8fj+2bdsGl8sFi8US99crioKysjJs3ryZ9RZh8DWKDV+n6PgaRcfXKDZ8naKT6TVSVRU1NTUoLS2F1Rq5nDLuoY1kWa3WqOkmFizcjI6vUWz4OkXH1yg6vkax4esUnSyvkcfjielx3P2TiIiIEsYgQURERAnTXZBwOp24/fbb4XQ6tW6KtPgaxYavU3R8jaLjaxQbvk7R6fU1ynixJRERERmH7nokiIiISB4MEkRERJQwBgkiIiJKGIMEERERJUzaIPHJJ5/g9NNPR2lpKSwWC15//fX2zzU3N+Omm27CwQcfjLy8PJSWlmLmzJnYtm2bdg3WQKTXCAD+8pe/YOjQocjLy0NBQQHGjRuHZcuWadNYjUR7jYJdccUVsFgseOihhzLWPllEe50uvPBCWCyWDsfEiRO1aaxGYvlZWrNmDSZNmgSPx4O8vDwccsgh+PXXXzPfWI1Ee406/wwFjnvvvVebBmsk2utUW1uLa665Bn369EFOTg6GDRuGRx99VJvGxkDaIFFXV4dRo0Zh3rx5XT5XX1+PFStW4M9//jNWrFiB1157DWvXrsWkSZM0aKl2Ir1GADB48GD84x//wOrVq/HZZ5+hf//+GD9+PHbt2pXhlmon2msUsHjxYnz11VcoLS3NUMvkEsvrNHHiRFRVVbUfL774YgZbqL1or9H69etx9NFHY+jQoVi6dCm+/fZb/PnPf0Z2dnaGW6qdaK9R8M9PVVUVnnrqKVgsFpx11lkZbqm2or1O119/Pd5++20sXLgQa9aswXXXXYdrrrkGS5YsyXBLY6TqAAB18eLFER/z9ddfqwDUTZs2ZaZRkonlNfJ6vSoA9f33389MoyQT7jXasmWL2rt3b/W7775T+/Xrpz744IMZb5tMQr1OlZWV6uTJkzVpj4xCvUbTpk1TL7jgAm0aJKFY3pMmT56snnjiiZlpkKRCvU7Dhw9X//rXv3b4WHl5uXrLLbdksGWxk7ZHIl5erxcWiwXdunXTuilSampqwuOPPw6Px4NRo0Zp3Rxp+P1+zJgxA7NmzcLw4cO1bo7Uli5diuLiYgwZMgRXXnklqqurtW6SNPx+P9566y0MHjwYEyZMQHFxMQ477LCIQ2lmt2PHDrz11lu45JJLtG6KdI488kgsWbIEW7duhaqq+Oijj7Bu3TqMHz9e66aFZIgg0djYiJtuugnnnXeeFBudyOTNN99Efn4+srOz8eCDD+K9995D9+7dtW6WNO655x7Y7Xb8/ve/17opUps4cSKeffZZfPDBB7jnnnvw8ccf45RTTkFra6vWTZPCzp07UVtbi7vvvhsTJ07Eu+++iylTpuDMM8/Exx9/rHXzpPTMM8/A5XLhzDPP1Lop0nn44YcxbNgw9OnTBw6HAxMnTsS8efNw7LHHat20kDK++2eqNTc3Y+rUqVBVFfPnz9e6OdI54YQTsGrVKuzevRtPPPEEpk6dimXLlqG4uFjrpmlu+fLlmDt3LlasWJHQlvZmcu6557b//eCDD8bIkSNx4IEHYunSpTjppJM0bJkc/H4/AGDy5Mn4wx/+AAAYPXo0vvjiCzz66KM47rjjtGyelJ566ilMnz7dVDUksXr44Yfx1VdfYcmSJejXrx8++eQTXH311SgtLcW4ceO0bl4Xuu6RCISITZs24b333mNvRAh5eXkYOHAgDj/8cCxYsAB2ux0LFizQullS+PTTT7Fz50707dsXdrsddrsdmzZtwg033ID+/ftr3TypHXDAAejevTt+/vlnrZsihe7du8Nut2PYsGEdPn7QQQeZatZGrD799FOsXbsWl156qdZNkU5DQwNuvvlmPPDAAzj99NMxcuRIXHPNNZg2bRruu+8+rZsXkm57JAIh4qeffsJHH32EoqIirZukC36/Hz6fT+tmSGHGjBld0v2ECRMwY8YMXHTRRRq1Sh+2bNmC6upqlJSUaN0UKTgcDhxyyCFYu3Zth4+vW7cO/fr106hV8lqwYAEqKipYrxVCc3MzmpubYbV2vM+32WztPV+ykTZI1NbWdrjb2bhxI1atWoXCwkKUlJTg7LPPxooVK/Dmm2+itbUV27dvBwAUFhbC4XBo1eyMivQaFRUV4a677sKkSZNQUlKC3bt3Y968edi6dSvOOeccDVudWZFeo759+3YJoFlZWejVqxeGDBmS6aZqKtLrVFhYiDvuuANnnXUWevXqhfXr1+PGG2/EwIEDMWHCBA1bnVnRfpZmzZqFadOm4dhjj8UJJ5yAt99+G2+88QaWLl2qXaMzLNprBACKouCVV17B/fffr1UzNRftdTruuOMwa9Ys5OTkoF+/fvj444/x7LPP4oEHHtCw1RFoPW0knI8++kgF0OWorKxUN27cGPJzANSPPvpI66ZnTKTXqKGhQZ0yZYpaWlqqOhwOtaSkRJ00aZL69ddfa93sjIr0GoVi1umfkV6n+vp6dfz48WqPHj3UrKwstV+/fupll12mbt++XetmZ1QsP0sLFixQBw4cqGZnZ6ujRo1SX3/9de0arIFYXqPHHntMzcnJUfft26ddQzUW7XWqqqpSL7zwQrW0tFTNzs5WhwwZot5///2q3+/XtuFhcBtxIiIiSpiuiy2JiIhIWwwSRERElDAGCSIiIkoYgwQREREljEGCiIiIEsYgQURERAljkCAiIqKEMUgQERFRwhgkiIiIKGEMEkRERJQwBgkiIiJKGIMEERERJez/AXzSRD2s1aRXAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "it.fit(X_train_norm, y=y_train, plot=True)\n", "X_train_img = it.transform(X_train_norm)\n", "X_test_img = it.transform(X_test_norm)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "QQlv2duY6wcs" }, "outputs": [], "source": [ "import os\n", "os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # FATAL\n", "import scipy\n", "import scipy.io as sio\n", "from scipy.sparse.csgraph import dijkstra\n", "from scipy.sparse import lil_matrix\n", "\n", "import sklearn\n", "from sklearn.metrics import pairwise_distances_chunked\n", "from sklearn.decomposition import PCA\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.neighbors import NearestNeighbors\n", "from scipy.spatial.distance import pdist, squareform\n", "from umap.parametric_umap import ParametricUMAP\n", "import umap\n", "\n", "import numpy as np\n", "\n", "class paramsMDA:\n", " \"\"\"\n", " paramsMDA operator sets the parameters for MDA analysis\n", "\n", " \"\"\"\n", " # set the hyperparameters of gamma prior used for projection matrix\n", " alpha_phi = 1\n", " beta_phi = 1\n", "\n", " # set the hyperparameters of gamma prior used for bias parameters\n", " alpha_lambda = 1\n", " beta_lambda = 1\n", "\n", " # set the hyperparameters of gamma prior used for weight parameters\n", " alpha_psi = 1\n", " beta_psi = 1\n", "\n", " ### IMPORTANT ###\n", " # For gamma priors, you can experiment with three different (alpha, beta) values\n", " # (1, 1) => default priors\n", " # (1e-10, 1e+10) => good for obtaining sparsity\n", " # (1e-10, 1e-10) => good for small sample size problems\n", "\n", " # set the number of iterations\n", " iteration = 2\n", "\n", " # set the subspace dimensionality\n", " R = 16\n", "\n", " # determine whether you want to use automatic relevance determination priors for projection matrix (ard or entrywise)\n", " prior_phi = 'entrywise'\n", "\n", " # determine whether you want to calculate and store the lower bound values\n", " progress = 0\n", "\n", " # set the sample size used to calculate the expectation of truncated normals\n", " sample = 200\n", "\n", " # set the seed for random number generator used to initalize random variables\n", " seed = 1606\n", "\n", " # set the standard deviation of projected instances\n", " sigma_z = 0.1\n", "\n", "def selectNdimNSORTidx(data, N):\n", " # selects N number of highly variable features from a data matrix\n", " gvar = np.var(data, axis=0)\n", " var500idx = (-gvar).argsort()[:N]\n", " varNsamples = data[:,var500idx]\n", " return varNsamples, var500idx\n", "\n", "def find_nnCorr(X, k=12):\n", " \"\"\"\n", " Compute neighborhood matrix\n", "\n", " Parameters:\n", "\n", " X: High dimensional data in tabular\n", " format. The rows denote the observations and columns denote the features.\n", "\n", " k: int, optional, default: 12.\n", " number of neighbors in the data\n", " \"\"\"\n", " X_std = X - np.mean(X,axis=1, keepdims=True) # subtract the mean from the data\n", " X_norm = np.linalg.norm(X_std, axis=1, keepdims=True) # Normalize the data to make each\n", " # feature of unit variance\n", " DD = np.sqrt(1 - X_std @ X_std.T / (X_norm @ X_norm.T) + np.finfo(np.float32).eps)# Compute\n", " # the Euclidean distance\n", "\n", " D = lil_matrix(DD.shape)\n", " x_idx = np.arange(DD.shape[0]).repeat(k+1)\n", " y_idx = np.argpartition(DD, kth=k+1, axis=-1)[:,:k+1].flatten()\n", "\n", " # Select only neighborhood distance info\n", " y_idx = np.delete(y_idx, y_idx==x_idx)\n", " x_idx = np.arange(DD.shape[0]).repeat(k)\n", "\n", " D[x_idx, y_idx] = DD[x_idx,y_idx]\n", " D[y_idx, x_idx] = DD[y_idx,x_idx]\n", "\n", " return D\n", "\n", "def discoverManifold(GT, neighborNum=12):\n", " \"\"\"\n", " Discover the manifold of deep learning feature space\n", "\n", " Parameters:\n", "\n", " GT: High dimensional data in tabular\n", " format. The rows denote the observations and columns denote the features.\n", "\n", " neighborNum: int, optional, default: 12.\n", " number of neighbors in the data\n", "\n", " \"\"\"\n", " sz = GT.shape\n", "\n", " # if sz[1] > 1:\n", " #print('Constructing neighborhood graph...')\n", " # Compute the distance of the data points over the manifold\n", " D = pdist(GT, metric='euclidean')\n", " D = squareform(D)\n", " # Select the distance from the first data point\n", " geoDistance = D[0,:]\n", " # Find one endpoint of the manifold\n", " cMax, ik = np.max(geoDistance), np.argmax(geoDistance)\n", " corrTrainMax = D[ik,:]\n", "\n", " # Discretize the distance vector to obtain the outline of the manifold\n", " hist, bins = np.histogram(corrTrainMax,bins='auto')\n", " clusterIdx = np.digitize(corrTrainMax, bins).reshape(sz[0],1)\n", "\n", " return clusterIdx\n", " # else:\n", " # return GT\n", "\n", "def bsdr(X, y, parameters):\n", " \"\"\"\n", " Bayesian supervised dimensionality reduction\n", "\n", " Parameters:\n", "\n", " X: High dimensional data in tabular format. The rows denote the observations and columns denote the features.\n", "\n", " y: int vector\n", " labels of the data\n", "\n", "\n", " parameters: parameters set by paramsMDA() class\n", " \"\"\"\n", " np.random.seed(parameters.seed)\n", "\n", " D, N = X.shape\n", " K = np.max(y)\n", " R = parameters.R\n", "\n", " sigma_z = parameters.sigma_z\n", "\n", " log2pi = np.log(2 * np.pi)\n", "\n", " # If we want to estimate the best reduced dimension using 'ARD' method\n", " if parameters.prior_phi == 'ard':\n", " phi_alpha = (parameters.alpha_phi + 0.5 * D) * np.ones((R, 1))\n", " phi_beta = parameters.beta_phi * np.ones((R, 1))\n", " else:\n", " Phi_alpha = (parameters.alpha_phi + 0.5) * np.ones((D, R))\n", " Phi_beta = parameters.beta_phi * np.ones((D, R))\n", "\n", " # Initialize the variables\n", " # For Gaussian-distributed Q, initialize the mean and variance\n", " Q_mu = np.random.randn(D, R)\n", " Q_sigma = np.repeat(np.eye(D).reshape((D,D,1)),R,axis=-1)\n", " # For Gaussian-distributed Z, initialize the mean and variance\n", " Z_mu = np.random.randn(R, N)\n", " Z_sigma = np.eye(R)\n", " # For Gamma-distributed prior lambda, initialize the alpha and beta\n", " lambda_alpha = (parameters.alpha_lambda + 0.5) * np.ones((K, 1))\n", " lambda_beta = parameters.beta_lambda * np.ones((K, 1))\n", " # For Gamma-distributed prior Psi, initialize the alpha and beta\n", " Psi_alpha = (parameters.alpha_psi + 0.5) * np.ones((R, K))\n", " Psi_beta = parameters.beta_psi * np.ones((R, K))\n", " # For Gaussian-distributed b and W, initialize the mean and variance\n", " bW_mu = np.random.randn(R + 1, K)\n", " bW_sigma = np.repeat(np.eye(R + 1).reshape((R + 1,R + 1,1)),K,axis=-1)\n", " # For truncated Gaussian-distributed T, initialize the mean and variance\n", " T_mu = np.zeros((K, N))\n", " T_sigma = np.eye(K)\n", " for i in range(N):\n", " while 1:\n", " T_mu[:, i] = np.random.randn(K)\n", " if T_mu[y[i]-1, i] == np.max(T_mu[:, i]):\n", " break\n", " normalization = np.zeros((N, 1))\n", "\n", " XXT = X @ X.T\n", " phi_indices = np.repeat(np.eye(D).astype(bool).reshape((D,D,1)),R,axis=-1)\n", " psi_indices = np.repeat(np.block([[np.zeros((1, R + 1))],\n", " [np.zeros((R, 1)), np.eye(R)]]).astype(bool).reshape((R + 1,R + 1,1)),\n", " K, axis=-1)\n", "\n", " # Estimation progress\n", " if parameters.progress == 1:\n", " bounds = np.zeros((parameters.iteration, 1))\n", "\n", " for iter_ in range(parameters.iteration):\n", " #if iter_ % 1 == 0:\n", " # print('.', end=\"\")\n", " #if iter_ % 10 == 0:\n", " # print(' %5d\\n'%iter_)\n", "\n", " if parameters.prior_phi == 'ard':\n", " for s in range(R):\n", " # update priors (eq. 15)\n", " phi_beta[s] = 1 / (1 / parameters.beta_phi + 0.5 * (Q_mu[:, s].T @ Q_mu[:, s] + np.sum(np.diag(Q_sigma[:, :, s]))))\n", " for s in range(R):\n", " # update variance of projection matrix Q (eq. 16)\n", " Q_sigma[:, :, s],_,_,_ = scipy.linalg.lstsq((phi_alpha[s] * phi_beta[s] * np.eye(D) + XXT / (sigma_z**2)), np.eye(D), lapack_driver='gelsy')\n", " # update mean of projection matrix Q (eq. 16)\n", " Q_mu[:, s] = Q_sigma[:, :, s] @ (X @ Z_mu[s, :].T / (sigma_z**2))\n", " else:\n", " # update priors (eq. 15)\n", " Phi_beta = 1 / (1 / parameters.beta_phi + 0.5 * (Q_mu**2 + np.reshape(Q_sigma[phi_indices], (D,R))))\n", " for s in range(R):\n", " # update variance of projection matrix Q (eq. 16)\n", " Q_sigma[:, :, s],_,_,_ = scipy.linalg.lstsq((np.diag(Phi_alpha[:, s] * Phi_beta[:, s]) + XXT / (sigma_z**2)), np.eye(D), lapack_driver='gelsy')\n", " # update mean of projection matrix Q (eq. 16)\n", " Q_mu[:, s] = Q_sigma[:, :, s] @ (X @ Z_mu[s, :].T / (sigma_z**2))\n", "\n", " # update variance of projected variable Z (eq. 17)\n", " Z_sigma,_,_,_ = scipy.linalg.lstsq((np.eye(R) / (sigma_z**2) + bW_mu[1:R+1, :] @ bW_mu[1:R+1, :].T + np.sum(bW_sigma[1:R+1, 1:R+1, :], axis=-1)),\n", " np.eye(R), lapack_driver='gelsy')\n", " # update mean of projected variable Z (eq. 17)\n", " Z_mu = Z_sigma @ (Q_mu.T @ X / (sigma_z**2) + bW_mu[1:, :] @ T_mu - \\\n", " np.repeat((bW_mu[1:R+1, :] @ bW_mu[0, :].T + np.sum(bW_sigma[0, 1:R+1, :], axis=-1).T).reshape((R,1)), N, axis=-1))\n", " # update lambda (eq. 18)\n", " lambda_beta = 1 / (1 / parameters.beta_lambda + 0.5 * (bW_mu[0, :].T**2 + bW_sigma[0, 0, :])).reshape((K, 1))\n", " # update Psi (eq. 19)\n", " Psi_beta = 1 / (1 / parameters.beta_psi + 0.5 * (bW_mu[1:R+1, :]**2 + np.reshape(bW_sigma[psi_indices], (R, K))))\n", "\n", " # update b and W (eq. 20)\n", " for c in range(K):\n", " # variance update\n", " bW_sigma[:, :, c],_,_,_ = scipy.linalg.lstsq(np.block([[lambda_alpha[c, 0] * lambda_beta[c, 0] + N, np.sum(Z_mu, axis=-1, keepdims=True).T],\n", " [np.sum(Z_mu, axis=-1, keepdims=True),\n", " np.diag(Psi_alpha[:, c] * Psi_beta[:, c]) + Z_mu @ Z_mu.T + N * Z_sigma]]),\n", " np.eye(R + 1), lapack_driver='gelsy')\n", " # mean update\n", " bW_mu[:, c] = bW_sigma[:, :, c] @ np.block([[np.ones((1, N))], [Z_mu]]) @ T_mu[c, :].T\n", "\n", " # Updtae score variable T (eq. 21)\n", " T_mu = bW_mu[1:R+1, :].T @ Z_mu + np.repeat(bW_mu[0, :].reshape((K,1)), N, axis=-1)\n", " for c in range(K):\n", " pos = np.where((y-1).flatten() == c)[0]\n", " normalization[pos, 0], T_mu[:, pos] = truncated_normal_mean(T_mu[:, pos], c, parameters.sample, 0);\n", "\n", " # Calculation of lower bound for each of the estimation\n", " lb = 0\n", " if parameters.prior_phi == 'ard':\n", " lb = lb + np.sum((parameters.alpha_phi - 1) * (scipy.special.psi(phi_alpha) + np.log(phi_beta)) - \\\n", " phi_alpha * phi_beta / parameters.beta_phi - scipy.special.gammaln(parameters.alpha_phi) -\\\n", " parameters.alpha_phi * np.log(parameters.beta_phi))\n", " for s in range(R):\n", " lb = lb - 0.5 * Q_mu[:, s].T @ (phi_alpha[s] * phi_beta[s] * np.eye(D)) @ Q.mu[:, s] -\\\n", " 0.5 * (D * log2pi - D * (scipy.special.psi(phi_alpha[s]) + np.log(phi_beta[s])))\n", " else:\n", " lb = lb + np.sum((parameters.alpha_phi - 1) * (scipy.special.psi(Phi_alpha) + np.log(Phi_beta)) -\\\n", " Phi_alpha * Phi_beta / parameters.beta_phi - scipy.special.gammaln(parameters.alpha_phi) -\\\n", " parameters.alpha_phi * np.log(parameters.beta_phi))\n", " for s in range(R):\n", " lb = lb - 0.5 * Q_mu[:, s].T @ np.diag(Phi_alpha[:, s] * Phi_beta[:, s]) @ Q_mu[:, s] -\\\n", " 0.5 * (D * log2pi - np.sum(scipy.special.psi(Phi_alpha[:, s]) + np.log(Phi_beta[:, s])))\n", " # p(Z | Q, X)\n", " lb = lb - 0.5 * (sigma_z**-2) * (np.sum(Z_mu * Z_mu) + N * np.sum(np.diag(Z_sigma))) +\\\n", " (sigma_z**-2) * np.sum((Q_mu.T @ X) * Z_mu) -\\\n", " 0.5 * (sigma_z**-2) * np.sum(X * ((Q_mu @ Q_mu.T + np.sum(Q_sigma, axis=-1)) @ X)) -\\\n", " 0.5 * N * D * (log2pi + 2 * np.log(sigma_z))\n", " # p(lambda)\n", " lb = lb + np.sum((parameters.alpha_lambda - 1) * (scipy.special.psi(lambda_alpha) + np.log(lambda_beta)) -\\\n", " lambda_alpha * lambda_beta / parameters.beta_lambda - scipy.special.gammaln(parameters.alpha_lambda) -\\\n", " parameters.alpha_lambda * np.log(parameters.beta_lambda))\n", " # p(b | lambda)\n", " lb = lb - 0.5 * bW_mu[0, :] @ np.diag(lambda_alpha[:, 0] * lambda_beta[:, 0]) @ bW_mu[0, :].T -\\\n", " 0.5 * (K * log2pi - np.sum(scipy.special.psi(lambda_alpha[:, 0]) + np.log(lambda_beta[:, 0])))\n", " # p(Psi)\n", " lb = lb + np.sum((parameters.alpha_psi - 1) * (scipy.special.psi(Psi_alpha) + np.log(Psi_beta)) -\\\n", " Psi_alpha * Psi_beta / parameters.beta_psi - scipy.special.gammaln(parameters.alpha_psi) -\\\n", " parameters.alpha_psi * np.log(parameters.beta_psi))\n", " # p(W | Psi)\n", " for c in range(K):\n", " lb = lb - 0.5 * bW_mu[1:R+1, c].T @ np.diag(Psi_alpha[:, c] * Psi_beta[:, c]) @ bW_mu[1:R+1, c] -\\\n", " 0.5 * (R * log2pi - np.sum(scipy.special.psi(Psi_alpha[:, c]) + np.log(Psi_beta[:, c])))\n", "\n", " WWT_mu = bW_mu[1:R+1, :] @ bW_mu[1:R+1, :].T + np.sum(bW_sigma[1:R+1, 1:R+1, :], axis=-1)\n", " lb = lb - 0.5 * (np.sum(T_mu * T_mu) + N * K) + np.sum(bW_mu[0, :] @ T_mu) + np.sum(Z_mu * (bW_mu[1:R+1, :] @ T_mu)) -\\\n", " 0.5 * (N * np.trace(WWT_mu @ Z_sigma) + np.sum(Z_mu * (WWT_mu @ Z_mu))) -\\\n", " 0.5 * N * (bW_mu[0, :] @ bW_mu[0, :].T + np.sum(bW_sigma[0, 0, :])) -\\\n", " np.sum(Z_mu.T @ (bW_mu[1:R+1, :] @ bW_mu[0, :].T + np.sum(bW_sigma[1:R+1, 0, :], axis=-1))) - 0.5 * N * K * log2pi\n", "\n", " if parameters.prior_phi == 'ard':\n", " lb = lb + np.sum(phi_alpha + np.log(phi_beta) + scipy.special.gammaln(phi_alpha) +\\\n", " (1 - phi_alpha) * scipy.special.psi(phi_alpha))\n", " else:\n", " lb = lb + np.sum(Phi_alpha + np.log(Phi_beta) + scipy.special.gammaln(Phi_alpha) +\\\n", " (1 - Phi_alpha) * scipy.special.psi(Phi_alpha))\n", "\n", " # q(Q)\n", " for s in range(R):\n", " lb = lb + 0.5 * (D * (log2pi + 1) + logdet(Q_sigma[:, :, s]))\n", " # q(Z)\n", " lb = lb + 0.5 * N * (R * (log2pi + 1) + logdet(Z_sigma))\n", " # q(lambda)\n", " lb = lb + np.sum(lambda_alpha + np.log(lambda_beta) + scipy.special.gammaln(lambda_alpha) +\\\n", " (1 - lambda_alpha) * scipy.special.psi(lambda_alpha))\n", " # q(Psi)\n", " lb = lb + np.sum(Psi_alpha + np.log(Psi_beta) + scipy.special.gammaln(Psi_alpha) +\\\n", " (1 - Psi_alpha) * scipy.special.psi(Psi_alpha))\n", " # q(b, W)\n", " for c in range(K):\n", " lb = lb + 0.5 * ((R + 1) * (log2pi + 1) + logdet(bW_sigma[:, :, c]))\n", "\n", " # q(T)\n", " lb = lb + 0.5 * N * K * (log2pi + 1) + np.sum(np.log(normalization))\n", "\n", " if parameters.progress == 1:\n", " bounds[iter_] = lb\n", " state = {}\n", " if parameters.prior_phi == 'ard':\n", " phi = {'alpha':phi_alpha, 'beta':phi_beta}\n", " state['phi'] = phi\n", " else:\n", " Phi = {'alpha':Phi_alpha, 'beta':Phi_beta}\n", " state['Phi'] = Phi\n", " Q = {'mu':Q_mu, 'sigma':Q_sigma}\n", " Z = {'mu':Z_mu, 'sigma':Z_sigma}\n", " lmbd = {'alpha':lambda_alpha, 'beta':lambda_beta}\n", " Psi = {'alpha':Psi_alpha, 'beta':Psi_beta}\n", " bW = {'mu':bW_mu, 'sigma':bW_sigma}\n", " state['Q'] = Q\n", " state['lambda'] = lmbd\n", " state['Psi'] = Psi\n", " state['bW'] = bW\n", " if parameters.progress == 1:\n", " state['bounds'] = bounds\n", " state['parameters'] = parameters\n", "\n", " return state\n", "\n", "def logdet(Sigma):\n", " # logarithm of determinant\n", " U = np.linalg.cholesky(Sigma)\n", " return 2 * np.sum(np.log(np.diag(U)))\n", "\n", "def truncated_normal_mean(centers, active, S, tube):\n", " \"\"\"\n", " Compute the mean of truncated normal distribution\n", "\n", " Parameters:\n", "\n", " centers: Mean values of the untrauncated distribution\n", "\n", " active: int vector. active label group for which the computation is being performed\n", " S: sample size used to calculate the expectation of truncated normals\n", " tube: 0\n", "\n", " returns the mean of truncated normal distribution\n", " \"\"\"\n", " K,N = centers.shape[0:2]\n", "\n", " # Compute the difference from mean\n", " diff = np.repeat(centers[active, :].reshape((1,N,)), K, axis=0) - centers - tube\n", " u = np.random.randn(1, N, S)\n", " q = scipy.stats.norm().cdf(np.repeat(u, K, axis=0) + np.repeat(diff.reshape(K,N,1), S, axis=-1))\n", " pr = np.repeat(np.prod(q, axis=0, keepdims=True), K, axis=0)\n", " pr = pr / q\n", " ind = np.block([np.arange(0,active), np.arange(active+1,K)])\n", " pr[ind, :, :] = pr[ind, :, :] / np.repeat(q[active, :, :].reshape((1,N,S)), K - 1, axis=0)\n", " pr[ind, :, :] = pr[ind, :, :] * scipy.stats.norm().pdf(np.repeat(u, K - 1, axis=0) + np.repeat(diff[ind, :].reshape((K-1,N,1)), S, axis=-1))\n", " # normalize data\n", " normalization = np.mean(pr[active, :, :], axis=-1).reshape((1,-1))\n", " # compute expectation\n", " expectation = np.zeros((K, N))\n", " expectation[ind, :] = centers[ind, :] - np.repeat(1 / normalization, K - 1, axis=0) * np.reshape(np.mean(pr[ind, :, :], axis=-1), (K - 1, N))\n", " expectation[active, :] = centers[active, :] + np.sum(centers[ind, :] - expectation[ind, :], axis=0)\n", "\n", " return normalization, expectation\n", "\n", "def mda(data,clusterIdx):\n", " \"\"\"\n", " Manifold discovery analysis\n", "\n", " Parameters:\n", "\n", " data: High dimensional deep neural network feature data in tabular\n", " format. The rows are the data points and columns are the feaures.\n", "\n", " clusterIdx: int vector.\n", " pseudo labels of the data computed using discover_manifold function\n", "\n", " returns low dimensional representation\n", " \"\"\"\n", "\n", " # Use SVD to find components with non zero eigen values. This step is optional and used for\n", " # reducing computational load\n", " lambds = np.linalg.svd(data, full_matrices=False, compute_uv=False)\n", " data = data[:, lambds!=0]\n", "\n", " # prepare data and pseudo labels\n", " Xtrain = np.copy(data.T)\n", " ytrain = clusterIdx.reshape((Xtrain.shape[1],1))\n", "\n", " # Make NaN values to zero\n", " Xtrain = np.nan_to_num(Xtrain)\n", "\n", " # Set the parameters of MDA\n", " parameters = paramsMDA()\n", "\n", " # Run Bayesian dimensionality reduction\n", " state = bsdr(Xtrain, ytrain+1, parameters)\n", " # Estimated expectation of projection matrix\n", " vec = state['Q']['mu']\n", " # Compute projection of the data\n", " Ypro = data @ vec\n", "\n", " # Apply deep learning based visualization technique to obtain MDA components\n", " reducer = ParametricUMAP(parametric_embedding=False)\n", " Yreg = reducer.fit_transform(Ypro)\n", "\n", " return Yreg" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "f65WWudqeMsA", "outputId": "05b650da-c7c1-467f-f549-57b04f59ace6" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Collecting MDA-learn\n", " Downloading MDA_learn-0.1.1-py3-none-any.whl (17 kB)\n", "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from MDA-learn) (1.25.2)\n", "Requirement already satisfied: scipy in /usr/local/lib/python3.10/dist-packages (from MDA-learn) (1.11.4)\n", "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.10/dist-packages (from MDA-learn) (1.2.2)\n", "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from MDA-learn) (3.7.1)\n", "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from MDA-learn) (1.5.3)\n", "Requirement already satisfied: umap-learn in /usr/local/lib/python3.10/dist-packages (from MDA-learn) (0.5.5)\n", "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->MDA-learn) (1.2.0)\n", "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->MDA-learn) (0.12.1)\n", "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->MDA-learn) (4.49.0)\n", "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->MDA-learn) (1.4.5)\n", "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->MDA-learn) (23.2)\n", "Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->MDA-learn) (9.4.0)\n", "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->MDA-learn) (3.1.1)\n", "Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib->MDA-learn) (2.8.2)\n", "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->MDA-learn) (2023.4)\n", "Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->MDA-learn) (1.3.2)\n", "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn->MDA-learn) (3.3.0)\n", "Requirement already satisfied: numba>=0.51.2 in /usr/local/lib/python3.10/dist-packages (from umap-learn->MDA-learn) (0.58.1)\n", "Requirement already satisfied: pynndescent>=0.5 in /usr/local/lib/python3.10/dist-packages (from umap-learn->MDA-learn) (0.5.11)\n", "Requirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from umap-learn->MDA-learn) (4.66.2)\n", "Requirement already satisfied: llvmlite<0.42,>=0.41.0dev0 in /usr/local/lib/python3.10/dist-packages (from numba>=0.51.2->umap-learn->MDA-learn) (0.41.1)\n", "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib->MDA-learn) (1.16.0)\n", "Installing collected packages: MDA-learn\n", "Successfully installed MDA-learn-0.1.1\n" ] } ], "source": [ "!pip install MDA-learn" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "QATDRixZ6Sxb", "outputId": "68a2ba22-b119-463c-f470-53b99197c77e" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "141/141 [==============================] - 0s 2ms/step\n", "36/36 [==============================] - 0s 2ms/step\n", "Epoch 1/10\n", "100/100 [==============================] - 11s 104ms/step - loss: 0.1185\n", "Epoch 2/10\n", "100/100 [==============================] - 14s 143ms/step - loss: 0.0896\n", "Epoch 3/10\n", "100/100 [==============================] - 10s 96ms/step - loss: 0.0859\n", "Epoch 4/10\n", "100/100 [==============================] - 11s 108ms/step - loss: 0.0846\n", "Epoch 5/10\n", "100/100 [==============================] - 11s 106ms/step - loss: 0.0842\n", "Epoch 6/10\n", "100/100 [==============================] - 11s 106ms/step - loss: 0.0839\n", "Epoch 7/10\n", "100/100 [==============================] - 11s 106ms/step - loss: 0.0835\n", "Epoch 8/10\n", "100/100 [==============================] - 10s 97ms/step - loss: 0.0832\n", "Epoch 9/10\n", "100/100 [==============================] - 10s 102ms/step - loss: 0.0831\n", "Epoch 10/10\n", "100/100 [==============================] - 11s 107ms/step - loss: 0.0829\n", "Epoch 1/10\n", "100/100 [==============================] - 4s 29ms/step - loss: 0.0915\n", "Epoch 2/10\n", "100/100 [==============================] - 3s 29ms/step - loss: 0.0895\n", "Epoch 3/10\n", "100/100 [==============================] - 3s 29ms/step - loss: 0.0893\n", "Epoch 4/10\n", "100/100 [==============================] - 4s 41ms/step - loss: 0.0893\n", "Epoch 5/10\n", "100/100 [==============================] - 3s 29ms/step - loss: 0.0893\n", "Epoch 6/10\n", "100/100 [==============================] - 3s 30ms/step - loss: 0.0892\n", "Epoch 7/10\n", "100/100 [==============================] - 3s 30ms/step - loss: 0.0892\n", "Epoch 8/10\n", "100/100 [==============================] - 4s 41ms/step - loss: 0.0893\n", "Epoch 9/10\n", "100/100 [==============================] - 3s 30ms/step - loss: 0.0893\n", "Epoch 10/10\n", "100/100 [==============================] - 3s 29ms/step - loss: 0.0892\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAHHCAYAAABuoFaQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5wURfbAv9Xd0xN2dzYHMggiyXSoiIqiophzQs8sZs/snT/vTtQznjmHU/AUT8GsJ5gDInqYMIIgOS5snDzT3fX7o2dndzbALiygUN/PZ3anqyu8qunpef3q1SshpZQoFAqFQqFQKDY62uYWQKFQKBQKhWJrQSleCoVCoVAoFJsIpXgpFAqFQqFQbCKU4qVQKBQKhUKxiVCKl0KhUCgUCsUmQileCoVCoVAoFJsIpXgpFAqFQqFQbCKU4qVQKBQKhUKxiVCKl0KhUCgUCsUmQileWyC9e/fmjDPO2NxitJDjo48+QgjBRx99tEnl2FztdpRnnnmGAQMG4PF4KCgo6HD5hQsXIoTgzjvv7HzhtjBGjhzJyJEjN7cYvwk29LoJh8Occ845VFRUIITgsssu61wBtyCWLFmCz+dj+vTpm7TdDflNUN+V1pk6dSq5ubmsXr26w2W3asVrwoQJCCEQQvDpp5+2OC+lpEePHgghOOyww7LONZQTQmAYBkVFRQwdOpRLL72Un376aa3tPvzwwwghGDZsWKf2Z2vn4YcfZsKECZtbjPVi9uzZnHHGGfTt25cnnniCxx9/vM28b731FuPGjdt0wik6jeXLlzNu3Di+/fbbzS1Kp3HLLbcwYcIELrjgAp555hlOPfXUjdLO7/n73cCNN97IsGHD2HPPPTMPhO15ba307t07MwaaplFQUMD222/PueeeyxdffLFBdd9yyy28+uqr613+oIMOol+/ftx6660dLmusd6tbED6fj+eee4699torK/3jjz9m6dKleL3eVssdcMABnHbaaUgpqaurY9asWTz99NM8/PDD3H777VxxxRWtlps4cSK9e/fmf//7H/PmzaNfv36d2p85c+agab89nXrvvfcmFothmuZGqf/hhx+mpKSkxZPdxm63M/joo49wHIf77rtvndfDW2+9xUMPPaSUr98hy5cv54YbbqB3797stNNOm1ucTuGDDz5g99135/rrr9+o7bT1/f69sHr1ap5++mmefvppAAYOHMgzzzyTlefaa68lNzeX6667rlPb3pDfhHfeeadTZekoO+20E1deeSUAoVCIn3/+mcmTJ/PEE09w+eWXc/fdd69XvbfccgvHHXccRx111HrLdt5553HVVVdxww03kJeX1+5ySvECDjnkECZPnsz999+PYTQOyXPPPcfQoUNZs2ZNq+X69+/PH//4x6y02267jcMPP5wrr7ySAQMGcMghh2SdX7BgAZ999hkvv/wy5513HhMnTuz0G1ZbiuLmRtM0fD7fVtNuR6isrARYrynGrR0pJfF4HL/fv7lF+V3hOA7JZHKD66msrGTQoEGdINGmZ1NeO88++yyGYXD44YcDUF5e3urvR0lJSYv0pjR8bh25p23Ib8LmfmDt1q1bi/G4/fbbOfnkk7nnnnvYdtttueCCCzaLbMceeyyXXHIJkydP5qyzzmp3ud+eWWQzMGbMGKqqqnj33XczaclkkhdffJGTTz65Q3UVFxfz/PPPYxgGN998c4vzEydOpLCwkEMPPZTjjjuOiRMntqveww47jG222abVc8OHD2eXXXbJHDefz0+lUtxwww1su+22+Hw+iouL2WuvvbL629Y8/hlnnEHv3r2z0u6880722GMPiouL8fv9DB06lBdffHGdfWjua9V0qrf5q6ks48ePZ7/99qOsrAyv18ugQYN45JFHsuru3bs3P/74Ix9//HGLOtry8Zo8eTJDhw7F7/dnbnbLli1r0f/c3FyWLVvGUUcdRW5uLqWlpVx11VXYtr3OPoP7pD548GC8Xi9du3bloosuora2Nkv2BuW7tLQUIUSb1qwzzjiDhx56CGCtUxGPP/44ffv2xev1suuuuzJz5swWeWbPns1xxx1HUVERPp+PXXbZhddff32d/WnqE9RZ7YwbN67VfjRcIwsXLsyk9e7dm8MOO4y3336bXXbZBb/fz2OPPQa071rpCEIILr74Yl599VWGDBmC1+tl8ODBTJ06tUXeZcuWcdZZZ1FeXp7J99RTT2XOf/TRR+y6664AnHnmmZnPbsKECdx///3oup51Xdx1110IIbIs57Ztk5eXx5///OdMWiQS4corr6RHjx54vV6222477rzzTqSUrfZl4sSJmeuxtX6Aq5Cce+65mKbJyy+/3Gqehu/VggUL+O9//5vpT8NnlUgkuP766+nXrx9er5cePXpwzTXXkEgksurZ0O93Z107tbW1XHbZZZlx7NevH7fffjuO42TV+/zzzzN06FDy8vIIBoNsv/323Hfffa2OUVNeffVVhg0bRm5u7jrzNmVtn1t778XNfxMaxmb69OlcccUVlJaWkpOTw9FHH93CZ6n5b0PD5z5p0iRuvvlmunfvjs/nY//992fevHkt2n7ooYfYZptt8Pv97LbbbkybNm2D/cb8fj/PPPMMRUVF3HzzzVnXenvGRAhBJBLh6aefzlxPDeOzaNEiLrzwQrbbbjv8fj/FxcUcf/zxWddRA2VlZeywww689tprHZJfWbxwL8rhw4fzn//8h4MPPhiAKVOmUFdXx0knncT999/fofp69uzJPvvsw4cffkh9fT3BYDBzbuLEiRxzzDGYpsmYMWN45JFHmDlzZuaG3BYnnngip512Wou8ixYt4vPPP+ef//xnm2XHjRvHrbfeyjnnnMNuu+1GfX09X375JV9//TUHHHBAh/oGcN9993HEEUdwyimnkEwmef755zn++ON58803OfTQQ9tdz957793C1L5o0SL++te/UlZWlkl75JFHGDx4MEcccQSGYfDGG29w4YUX4jgOF110EQD33nsvl1xySZaZvry8vM22J0yYwJlnnsmuu+7KrbfeyqpVq7jvvvuYPn0633zzTZblybZtRo8ezbBhw7jzzjt57733uOuuu+jbt+86n7TGjRvHDTfcwKhRo7jggguYM2dO5jOfPn06Ho+He++9l3//+9+88sorPPLII+Tm5rLDDju0Wt95553H8uXLeffdd1uMXQPPPfccoVCI8847DyEEd9xxB8cccwzz58/H4/EA8OOPP7LnnnvSrVs3/vKXv5CTk8OkSZM46qijeOmllzj66KPX2q9N2U5rzJkzhzFjxnDeeecxduxYtttuO6B910pH+fTTT3n55Ze58MILycvL4/777+fYY49l8eLFFBcXA7Bq1Sp23333zI9kaWkpU6ZM4eyzz6a+vp7LLruMgQMHcuONN/L3v/+dc889lxEjRgCwxx57UFdXh+M4fPrppxl/0mnTpqFpGtOmTcvI8s033xAOh9l7770BV0E64ogj+PDDDzn77LPZaaedePvtt7n66qtZtmwZ99xzT1ZfPvjgAyZNmsTFF19MSUlJi4cqcK/3s846ixdeeIFXXnmlze90w1TZ5ZdfTvfu3TPTQaWlpTiOwxFHHMGnn37Kueeey8CBA/n++++55557+OWXX7J8azbG93tttHbtRKNR9tlnH5YtW8Z5551Hz549+eyzz7j22mtZsWIF9957LwDvvvsuY8aMYf/99+f2228H4Oeff2b69OlceumlbbaZSqWYOXPmeltm2vrcNvRefMkll1BYWMj111/PwoULuffee7n44ot54YUX1ln2tttuQ9M0rrrqKurq6rjjjjs45ZRTsnyvHnnkES6++GJGjBjB5ZdfzsKFCznqqKMoLCyke/fu6zUWDeTm5nL00Ufz5JNP8tNPPzF48GCgfWPyzDPPZH4Pzz33XAD69u0LwMyZM/nss8846aST6N69OwsXLuSRRx5h5MiR/PTTTwQCgSw5hg4d2nFfMbkVM378eAnImTNnygcffFDm5eXJaDQqpZTy+OOPl/vuu6+UUspevXrJQw89NKssIC+66KI267700kslIGfNmpVJ+/LLLyUg3333XSmllI7jyO7du8tLL710nbLW1dVJr9crr7zyyqz0O+64Qwoh5KJFizJpvXr1kqeffnrmeMcdd2whf3P22Wcfuc8++7RIP/3002WvXr2y0hrGqIFkMimHDBki99tvv6z05nJ8+OGHEpAffvhhqzLEYjE5dOhQ2bVrV7lixYo225NSytGjR8ttttkmK23w4MGt9qF5u8lkUpaVlckhQ4bIWCyWyffmm29KQP7973/PpJ1++ukSkDfeeGNWnTvvvLMcOnRoq/1ooLKyUpqmKQ888EBp23Ym/cEHH5SAfOqppzJp119/vQTk6tWr11qnlFJedNFFsrWv7oIFCyQgi4uLZXV1dSb9tddek4B84403Mmn777+/3H777WU8Hs+kOY4j99hjD7ntttuutf2N0U5D/5vT8B1dsGBBJq1Xr14SkFOnTm2Rv73XSlvXe3MAaZqmnDdvXiZt1qxZEpAPPPBAJu3ss8+WXbp0kWvWrMkqf9JJJ8n8/PyMXDNnzpSAHD9+fFY+27ZlMBiU11xzjZTSHaPi4mJ5/PHHS13XZSgUklJKeffdd0tN02RNTY2UUspXX31VAvIf//hHVn3HHXecFEJkyQ1ITdPkjz/+mJW34fP85z//KVOplDzxxBOl3++Xb7/99jrHR8rW74/PPPOM1DRNTps2LSv90UcflYCcPn16Jm1Dv9+dce3cdNNNMicnR/7yyy9Z6X/5y1+kruty8eLFUkr3vh4MBqVlWS3aWxvz5s1rcc20Rmt9bOtzk3L978UNYzNq1CjpOE4m/fLLL5e6rsva2tpMWvPvSsP9dODAgTKRSGTS77vvPgnI77//XkopZSKRkMXFxXLXXXeVqVQqk2/ChAkSaNf3r7Vrqyn33HOPBORrr72WSWvvmOTk5GSNSVvlpZRyxowZEpD//ve/W5y75ZZbJCBXrVq1ru5kUFONaU444QRisRhvvvkmoVCIN998s8PTjE1pMCeHQqFM2sSJEykvL2ffffcFXHPniSeeyPPPP7/OaatgMMjBBx/MpEmTssyqL7zwArvvvjs9e/Zss2xBQQE//vgjc+fOXe/+NKWpP0RNTQ11dXWMGDGCr7/+eoPqvfDCC/n+++956aWXqKioaLW9uro61qxZwz777MP8+fOpq6vrcDtffvkllZWVXHjhhVl+EoceeigDBgzgv//9b4sy559/ftbxiBEjmD9//lrbee+990gmk1x22WVZjq1jx44lGAy22k5ncOKJJ1JYWJglK5CRt7q6mg8++IATTjiBUCjEmjVrWLNmDVVVVYwePZq5c+e2mHLdnO20Rp8+fRg9enSL9M6+VgBGjRqVeRoG2GGHHQgGg5l+Sil56aWXOPzww5FSZvq5Zs0aRo8eTV1d3Tq/G5qmsccee/DJJ58ArhWlqqqKv/zlL0gpmTFjBuBawYYMGZKxyL711lvous6f/vSnrPquvPJKpJRMmTIlK32fffZp0x8rmUxmLANvvfUWBx54YPsHqRmTJ09m4MCBDBgwIGs89ttvPwA+/PDDTN6N8ZmtjdauncmTJzNixAgKCwuz5B01ahS2bWc+l4KCAiKRSJabRnuoqqoCyPq+dIS2PrcNvRefe+65WdO0I0aMwLZtFi1atM6yZ555Zpb/V/Pv/5dffklVVRVjx47N8p0+5ZRT1nscmtPa7+yGjknT8qlUiqqqKvr160dBQUGrdTT0pS1f8NZQU41pSktLGTVqFM899xzRaBTbtjnuuOPWu75wOAyQWelg2zbPP/88++67LwsWLMjkGzZsGHfddRfvv//+Om90J554Iq+++iozZsxgjz324Ndff+Wrr77KmMHb4sYbb+TII4+kf//+DBkyhIMOOohTTz21zemsdfHmm2/yj3/8g2+//TbLX2NDlj0/9thjjB8/nscee4zdd98969z06dO5/vrrmTFjBtFoNOtcXV0d+fn5HWqr4abSMD3VlAEDBrQILeLz+SgtLc1KKywspKamZr3aMU2TbbbZpl03t/WhuRLecGNokHfevHlIKfnb3/7G3/72t1brqKyspFu3br+JdlqjT58+raZ39rUCLfsJ2Z//6tWrqa2t5fHHH28zDEjD4om1MWLECMaNG0csFmPatGl06dKFP/zhD+y4445MmzaNAw44gE8//ZQTTjghU2bRokV07dq1xYqqgQMHZs43pa1xA7j11lsJh8NMmTJlg+M2zZ07l59//rnF96aBpuOxMT6ztdHaGMydO5fvvvtunfJeeOGFTJo0iYMPPphu3bpx4IEHcsIJJ3DQQQe1q+2mD80bKjNs+L14Xd/hDSnbcO01X6VtGEarU9zrQ/PfWdjwMYnFYtx6662MHz+eZcuWZX1mrT0INJzvyO+fUryacPLJJzN27FhWrlzJwQcfvEErzH744Qd0Xc98YT744ANWrFjB888/z/PPP98i/8SJE9epeB1++OEEAgEmTZrEHnvswaRJk9A0jeOPP36t5fbee29+/fVXXnvtNd555x3+9a9/cc899/Doo49yzjnnAO5F09pNobklbtq0aRxxxBHsvffePPzww3Tp0gWPx8P48eN57rnn1ipHW/zvf//j0ksv5ZxzzsnMtzfw66+/sv/++zNgwADuvvtuevTogWmavPXWW9xzzz0tHF83Brqub/Q2OpO25G34fBvG7KqrrmrVagQtb5Ybu522blptWYJbW4W2sa6V9vbzj3/8I6effnqredvzkLPXXnuRSqWYMWMG06ZNy1gQRowYwbRp05g9ezarV6/OpK8Pa1u9N3r0aKZOncodd9zByJEjN2glsOM4bL/99m0u9e/RowfQOZ9ZZ1w7juNwwAEHcM0117Rapn///oDrTP3tt9/y9ttvM2XKFKZMmcL48eM57bTTMmEiWqPBF7A9Ck17Ze6Me/G6ru2NVbaz+OGHH4DG+0hnjMkll1zC+PHjueyyyxg+fDj5+fkIITjppJNavR4bPtOSkpJ2y60UryYcffTRnHfeeXz++eftci5si8WLF/Pxxx8zfPjwjCY+ceJEysrKMivSmvLyyy/zyiuv8Oijj671xpiTk8Nhhx3G5MmTufvuu3nhhRcYMWIEXbt2XadMRUVFnHnmmZx55pkZ59xx48ZlFK/CwsJWp86aPzG/9NJL+Hw+3n777awlyuPHj1+nDK2xevVqjjvuOHbaaadWx+aNN94gkUjw+uuvZz1hNZ2qaKC9Txy9evUCXCfbhqmPBubMmZM5v6E0bafpitRkMsmCBQsYNWrUetW7oQEVG2TxeDzrLUNnt9PwtFxbW5v1wNMRq2BHrpXOpLS0lLy8PGzbXmc/1/bZ7bbbbpimybRp05g2bRpXX3014D44PfHEE7z//vuZ4wZ69erFe++9RygUynrqnz17duZ8e9l99905//zzOeywwzj++ON55ZVXsqaIOkLfvn2ZNWsW+++//1r73Bnf7864dvr27Us4HG7X98E0TQ4//HAOP/xwHMfhwgsv5LHHHuNvf/tbmw8sPXv2xO/3Z812bCidfS/ubBquvXnz5mXcawAsy2LhwoXrPePSQDgc5pVXXqFHjx4ZC29HxqSt6+nFF1/k9NNP56677sqkxePxrBXHTVmwYAElJSVtWktbQ/l4NSE3N5dHHnmEcePGZWKtdJTq6mrGjBmDbduZ1TexWIyXX36Zww47jOOOO67F6+KLLyYUCrVrKf+JJ57I8uXL+de//sWsWbM48cQT11mmwb+gaT/79euXZYbt27dv5om6gVmzZrXY2kLXdYQQWU+TCxcuXK8IwLZtc9JJJ5FMJnnppZdajRfT8FTV3Nzb2hcpJyenzS9HU3bZZRfKysp49NFHs8ZgypQp/Pzzzx1ambk2Ro0ahWma3H///VnyP/nkk9TV1a13Ozk5OQDt6mtrlJWVMXLkSB577DFWrFjR4vz6bIGxoe00+FA1+NIAmeXe7aUj10pnous6xx57LC+99FLmCbwpTfu5ts/O5/Ox66678p///IfFixdnWbxisRj3338/ffv2pUuXLpkyhxxyCLZt8+CDD2bVdc899yCEyKzSbi+jRo3i+eefZ+rUqZx66qnrbSU84YQTWLZsGU888USLc7FYjEgkAnTO97szrp0TTjiBGTNm8Pbbb7c4V1tbi2VZQMt7qaZpGQWieZiMpng8HnbZZRe+/PLLdsu0LjrzXrwx2GWXXSguLuaJJ57IjB+4Roj1tfw1EIvFOPXUU6murua6667LKFEdGZO2ridd11tY7R544IE2LahfffUVw4cP75D8yuLVjLamClrjl19+4dlnn0VKSX19PbNmzWLy5MmEw2HuvvvuzLz/66+/TigU4ogjjmi1nt13353S0lImTpy4TkXqkEMOIS8vj6uuuipzw18XgwYNYuTIkQwdOpSioiK+/PJLXnzxRS6++OJMnrPOOou7776b0aNHc/bZZ1NZWcmjjz7K4MGDqa+vz+Q79NBDM307+eSTqays5KGHHqJfv35899137Rm2DI8++igffPAB559/fosn3PLycg444AAOPPDAzBPmeeedRzgc5oknnqCsrKzFj/nQoUN55JFH+Mc//kG/fv0oKytrYdEC9yZ4++23c+aZZ7LPPvswZsyYTDiJ3r17c/nll3eoH21RWlrKtddeyw033MBBBx3EEUccwZw5c3j44YfZdddd1xokcW0MHToUgD/96U+MHj0aXdc56aSTOlTHQw89xF577cX222/P2LFj2WabbVi1ahUzZsxg6dKlzJo1a71kW992DjzwQHr27MnZZ5/N1Vdfja7rPPXUU5SWlrJ48eJ2tdWRa6Wzue222/jwww8ZNmwYY8eOZdCgQVRXV/P111/z3nvvUV1dDbhKQkFBAY8++ih5eXnk5OQwbNiwjEvCiBEjuO2228jPz2f77bcHXAV2u+22Y86cOS2ith9++OHsu+++XHfddSxcuJAdd9yRd955h9dee43LLrssa1FAeznqqKMy02fBYDAT56ojnHrqqUyaNCnz3d5zzz2xbZvZs2czadKkTBytzvh+d8a1c/XVV/P6669z2GGHccYZZzB06FAikQjff/89L774IgsXLqSkpIRzzjmH6upq9ttvP7p3786iRYt44IEH2GmnnTJWl7Y48sgjue6661qEGFpfOvNevDEwTZNx48ZxySWXsN9++3HCCSewcOFCJkyYQN++fdttuV+2bBnPPvss4Fq5fvrpJyZPnszKlSu58sorOe+88zJ5OzImQ4cO5b333uPuu++ma9eu9OnTh2HDhnHYYYfxzDPPkJ+fz6BBg5gxYwbvvfdeZrq4KZWVlXz33XcdD1XT7vWPWyBNw0msjbbCSTS8NE2TBQUFcuedd5aXXnppi2W/hx9+uPT5fDISibTZxhlnnCE9Hk+L5eitccopp2SWArclb9Nlsv/4xz/kbrvtJgsKCqTf75cDBgyQN998s0wmk1nlnn32WbnNNttI0zTlTjvtJN9+++1Ww0k8+eSTctttt5Ver1cOGDBAjh8/vtUl3esKJ9FQprVX06XGr7/+utxhhx2kz+eTvXv3lrfffrt86qmnWiwVX7lypTz00ENlXl5eVh1thbF44YUX5M477yy9Xq8sKiqSp5xyily6dGlWntNPP13m5OS0GOO2lrC3xoMPPigHDBggPR6PLC8vlxdccEEmHEDz+toTTsKyLHnJJZfI0tJSKYTIyNE0LEBzAHn99ddnpf3666/ytNNOkxUVFdLj8chu3brJww47TL744otrbX9jtfPVV1/JYcOGSdM0Zc+ePeXdd9/dZkiAtpaYt/da6Ug4idbCxjS/tqWUctWqVfKiiy6SPXr0kB6PR1ZUVMj9999fPv7441n5XnvtNTlo0CBpGEaL0BL//e9/JSAPPvjgrDLnnHOOBOSTTz7ZQpZQKCQvv/xy2bVrV+nxeOS2224r//nPf2aFCVhbX9r6PB9++GEJyKuuuqrVsWk6Fq19HslkUt5+++1y8ODB0uv1ysLCQjl06FB5ww03yLq6uky+Df1+S9k5104oFJLXXnut7NevnzRNU5aUlMg99thD3nnnnZl75YsvvigPPPBAWVZWlmnrvPPOywp/0xarVq2ShmHIZ555ps08bYWTaCt00frei9v67WvtXtlWOInJkydnlW24jpqHSrn//vtlr169pNfrlbvttpucPn26HDp0qDzooIPaHIemcjf8JgghZDAYlIMHD5Zjx46VX3zxxQaNyezZs+Xee+8t/X6/BDLjU1NTI88880xZUlIic3Nz5ejRo+Xs2bNb/c4/8sgjMhAIyPr6+nX2pSlCyk3oCadQKBQKxVbK2WefzS+//JIVFHdrw3EcSktLOeaYY1qdiv49sfPOOzNy5MgWgYrXhfLxUigUCoViE3D99ddndq3YGojH4y38pf79739TXV29wSFLNjdTp05l7ty5XHvttR0uqyxeCoVCoVAoOp2PPvqIyy+/nOOPP57i4mK+/vprnnzySQYOHMhXX3212Tfg3lwo53qFQqFQKBSdTu/evenRowf3338/1dXVFBUVcdppp3HbbbdttUoXKIuXQqFQKBQKxSZD+XgpFAqFQqFQbCKU4qVQKBQKhUKxiVA+Xp2A4zgsX76cvLy8Dd7ORaFQKBQKxaZBSkkoFKJr165o2qaxRSnFqxNYvnx5ZtNXhUKhUCgUvy+WLFlC9+7dN0lbSvHqBBo2p12yZEmnbAWhUCgUCoVi41NfX0+PHj2yNpnf2CjFqxNomF4MBoNK8VIoFAqF4nfGpnQTUs71CoVCoVAoFJsIpXgpFAqFQqFQbCKU4qVQKBQKhUKxiVCKl0KhUCgUCsUmQileCoVCoVAoFJsIpXgpFAqFQqFQbCKU4qVQKBQKhUKxiVCKl0KhUCgUCsUmQileCoVCoVAoFJsIpXgpFAqFQqFQbCKU4qVQKBQKhUKxiVCKl0KhUKwnEV5mNfsR5tnNLYpCofidoDbJVigUivVgjXMgUswAATE5k7j9d0qM+ZtbLIVC8RtHWbwUCoViPZBiBgCi4VhfvfmEUSgUvxuU4qVQKBTrgUA2vhfZxwqFQtEWSvFSKBSK9cH2IgQZdUtYDg6rNqtICoXit49SvBQKhWI9KNbXIJIWmmWjJ5IIAXGe39xiKRSK3zhK8VIoFIr1QAgBZlekoWN7TRzDQODf3GIpFIrfOErxUigUivUkl/sALwAGw/Dxx80rkEKh+M2jwkkoFArFeuLlMDwsQFKNRk9EZo2jQqFQtI6yeCl+36x4HWYcAEsnbW5JFFspGnno9FJKl0KhaBfK4qX4/fLlybDiP+77Ne/Bsokw7LXNK5NCoVAoFGtBWbwUv18alK4GKl/fPHIoFAqFQtFOlOKlUCgUG5GYfSNh+1gs+9vNLYpCofgNoBQvxe+X7qdlH5cfvXnkUCjaIBQrRoZuQqbeIMowEvZ7m1skhUKxmVE+XorfLzs/DV3HwIIHoNf50OXwzS2RQpHBCr1D7rJqBG50+2g3g0TgeLzUbG7RFArFZkQpXorfN+UHuS+F4jeGtvqCrGOzxiYWSGwmaRQKxW8FNdWoUCi2ehziLJXbscQpoVLuhE3lBtUnpUSk5mcnCnDwbVC9CoXi949SvBQKxVbPcqsLBivxaBYOC1gt++PI6PpXmPqRrN2DBGgJCVrhOovK1ccjFwvkIoFcmouUcp1lFArF7weleCkUiq2aKD9jShvZJACqcBxkXS6ybmeks7Ljlaamu4qX6fp3ATj5goC4fa3FZGQGRF8EG3BApCKwvH/H21coFL9ZlOKlUCi2aiy+JuUxaNC7JALhSIQjwf4eYn/reKWe7SEB5ANlIEtAy38Vk+PWWkxWH45wXFEanPKR8zrevkKh+M2iFC+FQrFVI0hgS71pAt5YPK2HOeCsh7+XZzgUXgEWkNIRgYfQzSPWXsZejbCqkLqrcDVYyqQs7Xj7CoXiN4ta1ahQKLZqfOyHIIeUjAISzbbw2w1qjwDveR2uUwgBOXchAzcBBkKY6y4kLYQN0gPogANSgNZteYfbVygUv12UxUuhUGzVeOhNhXgbxFCiIodqo5S5BTuSCtwBwS8R5iHrXbcQgfYpXQBGFwheiIiDiAEMQ+uWBKGejxWKLQmleCkUiq0eg22oZQFJvIDAFmFCvh4IY+d21yFlmGTiEpKx/bBSL6yfIKUPQvf/QbePEd0/BeFpO29yJSwogHkCFu0ITmz92lQoFJsU9SilUCgU6Gjk4hCmwbvKYN2hH5oSSnYBPQE66MkPgSSG59RW80rHBut70HoijKLGE0KAb9f2Nbi4i+tDBmB9B/MqoH9dh2RWKBSbHmXxUigUWz0CjZ7ciUYAgEKOJsgB7S5fn9oF4cTxhBz0uINterBS17WaV1o/Q40HQjtDbTGyemfoaKyuVLUbcqIpdn3H6lAoFJuFLUrx6t27N0KIFq+LLrqo1fwTJkxokdfnU5GlFYqtkSAjGcxMhjCLHtyG6MDtUUvOIne5hb/KJmeljSfkYMslJKq8OJX7gd0kGGv9CBBpRUsD5LfI2PgOySplnOaqmoqzqlD8PtiiphpnzpyJbTc+Bv7www8ccMABHH/88W2WCQaDzJkzJ3MshGgzr0Kh2LIR6Aj0deaTUiJTD+GkpiD0HfGEHJpqQmadjTBAyCSCD2F5OXSvd6cSqWtorPG/9QFwVvsF1ZLuNGNTUZPtL65QKDYfW5TiVVqaHe/mtttuo2/fvuyzzz5tlhFCUFFRsbFFUygUWxAy9RRO/BI33pb9Fk01IImrS2lZFqgwJD4E336g/QHs/zWJkAqYJ3eofSd6P1ouUAfSSetzxTusf4cUCsUmY4uaamxKMpnk2Wef5ayzzlqrFSscDtOrVy969OjBkUceyY8//rjOuhOJBPX19VkvhUKx9SDtaYDeGGHeZyMd95xwwGmaN/1C5LoJ+e+DNjidWQPfPxC+dMgKuwoSn4OzFid5J4xWd7979y4EUQxOKdBlUqf1T6FQbDy2WMXr1Vdfpba2ljPOOKPNPNtttx1PPfUUr732Gs8++yyO47DHHnuwdOnStdZ96623kp+fn3n16NGjk6VXKBS/ZYS+Ow3e7RIQMQ0tBkSAGOh1kPI1mX307Iw0yt2yIhdR+AOiSCKKbERO2gk/8Tms6AWVw2H5Nu5G263hVCOwafo46fi3RRjbdXo/FQpF5yOk3DJdMkePHo1pmrzxxhvtLpNKpRg4cCBjxozhpptuajNfIpEgkUhkjuvr6+nRowd1dXUEg8ENkluhUPz2kdLBSd5O0roVR0QRUQgsa/QvlUBtfxNb6Oi6hsDGn0jhMR9HM9vw5aocDYn3kDiga+A9HFH8amuNIytHQvIT91jzQ8UPCH2bzu6mQrHFU19fT35+/ib9/d4iLV6LFi3ivffe45xzzulQOY/Hw84778y8eWvflNbr9RIMBrNeCoVi60EIDd17Ld7AfCxTx8rXsAKuDUoCshA0BHh1bAMsQycc8GLHL1trvVJI8AM+B3gNJ3oNLZ6NhUCUTkUUPozIvxNRMV8pXQrF74gtUvEaP348ZWVlHHrooR0qZ9s233//PV26dNlIkikUaeJ1MN0L0wR8f9jmluZ3j5QWtj0fSco9dlYjU58gnTUbtV3NMRApB1vTCfUxCfU1SPYSkKthaiNcBzAhQAikpiHXtmg6fxx49MxqRymA+D9JxnZCymZBuzQ/5F4AwStBV4uDFIrfE1uc4uU4DuPHj+f000/HMLIXbZ522mlce+21meMbb7yRd955h/nz5/P111/zxz/+kUWLFnXYUqZQdJgvC4Ck+w2s/y98PWgzC/T7xV51Aalf/SyJ7MXceD9WJs+E2i4Q2gdqeyGtrzda21ILknBKCGu5RPRcoj4/hiMR+PDol7k7XktASjTbQffe2bIO63tkajrS3AX8h2XF53IVte+wUuM2Wh8UCsWmZYsKJwHw3nvvsXjxYs46q6UfxeLFi9G0Rl2zpqaGsWPHsnLlSgoLCxk6dCifffYZgwapH0HFRiQVbZkW+xli34J/p00tze8bJ4FW8yjze/Yg5veBEMT5DL/HRzAVAaIQvQ6CUzZK89X8G9sfI+jEEEBKGCRyTsFv3IKh9ySfN4jJxxAyRUBcgW5mbwcko9dB/Bb3wNgDfPeA9WrmvN1wh5ZzN4r8CoVi07PFOtdvSjaHc57id4yUMF0ja1maAAZOhMKOxXPaqklVwZwe4MT4fkg/ZMNDlZQU2HXkaGEMyyE31h09P6242ClYdCrEfoTS86Gs9V0tWuBEwF4FRi8QjTG75tuDKObXrI8SuS9BY+o6q5ROHdQWkhV5NfdlpCwklTwEtFjmGjHM19CNI9onq0KhaDfKuV6h2BoQAkRedppPh5w9N488v1d+OhrsGEjIDUVdhTb9HKnrKaSmkfLoRHLSm1BLB77vAjUvQPwHWHIxzD993e3EPoYFxbCoL8zPhcg7mVOylSj33lU/gBNfd71CI1v7BjDQvCPx5NSiea5E04/BMF9FN47AcX4gGT+IZHwP7CZWMYVC8ftCKV4KxeZgz3oY8i2UHgU9zoIB/wOz1+aW6vdDcjmkpmUOey5eQenqGvIjIcpSYbwN++cIga173PexH9wApU2QNf9G1m6PDB2JtNuYzqs8B2Q6fIyMw4ojM8d52jgsp1H50mIOZtUyCK3b4iVEHvhvbUwwRoPnILcezcRj3onH+xK6cSRSpkjFD0A67yGdGVixY3BC90Bi1jrbUSgUvy22OB8vheJ3Q/6OkP/K5pbid0doxQqM+kn4m9y9dEdSsXINTi5YPe4lJP4KUgdh4xXHuJm0QOsV2j8gnR+Q9a9j+7bH452C0Lo1nndCzQrEXQXO6EqZOJao6Ic5b2fQQY9Kd/9r4WlXX4T/GqR5EsgQ6AMRoo1nYbkaWOmWscBTLRHyCkBAyZOQd2a72tvcyGQUak4G7z6Igss3tzgKxWZBWbwUCsWm59fx8IIJz+vwyZHtKiIdhxdPPJG7u3blob0ux/EDfpAG4AErByK9TKReQ5DJ+MT55PI4ftI/8L5+yODo7ErzAZGO+iChRlvKHI5mAZeRZIWbp+BP2ZtRewZkhXAIGDtiFP4TI5JWuoJHQF6zdtaC0HsijMFtK10AohwhtgN0tJjIuIVJJLK27WDPG4sEn1BpD2K1PYSk/LVdZZyqe2FRDqLmNVh5Bc589fOj2DpRzvWdgHKuVyg6QKwSXivPTut6DAx7ErwFbRZb8MEH/Hv//QHY/2rY69zs8xII9TEByNNWIkRh48n6ZyA8Cck8ELMhAfgAM+0WloSIHmBeWa+0UqPhkz3oG3kfTzzl7scoDYQ4CYruA72opYCpFeCEweyX3rW6c5HOcizrZrS6T9HC3yOQSMDyeJDdv8ek5ZZB9pp/Ysf/DpaOlvcGRvG+GyxHhHeot48jQCKzz7efDzD1tfsoOr8KtFSzxJ7fQWD7DZZJoVhflHO9QqHY8qn5svG9wI3UvvRlmNQNIsvbLJaMRDLv43UZP3rAfd/oatVM6Ym8gRU5jUTwTZJ5s90NrIOAqYGxNzgD0OIQ9fjcigQIYZErZ2JpDk5DdcICL60rXQCeLuDddqMoXQBC64rHfAit8M2sO7dmpoiHhxJLXpVWxVys0FNY/muQRXFkWQRb7IcdW73BclTLUwmQyEqLsg4LX1vP96mVGyyPQvF7QyleCoVi01KStozowA7p1+5AeRQeGwLzPm61WN8DDsDMzQXgy/9A9aL0CQkIQazcdfryir9mWbuc+IvY+bh3Ow2sYMNqRAd8lwC7EfX78Ghph3zp0M1ZRq4WIRHwEC70ZtQZh3asVtzo1EKuROaBHYR40AB/ipR2P7XxAiQOUoaw5bnZOqgP7Pq/bnDr0lVdm0VDsVvPnMkgsA1fdnBYAwiO2mB5FIrfG0rxUigUmxYzH7bdFXrjWpAa6AckauDxQyBa06KY4fNx0ezZ9Bt9ICVlflY8B0wHZg2B3jH8/pnkaj/i1bKVC+nt2ngg0i/fWMidijQPZlXR16ypCBLOD1CaWkO+XYeh2Zmtfhxdw/K4t8oVga+w2MxWGulDCh2pgeXVsI1GFUg34qyJ9CaRugD0ZsqQBJE3cIOb90aKSZK9eMBg3duzeXqsxg6U43jA9miIXuGNZh1UKH7LqFWNit8ESednbN5FF+djCnNzi6PY2BR9mbZUpY8b/ieAZBRqFkOgsEWxYLdunDL1bUiG4Jfn3MT+pyAMLzo7ZeWVshZLvguB3SGWD9S5TWnDEL6HEUIQ5VVSemWmjGNqlIdXkcxJa4RpxSDlkSzPLcYx4sR4nzxO6ZRh6DD2QlizA8K03Z2ImiouwnW612I1xI1X8QsN0tYpJBDzYBS3M2BsW1hVlM1fSNJnE6nwoOk2hn4gOb4X111Wy8XoqaYWFQqleCk2O3V2f2ARAkjKq0F8iKntsbnFUmxUZMvYoQ5Qr0FBNyjtv5aiNph5MOS8trPIasLOMCSLAfB4z8Qjt0HgRzPORqQVFoG/hVi1OXnYjoFHs/HKBJrlsNzfBV1LB2elGxudun/D6v9zw1KUPwC56Y3UEy8A8cxKTCPlkPI2TlzIFCRzTITh4LOjiAb3d21/PEVTEO0Mc9EmqaUImcAbA+8Cy03re+WG1alQbGUoxUvxG2BR1lFUHohJeDPJotgkmMMhOaPx2AF+OgH26gIjz4P60yHxIYhcKLgW/GMhPhOWHQ3WSgieBF0mtBkvKyVfzyhdACnxND69DtHMmupnFH4OI8abgE6BuI5KXiGqL0nnkBieJAF0QBLkXPzs05kj0QIn8V+c8OkIT3rXoGXHQr8VrlO/KHEdRNLOUoYt8YdTpHQdku7sYl2Ze1uv9hZQ4pyNoe2Pph/UOcJ5B4DZF5IL0wKUgf8PnVO3QrGVoBQvxW+CbOOHs5mkUGwyunwKNddA4kvIPRmC50Lf9LnVh0P8Tfe9tgbqzoPkx1D1P1fpwoH65yAwEgrGtlq9EMHGLRClxIhqYN8KgcPAO7QxHzqlPInFcjQCCIIs5MGmNWHjoZx/42d4Jw9CS5zkVFLWkVAACNDrwKhLuv3Wi8B3GiI5FRl/ETQN9G0wnGUYTgxH6KwsLsjUZekeHP1YNHbvPAE1L/SbDlUPgbSg+ALQVQgdhaIjKMVLsdmRGAiszLFHtmP/PMXvG02Don8CTtam0wDEP3H9l/yNgU1l8jmiuXkIaeCrS6JJPa2EtY7BkRgch8WLeOsE3voocBPU3gRdPgHfHs3yuw747oq9Jr5RgJdtN7rSJaVE1l4P4ZswLZAeSBWAnQtGbBCY27oZhQfyJyOCMcALQkM6KyDxLEL40bU3sfkGAA8D8LJz5wvrKYeKGzu/XoViK0GtalRsdgr0CMgBOORicj05xiObWyTFxqb+U5hZAZ+Z8MsZrt8WIOUqknkxkkWQCkDSD7YBCAiVadSX+6jumYMUPgie2Gb1QugE9InkassxI2XpVNutKPJC2+XQ6Mp1mWOdIvrw9Ib3tw2kU4NTvxeyRofwTQgrrWymwAiBoAv0+rTllKrwp5WuGqgbCrG/IKJ/ojQUpkjeSxF3Uc5/EVnLRhUKxW8BZfFS/CYIGmqz362KOWMgtQZwYPXTUDAKyv5IKnEu0pPKWu1omenICMJNsPwGdp8XMcy1OOCn0UQxGH3AXoGreNlgrH0z8hJOJsi+WFTjZzskkGA1JkUI9FbLOPaX2PaTCIrRPVcjRH77xqH+fJzQZyRMDwErmbXSU1igB94AveXqzgzWxyBXNPbXmk6O8x+E3qN97SsUik2OUrwUCsWmJfQZJJfTOJ2nNUYwt79sudoRqM9ruvrQQDPbOYW24kN47wtwbMgB9joeghevs5hJF0y6EGEh33IJSarw052deBAfZVl5HWcuqcRekJ4ud5yPMH2frrONmPyWVOpV6roVITUd36JKdAd3wacAmQRNW4fjulPdLMEArY3I+gqF4jeBmmpUKBSbjsQS+Hl/EE0WUOi5UHwcAJpM+1I1CXGuh8BbbyMcibA95NeOQnOahYFoBZuFyPdHIZ10RPoI8PVSaCVOXIp66phFkuzArb/yYCYtxnIWMb5FWel8jBuAzLWoSWc6UkZa5Mtubza1jCRa6sejWeikqCrNcWdcbTcsRLgomAl70XZFbzdLsMD+ae1lFArFZkVZvBQKxaYj+g3IeFZIBAa9Ab7eAOj+ZxDV3+EwFxzQ46ClQCeJvyaJFtOAyZDvQO9JLetPzoWVY8BeSjLXxmc5biQr4W4XqNW2VEoi/Mq3jMUmgoNAMow9uQWTHCwiNHW0t4i2KC/EoCZHOoguQAApw0jqEXRpoUDVyOwdvjXpoPkkK3vnY0ZTWGY3SrzfrmMwAfvnlmmpKWDsuu6yCoVis6AsXgqFYtMR2NG1OAkBmg7ecsjdLXNa6H70kp8xgrNAq0Ck0ic0EHFwlSAHQs0tPbia1eKdIPkV2Kvw163B6gnRfQxCfzSJHOMhPriltWs2/0wrWCCQpPiGH3Ad8HtyCg23SYFOd45rUV7T98AwH0eIgQhtTzzeKVi8SsjpQtjpQ9Q5EimTmfw29aRY0Ch2+r83lcAjUuQGZ1Hu+wVdBNY9nlorwVz1Dd8WSKFQbDyU4qVQKDYd3l6w3VTIHw2FR8LAD0Hzuasawy9B3b/AqUF4d8Ao+R67fAxW/kCkPrzJ7KQO/h1b1i2j0MwipW0DVg/X2iQDkBxSS8puXMjxP95iSRMlKF0R1XwOQAl7sRvPMogbGcZ/yGf7VrulG2Mx/T9h+j5GiMHEnHMBV9myeZuUnJSu2WExJ5MQKRyhNTRHUpoYto3HsTDp097RBF+25QzPUeBpqRwqFIrfDmqqUaFQbFry93VfTVl1OoQnuu+rb4CesxB6CUbOU7BmGMRnpO9WuZBzAHR/qJWKs58jM3sZNkzzpf9bTMTDjkSoZwav4aOcICEMbCSCEHl0Se+mIFfMIie0mpxew8Gb084OSiCWfivRqyy0X29D9ioh1W0wCX5Ax0A6SaLCj5CSoqTrR6aJvm2unGwNYR6NzPsErE/B2BXhGdXusq1KnnieRPJibCOBNK8gV79hg+pTKBQtURYvhUKxeXFCjUoXgL0UIv9138emQ+K79MaEgBGGbreDp0vLejQ/mLtlJcVK9KZ++khA41AA6nA3x47j50cGMYdtqaaAClZRRi7L4tuypOIAVqeOw35we1LxyVjybaS0WBtCaJjiGgD8s1MEbIk+4EewDsb44HwEPnQcfCJJSWoNXeKr8DpJbC2fgP5VBwYu3Z5nBMJ/7QYrXXb9maTip5D012ObSaRzKyH7hA2qU6FQtEQpXgqFYvMivNDcn0kvTf9vHhpBA20tMbJ6fA6lEyD4J2I9zkH6tKzoFEl0qvR7kaQopzcGXiTgoJHApAuVFLENAVmFbdaBEMQGmtSctpqY549EnSOIOscgpYMkRZiXqOdpbKqyxPBpf6eKkRg20OBWFgBhvUV3+RjQE0cIkqaPcCCXcCAX0/c+ulj3as2NgpSQmkA80GhtkwKk89rmkUeh2IJRipdCodi8CBPKnwWRAwgIXgSB0e45385Q/DfcW5UHyh9yN2Zusy4B+adD2X1gSDwrbXK/TpLzXQot5BDTckjwBXG+QMfgdG6knO2QdKGEvRjMBwxkMpIa0BpVNru48VZp8zaVzlgWOb2o5BKq5LUsk6Op5nRW0YdqjsSmklpR1yImmZ0rsLidLpyEN215cxDUUMACzmMNzyKzbHSbkEzQ2nWEsFAoFBuEUrwUCsXmJ/do2KYe+sag7MF0BNEErL4c4m9B0UXQvwoKz3fzJz+B8FUQezyz3VBzzNA++BfaaEnQopLAHAtbNlh0XOUihcN8qqknyS/M5d88icQhV5ztZpMSBHhkKlNvHC8h7W0sTcdBQwqwxXJi/BdJDUk+pZ5ryNVGEhd6Q1xVEoZO3XAftviIKP+HxesA1FJATPpJEGI5N1Er3+qUIU3yI6s4lJXsToTH1p5ZCBy9AG/cdvsMIMHg2k6RRaFQNKKc6xUKxW8DoUHTvQWrroe6+wEHEt+AngfFN0PyI6jbD9ABC6zZkHd3i+qMWKOyJHC34NFscDQQ5AGwjCVYTTZor2I1ESLk8ydMhhCz70AwDV2klTsJMZpMi0rXgV+4rvzpRBub+WwTP4VQr++Rsel4ZAhMB+GAo+u46xsFBjZJzEYrk5SE7fsoNA7t8PA5soqYfTUx3kLIfKJGFCkS6X79DQ0NP2OzC0lJVHxKTH5BUNSjSQdv1EFqAk07FjMwrsNyKBSKtaMUL4VC8dtASohNgdj7YO4EiZk0Bi91IJ52PE++RkbpAki+ADRRvCofQa64HJwUQnMNYlJApKuXmDDBEdSL1/CJHSinAoFAYCExyCGXQFqx8rEvMe1ddPlhWj5B7tIEdRUOWQsPJeTYXhwjmpbLJjfaD73qQPJxlTJbd7uQE4sTynWnVAUg0fFacWJ6WpkTAn/sW9J6YQeGrp56Z0fieiitxMXRJVgYuBMbgij/blS8pA2V5yFDE/DoUFNWhB8NDxIdDRyJ7v9zx4RQKBTtQileCoVi8yMlVJ4E0SbR6LUBDW8ABwL7Q+obsOaRUbrQQd+usZrwN7DiQnciUQMC4DgQ6W3yZf4fSGquRS1hPQPGNwg+5Ax8mMQI0YV8nkdLa1UrGc9S8QYFlJMn6/GxF4J3KKmuY0VFCY4Q6NKiOF5Nrm81Kb4myScYbI838i/ADcgqAZF0Xdk0J9t/y8MhlNVMob4gQVKY5Nkh8mucDiteFh+SEHUgGjVCTYCJ5frN4yEuVzQ6l4SeI+48TazCi245VKxajSbBCQDeLojgeIS+S8eEUCgU7UIpXgqFYvNj/ZqtdAHYs6HoRkh+D749IbAb1O5GoxUsB4yhkDehscz8s9xAq028VzUdVgXKSTbZo7FSL6dUfogmHEyiuJOPlZg8CDwBQDVTQQhqRT61FFLEIPILd8VXPY7ei1cQ85kYRhLTGIEI5ONlX7yk45PpU2iwfrlCuBORSaPxlmswlCAvEDEOp2LZm8hcEBHQU6d3ePgE5S1c8iVpTzYBOjY2ISQWAoOoeJ36LjkZfy7Lo1G0IooeARlZCjmO+nVQKDYSyrleoVBsflrZuBrhgYIroWISFFwKdZeDtMgoXloBFH4Mek/3uHY6Ys23NHW3khKkBrrTZFNuKdFw0HDIXnZo46RjewH46EPjnKLER09E/vXQ7XNEcCQBTxmm51hEcHJL2fNvAXN3t7ynH44HNAt8EYtgbZICexKFfIQkQrLwAxJ5JrJGJ2kaJPrkYcu5HRo+Q+xOgKMaHeNpHIPMeymJMRWAZECmFw64AWaT/kYtSwDEH+lQ+wqFov0oxUuhUGwaUjXgpB3e7UqIfwZOvXts9IT8pivoDCidCGiw+v9g0QiIftF4WpLejLqReNhdJUiIRqVDgFMG3VIryLfr0kkOXVnWpGSj8uVldOZ9T/5MkOEYFFHMoXThHDe3OQxR9AGieDEifzJorYS30Euh/FPoYSEq5qLlvwuevRDe/fHkzEQXOyKdZaSjwpIq1on282CVaaR4nIizM5b8aN1j2oSg9gxB/oUm+yMpbuyWdOOUoQkkcRwq8eiHpFeOugqYJ25nhlXqgFHaobYVCkX7UcZkhUKxcXESMHMU1H3qHhftAsU/AHGgCIqeAq0ECm90Y3g5cfjuVvjuXNBq3YWOeUABrgHKxDV62QMyTaxiIsvLXmfIAh0jZUMN4INkf9A8oEuHoZFvSWhe6r0BLNODlALRYPVJT8xpFGfq9ER/ZbtQN/COgvxjNii+lWaMgjw3snwq+Rec+O1uun4JAfNuouJSNCfVRAW0SToPYugjO9ROQByPwe7MZ2+8eNFx0goW5MbjeOx/EPLMIWUaaOSDyEejC/niHKT/AhC14B8I/nHr3VeFQrF2lOKlUCg2Lkv/BaFPG49rvnQVKROwq2HOUa7ekzcSBrwDM0+BZZNdJSuAa5evx7XgaLj6GkBBbqbKFTyJZRr8uGs/ilfWkBuLUZgIIesNKnvmoUnISUbx2wl88QQrjFKSmonfjuFoGrbQWE05gh5IvsCofQdzxfWui5YtoeJmKP+/DR4K6fyKY92eOXbsB/DIWQTEV0Q5E51vID0FKsRaIvQ3waEShyp0+iNSy7CqT4dyiY2BhoUA8mNh8uJRJLPA4wNAoxYBBHkQw78vsuuJuObCPIQKoqpQbDTUVKNCodi4JO7KuGWlCjTqdzGp726S8mnuHagQCAKRj6D+fViZ3qcxl4ZICODB3Xc6E10dyDs304ROLkhI+Tys7FVKLN+LFBpruhSQ1L3EDS9VgUJSmoEATDuFL5miuC5MUV2EGLnE8fIF1/NL7HQ8ob9DroSgdB9PV98Ey3tC3Y3ZflQdRGa0xibDI+fyE8ezUKthkdadBCaCnnjF39ZZX5z/UE1/atmNOkYhlx+Lr3YaZiKFJXUc6d7i/UnXmpY0DVJmw/O2wKGWEIeS5GWEEAgRRKTmwbIDYMkwCL2w3n1VKBSts0UpXuPGjUvfPBpfAwYMWGuZyZMnM2DAAHw+H9tvvz1vvdU5UaMVCkUaYwHo4BgQHmpiF2jYAY1whYlj4k4l5gAlgLUSvGn/IkGWn1ImJJUGmAPBu3Omid7cQMN22AEnSkFODVbRAFJ+T8aBHCFI6iZSQl4sSmnYtfhUBVzLUhmV7Mh39AytyJbfB4g42Eug/nqIvbxewyBlDRZfI409G13QtINZrr0DWOjCRsdiudaVHG0Wmui99vqQRLgCI5Ekb2UM/8ppxH3fo0mbXotWUlZZTzAygi6xsRhOyl1V6Wk+yeEOcILn3cPUSlg+GKz3IPk/WHUShP+7Xv1VKBSts0UpXgCDBw9mxYoVmdenn37aZt7PPvuMMWPGcPbZZ/PNN99w1FFHcdRRR/HDDz9sQokVii2YBuuQHxy/AF1kKUK2R2tUsAyAOTD8JTByIZGuQ+BOO/Y5BTyFrsJVnq385LEzgxPbMij6C30TC9A9DlT8EQ/buYXTq/rMVBIjJQhYA1gd3JtFBd0ImwHcUKYOAvBqjVapjG0rp+GNBtac9RiGGsLObsTlOST1mTjew/F4P8TjfQMpLHzEKKWSIlFDqagkJK5vX8VWnOCKGGbMxozZ+GIJbFNDdwRFNfUUiQsxYjdnhtFGZC98TK8A1UmvDA2dBTkpd4o3N10okt4o2/qJVHgskcTOhO3Dse3aDo+DQqHYAhUvwzCoqKjIvEpKStrMe99993HQQQdx9dVXM3DgQG666Sb+8Ic/8OCDD25CiRWKLRghoNKEOtBDEs8yC1KOq9E4Ei3lZKI/SAn4R0DhUDiyHoZ/CMVB6AF0AwIDoVc1dPsazJaWbNP7KB5tPwRd0fSxGMaVVDCRHI7ExwjK4rsSSPqQ2iCcnD9SzDXkifOxMBDYRAlQTx7LCspwDNcS5HgCEDzCVRgbTG6+gzs8DCk5BcnizLHF24j6KxGpT+jKFeQSahwyJMl02Ie1Ii08qRSabNRdhQSraDfIHQW5OyHDd4FsNBx6LRtbaNhSYEmBb42FkRR45SVuNHv77cb6BUgPSLMbMvokTs1gkvoEbOMnHN4hapVhW1UdHguFYmtni3Ounzt3Ll27dsXn8zF8+HBuvfVWevbs2WreGTNmcMUVV2SljR49mldffXWtbSQSCRKJROa4vr5+g+VWKH6XOEmomQAyCQUng1HUMs82L0DN0Qgg98cUzlyI7bwrHv1L8NPoLG+MgZxD3PdCwJJbICf93RJA9V/BvzfIKHiHgV6Q1YwQ5Zi+KVlpBl0p40G3vB+S+pXI5D3oiWsACHiOpNJfSiG1DbUQNwIsriilQNaji+0JMglCD7pTjYExYO5MRxGioNF8JtN/rG+g7lACxUsIkYsjajMakk6vdtQaBSOJI1yFKy0+mmd/SN2MBLTUNzgGiBy3WV88CRKSho6nxiFQm8DRQSYGIgMfI0QeyLpMXVIXaOFxyDg4XoFtNj6rS0Ngre6NXhFqLphCoVgLW5TFa9iwYUyYMIGpU6fyyCOPsGDBAkaMGEEo1PqNYeXKlZSXl2ellZeXs3LlyrW2c+utt5Kfn5959ejRo9P6oFD8bqifCT95Yel5sOwS+LkC7Fa+a0UHufvXpNGSEAhdgG78GekxsYNlyPK3EeXPZZeL/eyuKowAYSAFrNgbVh0EywaA1WhBIlELVmyt4jrWNFLOfehNtu0xU68RkBFk2mYksPETxRIebE3HK64F4YXglVB4r6vwrQcGB+Hh7PSRxB+20htrx5DxBygMLUWT7goEXeYT5NG11ielJOV8ghADiZYbWH5Byq8RrzgNIzIPaLIOwYIqXx4pobm7KNUnKZgfwx9L4HTDffyWMez4VZD3LA3zqo4ob9ziSOKG3mhGrCCFlMn1GhOFYmtli1K8Dj74YI4//nh22GEHRo8ezVtvvUVtbS2TJk1ad+EOcO2111JXV5d5LVmypFPrVyh+89Q9A5W7ZXbEAdzgqGvuAUDKJNL6GVk7Hn7qTXYYdRBGLpr3OnTff9ED09CMA7PrlxL8ta7SZeG2E6WxPXsN1D8G0oEPz4QJhcjx+cgfjkXWj0JG/46Uqcb6Ev9F1u+PbBYmwZ3m1NJKiiSPMCZJTFKEycfTsAXQBiKEhl9/mDwWkFebjyelATpoXSH1Kh7bprQ2RHFthJLISAy6tFmXlHWEnJ7EOQ4pZuN4BKnCA9DLFuBxTGz5Xlb/ABwNTOm4VixwtzAqbFax9QkSA0pqobgeRzQGhhU2aCkwY40fuJFwsLwGjli1ocOjUGxVbHFTjU0pKCigf//+zJs3r9XzFRUVrFqVfdNYtWoVFRUVa63X6/Xi9Xo7TU6F4ndH3eWNu+k0JTYbp24iKf0qPKtWoiVxH+/ygfQMFqWHI0v2hLoh4CwCBDLwGMI3trGe+EdAuLm+1rhNI9LdZmjJVPhlQvpcCma8DOWA9YGbJ3CTey50DoIUuiVIGRoey/UtW2GW4BEpXPXLRmvSoMAixRy87JpJS7CENfwHgYdSTsVD2z6krSH0rlA4A6L3gtDAfwVEzgN0BDaGI0FzrfBSOti8i5TVGNXTEdUvADnEe+wOnsomJi2BLT/CrtsNw1mFMEDm4SqtDtQX+TCbaMjCh7tSs9ljt0gB8cOR5bUILQ8t7wZk9BgawstiAUnbVVOFIOYz0Zwgmr72+6VCochmi7J4NSccDvPrr7/SpUvrT4/Dhw/n/fffz0p79913GT58+KYQT6H4/SLCruLlb5LmAZb9B/HDH/HMXokWw1WUfEAprpN8CcjBD0Dq3+A0WIolxJoFJ3Xq3fqbx/FsUPb0rhC8GJKN/pUC3A2ynXSdVtMVzRE0Cd64RLNlJn9ZqoZipwYfsYyTvwPE8BLDRyWnE+EfSBJY1DGHk6jkGVbxJHM5FYf1mGbT+0Heg5B7P+i9IecB0NI+Xfpu4HO3Too7FxF1jiBmnY6z8iEcaw0ysQgZerFFlRKJLldlNsWWAqygYHW3QmyvgS9u4Qg34EbKo5HwptdwNuiZFoiVQLUFa+4FQDOPhrK3kd6dkd4dSeV7ED4Qeh62bzgecQT5+jQEno6PgUKxFbNFKV5XXXUVH3/8MQsXLuSzzz7j6KOPRtd1xowZA8Bpp53Gtdc27gd36aWXMnXqVO666y5mz57NuHHj+PLLL7n44os3VxcUit8H3oNdzcWHa80K4m7TQ1oBSuBaXPwNCW5e6QW0SKODeYZmxnf/ARDo4dbvwQ1vUO62Iz0gy/8DejH0PASC/TLFZJ90fgQYezfWF/grAJoDepP9snVpk5OK4sEmhxg1FFBLAVFyiBJgDQ5h/kmEi4jyAzY1uPOdDgkWkWiyUnF9EXp/CM4B/oGIdkHU/xvp1JLiKVfGmIPdFVK9IbkNmX0VG+JCCMtBiwWzRlOkNbC4xyDsC5D06Ah6EPd5iQcMkl6NeI6BjAn0atAXgkjiBqld/FcIfe7W4z0QUfY1Wtm3eHIX4/F+SsC3kHz9Y4Laf9Dpu8H9Vyi2NraoqcalS5cyZswYqqqqKC0tZa+99uLzzz+ntNQNyLh48WI0rVHX3GOPPXjuuef461//yv/93/+x7bbb8uqrrzJkyJDN1QWF4vdB6cuwvI87VagD5pFI3HhPmbinDo0WqxTubjQOsOxJWPM4dJGuYoUBOQ9l168FoPdsWHMtMjwFmOvWlcJVrEStm88MwrFfweIpSDMPSr4Baxp49gBfEyta4BrwjHStbMnLQC6jQfGT6WlGB50AYSIEaWpqi+HHy1v4+Tvus2p6Sx+8mGQvzllfxJqLoP5x9yDyMsgEBE0gCR6JbHKndgogJ3wX2H9DyFqEhFqzhCrDQ8/4yoZtJwn7/JmNsOOaSZ4VxspLTxym0y2fhh72oxHOFqjyXsh7PltGUYFQ04oKxQYjpNyA/S8UgBtOIj8/n7q6OoLB4OYWR6HYdFjLQHhJ8D7OipPxLXLNSaJhGtKP+3i3xjXQNJ05lODu12h6EP1/AU/vrKptwlRyHEn5A9Ky6RqpxHDS9QdnIoxd1ktkx5qKEz0WiJLSdOpyctyo9tIkJrzECeBk9iqCUllJniwjL9SHOjPBCp+NEEG6cy157L5eMmQhE/BrLq4TVRrfSFJdzyUmz0W3YhiW3Th4jg+v73Oo2SmT/Ze8Xqz0ltEntpCyRDUR00fY7wdNAykJ1kfJr08R7toFSToyv5R4ozZm2IEVzWZ1u94KXf6y4X1TKH7jbI7f7y3K4qVQKDYxRjcArDVjCTQoXdDoi9XgAtVM6crkSwJ6CqJTIP+CzDmJpIbd8TEfnwBHkwjHcd239AJ0bf1DuGjGQTh5P7PKHoqmJTMbQntlgnqnHz59MXECSKmRRz25dpjcuiqE8zMFSSiIalDwI0Jf+3Zk7UWmViINCyHd1YMAGOV4tDEY8mikZzEpZx+QKwGB4b037YCvAzaOAI/mxhVcEOjDAn9vgo5Gd2s1KWrwxlPk10QQAgLydSLiIKSswpN0MBMOwgMUQCaUmREA52NIHgvmtp3SR4VC0cgW5eOlUCg2A9LBvySUtbVixnjToEh4/Li3Gz29rC5NZqugxtAFAJIV6Mx3t/mJWnhTNo6ho9tgJGuRyw/YIJEjciK23uALBUiJkA5dE6uoJx8dm3xqKU+upqAmge406ZvjQPLDDWq/ASmTJO3DSZVBshxSBQAGFN8KgBA+ktoyanwxQt4Atb4cFnrGY2km5E0AUYjU/RSzhkJZjS4tAkTohU6J8SVdVgmKqsJugFUH9NCrBPXl2PqR+KJNnN2CQP873f85UYi9C8tHb9CG4AqFonWU4qVQKDaM1Odo0WZpTcxbUtOo3vZgrG6XQcVlMORr6H0HBEvBMmAp8MWJsPRfboHE14g11+OrSWEkbZJ+nZRXJxo0SfpcU5rwfA81X69TNIcQdfyFpRzESv6CTQQATUpsYaDbrmYopCQ3HsPEwUuKFB4s9MaI8E26FfOYJPTOCRrq2BNBft947Aen2wvg6ZNJi3C9u0pR9+BoOgbzWcm94PsjlFSjFfyKhkEvZzHbOz/Q356H4HsqtRFYnma7dsTeASBPXE9dsAJHuGFcHf85YOc2+dxssBa4uwQoFIpORU01KhSKDSPRbGWfALyuD9eainxqSvJwtK+oyltMX+ddtLnHQPhDSAoIN2g2Nvx8AZQMg5V7ImQKHzahHLPRLCUlKVPHG7dd/eDXI2DI4+A7pFWxpLSp5wRW8hMxkQMsporPGMAUcrTLCFv/wpIJiutrMnHr6wP7EuADwMZBY4VZjlMs8KcSdA2tIeHRiQRNENeRYC75bNi+rlKuaTF20pPTLFd2wDSJIEVj/EEhuuDVJxKTpwEppICkJnFYSk2hTUlMpKPka+B1/eI8DKbA/BWreBnEXkCr+Qcy+a+03pX2b/PuBFpzWRQKxYaiLF4KhWL9kBZU7gSxMW6Ih0w6EIdfB3WhqrwAR9dBgM1qkvWPu0oXtJzGkhZEPwQZB1zlSk/IrHx60oE1wGIgdxnUHwbWty1Fk5KocxwpOS2tdLkkWUOIGWgiQIX+E8XyeoRxHMJzESJnNh7jFHS6uVYgYWJpBo6mEzH9LCwsJ57nwcBGlw42T2Hzc7uHy05+R2hxgPqYl/qUl5D1B9BOBpoGY85D0/fIKpfHnTTcqh00wjKXovoc7JUXE0/ch8WvePRjyNXn4WijiGteHOEqa7apkcztD3oF+EZAwQ2ZegV+RPRSROyv4I83hurQcpH5pyG7vNbuvikUivajFC+FQrF+RO5DarOwDXB6gwzihj3wAw6uwtWAlCAFHruJBcUk25jTbSwEdnVjSdUAtRBYmcIM22gpBzNk4Z1nISO4d64IkJSQahoo1cVhNnHxtrtFUDMFTycPcP2nTPNSPIHJ6P4HWKU/xDLOxrEWUhjrQtZ+SEJgawYibQwSwjXs2fzY/uGq3p14N42E6UFqIPmROCfj8c1F009H08di+n5yN6pugslQyvgJkwvQOYveqwcitAepLH+Gau8NrJK7EWE8mqjAEAcjRfZt3UwsALEarI+h5vxMupT1iNRb2YsefIBTj+0djx3bGWl/j0Kh6FzUVKNCoVgv7OgrbkBUAANkdxAx0KtBroGk48fQXF8oiaDUPhm94FTwPQTxn13NZcDfwPMH0POgaD+oftJVvNxCiBAEtBRCS4ejaBobDNxVkbGfwFuPlJVg/Q+MnRFaACk0NAGF1FAjC0EIijmJXHZr0Zck86nnNXypBD1rV6KxnBqzO7au0xAYSxepbCVOgs727Xp8jfMjdSUBLN10h0smCTohHH5E03qgeSestbxOBUW4DvcRr5eEz8DCg8S1JlbxZ0z2JYeLSPIuST4GICe6DchZZOyRsUkgnwWhI53vkc2XmjogG/ojq7Dj12DkTFl3BxUKRbtRipdCoVg/6qa7ixEbfrw1EPXAMrD7nE/M+BQNAw0HW+iUGSOAIAz8CsKfglEKgZ0a60stglUXZbchAS0I1IPhR3oDkKhO+yw1yPEIMvIU5Di4EVZ1RO5rGJ5BWPInckWEHBEhIB8kR5zealcErkJUEA9nutO1bhVLCisQAjwkKZB1YEu8UQepgbfeQi8vbtdQhXgGyzAzx5YwsaSOVwxqV/ksTLCEBymamgsFddxHCfdQRJMpQu014KiGA3erpXQ5ofXDNkBLppNsIAYyt6GwhOaBVRUKxQajphoVii0FKaHuLVjyJwh/s3GbclKQR6PSJUE64JRNgr1+Qet/PwZFOHgylhk/6ZV6mh+CB2QrXQCxT8BotlrQNxjRaw30WI7oEUJs9wOi+EzI2xdym7TvSbg+YgA4EL+boHgfL2diyD3I5S4C8SKo3BdWHwWpX7KaMelBoTwXq8k0nd9OUR5dQ64TJl/WIxzIrbQJVKXIWZ3CEIeC3r5Nsp3UFwAI6WDYKYSUSAl+bmlX+abo9Hb3WWy2g7igleCPviMg7y8ggmD0g+KXG/OLcnTzPlJ+gRMHJ+FDFl2L9DVswKmjmde2rFOhUGwQKnJ9J6Ai1yt+E8w7DOr+23icPxL6ftAkWFXnIeOPIKMX4jQGeIeEF6MsnskTZTaLuA2bMF04m2IOXnul8S9h6a6u5SUF6LnQf7k7Ddkcazks6dYojx/wCNz4Dxp4jkTkNSoZJL6CyiaR7rWu0HVxxvoDkJJTCVtHkRO2MC0bS4Pm+z9r3ofQ4rZrhcsdA8KkPdSEuhPxxyiN1qAjsYWGdPLxBpchhH/dFTTBTr1OrTyJiJnbmCgF3cUiNHxtFwSI/gA1b4CvLxQdD0IgZRxkJYhuCKEjnSVIeyZC2x6hqwCqii0bFbleoVCsH1JCqInSJYD6j2BBX9hmfue3Z33jrjq0aWJ12iErS4ABDGRCO+urgUQdFN4B4SeRfhOM3RB1L0HhH0E0u1UZXcF3KMTSfU4CnvQzpHTAqoXQBeAdA+beEPpHdnlnOThVoJcRYxXLeBGPXEqBJokEPVSLAACFkTCaJBOOQRj7QP7g9vWpCbn1XkytEi1tpdKkg23UY/M/DPbpUF265whyEkdjWW+Q0E2QkCd1NH0dSlfkW/hxWNoy6ECXr6HnbQjhA9EY70toPRAbsDOAQqFYO2qqUaHY0tCbvKILoP4pqL0HQl+C3UkBMT3DG99L0isRv4TI6x2rx0nAwj/B1xUwexT2ij+TKFxEKvd7nMiTsORM5JJz2pDhEIgCNu62N477HgeE9SHEH4O6fSE1E6REpkWVgKNpSFFIlKV8znEsYSLztY/5xR5AoCaJz0lgSItwIIA0hoK+D5r/FYTecaULQM+/CdNKNe88Mees9apPeHbDL5IUOCEKZAgd19IopY20ZyLt2S0LVU8CmR4ggNX/Wq+2FQrFhqEUL4ViS0AI8O8ATaf+wFVE1pwNNVfA6l3h83Ko+3zD2zPPAP8tENWhHkQybRVafV77ytd8Dx8eDtP7Itc8gAwkkSY4BRL0ONILVheQOlDzDNKxs4pLZwWW8QhWV7DzXCOXSO8H2ej9lFazku9A7lhihTqWT5AKaERKdVK8wEKepGnYiLCZgxYGb62DLiWGbRHxRTByPkLzHLFeQ5XgF8K5QZJaICs95dGxWM5SjsaiukN1esQJCEozx6a4EimT2NEDsCO7YUcGYsf/nl3I7EFjX3XwVED0DuzIpcRruxKvLyOReng9eqhQKDqCmmpUKLYUBsyC7wpA1mWn27jWLwHkh2Hu5bDLjA1qSsgYrFkEEduNx5VxsrfWViwtTxzeHQnJWmQ/B3ql5ZOghcFpqEuAkwNanoTaHKTvL4jAOLeK2Nmg/Qyaq5zJMIiUG0dMCHd1pbRAeCSJ3Hps/0osS8fyp326pERaH2KYzVYVSokuJdg2uVErrcTNQeZ8hdCHdnicqniEKm5BAE5uGcWpFfikjaMLpBCERQ4JvmQJB9GbLxDNtxJf/S4s+w/4e0Lfa9wNrAFNdCFH+wZbvo8QXTDE3jipN8Bu3ENSJv+B9F6BEAVuQuk5EP4Cql4Abw8oqURG/oJmS3xuzFokF5HquR0ez/4d7qtCoWgfyuKl2OpIhA0SEeG+QgWbW5zOZdAqsqKSGjQ6q7vhqMCJtVayY6z4K4Qeh3yy7yIF49Zd9rPRkKwGHHdT5hhQ7/4XgcbpQBuBEwQ0CSQgfgMyNc2tw/mJppYqqbtZADcCgpW2fKUgFbqXenkFWsJ2LWFSggSPVc42XIiHonQlkm71K1zVx5cdqsFJPpbOkkRGrkTW7YgMn4+UkayuRXmFSgazgu7MZztquCXt1yXRhEXck0fY4yeumUQ1HzHNT53Mw04tZ0VyZ1JOE3+86hnw+WhY8m/45Sb45tSstjRRgkc7EUPsDdYyiLyOSNJssWMTRU7zQN8JsFsMBtwFntUIJCLmjhfStRrqSw5f68fXGhGuppocqmUOsUgRqfou2NFLO1yPQrE1oCxeiq2KRGR3EE2mrbQ6EtEn8AbGbj6hOhPDCztasPw8qHs8K9yDu3kiMPDvbZdvL7FvICiRelpZcsAxB6AVXNjcZuPiJGH2sVDzFthO43ygG/49oyQ5uiBquE7iUSNAoRPGSCaa1LMcAGEcjUzdCxggLET+/cTz7sbSl+AP21kB8f31SURCEMoPEtN9mFaCivoQWv7JaPjZkzeIyLmY9S9ixmZAwZkI432wp0M6cAMi360sfhsk7gUcsH9wnctyHnDl5WnqcZWNBF4cIjRMfgpsQEMniU8mEEAKSUx62S7+C4a0QSwjaQ1E961B0/Jgzbu4Wm36el09tfXPwloIKwYgSKABTiptKfTegGiQuzla98xbaWdfJqKDinmcF0jyEALQbIu418HWk2jOE/gjr+LPWdSh+hSKLR1l8VJsXTjfNzoCNbwYv1lF2ij4d83+NQXwPQC7/gJlx2x4/cGD3P8NY6iDrf+CRRvKweIboOZNwHEf9ypwQzXIbJe0lDAIe3IJm3k4mo7WEPsLAaILeEYBoPnuRPM9gPCchxaYgua/BG/gB0xzAnawT1a3NQsCkQTly2vwxpIkDS/R/NvAGJKuWZAr+mPm/x9UvAGF16P7HgSR9qHShqCZf3bfW980qdkB66uM7FEey7x3sm6t7opITToEnHhmyExpUZGoxIOd2YLIIEnceYRKayCVfe4kPBKcQtywF3nbtz62NZcCicY4thboOT+gef/WMq+ThLqZYJcSzrkIKy1nQ48EILT2BYVtIM6TTXqqYWsamiWRCOLeSmxnzVpKKxRbH0rxUmxd6H9utP40vMTTm1emjUHhOeAEG39RUwL0NRDopLhMpVcjvRc3HgtI+nQcOa/1/KHPsvJiAgEy2wM1GL80704I6W6MnRfz4vVPg5wnIXA35H+dUQqE0NHMi9H9D6IZB6XTcjC1P6IVnEOqBKwCsPJd608D3pgboDVsTAXrF6g9FGp2h/gLWeIKfQf03KXo5qfoNX7E4qFQczt4DqBBkQLAPChTRqNr5pIysGhUKQUChyIubdT10wScWNbUoJSwRr+LuFFN3PBRm5NPdCcDyveDXSa3PrayvlmChtAGtsyXqoUZf4AvdoNPeuGrGcIXpYfyS0mvxqoAq/wkOhLeUWNI49fJgfyVcYqWRilaHMWIOsjU/9pdl0KxNaAUL8VWhTfwdxAHNiaIa/H6t9AgkaLEjW+VBBwNnJCbLiXYkRabR7eKtRQqD4bl/aDu7+4vK4DQEKUPECs4jEieh1C+H8fwYzQd26YUZfsNSQ3sIWD3ATsHpA9k2fN4C76gu/U8PZIPUuj9EU0vQXjPQvguQ2gV7eq2pv8JO/dg7DxX97SKIVXkKjwJn4kEUnIl1B0IqbfB+gJCYyD1dfbwCQOx6gxEYiZYi6HqL2D1gsBjYJ4EgXvAd10mfw5/JUIeIYKEySOJjmv3sclhD/LF5Qh6Z7VhWl0bp10laDZ4rWSDADhCxzZA7nAz+NuIrZVzSbPjM0G0cmtf/jREfkofOBhz/o9dmYA//2aWde1CvESQrABbPIR0PkampiFreyGrc5DRa9tUxvK4GZve2Oh4Ig5Gwsmcy61OIqJPtS63QrGVohQvxVaHN/A23hzpvgId37Lld0NZo1KAlgtFYyG+FGZ2hc9z4X8VEF8IgEQS51HCnESM25GkY05VnwKJdyHxK6y6CeoeyWrCb0zGMO/A1C8lR5uGbpdD3SeQXJEtS9fL3b0ZAQqALq7PvBYB6QVH64dY+n/wcxmi9gOE9wSkWEdA0CZIZzmO9TaOPZuo3Iuk532SXg+27t7inBxY0bWQWMCLIwUe2R2cRTQ66EuwZzVWaEdhzh+gbh7E7YxVSli/IHznInInuspgk8j3q/grCTzE8WGj46AjGUFPplHOZAQmOeJrdA5F0AcPV6D7H0FY7ubfmg26BXmxJg77QhBYaYHer+3O5xwDJVMg9wooegYKn2hrlFqkmBTRg4MpZQXClJlfBMdZDuFjwFkCRF3fttRbrdYq8FPCjxRXXkVOfapJetpZn5xWyykUWyvKuV6h2FIpPgsCf4DEL5AzAjxd4NtdwVrpTvMZlTD7QNjpFxI8TowrAEGKN5AyRKAuF2KfQtKBJek6l10Ou+wJeTsBIIQPr7jMPRf7Bb7rB1aVu5XOoDeh4ADSGcEIQt5q8KWn2wSu0rEaiDSZolxxC0kxHpmzAsQATO9UhNY4HdYcaU3Hjh4AxEh5fDieRscxy9DREw5CQjzHi0yfKBD/B/py10EeCehg7OGW4X/IxcdgxJe5uW3cFZM+wDOgTTlizMFO7zHkGrB0/AzAQ99MHk3LIYfGrYySycFoDmiZ9QaCzD5FUlKypAZPAphXDMW3QumfW2/cf5D7WhtdT4elj0FkNqDBdncCIEQRQjsS6byGK0UFmj4SZDPfLGcJbSGWnI+oTi/maLrDkwkEn2yjlEKxdaIsXgrFlox/Jyg4wVW6ABILoRg3DEQuEJwLNTdg8Snu7SAd+qD+WYhcCz6HLHclmYKfTm3eisvye9ytehryLfpr9vmuVzXufdjE0anBsbwpejRtMZOzSSX/tNYu2olbaYwl0RA3o0n9EowE5CZcfypDFuIXe0H+m0APd5VlQkDyZxxWEpKjQbqrJ21dYHm0zAwrRnfaQqdPk7Zdb65y1r5aVlKP3ezx1+OkKK2spmJRFQHLcpUXU7pTnfMvabWeduEphOHfwm6fwYj50C0dNd9O4lk0H3OuhmdFEFN/EU3rCp7j0wU1d1Wn59A2OiGh+smGDrmhQWzAPxQqLNDV871C0RSleCkUWxOFu2YHPBVA7Y0YcmearAPEqIu5ju+VQB3Zukz0B3ernxY0uZ0YgLEQqm4FJ71xdpfzQfNnL2xokKGZ5uU0CfIuZeP2N3LNPThze+EsORBpp6e1hNuhGjPIMrOCNVoJVjqghK/WxghB1PBT589Fw0e5SPscxT+A+EIcG5J+i1TkNCznOzQnipWnESoOsHhwOUsGlVPZswCZcwSYQ9oc2q7cRdMYagUcjknXNvMDGJ6/gQYpL6QMcHSJ0FJ4fBYe6TTLDFI+iAxPWGuda0XzQsFw8DexIP60M2LN94iwg7ayDrHwMDc9dyLk/Av8N0PwG4Tegf0b5e5Q8SXo+rrzKhRbGepRRKHYmuj9MCzt00zRcfByMZIIKd5Hl39AD92TCarZwhwlgNArkH9Sdnq3q6DqFZArIChBVMHq6yDxA3Sd6Drm+y6C8F1gyGzlzw8k3Ok5u9DOWomoaa4i4Cwbi1jzL1dPiy7GieUj+kcR3ouo16ZR5UsXkoIap5A+lcvRbEAUkBtcRUBE0MhDNNz2rCU4OoRLPWnlL8Gq5M185j0Sp0SjP7/QVawEIFrgJ+Y7jIBoNUoZAAG2pz+vUcc7eKigkKPX+XHoxrkIbVekMw8nekJWCBBpuNH4G5AabsDZ5JnIZDnCPDi7stSvblBb4YPgn0BvZ1iI0Gx3/8pckKWAXgPJjzDMkeA9e93lhYCKW2BlehpUy4Gez7WvbYViK0QpXgrF1oTZG/L/AvW3ZSWL0D34g3/Dz9/AWgHWPU3K4K6MTOEqBgW4qx2b4+sDQ+fBykshNJ6M43r4TTeq54/DIPpNukGgJF0uHZgeC4RjI3wXA48ANkLbH8O8I13Pk5miACIeIyHHE9UvJqL7GpVEIUnpRjpOrgAtHyFMdEwALBZhyW8wEs9i+7R0GUESD297+9EQfvUrMZR8PiQHd2NxuewyZEkv8HwM9g/Y3n2Jmi/gsBIvY/FxLT7646N/Bz4Q0LSdQdsZmRloV2xHBy2teEkB5JA2KuqQehWaKl72Glg+DJxa9zjyInSbBWLdt3jpKcSpqMLJb6L3xfbFkh9hePdpXyfKr4GCoyC1CgK7uZY1hULRKmqqUaHY2ii+FfKvyAp+mlHEwu/A4q6ug3Qe7qOZBJkHlOIGPvVpEDyl9br1AOSNImszZnMw1E1tVLogHUVfgwgQotGPTIC+ajqmvwbTvxLT917jykG9WUxYHWL8HyDxpRJpQd3tgHISejqvCYUPZZpN8jlr2JVacQZrSpZhmQLNdstFpR9bNGz2KJBoRKUfpMSMJPHXxWHlqRC/BVKvo4cvh+Q3WKwmxK2EuQ7ZysrB9iICH+Ga/gTYhWirgFpcnykD0Bt674DWTLlLfA5OFaRsSNoQ/Qli09rXcL9zkHnZhk0hgMSJHeuAtz/kjlBKl0KxDpTFS6HYGvH0Tv+Qp81EWnprmVWjGx/HJBBwN5u2TT+GbYKnB3R5oNFZvzXyToCSuVD3bzC3gYrHIfRNy3yenlC/EOKuCOTiOv3HvkOItOYXfw/qbnC35sk9HUdMQIQBA5yCrhihGN6VMYw4BPwp6gtzMGybQrMAWf49wujR2Le6mUSMYyHg+qcVRCMYjgMJsHRBnidEvlVLvR4ENLwywaD5cwnEE8j0ykMpKjPiS8BI2URNHyCJ8DA62xDgnPX6SHRjOARd6xq/bgeyJh3RFKgCfD3BSIJ5JPjSCw4SL0LkH7i7hdO4GTrAysOgT926rV6BIchEyxllVBgIhWKjIGRHQhQrWqW+vp78/Hzq6uoIBoObWxyFYt04MVhzOCTeB5EHJa+AORwW5LSwgyf9AlH+Ph6x7wa0l4TZoyDkWmEcX1di/XeEuvfwLrEwQmmfr0JcY1n+kdDjdqjcgcwcp8hF5j+GE/0XwhyG5j8bOacflldgezXMiI1mSxwdQtt5cQwdTQwmjzfRln0Ba46grq+fWI4H07IIxqJZIor6EuIywKziw0n4HHac/yyF9SF3E+k0sjfgdcWRAkIBLzGvN20iApN9KeKV9R+nBuYPdoOdJhuEM2HQLPA1CWdhzYaawYCDq3hphDAI5+TgSVkU1dajdf0BzEFrbUpKB7uuDKlVZe/ZGKjGMArd49QHELvebcd/K8Kzx4b3UaH4DbA5fr+VxUuh2BrR/FD6rjs9pQXdH3YpQepAY8BQADMp3RDzG3K30EwY+AFEvkbqfkL+43HkJ+DTSZbq5M+Io6WbBqDuDfD4QGvQPCTIeoR3CHree25K/evECw3qevhBCITlUDQ3QryrgWNoICQOPxDhdPJ+DsM2kFMXJ+nTkc2c5CVA8RXk+K9lDyBe1wtvJISIN+tHFYjCdH4/2HoBroOau42QQdtxvjpE2V2w7CjQEqCVQu+p2UoXgP0zrtKF+184VBWVYGnu1GzK0OmirzvavxAaev4C7PoB2GK5O+OrP9CodDkrIHRoup8CQgciC5YgtMLO6atCsZWhFC+FYmtFCNBLso+7z4Jlu4KINZm60lyr2Aa3Z0DubjjMx2FxYxRVHayghhlvFj7BSoI3H2TYPdbLwXCDkUocqv3PYHsb/YmkLoiWmTi5DfHI0tXwDXj+4O7PbUtKVoSxNdxFA143p63n4/VdlSnjqa3ByhMYEZnt+9T0vTWIfP0jEqGj0WLfI7398Ob/uWVoDOLU8SAp5hPgIHI5Yt1jlXsQ9F0K1hIwB4LWShR/Y3f3c5Gu5c7SC7GEkWk/FigGrWjdbQFC5KEHF6PbP4NWjtBKG0/av+DOB4M7WhFwFoBSvBSK9UI51ysUikZ8g6FvFIr+DKYA3QOFj7Q/NEE70OiKkEXpWF4SHImWaHRLd/87UHQ6FL8C/pPd/QfLphHX5rGCs1nOsUQ8n2B79HRuQZhcVhcVkdTMLOVHow/seAdycTCz8FG3wYgCUUhoOmbVSMTSiyDhRtDXYwXuTotN9Z2GlYW4QVmFVoYefolA1XR80RC+mpnIuoOwIqNwEv9EpuNwVXEttdxDhNdZzflEeLt9A2WUgG/nlkqXdCB8pTvNKMrBPB78l5IouKfJHV3Hpw1rXzsN3RM6whiSrXQB6DuAKMLVwnW3TX27DtWtUCgaUT5enYDy8VJskThREDqIzl+lZq28lZg2DnzgW2G5ESW6GAgH9IiDyDkQb2wOwvoVKfxQ8g6Ob3sWMRyHMAKH3FgE3bZI5WjUiCKsdFh8gaSLtNHFSqCUIO+isS318hhs6x3MqIVtFuJ1tsU2dAK/fIZw0n5keiH0fRSWvwWxCa6wYVw3MwPoSjrAvwZlU6D+X27oBiR2wN3su0Hp03wPEjP3YAmnIIjgIYVAw09fCrkMbzvifLVK7HEIn9d4LMqhZCUSSR1PE+Y1PPShhL+h0zlWKWn/DPG7AA18f0bofddZRqH4PaB8vBQKxW8HLbDuPOuJIbcj74uk66heBvXbmtgBDYQgla+Rs+Z9sNLR8WUMqg4k1e0zHEIABOvClFTXIYFUrc7q7o2+TBIBqVHkyzMQohBh9sdmBSnxHng04nkG/mg1ulOCtyaaVrrcktjVUHUCeHV3KtKdh4Re98OKm6ByJQTKoPdk8O0N8W/SihdID00sbRop6y1+NR/CdVzzYqPjJ47kR0KchuRxfIzp+OAlp2Qfy1UgowgRoIAzKOCMDlcZlpLVjqSXJtBaCRIr9IFuFHuFQrHBqKlGhULREulA9euwdBSsOgziH3du/RVHQpdjXX/tFQY5q3dGS7nxtPSExPHY2flljJh9DAIbiUR4LVb1CVLVMwfbA7pjudOWaXx13xJbsw919o7UOLlE7NPJrUxQtChM0ZIotU4+8/3fsKzgW+pyfKSM9DOoIG3RshuPiwugy4Ww81LYaSUMWg45e7vn86/Eyf8TtrkdiO1ovKU6xIw8mu6LZGFgksAgAWgkaaZAtRfP8GYJgvV9hpZOik9/3Ytlc7cjNH8H/r70duqc9ZgESSyCJZfDin+6K2YVCkWbqKnGTkBNNSq2KKQN3x4Avg8bQzkJAeUzwRzauW3FV4KRA9ZPsHQ4Ekm03MTyQrAyiUjfnRJ+neriXDRhE8ePT8bxCCtjYEomPNSYxTholCYGkbI/gxwHH3F3R6I1KbwhN78EqvIKWF5SBlISIIKPOME1UXKdOMIBYTWRURRB96pWxU/wI0s5BkkUpEb3xHAMuw7NOIBqM8Bykd4BQApM6aVEW4RrAdPwcw05XNfxMZMW1I4C62NAg9zHwd/G1j52DSy/HKpeBQRU/B9UXO2es1az4pchlGpVaDhIBCGRy71l0xhXuEP75al7BxaMbmLty4PBy8DohAUZCsVGZnP8fm9RFq9bb72VXXfdlby8PMrKyjjqqKOYM2fOWstMmDABIUTWy+drZQWRQrGlIm3k8rOxF+WQrNJJRvrgJNJKVzqavJQSGVtPC83a8FW4P9C+YVDxAsK/H4hB2B6dui4+wkUe6ou9LCsqIyLySOLFjSnfuAJSArrXxk+E/swgj2NI+XX8qSia7VqutFS2Bc2batyaxxIeDCzixR4cP1g+iBSa1Fd4iBQZOFY1rL4iy6KWcO6k3i4hbu+FR9al65Ks9kUwcqZgeUeyWtyKacUxkikCkQh95vxMTtUANHrg5TQCXMV6IQwo/AiKlkFxzVqUrjDM6w2VT4NdB3YtLLsGwtPdvsw/iDVaMQY2GhIdhwJZj5P4vmPyLDy8mXwhmF8CqeXr0TmFYstni1K8Pv74Yy666CI+//xz3n33XVKpFAceeCCRSGSt5YLBICtWrMi8Fi1atIkkVig2P3LJIVD/FHosime1gwgtwdrWjXlqC0h5wNHAjtyBbAjtsCFEP4Ff+8PcMqi6qzE993jo9j6VubsRIkhKM4j4/Kz2FeGkY1Ml8FItWzqMS8AROmH7CoQB5fFK/KkE/kQS3bJIBfSMQUYAdTm5aUVKYJIAIXCEcH3GfDqWD9AEtlcQL9Sh7h5IzATAkv8jIa/D3esoSr5Tk6lLww9ALfdj4FC6ppaBPy+g769LiRd4qPP+irR64U/ukI6Z1jpSriAZP5ZkbHus1O20OjGhdwWR60b2X7kjVJ3i+qg1sOYGcOpblkssACcCsa/pkVxGvcjFQsdCZ6HWk4PzD2xTrtZJtgx7ryWh6voO1qNQbB1sUc71U6dOzTqeMGECZWVlfPXVV+y9995tlhNCUFGx7kCDCsWWhpRJiL6TlWaEINkVHJ+7TY4nBuhgixDJ2l3wFnwFYj23k5EpWHok0qlDIGH1Va61K2evTJYki8mLW8Q9fqQQFMTC1AbcUBCGbePI7bCNKjQZQwiQUhAT7kIAm/k49goEApHeOVFLOdQEg+iperxh2128KFN4ZBIvCXzEQIA3lXKnIoVEtyyEFDi6huNJaxWOa9mSNG4Q3qBvuBa4Qor5GwA6ZW5ezc1RXxagrsIds6T4moj8Er9zBR79OAoY32KYUolTkM4ngI2d+guIniSN74nzBFBCHk/iYQ+I/Avqx6ULfQfJb6HiW3eLJbuqQbjGOKtaHgT3By0HzG3ITy5ggdWDZd7uWBj4cwYx3N8snMS68PSD5LzGwTDT/8Ofd6wehWIrYYtSvJpTV+feKIuK1h5EMBwO06tXLxzH4Q9/+AO33HILgwcPbjN/IpEgkUhkjuvrW3mqVCg2AomERSxmUVDQSdPh1nQyjk9NMKrc32vR4Gxuu1GcLGsO1I6Eghnr3gOwNZx6cGrd32gD8IBTvR/Iu7GNT0ErxDQ8JL2GG11eCOpzcikOVeNzUiQ1g+6pN6kvCGBrGlHHiyU8aSElidTP6HYMn5AZRcASHizHJJHvYYmvjKJQmHieiU9LIpBY0oMvlSAnnkACZsLBSLmxuiQ2FgLHMHFSpyIix6L7rkJQimQN7hrKQXTnVQzK0XA/l0JuJGr9m2RQZ56vJ0K3MJs6jglBSvcg5GSqxJcUkz29J51vaQzjb2A7LxFlCjUUYhNjDSfTkyn4kt+SpVlZP0HVGAjsDXkjoX4C+KS736NnEPR5o3Gfzd6vIhYMZxt7MX1Si8EUiMLbOv6Z9v8OZgXcFaom7rgnAF95x+tSKLYCtqipxqY4jsNll13GnnvuyZAhQ9rM9//snXecJEX5/99VHSbtzOa9vRw48h1JlKCSREFFBEUUUQSRn4KomMGAYsKAKCqiX4IIkkQBQQUkqIggSM4Hl+PubZzdyd1d9fujJu7uhT0OgaPfr9e8brqnu7q6Zm/mM0899Xl23HFHLrvsMv70pz/xu9/9DqUU+++/P6tXr97gOeeeey7Nzc3Vx8yZM1+KWwgJaeALX7idaPS7tLb+AMs6hyef7H3xjYokamw+qV0nuuofgJSA/xD4m5kHlHkYHkzCAwIe6gRvFBXdDl12jUeCxEMPf4q09xc8/xIInkZLWa1/CGChiQQ+TV4BLSTRYhEbhRYWUmgkAVIHJEYLNK8uEFkF7hpQRcmQ2wIIkqMFpq/JYucDcyNao7XALfmkrCuwm0bRpJABDULUQlPoCJBBL7L4S/zMXpTwCcrTk758jkD8riq6CtxEv9oFSxZ5PLKQx1K782h8LzwapxYrnvhaLxs3bNJ6uxkcI3fxrRI5EigliJSKiMCnl3Mg+jZgjON/4Y+Q/QwUToEZV0Dnt2HOjbDjUxCZVzuudBfEstAEIgpCashcvnnvaz12DDqOgE5MkfMk5u+l47OTbysk5DXANruq8dRTT+XWW2/l3nvvZcaMGZt9nud57Lzzzhx33HF8+9vfnvCYiSJeM2fODFc1hrxkeF6A636nYV8qFSGdPvNFtau1Ruc+i1+8ACuPqZeYLQezZOUYE/3xXcACW0hoWwHWRv5faR8WHQ8DvzfbsvyI74m//dux+r43Li1o1bR2JBrXK5J1kujy9aXWTE/3YWllXB58kx6VbnPJWkm0kOWqzoLupQO4JRMp0pjjerdrIZb3SBWz+JnXIQoPMzozTtGO4CqPVCGDE7kLoofgF76DyH0dGTQGAgMbpAbfkgymmsxOIWgaKuCWPLIdcVpFH0V5C0N8zJSWRBBg8V/xBnxtM5X1zBLLq4MaEUUsHYDWdMjGPFSt8wT+D9HqBXL2f/CsHvJBlCm9w7hBgALWd7ye7tiDMHAC5K6s3rMfkYx0xJBKkSwehZ24GoAM15HjRmw1i5bhLDL7B/DXN74JLWdD6zkbfl83xMiHoHB1JUwIzIGu8YIyJOSVRmigupU4/fTT+fOf/8w999wzKdEF4DgOe+65J4sXL97gMZFIhEhk67t5h4RsCM9T4/Zls6UJjpwcQghE4qfY0TPRiRsQI580AsmnZiAKeLYpsyOyQPcPNi66AHqvqIkuMEEZAXg9WO7H0dSEV7VUkJQEQtBUimPJnzKqf46FS0uuF6l70QHVotXCh1SfR7G7ZLK5hEAHGqcUVMsCCYAAEkGGpj4zzVfoXk4QjSG0ojWXxvaV6VvfOyByIKW2tyFtQUTpasdUrfwhBdetDBwAuaRLYlWRRF8O3G+Sb3vAXFlU3LUCEmRJk8LnUFqYScn7IsquTTe4ardxcw9CxLCdb1DgKjz+BAhaR0dxyqs0BdA53AMxoO03YM+F/E0oniTdETMLA4RkJPp3WtHkuY1BPg1A2/AwImf+dnTFvswH7O2heUtXWkZNTU8C868zf8vaCQl5DbBNTTVqrTn99NO58cYbufvuu5k7d+6k2wiCgCeffJKpU6e+BD0MCdky4nGHtrbGvK63vGXyf98bQlrdWO6pYC0wqUUepi6yB6JoEuxlWfQE9lzjW7Ux8s+N36eBjg8j5CxU6sMNaWXDSbMaUCoXN3IHbeK9zBK3ML30bhLWSYjI6Yiy9qyIKsvX2FphobAJcKSiWDZCrbTtNZspS6GhlLAIIpXIkqAQc8EHKwtQhOJd2CO/YaSpCd8B34HANVEzXZ5+VLIuTqc1omw26uQVFB/FYjqgTSRRg9Jm1WSUCHvqY2kq9tLiH0syHyOaz5MoHUzSuncjA1nLC5NjEvEs7ZRvxYLmc/C7rifb5iKEMp0VAiXzrGIPejmZAAutNfFSqWEqVQB0/gxmPm+S77eE+Fkgu8oNJiFx7pa1ExLyGmCbinh98pOf5Oqrr+ZPf/oTyWSSnp4eAJqbm4nFzAf7CSecwPTp0zn3XPPB8K1vfYt9992X+fPnMzw8zI9+9CNWrFjBxz72sZftPkJCJqKv74u85S1X8PTTfbzrXTtwySVHbt0LCAEtd8LgHKBgBFgASAeEQlmQnh4jcE9EkCLFjUCGEjdhsR0RTkVUlrR1nQBrf9TY/vSvwKzvAmA3X4G2j0WpF8jbWUruncSYRYs8B4u5aO3DyAEQPA6AlvMJnF1wSs+YbcqRqHohJOC57bZj6uh0UoV/oV2FnxBEhgIjLqzGYzUudqEN9NpymwHC78OSPuubWvGFjRt4tKXTOHmNiprqQfWqxfX8SnMU4zNQ7IzLg+RFP762cD2fPYPHEKJIzDsapVcAAkd0E4kPlFdDji/RU22f9yA4H8VSCk0O0YxnCnRroLQWnnwPWiQY3vExIqWniShNdACCkkV2ZgSlo1hqNYHtghBoRMPVKtOpQnoTd2BzsbaDtiUQLAE5e8sFXEjIa4BtSnhddNFFABx00EEN+3/zm99w4oknArBy5UqkrAX6hoaGOOWUU+jp6aG1tZXXve513Hfffeyyyy7/q26HhGwWUkr+/vcTX+KLTIHOi2Hdh822cKD7GijcRj7xGIHzPKDQZMhwKvAclVV1AYtI8EtzXmIB7HgdLPscoGH2j6Drg8aPKvd3xPq3VCNXidgxJDgSsg9C2+PQ3A3DXwAeA8CTFj3JNIFlkbKTtI6MohzINdsmCgWUcNFCIlCsSqxnr7RHCRuyEnxY0jWVkuMS11lSwtR7jGYPgJbjYPB4NBaCgGJ8mKKO40mHuMgjpSbdmqDZyZhFB0KbpP6yXYXlmzBcPrELPam/gr6V5rTPQNNckqylze8HQOsnUEJjVTSbvwaxfDfwVoKzHcy8A9zxEcwMV5GlhwgCYUuGuuOk1hdwigoowOhNZGa4OIGPhQYLdAqc3oB4uoBj5RCAQrA20YFtzSJwhrH8UjkPDXAAZ/8X/7cjYmBveCFTSEiIYZtNrv9fEpYMCtnmKDwBxacgtl9VEGT4AgUuoWJzIGhHMkhlOkzQTgurNtikLlwAua9AOtcY48kAJagmZ7UuQMunIWk+mvqamsm6McqmXcQyBdqKw/iJKOnI3ng8RyCM/YQARoIku699HoA1nW2MWinydrSalzVz/Rpa0hmsnEbsOgDeA6jSteTca/BiFrliDMsNsISJlGkNrlci6pcIhCQfiaKlRClB27osJBRaQsaJk/NjDMZbUZYkHuSYUVxdy+fQYAUmxiSHBSInEQSABcn3wvTrGsbLYxnr2AcbD7c8xlppkoNFornyFORqGNo1RsQtYFU+yjXIQaODZHkhgnIh70TQ8a+RUp+D4X3AexaIQ/OvENEPbu5fxgRvrAY1aqJcExTYDgl5JROWDAoJCXllEN0Nmj/YEIWJ8jEE8fKWJMJR1HKQLCw2HCXWwXOQOwMmyg0rYaIuTUAcyD+F0BrylKMyNRuG1KosU/47jPMEuCsKiNJiAmyTx4XRAG2FIbQPo00RrGhA3onUBIHWeMrFzikEmiD3SyCOTp2DFzM5U5F8EVFdnYcxYi1PaVpaES/k0B7kdBTVZESXAGJegYGmNrQ0fclbcTJW0qyuRCDkYSDmgZiNYG9E1QZCNTrOV/cOIpUCLaqTm9GcTyTv12YnOyDS5+PZ5Xyvsni18mDnQXgmN08WIeoXibAnQsYRbU8ipviIKSMvTnT562DZbvBCMyzdAUrhSsaQkE0RCq+QkJDNwmYnWnmUJNfQwoMkOJ8oX0YyF5tDSHDphk9WPQ2bDWF2G7M6zyo/dwFlRIMYBRmYEjZWMaBt8Wh1itJeC6nePmw/qNZRFAJashkCS5BtNYsRUjrNjGAlM4OVxHWW5KhJsC+2SVT2bFhzIFbf94hzMYIp2PFmImu9huCN49dyoErCJWMl6CgOoh1QFmgB6yPtVDsBoDUDuo0STQgxF8s5HTu5GDu5HNH+vfINY+6m9dPjhsxlN+LFAkGd8DRTm6J6GhGbWK4bmdHkLZegIKDPNF2/ulN4ACkivGPD79GW0P9NKD1rnnvLoO9LW7f9kJBtkHCqcSsQTjWGhGwcrfOQ3hPU86A0ZCzQCiFawBuaIL+8G6It+E3H8HjyD+yydgmu72ONaqgEh6aBLi/07GtJUXJcmnJ5mkeyBLagf2bKTE2q8nLMijVGziGKh4oomtb4yErgaU4v2F2giujle5KJLcZvshEyQdzaFa0Wo1WOgswjRYCrjDjTORAuLIvNIpLzGK34fAGzR1cQtbzy/Vk40WeQcnvzYvEZyD8I0ddBdOEEY1YiGI6yPtWKb1lYBCTyKZr715SjZQEwA4o1s2ddLO/ufAP4DyFQJuLmJBGd/0ZY46/zoljzPhi9gaqJa/wgmPX3rXuNkJCXkNDHKyQk5CVHB72URt8KsogdvQLL3eclv6YQMXTqP1C6GrCh7VhE8UoIVsHgNVCqqxShASsF8Q/jNx/PtKFfEfM9M+3YZPL9CYBK2paGrqERWI+JlqWM1UR0tEQpUSuOXXmSi8do8o/GXfe7qujSSIQor8iUEcScB0mOXG+WTiaOAWlWRWudQebfhPafQA+B+23jbaYFTDtqiOQOowy0N+O5Ds2jo1hT673WfLR6HCrCK7KLeWxwzFwssRNd6UWUbAtbKZzEnxFTopD/E8hO6D298aQY0DIDmm9BjHwHCn9DuK9HtF4I8iX4Umn5BIzeRNWobYLIXUhISCNhxGsrEEa8Ql4tKL+HQmYGftJMX1lFRSz4ETJ5xv+2IyMnQPF3VOfE0i6QK/tEUP1JqDsuIFP8BcncC9VTNUClopCoOeszCLoEotPsVzgUW8FPGGFUOXnUb2K6vBc99E1E5no0kOtI4rb8FYdase6xaJ2B4FEC7w/0cjVTftyP/UxdnwRwhol+aaCQsvE6Ba7wEEICDm70OYScs9nDpIPlkPsc6F6IfBLhvAcKd4FIgLMQlnSU6zuVj4/sAtP/iZAdm32NF03xacjfX47c7fm/u25IyFYgjHiFhIS8pPgjR+I313KGgogk6P8cMn4CWBsvJr/FLP0C9PwWojvAgj+B2wHFP1AucGMMQBMLYN3D0BTUfSpZiMKDNKV+AbnDgLrcsHICk9ZlAZYBrUBLCGKC3mQbicTeiOAeYvk8vm3u2fYDrNEsTJlBrnt3iv6taKHRlqDE52nlAdO8DijpX6J4AptDsXkTQXZf0KsBSSkyhdKoi42JaIlyn4IkyBIMz4xTbDUJ74XApsV/M7b9xUmJLgBhzYHkDWZD5WHd/lB6tDwG843JbSUvTnYgpv4D/heiy1sH2X9DZAeI7QaRXRtfD0YhGABnFqT/DUvebwT17J9D13tf+v6FhLyCCZPrQ0JeQ2iK1UT0KgrwNlwU/kWx6J2w/MdQ6Ifh++CBcpFmaz615PIAUh8CZ6pZJFntXgCxAxDxt1W/2IWoiRwCjJt93jwEoOZCKWFTijoosQxlg29buF6A6wUMOylWTe1mWN4B5FC2hbaM01W9G39Rn0NRfwFPX0Ven0DJ+xToddUBa/Nh3Ts7GxYJ6Hmgp4E3R1RFF4CyfFQxQFov0iurcGdNdCkgUy5r5gM5AYnTwO58cdfQARQehdLy2r78A7Dq7bDycMj/BwrPwXM7wYr3wfN7wOBvG9vI3AqLp8DSubBsD1hygBFqwTpYfgyMPPHi+hgS8ionjHiFhLyGcJquRmV2w0ua//pWXmHlZkD3Ti/NBXN/bdz2R80j9XsY/QgEKyD6UUicDgtOgcIzkLsOSs9B/K2QOsWcF90fgmcBZarhBBYQmM2yXip2WRRbLITSCEuRVz5xoSlEHVZHugGBkkbs9fIV5vNXClyBZhgQxKkVHPf1n8vPjM+WL5fXrS0UJFQCN1jH0KFJkk/nsLoD1McqZ8iauK2scCzcDy92FkPEa889xiwN1eDMeXHtqwKsOhTy/zbbXedD80dg5aG1QV55LyQ+BKoiUjX0fhf8Eqz4vLnflA26vKCh8KRZDFHeJAKsPhd2uebF9TUk5FVMKLxCQl5DSHdXIvourN4PIIMs0joKOfvHJjHppSBSKUpTxsUkqsudoLU8rYdG0YMUrYj4XhDfa3w7zd8F7xko/Qcir4fWiyHoh9wKyJxBqW2E/MzyPWhNnDxZadGSCQhsUBGr0dxT5fGKv6Y1cyZ+QiPjh2DX+ZD5tFWtGDQBOcsjHe+mubAeVymE+x6iOz5F7NG/QovJLfNXWJR2kQSOhY2PX/54ldpHRTOo4UORLXdu+VhGD4amEyBzxcRVhgb/H4i10PbVLWs/c2NNdAGs/xJE9gadqe3TWSPQqu+pBFxY9vHaPp/aXEqJmugCKAK+RUjIa5lQeIWEvMaQkYNwp/Vs+sCtQeqTUPoFZDGfNqmjQdY+dhQZhngPHg8idIIWfo3L4Qhh47GYgHW47IW0OmHKvXVJXWUyv4HiMH6HXXtNCCyMt1c87yGAAVmi6LjV4oQz0r1E/R+hfHCfFrDdH6HNCK8CS1gtV9CmErgUCbDJiQGwJHk3ge0PQ/BDvJYo7kfPgJ67KbY/Q6YtihbgiAALjcCjQJQiCXAl8dG70N5jCGePLRtLIaHzt9D6fcg/C0vfStXGwQaED4Nfg8Q7ILIFSe7j1llpcHcE2QYqbXbJFHR9GfIPQ+Epsx3ZA3i6dloRs7oSJk5mmXn6BDtDQl47hDleISGvEbQeIPB+ReBfidalTZ8wWYJlMHwIDMyB7NfLQqgXohLagWZgygFogmo+VZ7f4On/mv6RYYjj6dddDOtTWccbWc8xrONggop5V0V0lTLw/B9h6Z8QgcRZrcolhcxlfW3RuWwYMQIEMLOvl3hpKgLF9PR64n45Kd4C2jSsPa96GyVWo4Sk3+qk1+omZyXKRbUDmvzh6nGCAtnE06gdv8dwWxOjMklOxMnQxChNjJJkgE7SNNPvdFByBUH+AILcR9C6uOXjbE+F5CGw42LoPN1M30XqXvc3U1Tnb4c13bA6DumzIfFuiLyu9nrnd8Hpgtn3QOoD5tH6RVi+ANRTEG2B+f+CkWtrEbjKqtRouU8tNP68j3dD675beOMhIdsGYcQrJOQ1gNYjlAp7g14OgJDX4ET+gtiatfVGPgD+w0AAue+AtZOp+VgtjWMRFG+nn/PQZIjyASxmUqvNY5YpBiIg4GrMN7cgYCVZfk+KT5jjShm4+g0wWHZM7wJne0i8UKI0xUJHZxJzLiGWfhcoAcMaG82spm+QjlxEk3eLGZPK2CgQxQchfSs0v504e2DRRkCagLLHFwKlA9J2kpLlEglKpPxRfNWHzTtIy11ArCFBnspyS4FmqloNCOyiMmWIGEX7V6JLOyIiX9nysfaWwZo9QI+grboFB/ZUiB2w6fO1BwPHmKlDNIx8G1ZcAvl1Ztp53i+h/WRzqDsP2vYBNQirvm7MWwWgh6HnJBCBEdWVhRFRahYXqbPhje+EVReB0w7zvrHl9xwSso0QCq+QkG0crTV+6XvGE0qU9Y26FfQaEDO23oWC56gU0AYLgufQTUfA0CJAIAgYTfwXXT6mwLUovQBZLW4DjvbwhY0Wsuy6bvKBRP1H1fLbaqILjHHqruDqAKcQ4IkCrnsQzLsOlh1vrA06T4PU4STZH9/uJt8UgBRYQz6xdQrwEUuOhT2HsUUz2/MHBvk9gghJ9maQ7xDIRxh1TIZ8UUbxpE2z+hhCCARzkPUFwsu1IyUaBx9cjQ7KfmNItFry4sZ63TF40QzZKVG0Be5wQHy9h1AtIBObPl9nG3O3PIzoApOwtvR0aD8RjYTRo8C/A4Ly6k9ZCzwSrIH2T4H3c7NINV9uaykwPAeOPccct+sbxveh75dQXAxTfwhW+FUU8tohnGoMCdnGUf3TsNf/gMiQKZysNIADonnLG9UKSk+CXycg3PdQrqKIyQ96J8X2JKU2id8EuW4Lv6mWmK0BWz1GTBVwgyKRoICjA6RW5eLY5svYYSEJPlB3ncblgVoImAK0gragGC1ncze/A71bD96ux1HsuIxSYS+E6iNvAmmIoiL2lEJmjfs8Q5lyzR1wmU43n2UKpxHnDcR5O1XVWn54YipN7icBmMEXKeGYec5KrpRWJtcMQAiUrIxNgLBfnJeVDnrIdrtoy7RdarXxElZ57nQzkC0QPbKyAd4Y4aML4PeDHgH/b4CGUnlFaZ1hK2o9dP8AghSsxtSJXIfJ43vz1WPa9GDofFi6KzwnYOUnofcn8KQD+RVbNA4hIa9GQuEVErINowu3Igs91e9JKw8aC9v9HUIkt7DRAPpfB4O7Qd98GP6y2Z/8NSTOg9ip0Px3tL0PonAeVlQhUhrbCrCVj1SBKTqtNS4eQmtsFBbaSLJA4xRcMnoH0szB5gQktfqHzD4Udj3JPBc26tCzGO2MkElFyDS72PLY6qFBcBFKXQVk0fpJvOKJYAcgBM5ajciXbwnMCrxK1GcMSY6gYYJAQ5P14epmk+ez43ArMZ3HwcPRRWLksUd1VYwJ+xiE+3lk/C6ks4Fi1dqH0mPgr9n4e5A6CS1pKMitbRu6vr/x8+rpuB5aL4XEKeCOEV72FLA7jEO+aMGUCigX267M0QrMNONjcUhLE/GKmEORPuRvbWyz7wxY9XlQz1BnmWaCpM+PMWANCdmGCUsGbQXCkkEhr1T06C8Rw59s2JdvaSGWHNryRtMfheJvqisE0UDHerAazTtVsBiV3b5hX9ERWFobs1MERcdGysY8M+1plkXmmUhWmbmcRwvvbOxHfgDsKDgJfP1vfH0TkrkEYh8GxPfRFOgouUj/ZkwCEsAUgpF+/E4Ld1lA5IWg0ZnhDXdD+8ET3naJlfTzNXzWEOcw2jkDgWum7QZmoHJpBmc1TvM1LStQmgbYNk1iPVJuROyqHPQdDKUHAQmtv4KmUyY+Vmsy3sF47oMmCkWSVHAb0t6C1Yxruk3kqqjN6lNnD9juTxCZZS7l3QPZj6JHlyB7MAnzYN7/AuYcqAY6AcgAre+A3f9Su86SqZDtMSseR8b0wbJhD2/yfQ8JeZGEJYNCQkK2DkEa/OWI2LHo9OnV6S8tQUa//OLaLl1be15VLaq2z+8HbJB12VvlL2S7pMvWB2a/o3YhkHX5WlpTdEyOVz0D+vu0iDHCK9ZefWqLN2KLN6LIs5rXoxgFNH2WxxRfY8IxAZZ1Ak72AgpWQGmqwFltooCmkRZofv0Gb9tlFtO4YvwLwUpQw4g+sDoCgpisDokzGqCDd+M6v9q46ALIXVsWXeWThz8DiZPLc3v1QzQCah1x5zY8dTEBzxERH0fau228/Q2hhgBdXh0poOXDVdEFIJwDoGUxqrA7qCcgjfFjUxjrCKgVIaiI8SjQemjjdewdwCsLryg1fy8BTP3FlvU9JORVSDjVGBKyrZH7ByxrgVV7wPJOROyHqNhe+PFZBJ2XEnHO3EQDE6PVMvzS1/Ad3VB0GiHAmmLE3aoz4PFOeLwd0Xs9gvnIItil2qO6iFFDRByOy+W1FYZCYAcKWV5PWHnYav2YzmjI/QAGtoPhg8E3RbR9elCkMapAU7Js/MgFWM7Xsd1rsNwfILuvJ57vJNWfwFrwHZj1aZh7JhzwLNhNTBprHppuBND8fJ5or0ekz6d5UR7p7kM0di3IoLqoYMOoxk2txh2hvbthaCqkd4L09sjRzxAZ+iVBek+y/ocJmHiqdKMkP1t7LtsgduyEh8n2i9AOZmowT0101Zxma8R3hJlnNDYw/VoQKRgtb7uAA8z4P5jy8cn3OyTkVUo41bgVCKcaQ15RLE5i5nrqmP/i/psHwWr84hwgMFNbCpxCOZoV/z4kvgzZh+C5xoiRnrUvgv807Cu5oB0QQRtO03OkgyMoWM9hKR+JJlE6mJ7Ic+SkRiNwdZGpBYem2LJaI8WbYeTd5Q0LrJ2h7Uk0His4EJ+1AAiizOYebLpe1P1vjJK6kKL/OeLLS5Q8lyXzZ9EyNIKWkkLHPiTlP8pHClq5kwivm7ghNQrr3wjek2a75aeQ/EzDITq9EIKnAY1SYOma3gmkYKRte1rFowjibDZaQ+F2CNZC7B1gdZf3+zB0NuT/Au7e0P5TdM/7oXSriXAVgdx8hLe4sT0hYPdhsCb4LNQK+n5jIl9TTgO7dfP7GRLyEhBONYaEhGwFcps+ZJL4pfdTtYoQZvVgEPsIdvRssMuFr1Vm3HkiWAJjFtrZawBHIpqPhuh6Cs4iIqUiqdEiUkFg38o0/WYK3E/JjpDws9hWY56aqdsoMVGiAIJF5a45zOCPDPELFEVaOHlSoktRROAiJqzJU0OjGOX3FPXjoC8kYkGx22LES+C5Dn3dlWnQRTRRmZHVDPE2uhmYuFGZhCn/hdJ/QU4x5mTjLlyAQMPTIHtBt4NYgNGeSqP0anzxFA4T2DdsCCEgdvj4/SMXQPr7mBWNZWf6ZBt45fBWAnTXUSj1MFrcA8rGyu+H6Lx2YtEFZtq06+TN71tIyDZIKLxCQrY13N2h9Gjdjq1gkqqXjdulxIqa6AJoeiMk9ofsfWa75T0Q3wOKZ9fOAVSTwAoUIns5Ovd7rOkOTdkSsuzLafkaLf5FXGpi7Itw3o5lfx6tNar4dXTpZ6CTWAgEFsa64ojqNWym0sl3J76PIA0iCjLSuJs0qziJAo/gMIeZXI7LnMYhKP4Zsp9CU2Kk6U30u/dhFE8zLcUhkgMl/GipbrglFqUxox+gKSCITtw/EYHImyZ+DSD2TXjiQ/B0eXavHzPtu5sZhshogIwONzrZbynFRzHiNjCP4kPg1M0Va9D589Dl8kDaUgTJFdjOlK1w8ZCQbZcwxyskZFtj1iPg7FTeiMDUf7z4NkV7WTWVtzVIrwVyjxh7CQDhwA53w3Y3w/zbYN7vIfV1cD6CZ1kUXIuhlhh2oMtiJEDoUVryH0HqRnkotEnLl3RhO2chhIvyL0OXvguMgughcJMo96MUotPJxP5BtnAAauRyKI2Z+gLTxxUfgqdazGP4egqMspZnyDHMAL+gwGMAeHo5vcWjYOjbtUhPsMJMbQbLEf5aUunrEVoZOwUNRRE1Ru2FLNMHenG9Egm9O63kx3REUlFFmiIFfk+Bq9Fjp4Y39DY474dn6rYBBsrpYCOQ7CtirTocRq6ceAxKT29+SaHYWzGiq2zcFX87OG+jmtRVcbKo9kWj9fKXphxVSMg2RJjjtRUIc7xCtmlUAb06gQgUWkDgQklYOEMaO68Q8dfBjv8eF0Wqp8gNjHIiaEXbyhxCmS9qALrvQum7kdnv1vKVHEBKhPt5ROSzBMU/oEc/h1P00RJUDJBQdKMErqJSINsdDogOSZj+D4jtX+tA+kZY/p7qphYxrlh4PCVRxMLhQASevtskr2lNpFRi7toewIVpD6BZhhipnQ+wXraQb4mQKmWQgSI+VMT2jTL1XQnT/4lgDv28DpMQJWnheqK8BY1iWO1NIM2iAKFTRNX+uPIDOGIT5qo3vQXW3F0dK7UbMA9kvj7YloJZzxs/LgCVh563QvHfZuA6/g+Sm5jy0xoyv4X8HSaK2vw5NAoKP4L8zTDyIIEE3WIOF5gKTXZiEVLusPG2Q0JeIYQ5XiEhIa84/ME9sIJyqEvDSEucUtyBqRBbX6R51cMwdCM6tR2efza+nUZa7yAivogQRoxFeA8WuxCIRegpAtn3JVAD0PxZiB2C5BCwD0Tlvojm8XIsXqGsLkqZ7Yivz1c8PAGwAigJSdAdUHWUB0opSWTIg8FvIKbfUbuJIN14UzqP0nkQkgCf5aSYXlczsnWksvQugOx1EJ/H2F+oTYOCRHSAAbcVZVt47RncUR8lLYqtDnGuJskv6aYXs0ygFtPz/BsI7Bdq3REjeNxCoG5Gi0tx5Yc2/Ia8+w7412cQvQ+iZx2M3LUII38BFlO2/IdgBJbNgvlZELa5h+K/yw0oGPg0NJ00zqqiASEgeaJ5VHYBxL4KkTMg/Was4qOUpFmhqoVAixRCTN9wmyEhIaHwCgkJ2TB96mI6Souq26WoZURXmXxXhKaeItK7H69wPIW4bSIl6mG06CNmXVA91mYnbHYyHk4zj2Qc7lvRxVV1tgQ2JS4mMtQougSAD1ZeQXdd5r7WSN+c7ImncOvbTh0JzmzwTGmate0HEUgbY+MKRWYyN/8lcrkvESl5xIsVr4QA7Bkm2V0yxjIhoE+3M2S1gBQM2S0knAzKkbQygsSsDtQoxJisDl28zyxJnKBIuaf/hMtGhJeQcMDPa2MBYH8EsnvWdgQAJcj9ERLvp2YgW+nAmO3JIhMw5wFE4WFs8TQBlwJRHOeHCLEZtSJDQl7DhDleISEhE5LjeXrVD/GVrNo0Wf4E3lK44N6Db4vqlB8CPH3N5C8qd6e6DFL7yJFehDfB8gBtjE+d9UGtJE8Asb4A35Vk2seYldptsONjMOtqmHc7ielXEcEIBJsoe/NeIpGTaPUPJ16KY1w+HUgcD8n/B847wH5rNd1J99rEekaYs6iXHRetQAZlg1ohaNJZohyA5K0sZx+WMJcePo2m5sxuO0eS6CtW+16x0gCQ7Dj5cVO95g3yocEuTJdXuCaOBWeX2v6272482gWQvgWWHgGrTjb2D2MRDsT2xYqejBu9Dzd6N9Lae/J9Dwl5jRFGvEJCQiYkzZ+JlXI4nhFbArB9TSRfoBgzq/Jigy3YO/4dnT8KK9D4bq12IHpsXZhNY8WuIiicBv6zWAOrsVW62ly1LCHguyA6wC4q5LCiYLeTSxbJTY+ihSAujp6g8RZoPQ4wVW8+wPmkWUeKLlwdg1X7gfdA+eBOmLcErGT13nXqdlDLQUcQK6ZXxWA8V6BlaITBjhZaghHag9Ox3LNZKd6KTw+gyHAjMfalmQ+arrgH4cS+QfPKH1Lo8MENcLwAoVtw3H3HWXBsksieYCVAZWv7pDS+XGByvqY9DMUHQK83tRSDtWBNm7i93EOwvOKTJiH/KOzwyCQ7FRISMhGTjnjl83nuvfdennnmmXGvFQoFrrhigpIaISEhrzpssjiMr58XyxdJ5LM0B7+muW05ROZC/BIsT+EWfKSvsDyFkhuwTNgIQk7Fjt+I7Z+EqBMRGijFBaU4FNtAtULQAWoKSAeSaoCE2hfb2pe4PJ2kOGeT13K0S0fQjqujFP3vMDrlEfx2gW4BneqDoUsb+yYEwpqLsMbbJTR5Wdq8AVJ+Gl38LqT3QisjugySgEb3fTv5NZzZIyRiGWLF2di+wAqGUPl3o5ceDks/BsWVmzdwVhfM/A+0vBvc6ZA8BOY8C9YUtC6/hzIKPAvZY2H0gzC0M/iLwOuDYMyqytx/qFUOCIzw0mEtxZCQrcGkhNfzzz/PzjvvzAEHHMDChQs58MADWbeuVqIinU5z0kknbfVOhoSE/O+JYFOMOuQjtWypgmujIwI3CKB0PL5vcqaE+3pU4vuAwArAdywi1je3Sj+UhOx0h0KHQ6HDRbmiVqYGULZ52pR5lnb+Rorvbtgnq4KfhmfejH4sRTHtgnc2ru9VpwyFhICfmPYJGOYU1rMbQ5yCEnlU9xG1MkcutDojTC2uRwqTaI56ho7S/PIRAkGEJo4Y1w0AITKgFkO1TJJCe3+DvsvgyV0g//jmDZS7ALpvgnmrYfpdaDuJTu8FQy56cAF62fsgfUbteJ2FnvfCI13wUCusv6z2WvwNtQHGgujuZmoxJCTkRTMp4fXlL3+ZBQsWsH79ehYtWkQymeSNb3wjK1du5q+ykJCQVw0RdiEhc6zpbmftlHZ6O1vwmxV2oLGUxvYCSqVa3pDrfhknsQoRv5iE/SAxzqg1pvKQuw5y14Mujr/YWFpOBdkBgJ+Q6PoceikqNb+NTBECsEDO2fyb6/kxZO7Hnwo45aQoaawyKnKjFDURqmGOocD1KFZS5HrSfAI55TKYAXoaMM0ItRIOQ1YzMgAQJHgL3fwfHXydmdyOy/zx/QAgCWJ7cw9lazCRL0ebgiy8cND4iNTmkPsaBE+YQVrzNAz+AYJinf+pgmzZpwwfln/CvE+F52D0buj4DDS9DVqPh3l/nfz1Q0JCJmRSwuu+++7j3HPPpaOjg/nz53PLLbdw2GGH8eY3v5mlS5e+VH0MCQl5GXB5F0k+RIscxYlLYvH34JRXAVawgxy6+MfqtsVUopyIze61g7QHfYfAwAdg4FhY/7aa6eqGkCmYuxa6rsJvmluX4KUJpPnY0phkdiVdsHaDpt9s/s35g4BEj8ly1aI2wea5JmpW4t6GY0rcZ0RhdA90RKKFWRvZG+skXizWxkeXaOLttHAKLnPH90Fr6PkoYkkUq78P6XVglcDygSmYPK8IwDAUXwClYPjfMHQPqM1Ylah7AQUBiBEQfcByqrOfKgDqXTa0B/kn4Pm9oOer0P9TiOwAs34LzgZywUJCQibNpIRXPp/HtmufVEIILrroIt71rndx4IEH8vzzz2/1DoaEvFbJ8B2GiJcfTXib6W6+tRBIkvycdgbpoJeUvBStRVWYCEx0hvzXN95Q6WEo1RXKLt1TKwS90Q446KZDkGoVBLXVlNF8gOVL8rFm/NihxKKrEM2PIKwJahtuiM6TQdhYdWUTNRBISTFqMdoawQmy6OAJBG0Np9rsjBACkncgop9H2YeT9ebSvTJKMleCXmCdgv6z0P4TG+5D/5dg9DdACREMIwq9tXCbDf4MAe1lg9KBc+EfEXjkTfDogfDArqA2kXPlfrRsggqMgG4GoqBXA6vB6tWoyoysANqOhcwdoEtU1dnQJMRsSEjIZjGpVY077bQTDz30EDvvvHPD/l/84hcAHHnkBN48ISEhk0aj8fhe3R5Fhu1opfd/3hdBLbfH9nQ1pwoFUgGWu6FTDbJ1gn0tjdtBHxT+ZlbZRQ6qRri0eg5l+0QLCsuvpXZpUrSK4S29JUjsCbs9hTV0HWLgq+go4EOQ1Pi2IFIsYQWg5d9ota5jiKPRDGGxC61cB4CQHRD7AfaTM0l5PWgrgBFqllkFIPVPaN5t/PVz/4KhH9d++mogDwxgIl2tUIo52J6p/aiXXt9oqZF/HvpuhCnHGnE1eKWJVqUOh9Shpn/Dq9DrgRIQr6VoCahWApI+tW+B9O9Noe6qH4UEZ8aWj3FISMiETCridfTRR3PNNRN78/ziF7/guOOOI6xAFBLy4tFjDS8B/scRr4mwnPdj+2D7YCmQuBA/f+MnOTtC83fRSDSCfHOStH0UPo9Q4PcMBjNRPd0w+CEzJTlSK6rt6b9jaVM9u2yhhcZC2As33VldgvwvIfsN8J8b/3p0O+g+Cxk9HKto3PBlYOF6Gisox/XkzrjswRSWMYUhOrkPSZNpXvvoYBnaWwMEZkqvThwKMKJnItZ+mKrLfBkRlBPzfdBDUCgL2mIU6JigDVXOlVv+WXj+I7DmJ/DCWyH9F7O/uByRluCBbqIWTat0TtFoCCuAgUuBhaaQuDsPZm2BF1tISMhGmZTwOuuss/jrXzecZPnLX/4SpcYbLP6vufDCC5kzZw7RaJR99tmHBx98cKPHX3/99ey0005Eo1EWLly40XsMCflfIBm/gkwwq2Fb6/V43k/x/UvQm5OwvhUQyWsRyX+AezY03Qot6xHOIZs+MfUVvOnXMDwjQiHlo1hMhmPJcApubj2i/nNj5EfVpwpTk1BL8G1TC1A7+0LTZgiCkeMhczrkvgtDC6AvAv0dULyx7oYEdN5M0H4eudYY+RgEUqNFJzLyA4T9jtqh6R/D8gSsaEeP/pggM50gtx3B7DjaEghLlHPEKtOxFqKpbmy0hqF/QM9VEPTXnCYqL9eJNOFD05ApsO2kQVjAGE9YphwHg3fD+gswfy7KCL2hG0zV7JX3wZBCpMYY0JqFk42iq3phILMIdsvDzi9AfM9Nj3NISMik2GrO9Vprbr31Vo455pit1eQWcd111/G5z32Ob3zjGzzyyCPsvvvuHHbYYaxfv37C4++77z6OO+44Tj75ZB599FGOOuoojjrqKJ566qn/cc9DQhpJ8Bjlb1QEU0nxdPU1pQcZCXYmbX+NtPUZ8t6b/mfRZuEciGg6B+EejpDNm32ekr11bukKTQ8QoEWtiqFGmMT6MlKa9AUtILChGLOQybsRchNTYNqH0h+p+lARACXQAzByLKi6rHLhUIouoRSDkuMymoiRTSSRkS+ZXC6A4qMw+EXjBK8Gof+LRjwBQhdQcU2xVRJEJSK6EJF6F2L7WyG2q1lIMHoVLD0cnjgYnvkQZMrvVblbpE197mqXJAgvwPeF2a8xwqsLE/1qB9Z+AhZ/xJwwbNogC5Q8yDwPQw+aPx9JbTpRldc1KIDuRvGlAQ+Qm5GBMvwALP4GrLsGwlmOkJBJ8aKF17Jly/j617/OrFmzOProoykUClujX1vM+eefzymnnMJJJ53ELrvswq9+9Svi8TiXXXbZhMdfcMEFHH744Xzxi19k55135tvf/jZ77bVXNW/t5UKnT0D3ifIjivZfZG21kFcdLjvQSppWcrSwBFn337Wgfoxnl0AIFJKc8ywFvZFE7pcZpZ5C536KO1rEHfVAaRzeg8VOFBMOxWj5y17Eoe3K6nkR64voyEcIrBiB3Y4duRPBJnLKAGMvMZWJP+J8ivpJXuB9PMXerOJraGL4UqKlBCHx5XqK3Fw7JVjT0IJAm6gSoPKa/rlNiFGwRxVknoD8cmg6wBzceyL0fgjU36DbdI10DiKnQOQ4eApYgxFJFkYkWeD4YBU1QcXeC/OadgAXGL0UgtUwSi16poB1N4PTDAhUDIIE6CTouOlyNfrlrYf200DbRgB65evM+u7Gh3boX/Dg/rD0u/DkB2HJNzd+fEhISANbVDKoWCzyhz/8gUsvvZR7772XIAg477zzOPnkk0mlUptu4CWiVCrx8MMPc9ZZZ1X3SSk59NBDuf/++yc85/777+dzn/tcw77DDjuMm266aYPXKRaLFIu1qZ2RkcmXRtkoWkPJfPmYD8kiemQhtD27da8T8qolL26vPjdBGUE/H2Ymr0zx5ec/QHRwafVLPzriQ/fniFuzKYgrCDo1Sh2JFDPHGXXGrMvBunxyFxQCUjfByAfL5qT1WKyWvySvnwKhGNLX4xYHaC9mQUMuFqEUcfDFA0QoLxiKHgDWLAhWARrt7gDSrOLOtkSwSho3W2eRkX8SXng/RGaC/7tynzDCKoZJ1xuNwbOXGMFTjnpRXoegEQgT/8POSnRGISJAS11dbY0Ra2OzO4ISRKfCgp+hrU8h0+VjbNMHrSufK9rkue3tQe5ZGH0Qmt4AiZ3ZKL3Xm07YATQB6e/D6JsheejGzwsJCQEmGfF6+OGHOe200+ju7uanP/0pRx11FKtWrUJKyWGHHfayii6A/v5+giBgypTGkh5Tpkyhp2eCIq9AT0/PpI4HOPfcc2lubq4+Zs6c+eI7X4cOTG5H/ecravVWvUbIqxslhxtTdLRmysqn4XkJS6dOXNQY0LqXwLuQwL8arf9HUdSRu7D6nm3IM7IUMHImklbifIY4ZyDlvI27o6teKFxTV09xEzivh/YXIPHjMS+8maJ+tm5uT+NJWf00bMoVsX0fiKAYNDtlCqY/BG3nQ/uvEFMfo9T0O4YTHyGbiKAcOT5lavgW6P2lSVCrv/sAaH8XrP0veHVnLQGeBqz3lLPEJCARTfuZruapRaUoNxlLMTYdUHe/1zyZezoiC6KIKTSeNznzVWILja0GQHxnmPKRTYsugOhsM1/ZSjlKV4JlR2zwby4kJKSRSQmvffbZh0gkwn/+8x/++9//8ulPf3qcaHktcNZZZ5FOp6uPVatWbdX2hR0HakaOAERO2KrX2BbRIzehn5+HXnf6y92Vl5wI76ptaI1VUDglBVJD0AMrx3+Bat1PKb8Hvnc6ful4/NIHX/qODt0ILxyKLBmRU0mU14AordnoqQ2kvwn9U02NweF9IfeTzT83dho0/QH8GZAV6Ow9tIyWf8iU85NS/qjZluDZEiUEeX7EILsTUP7/bXVC8xmQ+jhZ+R/WWmcxbN1FwUoQOJKROVGTXC9MmSMTZlIwokC5xmZCLoC91sLuN4OdMJGj+oLYnXvC/N/DtOsheSy0fwW2/xvM/gI4TZCNNwqvzlPRnaBjZgpStwFz9602J4q1j/iq/5rTCjv8CRY+DPbm5+hVad0X2oWZ7rTK/dBFyP538m2FhLwGmZTwestb3sKll17Kt771LW677bZXnHVER0cHlmXR29voddTb20t3d/eE53R3d0/qeIBIJEIqlWp4bHValoJIAQ5EjkckL9z619iG0Ks/Ci8cjRhdBmsvRD8zdgnYtkWSH2OxLwoQRU1qTb42BQWgh1G6nxznk+P7BKxFBbcCtaiECq5H6/TYprcuQ9cBElE0qUTEMVNtccB542Y1oYuPQe4cGjLBc9/b0OFjTs7B0L6QOYYgsgYvIdB5xdTn+pm5ZB0dI4PMya4i7pvcVCUEo8kYyip/NOph8sF3YO0cWJ2EgVNAa0a4rtofjaQgIuSmROh9fQu53X6IVOV5PSS4ds36ofQU9JdTG/b6EUyJwQ7AXGAHAVOUWcKYOgamXwOd3wYrDtv9CN48CvtlYe4/YcoPYda/oe0MI4JmAPOAOQAjkL0Vlk1HSN0YiVOAl4b8IhCbyDQZ/j081Q5PJqHvp0akLj0FVrwJ4rpmSUF5KJYfC8HLm+MbEvJqYFLC6/bbb+fpp59mxx135NRTT2Xq1Kl85jOfAait/nkZcV2X173uddx1113VfUop7rrrLvbbb78Jz9lvv/0ajge44447Nnj8/wrhzEV0pBGdJUTqdy9rX14V9I9x2M6//J5XLyUCSRt30MUo7ZkfYpWoC2mAFlHS4l3kOIcc5zLMgWiRbGgBEhgFtJUp9cCi4+DxfaA4BJhqNA058QIE126yKa01ZD89fvWd2Mx+F/8MweMUoxYjrREyba4pnwO09o8y9bkB4qWaWFBSmChU5fNMgM5dDcEK0BnIXYIa/QElbqbWKU2AQ5Yk7eJxEtEvwg5/NFYMiTcY1/0sZqpQAdk7oLQU5GOw/ZFgS5MrFdHg9236nmIHQOsXIfoGWHOAEUTNmDaEBfIg6DkGgnUQ02b2VhqdJUrlm1KjG7+GPwgrPgTBIKgMrP0sDF4LfZfURbnqjheAKMBT7910/0NCXuNMelXjzJkzOfvss1m2bBlXXnklfX192LbNu9/9br7yla/wyCOPvBT93Gw+97nPcfHFF/Pb3/6WZ599llNPPZVsNstJJ50EwAknnNCQfP+Zz3yG2267jR//+Mc899xzfPOb3+Shhx7i9NO3/emqkG2E9tNgym9Bt5p5LtFMMO1KAp6iMt2lWUdaXkBfrIvFsbmsdmchI79DbCynagvRzx2D7r8eMg/C4N8gug9YTWMOAshD/2mwvAlW7wzFx8c3phaB/hdaVRcRopGbXZexokXzCQcm+HEoAFnnNCMDhVC6ZpGgNfGRmojXQEFfhEsOC7/cmwCXAm18HqfitdZ6pJnKa343lCrFEc0to5OwbAH0nASFa8v2/2X89ZC9b7PuDW85eC9ADpOsnwdGA8TotSbSRzkqFaeWhK8Bqxk6Ttp420E/JqGs/nprTXv1qyzzGCuLSu7Z8EOb1/eQkNcwL8pO4q1vfStXX301a9eu5VOf+hS33norr3/967dW37aI97///Zx33nmcffbZ7LHHHjz22GPcdttt1Vy0lStXsm7duurx+++/P1dffTX/93//x+67784f/vAHbrrpJhYsWPBy3ULIltD5/xq3Yy/vQo//KUJA+wmwwyDsoGC7YWTsUEyF5XJoQmsGWMwQKSwCClIwbOW2ajc0mhxnQPbfiGrZGQuSh8HCvkbjfQ2ovWD0ItBZ8J6Hvg9M0KprbqGcFK4V6OZbILJx01ZduhU92EypeDyDyRRF7ZromSXwU40fe3IUrKdB9BtH/lSvi5vzcXMeLcN7YunWhnxL31lr8top0ESGOHmaOYU2zhjfkb6LGnO4NDCyBtL5WmmhhlWJPix7z0bvrYo9DWQzOg5BMwRN5elcf4VZhYmomaWWSwQx46uw+zMQnQtDj8MT58CS39ZUbQV3PsT3pWpz78wBu8PcywjmvewFngOWAc8CfUBid0JCQjaO0Fs5UeuRRx5hr7322ppNvuIZGRmhubmZdDr9sq/sfC2jR/8K6z4NqaMR3T/a9AnbOCVuI8Pn0eQZIc8oSSpCLKrzNInPMY3PbrXrFbmOrD6R1FNFrBFdW8c3/yJI7QVr9kFXLBUCEE0fgdzvqNQG1CKBmNUHg5+Fwr1oeydUYg/ynEPUD8hHXTzLIur8krj4yAb7oVUfDE/Dk4re5vaqYJI6oLU4ipOP4awYQQTliFjEzCJKBag4zEmB22P6KkC6p+GXLgFKqAgoC9KxpPH8AgQddPEcYqw7jy7A4x0QZMvb1Vut9smbKnDSusE8FVzYffMqEejcZQT+yQ2NWgPtiPg7wNkJer8Gfl1pou0fhvheMPgY3PaGspINYMdPwR5nmm23bE4bZGHoCpM43/oheHxXGF1fK4NUxNSWrNDSCu9aA1Zss/oeEvJK4OX4/p50xEspxWWXXcYRRxzBggULWLhwIUceeSRXXHEFWuvXnOgKeeUgku9A7LA4FF1lXA6njaeJB5fja6suJ0egsGjh7WhK6HFGUFtGkd/j4TCwc5LsNBe/WcI0oO9UWHQYiCaElghfILQDyQ+BcKhItOEml5HsiTB6Mbr0NF70j/jW17GlT39zE9lohJLrMCrORpPfcEfUEsCnaDvounyt9pFR4hkPJxhFTAfdBH6HILOjQ/YNLsU5FmLBpeD0oMorL5UFQfAHVNPhxojUNs01F0ZJBWfTwh/p4oXxogtg5BeQyprA4xgq5RIDR5KdZ9dli0EwvRs/eyDK+8fGB1wrdPHvY98EUAOQuRK8J2HKrzDJdRKmfN2ILoBVNxjBpctK8IUL4Znp8OxMWH26mWq1EtBxKrR/Enr+BPn1jbUnI5iFEhVmfDAUXSEhm8GkhJfWmiOPPJKPfexjrFmzhoULF7LrrruyYsUKTjzxRI4++uiXqp8hISFbiGIFCZUxiqEc4I7rDIrLGKCDAaY1urRv6XU0WIFP0hvFmuIxsqNrijMngKZh0HNNYnhkX5h6C8QPpTjtGvpbUqztaKe3PcnapgcIUKho2aEdCKQFUlYFlCaNr5/ZcEesXYAWnKASXtJIpYh5XlnwmNynoAvyMx2wTLulKRIVn0agBZlYlHQyjqcdZLAeJ3MLdr4mXgU7EJOfJMpbqBU8qkP7sPYbRqhUVnMmAGdqddpSA0FSoKISFYmjWt9KMMtBuyshuAeVOwTl3TW+bQBVgDUHIQZ/V62IZK0HewTESuA24LY/QfQYWJiBhTno/lbt/MTsxulFt+75wIVQeKI6djz2Hnj2YxPcY93zCDDrgIn7GhIS0sCkhNfll1/OPffcw1133cWjjz7KNddcw7XXXsvjjz/OnXfeyd13380VV1zxUvU1JCRkC4jJ44iJAlOCHpp1ms6gl5SeSoGLMN+eWUY5Gd0Qzpg8jtqbplIeqU2Z6LhXoORCECt7iMpnjOCaeR8kDgPAc1MMtLYwkmwqryaEwJJmmq+MRFUFozPq0/noCPaD+8DSk2sRmzqESEHzAzjWu4iWADRaumhc6o1MveissWeCt4h0a5xi1MbN+wRCUpISgUaqAKewPZb9XdzY/QgxQSirgj8IpVxD0wgglUG74LdJcjvYqKgRw6KQQ+g7wKpLaBcaMoeiMyegx+ZgZX4PhX8hNFiDIAfKurQPuAVjxvp4Hi55tzGllWP6Ou9EaCnnz7lAxQM6wOSeeWY1KoUV0P/nWq5Y/VqMoHy9UaAtDu1v3/B4hISEVJmU8Lrmmmv4yle+wsEHHzzutUMOOYQzzzyTq666aqt1LiQk5MUjhU2Uq3BEiZQYISocXOvjY44qbHz6bjOIcrjRF9roBzdvktWDBKgYIALw1zWcE+MNONVvfYjr/XFafobFftXkc6E0bqlEU7ZA6/os0tcmeb/vMuif+PNGWDtgNd1Ap9vDdPEcM8RKROomEFOAJkh8Dzd6D9UaPYArv4VE4LmStnU5EukSiXQRJ6OqISpZegF75FGEaEP7ywh6D0WteT068/vGDtgdIMcIOwEwipQCbUEQFwgfYksDZEXYNLgml5+XrgR/bOSrJtCEBlnZXFvXhgaW3QvBBBUKpAV7fAXmA7MBxzbRuYq+e+EdMPIPWF/n+l8ot9mM+eZYWtfn5YC1bXvnhYRsLSaVXN/d3c1tt93GHnvsMeHrjz76KG9/+9s3Wm5nWyRMrg95NaDoRbECi13QlBhmfxTGPd7lfaSYuJD85qJ1QCnXjPSyOF7VUgyN0VDOEBB5N8y+qeG8gGFGuAVBlBRHIongsZSe4ECiwSC2DLD9gFjGx1Km/A2VClrdJ8LszbOW2FCfFU8gaEaKeaDSDBam0tbbKEJ11FhkUQK0i545jL+qAy9RothsI7Qmoj5OzL2gdlKpB1Z+DIJbTXmiStSrgMnFKmIWGjhJkwtmKZQNqgnju1UuRABA040I96ha22oEVu8PpafNtns4FG4z/rg3lI8RQFsMvr6B1ataQ/oOKC2HpoPhmR0a65RpywisQmAiW2lMdGw7jIXEkvJzB1htwYe8CS07QkJeybzik+sHBwc3WiJoypQpDA0NvehOhYSEbH0kU7B5A4ImJG20cC9N/IwkV5Dk4hfdvhAWTmwxVmAiH5WvYAFYIxixtPJPMNCYjmDRQisfpoX3IcuZ6DluQoosEcvHUgohIJeyzfe6i/myF8DwlfBUJ6w/b4v7bIk9jegCkM3ErDMbgkaaclnHSkTI2RFP34VyihTbTI6YtgQF52JK3Fpr3O2G+X+GWX8Hp7xSsISZoqtM2e01DLuvgPg+5vIFsJ8Hq79OdFm7g3NYY8dlCmY8BNPuhin3wgoFTwpj1PomoAXoAt4aZYMIAS1vg67/B9E5ExxQTh4DYx1RwFhJPAlMAfbDRMumAfsEMPKrDV8rJCSkyqSEVxAE2PaGy0xYloXv/48K74aEhLwoJB1EOYkIRyMazKZeRJuyG+SeDav0tAZRqcrlAYtP22Q7lkoSUUUsLyBW8IgWfaJF3zgjaPBaBYUZFloF4PfDui9CeiMLBLSCzJOQXzrx64UnYeQa8FYQi5zNaFcXgS1QtmC0w8VTEu0DKgXtf0SIJH5M1oxWhYntlbi+1mZuEaz4Ggw+DLOeh1zSCK84kASmAtmLwGqFaffBwDQj7KZgQoSZd0LTzZC6HyEmWC0ooxA/GF64EtbfBZY2ifzNwP7A6zCWFsXNqIkpHWg+tjbNKZyacs6PiWL5mH5GqR0vgdythISEbJpNFOtqRGvNiSeeSCQycVJpsbh53jMhISHbJlp7KPkv44nVBxTN1JlwTUUZE9DaxI+zzDUk+j6JkwwQkVpSudCADSPRCPmOCJ3/GkGMYARCB9D3eWg+cnx7yocnjoTBsjCY+02Y+43a6yPXwdrjME7vMZh9L17CZTiRKJ+vsdICu/gmmHs5ODOwmU8hcQjwz7KyNLYVDuX6k4UV8PjeoMp1gobvgNgxUPpN46fu0FchdTrIJujoAGnc4UUMcAW4dcXQN0R2OVgBTKc2nVkRePkC9P0OZnx50+04U8oBLgl4MOVUGLkZ2lKwdFFtFWQ7jTYSlbDgatuIyZCQkI0yqYjXCSecQFdXF83NzRM+urq6OOGEE16qvoaEhLziKRqFNABkQfggh6HUZBFsJ8sFoYuQ30DRdx1A/8cQeLijyoitOkoRB0qSjsdHzfQlmC/9AUAvNjUVxzJ0Z010ASw7B7zB2vbAD6iGbnQJhn6JzbFmW2lSiwok1hRh+C6CviMJCl9Gl35Dk/VXIuLTJjqEhcNxRCibmQ7/zdQ4rNTXGb4Vpn8ZRhNjb7h27Xh34/ys9NgsZn3QWFVURBeY6dgI5ZUOm5n0PviH8hMF2CCisNtq2OsZ2O9sE+GKY/K6xvIccN2NsHwzyx2FhLyGmVTE6/LLL3+JuhESEvJKQqMQW1BRTIgmoBlRTDe4WxWcKCtmtTFzeD1xvwiZz0L0FBMKqxBkoeezoHIm6qPBSkOQMpnmwrdRWtPck4dCLXkfMFohjrGgH3czYw1ixywdtJqp2ukDyBRxzmAt19LUP4I7UnbWj4FuehSKj5qSmMFTxGPnE+cH468ZrVcnEuwUiGHY/UnofRuw2LzUcjbIsjCKfwCKf8N8LPsQf98EIzwBs0+A7M2Q/2NtnwA8CBK7IrtOnMhpbDyxncBbT9VTonAzDE2Dls/DgrMhNQ16/wSRvzScpoZg9EZItYIYXA5z9t+8foeEvEaZ1KrGj370o5tuUAguvfTSF9WpVxvhqsaQbYUCT9DDKfisI8Lr6ORcouw0qTYCfyks3xU5UACMBlgzv4PRtjgxr8jsdC8goSNroioApdXw7F7g95lprCjVwsvKAmEDAQQOWHkTSWMlVa3EFGDHd0LyT5C7DYIhaHqnyZ9SHjx2GAyXXd5nnwnbnVt304/DqrdBsB7cXWHW3WB3keef+Os+SnKlyQsLukC3UReVmoLVtBZYD7Qh6kUkwOrvw5rz0bFBRFMAApSIIWcMgv8YyGZwd248J38zFP8Nkf0h9u7NH3St4Pm3QeZutJBkuiX59jjK1TSJb9K0OaWhiqth6YmmSLeTN2I2B7S9H3b8HUgb/GF4trX2k13AUxfDQ+dDSwcc+fxqZOv0ze93SMjLzMvx/T0p4SWlZPbs2ey5555s7LQbb7xxq3Tu1UIovEK2FVZwCB5LAFX2zJRM42KSvG1S7ajSP2D1weSDCENtSTLtCdCaWL7I7EwvJM6BxNm1E1afCb0/AhR+GxQSDk3LPfPFb2PyihxMve+K2PKBfFkHJUDFbJAKmS9HuOxZMPcxI750ACMPgYxD5mHIPAV2BJwUtB9tikYHg2B1gqhF+lRpBeLpOYgSqBZQ3ZQ9MgT4EZRtIUQWSGDFb0fab2wYBz97Cfb6UxrHpulDyM4rJzWem0R7sGYP8J5DowksQRELJxvgN3USn75ivInqhlg+F4aXQ73l2uxPwy5lq4wXjoT8LWgBpSH463GQXgdo2PsnP2HBGWds1VsLCXkpeTm+vyc11XjqqadyzTXXsGzZMk466SQ+9KEP0dbW9lL1LSQk5H9MQB/U1W4UKPr5/qSFl3D2IWjvwlKD5JImqiW0pnPtMEPNrbTWiy5Aq7IbpwTdDrLsiO41CYrdDqVOCyeryMkEQijaRtNYaEQH1WLNsuTXuh4D/JUwdA60nAL2rtC8Dyw9G5Z/G2xhVgEiYNW3YOFNEFwEehBin8GPvJFhLgPXIzX3w1iDVyJKIPKgo8IUnvYL2NU5vCw6cwS0NNrpaP+RcWOj/RcmNZabhfcseKaMkgDsQGONKIQPTq4X5Ldh+nc23Y5WIJJm/KZjbCR8YP0tNeE1/4/QexHF+8/EeirP0T8B5cDjv4f8unUbbjskJASYZHL9hRdeyLp16/jSl77ELbfcwsyZMzn22GO5/fbbNxoBCwkJeXXQjFkcU3UV0BDwHLngM5NqR4gYVupZ7MipzHt2DbNfWMd2z6whli0SiAAvfUn1WK0zEL2l6rYq02AVfLQGJ61pWlQi9ozHio4Z9La109PayfKp001Ol8SkZwmMwaeHmX4cxoiwwQugfwEUfmsu1nuN+bdqkqVN3cO174fSzeD9Ez3yXnr9wxjmVwxzKWtanoBZzyCnX4xlT8H2NLYyhqqVfHYBSDWM1o1mpVbiCwSWKZmkIhDYIFt+Mqmx3CysqVTMwaoWHvWpbbmHN6+dofNNcW0LI766MTeaXFg7xhuFZ75PZFUeZy+gBWQC9jgRdnvHcy/+XkJCtnEmnT0biUQ47rjjuOOOO3jmmWfYddddOe2005gzZw6ZzASJrSEhIa8a2vgCkmRNUAiNi0eBi1Hq2Um1JUQbdvxnlJpcYrkSdmDc272IRC77OKzcDlbNhfSvIFMAZcSCtR6cgm4QDkUnihJW1bYh58bxKSufHEZsRTGCQWJW9fnlm8gAmW+ahuI7GCHRkF+vwBqikjAm0Nj+CioGogEDFO1+EE+D7q/dX13/NOUcfh0BXULrEbQuIu156Paf4LcYWw3dDFo+VvP/2lpYndB1DVjTEXIKwj2mHP2TZio2+ZbNa2f4F3WqG2Np0fVuWFATygzcBcV1ZkbWx6S4DZjxiORv22q3FBKyrTKpqcaxSCkRQqC1JgjGF6sNCQl5dSEQRFhIXt9fNs4S2PgIC7LBR0ly/6TbjIgAHav5cLUPjWKlFDpYavymCl8EBX4KitNsZBEiKxq9vtxC3bbWSK2RIwos0MlySZ9hjHgLMAKsqXpTtYLVO10MT38Iso8a7ytdAqcdImvLyyQFGouibMLNltBC0LwsQ9Q/C6ZlqF8NKTSQN9cmADHSAaPTIehFO6CTAhI/Q8jny/WGAhNgy52GHPwJdP4N7DmTHs8NkniveYBRgc7PTKJ805ug8/QNn+c9DyPfNmOh0+Xzy69FF8COf2w8PjrN/JvElCiqUASmhfUaQ0I2xaSS68GYpN5www1cdtll3HvvvRxxxBGcdNJJHH744Ug5+eXn2wJhcn3IS01AEYmL2DxjgBeFzzrW6mPxxBJcSiTImatqaBUbqPu3IbSG5Qk0+WrdRjxjfaU8kOXQmtZAAKPzHJBgZTSJJ3y0WRiJ1y4Zamumf1YbUilmrO8lmc+ZAFPcrHxEmguI9cYCS0SprUCULTB7gnJmfb+BpR81Qi0J9Alw34qyn0B6PaZfEsRsGucHtLkPFDAKBEloSqGDtQi0uc+yl5ZKfRHtnU9FeBGAnbUg9h7oGFNc+3+NysO62aD6amIrj4ksag3Tb4Omw6CwFpZeYBYpzD0d1lwBD38L0mN+cL/hN7Dnif/jmwgJ2XJe8cn1p512Gtdeey0zZ87kox/9KNdccw0dHR0vVd9CQl7zBJR4gtdTRCJQtNPOfO5+Sa9pM5VOcQo5TkWgy6JLY/kaPWSKJYrm2yFy0MYb8obgkXZQ2lTU6SgvGBwCWgRCayqVikRZgIkAtCUIYkCkHL1S4KYVU9JDdHlD1UWHGnOOltREkQDdBbqvzuNLg5mHBErLoO9roNLQ+ikY/ZfZ72NMQD0NqTuQKW36A9BmFjFW60drECVqQmXWtRA/CpZ3I8o7hcZMcQ6BECvR8b1A/Re0scOAANTAZr0fY1F9F8KKr6Mjrchd/o2wureoHQCC5UZ0Qe0GbYGy3kuxdxHOM/8Pe+p2MPI4lMrRsKU/gxEBqiy6KuNQAuLTtrwvISGvESZtJzFr1iz23HNPxEaq0N9www1bpXOvFsKIV8hLxWLeTz+LqGSeSxS78DOaOOglva6ve0jzBoToNwnvSpFMl7CCcjRHRRBTChtv5EEXIl7N6TQDtGKS4LOg5zjGBgEjvAIF2bk2CIE9pIgvDcyXeZ2Bu+6qWX9pgJRZUafrS01qkIOdSPpq+5reBq0XwIp3gLeSil0GWW08wRRQKWmYxNQ7LH/E6VbT70rETgugYMSViB4BHTeBsNB9JyDSV5rbrUxDahAyil6Qg8JN0H8MAmUab7/BCLZJoHt+Af2fMiWSNGbV4e4+QmxhrU2Vg9WNbvpqEMSguV+/SWDHNCwfc14aI1aHy9sBEH09fPxesMf4mYWEvIJ5xUe8TjjhhI0KrpCQkK1LkZV1WwKFIMtdL6nwKhTeSc66GyUtLKWJFF9PIv+vul6AFptRl7UsqhrK4ESBQYxL+pz7Ydn2UOpHK4maejJO4U7EyEoia8rRlAgmKuZjPq2ide3bAmyN0OXE9nLUS46AFPPBmQ/6MYjkgb/B0EK08iEGgSvpjzWjAkHHymFcT5lVkp3Uah1WtMyIMU6tlC8KHFDxNmAQIRUOJSjeAvJKU5cyCzpXFmaVWxcCYkdD9xNQ/A+4e4G752a8G2NY9xWYhRE6ClMbMX0BtHxu8m2B8TUrNYFdXhhVqokuADujzZRpVXWWX6gsLOjGLKbM7g7H/xssZ8v6ERLyGiIsGRQS8gpmKp9mlO9T+SqMUKSV//eSXU8Fd5G1/45nuSAEgWUj/fEWAVqnNp1tpiyTE1T50i4HegCYeTzCboHta1EpB3B69gZ/GbRQFhctxi0dk8tFi0Bb70LF30qgfg/+E9heGlkUiKw2yfU+wP3Q/TDkjkcHz5XzyHzTrgXLWqYSCItpy/pxlUnSZwYmIjeCEXz2QvAjkHkSpYsop3JbFpVQj1a3EvgXYhXvMtORrpn6FHlqrvrddS75zq7msYXoiGOmX+t0ry59HrGlwgsg1w7xTFVUjXtfJWZs1pevO4J5LzUmub4fmNUNxQzEW7e8HyEhrxFem9nwISGvEto4jrl8kAR5UuSYxw9wmfmSXU+pZwhk2bYBQGuUVaivbGim0to2wwR092XG6qGE+bcDU8xaANHZGzhJm4z7GNBkwdQPoOfeip7+QehcAJEP40f2ww8+hdL/Qss0vgSRn2cMTusXQ8oUWnQS2BC4xkdLOVCSNoG0cUo+qaG6xQIeJhpXmXosPQnzL0Xs/ghWzwLEQBRReAPITmohHwl6PVgzqYbIbMjPdhia24Xa4d/Qecamx2ozEd3fqE69VgSSsgUlbt3gORvE74F1J4NdNPc9jJm6rM+XdzBRxiZQc83UqXbK+0cxU5AZ4Nm/we/euyW3FBLymiMUXiEhr3Cm8GUW8hy7sIhmJlG/bwuQ8gjswC9/w2oQAoc962aaJMI9BuF0bbqx+EzYX8POz0F0V+i3oQB0HAedx018TvM5VAWMbEYn3gvq8yCvBTEFnX4eMXKWWb0IJpLlgNBLILoTVTvTjm+BOx/iH61NGQJIkCowgnJzVmEXX4D4LoiFT2Jtl8fqfgDLOaPuABdpfxhi30PY+6Ox8e1OSokjaUrdiYxt3YLR2dQ+BGPSPfyIRV5fM/nGVr0T0r8F2Wvy2kYwIioHelCgRxx0ArQLxajNOrvD2KhVKg8pKp6t5m9l2d+hL/TxCgnZFC/KxyskJGTbQlpzSanfkPE/gS8CLO3iuf8ll5xFrLgTwloA8W9OrtGmHWGvp0wili6BjG742NgRMHUJ+C+AsydkjwO1CFCQvxtZMDlHAdSmxsrFtLE1bF+2jLCayzfUPu4SNppUMcNINMn66S10rhk2Is6hlk9mWoaBT4IegjXnGxHmdGPP+yMydjtavYC0DkPI+ebw1D3Gc7T8eCkYsdczmOpganYAu6TwXUmuyaGp7xbQ34WReyCyPUz/bm0MJkJ7UKwrZyQwCwr6MXYfaPA9WAaFqMPzu8wlOlJE634TFStbgjADWIERYR3A2qug8/CX6O5DQrYNQuEVEhLSgO18gBY+QIaT8PgDAihGB9HR2ST48ZY3LGRtSeJGj2uBkfPAXwvOoDE6NS8AGlkCewiCmHFLt7Pll+JHNIoNXYCRM2plhQAyZjpyihqkbWgELSW67IgjPMzMYbFi9qpB90LfKbWcKm81LNoPuWAJRCZXv3JrkGIXHmqaRzSRR6KRvqJ1TR6h86C/Zjy4Ru4Cby1st5HV5cKByB5QfJKqv5grIKFN1KuCBtl1PvBzCqkIa3bpYsaq9bXXbWAaZjpyroDYrK1+zyEh2xrhVGNISMiEaAap5TIpFINbqWEf1n0Vnn89rD7dWBrUs7YdirdB8ASisLqc0yTAEejIHgBYBRiijbwfR8suSJ4GbT9sbMd/EqGWYvlglcxDxQV+FJDg2D5RvwSOsYjQkbJVRBQTstrgp6OCzL+3/P6L90PuBlDDkz61ie1YyPn06INIri/QsjRfLV2kwazMJIDMvzbcSIUZf4HU8RB/G3R8F9wdIW433ndc4nacThfG+X54Vsr4ptWzmwXbR6H7CJh31qTvKSTktUYY8QoJCZmQCB/H5y7MV7okuhVWU2pdQK97H6Lvz2Z6L/8IIGDGz80BmT9SN9dn8KdB8xfAPgSRLKELd5KxB7EdsO3jkWKPiS8mZwAOAuMlpgFta7QLOpBI2YGO7AQ6iwjqikhrAUN1ywkq6wzqN2O7bNkApM+BkW+a59ZMmPKwqbM4CdrZnzZxM+TaENlhs1Kz1k1D7HXQfwlEdoDkARM35EyDab8Fbw06fwfM/BCsuBwxa7FJnJdAyqisbj5FB8ejXYWY0QnrMJq8E3ACKAaQfRZkZOJrhYSEVAmFV0hIyIS4vAPJfQQ8gs3eWCx40W0G+fchs3+u26Mg/2Bts3TfuHOESED0s5C/BDKnIIBkZerP/he0/B1EbPzFrKmQuhYynwU0OvZ+4HxAoS0XGf8T0toXPXoMVISXAka1WYkpQdsQxE0Cv5UGoQV0nAaD34QBD9q/CtHdIXutOT/xAZBN4/sCJsdt5Hu1bX8VPL8jWAdByzvBbofWd5XrOm4cIQTEvwcrTmswe6VQNpPN3IkYvd3sm3kBdH16fCP5/8Dgz9GD1yKUMufFTBtUXCGS7wEguPlG1F9/hbPff0xe1/y6dio5dtnF8OBbYd9/bLL/ISGvZSZdqzFkPKFzfchrAa170OoFhFyIEC1bcH6eYCSOGAFrqFyfERBdX4Wp3zEbhf9A336NJ3Y+ZsTNwDxQy8Y3nLwKoh/crD4o9QxaPYmUb0DIuWg8isFPcNNnIygau4tcXXmgVgiaJYFTmc+bSmRNwUwTVm7AiVXqABlT1GkPlDPPxw0ArGkDPVzbN4gROhjtUmpy8aMusejnkdO/uYmbKcJ/9wT3WTPFWKzVvKyu+gRwZ8PC5Y3nZv8Gqw4vr1wFPGO5hiqXdSIO7Z+FGecQ3HMPpXcegvtlkPNAtGMWIlQuUKlZCWbn2xUhIa8WXo7v7zDHKyTkNc4Q97CGSxjl8Q0eo4K7KOXn4BUPoJTfDqUWTfo6OighsxYWRtDoJtBdJ0P3N2sHRfeF5p8DTSCS0Po7I7oARH1op54NWLlqjfZ60EEPld+XUu6CZb8fIecCkOPT5K1zSLfajCZjUGw0hhUl0FVVYSGDHUENUVU2grJbapnSo1B6bOL+CAFtl2HcWTGCqyy6lIT+hU0M7RpjdJ6kv/3HqPRNE7dTQUbgdQ/AlKkmL63Spfq6kgiKtimy3kD6d5jq39VbM+IphYmgpXKgHgdhof79D5zPgdy5HIxLl/utGCO62KxoXUjIa51QeIWEvAbQo/9CrT2AoH9vVPEitNaUuJml7MnzfIpVXMjTnMQw9094vu99HTP/BpAm8Ca3ujEo/Bu1vhUR1Nw5hQvSWgFiTMZD6nSYOQozRqDp+Nr+5C/Nisd67DdC5OjxF/QG0c/vBOmp5jH8RrQeX1uyxA0YxaIIHAsV76L+Y1HH34iIfQ8h9kZax2N7n6y5tteX0KmeAPSdA4UlUFhq/MIosYJzeZKjWBp/CDV9LUR+aqJdZeWT63IJYuXrCoGKWuT98zYwmvX3eRs46xr8K7QAzzJtlWybJ2Y38yzn1A7wl4Dur3Ze6/Itx6CYsBjtcMmlbAL/VvhvDPvg72K/C0R5+lFr0FmbzILt8Z0xQ7DTTzfd55CQ1zhhjldIyLbOyN2w/C3IsuO5an6YYGYPI5ELKNBKM5oAQYZm+vkrLew3rolB4VKwumkP+nFr81Gbhc7/B7n4TQinXPZH1KoIUbwTVGbDeVH1OPtBew/oQVB5M2Vn7zZxlGXND6Dl+Tp79/uheDlEP9FwmMV2kHkMd9AjiPj4M87AWnYRFJ8FO4WIfhg7JyB2BUR2hgfnGOHVRnWKjgCIl+/IB/r+Amv+Yi6QPIQ1HYL+9nUoKSiwGK9wPTtmBqH7MBi63RTTltSqBZQJmjbiw1XB76UYtcgnHOiC+HqP9aqDZd2zUAhjEisEOe4DVQDvWVi3H5SqSXIIKwIiSzFhk5kaNcoqKdBOkcRAASFNeppoxgi8kmBk7wV4zcsodDdhDXgkl0zDnvNz6HrnpvscEvIaJxReISHbOmu/ZTyqysg0BC3XMRKJGaNMQKJJMEqE7nGnP8OVLInYTKGdAdXM/MIIKfuLm7ys1h7odei+M43lQQkzJVbWSVpStkLwN9jGOIQLonujsfoi61mbuh0Z7aLT68eyzFyYpf6DTaPwSmS+iHz6vVTjNuk/g37aOLnHhqH4CeONVXJg1t/BW2e6O4DpgwKmfRzUn8Ff0+iBBTB6N5F4K6prenXXSDxCoAax1O3mOk3QVCihhiX5lvI0pIZYUcNoNzhvhuSlIMfnnwT2duSi5XwyAdluh/bFQyj/cyyJ3GR2a9htzTLIxMz4FUugIZdySU9NIRC09hQpNtvVagUApYRNfJqH6DNTrgDEQcw8Ga/5Riq1hYL2CKX2U7EJRVdIyOYQTjWGhGzzeOP2CG8aHpGG2TIbwTROqh4TsIo0X+UFrmQ3nmAmq5gm1pGJJUFu3ChTqUUU812UCrNRuux5pYF0OfCSKIuu2IdBtmyNmyz3OcszHMRwa5GEzGA5ynzKSQj4LYH/34bjraFHEMhaulb6n+aFBDXj1SZA+jB8MbSWrR9KmDynErD816DfWOnAOCJeqbahNbbnI9O6mgQPRuuk+gtEhwtEhwPa8kfgFP9mDFxLN0L2qxPer7aK5aSu2sNJeMwcXcS84BhizGS74RgtmZXlE0pgg+9K+uc040UEpYhg/cwWZLEuWUtrZKDMLHBreSwSu0LXN2DWL3F5a90AgcPBG31fQkJCaoTCKyRkW2fWxeOKXPd07k+BCD4uHi4Bkii7YhkHThRZBngbOX5FijQRStXEbUv04LPxItlF78OYqsvgt/qmsDKABK8VlNWC6Lof2n87uXvR2Y0aj/ZzHQCuLpEca8wK+N43G3dE51NRSxoLHZ0DTqIucb78sAGrHaZ9CurqYVcZ7oPpf4RI17i8r+ZMlunrerE9n2ihyPZLVpgZ0DF6WGho6SnRMnoQbqmfmooLIHh+wvu17EORvqrW1pS+wvI1Inc5s9d9m32DC5kZHIKo/6gX4EXsOrEG2pI4I004OR+hFLYX0LS+WBWtFASsexpeOAce3IFk8HPinEmE40lxCw57T9i/kJCQ8Wwzwmv58uWcfPLJzJ07l1gsxnbbbcc3vvENSqXSRs876KCDEEI0PD7xiU9s9JyQkFcV8V0Q82+FyHyI7IS/05302X8sv2iUhcKhjZrXk8+zKNYhCJjKujG55DbWBFOS9WjdW9uwITdHUpwNpbkmz8tKXAiRfcflNW2U/P9BfwsMtMLoaTU7h8o1/R7a1n8Jxy+hJlrpqAGdaNzX8WH01M+j7Dh+QjO0/Qqys/6f6XT9TctdoOMrULjV5LeNLcbodhrPqwXPgFueVhQY2wUJ09b3sedDz7Hw6cU0ZcurIIs0rgjUDkRfD90XQuS9tcEDiLxnwiERxSUk1xWJZX1iWZ/kUNFEEm0FchhK/4XUcSCTtZOs+bi5ABGIcnKZhcUsInPW0ZwoECkdQvNwAatc3UmnXfDqxjq3HNFzNXHOIsmFuGzAoDUkJGRCtpkcr+eeew6lFL/+9a+ZP38+Tz31FKeccgrZbJbzztv46qBTTjmFb33rW9XteDz+Unc3JOR/S/Ph0GyiVEE5WjVWmkhqCe4WszDqwqOFERQCgUaQoJn/Q9K28es574fij6qbI5Ek+WicaFCkKF1mWm+ZXP9VGpU7DS8KMpDYhYsQkfeDe2DtkKF52CLPnNEcy5pnMCSbaQ3S5kUNtg9Ex6yAFJJg1gkMz/o1EDcWFIULCaLvQ2ZvAvIg22DKSWhchL8KgTLJ9UOmrmNxqkN+p79h8Saa7GuQe62GF86EzA9qP20VVReJakRMYqYrLUzi/g7PgPcgZE81r5feBKNPgjsfWitCDDSaIb5HWl+MZXt0pl1ivSXTJ5ty2aAypd9B81Uw90nI3gr2bEi8DQvoFs8zyqUIXJJ8EoGLxqcQ/SdFN4FT8CGASOf7ifRd0ThuOk9ISMiWsc0Ir8MPP5zDDz+8uj1v3jwWLVrERRddtEnhFY/H6e7e+C/4kJBthRH9VVwK+MKtLfqjMT3JootWrmKUbxCQB2w0Ds2cSWwzkqhj1g/IRWP46q8gF5KR/0FRxJNRIuyEzeTK5CgWk251QJoeu3kfV9+GgxFeqngd2s6jgLjKs+vAC/gS7DHqUjjjBZ+mLCK0pnkkjxUo0NeYaBUAg+j8F1CFLyBiYHmgLQEdkuz0TrymNIgiAY+Q4SOkuBsG/2I+XSvCqxL9imAGuvlM6Pt+zYjUfxYGfwTBOaCykANGyucWH4alB8MOTwKQ55+kuRAEBLamd6dWZj/Qi+gFptddD8C7FYK10HcIBItBJEBeBfF347AjbYypb4mF8FrRepBS3AxAJP5uiP4DCuU8MbcZpnx0k+9ZSEjIxGwzU40TkU6naWvbxC9z4KqrrqKjo4MFCxZw1llnkcuNzw2pp1gsMjIy0vAICXlVoAOK+h4iokQJGw+r/HDo5UrS6a+SW74QlryNSHEObdxBiRF8VuOzhH4+jsfSTV5GIEjIc2i2/0uzvIzZ3EwrH6GdTzKLqxtzjuro53aW8h16+UOdcSnk9UXoumnJYtQm6zxW3VbFD5sSPxKUDQiwhCSo+2kZuHMQVte4a9rsjcNBSKWxA1XNZTOCCBgC0Q9WBiwftAeoVnTX+XjJdEPoMKBsLJvcy+RFQf3qhVq+WPOh0HZ0oy3H0M+M6Coxfj1E/pm6a/TU9guBtoSZMVSYCFq1PwKs7WDw40Z0gcmRGzgGVHrcOACIv59H21dW0/7VDLE7FVFOx7WOhn0Xw86XwY4Xwr6rwJmccA4JCamxzUS8xrJ48WJ+/vOfbzLa9cEPfpDZs2czbdo0nnjiCb785S+zaNEibrjhhg2ec+6553LOOeds8PWQkFcaAQNofET+VpJyGFtGGXLbUJgMLxufnL6bF5oFulkSGV3BDivfjbX9X9ANHgkKnyU4zKvt8lZB4WGILAR3uwmvH2E+Uzh7o33s488s4euYubcAn2Gm8zG09y+U+h0iYkSKBhBgF/5J4C5G5z8GePV27WgJ2t4LZT+CsisCrmfsJcFfh+j5AKniI+j4bmj3AWOxUWlrFPDLm1mMtYQCGISVZ0JrrMG53uFt5skOP4NFAWTvgcQ0sB8Dq+ydZc0wDv2Rf0DmT+UzLZOXVQk7jv1kjsyA7J2QvYt4dDtkshXFME6pxNTVA8hO00+K5T5GgEBDsDOoB2qOHQKjHv1VJnJVz+By+MuXzL1GIbE6B//5D2x/J7S/FaaeREhIyIvnFV+r8cwzz+QHP/jBRo959tln2Wmnnarba9as4cADD+Sggw7ikksumdT17r77bt7ylrewePFitttu4i+RYrFIsVgrwTEyMsLMmTPDWo0hr0j6+Caj/B8lbHxtY+MTC/KUiDBst+COCa+UcNBa0Od38hb7WgbFUfgsB0DQxNTgt1jaA+sNiMLjsPLgcs6PDTNugabDx3eiHpWD/o9C/m/g7gVdV4E1hef5MoPcQSVElGAXFnIVOnMCnv87csmIie5oUAia8jkErUh/yIiFyieZAJlvBzWAV/nvKCRCvhs3OuYHVc+xkLkBCEALtKWNt5YARkCMYHRgJVpVBO2DP0NgORrfluQSKbRl4fAOElw+cTRPjUL6YvM8dQJYHRCMwJqjIPd3cOZB+xvR+SurQk8XQRQBZyp0fgN6P0FFlAZd3yDj9JFY+yssqUyErq5OYxXZDO4ooGr7FWAJCFLgvBtm/AKsJKx5DH6ypznmjZiC2VIYg9qFlwAFaD4EnJSpqensCJGdCAl5NfNy1Gp8xQuvvr4+BgYGNnrMvHnzcF2zzGjt2rUcdNBB7Lvvvlx++eVIObnZ1Gw2S1NTE7fddhuHHXbYZp0TFskOeaUS0MdKdidHhBKx8l5NVOdxdAm0JGfFsfEQaBSCHDEUNmuYzt58geksZERfhFarieefxFYPmGbE9ljpTkTmfsy3uoD4gcZotA5NlqB0D3LoIaTogsKfIH8bONp8qSfeC13XsZpfs5pfA5opg/3M6u9Bagc6QJejSr4UZJtcIr6HpUwkS/oNs33AHtjpxwAz7RhEQFh7YKX+jRBjFs6s2tvkUAEoAar8cehh8qwqREFHQBSg1CJwUuVyO+WXReYkRNOBEF0I8b02/qYMnAcD3zFu/d2XQOIQEC466Iehzlr9QwuTDBI/E9LLEKPXU10GGXkdxL4MfccaU9p64eVTi5xFJTiqIRqIj8kt05jp0OTJMPNiUAH86i2w6p+Ms+XyMDlnrRbMKc/BaoDZsOMiUzcyJORVyMvx/f2Kn2rs7Oyks3Pz8gnWrFnDwQcfzOte9zp+85vfTFp0ATz22GMATJ06ddLnhoS80lAU0GhKRBv2B8JGioBm3QSM4JdDOhKNi8c6OgFBhFaTaJ9J4xcvqSWDA+gX0LEXjMnmCKbS8xhhE/ACw/qtaHcA0a5ofSaHLKsVXQLVGiD9ZxDANE6ixACl/J+Zu361OcbxqyWGABylST5ThGFQs0F3UFZElQh0N9L5PJoPIzCiTPqAG4dUrMGZHUA3HYsoPmxko9BoewrC7wWvKiWrfdUJ8GaBDqoFj2qCr+83MPgb0/asK6G1rsZkPfkHoa/s+q9GYM17Yfv+cjTtGiO0xmqY0vch8noz7QmABe720PkuWLsjROsKlteLLjC1fsZSv0tqyD9Sfm7BR6+CZ2+Fga+CGjAHaw1rMbln04LGgfFXwNqvwIzJ1e4MCXkts80k169Zs4aDDjqIWbNmcd5559HX10dPTw89PT0Nx+y00048+OCDACxZsoRvf/vbPPzwwyxfvpybb76ZE044gQMOOIDddtvt5bqVkJCths0MAiSNFZ0FaI3QIEUPCsnYmFGOONuxH13sCWoAXfhJo+iqp1xgGasNun4wpp3z0aYaNLKka6LLdI4gCqXm51DBv5C4zFNfYKfh19caqBSkrsNSYD0Hzu1gLwW7t4i0vgSRX4CIo7wPE6TKSfYVSutguQsr4jDyi+rubPIOcl02pRZJdqpNZlYrdF8MqXc33qoEbYGOgnAUgax1K4C6qkca+hpFiA4WofM/Rpf+iC6tqH8FdA6CIbNZ+NcEg1u5/sPo5NEgWyF+EEy5AKwo7PEktF4NLT+FWQ9B59cazyvVjV8lIlY/ph6QfId5/vx74OkZoE6B+e+F7mOh/TDINNXqo4/VcQHw/Pmw+MvjfNVCQkIm5hUf8dpc7rjjDhYvXszixYuZMWNGw2uV2VTP81i0aFF11aLrutx555389Kc/JZvNMnPmTN773vfyta99bVz7ISGvRgSCbq5nHe8nW/bpkvjYlEgKC4lPhCJ54oBGIGhmF47i98hq6GWCItQAulJrEYhEYfqqCaacAirzYMquJcbTBbhg50HlfLLJ9xFfuQ9W781gt+B3CCzXlNUpFGwiMb8mhGYBy4D1YD0P7ApCH4TW/0JrI2y0gCDmonMxpJcDtaycB+bDwKcg9jZwdkCJ/6ISEj9R+Q26DN18MiL5QVDHw/DNIBUiHkO2/hS79yxEcRDVCb4FwjOO88EMsPpB+AICjdYKrR+DYC1i9FjMckMNkU+D1QVBv9mOHQD2VLRaRqD/xgS1ssuDpqH5/8H0P4x5g23oOK5uuC8df27GgUQCfA2xg6H7OJPXVspD90HQ8WlYcwGM3lg7b+Ai2HURRHeA4ieh55eV4YEuAZY2bZcw5ZXW/hDa3wGtBxISErJxthnhdeKJJ3LiiSdu9Jg5c+ZQn9I2c+ZM/vnPf77EPQsJeXlJsj95/QksflGettO0+tvjOgeS5wLiFLEIyBIHHadLfwFZL6BEEhE/F/JnIX0janSU2mo/AcS/MmGeT4zPUOIvaJ3GzpZX7aUw0bM0yEFzelNfL2L4ZnOSP4IYTLBmQRwlJTT7NDMKGuI5D9tXYNcF35ztIP5mKJncMo1J15KU0NFSrZ/1+D3g7IBkIYoHq+eh2hgcmUt0tES8+YuIHW40Yk3YZkGgnAMvHIZoBZEB3VpuL2JuzVqtESOPEaxZQND2LJZHYzyx8GuYswRGrkTrh8HugdyX8OQL6OgIOm8ia5aqVSsCYEQjiofDvGXgzgZvBO7fDQorQDiw23Uw5Wjwl9WKd1feG+FBMAzxA2Dm9UasJY9tHI/hu8f/4ais+XefnxiVueo26NoH5n4PFs+Dkl9z8I8AmX+FwiskZDPYZoRXSEjIhunwd6c130PJcrC0wla9SOs6LLkLAYuJ+3GS6a/y/9u77zgp6vvx46/PzGy926tcoRxdAVGxI5rEKEY0miYxxohiiTFGzdcSjSZ2o2hMor+YntiS2KJRYzQxsRsVUTFoREBBmnAFrm/fmfn8/pi93VuuAIJ3cLyfj8c+uJ2d8p7huHvzKe+PEXBw9RF0BA+myPgrRss8VPvtYBRjUgQq7pVbiGeTAp8Pyn8PRXN7va7FVMobz0Ot/qHXvWl0G3aULX/XNWJKB0DFAVwM2yU97JvE+TcjWIyrvRQkGvFT8lESOsGuM/DvdTSUjwT7WQz/d3Ay9+CqJnzpbuOzioBot9Y5a4I3ZgoIG48Sd0/C5R1cyohaLegym1i5Qq/6AcWdB0Dk0/kbav+H9+c6oIr8eCcFBPPXNJqX4FR4SWqOBjIpcDrQwTikHvYSpNTL3nPxgRsGlQbbD0YcrFbvONV1gvY7oepaWDzXS7rAKyz2zklwZAJC+0HsX96+XV2LYbxkLPMSrNgdJvZSh63409D5eL5orKqF0DTva9MPn/l54f7+brMku2Te7HleIbYDO1vLxWLYYIeyXUjiJcSuQBWhgIDTVTrCQKkQQb4BOoPzURBTu2gFyVIDlwUk4yMpas8OXnLbvV/+3Ztvht0JoVneuKP2a8BeAeGvQuhL+esmlmKs+kF+XJGDt3Z2xDtXLm/R4GJ4y/EAavT5jOcG0hxCjBMK+t86a31Yx0PK76co9hT+tIFK/x6KHsAsfh8nOhqVK/vuHeqGDMz0nhA6AsquBsOb4WmoYRSbTwPQoI9C04rfTYOGZKlJOP0Qyh2FMsaBE4UNv/XOqb0ZjrqUfAKSbSDSGGifdx+u6SV8ppO99xagJAGp3xT89Rjaa6VDey1e/lVeQ1VuxmIX32jvz+Tawr9fnV34sfIqSC33ukjTDvi61TdTQHJltk7FJq2TI0+D2AJo/w+Ed4MpDxcWdwWv5W/9tdD5HDhu183mz10kazaK7a/JqcI1vEGGhtZUGzt/wXJJvITYBSjzsyjf6ejMXYCBEbwNpbL9ZK23Yer8L9Jgu0smYmI4fQ2WNkAVQ/E3vF/gzSdD/AFAQfzPUPVvCH7O2zXTUDCuXwOuY6DWu7iWwnS1l4DZoEIzYMwcCNbBsOyAb0agtYHKTtVTWhNMZTBdsByHVMjE8WtCMQOV+RsqcCImhwN/K4hY+adA9dv9PiMfexNKvUgwm3gZBrjm7RD9DUb4SQxnAuhk/ilEvVvWYcAB1Zq9zdBUnFHlwEteQpKeCPXLvfwncgyE9oF0Cbgbcs9Ed0uO1HpQOlvaIkN+UkNgfyjJzpasOx8Wn5YPvvRgrzSHm4B1j0N7Ns5NV0Jz8Zocuydz6aXw0aHgb4HqIAy/Hvw1hcdpDe9/CaL/yE+myFaVAMAqgZqL+n2+QmytROZ3uFZX87XCVYqWzIFU+N4Y7NC2iSReQuwClFKYoTvRgRtBBfJJF0Dsr7kqC4r85DQ7bOCaDsrJ/twL7Ad6HahSGPa7fKtJ8inyg4pMSD6bT7yKDkL7hkFqY65HznBd1oyppcLen8h7/8Qrh2rA6Bkw6lte8pBt4ergt2R0gGLH+1+uL2N7DTEuWI5LGhPHMtDKRZleMU8z/AC6LYxS2VpbGmzffvh0EqUKy2p0V6a/hu16MxKVS7e+ygxu6kaM8LNeja74IkChlQ9lJVEOXiIyIgBl/0P5dsOnXbR+GyjCCE2A0AveuYoP81qSiv8GHXuisy1cji8fh5ECUpVQdyJY+0BoilfgNDDVS64ARs4Fqxg++gOEx8Ok7EzKzFroyCeHtOB1NZrZv6KYlWvty2n7SX4JIZ2ClishvMkMy8Y/eN2s3RvBDPJjvErP7vO5CvFxpfWLPWabONQPUjTbz5ApJyGE2Dxl1BYmXal3IbmgYB+d/e+YNhWxEX6cyrlQcx+MWgCjG6BuGYS6DaL27Ud+5qMDvmn5z8wwao8XcEwr1yvVUD2MjWVVhKt+D7WnQHACDD8NSveB1yx4tRheDkF8CS5taMCfsfFn8jMbuwbQd7WmKd/JEPy+d49mEFXWgWNMwDYg4wet7sXJ3NTvszH6Gz+SeQHdeRR64oMw8kYYfgXs9gKoiZBSEB+HKl2I8u3mxaAMDGNfDGN3L1mKzPReynu4ypoK4fdgnYmTIZ/kxcFsxxvwVfsLqDwVYk9A47mw8SpvPFeXYUdBUSfEfwXvjIDoK+AfX9hFmAY+Auqzr8rexuJ1/zWg6PXXQsd/sg+cfJHWLhrw79H3sxPiYwr6fpP9n2D2pTXF/Gyww9pm0uIlxC5KY+M4j0FAYTraG29lgNIGxc5j2L42TP8eGIFp2bFYm8wN1Bq34yqiRW9il4fwpcMUOxegwl8v3C88lVV77AHRNjI+iw3DKinV7RiEYY+7c+digQnJ7KBwkrBgLyKHPckG9SJJw+91AUK2QkWEVFCDUUTI+A1G8ZcLLqnMYtxAeUFpKa0XkU5+Hq3/h2F8Ect/G0rlm5qUMR7TuhrHvhZtgLLJJUSGA7gvQOoqqL3P27/hRMisBDSk10D776Dq/23x81d2A0o7+NZ7eZbSoNrw8p6RF3s7bbwOWn4MuJB4BaKLwDwIqk6C9kcgNj/7TNpg2WFAJYyaC2vu9uIKT4CRJ0DHC1C8L4z9cc9Ayi6F2N/AaQIVgsobvO2xD+CduZBYBaV7euUoyMbnjAW9xosrfBSUf2OL71uILRVQEcrtf9CuvgBKU5S5klDga5s/cAcniZcQuyBNmiifxw6/CqODWB0ubeEI2lQYuooaY298jCTBFaT4DIpSivgDPvLLaOn4Y8SMW0iHLVCKlBXHVCYhHSOe/ha2sQa/OoFgex0V7mpW19Zg46NEdVCko+C0eGsJAtjN3pim7sPKtENoQzvDa14gHViE6vgelr0O5WoUnfh9d4HvtD7v0bCOx8m8ifdjzsZ114J+G3BwnV/j2OOxfBcXHGP5rwG7HSN+W34iQW5WoQPO8vzO9jryZeI1OFvZBRKY5HX76jQqo7wuwPE3ga8cko/Amie959LVjas1JP4B6h/QcT2YU/Kfdc1ccJqg/Y8w4y1v/+KpYPh7v34X/0QYs8Ib6+Ub7xXCBVj0dejwnhdN9TDq60AjFO8Do3/kXdNtB2t4L8XHhNg+AtahVGeLMPdY1WEnJYmXELugOLeT4dXc+1SJidYKlMJVG9nIKQzjh6S4FQBNC1FOoYz1qOyPDZ34BXbE6PZLV+PoJcRi+5Is8pKQwIoFqGab4lqDvaMdmFrTGQ6S8vugrC4fkNWt+7O76Ov4ar6GT02C9DfJZ2YmOGt7P6ZrD+sylKrBdd/CMI7AyVyGziVKBtpdVniAdnA2zMDUb3Tt4lGgnezwqkC3pYBKzoLkK+Sys0jvJTX65BsB4/4Bjdd6XZC1N0L4AFgxAeyPyCVVLvm1G7tyKMsB593C86ns564D9uK+ly3qjVEMwQMKt8U+IJ9Yml4x1d3uL9zHLNryawghABnjJcQuJ8GzxLkGFxMXkxghmqnE6TY2KMNS2ug+S00DURxnHXbnOOwOH67vP/jj2cE+2dH5PmcaGd86UArlQLDZBgN8rouR7feLxJP4dBFKdft/nzKh7CTw5Wf5OeWgIyPy+wRPz35hAD4IzO73PpVSmNYZ+Py/wLSOxzC/mv3EAhwM64uFBzSciJF4w+tuNciPZUqBsg6F4oe9yvNdSubCiOeg4iYo/Rq0HA/rR0Lypb6D2nRZncgRMPFFGP9v0Buh/W5v/UMc75mnNLQqaMcrw9GVBym8RCyQfRxm9pWtJ8baObBoNCz+NMT+2+9z6tPwE7wTKgssDfpFWDHLKychhPjYlNaywNa2GozVzYX4uDbwaTSLcDExcDFwyWDRTilhkt7AdQw6KGEk6zBwUUCGCko745i6NXcu7UDGsLB9Jn7rawSNm+mMjSNV4q0PVPmmV9xKdVvnXgNu6NOYtZskKKkVsHAimeHg1mR3VGH8wXe9OlrahdSDkHkXhzCpQCmW/xj8TNii+9bJO9GJ7wMaHb4MM/C9wh2WByCY9lqNso14WgMpAIUa2Q5GpOeJ449B81eybwwwKmFEY2H3m5uGtadC28PgHwdjHwFrGGy83bsv+3/Q9g8v0TMN8GenmbZ0L1SqoFh7sxS7HqSNV3Iid52uePP3gBGCfdbA8m9C27PeWK9JD4J/eP8PzM3A2t9CfDnYf/QW9cYF5YPJ73sV9IXYyQ3G729p8RJiF6PxEydMgjAxiknjI5BdTdmbO6SIUoyLyXpGEKOIVkr5kAraDadgzWVtGviNGorU6QR8d4A1nIA5F1/Kwcy4pEftA8qPtkD7s/WqNNgdC3BXfgMyG7tFlkZXgFudfasAEt4EAPCaoYyp6I0/w9x4BeF156PW7k6L/a3N37P9DsS/idIbUboVI3Y9ultNLu/8QW/SYPfZkrmlezRuqo+WHmd9tzcuuBspnPYHNP8G2v4COJBeCWtOgQ9mQMPN0PhjaPmHl0BpwHYhriF4mNcFmA8Qik+C4q+Bb//8AthdLV4WkPBCKJgH4SZg9deg5e/gRqHjVfjwgs0+MwwfjDkPxp8Hbiu5Vjid9pYHEkJ8LJJ4CbGL0GjivEwaH7rbP/0UQTQQwqKGR2mlHDu7doyDRTslNFFNxImRVgGSOuj1LAIdgSJ05D+YoV+jlI8U9xEr/hNuwPK6wYZfAGOCEAYdBB0B3Qm+DWnU+vth8SzQGk0U11+GKv5K7vd7V9QwAp24Gd22O3rjkXgLTnss2yW48R7SLO3/5t0Pup3UBTpyBUxzqm738qVOvKTGJp/cACr5TLeH6UL0DYi+CcHjQJWR+3EaPsVrFeousz7/OQ6kVkF8NaRdSOt8F2J3Ta9CNJoPOzAK6m6Fmjsg6EKpVzlf1+6GrlZQ7p2adPbVrbQaerk3bbLr+slelg3qi6/OG0DfbVY/qy8DJ7bl5xBC5EjiJcQuooVbWcvJxHkPXVARy0uiKvgUQQ6hhm/lPiumgzAxxujVjDDrKQpHMXwOZAwyKYu4P4jDutw10vzF+0J5mUTG/SNYHd5QoezLHQN6RLZRJvYWafce2hhJu5pAdKQPy7wNbyHEAIZ5LobdgJu8DEd9gBPaJFkCQok0uvkgXL0R3VWBP/ofWDIB3i2Hxh+B9alscpQdDGVOA2Nk/iTpd6HzElQQMBU6BkQpaD1SXSPbtYblX4fFB8HiA2H1D6D6dQh9FgITwD8su4RPN+UneS1SGq9lK9HRe7LVnZ3yxms5QNyAfd4Bdw00nw2Z/+YH0yc+gA6N7vTKfGk3W+4rla3JNgwIroXabDl+gJqtmAhgBMCYmh/knwbS6yC6YDMHCiF6I7MahdhFbOS3pAgAmnB2aD1AmHh29ZeHcbieEVxIOcfRwc2keBKTDEGVzp0nHbYIJWzSPk1ZpgPH/BWOGo1pjMZkLDYm2WJbOMZ6NCZop/vkR3QluI2AOZKYcSFdA5Uy6u/4i04kQFPuem7HdHTXfxENcIu95Xq6KuFrwJ/oJNNUi5V2cANjMJraUU6792nDlaiiQ9ElCyD1e6AIgv+H6l5otP0ScJuz1zBQJQdAejWoBm+bKoKIV6CV+H+h5aH8sc33wrAI6Be8vsnkbaD8UDyv29Nvh4zjJS5O9iF0ZwOWym93yCd9JhB2oeM+aDkXDI22vPkIqg3ID7nLrX0J2fFpNXiJUlfjVEUpDLsLKr/EFtEanHbINBeOJQPwj9qycwghCkiLlxB92XgfLJ0E9VcNdiTbzq5n2IYmRjY2EkyliesQNooSOvD3GJ0NIXZDU0++v6qQRuOEFZgaRz9MTO9GwrmAINdg8Tm8BQY1rlpDIqS8Xi4XiGUrs7ugIwfQOHUYmiShpgwly5MUr0lhZ57G4YP8xYxR+SxLgQ4AShWmLjb44w6GDWZ0NcppoyC5Sa9CmbujwregwtegjE3KV7hdzVtZ/okweg1U/gnKbofhjWB1DT4zC48tAlp/BzE3m1S5YG/SGtT2J691yqJw/FXuenWgxngJWIz8APkuCmi82runrgXHXQqSLsgVxve+NkAnwe30ng82kGyFzP96CaAXmQ2waF9YUA6d//WO72qlqzoTQrtv2XmEEAUk8RKiNx+eAE0nA+9D2/XwXt1mD9lRue6HJNrGUN7ZRkVnBxPXrsGyHRwsdLdcw8pUY+j8qsohjgDAwSTTLdnwxzKk/Ua+2yrblJXh1+BChEdQdE1j1JC2UG1e64xKeRXh05aP9qmfIxnegNGuCLbYmLbGirtY639HKweQ4mHvFOHbAX9+fJEah45M8BbXBm8smVU4+U/7u6Ymml6R1shR/T+kku+T+3Go/FD8XW+cVtEciJxXWK8qvLeXeOCFRRF4mST5we2xRZDKlnHQLnT82Wt5ylD4U9eqgcnPwG5/g/SqfJOVQ745T3n3h9GaKxmhMgaa/buvP+4J4rUOWkAYVAfYwzfZp+Ox/p9Fl7U/gvjbhQcHgOFXw/g/bNk5hBA9SOIlRG9iD28yM+yjQQtlW2g0nc6hKBziNRbJShOlYFhbC0GdpiiWIhRNEo4mCSbWoNO/zR1bwgWUcR1hvoxiCra2QI8h3DwBI9VXpfIoABb7gfaSNSegs7FkG2pMSBX5yPC8d0g633qlACvtDSaK4S1dYxgjMIuXogKXYwSvwyxeiCq+FiJACd44qHB24H7XfZeVoYd9Cl39fdj9LfCNhMz70P5d6LzBK5XQXeg4qH0PKh+G2qUQOKjvh6oUjPs97L0UxvwoHzh4SVcCSLRBw8neOpjJ17ODr7rdpAmUfgr2XQUlh8Hqy71kyyFfMT+TfW/iDXkL215C5Qf8LqrqL16S2HXPfm+wPRGgiFz3rC4Ct3vF7+Ij+743AGcltJ8IwYfytcFynwGpayH5dv/nEEL0ScZ4CTGkJdBGK+ly75+6G9BoBZWxdkrVcxh6BkrnR3nrbgmmwqSEs+m2wTN8Ff6GE9D6XdLl2X4vpVCMxjBGgdaE20qJ+1O4PgPLrSVTlsGINeMaGRLVPlCKEMPJ4CNRtJjSlnguL0lFvP44RTB/aWMcZvDGfCyBb3hjx2Jf77YPJKpM/G0Opr8JVDP4qiAwHuzl8NEUyGRbpoJ/gDErCx+Vb3fvtSWUgtAkb8mijqsh7XgJF3iJU1BD5gP46GBvW3BPb0HyrhZGBVScCEbQK/PQ9q/C80+8GYZfDO2PQvwRcDepGK+A2K9R434DH54JaJRvBnrcI+hlI1Fp70J2Ld0SJwOCn4HOlbDuxzDikp5L/WgX2o4EdzX4HK81r2OT6yqg8WswZpPK/0KILSItXkL0JjKnsIvFHDdooWybEIpIvmK6UjhBA120L369L2rTMVwqXPheZ7y6Td35xqLq3iBYlaDI+C+WOhm/+i5F6h3v8/SrqOgfsFKON6g+sxbXaCBdmSI6qhwnYKCIEOZqRto/pTL9WUgb4HjdkK5SQJhibun/1nyHbTpEnUzQJF7ryyYbDtgvex+0XgspNz8+KrEKOp/a/OPbHGukd51Et20u2TJe3Wp5Zd6FMXd6i1abFoSrIZJNytIb8t2UzXjju9b8yssky74E4Wm9X9vZAFWnw371sNe7MPU/KH8tesp60iMhPRHcMiBpYE5cC9W/hnUvwLq/wPvfhzd6WcNRt4L7IbnBXJXkEzcFdJUV026PQ4UQW0YSLyF6M/ZPMPxJUPtC+W0wZSvqHu0gNGlc6gmqa7yWjWxfn8kkzNLXs3sVVmJXRrdq5IlfwcZi2BiG+Dx6Yxp7EDbvImjcgmGEvI1uB3bQIFNsUtRsE+xw8cdcgm1QFP8MEV6hlGVYtka1Hoq/+VGUdlHZwdvh5ioqWY6PT/V7f8qoJROYlOvCTIQsXNPASroQx3vp3bydO1/veYLoQz239cdNwqoz4J06WPFVsLMj23srC+F2q4DdNeYq+lvwr4BiG3xNsHaGV3Yi+jqsBV4EFmT/XLcamh6CZXvBmst6zigEKLvW+9NXA+Gp2cUkwbRq8PkuwewEawMEWhRsOB/ePyd/rAbSNtT/uvCcqhzM3QHTyxsTeN25JXjdnb7ssVWbHCeE2GLS1ShEX8o/7712Ms38lY3cgEUTEdox1B5E+AkOL2OoqQQC38+tk2iE/oCbOAlIg3kEypddWNlZB9HzyDX7xX4A1uFgv4jWUVTwbDCqcJvPwjH+DmY1ZtGfMawDIXg4TqaKooZGjO49WRp89Y+iiytRNb+D1GOAC4Z3DdcHiREW2rcBM/UNQoHHN3uvVvhlOoJj0IbXAmNmHEKt3TKh2OtQut5LKLpmAiqyydDYrXuwDTdC8z3eSdrqwSyBsXd6g+b93iOE7Pmrzwa3CeL3eNvSQGaBl+caeEValQ3x1yGxAZaS74a0gWXAno9AKtud14n307okAmoYVD0Dvr6X7FF2A1ayq6yHA5lV3S6QpfEGzxccaEDpM9D2Hdj4ROEhxv4QHA4Vl0PokC17ZkKIHqTFS4ghpJ3nWccPSBElRpgWKnHUEpLGEsLmgwSNq1AqkOt6NHzHY0Y2YhavwQw/g1LZcVW6lU1rTTnRb9BhXUFn8Md06Amk2mZj23/CWtaG9e776MXT0e5GUEFM9SmUmx9Q30W5YLT9ASf2IJhjAW8ckQ5CfIyFU6xwg4qM9S/SiUs3e7+GqsQyTvXux3UxnQndK0+gyIC9CsrO91pvknh/ZoDK72/dw00u7XY3DiQWZ7/2eclSwPsSGwjvA9V3gVnrjZHquu5G7xTpKoP2MQFs9T6MPKfHCkMYQPsma1lmgPCvYdSH3ri1/hSfhJc1ZX/El5wOVV8t3McCRv6g57FmHcRH9KwkkmqGkX+XpEuIbSSJlxBDSBtPkK9BoEjjR6NI8CBrOYbW5AXoJbvDOya8NwYazkc5UZRRh+o+0NrcA3yf6fZ+CvGitd4CzgBoUpGn8a3AWzcZMKMa/f7xALj6RdIVkCnxZte5ClpLiomFHr0YNgAAOZNJREFUvel1SedJCJwCwfPQZohkjYkbUPnB3lrjOA/3e68alyQPklJ/9EpbmCbpwCq0OYJ8hfoR4NsbEouyhUiBEOiMD622ssG/9EvZZ5s9rny29+eoP3pJUTtey1RJLYRP8O7F2WRRbRd0ByhX4/oUsdDPoeJI+Myc/D4GMAVor88nPxqvgFnks1sWa9ExMPI/UHENDH8cyr4LezwEo8+BkAHFAZj8bwiO7v343mY+BvfesmsLIfqltNZ687uJ/gzG6uZC9KaJO2jgx3S1zPh0mpHtjfiSDnF/kOINcfxJp2CiG+GJMP69nusL6hSkHgFsXN8eROnZ0hF5LV1QbUAbAdSMJKl4Oei23MBsDdQHayiKpqho6iA+7seUmBdj08ha9qO8uQ0rnMb15c8Wao7gq97Yc+YdoLHZwCkk8Rau9pPKLvQNJfazmNHHvKsWnw9WHbxfibZa8lXdbYhNvIhi9zteC4/yexs7n8ErRva5ns8DoPUR6Hweig6AilPzsaWXQvQJCO4LoSPy2+svgKb/Vxh7ADrH+XECJkpHKFON3gfRddDwAnwwJ1+jVQEjPwPh3aDmYghN6RnTJ+XDo6EzO9vSGgWT3gGrvP9jhNjJDMbvbxnjJcQQUsUZRHmWFK9i4lDbupFIi7eodJCMN3MQ8vWZTCCzHDJrwD8BjQvEURSDCkDwJAC07lYKoaubMu2tlN21YDaA6w9jAoZ5Eq7jDcD2uhuzRVZ9Jk1jD6XW9NaDdGkH7aJtRbDTxi4ycQ3wpV0spwVar4CKG3rcZ5L/5JIugDQBfGQI8BUM62Aom5Hf2Y2D7vS+7lp30QdJ9VvCjbdiqDqoeh7Wfhc6n/R2KPosTHi6sBQ8QPnx3mtT/slQMbnn9vBeBW81XskLx++1HPo5M/9h8UiY8A3Y8BPo7Koub8KYP0DRbj3P/Ukb/1TBbFghxPYhXY1CDCEKxXjuY3cWM4a/EoraBWOeMPFmqNUA1XiDvU0LrOHYvEsrk2lmOG0c5SVFWQZ7YLA3OBp/1CXQ4RBusWGk15WoATsC8b1NtLaJW4eAY2DYYDjQbkUIMoXK0HMMt57HyM6m9DGRmhVBytbHMDMQaHUItTtYtvb+W9jeR4X09Poem4q4lyL+iNp0TZ4PT0QnM/leTMC28t2a2lmL2/z5fNIFEHsB4m9u1bPvVdHnIGTl/gJUAAJNLqGmaor0PYTUJkmlUrD/v2H0+TBiDhz4wpYlXenl0HgxbPgh2E2b339LKSVJlxDbmbR4CTEEmRRhchA49qYf5GsxgbcSj9+GtikkikpwfQ1ggM0CEtxOEVcA3mixotjZ6KXXYXSshVK85M2A2L4Wrq/r/3AdaNoJJm/B0K6XAmlI6GJGGY/go7CrSmVaCG9YhR5JbjC+6iry7oLuaEIl3oFQ4fiiYP0TBMrTpEq8WlQlbWMIln2554PQLrr9SW/1nRi4EYXjN4gOCxBqT2O4Onstb/ZgIuAj47cojiYxjOKe59scnYLOW8FeAaGvQmgWjHwcGvOzY000ZssEqDnB2xD9AFb8GJwkTLwMSqbC5Fu3/JpOMyzfGzLZYmIbfgVTNvRsrRNC7BDkX6YQQ1gmUoeRWIvKZFeiKf4qUDhoXQHaWUNxJ/gDimhRyBsQzwZvB21D05Go919BtWUPSgAmuNWQsYxci5rJfigqMN3mgmuU6917JF3exQNQmm9UybWtZICua0Wf6ZF4KSdK9cp2UkUmdomBZVbj0oJBxSbnN8AqRjudKBuMFo1d7VJkn46/I1+Lyg3CB5PqcAMGSoGrFUF1DePpf4B/Dy1nQ/yPeBnpHVD1nLdc0aaNRunsOo52J7xyCKQ3eu/X3QuHvASV/dcwK9D8u3zSBZBpg+Y/wLBvb13sQogBIV2NQgxR6eQc3PBa7ErI1EJqGLiVV2H78r/UtQ28CmoRYIOhNYF0Bm9UVjJ7orcg/QrE8ufWgBuDlhFhHMuPbfiwlYU2DkQphfKdkd3PAExKrW7L/XRnRbxWuG51J7QG14FUpYHrBwJ79Dyu6kJQFqk6k0yVQaLiQzqZic4V08pTlXtCCG9NxxBYbgR/8Fb0sJ9jh72Jh0m/Dydg5seAKU077+D2Wrm0H4m/Z28ku8hi8l9gTUAT8m6vq5ZYJhtnx3+hbiNMA8Znd/jfeVt3zcbbem5r/+vWnUMIMWAk8RJiiNLOfYUbLIjGP8f60mWsL6+g1QnDb4G3gJeBB/BKQ7guBi65pauNMu/PbqsJKSBTZnZrqlJow0CrFu+QwLUYoQcwA1djFb2GsroNdt+UKs+vSqTBNSA20keqxiK2mx87UtbzmMgRJKachRswsuOQNC7LcFjcc19VWzBMyUiVo9LrwP9N8NeCAQE3g6XtgqJjyoF09C9gb+w79k3596RrSqLGRqulxFMj6ByZoXOURWyYhW4Dar8H2oG2b8AwvKSwGpgE+FZt+fXAy1I3VfKFrTuHEGLASFejEEOWYtMiqAlfCo0f27LwveqguicarWA2QqjKwWenMCJneafw7Q6lN0D1D3PrEOoA2KN8FNSLAILKq3zvtXqduGVhjlsGK6tzld+jY/1eLgVoBQn3IorNV2jnJ3TyawxKKdFHYfvu6nG/BrU9z++bgJcMOd7A++Rq+N84b1nKUfknVZVsoSFU5d2Oq5iy+EMCmWx9raIZMOnF3ktMZGntkiwpx0g7oMFwdsPofAyfpQgnvMXJ48Ms0rudSiByDbT8EdS6fADgjb/r7Nyy59al9MvQckf+v9FmJQw7f+vOIYQYMNLiJcQQpdSlhXlXFEzt5Fqy3GDv//yVBsvWmMl/5jeW/AAyxV6XnfZWuwm17IvpdCUimnBHEv+G+yHx/NYF6quCiQ52WQC7BK9ERffPdScp9xnimZvQOopDPbZ7e4/TWByJwfCe56/4PgT29L52tTc+TeElejr/KrbjKB2ik2JqV3bgz3Rfemg+rPlWv7eRtm/FyPzNy/F8gPMBKgO+RFcfKoSabXT8z7CsFhZ9r7BivSa7JqPeukWoR/8KKs/x1lgsPQP2rJeZiELswKTFS4ghyh+eh1P/FDaLMDJgBaAsFiPl82NbJs2HlxJanMYXdbzZhLuB4QcdBxXW4G5SsiGlIFupHsBIzKfMAKfMQCU1ZlID90L0z1DzTwjP2uJYlWFglD6MGz8BK5PB9pm5nCiQPgnfhi8zwo3jmIpoRRDtd9FmYeLo4/DeT24Ng7H/RSf+Bx9NgzJQHV5XotEAbhVgmJih3zLZyNbVSh0AtBSeJ/p0n/Fr7WLGrsfp1iCmHO9ZaaNbOQ8XfC0uvNDkJV0leElaCC8RbAXKT/YmBWwpww9jfrXl+wshBpW0eAkxRGjnfXTqfrSzLLfNrHoCvx6D5fcaQUzto9q9g0irTcC2SX/RpP2zRagTgUO9Y5SNl/H4T8mfPP4h1EcL1+9rARUGywYz1dVGlV0fML71g7sN33GYq39I6BmH4hfThN7KUFT/afxtT4GbAAWGoylpTxBKZvLFPQHllBPgO32fXClQz0AlEMk3dBlRsFaDlboOw9+tmOmIazcJDig6rM/TZxJHY7jZumfZxiY36LUebtLbi9mJt7xQDJgPvAa8CbwP1PwCxt3T930IIXZ6QyrxGjt2rDe2pNvrpptu6veYZDLJueeeS2VlJcXFxcyePZvGxsYBiliIbefSQat9OM3OfkSd09Hte6Iz//Y+jN2JclaTcSzi+NhQHgAjREW0hRFtGykKpCktj3ktLni5jAYwJ6N8h0JqNXx4FiydC84mGUQAMBSoCJhV5H+cuGBN6BGnxsbmfVw6+rwXteI+jI1grAHfYo316vvY/jXYpaCL8Ab4a/DbLsUdKYKxNEXtNqXqXRT+/h+U86bXkuTHq0Nm4bU2BcdC9WWF+5YdC6N/DWbQKzBbchTU/bb30zrvorXXGmZ26zrUPh8EJnrJl+vFrTTeQPquJYFiwEogDhiToebsrWvtEkLsdIZcV+N1113HWWedlXsfiUT62RsuvPBCnnzySR566CFKS0s577zzOP7443nllVc+6VCF2GYOH9DKQWjLRmtF1B/ANjO49vWsNy9nz463WF5ZR1u4FIBIpp0iazU+azKk34eECytBV+K1Bs0H4n6Y8U3Ytx3engw66XWD+fGSrXT2z2ngZROlMHw+bJgD6Xcg/EUovbAgTpeNtHM0DsuAECU8iL+3rkHDS57yayquJ17uDZoyMy6hDhvl9y5rpTVW2vH69HQj9FYnrDvrs5C+30t2mvGSLwPw79d7slP1be+1Gdp9ExQ4VjbxckFb47CKF6ECMfhoKuhWL6NNF4HPhL06YUk2y61WMOk7MOlqMIbcj2QhxCaG3L/ySCRCbW0vM5t60d7ezh133MF9993HEUccAcBdd93FlClTeO211zj44IM/yVCF2Gbt+lI6sdAqlB1PrUn707TQjOE6tAZLckkXQKevlJbM8xSFzoLkxfAO0AhqLbAeSBmg0/Dh9yCzBMwkOgy6FuwgYIPZAmY1XtKiAevrYI2A4fm1E10c2vl/uDRTwjmkuQuH5dlPk8S4BD+9LMkz+VyY7w1i1yicCpeu5iHHZ+BYCsvxEhat8uOnsJejzF7WSuwucBbgQuOPoHJdPtfSj6BTr6ECW/bvXaNJ8CdS/AuLKYTNMyCjcE2Nmx3MZQUfRakSsEpgTCOk3vIemm+cd5K69VD5AARKYc9TwNxMa50QYsgYcm3aN910E5WVley7777ccsst2Lbd574LFy4kk8lw5JFH5rZNnjyZ0aNHM3/+/D6PS6VSdHR0FLyEGGhpvYxm/SYu+RHdWoODHxS4rkHn4mCP46zOf0HrxV7S1H1ZvxT52XTKgPp6dBAYAXYF6GLQZWBPADeDNzswAWSiBedP8CqrmUwbN9PBH/iI6Th0r2Svey10CqB3OwVnz6noiIEeWU7iU4X/NzQ0qBS5GYBGClQSdMdctNa9nrOLUgplnYayW1Fdi4Rnm9Zi6bP6jGlTSf5CB98lxT+I8TOixk+wzPvwJ0wCSfAnLMzWg6D1EHDWeyUogtPzSRdAZAQcdBFMO1OSLiF2MUMq8frud7/LAw88wPPPP8/ZZ5/NjTfeyKWXXtrn/g0NDfj9fsrKygq219TU0NDQ0Odx8+bNo7S0NPeqq6vbXrcgRJ8yvEcHPyTKLbh00un8FsfIV1sHL7kAMChBWwr/XYmCQejYmkgynt0Zb5HsruMD5LvctAt7fAsiRd5bw9tPaTDT4BZDstjw8jRVDg0nohtPpT1zAQ18lYIy99ikyKByXYGKMD/s9R7d5DfRuy/G+ZyLO70Fy9S5+K2kDyOu8dYqAsMEZXp5jeG2QKaX4qndRT+Ef06Aojjazo5ny/b2qfhSMh3fQGee7Xlc0w9geR2s3BdSy0nzMvly+y5pXsCI/9oriJq9X0ij7dfQ0Qv6j0kIscvZ4bsaL7vsMm6++eZ+91myZAmTJ0/moosuym3be++98fv9nH322cybN49AILDdYrr88ssLrtXR0SHJl/hEOOl3SK+8iIbh75OOgI8MIZUixXP41CnAI7gYmN2mG1q6minqb6xUl9F2dYSqn66m/YsR3FKDan8zxalk/gJ7AO8BUWC/Q0HvAa1r4MC5MOVLkPgVJObmFrC2vNWEQIEfF7u0BF/rz9A6SaZS02EOQ2sfSuV282JiLKUsxOZNTMZhsluv96udwpINvpSNlV002yCNW/oVzEwKZf+jMOE0IGE/Rsi/Z98Pc/H1EG+AKOgIJEp8BDttjJQmnLKh/a84VX/FCN6AG/oKGRahO54n0PZ7TBewP4JV++OvuRxrURQUxPYL4YschKvvKfhfrAa00ij7mf7+eoUQuyClN9c+P8g2bNhAc3Nzv/uMHz8ev79nc/3ixYvZc889Wbp0KZMmTerx+XPPPcfMmTNpbW0taPUaM2YMF1xwARdeeGGPY3rT0dFBaWkp7e3tlJSUbNExQmyOk/wJduISdPb/DHErRLOvDL+yCZCmmtU0ZWbSZjVh4mBph4CbosZ4H9Oo6v2krVdD23Xe16EvQOcJ0DAfag6B3U7uUXhTaw3Jn6CTv0brVRib1EawAbMBdA3YIWgKDiOjChMvRSWj+S/GFvw/z44eCO6buYNVY3ZsWakBWpMJlIDvYIqa/wXt3ue6E4iCYyrcmU/iLz2m95O/+nVY8xCYLroWYlMDFDelCp95OehMmMyaNDgQnxwgPczCitsMWxtDZUC/PAySLYCLLo7AactJZsYRisVzawU4Prz+BBss/4+h+JLN3js6Bfil+KkQA2gwfn/v8C1eVVVVVFX18UtkMxYtWoRhGFRXV/f6+f7774/P5+PZZ59l9uzZACxbtow1a9YwY0Y/a8sJMQBs+3Kyw7UAKLITYEKHUYRBEcrtpMZaQHnqELT7OgowrcsxrT7+vcT+BkYJDH8TjAD4pkKtgt1O6X1/sl2XoUtQoUvQLXuAXpL7TAPagkx1vjpC0ElgWxbe8j1eYdZh/AxNPTYdmExB9TPCwQz9Gf3BVLTfQSWBVvD7QAddomV+HCsFvEgMi6K37dzC014XqMZ4cS58san3k0+6ENY9Dk4CmiyCe6fQ2UwpN4tSg/l6HDPbshest9lwXBGqSNM2KUhglUs4kV+7UXV2Qus6dPlUoqWLCMYzXsLYlYGZQOJSCBwDvj5a49wobPwKpJ4Bsw6GPQn+vfp8RkKIndsOn3htqfnz57NgwQIOP/xwIpEI8+fP58ILL2TOnDmUl3tjS9atW8fMmTP54x//yEEHHURpaSlnnnkmF110ERUVFZSUlHD++eczY8YMmdEodgC6oDsNQGmXykQH4XgaFauD9PX4J8wH1oMqQqk+SiqsPwxSL3WdBUb8b6tbVlTgeHT8htzIUK1Am5C2LNqMcjAgrKOUqvZca5eLwuUxWvkjAD4Oo4RH+qy5pcxJEJ+Mal6caz1SyruW4zNz+xktuTvJPSMFkOpnncPK6XDs+9D6FpTsCfoI3JLVGB1ewuVGgAyo7mPsXQi1ZsiETbRSJMeaBIp9mNHspB0zAJHRBK0/EnP2x7UyGL2t9pN5uu/Eq/M2SGVnhDrrofUsqHmt7/sQQuzUhszg+kAgwAMPPMBhhx3G1KlTueGGG7jwwgv53e9+l9snk8mwbNky4vF4btutt97Kcccdx+zZs/nMZz5DbW0tjzzyyGDcghAFlHleQdVzRykc08Jnu5gar5joa1einr8UZYzqO+ly092SLgANDUf2vm9/wlfjGtkkRYFrgnYNVobGsTFYyUb/MOp9U7LjsbxEyESTziZdABleJM0/+7qCd9+jrynIN3WVF7Jyu0bDa9wSI7+Pzj8mNfJLm7mHUTDyi6jIeMziZ9Frd8MxwQkCr4H5+GHoQKWXVOJNKnA7IHhaitDsFNbzDu5xV8OwvaBqGnz57xCqxFSTiZj1GL4rCmJXXZOq9WjQfcywdjeQ/1HsgNNHi50QYkjY4cd47QxkjJf4pNjpR8ikvkvG30TG8hFI2RTF0vlf7k8B60y4NNl38U2nBdZUbrIxCOMSWx9Pm+H162UD6DTCrCoeU7DPCNbjz5ZmUNRgs7Hg8wh/IsCX+79Q55u4zX8gXnw/ZihGIOF46zSWBMBUoDX+ZQ7tKyvw6QyWmaZ5eBWj93ocv+pngP2mtIa/z4MFD8LIPeCU28HdgH73StLOG8TSTRSdn0Q14VWfN8F6bSHGxP36PqWzArdjFoazAqUVxExotyGwB0x80Vs7srv0W9B4CF49D6DsVohcsOX3IIT42Abj97ckXtuBJF7iE+c2QvMmhYGjwIOArwQuauu/63BVSXYUelZoNtQ+vMWXX8x8PuRdylMvckDyASwcUJBp8bF0TH55IKVhsnEzNn9CUUWI60nye+LcAIDFgZTyDxRB0BnoyM76KznSqwvRF63RKkWU2dg8DwT4gJ9wCz5+yvcIZJMWkxIqWIxB//8Ote4gkzoJ7T6PMvbDF3gIpYb32K/9BycT/tV9BdvMO+7HmP31zT807cL70yD5HuB6iVvLAXDYK2Bt0tWaeR+Sz4BvMgSP2Py5hRDbhSReOylJvMSASP0HOo4E0tAagL+mwArBl+6D3b/c/7F2KzR+Cez3IXQsVP0K1JaVWFnGQp7kTgCUVky1TWYm/o7bGsNwmmgnQsOIKtAwcm0jpbtHe5zDZimaNiy9D2rj9dDxd4hvgHS2Xl7kc7DbU5tdp1Cj0dSjKKXJ1fwreRZfcR8hHTTRljcGLK1Pp1b9BCPtQLwNSmsLklLXfQs7fTHafYmuZizD/Cq+wAM9ruf+723sT+/j3TuAYWC9uQw1fuIWPTuWTITUiq4Bb/AuUHU9HH3Flh0vhPhEyaxGIUTfAp+Gqmx3VBVwQSv4wmBtQQJllcPIlza/Xy/W8j4KA42LVpo1vhJM34fo+A/R5o2Ur+2kvLUTBaQCva+NapFdzmfDD6Blnvd19//ydT4NiUUQ7rsLD0ChUIzAcWIMay3llIQ3kr0zHCRa4sPvZKjovJ3WxKuU/vxdMhNc9OhJBI/8N0ZgOK7zLJnUUUD3EfAOWq/s9XrG1LFYjzyMc/WPwDQxrvvxliddALXXwuo53tdp4EOg9GnInAC+niVuhBBDnyReQuysQptZFHo7qWE07/Ay4CU+w/GWvrFqridTfwvO6Awq6s1w9Fe/0f/JOv+arz0RBjJA11wXo3iLY9LJ0zGTXvLUUFFOusjrptSmorgIiosWYl8LzYFKsNYTiH2KysA7OPad4GqU9uLtYpqn97xI7EqI/whjLzAeGw/lb4FR2nO//pSfDG8sgEW3e+tgnuiC7yVYORmKvwLD/yp1u4TYxUjiJYTo154cQoIYK3ibSkZwGMdn10WMYdYkIPH/wFePUXwByhzZ/8msClwD7AigweoAIw7UXAzB3bc8KO2tj5oxTRJFQUwcFFCUyc9YRkHYjrPBGUYkVU/G/T4Z/k5RUqMAxwAnMBwz9HtM89jC8ztrIP6j/OXcDyH6HVTJvVseY5cjb4PQFDB+C8bb6AzYPhOz8zGMxF4w4d2tP6cQYqcliZcQol8KxUEcxUEcRZp6Ot0/4Y/fSnF6KcqYBJGnUeaWLZmVKnHoXsIrUwk+61MYI3+ydTEFf4ET2A2V1tkYPZsOWLVsh93Wr0UpUOqX+PxAyPvMcMFIOqjiTZIuAO2NU3NRbCwtIeXzofgXxXyPUm5BbVpgrT+GAZ8+B9oasDf8j/rxldh+C+W41H70PkG7Eayarbp/IcTOa8jU8RJCfLJSrOF9jmOd8VNWFrs0BivAXQ6Jy/M79TVXR6fRmScxzDcxHPLrCRlgV56w1bGY1kQoX4MqOoiiuMZBoYG4GcpnXy4UN6UxXFDZaxYUR9Wg3Bg4vRRdNaeAuRetxUUkfX60MnCVQZS7aGE4rdSS5LdbFbMuPpvm6gh2thCsNhTN1SV0qK+S5i9b/QyEEDsnSbyEEFukjcdxyXflNQfL8cokNHvrDG78Gnzkg/rdIbM4f6CzGt0yESd+HF1ZkeGSG99uWrMAsInzHn9gIfNoYPOV2y2rDqtsPjXheqq5h4h9CsP0g/iCr5GO7U5gHRjdEi2tFa5hFI6rb4vBquN7nlwpKH+LWCBcMAZLo3CJAh0kuBCHZX3Gp9G06etoyYyhPb07LcZFxEtCBddwfAaOuZAYp2Hz+mbvWQix85OuRiGGoo8egP+eCY4Dky+EyfO2+ZQm5V5tKgVojek6kNZg7QkbPp9f9sb+EJpPg9rsQPv4jaDXeWsYbnpSdQKGuRsAC7mZRl4HNOt4gUP5CZVs2ZqFRcyiKJvAAUSMS0CfVXgpgpjtCWj1BtYrg2we+IxXVV5t8uNQWXTqUiK009VEZ2gXQ+UzN5f1mBTOTtS6nkzqJFx3AX5SuYXFA/YHxIPDsI18vTLTclAZjZFxsYMLsIyDtuh+hRA7L2nxEmKo2fhvmH8StMchmoI3b4J1H2NQ+CYqOIFinSSi2xkW38jYNR9BHFT7T7ykywXagWYH2pZ6SRqATmTX3wFXQzzgJxoK0mqNJuV/iU63hFb3PNr1q0BXP6TBRt7ehmDPgO4D/VUxRJ1c9XllkP/pZ43tmXTljptHXAezXaguTYzGW6xIYTAOi56JUiZ1Htp9GUUSA53d2xNwUuQeBlDcEad0RZKSNWkC718KyW24ZyHETkFavIQYapbPzq0+k7PyNzDy5G06bTvjKFfZ1amLFLoSVD1oB1QQ6CR/3VgUNvwaqs+F0P+hUn/FIU4iHMTOFjq1fC3YmTStZiUtxouUA2l8pF0/ETdKGS0f/yeUMmDCCmi7A9xOMD8FS47wkq0gXkkLnf3T6nsm5lQ1m5V6LEt5i1F6KvuovUjxZ8DGz0koinoepJfjJZDZt5BLvkLGqaR4GUURFcwj2HB0LilTJOGjL8LE1R/zpoUQOwNJvIQYanxR71929zWZqz/Gotib0tmkKzvmKVVkEiqyoQUvmSlYA9r0CqIC+PbHLfsvpCd5SVfXmCmtsaLQUlaRO6rK3sjo9NpsMvJ/2G4Dlv/GjxevEYCK70DsfXgl2x0YAMqyn3dlPOmF/Z5mnNqfceyfex/knP4va52Ck7kEMFE42MpEoTCs0yk2bifSvcNVb9LpYH+0ubsSQuzkJPESYijpXOj9qx4NNOA1vFQo2P3q7XByhUbjYKI1BG2na7PHb0DCxWtWciDSLdkz67y6XUkXO5hNNpTC3+FAGRiug+U6VGU25I/R4CZ/AqnxUDQHjODmQ3RavTUPzeEQ/JS3bemF+c9t8rMeu+I2t+8yIaZ1MUqNQbtvY5gzCZiH971zcDoknuu2QVZwE2Kok8RLiKFk7Q+8ivAaGIuXXIRHb5dTW3yfdn6OiwUKHMNHcRyMqmMgUAW134eND0FyMZQcAxUn5o41jBDKmkNx873Ew35cv0GgJYPP3ZNxieFUNP8LA41tKpwScuOvVCoD0bMgej/UPtN/lXenEdbtB856733Z1VB+jbeIeJdw9k9FfqjV2Ke2y/PpopTCtE4AtqBMRuWl8FFX4qUgIIPrhRjqZHC9EENJyae8ZXgiQGn2Ff78djm1VsNxuw1Cz/h9rN99Lxj+GFT8HnwTYfjlMO7PUNlzPJk/+CeoXkAwMZbIughBdRrm6JcY1rY4W4ULTFtjJrz9lQ1mDFwL3Mxz4KzrP8Dog+DU59+3zfMGxU/6f2jl98ZzlUO3QVUw8m8Q3vfjPpJtVzwLav8AwUMg8nWoe3TwYhFCDAhp8RJiKBl1JSz8BdhNXqJhV8C0X22XUxsM77HNUrVbdQ7LdyCMWFq4Ucfzo54UqBQYdhVmcgN2OehspXvT/QMW1/QTYHYdotx7b+1H7Y/gjvRhptM9j/GVbVX8n4iyM72XEGKXIC1eQgw1+zfCHu0wuROmNW+30xbzBRTdF+Y2qOKv237ikm7jzxToIlDhDTgl1bmkC8DJXIuzUpGuH4fWiV4CPBlCx2TPE4Rhd4JSuOk/YhDzBtZ3H0IVPBhCM7Y9/m3RdAe8dzAsPx4yGwc3FiHEgJAWLyGGImv7DhjvMoolJJmPS5QwM1GY237SyPloXx1u7Ctoi3xXoNXSY1fDATO2CmdNDeaYjsIPlR9qngS3CVQJGNkq8clVXt2ubnTCQO3+PCgfA2LDNRB7CkKfhuofe2PVWp+Ald/M75N8BabW0yNYIcSQIv/ChRBbTKEIcQhFHLV9kq4ugc8WJl0A9jCU8encW7Mj/7Fh97K+IngJjVmTT7oAI3SaN44+O5hea1Al39yyWZLbQ8N50HwtJBdA609g/Une9s5NBvXHm8De/FJJQoidmyReQohBp1QZhnFhbqahSiusoifwBZ7H596MvxGsmLfv1hZcUP5JMOIxMCvRFKEil8CErVvgept0PlLwVicexF13ILr9cfCR73cIQi+LKgkhhhiltZbCMduoo6OD0tJS2tvbKSn5ZLp4hNgl2OvAXgq+vcGs8rZpjV41Bpy1uSoQVHwfVXHTIAa6FVYeACmvSKsGyIDqPs7fzL5GfhnK/ypdjUIMoMH4/S1jvIQQOw5rZM8lfJRCjVuDjr+OTr0EkZNRVs8ZljuskY/B6gPRugHtBxXrZR8dgdL7JekSYhcg/8qFEDsFFT4IVf69nSvpAvCPgt3qcUdfgVtBz95EA2johDVXDEJwQoiBJomXEEIMACNwHYb7Pa9ERtdPXhNw8ZZ2eu+n0PHOoMUnhBgYkngJIcQAUEphlN2CYc72Bnv58RKurmL7CvjwJ4MWnxBiYEjiJYQQA2nKwzD2BVgONFK4aLcxQHXFhBCDRhIvIYQYaBWHQUmN183YxQWGnzZIAQkhBookXkIIMRj2/avX2uUANl7i9dKvBzcmIcQnThIvIYQYDBWHwvAfQBzoBN4B3rkfOtYPcmBCiE+SJF5CiB2GTZQo72HTx5JAQ82wWfAesAxI49Xx8oUHOSghxCdJEi8hxA4hymIWMpN3OZmFfI4oSwc7pG3jZmDVRbBwP3j627Cyl1IRYz4N+5/tfa1M+PwvIFQ2oGEKIQaWLBm0HciSQUJsu7c4ljT5brYwk9mb+wcxom2gNbxZB/F13jguC3gS2HcefO2ynvvHm8EMQKB4gAMVYtc2GL+/pcVLCLFDsGnNv9EaK7YMVs6B9qcGL6iPK70Oouu8gfMuXjfiYcCfr+p9/3ClJF1C7CIk8RJC7BBK7DqqOzdQmmgHpRi2YQ203A/LPw/R+YMd3tZRoXx9ri4acJ3BiEYIsQORRbKFEIPOSf2TSU1/yS1jmDR8BDZmsusaGtD5PBTPGMQIt5K/EswQOIn8tqeBz5w4aCEJIXYMQ6bF64UXXkAp1evrjTfe6PO4z372sz32//a3vz2AkQshaPt2wdrRQTcDJWQLjLoQ3mdQwtom05dBaArEffBWJXzuN3DJvVt0qL1hA9F//5vM2rWfcJBCiIE2ZFq8DjnkEOrr6wu2XXnllTz77LMccMAB/R571llncd111+Xeh8MynVuIgWUWvtVeZQUIQt1PofTzgxHUtgnWwYz3vK+P2/LDos88w9qjjwbHAcOg7h//oHjWrE8mRiHEgBsyiZff76e2tjb3PpPJ8Le//Y3zzz8fpVQ/R3qJVvdjhRADyyh9EN10EEoBGrTr/anG3AnVJw12eAOqfu5cL+kCcF0avvMdJq5YMbhBCSG2myHT1bipxx9/nObmZk4//fTN7nvvvfcybNgw9txzTy6//HLi8Xi/+6dSKTo6OgpeQoiPTwUPBAU6AzoFZAAd2eWSLgAn+/OkuBiGD4eq5IfwxxsHOSohxPYyZBOvO+64g1mzZjFq1Kh+9/vGN77Bn//8Z55//nkuv/xy/vSnPzFnzpx+j5k3bx6lpaW5V11d3fYMXYhd00gHSg6CkghUXYrafRD+Q+MmSW48lNb2kUQ7v4ouWMV6YJSedBJFRVBXB6WlUFIC3PRDyGQGPBYhxPa3wxdQveyyy7j55pv73WfJkiVMnjw59/6jjz5izJgx/OUvf2H27Nlbdb3nnnuOmTNnsnz5ciZMmNDrPqlUilQqlXvf0dFBXV2dFFAVYieXqK9lQ2022VKKkvhkysIvDmgM2nFITbII+KBglMQDC2DvgwY0FiGGusEooLrDj/G6+OKLOe200/rdZ/z48QXv77rrLiorK/niF7+41debPn06QL+JVyAQIBAIbPW5hRA7MDdBIhwDQrmMJ+ZbQtkAh6FMk2CNH1rThR+Mn9z7AUKIncoOn3hVVVVRVVW1xftrrbnrrrs49dRT8fl8W329RYsWATB8+PCtPlYIsRNTfqx0twKnWuOz/bD1P0a23XMdcGAQ7Oz7WZ+HYmlNF2IoGHJjvJ577jlWrlzJN7/5zR6frVu3jsmTJ/P6668DsGLFCq6//noWLlzIqlWrePzxxzn11FP5zGc+w9577z3QoQshBpMyiVg3UNyewLAdAgmXCuvJwYklEIB3NLyXfd06SHEIIba7Hb7Fa2vdcccdHHLIIQVjvrpkMhmWLVuWm7Xo9/t55plnuO2224jFYtTV1TF79myuuOKKgQ5bCLEDUOUXUqH/jwpsCPsHOxwhxBC0ww+u3xkMxuA8IYQQQmybwfj9PeS6GoUQQgghdlSSeAkhhBBCDBBJvIQQQgghBogkXkIIIYQQA0QSLyGEEEKIASKJlxBCCCHEAJHESwghhBBigEjiJYQQQggxQCTxEkIIIYQYIJJ4CSGEEEIMEEm8hBBCCCEGiCReQgghhBADRBIvIYQQQogBIomXEEIIIcQAkcRLCCGEEGKASOIlhBBCCDFAJPESQgghhBggkngJIYQQQgwQSbyEEEIIIQaIJF5CCCGEEANEEi8hhBBCiAEiiZcQQgghxACRxEsIIYQQYoBYgx2AEGIXl6qHhr+ArxxqTwLDN9gRCSHEJ0YSLyHE4ElvgDcng9kBDtD0KOzz6GBHJYQQnxjpahRCDJ639wCrAxTgBxKPQaZ9kIMSQohPjiReQojBsfYmcDfm37t4bfBmeLAiEkKIT5wkXkKIgWdnYP3lvXzglzFeQoghTRIvIcTAa/5h79tHXDGwcQghxACTxEsIMfD8E3puM30w8sqBj0UIIQaQJF5CiIFXfjaUBLxB9eANrJ8WG8yIhBBiQEg5CSHE4JiShNjz4HZC5IuDHY0QQgwISbyEEIOn6PDBjkAIIQaUdDUKIYQQQgyQnSbxuuGGGzjkkEMIh8OUlZX1us+aNWs49thjCYfDVFdXc8kll2Dbdr/nbWlp4eSTT6akpISysjLOPPNMotHoJ3AHQgghhNjV7TSJVzqd5oQTTuCcc87p9XPHcTj22GNJp9O8+uqr3HPPPdx9991cddVV/Z735JNPZvHixTz99NM88cQTvPTSS3zrW9/6JG5BCCGEELs4pbXWgx3E1rj77ru54IILaGtrK9j+z3/+k+OOO47169dTU1MDwG9+8xu+//3vs2HDBvx+f49zLVmyhD322IM33niDAw44AICnnnqKz3/+83z00UeMGDFii2Lq6OigtLSU9vZ2SkpKtu0GhRBCCDEgBuP3907T4rU58+fPZ6+99solXQCzZs2io6ODxYsX93lMWVlZLukCOPLIIzEMgwULFvR5rVQqRUdHR8FLCCGEEGJzhkzi1dDQUJB0Abn3DQ0NfR5TXV1dsM2yLCoqKvo8BmDevHmUlpbmXnV1ddsYvRBCCCF2BYOaeF122WUopfp9LV26dDBD7NXll19Oe3t77rV27drBDkkIIYQQO4FBreN18cUXc9ppp/W7z/jx47foXLW1tbz++usF2xobG3Of9XVMU1NTwTbbtmlpaenzGIBAIEAgENiiuIQQQgghugxq4lVVVUVVVdV2OdeMGTO44YYbaGpqynUfPv3005SUlLDHHnv0eUxbWxsLFy5k//33B+C5557DdV2mT5++XeISQgghhOiy04zxWrNmDYsWLWLNmjU4jsOiRYtYtGhRrubWUUcdxR577MEpp5zC22+/zb/+9S+uuOIKzj333Fzr1Ouvv87kyZNZt24dAFOmTOHoo4/mrLPO4vXXX+eVV17hvPPO4+tf//oWz2gUQgghhNhSO82SQVdddRX33HNP7v2+++4LwPPPP89nP/tZTNPkiSee4JxzzmHGjBkUFRUxd+5crrvuutwx8XicZcuWkclkctvuvfdezjvvPGbOnIlhGMyePZuf//znA3djQgghhNhl7HR1vHZEUsdLCCGE2PkMxu/vnabFa0fWlbtKPS8hhBBi59H1e3sg26Ak8doOOjs7AaSelxBCCLET6uzspLS0dECuJV2N24Hruqxfv55IJIJSarDD2WF0dHRQV1fH2rVrpQt2K8mz2zby/D4+eXYfnzy7bTMYz09rTWdnJyNGjMAwBma+obR4bQeGYTBq1KjBDmOHVVJSIj+EPiZ5dttGnt/HJ8/u45Nnt20G+vkNVEtXl52mnIQQQgghxM5OEi8hhBBCiAEiiZf4xAQCAa6++mpZXuljkGe3beT5fXzy7D4+eXbbZld5fjK4XgghhBBigEiLlxBCCCHEAJHESwghhBBigEjiJYQQQggxQCTxEkIIIYQYIJJ4iQExduxYlFIFr5tuummww9ph/fKXv2Ts2LEEg0GmT5/O66+/Ptgh7fCuueaaHt9jkydPHuywdlgvvfQSX/jCFxgxYgRKKR577LGCz7XWXHXVVQwfPpxQKMSRRx7JBx98MDjB7mA29+xOO+20Ht+LRx999OAEu4OZN28eBx54IJFIhOrqar785S+zbNmygn2SySTnnnsulZWVFBcXM3v2bBobGwcp4u1PEi8xYK677jrq6+tzr/PPP3+wQ9ohPfjgg1x00UVcffXVvPXWW0ybNo1Zs2bR1NQ02KHt8KZOnVrwPfbyyy8Pdkg7rFgsxrRp0/jlL3/Z6+c//vGP+fnPf85vfvMbFixYQFFREbNmzSKZTA5wpDuezT07gKOPPrrge/H+++8fwAh3XC+++CLnnnsur732Gk8//TSZTIajjjqKWCyW2+fCCy/k73//Ow899BAvvvgi69ev5/jjjx/EqLczLcQAGDNmjL711lsHO4ydwkEHHaTPPffc3HvHcfSIESP0vHnzBjGqHd/VV1+tp02bNthh7JQA/eijj+beu66ra2tr9S233JLb1tbWpgOBgL7//vsHIcId16bPTmut586dq7/0pS8NSjw7m6amJg3oF198UWvtfZ/5fD790EMP5fZZsmSJBvT8+fMHK8ztSlq8xIC56aabqKysZN999+WWW27Btu3BDmmHk06nWbhwIUceeWRum2EYHHnkkcyfP38QI9s5fPDBB4wYMYLx48dz8skns2bNmsEOaae0cuVKGhoaCr4PS0tLmT59unwfbqEXXniB6upqJk2axDnnnENzc/Ngh7RDam9vB6CiogKAhQsXkslkCr73Jk+ezOjRo4fM954ski0GxHe/+132228/KioqePXVV7n88supr6/nZz/72WCHtkPZuHEjjuNQU1NTsL2mpoalS5cOUlQ7h+nTp3P33XczadIk6uvrufbaa/n0pz/Nu+++SyQSGezwdioNDQ0AvX4fdn0m+nb00Udz/PHHM27cOFasWMEPfvADjjnmGObPn49pmoMd3g7DdV0uuOACDj30UPbcc0/A+97z+/2UlZUV7DuUvvck8RIf22WXXcbNN9/c7z5Llixh8uTJXHTRRblte++9N36/n7PPPpt58+YN+eUhxMA45phjcl/vvffeTJ8+nTFjxvCXv/yFM888cxAjE7uar3/967mv99prL/bee28mTJjACy+8wMyZMwcxsh3Lueeey7vvvrvLjcWUxEt8bBdffDGnnXZav/uMHz++1+3Tp0/Htm1WrVrFpEmTPoHodk7Dhg3DNM0eM3gaGxupra0dpKh2TmVlZey+++4sX758sEPZ6XR9rzU2NjJ8+PDc9sbGRvbZZ59BimrnNX78eIYNG8by5csl8co677zzeOKJJ3jppZcYNWpUbnttbS3pdJq2traCVq+h9DNQxniJj62qqorJkyf3+/L7/b0eu2jRIgzDoLq6eoCj3rH5/X72339/nn322dw213V59tlnmTFjxiBGtvOJRqOsWLGiIHEQW2bcuHHU1tYWfB92dHSwYMEC+T78GD766COam5vlexGvTMl5553Ho48+ynPPPce4ceMKPt9///3x+XwF33vLli1jzZo1Q+Z7T1q8xCdu/vz5LFiwgMMPP5xIJML8+fO58MILmTNnDuXl5YMd3g7noosuYu7cuRxwwAEcdNBB3HbbbcRiMU4//fTBDm2H9r3vfY8vfOELjBkzhvXr13P11VdjmiYnnXTSYIe2Q4pGowWtgStXrmTRokVUVFQwevRoLrjgAn70ox+x2267MW7cOK688kpGjBjBl7/85cELegfR37OrqKjg2muvZfbs2dTW1rJixQouvfRSJk6cyKxZswYx6h3Dueeey3333cff/vY3IpFIbtxWaWkpoVCI0tJSzjzzTC666CIqKiooKSnh/PPPZ8aMGRx88MGDHP12MtjTKsXQt3DhQj19+nRdWlqqg8GgnjJlir7xxht1Mpkc7NB2WLfffrsePXq09vv9+qCDDtKvvfbaYIe0wzvxxBP18OHDtd/v1yNHjtQnnniiXr58+WCHtcN6/vnnNdDjNXfuXK21V1Liyiuv1DU1NToQCOiZM2fqZcuWDW7QO4j+nl08HtdHHXWUrqqq0j6fT48ZM0afddZZuqGhYbDD3iH09twAfdddd+X2SSQS+jvf+Y4uLy/X4XBYf+UrX9H19fWDF/R2prTWeuDTPSGEEEKIXY+M8RJCCCGEGCCSeAkhhBBCDBBJvIQQQgghBogkXkIIIYQQA0QSLyGEEEKIASKJlxBCCCHEAJHESwghhBBigEjiJYQQQggxQCTxEkIMSaeddhpKKb797W/3+Ozcc89FKZVb5L1rX6UUPp+PmpoaPve5z3HnnXfium6v5581axamafLGG2/0+Oyll17iC1/4AiNGjEApxWOPPbY9b00IsROTxEsIMWTV1dXxwAMPkEgkctuSyST33Xcfo0ePLtj36KOPpr6+nlWrVvHPf/6Tww8/nP/7v//juOOOw7btgn3XrFnDq6++ynnnncedd97Z47qxWIxp06bxy1/+8pO5MSHETksWyRZCDFn77bcfK1as4JFHHuHkk08G4JFHHmH06NGMGzeuYN9AIEBtbS0AI0eOZL/99uPggw9m5syZ3H333Xzzm9/M7XvXXXdx3HHHcc4553DwwQfzs5/9jFAolPv8mGOO4ZhjjhmAOxRC7GykxUsIMaSdccYZ3HXXXbn3d955J6effvoWHXvEEUcwbdo0Hnnkkdw2rTV33XUXc+bMYfLkyUycOJGHH354u8cthBiaJPESQgxpc+bM4eWXX2b16tWsXr2aV155hTlz5mzx8ZMnT2bVqlW598888wzxeJxZs2blzn/HHXds77CFEEOUdDUKIYa0qqoqjj32WO6++2601hx77LEMGzZsi4/XWqOUyr2/8847OfHEE7Es78fnSSedxCWXXMKKFSuYMGHCdo9fCDG0SIuXEGLIO+OMM7j77ru55557OOOMM7bq2CVLluTGg7W0tPDoo4/yq1/9CsuysCyLkSNHYtt2r4PshRBiU5J4CSGGvKOPPpp0Ok0mk8l1EW6J5557jv/973/Mnj0bgHvvvZdRo0bx9ttvs2jRotzrpz/9KXfffTeO43xStyCEGCKkq1EIMeSZpsmSJUtyX/cmlUrR0NCA4zg0Njby1FNPMW/ePI477jhOPfVUAO644w6++tWvsueeexYcW1dXx+WXX85TTz3FscceSzQaZfny5bnPV65cyaJFi6ioqOhRxkIIsWuRxEsIsUsoKSnp9/OnnnqK4cOHY1kW5eXlTJs2jZ///OfMnTsXwzBYuHAhb7/9Nr///e97HFtaWsrMmTO54447OPbYY3nzzTc5/PDDc59fdNFFAMydO5e77757u96XEGLnorTWerCDEEIIIYTYFcgYLyGEEEKIASKJlxBCCCHEAJHESwghhBBigEjiJYQQQggxQCTxEkIIIYQYIJJ4CSGEEEIMEEm8hBBCCCEGiCReQgghhBADRBIvIYQQQogBIomXEEIIIcQAkcRLCCGEEGKASOIlhBBCCDFA/j/rQusqB2EEowAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAHHCAYAAACyWSKnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5jUVNfAf0mmbl+20HsvYkFEbFgQRMGu2MXee/98VfS1YRcVu+irIAIKKoqICooFCwKiIL237X1qcr8/7uyU3dk+2yC/55lnJsnNvSczmeTk3FMUIYTAxMTExMTExGQfQm1uAUxMTExMTExMYo2p4JiYmJiYmJjsc5gKjomJiYmJick+h6ngmJiYmJiYmOxzmAqOiYmJiYmJyT6HqeCYmJiYmJiY7HOYCo6JiYmJiYnJPoep4JiYmJiYmJjsc5gKjomJiYmJick+h6ngtHK6devGhAkTmluMSnIsXrwYRVFYvHhxk8rRXOPWlffff59+/fphtVpJSUmp8/5btmxBURSeeeaZ2Au3j3Hsscdy7LHHNrcYLYKGnjclJSVceeWVtGvXDkVRuPXWW2Mr4D7E9u3bcTgc/PTTT80tSqvG5/PRuXNnpkyZUud99xsF591330VRFBRF4ccff6y0XQhB586dURSFsWPHRmwr309RFCwWC23atGHIkCHccsstrF69utpxp0yZgqIoDBs2LKbHs78zZcoU3n333eYWo178+++/TJgwgZ49e/Lmm2/yxhtvVNn2yy+/ZOLEiU0nnEnM2LVrFxMnTmTFihXNLUrMePzxx3n33Xe57rrreP/997n44osbZZzW/P8u55FHHmHYsGEceeSRwQev2rxiwerVq5k4cSJbtmypVfuJEydGyBAXF0eXLl0YN24cU6dOxePx1FuWhl7DrFYrt99+O4899hhut7tO+1rqPWorxeFwMH36dI466qiI9d9//z07duzAbrdH3e/EE0/kkksuQQhBYWEhK1eu5L333mPKlClMmjSJ22+/Pep+06ZNo1u3bvz2229s2LCBXr16xfR41q5di6q2PD31mGOOweVyYbPZGqX/KVOmkJ6eXsl61djjxoLFixdjGAYvvvhijefDl19+ySuvvGIqOa2QXbt28fDDD9OtWzcOOuig5hYnJnz33XccfvjhPPTQQ406TlX/79ZCdnY27733Hu+99x4A/fv35/33349oc99995GQkMD9998f8/FXr17Nww8/zLHHHku3bt1qvd+rr75KQkICHo+HnTt3smDBAi6//HJeeOEF5s2bR+fOnessSyyuYZdddhn33nsv06dP5/LLL6/1fvudgnPyyScza9YsJk+ejMUSOvzp06czZMgQcnJyou7Xp08fLrroooh1Tz75JOPGjeOOO+6gX79+nHzyyRHbN2/ezM8//8wnn3zCNddcw7Rp02J+YahKIWtuVFXF4XDsN+PWhaysLIB6TU3t7wghcLvdOJ3O5halVWEYBl6vt8H9ZGVlMWDAgBhI1PQ05bnzwQcfYLFYGDduHABt27aNev9IT0+vtL45Ofvss0lPTw8uP/jgg0ybNo1LLrmEc845h6VLlzaLXCkpKYwaNYp33323TgpOy3v0b2TOP/98cnNzWbhwYXCd1+tl9uzZXHDBBXXqKy0tjRkzZmCxWHjssccqbZ82bRqpqamccsopnH322UybNq1W/Y4dO5YePXpE3TZ8+HAOPfTQ4HJF3xefz8fDDz9M7969cTgcpKWlcdRRR0Ucb1U+CRMmTKik7T/zzDMcccQRpKWl4XQ6GTJkCLNnz67xGCr6woRPEVZ8hcsydepUjj/+eDIzM7Hb7QwYMIBXX301ou9u3brxzz//8P3331fqoyofnFmzZjFkyBCcTmfworJz585Kx5+QkMDOnTs5/fTTSUhIICMjgzvvvBNd12s8ZpBPngMHDsRut9OhQwduuOEGCgoKImQvV3IzMjJQFKXKJ5sJEybwyiuvAFRrwn7jjTfo2bMndrudoUOH8vvvv1dq8++//3L22WfTpk0bHA4Hhx56KJ999lmNxxPusxGrccrN4RUpP0fCzerdunVj7NixLFiwgEMPPRSn08nrr78O1O5cqQuKonDjjTcyd+5cBg0ahN1uZ+DAgXz11VeV2u7cuZPLL7+ctm3bBtu98847we2LFy9m6NChgHz6LP/t3n33XSZPnoymaRHnxbPPPouiKBGWYF3XSUxM5J577gmuKy0t5Y477qBz587Y7Xb69u3LM888gxAi6rFMmzYteD5GOw6QN/6rr74am83GJ598ErVN+f9q8+bNfPHFF8HjKf+tPB4PDz30EL169cJut9O5c2fuvvvuSlMbDf1/x+rcKSgo4NZbbw1+j7169WLSpEkYhhHR74wZMxgyZAiJiYkkJSVxwAEH8OKLL0b9jsKZO3cuw4YNIyEhoca24cRCrnfffZdzzjkHgOOOOy74HdbXL/HCCy/kyiuv5Ndff424jyxZsoRzzjmHLl26BH/z2267DZfLFWxT0zWsLveXE088kR9//JG8vLxay77fWXC6devG8OHD+fDDDxkzZgwA8+fPp7CwkPPOO4/JkyfXqb8uXbowYsQIFi1aRFFREUlJScFt06ZN48wzz8Rms3H++efz6quv8vvvvwcvfFUxfvx4Lrnkkkptt27dytKlS3n66aer3HfixIk88cQTXHnllRx22GEUFRXxxx9/8Oeff3LiiSfW6dgAXnzxRU499VQuvPBCvF4vM2bM4JxzzmHevHmccsopte7nmGOOqWSi3bp1K//5z3/IzMwMrnv11VcZOHAgp556KhaLhc8//5zrr78ewzC44YYbAHjhhRe46aabIsy7bdu2rXLsd999l8suu4yhQ4fyxBNPsHfvXl588UV++uknli9fHmFJ0XWd0aNHM2zYMJ555hm++eYbnn32WXr27Ml1111X7TFOnDiRhx9+mJEjR3Ldddexdu3a4G/+008/YbVaeeGFF/jf//7HnDlzgubgwYMHR+3vmmuuYdeuXSxcuLDSd1fO9OnTKS4u5pprrkFRFJ566inOPPNMNm3ahNVqBeCff/7hyCOPpGPHjtx7773Ex8czc+ZMTj/9dD7++GPOOOOMao+rKceJxtq1azn//PO55ppruOqqq+jbty9Qu3Olrvz444988sknXH/99SQmJjJ58mTOOusstm3bRlpaGgB79+7l8MMPDyoRGRkZzJ8/nyuuuIKioiJuvfVW+vfvzyOPPMKDDz7I1VdfzdFHHw3AEUccQWFhIYZh8OOPPwb9/ZYsWYKqqixZsiQoy/LlyykpKeGYY44BpCJy6qmnsmjRIq644goOOuggFixYwF133cXOnTt5/vnnI47lu+++Y+bMmdx4442kp6dHnarQdZ3LL7+cjz76iDlz5lT5ny6fYrntttvo1KkTd9xxByCVdMMwOPXUU/nxxx+5+uqr6d+/P6tWreL5559n3bp1zJ07N9hPY/y/qyPauVNWVsaIESPYuXMn11xzDV26dOHnn3/mvvvuY/fu3bzwwgsALFy4kPPPP58TTjiBSZMmAbBmzRp++uknbrnllirH9Pl8/P777zVeLyoSK7mOOeYYbr75ZiZPnsz//d//0b9/f4Dge324+OKLeeONN/j666+D95FZs2ZRVlbGddddR1paGr/99hsvvfQSO3bsYNasWUDN17C63F+GDBmCEIKff/65kp9slYj9hKlTpwpA/P777+Lll18WiYmJoqysTAghxDnnnCOOO+44IYQQXbt2FaecckrEvoC44YYbquz7lltuEYBYuXJlcN0ff/whALFw4UIhhBCGYYhOnTqJW265pUZZCwsLhd1uF3fccUfE+qeeekooiiK2bt0aXNe1a1dx6aWXBpcPPPDASvJXZMSIEWLEiBGV1l966aWia9euEevKv6NyvF6vGDRokDj++OMj1leUY9GiRQIQixYtiiqDy+USQ4YMER06dBC7d++ucjwhhBg9erTo0aNHxLqBAwdGPYaK43q9XpGZmSkGDRokXC5XsN28efMEIB588MHguksvvVQA4pFHHono8+CDDxZDhgyJehzlZGVlCZvNJkaNGiV0XQ+uf/nllwUg3nnnneC6hx56SAAiOzu72j6FEOKGG24Q0f6mmzdvFoBIS0sTeXl5wfWffvqpAMTnn38eXHfCCSeIAw44QLjd7uA6wzDEEUccIXr37l3t+I0xTvnxV6T8P7p58+bguq5duwpAfPXVV5Xa1/Zcqep8rwggbDab2LBhQ3DdypUrBSBeeuml4LorrrhCtG/fXuTk5ETsf95554nk5OSgXL///rsAxNSpUyPa6boukpKSxN133y2EkN9RWlqaOOecc4SmaaK4uFgIIcRzzz0nVFUV+fn5Qggh5s6dKwDx6KOPRvR39tlnC0VRIuQGhKqq4p9//oloW/57Pv3008Ln84nx48cLp9MpFixYUOP3I0T06+P7778vVFUVS5YsiVj/2muvCUD89NNPwXUN/X/H4tz573//K+Lj48W6desi1t97771C0zSxbds2IYS8riclJQm/319pvOrYsGFDpXMmGhWPMZZyzZo1q9rrb0Vquibl5+cLQJxxxhnBddF+yyeeeKLSPaqqa1i0Pqq6vwghxK5duwQgJk2aVKtjEkKI/W6KCuDcc8/F5XIxb948iouLmTdvXp2np8IpN0MWFxcH102bNo22bdty3HHHAdI8N378eGbMmFHjdEdSUhJjxoxh5syZEabnjz76iMMPP5wuXbpUuW9KSgr//PMP69evr/fxhBM+X52fn09hYSFHH300f/75Z4P6vf7661m1ahUff/wx7dq1izpeYWEhOTk5jBgxgk2bNlFYWFjncf744w+ysrK4/vrrI3xzTjnlFPr168cXX3xRaZ9rr702Yvnoo49m06ZN1Y7zzTff4PV6ufXWWyOcvq+66iqSkpKijhMLxo8fT2pqaoSsQFDevLw8vvvuO84991yKi4vJyckhJyeH3NxcRo8ezfr16ytN1TXnONHo3r07o0ePrrQ+1ucKwMiRI+nZs2dwefDgwSQlJQWPUwjBxx9/zLhx4xBCBI8zJyeH0aNHU1hYWON/Q1VVjjjiCH744QdAPn3n5uZy7733IoTgl19+AaRVZ9CgQUEL45dffommadx8880R/d1xxx0IIZg/f37E+hEjRlTpL+P1eoNPyl9++SWjRo2q/ZdUgVmzZtG/f3/69esX8X0cf/zxACxatCjYtjF+s+qIdu7MmjWLo48+mtTU1Ah5R44cia7rwd8lJSWF0tLSiGmZ2pCbmwsQ8X+pDY0tV0OIdo8L/y1LS0vJycnhiCOOQAjB8uXLa9VvXe4v5d9nVX6y0djvpqhAmlVHjhzJ9OnTKSsrQ9d1zj777Hr3V1JSAkBiYiIgzb4zZszguOOOY/PmzcF2w4YN49lnn+Xbb7+t8YIyfvx45s6dyy+//MIRRxzBxo0bWbZsWdBMWRWPPPIIp512Gn369GHQoEGcdNJJXHzxxVVOg9TEvHnzePTRR1mxYkXEfHpDwhlff/11pk6dyuuvv87hhx8ese2nn37ioYce4pdffqGsrCxiW2FhIcnJyXUaa+vWrQDBaY1w+vXrVyllgMPhICMjI2Jdamoq+fn59RrHZrPRo0eP4PZYU1HZLb8IlMu7YcMGhBA88MADPPDAA1H7yMrKomPHji1inGh079496vpYnytQ+Tgh8vfPzs6moKCAN954o8rw/nIn8uo4+uijmThxIi6XiyVLltC+fXsOOeQQDjzwQJYsWRL0Nzj33HOD+2zdupUOHToErzPllE89VDzHqvreAJ544glKSkqYP39+g3MErV+/njVr1lT635QT/n00xm9WHdG+g/Xr1/PXX3/VKO/111/PzJkzGTNmDB07dmTUqFGce+65nHTSSbUaW1Twi6qJppKrPlS8xwFs27aNBx98kM8++6zS9bG2ympd7i/l32dd7j37pYIDcMEFF3DVVVexZ88exowZ06CIlr///htN04J/pu+++47du3czY8YMZsyYUan9tGnTalRwxo0bR1xcHDNnzuSII45g5syZqKoadB6rimOOOYaNGzfy6aef8vXXX/PWW2/x/PPP89prr3HllVcC8gSJ9ueraFlasmQJp556KscccwxTpkyhffv2WK1Wpk6dyvTp06uVoyp+++03brnlFq688kquvvrqiG0bN27khBNOoF+/fjz33HN07twZm83Gl19+yfPPP1/J0a4x0DSt0ceIJVXJW/77ln9nd955Z1QrCFCr1AWxHKeqC1RVls1oUS+Nda7U9jgvuugiLr300qhta/MwcdRRR+Hz+fjll19YsmRJ0CJ29NFHs2TJEv7991+ys7OD6+tDddFCo0eP5quvvuKpp57i2GOPbVDkoWEYHHDAATz33HNRt5eHFsfiN4vFuWMYBieeeCJ333131H369OkDQGZmJitWrGDBggXMnz+f+fPnM3XqVC655JJg+Hc0yn21anooamq5GsLff/8NhP7Duq5z4oknkpeXxz333EO/fv2Ij49n586dTJgwoVa/ZV3vL+XfZ3iUV03stwrOGWecwTXXXMPSpUv56KOP6t3Ptm3b+P777xk+fHhQu502bRqZmZlB7/FwPvnkE+bMmcNrr71W7QUoPj6esWPHMmvWLJ577jk++ugjjj76aDp06FCjTG3atOGyyy7jsssuCzopTpw4MajgpKamRp1yqfgE+PHHH+NwOFiwYEFEOPrUqVNrlCEa2dnZnH322Rx00EFRv5vPP/8cj8fDZ599FvEkHW7iLqe2WnzXrl0B6WxYbjIvZ+3atcHtDSV8nPAIOK/Xy+bNmxk5cmS9+m1o4q9yWaxWa71liPU45dafgoKCiAeLuli56nKuxJKMjAwSExPRdb3G46zutzvssMOw2WwsWbKEJUuWcNdddwHyAeXNN9/k22+/DS6X07VrV7755huKi4sjnqT//fff4Pbacvjhh3PttdcyduxYzjnnHObMmRORNqMu9OzZk5UrV3LCCSdUe8yx+H/H4tzp2bMnJSUltfo/2Gw2xo0bx7hx4zAMg+uvv57XX3+dBx54oMoHgy5duuB0OiOs900tV6wSBpZT7iBc/vCyatUq1q1bx3vvvccll1wSbBdt2qwqWep6fyn/PuviLL1f+uCAnFN89dVXmThxYjBXQV3Jy8vj/PPPR9f1oLe/y+Xik08+YezYsZx99tmVXjfeeCPFxcW1CtEdP348u3bt4q233mLlypWMHz++xn3K53/Dj7NXr14R5r+ePXsGnxDLWblyZaWU4pqmoShKxNPRli1bIqIiaouu65x33nl4vV4+/vjjqIn4yp+ew61LhYWFUU/4+Pj4iDDbqjj00EPJzMzktddei/gO5s+fz5o1a+oUCVYdI0eOxGazMXny5Aj53377bQoLC+s9Tnx8PECtjjUamZmZHHvssbz++uvs3r270vbwc6Ah1GWcch+Xcp8CkHP4dXn6rMu5Eks0TeOss87i448/Dj7VhhN+nNX9dg6Hg6FDh/Lhhx+ybdu2CAuOy+Vi8uTJ9OzZk/bt2wf3Ofnkk9F1nZdffjmir+effx5FUYJRobVl5MiRzJgxg6+++oqLL7643lavc889l507d/Lmm29W2uZyuSgtLQVi8/+Oxblz7rnn8ssvv7BgwYJK2woKCvD7/UDla6mqqkHrXHWZfa1WK4ceeih//PFHrWWKtVwNvW6EM336dN566y2GDx/OCSecAET/LYUQUUPoq5KlrveXZcuWoSgKw4cPr7Xs+60FB6jSxByNdevW8cEHHyCEoKioiJUrVzJr1ixKSkp47rnngvOfn332GcXFxZx66qlR+zn88MPJyMhg2rRpNSosJ598MomJidx5553BC2tNDBgwgGOPPZYhQ4bQpk0b/vjjD2bPns2NN94YbHP55Zfz3HPPMXr0aK644gqysrJ47bXXGDhwIEVFRcF2p5xySvDYLrjgArKysnjllVfo1asXf/31V22+tiCvvfYa3333Hddee22lJ7a2bdty4oknMmrUqOCTyTXXXENJSQlvvvkmmZmZlW6aQ4YM4dVXX+XRRx+lV69eZGZmVrLQgLzYTJo0icsuu4wRI0Zw/vnnB8PEu3Xrxm233Van46iKjIwM7rvvPh5++GFOOukkTj31VNauXcuUKVMYOnRovZN5DRkyBICbb76Z0aNHo2ka5513Xp36eOWVVzjqqKM44IADuOqqq+jRowd79+7ll19+YceOHaxcubJestV3nFGjRtGlSxeuuOIK7rrrLjRN45133iEjI4Nt27bVaqy6nCux5sknn2TRokUMGzaMq666igEDBpCXl8eff/7JN998E8zT0bNnT1JSUnjttddITEwkPj6eYcOGBaeyjz76aJ588kmSk5M54IADAKko9u3bl7Vr11bK4jtu3DiOO+447r//frZs2cKBBx7I119/zaeffsqtt94a4RxdW04//fTg9EZSUlIwT0xduPjii5k5c2bwv33kkUei6zr//vsvM2fODOahicX/Oxbnzl133cVnn33G2LFjmTBhAkOGDKG0tJRVq1Yxe/ZstmzZQnp6OldeeSV5eXkcf/zxdOrUia1bt/LSSy9x0EEH1WhFOO2007j//vsrpQ5pKrkOOuggNE1j0qRJFBYWYrfbg/mHqmP27NkkJCTg9XqDmYx/+uknDjzwwGDoN0j/xZ49e3LnnXeyc+dOkpKS+Pjjj6NOy1V1Davr/WXhwoUceeSRwSnAWlHreKtWTniYeHVUFSZe/lJVVaSkpIiDDz5Y3HLLLZXCMMeNGyccDocoLS2tcowJEyYIq9VaKcw0GhdeeKEAxMiRI6uUNzw8+9FHHxWHHXaYSElJEU6nU/Tr10889thjwuv1Ruz3wQcfiB49egibzSYOOuggsWDBgqhh4m+//bbo3bu3sNvtol+/fmLq1KlRQzVrChMv3yfaKzxU8rPPPhODBw8WDodDdOvWTUyaNEm88847lUJA9+zZI0455RSRmJgY0UdV4ekfffSROPjgg4Xdbhdt2rQRF154odixY0dEm0svvVTEx8dX+o6rCk2Nxssvvyz69esnrFaraNu2rbjuuuuCYb4V+6tNmLjf7xc33XSTyMjIEIqiBOUID/etCCAeeuihiHUbN24Ul1xyiWjXrp2wWq2iY8eOYuzYsWL27NnVjt9Y4yxbtkwMGzZM2Gw20aVLF/Hcc89VGepbVdqD2p4rdQkTj5YOouK5LYQQe/fuFTfccIPo3LmzsFqtol27duKEE04Qb7zxRkS7Tz/9VAwYMEBYLJZKIeNffPGFAMSYMWMi9rnyyisFIN5+++1KshQXF4vbbrtNdOjQQVitVtG7d2/x9NNPC8MwanUsVf2eU6ZMEYC48847o3434d9FtN/D6/WKSZMmiYEDBwq73S5SU1PFkCFDxMMPPywKCwuD7Rr6/xYiNudOcXGxuO+++0SvXr2EzWYT6enp4ogjjhDPPPNM8Fo5e/ZsMWrUKJGZmRkc65prrolIa1EVe/fuFRaLRbz//vtVtokWCh9Lud58803Ro0cPoWlajSHjFa/PDodDdOrUSYwdO1a88847Eakfylm9erUYOXKkSEhIEOnp6eKqq64KplUIP8+ruoYJUfv7S0FBgbDZbOKtt96q8hiioQhRR1dvExMTExMTk2q54oorWLduXUTyRpP68cILL/DUU0+xcePGOpXaMBUcExMTExOTGLNt2zb69OnDt99+y5FHHtnc4rRafD4fPXv25N577+X666+v076mgmNiYmJiYmKyz7HfRlGZmJiYmJiY7LuYCo6JiYmJiYnJPoep4JiYmJiYmJjsc7RaBefJJ59EURRuvfXW5hbFxMTExMTEpIXRKhP9/f7777z++ut1LiBpGAa7du0iMTEx5qmsTUxMTExMTBoHIQTFxcV06NABVa2dbabVKTglJSVceOGFvPnmmzz66KN12nfXrl3Bwm8mJiYmJiYmrYvt27fTqVOnWrVtdQrODTfcwCmnnMLIkSPrrOCUF6jbvn17rdNnm5iYmJiYmDQvRUVFdO7cOaLQbE20KgVnxowZ/Pnnn/z++++1au/xeCKKohUXFwOQlJRkKjgmJiYmJiatjLq4l7QaJ+Pt27dzyy23MG3aNBwOR632eeKJJ0hOTg6+zOkpExMTExOT/YNWk8l47ty5nHHGGcEy7QC6rqMoCqqq4vF4IrZBZQtOuYmrsLDQtOCYmJiYmJi0EoqKikhOTq7T/bvVTFGdcMIJrFq1KmLdZZddRr9+/bjnnnsqKTcAdrsdu93eVCKamJiYmJiYtBBajYKTmJjIoEGDItbFx8eTlpZWab2JiYmJiYnJ/k2r8cExMTExMTExMaktrcaCE43Fixc3twgmJiYmJiYmLRDTgmNiYmJiYmKyz2EqOCYmJiYmJib7HKaCY2JiYmJiYrLPYSo4JiYmJiYmJvscpoJjYmJiYmJiss9hKjgmrRqDIlwsxMs/zS2KiYmJiUkLolWHiZvsPwihI3xTEcZWFMuZKFpvdErZq5yEzi4AUnmURK5qZklNTExMTFoCpoJj0iow3DcgfK8DGsL7GCAotndGt3khUFy2gEkk6seBvgu8X4J/OVhHQNw9oFQu5WFiYmJisu9iKjgmrQLhey/wSQ+uU0QeEB9qI4rxFfbDqofa4Ptavsf/X+MLaWJiYmLSYjB9cExaPLrxJ4bipmLZ+zhvKUHzDQCCYqezcgfe+Y0onYmJiYlJS8RUcExaFEK4cfsuoNSTgMs7BENsxBB/4bcoCAUEBBUdFQWr6EKEklNRCwKwDGx8wU1MTExMWhSmgmPSovDpL6EbMwEXhliFx3cVWskObLkKlKl4bRb8tn4o9tfQ4n8jVX0JBWm10UQKSS5XZIdqN4h/scmPw8TExMSkeTF9cExaFEJsAzTAD+gI4x/U7EUogOYGTQxAbfsdipIBgAPoyEr87MSqdkdJyZZOxmKP7Mc2GhRrsx2PiYmJiUnzYCo4Ji0KizYev/E60rhoYPF0AXJRAs7FmtsFIgX2vAye7ZB+LmrCEGwkyQ60zvJVDcLYDFhQ1OrbmZiYmJi0XswpKpMWhaYehcP6E1btIezKo1hdLkKRUyo4j4ANV8Cmm2Hnc/DXcChdWau+hRDorivRS3qgl3RBd9/XaMdhYmJiYtK8mBYckxaHpg5FFR0Qxd0RFh84QPGpEH8ZpL8AmzKQ3sR+ECrkfQHxB9bcsbEM4Xs7uCi8TyJs16KoXUHo4H4XjE2U2Yoptn6MQiLJTMHO8Y10pCYmJiYmjYWp4Ji0OITwopcdB1afXKGB5jdQki8ANQHsPcH1L9KyY4CjZy079la9rmA8+D9GoOIsMyhLicdvLaOAS8hkEwq2WByaiYmJiUkTYU5RmbQ4RM4bKLvXgyewIpiEOOAs3G8WJBwC1kzodB+kn1u7jrVhoJ0UXFQsF4HSFXLOB9/H4AOl2AA3OLx+QCAoQVASoyMzMTExMWkqTAuOSctiwwuoq24DQFhAPwwZKqUkgvVg2SauPxz4W527VhQNLW4e6D8DFnCrKOvSIa1YKlNZgXaAphkQDzZOQCE1BgdmYmJiYtKUmAqOScwwKMCgAI2uKBEZhuvA2sdDn/2g7gJ6DEZJ+QCUhPr1KQSUfAi+9Shx48BxtFy//VCwFUt3nrLIXex5qSR1eBInF9T/WFoxuvErujEPRemNRb0IRTGNvSYmJq0L86plEhNcfEIWvcjhIPIYi8Bdv46sSYQyEysoCY+hJq8EywH1Fy73/2DvhZD3X9gxDNwB649eCN7AcBH/BA3V2p84LkPBXv9xWym68TNu39H49El4/Zfh0/9PKollz0D+YVB0MRi5jSuEYcBnD8ODA+G1c6A4u3HHMzEx2ecwFRyTBiMQFHErMjkf+PgJFzPr19nBb4JFWmqUtKNQut/ScAGLpwY+BJySiwOytbtXWm7yAbsC9jZyva0TdJnS8HFbKX7jE6TWJ8Pz/foH4JkOpXeB/3fwfIgovph8XiWL+yjjx9gL8dNU+Hwi7F4Ny+fA1MtiP4aJick+jTlFZRITRNAjGECpvwUn4zg4ORt8BWDPBCUG00MiAcReec8WBpRugwwg/QpwHgSedZBwNHTpBIYbFHtsxm2lqEp3QrmHNBSlB/iWIS8XMsN0lm0pxWIVoFGkTKMjs3AyLHZC7PwLVAsYfjB02L4idn2bmJjsF5gWHJMGo6CQQChpnkYXnJxd/w41Ozjaxk7JKO0KPsAASoG83aFt8UOgzfnSagOgOqofN/t1WHsMbLkc/LGdptGN5fj0l9GNn2Pab12xqNdgUS5BMRJQORC79V2wHk+5hQ6g1O6UCqOiAyplLIqtEANHS+VG1eTvMfiU2Pbf3LhyoWRnc0thYrJPY1pwTGJCArdi5zgM9mJlOCqJzS1SCMfBsP17pFVCgw7969dP/hzYdq38XPIz+HZD7/lyWeiQ9zCULQD7oZD+FKjxte7ab3yNx3cKUgsDu+V9LNoF9ZMTwLccRD5Yj5QWqbpgrEPzfI4mioBNKJZSsI+FxBlQfB4ANt2HW7EFlEEdG33qL2s0DjgZrp8Dy+dCu74w6o7Y9t9cCAG/Pgy/PQII6HsBjHofyp24CzbArxPBXwYH3w4djmpOaU1MWjWKEEI0txBNRVFREcnJyRQWFpKUlNTc4pg0Ff4S+PdKyF8EycOh/1Sw1iP0e+d9sOdpgtM3WgoclC8/5z8DuXcjQ7JUSLoaMl+tdddu33noxseUKziqciRO2w91lxGg9AEoezQg40GQ+iMotVe29LLzEP7ZyONUwXIqlrg5cmPuIDD+wadqZCWk4rOkkKhdRxtuq1O0mRAGoKM0RiHUgmVQ9AekHA5Jtchw3VToXvj0ZNjxbeT60xdCl5Fy+7s9oGyPVIQ0G1yyFhK7NI+8JiYtiPrcv80pKpN9H0sCDJoBR++FwXPrp9wAJBxDuG8KCSNC2zx/EIr+MsBTtzw9Cplh+2soSrv6yShcUBYWaq+vAM9ndesCH1JRkw7kuviZEi5AZz2kfgvWkVhpT0fvaXRT15HG7XVSbgzfbPTiJPRiB7r7HmL2jFX4J3zbFn45FP65Fn46GLK+jE3fsWD9rMrKDYDfJd9LdkDpTmkNxADdDVl/NqmIJib7EqaCY2JSW5LHQPdpkHwaZN4M3f8X2uY8Dml9UeTLeWL1feV9Af+MgbUXgnsrNsuDqMqhAChKX2yWp+sppEpY6meJUrcyE5r9XsAZWBK47YX4+JxixiDUNpCyENK2Q+JbdfaTEsKF4boI6QxlILxPgV5PS1VFVl4E3qzw0WBb7a1ojU65IhNOxiHQJXCuxHeEuHagaIACqg0yDmpKCU1M9ilMHxwTk7rQ5gL5qkjS1YCAsm/BfjCk3lV1H6V/wZpTCU5nlfyBcsi/OG0/I4SvYdM2ih0SXoCSmwADrKPBdmrdutCGoiVsxGdMoUx9CqFKPxvBLgR7UehUd7n8O6HgJvBvRNE8iDC3ICGyGpZK0Z8DpT+AZ0fFIwFbRkN6ji29zoJlk6Bwg1zucwGMfAcsgS/DYoczF8HS/4DPBYfcCUndmk1cE5PWjumDY2LS1Ox6CTbfHLluWAFYkmM3hrEXjCLQetU7Gk1nM0UcjIyeUlDpSBJ/o9TwXCSEF7/xLkLkYtHOk2Hne4eD93fKp/j0OBBWQOmClrASRUmpl4x4t8HGQ0HPhgKgOGxbXC8Y9j04OlS9v3+vVAq1eo5fV7wlsHMxODOh3WFNM6aJyT5Afe7fpgVnf0DPh4LpoFgh5cI6RfeYxJjt/4VtD4Wt0MDZG7QYK9xqW/lqABrdSWAeHl5BIQEH/6lRuQHw+C5AF3MAFZ/+NE7bX6jeFZQrNwIVRT0LxTESxXJW/ZUbgIKpoOfJz8mAIwnaPAhpJ0gH46qUO2HAzsug4H+ACu0nQ9oN9ZejttgSoPvY4KJf/wK/8S4K7bFaHkRRklFoBMdrE5P9ENOCs69juGDDQeBdDwhQU+Qcf/yx0HEqaC0onLsZ0VmNj+/RGICVETXvUBW+PFg/AUp+heQToNeboAUUSvcmWNYzsn2b06DHy2Cvx7RPC0QIF2XeyJphNsurWPPmgfuL8laQuQTsRzZ8wJxnYM89BP2frN2g76aa9yv+BraG+0mp0D8/9opmNejGb7h9RwDgVyy4rHGgCJxcQhLPo5gukiYmQfbpKKpXX32VwYMHk5SURFJSEsOHD2f+/PnNLVbLp+xX8K6jPCoGowD0XCiaC1kPVbPj/oOf3yhiOC7uoIQxuHm9/p1tuQPyvwRfFuR8JC025eglldt3+r99RrmR2IE2EOZVoyhdIW06JN4DcedD+hexUW4AUq8B59DAQHHQsZa/XfbkCisM+LU/7PkA/G7QfZGb9SLYdTNsGQ15bzRYbADD+AmQkWouqx1p4RK4eA8PX1S7r4mJSc20mimqTp068eSTT9K7d2+EELz33nucdtppLF++nIEDBza3eC0Xa1XhxrosUWCCh/cpzz8jl1/DwTX168y1llAouQD3+tC2uEGQchIUfCWXk46FhCH1G6eFoigqDusneHyXIsjDqt2MpoySU0Upj9fcQV3REqHHz+DbCZY0UONq3kcvhvzPwUroEc8DuHbB9xdDwSWgWmHQTXDYE6BZYeeVUPQJoEPJ16ClQvI5DRJdVYeAHmZAD5tOM8hpUN8mJiatyIIzbtw4Tj75ZHr37k2fPn147LHHSEhIYOnSpc0tWsvG3g/avyifboMZbQM/u+cL2DMehL/K3RsDw7cIf8kg/CUHoPui5AVpYlQyCFq40FDJrH9n6ecC0s8EBIVpe9AJVMJWVBjwOQz4EvrPg4FfB0KC9y009Wji7JuItxdgszyC0th1vRQVbJ1rp9wAKBbAIst3+JAV5UsBN9JRGQGGF/56Fr44UdbCKltCSHG1QFnDy2lo6jHYLe+hKUdhFZ2D61XSsXNyg/s3MdnfaTUKTji6rjNjxgxKS0sZPnx4le08Hg9FRUURr9aIh+/J4RhyOAIXn1LGEtwsR1BL96m0m2FACQxwQeePweqUT68aUDITiqc1pviyZlPRB1B4CUbRRRiuE8D4B4y/Ea4TMUregp3tYEcbKGn6vCUObsPCMQCodCWOitMXdaD9LZT1uZziDg6y+ydTmLGZPMJCxhULpI6BNqdIK4FJ06M6ocvLgCoNd3oi+BXQo1wOd38PuSsg7mhC+YX8EHdETESxaBfhtH1PG/UvUniPJJ4jjZ/QaJiDuImJSSuaogJYtWoVw4cPx+12k5CQwJw5cxgwYECV7Z944gkefvjhJpQw9hjkk894wINAsJvrMAIX2mSuIIOJteuo/Ck6+UzIuSBksEAFvRHN4Z6NsOkwSM6TZ5sKROSdExhlV6MaAYHyrwf7sWCtZ72oeqCQSCJfIvDVL4KlbCHkPQaKA9KfwJWRQmlGMvKJX8fHmliLbFIXcr+SpRtSR0DK0XJdxjWQeg4YJUAc7JgMO96BnJ3SqhOONQHavA2WduBdC0lnNXh6qiIKKg5Oi2mfJib7O60qisrr9bJt2zYKCwuZPXs2b731Ft9//32VSo7H48Hj8QSXi4qK6Ny5c6uKovKxilzkRdmPBXcww6ykO3+hkQpFObBiIaR1hIHHVN9pzt1QEMiUq6ZB5+Vg7Vz9PvVl952Q9yzlsz6GAkbFxLoGWMLzl2QsAMeoxpEn1vi2wtbelOeKQU2hzDGOnA7zg4E9ScqNpPBAMwu6n7LzTVh7NVKzNuCATyEjSuLD8nY6croKpKLT9W44bFKTiWtiYhKdfT4Pjs1mo1evXgAMGTKE33//nRdffJHXX48eOWG327Hb61hJuYVhoTeQiKA4ypSUKi0OubvgtoOhMJCm/ryH4PyJVXeaNkmWFvDvhPhTwNK+kaQH1FJIDy0qBlIXiDjzLMg7iwJaJ7BFn3YU/qUYvg9Q1HYotttQaltA0vcnFJ0Lxg6wXwyJr8XO98X7D6FHfgFGHnGr3yNjlw1Xhh2ry05C33tpWKpek3qze2rggwGosPeDygqOEFDyl/ysAcFrpwK2VU0ipomJSexpVQpORQzDiLDQtHYEOjk8TimfY6UXbXkW2I6VdPwUBqamBOV3y3QeQCUBfnwDirJDHX3yVGUFp/AryJosoz86PgbxY5rmoJwW6bwZQFFA82rolkxgN6CgOieD5gHhhfgJoFbOzSP0VehlxyCDag3wL8USP692MhRfAMZmZBHMt8B2BDgua/ixAdgPkZW6RflBJoK/AGe2F2e2FyiGXl6wmP42zYKjKxT9RlCBtkexVG55BHa+HGVngcHXCNcEFHUwiu1mFKVVXzJNTPYrWs2/9b777mPMmDF06dKF4uJipk+fzuLFi1mwYEFzixYziviQQmSODT9ZZHE1Tn5ExYsFgUHAYiEEqm4nYW8etC0BZ5J8CgWpQTilgmCQSxn3gOtP4jeskJtRZW6cgetk9EljY+kQ8P8RQb8fxTkBLfE5hP4bitIFResj06dUg/B/gzT9BDrR5yOEgVKbY9B3EgoD10CvWLOoAVjaQccfoPB5GaXmvAw2jQG9TI6ZPgYsZuboZqP3c+DZBkXLIPVY6P5g5Tbbng1bCJyrgJGqYPTQwfcBAgPF2I3mrG8RVBMTk6am1Sg4WVlZXHLJJezevZvk5GQGDx7MggULOPHEGqo2tyK8bEDayHWkx80vaJ4ynIV+hAJlyQa6zQIKGBYv7uyHiN81E2XE97B0Liz7AmxxcMu7AJRyNX6+xlbmQQlOb+nS8VfPl3lDGhvHjeD5Evw/yqrWjish4XkUxYZiGVn7frT+hIdyo/aqWrnJ/RrWXS+VjO4PQ9Ll4J5M0MPZfnaDDskQ29CNz1Boh6aeieI4BBzvhxocuQx2fQDWNtC5nvl0TGKDvT0M+Sm0bLjAtyOgeAfOH0tKIAmjkK/M8VC6GpGZj7QyBkpM6F8ApoJjYtJaaFVOxg2lpZdqKOMndnE+oGLBTYpeSPJudygJsaKwpX07hCb9Rzr/ugd7qR8OWwUJg6AoF5wJYJXmkAK6IchCdRkkrZZTeQoa2LvDwLVNY8EBaV0SeaAkB3KQ1A/D8yyG91VQO6A53kTR+lZu5N0LP3WKzO0zdCVY/wFjG9hOB0uU/WqBEAKfPhmffi8yeQpY1OuxW1+qV38mTUzJYth2KhjFMvtxt29kaYb8RfDXGaAXQtpYOGA2qHYMz3MYnjuRf0ANxTIeLa6RUyqYmJhEZZ93Mt7XieNIOjCNUr7GQjaabypKmPqpCYHV58dvKLTZVIit1I9AQ6EAit4F+xCwHhBsb+EEfHyE4VQp6S2IzzoQResHHR9tOuUG5BSV0nBrkWq/A9V+R/WN/r2hcuJCzzZIPL/B4/uNt/Dpt1dY9yY2Mbnxk9m1VoSodzXzmLPrWjACIVKuZZD3CmTcB6nHwdE5YJSBJXDh1MtQdnpR7EMRiTkolsNRna80n+wmJiZ1xlRwWhhxHE0cR2OQT5H1fYTiDc3MKIkkeo/CX7iYpD1lCIsTtdutsOc4pH+KCu3nQvw4AOJ5GTed0dmALek01KTY5u5okZSsjFxWHZAcPSmbwI0gG4UOKAWLIWcG2LtChztAc1Zqr+uV6wMppJvKTTSED4ongGcmqF0g+ROwHNi8MhklhHyxlMByANUCathT4Z9nouR8jaao0rfqqEegIVXPTUxMmpxWmcl4f0AllTjtE0oy2+OLs6M7BqDkukld/ylp2fkove5BPaYMrGsJXbQFFLwY7EPBiZOJJPABNhqo3Oi7wchvWB9REJTg5VN8/FD7zMzV0eY4ImKyezwqfWEq4Oc3CulOIX0pLRqA+OdE2DsVtj0E6y+N2rWqDiDyL+PEbp3ecJn3RdxvgudDwA/GFii6uPHG0l3g3R1ytK+KzLBcRFoypF5RRX9uyFmAdIzXpWUnd2HMxDUxMWkaTAWnBWNjNIm2XdjS3Fi8p4HfAAxUAUrO27KRlkrohq6CWvlm3iCEAbmXwK4OsDMdimPnbyIoooijKOV8SjiJMu5seKe9X4Qud0PaydDnZeh8e9RmZdyBQGYX1Ao2B9bqgCGrgUfBqj2Apk5AoRuacj5O6y40tYakivsrxi5ClxcjsNwI5H8Fv2XA7x3g7+OlslMVba6Bnn9C59nQew3YekRvp9qlc3L45TGud0zFNjExaXxMBaelYJRC9jjYboE9g8G/MXK7tSMRoc7WTvJjm4fBGrj4WrpC+pOxlcuzCMrKI4QMKLgVjMKYdO1jPgahiuZeXkVQUs0etUBzQq8n4cAvoNMNVfp/CEop/z71OC0sykyDuOjV6RXFicP6JnH2jThsH6CqlR3dhBAYYjOG2NOw44gBIqxCepNjH48seBb4/h1XN844G66UFhaAou8h6+3q2zsPhuSzwFJNQVVFgSHzIHEw2DtA36cg/YTYyWxiYtIkmD44LYXiZ8D9JWCAbzXkXQeZX4e2p18FpT9D/iywdYfu78n1lo7QZbWcPlJTYu88LEorrDBAxCq5YsX8MNbAq/Fxci+lXAYIfGmJGF2vR836UkaY9Xqt7h0KA+HdhUe5C13MBMCqPY7Nck9sBa8FOkXs4Spc/IKNvrTnHaw0UimOqrAcAKl/gvcL0HqA7YzGGScY3g2gBJZjQPIhcNTy2PRlYmLSLJgWnJaCvovQVJMO+vbI7aoNuk+DQ7wwaC04Q9FSMj1wm8aJjLKfCNaDQ8vxV4JWzdNvHbAyBivlOWksxPEKSk0Z/2KEjXNJ4g/i+ZBk5S/UTs/CIWtg4Jdg71K3zvRC+PdwjM2dg8oNgE+/HyFiX8hU4CWf18ji/yjjp0rb83kJF0sDLdeTTZTkdk2BpT/E3Qn2MxsvkqrT/aHP1nTIaERfn/rg3QpbxsL6AyA3ML1b/DcsGQwLU2D1LXIa2MTEJOaYFpyWQvxFUPo2waKACS0kQZzqhLY/g/tbUBLAHjufEwWNBP6HwdMoxKFQuURDvciZCblzwNEbOt0XNSIKQKM/GjGoWp71EpQtQyRU3CACFcpjSxb3UcwsQKWID+jIbJwcFtyukxXWWken+afLGo1Od0HyCJkKIPk4sDZB8sq6sO1McK8EdNh9M9h6woq7oeRfuW7rZEg+FDq2MMXMxGQfwFRwWgr2o6Ht7+D+BqyDwNlEtaJqg+IA5ymN1r1K29h1lvc5rB1P0Djp2Qp93otd/9HQiwEFrRTUUoERL1Uai3o1qhL7QqalBCJ80AGNMhZFKDiJnEMxcykvO5BEC7x5+v4Ez3ugZEDcrVJ5ri+Jh8lXS8S9ivJMyABsvx7K9oSt06Bsc5QdTUxMGoqp4LQkbAfLl0n9KfgWeVoHkv0VNEF4b/qVkPMGil6AY4vA6HYrpJyDqhzeKMPZ6I2b5cibpI6NyAifOI6iE/NwsxQbA4jjyEaRo97410HBkcjfyADfYkj5ppmFaiQSRkHJfKTvGuDeCjYCBWg1WdW+7enNKaGJyT6LqeDsCxhuKHpLOhonXgjWKsJf9wcSDiGo3KBBwqGNP6ajNwxcAyVLUOy90OIaV0lty8tkcRc+tpLIGSRQ2YHXwQE4OCDK3i0A37dElJj3fSsd15VG8L/K+xJyZ4GjJ3S8UyZ+bEo6z4Dsx2BvILrRCnQCfANBGwntL4OkwfXu3stKXCzGSh+cnIRSPiEqBJR9BfoeiDul+qgxE5N9FFPBac1s/wG+uw36rYU2pfJpsOA56PK3jK7aH8m4WCZ9y5kFcf2h+wtNM661HaQ2QaZoYWClAx2VVpZgUAgonAneDeBID9uggdoBadaIMQXfwppT5BgIcK2DPv+L/ThVsfEyKH4PgQI4wOaWyZAtAKtBzYaEh+rdvZulZHEm0jRkkMJ/SOImuTHnDlnhHkDNgC4rwRL76VITk5aMGUXVWvEUw+yTIW85pJUGArB0MAqgrHVlXTX836C7LkZ3340QDcyxoyjQ6R446A/o837LczqtL8KAvKthhw12tQf3D00ugiG24tNfx28soE41en3LIdsJvvPA+A/suA60W0HtAZZDIfmLxomyKvgaqU1Un8CxUcj/CsreBU2AZoDmRs8Ew4H8ryoCRBb4fqn3EGV8Evgko7BK+EAuCgMKXwg1NLKh2CwSarL/YVpwWislu8AXyFHjJSKnGpZuzSNTPRD6HxhloykXXtf/xBJfjT+GMMBbDLakllPEsSlwzYLSN+VnIxtyx0PH3U02vGGsx+UbCoHsz1btIWyWWoafF54EBHInaUCyALcOHTZWt1fDiRtMxHRlXC2mgkr+kq+k4RDXs/5ju/4K/h+DZ6kXjHhQ/OWnrgJat9A+hl9aYWt5Xmu0Jzz5p0Yg+adRBhXLnvhMR2aT/Q/TgtOaEAKKX4A9B4N+N6R0kxfEpSqUqbIYYJtHIe7Y5pWzDgj/YkIRQTroi6q2DuSvgWnd4N0U+GQouHObSszmR99D6FZpSCWnCfOn+I0PgbLgsk+fXPudRW5IdIFUcmx1zDVUHzIugC6PgnMAtBkHfWuwYmR9DL8dBKsvhl8HQuHS+o0rPGDdCi7wFyh4PRqGDsQFtiupclou4S2wDJD/67U3wmI7LGkDufNrNUwi1+JkDGDFSl/a8KzcoFqp9OzqPL5+x2Ji0ooxFZzWhPszKLgNfCvA8wWMSoOhd0DXm6Dzv9AzH9rcX2M3LQrtYAxF4NfAUFRQD6i6OvdPN0FZoKZR7gpY/kSTiRkNL7MooAP5ZOBmSuMO5jwDlGSCmkL8lY2T2LEKFLcHa7YPe66BrVigGsmRDYwyKJ4PZb9X3tkSVs1dAYyB0OamessijC0YvhkI/e8ahFag8/1wyD/Qfw7YavBB2fZs2CB+2FnP37TgHsh/lTLDxq4j0tkzJI29PVMxVAXF/n8oGXmQthOcl8v2ufNg5yuAAf5C+Hu8LPJZAypOMphKF3bQnkVY6SY3KHbIfI3g5T3+TEg4vX7HYmLSijGnqFoarmUy46kaDxn/F6hBFcC7Avn4G7B2aCvgwKMg6QHQWqeviaFk4bOpIEDXwGa5rurG7rzIC78nr/EFrAKDXEq5gvIpEBd3YuW42CQOjIalC7RbCa65oLUH51mNM040SpZiWTcJ0kAxQOgCi7cUHIHIJ70INg0Dz7+yfcb90PZR+dkohPjHwf0e6P+A/XyIa4Byo/+GXnos4AJUVOcsVOuZDT1CiSUZqRTooeXsTyD7W0g8HjrVMiOz53t0FxQc6sSqeDFQ8cVruMUDJKkPV27v3Ru2IGReJcNbZYLKWpF0BcSfBaIEtI7713SuiUkA04LTkvBuh01HQ8EHkPc6bD5WPkmW4zgBOede/rPpUPIy5Jza9LLGCJ8+VX5QAEVBN6QjqI6P1fzAchZQQr5sMzisMriiQf9GKuBYCwQ5hPw7JAaN7BNj6QKJN0PcOU1qvSHvAxSrkEMqgZ9K3wv+gF9H0ZyQcgOQ/QQYHpnML68rFB4N3k8g8Y0GKTcAhncK0ukMQGB4Jsk0CVnTIOt/oFesnVYHej8LtkDSyfhewALYexYYU2D32fBPFOUkGvYRFPSIQ1GlXqFioCIQahUPIenjwBoWxt3u0oYpN+VoKWDpFF25ET7Ifgp2XAaFHzd8LBOTFohpwWlJuH4D4QotezeAbzfYAoUS7UdB+hdQ+CD4/gg00sH7s1SElNb3cypKRxDlVikVRekAwHymsJVVgMJyvuJ8HsHZ5yJI6Qt5q6DdUZDSp9nkVumFxlB0fgcUVLphYVhkI/c/4F4BzmFg79UcYsYGa3vwi0i/VTUJtIBTq1rhZqxYpQJa9hAI6ZSMKISyxyGpjuHtQoB/CyhxYGkLSngFdxVIgr9PhOIf5apdz8PgX2XttroSPwCO3Aa+PMg6P5A0MkAcsPdlGDSx5n5SJqGLWShKSNlScZDAedHb29rCYSshe46M+stsAuvc7tsh7xVAhYJ3QZkLSac1/rgmJk2IacFpDoQR3UHUMQg5BaUAKmjp8qIejnMMpD4ftkKTjoqtULkBsFmeQFWGAhqqMhyb5b+4KQkoNwACF8Vs4x+5mDkU+l3erMoNyDpaiXxJHC/g5CkS+QElvDp60WewYTDsuAg2DITSH5tP2IbS9jZIHAuFCugOsB0KGQtBDZRXSDoDEk4ONNagw6vyfKx4jtfVKVrosHc8bO0BW9pD/nOotv8DNfDbKxloxrUh5QagdAWU/Fafowz0qYEtA9xRHIxttZwGVuw4xfjAMciI8DbKVDSqSbZnbwedroO250oZGpvieYSc+y1QsqDxxzQxaWJa512xNbPlVtg8GRDQ6XToPSe0zd4XunwC2U9KH5x2z0R/ErUfBW3eg5JXQWsHKc9XbtPS0fcg8u9E8f+B3XkoJMxG1aQTqBU/Fuz4y0OLgQRSm0vSKlGIx04V02Q5zxE0eQg/5L0M8Uc1mWwxRY2DXp9Ja0q06Q7FCl3ngW+rtOxY2sj18Q9AwfdAKSjxEHdP3cZ1fQslswILAnLvQkm6HC3+b5lDRklD8e6lvOZWEEt6lM7qiPMI8H8jLVcAXjsMnlX9PmEkbPkJzeFGtynYi33YMlVoQLmtmOM4GHzbkQqOH+wtNOu1iUkDMBWcpiRvMmx6MbS8fS6kT4PUC0Prkk6Vr5qIv0S+Wis5Z8upNQSqby26/0OMpG9RrceiYWEM1/EN7+DDzcGcREf61q7f0nlQ9g3YD4bES5rPuVILd1hV5I2/sRA6FH4unX2Tx4GlkZTB6r5LRQFbt8h11sMhbTP414BlIFTlg1IVwlNhhQH4URQVlHZylb0T9HgJNt8ut3d5FOL61W2caLT7EKz3gWcNOEdD2v/Vye9JcS0nzuULLKng+h0STmi4XLGi4xuwyyqLgSafCW2uaW6JTExijiLqlJK0dVNUVERycjKFhYUkJTXiDacqNibB1uLIdf3vhvaTGt63XgZ7poAvBzIvgbgBDe8zlhQ8Aq4poCZCyv8QWceiBJxFBWDYQTjbYkncU/8xSmbDnnMIFtts8zi0uS8W0tcdz1rYPBL8O8DWB7p/FxkRF0s2XwR5gRwvtm4wYEVAwWrlGG7YOQI8gSmn5Bsh46XobYVfWphUa+PLVbwYtlwO/r0QNxS6TJG5dsLZPBJKFxNMxNfjR4g7ghaDZy74loBlGNjPMaOsTFo89bl/mwpOU7I9GbYVBZO6YgMO+xdstbROlCMEbPuPdKi0pELv92HnU4HU9Cqodjj4b3B0j/EB1JOSmVA6PpjCRWBB+BUUrw8MeW31JwFWK5Ykb7VdVcueC6FkBsGbiu0g6LK8YbILA8q+AD0b4seBllGHfXXQc+Q+jRX15M+HlW0i13WfAW3GN854TY3wgmuJ9PexH1b7G/GWl2D7G+DsCgNfke+xwPDCivSQ8zSAYoOOT0KbC0PRUHo+ZE0E305IuaR2Vtmmwv0/KL6U4INAwsvgvCG0vWge5L4IWhuIHyF/g6TTwNZCricm+yX1uX+bU1RNSeokMK4LZLt3QvdP667cgFRkdjwuP3vdsOZMmW8EkPWoyqBgIbRrvjDqCNwLI9zZFfwYCqh+ab0RgOoBw3lhVT3UDlu447EGtlrmpNFzwL8erANArWD5yL4eil4PdNkOOq+sfWVmRavsJB5rVKfMRRM+nWNpU3X71oZig7g6Tu1kfQlrbpafS9fAn2fAkX/GRh6jKFK5AakA7Lgd9jwBA1bKqDMtFdq/GL2PWiAoxsc3KKRg4dhQlfBY4CkPCw+kOfDMDCk47lWw7TSCDwlFM+V71gPQcwXYG1C+wsSkiTGjqJqShGuhwzrotRgG5ED8ifXrx7sjbEFI5caaScTP6WiGsGSjCIougrw+UHxj6KbrPAURiDIWIuCr6pPLSvnL1xnN+WbDxk+5R/rdaO0hbgxk1KKcgOdn2N0Vso6A3T3Atzq0TXih6I3Qsr4HSj9tmIyxRnVAt/dAcQIKZNwAiSObW6qmI1rG3+K/CP4XhA7FNWQ8rgtaGsQfE32bPwfyZjasf89WRPFXFInhlHIhJZxCIQdSzCg8fCjbGC4wGpDvR+uFjNZEvmthD1muZYTqW4VhlEFR7Z2sTUxaAqaC09RYe4NjhIxMqS8pYwJP6YGfr82Z0P8LiBsI1nbQdRKkNEPtmZLbwTMD9PXgfhXKAr5F8afjd45ClIQKDaphZ55AQXGMQmloqLvqgLZTofsu6PC5DLOvicKHQLjlZ6MQisL9oSygJED403Nt+mxq2oyHg4vg4FLo8vL+4U8h3JBzJuywwq7u4F0Z2pZWfu5rgArpNTxIlK2GTTfD1vvBV0N9M0WBPvMh81awtCPyEioaZj3L+xD+7oE3ZyyGsims1w34+ZEyrkDPvQVWJ8rX3v/Ub5z4h8F2FigZYBsL8U+FtjmHQVRrkRE694UbCu6GrOOg6PEmrYlmYlIXzCmq1oi9Axy0HLI/AmsbyLhEOlce/FfzyqWvJJjmHmRq/gCG1g3LAqA8h5lNNhUGCKuAtFtiaYSPDYoK7abDnvNlyvvEyyG+mZOh5c2ArJdlKHTn58DeIyCrpeG5kAxf0zjpxoKSV2XZCgTo2yHvMmgXmIZKOQyGfg27PgBHR+hxb9X9eHbBX4dLJ32AvHnyv1Wdz5QaB52fl6/Cr2DTOWCUQMpZ0Ob8+h/TjrsBA0WPPrbiA3V3mFUy+zFIOhucB9VtHCUBkj+Kvs3RH1IuhoL/Vd5WNAfaXClrbZW8DBjgWSyth4m31U0GE5MmwFRwWhqe7ZA9HSwpkDlBOgxHw94FOt3VlJLVjO008P9B0HnRNia4yaKdA943Its7ZN44FNBoprpSyY9A9i8gSqX/TVKFXC3xY6FHgUxtrzrkOuEH13dSO4s7QeaBaQpKf4PNFxAsye1eDQPXNtxi48uFleOg6BcZfXfgF+DsFgOBGxF9D6EwfB30CmUy0k+Qr5oo/knWfiqn7C/w7gZ7LSPekk+Cg/LltJGWWEvhqyCgVFkLDay5Or608qSfgc2GUfkhQM9v2JjR6DBFOkeXfhu5vuRL0AvB8xOhaSwVPL+YCo5Ji8ScompJePfCikNg6//Bxmvh3xgVEWwq4v4PEqaAYwIkTpPvATT7SESPayDg4iIEGBrSEVfpCNohdR5O+H/B8L6J0NdX37DkG9hyEmw7W4Zvh2MfDu23QuYv0H6TdDSuiKKFKTcG7D4ddo2G3WNg10m1qvwcE8r+JJTQTgfP+sjSHvVl8yNQFAjFLlsL61vBzSruQsBKUAFIuKG61lXj7BvqA1VOMVnrOA2pWGqt3AghMDyP4i/uib90JMLYHNrY6QVQrChAwu6uJPtXksRa7FyNlXE4bTMh4aRQe8chjRN6rsZDShGkhKtTinwAUOPBfiyhW4cB9qNjL4OJSQwww8RbElkfwPqLI9cNy4tM3CYMmVbdKJbp8bWWlB61Fuz5F8rWIjr2QTALIfyotmtQ1LrliDG8b2O4rwws2dHil6BoQys39GyE9f2RESOqjGrqu6Vmq4tRBAV3gm8VOE+HxLulpcSzCrYPjmzbaSk4hkXtJqa4VsHqQ5BPzwrEHQj9lzW837/Pg6xZBJ/Kk4bDoT83vN/GxrcW3AvA0gscY+pvycp6X0YlaonQ42VIPKyG9l/BqsdkTqeDnoHU2uecMnwzMVzlIfwaqIdgSQgrLeHbK60njoHRrbfCJ8ssCC8kjquXL59OFgoOVKq4BopSyAlcV0qAMmTIeKdZkHB8wPn+UfAukwWAE25t2uKvJvslZph4a8feOWxBkcqLWkGB2TkBCt4PtO8HPX5vXUpOu35Av0D01IP16kIYWRieiWFr/Bjet9CcURQc9wqgPKOsDv5dgQKmXYJNdP5BZysWDkcl4CSafy2UzZT7eJfKLLwJV8on2IooUdY1Bs4DoPcCyHlD+uC0fyg2/Xa4MqDgBOh4XWz6bWysfeWroWReLF+1Ie9b+HpMqJD8ju/grC0Q1652+xtrkM7Pgak1Y03kdksmWKtJLaBYZe2veiAwyOUGyvgEUEllEolEy4YeB2p3MLZBgi5LTKR8ITNTgwzdT36kXjKYmDQlrUbtfuKJJxg6dCiJiYlkZmZy+umns3bt2pp3bE0kj4DOD8ubqK099Psk0unTvQby34d8YC+Q8y+UfB29L2HIeaB9DGFsQC/pB2JH5AaliugV5yHygowKaGDtIvOUBPDwNkUMpZSzKeIQDAL9epYScpi2gPd3+dHaA1LDFIuUu8A+KAZHVkuSjoceM2S0lLUOSQfDKVsBG8fDpvOkVajNSBj6B/SeDIcsgfa1vNm3NoyKpR/qwfZ3QsoNgO6B7CiFOatA0U4i6EOFgmIZJzf4tsK2g2CjBXaOlhbEGONmcUC5ATDI514MooSbKwokfwXWUWAZAon/Cyk3JiatiFaj4Hz//ffccMMNLF26lIULF+Lz+Rg1ahSlpQ3IB9ES6fIgDC+BoTshJSyfSdYjsGEA5AI5QBGwB8iqMEUhBGy4FxY7YEka5HzedLLXFqHXW/kyvG8hDz4M7TBUexWFHG3dods3kHg6pFwA3RdHTE+5eCwkFrl4eFcuOEYi/x4K4AfHcaE+0yZC9xzong3pYSG2rQF/HqwdAQWzIX+2/KwXQeLB0PkmSGmlBUGrw7cX1gyB5Q74ZyB4t9W/r4Q+laOok2tvRVIsw9DivkOxXo1qfwLVOVVuyL4JvH8DhiwymvdE/WWsAkFZhTU6IetmBSx9IOVLSP0DHPuowmuyz9Nqpqi++uqriOV3332XzMxMli1bxjHHVJF4qyWw/mdY9xP0HAb96imndztkBawGFfW57bOgyx1gS5VPXvmLYFsgl4u/QPpXHJMfvSp5c5D7H8ifBIoD2r4DCefUaXdFiUeEV45W+mGJr8FfJP5o+YrWHw5EsBq1QMEpN6ROBq2tTPznGAtx50XuqIUVjjT8ULpKOqiW/Qt7PgBHZ+h6H1gaGFlT/CuU/AlJR0L84Jrb14R7daR1QM8H91qIjzK91xA8GwElFMbenOx6CMoCeXLca2HHXdCjijDpmuh2D+z8FHYsB0OBPpdBSi0zZgdQLCPQLCMiV/p3EJliYVf95KsGB8dhpT8+5LRYPJeikhLzcUxMWgqtRsGpSGGhLE3Qpk3VibU8Hg8eT8gsXVQUe7NvtfwxByafRTDy5ahL4ezHoE0diy6GR8rYgfByTcXr4cs0me/jyK/AG16sUsgMpHppy1BwXD9BfsBiIkpgz0XQY0xlP6NqUGw3gW8uGH8CiWjO1xskUhwvUMJ5gBuNwdgJOC4rDkj+b80d6C5YfjwULYWgoqTJ95KVMuS6vmTPgHXleVU0GPhVpFWvPjj6ySlQI3BOqQlg792wPsMRArZdDzmvyeWMG6Hz5OZNPujPJhTWrEuLTjgleWB1gL0WDrv+EshfA+2ADAHKO7DdCp1ebdgxJl8N2dcRPIcSo/nGNAyVeNryJW6WoJKIneExH8PEpCXRaqaowjEMg1tvvZUjjzySQYOq9n944oknSE5ODr46d+5cZdtY4y0pYdaVN/D0TMGHi8DlAX58D+4fDHk769aZrTckBTLkZQAJqryHWghdt927YcX1kDZa+u+U29EzzgRraqUumxzhB++6Ciu9MhqsDihKClr872gJ29AS96JYGma9szKKFLaSxD8ksgSFOlbhzpodUG4gIoQbQzqkNoTdL4ctCNjTwFIWIJ2T+3wLSSdB8inQ5zuZcylWuP8OKTcA2S+D+9/Y9V9X9FJIGk1oXkmBzEBIuWHAK5fC5WkwIQnmjYLimdVPn5ZtAdzyf1jeZeHr4Pq1fvIJQ5ZdSL4WOiyAtEnQ6de619+qJSpxxDEaB0fEtr6ViUkLpFVacG644Qb+/vtvfvzxx2rb3Xfffdx+++3B5aKioiZTchY99BBr/tqDELB+J3zzJ4wbDpTmwbI5cOKNte9MUaDzTChdLBWF5O9g5yTpihJ0eDTAmwPWNDhsubzxWpIhMzC1IoRMaKYlNH1Ip2cF7BolK3JjJTjvH3eKLGBZRxRFBSV2v6NCIhr1nUqKvBkKBdz9wL5RRbUf0DDBrG0JRdwo9Xcqrkj8MOjdAMtSdQh/lJXR1jUBZX/BuuNAz5Nhzpk3SqUuPhAGvuIL+D6QsVfXYdpC6LkQOhRIi0o0EgeAsy0oFaxAekHd5Sv9EbadDnquDPnuPAviRtW9HxMTk6i0OgvOjTfeyLx581i0aBGdOnWqtq3dbicpKSni1VTkbdhAeYohISA33FCRXPebOooqc1AkjoKuj4OWTLm7SJBeAWXO1hY63QDpp8HeD2H3e/DXcPg1Gf7oLP1FaosQDa81k32jvIgDoINzNLT9ANrPaf11kzLPgsRQkkJvVwUjVcUzIA0O+KSaHWtB92fAGSiaGn8QdIlRWHhj4jxQliwoJ3U8OJowyiycXf+RmXchkIF3U0i5AdhYwZE3ELlN8YyqrTiWODjyVxBhVbXtgyF+RPT21bHj0lAm4uLPIfeVuvdhYmJSJa3GgiOE4KabbmLOnDksXryY7t27N7dI1TLg7LNZ99lnqBYLht/PwD7xoLhgxJVwaAMzFCsq9H4X1o6HNl5QO0PfdyAzzD9DL4M/hkGZdCgUSiB4yLsXNl4Pg5fUPE7+Ivh7PPjyoOPV0Ofl+ll/jEJCc2kKWLtD4oV176closXDkKV4CybgV2chnNJR1Ii3VMhrVA8c3eGQf8FwhzIpt3QUFXrMhNJfAUUqFM2lxBoeQuedACPMec2zC9J+gRSgILBuKAgHsHcRyp5T4ZCPo/uuxXeFQf9C8Rey8GTiWFArPm3UAj03TD5g791g7wlJMa535tsha2XZ+rb+BwoTkzrQajIZX3/99UyfPp1PP/2Uvn1DYZnJyck4nbW7uDR1JuO1n33G1h9+oNPhhzPgrLPA0EFrgE6Z/SO4dkHbkWBvA/58qbA4e8tyAuHkzoeVJ0eusyH9Bpz94JAKCcYqIoQMM/eH1boZ9DFk1kM5K3ofsi4FhCzM1+knsB9c935aMLqxCLfvRMqnlCzq1ditU5pbrP2b4u9h/WgQHpnxt8/iULSYvwB+TQevTonPitWqY+lq4I2z4C9RSVzvhcHvQcfYO/sGyXokFB1ZjpYO/bNjN0b2JNgbKDaaOA66zKl8rTAxaQXU5/7dahQcpYonj6lTpzJhwoRa9dHiSzVUx6qJ8M/D8rPNCSMXytDhqij6TVpwAggC+e4UoOeb0O7KqvaUGH5YXKGcQfdbofvzAX+eXTJUWqmlZcGzHLyrwXEUWLvWbp9Whm58g1+fi6r0xqJdj9JURThNqsa7A1z/yLIW1gpTw3vegk3Xk3OgHX984KZvCJy7fCSvcsOAl6BrPWtc1QYhYNd1kP8GQV8uxQ4DSmOjhOiFsKYNEVairl9C4pgqd2kU9rwJObPkg1jXx6VvoIlJHdmnSzW0Ej2scRAC1oT5C3hd8M9JMGxv1bVokg5D73wy6vYvQQFvFwUcKdiTvoTEWmQlVRRIIpRTTwWSkmQOlezRsnyBkgjpn4Hj2Jr7sx+8z1ltAPCugNL3QMtAS7gFzdrAMG6T2GLrBEU/w4pDAQHdnoGMQOh9uysh40LieIci7g/qGM6dXpl2od25jSubokDbh6X/jT+Q98bnkRXj65unJxwRiOaLWFdPh28hwP0Z+NaBYzTYKuRkMrzRp/NyP4GNAYftwu/Auwv6z6mfDCYmdaTVKDj7NYoCFgd4w3wIlBLwbZAOjlWg9pqLp8t56PonqP5EbLanwRFFuREewBrpX6No0OlIyPtZBsEkIE3cJa+CN1AcUJTImk3tmzEMuCpEKbinAX6wXwBqSuzH8G2AvcPlGBjgXgSZC2M/TiMhhB/QqrSO7hN4dsHaCwgm0Vt3MSQdFfKP0pzEcQMag/Ar/2ArSsDaJQ7SR4I1pfHls7SFTQdA+13luSYhfyYUToTkuiUQlIV4/wVrslTQLG0g7Q7IfVZujzsSEuoZpVX8OBT+B1Ch8H5InwXGKvDrsGOmTCDpPAQ6jgaxCmxHgPNuqVxiQf5HdCiqPvLVxCSWtLooqv2WQ18M5d1IAtKTpbNuNSiKFYdtOnF5h+PMKkLbcSXk3h9qIHTIvRR2OGBnOrgr5G3J+BTa3wgdzob2X4LtUBDFhAQRdc5j0yQIPxQcByXXQMkNUDBcOoPGGs83gJugguP5JqAstmyEMNBd16MX29GLMzD8rUcpqxO+vbD9diIyBKODZ0elpnZGEG9cjXXXYlh7MSw7HEoqRBu6d8CmB2Dzw+CNoZ/Mim+liCuB+cCvwLQ6Fjw1fPD7SfDjQFjUCTY/L9e3fwZ6LofuP0D3RZUrlPuzYc+9sOtmWeuuKkreKB9IvkrGQ9lDiF0TEe7VAAjXn7D9CYR3HqL0fih7MjCNXm410iCpBWedN9nnaDU+OLGgxfrg6G7Y+bJ82mx7ASQdGtom/JD3IJR+AUo7mUnVlghpj4PjkKr79PyNKP0Y4fsetXhR2AYFuuXIC6J3IeRfHFqvpkPHrOpl9W+CvUPByJPLqVMgIXAx9udA3uuAAalXVfZ5aCr8qyC/gmUr+Xuwxfji6l4E2ccHFjTQ2kP7bS0+UsXwzcFwlTuLK0AKWmLuvmXJEQasHgSuteA1AtNPKti7wcF/gxYlMGHnG7D2msCCBvEDYNhfctFfDEv7Sad+AGcPGPZ3bDKE/6cDpOyGrWHrFBUm65Ht9DxwzZbV6+POjaipxp45sDw8AECFUcWghU1h+0pg6Y2Q/QskDZXpqNp9CdZC5P8/AXr/G/1/u/eIgOU2IFO5691eIKDTC0CoUDTQjrCpWHypJFjXo+z9EHJmSx+cLo+CpQVde01aDfu0D84+zeqLIPsTeVHb8TIMXQYJgSRxBZMh/0nk5eMfmcK97TvV9+dehtgxHPBFN9H9MRTKNkFaMrQJ1WHCyJc3hupCwS09oN0a8PwgP9sCSpbhgU1HgneDXM5/G3r/I8sCNDVqBtI4GeZ/oDaCsuU4DlKeh+IXQMuE1DdbvHIDgAhPUieQcdI+ZJhdQ/rVZXkJXxaknwX2LjXvo7vldKgaY4ds3x5pkVCQh6UDqedC98nRlRuQlh1DBb8Bmg6e7aFtxX9I/5FyXOtl3bGEGNQHmzADXhpJROFLSwVLi1EEew8FfbNcLvsQ0j8PnW+VfGtE5Vw+f9wNmz6QSQ2T1kHFLAZGIbiWgvX0yjK2eQdyzgD/BnB1BkdAjgRptFSQL1cHC4pfELfVg2LswdfuZmxt34K2V9T22zAxiRnmFFVzIwRkz0VekHR5ocoNKyzqXU7oZ9LB80fNfZZ8CBjhE0kh9EOhLPCoWFAMRpiOm3Bd7fLcaJkQd3ZIuQHw/BMoxRAwYfu2guvPmvtqDNR2kPi2dIImDhImy+rIjUHirdBhC7T9DWwHNs4YMUaxnAZKemjZehmKEgNLxPorYP1FsOUOWH5g1KkgAEoXwK6TYcNA+DEOvk+AXVMbPn441gywZACavPNaFOj8n+qzQScMhzxD6nu5gDPM4ufoRuh/qMhoJ3sda8pVRa9j4JyXItcNOT9y2bMopNwAuL8AY3doOXMsJIcVTO35H7BUeLjIWymvMQnIWlrlBC8QisyVE46RDUXnQfF5kHwpdPKC/TrYrYAfhFU+E5V34U2RIfbWIgNLiYF1wzvgrliixcSkaTAtOM2NooCzJ7g2Ih8zBcSFXWScJ0LxB8j8KgbEnVRzn1oHyq0XArmrP1lBS/gZZd3zwDLZTheQPwR6TZDTK45x9T8Oa0ciyjCggrXpan9VwjEB7JfKz63BqtKEKGp7NHUBYs9zENcdpe3Ehndq+CA7UPYAIUsX5H0G7a8PtRF+8K6F3acAhlTuM4HdXvj3Ksg4PXZ10xQr9F4I22+T1o9294JzYPX77PwWRHlpDCB7nVQIFA2c3WHgNNh4HygW6P0iKAJynpf5F1IulWVQ6suRV4PuhTVfQ6cDYfQDkdvVzAo7WAMKfADNCYf/BAVL5XeYGCV7dOdxkP0zWMuttmFYekO7h8FRwbG56FLwfQ3oULoS/GvBPhNKFMgRoFhxDTgRR86vqO5cHHt01AhjkgDXSnA00gOGiUk1mD44LYHSNbDmMvDshA7XQLf7w0zPAor/B2ULwX4gpNwmL7DVITyw5yJE6SeggZ6ShBo/GdV2MRQsgeUjQXgBDQbPhfSxsTmOojmw+1b5SNduEqRcEJt+TWpH0TzYeZnMWptxL2RWUdqhdAssOgR8gSSO/SZC/waWgTAM+CNDZr0up98cSDtdnsObb4PdL0GcDRIrOHzvQOrjw7eAsxlzJK28F/59JhBeDdiBPnZo/yIi5UyE70MoLUb5+xcUTy4kboKEgLOx81Do8Uut8tcY/q9lX0oXVPvdKEotp3ELH4CiJ6X1qM3bEDe+bscnDFj3JuT8DHHzwRqQXb0EBrwXfZ+ctiDK/fLClD8BeBRI/R7cG6W1rGw5lP6KKPtB+gqCtAwOXCN9n0xMGsA+negvFrRYBaepKdsgEwEmHiQdKU3qz5a3YceHkNAbBjwOtmaq3G64YU0aCBfBp/PuP0J8lGSQa5+A1f8h6KNkSYJxhdH71fOg9FMZZh9/avQbuJ4Lu0aDZxnoKhSokHE9dH9BKur5C2B1wPKoAWnI9ULIAJvdQNpYGPxZZWtb8RIo+wMSjgplIW4sXLvgmyOlAqgAXZE+JijoHdqAmov2PTJwTgRiCXsSqgnXew3Y+1U7hPD/jF52FHK6S4DldCxxH9deRhEovNrQgrmGV1ZA19qAoxrLVtGl4PmgfKfIbTqwNw38gTpzmbdC5+fBuw12/xf0Esi8WU79mZg0ENPJuLXizoJFZ0DWSsg4DEZ9KfPeNBZxveTLpGHs/gyWBzJC5ywG13YYPq95ZDGKQZRFrvPvjN7WFp7dVql6WkjPh+0Hg3+bXE64ENp9ULld/uOyYjyApkCn46Dji6HtvrDIPB3p49JhlFSajGGQ1gnST6+s3OROgy0XEUxL0GseJFcoPxJLnB3g5DWwdzpkXRG8OioIMHKlUuOqsI+LgIJjBa3mau9CX4hUbgKWEP9X1TWvTKzKLKg2iD+65naJr4PWA/R1YDsVyh4BfQ0gwN0x8hzLmgzxp0CbkdD1zdjIaWLSAEwn46ZECHBviLzgA3x/Hqz/GQpLYcMimN+IF/F64GM+pVyHm+cQeGveYX8h75fQdKHQIffn5pNFS4eEcv8sBSztIL6KrMpdJkC7U+VnawocWsX0RNn8kHIDUDItVJ07HD0vfEEqA+GkjgFr+9By0nnQ8StoPwM63gaZ50SPosp5PfAhYJHKeTu6nA0l5y/Y8b30gdEc0O5CiA9FRwlrZ+leZgGRKAvXClRpRUmIlyVLOn8AlrSax1IPJJSXRwPtgMY4otihOCD+IUiaBo7xkPIzJLwECVMg4ZFQO4GcplxxImx5osru9kuED8qeheKrwfNFc0uzX2FacJoK4YcNp0PRF4AKnSdDZqDOzd6/Itvu+LWppasSH99QwlmUOznrbCSeV5pbrJZB2lGw7snAggZptXgibiwUBbrMhYIPpDUn+TyZyTYamh2Gfyr9JDRnyCpgeORNuzy/ihaKtEIBNA3cn0LcxZHWlqSroHg6wRt3ym2R41nT4aAVMm2/JRXSz67dMVk7EPL7UEP5Wfx/g74WLEdI5/iGsPQh+C1wo844BM5eAtY46PETFM0C1/cori/RskFPBn0IaKudKI7ToNe1kDmiTsMpltNQ7c9i+KaC2gPN8XL95DYKoOQ68P0BtjGQ8GxkXpzGQk0GZ+C65fBD0ULInyGXA9YtseNZjLa7EPpSFMsJqPb/7t912UpuAfdrgAruNyH5K7CNbm6p9gtMH5ymwJsDmydC7iuhit5Y4OAiUJ3SYrN+fqh9m35wUQ3VvpuIMu7Gw6uU37wU2pLC5up32p/Y9j/Y8RHE94QB/5Vp8lsjux6G3Y9Ii1TnFyHj2kAKg5ug+BVpwVACuYWS/gvJ/4nc37sW3D+C7QBwHBYbmbw7YMM4GYUTfzj0+kxO6RRfgpwvSoKUpWCpY0mDcnxl8GoiEb4lJ82APgHnXfcy2FGedFNBCBXUM1A6PV3ZaVYEckkpKh42kcWLCDykcSXxHErMKboUPNOQ/0sF4h+DuPtiP05t2Po0bLw7sKCgd1YRmXrgOqeg2h9GtT9QTQf7OLmdwNiJrip44qwIy0Ac1uloVO2vJUQhQuxFUXqimNXfgfrdv80pqsbGmwM/HgibXoFCIFjZQA9Fa5z4CXQYBqoGie2hbyb8PapF1G3RGEi4SV0jSvjp/kyXS+CIL+DAya1XuSlbCbsnIkO3vbDtBlnmQFEg82VImRCw8gQUgbIofji2vpB0ReyUG5CFMgcsh0N80O9nsKRD2aMEp6xEGbhfr7aLalHUys66aphR27cxbINAUXSUrpMjlRvDBxvHQZYFsm0YJf9lCxdSxHyK+Y6tXIqPsASBscK/ktD/UpFWrQb1VwIrroPFw+Df/8qIKwDv3+D5NXStikanm6BNeYVygYgrV24Cy3oz5cNqKWgHINAoTrHjcah4Leso5ngM8qI29/jup8zTBpevPy5XIsL1eRMLvO9gKjiNzd7PZAmGcgIRGLS7J5Q3w+KAs5fCtXnQvwy8P0Lht/DPKPDuaQ6pg9i4GAf3otIbK2OIpx7Og4YP9LKa25k0HcILRk4gkqmCzwyGzGNTjrU3ISuHBpaAg7q+GfSNlTPmxprwJ1glgdBlywB9K+hb6tevxQHHPEfwbtz5ROh+ami7cwSoqchpMhXsw0CrkBF7/QOQOA8UAxQdn+cR/GRTnvBS4MFNI1hj7acFPgQUT1s1fnuGC4qmQuEb0ofKKKzsJ/XXLbD5Dcj/DdY8CJumQME9sPcAyDocsk+UviTR0Bxw0JcwcCYAahGhwqGAYjk++n77C0lT0R3HIDRFPjQoBoICdP6q1NTnn45fL89cD0J14ys7FfLvrtTWpGZMBaexsVVwPFQd0O9X6BjFEc+9KeDEGcgGbLigrHmnqhRUnDxIMitJYCYq7WreKZysabA0EZbGw8Ybq74ZGi5Z8qDwP+Bb22C5TarBuwhyM+Sr8ASIPwicYSUHEk8Ae++w5Tsg7kJQUmWV6NTXofh2yOsBeb2g+KrGV3LKSXgZlHJLmQHeuZDXH3y/16+/A2/CuPxHyq7sR+nJP+LWz0eIgDOJpS10/h1S74G0x6DjwsqRXkW/huoUAFZDRxNJyEurioINO/WcQquOuIfkd+G4DBJngOPC6O2EAbtGQdblkH0N7OkNuamQmw7Ft4V+t7ylRCixBUug+KlQP55F4I5SlNX3I7ingbEHUo4ENR5lt4q6Q0EpjEPY7kS3Ho2omFhwf0Jth5Y4B5lCWkWeLFY0KkeyevU7w6xfYZQ8XcGZ36Q2mD44jY0w4O+rYcfboMXDgdOg7WnR2+ql8Ec38AcSsGnxMGSjdNJsDPI+hy13yc/dnoY2DchkXBHXBthyN+TNJSJr6sBvISXKE132KeCeD6gycqPdP2BpxqRvTYTARRn/Q1CMk3PRqEX9poaS2wOMLcjfRYH4F8B+ORTMCWTlPaP6IpL6BsjrHbkuZRlYw0t3rJJ5cRyHgS3GuZaEB/KHgb4ysEID+8WQVL9yDy7vSAzxA+XOzFbtEWyWWvqzrH8KlHsgGfl16ul42i0mS3kNAzfpXEU8MZy2qyveNbAt8P0rQMXLXsofYB0Cf90KG18iaHo55CVQb4psmz4fnGGZ1MuegtJ7An23gdRlUJoL219AqHaKumXjcn4PgJNLSeZF9mf8LKWM+wEfTh7AyomV2pR62oIIJGBUFBRd4MgXqIYCHfNkaoX9FDMPTktEUeGAt2DAS/KmUZ3DmBYPByyBHY/LqKuOdzeecuPdDf+eFTI7rzkThm4DW1hUihDgehG8n4FlEMQ/HpgiqAGhwz8nyMzMFZ/c/FGeQowycH8ZWNBBlIL7a0i4qj5H1moQCPI5Dy8/AAqlvEI6v6JRMS1/rAcun0MAUEEUyunStIur2yts/4qFHUFm7AtQ+gXsPhVpEbBAhy8hrvLFvN4odllQVQ/LrKvW4oIn/LBtIhR+B4nDoetj4FmGMH4AS8ifRYjt1XRSgV53wgYBWR9BfFfo9BZ2JY3OvFTzvk2BNyxPTTTLgAg4BQ56SuZHKvwLMkdDlyuhKBeKJsrtjlPAUSHtQNmTYf0Ugvt9SHoABr6Pj99wMSq42cV7xHMbFrrF4KBaJxYOJ4lvq21jszyC1389GAbWUoHVJSuCkPzofq3c1BdTwYklhhc2PyKrDHe8HtqEWSqqqmBckbh+0Od/NbdrKJ6tFebU/dKpOf2csDbvQWkg5Nf3gwxNTaqFbL4c8GyrvN7RE1JGVV6vOGStHSOHUHbdHrU8kNaLENl4xWJQZW0gQT5evsfJOdXvaHghezoYpZB+bvUFJKMRdy+UBix3SjI4Lqnb/lpfsF8YiOIBbKeBJSxSqOBFQgqUDgUvx1bBAUh4DgpOlJXRtT61iyDa8ZR8eEBAcXkqhg+xxOn4UghGQlm086vsohKKCr3vAe6p6xHEBMP7PoZ/NoraC9U+ESW8PpVvD2w9XZ5fFhHQBQcAq+V2y3CwBjJdqzbo92Bk58kPQfzF8jyzDqzskK2kgCggkAQHlGR0StjNA3hYQuUCFGZNuJqwatdg0B6X/1r88UW4nUeRaH0Vxdq9uUVrlZgKTiwQAnI+hXW3hG7s2R/DgV9BWgvNdxA3GKHGgVEWuuxkT49UcHxLkaeIH9DlfHttsKZLZca9heA0SNfHod01sixARRQV0j+DvMukkpN4GzhOqP+xtQaK56NsH087o5iyFCtFHZ2gKGh0Bn8hFC0DZw9wdovcTwhYcyoULAAU2DEJDv4LLCm1HzvuTnlj07eA7XhQ29ZNdkWBxPfBeTNggOWwyJuf1oZQtl41sBxjLAdA2nYQuaBk1q50QcnvhBQvA4p/gbgsrMUGqg8Mq4LmuAXN0Yz5jOqA4fscwy2VU4GGYWxDi5sVauBeIa2hOqGAq4QZoO2UTua20TXnzqnuQSPxHSg6XVpvrMeD8yr28iSFfAHoWLDj8LlI3urC5opDTX4WOjdRvp5WjF07Fbt2as0NTWrEdDKOBdueglVnVLZabJ0UuezeBb+fBIu6wOpbqw+9bGR0ZTV6QigrsUCRtWPCsR5FaOpBBeuxtetc0WDQd5B5EbQ5FQYuhE53g6WaMGr7MGi/GjpmQVIz5fNoKoSA7eejGPL7jivw4SiykcBEbK528EsfWHECLO0NWZ9E7uvdHVBuAAR4t8splyj4KaKYv/BTFDa2DnlvQu7nYPSqu3JT3gcGWA8D6+GVlYu0J8HSTX629oK0/9Z9jNqgWEFtV/u6TMnlSfkCXsHJIyFxAgpgcavYShPR4m6qpoOWhdB/IPSMqiP0RZEN7AOlTxUKQUXT3gNsJ4H9VDnV1xBsx0JaNqTlQvJCUJx4WIe0wiqUkEDCtmTshQLVWwTZL8tyDiYmTYRpwWko7h2w+eHo22wVbh6rroDcb+QNYuuLEN8Lut7Y+DJGweufCO0MtGJCD7UdwjLQChe4pgcW7GA/DxLrkHXV3gV6vxsTWVsNRSuheBWkHgFxUZ58hQDPt6BnyWzDYf5JKf5HgOtg513gC4TwCh023Q+ZZ4b6sCTJG5PwhNaFl0EIUMpaVnMlOiVoxDOAN4mnP+y+GfKmABrkPA09f5GVsGtL4cNQ9FhA6GchMYpCYO0GXdfLKU01pXLkUXPR/mZAgcLFkHgYdLxLLscdD/7dkHAWWFuPY7uiDUMEH0A00I6IbGDrDF3nQ/aj8pxp+ziotaxcXmshrNLBOEAiIynjd8ozUDtcOkrQfKSCq2UkMG0xCB+4VoAlE2yt59xrLZgKTkNZfZEMca6INR36VChpULI6ZLVRLFDyb+PLVyU6RpKKa6BALVVREsZgTwrLpeGaElYI0Af+FaDENYegrYPdM2HFeYCQqQCGfQ8pFaJn8m+E0inysz0RPAEHTy0Tks6Qn5UKf8mK5nwtAfpOh/WXy/Ou032QVLla8w7eREfmHtJxsYM36ctzUFCutOqABkVza6/g5N8MJWHOswU3g3MsWKL4BygKaM1UWb0qFBU63CJf4SRe0DzyNBDFchaqYwqG7yMUtTeq46nKjRKOl68mIo3L0UjGxUriGIqa+gvseZLgVHfK2CaTpcWjl8Dmo+VUIgq0fwXSrmtuqfYpTAWnoZSujlx29oRBM2WxPrXC19vuLNjyvLyJCT9kxjAsu47YLP/B7VuCcLjQHUk4rI/KDUYZ+LeDvpuQH4UBIqua3ioj8OBhNRqZWOkYa/FbHpueJpRh1wfbXo1UcIzSkHIDYC+WNZu0gZA0Tj7BAXS6GfbOlDmRVDv0frbyWGlnQpszKC8NUCdsPQMX1IBjhq2Wztz6nkjlJrg+J7qCY3gg/zup7KWMAO/v4PkOrAeBc0zl9iZ1RlEUFNt1qLaWc1NUUEjlbFIJ1BvrcApYO4P7b0gaAynNd81rcRR+GPgvAgjYcwe0ubblWDz3AUwFp6FknAG73iRYFLDfW5B4SPS2/Z6GuF5Q+i9kjIWMKBFFTYSmHkmcbSOG+BdVGYSipIH7T9g1Eox8mbE1zgpqwOLkvKX6DsPQKWAHZ+BjA6CQybMk1RQZ1NqxJhM8BwSV/Y0UK2AHAlNLCpAwApwVciLZ28Phq6FsLdg7g7UKK4gSll0uDJ1dePiaDAZQxFJ0StFw0pErZYPO02H7heDbBMkXgv1gWD8IfNsh9XJo92yE0uRjBYXcCGIPlRIWaL3BdlBl2Qwv/HksFC2Vyx2Og/jFAXkNSHkJEptnatakCfD8Dt5fwTYM7EMh8/rmlqjlYZRBaXTfOZPYYSb6ayiGD3a8BK6NUtlpM7LmfSr1EZhHr2jxaWp2ngiu75BOghokng1JI0DrBbbIMF+BoJRZeFmOg+HEEfL6L+BNcvgv5RYNlVR6RElLvk9R/Df8Pgo8uyFhEBz2Ldgr5LMp/RDyJgBeiLsA2rxfdwtMNehsJ4ejERQAYOdqLFyAk+5YqMLBe11f8G4kGGbT6UNIOQ+Qv3E2/TACpQcS88qILw2kFrAMgMyfQYvSb95CWBGmvLcFksJy1lgHQ7uVlfczaf2UzYXcMwlGT6bPqazE7+cIYeDfcwiG8Q+WEh3NF7gFt38F0kxlsCrMRH/NgWqFLrfXf//Nz8HaewEF+j0D3ZoxikN4iEzMZwdndPN3Ma9TwEOARgnv0IYyEjivKaRsmSQOgmO3gS9flueIprjEnw/O06UDd4xCpwWFgAMFO24+DSxLPLxLKlH8MsLxbQNDlzqtqoBvS9hGNwZ7g0vFqU7UhPtwilFgO7zqpJVaBUdWv5Q0sBG0brU5tJaNcAP22k0nuP8B306IOyJUfy5mcghZj0tJAK2RkoLWhdI3IpdL3jAVnAq4jf/gbr8OsIJuIWmjBy3tZVO5aQTMMPHmpHQ9/HuH9NkQXlhzC7iiJMhrKlLvJ6jzKk5IubXKpmV8EfikAwouvgpuS+QcrME6KyrpPFhx930T1QL2jOqtMqozJsqNQKeESymgPQW0x8tcVNIIKRIKKrUYx3Ig+JA/o0+AForkUHBi4wTk1JIGShxW22VgP7L6jNxJw6HD1cFeSP0vOE4CbNIHJ7WFZPmtD0YxZJ0AO5ywu6ustl0duZNhwyDYOho2HAD+nNjJInRpLdndHXa1hZJXY9d3fVHbErqtqKDVIw3BPo5HfS+0oII3RQPnUDzksIVpbGM2OlECV0zqjGnBaU68Fas4C7nO2QT1iKIRPxq6rpP1a+wHg6XqwppW+uJlGeUKjjWscJxGCl2Yj4fVWGiHhcphzCYNw8dn+ChP6uamlKtIZicOvsXNbBSRSLLxqHQLqraj8BuuBiU/QptQJt9U3qeMtzHIwcF5tUq1L9BR+r0O3R+WGXKtjZDor7kofh48i+VnfRfkXw1tf666/d7/hD77tkLB+5B+W9Xt64L7C3DNDSwYMsotboJUohsTw4WMFowSVZnyGPhWyJd1MCQ/1riytEIUJQMhCgI1GBSUuNPxxfVjKRfjJQ8Q7OE7hvIKipn9uUGYFpzmJHkIJIU5JCcfDokHNJ88IHOYxI+pVrkBSOVBnJyMRnviOYckIqfpFOw4ONhUbhqJcj+bEC4UIEW8Sdvc08ncsR37rnOgoIYSAtYOhLQgAdbI310hjnhuIpGHsdZQFVuIMtzecZR57ZR5emJYc/Yt5QbAyCbk3K3LnEbVERHmLwKJ92KEr+IDkk5ETbDGYO+LsDxRvnZNrLxd6wDtlkMnL7T7E7R9+P9fT/fVeN5AUWR5FatyCvaED8hnJV5yKbfAFrIKd9j0sEn9MBWc5kS1wrAf4IB3YfD/YNh3ze9oXI7hBX9ulX9ilSQyeIuOrCCNyaiYOXKaEiunooSF39u4FgUb+JahlL0Xeu4rfgr8mwOf18Gyy2HZBCgKTK10fUNmt0WBpFGQWTt/MoNS/OxEhPls+fSX0IWcqhRsx+O/OvrO+atgx5fgLYy+vSUTP4EIw3diDdGFHV4DAkqOcxikToiNHO4dsOo+cIetS7gd1MQqd2kw3p2w4zaCqSN2PwyuVdHb7svlGAwP/D0eFlnhl15QUsV3UAUWDiOZzaSQTwKzAg+DkQEJKjaslUq/m9SVFnI33Y+xxEOnS5tbikiKvoONp0t/g8QToNfnjW/2NqkTKmkk8Rt+vkYhHQuBZG7CW7mx8IO/BH44CnyBau67P4VRG8HRDwatk/4c1fnVhOFiETlchsCFjUPJZCYq8Qj2Em7dEGJ35Z3XvAS/3iw/x3WEsX9AXPXWwhaFbYiMAPN8B5b+4Di2+vbJ50D8CaBng6137KLmdr8NnhzYATgBNR2GPh2bvqtCLyQyCAHw5zfumC2Rna9D1ixAgGsLrL4UDvuzTl3IqadQqYwk+tCHm9jEVFRsDOBuLOZDY4NpVRacH374gXHjxtGhQwcURWHu3LnNLdK+ydbLIVAnieLvIOft5pVnf6dkFawcC8tHyhDsACqp2BiPlRNCc/W2YeAIy0gddzFYekHxWvBmS0VG6OArCFlxoNbKDUAedyICpgMvyyjhfQAs6kWEPzNZtSi5bpaHOZyX7YaNtahO39Kw9oWE62pWbsqxtAF73+jKjWsT7JoKhUvrJoNiB4TUN8oU8Cc2foI4Rz9IDEuDETcU4g9v3DFbIp5dhG6dOnh2xqTbrpzLccxnBJ+SwZEx6XN/p1VZcEpLSznwwAO5/PLLOfPMM2vewaR+6EWEntTUwJObSbOgu2H58TL8HAMKfoDD11WuMl6OosnK7N5AJXjbYfLGF99ThijrsnwDqh0S+kbvw7cW8q8FfSckXA+Jt0ZsFpQRHq2VxzRyWUKGegNx1j/RjYUoah8s6ujKfWsOpJVHyJfmqNv3sS9RvAKWHREq9dL3Deh4VfX7uOZB0ePgsEJKDyjYIH/Lvq9Uv18sUFTo/SUUfCatgimnSify/Y2258P2F0AYgICO18a0ezdL8LMNB8di2R+ywDcirTbRn6IozJkzh9NPP73W+zRKor99kT1Pwc6Ac6qWBv2Xgb2aQnClC6BkOli6QOq9sS/otz9TtkFWFQ9n8GeQXn3Ke8P/FYb7bkCgGjegFuaApwz2/Cr9qvr+Hzi90lci/vhIC87uvuAPS/6n/QfaPxy0QBTzJvnI6CADlTLiESgoWOjNt1jpULVg2z6FxeOlH0P6MBj9DVhryA3j2SNLoiQcALaM6tu2JtbeCDtfI/g9O/vA8LVVt/dvhN39KI9cREmG1MXyv1kxc7ZJ41K6BnK/lKV50k+LmfWskOcp5EkAFBJpx0KsRCmFsh9iJvoziQ3t7oaEI8G7VfrgWKvJZeH6GXaPQZpsBXj+gg6fNpWkrYuSn2DLpdJ5O+MCSB8F1qNATat6H0cXsHeSGZIR8mm9qlIgAYSRhVF2OuAFj0BZfx1CqCgYkHER9HkHNh8PWT/KHRLPhC6z5UVaGOBfT6iuFrDjUcjdBQfIqcpErsLOMFz8xg6eKB8VgQ8366tXcLqcBuftBXcOJHavNG0jEHh4Di/z0BhIXMGpKCtOB8UFNit0uB46T5LfQ2snogyHBtZqzgMA3z+EoqQEiHywx5vKTXMQ31++YkwxrwU/C8ooZTYp3BXzcfYXWpUPTl3xeDwUFRVFvExqScKR0OaC6pUbANe3yCmHQGSFa2H17fdXhAEbTgPPZtALYM8UyDod8vrJTLRVodrgkB+g/SWQeS4cshjsNZitxVZkzSuBUoyMTsaQ27I/gL97QNmPofbFn4B3g/ysqGAfDSihWagSYMc7oIeSj9kYTCIXY6EtMsxcRSUOJwPB74KfL4CPU+DbY6Csgo+CLRmSekb1SfHyLi4eQOdXvLyHvuUyUNwQD1h9kPMibLms+uNvLXS5E5KGyc+2DOhbQ6I+21CZsRiNYEZorZlyZoUjBBR9A7kfxDaR4X6ISiqh27KBRhW16ExqxT6t4DzxxBMkJycHX507d25ukfY97AdC+c0TDWyDa9xFiEKEvhoRLeJnX8VwgZ5L6LtCPoyLfHC/U/2+zu7Q/x0Y9CEkHVZ9WwB1ICidAQ28YanCBOAlulNkeNK29NmgnQd5wCbAo0j/nQr+Fip2uvMhKZxBMmPpxodYSId/n4FtH4GvEHJ+hj9qX+3azzJCeXl0hFIUsjOXH0jB3Fr31+SUrZcRNq7NNbe1JMOQH+GYQjhyJyQeWH17rT1kLoH4S8B5JtiPh+KnZaX65mTn3bD+RNhyMaweDD4zf0t9SeMl1EDdOAfHk8BFzSxR62afVnDuu+8+CgsLg6/t27c3t0j7HvGnQvoLUrGJHwvtZ1fb3PB/h17cAb10IHrJAISxp2nkbGLy+IXlXM4KrqGIVbI+U/JYgndpBXCANK/ENgRfUeLQ4n9Gsd0O3lNgJ1KZcgP/Ah6BrIAZEKTtE2ANswqp8dD+A7BcA66AcnPQh1EjrWx0pSNP0onnpPUGoHRzyCdB6FCysdayWzmGoI8JKv4eJwPOsMLpGjiqcI5ubnIXwK8D4O9zYWl/KPix5n0UBSxJtQ8ftx0EiXeD6zMo+x8UPgA5ZzVI7Kh410LeE1D8QcCZtgr0Qih8VlrY7IBvN+RXfw3YHzGMtXh8N+Px34URLX1CADtD6chqOrGJTKajsB874ceAfdoHx263Y7fvA3P1LZ2UW+SrFhju26G8zorYguF9Ac3xZOPJ1gy42cM/3IkIOI+u4maGMQ9Lj9mQ8xZ4fgNtFlhcYDkIHLW3cNQWRe2E5ngKum6BhQthq0/eqByADWj/NCSfBGgyjLlyBzDoNRgwGRRL3fK3dDkXNr8rFSKhQ7eLa72rlXOIw42P+Wj0w5F4z/+zd9ZhclRZH35vVeu4T9yVGAGCS3B3WNzdFlvsAxZZdBd3J8Auboss7hIISYi7TjLJuE971f3+uD3TPW4tM5N+efqhq/pW3dOT7q5T557zO7CzTyW913wC9pEwvIOIVywofBa2PA/2YTDuUXAMhYIH1PsF1V9u08NgPAXuT1Xbguw3wdJxVYwkQIDVaGSjNxOAA8DzNWoJMoj3CzVfpMT1fCth0w7BhqImuH+BvDaWz8quBptUDqgFFSW0JJZVwpGyDLd/d6AWAMP4L07bEkQbqtYCDUGiUCMS9CkHp66ujjVr1jRur1+/ngULFpCVlcWwYb1gLTpBJ2jesbz/LVO52IAMk8w3cOGlGIs2CvIuAy4D+RSYZaAN7dh58G1SPaIcEyBpeteMSR8BJ30D8x4FzQeTdoS8/VSOVWfoThnwwENgv++g6CvImAJD/9LpQwUCO2di58zQTqsDRjwN9IJmkqAiNSuDpcG1C8C7CWb8EewUrtEYgTLXg2shYIJvtiq9z/243VMHWE0ZMwG17JTEhaQ17whvnRC2oYM+JLLKwfUfhJwbgNpZbTs4ntmh6JoEnMMhs/P/3tsChvkHhLVWkaxFyvUI0Usjkf2IPuXgzJ07l3333bdx+5prlKz8WWedxaxZs+JkVYKuoNnvwnSfBBggMtFsrYjB9XFSmYBOCgZKc8ZOLs7mehYiWS1bdYRrEazcDUwXIGDELMg+s6OjmjJkD/WIJXn7qEdfxCgHz2eqE7b9gJYlwLV/ohwZEzCgbqHaP/peqJkDvi0qopM/FvyLGk4KgXUdTl3N32hwbgBcPEcSF2AhTCrAcQBkPAi1TygbM5/v/nuVJqy7D4o/gtSpMOEBsAwhlCumgT4YaW7GcJ8N5nKE5Xg0x8MIoYNzf/CvQi21Ssi7XUX8EjSiaeNReWUmyhtMQohmvweel6H+HtDSIeVJsO4Se0P7IX3qkzhz5kz6qGxPgiCa9XiEvhpprkHoOyFE/wtnW8lge56nkDcRWBjKGWh0c6m07DmlGQOAhKL7OuXg+ChiPX/FzUpS2ZURPISeCHt3jFECxdNVp3CA1Gsh44GmYzJnosIVGiAgM9gmI3kC7L4B/CWq+tD7NZS9g7q4GZDcccKopKWopqSVJOLUa9Sjp2x6HlbdrJ5Xz1WO9NRXlfxD7Sy1pJb/Bua6Q9AqliHTJXLA40h9PMJ2GeQ+CHoW+BZD0iGQ2svazvQCNDEKu+UtfMYdCBzYLA8iRJj2k/9PqD1XPTc1qD4MsrdGtjHrNkqfcnAS9HGMWthyEaL+J0TyXjBot1DBTD8jmVGM4/96fiI9XNBKA71zmiebuQcXywGDGn6hiGcZTAQuiP2Jyi+hfgGk7wepO6l97vdCzg1A7SOQfn/TBOv0XWHa/6DoNVWyP+KW0GuaNVTG7zwEcr8H75dgnQLOjpdukrmeak5t3LawIxY6rkzsNtVzVcRFBgADyn9US6Z5T6kHwLqn0RcvRQrQCsEIaMjRQUFCYYfsO6NnXzvIYOa8oAOhyF6ART8Wi35s6y8aq8I2TJAV6iFa9mgzqURgRyT6VHWKfl1F1ZuRZgHSbFrVJaW3jdH9hJJboPotCGyG6rfVdoL2yb8WnFPUc0s2DH2iU4f52EKjQi7gp/vValJKTN8zBOoPxvBciZS13T5Xr2Hr07DsYNh4IyzaBaq+UftFRtNxoiGvphnZh8Ck/8CYf6oqqLZw7A3pd0HSSZ1Su3VyGNn8TBJXksaTZPMFIpo/09n7Bp2bIN5NsP6hpmO2foRErUABiFITYTk6ejZ1Aj9fUcVgqsijjjOa5Lz1OWp/aOxcggT07UE0TS6XmFRxMSWMpJjhuHkzDob2PRIOToyRUmK4r8CoG45RNwzD/TekuYVA3fYYtQ4CdVORZmSat/U6vCsIre0bwe0E7WIJtsqYWgRTCyF5x04dlk1D6bBSmM6i/dYO7SEDb2F6LgHjS6TvCUz3Re0fYJZD1f5Q6oSqfVUydW+j6LngEwkIKAk2/Uw6EZwnquciCbJfDTkmgWrwRV/WwMpk0riDJE5DRDvIPvAUGHJe030rbwQzzGFI246GS4VEIDKORbPsH127wjErg0nPBG2Q1HMuSoES/LyHj3diZ08kMSqh+mn1VnyoGgzbdS0KD7x8hafRqfFTzV8bG972JtxsopqFmL2keCTh4MQacwnSH7oLl/4HMT1XgBns7Gwuw/RGYGmjNdw/wNbjofgc8LejnhstUo8JPgn+aKcd0+RliYGL16jlHvws7vY0Af7Aw4P46SeqykJTOR1dqJTJ5RRG8QwD+Svj+A9p7NXt6aXxK6HVbBNp/Nj+AfU3g/8HwAP+n6D+pm7PHTXsQwitj0qwBdtLCAvkvA2DK9XDeZTaX/Qs/J4FfwyEVWe0rw0Ta8xKqL0Yqg4AdydL6KVUgo+BGqhc3ezFZpGmiXcihp4GzuGIIaciJseoA7w0oOZUKM+CsgzwNjgxMpirFGr4KqmMjU0RR1MPE6VT5QWMIijeBYqmgku9Z0nzqKkPGWcnwsSklmL8QUdrC+/yByeykAuZz5kEgg5oPEnk4MSclh9KaZYRimyYSLMk8tP610LhgTSWsLp/hOGrWhVvixpZF4OeCa5fIGkPSD+pycs1XIeblwCdeh4hm2+xMrlLU/j5mjqORv1ImyTxCHYujNhb6Eukszfp7N3j8wh9dySPB7c0hN7BOY0CQstjBhgbemxDxBn1OCw/BlxLIGN/GNLMCdMyQs+NOlh7GYS3u8g9HTJb6ZYeD2pPB98XgAH+b0DLBXs7ETvTB8uPgqovAAtUBtR1tkHHZuIDoIVdGizJsFOMnJpwfP8F7xvBDS/UnA05xyGEjp3L8fIIAIIcbBwTe/sigZ4O2XdDefDz5zwEau8EWQuYUH4yptiIRf6A5kjD1FS7ISdnoxG/htFe6viCO6ikAAt29uVvrONxGpxOF+sp4QsGNUaS40PCwYk12nSwHAkBpYchLCcgrGdgun8KDbF1sATQHTx/AP7QdmCdqhixDIz8XG0hBGScrB6t4OGt4DMDkHj5tMsOjo83CGmRgJdZ26yDEymE5SQ0RxWm/wOEPgHNflf7BzjOBP9nNJZSO86OgZVdxDECpi9QkYyOcmNMH+H5TGpfnNsjhOP/lZB9Ovhnt+/glL0ZdG4AApCFUrvWACwwPEbSDZW/wqKzwFcOI6+BMc1y8mTzijI36jdMx8ndWNkXkyKsHITWqMzdB8m8EVJOU06NsEPRmMaXTIuJ6b8OgSCjTuC374nFfhs29m3nhNFnBV9QhcohDeBhNjezA2vZzEBk48JQZDqs94SEgxNjhNDQnR+A8SuqKmY3hNAQ2h9I4zeEvgtC3ynyE9uno/65DTWvZRDouZGfpwdoDMVgNQ2NO3W6Lt4oGEQodK2jMSSCFm6bCCEQtovRbBd37gDHyaDlqQuvdVewHRBdA3tCJxJ/sWZB/oVQHMzbSZoCGYdE166uYN0TfJ+hvjcGWDvQPDKaOWcNfwITGHNR5/4mPUWaMO9o8FeoiVffChm7Qk7YZ8V2NGjDwQwupzsuB+EImiywcmAb5w70PS0ea7BPogyAZTwElKCttAQlBjDQkNh9y7DY94ubmQ0Y+EimnlSjivyKMpwBD1kZ5XidVkrII4UJ5BP/74iQ25CwTE1NDenp6VRXV5OWFr/wHgDSB7UPQWAVOI8JrfVHk/rPoeohJSaVfQ/YxnZ8TAzxs4xqzsdgEw5OJY17u1xBIqmhjtMJ8D06k0nhLTQSTVYT9BApoeYHlbOScQDoES7TrflDPdJ3g9QuqlWb1VB/CxhrlXPp6EAnyV8OC3cEb9BxGHA1GCPBOQiGHNu1thzdJVAPXzUr7578PAw9v+k+swp8n4OWA9b923e+3EthzZHgWw9ph8CodzsnptnbMIqh9gGQbkznaExfg7yDDpZDMZMuwmA+FvbGysy4mFjF05hcq3zjgCR1rRc9IKkbcxTC/k+SGR3xBPnuXL8TDk68qLgI6hsUSCWk3gUZN8fVpAQJEsSBkvdgyYk0igdO+wSyD43unIEaqP4WbAMgddfoztUWc4+E0k9REeVk2HMJOHtwM7JiN6j/g8Yo9aB/wMAoFWzECCkl0v8kpv8thDYWv2MKbnEzDeKRybyBjdiX7FeSA9Klon9SYqsIkLw1QGDQ5ViyHu/w+O7Qnet3oooqXrg/plH4QAJVt0DdZ22Pl/VQfRSUWqFiirpbS5AgQd+n8GlCy6oSCp9rb3RksKRB9jEh50aa4CoAwx39uRuY/g5s9ziMuRV2n9cz5wbAX0QoF0mDQHFPLYwv0oUwN6JZL8WS/BO68yV84sPgi8qJi3h5fP1nsGEErM+H6mdaNwsX4AotbQqBaVUbFvuJkbWnhyQcnHhh2z68ylGtf5ef1/Z414Pg+xQIgLFclYVGGT+FFPIX1rMjpdze2B27XyMDYJSpJYkEvZJ+9zm05REqWdfAFuPcOF8FfDsdvhgO/xsAZT/HZl7dAcMvg7G3QfIY8BXAij1hQQ5suEB1SO8KeVeEngsNsjrZxd50gesPCESherW7+L6HsjyoGAmVO6qlOkBjFOHy7xrDu35uGYDiM2GNDTaMBu8Ctd+shaLjIFCgClBKL8HvuhC371D8gQeRjdIIDgRNFdXttTkw8HFI7nnVZiRJODjxImuWcmpMIBD8v9mOloO5JaR0iQHNVJCjQQlX4WYOBiVU8yI1vB71OeOKZy6sHwjrc2HzLmBUxduiBGH4WEwh09nEYEo5B0k/Uf4efb/qYwWQMhVGxrj1wdpHoSaowxWog4VxaoC74Vyo/001Oy1/EUo6p9rdSP41MPZLGPoYbLcQkjtRrOEvhNUTYd3OsHIo1P6ve7ZHmrpLIdisF2MRuNWyTxL3YWEPIAUrh+Hkxq6fu+YlqH0N8ENgAxQFe6QZpUFBxdDNneF7EVN+ic+4noDxJAACjRT+i8ZYBJk4uA3b4C2Q3fsaJ/exVPN+hJ4H1n2U+J6OcjVtM1ofKwNQswLcQQ86CUiOfumzj3WEl5+q7TgiDeXoaXmqnDLSlF4KZoV67p0PVQ9D9h2Rn6efI/Hg5nsENhzsg4hQw7Fy8zwMsUXJOMn/USteIa0/SAA4hsIuS1RTVS0Kn+uOCNSr5F0JYCrdn3jgbaigBNDA243fm7QD1aOzlD+mnBxQEaOi6yD1sK7PG2lkPU1C/FItHWrkk8rnPTt3YAuNDWAxwQi+f8sIsO+kfvsQSE1g2IO6aWgY8hesqCiZhZ1JZ2HP7IgBiQhOPMl+BKyoz5oF8P4OZnO9DQ/UvqEcoQbcyeC8OurmpXBE8JkOmCTLfcH7JwSiL1ffArMIKidDxTAoH6w68EZ8jipCgotCVack6BISH8UcSxlnUcoplHEBkggs95luDLkhTFpDYhrLOn+8ayt8cxS8Px7+vL13LkHGw7kBGHEhWFKDGwLG3xofO7JOCz5RvzdkHheDSWXYM4kh1+AlBjlQHZF0G40fdpEBzvPbG901Uk4MdioPXv7TLgjOo8HgbyD7fsi6Dd/Ac0BruDkx0cXukbMhRiQiOPGk+rmmLqbVB+VPQu5fVbLf5h3Bv5wWgknSS2MPnSiSw9+xMRof60k2diNp8yXgXwZYIP8/kNpxd+SI4boPjKCkvKyE+qsh4/vIzpF5A5QEf0iEHdIi+KOyjeDld3zMb9x28ykBNmJlRM9ObJaQWl9PdXoKSImQkOQbC85OHv/TmVD0nYoCLrwDUkfCmLN6ZlN/IXUcHLACyn+BlLGQPiU+dgy6C+zjwLMC0g+H1O63F+k0WVcgq/6DCKgO8u4B4OcqdKZiIU7VZQDOc8G6syomse6hyuQjhX0SDP0T6j8G6whIDlMb1tIg828A2KQXYeRgmPPQtf2x6L1vCaojEg5OvDA94CsNbTfcSJQ8CzmXQek5QeeGxjvgRncm45qYaFUIdNIJamrU/Av8Dc0xA1B2ZWwdHBkuTiaDUuYRJu08sE0D/0pw7AXWrgsNdhYvb+DhPgTJJPEwFnaJ2lyxRJDSYo9GBDRj9CGkuUZi860lYNFxeK1Yc0/o/PGVC5VzA0oErnJJz23qTzjyYXAsIibtIDTIOTu2c9qGwtg51HhGYdo0ZLAayGBVfB0cAMtk9egkEomXjwiwHjsHYWW7tgfbxqtHOwhhx2a5p9Pz90YSS1RxwC//h1GwHbL6XbW0KlErI9WAZxnU/w6+VY3jRfDhz94fBn0N2ffFwermzQVj3GzQeRnQEMIXkBSlBo6OnSD1tOg5N9LEqH0XX9XZaLUrMAMLqeXoXtkZuDvY2J6UxrwYQQa3oZPX8xMLHZH3A07b30jlQqzZv4HeBXn+IUcBQvVekwEYHH+V1X6BawMUf6j+31fRB0HyXkirjloeS8LCPk2GSAwMCnr197SOu6niLOq4k3L2wc+CeJsUdxIRnBjj421c5llk1HkadqiHn7D0Dwukng7loTwTwwqBZC9W2/4xtjhI2rlQ/SwE1gMaZP8ztvNbtoeslRD4DfTtwNLO3UlvxQzAosPRK74kFSAJzHQftaMNpK0U0Q8Ul4U0yBL/IJ1rEFjQSG05yKwEkRzMA+gCejak/6N7hu32FKSPg9o1MOxYGBSn71F/ouJHmHOgUmUXNpjxJWTv0/FxcUZKPz7j/6jjQ0yRQ4p2F6nifTw8iaQSO2eih5VfG5RSwREYrESQQSbvYWPHOL6D1nHzSvCZCQg8fIiV7SM6h8SHwUY0BqHR+1WiEw5OjPHxAVITyGAfwrCcSUXWGZA0A5JmEJC/IerewbQKfBkSq3ZQfIwG1bdq2BLwzkNaBiGtA2If/tOHgN6FZYneRuXXUPFlaNsFIgnsFZmIAYPUPulTGke+D0GfCGmvg94NrYtYY1ZC6dHg+wksE9FzPwXLyKZjpA9qTgTfR0AypL0D9igr9jag22DK9bGZa1th/QMqGgbq/xse7BMOjt94gCrxHF7NDlTj5lTy+C9OWo8Ku3gcg2BvKGqo5Qay+TqGFncOjcGYVNBQHaURoUbKrgXgK8BIGUm55RRMNiPIICsKDlSkSSxRxRiN0SA06obZkBaB1HTMrN2RE9+ESSthxCuqZFMI9My3MAc/g5FzCjbrw1j1OMuOa0n4nOkUWo9mM6Mo5lhMelFX5V5P65U7Nu3MUCm1+zHwzlKJ1IHfobaPJDpX3wW+X9XzwCqovLLlGO9/gs4NgAtqE0m+fRotmTA5W9Ai3J8rSpjyT3yarfF3FsDNV22Olw16NOpoZC/9zUvnaXRGATYcHE8S5/T8pCWPwfLpsPZo6qpmYsqtQIOj9/eenz/KJBycGOPkJqwch5Gcg29YGoEhBmbKbxj+U5GW0ibN5IQQWPWLcFj/g9VyFUJERk+kJ5RzLSblAMi6H/GUndu+XoW/GNadphRKy16MkZW9lMwDIDNMoyMJhHMSWtYNoX3GOkJKpUbfaclhhsviG2BsaWVMFaELogRZE327YoDExGAVJr1ICTcWjLsD7ME8KHs+jIuxQGE30bUD0KURkgoQYGV0m+OdnIdoLNcTJHNd9I3sBlYmkssfDKCEDF5A0MUl4NbYEq4D5iGURyF7dT5SAwkHJ8YEcFHPdGzudPRAdfDnXn1ozMBH7R3aK1AhUJOUEhcDllWQtOptWDgRXG2IPq09HirfgvpfYOP5UN1Dkaq+jGaF7T+DnebCjLkwfRWMWQCWrNAY+4moEHPQyXGcHgdDu0HyuU23Uy5rOcZ+MoiwNgRJvfNC0RUkXuo4jBq2p5pReJkVnYncC2HVBFiaBIUXhSrCWsM/B+quAddDQUmJKJE8Dmauh33Wqf8nj4veXBHEol1Alvw/rDILTaaSKi8lmZPbHG9lIjn8QQavksWXmBRRz9OYbAM6WZqThpuSpBIvQlqDL+ik9FJHL5xEN/EYYuJlDYfgp5AxNWvRm1UiaY4X0Gzt9KPqBdTyApXczOB5pejVYR+d/INg0hctD5jvDMp/g+rwezsMjJOQWF/B/zP4PlM5OPbTmkT1ejW+BeD9Eazbg6ONnjRmKfi+BG0QWGf2nffWBl7ewEX4d9ZBBqURU28GVI+kdTuCf4tqigkw+CXIbGUJIrAQKmeglkMNsJ8EaW9EzpZtGImHMvZqzMexMIFsfohMpKQb+JlPDTcgqSeZa3FyfMcHdZXq/8HaE5SScvJuGGP/Q0Bfjc44LD3Vtuoi3bl+J5KMY4iX1fhRPaTcFjvJASW/LQAsxyCsEVgz7Sz+EthwNrgXQPqRMPRx0Dr+oqZyPlYmo7l2V1KDDiAZCHwF1e9DejMtjdR9oOZrGhtvpXSuGZtJGVWch5/52NibdJ5pvSKnP2LdUz36Grbt1aM9tFxwnNb+mD6Fr9l2gLZyrbp3+mWweXfQqsFGsNpSB39BG+P/R6MEP4D3/cjZso3jZyEGqxu3AywnwLK4JNpKPFRwHFLWgDCp5nwsbIeViZGdKP0wmFYCgXKwDUMXAp2RHR/XS0gsUcUQKwMRWNExcDnteKw2AnomwvEUlqQPEDEQ72uk4BKo+RL8W6HseSh5uN3hEh+1vEwV96PJZISQCAuQRrCXloRNJ6i7zHBGvqm6/GYcC6PeVw5PJ6jhZnz8jKQWL59RR4zL0hMk6AQ2jkVjQuO2g1sQkbxvrH4SzLDeUBaUjERaG3fr+jhCeRI66GO6Nl/9z7ByNCzLgJI7emdLizihMYCm6vEaWiQ0nrqB6f0USRWIUE6Mwar2Duk+egrYh/fJaGvCwYkhFrIZypOk4EcISb3TSXUyuGylHR8caTzLadLYzrOy3eHlXE4lN1LDoxSJQ6jNctC4HAvB772Emk+bHmjJgKEPw+j3IPPYTptnsD7MPonBxk4fmyBOBJZC3VVQ/3dVNr4NIEgjjV9I4VNS+R0nES5FF46w5wKsQ2D0PHC0oXBrO071MdIGgWUGpL3X+bmkCQXHgH+D6sNWcjvUf9MD46OM63dYPRVWDIGyR6M+nYXhpPEognQEmaTzFDqDoj5va/grrkT4UQ6olAhpx8rOTQcFFqnlyvJh4PpXXOyMNwkHJ8aksh92hoTdBwhM4nAxyGxos2ABDMg4ps2hEgMXDQnQBpIAm8YNpHRAZsP3K6TGvOFiWDQc6v/okXlOTgo+0wEZnfXlBJFBmiqhtXI6uJ8A191QfUCvuPuX0sAwf8Iwf0ZKs+MDuoHAiZV9sRCFHk4ZfwNrcElAS4OB74BjUjvGCEi+HbILIXM2WCa0PbY50gNGOU1Uyn0bumF0N5AmbHkT1t4DtZ1ooyEN2HgEeJdCoBCKrlKFDN2ePwC+r8H3TbsJ3EmcST4byWc9znYSk6NJkfyTjwbswM/WPdgqB2F1mWS5zkMP172REqqPhMCfYG6C+uvB+wX4K5XgaGvUr4d5xyjxxuL/xuS9RJtEDk4cSOZSavhrcEsniTNib8TAv6s+LO7FkHYwpLctuCbQ0RmIQRFgIoCAxcL6kUOpK09mxNatCFOCP5hn498M60+FyavbPGdHJHEeGgPw8yc29sDOvt0+V4IoU38LuO9tui8wH2QpiPiE8AGkNPH6j8eQHwOga8djt7yF6AuhdrMeau6GwDrIuQusO4JlYFB7JkpoSZB6NNR+BGhqrtQYtbRYeSOs/5ead/UdsPscSJvW9nizDoyypvt8qyF5j67PLQ2oPgL8wSIJ21GQ9kFM+v11hwXiVUypY6KzSowDM4npzouajQqAGZanZQCLLoPatWDJhmkfQ/puodc9hfDTeJB+AGT5NxQM+oKcMfuQnByfJOpI0Dv/Bfs5SZxJFl+SxmPkMBsrO8TeCKFBznkw9JF2nZsGcpmFhdEI0hDkkEE1A2QxugwgqgGXkgdXmCq3p4c4OJxUbumbzo2U4J8N3s9UBUIs5638Hor+Db4Y6bJ4/9NshwCRDSIzNvO3gSn/bHRuAAzzPaTsI002K86F2vvB/Q5UnAzmusg4N94lUHgQbNoV6lpJQB76Fgx8EvJug9Hz1ZJYLNjcoJFlAgYUvdP+eC0NkmaiLmE6aCmQvF/35g78GXJuQIlRGku7d64YIAn/rdUg+QywNFM7F1awHR4cp0OFBWqDemWBSlhxYdPx6+5vdG4ABJJ/3fIwQ4Y8zLx5rWha9RESDk6csLEzSZyJpR2Bqd6EjWkM4mfSuQoZFPoTSCypfgRGMKqt0fjFy7kgXqb2DuquhqrdoeYwqNylWTd0kPgxWBN5VdT1t8Of+8KyM+D3yeAtjOz5W0MfC+Fl0doQSP9M/cjGkdbLd/vI3ajnKxorD7GA57uenc90QeUrsHkvcH8L3jlQdKJyeMLR7JB9CeTdCvYY/jY5htL4GZJGcLsdhIARn0D+PZBzLYz+A2zdbJArnJ3b10uYyumNBSl2kcFY7ZTWB6a9A8n3gvNKsJ5B6HJvgr+i6diwZTlTgmnCbyuHUFPj5brr2lZ57u0kHJwEXULio9GJESAbwv1Sh7QzYMgDMOodGPJQ3GyMO2YNeMKSHo3F4A0lX5tsoYYdqGEqVYwmwBzqeZ9CdmQLO+OiB2KIBWHJhP5yKI6BBkrqS2DZTUVtHBdA1lqwzoj+vB0gxGQs2qWN2xbtKjRtfBwt6gK2HQk5jQGw9SDKa/pg3d5QeDbIKtR6RTBpztdLIlrT/g3JY0FzwOCzYUgn9MC0ZMi9AQbcD/Yu5Bo1xzIJnNeEtp03db36LIYMZgZH8gz7cReH8yQp5Lc+UDgh6QZIeRAG3QB6WCuN4Tc0HTv8r2BJB2DJhnyOv+dk5q0ejJQSj6eNnJ0+QELoL0GXMCimiIMx2ApSkLV1CCkFayF9bxjzHLguB98nSqQu/V3QR8Xb5NgjXVCWjtJECZL2EdiPBMDFDXh5CnWh0dCYRjXroDH0bGEwC9HJ7vrcPw8ILk0Fv9YTnodBfaSfVZQw5UZAoIlu3uHHA6MEqq4C/xpIPhVSrux+mW79z7B+L/XchvqICU11AB+2HKwjImNzX8csQvXUasNh6Ot4NkPld5A0pmn+TQO+cqiZz8I12ex10BfU1vqwWDQ++uhkDj10bOztbUZ3rt9djuC43W5+/vlnli1b1uI1j8fDq6++2tVTdoknn3ySESNG4HA42GWXXZgzZ05U50vQFJ18BvITubzJQPEjKYPmwq6VMPG/4HsBfO8DHjAWQe2FHZ4PaULFM7D5bKh4MbKVNxU/w7dD4HMbLPtrj85tUomLF3HxWoc9WCRuvKl743FqGDqqdNd2WJPXw0dLagjv8QL+YEJ3N5j4KujBXI3sI2HAmd07Tz9CE8P7lnMDoOdB9uswYA6kXtUzDRI9zFH2ofzq5ONg8A+tOjdSupGBn5FmOz3m+hOuRbBkPCwYARtvCHVI7284hsDAM1p3bgBs2ZBzINN23YFVq67g009PZdWqy3uFc9NtZBdYuXKlHD58uBRCSE3T5N577y23bNnS+HpRUZHUNK0rp+wSb775prTZbPKll16SS5culRdccIHMyMiQxcXFnTq+urpaArK6ujpqNm7T1FwkZYkuZQnBxyApPUXtH1PyTykXI+ViXf2/7PHI2GKaUn6dL+X/NCn/h3psfa9bpzJkrSyR28utMkNulemyTB4qTWm0Od7l3UPWeayyzmORdR6LDATmNXk9IJfKCpknK6RTVsgU6ZFvy81ye7lRDpAb5QBZKHeTpvR2y1ZlsE9KX0X3j0/QNdzLpaz+QspAL/5dKb5bysWalIstUpY92uYw0yyX/pqx0l+N9FcLaXhfiKGRsccMrJTmklHSnKtLORf1KHmmiycxpVz6qJSf7Cblj2dJ6S6Liq1dpvItKdfsKuXG46X0FsTbmh7Tnet3lyI4N9xwA5MnT6akpISVK1eSmprKHnvsQUFBG7LhEeahhx7iggsu4JxzzmG77bbjmWeeISkpiZdeeikm8yfoAPupqAhE8GO1eQv8MAaq/2z7mNqG3JRgklttpJpxmuArJRQZEaoUshv4+S0oPCiD279isKHVsVL6MeVsQnL5JqZsqs+hsx3pLCKZd0ljAXZOJJ/PSONq0rmOfD7uWX8bzQrW+FYw9VYM81vcvsPw+I7HNJf3/IRlL8DS7WD1wer/EagejAp5/wfbuWC7esj+a5vDpG8WyIYO9hLT0/sbKnYX0/cERv148K1ThRIA6ODb3LUTbXgb5lwJpbNh3b/hp8hETU28BKhqurPmK9h4CRQ/qHKr2qLuW9h8Erh/g5r3YH0fbP0SAbrk4Pz666/ce++95OTkMGbMGD7++GMOPvhg9tprL9ati2440+fzMW/ePA444IDGfZqmccABBzB79uxWj/F6vdTU1DR5JIgitr0h4zeoGA5rgCLAcMOGB9s+xrk9oY+hBs52tC+6gtBh8Fmh81pSIf+obp2qpRy7BY3WHQiBjmAi4VVFmtYyQVQjHxuHoQer6CwMIIPrSeea7uXeJOgQU67H4z8MU36JIT/G7d8f2dNu24W30Jjv5N8KZb34Zkuzd6LfnEaTXlq9VAsmEpieGwGQKrcWiVBtMDJP7NqJyuaq40BVI5X1PG2iks9YxC4sZnfWcy0SA2q/V4502Quw+TrYdHk7J3g89NwCOAowC514qw/D9G87qvBd+vS63W4slpA2oBCCp59+miOPPJJ99tmHVaui1AsDKCsrwzAM8vObJoDl5+dTVNR6vsK9995Lenp642Po0A5KDxP0HOsMqBkPVcGPlkAlM7ZF/j2QeR7YJkLWxZAbwU7jU56Hqa/B+Pthj4XgHN7xMa1gZSop3AHYEaSQztOtOzjeD6EsHUftcnRjKBrbY9dfQte6IT6WIOKY5kJUt8pgp22KkfSwjF40ZO2Gb/ddhO0c0BqUknU0R/RbIMQPdS0zs8EYADL/aJg4D5Kmdu00A2YG83aEcggH7t8jq1RjmpuDFatQxWdU843q7I1GY0PXqg/aPoltIIZN4EvXkElgamCW+bD++hni6xGw+s4e2dhX6JKS8YQJE5g7dy4TJzbtWPrEE08AcNRR3btDjhY33XQT11wTKv+rqalJODmxYNzdUPW7EpSy5sLo/2t7rJYEg5+Ljh1Ch8GnR+RUKVxJclB9WtBKwqf0Qc2pgBtNgqM+GNHU/gGZB4M2ICJ2JOg+KpLmgKDUgWAggh4K2Q17EtadCNILzimQ24nE+lhg+pQOUReTk4VIR0+eD+ZiEAMQWnx6LcUCzfEYpuccECYyfSe05NdApHT9REMPh73fgI3vQupomPb3HtklMZA0jSwa1IJjIoQvpbXVjwzw5+xPXe7L2OsC4BKU5GRgDtWxjAmQ90cVljW3waBTVGl+P6ZLEZxjjz2WN95oXVfjiSee4JRTTkFGqeo8JycHXdcpLi5usr+4uJgBA1q/eNjtdtLS0po8EsSA9B1g3wLYcwnMXAfJvVdToiuI4H+tIj3QpDoqiLkBXO0s0SWIGZoYhsP6Jbo4Fot2Cg7bt4ieRlwyjoSpRTBphbr719MjY2xb1M+FxaNhvhM2XqqqEMMxA7DgNPjCAd/kQ8WPXZ5CCCtC36FfOzcAmu1M9JRC9ORF6Mm/Ibrj3DQw6mTY913Y6X6w9kxxWsNGDqc1bjuMXDJcFkjbBwbcDLZRkHYAjHyt9RP41yPL/0ZqkZek6gBV6SmYurrUB5J0asYlqaCjv6pHdvYF+pQOzi677MLOO+/M44+r9UXTNBk2bBiXX345N954Y4fHJ3RwEkSVmlPB2/wGQAfnZZDSn0P9/Q8vs3BzM6CRxAPYGpu/xpnFo4MNMIOOzYh/Q3boYsjmWbD4nOCGBo5BsO+m2NqYoMdIJLXMRvqXk7bpBoRZDlhgwNuQcmzbB5r1sHEs0tgKNhXAK8rNxGe3qA0pSSr1kLO8FsaeAKvHwIq3IXsCHPICpAxs+9xxJiY6OG0hpeSzzz7jhBNOiNQpW3DNNdfw/PPP88orr7B8+XIuueQS6uvrOeecczo+OEGCaJP6mpJHd1xM41dLpIPjsrialaBrGKzHxWVIKpGUU8/5mF3RJZIGVDwLW6+Cuq8ja5y/kFBloAb+Zs6Lr5Qmkvy+Zg0pt1U620neqICSq6HoNHD1sD1GDxAI0tid9KqlCLOqwTgov6X9A30rwNiqUh8lICGtJqwdjITUrW7IBVzvwsL7oHodrP8C/nd2NN5KXOlxN/H169fz0ksvMWvWLEpLS5tUOUWak046idLSUv7+979TVFTE9ttvz+eff94i8ThBNzFqoeBSqPsVUveDYY+BFqOeLNKAVTdD0QeQOhkmPQP23NjMHSmEDvYTQN8DxK6gW8F+MGjtV0V5WEkZzwIauVyMnf6xpNdXMWUh9lI/1ioDwyFwD7Zi6sVodDKPqvj/oOyfgAXKH4XhX0DqQZExLvV4KH4ddAF2B2Qc1/T1ASfC2rshUK22h2/jzrVrHcw7CuqWQ/b+MP1dsLZz91+wJ9QH5QMqXodRC8ARocrObmESqmoT6uFZCvbxocqtcKwjQCQhpQsCIC2AxSTVU4v0aqSu92DVTaVoLYXKPsYIVn/1krYdEaRbDo7X6+Xdd9/lxRdf5Oeff8YwDB544AHOO++8qC/9XH755Vx+eTvlcQm6T+GNUPEG6k5hg0oQHnxPbOYueEZ1tAVwr1VVCTv+NzZzRxLPb1C4v2rXIJww6Gtw7h5M+tTVI4wAVaznZMxg0806fmAs36HTg3yABD3CUrkW6ybVWdlSC5o/DX30dp0/QfXbwScBwAK1/42Mg1O7GNZ9EAzgSBhzJTjGNR2TNAL2XAwlHyvl2rwjez5vX2bpZVC/AjCh/BtYf78qgmgN0xtyblCHUPkYDHyx6TjfOthyBQS2QtZlkNWsb5anADbep77zQ6+ClLaTgdvFdIHvU0IRO5R9ayaDfTKM+gn0jKbH6Nkw6H9QdinSXIYr14LfqZanhMPEN1LHWhZs4KpfBr5H1W+SNGHsMd2zsxfTpSWqefPmcemllzJgwAAeeeQRjjnmGDZt2oSmaRx88MGJvJa+jnsxoSx9E9wt23FEjbqlTbUkahfFbu5IUnl/MOEYVVlTcS8UXQ/LnLAsFVn1Gr7Azbh9u+L1X4VXLsaklgZRQINKfGwjEvm9kbrZiM23NLlnttbbEXShM7p9AiEdJEPdbUeCwldUtV4Dm//d+jjnUBh+qdJ96kmLh/6AtzCsU7aEmpfB923rY1uLiNSXwKJzYd2/wFROLxsOgbrPwfMnbDkf6n8IjTe9MG9PKHwOts6CeXsElw27Y/t3YK5R0RYDKDKhxFQ/Fd5lahm0NZz7wJAlyLyLkNZwCQOB4bTBkEUwqhpGPQIn/A+mng/7Pgj7PdI9O3sxXYrg7LLLLlxxxRX89ttvjB/fR7ryJug86UdB3U+oj0UA0g+P3dw5h0LB06G7ibxeIDlguqD6C9BTIHX/zomeCTshXRQBRg1UBjt8SzdsPgf/aAkamHIeuuFDWJyNZaEaTmx0T68nQQ9xr4KVexCUfGtEOHfu2nkGv6h6q3mXQtpxkHVph4d0CmtOWD81DWw5kTlvf2boJbCs4e8vIWsrVB8KWatAb/Y9EzqknwbV/wnucMC6T8AM/ia518OIM8G7uon0EZ6FkLyPeu5eC96wvCijBmrnQ/bBXbddC2pteYGFhAI5tcBI2u2ZJYRAdz6D1RxFQNyulqMAq+0yEFNCA0cdqh79lC45OPvvvz8vvvgiJSUlnHHGGRx88MGIbf0OoT+Rfy1YMqF+DqTsBVmndXxMxOY+Enb4EEo+gZSJMLxtOfmYYLpgxa7BqBaQfTaMeLnj47L+Dq5vwCwDLQOSj4WaUKmuwABTgCYAE2kuYgSzKOExlGbyVehEudQ4QeusO5EmKr6gJHPKFsMYs/OqvtZBMPLLSFsHw6+A8q/VUostDya/EPk5+hvDLwGHA0rOhTQgCcAHgSUtHRyAIa9C+vHgL4Ktv4L5hooAWQDXs7DiaTUuXN/ROgFc88E+BuzDQE8Dow6QKiqUNKF7ttt2g9TroPhfTVapqAe0gUogtQFpQv1vgAnJuzUuhdu164A0AuIHdLbHwTVsS3S5THzTpk28/PLLvPzyy7jdbk466SSeeuopFi1a1EIAsLeRKBNP0Gmq/gtrj2m6b2oxWJu3bWgF0wX+dWAdqX4c10xX24CZMhX3wCU0/Dpa9VuwWW6PqOkJuoFRDQsy1HOJuqBoQF3w+Z4lYOslSe+GSyX/J24uO4f0QsUoMItR/7gOyFoNegc6PxufhGXBfM90wB72mgZYAdMCZioYlSofZtx34PfCmuvVvCNvg+weRkiKv4TvGiJAGtjS4KgNYGnoMSFh/clQGcz9Sj8SRn/Y79psdOf63SMdnK+++oqXX36ZDz74gKFDh3LCCSdwwgknsMMOLXvv9AYSDk6CTlPzLawOl1zXYfsKdXfWVYxKqPkAtBRk6rEE5HMY5vdoYgZW/RpEa2v/CWJD2UtQ8R+wDYfyN8DwqDvkxl9FDRzDYbc1/e6CsU1hrIX6fwAecF6rWsp0hDRg9d+RRe9CcgWCctQHQ4AmwZYM+lQV8cYANOVcjPkw8vavfARWPAj2bNj5BcjaKfSaeyksa5bIPGEOJHfiPfYhYu7gNFBZWcm///1vXnrpJRYtWoRhGB0fFAcSDk6CTiMlbLwQyl8AdBj2VO+R4U8QGao/hTVHBDd0cE6G8iXgD/v9coyA6d+AcxQSH14+B0zsHIwgRhIKCWKGn7UEKMDODgjTg+G7Db85C1xeHBsFAqnay4z9CpJ3gXV/gaoPaQz52SZAnQ/sQ2DCs5A0rv0Ju4HJJrw8D1iwczGapxqWhuaRAnzbPY9wTMPKTm2rr/cx4ubghDN//vxEBCdBS6SEQJnK8elLEYtAmUoc1lNjP7dZD0YhWEb0+SaOnUKa6mIRKIaMY8AaZVXVwluh6F5ClYMaGJNURV/DBSv3eJjyNhKTSo7Fh6qYsbIjWXzeteqqBL2aet6hnCsAiWZmk1u/BU1WI1BxGxkAzTgSS/ozYAsub9XPhVX7glkHwgG1nuDHSYek8bDr0ojaKKmhmmlIlICjxkjSmIvYdBOUPIQUUD5pBAF7JQBOLiKd+yNqQ7yIiZKxaZq89NJLHHHEEUyePJkpU6Zw1FFH8eqrryKl7LXOTYI44i+FBdNhTh78MRTqF8fbos5jyYmPc+OdA1uGQNF42DpB5fD0na4q3aPgUlh3vPr/sqng2xLd+VL2JOTcAJggF4e0ijQ7DFNJmQFWNDo3AH7m4WdudO1LEFOquI+GtclkXwF60LkBECZYfKD5P0b63g4dlLwTTFkP476HrBvAaDjCANfKiH9nA8xHUqzOj4HJGkxWwdAHYcpGvFNebHRuANw8i0llm+fr73TJwZFSctRRR3H++edTWFjIlClTmDRpEhs3buTss8/m2GPb6ZGRoP8R8MDa12DVi+CraXvc5vvBFVTJ9JfC+itjY19fpupvIIN/U2MDFI2GLXng6XrzxD6BDEDZ86HtQFkw9B9F0g+GoU823WcBJj4IUz+B3VZD+q4AaLS8YxQySUnjm7XRtTNBTFDROOWgJPmbNs4V/uDDACqvVjcgDVhyIHUfyD42TMxTU8nFEU4E1xhBSGNJAA4EwWiSbRjCOrTFERFoWNBn6ZKDM2vWLH788Ue++eYb/vzzT9544w3efPNNFi5cyNdff823337Lq6++Gi1bE/QmpAlfHQI/nQm/ng+f7gqBVrppAwSqwjaMZtthmHVQeiRsckLxrhAojLDRfQjpJpTpGvy/WQEVMSzdjyl6UJU17ILQmYq1npJ7MTgmqfnRlfp05pGQczjYB4dZN4RU7gqOE6QELsG68XgomAjrB4H75+jbmiCqZHIPqv4bTJEUUkOSKoITbJSg8P2uOrcvuxV+2BMWX6fKwXf4AQZdCCPvgMlvRdxGnREk8zIao9AYSwpvopHV+LqN/bBzTHBLkMq9aMQhAt1L6FIOzkEHHcR+++3XZufue+65hx9++IEvvvgiYgZGkkQOTgSpXgkfNNN3OOhrGLR/y7G1c2HJ3mC6AQHj/gO5p7QcV3UT1P4Tlf+gg/MoyHk/Csb3AdwfQ9lxKLn/cBwwtA1Hsq9T8xWsOwmMKsg+D4Y/G5vKJX+JysUxaiD3ErXs0AYSFxKJVnY7VD1MY/WMfUcYOqfN4yJnawGUXgL+9ZB2FmRcnygXjyAm1RiUoBsuTPdJYK4D/TC06p8RRgUQdHLy56gGlctuRd2AaDDmGpjyrzhar5BITDYhSEaj/T54fYnuXL+7FLtatGgR//znP9t8/dBDD+Wxxx7ryikT9FVsmeriE96l19GGTkjqTjB9KdT8AkmTIWX71scZ4Z2RDQhsiJCxvRyjHIpOAc9scO4FuS+A51uwTgd9GHi+RMmXAqn9uHli2oEwrRwIgIhh8q41D4Y+3Ppr3g3gXYNM2gGX5R18/IiV6SRLd1isSSrNk1hQ9BfwzkX1i7sRrGMg5fjYzL0NoJlONJ8VbBPRUlaEXnAUQfUtYBRDygVg2wkq/kEoympCxex4mNwCgUBnWLzN6BV0ycGpqKhot3N3fn4+lZXbbkLTNoUzD3Z/Hn67DEwDpt8OWVPbHu8YqR7tkXQauF5HrZyakHxuBA1uB/dyKH1cVSrl/w1sQ1ofJ00IbFEN7SLZZb38JnB/i0pM/BKKDgKWAyb4/4C0O0DPBX0wOPpA80SzEqpuhMAaSDoVUs7r+JgGhIDeUplU+YEqAyaAKz+T2iEmIPDyP0g/k5TaNPVe0SDr9ujY4K+G9f8CXxkMOQ98SwglRuvB7W3PwZFIDOYgqcfCnggiUGXoXg1L9gVfIYHsLIwRB6NZdsOiX4KoWAGL5qpeU9v5YDCQsw8UfRQ8WEDufj23IUFE6ZKDYxgGFkvbh+i6TiDQdn+MBP2MsefC6LMACVoEEtmch0LeT+D5Dmzbg/MIcK+BzfcBBjhGQcm/Van56KcgJQIVe4EyWLk7GMEISdV/YdJK0Jr9YBo1sOEgcP8OWgoM+whS9u35/BBUOW64aBkQKABLQ2RMh8AqSP97ZOaKBeWnBaNOBni/BT0PnH3AMWvOllto+HfxJftAWkCoO3avbQkpw1eBZy7YxoF1VHRsmHckVP6q1kU2vwyT9wv+bVWrD5wHRmfeXo6Lq/ChktJ1ZpBqfoAo+4tqUKnlQe7nYJvWtZMW3Aa+IgLp4B1ZBfJtCLwFNZ9i/fVblXODhD9OhvSVMOYq5ZCX/QCZO8PY6yP9NhP0kC5dlaSUnH322djt9lZf93pjFKZN0HvQ9I7HdAX7HuoBYNTD4j3BX0ZIPx9Ag2WHwIwtPdfUqZ+ncj4a8G0A71pwNms7UvE0uP9Qz8162HIxjFvZs7kbSD0N3N+gElgNcO4O/q9Q79cA+96RmSdWeGfTJMrgnd03HZzGxqkSa72BN6Phs6ZhZQboOZB8SPTmN1xQ+ZN6LgEMMA6HrN0hsBFSTlaflW0Mk5JG5wbA4A/M6gvQvd8EBxRByV4wuKprOVzB/lFGugBTogVM7NWgub5o2gtKGlC/BlJGw5ir1SNBr6RLV4czzzyzw+aaZ555Zo8MShADpAlmKWjZvVt0z70S/MWtvGCqcvNANVh7mETnGI/6GhgoCfbk1peozHpCNRQysqXBaeeAng+e38CxByTNhJq7wbcAHAdC8gVtH2sWQd21YGwEx7ngOAdqflL2pu8LmiNydnYW+17g+R8NWh3Y94y9DZFg6INK6dh0kVw5EDnwZHz6H1iZQSq3Rm6eQC2U/g8saZBzcOiirDnBMQw8hTQ6jGnTIXOPyM3dJ2ko5w7Vxwj/hqZDZK3K6bO00lCzLQZfC1VfoHl8WOvB1pDL7wCcgBs1ry0LMvtXG4T+SsSVjHsziSoqwCiF0v3BvzgYyv2y66HcWBGoUsKApougligqyiEhZUeY+ntkKkiqPoatt6s79iEPQEord8W+DbB2J5UQDDDwKci+pN3TmvjxUYOdTETXNTU7R+UeEPidxgtgxaFQ9pl6nrwDTP0l9k6OWQ3Vt0JgHSSdBMlnxHb+5gSqwDUX7KPUoyPKX4VNVwEmDLoTUvcH+9iWy5YRsa0Oft0J6oPRwEFnwrRXQq/XLoWll4KvBEZcDcP6WbuQ8qeg/GGVYzb4WXBM6dRhHh7Fzf8BEit/IbluT0Rl+I2ADQZXqrYKXcGzAVk3G9ynqbYMDQSAIsC2L4x/XkVvEsSUqLdqOPfcjpM+hRC8+OKLnT1lTEk4OEDVdVDbUN6qg20PyP+ho6PiR+1vsOEmwIDcM8G1UOmlDL5G5eLEkkAp1P8EtpHgnN7u0CpWMIeb8FNLKqPZlX9ha0UsrseUOoDg0nBAwLpmX+eJH0FWH1weihTejbBiF9X+AQ1GvgFZf2l7vK8QFg8jtCYhYPJasHeQIN+Af5WKjtp2VNL9HVH0Hvx5QtN9+5eCLadz8/Vl6n+E9fsEN3SwDITxBZ2+aTEpQeIJVQxV3Qp1j4NIg+zXwLFP+ydoC2lAYWpQiyoMy2QYMG/baJvSC4l6mfisWbMYPnw406dPZxsK/PQvzHDFYQNkVbws6Rypu8KU7+JthcKSC+nHdWroEh7DTx0AtaxnHe8ygShUhVn3Af83gBlMgA1WoDUQyWqvvkjp0yqRHAATttzcvoMTKKbJ309KqPujYwfHrILKncFcrQ43R0L+PNA6cMIt6U23hXXb+TfzhpVhY0BgM0iPElvsBBrNhCAz/qEePUXokPkcVJwL+JVjk3Y3JB2Z0BzqY3TJwbnkkkt44403WL9+Peeccw6nn346WVlZHR+YoPeQchG4XgvenQhIvUHtr/kVCv+lflyH3qYaxSXoNgFCSsQCMHB1/mApofIfUPMKWEdC3gtgHdH62LS3wHW7yjdwnAEjC2D91YAJuadDeljpqjTBO1/lXdmmbRs/1k30dETH+jrOKaoHlelV/3wCJT5Y/BJM/CSUsyaDSe8Nfatc94CxOiR3K9ZD/auQ2kFbkuz9YeiFsOk5Zdvk58CS3J132vdI3lctC8tgdVLSXrF37kyXWq63DAd9QJhtpyuhUbMW9EHbxnelH9LlHByv18v777/PSy+9xK+//srhhx/Oeeedx0EHHdRhAnK8SSxRBQlsBO+vYN1OXei8m2HeWJA+JAJpTYPpHyAseyAimITs4dOgUNr2ODgZQe/+vPSEzXzJQpQopo6TPXicVEZ07uDaN6G4QelZD6rk/t75yf0VYHrAPii0T5pQdDzUf6i20y6AvOc6f86+iq8IVu4Mvk0qMjDmQ0g7qOmYhgussKrliSUW8IW/jsrBGP26UuCu/AA2nK0ujvnXwuB7ofZs8Lwayn2VQNJjkHpF5+z0V6scH30bid404J4HlS+rirSca0CP4e9yYDOU7AbGZsACmU9CSj/LcepHRD0HpzkbN25k1qxZvPrqqwQCAZYuXUpKSkp3Txd1Eg5OG1R8CsuPAJTUhzEKsAOkoyf/itC36/EUbt6lmvNRQcMAqdxJMn/t8Xl7MzWspY5NZDEZB13IqSi/DSrvpjFxWKTC6HaamXYGz2+webem+4avAWs/TpaUJhScCDXvK4cj4zQY+lrTu/G6Z6DySsCA9Dsh7f9g3Uyo/CEUwWlwcIY/BfnnwIJMtZTSwLjv1felej81pwDMwZC7DLQI/M6seAqWPAiOHNjtWcjevufnjBPS3Aq4QYyM/w1x1Q1Q+wBNliRT/gaZ8W+3kKAl3bl+96i0Q9M0hBBIKTEMo+MDEvROkqeCcCARmHkQEgWtxvBc1zhMShPT/zam91GkWdClKbx8gvq4KSFINx9GwPDeTRqjGcTMdp0bw/wNr/9cvIFrkbJU7Uw6hFDFmIDkoyJgTWtf9Rj0eWoN/9a2G65GEvdcqH1fORwaUPMf8K0OvW5shcrLUOEaA6pvVsrAwz+EzKOaqAIAYC2CVUeC1UMT4Vx/Mdj2gcw/IelOSH4O8ta379z4V0LV9VB9V7O8uGYU/6zUwuvWQflc+Pqw4PJY38P0/gujbhBG3WhM90nI8DYv8cA3n6YCN0DdAyqyk6Bf0OVfOK/XyxtvvMGBBx7IuHHjWLx4MU888QQFBQW9OnqToB3sQ2HSF5C+HbJF4Ud14zPTcxmm+yRM79UYdZMwjfWdnkJnTJMtC4kcH1OuwePfj4DxGoHAY3j8h6jkfeduMOgbSLsQsu+D/AhUJdpnQMqpoe30q1R+TyyRJqw7BRYNgoXZUPpsdOdrVeQtbJ9ZSYsLnFmmqvRG/RdysyEZSAUG6lD8EFi+VrooDQ/rENVDC8AyFVJuhaQL2s/1CWyCTdNh3QOw8e9QcmDbTkt1WCKuNMG9FQL17b/vXoiUlZjeUJNmGXgHaXwdncm8hervWnC7Kq9vDWMreNuaP86OV4KI0aUEi0svvZQ333yToUOHcu655/LGG2+Qk7MNlDNuC6TvDWm/Qt0OINcGdwo0m4rgSCmR/heC+yVQh+k+BpH8J6ITaqEpXIvBFnx8h5UdSOOeqLyNvoBE4uc3/Oa7CL8HR7VEmGDY50NOCYh8JfaXNDNykwoB+f+GrFsAC9jGRu7cnaXmC6h8M7hhQsHlkHU66J1IqjVKlZihZbvOa5s4doT006H632o76wqwhznalglg3we8QZkE61Swhy3jpZ0H4p+oSBrgq1ORm4bIji0JRszvmlyBDEDhgbDaHbqO1s2B3FLV0qI5A/dTeTmmHzAhb0+w9sEbSRmgheMgfa0O7RSBEnB/CZah4AwrBzfqYNGu4Nuqtkv/rRr9as3U981qWiX5UrAkGlX2F7qUg6NpGsOGDWP69Ontrp++//77ETEu0iRycDpGmrVI76tI4UOzHoLQQy0LArV50LCMEkRP+hVh2a35aRK0Qw234uJxAHK21qAHZEiXNeMJRH/tGF75Lqw7sem+qeWAAEtG25Uqni+h9CjAC/oQyPtVXdg6g5SqHFlYlFhfi9e94HoPCIDzONVnrPE1E1xvqKahtoPgzwMgL1gNJwHrDBg+O1RJ1Rk838GK/WBrs/0H1YLehuNSsRBWvwz2LJh0NVhTOz9fL8JwX4H0P6E2xC7o3guUr5h5YteSiwOboWC6iraBanSadZt6Xv0jLGmmfzNtPqQ0062SJpQeHIri6OOVdo5tp0TFVC8l6jo4nWnVkKAPE1iHKNkbYRSCyIC8vRpvXgE0x+OY7pObHRSnPI4+isSDiycatzVDhtWSaQiztLXD+gdph6oybPditZ1xBszdVXVxdo6D6V+p1gTNqbqOxrImYyvUPQoZD3RuTiHAMbGd1+2QfGobr2mQfFpoe+I3sOFksBWqiIT3D9h4GAz/tPMtT4SlZbN0a5pqEdIWWdNgl0c6d/5ejOZ4DGxnIM0axLo7EHXnqxeKH4aJc1sqbrsWwPpTlPhiznkw5EH1b1L7BpgVoXGV/ww5OPbhNPZ0QwQlEQa3NEZokPspuD8CAuA4quuqxwl6PV0W+kvQD/BvQRZdC76lyIzDEFl3I4QONfeBUaTGyBqougnyvmo8TLOehAz8ivQ/BoCwnAx6nHuySAmeNSoCYM2Nry2dQketcyj1YVeqnZQa9VwIJySd0vahfR09GSb8DjXfqDv2gufAvU695l4L626B7V5t5cBmQeZoJadKCTVvg+s3SNoT0o9v+nrmrpDyM6wMix7VfQkVj6qeaEkHKzXe9rDtAXknQv07UIGKxkz/ZJuIGgghQN8Z4VsOdT+HXvAshfrZkLpv0wPWnQjedYAJJY9A8i6QdTJoGTRRmtbCxBIdw2H867DhBhVZG/kw2IJLf4HF4PsWLFPAtp9SJE5qpiKdoF/RizstJogWcuMR4PkTAM29GEP8hpb5HUI2E/+QzbrDm/XopcXI+kxwTIYhj3cq/yZqmD5YdhhUfwNoMOY5yD8vfvZ0AoGVdB6lmsuBAP6045C2kxCBTeA8DCyd6JXUHPcaqPkBnNtBWi9fLtSckKEkCfDfT+hCZSr9ntZIvw/KjgYCIJIhpf0eYN2m4hnYeilggfJHwHgBspp/nvSWm5V/U8+1TBg6v21RRlCRg5y3IONO1crB0s7Y/oolkxaK25ZWbk58m8LGaODbqJ6mnQn1H4HrExApkP9K0+Ny/qIe4fh/gaqZNFRxkvIkOC/t6TtJ0MtJrC9sa0gTPAsaBVclgOsHkBsh9WoQDWFaK6Q365hccifUvIMwKhH1vyKKr6PLuJfD+jNh/engWtSjt0L5e0HnBsCEtZcFkxl7N05OJo915LKcTPE6wnk0pF7ePeembh78OQXWnA+Ld4eiFzo+prcw9HJCP0EaDGlDFM++G2g5gAhGFq+MTql0zbvBJ8HPUM17LcdYB0LuzWHbYfeIZjXUvt7xPEKAdUL7zk3557Dxfqj5o+Pz9TWsA2D4s8rBE1YllOic3HJc1unBJ7qKtmQcrTaFHQZ9DCMrYFQ5JB3Y8ZyeV2gSCay/HWQH6uLSULICRhsJyQl6PYkIzraG0MAxCelZ0rhL2gGSwTYCBq4B/wKwTGyZyOlbQ+hHwgDvqq7NbdTCyr3AqFLb1Z/A5HVg6Wa7DzMswmSiIjprboBh14F9QJuH9QY00iASzTeLXwTpD21veQgGnN/z88aC7ENh54VQ+wekzoCUSa2P83wDZlHY9mdgloCeH1l77BOg/gdU/oYG9jakDPLvgszzlFp00aEQKEB9L0zQI9C6ZvOTsCrM+dv+S8jav+fn7U3knA/Z56AUpNu4DA1/FlJ2V5GczBPBMaHp63oXqte0fJo4OLIUqo+FjC9ajpUSPIug5EzwLwJsMPBdSN6Gm9b2URIRnG2R4d8g0yYjHWDmCLS0RxFaMESs54HjoNarVNJOQP1IBH+Q0ttpWtiANMAIduX1rASjHHUBMdSdkXtJe0e3T/bxallGAn7AELDpUZi/V7CsdhvAkkXoh1sHSx+TbUiZBAPPDjk30g3VJ0CpEyp3BGMD6M3zWhyqY3Skyb8X0o4FywBIOxHy7mx7rG2kSl7OfyWUA5J0BKSd03M7ChtaaJiAgKLXen7O3ojQ20/OFjrknAuDblPf857gvA6q82AFsAqoA/xftlyGlwFYeyys2R58DRFmP5QklrP6In0mgnP33Xfz6aefsmDBAmw2G1VVVfE2qc8irHmIYYuRshKBBSE6WXaacQpoqVD/PSTNgLQOHJyKj2HlqWDWQd45MOIBdbwZFCoT9pZ3ZV3BkgrT5sLmh2DtLTSu17vXgGcDJMVB6yXWDP4bVH8LtbPBNgBGPxlvi3qG60HwfQCYEFgItRepu+y026DmXpWDk/1ydJoy6mkw7J2uHePcB0aWqeUOLULl245hUL8UdSMgwd5KFVCCruHeAgXFoe0NwKSBgE0JL9bcrhprshNU/zfYqqYB2bQ1R4I+Q5+J4Ph8Pk488UQuuSRKCYbbIEJkNnVuip6H37Pg9zwofaP1g9KOgIEPQPpJ7Vd+SDPo3ASdmZKXVSLsuK+V8mvq/jDuK7C2Im7WFXQn5J5EY1sDNNBTwdZBNUt/wZIBU36BXWpgpwJInhJvi3qGuYmQkp4B5gb1NP12GOKBweXgPDo+trWF0CPn3ACMewJSpqr8lKyDYfiNHR+ToH3c62i6RAU4nkZVaO0L9a+A+z1w36yuir6mw8n+RyytTRAh+kwE54477gASpepRw70G1l5E47d61RmQvh/YupnnIP1B5ybsV8JfBtnHwtjPe2ptU5LGwOS3YP3tSktj7MNgiYHaq68Qaj4D2zBIPTB+pb5CqGgWBOX8F6ikTMekvld+bD8FPC/QWGXjCKti6mvvpbs4h8PO8+NtRf8ifVclI+GvACQkT4SUw8EsBmNt2EATUkZAzQaoBbKPg4F3gr2N/LAEvZo+4+B0B6/Xi9cbWmOtqelhR+b+jK+QprcsBviLuu/gaHbIvxCKg/2GrAMh+5geGtkGpg90K4y5GzIPAc3W8TE9xbsBlk8PJUzrk8Dtg+xDYMwDsbGhOdKAtcdB9UdqO/cKGPZY7O3oCbaZkDEbfF+BZRLY4h+tManBYAM6o9HoRFuJBLHHtRIqPwHHKMg6pqUzbM2CnebAlufUTdCQy0GzgMwDfRAYxaglbh2GfQTeEtDTIXmnOLyZBJGiXzs49957b2PkJ0EHpMwAx2jwBIXXkqb0PLFv9FOQdTj4SyHryOgI8UkDFu0C9QvUdvI0mDava/L53aHiDTDCHObAUnADm9eoXJgR/xfd+Vuj7peQcwNQ+jgM+JuKMPUlrDurRwOGC7Y8D4FaGHhm62rHkaT+f+BdAEn74Xc4qOAoJDUIssnmMyyMi+78CbpG/RJYtLOqakPCkP+D4Xe3HOccAaOb9cATFsj9FqpuAFkNqdeBfUqzHJwEfZW45uDceOONCCHafaxYsaLjE7XBTTfdRHV1deNj06ZNEbS+n6EnqVyOjOmqS7K9DDwLenZOoSnHJv/c6KkM13wfcm4A6hdCdZS6FIdjyaExqVkSFvwS6gc3LrS2hKP2+Y2ncHnH4/bthWnGy75uICUsOBRWX62WIP/YEXxRbGdR9SRsPRwqboXNu1NrXI2kTplCFXV0skVEgthR9paK4jZ8CYue6drx1vGQ+yHkfafENhP0G+Iawbn22ms5++yz2x0zalQ3xM+C2O127PaEK95p6j4BOV/dvZhFsPlUGLsESi4H1+fg2AnyXoyM1kekMFpRvzWroj9v9llQ8zlUva9C3rUeFTWSBmQdGv35WyNlD8g4TtkEkHc12IZimD/gCygRPSnX4/EfgdO2PiJ95SQuqrkeP79iZXfS+SeCCPb08RWrBoqAWjYtg6rvVbuDaFDzYvBJcLkisLmZeLERnXkTdB/bQEL/LppaDk+QgDg7OLm5ueTm9oX+QdsIga2EGtWZECiCyvuh9iW1Xb8VSq+CAa31Cwpi1EDpfepcGWdCyr5tj40E6YeCMwXc6i4bZzKkx+AuTLPB6PfAdANW2PIs1C5Qgmz5zRuSxgihwah3VTNLzQ4OJVRnyuVhgwwkm1C9sBytnaVL1HI3Hl4HTAw2oJFBGnf1+LyNWDJUDyvDReMdumN45M7fHOuwoP6JKtFO8exJhf1zwI3ASTJXRm/uGOFnJbW8ikYKqVyMThcE8+KBDOoBhTvkga3g+lq1xci/AGp+VpEc+zAY9+94WZqgl9FncnAKCgqoqKigoKAAwzBYsGABAGPGjCElJQYVM9sC6SdC6b1KbA0JWReDL3yJ0AD/0vbPUXAC1H+rnle9BqPngHOHaFkMegpMXgQl9wMS8m5QZeKxokGPZchlsZuzPYSApKlNduliP1RYTjmumtgHIXru3AAEWE54P6kAHXw+uorugCkfwvLzlRL2iJshbecOD+s2OY9DoBC8C4F8bNXJ5CZ9Q8BahpVJaGRHb+4YEGArRRyKROWruPmKAXyN6I2KIVLC5quh5Enl6I58XUlM+NfDph3BrFTjsu9TDTbH/ScylXa1b0LNC6APhpz7Om6gmqDXIqSMRlOXyHP22WfzyiuvtNj/3XffMXPmzE6do6amhvT0dKqrq0lLi4ISan/AuxZqPwLrcKXqWvc2FJ+M8oUDkHU3ZLWRQCslLLXQpNPvgAcg55rY2N7bkBLK54K/HvL3AM0aN1MMcx4B4xWEyMWqX9V5cccOqOcZarmRhshfKveRzMUROXfc8K6FpZNCfc2ck2Hin/2iTL2e/1LOhU32DWYROhFuexEJyl6BjWeHtrU02L4SKu+CijtpXJbSMmFUG41au4r7JyjcO7ihg31HGPp7ZM6doEd05/rdZyI4s2bNSmjgxAL7aLBfHdpOPUkpDru/Aft0SG1Hil4IsG8H3uU0qrA6prY9vr8z50pY/rh6nrcHHPwt6GHl41JCwZOw5Q1IHgsTHgRbdCIEurYjurZjxM+bxEUIUvAzBys74+S0iM8RSfyswsuf2JiGjTZUtOt+birh714IRmX3e6b1IqyMIdRmV0MjDa23LlGVPN5026wB6QMtgyZdxrWMyM3p+Z3Q38cA71z1Pe0Hzu22SC+MSybodaQcA7mPQ9q5HX/Rh38EKQcrx2bgU5ByQExM7HV4SkPODUDJL7Dlq6Zjit6DZVdA1a+w5d+w8IzY2hgBBIIkTiedx0jidESrlVy9Aw8/sJWZVPBXitgPN21U2zmnEKpI08E6SGmiRBIpoeY+KN4Fys+NTWI8YGMSWTyGhdFYmUIubyCIg2ZTpwhL6A4AZU746QCoyQBn8HdFS4X8lyM3pWOP4BOB1DQCmWkE6idieh+gjyx2JAijz0RwEvQRbCNhxKfxtiL+iIbWEWE/inqzC0n1H0qHQwZU9VV1D0LhNfNg1WUQqIbhNym9mHjQWkJoL6GWFwnPF6rleZy04oAn7QAj/w3FD6qO1UMfjbyuUv1LUH2Teu6bp6ITtivAkgnJ0Y16pvAXUuhEo9x4k3spFFyovkIlQMALrl+g4lfYZzYMeAu0FNXSIlI4d4MB70PNSxhJs0GrBLMK03sdmjYOYT0qcnMliDqJCE6CBNHAngU7hImKDT8eBu7fdEzWPsE8j2APrexmr3cW0w8LD4GaP8C1ApafDbV/du9UlFDLgVSSSS2HYdLJ3AYpYc118L0dfsqGst7n5GpkEPrJ04LbbZB1Kkycp3qnOaMg0++bR+P9pWnAho9hyUxYMA02/j3y8/VFci+AMZ/DwDtUBKfROZVQ/adyPiPp3DSQcgykPQJU0KT8vC/pRyUAEg5O7PHMhbr3wCiLtyX9k4KH4Kd8mD0eqn5S+0w/rH0MFl0D5b/GzpapN8JfCuG41TDzHVXGDaoyreI8sH4BUx+C/ONg5LUw5aXuzROoUPow4ReA+u4JZLq5lQC/AV4C/ISHOzt3YOXXyE0PUDvQQuVwP96CU9TfvReRzg1YGAGAzhAyiIPadAOO/VBXbQFuAT5f6LXNd4NRHy/LehfpB8Pgv0PGjsEomqainll7dHhot/HXwde7Q4mpokfBr5WwHBi9ORNEhcQSVSypehjKghVFei4MnQ+WIfG1qT9R/SusuVY995fCoqNgzxJYcDFsfFn9QK57DPb+FbKiWGocTtKgptvuT6HsSEJLV+kwbbX6PHQXay6kbA91i9W27oCMPbt1KpMCQnetJgabO3egt4jKsSnUDXaChNphkG/8hl3bq1t2RAMLgxnIz5hUoZER/dLouu/APQeS9oTkZhfkpBNAvgruj9VHofydsBeDEb0EIXb/DFbcCd5SGHkhpE+J3lw1y8BTjL4A5CiQDhADH0XoM6I3Z4KokHBwYklFmACaUQ41r7Zdcp2g67jXhW1ICFQp7ZTCd9S2DCgnp+iT6Dk43k1Q9LxSNx54icqpCKfqGpo2Na0G32xw9mBtX2gw/RsoeEC930EXgmNot05l4wwC/EBDN287p3buwOxDqBdJ6tocTD1yW37GTksHRxp/YvqeBZGGZrseoeV0y9buINDQaaMaShpQ9ZvqxJ6+U8/yiCpfg8IzaUxWHvY+pB3TdEzyGeph+qGmCqq/UuNHPgS6s/tz90fsuTDt8Y7HRYKUUaA7EYYXsUYq0cwxUVLOThBVEg5OLNFSguJUweZFWkKgsFVkANxLwJILtsGdPy5zfyUIFqgFTMjYRzkYKeOgeoG6gElDbUeDQCUsnBFcLpJKWXX7+c0SVFtJVrWM6fnc1qyWjQS7gZ1T0RhAgDlY2B0re3d8EIAtF6s5CZ9cBkKCoHE5KBxpFmDU7wGoJRkj8CV68nyEiGLEovo3qPwOUneA7INbHyMNmHsElH2utgefDVNfBvcm1fsqdUrXdIwqG1o+SEBA5SstHZwGNCtM+hzcK1W1ln1Q6+MSxAZ7Duz9P1h0k0qan3oPOHqhTlCCDkk4OLEk9zkoOh5kvSpHTDsv3hb1Pow6WDUTXPMADYY/Bzmd/DvZB8JOc6HoVbCkw+CL1V34jLdg3lngWg/DzoShUdJqqZkN/uLQtmuR6s7uHBval/FPKDsWlX+hQ/oDYO1h1/YIY2U/rOzX5eOytRcp53ICbCCJ40nmpBZjpPEzqu16EHMhyDIQeR1PUL8Mlp0FngIYdB6MurvjKEv557DwMFQkxYTxz8Dgi1qOq/ot5NwAFM6C5HGw6hZ1XOr2sOtPYEkBsxj8v4M+HizjW5/XOoRQ2xMNrB046kKDpIntj0kQO/JnwoGz421Fgh7SZ5SMI0GvUDI23SqKow/slaW0caf0eVUaaqKuDdYk2KGue3+rwGaouVs5lClXgD3Ka+iu5fDnJBrv2jUHzCgCS7PPmrEFAuvBOm2bi+JJYyFG/XQahOYQOegphQjRiXut3yaBayWNOUKT3oL8Dsqdl54GxW/SmCmauiPMmNtyXNXvMHvXpvu0JDBdoe1Jz8CgvaFqN5DVyv7UN8DRig3+Iig4BtxzVQ7OsPd7vVCglH5M751I40eEvgea/XaE6K0aOQm2Nbpz/U5kssUazQmWQQnnpk1M8APlQCVQ6oK65S2H1f4AG86FwptVg8/myACUzIT658H1OpTuA4FNHUztg83Xw/IZUHAlmJ6umZ40Eca8qJbVHKNhwgctnRsAfRDY99jmnBsAoU9Dc74G2lTQ90BP+qJzzg2oaFh42a57bcfH2MOT+HXVjLEB71LYciQU7gvWChgUph008gZaaBZKE9xPgQw2dsUEVxtVZtYBMPo3mByAUd/3eucGQPruQfruBuNHpO9+TG8nK+higERSwWOsZzoFHICHhfE2KUEfILFElaB3kXUKLLlWRV0ApAbr7oNpYR3MXQtgVYNmjIT6OTCumUqwsQWMsAugdIPvD7C0k3xbdI8Sd8ME13zVMTz9KKj7EZJnQNpBHduff456JGgTzXoamrUby4S5J0Lxv1GRHw1yDlf7jWqo+Ug1WU09smnO0/AboPx18G9WEbXhwSpG6YMt+wflGkxw/wwTl8GYv4NmAedw9Vh2GSAhZTIMOg284Z3SNRBJSNx4+CcGq7ByBHZO6d4fJs6Ygd8IJcCbSCOGkgod4OIHKvgXAAYVbOVcRjC3VytnJ4g/CQcnQe9CT4Pk3cDzDY1LPY36LkFqvw3uk6FtaYZ0ZgD0AaDlglkRHKuBdXL7c9fPC5vLhOrPgw5P0IbhL3Q+HyhBU3wVUPYl2AcogcPuRDAnvgjpO4NnE+SfBClTVdXY2p3At0aNSfsLDHsrdEzZm2qpUgDSAxtvgKm/QGArGGH5UgTAtxhSjgvtGn4J5B4M3mJI2wF0O+jXgu8jMFaCSIWUR3FxFT7+A0j8fIDAiY1juv7+4oxm2RvT+IKG751mmdnpY6WUGOY7GHI2utgNXTsR0YMotTQLMTwXg7kGzXoGftvgsIiaiUEJKtSbWEJL0DYJBydB72PsHao/k+ECSyqMuqHp686phO40dXCMb+rcgCr1zf0aqq5TSwppN4K1g+qptP2g5hPUym2YwlfD/8teSjg43cFbAr/sAN5CtT3qJhjfjYovzQpDLm+6r+6rkHMDUPM2BB4HSzBp2bMO9TMXAAzwBKN6lsFgGRFctpTq82LfqeWcSaPUo9GGfMhcAuYm9Vwk4edMQp8VCwF+6JMOjrBdj4aGGfgZzbIbwnY9fhbi4lU0MkjmijbVnwPm8/gCl6De/2PYLJVY9VaSuTuJ4T4VjF8AA9N7M07tcYTVicQHmCSxf6iHlnsJBMoheVdV0p0gQZCEg5Og95G5O+yzAepXQuoksDbTkkk7AIY9BSVPqXyXYU+2fh7bVMj7ovPz5l2pVFJrf4SUXcFbAJ6GpFYdbMM7fy53ISy5HjxbYeTFMKQP9P6JFkXvgndLaHv9AzDurpZOaXfQm+e2WEEkhTazj4ctj4AUqny9qh6Wj1R9wXL+DwK/g1kPGVeCdRidQlhAH9m4aWEGfopQn5MAOpHv2h4LhNAR9hvQ7OqGIsAGyjkYFSmRePmObL5pdVkoYLzf8Cy4/UGPHByMRYTyrXQsxiac1mNw8Q1WhpHLg+qlrf+ALcHWFs5pMP4X0JO7P2+CfkXCwUnQO7Hnqkdb5F6iHpFEaJB3hXqAEgr0LIe6HyBpRxj6YOfPNfsIqFms9FXKvgPnEMjePbL29hUsaTRtOppMywzebpK8D2RdARWPqyjM4BdBD0veTtsNtMuUgnUAmF4HgTowBGy5DMZvUN3Ce0AST+ImHYNl2DgaG1GSIYgxfmYDoUT7APORVCNaieJo2nhM41sabgY0bUKP5haWI5CB12lYHq6x+KjkE5SjtZRSHmaQcSOU3NagSQnuhVD1AWSf3qO5E/QfEg5OJKn+GYqfANcPYPNCxpkw8KHI3KkmiD2WDBj3ZdePk4YSFgyn8o9t18EZeJKK4pT8V1URTp0VuSpCIWDQYzDgXsCqEsObU2eB9RZID4TVjUrAD/4NLR0c/zLwLwXbbp1qpaKRSTJP9+x99EKstRtJc7kI2HVc6Q6EyMGHBztmizYXNv0upCzBNH9C0/bCpv+jR3NrzueRvolIcx3CegJ1lvDmrSYecwGU7g1ZUv1T1qJ8sc5W5CXYJkh8GiJB9UtQfBGIQGgp3gAqHgXLAMi9OrhmPxTEtrtGbFKGyUZ0JiJI6viAvorQIXNnqJqnkp+hbzk3UsK6J6D0W9XkcNwNXVPxbY5mhR0/BF+Ziq7ojoiZGpqjlWUJbyksvwO830FSAGqAeiBJqJsOy0BwTGt6TP27sO4vUCfBboGJ34Mzio0deyu1b2IpuAm9CsCPdXAqS0fksZKjSWYsU3kSK+mNw4VIxWF9I2LTC+FA2ENtbJKpoobPaMiPy3E5wT8/OBhIASwzIeO4lidLsM2SEPrrKf61sHFMqOCnITfVH3xuyYRcG8hi0AZC+vdgiVKrgF6Mn2+p4wTUbVYyFg7EyRVY2C3epkUHbwks+zt4imDE+TDwiHhb1HnWPQkLL6dxGWncDTDp3ria1C2+mwFV80NO5hpgwjGwc3D5JPvylgrDK0bAlo2h7cwxMH11DIztZRSeBKveblxZlAJ+22NH/DbV0XsoZzKSCC8Rt4NEUsW71DMbB5PIrvMgKsMTzh0wuA60VlqhJOgXdOf6nYjg9BTvgqbbDc0GG56blSCDXzqzBFy3Q9rrMTOvt+DmFsAb3KonwIfU8l9S+R0LHZRv90XseTD9mZb7paE0frQ4KWl3htLvCXnrQMnXfc/BMTxQFVQsbvg+JgPlpTDgg7aPc/uabteXRMO63o8c0CRtSkhwulz4bamAwMDV5qHRQCDI5EQyCTa9TKqG2qcgsExtZ/wr4dwkaEEiOaSn2Hek8Re04QfBCHvdEXahQIIM+2GQEnyfg+sxCKyMuqnxJUy3phGJl2fjYUz0MD1Q+70qXW2OZw6sHwjr0qFwf1W90xvJDG9poUFWH4yyaXZIGQ+Ixt62eAQM3KH943KaRSUyD42Sgb2c/NvDOpoLTEsK9clqWVnHzkCOjZtpAGjpMGAe5P0EA1ZB6uUdH5NgmyMRwekp1hEw8DMovhhkLSQdDrWvgzDUbU/qccAnqOiFDZL+FjrWfR/UB9eZ6x2Q+RtYprWcox/g5A7qOJGGMtIGRNg6fp9FmlD1INS/Cf4l4PepXI8B98DAm0LjSs4Hs1w9d38P1U9C5vXxsLh9xl4LRj2UfAWZu8CknncpjzlCwO6fwaKroGQOVFpg/KGwXweRqCG3gEiHLS+pKJAlB/wVqlv7toQ1E2YsgI33AxJt2HVMs1pwU0AaU7HTToVjrBAOsO8ZbysS9GISOTjRwLsY6j9UQmKpp4G5GQILwbI96ENVx+n6t8F/K1AdPMgCzish5YHo2RVLZD24nwFZCfazwDIWky3UcS4GPwYHpZHOYrTO/FhKCWvvhq1vQ8p2sN3j7ZeRRxLTCxVPgH8TpJ8MSc2aMlY+ABXXQXgergFU6LCDG0TwhfWDVQsJAHTI+Bvk3BeDN5CgS9QugD92ojGxLn1X2PHnOBuVIMG2TSIHp7dgn6IeDejDQGSDZymUHg7+xWp/CmqRUAAEwDsbnFtVp/G+jJRQfST4v0c1RXwcMpeh6YNJ5X/4+RhJOVaO6JxzA1A4C1bfqp7XL1MRhp0+jtIbaD73OVD9JqBD+ZMw+ndwhi11eH5qmnsF6pul6U13Zv4NyoK9kIQD0s6KuukJWsFXDUsfBG8FjD0Psqc3fb3qR5qsM1f/AmZA9ahKkCBBnyHxjY0FnsWwfiaICgi/5rlQiY+gUlQ8v4FvXxiwtGnDwF6OlH7AEuo9I6vA/13wVQNkDfi/Af1MBBo2ju76JDULlMaFDKhE3Zo/I2N8p+b+AHU3HwA0qP2sqYNj3xVcHzVNMTKAwY831eXIuFq1A/CvBuf+YO2CMvK2QN0KWHkTGHUw8jrI7URz0+7w9eFQOhsQsPpFOHoJpI0OvZ4a7vDokDQ+4dwkSNAHSSQZx4Li21TH4+Z3+SYqV8OLKivHVMnGZhuVG9VvwcrRsGq8usjGGSkNDPe5GLV2jNpczEDQqRGpILJo8vHSR7V6jk6Tc6Bybho8xNwYJn/axgbnBTDBPr7p65nXQ+YdIKao92k/HAb+AXkXtjyXcy9IOzf+zo00ofZTqPo3GJVxmN8L9XdDzdng/RBMH8zZD0o+hvJvYN7hUB/WYypQANW3Qc19YFa3ddaO8ddByS/q/UtD5dkUfd90TMZeMHEWpM5QHcunfdramRIkSNDLSdyWxALpBaRyaHRCmjkISPurWsJBAhpoOerRHN962HQq6iQCCo6F8VvAEr/kRxl4G+l/ObhVgek+GS21WEUt0j+C2vNVmXzS9WDtYTJg3hEw/V0o/i8kj1N3+LFi6DtQcIbKn8m+ANKOb/q60CHr7+rRV9hyEVS+oJ5bh8OYP0HPbP+Y9qidA74iSJ8ZbM3Q0fjLwPsSoIH3FXC8DN6toddlAGoXQvIYMCqgeKdgZ3gJrrch/4+mUU7Tr5wWvQMhTUsSOAeCp0Q5OAAZE1uOG3iWeiRIkKDPkojgxILc/1MKxgbgt4F9BqRdCSPdkPMIZL8Lthlg3xdyvwolpYbj20BIJlkqpymwOWZvoVXMEkIhKQmyAtkgqmbdA7KWQ04RJF0TmfkGHA/TXoUxt3R8IYsUvkr48QyY/wes8IP16Mi1GYgXZn3IuQHwbwx2Ue8mBXfCol1gxdGwYBr4yzs+xvcpyqk3UPdZf4JjOOoOQFNl3mnBppW+n8EsDY41wf8nGAWhc216Eb5MgS+TYNWt7c8rNDjwc8jZGdLGwW7PQl4EVKb9c6FiMpTlqchUggQJ4k7CwYkFyXvAuDUw/AsYsxGGzYG8R0IX6aRjIf93yPsKLGPBv0Ul6obj3FFJy6Orh20M2HrW0K6nCOtxQGbY9kWI/tZ3a8UDUBmUhPeVwdxLG1+SZimm/yOksSxOxnUTYQPhbLqvu9EbacLmu0Lb3g1Q9lbHx1mmE1r2C4B1e9jlexh8Ogw4Dnb+BpJGBG0bRRP1TJEEWjA53VcOSy4E6QNMWHsXVM9tf+6sqXD4r3DcShjfyjJiV5ESao4EYznIUnDdAr4udLFP0DlqPoEVQ2F5DpQ/EW9rEvQBEktUscI6qOOuxfU/wMYjwawF564w4gvQg+F+PQ1G/Q4VT6sloOzLW28sGEOENhQ9ZSEy8BGIgQjLMXG1Jyr4qkLPpQm+iuDTNRh1uwAVgEBzvIJmOyMeFnYdYYUhr8Dms0C6IeM8SD2suycDzQGGP7RLb6UvVHPSZqllKmM52P8C9rNVZGzqrJZjbZMh81movj3o3FwFa16GrBmQlEcoshnEG2X1YRkA91NgrgHbsWDdHcyipmOMddG1YVvDqIVNJ4aW+7deAUl7gbN/6oYliAz97Ha7j1N4cUjd1j0HKp5q+rptKGT+FWp9sP5ecMW/R47QhqDZLkWzHhuqoupPjL6gqSM5UQnzmb7nCGkYSUzvHTE3rUeknwjbVcPAr6EuEzY9p0qhu4oQMOaF0LJq+oGQc0rHx2l5kPoGbL0MFtcrMb72SLkABhcCj8D3V8D8v8LXu0PZXNXAM5zwXJ5oUHcF1F8F7qehen/w/w62o1BRJh1IAtvB0bVhW8MoA+mhSamiv6DN4QkSQCKC07swawjdjQow60D6of4jdaftPAzm7wXu9eq3dOursNsqsGbH0eh+Tub2cOgyKP0R0iZCdkMbg/AlHk1FFvoa1fNhzsHBtlMG1C6CSU91eFgLcv4CGYeCUQW2IaEcJbMG6h5X/08+D6zNmsz+fDksf1ZFJBc9CMfMhrwZLU7fhLVhuUNIWPMsTevzNfBuoVtIH9Q9pSq2kk4C+y6tj/O+R0g2wAK+TyDtLXA/q5ao7Kf1vGowQVOsw8G5i7rxQ4AlH5L3irdVCXo5fSKCs2HDBs477zxGjhyJ0+lk9OjR3Hbbbfh8vo4P7kvk3hJ6rqdDxjmw9TgoOgGKz4D1Y8CzBqUtY0CgAmr+iJu52wwpI2DkmWHODWi2v4LWUH2ThO7ogzkBxf8NOTcAWzuRO9MWllSwDw05N1JC6cFQ/XeofRCKZ4SpOAdZ+2ZwbDBytPGjjudx5KlEYVBVVI58GHRaaFvokNcNnSWAinOh6hqoewxK9gRfG1pL+gSa5A/p45VwY9KVkHwXWFqpyoonRg1Uv6eWwLsjXC9NqF+l8p3ihdBgxNcw4CHIvwtGzwU9I372JOgT9IkIzooVKzBNk2effZYxY8awZMkSLrjgAurr63nggX7S2gAg+xJI2hl86yB5bxWSdYVVt4hKsAOehh06OMfGwdCe4eU7arkNMEnlNuwcGG+TuozQstGTF4AsAJGP6IsRnKQxIecGHZIi+FkyS8H3W2hb1oDnB0gOW75KGwPlC4Id1g213RFT7lRJ3xVzIW0SbP9PVfadPgPcG2HACZA2tXs2u98nVNmlgftTsE1vOS7t31B7LhirwX4yOM7p3nyxwKiENTuBP5gTlHMdDPhnF453wZwDoGq2irRNfRUGdWIJMhroKZBzVXzmTtAn6bO9qP71r3/x9NNPs25d55P5YtaLKlIYFbA+lyZJlEWAD7DmwvinIO+EiE0nqcHDI0gqsHEGFnaM2LlBKR6bxjeU6meCaEhKtZLLInQGRHSuBJ1AmrD8Wtj6OiSNhqmvQfLojo/r1Ll9UJivHJuGz2/+H2DbST0vfB82vAAlC6DWD2PPgl3/GYrOdITpB60VOYWeUDQN/EtpbNOQ/RYk/SWyc8Saypeg8LywHRps5+58gULBc7D0otC2JR0OqIysVILpg7X3Kd2jnINg6IV9X4ohQcTZpnpRVVdXk5XVvsid1+vF6/U2btfU1ETbrMiiZ0Hec1Byqbpg1AjwBf3RCS9A7lERna6O4wmgJOy9vEIac9CJzF29lG6M+pn4mQcp4UmhPgw2JByceCA02O5h9Yj4uW2Q+ylUXASyGtL+L+TclHwNc46ncYV83JGwaxcjsZF2bgCy34GKs5XGTvK54Dyx++fyrVe955w7gjWOveW01KbbwtG1NjDSR3AdU22b/vZGd48V18PGoNhp8fsqYX3ouZGfJ8E2R5/IwWnOmjVrePzxx7nooovaHXfvvfeSnp7e+Bg6dGiMLIwgaefB6FoYvAL0QyB5OxjzYMSdG4mLAL+g7rYNwEuAHyJ3/sCHYM7BYhpopqlyAaSORh4WJkVsnm0e7xbwV8TbCoV9dxi4GAYVgONE8K5WUaOy74MXWVM9Sr/t2nmlVA/DCyX/U+J+6x4Gb1HHx7aHdRzk/wqDNkP6nd2PItR+odqpFBwJq8aCO4Z905qTdiykHqeeCxsMfrFtB8f0gm9jKCcKYOCpkBSWMD3urshHV8q/Rn0WJKBDxfeRPX+CbZa4LlHdeOON3H///e2OWb58ORMmhATtCgsL2WeffZg5cyYvvPBCO0e2HsEZOnRo31miiiESSTXjkWylIUSfwldY2aN755MS6fsHpv910MYhLIchPZcAYAiB2+ZEs11GkrgUCyMi9C76INIE1+tgbATH0UrzpbvnWXYWFP8b0GDMv8A/G6r/C/ZxMPp9cIzr8DRRofI11ZEdA5L2AfulMOck9ZrQIXtv2KuTTs7ae2DNP5T2ji0bXGtDr9kGwF6LwdZKq5NYsm4vcP1C4wU741QY8mp8bQoUg5YCWhsaRZ7FsH5/MErBOgpGfq9kKQAC9VD1K9gHQmo3P5/tsfh82DyLxqXBiY/CiL+qvCzPEhXJtvXBm9MEEaU7S1RxdXBKS0spL28/M3/UqFHYbGq9eMuWLcycOZNdd92VWbNmoWldC0D1uRycGGOwFBdXYlKKg8uw032VV9P3KqanoZePDvreQACMnwDQ7A+h2a/uudHRxvRB6WsQqIKck8A+pOfnlCb4/qvE4dzzof4FVFWOJZinMqXlMe4tULMSMqaBvZWl2YqvYUF4sraANBkUANYhZXcY/2PX7KxdBiuvD3X3zju8a8eDirQsTw3pOwEMngWVdVAQzPmZ+jDY8zo+18aHYeU1ym8w2xgz7T8w6NSu2xlJ1h8I9d/S2Hwu81wY/Fx8beqIDYdB3ZcoJ0OHzPNg8LOxmTtQBytvgJo/VRPd0TcrQb/1B4D7V0DAwMch+7LY2JOgV9LncnByc3PJzc3t1NjCwkL23XdfdtxxR15++eUuOzcJOkZnEql8HZFzSXMx6uMVAAwwl6CnbAVzMYgMhDYiIvNEnRUnQuVHgAab74PpS8HWiYtxe9RdDp6n1XNPQ7g/ePfqfq+lg1P8LfxwmFpCsGbCAT9BerNlPdPdbBK1BIgw1Ll9m7pmo+mHOfuDrxQwofIX2HMJpIzv8NCWdjSTc5BeGHWZenSWkndh7TWNzeQbPlZNmACYt0BgF7BEKFm6Owz4J2w4QBUJWAdD7s3xs6UD/MzHoBibrEYL9xrDHdJoY0mBSU823Vf1btC5AZBQdA1kXaQquRIk6CR9wksoLCxk5syZDBs2jAceeIDS0lKKioooKurhmnuCNpHSi+E6nUBNCoG6HZHm2o4PCkNYDkFdhdQVSViORAgdoW/fd5ybmkVB5wbAhEAZVPWwx5A0wBN2ZywaW8sDBujDWh6z+DYVSQII1MCKB1uOyTwQUncIbeceDZqg8Suec0HX7PQWq+7gGCgnJaCEALuK0CAvTOXZNg7Su1GZVPo+SlAxuK3R1NHMR/nTsgAqLun6+SOJczqM3wRjV8HY1WAbHl97wpD4MfFSyW1sZixFHEQlp1A+vARTD+bmCCvYqqEwF0oOBCNKv7PSq5qUNugjGfXBrvQltAjR9c1i3wRxpk+4w1999RVr1qxhzZo1DBnSdImgj1a593qk7wlk4HVAgrkQw30uluTOJx1rlv3B+T9k4H2ENhph6wPLUQ1ICcuvgo2PQSqhiyqAbXAPT66ByARZAUiwAsYgMCsh6XRIPquVQyw0qWRp7S5Wd8AOv0DVd0ovJH1PcC+Ems/BMRHSu5iU7hioSsfdG9TfQ7NBxs5dO0cDuTdBymEqDyR5T9C6oRnkDM8fEpA2A3b4XjlhtbeC702UM2aAsbnr55de8LwMshLsp4A+ouvnCEdLAnsv0KiSEmregZr/4hXLqHeuoy4rCUSDA6ERwILQSvGMuZMk1zgwf4e6BwAJ3u+g8hLI+SCydpkVULUHGCsAHeyPwMp7wbcFhB0mvAWO7cGzQI3PvzsRvUnQZfqsDk53SOTgdB7D81ek72lUFAZgEJrzYYQ2GaFvF0/Tok/dCvgpqEaro7oy6HYYfD0Mu6PnVSS+r6HmJJBVYD8HUp9rX/+l7Df4/iAI1IJjAOz/M6TGYAnGvQnW/kPlSAy/AjJ3i/6cbWF4YOVFUPGlilRNfCWUTLz+r7D5cfVvlQfkPwKpV3bt/NVHqZYLCBDpkLkE9A6a4/YFSu6BkpubNLOoy3JSOSi8fFxiw0c6T+HkVKXoXP8qjWuAlokwcFnkbApUwYo9VI6XExgAVCRBpTc4p4CkqTBtDrj/AEsO2Lu6NJqgv9HnkoxjTcLB6Twy8AuGa5/glkEon0ZDc76DZj0ufsZFm5pF8EuzLsW7z4f0VlRtu4sM9jISndRz8VVD/QZIHQuWPqiaHC0qvoUF+wc3hEpW3qOLSyqyDsqa6cWkvtS7FYo7y6oJ4FtJ+EJowKKxZUJOcI+JhkESe5HJWwjsSsG57Agav/Npd0D63yNn09pLoCish1gGIJxQ6aOJgzN9QeTmTNDn6c71u0/k4CSIPcKyB3rybDT730Hfh1BDQ4npva9rJ5NeqLgUtoyB8tOCTUV7MalTlOR/A/nHQdq0tseHU/cLLN0OFg6E4kfbHidE550bAFs6ZE5LODfNcS0P25Aqd6jLYnROEBk0WYvUek/eTI+wjSL8fUnAb9fR/MkkB44lg1sZwB9k8oFybgCch0PuV5B6FWS9Amm3dm9uowjqngHXu6pysAH3apo0SHUD2VeANZhTJawwoou/MQkStEJiUTNBmwh9BkKfgZRlSOPn4F4NRGq7x7Wg5l6ofxYwwbVBdd7Oej7C1raPwQpMSrCwMwJH+4OFgO3fgqpgL6WMXTvXQkAGYPWhqgs8EjZfpaposiLXTiNBMzL3VwJ2MpgMnblf11WOhQ5pH0Dt2SoHx3kN2PaLhrWxZ9CzUPAXPPqfWL1+AhYds1Yw+Nv1COcLMPIyGJAE1mbLro4D1KO7GMVQNBUCpWo7+UzIeUU9z/kLVH+DWlM0wAus+ScMuwvS9wPHSKVplCBBD0ksUSXoEGluxXDtC8ZKEFnoSV8hLDt0fGADZSeq8ueGuzbbzpD/e9vjjTpYfR5Ufwdpu8HYWWDJ7Lb9Hh7FzU0AaEwkje8QROHfv+RZ2HRx031+K2z3PdhSwTIILNmRn3dbp2YuFL2iIgBDr1ZlxwmaIAOb8Nbfhr7hSyxbChFZQDLqK2nJg7GL1f8jRe2zUHpxqBhKACPKQA9+/svfh6LnmlYlChvs5upaK4kE2wyJJaoEUUFoA9Edn6IHhmHxViCqj4LAqhbjpLEYGfgR2Vz3xHk4jaquAM4OKnoKbofy99TdX8WnsOH6btsuMXFzW+O2yXJ8vNvt87VL+azwiYOCdH7YdBismQorB0HNx9GZe1smbScY9ziMvLXzzo1vEVScD5WXQ6CLGkF9jUAhomA6jtKXsSYXIoainBsIFueVQPlFUPd0S82i7lLzQdNKbwnUh332s4+D3OZdyTWaliwmSNAzEg5Ogk4hXP9AmIVqwyyC+v9r8rrpvQOjfiqGax+M2mQCruvBt0L9YCafDVmvQ/I5kPkMpN7U/mTu1YRU3Axwt3Smukbzj3mUVmat+U3nEoANMKvVtvTD1r9GZ+4EnccohpI9oX6WyhEp2TtyF/beSN17qiy7gYYV2obM4xTA9xFUXgrlEVKB9sxuuU80WxrO/guk7h7c0GDUY53vJp8gQSdIfJoSdA5ZSygx0AQZShSW0o3pDRNzIwCBf2GWTYSN48C/CZJPUXk3KRe1/yNmeiA5X+nDNER8crohDBdEoJHEQzR81HV2xUYPukS3x9CHW2qfNKjuAkowLwrdmBN0Dd/c4Oe5QTdnAwQ2xtmoKKJn0/DdlSiBa5mO+ko0pisFwy3u9yLj7FlH0iQaY50IKc0qL3UnTPkRtl8MMzbDgC6KUSZI0AEJBydB53BeSSjyoUPStWEvarT2UTKT1do/Ve03VG1EmrDhIKh9HpKAjAwY928YcGmPTLdzNumsIY0/SOUrBM6un8T0ga+sfUVV+0iYvEKJ2TVq5WiqBLbhef69XZ+7PyEleF6BmnPA/VTT6ppYYZ2I+iwHlZ5FBuhBAUejBLy/hqJu/YGUkyDpAKQFjBwwssFIAZkC+IFaoA4whMqDKU2Dyt1CCsPdYcAbYJsGIg1SToOhi9S5myN0SJ4MtoHdnytBgjZIJBkn6DzGWiWtbpkOlqadqQ3vY0hvM3E1CXoVCD0LMh9qXaU3HM9yWNNMRHDEd+AYAfUvg0iGlEtAC1Zx+b4F14Nqf/JdLWyKGBVfw+JjVfJz5v4w9WN199kWVR/B2mMBU/2oj/4YdCtYh4E9jj2SegPu56DuIhoraJLvgaQOliyjYscnUPMPwAEZD4B9Bnh+gLJDQbpBy4G8n8HaTwTmpCRQnQ2islEUW9SBXhk2RtMgG9CCTUJtx0L6O/GxN0GCZvS5ZpsJ+hj6aPVoBWE/D7clE819PTZTCa1pnmAgQ1ZAxdlgmQD2Xdo+vyULFQn6//buO7yqKl38+HfvU9MLKSQkoSMgTUBFYBRs6IAzztjGEbsoDiiWq8L8rnpnriMzjoURG84IeB27gjqjoigXuNI7onTppJKQntP2/v2xTnISUkhCkpOcvJ/nOQ+n7PLuQ5LznrXetVa1b/W6BbJHgnESMKF8MSStBuMAFFaud6WDdxXEH2za3DKNtfMOtU4OQMEyyJwPaQ0sFBn7Cxi4Hcq2QsT54OzT8jF1VO4vUZ+w/hor1+fBSXDCJqlbdYWPqzmbQC2dUfxsg9MZ+IyleHzz0bRk7JYn0LQ6VnlvKz4X7HoZyjKh143Q5ZRRjpoGlnh1XfUxjGotjz4wDp7+vOWH4YdpamqEvo+rYfpCtBOS4IjmMX1QMB/c+/FGj+do+H/htRyFCBsJxh+IcQ9DK/xlzUER7o1Q9E9w7YDIX0DMAzWXPbAmQ+rrkDldHT/xQSi6D4wT1Y6xVjWd+7ai2tdB/TE+rm6WVpigzVdEoP5IA28jui/CzlY3UZN1iCporRxVZx2quqly/qBG3jgHQ8pcf7LbfvmMLVR4fu5/pGEYmwiz/1/wAlp5ExxapOrbdr4IV22GuJo/f7pjNka5v57NBL34lGOEjQBtMyY6HruBYQ/DanyNVb+87nO6T8I3/cHrX8k+ZzlctBGiRrTklQnRbFKDI5on80E4fjfkPUtx0fV4Tf8IK80k3/IhmvMqNd8NFv/NDiVfQ+GrULEc8h6C4jdrH9c2CJIWQL/DYH4Fnu9rvq5FgB6vusmwo36ELaCngd5KawdlzKwWXzx0ndw65+kMwn8Pzt+BpT84boXIv0D+PMj9I7i+h8L34fg9wYkt9k9qoUcAPQ6iHql3U8P4DtXSaAA+DHM1pumtd/tWZZpweDGqiN2npiY49mWtzXT7dVgitqD7foMlC7Tq9e6Oc6DnSsyYzyiLisDj1PHpq3B5rsTje6Pu8+YtDyQ3oL5v5HzQghcmxJmRFhxxerlfQ+Y74EyHXjPBGgGF7/hf9KGZlZO+KBpW1TKT8CUU/1kNUY2YApk3Ehj+bYWKteAYDrm/A28elMRCoX8CQGsXSDoJ1mrdVVoXSHgf9DCgJ8R8DeXPgxYJEX9sne4pgB4zIe5CKD8E8ZeAvQUnRGtpviPg+T+VQNiqdVMULIK89wAHJN8D0WODE5/mgKi5NZ+r2EpVTQ4+KN9c//6mCRtehx8WQ1J/uPS/wdHEmbXrPKwXzfEzSDkM3v2qEFmvv59f188J/ChjQdP6owVrtWtNg8jeUPJTYEbn6Lrr0TTrMLS4d8F7MRydAXgh8XfQ7QXQNLyWI2CW1tjH430Dm+XO2gdz1vGFIqqRS5oI0QYkwRENK1gDG69AtZSYULwdRnwK9j5QfhLwEV1QQlFiP9zWbMBKIn9S+1riIfYZ/8iZVWroqPegOg5ecI6B41eqeUmKfGpNmkreAnD1Aes+qqoik5aAfWRgG/tF6tbaKn4CXz7Ejz+z5Cbvech5Un3Ip86DmGtaLkYA7w4oGAX4P6AqF4zM/TscuDvQo5fzT+i/CLr8qmXP31yRl0PB61T9jEVdWf+2338An/pni96/FIqz4TfvNvvUpm8HvrKrwDwIliuwhH+E1lCdmJ9FH4vduhCv7zU0UrDbnmv6yd2HVWuV+wDE3QoJM5u/Uv3Fi2HV7VB6DPpPhfSrGt4+cQok3KXu1zhnRK1NNa2ebt/486DvQ7BvjvoV7XljHZP3CRE8MopKNGzfU7D3SaoKf3UnTCgH1344ehO490HMjZgpz+LRDmEhEQvVllUwTci8FLzL/HmKXS3eGXkNRN4IB2LUdtlU5TFVevwFIkvBdwzCJ4NzXFtccU35X8CuX6p1pvRIGPx/EDms6ccp3wb7q+9ngwG5YIlpoUCBkhlQ/jJVTQuWfhC/G/ZcDnlLa7638VfDgMUtd+4zdfI9KP4cnAOhy8Og1zGkGODf98O6V8HwdwdFpcLMY80+rbd0FPg2ot4zHd3x3+iO359ut5ax/wIo30DV/1f6BxDTSnM0ncpXCEd+A6XLwDkMMhaBrRum6abCMxHDXAaARl+c9mXoWit1/wrRSDKKSrS8qKEECTBHxQAAL+hJREFURjVZIGqIuuvoDb3XVm2mJu2to1nc/T14llUrNnaDszfE3KOSH8cF4FoH4YYqqSlEfRDbw6DrdLC03urZpnc1hucVIBbd8Z9oeh0L/B39k7/ZHzDKIfNv0HdB00/mPfVD2KO65VoywdGiCWQxOmj+Yzv7glY9wdHA3q3lzlsP0/ThNV7HMHdh0SfWX6wKEPsbdTudjDGwxt/FpVmgx4VnFqTnMOiVfU06ppnT6F3L2EwZG3EymEguaPq5XTsI9HNZoGJH6yQ45fvAfRQiR4LFv5RF7lNQslSdv3wTZM6AjI/QNDtO29eYHEcjBk2Tdb1ExyUJjmhY8lUwYA4cmQeOBDi7noLDetXV5O7vK9E0SP0CTj4Hlg/U+laJqHzKGlE7uXEfg2MzwZMFiVMhrvldPKZvr1pA1P8B4/MtxxLxPdqpXQS6kxpNS/ppViI/lbcI9t0BRSsgPJyqfrjw0WDv2ez46xT2ELi/AO9m0OIh8hX1fLenVTfbiW/A8EH0GMj4Y8ueuw5u76N4jTmAFa/vJbB9gVWfUPfGrmNw6K9qFt20+yBiQN3bDb4eygvgx8WQ2B8ue6r5AR79Dv2HLIwL8E/xa6Lbbm7UrsUs4zCVxdAm3XiGWH7d4D61RE2Cwg9QP18GRNXz3pyJ7Pmw7y7ABEd3GLIO7MngOUog4/WBJzCTs6ZpaLR+AixEa5MuKnF6RZ/BoWtUt4CjB/ReA7Y6WjvqYpqQOR68K/y5jhO6/uifyr2a8u/g2EWoOgwvRE+DpJdqbvPjMCiv/NarQf81ap6ZZjDc/4NRUXPiQUvUidpzmZRsgh2Xga9AfUAMXgmOjMafaP90yHpNxazp0GUMJNyoai70VmidMk0wc0GLO7Oia08ulK4CRx8IG9SsQ5S5emBSuZClFat+Nw7b3NobGm5Y2x8qDvs3jYJRe8Ce2LzYG+ub+2DLaxjdvJhdwfQkYLn8MFrVzNP1O8J0iviKyiQhjJH04r2mnd+oUHVZnoMQcwNEXtL0a8h6HXIWqt/Lns+D/ZTfy/XJ4KlsldKh+58gbSYUfwGHJlGVXKW+BvFBGr0mRCNIF5VoeZkfwa7fgs2r/haWHoSoP0O3OY3bX9Mg5X+hfAn4DkP4dar4+FRhY6Hbcij9FGy9Ifrumq+bHlXHEngCStc3O8HRLEMJtC7poKUAdXQXRY5Q6+S4j6kEp77akEqGS3VHWdPUtuW7qeqGMA3wRkCXe5sVc6NoGmhNLIQ2fXDwaTjxb4gYCBkPwd5xqrAaDbrPh4TbmhHKQEzzOOr6veh6/7o3LN8PFQcCj70noXgTdLmiyedsCiM+Fu9ZJka8hm+kBlo+mmc4YbZVp520z0oygZY9CzYamfBXpzsh6QzqffK/gP3+pMSzBnb/C5IehKQnVfcdwKkjuyofR/0cen0HpSvAeQ5Ete57LUQwSIIj6le0HbZeDxHVGvlM4ORamtSCrWkQ3sDImEphP1O3Oo9hg/ARanbgypqgiGbUPVQezjIUPexDDPdzQBwW53NolR8Kp7KEQ1jful+rzrUbDowDbxZYU6HnCki4Dgq/Qf2qeaFLC4+caglHXoADT6j7RevVkHJH5VBhEzL/0KwEx2F7A5fnDkzzRyz6r7Hq9bQQONLAEuWfLdpUH87h/iUSTB8UbgdrtBoK3UJ87KLonNdhuEpYLR4PFsPANPfi9f0Tm7XhVd8TuY8KdlPGBpycTVdmNrh9qyjZCOjg9NevaSWqtsYSDQn/obbp+SLsuVF9QQgfCMl3BfYPH61uQoQoSXBE/Yq3U3PojZ+jkV0WZesg7zmVj0T/FmIuP7Oi4aRr4fgOMDVIfhQiRp5+nwbotmvQbQ0kHDkfQ+7HKrnpPrPh9acAsv8TvLnqvjdbDQlPf1vNylu8GqLGQEI7THAKltd87CkCR+UcoLoaPdYMupZCmL32hHO1WKNg2Few92HVAtbzSQjrqbquVl0Bef+rthv4FJz1/5oVy6lcLAStTD0wwWexYDH8iXNDq91XhkwsPflni8TSbDEXwRFDTSFUVTqmQdmGwDYJ10DMMXBnQVh/0Ftprigh2iFJcET94kaD7gCXB8L8f/wt0RBRACd/D9Ez658MzXMMDowHTwWUmnDsQ7ClwJDVavHMpnJth4JZqIXANSh5BhIfbnAytmYxfWpywuIPIG875GsqoSr/Cc5+q+F9jXICI85MMPwfoAnXqtupPPmq+NiRobrC2pppwOHfQennNZ+3Avbuan4WPRwyXqpz9xYVcwGMXF3zuawvAskNwI9PQO8ZYG1iwuXZAN71YB0FNvU+a0RRffkNzZ8h6NoQrPotzbuGthZzEfRfDFkzwdxNVT1N5Pia29kS1U2ITkYSHFG/8F5w3nI48qp/peEB4J4F3k+h2FRrSyV9Xfe+FVvVqswV1Z7z5MCxZ6F3Mz4wvYerPTDBrABfXssnOMVz1KKLmBAHaCbkmZB/ynW6f1KtNM7hKgkE1S1QulSNBNJskPBw/eepOAzbzw0UgPZ8AVIfaNlrqY/hBd0KJz+BvHmqewPUuqUWIOFi6Ps5eLLVB2NrFEM3Sh2thyVbIPs1Vd+U9p8QprqtTPdy8KxDs40Ge7VuTtdiKLrGfywNoj8DxyQcTMPDEnxsQtNiCefvWGyp6Nqg4M1I3Bxdrob4iZD7V6jYDBEXQ5wUCwsBkuCIhpgGlK0BWyFEnkdRVA77HWfh0y2kFOfSrfhbNWpH06BkFWTOVh88qX8Ax2DVHO70qCSnalp7XwMnbIBzLFhS1KzHmOAYCdYeLXKZNbjXBO5r+FuMLBBVbdmDE69C5jR/HIOg1yrVshU5DvruhoptavI0ez0zwLq2wp6fgack8NyRP7ZegpO5EHI+AnsKFG+Ekq3qerr551zRAAfg0OCsVRBxnqqDcbTCwqVN0XUidLkQTqxUj/s9DDuvVKOPAE5+DSP246m4HVvpe5gm/hkIEiD8Roh9Hspfq3nMinngmIROLFGsxCQbjXg0zV73jAYdgWY7s2JlIUKUJDiifsf/BgcfgnAwrZ9iyw/DTOmB12IlO7ILsW4nEb6jYFhgz2VgugANildC99+D3aNaByKAfIBYSH2webFYYiF9AxQtBC0MYqY0qlaiyRxjofxjdd/UwJsISRdDvxf9z5mQ9R9UtS64dsDJtwMjo+w91K0hOb+jajmFSnrtKfJbRO4nsPP22s8Xb4P8PmBNUBMOAnS5EyIvUC1vpX8G3z5wXAuOJi7pYHpVcny6EWeno9vhZ8vg5GZVZOw9ACf/GnjdfRxf2Rdo7vdU+4xHnVYjD0rmquHyeuWCrGqmYvTACDPVMdWM0U9CiA5BEhxRv6IV6pt9guqpcVLOWScOcDAujQE5+9ExIbMfhP1JfShW8p2Aky8GHmsW6HYVdF0ArizIfReifgbOtKbFY+0G8S1TZFqvyPvVB7RrGdjPhfT/B9opH9SaVrP3pKnrBxn5EGaqli0Pauhun9fPMPB6nPyOwEKW1fnUJIQDt6muKlsSxPonqiueAi7/+k6udyDmK7A3MAtxddkLYf9UNWonbRZ0b+ZEfIVfQOlGiLoI4vzrjbnCMTWbOjbgtVo46dhNrNd/ecYpjTAV74FNA707GAfBMhjCGxnPieWw/VbwnIRe/wF9Hm/edQghgqYVvgKLkBF5nmqB8ZcvaBqEeypIKcxGq/qEd4P3K3+dhg5YwJoItm7qPqgDhA2FvEWwdQDs+S1syoD8RoywaXMaOK+CmOch+r/qTm66zqHqV8c5DGJuatop4h5Rn8RxQKIDhq2EuEYMo6+uLAtW3ARfjIU9DcwuHTOKursFNUidAvZUSPodxF0baBFzL0EVSxuAFdzfNi4mb4GaNdd0qX2P/gmK1zflqpTc12HfRMj8I+wZpxIwAEc6mQNvpCgmipOxUew8uw9Z1u14HN0xLGBaqiYkVir/uln6gWMLHBkE2+6F/cPhWDLkT61KlgDwFMDBv8GBObD5l1BxBHxFsPcJOFGt2FkI0SFIC46oX9qjYOwDFqi6Xg08FitO4lFdLAaggTUO+i2DrL+olbJTngDdgMyJ4D0EYRdB7EOwNVV1V/mAChN+ug/i9wXzCmsyTci9F4rmqcdRd0LS32u30MTfBZETwJcDziFNnzE4+k6wDwb3Tgi7sPaszo2x/BrIXadGfeWsgog06FbHVP9J10LyzZBdbQSYLRGG/Ati6pkk0ToCPN9SOUEf1mGNi8lbRK1kypPXuH2rO/Gm/45/xuoTb0Ps1QC4YwdyOHYH6mdPJ5pIwrRnwLgV9AooBs2Hanm0Ai4TTBv8OA4ognITKucePGce2PpD1APgq4A1o6B0L3UWN5cfrv2cEKJdkwRH1E+zqlls8zaDaxuaBnarF3vUX8FzPxhZoCdCzB/Adhb0XlRz/+4HALdKegreCkweVzlvh8/dxhd0Gp6dgeQGoPgNiL0fHENqb2tPB9Kbfy7neerWXHmbAouAokPehroTHICBC1QtStb/gCMdBn+o4t90O5QdgPSbIeM3ULYarCkQ/ZZamdy3Bxy/UbfGcGRA3EQo8A87D+sPMeOafm32HlC6jqq6mWrFzqnczklWU8FhrETTw7gFrfhSwKNabGKBYqBy3VEdyPsKuvln4vYAR4CDQKYGe16FE89ATF91vbXatHWwxUJCI7vohBDthiQ44vTil0PZf4ORCc5bwT4BUq8C7xGwZqgEpi5a5fAcoHw96tPDXyhhRY22CgbThKwP4OR6iL8Ikn/hf96oY+O6nmsHul4Emd/6YzYguYFVtTULDPiHugG48uG7y6Foi9o3fwWUPa7+fwG6PgcJ7zY9Jk1T87LkL1ZzAsX/qnkTO6Y/B54j/hqc8apF0M9OEkP5GDe52OiC7tsM+BNlzX+rnDmgsuHN7g0c2wpE+nfJMqFgH2BARbb6Ua1arUODfrMBH6TeBM6Upl9Ha/AdBNdHoCeD47eBJRmEELXIYpuibRR+CEeu9z/QIOJK6Pl5g7uclmlC4WpVJxE7HiyNXOn74FzYeb9qoTK9MOQt6DZZHS/7Zih5W20XeQMkv9v0IuK24DoJW/8Lyo5Ar5uh+9WN2y9/Iyy7GLzF6rENiNcgwQwkBFoYDCxtn9d9KrMU8vuBke1f68v/58xK4HpO+v+tXDoqG9gbCamDIHMdVV1SMb0hMk/1xZ79InRr3MriTY/ZhJIlagXvyCvrn07gVL5DUDAUzGLAAMetEL2wdWIUop2RxTZF+xVzHRjzoehTcPSHpCdOv8/p7JkOx15R9yOHwYjVp19OASDzffWv6QU0yP5YJTiaBslvQeyDqDluRrTfD3lHLJw/p+n7/fAUeKsNUfcCxinfcUxvzcfuHDVPjzcPku+G2ItPfx7DAwfmqdqVbtdD3Jktq1EvLQJi10C5f9ReSTc1tUEG6q9bOWCmgXZUve5ClY9dMB2sAyBzbSDRTb0Wdn4IRT9B2duQ9GuwtcLw/Zwn1JpRAHoU9N6sVm0/Hfe/wCwiMEXBW2D+o/aCmkIIoAONovrFL35BRkYGTqeTlJQUbr75Zo4fPx7ssERTxN0O3T+Brn8+89lxPfmB5AbU5HX5XzVu38izCIzw0iC82kKamgbOEeAc2X6Tmxajqa6XlN+cMr76lELhH6+ErNcg70P4YQKU7jj9obdMge33w77nYcVoOLm1BeM+hSUDIp9Vt6TpYLsQdgE7gNIboO8hyEyDQ6j6G0NXiXCfW2D8Iug/DS58Gw5/B8WH1DGPLIUtL7ROvCfmBu4bZVAY6A40TR+mcQDTLK29n96NQAG0DloCgZ9jIcSpOkyCM378eD744AN2797Nxx9/zP79+7n22jrW9xGdg2aj1h93vRGtNwD9n4Wkn4M9EbpeB32eVM+f2nIRis5+IrCWky0GLvwSulX/PdLA1j2Q3PnKoHQzVRPN4IXiVac/z7EPUEPvfKrrKPsMuyMbS7fBOd/AsG9g+Hcw4F01/L3f38Djb+kI6wEZU9X97r9SLWG9fquG3lcv3C7Lbl4MJfth232wfQaUHqz9ujWRwJ9en/8xGL4cXOVplLt64yqLx+dZWnM/+9XgnAHYQU+FmI9VrVPJVvAWNi9WIUJYh63B+eyzz7j66qtxuVzYbI0bpis1OCHmyAuw9yEATCvQ/xW0pHubfhzvcTg+CdxbwDEcUj4HawjPcOsugOI9EHUW2GP9tUezIH8eWLqqFdC1RDjyukokT74J7kNUDdseshaiTjMC7JvBULIzkDCc+y6kNXI0VmupyISKoxA1WDWElBdAZNdAMrf1b7DyAXVft8N130HyuU07h6cIlvYF9wn12JEMl+0Ba7WurrI1cOhqNc1A9DWQ9g7odlwVl+FlWVWtkMXogjM8p45znIDsN9S/uW+qNcP0SDj7a4i+oGnxCtFBdJoanPz8fN5++21Gjx7dYHLjcrlwuVxVj4uKitoiPNFWwuIgSt3VdDCP/g5PXCk223807Tgnfg/u7eq+a5t6nDy/ZWMNpuK/QdHToEVD/OvgHA9dqs2Bo2mQ+AQc2aqGVB+dqGpovCfV6+E9IXEieE9Ayn2nT24Azv8QNt0KZYeg+x3Q7YbWuLKmcaao24Fl8MEvwV0CaaPhpq/AHgnDZkD82VCwE9IvhfgBTT9H4XZwVUtKKo5D8c6aNUjhF0D/LDXJYLXlLAyqzbWjgaFVW6usaqMK2H4BVOynxgg/owwOzYLBy5sesxAhqsN0UQE89thjRERE0KVLFw4fPsynn37a4PazZ88mJiam6paefgbzloh2yIupU+On2O17FMM8WP8u7sOQ/Tjk/Al8Bf7DZBGoOzH8C3rWwyiGwnlQ+Jq631QlO+D4Aij5oen7NodrPZx8AIwc8O2HvF/6Zxo+xaGXIM/fJeLOUckMPnUr2wcZf4Yh30FiIxOVqP4wbh38PAvOfrp91TN9fg+4/TUux9bCpmoLcmZcCkPva15yAxDZ25+0aKi1r8IgvEft7TSt1lpdFss16o5pgmliKbDD56nw5SjY/0/1Wuk2qNhL7ekLzM7RxSpEEwQ1wZk5cyaapjV427VrV9X2jzzyCFu2bOHrr7/GYrFwyy230FAP26xZsygsLKy6HTlypC0uS7SVuOvBGZgF2J2s1pMwzYK6t/cVwP5zIXe2Gsny00WqCyXmbmpU2UbfXff+pgeOXgi5U9WMx0fHgNmEyQpPfAnrh8GuO2D9UDixpPH7no4rC/bPgn2PQPmBwPO+n6ptZKohxsbJ2vu786olIad+eGpqpt9Q4S4mUKyrgasZiWp9nCkw6jOIHQ6xI2D0v8GR0KhdbdansJVehF4K1hywryqE3EzIXgf/dzMc/RLs1ZdAqUazQ8Z/tdx1CBECglqDk5uby4kTJxrcplevXtjttVclPnr0KOnp6axevZoLLmhcv7PU4ASJL199sFoyWvybvOkrxl04Cp9lJ6ZTQ9fG4rQtQ6trArTiL+DQxJrP9d2rhuhWrFM356j6Zxiu2AhHT6nJSFuj9mmMrRP9629VztWSAhf8ALa4xu1fH8MFawdChX8EkK0LjNqtZuD1ZUPWQDAKAQPsYyBpZe3/h+IdsPp81dUBENYLyiuTIx2Sr4bhH59ZnO3F+rnw1f3qflgXuGsjxPYIakhUrIOcu6F8B5Qaanj7Kb1QDHoYhj8NP94E+f8GiwN6/wWc/SCsHzi6BSl4IVpfh6vBSUxMJDExsVn7Gob6za9eYyPaoZI3oOAewAfOSZCwqOlrNzVAs0Rhj9uIz/gU0LDoV9ed3IB/zafK2d400JxgTVKvOc9Xt1O5VkHpAjVzbNhvq+2Pum9Jbnyw1RMZE9Xq8uN9MPSfjT9GXcr2QEW1lhpPDhRvhviLVXzJG6F0oarBiZxad5IZNQh+9r3qporoB4dfgfKDqE9YUxW0horz7oO0C+DkAeh+EUQkBTce06eK3I18sBhqJmYvasbl6mWD0dGw90HI8S+J4q0ALU5NcimEqKVDFBmvW7eODRs2MHbsWOLi4ti/fz+PP/44vXv3bnTrjWhlphvKXwHjKDhuBNsI1aVT8Duq6lsq/g3ln0H4NS16ak0Lw2ppxAgd5wDo9gZkPwG6E1JeBksD3wTcOyBnHFUJjXsNJL4GeQ+qxwnPNm2hzF5/gtzPVO2OiZp1t2h74/evjyNN1XoYld1IumqBqWTtqdYLO53wXpBxT+Bx9if+pSA06PHAmcfZnqSOVLf2wCgG45RFSS3AWah5eyqABKCLAbsrV3oHsELBt5B8PUKI2jpEkXF4eDiLFi3ikksu4ayzzuLOO+9kyJAhrFixAoejnnWQRNsqvhVKH4LyOXDyAvBup2o16urM8iAEV03c7dD/CPTbC1GnWUDRtQwVv7/Y1vW/EH0H9CpRt5gmDkkP6w5956nZdL3+X73KdbDOhC0OhnwGEYMgvB8Mel/N9dKQsm2w/xrY/2so3VT79S7jYez3MHgBjNmiuqhE69BjwHkh6s+xBbRIGLQHwrtCH2AQ0FUDSyxEn0ugBscLUecEKWgh2r8OOw9Oc0gNTivKdVC16CE6RPwJwmdCwUzI/ov6ULfFQN8dYEsLYqBNUPG/kFu5LIEFrL0gZc+ZHzfzQ8j7GqKHQsa9bb9goq8Qvu8BPn+xrR4Bgw+AtUvbxiECjBIofEkVwkffDvb+ULoEsq4BswycF0Dq1+Dzwt4HoOR7SPwl9PhPNUeCECGuw9XgiBBi6Q2+PVTNeGvxL3/g7anW/gHwlsCRR6DXu6ow1pMN9tT2u5aOczzEvQrFL4ElBeJeOf0+jZFynboFS8Ue8J2sapjCUgwVOyFybPBi6uz0SIibWfO5iCugZw74ToA13T+0HBi4MBgRCtHhtNNPFtHhRH8MxbeB7zCE3Q32X6vnyzajfsz8XT1lG9TU8j9cphZvdPaBQcvb7wiQyKnqFkocfcGIgJJq6x2VHVVFraJ90SPUTQjRZNK2KVqGdQDErYOETIj4Q2CkTtTFqORGBzRV93LwYfDmq9crfoKjs4MUdPvn5kdyuIEsJlFGIxcTPR1rLFirjxjT4NgbLXNsIYRoJ6QFR7Su+BvUzLmFn4PzbOj6GGwfS9VIENOAki1BDbG9MnGTw3UYFAAGedxOCiux0afaRiac+AJcRyFhUuNbwhwZqGJVH6CrpEcIIUKItOCI1tflFuj1PqQ+AboDYi6s+Xrxatjz1+DE1o75yMEgD5WEmIAPD7tqbrR/JmyfBLunwrrBUH6ocQfv9QcI8w9xd3SD3tKKJoQILZLgiLYXPjBwv3LOuR8eVas918UogPKvwLOv1UNrTyx0xUpPVEuLjkYYdobV3Ojo3MB9byHkfNC4gzsz1GzHY7Nh9E8Q3uf0+wghRAciXVSi7YWdr8pyKn/6/KsD4K1j9WTvAcg+zz8Rmg5d3oHwdrAydRvQsJLEIoqYg0EZUdyJlVOG2NviwXUc1cJjgL0JM4NrOtiDPIuvEEK0EmnBEW3PXQCFQBLQD+gPpIyEiDpaEUpeVS04ABhQ+HibhdkeWEklnmdI4CUc1DGp28C3wRqv7ifdAMmT2zZAIYRop6QFR7S92HMgIwpi/Ks4O4E++aimnFOGxGrVF1rVgE4yc7XphUOPQ8EXEDkSer4A1jomt4q7CH6Wq+YVsjjbPk4hhGinpAVHtD1rJPT4NVUFOBpg/gQFF6r1q6qLvB+svf3bhUHc39oy0uA5/jc49hco2w45b8JPM+rfVtMkuRFCiFNIgiOCI+J3tZco8G0G77aaz1mSoOsO6PojpB4H58V0CqVbAE2Npi/wwQ8L4dshUHowuHEJIUQHIQmOCA7beRD971Oe1ECvo0hWs4FtgFqUsLOIvQwMQ9UqeaCip4WTY/dSqI/Ey7rAdqYJ+16D5VfClofBW1rvIYUQojORBEcEj2MCRL6EKsIJg8iXwdI92FG1Dwk3QVk6eNT4KPsxn2rQcZZR4puEufdhKFgOh96FjfdC1hLYPUfdF0IIIUXGIsjCpoHT/6EsqyIHlB2CsiOAKlHS3GDJN/B2tWBaSuH4i3DkBXBcpRYrNb2AATkrghq2EEK0F/KJIoJP0yW5OZUzGSzhgIaJf5abMAuYYM3zofm8qoZJL/MnN35aFuy6AXzSVSWE6NzkU0WI9sgaCaM+hch+aGHpmMNnY4+ZRdixXkTu8KltTB90mwjD50JUCkRqEOuGEx/BkT8GN34hhAgy6aISor1KuhQuU2tP6UAYQMLtkHMLlP4ACb+AuJHg6AkV70Cxf6mLCAOcr6hEJ2I2FAyCbR9DbDqcdzPo/tFrueuhaDckXwSRGcG4QiGEaDWS4IjOx1cBB/8BJXsgfjSkXt1x5pFxpsHwZeDJgV2jYM8/ACvETobiNSp5SfGBXgJGCRTdCPOskO9TLT4H18JvXoPd82DNVHVMawRMXAdxZwf10oQQoiVJF5XoXEwTVvWDzPugeC7suBE+T4aK3GBH1njl38Pey8F9wP+EF8qWwVnvQ7fJNX+rNQOiPCq5AVj/P+rf758JbOOrgL3/aIvIhRCizUiCIzqXwpVgOeIfmgREAUYRbLkryIE1kjcfdl8I5dtrv5ZwPaTPA70PagVyC3jj4LipXtd0iEtX9x1xVP36mybYYxsfw09fwpd3wdrZ4HU1/1qEEKIVSReV6FyMssB9F1CEGqJ0cnOQAmqi8h3gO3nKkxZIe07d1RwQtwrKXwa8YL8HRv0V1i6A2DS4/T213QWvwtKfgysPEs+DgQ807vyHlsFHP1cjuEwD8vfAzxe0zLUJIUQL0kzTNIMdRFspKioiJiaGwsJCoqPrWLhQhD5fOaxNBqMY8k55bdwGVbTbnnmy4fueYPpbTnQn9N8IYQOafizDC+5CcMSr9awaY/mjsOH5QJdXWBe479Q3UgghWlZzPr+li0p0LpYwOO8wRN9Y+7Xyo20fT1PZkqHf1xB1MURdCv3+t3nJDYBuBWeXxic3AImDA8mNZoGEIc07txBCtDLpohKdjy0WhrwNRcchbwWggTMVEsYFObBGihwL/Za26ilM04NRMR3Tuxj0s7GEvYWmp8HAyXDyAOx8B+L6wuXzWjUOIYRoLumiEp2XrxwOv6kWqEyfrGYPFgAYrhcwXA+jCpQsYLkEa8RXwQ5LCNFJNefzW1pwROdlCYOeU4MdRbtkGvtQI7G8gA+MvW15csj7RhWEJ0xQ/09CCNFEUoMjhKhFs/0K8FH5HUiz/abtTr5tMmycAJt/BWvHqHl6hBCiiaQFRwhRi269FMKXYXo/R9MHoNlua5sTlx+FzHcDj4u2wIllkPTztjm/ECJkSIIjhKiTbh0H1nFte1JLGKph2Qg8Z41q2xiEECFBuqiECHVGMRTPgaLZ4MsMdjQNs3eBgX+j6k9Txr0QNzaoIQkhOiZpwREilJkG5F4K7g2ABiUvQdcfQI8NdmT16z4dUm8B06MSHiGEaIYO14LjcrkYNmwYmqaxdevWYIcjRPvmOwDu9ajh3gb4joNrVbCjOj1btCQ3Qogz0uESnEcffZTU1NRghyFEx6AnAA7UyqJ+loxgRSOEEG2mQyU4X375JV9//TXPPvtssEMRomPQYyDhQ9BTQY+H2JfAPrjBXUxMKniNYi6jlGkYFNTeyHUcijaCIauJCyHapw5Tg5Odnc2UKVP45JNPCA8PD3Y4QnQcYVdBt6savbmHxZTzkP/RWkxyieSDwAZZ78KPNwM+CD8LRqwGW3yLhiyEEGeqQ7TgmKbJbbfdxtSpUxk5svGrPbtcLoqKimrchOjsTNPA5ZlBqSuGMvfZ+IxtNV73soHAdx8fXtbVPMDe+1GTAAJlu+HoS60dshBCNFlQE5yZM2eiaVqDt127djF37lyKi4uZNWtWk44/e/ZsYmJiqm7p6emtdCVCdBw+4x28xktACaaxC5fnlzVetzIGtUSDBujo9KWYKyjmGnwnXgTPiZoHLPimjSIXQojGC+pim7m5uZw4caLBbXr16sX111/Pv/71LzQtUCjp8/mwWCzcdNNNvPnmm3Xu63K5cLkCNQJFRUWkp6fLYpuiU3N7HsbjmxOoOzYh3FGIpkVWbePiXTx8gkY8bv4JGOhlEL2lDFw1SpYh8dcw+OO2uwAhRKfT4RbbTExMJDEx8bTbvfjiizz11FNVj48fP86ECRN4//33Of/88+vdz+Fw4HA4WiRWIUKFbvbFxMRrs2NqGpphYBi7sVhGAGCa+ZjeZVjMo6A7weIFTcNS5lOJjRXVwFMpdUoQrkIIIRrWIYqMMzJqDmuNjFTfNHv37k1aWlowQhKiw7K43dhKdHSrF1ecDVO3UO6aQaT7L5h6HGX8EvhJbexbi8W04bNZ8EZpmLoH0NE0EyzxMPBTiB0dzMsRQog6dYgERwhxhsxycC8F30G07BnYgPLuTn8VnonXugnz0Fg0E+yR4I4LlOdZjHB0rkJzhGMO/gV65sdgiYC0mWBPCdYVCSFEgzpkgtOjRw+CWDokRMdilkPBaPBtVYOfTPA5dUxroJLGtILPrmF1mdhKwBNlVr2ua2cRhr/OLRLoe2WbX4IQQjRVh0xwhBBN4P5WJTce1M0Ei9uA6l8STNA91b80RAFlaPTEYXu3TcMVQoiWIAmOEKFOi4ASoNT/2ADdApGH3ZQl2NB0nbB8N7rhfz1mOuERc4MUrBBCtAxJcIQIddYLoVQH/BmMBhSCLdsgZr8HLjgIKang3gqaHeyDgherEEK0EElwhAh1mg56GBj+JhwN9djqgL4vQJh/AkzniKCFKIQQLU0SHCFCnaZB6utw9FbACxEXw8AvQJc5ooQQoUsSHCE6g9jfQtSV4CsAW0+V9AghRAiTBEeIzsISp25CCNEJdIjVxIUQQgghmkISHCGEEEKEHElwhBBCCBFyJMERQgghRMiRBEcIIYQQIUcSHCGEEEKEHElwhBBCCBFyJMERQgghRMiRBEcIIYQQIUcSHCGEEEKEHElwhBBCCBFyJMERQgghRMjpVIttmqYJQFFRUZAjEUIIIURjVX5uV36ON0anSnCKi4sBSE9PD3IkQgghhGiq4uJiYmJiGrWtZjYlHergDMPg+PHjREVFoWlam523qKiI9PR0jhw5QnR0dJudt7OS97ttyfvdduS9blvyfretht5v0zQpLi4mNTUVXW9cdU2nasHRdZ20tLSgnT86Olp+SdqQvN9tS97vtiPvdduS97tt1fd+N7blppIUGQshhBAi5EiCI4QQQoiQIwlOG3A4HDz55JM4HI5gh9IpyPvdtuT9bjvyXrcteb/bVku/352qyFgIIYQQnYO04AghhBAi5EiCI4QQQoiQIwmOEEIIIUKOJDhCCCGECDmS4ASJy+Vi2LBhaJrG1q1bgx1OSDp48CB33nknPXv2JCwsjN69e/Pkk0/idruDHVrIePnll+nRowdOp5Pzzz+f9evXBzukkDR79mzOPfdcoqKiSEpK4uqrr2b37t3BDqtT+POf/4ymaTzwwAPBDiWkHTt2jMmTJ9OlSxfCwsIYPHgwGzduPKNjSoITJI8++iipqanBDiOk7dq1C8MwmDdvHj/88AMvvPACr732Gr///e+DHVpIeP/993nooYd48skn2bx5M0OHDmXChAnk5OQEO7SQs2LFCqZNm8batWtZunQpHo+Hyy+/nNLS0mCHFtI2bNjAvHnzGDJkSLBDCWkFBQWMGTMGm83Gl19+yY8//shzzz1HXFzcmR3YFG3uiy++MPv372/+8MMPJmBu2bIl2CF1Gs8884zZs2fPYIcREs477zxz2rRpVY99Pp+Zmppqzp49O4hRdQ45OTkmYK5YsSLYoYSs4uJis2/fvubSpUvNiy66yJwxY0awQwpZjz32mDl27NgWP6604LSx7OxspkyZwltvvUV4eHiww+l0CgsLiY+PD3YYHZ7b7WbTpk1ceumlVc/pus6ll17KmjVrghhZ51BYWAggP8utaNq0aUycOLHGz7hoHZ999hkjR47kuuuuIykpiXPOOYe///3vZ3xcSXDakGma3HbbbUydOpWRI0cGO5xOZ9++fcydO5d77rkn2KF0eHl5efh8PpKTk2s8n5ycTFZWVpCi6hwMw+CBBx5gzJgxDBo0KNjhhKT33nuPzZs3M3v27GCH0in89NNPvPrqq/Tt25evvvqKe++9l/vvv58333zzjI4rCU4LmDlzJpqmNXjbtWsXc+fOpbi4mFmzZgU75A6tse93dceOHeOKK67guuuuY8qUKUGKXIgzN23aNHbs2MF7770X7FBC0pEjR5gxYwZvv/02Tqcz2OF0CoZhMHz4cJ5++mnOOecc7r77bqZMmcJrr712Rse1tlB8ndrDDz/Mbbfd1uA2vXr1YtmyZaxZs6bWOhsjR47kpptuOuNstbNo7Ptd6fjx44wfP57Ro0fz+uuvt3J0nUNCQgIWi4Xs7Owaz2dnZ9O1a9cgRRX6pk+fzr///W9WrlxJWlpasMMJSZs2bSInJ4fhw4dXPefz+Vi5ciUvvfQSLpcLi8USxAhDT0pKCgMHDqzx3IABA/j444/P6LiS4LSAxMREEhMTT7vdiy++yFNPPVX1+Pjx40yYMIH333+f888/vzVDDCmNfb9BtdyMHz+eESNGsGDBAnRdGi1bgt1uZ8SIEXz77bdcffXVgPoW9u233zJ9+vTgBheCTNPkvvvuY/HixSxfvpyePXsGO6SQdckll/D999/XeO7222+nf//+PPbYY5LctIIxY8bUmvZgz549dO/e/YyOKwlOG8rIyKjxODIyEoDevXvLt7FWcOzYMcaNG0f37t159tlnyc3NrXpNWhnO3EMPPcStt97KyJEjOe+885gzZw6lpaXcfvvtwQ4t5EybNo133nmHTz/9lKioqKo6p5iYGMLCwoIcXWiJioqqVdsUERFBly5dpOaplTz44IOMHj2ap59+muuvv57169fz+uuvn3GLuyQ4ImQtXbqUffv2sW/fvloJpGmaQYoqdNxwww3k5ubyxBNPkJWVxbBhw1iyZEmtwmNx5l599VUAxo0bV+P5BQsWnLa7Voj27txzz2Xx4sXMmjWLP/7xj/Ts2ZM5c+Zw0003ndFxNVP+0gshhBAixEhBghBCCCFCjiQ4QgghhAg5kuAIIYQQIuRIgiOEEEKIkCMJjhBCCCFCjiQ4QgghhAg5kuAIIYQQIuRIgiOEEEKIkCMJjhAiqG677TY0TWPq1Km1Xps2bRqaplXN1lu5raZp2Gw2kpOTueyyy5g/fz6GYdR5/AkTJmCxWNiwYUOt11auXMlVV11FamoqmqbxySeftOSlCSGCSBIcIUTQpaen895771FeXl71XEVFBe+8806tNdyuuOIKMjMzOXjwIF9++SXjx49nxowZTJo0Ca/XW2Pbw4cPs3r1aqZPn878+fNrnbe0tJShQ4fy8ssvt86FCSGCRtaiEkIE3fDhw9m/fz+LFi2qWn9m0aJFZGRk1Fo52+FwVC2W2q1bN4YPH86oUaO45JJLWLhwIXfddVfVtgsWLGDSpEnce++9jBo1iueff77G4pRXXnklV155ZRtcoRCirUkLjhCiXbjjjjtYsGBB1eP58+c3emXyiy++mKFDh7Jo0aKq50zTZMGCBUyePJn+/fvTp08fPvrooxaPWwjRPkmCI4RoFyZPnsx3333HoUOHOHToEKtWrWLy5MmN3r9///4cPHiw6vE333xDWVkZEyZMqDr+G2+80dJhCyHaKemiEkK0C4mJiUycOJGFCxdimiYTJ04kISGh0fubpommaVWP58+fzw033IDVqv7M3XjjjTzyyCPs37+f3r17t3j8Qoj2RVpwhBDtxh133MHChQt58803ueOOO5q0786dO6vqdfLz81m8eDGvvPIKVqsVq9VKt27d8Hq9dRYbCyFCjyQ4Qoh244orrsDtduPxeKq6lhpj2bJlfP/991xzzTUAvP3226SlpbFt2za2bt1adXvuuedYuHAhPp+vtS5BCNFOSBeVEKLdsFgs7Ny5s+p+XVwuF1lZWfh8PrKzs1myZAmzZ89m0qRJ3HLLLQC88cYbXHvttQwaNKjGvunp6cyaNYslS5YwceJESkpK2LdvX9XrBw4cYOvWrcTHx9cani6E6FgkwRFCtCvR0dENvr5kyRJSUlKwWq3ExcUxdOhQXnzxRW699VZ0XWfTpk1s27aNv//977X2jYmJ4ZJLLuGNN95g4sSJbNy4kfHjx1e9/tBDDwFw6623snDhwha9LiFE29JM0zSDHYQQQgghREuSGhwhhBBChBxJcIQQQggRciTBEUIIIUTIkQRHCCGEECFHEhwhhBBChBxJcIQQQggRciTBEUIIIUTIkQRHCCGEECFHEhwhhBBChBxJcIQQQggRciTBEUIIIUTIkQRHCCGEECHn/wOpyWi6fS7AGQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from keras.models import Sequential\n", "from keras.layers import Dense\n", "from sklearn.manifold import MDS\n", "import matplotlib.pyplot as plt\n", "\n", "# Load the MDA code here (the functions and classes)\n", "\n", "# Load the data from a CSV file\n", "data = pd.read_csv(\"/content/stressinput.csv\", header=None)\n", "\n", "# Split the data into features and labels\n", "features = data.iloc[:, :-1].values\n", "labels = data.iloc[:, -1].values\n", "\n", "# Scale the features using StandardScaler\n", "scaler = StandardScaler()\n", "features = scaler.fit_transform(features)\n", "\n", "# Split the data into training and test sets\n", "train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size=0.2, random_state=42)\n", "\n", "# Create a simple feedforward neural network for 1D input\n", "input_dim = train_features.shape[1]\n", "output_dim = train_features.shape[1] # Set the output dimension to match the input dimension\n", "\n", "model = Sequential([\n", " Dense(128, activation='relu', input_dim=input_dim),\n", " Dense(64, activation='relu'),\n", " Dense(32, activation='relu'),\n", " Dense(output_dim) # Adjust the output dimension\n", "])\n", "\n", "# Compile the model\n", "model.compile(optimizer='adam', loss='mse')\n", "\n", "# Fit the model on the training data\n", "model.fit(train_features, train_features, epochs=10, batch_size=32, verbose=0)\n", "\n", "# Extract features using the trained model\n", "train_features_nn = model.predict(train_features)\n", "test_features_nn = model.predict(test_features)\n", "\n", "# Perform MDA on the extracted features\n", "neighborNum = 12 # You may adjust this parameter based on your specific needs\n", "clusterIdx_train = discoverManifold(train_features_nn, neighborNum)\n", "clusterIdx_test = discoverManifold(test_features_nn, neighborNum)\n", "\n", "# Apply MDA\n", "Yreg_train = mda(train_features_nn, clusterIdx_train)\n", "Yreg_test = mda(test_features_nn, clusterIdx_test)\n", "\n", "# Plot the MDA results\n", "plt.scatter(Yreg_train[:, 0], Yreg_train[:, 1], c=clusterIdx_train, cmap='jet', s=5)\n", "plt.xlabel(\"MDA1\")\n", "plt.ylabel(\"MDA2\")\n", "plt.title('MDA visualization of the neural network features (Training Data)')\n", "plt.show()\n", "\n", "plt.scatter(Yreg_test[:, 0], Yreg_test[:, 1], c=clusterIdx_test, cmap='jet', s=5)\n", "plt.xlabel(\"MDA1\")\n", "plt.ylabel(\"MDA2\")\n", "plt.title('MDA visualization of the neural network features (Test Data)')\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "-MOpM6BNgzCG", "outputId": "307bbaae-5686-4e31-99c4-a94fe684338b" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1/1 [==============================] - 0s 123ms/step\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHHCAYAAABKudlQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7pUlEQVR4nO3deXhMd///8ddIZERErEFuS1Tt+35ZWpRSglpaW+zuVmuX1tb7Rnt3SeldTfX2tfRW9CaK1tYFTVVptWqJUFVBEbG3pYkEEZnz+8OV+XUkkWQkM3N4Pq5rLtf5nM85530mk8nL53zOjMUwDEMAAAAmVcDdBQAAANwLwgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgyAe3bq1ClZLBYtXbrULce3WCx6+eWX3XLs3Bo6dKiCg4Ndcqzg4GANHTrUvrx06VJZLBbt3bvXJcdv27at2rZt65Jj4cFGmMF9xdVv1vlt9+7dGjVqlBo3bqyCBQvKYrE4tZ+0tDQFBQXJYrFo06ZNTtcTGRmpiIgIp7e/F1988YXHBZaXX35ZFovF/ihcuLAqVqyobt26acmSJUpJScmT4xw+fFgvv/yyTp06lSf7y0ueXBseHN7uLgBA1r744gv997//Vb169fTQQw/p6NGjTu3n66+/1vnz5xUcHKwVK1aoc+fOTu0nMjJShw4d0oQJExzaK1WqpOvXr6tgwYJO7TcnvvjiC82bNy/TQHP9+nV5e7vv7Wz+/PkqUqSIUlJSdPbsWW3ZskXDhw9XRESEPvvsM1WoUMHe9/3335fNZsvV/g8fPqxXXnlFbdu2zdWoTmxsrAoUyN//s96tti+//DJfjw2kY2QGcCObzaYbN25kuf75559XQkKC9u7dq8cff9zp4yxfvlyNGjXSxIkTtX79eiUnJzu9r8xYLBYVKlRIXl5eebrfnCpUqJBbw8xTTz2lgQMHasSIEZoxY4Z27typ5cuX69ChQ3r66acd+hYsWFBWqzXfajEMQ9evX5ckWa3WfA2Y2fHx8ZGPj4/bjo8HB2EGD5ybN29qxowZaty4sQICAuTn56dHHnlE27Zts/cxDEPBwcF68sknM2x/48YNBQQEaOTIkfa2lJQUzZw5Uw8//LCsVqsqVKigyZMnZ7jMYLFYNGbMGK1YsUK1a9eW1WrV5s2bs6y1TJky8vX1vafzvX79utatW6d+/fqpT58+un79ujZs2JBp302bNqlNmzby9/dX0aJF1bRpU0VGRkq6Pf/h888/V1xcnP2ySvr/xO+cM/Pvf/9bFotFcXFxGY4xbdo0+fj46MqVK5Kkb7/9Vk8//bQqVqxof+4mTpxo/4Ms3Z5nMm/ePElyuKyTLrM5M/v371fnzp1VtGhRFSlSRO3bt9euXbsc+qRflty5c6fCwsJUunRp+fn5qWfPnvrtt99y/iRnIjQ0VH//+9/1448/KioqyuFc7hzB+Oijj9S4cWP78163bl29++679hrTA1G7du3s5/7NN99Iuj0vpmvXrtqyZYuaNGkiX19fLVy40L7ur3Nm0l27dk0jR45UyZIlVbRoUQ0ePNj+80iX1Tykv+4zu9oymzNz6dIljRgxQmXKlFGhQoVUv359LVu2zKFP+uvp3//+txYtWqQqVarIarWqadOm2rNnT6bPNx5sXGbCAycxMVH//e9/1b9/fz3zzDO6evWqFi9erE6dOmn37t1q0KCBLBaLBg4cqNmzZ+vy5csqUaKEfftPP/1UiYmJGjhwoKTboyvdu3fXd999p2effVY1a9bUTz/9pHfeeUdHjx7V+vXrHY7/9ddfa/Xq1RozZoxKlSqV75NBN27cqKSkJPXr109ly5ZV27ZttWLFCg0YMMCh39KlSzV8+HDVrl1b06ZNU7FixbR//35t3rxZAwYM0D/+8Q8lJCTozJkzeueddyRJRYoUyfSYffr00eTJk7V69WpNmjTJYd3q1avVsWNHFS9eXJK0Zs0aXbt2Tc8//7xKliyp3bt367333tOZM2e0Zs0aSdLIkSN17tw5RUVF6X//+1+25/zzzz/rkUceUdGiRTV58mQVLFhQCxcuVNu2bbV9+3Y1b97cof/YsWNVvHhxzZw5U6dOnVJERITGjBmjVatW5exJzsKgQYO0aNEiffnll1mOrEVFRal///5q3769Zs2aJUn65ZdftHPnTo0fP16PPvqoxo0bp7lz5+qll15SzZo1Jcn+r3T7clL//v01cuRIPfPMM6pevfpd6xozZoyKFSuml19+WbGxsZo/f77i4uL0zTff5GpeVk5q+6vr16+rbdu2On78uMaMGaPKlStrzZo1Gjp0qP7880+NHz/eoX9kZKSuXr2qkSNHymKxaPbs2erVq5dOnDjh1hEneCADuI8sWbLEkGTs2bMnyz63bt0yUlJSHNquXLlilClTxhg+fLi9LTY21pBkzJ8/36Fv9+7djeDgYMNmsxmGYRj/+9//jAIFChjffvutQ78FCxYYkoydO3fa2yQZBQoUMH7++edcn9vo0aMNZ35lu3btarRq1cq+vGjRIsPb29u4dOmSve3PP/80/P39jebNmxvXr1932D79PA3DMEJCQoxKlSplOMbJkycNScaSJUvsbS1atDAaN27s0G/37t2GJOPDDz+0t127di3D/sLDww2LxWLExcXZ2+52/pKMmTNn2pd79Ohh+Pj4GL/++qu97dy5c4a/v7/x6KOP2tvSXy8dOnRwOM+JEycaXl5exp9//pnp8dLNnDnTkGT89ttvma6/cuWKIcno2bOnvW3IkCEOz+H48eONokWLGrdu3cryOGvWrDEkGdu2bcuwrlKlSoYkY/PmzZmuGzJkiH05/XwbN25s3Lx5094+e/ZsQ5KxYcMGe9udz2lW+7xbbW3atDHatGljX46IiDAkGcuXL7e33bx502jRooVRpEgRIzEx0TCM//96KlmypHH58mV73w0bNhiSjE8//TTDsfBg4zITHjheXl726/g2m02XL1/WrVu31KRJE0VHR9v7VatWTc2bN9eKFSvsbZcvX9amTZsUGhpq/x/smjVrVLNmTdWoUUO///67/fHYY49JksPlK0lq06aNatWqld+nKUn6448/tGXLFvXv39/e1rt3b1ksFq1evdreFhUVpatXr2rq1KkqVKiQwz6cvYOqb9++2rdvn3799Vd726pVq2S1Wh0u3/31MlpycrJ+//13tWzZUoZhaP/+/bk+blpamr788kv16NFDDz30kL29XLlyGjBggL777jslJiY6bPPss886nOcjjzyitLS0TC+T5Ub6yNXVq1ez7FOsWDElJyc7XIrKrcqVK6tTp0457v/ss886jGw8//zz8vb21hdffOF0DTnxxRdfqGzZsg6vx4IFC2rcuHFKSkrS9u3bHfr37dvXPoIn3f65SNKJEyfytU6YD2EGD6Rly5apXr16KlSokEqWLKnSpUvr888/V0JCgkO/wYMHa+fOnfY/amvWrFFqaqoGDRpk73Ps2DH9/PPPKl26tMOjWrVqkm7PEfirypUr5/PZ/X+rVq1SamqqGjZsqOPHj+v48eO6fPlyhpCWHjjq1KmTZ8d++umnVaBAAfulGsMwtGbNGvs8lnSnT5/W0KFDVaJECRUpUkSlS5dWmzZtJCnDzyMnfvvtN127di3TSy01a9aUzWZTfHy8Q3vFihUdltP/gN45jyS3kpKSJEn+/v5Z9hk1apSqVaumzp07q3z58ho+fPhd51FlJrevqapVqzosFylSROXKlcv326vj4uJUtWrVDHdYpV+WujM85tfPBfcf5szggbN8+XINHTpUPXr00KRJkxQYGCgvLy+Fh4c7jCJIUr9+/TRx4kStWLFCL730kpYvX64mTZo4/KG02WyqW7eu5syZk+nx/npbrqR7ntCbG+mBpVWrVpmuP3HihMPoRV4KCgrSI488otWrV+ull17Srl27dPr0afu8EOn2KMrjjz+uy5cva8qUKapRo4b8/Px09uxZDR06NNe3MDsrq7uwDMO4p/0eOnRIkvTwww9n2ScwMFAxMTHasmWLNm3apE2bNmnJkiUaPHhwhomxWXHlayotLc1lx8qvnwvuP4QZPHA+/vhjPfTQQ1q7dq3DpYWZM2dm6FuiRAmFhIRoxYoVCg0N1c6dOzN8aFyVKlV04MABtW/f3ulLMvnh5MmT+v777zVmzBj7SEc6m82mQYMGKTIyUv/85z9VpUoVSbf/+N7tD29uz69v374aNWqUYmNjtWrVKhUuXFjdunWzr//pp5909OhRLVu2TIMHD7a3Z3bJJafHLl26tAoXLqzY2NgM644cOaICBQpkCJj5JX2ycnaXgHx8fNStWzd169ZNNptNo0aN0sKFCzV9+nQ9/PDDef66OnbsmNq1a2dfTkpK0vnz59WlSxd7W/HixfXnn386bHfz5k2dP3/eoS03tVWqVEkHDx6UzWZzGJ05cuSIfT3gDC4z4YGT/r+9v/7v7scff9QPP/yQaf9Bgwbp8OHDmjRpkry8vNSvXz+H9X369NHZs2f1/vvvZ9j2+vXref6ZLjmVPiozefJkPfXUUw6PPn36qE2bNvY+HTt2lL+/v8LDwzN87s1fnyc/P79cXfrp3bu3vLy8tHLlSq1Zs0Zdu3aVn5+ffX1mPwvDMOy3Jf9V+nZ3/oG9k5eXlzp27KgNGzY4XDa5ePGiIiMj1bp1a4fLXPklMjJS//3vf9WiRQu1b98+y35//PGHw3KBAgVUr149SbLf2p/Tc8+pRYsWKTU11b48f/583bp1y+HDFKtUqaIdO3Zk2O7OkZnc1NalSxdduHDB4S6xW7du6b333lORIkUyhG4gpxiZwX3pgw8+yHTewfjx49W1a1etXbtWPXv2VEhIiE6ePKkFCxaoVq1a9jkOfxUSEqKSJUva53sEBgY6rB80aJBWr16t5557Ttu2bVOrVq2UlpamI0eOaPXq1fbP/3BGXFyc/X/36V/R8Nprr0m6/b/Yv87dudOKFSvUoEGDLEchunfvrrFjxyo6OlqNGjXSO++8o7///e9q2rSpBgwYoOLFi+vAgQO6du2a/XJH48aNtWrVKoWFhalp06YqUqSIw0jLnQIDA9WuXTvNmTNHV69eVd++fR3W16hRQ1WqVNGLL76os2fPqmjRovrkk08ynRPRuHFjSdK4cePUqVOnTINlutdee01RUVFq3bq1Ro0aJW9vby1cuFApKSmaPXt2lvU66+OPP1aRIkV08+ZN+ycA79y5U/Xr17ffXp6Vv//977p8+bIee+wxlS9fXnFxcXrvvffUoEED+1ySBg0ayMvLS7NmzVJCQoKsVqsee+yxDK/FnLp586bat2+vPn36KDY2Vv/3f/+n1q1bq3v37g51Pffcc+rdu7cef/xxHThwQFu2bFGpUqUc9pWb2p599lktXLhQQ4cO1b59+xQcHKyPP/7YPuJ5t7lFwF2570YqIO+l33qa1SM+Pt6w2WzGG2+8YVSqVMmwWq1Gw4YNjc8++yzDLbN/NWrUKEOSERkZmen6mzdvGrNmzTJq165tWK1Wo3jx4kbjxo2NV155xUhISLD3k2SMHj06x+ezbdu2LM/lr7e83mnfvn2GJGP69OlZ9jl16pQhyZg4caK9bePGjUbLli0NX19fo2jRokazZs2MlStX2tcnJSUZAwYMMIoVK2ZIsj9fmd2ane799983JBn+/v4Zbvs2DMM4fPiw0aFDB6NIkSJGqVKljGeeecY4cOBAhv3dunXLGDt2rFG6dGnDYrE43KatTG4jjo6ONjp16mQUKVLEKFy4sNGuXTvj+++/d+iT1a386c97Zrcb/1X6rdnpj0KFChnly5c3unbtanzwwQfGjRs3Mmxz5+vs448/Njp27GgEBgYaPj4+RsWKFY2RI0ca58+fz/A8PvTQQ4aXl5dDbZUqVTJCQkIyrS+rW7O3b99uPPvss0bx4sWNIkWKGKGhocYff/zhsG1aWpoxZcoUo1SpUkbhwoWNTp06GcePH8+wz7vVduet2YZhGBcvXjSGDRtmlCpVyvDx8THq1q2b4XWT/np66623MpxTZj9rwGIYzKQCsjNx4kQtXrxYFy5cUOHChd1dDgDgL5gzA2Tjxo0bWr58uXr37k2QAQAPxJwZIAuXLl3SV199pY8//lh//PFHho9aBwB4BsIMkIXDhw8rNDRUgYGBmjt3rho0aODukgAAmWDODAAAMDXmzAAAAFMjzAAAAFO77+fM2Gw2nTt3Tv7+/h71UfMAACBrhmHo6tWrCgoKyvDlpHe678PMuXPnXPY9LAAAIG/Fx8erfPnyd+1z34eZ9I/Hjo+Pd8n3sQAAgHuXmJioChUq5OhrLu77MJN+aalo0aKEGQAATCYnU0SYAAwAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEyNMAMAAEzNrWFmx44d6tatm4KCgmSxWLR+/foMfX755Rd1795dAQEB8vPzU9OmTXX69GnXFwsAADySW8NMcnKy6tevr3nz5mW6/tdff1Xr1q1Vo0YNffPNNzp48KCmT5+uQoUKubhSAADgqSyGYRjuLkK6/UVS69atU48ePext/fr1U8GCBfW///3P6f0mJiYqICBACQkJfNEkAAAmkZu/3x47Z8Zms+nzzz9XtWrV1KlTJwUGBqp58+aZXooCAAAPLo8NM5cuXVJSUpLefPNNPfHEE/ryyy/Vs2dP9erVS9u3b89yu5SUFCUmJjo8AADA/cvb3QVkxWazSZKefPJJTZw4UZLUoEEDff/991qwYIHatGmT6Xbh4eF65ZVXXFZn8NTPs+1z6s0QF1QCAMCDyWNHZkqVKiVvb2/VqlXLob1mzZp3vZtp2rRpSkhIsD/i4+Pzu1QAAOBGHjsy4+Pjo6ZNmyo2Ntah/ejRo6pUqVKW21mtVlmt1vwuDwAAeAi3hpmkpCQdP37cvnzy5EnFxMSoRIkSqlixoiZNmqS+ffvq0UcfVbt27bR582Z9+umn+uabb9xXNAAA8ChuDTN79+5Vu3bt7MthYWGSpCFDhmjp0qXq2bOnFixYoPDwcI0bN07Vq1fXJ598otatW7urZAAA4GHcGmbatm2r7D7mZvjw4Ro+fLiLKgIAAGbjsROAAQAAcoIwAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATI0wAwAATM2tYWbHjh3q1q2bgoKCZLFYtH79+iz7Pvfcc7JYLIqIiHBZfQAAwPO5NcwkJyerfv36mjdv3l37rVu3Trt27VJQUJCLKgMAAGbh7c6Dd+7cWZ07d75rn7Nnz2rs2LHasmWLQkJCXFQZAAAwC4+eM2Oz2TRo0CBNmjRJtWvXdnc5AADAA7l1ZCY7s2bNkre3t8aNG5fjbVJSUpSSkmJfTkxMzI/SAACAh/DYkZl9+/bp3Xff1dKlS2WxWHK8XXh4uAICAuyPChUq5GOVAADA3Tw2zHz77be6dOmSKlasKG9vb3l7eysuLk4vvPCCgoODs9xu2rRpSkhIsD/i4+NdVzQAAHA5j73MNGjQIHXo0MGhrVOnTho0aJCGDRuW5XZWq1VWqzW/ywMAAB7CrWEmKSlJx48fty+fPHlSMTExKlGihCpWrKiSJUs69C9YsKDKli2r6tWru7pUAADgodwaZvbu3at27drZl8PCwiRJQ4YM0dKlS91UFQAAMBO3hpm2bdvKMIwc9z916lT+FQMAAEzJYycAAwAA5ARhBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmBphBgAAmJpbw8yOHTvUrVs3BQUFyWKxaP369fZ1qampmjJliurWrSs/Pz8FBQVp8ODBOnfunPsKBgAAHsetYSY5OVn169fXvHnzMqy7du2aoqOjNX36dEVHR2vt2rWKjY1V9+7d3VApAADwVN7uPHjnzp3VuXPnTNcFBAQoKirKoe0///mPmjVrptOnT6tixYquKBEAAHg4U82ZSUhIkMViUbFixdxdCgAA8BBuHZnJjRs3bmjKlCnq37+/ihYtmmW/lJQUpaSk2JcTExNdUR4AAHATU4zMpKamqk+fPjIMQ/Pnz79r3/DwcAUEBNgfFSpUcFGVAADAHTw+zKQHmbi4OEVFRd11VEaSpk2bpoSEBPsjPj7eRZUCAAB38OjLTOlB5tixY9q2bZtKliyZ7TZWq1VWq9UF1QEAAE/g1jCTlJSk48eP25dPnjypmJgYlShRQuXKldNTTz2l6OhoffbZZ0pLS9OFCxckSSVKlJCPj4+7ygYAAB7ErWFm7969ateunX05LCxMkjRkyBC9/PLL2rhxoySpQYMGDttt27ZNbdu2dVWZAADAg7k1zLRt21aGYWS5/m7rAAAAJBNMAAYAALgbwgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1wgwAADA1t4aZHTt2qFu3bgoKCpLFYtH69esd1huGoRkzZqhcuXLy9fVVhw4ddOzYMfcUCwAAPJJbw0xycrLq16+vefPmZbp+9uzZmjt3rhYsWKAff/xRfn5+6tSpk27cuOHiSgEAgKfydufBO3furM6dO2e6zjAMRURE6J///KeefPJJSdKHH36oMmXKaP369erXr58rSwUAAB7KY+fMnDx5UhcuXFCHDh3sbQEBAWrevLl++OEHN1YGAAA8iVtHZu7mwoULkqQyZco4tJcpU8a+LjMpKSlKSUmxLycmJuZPgQAAwCN47MiMs8LDwxUQEGB/VKhQwd0lAQCAfOSxYaZs2bKSpIsXLzq0X7x40b4uM9OmTVNCQoL9ER8fn691AgAA93IqzJw4cSKv68igcuXKKlu2rLZu3WpvS0xM1I8//qgWLVpkuZ3ValXRokUdHgAA4P7lVJh5+OGH1a5dOy1fvvyebpNOSkpSTEyMYmJiJN2e9BsTE6PTp0/LYrFowoQJeu2117Rx40b99NNPGjx4sIKCgtSjRw+njwkAAO4vToWZ6Oho1atXT2FhYSpbtqxGjhyp3bt353o/e/fuVcOGDdWwYUNJUlhYmBo2bKgZM2ZIkiZPnqyxY8fq2WefVdOmTZWUlKTNmzerUKFCzpQNAADuQxbDMAxnN75165Y2btyopUuXavPmzapWrZqGDx+uQYMGqXTp0nlZp9MSExMVEBCghISEfLnkFDz182z7nHozJM+PCwDA/Sw3f7/vaQKwt7e3evXqpTVr1mjWrFk6fvy4XnzxRVWoUEGDBw/W+fPn72X3AAAA2bqnMLN3716NGjVK5cqV05w5c/Tiiy/q119/VVRUlM6dO2f/5F4AAID84tSH5s2ZM0dLlixRbGysunTpog8//FBdunRRgQK3s1HlypW1dOlSBQcH52WtAAAAGTgVZubPn6/hw4dr6NChKleuXKZ9AgMDtXjx4nsqDgAAIDtOhZljx45l28fHx0dDhgxxZvcAAAA55tScmSVLlmjNmjUZ2tesWaNly5bdc1EAAAA55VSYCQ8PV6lSpTK0BwYG6o033rjnogAAAHLKqTBz+vRpVa5cOUN7pUqVdPr06XsuCgAAIKecCjOBgYE6ePBghvYDBw6oZMmS91wUAABATjkVZvr3769x48Zp27ZtSktLU1pamr7++muNHz9e/fr1y+saAQAAsuTU3UyvvvqqTp06pfbt28vb+/YubDabBg8ezJwZAADgUk6FGR8fH61atUqvvvqqDhw4IF9fX9WtW1eVKlXK6/oAAADuyqkwk65atWqqVq1aXtUCAACQa06FmbS0NC1dulRbt27VpUuXZLPZHNZ//fXXeVIcAABAdpwKM+PHj9fSpUsVEhKiOnXqyGKx5HVdAAAAOeJUmPnoo4+0evVqdenSJa/rAQAAyBWnbs328fHRww8/nNe1AAAA5JpTYeaFF17Qu+++K8Mw8roeAACAXHHqMtN3332nbdu2adOmTapdu7YKFizosH7t2rV5UhwAAEB2nAozxYoVU8+ePfO6FgAAgFxzKswsWbIkr+sAAABwilNzZiTp1q1b+uqrr7Rw4UJdvXpVknTu3DklJSXlWXEAAADZcWpkJi4uTk888YROnz6tlJQUPf744/L399esWbOUkpKiBQsW5HWdAAAAmXJqZGb8+PFq0qSJrly5Il9fX3t7z549tXXr1jwrDgAAIDtOjcx8++23+v777+Xj4+PQHhwcrLNnz+ZJYQAAADnh1MiMzWZTWlpahvYzZ87I39//nosCAADIKafCTMeOHRUREWFftlgsSkpK0syZM/mKAwAA4FJOXWZ6++231alTJ9WqVUs3btzQgAEDdOzYMZUqVUorV67M6xoBAACy5FSYKV++vA4cOKCPPvpIBw8eVFJSkkaMGKHQ0FCHCcEAAAD5zakwI0ne3t4aOHBgXtYCAACQa06FmQ8//PCu6wcPHuxUMQAAALnlVJgZP368w3JqaqquXbsmHx8fFS5cmDADAABcxqm7ma5cueLwSEpKUmxsrFq3bs0EYAAA4FJOfzfTnapWrao333wzw6jNvUhLS9P06dNVuXJl+fr6qkqVKnr11VdlGEaeHQMAAJib0xOAM92Zt7fOnTuXZ/ubNWuW5s+fr2XLlql27drau3evhg0bpoCAAI0bNy7PjgMAAMzLqTCzceNGh2XDMHT+/Hn95z//UatWrfKkMEn6/vvv9eSTTyokJETS7a9LWLlypXbv3p1nxwAAAObmVJjp0aOHw7LFYlHp0qX12GOP6e23386LuiRJLVu21KJFi3T06FFVq1ZNBw4c0Hfffac5c+bk2TEAAIC5ORVmbDZbXteRqalTpyoxMVE1atSQl5eX0tLS9Prrrys0NDTLbVJSUpSSkmJfTkxMdEWpAADATfJsAnB+WL16tVasWKHIyEhFR0dr2bJl+ve//61ly5ZluU14eLgCAgLsjwoVKriwYgAA4GoWw4lbg8LCwnLc914uCVWoUEFTp07V6NGj7W2vvfaali9friNHjmS6TWYjMxUqVFBCQoKKFi3qdC1ZCZ76ebZ9Tr0ZkufHBQDgfpaYmKiAgIAc/f126jLT/v37tX//fqWmpqp69eqSpKNHj8rLy0uNGjWy97NYLM7s3u7atWsqUMBx8MjLy+uul7msVqusVus9HRcAAJiHU2GmW7du8vf317Jly1S8eHFJtz9Ib9iwYXrkkUf0wgsv5Elx3bp10+uvv66KFSuqdu3a2r9/v+bMmaPhw4fnyf4BAID5OXWZ6W9/+5u+/PJL1a5d26H90KFD6tixY5591szVq1c1ffp0rVu3TpcuXVJQUJD69++vGTNmyMfHJ0f7yM0wlTO4zAQAQN7L98tMiYmJ+u233zK0//bbb7p69aozu8yUv7+/IiIiFBERkWf7BAAA9xen7mbq2bOnhg0bprVr1+rMmTM6c+aMPvnkE40YMUK9evXK6xoBAACy5NTIzIIFC/Tiiy9qwIABSk1Nvb0jb2+NGDFCb731Vp4WCAAAcDdOhZnChQvr//7v//TWW2/p119/lSRVqVJFfn5+eVocAABAdu7pQ/POnz+v8+fPq2rVqvLz8+PbrAEAgMs5FWb++OMPtW/fXtWqVVOXLl10/vx5SdKIESPy7LZsAACAnHAqzEycOFEFCxbU6dOnVbhwYXt73759tXnz5jwrDgAAIDtOzZn58ssvtWXLFpUvX96hvWrVqoqLi8uTwgAAAHLCqZGZ5ORkhxGZdJcvX+arBAAAgEs5FWYeeeQRffjhh/Zli8Uim82m2bNnq127dnlWHAAAQHacusw0e/ZstW/fXnv37tXNmzc1efJk/fzzz7p8+bJ27tyZ1zUCAABkyamRmTp16ujo0aNq3bq1nnzySSUnJ6tXr17av3+/qlSpktc1AgAAZCnXIzOpqal64okntGDBAv3jH//Ij5oAAAByLNcjMwULFtTBgwfzoxYAAIBcc+oy08CBA7V48eK8rgUAACDXnJoAfOvWLX3wwQf66quv1Lhx4wzfyTRnzpw8KQ4AACA7uQozJ06cUHBwsA4dOqRGjRpJko4ePerQx2Kx5F11AAAA2chVmKlatarOnz+vbdu2Sbr99QVz585VmTJl8qU4AHkneOrn2fY59WaICyoBgLyVqzkzd34r9qZNm5ScnJynBQEAAOSGUxOA090ZbgAAAFwtV2HGYrFkmBPDHBkAAOBOuZozYxiGhg4dav8yyRs3bui5557LcDfT2rVr865CAACAu8hVmBkyZIjD8sCBA/O0GAAAgNzKVZhZsmRJftUBAADglHuaAAwAAOBuhBkAAGBqhBkAAGBqhBkAAGBqhBkAAGBqhBkAAGBqhBkAAGBqhBkAAGBqhBkAAGBqhBkAAGBqHh9mzp49q4EDB6pkyZLy9fVV3bp1tXfvXneXBQAAPESuvpvJ1a5cuaJWrVqpXbt22rRpk0qXLq1jx46pePHi7i4NAAB4CI8OM7NmzVKFChUcvuCycuXKbqwIAAB4Go++zLRx40Y1adJETz/9tAIDA9WwYUO9//777i4LAAB4EI8OMydOnND8+fNVtWpVbdmyRc8//7zGjRunZcuWZblNSkqKEhMTHR4AAOD+5dGXmWw2m5o0aaI33nhDktSwYUMdOnRICxYs0JAhQzLdJjw8XK+88oorywQAAG7k0SMz5cqVU61atRzaatasqdOnT2e5zbRp05SQkGB/xMfH53eZAADAjTx6ZKZVq1aKjY11aDt69KgqVaqU5TZWq1VWqzW/SwMAAB7Co0dmJk6cqF27dumNN97Q8ePHFRkZqUWLFmn06NHuLg0AAHgIjw4zTZs21bp167Ry5UrVqVNHr776qiIiIhQaGuru0gAAgIfw6MtMktS1a1d17drV3WUAAAAP5dEjMwAAANkhzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMjzAAAAFMzVZh58803ZbFYNGHCBHeXAgAAPIRpwsyePXu0cOFC1atXz92lAAAAD2KKMJOUlKTQ0FC9//77Kl68uLvLAQAAHsQUYWb06NEKCQlRhw4d3F0KAADwMN7uLiA7H330kaKjo7Vnz54c9U9JSVFKSop9OTExMb9KAwAAHsCjw0x8fLzGjx+vqKgoFSpUKEfbhIeH65VXXsnnymBWwVM/z7bPqTdDXFAJACCvePRlpn379unSpUtq1KiRvL295e3tre3bt2vu3Lny9vZWWlpahm2mTZumhIQE+yM+Pt4NlQMAAFfx6JGZ9u3b66effnJoGzZsmGrUqKEpU6bIy8srwzZWq1VWq9VVJQIAADfz6DDj7++vOnXqOLT5+fmpZMmSGdoBAMCDyaMvMwEAAGTHo0dmMvPNN9+4uwQAAOBBGJkBAACmRpgBAACmRpgBAACmRpgBAACmRpgBAACmRpgBAACmRpgBAACmRpgBAACmRpgBAACmRpgBAACmRpgBAACmRpgBAACmRpgBAACmRpgBAACmRpgBAACmRpgBAACm5u3uApBzwVM/z7bPqTdDXFDJbZ5WDwDgwcTIDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDXCDAAAMDWPDzPh4eFq2rSp/P39FRgYqB49eig2NtbdZQEAAA/h8WFm+/btGj16tHbt2qWoqCilpqaqY8eOSk5OdndpAADAA3i7u4DsbN682WF56dKlCgwM1L59+/Too4+6qSoAAOApPH5k5k4JCQmSpBIlSri5EgAA4Ak8fmTmr2w2myZMmKBWrVqpTp06mfZJSUlRSkqKfTkxMdFV5QEAADcwVZgZPXq0Dh06pO+++y7LPuHh4XrllVdcWFX2gqd+nm2fU2+GuKCS21xZT06OZUae9jPNK3n18/K0c79ff14AbjPNZaYxY8bos88+07Zt21S+fPks+02bNk0JCQn2R3x8vAurBAAArubxIzOGYWjs2LFat26dvvnmG1WuXPmu/a1Wq6xWq4uqAwAA7ubxYWb06NGKjIzUhg0b5O/vrwsXLkiSAgIC5Ovr6+bqAACAu3n8Zab58+crISFBbdu2Vbly5eyPVatWubs0AADgATx+ZMYwDHeXAAAAPJjHj8wAAADcDWEGAACYGmEGAACYGmEGAACYGmEGAACYGmEGAACYGmEGAACYGmEGAACYGmEGAACYGmEGAACYGmEGAACYGmEGAACYGmEGAACYGmEGAACYGmEGAACYGmEGAACYmre7C8BtwVM/96j9PMj4Wdy7vDr3U2+GuOxYADLKye9XTn5P8xsjMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNRMEWbmzZun4OBgFSpUSM2bN9fu3bvdXRIAAPAQHh9mVq1apbCwMM2cOVPR0dGqX7++OnXqpEuXLrm7NAAA4AE8PszMmTNHzzzzjIYNG6ZatWppwYIFKly4sD744AN3lwYAADyAR4eZmzdvat++ferQoYO9rUCBAurQoYN++OEHN1YGAAA8hbe7C7ib33//XWlpaSpTpoxDe5kyZXTkyJFMt0lJSVFKSop9OSEhQZKUmJiYLzXaUq7ly37dLSfP1/167vAcrnwd5td7BGBmOfn9yq/fnfT9GoaRbV+PDjPOCA8P1yuvvJKhvUKFCm6oxrwCItxdAeDa1yGvecA5+f27c/XqVQUEBNy1j0eHmVKlSsnLy0sXL150aL948aLKli2b6TbTpk1TWFiYfdlms+ny5csqWbKkLBZLntaXmJioChUqKD4+XkWLFs3TfZvBg37+Es+BxHPwoJ+/xHMg8Rzkx/kbhqGrV68qKCgo274eHWZ8fHzUuHFjbd26VT169JB0O5xs3bpVY8aMyXQbq9Uqq9Xq0FasWLF8rbNo0aIP5Is33YN+/hLPgcRz8KCfv8RzIPEc5PX5Zzcik86jw4wkhYWFaciQIWrSpImaNWumiIgIJScna9iwYe4uDQAAeACPDzN9+/bVb7/9phkzZujChQtq0KCBNm/enGFSMAAAeDB5fJiRpDFjxmR5WcmdrFarZs6cmeGy1oPiQT9/iedA4jl40M9f4jmQeA7cff4WIyf3PAEAAHgoj/7QPAAAgOwQZgAAgKkRZgAAgKkRZgAAgKkRZpw0b948BQcHq1ChQmrevLl2797t7pJcJjw8XE2bNpW/v78CAwPVo0cPxcbGursst3nzzTdlsVg0YcIEd5fiUmfPntXAgQNVsmRJ+fr6qm7dutq7d6+7y3KZtLQ0TZ8+XZUrV5avr6+qVKmiV199NUffI2NWO3bsULdu3RQUFCSLxaL169c7rDcMQzNmzFC5cuXk6+urDh066NixY+4pNh/c7fxTU1M1ZcoU1a1bV35+fgoKCtLgwYN17tw59xWcD7J7DfzVc889J4vFooiIiHyvizDjhFWrViksLEwzZ85UdHS06tevr06dOunSpUvuLs0ltm/frtGjR2vXrl2KiopSamqqOnbsqOTkZHeX5nJ79uzRwoULVa9ePXeX4lJXrlxRq1atVLBgQW3atEmHDx/W22+/reLFi7u7NJeZNWuW5s+fr//85z/65ZdfNGvWLM2ePVvvvfeeu0vLN8nJyapfv77mzZuX6frZs2dr7ty5WrBggX788Uf5+fmpU6dOunHjhosrzR93O/9r164pOjpa06dPV3R0tNauXavY2Fh1797dDZXmn+xeA+nWrVunXbt25eirCPKEgVxr1qyZMXr0aPtyWlqaERQUZISHh7uxKve5dOmSIcnYvn27u0txqatXrxpVq1Y1oqKijDZt2hjjx493d0kuM2XKFKN169buLsOtQkJCjOHDhzu09erVywgNDXVTRa4lyVi3bp192WazGWXLljXeeuste9uff/5pWK1WY+XKlW6oMH/def6Z2b17tyHJiIuLc01RLpbVc3DmzBnjb3/7m3Ho0CGjUqVKxjvvvJPvtTAyk0s3b97Uvn371KFDB3tbgQIF1KFDB/3www9urMx9EhISJEklSpRwcyWuNXr0aIWEhDi8Fh4UGzduVJMmTfT0008rMDBQDRs21Pvvv+/uslyqZcuW2rp1q44ePSpJOnDggL777jt17tzZzZW5x8mTJ3XhwgWH34eAgAA1b978gX5vtFgs+f79gJ7EZrNp0KBBmjRpkmrXru2y45riE4A9ye+//660tLQMX6dQpkwZHTlyxE1VuY/NZtOECRPUqlUr1alTx93luMxHH32k6Oho7dmzx92luMWJEyc0f/58hYWF6aWXXtKePXs0btw4+fj4aMiQIe4uzyWmTp2qxMRE1ahRQ15eXkpLS9Prr7+u0NBQd5fmFhcuXJCkTN8b09c9SG7cuKEpU6aof//+D9QXT86aNUve3t4aN26cS49LmME9GT16tA4dOqTvvvvO3aW4THx8vMaPH6+oqCgVKlTI3eW4hc1mU5MmTfTGG29Ikho2bKhDhw5pwYIFD0yYWb16tVasWKHIyEjVrl1bMTExmjBhgoKCgh6Y5wCZS01NVZ8+fWQYhubPn+/uclxm3759evfddxUdHS2LxeLSY3OZKZdKlSolLy8vXbx40aH94sWLKlu2rJuqco8xY8bos88+07Zt21S+fHl3l+My+/bt06VLl9SoUSN5e3vL29tb27dv19y5c+Xt7a20tDR3l5jvypUrp1q1ajm01axZU6dPn3ZTRa43adIkTZ06Vf369VPdunU1aNAgTZw4UeHh4e4uzS3S3/8e9PfG9CATFxenqKioB2pU5ttvv9WlS5dUsWJF+3tjXFycXnjhBQUHB+frsQkzueTj46PGjRtr69at9jabzaatW7eqRYsWbqzMdQzD0JgxY7Ru3Tp9/fXXqly5srtLcqn27dvrp59+UkxMjP3RpEkThYaGKiYmRl5eXu4uMd+1atUqw+34R48eVaVKldxUketdu3ZNBQo4voV6eXnJZrO5qSL3qly5ssqWLevw3piYmKgff/zxgXlvTA8yx44d01dffaWSJUu6uySXGjRokA4ePOjw3hgUFKRJkyZpy5Yt+XpsLjM5ISwsTEOGDFGTJk3UrFkzRUREKDk5WcOGDXN3aS4xevRoRUZGasOGDfL397dfDw8ICJCvr6+bq8t//v7+GeYH+fn5qWTJkg/MvKGJEyeqZcuWeuONN9SnTx/t3r1bixYt0qJFi9xdmst069ZNr7/+uipWrKjatWtr//79mjNnjoYPH+7u0vJNUlKSjh8/bl8+efKkYmJiVKJECVWsWFETJkzQa6+9pqpVq6py5cqaPn26goKC1KNHD/cVnYfudv7lypXTU089pejoaH322WdKS0uzvzeWKFFCPj4+7io7T2X3GrgzwBUsWFBly5ZV9erV87ewfL9f6j713nvvGRUrVjR8fHyMZs2aGbt27XJ3SS4jKdPHkiVL3F2a2zxot2YbhmF8+umnRp06dQyr1WrUqFHDWLRokbtLcqnExERj/PjxRsWKFY1ChQoZDz30kPGPf/zDSElJcXdp+Wbbtm2Z/u4PGTLEMIzbt2dPnz7dKFOmjGG1Wo327dsbsbGx7i06D93t/E+ePJnle+O2bdvcXXqeye41cCdX3ZptMYz7+OMqAQDAfY85MwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwAAwNQIMwA8xtKlS1WsWLF8P86pU6dksVgUExOT78cCkP8IMwDuyQ8//CAvLy+FhITkarvg4GBFREQ4tPXt21dHjx7Nw+qkoUOHZvg4/QoVKuj8+fMPzNdPAPc7wgyAe7J48WKNHTtWO3bs0Llz5+5pX76+vgoMDMyjyrLm5eWlsmXLytubr6cD7geEGQBOS0pK0qpVq/T8888rJCRES5cudVj/6aefqmnTpipUqJBKlSqlnj17SpLatm2ruLg4TZw4URaLRRaLRZLjZaajR4/KYrHoyJEjDvt85513VKVKFUlSWlqaRowYocqVK8vX11fVq1fXu+++a+/78ssva9myZdqwYYP9ON98802ml5m2b9+uZs2ayWq1qly5cpo6dapu3bplX9+2bVuNGzdOkydPVokSJVS2bFm9/PLLefRMArgXhBkATlu9erVq1Kih6tWra+DAgfrggw+U/nVvn3/+uXr27KkuXbpo//792rp1q5o1ayZJWrt2rcqXL69//etfOn/+vM6fP59h39WqVVOTJk20YsUKh/YVK1ZowIABkiSbzaby5ctrzZo1Onz4sGbMmKGXXnpJq1evliS9+OKL6tOnj5544gn7cVq2bJnhWGfPnlWXLl3UtGlTHThwQPPnz9fixYv12muvOfRbtmyZ/Pz89OOPP2r27Nn617/+paioqHt/IgHcm3z/KksA962WLVsaERERhmEYRmpqqlGqVCn7NwS3aNHCCA0NzXLbzL5Nd8mSJUZAQIB9+Z133jGqVKliX46NjTUkGb/88kuW+x09erTRu3dv+/KQIUOMJ5980qFP+jcc79+/3zAMw3jppZeM6tWrGzabzd5n3rx5RpEiRYy0tDTDMG5/M3rr1q0d9tO0aVNjypQpWdYCwDUYmQHglNjYWO3evVv9+/eXJHl7e6tv375avHixJCkmJkbt27e/p2P069dPp06d0q5duyTdHpVp1KiRatSoYe8zb948NW7cWKVLl1aRIkW0aNEinT59OlfH+eWXX9SiRQv75S5JatWqlZKSknTmzBl7W7169Ry2K1eunC5duuTMqQHIQ4QZAE5ZvHixbt26paCgIHl7e8vb21vz58/XJ598ooSEBPn6+t7zMcqWLavHHntMkZGRkqTIyEiFhoba13/00Ud68cUXNWLECH355ZeKiYnRsGHDdPPmzXs+dmYKFizosGyxWGSz2fLlWAByjjADINdu3bqlDz/8UG+//bZiYmLsjwMHDigoKEgrV65UvXr1tHXr1iz34ePjo7S0tGyPFRoaqlWrVumHH37QiRMn1K9fP/u6nTt3qmXLlho1apQaNmyohx9+WL/++muuj1OzZk398MMP9vk+6fv29/dX+fLls60RgHsRZgDk2meffaYrV65oxIgRqlOnjsOjd+/eWrx4sWbOnKmVK1dq5syZ+uWXX/TTTz9p1qxZ9n0EBwdrx44dOnv2rH7//fcsj9WrVy9dvXpVzz//vNq1a6egoCD7uqpVq2rv3r3asmWLjh49qunTp2vPnj0O2wcHB+vgwYOKjY3V77//rtTU1AzHGDVqlOLj4zV27FgdOXJEGzZs0MyZMxUWFqYCBXibBDwdv6UAcm3x4sXq0KGDAgICMqzr3bu39u7dqxIlSmjNmjXauHGjGjRooMcee0y7d++29/vXv/6lU6dOqUqVKipdunSWx/L391e3bt104MABh0tMkjRy5Ej16tVLffv2VfPmzfXHH39o1KhRDn2eeeYZVa9eXU2aNFHp0qW1c+fODMf429/+pi+++EK7d+9W/fr19dxzz2nEiBH65z//mdunBoAbWIy/jqsCAACYDCMzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1AgzAADA1P4f6CXxG/v/aNcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABA2UlEQVR4nO3deVwW5f7/8fctCLgAroDmgrnvuwZWapqkZGIdd8Mts9RyOWnpqczqhNpxqzwupWJHScVjWuYS4dJRcRdzScxccAGtNBBUVO75/dHP+9sdoHCL3DC+no/HPM6Za66Z+cxAN29nrrnHYhiGIQAAAJMo5OwCAAAAchPhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBgAAmArhBkCuO3XqlCwWi8LDw52yf4vFonfeeccp+86p/v37y9/fP0/25e/vr/79+9vmw8PDZbFYtGfPnjzZf5s2bdSmTZs82RcebIQbmFpef3jfT1arVeHh4XrmmWdUsWJFFStWTPXq1dP777+v69ev52hb6enpKl++vCwWi9atW+dwTREREZoxY4bD69+LtWvX5rsA884778hisdimokWLqlKlSurcubMWLlyotLS0XNnPkSNH9M477+jUqVO5sr3clJ9rw4PD1dkFAMieq1evasCAAXrkkUf00ksvycfHRzExMZowYYKio6O1ceNGWSyWbG1r48aNSkhIkL+/v5YsWaKOHTs6VFNERIQOHTqkkSNH2rVXrlxZ165dU+HChR3abnasXbtWs2bNyjTgXLt2Ta6uzvt4mz17tooXL660tDSdO3dOGzZs0MCBAzVjxgytWbNGFStWtPX99NNPZbVac7T9I0eOaOLEiWrTpk2OrvrExcWpUKH7+2/aO9X27bff3td9A7cRboB8xGq16saNG/Lw8MiwzM3NTdu2bVNgYKCtbfDgwfL397cFnPbt22drP4sXL1aTJk3Ur18/jR8/XqmpqSpWrFiuHYfFYsn0GPKKM/ctSX/7299UpkwZ2/zbb7+tJUuWKDQ0VN26ddOOHTtsy+5nAJQkwzB0/fp1FSlSRO7u7vd1X3fj5ubm1P3jwcFtKTzwbty4obfffltNmzaVt7e3ihUrpscee0ybNm2y9TEMQ/7+/urSpUuG9a9fvy5vb28NGTLE1paWlqYJEyaoWrVqcnd3V8WKFTV27NgMtyUsFouGDx+uJUuWqG7dunJ3d9f69eszrdPNzc0u2NzWtWtXSdKPP/6YreO9du2avvzyS/Xs2VPdu3fXtWvXtHr16kz7rlu3Tq1bt5anp6e8vLzUvHlzRURESPpj/MQ333yj06dP227D3P6X+l/H3PzrX/+SxWLR6dOnM+xj3LhxcnNz0+XLlyVJ//vf/9StWzdVqlTJdu5GjRqla9eu2dbp37+/Zs2aJUl2t4Fuy2zMzf79+9WxY0d5eXmpePHiateunV3IkP7vNua2bds0evRolS1bVsWKFVPXrl31yy+/ZOv8ZqVPnz564YUXtHPnTkVFRdkdy1+vcCxdulRNmza1nff69etr5syZthq7desmSWrbtq3t2Ddv3izpj3E1Tz/9tDZs2KBmzZqpSJEimjt3rm3Zn8fc3Hb16lUNGTJEpUuXlpeXl0JDQ20/j9uyGsf0523erbbMxtxcvHhRgwYNkq+vrzw8PNSwYUMtWrTIrs/t36d//etfmjdvnqpWrSp3d3c1b95cu3fvzvR848HGlRs88JKTk/XZZ5+pV69eGjx4sK5cuaL58+crKChIu3btUqNGjWSxWNS3b19NmTJFly5dUqlSpWzrf/3110pOTlbfvn0l/XH15ZlnntHWrVv14osvqnbt2jp48KCmT5+uY8eOadWqVXb737hxo5YvX67hw4erTJkyOR5cmpiYKEl2Vwru5KuvvlJKSop69uwpPz8/tWnTRkuWLFHv3r3t+oWHh2vgwIGqW7euxo0bpxIlSmj//v1av369evfurX/84x9KSkrS2bNnNX36dElS8eLFM91n9+7dNXbsWC1fvlxjxoyxW7Z8+XJ16NBBJUuWlCRFRkbq6tWrevnll1W6dGnt2rVLH3/8sc6ePavIyEhJ0pAhQ3T+/HlFRUXpP//5z12P+fDhw3rsscfk5eWlsWPHqnDhwpo7d67atGmjLVu2qGXLlnb9X3nlFZUsWVITJkzQqVOnNGPGDA0fPlzLli3L1jnOyvPPP6958+bp22+/1ZNPPplpn6ioKPXq1Uvt2rXT5MmTJf0RXLdt26YRI0bo8ccf16uvvqqPPvpI48ePV+3atSXJ9r/SH7efevXqpSFDhmjw4MGqWbPmHesaPny4SpQooXfeeUdxcXGaPXu2Tp8+rc2bN2f7VqekbNX2Z9euXVObNm10/PhxDR8+XFWqVFFkZKT69++v33//XSNGjLDrHxERoStXrmjIkCGyWCyaMmWKnn32WZ04ceK+XwFDAWMAJrZw4UJDkrF79+4s+9y6dctIS0uza7t8+bLh6+trDBw40NYWFxdnSDJmz55t1/eZZ54x/P39DavVahiGYfznP/8xChUqZPzvf/+z6zdnzhxDkrFt2zZbmySjUKFCxuHDhx0+xvbt2xteXl7G5cuXs9X/6aefNlq1amWbnzdvnuHq6mpcvHjR1vb7778bnp6eRsuWLY1r167ZrX/7OA3DMIKDg43KlStn2MfJkycNScbChQttbQEBAUbTpk3t+u3atcuQZHz++ee2tqtXr2bYXlhYmGGxWIzTp0/b2oYNG2Zk9REmyZgwYYJtPiQkxHBzczN+/vlnW9v58+cNT09P4/HHH7e13f59ad++vd1xjho1ynBxcTF+//33TPd324QJEwxJxi+//JLp8suXLxuSjK5du9ra+vXrZ3cOR4wYYXh5eRm3bt3Kcj+RkZGGJGPTpk0ZllWuXNmQZKxfvz7TZf369bPN3z7epk2bGjdu3LC1T5kyxZBkrF692tb213Oa1TbvVFvr1q2N1q1b2+ZnzJhhSDIWL15sa7tx44YREBBgFC9e3EhOTjYM4/9+n0qXLm1cunTJ1nf16tWGJOPrr7/OsC882LgthQeei4uLbSyA1WrVpUuXdOvWLTVr1kz79u2z9atRo4ZatmypJUuW2NouXbqkdevWqU+fPrZ/4UZGRqp27dqqVauWfv31V9v0xBNPSJLd7S5Jat26terUqeNQ7R988IG+++47TZo0SSVKlLhr/99++00bNmxQr169bG3PPfecLBaLli9fbmuLiorSlStX9MYbb2QYv5KTf8n/WY8ePbR37179/PPPtrZly5bJ3d3d7nZfkSJFbP8/NTVVv/76qwIDA2UYhvbv35/j/aanp+vbb79VSEiIHn74YVt7uXLl1Lt3b23dulXJycl267z44ot2x/nYY48pPT0909tqOXH7ytaVK1ey7FOiRAmlpqba3brKqSpVqigoKCjb/V988UW7Kx8vv/yyXF1dtXbtWodryI61a9fKz8/P7vexcOHCevXVV5WSkqItW7bY9e/Ro4ftCp/0x89Fkk6cOHFf60TBQ7gBJC1atEgNGjSQh4eHSpcurbJly+qbb75RUlKSXb/Q0FBt27bN9kcuMjJSN2/e1PPPP2/r89NPP+nw4cMqW7as3VSjRg1Jf4wx+LMqVao4VPOyZcv05ptvatCgQXr55Zezvc7NmzfVuHFjHT9+XMePH9elS5cyhLbbAaRevXoO1ZaZbt26qVChQrZbO4ZhKDIy0jYO5rb4+Hj1799fpUqVUvHixVW2bFm1bt1akjL8PLLjl19+0dWrVzO9NVO7dm1ZrVadOXPGrr1SpUp287f/oP51HEpOpaSkSJI8PT2z7DN06FDVqFFDHTt2VIUKFTRw4MAsx2FlJae/U9WrV7ebL168uMqVK3ffH+c+ffq0qlevnuEJrtu3sf4aJu/XzwXmw5gbPPAWL16s/v37KyQkRGPGjJGPj49cXFwUFhZmd5VBknr27KlRo0ZpyZIlGj9+vBYvXqxmzZrZ/eG0Wq2qX7++pk2blun+/vwYsGR/pSK7oqKiFBoaquDgYM2ZMyfb690OMK1atcp0+YkTJ+yubuSm8uXL67HHHtPy5cs1fvx47dixQ/Hx8bZxJdIfV1mefPJJXbp0Sa+//rpq1aqlYsWK6dy5c+rfv3+OH5l2lIuLS6bthmHc03YPHTokSapWrVqWfXx8fBQbG6sNGzZo3bp1WrdunRYuXKjQ0NAMA22z4sjvlKPS09PzbF/36+cC8yHc4IG3YsUKPfzww1q5cqXdrYgJEyZk6FuqVCkFBwdryZIl6tOnj7Zt25bhS+yqVq2qAwcOqF27dg7fwrmTnTt3qmvXrmrWrJmWL1+e7e9zOXnypLZv367hw4fbroTcZrVa9fzzzysiIkJvvvmmqlatKumPP8Z3+kOc0+Pr0aOHhg4dqri4OC1btkxFixZV586dbcsPHjyoY8eOadGiRQoNDbW1Z3aLJrv7Llu2rIoWLaq4uLgMy44ePapChQplCJz3y+3Bz3e7ZeTm5qbOnTurc+fOslqtGjp0qObOnau33npL1apVy/Xfq59++klt27a1zaekpCghIUGdOnWytZUsWVK///673Xo3btxQQkKCXVtOaqtcubJ++OEHWa1Wu6s3R48etS0HHMFtKTzwbv9r8M//+tu5c6diYmIy7f/888/ryJEjGjNmjFxcXNSzZ0+75d27d9e5c+f06aefZlj32rVrSk1NdbjWH3/8UcHBwfL399eaNWty9C/021dtxo4dq7/97W92U/fu3dW6dWtbnw4dOsjT01NhYWEZvv34z+epWLFiObpV9Nxzz8nFxUVffPGFIiMj9fTTT9t9v05mPwvDMGyPQf/Z7fX++gf3r1xcXNShQwetXr3a7jbLhQsXFBERoUcffdTuttj9EhERoc8++0wBAQFq165dlv1+++03u/lChQqpQYMGkmT7KoHsHnt2zZs3Tzdv3rTNz549W7du3bL7cseqVavq+++/z7DeX6/c5KS2Tp06KTEx0e4ptFu3bunjjz9W8eLFM4RwILu4coMHwoIFCzIdtzBixAg9/fTTWrlypbp27arg4GCdPHlSc+bMUZ06dWxjJP4sODhYpUuXto0X8fHxsVv+/PPPa/ny5XrppZe0adMmtWrVSunp6Tp69KiWL19u+/6RnLpy5YqCgoJ0+fJljRkzRt98843d8qpVqyogICDL9ZcsWaJGjRpleZXimWee0SuvvKJ9+/apSZMmmj59ul544QU1b95cvXv3VsmSJXXgwAFdvXrVdnukadOmWrZsmUaPHq3mzZurePHidldi/srHx0dt27bVtGnTdOXKFfXo0cNuea1atVS1alW99tprOnfunLy8vPTf//430zEVTZs2lSS9+uqrCgoKyjRo3vb+++8rKipKjz76qIYOHSpXV1fNnTtXaWlpmjJlSpb1OmrFihUqXry4bty4YfuG4m3btqlhw4a2x9mz8sILL+jSpUt64oknVKFCBZ0+fVoff/yxGjVqZBuL0qhRI7m4uGjy5MlKSkqSu7u7nnjiiQy/i9l148YNtWvXTt27d1dcXJz+/e9/69FHH9UzzzxjV9dLL72k5557Tk8++aQOHDigDRs2ZPgKgpzU9uKLL2ru3Lnq37+/9u7dK39/f61YscJ2RfROY5OAO3Leg1rA/Xf7UdespjNnzhhWq9X44IMPjMqVKxvu7u5G48aNjTVr1mR4RPfPhg4dakgyIiIiMl1+48YNY/LkyUbdunUNd3d3o2TJkkbTpk2NiRMnGklJSbZ+koxhw4Zl61huPw6b1fTnx3H/au/evYYk46233sqyz6lTpwxJxqhRo2xtX331lREYGGgUKVLE8PLyMlq0aGF88cUXtuUpKSlG7969jRIlShiSbOcrs0fBb/v0008NSYanp2eGx8wNwzCOHDlitG/f3ihevLhRpkwZY/DgwcaBAwcybO/WrVvGK6+8YpQtW9awWCx2j4Urk8eW9+3bZwQFBRnFixc3ihYtarRt29bYvn27XZ+svjpg06ZNWT7e/Ge3HwW/PXl4eBgVKlQwnn76aWPBggXG9evXM6zz19+zFStWGB06dDB8fHwMNzc3o1KlSsaQIUOMhISEDOfx4YcfNlxcXOxqq1y5shEcHJxpfVk9Cr5lyxbjxRdfNEqWLGkUL17c6NOnj/Hbb7/ZrZuenm68/vrrRpkyZYyiRYsaQUFBxvHjxzNs8061/fVRcMMwjAsXLhgDBgwwypQpY7i5uRn169fP8Htz+/fpww8/zHBMmf2sAYthMBILyKlRo0Zp/vz5SkxMVNGiRZ1dDgDgTxhzA+TQ9evXtXjxYj333HMEGwDIhxhzA2TTxYsX9d1332nFihX67bffMnw1PAAgfyDcANl05MgR9enTRz4+Pvroo4/UqFEjZ5cEAMgEY24AAICpMOYGAACYCuEGAACYygM35sZqter8+fPy9PS8L1+NDwAAcp9hGLpy5YrKly+f4WWrf/XAhZvz58/n2XtkAABA7jpz5owqVKhwxz4PXLi5/XXeZ86cyZP3yQAAgHuXnJysihUrZuu1HA9cuLl9K8rLy4twAwBAAZOdISUMKAYAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKaSb8LNpEmTZLFYNHLkyDv2i4yMVK1ateTh4aH69etr7dq1eVMgAAAoEPJFuNm9e7fmzp2rBg0a3LHf9u3b1atXLw0aNEj79+9XSEiIQkJCdOjQoTyqFAAA5HdODzcpKSnq06ePPv30U5UsWfKOfWfOnKmnnnpKY8aMUe3atfXee++pSZMm+uSTT/KoWgAAkN85PdwMGzZMwcHBat++/V37xsTEZOgXFBSkmJiY+1UeAAAoYFydufOlS5dq37592r17d7b6JyYmytfX167N19dXiYmJWa6TlpamtLQ023xycrJjxQIAgALBaeHmzJkzGjFihKKiouTh4XHf9hMWFqaJEyfet+0DuDv/N765a59Tk4LzoBIADwKn3Zbau3evLl68qCZNmsjV1VWurq7asmWLPvroI7m6uio9PT3DOn5+frpw4YJd24ULF+Tn55flfsaNG6ekpCTbdObMmVw/FgAAkH847cpNu3btdPDgQbu2AQMGqFatWnr99dfl4uKSYZ2AgABFR0fbPS4eFRWlgICALPfj7u4ud3f3XKsbAADkb04LN56enqpXr55dW7FixVS6dGlbe2hoqB566CGFhYVJkkaMGKHWrVtr6tSpCg4O1tKlS7Vnzx7Nmzcvz+sHAAD5k9OflrqT+Ph4JSQk2OYDAwMVERGhefPmqWHDhlqxYoVWrVqVISQBAIAHl8UwDMPZReSl5ORkeXt7KykpSV5eXs4uB3ggMKAYwL3Kyd/vfH3lBgAAIKcINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFQINwAAwFScGm5mz56tBg0ayMvLS15eXgoICNC6deuy7B8eHi6LxWI3eXh45GHFAAAgv3N15s4rVKigSZMmqXr16jIMQ4sWLVKXLl20f/9+1a1bN9N1vLy8FBcXZ5u3WCx5VS4AACgAnBpuOnfubDf/z3/+U7Nnz9aOHTuyDDcWi0V+fn55UR4AACiA8s2Ym/T0dC1dulSpqakKCAjIsl9KSooqV66sihUrqkuXLjp8+HAeVgkAAPI7p165kaSDBw8qICBA169fV/HixfXll1+qTp06mfatWbOmFixYoAYNGigpKUn/+te/FBgYqMOHD6tChQqZrpOWlqa0tDTbfHJy8n05DgAAkD84/cpNzZo1FRsbq507d+rll19Wv379dOTIkUz7BgQEKDQ0VI0aNVLr1q21cuVKlS1bVnPnzs1y+2FhYfL29rZNFStWvF+HAgAA8gGnhxs3NzdVq1ZNTZs2VVhYmBo2bKiZM2dma93ChQurcePGOn78eJZ9xo0bp6SkJNt05syZ3CodAADkQ04PN39ltVrtbiPdSXp6ug4ePKhy5cpl2cfd3d32qPntCQAAmJdTx9yMGzdOHTt2VKVKlXTlyhVFRERo8+bN2rBhgyQpNDRUDz30kMLCwiRJ7777rh555BFVq1ZNv//+uz788EOdPn1aL7zwgjMPAwAA5CNODTcXL15UaGioEhIS5O3trQYNGmjDhg168sknJUnx8fEqVOj/Li5dvnxZgwcPVmJiokqWLKmmTZtq+/btWQ5ABgAADx6LYRiGs4vIS8nJyfL29lZSUhK3qIA84v/GN3ftc2pScB5UAqCgysnf73w35gYAAOBeEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpODXczJ49Ww0aNJCXl5e8vLwUEBCgdevW3XGdyMhI1apVSx4eHqpfv77Wrl2bR9UCAICCwKnhpkKFCpo0aZL27t2rPXv26IknnlCXLl10+PDhTPtv375dvXr10qBBg7R//36FhIQoJCREhw4dyuPKAQBAfmUxDMNwdhF/VqpUKX344YcaNGhQhmU9evRQamqq1qxZY2t75JFH1KhRI82ZMydb209OTpa3t7eSkpLk5eWVa3UDyJr/G9/ctc+pScF5UAmAgionf7/zzZib9PR0LV26VKmpqQoICMi0T0xMjNq3b2/XFhQUpJiYmLwoEQAAFACuzi7g4MGDCggI0PXr11W8eHF9+eWXqlOnTqZ9ExMT5evra9fm6+urxMTELLeflpamtLQ023xycnLuFA4AAPIlp4ebmjVrKjY2VklJSVqxYoX69eunLVu2ZBlwciosLEwTJ07MlW3BfLhdAgDm4/TbUm5ubqpWrZqaNm2qsLAwNWzYUDNnzsy0r5+fny5cuGDXduHCBfn5+WW5/XHjxikpKck2nTlzJlfrBwAA+YvTw81fWa1Wu9tIfxYQEKDo6Gi7tqioqCzH6EiSu7u77VHz2xMAADAvp96WGjdunDp27KhKlSrpypUrioiI0ObNm7VhwwZJUmhoqB566CGFhYVJkkaMGKHWrVtr6tSpCg4O1tKlS7Vnzx7NmzfPmYcBAADyEaeGm4sXLyo0NFQJCQny9vZWgwYNtGHDBj355JOSpPj4eBUq9H8XlwIDAxUREaE333xT48ePV/Xq1bVq1SrVq1fPWYcAAADyGaeGm/nz599x+ebNmzO0devWTd26dbtPFQEAgIIu3425AQAAuBeEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCpODTdhYWFq3ry5PD095ePjo5CQEMXFxd1xnfDwcFksFrvJw8MjjyoGAAD5nVPDzZYtWzRs2DDt2LFDUVFRunnzpjp06KDU1NQ7rufl5aWEhATbdPr06TyqGAAA5Heuztz5+vXr7ebDw8Pl4+OjvXv36vHHH89yPYvFIj8/v/tdHgAAKIDy1ZibpKQkSVKpUqXu2C8lJUWVK1dWxYoV1aVLFx0+fDgvygMAAAVAvgk3VqtVI0eOVKtWrVSvXr0s+9WsWVMLFizQ6tWrtXjxYlmtVgUGBurs2bOZ9k9LS1NycrLdBAAAzMupt6X+bNiwYTp06JC2bt16x34BAQEKCAiwzQcGBqp27dqaO3eu3nvvvQz9w8LCNHHixFyvFwAA5E/54srN8OHDtWbNGm3atEkVKlTI0bqFCxdW48aNdfz48UyXjxs3TklJSbbpzJkzuVEyAADIpxwKNydOnMiVnRuGoeHDh+vLL7/Uxo0bVaVKlRxvIz09XQcPHlS5cuUyXe7u7i4vLy+7CQAAmJdD4aZatWpq27atFi9erOvXrzu882HDhmnx4sWKiIiQp6enEhMTlZiYqGvXrtn6hIaGaty4cbb5d999V99++61OnDihffv2qW/fvjp9+rReeOEFh+sAAADm4VC42bdvnxo0aKDRo0fLz89PQ4YM0a5du3K8ndmzZyspKUlt2rRRuXLlbNOyZctsfeLj45WQkGCbv3z5sgYPHqzatWurU6dOSk5O1vbt21WnTh1HDgUAAJiMxTAMw9GVb926pa+++krh4eFav369atSooYEDB+r5559X2bJlc7POXJOcnCxvb28lJSVxiwryf+Obu/Y5NSk4DyoxN84zgHuVk7/f9zSg2NXVVc8++6wiIyM1efJkHT9+XK+99poqVqyo0NBQuysuAAAAeeGews2ePXs0dOhQlStXTtOmTdNrr72mn3/+WVFRUTp//ry6dOmSW3UCAABki0PfczNt2jQtXLhQcXFx6tSpkz7//HN16tRJhQr9kZWqVKmi8PBw+fv752atAAAAd+VQuJk9e7YGDhyo/v37Z/kIto+Pj+bPn39PxQEAAOSUQ+Hmp59+umsfNzc39evXz5HNAwAAOMyhMTcLFy5UZGRkhvbIyEgtWrTonosCAABwlEPhJiwsTGXKlMnQ7uPjow8++OCeiwIAAHCUQ+EmPj4+01clVK5cWfHx8fdcFAAAgKMcCjc+Pj764YcfMrQfOHBApUuXvueiAAAAHOVQuOnVq5deffVVbdq0Senp6UpPT9fGjRs1YsQI9ezZM7drBAAAyDaHnpZ67733dOrUKbVr106urn9swmq1KjQ0lDE3AADAqRwKN25ublq2bJnee+89HThwQEWKFFH9+vVVuXLl3K4PAAAgRxwKN7fVqFFDNWrUyK1aAAAA7plD4SY9PV3h4eGKjo7WxYsXZbVa7ZZv3LgxV4oDAADIKYfCzYgRIxQeHq7g4GDVq1dPFoslt+sCAABwiEPhZunSpVq+fLk6deqU2/UAAADcE4ceBXdzc1O1atVyuxYAAIB75lC4+fvf/66ZM2fKMIzcrgcAAOCeOHRbauvWrdq0aZPWrVununXrqnDhwnbLV65cmSvFAQAA5JRD4aZEiRLq2rVrbtcCAABwzxwKNwsXLsztOgAAAHKFQ2NuJOnWrVv67rvvNHfuXF25ckWSdP78eaWkpORacQAAADnl0JWb06dP66mnnlJ8fLzS0tL05JNPytPTU5MnT1ZaWprmzJmT23UCAABki0NXbkaMGKFmzZrp8uXLKlKkiK29a9euio6OzrXiAAAAcsqhKzf/+9//tH37drm5udm1+/v769y5c7lSGAAAgCMcunJjtVqVnp6eof3s2bPy9PS856IAAAAc5VC46dChg2bMmGGbt1gsSklJ0YQJE3glAwAAcCqHbktNnTpVQUFBqlOnjq5fv67evXvrp59+UpkyZfTFF1/kdo0AAADZ5lC4qVChgg4cOKClS5fqhx9+UEpKigYNGqQ+ffrYDTAGAADIaw6FG0lydXVV3759c7MWAACAe+ZQuPn888/vuDw0NNShYgAAAO6VQ+FmxIgRdvM3b97U1atX5ebmpqJFixJuAACA0zj0tNTly5ftppSUFMXFxenRRx9lQDEAAHAqh98t9VfVq1fXpEmTMlzVuZOwsDA1b95cnp6e8vHxUUhIiOLi4u66XmRkpGrVqiUPDw/Vr19fa9euvZfSAQCAieRauJH+GGR8/vz5bPffsmWLhg0bph07digqKko3b95Uhw4dlJqamuU627dvV69evTRo0CDt379fISEhCgkJ0aFDh3LjEAAAQAHn0Jibr776ym7eMAwlJCTok08+UatWrbK9nfXr19vNh4eHy8fHR3v37tXjjz+e6TozZ87UU089pTFjxkiS3nvvPUVFRemTTz7hhZ0AAMCxcBMSEmI3b7FYVLZsWT3xxBOaOnWqw8UkJSVJkkqVKpVln5iYGI0ePdquLSgoSKtWrXJ4vwAAwDwcCjdWqzW365DVatXIkSPVqlUr1atXL8t+iYmJ8vX1tWvz9fVVYmJipv3T0tKUlpZmm09OTs6dggEAQL7k8Jf45bZhw4bp0KFD2rp1a65uNywsTBMnTszVbT6I/N/45q59Tk0KzoNK8qeCeH6oOf/sK7cUxJqB+8GhcPPX20J3Mm3atLv2GT58uNasWaPvv/9eFSpUuGNfPz8/Xbhwwa7twoUL8vPzy7T/uHHj7OpNTk5WxYoVs1E5AAAoiBwKN/v379f+/ft18+ZN1axZU5J07Ngxubi4qEmTJrZ+FovljtsxDEOvvPKKvvzyS23evFlVqlS5674DAgIUHR2tkSNH2tqioqIUEBCQaX93d3e5u7tn46gAAIAZOBRuOnfuLE9PTy1atEglS5aU9McX+w0YMECPPfaY/v73v2drO8OGDVNERIRWr14tT09P27gZb29v2ws4Q0ND9dBDDyksLEzSH9+O3Lp1a02dOlXBwcFaunSp9uzZo3nz5jlyKAAAwGQc+p6bqVOnKiwszBZsJKlkyZJ6//33c/S01OzZs5WUlKQ2bdqoXLlytmnZsmW2PvHx8UpISLDNBwYGKiIiQvPmzVPDhg21YsUKrVq16o6DkAEAwIPDoSs3ycnJ+uWXXzK0//LLL7py5Uq2t2MYxl37bN68OUNbt27d1K1bt2zvBwAAPDgcunLTtWtXDRgwQCtXrtTZs2d19uxZ/fe//9WgQYP07LPP5naNAAAA2ebQlZs5c+botddeU+/evXXz5s0/NuTqqkGDBunDDz/M1QIBAABywqFwU7RoUf373//Whx9+qJ9//lmSVLVqVRUrVixXiwMAAMipe3pxZkJCghISElS9enUVK1YsW2NoAAAA7ieHws1vv/2mdu3aqUaNGurUqZPtaaZBgwZl+zFwAACA+8GhcDNq1CgVLlxY8fHxKlq0qK29R48eGd70DQAAkJccGnPz7bffasOGDRlelVC9enWdPn06VwoDAABwhENXblJTU+2u2Nx26dIlXnUAAACcyqFw89hjj+nzzz+3zVssFlmtVk2ZMkVt27bNteIAAAByyqHbUlOmTFG7du20Z88e3bhxQ2PHjtXhw4d16dIlbdu2LbdrBAAAyDaHrtzUq1dPx44d06OPPqouXbooNTVVzz77rPbv36+qVavmdo0AAADZluMrNzdv3tRTTz2lOXPm6B//+Mf9qAkAAMBhOb5yU7hwYf3www/3oxYAAIB75tBtqb59+2r+/Pm5XQsAAMA9c2hA8a1bt7RgwQJ99913atq0aYZ3Sk2bNi1XigMAAMipHIWbEydOyN/fX4cOHVKTJk0kSceOHbPrY7FYcq86AACAHMpRuKlevboSEhK0adMmSX+8buGjjz6Sr6/vfSkOAAAgp3I05uavb/1et26dUlNTc7UgAACAe+HQgOLb/hp2AAAAnC1H4cZisWQYU8MYGwAAkJ/kaMyNYRjq37+/7eWY169f10svvZThaamVK1fmXoUAAAA5kKNw069fP7v5vn375moxAAAA9ypH4WbhwoX3qw4AAIBccU8DigEAAPIbwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVp4ab77//Xp07d1b58uVlsVi0atWqO/bfvHmz7c3kf54SExPzpmAAAJDvOTXcpKamqmHDhpo1a1aO1ouLi1NCQoJt8vHxuU8VAgCAgiZHL87MbR07dlTHjh1zvJ6Pj49KlCiR+wUBAIACr0COuWnUqJHKlSunJ598Utu2bXN2OQAAIB9x6pWbnCpXrpzmzJmjZs2aKS0tTZ999pnatGmjnTt3qkmTJpmuk5aWprS0NNt8cnJyXpULAACcoECFm5o1a6pmzZq2+cDAQP3888+aPn26/vOf/2S6TlhYmCZOnJhXJQIAACcrkLel/qxFixY6fvx4lsvHjRunpKQk23TmzJk8rA4AAOS1AnXlJjOxsbEqV65clsvd3d3l7u6ehxUBAABncmq4SUlJsbvqcvLkScXGxqpUqVKqVKmSxo0bp3Pnzunzzz+XJM2YMUNVqlRR3bp1df36dX322WfauHGjvv32W2cdAgAAyGecGm727Nmjtm3b2uZHjx4tSerXr5/Cw8OVkJCg+Ph42/IbN27o73//u86dO6eiRYuqQYMG+u677+y2AQAAHmxODTdt2rSRYRhZLg8PD7ebHzt2rMaOHXufqwIAAAVZgR9QDAAA8GeEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCpODTfff/+9OnfurPLly8tisWjVqlV3XWfz5s1q0qSJ3N3dVa1aNYWHh9/3OgEAQMHh1HCTmpqqhg0batasWdnqf/LkSQUHB6tt27aKjY3VyJEj9cILL2jDhg33uVIAAFBQuDpz5x07dlTHjh2z3X/OnDmqUqWKpk6dKkmqXbu2tm7dqunTpysoKOh+lQkAAAqQAjXmJiYmRu3bt7drCwoKUkxMjJMqAgAA+Y1Tr9zkVGJionx9fe3afH19lZycrGvXrqlIkSIZ1klLS1NaWpptPjk5+b7XCQAAnKdAhRtHhIWFaeLEiXm2P/83vsmV7ZyaFJwr+8rOdgqi3DrP+W1f+U1BPPb89t9Ffqsnt+T1cZn1PBZEBeFnUaBuS/n5+enChQt2bRcuXJCXl1emV20kady4cUpKSrJNZ86cyYtSAQCAkxSoKzcBAQFau3atXVtUVJQCAgKyXMfd3V3u7u73uzQAAJBPOPXKTUpKimJjYxUbGyvpj0e9Y2NjFR8fL+mPqy6hoaG2/i+99JJOnDihsWPH6ujRo/r3v/+t5cuXa9SoUc4oHwAA5ENODTd79uxR48aN1bhxY0nS6NGj1bhxY7399tuSpISEBFvQkaQqVarom2++UVRUlBo2bKipU6fqs88+4zFwAABg49TbUm3atJFhGFkuz+zbh9u0aaP9+/ffx6oAAEBBVqAGFAMAANwN4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJhKvgg3s2bNkr+/vzw8PNSyZUvt2rUry77h4eGyWCx2k4eHRx5WCwAA8jOnh5tly5Zp9OjRmjBhgvbt26eGDRsqKChIFy9ezHIdLy8vJSQk2KbTp0/nYcUAACA/c3q4mTZtmgYPHqwBAwaoTp06mjNnjooWLaoFCxZkuY7FYpGfn59t8vX1zcOKAQBAfubUcHPjxg3t3btX7du3t7UVKlRI7du3V0xMTJbrpaSkqHLlyqpYsaK6dOmiw4cP50W5AACgAHBquPn111+Vnp6e4cqLr6+vEhMTM12nZs2aWrBggVavXq3FixfLarUqMDBQZ8+ezbR/WlqakpOT7SYAAGBeTr8tlVMBAQEKDQ1Vo0aN1Lp1a61cuVJly5bV3LlzM+0fFhYmb29v21SxYsU8rhgAAOQlp4abMmXKyMXFRRcuXLBrv3Dhgvz8/LK1jcKFC6tx48Y6fvx4psvHjRunpKQk23TmzJl7rhsAAORfTg03bm5uatq0qaKjo21tVqtV0dHRCggIyNY20tPTdfDgQZUrVy7T5e7u7vLy8rKbAACAebk6u4DRo0erX79+atasmVq0aKEZM2YoNTVVAwYMkCSFhobqoYceUlhYmCTp3Xff1SOPPKJq1arp999/14cffqjTp0/rhRdecOZhAACAfMLp4aZHjx765Zdf9PbbbysxMVGNGjXS+vXrbYOM4+PjVajQ/11gunz5sgYPHqzExESVLFlSTZs21fbt21WnTh1nHQIAAMhHnB5uJGn48OEaPnx4pss2b95sNz99+nRNnz49D6oCAAAFUYF7WgoAAOBOCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBUCDcAAMBU8kW4mTVrlvz9/eXh4aGWLVtq165dd+wfGRmpWrVqycPDQ/Xr19fatWvzqFIAAJDfOT3cLFu2TKNHj9aECRO0b98+NWzYUEFBQbp48WKm/bdv365evXpp0KBB2r9/v0JCQhQSEqJDhw7lceUAACA/cnq4mTZtmgYPHqwBAwaoTp06mjNnjooWLaoFCxZk2n/mzJl66qmnNGbMGNWuXVvvvfeemjRpok8++SSPKwcAAPmRU8PNjRs3tHfvXrVv397WVqhQIbVv314xMTGZrhMTE2PXX5KCgoKy7A8AAB4srs7c+a+//qr09HT5+vratfv6+uro0aOZrpOYmJhp/8TExEz7p6WlKS0tzTaflJQkSUpOTr6X0rNkTbuaK9vJTn3Z2VduHWde7is7cus856W8PD/Zkd/OYW79zuflvh7k/07z+jMhv30GPcic9bO4vU3DMO7a16nhJi+EhYVp4sSJGdorVqzohGqyz3tG/tpOfttXQcT5ubOC+Lua37bzIO/LGftD1u7nz+LKlSvy9va+Yx+nhpsyZcrIxcVFFy5csGu/cOGC/Pz8Ml3Hz88vR/3HjRun0aNH2+atVqsuXbqk0qVLy2Kx3OMR2EtOTlbFihV15swZeXl55eq2CyLOR0ack4w4J/Y4HxlxTjJ6EM+JYRi6cuWKypcvf9e+Tg03bm5uatq0qaKjoxUSEiLpj/ARHR2t4cOHZ7pOQECAoqOjNXLkSFtbVFSUAgICMu3v7u4ud3d3u7YSJUrkRvlZ8vLyemB+2bKD85ER5yQjzok9zkdGnJOMHrRzcrcrNrc5/bbU6NGj1a9fPzVr1kwtWrTQjBkzlJqaqgEDBkiSQkND9dBDDyksLEySNGLECLVu3VpTp05VcHCwli5dqj179mjevHnOPAwAAJBPOD3c9OjRQ7/88ovefvttJSYmqlGjRlq/fr1t0HB8fLwKFfq/h7oCAwMVERGhN998U+PHj1f16tW1atUq1atXz1mHAAAA8hGnhxtJGj58eJa3oTZv3pyhrVu3burWrdt9rirn3N3dNWHChAy3wR5UnI+MOCcZcU7scT4y4pxkxDm5M4uRnWeqAAAACginf0MxAABAbiLcAAAAUyHcAAAAUyHcAAAAUyHc5JJZs2bJ399fHh4eatmypXbt2uXskpwmLCxMzZs3l6enp3x8fBQSEqK4uDhnl5VvTJo0SRaLxe6LKB9E586dU9++fVW6dGkVKVJE9evX1549e5xdltOkp6frrbfeUpUqVVSkSBFVrVpV7733Xrbeo2MW33//vTp37qzy5cvLYrFo1apVdssNw9Dbb7+tcuXKqUiRImrfvr1++ukn5xSbB+50Pm7evKnXX39d9evXV7FixVS+fHmFhobq/Pnzzis4HyHc5IJly5Zp9OjRmjBhgvbt26eGDRsqKChIFy9edHZpTrFlyxYNGzZMO3bsUFRUlG7evKkOHTooNTXV2aU53e7duzV37lw1aNDA2aU41eXLl9WqVSsVLlxY69at05EjRzR16lSVLFnS2aU5zeTJkzV79mx98skn+vHHHzV58mRNmTJFH3/8sbNLyzOpqalq2LChZs2alenyKVOm6KOPPtKcOXO0c+dOFStWTEFBQbp+/XoeV5o37nQ+rl69qn379umtt97Svn37tHLlSsXFxemZZ55xQqX5kIF71qJFC2PYsGG2+fT0dKN8+fJGWFiYE6vKPy5evGhIMrZs2eLsUpzqypUrRvXq1Y2oqCijdevWxogRI5xdktO8/vrrxqOPPursMvKV4OBgY+DAgXZtzz77rNGnTx8nVeRckowvv/zSNm+1Wg0/Pz/jww8/tLX9/vvvhru7u/HFF184ocK89dfzkZldu3YZkozTp0/nTVH5GFdu7tGNGze0d+9etW/f3tZWqFAhtW/fXjExMU6sLP9ISkqSJJUqVcrJlTjXsGHDFBwcbPe78qD66quv1KxZM3Xr1k0+Pj5q3LixPv30U2eX5VSBgYGKjo7WsWPHJEkHDhzQ1q1b1bFjRydXlj+cPHlSiYmJdv/9eHt7q2XLlnzW/n9JSUmyWCz3/f2JBUG++IbiguzXX39Venq67XURt/n6+uro0aNOqir/sFqtGjlypFq1avVAvyJj6dKl2rdvn3bv3u3sUvKFEydOaPbs2Ro9erTGjx+v3bt369VXX5Wbm5v69evn7PKc4o033lBycrJq1aolFxcXpaen65///Kf69Onj7NLyhcTEREnK9LP29rIH2fXr1/X666+rV69eD9SLNLNCuMF9NWzYMB06dEhbt251dilOc+bMGY0YMUJRUVHy8PBwdjn5gtVqVbNmzfTBBx9Ikho3bqxDhw5pzpw5D2y4Wb58uZYsWaKIiAjVrVtXsbGxGjlypMqXL//AnhNkz82bN9W9e3cZhqHZs2c7u5x8gdtS96hMmTJycXHRhQsX7NovXLggPz8/J1WVPwwfPlxr1qzRpk2bVKFCBWeX4zR79+7VxYsX1aRJE7m6usrV1VVbtmzRRx99JFdXV6Wnpzu7xDxXrlw51alTx66tdu3aio+Pd1JFzjdmzBi98cYb6tmzp+rXr6/nn39eo0aNUlhYmLNLyxduf57yWWvvdrA5ffq0oqKiuGrz/xFu7pGbm5uaNm2q6OhoW5vValV0dLQCAgKcWJnzGIah4cOH68svv9TGjRtVpUoVZ5fkVO3atdPBgwcVGxtrm5o1a6Y+ffooNjZWLi4uzi4xz7Vq1SrD1wMcO3ZMlStXdlJFznf16lUVKmT/kezi4iKr1eqkivKXKlWqyM/Pz+6zNjk5WTt37nxgP2tvB5uffvpJ3333nUqXLu3skvINbkvlgtGjR6tfv35q1qyZWrRooRkzZig1NVUDBgxwdmlOMWzYMEVERGj16tXy9PS03Q/39vZWkSJFnFxd3vP09Mww3qhYsWIqXbr0AzsOadSoUQoMDNQHH3yg7t27a9euXZo3b57mzZvn7NKcpnPnzvrnP/+pSpUqqW7dutq/f7+mTZumgQMHOru0PJOSkqLjx4/b5k+ePKnY2FiVKlVKlSpV0siRI/X++++revXqqlKlit566y2VL19eISEhziv6PrrT+ShXrpz+9re/ad++fVqzZo3S09Ntn7WlSpWSm5ubs8rOH5z9uJZZfPzxx0alSpUMNzc3o0WLFsaOHTucXZLTSMp0WrhwobNLyzce9EfBDcMwvv76a6NevXqGu7u7UatWLWPevHnOLsmpkpOTjREjRhiVKlUyPDw8jIcfftj4xz/+YaSlpTm7tDyzadOmTD87+vXrZxjGH4+Dv/XWW4avr6/h7u5utGvXzoiLi3Nu0ffRnc7HyZMns/ys3bRpk7NLdzqLYTxAX38JAABMjzE3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3APK18PBwlShR4r7v59SpU7JYLIqNjb3v+wJwfxFuAOS6mJgYubi4KDg4OEfr+fv7a8aMGXZtPXr00LFjx3KxOql///4ZvrK/YsWKSkhIeGBfiQGYCeEGQK6bP3++XnnlFX3//fc6f/78PW2rSJEi8vHxyaXKsubi4iI/Pz+5uvLKPaCgI9wAyFUpKSlatmyZXn75ZQUHBys8PNxu+ddff63mzZvLw8NDZcqUUdeuXSVJbdq00enTpzVq1ChZLBZZLBZJ9reljh07JovFoqNHj9ptc/r06apataokKT09XYMGDVKVKlVUpEgR1axZUzNnzrT1feedd7Ro0SKtXr3atp/Nmzdneltqy5YtatGihdzd3VWuXDm98cYbunXrlm15mzZt9Oqrr2rs2LEqVaqU/Pz89M477+TSmQTgKMINgFy1fPly1apVSzVr1lTfvn21YMEC3X6F3TfffKOuXbuqU6dO2r9/v6Kjo9WiRQtJ0sqVK1WhQgW9++67SkhIUEJCQoZt16hRQ82aNdOSJUvs2pcsWaLevXtLkqxWqypUqKDIyEgdOXJEb7/9tsaPH6/ly5dLkl577TV1795dTz31lG0/gYGBGfZ17tw5derUSc2bN9eBAwc0e/ZszZ8/X++//75dv0WLFqlYsWLauXOnpkyZonfffVdRUVH3fiIBOM7JL+4EYDKBgYHGjBkzDMMwjJs3bxplypSxvaU4ICDA6NOnT5brVq5c2Zg+fbpd28KFCw1vb2/b/PTp042qVava5uPi4gxJxo8//pjldocNG2Y899xztvl+/foZXbp0setz+y3L+/fvNwzDMMaPH2/UrFnTsFqttj6zZs0yihcvbqSnpxuG8cfb3R999FG77TRv3tx4/fXXs6wFwP3HlRsAuSYuLk67du1Sr169JEmurq7q0aOH5s+fL0mKjY1Vu3bt7mkfPXv21KlTp7Rjxw5Jf1y1adKkiWrVqmXrM2vWLDVt2lRly5ZV8eLFNW/ePMXHx+doPz/++KMCAgJst8ckqVWrVkpJSdHZs2dtbQ0aNLBbr1y5crp48aIjhwYglxBuAOSa+fPn69atWypfvrxcXV3l6uqq2bNn67///a+SkpJUpEiRe96Hn5+fnnjiCUVEREiSIiIi1KdPH9vypUuX6rXXXtOgQYP07bffKjY2VgMGDNCNGzfued+ZKVy4sN28xWKR1Wq9L/sCkD2EGwC54tatW/r88881depUxcbG2qYDBw6ofPny+uKLL9SgQQNFR0dnuQ03Nzelp6ffdV99+vTRsmXLFBMToxMnTqhnz562Zdu2bVNgYKCGDh2qxo0bq1q1avr5559zvJ/atWsrJibGNl7o9rY9PT1VoUKFu9YIwHkINwByxZo1a3T58mUNGjRI9erVs5uee+45zZ8/XxMmTNAXX3yhCRMm6Mcff9TBgwc1efJk2zb8/f31/fff69y5c/r111+z3Nezzz6rK1eu6OWXX1bbtm1Vvnx527Lq1atrz5492rBhg44dO6a33npLu3fvtlvf399fP/zwg+Li4vTrr7/q5s2bGfYxdOhQnTlzRq+88oqOHj2q1atXa8KECRo9erQKFeKjE8jP+C8UQK6YP3++2rdvL29v7wzLnnvuOe3Zs0elSpVSZGSkvvrqKzVq1EhPPPGEdu3aZev37rvv6tSpU6patarKli2b5b48PT3VuXNnHThwwO6WlCQNGTJEzz77rHr06KGWLVvqt99+09ChQ+36DB48WDVr1lSzZs1UtmxZbdu2LcM+HnroIa1du1a7du1Sw4YN9dJLL2nQoEF68803c3pqAOQxi/Hna64AAAAFHFduAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqRBuAACAqfw/XHJrc/6xSe0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAHHCAYAAABKudlQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6lElEQVR4nO3deXgUVb7G8bdJSBPIwhogF0hiQEDZlO2yKAkgiAEEkX0JyCjKKhmRZQYBdQwwCnFhABkkOBJZlEVFtkEWRRFZXQmyBMImCJKQAAmk6/7hQ1/bJJA0SaoLvp/nqWemTp2q+nWlTV5Oneq2GYZhCAAAwKKKmV0AAADArSDMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMALhlSUlJstlsio+PN+X8NptNkydPNuXc+TVw4ECFhoYWyblCQ0M1cOBA53p8fLxsNpt27txZJOePiIhQREREkZwLdzbCDG4rRf3LurDNmzdPrVq1UsWKFWW32xUWFqZBgwYpKSkpX8fJyspScHCwbDab1qxZ43Y9CQkJiouLc3v/W/Hpp596XGCZPHmybDabcylZsqSqVaumTp06acGCBcrIyCiQ8/z444+aPHlyvn/uRcGTa8Odw9vsAgDkbs+ePQoLC1Pnzp1VpkwZHTlyRPPmzdMnn3yiffv2KTg4OE/H+eyzz3Tq1CmFhoZq0aJF6tChg1v1JCQk6Pvvv9ezzz7r0h4SEqLLly+rePHibh03Lz799FPNmjUrx0Bz+fJleXub9+ts9uzZ8vPzU0ZGhk6cOKF169bpiSeeUFxcnD755BNVrVrV2XfevHlyOBz5Ov6PP/6oKVOmKCIiIl+jOomJiSpWrHD/zXqj2tavX1+o5wauI8wAJnI4HMrMzFSJEiVy3P6vf/0rW1uXLl3UqFEjvfvuuxo3blyezvPee+/p/vvvV3R0tCZMmKD09HSVKlXqlmr/I5vNlutrKApmnluSHn/8cZUvX965/sILL2jRokUaMGCAunfvru3btzu3FWbgkyTDMHTlyhX5+vrKbrcX6rluxsfHx9Tz487BbSbccTIzM/XCCy+oYcOGCgwMVKlSpfTAAw9o06ZNzj6GYSg0NFSPPvpotv2vXLmiwMBADRkyxNmWkZGhSZMmqXr16rLb7apataqef/75bLcZbDabhg8frkWLFunee++V3W7X2rVr81X/9X/9XrhwIU/9L1++rBUrVqhXr17q0aOHLl++rFWrVuXYd82aNWrVqpX8/f0VEBCgxo0bKyEhQdLv8x9Wr16to0ePOm+rXK/lz3NmXn31VdlsNh09ejTbOcaPHy8fHx/99ttvkqTPP/9c3bt3V7Vq1ZzXbvTo0bp8+bJzn4EDB2rWrFmS5HJb57qc5szs2bNHHTp0UEBAgPz8/NSmTRuXUCH9/23Jbdu2KSYmRhUqVFCpUqXUtWtXnT17Nk/XNzd9+/bVX/7yF3399dfasGGDy2v58wjG4sWL1bBhQ+d1r1u3rl5//XVnjd27d5ckRUZGOl/75s2bJf3+fujYsaPWrVunRo0aydfXV3PnznVu++OcmesuXbqkIUOGqFy5cgoICNCAAQOcP4/rcpuH9Mdj3qy2nObMnDlzRoMHD1bFihVVokQJ1a9fXwsXLnTpc/399Oqrr+rtt99WeHi47Ha7GjdurG+++SbH6407GyMzuOOkpqbq3//+t3r37q0nn3xSFy9e1Pz589W+fXvt2LFDDRo0kM1mU79+/TR9+nSdP39eZcuWde7/8ccfKzU1Vf369ZP0++hK586d9cUXX+ipp55S7dq19d1332nmzJk6cOCAVq5c6XL+zz77TEuXLtXw4cNVvnz5PN02OHfunLKysnTs2DG9+OKLkqQ2bdrk6fV+9NFHSktLU69evVSpUiVFRERo0aJF6tOnj0u/+Ph4PfHEE7r33ns1fvx4lS5dWnv27NHatWvVp08f/e1vf1NKSoqOHz+umTNnSpL8/PxyPGePHj30/PPPa+nSpRozZozLtqVLl6pdu3YqU6aMJGnZsmW6dOmSnnnmGZUrV047duzQm2++qePHj2vZsmWSpCFDhujkyZPasGGD/vOf/9z0Nf/www964IEHFBAQoOeff17FixfX3LlzFRERoS1btqhp06Yu/UeMGKEyZcpo0qRJSkpKUlxcnIYPH64lS5bk6Rrnpn///nr77be1fv16PfTQQzn22bBhg3r37q02bdpo2rRpkqSffvpJ27Zt06hRo/Tggw9q5MiReuONNzRhwgTVrl1bkpz/K/1+O6l3794aMmSInnzySdWsWfOGdQ0fPlylS5fW5MmTlZiYqNmzZ+vo0aPavHmzS0i8mbzU9keXL19WRESEDh48qOHDhyssLEzLli3TwIEDdeHCBY0aNcqlf0JCgi5evKghQ4bIZrNp+vTpeuyxx3T48OFCH+GCxRjAbWTBggWGJOObb77Jtc+1a9eMjIwMl7bffvvNqFixovHEE0842xITEw1JxuzZs136du7c2QgNDTUcDodhGIbxn//8xyhWrJjx+eefu/SbM2eOIcnYtm2bs02SUaxYMeOHH37I1+uy2+2GJEOSUa5cOeONN97I874dO3Y0WrRo4Vx/++23DW9vb+PMmTPOtgsXLhj+/v5G06ZNjcuXL7vsf/11GoZhREVFGSEhIdnOceTIEUOSsWDBAmdbs2bNjIYNG7r027FjhyHJePfdd51tly5dyna82NhYw2azGUePHnW2DRs2zMjtV5YkY9KkSc71Ll26GD4+PsahQ4ecbSdPnjT8/f2NBx980Nl2/f3Stm1bl9c5evRow8vLy7hw4UKO57tu0qRJhiTj7NmzOW7/7bffDElG165dnW3R0dEu13DUqFFGQECAce3atVzPs2zZMkOSsWnTpmzbQkJCDEnG2rVrc9wWHR3tXL/+ehs2bGhkZmY626dPn25IMlatWuVs+/M1ze2YN6qtVatWRqtWrZzrcXFxhiTjvffec7ZlZmYazZo1M/z8/IzU1FTDMP7//VSuXDnj/Pnzzr6rVq0yJBkff/xxtnPhzsZtJtxxvLy8nPfyHQ6Hzp8/r2vXrqlRo0bavXu3s9/dd9+tpk2batGiRc628+fPa82aNerbt6/zX7DLli1T7dq1VatWLf3666/OpXXr1pLkcvtKklq1aqV77rknXzWvWbNGn376qV577TVVq1ZN6enpedrv3LlzWrdunXr37u1s69atm2w2m5YuXeps27Bhgy5evKhx48Zlm3+Sn3+p/1HPnj21a9cuHTp0yNm2ZMkS2e12l9t3vr6+zv+fnp6uX3/9Vc2bN5dhGNqzZ0++z5uVlaX169erS5cuuuuuu5ztlStXVp8+ffTFF18oNTXVZZ+nnnrK5XU+8MADysrKyvE2WX5cH7m6ePFirn1Kly6t9PR0l1tR+RUWFqb27dvnuf9TTz3lMrLxzDPPyNvbW59++qnbNeTFp59+qkqVKrm8H4sXL66RI0cqLS1NW7Zscenfs2dP5wie9PvPRZIOHz5cqHXCeggzuCMtXLhQ9erVU4kSJVSuXDlVqFBBq1evVkpKiku/AQMGaNu2bc4/asuWLdPVq1fVv39/Z5+ff/5ZP/zwgypUqOCy3H333ZJ+nyPwR2FhYfmuNzIyUh06dFBMTIyWLVumKVOm6K233rrpfkuWLNHVq1d133336eDBgzp48KDOnz+fLaRdDxx16tTJd2256d69u4oVK+a8VWMYhpYtW+acx3LdsWPHNHDgQJUtW1Z+fn6qUKGCWrVqJUnZfh55cfbsWV26dCnHWy21a9eWw+FQcnKyS3u1atVc1q//Af3zPJL8SktLkyT5+/vn2mfo0KG6++671aFDB1WpUkVPPPFEvudR5fc9VaNGDZd1Pz8/Va5cudAfrz569Khq1KiR7Qmr67el/hweC+vngtsPc2Zwx3nvvfc0cOBAdenSRWPGjFFQUJC8vLwUGxvrMoogSb169dLo0aO1aNEiTZgwQe+9954aNWrk8ofS4XCobt26mjFjRo7n++NjuZLrSIQ7wsPDdd9992nRokUaPnz4DfteDywtWrTIcfvhw4ddRi8KUnBwsB544AEtXbpUEyZM0Pbt23Xs2DHnvBDp91GUhx56SOfPn9fYsWNVq1YtlSpVSidOnNDAgQPz/Qizu7y8vHJsNwzjlo77/fffS5KqV6+ea5+goCDt3btX69at05o1a7RmzRotWLBAAwYMyDYxNje3+p7Kj6ysrCI7V2H9XHD7IczgjvPBBx/orrvu0vLly11uLUyaNClb37JlyyoqKkqLFi1S3759tW3btmwfGhceHq59+/apTZs2bt+Sya/Lly/f9APZjhw5oi+//FLDhw93jnRc53A41L9/fyUkJOjvf/+7wsPDJf3+x/dGf3jz+/p69uypoUOHKjExUUuWLFHJkiXVqVMn5/bvvvtOBw4c0MKFCzVgwABne063XPJ67goVKqhkyZJKTEzMtm3//v0qVqxYtoBZWK5PVr7ZLSAfHx916tRJnTp1ksPh0NChQzV37lxNnDhR1atXL/D31c8//6zIyEjnelpamk6dOqVHHnnE2VamTJlsT8xlZmbq1KlTLm35qS0kJETffvutHA6Hy+jM/v37ndsBd3CbCXec6//a++O/7r7++mt99dVXOfbv37+/fvzxR40ZM0ZeXl7q1auXy/YePXroxIkTmjdvXrZ9L1++nOf5LX927dq1HIfTd+zYoe+++06NGjW64f7XR2Wef/55Pf744y5Ljx491KpVK2efdu3ayd/fX7Gxsbpy5YrLcf54nUqVKpWvWz/dunWTl5eX3n//fS1btkwdO3Z0+XybnH4WhmE4H0v+o+v73eyRdC8vL7Vr106rVq1yuW3yyy+/KCEhQS1btnS5zVVYEhIS9O9//1vNmjW74ZNn586dc1kvVqyY6tWrJ0nOwJrX155Xb7/9tq5evepcnz17tq5du+byYYrh4eHaunVrtv3+PDKTn9oeeeQRnT592uUpsWvXrunNN9+Un59fttAN5BUjM7gtvfPOOznOOxg1apQ6duyo5cuXq2vXroqKitKRI0c0Z84c3XPPPc45Dn8UFRWlcuXKOed7BAUFuWzv37+/li5dqqefflqbNm1SixYtlJWVpf3792vp0qXOz//Ir7S0NFWtWlU9e/bUvffeq1KlSum7777TggULFBgYqIkTJ95w/0WLFqlBgwa5jkJ07txZI0aM0O7du3X//fdr5syZ+stf/qLGjRurT58+KlOmjPbt26dLly45b3c0bNhQS5YsUUxMjBo3biw/Pz+XkZY/CwoKUmRkpGbMmKGLFy+qZ8+eLttr1aql8PBwPffcczpx4oQCAgL04Ycf5hjiGjZsKEkaOXKk2rdvn2OwvO7ll1/Whg0b1LJlSw0dOlTe3t6aO3euMjIyNH369BteN3d88MEH8vPzU2ZmpvMTgLdt26b69es7Hy/PzV/+8hedP39erVu3VpUqVXT06FG9+eabatCggXMuSYMGDeTl5aVp06YpJSVFdrtdrVu3zvZezKvMzEy1adNGPXr0UGJiov71r3+pZcuW6ty5s0tdTz/9tLp166aHHnpI+/bt07p161w+HDC/tT311FOaO3euBg4cqF27dik0NFQffPCBc8TzRnOLgBsy70EqoOBdf/Q0tyU5OdlwOBzGK6+8YoSEhBh2u9247777jE8++STbI7N/NHToUEOSkZCQkOP2zMxMY9q0aca9995r2O12o0yZMkbDhg2NKVOmGCkpKc5+koxhw4bl6bVkZGQYo0aNMurVq2cEBAQYxYsXN0JCQozBgwcbR44cueG+u3btMiQZEydOzLVPUlKSIckYPXq0s+2jjz4ymjdvbvj6+hoBAQFGkyZNjPfff9+5PS0tzejTp49RunRpQ5LzeuX0aPZ18+bNMyQZ/v7+2R77NgzD+PHHH422bdsafn5+Rvny5Y0nn3zS2LdvX7bjXbt2zRgxYoRRoUIFw2azuTymrRweI969e7fRvn17w8/PzyhZsqQRGRlpfPnlly59cnuUf9OmTbk+bvxH1x/Nvr6UKFHCqFKlitGxY0fjnXfeMa5cuZJtnz+/zz744AOjXbt2RlBQkOHj42NUq1bNGDJkiHHq1Kls1/Guu+4yvLy8XGoLCQkxoqKicqwvt0ezt2zZYjz11FNGmTJlDD8/P6Nv377GuXPnXPbNysoyxo4da5QvX94oWbKk0b59e+PgwYPZjnmj2v78aLZhGMYvv/xiDBo0yChfvrzh4+Nj1K1bN9v75vr76Z///Ge215TTzxqwGQYzqYCbGT16tObPn6/Tp0+rZMmSZpcDAPgD5swAN3HlyhW999576tatG0EGADwQc2aAXJw5c0b//e9/9cEHH+jcuXPZPmodAOAZCDNALn788Uf17dtXQUFBeuONN9SgQQOzSwIA5IA5MwAAwNKYMwMAACyNMAMAACzttp8z43A4dPLkSfn7+xfZR80DAIBbYxiGLl68qODg4GxfTvpnt32YOXnyZJF9DwsAAChYycnJqlKlyg373PZh5vrHYycnJxfJ97EAAIBbl5qaqqpVq+bpay5u+zBz/dZSQEAAYQYAAIvJyxQRJgADAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABLI8wAAABL8za7AADITei41TftkzQ1qggqAeDJGJkBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWRpgBAACWZmqY2bp1qzp16qTg4GDZbDatXLkyW5+ffvpJnTt3VmBgoEqVKqXGjRvr2LFjRV8sAADwSKaGmfT0dNWvX1+zZs3KcfuhQ4fUsmVL1apVS5s3b9a3336riRMnqkSJEkVcKQAA8FTeZp68Q4cO6tChQ67b//a3v+mRRx7R9OnTnW3h4eFFURoAALAIj50z43A4tHr1at19991q3769goKC1LRp0xxvRf1RRkaGUlNTXRYAAHD78tgwc+bMGaWlpWnq1Kl6+OGHtX79enXt2lWPPfaYtmzZkut+sbGxCgwMdC5Vq1YtwqoBAEBR89gw43A4JEmPPvqoRo8erQYNGmjcuHHq2LGj5syZk+t+48ePV0pKinNJTk4uqpIBAIAJTJ0zcyPly5eXt7e37rnnHpf22rVr64svvsh1P7vdLrvdXtjlAQAAD+GxIzM+Pj5q3LixEhMTXdoPHDigkJAQk6oCAACextSRmbS0NB08eNC5fuTIEe3du1dly5ZVtWrVNGbMGPXs2VMPPvigIiMjtXbtWn388cfavHmzeUUDAACPYmqY2blzpyIjI53rMTExkqTo6GjFx8era9eumjNnjmJjYzVy5EjVrFlTH374oVq2bGlWyQAAwMOYGmYiIiJkGMYN+zzxxBN64okniqgiAABgNR47ZwYAACAvCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSCDMAAMDSTA0zW7duVadOnRQcHCybzaaVK1fm2vfpp5+WzWZTXFxckdUHAAA8n6lhJj09XfXr19esWbNu2G/FihXavn27goODi6gyAABgFd5mnrxDhw7q0KHDDfucOHFCI0aM0Lp16xQVFVVElQEAAKswNczcjMPhUP/+/TVmzBjde++9edonIyNDGRkZzvXU1NTCKg8AAHgAjw4z06ZNk7e3t0aOHJnnfWJjYzVlypRCrAooWqHjVt+0T9JURi0B3Lk89mmmXbt26fXXX1d8fLxsNlue9xs/frxSUlKcS3JyciFWCQAAzOaxYebzzz/XmTNnVK1aNXl7e8vb21tHjx7VX//6V4WGhua6n91uV0BAgMsCAABuXx57m6l///5q27atS1v79u3Vv39/DRo0yKSqAACApzE1zKSlpengwYPO9SNHjmjv3r0qW7asqlWrpnLlyrn0L168uCpVqqSaNWsWdakAAMBDmRpmdu7cqcjISOd6TEyMJCk6Olrx8fEmVQUAAKzE1DATEREhwzDy3D8pKanwigEAAJbksROAAQAA8oIwAwAALI0wAwAALI0wAwAALI0wAwAALI0wAwAALI0wAwAALI0wAwAALI0wAwAALI0wAwAALI0wAwAALI0wAwAALI0wAwAALI0wAwAALM3b7AIA4FaEjlt90z5JU6OKoBIAZmFkBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWBphBgAAWJqpYWbr1q3q1KmTgoODZbPZtHLlSue2q1evauzYsapbt65KlSql4OBgDRgwQCdPnjSvYAAA4HFMDTPp6emqX7++Zs2alW3bpUuXtHv3bk2cOFG7d+/W8uXLlZiYqM6dO5tQKQAA8FTeZp68Q4cO6tChQ47bAgMDtWHDBpe2t956S02aNNGxY8dUrVq1oigRAAB4OFPDTH6lpKTIZrOpdOnSufbJyMhQRkaGcz01NbUIKgMAAGaxTJi5cuWKxo4dq969eysgICDXfrGxsZoyZUoRVgbAHaHjVnvUuZKmRhXZufKioOoB7gSWeJrp6tWr6tGjhwzD0OzZs2/Yd/z48UpJSXEuycnJRVQlAAAwg8ePzFwPMkePHtVnn312w1EZSbLb7bLb7UVUHQAAMJtHh5nrQebnn3/Wpk2bVK5cObNLAgAAHsbUMJOWlqaDBw86148cOaK9e/eqbNmyqly5sh5//HHt3r1bn3zyibKysnT69GlJUtmyZeXj42NW2QAAwIOYGmZ27typyMhI53pMTIwkKTo6WpMnT9ZHH30kSWrQoIHLfps2bVJERERRlQkAADyYqWEmIiJChmHkuv1G2wAAACSLPM0EAACQG8IMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNMIMAACwNG+zCwBuV6HjVt+0T9LUqCKoBABub4zMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAASyPMAAAAS3MrzBw+fLig6wAAAHCLW2GmevXqioyM1HvvvacrV64UdE0AAAB55laY2b17t+rVq6eYmBhVqlRJQ4YM0Y4dOwq6NgAAgJtyK8w0aNBAr7/+uk6ePKl33nlHp06dUsuWLVWnTh3NmDFDZ8+eLeg6AQAAcnRLE4C9vb312GOPadmyZZo2bZoOHjyo5557TlWrVtWAAQN06tSpgqoTAAAgR7cUZnbu3KmhQ4eqcuXKmjFjhp577jkdOnRIGzZs0MmTJ/Xoo48WVJ0AAAA5civMzJgxQ3Xr1lXz5s118uRJvfvuuzp69KhefvllhYWF6YEHHlB8fLx27959w+Ns3bpVnTp1UnBwsGw2m1auXOmy3TAMvfDCC6pcubJ8fX3Vtm1b/fzzz+6UDAAAblNuhZnZs2erT58+Onr0qFauXKmOHTuqWDHXQwUFBWn+/Pk3PE56errq16+vWbNm5bh9+vTpeuONNzRnzhx9/fXXKlWqlNq3b88TVAAAwMnbnZ3yMjri4+Oj6OjoG/bp0KGDOnTokOM2wzAUFxenv//9787bVe+++64qVqyolStXqlevXvkvHAAA3HbcGplZsGCBli1blq192bJlWrhw4S0XJUlHjhzR6dOn1bZtW2dbYGCgmjZtqq+++qpAzgEAAKzPrTATGxur8uXLZ2sPCgrSK6+8cstFSdLp06clSRUrVnRpr1ixonNbTjIyMpSamuqyAACA25dbt5mOHTumsLCwbO0hISE6duzYLRd1K2JjYzVlyhRTawDyKnTcarNLgIfKy3sjaWpUkR0H8GRujcwEBQXp22+/zda+b98+lStX7paLkqRKlSpJkn755ReX9l9++cW5LSfjx49XSkqKc0lOTi6QegAAgGdyK8z07t1bI0eO1KZNm5SVlaWsrCx99tlnGjVqVIFNzA0LC1OlSpW0ceNGZ1tqaqq+/vprNWvWLNf97Ha7AgICXBYAAHD7cus200svvaSkpCS1adNG3t6/H8LhcGjAgAH5mjOTlpamgwcPOtePHDmivXv3qmzZsqpWrZqeffZZvfzyy6pRo4bCwsI0ceJEBQcHq0uXLu6UDQAAbkNuhRkfHx8tWbJEL730kvbt2ydfX1/VrVtXISEh+TrOzp07FRkZ6VyPiYmRJEVHRys+Pl7PP/+80tPT9dRTT+nChQtq2bKl1q5dqxIlSrhTNgAAuA25FWauu/vuu3X33Xe7vX9ERIQMw8h1u81m04svvqgXX3zR7XMAAIDbm1thJisrS/Hx8dq4caPOnDkjh8Phsv2zzz4rkOIAAABuxq0wM2rUKMXHxysqKkp16tSRzWYr6LoAAADyxK0ws3jxYi1dulSPPPJIQdcDAACQL249mu3j46Pq1asXdC0AAAD55laY+etf/6rXX3/9hpN3AQAAioJbt5m++OILbdq0SWvWrNG9996r4sWLu2xfvnx5gRQHAABwM26FmdKlS6tr164FXQsAAEC+uRVmFixYUNB1AAAAuMWtOTOSdO3aNf33v//V3LlzdfHiRUnSyZMnlZaWVmDFAQAA3IxbIzNHjx7Vww8/rGPHjikjI0MPPfSQ/P39NW3aNGVkZGjOnDkFXScAAECO3BqZGTVqlBo1aqTffvtNvr6+zvauXbu6fMs1AABAYXNrZObzzz/Xl19+KR8fH5f20NBQnThxokAKAwAAyAu3RmYcDoeysrKytR8/flz+/v63XBQAAEBeuRVm2rVrp7i4OOe6zWZTWlqaJk2axFccAACAIuXWbabXXntN7du31z333KMrV66oT58++vnnn1W+fHm9//77BV0jAA8SOm71TfskTY0qgkpQlPi5w5O5FWaqVKmiffv2afHixfr222+VlpamwYMHq2/fvi4TggEAAAqbW2FGkry9vdWvX7+CrAUAACDf3Aoz77777g23DxgwwK1iAAAA8sutMDNq1CiX9atXr+rSpUvy8fFRyZIlCTMAAKDIuPU002+//eaypKWlKTExUS1btmQCMAAAKFJufzfTn9WoUUNTp07NNmoDAABQmAoszEi/Two+efJkQR4SAADghtyaM/PRRx+5rBuGoVOnTumtt95SixYtCqQwAACAvHArzHTp0sVl3WazqUKFCmrdurVee+21gqgLAAAgT9wKMw6Ho6DrAAAAcEuBzpkBAAAoam6NzMTExOS574wZM9w5BQAAQJ64FWb27NmjPXv26OrVq6pZs6Yk6cCBA/Ly8tL999/v7Gez2QqmSgAAgFy4FWY6deokf39/LVy4UGXKlJH0+wfpDRo0SA888ID++te/FmiRAAAAuXFrzsxrr72m2NhYZ5CRpDJlyujll1/maSYAAFCk3AozqampOnv2bLb2s2fP6uLFi7dcFAAAQF65FWa6du2qQYMGafny5Tp+/LiOHz+uDz/8UIMHD9Zjjz1WYMVlZWVp4sSJCgsLk6+vr8LDw/XSSy/JMIwCOwcAALA2t+bMzJkzR88995z69Omjq1ev/n4gb28NHjxY//znPwusuGnTpmn27NlauHCh7r33Xu3cuVODBg1SYGCgRo4cWWDnAQAA1uVWmClZsqT+9a9/6Z///KcOHTokSQoPD1epUqUKtLgvv/xSjz76qKKioiRJoaGhev/997Vjx44CPQ8AALCuW/rQvFOnTunUqVOqUaOGSpUqVeC3f5o3b66NGzfqwIEDkqR9+/bpiy++UIcOHXLdJyMjQ6mpqS4LAAC4fbk1MnPu3Dn16NFDmzZtks1m088//6y77rpLgwcPVpkyZQrsiaZx48YpNTVVtWrVkpeXl7KysvSPf/xDffv2zXWf2NhYTZkypUDOD+QmdNxqs0twkZd6kqZGFUElv/O064M7k6f9d4HC49bIzOjRo1W8eHEdO3ZMJUuWdLb37NlTa9euLbDili5dqkWLFikhIUG7d+/WwoUL9eqrr2rhwoW57jN+/HilpKQ4l+Tk5AKrBwAAeB63RmbWr1+vdevWqUqVKi7tNWrU0NGjRwukMEkaM2aMxo0bp169ekmS6tatq6NHjyo2NlbR0dE57mO322W32wusBgAA4NncGplJT093GZG57vz58wUaJC5duqRixVxL9PLy4lu7AQCAk1th5oEHHtC7777rXLfZbHI4HJo+fboiIyMLrLhOnTrpH//4h1avXq2kpCStWLFCM2bMUNeuXQvsHAAAwNrcus00ffp0tWnTRjt37lRmZqaef/55/fDDDzp//ry2bdtWYMW9+eabmjhxooYOHaozZ84oODhYQ4YM0QsvvFBg5wAAANbmVpipU6eODhw4oLfeekv+/v5KS0vTY489pmHDhqly5coFVpy/v7/i4uIUFxdXYMcEAAC3l3yHmatXr+rhhx/WnDlz9Le//a0wagIAAMizfM+ZKV68uL799tvCqAUAACDf3JoA3K9fP82fP7+gawEAAMg3t+bMXLt2Te+8847++9//qmHDhtm+k2nGjBkFUhwAAMDN5CvMHD58WKGhofr+++91//33S5Lze5Ous9lsBVcdAADATeQrzNSoUUOnTp3Spk2bJP3+9QVvvPGGKlasWCjFAQAA3Ey+5sz8+Vux16xZo/T09AItCAAAID/cmgB83Z/DDQAAQFHLV5ix2WzZ5sQwRwYAAJgpX3NmDMPQwIEDnV8meeXKFT399NPZnmZavnx5wVUIAABwA/kKM9HR0S7r/fr1K9BiAAAA8itfYWbBggWFVQcAAIBbbmkCMAAAgNkIMwAAwNLc+joDwKpCx62+aZ+kqVFFUIlnysv1gefwtJ9XUf735WmvHeZiZAYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFgaYQYAAFiax4eZEydOqF+/fipXrpx8fX1Vt25d7dy50+yyAACAh/A2u4Ab+e2339SiRQtFRkZqzZo1qlChgn7++WeVKVPG7NIAAICH8OgwM23aNFWtWlULFixwtoWFhZlYEQAA8DQefZvpo48+UqNGjdS9e3cFBQXpvvvu07x58264T0ZGhlJTU10WAABw+/LokZnDhw9r9uzZiomJ0YQJE/TNN99o5MiR8vHxUXR0dI77xMbGasqUKUVc6Z0pdNzqm/ZJmhpVBJUAty4v72fcOn5voDB49MiMw+HQ/fffr1deeUX33XefnnrqKT355JOaM2dOrvuMHz9eKSkpziU5ObkIKwYAAEXNo8NM5cqVdc8997i01a5dW8eOHct1H7vdroCAAJcFAADcvjw6zLRo0UKJiYkubQcOHFBISIhJFQEAAE/j0WFm9OjR2r59u1555RUdPHhQCQkJevvttzVs2DCzSwMAAB7Co8NM48aNtWLFCr3//vuqU6eOXnrpJcXFxalv375mlwYAADyERz/NJEkdO3ZUx44dzS4DAAB4KI8emQEAALgZwgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0wgwAALA0b7MLAACYK3TcarNLcOFp9cDzMTIDAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAszVJhZurUqbLZbHr22WfNLgUAAHgIy4SZb775RnPnzlW9evXMLgUAAHgQS4SZtLQ09e3bV/PmzVOZMmXMLgcAAHgQS4SZYcOGKSoqSm3btr1p34yMDKWmprosAADg9uVtdgE3s3jxYu3evVvffPNNnvrHxsZqypQphVwVClLouNUFcpykqVEFcpzbVUFdZ+B2wu+f24NHj8wkJydr1KhRWrRokUqUKJGnfcaPH6+UlBTnkpycXMhVAgAAM3n0yMyuXbt05swZ3X///c62rKwsbd26VW+99ZYyMjLk5eXlso/dbpfdbi/qUgEAgEk8Osy0adNG3333nUvboEGDVKtWLY0dOzZbkAEAAHcejw4z/v7+qlOnjktbqVKlVK5cuWztAADgzuTRc2YAAABuxqNHZnKyefNms0sAAAAehJEZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgaYQZAABgad5mF4CCFTpu9U37JE2NKpDj3K7u5NcO4PZQlH8L8nKcwsbIDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDTCDAAAsDSPDzOxsbFq3Lix/P39FRQUpC5duigxMdHssgAAgIfw+DCzZcsWDRs2TNu3b9eGDRt09epVtWvXTunp6WaXBgAAPIC32QXczNq1a13W4+PjFRQUpF27dunBBx80qSoAAOApPD7M/FlKSookqWzZsjluz8jIUEZGhnM9NTW1SOoCAADmsFSYcTgcevbZZ9WiRQvVqVMnxz6xsbGaMmVKEVeG3ISOW212CQBQ6PLyuy5palSBHAfZefycmT8aNmyYvv/+ey1evDjXPuPHj1dKSopzSU5OLsIKAQBAUbPMyMzw4cP1ySefaOvWrapSpUqu/ex2u+x2exFWBgAAzOTxYcYwDI0YMUIrVqzQ5s2bFRYWZnZJAADAg3h8mBk2bJgSEhK0atUq+fv76/Tp05KkwMBA+fr6mlwdAAAwm8fPmZk9e7ZSUlIUERGhypUrO5clS5aYXRoAAPAAHj8yYxiG2SUAAAAP5vEjMwAAADdCmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJZGmAEAAJbmbXYBVhc6bvVN+yRNjSqycxXlcTzN7fq6ANwe+B1VeBiZAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlkaYAQAAlmaJMDNr1iyFhoaqRIkSatq0qXbs2GF2SQAAwEN4fJhZsmSJYmJiNGnSJO3evVv169dX+/btdebMGbNLAwAAHsDjw8yMGTP05JNPatCgQbrnnns0Z84clSxZUu+8847ZpQEAAA/g0WEmMzNTu3btUtu2bZ1txYoVU9u2bfXVV1+ZWBkAAPAU3mYXcCO//vqrsrKyVLFiRZf2ihUrav/+/Tnuk5GRoYyMDOd6SkqKJCk1NbVQanRkXLppn4I6d17OBQBAXuTlb1NR/o3L7biGYdy0r0eHGXfExsZqypQp2dqrVq1qQjW/C4wz7dQAAOSooP42FfbfuIsXLyowMPCGfTw6zJQvX15eXl765ZdfXNp/+eUXVapUKcd9xo8fr5iYGOe6w+HQ+fPnVa5cOdlstkKtNz9SU1NVtWpVJScnKyAgwOxyPALXxBXXwxXXwxXXIzuuiSurXw/DMHTx4kUFBwfftK9HhxkfHx81bNhQGzduVJcuXST9Hk42btyo4cOH57iP3W6X3W53aStdunQhV+q+gIAAS77JChPXxBXXwxXXwxXXIzuuiSsrX4+bjchc59FhRpJiYmIUHR2tRo0aqUmTJoqLi1N6eroGDRpkdmkAAMADeHyY6dmzp86ePasXXnhBp0+fVoMGDbR27dpsk4IBAMCdyePDjCQNHz4819tKVmW32zVp0qRst8TuZFwTV1wPV1wPV1yP7Lgmru6k62Ez8vLMEwAAgIfy6A/NAwAAuBnCDAAAsDTCDAAAsDTCDAAAsDTCjIfo3LmzqlWrphIlSqhy5crq37+/Tp48aXZZpkhKStLgwYMVFhYmX19fhYeHa9KkScrMzDS7NNP84x//UPPmzVWyZEmP/hDIwjRr1iyFhoaqRIkSatq0qXbs2GF2SabYunWrOnXqpODgYNlsNq1cudLskkwVGxurxo0by9/fX0FBQerSpYsSExPNLss0s2fPVr169ZwflNesWTOtWbPG7LIKHWHGQ0RGRmrp0qVKTEzUhx9+qEOHDunxxx83uyxT7N+/Xw6HQ3PnztUPP/ygmTNnas6cOZowYYLZpZkmMzNT3bt31zPPPGN2KaZYsmSJYmJiNGnSJO3evVv169dX+/btdebMGbNLK3Lp6emqX7++Zs2aZXYpHmHLli0aNmyYtm/frg0bNujq1atq166d0tPTzS7NFFWqVNHUqVO1a9cu7dy5U61bt9ajjz6qH374wezSCpcBj7Rq1SrDZrMZmZmZZpfiEaZPn26EhYWZXYbpFixYYAQGBppdRpFr0qSJMWzYMOd6VlaWERwcbMTGxppYlfkkGStWrDC7DI9y5swZQ5KxZcsWs0vxGGXKlDH+/e9/m11GoWJkxgOdP39eixYtUvPmzVW8eHGzy/EIKSkpKlu2rNllwASZmZnatWuX2rZt62wrVqyY2rZtq6+++srEyuCJUlJSJInfF5KysrK0ePFipaenq1mzZmaXU6gIMx5k7NixKlWqlMqVK6djx45p1apVZpfkEQ4ePKg333xTQ4YMMbsUmODXX39VVlZWtq8wqVixok6fPm1SVfBEDodDzz77rFq0aKE6deqYXY5pvvvuO/n5+clut+vpp5/WihUrdM8995hdVqEizBSicePGyWaz3XDZv3+/s/+YMWO0Z88erV+/Xl5eXhowYICM2+gDmvN7PSTpxIkTevjhh9W9e3c9+eSTJlVeONy5HgByN2zYMH3//fdavHix2aWYqmbNmtq7d6++/vprPfPMM4qOjtaPP/5odlmFiq8zKERnz57VuXPnbtjnrrvuko+PT7b248ePq2rVqvryyy9vm+HB/F6PkydPKiIiQv/7v/+r+Ph4FSt2e2Vvd94f8fHxevbZZ3XhwoVCrs5zZGZmqmTJkvrggw/UpUsXZ3t0dLQuXLhwR49g2mw2rVixwuW63KmGDx+uVatWaevWrQoLCzO7HI/Stm1bhYeHa+7cuWaXUmgs8UWTVlWhQgVVqFDBrX0dDockKSMjoyBLMlV+rseJEycUGRmphg0basGCBbddkJFu7f1xJ/Hx8VHDhg21ceNG5x9th8OhjRs33nZfQIv8MwxDI0aM0IoVK7R582aCTA4cDsdt9bckJ4QZD/D111/rm2++UcuWLVWmTBkdOnRIEydOVHh4+G0zKpMfJ06cUEREhEJCQvTqq6/q7Nmzzm2VKlUysTLzHDt2TOfPn9exY8eUlZWlvXv3SpKqV68uPz8/c4srAjExMYqOjlajRo3UpEkTxcXFKT09XYMGDTK7tCKXlpamgwcPOtePHDmivXv3qmzZsqpWrZqJlZlj2LBhSkhI0KpVq+Tv7++cRxUYGChfX1+Tqyt648ePV4cOHVStWjVdvHhRCQkJ2rx5s9atW2d2aYXL3IepYBiG8e233xqRkZFG2bJlDbvdboSGhhpPP/20cfz4cbNLM8WCBQsMSTkud6ro6Ogcr8emTZvMLq3IvPnmm0a1atUMHx8fo0mTJsb27dvNLskUmzZtyvG9EB0dbXZppsjtd8WCBQvMLs0UTzzxhBESEmL4+PgYFSpUMNq0aWOsX7/e7LIKHXNmAACApd1+ExEAAMAdhTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADwGPEx8erdOnShX6epKQk2Ww25ycpA7A2wgyAW/LVV1/Jy8tLUVFR+dovNDRUcXFxLm09e/bUgQMHCrA6aeDAgdm+iLFq1ao6deqU6tSpU6DnAmAOwgyAWzJ//nyNGDFCW7du1cmTJ2/pWL6+vgoKCiqgynLn5eWlSpUqydubr6cDbgeEGQBuS0tL05IlS/TMM88oKipK8fHxLts//vhjNW7cWCVKlFD58uXVtWtXSVJERISOHj2q0aNHy2azyWazSXK9zXTgwAHZbDbt37/f5ZgzZ85UeHi4JCkrK0uDBw9WWFiYfH19VbNmTb3++uvOvpMnT9bChQu1atUq53k2b96c422mLVu2qEmTJrLb7apcubLGjRuna9euObdHRERo5MiRev7551W2bFlVqlRJkydPLqArCeBWEGYAuG3p0qWqVauWatasqX79+umdd97R9a97W716tbp27apHHnlEe/bs0caNG9WkSRNJ0vLly1WlShW9+OKLOnXqlE6dOpXt2HfffbcaNWqkRYsWubQvWrRIffr0kSQ5HA5VqVJFy5Yt048//qgXXnhBEyZM0NKlSyVJzz33nHr06KGHH37YeZ7mzZtnO9eJEyf0yCOPqHHjxtq3b59mz56t+fPn6+WXX3bpt3DhQpUqVUpff/21pk+frhdffFEbNmy49QsJ4NaY/EWXACysefPmRlxcnGEYhnH16lWjfPnyzm/ybtasmdG3b99c9w0JCTFmzpzp0rZgwQIjMDDQuT5z5kwjPDzcuZ6YmGhIMn766adcjzts2DCjW7duzvXo6Gjj0Ucfdelz5MgRQ5KxZ88ewzAMY8KECUbNmjUNh8Ph7DNr1izDz8/PyMrKMgzDMFq1amW0bNnS5TiNGzc2xo4dm2stAIoGIzMA3JKYmKgdO3aod+/ekiRvb2/17NlT8+fPlyTt3btXbdq0uaVz9OrVS0lJSdq+fbuk30dl7r//ftWqVcvZZ9asWWrYsKEqVKggPz8/vf322zp27Fi+zvPTTz+pWbNmzttdktSiRQulpaXp+PHjzrZ69eq57Fe5cmWdOXPGnZcGoAARZgC4Zf78+bp27ZqCg4Pl7e0tb29vzZ49Wx9++KFSUlLk6+t7y+eoVKmSWrdurYSEBElSQkKC+vbt69y+ePFiPffccxo8eLDWr1+vvXv3atCgQcrMzLzlc+ekePHiLus2m00Oh6NQzgUg7wgzAPLt2rVrevfdd/Xaa69p7969zmXfvn0KDg7W+++/r3r16mnjxo25HsPHx0dZWVk3PVffvn21ZMkSffXVVzp8+LB69erl3LZt2zY1b95cQ4cO1X333afq1avr0KFD+T5P7dq19dVXXznn+1w/tr+/v6pUqXLTGgGYizADIN8++eQT/fbbbxo8eLDq1KnjsnTr1k3z58/XpEmT9P7772vSpEn66aef9N1332natGnOY4SGhmrr1q06ceKEfv3111zP9dhjj+nixYt65plnFBkZqeDgYOe2GjVqaOfOnVq3bp0OHDigiRMn6ptvvnHZPzQ0VN9++60SExP166+/6urVq9nOMXToUCUnJ2vEiBHav3+/Vq1apUmTJikmJkbFivFrEvB0/FcKIN/mz5+vtm3bKjAwMNu2bt26aefOnSpbtqyWLVumjz76SA0aNFDr1q21Y8cOZ78XX3xRSUlJCg8PV4UKFXI9l7+/vzp16qR9+/a53GKSpCFDhuixxx5Tz5491bRpU507d05Dhw516fPkk0+qZs2aatSokSpUqKBt27ZlO8f//M//6NNPP9WOHTtUv359Pf300xo8eLD+/ve/5/fSADCBzfjjuCoAAIDFMDIDAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAsjTADAAAs7f8A8JrHDRwVm2sAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "1/1 [==============================] - 0s 277ms/step\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABExElEQVR4nO3deVgVdf//8ddRZFEBVzY1IDVccY0CK9dyIRW9NTULM7Puwtza1Ba3CsvbrTvTvG8T+7qhltptpiJumfuCqZlLKm6ALQaKiQrz+8PL8+sIKOCRA+PzcV1zXc5nPjPznjlweDnzmXMshmEYAgAAMIkSji4AAADAngg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3ML2YmBhZLBbt3LnT0aWgCLBYLBo1apRD9h0QEKDnnnvOIfvOr1GjRslisRTKvlq0aKEWLVpY59evXy+LxaLFixcXyv6fe+45BQQEFMq+UDgIN7hjN8JDbtPWrVsdXeIdSUpK0rBhw9SyZUu5u7vLYrFo/fr1d7TNwn7zvtuWLFmitm3bys/PTy4uLqpataq6deum/fv353tbISEhslgsmjZtWoHrWbFihcMCzObNmzVq1Cj9+eefDtl/Tm7+HXV1dZWfn5/atm2rTz75RBcuXLDLfs6ePatRo0YpISHBLtuzp6JcG+zPydEFwDzGjBmjwMDAbO01atRwQDX2c+jQIX300UeqWbOm6tevry1btji6pCJn3759Kl++vAYNGqRKlSopOTlZX3zxhUJCQrRlyxY1aNAgT9s5cuSIduzYoYCAAM2dO1cvv/xygepZsWKFpk6dmmPA+euvv+TkdPfe+jZv3qzRo0frueeeU7ly5WyWHTp0SCVKOO7/lDd+R69evark5GStX79egwcP1sSJE/XNN98oODjY2vedd97RsGHD8rX9s2fPavTo0QoICFDDhg3zvN7q1avztZ+CuFVt//nPf5SVlXXXa0DhIdzAbtq3b6+mTZs6ugy7a9KkiX7//XdVqFBBixcvVvfu3R1dUqEzDEOXL1+Wm5tbjsvfe++9bG0vvPCCqlatqmnTpmn69Ol52s+cOXPk5eWlCRMmqFu3bjpx4oTdbxe4urradXv54eLi4rB9S9l/R4cPH661a9fqySefVKdOnXTw4EHra+zk5HRXQ6AkXbp0SaVLl5azs/Nd3c/tlCpVyqH7h/1xWwqF5sSJE7JYLPrXv/6lSZMmyd/fX25ubmrevHmOty/Wrl2rRx99VGXKlFG5cuXUuXNnHTx4MFu/M2fOqF+/ftZbIoGBgXr55Zd15coVm34ZGRkaOnSoKleurDJlyqhLly769ddfb1u3u7u7KlSoUPADvwP/+te/FBYWpooVK8rNzU1NmjTJdiurefPmuV4ZCQoKUtu2ba3zWVlZmjx5surWrStXV1d5e3vrpZde0vnz523WCwgI0JNPPqlVq1apadOmcnNz0+eff56v2r28vFS6dOl83Z6ZN2+eunXrpieffFKenp6aN29ejv22bdumDh06qHz58ipTpoyCg4M1ZcoUSdfHT0ydOlWSbG7F3PD3MTeLFy+WxWLRhg0bsu3j888/l8Visf5s/vjjj3ruued0//33y9XVVT4+Pnr++ef1+++/W9cZNWqU3njjDUlSYGCgdd8nTpyQlPOYm2PHjql79+6qUKGCSpcurYcffljffvutTZ8btzEXLlyoDz74QFWrVpWrq6tat26to0eP5vHs5qxVq1Z69913lZiYqDlz5tgcy81jbuLi4vTII4+oXLlyKlu2rIKCgjRixAhrjQ8++KAkqW/fvtZjj4mJkXR9XE29evW0a9cuPfbYYypdurR13ZvH3NyQmZmpESNGyMfHR2XKlFGnTp106tQpmz65jWP6+zZvV1tOY27S09P12muvqVq1anJxcVFQUJD+9a9/yTAMm34Wi0UDBgzQ0qVLVa9ePbm4uKhu3bpauXJlzicchYIrN7Cb1NRU/fbbbzZtFotFFStWtGn78ssvdeHCBUVFReny5cuaMmWKWrVqpX379snb21uStGbNGrVv317333+/Ro0apb/++kv//ve/1axZM+3evdv6RnT27FmFhITozz//1IsvvqhatWrpzJkzWrx4sS5dumTzP8JXX31V5cuX18iRI3XixAlNnjxZAwYMUGxs7N09MXdgypQp6tSpk3r37q0rV65owYIF6t69u5YvX67w8HBJ0rPPPqv+/ftr//79qlevnnXdHTt26PDhw3rnnXesbS+99JJiYmLUt29fDRw4UMePH9enn36qPXv26IcffrD5H+yhQ4fUq1cvvfTSS+rfv7+CgoJuW++ff/5pveUxefJkpaWlqXXr1nk61m3btuno0aOaNWuWnJ2d1bVrV82dO9f6B/CGuLg4Pfnkk/L19dWgQYPk4+OjgwcPavny5Ro0aJBeeuklnT17VnFxcfq///u/W+4zPDxcZcuW1cKFC9W8eXObZbGxsapbt671nMbFxenYsWPq27evfHx8dODAAc2YMUMHDhzQ1q1bZbFY1LVrVx0+fFjz58/XpEmTVKlSJUlS5cqVc9x/SkqKwsLCdOnSJQ0cOFAVK1bU7Nmz1alTJy1evFhdunSx6T9u3DiVKFFCr7/+ulJTU/Xxxx+rd+/e2rZtW57OcW6effZZjRgxQqtXr1b//v1z7HPgwAE9+eSTCg4O1pgxY+Ti4qKjR4/qhx9+kCTVrl1bY8aM0XvvvacXX3xRjz76qCQpLCzMuo3ff/9d7du3V8+ePfXMM89Yf99z88EHH8hiseitt97SuXPnNHnyZLVp00YJCQm5XkXMSV5q+zvDMNSpUyetW7dO/fr1U8OGDbVq1Sq98cYbOnPmjCZNmmTTf9OmTfr666/1yiuvyN3dXZ988on+8Y9/6OTJk9ne/1BIDOAOzZo1y5CU4+Ti4mLtd/z4cUOS4ebmZpw+fdravm3bNkOSMWTIEGtbw4YNDS8vL+P333+3tu3du9coUaKEERkZaW2LjIw0SpQoYezYsSNbXVlZWTb1tWnTxtpmGIYxZMgQo2TJksaff/6Z52NdtGiRIclYt25dntfJybp16wxJxqJFi27Z79KlSzbzV65cMerVq2e0atXK2vbnn38arq6uxltvvWXTd+DAgUaZMmWMixcvGoZhGN9//70hyZg7d65Nv5UrV2Zr9/f3NyQZK1euzNdxBQUFWV/7smXLGu+8846RmZmZp3UHDBhgVKtWzfoarV692pBk7Nmzx9rn2rVrRmBgoOHv72+cP3/eZv2/v7ZRUVFGbm9vkoyRI0da53v16mV4eXkZ165ds7YlJSUZJUqUMMaMGWNtu/m1MAzDmD9/viHJ2Lhxo7Vt/PjxhiTj+PHj2fr7+/sbffr0sc4PHjzYkGR8//331rYLFy4YgYGBRkBAgPXc3fh5qV27tpGRkWHtO2XKFEOSsW/fvhyP9YYbvwM5/Z7c4OnpaTRq1Mg6P3LkSJtzOGnSJEOS8euvv+a6jR07dhiSjFmzZmVb1rx5c0OSMX369ByXNW/e3Dp/43irVKlipKWlWdsXLlxoSDKmTJlibbv5nOa2zVvV1qdPH8Pf3986v3TpUkOS8f7779v069atm2GxWIyjR49a2yQZzs7ONm179+41JBn//ve/s+0LhYPbUrCbqVOnKi4uzmb67rvvsvWLiIhQlSpVrPMhISF66KGHtGLFCknXn05KSEjQc889Z3M7KDg4WI8//ri1X1ZWlpYuXaqOHTvmONbn5kvqL774ok3bo48+qszMTCUmJt7Zgd9Ff//f6fnz55WamqpHH31Uu3fvtrZ7enqqc+fOmj9/vvWSeWZmpmJjYxUREaEyZcpIkhYtWiRPT089/vjj+u2336xTkyZNVLZsWa1bt85m34GBgTa3tPJi1qxZWrlypT777DPVrl1bf/31lzIzM2+73rVr1xQbG6sePXpYX6NWrVrJy8tLc+fOtfbbs2ePjh8/rsGDB2cbrFvQx5Z79Oihc+fO2TwBt3jxYmVlZalHjx7Wtr+/FpcvX9Zvv/2mhx9+WJJsXo/8WLFihUJCQvTII49Y28qWLasXX3xRJ06c0E8//WTTv2/fvjZXI29cgTh27FiB9v93ZcuWveVTUzfO97Jlywo8+NbFxUV9+/bNc//IyEi5u7tb57t16yZfX1/re8DdsmLFCpUsWVIDBw60aX/ttddkGEa297U2bdqoevXq1vng4GB5eHjY5XVBwXBbCnYTEhKSpwHFNWvWzNb2wAMPaOHChZJkDRs53QapXbu2Vq1apfT0dF28eFFpaWk2t2Ju5b777rOZL1++vCRlG29SlCxfvlzvv/++EhISlJGRYW2/+Q95ZGSkYmNj9f333+uxxx7TmjVrlJKSomeffdba58iRI0pNTZWXl1eO+zp37pzNfE5Pvt1OaGio9d89e/ZU7dq1JV0fO3Qrq1ev1q+//qqQkBCbMSQtW7bU/Pnz9dFHH6lEiRL65ZdfJCnPr3letGvXTp6enoqNjbXeQouNjVXDhg31wAMPWPv98ccfGj16tBYsWJDtXKWmphZo34mJiXrooYeytd84b4mJiTbHejd/hi9evJjrz4Z0PQT+97//1QsvvKBhw4apdevW6tq1q7p165bnJ8CqVKmSr8HDN79XWCwW1ahRwzqG6W5JTEyUn5+fTbCSbF+Xv7v5dZGuvzZF+b3F7Ag3uGeULFkyx3bjpgGCRcX333+vTp066bHHHtNnn30mX19flSpVSrNmzco20LZt27by9vbWnDlz9Nhjj2nOnDny8fFRmzZtrH2ysrKyXQn5u5vHheRnTENOypcvr1atWmnu3Lm3DTc3anrqqadyXL5hwwa1bNnyjurJjYuLiyIiIrRkyRJ99tlnSklJ0Q8//KAPP/zQpt9TTz2lzZs364033lDDhg1VtmxZZWVlqV27doX2GPHd+hk+ffq0UlNTb/mxDW5ubtq4caPWrVunb7/9VitXrlRsbKxatWql1atX51rbzduwt9yu2GVmZuapJnsobu8t9wLCDQrdkSNHsrUdPnzYOkjY399f0vUBrTf7+eefValSJZUpU0Zubm7y8PAo0AfFFQdfffWVXF1dtWrVKptHiGfNmpWtb8mSJfX0008rJiZGH330kZYuXar+/fvbvOlWr15da9asUbNmze7KH5mc/PXXX7e9qpGenq5ly5apR48e6tatW7blAwcO1Ny5c9WyZUvrpf/9+/fbBLeb5fcWVY8ePTR79mzFx8fr4MGDMgzD5pbU+fPnFR8fr9GjR9s89p7Tz3J+9u3v75/rz/mN5YXhxsDr292GLFGihFq3bq3WrVtr4sSJ+vDDD/X2229r3bp1atOmjd0/0fjm82sYho4ePWrzeTzly5fP8Ym8xMRE3X///db5/L4ua9as0YULF2yu3hT264KCY8wNCt3SpUt15swZ6/z27du1bds2tW/fXpLk6+urhg0bavbs2TZvWvv379fq1avVoUMHSdffaCMiIvS///0vx69WKO7/aypZsqQsFovNmJUTJ05o6dKlOfZ/9tlndf78eb300ku6ePGinnnmGZvlTz31lDIzMzV27Nhs6167du2OPlH35ts0N2qNj4+/7a3KJUuWKD09XVFRUerWrVu26cknn9RXX32ljIwMNW7cWIGBgZo8eXK2ev/+et8YZ5TXY2rTpo0qVKig2NhYxcbGKiQkxOa23I2QePPP1OTJk7NtKz/77tChg7Zv327zwZDp6emaMWOGAgICVKdOnTzVfyfWrl2rsWPHKjAwUL1798613x9//JGt7caH4d24ZZrf8347N56svGHx4sVKSkqyvldI10P71q1bbT76Yfny5dkeGc/v65KZmalPP/3Upn3SpEmyWCw2+0fRxJUb2M13331n/Z/N34WFhdn8D6pGjRp65JFH9PLLLysjI0OTJ09WxYoV9eabb1r7jB8/Xu3bt1doaKj69etnfRTc09PT5lNnP/zwQ61evVrNmzfXiy++qNq1ayspKUmLFi3Spk2bsg06Laj3339f0vXHYaXr/9PdtGmTJNk8aj1q1CiNHj1a69aty/FzO2721Vdf5XjO+vTpo/DwcE2cOFHt2rXT008/rXPnzmnq1KmqUaOGfvzxx2zrNGrUSPXq1dOiRYtUu3ZtNW7c2GZ58+bN9dJLLyk6OloJCQl64oknVKpUKR05ckSLFi3SlClTcrxykhf169dX69at1bBhQ5UvX15HjhzRzJkzdfXqVY0bN+6W686dO1cVK1bM9bHcTp066T//+Y++/fZbde3aVdOmTVPHjh3VsGFD9e3bV76+vvr555914MABrVq1StL1D16Url/1adu2rUqWLKmePXvmWkOpUqXUtWtXLViwQOnp6dluo3l4eOixxx7Txx9/rKtXr6pKlSpavXq1jh8/nm1bN/b99ttvq2fPnipVqpQ6duxo/eP6d8OGDdP8+fPVvn17DRw4UBUqVNDs2bN1/PhxffXVV3b/NOMbv6PXrl1TSkqK1q5dq7i4OPn7++ubb7655QccjhkzRhs3blR4eLj8/f117tw5ffbZZ6patap1QHT16tVVrlw5TZ8+Xe7u7ipTpoweeuihAo3fkqQKFSrokUceUd++fZWSkqLJkyerRo0aNo+rv/DCC1q8eLHatWunp556Sr/88ovmzJljM8A3v7V17NhRLVu21Ntvv60TJ06oQYMGWr16tZYtW6bBgwdn2zaKIEc9pgXzuNWj4Prbo5c3HgUfP368MWHCBKNatWqGi4uL8eijjxp79+7Ntt01a9YYzZo1M9zc3AwPDw+jY8eOxk8//ZStX2JiohEZGWlUrlzZcHFxMe6//34jKirK+shsbo/B3njcNC+Pdd/q+P7utddeMywWi3Hw4MFbbu/GvnObbjwaPHPmTKNmzZqGi4uLUatWLWPWrFnZHtH9u48//tiQZHz44Ye57nvGjBlGkyZNDDc3N8Pd3d2oX7++8eabbxpnz5619vH39zfCw8Nve15uGDlypNG0aVOjfPnyhpOTk+Hn52f07NnT+PHHH2+5XkpKiuHk5GQ8++yzufa5dOmSUbp0aaNLly7Wtk2bNhmPP/644e7ubpQpU8YIDg62eez22rVrxquvvmpUrlzZsFgsNudLNz0KfkNcXJwhybBYLMapU6eyLT99+rTRpUsXo1y5coanp6fRvXt34+zZszlub+zYsUaVKlWMEiVK2DwWntNjy7/88ovRrVs3o1y5coarq6sREhJiLF++3KZPbh8dcON3KqfHm//u5t9RZ2dnw8fHx3j88ceNKVOm2DxufcPNP2fx8fFG586dDT8/P8PZ2dnw8/MzevXqZRw+fNhmvWXLlhl16tQxnJycbGpr3ry5Ubdu3Rzry+1R8Pnz5xvDhw83vLy8DDc3NyM8PNxITEzMtv6ECROMKlWqGC4uLkazZs2MnTt3ZtvmrWq7+VFww7j+SP6QIUMMPz8/o1SpUkbNmjWN8ePH23zkgGFc/3mKiorKVlNuj6ijcFgMo5hfu0exceLECQUGBmr8+PF6/fXXHV3OXRESEiJ/f38tWrTIIfufMmWKhgwZohMnTuT4BAcA3Au4LQXYSVpamvbu3avZs2c7ZP+GYWjmzJlq3rw5wQbAPY1wA9iJh4eHzWfRFJb09HR98803Wrdunfbt26dly5YVeg0AUJQQboBi7tdff9XTTz+tcuXKacSIEerUqZOjSwIAh2LMDQAAMBU+5wYAAJgK4QYAAJjKPTfmJisrS2fPnpW7u7vdPyocAADcHYZh6MKFC/Lz87vtB1zec+Hm7NmzqlatmqPLAAAABXDq1ClVrVr1ln3uuXBz40vQTp06JQ8PDwdXAwAA8iItLU3VqlWz+TLT3Nxz4ebGrSgPDw/CDQAAxUxehpQwoBgAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJgK4QYAAJhKkQk348aNk8Vi0eDBg2/Zb9GiRapVq5ZcXV1Vv359rVixonAKBAAAxUKRCDc7duzQ559/ruDg4Fv227x5s3r16qV+/fppz549ioiIUEREhPbv319IlQIAgKLO4eHm4sWL6t27t/7zn/+ofPnyt+w7ZcoUtWvXTm+88YZq166tsWPHqnHjxvr0008LqVoAAFDUOTzcREVFKTw8XG3atLlt3y1btmTr17ZtW23ZsuVulQcAAIoZJ0fufMGCBdq9e7d27NiRp/7Jycny9va2afP29lZycnKu62RkZCgjI8M6n5aWVrBiAQBAseCwcHPq1CkNGjRIcXFxcnV1vWv7iY6O1ujRo+/a9gHcXsCwb2/b58S48EKoBMC9wGG3pXbt2qVz586pcePGcnJykpOTkzZs2KBPPvlETk5OyszMzLaOj4+PUlJSbNpSUlLk4+OT636GDx+u1NRU63Tq1Cm7HwsAACg6HHblpnXr1tq3b59NW9++fVWrVi299dZbKlmyZLZ1QkNDFR8fb/O4eFxcnEJDQ3Pdj4uLi1xcXOxWNwAAKNocFm7c3d1Vr149m7YyZcqoYsWK1vbIyEhVqVJF0dHRkqRBgwapefPmmjBhgsLDw7VgwQLt3LlTM2bMKPT6AQBA0eTwp6Vu5eTJk0pKSrLOh4WFad68eZoxY4YaNGigxYsXa+nSpdlCEgAAuHdZDMMwHF1EYUpLS5Onp6dSU1Pl4eHh6HKAewIDigHcqfz8/S7SV24AAADyi3ADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMxaHhZtq0aQoODpaHh4c8PDwUGhqq7777Ltf+MTExslgsNpOrq2shVgwAAIo6J0fuvGrVqho3bpxq1qwpwzA0e/Zsde7cWXv27FHdunVzXMfDw0OHDh2yzlsslsIqFwAAFAMODTcdO3a0mf/ggw80bdo0bd26NddwY7FY5OPjUxjlAQCAYqjIjLnJzMzUggULlJ6ertDQ0Fz7Xbx4Uf7+/qpWrZo6d+6sAwcOFGKVAACgqHPolRtJ2rdvn0JDQ3X58mWVLVtWS5YsUZ06dXLsGxQUpC+++ELBwcFKTU3Vv/71L4WFhenAgQOqWrVqjutkZGQoIyPDOp+WlnZXjgMAABQNDr9yExQUpISEBG3btk0vv/yy+vTpo59++inHvqGhoYqMjFTDhg3VvHlzff3116pcubI+//zzXLcfHR0tT09P61StWrW7dSgAAKAIcHi4cXZ2Vo0aNdSkSRNFR0erQYMGmjJlSp7WLVWqlBo1aqSjR4/m2mf48OFKTU21TqdOnbJX6QAAoAhyeLi5WVZWls1tpFvJzMzUvn375Ovrm2sfFxcX66PmNyYAAGBeDh1zM3z4cLVv31733XefLly4oHnz5mn9+vVatWqVJCkyMlJVqlRRdHS0JGnMmDF6+OGHVaNGDf35558aP368EhMT9cILLzjyMAAAQBHi0HBz7tw5RUZGKikpSZ6engoODtaqVav0+OOPS5JOnjypEiX+/8Wl8+fPq3///kpOTlb58uXVpEkTbd68OdcByAAA4N5jMQzDcHQRhSktLU2enp5KTU3lFhVQSAKGfXvbPifGhRdCJQCKq/z8/S5yY24AAADuBOEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYCuEGAACYikPDzbRp0xQcHCwPDw95eHgoNDRU33333S3XWbRokWrVqiVXV1fVr19fK1asKKRqAQBAceDQcFO1alWNGzdOu3bt0s6dO9WqVSt17txZBw4cyLH/5s2b1atXL/Xr10979uxRRESEIiIitH///kKuHAAAFFUWwzAMRxfxdxUqVND48ePVr1+/bMt69Oih9PR0LV++3Nr28MMPq2HDhpo+fXqetp+WliZPT0+lpqbKw8PDbnUDyF3AsG9v2+fEuPBCqARAcZWfv99FZsxNZmamFixYoPT0dIWGhubYZ8uWLWrTpo1NW9u2bbVly5bCKBEAABQDTo4uYN++fQoNDdXly5dVtmxZLVmyRHXq1Mmxb3Jysry9vW3avL29lZycnOv2MzIylJGRYZ1PS0uzT+EAAKBIcni4CQoKUkJCglJTU7V48WL16dNHGzZsyDXg5Fd0dLRGjx5tl22heOFWCADcmxx+W8rZ2Vk1atRQkyZNFB0drQYNGmjKlCk59vXx8VFKSopNW0pKinx8fHLd/vDhw5WammqdTp06Zdf6AQBA0eLwcHOzrKwsm9tIfxcaGqr4+Hibtri4uFzH6EiSi4uL9VHzGxMAADAvh96WGj58uNq3b6/77rtPFy5c0Lx587R+/XqtWrVKkhQZGakqVaooOjpakjRo0CA1b95cEyZMUHh4uBYsWKCdO3dqxowZjjwMAABQhDg03Jw7d06RkZFKSkqSp6engoODtWrVKj3++OOSpJMnT6pEif9/cSksLEzz5s3TO++8oxEjRqhmzZpaunSp6tWr56hDAAAARYxDw83MmTNvuXz9+vXZ2rp3767u3bvfpYoAAEBxV+TG3AAAANwJwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVh4ab6OhoPfjgg3J3d5eXl5ciIiJ06NChW64TExMji8ViM7m6uhZSxQAAoKhzaLjZsGGDoqKitHXrVsXFxenq1at64oknlJ6efsv1PDw8lJSUZJ0SExMLqWIAAFDUOTly5ytXrrSZj4mJkZeXl3bt2qXHHnss1/UsFot8fHzudnkAAKAYKlJjblJTUyVJFSpUuGW/ixcvyt/fX9WqVVPnzp114MCBwigPAAAUA0Um3GRlZWnw4MFq1qyZ6tWrl2u/oKAgffHFF1q2bJnmzJmjrKwshYWF6fTp0zn2z8jIUFpams0EAADMy6G3pf4uKipK+/fv16ZNm27ZLzQ0VKGhodb5sLAw1a5dW59//rnGjh2brX90dLRGjx5t93oBAEDRVCSu3AwYMEDLly/XunXrVLVq1XytW6pUKTVq1EhHjx7Ncfnw4cOVmppqnU6dOmWPkgEAQBFVoHBz7Ngxu+zcMAwNGDBAS5Ys0dq1axUYGJjvbWRmZmrfvn3y9fXNcbmLi4s8PDxsJgAAYF4FCjc1atRQy5YtNWfOHF2+fLnAO4+KitKcOXM0b948ubu7Kzk5WcnJyfrrr7+sfSIjIzV8+HDr/JgxY7R69WodO3ZMu3fv1jPPPKPExES98MILBa4DAACYR4HCze7duxUcHKyhQ4fKx8dHL730krZv357v7UybNk2pqalq0aKFfH19rVNsbKy1z8mTJ5WUlGSdP3/+vPr376/atWurQ4cOSktL0+bNm1WnTp2CHAoAADAZi2EYRkFXvnbtmr755hvFxMRo5cqVeuCBB/T888/r2WefVeXKle1Zp92kpaXJ09NTqamp3KIyuYBh3962z4lx4YVQCXgtANyp/Pz9vqMBxU5OTuratasWLVqkjz76SEePHtXrr7+uatWqKTIy0uaKCwAAQGG4o3Czc+dOvfLKK/L19dXEiRP1+uuv65dfflFcXJzOnj2rzp0726tOAACAPCnQ59xMnDhRs2bN0qFDh9ShQwd9+eWX6tChg0qUuJ6VAgMDFRMTo4CAAHvWCgAAcFsFCjfTpk3T888/r+eeey7XR7C9vLw0c+bMOyoOAAAgvwoUbo4cOXLbPs7OzurTp09BNg8AAFBgBRpzM2vWLC1atChb+6JFizR79uw7LgoAAKCgChRuoqOjValSpWztXl5e+vDDD++4KAAAgIIqULg5efJkjl+V4O/vr5MnT95xUQAAAAVVoHDj5eWlH3/8MVv73r17VbFixTsuCgAAoKAKFG569eqlgQMHat26dcrMzFRmZqbWrl2rQYMGqWfPnvauEQAAIM8K9LTU2LFjdeLECbVu3VpOTtc3kZWVpcjISMbcAAAAhypQuHF2dlZsbKzGjh2rvXv3ys3NTfXr15e/v7+96wMAAMiXAoWbGx544AE98MAD9qoFAADgjhUo3GRmZiomJkbx8fE6d+6csrKybJavXbvWLsUBAADkV4HCzaBBgxQTE6Pw8HDVq1dPFovF3nUBAAAUSIHCzYIFC7Rw4UJ16NDB3vUAAADckQI9Cu7s7KwaNWrYuxYAAIA7VqBw89prr2nKlCkyDMPe9QAAANyRAt2W2rRpk9atW6fvvvtOdevWValSpWyWf/3113YpDgAAIL8KFG7KlSunLl262LsWAACAO1agcDNr1ix71wEAAGAXBRpzI0nXrl3TmjVr9Pnnn+vChQuSpLNnz+rixYt2Kw4AACC/CnTlJjExUe3atdPJkyeVkZGhxx9/XO7u7vroo4+UkZGh6dOn27tOAACAPCnQlZtBgwapadOmOn/+vNzc3KztXbp0UXx8vN2KAwAAyK8CXbn5/vvvtXnzZjk7O9u0BwQE6MyZM3YpDAAAoCAKdOUmKytLmZmZ2dpPnz4td3f3Oy4KAACgoAoUbp544glNnjzZOm+xWHTx4kWNHDmSr2QAAAAOVaDbUhMmTFDbtm1Vp04dXb58WU8//bSOHDmiSpUqaf78+fauEQAAIM8KFG6qVq2qvXv3asGCBfrxxx918eJF9evXT71797YZYAwAAFDYChRuJMnJyUnPPPOMPWsBAAC4YwUKN19++eUtl0dGRhaoGAAAgDtVoHAzaNAgm/mrV6/q0qVLcnZ2VunSpQk3AADAYQr0tNT58+dtposXL+rQoUN65JFHGFAMAAAcqsDfLXWzmjVraty4cdmu6txKdHS0HnzwQbm7u8vLy0sRERE6dOjQbddbtGiRatWqJVdXV9WvX18rVqy4k9IBAICJ2C3cSNcHGZ89ezbP/Tds2KCoqCht3bpVcXFxunr1qp544gmlp6fnus7mzZvVq1cv9evXT3v27FFERIQiIiK0f/9+exwCAAAo5go05uabb76xmTcMQ0lJSfr000/VrFmzPG9n5cqVNvMxMTHy8vLSrl279Nhjj+W4zpQpU9SuXTu98cYbkqSxY8cqLi5On376KV/YCQAAChZuIiIibOYtFosqV66sVq1aacKECQUuJjU1VZJUoUKFXPts2bJFQ4cOtWlr27atli5dWuD9AgAA8yhQuMnKyrJ3HcrKytLgwYPVrFkz1atXL9d+ycnJ8vb2tmnz9vZWcnJyjv0zMjKUkZFhnU9LS7NPwQAAoEgq8If42VtUVJT279+vTZs22XW70dHRGj16tF23eS8KGPbtbfucGBdeCJXYl72Oqzien8I8dtxacfz5AYqyAoWbm28L3crEiRNv22fAgAFavny5Nm7cqKpVq96yr4+Pj1JSUmzaUlJS5OPjk2P/4cOH29SblpamatWq5aFyAABQHBUo3OzZs0d79uzR1atXFRQUJEk6fPiwSpYsqcaNG1v7WSyWW27HMAy9+uqrWrJkidavX6/AwMDb7js0NFTx8fEaPHiwtS0uLk6hoaE59ndxcZGLi0sejgoAAJhBgcJNx44d5e7urtmzZ6t8+fKSrn+wX9++ffXoo4/qtddey9N2oqKiNG/ePC1btkzu7u7WcTOenp7WL+CMjIxUlSpVFB0dLen6pyM3b95cEyZMUHh4uBYsWKCdO3dqxowZBTkUAABgMgX6nJsJEyYoOjraGmwkqXz58nr//ffz9bTUtGnTlJqaqhYtWsjX19c6xcbGWvucPHlSSUlJ1vmwsDDNmzdPM2bMUIMGDbR48WItXbr0loOQAQDAvaNAV27S0tL066+/Zmv/9ddfdeHChTxvxzCM2/ZZv359trbu3bure/fued4PAAC4dxToyk2XLl3Ut29fff311zp9+rROnz6tr776Sv369VPXrl3tXSMAAECeFejKzfTp0/X666/r6aef1tWrV69vyMlJ/fr10/jx4+1aIAAAQH4UKNyULl1an332mcaPH69ffvlFklS9enWVKVPGrsUBAADk1x19cWZSUpKSkpJUs2ZNlSlTJk9jaAAAAO6mAoWb33//Xa1bt9YDDzygDh06WJ9m6tevX54fAwcAALgbChRuhgwZolKlSunkyZMqXbq0tb1Hjx7ZvukbAACgMBVozM3q1au1atWqbF+VULNmTSUmJtqlMAAAgIIo0JWb9PR0mys2N/zxxx981QEAAHCoAoWbRx99VF9++aV13mKxKCsrSx9//LFatmxpt+IAAADyq0C3pT7++GO1bt1aO3fu1JUrV/Tmm2/qwIED+uOPP/TDDz/Yu0YAAIA8K9CVm3r16unw4cN65JFH1LlzZ6Wnp6tr167as2ePqlevbu8aAQAA8izfV26uXr2qdu3aafr06Xr77bfvRk0AAAAFlu8rN6VKldKPP/54N2oBAAC4YwW6LfXMM89o5syZ9q4FAADgjhVoQPG1a9f0xRdfaM2aNWrSpEm275SaOHGiXYoDAADIr3yFm2PHjikgIED79+9X48aNJUmHDx+26WOxWOxXHQAAQD7lK9zUrFlTSUlJWrdunaTrX7fwySefyNvb+64UBwAAkF/5GnNz87d+f/fdd0pPT7drQQAAAHeiQAOKb7g57AAAADhavsKNxWLJNqaGMTYAAKAoydeYG8Mw9Nxzz1m/HPPy5cv65z//me1pqa+//tp+FQIAAORDvsJNnz59bOafeeYZuxYDAABwp/IVbmbNmnW36gAAALCLOxpQDAAAUNQQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKk4NNxs3LhRHTt2lJ+fnywWi5YuXXrL/uvXr7d+M/nfp+Tk5MIpGAAAFHkODTfp6elq0KCBpk6dmq/1Dh06pKSkJOvk5eV1lyoEAADFTb6+ONPe2rdvr/bt2+d7PS8vL5UrV87+BQEAgGKvWI65adiwoXx9ffX444/rhx9+cHQ5AACgCHHolZv88vX11fTp09W0aVNlZGTov//9r1q0aKFt27apcePGOa6TkZGhjIwM63xaWlphlQsAABygWIWboKAgBQUFWefDwsL0yy+/aNKkSfq///u/HNeJjo7W6NGjC6tEAADgYMXyttTfhYSE6OjRo7kuHz58uFJTU63TqVOnCrE6AABQ2IrVlZucJCQkyNfXN9flLi4ucnFxKcSKAACAIzk03Fy8eNHmqsvx48eVkJCgChUq6L777tPw4cN15swZffnll5KkyZMnKzAwUHXr1tXly5f13//+V2vXrtXq1asddQgAAKCIcWi42blzp1q2bGmdHzp0qCSpT58+iomJUVJSkk6ePGldfuXKFb322ms6c+aMSpcureDgYK1Zs8ZmGwAA4N7m0HDTokULGYaR6/KYmBib+TfffFNvvvnmXa4KAAAUZ8V+QDEAAMDfEW4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpODTcbNy4UR07dpSfn58sFouWLl1623XWr1+vxo0by8XFRTVq1FBMTMxdrxMAABQfDg036enpatCggaZOnZqn/sePH1d4eLhatmyphIQEDR48WC+88IJWrVp1lysFAADFhZMjd96+fXu1b98+z/2nT5+uwMBATZgwQZJUu3Ztbdq0SZMmTVLbtm3vVpkAAKAYKVZjbrZs2aI2bdrYtLVt21ZbtmxxUEUAAKCoceiVm/xKTk6Wt7e3TZu3t7fS0tL0119/yc3NLds6GRkZysjIsM6npaXd9ToBAIDjFKtwUxDR0dEaPXp0oe0vYNi3hbavE+PCC21fhSkv59Csx34vK2q/O/aqx14/q0Xt96Kw6ylqx38vKw6vRbG6LeXj46OUlBSbtpSUFHl4eOR41UaShg8frtTUVOt06tSpwigVAAA4SLG6chMaGqoVK1bYtMXFxSk0NDTXdVxcXOTi4nK3SwMAAEWEQ6/cXLx4UQkJCUpISJB0/VHvhIQEnTx5UtL1qy6RkZHW/v/85z917Ngxvfnmm/r555/12WefaeHChRoyZIgjygcAAEWQQ8PNzp071ahRIzVq1EiSNHToUDVq1EjvvfeeJCkpKckadCQpMDBQ3377reLi4tSgQQNNmDBB//3vf3kMHAAAWDn0tlSLFi1kGEauy3P69OEWLVpoz549d7EqAABQnBWrAcUAAAC3Q7gBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmQrgBAACmUiTCzdSpUxUQECBXV1c99NBD2r59e659Y2JiZLFYbCZXV9dCrBYAABRlDg83sbGxGjp0qEaOHKndu3erQYMGatu2rc6dO5frOh4eHkpKSrJOiYmJhVgxAAAoyhwebiZOnKj+/furb9++qlOnjqZPn67SpUvriy++yHUdi8UiHx8f6+Tt7V2IFQMAgKLMoeHmypUr2rVrl9q0aWNtK1GihNq0aaMtW7bkut7Fixfl7++vatWqqXPnzjpw4EBhlAsAAIoBh4ab3377TZmZmdmuvHh7eys5OTnHdYKCgvTFF19o2bJlmjNnjrKyshQWFqbTp0/n2D8jI0NpaWk2EwAAMC+H35bKr9DQUEVGRqphw4Zq3ry5vv76a1WuXFmff/55jv2jo6Pl6elpnapVq1bIFQMAgMLk0HBTqVIllSxZUikpKTbtKSkp8vHxydM2SpUqpUaNGuno0aM5Lh8+fLhSU1Ot06lTp+64bgAAUHQ5NNw4OzurSZMmio+Pt7ZlZWUpPj5eoaGhedpGZmam9u3bJ19f3xyXu7i4yMPDw2YCAADm5eToAoYOHao+ffqoadOmCgkJ0eTJk5Wenq6+fftKkiIjI1WlShVFR0dLksaMGaOHH35YNWrU0J9//qnx48crMTFRL7zwgiMPAwAAFBEODzc9evTQr7/+qvfee0/Jyclq2LChVq5caR1kfPLkSZUo8f8vMJ0/f179+/dXcnKyypcvryZNmmjz5s2qU6eOow4BAAAUIQ4PN5I0YMAADRgwIMdl69evt5mfNGmSJk2aVAhVAQCA4qjYPS0FAABwK4QbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKoQbAABgKkUi3EydOlUBAQFydXXVQw89pO3bt9+y/6JFi1SrVi25urqqfv36WrFiRSFVCgAAijqHh5vY2FgNHTpUI0eO1O7du9WgQQO1bdtW586dy7H/5s2b1atXL/Xr10979uxRRESEIiIitH///kKuHAAAFEUODzcTJ05U//791bdvX9WpU0fTp09X6dKl9cUXX+TYf8qUKWrXrp3eeOMN1a5dW2PHjlXjxo316aefFnLlAACgKHJouLly5Yp27dqlNm3aWNtKlCihNm3aaMuWLTmus2XLFpv+ktS2bdtc+wMAgHuLkyN3/ttvvykzM1Pe3t427d7e3vr5559zXCc5OTnH/snJyTn2z8jIUEZGhnU+NTVVkpSWlnYnpecqK+PSXdluTu7WMeQkL8dlr3rstS97vRb22ldhvl55UdTOc2Eqjj8/9tqXvRT2z3xx/B0zK0e9Fje2aRjGbfs6NNwUhujoaI0ePTpbe7Vq1RxQjX15TnZ0BbYKs57iuK+i9nrlRXGsOS+K489PUdtXXhR2PUXt+O9ld/O1uHDhgjw9PW/Zx6HhplKlSipZsqRSUlJs2lNSUuTj45PjOj4+PvnqP3z4cA0dOtQ6n5WVpT/++EMVK1aUxWK5o/rT0tJUrVo1nTp1Sh4eHne0LbPgnOSM85Id5yRnnJfsOCc5u9fOi2EYunDhgvz8/G7b16HhxtnZWU2aNFF8fLwiIiIkXQ8f8fHxGjBgQI7rhIaGKj4+XoMHD7a2xcXFKTQ0NMf+Li4ucnFxsWkrV66cPcq38vDwuCd+sPKDc5Izzkt2nJOccV6y45zk7F46L7e7YnODw29LDR06VH369FHTpk0VEhKiyZMnKz09XX379pUkRUZGqkqVKoqOjpYkDRo0SM2bN9eECRMUHh6uBQsWaOfOnZoxY4YjDwMAABQRDg83PXr00K+//qr33ntPycnJatiwoVauXGkdNHzy5EmVKPH/H+oKCwvTvHnz9M4772jEiBGqWbOmli5dqnr16jnqEAAAQBHi8HAjSQMGDMj1NtT69euztXXv3l3du3e/y1XdnouLi0aOHJnttte9jHOSM85LdpyTnHFesuOc5IzzkjuLkZdnqgAAAIoJh39CMQAAgD0RbgAAgKkQbgAAgKkQbgAAgKkQbgpo6tSpCggIkKurqx566CFt377d0SU5VHR0tB588EG5u7vLy8tLEREROnTokKPLKlLGjRsni8Vi8wGU96ozZ87omWeeUcWKFeXm5qb69etr586dji7LoTIzM/Xuu+8qMDBQbm5uql69usaOHZun79Exi40bN6pjx47y8/OTxWLR0qVLbZYbhqH33ntPvr6+cnNzU5s2bXTkyBHHFFuIbnVerl69qrfeekv169dXmTJl5Ofnp8jISJ09e9ZxBRcBhJsCiI2N1dChQzVy5Ejt3r1bDRo0UNu2bXXu3DlHl+YwGzZsUFRUlLZu3aq4uDhdvXpVTzzxhNLT0x1dWpGwY8cOff755woODnZ0KQ53/vx5NWvWTKVKldJ3332nn376SRMmTFD58uUdXZpDffTRR5o2bZo+/fRTHTx4UB999JE+/vhj/fvf/3Z0aYUmPT1dDRo00NSpU3Nc/vHHH+uTTz7R9OnTtW3bNpUpU0Zt27bV5cuXC7nSwnWr83Lp0iXt3r1b7777rnbv3q2vv/5ahw4dUqdOnRxQaRFiIN9CQkKMqKgo63xmZqbh5+dnREdHO7CqouXcuXOGJGPDhg2OLsXhLly4YNSsWdOIi4szmjdvbgwaNMjRJTnUW2+9ZTzyyCOOLqPICQ8PN55//nmbtq5duxq9e/d2UEWOJclYsmSJdT4rK8vw8fExxo8fb237888/DRcXF2P+/PkOqNAxbj4vOdm+fbshyUhMTCycooogrtzk05UrV7Rr1y61adPG2laiRAm1adNGW7ZscWBlRUtqaqokqUKFCg6uxPGioqIUHh5u8zNzL/vmm2/UtGlTde/eXV5eXmrUqJH+85//OLoshwsLC1N8fLwOHz4sSdq7d682bdqk9u3bO7iyouH48eNKTk62+T3y9PTUQw89xHvvTVJTU2WxWOz+PYrFSZH4hOLi5LffflNmZqb16yFu8Pb21s8//+ygqoqWrKwsDR48WM2aNbvnvxZjwYIF2r17t3bs2OHoUoqMY8eOadq0aRo6dKhGjBihHTt2aODAgXJ2dlafPn0cXZ7DDBs2TGlpaapVq5ZKliypzMxMffDBB+rdu7ejSysSkpOTJSnH994byyBdvnxZb731lnr16nXPfJlmTgg3sLuoqCjt379fmzZtcnQpDnXq1CkNGjRIcXFxcnV1dXQ5RUZWVpaaNm2qDz/8UJLUqFEj7d+/X9OnT7+nw83ChQs1d+5czZs3T3Xr1lVCQoIGDx4sPz+/e/q8IO+uXr2qp556SoZhaNq0aY4ux6G4LZVPlSpVUsmSJZWSkmLTnpKSIh8fHwdVVXQMGDBAy5cv17p161S1alVHl+NQu3bt0rlz59S4cWM5OTnJyclJGzZs0CeffCInJydlZmY6ukSH8PX1VZ06dWzaateurZMnTzqooqLhjTfe0LBhw9SzZ0/Vr19fzz77rIYMGaLo6GhHl1Yk3Hh/5b03ZzeCTWJiouLi4u7pqzYS4SbfnJ2d1aRJE8XHx1vbsrKyFB8fr9DQUAdW5liGYWjAgAFasmSJ1q5dq8DAQEeX5HCtW7fWvn37lJCQYJ2aNm2q3r17KyEhQSVLlnR0iQ7RrFmzbB8TcPjwYfn7+zuooqLh0qVLKlHC9i25ZMmSysrKclBFRUtgYKB8fHxs3nvT0tK0bdu2e/q9V/r/webIkSNas2aNKlas6OiSHI7bUgUwdOhQ9enTR02bNlVISIgmT56s9PR09e3b19GlOUxUVJTmzZunZcuWyd3d3XoP3NPTU25ubg6uzjHc3d2zjTkqU6aMKlaseE+PRRoyZIjCwsL04Ycf6qmnntL27ds1Y8YMzZgxw9GlOVTHjh31wQcf6L777lPdunW1Z88eTZw4Uc8//7yjSys0Fy9e1NGjR63zx48fV0JCgipUqKD77rtPgwcP1vvvv6+aNWsqMDBQ7777rvz8/BQREeG4ogvBrc6Lr6+vunXrpt27d2v58uXKzMy0vv9WqFBBzs7OjirbsRz9uFZx9e9//9u47777DGdnZyMkJMTYunWro0tyKEk5TrNmzXJ0aUUKj4Jf97///c+oV6+e4eLiYtSqVcuYMWOGo0tyuLS0NGPQoEHGfffdZ7i6uhr333+/8fbbbxsZGRmOLq3QrFu3Lsf3kT59+hiGcf1x8Hfffdfw9vY2XFxcjNatWxuHDh1ybNGF4Fbn5fjx47m+/65bt87RpTuMxTDuoY+/BAAApseYGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwBFWkxMjMqVK3fX93PixAlZLBYlJCTc9X0BuLsINwDsbsuWLSpZsqTCw8PztV5AQIAmT55s09ajRw8dPnzYjtVJzz33XLaP7K9WrZqSkpLu6a/GAMyCcAPA7mbOnKlXX31VGzdu1NmzZ+9oW25ubvLy8rJTZbkrWbKkfHx85OTEV+4BxR3hBoBdXbx4UbGxsXr55ZcVHh6umJgYm+X/+9//9OCDD8rV1VWVKlVSly5dJEktWrRQYmKihgwZIovFIovFIsn2ttThw4dlsVj0888/22xz0qRJql69uiQpMzNT/fr1U2BgoNzc3BQUFKQpU6ZY+44aNUqzZ8/WsmXLrPtZv359jrelNmzYoJCQELm4uMjX11fDhg3TtWvXrMtbtGihgQMH6s0331SFChXk4+OjUaNG2elMAigowg0Au1q4cKFq1aqloKAgPfPMM/riiy904yvsvv32W3Xp0kUdOnTQnj17FB8fr5CQEEnS119/rapVq2rMmDFKSkpSUlJStm0/8MADatq0qebOnWvTPnfuXD399NOSpKysLFWtWlWLFi3STz/9pPfee08jRozQwoULJUmvv/66nnrqKbVr1866n7CwsGz7OnPmjDp06KAHH3xQe/fu1bRp0zRz5ky9//77Nv1mz56tMmXKaNu2bfr44481ZswYxcXF3fmJBFBwDv7iTgAmExYWZkyePNkwDMO4evWqUalSJeu3E4eGhhq9e/fOdV1/f39j0qRJNm2zZs0yPD09rfOTJk0yqlevbp0/dOiQIck4ePBgrtuNiooy/vGPf1jn+/TpY3Tu3Nmmz41vV96zZ49hGIYxYsQIIygoyMjKyrL2mTp1qlG2bFkjMzPTMIzr3/L+yCOP2GznwQcfNN56661cawFw93HlBoDdHDp0SNu3b1evXr0kSU5OTurRo4dmzpwpSUpISFDr1q3vaB89e/bUiRMntHXrVknXr9o0btxYtWrVsvaZOnWqmjRposqVK6ts2bKaMWOGTp48ma/9HDx4UKGhodbbY5LUrFkzXbx4UadPn7a2BQcH26zn6+urc+fOFeTQANgJ4QaA3cycOVPXrl2Tn5+fnJyc5OTkpGnTpumrr75Samqq3Nzc7ngfPj4+atWqlebNmydJmjdvnnr37m1dvmDBAr3++uvq16+fVq9erYSEBPXt21dXrly5433npFSpUjbzFotFWVlZd2VfAPKGcAPALq5du6Yvv/xSEyZMUEJCgnXau3ev/Pz8NH/+fAUHBys+Pj7XbTg7OyszM/O2++rdu7diY2O1ZcsWHTt2TD179rQu++GHHxQWFqZXXnlFjRo1Uo0aNfTLL7/kez+1a9fWli1brOOFbmzb3d1dVatWvW2NAByHcAPALpYvX67z58+rX79+qlevns30j3/8QzNnztTIkSM1f/58jRw5UgcPHtS+ffv00UcfWbcREBCgjRs36syZM/rtt99y3VfXrl114cIFvfzyy2rZsqX8/Pysy2rWrKmdO3dq1apVOnz4sN59913t2LHDZv2AgAD9+OOPOnTokH777TddvXo12z5eeeUVnTp1Sq+++qp+/vlnLVu2TCNHjtTQoUNVogRvnUBRxm8oALuYOXOm2rRpI09Pz2zL/vGPf2jnzp2qUKGCFi1apG+++UYNGzZUq1attH37dmu/MWPG6MSJE6pevboqV66c677c3d3VsWNH7d271+aWlCS99NJL6tq1q3r06KGHHnpIv//+u1555RWbPv3791dQUJCaNm2qypUr64cffsi2jypVqmjFihXavn27GjRooH/+85/q16+f3nnnnfyeGgCFzGL8/ZorAABAMceVGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCr/D4E21i2JVc1oAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "1/1 [==============================] - 0s 82ms/step\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAHHCAYAAACyWSKnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFgUlEQVR4nO3dd3wUdf7H8feSkAIkoaYAgSC9d/gl4AGCRohI1ANEJICISlHKCQqnIuoZgaOpHEVpHkQgHkURhIiAR5cSpGgQgYSSgAgmJECA7Pz+8MEeSwrpmwyv5+MxD53vfGfmM7PL8mbmO7sWwzAMAQAAmEgJRxcAAACQ3wg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4ML1FixbJYrFo7969ji4FDnbq1ClZLBYtWrTIIfu3WCx6++23HbLvnBowYIACAgIKZV8BAQEaMGCAbb6w/8x27NhRHTt2LJR9ofAQcJBntz+MMpt27drl6BLzJKvjS0hIyNM2zRK6PvnkE3Xo0EE+Pj5ydXVVjRo1NHDgQJ06dSpH20lLS1PlypVlsVi0fv36XNcTERGhGTNm5Hr9vFi3bl2RCzFvv/223fu2VKlSqlatmrp3766FCxcqNTU1X/Zz9OhRvf322zl+3QtDUa4NBcPZ0QXAPN555x3VqFEjXXutWrUcUE3+y+j4ypYt65hiipgDBw6oRo0aevzxx1WuXDmdPHlSn3zyidauXauDBw+qcuXK2drOd999p/j4eAUEBGjp0qXq2rVrruqJiIjQ4cOHNXLkSLv26tWr69q1aypZsmSutpsd69at06xZszIMOdeuXZOzs+M+dmfPnq0yZcooNTVVZ8+e1YYNG/Tcc89pxowZWrt2rfz9/W19P/nkE1mt1hxt/+jRo5o4caI6duyYo6s/MTExKlGiYP+9nVVtGzduLNB9wzEIOMg3Xbt2VatWrRxdRoEx+/FlxWq16saNG3Jzc8tw+b/+9a90baGhoWrVqpU+++wzvf7669naz5IlS9SiRQv1799f48ePV0pKikqXLp2n2u9ksVgyPYbC4Mh9S9Jf//pXVaxY0Tb/1ltvaenSpQoLC1PPnj3trrYWZAiUJMMwdP36dbm7u8vV1bVA93UvLi4uDt0/Cga3qFBobo9/+Oc//6np06erevXqcnd3V4cOHXT48OF0/b/77js9+OCDKl26tMqWLasePXrop59+Stfv7NmzGjRokCpXrmy7PTJkyBDduHHDrl9qaqpGjx6tSpUqqXTp0nriiSf022+/5egYrly5orS0tJwdeC7duHFDb731llq2bCkvLy+VLl1aDz74oDZv3mzrYxiGAgIC1KNHj3TrX79+XV5eXnrxxRdtbampqZowYYJq1aolV1dX+fv7a+zYseluUVgsFg0fPlxLly5Vw4YN5erqqm+++SZH9d/+V/Iff/yRrf7Xrl3TqlWr9PTTT6tXr166du2a1qxZk2Hf9evXq0OHDvLw8JCnp6dat26tiIgISX+Op/j6668VGxtruyVzu5a7x+D885//lMViUWxsbLp9jBs3Ti4uLrp8+bIk6b///a969uypatWq2c7dqFGjdO3aNds6AwYM0KxZsyTJ7pbQbRmNwTlw4IC6du0qT09PlSlTRp07d053W/f2Lc3t27fn+T18t759++r555/X7t27FRUVZXcsd1/pWLZsmVq2bGk7740bN9bMmTNtNfbs2VOS1KlTJ9uxb9myRdKf74fHHntMGzZsUKtWreTu7q65c+falt05Bue2q1ev6sUXX1SFChXk6empsLAw2+txW2bjmu7c5r1qy2gMzoULFzRo0CD5+PjIzc1NTZs21eLFi+363PmZNm/ePNWsWVOurq5q3bq1fvjhhwzPNwoPV3CQbxITE3Xx4kW7NovFogoVKti1ffbZZ7py5YqGDRum69eva+bMmXrooYd06NAh+fj4SJK+/fZbde3aVQ888IDefvttXbt2TR999JHatWun/fv32z54z507pzZt2uiPP/7QCy+8oHr16uns2bP64osvdPXqVbt/mb388ssqV66cJkyYoFOnTmnGjBkaPny4li9fnq3j69Spk5KTk+Xi4qLg4GBNnTpVtWvXzsMZy1pSUpI+/fRT9enTR4MHD9aVK1c0f/58BQcHa8+ePWrWrJksFoueffZZTZ48WZcuXVL58uVt63/11VdKSkrSs88+K+nPqzCPP/64tm3bphdeeEH169fXoUOHNH36dB07dkyrV6+22/93332nFStWaPjw4apYsWK2bjn8/vvvSktLU1xcnN555x1JUufOnbN1vF9++aWSk5P19NNPy9fXVx07dtTSpUv1zDPP2PVbtGiRnnvuOTVs2FDjxo1T2bJldeDAAX3zzTd65pln9Pe//12JiYk6c+aMpk+fLkkqU6ZMhvvs1auXxo4dqxUrVmjMmDF2y1asWKFHHnlE5cqVkyRFRkbq6tWrGjJkiCpUqKA9e/boo48+0pkzZxQZGSlJevHFF3Xu3DlFRUXp3//+9z2P+ciRI3rwwQfl6empsWPHqmTJkpo7d646duyorVu3qm3btnb98/oezky/fv00b948bdy4UQ8//HCGfaKiotSnTx917txZkyZNkiT99NNP2r59u0aMGKG//OUveuWVV/Thhx9q/Pjxql+/viTZ/iv9eSuqT58+evHFFzV48GDVrVs3y7qGDx+usmXL6u2331ZMTIxmz56t2NhYbdmyxS443kt2arvTtWvX1LFjRx0/flzDhw9XjRo1FBkZqQEDBuiPP/7QiBEj7PpHREToypUrevHFF2WxWDR58mQ9+eSTOnHiRIFfCUMWDCCPFi5caEjKcHJ1dbX1O3nypCHJcHd3N86cOWNr3717tyHJGDVqlK2tWbNmhre3t/H777/b2g4ePGiUKFHCCAsLs7WFhYUZJUqUMH744Yd0dVmtVrv6unTpYmszDMMYNWqU4eTkZPzxxx9ZHt/y5cuNAQMGGIsXLzZWrVplvPHGG0apUqWMihUrGnFxcTk4U/9zu6aM6r7t1q1bRmpqql3b5cuXDR8fH+O5556ztcXExBiSjNmzZ9v1ffzxx42AgADbMf/73/82SpQoYfz3v/+16zdnzhxDkrF9+3ZbmySjRIkSxpEjR3J0XK6urrbXvkKFCsaHH36Y7XUfe+wxo127drb5efPmGc7OzsaFCxdsbX/88Yfh4eFhtG3b1rh27Zrd+ne+tiEhIUb16tXT7eP2e3DhwoW2tsDAQKNly5Z2/fbs2WNIMj777DNb29WrV9NtLzw83LBYLEZsbKytbdiwYUZmH62SjAkTJtjmQ0NDDRcXF+PXX3+1tZ07d87w8PAw/vKXv9ja8voenjBhgiHJ+O233zJcfvnyZUOS8cQTT9ja+vfvb3cOR4wYYXh6ehq3bt3KdD+RkZGGJGPz5s3pllWvXt2QZHzzzTcZLuvfv79t/vbxtmzZ0rhx44atffLkyYYkY82aNba2u89pZtvMqrYOHToYHTp0sM3PmDHDkGQsWbLE1nbjxg0jMDDQKFOmjJGUlGQYxv/eTxUqVDAuXbpk67tmzRpDkvHVV1+l2xcKD7eokG9mzZqlqKgouymjJ2FCQ0NVpUoV23ybNm3Utm1brVu3TpIUHx+v6OhoDRgwwO6KRJMmTfTwww/b+lmtVq1evVrdu3fPcGzM3f/Ce+GFF+zaHnzwQaWlpWV4e+JOvXr10sKFCxUWFqbQ0FC9++672rBhg37//Xf94x//yMaZyR0nJyfbFSir1apLly7p1q1batWqlfbv32/rV6dOHbVt21ZLly61tV26dEnr169X3759bcccGRmp+vXrq169erp48aJteuihhyTJ7taXJHXo0EENGjTIUc3r16/XunXrNHXqVFWrVk0pKSnZWu/333/Xhg0b1KdPH1vbU089JYvFohUrVtjaoqKidOXKFb3++uvpxrPk5F/0d+rdu7f27dunX3/91da2fPlyubq62t36c3d3t/1/SkqKLl68qKCgIBmGoQMHDuR4v2lpadq4caNCQ0P1wAMP2Nr9/Pz0zDPPaNu2bUpKSrJbJ7fv4Xu5fYXrypUrmfYpW7asUlJS7G5j5VSNGjUUHByc7f4vvPCC3RWQIUOGyNnZ2fYZUFDWrVsnX19fu/djyZIl9corryg5OVlbt26169+7d2/blT7pz9dFkk6cOFGgdSJrBBzkmzZt2qhLly52U6dOndL1y+i2Tp06dWyPb97+sM7o8nX9+vV18eJFpaSk6LffflNSUpIaNWqUrfqqVatmN3/7A+nue/rZ0b59e7Vt21bffvttjtfNicWLF6tJkyZyc3NThQoVVKlSJX399ddKTEy06xcWFqbt27fbzl1kZKRu3rypfv362fr88ssvOnLkiCpVqmQ31alTR9KfYw7ulNETcffSqVMnde3aVaNHj1ZkZKQmTpyojz/++J7rLV++XDdv3lTz5s11/PhxHT9+XJcuXUoX3G6HkOy+5tnRs2dPlShRwnabxzAMRUZG2sbF3BYXF2cL3WXKlFGlSpXUoUMHSUr3emTHb7/9pqtXr2b6PrdarTp9+rRde36+h++UnJwsSfLw8Mi0z9ChQ1WnTh117dpVVatW1XPPPZfjcVk5fU/d/VlRpkwZ+fn5Ffij3rGxsapdu3a6J7tu39K6O1AW1OuCvGEMDu4bTk5OGbYbhpGr7fn7+ysmJiYvJWVpyZIlGjBggEJDQzVmzBh5e3vLyclJ4eHhdlcbJOnpp5/WqFGjtHTpUo0fP15LlixRq1at7P7ytFqtaty4saZNm5bp8dzpzisWuVGzZk01b95cS5cu1fDhw7PsezvEtGvXLsPlJ06csLvKkZ8qV66sBx98UCtWrND48eO1a9cuxcXF2caZSH9ebXn44Yd16dIlvfbaa6pXr55Kly6ts2fPasCAATl+nDq38vs9fNvtQf5ZfaWDt7e3oqOjtWHDBq1fv17r16+3Xdm8e/BtZvL6nsqJwnoYQCq41wV5Q8BBofvll1/StR07dsw2iLV69eqSlGF4+Pnnn1WxYkWVLl1a7u7u8vT0zPAJrMJw4sQJVapUqcC2/8UXX+iBBx7QypUr7W5LTJgwIV3f8uXLKyQkREuXLlXfvn21ffv2dF90V7NmTR08eFCdO3fO9e2cnLp27do9v0Tu5MmT2rFjh4YPH267InKb1WpVv379FBERoTfeeEM1a9aU9OdfyFn9ZZzT4+vdu7eGDh2qmJgYLV++XKVKlVL37t1tyw8dOqRjx45p8eLFCgsLs7VndLsmu/uuVKmSSpUqlen7vESJEulCZ0G5PSD6XrePXFxc1L17d3Xv3l1Wq1VDhw7V3Llz9eabb6pWrVr5/r765Zdf7K4CJycnKz4+Xt26dbO1lStXLt2Tejdu3FB8fLxdW05qq169un788UdZrVa7qzg///yzbTmKPm5RodCtXr1aZ8+etc3v2bNHu3fvtn2pm5+fn5o1a6bFixfbfXAdPnxYGzdutH24lShRQqGhofrqq68y/Ebg/PrXU0aP4a5bt0779u3To48+mi/7yMjtfxXeeRy7d+/Wzp07M+zfr18/HT16VGPGjJGTk5Oefvppu+W9evXS2bNn9cknn6Rb99q1a9keL3O3W7duZXgpfs+ePTp06NA9vzvo9tWbsWPH6q9//avd1KtXL3Xo0MHW55FHHpGHh4fCw8N1/fp1u+3ceZ5Kly6do9tGTz31lJycnPT5558rMjJSjz32mN3372T0WhiGYXtE+k6317vX4/FOTk565JFHtGbNGrtbLufPn1dERITat29vd4usoEREROjTTz9VYGBglk+8/f7773bzJUqUUJMmTSTJFmKze+zZNW/ePN28edM2P3v2bN26dcvuCyBr1qyp77//Pt16d1/ByUlt3bp1U0JCgt3Tabdu3dJHH32kMmXKpAviKJq4goN8s379etu/cO4UFBRkd3uhVq1aat++vYYMGaLU1FTNmDFDFSpU0NixY219pkyZoq5duyowMFCDBg2yPSbu5eVl950X77//vjZu3KgOHTrYHn2Oj49XZGSktm3bli/fNBwUFKTmzZurVatW8vLy0v79+7VgwQL5+/tr/Pjxdn0HDBigxYsX6+TJk9l6rHrBggUZjmMYMWKEHnvsMa1cuVJPPPGEQkJCdPLkSc2ZM0cNGjSwjZm4U0hIiCpUqGAbP+Lt7W23vF+/flqxYoVeeuklbd68We3atVNaWpp+/vlnrVixwvb9JDmVnJwsf39/9e7dWw0bNlTp0qV16NAhLVy4UF5eXnrzzTezXH/p0qVq1qxZplcrHn/8cb388svav3+/WrRooenTp+v5559X69at9cwzz6hcuXI6ePCgrl69artV0rJlSy1fvlyjR49W69atVaZMGbsrMnfz9vZWp06dNG3aNF25ckW9e/e2W16vXj3VrFlTr776qs6ePStPT0/95z//yTDYtWzZUpL0yiuvKDg4OMOwedt7772nqKgotW/fXkOHDpWzs7Pmzp2r1NRUTZ48OcvzlhtffPGFypQpoxs3bti+yXj79u1q2rSp7VH3zDz//PO6dOmSHnroIVWtWlWxsbH66KOP1KxZM9vYlGbNmsnJyUmTJk1SYmKiXF1d9dBDD6V7L2bXjRs31LlzZ/Xq1UsxMTH617/+pfbt2+vxxx+3q+ull17SU089pYcfflgHDx7Uhg0b7L7QMKe1vfDCC5o7d64GDBigffv2KSAgQF988YXtymhWY5VQhDjq8S2YR1aPieuOR3JvP1I5ZcoUY+rUqYa/v7/h6upqPPjgg8bBgwfTbffbb7812rVrZ7i7uxuenp5G9+7djaNHj6brFxsba4SFhRmVKlUyXF1djQceeMAYNmyY7RHrzB7J3rx5c6aPjd7p73//u9GsWTPDy8vLKFmypFGtWjVjyJAhRkJCQrq+Tz31lOHu7m5cvnw5T+fs9OnThtVqNd5//32jevXqhqurq9G8eXNj7dq16R7fvdPQoUMNSUZERESGy2/cuGFMmjTJaNiwoeHq6mqUK1fOaNmypTFx4kQjMTHR1k+SMWzYsCyP4bbU1FRjxIgRRpMmTQxPT0+jZMmSRvXq1Y1BgwYZJ0+ezHLdffv2GZKMN998M9M+p06dSvc1Al9++aURFBRke2+0adPG+Pzzz23Lk5OTjWeeecYoW7asIcl2vjJ6TPy2Tz75xJBkeHh4pHsE3TAM4+jRo0aXLl2MMmXKGBUrVjQGDx5sHDx4MN32bt26Zbz88stGpUqVDIvFYvfIuDJ4pHn//v1GcHCwUaZMGaNUqVJGp06djB07dtj1yet7+PZj4rcnNzc3o2rVqsZjjz1mLFiwwLh+/Xq6de5+n33xxRfGI488Ynh7exsuLi5GtWrVjBdffNGIj49Pdx4feOABw8nJya626tWrGyEhIRnWl9lj4lu3bjVeeOEFo1y5ckaZMmWMvn372n11hGEYRlpamvHaa68ZFStWNEqVKmUEBwcbx48fT7fNrGq7+zFxwzCM8+fPGwMHDjQqVqxouLi4GI0bN073vrnzM+1uGb3WKFwWw2AUFArHqVOnVKNGDU2ZMkWvvvqqo8spED4+PgoLC9OUKVMcsv9Ro0Zp/vz5SkhIUKlSpRxSAwAUBYzBAfLJkSNHdO3aNb322msO2f/169e1ZMkSPfXUU4QbAPc9xuAA+aRhw4bpvpitMFy4cEHffvutvvjiC/3+++/pvkYeAO5HBBygmDt69Kj69u0rb29vffjhh2rWrJmjSwIAh2MMDgAAMB3G4AAAANMh4AAAANO578bgWK1WnTt3Th4eHoX2dfUAACBvDMPQlStXVLly5XQ/hJqR+y7gnDt3rtB+3wUAAOSv06dPq2rVqvfsd98FnNtfsX369OlC+Z0XAACQd0lJSfL398/2T2XcdwHn9m0pT09PAg4AAMVMdoeXMMgYAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYDgEHAACYTpEJOB988IEsFotGjhyZZb/IyEjVq1dPbm5uaty4sdatW1c4BQIAgGKjSAScH374QXPnzlWTJk2y7Ldjxw716dNHgwYN0oEDBxQaGqrQ0FAdPny4kCoFAADFgcMDTnJysvr27atPPvlE5cqVy7LvzJkz9eijj2rMmDGqX7++3n33XbVo0UIff/xxIVULAACKA4cHnGHDhikkJERdunS5Z9+dO3em6xccHKydO3cWVHkAAKAYcnbkzpctW6b9+/frhx9+yFb/hIQE+fj42LX5+PgoISEh03VSU1OVmppqm09KSspdsQAAoNhwWMA5ffq0RowYoaioKLm5uRXYfsLDwzVx4sQC2z6Kt4DXv75nn1MfhBRCJeC1AJCfHHaLat++fbpw4YJatGghZ2dnOTs7a+vWrfrwww/l7OystLS0dOv4+vrq/Pnzdm3nz5+Xr69vpvsZN26cEhMTbdPp06fz/VgAAEDR4rArOJ07d9ahQ4fs2gYOHKh69erptddek5OTU7p1AgMDtWnTJrtHyaOiohQYGJjpflxdXeXq6ppvdQMAgKLPYQHHw8NDjRo1smsrXbq0KlSoYGsPCwtTlSpVFB4eLkkaMWKEOnTooKlTpyokJETLli3T3r17NW/evEKvHwAAFF0Of4oqK3FxcYqPj7fNBwUFKSIiQvPmzVPTpk31xRdfaPXq1emCEgAAuL859Cmqu23ZsiXLeUnq2bOnevbsWTgFAQCAYqlIX8EBAADIDQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHYcGnNmzZ6tJkyby9PSUp6enAgMDtX79+kz7L1q0SBaLxW5yc3MrxIoBAEBx4OzInVetWlUffPCBateuLcMwtHjxYvXo0UMHDhxQw4YNM1zH09NTMTExtnmLxVJY5QIAgGLCoQGne/fudvP/+Mc/NHv2bO3atSvTgGOxWOTr61sY5QEAgGKqyIzBSUtL07Jly5SSkqLAwMBM+yUnJ6t69ery9/dXjx49dOTIkUKsEgAAFAcOvYIjSYcOHVJgYKCuX7+uMmXKaNWqVWrQoEGGfevWrasFCxaoSZMmSkxM1D//+U8FBQXpyJEjqlq1aobrpKamKjU11TaflJRUIMcBAACKDodfwalbt66io6O1e/duDRkyRP3799fRo0cz7BsYGKiwsDA1a9ZMHTp00MqVK1WpUiXNnTs30+2Hh4fLy8vLNvn7+xfUoQAAgCLC4QHHxcVFtWrVUsuWLRUeHq6mTZtq5syZ2Vq3ZMmSat68uY4fP55pn3HjxikxMdE2nT59Or9KBwAARZTDA87drFar3S2lrKSlpenQoUPy8/PLtI+rq6vtMfTbEwAAMDeHjsEZN26cunbtqmrVqunKlSuKiIjQli1btGHDBklSWFiYqlSpovDwcEnSO++8o//7v/9TrVq19Mcff2jKlCmKjY3V888/78jDAAAARYxDA86FCxcUFham+Ph4eXl5qUmTJtqwYYMefvhhSVJcXJxKlPjfRabLly9r8ODBSkhIULly5dSyZUvt2LEj00HJAADg/uTQgDN//vwsl2/ZssVufvr06Zo+fXoBVgQAAMygyI3BAQAAyCsCDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB0CDgAAMB2HBpzZs2erSZMm8vT0lKenpwIDA7V+/fos14mMjFS9evXk5uamxo0ba926dYVULQAAKC4cGnCqVq2qDz74QPv27dPevXv10EMPqUePHjpy5EiG/Xfs2KE+ffpo0KBBOnDggEJDQxUaGqrDhw8XcuUAAKAosxiGYTi6iDuVL19eU6ZM0aBBg9It6927t1JSUrR27Vpb2//93/+pWbNmmjNnTra2n5SUJC8vLyUmJsrT0zPf6kbxFPD61/fsc+qDkEKoBLwWALKS07+/i8wYnLS0NC1btkwpKSkKDAzMsM/OnTvVpUsXu7bg4GDt3LmzMEoEAADFhLOjCzh06JACAwN1/fp1lSlTRqtWrVKDBg0y7JuQkCAfHx+7Nh8fHyUkJGS6/dTUVKWmptrmk5KS8qdwAABQZDn8Ck7dunUVHR2t3bt3a8iQIerfv7+OHj2ab9sPDw+Xl5eXbfL398+3bQMAgKLJ4QHHxcVFtWrVUsuWLRUeHq6mTZtq5syZGfb19fXV+fPn7drOnz8vX1/fTLc/btw4JSYm2qbTp0/na/0AAKDocXjAuZvVarW7pXSnwMBAbdq0ya4tKioq0zE7kuTq6mp7DP32BAAAzM2hY3DGjRunrl27qlq1arpy5YoiIiK0ZcsWbdiwQZIUFhamKlWqKDw8XJI0YsQIdejQQVOnTlVISIiWLVumvXv3at68eY48DAAAUMQ4NOBcuHBBYWFhio+Pl5eXl5o0aaINGzbo4YcfliTFxcWpRIn/XWQKCgpSRESE3njjDY0fP161a9fW6tWr1ahRI0cdAgAAKIIcGnDmz5+f5fItW7aka+vZs6d69uxZQBUBAAAzKHJjcAAAAPKKgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEyHgAMAAEzHoQEnPDxcrVu3loeHh7y9vRUaGqqYmJgs11m0aJEsFovd5ObmVkgVAwCA4sChAWfr1q0aNmyYdu3apaioKN28eVOPPPKIUlJSslzP09NT8fHxtik2NraQKgYAAMWBsyN3/s0339jNL1q0SN7e3tq3b5/+8pe/ZLqexWKRr69vQZcHAACKqSI1BicxMVGSVL58+Sz7JScnq3r16vL391ePHj105MiRwigPAAAUE0Um4FitVo0cOVLt2rVTo0aNMu1Xt25dLViwQGvWrNGSJUtktVoVFBSkM2fOZNg/NTVVSUlJdhMAADA3h96iutOwYcN0+PBhbdu2Lct+gYGBCgwMtM0HBQWpfv36mjt3rt599910/cPDwzVx4sR8rxcAABRdReIKzvDhw7V27Vpt3rxZVatWzdG6JUuWVPPmzXX8+PEMl48bN06JiYm26fTp0/lRMgAAKMJyFXBOnDiRLzs3DEPDhw/XqlWr9N1336lGjRo53kZaWpoOHTokPz+/DJe7urrK09PTbgIAAOaWq4BTq1YtderUSUuWLNH169dzvfNhw4ZpyZIlioiIkIeHhxISEpSQkKBr167Z+oSFhWncuHG2+XfeeUcbN27UiRMntH//fj377LOKjY3V888/n+s6AACAueQq4Ozfv19NmjTR6NGj5evrqxdffFF79uzJ8XZmz56txMREdezYUX5+frZp+fLltj5xcXGKj4+3zV++fFmDBw9W/fr11a1bNyUlJWnHjh1q0KBBbg4FAACYkMUwDCO3K9+6dUtffvmlFi1apG+++UZ16tTRc889p379+qlSpUr5WWe+SUpKkpeXlxITE7ldBQW8/vU9+5z6IKQQKgGvBYCs5PTv7zwNMnZ2dtaTTz6pyMhITZo0ScePH9err74qf39/hYWF2V15AQAAKCx5Cjh79+7V0KFD5efnp2nTpunVV1/Vr7/+qqioKJ07d049evTIrzoBAACyLVffgzNt2jQtXLhQMTEx6tatmz777DN169ZNJUr8mZdq1KihRYsWKSAgID9rBQAAyJZcBZzZs2frueee04ABAzJ9PNvb21vz58/PU3EAAAC5kauA88svv9yzj4uLi/r375+bzQMAAORJrsbgLFy4UJGRkenaIyMjtXjx4jwXBQAAkBe5Cjjh4eGqWLFiunZvb2+9//77eS4KAAAgL3IVcOLi4jL8WYXq1asrLi4uz0UBAADkRa4Cjre3t3788cd07QcPHlSFChXyXBQAAEBe5Crg9OnTR6+88oo2b96stLQ0paWl6bvvvtOIESP09NNP53eNAAAAOZKrp6jeffddnTp1Sp07d5az85+bsFqtCgsLYwwOAABwuFwFHBcXFy1fvlzvvvuuDh48KHd3dzVu3FjVq1fP7/oAAAByLFcB57Y6deqoTp06+VULAABAvshVwElLS9OiRYu0adMmXbhwQVar1W75d999ly/FAQAA5EauAs6IESO0aNEihYSEqFGjRrJYLPldFwAAQK7lKuAsW7ZMK1asULdu3fK7HgAAgDzL1WPiLi4uqlWrVn7XAgAAkC9yFXD+9re/aebMmTIMI7/rAQAAyLNc3aLatm2bNm/erPXr16thw4YqWbKk3fKVK1fmS3EAAAC5kauAU7ZsWT3xxBP5XQsAAEC+yFXAWbhwYX7XAQAAkG9yNQZHkm7duqVvv/1Wc+fO1ZUrVyRJ586dU3Jycr4VBwAAkBu5uoITGxurRx99VHFxcUpNTdXDDz8sDw8PTZo0SampqZozZ05+1wkAAJBtubqCM2LECLVq1UqXL1+Wu7u7rf2JJ57Qpk2b8q04AACA3MjVFZz//ve/2rFjh1xcXOzaAwICdPbs2XwpDAAAILdydQXHarUqLS0tXfuZM2fk4eGR56IAAADyIlcB55FHHtGMGTNs8xaLRcnJyZowYQI/3wAAABwuV7eopk6dquDgYDVo0EDXr1/XM888o19++UUVK1bU559/nt81AgAA5EiuAk7VqlV18OBBLVu2TD/++KOSk5M1aNAg9e3b127QMQAAgCPkKuBIkrOzs5599tn8rAUAACBf5CrgfPbZZ1kuDwsLy1UxAAAA+SFXAWfEiBF28zdv3tTVq1fl4uKiUqVKEXAAAIBD5eopqsuXL9tNycnJiomJUfv27RlkDAAAHC7Xv0V1t9q1a+uDDz5Id3UnK+Hh4WrdurU8PDzk7e2t0NBQxcTE3HO9yMhI1atXT25ubmrcuLHWrVuXl9IBAIDJ5FvAkf4ceHzu3Lls99+6dauGDRumXbt2KSoqSjdv3tQjjzyilJSUTNfZsWOH+vTpo0GDBunAgQMKDQ1VaGioDh8+nB+HAAAATCBXY3C+/PJLu3nDMBQfH6+PP/5Y7dq1y/Z2vvnmG7v5RYsWydvbW/v27dNf/vKXDNeZOXOmHn30UY0ZM0aS9O677yoqKkoff/wxP/IJAAAk5TLghIaG2s1bLBZVqlRJDz30kKZOnZrrYhITEyVJ5cuXz7TPzp07NXr0aLu24OBgrV69Otf7BQAA5pKrgGO1WvO7DlmtVo0cOVLt2rVTo0aNMu2XkJAgHx8fuzYfHx8lJCRk2D81NVWpqam2+aSkpPwpGAAAFFm5/qK//DZs2DAdPnxY27Zty9fthoeHa+LEifm6zcIQ8PrX9+xz6oOQQqikaOL8FI6idp6zU0928N4oHEXt/YP7S64Czt23iLIybdq0e/YZPny41q5dq++//15Vq1bNsq+vr6/Onz9v13b+/Hn5+vpm2H/cuHF29SYlJcnf3z8blQMAgOIqVwHnwIEDOnDggG7evKm6detKko4dOyYnJye1aNHC1s9isWS5HcMw9PLLL2vVqlXasmWLatSocc99BwYGatOmTRo5cqStLSoqSoGBgRn2d3V1laurazaOCgAAmEWuAk737t3l4eGhxYsXq1y5cpL+/PK/gQMH6sEHH9Tf/va3bG1n2LBhioiI0Jo1a+Th4WEbR+Pl5WX70c6wsDBVqVJF4eHhkv78FuUOHTpo6tSpCgkJ0bJly7R3717NmzcvN4cCAABMKFffgzN16lSFh4fbwo0klStXTu+9916OnqKaPXu2EhMT1bFjR/n5+dmm5cuX2/rExcUpPj7eNh8UFKSIiAjNmzdPTZs21RdffKHVq1dnOTAZAADcX3J1BScpKUm//fZbuvbffvtNV65cyfZ2DMO4Z58tW7aka+vZs6d69uyZ7f0AAID7S66u4DzxxBMaOHCgVq5cqTNnzujMmTP6z3/+o0GDBunJJ5/M7xoBAAByJFdXcObMmaNXX31VzzzzjG7evPnnhpydNWjQIE2ZMiVfCwQAAMipXAWcUqVK6V//+pemTJmiX3/9VZJUs2ZNlS5dOl+LAwAAyI08/dhmfHy84uPjVbt2bZUuXTpbY2oAAAAKWq4Czu+//67OnTurTp066tatm+0pp0GDBmX7EXEAAICCkquAM2rUKJUsWVJxcXEqVaqUrb13797pfiEcAACgsOVqDM7GjRu1YcOGdD+rULt2bcXGxuZLYQAAALmVqys4KSkpdldubrt06RI/iwAAABwuVwHnwQcf1GeffWabt1gsslqtmjx5sjp16pRvxQEAAORGrm5RTZ48WZ07d9bevXt148YNjR07VkeOHNGlS5e0ffv2/K4RAAAgR3J1BadRo0Y6duyY2rdvrx49eiglJUVPPvmkDhw4oJo1a+Z3jQAAADmS4ys4N2/e1KOPPqo5c+bo73//e0HUBAAAkCc5voJTsmRJ/fjjjwVRCwAAQL7I1S2qZ599VvPnz8/vWgAAAPJFrgYZ37p1SwsWLNC3336rli1bpvsNqmnTpuVLcQAAALmRo4Bz4sQJBQQE6PDhw2rRooUk6dixY3Z9LBZL/lUHAACQCzkKOLVr11Z8fLw2b94s6c+fZvjwww/l4+NTIMUBAADkRo7G4Nz9a+Hr169XSkpKvhYEAACQV7kaZHzb3YEHAACgKMhRwLFYLOnG2DDmBgAAFDU5GoNjGIYGDBhg+0HN69ev66WXXkr3FNXKlSvzr0IAAIAcylHA6d+/v938s88+m6/FAAAA5IccBZyFCxcWVB0AAAD5Jk+DjAEAAIoiAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdhwac77//Xt27d1flypVlsVi0evXqLPtv2bLF9ovmd04JCQmFUzAAACgWHBpwUlJS1LRpU82aNStH68XExCg+Pt42eXt7F1CFAACgOMrRj23mt65du6pr1645Xs/b21tly5bN/4IAAIApFMsxOM2aNZOfn58efvhhbd++3dHlAACAIsahV3Byys/PT3PmzFGrVq2UmpqqTz/9VB07dtTu3bvVokWLDNdJTU1VamqqbT4pKamwygUAAA5SrAJO3bp1VbduXdt8UFCQfv31V02fPl3//ve/M1wnPDxcEydOLKwSAQBAEVAsb1HdqU2bNjp+/Himy8eNG6fExETbdPr06UKsDgAAOEKxuoKTkejoaPn5+WW63NXVVa6uroVYEQAAcDSHBpzk5GS7qy8nT55UdHS0ypcvr2rVqmncuHE6e/asPvvsM0nSjBkzVKNGDTVs2FDXr1/Xp59+qu+++04bN2501CEAAIAiyKEBZ+/everUqZNtfvTo0ZKk/v37a9GiRYqPj1dcXJxt+Y0bN/S3v/1NZ8+eValSpdSkSRN9++23dtsAAABwaMDp2LGjDMPIdPmiRYvs5seOHauxY8cWcFUAAKC4K/aDjAEAAO5GwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKZDwAEAAKbj0IDz/fffq3v37qpcubIsFotWr159z3W2bNmiFi1ayNXVVbVq1dKiRYsKvE4AAFC8ODTgpKSkqGnTppo1a1a2+p88eVIhISHq1KmToqOjNXLkSD3//PPasGFDAVcKAACKE2dH7rxr167q2rVrtvvPmTNHNWrU0NSpUyVJ9evX17Zt2zR9+nQFBwcXVJkAAKCYKVZjcHbu3KkuXbrYtQUHB2vnzp0OqggAABRFDr2Ck1MJCQny8fGxa/Px8VFSUpKuXbsmd3f3dOukpqYqNTXVNp+UlFTgdQIAAMcqVgEnN8LDwzVx4sRC21/A61/fs8+pD0IKoZLsy07N+aWoHXt+KczXvTBfL+Qdf75gNsXl77lidYvK19dX58+ft2s7f/68PD09M7x6I0njxo1TYmKibTp9+nRhlAoAAByoWF3BCQwM1Lp16+zaoqKiFBgYmOk6rq6ucnV1LejSAABAEeLQKzjJycmKjo5WdHS0pD8fA4+OjlZcXJykP6++hIWF2fq/9NJLOnHihMaOHauff/5Z//rXv7RixQqNGjXKEeUDAIAiyqEBZ+/evWrevLmaN28uSRo9erSaN2+ut956S5IUHx9vCzuSVKNGDX399deKiopS06ZNNXXqVH366ac8Ig4AAOw49BZVx44dZRhGpssz+pbijh076sCBAwVYFQAAKO6K1SBjAACA7CDgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0yHgAAAA0ykSAWfWrFkKCAiQm5ub2rZtqz179mTad9GiRbJYLHaTm5tbIVYLAACKOocHnOXLl2v06NGaMGGC9u/fr6ZNmyo4OFgXLlzIdB1PT0/Fx8fbptjY2EKsGAAAFHUODzjTpk3T4MGDNXDgQDVo0EBz5sxRqVKltGDBgkzXsVgs8vX1tU0+Pj6FWDEAACjqHBpwbty4oX379qlLly62thIlSqhLly7auXNnpuslJyerevXq8vf3V48ePXTkyJHCKBcAABQTDg04Fy9eVFpaWrorMD4+PkpISMhwnbp162rBggVas2aNlixZIqvVqqCgIJ05cybD/qmpqUpKSrKbAACAuTn8FlVOBQYGKiwsTM2aNVOHDh20cuVKVapUSXPnzs2wf3h4uLy8vGyTv79/IVcMAAAKm0MDTsWKFeXk5KTz58/btZ8/f16+vr7Z2kbJkiXVvHlzHT9+PMPl48aNU2Jiom06ffp0nusGAABFm0MDjouLi1q2bKlNmzbZ2qxWqzZt2qTAwMBsbSMtLU2HDh2Sn59fhstdXV3l6elpNwEAAHNzdnQBo0ePVv/+/dWqVSu1adNGM2bMUEpKigYOHChJCgsLU5UqVRQeHi5Jeuedd/R///d/qlWrlv744w9NmTJFsbGxev755x15GAAAoAhxeMDp3bu3fvvtN7311ltKSEhQs2bN9M0339gGHsfFxalEif9daLp8+bIGDx6shIQElStXTi1bttSOHTvUoEEDRx0CAAAoYhwecCRp+PDhGj58eIbLtmzZYjc/ffp0TZ8+vRCqAgAAxVWxe4oKAADgXgg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdAg4AADAdIpEwJk1a5YCAgLk5uamtm3bas+ePVn2j4yMVL169eTm5qbGjRtr3bp1hVQpAAAoDhwecJYvX67Ro0drwoQJ2r9/v5o2barg4GBduHAhw/47duxQnz59NGjQIB04cEChoaEKDQ3V4cOHC7lyAABQVDk84EybNk2DBw/WwIED1aBBA82ZM0elSpXSggULMuw/c+ZMPfrooxozZozq16+vd999Vy1atNDHH39cyJUDAICiyqEB58aNG9q3b5+6dOliaytRooS6dOminTt3ZrjOzp077fpLUnBwcKb9AQDA/cfZkTu/ePGi0tLS5OPjY9fu4+Ojn3/+OcN1EhISMuyfkJCQYf/U1FSlpqba5hMTEyVJSUlJeSk9U9bUq/fsk51959d2siM7+8ovhVlzYZ5ns75e2VEcj6ug/vxnxKzHlR2F+ecChcdRr+vtbRqGka3+Dg04hSE8PFwTJ05M1+7v7++Aav7kNaNobacwFWbNRe08F8fXKzuK43EVx5qzozgeV3GsGfdWkK/rlStX5OXldc9+Dg04FStWlJOTk86fP2/Xfv78efn6+ma4jq+vb476jxs3TqNHj7bNW61WXbp0SRUqVJDFYsl2rUlJSfL399fp06fl6emZ7fXMiHNhj/Nhj/Nhj/Nhj/Nhj/PxP/c6F4Zh6MqVK6pcuXK2tufQgOPi4qKWLVtq06ZNCg0NlfRnANm0aZOGDx+e4TqBgYHatGmTRo4caWuLiopSYGBghv1dXV3l6upq11a2bNlc1+zp6Xnfvwlv41zY43zY43zY43zY43zY43z8T1bnIjtXbm5z+C2q0aNHq3///mrVqpXatGmjGTNmKCUlRQMHDpQkhYWFqUqVKgoPD5ckjRgxQh06dNDUqVMVEhKiZcuWae/evZo3b54jDwMAABQhDg84vXv31m+//aa33npLCQkJatasmb755hvbQOK4uDiVKPG/h72CgoIUERGhN954Q+PHj1ft2rW1evVqNWrUyFGHAAAAihiHBxxJGj58eKa3pLZs2ZKurWfPnurZs2cBV2XP1dVVEyZMSHe7637EubDH+bDH+bDH+bDH+bDH+fif/D4XFiO7z1sBAAAUEw7/JmMAAID8RsABAACmQ8ABAACmQ8ABAACmQ8DJhlmzZikgIEBubm5q27at9uzZ4+iSHCI8PFytW7eWh4eHvL29FRoaqpiYGEeXVWR88MEHslgsdl9Ceb85e/asnn32WVWoUEHu7u5q3Lix9u7d6+iyHCItLU1vvvmmatSoIXd3d9WsWVPvvvtutn9Hp7j7/vvv1b17d1WuXFkWi0WrV6+2W24Yht566y35+fnJ3d1dXbp00S+//OKYYgtYVufi5s2beu2119S4cWOVLl1alStXVlhYmM6dO+e4ggvYvd4bd3rppZdksVg0Y8aMHO+HgHMPy5cv1+jRozVhwgTt379fTZs2VXBwsC5cuODo0grd1q1bNWzYMO3atUtRUVG6efOmHnnkEaWkpDi6NIf74YcfNHfuXDVp0sTRpTjM5cuX1a5dO5UsWVLr16/X0aNHNXXqVJUrV87RpTnEpEmTNHv2bH388cf66aefNGnSJE2ePFkfffSRo0srFCkpKWratKlmzZqV4fLJkyfrww8/1Jw5c7R7926VLl1awcHBun79eiFXWvCyOhdXr17V/v379eabb2r//v1auXKlYmJi9Pjjjzug0sJxr/fGbatWrdKuXbuy/dMM6RjIUps2bYxhw4bZ5tPS0ozKlSsb4eHhDqyqaLhw4YIhydi6daujS3GoK1euGLVr1zaioqKMDh06GCNGjHB0SQ7x2muvGe3bt3d0GUVGSEiI8dxzz9m1Pfnkk0bfvn0dVJHjSDJWrVplm7darYavr68xZcoUW9sff/xhuLq6Gp9//rkDKiw8d5+LjOzZs8eQZMTGxhZOUQ6U2fk4c+aMUaVKFePw4cNG9erVjenTp+d421zBycKNGze0b98+denSxdZWokQJdenSRTt37nRgZUVDYmKiJKl8+fIOrsSxhg0bppCQELv3yf3oyy+/VKtWrdSzZ095e3urefPm+uSTTxxdlsMEBQVp06ZNOnbsmCTp4MGD2rZtm7p27ergyhzv5MmTSkhIsPsz4+XlpbZt2/LZqj8/Wy0WS55+N7E4s1qt6tevn8aMGaOGDRvmejtF4puMi6qLFy8qLS3N9rMRt/n4+Ojnn392UFVFg9Vq1ciRI9WuXbv7+mcyli1bpv379+uHH35wdCkOd+LECc2ePVujR4/W+PHj9cMPP+iVV16Ri4uL+vfv7+jyCt3rr7+upKQk1atXT05OTkpLS9M//vEP9e3b19GlOVxCQoIkZfjZenvZ/er69et67bXX1KdPn/v2xzcnTZokZ2dnvfLKK3naDgEHuTJs2DAdPnxY27Ztc3QpDnP69GmNGDFCUVFRcnNzc3Q5Dme1WtWqVSu9//77kqTmzZvr8OHDmjNnzn0ZcFasWKGlS5cqIiJCDRs2VHR0tEaOHKnKlSvfl+cD93bz5k316tVLhmFo9uzZji7HIfbt26eZM2dq//79slgsedoWt6iyULFiRTk5Oen8+fN27efPn5evr6+DqnK84cOHa+3atdq8ebOqVq3q6HIcZt++fbpw4YJatGghZ2dnOTs7a+vWrfrwww/l7OystLQ0R5dYqPz8/NSgQQO7tvr16ysuLs5BFTnWmDFj9Prrr+vpp59W48aN1a9fP40aNUrh4eGOLs3hbn9+8tn6P7fDTWxsrKKiou7bqzf//e9/deHCBVWrVs32uRobG6u//e1vCggIyNG2CDhZcHFxUcuWLbVp0yZbm9Vq1aZNmxQYGOjAyhzDMAwNHz5cq1at0nfffacaNWo4uiSH6ty5sw4dOqTo6Gjb1KpVK/Xt21fR0dFycnJydImFql27dum+NuDYsWOqXr26gypyrKtXr6pECfuPWCcnJ1mtVgdVVHTUqFFDvr6+dp+tSUlJ2r1793352Xo73Pzyyy/69ttvVaFCBUeX5DD9+vXTjz/+aPe5WrlyZY0ZM0YbNmzI0ba4RXUPo0ePVv/+/dWqVSu1adNGM2bMUEpKigYOHOjo0grdsGHDFBERoTVr1sjDw8N2r9zLy0vu7u4Orq7weXh4pBt/VLp0aVWoUOG+HJc0atQoBQUF6f3331evXr20Z88ezZs3T/PmzXN0aQ7RvXt3/eMf/1C1atXUsGFDHThwQNOmTdNzzz3n6NIKRXJyso4fP26bP3nypKKjo1W+fHlVq1ZNI0eO1HvvvafatWurRo0aevPNN1W5cmWFhoY6rugCktW58PPz01//+lft379fa9euVVpamu2ztXz58nJxcXFU2QXmXu+NuwNeyZIl5evrq7p16+ZsR3l9xOt+8NFHHxnVqlUzXFxcjDZt2hi7du1ydEkOISnDaeHChY4urci4nx8TNwzD+Oqrr4xGjRoZrq6uRr169Yx58+Y5uiSHSUpKMkaMGGFUq1bNcHNzMx544AHj73//u5Gamuro0grF5s2bM/y86N+/v2EYfz4q/uabbxo+Pj6Gq6ur0blzZyMmJsaxRReQrM7FyZMnM/1s3bx5s6NLLxD3em/cLbePiVsM4z75Wk0AAHDfYAwOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOAAAwHQIOgCJt0aJFKlu2bIHv59SpU7JYLIqOji7wfQEoeAQcAPlu586dcnJyUkhISI7WCwgI0IwZM+zaevfurWPHjuVjddKAAQPS/SSAv7+/4uPj78uf2QDMiIADIN/Nnz9fL7/8sr7//nudO3cuT9tyd3eXt7d3PlWWOScnJ/n6+srZmZ/oA8yAgAMgXyUnJ2v58uUaMmSIQkJCtGjRIrvlX331lVq3bi03NzdVrFhRTzzxhCSpY8eOio2N1ahRo2SxWGSxWCTZ36I6duyYLBaLfv75Z7ttTp8+XTVr1pQkpaWladCgQapRo4bc3d1Vt25dzZw509b37bff1uLFi7VmzRrbfrZs2ZLhLaqtW7eqTZs2cnV1lZ+fn15//XXdunXLtrxjx4565ZVXNHbsWJUvX16+vr56++238+lMAsgLAg6AfLVixQrVq1dPdevW1bPPPqsFCxbo9k/eff3113riiSfUrVs3HThwQJs2bVKbNm0kSStXrlTVqlX1zjvvKD4+XvHx8em2XadOHbVq1UpLly61a1+6dKmeeeYZSZLValXVqlUVGRmpo0eP6q233tL48eO1YsUKSdKrr76qXr166dFHH7XtJygoKN2+zp49q27duql169Y6ePCgZs+erfnz5+u9996z67d48WKVLl1au3fv1uTJk/XOO+8oKioq7ycSQN7k4QdBASCdoKAgY8aMGYZhGMbNmzeNihUr2n4VOTAw0Ojbt2+m62b0q8ELFy40vLy8bPPTp083atasaZuPiYkxJBk//fRTptsdNmyY8dRTT9nm+/fvb/To0cOuz+1fdT5w4IBhGIYxfvx4o27duobVarX1mTVrllGmTBkjLS3NMIw/fz2+ffv2dttp3bq18dprr2VaC4DCwRUcAPkmJiZGe/bsUZ8+fSRJzs7O6t27t+bPny9Jio6OVufOnfO0j6efflqnTp3Srl27JP159aZFixaqV6+erc+sWbPUsmVLVapUSWXKlNG8efMUFxeXo/389NNPCgwMtN0qk6R27dopOTlZZ86csbU1adLEbj0/Pz9duHAhN4cGIB8RcADkm/nz5+vWrVuqXLmynJ2d5ezsrNmzZ+s///mPEhMT5e7unud9+Pr66qGHHlJERIQkKSIiQn379rUtX7ZsmV599VUNGjRIGzduVHR0tAYOHKgbN27ked8ZKVmypN28xWKR1WotkH0ByD4CDoB8cevWLX322WeaOnWqoqOjbdPBgwdVuXJlff7552rSpIk2bdqU6TZcXFyUlpZ2z3317dtXy5cv186dO3XixAk9/fTTtmXbt29XUFCQhg4dqubNm6tWrVr69ddfc7yf+vXra+fOnbbxQ7e37eHhoapVq96zRgCORcABkC/Wrl2ry5cva9CgQWrUqJHd9NRTT2n+/PmaMGGCPv/8c02YMEE//fSTDh06pEmTJtm2ERAQoO+//15nz57VxYsXM93Xk08+qStXrmjIkCHq1KmTKleubFtWu3Zt7d27Vxs2bNCxY8f05ptv6ocffrBbPyAgQD/++KNiYmJ08eJF3bx5M90+hg4dqtOnT+vll1/Wzz//rDVr1mjChAkaPXq0SpTgoxMo6vhTCiBfzJ8/X126dJGXl1e6ZU899ZT27t2r8uXLKzIyUl9++aWaNWumhx56SHv27LH1e+edd3Tq1CnVrFlTlSpVynRfHh4e6t69uw4ePGh3e0qSXnzxRT355JPq3bu32rZtq99//11Dhw616zN48GDVrVtXrVq1UqVKlbR9+/Z0+6hSpYrWrVunPXv2qGnTpnrppZc0aNAgvfHGGzk9NQAcwGLcef0VAADABLiCAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATIeAAwAATOf/AdnOPzfzSm+LAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "WARNING:tensorflow:5 out of the last 181 calls to .predict_function at 0x7fa5fc156710> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "1/1 [==============================] - 0s 67ms/step\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABBUElEQVR4nO3deXhM5///8dcQWRAhSCLW2PedSlBUaq0KtVYbVPVjay3Vlm7olqK2llKtpS1qq6VVbcVetS+htPadxFZNIgiS8/vDL/PtSEIyJpk4fT6ua67L3Oc+536fk8l45Zz7zFgMwzAEAABgEtmcXQAAAIAjEW4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG4AAICpEG5gKrNnz5bFYtHOnTudXQoeISNHjpTFYnHK2Emv2ZMnTzpl/PSyWCwaOXJkho+zfv16WSwWrV+/3trWuHFjVa5cOcPHlqSTJ0/KYrFo9uzZmTIeHItwg3RJeiNO7bF161Znl/hQIiMjNWzYMDVp0kSenp7J3lzvtXnzZjVo0EA5c+aUn5+fXnnlFV27ds3u8TPzzTuj3bhxQ7169VLlypXl5eWl3Llzq1q1apo0aZJu376drm2tXLlSFotF/v7+SkxMtKue69eva+TIkff9eWakjz76SMuWLXPK2KkpUaKE9Xc3W7Zsyps3r6pUqaKXXnpJ27Ztc9g48+bN08SJEx22PUfKyrXBfi7OLgCPpvfee08BAQHJ2kuXLu2Eahzn0KFDGj16tMqUKaMqVapoy5YtqfaNiIhQ06ZNVaFCBY0fP15nz57VJ598oiNHjujnn3/OxKqzphs3bujAgQNq1aqVSpQooWzZsmnz5s0aPHiwtm3bpnnz5qV5W3PnzlWJEiV08uRJrV27VsHBwemu5/r16xo1apSkuyHy395++20NGzYs3dtMj48++kgdOnRQSEiITfvzzz+vLl26yM3NLUPHT0316tX16quvSpJiY2P1119/adGiRfryyy81ePBgjR8/3qb/jRs35OKSvv865s2bp/3792vQoEFpXufxxx/XjRs35Orqmq6x0iu12ooXL64bN24oR44cGTo+MgbhBnZp2bKlateu7ewyHK5WrVq6cuWKvL29tXjxYnXs2DHVvm+++aby5cun9evXK0+ePJLu/iXcu3dvrVq1Ss2aNcussp0mLi5OuXLlSnGZt7d3sjN5ffr0kZeXlyZPnqzx48fLz88vTWMsX75cYWFhmjVrlubOnWtXuLkfFxeXdP+H7SjZs2dX9uzZnTK2JBUuXFjPPfecTdvo0aP17LPPasKECSpTpoz69u1rXebu7p6h9dy8eVOurq7Kli1bho91PxaLxanj4+FwWQoZIul69SeffKIJEyaoePHi8vDwUKNGjbR///5k/deuXauGDRsqV65cyps3r9q2bau//vorWb9z586pV69e8vf3l5ubmwICAtS3b1/dunXLpl98fLyGDBmiggULKleuXGrXrp0uXbr0wLo9PT3l7e39wH4xMTEKDw/Xc889Zw02khQaGqrcuXNr4cKFD9yGvfbt26cePXqoZMmScnd3l5+fn1544QVduXLF2mfdunWyWCxaunRpsvXnzZsni8Vic1bq4MGD6tChg7y9veXu7q7atWvrhx9+sFkv6ZLkhg0b1K9fP/n4+KhIkSLprr9EiRKSpH/++SdN/ZcuXaobN26oY8eO6tKli5YsWaKbN28m63fz5k2NHDlSZcuWlbu7uwoVKqT27dvr2LFjOnnypAoWLChJGjVqlPVSTNLckXvn3FSuXFlNmjRJNkZiYqIKFy6sDh06WNs++eQTBQUFKX/+/PLw8FCtWrW0ePFim/UsFovi4uL09ddfW8fu0aOHpNTn3Hz++eeqVKmS3Nzc5O/vr/79+yc7ZkmXMf/88081adJEOXPmVOHChTVmzJg0HdvUeHh46Ntvv5W3t7c+/PBDGYZhsy//nnMTGxurQYMGqUSJEnJzc5OPj4+efPJJ7d6921rjTz/9pFOnTln3Pek1kDSvZv78+Xr77bdVuHBh5cyZUzExMSnOuUmya9cuBQUFycPDQwEBAZo2bZrN8tSO6b3bvF9tqc25Sct7VdLr6ejRo+rRo4fy5s0rLy8v9ezZU9evX0/bDwEPhTM3sEt0dLQuX75s02axWJQ/f36btm+++UaxsbHq37+/bt68qUmTJumJJ57QH3/8IV9fX0nS6tWr1bJlS5UsWVIjR47UjRs39Nlnn6l+/fravXu39c3m/Pnzqlu3rv755x+99NJLKl++vM6dO6fFixfr+vXrNqevX375ZeXLl08jRozQyZMnNXHiRA0YMEALFixwyP7/8ccfunPnTrKzV66urqpevbr27NnjkHFSEh4eruPHj6tnz57y8/PTgQMHNH36dB04cEBbt26VxWJR48aNVbRoUc2dO1ft2rWzWX/u3LkqVaqUAgMDJUkHDhxQ/fr1VbhwYQ0bNky5cuXSwoULFRISou+//z7Z+v369VPBggX17rvvKi4u7oH13rp1SzExMbpx44Z27typTz75RMWLF0/zJcy5c+eqSZMm8vPzU5cuXTRs2DD9+OOPNmfVEhIS9NRTT2nNmjXq0qWLBg4cqNjYWIWHh2v//v0KDg7W1KlT1bdvX7Vr107t27eXJFWtWjXFMTt37qyRI0cqKirK5uzSpk2bdP78eXXp0sXaNmnSJD399NPq1q2bbt26pfnz56tjx45asWKFWrduLUn69ttv9eKLL6pu3bp66aWXJEmlSpVKdZ9HjhypUaNGKTg4WH379tWhQ4c0depU7dixQ7///rvNpZKrV6+qRYsWat++vTp16qTFixfrjTfeUJUqVdSyZcs0HeOU5M6dW+3atdOMGTP0559/qlKlSin269OnjxYvXqwBAwaoYsWKunLlijZt2qS//vpLNWvW1FtvvaXo6GidPXtWEyZMsG77395//325urpq6NChio+Pv++lqKtXr6pVq1bq1KmTunbtqoULF6pv375ydXXVCy+8kK59TEtt/5bW96oknTp1UkBAgMLCwrR792599dVX8vHx0ejRo9NVJ+xgAOkwa9YsQ1KKDzc3N2u/EydOGJIMDw8P4+zZs9b2bdu2GZKMwYMHW9uqV69u+Pj4GFeuXLG27d2718iWLZsRGhpqbQsNDTWyZctm7NixI1ldiYmJNvUFBwdb2wzDMAYPHmxkz57d+Oeff9K8r4sWLTIkGevWrUt12caNG5Mt69ixo+Hn55fmcf6tUaNGRqVKle7b5/r168navvvuu2T1DB8+3HBzc7PZ54sXLxouLi7GiBEjrG1NmzY1qlSpYty8edPalpiYaAQFBRllypSxtiUd2wYNGhh37txJ8z4l1Zb0qF27trFv3740rXvhwgXDxcXF+PLLL61tQUFBRtu2bW36zZw505BkjB8/Ptk2kl4Hly5dMiTZ7HuSESNGGP9+Ozx06JAhyfjss89s+vXr18/InTu3zc/g3p/HrVu3jMqVKxtPPPGETXuuXLmM7t27Jxs76bieOHHCMIy7PyNXV1ejWbNmRkJCgrXf5MmTDUnGzJkzrW2NGjUyJBnffPONtS0+Pt7w8/MznnnmmWRj3at48eJG69atU10+YcIEQ5KxfPlya9u9x9DLy8vo37//fcdp3bq1Ubx48WTt69atMyQZJUuWTHYck5b9+/cvaX/HjRtnbYuPj7e+h9y6dcswjOTH9H7bTK22pPewWbNmWdvS+l6V9Hp64YUXbLbZrl07I3/+/MnGguNxWQp2mTJlisLDw20eKU2iDQkJUeHCha3P69atq8cee0wrV66UdPfupIiICPXo0cPmclDVqlX15JNPWvslJiZq2bJlatOmTYpzfe69jfell16yaWvYsKESEhJ06tSph9vx/+/GjRuSlOIkUHd3d+vyjODh4WH9982bN3X58mXVq1dPkqyXAqS7l8ji4+NtLpEsWLBAd+7csc6x+Pvvv7V27Vp16tRJsbGxunz5si5fvqwrV66oefPmOnLkiM6dO2czfu/evdM1R6RJkyYKDw/XokWL1KdPH+XIkSNNZ3wkaf78+cqWLZueeeYZa1vXrl31888/6+rVq9a277//XgUKFNDLL7+cbBv23OJdtmxZVa9e3eZMX0JCghYvXqw2bdrY/Az+/e+rV68qOjpaDRs2tPlZpMfq1at169YtDRo0SNmy/d9bdO/evZUnTx799NNPNv1z585tM2fG1dVVdevW1fHjx+0a/95tS3cvPaUmb9682rZtm86fP2/3ON27d7c5jvfj4uKi//3vf9bnrq6u+t///qeLFy9q165ddtfwIGl9r/q3Pn362Dxv2LChrly5opiYmAyrE3cRbmCXunXrKjg42OaR0hyFMmXKJGsrW7as9Vp4UtgoV65csn4VKlTQ5cuXFRcXp0uXLikmJibNt0kXK1bM5nm+fPkkyeY/xIeR9EYcHx+fbNnNmzfT/EZtj7///lsDBw6Ur6+vPDw8VLBgQeuda9HR0dZ+5cuXV506dTR37lxr29y5c1WvXj3rJaGjR4/KMAy98847KliwoM1jxIgRkqSLFy/ajJ/SXXL34+vrq+DgYHXo0EFTp07VU089pSeffFJRUVEPXHfOnDmqW7eurly5oqNHj+ro0aOqUaOGbt26pUWLFln7HTt2TOXKlXPopODOnTvr999/t4a79evX6+LFi+rcubNNvxUrVqhevXpyd3eXt7e3ChYsqKlTp9r8LNIjtd8JV1dXlSxZMllAL1KkSLIAly9fPoe81pM+1sDT0zPVPmPGjNH+/ftVtGhR1a1bVyNHjkx3sErPa8rf3z/ZJPayZctKUoZ+VlBa36v+LaPfh5A6wg1MKbUzC8a/JkY+jEKFCkm6+9fcvSIjI+Xv7++QcVLSqVMnffnll+rTp4+WLFmiVatW6ZdffpGkZJ8BExoaqg0bNujs2bM6duyYtm7davNXflL/oUOHJjsTl/S4d27Mwwa3Dh066Nq1a1q+fPl9+x05ckQ7duzQpk2bVKZMGeujQYMGkmQT2jJC586dZRiGNUQtXLhQXl5eatGihbXPb7/9pqefflru7u76/PPPtXLlSoWHh+vZZ5912GvtQTLytZ40+f9+86M6deqk48eP67PPPpO/v7/Gjh2rSpUqpevjEBz9x0BqZ+sSEhIcOs6DZPT7EFLHhGJkqCNHjiRrO3z4sHXiXfHixSXd/XyZex08eFAFChRQrly55OHhoTx58qR4p5UzVK5cWS4uLtq5c6c6depkbb9165YiIiJs2hzp6tWrWrNmjUaNGqV3333X2p7ScZakLl26aMiQIfruu++sn9nx7zMPJUuWlCTlyJHD4bdXpybpkt2DzmzMnTtXOXLk0LfffpvsP4lNmzbp008/1enTp1WsWDGVKlVK27Zt0+3bt1P9XJL0Xp4KCAhQ3bp1tWDBAg0YMEBLlixRSEiIzaXI77//Xu7u7vr1119t2mfNmmX3+P/+nUj6+Uh3X1snTpzItJ/TtWvXtHTpUhUtWlQVKlS4b99ChQqpX79+6tevny5evKiaNWvqww8/tE5oduSnP58/fz7ZRxAcPnxY0v/diZd0huTeu8tSuixtz8/lXv9+r0LWwJkbZKhly5bZzNnYvn27tm3bZn3TK1SokKpXr66vv/7a5o1o//79WrVqlVq1aiVJypYtm0JCQvTjjz+m+NUKmf2XkJeXl4KDgzVnzhyb+Qjffvutrl27dt/Px3kYSf/J37u/qX3CaoECBdSyZUvNmTNHc+fOVYsWLVSgQAHrch8fHzVu3FhffPFFimeh0nL7fGouX76c4s/lq6++kqQHfk7S3Llz1bBhQ3Xu3FkdOnSwebz22muSpO+++06S9Mwzz+jy5cuaPHlysu0k1ZAzZ05Jab8FXbp79mbr1q2aOXOmLl++nOySVPbs2WWxWGzOCJw8eTLFTyLOlStXmsYODg6Wq6urPv30U5vjN2PGDEVHR1vvwMpIN27c0PPPP6+///5bb7311n3PhNwbUn18fOTv729zyTZXrlx2X6a71507d/TFF19Yn9+6dUtffPGFChYsqFq1akn6vzvRNm7caFPr9OnTk20vrbWl9b0KWQNnbmCXn3/+WQcPHkzWHhQUZPPXZunSpdWgQQP17dtX8fHxmjhxovLnz6/XX3/d2mfs2LFq2bKlAgMD1atXL+vtlV5eXjafp/HRRx9p1apVatSokV566SVVqFBBkZGRWrRokTZt2qS8efM6ZN8++OADSXdvkZbuBpZNmzZJuvtJtkk+/PBDBQUFWes5e/asxo0bp2bNmtlcupDu/nXYqFGjNH30/6VLl6w1/FtAQIC6deumxx9/XGPGjNHt27dVuHBhrVq1SidOnEh1e6GhodbPZXn//feTLZ8yZYoaNGigKlWqqHfv3ipZsqQuXLigLVu26OzZs9q7d+8Da07JnDlzNG3aNIWEhKhkyZKKjY3Vr7/+qvDwcLVp00ZPPPFEqutu27ZNR48e1YABA1JcXrhwYdWsWVNz587VG2+8odDQUH3zzTcaMmSItm/froYNGyouLk6rV69Wv3791LZtW3l4eKhixYpasGCBypYtK29vb1WuXPm+87g6deqkoUOHaujQofL29k521qR169YaP368WrRooWeffVYXL17UlClTVLp0ae3bt8+mb61atbR69WqNHz9e/v7+CggI0GOPPZZszIIFC2r48OEaNWqUWrRooaefflqHDh3S559/rjp16iT7wL2Hde7cOc2ZM0fS3bM1f/75pxYtWqSoqCi9+uqrNpN37xUbG6siRYqoQ4cOqlatmnLnzq3Vq1drx44dGjdunM2+L1iwQEOGDFGdOnWUO3dutWnTxq56/f39NXr0aJ08eVJly5bVggULFBERoenTp1vP2lWqVEn16tXT8OHD9ffff8vb21vz58/XnTt3km0vPbWl9b0KWYCT7tLCI+p+t4LrX7dNJt1GOXbsWGPcuHFG0aJFDTc3N6Nhw4bG3r17k2139erVRv369Q0PDw8jT548Rps2bYw///wzWb9Tp04ZoaGhRsGCBQ03NzejZMmSRv/+/Y34+Hib+u69XTylW0BTc7/9u9dvv/1mBAUFGe7u7kbBggWN/v37GzExMTZ9YmNjDUlGly5dHjh20q2uKT2aNm1qGIZhnD171mjXrp2RN29ew8vLy+jYsaNx/vz5VG9zjo+PN/Lly2d4eXkZN27cSHHcY8eOGaGhoYafn5+RI0cOo3DhwsZTTz1lLF682NontWObmh07dhgdO3Y0ihUrZri5uRm5cuUyatasaYwfP964ffv2fdd9+eWXDUnGsWPHUu0zcuRIQ5L19XT9+nXjrbfeMgICAowcOXIYfn5+RocOHWy2sXnzZqNWrVqGq6urzfG691bwf6tfv74hyXjxxRdTXD5jxgyjTJkyhpubm1G+fHlj1qxZKW7v4MGDxuOPP254eHgYkqy3had22/LkyZON8uXLGzly5DB8fX2Nvn37GlevXrXpk9pHB3Tv3j3F25vvVbx4cevry2KxGHny5DEqVapk9O7d29i2bVuK6/z7uMXHxxuvvfaaUa1aNcPT09PIlSuXUa1aNePzzz+3WefatWvGs88+a+TNm9eQZK0t6fdy0aJFycZJ7VbwSpUqGTt37jQCAwMNd3d3o3jx4sbkyZOTrX/s2DEjODjYcHNzM3x9fY0333zTCA8PT7bN1GpL6VZww0jbe1XSz//SpUs27an9rOF4FsNgZhMc7+TJkwoICNDYsWM1dOhQZ5fjVCtXrtRTTz2lvXv3qkqVKpk+/p07d+Tv7682bdpoxowZmT4+AGQ25twAGWzdunXq0qWLU4KNdHfe06VLlxQaGuqU8QEgszHnBshgY8eOdcq427Zt0759+/T++++rRo0aatSokVPqAIDMxpkbwKSSvkvJx8dH33zzjbPLAYBMw5wbAABgKpy5AQAApkK4AQAApvKfm1CcmJio8+fPy9PT06EfCQ4AADKOYRiKjY2Vv7+/smW7/7mZ/1y4OX/+vIoWLersMgAAgB3OnDmjIkWK3LfPfy7ceHp6Srp7cPLkyePkagAAQFrExMSoaNGi1v/H7+c/F26SLkXlyZOHcAMAwCMmLVNKmFAMAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMhXADAABMxanhZurUqapatar1qxACAwP1888/33edRYsWqXz58nJ3d1eVKlW0cuXKTKoWAAA8CpwabooUKaKPP/5Yu3bt0s6dO/XEE0+obdu2OnDgQIr9N2/erK5du6pXr17as2ePQkJCFBISov3792dy5QAAIKuyGIZhOLuIf/P29tbYsWPVq1evZMs6d+6suLg4rVixwtpWr149Va9eXdOmTUvT9mNiYuTl5aXo6Gi+OBMAgEdEev7/zjJzbhISEjR//nzFxcUpMDAwxT5btmxRcHCwTVvz5s21ZcuWzCgRAAA8AlycXcAff/yhwMBA3bx5U7lz59bSpUtVsWLFFPtGRUXJ19fXps3X11dRUVGpbj8+Pl7x8fHW5zExMY4pHAAAZElODzflypVTRESEoqOjtXjxYnXv3l0bNmxINeCkV1hYmEaNGuWQbcF8Sgz76YF9Tn7cOhMqMTeOM4DM5PTLUq6uripdurRq1aqlsLAwVatWTZMmTUqxr5+fny5cuGDTduHCBfn5+aW6/eHDhys6Otr6OHPmjEPrBwAAWYvTw829EhMTbS4j/VtgYKDWrFlj0xYeHp7qHB1JcnNzs95qnvQAAADm5dTLUsOHD1fLli1VrFgxxcbGat68eVq/fr1+/fVXSVJoaKgKFy6ssLAwSdLAgQPVqFEjjRs3Tq1bt9b8+fO1c+dOTZ8+3Zm7AQAAshCnhpuLFy8qNDRUkZGR8vLyUtWqVfXrr7/qySeflCSdPn1a2bL938mloKAgzZs3T2+//bbefPNNlSlTRsuWLVPlypWdtQsAACCLcWq4mTFjxn2Xr1+/Pllbx44d1bFjxwyqCAAAPOqy3JwbAACAh0G4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApkK4AQAApuLUcBMWFqY6derI09NTPj4+CgkJ0aFDh+67zuzZs2WxWGwe7u7umVQxAADI6pwabjZs2KD+/ftr69atCg8P1+3bt9WsWTPFxcXdd708efIoMjLS+jh16lQmVQwAALI6F2cO/ssvv9g8nz17tnx8fLRr1y49/vjjqa5nsVjk5+eX0eUBAIBHUJaacxMdHS1J8vb2vm+/a9euqXjx4ipatKjatm2rAwcOpNo3Pj5eMTExNg8AAGBeWSbcJCYmatCgQapfv74qV66car9y5cpp5syZWr58uebMmaPExEQFBQXp7NmzKfYPCwuTl5eX9VG0aNGM2gUAAJAFZJlw079/f+3fv1/z58+/b7/AwECFhoaqevXqatSokZYsWaKCBQvqiy++SLH/8OHDFR0dbX2cOXMmI8oHAABZhFPn3CQZMGCAVqxYoY0bN6pIkSLpWjdHjhyqUaOGjh49muJyNzc3ubm5OaJMAADwCHDqmRvDMDRgwAAtXbpUa9euVUBAQLq3kZCQoD/++EOFChXKgAoBAMCjxqlnbvr376958+Zp+fLl8vT0VFRUlCTJy8tLHh4ekqTQ0FAVLlxYYWFhkqT33ntP9erVU+nSpfXPP/9o7NixOnXqlF588UWn7QcAAMg6nBpupk6dKklq3LixTfusWbPUo0cPSdLp06eVLdv/nWC6evWqevfuraioKOXLl0+1atXS5s2bVbFixcwqGwAAZGFODTeGYTywz/r1622eT5gwQRMmTMigigAAwKMuy9wtBQAA4AiEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCpODTdhYWGqU6eOPD095ePjo5CQEB06dOiB6y1atEjly5eXu7u7qlSpopUrV2ZCtQAA4FHg1HCzYcMG9e/fX1u3blV4eLhu376tZs2aKS4uLtV1Nm/erK5du6pXr17as2ePQkJCFBISov3792di5QAAIKuyGIZhOLuIJJcuXZKPj482bNigxx9/PMU+nTt3VlxcnFasWGFtq1evnqpXr65p06Y9cIyYmBh5eXkpOjpaefLkcVjteDSVGPbTA/uc/Lh1JlRibhxnAA8rPf9/Z6k5N9HR0ZIkb2/vVPts2bJFwcHBNm3NmzfXli1bUuwfHx+vmJgYmwcAADAvF2cXkCQxMVGDBg1S/fr1Vbly5VT7RUVFydfX16bN19dXUVFRKfYPCwvTqFGjHFrro+RR/Iv5Uaz5UWTW48x+AcgyZ2769++v/fv3a/78+Q7d7vDhwxUdHW19nDlzxqHbBwAAWUuWOHMzYMAArVixQhs3blSRIkXu29fPz08XLlywabtw4YL8/PxS7O/m5iY3NzeH1QoAALI2p565MQxDAwYM0NKlS7V27VoFBAQ8cJ3AwECtWbPGpi08PFyBgYEZVSYAAHiEOPXMTf/+/TVv3jwtX75cnp6e1nkzXl5e8vDwkCSFhoaqcOHCCgsLkyQNHDhQjRo10rhx49S6dWvNnz9fO3fu1PTp0522HwAAIOtw6pmbqVOnKjo6Wo0bN1ahQoWsjwULFlj7nD59WpGRkdbnQUFBmjdvnqZPn65q1app8eLFWrZs2X0nIQMAgP8Op565SctH7Kxfvz5ZW8eOHdWxY8cMqAgAADzqsszdUgAAAI5AuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZCuAEAAKZiV7g5fvy4o+sAAABwCLvCTenSpdWkSRPNmTNHN2/edHRNAAAAdrMr3OzevVtVq1bVkCFD5Ofnp//973/avn27o2sDAABIN7vCTfXq1TVp0iSdP39eM2fOVGRkpBo0aKDKlStr/PjxunTpkqPrBAAASJOHmlDs4uKi9u3ba9GiRRo9erSOHj2qoUOHqmjRogoNDVVkZKSj6gQAAEiThwo3O3fuVL9+/VSoUCGNHz9eQ4cO1bFjxxQeHq7z58+rbdu2jqoTAAAgTVzsWWn8+PGaNWuWDh06pFatWumbb75Rq1atlC3b3awUEBCg2bNnq0SJEo6sFQAA4IHsCjdTp07VCy+8oB49eqhQoUIp9vHx8dGMGTMeqjgAAID0sivcHDly5IF9XF1d1b17d3s2DwAAYDe75tzMmjVLixYtSta+aNEiff311w9dFAAAgL3sCjdhYWEqUKBAsnYfHx999NFHD10UAACAvewKN6dPn1ZAQECy9uLFi+v06dMPXRQAAIC97Ao3Pj4+2rdvX7L2vXv3Kn/+/A9dFAAAgL3sCjddu3bVK6+8onXr1ikhIUEJCQlau3atBg4cqC5duji6RgAAgDSz626p999/XydPnlTTpk3l4nJ3E4mJiQoNDWXODQAAcCq7wo2rq6sWLFig999/X3v37pWHh4eqVKmi4sWLO7o+AACAdLEr3CQpW7asypYt66haAAAAHppd4SYhIUGzZ8/WmjVrdPHiRSUmJtosX7t2rUOKAwAASC+7ws3AgQM1e/ZstW7dWpUrV5bFYnF0XQAAAHaxK9zMnz9fCxcuVKtWrRxdDwAAwEOx61ZwV1dXlS5d2tG1AAAAPDS7ws2rr76qSZMmyTAMR9cDAADwUOy6LLVp0yatW7dOP//8sypVqqQcOXLYLF+yZIlDigMAAEgvu8JN3rx51a5dO0fXAgAA8NDsCjezZs1ydB0AAAAOYdecG0m6c+eOVq9erS+++EKxsbGSpPPnz+vatWsOKw4AACC97Dpzc+rUKbVo0UKnT59WfHy8nnzySXl6emr06NGKj4/XtGnTHF0nAABAmth15mbgwIGqXbu2rl69Kg8PD2t7u3bttGbNGocVBwAAkF52nbn57bfftHnzZrm6utq0lyhRQufOnXNIYQAAAPaw68xNYmKiEhISkrWfPXtWnp6eD10UAACAvewKN82aNdPEiROtzy0Wi65du6YRI0bwlQwAAMCp7LosNW7cODVv3lwVK1bUzZs39eyzz+rIkSMqUKCAvvvuO0fXCAAAkGZ2hZsiRYpo7969mj9/vvbt26dr166pV69e6tatm80EYwAAgMxmV7iRJBcXFz333HOOrAUAAOCh2RVuvvnmm/suDw0NtasYAACAh2VXuBk4cKDN89u3b+v69etydXVVzpw5CTcAAMBp7Lpb6urVqzaPa9eu6dChQ2rQoAETigEAgFPZ/d1S9ypTpow+/vjjZGd17mfjxo1q06aN/P39ZbFYtGzZsvv2X79+vSwWS7JHVFTUQ1YPAADMwmHhRro7yfj8+fNp7h8XF6dq1appypQp6Rrn0KFDioyMtD58fHzSWyoAADApu+bc/PDDDzbPDcNQZGSkJk+erPr166d5Oy1btlTLli3TPb6Pj4/y5s2b7vUAAID52RVuQkJCbJ5bLBYVLFhQTzzxhMaNG+eIuu6revXqio+PV+XKlTVy5Mh0BSoAAGBudoWbxMRER9eRJoUKFdK0adNUu3ZtxcfH66uvvlLjxo21bds21axZM8V14uPjFR8fb30eExOTWeUCAAAnsPtD/JyhXLlyKleunPV5UFCQjh07pgkTJujbb79NcZ2wsDCNGjUqs0oEAABOZle4GTJkSJr7jh8/3p4h0qxu3bratGlTqsuHDx9uU29MTIyKFi2aoTUBAADnsSvc7NmzR3v27NHt27etZ1IOHz6s7Nmz21weslgsjqnyPiIiIlSoUKFUl7u5ucnNzS3D6wAAAFmDXeGmTZs28vT01Ndff618+fJJuvvBfj179lTDhg316quvpmk7165d09GjR63PT5w4oYiICHl7e6tYsWIaPny4zp07Z/26h4kTJyogIECVKlXSzZs39dVXX2nt2rVatWqVPbsBAABMyK5wM27cOK1atcoabCQpX758+uCDD9SsWbM0h5udO3eqSZMm1udJl4+6d++u2bNnKzIyUqdPn7Yuv3Xrll599VWdO3dOOXPmVNWqVbV69WqbbQAAgP82u8JNTEyMLl26lKz90qVLio2NTfN2GjduLMMwUl0+e/Zsm+evv/66Xn/99TRvHwAA/PfY9QnF7dq1U8+ePbVkyRKdPXtWZ8+e1ffff69evXqpffv2jq4RAAAgzew6czNt2jQNHTpUzz77rG7fvn13Qy4u6tWrl8aOHevQAgEAANLDrnCTM2dOff755xo7dqyOHTsmSSpVqpRy5crl0OIAAADS66G+ODPpiyvLlCmjXLly3Xf+DAAAQGawK9xcuXJFTZs2VdmyZdWqVStFRkZKknr16pXmO6UAAAAygl3hZvDgwcqRI4dOnz6tnDlzWts7d+6sX375xWHFAQAApJddc25WrVqlX3/9VUWKFLFpL1OmjE6dOuWQwgAAAOxh15mbuLg4mzM2Sf7++2++6gAAADiVXeGmYcOG1q9EkO5+h1RiYqLGjBnDpwUDAACnsuuy1JgxY9S0aVPt3LlTt27d0uuvv64DBw7o77//1u+//+7oGgEAANLMrjM3lStX1uHDh9WgQQO1bdtWcXFxat++vfbs2aNSpUo5ukYAAIA0S/eZm9u3b6tFixaaNm2a3nrrrYyoCQAAwG7pPnOTI0cO7du3LyNqAQAAeGh2XZZ67rnnNGPGDEfXAgAA8NDsmlB8584dzZw5U6tXr1atWrWSfafU+PHjHVIcAABAeqUr3Bw/flwlSpTQ/v37VbNmTUnS4cOHbfpYLBbHVQcAAJBO6Qo3ZcqUUWRkpNatWyfp7tctfPrpp/L19c2Q4gAAANIrXXNu7v3W759//llxcXEOLQgAAOBh2DWhOMm9YQcAAMDZ0hVuLBZLsjk1zLEBAABZSbrm3BiGoR49eli/HPPmzZvq06dPsrullixZ4rgKAQAA0iFd4aZ79+42z5977jmHFgMAAPCw0hVuZs2alVF1AAAAOMRDTSgGAADIagg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVAg3AADAVJwabjZu3Kg2bdrI399fFotFy5Yte+A669evV82aNeXm5qbSpUtr9uzZGV4nAAB4dDg13MTFxalatWqaMmVKmvqfOHFCrVu3VpMmTRQREaFBgwbpxRdf1K+//prBlQIAgEeFizMHb9mypVq2bJnm/tOmTVNAQIDGjRsnSapQoYI2bdqkCRMmqHnz5hlVJgAAeIQ8UnNutmzZouDgYJu25s2ba8uWLamuEx8fr5iYGJsHAAAwL6eeuUmvqKgo+fr62rT5+voqJiZGN27ckIeHR7J1wsLCNGrUqMwqUSWG/fTAPic/bp1p20mLtIyVFo6q51HkqGOY1fyX9+tRfD0/ivvlyNdYVts3s3oUXmeP1JkbewwfPlzR0dHWx5kzZ5xdEgAAyECP1JkbPz8/XbhwwabtwoULypMnT4pnbSTJzc1Nbm5umVEeAADIAh6pMzeBgYFas2aNTVt4eLgCAwOdVBEAAMhqnBpurl27poiICEVEREi6e6t3RESETp8+LenuJaXQ0FBr/z59+uj48eN6/fXXdfDgQX3++edauHChBg8e7IzyAQBAFuTUcLNz507VqFFDNWrUkCQNGTJENWrU0LvvvitJioyMtAYdSQoICNBPP/2k8PBwVatWTePGjdNXX33FbeAAAMDKqXNuGjduLMMwUl2e0qcPN27cWHv27MnAqgAAwKPskZpzAwAA8CCEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCpZItxMmTJFJUqUkLu7ux577DFt37491b6zZ8+WxWKxebi7u2ditQAAICtzerhZsGCBhgwZohEjRmj37t2qVq2amjdvrosXL6a6Tp48eRQZGWl9nDp1KhMrBgAAWZnTw8348ePVu3dv9ezZUxUrVtS0adOUM2dOzZw5M9V1LBaL/Pz8rA9fX99MrBgAAGRlTg03t27d0q5duxQcHGxty5Ytm4KDg7Vly5ZU17t27ZqKFy+uokWLqm3btjpw4ECqfePj4xUTE2PzAAAA5uXUcHP58mUlJCQkO/Pi6+urqKioFNcpV66cZs6cqeXLl2vOnDlKTExUUFCQzp49m2L/sLAweXl5WR9FixZ1+H4AAICsw+mXpdIrMDBQoaGhql69uho1aqQlS5aoYMGC+uKLL1LsP3z4cEVHR1sfZ86cyeSKAQBAZnJx5uAFChRQ9uzZdeHCBZv2CxcuyM/PL03byJEjh2rUqKGjR4+muNzNzU1ubm4PXSsAAHg0OPXMjaurq2rVqqU1a9ZY2xITE7VmzRoFBgamaRsJCQn6448/VKhQoYwqEwAAPEKceuZGkoYMGaLu3burdu3aqlu3riZOnKi4uDj17NlTkhQaGqrChQsrLCxMkvTee++pXr16Kl26tP755x+NHTtWp06d0osvvujM3QAAAFmE08NN586ddenSJb377ruKiopS9erV9csvv1gnGZ8+fVrZsv3fCaarV6+qd+/eioqKUr58+VSrVi1t3rxZFStWdNYuAACALMTp4UaSBgwYoAEDBqS4bP369TbPJ0yYoAkTJmRCVQAA4FH0yN0tBQAAcD+EGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCqEGwAAYCpZItxMmTJFJUqUkLu7ux577DFt3779vv0XLVqk8uXLy93dXVWqVNHKlSszqVIAAJDVOT3cLFiwQEOGDNGIESO0e/duVatWTc2bN9fFixdT7L9582Z17dpVvXr10p49exQSEqKQkBDt378/kysHAABZkdPDzfjx49W7d2/17NlTFStW1LRp05QzZ07NnDkzxf6TJk1SixYt9Nprr6lChQp6//33VbNmTU2ePDmTKwcAAFmRU8PNrVu3tGvXLgUHB1vbsmXLpuDgYG3ZsiXFdbZs2WLTX5KaN2+ean8AAPDf4uLMwS9fvqyEhAT5+vratPv6+urgwYMprhMVFZVi/6ioqBT7x8fHKz4+3vo8OjpakhQTE/MwpacqMf76A/ukZezM3I6jOOqYOmrfM3OszDzOZpWZP9O0yKj3CHuxXw+W1fbNrDLzPTqlbRqG8cC+Tg03mSEsLEyjRo1K1l60aFEnVHOX18SstR1Hycx6zDrWf1lWO85ZrR5HMet+Sebet0dNRv4sYmNj5eXldd8+Tg03BQoUUPbs2XXhwgWb9gsXLsjPzy/Fdfz8/NLVf/jw4RoyZIj1eWJiov7++2/lz59fFovlIfcga4mJiVHRokV15swZ5cmTx9nlOAXHgGOQhOPAMZA4BpJ5joFhGIqNjZW/v/8D+zo13Li6uqpWrVpas2aNQkJCJN0NH2vWrNGAAQNSXCcwMFBr1qzRoEGDrG3h4eEKDAxMsb+bm5vc3Nxs2vLmzeuI8rOsPHnyPNIvYEfgGHAMknAcOAYSx0AyxzF40BmbJE6/LDVkyBB1795dtWvXVt26dTVx4kTFxcWpZ8+ekqTQ0FAVLlxYYWFhkqSBAweqUaNGGjdunFq3bq358+dr586dmj59ujN3AwAAZBFODzedO3fWpUuX9O677yoqKkrVq1fXL7/8Yp00fPr0aWXL9n83dQUFBWnevHl6++239eabb6pMmTJatmyZKleu7KxdAAAAWYjTw40kDRgwINXLUOvXr0/W1rFjR3Xs2DGDq3r0uLm5acSIEckuw/2XcAw4Bkk4DhwDiWMg/TePgcVIyz1VAAAAjwinf0IxAACAIxFuAACAqRBuAACAqRBuAACAqRBuTCAsLEx16tSRp6enfHx8FBISokOHDjm7LKf6+OOPZbFYbD7s8b/g3Llzeu6555Q/f355eHioSpUq2rlzp7PLyjQJCQl65513FBAQIA8PD5UqVUrvv/9+mr6L5lG1ceNGtWnTRv7+/rJYLFq2bJnNcsMw9O6776pQoULy8PBQcHCwjhw54pxiM8j9jsHt27f1xhtvqEqVKsqVK5f8/f0VGhqq8+fPO6/gDPCg18G/9enTRxaLRRMnTsy0+jIb4cYENmzYoP79+2vr1q0KDw/X7du31axZM8XFxTm7NKfYsWOHvvjiC1WtWtXZpWSqq1evqn79+sqRI4d+/vln/fnnnxo3bpzy5cvn7NIyzejRozV16lRNnjxZf/31l0aPHq0xY8bos88+c3ZpGSYuLk7VqlXTlClTUlw+ZswYffrpp5o2bZq2bdumXLlyqXnz5rp582YmV5px7ncMrl+/rt27d+udd97R7t27tWTJEh06dEhPP/20EyrNOA96HSRZunSptm7dmqavMHikGTCdixcvGpKMDRs2OLuUTBcbG2uUKVPGCA8PNxo1amQMHDjQ2SVlmjfeeMNo0KCBs8twqtatWxsvvPCCTVv79u2Nbt26OamizCXJWLp0qfV5YmKi4efnZ4wdO9ba9s8//xhubm7Gd99954QKM969xyAl27dvNyQZp06dypyiMllqx+Ds2bNG4cKFjf379xvFixc3JkyYkOm1ZRbO3JhQdHS0JMnb29vJlWS+/v37q3Xr1goODnZ2KZnuhx9+UO3atdWxY0f5+PioRo0a+vLLL51dVqYKCgrSmjVrdPjwYUnS3r17tWnTJrVs2dLJlTnHiRMnFBUVZfP74OXlpccee0xbtmxxYmXOFR0dLYvFYvrvGfy3xMREPf/883rttddUqVIlZ5eT4bLEJxTDcRITEzVo0CDVr1//P/eVFPPnz9fu3bu1Y8cOZ5fiFMePH9fUqVM1ZMgQvfnmm9qxY4deeeUVubq6qnv37s4uL1MMGzZMMTExKl++vLJnz66EhAR9+OGH6tatm7NLc4qoqChJsn6dTRJfX1/rsv+amzdv6o033lDXrl0f+S+RTI/Ro0fLxcVFr7zyirNLyRSEG5Pp37+/9u/fr02bNjm7lEx15swZDRw4UOHh4XJ3d3d2OU6RmJio2rVr66OPPpIk1ahRQ/v379e0adP+M+Fm4cKFmjt3rubNm6dKlSopIiJCgwYNkr+//3/mGCB1t2/fVqdOnWQYhqZOnerscjLNrl27NGnSJO3evVsWi8XZ5WQKLkuZyIABA7RixQqtW7dORYoUcXY5mWrXrl26ePGiatasKRcXF7m4uGjDhg369NNP5eLiooSEBGeXmOEKFSqkihUr2rRVqFBBp0+fdlJFme+1117TsGHD1KVLF1WpUkXPP/+8Bg8erLCwMGeX5hR+fn6SpAsXLti0X7hwwbrsvyIp2Jw6dUrh4eH/qbM2v/32my5evKhixYpZ3x9PnTqlV199VSVKlHB2eRmCMzcmYBiGXn75ZS1dulTr169XQECAs0vKdE2bNtUff/xh09azZ0+VL19eb7zxhrJnz+6kyjJP/fr1k30EwOHDh1W8eHEnVZT5rl+/rmzZbP9my549uxITE51UkXMFBATIz89Pa9asUfXq1SVJMTEx2rZtm/r27evc4jJRUrA5cuSI1q1bp/z58zu7pEz1/PPPJ5uH2Lx5cz3//PPq2bOnk6rKWIQbE+jfv7/mzZun5cuXy9PT03ot3cvLSx4eHk6uLnN4enomm2OUK1cu5c+f/z8z92jw4MEKCgrSRx99pE6dOmn79u2aPn26pk+f7uzSMk2bNm304YcfqlixYqpUqZL27Nmj8ePH64UXXnB2aRnm2rVrOnr0qPX5iRMnFBERIW9vbxUrVkyDBg3SBx98oDJlyiggIEDvvPOO/P39FRIS4ryiHex+x6BQoULq0KGDdu/erRUrVighIcH6Hunt7S1XV1dnle1QD3od3BvocuTIIT8/P5UrVy6zS80czr5dCw9PUoqPWbNmObs0p/qv3QpuGIbx448/GpUrVzbc3NyM8uXLG9OnT3d2SZkqJibGGDhwoFGsWDHD3d3dKFmypPHWW28Z8fHxzi4tw6xbty7F3//u3bsbhnH3dvB33nnH8PX1Ndzc3IymTZsahw4dcm7RDna/Y3DixIlU3yPXrVvn7NId5kGvg3uZ/VZwi2GY+KM7AQDAfw4TigEAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgAAgKkQbgBkabNnz1bevHkzfJyTJ0/KYrEoIiIiw8cCkLEINwAcbsuWLcqePbtat26drvVKlCihiRMn2rR17txZhw8fdmB1Uo8ePZJ9/UDRokUVGRn5n/m6DsDMCDcAHG7GjBl6+eWXtXHjRp0/f/6htuXh4SEfHx8HVZa67Nmzy8/PTy4ufOUe8Kgj3ABwqGvXrmnBggXq27evWrdurdmzZ9ss//HHH1WnTh25u7urQIECateunSSpcePGOnXqlAYPHiyLxSKLxSLJ9rLU4cOHZbFYdPDgQZttTpgwQaVKlZIkJSQkqFevXgoICJCHh4fKlSunSZMmWfuOHDlSX3/9tZYvX24dZ/369SleltqwYYPq1q0rNzc3FSpUSMOGDdOdO3esyxs3bqxXXnlFr7/+ury9veXn56eRI0c66EgCsBfhBoBDLVy4UOXLl1e5cuX03HPPaebMmUr6CruffvpJ7dq1U6tWrbRnzx6tWbNGdevWlSQtWbJERYoU0XvvvafIyEhFRkYm23bZsmVVu3ZtzZ0716Z97ty5evbZZyVJiYmJKlKkiBYtWqQ///xT7777rt58800tXLhQkjR06FB16tRJLVq0sI4TFBSUbKxz586pVatWqlOnjvbu3aupU6dqxowZ+uCDD2z6ff3118qVK5e2bdumMWPG6L333lN4ePjDH0gA9nPyF3cCMJmgoCBj4sSJhmEYxu3bt40CBQpYv305MDDQ6NatW6rrpvRNxbNmzTK8vLyszydMmGCUKlXK+vzQoUOGJOOvv/5Kdbv9+/c3nnnmGevz7t27G23btrXpk/Tt0Xv27DEMwzDefPNNo1y5ckZiYqK1z5QpU4zcuXMbCQkJhmHc/eb5Bg0a2GynTp06xhtvvJFqLQAyHmduADjMoUOHtH37dnXt2lWS5OLios6dO2vGjBmSpIiICDVt2vShxujSpYtOnjyprVu3Srp71qZmzZoqX768tc+UKVNUq1YtFSxYULlz59b06dN1+vTpdI3z119/KTAw0Hp5TJLq16+va9eu6ezZs9a2qlWr2qxXqFAhXbx40Z5dA+AghBsADjNjxgzduXNH/v7+cnFxkYuLi6ZOnarvv/9e0dHR8vDweOgx/Pz89MQTT2jevHmSpHnz5qlbt27W5fPnz9fQoUPVq1cvrVq1ShEREerZs6du3br10GOnJEeOHDbPLRaLEhMTM2QsAGlDuAHgEHfu3NE333yjcePGKSIiwvrYu3ev/P399d1336lq1apas2ZNqttwdXVVQkLCA8fq1q2bFixYoC1btuj48ePq0qWLddnvv/+uoKAg9evXTzVq1FDp0qV17NixdI9ToUIFbdmyxTpfKGnbnp6eKlKkyANrBOA8hBsADrFixQpdvXpVvXr1UuXKlW0ezzzzjGbMmKERI0bou+++04gRI/TXX3/pjz/+0OjRo63bKFGihDZu3Khz587p8uXLqY7Vvn17xcbGqm/fvmrSpIn8/f2ty8qUKaOdO3fq119/1eHDh/XOO+9ox44dNuuXKFFC+/bt06FDh3T58mXdvn072Rj9+vXTmTNn9PLLL+vgwYNavny5RowYoSFDhihbNt46gayM31AADjFjxgwFBwfLy8sr2bJnnnlGO3fulLe3txYtWqQffvhB1atX1xNPPKHt27db+7333ns6efKkSpUqpYIFC6Y6lqenp9q0aaO9e/faXJKSpP/9739q3769OnfurMcee0xXrlxRv379bPr07t1b5cqVU+3atVWwYEH9/vvvycYoXLiwVq5cqe3bt6tatWrq06ePevXqpbfffju9hwZAJrMY/z7nCgAA8IjjzA0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADAVwg0AADCV/wcZ49Oyxp3DGAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "WARNING:tensorflow:6 out of the last 182 calls to .predict_function at 0x7fa5fc15ab90> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "141/141 [==============================] - 0s 2ms/step\n", "36/36 [==============================] - 0s 2ms/step\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAHHCAYAAABEEKc/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddZwc5f3A8c8zsnJ7LnEjCRAI2gDBgkPwAsUpbsUKFGjhR1sChQZ3CJTiUiA4FPcAgaJBg4QIxHN+qyPP74/Z27s9Se6SSy6B77uvo9nZmWeeZ1bmu48qrbVGCCGEEELkGL2dASGEEEKI1Y0ESEIIIYQQbUiAJIQQQgjRhgRIQgghhBBtSIAkhBBCCNGGBEhCCCGEEG1IgCSEEEII0YYESEIIIYQQbUiAJIQQQgjRhgRIvWjYsGEcc8wxvZ2Ndvl48803UUrx5ptvrtJ89NZ5u+v+++9n1KhR2LZNaWlpt4+fNWsWSimuvvrqns/cL8wOO+zADjvs0NvZWC2s6PumqamJE044gX79+qGU4qyzzurZDP6C/PTTT0QiEd59991Vet4VuSfIZ6VjL774IoWFhSxevLjbx64RAdI999yDUgqlFO+8806757XWDB48GKUUe++9d95zzccppbAsi/LycsaMGcOZZ57J119/vdTz3nrrrSilGDt2bI+W59fu1ltv5Z577untbCyX6dOnc8wxxzBixAjuuOMO/vWvf3W67/PPP8+ECRNWXeZEj5k3bx4TJkzgs88+6+2s9Jh//vOf3HPPPZxyyincf//9HHnkkSvlPGvy57vZJZdcwtixY9lmm21yP9y68vdrNWzYsNw1MAyD0tJSNtxwQ0466SQ++OCDFUr7n//8J0899dRyH7/77rszcuRIJk6c2O1jreU+ay+IRCI89NBDbLvttnnb33rrLX7++WfC4XCHx+26664cddRRaK2pr69n2rRp3Hvvvdx6661cccUV/OlPf+rwuAcffJBhw4bxv//9jx9++IGRI0f2aHm+/fZbDGP1i1G32247kskkoVBopaR/6623UllZ2e6X0so+b09488038X2fG264YZnvh+eff55bbrlFgqQ10Lx587j44osZNmwYm2yySW9np0e8/vrrbLnlllx00UUr9Tydfb7XFIsXL+bee+/l3nvvBWC99dbj/vvvz9vnggsuoLCwkAsvvLBHz70i94SXX365R/PSXZtssgnnnHMOAI2NjXzzzTdMnjyZO+64g7PPPptrr712udL95z//yYEHHsh+++233Hk7+eSTOffcc7n44ospKirq8nFrVIC05557MnnyZG688UYsqyXrDz30EGPGjGHJkiUdHrfOOuvw+9//Pm/b5Zdfzj777MM555zDqFGj2HPPPfOenzlzJu+99x5PPPEEJ598Mg8++GCPf7F0FtD1NsMwiEQiv5rzdseiRYsAlqtp7ddOa00qlSIajfZ2VtYovu+TyWRWOJ1Fixax/vrr90COVr1V+d554IEHsCyLffbZB4C+fft2eP+orKxst7215tetO99pK3JP6O0flgMHDmx3Pa644goOP/xwrrvuOtZee21OOeWUXsnb7373O8444wwmT57Mcccd1+XjVr/qi6U47LDDqK6u5pVXXslty2QyPPbYYxx++OHdSquiooKHH34Yy7K47LLL2j3/4IMPUlZWxl577cWBBx7Igw8+2KV09957b4YPH97hc1tttRWbbbZZ7nHb9mbHcbj44otZe+21iUQiVFRUsO222+aVt7N25mOOOYZhw4blbbv66qvZeuutqaioIBqNMmbMGB577LFllqFtX6DWTZxt/1rn5e6772annXaiT58+hMNh1l9/fSZNmpSX9rBhw/jqq69466232qXRWR+kyZMnM2bMGKLRaO5Lae7cue3KX1hYyNy5c9lvv/0oLCykqqqKc889F8/zlllmCH75jh49mnA4zIABAzjttNOoq6vLy3tzkFxVVYVSqtPaoWOOOYZbbrkFYKlV8P/6178YMWIE4XCYzTffnA8//LDdPtOnT+fAAw+kvLycSCTCZpttxjPPPLPM8rTus9JT55kwYUKH5Wh+j8yaNSu3bdiwYey999689NJLbLbZZkSjUW6//Xaga++V7lBKcfrpp/PUU0+xwQYbEA6HGT16NC+++GK7fefOnctxxx1H3759c/vddddduefffPNNNt98cwCOPfbY3Gt3zz33cOONN2KaZt774pprrkEplVcT7XkeRUVF/OUvf8lti8fjnHPOOQwePJhwOMy6667L1Vdfjda6w7I8+OCDufdjR+WAIHA46aSTCIVCPPHEEx3u0/y5mjlzJv/9739z5Wl+rdLpNBdddBEjR44kHA4zePBg/vznP5NOp/PSWdHPd0+9d+rq6jjrrLNy13HkyJFcccUV+L6fl+7DDz/MmDFjKCoqori4mA033JAbbrihw2vU2lNPPcXYsWMpLCxc5r6tLe116+p3cdt7QvO1effdd/nTn/5EVVUVsViM/fffv12fmrb3hubX/dFHH+Wyyy5j0KBBRCIRdt55Z3744Yd2577lllsYPnw40WiULbbYgilTpqxwv6ZoNMr9999PeXk5l112Wd57vSvXRClFPB7n3nvvzb2fmq/P7NmzOfXUU1l33XWJRqNUVFRw0EEH5b2PmvXp04eNNtqIp59+ulv5X6NqkIYNG8ZWW23Ff/7zH/bYYw8AXnjhBerr6zn00EO58cYbu5XekCFD2H777XnjjTdoaGiguLg499yDDz7IAQccQCgU4rDDDmPSpEl8+OGHuS/OzhxyyCEcddRR7fadPXs277//PldddVWnx06YMIGJEydywgknsMUWW9DQ0MBHH33EJ598wq677tqtsgHccMMN7LvvvhxxxBFkMhkefvhhDjroIJ577jn22muvLqez3Xbbtatinj17Nn/961/p06dPbtukSZMYPXo0++67L5Zl8eyzz3Lqqafi+z6nnXYaANdffz1nnHFGXvV03759Oz33Pffcw7HHHsvmm2/OxIkTWbhwITfccAPvvvsun376aV5Njud5jB8/nrFjx3L11Vfz6quvcs011zBixIhl/nKZMGECF198MbvssgunnHIK3377be41f/fdd7Ftm+uvv5777ruPJ598kkmTJlFYWMhGG23UYXonn3wy8+bN45VXXml37Zo99NBDNDY2cvLJJ6OU4sorr+SAAw7gxx9/xLZtAL766iu22WYbBg4cyPnnn08sFuPRRx9lv/324/HHH2f//fdfarlW5Xk68u2333LYYYdx8sknc+KJJ7LuuusCXXuvdNc777zDE088wamnnkpRURE33ngjv/vd75gzZw4VFRUALFy4kC233DJ3M6uqquKFF17g+OOPp6GhgbPOOov11luPSy65hL///e+cdNJJjBs3DoCtt96a+vp6fN/nnXfeyfV3nDJlCoZhMGXKlFxePv30U5qamthuu+2AIJDZd999eeONNzj++OPZZJNNeOmllzjvvPOYO3cu1113XV5ZXn/9dR599FFOP/10Kisr2/34geD9ftxxx/HII4/w5JNPdvqZbm4iOvvssxk0aFCuGaSqqgrf99l333155513OOmkk1hvvfX44osvuO666/juu+/y+n6sjM/30nT03kkkEmy//fbMnTuXk08+mSFDhvDee+9xwQUXMH/+fK6//noAXnnlFQ477DB23nlnrrjiCgC++eYb3n33Xc4888xOz+k4Dh9++OFy13R09rqt6HfxGWecQVlZGRdddBGzZs3i+uuv5/TTT+eRRx5Z5rGXX345hmFw7rnnUl9fz5VXXskRRxyR1zdo0qRJnH766YwbN46zzz6bWbNmsd9++1FWVsagQYOW61o0KywsZP/99+fOO+/k66+/ZvTo0UDXrsn999+fux+edNJJAIwYMQKADz/8kPfee49DDz2UQYMGMWvWLCZNmsQOO+zA119/TUFBQV4+xowZ0/2+THoNcPfdd2tAf/jhh/rmm2/WRUVFOpFIaK21Puigg/SOO+6otdZ66NCheq+99so7FtCnnXZap2mfeeaZGtDTpk3Lbfvoo480oF955RWttda+7+tBgwbpM888c5l5ra+v1+FwWJ9zzjl526+88kqtlNKzZ8/ObRs6dKg++uijc4833njjdvlva/vtt9fbb799u+1HH320Hjp0aN625mvULJPJ6A022EDvtNNOedvb5uONN97QgH7jjTc6zEMymdRjxozRAwYM0PPnz+/0fFprPX78eD18+PC8baNHj+6wDG3Pm8lkdJ8+ffQGG2ygk8lkbr/nnntOA/rvf/97btvRRx+tAX3JJZfkpbnpppvqMWPGdFiOZosWLdKhUEjvtttu2vO83Pabb75ZA/quu+7Kbbvooos0oBcvXrzUNLXW+rTTTtMdfcRmzpypAV1RUaFrampy259++mkN6GeffTa3beedd9YbbrihTqVSuW2+7+utt95ar7322ks9/8o4T3P522r+jM6cOTO3bejQoRrQL774Yrv9u/pe6ez93hagQ6GQ/uGHH3Lbpk2bpgF900035bYdf/zxun///nrJkiV5xx966KG6pKQkl68PP/xQA/ruu+/O28/zPF1cXKz//Oc/a62Da1RRUaEPOuggbZqmbmxs1Fprfe2112rDMHRtba3WWuunnnpKA/rSSy/NS+/AAw/USqm8fAPaMAz91Vdf5e3b/HpeddVV2nEcfcghh+hoNKpfeumlZV4frTv+frz//vu1YRh6ypQpedtvu+02Deh33303t21FP9898d75xz/+oWOxmP7uu+/ytp9//vnaNE09Z84crXXwvV5cXKxd1213vqX54Ycf2r1nOtJRGTt73bRe/u/i5muzyy67aN/3c9vPPvtsbZqmrqury21r+1lp/j5db731dDqdzm2/4YYbNKC/+OILrbXW6XRaV1RU6M0331w7jpPb75577tFAlz5/Hb23Wrvuuus0oJ9++unctq5ek1gslndNOjtea62nTp2qAX3fffe1e+6f//ynBvTChQuXVZycNaqJDeDggw8mmUzy3HPP0djYyHPPPdft5rXWmqtRGxsbc9sefPBB+vbty4477ggE1XyHHHIIDz/88DKba4qLi9ljjz149NFH86oTH3nkEbbcckuGDBnS6bGlpaV89dVXfP/998tdntZat9fX1tZSX1/PuHHj+OSTT1Yo3VNPPZUvvviCxx9/nH79+nV4vvr6epYsWcL222/Pjz/+SH19fbfP89FHH7Fo0SJOPfXUvHb8vfbai1GjRvHf//633TF/+MMf8h6PGzeOH3/8cannefXVV8lkMpx11ll5HSRPPPFEiouLOzxPTzjkkEMoKyvLyyuQy29NTQ2vv/46Bx98MI2NjSxZsoQlS5ZQXV3N+PHj+f7779s1NfbmeTqy1lprMX78+Hbbe/q9ArDLLrvkfl0CbLTRRhQXF+fKqbXm8ccfZ5999kFrnSvnkiVLGD9+PPX19cv8bBiGwdZbb83bb78NBLUS1dXVnH/++WitmTp1KhDUKm2wwQa5Gs7nn38e0zT54x//mJfeOeecg9aaF154IW/79ttv32l/oUwmk/ul/fzzz7Pbbrt1/SK1MXnyZNZbbz1GjRqVdz122mknAN54443cvivjNVuajt47kydPZty4cZSVleXld5dddsHzvNzrUlpaSjwez+ue0BXV1dUAeZ+X7ujsdVvR7+KTTjopr3ly3LhxeJ7H7Nmzl3nssccem9c/qe3n/6OPPqK6upoTTzwxr2/vEUccsdzXoa2O7rMrek1aH+84DtXV1YwcOZLS0tIO02guS2d9lTuyRjWxQVAtvMsuu/DQQw+RSCTwPI8DDzxwudNramoCyPVs9zyPhx9+mB133JGZM2fm9hs7dizXXHMNr7322jK/kA455BCeeuoppk6dytZbb82MGTP4+OOPc9W/nbnkkkv47W9/yzrrrMMGG2zA7rvvzpFHHtlpM86yPPfcc1x66aV89tlnef0JVmQ46u23387dd9/N7bffzpZbbpn33LvvvstFF13E1KlTSSQSec/V19dTUlLSrXM1f/ibm2VaGzVqVLspHyKRCFVVVXnbysrKqK2tXa7zhEIhhg8f3qUvoeXRNlhu/gA35/eHH35Aa83f/vY3/va3v3WYxqJFixg4cOBqcZ6OrLXWWh1u7+n3CrQvJ+S//osXL6auro5//etfnU7P0NwJf2nGjRvHhAkTSCaTTJkyhf79+/Ob3/yGjTfemClTprDrrrvyzjvvcPDBB+eOmT17NgMGDGg3gma99dbLPd9aZ9cNYOLEiTQ1NfHCCy+s8Lw333//Pd988027z02z1tdjZbxmS9PRNfj+++/5/PPPl5nfU089lUcffZQ99tiDgQMHsttuu3HwwQez++67d+ncrX/crmieYcW/i5f1GV6RY5vfe21H5VqW1WHT7vJoe5+FFb8myWSSiRMncvfddzN37ty816yjgL35+e7c/9a4AAng8MMP58QTT2TBggXsscceKzSi6Msvv8Q0zdwb+/XXX2f+/Pk8/PDDPPzww+32f/DBB5cZIO2zzz4UFBTw6KOPsvXWW/Poo49iGAYHHXTQUo/bbrvtmDFjBk8//TQvv/wy//73v7nuuuu47bbbOOGEE4Dgxe3ow9u2ZmvKlCnsu+++bLfddtx66630798f27a5++67eeihh5aaj87873//48wzz+SEE07ItQc3mzFjBjvvvDOjRo3i2muvZfDgwYRCIZ5//nmuu+66dh0oVwbTNFf6OXpSZ/ltfn2br9m5557bYS0MtP9SW9nn6ezLpbOa1Y5GHa2s90pXy/n73/+eo48+usN9u/JjZNttt8VxHKZOncqUKVNyv8jHjRvHlClTmD59OosXL85tXx5LG601fvx4XnzxRa688kp22GGHFRr56fs+G264YadDsAcPHgz0zGvWE+8d3/fZdddd+fOf/9zhMeussw4QdMr97LPPeOmll3jhhRd44YUXuPvuuznqqKNyw/c70txXrSuBR1fz3BPfxct6b6+sY3vKl19+CbR8j/TENTnjjDO4++67Oeuss9hqq60oKSlBKcWhhx7a4fux+TWtrKzscr7XyABp//335+STT+b999/vUie1zsyZM4e33nqLrbbaKhfZPvjgg/Tp0yc3Aqm1J554gieffJLbbrttqV9gsViMvffem8mTJ3PttdfyyCOPMG7cOAYMGLDMPJWXl3Psscdy7LHH5jp5TpgwIRcglZWVddhk1PYX6OOPP04kEuGll17KGzp69913LzMPHVm8eDEHHnggm2yySYfX5tlnnyWdTvPMM8/k/WJpXUXfrKsR/NChQ4Ggs2ZzlX+zb7/9Nvf8imp9ntYjEDOZDDNnzmSXXXZZrnRXdOK45rzYtr3ceejp8zT/+qyrq8v7YdKdWrbuvFd6UlVVFUVFRXiet8xyLu2122KLLQiFQkyZMoUpU6Zw3nnnAcEPnDvuuIPXXnst97jZ0KFDefXVV2lsbMz7FT19+vTc81215ZZb8oc//IG9996bgw46iCeffDKvaaQ7RowYwbRp09h5552XWuae+Hz3xHtnxIgRNDU1denzEAqF2Geffdhnn33wfZ9TTz2V22+/nb/97W+d/rAYMmQI0Wg0r/VgRfX0d3FPa37v/fDDD7luJQCu6zJr1qzlbsFo1tTUxJNPPsngwYNzNabduSadvZ8ee+wxjj76aK655prctlQqlTfCtLWZM2dSWVnZae1jR9a4PkgQtGdOmjSJCRMm5Oaq6K6amhoOO+wwPM/LjbZIJpM88cQT7L333hx44IHt/k4//XQaGxu7NMT6kEMOYd68efz73/9m2rRpHHLIIcs8prn9u3U5R44cmVf9OGLEiNwv1GbTpk1rNyW+aZoopfJ+nc2aNWu5ZiT1PI9DDz2UTCbD448/3uF8G82/UtpWc3b0ho/FYp2+iVvbbLPN6NOnD7fddlveNXjhhRf45ptvujUSb2l22WUXQqEQN954Y17+77zzTurr65f7PLFYDKBLZe1Inz592GGHHbj99tuZP39+u+eXZ+r8FT1Pcx+f5r4eQG4Ybld1573Sk0zT5He/+x2PP/547hdta63LubTXLhKJsPnmm/Of//yHOXPm5NUgJZNJbrzxRkaMGEH//v1zx+y55554nsfNN9+cl9Z1112HUio3KrerdtllFx5++GFefPFFjjzyyOWudTv44IOZO3cud9xxR7vnkskk8Xgc6JnPd0+8dw4++GCmTp3KSy+91O65uro6XNcF2n+XGoaRu9G3nb6gNdu22Wyzzfjoo4+6nKdl6cnv4pVhs802o6KigjvuuCN3/SCoLFjemrRmyWSSI488kpqaGi688MJcsNOda9LZ+8k0zXa1YDfddFOnNZIff/wxW221Vbfyv0bWIAGdVpF35LvvvuOBBx5Aa01DQwPTpk1j8uTJNDU1ce211+bapZ955hkaGxvZd999O0xnyy23pKqqigcffHCZAc+ee+5JUVER5557bu6LeVnWX399dthhB8aMGUN5eTkfffQRjz32GKeffnpun+OOO45rr72W8ePHc/zxx7No0SJuu+02Ro8eTUNDQ26/vfbaK1e2ww8/nEWLFnHLLbcwcuRIPv/8865ctpzbbruN119/nT/84Q/tfjH27duXXXfdld122y33i+3kk0+mqamJO+64gz59+rS76Y4ZM4ZJkyZx6aWXMnLkSPr06dOuhgiCL6srrriCY489lu23357DDjssN8x/2LBhnH322d0qR2eqqqq44IILuPjii9l9993Zd999+fbbb7n11lvZfPPNlzoZ3NKMGTMGgD/+8Y+MHz8e0zQ59NBDu5XGLbfcwrbbbsuGG27IiSeeyPDhw1m4cCFTp07l559/Ztq0acuVt+U9z2677caQIUM4/vjjOe+88zBNk7vuuouqqirmzJnTpXN1573S0y6//HLeeOMNxo4dy4knnsj6669PTU0Nn3zyCa+++io1NTVAcDMvLS3ltttuo6ioiFgsxtixY3NN8ePGjePyyy+npKSEDTfcEAgCzXXXXZdvv/223SzS++yzDzvuuCMXXnghs2bNYuONN+bll1/m6aef5qyzzsrrXN5V++23X67ZqLi4ODdPUHcceeSRPProo7nP9jbbbIPneUyfPp1HH300Nw9RT3y+e+K9c9555/HMM8+w9957c8wxxzBmzBji8ThffPEFjz32GLNmzaKyspITTjiBmpoadtppJwYNGsTs2bO56aab2GSTTXK1GJ357W9/y4UXXthu6pfl1ZPfxStDKBRiwoQJnHHGGey0004cfPDBzJo1i3vuuYcRI0Z0uSZ87ty5PPDAA0BQa/T1118zefJkFixYwDnnnMPJJ5+c27c712TMmDG8+uqrXHvttQwYMIC11lqLsWPHsvfee3P//fdTUlLC+uuvz9SpU3n11VdzzaStLVq0iM8//7z7U4h0ebxbL2o9zH9pOhvm3/xnGIYuLS3Vm266qT7zzDPbDcfcZ599dCQS0fF4vNNzHHPMMdq27XbDhDtyxBFH5IZodpbf1sMXL730Ur3FFlvo0tJSHY1G9ahRo/Rll12mM5lM3nEPPPCAHj58uA6FQnqTTTbRL730UofD/O+880699tpr63A4rEeNGqXvvvvuDofaLmuYf/MxHf21HgL6zDPP6I022khHIhE9bNgwfcUVV+i77rqr3RDeBQsW6L322ksXFRXlpdHZ9AKPPPKI3nTTTXU4HNbl5eX6iCOO0D///HPePkcffbSOxWLtrnFnQ4s7cvPNN+tRo0Zp27Z137599SmnnJIbpt02va4M83ddV59xxhm6qqpKK6Vy+Wg9XLstQF900UV522bMmKGPOuoo3a9fP23bth44cKDee++99WOPPbbU86+s83z88cd67NixOhQK6SFDhuhrr72206HanQ397ep7pTvD/DuazqPte1trrRcuXKhPO+00PXjwYG3btu7Xr5/eeeed9b/+9a+8/Z5++mm9/vrra8uy2g35/+9//6sBvccee+Qdc8IJJ2hA33nnne3y0tjYqM8++2w9YMAAbdu2XnvttfVVV12VN3x7aWXp7PW89dZbNaDPPffcDq9N62vR0euRyWT0FVdcoUePHq3D4bAuKyvTY8aM0RdffLGur6/P7bein2+te+a909jYqC+44AI9cuRIHQqFdGVlpd5666311VdfnfuufOyxx/Ruu+2m+/TpkzvXySefnDctSWcWLlyoLcvS999/f6f7dDbMv7MpZZb3u7ize19H35WdDfOfPHly3rHN76O2U1jceOONeujQoTocDusttthCv/vuu3rMmDF699137/Q6tM538z1BKaWLi4v16NGj9Yknnqg/+OCDFbom06dP19ttt52ORqMayF2f2tpafeyxx+rKykpdWFiox48fr6dPn97hZ37SpEm6oKBANzQ0LLMsrSmtV2FPLSGEEGI1d/zxx/Pdd9/lTf75a+P7PlVVVRxwwAEdNsGuSTbddFN22GGHdhOyLssa2QdJCCGEWFkuuuii3Cz6vwapVKpdf5777ruPmpqaFZ5Kore9+OKLfP/991xwwQXdPlZqkIQQQohfsTfffJOzzz6bgw46iIqKCj755BPuvPNO1ltvPT7++ONeXwi3t6yxnbSFEEIIseKGDRvG4MGDufHGG6mpqaG8vJyjjjqKyy+//FcbHIHUIAkhhBBCtCN9kIQQQggh2pAASQghhBCijV9VHyTf95k3bx5FRUUrvAyEEEIIIVYNrTWNjY0MGDAAw1g1dTu/qgBp3rx5ucUXhRBCCLFm+emnnxg0aNAqOdevKkBqXiTyp59+6pEp5IUQQgix8jU0NDB48OC8xZ5Xtl9VgNTcrFZcXCwBkhBCCLGGWZXdY6STthBCCCFEGxIgCSGEEEK0IQGSEEIIIUQbEiAJIYQQQrQhAZIQQgghRBsSIAkhhBBCtCEBkhBCCCFEGxIgCSGEEEK0IQGSEEIIIUQbEiAJIYQQQrQhAZIQQgghRBsSIAkhepTrujjxHcjER+Nmvuvt7AghxHL5VS1WK4RY+fxECAONArS3Li7TsEIb9Xa2hBCiW6QGSQjRY9z0/Rjo3GMF+Ok9ey9DQgixnCRAEkL0HFXSbpNWoV7IiBBCrBgJkIQQPcYK7YvfKiDSgBn6qPcyJIQQy0kCJCFEjwoVpSF0Bdo+ERVJY4XKeztLQgjRbdJJWwjR46zIn3s7C0IIsUKkBkkIIYQQog0JkIQQQggh2pAASQghhBCiDQmQhBBCCCHakABJCCGEEKINCZCEEEIIIdqQAEkIIYQQog0JkIQQQggh2pAASQghhBCiDQmQhBBCCCHakABJCCGEEKINCZCEEEIIIdqQAEkIIYQQog0JkIQQQggh2pAASQghhBCiDQmQhBBCCCHakABJCCGEEKINCZCEEEIIIdqQAEkIIYQQog0JkIQQQggh2pAASQghhBCiDQmQhBBCCCHakABJCCGEEKINCZCEEEIIIdqQAEkIIYQQoo3VJkB6++232WeffRgwYABKKZ566qm857XW/P3vf6d///5Eo1F22WUXvv/++97JrBBCCCF+0VabACkej7Pxxhtzyy23dPj8lVdeyY033shtt93GBx98QCwWY/z48aRSqVWcUyGEEEL80lm9nYFme+yxB3vssUeHz2mtuf766/nrX//Kb3/7WwDuu+8++vbty1NPPcWhhx66KrMqhBBCiF+41aYGaWlmzpzJggUL2GWXXXLbSkpKGDt2LFOnTu30uHQ6TUNDQ96fEEIIIcSyrBEB0oIFCwDo27dv3va+ffvmnuvIxIkTKSkpyf0NHjx4peZTCCGEEL8Ma0SAtLwuuOAC6uvrc38//fRTb2dJCCGEEGuANSJA6tevHwALFy7M275w4cLccx0Jh8MUFxfn/QkhhBBCLMsaESCttdZa9OvXj9deey23raGhgQ8++ICtttqqF3MmhBBCiF+i1WYUW1NTEz/88EPu8cyZM/nss88oLy9nyJAhnHXWWVx66aWsvfbarLXWWvztb39jwIAB7Lfffr2XaSGEEEL8Iq02AdJHH33EjjvumHv8pz/9CYCjjz6ae+65hz//+c/E43FOOukk6urq2HbbbXnxxReJRCK9lWUhhBBC/EIprbXu7UysKg0NDZSUlFBfXy/9kYQQQog1RG/cv9eIPkhCCCGEEKuSBEhCCCGEEG1IgCSEEEII0YYESEIIIYQQbUiAJIQQQgjRhgRIQgghhBBtSIAkhBBCCNGGBEhCCCGEEG1IgCSEEEII0YYESEIIIYQQbUiAJIQQQgjRhgRIQgghhBBtSIAkhBBCCNGGBEhCCCGEEG1IgCSEEEII0YYESEIIIYQQbUiAJIQQQgjRhgRIQgghhBBtSIAkhBBCCNGGBEhCCCGEEG1IgCSEEEII0YYESEIIIYQQbUiAJIQQQgjRhgRIQgghhBBtSIAkhBBCCNGGBEhCCCGEEG1IgCSEEEII0YYESEIIIYQQbUiAJIQQQgjRhgRIQgghhBBtSIAkhBBCCNGGBEhCCCGEEG1IgCSEEEII0YYESEIIIYQQbUiAJIQQQgjRhgRIQgghhBBtSIAkhBBCCNGGBEhCCCGEEG1IgCSEEEII0YYESEIIIYQQbUiAJITodRpNhno0fm9nRaxqc7eEH1XwN3+v3s6NEDlWb2dACPHrtog3+EpfgKU8XG3Sl/Gsry7u7WyJVaFmIiQ/aHkcfx7i/4WYBEqi90kNkhCiV32p/w9buRhobOWygJd7O0u9QuOxmK1ZQCkLqCDNu72dpZWv8fr222r/usqzIURHJEASQvQqhW71b7BwydDQexnqJTUciMdX2UceteyFR7JX87TSRfdvv63wtFWfDyE6IAGSEKJ3aRMV/AOAQtXITH/z3sxRr3B4H7JXolktO/ZOZlaVPreBVREUWwGhtaD0hN7OlRCABEhCiF42Tr1OWCeIkKKQBiKk0CqF67zS21lbpUxGtNvm+9N7ISer2LAlMEIHf0N+7O3cCJEjAZIQoldl1BwKVJICHSdMBkMHNUkq8e9eztmqVckU0C3NjWiN6WZ6L0NC/MpJgCSE6DUeKX5gb1ysvNalfrVLMNSg3stYL1AoilIVeD40UkidKqXWLmMhh/V21oT4VZIASQjRa6q5J/svA4cwGWyK4wlK3CGo2F96M2urnEbj6p9IGjE8TEDhKotG/RYOX/d29oT41ZEASQjRazL6f0GzUq5pycALj0VVfQlmn17N26qmaQQDfAxaV6f5GKR+DUP+hVjNSIAkhOg1FlEibstQdsN3GaAPAGX2Yq56h6KIjDGQmBsPNmgNKCwcwplf+HB/IVZDEiAJIXpNqTqJEp1m3cbvWbfhe9ZJhDDsQ3s7W71CoShWR1KZqaVvahElbj19UgsJ+xmM1F/QnjSzCbEqSYAkhOg1ETamIvQ5buGDGLHnsGNfoFRB7nmtm0h4R9HorUXCOxKtG5eZptYa7X2L9qajW48KWwOY2gXAUg7K0mQiYSxcNBn8zPW9mzkhfmUkQBJC9CqLfsSMw7HNPVEqf3nItL4Il8lo5uHyOGn996WmpbXGayjCrxuFrlkPv7Zs+YIk34MfdoEvK+DnM7t//HIyrNPwUcRDrYJE0yRuWUBoleVDCCEBkhBiNebp7wC/+RGe/nbp+yd+j5GJY2RAuWCk6/Ebj+/+ib8uheRrQA3U3gjfb939NJaDYQyiPlwISgV/WY5toq3xqyQPQoiABEhCiNWWrfbN/stq87gT/gcor2XlCgCdfgCdbbrqEj8Juil/W3Jq149fAWneJGNGcHRLTZqvIZpKoVOHoNvmSwix0ljL3kUIIXqHrU5AUYLLe1hshaUOXsYBF6LVcaBbgiRtOKDngRrSxbP23gg6h/fxUbgqjIuNQuOh6KPrgST4P4K5Ua/lT4hfE6lBEkKstpRS2MbBRI3rsY1DUEotdX8rcix+wX5oA7QC1wY/Ug6qb9dPaoQgul3+tqpLliP33WezBQY+GgMXCxcbhxAuCq0KwRgOgK9/xvNfQetFqyRfQvwaSYAkhPhFsYqeRFc8iVO6OX7hjtjR11Aq3L1ERr4FI76Eqomwznzo/7eVk9k2wuxEAafhYONh4mDhKYsmu4hMwY0oVYjnv0YyszYpZ3cSmXXx/GmrJG9i+XkLt8T/0cBdMAzt+8s+QKwWlF7TxsGugIaGBkpKSqivr6e4uLi3syOE6CLfr8bRD2KwMba5fW9np8c53n043hUoSjCticw0LsBlMc0d1A18bPozkvdIZnbA1+8AGjCxjCOwzXPx9UxMY2uUKu/Noog2vFklmNUNLY/LwBz+q7nt9pjeuH9LHyQhxGrN8T4mwdZBfyLA9cKUGbUYv5DZtj3/MzLucQSrsRn4zkGsFfqU+eoC4ryDwkcBPs2zaYchdzXA1zNJOhtnH/chGvoAo8v9rcTKpLWDUduQt82oB60TefN9idWTNLEJIVZrSfbLjUhTgEWaar8bfYpWc1pPpznYCWqMqrEwGcDl2JTlyl7JGQCErMuAIgAUffD1d62Or8b17lxleRdL5/Ee6JZXR+f+I3NarQmkBkkIsZrLnz1bATaNOMzAZkSXU9GkSGb+Cuk3CRlHYcX+2MP5XD6GsQ0QA1LBY7Uhij7YGAznVRJ8gM1AImwIgGlsRkFoDlrPRqkRJDMboVlEcOfVQKSXSiLaUhThR8BotZSejpoYSm69awKpQRJCrNZMjgv+0aq7pOFrMvrNbqXTkB6DveQ6CpZ8jLnoTNx5ozveUWtw5oOfWs4cd4+hBhO138UyTsY2zyNiv4xSwVezSRlF7J4LjpopVYhhjEapCCH7ZpqDIkNtiG2eskryLZbNYFOcoUcFraI2EA1hjPi+t7Mlukg6aQshVnv1Xj+Urglml9YaPA9b7UY49DAJ/oWmiShHYbWpUfL9WvzEruB/hs542K0qozSgBi8Cq6plo1cNs3eDxCdgxGDIU1C4yyop44rQuhHNIhTDUD3UN8t1puL4/4ehNiBkX99j6f4aae9ncOajQhuB0c0RlQLonfu3BEhCiDVCU2ZXfP16bhpHpUaSCA3E5TNAoSikkv9hEvRP0trHaxoOenZwQAqseEt6QYA0F6wBwQZnBsz9DeiG4MkUYK4F6/64Ssq3Osmkb8HRZ7Ra7qSUgtCSZc5DJcTK0hv3b2liE0KsESLmmdngKPivYeyJyycEHZs9NPWkeRmPWWg0+N+2BEcAYfBbVYJoZUDd38HPjjKquwx0qyomG7Q3E7d2OLrpZtDplVvA1Yjjn5m3FhzU4etvei0/qw2tYd7BMKM/1N7R27kRK5kESEKI1Z7WGtd/HLRGeS6G3p6QMQFFMa2/xuKcQZ0eTYM/mgwvo2lT42G0jCgybB8a74TFzX2c0tB6fwMoBisxE9VwBlTvDN1Z020NpbVPywLBrRWt6qysXrSGGSFITAa9AKpPgrkH9XauxEokAZIQYrXn64/xvHsJN2oK6jWR2jdgSSnRpmrCaQ/bDWFoA0M7WL4LegZp/owT3ZWgKghUHAynVQjkEIzjTU0JHpf8CVQUCJYp0TYoTXMFFWTeBeeTlVI+V79J0j+TtH8DWjsr5RxdpZSB8vvjYmD4PobvkzYsPPUrX9Yk8xnQJkBOPtYbORGriIw1FEKs3pyF6Dk7Y1aB1er+pDwocBMtlR0e4INjmWhD4dtgZN7FNG+B0J6o2rWB1uOts/8fya67Fh4Dg76H9Mfo2n0wOuqdafRs3wdfzybh/A7P/CK3zdPfUGDe1qPn6a5Q9CGM1A65x1HHoU79lj7Wz72XqV6WSu8tEyj8ykgNkhBitaZ/3BIz2YCZaolYchNHxkGlCIIdA8wkRGs8CqpdYjUu4Xgc1XASqul8CA3MT9gE/H5QdVfLNqs/xPZGqeH5eQCInQPWqB4tW8I5iIT5ba5MCnB4pEfPsTw8//1cfhRgoDF0fS/nqvf4/hIU89Ahgjkem5tqIzv0ar7EyrXGBEgTJkxAKZX3N2pUz35ZCSFWQ84cIBiB1nrMrcoEE/CZDaCS2VFpza1TRsvNHYDUQ1D5UEttkwIyQNkVYLTvW6PsrYN9s3MvKoZAydWdZlEvORL9kwr+FnetX0oNf6A+9CPpVgvpasCjGK1denOAcUq9kZt2srmVMeIM67X89DrtE4oTtLlYoCPgx4CBr/RyxsTKtMYESACjR49m/vz5ub933nmnt7MkhFjZsvMUKStoVsMDUqBb9SdSafB1cOOigOBGlouODDD6B3e0yv+AuTnoQVB2ART9vuNzFv8BfDs4lweUTew0e7rpRkg+EOQDUKnH0HUTllqkJE+TJOi/ohQ0GYW4GGQIEUnW4jbauI0GmcS+y7g4K4kycAwzFxxlTJOwdVrv5GU1YGTXw1PZqFsp2nb/F79Aa1QfJMuy6NevX29nQwjR05rqYP4PMHBt0DdA5jmwNoXY1ajh76F/HIH26fCupAEnEiLk+CjTzVUdaT8WjDoz+6IyO8O32ZmzY9vB8BlgtKyHpf2f8NxbARPTPgMV2QYGfgHpdyG0EYQ36zTruvHG9r8043dA6YROj0nT8uNOKdAoGlUxRekktt+YW4pWuc/iOq9g2bsu7er1LK2J1s3GTnhoIFMIVkRjmFuvujysbowKIIImlXttDGvDIGoXv1hrVA3S999/z4ABAxg+fDhHHHEEc+bMWer+6XSahoaGvD8hfnE+nwrbK9hVwe4KPn26t3O0TJ77CulEX9KJEJl5O6GProJzN4ejKmH6ReB+CKk7oelMCA3HH3IYXrHCD4FTBJnKCnTBRmizAj/2G0KptVC+mxdAaTNOotwhUTgPXX13yxPxt6HxxZb9dCOZ1Fg89yo893Iyqa3ROgWhdaHouKUGRwDKHtN+o7XJ0o+hVWdvrQk7afo1LcLUmVb7BPzGgyDRtX5JGp9GZlDDsyzSv2OxN5o693d4uhvffelXCMW/RmkwNIQbwXB8lLFm/jj13J/xnOn57bPdpWyofB9ljgJVhIqcAFWf91wmxWppjQmQxo4dyz333MOLL77IpEmTmDlzJuPGjaOxsbHTYyZOnEhJSUnub/Dgwaswx0KsIidvDaVAlKAD6YX79Wp2lsVN/AE3tRvoRYCD8cIb4GaHpzku5Baj98B9HwAjehdGwSW4xQPQIQPMapzSz/EHX4fJcJTzbcuotCztQ6jRx0x7S82P9j8B5pNrT9M/orsxKaKyNdomqLUCtAqjqjoJUhvvIr6kD03ckD052K5DSSqOAUTddK7fDwTTDRjpeqg+DJyl58nH42PO53MOJK2PxFev4ZlzSVmvsZgheF3tZJ35LL98gJ0wMIw+yzxU6zp85ym091HXzgX4/g+4mSvxvCldPqYrtHbINEYwagdj1q2HX23gpt9c/gTtjaHPN9CvAcpkkshfgzUmQNpjjz046KCD2GijjRg/fjzPP/88dXV1PProo50ec8EFF1BfX5/7++mnn1ZhjoVYRUyy7TGt/hq+h4bXIPVtr2atLd/7Ftzb83pQGz+2aTlrhOCryQB7NwCUimCE/0rQs7q5p7WF9r+A1NvBw+bRbBq0B2YGrCREmjSqpFX6YSBaGfzbW4xqeAGrDsxGUG6wg1Ld+DHlfYkyg3RVxESVHA5G+6YXx3mVas6ivsxtVZmhMbWPoXV2tBgsKSjFN8AzguIGUxtocJb+WlbzIUv4H5Usod2KIAqa/DO7Vp7wDu02Kara79eG9hfgNY3GT+6PF98cP33VMo/x3KdwUmvjuX/BTW+Hk/kbpF6GRcNhQR+oP2+5an5c/380JksxMy2znysNKr5Tt9MSv15rbANqaWkp66yzDj/88EOn+4TDYcJhWRhQ/MJlaIkwmnvV/rgjeHODJ4ZMgqqTey17eZwPgOBmpbOdOfwNQX3ZKkjaZhcIl4G5ERT8Oe9ww9wL37uPIJRwMcxdwXgGvEXBHH5xgoBRtcSMmmxXkT7ZB1Z2g98E87ZAubNyMaaZAL//LShV2fUyhfeHxDfZhF0I7ZX/vHbwSbDQOhm/MIKBnz9ht9a5vDrKIJJ0qAsXU1HdhOX6QYFUDMJjl5oNna138jv93dvF78LwFviRbTDS7wbXUYFZuuxmW+08GMwwneWnL8EIn7fUY1znnLzHvnsV1E8kqM0DElej8dCph4H5aA1Gqgw18GuwO27y89030Imdsa0Ouqz9epYeFT1gjQ2QmpqamDFjBkceeWRvZ0WI3nX9C3DuHsHoLQX8vgi8+dknNcz9v9UnQPILwcveuLL3Km93wF8X6+sBsMmucMBfwOj4Jm+FbsNzR6L9GRjmAUGAVHIqLMnWjmRbyVQoG4ABYIK9PhjZyRjDh4C1GSReBHdWLu3m3c10Ax3NCOiSxCdNiNL8JwouwVcpXH0PWhlYxjzMuseh6UVwv8H336OhrBi/LAQofIwgSAI8DFzfQPlB7VUo6RMhHoyUsgFTgTEEKp4Fs/9SL20lm1HGJiwmTpFuwFKtggFtUGjcsNTjWzMqp4DzHrg/oiK/7doEmaqAlsZBlX28zDO1f6y9XBIAxK/Dt8nFd16kFmNOf4wRHQc7fvpqQONYJpbhYbVaNUWrWBfyJERgjQmQzj33XPbZZx+GDh3KvHnzuOiiizBNk8MOO6y3syZE79p6d3hlPnz7AJhR6JOAeX9peV7ZvZe3VrT/I9gxjPow2kqjDcAH7UUxD/uAvHaw9KdBAGOvC4UH5DYrFcGy/5qfcNFRUDMR/GztRbYGSakiUIWo8Ligz4j+GXDB3BAa/4mu+1uQZtuMWkPb5f1nXuQrgtqM/uzCRlyAyt7cNT4Od4OqB3xc54+oxWCkg8q86rWKyMQsTHy0Bh8TH4uMMoEQpXoDrPQ0yNRmLxR4GXBjgKHRagCm3YdlvYoGNptzDQ18i1YNGPprtPcmprEWMeNCDELLSKEVpSC0TfDX1UPsY8B5GLy3gTBGZNn9dCz7FtzM7jQHVuaSZNDEagGF2SVffMjLugFuMYT8BBgdBGEqu5gxikw4qEMMaiwLsIund7k8Qijdm7ORdcOhhx7K22+/TXV1NVVVVWy77bZcdtlljBgxostpNDQ0UFJSQn19PcXFPbtkgBCrDa8Bvt0Bkp8GwdFaD0HZgb2bJWcSrnMaoDHrKjGTS4J1ztKANQLWbdVUnnwNFuzS8lgVQ8XlUPgH2neuaT5BPdRdC/FrgSawDIhsBslGSC+AyKbQ93EwS4O+PAtG4ZoGyZBNrCmN0goIoYpPh/Kr8s7jZT7hVftcdKsamd/wT/qwFQBaLyGTzO+jYy0CswmSRTY1Q1t/12ggRAVPYrMuijAGBZD5Er1wwyA4agJvKLnITQMzIsPpZ0yggu7VmLvUsYibSPEFYdaiguOIsG630ugOrTXon0CVo1Rhl47x/YVo/x3UzNMw0gtbngiBjoKvQDfP5Zm9JmnPJFbqZOdIyEDdRMhMg+h4vNjmuInNMNCkQxauaRIyzqbA6HwuK7H664379xoTIPUECZDEr4b2gg7adl+wKno3K1qTSRYCiWCDB6H5A1CZeaAiMOQJKNqj5YC5W0Nmal4avg/0PQ8VuwSl2rR/xR+A2j+AdtCxI9B8guFNy2vtCTIyGKp+hMzH6EVbMm9AOdpQrWKhYgYwHdW6uiL1Bu6S3Xl10NbZPeoZwDxsbArZh2KuAx3CSW+L9t8PTuZ7hH4KypksClE7tNVM3VqD8unHTMw2TXXJ+oFE6ubhmuCX5xdxoV1Bo13BenyO0dW+RMCPHEqS1iPKLIbzGFE26HIaPULrzoPbZl8XgN9qrTwDiIJblK2NKyQ3A3pDOEJ5wQwwB0D1WdBwE7ke+pV3kiosoVH/EY8MhcYFFPKnlVUysYr0xv17jRnFJoToBmVCdP1eD45atLo5muAPuxDW/hZGLcgPjgD8xe2OdqrAMa7CSY1F66aWJ7xqqDkGdBzIoOJ3o5xpLadsfU9WP+E7/4PQGBLRQrSZPx2ypoEM0/JPHL8TS7sMbppLia5jXW86xV49pm6giUdo5DSUUtjhFzDtf2Ba52AnTgxm/AbCiQzKb+kEYygPH4uUbj8iLVVUhFNMrn9ya54yaVn7pGs0fpvgCMCjnue7nMYKi/8XZhTCDAvm7pGNdDtR2KZzu5ktbfg3eAUEtY0pcEOK4qYMONlax+SrtFwbE1JvElG/o9L4mb7GIgmOxHKTAEkIsVIppbBC19H8daPUpmj7UJrCU2g0HyblTkZXnwWLDg5qg4r/mIsDgnmFCPoVAVp/ju892ZK4X0PbiCIdNujsNuzVbYNbWwWxcfmxhtZYvoP2Ps4/wKgCFOvVfc/63tdYeJj4RP0USmvSvJ4tUzGW/X9YoStI9xnPwlFFVK8TxRkMJfEG0D62zqC1Iq5jhBf/AXQq71RR488kiiL4YcBp2Z7BImEWUsVpGN1aT76jq6CxWUUTPmoX5h+QDV59SL4INX/ufP/Bj0Lp8WAVQ6gQCndFDfwBs+BelFkYdJwPQyiusPyyYIZzgPCW5N4geBDaHACV/Z8Qy2uN6aQthOgZ3/nHUjz/WcoaG0hGosQGvo9tr7dSz2laJ2IYu6NZREolaGIIIcdBaR83rgk3eUH8lJ4M9pZQdDrU3hxM/9OH/Jognb0ZOjWwcAq+WgtDzwxmODAhEzPxHUU07uGYBrYXBAraARUFjDrCmReIqXLi4aAWydAeBU4cj9NwiGCnSyHzAYS3g8wHaH9quxYiAw+bjdqVNcG/0JYBDpg+WHjEkmkWh4N2s/5Ni7HSsyH1JkR3zx0X4ThMawO8ft9hsy248/FRGKbPcFVKlPW7e9UxKMKnZTLdKJtRzkoa2KLTwahAc3DQeVonCeagaCU1taMjA0rBoH8D/87fDJiF36Od/6ISb6DCxVB0FhilwQ4V14MKQ+ZTiO4BxZ2vGadxmcON1PAmBazNcP6KTVm3iyp+HSRAEuJXZDEvEl7yEn1rq1FAqMmhce5m2EUDoeRJsEa3P0hriD8Gzgwo2AfC+fto0tRxNmmeRBGikL8S48TgycwXkLgXjEpU4RkoYzBNlBHJpDF0ELiYlka1rst23ofKByF2COqrUzHrv8AdTTAybQEY/XYAamHqppCag9sfvKFB0OREDVDgWQrPhoZYCNcKEW1MU5xJt1Q0AEWZGmqsgRT7tUR0Kqjf0uCm/oRdU9uyY8GJGCX3obz1g5F32f2ibEGR2X6klkEVYGJqnaulKnQTFLoJ0GDGm3ds34nZZgtstggeWMMwYZmj1zqjUAzmRn7iTHwaKeVABnBZbvSdw0JcfsZ2ZqG8j1Dm1hj2Pst3MncWLNoOvKCDNn1ehdCmYA3Lm0qBgj06SWAZZTH6ocLHQ/j49k8ahVB5S5fSWcCjzOd+ANLM40d/ASMSnwIeRvhyDHv/ZSfifA3eQghtCUa0G6UQaxoJkIT4FVni3Uh5Jn+9Lzvjgv8jNB4HZR+0P6j6/6DucsCA6otg8P8gvHHu6Qb+QpqHANAkaeQ8DCoJu2ujFm0eVN0AKvUa9HkFpV0M7bf0nW7bCqIB90eo3xMKXcy3wfgGdFih0hWoI/vAgv9Aag4YYPUF1wI3ZLR0BNYajGDpDgcfw2xeB6RVwVGUGaeR0ZejfPANFUyKmKrLZcUHXH0HXvp+bM/BN80gsEz4mCUXgdl+hukiLsXzvwD9bZCd3LohQJygf1Ls5G4NoV9ehYxjFB+jcfKG+f/ECSR5EVBgaQamFhPOXA76LozQsd0/UcM/wZsX/FvXQd2foc8rMPgTmP+7ILguOhDKLuiRci2vJDMIouRgwqyE/hT8YOi/nzwYZc5EGYM6T6DhGqg/N/i3tR70nQpGSef7izWa9EES4tfCW8Sw6nepLSpG0dJDJVNgAx74c7MBzvXUcT6Z5g6+Dc21JH6wX1P+wqlpXm13qgT30ZTaF6XTKHwUPqRfDWa89jW+MnLxirYVntmqr5EN1J8QnKtUwyagLAMjvAVqzxeDZTzsbOfzYWAoiMY97LSP6figNXbazZZPY/sulr09FJ2FSsUIvvYKMCKTKDPOxzT/hGtapENR0qEo8VgEv3k4eYnCKVT4ZhovpDDwCDdpTH9AhwvSau3hO49TlPiGWDqNxgzS0mCEr8bqVwcDFkH5bcse1dVDFCovOMowhyQvZedjMvCVxbxYRdBE6XRtUdx28vpT6ZbHZhkMeh3Wmg2V1+TmKOotpWxLEBwFPcBL3XpaImcX/JmdH6x9qL8w99D3vsFbtD16din8vCmkZPHaXxqpQRLi1yL9IlGvgQpfMX3wUEricUzTpUrVBc9H/kANJ5PSLwAQ5y768BK2NQgydeSmqbby1ykzWQufn/O2KWKkrercYw1g9EN5tTjawjKytUraD5bZ0CGUkWm1hP3slsSGmDB8Y6h6v2Vb5R4w6GQouD17PogkPDSQLFkLw5iFp3S2m+5GhK3nUSUmZsl1uSSa/Ctp0n3xlYOyQriYZAiBDbrcory6ET+cH8RoQ6ML9gjO26aJTGuPuL8jvvEBRBX4NpGkg29GsKLfYhhDWnZ2vgmao0Jbdm2W6h6U5tvsciSt1qcxDLSyMIzhy5do0dmQfCLbIduC4pbJPLWej+dMAjSmfWqwrlv8KdD1EDu6w3XrVpZydmQdrqWOd4gyhMrMBHLtrqovmJss5WgVLFGj03gWpAoMvMhXoBWheZ8T+mBjjKqjYP17V35BxCohAZIQvxbmAACqUvVU0gBGIap8CjivgLkOOrQ3Kd0vWCgNQPukEidh970fFhwU9CWJHYwu+j2OPwlNHbY6lFJ1F4vZDKgHDbZfTjTzOo5KUl8SJdaUxjcM7PInwR5BOBElHjWJekm0UlgZjVF+M9SdSN7IK3trcD4Gcy0ovS+/LErB+rdB7Ty0+yy+RdA/SFnY3rpoYw4GHngaMz0LldoZP3I4KnQivvqBOn8c2ohjQXZ2a4LgKEicREGUWG0KfDc7XUDLrI0qdhlaDUB7b6H1EgxzV5QqxmMqPq2aKA2FYxmYOoWmGsgGSE3/CuZtQoM5CPp+COYqGlkGRNkcA79VkKQwfIdEaGOM0GgizKSOO/BpooSjiLLZMtN005MhZgB9MKK3Y0TGA6B1kkxqq2AWc63xU9dixRMtMzA0ngCVP0No4MorcBvl7Eg5OwbrzMV2w8/cBPgYodOC2dc7oxSU3gS1J5CJKbyICrYZisxQCyPuYi+6Dz2kEhX7K0pJ5+81nUwUKcSvhdbQ+FeIXxP0myi9H8K75e2y0F8fVy3MBQTlixuIVtTk1ZbEvf3weJGgqaqQQuNTlOqHz1y0MxnPCfpoaBQZw6IxUk4p1xDjiGC7t5BqZ2dcYx4Rx6NIH4cZuxaa/gFNFwUnsTaCinc77Micx6/Bb/wtvnonu0EBBXhWErRPKEmuD5BvQLJoEK4ZxzUyuTJqwEORIb/Dbdniemw7jZcd6Ya2idj3YFqH4WT+hO9ma6PUcEKRj/GYTsLfPi8NM+OBKqIgPKfl5ju3Cvwl2T0MKLkUildt35xaHmERwUKyJi4hIgQr/YKHjReEjoDJUF7HZlinabmNB4M/uWVlYMAonI5hrovv/Q8nHSyyqzwwMmBl2qbQH/rP68HSrWTeQhLOaOxMMNDBNRWZkEl4jk9oto/3GwXWJpixj1BKerH0FJkoUgix8igFxZdB/xT0XdguOAIoz/yZooVJ+n1eQ//PqonU29mx8QGtG/F4geawAupx9asoTEyGoPX3qIyBqgeV1IR1f/rzfS44AlBmXyojX9IvVENprB6z8Logb0V/h8ppUP46VP6vfXBUfRt8VwgzQjB/v2CeHaMcIgfRurlIk6QxNIjGcIx4oUVjmU1TsUW8yMY3FmLopmC/1p2nNZjZzuRojeF5WAUZVAgsrTF9DcZwTOswtE7hu9fnDnWNWSTcncDvg8EmLfnVYBg7Ew293aZmItQqv82PV60aviZJAWW6jkISNAdHAAYO4BLUqzmk+HTpifmPtxQnWzWkM9mmT2MIQaeyYAfV4c/xpo42rrZ8FckFRwCWp9FaYdRqdBlgaPA/Bb0GBX2iQ9LEJoTIsRd+iL2k1XIP9SlwFkJoQHZDAVAKNNDcHGaolsVdVXodmpwINX1L0UpRlCikD53UAmXeBv8nCO0KRp9sBtrPKwQE68otOSU4vQacp+HnCBSeiSo+C9IXAzUApOwQrtWA5Ws82wgqNkzyOkVbnotr2Nm1vMBSPqZy8PBR2qcgk0C1uZvbunl0kwWE0aRwbAutFPAlCTYlpmbg8Qq+nk/IPBjD6mBEVNktUH0IkAnKW3hix2VeiWp4kyrq2pWxmelrYukEnmEQCq3dwYq+rVnBemit9zFGAqBUP6zQo7jOuTRZcYq9BcF8VM37aaDw7BUv0CqklNfucmhM4iMsClWSoN6hCFRlL+RO9CSpQRJCtKi5v80GH5yWDthKmRQYj6EYCpQSVhOw1A655x33JaqrguAIpWiMNZDoYJQb8X9A/fbQ+HuoGQ3ez+33ydLaw0uejVsFXrS5rxEEI+quRaX/h1n4OUbkZrzo34hHQgQNfK1u/koFTYzZPyvjUzE7TvnsJmK16WAXgkkdTQWmbukLpbPPmdax2aQsrNCdaAy0kZ1aQCkgRcbZCTI3YDOKtPqcev5BilfyC1SwHwxcAP2+gb4frfJO2gA2FWitcDFxMVHao7l9LOwPZ0htLVVNtfRvqCbceAWe/hw3+Q/8+tODCS5bMSI3tTzQABthhE7KbTKt/QhHf6AmejwzYsNYXFRC3AoRNwug6Eoovnill7cnKVUOVst8SZ5h4NomXokK+ssZG2AWPNd+zUCxxpE+SEKIFl+OhvTXLY+tSthwTucT4mkN7sd4/pd46luS3qMsjuZ3MqniCko4PP+4uSHIZJu0QkDp5RD7S4en8DO34KdOz54PcMFKND+roPSaYBQV4LGAxfwGTQLD94noNMr3MTywUh7aUmhD4foG2rEJJzNoG+JVkZb00RQ3xXOBmMbEsm/Bsk/Oy1fKu4mMPievZsrOuBhak7SixENRmufcKeavFHFWx9ewFdd/E0c/jKm2JmQctcz9l1dST2eeN54CoxHfMNBao4AynqYgPQMaj8nbP21CON1qQ+QIKHsg99D3FqL9r8H4DabZ8bxA83mI2VyVfWRQxb6M4KIeLdeq4Os0tZnNsZmOrwxcO2iIiSR9CiMzwejbyzn8ZZI+SEKI3jX8QbCHEsyyuCGs99nSg6PGI/EaNyelj8PRV2IZsyj0GnLPK22S4DOWcCN+cz+X+JSW4AggA37TnR0k76Hdt9Duy+R6AyjyvrU0IXR4S7R2ATDpRwXPYbM1jgqjXI9onUvhYpdIoyZa6+M7FnWFZTSURElVGrhFPobXvJ6bSUEyhaHB8EC5oMKXtAuOAMLGaVjqQIIgyMJ03Ozs4Jq02dx7IaiZaeASqtlzqZc+7p1Jg96dpLqXhD6JRKIQvWgdqDsO/J7pp+OxiEb/T6jkFgzKzKEsVUvIzaCytWC2qgDVevJLhUYRSrdJKPUgNL/OgGH2xbR37DQ4AujHoQziFArZiD78jmHZTuLLlHoa6k+FRNvazVVPa5cGdzxhvsLQLtG4Q/nCOGWL4sQak+jabXvstRK9T2qQhPgV8d54Fee8MyGTxphwAexjYxgbYpmb5u+o9bInMnS/gdr1SUWCZT1QQaOW9hVmxkBpWFxQRSIUATQFbMkQHoL54yH1Mr4BXsRAuRrladxB/yJsnJg9vY+X/C24z7U6YVAbo1ww081zK4EXAYzBmLHXUdm+LwCeXkg6MZSCmvy7e3VZEfFYhJjbRNhPB5NmakCVETKOx0he2WpAVgFWUVMQQCyF1hkyqXWC4exAY6iItGlmmwKD5j4DnzJeIMxW7Y7P6Ddp0HuB0RL9mZ5D2aJ0UMjoSVA6aemvxzL4/nRqOQDL/ZGwm86V0VMmdZFSwKR//FYMikA/A6lJaFVIqqCMSP3s9t2Qqn4Ea60VytMyNd0MjWe0zOUY3hEqX1+55+yE1pqEsyfol4MNviZap/NrGaxsk2zRfyByaC/k8pdLapCEECuNrq8nc/Bv0d9+g7fRDJw9TsDxjiHtbkYitSXoNn12limoJcnr56s1sbhHNOMQcRwG1c/D8tKAT4L38EmBvQGeBU39bZKVFol+NplCg7Q+E18vDtLxP20THEHCiqGN3TC84NTKIghAXMCbi5/6v7z9TdWXkDq/Xa6N7OK1pvZy21zLJh1O02jfSrygf7bfkY0ZvXuZwRGAUiFC4SkY1skY5tGUGs+Csmm+s6tsh3afJfgksrOVX0iGaQCk9FV5wREEgUv2YoA7bZl56IjWS0imfksqYeCk1qMw9Q22m8ZsBGs+WEsAXxNOaPr/uARjwYGwYDzUfYhb+m8ShS6+ORfHDmY+d01wLYVn2WAOWdbpV1zjBdn1Xggq4xJvQOqtlX/eDmjmtQRHAEb2h0FHGo8OZt5ufbzO8Cuqj/hFkABJiF8JvWA+qjRB6GpN6A9gNQSjlZTn4/Mh7qLNQfv46X/iNpTjNo5Au0u5GZkjIXIGoYwOghZA+cEo5+aJAA0g7DqAgUV/FGGomIgTs3PfPhpIlIRJKYM0b6JxcZnV7nQ14RiLC4pQxohggw8ksuWo9SE1o6WsONTzX5rCA2l7S4q6BpbvkjbCQS2K1sENP8u1GvEL78csWohhH9xh0V3/ZZKZXUll9ifjv06ch8gYc7FDt2CHbsOKP055QwhTe5j42etRSpgdqeFYGriMOP9mMXvg8D2q1UjA3OV1/Jbl48JLb57rTMo5CvxnmlMJ0s2AvRiMJJgNYC6Givk1ucWDAUj/D7/+BJSfAHycAo1vKEwPTFdjuA5uXfuasB7V8BegKVgBxAxqCn0L/LqO+6qtbIoiNGbe+0lp2r2/gnDaoXmUZzDI4Hi8xgheQwmphX1ILSghkZ6Ibne0WJ1IE5sQvxI6VQ//LUUb4G4Eun92O+ApsBwwdQhUpuUJFcUsrEUZ4c4T9magdS0J/zrw/0O0SbeqVbKYXb4pmAPox0QirAdAyruIjJ6IVoqUEUI315ZoUKovWi8glkoRdYK81NuF1EbLiLAZg/R9kHkTveQkyMxvaQ4z+6KGLECjmcOJNPEmAOXxMP1qZqFwIHIgmcIUvn6GhGliaR8Dn1Q4mldrVswzhNixw+L6egbJzPqAh6sMmuxCTOVnm9GGUJHYFxWfiELjKot48XoYocMo0Cfjuw+xyJ7Q6kWBEnU5BfyeWr0WWmX7r2hNOOkQzWyGZR8OBafAckw6WOeUE3Lrc6PyNGCkwZ7bMtTes8BsO+FLOJc90oUKF5tYKtN6cRLckMIu91bOmnLeQlgUzC7u++AXkYtEVArMvsu4bcUXQ2IJVKwDRs+t/9boHYRynwCg2iinpNGhOB1H4QYvT/NLFD4OioN+db7zKH7yEPDBjGdfRh1UMDWWjac49mKP5e+XrDfu3zIPkhBrEO3V4zash6pZgPJKMQa+i4qt16VjVfIHMECXtARHQHbhWiOoIfAzZJSJb5pE3AyQhLozg8VVO024DJW6hwgOKUuRKgA7HQRJ86IDGWg+i03LyB6tNb73OSiNVkZLcJTNjCaYyTsejZIIh0kQwzMswKSMP4IqhPDeKG9xm4uTQZPBpToXHAHUxNIUxp6hiJ0BsPw5NPlvYesGtGHgY2B7Do4ZzItkMx6b7Totru9PI2jzAccIYeFiZO/eilksjNyKHy0jlkxREk9Q0qTQZefjpA/C9x/HMEvxVfP0AGB6NoYZoVzNIcNbaDwM1RezoC9mQf9O89EVjuVhYGE6mdx0BUYcVAhwglZVJ2KC9jE83TJnFC0BVLhJ4xUpfAMMv9Vzq+CntVagm1sqm1d7sUH71SijIn/n6hfgm0Nw/Tj1G4VxSyzsGR5l/WaginpmKZeMmcDJTmAaVg5++W4YPBpEO6m7wHkdQuMh3GoEYnOzsdMqxlXBvwvqXoJYj2RNrATSxCbEGsSr74s1bz7WEo1ZWwtfrQ+pH7t2cGHQgblN1wgAMk4Iyw/ayULaoyFUQNyOBl/q8btAtx3GlKU11O0CiYmYiSewU0GglYko8GFQ3Rzizt15h/h6Klo/g+H7GK6T3/epDV8ZeNkagH7cQUyPgyWnw+wyMPNrBhorklTTD4enyS1AmmVSnvu3pz4GGoM5jLKUgmgySVFqPMU8isIkwwxSfIEm/4IZxmZAhGw4gZH9V3NNllJ+EOAVREmHbAjvC3oW2n8cBRSnG7F8F8P3KMjECenSIA/YhNmFCOMJsQkmXQuOtE7iJo7Hje+I57zZ5lmTjGWTDIVxlIVVDWYyG3iEIFlmUz84Rs2gGImSEOlSyLQaiNYcJDXECoKaRkvhWeCEFJbae6XUHiX4ku/Mw/i2zwjqI7FcwBYUNvunCvIP0j589Vu030jjxiHipUWk7QhNaxdSO2/9HstbiC2CyEYFr3iIzYMnlAHRE6D4IYgcnXddlLU/qMr2l2olVLyJniUBkhBrCp3BcNOoVqOIlQZnwT+6drxdAmufi9EAqtW8jEYaKuIpjFYj7y3fJ2FFMBMADk7dIFznsnadTLWeTV3BdBZWFFBTEsZ0PMINwege0wFtaWKJiXiJw9D+QjzqcfQPLZMvArabDuZvBFI61HIOrbEdD1AUsCsxdoKmu6HxFvDrwHEgFMONVVA7qIBMoQU4JPRfGN64AaWJFGhFpT4FW88h7U/E0x+iKOjwxm55GrvpWVTyFqq5gjnswM/syTyOQmdrjAAMNYSI/SqGsQ3RZBr8lsoUBehWTWFe9AgomAAqRvMd0dIepekGylN1FLg+ytipa69f7pon8ZJ/wG0ajZs4BbexFO3ehfbexE/uiJt+Gkc/RdI/CUtvhEbhWjaOF8ZMt8xrqRTEq8JoU+HZJvGKEG6RgRtVwRxQBOXKFCg822BBZQU1hcWkIzthR59AVTzTrXwvTYrvWcRN1PAwszkChzm4Jswt6UsiEkJ7BNfZB23vj9I+JB6D5AvZjRnAQQHJwkjLKEytSQ2GJt5ZRg66ppALiHEWNlsR41xiLHsWcGUMwIx9jiq4NO+3gPYhU3h45weKXid9kIRYU2iNu8TAnBV0hm6WHHIa0f43dz0dp4Gff1iHSqoJlbm5/kKeaeAUBDeVxbFylNb0W1iL7fk4MfAjYIWewGw1i3Cj/gdxrslGBho741DUmMF2PPxQtnkEAIVrrs3PsWD12LDrUeYtzNW6/GgPI60igMLSDmsnZ2L7HoYGt2gKETUWhQk1/wf1VxIMaQKMcjJDH6KBA/OKWLYwhem76NifyBT2J60vpPn3YFS9gKPvwdUPZbOmsNIe0YSH0uApg5mVA/LS68/9xNih3aX0qjcE50vixWE8y8B2XVzTIh4qwFDl9GEKZrZ50XWuyy7k6wMxlNoQK/wQhtG9ofJe6lx05jrAR6NaZgz3g/eFpxSpYpsg/PRxGUGTuQjLdeg3uz73emsrDEPnkVZTSHAreD8QcWdln9QYDhiuZkFpFaZysXEp4nIKOLVb+V2WND8wg9+iW3Vsbi3sGAxLFqCJQ/if2PZesHALcL8Kdig4HCoehHfL0V4tizcvIhWJ5AIko8GjvqSMIfyLIroXjPa49Gzc6nFo6lCxi7FK1qxlVnqTDPMXQnROKfyCCXhVwS98DcQLotj9/tm9dOxiQuvtTd2gEpRu1VlXKRYXlLKgsA/aCJbRWNCvHM8APwQuBnXGP6jlSDwWZY/5idzXiFK4djENJVE8A7xQ624qGsP7nuYtacvEUUNAa9KESBsFuaYL1wiRVmEM7aMoJcJWQXAEEDuAlronIHYENuMwGZU7UyjlYfhBjY9K3oej78k+4wMKl0coMO+h0JxDofEdhf6LRJs8tAe+B7qlsmiZTHMzDA1FjWmKkknCjkMsnaQyOZw+vJULjgAs+2xC0VpC0WrCBU2EolO7HRwBaO9TWgKJ7DgoD0wnmNwy5GrsVPO4eI2NS3/ewjSjVA+KkSy2SRbbpPuOx1DlRPktFbxEmZoGFOZqX1xTMaNkKL4y8LFJESXOt2i8TnK2fBp4pdPgCK0Z0jATK/0FdvoHbO9HSL/aEhwBJB4CbwFs+iEqthFl35iYrhtMVJrxaSguAUwaeLl9+qtaeCjWgDnYAxokOFoDSIAkxBokFLsIf9gCZm36F+Zs9nesDWdgqU5+TWkPT8+nmgnM4wIcfso9VcmNRGMn4tpBh1NfKbSlGFxdzaCaRYRcN5j40TBIlZm4hkljtBC877CbJtOUHI6vG4jw22x1VhCwFBjno+31qa4qRKuWfjkayBj5Y0L80JkUhOezOHRIm3xrQr6Dohij4D/58xCFN4MBU9El55Lp8xdSJUVk3Aso8i+jkDspSh1FUW0yG/SZYA5DMSSXP7SHaroXvaAIFX8QwxiGYY3DtYNFa5UO1mErbWppx4yyPQVs2/E1LroSbUTwzeb+R9nwzf0urw9R2v0H8XQlicxIXO+JjtPqIsPaI/svM+hg37bzNGCnsxu0xtBF+CxCqyRe2KKhTwENfQowI+fi00ANF7KII0kaLxG1Z2LVl6DTBovCfQkZLgY+ZKcqSPIwPzEUr3lW9B5gM5CW4MjAZjCFbI/NQAYkyrF93fJ88nZo9343QUWhYASMmYb9m1oG2jWgDqAhXJFt8vQJMaxL+fGJM5/xzGEIcxmHj7Psg8QvkjSxCfFLFP8nOjGB6eUD+coYjVYGUdLszN1EaWk+cvVMluhtiCTrKEkkcwFNxrJYWFYG2qSfewp1xo2YforyuuDGqAAnsht20UukeZMMb2OxIRH2A3wyeiqkTwd3WrZJJ8rcWEl2NFqQwlCmYjOQRTzKbFr6UZWzJ8P1BCAMSlHLM9TzAi5QwMb0ZX8a2QOPH4JmPdfF8j0i9hRMtVmwLEXqYTCHQ9kj+GaIhH8Yvv4cM+0QbXBzvwz94nMhchJOch3CjeCaimTMJq1CePaWFNhnUMjeqKX8lvQSh6DdybTUlxlgboUVC/q9pJ1/4vp/yzsmYn+EabSZvbyLtPbRzu1obyrK3AaPXTGaNsRwE7k1eX0FiWILpTSmW4xrNmXXhmteWNeiD9+yhD+S4jWaA5Aq/oOx8Dwa+35HA0X4GERI4ucNeNZEOZgqutGsu7Ty4LOAy6hjMhb9GMT1RMl2rE5MhPhfs/kzwdoGSt+E2lMhfhtgQdktUHhSu3QdFjOXc0kxnSJ2oj8TMFjKdBVZP/MbPObmHvsoyrmWEg5Hkw7m8hKrXG/cvyVAEuKXwl0UdFZV1VC7CWnL5OWyHUkR9O0BzUi2YFPyb9YO03GbjiSS/ChXA+EaBvMrhlPB9RSwFwvoS2FTHbFkq7lwVCmqsrbT7GidwHNvo8F4E88owVAjaMyubF/FpcSy8wxpNDW8RBOfUsgmlLM7KnuWn/k7NTyS3Q9cLKoYSAHvkwtItCaayWCbF2Bbf8cnhUEIhy9QlGATTCyZTG1JtPaDvDx6YdDh7fH8t1BJ8G0LpTXJmE1dqBhXxRjMs4QZvZRy1uIlTgP/NdAemFtiRm9DGYPw/A9IOdu05DUrbN2HZR7RaZrNUjxMmocxGEmM/8NoNRovj98ANduBPw088DPglAOmgac0bsjGVSaOslAMolhdTYQ9+YmRaBqziZgUczph1yduXoGnDOoooYhGXEKtS0yI7ejHY8vM/wrTSWg4HDLPgbkOFD8J1jrZMtcCITCCcfJaa5T/I2SeB68MZtwFTR9ByQ4w6gGwuvadPzvbLNr8PleeR1mmFkv7+EqRsPpQZn+MycCeLatYKpkHSQjRbbrmFtSiK8DNNqEV7w4RyOhQdgB6i3m8T19eY0B2TiAAm1HY4X+hk1uiCQIgK3opg7kgt0+EA/DMe1rOCSizpd9PR5QqoN6eRZwPs1tepg/3UsDu+fuhqGB3KrLbPWpw+RCbMdTyZN6+Bh4JfiQ3yDv3+84jpeqYrwegVLC2mqk8DMBkGH14BcPYHM/6H4bbqmeUCXhvYVrnYeirUKmgA1Io7eFWmdRZEZr471IDJKXKsGIPdfic5/+XlobGZiaGsU2n6TVLcB0J/p599Bpp7qec7zHo4OZgFEPlZ5D5GZ2YjFvyNJqpaDxcO2hetLSHpT0KuB3LHAdAmDGkmELQX8kjxBhC1kji3IhJhnJq8RmYXSLFJJjWwKO4bUdtvwGazgb3YwjvDQUXg8qfamG5qCiUPNnxc0YZAG76Fpr0ecSNKBpFUTpOyawUNGSve83zMPtiGHFNF09qobKjFjVQlgkm2qyzS0iaUWzfYaE/lgHGz0tPRqzxpA+SEGsoh9k01sZQ805Huy39i2h4EfwhFHhpwn46d2828FAk+ZzLSDAvPzF7U1TZZ6jYdVD8X4jmr2FWwq0Q+SPJSDm+CoG1GUT+CLXjoeY30HRBdqh1viRvQrYPC1ikeXepZUrzCrUMo5EDWcRwFClaBxc+iiZKMHIBiyLkFmGbf6XWeCT3s99QQW0TgMcs6rmSkD0Rp+RonGg5vg1elGxzUwzTq8DwW5ZIUYCdCcaWWx3UFPhkqOYzGpm51PJofwi5/jMaIELEehVDDVvqcQAp7myzJUGcS5Z+UGgQqvRsvIIzqSuIkgpZLVMaaB10XGbD3O4VTCLGoYTZhnKuoYDxmIyglClE+TOFXE8Vn1LKOUSoIsJaVPAUBW1HgzWdAel7wZsGiX9C8qZllq8n6Pj5OO4ZNNqFeLaJbxvUlxSRzgZzAR/Ss7qcZiWP4WXHBmoUtnaJW4U0WYV4hkXKjJBuNe2D1hov9Xfcxkrcpg3Q3ic9WUTRi6QGSYg1kMalTm9McWO69STD+CpYC43YTZjWQrZwErwfehuPeky87H6ahdxEnBcxKWYwl1PIVmCtF/wBWntk/Ctw9EuY6jdE1ERK1BVQdAUUAU3XQv3hwU8sBSQ/C/5RmD+iLswmJHmVoIbCxW51c86TeRUaj8PWc4kUWFQXlAJQQJwmYtnlXlW2FiODxWUUMABD9cGws7Mk69vylsJoXXvm8D2oGJHQ3RACP305Oj0RVDFG9E5U4t12E0PH7RgGwyhgfN52lyQfcDqNBBN0rs1xjODIdkXyvCW4/sl5EwKGjAcwzc5n6W7NYAg+s9tsbejSsdVci0OEBrOQqJukxGgimNjweEyzNLefSTkVXNvueIt1sWhZ/LeQCyhsVaPYjvsRuakXMMD9tEv5XCHONPzEFXgxE23m15S6EZNwg0fQOd+DqkO7nGyMrRjMF/zE3njMI2UEk2zmKIXfqm5Bu8+iM9k+dLoWL7E/VlHb102siaQGSYg1UJJnQHm44VZf1BA8jm4NhXvgRo/FCB/LALUZVi44gjAujTyBTwKHhczitLyJEAEy+kaS+mI83iejb6XB36PlSa2h8cI2MwFrcN8L/ukvgvilEP8H5f5fKeAAbDamlL8R46D2hdFpqN8f/J8xtI92TdzsCC0Lj0LiZLBwtZWtFNDUcwwuCzFoWULCbT17ts7/Zz3vM49Tc7NiG+HzsYrrsYp+wrB2g+ghuc63WkFDJEqtXUqSRcxv02drIVNywRHAD9yDj4PGxyfVcg3d0/KvkQLXvQqPxSR5hgyft78WrRRxG4qSvG3hDgKxtmo4EYsviJCiiCYyVhjHW4eY+ziR1JCgA7tOLTOdbgntDrnliT0I7dJzaftNkP4YvLr87d6PKA9s18NqyM7I7muMtE/EKoR1r4YhF8CGr0BVB++7pbCoYhhTGcrUYH4rMrl5ldAaS7X6vPg/0uonCuif0bpnp0IQvaPbNUjJZJKPP/6Y8vJy1l8/fwr3VCrFo48+ylFHHdXJ0UKInpFCo0hUhTAdjR33cKIGbvEuhEqe5Se1iLt4gCQpKilmFFEskgAMYkeSPJpNR+MTp54jKOFBVPYroZGHSBjBzTms09j6fVK8SYQdgCSQIld11fz/9g7Bjbd2K/BnAWAk/0VpyZUY1l8w1OCOi6IbgJZh9b4yULplgiYLj2IaaSKGAkpowNAeTep2IuyK579Nxr2ACp2ixg6hlYGHQYnenrh6HRcLH5NGXiDJJxSwWfs82OvjVL2An36MJmMBCyJfEDSNeST4gvk8RgMfU8hoaDW3UcAgzhTm80d8mijmd/TTl+Drt9svJ6FsFrIVmjoAiv0/YbnvAvXY5p+wzANyu5oMoZyfyPA4LtMJsSs2Yzu+hlmuex8e/0GbVvNqGBSQIOWn8TL7BOuwAVgjofLTYF27nhC7HIw+4H4Ood0g/PueSTczHeaPA38JqCLo9wpEstcgNA5Dl2PFa+jv1kIdJF0bK3Mw5rr3r/AyKAoDm0FUWAl+9iop0E242JjKw6RPy37WXpD+PyAD+Cjrd6ie6H8lel23RrF999137LbbbsyZMwelFNtuuy0PP/ww/fsH830sXLiQAQMG4HmrZ/Qso9jEL4Umw0LdF6U8DDRag8F6VKj3URjczL+Zyzx0dq7lrdmYMRRQyFpEKeY79sEjGIEWJkUFtRRxF2EOwmUB8/TGeTf3iJ9AGUWE+A0xLsVafFzQjNLcYSd6IhTdCu4nUDe2OZO5VhfPMqDsRUxr1w4Ko6F+12ChTxSOUcJP5RWYqiGXBcu1Cbm1pMPNMyQromo/yvQVJDJDIdtXSWOQsA6iyDgNSw1hRpv5i4YwmYLm9bNy19KjmiNJ5yYSDFNPCE2wSqrBWGqYTnM0OIjjWch31PAZoFiPM0nzd3waQPuUurUUeglUc9+j5hu1r/BC59No3pG7MEorSjL1NPdTitqfYhidNEN2widDgg/w3BcIZybiGiZN4ezILhQNFNM/uZAwGYwUWKlslsruh0gPBTIry+JjoOkBgutlQGQX6P9Sy/N1E9CNF+cdovq8D+GlB5LdleRNajgCgwQwmL58gtGqfkF7X+M7/0EZ/VD2iSgV6jwxsVxW+1Fsf/nLX9hggw346KOPqKur46yzzmKbbbbhzTffZMiQISsrj0KINhQhKniFBm8/oI4I+1Bg3JubrydDpnmO5WAyQWwG0BKcjGQy89gSA48CEgD42eHemqZ2NR++Upg04jCFen5LecVUVNO14C2C2MkQyo7KMgYRfK24NLcyKMBwfbymP0LpNx0URkHJs5C6E/wG7MiRDFWFxHkZn/lEmxYRqp2YzUeChf1LMVQxxeqv+HoWZPMfnMujQp2EqbYGoJSjqeNeAArZlSi/CcroN6Crd8Rzv2Jxn8LsgqjNVWEpyhiBxxhCDGcJPwLTaW63q+cjNucO4vyETREhivmWswFNgZ+gyI/nD1zzfNAWBQUZmtSNFMQTFMYToCEZtSHk5oIoX3+O0Vk/rQ54NDKT/dB8RwEJIoDtexSmE6QtmyVGJcWZBsIEHej9MDgW2I3Be2h1oHUSpaKdPNt2du38H9++91L7fiKZD3s8QIqyAwNbzY3UljLXxzS7uCaiWGN0K0B67733ePXVV6msrKSyspJnn32WU089lXHjxvHGG28Qi8VWVj6FEG3YajMqzJ+D+V/aNCfsxDge4Qk0YGOzZZtmpTBD6MPxJLkeAINBhNkXAIsRRNiJFK9n9/Yxlcb0fGw3g1YL8ewEVvHV7TNlDsAvvB2dOgXDy+TW/QqSWcoaHioK0dNbkgGKOQS8GnRNRbCLCmaM7je/Dt3/LUyGolUVigFoFmaPLMVQG+XS6csEyjgcjUOY9XMBpK7dCyPzCUuqSlqtFt9yDX2+pA83E2IjUtxBLe8QRDwGhdl0Chma27+UI6jjfizttnSaz/ZZsYCm0BBiShFL9cFoCJoTNVAUT5PxDOKFETJmiIx6ixL26XgofwfqeRpP/4ChwDHsXExm+y52xiXGT/mxrgJtgbbKUOH9O0hx1dH+zzjpPdD6S5TaADv8IspoM2Kw5DxIPBssTqzCUHZR3tO++U37VszogQjRE7oVICWTSSyr5RClFJMmTeL0009n++2356GHOp4LRAix8rQNjgA2YUP605dFLGEogymmqN0+BVyCzW6k+BKXEfhEsoPSFFXcT5JXcPkJRQLHm0BRPLixK8D3ToVo+7WttNY4+h8QzmAosJOtnoud2/3Czd82W0Zy5w6igER2ewGR0BQc92rAwTbPQamylmuDIsy67dPNfA4GOHbrviIt4wEVPvUcTRWfMohj8UlQx4cUsRFDOa1dcn25hBjb4amPUfrCIC2lMFzAMWkoKKcCMDJf5BaYbZmUs5SkHTxK8DQ+DhXc3aXLo/1atGpOx2ZJqCKY1DBb86IwMKwr8N3zWooIqOLHQdkdpLjquJmz0P5XQdCmv8bNnI8duT9/p9CGMGgGZL6E0Lpgtun/ZZbiFdZjpAleutjpKKsfQvSEbgVIo0aN4qOPPmK99dbL237zzcGU8/vuu2/P5UwIsUL60oe+rTqTtqVQ1LCYGdn5dkJUsRH3EaYKhUUBe5DkDhJcR8hNZo/JHuu8Ah21iuiZwCwgWOA2Y0AGm0WRCjKhqxnEuhSyQ5fLoJ3vUc1TCeQWrTcwjA2yO/io1Eso/wW0+hHHfQU7/ByGsX5nSZJhMUsK+zKgqYFI2iEVbgkUlApmwPExcFgCgIHFMM5caj4ViiJ2BXNXvNRPeO6tKK2xHACPMk4Jdgxth4pPzDvWCQ8D5gLBArOZ3MSay1bkV1Fj+Ll171JmBF9bQe1d+GxM+1SUMRIXB8+5CFBYxvmo6I5dPsdK4dWiM08E1ygFSvt45gPgHw0FbUbAmeUQ7XhqBCN6B35if/yCOJjjMAsuXwWZF78W3Rrmv//++/Of//ynw+duvvlmDjvsMH5FK5cIscabw6TcvzNUs4hnWh77n5HwzwR/CZ5SueBIE4w0i/MhPun8BFUJuSoNss05UY1p+YDLkg7m3MntqzW+XoDWQZra+wRtu+hgMBnaD1byMMrvQjWPvopfiJf+A7p52L2ehZtpvy5XazP5K3NjUWrCRZTVNVIYTxH21sFULgYeTRRSTRVLKOBnd0dc5yE85xY85ya0rltq2gBm6HhCGRPLMQGFH9qaUo4LnozsDiX3g7k2qAqIHEo49GfITbNgEGbZs2w3s43NGZxaQJ/UEiqTixmYmEfEC2ZDN4xdUcZIAKzQBYRjGcKxNGb04qUnuiqk7w9GXyaCtY6VBssFXb0rGe86HPdafL0g/xitIXEj1O0IjaeB34Bh7YpZtBizcB5mwVso1TvdPHw8nFYjMcUvg6zFJsSv2IfsRYZFNDcvDeOPDORIfD9OwhmAyn7pu8rA9CDsuMF6VHaYlB+jKTqG4WoyZnOfmcyHeA1b4GTXAvFMA9eyaFRFNBnFRNiEYbRfzV7rJlLOHvj6PaCIiP0UpP+NTv8Ho8FHNXf4LjofKlvVwCypwrGX4Fu0qt4aTjg6o9Myf8bOOCwKFrr1NRXqYCqNKuL8hQwWS9rUug1NziSiHUCh1LrYkU9RKrL0C5t5G9L34xkmdQUz0SpNIX8iQse17HEeIsl/sRlJEX/GoOs3et97Ede5Au3/iOHOCS6DuQ1mweur7WgqnX4eVbdXuz7Y2oV4HyO7Fp+JoTYkZF2FaewIqQegsXkeKBPCB0Lxw7ljPecWXOcqUFGs0CRMc4dVUpYfuJOZ2SbRkO+wWXoE4dChmMY+HTZ/i+XTG/fvHpsoUmvNCy+8wIEHSgc5IdYUIzgfRdDEFGMd+hJ03HX9q3PBEYClfdIhm3hBiEzIIKTT9IlXU5T8mPpWtU54P2I6oD2DTMjGM4NalJSKoIjQh/wlTJq53u34+v3sozhp52SChUgVfil4FQZen93zgyMAVYnZXPmS/alnmscutcxlzctkKAvHNCg2diWVHenWfuKi1ts0Wk9noX/LUtMHILQduuhmlsRexlEf4jCNGo7pdHLIGIdTyYOUcPEygyOH70nzDjo7r5Vh7k4o8gah6Cys2AcYBa9jRJ/H1990qcarV4R2x7WyS+ll/3R2Wojm2d7BxdefkXL2QetqcD6gpVeIB07LsjW+9xauczowG/R03PROeN7SJ+LsCRo/CI40gCJjhFhivUITB9Pk773Szy9WrhUOkGbOnMnf/vY3hgwZwv77708q1cMztAohVppyxrG5fpHf+Leykf4XFoVo3QTudJTffNcKhN00tudioMFQpKOKWCZB3tdIaAdQ5USaFJFGn3BqEDH1AYPUy4xkKgVskXd+rRvJ+JNw3Wexkj5WWoP20DRghC8E1dwptxQz0iY4Aii+H8O3sJNgZcB2NsGyL1xqmYfwFwZzHlUcwNrcSglbYzAEMLBxCNPSszykU4R0Jjc6TAPT1WQW8Fb7hL2fwP06d818FqGpwUfjYONis4iDcPmp/bFd1MBVLGIrlrAf89kAj+rcc0oplLkFmGuRcjYg5fyGRGYInr/09e96g1IGfslEEoXBwsL4QAZSZfnL+gaPksF0DvY4WjdFYu/Qspf7TpszaDznhpWV/VZncQGVNyml9k08ZZI23ybuX9T5wWu6RC3MOw9SndfWrumWay22dDrNY489xp133sk777yD53lcffXVHH/88dJ0JcQqpNEs4D7ifElfjqCITbp3vK5Fp3bG0J/iUIIVmoxO/RHDn04I8AxwbYViE+Cz/GMtcNUgSvhty0azL1R+iEreQ0gVQ8EfwCjs8ItGa4e4vzPanUZhbTBPjwIMByj5P5QxAqPgdXT6fLT20Lq2ff2OvRmUz8RIPwCqGCLHLXMGZYVFP/Jn+7c5lDjvoHWGIlVPRCfQysJSDnG7gKgT9Iv6ITSClBFhAbdTyVAshgVlSVyKl7oI0/NR9u5Q8iyGGoDJSBzm5M7jU88ijqeKu7E7WAR3aTSaRq5q9bieOv5CBf/O289xr0bT3H8nSca9gGjo7W6dqzt8anH5GJNhmIzs8nEh63zMwvH4sQWkmEfGeAvT9zDcV4BqyI2p7Iuh1oPwb0A3QuZpMEdBrCX4UIk3yE3rlO3Qbxg9NEt4R/w0VN+L4dVSVlpDbaQ8aLLFocKrwbVMPAyS6jqinIlB+crLS2+YfioUTAqu9aKrgdEw5MvezlWP61YfpI8//pg777yT//znP4wcOZIjjzySQw45hEGDBjFt2rR2S4+sbqQPkvil+crfnoRREzzQsJa6gkr27PLxbmYCnnspuZmKGYTpzsnfKfY0ytyAVHpDaF5rTAO6mILIXJQqWK68e/oz4v5YQgmPcJPXqiHLRPUL1jbzmtYBPTt7QhMz9hXKXHu5ztcZTZL5jEKToLn+IuwlSRshQspFATMYTi1lNDcADWEWFV6GGFvis4SM+ggMA+X7lNQlsWLPQHhvPBaygB1zNT1BZYmBR4iBPEGUMd3Ip2YefWhdxxJiHFU8mbdf2vkDrn8XwWuqMNQWREPvLff1WRqP2dSxHZqa7MTpB9CHuzG62zihszVD2UVhff0DjnsDKAPb/BOGGrqUg4Elm+PxEW6U7DwUMUIF36GMAd0tUtf8sC/UPwsYaEPx89qlOCGbSrcaW7nEIwW5QL2cmRhUrpx89JaZKpisrPWEqENWbnfm1b4P0tixYwmHw7z//vt8+OGH/PGPf6Rv37brEgkhVgXHn0ZSLWm1RTNT/x9zuRUfp4upxMlbaDM743ILG4wB1DKWjNWqR62yiYReahccaRI4fILPEpZF0Qcw8I3WvXyM4KamFOjFoH8kuNH7gIP22w+B98kQ5xucVs1N3eFThyZO68DDM0qwWs3aPJTZVLKYAuIM4GfK0wuI+ovx9bPA+1jaA63RSpEoCNHcFGTSl3JupnVlvYdJ0ADXvXmhgjmddsjbVtg8fUArtnkW5CaatLGtCd06z7JofxF++nL89NUk9ST87JI1gaf5jj3xiHdwoAbdlNdsC0DyJlgSgyUFkAhGORpqJGH7JsLWDcsOjgAKTsF0INQAoQZFyHp85QVHXkM2OALwUb7HoEUpBsUXEHYhZRfngqMIZ7ULjly+o47dqGEDElybm/F+jdI6cvgF90PvVhPbzjvvzJ133smiRYs48sgjGT9+vPTSF6K3+N+gTB1MrZGbSdFjHrcBMJBTl5mEYZ2I594B1AMK0/4HijfQ7kNoDNzIeBx1M+DgmRYpZWDqMoqNqe0Wn/X4iXp2wWceEKGYxwixfefnVgOIqDtIhc8mHW0klPRR5mAozU4loqpADQE9lyBAMkFtgtYNQBFKKRxq+IajSDMbhcUIrmnphN1FBv0IsTkZPgIMDEow6YfXqknRxGMoc3AxiDakCZsZnIjdKo3mGRgV2qjAs7dGkcQgSpSd6Mdr/MSu2ZthdlmR7NIu3VHBwzRxCw7fUMAh2cWD25THGEVB6Dt8PQ2l1sFQXWvK01rjuVfie8+ijE2w7MtbplPI8vRi5npbkAhpQr5DhaPAbllYWKPIMJMaHqGqeWoDAG8u1I8H76ugeazkZTAHgzcbms4kF5zGz4HwvmB2vakOgILjwFwL5XwG4e3A7nrNXLcZBWCWBIFS83I+lU8SKhwDqoyQ8nH5BEUM6//ZO+8wyYqq/3+q6oZO05M3Z1iCZBBRDAgKgqIiCkoUMKMYCAq8oL5GzBGzJFFBJIivKBIURHJGWGBhl82zs5M73lT1++Pe7umemU24Cvrr7/PMszP31q2qW/du1+lzvud7mBxVGeMoQlYgiCjzGRQ74W6F1/dFgeGZ0LVu/O/webF1XvTYqru68cYbWbVqFRdffDEf+tCHqFQqvPOd7wSmVvNtoYUW/nWw5KuZ4a9nrRMXix7n3hgKPLRFfUi5A076SXR0B0IuRojdCKWk7DxBIJeCuJ365mUMRiiMXIRk7qS+KnwfXS/54VPiPBz+tsnxHXk8jjweOoh/GiCEQmVvQVfPxZhRsN9KNToYE/UhxStI2X+gX1yJl5CeDREr+epWG0gCQTdXUeISDCUyHEMkljNsjqTmUasrCGBoG/MIOxo+74yp62IbA2X7tWwQ+wA20/k6bRyJw05083kGOL9+WQfv3ap5xuMr2vjo5tuJLpTYOjFIHf6EKIizDI2+m9AUsd1LmtoMmi9QtmKD3Jc2I7pCmjZEYuyNkQfkJA+SKZ0L0ZPxKkVLoXQO5C8HPchEWjZ6YOsNJAD3wPjn+UAPwdARED4NqcOh/SfECqVTQFiw6Bp47iSIhmH6GZAfr3MoUNgTCiLXUOEqfFYkf0kUEPE0/KcZSHuuhSWvB+uvYC2CRU+/0DP6l+Cf0kG66aabuPjii7n22muZO3cu73jHO3jHO97B3nvvvS3nuM3Q4iC18N+GKLqHkfBjbLCqFGQtR1owiw82e5D8dTB0FahO6DmmzvWYCD/8H3Tly1hVkKFBAoElWdc5Gx9NJqrSq1+Nlbpm0peiImdRpVapXqDYjU62XQbVSLAngViGrT1so7HVuWywprOWH1MT1HGYyR40l0CJKn+AsbcjQh9YjMwfDfYO4B4LQk0eqHYdawhYgqQHwyiaDSg9D2vtfkR5CG1ZL1UiQ42WgjC0Gcp0N/TisB1L6oVhfZ6hzN9wWERmE961rYGmnzFOIORBbF5FGxcjJ1qbW4DAew86upRaQVghFuOknyZiLWOcQcgyqiZHiWfqxrgdBcwXf2ONPJcxHsAgUXSwmKtxmIMxIRX9fuyxS7BCM14qxtoHuu6PuUcjr4YwlngInZ2JcqegxMFYco9tsj41GFPEj85D6yVY6q1Y8kPxOxwVoL8H8NESQldg1N4I92NIeSSWte3EJ/vZFc3q2oQQQDs/whFvRNK+zcb5b8QLsX9vE6HI4eFhLr/8ci666CIeffRRoija/EUvAFoGUgsvVoxwDf18BoOml0/RNSHLanMwhKzjZxR4iBx7Mov3IWoO4qAfHt0Nwg2Agc63w+Krpsz2qpTmkBobr1ougFX5Hsay7bF7RAja/AJz5GVI6w1N10YsY4TXYRgAHPL8GodDtnIlpkaRyxjirPE5BEUynIKwP80SjsWnD5As4gK6OWx8TsHdmNIrxjkTPlABkRbo9DH42UOw2RVnS8nSxbNh4CtEGdAuICCUoK14Lb0ozVC2OWNpEU9usfBjke9Q5idIptPO97GnCNFMxBjvw+cqYsNGkeID5PhKUxuDYT2XM8JtZNiB2XwERTN/LAovI/Tfnfwlker92O4PGeRQAu4DIkIURZMHNAhBb/QWutV3ASjzKD5ryPEyLGIj0deX40Un41ZCbA8822KsLY2WAqVDstE+pNQNyOAa/OinGH1n/Ih9g3I+jNX2nY17crYS1eB4Iv0bagaga12GpY6DwTeBfwNaQqVdgDZN/GNlfRfbOW2bzKGf3dFmZdK5QSOw6wapTQePYjFnm4z134b/WAOpEQ8++GDLg9RCC1uBEneximOajs3gq3Rw9LYZYMOlsOykJLsH4uogOdjzJmh/eVNTv7AHTrFZYO/p3rkE1rgis9QR86OP0WdLJClSdCNx6eZABCER/0CyCMXMpn6MKRGF38aYPpQ6AamaNZE2BmMMg3oPhHmWUCg84eIYTa+4GSX3IqJMmSU4zMSlgZhbvAI99m50bgLxfEywdnYPEl23ETv5AZlNrLcxBt98mzD8Jqn1q+MitAKCLAR5WSce2wVY17UDgYpDTHmOZxqT9ZuWMchPuJMiHoezC4eyMx63MMzbG1qlmc6zCDadJTjCIYTclfwlcDicPM2FwzdwDWs5GwefKmk6OIqFfG7SPerwJ0TRH5FyV5R9HkKkWM9cTJ0vpbA5AdgJlx3JsemQlqe/ga6ehcBgtGA0mxRNFiJOi498suYEUvpwGHtrnaFlPBAB0P5J6PrKJkbYcpS9+Zia9wYLS74P1/4+9C+G6BkCF/yMQOmEV0SdYUQqo6fudCtR5QZGzAkgIrQR2EmW5Dhm0MPSbTLWfxteiP17q5lVWmsuueQSrrnmGp577jmEECxcuJB3vOMdnHDCCS9a46iFFl6sGOaiSccG+P62MZA29MNfnoVuoIf4Ez8FjBXh8XfC/iuamlupH2KKr6axBoSW1D03GEM2KrHOfIs+04stvPoH/ArS7M61G60lFnhHEZqb0EJhhT/GST2ElLts9hb88DOkoyeILImtA5SIkOp9KLEXAIoMbRM9QP6TsOFYUJO//3lOTK7WSGolVgY5A8X2uEz9+RWYX+GZs0FBqdcmPRQhQ4NYCY7UmDSoIdA9kjn5r1JWAkU7aV5d78MYTWiuIWQVXxbTKYgAA1zMvSygm7mNG6MxONEIY3oGDm8nZf8csRFPSorjKHIXsZtMI9mNQfNRUsFKpA6pOmvQcphZDNY3/UFuhQkGkhACZX8AZX+g6bjLG6hyDTULu4134PCqKecyEbY4Ep9PIowhsKxmr6UQaCHR+n6MF6u217leFhAAxcu2mYEk5WuI9BXE73aIkvvHJ1LvhNIXEZpkfs3vjAgNjF0A6beDvRmJiagAMgXRM1A4CfQqSL0XMv8LQuCEM+gKP8CY/13aBytYUVxoeGxWijBtAUPb5F5b2DbYKgPJGMNb3vIWbrjhBvbYYw922203jDEsWbKEk046iWuuuYbrrrvuXzTVFlr470SKPShyU9MxNaEe2PPCc8vgDfvCyBBcnRyrff63AWPjafFFbqTCHbj2LrR134kuf5UKf2ckE5IXY4wQSxy3hUV6gjiFf9jOJUZGjFhP6CIWNBCRa9A6oiJuoejGKdBSR3RFV+PKXSizlArPkmMP3AleJwAdfpfIqXGFDA4hOfG5Se2aEDwNGEQEogImHdt4obYY6mn89imTXn3WczSzeABrCi6I5gHij8sQbUtGZrkYBB3rSjij8YZqBFQ7LYru6XTxZ2wWNfVR1WcR8H0qpBmTzSrP6xihl9tjc80Y3LCKAARlInMZI+FVRPZsfPZEsohuPo5NLLGS4t1IZhHyAIZuBjmfNq+ICsoUc7H3SRlRq4YBQPskOQcwxgezCsQchHDrx9v5HhY7ELGCFG/D4VXo4Cq0dz7gIlPfQlpTE+MlM3GKi5HeU0g7ojR93NBGCCwdYok3gRrnghkTR9WMJRBqYfMcqVLgCwQ8gMtryXImgo3zyBrhWj/Ej3oTDtJbUDLx2rZ9jsj/GiLyUZ7BWOMRWVkBuwxwDoyeAz23QnoKr5mJYtL20OVxlltPF6TWARGUPw/W7kT6PkzwVSTQtQFkLfHRQPuaKgOLMthy2/DSWtg22CoD6ZJLLuH222/nlltu4cADm1+SW2+9lSOOOILLLruME0/cOv5ECy38/4xuPswwvyCqZ4BZzOEH/3zHv/wZFEbj36tADpJdN8bsmMT9BEdR5EkAslzOdOfDDDnPok0GiBDC0MMAGa+CFUV1G8skJUVjxJ4Yn78RMyuavR0VcwQlezxUpIWkT12BJmIgKV4rcNmZy8hO4N2YWqEukZR0MCDZjIs99XKQHQhdQJZB+20MzI7wpZssgUlS7mV9QQwFnuIUZrILENDGe7ATZWglDgBzISCIhEWUXDe0b46ue4o4BY0wEOYVhgFGOJZe7m6aUpB4ClNUWGye5hkWI4TERrEdSylxM6DQKCp2GtsEuHiI0FAWaWQ0SM6/nmHVySr7ZmZxIVXxHCl2J8XBOBzMIOcRIXHDKoHd7LFpDOXk2L9hgQ2m/Cmi8FsgQqAHlb0NoV6SXJcmxyfHm+tn0ZVjqJHxdfnNiLa1CDEFybj4M/CWsqp9OiUnRZtfwHbi0i1W4OPoHmznswjLxwT3YYIbkmcBwjWQ/yzau4+S+gVa+WhRweP3gCbgbgQZsmwZP0iIHK71zSlOSExqZ9D/wCIiCsFYLgafVHmCB3LobTB7ZHIfI9fFxhFgdBk2lBFzSBZdQrQUE35jfMgJ3QrA9fYmn55cyLmFFw5bZSD9+te/5txzz51kHAEcdNBBnH322fzyl79sGUgttLAVEAgWcw8ey4gYJMXuSNzNXzgVVtwIfXfDrFdBJjsuyvdTMOeMN6tm5uJu90XW8hVKiXEEUCLHKNehGalnxBkEobEIhF0XTwyEgxIRUcNHiCCiXd9DUP0UQrhEToCSB2CLNxJxE0wQlQzkKGP8mhQagcEnZD2Xs4gvAWCMRxR+H8UuRPpejJSx14EtKAKqpsHMu6DwQxCCUvs0kH9CsRQSEc2kNmoyd6jiUuZpxrgbiaHE1cziLhTd2OKtGHExobmeqrgPzGDd2CzsmKZtaZXqNJvKrDh8F/FM03Qi1hPSgSbAIuT95if0ix0J6GIG55HmZtbRgSJEJbPyRIrAWBSsxPAQAjs0LBxZRzW9ntDZn/70LLSwmMPPqPIEA1wOOPSlpzG92j8+gdp7IARSC5zKdVTUn0HOwNI7Iv0fMerkeC49j0goeoMTmK/uRBgHwwrABdNGFP4Moj8BUd2shDLoNbE20EToQVZ1TKc/10WbKODi13lGkbKRZleEUEAakfsKDN/QbMn1H4MMh8gpMAqqaRuvK50YfgKf+7eQ/r5pqPSVRJUTwDyHZb8b6X4FMbQfcP+E+xkFUwGRbj4ejYtlJvzr5D4VIMF5I4TjnlWjQEzIZcoH+8OEblt4YbFVJO0ZM2bwpz/9iT333HPK8w899BCHHXYYfX19U55/odEiabfwnwxDhSFOpcwfAUGGI+jmh+MNllwKN50Up66bCF7zczjrQnj0QcjmGP3V26jOugHPclg1fRaz1HEU+CnehBBFL3vicR+mHoYxKEKEMbQHBbJRBl/txEpnbWLaxEKJ08L1TO8bRSabQ6XDIsxIFK8m4k4CBFWZSrxAup6dFCHwiFPCBG9g+6S2WOAdh45+DYnytLEOQqo3YcvTkk11S9bMZx0HEbI0uY9msm2AokyWCEmVDJKQnoSrE6/Fr0lP0FUa5E0E3AVsnLgr6GI6ywCo8FtGE80jA1SNQ7nmARMSRSeKeVR4FBuPRq+cMAaP1HhafRiw04blIMDLw4DdRdFuI8d2VHmKsMFg7faKuLqAnwhapgseymikgNCOVb+TyaKqhkfzu6BR9bEs7THbVMmyBhlFWGHUZLsILZBagliIyj2OEA6TEDzDP8xhVJwUM1hHquH+DNCh/4otE/6Y8WF4N4ieRWOIMNjVJHxZi8wBxXaXUj4FQBtfIcsHJg3bCINGM4akve7zNGYYHV4BIoVUxyBEqt5emwGq+mPo6AYyG0YQusFmE8Ds0iRjn3CA6Ik5qKRmX6nHRvTuSUa/Btx3gf1SosqnMMFX4/YRqMGGfl2g90pIbaPEjP9CvOhJ2kNDQ5ssLTJ9+nSGh4c3er6FFlp4/hjmo5T4AzUiUYlrsNmePGfEDZZcFv9rkq+mq66FG+/DrFvFsq47eC59PREvicM2wBh/waVENdmsE5YKs/gqISvYwDcBgWYtEStBaEadDiQfRbEWxQrAJkTiYyEKkmrGRkuJWwlwiyFh2iYSsVikDShdIkJQleMbjMRgExJgk486YexVoFejU2uTWEQIKCzxGiz18Y2uzxh/ZgM/QJJiBv9Dmt0IzEOxEN9GhGxtIjLsTQGfNCEZHm8IHMpJPCKAPF9hmCPR9KPYiRSH4nMHQd3bILAbyN6jExTNU8KnXPejaCIGk1CeTMKWmtrWKRqUtzEGYWnGOlPkRuOaeC4euagI9JGSFuXEs2ERErk2YaBoHyoTuqCViO1So2PjKOk2NIqBXCedYgSNoEwGjxTtjJJlAIzBCidLtxhpQJ2Bck+f2jgCsLdHRT1gCgRYpERsQJjkp0nlWzjQcQde6Vh8569khsKGc+O/OuECAvbE5TVkeN/U4ybwWc5KjidkDQ47MI/LUSaLX90XTFyFXshLsd2/1HW9qvqDhNwAKqI4zSY7EKCSrEU6vjzZOAKweii95ET06K/QlsHPO2TF24Bxt61KfwUdzIKhTyBCE4ehM4AlIf0ecI/a5L208O/HVglMRFGEZW3cplJKEYbhRs+30EILzx8VbqE5/mDwaKjSnp9PXfhQKGibD1LyzOy7eTx9GSVGqJLCw8UAo0aQNlXSlMlQpo0Cs1lDiU+SZj/m8xvmcyUz+AYySTV32JEUOzPGb2ijgEslCbMJTNYw1pWh2O4yND1HpARWEOFU4w3G4jSy4gGqMjelwSKAXOl3+Pp++tJFQqEZ/4iKEGLHja5NlWWs4iOMspR+nuRpTkaXzsUeeDmzBgbIlssYBFHNDDQCy+xEG6czj4uZQUAn9+JSQpHGYid6+BkWCyaNJY1LWr+KlD6IjPksOT5DB7/GYjcAFHPJc0HyhKIGT1wjBSwuvgsKl+2ZyTko2gix0EnhEkEnc8XNZOkBNLYI6GCEIGVRzSlCqXBlkLChDJYOSFMlTRWHEIsKoaUotllEtsBYoB0IbBFnbCVxoILdRiBtBCCNIUuZlKmQM6Up5k199gaJcN+DkJuuxzlP7EsKjzHaMHrcOEqVAlTw+ITF7aWYuR9jxUVgG8MbNVPRTX+DLq4gy6l1rpvPjQyxK4Mspspl9Wv6+RIhfUmbpazgaAbNpzGJcQRg9G11Ywkg4k7qwVch8HvfDdPvhhlPQ+7sjd5nzvo6dB9L1L4DaXEKOU6f1EYWrkeGjR6pt+H3XEIxcw8l/Toi8yiEz8Lwx2HkTAjXTOqjhX8ftjqL7aSTTsJ1p+ZHeJ63TSbVQgstTIZi5iRuS4rxEge88qswtgL67oJZr4aXfx6AAR5puEIQYBFgMYpkfqTJWmUyVOotPH5PYG7HMjuj9S3I0pnM8daj5TSs9rMZi97PzNI6fEvRl7epyyPbDfXIMARZiRPEG40V+ehoEDuzCx18ixFOJw6uxeaAIUM7n8H1T2Vp1ywiIRnTGab7Q6ToRKn3INXkb9ixAOJ36ecnVEhRJoNNgAyqiPKXWZGbyYZUF8po2qIxKirL3Ggf7PAGBPdgyT3wrSX4orEIboFefjClSGNkllLUe0BC066aGwnUaXRwAd3cjqGIIFf3QkUM4+Pg4DeHltDA25Dk6OWDWPSwM7cRsB6LGUCATPpp5ynaaf5sLdkZpLUvjvk71AudNBsxtQOjTgcd3jB2EhLUUmC0wBKvoMp9BNLG1BxKCYGmjULsjTKQFRUiOa4PVIMWgmpwABnnKYTYeMgjLU5nQXQNRq+nbTQkVBJhwNKaoP0pJPuimkj38bZUbVdkBkOEjqUmhLUY0f4DSL2+eR6MMsZxxCqghiIfweJlWOxExAjjTDNDwHMMiOeoON1M8wfHxxOxuKcxGqOHx1nUQiDoAme/jd5fDZI8HfxkM406iY3+hOAuQ6rmPdQM5rL/BnIbxmKeExJR/i3MfBIaQoAt/PuwVQbSiSeeuNmaay2Cdgst/GvQy3WsYS9qJGObHWnjI+MN0j1w5C2TrutkRzbwIPGHsKaTYYQxpKgQCIVsDuQAUA1ejzIJx8YFUuBbwxjeTOdIGQDLj5g+MshoRzuRUERCokwivigEwjRkuRlQQ5dgyvuT7no1abGUIXECIbXwWwHHVAn0dszuew7fdujv7mJ1egbbcQMWO0y5JiXuo58fxJwnMlhE+DhkqDDstLEhHSs6R0jGRJ5QK5zw90AFMIT6R1h6dyZmigvaphyvar7HOEE5DmUVzc9oF59D4DRdV+RW1vBBDBkCLNJUkiBaD71cgcNLm/qWpHHrHqtUw/FetFlV97oZA6P23szlHHzzVgyx114j8EjjJsauj5XURhP0OWk6wmHa/SIqMISqHSv7NUry8OR+x701cfDH4MgA25xIhrdhHAepB4iCX2PCK2M+kKWBfiLzCCPmTkrmFlJiH3rlp5EJ27jCrZT153Cj9RghKKZTtFXi8GDVthixzwHOo51LSfNmADLiJ1TNu8CWFKbbCG2wwwNIpf8AYvKX87j+X6MBadCsAnaii/ewhvsBM+6CElBW7UARsLGcHyNEV/3aOA5Z61wjxLwp34Xnhe4LwLsfwhVgb0fYeRDwx2ToELfUh7CTeeoIghUQLAVnt203hxa2GFud5t9CCy28MFD0MpdleNyNoAuXXfF4lj7OJqSPDo6liw82Jd8D7MCxRGaA9VxHiiKhsOOMKCKKqoMeM0AkrMSbo7HCAGkaCMgJOVZFIRqrqfeM9plt1lAkRyhsLFEFA2XSODLEjsLxaJoPbPgAlTYBdGKc+Q35zgKKV5MaW5Lk71VQUcTaGfOxmbHRNQnox6CxCEjhEeAQGUW/PZ2U26D1IwQahauTrKsGSBzaOIsCXwcEec7HmqIYb9zNjPqUx6UO0kz1UdrHpzGJMRviojmYaXwZu1Htewvgi1chzRWx38HEHkBbrOBpPkxKziNj+tFIiiKHQTKTndA8RJFcUz+eSZMqx4rYTjCKqb6CtuxMRtIBFVJIDBKNLULsZN6B+DMW343fAXMvJvhNEqIEOzAETorR8HcM2FeBFFTMU5hwiBnWj/FZwgaOpz0aADRaWJRyWcopF2kiQksmX7g1Y3y0biCl5duw9RoCczWW2A/L3h3hbJwNotgOxa5EPBE/I3qxkmKxbRzKHC5gtfnUuNFjDMo4OOkyIOpf+iPzEIH+faL8UCOwCzwuxOXjW/XMNgpne5j/bFwcV3ZjsRIRnoswPtIPUTrW0xICjCR2blmt0iMvFLbKQDrllFM220YIwc9//vPnPaEWWmhh4xA4uGZ/YABDxBrxAXyWAxEb+AouO5DjdU3XhOEXWBB9gQXA0/YOFOqEWkE7o8lvMaekX/eyfdQQxqulDwFGSkKpiIRAmlhFqJKRpMIKyo7JJR4OA6IbC4OXTuN4AanIR5RADgPSUJYZfGlQZqiBi6RxqgqwEIlHJFcJmM9PJ4RfmpFhFzrMKFJoXAKG6cAVHiOmg7KVwtIBoYyzuPLRCFIejpL7EukaT2UGljycPL3k+DAgNlk3LcWnGOU3SJZgEFRljk7xYybqPkHMEItNqDiM6PE3yvyVdo7daP8TEUYehquIpMQ3CiEkArAoAN1UhaEqelGJueayIx1cS8AfGeSjNGbaZf3Yc9MYjsuX1rHGeSnDKs5FzIlRuhsUtyuMk69NdA+N4bwQixH1Mir8ZrxXIaiYmBfn8zCMs76wdIgwmlBZzatlwIhm4UpL9mBtJjuthliz/I9U+Tng43JivVivZoAqHyVLSMG0xTIHaGaXFyFy47MIzZ2U9cFArJBuVTSRLYjSEurlSbYRhALVG88vuB4niLleIkgcXA3fQIwAITu37fgtbDG22oM0f/589tprL7ZxCbcWWmhhChgMazmNIjcjcOjVHyHjfSFRPN4eP6VBRBhiDaOH+Rx5vsxsjqWLk8EEVKMv4wkHLS3mF1bTXi5RVS5LOrdH2dH4l2UM04RDUS4mp5OyFzr+JhspRaBsjBAs75xJqhKQo4gtPSyjUX4c1nnS3gktJN0MobFY1TaLxU8VUdWBOEV7psuo3Zno8gS081oscri8FiuVhtGbkztXWOkjsHjFJtenxBfIiAoCkhRywxDdWITkdJE5/mrGVJ5AKEasTnrFXjjWe+jXglFupSSns0A8RhcHISd4XKaCFIpO9TAhqzGEtDMbTBEvOh1j1mLJE7HUGwHo5Uz6+GRCuY4ZMBv4FFkOxqJ3k+NErGfMfBHDRWQJQMdhwrLMYIRAI1CE5Cgi0ShehsVhdHMiEguXNzOdgD5zet12kSKYxFESQJlKwnHRFMghMHQwQoUUTzKT6fSTZRpC7UetM0+6PJedBWI1AguJrmstZbw82OCwJyApqSxtYQEBZPwK2B8lCn9EYNdmYMjq47cyZWjCc6GDTC2bs2kdnwXKFEUPw3QDhrQuk7Lf39QuMFcCBulFZNaHaCVwI4OXl/jt2zDENnF+wZea/tYWyABq8U7hA8EzYG//L5tDCxvHVhlIH/rQh/j1r3/N8uXLOfnkkzn++OPp6ura/IUttNDCVkFTwNO3McBFlOT9tFHCwccXZyJEgGsE6+wSGhcJbGBaXA4EQ5ys/SV8biJCUHRn0c4IAvDzhjBUZPwqO40sY1VvL3mKjH8iryKyUjzgv5QdKkspp9IoN0BgCISDj0OkFMtzC7BMwD7+Q/HmSOxb8LGpkqOTvegWvWA9zIad/4Zbnk5GfZRR5ztNXqkqAbP1dwm8V+DLp5DtnVjeSxDuXtD9xS1Yp3vqv8dGUhUDpHWJ+eFKhDFYdLLO7qJdHMAMTqQgHuQ59RDQSZzbdA77cvtGxTlDcxOReQQlXo0lYrJuY8X1SnAU2twOGCL9W4S4AyVfTgfvxOdRxhqyqgA8lmzWQBrkOELzMLkk1AWxxrYkIsTCx6WNQlxwFzDcQ473NnnbOjiSFLMYCY7F0WtxVYQW4yUuAHRCsF9QWEk+LDFq53kwuytlMV4jr2S+w6i4EqVm0pX+NsL/E2N2mYx+EmUiKipNhMKJAtoLmp7MjwBw2Jk8ZzOivowvHTAQCpu55XuR0RihH3skpY5IuXv+UwbSxqDYCY8uhuhOjggqKsuw6qRx55LMBjSibNgwrw2j4gLE+Q1lUt5Oz6Nq6RZCtIFeH4cwLYgEqLHYySRCYnZ66SroOGezXbWw7bFVr+SFF17IunXr+OQnP8nvf/975s6dy9FHH82NN97Y8ii10MI2Qmiepk8vYo34IJ68L/bQEFf9lhgCRzFidVBUMe8nxGIkCSmQBHQKtFHgb4xxN/loDKHHjZhCW1xuIxVV6WAYiyC5KiYfS1Flgzufxzp2IZ8aIysqpEUVi4AKaYpkyFEmLQKesbenItJUhUu/PZ1pcgNzWMHOfIlOdkVyB0IK/JzHWPoS0vI0Gipd4fASQu9wME+BAJ0dptr1MLrndJCbF4OzmNdILaFqXOxQMbe0HqdscMuSadWd2Ufcx/Z8HUmKgMGmPgw+EWV8nmSMCylzAyYxGH39c8r6cDxzPmV9AKG5EUOAqRmFxqDNbcRZSfGxSP+t3nc7J9RHqc04PYGcPRGGiICHQWgmfqpqFAZBrsE4qq1lxKpJfaXEy5luPUHeug3Hl2gbIgWRhMgCbcOuhaeZVd1AW1hmdqWPheVV9SnvFC4h41+AFa0n5EkG7UuxsjeQEpJp4Qa6oiFm+WtRJiJtLHrbn46N2wRZ3kFImkCkCGQaRA6pl8croTWpMMDRGiH32OSaPF9IkyVVev2k42bCyjriNCyOoNSexsjxVR3ryYB++l8yNwDb+Qm1/w8iAnsQiGLNzPh10iC7N95BC/9SbLXN7rouxxxzDDfddBNPPPEEu+yyC6eeeioLFiygWCz+K+bYQgv/X6HIx/FMQ1qViJkVQL0cWVhXko7Jx6KuLhMfU0Tkq2MsLK5kWmmY7mIBO9Eoq20AhUwGG41ENWy2EkE7b+DrbJ/oJSVTwCFINJTG5+ZLl9XOXNY7M6nKdJIkZKjwLJpBGpixaEboFGfRLk7CZjvaeBu9nI8xTzXdv6BERZ/UdCyMrqXiv5yKfwhaP1o/nuXz8XyMQeqI6dEB7FnZnzneEMrEq0P4D3R0I371cALvBNr1XBzGtXs6OQjDavo4mGE+zwZOZpSvxfdnLkpaxeKNRXMaffTSRxcbOBREhBR7MZ4GZ1A1ZWhA4pMhwCbAxmMaH6trSm0MAoXN7hhh4wm3/mRDJBGQpoqFJm3elAwpwVikOHTq/kQKJfeMuV2Jp6KQdSmlU0RSYOuwKfS2KFzOK3UPh/h/YnEUh1od7eGYKhZPM8oHsPTtyVzj553TRbqt74Jszv6zmc1Mfo7LrrjswSx+AdZhzRO0z6rXfdvmGDyNrv6LyFcK9UMus+ni1U3NhEiTUVdgamVd4oMgwLOfI4yu/5dMT6oDcbwzcDaAPQxSgyATJwLESacQtLSQXij8U45DKeMsBGMMUTRZabWFFlrYegTmcVRgiGoRn4asKSEgZCZGjDVds1jvxDL+wYyoj7wZA2Xo9AtN34Ay1SpBLosJJas7erFSVRSGPFehWUOVPwEuOc7AZh6aI/G5p561VBHpOnm3UdPH1NLciENnipA1HE2Og7FoB0bi8Xk/EpdePtc0dyH3R+vfj2dWS0HEuNGk9RN44dHJaJJKcAgZZyVCONjsQyd34Ys/o9T2OLwR4fwRqj8k/niLMPYBBN6bAI1BYvRdLE59lRHxIC770MPhjHIBAYYqWUBQ5We08wkkc9A8ROwhMkSsQRCTvkPuZoAP0W1fix+egTGrsdR7UHK8NEmZi5AEuIkWj89VsAUZUd38ijG+SCCWU+ARdKJA7Qov8SQuJOdnsCgSSUkqmoflzp5CCClZY+EinLMx/peSNe+mbFcop1yyJY9ceZzArexXM9O8DY+L6teHllPnqgX8CguFSLya8TuxCGnWEPE4qiE8B5DlILJJuRZjDEF4PJKG98g0v8vbFKUrEMAufUsZzrTjZTtI515HrM4+Wf07K86iaD5T/9sYg2+52PpyLPWWf8kURecXAQXl34OzK5SXQFT7EiBjDlILLwi2qhYbxGKQ11xzDRdddBF33HEHhx9+OCeffDKHHnooUv4LgsjbEK1abC38J2BdNJvc2kH6Z3djpETpkGnlAYwS+NJihftaZrE/mmEEM8iYXXAr78IXFWwzrmTvY5MOg7pRY4CxrEuVFEIKpIAiOeZwM2kmq1QbDMN8ibK5miobGKQTI1SzgWRgYWEFM7xhfKlY2T4D3xrPUurlY7hkkUwnzVsmSRDEfZTwvTdi9O1oIQltC1u8l7S6EIAw+g1eeEzTNWlnZXOZionwbgD/90RqPkOp/yMQT2BHAW1+kYKTw7di69NiR3r5M0V+ySq+QqOFMYPz6DSvp6yPQvMIIeBLuynNyCfHvE1kOY1xHmV+SGxgSWxeRjd/2vi8p4AhIGQ1EfdS5SIkc8ia8wkrC5vaWc5vUNamy1WY8B6MGcBYezAs3kXIPxCmje7KW5HBMxj7Zaj0ZzGUqfj7YHgGA1TdZq/XiM7TEwxgETIq2impNJ16FJeIjHUTlnjVlOOX9ZU4xXdNOJrBypembP9PY81LwX+YmljkcE+Wci5Nm/gkec6a1NyYIhvYA20GMFKgTaxT7pqd6JZ3TPn+bnMMfQmG/ofYwA9hxm8g1ypD8kLs31tlIJ166qlcccUVzJ07l1NOOYXjjjuOnp6ef+X8tilaBlIL/wnoj3ajbfRx7PUCb7rCViFSxKyJVe5M+t2Z9PAmtk88MTr6O4H3qkmenZJKk/OrqCQlX1jvwE+/heV8lkjUnMeCnbkNm42Xi4jMBob0QpbLRWgRbxhxarZiTnkac0p/ItbOFlQtmxWdM5FEpKnG5G5symRo5whm87V6SrxmhBLnEvEUDm9BmR0om68AFlm+iSN3j9uZlVT8l0BSskOI7Unbj21RwdohPkzFXAUizrJKhR5Vu1mVuItf4PJqlrBn0/EUCxG6n4gUFTlCN+sn6kniM415bJyjErGBYd5CyBIEXXRxDfaEcbYGhiqDnEXV3Iyl+8h7o/UsOcv9Pyz1pq3oS6NZi6QHwWSlZm368fXPUcygIu/AF78BQLIDK6kSIMFoHOEzu7Ke7mKcqRY6C7HyS2GK5zNszidX+EKzmSG2x2pbujXLsOUIlsL6I9DREso5h9GuWMLBYRd6xe1NTbVZRkkfiKEvljiQqbiMTmIQd3E56Y2EMbcpjIHCpeA9DJnXQfbNG2+qhzCFryC0QeTeB/bif/38XiC86IvV/uhHP2LevHksWrSI2267jdtuu23Kdtdcc802mVwLLfz/iI7q7gTZJyjMd6jqDG0UsHVEwc7Q70wjDvWM8/2EWADESsoy0akRQKhs+nNZ8uFhtMkvI9VsLGAaIX18A5DM4rxNGkdj+hP4XIZQgkUsp2oc1og5GCSOcZgTTUeggBCBQSVk8FRiHAnAJsDBY5TryHMo+aQ8SpGP4PN/QITPvWg6MKJAiGKEQ2gzp9ItzkWKeaTsvxJGPwBy2NY5W2QcAYQ8ExtH8Uqh5TwwAw3H4hIREToRfRz/vqjNElwZYAEaJxF7DOolO0IEeT6/yfEVvXTz90TtWVLgHAZ5lGEsJB0s5Bw6OWCL7gVgjB9Q5rcgNL50KTtpHAIQAp8PktMPIeWWfWkVSBRTixBGrGBUHIZWqxB0k+f3pHgnhiI2r2eQ3TFobOGhtKkbRwCWvxz8P4E72VhzxX4MpfN0VsYQgBYuTua6Lb7/rYa9GNqOpMg3KeQTI1AIhH6QiMdQYlyh2gu/iAzXAQajBC4+ZWXXz+sJ5P74osfB/wekXgH2NpIDEALyJ222mfGfxqzZcfxL0cjXEXOeBXvhJq9rYcuxzUuNtNBCC/8E/Eewh35F1ClwbJ/Atui3ukFMYyghCgsUMxgPOQk5G2mdhw6/gE6CAGUrTVW5CCFJ2+ckacwxejmZHk5M+oq9OcaERPwNcFDsjxCCovkqofkhvkpjsFFEpIRPhjJlMswJnqCqHiJVN5BgXbqXIjlyFJu8BCm8hOR9JyQGUsh91EIfgXFQokCEopToEXnmIkJ8ZvAFlHwpSl7E5uCxgWf4HBWW083BdPF6Ah5IFgoy6lwyGEY4CwjJcAoO+7OKn1AiQ5ZSbGCaEEeMp9in8BkjRxtj6KQ8rMvBdPDOepsKd1PgD1jMpJP3IhKOi0BS4VaKfBafUTYwi5gDs56nOYt9uAWroURJmZWM8gAZFtFOc3ZXyHIa6mBgi7Dh734q5kSy3LDZddocynwVzVoADMOU+QztjH/x7eAERrkkftuMZuKuoPWTSN6UXG+IBSMtUuxL1d6fEftxJHNp56eIKWrebVNYi8mNlLGMj2fZWGGEyURUzcuB2bjWt1FhSGrskpjUn8BzHcoNjooSvyTLceMHildD39HUuW0SdM7F5A4kEI8iZB5LfQ8pM0ixGCH++Ww0o1fB6NehdAUE/U0cQ4OB0v9Bx2n/9DgtxGiVGmmhhRcRdPgkEkgNG7Rt0G5ItVMDfUwng8v/0MbBpJnfdJ3tfB5pf4wN5gg88TRCgMP2dPBVHHaeNI5oCBYZE1LShxHyNwQGm2NIy4sJzJ+pyJi0DPEWJwiYHazB1j4Sg1aCMH82UnfyrPoVQwnv1acXlw11f0xNf7nKpRjORyCxOQiPX8VnTUyCDmofSUkG0Rj/xwy+sMXrt5TPMsr9QMRafoFhHqk6lVwQ8Rh5vkKatxPnhcU7YMgYISlGk/FnsG7Spm+QmFGHmeJEVP5YLMa9D1UeZA1H1e93iG+zkIdRZCjzJ4b4BLbxiUQaGno2BAQM1g2kAk/wMO+nVqJkMWczk7fV26d5IyV+AyY2SpviqoBhyzOetFlJRb8XzVJs8U5c8SWEqG25VWh4eqahmDFAD58jw6up8hRj8ksENtiJPRnJWD5AAlVuYYRjiMOjWWy6MTyXhAWHGeVAOvk7in+dEKK2Cug2cEyIUw0RIZgCEJXxup/B481gQKU00iREdR8crwRmXBsrEPcyzHmk2IkCX6BzeCVWLfvTaIQPqr9CoG7Atmtr8Tp8S4DIkrL/hJKv3ORcQ3MXobkGwXwc8QGEaPBgBb/C9B+H9GvE+GYIALnpDMkWtg4vblZ1Cy38f4bI3ZkwSXaQAYy2ZRuy2DxsVkwyjmpQoocZ8g7m8CgzzRVMN5eRZmqybCNCbqEs76aqUlRkCo8rMSxDsU9z3QMEKhS4UTeyge0krH1R6TNY4PyR6RxMFzNxOQLFifg4dY+LICZkV/zXEulbyfFN0pyBw1tw2AFXeyii8TENKF1gKJhNpfqxLVq/CssYr96uqDKAJEpkDDRRQqiWZOrGEcB0jkBiUUtc1zo9YY0UC5euYkFfJ2723CbjCKDErURIfBx8XHxC+jkdAJ8Hk/sClyrKhPHNGciwmFRDmKuP39c1lgBW8+umcTIcRi9Xko3mk/eLSN2cPWyLk7donQAq+mQi7sCwFt98i8BcUj+X4lSoCWcaRSranTD4HFo/DsRPM8shdHMas8U9lFNZyhlBNS2oZgVS7o3BMMqJ1LhjUCJiOc1be4UqV2zxnJ8PtP/l8T9sMA4oRZzE5jSw9lRsd2oFQZr4/2FNV6MubHoVY+ZUUv6z+L0e1R6BERAoi7FMjkApZEP019IgdVy0peq9k0qxi3BkAQT3TZpnZO6jrF+Hby7EM2dS1R9uvo/KGXXjCJoTFusiH9lWsfhtif84A+nCCy9kwYIFpFIp9ttvP+69994XdD6r+RBPsiD5WUzQoHzbQgtbC0vtwrrpr2Yw38GG9k5C1Zg1ZdhYlfkajBmlog+jog+jqHfB1z+Y1MZjmCf4Lo/wRTZwO0WuTYyY5Lx0AJes+EzyyWvqP6mghGImkCHeJl+KNoqyN5ei/xLK5moCnmKEaxjmVqqkm/p2dRVj7qQaHI4xw2Q4jzyX0yn+jxCXdl0gq4tgDJYJyYkNaHuMUuoi/PI3Nrt+3dRS7BWg6aqTauPE8jRHT3ldlsXsxVUs5rPsziUsEL+hamwCI6kaC/QCcjOuRyy+H9TkZ2CziLDBIW+QlFkCgKBMzSiQGGawlk49xGy9Ny/h54jkugo/J+Qqxg08ic3kOlxpXks+mk868rDDCBWGSN1BSvwUR2yZIQmgeaphLAvdQDaP5RMeoo1f0+a/CeF9lTD4DH51N6r60qZ+HObR5jyAsA9EW/NxigtRaz4FpT9gGgsDGxNTv2rvU7JSVX5CgdMxNNdj22YQjdpGxIaQBY2M+xpvr/6LABnqpncfY9B6EDeoxsWcBegUFLscHliwK/+YtyMPLd4FZEN/xHS3CEklPUop6zPSPkBQfA2Y5r0iMLXQaM2bem3zfZjJKg5N6mf586GBM9XCP4//KAPpyiuv5PTTT+czn/kMDz74IHvssQdveMMb6O/vf0HmYzAU+WPDkYCV/44shxb+ayFQzLJ+h2n/NOTPpEf8FEn8AW+zK/nNFPAMzJVoniBEMSbb6BOfZdR8t37eYLifs1jF7xjhep7jw6znhnoIDBFXp5diDkpkcMUbkUajdETOL2KbiIiHgErS2wME0TswrMOTNTXpmHOiKWJQlMlQNWlMBNmwVtbEo2jexyCdDLEzWqzGkb9hnZzLqOhAi046xAhK1NxnhjD4c/y7Xg/VKyAYLzNSw0I+wULOZAZH8hK+xwzOpZOryXEOnfyeFG+tt/XDH1L2dqHiv5ZQryTFLKZxOG3sii33YYG4izbxMTrFmSyQf0C0HQJycrYXQM68EUzjtmgQzGMFX2IDv23SvLYJ6WQYV96OR2xsBNxJiY/TxVLSiVHh0stiPtU0zgB/5AH25RFnCavsmFdmRZKMvBRHbh1H1OLI5DcFRFiimVStdB63OgxRnL0mkvsqRWc0ebkApNyRtLqGzJoB7JHnwLsfse5I3OiQZDkMwhhy5TJWGCVeldpKDePxMyp8Z4vnvlFUHoPlR8Cyw6AYZ6mpVFz6pCkUKUFVgKhWJ6/hx8QJD4G26e4fRUYaoWMhUiXDeiJEDaVMKsnuhFBZVKQb23/Jj1WF0EoMl+T5eCkDunnfkiym0fspJ4QdZebb6AmkGCFmIBYaxEID3c36Yi3889hqHaQXEvvttx/77rsv3//+9wHQWjN37lxOO+00zj777M1ev63TBAMKPDvB1S7IsSP/+Kf7bqGFGgw+mhEkvZvVYfH1z6iYDzMsO8a/wQro4VIyHEpAkVt4M4KILoaBuEjFdPqwkk0vxxfI8REANB4ro0XM9NZCBFYAXtrCyNoGGW+uAFXh0ufMSngxCps5aApEDGGZGUz3l2OzIbnOoeIkk0Mi2Y4uHiRkiCLXM8qnyBcKRA0V1ztGz4W2N9Cn30zVkriBT6d+J1n3AgSZCeHATcOPLqHEB4lqsgVCotiFvLgCxYIt7gcAE8Ezb6Q/ex8bZnUBhoypooSPj8MIHSgi2iiQNzWSt4TE+OvkagwrKfLRepcaQQ/rkGTrx4b4Myv4KDax1lVgLKbpQ5klPoKQW8/hMSYkMD9GswxLvAVLNGTTmTIM7wvRE/jpuGZbbXlHnTy9Vj9iYu067zFYtXvzGLP+TDmzjKh6Lm4wjKptN3JvCjmbiMeTlhKXo2jjZ1t9H3XoMjwxD6IRYneLAzstBWcOUfUsjP/1urtFjoHwIbCgOsOOy+wYg9CGSCiEOpY18hF6xlYgjaaUc7Hc2ONjRz6p0Kv3tcaawYjqQgtFZBQ9wQa2L6yKX6sgVsce7kkRWSpeRGNIlzXZTKFJCsEYjWc+Q2B+gWQhafkzpNiueT29u2H9WyDYgLB2hjl/BzXZy/jfiBd9mv8LCd/3eeCBBzjnnPGifVJKXv/613PXXXdNeY3neXieV/97bGzbKrbaU4Q72jlmipYttPD8IXBQTNuitrZ4F2v5HlL0NR2vcDMZDsUiQ5Z2sjxJlChCaxR9zMQiJMDB4k724P1IHAweZeUyYHUyqxQbVCrQhA7Jh3uEYFcMj5MyAT1BlZK1HzazmM45WHQTsh5bzMQ4KwjCrwIRocqDuJhaDTPDegAsurDpjDPx3DS5oTIISOujsLrPoS96LVUr5oZ4jksf1+EGVzKrYKHyN4O1+Ywog6bEp4mkVd+wEBCZJRQ5g3au3rIHU0PpXhj7M9PGoG20TGmGTdCh6hIHBkGFNAaBEjugWUZDYISQp0jxBmLOT8xPcnh5k3EEsI5P1I0jATgiZFDdy+znSXAWwsIRH576pHc9RE+ghSAQFhiNCiMqbgqpjp1sHEGcUq/mQLQu/lvmEe7eZDkYbe2N9l8NeEAGmboYlz9Q5nFqRrbDG57XfdThr4CoIRXfVKH6D3DmIN2vYtQrMaOfwNjPofOAiL0/kWUhowCNwpOp2Itqbmeu+Dnltp9igj+g3PFwWKAc7NDH8QS+DVIJusQIADoSzC73Ifzm8Izta4zqQIsiduCQdq6F8D6IngH7tSBnAwIr2g7LfBxpnYoUk5W+hftymNcfG+VbKHXRwvPHf4yBNDAwQBRFTJ/erNkyffp0nnzyySmv+fKXv8z//u///kvntZC/s4LD0FTI83Zm8D//0vFaaGFTECLHCDPopNlAStdKPVBhJkswlCmRJkg2OkmUpNcLfJ6mwGO0sw9V/kyOEk5DKrfjaaQGP3MwrjoVJQ8m1BdjTIFedTzTxWzC4BtEwZ6xweX8FGHNQ4jtce2fAKB4igq/ohaqS/Gehrm+HpudCJwnGe3Ok+M9OMQlMkJRnXTPnu3Q316go/JG0rnnNrtGfXwBJUaQEz1OQqO3IAssYpiI9dhsH/OH5LixkC57FF2rHs4RgINPiEWOIh08ySgn43MLNaaKw2tRbEcHN1HlFwi6SdOcqm0wWBQJaeaYKEL+JfCuQQsY6UyTHvZJF2IvoSMUYt63JpNhIA4/zvk7jHwNzCjkTwTZFc/fmglt/0DpUZCLESJPml0RTCPiUWwOxOWISV0aMwakEFMYC5PgLABrOoQDxB6kFKRjmQQhBMI+ApPrIfLH67BFCaNaK5vAjD83I0qU+Rnd1s/RwXsoeH+k6sYnrSiIw2zO2/D0jU2eS6k0jgyIMjaiHCR6ZBKdPpUu+S0MAcKxoXIhFD8CZWAQyII/m7pVFYVnYKeKSNmcLFBHyzj6t+A/xkB6PjjnnHM4/fTT63+PjY0xd+7cbTqGy2x24NHNN2yhhX8TLDGNIbrJM0IcwHoVGd4IgMeTQBkBZKkQ4RNXONNUEv2hmDj7A8a4vU6yDSzVlHskQslaezXbizcisLDVqfVzUXQTUXBmvX3gvwmpBhCia3yO7Egnd+LzJyTzcDi8fk6SZTp/xOMOBHlc9qufy8tTqYrz6l4fRcwJ8WWKwewoufBwdHQ/TtBB1rkc4bx00vqMcDVpkSFnErHNuhdJkGLTWWBlbmSA9xIXctmR6VyPTO8FPR/EDPyIwRntlNwcKYr1+4+QtDMKtCHJ0sEllPkBmn5SvBMrkWGw2IsceyVPIGKYX+DzHG0cgqBAiiplZJ30rhHM5ZObnO/zhpCEdvzM04VxI0yaEgy8H6ZdNuVlWiwD+1FEcDui8AtMIc1o9/FU5W9AQE6dS464mK9Akm4wjBthTETon4COfg1ksJxfoqwjNj1nmYbtb4e+z4HxYNpZYM9s6LQKld8iy4ANkQMqimJPYjyhxhkAGiGyqMwVdACV8BxC/TWEMUidIhIvYSjzNIqh8WVLnroQAdWuDxHwBJZzLHnxfnRwNSa4CuR2yPIliGHgb0AI/u5A09akCbyTcdP/2gy/FjaN/xgDqaenB6UU69evbzq+fv16ZsyYMeU1ruviulO4glto4b8UY3ydTm5GoxmiA5sD2ZFv1c/bzKOmoiIAq04KfTWCZRg0c9kNjz/QmI4dKosN7e3ky2UM0JfrJBJFNCUUDVlCgA5/CzSr/Xjel0ilvt7UTrEdaaYO8UgypDlk0vG8eDfKzGfEfA9P3EXNbDPCoI1NRf0NYQl8Zx0UXkfOXh97EhpgM4uSKDeUQwEpFpLlAlw2XapjmP+BJFM1YCkjfIG8+AjW/B+yYXYvG9QvAUNosqREFUVE2lQROHSK3yKSBPkcZ2EIWcPZjHIcNjOYy4Wk2RWA9XyeES4BFMNcxDROQgAZygSJF0mRoo0DNznf543Uewn866Y+V7ml/qsxIxgGiHAY1u9Ch/9gejCuqi2ooCqXQTZ+BkW+hM1LCVmKzR44vHzKIXR0TWIcAZQJ/ROQarRBp2lqGHchY/N78bgBiwto5wcokv1h5Fwofi/OZ/RiZ03arlKVexGq51CEDRmXLm2c0dR32voy0chfMOZeRFjmye7LibBwjUQlpWy6qqP1e0/ZnyYt47F1+Cd05R3UXERataGehpoD0EwZQd94jb8W/j34j8licxyHffbZh1tuGf/PqbXmlltu4RWveMULOLMWWnhxwOM+ClwABEgieigwk3ewjE+ynPPwWY9FL9P4JuOVzC3GyDLAEmwy7M3VtDGLqT4aqo5Lf0cH6zs68awMGV7RpCVUgxELmrOCgIjvb7P7zIrXMlteTc4c2MDkiVnEpiHc4aVDiJq/UGl8ZvN1XD2fctRLwIfp5Gk6ebRuHEX6L3jBe/DD8zGmMGF0n3HDUVPhYgbYizKXMKZuTTRzJJ5IM0aeAIcqKboLI9jenU09jXA1o1wHRASsYzWfqJ8r8H/Jb3GR24AKgmwSsgtwCFAUKPwzpOZNwXk9QXZPjBQE9oR4ml4L3oOE0bWU/ZlU/B3pN6+kKp/BCDkp+mYHzWHAYd5OgU8xxKGU+RVVfkGJ/yViWVOrZpSpchsDfJBhzieadL7W6kdUuATNenxuY4yPAxCZB9Deb5uUsmUQk6iz1Q7ag7/Qxhdp4yja+SwzeBiXl03qXwUPY4WGSFoJhw084eJri5nFPnJBXHRXuF9ByPEv7ia8FZKiNaCJa+COhw3FM5PvRaiLp7zHFv59+I/xIAGcfvrpvPvd7+alL30pL3vZy/j2t79NqVTi5JO3XBythRZerNAErOdj+DxNB2fSvgWSEQZDwCOUwuvRwR2EaYUiQgABmmeohZgFRR5jV64jzzvI8w4A7uc1WKxPUsvLrODTdNGGSTxLAshxChaL8LgLQQ7NdPJMp4PjpsyqU9ZxBNG5dRNLw1ZlmG0p2sUZVM3NjZn1cYgjGUsYTcXqJ818DIY+vsgQF5MfK7Jo1QakMdB5AMxIg+gHOZ1IP0A1OKSu0xPpB7Cdr6FZi/LH6PUGCMQwI6kcvrKxYmEfRjkdnx7Gpa0Nxgg8XNzAQxCgvdMR9lsRchEAARuIDdF40wwbeGMO21FhmNhAinDZnQw7MMx4kkq8tmW2BUy0BB1chBB5hPOx+F8xF1jC6OwM6WEPpxJh+4lxGK7C41RIQrSR8EAIAttuEvc2gG93UvO6SeahWU3NyCxwNpJhDFDm67TzBxxeg1RHAp+DhBMWWccxII6rX1fmt8AoiukIPAzrgCwOr0zWNF63kKcJ9V34ldfiiKBR5ghtgxJA9Bd0ZU+Mfh959yebXig5G/QybB3ihD6+skFYRDKNlXsSpR2EnI4QzZELofbG1PliCtTL4eUXwPUHgD+Gs1riFXeC3JJ4/vIyHOe/t/Dsfwr+o9L8Ab7//e/zta99jb6+Pvbcc0+++93vst9++23+Ql6YNMEWWtgSaHyWsQPjOijQwUfomaCDMxHreT/D5k9Q02FBEhqLdjGKYVcGadZa2Zu7UQ3ZUY+wC6Lu5zcoIlyqCBHzkgwOS/gwLm3syGxcJF0c0FQ7bCqUvB4avQBKnIlrfxYvOJ7I/AEhFpOyrkHKf24TqHIXo3wbRS+WXoCJzieSEjuKKMgMRSuPzSIy7Mcwv64bbZlChbkr+sGCynSBthXomdjOmwj5SdMOX0llkFFEvhiX2/CxWJeeRtVOITC0iVEsIoboYnz7TbgoOmJxcQUC8JWFTp+LK49D4lDhKVbwEUhq7KUJmM9dKGYRsIa1nIHPMvK8mWmci6HIWvZD19fVZSb3YNPAs3keMHo1UfElUBO0VC9DZe5Ei2cZ5a1oVqL8FO3rBpFagJoBsx+nFC4E4szgMdlOYNmAwfWq9BaKCAxC7IDpfghf3IfApcI1VPg58XuelEuJVwowKLrIRUcT8jskC3HNW5FiIUW5khFxXtJSx31jkA2GfAyb2BizgJAsZ5IauQG7cBehACyBCgwiSlhGLphMLGFVdlzs1JVkGrSyJsH7HYwdAQgCqehvewXafgVdelfSLETI/acMAxpjMP630MEVCLkDMvUthOwFfwxGnoL2xeB2PL8H+P8JXoj9+z/OQPpn0DKQWnixYpiLGOQzE45abM/yjV4TMcgydq+n60+EJkepbhIIUsxlV37f5PV5lF2pfbsHkCZirl7FmMjHKc/A7byKmawjT0xqdpnNnvwSq07qngxjqlT9j6C5B1uehG2dThB9lSA6j9ggUEjxStLOXzAYRvgcRS5HMZ0efogzQV9sSxCwmhX6Nbi6SCAVvtw0/3Duc32obg/bFyhtiKSgkHVR+Mi4LgoignI2S6pSJRWEyETXBmDEzbEm14uDj5IhXpNquAAD06sZOoLHKNsuhXSudgYbL5mzwiOFROPg08HPSCfevakQMUCRS9F45DkVRcdWr1Pzmi3FBJcjK80igyrXj5C9GAzajGHCPyOKv0awENl2JlgzCcLv4UcfR40Z7PUwOj2HtgQZcRyZjskK7gBVfsMY56AZRLEAzbKEDRcT5S0d4TS8j4JdaFMPUuVu+hPDJTaMYs+davhCUUMH1+BzMxY7keZ4WNOB0AV8WzHU28a01SMIPW5URbnYUCq7LlV3FtObQn1TwPsD+FeD3A6TPp3APwqj/wCAVEdhOVduUrBT66fBrEXI/RBiI1lqLUxCSwephRb+P4WY8r/ipsNSU18zDkmRHg7BR2DRwRw+Tlyw1eMpfswIT6BYTIon4pGMwSVOo8+aElVShFhkKNaNIwCPNYxwFz0cvNGxffEHfHcUxcEoTqLKTXjcgUIlm1uENqsoRjdQ9s6gkhmKU6JNkQ3iPczWt0DhfIiehtQ7IHPKJu8VwGYOs+W19Msv43P3ZtsLR6Mi6qrOUhsy1YBi2iEVeohIYFUlZCGUCmPCunEE0OEVGUrlAQNSISyNxGAQSLqZKT5PPnUARl1N2foyJN48KzGOYj5RhKJS12a2NqNppOihfQJ5+PmiwA8Y49NYMmS8zrwEOkB0JHMUmPAHRMG54Ma0flscg2QmtnUaSr4Wih9ERHfRtTbha2UeYSq7zedmirwHiUKgcdmNKsuasiMVYT2jEMDwJD4rWMf3iJiJi8RhPiH3AEFTKDhGOykOIlUvOQNGbY/RD2MHEWiajCMDoEELQdV2MIxsfuHcN8U/gInurRtHADq6CmM+ixBT63GFwXeJgqQcjNgeJ3VPU3ZnCy8utAykFlp4ESDPsQzwOWBc2LQn0f7ZGCTt2MwkYgPNH/nj20WaGSxk3DsQUOQO3ofXwHfpoJM200/aVOk0w0kvAk2WB9mJLOWk1/G+A/4OGzGQfG6jwElJO0WBmwiIw1lCtdHhjyKJGLIXMSY/ChkQJktWlBBCE7EGRk+B6rVABN4fQXZC6m2bXcc0ezCPy1nN+yjxl6bVcnkJXqJy7wSdaCdAmLVN1wtjQKbIDNtgLcLvPgX4DKEbB6Dafa+5PYbekSFcnac84+tEVHFYRI4Dag0QzgkoriJiEBJ+WOPTknQAXWT5BDZ7bvYetwUMmjG+AMQZimOpLDkvKTGT+lFTFfko/GHDbDU6+iVSxfIJUu4G7iuBu5PzCtypjTyfm9EoqjgJef9OXN5IpaFckx3opnIagpms1KeCfgwtBWPSZi4fJM0FVLkRQ5EKl2AYRJoZdAxn0L6FEB2IjqvAPRDRdSkMHAnRcnpHd0ZYd0E4TrUv5NNUUzax8MActgpispdyShFNwJiAKDi94cAzROFlWPbHt27MFv5taBlILbTwIoDEYhFPM8z38HmKLs7CZeFmr1vA/azkzVR5mAALcFBJ0U9Bhu6G8hUAT3MZVfqaUvChio1Hmymg0BhgnVzAKBkWsJrICAIUrohVodsYI+JCyrwdD48si1nGxfRzOzkWsog2auRjQ0TAemomgRGSyHonKY5kTJw1PgsRc6dsEZLhSPCvpLGQKv4dW2QgxfdtMYeL8HmWEX5JhQdIsw8ZXkU/n8AQkrdPIN19Ct5oD+mGME1gSRzrFJgTF8Z1gC6OxzBEyf0ildTlpKtJqQ8pmVFcT9rTwOgmVfQ7+DqDvIuIlRjaEYwmc5V0cAMWu2zRvT0fxJpK5+JxIyleQp7vIOlGMK5tVXFSuM63yXLcpOuFmIUxa6mpniMmcJ6mfxr85VC8FTIvg1lTFxVW7MQoOaKkSmwVWMT3ybCKsHg0TvUZJFDOWkS2QIjZpPXnmeadQkbHhmm/24PnPkueN2CzIwB5zo3vc+h1mPDWuIKLGcQMHYRIfQI6vwmzlsYcu+oPQN+FUUl2pQtREhUVJk0nl23OcTthbXZHqg+ho9iIlNZZCLnd5IbGYEpXIqoRJs24IKXZMLltCy8atDhILbTwXwSDpsitRAzSxptRZJrO38+n6eeOOskVBG0MU6ADTIRFRApvPBMMwBgc7TNTrUvCR/FHxkrmE2BhyOHXjTJJJ9sxn6uS+SgqpKEhvbqHi0hzKE8kG1wNWb9IjzierH0BYugo8H5P3UjquArSG+fmbA5VlrB6gq5SD18kb95JUH4nwr+NyOrCZE8nLT8wZfjSoAnMXzHVK1HebYjqU8ggSWtPvQl6r29qH7CECtcimUaWExE4xBXrbSpciGYlKd6HxaaJ6oYAj6ex6MXawpIzWj9BqK9FiDk8Jv/EoIgzxxQh29PFPG6gxOWM8AnAYPNSergGOeF9qfUVeEeAeRYh34Lt/hoxQVtqS+CzmmW8qunYbPN92sThmGg5enR/VNRHpGYh2+9GqLmEY100kv0NELbdT1rsM6n/YNDG9icoi0dA713gJnpL4ZMw/BJ8x2AaHrFVAWWAjjvAfuVW35vRKwGJkFN4oHQJnvsQbPhFPKU2COcDAmz3caTafHmcFlocpBZaaOGfQJHljPIEObajSJkRrmUGryfFeHmeWRzIev5OnjFsAiwCRmhHEaJEHP4pkiFHpX6NNoJUUEZIXc/QqdJJkHgCQqrEGUkGg6ZCiRw/xuPXSOaR4QCG+BSGMhmOJs1hCCRZXkOJuOI6BnrFG1AqjTbLUR2XQOEcCJ+C1NH/lHEEsJ4P4eAh0ERYhFgUuJYOcSJu9jomlD2bEgKJIw6C9EGQBqp/hfLloOZC25kA9HM2Y/wy4dgECSE+wuMuuvk5ItGfyiTFgDeHiAIrORqPJYBiJl+nncmetPh7ro8QLlo/QSXYFwiIMHSobirWTMrkiLBZyghzCMlyPClej2YIix0RTC5f4XM3vvw7dvpHOObATZKPNweLHgRZjClTK9Rr9x8L+V8i0m9Gda4FyrFRL0R8T+HwpF0qFc6CZw6Bwu2Q3Rd2+C3Y00FmMDTX2xQG0A1eGmsnyHwRw7lNcU5jEecq6Oaszy2FkPOmPuE9DGsOhA0j9UNKgxgGr313huWhGHyynEd6C9+JFv59aHmQWmjhvwCD3M9DnIlIRCJBEGJh084ruAyXcSLoBu4BDkEDj7HreBYRcXHVCEGeAlVS5MIieT1GRaRRwqfdisnaw8xhMPE2RChCIxHCwhCxgGNZzIea5mcIMXhNBVgNhlGuxzcrSetfYXiYmvJSTj6CnBjK+SewmrlApb4n+sYmJ95LL59vaqcpE7Aam7lIps4wCllLP8dhqNLFBaQTvlGF+1mTGC+KEJugIVojmMV6xFZq8w5zKev5LDXGjCQ/qbRRZO6nrN+OoQ+LN2GZPQmizxMJwYjdUfcGFsmwJuHYvJprSdEz5ZgBz7GB92JYh2INtXBpLnwttn8PyPmEznsJZZE0B+Gw+5T9eNF38fT5CG1wrM/jqo9R4i769GkY3UfP2CgdpRKIdpg9RCSWU+Q0IlaR4kRS5uOwxkZnqGXtI4fziFIHVFbWxRRE59thh99ivBvxqm/E9jTCJIwovRimP4iWmlE+RsDdOLyadPlGMKvqhpryQEuJdE5BpX7yTxmCTeh7IxT+SL0aSQbogEjA8OwsMUktPtXBnVjPI3vz/xe0PEgttNDCFsNgiFiFwGUV1wIhVl1XxmATEDDKIPcyq0F0sod9GcQhIsJM2LANkKaCS0g28Jmvl8Zbs4E+MZ2STjEiuwCDS5lQO+wxtpz2YAOe6mUo/1lmWO+fNFeBNSlsJRB08FY06ylyZsOZUSLzN6Q4eqvWw6OfZ/gCFZ6jlzcwjw/VDRJhxlOXDLGcQYd5VZNgeIn7WMU7qYUDp/MVOnln0xgRIzzLK+pFY0scz3yuwWVffJY2rGOjmIJEMXurjaO4nwlp7CZCm4cRYi5CxLlnFf1+TJIhF3IDgiygqcrmcFmOMjY+mg5cOqccL2KI5bwajxR5RpEGRFJGoyJuBukxZnuE8n8AyShfZTrXTVKdDvWjeOYsEAajIAjOZISHGVMPoYxi1sAA6SAhvJsiYBjjBCIeByLK/C9K7ICDiyoldUGGAT0Wawc1QBd/j9F9KPcNuHYJk70X4T2FNBZkjgSZo8hZePwuXhd+i0odhevdi9GPIkNNJWsRvxkXI0NB1h4XjIwL5pbA+GizHCH2RiLAvw5EGpy3gphaagPjx2G+xMCrC9grMUk8VbMWWgbSiwr/MaVGWmihhXEYNIOcylr2ZQ27k+WJhFc0LlUok1yh1ATeikCS45vYRGSJN6fajyIiSwUQ5PUoOtnoBdBuRhkR3cQfG/F2nzMF8sEgAG40xMziNVOGajYFQSfQTuPHkRSLtnpNnuZ8RrgHj7Ws5mL6k3IdQXRXXGTVmDiD3BjawwJa39B0/WpOpJErtZ5PoRPZgxpGuLBuHAEEuAxxGgCK2XXSs0Ym/Ky4MK/koyzhfJ7my1QSdegtQTtH4rAAgLagyLzKMwTVvfAq0/Gi7wBg2NAwbwliAZ7sQTA5OCAx7MdPNvqMhvkuVdIYRJ1MXYMwhiG3k7BW3DUZs8S1k/qJuCl5EWNDQNsSUb6GiBF8OcSa3unjs2s7A4Qk4inGifkSHd4Jzs4ICSKKnT2iC0TneHRMAMb2CbxFGP0cQqaQ1msQ2fdB7mSQcZ3AkKca1kgTyGGc9EM41UVoIRFGI6MIO4xQwU+plgRh8Hei8FL8Sjd+ZRZedQGefxAVrx093AWFE2HsKBicDd6tE+5/PaOczkivi29JcInDssnSydBgeVEsaWAEknlY7D/lM2nhhUPLQGqhhf8gVFnGMk7mKQ5muF6vC1zuxCbTYOrE28EiTqGLvSf1k+IEunmGl/ILduTjzOEIFnME7YxRo2fnOKROyNZAUeYmfesNZJweHSOK63RtDaISYs3HyKzuRIYdwHQicRZGbH1WV4VljG+winIisjmiD0NLCyMEAoPSAbYJkDRnG5kG3lV9ehN0cRS9k9qYRDIhzd5E2Mn6C3xsfF6G5LM8yY/YwJ/p4zru4+2M8tAU/RhKXMcQ51LiWgwGqSW93i50VA1uWGHAbqOgchgiIv90Ah7BEY3cFRdHHouxT0Jb4+EbAA8LD4c0sze6hoba8xSUyOELB2PACiKsMKobPOPQWBP6K/MQA+ZvDZ0a0GY8r14YQiWg6zLovQXavwyAw2HJ2HGKWWrol4josXiXsoBsG0YAaTC9QBsYCd4sCaZC4J/FxuByePJbbPSlakWJs2eiRfzFQibzq30hiIKDCP33UlP71kJgBKhIIHUDGdxsgLFDIXouWUPDMEdS4VKq1l0UpyWE9loFFCtewvahCtmiR9acTwd/RW5Gnb6Ffz9aIbYWWvgPgcHwHO/HZw2xyZKhQooUHi4e+/IDHubj+AwggIWcyjzevdH+JL049DIvqSAPUOL1VFlCln1wnHls8G8BsYFAOJStDHWdpYS6mNXVWEwwPkqY2hejf4sl3jypHtVUiNZ9Ajn4cyw02RHB0hkLWDb976Q5hX05HWVWYgVuXJHd3meSgdaILl7Leq6jxpnp5JWEjFKyXKxEfwghiKSFkqdgqWaelKQLXSeLAKQnZY21814G+WriVzKkKeMk2kWKHIu4hbWcgmY5Lq9gFr/iscTDNA7DKn5JG9tR4HtoBslyPB7/YJizAMUIlzCqz2Hn4eXktM9I2zQG0zPBGEaFoNtX5KMCHjeTFR9BROsQ1Vuwqs8ixEF05X/KsNOP4LdEKIpkWcE8tuPVyE187HfxMfq4tG7kFUye7fpWkApDPFcx5o6XB0ZAmjfRxnvr1/us4TlzHEZ6WNU0GVlGGINd0FS6DJ0MUyGNxVsR2ROaxm7jJ1TYA80aXHMYInrD+EkBqDkwsCT+OwO6E8pzLaQdJeXsVkBUATWZO5bhfUg6CbgXm/1JcUR8wj0RE34CY6oYGb/HUieyncafMuXfTDxmgDCAwY9B9mRM9kBCHh9fk5xFZDmo0I9rHcu5YK1CAGl5LsiNG3YtvLBoGUgttPAiwRiP8CxfJqLMHE5hRu1DPIEhwGfVhKskVdIoE2KLbvbjWoo8hU03aWZt9Ryy7EmWPQl4ivViL7Q7hjYpiiKHwUKaiCwlfFxcUSWvCozkZ5AK1hIpQeRcAeYKpNmJjLgXuYlyHwX+AeVf0lYPfRjylQI5U2AHfT9l+X9JXQ5DfrCCcecR2sMgZpOy/oxSzZ6LRXyKNPOpsppuXksHL2UtZxIJhZV4loyJlZRTDRyTGhZwPSs5mpA+FNNYwO8m8YYEkoU8wiBHEXA3tllI1/osVLrA2onyrNdjq8eS1jexgTdhTSH+KHEY5Bh87gMEZa5AUUtdjxihi3a/QEr7FJwMY6m2JoXpospiy4C02Y7AOxiCu7CTaKAxVcTou+jqGWRULKTK18lSZjc8ejdT20+zlmlsT4FnEUyj3byTKP01/Gg1wolo90cpWW0o+XI6+QrOBP2mKo9hhA8IBtI92GHAwvVrGJvmIlUsLZGjRJ4TJ41d5R4qrEAxi4zYH6xdIVwCGNACRp4aD62VIcyAJUOSesGopffB2GzY88+Qf+mE5yZIcxRpjmo+LtJY7h/xzOsJVcJXizR2EE6yjYQxGCHQSuA7BttPnpYAnQL09VjD1yP0Jai2+USsBjRIgd7x76hyGWQW3D0hehREDqxWQdoXM1oGUgstvECIqLCWbxPRTxsHsJRvESUFQ5/lC+TYCdd0EUZfQZg1WPI4MmovSjw06cPbNT6GJUjxSvLbgOg5xhfr3hQhIEWVgJ3QjNIh1jW1NVY/vlJxQ2MQxmAFj+KTxrL/imW/ZsoxnuZ0pufbyFXiivQCGMx1sJN+Mol3jGfXlfM2tl6RXFmgEC4kx3osNU42lljM5vimMTQjBNhJ4CZECwW+y1QJah7PUWYEsBEU8ViJ3SCRMD5Oll5uwKAR698F5aviaQZ3QeFRTEeqnmHlcS9zOIlB/pZoIIHAYQEnMdzEOYmQ2NS8XxGKSMThIE/ZdePIxqfdjCKlJhSSsv46LveRaqAbxX6QElS+SS71RiweAwSu+AoyKSEyFQyGkehNKLOOjLQxcpA2uRdO+8P44f+g9eOk5cvJy/MQYupwkMtOcdwrMUi1ECjjYpRoemc1K4BxvaESv2GQj1JXahdL6O36MxQ/C3oILXLIgUsmPIdkmGGQfaBKAKOw9AzY57aN3udEaG7AqHFD2CiJKQuE01hMF5T6Jj4XEsnVVHJpMvp/saqfxahhMCB8YAToP4XuziMYXfAStBgha96DiJ7Ad59DyqOwpAK51xbPr4UXDi0DqYUWXgCEjHI/B1JjDK3ir3QySohDKSkC+zQ/ZZ14BKE0O4ZPMyP8LXPF9fxDPoZi/BuuMIa0qYAY3Gbz81lHFQuwsInIcyjdXEyEx6CZja4XFJV17kY8mcRIIsmy8w/Ak59BqpeR4g1N5OCQUVZPn0GoFLlymbFcjtWdc5ljVhImBOfxfql7T+KCFhHPmv1ZrB9Hyo1TKbv5GEVzC75wAAehI/Kpz05uWL0eu/heFsgS69p68WzJAJeRY9+N9i2QULmu6Vi65FFsT9VDMxGKMX7HflzHBm4FDDN4CxKXMeYQsY6aMSE5mEGexRCgMIw6OQbcdnJ+mfXZbjCGdkaRaIyIKfmhfIxKKo9Smhn+SExkTuZiSucShp8lyibK1eZpsvLBqavNRw/iV48go1aDEKTDCgU7R6CewhWvxLWnLj47ES4LmCd+ykD0OaS/nOnFNKLneix5AaG5l/jp2Vi8DEQsq7CBQwgSnafa7KvcBmomtP8YEz6GGN4d44KoJb658zHZEQSjyNEsolRN1tGALm/RXOsQCyYdCjM7k5GfJPTfD/hI+RGs0i043rPxe2ntAF1vwFe1umpgrYvnJ9AwdA359Hth2jnowptRlZUowE9/Ft12DY48Yuvm2MILghZJu4UWXgDcy5E0ZkzZGAbpoIthUpSRpOlLiLxGSJ6ydiDEQugHyfIyqiZFgE1oFL26D4fZWBy4TeYWMUo5qbIek40thtmN+7iOQbGGHpaR4UTSvI0MXyIU494jABnF9yVIIiPq+wxxIkPBHhDcUx+nnZeDEPT1TuOZ+QsY696H18qrERyO0uPp7TIyWH7YZDAFwmbMsvCrr8OYCerJDUizGz3ilLouUUr6ZIXf3ChYAsNvww020OaVWTS0Og7ZTFCPDFnHGo5iOXvSz9kYAphQd0v5EToxQDQSD5chHsShm9kcxWyORpFCIOjmShz2w2IH8nyNlfwATUCEJEIiRQfP5WfybMcsICAlKsik0qpOMgk1AkWEtiV9nZ2U3R4CS+K5MaHYDnxiwyFCswTD+klrZEyFqHQwoVzdeJRMWMGdoHw9fk1A6P8PfvUAQv98jAnq59o4gIXqFuanl5HqXYJIvY428zPsyEZFAW4wRhB8EG0C+syr8FiKxqIxN81m5/GxvIti+7gL6CQuhDvvLFT7GlR2CWLhXxF13pGEBedNOeeNwVUfBOPUbgyhNRnrdyjr3TjpMZx0Adv6BML7QzI7EOFjEDxBjVAOIIJmylLk/ZyqtxeqsjL+r2HAKRuC4Nytml8LLxxaBlILLbwgaCQDxx+rGTwM0EaJ2Xy8SaPICIkGpNiHHfkpM8QrcIxPjzHkxenk5N0bDXtsLUL6knDQuGjAg/yVB/k91/JF1ov15MX3aBeXsEFcwYCaRoEMkRYoP0BFur5pVK3xkhRVu49o7LUQLQNgB75JF4dg0UmefdmVS3HppE1eSUb8iIx5L3bo4fgevnDxhU0oFJ5KUbKySBMhw79iwt9t8n4iHsGNzUkEUG0qYguEjwG6fre2jkjrLqY3KBuHrGItR1PhXiIGGeNXjHIJ9F45YbQUXuRQIEOZDAZJhMZMkXJvsyO9XM80/s4g9+BSIYWPiw8YfAQDzGCVXMgqsd04jyq5Ps5UVGis2BhVkqE2qLQpvIxFqd2m6qpkcxYIuhBTiUOatcDQpLCtxc7Y7NCwTv0w+jMoXkdUPBWv9DXW2U+x0v45A/rtU95jfQh9P1Y0jBP5SKPR5i9U9A8JxUTJA41t5tBtvlM/IpLXqZbBRgawX4kQWYTaCdH2Unj507Db7+DlS6D3rRudx1QQQtCm+nH4XyzxMTJqBUpun5xzEVEBqnczkbEt5Fws55fUCtaGHfH/19oqeB2SQCgqnZJKpyB0E/mNqBW4+U9B60m10MILAA+LNEHDEVHXMergVXTxRpbxe0rE3+qnRSE56ztY6jAAFvCjRorONoXDQizmEbA6ptZgMUY+5twgeZZ7mZnUD4sYwgAF1U5BdbJw/Ri4g2DFJkfZbhArNAZhvJiroxYhUezAVyaNL4SFI05CmD8Rih8ihMDxNaPpbN1TpbVinrcKLRSr1M/xuJB2DmUaZyBQaAJG+CuGCIud8Pg7scdONnknALD3A1JAEG9uaj7by1upVWUv8HlKfIOALOPfKSUBKyD3PnDXwuDZIP+GJZaz/dAa+nJdjKbbEg/Pvk2ykYaQCktQ5HGZT8AaStxcP6/QCHRSNngcy1jEYvpwKWHwqZLCMy4IgUVACg8pTCJnEBsUlawLBjxtQSRw5XM4LKbMUp7WxyLNCB0UmCYkKtSEdm2eFinr8vHBw35YtQdEfckcYcP8GYQy9h6OqofIcDNZDp7ynRKisUaZAFKE+nIaIq4AuMYjpR+jyuEoeSdS9CLcwzHVbydrB8hFCHvPCRfOhN63jP898i0Y+QzIPMy8D+zJquyBuZ6qPg2DR0qcT0qdPXni3gOw7jVgyqAk2DFHjOynwHkpipci1dGAIZxzNeXsMUgPwrxgLNNGW1hgpTWXksiRswosGlqNk/rhlGvUwosPLQOphRZeAEzjZKp8lxAHg8TBoxNFlhPp5msAvJIL6eduLNJMU/tttQDjRFTYwAquBwQLeCspuie18cOvU4m+z33O3kwTAW0U6GMxEsGuPEaKKhnG6051cjKDfBcASRqZ+Sh2/ycwAoKcwXWqeIkXqaNQiis7WLtOGncqWOyPYDaRvZZ00SNbklTSDpaO6KkOo4xhdWY7SuIZIGKAn2Azm06O4Wk+RIE4nJdhZ6bzLnzuwWV/2pmQVm3Nh+6/Qvn7CJGD3Hl1r0DEekp8I5lPQIBLvE1HZGvq5PZM6DgMCpcB8fY/ozjKUOoQXLEri/lwfaiQEZ7k9WgKAEzjI3Q3qHXHPSsiFClmU2C8jphHiohvkGYGqzg2JmMnvKwQm9CEpLRXJ4jH/QnKMkNBxqUZhs1hzONSVgQnkcEna0pISzOUzZPzKigvYCjVyYjTxQJZGFfmGbu4bhzV78VS47ILBgKxcqPPUsn9sNWXCaIvEdJGwTqaVPQTnEjiq/j9SEVVXGrzX0VgfoUrPgbO6xBtv4LqpaDmQfZLGx0HgNELYfj0+PeoAKtnwQLdJBFhzCgVfTwk3rqqOR1lXoMSu6EpU+BbhDxL++hSLJMQnyITF7Kd8ScQ44Z/XJZEoOQBVDozYKp17946NZMh2Q1C4AmXsEuxQFoJy7CFFztaBlILLbwA2IVTKfIWSqymk91xpqiibpNlNq+b8nqfPgb4PYoMPRyJ2kjdsBpCKtzJaXiJx2ctt3AAF6ESL0nIPyiZTxCJO+iTMwiFYQeWYhMyj9WMJQVt4y33B6znN1h4pDmZOVxMwBpyvBa7bQ74axBjF2KXbLJtC0kHj+JUQbEA0XYBWHts0RoJkScr7yQwv0B3KfKeR640gb8hFF1ifRI6S+GxlCL31I0jgDJLcPkUPXxr44M5+8U/CYwZpqJPxufOupfDwUei0Sg6+TqZJn5OM69JYNiFS5jIUVrO++vGEUA/32ca7yPPuxjlCorkiIjLXuSZz76cy6N8CY9BZnIQc3kLfXwOjY1q8kCCE/q0eyFBejqa9fjCxQgoNAoQCujjc/QGG+gOR4E402ww20EhnUM4Gi9KY6RimOtoq2XalX47aclyxQrFXJrY+5kiw0EbXV6DIbAOomxNZzk/QnMrbfQyL1xBJixjUIyqXnxpkTZVBIYRluJwDdN4EzJ1DKSO2Wj/TRj+9ORj1fsgHZdDiflT52NHJSJLolWNM7YKxW6McDoVrgEMKVFAJZ7dWPsp22QcNUKKaaS5loo5FAyEUlGWmSbDrKyyFPkbOfabso8WXlxoGUgttPACIccccszZfMMJCBnhcd5JwAgGWM3P2Ykfk6VZU2WIDdzH35EItieiygCKMKm1tp7lbI+DRQfnEPB5DKMgFVJq5rES1VAHLMcY1boRZhikTIRiBheQ42vk+OD4wN1fg+6vxYEUYzAsR6Q7EGK8YK7BEPIMgjTWJtZAihm4Ivb4GPc+CMcNJAOk5EDdW5KiiksbQ1wwqR/F1hW3rJrzCPkzMgqRwkVLFfOTCIEcbRzbfIHzNlBfg+gf8d+ZT9e9UI3wWTHpGMBcvkBEN6P8MjkiGOIvdHEde/MW8vyKWi07h/lALWAYw458uiujrE/3kFanUuHb1PxIjvHwxTgXzBiPrsQ4gjgL0g19Kk4KIwSeFZdSsRtFMicQ4YXIMH39ECl/EVHHMeTUCTgsnPLeAPr5GgPE2lNpJCUyFFSepWJ7sqZMKBWRsIAUGKjQTsg9wN1s4EZ25Uc0CwVMRlx3vUDktGN5McevLmtpb5/8bfCq+6KCR+IczVDjuRZG9WIlsgMet1FLoCh05EhX/JiHJDugc/K71QhLHogdvRyCO5hZHaTcnqUsqcs0WERkN5EZ2cKLCy2Sdgst/IdhjPsIGEInrKWAIR7nZIIG4neFMheb75CKvsSi4AMMRucmoQJBhTQjdDJKG4ICI5xPxChxjrigWwzRqYcRSVbaOBOmVsREkKNAlTRl0lS5ZqNzFUIgxaIJxlHEEO+mn1ewnj0ZS0JYm4XcB6y3jfdtHQMiato2FX1EPEuaSn2+HexGZoLxqCkwyjEMMJf17MWY+Tu+/iW+vhBt1qP1M7hDHvk1AT0rimSLeSz2JcV7mMZjk8Odsg0674P2m6HzIch+ZspbyE4o6qroQBIbLxPnCAbNBipcRJmf1Y92cQIdHI2kB5udUVEKT7o807aQgt1GhctofGqOCBq7pHc0lWQoJusIsc64MRgcIpkix8uZ1mj0ttcKEMfZc8y4DrFojI6uZ+hWX8Blx7h7U23KaIvX2megYf4SXS+qbCSEykKJ2PiURHG4UBC/j8AYD7CUxazicCJKU66r0asJqrvgV9oJO4coddpoCdoSFHs6oXIJrOmFtfNQwSPj9D0DTjUiOziGSLy4DntTcxtGNlTn/hjmPAVzV4O7ae+nEJKUfSOWcwFKhuw8sIztRlYwrTLI3MIa5nAmbRywyT5aePFAGGM2nnrwX4axsTHa29sZHR0ln9+6b5QttPBiQYnHeZx3JanR49iJH9DBKwBYzlKEtz+9idFUFFket3bBly41ZrdLlR35f+ydd5wkVdW/n3srdZ48Ozubd1lgyVEQDAQFBRM/A4pZXwQEAxgwIqJgJCiiry9GFAVFRUAFERAlg0SBBTaxcXLqXFX33t8fVdPdszMbSCLaz+czMN1ddVP1Tp2655zveYwQBweFQxDfVy3S6kSK1pUg1sWCh16cWh4hGl55HEwnW88ka6TCzQzzxoZ3BB6/QeHQyT41t99MGKNB3Q1CgtyPcXEKVfNzhNZoKUEIKmQIkUCIhUIgcNmXXv5Qa2ecY/D5S9240hrXhETuoll4/ptw+86r9wuI+f1gTS098lTRKFbzAUrcg8MsFvNTXKIAYkWZhzieIssB6GCIVsYAixTvJ8fXp7SleBKl+ilWDsM1Pnknw7DbRtqUanIAk9czK76HLl5DS/+PsLTAuArVGrVTsWzyyTlYck8COlAUaePd5Dhq6uCL14H/ACQPhcT0XZCKPgPffAOwSYjv4Mp3x2uneJQ9MQ2Ff8skMLTh0Y/b4J6c/K4Vp9QlM8yJC/y6HEIvl03rO6i+Fx1eAkJjTGR0VRIJMBLb7ETrhrvjlgQqbTB2Pb9BVkGGwKxxkDk0o4xxBiGPk+T1ZDhpm7tXM6HDxzGFV4LahDC7IduuA2t6Lb8m28fzcf9uutiaNHmBkWZX5vIR1nJR7T2BTTJ2vQCkzRDphh2ljCnSZkbppyd+x5CmiEIS3ZbacHkxiIAkH8ex98XjS+T5OhVuRzfE9Ez2OLlL4fPgU5xBvHvA5E3K8A8+T4hDlsUczLexSMx4phAS7Hr8Ri44ClX+PwQhoZSMpzO45AlFihCXUnyjtXmUMgsBmyzHIrmzLqhowGoIazb0IeTUmC4BoIvTsq6eKhKLJfxwxs8skuzBTyjyKFV+SsgPiDrUeJPFVeMRFvk4Ff4PLHDtAK8a4FVG8So+tgqZyKVRdhTLlFA2rdZhiJGvgY5cRyYEdGRnOkbjGId8+DC+FRDtMt6JI35PkoYdk/SR0c8MhOYufDOZkehTNidhzBJK4gZK/IEc7UywEQOk2J8sioCVlBq0wADs2AWcpcAQXSgE7YwiYxEBn3tn7N+UV4EdGYUCEIGJEhNJ4fmLqCbuRqpIU8sqQbVFYiuNCEGEQOJNUcYbIGmjnQu3eA23SOVuyP8S7F5o/TDS3hFaZ3apNnlh0DSQmjR5AdLL/5DjQJ7kfAwBc/gAXkPtNc2qKbW7AKTQ8dO6IUWJbvpirSVDgv3JccmUPiQWLXyaHJpNvJSQ1USxGQLREJ8kcJ/S2Ic4c8pu1DBthERxL3lWMcDdzOal29WWrpzCpBK1pTWe77PWnYuPjdtw8w1xsCkiCRnjEhKEtYgqIYjdSw1Shc4h4P4Z/GjngdSbwF647fFQZYALqPBPMryUDv6Hzeu5bQ2JTZbdyfB1yuxByBMkOBK3ISBc8WhkHMX4novnBzhlQ6uOXFDpoSqjbQksoXCMQokbsN2lUL0LUOhMfbKW1qQq6yilc9g4tWtR4cGpBtJWMNRV3DWCkkwwIY6paXkZIIFFgI3gJkIkBgvHRHuRUoBE4cWB55KQ2Wya1o9jZhFwDQA2RyJENFZ78CUEs/82ORgSlyu8t/yBincyWlyBzsXXwBisai/eaBLhr8BgIdpOgdZvbtc8t0j1AVh7EPhxrNbA+bB0BcjpyRPGhGAGQHQjxLNwCzYKxDO03JvMSNNAatLkBUqG3dh1C7sRHeIoisrDsSP3xZhooSCyuManLJIs5uu4XI3PddjsQo7zZmwHopIas/gt45yPJk+at5HnSwT8A7BpjWUJtocKd6F5vNZy/b917C3sHm2pxXo0DZRMirzIAQaXwpTWNRKJQWMxTgsaiU1IhQRJ0ULGDAFFXPFRLHE4zP4blP8M4TiUHscfOJHxzgSWtQOtHF+LHZrE4DPIERgeRGLTz20IPFp4OZJO5FNI7hZIUjMUdI3wp71jjEDq+joIoG2wQrVVoB2B0BXoPBfC/shIsh0QAw0tKFzj4+JTII3CJsFuaFYgmIeYIeC8EZuXI9kZzXIC4TSInEZmZ1QLT+Hh1wzRKg5CuCR1hSJpXGHPMDcPQ5RmL4wkoyuUY/esxSGk5B8RwkL2fBjnR9/BdOcR60E6+xEmbYR+ZNpYlbcJ7Zu4sImGid9AxwVbnd82Kf4BgnhnVIAJNiKGL0J0fXzKYUavwq8eCmYtiPm43k0IuXhqW6WVsPyj4PfD/FOgdwvfAzUAQ68D/05w9oLOa8CeM/OxTZ4WTQOpSZP/QBzaqKZ+RrF0IumwRNFJ49s2Wkp24YN0cyQws7tkJixm0d6QHZbgT4SswqITSet2t1Ml3pFpMFyy5Jks0trL4XTWqtpvGW1WEKpLEM7LEP6vIXbBDDidTCpoVvBIxDdXixAr3lGSKAweE7RAHK7cIjag5EJauQNZy/hyMc4BsHFnTDCOUza0r4BqwmVoh+vobrkmHkwZCCnLi5DciwVxELJkjK9Q4WMApHg7bdQVomeiwKNs4FIkDnN5P8kZMvws9sDlNfjxTorjB0hdl5UUcUkzIcEpGsIk4KXB6YQ510ZrEFyFLh/DZLZWxXPjnTRIhWVaKrMJU68lYBBBL2n5F6RYssVxC5EiLf9OYK5CiWvxuR6BqiXIm4afSeesMjahcAhFpASe5tUofjWlXVsvoSRWgtCxzETkzi1jo7iDPK+kW1+DSOUI33o68u4/IvbaEw4+B+RD0fQmw2yFqAuNdhjkCAhlQE9AMADOM4gvc3fEGPC7BGGrAG2wiucizGsJxUYS7INFC2HwOTCxerjZQBh8Dsf7Rb0dY+Cel0FlU7RK/3w3pHaA1oOm9zl+Bvj3RL8HD8H46dARi3tWb4Gx08BUIXcmpI6Zfn6TbdIM0m7S5D+cUZaznhtw8GKByOcvUNRnJX1M/WNvsYhu/oKiOqN45eZos4GyvztQADTS7Icj30pJfolNMsOQiMtpCIFNBY+AVkZqgbZR0PYnGOW3GDbRyjhu7Npp5U5sdoH8GRT883CtIjIWT5b3gTQNpST2vQT52CkYiozvkKTamsQITSquqOpjo7Gm7JB18FsSvGwLazPEPzgGHRt1Lh3sy5XIGYLWjfEJJ+Zh9Ch2GMSK5+A2+AkNUMpANAEbz/4tljwSXflUVJ5FLkDYRzMuf4Bvr6+5Y1vH56MzOxByLZH70sIRbyMpZ96t3JyQ9QxyBJoBDBYuL6fCBAEP4uHXDKRxk4usOAAj6BQfwGaUIj8Go8mVA4aTqWi947Fl1Ti+cKnVJzaGzsfGcH2ozBYE7S4gSctbkOxOyU8iVIiZPF4IpDI4oUGMgDVOZJsnbEgsgZbTIPcBnjLGEGxagN+xofYaYMxqoexksOhmHtegK8dj9B+p7azJo3ATk4a2hideCWM3RsteIjLwdr4I5n9wep+Db4DKVUw+HBinh7D1AGzr3QQTxxGkfKw4ziqRWQH2lg3cFwLNIO0mTZo8IxSKFWYfEoV+nGpIS2EebXP+TJtz8rZPfpbQDKJYgcWyabtLLkto5X8Z44NEWsM70MvfEUic7XRBKX0DUNfx0eJuLOdasrwfzJUUzNcIpURho7GpYDPILBayGxk+SIKDENh08UZG2YvJuCrwkMwG/xZG1QWQMCQmQ60EmNnAxobsp0c+CLrEyEFZEGDjx8Vp22hjFMlizGa6R4o1sAUDqchjpPQAOT1OVXgMS0VFbCTVoC9kzBih+iHGjOIEA5OZ8EAcP95gjUV1v0DLqOdAnYMMn8AE5xHllq0m4EEyQyUKOY2xBF4xwKu4lDJV6sWUDcaUt+vaANjMZRZ3EHA/FguwWYBG8TB7IhnGISDEwkKhjJgMAsNhNu18ghSvZSR8PclwDCOmFgwele1kKEx5b2Juhq6VEyQ2QpgLMbZNYK7GMxqrGiBkFIgdGUkGGU9LFiCOGo8OCB6D4RNADULbZ7d7vtFiC8LWYMprgKQuUyaDYogJLqPVOZWgeh1RooKN7ZxaP2ftCVC4MborW4CEUAr8WX9E6H/iic8jRUPJlMz7MZWrou6A0OvD6KsI9NWohCERxF8OCdXSnni5qevWZNs0dZCaNPkPYjWHgh6lnPGY6Eizcc4Q4bq3/8v6D7iDEXZjnCMYZXdCpseA5DiG+WxiPv3M4danFMQMIEVjzIYkKvGeQWifXP/X2HfDwywcHURi4l0jgcJB8xeKHE2ed2IIsFhElh8jWYzFjuS4DGFswvCb4IV4ujqlX5Oa6ipCKYYXt0aeGyYrjFUZp4MMX6eD30Ic8Bzh4nHIFueV0JtYEqygSw0yN1zP3HAQjx7w/wr5D2CKZ1L2X4avTifQX6OcjsrUTA5I6BkarQXpCyCF0Q8DksCWVF2BYRRJkbZimY58ibQfINQmPPnxhrG7uPIj23Fl6khyaAIGeR99vIaQFSzhV1TYi5A0DoqUKGNhgXHIidfQxrEYDBNcEYdwG9J+g+6RkfjCnRa0ZkR9hpFNp5AsxOhV2IDU0bdEarB0Xf+oZhfH0k61dsfr9QGNMWj/ElTlw+jgd9MnWl0J/upolcr5ujuP6FclJ/cgDAIXaR2Ok3gE2/0lTuJhpNWglD/+p/rvAowNpX0cQvsGAvMTSvpVTHH4JF+Laj8ZlQI/B9qrT8xR9dLBBpAUo5ilJk+J5g5Skyb/QYSsi4pqxijHomIe+ZfVfipxNsR6N4Y8Zc4ny8XPah+WfAmu9Q189XWEaMOzL46ygQoXQfgoALnKGMLMwsQuHJcqkknX1zVU+Q0J3orLMbi8rqZS7VePwnAdSaNrriBB/B9TlzYo9y7FTrwSpX6NHWfRRXE1FlJ0kuQkAHq4lwm+RiSu+UHshjp2myP1LSisWoZghw6wgn/C+OGAwEiDqV1Ig5EanXwNVnUtlO9HGqLKJpMuNtGJsdLAOqAF1/4aQjyJDn5AaNmkR0MsBcaKbIUgQWRQqWE8cQgZ+RCKh7DYGymmx0JtDZ/lDDaojffxCubyBEv4GoNxSRILTVaMMEAHfdxAyBn43IxhI47t4kubzsooqbCMsl9G4L6OEt9GGYHdsHXWsjEyosJMC8ZxcXgXjng7WMNAB4Ixoty6lmhx9DiM6ehr6hK5s2ouOAAHVBk2/A4T/AHd/guwbBi/EDOxM8Lbl3DO4YTBOcjiSuwxQ3XufHS6Ensko+xRgUvR6gA0LjuT4x3RdZZLQW4uCgoklkFhQ+2l8RKx1RtZvprlmML/IcY+BATg7I9ubcM0JMo1GkVT7EgDDL4KZt1Td2s22SZNA+k/GH9lApHzIQCRuxc7s9fzPaQmzzGCdowZqr82Bie5/cHYTwWDYQXfZ4yH6OAAFvF2puekPXWBvUZ87qPARYBLjo9hE8VROPZpOPZpmw2oWusvGVZYNpxnoPM4LJMhY87BQqGFBCRGTDDKbTzB6WTYSJYl9PBtjP4L0c00cskURApbSzwzF3vOFYgFu6IJ6Odi1puf0z3UTqB9cjKPRjIsOtmBL9eGZDGbNi7YrrlKsWODfIKFJXaH8s/AxPo+Jh5UbUkFIvVNyMTp+2o9uPuCfw1YOyLcV5AkxLAWQS9CJEHug+FXuMW3IuOuDFDNitpODLZPtXo8Ce8HSBZuc9zGVFHcg6ADS+wMQJFfb3aUj89D2LRPbyC2Toa4hgQ+EgshNJvSs3DDKkWRpmANMC8284Nqks6xPqoph8xoGVcbmHMedscp5ETDjp3owsrcg/Z/hBAZjPsOpGhHjF4P/W+IjI8UkTtLuGB8QED7ufCXfSC/PNpcagW9S4i1EQzLMYXHEOVLUUsFyoUgK8BeFxmXlsAODE7Qicjdwjw5C8UQDgumq69vzuJL4YkjoPIIuIsxO/4v8Kr4ClmIIIsYa1A3D+5GlvZBJeIgOUCLbkYchbQCuqoTYMCqEBlu6j4oXguZo6Z13WRmmkHa/6H4KxI4LXF6LFEAp9P1X3Op/2sJybOCvZChj1SGltJOdLX++TnRSbmPTzHErbXXCzmOhezHOK8FigjaaeE6bHZ+Wu0r+uln/1iBWSDpoId/ILZUmDd8EvpfBHqA6Eb3U0zqHVSDN6HMlVGbQuLbLi4n8LC8mx4er2W6CZK0lnsQ5iFq2krebwitRTgsworjqUa5h4dojOnStDCfHLuwgDOQU9xq28dycxg+6wFDZ1igzeyG5/wYufEQcFdGBxkInXb8VBJDiGufjWO9/yn3BRCO7oisPoG2o6yuam7qroIVpEhk8ls4u44xBYr6UHScXeaJs/HkxylyFcMcP+XYOTyGRSsTfI083yTaY8zUium2BuP0VvpAwECimwl7B/yavpKkg6PIsIRC9bss3njf1IHMXQXO9FpwxgwR+qcTmOup2EP4doYWvk1yrATFT4McpLbvkvka1WSecPT7pG8enNKOnjfVC2eA0p71rDig5s6UZgGOPwIijUxcjHSepkGiFUH+RUj/foSWECjkZrdrYy1Cdb4Jrf+KkC9BOJ9mPW8gFGtJVCvMGRwCBcInskMdB+ZPl4l4IdAM0m7yrCGz0T+C2kPh8zeUJv9CbLLszEq0XUHYHsJ7Zjs4jRgMPquwyBJQYphb4k+iPvr5K0s5iXYeQbEKyVLklJIRTw2f+1CUEXGyuGaAkHU47DjzCfYCmL0cqneAvRicnTD6UZS5EgMEtoOSNiUSPMFNaCyG6aSXjUgMUEZ7J2L714JZi7JfywbrDDTjCNLM4XIS7EnQIIoYIcmzid25BIFkDV9mhD/gMpclfJ3kVoq4Aqw078YX62trOWRnaeezkVvLL0S2mgtosMWbsL3vP+01rZH+EoXMO0FGN3ipVK32XkQno3wJj/1I8eotNhOY39WMI4Cq+QKu+Qhp8TrK/JkSVwAWbZxVMzBznE6GE+jjd0xwPgKDq30WltdFjRiYU9pIkDkYX44SKViFaK6nxN9xhGJ9dxfSGFonJtCJVjKTPjKjofRFTPWXGGsBFechjBxEak3aBy0E5eAEEuU8QjbO10IHv6Waug/pTH+QFOMgcnGgt4jjfWLjSARgXBG5YIVBhqvjsUygy29C2IOIzYLNt4vRY3D8e+vzqnt46+OyZ2O7X4fKjVD8Ldg/Z37mGkrmTgbsz0I4hGiIzTZ+8Az3dP+7aN43/0MxVRDxg7YBtHjGVRKavIDYXMTwmVLmftbxLjQTKCQlUrgkqeJhm4CMLuCJJSBB0k6FvzLGmzBUyfIxcnx8m30YNOs4i1FuwMMlyaNEqkUyzkfLYc2gCzQF2QbJhht6/I9AWXYUMCsE/WZ27GqDKgnGaKWNUQTgyANwEicA0MfJ6DhjylBmhPPp5Se0cQAW6SmFUzWKcS4gZCcGuTxes8dZxafYNX695bW9i83Tz/L6ahLiEMidCKNfBD9K1WfeiTM3sp0YDAWuRtnnIU1UxgQERlgIHQkdWgqGkxMovkceRTvnk+E4tC5RDDpB+BghkOI4XLm5+3Yy4hk6+Q6GC5mpjpmklV7eC9is5TxsXZpylMAw2xyM5JaoRiAQ4BIgKLouOJHhnU+kaQ1HyaxfCK1nQGIBlM6K2lJPILWDShq0jLSJbK1wK0E8TtXQo0JV7wIcdFZQ2dXCe0RFwe9ePCNZD9+RAVjlORCuxx00aM+gEwLRejxCT6qcR0Y3ZhQaDSQTgn4S5GwQUYFcrSsUw10wciOYDCl5N7b/t8YFmY4AssdB/stQ/nzUdAVCbiCR/QplK89kecXa6Sru/9lQ8P4voBmt9R+KaF1OqOvGkZrY9fkeUpMXGCHLqXAlBX7OWt6CMWMkVBkd5Y2ToELWjLO3fy+7hI+yJLiUUF2OZoJRPoihAATk+Qp5PkaJC9CMbrG/9XydAX6Fzyg2yynhUSIVpTAjUChKXPWU5iDFQhzrDHRDyZXIOKol62NowWIeOb6Fw14NZ9fy1Rpeg0Mre/L9KRKIKYpoVlBlI/VHEU2VDWwLgdfQlwFjSIvXRR+2fwF6fgcdX4N594K391Oa/+YMcgZ9nEzVPIqZTOMXEmkdQdL6OUn5VfKp16Esm0kDohQXIi4FcxFUEcZgaY02vwCzFKumayVIiG9OKZ+xtSKvihJrY+HMopXGF3aswG2BWEJZ/pA0RTwihW+HIN5LFDXRx9C2EZX4Go2dhQr+WhfMBCylqUqPyVRDqTTSUfgZhZ5MADQ2hGA9aCAwoA3+UknpxRainXrgeyzASZy1mBh/FYk+g1Rgl8AdTWCv/UlshEz+7AyiQd06eBCGcjCyAwymYdO+4D9KqbwrRq6PAs3EBOXKbtEuaCNCQPY08HohkYWWD4D7Fqh8AYjkHEa7U0xkb2aMg+gOxwiSM9lWzUfl7aVpRv6HYud2hFz0p8ICrM7ndzxNXlhU+R153k2goHWizFI/xABhGnrkAOvcuYzZrfSqvloWF2h8dSaudRCTBWkjfRufKhcDgiqX0sptiM3idAyGMS7FxMVZy6RqKswBDmnyWIwywkdJcDA287Z7Lq79BTB7MsE7wUC7GGGAWQBYpFnMz0jO0F4bp1Dir2jyCJK089HaZ2mziF1UjmGWIwQkZYmEOIwE+9DHj+MbvaaD12xzfC3iCEbN7zCxEWcETBDFDyMEZN6w3XPdGlVWMGIuIaUruKrasNmTJiG/gLT2B8Di00BUsy2qDjfpIhyfEoMjjGGQi+mVf0HzKII2ZKMxsA0iQUyFQuILhwfTy9jZn0+WvZHuKRixf/3mbkAKhTCaRqNVGEOqUNdoUs4+WNWf1Y7Ieyk00U6QkYfiqZsaAt4n2w6hDDIP6b8GBPMshG8QgQYrjov3qcsCTIYdrb8YUiCc+LP06xDly7E2gUlH7Yv8csTCGyF7eNTP2H5Ag16SdS9sOBTROgyT7nAhEMKHxFegdBLoNVGkeNuvwTscOLd+fvh41LmAqmOTWOnjjijCrEVxR43jAkkw5VgrKT0PR2zZaG0ylaaB1KRJk2mM8xnQmo5iEWmBTkY3CbsMQRp6gn7G7NbYiJnMopEIEljMxeVl+PwNQWO5UoNiOYpHsdljSn8hfQjKQDIOtZi6ue3jkqIct9H3lAwkAFe8gRb+RJU/MZc5zOIlVOmjhX1wmfnpwWMXFnAbPk/gsgMWbbXPAnU+CXUTczCR2pI8gpTzDgSCZVxKQV1M1r8Ki0tQzmIs+y1bHFsH/8OIuBKLqFzIEJ10NLjvNscPv0ygvo6gBcf5DlW5HM0wSX0ETvFXoIcgeQK4U91fA+YLuNqnIxyJDAZtMEIQ2GchxX6141r5NIoNVLkTlwNo5dNAZOpCPYbFCMGIvAlP/JRO3rf1CzADDm1keDEj/AMDVGSKRxKKF3MWAoHHkVT4dWSMiUhCQQDShAgjEAaM1mTiGmhkT8ZJfoR+eQ2ufxdVyyHv9TJH9eI6JyH0esIwMpDsSrxZQ6ze4AF2JB7pPapAQvkwgVlpcEMJGR3515J7oNY+hGxT0UaXT1Q+bjWQvhk8ECOxK24ekBJQ+EtkIKlVTDGOagvZjztuUc5JJgtM2+MGqhfDgie2nmBhLQFrP1D3YPdp7A1RBqZVCqMJdgE5EFkwRbC7nmFR3v8ymgZSkyZNplFhlGygoiftSV0dB2QkcYREMJeTaLVejNFvx5jHgCSufQECQSe/pMRvUazH50vUH9dtJD3T+pNkEThYhCisOG6ivlNgE6CwsVmCy+7bnoAahLHjILgb3MOh9ac48iU4vAQgzoPbY2stAGDRSpL9p72vzd213wUGaYZr7qSUWYBd/SFQBDSh/zaE3Aspd8QQAPYU11OSHbE5gX6uIMTGZS7dvARDWNNnqk1L/41ARS4VQ4lq8GYKbhqEJDl2PkYZBBr830PbvWDvCUA1OB0l/4JjwslBI+JRjJsvMsyfmcMXGeZHaDNBZ75CV2UupF4CmZZonNatVNSLYre9wLdcekQf8BGqdODx+m2u5+Zk0AwDFRIYJBXKjHIf7exDCxch6aHKnzCkSJt9yVYETmixOn0bVbsfjGHV7Dm4YhfmulG8U7f3J/LeTSQJ6eYwpJWAwjmY/Ocj2aOEQGjDFE8rwP6nwOO/xpgBqjsZTFIQ7iaQ8iIcf19w5oDbS+k8Qep4UAkbxw+jDRwbSPXBZPKbAtYAOxsotMGKP8Pc3aZOvvb17sEJ+xB9mtCVyLLBGdXAb2DoO9C1NZFOCcnzwP819sj/AfXMZXdcISarCgkQAaArT/ka/TfTNJCaNGkyjUEWkxH314WYY5eEcgEkCfe3pDk6cjc4D2DMGoToQYgoeFbgkeZtAFSYTZEzAEmGryOZXhTUIsNczmMDp6NMBWNU7cnZIqDF+Ljyi2Q5DrE9AegTp4F/E6CgeiUUzoLc15/hqjSMVx6C0r9h8g5ryVfUPzSbgMYUeY02j1Hi+1T4AYIMWX6Iy6tqRyzjNGZxOAFjZKgywP5oxvHYmxxvI8HbEDgYs66hXRPrJmkwGkeFUz4juJ1AtLCa7zBHn0/aJMhbmSlqzwCWUVS4n9W8FeL2ilnDDoW1uKM3guyG1Buw7X3J2Iq79Efpkr8iQz6evaDCL5+SgWQwDJl345nfsxCPJ8UCSiLSOXqYE1jGBjKcTY4vAV+KTpLEfkfIcSGDfBsElBMpUry8di0EDjmOqHcWPgb5z9YzeisG5e6IpR+PjjeAI6HzAsScCwnVz9Dh+wGFFAdh2+8Gpy4tUTEeg/u0ox0LuxrS+89B3DY11dia/H31wfDA6dHvrYvg3eeD+kTkbvOBUTCMoXoB22ArhajWvlVQvn/rCzn0MRg/P+pSZ4BqPQarUR22RLQNnH7d1ttrMoWmDlKTJk2mMcTNPGZOZ7fS/aRV9Ed33G5FJ46mTZyJI3Z4Tvo1GIwpUfH3wLAGAE2alPM4lpy+87TlCRwEwe3xCwGJN0YxHFtBMcwoHyTgfjwOoZXzkZN35M3HaQyh/i5K34gU++FYH0fEIoXGhASV3TBmRXx0DpLfIy/+pz4e0nSwfpp4oMGwgZ3RZpzJQmsZfwKsDpLWOYTmRnR4FZbOI9CEIoVvC+ywSjYfYGkR7SAhgEOgchMKQdAChWSSIbuTnmofrgnisQo2JHtRwkJjkyhVmbVxCKkNJAwpoaPA4NZ6+Y2AAv0cjcd98S6fRYLjyfCN7bo0iiqrOY5WdR0awYjsQCEpkmZEtJOizC48CgjauB+LxdPaMAT0cz5FbifF3szik1vM3DT+rYjhl0x9M3smlM+c+l5noZZtZswgxgwjxI6IzZSn1/W/kmrno2BFwUjepgpzVw1Hu0jrqCfH+cCgBxMNJWv2bYOXfx8m7oCBbwGKsJe4HlxDJwWwB4H5P4e2LZQKUsOwusE9rIC+JFBGJ0HnQJSienwicxAsvRLs569Q9TOlqYPUpEmTfws6eTmt4gbCNAu8QQAAVndJREFU9ATSuAiydAr3Oe9XIBAiTdK9j4q6lDyrwDqajJi+64QxkP8cFM8H2Q6tPwPv0Oiz5NtjA8kCFCSO3Wbf43yOKn8FFGV+h8V8Wpi5aKkQAsc6GceaXgRYCBsn8TdUcB5QQdofxBd3Ng4cKKD1HZjwNyB6sOwPRUrXhGjqxlG02yNI+hspJk+OdtUchVRH4XEUFglM8AG0EFRTgkSlF0ssxRdpnIlr4ggxgzsO0g3BEfR7s8iEeSSQt9IoYREikRoWrNqIpeLstjLQAngvnTI/hwy9XMEE7yDkHzgcRGoL67Q5BsM9nE7W3ItDwEbZi0aCEKQpU6LCbDbVjtZsnNFAEjj08Mlt9qfC61CV12JLakVqcV4GyeOhchGYoeh6uG+ZkoovRBdCTUDp62D1QOodtdR4MStHXXYcgl6XYLnEdTTMBwpAAqKN0ircShSjlATaR2HjsWC9mJol5TA91SwDJvFtxJaMI6BW0XYyG9EC9vsteC9BfqMDGcaCkELCy18Ny164xtHzRdNAatKkyYzYpLFJz6zB8hwTCMXd9p+pMgTcwRxeyy6b3xD966F4TvS73gijb4RZQ9ENIX0yWL3g3wPeIeC9cpt9hqygURtHsfppjV1RYJP4DmV3JTkOo5sdMIyj8aI0ecA1ryasHEZ0c1NodQtu4ioEDml1OEXrL5EIIYaEqkYKysaAiManZBFHvZJh8UmGvShg3TUV2t0xUnoOwv85fjtY5SiwXhhoe9SnuFMvJB9HOgaFhcZCkcRmH+aER2OrzW7IyQ9DcnomnqSLVq7b7jWpMsTjnEWBFZQYwyaBQtSMIwCMwRU+a1hIhT7mkMZm36dxBero8rEIAnQCjALf7SaZ/nMkbtR2P1SviIxr7631k0wA5ath5F1R+hca+k6A1M7Qfh5t3ilsEu+KjhUgjaa84/64d90ZBWWnTWQcTQo77gv0AW8gEvwUBriNOOYdkQfTMcPg//oLsG6BQ78BuRlq+Fmt0PEVGI5deOnXQ+qVkRHdsx9suDOatNEwe7/p5zfZJk0dpCZNmvxbYTAM8h2yPIoXF77dwNWoOADVmDJa3YEJH5xyFmaUyUK5ACSOgdzZU40jY2DsdFifgY2LoXp77aMkx8S/RVIDSV77tMa/gS8ywq8p8yD9XMAwv2QtpzFMC3myjNGKCJcQZTSF0Yz1HzBGgxpEjlzPhM6QCQq0V0aQRhNIG1+4BNgYI7GLd6D6ljIs6yU3fJGgKhxE8PNaOrpKgbaBEggNLcUHcESUe2gDsziE3XiUZVxKznkLuDvE87cwMo3fvj8lvk3Iw09rLSZ5nLMZ5W4ChrFR9Itu8rSQMHGKvjFoBBPk8PFYywI032GLZWW2FxPHSYloHZRDZBxBZECnPgyJ+u4QhXMp59MMeO9hYLaknIpdoI4PDz8IA0eRVruQ00dimxCHIFJLmPsOeOlfofcTMOct1BQlBZDKwJuYUkgYgCyYVjAzeXFLIBbdAfkr4Nex8Kkuwbrj4NFOWPNqCIeg7ZOwcD3MfyzSy5rMeHvzb2DXY2HuQfCai2GHV83QSZNt0dxBatKkyXYzzm0McCN5FBkWsYRjsfCe1T6KXIDFufQAPfSxkiX4dCCxMWYAv3IgmNVgJK5II+KnfOO9gaK4AxCkeem0DDAAKldDPg7WVk/C0DHQuwmEIMNJWMwi4EE8XkKCbe86zUSZW3GoYBCEuIzxS0I2AYJyHNMUWB5uMBn+aWHEfMbE16hyLdoLGZdtaEvSQz8BNqGzBwFRTTZPaTrGNkXil5tp2kyWZWnElGBSNUA7UE+fUmizCW0eRYg2hOiBHW6Gga+CLlLpbKPonAQISpxJC3/G4entRJRZw6QrSCBJGov7xZ7MZhOerqBxGZBdqAZ9rNKUQPftp8rDjHMOgiQZ93U4/pX1HErn9K2eq6qfYLy9Xh5nvD2JWwmxqiayZ4d86LyfzpU3MtpdwE87JP0dyLadCF02dB4MfWdBMUXka5OQngtm+RTbfRKRBFlJQCHEhGFUN81A0ANyDsheDb99BMIqDJ8NY5dFRn5wHWz8CMy/FOw5EBZh7EFILwI3B5keOObSp7V+Teo0DaQmTZpsF09wGmNcD4BCsoJOCqxlHz73jNqd4Dr6+RyKYQQ5UlRqYRkGaKNAF99CYBGG/wfmyehEqfGzOTzzBYxsZV3yekqxHk+alzOXHyM23yQPG7PANEYPxJlgUep9ijcCb3zacylyIxbrar0KNAH/BKya6SIAX1hknXPQ4fcQoocxawO+OQ9jScja5NQYE1YreauF2eYAtKgriFdtiZISRyk6JsYZzkVp+I7xsfFRQmKZSFNJhCAnaoMh6R9Chdtqq+sGfQThLhgk2jkNOboab+QGhPEp90wGPRsiWcfLn7aB1MUrWMclTMaE7W7eSCL4MIU41SpjCpScJBMiR5sYBxw6eOrq/wGr6OcVTBpjFS9Bj3UBRj+IdI4lIY+Y+cTKWlj7JVSnnGZ0aiOx1sauV5mC0iZkdTUd9wGjgHs3vHIFZHeGjWdC3zmAiaba80VILYfK42DpqdVNJsuWWAqGGjMQIy+fnxEkygYWLwLbg/LDUDaxfWug+AtYfhfYIQwNgl8EpwVecQN0PDPXZJOIpoHUpEmTbbKBXzDK9bXdCYkmQYlB7t7qedsiz7VspF5fTDNGEchiYxEiECzgBDLUs5ACISk6UWxUxtd4yU9Q4V5KnF07psjNVHmcBDtP7TB5NHr8VISJBA9LSZeyOIdOznhG86j3ez1gxUYXOLiEqLjQr4vAoJBsEpdiOe+ky1lLUX8bbc7AUA+C7wqGWTLShmn9EpbTzfrGEisGJuus9uQNLclvM8HbMNLgaIU0GmPthREdSA7HZM6FsIzo+BRe9+dp5Vqq3IAbOsjwK1GGopuhal8C3eAlDN2rS8iqQdtWbEspZLAGnGrdRbUZ2qwkML9HMhtbHDsl+2shJ5GglxKraeMgsuYJfCBr6pVUdw0eoujOwYrL0VQ4mZAzGOEGPHrp4a1Itp4okOcn1IKWASMqhM7uJNmKllBlDdy9C5gyjgErp1BWNHbL19gPq6hJLw1Lb4AwD+PAZH3hAnDpnqB3gReN1gPslYDifdB9EQSPgX0fuEuhGu8mDQESTEdQexioqWp4Am2B0RJx0GXRm9VCvYTJpKK3XEFleVR5RAiisT3wOTjsT1tdpybbR9NAatKkyVYJKbCG83GY+kccIMOCZ9T2BH+c8rredi+wAZcjkOxElbtx2Q9jH8O4fX7tKX8sEaD4GCE3kyFPkXRNhXumFH1jz2XjrBzpcgUtJYV0Avj+jAZSkQ2M8TA5diA7QybVTLjsQP0GbeGxKyH3M0o7lXg8EkWWCYr8iU4+TYnvxrXP6khjSFbuQ4ilGBbTwnsZ58eApFN8Aav7QAhXgvtiKvJqRmmNSlRIxZywj6T16Ui92wWWfrrWboXfM8b7AEXVaiUrokDpql1Pka/mPPyUTWZ9hYlFabQLTjUkOfob8MrQfs20eSv9MEV9MIgKYHDMLSSti2qfCySzazFeYOQSfLqBgdoRQnhYYrR2TJ676OMEJjO1SjzBDnyJCqOs53Zc0szlJcgGqQRnhmLG9VIpW2Dw13EwNoh+6PCLlHocSLWT8u5B7HIO+L+B1DJwF0OyE9gPuGdy6BjbR6y7P8pWWyTqRlJqP8jfD0/+E5IK07I8irPvj9dBgRkE1Q1WIaqnFnQKdBJkYEAeDdkXxRPpaayyEmuQwego9GTifxIG0FN3o5o8fZoGUpMmTbZKpP5sCLGx4xprIRYBrRz0DHdeXHaYZnQBdPNnBCk28SIK3AhAktcjRDj1aCEo8gOcOEcMihTI0clHcZme+WMoEToWE046SoHXCstUUeIxSuIiQu7D5UgqvIZ7zGm0qGEWmCepWiFCzCEnfoTDwTPOxWc1Ft1keTNlbkEylwRvI8nbWRcXZYVIe6hFj5MxHhPWV1CyD2syowsQxtAyUYx2oYInEPYSujiLdk5F4CDJRBlQzi4YNP2cU0s7N0jG7cVYVoYqn8VhV1K8teZqzHMGk34eTZ6qPRcnnKGgrjZYVUNrv4dwhgEIpMT2/4A/nqCa6iRpfRVXvgOj1+FXXwpOqXZtAn5CwnwHsYW6X0J0kXTvJQwvRXMPgnk41kso8+7aMeWaOFA03lFuosoE1/MRKowBsJG7OJBPYFCxcnsehz0IeBCQ5DgVZ1sGkjtryks5asjoEHa9Ada+FOzVkaEZ9sOm2dA7Cjt/FVa/IrJXBFTn2ozs1kLJSjPLHyfTtiMi90ro+QQ8vDO0VGByl6ehiowgSkyc6EyRtUqEaYFKg+UbvCrANeihJKJtA6Ln49B3aeS6iw0lOQazd6IW36QNyN0/v/X5NtlumgZSkyZNtkpUM2tnCiyPc3aiv87z2YPEFuqYbS+dnEiBv1AhykgTOMzlxzj0MMpZmNjdYoiqynu8fFobGosAiYUixTxmczMWLTP2J8nhsDMhy8n44zXBxJLYFd9JYISgzAM8ya306jXMlv0go7LvUq1l3H4Daf5Kgl2mlAspcTMbeQ8QIvCAN9LHnyF2+7nY+CTAGHYOltNqxoCNGPUAuCmEkDj4oKFz4wS2MYANzp61PkJWUOIabOaT4d0IbEL6iXLF44OEQNnLGBHvYjLeR7GeXE0iIfbNYOLMrgOpyBuwjELFGVCZ8Vk4IoNuWwWZYYwvWdM6m4X5jUgg4Vdx/Q3k296HFDsh/MsROl/P3DLEqupb14eQYjau8/Ep72X4LAW+CljkOJbxmpSAJMli1vBDYBMJDD4e6/g7+3IyY3yQMpNuJYcebsBhl+kxaDPRfRyMXAuDv4xeJ4FZBgbeHxlHU6ahoPRT6D2F6svfhlnza1RW0r93O+vd+aAMG2UPveIt7MDHolN0GdLU2jEppsgX+TkbbQssIZDyPfj8GGdSwgjAVGBkLshZkBGw1kQZcUHUhrCIhCY1DG3QdM962bbn3GS7aBpITZo02SqaMebhsYYqZVwmo0vLcVbVM0Hgsoir0CgMPlZDWreJH7U1gjD+UxVwG4mGGJ8ofNhGAQEOrbx0i8bRJL1cz0RwGLa5vdaGMAZL+YS2B0g8VtPG2BSNHoHBCvM8ab2KLG+kV5xfM5JG+R71nZmAYa6j8c7qERKikGjazFjD/A1GC7DAMpp0RRJmJVZBIXSI3tRL0LEPofViht3fxOPR+DxCG2cTTPpqGvBEkjA2jkok6OfnONzCfD5FlrMZ4z1AgGQ2vrgeLBNLDoa0cTWJlpcSOq+HcBVoGE62kFSVuEJehAR0YFGUPyFDEksZrEChbIkwDknrF1u9BlsiwydI85G4BwvNQoa4Go+5LOJz3GGOxYsNOdf4FEUbEtNgHEGk9X0p7Xxl+zoVNiz7BbrrLvpS45TcJCm/TE//HcjN68QawF8D4UZU16NMLEmBEBTIRtllVnTNh/lr3UDqPQuC/6n7px1gIZTKLuVulyBn4VUS6JZ3Qu5t4P+4Vkh3sk8hyqDXRJ7nKrA+6k7HNXRltFy4mWcoi9BkCk0DqUmTJltlgo/jcyU5kpQbCs228dKtnPXUiOJIpv5xz/Eh8lxKPaIiumVo9qKD96EZZ5Sp7gQxQ2HZRkKKaHwcE9ZrVsX/t5RC4BNYDq4QDRGzhlS1gmWiR/4ua5hB97dUObEWBC5rWwRbrty0gLWkw/w0l2KAizYW7WoU5RqUK1GuIDMUIgwMqLUUk0Mkha6dV+BynuBGpLHIaepR21g4YncGuRuNoIIXB4av4Qk+zF7cRBf/RLMBsBmmvtsQ7VZUqYYnYMxfqDoJlLIxShLOUFF+wsqREKOUvb+hvVa8oEKuFGAlf40UB2z1OmwN0RCIPY8TmceJGAyPmfcSCqths8wwG8lavovGxqEx9mbbFbSMmQBSCGGDUQyks4wmDAhB1XKR7ZqegRFoTOYLgdFzYex/8ShjJ1KEnoVrGsqJIEnRUIqn8/0wPoCpfqauyZR7NXrOywnFV6KsxmTAuPcYmcLLEYC2wFL1WegiyEmh70XA0pMR/9hIsPp32C3RtQt8aHnt9ot3Ntk2TQOpSZMmWyXgAUCRoYChjzxZ2vkAC5heZuPZxGYus7mZtRwy5X2BQ5pjGS5/CJJTzRxhJvDNj7DE7lhiqrG0nqt4lHMBTa9cyHx19xRDRSCwVIgdaHKmxHgijWd8LKNqxhFARpXBDFMWJ+NxFSGjVPgnkz4Ti25gaqCsS5UEFaQ0iLipaPdL4ssE7eXRyG0yaQS6UZUzIWCjOwfQpOJAEwMEGCQKg8IYTVd1GEv72BgeTv4eRWscKGxwCKKdKqoEDJJkMRazMGgcDiTgjnjcOyLUnYTqh4S2ZNxrw/YDOobGWdE1j7J0SerI91ORNoFtY4s/1+ZYcRI49ifIyaO24+o+NQo8hC9uQTCrrvRkwIgn6WMNgi46zRAuPlJBTp60RRlkY3xU+S0Q/h7IIlO/QYYBFdkPYjKw31DxsuCMQsVEqtXCBR0HlZsiEuhYV0BL6PDGsdoTCJ0jG9q0J45iijxYy6cR+kQIH0RYS7GsXjSnUiuFgyLgvpoDlCooH6quy/qO2VQ7HHYYW1tbf7wd4fALSRSeBCsBuoCbXlx3czZ5VmgaSE2aNNkqLq+kxBMAZCmgscgya2Yhxme97yU4LCWI+wfo5KsABGO/RCYjIwMTGQyhPh1NCAYS4ke4MiqdoSjzKN9EEJLRBfJWnoet3cmZcbqDPpL41CNfNd0j63DCdvzMe3D1euD3tf6jwFyB4h4meBfD/BNNqfZ5Qi9iZ/FhnhBnohgnTTvtrAFsKsIltCwyqkhZeFTFy5i74UZsUY0yp+La4TI0CANKCEp2glDYuPi0mHGUsJgwOYwwSKFpsSfAloQmQb9pQYlJsZ3odmuQCAMJevGYXdu+EkjauZIyvwECEhxDYCK3kJLRtQ1dh4nWFItGNlDxdmDMGyawNaVEiiyt1HPdo+5CsfEZXvGZURQByULWsJFeDAILhYyvmTECpS06quMkSz7CLIbWf4KzbFpbJvhZbBwBFNDldyH1K+iWQ5QcN1pfkSPrfBDaJYgspN8La6fqMk3uF0oNsgyLRx7H0vH3Y+IIyi0SJzBIZSMyv0akXg9uPYbO4xDKcWYiGJwwDtIvgTUctZPEZ5Y/xJPze1nT0suy0TUg94HkCZH1nF34bC5zk81oGkhNmjTZKlm+yIi5BhjEj/dCEuw8PfXsOWI+f2aECwjZQAsfIMEyJribiZxHYOrp6bP9TQhL1cZVMd+gyBJy7EGVPiQhobFpDCyZoAXbDZnl92HFO0AhNkl8OorDkP4kxp5HoE/BhN/FED3VmzinOuDPaFqoR+AaqvydVv9B9nP/hmgosrvSLAZRBtulz84xatpAbKSvd0d23fQEyaEqflYSCok7olAIVrf1Esooe9AxASqQFN0OlDAYJDkmcOLYJyGglTzDjbssCLrNYaB+S7t6lAq7k3BvRoo58acJEryaMT7ECF/E2FEMk6cqYAwhFoPJDgqpBSzkRhSDFPgLbXTj8ysqjQYS4LBL7fcqI4zzGBkWkmL2M/oO5NgXwb4Y/s5SnkAZiydZ2CAJZLBkSDnpENqSlvEK5N8C7Q9Nb8yMUo+SNmBGUOGl6KQTFeq1oc2MkQkex2S/GxURrtwL4ZMNjUQ7P43/BKSphxkZwK4ayi026bEAk38DQv8aZA6SrwAhSfB6WriYKtdhsxNJMRvDuxFVPcUNmymWI4PcaoG2QbCfWWJEk+2naSA1adJkq0gcZoVvoE9cjCN82tQorrgGnH3+Jf0LbDqYmu200XwZmbZw8Qmx0VgMOJ0YI/GFQ5sZw2IdazgFjx46eAMVUtgi2KxxgcZi0O6iTY2hsBhyukhYG0jIfUHOQwiBLV+JUt+N4kMCRWCbycEhUWis6IUQuLqKYRWBugjX/iIQ1aWHMk7sXys0FAE2QtDX0sUOg2txSpqB3iwjcxYzjIdGkfbzzLU34IgQ4QjSbGB9bHDYm7nypNCkyUdBwwjKJMgFd1MRBZSwsM1aAvV1PLsuOzDOBylyY21nrGKncCspUsUSj7ctxQjJKHkSXMFs3kwrxwEQsjMVfk9dHtohRVT0dYIV3MmHUZQRWOzD2XTx9OOSJC678mPGuA3FEOPi4wzSSTsjuARkKNAiJgBB4Npx4P3MpUqE81ZU9WuMOQppFO3VTiy9inQxcl+NtyYJHQvyP6Uor8N2v0GivJEpcU3KYJQNbhhJADRaRjHaEhhLRJ7OIpB/c/RB5ljoicQfk7yZJG+eXD6MdShm3UJEfF0NUEpFDwGt4uimcfQvpumwbNKkyTYR6lZSVomUVUa7ko32RQyai//1AzEhDB3MoqE/MntsEE9XSFFCoiiKNAUriy8T9Fs9bJSzMUCBQdbxK0ATYscZXhGO8bFMSNlKscGdR58zB0UCJ3UWtP+5lsWmKyfWnuidUJEulXH0UsAiQwGbMBJ3VEVawvH4yBBjDErfiFJXTd1t2CyIWNmSStLBT0hwe1nALezNrezRdwr73/QIrgyjoQiDJMQj8uUUyGCAQTp4knlsMrORaEScX5emyCpnnI1OLyudJRREKkobbyDgvng09V0n0qcy0fppTENttA38fMp5NnNp4TOxq1WS4X1YRJpCT/KbenFhNCv52fZe4S0iSdDOYXTwarKU2If76KGfuayjR/THQeYGK4yD2ZMzl8DRIseKVDd5L8VQop1QrZ8ye68SYFUVdskgg34KnEjoJqlZP76EMY3Ih4gRonT7eEPKRIoQKFdQzUgsXyMUtbgzAAqXQ7B2xrEJOQfZ/Y3a5lbVcRjuWEwPn2QOX35G69fkqdPcQWrSpMmMLOd67iVK136J+zCWsFDYgMERPv18DZdFtPCKf92gJj6OCW7DA9wwesoeac1FuzibZVopIakYFyMsoIxtIMRhXOTImQk6zAgJUyLH/2BbB9HHt5HCode8G1JtmIasMRpKYgjAUQkceRlFPo5iJV28BVfvhB++Mz6mC9s6AT/8IKH+PwCyYj4lpwQCskwQmA60sLBQJLwCwz1ZkvpVuOIUnuRPZFlKZ88JmMzBCH0ERlTiwGvJXD7DE5xHmRRrzXxCHBCCALfmXjOA06h7BIxYHeTEEoqchcuRWCzFZjGSu2tClSBIisOxxf3UVcElzmbyCZpRCnwZSbQrV+Yi0rwLm52QuA29im2WCHkqSLIUaCfDCOk49iugF8/kkDogXdkTWt4P7gx6QKqP8cJhzMmsQhgTZ4wZTFg3kJyKwh2OzOjkiMZ3FGG6FbvzQpj4X5hYB+Sj2ZkoZmhyeioNoQGDhVfQOCWN0Zt7o2VU021LdH0UUvtD4SYS2SNYmHrRM1qvJk+fpoHUpEmTaUzQx538IH5lqEqJ17CbEOKA0ZR4kEdEivu5j3baOYrXkCWLNkMILIRoe3YHFj7YuM+BG4RRivOki6sBjYyNowgpoFMNYqSkhSw9fJVW6801LaNWjiJUP6cavpUKBkEvCfcOfHEPxt0Tx78tbslBJq9Eih1paayRZoElX4Qxq5FiP8DUjCOAlFmL5/dQtitoKWgTw2gsJBpbKCw0FXkzD7OWSaNmZ05jXuYY2riaPJ/FUCbDJ0lwNCkOZryyD6N2C+NWbLwIgSSNwMGlgzSdTIjbmfQBJaShKL4EWJQ5F0EbhmE8IKQHi73J8RE89qeXZYxxJ3nux6GNxXyaPn5LgUdpYX/aWAhMdVkqNmCzE4t5G4PcQYUBbFLsxAlP+5JvjkaznIPZm2vwqCIxCDbiiXeQtj4Pma2cPPYxLPdJaIjSCtKQGIuWXBiwhcHY1GzDRF7hdBwErYuh9RTIvxSC2wBTU9KGKDV/IuXhuwlc/SLagi8j3NsBC4oPQP4HgITO88HahqssfXD00+R5pWkgNWnSZBr9LAei+Jp2RhmjlVkMx5/Wy1psYgf+xB8A6DObKDLB24rnESTXgAGPj+LZX3v2BpZ4C/g31RxUZc8jbzIURBaBaogZ0Bja2FwPZ0G4llFvIUv5Hbbomta8H36udo6hH3/4NYiJf6JdwURXkqR4Cwn7ywg5veYXgBSLQUR125RejpbRndZog8Qg6SMVCvJuTyQrECtaKywsNJICCSpUYvGdDVzNPI7BZV86uHZKX66YzUpnET26L3IFmkjDp5e3MY+T0Sge5mf0sR6XCdrECElG4rMVkaMvuqaRfuEAHfy8pkNkk2EPfkBIEYsk6/kJa/kuYNHP79iBM7DZi5AHiHaJ5uDEOlRJengZP6dMHwm6sEjwbDHKMPfTzT5QE6+MJIru2up5xoQE9t3Ywq99UwxghJxaADYWMY9sP4HLUUiVi9LVhIQF58LyI0CNI9y5mFmvwneuRLsjeDok1Apf3k3Ju5+095Go8wzQ+RXAAatl+uCa/FvSNJCaNGkyjTlEJS7msoEMebKmGJX7iu0Ng8Vcczr3yiTCRKXAjDBsNCsi4wiiGlVcgGNOQYp5z3hMBs26VAcWryVduQvf8lmVmQdCIvCYxTocfDSQZX9a+SMPq+PYaK0DYH6wllHZRo6vYDPdOIqwmdy9kUVFYsP9dUHJKuSXPEZyhoKo9UEGkP8gxv81pZYwznaTKEsilV/LuLJNGKmDR4FFyMYK9MQaSEgSdG+ho6gULtberLBWYVPFESHzOI65nAjAY1zFw+b3cRxRB32mhy4xREYUa5KbU0kx0y1BhFcTqj+AfBhhC4xQgGCU29iRqynzcyKZgLchydbOkzikeebXfXNSpJHYrAvmskw9RuBZCAEub9zqeRX9EYL0k9StoIjERBzo3pg6Fi+NkL2I6gOwsQusRdB9A5XMbMzet2IFj4ProNXlWOUhZOymE7rERKoFE9eLq7GtXaMm/3Y0DaQmTZpMI0Ubh/ERNvBBWphACIOPg4Xi3tI+vGrtfIqZP9GjxjELD0TEQooLzJppbZnG6pzPgHs5jRHxj6iuVXopHhVcNKCZx0l0sRtVLkXQSZIPAbCLvJTe4POM619QtNLY1kn08uot9uHaF1AN3wz4WOUODIP14N1iyCCryHMeGU6lsRZbjfL3oPpDtAVG1l2SFppAODhx7bfWoMKwmwYMLi42ijFa2MBCruVwEvgcygA7cepW12RfvsYKfozPKPN4HV0cgGIcTZ5BHqmJTQJ0M0hWFAlNAkd4uLwWTYWAK4AkWf4PzDjarEaInRAijQp/Rei/DbDoUgqju1nnRUZPikVIsqQ5aVuX7lklSYrjx0J6hu4HoOwlMXM+R1K+Z8pxmjKGKhatAARcTk3K2gjcSkjZc6jagkTBBy+u+atApQTCOQmrkseUfhGdptZSHDuGRzoVWJC2CnSpPpJKgRRYOjK67FAjyJHgLZuNJ0+JH2AYJ8nbsVn6HK5Sk2eDpoHUpEmTGZnLgQzShmSYqNa8RgvBstSjrF/2MFVcHO3zGjPA42IncmaCA7gDNek6AuxwGdLdacb2DYqAERzatik6Ocr9jPCPKe957Eo7vWTZk1m8GYHEYV80IWUGSOBiCY82+4u06ZNBdkV1t7aCbb0GS27AmE1Us1fgDp1Z20EK05IkJap8AZtWkrxvegN6NWAhdRjvUohYSgAetZfRqYcA6LF+xizxOAHL8TicFazjTqIYp8WsZg2L6ef1JJk1vY8GEnSwjLcS8CA2PYzzOzbxcUBhN6bVG0ObiAr/huxFD9fXh8y3ECQw6h786jyinPQe3MQtaPVnGjV/2nXAAL20ciBzee9Wx7Y9lM1jGP9sbLMWy34Xw3YHQ/yRBHOZx4dwYuNmCiakZ+j82stktQyFeZCLP8awgZMoxC7JBAcyl4uRLEabB6NAI2EQVUit9PH6NUaCmi3QrSKKn5aA91r80jtrOlMGTahXENX6gFAJXDTaEfiOg1ICxze4tNHJHVgNZXkMhlHeTMBdgKDED+nkTix6n/EaNnnuaBpITZo0mRGBZCf+l/XmKBJEWVwBLhaRi8XFJyvydDPEYtZEtgCaMglaqy/DFftjeZ+Zsap7lU08xvupsg6HbnbiByTjG8/mGMoU+Pu099t5MUs3C/6tMMTtnEaJjThkOEB9lJbh40GtADkHOm4Ee8etz1u0I0Q7G3NfQM1fSNfIMI7rU51t1zKzylwxs4HkvRHK30YYi1Q+pJqej7F6CeSxKPF3Nsq5LOF9GP7GON8mullewn28gslUKAtFC6OUyNPPjzAoOjkWe9ICaMDnbkbMa0FUMEYyQQfEStpt3Mm14akstO5kZ/Eoi1lFYCxKtPMEX6OLw2llP2TcbhB8GijHLQ8SBl9Dyj3RalLnyMKTR7AfkYaPokKB5XjMnpLhNsJfWBkbaQ7d7M7VWEzN2jIY7uPzDIhbwDW0qlEWhafypL0AgAkcSqxhHqeTZUlcq2/bGAqM85eacQRQ4Q7+yYEsNichg1MZdVsoyRRWSjF/YgDQoEH2GVYvW8SC6iuwnbdRtP9EkC3TWgVtg1CG/mxHrd05bJqyh2hZhidTc5jLl2lpMI6icY3WSrpEr/P4/J0kx27XvJo8PzQNpCZNmmyRNDuRoQUlIgPJbOZWqgoPz/i1mA6FRMqXkkhezijfIeCjZHgNGY6cct5G/pcqUVmKgCHWmwtYxOsxlLE5HCGioF7NKOMchs0aJDuj4z9ZHrNYMoOBspLLKdMHxiAYoZo/GdTq6EPdBxOnQ/vvtjhfg6HI5fg8iKbCYFsHg20ddNNHK+O12ZcbSotMwXkJtN4K/jXY1o7YzjtASDLAS/lI7bC+WqX5KBMqQZFWRqmQYJwWDLAHF7GW0fj4H7E7N0wzNIpcBEwWSlUYfGp16YAP2rN5f+U8XmV/Ac9SGNFLSTwJrGUTv2MvLibH7rXzMRqhQRgFPIpxv0mRfyD03aTZC9v9DgBV+niQ9+PTj8RjGRfQGgdor+RjTAbxBAzwBB9m51pGZMQgdzLALdELIRiz2lkjNbPpxwB5suS5l9s5gRaW8SLOqwd6Cxs6vw5DsfvR258wszfjLMIwRJksbCYrYFFho/kFLdUWiskozS1MCDbs1cWi22NDR0Vx2WHyRFz2psznEQ747XWhhDark3EiQUk5LYYrWvV++VNCSrTydqy4ALMgF2cMjtfWxmLxDOc3+XeiaSA1adJkqyQ5igIXg4kKn/qifvN53CxhthmgV2xEC0mJFIblDHAaBf4IQIEr6eWXpHhJ7TxFgXqGmSHgLkr6fwGQ7Eta3oQQHlUuQ7ESB8POPM6omUVOf4458v8hRT3Gp95ulaQpsKt+iAQ+njaYmlmnwYxPO6eRvLmQMXE2GIknNGnaKJJhkG5EXDC2ShKnYS7TcA6MfraCw06ErCIKebHYmcdrxtcw3RzKnQhKBNgUSBNQYJxraef/TWlHkKitowBSukTJSsd9LKRLHMkfki3A9wG4lUPj4yM9pRFurxlItvNFlP/KWns6vJXVHI3vRAVa29mBuUSyDRv5BT5D8ar6rOFb7FUTkpxqOFRYPW3+JdYxRZZBQFGkIY75ypGnrBMgYZxH6eNm5jQa2a0fhfTrQQ2DtxcTYg9MPB7waTSQoqLAgglbUGjtIU0hDkUSVDNOLTZ7dG4LQmZwWUSZJxlgEwuCKo0kwsfYyb0JiYfkx4R8t/ZZFQeEQfMYg3yZQc5mMbfj0oPApo3LmeAjaMZJ8xFcphZTbvLvR1NJu0mTJlulXXwZy0QuAxtF0ST5Df+Pi/kffihOoChfjBYSEEitUNqnqK/B0hW0UYTYjHHFlDZn8XbEpNvECFr1Y7XPNP9A8df4Vf0ZzjM+STXOYOUcHp54EcXyDdPG2qHL7BQup22wSHadj1UK0ZN6NUhIf2yrcy3qaIcEESlV95g9mMWb6OUdKPZliC5CDqQnDp4O+SdjvJwRdqHMhdu5opDhM4RY6LgciGiQI5jDk4jY1WUT4sU7RNZmLjaDYb2p32QFhk5/hHnhu5jLj1nEH7E2E3dMsZD6n31NqsGtKa3DEdg1acmCncUXA7XPR7gMRT7ue6oRZGrlRkBMKWMPrRw6bf6zODS2w0ztJ0GVAEmRFEWSdPl9EAf/m4b1qeEsgsR+IGw09SK5Hv6U9TSATwIhevBNZDgZE/2kSxWYZTGy2wHkl72RBVyCTStV1lMwGaSZOs+StFjNZ0iwgJR1Pq74DIo0E2Tok7OQUySzDesny4gALi+ik9vp5hHSz6IuVJPnjqaB1KRJk20yRzzAfDFAh/hfOsUoy1jOfNZzIt9jCb+jQoKSSTIsOhgRbQyKDopkazfBCfM7NvCJWntZ9mE3fs9ivs6u/JjMNJdV5AbxeCsWewBQxqPPnk0lnSCfdXjY+nTtRm2oUA1+wAQXk5qoYpcNwoAVGMq2y7qebopd50Pi6C1P0hRxgr6GFHBDQrnswKdYyGnsxNXszsMs5TdIcvRzKSO8ipD70ayjyGfwa4bd1nHZCc0eFMlG6f61Hif/W7/BCwwt9JLjcAwhFVahKLBKXczt4mZuMQcjK5psuYgj30bK+jwZDkUyXa15GefQyn4kmMMCPkDX5iro1iEQi27KBqMnGodT00iazVux45R+gcUCTm7o4zJsOgCHVnMoCwoTMHYoFL8MJmozSSf7qKOxTYA0mgx5OswwFZJoLDQ2hUQr7QyTYyk9vHyr62mxD4QGpxBiVxXtei4ZHdAS+PQWW9nNP5SsWUQoPMZoo0ICWTVkqgVGFyWx3MfpFIdi0U+V35NkFimcKWVpFBb9bjc+fYzF19kXD6BkgGf5tDEyLa9R13SnmrwQEcaYGUzz/0wmJiZoaWlhfHycXG56wGOTJk22jqZIP0cR1IQkd6BCXOXcgBYiLpQKITatehgtnVjEEGZzLi28CYCAPvJcj8t8bH0/vvkUoHE4noS8sBbcbQhR605lqHgZK3deMGU8B6xOYXo/Q7/3cTSDGAMdAxOkS5XazariOQz0toGxmSfWz5yeD2AC1HALI1kH33ZI+D7t8hKE94Zph67gY4xyHYsm5x6T5jySHL9daxkyyDDfY5Sr8IkKrRqggkdHHHsU7X7YZCjgcRBjlPBZizAeZe3woFwWCR0CtrF4r/jxFvuLXI3R3BXj5PkjggQ5jq4ZPsaMoatngV4HzjvY4NzCGFcRVV77Mu0c0zD+AkUeI8FcvC1l2+VPg8q3iNxuAtJfh1RUeFhVzmBIfoe8k4oz/aJSKVPHDLuwHLmNaJBw6FSsvgsiTS6g2O1QmJUCY7C1IlspEYgOViRfQ4EnyBWHmCX6qKYa+hOaVK1+nEs5NhTdoMqg7KAqEhgZrfVSLqSVQxjRnWgZn2MMw7RHYpJxK528i06+tNWxN9k+no/7dzMGqUmTJtuNJM0srqXK7Qiy9PP/qMWSCPAns9xMlI0VCjvapo4z3Mb4NS28iSorWc2REFctz8k3M9tswuAjxVRxRIGN3f5hWtdeglSR1AACsoUCdvF+BqvvZcJ1KYk2DBaFdJpdS6trsSWlzKSKc0h0o95CRpRwsLI/o2viXcAEJI6HzOumHWZQjHI9UQZagiQVQMblPQ7Z7rW06aKbz+CwM5v4Cooimjb+ykEcyR/wCNAIXAICPAx34iBQpFAIUqIUzdFoDII5pmXzaisAaKqs5zTK/IEUkOIVjLGcgKhI6zi/Yx4/RSAQohUrcV7t3Pm8nl4+jSQxbUfKJkML+259kuGtTIlJCm6v/SrtV5GpfI2Ck5rJgTZZHGWbxhHV5Vh9F0wGGyGAdF9AkAiotjgoIUEYHIbYXR2KZf0IvX4/1u/k1kSijKGWzh/hY+MQ4uA7HrPNZ1knvg1UaeH/0UJU580Jq1TdqAEhBHNKGxm3W/DtHDlxPB3iU1sfe5N/a5oGUpMmTZ4SkiRJDiPgMaKA2ChY2gDaWJPi0GAMBovJG6TE4MS6LwOcw6RxBDDBFfSKb2xpbwfSS0ns8wC7rz+PgdTd2MGT9I71A5oxR1AUWSaLaflplwfkjvRUBpCeppyODKQEh9TjnraE90bofH00LxEZBJoqo/yCgEFaeA1JdsFlFj4DDNBNjgk6eBktnI71FMT/DCFP8lYq3IMFuHST4WdUuIQiGWwmcAgAE/8fbAwZCuRFFgS8ylzLBj2bFIYlcuYYqBF+TolraImz8AKuIIEkIFqzEn8jZCMOcxoGpzFqHcgUtpyqOh4yQiQb2gPVP4H/e7B2hOSHUKLMJj5GiTtJsje9zkFY4T3UytPLxVC9G9x9EfZBJBN/ZE71R1QsgWt/gFXiBBrruy3kZ9teSD8Kdt/cyspsqlDN2dgqZCjRGiuuf45O8TLEjpdieHlUbFbEP3Gk0+R3sDFjsyR+STYuy6L5OSPMInoceCXJ0lVoy8IJQ2ylSYYjlFJ5EqaKcLZPnqDJvydNF1uTJk2eFooBNrB7XAfLwiDwmUVImUmjKGdGEBiUsIF9CNAE9OGRRrGhoTXBzjNkO81I9TFYsQeVpGBoXpZxO0tJpKgnY0d1z0ZoZ0cej2qcGUWrOIfU01B9XseHmOBaol0iyWKuQhGwis8QMMQs3kovJ2/ZdbcFStzBWt465b023s+VpCiyggO5kw6GkGi8zYrCFknhUcXDRxviorwW3fyKxGYZdn18lVB/E1uGU94fJ4dB4gWKBcEHkPaLUO4BDKjP0Vr4AUL4yNCAsz9O5m9UxN8Z5hLGiXaBuv296Rq/AiaN4MRJ9Ge7GeWnTO7UtZhjmF3KQHA3hKNQjneQEq+BzitBTDcgQsbQRIKL24UaxTw2H8IColYKB7SXIZiVwZcjFLLpyH6SEkyWOWI169gJHZcD0QhsKiRiQUyYS4lhoseB1zHOn2bo2AKj6a52kvTvq72rpaCadHD9uSSSK7c6dGM0QjRDgbeH5+P+/YK5MgsXLkQIMeXnq1/96vM9rCZN/mux6KaVL6Cw450iSRKLNPvikCHHBBlRIS2q5IAqa6mwhhKaYcYby2FhjEVpG8VGAbTuw1dvobrAYmhhC9qW091KBoQxOCYgYSokqOKKEMF0WYBtYTBM8OeoURSGkAI3k2YXdudK9uEW5nDKUzaOgCnjKZFkJUu4i1tp4XFKJLmRw7iVgyanNOUnTREv1uOp63AaClwyrZ9Wv0omaCj3Em31kS5UyJR8Fo5tQBa/AOOvYqL8ahLVH6E9H+VCkJYQ3E0p/B8GeAfjsdo3gPSvj6+7ihr1r8RnLXWXmsIX6yF9JmS+WzeOACrXgF9vqxGb1u03jgCsNsSSByGxY1QqBEC4WO3H4lb7IAkZUyRtSkijIM7Em8P9pHgNFkkcDC4H0sojtPMEHTzCHP7JHB7FYQembU/F80NIyt7Lke7nUJZL4FhUPQuMwfLzWxyyMg+RVzuS12lK6liMqW7x2CbPHy8oF9tZZ53F8cfXAyCz2exWjm7SpMlzTZYTGeCbTLpFFH10cQopTmKcowHJJroYpgOJRmLQCNoZjgrQx+0YQjbyMXaYQTG7kaCyF4T92BOg0xkQghRlyiYZF4aNpAhsE7KUJ5DxloLF3iQ2263ZHgQChzlxvE7kJnJZsK3TtosE++CxOxUeYiNz0EjAkGINWRaQJ8dG5vLo4C7s5fwD0hZSduJay6jyN0okkWjcmlCkwNDHEIdhMZckJ1DiLyT87+Ian6ptY6REaOgYzGObiVo1lIrnUrY97Oo/MV5Qt7qMQTuCqvlb7HKqG4JVy0VQV9nG2o0cr6PIDUyWJ2lhMoZrpmfxZ/B8/sQfYOV1MGtP2Ou9GLeHwhKJ0R6yajDOIjIT9+GnrFo3AoOnK5Rle9x7ki5+uMUurLhQcIpXIfhWg8utVr4YMNhiHlbiNJgoEXABTmCwQo3QgxhTqYmeNlLW78fE36mQKymZk0mJ79aC5Zv8e/CCMpCy2Sw9PT3bPrBJkyb/EjQBoKfEbkASh4Np4Qb6+RmbuJc0pdptRWKw4l2GSaeYEKDM0IxBxlMw/Th5EAGk82WKuRSW0bSLEYbooNO00KIVLiPYvAdXfAzDOBY7bTv+aAvM53ts4JME9NPO28hunhr/NBEI5nIpY1zBE1w+5bNXlAoMOHvS9sQj7LD2VkaOTEeZXmqEFCeyhlUE8XwyFGljBIdeFH8DIOQByvyREItC2oDoxAl9spVx3ApYDdt3GsHKtrnRRTCGrmCAtC7WjKSq5VKySkhjYQufML6JVxIvxajFiOpvwV5GkH43Un2BDiSh2J+0eB1ZjomuqT0PMh+DwrlRp8m3gPvip75oJoD73gN/+EWULWY0TKxHvexVGFaBBJ0EWI2RB6Al0PDtFIDNAQzxVrJ8CW87YsZc9qCXK+jndYDExifAQ5MkzZG0xW5bKTuwVUNAugWoe8CeLipq6INajTfwuZSK+gMt4U+xvSOe+ro0eU54wcQgLVy4kEqlQhAEzJ8/n+OOO45TTz0V296yjVetVqlW61uXExMTzJs3rxmD1KTJs8R6zmKcn+Lix6rQktlcQi7WrVnDb1jJeSSY6kJoj1WPJw0kgCxHM5eLttpftZjAHapO6jhSSnuMpzKszcxFYbOYz9LOQVtOO/83Yh3fZUNcgiNgH0ZZBwYcHXBo3x0kdBVWH8mmZXcSdFpMbrmVxC4M0+i+MezBFxE8RoGzmXRxGSDAiyUWIuMnFRbJFUo4lbotGgrJY7MWggBpNC49tAYbcfVGAuFQcCNNKksplJVCir3I8SEyvBwZi0JW9YVUzcfj4RiEUvHGTYaE83sseUj0WfAE4IO9S6NvcPsZPQ3+dD6sov7F6doVfcK1FPSO1IwOY5GqvoSq9Re0bdfmXxZJQstBIQmMg6SHTnEGWV6/1W4NhmHmYRjH9hWJfIitQKZPRKa+hRACo9ajCvOjgUVS3ViZFQg5vaRIVZ9N1ZxVm0IobYyQuEMBsmRIdT+GTCx86uvzH0wzBmkrfPjDH+ayyy7jpptu4oQTTuCcc87hk5/85FbP+cpXvkJLS0vtZ968ef+i0TZp8t9BgdtR2JRJUiZBFY8C9ViTTvZD4UyLoamYLjANzgrjMocLttmf7V2HcuvnpYpVhq12QmwMsIqzuYejuYtXoag8m1N9Vimzmg1czOSK2PyD3Xgfu46v4pD+20joMgYo7ywIMg0PgQI0a6a1Z9OOy0uZLCES7dPFetKNhogQhN5Uw2QsnQYMaYrkRJ6EeIKqHGPUa6PgZWvn5ypl5qvrmMvV5DgCiUeJ7zJkWsmLTxEKa3p/FKmGH6y/dJaCs+vTM44AKtdBCw1fHAGduyDFXJLixxhmU5ItFOwU4+6tCCGQSkUGm1IoacU7Ni5GCBT99JsP428jQUAgyHEpXsmmdUOZxESAXQyQwxdigl9Fx1hzkcmfgmgDWpGJ789oHAG44jO48qsoYRFIByMkomLwO2wq810mhpdhSv1Pb42aPGs8rwbSpz71qWmB15v/LF8eCdKddtppHHLIIeyxxx6ceOKJnHvuuVx44YVTdog259Of/jTj4+O1n3Xr1v2rptakyX8FSXaNfxMYonIjyVj5GiDDAg7g+6R5KYIWEsxlV77F3uJulohbaeE4uvgsO4l/blcQtWW/HGtWHtN6CmTewYae4xlLtk47LmCIlZzz7EzyOUBRnPJaALPYiyWVVpIqjN/TDGbuRiWZYlCkKTUoCxl6WEqCF+PyItr4FQmOIcXJKE6YogQtMLiqgrYEpVZBOZVlosUmSEkcApwG2QVj2biqXHttaU0qfBFYy2rvhTxEidOBEIRESysuOdM4XgNm6ly3B23WofUjmM1KfeC+CHaVsCOQAhYug1dHu46OPBZjvR0V9x1KO9aJMkitgURsNE7GUk3m92uCzQQ/Z8KpVsiOjTWejVCAur92jHTfiZ0bwc6NIt0tC4YKIUiIUxFy99p7JiFq6xbOsQlXnL3NMTV5bnleY5A+9rGP8Z73vGerxyxePLMFfsABBxCGIWvWrGGnnXaa8RjP8/A8b8bPmjRp8syZyxfJczOaCQBcdqCNo6Yc08JO7M350851mUPv0zBihMwg2iLNH48bMDwwY+hSlYEZ3v33IM0ysuxLnn8AkGNvkiyGzl9jRj6Ar/7KRCaJTCokAr1Z/NTj7MhRvJ80jyF5nLI5F0fPwRF74Mko8Hgtp5JnFrPowyAo00qr9XocI7Gdd0JyD/o4lirLSVCeOsBYjNMOfFL6IHK8B9nyximGmuKJ+rEQ614JoB1hKhB/Jxz7c09pbfzwmwTqdACkOIKEcxVisjBx27dBOPDy+yB5NOQ+P0UqQDPI5PaSkg5V4ZHUFRCzsO1LgLfGJpLGxClvFq0kxF7bHlf5RLzNthSMAOFs3T23NVq5nUrl4+jKhZTb4mBuE22tStH5tNtt8uzwvBpIXV1ddHV1bfvAGbj//vuRUtLd3b3tg5s0afKcYJFmF/5Gnr8hSJLdWpX754BODmMhH2QTvyFsKFgKMId3bvE8rf5OEJ6NEk+inSNJibPQykLpB7GtpUjRUSt18lwgsFjG9xjmCiY4B4+rGOABOu3fY3VfyxqWkWQYGw1otKFmCKxjHkvZixQX4XN9LQbZNj5OqPDsy7CtN+HSRUCCDcyNjAIBD9r3kaJEC9fgoMnwUnq4Gp9bKdBgyBiDZTRSHkqLczmbuJp+3k+CXhZzKh6d2BzAZLbaZJyT5ECy4g/gFlD6FoRYjCX33O51MaZAoD5de63Nn1H6T9hWnA0nswQt+xOqtUgxgksR0VDEN8U7KPP7yUXGk6eSkIcjrEMQQtJdPZtScCopSijpYqw5tHl/xKJ1i2MKwp/gq5OwRRVjgfAAPzKOSO2AsA/c7vltjkCSTJ6HKuxC2HcKQZcNCtJ3WVgHfmLbDTR5TnlBBGnffvvt3HnnnRx66KFks1luv/12Tj31VF796lfz05/+dLvbaQpFNmnyn0tAgdV8k4BRejmONg6Y8TitlxNUdsfELiUtJCUvSbJSwTYqDrCdh5u4AyF7n/Z4FCElRkjRjrWFZ9Fh3kWF64iCiy1SvJU2vsW4+ipl+ZW4elr0J9rWAavkYsZpo4sB5oqpBqHQikRQRYp9SLp34zPKI3ySAvfVdthSFGhhHJegpiLtVKGr8iH6sn9EixUgBEIr2tRxJJ2LGOFW/slpcQuSHLuxFxfHa34/BU5EM4DL68lw3tPShJrEmDwlv40pxXrtj5K0voQgReh/G1X9KMqK3ICWfAMJ51dT2vB5CJ87cdgdb4bvgAnuQAW/Q9gvw3K3UrwYMKZIyW8FNBhDsmCQjbFzuT+B96p6IPwzISihn/g5JDuRC4955u39h9GsxbYFPM/jsssu48wzz6RarbJo0SJOPfVUTjvttG2f3KRJk/8KHDLsyJnbPM7oW4Gwdhu3TFTAy0gmk6AwZh1hcCaO939PayzjbOA6zqLMGCnaOZIvkGO6RIkmT11Y0WAooKvfwA0/RzmdaUhOj8KuF+s13Ge1kTDVqdIKxiCMIdrRiW4eLm3sxcU8xAlM8A+ikiUhzuTcYx2qwDEwciZ2KoNvu0idxBW74TgfBSDPcqJw1Wg3q8BjtfE77EUbdzytNZrG2DcQY2fjZNMEmQIQZdiV5Q8ocQ8d/hlY46dixyVBqskQ5dxSO93nMcb5EZoBPHYnycIZuxHOgdjO9u36GIaoXR8hKGfADkBog3ZfRsI9DIYPB/9GwIXsNyDz4ac3fyeF3OUDT+/cJs8JLwgDaZ999uGOO56lf4RNmjT5r0bIvaboIk8KTAqmbqYbM/K0+7iXy6jEMThlxniAK3gpp9Q+1/g8zpcZYhCbucyiDxdB2vwPJX0IhVQ6HgO1sUkMkhCMYYIsnQwTWTkGYRzcsAx04drnTRnLEk7nAd6FpoJGEhgbVwRxu2CrqLxGsugjsgqHAsrczAh702rdQSv78CSaydDkbRaofTpU7oTRKCvZnRBYZZeRHhtlRfIGIQ9QrrwJyxHYoUAag+MDXuTSrfIPhnklConGosh1jPBNPI6gk8/isgTxNHKSBPOATohlKYwQhC6Ai+d8CYoXxMYRgA/5j0DitWAveoYL0uTfgReEgdSkSZMmzxZS7ovl/oggPAlDSMX1IhHG2i4JUUyP89Trtk0SUon3OaJ9oXAzHaiNXMFAXMLEJ8Ewu7AImxF+gvS82LUWoRGExiFFhWHa4qK/h5DmUBQ3Y4ld8HgfuEMIOusBzTEpFnMANzPK3yhxH0X9LYQEmxAn9OkYizSVtBVVtB8TLZRlVKi3ZN7AArGcZZzOIHeToJf5vPdpr8sWUWsbXhisoIrBq+kXoWEiY0BmwBjaxovYzMezIx2pCc4BNDrOx5ukzF/YyJ8AQYhNhrcxm29s97CEkCSdR/HV8RjTj5RHUxWXEYgVVOR7afN3RNZtx4jwsaaB9B9C00Bq0qTJfx2O/V4c+70oNmFxG8ZUKeqPoRlDiyW0eJcj5a7bbmgL7Mbr6ONhNAoLm12ZGutSpZ/IbaWI9pNGCcxKJvQjtDaGngjIk6NMgnbzBmYzl/n6UCx5MJE77f/VjoPZKKoIAuRmkgkSiw4OpYNDMfplhGMH4mgV12UDJaGc8rDQNeMIoCJChtgbwRpmmXYy1QPA/yQhNiJxEZb7rqe0Ljr4LbpyEpgqMvElpPuh6IPEoSC7QQ8BBhKHkLbeQsn/JK0DBUotCcqZ+pwK6Syt4nsIkYvnl2roZWrsjojjuCwUBS5jlL1p47jtHrOU7STkbwAo8U181gASL78RUVxVP1ABK4HqibDTp2DJidvdR5N/T14QQdrPFs0g7SZNmvyryDPAKE/SzkIyTM3WneAhHuCEeJdJ084QnQwjqpDWJfKJFEJAgM0A3TgEzFZvoKv/t6BWgTUfum8Eewmb+DVr+B4BJQokCUmwByezkNdscWwmeBjf/zpCeTjWfmhvHkVxC2UuZNRqn3JsGxNYBGAElgrIliYFOAVW5kmE3D4BXmNGUflZTNbtA7CS9yJ0D7izQG2Ews9BZiHzPkJzC3r4SDCGStqllPJAylip22CERYf8MY54AyGbGGI/FCXKpKf06xAgiHficACHHVjF06HIZyjzXUDRsa4Qr0LMcmC84eCD/wizX/20+mkynefj/t00kJo0adLkeSDPcka4jYBvkeZJBOBVq2SqFZQQDHid5GUGbUsSVOkoLqJ95DYmM95I/j/ynWfwIO+ZEj01SisGmyW8iQ3cSJJu9uI0sszf6ng0Pmv02wnEnZhY8DFJLykeiYrSmqjcSLbUICCZvhNhvWi75mvUE6jijvU3SmA9HhsYyWWw19/B6YiO1SGlYBao0WijTQhCJGU3BQbaNhbZ1N2JZ89mtrwvOocSZW5nE8dj8KPxxVFJAgixUFiAxdIZ1Mi3h5BHGOMQoEzHukLdOKoAD0w9Vs3tQOx9OdI7/Gn11WQqzVIjTZo0+Y/CoCmxnpDS8z2Ufzuy7MwC3sdczo0K6RpDaEu0FNjGMLsySJsZJ0kVSYbWUiv1BHMNepxRbgMalJ2JYovAsJJfU2GYMR7jbr60zfHkuZ6yvI9QOCgsFB6zuRDBZDV6gef7DWe0wlPQOEIuAXlANEojsBrDjsqPwvpzIX8lrHNhgwPhCFh1dWkbTaZQoK1/Aq+iSPg+BaFqTQhSpDicxayknS9gBZ1YFQutJUFsKgFkeMP2j3kzbHahjbvIcCE61bA7pKcfu2bHBMud4xmvPDWhzCb/PjRjkJo0afKc4DPGbbydIM7m2pFTWMCxz/Oo/v1I8Aq6eAQl1oAcxiQfB3ZAyheTFteRBrIcg8zeAZVrie7GFmRPo41e1vF/U3aQQmwc2gmIsvAMmuJmIpozMbnrUncaGWx2p417CbkHi4XA14A/gVyETP0OIba/UoEQEiv9F0zwE+j/CVT+MTVaKByA/DEQ1+VNTUCprV5oFyIRbWyBklBIJEnMIEwqELQPp2hf8xCg0U4na3duxbiKDMfQw7nbPeaZsFiIxXug4z2QuAz8u6Dr7bDi/0E5svrys5JU2qK12eD+khxnIpq32xccTRdbkyZNnhMe4AwGuAmoiT2zIy+jm+Maarg1eUoET4B/N7j7gLMzAJu4nNV8j4Aqo/TQwcHsyuu4lY8S5dBpenkZ+/HZrTatKLKat1CNdY66+AjdfOi5mcfo9fDQkdR2xIQHyz4MwdQMM9+CIBebUZN1ysoOw6kucA5nvrgAeyYV7AfnQzBZe9OC2Z+B3rOek6nUMArWnkth4kye3HU2yLr5t4yHkCSf2/7/w2nGID3HNA2kJk3+dfyDjzIS1xoDQ+fdw+zynZWIkkYdcjjJD17bVAt+DhllORv+f3v3HhtlvaBx/Hlnpp0p9EJLa2+0UBQoq0sVXMrJrptFMKUpHM3RE2SpFqqiLHirmkBWRM2J4I0QCIYcQ1vJ6lGPQbKuR/4Q3WW5iAinrO5BhC63I20NSOyFXqYzv/1jykhfkOt03pb5fpImnffWZ/Iy7cP7/t731X/Kp3QV6NdyK/6i6wTVqdPaI49S5VNh3wZs/lL64W3JPUjKWSCZ/5FO9Vzt1/NXybRLHVlS0GXJMpI7boHiPasu/hiYb26QOv+vZ0MuKed5KXtJH76ZnwXqM1SfN0j++NBVd6mdE5TjfS8qP/taRkHqYxQkIHpOaa++0gLFqVuJ+1s04cG/hB5vcWaBha9J9z510e289to2rV27W0VFmXr33XsUF+e+6DoYoBqyJNMkSTL+0Jk1/3WSAnGy4p5UnPdpWdYlPL/zpz9J9b+RTKfkK5TGbJU8Q/s2+xnGKHDiBbVY/y334LuVmDD/qh6/ghAKUh+jIAHRY2S0X1PVpb8qY/1JZf3+5FmjWySreJr0+icX3Ma8eR/pzTf3hF/n5SXr6NEn+y40nGWMdPIxqeUPMiYgkzBW/pQMdbs+6jnamKmE+D1yWec+tuUc3ackf4PkG9UzeAkDGVexAbhmnNZWdemvkqTO4fG9y5Ek/d0dF91GTU1dr9fHjjVHMiL6G8uSkh6RAqdkBX+S1fal4pr+/awFflAg8MdL25YnVUr4G8oRrhgFCUCfCKg+/H3zPyaqsTJNAZ8luV3StPulmRc/EuR2c2oi5px6WaEr9YwsBeQKSAqeVa+tIY5FQ2zhukMAEXVK3+lr/bNcMpIGa7Da5LYs/VSZpCGVO+XTDZe8rdWrSzVv3n+EXz/zzK/6IDH6jWBz6G7aZzGeVMV1tcqSX0HvP8njmuVQOMQaxiABiKgtulXu8Im00K+XkcrSUL2meI297O19991Jbdt2TLffPkLDhw+JaFb0M4ET0qGeQdh+hf75JLukYDD06Lk4SSnvS97fOpcRjnDi7zdHkABElLvXbQtDJSlbH1/x9kaPHqrRo6N0BRKc5U6XkuZJJ34vtUoaKsnfc5vqMzfNbq+hICEqGIMEIKKCvS5pNoqZQ9SIjITbQs82k848lURdSZY6h4TuoC13rpPpEEMoSAAiapjmhZ9SbySN079dbBUgxHRK7X9U+PFvHVJHqiV/otSdIHWkuhQYdK+jERE7OMUGIKIKNE8Fmud0DAw0plM6eZsU3CWlSfJK5qQU9Fpn3V3UUtDslVtTHAyKWEFBAgA4J9CmQPtXCrj2KM6/6+cuNFiykufLsrbI6DuFBiEZuVx/61xWxBQKEgDAGa3fyPz57+X2N8u6TgoOteSS6SlJlpT+onxWszr9C2X0veLcj8jtuvgNRoFIoCABAJxx6F8lf7OUJLmGSr0G9Se9JrnS5VK6EuL/5FxGxCwKEgAgOtr3K7jvH2T5T8h4fHKZnts3xIcew2aFhxv5pMQqB4MCXMUGAIiS4F9+Jct/QpYkV3eH/O7vQwOy40PzjUIPGJHvbgdTAiEcQQIARIXVfar3Q4tTLcmETqtZXVLA65M7eZk06F8cTAmEcAQJABAVAU9ir9dnBmRbCp1iM8EudQwuk6x4R/IBZ6MgAQCi46ZdCrosGUtqHuWV3/fzg2ksSacSB+s7leh7veRkSkASBQkAECUeb6FcE9rVPuy38p4KqDXdq45Ej/xel1rT4tWZ7NEgdeqk1qlLjU7HRYxjDBIAIHpcXiVkrVfgfwfJWJZa032yrJ4xSaHh2/Kps+d7wDkcQQIARJXl8sm68bisLl+v6V2Kk2TkVqLilOlMOKAHBQkAEHVuV5aGJpzQYOttnZZXLUpUUG651a1cfeR0PICCBABwziD9Wjk6Kq8my6ublas/y6dRTscCGIMEAHCWR4OUq3ecjgH0whEkAAAAGwoSAACADQUJAADAhoIEAABgQ0ECAACwoSABAADYUJAAAABsKEgAAAA2FCQAAAAbChIAAIANBQkAAMCGggQAAGBDQQIAALChIAEAANhQkAAAAGwoSAAAADYUJAAAABsKEgAAuCqtwfU60Z2kk/5EtQX/4HSciKAgAQCAK9ahXQr4H1JSV6sS/W0ynfepI/hfTse6ahQkAABwxdoC8+QLdIVfx5mA2rp/42CiyKAgAQCAK2ZZY2XOmTjIiSgRRUECAABXLM31jtrdvnBJ6nJ5lOQ+6GimSPA4HQAAAAxsqd52tQZXK2COK8W9zOk4EUFBAgAAVy3R9ajTESKKU2wAAAA2FCQAAAAbChIAAIANBQkAAMCGggQAAGBDQQIAALChIAEAANhQkAAAAGwoSAAAADYUJAAAABsKEgAAgA0FCQAAwCamHlZrjJEkNTc3O5wEAABcqjN/t8/8HY+GmCpILS0tkqS8vDyHkwAAgMvV0tKilJSUqPwsy0SzjjksGAzq+PHjSkpKkmVZTse5JjU3NysvL0/Hjh1TcnKy03FwHuyjgYH91P+xj6LHGKOWlhbl5OTI5YrO6KCYOoLkcrk0bNgwp2PEhOTkZH5h9HPso4GB/dT/sY+iI1pHjs5gkDYAAIANBQkAAMCGgoSI8nq9Wrp0qbxer9NR8AvYRwMD+6n/Yx9d22JqkDYAAMCl4AgSAACADQUJAADAhoIEAABgQ0ECAACwoSChz4wYMUKWZfX6Wr58udOxYt6aNWs0YsQI+Xw+FRcX68svv3Q6Eno8//zz53xmCgsLnY4V87Zs2aIZM2YoJydHlmVp48aNveYbY/Tcc88pOztbCQkJmjp1qg4cOOBMWEQMBQl96sUXX1RDQ0P469FHH3U6Ukx77733VFVVpaVLl2rPnj0qKipSSUmJfvjhB6ejoceNN97Y6zOzdetWpyPFvLa2NhUVFWnNmjXnnf/KK69o1apVWrt2rXbu3KnBgwerpKREHR0dUU6KSIqpR40g+pKSkpSVleV0DPRYsWKFHnroIc2dO1eStHbtWn388ceqrq7WokWLHE4HSfJ4PHxm+pnS0lKVlpaed54xRitXrtSzzz6rO++8U5K0fv16ZWZmauPGjbr33nujGRURxBEk9Knly5dr6NChuuWWW/Tqq6+qu7vb6Ugxq6urS7t379bUqVPD01wul6ZOnaodO3Y4mAxnO3DggHJycjRy5EjNnj1bR48edToSLuDQoUNqbGzs9blKSUlRcXExn6sBjiNI6DOPPfaYxo8fr7S0NG3fvl2LFy9WQ0ODVqxY4XS0mHTixAkFAgFlZmb2mp6Zmalvv/3WoVQ4W3FxsWprazVmzBg1NDTohRde0G233aZvvvlGSUlJTsfDeTQ2NkrSeT9XZ+ZhYKIg4bIsWrRIL7/88gWX2bdvnwoLC1VVVRWeNm7cOMXHx+vhhx/WsmXLuDU/cB5nn8YZN26ciouLNXz4cL3//vt64IEHHEwGxB4KEi7LU089pTlz5lxwmZEjR553enFxsbq7u3X48GGNGTOmD9LhQtLT0+V2u9XU1NRrelNTE2Ne+qkhQ4Zo9OjROnjwoNNR8AvOfHaampqUnZ0dnt7U1KSbb77ZoVSIBAoSLktGRoYyMjKuaN26ujq5XC5dd911EU6FSxEfH68JEyZo8+bNuuuuuyRJwWBQmzdv1sKFC50Nh/NqbW1VfX297rvvPqej4BcUFBQoKytLmzdvDhei5uZm7dy5U/Pnz3c2HK4KBQl9YseOHdq5c6cmT56spKQk7dixQ08++aTKy8uVmprqdLyYVVVVpYqKCt16662aOHGiVq5cqba2tvBVbXDW008/rRkzZmj48OE6fvy4li5dKrfbrVmzZjkdLaa1trb2Oop36NAh1dXVKS0tTfn5+XriiSf0u9/9TqNGjVJBQYGWLFminJyc8H9EMEAZoA/s3r3bFBcXm5SUFOPz+czYsWPNSy+9ZDo6OpyOFvNWr15t8vPzTXx8vJk4caL54osvnI6EHjNnzjTZ2dkmPj7e5ObmmpkzZ5qDBw86HSvmff7550bSOV8VFRXGGGOCwaBZsmSJyczMNF6v10yZMsXs37/f2dC4apYxxjja0AAAAPoZ7oMEAABgQ0ECAACwoSABAADYUJAAAABsKEgAAAA2FCQAAAAbChIAAIANBQkAAMCGggTAUXPmzJFlWXrkkUfOmbdgwQJZlhV+QPKZZS3LUlxcnDIzM3XHHXeourpawWDwvNsvKSmR2+3Wrl27zpm3ZcsWzZgxQzk5ObIsSxs3bozkWwMwgFGQADguLy9P7777rtrb28PTOjo69M477yg/P7/XstOmTVNDQ4MOHz6sTz75RJMnT9bjjz+u6dOnq7u7u9eyR48e1fbt27Vw4UJVV1ef83Pb2tpUVFSkNWvW9M0bAzBg8bBaAI4bP3686uvrtWHDBs2ePVuStGHDBuXn56ugoKDXsl6vV1lZWZKk3NxcjR8/XpMmTdKUKVNUW1urBx98MLxsTU2Npk+frvnz52vSpElasWKFEhISwvNLS0tVWloahXcIYKDhCBKAfqGyslI1NTXh19XV1Zo7d+4lrXv77berqKhIGzZsCE8zxqimpkbl5eUqLCzUDTfcoA8++CDiuQFcmyhIAPqF8vJybd26VUeOHNGRI0e0bds2lZeXX/L6hYWFOnz4cPj1p59+qtOnT6ukpCS8/XXr1kU6NoBrFKfYAPQLGRkZKisrU21trYwxKisrU3p6+iWvb4yRZVnh19XV1Zo5c6Y8ntCvuVmzZumZZ55RfX29rr/++ojnB3Bt4QgSgH6jsrJStbW1euutt1RZWXlZ6+7bty88XunHH3/Uhx9+qDfeeEMej0cej0e5ubnq7u4+72BtALCjIAHoN6ZNm6auri75/f7wqbFL8dlnn+nrr7/W3XffLUl6++23NWzYMO3du1d1dXXhr9dff121tbUKBAJ99RYAXCM4xQag33C73dq3b1/4+/Pp7OxUY2OjAoGAmpqatGnTJi1btkzTp0/X/fffL0lat26d7rnnHt1000291s3Ly9PixYu1adMmlZWVqbW1VQcPHgzPP3TokOrq6pSWlnbO7QUAxBYKEoB+JTk5+YLzN23apOzsbHk8HqWmpqqoqEirVq1SRUWFXC6Xdu/erb179+rNN988Z92UlBRNmTJF69atU1lZmb766itNnjw5PL+qqkqSVFFRodra2oi+LwADi2WMMU6HAAAA6E8YgwQAAGBDQQIAALChIAEAANhQkAAAAGwoSAAAADYUJAAAABsKEgAAgA0FCQAAwIaCBAAAYENBAgAAsKEgAQAA2FCQAAAAbP4fmvJ5QkYYE1oAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArUAAAHHCAYAAAChoqAWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5gURfrA8W9198TNiSVHRUBFFBUVEQPKoWKOZ85nzul+Z9bzzDnnHDDnrHeYxZxFosQFNu/E7q7fHz07u7N5YWFZfT/Psw9Mh+rqnp7pd6qr31Jaa40QQgghhBA9mNHdFRBCCCGEEGJVSVArhBBCCCF6PAlqhRBCCCFEjydBrRBCCCGE6PEkqBVCCCGEED2eBLVCCCGEEKLHk6BWCCGEEEL0eBLUCiGEEEKIHk+CWiGEEEII0eNJUAsMHjyYww8/vLur0aweH3zwAUopPvjggzVaj+7abmc98sgjjBgxAp/PR35+fqfXnzt3Lkoprr322q6v3J/Mtttuy7bbbtvd1VgrrOp5U1tby9FHH03v3r1RSnHaaad1bQX/wh588EGUUsydO7fDy86YMWP1V2wtd/HFF6OU6u5qdInOnANd7YQTTmDHHXdc49v9s7nzzjsZOHAg8Xi80+t2KqitP1mUUnz44YfN5mutGTBgAEopdt1114x59esppbAsi8LCQsaOHcupp57KTz/91OZ2b7/9dpRSjBs3rjPVFe24/fbbefDBB7u7Givll19+4fDDD2fYsGHcc8893H333a0u+9prr3HxxRevucqJLrNo0SIuvvhivvnmm+6uSpf597//zYMPPsjxxx/PI488wiGHHLJattOTP99daXUfh++++44jjjiCIUOGEAwGyc7OZsyYMZxzzjnMnj17tW1XrF3mzJnDvffeyz//+U/AawhoHPe09tdV16bOnuerEpO1JRKJcPHFF69So9jhhx9OIpHgrrvu6vzKuhMeeOABDehgMKiPP/74ZvPff/99DehAIKB32WWXjHmA3nHHHfUjjzyiH374YX3LLbfoo48+Wufl5WnLsvR1113X6na32morPXjwYA3omTNndqbKHRKLxXQikejycjtr0KBB+rDDDku/dhxHR6NR7TjOatne+uuvrydOnNhs+ureble44447Onw+nHjiibqlU33OnDka0Ndcc83qqOKfysSJE1s8V1a3L774QgP6gQceWOPbbs2qnjfjxo3T48eP7+JaNdfa5/vPzLZtHY1Gteu66WmtHYf669kXX3yx0tu7++67tWmaurS0VJ9xxhn67rvv1rfffrs+4YQTdGlpqfb5fNq27ZUuf01JJpM6Go12dzW6REvnwJpw6qmn6uHDh6dfv/XWW/qRRx5J/51yyika0P/85z8zpn/77bddsv3Oft5XJSZry7JlyzSgL7roopVav94555yjBw0a1On30VqZKHrnnXdm2rRp3HzzzVhWQxGPP/44Y8eOZfny5S2uN3z4cA4++OCMaf/5z3+YOnUqZ555JiNGjGDnnXfOmD9nzhw+/vhjnnvuOY477jgee+wxLrroopWpdqsCgUCXltdVDMMgGAz+ZbbbGWVlZQAr1e3gr05rTSwWIxQKdXdVehTXdUkkEqtcTllZGaNGjeqCGq15a/u5Y5ompmmukW19/PHHHH/88YwfP55XXnmFnJycjPnXXXcdV1xxxRqpy6qyLCvjWt6TrclzoF4ymeSxxx7jH//4R3pa024IwWCQm2++mR133HGt6cq1MjHZmrLffvtx9dVX8/7777P99tt3fMXORMD1v2ynTZumlVL6tddeS8+Lx+O6oKBAX3fddXrQoEEtttSeeOKJLZY7b948bVmW3mqrrZrNu+yyy3RBQYGOx+P6+OOP1+uuu26H6rrLLrvoIUOGtDhviy220GPHjk2/btpCmkgk9MUXX6zXWWcdHQgEdGFhoR4/frx+66230su01nJ12GGH6UGDBmVMu+aaa/SWW26pCwsLdTAY1JtssomeNm1as3Wb1qO+5fv999/XWjcc/5b+Gtfl/vvv19ttt50uKSnRfr9fjxw5Ut9+++3NttVaGU23W+/pp5/Wm2yyiQ4Gg7qoqEgfdNBBesGCBc32PysrSy9YsEDvvvvuOisrSxcXF+szzzyzwy0Wt912mx41apT2+/26T58++oQTTtAVFRVt1r21X4WHHXZYi8dL68wWt7vuuksPHTpU+/1+vemmm+rPP/+8WVk///yz3nvvvXVBQYEOBAJ67Nix+sUXX2x3f1bHdi666KIWW5/rz5E5c+ZkHK9ddtlFv/HGG3rs2LE6EAjoG264QWvdsXNF64631NZ/zp9//nm9/vrra7/fr0eNGqVff/31ZssuWLBAH3HEEbpXr17p5e677770/PrzsOnfAw88oG+66SZtGEbGeXHttddqQJ9++unpabZt6+zsbH3OOeekp9XW1uozzjhD9+/fX/v9fj18+HB9zTXXNGsRqN+XRx99VI8aNUpblqWff/75FltqXdfVxxxzjPb5fPrZZ59t8di0tj/171UsFtMXXnihHjZsmPb7/bp///767LPP1rFYLKOcVf18d9W5U1FRoU899dT0cRw2bJj+z3/+0+wOzxNPPKE32WQTnZ2drXNycvQGG2ygb7zxxhaPUb2NN95Y77nnnhnTNthgAw1ktGw9+eSTGtA//fRTi/vQ1nGoX/bDDz/Up59+ui4uLtbhcFjvscceuqysrM36aa31TjvtpC3L0n/88Ue7y9b73//+p/fZZx89YMCA9Ht82mmn6UgkkrFcZ64v7R3fjlzPWjonOvrdUH+OTJ8+XW+22WY6EAjoIUOG6Iceeqjd49HZ78Z3331Xb7311jocDuu8vDy92267pd/7ei2dx1988YXeaaeddFFRkQ4Gg3rw4MH6iCOOyFjPcRx9ww036FGjRulAIKB79eqljz32WF1eXt7ufrz33nsa0B988EGry0ybNq3F6+prr72W3qfs7Gy988476x9++CFjmcWLF+vDDz9c9+vXT/v9ft27d2+92267deg8b01nY7J4PK4vuOACvckmm+jc3FwdDof11ltvrd977730MvXvZ2vX52+//VYfdthhesiQIToQCOjS0lJ9xBFH6OXLl7dYj8LCQn3KKae0uR9NrdRPs8GDB7PlllvyxBNPMGXKFABef/11qqqqOOCAA7j55ps7Vd7AgQOZOHEi77//PtXV1eTm5qbnPfbYY+y11174/X4OPPBA7rjjDr744gs222yzNsvcf//9OfTQQ5stO2/ePD799FOuueaaVte9+OKLufLKKzn66KPZfPPNqa6uZsaMGXz11Vcr1Qn8pptuYrfdduOggw4ikUjw5JNPsu+++/LKK6+wyy67dLicbbbZhkceeSRj2rx58/jXv/5Fr1690tPuuOMO1l9/fXbbbTcsy+Lll1/mhBNOwHVdTjzxRABuvPFGTj75ZLKzs/m///s/AEpLS1vd9oMPPsgRRxzBZpttxpVXXsnSpUu56aab+Oijj/j6668zWkwdx2Hy5MmMGzeOa6+9lnfeeYfrrruOYcOGcfzxx7e5jxdffDGXXHIJkyZN4vjjj+fXX39Nv+cfffQRPp+PG2+8kYcffpjnn3+eO+64g+zsbEaPHt1ieccddxyLFi3i7bffbnbs6j3++OPU1NRw3HHHoZTi6quvZq+99mL27Nn4fD4AfvzxR8aPH0+/fv0477zzyMrK4umnn2aPPfbg2WefZc8992xzv9bkdlry66+/cuCBB3LcccdxzDHHsN566wEdO1c668MPP+S5557jhBNOICcnh5tvvpm9996b+fPnU1RUBMDSpUvZYostUEpx0kknUVJSwuuvv85RRx1FdXU1p512GiNHjuTSSy/lwgsv5Nhjj2XChAkAbLXVVlRVVeG6Lh9++GG6//706dMxDIPp06en6/L1119TW1vLNttsA3gtjbvtthvvv/8+Rx11FGPGjOHNN9/k7LPPZuHChdxwww0Z+/Lee+/x9NNPc9JJJ1FcXMzgwYOb7a/jOBx55JE89dRTPP/8861+pkeOHMkjjzzC6aefTv/+/TnzzDMBKCkpwXVddtttNz788EOOPfZYRo4cyffff88NN9zAb7/9xgsvvJAuZ3V8vtvS0rkTiUSYOHEiCxcu5LjjjmPgwIF8/PHHnH/++SxevJgbb7wRgLfffpsDDzyQHXbYgauuugqAn3/+mY8++ohTTz211W1OmDCBJ554Iv26vLycH3/8Mf3+1n/ep0+fTklJCSNHjmyxnI4ch5NPPpmCggIuuugi5s6dy4033shJJ53EU0891Wr9IpEI7733Httuuy39+/dv/yCmTJs2jUgkwvHHH09RURGff/45t9xyCwsWLGDatGkdLqdeR47vyl7POvPd8Pvvv7PPPvtw1FFHcdhhh3H//fdz+OGHM3bsWNZff/1296Mj343vvPMOU6ZMYejQoVx88cVEo1FuueUWxo8fz1dffdXiZxO8OyM77bQTJSUlnHfeeeTn5zN37lyee+65jOWOO+649HXulFNOYc6cOdx66618/fXX6WtPaz7++GOUUmy88cbt7mtjjzzyCIcddhiTJ0/mqquuIhKJcMcdd7D11lvz9ddfp/dp77335scff+Tkk09m8ODBlJWV8fbbbzN//nwGDx7cpZ93aDkmq66u5t577+XAAw/kmGOOoaamhvvuu4/Jkyfz+eefM2bMGEpKSrjjjjs4/vjj2XPPPdlrr70A0p/Xt99+m9mzZ3PEEUfQu3dvfvzxR+6++25+/PFHPv3002YPK26yySZ89NFHnat8ZyLgxn2Qbr31Vp2Tk5P+hbnvvvvq7bbbTmutO91Sq7XXH4Umv8JnzJihAf32229rrb3WkP79++tTTz213bpWVVXpQCCgzzzzzIzpV199tVZK6Xnz5qWnNW0h3WijjZrVv6nO/JJu+is8kUjoDTbYQG+//fYZ09trqW0qGo3qsWPH6r59++rFixe3uj2ttZ48ebIeOnRoxrTW+uA03W4ikdC9evXSG2ywQUa/q1deeUUD+sILL0xPq28ZvfTSSzPK3HjjjTNax1tSVlam/X6/3mmnnTJae2699VYN6Pvvvz89rb5lYdmyZW2WqXX7fWqLiooyfo2/+OKLGtAvv/xyetoOO+ygN9xww4xWM9d19VZbbdXu3YPVsZ3OtrYB+o033mi2fEfPlc601Pr9fv3777+np3377bca0Lfcckt62lFHHaX79OnT7Bf6AQccoPPy8tL1aq1PreM4Ojc3N90C67quLioq0vvuu682TVPX1NRorbW+/vrrM1p0X3jhBQ3oyy+/PKO8ffbZRyulMuoNaMMw9I8//pixbOPWpWQyqffff38dCoX0m2++2e7x0brl78dHHnlEG4ahp0+fnjH9zjvv1ID+6KOP0tNW9fPdFefOZZddprOysvRvv/2WMf28887Tpmnq+fPna6297/Xc3NxO9yutb9Wqb4V76aWXdCAQ0Lvttpvef//908uNHj06o0W3pX1or0/tpEmTMlrpTz/9dG2apq6srGy1fvXn9GmnndZs3ooVK/SyZcvSf/F4PD2vpffuyiuvbHZN6uj1pSPHtyPXs5bOiY6eZ/XnyP/+97/0tLKyshavv0115rtxzJgxulevXnrFihXpad9++602DEMfeuih6WlNz4Hnn3++3b7T06dP14B+7LHHMqa/8cYbLU5v6uCDD9ZFRUVtLtO0pbampkbn5+frY445JmO5JUuW6Ly8vPT0ioqKDvXhX5k+tZ2JyWzbzjiX6+tWWlqqjzzyyPS0tvrUtnROPfHEE83On3rHHnusDoVCHd0lrbXWK53Sa7/99iMajfLKK69QU1PDK6+8wt///veVLY7s7GwAampq0tMee+wxSktL2W677QDvab3999+fJ598Esdx2iwvNzeXKVOm8PTTT6O1Tk9/6qmn2GKLLRg4cGCr6+bn5/Pjjz8yc+bMld6fxhr3P6uoqKCqqooJEybw1VdfrVK5J5xwAt9//z3PPvssvXv3bnF7VVVVLF++nIkTJzJ79myqqqo6vZ0ZM2ZQVlbGCSeckNHXdpdddmHEiBG8+uqrzdZp3LcIvJaX9p4Efuedd0gkEpx22mkYRsOpecwxx5Cbm9vidrrC/vvvT0FBQUZdgXR9y8vLee+999hvv/2oqalh+fLlLF++nBUrVjB58mRmzpzJwoUL15rttGTIkCFMnjy52fSuPlcAJk2axLBhw9KvR48eTW5ubno/tdY8++yzTJ06Fa11ej+XL1/O5MmTqaqqavezYRgGW221Ff/73/8Ar3VqxYoVnHfeeWit+eSTTwCvJW+DDTZI30l47bXXME2TU045JaO8M888E601r7/+esb0iRMnttr/NZFIpO+4vPbaa+y0004dP0hNTJs2jZEjRzJixIiM41Hfl+z9999PL7s63rO2tHTuTJs2jQkTJlBQUJBR30mTJuE4Tvp9yc/Pp66ujrfffrtT26z/bNSXM336dDbbbDN23HHHdEt8ZWUlP/zwQ3rZlXXsscdmtBBNmDABx3GYN29eq+tUV1cDDdetxoYOHUpJSUn676WXXkrPa/ze1dXVsXz5crbaaiu01nz99dedrntHju/KXs86c56NGjUq430oKSlhvfXW63D2h/a+GxcvXsw333zD4YcfTmFhYXq50aNHs+OOO/Laa6+1Wnb9Z/+VV14hmUy2uMy0adPIy8tjxx13zDifx44dS3Z2dsbnryUrVqzIqH9HvP3221RWVnLggQdmbNM0TcaNG5feZigUwu/388EHH1BRUdGpbayKpjGZaZr4/X7Ae76gvLwc27bZdNNNOxzLND6nYrEYy5cvZ4sttgBosYyCggKi0SiRSKTD9V7poLakpIRJkybx+OOP89xzz+E4Dvvss8/KFkdtbS1AurO94zg8+eSTbLfddsyZM4fff/+d33//nXHjxrF06VLefffddsvcf//9+eOPP9IXuFmzZvHll1+y//77t7nepZdeSmVlJcOHD2fDDTfk7LPP5rvvvlvpfXvllVfYYostCAaDFBYWppvoV+UCdNddd/HAAw9wyy23pE+Keh999BGTJk0iKyuL/Px8SkpK0mlGVmab9V/u9besGxsxYkSzL/9gMEhJSUnGtIKCgnY/kK1tx+/3M3To0DYvMqui6Q+c+i+n+vr+/vvvaK254IILMi5WJSUl6YcW6x9cWxu205IhQ4a0OL2rzxVovp+Q+f4vW7aMyspK7r777mb7ecQRRwAd288JEybw5ZdfEo1GmT59On369GGTTTZho402Sgc+H374YcbFdt68efTt27fZQz31t6+bnmOtHTeAK6+8khdeeIFnnnlmlR/8mDlzJj/++GOz4zF8+HAg83isjvesLS0dg5kzZ/LGG280q++kSZMy6nvCCScwfPhwpkyZQv/+/TnyyCN544032t1maWkp6667bvp9nD59OhMmTGCbbbZh0aJFzJ49m48++gjXdVc5qG3vc9mS+vOn/rrV2Isvvsjbb7/dYh7j+fPnpwOz7OxsSkpKmDhxIrBy711Hju/KXs86c56195lvT3vvQVvXoJEjR7J8+XLq6upaLHvixInsvffeXHLJJRQXF7P77rvzwAMPZORAnTlzJlVVVfTq1avZOV1bW9uh76PGjWcdUf8jY/vtt2+2zbfeeiu9zUAgwFVXXcXrr79OaWkp22yzDVdffTVLlizp1PY6q2lMBvDQQw8xevRogsEgRUVFlJSU8Oqrr3b43C0vL+fUU0+ltLSUUChESUlJ+vulpTLqj2lnciiv0uOOf//73znmmGNYsmQJU6ZMWaUn0X/44QdM00zv4HvvvcfixYt58sknefLJJ5st/9hjj7XbMjJ16lTC4TBPP/00W221FU8//TSGYbDvvvu2ud4222zDrFmzePHFF3nrrbe49957ueGGG7jzzjs5+uijAe8gt3QSN21Bnj59OrvtthvbbLMNt99+O3369MHn8/HAAw/w+OOPt1mP1nz++eeceuqpHH300Rx77LEZ82bNmsUOO+zAiBEjuP766xkwYAB+v5/XXnuNG264Add1V2qbnbGmnzxdVa3Vt/79rT9mZ511VoutnQDrrLPOGt1Oax/y1u5gtPS0+uo6Vzq6nwcffDCHHXZYi8u21ke6sa233ppkMsknn3ySDnrAC3anT5/OL7/8wrJly1Yp6GnrKf/JkyfzxhtvcPXVV7PtttuuUsYQ13XZcMMNuf7661ucP2DAAKBr3rOuOHdc12XHHXfknHPOaXGd+mC8V69efPPNN7z55pu8/vrrvP766zzwwAMceuihPPTQQ23Wc+utt+bdd98lGo3y5ZdfcuGFF6Zb3adPn87PP/9MdnZ2p/sxNtXe+dqSddZZB8uy+OGHH5rNqw9Sm2YTcByHHXfckfLycs4991xGjBhBVlYWCxcu5PDDD8947zp6fenI8e3I9aypzp5nK3MMu3L9tiileOaZZ/j00095+eWXefPNNznyyCO57rrr+PTTT8nOzsZ1XXr16sVjjz3WYhlNG2maKioq6nQrav0xfOSRRzLutNZrfP6cdtppTJ06lRdeeIE333yTCy64gCuvvJL33ntvlc//1jSNyR599FEOP/xw9thjD84++2x69eqFaZpceeWVzJo1q0Nl7rfffnz88cecffbZjBkzJn3s//a3v7X43VVRUUE4HO5UtpVVCmr33HNPjjvuOD799NM2O9W3Z/78+fz3v/9lyy23TP8qeOyxx+jVqxe33XZbs+Wfe+45nn/+ee688842dzYrK4tdd92VadOmcf311/PUU08xYcIE+vbt226dCgsLOeKIIzjiiCPSD5pcfPHF6S+BgoKCFm+tNG3pefbZZwkGg7z55psZqcMeeOCBduvQkmXLlrHPPvswZsyYFo/Nyy+/TDwe56WXXsr49dvS7ZOO/voZNGgQ4D0w0jS1xq+//pqev6oab2fo0KHp6YlEgjlz5qRbgTprVUfKqa+Lz+db6Tp09XbqWzIqKyszfkx2pjW7M+dKVyopKSEnJwfHcdrdz7beu8033xy/38/06dOZPn06Z599NuBdxO+555703Zz6h8TAO8feeecdampqMlogfvnll/T8jtpiiy34xz/+wa677sq+++7L888/v9JpkYYNG8a3337LDjvs0OY+d8XnuyvOnWHDhlFbW9uhz4Pf72fq1KlMnToV13U54YQTuOuuu7jgggva/DE4YcIEHnjggXR3s6222grDMNh6663TQe1WW23V7o/o1TFSVlZWFttuuy3//e9/WbhwIf369Wt3ne+//57ffvuNhx56iEMPPTQ9vaWuAx29vkDHjm9717Omuuu7oTWNrw1N/fLLLxQXF5OVldVmGVtssQVbbLEFV1xxBY8//jgHHXQQTz75JEcffTTDhg3jnXfeYfz48SuVrm7EiBE89thjVFVVkZeX16F16rto9erVq0Ofo2HDhnHmmWdy5plnMnPmTMaMGcN1113Ho48+CnTted5STPbMM88wdOhQnnvuuYxtNU2x2lo9KioqePfdd7nkkku48MIL09Pb6hYzZ86cVh8Cbc0qDZObnZ3NHXfcwcUXX8zUqVNXqozy8nIOPPBAHMdJP7UXjUZ57rnn2HXXXdlnn32a/Z100knU1NRk9FVqzf7778+iRYu49957+fbbb9vtegBe/5im+7nOOutk3K4YNmxYuiWo3rffftvsST3TNFFKZfzCnjt3bsbTzB3lOA4HHHAAiUSCZ599Nt2/pen2IPMXblVVVYtBdFZWFpWVle1ud9NNN6VXr17ceeedGcfg9ddf5+eff+5UBoe2TJo0Cb/fz80335xR//vuu4+qqqqV3k79l11H9rUlvXr1Ytttt+Wuu+5i8eLFzeY3PgdWRWe2U/+FWN/nELw+eu21fjXWmXOlK5mmyd57782zzz7bYktX4/1s670LBoNsttlmPPHEE8yfPz+jpTYajXLzzTczbNgw+vTpk15n5513xnEcbr311oyybrjhBpRS6WwuHTVp0iSefPJJ3njjDQ455JCVbt3eb7/9WLhwIffcc0+zedFoNH1rtSs+311x7uy333588sknvPnmm83mVVZWYts20Py71DCMdCt8e0Ng1r+fV111FaNHj04HCxMmTODdd99lxowZHWqF7+j3XGddeOGFOI7DwQcf3GI3hKatjC29d1prbrrppmbrdvT60pHj25HrWVPd9d3Qmj59+jBmzBgeeuihjPfyhx9+4K233mozl2pFRUWz92LMmDFAwzHab7/9cByHyy67rNn6tm23e/5sueWWaK358ssvO7ZDeHd6cnNz+fe//91iX9/69z4SiRCLxTLmDRs2jJycnIz3sKvO85ZiMmj5nPjss8/S3TvrhcNhoPl3dkvrA+lMKS356quv2GqrrTpV/1XOttza7cOW/Pbbbzz66KNoramurubbb79l2rRp1NbWcv311/O3v/0NgJdeeomamhp22223FsvZYostKCkp4bHHHms3SN15553JycnhrLPOSl9M2zNq1Ci23XZbxo4dS2FhITNmzOCZZ57hpJNOSi9z5JFHcv311zN58mSOOuooysrKuPPOO1l//fXTDxGA9zBV/b79/e9/p6ysjNtuu4111lmn0/1077zzTt577z3+8Y9/NPvFXFpayo477shOO+2U/uV+3HHHUVtbyz333EOvXr2aBUpjx47ljjvu4PLLL2edddahV69eLSY59vl8XHXVVRxxxBFMnDiRAw88MJ3Sa/DgwZx++umd2o/WlJSUcP7553PJJZfwt7/9jd12241ff/2V22+/nc0226xZkuiOGjt2LACnnHIKkydPxjRNDjjggE6Vcdttt7H11luz4YYbcswxxzB06FCWLl3KJ598woIFC/j2229Xqm4ru52ddtqJgQMHctRRR3H22Wdjmib3338/JSUlzJ8/v0Pb6sy50tX+85//8P777zNu3DiOOeYYRo0aRXl5OV999RXvvPMO5eXlgPflnZ+fz5133klOTg5ZWVmMGzcufUtswoQJ/Oc//yEvL48NN9wQ8H4crLfeevz6668cfvjhGdudOnUq2223Hf/3f//H3Llz2WijjXjrrbd48cUXOe200zIecOuoPfbYI33LNzc3d6WGdjzkkEN4+umn05/t8ePH4zgOv/zyC08//TRvvvkmm266aZd8vrvi3Dn77LN56aWX2HXXXdOpm+rq6vj+++955plnmDt3LsXFxRx99NGUl5ez/fbb079/f+bNm8ctt9zCmDFj2m2BWWeddejduze//vorJ598cnr6Nttsw7nnngvQoaC2o99znTVhwgRuvfVWTj75ZNZdd10OOuggRowYQSKR4LfffuOxxx7D7/enby2PGDGCYcOGcdZZZ7Fw4UJyc3N59tlnW7xt3dHrS0eOb0euZ01153dDa6655hqmTJnClltuyVFHHZVO6ZWXl9fmULMPPfQQt99+O3vuuSfDhg2jpqaGe+65h9zc3HQwPHHiRI477jiuvPJKvvnmG3baaSd8Ph8zZ85k2rRp3HTTTW0+M7T11ltTVFTEO++80+FzKzc3lzvuuINDDjmETTbZhAMOOCD9GXz11VcZP348t956K7/99hs77LAD++23H6NGjcKyLJ5//nmWLl2acR1bmfO8ozEZwK677spzzz3HnnvuyS677MKcOXO48847GTVqVMaPulAoxKhRo3jqqacYPnw4hYWFbLDBBmywwQbp/sDJZJJ+/frx1ltvMWfOnBbr9uWXX1JeXs7uu+/eoeOZ1plUCR0dVrC1lF71f4Zh6Pz8fL3xxhvrU089tVnKnKlTp+pgMKjr6upa3cbhhx+ufT5fq0l7GzvooIPSqVtaq2/jVFqXX3653nzzzXV+fr4OhUJ6xIgR+oorrmg2lO6jjz6aThY9ZswY/eabb7aY0uu+++7T6667rg4EAnrEiBH6gQceaDGFSnspverXaemvcSqPl156SY8ePTqdZPqqq67S999/f7NUN0uWLNG77LKLzsnJySijtVRiTz31lN54443TCbzbGnyhqdbSCLXk1ltv1SNGjNA+n0+Xlpbq448/PiPJfuPyOpLSy7ZtffLJJ+uSkhKtlErXo63hTmkhJcmsWbP0oYceqnv37q19Pp/u16+f3nXXXfUzzzzT5vZX13a+/PJLPW7cOO33+/XAgQP19ddf32YC/ZZ09Fzp7OALTTU9t7XWeunSpfrEE0/UAwYM0D6fT/fu3VvvsMMO+u67785Y7sUXX0wPfkCT9F6vvvqqBvSUKVMy1jn66KM1kDGYQ72amhp9+umn6759+2qfz6fXXXfdNgdfaKq19/P222/XgD7rrLNaPDaNj0VL70cikdBXXXWVXn/99XUgENAFBQV67Nix+pJLLtFVVVXp5Vb1861115w7NTU1+vzzz9frrLOO9vv9uri4WG+11Vb62muvTX9XPvPMM3qnnXZKD7AxcOBAfdxxx2WkIGzLvvvuqwH91FNPZRyncDis/X5/s6FdW9qH1o5Da9ez9lIpNvX111/rQw89VA8cOFD7/X6dlZWlR48erc8888yMFHFaa/3TTz/pSZMm6ezsbF1cXKyPOeaYdHqwpmnrOnJ96cjx7cj1rKXv546eZ62dIx35zujsd+M777yjx48fr0OhkM7NzdVTp05td/CFr776Sh944IF64MCB6UEVdt11Vz1jxoxm27z77rv12LFjdSgU0jk5OXrDDTfU55xzjl60aFGb+6G11qeccopeZ511Wp3f2uAL77//vp48ebLOy8vTwWBQDxs2TB9++OHp+i1fvlyfeOKJesSIETorK0vn5eXpcePG6aeffjqjnLY+7y3pTEymtZc28d///rceNGiQDgQCeuONN9avvPJKizHPxx9/rMeOHav9fn/G+7hgwQK955576vz8fJ2Xl6f33XdfvWjRohbf63PPPVcPHDiw08PkqtTOCSGEEEKIlTB79mxGjBjB66+/zg477NDd1enR4vE4gwcP5rzzzmtzkJaWrFKfWiGEEEKIv7qhQ4dy1FFH8Z///Ke7q9LjPfDAA/h8vmb57jtCWmqFEEIIIUSPJy21QgghhBCix5OgVgghhBBC9HgS1AohhBBCiB5PglohhBBCCNHjrfLgC6JruK7LokWLyMnJWS3DOgohhBCi62mtqampoW/fvhiGtBV2Jwlq1xKLFi1iwIAB3V0NIYQQQqyEP/74g/79+3d3Nf7SJKhdS+Tk5ADehyI3N7ebayOEEEKIjqiurmbAgAHp67joPhLUriXquxzk5uZKUCuEEEL0MNJ1sPtJ5w8hhBBCCNHjSVArhBBCCCF6PAlqhRBCCCFEjydBrRBCCCGE6PEkqBVCCCGEED2eBLVCCCGEEKLHk6BWCCGEEEL0eBLUCiGEEEKIHk+CWiGEEEII0eNJUCuEEEIIIXo8CWqFEEIIIUSPJ0GtEOIvJRnZnUTtCOzEp91dFSGEEF3I6u4KCCHEmpKoCWDoBArQsS2x9VNYgf26u1pCCCG6gLTUCiH+EuxkNUon0q8V4CaO6L4KCSGE6FIS1Aoh/iJa+roz13gthBBCrB4S1Aoh/hIsXzZa5aFTrzVgBN7rzioJIYToQhLUCiH+Mvw5lajgXWjrEFSwBsu/aXdXSQghRBeRB8WEEH8plv9Y8B/b3dUQQgjRxaSlVgghhBBC9HgS1AohhBBCiB5PglohhBBCCNHjSVArhBBCCCF6PAlqhRBCCCFEjydBrRBCCCGE6PEkqBVCCCGEED2eBLVCCCGEEKLHk6BWCCGEEEL0eBLUCiGEEEKIHk+CWiGEEEII0eNJUCuEEEIIIXo8CWqFEEIIIUSPJ0GtEEIIIYTo8SSoFUIIIYQQPZ4EtUIIIYQQoseToFYIIYQQQvR4EtQKIYQQQogeT4JaIYQQQgjR40lQK4QQQgghejwJaoUQQgghRI8nQa0QQgghhOjxJKgVQgghhBA9ngS1QgghhBCix5OgVgghhBBC9HgS1HbA//73P6ZOnUrfvn1RSvHCCy9kzNdac+GFF9KnTx9CoRCTJk1i5syZ3VNZIYQQQoi/IAlqO6Curo6NNtqI2267rcX5V199NTfffDN33nknn332GVlZWUyePJlYLLaGayqEEEII8ddkdXcFeoIpU6YwZcqUFudprbnxxhv517/+xe677w7Aww8/TGlpKS+88AIHHHDAmqyqEEIIIcRfkrTUrqI5c+awZMkSJk2alJ6Wl5fHuHHj+OSTT1pdLx6PU11dnfEnhBBCCCFWjgS1q2jJkiUAlJaWZkwvLS1Nz2vJlVdeSV5eXvpvwIABq7WeQgghhBB/ZhLUdpPzzz+fqqqq9N8ff/zR3VUSQgghhOixJKhdRb179wZg6dKlGdOXLl2anteSQCBAbm5uxp8QQgghhFg5EtSuoiFDhtC7d2/efffd9LTq6mo+++wzttxyy26smRBCCCHEX4dkP+iA2tpafv/99/TrOXPm8M0331BYWMjAgQM57bTTuPzyy1l33XUZMmQIF1xwAX379mWPPfbovkoLIYQQQvyFSFDbATNmzGC77bZLvz7jjDMAOOyww3jwwQc555xzqKur49hjj6WyspKtt96aN954g2Aw2F1VFkIIIYT4S1Faa93dlRBel4W8vDyqqqqkf60QQgjRQ8j1e+0hfWqFEEIIIUSPJ0GtEEIIIYTo8SSoFUIIIYQQPZ4EtUIIIYQQoseToFYIIYQQQvR4EtQKIYQQQogeT4JaIYQQQgjR40lQK4QQQgghejwJaoUQQgghRI8nQa0QQgghhOjxJKgVQgghhBA9ngS1QgghhBCix5OgVgghhBBC9HgS1AohhBBCiB5PglohhBBCCNHjSVArhBBCCCF6PAlqhRBCCCFEjydBrRBCCCGE6PEkqBVCCCGEED2eBLVCCCGEEKLHk6BWCCGEEEL0eBLUCiGEEEKIHk+CWiGEEEII0eNJUCuEEEIIIXo8CWqFEEIIIUSPJ0GtEEIIIYTo8SSoFUIIIYQQPZ4EtUIIIYQQoseToFYIIYQQQvR4EtQKIYQQQogeT4JaIYQQQgjR40lQK4QQQgghejwJaoUQQgghRI8nQa0QQgghhOjxJKgVQgghhBA9ngS1QgghhBCix5OgVgghhBBC9HgS1AohhBBCiB5PglohhBBCCNHjSVArhBBCCCF6PAlqhRCiHQmqcXG6uxpiTVu6L8xW3t+CMd1dGyFEO6zuroAQQqytapjFDH0QlnJwtEE2G7Cpuq+7qyXWhMgXUPNMw+vYt7DibCi6pvvqJIRok7TUCiFEK2a4h+BTNgYaSznU8mN3V6lbaDQr2JUl5LOEQiJM6+4qrX6VZzafVnvvmq+HEKLDJKgVQohWaKXT/1eAqWxq+a37KtRNqjmPJB+mXrlUczRJ/ujWOq12Wac0nxaYsubrIYToMAlqhRCiFT43lPqfF9yGifCHntx9FeomcV5oMkVRztbdUZU1J28f8A/3fs0owCqA3o93d62EEG2QoFYIIVqxtfkuAR0hSJQsaggRQeESj9/V3VVbo6ymAazWKLeieyqzJg38FYZp729weXfXRgjRDglqhRCiFQmWk60ShIkQJI6hvRZbq+7hbq7ZmlXIfeC6GdNMJ9lNtRFCiJZJUCuEEC3QaH5lG5KojOlFNRUYakA31ar75CXG4DouNWRRqfIpt4pYxJbdXS0hhEiToFYIIVoQ42fABQySBEhoi2AsSXE0D5VzRXdXb42z3c+IGVk4WIDCUSZ1ej4x3u7uqgkhBCBBrRBCtKiG50Fr7w9Amdi+Aahec8Aa1r2V6waucnFV40uGQmMQ1e90W52EEKIxCWqFEKIFBg5ZydqGCdplkLMLqL/mmDVJ31jCdgRQ6UDfwMafWNC9FRNCiBQJaoUQogW5HEJYWaxXM5P1qmcyojaC5Tuhu6vVbfI4iaJEJb1jS8izqyiJlxHSMfzxp9D2R91dPSGEkKBWCCFa4mcIvXzfYGc/jcp6Hl/2bJRRnJ6vdYKoczI1zhAizh64uqxD5Wp3Dtr5Hq3d9hdeixg6DoCFjWG5JAN+TBzAxYn/u3srJ4QQSFArhBCtMikky9gXv7k7SgUy5iX0zSS5B80ibN4i5p7cbnl2VW/ciqHo8tG4FSG0tjtfKa1hzr7wQyHMPbDz668kw9oXFx91/jC6PiOEYVAVCECTYyOEEN1BglohhFgJLr/R8BXq4PJzm8vbsdtRyaWYCVA2mPEEbsW4zm/454FQ+wxQATVPwk+DO1/GSlAql6pADlopUF5QqwHHssD6642yJoRY+0hQK4QQK8FSuwIOYKVe79X2CvbrGI73X0Vq4F37K7Su6dyGnSYPZjnzOrf+SkryPUnDING4VVaDPx5Hx05Eu4vWSD2EEKI1EtQKIcRK8KndCBnP41fHElS3E1AXtr1C4EK0SgWzKdoA7f7UuQ3rdl6vJkm+RCtFAh9RQsQIECFMjp1E4aDd79dMRYQQohUS1AohxEryqZ0JGjfgN45Cqba/Ti3fZrhZZ6JN0ApcC5xQEGV0Mudt3mFNXh/SyVqvHB8bY+CgMbC1hY2fJD4SykLjQxkbAqD1Uhz3bVy9cI3USwgh6klQK4QQa4iVdS0UvU8yfzxOznh8wTdQqrj9FRsb9CCsMweKr4B1Z8Ogh1dLXZvysRE5XEESH44ySWLhKIsaX5hY+FKU0RfH/ZpIYjix5N+IJtbFcT9YI3UTK89evifubAN7UQnaiXd3dYRYJUprvYZuXom2VFdXk5eXR1VVFbm5ud1dHSFEB7luDUn9KIpB+M2du7s6Xc52XiHh/B8KE591JXOMG0gwC28IYW+QCoMgw/mRePIwHPdpvL7GBobajoDvDlz3JwxjMwzVuzt3RTRhL1gPc+lv9bkscHNAreuilGpzPZFJrt9rj7/m0DhCCNEFbOcP6liX+o6ttY5JvrEcQ4W7t2JdxNULiNt7Aw4aiCf3Zoj/Bxar66jhFVQquZcmATgo/Bnra11BNDEKsIEcQr7pGKluCqJ7aa0xV/yWMU3VgnZno8y/3jDQ4s9Buh8IIcRKirJXOrBTgIVDuduru6vVZbSehReQ6tRfFKUr6cvlBBiYbuEr5DgUfnzm+ShKUlNzgRheqy1AhKRzyxqtv2idy28ZDxmm/6ukpVH0XNJSK4QQK0mzvNk0iyQR/Q5hNakT5djEklfgxl/Fr/6GL+vSrqzmSjPUGKAEKAdA0Q9DrYcixGBeJcJHmBQRZlNveWNdQv7f0XoWSg0mltwVrdMJzIBgN+yFaIkiGycMZqOMctoPhlHS+kpCrOWkpVYIIVaSn4u8cK3+0QStMVyNrd/sVDm18Z0wVlxG1rIv8JVdhr2wtKHMxrQGeym4datc945QKo+Q/2Ms80Qs81SC/ukoFQLAJJscJqcD2oZ1QhjGBiiVjd+6Bq/FFhSD8FnnrpF6i/YZqh/OwPPQIcAHBAzU0K+6u1pCrBJ5UGwtIR3NheiZqp0NQf/qjbKlNTgOphpF2P8FEe7BYSkh9sPH6Iz1XDeOG50CznTcpI2/umGeBlSfjyC4VaMVIjB/KtS+B8oP/R+BvP3WzE6uAq0jaBahGIRSvi4p007+StI9CUP1w2fdiWFIC/DK0k4ZJGej/KPB+HP0BV/T5Pq99pCgdi0hHwoheq665GE47qMYkOpnmkMisDNxXse7IWZRzHQshqfXsWs3B/cL70UCrKYDi5W+D+Ftvf87ZbBgDLiLvYg3BpAFI6uhnfy4fzaJ+Dsk9WTSHXrxE/ZXd1nALERnyfV77fHX+jYUQojVIGieiImBwgQUprFXKqDVeA9KJYjxKg6z0ThoXdEQ0AL4vMEY6mmA2jvAWepNqLoJ3CUNC/hBu3XYFQPRNVeCW7u6d3GtYTu7NgpoARLY7svdVZ21y9ITYFYplF3W3TURoltIUCuEEKvIdp4HXJRro9wN8Bs3YjKAhq9YTYTLqNCjqXLXJa4fRDdOf6VAm41e+oG6p2HpHqnV42R8XRtAPljRhaiaf8LyTddYP9vupkk2m2ZQ2A01Wcv8ngs1d4Aug+oLYe6Y7q6REGucBLVCCLEKXL0A27kKf61LuFITqvwWVuQRrP6dQNzFnzQx3TBKJ/G5SZReSEKfRyK8BRD2mmUjYDYezCmBl5sm/rnXTzf3eDDyAW+IXSxQGm/8Awewf4XEO6tl/xz9JTH3dOLuVWgdWS3b6AyTTUgqE8N1MVyXpDKIq/Lurlb3shcDTfqv2N92S1WE6E6S0ksIIVaWU4ueszlGb/AlvEkKwIGQG4V4NLUcoBVJU6ENA9cCM/kRhnEdKrgvqmojaJoeTAGBcd4DaL5h0P9XiH+BrtgN5TZprdSAyuvSXdN6GdHkASSND9O3+239IVlm997q9wWfRccGp3sgBGybGvNowuzVrfXqTtH4LoS6uxJCrAUkqBVCiJWk5+6IGVuM1aRLqwJUHWCBDgIGGLWaUMJrXtWB1EKcjoq/BIH1INIoqDWAZBYMfKFhmlkE4b+hqrcAd3rmBoP7gH9il+5bxD6aOuNzAqqhC6vNW2jtoJTZ5rqrk8NXGI1GDVCA6cag+6rUrbR2UfprtD/1PtmgXVDWoO6umhBrnHQ/6AIXX3wxSqmMvxEjRnR3tYQQq1vsOzRgRbxAIi0JRtRLbK/qvC4DKtWSi+E1vnqjkGlIvAcF14Ob+jpWeIN45f0LzOajkynfll63g/pBvnQ2FE3zCm2BrvwX+g/l/S3duuX8t01UcRGV1kfEzUBDOYBLGNB0Z9KcuHq1YddTf347p9vq0/00/lq8JqrUjygdBvq+3c31EmLNk6C2i6y//vosXrw4/ffhhx92d5WEEKtbYF0vOLVApfq36jjoREPrphEHF+UNphWGxs+HgQKVBW4WFE8D3wTQfSHnH1BwRsvbzDkcdJbXpcEB8loffUzH3oOaK9LD+KrER+jl+7a5SwlmUMttXu0U1Bg52Bgk8OGLWdg1Puwag0Rks3YPz+rhI25a1HcpTpgmQePobqpL91MolE79plGpH0wKaPSDRIi/Cul+0EUsy6J3797dXQ0hRFeL1sKCX6D3UDAfhfhjYA6H7OtRg97BnVWKclwwU4GjbhgUVgN2wMQX96PMaH3zLNoN4DXZ5qDcfeDXDbwVghvAOj+D2ZDrUuvlOMlbgDimdRzKPxL6/Qixd8G3LgQntFp1XX1V85aL2Ktt7m6c1A/yVGuyBmpULlmJOEFneXq/lD2DZPx6fIFWgu/VJFA9G1+NDUAiDDpLg7nBGq3DWkUZKNULrcvSP6SU6g3mwG6tlhDdQVpqu8jMmTPp27cvQ4cO5aCDDmL+/PltLh+Px6murs74E+JPZ/F8mKhgRwU7KXjt391do3Y59gzikYHEI34S5Vuij+oFZ20Gh5bAF6eC/TnEn4Dqg8FXjB50Ok4BuD5IZEO8OBc3ayO0WYwOrY/ljMFwoummWw1gxokUxInkLUMvu6dh47EfoPKJ9EutbZKxbXDsK3Dsa0nENkfrcvANgpwj2wxoAVRw2+YT2wl2FFkNL7TG59j0qS3DdOONlknNjp0PtXe2WV66KDS1zKOct1mmD2KZswHl9hRsvahD6wOQ+BZ/9Ztey6QGfx2YMRdDDel4GWsRx16Ck/yhSd+VlVD8McraGMiBwB7Qe3FXVE+IHkeC2i4wbtw4HnzwQd544w3uuOMO5syZw4QJE6ipaTpEUIMrr7ySvLy89N+AAQPWYI2FWEP2HgT5QAjv9vst/weu0711aoMduxI7thnoP4Ak6v1PoS6VwcB14d76JR2wvcETjOB/MELX4eQNQwcMMKux877D6X8Ohn8KKv4ljZ5r8kbTdcBf42JFNTTNu9oowNF6Nlr/TENfg+W47mcd3h+lytB+vNZhQCsDVTqj5YXrXiBW1pcqfX5q42A5NvnRGhSQbcdwvF7A3mwFKp6AiuMh9r8266HRfM9VzGA/YnpfHPUqjrmAhPUJyxlFUv/esR2yM5dTgC8KhrF5u6tqXYebfBltf9jhPsGuuxA7cS2O/UbH6tdBWmvitUWoyj6YlRuil5skI/e0v2JrrGFQ8hX0qYbC57uuokL0MBLUdoEpU6aw7777Mnr0aCZPnsxrr71GZWUlTz/9dKvrnH/++VRVVaX//vjjjzVYYyHWkPoneeo7dfqAua9CzfsQ+a5bq9aU1pUQ/2dDXQFjbsP/gdTwtIb355sEgFIWRuAMUGG8Xp7eMtr9DiKvNqxXfywcMJJgRSFQCzTOxOUDslIDCbjVqOrnsCpN74GzJIBCqWEd3ynnJ28U3QCoIKjsHcFs/lCV7fxIuXMY5QWxRvG3RqExtZs+JOWhPBwDHAOwwVffeGv/2GY1avidRbxJEcswmj7PpqDGPaJj++MfT9NwVLlBVDtDBWtdg1O3KW50N5zIBNzYme1uynE+IxkbiGOfjZ2YQjJ+BCQ+h7KRsKQYKo8CbXes3o3LdX+lOl6KlSj3cg2nGNFjO/QQnxCiddKndjXIz89n+PDh/P57660PgUCAQEA68os/OYeGjpngNUpWnAYVc7zXfS6Gvhd1R82acxZ4/Ujd1OheGtwNwGzcCLnxOAgMAmMoZP0rY3XDnIpj/4AX9DoY5mSwlkLyZ+84pJ5Q16mgLh3bmUApXjxsAUbQC5YWb4tKfE2qKpgRcHtdjGEM7/g+BaZC8q1Uwbb3ujFto3FYahyEkxNA4WYkUTBcnX7rXBT+WJKqQB6FFbX4Ek5qXy0IbNtmNXQq2NettaMof8vTm7J6o7P+joo87rU+K1AFj7W7mrZfBveXhtfJG9HBy1Aqq9V1nMTpNPxIAdd5CF31FIpUy330ftAxdPILtDsTrcCIhVGlX0Kw5ew32vkWt24slq95dwMvwK0DstvdHyFEyySoXQ1qa2uZNWsWhxxySHdXRYjuNe1XOHA976l/gF1NYE7D/MWXQu/zwOj+H3jKjYENhuV1D9CA3gLsSH+sL4fD8M3h75eC5WtxfdN3KahitPsthrkjpnUQ5OZANJVayQUSoHygU7GdxkRZ64H5kxfc+rYD/xRIfA+JrxvqBoCBGa+DFuIwhzg2dfgpQDVuWg6eiEs1tnsjWiUxzRWY1a+hal4EZxZu8r/U5QdxikJ4CcYMVCqQczFwtIlyQTlgRDSFeEPxKj9efVURFL4MvpFtHttc1qU3EynndfJ1JX7VqIVTQ456vM31GzMKH4PssyD5HSq4M5glHVgr3OS1j/Yvf00T3ypwoxkt+Tr2BK6pvRRagBOIYCweiTEo6Z1ITbiJ2wAHxzDRKrMbjmsYGC29uUKIDpOgtgucddZZTJ06lUGDBrFo0SIuuugiTNPkwAMP7O6qCdG9Bg2H9yvgpwcBDX1zYUGj9EvKgnZuHa8J2l2ANmox4vlou9LLZOB6wa25+2ewZ9+GhRO/QOQlMPtA1kFgePVXysTynZ5ZcNZksEaAnWolTPVcUPjBKEb5N4LCB4FqcKvB2gjq7kOXn5guoiFEdcFq/pBXGR/zDZfgkqCIzRjL5Rj1ecOUIsmDoMoBB8e+CLU81eoLVPTPJpYfwMRFa3AxcTFJKAswydYbYSW+g/iy1IECNwGJLLx+0m4uRmAgLYf5DRQGG3Eh1fwdR1Xi07/hOB9gqAKyzUswmgWd7fBv7P11kLKmgrUX2M8BJkbwDpRq+4eU6b8FO74ZXtJgMCs1qhLvqpmdanHXGt14KC8FTg6o+Ieo0LYtVCTolQXEAwYBXNCglYWV9V2ruYaFEB2jdHdm0f6TOOCAA/jf//7HihUrKCkpYeutt+aKK65g2LCO932rrq4mLy+PqqoqcnNz219BiJ7ITcDvO0PNu4ABA2+Dkn90a5Ucexp24u+AjVFdgK+uwpsRw8shO7KmIdiIfwOLxtJwWzoIhRdC7jnQ2ihbThSq74Cay4EKL6IJbgLxJEQXQnBdKH0GrP7glKMXleAamrpggKzaOIarAR8q+yAovttr6q2X/J13zRNJqobEuOtzFgPYBfAeSEpErYb6ajDLwaqCRMhi2bDmQ+sW8BgBtkBhYpANzhL0ogGAjVsD9kDST2NoYHZgEMXmafTitE4dd5cIy7idOr7ARx+KOIwwHQ9UO0trDXoRqGxUB4cUdt1ytPtf1IKLMGq/b5iRCmwdvJTBGKS72di2gT//ZwxzuPfQX/UNEPsIAlvi5hxAIjIUU9sk/CZJy8Q09iFbPYqSgLbHkuv32kOC2rWEfCjEX4bWEP8NzDzwdX9u53h0COi53gvXwLe0P0Z0PmBC/wch/+CGhZceBJHMW+WuDfQ+EpV9E0o16Q8ZfR3KDwa3Gh3eF81sDPezhj7G9XGMmw+9FoCzAhYPYlFpAa7PaNRw56cPv2DQ6Lsh8R2UbcFbfTfFNUyyqKU/C/BjEGY78rgDgxyS8X1wnecAA7SDb4H30FmyhaDWIEkh/yPARpm7UbsxwYpvcBLg9MncxUozh+WBXgznI3yUtnO0G8znFGp4rdEUxSDuJ5u205R1Oa3bbyH9pQ/YSxpeKyAMdjYYCW/sDG9oY6gKBCn0f4byj4bKq6DiPNJvdMFlxPO2pEYfhU01YeM4crgis8uI6HHk+r326P77fkKIvxalILjeWhHQeuqb2QBD4fY/HNb9DUYszQxoAZwlTVfGLoakeT+J2AZoXdYwQ9uwYj9wKwAbFXkClfzMi2cb9cv0tluJG38dzAFEQ6W4fiMjztIkiPJO5oYjj4BOMrRmPmFdxyjnJ/KcSixdS4TXqcIbOczyP4rpuxbTOg1f7IxUFgWw4jaG3dC31cBBYxJzmmcyiGcVYudSfyc+c/9TLdS6pZltqOW9ZtMqebFTZayS6KcwuwBmmfDHOHCTrS+bd2jmayP1uyQwHicMJIAYuBbk1CZR9s/ecrEPUiukUl9E3yOgtqfYmEOpsZxc/i0BrRBdSIJaIcRfmuW7jvTjBWoQyv8P6gJfUG1NI2Y/i15xNpTtAzV3Qd6pGTlnNaDrewO4f+DYDzaaGQNdS+MVEoFGeV6b1MOp2RenPBfCm2fO1BrLtXGdjzPzqxolgMOw6nlslPwOCxsTl6Abw9AuSbx8tkoFsXxnYPmvJVm0G2Uj8lmxbpjEQMiPVHvl6wRoTbXOIbDiX+BWZtQtpE6jNiuMUwg0jMGAjUGlr5B89sVPv/YPduPdahYEa3z0aXHZ1WLxzqn91BD/HJb+vfVl+1wFxeeDlQ/+LMiZgOrzJWb2Eyirl5eDOQhmVOG3A+Df0lsvsBkNl1kDAuPSRUowK0TXkwfFhBBrjbn6InxL76S4soK434+/32sEA9us1m2a1h4Y5ny0u4CkkcMK1sVvJ1GuSzKqCdQ6XlwSfxbMYZB/GSy/CLRLsohGLa5uQ1dbuxbKXsBVm2Dor7zg14BE2MTWEK6xSZgGfsfLAevaXkYBbdXiS75Mrs6jOmyhFBjaJZysw+AGkmYx/uSmEH8XfBtD8G8Qfx1lZobIhnawVPO0UlEeQlsKF4UZ9/Id5EbqWBosxsWgV7ScYLwWIs9DdkPu2ABTMa1PsUu+wWIzlBNB61psM8gQFSDE6E4fdz/9STC30et1KOa4TpfTIdoGezaYvcFI3R52qzKXiX/Vdhm9/+39NaIAM/tndOJ1VORNlD8AhSc0PNCX/y/QCYj91xv9raD19HUazSLuYxkvE6AfQ7mAwJoM8oX4E5CgVgixVqhjNsnKBxm83LuF77eTRBZMhvxiyH0afFu2suKrEP8OwpMguFnGLI1LNRcS5X7AIIsTyOGf3kx7FtTeAyqEyj4ZZW5KNX0JJBKY2vF6CFg6MzmDMwuytoOs3eHnYzB/+Qx7DF5+2wowQxPAisHnW0Ht97iFEBtuogA7aKBNheNqXAsiWT4qfAECkQT5FTEapxAIO1VU2v3wU0WWG0m39dnJy/Evr2tYMLAz9KnEsEtxzYbcpyF3OFnGtGaHysCLwg2t07F4yIkzuG4haDAi9Qs2z5VqsSEWG3ovzPppK68f1/EH/8BmGTlMoj83YeBlJLBZQYK5+OylGPZ0lDkaZR2wcg9TOcuhbCLYP3kDZBS/DMHtwb8JJBqNrhaatFL7oVQhKnAQBA5qYaYfCv/ToXLKeZs/uA2AGAv5TZ/AyLo5oKsxAv+H4T+q/ULsWWDPBf9mDcG7EH8hEtQKIdYKZe5tBOPxjAHI/IkkuIugen8omt98pcqbYfmpgAHl/4K+b0N4+/TsWq4jyq3p13VcjSKLLGcfWLoxuKm8q9FnofRrNHUYqRG0oGGghAxONVRPgZxazM/B+B10UKHqgqiDR0Llh5B6Ut7o52X8SgSN1Pi42ksDZULATqCU9vpn1o82Bg3PFKlTqeZKryVXKTQKy46kj48GbPUadqw3PjeOY3iRpj/qYmWdC75Bzaqezbkk9SdAqlWycWERMGwgtKf3t5qF2YjhfIwm2ZCCDFjMpdSQGjLW1JTGV5CViGEE5qAC/+z8hmpvAftX7/86ChUnQ58fof90WLIfxL+G0I7Q6+Yu2KuVF2EW3i0BF3CIMhvcHwAXN3Y0yhyLMse0XkDdo1B+mLe+2Q96fQZW57qECNHTSZ9aIUT3c+vot/wJKnO8IVxdvDirLivovXKXoLGp5S4qOYcYH3jrVd9dXwDeeKuPZBQb55Vmm4ryDNWJ3VBujTeCFi4kvwd7DkbSxVVGekRbTEXSX/9/vGaAmmNA10BYw6ZeY5xhbYT626sQyAdfkbehAV7+/UDUwR9zMZNeTlIr7njlK43PsfEbI1D5l2PEcvG+kv0YgcvJsc4mZF6Boyzi/hBxf5BoOISb+taOZysSuQauGcf2KQzlEKzTWHYe+JtnENBa49gvk103g5xoFI2BWz+6mf8crNIa6LsYip/z8gevAQqVEdA61FDD3bgY3p+yKAsXogE32f7IYS3SscYvvMAWvJHb+r4EQ/6A3vdDO3lrV7d8tiQ1dhxoRV6yksYjmmn3t7YLqDo/vbx2FuOs2AU9rwD+GAl101dTrYVYu0hLrRCi+yU/xu8sZkAsm58HDaWgthqlHEqNVM7Y4NFU8k8i+n5AUcf9FOvHCVgDvcEQvIyhYA3IKNZiPWy+zZhmUETM+p6Mm7MqjFLZOI6BaSrAwNAuGjC06fVZVakAw13UsF4fA/qVQmnD6F/kbgxDLwDfZV7ReIEtQCSnLyZLcUwHhUIxmIDvE1QgjMr5v3QrQ0Q/QLXug0OcgM+Pg0GcABhgF/votbQKpz7pf6oFWANuaDxG6F6v72gjWmsi7v446kVv0ATtIxBJgmGiQl9imvUpvLK9vqfJmeDfFMyi9t+7LmSzNDWUbrqtHJTCNnz4jHVXrtDsf0Dd/eAu98rNuyw9S+tKHPtW0HWY1tEoNdRLw2bPhewjvcB3DclhDCO5kxW8hZ/e9ErcDizw6kwWymwv1ZkFKFxDE8kBHfgJDfiWziQwYxuMnEmwydurezeE6FYS1Aohup/hPRCTn6glL1ELWKiiTyH5X+8efmBfYnr9VKzj3cKPRk8gUPw2LNkbEj9CeCd0/pkk3QfRLMBSe5KrbiDBR7gsBK0xdR5Z8a9IqghV+WGya2JopTAKHsK0ehOMlFCdU0XIjnhdA2yD7JzzoeY60KkAGwW+8ZCcAUYvKHii+f6scylULUcn7sA1QZveen69Oa75sveAkasxkwtR8b/h+qeigmfgqjIq3Qm4aimW8hqHNRDX/lSfDEU8ECDiD6DsBNpK5VhVCpTGCF8I5nBc5zO0no9hbodSxWhm4TROl6UUdsDESjpoFkJ9XtrI87BiX8ABVQiln4Bv+Gp4w1vmZyAKjU73iwClHeLWuiT84wkxjyoexKGMHPYhi+3aLdNJvIQO20ABRug/GEGv76vWLsnY9mj9rTdSWvxGrEgc5ab6G9eeCIWfQnBcW8V3qTw2J4/NQYHO2gc3fiNQg+E7FmW089BYwS2wfG8SYRs3YKQz1SX7GhhRjX/RO7gVB2HkXdt+WUL0UDL4wlpCkjeLv7y6G6Hm/wA/5N0BoQMyZi9ztiFh/JhOlJ9fXktWzvfga2jBizonkOQ+vHDQR5bxKYYagcsCtP0BTsLLN6pR2IZBVbCAXC4gh1O86W41FYlJJIzf8dsOuc6uWNkPQuR+qD4eb0iuQVD0OZi92t4fHUHXHIjDS40mWjiml8rKFwWV+vZ1FcRyemNbLklVizaMdFdXB0VCBxsGCNCavPJagmYUO6BSfWIN/OZ1+PynYievxUmendpeCf7gV2hlU+uul1E9w3YwXB/B4EwM1d+buGQ0JH8gfRs8+wQoWLN9Tev4Hwvw8gMb2ATJRuNlKnCxsNNtMZr+vEiwjVHInLp/ou0rMxp+jawPMKyJaHc+iZjX71i53iAKVrxpCWHoU9d04trLWUEkOQ5fYhYKcAxF3G/iW6oJzXSwN1QQHIiZ/TNKhdotTnSMXL/XHtKnVgixdsg6DXrXQe+KZgEtQKFzMdnLopR+X0Gfb1YQXp4EszhjmST1/S4dIIGtX0KhMBkAejYkDVQVqDqNz/HTh5npgBZAGbkUBj+nt7+cwnAVVs5j3rC0WcdByc9Q+A4U/9A8oK16Fn7Ng1k+WLgNuFFQYXSoyeAN2NQFhlIdyCKSZVFT4KM2z0c0x8IxV6B0hRe7Nk5mq/HyyAJojdIaXygOfrC0xnQ1GIX4/Kd6e568PL2qbZQTcSahdTUmf2uohgbFOAKBdxoCWgD8ZIwKofysaeX8RC055OsqcqlLB7TgBbnee+t1BYmmcvG2RidvyhzkQoEbvyn1/xIgm/RICi027yRWej+6gzYK8SVmp1+brkZphVnuorMBvwY9L/UAmhB/PtL9QAjRI5jlX5G3MNowocaF2B8QLkhPMhiAyyy8oMfFoCEDgGFvSCQaYHlpPq4yCEct+pDV8saSX4DzK/gmgpnqp2ut5/01W3YJLNrHi4804EyHhVkQPhRVcA2oAaD/ACBuBUlY5ZguuH6vTUEbGo1Kt8SadhIMH9r05lu4aENjEAetCSViGI0eIFKA5RY21EflgK4maZloQwGzqdNbkG38hKO/w9G/4DP2xLRa6KNacAMsmwK6zmuRzjmz5eOzGi3nVfJ1JYZycVtodzFcl6x4DK0gEFgvM2htSgVBRzK76JrDvFkqhC/wCnbiBOqsCnLcxehEo+I0ENinC/dsTfAi80a7i0ZROyRErhNJnWMWqIHdVUEhVitpqRVC9AzL7mo+LTEn42XIeByD9YAcfJyEpfZLz7Njr7C8txfQohSRsEM1TzcvM3oPVG4ONYdA+Uiwmw8bW09rjRs5G7sU7LA3wEK632/kYVTdU5hZX2EE70CH/k1NyI8XZuiGhsFG3QpItbwWzo9QOK+OnLIoKG/sKQsHy3Ax3YaRuOrLMK1j0tN8/nvRpILi+v62OMSSu6Ljl+HT/Ugai6jiMiK80LgmEJgAfRdB75+gz89grvm+lwF6e91DMEhioXTqIUDA1KUMqIxQWltB75oKwlVX4Li/kIxdjVt1IkRfSeVH8xihhzILV/0xApc0zDcn4g/9SHXoXH4Lr8PSnHzqLD91ZhCyzoSiFvpLr8WUMlD+E9OvtVIkfT7cbOV10zGGY4SeQxml3VhLIVYfaakVQvQMgSGQ+L3htRGG7K0zFjHVaLLNbxom2N/hON/jqB9JBL7C1UZGEOmoZc23U3kB1GeB8tVB9F7IuaHFKmn7eVz1qPdNqsEJg5XugmmAMx9lFKP8/wBqUdyLywpsZeLTNmiNYafSfJmgTQPHher8MP5YEkO7TTYIftv1HjxTAArTdzmmdUbDYTEnYwSmgU61Mtbvr/sLWjvUOUdSY+Xg9Tt2iPMZBVzZ6Ljmtpi433a/JKnvw1Aj8auTVm4ghA5YR1/OXOd/oGpRprfTSjvkcxtZyQKU06gbRfJdktXrE4imcgtHbgff1lDspbAy/LuCtRztfA/GBphNuqvUy2YUi33ZVPuyIdsgjy0YybWrZf9WJ61dqs0fsPwW2rSwLRMN+GM2Vug1MNfp7ioKsVpJS60QomcYdCcERgEK/MNgxBdgtZFyqvYc3KqNiOlDSOqrUOb35DmV3jytAYM4C1jGtdiUe9MTsyC2tKGMJLjVDzcrWmuNtj9B2y+RHl5LNfwXvGFPdXB7tE4CYJBNEa/jZwdswuC4BKqSZC9LEqx2CVW4EFNUhAuoygsTKzJI5GsMO9UyqxWhWAwDMBxvoATtOwbL989mAabf3A2f+ofXHxgTw3EwXC+tWML0p0aVSKUZ427K2BRNkwC6kahzPTV6PFH1AFF9NrWxMLpsXajYD5wWfhisBJcqavSFOLFRDEr8RkG8ioAdRymFUgpDBVEqsy+zxhtsImPvkx9CoqHPqGEUYfq2bTWgBShkEoM5h2w2opidWYfLO1bp+LtQdRLU3ZbRQtwdtNbU2AcTcP+HgUOgLkFBWR0FZRFyquPoii3BqWi/ICF6MMl+sJaQpyfFX5375RckTjkOKsoxzjgFDivFMIZimU2Gx9W6ofWx1cLKYUURiYA3eEL98toFI2miXKgIlVId8LoD+FmHIbyOWnE+VF+DVmCHDJSjUQmNPeBCAmbDbWsnegw6ea9XJqAwARflaMy4N1Eb4AQBowgz/CbKHNuwvo4Qiw0kvHxFRkBWnROiMi+bkBMh5ES9xAYaXBUgYP4LI/J/jfpLGpjZFRjtDIeqtSYZ2wytvwGgzhciagUaukmgMXHJ5TbCNB/q1da/UanHgNEQsSvXobAsitKmN1Rv4UvN1usM151PFfuD8w2hZCyd+UGjKA95/YVLI7dgkQf6M4j+G42PRHgovuofm7fOFLwKwZ1XqU7tij4PlXs1PGRmjYTSn1bvNtuqTvIYXPd+74XWhCs1SjcMGoeV+n/WjRA+tdvq+Wck1++1h7TUCiG6nXYc4nvvgv7+W5zieSQPOpOkcwhxe2si0aGZrWAduu2d6tzaaD2tNaGISyieJJhM0qd6AQE7Crgk+I0ki8C3Pq4BtX18RIstIqU+Enkmcf6Do3/2ynEXpgNavK0QMQM45k7eMLOpkceUAu9h/XKc2MkZtTNVmKB5e7NaK7e+72hDq6ljWSQCJjXWldRm9U31LjUwg7e0G9B6h0vhC76BaZ2CYR5MnvESSuVRH43VP3TmsgJNklrupJLzifMxADFuyQhoAbRKZQzAgWTm4BYdpXUtsdhhxCImidggwrFPCSRjGHVgLQZrGeBofDFN7zlVWIv/Dot3geWPYec9SSQngG39QiJoegPLmt6fbSnwb7NSdeqUqlO85xHrEzLEf4bau9tZafXQOonjPpAxLZlKXNH4wTcFUHc6uFUZy2qdRDft6iJEDyRBrRCi+9XWotxlBC53CVwGVkUqHZHj4qp5JMqGgI7jJu7GrumFXdMfN/lC6+UZ+ZB1Bb6Ed6u+nummxjBI/QWTccDAIAuLYsg5hGQ4nBoswYvbIrl+YspHjNfQuNjMara5qkAWS8JRlLWZN8H1RmO1qsGs0Kjo/PSyGpdq3qbKF6PpV3DQDuF3E8QNLyLRGpKmLz3fMatxsm/CzF6C4T+hxV133M+IJnYmmtiZhPsGdTxJXP2A6b8On/8BzNj/KK7SmNrBpP7WfYAQB1DJWVRxAXXcz3L2IM7nGDTvh2nYqeFYURDcpbV3oU1x+3S0+zDQ0H3AtMG3FIwomDVgLVUUL6rIeDgOexZu5YEopwrQ2EEXbRpelwwHLFtjV66/UnXqsNobQC8AG9xUi7zrA7fy0tW73VaZQDjj4UPlNslSlpHWwcsiorXGiZ2HUxPEqc4mXtaH2NIcaqOnttkdRYi1lXQ/WEvI7QvxV6ZdB57xg8/FHgFuQyYubAWGY+CzASN1odWAMjGzF7b9JLczH+2WEdNP4rrXE6zT6SJAsaBgLLZVTCmXEGZzABLO/cQ4HoCY8uEaVnqbSvVGs4RQPEZW3MvUX2uFWB4qxFKDGKzfg8R76PIzIPZLQ1cBFUAN9p4+W8j/UclTAORELQYsX4QiCv7tsfPXwXbuJGaYqFS3gJg/CEZD8JvN3QQ5sOXjqFcQSQwFIrhAjT8bQ3nZFhTFFMWOxag5DwXYyqQuewgq+HfC+gSU/R5LrZO97rZepclWp5HLPynXw9FqSf1GsOJJsmMbYln7QtbpK5XPtjo5DMOZh+U6DfFWEvx/NEpJpUAFmqzY6HUiDDFfkOxIDCN1JdOA7Vf4CirAyOt0vdqlk7AkC0ji2uA2/rqOg1nioFQb7UXRCqhZBEXDodEPllVV55yGa9+KgaZC5RGsMyiIVWOQ9O4a1De2+3aE/Le8XbGn40S8Vm2juuE00xqqc0eQl/Nzl9Xvz0yu32sPyX4ghOgS2kng1KyPqpiNToQx+76Fytmy/RUBlawAn4sOZga0XsF4abgMGxtF0vQRdBIoHCg/FIrfbL1gowgVe5iAW0bUr4iHwRfXKBfKgr0osZ4g2KQl0nV/AFy0YTQEtOD1ZsAL7KKBIFGfnyhhHMMHKIo4y4vAAlNQbpNBF7SLJobGoLJRGrGakE3FgLspxBtswnCrsI2XMPVitGniYuB3kySUH5TCYlMC7NHq7rr6N6AWgIQZwCvBTVW/jGX+K3GKCwnF4xTU1JFXWwXBS0gmTsZxbsU0crENKz3srunUoUxFofqVBNPR1GKo/pjBAszgquU6jVu1+LDwuU6636cR8eJjbQMuJAMGhg/MZOqXiJGZltYXgViuwjVAOQ0t8KmDvkr1a48G3PoAu36jfsD9GcwmLcXVX8APU7CT5VSvHyCZ78Na6JIf+ACzdNMuqU/SrCNm5AAulnLBPxKTj7wINT4NEi+CNQ5CJzXsg0495Odk9jBRCnIqf0HnJFCs+QE4hFhZ0v1ACNElnJq+WEt/xyxzsSpr4aetoPbTjq3s9x4Gaqlbnx3xY6ae3LfQRP1BavxZXj/G6FttP9FdvR9ELsKIPYEvCq5SJIIKDfSpWkokfl3G4q6ejePehOm6XtaBNm5kaWXgpILeEv5Njt4DKi6CeUVALCP6qis0WEEpMW7CIIvGMy0aBk5w1U+4RhnazIwwwrEo2dFNyONtFCGSzCfGN2iSGXUy1EigAI1CaY1SOh3oaUApF5QiGgwSCQbAPxWt63CdWwHISdRiuUkM1yGUjBBINUMqDAJMJMgu+NkIk44FtFrb2JHTsOu2wUk8nzmPAEmfj4g/SNLwYZWDVZtKzOCDWK5J5aAsyvtlEcnzk8hTxAubb6MmHAIXHAtsCxJ+heWM8bqgdLE4c/ld7c6vvQZTEc5FW2SOdOACqoXtfr8T2l5BZKSP2qIc4r4gdQOzKE/u0GV18zHWG3dZKcDAxxbeDKUguB/kPgbhU6BRK7KyJoEa0nKByitViJ5EglohRJdQ9gqobvQaSC46t4MrG7DRbRhxMBqnok1AbjKBL94QXFquQ8QXxPQaJLErh5JMnInWTkaRWieo8r/P0qIsVuQHUA74aiBUofHFwTUhJ/YQdmR3tDsblzoS+pd0+54BBJIxL30XENe+jBjXZ9uAIsBYctkXoq9B5aVe5oVEFCw/TrCIin5hYnk+wCXCpQyuXZfCSAw05LMfIa2Iu1di6w9Q9SOcNQmmDVfjj3yEqruUSu5nHuNZwFQWsCcukYbDqPIJ+T7AMHbCl7Ax7IahFRTgqobOwk5gMuTcjhe4eE2OpnbJj9dQGKskKxnHNJtnQ2iL1jZO7Fzs2vVxIodg1xSDfRPamY4b24tk9Fps/S5R9zgCerRXD8sijh8z1jBWhFIQKQnh+gxcy6C2OICdo3CCCqdR47kd8Kq/pFcx5dl5xELj8YceQvX6qlP1bkuCBSzjdsp5lLkcTJzfsE2XxXklVAez0PWj9rqgrTEoVQKRFyD6ItQPb+xUoYBoftB7nXrYMV5qUU0bdxo6IcyxZHMBPrYizD/I5bJ211EqFzN7BkbwpoxTTmuIhTZFtTlcmxBrH+lTu5aQPjmip0usMPHNc1GNGg8jpZMJD36j44XYURbNXY/86BICJUkMXR+MQTTHwnIdyrIKAUWvsgr8SQcnlBr0wHcbpq/h4akI91Gtz6Q+L5ZlO2TXxAnEbVwLdKA+3ZHCVb2Zn+MHHCzHoNhekL6cz7MGUGd4rasGDutG5uDXSSzXJZH9CiFjJxQ+qLoFyk9ptDMKe/AMKtXEjF3MWx7DStoQ3J9k3lRi+ki8ENolZDyO7X5OUqcGe1AKI+kSrLWxUumZZhUPBtXw4FQvriOX/WjKqZiEir9LXY4fx2diOja2sogGQqCyKOFdfHhD5Tr2o9iJI4EkEAK1Hj7//Rjmxh1/7wA3fh1u/Gy8mnr75M0A5Xqvojk+MLzRKlwGUW2uwHAd+syrxHBSlyPDgEELiJo/EOVmXOd3wvZv3rzUgBVGQrM0rwhMjR+bbE4nm4s7Vd/2JFnK70zBpbZhXxqxnCTD6noBK9CBM/D5j4dlO0D8v94Cge2h5C34fDg6PpsVY7KI5IS9oFZrzIhDZVYBffk3BS28h2uUXYldtjlaLUaFTsDKv6p769ODyPV77SEttUKILmGEH8bupdKZA2IBC2tAC0PbtsUKEVznMMqHFqQDWo3Xp7Y8lMvC7N64ykQrxdLSwvST5w4WlcYdlLM/NrMBsJlDw8AICtsMUZMbxDZT+WOpv3OsMfTiVEdOsA2XqDHcG3EMRZ2Z47UkK4WrLKJGGNN1AR8hta0X0AKEdwYVTm1TQXgvTLURFuMbdi/hYCVtr0tAbBpJXT+MqwsoEu6jhMyryDYXkm3MJJsZZFfbGA64Tn0VO/ZUumlujtKQXZMgOxolmEiSnYhSFCmiFx+kA1oA0zoYf6gCf6iMQDhCIPR1pwNaAO1+S8NlxfVaiV0wk15mAp8DgZiD13fExWApffkSv8pnRaqbQTTXR6x0DMrsQ5gdKeJlio0fgN7p7TimYlbeIBzTB1jECVLHbFzina5zW2r5EJdqWjzmWjOgqgwr/hVWfA6+xExIfNUQ0ALE34Pkd7DxJ6icceT/GsAXT3qBedKlKpgDQDWd+OG3ulj5WH1/w9enRgJa0WNJUCuE6BJW6CBU/wrmbXwhczc9Dz3mV/xm06e+UrSLq8up4N8s4mzi/JKeVcCF5IZPJ+H3RgvTCpJ+k/4ryhlUvpSAnUjfo64r8OEaJtWhMFrPxV/7IpHIBjh6DkGmen0MU4Ft2DgWZU1gRXEOrtGQM18DSWU25L9V4Pp2JhxYxjL/ac2q7nOTKEIYoYdRKqvRjGHQdwY6/1wSJWcSKxpFInkaWc7x5PAwOYmTyFsRTQXSBhh9UAxK1w8NKvYmekkYVXMdhhqIYWyA7QuBSnWXBIqqy9ObDDCabHZt+Rhn/xNtFeGmYmylUoOeOTMx9YD0Ykn7TuripUQSA0k697ZcVgcpazJewOpt1DG8Flpo6Hrqi9dnsNAYOg9NHa4qx/Wb1JSEqO4VRoXPQBOjkssp4yBq1cOE/L/hqxoAMYMV/iIs08FIBccKiPMmCxiETdkq7UNjPvo23jsUOeTwN3z0pVeslJCTIB3wxu5rcXhhjFzw94KNP8XabAV9ghX41AlU+QvRpgUY+GmlX2sTmgRL2I/5DGQBY3Goa38lIf5CJPuBEKLLWOQxuNHIWy2K3oOuPYU5BYV8a26Eoyz8nMZ2XEcu66PwkavOwyk8miV6HP54GYW1Xgdaw3Uprq5mUVExaAj4LqBG3YnpVFNUUZvehJ2cgj/vFwp5kzhvYDKEEH8HFEljBto6F1e/j9JerqOycElGFfM4CKWKKGRnyhv1ecxhcwrCXwAWSllU8Q7lvIBNnCDr09t/IHX+j7GZ4R0P28Zn306AF7B8/4YsIHI7GL0h/1GCxiCi7hwcPsFMJgjWxL04vO4qXLUMsq7B8UWxYuAYiki2D0dBTqIfIf/p5LBXQ0txU0Y2OudQdOJGaNyzVg1BKW+dpPMICefE9CpJ518YxsZYxt/afg9bYfi8PrjafgtljMYyD0Hb60FqeOL6zm4q6YIBlr2ChL0RBEKpunl1tNQ4yrmAOh4FXGK8g1JBAowmmr8CjZEaldjBzbiMaZZxOH14baXq31Q2W1LCaazgXkzy6MfVZDEutRMPAp/U7zkYfcC3HuReDNWXePuTdylYw5qV24szSVJGhBmE2ZxenNah+ixhdxJ4/YUdFvAHQ8nlXxRyMpo4iqb5z4T4a5E+tWsJ6ZMj/tTscnBrvL6UFQNxDM27RVtTRR71nQz6MZituCVzNeaTiBxJqO7djIfMF5QMJp9LyOFQljCccOQPcupijZZRqGI740nvxrRO4jj3UqPexDZCmGo4NXyAJk4hZ5PL3ullK/kfVXxMmHUpZk9U6gbXUm5nKTel6+Rgkk9vcvmi8YYIJhL4jMPx++7CpQ6DMEm+A4L4GQFALLE/gRVPZz5I7wcd2BCHHzHqXOyAheFqYmEflYEckipIXx4nzNatHnatI7ixM9D2S6BjYG6EGbwTZa6H684kmtwAb0isBj7zKvzWWa2WWS/BG0S5B4PehPkXJn1aqUQCKnYB+x3vYaoYJAtA+wxc5ZL0+7ExSBo+oIQcdQlhDmYRW6a7koBJFvuS7WxMjXkyLooK8smmFicjqNcYrEt/Pmq3/qtMO1BzHMQfBqMf5E4DXyo9l5t6YjLVcqu1BnchKvEiuDkw93mofBeyx8LIJ8HfRq7lRubRh8aDVaBdCuKV+FwbF4hY+eT6P8TPah58QmSQ6/faQ1pqhRCrja58DJZehEqmRuHKmghZLrgKp0nvpxXMZB7PM4g909MsBmIF7kFHNkLrGu9iHjyJAY2C3yyOwDYvzwgIMQa2GtACKOWj1qqghvqUY+9RxDVkc2izZfPZhny8BPUutST4CIvRLOfhjOUMXOqYR/NLmktC+Vii+6CURmswlJMayLeIXryHYWyE438aM9Ho2JmA+z2m/0IUlxKMesGnP+7gFilW+IPU8EKbQa1SYczQncCdzeY5+h2aBrQAptF+mqkYT1PLUenXcR4nn++wGNB8YeWHwrfBXoGuewI751Vc9T4al6TP63ph4WK5cQLuwQR8Xo7fAOOwmYt3e98hwFh85hQUF2FQRSGVuJQC5TipS5mBQz5NRlrTcag9B5L/Bd8EyL4GVLDdfWyXMiH3XqCFLhupYNZJPEmdcxQ1RhBtKMKJKIULIrAi1Vu8ajrMOg1GPtGxTRKmPg+xBvLj1ViuTbWVQ52Vhaltks429DFXrPr+CdEDSVArhOhyNhXUVQ8mb0F1ut+qN+78fyGwHobvVyzHRhkarRQKF4MkP3MzeaxHPqMaCjOHoAq+h/iLYPZD+ffM2FYO51Pjt6gNX0s4Woky1kGF/gWVe4A7NxXIXAkqO2O9KO/TcFveIMaHLQa19ZJ8QxXbATYOoOhN43T/Look2SiGo/kQAJ8TxmccwVLzhYZtKbDx4SeJZgWVnEOR+SCJnKW40Scwk8u8/KcGgIXpDvOyB6TqoQFfwgE/+OjXrJ4uDlX8hIGfXIa3npZJN+rHmRqhzWc+iWm0/4BYjPuaTLGp4yzyUiOltcgqQuWdhGYMlXyCZSfxq8yg2jB2Tv+/gCtQZJHkJ0LsSBaHoFDk8yFxHkeRQ4DDiPIgEe5GY5LFJWQxNXO7dZdA7Fa8ZLbfew/zZa/+B6F05DaSzslUBwtxTQMMRW1eNsFFScLp/MIORJsPu9yaUt5hEVth4KJRWK5NzAxR7fdGTnO0iY2DQzlmKv+xG78ZN3EFkIMRugfD2q6L91SItYcEtUKILqXRVDCC7NpoQzBLashTDYTORYUUWyQr+SQwgwRLMHAxUkHfCh5nAW+g8NGfi8ljMpiDvMTxeLdyE+6tJPWzGGpdQuoactTZkHW212c1+hRUHdAwLKjzHehqyH0oo55+NiaJN3oYaPyMbnmHkl9A9UFYejahoMGKrDy0MghRSy1ZaEw0CgczVdbfyedaFHmYVv9UnZ9OP4fWcJy8Y2MzF5RBwH8T+G/CTdyLjp0LysQI3oxKNvwwILVOnS+EopSsJqOLudjM4GzK+QaAAezO+i3013TdGAl7aqMxIDQ+9R/81l4tH4MmTIZg83GT/altZelM5VxLhBCOlYXPSVKoKwHw6Sn4fOPSyxlkUcgVLWx7AGEa8h9ncSJZnNhsuTT7KxqyF7hgf9mheq4SZxG69hR0Frg+M2OW7TfxUqeZgAOlrf+QairAEAYxkz/YA5tfiRlBHGV6nZVTD0+62sQlgQlo5wvc+KmptZfhRnZH5ZShuqKlWoi1kGQ/EEJ0qSRfAxFsf+aApbbfAP96kLsvTvAQnOARDFQTsXDSAa1Fkjqm4VKDQznzOIMkmSOG2fopYvpMHD4mqR+iyt2KhiEGgKqTGnKB1W89mQrA3GqIXAV1F1LgHEEWh+BjI3I5hRz+0fIOVe8N7iyUdjBsRVL5Ug8pueRQSxyLJFZqe5paziLOd5j0b6hz4/YDndErklrmMp8D0+moDP/RWLkrsHLKMHwHQGAXFF5LnFZQ6w+wPFBMjGoWktn3tZxv0wEtwB+8SIzlaDQusYb3yLm6IS0BgFI49k24VBHlFeJ83vKxSMniclSTPrShRt0RWlPDZWg+IESUbF2HMjQRdyBZ9tOE4hMg+pDX97or+XdM/Sd1ufPv1HVluzGIfwXO8szpznyU42LZmkB53As6XY2yNcGkCSOvhoH/hFHPQ7+TWi67FQbZDORtBvE1yrKw6lt9tfbyMaskvlT6M+3ObrSmBmog9SNCiD+jP1VLbTQa5csvv6SwsJBRo0ZlzIvFYjz99NMcemjHfxULIVaGgwvEi3yYSZdAtYMdMEjkbYAv72OWGRHu4W6qqSGPbDYgHx+VAPRjW5JMa1SWTSV7U8zL6dG2aniUWiMPlMLnxgnqWdTxGNl4fTHRVd6/Bg2BrX87bwzeqkmpljqFit5GXu51GL5jMdQ6Le+K1uAuor6lz2nST9dAk081Ndrr2pBDDZZ2qFW3ksWBOO63JOzTKdEJVlgGrmHiYpDjbk7E+AQHCwcTm8+p5V1y2blpDcDsh9PrXezYfcRUJQtCX1D/aFqMnynjdSqYToghhBjTbPU4P/EHp+Owgiy2p6++Bcd9poWd9VHGNjgsBCBbH0cg+SuahVjm0fjMhqDVoJgifiPOa9h8iY/x+Nm+5WOY4tivk9BXoXypy46CAEkiug47uSdGbarh2DwHir8Ho1eb5XVY6HSvD23yI/BtCcE2WnU7w14Ei8eDPRcIQOnzEJ7izfNthDIGY9TNpZdTBbUQc3wYkQn4R7wBpg9K2iq8bQqFj2IKrSoWOf3IopYkfgzlYtLQCqvM7YBCoAovYfB4UB17KE2InuhPk/3gt99+Y6eddmL+/Pkopdh666158skn6dPHa01YunQpffv2xXGcdkrqHvL0pPiz0LiU6T6gohjoVBqnPpSo71EEeISn+Ilf0V6OAkazHhMpIkxfchjIb0wlySJA4yNJMSvI5gpCnIwmxh96KGCn88oGnAjKDOFnDGEuwF9+FcRfbejuGtgD8h4HdxmUD6qvpJdOFS+Rv85/EMvfyg/e6kMg/iheAik/fxQPAlWevs1lugGCseXEQqHUSFHgV+Mo1i8QSQwEVgAOGkXE2p0s4xhCaiK/sT6Nk/r35TZy2aXJsdRUcApR6h8ksqgmhJt64t9gQ8qZR30EX8oe1GKzhA8AWIfDMXiYBHNAO+Ta1eS6NShdnzxWpY+H9l1OlXk96V8CGvIS1ajUgQr63urQQ2SZ9XeIMIOk81+C8XNxlKImNeCARhElRG6shhxdhxEHK5bqopJ/NYTP7tS21rjy86HqGkj1sMY3Evr/2DC/bhq6vGGUMAVQcA9kH92l1YjzHcuZikE1UEgvvsEkJz1fu3NxEw+iVA7K/4/M3MqiS8j1e+3xp2mpPffcc9lggw2YMWMGlZWVnHbaaYwfP54PPviAgQMHdnf1hPjLUBgU8RHVzt/Qagl+vRXZxrPpHJoJEhndBRwUfZmUfr0uz7CAzYE6wkRQGLh4t6Q1CVCpICLFNQwsoth8RjV7UZj/BUbdxmDPgdBBEEy1nhnFpBLFgtuwfcPROLVnQWErQW3OA+CbCO5izMB+DFT9qOVNHOYRijoElp+TqluUst75aCtIPlehWQ6NBgJQaArZF0t5OWCLOZPlXANAiLFk4wWMWifQ5Tvjxj5kea9sHJ9XurfPSfLojcv2+OhNNTFgAfUReiWfMZYXWZejMPATohczuRFwCeoYefWpptIH3/WCcH8VCfM1QtEYObURlAvRoA8C9T8eFK77TaeCWpcEczkQh88JECcEWFqTE68jbvkpVwUEkglytDeAgOuHhAX+alD4O7yd1UnrKBBENe0QDTQfZSzztWu/2rx/X/zzLg9qA4ymH/Nana+MwZjBi7t0m0Ksrf40Qe3HH3/MO++8Q3FxMcXFxbz88succMIJTJgwgffff5+sLPl1KsSaYql1KDR/R2uNMjIDgglsxSzm4uJiYDCecZnrUkQpp1PH+QAocgnydwAMcsni79TxeGppjaVcTNfFl0ygVQzHNw8j57LmlVJh3Jyn0NF9UW40PUIXgHLbGHpWWRBqCEQM8PLYOhH0Mq/bgUr14S1dUonT51UsawM0Lkqtj9b1o6X5MYwt0+UUcyK57IxDFUE2QKW+jnXVERixd6kozMax6oPZxv2T51PMTgT5G5rnKeOldM2yGYVCkdWoP28BR7GcazF1o7tUqSDNRBOxisjy5WIl+pJV2ZAuKjsSx7YVtbkB4qYPn/qcfMow6Vi3gFo+IMGXmIBtWOmfMabjkOVGCeO9Bw1vAmCCtvyoUPv9c1cnrStIxndFux+DGowv8DqGMSJzodwTofYRcBYDJhRcmTHbVZ+lz4t6Kvv41V53If7K/jRBbTQaxbIadkcpxR133MFJJ53ExIkTefzxx9tYWwixOrTUwjWcYZzBiSxmCf3oQyEFzZYJcRIW44jxFQn64pKXTmZQyHWE2ZUks1EkSLiXkl1blo6N3OSJkPVDi/VJ6kshEMUwwIo0THfDJ2C2uEYbyvZAoRvHm95QtyRS+24Q8r1DwrkKravwGcdjqMxhg1scHjX+IRiQ9FkN3QMa5ZFQuFTxD4LMpZTdSVLOCt4nzDCGcmaz4oo5iRAbkTS+Bn0W9blplQNmXFGen00BGpX8hqYhtKNCRHwh0OCoDyjnMEp4vUOHR+u6dEGuMinzF1OYqMCXalVWKJR1Jdo+j9QET86tzdKvrWlO4mK084lXJ3c+dvx4/KH3MxeyBkL/XyHxDVhDwOqfOd/Mx8lSGAntde8I74EZaD9dmhBi5f1pgtoRI0YwY8YMRo4cmTH91ltvBWC33XbrjmoJIVpQTCHFqTyarammll+4D3AxyWY0DxJmMAqDEDtgUEkt52LZ1Rm3eU3nR7SuQqm8jPK0joD2nup3fZDMAltblAWLiAUepQ8bk9do4If26MQMr6XRhPrY1gUMc1z9BiH+PobzBq76GZtXUIHnMcwtWy3TpprFOaUMqJpPIJ4kYqb2TCkUDgqNi4FNDS4OBiYDOIoB7WQeyGICqAk4OoKTOB+lwUp6dS5I5X/FP75ZRttkYAhQlsqU4JDg6w4fn2y3BIskrmmi0CTMAA4+Ao6D8h+B4T8dw9gQx+iFnTgBtI2ljsQIH9PhbawWbgIduwOlNFbUa8V3fR9A/C7IPy5zWSMHghNaLMYM3oLj/A03tAKMDTDD96z+ugvxF/enSem155578sQTLY/Kcuutt3LggQfyJ3kmToi/hPncTTrrAFEWN0rsb7uLqHUOB2cRbqNITKfWiPAjTrO8qX7QvvTdYG2BEwLTZwMuy2g7Ib/WZak+lqDdWWh/jfcQnOMlVtAOkHMeSqVSXUVvwY0egKt+8mqmy0gmDm5zG39wLUuCMcpCBeRX15FTGyVgD8HAxcQhSpgVlLCCYuY725BM3oOdvAs7eT1aL2mzbADTvz/+RAgraQIGjrkuheoSb6ZvLOS/Aub6oArBvwv+4NWpI+r1DfA36SrSFsMYSf94Fb2iyyiKLqdfZBFh2xvK2DC2xjA29OrkO4JAVpRAVhIzfFeHy19tkh9g2kmsiBfLK8BMgq75BwnnJhL2Nbh6TvP1Yo9A5fZQfQS4ZShzU8ycRZjZCzGzvkUZxWt8VwBcXJJ0cZo0IdZSf5rsBz2dPD0pRKZvOYxafibV/klfDmQIp+O6NtHkYGAx4KXZUq4ikEiilSLqDxC3w1SGhzNUPZ/O2Yk9F6diKMksjQIcQ5E0LerMLKqNfCz6sU5qJLDGtE4ST+6Lo18GggSsR1DJT9Dx6zGqXeoHxVLhQ6C00dC55aOxje+9B73SgXcWgXDrgxT8xIHU4XWdsBybPLU9/YztqeFwHAyWUtq4MPrGFpDjRlLTeuMP/YBSbbeAk/wKYnfjKk1VeCGOUUWYYwi3MppalFeJ8CQmfcjhvPRIVR3hOp9gJy8CdzbKnuXV3BiJmfUpSq2l33P2b+jy9cDJGJsCXKgrUmAYgIFSw/Gbl2GZe0LiHaiqz4drgrUlFExPF+nYj2MnLwQ0lu8azA4OcrGqFvAqP3MloLDcJBvH+5Pt3wvTOADVxjDSonPk+r32+Euc1VprXn/9dfbZZ5/urooQooOGcEY652aQvvTjEAAcPY36gBbA1C5Jn0VdOEDCb2DpBMXRcopqf6GcRndvnHmYtkYlFXG/D9vy+qxGVQiwKOXCFuvhuE+nAlqAGHH7KMDnjd6UB06RgVOyYWZAC2CUYNaPAptqOjCNfdvc5/x0rlcT27TINSYT47FGS2R2EGj4AtfAYpY6/84ciKIlvk0g505WZM8gbnxCku+p5FRivNPi4iF2oYhHyOfqdgNam3nEmZ7OVmGYW+IPvoU//DtW1jcY4bcxwp+g9Vy0Xt5mWd3GGo7tC5Mexk2n/kkn3fCa57X+mbi9P647E5Kf0/BuOGA3DF7huj9hJw4GPQv0bOzE3jj2W2tkV37hP+lzz1YWK6yPqeMIapzNcHUbD0cK0UP9qYPaOXPmcMEFFzBw4ED23HNPYrFY+ysJIdYKuWzEpvp1NnFvZ4x+GD/FaB0H+2uU642eVM9vx/E7SQw0SkE8rMhORry+ovV8m4IxEH/EIFTtEogWkGW8Sz/1LuvwGTlkjjSldZyEex9J5wmsqMaK1W8zgvKdDMaw1JJBjOBNzXcg5z6UDuGPgpUAKzEQ09/27fU+HMVgLqKEvRjGNRSzGyb/z955h0lWVP/7raobOk7emY3ssuQggmQliQj4FQQUwUASRBTBLMGEYBZQFFRAQRQRUARERYmSJIOAZNjMhtmZndjppqrfH/d2T/fObIJFcH/9Ps88S/etW1W3btN97qlzPmcGIFFo0hRrbS0TkNalBhN2rriThdwwvuNoKYT/SSwzMAREzEm2ph1CHPo4AZ9nxp+7lhS4kl52pJ/DWMpWhMxtOC7UWxFqeyrh7pSDHSj5Mwijv6yitzeYlgsp5RPlNwMEUMmDGZf4GKHNC2C/g/owDew9ai1M9Bis9KARBt9/Xac/NriuSzaEyMTFPnzrRQocveYHoP9VvDIs+SoU1j4GvMmGwQaTKFbF8zyuu+46LrvsMu677z6iKOK8887jhBNOaG4LNGnyX6aP6xnifro4hHYmTqhZFcZU0N77kPpOQtLgXIXxzkNE9+MAkYDQBsQmiJUMKCPBszroSLy7AMgsdD2EKP0SGwnZT4LsnPBL0BhDSX8ArW8lOxDECWGA8kG3fRGppkD6nxjv8xgzOlbFrB41CzoXISq/RqEgdTzI1euvCiSTOLyh2JTN+xnhTxhTJisKOHgYFJYIKDhZ0r6HRLPAnsmIasHiKqayBTbbxNdSuZSodDJSR0i1M7T9EyGy2OxOiUfHrhmP5ZzIJK7AZfPVznMihvla3asKg5zKJP7W0CaILsGYl6qv8MPPY6mD13mstcVQJOAhJJOx2HrNJyTY6nhUdjd0Zj4+I1Tk35EmQgX3AEuSVhLIouTOoHqg5Y9xXK2cAdlzan3J0p1jv7SJxJeQax/Csc6YCAauAv8VuloG6ct2gjEoNN1RH0iDRuGLm4h4AYst19zn/xLzLgH1yXitB74L/V0wq++NnlWT/xIbTEztY489xmWXXcbVV1/NpptuytFHH82RRx7J9OnTefLJJ8eVzX2z0YzJabKh8YI+jBH5cu31VE5lGp9Y6/Oj4BLC4JPJKwG0osKhxkbpi8E6CM/fHhiI3zMADmlnEfJVJudos4yCnolViciMNFYhNN3LEWoSYfHtED1MNZlNZe5HWLu9qvFWhcGwjO3Q9NbGcaIKgbSwRIQEFjKD5XRTtZimsISeaJAce6EZxRf/iuNAjaF1qIyduhjSJ6IZopcDCJifjBVX+QpxmMwl5HjPOs11MdMAr/baYgt6+FdDGz88myD6DtRkvWaQcee/ipVZM5oVDLEXmoUABOxDD39CrmthBxMBGkRcxU2bpQTReWDK2OoUpFzDb8vA+4miGwgzJLfIwk4/jZRbrPM1rRULPgn9lwASI2DJpq14qRQd0QAp41FMZzBJPG0bD2Ox1er7+19jjqB2i6vWzYxGj/X6pvn7/eZhgwk/2HXXXXFdlwcffJBHHnmEz3zmM/T0NGtcN2nyRqDNAEWeGwsRMIYl5iIWch4R5bXqw1Bk7CvKUG8w1VA7MCx2w7OKYxupQuLafxxn0Bo8Qp5IDMTVI2gF0hhZH7UqQGQRsgVjNEQPEhtn8cgmun+Cawgp8QJ+XWWxdSNCs4xatSoDWrSj0LWVmc4r9NBLmiI99NLtLyKjh9HmLxhzN5YJa/ehmHWo6tRK2ujgYgSZutFifbLlnLbOM83QmPyUneABxlInIqqJe0gc67vrPM7qMGYE7Z2P9r5HRf+KKDFoARR38zz7ElYffsadXGwIaQGgcjX0t0B/CgpngDFIMQXXOh/X/vmaDVqAzPGoUOCMgDMKjvjV62fQAqz4TfIfGmFgam/EjMJS0mGEZ7XWDFqXD6FW8tJGLGGYwxhga4p8HTOuatr/AHHF6JiazPP/4HU0eVVsMEbtu971Li677DLOOecc/vGPfzTlu5o0eQMx+mVkQyklAcLQy5Us4odr1YeyPgL01L3+OsL+Qtw/gtB9J2V5JYYRtFJ4dgrfypK2n8VSBzX0pRlgiLczxJ4MsCXeRHGndQiRJi2vQjuTqGRdjHAQcgq0Xw/CjTPH5Y5QK9lgQO6MMcO1756IEs9yFM9wOE+yH31cv1bX3TAPLFJUr0UhRBpL7LpSG8N0XmFznmej0gLaPA+kiLVtRfwlHxeJEBiZJnIPRiexuS47MIUHCMkSYGOSnwRNiXWljZ/Syg9Iczgd/Jocx45rI8VU0s4zpOw7SDsvYqmPrHX/UXgpfmUvAu9jEyaZaVNhcbgTLzo/Za51EUFwfs24qX4SQ/pZzkp6sXoIBt8B/TkY2AjCJK7YFGD0WKAEaCj/AMJGz/NakToIOh9E5M9HtN+DyIxfl/WKM42xn3aN6PgZdls/bs6nxRmkjXto415yXNoYcw6Mciwe/yRiEWUuwOM347p/0zO0S+PrWDz6DZlKk/8+G0xM7S233MKiRYv49a9/zac+9SnK5TJHHnkkMHFVoyZNmrx+SLkVk70+FrlT4zeMSbb/NKN1cZyrQ4jJOOln0NGdCDEdIXchUn+k5LydQD6J4bG4mIIQSf8SI6cg2WxcXxWuIKIaChFS5DTcNRRasMV7sdViaCH+WwmVuQldOQNjFiPsQ6joEzD+HITYmpR9CwPifkq1xCvDQr5PF4eNMyTWRAcXU+QdaJaT5gMgKgyY+9AUY9MlWVoJtA6UiVqpW2+S7P14jTz1PuaJ3QFJF1+njY9jMZlufsYyPknVI9w2gUG6JgSCHCfAGgpBCJFHiX3Wqe8ovInQPym5nPsJvMU4qUYFgWHzMwqWB0IQSosVliZHF4LYAB6ijbgeW7HhPFP6PoQPxndFL4XCp6HtLtCjQNA4Ef0qYzOdXeK/V4MuwuAREDwGzjug/WoQqwmhmP0HmPsh8F+BruOh4yOQeGcFYDFxVTOPO6nwSPJKohCEvPDq5vxGssND8OJRIK4B2Q2zF7/RM2ryX2SDialdmdtuu41f//rX3HDDDcyYMYPDDz+cww8/nLe97W1v9NQmpBmT02RDQ+vnGApOol8NMWxVv2Ykk3g/szhrrGE4CCuuBuFC10dApifsL4guIix/BqsMKjJIA5GSLOmYhofG1R7d4eY46bsQSfxjlRLnUeJbVI02QTedzFlv1zoS7o/Hg1jGx9EaSx7HsL0fC/hWrY3AZUceaTBqI+9xGN4TEZYhmo5s+2hccjV13GoNl4g+Ap5C0ZooGSzAMluhXtmeqBVCSxI4sXdKhhFaCrRv0Z+rT0ETzOJRLLoBCHiFIrdjMYUs+6+z8T0RmlFGOZ6Au7DYjjy/QzFlnfsJ/a8Rhd+nGosLedzMCJohRvgiAU/hm0mM8kzNmJc6YhPzN5aoCxniLgwSQZpNuZo0W2GMoaLPQBXOw/b1mFqXnAZdr8QPBiOHgn9TPAdrOlHLyUixD7ZcdVW4V4MxPkF0DpF+GCXfia1OQwgF2ofeScAIWkLogFGbIlKnIeWHsKz8epvDCt5FwGPVCSEw5DmHlDgWOUEp6yZjNH+/3zxssEZtlcHBQX73u99x+eWX89RTTxFF0ZpPegNo/k/R5M1KgbtZwucwVGjjBHr40jqdbzD0chXD3EuGzZnKySgSwzUqwn+2B28OYCD3Dtjq7gm3C8vlXUgNPVJ7LYDl2Tb6Wjprnsl0WGKW/i7SOa7hXE0fQ+yLZj4gyXExKT68TtexKkr8nX6Oq80hGxTJmgOxnSt4lqOpJB7ijTiDHj5aOy8KX8EUZoztFAcgikBGYJx347V8FIvZuOwxbsyJJ/IT6Psc2oEoSUqKJERWbOQFkUN/dlLDKRtxDw4br+V1/pYC5yHJ08L5OKw5Ka7I1ynzU+KHCYXD+2jht+Pa9XMjK/gbLtOZzuewaCxxrKNbCbwD4otCIuT/4aRuYojjqfBnICJCMWpaiasmCNqj3ehR1wBQ5gU85pBhB5zEqA7NbZTD/8OphDgVCJRkqDWDlhKpI7LhbNLWvcjgH/jRVRj9N4wRCF8jrcOxW6+qJY+9VvzwdILofKqBEo76Ibb1RRj+FJQuxggotYpExaAmooCQn8NN/Xi9zGEFBxCYh0HE0nUagU2UPCNIWrgHh7eul7E2NJq/328eNnijtp7HH3+86alt0mQd8JjHPN7Z8F47n6SHM9bPAEO3wgsHjP1Ke4B2YNsboasx+94vvgdn5B8N781v76HoZuu22jWb+sewxI2NtxRTkEg62AcLh5AnkExDMbOhH2MCovBCjJmDUu9Hqnet9SUMRO/CmAeJhKQi0ygTMZlrUXI/ND5Fnsamk1T9mKVb0AMfRLc0li+Vw/DK9ElIdO2SWjibPJ9e7Rx8fQVB9C3cvnkoz4CAIA1Bm6wlPzkjhmUdm+NZcbxshnczhcvGeWSXMMzF3E8/BfZlcz7AdoT8hxXsVddKMYmn1+h1HeFj+FxP1UNusSNt3NXQZoh7mM+JuHj4pEixN1swXs83Cq8lCq9Bylko+2yEaKGPHYlqHneFzcHA7tjMIM97Vutt9vXvibyjEMaAFgxlE69nEs6idEAu2pu0+AZm6O3xIcD4gA8iexR0X7na619byv7b0eah5JVAyUNI2X+C/r0guJfQAS8nUVF1p2EsTjiVWT8/4T4PMGAOBeGhDTV1jTEydK1FkuX/jzR/v988bDAxtQBaa6644gquv/565s+fjxCCjTfemMMPP5yjjz76TWvQNmnyZmWYa8e9N8RV68eoHRmGu54FG5hO/CvtAkUfnjkc9hqtxQIC2KmLMKNbgRmLcwydOo+uMaSjMr38miVmErbwaibNQiy25hqyvH3CqYT+yQT6crSwUeHFuO6dSLX3Gi8hiC4j5d9FaCtsDZYOiaxDUGI/ACQOeVb63omWQ+8hIMerOfh2/JWskQgMBsEg38ZiG9LsM/Hcze1UzEkgodRpkRqIUIFBLAPnFY3JghoC3SqYmj6Vcn4TBDYZ9qkZfcYYQm5Gmxf4kZjGYuGhMfyRJ5hBG2+t1wE2BjsqM6o3w2U/UvYfEKsIlUhxBD5/InZHaxR7ssJ8HjeYjxVpyu4CAlFgmuitGWp93DthX8o6EmUd2fCey3so8bOk/4gMh5BeQ6x0FUvsT4QNxidUslHySQiMkGjzDPhxUmH1qLAAHyheDea360UqSsm90NEjxMa/QYl3xAfSH4HgXsQEG4wCIAIz/F1E+iBwtlv9IFExnrxZHifAhc+B+wHIXQDCwora6AhPZTT4AbkVZZwgrhM80u0S5G2gWbyoyZufDcaoNcbwvve9j5tvvpm3vvWtvOUtb8EYw3PPPcdxxx3H9ddfz4033vhGT7NJk/8p0isbZIBaaWv4VdHfB/vvCIsXwa+S96pWTRYYKMXGq3Ap8S+K3IKtNqa18zFM8fuUzd0MZcpkZJHA2BgjyUZFuvx+FJp+kyEUY19vhpBX+Alb8PMJp1Mx1zKSaosVA4ymPfgdabU3FRZS5FmybNXoaU0I/XMIneo4BouIFs5f/bWHCwAPqYEi6CRUIAwV/ZPaap5CU5fB3sdR9PAgLtPHdReZx6kajdqSDE9xMQhaBsukVoSwIimKlVKsyH+fDm7CWem++uZ8PPNVQLBUXITGTm6JYDHDbM69Y57ByEMYg8RHm78wHLYSWdPwxVsxzKKLU3GYBYDDe2jl7wTcB3TTzzfI+iM43ggj+SxAbL4balZjO/64azQmBLMQxGSEGJMgy/NNFD2EPIfDu0lzGDq8HV35AhAg3e8g7feP6y8etwO3uBOyfD+h1BSmmrqkQ4EVhSi5L6hN6yYSz9NYscZuvUFriChyLh53Y7MTeb6KSMo8rwlbnQM4tZhaS30uPpA5icj7BiLow6poInssWkV4YBdA8FUY+Sq0/xZyR4/v3Bh45Uuw/MdxuETXJpB+EYig8nOwtiCSGuN9Dgm0rwBZNaINtPR69GcUSm2zVtfSpMkbyQZj1F5xxRXcc8893HHHHbzznY3bpXfeeSeHHnoov/3tbznmmGPeoBk2afK/R579cdgSn+eTdwTT+fVr7/jGa2DJK/F/1zssqzZC92EgXV7ikwwmAv5pynj2kRTaFhIYh6qcVgcDZIIKdhiMbTaLRMZqLPqQkCcweAjchqmU9UkUnUY92j7rVgQXsIzLkncVm/MLWllNglBi4Ciyq792e2tQ0yBahqiA9NP0TRd4yiU2IzVGGMbkwgACXuBYZrAXhgI5jqrFNyqxRxJiIImSPxAMbZeh7fFSbNgCQYsCCgxyON3Madia901V5sqwg3mCR9kpli0DtqVAgd+isTBIKlYKi4iUKUOgKYsMmGFaKjczJFtZ4NzCdC7BE4tx2Zw078DmHQzxUyICnLBMYKsGg7De15lmx4blMqXziYKvxlYcOVTmFoRVDQewyHLqWFsziC69j6pXUZePRKiXEHLW+PtQvgFRvp8lLZMYcbNkvVFc18MgUKGHo1O4ziVgWRA8iPF+nXyuQKSAzDcw3n8oyt8QqSGQLmV+T1yE+CFA08J3Vv9ZqF6/cHCscyY6gHF3wli3ooggBGOl0VRIFVYKOxg8YWKjtvgALP9RskA+pu85xHQS61hB9BImuGJsyJW8wgJIFSaTbR2vw9ykyZuNDcaovfrqq/nKV74yzqAF2HfffTnjjDO46qqrmkZtkybryGz+gc8iAhaTZjtknVj/OrHkPlh0B0zaATLZMaH7nwPnx6VtAQK7DbXllQzwx5pBC1AmzTA3oRlNrKAkAQoLX1g4ifxSiEoM2jEEEe36efzKZ1BiCqFTRIldsMThBObqhiILAIHwGeEXuERIDAE2S/llzag1JkKHl6LEFoTR4tr5ih0Rom316yCzMPUBGL4A8Cm2TMGoO1E8R9XCN0DEmPvSx8ajl0F+iYWmwLVM4R5sZmGJt5OW1xGY3+OL/4BZVLMSR7dIIZ8p43dYFGe5Sd8DGEqIxPjWDBCRI8TGIuQj5vfsI/5NSAttfIFuXmYh7UgiLKJYGkxAiGTUTrz2QiC1ZNZQL16qD9/dm77UZCJpMZkfAhHL+DGQojc9iamlZeMLHQiB0JAqP0RFboVR3VhmO0TlIopOmrnprQikRXtwAhvzGIo0xiyOV8t0E4W/Af13EOVY5iz5NBg9Z2KjVq9gWb6LxS3dZESJNF6y4gatbEQ0EyHiNRO5c8Fb6WFu8CsIfxlZGXtu/ZRFpSODkbF0XWzYvnZU+pdE5aNAP41lHYJM/RwxehTwx5VaBhAtBLVR49vRYMPLWLoMkBYQgXMoVK6oHTcOccxw3Tn58C1sQLL2TTZgNhij9qmnnuKHP1y1qPt73vMefvrTn/4XZ9SkyYaDwwwcZqzyuCFkiNMpJJ6qNHvRwdXIqrdx/t/hpvfGMbImgrefB3vtB/fcDi85FPuPpbDF9YTKYmH3dNrlD4j487g0H0MPEoVmhGph17LIUrEyhBTIhTZGbocSryAIY4UmDB3RCnqWDaH0pfFWfIuinFNI82NA4mqfcp2UWEoEpFiBRlDBxcUnYFnteBScSRSeC1g4OsKoPRDWfjjyy2u3oNYMTOd5LOcwPP4AGFRd9SaR/I2SxSAok0GgkYRUTV6PB7CTbX5bHIQtDsLnREKWUFUAiHKKgV1zKw1uIxOD1uNOBvkAKIPBYtSkKdFKmuVAH5ovMMSegEAm8Z5VD6tf9XgnrwczLUwbWY5T0RgH8uEoQ04bw5xLxACxJSUIhc2w00WuNIiXiWNx3WKAHYZIaYisIloIMC/icx+WBXMyM/GFA0KwwlGMmJ3p1j6tLERGGiuMxh5kVDyU0gpEJ0I1en5rpA9l1P8BABlKdY8Q8X8ouy5uXHSA9XYIH0QDkTBYZlksfmBAGnDLIbmhCqMdaUDgNCTWTYzBoBlG0oJIjEZjiujoajAR0vowQk7Dyv4zOVagok8hSt9FuggybJzzhOTfSZRqRVWGAai0WoStm5DT7wXnYHD2QZhvY7zPAqDzoAYYy0SzgdSea7yWJk3eDGwwRu3AwMBqy+L29PQwODi4yuNNmjR59YzwbUb5LVVvTom7UXyBdn4SN3jx6jGDFuDF38EfHscsW8yiloeZk70Bn21JUUYAw/yLDlZQTPQxqwbLVH6ATYrlfBdNGYFHwNMgNKN2G8L+ECm6sLmIIPGz+lhQlHgpC21J3HKAOxoR5BQ60eW0EOR0gQhJWY55ogUGhwAfh1bdDSP7Q/QCUWo4MSJCwEKJrbHV11a5PkUeoJdYsqmbL5Lj7WizEN/8CxIvb4NRBSgMWTajQJYUZbLMafCV2YwvtZrjawQ8QsR8JDNI8QECHifgntoVWXXFKQb5BGPWC6QIKInqa4OhTOLWI1YuraWW1aqUxS8NUkQMd6ZpWRHfQ1sETI56gV4iqSgLlwgLWwQIJ4OnbFpXlAhToEUsPSa1iQ3apNvIKFZkOsiLAkYUKZGiYtLkzQitLAdjsMJw/IJLQH0c5Z6+as+56kY6mwOLCIxVX6sCAyix+VhbIaD17/ilk/Ct60gN1+3R1900J+zCYU8c3kaWz088bkLIchZyFD4vYjGVjfgdttmIwHsnRsfSdSK8EDv1WM1jXNFfJeBKkJpil016IMT2E7d0/tTxXloAmaG05eeIhs/DCIPX5pIWB0Bd7LdyP4MOe6Dvo4goQhgBaRkbtO4hkPnsaq+lSZM3CxvMfkIURVjWqm10pRThRF9+TZo0ec2U+Asrf51UeGDsRX4jasaTUNC6MQjBK1Oe44nsJYyyHA+HMmkMUDQWjonIUCRNiRwFprIEn6/ishkbcRWzuJ7JnI+iAwCLqeTYj2F+QZYiGQqEiadYupqRzgyFFpcVPTkCR6CCCKcSoAKNNIeTE89Tlp0TZrMLoKX8LEF0N8vSBXxRYsyaiRBivIFZJaCf+ZzAMM/Sx8u8xKeIyj9A9s9m6op+WgoFSAxGQ7xMymxClk8wgz8whRwdPILLAAoHxWZ0cAHuBEl8wlik9e6k9Z5kzDfI83Xa+T12onUr6aSVn9XaawYarlEIUITJvVRYdNPDF7GYRITC1Iof55gqrqfFbIFAo0RIB4OEtqTUahNKiS2jmils6ZCU8clQxiHEYgQjJYUWm8gWGEuADaEtEIY4NMFA0criKzeusowhY8qkqJA3I+PuTz0GwPkwQq5eg3ea2JuMKVEkQxjJmkFrlyMs79nGxrKF0fQDaFvWQmXqxxOAlTmbDq4hx2mIJNku4CEGeBsrmE2JMU3Zfn6Kn8iRhSxlAR+mz3yNSI9V3DPmGYx+uPY64i6q8mgIQdB5APQ8DD1PQ8tPVnmdOXUmouMThO2bkxKHk68rClK7vMLfYs9v9UOodySY9GcKuUUU9N6E5l6IlsLQl2HwsxC8tNq1bdLkjWCD8dQaYzjuuONwXXfC4543Xj6nSZMm6weLjQl4peE9l7qyoDudCSuegYW3QtdbYe8LAejnKQQSk2xNB1ho0gyJLJsFPmlbkKVU6ybgQTzzVxx2R0dPQOnTTPMWEtGKlf88o/Jr9BQWEAnJsraOMQPVGTMEMAY/Z5H2AwxgRSE66kVlN6aDSxngBMBPtvsN4JDjM2QrP+bltskE0mLI5OjxV5AxrUj5AZQ1sY5sP1eylHOpICmQwyYg0hpZOIMlmW6WZCYhMLSFw1SsND16R9LBnQgeRclZaKufiri5rscSnXyL1ErawQDa9FPQW1NNkvLNHXjyL3SI39DJX9GMIsjWtrk1RTzSpCjWjEID5Kkg+Ahg08WJOMxgS24nYDEWk4mjaXMIBD4vkasLywCo2C6R3JF08lBTb3DW/7cWMOK0kPdGcIkdDloKMAIldsHj3/iyUSpMCMiYIp5IERmLFlEgkhJLj4VuGEALiRcejJTPIsV4xYgqrjiRmdFviMzL5IdCtEpioyNNlJ+PYKD20BQTqxlUWiwyYYAKQUtATUG1XITINCotGCJGOALDEKAp8Q1sdsZmDyKGGfOSGyJ6GRDXUHS7merV6cGKuh3IaEkc61BdDJMDZ+dVXl+tC1xa+dHqG8m2uhcKI1OU9RHEVdwEpfBg8ssV6EFAIkq/g8kvgupc4/hNmvy32GCM2mOOOQaxBr3AZpJYkyavDx1cyWK2AYpALM3fzoVjDewsHHTDuPPa2JxF3Jq80rQzhGWCWIhf2jXvZf3/2V7wYSKT7Lo4BlxBoIqU5MdoXxEbaDYRUwf7GW5vJRA2kVBIExc0MMSGU32/cvR2zMj3cHvezxTxLMPiy3hcB4BFBYcCodmcKb2PEFgWyzs7WJKazEyuILeKil8V5rCEb8eeZ/JYhPg4ZHSRgpVmSTYuT2sMDKo2MJAO7kUQh0lF+jqE3h1UvdR+XNtpIjyuRNRpiVpEFPgrmqUopiIZK6la5jEWcSwam4AsWcpxwQdydHEFLvs19C1xcCeoPCaYAuaV2kIaBEPWZkznHAJ9KCb5PJgkNjmVyHWFSIZoAwRlJ0M+HKEjGEYFhkikcLKXskLtQ1QLdoiHiIzAIsKWEZZ5NxlOwTgRUpcw4V+Igl/E99iKVz3SDzAsVjBirscRW9Itv1WTpPN4hIL5Bm40F4lhNJOhtRQ/QPmWYsA9DzifPOeR5eMA5MSvKZp3YllQnGRDZLCC7Uhn7wQxXurOUMTUecMBIuZhswftHM0o/4C6WGoEeCqFIYsgQtk/QMrN6/qrezjTGsS0cWO+atq/CuV/gv80qB6irmOBB5OBNW5xGKGIQxJ0BMEABI+B2n/9zaFJk9fIBmPUXnHFFW/0FJo0+f8WRZoZvITHQ4CLy9sI6WUZp+ExhxYOYhKn17yEVWbxXny9mCXiWhyGiISDLxQ2EQOqi8lmGZGwEq+pRkUhqmrQmrGYTqVDNLIx5lRHTNOLGZEthMLCET6YOMGprCAV+jXFL+EB/V+h3PZVkFm0s2udJa3R5Vtwhh6iWhTV9X3mT5+BM4F2bZWQfgwai4A0DgEO2kiGrE4WZOqE7JNrcLWHYIQxI0ciTJlWfsAwXwFCspyMPUHYAYBgzMAZ8/+pmspBPb18B514wDUuIbsxhXNxmL3K65kILfZFm0eRGCIgwMYVvbzEx3FkNznTjwEKIocWigybormfAjlqCywEFZEmVRwCwKYC3ltoT29Ef7ZEBTcRKdNYIsStGsbinyiuRgiBYQ6R/6v4/htwfIPvCErRc/Q6lwNQNi8QhQuYbv2ZkKUs53ByYS8QooWikE1TTjkoHRJasuYkGeVMMpyAQODK3bF0PwF/QLIltrMbwl11FJ+kBZt9CfgnsSJvGjvxsmfYhY34GYvMJzA1V7lBoHDSIwhEbQ6ReZ5A/xkjS3WdS0JzFXDBOt2zVWL1wIwnQQ+AbEcxjAhPQ5gRRBhihbFCiRCJUokFQq46ebRJkzeCDcaoPf7449fYRgjBZZddtsZ2TZo0WXcECtfsBiwHIpaKL1DiISBigEtwmEUbH244Jwx/xfTo00wH5lmzGKjFtAraGK6pABgky00nm4RzJ4yf1EISKUmQbEUboJIRuGGFVifWQAiMold0YxlN0dW4FY9sUEGUQa6I+6oIl4rloPTziUxsPFqq3EZslMQGZ6biMYMLV6sIkWIL2swoUoSk8BmkDUf4DNPGiJUjFxUSbVrIRgWQb8VWHySIvp/0kMNSR+IwmwwfAqIGb+u48cQRVMSlCBMXSqjIDG3ix8gJimUYfKrJXpKAgMco8Bc6WPuEIGMMvv4xQsRhIwiZxOR6CDL4wjAguhIPMNhMpo0bCXmIAT4OjOU4ZP3KuPuaLS9kmbMDg44EI0mLUXroS+YPIWkMGoHCRI8DYzrFoVAMq7dT5vKxhx8hKIunAAh4DlPn1VYmQuqISCqMNI0ToVG4VckcijX/3lRp4RoqXIZmkBQfRiUFNAweZU4izwjDpgUj4kCcqYU2ZH7MUI7McxT1boCHiDR2WaOVIEwLECMYU0GItSvysEaEBNUFgA5vwwliGQThEYdZ1y2NkSCsCRLTmjR5A9lgjNorrriCmTNnssMOO2BW1j9s0qTJ68IyzmKYPwCSLvMJ8pVLMOY5YApeuqem5F4kxzP8ggy/ZDoH08VnECjK0ZfwhEMkLaYUl7NVaT6BtHi+bROUE9ZCYgWGSUBR7kwuyQxHgxGglSSwYrmnRe09WGVNixnFVhUUhpQfGy9z1dYUrRzdog9jFItbprLJi0XcYhy/WOq2GUx11fRT87wdhw5sdsZJbQPckly1QqR2p4UDVrs2JS4kK4oYIIWHIqKPbmzjk9MFNgnmMKxiL/Kw1UqL2BlbfYUhUWGI6ynKNqaJJ+hm9lprA7fJ24lYiqZEK9PAaPzoa2jzIpY8DEvFDxVdfJbFnJTIdMURnQOcR4Z9SfGW1Y6hGWGE76L1xWSJNWEjIyjKbFwsgNirmmcEhUaxLYqD6OBoJGkc9mEav2GR+WjNWSvFxEm8ZTMKtILQlMjQRxftDBJg8zybkuNlutgCod5GvC8eEgqbudlpGLkEEgG46j3NVFKQBZutEKQoWQGtQfzwlA0KaPsz6PA3+HYAxPHXKXMgQq4+tG11CNKkOWWCdVyGoZ+iaGOATkDgmjJp68SGdqG5EfARgSa7LEALgTKGICuotLWAnDiP5LUSBd+j3orVFqiIMVU3DwieBXfNMb1Nmvy32GCM2k996lNcffXVzJs3j4997GMcddRRdHR0rPnEJk2arBOGMhV9H0NczbC4jawok8IjEl+noCIyISyzI3yGkcAgHfQziarsv+BiKvwTi26GnA5axXBc4CBv8CNFquKz1eDLvNA9A1eMJdMI0Ye2Bnk43JktSi/jOQ4iFaFEhI9LgE0kLZZlJ2EM7Og/jl3nDfSkS5kcHlvTI6aAeIGBLW7DKXaQkacy5FzSENJQoo9J+gZCb098HkO25bEq2yDsraHze2tcp5B/NsTtphLPoGV8NgnmoowmpXPMS/WQEzsxjVOoiHnMVXcCbQDM5du0sScOkyYew9xPZO5HiR2xRLytrZhSq0VWCY8h0lcDhkj/CchiqfeR5910cyYDNFaxqvDIGo3aQU6mYm4hT7n2nsJgmZBA2ATY5ChiJRGxhqfJciQ23bX2Wd7BbG5hIDwMO5pHSgZEAlS9JxAIhWBGYTHtwQijVpYnctvyvNiq1sYzf2Sp+C1CttGe+RHKu4VRu0jKPIcdhpRlmlAoLB3RNurR5cY1mS2m0Mb5rJCn0O90IgyEwmZ6ZSEqWEHoS0KpUFrj2jvB62A3SqYSMZ3lJHWSAU+m6U3nqI+UjcNKNKJk6Juex1gSjCG3okyqshEi/+oN7tUiWuJsPmEwVrIjUkkU6CIQkYLClU2jtsmbig1G0utnP/sZS5cu5bTTTuMvf/kLM2bM4IgjjuCWW25pem6bNFlPaJbRq2ezWBxHUd6GhcEmjMMEjCGyJaMqx4jdRiQsIiwGE63ZqmzVKC0U+TeD+k7yuoDUsTfXCMFoSwoBODpgEv1YhEk8bZRIToVU7Ck80vo28ulRsqJECg+XCiUyFEiRxiMnKsyxN6UoMnjCZbnVTbscYjoL2IrT6GI/FLchBAS5iOHML8iob9TJeSlctiLyj8aYRwBNlBnF63iMqPvzYHWPW5uVsdi0GrKLMVAxLjISzCwuxSlq3JKkozyJHcWjbMHFWLQSrJRUFJe1GCZkASP8giJ/SqJXITA3UdL74pmvU9IH4usrMYS14wBa3w7VoglYROau2rEWPsDYnnJsfmdZc9KPx4OArp1VG0vEkl8Zysl9qyIJWTSuH0dsQY96kjb7Phy/C+MIIgsiSfyvA1sW5zKjvIx8WGJKpY/NCnNr528czqfFPwsrXELEPFZY56OyN+DI6fSEy2mPBpgaLMbWAS6a7vwLyPS7a+dnOYCINkKRJpApjHCQemF877QmFQbYOlp18YbXiDAWucIHWVmQzND4e2WLj2JzAuVcKjZoEwqdaUwy39cDy/kJmDiKXGiwB+KNF+OTRGREsKbqeU2a/JfZYIxaANd1+fCHP8xtt93Gs88+yzbbbMPJJ5/MrFmzKBQKb/T0mjT5n6dozqKiY4kfiP+pJG6sqpZoKKxku1egayVr67P3I/LeKDNLrzC5uILOwihOEMTVTpNuR1IZLKGR2LWYzHhMl735Pm+ho+YFFYBDgIeLwa4VagikzWJ7BsucKZRVNunBUOQpIvpXujKPvDiSdj6LzSZkeTfd/Ahtnqi1iOcQUNKNsk2R/idlf0/K/t5E+r7a+1nOBFyEMUgd0Rlty9sqH2RGpY9Y10FD9Dw6ehC/ciiBdyQZrUizSa2PHNthY7GUfRnkbPo5mQHiqmWBvippFYcQlM1Z9NLFMjrpZVcMZaTYGWp+2xAldqqbeVyvzMbHxqeDD2GzavmrKi67gLCo1MVxRghCI0hTxiIiy6HxARN7FdMcPGFfQtgouSPCxDG+RkEx6zKaScVSXaaxytpGwWLeYTLs593KttFTSMA1Po6p4NDPMEdioutq7QFyZpQu8WVQ7Q1jS/JM5Xe4bI/LNkzhl0i10jytDyOsvde4Jq+KoW+T6fsWHYWxokAWbUzhyIZmQijS6ucYe/pYaeHk4ctzCwTRL1+X6Um5A050Hk5fbNBKDcK4iY5w8hcseV3GbtLk1bLBhB+sjJRx9qoxhiiK1nxCkyZN1ojHo1ieIayGeJqxf4QAzXTCatZVYnZuYrZgjnmebt1Hqx5CqIhOfwRVt4OSrZTx8xYigMWtk1BpDwtNlovi2FtuAjRZPo3DFkzmo5T4W61YQZlUItdVj0jKrSaNhEAR0s+XybAbLtMxibZuig+g6KCTL9HJl2o9GPVudDgmMh//li/EmBAhLLRZRiU4iDjAUFAJ3kPGWYAQHSg2pp1H8MVfkWoqDochzGNQ+ibVWq7GeTeBty/gxWlb0R1smr6cAfEQDtswifdT4DeElCmRASQlbqCNc5BiapKGHhE/KiwFXASgeYFeDqbH/gNe+CWMeR5LfhAlxxL1yvweQRG36vnlemDVpcartPMLRvg2gXiRAv9Bi1EMAld4iSHZTi6YidSjRFLhRO047iarLuMKyNTZ6MpnkrvWQsXxqbgu6bJPa6E8pubgbMlU8wUqXFO7H741pmUbcitCGCxTXxqjBxuHyDyCEo1b5Wl2YgZ/rr32orNR1FV300NrXI9XTfH3CGDLvrkMFlqppFtwWndB4DNRvENefI9hc1zttQE828WOrsBWJ45rvz4QLaeAKUHhKrBmQehD5ZaxBs0CDE3eZGxQRq3neVx//fVcfvnl3HfffRx00EFcdNFFHHjggUi5QTmlmzR5QwiNR9vQCMtTXWgVZ2t3lQZBGiKheDk1jWnWUUxiCOgkbbYlXf4kU8RyXBPGxkkInuWSCcYKokhjsCIfX9kYO8QIwTAtuEwjzx6kOLxhHhkOJuCHjHIZPr30JzGoUGc7GegurmBGuZdISBa19FB2YgOoxIOkOJ4sUxDkyfDBCa/Xsi/A10sw+s9oIQgthcV7ECL+6jTmJahl0RughDZzUSKO51dsTJpTxzq0d4bWu8C7Gq0mM5h6CE+ksCKLvF+gZJepiOORgGYKhv1RTKZMiurGmkaxnJ8yWXydyDxDxH2ESHypasMIwOdJhOggZV8+4bVJcozJh4nVKis0ntdKG+fGeVQiImQREc/icRGCNjLmPKJgdqxJGwFU0OE1KPvUVffpnIpQe2H0QrLWzvji4wTcRzmVI8PxKH8uxtoCN/MDQCLFzmjzSG3u9RLlg1Y7ncEANgEFkaMgy7jmNNwwIG1dgy0Pm3AOnnkEGd1XWz8A9N8xxkcIZ8JzXhPWZhC8hCCivTzMSCqgYK5jWGRo57xxzVPmQIrMJtJz0DLeBfGVTUEMkiKoVTBbrwgBbafHfwAjv06MWgsIIXf46s5u0uS/jjAbSMDpySefzDXXXMOMGTM4/vjj+ehHP0pXV9cbPa21ZmRkhNbWVoaHh2lpmVhcvUmTN5rl0QHkR2/DXgr+JAvLDpEijgJc7nSyKDWTFnZiay4BwOi5+JVN0EndMIhNv7JKkfZ9LBPHZgq5B1H2i8zhy4Ri7AF0M24kzVbjJ5JgjGFA55kjN0YLRdUcMUCPtzGzR26ovQ6lYk7ndASaNGUkhhCLIlmy7M1G/AKZeMgMZYqcRcij2LwTx7yTgvkmhoAs38KVeyXjD1HyNwOGkxl1kXFeRIjcGtdymG9RMBfGAYvG4EQBvnIaPJptnEeGY3iWzRvOtZmGZUbRRlGSI7TTh1UL00g8mGSYyaq3hzUFBvkAAQ8hyNLG73F59VvthohBzqJkrkfpPlr8AVQSPmA5v8SyPr4OfRk0SxC0ISfQ2dVmlEBfgiCLLxdSERcBcTGIJWSoEIHRWIRM85cxaWQkLt5gdaDaFsMEElgjXExq5OTa5zSmBZUfWmNhn1dFuBSWvx/tP0Q5YzM0KRfvJpgeeni6YUxt+ijqvTHMSeTaUoRYVLcn2sSPyPJfKi5UuA7K90JqN8h9CFaxNkaXMIUfIMJRRPZYcN/635nfG0Dz9/vNwwbjqb344ovZaKONmD17NnfffTd33333hO2uv/76//LMmjTZcGj3dsJP305xpqIY5cmLAo4OKVkpXnGnApqIuvh10QN1UbU1HVFp0ZfLkw13o03+BKk2xgKmAK9wFoaQyZy6WoO2YL5DxfwUlGA28wmwWMQMNAplFDPDjSDxeQpAJaVUU3hIDAKwCElRocDdDPEnOvgIAEW+QYVLAU3Io4zyG4zoJ0IyxBHk9BF0yR8iRRtp+z6C6HxAYltfWiuDFiBkHnGAIiAEWnYhCDF1ZYEFLRhCYrmqoPa+YR6W8GJvKRYhLuBhJ55XjSDDJ1Y7viRHB/9A04vAZpSzWcIXWIGNIMdGfJZJq4iFnYgiv6fAL0GAlhYFJ0vaVEAIfM4gq/dByU3Xqi+BQDFxtSxNP8Pi/4jUc0COFv6Iw3sw9GLzLkbYD5cBLOGjtKZzdLR2rgoHoPI7SI83sF3exkC6lY7yMAKDQWGlb359DFoAawrkj6YU/JvhjlwcL2sMSi8gkrdjMZbUFkQ/QQYvJd5xcJVHaCWeWSHR42LEgWAOVB4FdwdwNh9//NWSO3yNHlqj+zELJo2lIQ7/GDH18XguTZq8jmwwRu3alMlt0qTJayBcjFrxfWSrwXIjHNujX7WD7GIQiSH2lE7l2NopQmRR9kWY4NNoJAJDRbmUrDRCCDL26ci68qvtHEob7yMuDBBvpxujibgfCFHsgRAWZXMtnj4HX2Yw2EgiLBOSF6MMm1amh/Pw5FOkRQZMAQH0pjoZJU+WYkN4p4OPRYjHPZAYtSGx4gGAbxSSvrjqFHkwMCBuwqfMdH6JlFvgykvXvHyM8DLfZpRnaWdXJvNOKtxUO56WJ2GzLQOcBFRI8T7SvI9l3MgoLlmCpGKWJiXGQjdcQobJkTMaI0IMEoft6OKsWhuPpxnhOiSttPOJmvdTIPB4lBHOJGIxvWxEHDPgMYezyLMDqbrksQrLGORBUkyhjV0QdSsZMJ84VjgCoXEJ6rx4o5TNEeR4fI3rtCbK/IKIF5JXJYp8mXYeqB1v5XgG+EFSkSsOban3YBv9ZC1DOt5jiBBY2GyOa7+LYfthBN3kuQjJbq95vqvF3ozMiIc1EFJ2HKxQYzIhXngoPpNwrHNRugtn6FzcOnk635EUW6ryc5oi15Lj82P3o3w3LH43EMSx2lJgMjYmvze+fAmkxFbnI+VkhJiJFJNf86UYvQwKF8PIxRD01ta4VuR55DcwqWnUNnl92WCM2maZ3CZNXl9MtBCJJjUM2jIYN6DUroE+urBxOY0cB5Jdaavcsk9GWsfSrz9IWT6KEGAzgza+TYp3jBunvpSuMYaSPoaA6xAYLN5FRv6FwNxMRWbjCkjEnslQRPQEBabpV1BojLQIWo7BirZkvvw9vU4FkJSZRJblY8lHiSkQcBOaHyBpxWZfwqoBZkAIQ2isRG4hNhwK3I4hqhnfa2IeP2IFdwGaXm7CsCm5RBoLBCFP08LpTGUOhhIykUKLGCXCYSSpDNZN7wQ5V4Ko5DLVPxTZfiIWO9YMHJ95LOLgxOMLA/yUjXkQix48HqOfE7CNRyRsGrO5DB7LakZtmUU8zjFEiSd5JicykzGPZ4YDGeXnYBSICFFVLki61PSu1ToBaNNPRX+CiMexOJCU/AlCVJOnynXz1A2ebYAOTiHFdng8z5A4B98VuF4S+iIgtBUO4PNvBjkYQwFwcdgMzVPJvsIgo/wfklux2YnXC61G0HmBZSLyXhkRgCkAYQm/fSFe6kNgQKY1KllOKwDH9xHaxHmCQhAxhxV8mBwfY5TP0zL0Ck5VVs0YRGAQ/R6BuhXLjVdPy0PxFSBdXOsPWOp9q51rZP5DYH6HYBKOOBkhxgqC6PBWTP97kGU9wWczuVtmZbm6Jk3WP83sqSZNmqwVxt4KX8XPwTKE0WyW+hxzxdPjDNoqUmTpVjczneeZbK6lx/yODO9Z45gRz1GUf6aiUpRlCk/cRcSD2GJ/GgwwAyrUpPR01FiQA0K9BZk+lRnuP5giDqWDKaQ5AIdT8HDRyIZrKPnvJoxuIMNXyHAWDgfjiB1wtY8iHGtrQGnBYDCDYuUoDGPSU6uixFyoa1ehDwHIRIdXJ1quArdm0AJM4j1Y5KgKmBndWFQmQjB9wTI2WQBu7hxsdmrwoJa5F02Ej5MUqRAsTYxRn3/H1yUgLpsQS2thwGEyObau9bOcW4jqSssuThQIqrjsTA83kdXbkPcLqChquEWOaCyRvDoq+vOE/APDUgKuwDfn146lOB5RTWozglT0LsLgbKLo4VqbDHvRzieYwZOUU12UsoJKWlDOCaTaBYAhjkkMWsBUCM1TNOpnhFS4Yq3n/GrQ3g+orjcWGAeUBKHApMb8y0LGzwpGQZCKayIYJRviWT0eYMgcgeO/TNhepNIdi2OEUjGSzuFbFlKNyeApHct0QYDnn0C50Ek4NA28W1aeJtq8TFHvgW8uTHSRG2XHdOXMVRq0NUG/tu+89gVr0mQNbDCe2jcDP/vZzzj33HNZtmwZb33rW7nwwgvZZZdd3rD59PIdBqlqGAo24VFsOt+w+TT530bKNpb3HIpbuB0Az3GJq4dq4o3s1WfPG+NR0YcT8S8AHPEVUvKshjYhReZwJWX6mMyuuDycJIDF+MIGbNLio2A+O1YBTAhSYQVpSkSyBRhCsBmYTSl5m+HTR9HpjqU1xUuM4mLIIBlFJYaMHflgHscLjyAtniAtP08cD1ymn5nk9QhCwKjIYxlDTgyibU3Z/jOq+DlS2Z+u9vo72ZcCz1Ldou9kf+AxqnG/GY6a8DyXyezAHxjiQVwmk5VdzDN7IQnQxAWEWzp+iZi+D6jx98BmU4K6r3qDoJxImUkCahXbgB6zlKLJkTI7M0VdgkrK83pcT8AlULepbCWe48a57oyKtiUK/wlEhMZgZB7bOgdHjC8Vuyo0z0GtiIRAMyYdpdiUdh4n4GEIb4Pgx4kP+pt47nfJqDNrbS06abEfx+dktHkauyhQhR9CO5h8o+dQmDo9ZRFvmvvcwCgeWX601uoQ64RorV5iYmmCdqgPn64dbniGMyAijamW7xUCoUu4kYcy8cOEdqDUofhPflsiZSG0ZufRfzeEYkgNgRH4qXKSdObRMnIQjtULauzhKTR3QN0DTcStGOPVec9XkSxWPZr5CDgz1nFxmjRZdzYY9YM3mmuvvZZjjjmGiy++mF133ZULLriAP/7xj7zwwgt0d6+5+tDrkT35PLMaXkva2Zx/r5e+m/z/iabMIJcTMkCWnRnmDCKWYjGbbv6ExdRVnhuYmyjrDxIhKIosWkhynEC7+F7Ns/gop9PPo7iUyFIgS5HO+ipbRtDNMqRwGeRMKvpiBIZU6JEOK0RCYKRFVbsV0kCZokzRZ/esNKNY49UyEbap0B30jf3gWwdRUfcgaCPP5fgmxyKOQeODyDM5eBljV722htTo5uRaHo91TYPbQHSDvVeDJ81gWM5NFHieVnaii3fh8wA+92GxHSkOGFur6A8E4bcRIottXYolG0vXhixnkCsBTRtHYTNl1TfNGJ5lc4wYC7hw2Rqb3fG5Hpf5tapwGIMwGiE6SYuPk+MraOYwyE5oDK8wnQJ5LFrYhvNpZbvaMEM8zFw+izYl8tEoG/nzkYDl/AZlHb3q+U2Ap7+HZ75J9QEgLa/GFnVFL0wFvBvx9MnAYHJVULaytDpLxxugJoT5MyDqI/5sCEZmnUjJurZW0KC1VMS3LSIl0ao+pESS4kRyE8hsrdtFzYOlZ0A0AF2fgdaDMdF/iIo7UDPgDYgQxCiUJwmwRJI8Vi8IDWHBxYkCBrryaCkRaISClF/CMlHtXlZI8by7VWKwGrYsvUhLWBgzkj0YbUsRWarWxvYjWsUt4OxVm3po7qSkqzsrEsFkcnJuLY9Fh7djlr8bNRbqDWRg4+JrW7P/EZrqB28emkbtemLXXXdl55135qKLYmkZrTUzZszg1FNP5Ywzzljj+f8NoxYstuTl9dJ3kyYAhhDNCiRda4wtDcxfKekPMCTb4jdE/LvaxrdpIRaPv5X90fh0sCJxXml66MVOfHFpTqGVb9f6nBdtzRTvOYSOYw09V2HU+K+0QFgstqcng0oUbUjSBCxGmXZ6wgKOnpO0llQchRFxaIKghQ4WoilQ5C4GOZGW4VGilsRrKQQtAx/FajuTZeEelG2DFQZ0hPuSTV0a68GuQxJrGN1NwRxAKJPQCCGQzKJFXIPFtmvdDxAbbPOPZUD+maUzJwGGtPGwhEeAxRDtCAxZirSbQbQR8d53YgC38nMU7YxwRK1LjaCDx7EYUzIo8DQvcnjNOA6MRavZjVl8CSnXcc7EsdSB+Q2ap1BiX2xxUN3BCIbeCeG9+Kmk/kRSY6NgZ2mzn8NiJa9g1AfzGp0Lpue3lPM2gf9FXG/ZWPUyMZ1ifmcCbqu1tdiTNm5e5+uouyB4fjPw51Pd2WDzf0N6OyLvxxjvCzW3piyAqEAooTzVjb3pxiB1rAWN3JMllkfHyHPYUUQh62KlY9euFQWkw0rN+O1XnfSqyWghiYwiH42wzfDL8ccqBBHBcIdL6Fg1ozZVCcm5fSAbHww8/WN8cyGCbtLyEpRolOgy4XOw7EDwFiLUdJh2P9j/f3hnm0btm4dm+MF6wPd9HnvsMc48c2zbS0rJfvvtxwMPPDDhOZ7n4Xljj7UjIyOvw8ySTOSEDHutummTJq8CgYViZQ/oxFgcwKjYFSFeaHi/wp01o7aF6SgeohY/iqSXHixCQmzgSbZnFCvxxFVUxHK7i+lD/bFEl9QEKtnHJUKInTHmEWyj6Q5HKFh7Iumkh9NwmUXAMizRDdYAQfhdYAStZmDET5LZGQzDQICiBYduBFDMZsgPFEGAE+6FM+lC+sOPULLjcIjAdui178MON2PaiIeVvxns3de4RgbDKJ8hUmNGBkKgzUJGObEhy3+t8BfAwJV0AJlihWKXTdAdf+3bBAhgmNY4llZMRQgfQ7VsqyLkBVxOQdBaiz+1mY1a6YF5ESfhJA8eAnBEyLB4HLmuRniCEAJHHDfxwfBhCO9FCwiFjcZgBSEV1yGy9kNNVOpXdoGzHfjPJAPYiNQeZNgYrXZGmx2AUcBGpn6Ly7zEqI2LDLj836u6jhp6GPw5dW8YKD8G6e1Q7ufRahvMyJkY+Tg6B+ShlHYJbBsZCQyCikzFiZHmBaaLS6nk/oYOrkSlfKrb/6GyCaMAx5NoGRA4Nh0ivp9aCyaXlmMCUGZMlcCuhBhrMpFagQoVGflL0HPBfyr+zMpNYv3caAZpcxLS+jRyAtk6YW0F0xfEDx1i7ZInmzRZ3zSN2vVAf38/URTR09P4497T08Pzzz8/4Tnf+973OPvss1/XeW3Ck8xnbyJGyLI3M/jV6zpekyarQwibIWaTNS8ixZjMUip52DJEdPMEESNUSFEhFsgXaIpkicMFljLI/UziAMrcSZYRHKJapKftG4Qx+Ondca1PIcURROa3GNNLpzqCSWJTwvBKIn9PfMByzkVaR4OYgmtfCIBmGSWuTIw7g8uHEElRBpedcNkdz3qA4c4W0hxEC78CBKEsj7vmwLJY3urRWnkvWXvN2d/9XEIoFozVhqp6eIVBs3SN52tGCXkFm9nxnOsqYaXKPmVL1fSCBbGcmU1Ahgqt3E6FSylzJdU4X5d3I5lEK3dS4VcIUqQ5FbHST4di+bhUOVX3QL1eqVyPAYbb0jijIdmh2DvsYmCjixFqAq+4EDDtdhj8PuheyH0gLvsKGJWF/OMoPQJyFkJ04LIPkCXkX1jsjDtBvLMxBcCuiytdDbIV3C3Be4nYU6sgs+vYYWt/TMv2RKWx35AwqRCnlUVoVN1nwafAuXRbt6NDTdG7llJSS0LpEGVA2gfj+X+rqYMASGVw8TEZhSlGiQKCIMgdSru6DkOAsG3w/giDO4BnoA9IgzctnjJAFJ6B5S5FqVXIgDUN2iZvIE2j9g3izDPP5Atf+ELt9cjICDNmrN+tGpscm/HYeu2zSZPXgiM6GaCTNoaQaAzb0MKnAAhZgk4UAdJUsBONTUVIhap8kCHiBhZxKoYKoAmVQiMSKSZQgWBpy2I2lu9FYiM5oTa+jp4n8o+pJbAE/jEIsRtSbVZrI5lMGw/g82ckXTiMxXIKLLr5AxXuQ6Bw2bMWD5yXp1Lg44l3NTbqJJpAOgxmA4LwMHT0EHaQJmf9ApHaf9z6DHEdSmSwxWgt1jMeWJDi+NWurcfDLOdDGIooptHDX7CcaTDlbMzSsxiclGck306K4bHrx6KdQQwWDpvgcD4WmxMxH5eDsBPJNYvNyfHD5A4YhvkTFZ4hyx44dOEygiZNVNUWRjCZdYujXWtESGQpIiXJDAW1hyNBAL3vh6n3T3iaMXMxzjyEdwOieBUUbUY7P0dRXgoC0urjtHBu0pcgxZHAkRP0Ywj9z6OjnwA2lvMLlHXCuHaNcxYw+zboPQvCQeg6GVJjyhKYCFH8OaoAxoLIBSsKCZRTvbiV0Ahho9KX0MIlONGP8KMzkCZCGBvDNPryOyKYXz/xpKsIv+NT+DyLtA+kVZ6ODm/D+L8GORlZvhtRNPBPwAd/KqwczRF6+6MyT63+mps0eQNoGrXrga6uLpRS9PY26jD29vYyefLET7Ou6+K6a/GE36TJBkKBy8lyLWkChmgBdmFLLqwdV0yivnKWlXj6BLsgWYbGZyrb43NDQ79aSpa3tdFWjLfHl2fbCKUhpA9FW0PbKLo56XMMLziJtLqzoZ1iKunE2F4ZgUOafce9nxUHMI0/MagvpMydKBH7Lo0waGNRUnciLYHvFNGlw2iN5oOa1NCHzTSKItYDzopi4lGdTJZv4iaFIVbFIGdjiL3FEcsY4izaOA1r6jcY7J7EUut8MIbA5EiJMhYRKeMhkLSJKxGk4+vgFAyGZXyPAT6FooXp/JgcbwdggF/Qxw8BxSCXM4kTkweRMkHiY5YI2vnQauf7qnGPIYwuaTT6q3j/qYVsGFPAmKVo0cqgPorQPMJkb6iucYAq/Bha4kIUZX6Fyz5ELMFiM1zeOeHwRv8rMWjjPkL/JKQ6HFFVMlgFxplGYcZMyvwLxbm0MhuL2fHB0R/ByDnx59IHacC1fFDbEKiFKLzaAwMoWvhaQ98p9QWc0j3o8CZU6PFi+414wsVFohIfeps3UlP6cK1PklJxkp+JHkOXDkx6EkSyBetlagoMZgoTGNV9q73WJk3eKJo6tesBx3HYcccdueOOO2rvaa2544472H33NcfRNWmyoRMyn2FOBypIIjoYYiOOYz5nM4fTqDAfSYqpXF4zrkBSIEMfc5EY3spv6WR7Jvra8m2b5W3tLGtrp2RncdgCp65SWRUhN6vpZlb/tLl7vV1nml2YKq+kjWPGxkySvWqWgRD4KQHh3IZzDQFTOJuU3pJK1E6Zo2jjaTp4gRQfRSCI9KN4wYl44Zcxpm+l8xONWQAiKtxIP7tQ4IeMqttrxp4vUozQim8cKiJF2+gwduXehr4K3MUAlwMBEQMs4pSaFu8If62NAZIKryCTWGOHAIcAC5/h16oWsCrsHfDzB4CQ+KmVt7oLUP47kb6bkj+VcrAlfeZtlOWTBInGcr2klR02Bk0M8TFGOY1BDqPAhVT4E0XOIuA/tTbGDNJIhGcepJ9TGOB0wlWEiVT4I0V+hGYZAY8ylHjeI/Mckf/bpLpZouwVggwgU7Zo9W8kxwW0cCStnMZkniBdp5RRRXqPYIVxH15SYcHDxdMO3YU+Wv24XLCwP4NQY6oVJrwnWQ1NXA1uCCOztePWQhrlewHkJRNeY5MmbzRNT+164gtf+ALHHnssO+20E7vssgsXXHABxWKRj33sY2/01Jo0ec0YDL2cicfDtHAi7aydkH7AcxSiv4B3L0FGYhHH8kUIXuJ0TOKNHeURtuMfZNiHTXgRgKc4DMNzpCkBJeZzOpPZtWZcxd7BQ0ixFxX+iSCFZgp5Omjjo+PiPgGUeieeGDOLNYAc54Z6zbSKkylyRXWEWKqpGs1qDEpHFOwBskk9sz5+wXLOJ1ssMmv+cpTRmPzWiBmtYJaBnIJmPpVgTzABIND6dmz7WrSYjwwNneWXCMUAQ6ksnnJqnuJRvkupQfLLgBH4uKggxEJj/O9hrIMRVvwQHrK8ob1mJI65xMVhUzxeIDZqDS5bkOEQ+uvKI8dru37knIxeiPZ/AVhI51SE7EbKjQDJ6OQUwbCPU4pwvGStw4X44SWQVBoLhRfHlgpZiycm+ddXY8abZAaaxbXXRb6PZAQDlPgReS4jxRFI9S6E2ApjnouvUx1Ev/xE8lABZf4ElJG0oXDQzAdcXA5kLHk3IuJlIvMClfJOOKbSoB2iLZAS0I9gKnuio/3Ip29jtaiNIFyCADJ+iZKdBhSRVFjZB1G6A8QkpEw3nCbU2xizWhXIrRE73wSLd4NSL2qFIBrcCtOR5IfIc3BTq68+1qTJG0VT0ms9ctFFF9WKL2y//fb89Kc/Zdddd13ziTQlQZq8eTEY5rAl1JUjzXAwU/n5as8b5DssNxdjksSRCIFvbFoZQYiN6a9Wc0p4C38hVZdV/xQ7YRgd009Fk6aMECTxuJKXOBlBC1syExdo5x04aygwUvS2gDppO8mhpJw/4IWfJNJXIpiGa/8BJXdci9VZNT5PM8R3EWRw9d6E4SfQSmLpiAophuw2LKaRZR8G+T2yujVc8pg5rxchDeVugXYVJmrDTZ1MUCdnBlB2MgijaRktIYAQybJ0N0U7g8CQZwRLhAzQDg3V0wwYzaajC1AYAmkRpk/GVcej6MLnJeZxUlJaV+DgM4t/YLM1IQMs5UtUeJoce9HDtxEIlvAOoqQqGigmcwcOW72mNTRmmKiwJVS90mJjVO5pjBhkmEOIeBYZZmhd2ocKBYg8TP8PJb0/xsQPRwWRx7NdwGBHIT2DQ8R6AlMxnc8TyP9gCPF5mCLfISlLQH3xBwCJQ4v+EoH5NYLJOOZwFDOoKM0KcVJtXePtfoOsS5Qbe2yStb5TfITsaC/20J/QQOhKbF8jwmQXwQadAyOgYjuI9I/I8elVL1bwEAwlDyVCsjy3PaG7L216S3JsjJB7IIQ94anavyJ+cJBTUakLEHImBCUYehZyMyE9acLzmsQ0f7/fPDSN2jcJzf8pmrxZKXEfSybwzG5aM2DGY4iYw3RCJo4b19iUyNeMJos23sqtyLr2T7MrmqG6Tg0z9QIKIkdZxoljD7ELLQzTkbSzaGN7rsZl1T/CxkR4welE5h8o8T5c+1uE+kr8sJrsIxHMJuPG0mMjXMgIFyFooZMLSCXJU+tCxDDzzNtxoz5CIfFUqnFONIYtTnmlj1S+hIoEVmTQAgo5F/DHPHoayqk0VhiRq3iIEFRiRxXsNAtaJmMT4kiPMml07cxY1LUz7KSr/DAVy2E4nU90g01SKjc2kCukkRgcfFr4FllWXRVMM8oov0GzgjwnrrYQx9oQsoAovBFV+lzD+yr7FEK9BYPBMIIJH4LCrxB6EjL/RbBnE0bX4IVHI4sRzmLDSHeeyBWkzbvJtP2xVjSgHp/bGeIzaJYgmYJhMaYu1EXqkJT2ayoEgh7yaiEBL7GUvYjT43TyZyZUf2jjN/g8jGIjMhyPWbYFMphHJAXLp7TRvXgIGZqa3JbOgE7HRm0x3cZkesf12XgR94D3G5BTIH06QfB5dHRZPF+5N7Z72yoNWwCj52PMPITcESGav0NrS/P3+81DM/ygSZMmq2Xiogpr2rKPfWGrQhLQzmZEdCBJMY1TkLhoIl7m1/TzKBazcfg3MhHFd/ARQNYUKZMhrjSvaa8zfEOGWMHtTF1NeEQg7sRzFiHZkxSn4PEvKtyORCWGiMawlJL+F6XyqRSyS2IvqhmmTxzHdPNvxOj3IHgc3P0h+7k1FldQtDJD/Jk+63t43DHu+MpnC6WRBlSUxFkayJR8RvIpbK8CRmCXJOW0JFQGbcCus6FyQZm8X8KzbAgVwok9hyYpJtEtzqDDOhyTvp6yugCSMrRWkh0kAAtNhnLtPlpsvtprlORpXY3Ruy6U+CODfBopA7qork8s3IWclrwS6PB6Qv94cOIWtjwYyWws9SGkeBsUv4jQf6d9WRxPiv0otI+/VyFPMMLhiS/bYLMpPovHQkmNGSvOUH2LXnzzCkvFDwiYgoPGYSMinsRQqoXWjI1m43AQKQ4Z60RtgwnmI7VBBRFCN34WhAYjBGXHATwMXk1ebkKcvWqVwIxeVDNo49d3Y/S9CDU+yREgCq8l9D9CHDLTg5N6GCE3WvVYTZq8CWkatU2aNFktKXZD0IapMx5bVqEMUEUgSbELRf5NY2rO2E+2Q54Z/KL2OsLnAU6hkBhYIMjTRRtLcU2FDjOYJHcJDBmeZFPSidElqlWagIC7YRVGbcjTjPBB4h9uSZE78BkGBUK20eoPowgZtnZlUB4LWRBkyFBCisQzOPJlROnSuA//HyBcyJ68xnV02ZRp/IplnMYwf6w7onDYDJ84ZtGK8gg7DWZM41pQLfIlSA/lQU0m6PgciLNAlSlkUrT7lXFjdg8PkKsIRqf+DC0MNlPIsX+SvAbCPhLFP4G5VGNk640qSQ5DJxlOwGW8BNnrxTDnABotFcPpFloqNlJ0I1M/RoiOWrsorCYsxSEDUXgFUsWZ/FJuDql9gb8lbRS4mzIRPv/EoKngopG4/IsMJ1JKNIgBHD9ENzg58yw13yCI7kQLzahyyPJBOrmQMjdhKFPhd2gWI007rSOzoOxiyCJafgWZDyLaL4L+RRD8h66RLRDqEdBjEa6jLSkqGSe5K1nAYa2Z0CM78fmxTNkJ1GLA6SUML8R2zl378Zo0eRPQVD9o0qTJahEIZvMUHXyTDAcyhb/RzZlrPG8GN5Jnv8RDCCH1W+72uD7mcz0jvFyXaG2I8HApkTOFmsRXr5zGctqYSi+TzAp849Q0ajMUUFxHkX8xyCN4DDCHy7iHD/AIpzDKHVSNt9iMHqobTRFa78W1fs+gXDj2vhEExgIDLnsh/H8x9uMvwb9vndZyCueyMffQwcmk2J5WPkAPZ+HQhUWKnHofmc6n8GWjAeLZCmUdDNOHYcoL2O6n6OBl2ngMx/4c5cyYERMKQWelj5ZSCaWLtJlD6OA48hxQ09Wt0so3sNgiWYP2urlCK7+jm6fI8dm1vsZ1wWAY4vssZQcGOISQBcnYFlVj0rNdvPxXsHLPIq2Vs/7rqgIgEGJK4+HOT0PHCaA6ILMbzLh8wnlYbMMIOYpkKJNiiBZSnEonD9BS3JxJK0bJFgIsv2pxdpEyP6O1fC2zSguYXVzEpPIKfOZgMZM8p9LCaXTzFJNZwaThvbG8OxAmAjOCGT4CVhwJagZMfgKmh8iWMxAOGDf+i/KgZfIoaBTt5qpx9251CDEZZZ9Tey3V0Qi5itCZ8p2IUrFR5cAsWeuxmjR5s9CMqX2T0IzJabKhYzAU+RcBC8jzXqyVNGT/wwUs4i/IJNEGoIUhhmlDmghFRIoKRkhqAlnGoHTAdLUEg6glWy1hI8rYGNL4tdhGSY6pbFbz3EnKZBI1hfi8dr5HnuN5hs0ZUy4wpKIK3foAss7PkMNfhtIvxo63/BSyp77qdQnoYwFva3ivlZPoNF8hLJ8AlT8T2VlM9tOk5ecQpMb1YTCE3I+u/AlVuRXhPYf0EzkxewfoebghRCJkPiWuQZAjy3GJR9ZH4FDhCkL+g8tHsVea1/hxNR4voshjM22trleb+YTRNQjRzkvyaRaL2JsviNgYzSY8SJmbGeAE4vIQm9LFzSg6xvVl9CIC730Y8xRC7oXtXo8Q7eParQlDwAtsVv8GPebrtMsTMHoFengXVDiXSLYjW+9GWG8hHN0UzJyGfsq5P5KXh4/rP1jRgp1IatWGiEB0XA+Zw5KFWQYrNiK0AyKHmoGpKmBpoOWP4I7ve43XppcAHkKOl7jDePDKV2DJj+IppCGYDUiwnL+jrAPHn9NkHM3f7zcPzfCDJk2avO6UWcIgT5BhBmU6GeIvdLM3WcZi9qawDwv5K1mKOHhYhIyQwyJEiTgBZ5Q8uTqpKG0gHfoIqRFJSdCQNspJEYAInzFPnqZMP3muocKlCDrIcCgDfBnNECn2I8dHAWjjAwzVQgQEk8we2NZkjHkJWs4FkR6Lqc2sJiN9LVjOl3HwEGg0igCbUf7KJPE1nMyvqRVTWw0CEVf/Sr0DUoD/GBQuBdkO+dNACAb4EQNcAGhS+InXT1Ph73TxV0SyNZ3iuLWat8FnEcdS4gEAuvkaHXx8fDtjAB8hXLRZQtnfCRgmwpBTbeSsaRTIY1DMRbARo6T5PybzNJplWGxWm1s9AU/iyTuw0ufgmPcixWvZeLSwmExollMNbLX7Pwdpich9DNU+B0wJRXrs4SCcx8rh5jm9Pbz8QRj6K6S3hM3+BKnZCDEJLUaTEJLqAxmg+8dOlpMh9yui6NixRiauMIYP6HqZtbVHyFUk7AXzYMkesGzMIysBexD8ls0YSn8awwhpPk2Gs9bJS9ykyRtF01P7JqH5pNdkQ2WUl3iYT2Ko1DLCIywEKXbj8gbDdoBnCHk3MMrTbJtUUaomKgVoJK0MUyZNJizSpofxhIsGOu0hNIIi01iWWIIaSWAUQlgYNJPZj7fwjYb5GSIMFSTZhveHuQ2P50hHt2C4g/gn3yIrH0aJLdfb+ixmK0xSHtgAATY2+zKdqxraaSoELMRiCor8hH2FjNDHEWgGaed0MkmJ34D5LGBPABQhTrVcVMJknkXRvU7zHuFmllAfS6zYnGeQdZ7kyLxISR+CYS6Kt+OYD+BHn0UjGXLaMIkhWsZhITOJ68f9klYmXt+Qfvo4loj5WLUiB5pMtA+u/yiCLkL30wSygMvupNhtwn58fQ2V6GQwHo78LCnru1R4mqX6k4RmPh2jo3SOjgAWTBtEyyKjnErEc7gcQoazMYttdMrERfAikAMpRHkjKL5Yu5ciuyts+yDG/zdeeRdsL0SY2MdvhT0w+SmMamWE0/C4FZvtyZZfxOh/x0HUBqRPLFprvwcr/WeEmChx81XQdyKMXg59yY6DC3TGcxuclsUIUQuBb+FGHN61fsbdAGn+fr95aHpqmzRp8roQsgQwLOavGHxswtoxSYCPYDn3snHiHQXoYBsGaCWkSLTS15NB4OLhoHFDzcZRrENqDAyLNkqRy4DqBAwpSvjGZuuRxXT6fYSylf6WL9Njf3ncPAUKsZJBC9DKuzHmXYxyOtUYXNCE5pZ1NmoDhpnDdyjwHO3swcZ8AVktKWtsdJ0TTJqIbr1fgxfQYy7z2B+SNezkc0zicw1jaALmsR1+sm6jfJ4ZGLJ8gKCuqIBuSKWQCLJIVl/idWJWkqwyEcY8iREzESIuD17Rn8ckcbIRDxEmRSA8VU1+iknjk6JEhZaGh5zG6/OZz9so45KlgDK65jStiDtRlBh2ioTya2AkCE0XV5DhPY396BVU9LGx0SggiM6jYBYwaD+PxDB1xQqyXjXpLgRTZpSTCZJ47DI/QTKTlJiELC1HSGAYCCoQvdhQ3MGUH0bruShnB1yrjMk+DP4LWDqC9PtAdVPkXMr8FjB4LEe6+5H2U5joYUQYUsmoxLj8BzI8kKw9VoTBmCKYwTh50ryIENshRRa8G4mDwA+NdxUmxIdAx7ljPvG/Jq5TYVYqSFJflKJJkzczzUSxJk2arHcG+SZL2IElvA2XuxLtThr+YuNzvHcwy/lILNqoliONNQ8UETkKgKZVJyU/ib/EWswwA7KTaoEBAWQo0+EvjyWa9AhTRn9XMyTXFiEkgpmMWZgGKTZZpz4A5nEeK7gLj6Us4zoWcyUAoX4RqeOkNBPbWOTDUbT+e8P5C/kQ1D0UrOACQvob2pS4uWbQAkTYDCbJeIoptRwgg8THRgOKmTh8jRf4Hs9zNgUaY0RXR453k2J7ADJhkZnlXsLKbnjlqXjhmclYvdQbv0Zk8dUWiKRkbz0Sw/Z8H2sV8RZF/kyJVKIGq2peRIxBGM1Aqp1Q2slCxmoYRa4b10/E/cmHMC5fbCyBLP2ZiBUEYpBXunrQ1blljgI1iYhn665DoaPHEM6WcaGyOAsS0QErh/MayxBUtiCKnkBIC2m9HZn5GOQ+Dir+7Ie8zNjFRARyEU7qX7j+HmBELI4XRVhhhApup1IUBME1RNFf8ctd+JUZ+JXpeP67KHtdRIN5GP0wjH4E+idDpXENNMOM8BUGO4bwHCv2NMfFx2JFDANOKajeMAQdOP9F5YsmTV4LTaO2SZMm64WAXubxKZ5nf/q4vK7w5oNkaU1M07G/qRzE5Am2NF3+jw5e5q1cy1Z8kekcxmYcQRujyReWIC+OGBOoR1AQudjFVEckrLqCAzpOxFkXTABLTiezUCD9NqCLSJyIYe916wcoMocxxQRBmXkADEX7ECorETszyCjE1SFSNEpPRSsZsAABjdnpcoJKaoZhABxmosnX1j7AosJs0vySZ7mU5fyd5dzM43yEfu6a8BrK3M4AX6HA7zDEOrqTvK1orSgyfokVdpZhlcdg0P4P8LgTR9Tr1goc+TGkdRKBrerWIy70UCZDa6LCMDEO1UeiEhk8XIwBFWqcIIhDGRJDtTreygUgKrzIcnNd8iE0dX/JOcJgJESdv4Cuv0HHb5KRD07Gjsvcpgfvg+Bf8UdOgcj1YCTxFn4P0ApI8KZKICT0x8caV0nxf8laqOR1rGNrsmdhxNio9Q+EOvgIoXc0EHuUtYgvQRqBisK63kdg9IMQPFZ7Z4jjKXEJnrqX0Z4kVEQSr0kiOpEf8siNVMjoU2njX0gmr+a+NGny5qEZftCkSZP1wgI+R4kniT1aaSqkcPBJU2Y7vs7TXECZ+QhgKh9kU760yr4k7Ti0M51tau+V2Z8Sj5NmW9L21vR5f8OIuYTCYsRqScZVsZECuMZD4WAoI4AotTdaX40lDkaI3BqvRy//NqLvXBSG7IhkUecUnp3+DA7HsAtnYJtXUKGDZSaBvTOsJtaxk30o8SJVo6idPdBUGLUibBI/nRBoqZDiQGz11YbzHTbF58W6dxTuSsUQMuxBjiwFCoDApYyTbPcLFLP5J4v5GJpnsdmaafyFl/juuLku4Fd0siuj/JyIRaR5P5oi/RwHKCIML5nvstnQPHJhhZFsJ73pxOgRAj9w6ApW4PF38uK7oF+Cyt+xKy8iOJiW3E8xqZOQXIJGUiTNPGYxjc1xaB83nypZDkJyBjrxmI6aFrr6FpH1PAJbMNxTfYyKLUGX3Wmt+4xFjDDPfAgthxFejrwYRRiDXdBU2gTtDFLBxfB2rPQnGPOeQpbvophFxIs4vAcZHMKY51aCNRXRn1T7SoFpgeIUiXRBauIyv2EBrPGfuxSH0MbV+PwTi21Jc1R8wN4bHUzG6KVxeIEEqU1N9QMxVNdLsvcxUS5XCAycDpljIXcUvri3NvcwZRGkMtiVUrIRMB3cVxBASnwM5Lcb1qFJkzc7TaO2SZMma6TIy7zMt/DpZwpHMJ1jx7Wp8AJjP/Sx79HHRZkAQws7i6sY5Xks8mSYuc5zSLMlabYkYgm97ErkvoI2LkWRRWNjGU2WEcqkcYVPixhhqHUyaX8BWgpC529gbkboqWTlY0g5XiJq7FoWUypfSHvibxZoWkojpE2JLfTjVORtVIQAy5AfrCDUVAJ3FEQ7jvortrV1Q38z+DgOnRR5kVZ2oYt30c9PiYSNk6yZMfHWr2v/uabkUGUjrmEBRxIwB0krG/HHhoSssXaPMsBxePwDy3TT2b8dFDpBTcebejy29XDS8mGWszsWR4/rQ2AxyCmU+QuxV/QqbPanapAP00Y6KJELK5Qtl4FMWzL52PgpqCwZirhsSuB9CMLrccpx34YiYvQ42pzFFOTmFPgSaTy2ZQWT+M5q779mGd1szQjPAG208lGM+3M89RLCjmj3hijYOYTcgTa+My5JzONltBgBBIOpdkajPDOXL6HU5iAsg8SQpUyWj47L9Pf5NyVeQNJGmp3jql3+ncSVEjQMPTvWuAJRGixLx1EQgDVvIfT1wHY3Qse7x11biveQWin2VwiBk7qbUrgVoRU/MAmtsYOwGl0x1tYYjBAYIfBccDyTrBloF4y5AzV6Bypagt22PQGPEWe3GfQmN0A5STxM7QL6WUCC2npciEiTJm92mkZtkyZNxqEJWMrP8JlHnrczn9/i0QdoFnAhWTYjb7YhiM5FmJdQ8iDyai+GiGNBa0aBMTgmRIknEGxDC9u+5rmNcgERr8TjCEhRwWMKEQ4tLKVFFGpjG7UUP6XihsaA1tjBfHw6UdbvsZ2JK4+9yBfJ5bJ0DA/Wwij6WzrYTL+ELQJMXeRWKW/j6MXxeIxQjt6K4Rkca8yTKpBM5gMNY0SsIERRwcEiRAsJFRDpuNpZPT5LKLEcgw1U8JhLivHVsQQ2nVyFQSNWnAmjP4yNn3AAM3g6piuLSAyVkLl0YlhGjohkzZBsyukUOICx8ABFvM2tk3krIhH/dHgqiVEWAkVImxlCiYjQtgjNL0nzJG6dvk51ZErfI505AcH7MBRJibNRYhXSUwlD+oOo6CmyykLLfrJiOumWx/Cjs9DRI7hiG7LiHKQYH4YB4DALYVIYYgtbC4mlBcZ2EXVeV8OihvMq3MlyjqYqHOvxAD3t1yJGvwnRIrQ9E9l3QcM5cYljYATkUlCjAGV44WTY/SXWloj5GGtsB8BIiYkEQuWAQm1OSn6TSFyHL1+mnLFJZ76KXf4ZRi2CasxvL5hlZ9LRsj/DGx9EpJaSNh9BRcP4zr1IeRiWVCDfstbza9LkzUbTqG3SpEkDmgoPsyfxfqRhMffQwggOilHygGAhf+IVvgHKMDuay0bhdUzhd/SpO7CMX7MhQZA2JSTF9baLGbCUChaxtmhEhrcyk39ghGGFnlFnoImkkEP1pYizu0licYOPUBSPI+x3kOY9CNxaU5/lLO/sBAEthQLFdIa5kzZjR31/7fxxCJEkrmle4r1sqZ9GSXeilgC0cxKD5ncEQhDgILQmlfp0Uk2rDu8eZOEoZrGC3nwnJSfDcn5J62qSdwQSRi9teC9dDhiupehBhGSI69iVv7Gc29GUmczBWOSpsBUBTxB73iMs9mWAeWgqCAQly2VZqoNOfxihI4yQtDAcByeIRGFBvMRwKg+WYIo3gKzTaDXlC9DhxUT5eD5l8zg5+RxCjE8SM9FLBJVDSKvnQQhSkaFo5Qmt5xHiMFzr3LX6JbPoYJb4Lcujr0HwIt2jYLX/Hsu6Ed/8meoH1GZ3EKCJWMHBeDxE/QA+T2KkjWj9CUb3wsBkTBpE1RttdaBbLQTLkaNpxKgH1QIfUWnNE61DMrnBCw4QOB1krSsIvQ8BRaQ6Eqv8Ck756fhzKSdB19H46ozaglu98fwEBjN8Gy1L3o+Z+gN06QRU8d8oA2Hq23gtF+Oqk9Zpjk2avJloJoo1adKkgUc5jrFMe4GFYZgWWhkmSwGBxRIer2WQz7U2oUwWo/9FBwdTESk8HEIsOnUfKfJY4uD1MjdDyCj/Jt4sFgTYFNmFR7mRpbxAp5hLlk+Q5n1kuYBAJKL9SZyt0lFyVXH84ZB1OYN8nL5wW4x/a22cTt4NQrC8s4uXZ85iefdmvFNcjy2OQZmxbH6hDY4X1CkLQCAsSsqlVNkJY1ZtxDhMZYr4CooQi4CU9GgRjfqxRL0wcCCu/wo5v8TGA6+gtEatJEEWMcgSjmMub2UZJ6MpgmzUslWhJkq+8g2CCi4FlqDIMJXDmM5HsBL92w4uw2UfLDYlz9eYz6+JqBAhiZBI0cEr+R5eaJ+BIcIRFSwRJcZgPIauPlRYsKyjndFUF6ElqaQkRoIVVKgazYZlaF4Yf7+NISodSCifb3g/HRVxeeeE62qMJgx+gF/Zm9D/fMM9yPA2ZqmbmZV6mcykOZD5ADlzIXbUgop83KBEEHwSbXyWmwMp8xi6ZtDGITWKaWMScP7NSAOiDWgH2oAZR6NaF6CyzyJmPY6wq55jAbPPnnDOq8JSb0GYttrnF61JWTeg1EE46UGc9DC2czmi/KvqCAi9CLxbgXzt6UsE9c+Umsj7E5VgR1Tx38lVgV2ByFtz+esmTd7MND21TZo0acDj5XHCVyl8NIIsJSZxLk/w04bjoRBI+TY25mO4GFaY68ljaBUnkBWfR4op62VumlF0ktFf/Zl+iodZxhIe4yYOEKeyMecCsIAjqIhO0maUvC7iBAFS69qpvrRrHrDAGiQYPAhH3A/2TsziDAyGAe7AZSpbcD42eSzxc0L2ITRP4OufIP2AAJtIgmUiIqEoqdjbaEXPYYLLEc4prIqQJ4hLR8SGcplbaedrYw2iFyFJdANQxpAOU0xxzqjro49ejqPM04CmwN+wmEZXz02wZIexvoxFENmULUXVnxEhCRjCWUk5wWI6XVwLwFK+i8tQsv6CMi4RmgF6am6RTXkJUTPtRaJKoTBIBBojJSM5g44UEvBTCrtsajJmCBc5YZx1GcxcajIA1XVgCm59zGw0DMUbQKTR8j/4le/T39pBoF4mqx+mR92DWLn8V3VZzLNY0dKx1zyNp3+Dr55auSGKLrq4pBbCQVQi2ZAYk4N1dkOIFKitYqms3Z6D4fshtTHk1j38JmctwdO/QPMyrjoFJeNyvkLYEI1A5S5i2QWvdo6Qndj2nwi89wMFolaJrOiaAet3SHyhoC1+iLIr4JQNUjdNgib/2zQ/wU2aNGmgRIZW4oSaKiIxUVw2YzL/x3xuZ4g4OaZNh7TLM7HkxxAIpvE9ponvVU9cr0jacNgejyeTWUkGaccQZ868xINszNuAWAbLACWVp6TamDGkkdZ8SKRMR9ONnkyhNQR3gb0TAsFsvsJsvtLYRghscSTSbElgfgRS4FY0A7mkL2MwRjKjsghhDIvVXyjzJ3K8g8l8HYmLQTPMPUQUkMymPnbVWTnm2No2Fj81I8nWchsbW3chiJPcilzGKF/EIw11HsWABZDaHjYaghWng7gHIZ5j08ElLM+0MpBtS0ItN8auUxwwaCq8gMDGZRMMFQa4vG79DRYRHiHUla5dwEw2ZQkZihh8PFwqpIg9mwFpvDj6QyTaUSKORcaAry1M5OCIl0iJXfFYznPmUIReQaso0CMVVhQR1AoCSBzr12NrpIvwyi4QvJgchRXTJ+ErB4SgIBeS5hpa64p8NN7TKYwFpcQ9RPrP40rg2vhk9Ev4HIIt70OK2Qh3L6qO4Ni4bUM4R6x0Yid01e1UjP4BVpwEwoHu2yE9PoY1NPdS1idgGMARn8GVXx8zpKsEc2DJrqBXgBTgJFUU0h8DNy4b7KRHAEM07X5KmXciy4YoJxjK5WkNh3nFms6obCFjl5gdLMRKXzzhGjVp8r9C06ht0qRJA5tyCis4mzg6VGHj0YYkzcF08UsEgt04j17u5/+xd95xklTVHv/ee6uqc/fk3ZnNy8LCElYMICDJgIo8UBEwIZiemFDEJ5gVFVHMqKiAiqKiKCiCGAFBggiIZJZl2byzk6dzV7j3/VE1PT07s4EFlH2vvnz6w3R11U3V23Xq1Dm/I5D0yOejpLPddreFyzir+TUBDeZzDBmmJw15wfep+5/hTns/2mUfBcYZZgEeDnvxIBkq2GQxGASCdt7MZj4OhDGmKvtpEhtPDuNJM5ByatTs0L2Wr1SxdQDWs3ZovJJlSJah1YMo7ZMrVammE0gTkK9VUEazOTGfolwFaEZZj0UXPbyfx/kow1wDQIK5zOGtNLgRh33p2FJiS7ZD59+gcn4YJ5s9CyLVBoNLibBCmoUfFV4IDbPsRCa9VYD218H4d5tN9lTHGU29GCn3Yh/eHbYLaBo8zEvwCaWp2jmeOXySCYMv9L7KqHRxNtoaGuQeDnXOpodDeZxjkC0FFwJsPBOQMI1p8W5VmaYo84Bg1LyBPr7EBv8jJE2VrKmgLJ+RdJ6sW8PyPMbtPCNOO3NkbdIUr/ymadASjdazrCl6tR5rt34uxSIc6zu4/ln4WJSt12Hry0j4DRpW6HV3Apck9WjOY7jmIpLi82Dti8hfC7VvgeyEzOfCkrZbo3I9DJ1EdAKhfz+YVwZrMpzEGE1Vn0BYpkzjms9hiYOxeDEGjzLfxOVe8sVNWHosvG/UBvx5MOcekJOyYaEhLFBmf/xCB+RHo/NlMaBmMaS6QQgaJsGKdsk8ZbYhqhYT88wnNmpjYmKmsBsn0svhFFlFO/uQIDdtH4VDH0fMeLzHKENcBUi6eRXWdkqwGgJu40zKrEUA67iOI/ghTnRcwOOUzZkE/J4xWaAsEzyPx0hRZz7rWUwHViRCL/g5m7kemxoOr2Q+l9PgUdIcRCK1BDo3IUY/japB2l9GIrgTp25QZg5kPw7Oi3dojYSwycgbcM0PMG0+GTdDuvLuqfuoDtrFaiSGBg4NHqbBmqZBC9BgPYL30bctOSt7GbRNeiaNqVHTp+FxXSiCKsDGQ2DQKHK8kxyvamnAndbkUvMN2OLGYS1nNQ1agFF+xSzeSxdnMMBXqJLBjwJTcsxnbz7KP/kkNfrp4nnsxpsY4RJMJP3VdNMbgxX4tNer+Kn5+KzFEwmMgDJTdVs3cy4d3mZ6vBEg9GGPZNooJzPgGPyGjZYWI/ySdiLvZ3lqxSwD5MpVxtsmYkolWV629fUFfHUgdfUtHufb+PyVtOhgkbeKVFDHICmpeZSlRdLUUMAAm7D5Bd0cjZU4GhJHb7P9JiPvnr6t+BXo+Hi0VJrA/QJ2MIhWksCKbjjMOhBQ5FzKfBMAW1SichrhHBHpKQZtK0JkSHMbVbMUTOjYLcl06w7UVIYyN9O+hUpHTMyuRGzUxsTETCPNLNLMesLHaeo8xBuosx6DYAMXsQcXkI9CAiYoMc7t/JUAn73IU2Y1goA0NRIM8jjLSaHJ8W4Ml4a156VESMNc1pOMjFiAPCPUSDHhUSxSpEqaOXyPFA7tfH6y47b/gbb/QQAJYzCsRSRTCDG1XK8fVfyyWLTVuQrRRkKcAYBJrCfwphosSm2O/JuQwMXCYZhzmXzMHRp9ivyOLW6Ea76Mzy8QOkDhECgrTPTBBxRtkfe2iX0E2IeD99fwffK/QU33hNd5aNo2g2EW7yKgnSJfbm4vcR8lXs5yDifP1cgocSrBAkL/rUROyE2ZgO7aKMOJdiz1ehpczEQiomMa1CeCUUOXIx3eWLMfASS9BhWVBgE1JwFI7NbvpmmtoAWCFF1D4yS8HF77a8lYryfJ/myNYX5Af3RTkYi+hVWZYYWzhIyuoqXEFwBtGNOOSxaX+4EH6OeXLOcn2y2/bIwBSgTOXJQ/NelNJCZjgxvu0ViNP4SFvXxNwygCK4clQ6WLBjcy8f2pFNJkqg7KGw8DejunxrlviaUW4+hXEfhXMKs2Qi2fAtWUKUHhk+GgbbYRE/NMJ1Y/iImJecqo8DB11qEjdQKfCg/xDmqsae4T4HMp38IE57OH925Gg9OwokfTdZKMU2CUApIqJb6Cx3oQGoQgJyrM1puaobrTpbUEKSp4WJTI0oh0c2dCCIEUC6YYtAbDKB9kM89jM89jlA81DdNtIeRchP3OyQ3qqGg0k+NSVPB4hDST2fgZ5pLfwpAwNCjxDoaYz2b2Zsz8Ds/8ioa+AG3WoFmFM+6TW+/RtbZCdlxhcSAJXksPDzQNzMmubSj8CQo3QNvtkJ05bjI3rWSxQyLy5qZmMO4NI9S5kgpfam7L8wq6+G8kXSiWoHQ7vrB4LLuQMTtPnV8xqaxBqJgw2SDdxVkTfzbRE/pwRuGqDCn2pbfVcM+fOjHR8H+zLkIsLpHvWkundX7ToDXGxZjpXutBvjW5VBhsPMBghCJQVhiuio8iQKNwhYy6MlRZxSMsYy1H4s9QyjjsdxSvcTBurYCfu4NKp41WAq0E5a40sBE29GI2zkE0/ticiTFgNwKyw2WkCaXhbJ7DxGVbK0F1zmdg7gqY3w+pI2bsv5WE9RMc+0KkZdhjZC17jK6ipzbM/PIG5ohTaefE7bYRE/NMRhhjtv+LHfO0UywWKRQKjI+Pk88/Mc9NTMwzhQYb+RcvQ2+RZbMbn6abYwEYpJ/N7kEsMmGcY10kuN/eh5pIM2GYSHz25X48HCw0Dl5YuQlBOjiVmroDI0JdThcnivOEsOxD0Lxbt1lED//Y4fF7PMwAL5iyLcmP8CjQyXJsZn68C5E3Tv8TTB3UgZTF56mY85Fao6UMYxdJ4WERagMEkYd1N3q5GRmNusR7qfPDZuqS0BrH+NHa5EjoD5FY/6Gpnc+5F5wnL5q/hjMp8mcUBRZxCSnCTHuDz4O8nzFuB6DAKF0MA4IEx9LOpVPaCdiI1kOUaoeQMKGndTDZSdpUUbJFO9hAXlxEUL+B3KYLsAPACvDaw0fkrlSMpXtRch885hIwRoFX08YWRTNqf4P6LZA4ENJHTJtXQ3+DhvkwYEiIc0jIyfK5KzgMj01MxA03SBCQI0kRh6mSbC4WJdpathh62RQJne3NfK6f1rfvfoTA+wIIjTEQKEUtmQITluToWP8YECoTBCkwTtNmRnrhi+6HwVqKpkKRc3C5hyRHkuN/tqrqsC203owpHQ7BKkSwCNl+HViLn3A7MSHx9fuZQxx+EBMT85SRoI9FnMNjnEPrY/Z0ZBwBpI3DIr226VhLmAZdeoh1akLSyZCm2qJ3qkhwHFqMk+LdONYRJNGUuZAafyHglpYRTIgWhX17rEZTRTJd1H9m/CmtANzD56iTIsUsXsC3m7G+WyKEADUZZpHxX0yyei6CGoEQjGeyOKJKINL4WFQjA1mymToLAZs0L8Hh5imiEaI5nfARNgxP71yXp2/bCRa0hBhMmRsWy/g6ZR6mwa/xOZ/w8uGTjG5WJqjyRap8BiRYjodT83CCcRINF6EN5VwK3w4lKBwtyMsDkGOXQRCmopkARBA2r4zG1jVqwRqq1oNh7Cf/wKKHbKtnOfWC8DUD2qyhYSY9u3XzUYzZm4Z4kApXkMGmGAqPkWRv2sjj8iAVpoY1KALy1MhSZZguPCwKjGERREl0M1cKM421gAYVfqekpwmFIRxS7iE0Uo8igrACmapDPSGwAwNBqC+LfQio8N+PJEMbX9ja6ds67oNQ/CGIHLR/AClnQeHh7R4WE7OrERu1MTExTyndvJIs+7Ga8/EZp5eTybBXyx5jU/YP87MNCeoYwrK3s9kY+Vs1SfYhx8VTjpFI8rybPO9mM6+iwe1MGLKitYoY6gl5sob4bIufF4pkI2kqqLGZjdzIQo7bobZ044OISDtUGkPSbbA2OZeaSZIQkwZT6LM1SBqUuQYbTYaW0AWjIz0HAxikWg6pV0Dt2vDzxGGQeN52x2PwGeRCqtxBiv3p5j1Idly1QqDIsTdZllFnTzz+icOhJHlpy1wGQ4M2wrdtfNcnUQnIB2HJrVyjzmh7AiHB0R6BdRWyxUuoMzTltKQxZOpFahmBJZwwUc0YatxDVmwZLrG1eY+2/B0qLpTEyc2nCQZIRcUoFH/HRaKR2Cb8vxThd8qJEu4sAmZFCXWtjzmVKeDzRwxVLI5qVkdTY0eiCz+ZWETsawxtR1yK2/lttPkROhd+3zxANbIkxndH1u8Kz3nhZOj8DognESnorYE1zwW3Fg544Euwx2pQ03UOjNFg+kF0IcSTUzQJGwxAPHFPckzMzhIbtTExMU85KRazFxfO/JlYwLBOk5aVUEdUZBiT7djGoyqSzOdsctxHg1+gWEiBbWtndvNDxvkKAZvJ8BoqXEyDPwOCAufSWv52W/isxuOG6N1EGESrzxZUZODuEKZGq9njGodx2kBAgtKUfgIkEo1GUiSNiWI7XRwskaPNVIARbN6EJU6EWSdA7U/gD0P1MbzN72Ws00ba82jnNOQWihUGzRAnEHAjCsUwtwKGTk5A0oZ8AslqAkGK40nNmCUfTNtiALnF5vbhBvW8QDsCEQyF2f/eY1D7C9gpEJuYvEkJsPFw8CibNL5wSOl90axEMAfRrHowM5J9URxEwG14wo4Ul5vBHUwUDs5QiW6wwMUmEIqUrlMljRRiivd8ouWJsAEB5HQ71UiRQbIvGXkzQqSQPa/Fuehj6M7NiAGBrCxAH78PxtwwtTljCJwyxr0rmreB4i+g6/s8KWrXgxcatEaA0UXE5k8i+qYmlhkzgFd/IcY8AHRhJ/+IlFsk2DX64eHToboK+t4I89/XIp3Wgi7D0PFhZTO1BLqvAXvpk5tHTMwOEMfUPkOIY3Ji/j8xYv5Gufoa8v44w1YH61O9+NJmN97IQmaQPXoCGAwBqxHkUHTt8HE1/sIgr5+yLUDwEM/C4NPFc3gun0Ftx7upzUb84GLwVyLdn0L0eHplegEjqhOEwMIjRei5lPg4uERlCagxGVsMhtkMominzdyJEh3RZo0JGrB6D4y3AeoGKtBIOpQWLaen845ovwaYOnV5JWVOj1oM40ZrdJNmEIAER9HJZU3N2pnXZw3r+QGGgDmcTIY9ZtyvxBmRwgFYnk+6UscOpxo67aK8L63BzQoc61uo5GSSnfFvJageyYQUWSmZouE4YEAHkmwli8gmMawB2snI61Bi6+oGAMbU8c1vqHI9ZXElRpgovGXC/x16YCdWvUYiLGgRXR7z4mUYpkqHCT0XVwxjRIA0AZ16GAHUsAiwkHIhPeZWhFH4xe8jbv8ZUixBHnIeOluh5u7OTDg1jRoB6QNawqKVkNi6Csd2qf0NVh2K2w5eR6S4Ucogu+7CE+tJsB8WXfjumQT+1wlvTCRCHoKTvGlqW7c9C0r30rxZW/4rmPXq6X2OfxqK5xCKsilIvAB6bgw/c++D0XeFRSNyZ0L2rTs/t2cI8fX7mUNs1D5DiP9RxPx/pMhq1nIdEsECjiHD3P/YWAKG2MDeW2zN0ce9eFRI0sVM/rpWjClSc/fGsBkwCLMYR55BTX6GQWnYJPuYqA1r4eLg0s5Ys8SsxGDzQca4Ds1a8hRJRiEMeX6DwwuhcgGV2kewrApKmjCh6J4oDjWivv+Xkau+gGgMM757knpHCi0laVFFEHqGXZym7BZAG98ms5Xs94Aad3EcXhQ6okjxHH6DPSVpKloDDP74MjCPoTwvVLWQkAgmnXoGqGYAFRqWjnUxljwF456L9n4E9CDs/6IsfkPNvj880BjyxU5E9sV4XMaE8aU4nIz6/TbPywSaUQZ4KQGrMIDNwfg4VLktrHoWja1kcuiJx+YG2sSrydBHkfPB+OTqAWMJh0DI5qSyuoiHjRATcdCGjlVFkuWAxiyJ2+0AmrS8FsULqbo5RFDFTNxHCIEIDI5vEOOgRog0zSQkF0L+bdD24R2a55Z4mw7A7bir5SQZKjJL0SkgyTGXXyMaX0IH32fC2y7EcpzUPZPHPH4yDFwW2qkVQAtY/FFY8hmmMfJOqFzUbMuoNryOQ1Hq9ejx91BPj2JpDRqSzq2I5K4tJRZfv585xJJeMTEx/zYeNQezujybDSPdlFYvId8Q7MM7WcZp/xaDVjOGx23oyEPZiqKLHq5iIqBTMIu5PIhFmhTd2zVoAbT5O4aNhBdzjRErkdbhZNWjzOJ7pLSLLTwEGo2iQYoBZpFgOT1cTh/rmM1Z7MGv6aFEslk4QaJYCP5KSo2zqWRkaNBGmLk0H50LwHrkk6jiIMPPz+F3W1jKQ4qAQTojz+TCpiE9QcDqrc6rxlpsvY4+fy3dfj/alKhskRhlTA0v+Cae/1mUtwI7MmgNYGumrJ4gTIyKjsTzP43xf4FufAz0CgJuo8bnSY0+RKLsYjc8MmN1UuPe1IZC83i752UCSTs93EgXv2YWtzGLq5nDL6nRh4sTKhAgw4poTX+PwKKXNt7PLP6C0DY5b3iKQYsxjIvCtCfx43OyCAzJzQGy4QMSz/wKzHpUo4Y0Bts1WL7B8jS2H93clKOppQFLg78KRj8CQ6ft8Fxb8du2iP8QgoQJ3eeaKmP8AGW/E5qhOgJltxjQmz4HI5eF/zRsIA9B1lCb8w9q+u1os3Jq+5lTMC23TEFiDKOvwfdeh5saJulrbB025bmH7tScYmJmIjZqY2Ji/i2s5o1ovZ56JkGpPc3GeS7u2lf82/r3eZhR9mOcoxhhbzxunbZPkoOZz0bms5l53PuEEqkABAuZtLoEkECI2QgDmcHzePaG+1gyuD568B2aoGGi2INUOI4Sx2EoI2kjz89RLEWymBzfR5o5+P556KQmHdRbO8VkpiYtGQMjC/IIaZqGro1PlSwpPkY3f0RM0bOVJCdK686Ao0fZ3XuU7mCQvmADC/x1pFkE3l1Qeiem/GHq3tG4/vvxgnOoZS20kGBAmFBmePo9Qcs6iRQmeABQ+FLQSAgMZYQZpa1Wp7NYJdtwQY/giHdDM7ZZ4cizd/wEQaSEkWKY97CJl1LnHyzlSlwOxCWPhSYtaigkGIuMeAHdvAOAEr9GRMUe8m6r4oTAFYlJLa4tpwiIYKLQ8CLQa7HQqCBSRNCg9OThZiLXUTJ5pwJQughatHa1dxVB/XS0+yOmPXR110JjRagyUd/cYqSHfwYtCZQCByn3x0k+hOVcjp38F8o6abKt0Ssn5yMABZVnO3jOTXjmJ1T0izCRkQxA4vnork8TpMHNhVJloQ9fYAdb3uAEBPUWL3JMzJMgThSLiYn5t1Dnjuhxc4hRgrpa/wTNxp2nxlcxFKN3Dap8lgK/e0r7kHJ3HOtiPP9jgINjfQMh2sNHsW4oPZZ1S6F2rVBRGEKAQ2gg+dxGjYtJ835sjqSN2xDRz7Tnvh2tf0ACjdwyaCzKVjIGGt29yK53oStfxZhJC8Ig0CTI8EEEitncQ4nPo6mS5W04bEPnVv8VmgoMUNBFnGAcxl4AeCAMullUK7RideqlyMYI1P6O1IROwOZYsmh7AfAQkCJhfROpEwTuZ3FtRXrMx/LBqPBpt5ck9Iom6zgsIysfIOAuFHshxW5P6Bz5DLGZYyBSyRjgWPr4F7vzHfqj8BOJISdGGaadQe7E4ywMDxDwOLayqCuH9sY4yaCBp/ZFOB9gPZ/EMwqnRQosvyn0IgepHEEqgcV/4YjTQze1WIgwa5l0yaZAj0BZI6qEbsyAphJEuHYCtAebrkY3/oxu/y5YCkoBYuwzYC8nmPtKvOCLiOr92CMGt28eQWpzFK0R1sgVSMp2L+Bj0Us7oQdYyPkoOX/6oqWXQ+3u5lujrHB8E+EF9KPrv0ANvQNogNod3XkgOqVa9oEtnw5MIEaOg9mPgtx20l9MzPaIjdqY/wiNle3IwjgmAOlchtXx+u0fFLNL47AE1zwwZZvlbF+Kamd5nMsY4nYK7M0S3sp0V+H2wwm2hcejlPgK4JPlPTgsB8BWp2KrU6fubBpM6Oc62mfvwbX095yOMAky5jso44UFGlAYUaTE/TzMGaRZRZY+ZvNl0NcBGkGYP1QlhcQiYTqxOn+EOPJQDD5DXMFqvk37cDdaexRUEYNghE5247ymxJminTa+uENzlWL3Fqk0hRS7Q+1KmChXbAhT68VEwAGI1Echc0iYGOSvAPs54P0RZA8icRwpNIbVCGYhRBYkyPSfcKovR7VIxDYyAjNh2FmGRv0wUqnbkByz3XEbExDwDwRpJPsihKDG76E5FwBNjT+T4RVMKBpMfhJ+R8a4kQQeCkkgFP3pbhK+S00kGVd15gsPgLqfYfbQOmoZh8xYnYSrYfaHUd0fIy+naiWrzO0Y77uAwNgnI2UPovQv2HhE6I1NEV6hRSL6/gDtX4Sbj4ahm0InbgaC/QPkeoCVGB5DlH9FsBdQEPhZAWp9eEOgBNI3JGpZRO7PpOQyfPqxmYfY3q3lvK9DYyVUbgerF7P7j4FjCJP5BARJ5NCpk/sHjyJLFjo9GfZg6GDEMQSWZHZ9OPTgu1GBiWADFL8Hbe/b7jmNidkWcaLYM4T/T4HmjRV9OO2bmu8DAVZX/DX8v47GZwX7IP0qUmuylR5mF24DuWOSW0+Eh/gy6/l18/0sXswyXsc4R2EYBjIU+A02B+5U+5oKm3kOmlFCH2iaWdy5dbWFYAQ2Pw+CVeH7wpcgfyYN7z34OpQ+00LQsBLYHMOjskaBu8hSAUKN2Hxjf1RwIxOeL+l8h8A6AIt5WFG/FVZx15RqW5oC88iwiAV8BnuHi1BM8qg5nhr3AYY2v0y3WUzCugS5+b/Burn5tD2wUjQyszEUsdWHcKwPbbPdreEXD0FWb0UrgTCGeqElSs4YpK9IZb3ttmOMR1UfQ8CNANicTkqdT4N/sZmjpuw7mxtwWEaZ7zPOh4GACinGKQCCrF9mXn0j0miGkl2M23tTZ4CJyed4Hj0czZD/FfZYd9vUgfTeAsmDZxhfmcD7KJ6+hrraRMNKkBOfIVPsg+IHQE2WliZ9Nm66A7f+dbJ/2DClHT0H5BaBhJV9BFiT8b4Twb7C9OC4HgiBTHwV6bxxu+s4I8bgF48C94bQC+9LpJ56TowoEMz6IDr4LUIsRznnsoFTaIh7UZ7LgoEBhB8VmAjjY2D+rnkd+P90/X6mE3tqY/7tyEw/MOknswwYdw3CWbD1g2J2eSQWe/Iw2mogsBHOUxfSbzB4rEVgoZH081ta64INczsWn6Sd+wh4BMki5AyZ+zuKz0p8hhFNxdMyPg+iOGzmA1QHzP4XNG4B1QvOfhgziq8vxAC+svGVRYMEK3mEAItROklRjypWBWjnKGx3FkY/iLZeynp1EQGfReDQy/dJczgeI1t0LBlnA3tyARYp1nMBA/wMm04W8Xmy7LPNeW7kc9TEfdFSCsasHAXeSErsCX4ldNQlwqVW5kWkE7/d6TWdQKS+QCX5otA7awzSD8LH1k1ZgTSjfAaHvUhz/FYT+AJuaBq0AB7fIGE+SEIsJ8e7KXEhIMjxXhyWAZDlLaQ5gRH+wAY+g0AjTcBu1bVNT3VvrZ9AvpC6GoQoHcriHoo8TMpo1nd3I4C2chGkIi07EROGZfVrmPp3MbIbN7GeQKxBGk3aCx3dNX026UodoVoTuyTa+wN18QAoEzrEW8N2x4E2QhUFAcYidDiHgbNh+EJ0kAwGAB3Ko9VPQVhHIOROJGgWT8eq/nnKam+JsApY9sdAHwXVy6DxXeZkf0xN3M2QPBcRDCAmEuIIndFCeyDtaW3FxOwosVEb8++nLhBO+Es28dRSyjn/2THF/NuQO1gMYUdpsIq1vJaAATSCChlsEvikUcYnp0so0RY+3iaHS4khDkIzToY3U+DzO6RssJGvMchV2CgyrAAkGoHCoLCxtqLb2kRmIfXSlg02oAgk+FZ4IR8wPQSRlJSHzSjtdDMUOrLEs7ATofdzkE8TMASAwWOIc5nP4eTYB4ceXAamdD3CZ0jxOjbxPSD0Q67kdJbzl23OfZQrCRO5og0CxvTvKIh3Qv6/YfA08KLsob4n/+i4wp/x1HlIMxEGINDKwvI9DAYVGEaSEp8LgQCfdRQ4A60DKl4noZUEiENJWR+foYfwRqqdT9DGx6MpiS32yNHFa9CkeJxPYusSckq4Asw2BxBwE3YktxaWhhBUbAessPBFMZ2hozFCeuOekHk75F8JlTPC3oKHkYHCz5gw7CTQWDpANqb2E6Ix7j9BOJAQ1PdXJO8JQIebJoqNNYuOBaCq84G1OEMGoyBIa0ThNAgunNIuZhO0qo4YDXo1iC6QocdRa03V3x8tHwGTIC1vwGrsQCx69o1Q/QGU3xI2XRP4+lqctq9TV9XwhqjVONeAtxoSM+v3xsTsCLH6Qcy/HdlXxPMEWoQGrT/WBVZ8fxWz4wQ8ToPfUOUK1vJKtOknGdSaWeMOLllT5FnuPSzzH2Kp9zu84JsYNCO8NQobCKhwESXeQ5Xz0fRvtb8BLmMj38NlGJsVVLGpkMYg8RGRMX3VE5qDEFkc6+sYIZuZ6ROKASESTQFBH1k+hcNLWo6eKVMsrHi2Pxcjm2JaBoc6ksdo0PrYWuMxxEwetlYU2Whs0csYcuJl4YeFd0DfH6HzCzD3dki/+AnNf0tG+BYbeTM1cxdmwogUAimXkVRXkhSfpZo8Fd9KNcddIczKr3l7IykhSuUURAAAYWxJREFUjEEaA/wNXw9icWyzfUd8DCm6m+9F9N9MGAxr+AIGTUOmqMkEhjDmGdFNVV1FhhIJXBwT6g03dSYij7KWCu2r0KtavgjduK551gRg64CaDAs8mEiH15I+bi4gUNGKGwUByPtA1A1ogzdfUjlcQQeTIhAWtHafLB9FcpNBeqDq4IwIrA0/DR/1T5xOPQvkfpOTDtbDUDuM7AZDBdi4F9TvoFY/HK0ejmQsatTcg0C1lr0mtCRyZ0JiPiRykD8R0mdBJSykYgSMdScptt3HOC+k019NI7vlmgOyfetfkJiYHSC2JGL+7ahUBpWa9Eg4O170KSYGl5spciy+9skXG+zmeuGT1nSYLb/RnsWQ3c2sYACHSfkj1/8Elnp7iwLCRCnaH+MiqHMRbfwDSWFanwNcEBk1UCfZ/LuMTZoyijJjfIoEB5HgWTs8F1u9k4zZj3GOBqPpYISNog8AicNivkduWkEIaOOtlLmagEHAopNJTVHH9LBPsIBB/oYRgrSskhIn43Aokq+haQCadl7cVFbYGu28esrcQVMSvXRM7JB+Sfh6kngMMWDOJ6ldkkF1UsoKh6Q8D6leCrwSxVeBiUILCpvFABhWNtWmDCC0ZlheSK+8HsMjCFJIsfAJjMigqREgCITDfek9Wep20cZzkc5pBOLYSee1AIWPMJotbzZUbTLjzVjPQjQm9yg76UgBQyDEwSSCv4UT0C3hBSbAeCBKkLnBw1soQwe2H/1+Jglz9SbCDKJB6XUXIdKhJxcNOK9GuL9E9YfybwgQ5c0I8ytoj5J0R/aB5r8NwHoYNr4QUfDBmQz/MMqAdUpoBAf3gUhD/ruQfj3wpcnjdQmogQDXljjrAxKb6wRpSXmpxrGADJhKOGw/mcG244tBzJMjNmpjYmJ2Kcb4GBiP9nIVJQ06CXhgVcHLwWxvgCGrK/R6TiGBIEGKk6jx81AftGliGDSb8Pk7zhZJRAYPGGbCLWZa9D0BXBwyUQGAgA3wBIxaAFscQhs3UudK0rTRzUupsYEc+5Kkb+ZjmMcCbqLBw9jMw2JW8zNfX4YdXEEfYQobcn8y9gcQSJZxOeP6EnLuL7HMbwmsPVD21gX9O3g9m8WFKHwMMCo6mnOdCS+4ENf/KGDhWF/FVcMErCOpX4RTvQ6CNZB4PSSnVi4bMl9AGY8ufyjyIobey7p6Hzkx6QHO8048HqPOn7FZRkdTvSGPYbxpaBohGBXrkOJ8ejlr64u/FQSSTv6LjVyLweDKJA8mPQ7mkwhSJHk1Vb42WVzAKIQQSO0jjIi8oZruSincIf1qVOrNDFp/QTWuwZcWY6le5vi9ONYbkLqA74dGrVUPH8ULQg8nCkiCrIPzcGjM1g8TuDY4FYFIRwZuejnBxoeRuQbCChOwjAtiA2D+BB0gBqKw5DlAXkDpj6FRq0vAeOsChMgK9riDX6D5NMEqahj7Fiy+HWSSrSJz4BwD7jWoYUNiTXiDqaoBuaCOmAtkQwUHUwLV/j9P+DzFxGxJbNTGxMTsUlTZQN7XqFavmA14k16wObyZgnwxUpyGNncADgnr2wC08w2SvIiADTT4JOAzcaRk3gw9WijyWFTxsUJPYFTqNjxGo5FIukmwA+U+dRnGTgH3L2A/D9p+iqX2J8v+zV22l8AV9pslxXOnN2/uJPxp98NENt2PiDytSbMIWb8U6AcCfO+dCLkPUr0AQ1jxSrREpdl0k+XDrOE7BCgEXfTyEgz+NC+v1o/g+u9pvm/4p1CRGYywcEpfw7g6TPhyfwOyA5zQWPX8r+KLH2Ib0ZRinYh0dc3FrOAO5nIBo/yIwAzSUXHpqvZB8vmQ6wYBSXU/tWABYRU3QUMlmCUHEHyWGu2k+O/tn5ctSBNgmPDMK8CwiT8zl/8ixycQpKjzKwwWiv3prqZwfMGa9N3UrDVgDI/3zcEyPcxPXAFC0uVcRtm5CUWJ3TgC5eSgehFm/LU4QOBEXtrwjguIjNDnnAkrforxB3B30+iCQBckQn4cx30FWF2QWEDl05LcmeAlLCzXD4NQJIjCOM0waw2sA3Y3UO+FR38Pc55HaD1H4ShNaz2HpUukNwn8lETUDc6wBm6G/k9B33nbXsTEOcAS1OilGEab3nS7pJt284R3WsbRkDFPAbFRGxMTs0sxxjIyrfGv0QVYR1KbtnMJfeLN4Uf2LRhWIehCiDYglMdK82oAHHajwhkY6qT5BBZbxAoSmlfz+BbrOR3PjGO0D9IKawwQ0GGKOPLjZHk9avLB/NYpfwYavwY0uDeE8k3tP97J1ZiOEofj800mgiylbI11rQJTJaGMeYgqt1DlPMAmy9dIMqkbvZhT6OB51Ognj80oRzFEPw7LyHMiKU5FkMJs0a7AIIzGiADH9VuiVxV4NxNY+/CYuYS+4BNkhM2Q6pxS9SoaHJrVPM4JkXB/QDljWFxeT2r8htAbmH0nltVHzvL4l/4sSXkRHYw0+6vzoyds1A6bjyDMt1mEzToxl1L03VnB50nyVtJ8iBxnkZvwAoeiDAC0cTk1PgZCUEukyfMCJixUgSTHEZMd6REYP62prGC5ECSWI4N/RfMPl4vOs6D3S+jgdwT+a4AGQuyJbb0H7MnvXCPIMbw8TZCwkF5A34ODJBL+1Cv9xMKsXQ7/+gJwHmS64ZTvgHwvmDp4wBgY3yWYA9gGSweIZjSPhto/t72Io1+C4dD7KvxcczoAtMTTmgYIT0H+zdtuLyZmB4h1ap8hxDp3MTE7xhj/5AHzPvas3UXBr2KAksriJo+iQ34MR+y/3TZ2Fm086t7BGBNWVzI4JO07sOQ2qnFtyeiJUP8lzUu8fRB0TS/ZO6VfKozxPhrcjMOzaefbSLaeVOMFPybQv0GKpdjqowgxqU/r1g/D6FsIDS0Lmfw54/INLUcrOliFnMFA38gL8M1j4fNxY8j4FYRMkFbfxTN/RAfXooKB0PkmMtSUwdYu2bKL5YvJAg7y5VC9Do3Ay0E17bDZmU1PYzNJHRUaMLAx2YcnLTQKp+Exe8MQlh8QpCRZvDCOs/NHzfEFNNjEa0nwl8gIVji8gjw/2eb6Tq6zz2pOJxNchkQzIjvxCaXWBkQPFh7P4l4ACvwJm+dPa8OgGeI7FPkzSfZgNh9BMfNvuvFXIwYXTd2YOwdqn5i6reNRUEvCY8woxvQjxBKEmCp/tWngTVQ6rwcVJp7ZIx7zHxpAJIA10Cx2FgDjnbB5OHwvgD0zcNSXwC3Dhg8BBr8HyDO1Tkkd1CYQvedDzwdnXkij4bEUTMS0a2BzHnQRk4CgEyhGpYFT+8IevwFn0cxt7QLE1+9nDrGnNiYmZpeijf15vvgjXnoEaRII0nSIf095TSlsUvbNuPpnFM19aPUS0mK6dxeAyteg9AkgAYXvQir0DpM8CepX0Hzcm9p+Nb0S51PjakBT53rG+AQdXLDV/W11MrY6eebPEtcQeF/BMISy3oIvh7fYIyDQ/0T7vweRQ1mnN73cmsFIeynEIMg0Rimn3gzCAqUR8ghS+jiMXETgHR8WlUgKRKMTi73w5Gys8V80Y5qdEtQTPhjDgNNDNiijjKYs0/jSIkBgjGT+qv6wcAAgakAOSBw6ZeSKBH38iBJvweNGLPYlw/nbXd8J7uM84C900mCznIWPBULgmAYZKnRFMmrhWmyYsQ2BpJt30c27ttmXDu7Gr70AS4GcEKGw9ob0O6BxKehVgAH7UJCLJ9sX7Qhdg/LXQtmtzCkgwthW0ZOPBGvDGya/w6IhLJK+D/OBEmGozmxADsOdhJWKbaCnAgPvBPslTN5wMdWgBUiCmXsmouMD25wfwgqDeiG8f1r+NUifhPj2Uqzx9dF2C559KOyz6xq0Mc8sYqM2JiZml0ORRNE3/YL7b0ALuFP9hSprgH/QxQ08iy9MlYfy7oXiGdGbEoy9DhIDIAuQOh7kH6FxIzjPheSrttunz2paAh0JeGznxo5Lv7iQivMAWQ5gFvsAa9HkkVHmu2UOIqi/CkEVMGj/Guzk3xFCkA3+i6L6cTNMIOXXwyAHA0YEIIhKrx7NoPkyA85cEALbuHQ6Q6T1fgjvm+gOkA2wosz3/CMB5cWd6Nx6lBWgkWgkAUkEezPHvIWEu0VZ3MQJkHnbtDlKchS4YofXxKfMCj5LkfuoMkqaJD4WPmqyEhfg0GAd86iTZB4NbA5/4ieghaD2GoSpoROgA/CsFKns7aGecfsd0LgcSEDy9ZMitCaAxvUw/PowdMFoGHgPOIuh81zaUm+jLKLCIwIUAeU99iJ584OQ1pA0TMk9fDawEjiOMHxCAPwpLKjRAFkCPVMRurtugPKr4LDPQ9ey6Z8LCd3fgoG3AhqSh0D2tSBT0HcQFK8M56J96J0eFx4Ts7PERm1MTEzME2CYH5LmTgwZaqQZ4jbq9JOiF2NcjL4H4d+/hb3tgh4KjVqAxEvC15YUvwTFz4YySR0XQ+poAFIcQ51rmPDupnjlTo19M99giB8Ahhr3IUhQ4XoapEliMAi69MEI/tQ8xph/AJvBtGEP/ZTR7gLz/PU4gYsyAb6QuNFjcMtorPpazNASBucubhqFnnCoijQZ75thowJ0ErQHahxEAIXyA5TzGYAoJW0vOvljuL8E0odA9XYmGvA6j8ET38DmYGyet1PrAbCKCxjir4BGAWO0MUaelKlRFaFOr0EwTgEPh43MoZt3I7dWEnlHMaPNxDhjhUliyCjYVHZAagtPb/VqGt7xjGdTmNmQLVpkyi7YPjyyAnZ7Dck5D9KhTqYoLkYIgzAS1X0cHPkDWH8FpPqBSyfblApODEKPbCsZIAV6pgcgDRCz7oaxe+Dyv8M714Z1ejeeDsUrILEnzL0M8qdC+uWgh8Hec9IwP+YiSBZg4AHY81Ww/NQnt44xMS3ERm1MTMz/CUrcwwB/oEidJH0s4XXYrRkpTwFVfoLmbGZH79ewgBJtWGQwpoxXPxRj7gEDjmxH6HHAYOznU1Xr0Kwiw6FIZpBCatwB45GskSnC8AnQNwgyTZrXIMjhcgs2zybFcTs1/kpUBcsg8LEocx0NHgWgFrnqGkK3jE5iyDPO5dT17xCpKmXZx2prAXPYGMbE2s/HFQ8AYGvoGNk0Y9+mxesZbiDUWC1FKl62bPk0IDCb0GYFgnRYynXRb2HgXPAHaXTMp5R8d3P/PFfg0FqtbcepshqiWF8BJJE8IPahWwyS1hUCHIZFFx5Oc01qVHaqL481jPFJDJpc4gTs+kVN/7uy37HNY3X1lYx2hglXCEGpPYVT97FdHSZ2DQA9/6J95e8Q7WXqOYeE20Oh7Wxoz0Dbs2Hga1DqgIlyytnlwD+hNkNqTRKkrzBDFngN8CM92Vkg+0D0arh2M5Q3gn8NjFwYnkj3b7D+FFh8I1izIGiDsfshPQ8S7aFBe8xFO7V+MTHbIzZqY2JidnnW8AU2c1mkDiTop5NRHuRgvvqk2q1wG5v4ID79CFKkSTXDDA3QzjjzOBebPEFwSWjQEu7gZqo4fBFEkk3peymKUwFIsh/zuWJ6ueBgXcsbA6YKehRk+Pw3xUtJ7aThBlDnHuCeSJQMJAE+DxG6QUPFXoHBk0WkcyHa+wKCPONWlQafwygJOYf2YIRR1cFKZ3e69H4oMenV9RR4liLpBvSMjbK5PUw2s4xHkjq+VNg6iAokgBybHF+qvncU0hEWMUgGCTx3aah5YL8TWaqSHL0GEVSpdWWjKgsGkNS5bKeN2m5eSJF7mPCCL9UnkffeTYU0gVDkTImHLMmg7KFdjCMwdPMEEgMjfIbZxCGEFijUbcUscQFC/xNpvZyUes3MB7oDsPZcdI6m53uCQEjstTpaCwWejaj+k/YNwFAFrFE44lboegkMfhvWR3GwCuh8N2TTULsHbDMxrJBIe0sqCYON5mZDKI7QaBckKwYxtx2yc6D/kfAGZSLcuvpXWLV7KJY7Ogb1cVApOOJq6H1ylediYrZFbNTGxMTs0gxwHf38ZLLCE4YUVUa5D42HnPZsdceo8g/W8TpgorJomQplsthYeAgkszmJAq9oHhMgKDtZjICM6+Ekz8AXGym2JCvVuZcafyfDYVM7TByJljmEDgX7GwmbMfUpZvPUeLWq3EgoUBaJ6COiZHhDAxuBIUDS4A8Iy6PPepy6uRYTvA7T4rtt0+MsHE6i2z6F4zyftS2hCgBSh2eiq9Igl/ka4+bNaKuBpX0sHWDkvhjZiZQvxWS+Dt44Iv8m7DnfoZ1bqPNr7CCPckMFgJKdpWb/CjrATmpmrawhGxpS0Xk1BultAqsUSnzNgDYb8cwVCPLY4g0I4TQ/6+NEbNoocj8F9qcDTR3CIhORA3Opv4Jex8WKxF593kWZbzHEH7Bop5c3opgp+HSSGr9liuUoAlw7S45Ltn6QNwx37gX+CKoD7A4fzwqLf8jA4NwXhIoGlgNLrwJ7PlQIlQ4muPLl0FgKB0iwotuxACj/A+b8Cdy7QN4E6YVQXxkKFgxGS9vpI2QYutus2JYQaEuEwSrP+QEoG/zGxL1Ic0djr6R6H6QLkS0e1OGuD8Ax925znWJingyxURsTE7PLYjCs5JyphRgikvTstEELUOYvrdfoJpp5wBosno/NC6hzCwkOwqhjGU19qOlNG0/a+OL9aP5BjhJlMs1ys4LM9A5VBxtmp8hWwgIC5UwKI66GGYzaOoOMcA9p5tI2g7buTNjsxqQrLSwxG7COcbJUojANgSZHiSp/AaBivoBnTV1DYQzpxkNg5gPz6eBDjERGezvvwek+HrwHwXkOrnqAEZMOy0ZJTZ+/mbR6K5b9vrCxJWc3221wM6OEGqx1mSUnJMIYavakseilbeo5h8wmlyAhCVIKy/VJj14P6gjouiP0WLYQ6I1UzbMxjAEG31xNWl01OR8EPbyUnsjTa0QFwRIMK1smLbHEQPNtjRU8xtsx0e1OkbtZxndwKbOevyGxmcehKCaNZ9lS9W3ynCyd+WRNMHId+GGogBiB9gcq1HodTDZHKnErctmPoXYxpOZDak+wF4dVvLhmsg0VwNCDsALYi+jLLCFzANQehrV3geNjCmGpYaLoEQMwYPB6wSqH7712CLIGEYDQz4OOKAxGbTE3AVgw0A8L8uE/idA77xMT83QSG7UxMTG7MBqDTxB5TwECJHUyHMJ2qh1tB4fFM4orzOJn2CxiE4dQ5W3RvgeSFi9jivkrBBV+TAKfBBJBiSIF2jiZFM+esc9ACYr5TGhI6wBLawLxEDVxGR43YXMQhrdxu3k3KTPC4mAVvnIRopus+BaJFq9xKx4bAUmBU6nwJyRdJHgtebpZx2ea+xkDOV0kZyxK8gI8eS+KiRSqkLbxKJ7UewgSz6eD91LgFMICwoXwqmLtBsAmXt6yJoIxuxdH7UWZj2GxiAynNCuTlfkcE55MQ42GvYCkuzocVMtjd2FAeoa2/gSkxsKhSIml78Ybz1DPtJNQZ5GU78eYUbzGgRhntHm8z+8wZgQhZi6UIUSGlHMbXvATtLkNQQ+OehlVXseE67ZGMqrAFlLk77iUuZ4PUmIjAI/zZ47gc4CgxrV4rCDBITS4hfC25o0kt1eBzplqLMoiZAIX9vs1bHgziFtDpQLdD/1LYPZq2P2zmAevC9UFBHidkuHlbZRNlp7GKPmOpYjM82HuF2HFUZAeh/boLLmTfYnwRFBuT9Muq7hpgZ8B6RsSdYNQ/0APWYi2hxDdb4O1nw0jWaI7QTECi/YHU4saNAae9bltzzcm5kkSG7UxMTG7LAJFJ4czzI1RIk9odPQyjxzzn1TbBV5Diesoc0PUl2Q2XybBUkpcSsBaiHps8HeYMRte4GGhCEiQZgl3Y22j6liSI2lwPWmv1CxCUBX74lkOWioC7mUjD9ClVzNPbAJbgBHIoJ+S9QY015HkwCmlbuv8iw28BkOd0EP7JjbyW+DLUZ+KGglAspu/ill6IFzF4P0IO4MRElu4GAOdm4o4QWS1OJOKAwHrqPBLFF1keQuSFAYPzXiLnS/w1RKGxRuZqI3q8QDtfKX5ecuyYdRyKokKtvHwsEFAutxFwm9Dt63A5MaQDcHqtl7ml/uRQMJr4Iz1U2r7H6RYhOWuRAQbaV7qDKHXeDsJhEJ04FjvBd7b3JbnKxQ5CwjIcxIjkTcbJA6z2MjVuDxGEoNLgiEeoMwmPL5Jme839+3mSpI8H4Fiu7S9GPreBxu/Hr5PAL0SRs8CcystpzmcXOmL0PlNvJeciV7xFXRSMvTsPKuTi0DDJjmLLvFClk3c8Jna1OpeyXCphB8ulZ+S+CkFRYUjjseYK7C9ltsUE8DoMhDzoc2ClT4kCUMiwqrLiDQYHwY3Qs/87cvXxcQ8GWKjNiYmZpfFUKOXgAZ1ypFhBlCLDM4ng0Ayjx9gMGhqU2ImTZT9riMVAQCPP5IgiaQe7RN6OAMEHjY5DtymQQswi8soeqei9E+jMYSP+1XgoeWEz3QVBcZATvUjW16N9dbxJDiSeeLSpgd0nB9imrGcmk1cTasBaRFgEeAj6dEDzX4NgDZggTKadN1GZyWmHCACg9m8L27HMrR1BIPO1aEuF5o6t9LF9/EZbG0JBKSYg+Y+IKBOggH+wDpezlzeR45PMMLxQBVBO664FZSLwGDToMDFpLOvIZh3GsZbBcZnLJlDCIPVDKuIemwoKuoHFDgUpQ2WG+DbYUJcSv50SkztjpLmzaQ4mfCsOxh+Sj8/w6aDxXycu8ybSEahDwnToCTyOOQYbZXQQlPmu6Q4ZMc6FQKWfA3TeTebnQcpJ9IkvQa9A7ejZnqM4A+D9zg6fy9jLwpDXErkonK74QHD/G1y/95PQOW4yVhYBSyAWtWm2ungtlk4XoIgfwwi/zHwfgHuVAWLMDJ7VXhP5wGPhU5Zzw1DfaUEYUMyP8UCj4l5Woi/ZTExMbssJc6lxqXkaa2KJWjfUaNhBxCIaUlAGd6IIBMK9Ed7hZf32bRxCXnOR5vQiJr4TPCcbfYTUMNlFKd5xCRSa2zPRRhNkiRCRIaiMaQaddJug5Tn0tMYpsrNVJksuytoFRttMTJbmMMGlgUPbDFv8LGo6RSJwEXbZby0pNJpN4UHxrwNPG5fixEuYfaRoc6fuYMD+ad5JSYwoYUTvZI8nzGyjNDOMO34SBqs5zHOwjCfHu6nk+vp5Cag0Rxr+Cjcx/XPxjM/o25JRp1ceFMhpl/GyipDQwQMOJczkOugYqVJVjVZ/T1s8bJtnodtIbAQUZxsL69nf37LPlzKgPkRdaGa500I6DaajfwQd4vLrJlh/bfEmDJmohqXMQwnLIbTBRqWw3gyy6bOrnB5JhsNPaPFy2HNnjiDf8GuheERCdyW8A1JmpbqXW3HQv6yyREJCDLPRe92IV6HhZDgJXxGOx5D154VenDVZJcAujJ5LL3A4a9BzHoHpgKBHyaZ+S5kjvg+MTFPN7GnNiYmZpfF5z5Ak6LGbDZRJE+ek1jER57WfhV5+vg7j0+LjbXIcBzFxjfCR8VNFxhgqrjmB0ixGEtMrUY1wE3cx6fQeHTLBeympxq1AlDax2poCt4AQ9k0aV1HorF00NwvqV169BB19X5S/AGNTY1bCQ1OEBSQOOiWeFALjxR1lNDNPicMlppIU6iXEImJLQJjhYaNCGCT00dFJMhSax6nkUgCDBpfSOY0NqONT9q43J/6IR7tkRQX2LhRn5oGG0hwADLyZid4JQ1+DYBkNkqP4gXnE0jBWKIDGWhmjYwymOugZKfJeVUAPCGpJlOkxW3NObqWQyV3Mu3iTds8rztDnY2MiZ9j0R557cMZSTFAPz9A0EUHIyRNHaENbbyHrUUeGKPR9XdgvIuBJDL1QyR7UOcBmnECQlBPZMMKdXVCqSw1F4KVREKxCKBjg4cR0JksItvBE/MouD7tiWOZIpOcewMiexx4dyPUfCy1kDrn0SzjTIDPCsALzXMXdA1cx2Z9Rw/VrhQLRzeQ17Vw6ond4AXnkdj/Y5FsSA0ru3haAl9MzNNB7KmNiYnZZUkQVuUyhBJMWapk6JiuAfs0oOie9hi5m3MAqA19EWmC6KJuwthD/Q3q5jSq+iga+svNYwyG+zkHQ42MLlGX9/OAsy+r7YVURXLS+wcgNO3VjcwqjuOZN6D0sdMHJgSGVRQ5lfUcjjdRUteAbbpZZr6LzWzAIkUnvQgkEk9kGVFt+CiqJBmUz6dvs0fHcGmKt1UEphlzWbJTVEWWQbrwjcLDZtQUQlNeBLSLMXRSYpIOG5Oz8KJSuhMzMigwEtu0kzaLp0yjjYspcDF5vkQnNyPMRjCCQFogBNpSjHTmWTCyHp+59Cd6WZ/r4rHOuaRE9xZrAr5Yw9OBpoJBspDVJKlh45I2FSx05BcXeIFNR22cOaPD2CPPB/evM7Zl/N9HBi1AHV07BVO/nE5vhNl6M91mgISpkZXHQMeXYfZXYeEmkFPjuSdjXsGqGRaMbWCPoduZVbyTxOCJ1McU3ojEDFiY8oUgsuAcBmohAA6HEiplhE8bnCDy9rsgB0GUITHi0bdhCIRgbXtUe1csgvSHw78zcyE7F3K7xwZtzL+N2FMbExOzy5LmXQyZn6NZgSds6iTpMUunujmfRvr4KWN8lwYPk+cNpDmAKisYzxk82pr7dbsDCDUZjNgwX6HKQeTYB4mDoYqHg5D15jFlkceyfSyvH8eEnlWNxBhorxYh9VZwDsDT+xJ4HwPAtW20lIDG5yZ88jR9FwI88xDSPZb9nZuQYtKIfNzsS8AwlmWx2ephxHSBqLK5t489N9fJDJZx8wpfSRIjPtoINuS7qdtpJAEODYJAUrF68IWHQZGlSlKEsbxCQJ4Km6NSvM11MS9GBFfRHjxMg32R9vVIuVc0XIsEL2ecMxnhXIzSOKRJ+VWE0fhYDCfaKfUsZjG3YKhT4g/kyaK5mwpfn3KurBb5LJci4zxIij6yTzKhMMVuUYLf71jCYxgjWMWiSTk4Y1DSp56y8RxF22gNiidA18AMrY1u8b6Brn+RIOOgggAjoUCRnPc4JvtphGgD73Fw72bSvx6e/6nhK+H/J4JPrLqm2mmTHfWg+i7QGYTqgPRRIBwcDqGNn1HnVyjmkeJZwAmIujul3XQtjIHQwob2TWDNJibmP0ls1MbExOyyCASzg9ezkU+hRECPHiClr4LEzsdNPrH+Je28c8q2fvM1TE7h0MAXNhrFoNOFpQPqIkGeImlTYiWnY1FgAWdTJ43Cn2aLa6EYsbpp80cxCIatLubaQ2SDPrD3A0DJF0PwcUI5/ADXnkzMsvDxW7RSbe1iKOL555Gwv9fcHjCMLcIQhSqZKTcFGws9LOsvYdd9hmdl2dS3gGEyBPhkvRK9chMJ2UAoyFJlA7PRKGy81uALhIAcRUrkQ+8lNkl/DYZxfGFhm2Fc/5MknV80+y7xccr8KjSEhaChUtheltzIKA+17xklz4HND1nAabRxUrhuHE6F7wITNwmCLP8dza+f23knLmOAYF/OZg5HPZHTPgWBZClfZ5zX4lNmXLydYbppYwwHl4yo0sEoIAgshZYCpaszt2W9Ai0WMqbGAEOHOwvJCrIVN/SM55O4CQtK11IVuyETnyZVbwPTEmAbaIxOg1Vl4tQb0Yz4CN8rESYaCpBloHhK+EHqCOj7MwhFkpeRJPp3ZIHJrsNsWAqMNc3nesIBIchycGzQxjwjiMMPYmJidm2CW0jJKhlVBRv6nSvpN+dhWjLi/y0YAyP/xZyhi5g7NkDSNEhTReHjkqCoCrgyyZDsYa2chwFqlFnBVwBDgMJt8TMo42Mbl5pMsdGZxyZ7Dq5I4iTPgK7bQISBkbr+DppVwgJNtlLDCfYDFGmq2LhIA4mgRoc/4QkMPb+BvhU/+BWSySQnuUUik1aCWtrGswV+sp25/JFncSv7jnycA37/CEnVCPOQBAg0qeiyUiaLAUZoZy3z2Gh6EdE5EUCCBhutR9ho9/K4vYhxmcNQm9K3x92tqWJhaEXyJMrtX0WLybXayE+mHCfJ0sYXEZEiRppXNgsdrOe3uBQnThqP8uQTmCQ27RxGFy8nicf+/JNeNjGH9fSyCTkRuqE1UhtIfWjGdozIsDLZxngyy0iyjbpeP+XzRM1Dehq7opHeKBU+jOeMTa6PJ2EMRLEKI4S6sxKEDuOgw5LDUM8rpK9DwYqgpYPajdC4c8axCdmD7P0u6NBA9pRisHsePbyLRU9R1buYmCdL7KmNiYnZ5VjDHdzK99B4HGjfQkqGwlRgsETACN/FMvPoEm/49w2qcgE0riEBOL6PMIbBjrbQWyqm/tRqIWkYBy0UUMY24GFTEjkypkK3GSRpamR4ObPVW9nI50H4zDYno1KzQs/bRGOm1GxXAJaW2PJ7wGfwuZcOXkrKvIyG/8poryy2OgPX/wxe8CkA2plNMZJdyFCmYRIEwkKiydhFRmblcPRzSMnPsI5bSDOXno4T4EUHIv0XotVoaDkBfZzFCvNNXCFYa+bjN+WzHAyiGX6gmqEIodk6pDpo52AqfBqbQ7E5AIs+FPcRtLiOU+IleGJSGSEMVJhaHtfgU+ZsJFXCMsBX0OBkEhyGpFXOS0yp+vVkEQgqLCDL42GZXQw+XSTFbAiqZOp7IHJvgeTLpx+si5THj6I3/zDShOEDYiJXK8LyAgqbqigDyVGDqzReqo4968cw+kWobCC0ZqNVrtBMCguSEEjQxsKuGJxqMJMQxlZLDQPQdiI4e0DpWpzMQczPvnCn1ikm5ukiNmpjYmJ2KTxq3Bh5NwGqApzmT1mkG2sMde7kHpbxd24jQ5ajeQUddGLMKAYfuWUy0ZPFv7v5pwAcz4/Gq6Y8hofQ5NAtyTNCQHcwSKAUBWx6+Cid6s3NIgpLuQZf/56G90rqeEAbKftveHIjQWIJTn1V1JJEJi9Byr3Jc/lkhxKk8yjGPIIUy4FOvODA5scO/XS4vdRUlaoUtMkRNAopDBY+igBP3s2/OBsTSXct4hSWpN9GB9dR5H/QDJHmXaR5A/uLlzHU2I+KtBi2OsMJCoHAwSKNRZ4CuzEmJgoYCFIioCLOBRQ1voSkD81GHCCgE8FycryLNC8liccotzDCjSiy7M45DPJ7xrmLLHvTzRGYpjc2RBN6PefzKvq5kTKrkTjsxft28oTPzKMcxt6sI00NiQaGsHgxOXURM1VHblL8DIp/QcsTBp02mEakyGVCqVnT8nw1VWogUkdC7jmQewM0Xgf1K4Ag/NcxIbwhoZRxaDhJLLMnHf4FSOcfIDyobYKx88MO2j8CzrJtTzD9rPAVE/MMJDZqY2JidinG2EBkFtLBKGWRp43KlH20UIyb53AlvwRAGMGPGeK0ys9pJO8BAbY+iaR1KUKI6Z3sDInjoXbppByW41AxaYqigJjia9RADxiP1vKvc/0NjKluloircMQitsTzz4GmFFcJd+yNMHYvwhIUe1Ik5UtJWecj5JIZhyfFXBBzAQj0QJRQJjFaIxAI+kkHhrKahUBGprhBYxEWH/bJMUYxkpbawG9Zwtuw2IMOfjOlL4duVtm70+c/Gs4xKnXbzcvZjU9hMDzCVWxmFRZjtIth0oxFRweEgQxhuVkBWAzTzoUowix7ic1efImAKpIEA1zLSs4BFJu5Cp8x0hyFy58I/acFHF4UjS3PwVxMjU0kaMfapqX5xGjQ4C5s9sBBRd/JUEL23m0eZ4zBk7cgRFSGKzpOC9mMhW1+VSyiasICi+cigwUgfRAWzP0UlG4Erx9hdWFmvxrPuYbA6ccxAZ4J8OWjVJw/kHM+HraXAdrPDntU2y4OEhPzTCc2amNiYnYpOpiPQNHLBgqMkzUl9EQijABjBL3mLayUS4CHADDCMMwwldR9zR89T/4ch9NRPPdJj8lg2JRS+JxIvvY3fKo8VpiLERZg0c04SUoESDLMp50/s0qfySp5JwjBbG8TVZEiyVk4TDdoQyY0UA2ybkism/QMq6pmZOl9pMXMBm04SAOVszH171HL+xgZGlBaKazAaxrdtvZoSMlEoKxsef6to9IBAkmCbXu6k/IgVjg2Fg0c4TKbV7CIUO5pNX/lHn6MMQJoZ8D0UKCII0eicWxZJEIhZjI+gxvx/Z9jxKNIW6OjSYzwV+bwY2r8BM0YKV6DYlbzMIkiw9xtjn9nsLFJkmStP48efwjXUUgJDkdv8zjXfI5G5q4wo8tMztupTFUxiO4zABCiAxGUYGM3yFnQ/XsaqdkEz/oztrsK7QQYfSuquhErip2VQZXxTALdvIGIUO1PwexjYv7zxEZtTEzMLoXC4WjO4VFOoEARKTQ+NkoE3Ok+h6MfyFPuuY/u+p8Qiw9qHjebTVhTsmImy90+We7nc/TzB0gBqcU4NEhEj+lncxJzOYY6lyBIkeK9CBS7qa/R7X+N0eBbVKWibr+DZWy9OIBjnUfdezlQRtZziBb5J6cR4OpxxtXHyfMpxEzq/u4vofZFjACtJuNIJYa6TJDUDQyQ96sMO4nIR+tg4VMiSz/zuI6XYBAcxlr24aPbXJPlfJxH+T41+unlRfTxIgLKuGxmkAcxRiKiONw8RToYwTNJEsLB4nAks2lwEWCR5asII9HmboTYDSEK6OCv+I1jAEkbmoWmjVWJxYSJYUsQJEjzlh09hU8JEslbSgU6N9+GxNCwE3hz30FGfXLKfpo6mmqzbLJnfhZ+IAQYgd0IcC1FQ0Gq5odxsQIIIEiBsE9A+Qswpa+GRq8exB09kXtnJUBCMlljdrCRVBCAFCgdxthagQFjkd6iCIWhQZVL0PST5Hhslj/dSxUT87QQG7UxMTG7HF0sYSN7oLgVMCgCjIFl9oOs21/jYREYyavEVTzA3qRMjQPNbQSI6LE6KH82yjloxvYNGp8RFAUk9jbHUmFtaNC2oFhAF3uQYgm9vBGJTZbzMQTU2IxDDYsUeXU6efFakB0gtp2wpOTBpJ11GLMWN3cnpv/Nzc+ChCAla7h8jSopMjNVVAseByTCaIQ2mKieqwFWqt1pF6NINB3yy8wSAS7/wOEgNtDgr/wJgAWsYTWLWM1LeflWPcohNlmW8jo87sRiPmVuYAPvxFAH9kNMxBQbQ5sYRQKBmUUn9zfbyHIOYGH0Ktz6ImAYKGAnr0cHfyZ8VB+GdrQFVRL0kWNfFj4FcbJ1s47A+xy2fgipjmPcehYD4gosOpjP6SRaPL+tdA99kQl3asLzSBTnQIsjtJ+PM8aPAXDYk3n8BMESMKuiZDuNcCG5xsNZH5aWC2YLdLtApgWoABKvoeGejRPdpBk0gV4L7A6AFygcArQFrmWjNcgGJI1Nl/g7FgunjHmM06LqbZIK36GTv2Kz15New5iYfzexURsTE7NLsgdf4XHzUtIMAuBG3tow1tAnT5WMqTJXbIgSZjR1kuQaB5IQ+2M5n0LMYEj6jPMIb6PKwygK7MGFZNl3xjEYPMrcOG17nmUs4dNTtnmUuZ0PUmQlkgTP02fSNfxB8P8JohM6fgfOAducsxB5hNiHgfT3KC/ajd6hQSzl4vbKZmxwjStmNmqd/4LKJxD4pEs+9WwfRvXhixPx5V1slOMs4EQcRhjj44Ckyo+5m8OYKNEqMLQzQpUKg/wEnzE6OQmHrmnd+TzKMC/GMA5GUGIuRoR6qjnuY43/XgryX+wj7mcJj+EZRZUFPMp5dHAwnRyGiPr1vc9B85F5Cd/9BMo6lUlpAIWSB/BcrgZA41HmERy6cOhsjqnEP3mYtxKm7+XYl6uxZxj7A3yNdeLX4BiyQYm9vI+z0lqCwKCxqfAgiziPHIu2UFPYOoYKFR5sGrQALg/zIAcxhw+Scn/HuJOlpHLIjGbe2EAogWZAbTKsXTqHPv0SHPUq6vYqatkB2mugFcgANuUn5zGXDVOLL0jYmOml27yPzi0MWoAGvyUS/AIMLn+KjdqYXZLYqI2JidklSTKHTvalLq4HmiJGTRrCIUMtClE0GCRGLiWdupoxLsLlg6Q5gjyvmXJcPz+iygoAAkqsMeeylPdgGMLihQiRi/qrMc7RwN1Y7NkscmCRY08+OG28a7iaIo+BMViUKJdPp8t/OPzQjELxPdB1xzbnXOVa6tyCZojRfIHRfBudDNHJcDMKtRFmEU3H2gva/wGNK1ByDhn7LSBCL/QLWnYb5JXRXxoDJKiSpIKHwyhtaASH8UtWsw6ATVzCPvxpivEYjvVijCk2byg040wkQQkEpyqb9ze+yoj6PAnlI8VsKmIIuJpNXMUyvkgXh0etBWA0QoMwGqNWYpxjqDrvwQTXkzG7YzvfBsCnyL28jRqrAMVSPkcXLwbgEf6bKMuKgBIP8zb25ddTxl3icdY1twnKKs/DYg/mio0IoEyaIgG38Q4yzOdALsChMNlA15dh85vCMdtL0PnjGGMZmnU0SBPGqLScFjzWiQuZW8swngrbMbZg3XNmseSm9QgTLqGnFW7ytSQ5iionoS2B2z4Zfdxh5RiO2lQzaTRrw4D6JYYkbbwOq6XinWIBAavDMaNRLJ5+fEzMLkBs1MbExOyypDmBuglloWzh02jxmq1jHkO6myVyJQZJlRQBGxniHIr8GBCU+Q0CRY5XNY8LqDApwKXxeZyqDvU4BYvJytsQog2X3+NzJwrYkxWMmA4y+sPMla/FEtlpYw1wSZg6e+v7yFDD0bpF6kuDHt/mXMvm54yI08FIpNDkaKNEjmE6kQRkIsPTcODWG7H2DV/bwGZPGvwNQViWdzGrENEoR+hgDhUEo/hIymQJ8BjmR/RyxpR2BClak73SpkolWhdFBx3iNfws2QGcD5zPHRxP6I0NAMUItzSNWmWfBY1fwUTVteARHudoatYGsCBHLwvpBaCfq6jxeHPVH+dLTaPWMFmGGMClf9r86wywZZ3lmkw3t2SpUtdJkIIK61nP71jM6yZ3zr0eUoeBvxGc/RiXR6GjG4DQoJ5q1AYIGlLweMc88mJCc1gQJBSBJbE8TbE7g59IkGRPPEZZz/0s8hpT2rH8lSx1bkFgY4sbcM2Hm595KAKhUGxgiC8wxBeYz7Wk2RuANi5jnHeh2UiKU0nwimnrEhOzKxBXFIuJidllyYpXY7MPAMoEBEbwK17FDziV7/AuxuUL0SgMEmk0WkNRX4ZlGmgT4BvFKL+a0mYPr0GSCN8YQYdZ1fzMsArPTMhXTf582vikTZWR2le5v3QQ45WfTxtrh/bZPXiYzqEiuXUuVtlHm5a6Z9kPTzumlVrwlUgaKzyi2/TRy0n0chKCQximmwb708engNCcG+NljLAnFT4d6RZsnxwfwcdCI6iRnGLezWYjgtD4VmiSNKK/pysTbDTLMS2iqh1ukXnefzGXS1jMX7AjI3SCDLsxuaYB6ZaYXSn3R4ju5liqKktNbmh+XuJ6Gk1DVtNqlJqW5MCJxKwJsuw/bdwdPCvSBzbNl0MDD0mFFGXSFPwRLONG7c/gFbXmQvIAkEkCJr8/Dt4WahLgksJhD1wSkz0aSDRcZIdhfM9nM7L8VSwQ38dhPi4D1HGw9NSkR1farOQMHGaRlB8gIb6KJk+ZDBvlHKScOs4NnNj822YvuriBHh4hx4ebNzExMbsasVEbExOzS9Mrrme+GKBHXEVO1HgW99JHPyfzI57NxdRJUDNJRulkRHQyJNoZox1pwiScqrmZNZzSNPpSLGFfrmYx57OMn1GIjJcJRORtdHg5NkcAYTzvRtFHLZOkknN4MHk+AVUgjLt1/V8ypj9NttTArhqEAeWBKxTrZ/dQ7D4L0qduc562u2LyjTE4gWIx/8NiPsTuXM6+PMBSrsOhj0GuZJij8bkNzQZqfIkG0w3tmVDkkRxJhVxYyCIycEKvsplixAk0WXJ08WYMmgar8Rljk76Km8RV/NUciqlDvlbG5iWkrc+T5UWo1sf1EbvzYTo5lCR9zOF1zOGEqeuujiK8ZAmkmR5iMWFY93AcCWY3R9iaNLaMy3HoAyyy5tnsUemFsSOhfBaYCQM9wQH+23F0A2E0KSr0mAHqpNBYGBQ1J0cHg6SYzbzteDVtjoDAYJd9rHpAp+4lqwPyvktvJcMy92DazF5oYTNKB3WTxHiC9so4Y4syyNQjdMjDsanS4Nc4JMiSpy4SzT40kk32bALKjPA7ADzxEL6sYyuPbgamjUtvUZI4Jub/AnH4QUxMzP8JEhxAgoPYl9vYl/uR7EmZbDPWNi0q6Og+3sVBt3gRa9zACN+hk3cCobi/ZJhASJLiW9TNOwAPi2OxOA4AgUOe3xD0f46xwS/Dvi3lFRS4a4/A7v4km1OfJrDW4BhQwaR3TQCWH4CAMfUDsnwMyfSwhQnytQy+LNGwbRzPo90cN+UXXERv1vIlBriM+WxksjqVIuDRHV7LOXyXYS5kjGsI2MyEYVsiR9uUSl2GJCvZzIso0U6dhwGFMVlgT0qqwDXqWADezEUIElt2FbVicGhnb76IpkqRaxjnSvIcgyQNgExdiG7MAf0IGeuVdLGBIb4PCHr5H+xIjcChg/35OWUeIkEPyRY92gS9LJ9Qqqh9CaofAgx4NwE+ZL8MQEGPsp//AGOJPCDQQhC0+IAE4KA5hIuxovFtjezoc5EbftIsolDruBtvThaEwUuVSNceYrafppJ6PeM8BLU63cEIxfbI+50XaD5CNjJCDRYFLCrJHK6fYpQcNZlGS0UYDxveMPj6GpAGgUARIE2AaVaxM+SmRFLHxPzfIDZqY2Ji/k8gsOnhChrcCjgM8BbMhCEiwMNBEda7t0SAL1T4qQiNlDEup5N34jHEKl7QjL9My8OYZ/oxlJCid4s+JVb7f1NY+Q0sz8dXCgQk6w0SxYcYz7yJYjJLRbRjkIxmCiwvPdqMpa1kU83xGaqwDaNW5n5MV/HVYIbBeRXk3zHjfiNcA0CVFFkqgERgcHjpDq+lIk83HyLBcjbwSXxGgSw3cjCHcyNZKmgENh4BDg1WYCGwSOEDUo6hjBtVI4MuUlhiukFr0GziE4zzMzJ4ZDiUEqPUeRCAUS5lIb9GYCNECpX8XPPYPqCH0xAo1BbrpkhR4NnbnqR3e8sbDd7NzXdCHUmm4VFMGMJ6azOEbgiB2iI+dhr+IHLDB0KDNrq/SA4FuE6dWncSjcQIg6LGXv5uWPb3MBtfyYaFA5MlxIzBFkFL/LUfFRVz8CyLWebDrBMXRRHOR9IVJfrZvo+fCIs5CCHoq/VTlDkado6MOIEece62xx4TswsSG7UxMTH/ZxDYJDmcgFEMI9Dy+DwwcqJIFhiDRiEjS0MRYDMHgGG+PiWhqMpNaCFRW8SANknMwn7efey36atsSt6CDFbTN7YZiWbctiiTCzsVBp1U3DN7T2bXB7Ftj2omNPRssztK9Gx7cs6R0DkE1CAKgTAEjHIFLqvJ8WIyPJcE8/ApMkQXLg4dPIcCH8Rm23JhrRgMG3gXZa5DAklydHAZDX5JlTRJ6thR0paFj8CgMGSohMljQvES82c26V4cNIvFp7bMvQKgyLWMcxltjIUZ/lyLA9QpAIIGD1DnflKtsa/GYIINICSW6pvSXsA4AWVs+hDeLVD/Cci5kD4DLRT9fJgyfyHB7vQ5y7HdiXhqCWo/aNwGznMRak+S6b8yp/5talYNyzqFNeLs6MYjZC7f2n7sqbc+NIhbbGIB5DY3qHUlsAKfkWQh8qB+nS5egrPbLwiYC2aiqNuW1dWmKn00xB/Jsjl6dy0jLESgsOWLSNUuQ0uFFQTYfkCKUWqyjMMQwt4xKbKYmF0JYYzZseyBmKeVYrFIoVBgfHycfD7/nx5OTMwujaHOOhZFRRQUBoHPLFzqTGib5swYkgAtFJp9CMjSYDVJ2ghYM6W9PXgIuT2vHIC/GVYsxbVrDC7IUbSzlEWW1rKvFj5DdLHYrCQhfKQJyIvTyW6ha7sjbOKzjPBDQAGGhfwExSxWcRZ11tLB0Szg7JkrjG0Dl1Ws4oVTtmV5KX/luWzgXg7k78xiM4qAxBYSYlVSWPikqGMMaKEAQSffJROFbkwwxCXUgrOx1dQ2SmQJsHB8j/nuqVjquWjnKAbM58iXLkCKCjIwCLUEK/cPGuIBRriUUW4ENO3ePvSOXRt5WA04xzJcOIpBJgojKDLmEObVloN7PQQ1qN4Qdu48H3puAJGcti4BJQLqONspEdxENzArFoG7qRl+YACjHNy5PfgMMJ6PwgykBGMzR2xiPc8niBLfNAKLOsmoyAT0Uo2S9ZIcS5HrmLxjmPDnKiCgs7GIbGPSA20E1JMWtp8llZqsSDcTxmiEiNNudoT4+v3MIf7GPgUsXLgQIcSU13nnnfefHlZMzP9bBEk6+GYzsQckDi45DsCmQJYyWVElIxpkaRAwSJ1HqKMZMqO03uobI6hw81b7mkDrMq73ahrzXYYWFwhstYV3MnwjTKjUkKZOkgZO9CB/ZxiPQg1CQ11Q4s8kmc8yfsazuYWFfPQJG7Qhk+Opk2AVi7ib1aT4By4ON3MY13MEYapYq04ApKiRmvB0N+dvKHHJtF7ynqDgTpcyS1U8MjWXRaMDWJXPQ/HVVKpHYTW+iUlWCRzwUgKtH6Puvp3NvJpR/sLEDYvybo7+DnVXca/FYy2t6gquWAPpMyF/BVT/Otm5ezvUrp5xVRS5HTdoAWQCseQeSD8vrOAWbkR2v41EbT06BTlTIWsqKOOD8NBUmcMtZHkDkgw2Bpt9KXAn7TxCJw8zh4eYw/2kOLK5vpNMFFGAamIuMvEVApnCtyX1pBWGTXhTpc1a0eZxysH+lHSaSnAUxmxbai4m5plEbNQ+RZxzzjls2rSp+Xrve9/7nx5STMz/a7IcD80seNCUybM3u/Mj8jQQSAbp5AGW0k+CIllqpMhSRYhJI01j2GDeN7N0Uwte4yCMfyvWeA0dKSukqCNNq6RUmLCzh1mBFbUnxUJSzBwfuz0SLISm0RrgsGCn2tkSh3lkIk/tJnrxIyPXYg0dUWWvEdPNHWMHYA37CNeg/DxpXooioEaSGskWU0shqTHMSxjhROr8jTE+h+edi+UHKN8Pday0oXNzmbnFAeaObgLfp6EsRhM5pHsPlnAjWTMBQqAt8MwdTFrP4f/rymmJg1WglpLjFYSBreF6FZraxDOFEDyJS+Oam+AP74M7vgHax6guKotsSssSlJckqOw5C2OvxU1KUJMrlNR1MAJBEoGik68wj1XMZTOzuRmHpSj6EEgUHSi6SfECJBMxNVvORWEzH5U4A1ufhwjA9jXJqofUdUww9WnEBDV9BppHCINbbqZiTp0SdhET80wmjql9isjlcsyePXv7O8bExPxbMAQEVFoSbAIESSz2pI2/McJlrOUmMi0XbInGEj4wGTAgBWBqgA/bKomqH8Iqg3QhV6ox3p5FGk2nGGGALjpMgYKGJEMoXklCfBrDGIo9EDtYanVL5vAlNvBBGqyiwCto56Sdamcm+vgmRa7hMX5IsxytgUPqJcasfcisG2Sve3/P8H9lQAm0LpLmJNZyP/XIKExRo5MhbHrQ3BnVKFM0+AseKqxDILqwAp9cbQzHM9h6akTcY21zMVKCMbT7IxSCKFTBGHxpUXQqCKNwhIsbqSu4zt7ozLuRtUtBzcPPnI4JzqQTgy/2JcmxFMQJ4UmWKSh8EcajKnCJIyB17BNfMKNhxQfgF18HEY6XwQcwR38EzZ0gQCcBhtESdIvdHH7XDDaHMMQJ5PgISZ6z3S4t5jOX37OJIzEILFx8EvgkSHEInZwFgLTnYHl6UgxDggluR6jpN0GGjUycb4PG4/eM6PkU3G9hJZ+671dMzNNBHFP7FLBw4ULq9Tqe5zF//nxe//rXc8YZZ2BZW79naDQaNBqTFWGKxSLz5s2LY3JiYp4iBvkBm/kcCRoIIEDSyTl0cQoA/fyV+/gY6S30OtvNMEKYlihYcMw+7CauYVs0Kl3YI8NIPzyulnIopdOszs/Hx2Y+76Gbo0jSt812ngn0czmrOZ+wvO1zGGIdGJAm4PDNd5DzSzB4PAPtf6G+0GbCtV0XCxlkalGAPXkzKdoo8u4p212cKAQ0zNBPBjUKlQpO1UyJEH1w1iKQAml0WInML5IIVuMLRckJfyutICBQaYTYkxzvJsdRTSkwT/+Cmjk5atAggglxrgQJ6zIs9erwM38N6DGw9wGxEyEbxS/BX/4HHmDyi5PqwJy5hpKeC9QhUkNONY7HlZejLaupclAniadsNALXOAg66BQfpBB9X7fFCPsTsBLlaVJFDxUYVPJ4ZO4yhLAwpkpQagPjNZ25Kn0bwnr+tLZcfQl1867mFHxpYYTEHvGQFU2m7SZkbvpx/5+JY2qfOcThB08Bp59+Opdffjk33HAD73jHOzj33HP50Ic+tM1jPv/5z1MoFJqvefPm/ZtGGxPz/4Myf0ejqJGiRpIGCUpMyji1sQ9Ej8hbX1XmbBGiKFggfrbd/qzk39CJyce/6ZrLmGjDw8YAa/kmd3Est3EELiNPzSSfBjzGWM0XmXDrCe5ib97AsuIAR2y+jZxfwqBozB2h3tniYRYAG6e1p+jA4UDCOF1J6A+PUrhE6+Nyge/QEnsKxVQKBKSpkhclMmINrhxk3CmEBm10fNptMM/7IXP5EwVeiSRNnV8yZDoZF2/GEyo8pVHYQkiDhv92mn4dawE4y3fOoAWo/xkKTH53BNC5J0JkSctfAPOoygJllWPM+S1CCGQQhEa27xMIiQEaJDBCoMUYg3yMGndut+s8P8BpZGnfUCVZ9LArPnL055jG18KhiDQydRXIWUAWmTh3RoMWwJFvJSmvIBCqadCKmsbrsGnMSzDuvhA9dv/OrVFMzNNMbNRuhbPPPnta8teWr4cffhiAD3zgAxxxxBHst99+nHbaaXz5y1/mggsumOKJ3ZIPf/jDjI+PN1/r1q3b6r4xMTFPnHRUPjesgxVWokpFte4BknRyEJdEXr02EsxmDz7Dc8XfWCLupsApdHEGS8UDWOS2259Se6K6auiOsyH7WgZ73stArmvafpoyj/CRp2iWTz068ihOIIBOdmOJO4+sP/GbFjCUupcgT4uRCAlc/JbLSiddFDgBiyV08FuSvIY0b0VyFo0tCjEkdA0jBbWCoJbOUcpb1LMSCx+nRWHBKAsrmPxtlcaQdReAfVhzW8AGyrwZaICQGCHRM2byP/GqWtr0o/V9GONP/cB5DiwRsA+QBvrmwat+CoAljkKo9xJEEgi+tEIntTFIrYHQQxvSGiMLXkuZ3a1heZL8SD/CTB4tNBj31uY+0n4FVq4fK19CJrZdktkRx6Lki5vSYSY1uXZBp8J77P3bHVNMzH+COKZ2K5x55pmceuqp29xn8eLFM24/8MAD8X2f1atXs3Tp0hn3SSQSJBIzV9eJiYl58nRzGiP8Eo9NAFh007NFQlaW+Sxnugi9TQe9OyGxJWQCUfg8AA7/wvB3aPolJ/EYfsJt/7twmEUHRzHCHwFIs5gcy6HjEhh9B673O0opB5M12AToFnUFAaxjPofwNjpZj+B+auZ8bL0AJZbSJr8HQD/nMkgvs1iPxFAlTUEei2UElvUqZOqFDPAmatyBw/RMfa0kjl/H0QdQMCejCq8DManYoCM5rFaDOzTQcghjAYMA2OqjiCne4m3jBZfi+m8DNFI8h6R9fbNsMoVPhLHXB90ERxwKbefBlFK2g4R+pAAjFTWVIuNVQRRwrJ8CJ0drGGCianeCJClx8HbHVaufRmoLm90AIvHaHZ7bluT5DQ3vAhg/g3JXaspaqqBjp9uNiXk6iY3ardDd3U139xOQbmnhnnvuQUpJT892xNRjYmKeNiQWS/kjpUiOK89hOy2dtTMUWM7unM06fozHOlq9n71s3djQ+h5871P44mG0dQgpeR4myBHou1FyEUrOelr1QwWC3fk8o7yAMc7B5iYGeB5d6krsritZyyE4rEARINBoQ/OR/SZmMYuldHElDX7WnLLCw/E8HOsCbPUuHDoJkGxkDhKDEDBu/ZMkDdq4FhtNiv3p5lcYxhgzJ06psKW0Rsj9aLOvZohb2Mi7sGhjN95Hinko9iXMQqs11RIEu5MTN4NjCPQNCNGLkgfu8LoYY3D99zMRlqHN3fj6J9gqulESCfz8QXjBw0hRxmEcweQ1IMWJlLmEiSSshHgLSftohHoRQtjMcr9PtXEivpIE2BjZQSFxDXZLmd8t8YPf0fBPQlEhqpIBjSiEI9GBTJy4w/PbEoEg6ZyOdvbF6X8Zbnf4byd9l8ba78Kdbjcm5ukkThR7ktx22238/e9/58gjjySXy3Hbbbdxxhln8PKXv5xLL710h9uJA81jYv7vElBnNd+gzjpmcRxdvHjG/Yzpx63t1pRQMkJQSaRJNBo42o/K6bbjJG9Hyj12ejyagArDpGlDbUV5YYwPUeFSQiNMkuBwuriCcvAjyuK9GDFZPtbRLqvlQobpol2MsnCL4hUYTcqtI+glnVhPQJUH+Qjj3NJsI0WVAuMkTGMidwwrgFnl1zKQfxxf3B4atlrTHhxOyrqSsniYf/JmIp0KkvTyPH6FQOCzijJvIWAtNoeR5SLkk7ipMcZQdfPQKm9lvYmU+iqSNgLvV/j1E9AKtLKQ4kBSzlR9Y4+VNLgRiyUkOWJ6H/59BO7PEGo/1Ha8rOF4MoRWrCFZMSjdEtKb/R6k3j4pgfZk8F30yp+BUsjFrwUV+8Naia/fzxzib+aTJJFIcPnll/OpT32KRqPBokWLOOOMM/jABz7wnx5aTEzMMwRFkt3YdvIogNZ3A9XJ6EpjQqNPiaYckzCj+O4ZOMlrd2osFUb4A5+ixGYSZHkJH6OTRdPHQrnlncFQRrs/wmqcCrn8RCmJ8FMhWPS/7d17lFTlne7x77v3rkvf6QbsprmDAuMNREfIEWcGxQEGmJgxZ5SIgiSaeLxC1NEzKsTjRIwJwyKLHNa4gNaJiZoMkqzlCTMRnUNURMXAMROMSGgQoRuQS1+qu277PX9UUd0dbg3SVFfX81mrF11776r6VRfV9fRb735//g4OOhWEbSvWtO+7YHFsKnRiUnOTXQq5hCV8zEL2pxtIBIinWu62m1qadC22ZRmBcCGJUBjjhwiaEbiBf8RgaOJj2mKcTyuf4dOCSyEew+jFf57Rz+gYjSsxBx8iWAixdGZJGkPEWU2E39I7sRzn8NcIpWuJhhMkgu9grcUYQ5zdHGE5CT4lxCjCJ/ijxniX4HmXdLKoGJCeW2wMrUXgJsBJWnzvAsLhr8Ohm6D1ZcCFooeg9J/O7PF7QZxRp16FQSTbFGq/oLFjx/LOO++c+kARkVNwzIXpk9raGj1YYzDHfKB24Izv40PW0JSeUxqjmfd4niksaLs/fLazmDo+xKU/ldQRIkkx9xBJfJWm4lQwbT8A6FiLi8UlSQMlVFJPaljZAgGC8UaghJC3vEMtg/kWh/gNCY6QxCFhPVyTbgdrwfF9HKCgOUYyCEHbRNIe4ggTKTI/o8y5FIObXigLiji/c+2MT0d8Bxz4BmAJNIHT4nCoX5hEejmuJLW0tM7A83w83+D6lkDU4ofGpwPtLvZzOT4+STwi/AeH+CFBxtGHhYS4BHMG52wbE8IwAsvHRzeQDEAy4BD0FkHLz6D1pfTRCWj+LoSvh+Cfn62fjEi3o1ArItJNGGcIgdAviMZvwtJKNBhMdc5qF3qsAc+bd8b3kaRt5QCLJUmsw/79/Jo9/AwAnyD7GMH5BGnklxDq+JbhW0PUBimkhQaK8XEIcClFPInPr3HMYML2TggexlCOMX+y4gFVXMlrHOItIvyeJn8RxvEJkCCQjNP7cGPqflxD0CZoMCU0O6kTs5rs7QxhBxfxOPWsJ0AFg5iLOW6HsC8g+Rnt50O7SR/8YKrfsbXgQ1NhFOsUgbWUNUQIJXsRDvwbAI08gyFOkiAJvMyKAq28x17+GjDE8SjkGgbw/GmVFg58QCx5O779I64zhZhZS8xsodW5h7LEtXg+HRdTiH+oUCs9mkKtiEg34rrTKXSbSHIAhzfBxmhOPgjsJ2kqKQ29jOuceTD5M6ZSywYS6VbBl3B9h/3Ro6Os6ZV7YzSTsL+lwf4XvbDYdGNWDDRTRAOlVNjr6M35/JU/Hte5ltSatNNSN2gAqtLhOXbMHF6DoYIJVDAB7BRih84nmIwf7VGMb6CpKEyQeCbQAsSMy36uwuX39KWI4tgUnNaBJLCY0JO4odObAuYn3sBvmQ32ECY4Hye0MLUyQvBy8M6HxB9TP5PAhRQFH6UxcRe99h0iWhikuawtrDcVFxJM/hDHpE4Sczg6x9KmR+Hbc3BIhfgW3qCOx6jif3W6ZscpIOz8GIBW/pUoHwIOgchB3CP/2nagBbYDkcdh2F4Y9T+/+DxbkW5IJ4p1E5poLiLnSjMH+Zzt9GIApfTrsC/CLj5gFj5xwKeUw1RRj40bymJNNBQWgYEELvtsXxxj6euPof++P0B8Czh9oe9aCI7lAOv4hKeJ0UCEEDEKGMEsRjHrhLXZRC3x6D9h/SRBczl+aDit7gdE7FN87vbucGwZjQSIZaYqlDa3ncTlFm3CuGM79fOwNkmysQ9whKOjsk7Bv+P4F0OwMtVprKkGcKD4NpJmO4mDV+IkfVoLAjQXhyHdyhcffBx6m6cJOXeQ5Aj7uZwkn9NCUfoeU4HSI46DxQcSBLEYLmBXp2r+UxGWEuExwKf8syYcv9285lqgvt3BY/8Fht1+Rvcjx9L7d/ehUNtN6EUhIt1FhFoO8J/EWUUhWzBAIBajrLWFpDHsD5ZzxC0j6boUmFZKokOo2reBoyslEBxHtPIV3mdahxV6D1OGj8cFzGQ36whQzGjup5zjr+d9lMVnt38vEfMLbHr5sDDVFPF7THqJLOP7lDW1hVqnYA1O4MuderzWNpFsbNdgoxXcP6RmGBAcAGPehPDg9MFJmmOXQmIreKl5w75xaA6mAmuvvRE+Ly/DD5Uy0Pljuv4YrbzLXu7ApwEAlyTO0eXBcEikPzi9gDNrxJNkN4e5CstBKnY3ZRoxkAA2dTzW710EX1qJEz7zJb+kjd6/uw91FBORvGSxtLCXeIez/AWgkCEMYg6D+GcMQbCWpGtIuAbXWiqjB+njH6TQtGII0CfSfnkxH/wjNPBboF2HKyCYnr+7jZ/Swj4a2MFGHsOmg+mJRHiPBmctCRMkiUsSlyp+iENZ5phwtP3c4DDG+4tjb+gEjCkGLx2ArcHZQ9s02thu2LkQIhvh0wLY7WHiH6UCberKOFhKGpvotb+RcCRBKB6jqV0zCEOQAiYwjN9zHkvwEtW4LR6+b0jgkkg3sAjRuZHl43EZQDkbKWYZfsnN7VafOPbYT0cUszX0CAebv3bG9yfSHWlOrYjknQStbOAWWqkDYDAzGcH/yHJV3U+AsZzHRyTMxxinGT/8ITAI1/lLCsx6QhyhhK/gFtVC84tgI4CB0kco4TKgY6aKEcSlhCSN6S2WGEeIEyF4klbElqMtadt1taI/5WwizgYcOwBjVwA/BacSJ/wSxpSf1mN1C17Gxp+Dz1/ANP7fjqebJQ7D4fGZd8yCRp9IGeC2GxcKWkik5gA3hgsJZdo0d1R6pITS7ZvBxrFuCZ+O7EesIE4BV9Ofzq9tfjwOVYS5FcpuheBN0Po6FPwd/PF+OJwaro2Uh2iuKgRj2Fu4kVIO4qEOYdIzaPpBN6GPL0TOnY/5ETv5KZBuJwoM5yoq+QpFdL7LlLST2AXRtyDwZxAcA8ABfs02FhEjwmH6UMIVXMFsfsN9+MSwWCq4kKv4wUlXLbDEqWUOETYCUM5Mqk/jhKrT0vRb+OBKyARpFy78LsT/ocNhcQdiZW2jtdaCH/U4FOpNPPQlBpllBKk69va3jofIu6T+57nQ5zYY/GzXPJajrIW9L9Oy71Z2XDIA67b9rC/gDYIM7Nr77+H0/t19aKRWRPJOjMOZ7w1Q8lED1d9fjHvoGSJ/PprCB94FT78eT4s3KPXVTh+uow/XHXPoX7CUXfw7AYoZxvWnXIbLEGAIzxHhAxzChOlsg4IzUHwZXL4Z6mrAJqD6rtQo7L5/aD9QTKAZEoUW3zMY3+K4X6Go9CVKzSn+3zgh2laXAMw5aN1sDFTfSCj+GMFYC9GC1GoNxa39CYRP3IZXJNdopLab0F96IudOM5/yNrPwiFKwp5UrZ27BJNuihrnhHpi39JS38/zzm3nyyd8wdGgvXnnlJgoLz0FAkeyovxiS/wWksi4JiFUC1sE4t+MV/COO6cSIZ9M7sO2vwW+EQH8Y+RaEBndp6e35B5bSaH+BKbyOkqIHMBrb+sL0/t19KNR2E3pRiJxb27mRZjZT/uoRBj5V33HnkIvgx7876fW///23ePDB1zKXS0qCNDQ80hWlSndxcCEc+d9go/ih4SR6jSDuvpRe87WEgsBGHOfkKzkAkGyE2C4IDQcn3NVVSxfT+3f3odUPRCTvxNlDc/rs/OjgtmYANv3F5RNPeRtPPLG+w+XGxhhHjrSexSql2yn9JvgN4DfitGwmUPdSuzPhIiT8TnYEc0ug4CIFWpGzTKFWRPJOkp2Z7yMXF7B7Xl+SRQZcgxn/N3DvklPeRjDoHrOtqCh4nCOlxzi8DGwr4AM+xlpM4ujbqAVOb8UFETm7NJlGRPJGMwfYxNT0ovclFNKIh6HxhkLKb1hPERM6fVs//vFXmDr1J5nLf//3F+J5GifosayFw//ccZMpwEuCaWnB9y4mELwzS8WJCCjUikgeeZ+peJlFvCwRShhOb3rxBAWMP63bmjLlAmpr7+ONN2r50pcGMHJkny6pWboLC8RT36ZPFDO9YgQbkqnPPIP/D9xVUHB3FmsUyW8aVhCRvOHi0zYJMrWQVD/+47QD7VGDB/dizpwxCrT5wDhQ8Wgq1x4BgkA8meoMHAdiQGR5NisUyXsaqRWRvGEzK6Jq0Rc5A+GrIJr+3qTHbovBegY3avEcrfkqkk0aqRWRvDGCRfiZNQ4sw3ki2yVJrrAJiLwAofTlFoiWGeIlhkQBRMsdEsVfy2qJIvlOI7UikjcqmUQlm7JdhuQa68Oh6yH+KvQCwsA+SIZMuy5jHr45+drGItK1FGpFRESOJ9mK3/I+Ce8TvNirbR9thoEh/x3HO4DPm6Qm1iYw5uKslSoiCrUiIiLHav0Uu+lKnGgdXm+w5xl8bFuwrVhI2OtNNH4XPh/jOTfiObdksWARUagVERH5U7sWQbQOCsA5D8C2nV5Y+AAELsQA4eDPs1aiiHSkUCsiIhL9DH/rf8NEd4HrgTc8tb1dk7jM9NmSBee6OhHpBIVaERHJe8k/XIMb3ZW+kCBp/oApBxNKnSeWmndgMMG/Aqc4e4WKyAlpSS8REcl7Tuv2zPcW8CsMphfYAjBx8HExJd+F8l9mrUYROTmFWhERyXuJUHW7XnPguKl/DWAtkPBpKf5brFOUtRpF5OQUakVEJO+5F32A73lYA42Dg8QK3A595xqKCtjGdHYxD4uftTpF5MQUakVEJO85Xh/csS3Ehn6P0OEkzRVBWko84iGHSK8gLeUBColxhF/SgposiHRHCrUiIiIAxiPU59up+QZJQ3PvMEeqC4mUBzEmNRmhkCjt1kEQkW5EoVZEROQo4+CNbMBJlHXYHCVI6hQyhwLUOUykO1KoFRERacdxiqgo/IxS839oIUQjRSTxcElwHqswGqkV6ZYUakVERI4jxNUMoI4wf0uQC6nidUqZlO2yROQE1HxBRETkBAwe1fxLtssQkU7QSK2IiIiI5DyFWhERERHJeQq1IiIiIpLzFGpFREREJOcp1IqIiIhIzlOoFREREZGcp1ArIiIiIjlPoVZEREREcp5CrYiIiIjkPIVaEREREcl5CrUiIiIikvMUakVEREQk5ynUioiIiEjOU6gVERERkZynUCsiIiIiOU+hVkRERERynkKtiIiIiOQ8hVoRERHpsZp4nQPJMj6PF3PEfzLb5UgX8rJdgIiIiEhXSLKTeOxvKElEAUgkFtAQClLqPJTlyqQraKRWREREeqQm/1kK0oEWwLU+ycR3sliRdCWFWhEREemRAlwFgE1fNoDFzVo90rUUakVERKRHKnSmEgkUZi7HjUuhtyWLFUlXUqgVERGRHqsi0Ewy/DytwbsIh1oJO0OzXZJ0EZ0oJiIiIj1akXMLOLdkuwzpYhqpFREREZGcp1ArIiIiIjlPoVZEREREcp5CrYiIiIjkPIVaEREREcl5CrUiIiIikvMUakVEREQk5ynUioiIiEjOU6gVERERkZynUCsiIiIiOU+hVkRERERynkKtiIiIiOQ8L9sFSIq1FoCGhoYsVyIiIiKddfR9++j7uGSPQm030djYCMDAgQOzXImIiIicrsbGRsrKyrJdRl4zVn9adAu+77Nnzx5KSkowxmS7nB6poaGBgQMH8umnn1JaWprtcuQ49BzlBj1P3Z+eo3PHWktjYyPV1dU4jmZ1ZpNGarsJx3EYMGBAtsvIC6Wlpfol383pOcoNep66Pz1H54ZGaLsH/UkhIiIiIjlPoVZEREREcp5CreSNUCjEggULCIVC2S5FTkDPUW7Q89T96TmSfKQTxUREREQk52mkVkRERERynkKtiIiIiOQ8hVoRERERyXkKtSIiIiKS8xRqJS8NGTIEY0yHr0WLFmW7rLy3bNkyhgwZQjgcZty4cbz77rvZLknSFi5ceMxrZtSoUdkuK++tX7+eGTNmUF1djTGGNWvWdNhvreXxxx+nX79+FBQUMGnSJLZt25adYkW6mEKt5K0nnniCvXv3Zr7uueeebJeU11566SXmz5/PggUL+OCDDxg9ejSTJ09m37592S5N0i666KIOr5k333wz2yXlvebmZkaPHs2yZcuOu/973/seS5cuZfny5WzcuJGioiImT55Ma2vrOa5UpOupTa7krZKSEqqqqrJdhqQtXryY22+/ndtuuw2A5cuX8+qrr7Jy5UoefvjhLFcnAJ7n6TXTzUydOpWpU6ced5+1liVLlvDoo4/y5S9/GYDnn3+eyspK1qxZw0033XQuSxXpchqplby1aNEievfuzWWXXcYzzzxDIpHIdkl5KxaLsWnTJiZNmpTZ5jgOkyZNYsOGDVmsTNrbtm0b1dXVDBs2jJtvvpldu3ZluyQ5iR07dlBXV9fhdVVWVsa4ceP0upIeSSO1kpfuvfdexo4dS0VFBW+//TaPPPIIe/fuZfHixdkuLS8dOHCAZDJJZWVlh+2VlZV89NFHWapK2hs3bhw1NTWMHDmSvXv38p3vfIerr76a3/3ud5SUlGS7PDmOuro6gOO+ro7uE+lJFGqlx3j44Yd5+umnT3rM1q1bGTVqFPPnz89su/TSSwkGg3zzm9/kqaeeUltJkeNo/xH3pZdeyrhx4xg8eDAvv/wyX//617NYmYhIikKt9Bjf/va3mTNnzkmPGTZs2HG3jxs3jkQiQW1tLSNHjuyC6uRk+vTpg+u61NfXd9heX1+vOZzdVK9evRgxYgSffPJJtkuREzj62qmvr6dfv36Z7fX19YwZMyZLVYl0HYVa6TH69u1L3759z+i6mzdvxnEczjvvvLNclXRGMBjk8ssvZ926dVx//fUA+L7PunXruPvuu7NbnBxXU1MT27dv55Zbbsl2KXICQ4cOpaqqinXr1mVCbENDAxs3buTOO+/MbnEiXUChVvLOhg0b2LhxIxMnTqSkpIQNGzYwb948Zs2aRXl5ebbLy1vz589n9uzZXHHFFVx55ZUsWbKE5ubmzGoIkl0PPPAAM2bMYPDgwezZs4cFCxbgui4zZ87Mdml5rampqcNo+Y4dO9i8eTMVFRUMGjSI+++/nyeffJILLriAoUOH8thjj1FdXZ3541GkJ1GolbwTCoV48cUXWbhwIdFolKFDhzJv3rwO82zl3LvxxhvZv38/jz/+OHV1dYwZM4a1a9cec5KLZMfu3buZOXMmn3/+OX379mXChAm88847Z/zpiJwd77//PhMnTsxcPvp7bPbs2dTU1PDQQw/R3NzMHXfcweHDh5kwYQJr164lHA5nq2SRLmOstTbbRYiIiIiIfBFap1ZEREREcp5CrYiIiIjkPIVaEREREcl5CrUiIiIikvMUakVEREQk5ynUioiIiEjOU6gVERERkZynUCsiIiIiOU+hVkTkBObMmYMxhm9961vH7LvrrrswxjBnzpwOxxpjCAQCVFZWct1117Fy5Up83z/u7U+ePBnXdXnvvfeO2bd+/XpmzJhBdXU1xhjWrFlzNh+aiEiPo1ArInISAwcO5MUXX6SlpSWzrbW1lZ/85CcMGjSow7FTpkxh79691NbW8qtf/YqJEydy3333MX36dBKJRIdjd+3axdtvv83dd9/NypUrj7nf5uZmRo8ezbJly7rmgYmI9DBetgsQEenOxo4dy/bt21m9ejU333wzAKtXr2bQoEEMHTq0w7GhUIiqqioA+vfvz9ixYxk/fjzXXnstNTU1fOMb38gcu2rVKqZPn86dd97J+PHjWbx4MQUFBZn9U6dOZerUqefgEYqI9AwaqRUROYW5c+eyatWqzOWVK1dy2223deq611xzDaNHj2b16tWZbdZaVq1axaxZsxg1ahTnn38+P//5z8963SIi+UShVkTkFGbNmsWbb77Jzp072blzJ2+99RazZs3q9PVHjRpFbW1t5vJrr71GJBJh8uTJmdtfsWLF2S5bRCSvaPqBiMgp9O3bl2nTplFTU4O1lmnTptGnT59OX99aizEmc3nlypXceOONeF7qV/DMmTN58MEH2b59O8OHDz/r9YuI5AON1IqIdMLcuXOpqanhueeeY+7cuad13a1bt2bm3x48eJBXXnmFH/3oR3ieh+d59O/fn0QicdwTxkREpHMUakVEOmHKlCnEYjHi8Xhm2kBnvP7663z44YfccMMNALzwwgsMGDCALVu2sHnz5szXD37wA2pqakgmk131EEREejRNPxAR6QTXddm6dWvm++OJRqPU1dWRTCapr69n7dq1PPXUU0yfPp1bb70VgBUrVvDVr36Viy++uMN1Bw4cyCOPPMLatWuZNm0aTU1NfPLJJ5n9O3bsYPPmzVRUVByzlJiIiCjUioh0Wmlp6Un3r127ln79+uF5HuXl5YwePZqlS5cye/ZsHMdh06ZNbNmyhWefffaY65aVlXHttdeyYsUKpk2bxvvvv8/EiRMz++fPnw/A7NmzqampOauPS0SkJzDWWpvtIkREREREvgjNqRURERGRnKdQKyIiIiI5T6FWRERERHKeQq2IiIiI5DyFWhERERHJeQq1IiIiIpLzFGpFREREJOcp1IqIiIhIzlOoFREREZGcp1ArIiIiIjlPoVZEREREcp5CrYiIiIjkvP8PMwy+zmC2SUEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading data from https://storage.googleapis.com/tensorflow/keras-applications/densenet/densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5\n", "29084464/29084464 [==============================] - 0s 0us/step\n" ] }, { "ename": "ValueError", "evalue": "in user code:\n\n File \"/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py\", line 2440, in predict_function *\n return step_function(self, iterator)\n File \"/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py\", line 2425, in step_function **\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n File \"/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py\", line 2413, in run_step **\n outputs = model.predict_step(data)\n File \"/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py\", line 2381, in predict_step\n return self(x, training=False)\n File \"/usr/local/lib/python3.10/dist-packages/keras/src/utils/traceback_utils.py\", line 70, in error_handler\n raise e.with_traceback(filtered_tb) from None\n File \"/usr/local/lib/python3.10/dist-packages/keras/src/engine/input_spec.py\", line 235, in assert_input_compatibility\n raise ValueError(\n\n ValueError: Exception encountered when calling layer 'densenet121' (type Functional).\n \n Input 0 of layer \"zero_padding2d\" is incompatible with the layer: expected ndim=4, found ndim=2. Full shape received: (None, 300)\n \n Call arguments received by layer 'densenet121' (type Functional):\n • inputs=tf.Tensor(shape=(None, 300), dtype=float32)\n • training=False\n • mask=None\n", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 112\u001b[0m \u001b[0;31m# Compare MDA visualizations with a different network (DenseNet121)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 113\u001b[0m \u001b[0mdensenet_model\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mDenseNet121\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mweights\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'imagenet'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minclude_top\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 114\u001b[0;31m \u001b[0mfeatures_densenet\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdensenet_model\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain_features\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 115\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 116\u001b[0m \u001b[0;31m# Flatten the features\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/keras/src/utils/traceback_utils.py\u001b[0m in \u001b[0;36merror_handler\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 68\u001b[0m \u001b[0;31m# To get the full stack trace, call:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 69\u001b[0m \u001b[0;31m# `tf.debugging.disable_traceback_filtering()`\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 70\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwith_traceback\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfiltered_tb\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 71\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 72\u001b[0m \u001b[0;32mdel\u001b[0m \u001b[0mfiltered_tb\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py\u001b[0m in \u001b[0;36mtf__predict_function\u001b[0;34m(iterator)\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0mdo_return\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 15\u001b[0;31m \u001b[0mretval_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mag__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconverted_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mag__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mld\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstep_function\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mag__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mld\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mag__\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mld\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miterator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfscope\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 16\u001b[0m \u001b[0;32mexcept\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0mdo_return\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mValueError\u001b[0m: in user code:\n\n File \"/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py\", line 2440, in predict_function *\n return step_function(self, iterator)\n File \"/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py\", line 2425, in step_function **\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n File \"/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py\", line 2413, in run_step **\n outputs = model.predict_step(data)\n File \"/usr/local/lib/python3.10/dist-packages/keras/src/engine/training.py\", line 2381, in predict_step\n return self(x, training=False)\n File \"/usr/local/lib/python3.10/dist-packages/keras/src/utils/traceback_utils.py\", line 70, in error_handler\n raise e.with_traceback(filtered_tb) from None\n File \"/usr/local/lib/python3.10/dist-packages/keras/src/engine/input_spec.py\", line 235, in assert_input_compatibility\n raise ValueError(\n\n ValueError: Exception encountered when calling layer 'densenet121' (type Functional).\n \n Input 0 of layer \"zero_padding2d\" is incompatible with the layer: expected ndim=4, found ndim=2. Full shape received: (None, 300)\n \n Call arguments received by layer 'densenet121' (type Functional):\n • inputs=tf.Tensor(shape=(None, 300), dtype=float32)\n • training=False\n • mask=None\n" ] } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from keras.models import Sequential\n", "from keras.layers import Dense\n", "from sklearn.manifold import MDS\n", "import matplotlib.pyplot as plt\n", "from keras.applications import DenseNet121\n", "from sklearn.metrics.pairwise import euclidean_distances\n", "\n", "# Load the MDA code here (the functions and classes)\n", "def discoverManifold(data, neighborNum):\n", " # Perform some operation to discover the manifold\n", " return clusterIdx_train\n", "\n", "def mda(data, clusterIdx):\n", " # Perform MDA\n", " return Yreg_train\n", "\n", "# Load the data from a CSV file\n", "data = pd.read_csv(\"/content/drive/MyDrive/stressinput.csv\", header=None)\n", "\n", "# Split the data into features and labels\n", "features = data.iloc[:, :-1].values\n", "labels = data.iloc[:, -1].values\n", "\n", "# Scale the features using StandardScaler\n", "scaler = StandardScaler()\n", "features = scaler.fit_transform(features)\n", "\n", "# Split the data into training and test sets\n", "train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size=0.2, random_state=42)\n", "\n", "# Create a simple feedforward neural network for 1D input\n", "input_dim = train_features.shape[1]\n", "output_dim = train_features.shape[1] # Set the output dimension to match the input dimension\n", "\n", "model = Sequential([\n", " Dense(128, activation='relu', input_dim=input_dim),\n", " Dense(64, activation='relu'),\n", " Dense(32, activation='relu'),\n", " Dense(output_dim) # Adjust the output dimension\n", "])\n", "\n", "# Compile the model\n", "model.compile(optimizer='adam', loss='mse')\n", "\n", "# Fit the model on the training data\n", "history = model.fit(train_features, train_features, epochs=10, batch_size=32, verbose=0)\n", "\n", "# Visualize the distribution in at least 4 intermediate layers\n", "layer_outputs = [layer.output for layer in model.layers[1:5]] # Exclude the input layer\n", "activation_model = Model(inputs=model.input, outputs=layer_outputs)\n", "activations = activation_model.predict(train_features[:1])\n", "\n", "# Plot the distributions\n", "for i, activation in enumerate(activations):\n", " plt.figure()\n", " plt.hist(activation.flatten(), bins=50)\n", " plt.title(f'Layer {i+1} Activation Distribution')\n", " plt.xlabel('Activation')\n", " plt.ylabel('Frequency')\n", " plt.show()\n", "\n", "# Visualize the distribution at one of the final layers with change in epoch\n", "final_layer_index = 2 # Choose the index of the final layer to visualize\n", "epoch_range = [1, 5, 10] # Choose the epochs to visualize\n", "\n", "for epoch in epoch_range:\n", " model.fit(train_features, train_features, epochs=epoch, batch_size=32, verbose=0)\n", " final_layer_activation = Model(inputs=model.input, outputs=model.layers[final_layer_index].output)\n", " activations = final_layer_activation.predict(train_features[:1])\n", "\n", " plt.figure()\n", " plt.hist(activations.flatten(), bins=50)\n", " plt.title(f'Epoch {epoch}, Layer {final_layer_index+1} Activation Distribution')\n", " plt.xlabel('Activation')\n", " plt.ylabel('Frequency')\n", " plt.show()\n", "\n", "# Add Gaussian noise to testing data\n", "noise_factor = 0.2\n", "test_features_noisy = test_features + np.random.normal(loc=0.0, scale=noise_factor, size=test_features.shape)\n", "\n", "# Extract features using the trained model\n", "train_features_nn = model.predict(train_features)\n", "test_features_nn = model.predict(test_features_noisy)\n", "\n", "# Perform MDA on the extracted features\n", "neighborNum = 12 # You may adjust this parameter based on your specific needs\n", "clusterIdx_train = discoverManifold(train_features_nn, neighborNum)\n", "clusterIdx_test = discoverManifold(test_features_nn, neighborNum)\n", "\n", "# Apply MDA\n", "Yreg_train = mda(train_features_nn, clusterIdx_train)\n", "Yreg_test = mda(test_features_nn, clusterIdx_test)\n", "\n", "# Plot the MDA results for the current model\n", "plt.scatter(Yreg_train[:, 0], Yreg_train[:, 1], c=clusterIdx_train, cmap='jet', s=5)\n", "plt.xlabel(\"MDA1\")\n", "plt.ylabel(\"MDA2\")\n", "plt.title('MDA visualization of the neural network features (Training Data)')\n", "plt.show()\n", "\n", "plt.scatter(Yreg_test[:, 0], Yreg_test[:, 1], c=clusterIdx_test, cmap='jet', s=5)\n", "plt.xlabel(\"MDA1\")\n", "plt.ylabel(\"MDA2\")\n", "plt.title('MDA visualization of the neural network features with Gaussian noise (Test Data)')\n", "plt.show()\n", "\n", "# Compare MDA visualizations with a different network (DenseNet121)\n", "densenet_model = DenseNet121(weights='imagenet', include_top=False)\n", "features_densenet = densenet_model.predict(train_features)\n", "\n", "# Flatten the features\n", "features_densenet_flat = features_densenet.reshape(features_densenet.shape[0], -1)\n", "\n", "# Perform MDA on the extracted features from DenseNet121\n", "clusterIdx_densenet = discoverManifold(features_densenet_flat, neighborNum)\n", "Yreg_densenet = mda(features_densenet_flat, clusterIdx_densenet)\n", "\n", "# Plot the MDA results for DenseNet121\n", "plt.scatter(Yreg_densenet[:, 0], Yreg_densenet[:, 1], c=clusterIdx_densenet, cmap='jet', s=5)\n", "plt.xlabel(\"MDA1\")\n", "plt.ylabel(\"MDA2\")\n", "plt.title('MDA visualization of the features from DenseNet121')\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 489 }, "id": "r2BUmh4WjkNM", "outputId": "0920f453-0f8a-4d3b-f20b-04d87c18292d" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "176/176 [==============================] - 40s 201ms/step\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddZwc5f3A8c/zjKydX+7iHiAQPLhbCMEKFIK7S4G2QKHADyjuFJciLVIcChR3KVA0SBMIcWKXnN/qyPP7Y/b2bk+Su3DJJcfz7mvp7cgzz8xuZr77qFBKKTRN0zRN09ZwsrczoGmapmma1hN0UKNpmqZpWp+ggxpN0zRN0/oEHdRomqZpmtYn6KBG0zRN07Q+QQc1mqZpmqb1CTqo0TRN0zStT9BBjaZpmqZpfYIOajRN0zRN6xN0UKP9IiNGjOCYY47p7Wy0y8e7776LEIJ33313leajt47bXQ8//DBjx47FsixKSkq6vf/s2bMRQnDDDTf0fObaaGpq4oQTTmDAgAEIITj77LNX+jHXRPo6aZoOalaZhx56CCEEQgg+/PDDduuVUgwdOhQhBHvvvXfeuub9hBCYpklZWRnjx4/nrLPO4n//+98yj3vnnXcihGDLLbfs0fP5tbvzzjt56KGHejsbK2TatGkcc8wxjB49mvvuu4977723021ffvllLr300lWXuQ5cddVVPPTQQ5x66qk8/PDDHHnkkSvlOGvyZwqr7jr1lF9yX1sdNd/jw+Ew8+fPb7d+p512Yv3111+htB977DFuueWWDtfdddddHHTQQQwbNgwhRKc/Mt966y2OO+441l57baLRKKNGjeKEE05g4cKF7bZ9/fXXOf7441l//fUxDIMRI0asUL57hdJWiQcffFABKhwOq1NPPbXd+nfeeUcBKhQKqb322itvHaAmTJigHn74YfWPf/xD3XbbbeqEE05QxcXFyjRNdeONN3Z63G222UaNGDFCAWr69Ok9fl6pVEplMpkeT7e7hg8fro4++ujce8/zVDKZVJ7nrZTjjRs3Tu24447tlq/s4/aEu+66q8vfh9NPP111dJuYNWuWAtT111+/MrKYZ8stt1TbbrvtSj9OZ5/pmmJVXaee8kvua6uj5ns8oM4444x263fccUc1bty4FUp7r732UsOHD+9w3fDhw1VZWZnaY489lGmaeffB1saPH69GjhypzjvvPHXfffepCy64QBUWFqr+/furhQsX5m179NFHq3A4rLbZZhs1ZMiQTo+9OtIlNavYnnvuyVNPPYXrunnLH3vsMcaPH8+AAQM63G/ttdfmiCOO4Mgjj+SMM87gvvvuY8aMGWy++eb88Y9/5OWXX263z6xZs/jPf/7DTTfdREVFBY8++miPn08oFMKyrB5P95eSUhIOh5Fy1X7Fe+u43VFVVQWwQtVOvaGqqmqNyWtbSimSyeQqOVZXr1MqlcL3/ZWfoS5Ykfva6m7jjTfmvvvuY8GCBavkeO+99x5Lly7llVdeIRQKdbrdTTfdxE8//cS1117LCSecwFVXXcVLL73E4sWLuf322/O2veqqq2hoaOCjjz5io402Wtmn0KNW3ztvH3XooYdSXV3NG2+8kVuWyWR4+umnOeyww7qVVnl5OY8//jimaXLllVe2W//oo49SWlrKXnvtxYEHHtjloGbvvfdm1KhRHa7beuut2WyzzXLv27ZlcRyHyy67jLXWWotwOEx5eTnbbbdd3vnutNNO7LTTTu3SPuaYY9oVc95www1ss802lJeXE4lEGD9+PE8//fRyz6Ft25bW1X9tX63z8uCDD7LLLrtQWVlJKBRivfXW46677spLe8SIEXz//fe899577dLorE3NU089xfjx44lEIvTr148jjjiiXRH1McccQ0FBAfPnz2e//fajoKCAiooKzjnnHDzPW+45Q1CFMm7cOEKhEIMGDeL000+nrq4uL++XXHIJABUVFQghOq1eOuaYY7jjjjuA/KqCtu69915Gjx5NKBRi880357PPPmu3zbRp0zjwwAMpKysjHA6z2Wab8cILLyzzXJqv5axZs/j3v/+dO/7s2bMBSKfTXHLJJYwZM4ZQKMTQoUM577zzSKfTeen80s/00ksv7fC8m79TzflpTmfvvffmtddeY7PNNiMSiXDPPfcAUFdXx9lnn83QoUMJhUKMGTOGa6+9tl2A8fjjjzN+/HgKCwspKipigw024K9//esKXafmdY8//jgXXXQRgwcPJhqN0tDQAHTvezl37lz23ntvCgoKGDx4cO678e2337LLLrsQi8UYPnw4jz32WKd57Ypl3de6+pkLITjjjDN4/vnnWX/99QmFQowbN45XX301b7vGxkbOPvtsRowYQSgUorKykgkTJvDll1/mbffpp5+yxx57UFxcTDQaZccdd+Sjjz7qMP9//vOf8TyPa665pkvn+8gjj+Q+g7KyMg455BDmzZuXW7/TTjvx73//mzlz5uQ+29b3yeHDh3f4/Wxrhx12aPdja4cddqCsrIypU6fmLR80aNBq+WO1K8zezsCvzYgRI9h666355z//yaRJkwB45ZVXqK+v55BDDuHWW2/tVnrDhg1jxx135J133qGhoYGioqLcukcffZQDDjgA27Y59NBDueuuu/jss8/YfPPNl5nmwQcfzFFHHdVu2zlz5vDJJ59w/fXXd7rvpZdeytVXX80JJ5zAFltsQUNDA59//jlffvklEyZM6Na5Afz1r39l33335fDDDyeTyfD4449z0EEH8dJLL7HXXnt1OZ0ddtiBhx9+OG/ZnDlzuOiii6isrMwtu+uuuxg3bhz77rsvpmny4osvctppp+H7PqeffjoAt9xyC7/73e8oKCjgwgsvBKB///6dHvuhhx7i2GOPZfPNN+fqq69m8eLF/PWvf+Wjjz7iq6++yvt17XkeEydOZMstt+SGG27gzTff5MYbb2T06NGceuqpyzzHSy+9lMsuu4zddtuNU089lR9++CH3mX/00UdYlsUtt9zCP/7xD5577jnuuusuCgoK2HDDDTtM7+STT2bBggW88cYb7a5ds8cee4zGxkZOPvlkhBBcd911HHDAAcycOTN3U/z+++/ZdtttGTx4MOeffz6xWIwnn3yS/fbbj2eeeYb999+/w7TXXXddHn74YX7/+98zZMgQ/vjHPwJBMOb7Pvvuuy8ffvghJ510Euuuuy7ffvstN998Mz/++CPPP/98Lp2V8Zkuyw8//MChhx7KySefzIknnsg666xDIpFgxx13ZP78+Zx88skMGzaM//znP1xwwQUsXLgw117ijTfe4NBDD2XXXXfl2muvBWDq1Kl89NFHnHXWWd2+Ts0B1+WXX45t25xzzjmk02ls2+7293LSpEnssMMOXHfddTz66KOcccYZxGIxLrzwQg4//HAOOOAA7r77bo466ii23nprRo4cuULXDzq+r3XnMwf48MMPefbZZznttNMoLCzk1ltv5be//S1z586lvLwcgFNOOYWnn36aM844g/XWW4/q6mo+/PBDpk6dyqabbgrA22+/zaRJkxg/fjyXXHIJUspcoPzBBx+wxRZb5B135MiRHHXUUdx3332cf/75DBo0qNPzvPLKK7n44ouZPHkyJ5xwAkuWLOG2225jhx12yH0GF154IfX19fz888/cfPPNABQUFKzwtW2tqamJpqYm+vXr1yPprRZ6u/7r16K5vvWzzz5Tt99+uyosLFSJREIppdRBBx2kdt55Z6VUUD/aUZua008/vdO0zzrrLAWoKVOm5JZ9/vnnClBvvPGGUkop3/fVkCFD1FlnnbXcvNbX16tQKKT++Mc/5i2/7rrrlBBCzZkzJ7esbVuWjTbaqF3+29pxxx07bLtw9NFHt6u7bb5GzTKZjFp//fXVLrvskre8bT6a2yi98847HeYhmUyq8ePHq0GDBuXVJ7c9nlJKTZw4UY0aNSpvWWftL9oeN5PJqMrKSrX++uurZDKZ2+6ll15SgPq///u/3LKjjz5aAeovf/lLXpqbbLKJGj9+fIfn0ayqqkrZtq123333vPY8t99+uwLUAw88kFt2ySWXKEAtWbJkmWkqtfw2NeXl5aqmpia3/F//+pcC1Isvvphbtuuuu6oNNthApVKp3DLf99U222yj1lprreXmoaN/Ew8//LCSUqoPPvggb/ndd9+tAPXRRx/llv3Sz7T5erXV/G961qxZeXkF1Kuvvpq37eWXX65isZj68ccf85aff/75yjAMNXfuXKVU8G+5qKhIua7b7njL09F1av4+jho1Ku86rMj38qqrrsotq62tVZFIRAkh1OOPP55bPm3aNAWoSy65ZLn57e59rTufOaBs21Y//fRTbtmUKVMUoG677bbcsuLi4mXmwfd9tdZaa6mJEycq3/dzyxOJhBo5cqSaMGFCblnre/yMGTOUaZrqzDPPzK1v26Zm9uzZyjAMdeWVV+Yd89tvv1WmaeYtX1abmtZisVinbWo6cvnllytAvfXWW51u09Vjry509VMvmDx5MslkkpdeeonGxkZeeumlblc9tdYctTc2NuaWPfroo/Tv35+dd94ZCIpjDz74YB5//PHlVmUUFRUxadIknnzySZRSueVPPPEEW221FcOGDet035KSEr7//numT5++wufTWiQSyf1dW1tLfX0922+/fbvi4e467bTT+Pbbb3nmmWfy2jG1Pl59fT1Lly5lxx13ZObMmdTX13f7OJ9//jlVVVWcdtpphMPh3PK99tqLsWPH8u9//7vdPqecckre++23356ZM2cu8zhvvvkmmUyGs88+O6+I+cQTT6SoqKjD4/SEgw8+mNLS0ry8Arn81tTU8PbbbzN58mQaGxtZunQpS5cupbq6mokTJzJ9+vQOe4osz1NPPcW6667L2LFjc2kuXbqUXXbZBYB33nknt21Pf6bLM3LkSCZOnNguv9tvvz2lpaV5+d1tt93wPI/3338fCP79xOPxvOrannD00UfnXYcV+V6ecMIJub9LSkpYZ511iMViTJ48Obd8nXXWoaSkZLnf165oe1/rzmcOsNtuuzF69Ojc+w033JCioqK8vJWUlPDpp5922v7l66+/Zvr06Rx22GFUV1fnjhmPx9l11115//33O2yfNGrUKI488kjuvffeDnsXATz77LP4vs/kyZPzzmfAgAGstdZa7c6np73//vtcdtllTJ48OXcN+wJd/dQLKioq2G233XjsscdIJBJ4nseBBx64wuk1NTUBUFhYCARFxY8//jg777wzs2bNym235ZZbcuONN/LWW2+x++67LzPNgw8+mOeff56PP/6YbbbZhhkzZvDFF1902q2w2V/+8hd+85vfsPbaa7P++uuzxx57cOSRR3ZaxbE8L730EldccQVff/11Xr15V+qQO3PPPffw4IMPcs8997DVVlvlrfvoo4+45JJL+Pjjj0kkEnnr6uvrKS4u7tax5syZAwQ3+7bGjh3brnt/OBymoqIib1lpaSm1tbUrdBzbthk1alRufU9rG+A2BzjN+f3pp59QSnHxxRdz8cUXd5hGVVUVgwcP7tZxp0+fztSpU9tdq9ZpNuvpz3R5Oqp2mT59Ot98881y83vaaafx5JNPMmnSJAYPHszuu+/O5MmT2WOPPXo0Tz3xvSwuLmbIkCHt/i0WFxcv9/vaFW3va935zKH9dxPa/1u67rrrOProoxk6dCjjx49nzz335Kijjsq1KWz+cXb00Ud3ms/6+vq8wL7ZRRddxMMPP8w111zTYZuo6dOno5RirbXW6jDdldmmZdq0aey///6sv/76/O1vf1tpx+kNOqjpJYcddhgnnngiixYtYtKkSb+od8d3332HYRi5G9fbb7/NwoULefzxx3n88cfbbf/oo48uN6jZZ599iEajPPnkk2yzzTY8+eSTSCk56KCDlrnfDjvswIwZM/jXv/7F66+/zt/+9jduvvlm7r777twvPSFEXglQs7YlSB988AH77rsvO+ywA3feeScDBw7EsiwefPDBFW6M+N///pezzjqLE044gZNOOilv3YwZM9h1110ZO3YsN910E0OHDsW2bV5++WVuvvnmVdJjxDCMlX6MntRZfps/3+Zrds4557QrvWg2ZsyYbh/X93022GADbrrppg7XDx06FOiZz7SzALqzEs/WJSKt8zthwgTOO++8DvdZe+21AaisrOTrr7/mtdde45VXXuGVV17hwQcf5KijjuLvf//7cvPamY7y1B2dfc7L+/x/ibb3ta5+5t3J2+TJk9l+++157rnneP3117n++uu59tprefbZZ5k0aVLu+3H99dez8cYbd5heZ+1bRo0axRFHHMG9997L+eef32697/sIIXjllVc6zGtPtZtpa968eey+++4UFxfz8ssv54LGvkIHNb1k//335+STT+aTTz7hiSeeWOF05s6dy3vvvcfWW2+d+3I++uijVFZW5nontPbss8/y3HPPcffddy/zRheLxdh777156qmnuOmmm3jiiSfYfvvtl9norVlZWRnHHnssxx57LE1NTeywww5ceumluaCmtLS0w+LptqUJzzzzDOFwmNdeey2vq+KDDz643Dx0ZMmSJRx44IFsvPHGHV6bF198kXQ6zQsvvJD3K6+jYuCulhQNHz4cCBqPti3i/eGHH3Lrf6nWx2ndcy2TyTBr1ix22223FUr3l5SIAbm8WJa1wnnoyOjRo5kyZQq77rrrMvPYE59p86/wurq6vB8f3Sn9Gj16NE1NTV26BrZts88++7DPPvvg+z6nnXYa99xzDxdffPEKBYAdWVXfyxXV0X2tq595dw0cOJDTTjuN0047jaqqKjbddFOuvPJKJk2alKu+KioqWqHv70UXXcQjjzySa/Td2ujRo1FKMXLkyFxQ25meOt/q6mp233130uk0b731FgMHDuyRdFcnuk1NLykoKOCuu+7i0ksvZZ999lmhNGpqajj00EPxPC/XYyOZTPLss8+y9957c+CBB7Z7nXHGGTQ2Ni63Oy0EVVALFizgb3/7G1OmTOHggw9e7j7V1dXtznPMmDF5VUejR49m2rRpLFmyJLdsypQp7bpIGoaBECLvF/Hs2bPb9XLoCs/zOOSQQ8hkMjzzzDPYtt1um+ZfS61/ydXX13cYRMVisbyu0p3ZbLPNqKys5O677867Bq+88gpTp07tVg+uZdltt92wbZtbb701L//3338/9fX1K3ycWCwG0KVz7UhlZSU77bQT99xzT4dtC1p/B7pj8uTJzJ8/n/vuu6/dumQySTweB3rmM21+sDW3ewGIx+PdKjmZPHkyH3/8Ma+99lq7dXV1dblxq9r++5FS5qpu23Zb/iVW1fdyRXR0X4Ouf+Zd5XleuzZVlZWVDBo0KHdNxo8fz+jRo7nhhhty1WGtLe/7O3r0aI444gjuueceFi1alLfugAMOwDAMLrvssnYlW0qpvO9CLBb7xe2/4vE4e+65J/Pnz+fll1/utNprTadLanrRsupp2/rxxx955JFHUErR0NDAlClTeOqpp2hqauKmm27K1bm/8MILNDY2su+++3aYzlZbbZUbiG95Qcqee+5JYWEh55xzDoZh8Nvf/na5+VxvvfXYaaedGD9+PGVlZXz++ee5LpPNjjvuOG666SYmTpzI8ccfT1VVFXfffTfjxo3LjZ8BQaPF5nM77LDDqKqq4o477mDMmDF88803XblsOXfffTdvv/02p5xySrtf6f3792fChAnsvvvuuV/JJ598Mk1NTdx3331UVla2eyCPHz+eu+66iyuuuIIxY8ZQWVnZYWM7y7K49tprOfbYY9lxxx059NBDc11nR4wYwe9///tunUdnKioquOCCC7jsssvYY4892Hffffnhhx+488472XzzzTniiCNWKN3x48cDcOaZZzJx4kQMw+CQQw7pVhp33HEH2223HRtssAEnnngio0aNYvHixXz88cf8/PPPTJkypdv5OvLII3nyySdzn+e2226L53lMmzaNJ598MjdOTE98prvvvjvDhg3j+OOP59xzz8UwDB544AEqKiqYO3dul/J77rnn8sILL7D33ntzzDHHMH78eOLxON9++y1PP/00s2fPpl+/fpxwwgnU1NSwyy67MGTIEObMmcNtt93GxhtvzLrrrtvt69SZVfW9XJ6u3teg6595VzU2NjJkyBAOPPBANtpoIwoKCnjzzTf57LPPuPHGG4EgqPzb3/7GpEmTGDduHMceeyyDBw9m/vz5vPPOOxQVFfHiiy8u8zgXXnghDz/8MD/88APjxo3LLR89ejRXXHEFF1xwAbNnz2a//fajsLCQWbNm8dxzz3HSSSdxzjnnAMF384knnuAPf/gDm2++OQUFBbkfwy+++GLu35DjOHzzzTdcccUVAOy77765oPjwww/nv//9L8cddxxTp07NG5umoKCA/fbbL/f+m2++yf3w/emnn6ivr8+ludFGG63wD/FVohd6XP0qte7utyyddelufkkpVUlJidpkk03UWWedpb7//vu8bffZZx8VDodVPB7v9BjHHHOMsixLLV26dLn5PvzwwxWgdtttt07z27oL4RVXXKG22GILVVJSoiKRiBo7dqy68sor202l8Mgjj6hRo0Yp27bVxhtvrF577bUOu3Tff//9aq211lKhUEiNHTtWPfjggx12sV1el+7mfTp6te7G+8ILL6gNN9xQhcNhNWLECHXttdeqBx54oF3X3UWLFqm99tpLFRYW5qXRWVfyJ554Qm2yySYqFAqpsrIydfjhh6uff/45b5ujjz5axWKxdte4sy7FHbn99tvV2LFjlWVZqn///urUU09VtbW1HabXlS7druuq3/3ud6qiokIJIXL5WNY0CXTQpXfGjBnqqKOOUgMGDFCWZanBgwervffeWz399NPLzUNH/yaUCrolX3vttWrcuHEqFAqp0tJSNX78eHXZZZep+vr63Ha/9DNVSqkvvvhCbbnllsq2bTVs2DB10003ddqlu7MhDRobG9UFF1ygxowZo2zbVv369VPbbLONuuGGG3L/Pp5++mm1++67q8rKytyxTj755HbD2Hf1OjV/H5966qkO9/kl38vOhv1f1jVorTv3tWZd/czppLt46/tEOp1W5557rtpoo41UYWGhisViaqONNlJ33nlnu/2++uordcABB6jy8nIVCoXU8OHD1eTJk/O6Qi/rHt/cLb6j6/XMM8+o7bbbTsViMRWLxdTYsWPV6aefrn744YfcNk1NTeqwww5TJSUlCsi7Tzan3dHrwQcfzDv3zrZre99tPeVD21d3uoz3BqFUD7To0jRN0zRN62W6TY2maZqmaX2CDmo0TdM0TesTdFCjaZqmaVqfoIMaTdM0TdP6BB3UaJqmaZrWJ+igRtM0TdO0PuFXNfie7/ssWLCAwsLCHh1mW9M0TdO0lUcpRWNjI4MGDULKzstjflVBzYIFC9pNeqZpmqZp2pph3rx5DBkypNP1v6qgpnlitHnz5lFUVNTLudE0TdM0rSsaGhoYOnTocmcV/1UFNc1VTkVFRTqo0TRN07Q1zPKajuiGwpqmaZqm9Qk6qNE0TdM0rU/QQY2maZqmaX2CDmo0TdM0TesTdFCjaZqmaVqfoIMaTdM0TdP6BB3UaJqmaZrWJ+igRtM0TdO0PkEHNZqmaZqm9Qk6qNE0TdM0rU/QQY2maZqmaX2CDmo0TetRruvixHciEx+Hm/mxt7OjadqvyK9qQktN01Y+P2EjUQhAeevgMgXT3rC3s6Vp2q+ALqnRNK3HuOmHkajcewH46T17L0Oapv2q6KBG07SeI4rbLVLC7oWMaJr2a6SDGk3Teoxp74vfKohRgGF/3nsZ0jTtV0UHNZqm9Si7MA32tSjrREQ4jWmX9XaWNE37ldANhTVN63Fm+LzezoKmab9CuqRG0zRN07Q+QQc1mqZpmqb1CTqo0TRN0zStT9BBjaZpmqZpfYIOajRN0zRN6xN0UKNpmqZpWp+ggxpN0zRN0/oEHdRomqZpmtYn6KBG0zRN07Q+QQc1mqZpmqb1CTqo0TRN0zStT9BBjaZpmqZpfYIOajRN0zRN6xN0UKNpmqZpWp+ggxpN0zRN0/oEHdRomqZpmtYn6KBG0zRN07Q+QQc1mqZpmqb1CTqo0TRN0zStT9BBjaZpmqZpfYIOajRN0zRN6xN0UKNpmqZpWp+ggxpN0zRN0/oEHdRomqZpmtYn6KBG0zRN07Q+YbUJat5//3322WcfBg0ahBCC559/Pm+9Uor/+7//Y+DAgUQiEXbbbTemT5/eO5nVNE3TNG21s9oENfF4nI022og77rijw/XXXXcdt956K3fffTeffvopsViMiRMnkkqlVnFONU3TNE1bHZm9nYFmkyZNYtKkSR2uU0pxyy23cNFFF/Gb3/wGgH/84x/079+f559/nkMOOWRVZlXTNE3TtNXQalNSsyyzZs1i0aJF7LbbbrllxcXFbLnllnz88ced7pdOp2loaMh7aZqmaZrWN60RQc2iRYsA6N+/f97y/v3759Z15Oqrr6a4uDj3Gjp06ErNp6ZpmqZpvWeNCGpW1AUXXEB9fX3uNW/evN7OkqZpmqZpK8kaEdQMGDAAgMWLF+ctX7x4cW5dR0KhEEVFRXkvTdM0TdP6pjUiqBk5ciQDBgzgrbfeyi1raGjg008/Zeutt+7FnGmapmmatrpYbXo/NTU18dNPP+Xez5o1i6+//pqysjKGDRvG2WefzRVXXMFaa63FyJEjufjiixk0aBD77bdf72Va0zRN07TVxmoT1Hz++efsvPPOufd/+MMfADj66KN56KGHOO+884jH45x00knU1dWx3Xbb8eqrrxIOh3sry5qmaZqmrUaEUkr1diZWlYaGBoqLi6mvr9ftazRN0zRtDdHV5/ca0aZG0zRN0zRteXRQo2mapmlan6CDGk3TNE3T+gQd1Giapmma1ifooEbTNE3TtD5BBzWapmmapvUJOqjRNE3TNK1P0EGNpmmapml9gg5qNE3TNE3rE3RQo2mapmlan6CDGk3TNE3T+gQd1Giapmma1ifooEbTNE3TtD5BBzWapmmapvUJOqjRNE3TNK1P0EGNpmmapml9gg5qNE3TNE3rE3RQo2mapmlan6CDGk3TNE3T+gQd1Giapmma1ifooEbTNE3TtD5BBzWapmmapvUJOqjRNE3TNK1P0EGNpmmapml9gg5qNE3TNE3rE3RQo2mapmlan6CDGk3TNE3T+gQd1Giapmma1ifooEbTNE3TtD5BBzWapmmapvUJOqjRNE3TNK1P0EGNpmmapml9gg5qNE3TNE3rE3RQo2mapmlan6CDGk3TNE3T+gQd1Giapmma1ifooEbTNE3TtD5BBzWapmmapvUJOqjRNE3TNK1P0EGNpmmapml9gg5qNE3rdQpFhnoUfm9nRVvV5m8FM0XwWrhXb+dGW8OZvZ0BTdN+3ap4h+/VBZjCw1UG/ZnIeuKy3s6WtirUXA3JT1vex1+G+L8hpoMbbcXokhpN03rVd+rPWMJForCEyyJe7+0s9QqFxxK2YRElLKKcNB/1dpZWvsZb2i+rvWiVZ0PrO3RQo2larxKoVn+DiUuGht7LUC+p4UA8vs++86hlLzySvZqnlS6yf/tlBaev+nxofYYOajRN613KQAR/AFAgGpnlb96bOeoVDp9A9ko0q2Xn3snMqlJ5N5jlwWkLwB4JJSf0dq60NZgOajRN61Xbi7cJqQRhUhTQQJgUSqRwnTd6O2urlMHodst8f1ov5GQVG7EURqvgNWxmb+dGW8PpoEbTtF6VEXOJiiRRFSdEBqmCEhuR+Fsv52zV6scHoFqq4lAKw830XoY0bQ2kgxpN03qNR4qf2BsXM6/mZUDtUqQY0nsZ6wUCQWGqHM+HRgqoEyXUWqUs5tDezpqmrTF0UKNpWq+p5qHsXxKHEBksiuIJit1hiNifejNrq5xC4ap5JGUMDwMQuMKkUb2Hw/96O3uatkbQQY2mab0mo/4bVLnkql0kXmhLRMV3YFT2at5WNUUjSPCRtC628pGkfg3duzWtB+igRtO0XmMSIey2dFuWvssgdQAIoxdz1TsEhWTkYGJuPFigFCAwcQhl+njXbk3rITqo0TSt15SIkyhWadZpnM46DdNZO2EjrUN6O1u9QiAoEkfSL1NL/1QVxW49lanFhPwMMvUnlKeroDRteXRQo2larwmzEeX2N7gFjyJjL2HFvkWIaG69Uk0kvKNo9EaS8I5EqcblpqmUQnk/oLxpqNa9idYAhnIBMIWDMBWZcAgTF0UGP3NL72ZO09YAOqjRNK1XmQwgJg/DMvZEiPzp6NLqElyeQrEAl2dIq/9bZlpKKbyGQvy6saiadfFrS1cssPE9+Gk3+K4cfj6r+/uvIGmejo8gbrcK7AyDuGkC9irLh6atqXRQo2naastTP0Ju5m4PT/2w7O0TRyAzcWQGhAsyXY/feHz3D/y/Eki+BdRA7a0wfZvup7ECpBxCfagAhAheWY5loMyJqyQPmrYm00GNpmmrLUvsm/3LbPO+E/6nCK9l1H0AlX4Ela3W6RI/Caopf1ny467v/wukeZeMEcZRLSVWvoJIKoVKHYxqmy9N0/KYy99E0zStd1jiBATFuPwHk60xxeTl7HAhShwHqiWwUdIBtQDEsC4etfd6Xjl8go/AFSFcLAQKD0GlqgeS4M8EY8Ney5+mre50SY2maastIQSWnExE3oIlD0YIscztzfCx+NH9UBKUANcCP1wGon/XDyptiOyQv6ziLyuQ++6z2AKJj0LiYuJi4WDjIlCiAOQoAHz1M57/BkpVrZJ8adqaQgc1mqb1KWbhc6jy53BKNscv2Bkr8hZChLqXyJj3YPR3UHE1rL0QBl68cjLbRohdiHI6DhYeBg4mnjBpsgrJRG9FiAI8/y2SmbVIOXuQyKyD509ZJXnTVpy3eCv8mRJ30QiU7y9/B22FCbWm9Xn8BRoaGiguLqa+vp6ioqLezo6maV3k+9U46lEkG2EZO/Z2dnqc4/0Dx7sWQTGGeTWz5AW4LKG5kbTEx2IgY/gPycxO+OpDQAEGpjwcyzgHX83CkNsgRFlvnorWhje7GKO6oeV9KRijfjWP3R7T1ee3blOjadpqzfG+IME2QfsYwPVClMpaZB8ZddjzvybjHkcw+5PEdw5ipP0VC8UFxPkQgY8AfJpHFQ5B7mqAr2aRdDbKvq8kYn+K7HL7IW1lUspB1jbkLZP1oFQibzwmrefo6idN01ZrSfbL9WQSgEmaar8bbWRWc0pNozlACUpmqjExGMQ1WJTmzr0fvwPANq8ECgEQVOKrH1vtX43r3b/K8q4tm8d/QLV8Oir3Hz3m0MqiS2o0TVvN5Y8iLACLRhxmYDG6y6koUiQzF0H6XWx5FGbszB7O54qRclsgBqSC92IDBJVYSEbxJgk+xWIwYTYAwJCbEbXnotQchBhNMrMhiiqCp6UCwr10JlpbgkL8MMhWU3epiIEU+tG7suiSGk3TVmsGxwV/tGr+J31FRr3brXQa0uOxlt5MdOkXGFVn4S4Y1/GGSoGzEPzUCua4e6QYSsT6CFOejGWcS9h6HSGCW7NBKYXskQtomglRgJTjECKMbd1OcyAjxQZYxqmrJN/a8kk2wRl+VFBjaAERGzl6em9nq0/TDYU1TVvt1XsDEKomGGVXKfA8LLE7IftxEtyLookIR2G2Kbnx/Vr8xATwv0ZlPKxWhT4KEEOrwKxoWehVw5zdIfElyBgMex4Kdlsl5/hLKNWIogrBCEQPtTVynY9x/D8jxfrY1i09lu6vkfJ+Bmchwt4QZDd74mlA15/fOqjRNG2N0JSZgK/ezg2NJ8QYEvZgXL4mmOO6gH78F4OgvY1SPl7TKFBzgh1SYMZb0guCmvlgDgoWODNg/qagGoKVKcAYCevMXCXntzrJpO/AUb9rNVVDCVF76XLHCdK0laWrz29d/aRp2hohbJyVDWiC/0q5Jy5fEjSu9VDUk+Z1PGajUOD/0BLQAITAb1XYoISEuv8DP9s7pe5KaD0LuAXKm4VbOwrVdDuo9Mo9wdWI45+VN/cU1OGrqb2Wn9WGUrBgMswYCLX39XZutA7ooEbTtNWeUgrXfwaUQnguUu2ILS9FUETr21ic31GnxtHgjyPD6yjalCzIlp4o0vKh8X5Y0txmJw2tt5dAEZiJWYiG30H1rtCdOaTWUEr5tEwi2lrhqs7K6kUpmGFD4ilQi6D6JJh/UG/nSmtDBzWapq32fPUFnvd3Qo2KaL0iXPsOLC0h0lRNKO1huTZSSaRyMH0X1AzSnIcTmUBQ5AIiDtJpFbY4BP0/Ux8E74v/ACICBFMsKAuEorkgCDIfgfPlSjk/V71L0j+LtP9XlHJWyjG6SgiJ8AfiIpG+j/R90tLEE7/yKRkyXwNtgtrk072RE20ZdL8yTdNWb85i1NxdMSrAbPVMER5E3URLoYIH+OCYBkoKfAtk5iMM4w6w90TUrgW07lub/f9wdp6n0HgYMh3SX6Bq90F21NpQ9mxbPF/NIeH8Fs/4NrfMU1OJGnf36HG6y448hkztlHsfcRzqxG+oNH/uvUz1slR6b91Zfg2gS2o0TVutqZlbYSQbMFItUUZuML44iBRBgCLBSEKkxiNa7RKrcQnF44iGkxBN54M9OD9hA/AHQMUDLcvMgRDbGyFG5ecBIPZHMMf26LklnINIGD/kzkkADk/06DFWhOd/ksuPACQKqep7OVe9x/eXIliAsgnGzWuuxgzv1Kv50tpbY4KaSy+9FCFE3mvs2J69wWiathpy5gJBz6XWfTVFJhjUzGgAkcz2ZmquuZEtD2QAUo9Bv8daSnUEkAFKrwXZvq2IsLYJts2OZycYBsU3dJpFtfRI1DwRvJZ0rZ1FDadQb88k3WqyTQV4FKGUS292TE2Jd3JD+TXXwIWdEb2Wn16nfOw4Qd2GCSoMfgwY/EYvZ0xra40JagDGjRvHwoULc68PP/ywt7OkadrKlh1HRphBlRMekALVqn2MSIOvgocNUYKHTy6ikSAHBk+hfv8EY3NQQ6D0Aig8ouNjFp0CvhUcywNKr+40e6rpVkg+EuQDEKmnUXWXLvOUkvyLJEF7DCGgSRbgIslgE07W4jZauI2STGLf5VyclURIHGnkApqMYRAyT++dvKwGZHb+LZGNlIWgbRN0bTWxRrWpMU2TAQMG9HY2NE3raU11sPAnGLwWqL9C5iUwN4HYDYhR/0HNHI3y6fBJogAnbGM7PsJwc0U0yo8FvZWM/ojMrvBDdgTh2A4wagbIlvl3lD8Pz70TMDCs3yHC28LgbyH9EdgbQmizTrOuGm9t/+swfh+UXNrpPmlafpAJAQpBoyiiMJ3E8htz01UK90Vc5w1Ma8Kyrl7PUopI3RyshIcCMgVghhXS2GbV5WF1I8uBMIpU7rOR5gZBpK2tVtaokprp06czaNAgRo0axeGHH87cuXOXuX06naahoSHvpWl9zjcfw44CJgjYQ8BX/+rtHC2X575BOtGfdMIms2AX1NEVcM7mcFQ/mHYJuJ9B6n5oOgvsUfjDDsUrEvg2OIWQ6VeOim6IMsrxY5tip0YifDcv6FFGnESZQ6JgAar6wZYV8feh8dWW7VQjmdSWeO71eO41ZFLboFQK7HWg8LhlBjQAwhrffqG58bL3oVWDY6UIOWkGNFVhqEyrbQJ+40GQ6Fo7G4VPIzOo4UWq1G9Z4o2jzv0tnurGvS/9Bnb8fwgFUkGoEaTjI+Sa+YPSc3/Gc6bl1112l7Cg3ycIYyyIQkT4BKj4pucyqfWYNSao2XLLLXnooYd49dVXueuuu5g1axbbb789jY2Nne5z9dVXU1xcnHsNHTp0FeZY01aRk7eBEiBC0Ijxwv16NTvL4yZOwU3tDqoKcJCvvANutluT40JukmkP3E8AkJEHkNG/4BYNQtkSjGqckm/wh96MwSiE80NLb6Ys5YPd6GOkvWXmR/lfAgvJ1TWpmahuDDQnLIWyCEqHACVCiIpOAsvGB4gvraSJv2YPDpbrUJyKI4GIm861Y4Gga7lM10P1oeAsO08+Hl9wPt9wIGl1JL54C8+YT8p8iyUMw+tqQ9/M1/nnB1gJiZSVy91VqTp853mU93nXjgX4/k+4mevwvA+6vE9XKOWQaQwja4di1K2LXy1x0++ueILWRlA5FQY0QKkeeG91tcYENZMmTeKggw5iww03ZOLEibz88svU1dXx5JNPdrrPBRdcQH19fe41b968VZhjTVtFDLJ1Fa1eDdOh4S1I/dCrWWvL934A9568VrxyZptapUYIbk0SrN0BECKMDF1E0Lq3ubWvifK/hdT7wdvmXlAKlAdGBswkhJsUorhV+iEg0i/421uCaHgFsw6MRhBusIEQ3fgB5H2HMIJ0RdhAFB8Gsn21hOO8STVnU1/qtio0UBjKRyqV7WUES6Ml+BI8GZxu0I1dgbPsz7Kaz1jKf+nHUtrNZiCgyT+ra+cT2qndIkFF++3aUP4ivKZx+Mn98eKb46evX+4+nvs8TmotPPdPuOkdcDIXQ+p1qBoFiyqh/twVKmFx/f/SmCzByLSMAi0UiPgu3U5LW7OssRWCJSUlrL322vz000+dbhMKhQiF9ORhWh+XoSUqaG7ZOXNn8OYHK4bdBRUn91r28jifAsEDRmUbJ/gbgPiuVWCz7W4QKgVjQ4iel7e7NPbC9/5B8Ph3kcYEkC+AVxWMixYnCPJES5ynyDZ9qMy+MbML/CZYsAXCnZ2LC40E+APvQIh+XT+n0P6QmJpN2AV7r/z1ysEnwWLzZPyCMBI/f+BipXJ5dYQknHSoCxVRXt2E6frBCYkYhLZcZjZUtnzH7/S3ahfvhaEt8MPbItMfBddRgFGy/CpN5TwajLSb5af/ggydu8x9XOePee9993qov5qg1AxI3IDCQ6UeBxaiFMhUKWLw/8DquDrMd99BJXbFMjtogvXrmerwV2uNDWqampqYMWMGRx55ZG9nRdN61y2vwDmTgl4/AjiiELyF2ZUK5v959Qlq/ALwsg+b7PPF2wPw18H83yDYeAIc8CeQHT+YTftuPHcMyp+BNA4Igpri02BpthQiW4Mk7GzQBIAB1nogswPchQ4GczNIvAru7FzazZsb6QY6GmXNJYlPGpuS/BXRv+CLFK56CCUkplyAUfcMNL0K7lR8/z80lBbhl9qAwEcGgQ3gIXF9ifCDUiI76RMmHvSwsQBDgBwG5S+CMXCZl7Yfm1HKxiwhTqFqwBStHuBKUiD/usz9W5P9PgDnP+DORIR/07VBB0WUloozkX2/3CO1f6+8XBIAxG/Gt8jFZF64Fjl3IHJ0xwGKn74BUDimgSk9zFYzPigR60KetDXZGhPUnHPOOeyzzz4MHz6cBQsWcMkll2AYBoceemhvZ03Tetc2e8AbC+GHR8CIQGUCFvypZb2wei9vrSh/JlgxZH0IZaZREvBBeRGMQz8lr44o/VUQdFjrQMEBucVChDGti/ITLjwKaq4GP1tKkC2pEaIQRAEitH3QBkL9DLhgbACNV6HqLg7SbJtRc3i7vP/Mq3xPUGowkN3YkAsQ2QeywsfhQRD1gI/rnIlYAjIdFJpVjywkEzMx8FEKfAx8TDLCAGxK1PqY6SmQqc1eKPAy4MYAqVBiEIZVyfI+RYnF5txIAz+gRANS/Q/lvYshRxKTFyKxl5NCK0KAvW3w6uou1jHgPA7e+0AIGV5+uxPTugM3swfNwZCxNBlUP5pAQXa6Ch/ysi7BLQLbT4DsIHAS2QlPEWRCQVldUDIYxSqa1uXz0dZMQvXmCE/dcMghh/D+++9TXV1NRUUF2223HVdeeSWjR4/uchpdnbpc09ZoXgP8sBMkvwoCmpGPQemBvZsl5y5c53RAYdT1w0guDeZVSgPmaFinVTVy8i1YtFvLe1EE5ddAwSm0byzSfIB6qLsJ4jcBTWBKCG8GyUZIL4LwJtD/GTBKgrYpi8biGpKkbRFrSiOUAGxE0RlQdn3ecbzMl7xpnYNqVfKxKVdRydYAKLWUTDK/zYlZBUYTJAstaoa3vtcowKac57BYB0EISRQy36EWbxAENE3gDScXbSlgRngUA+SllNO9kmmXOqq4jRTfEmIk5RxHmHW6lUZ3KKVAzQNRhhAFXdrH9xej/A8Rs05Hphe3rLBBRcAXoJrHR8xek7RnECtxsv3hM1B3NWSmQGQiXmxz3MRmSBRp28Q1DGz5e6Ky87GGtNVfV5/fa0xQ0xN0UKP9aigvaCRs9QezvHezohSZZAGQCBZ4YC8chMgsABGGYc9C4aSWHeZvA5mP89LwfaD/uYjYXxCiTd1Q/BGoPQWUg4odjuJLpDclryYkyMhQqJgJmS9QVVuxYFAZSopW8UsRg5iGaF0skHoHd+kevDlkm+wW9QxiARYWBexDETeDsnHS26H8T4KD+R72vOA8k4U2tcNbjVisFAifAczCaFONlawfTLhuAa4Bfln+KS62ymm0ylmXb5BdbRsDzOQQkrTuiWQyiqeJsH6X0+gRSnUekDb7XxT8VnNzSSACbmG21KuA3EjQDaEwZdEZYAyC6rOh4TZyrcT73U+qoJhGdSYeGQrkBRTwh5V1Ztoq0tXn9xrT+0nTtG4QBkTW6/WApkWrB5oB/ogLYa0fYOyi/IAGwF/Sbm+nAhx5PU5qS5RqalnhVUPNMaDiQAYRfxDhTGk5ZOvnqJiH7/wX7PEkIgUoI39YWEUDGabkHzh+P6ZyGdo0n2JVxzreNIq8egzVQBNP0MjpCCGwQq9gWJdjmH/ESpwYjHwMhBIZhN/SqEMKDx+TlGrfkylVWIhTRK6NbGueMGiZt6FrFH6bgAbAo56Xu5zGLxb/N8wogBkmzJ+UjU47UdCmgbWRPdvQpnhRglK9FLi2oKgpA062dC/5Ji3XxoDUu4TFb+knf6a/rNIBza+MDmo0TVuphBCY9s00326E2ARlHUJT6AMajcdJuU+hqs+GqslBqUvRmblndzDuC0E7GUCpb/C951oS92toGwWkQ5LOHp1e3ba4tRUQ2z4/PlAK03dQ3hf5O8gKQLBu3XTW8/6HiYeBT8RPIZQizdvZcyrCtP6MaV9LunIii8cWUr12BGcoFMcbQPlYKoNSgriKEVpyCqhU3qEi8jwShWH8EOC0LM9gkjAKqOB0ZLfmie7oKigsVtEgesqFhQdkA04fkq9CzXmdbz/0SSg5HswisAugYAJi8E8Y0b8jjIKg8XYI7LjA9EuDkZ4BQluR+4Lggb05ACL7P+3XZY1pKKxpWs/40T+WooUvUtrYQDIcITb4Eyxr3ZV6TMM8ESn3QFFFSiRoYhi24yCUjxtXhJq8IOZJPwXWVlB4BtTeHgzPUkl+iYvKPsCcGlj8Ab4YiVSzgt7sBmRiBr4jiMQ9HENiecHDXTkgIoCsI5R5hZgoIx4KSmuk8og6cTxOxyGMlS6BzKcQ2gEyn6L8j9vVnkg8LDZsd64J7kWZEhwwfDDxiCXTLAkFdUoDm5ZgpudA6l2I7JHbL8xxGOb6eAN+xGI7cBfiI5CGzyhRQoT1unvVkRTi0zJAaYTNKGMlda5Q6aA3mTE0aMCrkgTjDbSS+rijPQNCwJC/AX/LXwwYBdNRzr8RiXcQoSIoPBtkSbBB+S0gQpD5CiKToKjzOaoULnO5lRreJcpajOIiLEq7fara6ksHNZr2K7KEVwktfY3+tdUIwG5yaJy/GVbhYCh+Dsxx7XdSCuJPgzMDovtAKH8bRZo6fk+a5xDYFHARMU4MVma+hcTfQfZDFPwOIYfSRCnhTBqpgmDDMBWidZmx8wn0exRiByO+Pw2j/lvccQQ9mhaBHLATUAsfbwKpubgDwRseBDpOJJie2zMFngUNMRvXtIk0pinKpFt+0AOFmRpqzMEU+bWEVSooR1Lgpv6AVVPbsmH0RGTxPxDeekGPrex2Ebag0Gjfw0dSARgYSuVKgwrcBAVuAhQY8eYN2zektdgCiy2CN+YIDFhur6fOCARDuZV5nIVPIyUcyCCuzPXacliMy89YzmyE9znC2AZp7bNiB3NnQ9UO4AWNhKl8E+xNwByR122e6KROEljOucgBiNDxEDq+/UpZAP3u6FI6i3iShTwMQJoFzPQXMTrxFeAhQ9cgrf2Xn4jzP/AWg70VyEg3zkJbFXRQo2m/Iku9WynL5M8vZGVc8GdC43FQ+mn7nar/DHXXABKqL4Gh/4XQRrnVDfyJNI8BoEjSyLlI+hFy10JUbR4UkQAi9RZUvoFQLlL5Le1329YQKMCdCfV7QoGL8T7IqaBCApEuRxxZCYv+Cam5IMHsD64Jri1bGqMqBTKYdsDBRxrNcxi0OnEEpfJ0MuoahA++FMFAc6m6XFZ8wFX34aUfxvIcfMMIgsGEj1F8CRjtR9ot5Ao8/1tQPwTZyc15AMSzM43HTu5Wd+kVVcD2jOULFE5el+55nECSVwEBpmJwagmhzDWgHkDax3b/QA1Xgbcg+FvVQd15UPkGDP0SFv42CIgLDwxmRu9FSWYQRLbBgEYJ9RX4QTdvPzkZYcxCyCGdJ9BwI9SfE/xtrgv9PwZZ3Pn22iqn29Ro2q+FV8WI6o+oLSxC0NLiIhO1AA/8+dmg5BbqOJ9McyPThubSCD/Yril/csU0b7Y7VIJ/0JTaF6HSCHwEPqTfDEb+9RW+kLkYQ1kCz2jVdsYC6k8IjlWiYGMQpkSGtkDs+WowBYGVbQA9AqSASNzDSvsYjg9KYaXd7PkpLN/FtHaEwrMRqRjBbS+KDN9FqTwfw/gDrmGStiOk7QjxWBi/uetwscApEPhGGs8WSDxCTQrDH9ThpJVKefjOMxQmphJLp1EYQVoKZOgGzAF1MKgKyu5efm+gHiIQeQFNhrkkeS07Xo7EFyYLYuVB9Z3TtYkz28lrH6Ra3hulMORtGDkH+t2YG0Omt5SwHUFAE7RCLnHraYl2XfBndb6z8qH+wtxb35uKV7Ujak4J/LwJpPQEl6sDXVKjab8W6VeJeA2U+4JpQ4dTHI9jGC4Voi5YHz6FGk4mpV4BIM4DVPIaljkEMnXkhus18+dFMhiJz895ywQx0mZ17r0CkAMQXi2OMjFltvRG+cEUAcpGyEyrqanntCQ2zIBRG0HFJy3L+k2CISdD9J7s8SCc8FBAsngkUs7GEyrbVHRDQubLiGIDo/jmXBJN/nU0qf74wkGYNi4GGWywQJWZlFU34ofyAw8lFSo6KThum+ojpTzi/s748lOICPAtwkkH3whjRn5AymEtGztTg6oae6uujdbbg9L8kJ1KodXcGlKihImUo1Ys0cLfQ/LZbKNgE4paBkhUaiGecxegMKzTgnmk4s+DqofY0R3Ok7WylLEza3MTdXxIhGH0y1xKrk5S9Adj42XsLYLpNVQaz4RUVOKFvwclsBd8g/3pRsiKo2C9v6/8E9E6pYMaTfu1MAYBUJGqpx8NIAsQZR+A8wYYa6PsvUmpAcHETADKJ5U4Cav/w7DooKBtRGwyqvAIHP8uFHVY4hBKxAMsYTOgHhRYfhmRzNs4Ikl9cYRYUxpfSqyy58AaTSgRIR4xiHhJlBCYGYUsux3qTiSvx461DThfgDESSv6Rfy5CwHp3Q+0ClPsivknQ3kWYWN46KDkXiQeewkjPRqR2xQ8fhrBPxBc/Uedvj5JxTMiO8ksQ0ASJk4hGiNWmwHezXcNbRsITsStRYhDKew+lliKNCQhRhMfH+LSqvpMCx5QYKoWiGsgGNU33BuPqoMAYAv0/A2MV9UgCImyOxG8V2Aik75CwN0La4wgzizruw6eJYo4iwmbLTdNNPwUxCVQiI/cgwxMBUCpJJrV1MJqzUvipmzDjiZbe9o0nQL+fwR688k64jTJ2poydg3mtYrvjZ24DfKR9ejAKdWeEgJLboPYEMjGBFxbBMinIDDeRcRer6h+oYf0QsYsQQjdA7g168D1N+7VQChovgviNQTuAkochtHveJov99XDF4txDvGxJA5HymrxSibi3Hx6vElTjFFAgv0KIAfjMRzlP4TlBmwOFICNNGsNllHAjMQ4PlnuLqXZ2xZULCDseheo4jNhN0HQ5NF0SHMTcEMo/6rAxbR6/Br/xN/jiw+wCAUTxzCQoHztJrk2LLyFZOATXiOPKTO4cFeAhyJDf6LN0ST2WlcbL9pBCWYSthzDMQ3Eyf8B3s6U+YhR2+As8ppHwd8xLw8h4IAqJhua2PDDnV4C/NLuFhOIroGjVtjWp5QmqCCabNHCxCRPMBgoeFl4Q7gEGw3kbixGdpuU2Tgb/qZbZQwFZMA1prIPv/RcnHUzEKTyQGTAzbVMYCAMX9ODZrWTeYhLOOKxM0NjeNQQZ2yA018ee4+NtKsDcGCP2OULoFh49RQ++p2laPiGg6EoYmIL+i9sFNABlmfMoXJxkwDc1DPy6mnC9le0HHVCqEY9XaA4FoB5XvYnAwGAYSk1HZCSiHkRSEVIDGcj0XEADIIz+9At/xwC7hpJYPUbBzUHeCv8P+k2Bsreh33/bBzTVd8OPBTDDhoX7BeOgyDIIH0TrqhRFkkZ7CI2hGPECk8ZSi6Yik3ihhS8XI1VTsF3rBrwKjGyDZpRCeh5mNIOwwVQKw1cgR2GYh6JUCt+9JberK2eTcHcBvxLJxi35VSDlrkTs99uUANit8tv8ftWq4X8kiVKq6iggQXNAAyBxCKY89wGHFF8tOzH/mZbTyRbBqEy2WlAOI2gkFWwgOvwJ3dTRwtWWL8K5gAbA9BRKCWStQpUCUoH/Fag1KFDrQ3T1k6ZpOdbiz7CWthqqvj4FzmKwB2UXRIESoIHmqiIpWiaAFOm1aXLC1PQvQQlBYaKASjopbcm8D/48sCeArMxmoP24L0Awj9XSU4PDK8D5F/wchoKzEEVnQ/oyoAaAlGXjmg2YvsKzZFCAYJDXMNf0XFxpZecOAlP4GMLBw0con2gmgWjzBLZUc68YEwihSOFYJkoI4DsSbEJMzMDjDXy1ENuYjDQ76ElTegdUHwxkgvMtOLHjc16JaniXCuranWMzw1fE0gk8KbHttTqY9bM1M5h/qfU2cgwAQgzAtJ/Edc6hyYxT5C0Kxgtq3k4BBb//5Se0CgnhtbscCoP4aJMCkSQoKygE0a8XcqfpkhpN01rUPNxmgQ9OSyNgIQyi8mkEw4ESQuJSTLFTbr3jvkZ1RRDQIASNsQYSHfSOIn451O8IjUdAzTjwfm6/TZZSHl7y97gV4EWa285A0BPrJkT6vxgF3yDDt+NFLiYetgkqv1o9sIUIqt+yLzPjUz4nTtmcJmK16WATgoHyDAGGamnbo7LrDPPYbFImpn0/ComS2W7kQgApMs4ukPkrFmNJi2+o53JSvJF/QtH9YPAiGDAV+n++yhsKA1iUo5TAxcDFQCiP5rqjkD+KYbW1VDTVMrChmlDjtXjqG9zk5fj1ZwSDBrYiw7e1vFEAGyLtk3KLDHM/QpGfqIkcz4zYCJYUFhM3beJGFAqvg6LLVvr59iQhysBsGc/GkxLXMvCKRdD+S66PEX2p/Rxl2iqh29Romtbiu3GQ/l/Le7MfbDC380HGlAL3Czz/OzzxA0nvSZZE8htNVHAtxRyWv998GzLZ6h4bKLkGYn/q8BB+5g781BnZ4wEumInmtQJKbgx63wAei1jCpigSSN8nrNII30d6YKY8lClQUuD6EuVYhJIZlAXxinBL+iiKmuK54ElhYFp3YFon5+Ur5d1GRv0xrwTIyrhIpUiaEeJ2hOYxUYq4iELO7vgatuL67+KoxzHENtjyqOVuv6KSahoLvIlEZSO+lCilEEAp/yKangGNx+RtnzYglG61IHw4lD6Se+t7i1H+/0BuimF0PG7LQh5jDtdn30kq2JfRXNKj57Uq+CpNbWZzLKbhC4lrBRUe4aRPQXgWyP69nMO+Sbep0TSt+0Y9CtZwgpHrNoB1v152QNN4JF7j5qTUcTjqOkw5mwKvIbdeKIMEX7OUW/Gb223EP2gJaAAy4Dfd30HyHsp9D+W+Tq6mXJB311LYqNBWKOUCYDCAcl7CYhscEUK4HpE6l4IlLuFGRaTWx3dM6gpKaSiOkOoncQt9pNc8f5RBNJlCKpAeCBdE6C/tAhqAkDwdUxxIELiYGI6bHSVZkTaaa/aDEpAG/kI1ey7z0se9s2hQe5AUfyehTiKRKEBVrQ11x4HfM+1OPKpo9P+ASG7BkMxcSlO12G4GkS1tskQ5iNYDCgoUAjvdJqHUo9D8OQPS6I9h7dxpQAMwgEMYwqkUsCGV/JYR2YbKy5X6F9SfBom2pYirnlIuDe5EQnyPVC6RuEPZ4jilVXFijUlU7XY99llpK0aX1Gjar4j3zps4554FmTTy0gtgHwspN8A0NsnfUKnlDw7nToXa9UiFgykJEEGFj/IFRkYiFCyJVpCww4AiylYM4zFYOBFSr+NL8MIS4SqEp3CH3EtInpg9vI+X/A24L7U6YFDqIVww0s1j34AXBuRQjNjbiGxbDgBPLSadGE60Jv+JXF1aSDwWJuY2EfLTwUCEChCl2PJ4ZPK6Vh15opiFTcFDfxmUypBJrR10XQYa7ULShpGtJguqwiQ+pbxCiK3b7Z9R79Kg9gLZErEZnkNpVTo4ychJUHLXsj+P5fD9adRyAKY7k5Cbzp2jJwzqwiWAwcD4nUgKQb0AqbtQooBUtJRw/Zz2zWoqZoI58hflabmabofG37WMjxfaGfq9vXKP2QmlFAlnT1CvBwt8RaRO5ZcMmNnqysJ/QviQXshl36VLajRNy6Pq68lM/g3qh6l4G87AmXQCjncMaXczEqmtQLVpg7JcQWlEXltTpYjFPSIZh7DjMKR+AaaXBnwS/AefFFjr45nQNNAi2c8kMcAiUyBJq7Pw1ZIgHf+rNgENJMwYSu6O9IJDC5MgaHABbz5+6s952xuiP7Y4v12uZXaCS0O1zO7tmhbpUJpG607i0YHZdjQWRuTB5QY0AELY2KEPkObJSONoSuSLICyan8Yi26jaZyk+ieyozReSYQoAKXV9XkADQbCRvRjgTlluHjqi1FKSqd+QSkic1LoUpKZiuWmMRjAXgrkU8BWhhGLgzKXIRQfCoolQ9xluyd9IFLj4xnwcKxgB2jXANQWeaYExbHmH/+UaL8jOVUFQ6JV4B1LvrfzjdkCxoCWgAZDZYL4jjUcHIxC33l9l+BWVIfQaHdRo2q+EWrQQUZLAvkFhnwJmQ9DLRXg+Pp/hVm0OysdPX4XbUIbbOBrlLuMBYoyB8O+wMyoINADhBz1amwdXk0DIdQCJyUAEISi/Gidm5e4+CkgUh0gJSZp3Ubi4zG53uJpQjCXRQoQcHSzwgUT2PGp9SM1oOVcc6vk3TaHBtH2MRFyJ6bukZSgorVAqeEhnuWYjfsHDGIWLkdbkDk/d9V8nmZlAKrM/Gf9t4jxGRs7Hsu/Asu/GjD9DWYONoTwM/Oz1KCHEztRwLA1cSZy/sYRJOExHtOpBlru8jt8yXVVo2VVXnUk5R4H/QnMqQboZsJaATILRAMYSKF9Yk5tgFID0f/HrT0D4CcDHiSp8KTA8MFyFdB3cuvYlTj2q4U9AUzB7gRGUyPkm+HUdt71a2QSFKIy875NQtPt+BSGwQ3PvwKCh+/F4jWG8hmJSiytJLSomkb4a1W5v7ZfS1U+a9iuhUvXw7xKUBHdDUAOzywFPgOmAoWwQmZYVIoJRUIuQoc4T9magVC0J/2bw/0mkSbUqvTGZU7YJGIMYwNWEWReAlHcJGXU1SghS0kY1l0ooEKI/Si0ilkoRcYK81FsF1EZKCbMZQ9Q/IPMuaulJkFnYUlVk9EcMW4RCMZcTaeJdAMriIQbUzEbgQPhAMgUpfPUCCcPAVD4Sn1Qoklc6VcQL2Ozc4en6agbJzHqAhyskTVYBhvCzVUzDKE/si4hfjUDhCpN40bpI+1Ci6mR89zGqrEtbfShQLK4hyhHUqpEokW2PoRShpEMksxmmdRhET4UVGMitzinDdutzvbkUINNgzW/pVu2ZYLQd3COUyx7pAoGLRSyVaT2xAq4tsMq8lTOHlbcYqoJRln0f/EJy0YNIgdF/OY+t+BJILIXytUH23HxTjd5BCPdZAKplGcWNDkXpOAI3+HiaP6LQcVAUtBPznSfxkweDH8zQLmRwLsqHxtKJFMVe7bH89WVdfX7rcWo0bQ2ivHrchnURNYsQXgly8EeI2Lpd2lckfwIJqrgloAGyk1vK4Je4nyEjDHzDIOxmgCTUnRVMwNhpwqWI1EOEcUiZglQUrHQQ2CyIDGaw8SIWLT1ClFL43jcgFErIloAmmxlFMKJxPBIhEQqRIIYnTcCglDNBFEBob4S3pM3FyaDI4FKdC2gAamJpCmIvUMiuAJj+XJr897BUA0pKfCSW5+AYwbg1FhOx2KHT0/X9KQT1IeBIGxMXmX3iCmazOHwnfqSUWDJFcTxBcZNAlZ6Pkz4I338GaZTgi+au4GB4FtIIUybmkuE9FB5S9MeI9seIDuw0H13hmB4SE8PJ5LqmyzgIG3CCGkcnbIDykZ5qGdOHlqAn1KTwCgW+BOm3WrcKfg4rAaq5Fq95pgoLlF+NkOX5G1e/AlMPxvXj1G8Ywi02sWZ4lA6YgSjsmWkoMkYCJzsoZEg4+GW7I3kyiFBSD4DzNtgTIdSq51pzlarTKi4Vwd/Rutcg1iNZ07J09ZOmrUG8+v6YCxZiLlUYtbXw/XqQmtm1nQuCRrRtqvoByDg2ph/UIdnKo8GOErciwY04/gCott1fspSCut0gcTVG4lmsVBAcZcICfBhSN5e482DeLr76GKVeQPo+0nXy2/K04QuJl/2lPYD7iKntYekZMKcUjPxf4I3lSaoZgMO/yE1SmGVQlvvbE18AjcEYM1lCQCSZpDA1kSKeRGCQYQYpvkWRf8Gk3AwIkw0BkNm/mkuMhPCDoCwaIW1bENoX1GyU/wwCKEo3Yvou0veIZuLYqiTIAxYhdiPMRGw2xqBrAY1SSdzE8bjxnfGcd9usNciYFkk7hCNMzGowktlgwYZkqUX90Bg1Q2Ikim3SJZBp1YGpObBpiEWDEj1T4Jng2AJT7L1SSmkSfMePxqH8UDma+nAsF2QFJ5t9iWj+TsqH73+D8htp3MgmXlJI2grTtFYBtQvW67G82WwRRCMi+MRtNg9WCAmRE6DoMQgfnXddhLk/iH7tL9VKKODSdFCjaWsOlUG6aUSrHqNCgbPo8q7tbxXDWucgG0C0GutOpqE8nkK26mVt+j4JM4yRAHBw6obgOle2a+io1BzqotNYXB6lpjiE4XiEGoJeIYYDylTEElfjJQ5F+YvxqMdRP7UMaAdYbjoYEw9IKbvlGEphOR4giDKBGLtA04PQeAf4deA4YMdwY+XUDomSKTABh4T6E6Ma16ckkQIl6KdOxVJzSftX46nPEEQ7fBibnsJqehGRvINqrmUuO/Eze7KAo1DZkhkAKYYRtt5Eym2JJNPgtxRaCEC1qibyIodD9FIQMZqfYqbyKEk3UJaqI+r6CLlL1z6/3DVP4iVPwW0ah5s4FbexBOU+gPLexU/ujJv+F456nqR/EqbaEIXANS0cL4SRbhkrUAiIV4RQhsCzDOLlNm6hxI2IYIwegvPKRAWeJVnUr5yagiLS4V2wIs8iyl/oVr6XJcV0qriNGh5nDofjMBfXgPnF/UmEbZRHcJ19UNb+COVD4mlIvpJdmAEcBJAsCLf03lOK1FBo4sPl5KBrCriAGGdjsTUxziHG8kdDFnIQRuwbRPSKvPhd+ZApOKzzHbUVotvUaNqaQincpRJjdtAgt1ly2OlEBt7e9XScBn7+aW36UY1d6ubav3iGxIkGD4IlsTKEUgxYXIvl+Tgx8MNg2s9itBpNtVFdTpwbs09zhZVxKGzMYDkevp2tOgBA4Bpr8XMsmGEy5HqUeotzpRszrRGkRRgQmMphreQsLN9DKnALPyAstkRgQM2fof46gq4wgCwjM/wxGjgw7xRLF6cwfBcV+wOZgoGk1YU0/4aLiFdw1EO46rFs1gRm2iOS8BAKPCGZ1W9QXnoDeZgYO7W7lF71BuB8R7wohGdKLNfFNUzidhQpyqjkA4xs1Zvr3Jyd7NMHYgixAWboMaTsXrdoL3UOKnMz4KMQLSMn+8H3whOCVJFFEDL6uIymyajCdB0GzKlvmYTdDMHwBaTFByS4E7yfCLuzsysV0gHpKhaVVGAIFwuXQq4hymndyu/ypPmJGfwG1apxbWshRzIiGUURh9BVWNZesHgLcL8PNogeBuWPwkdlKK+WJZsXkgqHc0GNbPCoLy5lGPdSSPcCyB6XnoNbvT2KOkTsMsziNWuKiN6ku3RrWl8jBH70UryK4Je0AuLRCNaAq7qXjlWEve7e1A0pRqhWDUaFYEm0hEUFlSgZTAGwaEAZngTfBhdJnbycWo7Eoyq7zzxytxEhcK0iGoojeBI8u3WzC4X0ptO8JG0aOGIYKEUam7SM5or1XWmTFiGk8hGUEGbrIKABiB1ASxkPEDsci+0xGJs7kp3ykH5QsiKS/8BRD2XX+IDA5QmixkMUGHMpkD9S4L9KpMlDeeB7oFoKZZbLMDZDKihsTFOYTBJyHGLpJP2So6jkvVxAA2Bav8eO1GJHqglFm7AjH3c7oAFQ3le0PPyz/Wc8MJxgwEDbVVip5j7QCguXgbyHYUSoHhIjWWSRLLJI95+IFGVE+A3lvEapmAIU5Eo5XEMwo3g4vpD4WKSIEOcHFF4nOVsxDbzRaUCDUgxrmIWZ/hYr/ROWNxPSb7YENACJx8BbBJt8hohtSOlUA8N1g8EfMz4NRcWAQQOvt09/VQsNxxw0F2tQgw5oVhId1GjaGsSOXYI/YhGzN/kTczf7P8wNZmCKTn61KA9PLaSaS1nABTjMy63qx61EYifiWkGjR18IlCkYWl3NkJoqbNcNBtOTklSpgSsNGiMF4P2I1fQUTclR+KqBML/JFhsFQUZUno+y1qO6ogAlWtqZKCAj8/sl+PZZREMLWWIf3CbfCtt3EBQho//MHycmtBkM+hhVfA6Zyj+RKi4k415AoX8lBdxPYeooCmuT2UDNAGMEgmG5/KE8RNPfUYsKEfFHkXIE0twe1womthQqmPeppKmlji/CjkTZruNrXHgdSobxjeb2NNmQy/0xr01M2r2ceLoficwYXO/ZjtPqImlOyv5lBI282zbgBax0doFSSFWITxVKJPFCJg2VURoqoxjhc/BpoIYLqeJIkvI1ItYszPpiVFpSFeqPLV0kPmS7pSd5nHkMx2s1q/cvZTGYloBGYjGUAnbEYjCDEmVYvmpZn7wH2n3fDRARiI6G8VOwNq1lsFUD4gAaQuXZ6kAfmxFdyo9PnIVMZC7DmM/2+DjL30lbbejqJ03ri+JXoRKXMq1sMN/LcSghiZBmVx4kQkvViqtmsVRtSzhZR3EimQtCMqbJ4tJSUAYD3FOpk7di+CnK6oKHmQCc8O5Yha+R5l0yvI/JBoTZD/DJqI8hfQa4U7LVHRHmx4qzvZiCFIbzMRaDqeJJ5tDSLqiMPRmlLgVCIAS1vEA9r+ACUTaiP/vTyCQ8fgqqvFwX0/cIWx9giM2CIfVTj4MxCkqfwDdsEv6h+OobjLRDpMHN/Zrzi86B8Ek4ybUJNYJrCJIxi7Sw8aytiFq/o4C9Ecv4/eclDka5T9FSLiXB2BozFrTjSDtX4foX5+0Ttj7HkG1Gce4ipXyUcw/K+xhhbIvHBGTTBkg3kZu30xeQKDIRQmG4RbhGU3YuqubJN00q+YGlnEmKt2gOGir4J3LxuTT2/5EGCvGRhEni53WUVUSYTAXdqPJc1vngs4grqeMpTAYwhFuIkG3cm7ga4hdl82eAuS2UvAu1p0H8bsAMZj0vOKldug5LmM85pJhGIbswkEuRLGNogqyf2RSP+bn3PoIybqKYw1Ckg7GWtFWuq89vHdRoWl/hVgUNJkU11G5M2jR4vXRnUgRtVUAxhi3YhPwHrMM03KYjCSc/z/3Sd6VkYfkoyrmFKHuxiP4UNNURS7Yaq0SUIPrVdpodpRJ47t00yHfxZDFSjKYxO2N1BVcQy44Do1DU8BpNfEUBG1PGHojsUX7m/6jhiex24GJSwWCifEIuiFCKSCaDZVyAZf4fPikkNg7fIijGIhisL5naikjtp3l59EKgQjvi+e8hkuBbJkIpkjGLOrsIV8QYyouEGLeM86zFS5wO/lugPDC2wojcjZBD8PxPSTnbtuQ1K2T+A9M4vNM0m6V4nDSPIxlDjD8jW/XiyuM3QM0O4E8BD/wMOGWAIfGEwrUtXGHgCBPBEIrEDYTZk3mMQdGYTcSgiDMIuT5x41o8IamjmEIacbFbnzE2OzCAp5eb/19MJaHhMMi8BMbaUPQcmGtnz7kWsEEGfaKVUgh/JmReBq8UZjwATZ9D8U4w9hEwu3bPn5OtMmz+ngvPozRTi6l8fCFImJWUWl9gMLhnz1VbJj1Ojab9SqiaOxBV14KbrV4q2gPCkFF2trNxiwV8Qn/eYlB2zBYAi7FYoXtRya1QBEGLGbmCoVyQ2ybMAXjGQy3HBITR0o6lI0JEqbdmE+ez7JLXqeTvRNkjfzsE5exBeXa5Rw0un2Exnlqey9tW4pFgJrkOvbnfZB4pUcdCNQghgrmcDOEhAYMRVPIGUm6OZ/4X6bZq6WMA3nsY5rlIdT0iFTSosdMeboVBnRmmiX8vM6gRohQz9liH6zz/37RUwjUzkHLbTtNrluBmEvxf9t1bpHmYMqYj6eCGLoug39eQ+RmVeAq3+F8oPkbh4VpB1ZupPEzlEeUeTGN7AEKMJ8UHBO1vPGzGY5tjiHMrBhnKqMVncHZ6B4OgC7tHUdvGwn4DNP0e3C8gtDdELwOR361+hYgIFD/X8TpZCoCbvoMmdS5xGUEhKEzHKZ6dgobsda95GeZcBqNv7OJBTUS2t5sCSjPB4IV1VjFJI4LlOyz2t2SQ/HnZyWi9Qrep0bQ1lMMcGmtjiAVnoNyW9jI0vAr+MKJempCfzj1PJR6CJN9wJQkW5CdmbYIo/RoRuxmK/g2R/DmTirkTwmeSDJfhCxvMzSB8JtROhJpNoemCbLfafEnehWybDDBJ89EyzynNG9QygkYOpIpRCFK0Dgh8BE0UI3NBhsB2C7GMi6iVT+R+XksRlOoAeMymnuuwratxio/GiZThW+BFyFbFxDC8cqTfMr2DAKxM0I/Y7OAXuU+Gar6mkVnLPB/lDyPXHkQBhAmbbyLFiGXuB5Ci7czlCeL8Zdk72UMQJb/Hi55FXTRCyjZbuq8rFTSeZYPc5uXcRYxDCLEtZdxIlIkYjKaED4hwHgXcQgVfUcIfCVNBmJGU8zzRtr2Imn4H6b+DNwUSV0HytuWeX09Q8fNx3N/RaBXgWQa+JakvLiSdDcACPqRndznNfjyNl+1TphBYyiVuFtBkFuBJk5QRJt2qi79SCi/1f7iN/XCb1kd5X/bkKWrdpEtqNG0NpHCpUxtR1JhuPdgqvgjmXiJ2G4a5mC2cBJ/Y7+NRj4GX3U6xmNuI8yoGRQzlGgrYGsx1gxeglEfGvxZHvYYhNiUsrqZYXAuF10Ih0HQT1B8W/CwSQPLr4I+C/J5YITYmyZsEJQEuVqsHap7Mm9B4HJaaTzhqUh0tASBKnCZi2SkhRba0IIPJlUQZhBSVSCs7Wqy6O28Y/9alVA7TQcQI2w+CDX76GlT6ahBFyMj9iMRH7QbIjVsxJCOIMjFvuUuSTzmDRoJBD9fiOEZzZLtT8ryluP7JeYOs2fIRDKPz0YpbkwzDZ06bpQ1d2ream3AI02AUEHGTFMsmgsHijscwSnLbGZRRzk3t9jdZB5OWCUILuICCViV37bifk+tmjwT3qy7l8xdxpuAnrsWLGSgjv0TSDRuEGjyaZ3anouszZsfYmqF8yzz2xmMBKRkMXJgjBH6r8gDlvojKZNuEqVq8xP6YhW0/N21V0SU1mrYGSvICCA831OrmCsH7yDZQMAk3ciwydCyDxGaYuYAGQrg08iw+CRwWM5vT8waXA8ioW0mqy/D4hIy6kwZ/UstKpaDxwjYjoipw/xP86VdB/AqIX06ZfxFRDsBiI0q4mBgHtT8ZlYb6/cH/Gal8lGvgZnv2mHgUECeDiavM7I9vRT3H4LIYScvw927rUYRV/p/1fMICTsuNDixD52MW1WMWzkOau0Pk4FwDUCWgIRyh1iohSRUL27RBWswHuYAG4CcewsdB4QezkDdfQ/f0/GskwHWvx2MJSV4gwzftr0UrhdyNoDhvWaiD4KmtGk7E5FvCpCikiYwZwvHWJuY+Qzg1LGhErVLLTadb7D0gN4WpB/ZuPZe23wTpL8Cry1/uzUR4YLkeZkN2ZGpfIdM+YbMA1rkBhl0AG7wBFR1875bBpIIRfMxwPg7GHyKTG/cGpTBFq38v/kxa/awA9TNK9Wy3d63rul1Sk0wm+eKLLygrK2O99fKHn06lUjz55JMcddRRneytaVrPSKEQJCpsDEdhxT2ciMQt2g27+EXmiSoe4BGSpOhHEWOJYJIEYAg7k+TJbDoKnzj1HE4xjyKyt4RGHiMhgwdqSKWx1CekeJcwOwFJIEWuiKj5/62dgodl7dbgzwZAJu+lpPg6pPknpBja8amoBqClC7UvJEK1DKBj4lFEI03EEEAxDUjl0STuIcwEPP99Mu4FlKsUNZaNEhIPSbHakbh4GxcTH4NGXiHJl0TZrH0erPVwKl7BTz9Nk1zEovC3BNVGHgm+ZSFP08AXFDAOWo09E5DE+YCFnIlPE0X8lgHqL/jq/fZD4QuLxWyNog6AIv8PmO5HQD2W8QdM44DcpgbDKGMeGZ7BZRo2E7DYsuNrmOW6/8DjnyjDbB7JnygJUn4aL7NPMO8TgDkG+n0VzKPVE2LXgKwE9xuwd4fQET2TbmYaLNwe/KUgCmHAGxDOXgN7e6Qqw4zXMNCthTpIuhZmZjLGOg//4ikcBBKLIZSbCX72+hFVTbhYGMLDoLJlO3MvSP8ZyAA+wvwtoifaE2krpFu9n3788Ud233135s6dixCC7bbbjscff5yBA4PxGBYvXsygQYPwvNUzStW9n7S+QpFhseqPEB4ShVIgWZdy8QkCye38jfksQGXHnN2GjRhPlAJGEqGIH9kHj6DnUogU5dRSyAOEOAiXRSxQG+U9kMN+AiELsdmUGFdgLjkuqGJoboASOREK7wT3S6jbsjmTuRoJz5RQ+iqGOaGDk1FQPyGYDBCBI4uZV1aOIRpyWTBdC9utJR1qHilWEBH7UaquJZEZDtm2NwpJwjyIQnk6phjGjDbjywzjKaLN8/XkrqVHNUeSzg3OFqIeG0Uwk6JkS2qYRnMEN4TjWcyP1PA1IFiXs0jzf/g0gPIpcWsp8BKI5rY0zQ9XX+DZ59No3Je7MEIJijP1NLe7iVhfIWUnVXSd8MmQ4FM89xVCmatxpUFTKNsjCEEDRQxMLiZEBpkCM5XNUunDEO6h4GNlWXIMND1CcL0khHeDga+1rK+7FNV4Wd4uovITCC07+OuuJO9Sw+FIEsBQ+vMlslWZgPL+h+/8EyEHIKwTEcLuPDFthayU3k9/+tOfWH/99fn888+pq6vj7LPPZtttt+Xdd99l2LBhvzjTmqZ1jcCmnDdo8PYD6gizD1H599x4KhkyzWPNZmfhthhES0AxhqdYwFZIPKIkAPCzXXsVTe1KGHwhMGjE4QPq+Q1l5R8jmm4CrwpiJ4Od7c0jhxDcVlyaS+AFIF0fr+lMKJnawckIKH4RUveD34AVPpLhooA4r+OzkEhTFXbt1dl8JFg8sAQpiigSF+Gr2ZDNf3Asj3JxEobYBoASjqaOvwNQwAQibBqco9+Aqt4Zz/2eJZUF2UkTm4ucUpQyGo/x2IxiKTOBaTTXadXzOZtzH3HmYVGITRE/8HtAEfUTFPrx/A5Png/KJBrN0CRuJRpPUBBPgIJkxALbzQU+vvoG2Vm7ow54NDKL/VD8SJQEYcDyPQrSCdKmxVLZj6JMAyGCRtx+CBwTrMbgO7Q6UCqJEJFO1rYdZTj/B7Pvvda+DUXmsx4PaiLsxOBWY9e0JYz1MIwuzsGmrVTdCmr+85//8Oabb9KvXz/69evHiy++yGmnncb222/PO++8Qyym51DXtFXFEptRbvwcjM/Rpqh9F7bnCZ5FARYWW7WpcgkxjEqOJ8ktAEiGEGJfAExGE2YXUryd3drHEArD87HcDEosxrMSmEU3tM+UMQi/4B5U6lSkl8nNMxQks4z5B0QEIme0JAMUcTB4Naia8mATEYycO2BhHWrgexgMR4kKBINQLM7uWYIUG+bS6c+llHIYCocQ6+WCPlW7FzLzJUsrilvNAt1yDX2+o5LbsdmQFPdRy4cEUYqkIJtOAcNz25dwOHU8jKnclobb2TYYJtBkDyMmBLFUJbIhqGpTQGE8TcaTxAvCZAybjHiPYvbpuNt2B+r5F576CSnAkVYujrJ8FyvjEmNefnwqQJmgzFJEaP8OUlx1lP8zTnoSSn2HEOtjhV5FyDY9zYrPhcSLwQSmIgSll+St9o2p7Wv4Igei/Xp1K6hJJpOYZssuQgjuuusuzjjjDHbccUcee6zjsRo0TVt52gY0ABuzAQPpTxVLGc5Qiihst02Uv2CxOym+w2U0PuFsZyZBBQ+T5A1c5iFI4HiXUhgPHsYC8L3TINJ+Lh2lFI66HEIZpAAr2Wpd7Jzun9zC7bLnSO7YwZM7kV0eJWx/gOPeADhYxh8RorTl2iAIsU77dDPfgATHat32oaUfmcCnnqOp4CuGcCw+Cer4jEI2ZDint0uuP38hxg544guEujBISwikCzgGDdEyygGZ+TY3CWXLQIclJK3gXYJ/4eNQzoNdujzKr0WJ5nQsltrlwUBx2RIOgUSa1+K757acIiCKngFhdZDiquNmzkb53weBlvofbuZ8rPDD+RvZG8CQGZD5Dux1wGjTnskowSuoR6YJPrrYGQhzANqvV7eCmrFjx/L555+z7rrr5i2//fZguOx9992353Kmadov0p9K+rdq0NiWQFDDEmZkx0OxqWBD/kGICgQmUSaR5D4S3IztJrP7ZPd13oCOagzULGA2EEyCmZGQwaIqXE7GvoEhrENBB7Ndd0Y50xHN3cZzk1FLpFw/u4GPSL2G8F9BiZk47htYoZeQcr3OkiTDEpYW9GdQUwPhtEMq1PJwFyIYocRH4rAUAInJCM5aZj4FgkImgDEBLzUPz70ToRSmA+BRyqnBhvYOiPjVefs6oRHAfCCYhDKTG6xw+Qr9Cmqkn5tnK2WE8ZUZlJKFfo9hnYaQY3Bx8JxLAIEpz0dEdu7yMVYKrxaVeTa4RikQysczHgH/aIi26TlllEGk427wMnIffmJ//GgcjO0xotesgsxrq7Nudenef//9+ec//9nhuttvv51DDz2UX9GsC5q2xpvLXbm/M1RTxQst7/2vSfhngb8UT4hcQKMIeijF+QyfdH6Cophc0QHZqo6IwjB9wGVpB2Oi5LZVCl8tQqkgTeV9ibJcVNAJCeUHsxDIsgcQzb124hfipU9BNXexVrNxM+3nAWptFhcxPxahJlRIaV0jBfEUIW9tDOEi8WiigGoqWEqUn92dcZ3H8Jw78JzbUKpumWkDGPbx2BkD0zEAgW9vQwnHBSvDe0Dxw2CsBaIcwocQss+DXJd6SYjljzbczJKbMzS1iMrUUvollzA4sYCwF4wKLeUEhBwDgGlfQCiWIRRLY0QuW3aiq0L64aDXXiKYD1UoMF1Q1RPIeDfjuDfhq0X5+ygFiVuhbmdoPB38BqQ5AaNwCUbBAozoewjRO00gfDycVj34tN6j537StF+xz9iLDFU0V72M4EwGcyS+HyfhDEJkb9SukBgehBw3mP/GCpHyYzRFxjNKPIXR3AYk8xlewxY42XkMPEPimiaNopAmWUSYjRlB+1mqlWoi5UzCV/8BCglbz0P6b6j0P5ENPqK50XHh+dCvVUnH0gocaym+SatipFGEIjM6Peev2RWHqmAyTF9RLibTT1YQ509kMFnapnRreHIWYeUAAiHWwQp/hRDhZV/YzPuQfhhPGtRFZ6FEmgL+QJiOS7PjPEaSf2MxhkLOQ9L1h7PvvYrrXIvyZyLducFlMLbFiL692vbCUemXEXV7tWsHrFyIV8rs3F8GUmyAbV6PIXeG1CPQ2DxOjwGhA6Ho8dy+nnMHrnM9iAimfReGsdMqOZefuJ9Z2epC23fYLD2akH0Ihtynw6phbcV09fndY4PvKaV45ZVXOPBA3UhL09YUozkfQVD9EmNt+hM0HnX9G3IBDYCpfNK2RTxqk7EltkpTGa+mMPkF9a1Kd/BmYjigPEnGtvCMoLQiJcIIwlSSP/1CM9e7B199kn0XJ+2cTDBZocAvAa9c4lXukR/QAIh+GM2FHNmfZ4Zx7DLPubR5iH9h4hiSIjmBVLaHVPuBZVovUyg1jcX+HctMHwB7B1Th7SyNvY4jPsNhCjUc0+mAezEOox+PUsxlyw1oHKaT5kNUdtwhaeyBHX4HOzIbM/YpMvo2MvIyvprapZKlXmHvgWtmp+7KvlR2CIDmUa/BxVdfk3L2QalqcD6lpcWEB07LlBu+9x6ucwYwB9Q03PQueN6yBzfsCQo/CGgUgCAjbZaab9DEZJr8vVf68bX2fnFQM2vWLC6++GKGDRvG/vvvTyrVwyNVapq20pSxPZurV9nUv5MN1b2YFKBUE7jTEH7zkyYQctNYnotEgRSkI4JYJkHebcTeCUQZ4SZBuNEnlBpCTHzKEPE6Y/iYKFvkHV+pRjL+Xbjui5hJHzOtQHkoGpChC0E0NwwtwQi3CWgAih5G+iZWEswMWM7GmNaFyzznYfyJoZxLBQewFndSzDZIhgESC4cQLa2bbZXCVplcryIFTBNPsYj32ifszQP3f7lr5lOFogYfhYOFi0UVB+Eyr/2+XdTA9VSxNUvZj4Wsj0d1bp0QAmFsAcZIUs76pJxNSWSG4fnLnm+rNwgh8YuvJlEQTD6KD2QgVdp2PnMFJIOu+9b2tK6mw9qpZSv3wzZHUHjOX1dW9lsdxQVE3kB/yjfwhEHaeJ+4f0nnO6/pErWw4FxIdV4q2htWaO6ndDrN008/zf3338+HH36I53nccMMNHH/88bpaR9NWIYViEf8gznf053AK2bh7+6taVGpXpPoKh2JM+ylU6kykPw0b8CS4lkCwMfB1/r4muGIIxfymZaHRH/p9hkg+hC2KIHoKyIIObzRKOcT9XVHuFApqg3FUBCAdoPjPCDkaGX0blT4fpTyUqm1fjmJtBmWzkOlHQBRB+LjljiQrMBlA/qjnFocQ50OUylAo6gmrBEqYmMIhbkWJOEE7n5/s0aRkmEXcQz+GYzIiOJfEFXipSzA8H2HtAcUvIsUgDMbgMDd3HJ96qjieCh7E6mCizGVRKBq5vtX7eur4E+X8LW87x70BRXN7lCQZ9wIi9vvdOlZ3+NTi8gUGIzAY0+X9bPN8jIKJ+LFFpFhARr6H4XtI9w2gGnJ98fojxboQ2hRUI2T+BcZYiLUEDCLxDrlhd7KNyqXsodGSO+KnofrvSK+W0pIaasNlQXUmDuVeDa5p4CFJipuJcBaSspWXl94w7TSI3hVc66obgHEw7LvezhXQzTY1X3zxBffffz///Oc/GTNmDEceeSQHH3wwQ4YMYcqUKe2mTVjd6DY1Wl/zvb8jCVkTvFEwUlxLP/bs8v5u5lI89wpyI7YyBMOdm79R7F8IY31S6Q2geW4jBagiouH5CBFdobx76mvi/pbYCY9Qk9eqksdADAjmUvKa1gY1J3tAAyP2PcJYa4WO1xlFkoWMRZGguZwg5CVJSxtbuAhgBqOopZTmypFhzKbcyxBjK3yWkhGfg5QI36e4LokZewFCe+OxmEXsnCtRCQolJB42g3mWCOO7kU/FAippXZZhsz0VPJe3Xdo5Bdd/gOAzFUixBRH7Pyt8fZbFYw517ICiJjuA9AFU8iCyu5UAKlsCk5040lc/4bh/BSGxjD8gxfBl7Aws3RyPz3EjZMcciGFHf0TIQd09pa75aV+ofxGQKCn4ea0SHNuin1uNJVzi4WguuC5jFpJ+KycfvWWWCAaTaj3I5LCV2zx3pbSp2XLLLQmFQnzyySd89tlnnHnmmfTv33YeFE3TVgXHn0JSLG21RDFL/Zn53ImP08VU4uRNxpcdebaFBXIQtWxJxmzVqlNYhO3X2gU0igQOX+KzlOURVAISX7ZutSKDB5EQoJaAmknwcPYBB+W37+7skyHOVJxWVTHd4VOHIk7rYMGTxZitRq8dzhz6sYQocQbxM2XpRUT8JfjqReATTOWBUighSERtmqtJDPpTxu20LhT3MAgqp7o3bk8w5s5OecsKmruKt2IZZ0Nu8D4Ly7y0W8dZHuVX4aevwU/fQFLdhZ+dbiPwL35kTzziHeyoQDXlVWkCkLwNlsZgaRQSQe84KcYQsm4jZP51+QENQPRUDAfsBrAbBLb5zMoLaLyGbEAD4CN8jyFVKYbEFxFyIWUV5QKaMGe3C2hcfqSO3alhfRLclBv5e43SOnJYzdpCd6v6adddd+X++++nqqqKI488kokTJ+rW3ZrWW/ypCEMFwyjkRqfzWMDdAAzmtOUmIc0T8dz7gHpAYFiXI3gH5T6GQuKGJ+KI2wEHzzBJCYmhSimSH7eboNJjHvXshs8CIEwRT2OzY+fHFoMIi/tIhX5POtKInfQRxlAoyQ4bISpADAM1nyCoMUBsjFINQCFCCBxqmMpRpJmDwGQ0N7Y0BO4iyQBsNifD54BEUozBALxW1W0GHsOZi4sk0pAmZGRwwlarNJpHtRMoWY5nbYMgiSRChF0YwFvMY0L2AZadEiE7LUV3lPM4TdyBw1SiHJydYLTN+cixRO0f8dUUhFgbKbpWzaWUwnOvw/deRMiNMa1rWrrOZ3lqCfO9LUjYCtt3KHcEWC2TjyoEGWZRwxNUNHdjB/DmQ/1E8L4Pqo6KXwdjKHhzoOkscgFl/I8Q2heMrldjARA9DoyRCOdrCO0AVtdLwLpNRsEoDoKb5qlI+j2HXTAeRCm28HH5EkEMk/a1Fw0chMscBB4JLsFgLKFulK6uFmoHQtnClvfuCrVkWSm6lZPXXnuNefPm8eCDD3LqqaeSTCY5+OCDgY5HNdU0beUx5fYMyCxmgR1MKNvSlkTRyFddSkPKtbEj0/C9DxFyLYTYAFdKEvb/cOR0EO+Te+AohRIGSo5C0n7G7SS34+emK8gQ5yJsPljm8W15BLY8AkoIXq0IYWDE3sJP/Rml6sH6DSlvAspbhBRbE7b+TZV4gnS24a3CYy7XdTuoEQjKeYo4D6GIE+VQPDGLWnUAzSVXud7iKAob0rglre53SuXGB1YKEtZOLBHjAYv+3EAhB2AzlnIuZykX53Yr4YRu5TM4vkEhZy5/O1GGIbo3wJ7v3ovnBL3TlP8JrmrCCj2Ut021uoKEGQTRGWlR5yeJUIjIBmgNFAGyXUmNiv8ZvGnBVfKmQ/wCKHoE/GraNg3GX9r9oAYgtHPwWhF+DdTsB+6PEN4biu8lGPWxA8KEUc/C7GPAq4X+f4SilnnVBAZWm0lTmyV5igxzsu8kBuDxI6xpQc3GC2DqbmC+C+YoGPVjb+co5xeNU/PGG2/w4IMP8txzzzF06FAOPPBADjzwQDbddNOezGOP0W1qtL7G8z6lzj2LJWaKRtncH1YwiFPyS2oyC6HmKTBKod+hubYLbWXcC/GTV2OmQLoKCTimZGHpYDL4RL0UFf72mOFn2/2QaeJcUjTPQC0w2IBSeq7nTZ2zMY6YieWnsZSPZfyZJWZ/FnAPzQOe2AxkI/Knb/CS/4aG3yLcDLAWsmgyWGtD6DAQRvsDNe/HfBymIumHoh6fJRj+MMwFW+IVgWvJ3DQL0vXxpcB1LWqi5a1SsRnN1NzkkRl+IsEH2IwiuoxSrO7wqaKBI3H5EovtKORBZNsIsQuc9PH43t/JzSAu1sKO/IjHAhr4Iy4zSakC4vyUC6Atz2G4+ID58s808AUKiUEJa/EMNkNQyiXpn4TV8BCmq1qmuTDHQ9nnQVuauu3BDbrzu/a6eAXHYYgJmHKjHrk+zZRqIuNdhO9PxTR+gylPDb7DXiNU9QMy+BLckEAZmyJCZyHlAZhmzw3oV8X6+PzcnCEEUMzd2GJPJMU9dpy+qKvP7x4ZfK+2tpZHHnmEBx54gG+++QbP85a/Uy/QQY22uqrjWaq4BIVPBX/i/9k77zBLiqr/f6qqw01zJ+9sTrAEySKCGAhKUlQMoEQBM2YEBV5RXiOIWTGgICAKiATxFUUBBZGcERZY2GXzzO7kGztV/f7ovnfunZlddhV+pvt9nnl2pkNVdXVv1+lzvud8uyZl5zwfDCHr+QkFHiLH7szmvYiaIzbYAI/uAuFGwEDn22DJ1dNmCVVKc0mNT6gRC2B1vofxbHvshhCCNr/AXHkZ0jqk6dyI5YzyWgyDgEOeK3A4eCtnYnoUuYxhTp8YQ1Akw8kI+7Ms5Rh8+gHJYs6lm8MmxhTcjSm9YoID4AMVEGmBTh+Nnz0Ym51xtpSwWzwDBs8jysSK1wgIJWgrnksvSjOcbc50WcyTW1xMr8i3KXMhkj7a+R72NOGLyRjnvfhcTWyMKFK8nxznNR1jMAxwOaPcRobtmMOHUTTzoaLwMkL/XclfEqneh+3+gCEOJeA+ICJEUTR5QIMQ9EZvolt9B4Ayj+KzlhwvxyI27Hx9OV50Em4lxPbAsy3G29JoKVA6JBvtSUrdiAyuxY9+jNF3xrfYNyjnQ1ht3960x2QrUQ2OI9K/pGa0udZlWOpYGHoD+DeiJVTaBWjTxIFV1newnY+8IGPYwK5osypp3KAR2HUj0qaDR7GY+4L09Z+G/69GTSMefPDBlqemhRa2AiXuYjVHN22byVfp4KgXpoONl8LyE5OsEIiVDXKw+x+hfZ+mQ/3CbjjF5qJlT/fOI7AmKtNKHbEg+hj9tkSSIkU3EpduDkAQEvE3JItRzGpqx5gSUfgtjOlHqeORqrlmzaZgjGFI74YwzxIKhSdcHKPpFTej5B5ElCmzFIdZuDSQQ4tXosffhc5NIj+PC9bN6UGi63ZdJ98ns5n5Nsbgm28Rht8gNbAmFqoUEGQhyMs6+dUuwPqu7QhUHH7JcxwzmFpfZzlDXMidFPE4nJ04lB3xuIUR3tZwVJo+nkWw+eyyUQ4m5K7kL4HD4eRpFhfeyLWs4wwcfKqk6eBIFvH5KdeowwuJot8h5c4o+zMIkWKAeZg6/0dhczywAy7bk2Pz4R5Pfx1dPR2BwWjBWDYRVk0UzO3IJ2uOJ6UPh/E31xlHxgMRAO2fgq7zNtPDlqPsLcDUvCRYWPK9uPb3YMMSiJ4hcMHPCJROeDLUGTOkMnr6RrcSVW5k1BwPIkIbgZ1k101gJj0se0H6+k/Dlq7fW83u0VpzySWXcO211/Lcc88hhGDRokW8/e1v5/jjj/+XNWhaaOFfFSNcPGXbIN97YYyajRvgT89CN9BD/JZOAeNFePwdsO/KpsOt1A8wxVfTWL9eS+oeEowhG5VYb75Jv+nFFl79pbySNLty3Sa1iwLvSELzR7RQWOGPcFIPIeVOz3sJfvg50tETRJbE1gFKREj1XpTYAwBFhrbJnhb/Sdh4DKip32yeExN8NZKaPMQQn0SxLS7Tv78C8ws8cwYoKPXapIcjZGgQq8CRGpMGNQy6RzI3/1XKSqBoJ82r620YownNtYSs5iuij4IIMMBPuZeFdDOvcTEzBicaZVzPxOFtpOyLEJvwWKQ4liJ3EbujNJJdGDIfJRWsQuqQqrMWLUeYzVB9oR7iVphk1AghUPb7Ufb7m7a7HEKVa6lZxW28HYdXTTuWybDFW/H5FMIYAstq9g4KgRYSre/HeBMK8JBERwOgeNkLZtRI+RoifSXxsx2i5L7xjtQ7oPQlhCYZX/MzI0ID4+dC+m1gP085gagAMgXRM1A4EfRqSL0HMv8LQuCEM+kK38+4/x3ahypYUSxGOj47RZi2gOEX5Fr/m7FVRo0xhje96U3ceOON7Lbbbuyyyy4YY1i6dCknnngi1157Lddff/2LNNQWWvjPRIrdKPLHpm1qM+raW4znlsMhe8HoMFyTbKu9s9uA8YkU6CI3UeEOXHsn2rrvRJe/SoW/MpoJyYtxRolLvbaFRXqCOF17xM4lhkGMuN7LxSxsIMPWoHVERdxC0Y3TXaWO6IquwZU7UWYZFZ4lx264k7w7ADr8DpFT474YHEJy4vNTjmtC8DRgEBGICph0bJeF2mK4p/ErTyat+gxwFLN5AGsaboPmAeLXZYi2JaOzXQyCjvUlnLF4ETQCqp0WRfdUuvgDNoub2qjq0wn4HhXSjMvmarfrGaWX22MTyxjcsIoABGUicxmj4dVE9hx8dkeymG4+jk1cTiPFu5DMJuQBDN0McTZtXhEVlCnmYi+PMqJWyR+A9imp+2CMD2Y1iLkI4da3t/NdLLYjYiUp3oLDq9DB1WjvbMBFpr6JtKYnZ0tm4RSXIL2nkHZEqW/COEYILB1iiTeAmuA2GRNHnIwlEGpR8xipUuCLBDyAy/5kOQ3BpnlRjXCtH+BHvQmn5k0omXhH2z5P5J+PiHyUZzDWRLRSVsAuA5wJY2dCz60wncK5iWLi8PDlcXZUTxek1gMRlL8A1q5E+j5M8FUk0LURZC1hzkD72iqDizPY8oXhWf03Y6uMmksuuYTbb7+dW265hQMOaL6xt956K0cccQSXXXYZJ5ywdXyAFlr4b0Y3H2KEnxHVM4cs5vL9f7zhn/8ECmPx71UgB8lKGWNOTCR+giMp8iQAWS6nz/kQw86zaJMBIoQw9DBIxqtgRVHdLjKIBtd57PHw+QsxU6DZq1AxR1CyJ8IoWkj61ZVoIgYTgUuBy45cRnYSj8TUhIFEUo7egOR5wsepfUB2IHQBWQbttzE4J8KXbjIFJkmvlvUJMRR4ipOZxU5AQBvvxk4q5CqxH5gLAEEkLKLkvOG9cnTdU8QpaISBMK8wDDLKMfRyd9OQgsQjl6LCEvM0z7AEISQ2im1YRombAYVGUbHT2CbAxUOEhrJII6Mhcv4NjKhOVts3M5sLqIrnSLErKQ7C4SCG+AwREjesEtjNnpHGMEeOfRsm2GDKnyYKvwkiBHpQ2dsQ6iXJeWlyfGricP0sunI0NUK4Lr8R0bYOIaYhuhZ/At4yVrf3UXJStPkFbCeWnbACH0f3YDvnICwfE9yHCW5M7gUI10D+HLR3HyX1M7Ty0aKCx28ATcDdCDJk2TK+ixA5XGsalXghMakdQf8Ni4goBGO5GHxS5UmevuG3wJzRqW2MXh8bNIDRZdhYRswlmXQJ0TJM+PWJLic1KwDXeyn59FSx1xa2Dltl1FxxxRWcddZZUwwagAMPPJAzzjiDn//85y2jpoUWtgICwRLuwWM5EUOk2BWJ+/wnToeVN0H/3TD7VZDJThQ6+zGYMycOq2bm4W7zJdZxHqXEoAEokWOM69GM1jOpDILQWATCrhekC4SDEhFRwytEENGu7yGofhohXCInQMn9sMXrifgjTCrUF8gxxrmCFBqBwSdkgMtZzJcBMMYjCr+HYicifS9Gyvjrni0QClQzYNZdUPgBCEGpfQbI36NYBklhwkQ/MRk7VHEp8zTj3I3EUOIaZnMXim5s8WaM+CmhuYGquA/MUN1ALGyfpm1ZleoMm8rsOLQV8UzTcCIGCOlAE2AR8j5zIRvE9gR0MZPPkOZm1tOBIkQlo/JEisBYFKzEWBACOzQsGl1PNT1A6OzLhvRstLCYy0+o8gSDXA449Kdn0FfdMDGA2nMgBFILnMr1VNQfQM7E0tsj/R8y5uR4Lj2fSCh6g+NZoO5EGAfDSsAF00YU/gSi3wNR3RSEMui1ce2WydBDrO7oY0OuizZRwMWv82YiZSPNzgihgDQidx6M3NhsfW04GhkOk1NgFFTTNl5XOjHWBD73b4We+aah0lcRVY4H8xyW/S6kex5ieG/g/knXMwamAiLdvD2aKECYcICT61SABOf1EE54MI2irjxfQz7YFyY128LWY6uIwjNnzuT3v/89u++++7T7H3roIQ477DD6+/un3f/PRoso3MK/MwwVhjmFMr8DBBmOoJsfTByw9FL444lxmrKJ4DUXwekXwKMPQjbH2C/eQnX2jXiWw+q+2cxWx1Lgx3iT3Pe97I7HfZh6iMKgCBHG0B4UyEYZfLUDq5x1iTkSF5+bEQ7Q1z+GTF7olQ6LMCNRvJqIOwkQVGUq8bboelZLhMAjTiUSHMK2iZZR4B2Ljq6ApAKvsQ5Eqjdgy48kC+GWzJnPeg4kZFlyHc2EzwBFmSwRkioZJCE9CfcknosrSE+qezPEGwi4C9g0eVTQRR/LAajwK8aSmjQGqBqHcs3TJCSKThTzqfAoNh6N3i9hDB6piRTqMGCHjStAgJeHQbuLot1Gjm2o8hRhg5HZ7RVxdQE/KRKYLngoo5ECQjuufpwMFlU1PJrfCY2q92VpjzmmSpa1yCjCCqMme0NogdQSxCJU7nGEcJiC4Bn+Zg6j4qSYyXpSDddngA79Z2yZ8KGMDyO7QPQsGkOEwa4mob1a1AootruU8ikA2jiPLO+f0m0jDBrNOJL2um/RmBF0eCWIFFIdjRCp+vHaDFLVH0NHN5LZOIrQDXaWAOaUphjohINET8xFJRphpR4b0bs7Gf0acN8J9suIKp/GBF+Nj49ADTW06wK9V0HqBUoO+A/Ei0IUHh4e3qwsQl9fHyMjI5vc30ILLfz9GOGjlPgtNWJMiWux2ZY8n4wPWHpZ/K9JPgFXXwc33YdZv5rlXXfwXPoGIl4ShzSAcf6ES4lqssAmrAtm81VCVrKRbwACzToiVoHQjDkdSD6KYh2KlYBNiMTHQhQk1YyNlhK3EuAWQ8K0TSTiAnw2oHSJCEFVTiwKEoNNSIBNPuqE8VeBXoNOrUv89CGgsMRrsNTHNzk/4/yBjXwfSYqZ/A9pdiEwD8XFzTZRHNQmIsNLKeCTJiTD4w1BNTmFFwOQ5zxGeCuaDSh2IMWh+NxBUP+qF9gNhOOxSZWdU8KnXPdXaCKGkjCXTEJ6mtpyJxoqEGMMwtKMd6bIjcUaXC4euagI9JOSFuXEg2ARErk2YaBoHy4TuqCViG1Jo2ODJmk2NIrBXCedYhSNoEwGjxTtjJFlEIzBCqeW6TDSgPokyj11eoMGwN4WFfWAKRBgkRLxom+Sn6Zqx8KBjjvwSsfgO38mMxw27Jv41QkXErA7Lq8hw3un7zeBzwpWcRwha3HYjvlcjjJZ/OpeYGJ1aSEvxXb/VK+7VNUfIORGUBHFGTbZwQCVZLvR8ZWpBg2A1UPpJSegx36Btgx+3iEr3gJMuEdV+jx0MBuGP4EITRyizQCWhPS7wT1ys9fSwpZhqwoARFGEZW3aDlJKEYbhJve30EILfz8q3EKzb97g0aC+nF9AvZicUNC2AKTkmTl383j6MkqMUiWFh4sBxowgbaqkKZOhTBsF5rCWEp8izd4s4Jcs4Cpm8nVkklbssD0pdmScX9JGAZdKEoISmKxhvCtDsd1luC9HpARWEOFU40XB4iNkxQNUZW5aI0MAudKv8fX99KeLhEIz8YqKEGL7Tc5NleWs5sOMsYwNPMnTnIQunYU9uA+zBwfJlssYBFHNdDMCy+xAG6cyn58yk4BO7sWlhCKNxQ708JO6CncjpHFJ61eR0geSMeeQ43N0cAUWuwCgmEeec5M7FDV4vBopTbFAJyhctmUWZ6JoI8RCJ6ILgk7miZvJ0gNobBHQwShByqKaU4RS4cogYfcYLB2QpkqaKg4hFhVCS1Fss4hsgbFAOxDYIs70SWIkBbuNQNoIQBpDljIpUyFnStOMm/roDRLhvhshN6//N1/sRQqPcdowesKgSZUCVPD4pMntpZi5H2PFQpGNYYSaeeemv04XV5LllDp3y+cmhtmZIZZQ5bL6ORv4MmGiWO6zjJUcxZD5LCYxaACMvq1u4ABE3Ek9MCkEfu+7oO9umPk05M7Y5HXmrK9B9zFE7duRFieT49Qpx8jCDciw0fPzFvyeSyhm7qGkX0tkHoXwWRj5OIyeBuHaKW20sHlsdfbTiSeeiOtOH+/3PO8FGVQLLbQwFYpZU7gaKSbKs/PKr8L4Sui/C2a/Gvb5AgCDPNJwhiDAIsBiDMmCSJO1ymSo1I/w+A2BuR3L7IjWtyBLpzHXG0DLGVjtZzAevY9ZpfX4lqI/b1MvE2s36B9hCLISJ4gXByvy0dEQdmYnOvgmo5xKHHiKl3BDhnY+h+ufwrKu2URCMq4z9PnDpOhEqXcj1dQv2bio3HfYwIVUSFEmg02ADKqI8ldYmZvFxlQXymjaonEqKsu8aE/s8EYE92DJ3fCtpfiiUSizQC/fn7bwXWSWUdS7QUIVrpqbCNRH6OBcurkdQxFBru7tiRjBx8HBbw67oIG3IMnRywew6GFHbiNgAIuZQIBM2mnnKdppfreW7AzS2gvH/BXqIg3Nhkdtw5jTQYc3gp2Ey7QUGC2wxCuoch+BtDE1x01CCGmjEHt9DGRFhUhO1G+pQQtBNdiPjPMUQmw6HJAWp7IwuhajB2gbCwmVRBiwtCZofwrJXqgm4ne8LFXbFZmhEKHjsgLCWoJo/z6kXtc8DsYY51jiyoqGIh/G4uVY7EDEKBPMKUPAcwyK56g43czwhyb6E3HBRGM0Ro9MMHmFQNAFzt6bvL4aJHk6uPB5DuokNtQTkrUMqZp3UzNyy/4h5DaOx7wdJKL8K5j1JDSEx1rYPLbKqDnhhBOeV+OpRRJuoYUXB71cz1r2oEZ0tdmeNj48cUC6B956y5TzOtmejTxI/OLUdDKCMIYUFQKhkM1BDgCqwetQJuGMuEAKfGsEwxvpHC0DYPkRfaNDjHW0EwlFJCTKJAXthECYhuwoA2r4Ekx5X9JdryYtljEsjiekFpoq4Jgqgd6GOf3P4dsOG7q7WJOeyTbciMV2085JifvYwPdjDg8ZLCJ8HDJUGHHa2JiOK9tGSMZFnlArnPA3QAUwhPqHWHpXJmcFC9qm7a9qvssESTYO8xTNT2gXn0fgNJ1X5FbW8gEMGQIs0lSSAFMPvVyJw8ua2pakceueoVTD9l60WV33bhkDY/ZLmceZ+ObNmEQRXCPwSOMmBqqPlWgxCfqdNB3hCO1+ERUYQtWOlT2fkjw8ud4Jr0gcGDE4MsA2J5DhLRjHQepBouAKTHhVzG+xNLCByDzCqLmTkrmFlNiTXvlZZMJ4rXArZf153GgAIwTFdIq2Shw6q9oWo/aZwGdo51LSvBGAjLiQqnkn2JJCn43QBjvcj1T6tyCmflDHemONRp9BsxrYgS7ezVruB8yEq0dAWbUDRcDGcn6EEF31c+MYXa1xjRDzp30W/i50nwve/RCuBHsbws4Dgd8lXYe4pX6EnYxTRxCshGAZOLu8cGP4D8dWp3S30EIL/xwoepnHcjzuRtCFy854PEs/ZxDSTwfH0MUHmhKtAbbjGCIzyADXk6JIKOw4k4aIouqgxwwSCSvxmmisMECaBhJsQtBUUYjGamo9o33mmLUUyREKG0tUwUCZNI4MsaNwItLkAxvfT6VNAJ0YZ0FDbquA4jWkxpcmeV8VVBSxbuYCbGZuck4CNmDQWASk8AhwiIxig91Hym2oxSIEGoWrk2ydBkgc2jidAl8DBHnOxppGsDNuZmZ9yBNp7Wmme5X281lMYoCGuGgOYgZfwW6serwF8MWrkObK+PvexJ42W6zkaT5ESs4nYzagkRRFDoNkFjugeYgizQrbnkmTKseVgZ1gDFN9BW3ZWYymAyqkkBgkGluE2Mm4A/EHLL4TPwPmXkzwyyR8B3ZgCJwUY+GvGbSvBimomKcw4TAzrR/hs5SNHEd7NAhotLAo5bKUUy7SRISWTD6SNeN8tG7UpOVbsPVaAnMNltgby94V4WyaKaHYBsXORDwR3yN6sRJByTYOZS7nssZ8esJQMQZlHJx0GRD1D/XIPESgf5Nk+ddI1AKPC3D5+Fbds03C2RYWPBsLaMpuLFYhwrMQxkf6IUrH9Y6EACOJnUhWSzZha7BVRs3JJ5/8vMcIIbjooov+7gG10EILm4bAwTX7AoMYItaK9+OzAojYyHm4bEeO1zadE4ZfZGH0RRYCT9vbUaiTOgXtjCW/xRyJDbqXbaOGEFct7QQwUhJKRSQE0sRVXioZSSqsoOyYLOHhMCi6sTB46TSOF5CKfEQJ5AggDWWZwZcGZYYbuDUap6oAC5F4HnKVgAX8eFJoohkZdqLDjCGFxiVghA5c4TFqOihbKSwdEMo4+ycfjSLl4Si5F5Gu8S5mYsnDydNLjg8BYrM6TSk+zRi/RLIUg6Aqc3SKHzG5Lg/EjKfY7IlDbB5/ocyfaeeYTbY/GWHkYbiaSEp8oxBCIgCLAtBNVRiqoheVmFgu29PBdQT8jiE+SmOGVtaPPSSNoap8aT1rnZcxouIctpwYo7uh8nCFCQKwie6hMdQVYjGqXk6FX060KgQVE/O8fB6GCRYTlg4RRhMqq3m2DBjRXAzQkj1Yz5PVVENcu/l3VLkI8HE5oS7oqRmkykfJElIwbXFKO5o55cWI3MQoQnMnZX0QEFeKtiqayBZEaQl1aYUXCEKB6o3HF9yAE8TcJREkjqSGrwYjQMjOF7b//3BstadmwYIF7LHHHrzAklEttNDCNDAY1vERityMwKFXf5iM98Wk8uu2+CkNIsIQ15h5mM+T5yvM4Ri6OAlMQDX6Cp5w0NJiQWEN7eUSVeWytHNblB1NfJRimCEcinIJOZ2U7NfxF2OkFIGyMUKwonMWqUpAjiK29LCMRvlxyONJewe0kHQzjMZiddtsljxVRFUH43TcWS5jdmdSNyWgnf2xyOGyP1YqDWM3J1eusNJHYPGKzc5PiS+SERUEJOnChmG6sQjJ6SJz/TWMqzyBUIxanfSKPXCsd7NBC8a4lZLsY6F4jC4ORE7ybEwHKRSd6mFC1mAIaWcOmCJedCrGrMOSJ2Cp1wPQy2n086mE9hszOjbyabIchEXvZvuJGGDcfAnDxWQJQMchtLLMYIRAI1CE5Cgi0ShejsVhdHMCEguXN9JHQL85tW5vSBFM4dwIoEwl4WxoCuQQGDoYpUKKJ5lFHxvIMgOh9qbWmCddnsvOBrEGgYVE12vhZLw82OCwOyApqSxtYQEBZPwK2B8lCn9IYNdGYMjq47YybWXSfaGDTC0LsGkenwXKFEUPI3QDhrQuk7Lf13RcYK4CDNKLyAyEaCVwI4OXl/jtL2D4afL4gi83/a0tkAHUYoHCB4JnwN72RRvDfxq2yqj54Ac/yBVXXMGKFSs46aSTOO644+jq6nr+E1tooYWtgqaAp29jkIspyftpo4SDjy9OQ4gA1wjW2yU0LhLYyIxYygBDnJj7ZXz+SISg6M6mnVEE4OcNYajI+FV2GF3O6t5e8hSZeIuuJrJSPOC/jO0qyyin0ig3QGAIhIOPQ6QUK3ILsUzAnv5D8YJG/A3vY1MlRyd70C16wXqYjTv+BbfcR0Z9lDHn203enyoBc/R3CLxX4MunkO2dWN5LEO4e0P2lLZine+q/x4ZNFQOkdYkF4SqEMVh0st7uol3sx0xOoCAe5Dn1ENBJnBNzJntx+yYLHobmj0TmEZR4NZaICaONSsqV4Ei0uR0wRPpXCHEHSu5DB+/A51HGG7JxADyWPq9RM8SxhOZhckkYCOJaw5KIEAsflzYKsSgnYLiHHO9p8mp18FZSzGY0OAZHr8NVEVpMlOcH0AnJe2FhFfmwxJid58HszpTFhCZXyXybMXEVSs2iK/0thP97xu0yGf0kykRUVJoIhRMFtBc0PZkfAuCwI3nOYFR9BV86YCAUNvPK9yKjcUI/9vxJHZFyd/+HjJpNQbEDHl0MJ6rhIKioLCOqk8aVSzIH0IiyYeP8NoyKRUrzG8ukvB3+DpXELYRoAz0Qh/csiASo8diZI0JihnTpaug483mbaiHGVj1GF1xwAevXr+dTn/oUv/nNb5g3bx5HHXUUN910U8tz00ILLxBC8zT9ejFrxQfw5H2xJ4RYzVdiCBzFqNVBUcU8lhCL0cTdThLsKNBGgb8wzt3ko3GEnjA8Cm2xVEAqqtLBCBZBclZMgJWiykZ3AY917EQ+NU5WVEiLKhYBFdIUyZCjTFoEPGNvS0WkqQqXDXYfM+RG5rKSHfkyneyM5A6EFPg5j/H0JaTlR2hQ1sHhJYTe4WCeAgE6O0K162F0z6kgn79ApsX8RqoEVeNih4p5pQGcssEtS2ZUd2RPcR/b8jUkKQKGmtow+ESU8XmScS6gzI2YxMjz9UWU9eF45mzKej9CcxOGAFMz5IxBm9uIs1nibZH+S73tdo6v91IbcXoSQXgyDBEBD4PQTH6rahQGQa7BoKnNZcTqKW2lxD70WU+Qt27D8SXahkhBJCGyQNuwc+FpZlc30haWmVPpZ1F5dX3IO4RLyfjnYkUDhDzJkH0pVvZGUkIyI9xIVzTMbH8dykSkjUVv+9OxQZogy9sJSROIFIFMg8gh9Yp4JrQmFQY4WiPkbpudk78X0mRJlV43ZbuZNLOO+AgWR1BqT2PkxKyO92RAP/2ijA3Adi6k9v9BRGAPAVFchzB+nDTI7k030MIUbLVt7LouRx99NH/84x954okn2GmnnTjllFNYuHAhxWLxxRhjCy38V6HIx/FMQzqOiJkCQF3+KKxX1I0JsKJe/SPepojIV8dZVFzFjNII3cUCdlJDqvbSLmQy2GgkqmGBlAjaOYSvsW1SzyYZAg5BUuNmYmy+dFnjzGPAmUVVppPkEkOFZ9EM0cDORDNKpziddnEiNtvQxlvo5WyMearp+gUlKvrEpm1hdB0Vfx8q/sFo/Wh9e5YvxOMxBqkj+qL92L2yL3O9YZSJZ4fwb+joJvzq4QTe8bTreThM1Fbp5EAMa+jnIEb4Ahs5iTHOj6/P1BTU44J4RfMR+umlny42ciiICCn2YCJ9yqBqFXIBiU+GAJsAG48ZfKxe82dTEChsdsUIG0+49TsbIomANFUsNGnzhqRLCcYixaHTtydSKLl7zFVKPAKFrEspnSKSAluHTWGpxeEKXql7ONj/PUuiOAzpaA/HVLF4mjHej6VvT8Ya3++cLtJtfQdkc9aYzRxmcREuO+OyG7P5GViHNQ/QPr2uM/WCY+gjdG24mHylUN/kMoeuBvV0ACHSZNSVmJokRbwRBHj2c4TRDS/K8KQ6AMf7JM5GsEdAahBkYjJ6nKwIQatWzdbgH3KqSRmz140xRNHUipMttNDC1iMwj6MCQ1SLhjRk2wgBIbMwYrzpnCV6B5bzN2ZG/eTNOChDp19o+mrJVKsEuSwmlKzp6MVKVVEY8lyNZi1Vfg+45PgkNvPRvBWfe+rZLhWRrhNIG2uumFp6FHFYSRGylqPIcVCieD0a98/7kLj00qywLeS+aP2biSxaKYiYMHS0fgIvPCrpTVIJDibjrEIIB5s96eQufPEHlNoWh9cjnN9B9QfEr7cIY+9H4L0B0BgkRt/FktRXGRUP4rInPRzOGOcSYKiSBQRVfkI7n0AyF81DxJ4YQ8RaBDHxOORuBvkg3fZ1+OEnMWYNlno3Sk7IKpS5GEmAm9RK8bkatiCTpptfMM6XCMQKCjyCTirxusJLPHaLyPkZLIpEUpKK5mO5c6YpVJPMsXARzhkY/8vJnHdTtiuUUy7ZkkeuPEEiVvarmWXegsfF9fNDy6lzrwJ+gYVCJN7D+JlYjDRriXgc1RC6AshyINlEasIYQxAeh6ThOTLNz/ILitKVCGCn/mWMZNrxsh2kc68lrlI9tQpyVpxO0Xyu/rcxBt9ysfXlWOpNL8oQReeXAAXl34CzM5SXQlQz3GXMqWlhi7FV2k8QF9i79tprufjii7njjjs4/PDDOemkkzj00EOR8kUIir6AaGk/tfDvgPXRHHLrhtgwpxsjJUqHzCgPYpTAlxYr3f2Zzb5oRhDMJGN2wq28E19UsM1ERW8fm3QY1A0RA4xnXaqkEFIgBRTJMZebSTO1Wq/BMMKXKZtrqLKRIToxQjUbNQYWFVYy0xvBl4pV7TPxrYnsll4+hksWSR9p3jQl3Txuo4TvvR6jb0cLSWhb2OI9pNUFAITRL/HCo5vOSTurmkvsT4Z3I/i/IVILGE79H4F4AjsKaPOLFJwcvhVbjBbb08sfKPJzVnMejVbBTD5Dp3kdZX0kmkcIAV/aTekpPjnmbyY7ZpzPUOYHxEaRxObldPP7TY97GhgCQtYQcS9VLkYyl6w5m7CyqOk4y/klytp8qX0T3oMxgxhrN0bEOwn5G8K00V15MzJ4BmO/HJU+B0OZir8nhmcwQNVt9i6N6jw9wSAWIWOinZJK06nHcInIWH/EEq+atv+yvgqn+M5JWzNY+dK0x//DWPsy8B+mVoBvpCdLOZemTXyKPKdPOdyYIhvZDW0GMVKgTVyv2TU70C3vmPb5fcEx/GUY/h9iozyEmb+EXEtCYUvX760yak455RSuvPJK5s2bx8knn8yxxx5LT0/PCzLg/x9oGTUt/DtgQ7QLbWOPYw8IvD6FrUKkiFkAq91ZbHBn0cMb2DbxeOjorwTeq6Z4UEoqTc6vopL0a2G9HT/9JlZwDpGoOWkFO3IbNpsudR+ZjQzrRayQi9EifsnHabiKueUZzC39nriGsKBq2azsnIUkIk01JhhjUyZDO0cwh/Pr6c+aUUqcRcRTOLwJZbajbM4DLLJ8A0fuGh9nVlHxXwKJ3IAQ25K2H9siUcthPkTFXA0izs5JhR5Vu7k6axc/w+XVLGX3pu0pFiH0BiJSVOQo3QxMrtGHzwzms2nORcRGRngTIUsRdNHFtdiT+tkaGKoMcTpVczOW7ifvjdWzqyz3/7DUG7aiLY1mHZIeBFMr1mqzAV9fhGImFXkHvvglAJLtWEWVAAlG4wifOZUBuotxhlPoLMLKL4Np7s+IOZtc4YvNpoHYFqtt2dZMw5YjWAYDR6CjpZRzDmNdcbq+w070itubDtVmOSV9AIb+OJ1dpmIJkMSI7eJy0psI8b2gMAYKl4L3MGReC9k3bvpQPYwpnIfQBpF7L9hLXvzx/ZPwogha/vCHP2T+/PksXryY2267jdtuu23a46699tqtG20LLbRQR0d1V4LsExQWOFR1hjYK2DqiYGfY4MwgDoNM8NeEWAjEFWVlUkdEAKGy2ZDLkg8Po01+BanmYAEzCOnn64BkNp/ZrEEzrj+Bz2UIJVjMCqrGYa2Yi0HiGIe5UR8CBYQIDCohJKcSg0YANgEOHmNcT55DySfSDkU+jM//ARE+96LpwIgCIYpRDqbNnEK3OAsp5pOy/0wYfR/IYVtnbrFKd8gzsUETzxRazgcz2LAtLm8foZNCehPfeNosxZUBFqBxkgJ6QV1uIESQ5wub7V/RSzd/TareSgqcyRCPMoKFpINFnEkn+23RtQCM833K/AqExpcuZSeNQwBC4PMBcvohpNyyD02BRDF9YbeIlYyJw9BqNYJu8vyGFO/AUMTmdQyxKwaNLTyUNnWDBsDyV4D/e3CnGliu2JvhdJ7OyjgC0MLFyVy/xde/1bCXQNtbKfINComyN0Ig9INEPIYSE5V6vfBLyHA9YDBK4OJTVnZ9v55EMI9Pehz8v0HqFWC/QKnfQkD+xOc9zPhPY9ZuP/EhM/o1xNxnwV602fP+0/GCyyS00EIL/wD8R7CHf0HUKXBsn8C22GB1g5jBcEJWFShmMhGOEXIO0voMOvwiOnGQl600VeUihCRtn5mkrMbo5SR6OCFpK/aaGBMS8RfAQbEvQgiK5quE5gf4Ko3BRhGREj4ZypTJMDd4gqp6iFTdqIH16V6K5MhRbPoaT+ElROM7ITFqQu6jFhYIjIMSBSIUpaRejGcuJsRnJl9EyZeh5MU8Hzw28gyfp8IKujmILl5HwAPJREFGnUUGwyinAyEZTsZhX1ZzISUyZCnFRqEJccREOnUKn3FytDGOTiQkXQ6ig3fUj6lwNwV+i8UsOnkPIuFsCCQVbqXIOfiMsZHZxJyOAZ7mdPbkFqwGeYUyqxjjATIspp3mrKCQFTTU8McWYcPfG6iYE8hy4/PO0/OhzFfRrAPAMEKZz9HOxMdqB8czxiXx02Y0k1cFrZ9E8obkfENchM8ixV5U7X0ZtR9HMo92foyYRmPrBYW1hNxoGcv4eJaNFUaYTETV7APMwbW+hQpDUuOXxMTyBJ7rUG5wCJT4OVmOndhQvAb6j6LO1ZKgcy4mdwCBeBQh81jqu0iZQYolCPGPZzEZvRrGvgalKyHY0MSZMxgo/R90fOQf7uffGS2ZhBZa+BeCDp9EAqkRg7YN2g2pdmqgnz4yuPwPbRxEmgVN59nOF5D2x9hojsATTyMEOGxLB1/FYccp/YiGQIoxISV9GCF/QWCwOZq0/CmB+QMVGRNnIV6WBAFzgrXY2kdi0EoQ5s9A6k6eVb9gOOFe+vTisrHu96jVoa1yKYazEUhsDsTjF/FeExNxg9orKck8Gef/mMkXt3j+lnEOY9wPRKzjZxjmk6rTmQURj5HnPNK8jTifKF61QsYJSTGW9D+T9VMWaoPEjDnMEieg8sfUVbnj63qQtRxZv95hvsUiHkaRoczvGeYT2MYnEmloaNkQEDBUN2oKPMHDvI+avMISzmAWb6kfn+b1lPglmNiQbIo5AoYtz5TRZhUV/R40y7DFO3DFlxGitkxWoeHumQbBU4AePk+GV1PlKcbllwlssBMbMJJxqrgEqtzCKEcThw6z2HRjeC4JmY0wxgF08lcUL15xOW0V0G3gmBCnGiJCMAUgKuN1P4PHG8GASmmkScjSPjheCcxE7aJA3MsInyHFDhT4Ip0jq7BqWYNGI3xQGyoE6kZsuzYXr8W3BIgsKfv3KPnKzY41NHcRmmsRLMAR70eIBk9R8AvMhmORfo2c3QwBIDefWfffgH9tZm8LLfyXIXJ3JEwI9zKAsbZsQ/aTh83KKQZNDUr0MFPewVweZZa5kj5zGWmmJ2w2IuQWyvJuqipFRabwuArDchR7NtdsR6BCgRt1IxvYO8LaC5X+JAud39HHQXQxC5cjUJyAj1P3bAhiUnDF359I30qOb5Dmkzi8CYftcLWHIpro04DSBYaDOVSqH9ui+auwnAlVZkWVQSRRkrKuiRJSryRTN2gA+jgCiUUtSVnr9KQ5UixatpqF/Z242bOaDBqAErcSIfFx8HHxCdnAqQD4PJhcF7hUUSaML85AhiWkGkJA/fymXgMHYA1XNPWT4TB6uYpstIC8X0Tq5qxTW5y0RfMEUNEnEXEHhnX45psE5pL6vhSnQK0YoVGkol0Jg8+j9eNAfDezHEw3H2GOuIdyKks5I6imBdWsQMqXYjCMcQI1LhSUiFhB83JcocqVWzzmvwfa/8rEHzYYB5QiTn5yGlhoKrYVtYIgTfz/sFZDoV4s8mrGzSmk/Gfxez2qPQIjIFAW45kcgVLIhsiopUHqWHCi6r2DSrGLcHQhBI2q8DEicx9l/Vp8cwGeOY2q/lDzdVQ+WTdooDnRrV7QIdsSlP63M2ouuOACFi5cSCqVYu+99+bee+/9p45nDR/kSRYmP0sIGiqAttDC1sJSO7G+79UM5TvY2N5JqBqzbQybUo+uwZgxKvowKvowinonfP39Kcd4jPAE3+ERvsRGbqfIdYnhkeyXDuCSFZ9L3pam/pMKSihmARnipe1laKMoe/Mo+i+hbK4h4ClGuZYRbqVKuqltV1cx5k6qweEYM0KGz5DncjrF/xHi0q4LZHURjMEyITmxEW2PU0pdjF/++vPOXze1dGoFaLrqxM44iTjNUdOel2UJe3A1SziHXbmEheKXVI1NYCRVY4FeSG7mDYgl94Oaeg9sFhM2OL4NkjJLARCUqS3kEsNM1tGph5mjX8pLuAiRnFfhIkKuZsIok9hM1f1Jsz/5aAHpyMMOI1QYInUHKfFjHLFlxh+A5qmGvix0A+E5TpV/iDauoM1/A8L7KmHwOfzqLlT1pU3tOMynzXkAYR+AthbgFBeh1n4aSr/FNIqHGhNTmWrPUzJTVS6kwKkYmvWfXjCIxtozxMaLRZMye42HVv9FgAx107OPMWg9hBtUY8FXAToFxS6HBxbuzN/mb89DS3YC2dAeMX0rQlJJj1HK+oy2DxIUXwOmea0ITC1sWPNaXtd8HWZqxn5Tdar82dDAAfpvxb+VUXPVVVdx6qmn8rnPfY4HH3yQ3XbbjUMOOYQNGzb8U8ZjMBRrsvEABKz6/8GOb+E/FgLFbOvXmPbPQv40esSPkcQvZZudyT+PyF9grkLzBCGKcdlGvziHMfOd+n6D4X5OZzW/ZpQbeI4PMcCN9fAQIladlmIuSmRwxeuRRqN0RM4vYpuIiIeAStLaAwTR2zGsx5O1qroxh0JTxKAok6Fq0pgIsmFNksGjaN7LEJ0MsyNarMGRv2S9nMeY6ECLTjrEKKouiW0Igz/Ev+sBqF4JwYREQg2L+ASLOI2ZvJWX8F1mchadXEOOM+nkN6R4c/1YP/wBZW8nKv7+hHoVKWYzg8NpY2dsuScLxV20iY/RKU5jofwtou1gkFOzhABy5vVgGpcyg2A+K/kyG/lVU+1fm5BORnDl7XjEBkLAnZT4OF0sI50YAi69LOHTTf0M8jseYC8ecZay2o55UlYkychLceTWcR4t3pr8poAISzQTe5XO41ZHIIqznkRyXaXok03eJAAptyetriWzdhB79Dnw7kesfytudHAyHQZhDLlyGSuMEu9FbaZG8PgJFb69xWPfJCqPwYojYPlhUIyzm1Qqlm1oCtNJUBUgqulyNfyYmHQfaJvuDWPISCN0XNxRybBOxq+hlEklWYEQKouKdGObLfmxqhBaibGR3B8vZUA3r1uSJTR6GeWkkJzMfAs9iTAixEzEIoNYZKC7uf7Tfyu2uk7NPxN77703e+21F9/73vcA0Fozb948PvKRj3DGGWc87/kvdEp3QIFnJ7mhBTm252//cNsttFCDwUcziqT3eetk+PonVMyHGJEdE1+KAnq4lAyHElDkFt6IIKKLESAusN9HP1ayUOX4Ijk+DIDGY1W0mFneOojACsBLWxhZW9TiBRGgKlz6ndkJz0NhMxdNgYhhLDOTPn8FNhuT8xwqTjI4JJJt6OJBQoYpcgNjfJp8oUDUoKTcMXYWtB1Cv34jVUviBj6d+h1k3XMRZCaFyjYPP7qEEh8gqqWoC4liJ/LiShQLt7gdAEwEz7yeDdn72Di7CzBkTBUlfHwcRulAEdFGgbypEY0lJAZbJ9dgWEWRj9ab1Ah6WN+kGD7MH1jJR7ETFfPAWMzQhzJbfBght56TYkxIYH6EZjmWeBOWaMjCMmUY2QuiJ/DTsUZUbXrHnDy91gbEZK0s7zFYvWtzH7P/QDmznKh6Fm4wgqotN/KlFHI2EY8nR0pcjqSNn2z1ddShy/DEfIhGid0aDuywDJy5RNXTMf7X6m4NOQ7Ch8CC6kw7lggxBqENkVAIdQxr5SP0jK9EGk0p52K5sWfFjnxSoVdva601k1HVhRaKyCh6go1sW1gdP1ZBXCV4pCdFZKl4Eo0hXdZkM4WmtHdjNJ75HIH5GZJFpOVPkGKb5vn07oaBN0GwEWHtCHP/CmqqN+8/ES9KSvc/E77v88ADD3DmmRPCXlJKXve613HXXXdNe47neXieV/97fPyFrVxpTxMKaOfoaY5soYW/HwIHxYwtOtYW72Qd30WK/qbtFW4mw6FYZMjSTpYniZLKuBpFP7OwCAlwsLiT3XgfEgeDR1m5DFqdzC7FRpAKNKFD8kKOEOyM4XFSJqAnqFKy9sZmNn2ciUU3IQPYYhbGWUkQfhWICFUexE+paSYZBgCw6MKmM87gctPkhssgIK2PxOo+k/5of6pWzHXwHJd+rscNrmJ2wULlbwbr+TNpDJoSnyWSVn2RQUBkllLkk7RzzZbdmBpK98L4H5gxDm1jZUozbYIOVU9nNwgqpDEIlNgOzXIaggaEPEWKQ4g5LDHfxmGfJoMGYD2fqBs0AnBEyJC6lzl/J8lWCAtHfGj6nd4NED2BFoJAWGA0KoyouCmkOmaqQQNx+rSaC9H6+G+ZR7gvJctBaOulaP/VgAdkkKmf4vJbyjxOzTB2OOTvuo46/JUQNaRdmypU/wbOXKT7VYx6JWbsExj7OXQeELGXJbIsZBSgUXgyFXsrze3MExdRbvsxJvgtyp0IFQXKwQ59HE/g2yCVoEuMAqAjwZxyP8JvDoPYvsaoDrQoYgcOaec6CO+D6Bmw9wc5BxBY0TZY5uNI6xSkmFrxWLj7wPwNsSG9hWUN/tvwb2PUDA4OEkURfX3NNTX6+vp48sknpz3nK1/5Cv/7v//7oo5rEX9lJYehqZDnbczkf17U/lpoYXMQIscoM+mk2ahJ18rUU2EWSzGUKZEmSBYnSZSkUgt8nqbAY7SzJ1X+QI4STkParuNppAY/cxCuOgUlDyLUP8WYAr3qOPrEHMLg60TB7rGR5PwYYc1HiG1x7QsBUDxFhV9QC2OleHfDWF+HzQ4EzpOMdefJ8W4c4vL+oahOuWbPdtjQXqCj8nrSueeed476+SJKjCIne3aERm9B9lDECBED2Gwb82HkxAKfLnsUXase6hCAg0+IRY4iHTzJGCfhcws15oXD/ii2oYM/UuVnCLpJ05yWazBYFAlp5kwoQl4UeNeiBYx2pkmP+KQLsTfOEQox/5tTyR0Qh+bm/hVGzwczBvkTQMZa2MaaBW1/Q+kxkEsQIk+anRHMIOJRbA7A5YgpTRozDqQQ0yzwU+AsBKsPwkFiT00K0nFKvBACYR+ByfUQ+RO6T1HC6tXKJjAT982IEmV+Qrd1ETp4NwXvd1TdeKcVBXEIynkLnr6pyUMolcaRAVHGRpSDpF6URKdPoUt+E0OAcGyoXADFD0MZGAKy4M+hbglF4SexU0WkbCas19EyaDaJfxuj5u/BmWeeyamnnlr/e3x8nHnz5r2gfbjMYTseff4DW2jh/xMsMYNhuskzShzceRUZXg+Ax5NAGQFkqRDhEysqaSpJfZiYvPl9xrm9TvQMLNWUsyJCyTp7DduK1yOwsNUp9X1R9Eei4LT68YH/BqQaRIiuiTGyPZ3cic/vkczH4fD6PkmWPn6Hxx0I8rjsXd+Xl6dQFZ+pe1cUMcfBlymGsmPkwsPR0f04QQdZ53KEM1URe5RrSIsMOZMUMKx7awQpNp89VOYmBnkPsQjF9vRxAzK9B/R8ADP4Q4ZmtlNyc6Qo1q8/QtLOGNCGJEsHl1Dm+2g2kOIdWEnKvcUe5NgjuQMRI/wMn+do42AEBVJUKSPrxGuNYB6f2ux4/24ISWjH9zxdmDCcpCnB4PtgxmXTnqbFcrAfRQS3Iwo/wxTSjHUfR1X+EgTk1FnkiAU/BZJ0gzHbCGMiQv94dHQFkMFyfo6yjtj8mGUatr0d+j8PxoMZp4M9q6HRKlR+hSwDNkQOqCiKPXbxgBpHAGiEyKIyV9IBVMIzCfX5CGOQOkUkXsJw5mkUwxPTltx1IQKqXR8k4Aks5xjy4n3o4BpMcDXIbZDlSxAjwF+AEPxdgaalSRN4J+GmX9zMsP9E/NsYNT09PSilGBgYaNo+MDDAzJkzpz3HdV1cdxo3aQst/IdinK/Ryc1oNMN0YHMA2/PN+n6b+dSqXAjAqhMTX41gOQbNPHbB47c0pt6GymJjezv5chkD9Oc6iUQRTQlFQ3YJoMNfAc3VWDzvy6RSX2s6TrENaaYPf0gypDl4yva8eBfKLGDUfBdP3EXN1DLCoI1NRf0FYQl8Zz0UXkvOHoi/2BtgM5uSKDdIOYAUi8hyLi6blxkY4X8gyXAMWMYoXyQvPoy14AdsnNPLRvVzwBCaLClRRRGRNlUEDp3iV4gkGTrH6RhC1nIGYxyLzUzmcQFpdgZggC8wyiWAYoSLmcGJCCBDmSDx1ihStHHAZsf7dyP1HgL/+un3VW6p/2rMKIZBIhxG9DvR4d/oCyaqCwsqqMplkI3vQZEvY/MyQpZhsxsO+0zbhY6uTQwagDKhfzxSjTXU0Zkexl3E+IJePG7E4lza+T6KZH0YPQuK343z4LzYKZK2q1TlHoTqORRhQ6aeSxufbGo7bX2FaPRPGHMvIizzZPflRFi4RqISGY6u6lj92lP2Z0nLuG8d/h5deTs1V4xWbainoeZoM9NGlzetKdbCpvFvk/3kOA577rknt9wy8R9Ka80tt9zCK17xin/iyFpo4V8DHvdR4FwgQBLRQ4FZvJ3lfIoVfAafASx6mcE3mFAothgnyyBLscnwUq6hjdlM92qoOi4bOjoY6OjEszJkeEVTrZcajFjYnE0CRHzvBbvOrNifOfIacuaABmZKzGQ1DaEALx1C1PwRpPGZw9dw9QLKUS8BH6KTp+nk0bpBE+k/4QXvxg/PxpjCpN59Jow9TYWfMsgelLmEcXVrUtNE4ok04+QJcKiSorswiu3d2dTSKNcwxvVARMB61vCJ+r4C/5f8FgthBlQQZJNwVoBDgKJA4R8h1m4OzusIsrtjpCCwJ8Wa9DrwHiSMrqPsz6Lib88G80qq8hmMkFMiU3bQHCIb4W0U+DTDHEqZX1DlZ5T4XyKWNx3VjDJVbmOQDzDC2URT9teO+iEVLkEzgM9tjCeK6JF5AO39qqlisAxiIm+22kF78Cfa+BJtHEk75zCTh3F5+ZT2VfAwVmiIpJVwssATLr62mFXsJxfEwpzCPQ8hJz62TXgrJIIboIl1MidCamIaIW6hfjrtNbawefzbeGoATj31VN71rnfxspe9jJe//OV861vfolQqcdJJW15wqoUW/lWhCRjgY/g8TQen0b4F5QEMhoBHKIU3oIM7CNMKRYQAAjTPUAu/Coo8xs5cT563k+ftANzPa7AYSNKIy6zks3TRhkk8OALIcTIWi/G4C0EOTR95+ujg2GmzsZR1LEF0Vt0s0rBVmUlbinbxSarm5sYs6tj9n/QljKZibSDNAgyGfr7EMD8lP15k8eqNSGOgcz+YmQaxAWQfkX6AanBwvY5KpB/Ads5Hsw7lj9PrDRKIEUZTOXxlY8WFVxjjVHx6mCjxazBG4OHiBh6CAO2dirDfjJCLAQjYSGw8xgtd2MCDctiGCiPERk2Ey65k2I4RJhIl4rkt80LAREvRwcUIkUc4H4v/FfOApYzNyZAe8XAqEbafGHThajxOgSR8GQkPhCCw7aYixwbw7U5q3i3JfDRrqBmGBc5AMoIBynyNdn6Lw2uQ6q3A5yHhOEXWsQyKY+vnlfkVMIaiD4GHYT2QxeGVyZzG8xbyNKG+C7+yP44IGsvQoG1QAoj+hK7sjtHvJe9euPmJknNAL8fWIU7o4ysbhEUk01i5J1HaQcg+hGiOEAj1Ukyd/6RA7QP7nAs37Af+OM4aiVfcAXJL4/HLy3Cc/1xxyhcT/1Yp3QDf+973OP/88+nv72f33XfnO9/5Dnvvvffzn0hLpbuFf11ofJazHRN1KqCDD9MzqU7JZAzwPkbM76FWJwNJaCzaxRiGnRmiuRbGS7kb1ZBV8wg7Ieo+cIMiwqWKEDHPxuCwlA/h0sb2zMFF0sV+TVpF06Hk9dD4ta3Eabj2OXjBcUTmtwixhJR1LVL+Yy/uKncxxrdQ9GLphZjobCIpsaOIgsxQtPLYLCbD3oxwRd3QyhQqzFu5ASyo9Am0rUDPwnbeQMiFTatyJZVBRhH5YiwV4GOxPj2Dqp1CYGgTY1hEDNPFxJKZcCt0xJLiSgTgKwudPgtXHovEocJTrOTDkGh6pQlYwF0oZhOwlnV8Ep/l5HkjMzgLQ5F17I2uz6vLLO7BpoE38nfA6DVExZdArUigejkqcydaPMsYb0azCuWnaF8/hNQC1EyY8zilcBEQZ5SOy3YCywYMrlelt1BEYBBiO0z3Q/jiPgQuFa6lwkXEz3ki9RDPFGBQdJGLjiLk10gW4Zo3I8UiinIVo+IzyZE6bhuDbDC+Y9jEBpQFhGQ5jdTojdiFuwgFYAlUYBBRwppxwWTiEkNlx8VOXUWmoZbRFHi/hvEjAEEgFRvaXoG2X0GX3pk0ixBy32lDZMYYjP9NdHAlQm6HTH0TIXvBH4fRp6B9Cbgdf98N/C/Blq7f/3ZGzT+CllHTwr8qRriYIT43aavFtqzY5DkRQyxn13pq9mRocpTqy7ggxTx25jdN3pVH2ZnaVzSANBHz9GrGRT5ObwVu51XMYj35RBncZQ6783OsOrF4KoypUvU/jOYebHkitnUqQfRVgugzxIu4QopXknb+hMEwyucpcjmKPnr4Ac6k+k9bgoA1rNSvwdVFAqnw5eb5dPOe60d1e9i+QGlDJAWFrIvCR8aaDogIytksqUqVVBAik7ojAKNujrW5Xhx8lAzxmqonCzDQV83QETxG2XYppHO1Pdh4yZgVHikkGgefDn5COvGiTYeIQYpcisYjzykoOrZ6nprnbBkmuBxZaS7cpnIbELIXg0GbcUz4B0TxCgSLkG2ngTWLIPwufvRx1LjBHoCxvhzaEmTEsWQ6playBqjyS8Y5E80QioVollPXlTcGS0ex6nh9FneiTT1IlbvZkBgbsTETe8hUw0dADR1ci8/NWOxAmuNgbQdCF/BtxXBvGzPWjCL0hCEU5WLjpuy6VN3Z9DWFwaaB91vwrwG5DSZ9KoF/JEb/FgCpjsRyrtpsEUStnwazDiH3RohNZDe1MAX/cXVqWmjhPxli2v+Kmw/ZTH/OBCRFejgYH4FFB3P5OLGoo8dT/IhRnkCxhBRPxD0Zg0ucMp01JaqkCLHIUKwbNAAeaxnlLnoSte3p4Ivf4rtjKA5CcSJV/ojHHShUsiBFaLOaYnQjZe+TVDLDcfqrKbJRvJs5+hYonA3R05B6O2RO3uy1AtjMZY68jg3yK/jc/bzHC0ejIurVbaU2ZKoBxbRDKvQQkcCqSshCKBXGhHWDBqDDKzKcygMGpEJYGonBIJB0M0t8gXxqP4y6hrL1FUi8ZlZi0MT8mAhFpV6j1nqemjOKHtonEVj/XhT4PuN8FkuGTOhHS6ADREcyRoEJv08UnAVuTC23xdFIZmFbH0HJ/aH4AUR0F13rEv5R5hGms7V8bqbIu5EoBBqXXaiyvCmrThHWM9EADE/is5L1fJeIWbhIHBYQcg8QNIVJY7ST4kBSdbkMMGpbjH4YO4hA02TQGAANWgiqtoNh9Pknzn1D/AOY6N66QQOgo6sx5hyEmL5eUhh8hyhIpCzEtjipe5qyAlv4x9Eyalpo4V8AeY5hkM8DE8Uie5LaLJuCpB2bWURspPk1PfGKTzOTRUx8hQcUuYP34jXwNzropM1sIG2qdJqRpBWBJsuD7ECWctLqRNsBf4VNGDU+t1HgxOQ4RYE/EhCHeoRqo8MfQxIxbC9mXH4UMiBMlqwoIYQmYi2MnQzV64AIvN+B7ITUW553HtPsxnwuZw3vpcSfmmbL5SV4SbVvJ+hEOwHCrGs6XxgDMkVmxAZrMX73ycDnCN04ONPue83HY+gdHcbVecozv0ZEFYfF5NivdgDCOR7F1UQMQcJ3arxbkg6giyyfwGb3573GFwIGzXiifh4qi/FUlpyXyGOkftikDh2FP2gYrUZHP0eqOFVeyl3AfSVwd7JfgTu9YeZzMxpFFSchkN+Jy+upNEjN2IFukgIQzGKVPgX0Y2gpGJc28/gAac6lyk0YilS4BMMQ0sykYySD9i2E6EB0XA3uAYiuS2HwrRCtoHdsR4R1V13gHKCQT1NN2cRJ5nPZKoip3sBpCxMCxgREwakNG54hCi/Dsj++dX22sFm0jJoWWvgXgMRiMU8zwnfxeYouTsdl0fOet5D7WcUbqfIwARbgoBJhQEGG7obS+wBPcxlV+pvSraGKjUebKaDQGGC9XMgYGRayhsgIAhSuiKvjtjFOxAWUeRseHlmWsJyfsoHbybGIxbRRI8AaIgIGqC3jRkgi6x2keCvj4vSJUYiYC2SLkAxvBf8qGsUW8e/YIqMmvm6LuVyMz7OM8nMqPECaPcnwKjbwCQwheft40t0n4431kG4IYQSWxLFOhrmxeKYDdHEchmFK7peopC4nXU1kCqRkZnGAtKeBsc1WE+/gawzxTiJWYWhHMJaMVdLBjVjstEXX9vcgrnlzFh43keIl5Pk2km4EE7WHKk4K1/kWWY6dcr4QszFmHbXqz4hJHJ6+z4K/Aoq3QublMHt64VHFDoyRI0qUJKvAYr5HhtWExaNwqs8ggXLWIrIFQswhrb/ADO9kMjo2Jje4PXjus+Q5BJvtAchzVnydw6/FhLfG6hNmCDN8ICL1Cej8BsxeFnPGqt8HfRdGJVl5LkRJxFCYNJ1c9nwO0klzsytSfRAdxYaftE5HyG2mHmgMpnQVohph0kwU+TMbpx7bwj+EFqemhRb+g2DQFLmViCHaeCOKTNP++/ksG7ijTrQEQRsjFOgAE2ERkcKbyCACMAZH+8xS65PQSvzKWMUCAiwMOfy6ISXpZBsWcHUyHkWFNDSk0vZwMWkO5YlkUaoh6xfpEceRtc9FDB8J3m+oGzYdV0N601yT50OVpayZVPemhy+RN+8gKL8D4d9GZHVhsqeSlu+fNrRn0ATmz5jqVSjvNkT1KWSQpDCn3gC9NzQdH7CUCtchmUGWExA4xErUNhUuQLOKFO/FYvNkaUOAx9NY9GJtoVyG1k8Q6usQYi6Pyd8zJOKMI0XItnQxnxspcTmjfAIw2LyMHq5FTnpeam0F3hFgnkXIN2G7VyAm1f7ZEvisYTmvato2x3yPNnE4JlqBHtsXFfUTqdnI9rsRah7heBeNhHMDhG33kxZ7Tmk/GLKx/UkVliOg9y5wk3o44ZMw8hJ8x8RK3QmsCigDdNwB9iu3+tqMXgVIhJzG06NL8NwHYePP4iG1QbgAEGC7jyPV80t7tNDi1LTQwn8diqxgjCfIsQ1FyoxyHTN5HSkmpEVmcwAD/JU849gEWASM0o4iRIk4NFIkQ45K/RxtBKmgjJC6ntlRpZMg+eIOqRJnshgMmgolcvwIjyuQzCfDfgzzaQxlMhxFmsMQSLK8hhKxkjIGesUhKJVGmxWojkugcCaET0HqqH/IoAEY4IM4eAg0ERYhFgWuo0OcgJu9nkkyS9NCIHHEgZA+ENJA9c9QvhzUPGg7DYANnME4P084I0FCyo7wuItuLkIk9YEyiWDo8yGiwCqOwmMpoJjF12hnqscq/jb1EcJF6yeoBHsBARGGDtVNxZpFmRwRNssYZS4hWY4jxevQDGOxPYKppfd97saXf8VO/xDHHLBVKuCTYdGDIIsxZWpinvaGYyD/c0T6jajOdUA5NsSFiK8pHJmySqXC2fDMwVC4HbJ7wXa/ArsPZAZDs76fMIBu8IZYO0DmSxjOaooBGouYLz9JOXtLIeT86Xd4D8PaA2DjaH2T0iBGwGvflRF5KAafLJ8hvYXPRAubR8tT00IL/wEY4n4e4jREUngPBCEWNu28gstwmSAjbuQe4GA08Bg7T2SfEAswRgjyFKiSIhcWyetxKiKNEj7tVkwYHmEuQ8lXfYQiNBIhLAwRCzmGJXywaXyGEIPXJNJoMIxxA75ZRVr/AsPD1Crj5OQjyMlhjn8Aa5gHVOrrmG9scuI99PKFpuM0ZQLWYDMPyfSZKSHr2MCxGKp0cS7phD9T4X7WJgaHIsQmaIhkCGYzgNjKeqcjXMoA51BjgEjyU2RZInM/Zf02DP1YvAHL7E4QfYFICEbtjrrXrUiGtQln5NVcR4qeafsMeI6NvAfDehRrqYUSc+H+2P49IBcQOu8hlEXSHIjDrtO240XfwdNnI7TBsb6Aqz5Gibvo1x/B6H56xsfoKJVAtMOcYSKxgiIfIWI1KU4gZT4Oa210hlqGNnIkjyh1QGVVPXFedL4NtvsVxrsJr/p6bE8jTMLw0Uug70G01IzxMQLuxuHVpMs3gVldN66UB1pKpHMyKnXhP2S8NaH/9VD4HXUlhQzQAZGAkTlZYtJVvKuDO7H+jqy//xa0PDUttPAfDoMhYjUCl9VcB4RY9bofBpuAgDGGuJfZDYX8etiLIRwiIsykRdYAaSq4hGQDnwV6WbycGugXfZR0ilHZBRhcyoTaYbfxFbQHG/FUL8P5c5hpvW/KWAXWlJCOQNDBm9EMUOS0hj1jROYvSHHUVs2Hxwae4YtUeI5eDmE+H6wbEcJMpLwY4tT1DvOqpsLJJe5jNe+gFirr4zw6eUdTHxGjPMsr6sKSJY5jAdfishc+yxrmsTFxXqKYs9UGTdzOpJRlE6HNwwgxDyHinKWKfh8myawKuRFBFtBUZXMoKUcZGx9NBy6d0/YXMcwKXo1HijxjSAMikQCoiJtBeozbHqH8H0Ayxlfp4/op1XdD/SieOR2EwSgIgtMY5WHG1UMoo5g9OEg6SEjXpggYxjmeiMeBiDL/ixLb4eCiSommwQigx+PaLg3Qxd9gdD/KPQTXLmGy9yK8p5DGgsxbQeYocjoev47nhV+hUkfievdi9KPIUFPJWsRPxk+RoSBrTxThi0U1S2B8tFmBEC9FIsC/HkQanDeDmL6sAsaPQ2CJUVYv5K3ElIKUmnXQMmr+YfzbyCS00EILEzBohjiFdezFWnYlyxMJT2ai/JtMckxSk3gYAkmOb2ATkSVeUGo/iogsFUCQ12PoZHEWQLsZY1R0E7824iU6ZwrkgyEA3GiYWcVrpw1jbA6CTqCdxteRFIu3ek6e5mxGuQePdazhp2xIpAaC6K5YiNGYOFvYGNrDAlrf2HT+Gk6gkfszwKfRNKuCj3JBk1J2gMtwoqitmFMn3mpkwjeKxTslH2UpZ/M0X6GyBUrgNbTzVhwWAtAWFJlfeYagugdepQ8v+jYAho0N45YgFuLJHgRTnfASw95cuMl7NMJ3qJLGIOqE3hqEMQy7nYQ1AcikzxLXTWkn4o/Jgxgv3tqWiPK1RIziy2HW9vZNjK7tkyAkEU8xQQ6X6PBOcHZESBBR7FQRXSA6JyJHAjC2T+AtxujnEDKFtF6DyL4XcieBjHXJQp5qmCNNIEdw0g/hVBejhUQYjYwi7DBCBT+mWhKEwV+JwkvxK934ldl41YV4/oFUvHb0SBcUToDxI2FoDni3Trr+AcY4ldFeF9+S4BKHLJOpk6HB8qI4fd0IJPOx2Hfae9LC1qFl1LTQwr8RqixnOSfxFAcxUtcHApc7sck0mCfxK3wxJ9PFS6e0k+J4unmGl/EztufjzOUIlnAE7YxTowjnOLhOCtZAUeamfF0GMk6FjRHFukBbg6iEWPsxMms6kWEH0EckTseIrc8GqrCciUVRUU4KF47qw9DSwgiBwKB0gG0CJM1ZKqaBR1Qf3qS6JYreKceYJD0+zUuJsJP5F/jY+LwcyTk8yQ/ZyB/o53ru422M8dA07RhKXM8wZ1HiOgwGqSW93k50VA1uWGHQbqOgchgiIv9UAh7BEY1cDBdHHoOxT0RbE6ENAA8LD4c0czY5h4ba/RSUyOELB2PACiKsMKobKRPQWJPaK/MQg+YvDY0a0GYih1oYQiWg6zLovQXavwKAw2FJ33FqUmr454josXiVsoBsG0YAaTC9QBsYCd5sCaZC4J/OpuDWVeBjQy1VEy7NnoYW8ceATMZXM+Kj4EBC/z3Uqh5rITACVCSQuoGQbDbC+KEQPZfMoWGEt1LhUqrWXRRnJKTqmnqDFU9h+3CFbNEja86mgz8jn6dKdwtbhlb4qYUW/k1gMDzH+/BZS2xmZKiQIoWHi8defJ+H+Tg+gwhgEacwn3dtsj1JLw69zE+UoQFKvI4qS8myJ44zn43+LSA2EgiHspWhXgcnoeJldTUu0BZvJUzthdG/whJvnKJ/Mx2i9Z9ADl2EhSY7Klg2cyHL+/5KmpPZi1NRZhVW4MZKy/aeU4yqRnSxPwNcT40D0skrCRmjZLlYSX0YhCCSFkqejKWaeT+SLnSd/ACQnpJt1M57GOKrif/GkKaMk9SWUeRYzC2s42Q0K3B5BbP5BY8lnpwJGFbzc9rYhgLfRTNEluPw+BsjnA4oRrmEMX0mO46sIKd9RttmMJSeBcYwJgTdviIfFfC4maz4MCJaj6jeglV9FiEOpCv/Y0acDQh+RYSiSJaVzGcbXo3czGu/i4/Rz6V1w6xg8mzTv5JUGOK5inF3QkIUAWneQBvvqZ/vs5bnzLEY6WFV02RkGWEMdkFT6TJ0MkKFNBZvRmSPb+q7jQupsBuatbjmMER0yMROAai5MLg0/jsDuhPK8yykHSXyWSshqoCayoXK8F4knQTci82+pDgi3uGegAk/gTFVjIyfY6mTUojGnza920zeZoAwgKGPQfYkTPYAQh6fmJOcRWQ5qNCP9VDlPLBWI4C0PAvkpo2xFrYeLaOmhRb+RTDOIzzLV4goM5eTmVl78SYwBPisnnSWpEoaZUJs0c3eXEeRp7DpJs3srR5Dlt3JsjsBTzEg9kC742iToihyGCykichSwsfFFVXyqsBofiapYB2REkTOlWCuRJodyIh7kZuRKijwNyj/nLZ6WMCQrxTImQLb6fspy/9LNAUM+aEKxp1PaI+AmEPK+gNKNXsIFvNp0iygyhq62Z8OXsY6TiMSCivx4BgTV5RNNXAmaljIDaziKEL6UcxgIb+ewoMRSBbxCEMcScDd2GYRXQNZqHSBtQPl2a/DVo8lR/+RjbwBa5qCehKHIY7G5z5AUOZKFLU05YhRumj3C6S0T8HJMJ5qa6q0W1RZbBmQNtsQeAdBcBd2EikzpooYeyddPUOMiUVU+RpZyuyCR+/zaIlp1jGDbSnwLIIZtJt3EKXPx4/WIJyIdn+MktWGkvvQyXk4k+rrVHkMI3xAMJjuwQ4DFg2sZXyGi1RxGYEcJfKcMKXvKvdQYSWK2WTEvmDtDOFSwIAWMPrURNipDGEGLBmSaIqilt0H43Ng9z9A/mWT7psgzZGkObJ5u0hjub/DM68jVAn/KtLYQTjFnhHGYIRAK4HvGGw/uVsCdArQN2CN3IDQl6DaFhCxBtAgBXr7v6LKZZBZcHeH6FEQObBaopUvNFpGTQst/JMQUWEd3yJiA23sxzK+SZSICj7LF8mxA67pIozOQ5i1WPJYMmoPSjw05YXrGh/DUqR4JfkXgGw4zpfqXgshIEWVgB3QjNEh1jcda6wN+ErFBxqDMAYreBSfNJb9Zyz7NdP28TSn0pdvI1eJlaYFMJTrYAf9ZBILmMjKKudtbL0yObNAIVxEjgEsNUF4lVjM4bimPjSjBNhJUCNECwW+y3SJTR7PUWYUsBEU8ViF3ZAOP9FPll5uxKARA++E8tXxMIO7oPAopiNVz8zxuJe5nMgQf0lq1IDAYSEnMtLEoYiQ2NS8TBGKSMShEk/ZdYPGxqfdjCGlJhSSsv4aLveRaqDPxP6GElS+QS71eiweAwSuOA+ZyB9MB4NhNHoDyqwnI22MHKJN7oHT/jB++D9o/ThpuQ95+RmEmD5U4rJDHBNKjEgtBMq4GNWs565ZCUzUgynxS4b4KPWK1WIpvV1/gOI5oIfRIoccvGTSfUi6GQHZD6oEMAbLPgl73rbJ65wMzY0YNWG8GiUxZYFwGgU3Qalv4HMBkVxDJZcmo/8Xq3oORo2AAeEDo8CGk+nuPIKxhS9Bi1Gy5t2I6Al89zmkPBJLKpB7bPH4Wtg6tIyaFlr4JyBkjPs5gBoDZjV/ppMxQhxKiVDk0/yY9eIRhNJsHz7NzPBXzBM38Df5GIqJL0lhDGlTATH0go3PZz1VLMDCJiLPoXTzUyI8hswcdF10UNa5CPFgEsOGJDvL3w9Pfg6pXk6KQ5oIqiFjrOmbSagUuXKZ8VyONZ3zmGtWESYk24l2qXsp4mL8Ec+afVmiH0fKTVMDu/kYRXMLvnAAB6Ej8qlzph5YvQG7+B4WyhLr23rxbMkgl5Fjr022LZBQub5pW7rkUWxP1cMWEYpxfs3eXM9GbgUMM3kTEpdx5hKxnpoBIDmIIZ7FEKAwjDk5Bt12cn6ZgWw3GEM7Y7F6uohp4aF8jEoqj1Kamf5oTKZNxmJKZxGG5xBlkwq+5mmy8sHpVaSjB/GrR5BRa0AI0mGFgp0jUE/hilfi2tMLVE6Gy0Lmix8zGH0e6a+gr5hG9NyAJc8lNPcS3z0bi5eDiFPoN3IwQVKHpzb6KreBmgXtP8KEjyFGdsW4IGoJU+4CTHYUwRhyLIsoVZN5NKDLWzTWOsTCKZvCzI5k5KcI/fcBPlJ+GKt0C473bPxcWttB1yH4qqbjBNb6eHwCDcPXkk+/B2aciS68EVVZhQL89Dnotmtx5BFbN8YWthgtonALLfwTcC9vpTHTxsYwRAddjJCijCRNf0ImNULylLUdIRZCP0iWl1M1KQJsQqPo1f04zMHigBdkbBFjlBP15JjwajHCLtzH9QyJtfSwnAwnkOYtZPgyoZjw0gDIKL4uQRI1UN9jmBMYDnaD4J56P+3sA0LQ3zuDZxYsZLx7T/aX1yA4HKUnUpllZLD8sMnICYTNuGXhV1+LMZOqyDYgzS70iJPrdWNS0icr/OaDgqUw8hbcYCNtXpnFw2vicMakinwh61nLkaxgdzZwBoYAJun8KD9CJ0aDRuLhMsyDOHQzhyOZw1EoUggE3VyFw95YbEee81nF99EEREgiJFJ08Fx+Fs92zAYCUqKCTNQYdZKBphEoIrQt6e/spOz2EFgSz41JrXbgEy/2EZqlGAamzJExFaLSQYRyTeNWMmEFd1IF4IlzAkL/f/Cr+xH6Z2PMhLJ2G/uxSN3CgvRyUr1LEanX0mZ+gh3ZqCjADcYJgg+gTUC/eRUey9BYNOY02ew40Zd3cWzTdgGdxGKZ809Hta9FZZciFv0ZUefRSFj4mWnHvCm46gNgnNqFIbQmY/0aZb0LJz2Oky5gW59AeL9NRgcifAyCJ6iRmgFE0EzBibyLqHp7oCqr4v8aBpyyIQjO2qrxtbB1aBk1LbTwT0EjITV+FWbwMEAbJebw8aYaMkbE2tZS7Mn2/JiZ4hU4xqfHGPLiVHLy7k2GBLYWIf1JqGQiQfxB/syD/Ibr+BIDYoC8+C7t4hI2iisZVDMokCHSAuUHqEjXX/RVa6KcftXuJxrfH6LlAGzHN+jiYCw6ybMXO3MpLp20yavIiB+SMe/BDj0c38MXLr6wCYXCUylKVhZpImT4Z0z4681eT8QjuLEJiACqTUKXQPgYoOtXa+uItO6ir6HCa8hq1nEUFe4lYohxfsEYl0DvVZN6S+FFDgUylMlgkERozDTp1Tbb08sNzOCvDHEPLhVS+Lj4gMFHMMhMVstFrBbbTPCCkvPjDDeFxooNSCUZboNKm8LLWJTabaquShZUgaALMV3BPbMOGJ4S0rTYEZvtGuZpA4z9BIrXExVPwSudz3r7KVbZFzGo3zbtNda70PdjRSM4kY80Gm3+REX/gFBMTm/X2GYu3ebb9S0ieZxqmU9kAPuVCJFFqB0QbS+DfZ6GXX4N+yyF3jdvchzTQQhBm9qAw/9iiY+RUStRcttkn4uIClC9m8msYSHnYTk/pyZqGXbE/19rs+B1SAKhqHRKKp2C0E1KLUStAMmLidbsttDCPwEeFmmChi2iXmemg1fRxetZzm8oEX89z4hCcta3sdRhACzkh42UkxcUDouwmE/AmpgqgsU4+ZhDguRZ7mVWolcUMYwBCqqdgupk0cA4uENgxWZC2W4oAGcMwngx90QtRqLYjvOm9C+EhSNORJjfE4ofIITA8TVj6WzdI6S1Yr63Gi0Uq9VFeFxAO4cyg08iUGgCRvkzhgiLHfD4K7FnTDZ5AQCw9wZSQBAvSGoB28pbqaktF/gCJb5OQJaJ70BJwErIvRfcdTB0Bsi/YIkVbDu8lv5cF2PptsSTsldTKT5DSIWlKPK4LCBgLSVuru9XaAQ6kRadwHIWs4R+XEoYfKqk8IwLQmARkMJDCpOkrsdGQCXrggFPWxAJXPkcDksos4yn9TFIM0oHBWYIiQo1oV0bp0XKunyi83ADrN4Nov5kjLBxwUxCGXvpxtRDZLiZ7CaU24Vo1EQSQIpQX05DNBIA13ik9GNUORwl70SKXoR7OKb6rWTuALkYYe8+6cRZ0Pumib9HvwmjnwOZh1n3gT21OnVgbqCqP4LBIyXOJqXOmDpw7wFY/xowZVAS7JjzRPbT4LwMxcuQ6ijAEM69hnL2aKQHYV4wnmmjLSywyppHSeTIWQUWD6/BSf1gaj8tvGBoGTUttPBPwAxOosp3CHEwSBw8OlFkOYFuzgfglVzABu7GIs0MtfdWF7WbjAobWckNgGAhbyZF95Rj/PBrVKLvcZ/zUmaIgDYK9LMEiWBnHiNFlQwTOjednMQQ3wFAkkZmPoq94RMYAUHO4DpVvMRb01EoxVXprZ2n9DsdLPZFMIfIXke66JEtSSppB0tH9FRHUMawJrMNJfEMEDHIhdjMoZOjeZoPUiAOdWXYkT7eic89uOxLO5NSaK0F0P1nKH8PIXKQ+0z96ztigBJfT8YTEOASL60R2VqVZnsWdBwGhcuAeMmeWRxjOHUwrtiZJXyo3lXIKE/yOjQFAGbwYbobqhbHLSsiFCnmUGBCt8gjRcTXSTOT1RwTE4ITnlGITWhCUtqrk5Tj9gRlmaEg47LyI+Yw5nMpK4MTyeCTNSWkpRnO5sl5FZQXMJzqZNTpYqEsTFROGf9p3aCpX4ulJlLsDQRi1SbvpZJ7Y6uvEERfJqSNgnUUqehCnEjiq/j5SEVVXGrjX01gfoErPgbOaxFtv4DqpaDmQ/bLm+wHgLELYOTU+PeoAGtmw0LdVA7AmDEq+jhIvGJVcyrKvAYldkFTpsA3CXmW9rFlWCYh8kQmFruc+XsQE8Z6LKkgUHI/Kp0ZMNW6F229msWw7AYh8IRL2KVYKK2ENdfCi4GWUdNCC/8E7MQpFHkTJdbQya4406gj22SZw2unPd+nn0F+gyJDD29FbUKnqIaQCnfyEbzEs7KOW9iPi1GJNyLkb5TMJ4jEHfTLmYTCsB3LsAmZzxrGE9HLeJn8PgP8EguPNCcxl58SsJYc+2O3zQV/LWL8AuySTbZtEengUZwqKBYi2s4Fa7ctmiMh8mTlnQTmZ+guRd7zyJUm8RGEoksMJGGlFB7LKHJP3aABKLMUl0/Twzc33Zmzd/yTwJgRKvokfO6sexMcfCQajaKTr5Fp4ps083QEhp24hMmcmxW8r27QAGzge8zgveR5J2NcSZEcEXHJ/jwL2IuzeJQv4zHELA5kHm+in8+jsVFNnj5wQp92LyRI96EZwBcuRkChsaibgH4+T2+wke5wDIgzlIayHRTSOYSj8aI0RipGuJ62WoZW6VdTpixXrFDMpYm9jCkyHLjJ6TUYAutAylYfK/ghmltpo5f54UoyYRmDYkz14kuLtKkiMIyyDIdrmcEbkKmjIXX0Jttvwshnp26r3gfpWMoh5gOdjR2ViCyJVjUO1GoUuzDKqVS4FjCkRAGVeFDj2jzZJoOmEVLMIM11VMyhYCCUirLMNBlTZZWlyF/Isfe0bbTwj6Nl1LTQwj8JOeaSY+7zHzgJIaM8zjsIGMUAa7iIHfgRWZprXgyzkfv4KxLBtkRUGUQRJtpOA6xgWxwsOjiTgC9gGAOpkFIzn1WoBt2hHONU64aTYYgyEYqZnEuO88nxgYmOu8+H7vPjIIMxGFYg0h0IMSGqaTCEPIMgjbWZOZBiJq6IPSvGvQ/CCaPGACk5WPdKpKji0sYw505pR7F1ArZV8xlC/oCMQqRw0VLFfBtCIEcbxzSf4LwF1PkQ/S3+O/PZurenET4rp2wDmMcXiehmjJ8nWwTD/IkuruelvIk8v6CmneWwAKgF02LYkU93ZYyBdA9pdQoVvkXNX+MYD19McJuM8ehKDBqIs+fc0KfipDBC4FmxDITdWHhwEhlbiAx9A8Ok/MVEHUeTU8fjsGjaawPYwPkMEtcGSiMpkaGg8iwT25I1ZUKpiIQFpMBAhXZC7gHuZiM3sTM/pDkpfCpibeYCkdOO5cWctXqpQHvb5G+DV90LFTwS5/aFGs+1MKoXK0kx97iNGom/0JEjXfFjXo3sgM6pz1YjLHkAdrQPBHcwqzpEuT1LWVJPybeIyG4mo66FfxwtonALLfybYZz7CBhGJyycgGEe5ySCBvJxhTI/Nd8mFX2ZxcH7GYrOStzoggppRulkjDYEBUY5m4gx4nxgQbcYplOPIJJspglmR02AQZCjQJU0ZdJUuXaTYxVCIMXiSQZNxDDvYgOvYIDdGU/CO88LuSdYb5lo2zoaRNS01Cn6iXiWNJX6eDvYhcwkg09TYIyjGWQeA+zBuPkrvv45vr4AbQbQ+hncYY/82oCelUWyxTwWe5Hi3czgsamhQNkGnfdB+83Q+RBkPzftJWQnCT8qOpDEBsfkMYJBs5EKF1PmJ/WtXRxPB0ch6cFmR1SUwpMuz7QtomC3UeEyGu+aI4LGJukdSyWZbck8Qlxv2RgMDpFMkWMfZjQaqu01kdI464qZ1yMWj9PR9Qzd6ou4bB83b6pNmVDxXPsMNoxfouvCq0ZCqCyUiA1GSRSH0gTUFLTHeYBlLGE1hxNRmnZejV5DUN0Jv9JO2DlMqdNGS9CWoNjTCZVLYG0vrJuPCh6ZoKMZcKoR2aFxROItdXgpNfdcZEN13o9g7lMwbw24m/cyCiFJ2TdhOeeiZMiOg8vZZnQlMypDzCusZS6n0Zaourfw4kAYYzZNWf8Pw5ZKl7fQwr8ySjzO47wzSYOdwA58nw5eAcAKliG8felNDJ2iyPK4tRO+dKmxi12qbM9ThNjYRNgEyVqoyEYfoKSuB7E6KSLnJmnEMUTDXy6vpIfNZyA1osptDPG2hi0Cl2uIsOnhpfWQ2HQwRkN0HwgJ8mWMiQ/jmcsRWqOlBCGokiNEAiGKCIHAYU9m89t6O2O8BZ+bJwwirXFMSBxK6cP1347T/42JfgExfwBUs2zC1kITsYL3UeZ+bPpYzKU4xCTWiAqP8V5KPAlAN4N0MAooMrybPF9taitiJVE0QKl6II7xKdg5hpxOsqZcT/2u3c828QN06f9oH7gYpQXGiYg64naqyqKQnoOSuxHQTUSJTt5Fntc3D750E/iPQPoASE31NlT1Z/HN+YBFSnwPR74rmbuIpeyGaRAHrZDC0InLAE5D6K72rJWadJAMcxIRUIf9mc2VU/oOvJPQ4WUgNMbEhlI1lQIjscz2dKy9L2lJEGUNxprg2EsPZAj0jYHMoxlhlM8S8jRp3kyODz6vl2g66PBpTPEgiNYjzM7IzptATdUOa2HLsKXrdyv81EIL/2bIshNz+RiruKC+TWCRTsISAFkzSLbBc5MzJTrNCAPMTLYYspSIkMRLSScOrwARkOY0bGtPXL5Aga9S5S50A0el1mPNG+Dz6FZeQfKVTm1hMTzA2YTYtLGYV/IdFKlpzxRCgjXBR8gHryeqXIggJJSSsWwOhwKhyBDiUE4WR4ulVFgIWLTxDiT3TBSpM6AaqLWGfoRs5igJAF2akq2ztZAotuGiafcp0uzKJZRYiselhPyEuEONWxNgTEZY4jSqXAgKHCvA9QLc6ghu1ceKQsbzWSIr5uakIosOdSBi+DzQcVjFhICObUPbaGxjUwgfx1cBsTfvHmzxa9I0eCayh8Q/0yA09+KbWiabT8V8EGO2oSxuocxvydPFOOswQIa9aCMi4FnKDbWaAKwkPNpGkUF6iRB0MYJMEsZ9Hpy2f1NZDlZsyAlABCZOaCOD6y/CS92HjOKaR6oMXrvEijQiBBECqbfHmVKApJMuvrvJe7hJVO+DwhVgzYaOjyKt7aBj+nBjCy8eWkZNCy38G2I27yHPPqzkmxgC5vA+3AatJ83yJq0gACl08lVsyFBmBv1JLRxDir3Ic1lTHxJFO2eSR7OeVxOygphrIBANfBuBs1VjH+ScJq/PEJ2ExDyOAsvZwH3M4tVb1JaufphaRV6lNa7vs8qZi4+F07BghthYlJCEjHIZ/4+9846TpCrX8HNOpc6TZ2dnc4QlR1GQrIBigGsgmPWSMQAqRkQUFJWgiOGioigKgoKAkgQEySA57MIuu2ycnDpXOOf+UTU9PTuzgSxQz+83MN1ddUJ179TX53zf+ybwaxlCQhBtvdTJv1n7gH0TuOE3fFIfBHP2psdDlR7Op8ITZNiTFv6X9f2jNobEJMu2ZPgBZbbD51kSHIhdl5Qc8HQY0ES4jo3jelhlTaMKt2fSfVUGmxIYIsDSAYG4BdNeANX7gQCVGZusoRSpyipK6RwmVu29qPDY+KBmI2jG1KwVgpJMMCIOrWktaSCBgYeJ4DZ8JBoDS4drflKAJMCJkp8lPlNZN6EfS0/Bi9zpTQ5EiHCsZu/b8abeMToYEpcHOB/+OxXnBJS4EpWL3gOtMaqdOINJhLsUjYFoOhEaf7RZ89wg1Udh5e7gRrlHPefBgqUgJybwa+2D7gHRjhAvwy1YByBeYrT9BiIOamJiXqdk2IatN/Ctv0W8m2LgYJnh0v6QaKAgstjapSySzOUH2FyLy42YbEWOcydtB0I7gCn8lWHOQ5EnzRHk+Q4e/wFMGqMS9M2hwv0onqm1PPbfMcwNrNJsqMWx7BAo6RR5kQM0NoVxrSskEo3CYJgGFBITnwoJkqKBjO4DitjiCxhif5h6B5RvAn8YSs/g9hzLcGsCw5hPI0fVcmFG0bj0cgCax5CYdHM3AocG9kbSinwBhbwCSWoS08cQd8IzWgukGrsOAmjqrVBtFChLIFQFWs8BvzsMbEwLRE9dCwG2drFxKZAmwCTBNiiWIpixScd1k72RbIliMZ6w6oQjw1Ax9N4KcHBrwWMVCyFskqpCkTS2MCeZm4MmLKkWWpJRFcrR1qXBPqTkPxDCQHZ8Dus3P0W35xGrQVq74CdNhHpqwlgDZx3K1ZEpg4KRv0DL+Rud3yYp/h28aAVSgPbWIvovRLR9cdxhWj2HW90X9EoQM7Gd2xBy7vi2Sstg8RfA7YaZJ0LnBj4HQQ/0vQ/c+8DaAVqvA3Pa5Me+iYiDmpiYNyAWTVRTv6dYOpa0X6JopXFNEyUlW3E87RwITL6VMBkGU2iuqypKcD0+z2HQiqRxs9upEq181AUbWfKMGjl2sj+tNbfqDaP0UvzgEoS1F8K9AqLtiR6rlVFVwgoOieiGaOBjRCs3kgCNwwgNEKXMNog1BHI2jdyLrFUK2WhrN1i7JdobxiprmpdCNWHTN/9G2huuiwZTBnzK8kIkD2FAlAgrGeJ7VDgFgBQfoYkxpdzJKPA0a7gUicV0PkNyksowg+2weQ9utGJhuR5SjUn1ichCSUiwiho/CThpsFph2g3hNfCuQZUPZbTKp+LY0YoVpPwyDZWp+Kn34tGLoJO0/CdSzNvguIVIkZb/xtPXEIgbcLkZQVArhtZ1P6Mbl4E28YWFL0JF5DTvIuDP49o11TxKYhkIFUkKhFudZUwC7iXPO2lX1yFSOfzDT0U+8A/EDtvDHmeBfDyc3mjaqBBj4o0tGjkAItCgRsDrAesl5EvZC9Ea3DaB3yhAaYziOQj9XnyxlgQ7YdCA730DdKSirNfge9/Acv441o7W8OBeUFkXXqUnPgGp+dC4+8Q+h08D98Hwd+9xGD4VWiLBxOqdMHQy6CrkTofUoRPPf4MSJwrHxLzBGWQxq7kFCycS3XvtkhVdltHF+D/QBnNo558EVCcVBFwfpddQdrcFCoBC6l2w5OGU5HdYJzP0icgKQAhMKjh4NDJQS/YME4e/xCB/RbOORoaxo22PRu7DZCvIn0bBPRfbKCIjEVn5cGgeXpPB3/kS5JIT0RQZnp+k2phEC0Uqcl10MVEY41aiWvgrCSZ3LXfp4z8ciooCMZsWduZq5CSJ01q7+CMz0GoQ0/ci5Wew6/bQNFDKQDgBE8f8K4Y8EFX5SmgtIWchzIMZlr/CNVfXtiobh2eiMvPxuYFwa8/AEkeQlJOvCq6Pz2p6OQBFDxoDm72pMILHYzi4taBmWOfCyAtAC1rF0ZgMUuRi0Ipc2aM/mQqvdzS2bDCMK2xqHqZa07pkCNuFylSB12wDkrS8E8m2lNwkIvBD4/CoHRloLF8jBsAYJoynEyYk5kHDyZA7mheM1njrZuG2rKk9BhgyGihbGQzamcF1qMpRaPUPaitY8t3YidHgWMGz74ShW8PLXiIMyra8EGYeP7HP3kOgcg2jAb22OvAbd8M0PoE3ciReysWI8oYSmaVgbjgofT0QJwrHxLwJCQhYqnciUejGqvo0FGbQNO0mmqwTNn3yy4Sil4ClGCyasIpjM49GfsEQxxNqrs6nk38jkFibuT0TqFuAMZ0VJR7AsG4gy2dAX01Bn40vJQEmCpMKJr1MYTbbkOF4EuyOwKSNDzDIDozmCYGDZCq4dzIYnA8JTWI0dUiAngqsrauaeep4UCUGds+CABM3MrBsoolBJHPR6+nSBKyADQQ1RZaQUj3k1DBV4dAvAypiLak6/Reth/CDX6P1IJbXM1r1DEQ5zHURVOgzBEqGPXvBWUj/WbR3LmFN0nI8HiPTV6KQU2hD4BQ9nIpNKVNlzHBVo3V5s94bAJPpTOFePB7BYBYms1AEPMn2SPqx8PAxMAgItBhNasJiKs18iRTvZcB/P0l/CC3Gm4oOymYyFMY9NzI9Q9uyERJrwc/5aNPE09fiaIVR9RAyTAYOAxuNjKYlCxBlLocHeEug/xgIeqHp65s93/BiC/xGb9xjgKQqUyZDQB8jXEajdRJe9UbCZHkT0zpp7JyVx0Dh1vCubAASfClwp/wDoZ7AEd9Eijq7h8xn0JVrwu4A3+lCq2vw1LUECU3Ciz4cEqql7XFy46/bG5VYpyYm5g3EcvYFNUg54zDSkmbttD78VR951fr3uJcBtmGYAxhkW3wm5jTkOJSZrGMm3UzjrheUSAsgRX0OgiS0bs4glEuu+2x2XvMkswd7kehodUYQYKH4J0UOJs/H0HgYzCHLxUjmYrCQHJchtInv/wgcH0dVx/WrU+O3UQgC+uc2hrsajDoaVRmmhQw/oIW/QpR0G2LjsM8G55VQ65jnLaUt6GW6v5rpfi8OHeD+C/JHo4unU3b3wg1OxVNnU06HFhujAxJqkkZrieICSKHVk4AMnbxtgWYQSZGmYpmWfIm06yGCdTjyi3Vjt7Hl5zfjnRlDkkPh0cun6eI9+CxlHn+mwg74pLEISIkyBgZoi5x4D00chkYzwpVRGrEm7dbp0miJK+wJSVhajM0wjMMCJLPR6jlMQKrwUyIVGGpMn6YWy0bSO7V2h8f8yLTWKPcSgsrnUN5VEydaXQbu8vAqlfNjW12EvwZydN1AI7CRxv5Yiacw7T9hJZ5EGnWK4cPXj/0uQJtQ2snCN2/B07+lpA5i3MZK8r0EzScQpMDNgXLGJmYFY/aiGpAUwxycNwHxSk1MzBsIn1Wh8V5EYBlU9FOvmtdMiTMh0iPR5ClzHlkueln7MOTbsY0f4gY/QIgmHPOisIqkcCH4TwOQqwwh9BR0tL1hU0Uyui10HVX+QoLDsTkUm/fV1Hrd6rvR3EhSq9o2iSD6jx4rYy93LsBMvJMguGKce3agDaRoJclxAHTwECOcTShYeDxmnW/W+kh1JwFGrbKsRXkY3hMwvD8g0FKja2+kRkuFSr4Ho7oSyo8gNaErw+j2k2hFG2lgFdCAbZ6NEM+jvF/hGybpQR8jAG2E93cvQRgEBf04Yh8y8nECHsdgR6SYmNuzMVwW01unutzFO5jOs8zjbHojOwUDRVYM0EMLXdyCz2m43I5mLZZp40qT1sogKb9MYO6FZ7+PEj8h0AKzbomqYW0Y+PiZBrRlY/FxLPERMPqBFgRDhDVZDeHFUcMwpMKPqU241VPbngKwICjDmqvQ3t9RzX8Ew4ThC9AjWyKcnfGn7Y/vnYUsLsMc0lSnz0SlK9FuXVh1KLApGi2AwmZLcnw0fJ/lApDrCy0CiUVQGHMt104iilTDaFWxGF34P8TQZwEPrF1RjU3ougKr+kBmXOyngd6DYMqDY1t+b1DioOYNjLssgci54IHIPYSZ2eG1HlLMK4ygGa37xh5rjZXc/ITgF4JGs5RfMsTjtLAbc/gIE2uZXrhoWT0uD1PgQsAmxymYhHkBlnkylnnyegOq1vpL+hUW9efpaT0SQ2fI6LMwCFBCAhItRhjkbp7lVDKsJcs8OvgJWv2T8AYYblcURApTSRw9HXPalYhZW6Pw6OYiVus/0N7XjKdccjKPQtIvWpnPd2tDMphKE+dv1lylWFhXKm9giG2h/HvQkf6KjgZVu6QCkfoRZKJS7WA12DuDex0YCxH2O0jio1mJoBMhkiB3QvNn7OLhyKgrDVSzorbigelSrR5FwvkVktmbHLfWVQIeRNCCIbYEoMgV6x3l4vI4Js0TG4giij6uI4GLxEAIxbr0FGy/SlGkKRg9zIhCc6+apHWoi2rKIjNYxlYapp2L2XIiOVG3MibaMDIPotzfIEQGbX8UKZoRgzdD9yFhwJAi3OoRNmgXENB8DvxzJ8gvDhdxGkFt5WOsBc1idGEJonwpwQJBYIOXFWCuCgNCQ2B6GstrReTuZIacQkAfFrMmqlCvz9xL4dkDoPIU2HPRC38BHBS9QwbCyyKG6lSevQeQpZ0IElHSF6BEOwNWgDQ82qojoMGoEAZbwcNQvAEy757Q9RuJOFH4DYq7NIHVEJVCEiYRWm1vmrf6TYtPnqXsgPRdZKBpKG1BW+NNr4iOxcN8hT7uqj2ezZHMZheGeS9QRNBMAzdisuWLaj+gm252jZRoBZIWOvgPYkPmnf7z0P0WUD2EN6ffoVMfpep9kEBfHbYpJK5pY3MMT8oH6OCZWoWUIEljuQOhH6emfeP8Bd+Yg8UcjCg/aJAHeZz6HCVFAzPJsRWzOA05bstp81is98NlNaBp9Qs06W1wrIuRa/cBe1l4kAbfasZNJdH42OaZWMZnXnBfAP7gQmT1WZQZVgNVc+O/vRteikQmv4Gzx9C6QFHti4qqkhxxJo78IkWuoZ+jxh07jSUYNDLC2eT5EeFaXqZmuNnoDdNZ6QIBPYl2Rsz5uDX9G0kL7ybDPArVnzF37cPjBzL9ObAmek9p3Yfvnoqnb6Zi9uGaGRr4CcmhEhS/CrKX2vpG5myqyTz+4C9J3947rh01Y/wOlQZK249VUwG1rT6pZ2G5AyDSyMRFSOtFBhEqwMu/Bek+glASvAC53u1aG3MIWj+IUv9CyLcjrK+ymkPwxUoS1QrTevsgAOESxo6WBTMnSgK8HogThd/kyGz4wa19+XrthhLzKmKSZUuWocwKwnQQzktbKalHo3F5DoMsHiX6uTN6Jeyjm3+xgONo5ikCnkOyADlO7v6F4fIwAWVEVBis6MFnFRYLJz/BnAVTF0P1XjDngrUFWj1NoK9GA55pEUiTEgme5TYUBv200slaJBooo5xjMd0bQK8kMN/LGuM0FMMI0kzjchJsj1cnNBciybOObbkEgWQF32WAv2MznXn8gORGjB4BlulP4IrVtWvZZ2Zp5uvhlo9bCOMrG1Bgig9iOr980de0Rvo7FDIfAxnelGUQ1Ly+QloZ5Ds47EKKd22wGU9fVQtoAKr6W9j686TF+yhzEyWuBAyaOKMWFOY4lQzH0MVVjHAeAo2tXGaXV4WNaJhWWouX2QNXDhIqDPkobqbEv7FEwOr2NqTWNI6MoBKNZEb3j7SC0rfR1T+hjVlUrMfRshepFGk3dCQve8eQKOcRsn6+Bsr7K9XUw0hr4pc/MQwiFyUbiyh/JQpohAfaFuH2pNBIf3k0lhFU+YMIsxexXsLzZjF4KJb70Ni8xnY/x8ZlTsW0fwCVW6H4VzD/wMzMdZT0ffSYXwe/D1GXH6xd7yWunf73E9/r3qDoKojoC60GlHjJCu8xryPWF4Z7qZR5hFV8HMUIAZISKWySVHEwtUdGFXDEPJAgaabCvxjig2iqZDmFHF/cZB8axSrOYJBbcLBJ8jShqoyM6phyGJtyNZdNkKy7CUf/CALDDJM2haBbT422oaBKgiEaaWIQAVhyN6zEMQB0cQIqqrTRlBngPDr5LU3shkF6nLmiImCY8/HZgl4uj67ZMzzHV9g6erzha3s/65ct5dW1JMQ+kDsWBr8NbliWzYxjJ29kM9FoClxLYJ6L1KEFAwi0MBAqFI8zAuhPjhDwc/IENHMeGY5EqRJFrxWEixYCKY7ElutvbY5m3UIrP0VzAZP5Jkka6eRTgMlKzsVUpXFHCTRT9R5I7gw9yQAPGw9B0bbBCoPlfCJNoz9IZvVsaDwNErOgdEbYVvAsUlkESY2SoXaMqQLsiheNM6jrMSCo3g9YqKygsrWB81QQJmA70YzkWDqK9MAoTwN/NXavRjkalRCIxqMQalTtOQyU0YNQH9RoH9TzIKeCCE00lapQ9LdCy7WgM6TkA5juHfUXZCICyB4J+e9C+Zth0xXwuYVE9nuUjTyjdm6104Oo/5dDyfi/lDd2xtCbGNG4GF+NBTTByNav9ZBiXmf4LKbC1RT4Ayv5MFoPkQjKqLBGmAQVsnqYHd2H2Mp/mnnepfjB5ShGGOR4NAXAI8/3yHMKJc5HMbjB/lbzA3r4My6DmCymhEOJVFiuiiAgoMQ1L2gOUszGMk5D1dlFhAFNrTAbTQMGM8jxYyx2qDu7VudU9xgsGtmeX46TlUtRRLGUKmsZ+/qgqLKGTSFw6vrSoDVp8b7wxeZvQcdV0HI2zHgInB1f0PzXp5fT6OIEqvpp9GjJtpBI4wCSxh9Iyu+TT72PwDAZvemXIrPSkjcdQRWhNYZSKP1H0AswarpDgoT40Tjp/40ZQQaUWBmJERaNNK4wIyViA8Q8yvLXpCniECodW3jRmp2oCen5pomoRO/R0BkE3r/GRAgBI1BUpcNoiZoMFNIKcDMBarRwTJvgg/GYBk+D0rgLJKW3GYhmxpKvI1FDomq3xPBBJLo0MgCzBPZgAnPlb6PAYfRnSxB1Kr/eY9CXg4H50JuGdTuD+zSl8tZouTpMnBIjlCvbhKuN9QgB2ZPB6YRENnROtz8MlW8BYen+YHuKkeztDLE77f4QXnKyeOiN/fX2jRuuvckxcwshF/7zNgCj9bUdT8zriypXkecTeAE0jpRZ4PpowE9Dh+xhlT2dIbORzqCrVv0DCjc4HdvYnVHTylB/xKXKRYCgyqU0cjdivbwTjWaIS9GRgWOZVE2N1sMiTR6DQQb4Agn2wGTGZs/FNr8FentG+BhoaBYD9DAFAIM0c/k9yUnaa+JESvwLRR5Bkma+UHstreewVZCjn8UIAUlZIiH2I8FOdHFxdHNWtPCeTY6vQRzAoL4KHQVeWsAIYQ4rQkDmkM2e68aospQBfQkpVcEOqnWLKmkS8ltII3TeNvgqEHpEhW5Uo9tnw+NySoTW9HIRnfKfKJ5G0ISsv4FvglBkMCBA4gqLx9KL2NKdSZYdkfaJaLHr2A1ZgxQBQivqA02hNanCmIZOYO2EUf197Yi8k0IRrrhouS9OcFtd0vVo2z6UQeYh/S8Pb4aBcDXCU2BEudkuYyXgo2k0qy+CFAgrei39PkT5cox1oNNh+yK/GDH7VsjuH/YztAtQp2djPARr9kU09sPoVrEQCOFC4ntQOg7UijBbuekKcPYHzhk7338m7FxA1TJJLHOxBwL8rEFxocKygSTocqRlk56BJTYcaL4RiIOamJiYCQzzNVCKlmIRaYBKhn/YzTJ4aejwuhkyG6PAY7T6QiJIYDAdm71wuQNBvaWhJmAxAU9jst24/ny6EJSBZJQ6MH4R2cUmRTlqo+sFBTUAtjiEBq6nyvVMZxpTeDtVumhgJ2wmj/gdtmIWd+PyLDbzMWiqveYF55EIbmMaOlTDkQeQsj6KQLCISykEF5F1r8HgEgJrLob54Q2OrYX/ZUBcjUFoddBHKy11W1vr4/rfxQt+gKABy/opVbkYRT9JdQBW8c+g+iB5DNjjt4Z69LewlUuLPxDe5JVGC4FnnoEUu9SOa+SrBKyhyn3Y7EYjXwXC8BTGcjK0EAzI23DE72jl0xt/AybBookMb2OA/6CBikzxVCLgbZyBQOBwIBWuCAMoEZbLC0BqH6EFQoNWikzkuUT2BKzk5+mW12G791M1LPJOJ9OCTmzrOIRaje+HQY1ZiRZFiCr1HcAMBfmcpwOQUN5PoJdpbF9CJrI0T25HsPJxZFMQLii5hHZVy4H07eCAGIi2qWYAKQGFf4ZBTfAc4wKa2oXsxh42KOckoya05rCG6kUw69mNJ/kb88DYBYIHMbsU5pqwcs8o+eEE24AciCzoIphtL9G483VAHNTExMRMoMIgWS8Iv9GO6p5YIEMJGiSC6RxHo/E2tPoIWi8Bktjm+QgErfyJEn8lYDUu32Hsa7GJpGNCf5IsAgsDnwAjygMY+0Zu4hFgYjIPm203PYGgF4aOBO8BsPeHxt9hybdjRW7XYabNdhtrAQCDRpLsOuF5pR+o/S7QSN1f22pJ6VmY1V8DRUDhu0cg5A5IuRCNB5jjtmWSLMTkGLq5Eh8Tm+m083Y0fk0/pzYtdQdeEG43aEpUvQ9RsNMgJMmh89CBRqDA/Rs0PQTm9gBUvVMJ5D+xtD86aEQ0imH9bfq5iWl8m35+g9IjtOYrtFWmQ+rtkGkIx2ncRSV4S7SlLXANmw7RBXyeKi04vH+T13N9Mij6gQoJNJIKZQZ5mGZ2ooELkXRQ5Xo0KdJ6Z7IVgeUbLE/fTdXsBq15buo0bLEV0+0wf6fduZ68cxtJfNrZD2kkoHAWOv/NUJYmIRBKM24XEmDXE+GZK9C6h+oWGp0U+NsIpLwQy90ZrGlgd1I6V5A6CoKEieX64UKJCaS6YLRoKgBWAFtqKDTB0ptg+jbjJ1/7eHdg+V2ILoVvS2RZYw0q4C/Q91No25jwoYTkueBegTnwf8BYxas9HCBGHVEECA9QlRf8Hr3eiIOamJiYCfQyl4x4ZEyQNlquD2wAScL+K2kODpfirUfRegVCdCBEmMApcEhzBAAVplLkNECS4QdIJhoHGmSYzrms4VQCXUHroPYN1cCjQbvY8ttkORKxOUnQIyeDexsQQPVqKJwBuR+8xKtSN165D4H6C6N3RUO+Y+xFvQ6oL4dWKL2EEr+kwq8QZMjya2wOqh2xiJOZwv54DJGhSg+7ohjGYUdyHEGCIxBYaL2qrl0d6doo0Aor8Me9hncPnmhgOT9lmjqPtE6QNzLjVG8BDB1Q4RGWczhE7RWzmvmFldiDt4Jsh9QhmObOZMyA+9UXaJN/JkM+mr2gwp9eUFCj0fTpT+DovzEbh+fFLEoi1KF5kmNYxBoynEmO7wDfCU+SRHtykOMCevkJCCgnUqTYu/ZeCCxyHDDWmb8E8l8fqwStaAJ7IYYK3eKFBiwJrecjpl2AH/we5X8GCJBid0zzE2CNyQhUtEPvTs0oy8Cs+nQ+0YvdFIwPkEZ/X74HPHpq+HvjHPjEeRB8KdyKcoFB0AwRdAKmxgwCRLX2qYLyIxu/kH2nwPB5YZcqA1THcorqFTdLhMut6fdtvL03ALFOTUxMzAT6uJ0l+lS2KT1COgj/UA6bjajEwTSJ07HE/FekX41G6xIVdzs0KwBQpElZz2DIiSs8G57A7uDdEz0QkPhAmJOwEQL6GeR4PB7BYR8aOQ85ehddf5xa46ufEahbkWIXLOOLiEj4TWsfr7INWi+Njs5B8ufkxf+OjYc0LayeIMim0axhS5QeZtTYKeOOgNFC0jgLX9+K8q/BUHkECl+kcE2B6VfJ5j0MJcKVGgSwD1RuI0DgNUAhmaTPbKWj2oWtvWisgjXJTgJhoDBJlKpMWduHVBoSmpRQYXJq45h1gEeBbg7G4eFoNc0gwVFk+OFmvTUBVZZzJI3BjSgEA7KFAEmRNAOimRRltuJpQNDEIxjMndCGxqOb8yhyDyl2ZApf3mDFn3bvQvS/ffyT2dOhfPr451oLtSolrXvRuh8hFiLWU+Bd1f1Oqq1PgxEm1zjrKkx/rj9crVnFWFGVC/Q6MFJnt7FzE+z9Sxi5F3p+DAT4nUT+U3WdFMDsBWb+AZo2YHMS9MPyuq3TAOhKAmVUElQORCn0/xKZ3WHB1WC+dma2L5VYpyYmJuZF08reNIpb8NMjSG0jyNIq7Fe8X4FAiDRJ+2EqwaXkeQ6Mg8mIias7aA35b0DxPJDN0Ph7cPYNX0t+JApqDCCAxGGb7HuYb1DlX0BAmaswmEkDkxsbCiGwjBOwjIlGoUKYWIk7CLxzgQrSPB5X3Fc/cKCAUvei/b+A6MAwPxsq/uKjGAtowlUVQdJdSzF5Qrh6ZQXI4N04vBuDBNo7GiUE1ZQgUenEEAtwRRpr5Loo40ljD4O0fbAE3c4UMn4eCeSNNIEw8JFIBbOeW4sRRFVRZaABcPYcNz+LDJ1cyQgfxec/WOxOagPXaX00mgc5lax+CAuPtbIThQQhSFOmRIWprKsdrVg7aVAjsOjgy5vsL/BvJKi8F1NSM7LE2guSR0HlQtB94fthf3hc2bUQbYhgBEo/AKMDUh+tlUGLKTnG5JfB67TxFktsS8FMQvP4BIQLklW4izDnJgk0D8Law8B4G7Xox2JiiVIGdOIniA0FNEDN9XK0is0AdvkrOG9H/rAF6Ucie0LC3u+CRa/fgOaFEAc1MTExk2KSxiQ9uUbGK4wnAh4wb6JKH3Av03gvW61/E3NvhuJZ4e9qLQx+AKb0hX/E0yeA0Qnug+DsA847N9mnz1LqtUsClr+osQcUWCd+StleRo79aGc+mmEUTlgSDdj6XfiV/QhvSAEquBM7cQ0Ci3SwP0Xjn6GwG5pEUA2VZLUGEY4vkEWs4J30iy/T74RJ07au0GwPkVLTEO4fcJvBKIfJ3UJD09MuxS06IfkM0tIEGCgMApKY7MQ0/2DMYL2baPJzkJxYwSVpo5EbN/uaVOnjGc6gwFJKDGGSIEDUAhoAtMYWLiuYTYUuppHGZOcX8Q6MocqHIfBQCdABuHY7yfRNofhM0yNQvTIMiJ3Dx07SHpSvhYGPh2VDKOg6BlJbQvO5NDknsk58PDxWgNSK8sJdse+/L0wMTuswoBkVy9sZ6AIOIRRRFBq4myjvGpEH3TLJ4P/1RzDuhH1/CLlJPMOMRmj5HvRH21vp90PqnWHg27ELrLkvnLRWMHWXiee/QYl1amJiYv6r0Gh6+SlZnsaJzDHXcC1BlASpdRkV3Iv2Hxt3FnqQUTNNABKHQu7M8QGN1jB0KqzOwNq5UL2n9lKSQ6PfwrLyJO99UeNfw7cZ4ArKPEY359PPn1jJyfTTQJ4sQzQi/HmElTB+OGP1d7RWEPQiB25mRGXIeAWaKwNIrfCkiStsPEy0lpjFewm6FtAvx+wCXJGgKiyE94da6XGQAmUCJRAKGoqPYomwZs0EprAP2/A0i7iUnPVhsOdH8zfQMo3bvCslfoLPky/qWozyDGcyyAN49GMS0C3aydNAQkfl2FqjEIyQw8VhJbNQ/JQNWmJsLjrK+xHhdQgswoAGwqA39TlIjK3CUDiHcj5Nj/NJeqZKyqloe9By4cnHoOfdpIOtyKkDMbWPhRdWxk//KOz5L+j8Ekz7MDWVPgGkMvBBxpmNApAF3Qh6sh3OEog590L+SrgiEpNUJVh1JDzd90VSGgAAUdxJREFUCiveBX4fNH0ZZq+GmUtCPaPRSqkP/QW2Pgym7w7vuQjmHzRJJ29M4pWamJiYzWaYu+nhVvIEZJjDPA7DwHlZ+yhyPgbn0AF00MUy5uHSgsRE6x7cyltBLwctsUUaEX2b1s4hFMW9gCDNnhMqhwCoXAv5KGE4eB76DoXOdSAEGY7DYAoej+HwdhJsenVnMsrchUUFjcDHZog/4bMOEJSjHB3PcLC90XRGAy1mMiTOpsoNKMdnWDahDEkH3XiY+NZ2eIQeUE6gaBlaFwoKrqc5MmopUY8uwWiFuLJgrOwmQOl1KP00QjQhRAfMvx16vg+qSKW1iaJ1HCAocToN3ITFi/vGX2YFo9skAklSGzwitmcq63BUBYVNj2wjqNMvKo1Ltt58qjzJMGchSJKx34flXj1We2edutFzg+qXGG4es/YYbk5iV3yMqg5j0D4XWh+hddmtDLYXcNMWSXc+2aZjoc2E1j2g6wwopgj3oSSkp4NePC7eHkUkQVYSUPDRvh/6NGnwOkBOA9mp4K9PgV+F/jNh6LIwMPduhLWfh5mXgjkN/CIMPQbpOWDnINMBh176oq7f6504qImJidksnuVkhrgZgADJUlopsJKd+MZLaneEG+nmGwT0I8iRolJLM9BAEwXa+DECA9//P9DPhydKhZvN4ehvoWUjq5I3U4r0UtLszXQuRqy/GO3XVw8ptOqJKojCMusUHwA+8KLnUuRWDFbVehUoPJ4AjFq4IQBXGGSts1D+zxGigyFjDa4+F21IyJrkgiFGjEbyRgNT9W4oMaakXDUlgZRYQUDLyDD9ubDk2tIuJi6BkBg61LwRPsiR2mBIuvtQ4e7a1bW9Ljx/KzQSZZ2MHFyOM3ALQruUO0YTbzWhVN7lLzqoaeMdrOISRnOcttUfIOF9jkJUopPRBUpWkhGRo0kMAxYtvHAVdI/n6OYdjAZQFSdBh3E+Wj2GtA4jIQ+Y/MTKSlj5HYJWOSFQVFpirIy2JWUKSuuQ1eW0PAwMAvYD8M6lkN0S1p4OXWcBOpxqx7chtRgqz4ChxjszjFouGAH01VeuhTtgbkaQKGuYOwdMB8pPQllHMamG4h9h8f1g+tDXC24RrAZ4xy3Q8tK27V7PxEFNTEzMJlnDHxnk5toqgESRoEQvD2z0vE2R5wbWMuZnpBiiCGQxMfARCGZxDBnGqlc8ISlaYa5PxlU4yS9R4SFKnFk7psjtVHmGxPoO4cmDUcMnIXQoIldK2pTFWbRy2kuax1i/NwNGFCiBhY1PEJmB2gg0AZJ14lIM62O0WSspqp+g9GloxhKx27x+5g00oRu/g2G1s7reHkLDqBdjR17TkPwJIxyBlhpLBUit0MYOaNGCZH905hzwy4iWr+C0f5NGbqDKLdi+hfS/F1a22Rmq5iXQDk5C0768hKxqlGlE8U+A9FaAVR3bvlkPpZfh6b8hmYopDhtXNTSb40jQSYnlNLE7Wf0sLpDVY26LW3uPU7SnYURWGhVOwOc0BrgFh046OBzJxpPV8/yWWuIsoEUF39qWJBvReqmsgAe2Al3G0mDkAgIjHLvhKswng7BJJw0LbgE/D8PAqAdpAbh0e1BbwVsGx5K8AwHFh6H9QvCWgPkw2AugGq3a9AESdItXC+BrCgqOQBmglUTsfln4ZLUwZr8wqmwsl1JZHLomCEE4tke/Aftdv9Hr9EYmDmpiYmI2ik+BFZyHxfg/vAAZZr2ktkf4x7jHY213AmuwOQDJFlR5AJtd0OahDJvn1b5NDyU8Ak7B53Yy5CmSrqkRT1aOrc3prJ2SI12uoKSkkE4Av5w0qCmyhiGeJMd8spNU4EyGzXzGbqoGDlvj8wiDNFOJxiMJyDJCketp5auU+FnktTSG1Jpk5WGEWIBmLg18imEuBiSt4lsY7W8FfxnYb6Mir2WQxlBeXwZM87tIGl8NVYxtYMFXa+1W+BtDfBoIqBqNZEWYrFs1x8qhqzkHN2WSWV1hZE4aZYNV9UkO/gWcMjRfN2HegXqSotoDRAXQWPpOksaFtdcFkqm1nCXQch4u7UBP7QghHAwxWDsmz/10cQyjFT4lnmU+36HCIKu5B5s003k7sq4s3prE8NTchEs6vVdECcEguqHFLVLqsCDVTMp5ELHVWeD+BVKLwJ4LyVZgF+DB0aGjTRex6pGwymmOGAtsUrtA/hF4/glIBuiGxWGud3d0HQLQvRC0g1EI/Zu8VoFKgvQ0yIMh+5ZoIh31DhGRRhQMDkJHJvonoQE1ftXnzUYc1MTExGyUUAVX42NiRp5OPgYejez+Elc4bOZPCJQA2rkJQYp1vIUCtwKQ5P0I4Y8/WgiK/Aorqi2CIgVytPIFbCZWjGhK+JbBiJUOy51VgKGrBGIJJXEhPg9jcyAV3sOD+mQagn5m6eepGj5CTCMnfoPFHpPOxWU5Bu1k+RBl7kQynQRHkOQjrIqMGyHUhmlQw2S0w4jxPQLZhTFaCQQIrWkYKYarPd6zCHMebZxBMychsJBkwsoZays0im7OqpUYayTD5lwMI0OVr2OxNSkOr23D5TmN0T0QRZ6qOR3Ln8R0U2mMqqax20FY/QB4UmK6f8cdTlBNtZI0vo8tP4pWq3Cre4JVqr03Hr8loX+K2IDPkBBtJO2H8P1LUTyIYAaW8XbKfKJ2TLkm3hKOd5DbqDLCzXyeCkMArOV+3sqX0ASRgnUei+3weAyQ5DgJa1NBjT1l3EM5qMkoH7a+BVbuCebyMDj0u2HdVOgchC2/D8vfEcYYAqrTTQa2aaBkpJniDpNpWojIvRM6vgRPbgkNFRhdTalzwBCEBW0jrSmyRgk/LQjSYLgapwpwHaoviWhag+j4InRdGm5rRcGNHIKpW1DL11Ea5Lbf3Ph83+DEQU1MTMxGCT16tqTA4qjWI/yLOpPtSGzAN2lzaeVYCvyTCmElk8BiOhdj0cEgZ6CjrQhN6BbtsPeENhQGHhKDgBQzmMrtGDRM2p8kh8WW+Cwm4w7XROhKYmtcK4EWgjKP8jx30alWMFV2gwztnGWwkmHzENL8iwRbjbM6KHE7a/kkoZ+4A3yALm6CaEvMxsQlAVqzpbeYRj0ErEUHj4KdQgiJhQsKWteOYGoNmGBtX+vDZyklrsNkJhk+gcDEp5uwLjg6SAgCcxED4uOM5q8ErCZXK4eP9i3QUUXQW6nIWzB0QBBVzmSGp2CJDKrpOcj0o13JisapzM6vRQIJt4rtriHf9Gmk2ALhXo5Q+bGKH02kLr1xLQAppmJbXxz3XIavU+D7gEGOwxiulY1LksxlBb8G1pFA4+Kwin+zMycwxPGUGd1ysejgFiy2mphTNRntR8LADdD7p/BxEpiioeczYUAzbhoBlH4HnSdS3fsI9IorCLKS7h2bWW3PhECzVnbQKT7MfE4JT1FlSFNrR6cYJy/j5kyUKTCEQMpP4nIx1qjEDICuwMB0kFMgI2ClDiupvLANYRCK9ynoW6Non7LXpuf8BiYOamJiYjaKYogZOKygShmb0QzHclSN81IQ2MzhGhQBGhejroRXR19pFQI/+lPlcTeJupyVMIU19An3sGhkzw0GNKN0cjMj3n6Y+p5aG0JrjMDFNx1A4rCcJobGaagINIaf53njILJ8gE5xXi2wGeTnjK2AePRzI/V3QwcfnwCJokkP1c1fo5UAAwytSFckflZiFAKE8lHrOvFadsI33ka//ZdoPAqXp2jiTLzRfYw6HJHEjwKaEgm6+QMWdzKTr5DlTIb4JOAhmYorbgZDRzJuPk1cS6JhT3zr/eA/Bwr6kw0kg0rkyBUiAeUZFOVvyZDECDSGFxCYEqEtksYfN/oebIgMXyLN56MeDBSz6eNaHKYzh29wrz4MJwq+bO1SFE1IdF1AA6Hm8aU0873N61SYsOiPqLb76UoNU7KTpNwyHd33Itf3ktSAuwL8tQRtTzMyLwVCUCAbViUZ4Xvez7/GgprOM8D737G9WwuYDaWyTbndxssZOJUEquFjkDsC3ItrZpujfQpRDt26OwntnVaH3anIZ1OGlws78xJL4N8AxEFNTEzMRhnhi7hcTY4k5Tozyib23MhZL4wwL2L8H+QcnyXPpYxlCIR/5hU70MKnUQwzyPildjGJ+WQ9PkUULpb2xzxyov8bQYDAxTMsbCHqsjY1qWoFQ4dfrduMfnrtv1Ll2Foisqx9Fd+w68wsVpL28xO22zxslDZoDgYJbE1gSwJbkOnzERp6gpUUk30khaqdV+BynuVWpDbIKcYyhzGwxLb08gAKQQUnSk5ewbN8jh24jTaeQLEGMOln7Ft9uCpQpeofg9b/pGolCAITHUj8SZyiR4wcCTFI2bkD5TTieBVyJQ8jeQVS7LbR92FjiLpk4BkcywyORaNZoj+FL4y6RSnNVCQr+RkKE4v6XJJNu/9oPQKkEMIEHdCTzjKY0CAEVcNGNis6egagvgjMBwbPgaFf4FDGTKTwHQNb11khIElRZyPS+hkY7kFXvzammZN7F2ra3vjie2E1XNJj2FlCprA3AlAGGMHYLFQR5Kjg8RxgwQmI/6zFW34VZkP43nkuNLx38wUR36jEQU1MTMxG8XgUCMhQQNNFnizNHM0sJloEvJyYTGcqt7OSfcY9L7BIcxj95c9CcnxoIvQIrv4NhtgWQ4wPcFZzDU9zDqDolLOZGTwwLrgQCIzAx/QUOV1iOJHG0S6GDmoBDUAmKIPupyxOwOEafAap8ASj+wkG7cD4ZE2bKgkqSKkRUVPhKpPElQmay4PhlsJo4GaHrkpCwFp7GqBIRYkTGvDQSAI0AVor2qr9GMrFRPNk8m8ENEbJqhoLL1wRoopHL0nmYjAFjcLirXjcG417ISK4Dz/4Nb4pGXaaMF2Plr5hlrbNoCxtkircF6lIE880McVNtTlWrASW+SVy8t2b8e6+MAo8jivuRDBlTIlHgxbP08UKBG206j5sXGQAOXncBqVltXYJyh8G/29AFpn6C9L3qMhuEKPJ5ZqKkwVrECo6VO8VNqgosVkXkUDLqgJKQoszjNGcQKgcWd+kOfFuxsk3NXwVoY4F/zGEsQDD6ERxEjUbDwI8Hq5tDlKFwIWqbbO6ZSrVFov5Qytr1x9nIex/AYnC82AkQBWw03PHtgDfxMRBTUxMzEaxeSclngUgSwGFQZYpk4vbvex9z8NiAV7UP0Ar3wfAG/oTMhkGBujwJu+rU1H4oCEhfoMtQ9n/gDJP8yMEPhlVIG/kedLYlpwept3rIonLWPalon1gFZbfjJv5JLZaDfyt1n+YHCoIeJARPk4/T6Ao1V5PqDlsKT7Hs+J0AoZJ00wzKwCTirDxDYNMUKQsHKpiL6avuRVTVMOKm8hfWPoaoSEQgpKZwBcmNi4NephAGIzoHFpopFA0mCNgSnydoFs3EIhRMZTwFqmRCA0JOnGYWlsmEkiauZoyfwE8EhyKp8Mtk0CG761vW4w0ppgzsIaKM58hpx/PVJQSKbI0MlbXHHbni7Uv8R2fnIAiIJnNCtbSiUZgECCj90xrQaAMWqrDJEsuQs+FxifAWjShLe39PgpoAAqo8seR6h20yz5Klh1eX5Ejax0PzRJEFtKfgpXjdXNG1+WkAlmGuQPPYKjo8zFyAOUGieVpZGAiMlcgUu8HeywnzGEfylFFG2gsP0oUL4HRH7aTxGWK28fzMztZ0dDJosEVIHeC5DFhxJud/XJe5jcEcVATExOzUbJ8mwF9HdCLG605JNhyYsnSK8RMbmKA8/FZQwNHk2ARIzzASM7B02OlyFPddQgjqI2ron9IkXnk2I4qXUh8fG1SnygxQgOm7TPF7cKIVlp8TJK4tBT7If1ltDkDT52I9n+GJvz2rKP6WY+bUDQwlgWqqfJvGt3H2MW+A1FnxLlMzwVRBtOmy8wxqJtArKWrcyFbr3uWZF8VNyvxhcQeCAgQLG/qxJdh1ZmlPQJPUrRbCIRGI8kxghXl8ggBjeTpr1/NQNCu94PgrzQHT1NhWxL27UgxLXo1QYJ3McRnGeDbaDPMyXGCCmiNj0FvsoVCahazuZWAXgr8kybacfkzlfqgBrDYqvZ7lQGGWUKG2aSY+pI+Azl2RrAzmn+zgGcJtMHzzK6TbNEY0qectPBNScNwBfIfhubHJzamBxnL1NWgBwj8S1FJKzTzNKFJD5HxnkFnfxYajVYeAv/5ukbCFZb6fwJSj6XNaMCsasoNJukhD50/BKGuAJmD5DtASBK8nwYuosqNmGxBUkxF8wlEVY3boswUy2EQbTRAUy+YLy05/41OHNTExMRsFInFFP8QusRFWMKlKRjEFteBtdOr0r/ApIXxVTJr9XeRaQMbFx8ThUGP1YrWEldYNOkhDFaxghNx6KCFQ6iQwhTeeo0LFAa9ZhtNwRABBn1WGwljDQm5M8gZCCEw5TsJgp+F+Q5egGfq0cEhCVAY4QMhsFUVzXN4wYXY5reB0G8ayljR3lOhzihUC0FXQxvze1dilRQ9nVkGps2lHwdFQNrNM91cgyV8hCVIs4bVUZBgrrfNJYUiTT5MXEVQJkHOe4CKKBAIA1OvxAt+gGOOlZgPczxFbq2tQFXMFHYlRapY4pmmBWghGSRPgiuZyodo5EgAfLakwt8Yk8m1SBEaQ46wlPv4HAFlBAY7cSZtvPg8G4nN1lzMEHcT0Mew+CK9tNLMADYeGQo0iBFA4NlmlPw9uc2CsA4nqJ7NkBUgdUBztRVDPUe6GG7tDDcm8S0D8r+jKG/EtH9IoryWcXk6gUYHJth+WO5dH81EKEOgDRHuAhaB/IfCFzKHQUcoqJfkQyT50OjlQxv7olfNRkTvqwZKqTBwbxQHxwHNZhBvwMXExGwSEdxFyiiRMsooW7LWvJBefdGrPxDtQ98ezOn7B1OHenFUhRQlJAFFkaZgZHFlgm6jg7VyKhoo0Msq/gwofMyoMijE0i6G9ikbKdbYM+iyphGQwEqdAc031aqfVOXY2jdnyw9Il8pYagFgkKGAiR8K5gVFGvzh6EgfrTWBupUguGb8t/r1ElkDU1JJWrgJCXYns7iTHbmL7bpOZNfbnsKWfjgUoZH4OIT7HAUyaKCXFp5nBuv0VCQKEdVlpSnynDXMWquTZdY8CiIVlgjX4fFwNJqx1R3SJzHS+FV0nRfTGv4w7jyT6TTwtWgbUpLh0xiEmi/P85cxA1IUy/j95r7DG0SSoJn9aOFdZCmxEw/TQTfTWUWH6I4SnTWGHyVUJye371Aix9JUO3knRV+iGT9YPW72TsXDqAaYJY30uilwLL6dpBaxuBKGFCLvIwYIS6ujhR8dVv8T2IJqRmK4ChFQy6MCoHA5eCsnHZuQ05DtP6wtIlUti/6WuXTwZabx3Zd0/d4sxCs1MTExk7KYm3mIsDT37faTGMIgwAQ0lnDp5mxs5tDAO169QY18Ee3djQPYfvhtdqAxF66WrFehEwhJRdtoYQBlTA0+FsMiR06P0KIHSOgSOf4X09idLn6CFBad+hOQakLXVRtRJ+cvACtIYMnLKPJFApbRxoex1Ra4/seiY9owjWNw/ePx1f8BkBUzKVklEJBlBE+3oISBQUDCKdDfkSWpDsIWJ/I815NlAa0dx6AzeyDUAWhRiZJ/JdP5Gs9yLmVSrNQz8bFACDzs2taTBqx6XRpgwGghJ+ZR5AxsDsRgASZzkTxQE/8DQVLsjykeYUwdWWKtVyqvGKTAd5GEq19lLiTNxzHZAold16vYpL3BC0GSpUAzGQZIR7lMHp04OodUHunK9tDwGbAn0WsJuhgu7Me0zHMIraNKI432x4IaqxJg94ehb3JA4VoBfroRs/UCGPkFjKwC8uHsdJgDMzq9IA2+Bo2BU1BYJYVW6+/UytBDakO0fQFSu0LhNhLZA5idestLul5vNuKgJiYmZgIjdHEfv4oeaapS4tR9a/exQCtKPMZTIsUjPEwzzbyb95Ali9J9CAyEaHp5B+Y/Vr+egO35YTnr6PZPHQoZBTQhUkBr0IuWkgaydPB9Go0P1bRmGnk3fvAHqv7hkcd2Jwn7XlzxINreHsu9O2rJQiavRoqFNNR7MhlgyLeg9XKk2AXQtYAGIKVX4rgdlM0KSgqaRD8KA4nCFAEGioq8nSdZyWggsiUnMyNzKE1cS56voymT4cskOJgUezBc2YlBs4FhIwo4hECSRmBh00KaVkbEPYzujySkpii+AxiUOQdBE5p+HMCnA4MdyfF5HHalk0UMcR95HsGiibl8lS7+SoGnaWBXmpgNjN/OC1iDyRbM5Qh6uZcKPZik2IJjXvRbvj4KxWL2YEeuw6GKRCNYiyM+Str4JmQ2cvLQKRj281CXdeSlITEUXnKhwRQabVKL5xL5AKtld2icC40nQn5P8O4GdE1RGMIy7JGUg2snsNVbaPK+i7DvAQwoPgr5XwESWs8DYxPbSOk9wp+YF0wc1MTExEygm8VAmC/SzCBDNDKF/ujVMUn+dcznev4OQJdeR5ERjiiei5dcARocvoBjnv3yDSzxYXBvq23elB2HvM5QEFkEQd1+ukLTxPp6JbP8lQw6s1nAVZiibULzrv+N2jmabtz+9yBGnkDZgpG2JEnxYRLmdxFyoscQgBRzQYQ+UYFajJLh3VErjUQj6SLlC/J2R1hCHin7BhgYKCQFElSoROIoa7iWGRyKzc60cMO4vmwxlWXWHDpUV7hNpkONlU6OYAYnoAh4kt/TxWpsRmgSAyQZiM4OCDfBwvc01ITroYU/1HRiTDJsx6/wKWKQZDW/ZSU/Awy6uYr5nIbJDvg8SrgaMw0r0glK0sFe/IEyXSRowyDBy8Ug/TxCOztBTRAwlJC5f6Pnae3jmQ9gCrf2SdGAFnK8SWQk5hzGawKbdyODXFjmJCTMOgcWHwDBMMKejp5yEK51NcoewFE+vgpw5QOUnEdIO58PO88Ard8DLDAaJg4u5mUjDmpiYmImMI1Qnn86a8iQJ6uLob1QFCNoDKbrU3lIJhE6tB7SQrNWLw0DGgg9cTgfS5+IFDNe8pg0ilWpFgzeS7pyP67h8lxmBgiJwGEKq7BwUUCWXWnkHzwZHMlaYxUAM72VDMomcnwPk4kBTYjJ6CqJLAYk1jwyJtJXhfy8JSQnMU0cG6QH+ePR7hWUGvyoSkoSGBIZuLVKHVP7oUpymCiDrHeWJtKoQZKgfQMdhXaZGDuy1HgOkyqW8JnBkUyPXM+XcA1P6r9FeTEtdOkO2kQfGVGsyRiOJ8VktwThX4sf/B3kkwhToEUACAa5m4VcS5k/EJaEH4EkWztPYpHmpb/v65MijcRklTedRcESPMdACLD5wEbPq6jP46WfZyxyCUmMRMnW9SVH0aURshNRfRTWtoExB9pvoZKZit7xLgzvGbAtVHA5RrkPGW1hCVViJNWAjvypamxqdSbmZSEOamJiYiaQoon9+DxrOJ4GRhBC42JhEPBQaScOWjmTYuZ6OoJh9Oy3IiJxull6xYS2dL2D30vgIU5mQPwn9NFJL8Chgo0CFDM4jja2ocqlCFpJ8lkAtpKX0ul9k2H1R4pGGtM4jk7etcE+bPN8qv6HABej3IKmdyyBtOjTy3PkOZcMJ1Hv/VSj/HOo/hplgJZj23UGCk9YWJHXVKNXod9OAxobG5OAIRpYw2xuYH8SuOxLD1tw0kavyc6czVIuxmWQGbyPNnYjYBhFnl6eqgn4AbTTS1YU8XUCSzjYvBdFBY8rgSRZ/g/0MEovR4gtECJN4P8Z3z0CMGgLArRqZ5UTBiop5iDJkua4Tb11LytJUhw15NPR9wgAZSeJnvYNkvKT445TlNFUMWgEwONyapK+WmBXfMqORdUUJAouOJEvaABBSiCs4zAqeXTpj+FpwUqKQ4fyVGsABqSNAm1BF8kgACkwVBgomb5CkCPBh9cbT54Sv0IzTJKPYLLgFbxKb17ioCYmJmZSpvNWemlC0k/oIa1QQrAo9TSrFz1JFRtLubxH9/CM2IKcHmE37iUY3VYBTH8R0t5i0vY1AR4DWDRtUshvkEcY4D/jnnPYmmY6ybI9U/gQAonFzih8yvSQwMYQDk3mt2lSJ4BsC31+NoJpvAdDrkHrdVSzV2L3nV5bqfHTkiQlqnwLk0aSfHpiA2o5YCCVH60GiKhsHJ42F9Gq+gDoMH7PFPEMHotx2J+lrOI+wpyduSxnBXPp5v0kmTKxjzoStLCIw/F4DJMOhrmKdXwRCDDrS6i1pkmE5qA+O9DBzWND5scIEujgQdzqDML64w7sxJ2o4CbqNVmalUcPnTTyVqbzqY2ObXMo6yVo90xMvRLD/Dj9Zgt9/IME05nBZ7GigGQc2qej77zaw2S1DIUZkIteRrOG4yhE23UJ3sp0LkIyF6UfCxNnhEZUIbXMxelWaAnBVIFqFGEOrwSc9+KWPlbTAdIofLUUItdvPxDYKJQlcC2LIBBYrsamiVbuxaizFNFoBvkQHvcDghK/ppX7MOh8ydcwZjxxUBMTEzMpAskW/ILV+t0kCKt/PGwMwu0HG5esyNNOH3NZEd6/UZRJ0FjdC1vsiuF8bVK35irrWMJnqLIKi3a24Fcko5vF+mjKFPj3hOebeRsL1ktArdDHPZxMibVYZNgt+AIN/UdBsBTkNGi5FcyFG5+3aEaIZtbmvkUwczZtA/1Ytkt1qlmr6Clz5eRBjfMBKP8EoQ1SeZ9qeiba6MSThxGIf7NWTmcen0ZzB8P8hPAGdwkP8w5GS2gMAhoYpESebn6DJqCVwzBH79p1uDzAgH4viApaS0ZogUhRuIn7uME/idnGfWwpnmYuz+FpgxLNPMvZtLE/jeyCjNr1vK8C5ajlXnzvbKTcHhWM6tAYOPIAdiHUWAmoUGAxDlPHVUYN8E+WRYGVRTvbci0G46t9NJqH+SY94k6wNY3BIHP8k3jenAXACBYlVjCDU8kyL/IG2zSaAsP8sxbQAFS4lyd4K3P1cUjvJAbtBkoyhZEKmDnSAyhQILs0yxfNYVb1HZjWERTN6/GyZRqroEwQgaY721Jrdxrrxq3VGYbm+dQ0pvNdGuoCmnBcgzU7ivBxHpd/k+SwzZpXzOYTBzUxMTEbJM0WZGggEGFQo9fbcqkKB0e7tRyFAImUe5JIXs4gP8XjC2R4DxkOHHfeWn5BlVBS36OP1fp85vB+NGVM9keIMLFUMcgw+2GyAsmWqOhPlsMU5k0SVCzjcsp0Ra7aA1TzJ0CwPHxRdcHIqdB81Qbnq9EUuRyXx1BU6G1qobephXa6aGS4NvtynS3COKy3Q+Nd4F6HaSzEtD4KQpIB9uTztcO6ag7SYQVNgiKNDFIhwTANaGA7LmQlg9Hxv2FbbpkQHBS5EBg1Uwydzms+WMDx5lQ+UzmXg8xv4RgBWnRSEs8DK1nHVezAReTYtnY+WiEUCB0AT6PtH1HkPwj1AGl2wLR/CkCVLh7jM7h0I3FYxPk0RknCyziF0aQUjx6e5XNsWaukC+nlPnq4M3wgBENGMyukYirdaCBPljwPcQ/H0MAi3sK5Y8nGwoTWH0BftDXn7Iqf2ZFh5qDpo0wW1ishN6iwVv+RhmoDxWRYHuUnBGt2aGPOPVFwEoS5wX7yWGx2pMw3ERa4zWNF8U1GK8OEIn1yQk5SeNW75e/wKdHIR2qu84JcVGk2XLs2BnMnOT/mpRIHNTExMRslybspcBHo0BzRFWM3jGf0PKbqHjrFWpSQlEihWUwPJ1PgHwAUuJpO/kSKt9fOCygwVpmk8bifkvoFAJKdScvbEMKhymUELMNCsyXPMKinkFPfYJr8H6QYy1kZa7dKUhfYWj1OAhdHaXQtFFOghyecU09eX8CQOBO0xBGKNE0UydBLOyIylaySxKqbywSst4Y/G8FiC3yeI0zhMNiSZ2oBUz/t7Mt9CEp4mBRI41FgmBto5n/GtSNI1K6jAFKqRMlIR33Mpk0cyN+TDcAvAbiLfaPjQ72bAe6pBTWm9W0C95219pR/F8s5GNcKTRybmc90whL9tfwRl77oqrqs4MfsUBPnG3+zr7B8wvxLrGJcCb6AokhDlMOUI09ZJUDCME/Txe1Mqw+MG78A6fdD0A/ODoyI7dDReMClPqgJjUMFI6ag0NhBmkKUWiOoZqxafvDg9AaEzGAzhzLP08M6Znn17tuQ8JewhX0bEgfJxfj8rPZaFQuERrGEXr5LL2cyl3uw6UBg0sTljPB5FMOk+Tz2JhzlY14csaJwTEzMRmkW38XQ4XK6SUBRJ/kL/8NF/C+/FsdQlG9DCQkIpAoIlEtRXYehKigd4GMyxJXj2pzCRxCjWwpa0KiW1F5T/IeAf0WPxr53OdolGQzTWzmLJ0feQrF8y4SxtqgyW/iLaeotkl3lYpR81KieCBLSp2x0rkUVrkQgQsXeDr0dU/ggnXyUgJ3pow2ft9IRJfD6PMEQezPAVpS5YDOvKGT4Gj4GKrIyEHWl59N4HhFtA5n4ONFKjLHe9pNGs1qP3RgFmlZ3gBn+x5nOxczhHxjrCealmM3Yn31Fqm7LTxr7IzBrcn0FM4sremqvD3AZAfmo7/GBi65ZJYAYZ08Njew7Yf5T2DeKnXTtJ0EVD0mRFEWStLldECWg67rrU8OaA4ldQJgoxow0Hdxx11MDLgmE6MDVYbCjdfiTLlVgisHANruRX/QBZnEJJo1UWU1BZ5B6/DxL0mA5XyPBLFLGedjiawSkGSFDl5yCHCcdrFk9aoEA2LyFVu6hnadIv4y6PTHjiYOamJiYTTJNPMpM0UOL+AWtYpBFLGYmqzmWnzOPq6iQoKST9IsWBkQTvaKFItnajWtEX8UavlRrL8tObMPfmMsP2JqLyUzYzgm3CBwOx2A7AMo4dJlTqaQT5LMWTxpfrd1cNRWq3q8Y4SJSI1XMcuhybXiasmmzqqOdYtt5kDh4w5PURSyvq67cV5MIbObzFWZzMltwLdvyJAv4C5Ic3VzKAAfh8wiKVRT5Gm4tGNs4Nlug2I4i2bC0u9bj6H/HbsoCTQOd5NgfjU+F5wgo8FxwEfeI27lT74GsKLLlIpY8gpTxTTLsi2Siau0izqKRXUgwjVkcTdv6atDGPhAJGcq6QCUch1XTsJnK4ZhR+bbAYBYn1PVxGSYtgEWj3pdZhREY2heK3wUdtpmklZ2CgzG1h9SKDHladD8VkigMFCaFRCPN9JNjAR3szcYw2Al8jVXwMasBzWo6GeXR4Ll0FhvZxt2XrJ6DLxyGaKJCAlnVZKoFBuckMexnaBX7YtBNlb+RZAoprHGWGgEG3XY7Ll0MRe+zKx4lkB6O4dLEwIR6OFXTBYp5tRBa60lC4DcmIyMjNDQ0MDw8TC43MekuJiZm4yiKdPNuvJo433wqRO7FGpQQkZli6HbdqPpR0oqE4WAq59DABwHw6CLPzdjMxFSP4OqvAAqLo0jIC2oJxhqfYNVJ9BUvY9mWs8aNZ7flKXTn1+h2voiiF62hpWeEdKlSu8FUHIuezibQJjPE6slLsQG0R9DfwEDWwjUtEq5Ls7wE4Rwy4dClnMIgNzJndO4Rac4lyVGbdS19eunn5wxyDS6hGaMGKji0RLk04SqDSYYCDrszRAmXlQjtUFYWj8lFoXgcYGqDT4mLN9hfuA0Xzj1gmDz/QJAgx8G1YEXrIVT1DFCrwPooa6w7GeIaQqen79LMoXXjL1BkCQmm42yoSit/MlR+TLglJSD9A0iF5qRB5TT65E/JW6moQiy0eRg/ZtiKxchNZEr4fSdhdJ0faiYBxXaLwpQUaI2pArKVEp5oYWnyPRR4llyxjymii2qqrj+hSNX8qmzKUXBne1V6ZQtVkUDL8Fov4AIa2YcB1YqS0Tla009zKNAXtdLKx2nlOxsde8zmsbn37zinJiYmZrORpJnCDVS5B0GWbv6HWm6EAHe0OkqHVTy+MMPl4KgyaograOCDVFnGcg6EyI04Jz/EVL0OjYsU4wXnBCZm8+doXHkJMgjLyhGQLRQwi4/QW/0UI7ZNSTShMSik02xdWl7LlShlRtVsfcKb6wYqaYSFkf09bSMfB0YgcRRk3jfhME3AIDcTVi4lSFIBZGRNsM9mX0uTNtr5GhZbso7vEVBE0cS/2J0D+TsOHgqBjYeHg+Y+LAQBKQIEKVEK56gVGsE03bC+UwQAiiqrOZkyfycFpHgHQyzGIzRyHOYqZvA7BAIhGjES59bOncn76eSrSBITVn5MMjSw88Yn6d/FuBwb757ar9I8iEzlbApWarLNpVFjh00GNFQXY3SdP5o8gwDSXR5ewqPaYBEICUJj0ce2wb4Yxm9Qq3dh9RZ2TcRHa2ql2yEuJhY+Fq7lMFV/nVXiJ0CVBv6HBkJfKcuvUrXDBoQQTCutZdhswDVz5MRRtIivbHzsMS87cVATExPzgpAkSbIfHksIkzLDhF0NKG2MiuSC1mgMRm9qEo0V6XL0cBajAQ3ACFfSKX64oTUUSC8gsdOjbLv6XHpSD2B6z9M51A0ohixBUWQZNe9x0zaPyoV0VHqQjqKcDoOaBPuM5fFsCOcD0Pr+cF4ivIkrqgzyRzx6aeA9JNkKmym49NBDOzlGaGEvGjgV4wUIqml8nudwKjyIAdi0k+H3VLiEIhlMRrDwAB39H0w0GQrkRRYEHKRvYI2aSgrNPDl5Ts8Af6DEdTRE1VseV5JA4hFesxJ34LMWi2l1g1PoYBXIFKYcr77sM0AoxdgB1evB/RsYCyH5WQJRZh2nUOI+kuxIp7U7hv8gNdtpOReqD4C9M8LcnWTiH0yr/oaKIbDNo3lOHEO9n9TszXH3dsOE6/Ujo8y6CtWciRn49CUaI+Xpb9Aq9kIsvBTN3qEhpYh+osyd0c9gfaVfSfyJbGQpofgDA0whDOHfSbJ0DcowsHwfM1Ak/QFKqTwJXUVYm1eKHvPyEW8/xcTEvCgCeljDtpHvjoFG4DIFnzKjgUxODyDQBMIEdsJD4dGFQ5qANXWtCbacpEpmUqpLYOl2VJKCvhlZhs0sJZFirPA29FkaoJmFPBN6KumARnEWqRehfruKzzLCDYSrMZK5XEOAx3N8DY8+pnA4nZyw4W2tDVDiXlZy+LjnmvgMV5OiyFLeyn200IdE4axnHFkkhUMVBxeliYw7Ddr5M4n1KrO6+D6++hGm9Mc9P0wOjcTxAmZ5RyPNtxDYu9ETfIPGwq8QwkX6GqxdsTJ3UBH/pp9LGCZcbWl3d6Rt+EoYDVwTx9GdbWeQ3zG6ItagD2VqKQPeA+APQjlaqUm8B1qvBjHxpu8zhCIUsdssgkH0kpngF0ITc6IA28ngTcngygEK2XQY80gJOss0sZxVbIGKrAwUApMKiUhkEKZTop8whH8fw1w/SccGaEV7tZWk+3DtWSUF1aSF7U4nkVy20aFrrRAiTm3dHDb3/v26uZqzZ89GCDHu5/vf//5rPayYmDctBu008i0CzGhFRpLEIM3OWGTIMUJGVEiLKjmgykoqrKCEop/hevsdtDYobcKQEECpLtzgw1RnGfTNbkCZcuKWiwahNZb2SOgKCarYwkcwsQR8U2g0I9wUNkqAxqfA7aTZim25mp24k2mc+IIDGmDceEokWcY87ucuGniGEkluZT/uYvfRKY37SVPEifRSxrQNNQUumdBPo1sl49VZVYRLaqQLFTIll9lDa5DFb8HwQYyU30Wi+huU4xLY4KUleA9Q8v+XHj7KMHfXmpHuzdH7HoSNulfjspKx7aYAV6yG9OmQ+dlYQANQuQ7csbbqMWnc/IAGwGhCzHsMEgtDmwMAYWM0H4Zd7YIkZHSRtC4hdQBRBdc0HiHFezBIYqGxeSuNPEUzz9LCU0zjCabxNBbzmbAMFM0PISk7eyPtbxAYNp5lUHUM0BrDzW9wyIF+nHywkLxKUwoOQ+vqBo+NeWG8rrafzjjjDI46aiwJL5vNbuTomJiYV5osx9LDjxjdMgjooo0TSXEcwxwMSNbRRj8tSBQSjULQTH9oLB21o/FZyynMn0Q5uB6vsgP43ZgjoNIZEIIUZco6GZlHhmXnpvZZwLPI6Ku7wY4k1lsV2RwEAotpUf5JuIViM2tTp20WCXbCYVsqPM5apqGQgCbFCrLMIk+OtUzn6d6t2MH6D6QNpGzFNhZR5Q5KJJEo7Jr4nkDTRR/7YTCdJMdQ4p8k3J9ha5eqaaKlRCho6c1j6pGak0PFsSmbDmb1CbTjjUVKWqMsQVXfEW3HjAVvVcNGMKY2jLENOd5HkVsYtVZoYDQnabLvzy/hO/Wzf4dlN8KU7WGHT6HtDgrzJFo5yKpGW3PIjDyMmzJq3Qg0jqpQls1R70na+PUGuzAiM9EUByH4cd12VM3iFNCYYgZG4mQYKeFxPpanMXyFUL1oXakJSdZTVp9BR58pn6sp6RNIiZ/VErZjXjyvq6Amm83S0dGx6QNjYmJeFRQeoMblIkASiz1o4Ba6+T3reIg0pdqtQKIxom/zoxtGQkCg+yZNdB2H7sbKg/AgnS9TzKUwtKJZDNBHC626gQYVYDOAySexxSlohjHYYtP5NBtgJj9nDV/Go5tmjiC7fhn0i0QgmM6lDHElz3L5uNfeUSrQY21P07NPMX/lXQwcmA4rhIIBUhzLCp7Di+aToUgTA1h0EnAHAD6PUuYf+BgU0hpEK5bvkq0MY1fAqFsmUwiWNU0P3wStafN6SKtiLbCpGjYlo4TUBqZw8aMbbyWxJzqYi6j+FcxFeOlPIINv0YLEF7uSFu8jy6Hhe2rOgMwpUDgn7DT5YbDf9sIvmvbg4U/C3/8YVhlpBSOrCfY6CM1zIEElAZaj5W4oCfX22wIw2Y0+DifLd3A2IwfKZjs6uZJu3gdITFw8HBRJ0hxIU7SlKWULZlCXFG0AwYNgThRq1HRBzVMKXC6lEvydBv93mM4BL/y6xNR43eTUzJ49m0qlgud5zJw5kyOPPJKTTjoJ09xwXFatVqlWx5b1RkZGmDFjRpxTExPzMrGaMxjmd9i4kTquZCqXkIt0RVbwF5ZxLgnGL683R+qvo0ENQJaDmc6FG+2vWkxg91VHtfEopR2GUxlWZqYTYDKXr9PM7hsuMf4vYhU/Y01kH+CxE4OsAg2W8ti3614SqgrLD2TdovvwWg1Gl7ZKYiv6qd/a0GzHtxEsocCZjG7/aMDDicrpw4Al5RfJFUpYlbH40ReSJVNmgwCpFTYdNHprsdVaPGFRsEPNICMICIwUUuxAjs+SYW9kJLRXVRdQ1V+MhqMRQRAtkGRIWH/DkPuEr3nPAi6YW9Xvm20+gyfD9efBc4x9cNq2Rh1zAwW1kFqgoA1S1bdTNf6JMs3a/MsiiW9YBEg8bSHpoFWcRpb3b7RbjaafGWiGMd2ARN7HDECmj0WmfowQAh2sJijMDAcWuYEbmaUIOdEOoarOpKrPqE3BlyZaSOw+D1nSpNqXIBOzX/j1eQPzhsup+dznPsdll13GbbfdxjHHHMNZZ53Fl7/85Y2e873vfY+Ghobaz4wZM16l0cbEvDkocA8BJmWSlElQxaHAWO5EK7sQYE3ICanoNtB1C/naZhrnb7I/07mRwB47L1Ws0m8042Oigec4kwc5mPs5iIDKyznVl5Uyy1nDRYxeEZP/sA2fZuvh59in+24SqowGylsKvEzdFzcBihUT2jNpxmZPRu0PwvWwSFe3PngQAt8ZH0wMpdOAJk2RnMiTEM9SlUMMOk0UnGzt/FylzMzgRqZzLTkOQOJQ4mf06Uby4iv4wpjYH0Wq/vFjD60FYG394gIagMqN0EDdB0dA61ZIMZ2kuBjNVEqygYKZYti+CyEEMgjCICsICKQRrYzYaCEI6KZbfw53E0nqAkGOS3FKJo1ryiRGPMyih+y/AO39OTzGmI5M/g5EE9CITPxy0oAGwBZfw5bfJxAGnrTQQiIqGrfFpDLTZqR/EbrU/eKu0Zuc1zSo+cpXvjIh+Xf9n8WLQ5Gvk08+mX322YftttuOY489lnPOOYcLLrhg3ErM+nz1q19leHi49rNq1apXa2oxMW8Kkmwd/SbQhFYJyUgBGCDDLHbjl6TZE0EDCaazNT9mR/EA88RdNHAkbXydLcQTm5XIa5h7Y0zJoxtPhMxHWdNxFEPJxgnHefSxjLNenkm+AgQUxz0WwBR2YF6lkWTgR88pejMPECQZFwSkKdUpv2g6WECCt2HzFpr4MwkOJcUJBBwzThFXoLGDCsoQlBoF5VSWkQYTLyWx8LDqSuy1YWIH5dpjQylS/lvAWFR7zudxSpwK+CAkShqRXUb9eDXo8XPdHJRehVJPodezKcB+C2wtYSGQAmYvgneFq3uWPAxtfIQg6tuXZqTjo5FKAYko0BvNDRqt5VZ464koToZVrZAdGqo/OzREDx6pHSPtj2HmBjBzg0h7wyKMQggS4iSE3Lb2nE6I2nXzp5n4S8/c5JhiJvKa5tSccsopfPKTn9zoMXPnTh7p7rbbbvi+z4oVK9hiiy0mPcZxHBzHmfS1mJiYl850vk2e21GMAGAznybePe6YBrZgR86bcK7NNDpfROAhZAbRFGqyONyC5tFJU3Gq9Ezy7H8HaRaRZWfy/AeAHDuSZC60XoEeOBo3+BcjmSQyGSARqPXygZ5hIe/mM6RZguQZyvocLDUNS2yHI8Pk15WcRJ4pTKELjaBMI43G+7G0xLQ+Bsnt6OIwqiwmQXn8ACOBQ9NzSandyfFJZMMHxgVXAc+OHQuRLpEAmhG6AtFnwjK/8YKujev/CC84FQApDiBhXYMYNS9t+gkIC/Z+GJIHQ+6b48rCFb2MLuME0qIqHJKqAmIKpnkJcHgU1ih0VCpl0EhC7LDpcZWPxVlvGUALENbGt642RiP3UKl8EVW5gHJTlFCswyVMKVpfdLtvZl7ToKatrY22trZNHzgJjzzyCFJK2tvbN31wTEzMK4JBmq24gzx3IEiS3Zh79StAK/sxm+NZx1/w60wNAabxsQ2ep4J/4/lnEojnUdaBpMQZqMAgUI9hGguQoqVm0/BKIDBYxM/p50pGOAuHa+jhUVrNv2G038AKFpGkHxMFKJSmdvNexQwWsAMpLsTl5loerKldLD/AMS/DND6ITRseCdYwPbyRC3jMfJgUJRq4DgtFhj3p4Fpc7qJAXfChNYZWSLkvDdblrONauvkMCTqZy0k4tGKyG6NVTqN5O5K3khV/B7tAoO5EiLkYcvvNvi5aF/CCr9YeK30Tgboe04iqqGQWr2FX/GAlUgxgU0TUGX2m+Chl/jZ6kXHkSSTk/ghjH4SQtFfPpOSdRIoSgbTRxjSanH9g0LjBMXn+b3GD4zBFFW2AcAA3DGhIzUeYG3dk3xgCSTJ5LkFhK/yuE/HaTAggfb+B8dYvbbqBmAm8LhKF77nnHu677z723Xdfstks99xzDyeddBLvete7+N3vfrfZ7cTiezExb1w8CiznR3gM0smRNLHbpMcptRivsi062m5RQlJykiQrFUwdREmeM7AT9yJk54seT4BPiQFSNGNs4PtjPx+nwo2ECa4GKQ6niR8zHHyfsvxe5NYU/ok2lcdzci7DNNFGD9PF+CBOqICEV0WKnUjaD+AyyFN8mQIP11ayUhRoYBgbr6ama1WhrfJZurL/QImlIARCBTQFR5K0LmSAu3iCk6MWJDm2YQcuiq75IxQ4FkUPNu8nw7kvSrNnFK3zlNwmxhl6ml8gaXwHQQrf/QlB9QsERrhFZshDSFh/HteGy+O43IfFtjiTfAa0dy+BdxXC3AvD3ojBKaB1kZLbCCjQmmRBI+tzwXLXg3PQWDL2S8EroZ79AyRbkbMPfentvcF4Q3k/OY7DZZddxumnn061WmXOnDmcdNJJnHzyyZs+OSYm5k2BRYaFnL7J47S6C/Brt15Dh4ZBWjJaPIPWq/C907Gc/3tRYxlmDTdyBmWGSNHMgXyLHBPlKBR5xsTqNJoCqvpDbP8blNOZukLkMPV3rlrBw0YTCV0dX0avNUJrwpWT8A++TRM7cBGPcwwj/IfQbsHHGp17pBPkWRoGTsdMZXBNG6mS2GIbLOsLAORZTJh+Ga4aFVhSG7/FDjRx74u6RhMY+iFi6EysbBovUwDCyqyy/BUlHqTFPQ1j+CTMyM6gmvQJrDtrp7ssYZjfoOjBYVuSzJ60G2G9FdPavNUVTR+190cIyhkwPRBKo+y9SNj7Qf/+4N4K2JD9IWQ+9+Lmb6WQWx394s6NqfG6CGp22mkn7r33ZfqHExMT86ZGyB3G6cOOivYJxi9aaz3wovt4iMuoRDklZYZ4lCvZkxNrrytcnuG79NGLyXSm0IWNIK3/l5Lah0IqHY2B2tgkGokPWjNCllb6CSMTjdAWtl8G2rDNc8eNZR6n8igfR1FBIfG0iS28qF0wg9AaIFl0EdkAiwKBvp0BdqTRuJdGduL5UZdtxKZNLF8MlftgMKxmtUcERtlmoMMkMMJSdp9HKVc+iGEJTF8gtcZyASfc7qzyH/p5JwEShUGRGxngRzgcQCtfx2Ye4kXUxQhmAK0QSRBoIfBtABvH+g4Uz48CGgAX8p+HxHvBnPMSL0jMi+V1EdTExMTEvFxIuTOG/Rs8/zg0PhXbCYXtaqsRhDkq1gv3iRrFpxKtJ4TrL/56Oj1ruZKeyH7BJUE/WzEHkwF+i3ScaNspRCHwtUWKCv00Rcag+5BmXwJuxxBb4fBpsPsQtI4l1UakmMtu3M4gd1DiYYrqxwgJJj6W79IyFGreKCN0qh4SDZRlaOZZ0ocwSyxmEafSywMk6GQmn3rR12WDBCvrHmgMr4rGqenLoGAko0FmQGuahouYzMQxQ52fEc4CFCqq4xqlzD9Zy/WAwMckwxFM5YebPSwhJEnradzgKLTuRsqDqYrL8MRSKvJTNLkLkWPxXoi/JA5qXkPioCYmJuZNh2V+Csv8FAHrMLgbrasU1SkohlBiHg3O5Ui59aYb2gDb8D66eBJFgIHJ1ozP3ajSTbilExCu2wzi6WWMqKdorE+lEJAnR5kEzfoQpjKdmWpfDLkH4VbT/9SOg6kEVBF4yPXK4yUGLexLC/ui1V74Q2/FUkHkAwWBhHLKwUDVAhqAivDpY0cEK5iim8lUdwP3y/iYiMSFGPbHX9B1Ud5fUZXjQFeRie8g7c+GLyT2BdkOqg/QkNiHtPFhSu6XaewpUGpIUM6MzamQztIofo4QuWh+qbpexueiiCgvySCgwGUMsiNNHLnZY5aymYT8CwAlfoTLCkDi5Nciis+NHRgAy4DqsbDFV2DesZvdR8zLx+siUfjlIk4UjomJebXI08Mgz9PMbDKMr/Ic4XEe5ZhoNUfRTB+t9COqkFYl8okUQoCHSQ/tWHhMDQ6hrfuvEDwHxkxovxXMeazjClbwczxKFEjik2A7TmA279ng2LT3JK77A0TgYBm7oJwZFMWdlLmAQaN53LFNjGDggRYYgUe2NCpqKDAyzyPk5omaaj1IkJ8CdY7jRvIhhOoAewoEa6HwB5BZyHwaX9+J6j8QtKaStimlnMhlWyMCjRYGLfJiLHEIPuvoYxcCSpRJj+vXwkMQrXhhARbzeY4XQ5GvUeZnQEDLqkJ0FSIWA8N1B+/xD5j6rhfVT8xENvf+HQc1MTExMa8BeRYzwN14/Jg0zyMAp1olU60QCEGP00peZlCmJEGVluIcmgfuZrRSiuT/kG89jcf45LhsoEEa0ZjM44Os4VaStLMDJ5Nl5kbHo3BZoT6CJ+5DRyJ6STpJ8VRoXKlDq4RsqU6UL30fwnjLZs1XB88SFBeOPVEC45koKEgugh3+DVZLeKzyKXlTIBgMF7SEwEdStlOgoWltkXXtrTjmVKbKh8NzKFHmHtZxFDpyMDeiLBsB+BgEGIDBgklUmTcHn6cYYh+gTMuqwlhAUwEeHX9sML0FsePlSGf/F9VXzHjecDYJMTExrz80ihKr8Sm91kP5ryPLlszi00znnNBsU2t8U6KkwNSaqZVemvQwSapIMjSWGhkrJlaghhnkbqBO4ZYwVwY0y7iCCv0MsYQH+M4mx5PnZsryYXxhEWAQ4DCVCxCMukwLHNetO6MRXoAGDXIeyN3CUWqBUZ9GU34aVp8D+athlQ1rLPAHwBhT2TVRZAoFmrpHcCoBCdelIIJaE4IUKfZnLsto5lsYXitGxUApiReFNwAZDtn8Ma+HyVY0cT8ZLkCl6lZh1MRjVyxMsNg6iuHKCxMfjHlpxDk1MTExrwguQ9zNR/CiKqCFnMgsDnuNR/XfR4J30MZTBGIFyH508hlgPlK+jbS4kTSQ5VBk9l6o3EB4BzUgezJNdLKK/xu3UuNjYtGMR1i9pVEU1xMmnIzR1Y2xDRWNybY08RA+D2IwGzgbuB7kHGTqKoTYfMV2ISRG+p9o77fQ/Vuo/Gd89ovfA/lDIfLuTI1AqWnMjBNCMWFMQSChkEiSmETsUSBo7k/RvOJxQKGsVlZu2Yi2AzIcSgfnbPaYJ8NgNgafhJZPQuIycO+Hto/A0v+Bchip5ackqTSF12aN/SdynI6Ib7evCvH2U0xMzCvCo5xGD7cBNdFbFrIX7RxZ5xkV84LwngX3AbB3AmtLANZxOcv5OR5VBumghT3YmvdxF18grL1SdLIXu/D1jTYdUGQ5H6Ya6dC08Xna+ewrM4/Bm+HxA6mtPAkHFn0OvPGVSa4BXi4KfUZ9kcoW/ak2sPZnpjgfczI14Mdmgjfq9WfA1K9B5xmvyFRq6ABWnkNh5HSe33oqyLGQbRGPI0m+sv2/wYlzaiYhDmpiYl49/sMXGIi8jUDT+kA/W/10GaKkCPbZn+TxN8Sqqa8ggyxmDf8iQStzeB8G9ibPUVQp8RAmTSTY8pUd4Mj90HMpGCnoPAH0YzAYVYlFdyVdhkoHKCkQGgzrBGzzJ5u2sHhiPlSfo+Za3nk6TP3mKziZMYJlbSybkcKzw2qtpurOdDqXvyp9v5GJg5pJiIOamJhXj0Ee5UFOwMInsyTPzv/7VCjNP3rAiT+Cw0/ZZDs/+tFd/OIX/2H77adw2WUfxLKMTZ4T8zplXQfobgC0F+46ee1AYCGsk7CcLyLEZvgFDv8Dlv0P6CoktoQt7gSz5ZUd+yhaE/R9m7z4N0b6A2SSx70k64iYkDiomYQ4qImJefXQaJbwDlxW03ZJPx3/11+XrQFit4PgnOs32sbRR1/LRRc9VHs8Y0aOlStPeuUGHfPaojX0fw7yf0LrAJ1chNfQhi+vjVb1ppC0H0KKiZYTE/AHwVsHiQVRMk7M65m4+ikmJuY1pcSduKwGoDrLHh/QAOz6zk22cfHFj4x7vGrVyMs5xJj/NoSA7LEQDCLUMKJ4P1b3NXUH9BAEV2xeW2YTJLeKA5o3GXFQExMT84oQsKz2+8heGbo+3UyQEGBIOOjjcNimV1wMI162f9MxeDZhhZdGECADQNWFxKLxNRtazH8/cY1ZTEzMy8ogz/A4RyLRQJo0RQwhGP50lsZP30eC+Zvd1gUXvIujj76u9vhLX3rbKzDimP8a1EioKlyHNpuw3AICD+XsgymPeI0GF/N6IM6piYmJeVm5g10waptM4Z+XuXTQwo+wWfSC23vmmX7uumsV++03m1mzGl/Wscb8lxH0wfIoEdgj/PjkJCgVWl1ZQMOfwfnQazfGmNeEzb1/xys1MTExLyvGOCm4MLCZyt9fdHsLF7awcOGrVLkS89pitEL2aOj7PygALYAXyfWOigeXL46DmpgNEufUxMTEvKyoceWrmjfNUnDMy0Nyz9BLCUYdFXCzgmpjqCSMMe21HF3MfzlxUBMTE/OyMp2ja+7TGtiOP2zqlJiYEF2F8hXU7KYqUGkSeBnwk1BpkgSpw1/TIcb8dxNvP8XExLyszOFo5nD0az2MmNcbugr9e4J6AJoBB3Q/KEfUKTYKlH4Ug9j5OmZy4qAmJiYmJua1IygSlB8kkA9heQ+MxS9pELnjEOIONM8QJtVopNz2tRtrzH89cVATExMTE/PaUHgC/fAeGN4Ioh1Ui0Cio8BGQOsZJMQIVe9ENGuwjGMx5KZFG2PevMRBTUxMTEzMa8Pyr4M3AlmQLTAusTz7I5CtSFpJ2v947cYY87oiDmpiYmJiYl4dyktQT78d4fWhzQRSR6X6dmj7JGrpMwnInPwaDjTm9Upc/RQTExMT86qgnnobwutDANKv4BlrwqRgO3xdE5ojkPjAazjKmNcz8UpNTExMTMyrgvAHxxubNgnQ4ZaTcCFwEhi570Hq+NdwlDGvZ+KVmpiYmJiYV4XAzIx7PJoULAi3n7RyqaQPBmG/JuOLef0TBzUxMTExMa8O2zyAkgItYGSBg5cYM9UQwGAmzTMcyBrOei1HGfM6Jg5qYmJiYmJeFUxnS+TOZcrTP4QzGFBodahkTDxHUmi2qeZMUlTp59e4dL3Ww415HRLn1MTExMTEvHpIh2THJQRPptBCUGhNIESUYxOmEJOgGv0eE/PCiFdqYmJiYmJeVYRMILZei3AT4553sQCN8f/t3X9MVXUDx/HP/SEX0wuJ0oWLoFgmruY1al7/6Q+Chgx4ak9t5MQwyqdc2g+qTbeMai2tFnM6mlsDrm76VGvE9qzFH1F7nElk9OBqoyYMtE24zac/+KGIcM/zR3oXA33UgHP93vdruxv3+z0HPmdnBz6cc+BovubIZ0843NQoNQCAWedypmnh3LOa5zikc/JoUPMVkUsujSlD/7I7Hm5SlBoAgG1u0d/k12l5lCePVitD/1GiltsdCzcp7qkBANjKrVuUocN2x4ABOFMDAACMQKkBAABGoNQAAAAjUGoAAIARKDUAAMAIlBoAAGAESg0AADACpQYAABiBUgMAAIxAqQEAAEag1AAAACNQagAAgBEoNQAAwAiUGgAAYARKDQAAMAKlBgAAGIFSAwAAjECpAQAAf8lQ5KDOjnn134vzNRz5p205KDUAAOCGjei4xi9ulnd0SPMvDsu6sFEjkX/bkoVSAwAAbtjw+D+UOD4afT/HGtfw2N9tyUKpAQAAN8zhWClr0uAtdkSh1AAAgBuX4jys867EaLEZdbrldXXZksVty1cFAADGWOA5r6HIPo1bZ5Ts2mVbDkoNAAD4y+Y7t9kdgctPAADADJQaAABgBEoNAAAwAqUGAAAYgVIDAACMQKkBAABGoNQAAAAjUGoAAIARKDUAAMAIlBoAAGAESg0AADACpQYAABghrh5oaVl/PBh9YGDA5iQAAOBaXf65ffnn+JXEVakZHByUJGVmZtqcBAAAXK/BwUElJydfcd5h/b/aY5BIJKIzZ87I6/XK4XDYHcdIAwMDyszM1K+//qqkpCS742AK7KObA/sp9rGPZo9lWRocHJTf75fTeeU7Z+LqTI3T6dTixYvtjhEXkpKSOMhjHPvo5sB+in3so9lxtTM0l3GjMAAAMAKlBgAAGIFSg2nl8XhUXV0tj8djdxRcAfvo5sB+in3so9gTVzcKAwAAc3GmBgAAGIFSAwAAjECpAQAARqDUAAAAI1BqMGOWLl0qh8Mx4bV79267Y8W92tpaLV26VImJiQoGg/ruu+/sjoRLXn/99UnHTE5Ojt2x4t6RI0dUWloqv98vh8OhpqamCfOWZem1115Tenq65s6dq4KCAp08edKesHGOUoMZ9eabb6qvry/62rZtm92R4trHH3+sqqoqVVdX64cfflAgEFBhYaF+++03u6PhkrvuumvCMXP06FG7I8W94eFhBQIB1dbWTjn/7rvvau/evdq/f7/a2to0b948FRYWamRkZJaTIq4ek4DZ5/V6lZaWZncMXFJTU6PNmzfriSeekCTt379fn3/+uerr67V9+3ab00GS3G43x0yMKSoqUlFR0ZRzlmVpz549evXVV/XQQw9Jkg4ePCifz6empiY99thjsxk17nGmBjNq9+7dWrhwoe655x699957GhsbsztS3BodHVV7e7sKCgqiY06nUwUFBWptbbUxGf7s5MmT8vv9WrZsmTZs2KDTp0/bHQlX0dPTo/7+/gnHVXJysoLBIMeVDThTgxnz3HPPKTc3VykpKTp27Jh27Nihvr4+1dTU2B0tLp09e1bj4+Py+XwTxn0+n37++WebUuHPgsGgQqGQVqxYob6+Pr3xxhu6//779dNPP8nr9dodD1Po7++XpCmPq8tzmD2UGlyX7du365133rnqMp2dncrJyVFVVVV0bNWqVUpISNDTTz+tXbt28W/FgSn8+RLHqlWrFAwGtWTJEn3yySd68sknbUwG3BwoNbguL730kjZt2nTVZZYtWzbleDAY1NjYmHp7e7VixYoZSIerWbRokVwul8Lh8ITxcDjMPRwx6tZbb9Wdd96prq4uu6PgCi4fO+FwWOnp6dHxcDis1atX25QqflFqcF1SU1OVmpp6Q+t2dHTI6XTqtttum+ZUuBYJCQm699571dLSoocffliSFIlE1NLSoq1bt9obDlMaGhpSd3e3Nm7caHcUXEF2drbS0tLU0tISLTEDAwNqa2vTli1b7A0Xhyg1mBGtra1qa2tTXl6evF6vWltb9eKLL6q8vFwLFiywO17cqqqqUkVFhe677z6tWbNGe/bs0fDwcPSvoWCvl19+WaWlpVqyZInOnDmj6upquVwurV+/3u5ocW1oaGjC2bKenh51dHQoJSVFWVlZeuGFF/TWW29p+fLlys7O1s6dO+X3+6O/PGAWWcAMaG9vt4LBoJWcnGwlJiZaK1eutN5++21rZGTE7mhxb9++fVZWVpaVkJBgrVmzxvr222/tjoRLysrKrPT0dCshIcHKyMiwysrKrK6uLrtjxb2vv/7akjTpVVFRYVmWZUUiEWvnzp2Wz+ezPB6PlZ+fb/3yyy/2ho5TDsuyLFtbFQAAwDTg/9QAAAAjUGoAAIARKDUAAMAIlBoAAGAESg0AADACpQYAABiBUgMAAIxAqQEAAEag1ACw1aZNm+RwOPTMM89Mmnv22WflcDiiD1G9vKzD4dCcOXPk8/n04IMPqr6+XpFIZMrPX1hYKJfLpePHj0+aO3LkiEpLS+X3++VwONTU1DSdmwZgllFqANguMzNTH330kc6fPx8dGxkZ0eHDh5WVlTVh2XXr1qmvr0+9vb364osvlJeXp+eff14lJSUaGxubsOzp06d17Ngxbd26VfX19ZO+7vDwsAKBgGpra2dmwwDMKh5oCcB2ubm56u7uVmNjozZs2CBJamxsVFZWlrKzsycs6/F4lJaWJknKyMhQbm6u1q5dq/z8fIVCIT311FPRZRsaGlRSUqItW7Zo7dq1qqmp0dy5c6PzRUVFKioqmoUtBDAbOFMDICZUVlaqoaEh+r6+vv6anx7+wAMPKBAIqLGxMTpmWZYaGhpUXl6unJwc3XHHHfr000+nPTeA2EGpARATysvLdfToUZ06dUqnTp3SN998o/Ly8mtePycnR729vdH3X375pc6dO6fCwsLo56+rq5vu2ABiCJefAMSE1NRUFRcXKxQKybIsFRcXa9GiRde8vmVZcjgc0ff19fUqKyuT2/3Ht7n169frlVdeUXd3t26//fZpzw/AfpypARAzKisrFQqFdODAAVVWVl7Xup2dndH7b37//Xd99tln+uCDD+R2u+V2u5WRkaGxsbEpbxgGYAZKDYCYsW7dOo2OjurixYvRy0bX4quvvtKPP/6oRx55RJJ06NAhLV68WCdOnFBHR0f09f777ysUCml8fHymNgGAjbj8BCBmuFwudXZ2Rj+eyoULF9Tf36/x8XGFw2E1Nzdr165dKikp0eOPPy5Jqqur06OPPqq77757wrqZmZnasWOHmpubVVxcrKGhIXV1dUXne3p61NHRoZSUlEl/Sg4g9lFqAMSUpKSkq843NzcrPT1dbrdbCxYsUCAQ0N69e1VRUSGn06n29nadOHFCH3744aR1k5OTlZ+fr7q6OhUXF+v7779XXl5edL6qqkqSVFFRoVAoNK3bBWDmOSzLsuwOAQAA8FdxTw0AADACpQYAABiBUgMAAIxAqQEAAEag1AAAACNQagAAgBEoNQAAwAiUGgAAYARKDQAAMAKlBgAAGIFSAwAAjECpAQAARvgfoSEC6bWYV/oAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from keras.models import Sequential\n", "from keras.layers import Dense\n", "from sklearn.manifold import MDS\n", "import matplotlib.pyplot as plt\n", "from keras.applications import DenseNet121\n", "from sklearn.metrics.pairwise import euclidean_distances\n", "from skimage.transform import resize\n", "\n", "# Load the MDA code here (the functions and classes)\n", "def discoverManifold(data, neighborNum):\n", " # Perform some operation to discover the manifold\n", " return clusterIdx_train\n", "\n", "def mda(data, clusterIdx):\n", " # Perform MDA\n", " return Yreg_train\n", "\n", "# Load the data from a CSV file\n", "data = pd.read_csv(\"/content/drive/MyDrive/stressinput.csv\", header=None)\n", "\n", "# Split the data into features and labels\n", "features = data.iloc[:, :-1].values\n", "labels = data.iloc[:, -1].values\n", "\n", "# Scale the features using StandardScaler\n", "scaler = StandardScaler()\n", "features = scaler.fit_transform(features)\n", "\n", "# Reshape features into \"images\" to match DenseNet121 input shape\n", "# Assuming each feature vector represents a 1D \"image\" with 300 pixels (features)\n", "# Reshape into 10x30 \"images\"\n", "features_reshaped = features.reshape(features.shape[0], 10, 30, 1)\n", "\n", "# Pad or resize features to match the input size of DenseNet121\n", "features_resized = np.zeros((features_reshaped.shape[0], 32, 32, 3))\n", "for i in range(features_reshaped.shape[0]):\n", " features_resized[i] = resize(features_reshaped[i], (32, 32, 3), anti_aliasing=True)\n", "\n", "# Split the data into training and test sets\n", "train_features, test_features, train_labels, test_labels = train_test_split(features_resized, labels, test_size=0.2, random_state=42)\n", "\n", "# Load DenseNet121 model without top (fully connected layers)\n", "densenet_model = DenseNet121(weights='imagenet', include_top=False, input_shape=(32, 32, 3))\n", "\n", "# Extract features using the DenseNet121 model\n", "features_densenet = densenet_model.predict(features_resized)\n", "\n", "# Flatten the features\n", "features_densenet_flat = features_densenet.reshape(features_densenet.shape[0], -1)\n", "\n", "# Perform MDA on the extracted features from DenseNet121\n", "neighborNum = 12 # You may adjust this parameter based on your specific needs\n", "clusterIdx_densenet = discoverManifold(features_densenet_flat, neighborNum)\n", "Yreg_densenet = mda(features_densenet_flat, clusterIdx_densenet)\n", "\n", "# Plot the MDA results for DenseNet121\n", "plt.scatter(Yreg_densenet[:, 0], Yreg_densenet[:, 1], c=clusterIdx_densenet, cmap='jet', s=5)\n", "plt.xlabel(\"MDA1\")\n", "plt.ylabel(\"MDA2\")\n", "plt.title('MDA visualization of the features from DenseNet121')\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "bsnKr_XFDHmt", "outputId": "c7f708c5-763a-48d9-bcdc-a87fd94f6337" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "141/141 [==============================] - 2s 11ms/step\n", "36/36 [==============================] - 0s 9ms/step\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n", " warnings.warn(\n" ] } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.cluster import KMeans\n", "from keras.models import Sequential\n", "from keras.layers import Dense, Conv1D, MaxPooling1D, Flatten, Bidirectional, LSTM\n", "\n", "# Load the data from a CSV file\n", "data = pd.read_csv(\"/content/stressinput.csv\", header=None)\n", "\n", "# Split the data into features and labels\n", "features = data.iloc[:, :-1].values\n", "labels = data.iloc[:, -1].values\n", "\n", "# Scale the features using StandardScaler\n", "scaler = StandardScaler()\n", "features = scaler.fit_transform(features)\n", "\n", "# Split the data into training and test sets\n", "train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size=0.2, random_state=42)\n", "\n", "# Define the CNN layers for feature extraction\n", "cnn_model = Sequential([\n", " Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(train_features.shape[1], 1)),\n", " MaxPooling1D(pool_size=2),\n", " Conv1D(filters=64, kernel_size=3, activation='relu'),\n", " MaxPooling1D(pool_size=2),\n", " Flatten()\n", "])\n", "\n", "# Reshape the data for CNN input\n", "train_features_cnn = train_features.reshape(train_features.shape[0], train_features.shape[1], 1)\n", "test_features_cnn = test_features.reshape(test_features.shape[0], test_features.shape[1], 1)\n", "\n", "# Extract features using CNN layers\n", "train_features_cnn = cnn_model.predict(train_features_cnn)\n", "test_features_cnn = cnn_model.predict(test_features_cnn)\n", "\n", "# Define the RBF network (same as provided)\n", "# Define the RBF network\n", "class RBFNet:\n", " def __init__(self, input_dim, output_dim, hidden_dim):\n", " self.input_dim = input_dim\n", " self.output_dim = output_dim\n", " self.hidden_dim = hidden_dim\n", " self.centers = None\n", " self.weights = None\n", "\n", " def fit(self, X, y):\n", " kmeans = KMeans(n_clusters=self.hidden_dim)\n", " kmeans.fit(X)\n", " self.centers = kmeans.cluster_centers_\n", "\n", " # Calculate the width parameter for the RBFs\n", " dmax = np.max([np.linalg.norm(self.centers[i] - self.centers[j]) for i in range(self.hidden_dim) for j in range(self.hidden_dim)])\n", " self.sigma = dmax / np.sqrt(2 * self.hidden_dim)\n", "\n", " # Calculate the hidden layer activations\n", " X_transformed = np.zeros((X.shape[0], self.hidden_dim))\n", " for i in range(X.shape[0]):\n", " for j in range(self.hidden_dim):\n", " X_transformed[i, j] = self.rbf(X[i], self.centers[j])\n", "\n", " # Add a bias term to the hidden layer activations\n", " X_transformed = np.concatenate((X_transformed, np.ones((X.shape[0], 1))), axis=1)\n", "\n", " # Solve for the weights using least squares regression\n", " self.weights = np.linalg.lstsq(X_transformed, y, rcond=None)[0]\n", "\n", " def predict(self, X):\n", " # Calculate the hidden layer activations\n", " X_transformed = np.zeros((X.shape[0], self.hidden_dim))\n", " for i in range(X.shape[0]):\n", " for j in range(self.hidden_dim):\n", " X_transformed[i, j] = self.rbf(X[i], self.centers[j])\n", "\n", " # Add a bias term to the hidden layer activations\n", " X_transformed = np.concatenate((X_transformed, np.ones((X.shape[0], 1))), axis=1)\n", "\n", " # Perform the prediction\n", " return np.dot(X_transformed, self.weights)\n", "\n", " def rbf(self, x, c):\n", " return np.exp(-np.linalg.norm(x - c) ** 2 / (2 * self.sigma ** 2))\n", "\n", "# Create the RBF network\n", "rbf = RBFNet(input_dim=train_features_cnn.shape[1], output_dim=1, hidden_dim=50)\n", "\n", "# Fit the RBF network on the CNN-extracted features\n", "rbf.fit(train_features_cnn, train_labels)\n", "\n", "# Predict using RBF network\n", "train_rbf_predictions = rbf.predict(train_features_cnn)\n", "test_rbf_predictions = rbf.predict(test_features_cnn)\n", "\n", "# Concatenate RBF predictions with CNN-extracted features\n", "train_features_with_rbf = np.concatenate((train_features_cnn, train_rbf_predictions.reshape(-1, 1)), axis=1)\n", "test_features_with_rbf = np.concatenate((test_features_cnn, test_rbf_predictions.reshape(-1, 1)), axis=1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 564 }, "id": "s546xX1nDJyO", "outputId": "edcce5fd-b947-4d89-b55c-2aea7671241e" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAroAAAIjCAYAAADslLiSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXxV9f/A8dft2F13b4yN7u4SkVTAABFFUFHEjq/d/uxOMAAVsBBUQKW7u3vJune7zu+PucsuK0CQ8PN8PPZQzjn3nM/ZLux9P+f9eb9lkiRJCIIgCIIgCMIVRn6xByAIgiAIgiAIF4IIdAVBEARBEIQrkgh0BUEQBEEQhCuSCHQFQRAEQRCEK5IIdAVBEARBEIQrkgh0BUEQBEEQhCuSCHQFQRAEQRCEK5IIdAVBEARBEIQrkgh0BUEQBEEQhCuSCHQFQbgkzZw5E5lMRlpa2iU3jr59+9K3b99/fSwX67pnIy8vj+uvv57g4GBkMhnvv/9+rcelpaUhk8l4++23z9u1+/btS8uWLf/ROVatWoVMJmPVqlVndL1L/ecBMGHCBBISEs7ptZfLPQpCXUSgKwiXuA0bNvDCCy9QWlp6xq8xGo08//zztGzZEh8fH4KDg2nbti0PPPAA2dnZnuNeeOEFZDIZ4eHhmM3mGudJSEhg2LBhXttkMlmdX3fffXedYxoxYgR6vZ6Kioo6jxk3bhxqtZqioqIzvtcrzYEDB3jhhRcueoB/rh566CH++usvnnzySb799luuueaaiz0kQRD+w5QXewCCINRvw4YNvPjii0yYMIGAgIAGj3c4HPTu3ZtDhw5x2223cd9992E0Gtm/fz9z5sxh5MiRREVFeb0mPz+fzz77jEceeeSMxjRw4EBuvfXWGttTUlLqfM24ceP4/fffmT9/fq2vNZvN/Prrr1xzzTUEBwczfvx4xowZg0ajOaMx/ZuWLFlywc594MABXnzxRfr27VtjFu5CXvd8WbFiBddeey2PPvroxR7KOenduzcWiwW1Wn2xhyIIwnkgAl1BuMIsWLCAnTt3Mnv2bG6++WavfVarFbvdXuM1bdu25a233mLKlCnodLoGr5GSksItt9xyVuMaMWIEvr6+zJkzp9ZA99dff8VkMjFu3DgAFAoFCoXirK7xb7lYQdDlEHzl5+ef0QeyS43VakWtViOXy9FqtRd7OIIgnCcidUEQLmEvvPACjz32GACJiYmeFIH6HmsfP34cgB49etTYp9Vq8fPzq7H9ueeeIy8vj88+++z8DLwWOp2OUaNGsXz5cvLz82vsnzNnDr6+vowYMQKoPTd227ZtDBo0iJCQEHQ6HYmJiUycONGzv678yqp80JkzZ3q27dmzhwkTJtCoUSO0Wi0RERFMnDjxjNImTs9bTEhIqDOdo2os6enpTJkyhSZNmqDT6QgODuaGG27wur+ZM2dyww03ANCvX78a56gtXzI/P59JkyYRHh6OVqulTZs2zJo1q9b7f/vtt5k+fTpJSUloNBo6derE1q1bG7xfgBMnTnDDDTcQFBSEXq+na9euLFq0yGvsMpkMSZL45JNPPGM/E/WNacaMGchkMnbu3Fnjdf/3f/+HQqHg5MmTXtu3b99O9+7dPe+Rzz//3Gt/1fvk+++/55lnniE6Ohq9Xk95eXmd76GqMep0Ojp37szatWvP6N6gMt1n6tSp/PTTTzRv3hydTke3bt3Yu3cvANOmTaNx48ZotVr69u1b69/vn376iQ4dOqDT6QgJCeGWW26pcd9Q+UG3ZcuWaLVaWrZsyfz582sdk9vt5v3336dFixZotVrCw8OZPHkyJSUlZ3xfgnA5EDO6gnAJGzVqFEeOHGHu3Lm89957hISEABAaGlrna+Lj4wH45ptveOaZZ84o2OjVqxf9+/fnzTff5J577mlwVtdqtVJYWFhju5+fX72zjuPGjWPWrFn8+OOPTJ061bO9uLiYv/76i7Fjx9Z57fz8fK6++mpCQ0N54oknCAgIIC0tjV9++aXB+6vN0qVLOXHiBLfffjsRERHs37+f6dOns3//fjZt2nTGQRrA+++/j9Fo9Nr23nvvsWvXLoKDgwHYunUrGzZsYMyYMcTExJCWlsZnn31G3759OXDgAHq9nt69e3P//ffz4Ycf8tRTT9GsWTMAz39PZ7FY6Nu3L8eOHWPq1KkkJiby008/MWHCBEpLS3nggQe8jp8zZw4VFRVMnjwZmUzGm2++yahRozhx4gQqlarO+8vLy6N79+6YzWbuv/9+goODmTVrFiNGjODnn39m5MiR9O7dm2+//Zbx48fXmdpSm4bGdP3113Pvvfcye/Zs2rVr5/Xa2bNn07dvX6Kjoz3bSkpKGDJkCDfeeCNjx47lxx9/5J577kGtVnt9KAJ4+eWXUavVPProo9hstjrfu1999RWTJ0+me/fuPPjgg5w4cYIRI0YQFBREbGzsGd3n2rVr+e2337j33nsBeO211xg2bBiPP/44n376KVOmTKGkpIQ333yTiRMnsmLFCs9rZ86cye23306nTp147bXXyMvL44MPPmD9+vXs3LnTM4O+ZMkSRo8eTfPmzXnttdcoKiri9ttvJyYmpsZ4Jk+e7Dnv/fffT2pqKh9//DE7d+5k/fr19b4fBOGyIgmCcEl76623JEBKTU09o+PNZrPUpEkTCZDi4+OlCRMmSF999ZWUl5dX49jnn39eAqSCggJp9erVEiC9++67nv3x8fHS0KFDvV4D1Pk1d+7cesfmdDqlyMhIqVu3bl7bP//8cwmQ/vrrL8+2GTNmeN33/PnzJUDaunVrnedfuXKlBEgrV6702p6amioB0owZM7y+T6ebO3euBEhr1qypcxySJEl9+vSR+vTpU+c4fvzxRwmQXnrppXqvt3HjRgmQvvnmG8+2n376qdZ7qO2677//vgRI3333nWeb3W6XunXrJhkMBqm8vNzr/oODg6Xi4mLPsb/++qsESL///nud9yJJkvTggw9KgLR27VrPtoqKCikxMVFKSEiQXC6XZzsg3XvvvfWe72zHNHbsWCkqKsrrOjt27KjxM+3Tp48ESO+8845nm81mk9q2bSuFhYVJdrtdkqRT75NGjRrV+Lmc/h6y2+1SWFiY1LZtW8lms3mOmz59ugTU+z6o/j3RaDRe76Fp06ZJgBQREeH5OUmSJD355JNe77eq67ds2VKyWCye4xYuXCgB0nPPPefZ1rZtWykyMlIqLS31bFuyZInn34Iqa9eulQBp9uzZXuP8888/a2xv6L0uCJc6kbogCFcYnU7H5s2bPSkPM2fOZNKkSURGRnLfffdhs9lqfV3v3r3p168fb775JhaLpd5rXHvttSxdurTGV79+/ep9nUKhYMyYMWzcuNHr8eycOXMIDw9nwIABdb62atZq4cKFOByOeq9zJqrPHFfNUHft2hWAHTt2nPN5Dxw4wMSJE7n22mt55plnar2ew+GgqKiIxo0bExAQcM7XW7x4MREREYwdO9azTaVScf/992M0Glm9erXX8TfddBOBgYGeP/fq1QuoTEto6DqdO3emZ8+enm0Gg4G77rqLtLQ0Dhw4cE7jP9Mx3XrrrWRnZ7Ny5UrPttmzZ6PT6Rg9erTX+ZRKJZMnT/b8Wa1WM3nyZPLz89m+fbvXsbfddluDTy+2bdtGfn4+d999t9eM74QJE/D39z/j+xwwYIDX4sIuXboAMHr0aHx9fWtsr7r/qutPmTLFK3d46NChNG3a1JM+kpOTw65du7jtttu8xjVw4ECaN2/uNZaffvoJf39/Bg4cSGFhoeerQ4cOGAwGr++zIFzuRKArCJep4uJicnNzPV9lZWWeff7+/rz55pukpaWRlpbGV199RZMmTfj44495+eWX6zznCy+8QG5ubo2cxtPFxMRw1VVX1fgKDw9vcNxVi83mzJkDQFZWFmvXrmXMmDH1Lj7r06cPo0eP5sUXXyQkJIRrr72WGTNm1Bm4N6S4uJgHHniA8PBwdDodoaGhJCYmAnh9L89GeXk5o0aNIjo6mm+++cYr/cFisfDcc88RGxuLRqMhJCSE0NBQSktLz/l66enpJCcnI5d7/1NeleqQnp7utT0uLs7rz1UBZkN5menp6TRp0qTG9rquczbOZEwDBw4kMjKS2bNnA5X5pXPnzuXaa6/1ChIBoqKi8PHx8dpWVQ3k9NzXqp93faruLTk52Wu7SqWiUaNGDb6+yun3WRWMnp76ULW96v6rrl/b979p06ae/XWNs7bXHj16lLKyMsLCwggNDfX6MhqNtebQC8LlSgS6gnCZGjVqFJGRkZ6v0/Mxq8THxzNx4kTWr19PQECAJ1ioTe/evenbt+8Zzeqeqw4dOtC0aVPmzp0LwNy5c5EkyRMA10Umk/Hzzz+zceNGpk6dysmTJ5k4cSIdOnTw5MfWlVfrcrlqbLvxxhv54osvuPvuu/nll19YsmQJf/75J1AZSJ2LCRMmkJ2dzYIFC2os+rvvvvt49dVXufHGG/nxxx9ZsmQJS5cuJTg4+Jyvd7bq+iAhSdK/cv3anMmYFAoFN998M/PmzcNqtbJy5Uqys7PPuvLH6c6kwsj5Utd9XoyfidvtJiwsrNanMkuXLuWll166YNcWhH+bWIwmCJe4uoK3d955x2vW6/TauKcLDAwkKSmJffv21XvcCy+8QN++fZk2bdrZD/YMjRs3jmeffZY9e/YwZ84ckpOT6dSp0xm9tmvXrnTt2pVXX32VOXPmMG7cOL7//nvuuOMOz2zg6c01Tp9xLCkpYfny5bz44os899xznu1Hjx4953t6/fXXWbBgAb/88gtNmzatsf/nn3/mtttu45133vFss1qtNcZ6Novg4uPj2bNnD26322tW99ChQ57950N8fDyHDx+usf18X6c+t956K++88w6///47f/zxB6GhoQwaNKjGcdnZ2ZhMJq9Z3SNHjgCcU3ewqns7evQo/fv392x3OBykpqbSpk2bsz7nuVz/8OHDXtev2la1v/o4T3f6zy4pKYlly5bRo0ePfzXYF4SLQczoCsIlruoX9ukBUYcOHbzSBqry8Hbv3l1rRYT09HQOHDhQ6yPQ6vr06UPfvn154403sFqt5+cmTlM1e/vcc8+xa9euBmdzoTI4PX2Wq23btgCe9IX4+HgUCgVr1qzxOu7TTz/1+nPVLNrp56urXW1Dli1bxjPPPMPTTz/NddddV+sxCoWixvU++uijGrPNdf28azNkyBByc3P54YcfPNucTicfffQRBoOBPn36nN2N1HOdLVu2sHHjRs82k8nE9OnTSUhIqJEDeiG0bt2a1q1b8+WXXzJv3jzGjBmDUllzrsbpdHp9SLPb7UybNo3Q0FA6dOhw1tft2LEjoaGhfP755141qGfOnHlW3QrPVceOHQkLC+Pzzz/3StP5448/OHjwIEOHDgUgMjKStm3bMmvWLK9UmKVLl9bIob7xxhtxuVy1pjE5nc5/5b4E4d8iZnQF4RJX9cv56aefZsyYMahUKoYPH14jD7HK0qVLef755xkxYgRdu3bFYDBw4sQJvv76a2w2Gy+88EKD13z++efrXVh25MgRvvvuuxrbw8PDGThwYIPnT0xMpHv37vz6668AZxTozpo1i08//ZSRI0eSlJRERUUFX3zxBX5+fgwZMgSozG+84YYb+Oijj5DJZCQlJbFw4cIaOYd+fn707t2bN998E4fDQXR0NEuWLCE1NbXBcdRm7NixhIaGkpycXOP7MnDgQMLDwxk2bBjffvst/v7+NG/enI0bN7Js2TJP+bEqbdu2RaFQ8MYbb1BWVoZGo6F///6EhYXVuO5dd93FtGnTmDBhAtu3bychIYGff/6Z9evX8/7779fIXz1XTzzxBHPnzmXw4MHcf//9BAUFMWvWLFJTU5k3b16NHOEL5dZbb/V0XKsrbSEqKoo33niDtLQ0UlJS+OGHH9i1axfTp08/p5JZKpWKV155hcmTJ9O/f39uuukmUlNTmTFjxlnl6J4rlUrFG2+8we23306fPn0YO3asp7xYQkICDz30kOfY1157jaFDh9KzZ08mTpxIcXExH330ES1atPAqf9enTx8mT57Ma6+9xq5du7j66qtRqVQcPXqUn376iQ8++IDrr7/+gt+bIPwrLmLFB0EQztDLL78sRUdHS3K5vMFSYydOnJCee+45qWvXrlJYWJikVCql0NBQaejQodKKFSu8jq1eXux0VaWazqa82NmUIfrkk08kQOrcuXOt+08v67Vjxw5p7NixUlxcnKTRaKSwsDBp2LBh0rZt27xeV1BQII0ePVrS6/VSYGCgNHnyZGnfvn01SlFlZWVJI0eOlAICAiR/f3/phhtukLKzsyVAev755+scR9X3pvq91vc9qSpTVVJSIt1+++1SSEiIZDAYpEGDBkmHDh2S4uPjpdtuu83rHr744gupUaNGkkKh8DpHbaWe8vLyPOdVq9VSq1atvO5Tkk6V8nrrrbdqfJ9Pv9+6HD9+XLr++uulgIAASavVSp07d5YWLlxY6/nOprzY2YwpJydHUigUUkpKSq3n7NOnj9SiRQtp27ZtUrdu3SStVivFx8dLH3/8sddxVSXEfvrppxrnqKtE3aeffiolJiZKGo1G6tixo7RmzZozLr1V2/ekrvuva2w//PCD1K5dO0mj0UhBQUHSuHHjpKysrBrXmjdvntSsWTNJo9FIzZs3l3755Rfptttu8yovVmX69OlShw4dJJ1OJ/n6+kqtWrWSHn/8cSk7O9tzjCgvJlzuZJJ0EVchCIIgCMIZKiwsJDIykueee45nn332Yg9HEITLgMjRFQRBEC4LM2fOxOVyMX78+Is9FEEQLhMiR1cQBEG4pK1YsYIDBw7w6quvct11151T9QRBEP6bROqCIAiCcEnr27cvGzZsoEePHnz33XdER0df7CEJgnCZEIGuIAiCIAiCcEUSObqCIAiCIAjCFUkEuoIgCIIgCMIVSSxGq8btdpOdnY2vr+9ZteEUBEEQBEEQ/h2SJFFRUUFUVFSDDWtEoFtNdnY2sbGxF3sYgiAIgiAIQgMyMzOJiYmp9xgR6FZT1S4zMzMTPz+/izwaQRAEQRAE4XTl5eXExsaeUZtzEehWU5Wu4OfnJwJdQRAEQRCES9iZpJmKxWiCIAiCIAjCFUkEuoIgCIIgCMIVSQS6giAIgiAIwhVJ5OgKgiAIgiBcZlwuFw6H42IP44JRqVQoFIp/fB4R6AqCIAiCIFxGjEYjWVlZSJJ0sYdywchkMmJiYjAYDP/oPCLQFQRBEARBuEy4XC6ysrLQ6/WEhoZekQ2uJEmioKCArKwskpOT/9HMrgh0BUEQBEEQLhMOhwNJkggNDUWn013s4VwwoaGhpKWl4XA4/lGgKxajCYIgCIIgXGauxJnc6s7X/YlAVxAEQRAEQbgiiUBXEARBEARBuCKJQFcQBEEQBEFAJpOxYMGCiz2M80oEuoIgCIIgCP8Bubm53HfffTRq1AiNRkNsbCzDhw9n+fLlF3toF4youiAIgiAItbC6HFhdDlRyBT5KzcUejiD8I2lpafTo0YOAgADeeustWrVqhcPh4K+//uLee+/l0KFDF3uIF4SY0RUEQRCEaiocFtKMBbxz4Hce2fENz+/5kZ3FqZTaTRd7aIJwzqZMmYJMJmPLli2MHj2alJQUWrRowcMPP8ymTZtqfc3//vc/UlJS0Ov1NGrUiGeffdarG9vu3bvp168fvr6++Pn50aFDB7Zt2wZAeno6w4cPJzAwEB8fH1q0aMHixYv/lXutTszoCoIgCMLfSmxGyhwWyh1mGvtFsKc0g72lGazJP0iP0CY83+p6AtQ+F3uYgnBWiouL+fPPP3n11Vfx8an5/g0ICKj1db6+vsycOZOoqCj27t3LnXfeia+vL48//jgA48aNo127dnz22WcoFAp27dqFSqUC4N5778Vut7NmzRp8fHw4cODAP+5ydi5EoCsIgiD851lddnIspXx6ZAnrCw4jIdEpOIlHmw9jX2kmnx1dyvqCw/yatY1xCT1Rys+9gL0g/NuOHTuGJEk0bdr0rF73zDPPeP4/ISGBRx99lO+//94T6GZkZPDYY495zpucnOw5PiMjg9GjR9OqVSsAGjVq9E9v45yI1AVBEAThP83hcrK3NJOb13/I6vwDOCUXLsnNpsKjTN06gyhdIO+2vxVfpZa5aespd1gu9pAF4axIknROr/vhhx/o0aMHERERGAwGnnnmGTIyMjz7H374Ye644w6uuuoqXn/9dY4fP+7Zd//99/PKK6/Qo0cPnn/+efbs2fOP7+NciEBXEARB+M+QJIkSm5FUYz5bi46RbiygzGHmqV1zcUnumscj8cq++cTog3m/4wRckgun5LoIIxeEc5ecnIxMJjurBWcbN25k3LhxDBkyhIULF7Jz506efvpp7Ha755gXXniB/fv3M3ToUFasWEHz5s2ZP38+AHfccQcnTpxg/Pjx7N27l44dO/LRRx+d93triAh0BUEQhP8Eu8vJofJs7twynZvWvc+9W7/m8Z2z2VOaQZnDXOfrbG4He0szWJ13gIebDkMhE786hctLUFAQgwYN4pNPPsFkqrmosrS0tMa2DRs2EB8fz9NPP03Hjh1JTk4mPT29xnEpKSk89NBDLFmyhFGjRjFjxgzPvtjYWO6++25++eUXHnnkEb744ovzel9nQvxtFQRBEP51dpeTfGsZ6aYCjpTnUGAtp8x2Yasa5FnLuGvzNDJMhZ5tAWofTlqKG3xttqWYk+Zi4nxC0MpVF3KYgnBBfPLJJ7hcLjp37sy8efM4evQoBw8e5MMPP6Rbt241jk9OTiYjI4Pvv/+e48eP8+GHH3pmawEsFgtTp05l1apVpKens379erZu3UqzZs0AePDBB/nrr79ITU1lx44drFy50rPv3yQWowmCIAj/qiJbBbtL0vnw8B9kW0oAUMuVXBPZlntSBhKs8T3v1zQ5bUw7uhSb2+m1vcRuJEIb0ODrY/TBtAqIZXPhMVoExJ738QnChdaoUSN27NjBq6++yiOPPEJOTg6hoaF06NCBzz77rMbxI0aM4KGHHmLq1KnYbDaGDh3Ks88+ywsvvACAQqGgqKiIW2+9lby8PEJCQhg1ahQvvvgiAC6Xi3vvvZesrCz8/Py45ppreO+99/7NWwZAJp1rhvIVqLy8HH9/f8rKyvDz87vYwxEEQbji2Jx21hYc5qndc2vd3zYwgf9rM4YQ7fn9N7jYZmTYqjdqza/9ostkHtvxHaWO2meUNXIVP/R8gDxLGT4qDSl+Ued1bIJwNqxWK6mpqSQmJqLVai/2cC6Y+u7zbOI1kbogCIIg/GvKnFbeP7Sozv27StLIMjecSnAu6lpENjttHU+0uLbW3FsZMh5pNowKh5XfT27nz+zdmJzWCzI+QRDOPxHoCoIgCP+acoeZfFt5vcf8krkFk+P8BpNymYyW/rWnHKzK28/24hN80WUy/cJboJIpUMjkdAtJ4cOOEyh3mAnS+LAwewdz09djcTlqPY8gCJceEegKgiAI/xqL097gMWaXDbv7/JbwClD7MDn5qjr3/5SxCbPTRrfgFD7pPInPO99Jt5AU3ju0iEaGcPaWZALgktzsLE49r2MTBOHCEYvRBEEQrmAVDgtGp5XVeQcJ0/rT1C8SAJVcgUqu/Nfb2Ybr/FHI5LXWrK3SOiAO9QXoPNbcP4YpKVfz2ZGlSJxaniJDxkNNhxCm9WPasWXsLc1AhowuIY15odUNuCQ3t286tVjnTIJ1QRAuDSLQFQRBuEKV2c1MP7aMJTl7+LTTJJbk7uGVffMw/p1j2tw/hseaDSfREI5eqf5XxqSQyekT1pwVeftq3a+RK7k6sg1FdiM+qvO70MZXpeP62C5cE9mWX7O2kWUuItEQxtDo9vgoNBhUWv6vzRhkMjkywOKyMzt1HfOztnidR1RdEITLhwh0BUEQrkAOt5MFWVv5JXML3/d4gHcO/s6momNexxwoy+KOzdP4rNMdtAmMRyaTXfBxBWt8eaTZMLLMRRypyPHap5Yrebv9eNblH2JvaQYPNxuGv1p/Xq9vUOkwqHTc1XgATsmFSu79a1AlVzJx02eesmenS/GNJEjz786CC4Jw7kSOriAIwhWo1G6mY1Aj5vV6hBK7qUaQW8UluXlt/wKK7cZ/bWxKmZy32t/CO+3H0zesOV1Dkrmr8VX83Othss0lvHnwN1bnH8DmvnCLvmQyWY0gFyBQ7cPHnSYSUkst3yhdIO+0H0+g2nDBxiUIwvklZnQFQRCuIGanjUxzEZ8dWcLmomOMT+xFtrn22ckqqaZ8LK5/L+/UJbm5bvXbXBPZhutiO6GUKUgzFXDz+g89aRUOtwsZF36G+XQymYxoXRDfdb+P7cUnWJa7FzkyBke3o1VArAhyBeEyIwJdQRCEK4Td5WRb8XEe3zEb99+LrSK0ARwsO9nga8vtFvg7S8DhdlJqN+OSXChkcoI0vrXWmD13MloHxPFHzi7+yNlV6xHtgxJR1zLj+m+QyWQEaQwMjGxNr9CmIJOhVYi2v4JwORKBriAIwhXC6LTy/O6fPEEuVLa+TfGLYnMdqQtQuUDMV6XD5XZRbDeRbSlhdto6DpefxEeh5drYjlwV0eq8teYN0foyOfkqpmz9qs5jJicPPO/5uedC+y8t0hOEf5vT7abMaEUmA0kCf4MWpfzKy2i98u5IEAThP2pfaSYml81r2/LcfVwb0xF5PWkAvUKbYnbaKLBV8HvWNu7cPI1VefvJsZRyzJjLOwcXMmnT5+Rby87bWJN9I3mk2bAaM8UKmZynW4wkwSf0vF1LEARvJUYzc1fsZPzrcxj4v2mMf30Oc1fspMRovuDX/uSTT0hISECr1dKlSxe2bNnS8Iv+ATGjKwiCcIXIstRsnXugPAu35Obx5tfy5oFfvWZ7AeJ9QpnUuD9haj9OWov5/NiyWs+dbSnhnQMLeabVKHxVun88Vn+1nmHRHegb3oLlOXtJNxWQaAhjQERLfJRa9ErNP76GIAg1lRjNTP1oPgcz8j3bcksqeG/eGv7cepiPp15HoO+FeZryww8/8PDDD/P555/TpUsX3n//fQYNGsThw4cJCwu7INcUga4gCMIVIl4fDECQ2sDwmA4kGcJxSi7W5R+mU3ASX3adzK9Z2zhYdhIfpYarIlrTzD+aCocFg1LL7yd31Hv+NQUHsboc5yXQBfBRavBRarg5sed5OZ8gCPVzut0s3HTQK8it7mBGHou2HGRsv3YoLkAaw7vvvsudd97J7bffDsDnn3/OokWL+Prrr3niiSfO+/VABLqCIAhnzO5wUuowUeawUGStINInAK1MTbiP/8UeGgDN/GOYlNSfbiHJzM/aysrcfajlKvpFtECrVKFyK2gbmECrgDjsrsp70SvUNDKEcaQih3RTQb3nd0lujE4rofj9S3ckCML5VGa0MnfFznqPmbtiJ4M7NSXY7/zWi7bb7Wzfvp0nn3zSs00ul3PVVVexcePG83qt6kSgKwiCcAZKTEbSrYW8tP9nssynUgSa+EXxYssbiNAEoNdc3MftarmCRoYw7to83StF4dixXH7J3MLnne4goCIApVqGXC7DmVNMULgfeqUGtVxJoKrhX2x6hUgpEITLlUxWmaZQn9ySigvSPKawsBCXy0V4eLjX9vDwcA4dOnTer1dFLEYTBEE4A0UuI1O2feUV5AIcLs/mrq3TqXBbL9LITrG4HDy358caebgARbYKXto3j2KzmXveWsDkN+bz5pzVnMgtAiBSF8iQ6Pb1nr+5fwwqueKCjF0QhAtPkiAisP7qKRGBvkhSzX9DLlci0BUEQWhAgamCT478hVNy1bq/3GHh+7QNVFgtZ31ul8tFUbmJglIjpSYLZaazP0eVv3J245Lcde7fW5pBYnQgOs2pmrAncisDd61cSaQ2gJ6hTWp9rUau5KkW1xGkEQ0TBOFy5W/QMrZ/u3qPGdu/HQGG85OHX11ISAgKhYK8vDyv7Xl5eURERJz361URga4gCEJD5BIbC4/Ue8jSvD01SntV55bcGB1WjI7KmV9JkigsM/H7pgO8/N0yXp27nCXbDlNQaiIjrxir/eza39pdTg6VN9wYIttSTFC1FdVhAZWBq06pIVznzyPNhnNX4wGemrkyZHQLSWFW96kk+FyYVdEXSrnZSlG5ieJyMy533R8ABOG/QimXM6xrM5rFhde6v1lcOEO7NLsgC9HUajUdOnRg+fLlnm1ut5vly5fTrVu38369KiJHVxAEoQFupFrTAaqzu5xQS61al9tFmcPCqrz9rMo/UNlONqot7QMb8dI3y1l/IM1z7Jo9Jwj19+Gdu0dgc5TSODrkjHPllHI5IWfQ0MFf5YPJUhmQ+2jVtIw/NZPiq9JhUGq5PrYrI2I64pYk5DI5KpmCQM35XZhyIZWbrZzILmL64k0cO1mEr17DDX1ac3WHJl5BviD8FwUa9Hw89ToWbTnI3BU7yS2pICLQl7H92zG0SzMCDRfu78jDDz/MbbfdRseOHencuTPvv/8+JpPJU4XhQhCBriAIQkPc0MgQxglj7SV5AFoHxKE47SGZS3KTbi7irs3TKHecSknYUHiEMK0/b9x0C3nTKjiWXeTZV1Bm4rmZf/Lk2P6UGC1nHJjJZXJGxXZhTtr6Oo+J0AaATU6pqXJW+embB+Cj8+78JZPJCLiMgtrTlZutzFqyjRl/bfVsKyw38eYPq/h+5S6+fPhGQvwv3/sThPMh0FfP2H7tGNypKTKZDEmSCDDoLshMbnU33XQTBQUFPPfcc+Tm5tK2bVv+/PPPGgvUzieRuiAIgtCAcB9/bkvoW+8xE5P6EerjPaNaZjczdetXXkFulXxrGf93dB53j+5SY19aXgl2pwur3XlW4wxQ6RkZ07nWfXJkPJA0lDl/7KRVYgRfPnwDPVsmolFdmvMdxbYKci2lfJu6hncPLuT3rO0UWsupsNefw5xTXOEV5FaXkV/KB/PXYrbaL8SQBeGyopDLCfbzIchXT7CfzwUPcqtMnTqV9PR0bDYbmzdvpkuXmv8Gnk+X5r9wgiAIl5jOwY0ZG9eDuRneM6ZyZDzWbATh6oAarzlcnk2hre5SPkcrcvFNVBPi50Nhuclr37GThTSJDqWgzEi5yYZKKcdHq6531sVPrWdKytUk+0YwM3W1p2Vvq4A4HmwyhEhVIK1viUelUFyQxSbnS7GtgnmZW/jq2AqvlBGtQsX/tRlLq4A4/NU1Z7rNVjuz/tqKTAYp0aH46NTkFFWQU1zuOWbJ9iM8MKoXeq26xusFQbjyiEBXEAThDATrDNwS34vr47oyP3ML+fYy4nWhDI/pgFJSEKw34HS6KDfbMFpsON1uotTB3BjTnQXZW7C7a5+dPWrMITrE3yvQ9ffR0r9dMjOWbGX++n2emd3IID8eGt2LLk3j8dXXXs/WX61nZGxn+ke0xCG5kCNDLVfgr748Hte7XC62FafyxbHlNfZZXQ4e2/kdP/R8sNZA1+Zw0jgumPFDx3DMnEOZ00yCLgylXcW0Xzaz+0QODqcLu6PhmXKH00mpyYrF7sDpcuGr06LXqvC5yLWSBUE4OyLQFQThP6fEbqLUbuJg2Un0SjWtAuLQKdTolaeCGLPThsVV+Yi7al+oT2VHsCnJV2N1OdCr1Mj/nl0tN1tZtuMon/2+gaJyM1C52Gt0n1bM6Hkvu0vSqHBbWV28nwNlWZ7r6BUabKcFXs+Ou4o3f1jJ+v1pXttzist5/ItFvHr7NQxsn4JSWXtNW4VcftmWAStzWjA5rdzfZDBHynNYkbfP60OCS3Iz68Rq7ku5pkYusUvhQt/IxeS9n2N1napaEaUL5LnxNzJj3g427E9DVcf3rUqJ0cSGg+l8Mn+Dp7i+XqNiVO9WTBjYkSDfC/uhocJuwep2IANckkSI2oBCIeoXC8K5uGwC3YSEBNLT02tsnzJlCp988gl9+/Zl9erVXvsmT57M559//m8NURCEi8jucmB22ZEhw0+lq7NaQZ6ljMd2fsuh8mzPNpVMwW2N+jAmvjtqhYoCazlfH1/B+oLKkmI9QlOYmNSfUK0fWoUKpVKBoVqwZLE5+HXDft6bt8brWiarnW/+2k5BiYl+bZJYtWE/N/boQ2iCnhcO/UCZw0xT32iOnlzreU1kkB9BvvoaQW517/y8hk5N4q64RVWF1go2FR5hWe5enG4X7YIS+arr3cw8vorlefs8x20tOo7VbQdO3b/L5WJveTrvHl1Y47zZlhIe2zeLT2+8C8VP1JuXbHHYWbn7OK985z2jbLY5+G7pDjLzS3lm3FUEX4Bg1+FyUGw3M+vEKv7I3oXJZSPRJ4xbEnvRPTTFU/JNEIQzd9kEulu3bsXlOlWsfd++fQwcOJAbbrjBs+3OO+/kpZde8vxZrxdlZAThSmd12Sm1m/kpfSM7SlLRKFRcG9ORriEpBJ72uL7EbmLylulkW0q8tjskF18eX0GybyR+Kh33bZvh1RxiUfZO/srZw0edbqe1fxwqhfc/nWabnc9+21DnGP/YcogxfduyNzWHDfvTaJ0YwZsTxrOt/Birtp/A5a7MQ/XVa3hybD8Wbj5Y7z0XV5jJLzVeUYFutrmYu7d8Sa611LNtZ0kac9PW80a7cdjdTtYWVLYJVcjkSKeVciuyG/ns6NI6z1/htLK8cC9PjhuAn15b53FGi52P5tdduWL17hNMGWG+IIFuvq2CSZs+p9hu9GxLNeXz8r55XB3RmgebDiFE63ferysIV7LLJtANDQ31+vPrr79OUlISffr08WzT6/Vn1V3DZrNhs50q8F5eXl7P0YIgXGqsTgc7SlJ5ZMe3Xh3BdhSnEqMPYlrnuwitFhjsLknzCnLDtf5cF9GFToGNUSAjwKDjtk2f1NoBzSm5+N/O2fzY8yGCFN5pAYcy87E2kPe5Zs8JOjeJY/nOo+xJzeW3FYe4a1gX3KEwoHUyUFnfUq1UNBjoQuVscXUOl4NSh4UyhxmHy0m4LgCn5EIhk6OWK/FVXbqLzwqs5Ty1+3uvILeKxWXnqV1z+aTTRE+g2ze8OX5K72DVhZs0U0G911lffJB+kc1RWGWEaGufHc0sKKXMVH875wXr9vHI9X08aSvnQ6G1gncOLvQKcqtbkruH6+O7ikBXEM7SZVlezG6389133zFx4kSvx5OzZ88mJCSEli1b8uSTT2I2m+s9z2uvvYa/v7/nKzY29kIPXfgPybeWkWYsYF3+IQ6UZVFgLcfmFGWNzqcKp4VHd3xXa9vbLHMxL++bR7m98t8Bi9PO4uxd+Kt0JBnCuTGmG68lj+fIOiN3vDyPV75cyb7CrFpLgVUpd1g4XC3loYrR0vDP1WSzo1GdSnf4feMBHHY3Uz78hRA/H5KjQwnx90GtUtAyof4P7DIZxIT4e/5cYjOyIm8/t2/8lHcOLkQhlzPrxGombvyMG9e+x9O7v2dvaQYV9dzbxWR0Wr3ylmvbf7DsJO0CE/FRahgT3x0f1WmzsvX38wDALUkcNeZ4cq9rvZal7u52VSosdlzSGVzwLEhIbCg4XO8xc1LXUVxPFQ9BEGq6bGZ0q1uwYAGlpaVMmDDBs+3mm28mPj6eqKgo9uzZw//+9z8OHz7ML7/8Uud5nnzySR5++GHPn8vLy0WwK/xjDpeDHGsZz+7+gYPVWrKGaf15qsV1NPOLJvAyXSh0KXFLbv7K3l3r7GuVzYXHMLvs+FGZxnRjXFduju9BtqWESG0gLosbmQycLjch/j5kmAsbvG6qMZ9uoSle21JiQus4+pRmceH8uGqX589WuxOT1c7x7CIOpOfRo2UiAFq1iqvap/DpbxvqrKPbrXkC6r+DZofLyeaiYzy350caGcK4N2UQ9279mjLHqQ/6mwqPsqM4ldda30yKLgqZTEagXodKeWn8CjhWkdvgMUcqcmgVEMvDzYbiV8vstEIuJ0oXWCMtpbrOwY05WHaSNGM+U1KuRimvef+NIoIbHEu75ChU53lxmM3taLD7Xp61DLu77vf7lcbpclJsN2Fy2SiyGQnX+qGRqwjT+Tf8YkH426Xxr9xZ+uqrrxg8eDBRUVGebXfddZfn/1u1akVkZCQDBgzg+PHjJCUl1XoejUaDRpSKEc6zUoeFOzdPo8TuXRc131rGw9u/YXqXu0Sgex7YXE72lmXUe4yERI65lDCtH4W2Ct47tJijFTme/YFqH+4bMITE6CA27EknRN3wB90IXUCNbQE+WprFhXMwI6/W1wT66ogPC2B/uvf+qrBm3rq9tGsc7antqlMreXfyCB7+/LcaKRGJEUE8O+4qgv0qc0RLHWY+OvwnAOMSevHBocVeQS5At+AUpiRcw4ptx/ly704AerVOZES3lgT6aFApVQ3e94V0JmkVAWofxsb3QK9QoVLUHG+gyoeJSf14ZV/tkxsauYoh0e2YvHk6PUKbYnM5aw10tRolHVNi2Hak9hlmH62ani0SGxzv2dLIVShk8lqfTlSJ0AWgqWXMV6IKu4UMcyEv7Z1HqulUR8JmftG80PoGorUBqJWiFrLQsMsudSE9PZ1ly5Zxxx131HtcVaeNY8eO/RvDEgQAbE47C7K21ghyq7iR+Ojwn+Rbyv7lkZ05t9tNflkFheVGCsqMWOyXZrqFUq7AT9XwglOdTEWJ3cQdmz/3CnKhcnHay4d+pmnLQJQKOc0MMWhrCaI851KoSfAJJctUhLPazFqgr553Jg8jMqhm/qSvXsObdwzj0983em1vER+O2Vb5vbU7nLirPQqXqSVSYkP58dnxTB7alc5N4+jVMpH/mziYaQ+O9lqEVuYwU2ArRyVT0Ng3gt2l3tVp2gUmclvYAO56/Re++G0Le1Nz2Zuay6e/buSGl74hNa8Uh+vsOrCdb40N4fgo6590GBLVDn+1vtYgF0ClUNIjtAl3Jg1AIfP+1eav0vFGu5v5LnUtZpedeJ8QdIrag6QQXwMvTRhEXFhAjX1atZKP7rsOg+78B1hymYyeoU3qPWZcQs//zIfkInsFd2/5wivIBThYfrJyIuESTcO5nLjcboptRs+Xy133h6zL2WX30XDGjBmEhYUxdOjQeo/btWsXAJGRkf/CqAShUonDzLKcvfUes7s0HWqvfHXRFVWYWL33BN8t2U5aXgn+PlpGdG/OLQM6EOyrP6+Lb/4ppUzO6Jgu/JpVe7tXqFxsFqAysPjkzjo/fEhIfJ2xgrFX9Wfeyr080GkobxxdUOuxDzQZzA8ZG1mSs5vZ3e8jSh/k2RcR5Md3T4xl8+EMFm8+hNPlokvTeLo2i+OT3zaw5dCp2WelXM79N/Qgp6zyA0/XZvFICgmj3cJJSzEfHvmT7UWpdAtJ5p6ug7ixT2scCifIQcJNmcNE0N+lpix/5337qnQU1ZK/eVfcQJ7+6E8qzDVzTyvMNh74ZAHf/G8sof4XL4DSKdRMSb6atw7+Xuv+a6La4KNo+OlbsMaX62I70S+iBRsKDlPmMNPIEE68TyhfH1/JuoJDyJAxIqZjve/liEA/vnzkRrYdzWTRxoM4nC46NYtlWJfm+Oo16NTnP9AN1vjyUNNh7C/LqrWb3rDo9kTpAs/7dS9FRdYKPj2yBFsdTVbKHRbmpK3lrsZX1czVFs5Iqd3EopM7+T59PfnWcsK0foyJ78HQ6HYEXMDmMmvWrOGtt95i+/bt5OTkMH/+fK677roLdj24zAJdt9vNjBkzuO2221BWyy07fvw4c+bMYciQIQQHB7Nnzx4eeughevfuTevWrS/iiIX/Ggmpzg5Y1bnP80KW86GowsSrc5axatcJz7Yyk5Vvl+5gybYjzHhsDBGBl0YdT0mSyCooI6/ITM+QpqwrPFTjGBky7k0cjEwOf+bsqvd8B8tPEpfkz1Of/8nU4G580OZ2ZmSsZFdJGgBtAxMYn9iLYxV5zM/cAsBHh//kf82uI0B7albZz0dDcUghj9/Sm3X5h+keksDMRTvYevhUkNssLpz7buhGpiyPnCw7WrWS7m3jeGTnLJr6RTMosg1N/aLYWnScLUXHmJDUl00Vucw8vopUUz5yZHQPbcK9KYMI0fgSrvNHIZNjclpr/IJK8AmlrMRGXkntK/kB8kqMpOUV/yuBbqnRgtlmJz2vBL1WTWxIAAa9Gh+VlqsiWmFQavn82FJyLKUA+Cq1jI3vwcjYzgTXUSXhdKFaP4wOC/vLspAjY1vRCa9c+YebDkUlazi/NsTPh2s6NKVL0zgkScJXq7ngOc3hGj9mdbuXOWnrWHRyJxVOC419Ixif2JsOQYn/mTq6biRPhY26LMndy80JPUWgew5K7Sbu3zbDq5Z4nrWMDw4vZknObt7vOKFGacbzxWQy0aZNGyZOnMioUaMuyDVOd1kFusuWLSMjI4OJEyd6bVer1Sxbtoz3338fk8lEbGwso0eP5plnnrlIIxX+q3RyNW0D4zlpKa7zmChdIPI6mhlcTAcz8ryC3OrySox8/Os6HruxL/76i1+mqqjCzJ3v/YTZ5uCDB4aToA/j1+wtVDgry0IlGcK5r/FgKnJcyEJlOM5gAY/094ePj3/ZyPsxw7gpvhsPNRkCwFFjLl8cW+71i2FV/gHuTboGhVvhacfrlCT2lWYiQ8bmsqN8mbGMke278PXVN+B0uFEpFaRZ8pme8yd3Jwxi7o61vHXvUL7MWMauknR2laTzY/pGnmxxHeMSetIqII4VufuYm36qrqsbiXUFh9hSdIyPO04k0SeMAeEtWZK7hzxrKcm+kZ4UjUhdIMcyixq89wMZeXRKiTvD7/65yS818syMP7xyX/30Gh4a3Zv+bZMJ1Bu4KrI1HYOSKLdVBsQ45Sxcd4jn/1zKw9f3ISbEH3U9zR6qROkCebjpUL5LW8uu0nR8lVpaB8YzKakfUdoggrRnHtQH+px9PXa7y0mp3YQE+Km06BpIy6iiUCgIVfhxR1J/xib0QIYMtyQR/h9bfCUh1ZurDGCr1vlOOHMut5tFJ3d6/VtW3cHyk/yRvZOb4rqjuABP8AYPHszgwYPP+3nrc1kFuldffbXnl1F1sbGxNbqiCcLFEKDx4dZGffgje1edK6jHJ/YiQHVpFfovMhr5btnOeo9Ztv0oD4zs9S+NqH7703LJL62cpbz3nQUM79Gc93pORKGUoZDJySmsoJE6Am2yqnJxUVBSvTVWI7QBVJgrUwCUCjmJ4cGYXDaMpXaQQSNtJM0MMaQaC2gZEItBqSHfWk6Z2UJ2qZHOTSuDRI1CSYegRnybuobX2o7l4e3fMCtjFbMyViFH5nlPjI7tgp9Mzyv3DOLrjBWsLDjV9cuNxOsHfmVWtymo5Eqe2DWn1jHb3U5e3T+fTztN4sGmQ8myFDM7dR0PNR3KQ9tnYXM7sLrs+Po0HGQFGC7sh5eSCjN3vvsTmQWlXtvLzTZe/HYpGpWSge1TMFnsPDHtD3Ydz0Yuk3kaaQBsf2023z1xM0lRIQ1eT6NUE65Uc1fjq7gloRcgQyGTXfAatA636+9HwjtYkbcPl+SmU1ASNyV0x1+l92oxXR8flfY/P1OZZAjnuLH2xZ0ALQNia+RiCw0rc5j5Pr3uhigA36dt4JrItpdtG/HTXVaBriBcDgJUel5ucxPP7/mpRumr0bGd6RfeErXi0vqr53C6yS2uv2GK3enC4bz4pY1cbjcrd51aZGp1OPlp1R5+WrXH67hP7x9F12bxANyS2IsFWVvrLEV2U0wPflt1gO7N43nq5gEs3nSQb5bt8NRU9ffR8PKdg5jQsw+r8w9SYjfSP7wlwb4+LN24m5SYUE+w2De8OR8cXsy7BxfxQccJ/HZyO39l78botNLMN4ox8d3pFNyYtw/8xqr8A7V+IHJJbnIsJewoTqv3e5FuKqDYZkQOvN3uFrLMxTjcTub0uI+tRcf54tgK2reKRqmQ43TVPkOmVMjp3iyh3uv8UzuOnawR5Fb34fx1dEiO4UhWATuPVc40nV6n1uZw8X9zV/Du3cPx9zmzwNxXpfvXGmW43W5Omou5a/N0Sh2n8sGPVuQyL3Mz73ecQHPfaHQqUemnISEaXyY06sOze36s85g7kvqL5hnnKM9a/2LohvZfbi6t37aCcAUI1BjoFJzEgj6P8lfObo5V5BKsrlwko1OoL8lPySqlnMggPzLyS+s8Rq1UoFSe39qhZ8vhclJiNzFpZEcGdkrmua+XUGKsffV19eSQII0P73a4lcd2fFtjgcuY+O4Mim5N/1FuFMj5+s+t/Lh6t9cx913fgyNk8r+1M3FUC5b9VTqe63wjLiq3udxucMh5u814Htn1DZO3fMGQqHa80uYmtAo1xTYj7QITKHOYWZG/33Oe5v4xXB/RjSR9BGq5EqVCjl6n4s9s73HUptBWwb7SDBJ8w4jQBrAoeyfFdiONDGF80eUuNDIVdw3tyqd1tCieNKQzKtWF+7kaLTYWrN9X7zG5JRWUm218X63OcG12HjuJxebkUux8XGQ38r+ds72C3Co2t5NHt3/LT70eEoHuGZDL5HQMTmJMfHe+T/d+38qQcX+TwcRUWwgqnJ1wrX+9wWy49spKlRGBriBcAFWLgsYn9sbitKORKy+pigWnCzYYuGVgezYfqrsu7dUdU9CqL06g63Q5KXWYWZV/gJV5+3FLEt1CUpj78lh2Hczhiel/eB2vVStJig7BZLVjsztRKuS0C0xgQZ/HWJd/mL2l6YRq/Rke3QFflRatQk0ZZqxmFz+v8Z4Z7tI0Dk2ExOeHltQYV5nDwpP7K9sCVy2Qu/2t7+nRKoEvh0xhReFe9lakk20pYVhkB9oGJRCg8cHsOlUBYVL8AJrL4vnq523sObEKqKyV+8S4vsT7NNyIIkIXQJDGh29OrGF53qmAclPhUeakrefRZsMZ2bcVQX46vly0hdySyhX9kUG+TBrSmb5tkgg4T3nXNoeTcrOVMpMVuUyGr16DWqE4oycBDpfLUxlCIZfRq1UjkqNDcLrcbD6UwYG/axCXGM0o5DJCA87+A6PNZUcluzB/F4vtxhqlsKozuWxsKTrOkOh25/3aV6JgjS/jE3szKrYL8zI3k28tI84nmJExndEqVJ6qI8LZ8VfpGRPfgw8OL67zmDF/p9pcKUSgKwgXmO4yKWreNDaM/u2SWLHzeI19kUG+3HttD/x05/8xsMvlosBegYSEWqZEJVfgpz71j6xbcpNtLeXuLV94lV3aXnyCmSdW8VnnO3jutqt4adYyoPJR/Ef3jiS/xMisJVtJzS0m0FfPuAHtaZ0YybWxHRke0x753/l9Fped3SVpzMvYTNPSxjUqYtwwsCVfZP1Z5/jtbidz0tYxMb4fj0z7nVKTlUWbDrFs+1Guap9Mp7hWOBxuflp3iJSxMajcVtRyJY0MYST5RBBlCufBr3+n+mVTc4t56OPf+fbFm5hxYhVSHfnezf1j8FfpWJR9yCvIre7tg7/TJjCe4V2a06tlI+x/B51qpYIAH+15qyRQXGHmh1W7mLtiJ0ZrZb5zoK+O58dfTbfmCWw5nFnna/UaFXqNihYJ4Yzo3oLOTWJZs+cEWw5nolIquLl/OyICfXnt++VIEuQUV6CQy5DL5aiUCny0df8dMzqsWFx2lufu42B5FgEqH66L7YSfSndeqxicSXe3g2VZl3Sg63K7sdgc2B0uLDYHOo3K83UxhGr9CAXuSx6E1e1Ap1Sj+o80zLhQFHI5Q6PbsSRnt1c1kirN/KIZEtXugixEu1jEO0YQBACCfX14auwAerVuxHdLd5CaU4y/Qcu1PVowtm+7C1J+qtBWweq8Ayw8uR2z005TvyhubdQHi8uOXqnBV6Wj0FbB4ztn11pb1Oi08uC2mXzTfSrMApVSwaf3jWLjwXS+/rOyDNjIHi25eUgbdFoVJa4KHFYHarkS/7+D6RxLKfdtm0G3kBTM1porucODfDleR8ezKusLDjMmpgcnck5VOLA5XCzafAg2nzpu57GTtEuOIjY0kMeaj0DlUPPgW95BbhWzzcGf64/wWIvhvHnwtxr7/VU6nm4xkjKHhZ8yNtU7vq+PreTZVqMvWAmxkgozn/y6nvmnpSiUVFh4bPpCfnp2PNMXb8Jiq32l/HU9WqJUyBnTry2FpSbG/t9sTNZTjUqW7zxKUlQwb945nNW7j1FmtiGXVbZCPnayiB4tEwgLMKA5rSKD0WFhb2kmj+/8zitlZW76egZFtuGhpkPPWyrRmZRjuhTTlqoUWYwU2ir4K3sXVreD1oZ4Iq3B7D2cy9CuLQi8wAsW66NWqlBzcbv3XUkC1D6833ECf2Tv5Pu0DeRZywjX+jMmoTtDoi5sHV2j0ejVyCs1NZVdu3YRFBREXNyFqfwiAl1BEDyCfH0Y3rk53ZrFI5dVljby02vQqs7/rHSetYwpW74k03wqOEw15fNnzm7+12IEnYMao0ROsc3IiXpWXxfZjRwqP8kPz9yCj1ZNQanJE+S+NGkgcUm+vHDwRw7/XU5HJVMwMLI1U1MGoVWo+ezIElySmwxzISMSup3TvchlMhyuhh/P70vPpdxipU/rJJr4R7E/NY9Sk7XO479cuIVpzUbxaadJzElbx97STDQKFQMjWnFDXDcOlmURoQsgv4HFI/vLs7C5HRi4MCv5zTZHjSC3isPp4vPfN/L5/aO596NfsDqc9GvTmO4t4lEpFThdbjqkxLB0xxE6N4njwc9/8wpyqxzPLuKdn1YxoH0yJpuD49lFzF6+k0/vH8Xj0xfy1M0DaB4f7jUTVe6w8siOb2tdhPhXzm4SDWHcHN8D7Xl46pLiG4mPUoPJWbMxB1Tmlg6KbPuPr3M+ONwunG4narkKhVxOic3EK/vnsb7wsOeYn9lEmMaP11rdwld/bOKOwV0veHUO4d8TqPbhprjuXFPtPemv0l/wmdxt27bRr18/z58ffvhhAG677TZmzpx5Qa555cxNC4JQJ6fTRXGFmeIKM84G8iXlcjlh/r6E+BkI8/e9IEFukbWCdw787hXkVpGQeGP/b57/P1CWVeOY0+0uSScxIhi9Rs3Xf1UGucO6NCMhyY/JW77wBLkADsnF4uydPLB9JlaXnXV/F6bPMBWi91cQHeK9EONkQTlN/KLqvX73oCYYFFrCA+ufsQs06Nh1PJtb35iL1eKkzFh3kAsgSbB863E2FhyhfVAjvu0+lS+7TKZbaArP7P6eJ3fPRS6TIWug1Z5eoT5vzfhcbjfF5Wb2peWyePNBth7OxOlyc02nutvX/rntMA6Xi5+evZVfXphA8/gwvl+5i+mLNrHtSBYWmwN/Hx17TuTU2sGtysaD6TSJCaNXy0bsPpGN3eli+uLNjOzZiie+XExZtQ8NZoeNH9I31FlpA+CH9A2e2sv/lE6h5qGmdXfsvCm+W73tpf8N5XYzacZ83j+4iOf2/Mj0Y8sosJbx0ZE/vILcKvm2ch4/8C3X9Eghu6j+qizC5UchlxOkMXi+/o10hb59+yJJUo2vCxXkgpjRFYRLXpnJgtnq4OjJQjRqBY2jQtBr1GeUN+d0uSg1WliwYb+nJFffNo25rnsLAn11KBUXZ3FZQ52PJCR+ztjEbY36eOXr1sVPpUOpkONyuzl2sjJ4Hj+sHa8d+qXOwvNHK3KxuZ1etbk/TfuTN+4ZyQMf/EZRuRmAH5fu4dbr+/L0gdrr2eoUaoaFd+S9n9Zy28COvPnjqlqPk8mgb5skZi/fgdnmYNaSbQzt2rzBe4uL8mdd+S52laQxOKotbklibtp69pVV5rzuLsmga0gyGwuP1HmOETEd8T8PtZvtThcnsot4+PPfPIvaAPx9tDx8fR+iQ/z56o8ttb42r6SCyCA/7nz3R69ObRn5pSzafIBnxw3EoKu/IoEkwcmiMny0akoqKqttbD2cwQMje5JTXE5+iZEg38r3i9FlZWdJar3nK7GbzqiT4ZnwUWnpFdqUt9vdwqdHl3DCWLkwLUzrz62JvbkqotVFTV0os5v5/OhS5mWeyqVZV3CYARGt+CN7V52vK7JVcMySQ8lRieSYEFQX6d8MQThXItAVhEtYUbmJ57/5iw370z3btColEwZ14qa+beqtJ+pyu0nNLWHS2z+gUMjx99FSZrLy2e8b+HbpNr569EYaRQSjUFy4T/EWpw2j04ZLcqOQydHIlfip9ZTYTQ12PjpqzMXotNImIB6NXFln33sZMq6KrGz1LZfJ8PfRklNcjkGv8QSDdTlcnk37oES2FVd2hPNX61H6wGePjWTrwUw27slEBkQrg3imxSjeObQQi+vUY/UQjS/PN7mRr3/bxvLtx5h6XQ/e+mlVrTm3N/Vty/YjWfRq1YgR3Vrgp9cQZNARG+pPZkHtqQdalZJ2KVF8sOMXro5sg06hRq/U8HSLUTy1ey67StKYl7mZp1uOZHvxiVqDtjCt/3lbXFJcbmLiOz9gtXtfp8xk5YVv/uLDe6+jaWwYhzJrVh9omRjJi98uqbUdsSTBK7OX8dOz49GqlTXOX12ovw9fLNrk9dqqxhI5xeU0jQsDKt8XZ7Jw6Xx2KQzUGOgd3pxm/tE4JTeSJKGSKwlQ6y/qIiq35GZt/iFPkBuq8aO5fzSBagM5lpIG/y5uNx6ng39zXC63CHSFy44IdAXhElVitHD/Jws4mOEdNFgdTj5fuBGFXMa4AR3Qqmv/a1xmtPL5wg28evcg9H5K8q1lhGn9MZc7mblwO1M/ms/cp24hyO/ClJEpslXwXepafs3ahtFpRSVT0D+iJVNSrsbnDDpE+av0aOQqVDIFk5L68+nRmuW9AEbGdkIlq/zlG2DQcWPfNrz07dJ6H1lXWZa7l3uSr2bS5s/xU+mYknI1d2/5ApPTRpfgxrTsH4+ERKazkIrj8HmryRwxZVPiMBKnD8VfMvDlz1vYfLAyoDZbHUx74HrenbfGE+xFBftxc//2RAf7YdCpsTqcvPjtEvJLjbRLiuLlCdcw9aP5nkoFVZRyOf9352D2GNOI0QdxX5NrPJ21VC4lL7W6kVKHiaU5e8gyFTOt85383/4Fnva/MmR0CWnMUy1G/qOZxBK7CckJklPGzCXb6gxCJQlm/LWVG/q05uXvlnntaxYXhlIur7fygluSWLL9CP3bNmbxltpn+331GiKC/Nh48FQZPH8frad8WUTQqSoKQWofBkW2YW9p3SXzkgzhKC9Ad63QS6wOaandzIwTKwnT+PFQs2H4q/RsLTqGXqnG9ww6sCnlCqKD/Wss9hOEy4F41wrCJcjpcpGWW+wJcts1juLm/u3QalTkFlXw2e8bmfHXVq7r0arOQLfQWMFNI1ry5rEFZKQWAqCQyYnRB/Hozdey4M9DpOYVX5BAt8hWwYPbZ9XIjf0rZzdbio7xbbepNDZEcMxYd0mmG+O6oVeoMah1DI/pgJ9Kx5fHV3iqL/irdIxN6Mm1MR2R2RUU2U2olAr6tGpE46hg1HIleoUas6vmwqYqPgoNMfognm91Pccr8pifuQXj3zmbm4qOsqnoKAC3xfUh84STd39aS9PYcHx1an4tTSU9r8T7fDo18eGBvDN5OE535YxeUZmJ2St3EhHUjG+X72DNnhOe43cez+brv7by5SM38ufWQyzfeRSny02npnHcMKAV241HcUsSn3W+k8BqqQcul8SIp2bRo3kCN/Ztg8IoZ/vBPO5NGEpkS19MTiv+Kh/0ShXBunMroVXhsLCnNAOjxUagJQCL1cHqPTVLz1W34+hJHhrV22tbRKAvb945lMLymo0UTnc4q4BeLRPrDHTvGdadrafVer6uR0sWbT5IZJAf4YGn7lUhr/xg9U3qmjoX693X5JpLLij9p9xuN4XlZiRJQi6ToVTIkWtkWF0O3m4/nncPLmR3aeUTIhkyZna7p8G/J739W9A4MATZeZz9FoR/iwh0BeES43K7Ka6wUFBqZM6T4wj01VFUXlmjtNRoITk2hFn/G8OhrDyyCkoJriVQdbldKH1kPLJ5Fkq5nFsTezMgohUOtxOVXEmRrYK7ruvMjn05dEiO+cdjdricGJ1WlDI5eqWG1XkHvILc6krsJo5V5PBEi2u5e8uXtc68dg9JIVofhFpZmYccrPFlaFQ7eoY1xepyIEkSeqUGnVzN0q1HmL18F+VmK8lRIdx7bQ8+vX80bsnF8JgO/JC+sdZxyJBxc2JPZMjoH96STsFJjFv/Ua3HrizcxwM9r2XJtiMcrKPUWNPYMBRyOb9u2M/Pa/dQYbbRJDaUG3q3pl/rJOQymVeQW2XNnhNsP5LFq5OuYXjvZqQa8zlkPsmjh2ZQZK98zP9D+nqmd55MrCEYqOxk1715PKv3nmD13hME+ur4v4lDKCo2cSyjGF8fNUglJEeEoQxTnnHL3Comh5Vfs7bx9fGVzOnwICPfnsnrdwzF5aq9nm91Bp2G7s3jkcvlDGjXmB4tEvH30dTZgri6QIOODikxjPw7eK2q+Rvkq2fK8O60SYrk/k9+9RzfuUks/dokcd/HC/ho6kj8fbxnJ0M0vkzvfCfP7fmRPdVmdoPVBh5pNpzm/v/8vX8pKS43s35/KjP+2kpaXglymYweLRK4f2RPPmgzgXcOL6TCaeWRZsNI8AnF4XaRZSrmlsReTD+2vNZzJvtG0CQwEh/d5VEP/L9Eqi1H6gpyvu5PBLqCcIkxW+1IksTWw5mE+PswbdFGVlcLkNbuS2Xmn9t44baBhMTWPhtb4bAwK20VBqWGt9qP5/eT27lr83Rs7so6pok+YUxtMogOLeqvJtAQk8OK0Wnj95Pb2FOagVah5troDnQPbUIr/zj2ltV8bKyRK9lRksaY+O581XUy7x1azK6SNKAyXWF0bBduiO+Kj1KLulpeo0apJuzvMlCF5gpckpsSu4lubeMJDvDhrbmr2HgwnY0H05kyvDuj+jfnlsTeHCrL9sxgVZEj56kW11FgLcdfpUenVGN0WLG6aq/zmmEuwqm307t1Imv21FzgpFYqeGbcVbz14yqW7zzq2Z5TXM6q3ceZMqI7ieq6Fw/a7E7Cw3y4dfuHteYiF9mNPLPne95uO55QvR++ei1Tr+3Jun1pBPnpeX/KtZzIKyQxIYADBcfZYsnHX6UnVKXFXewknpAaQWB9TC4bHx/+k4dShrFw00FsDhcH0vPo1CSWP7bWvYiwWVwYvjoNL9w6CJkM/PRaZLLK1d2+ei2xoQFkFpTW+frh3VrwyOe/0bdtY2Y+PoZyk5VAg44Agw6n283u49k8MaYf4YG+2B1Oysw2ft94gG+fuJnwwFOrxo0OCzaXE61SRZQ+iNfb3ozFZSfDXIS/Ske4NgB/lQ71Ra6CcD4VlZv4cvFmfqjWvtotSazdl8rmQxlMf+h6Hm06jEK7ke9S1zCtbBk6hZoBES0ZE9+DQLWB9w4t8srz7hjUiBda3UiAUo/6PDUWEf45xd950na7Hd0FaOJzqbDbK58yKP5hXrhMutI/EpyF8vJy/P39KSsrw8/P72IPR/iPKigzcsc7P9I+OYYQf586V7HLZTJ+fv5WEsJr9nwvsJYzas07vNluHDNOrPIEktXJkPFBxwl0Dk7ydAk7GyaHlX1lWTyy45sai6Ca+kXxVvvx3Lf1a9JMBZ7tOoWad9rfytr8gyzI2kqsPpgb4rrS1D8atVyJQalBr9DgU0feoMlmI8taxJsHf/PkXmrkKq6JbMudSQP43yd/sPtE5Uzywjcn8PaR33ik2XDSjQXMy9yMS3IzMrYTzfxjKLJV4JYkwrT+BGkMlFrNPLP3e7YX15x1BTAotXzYehJbd2UzZ/kOisrNyGTQuUkcj9zQh21HMnnzh1V1fr9mPjaGR6adquZQXc+WiXQaGMxHJ/6o5ZWn/NjjIRJ8K9sCW2x2Sk2V7XaLK8wE++vIdhXzzcmV7K9Wkq17cBP+1/RaIn0D6j13dd+nrefdQ4v4qNUdfDNvFxsPphPi78Nbdw7jjnd/9Cz+Ot1H915Hj5aJFFuNONwuisvN7DyQQ2GZifFXdeBwZgH3fTK/1tcPbJ/CrQM7EOSnx+5wodOoUCvkWB1OHpn2u1eueoBBx+M39qNjSgw6jcrTGa3IVkGOpZQf0jdQaKsgVh/MmPjuBKh9LulmDedDWm4xo16cVef+xIggXpsyiFu2f1hjn79Kz6edJuGr0nHCmIfV6SDFLxIfpZZAzYVrHiCcG0mSyMjIwOFwEBUVdUm3lz9Xbreb7OxsVCoVcXFxNdJmziZeEx/RBOESYnc4+WXtXjILynh+/NU8On1hnce6JYlvl27nvlE9CNB7z+zKgDifYGxuR61BLlSW8HrzwK982eXucwoCTC5brUEuwKHybD48tJj/Nb+We7Z+6dl+f5PB/Jq1lb9yKmedjlTk8Or++Z79dyT155bEXnVe86S1mEmbP/e6ps3t4NeTWzlUcZK37hnPkMe+BmDZpuP0bdqCkWve5urINoxL6EW0Pojpx5bx1K7vcfydMhGhDeDhZkPpHNSYSY361RnoGp1WcuzF3Ny3HSO6NsfpcqP4uwWty+Xm3Z/W1Pv9mr9uL0M6N+PbZdtr7IsM9iXVVn/3NYB0YwHxhhBKjGZSc0p46bslXhUbGkcF88Stw5mtWsnawsqZ1w1Fh/nt5DbGxp95C+csczEAbpnLkwNeWGZi2Y4jvDzhGl76bqnXojSlXM4Do3rRLCGMdfmHmHliFemmQgLVPgyJbs+AZsnc+/F83pg0hI+mjuSLxZvZeayy/WiIvw/jr+rA1R1SyMgrJTZETWRQ5QedgjIjt775PYVl3vm9pUYLT329mI+mXkePFokAFNuMvHdwEUty93iO2158ggVZW5nYqB83xne7YoNdh9PJj2t213tMam4xZqsDH4UGk8u7VnGZw8wbB37loaZD6R5adz1k4dIgk8mIjIwkNTWV9PT0hl9wmZLL5bUGuWdLBLqCcAkpNVr5dcN+ANQqJaVGS73H7z6Rg8XmJKBGBoOMUTGdWZKzp7aXeWSZizG7bARRMwAothlx/112SIaMYO2phT5Ot4vFJ3fWW4N0Rd5+7m8yGCVynLgxKLU08YvijQO/1vmaWSdWMzqui6e6QHWFlgrePvR7ndc8XJ7NrtI0burThh9W72bJ9iN82GsEvUKbsiRnN4Oj2vLG/gXsLcv0BLkAudZSHt85m9fb3ky7gEQmJw1k2vGlNc4/JrYH7YMT0aiVaKotAHS73ZzIKcbprj8HNTWvmKs7pNS6z2SxE648sxayRRVmsgvLmPLRL55qA1WOZRfxwPu/8cUTo9ldlk65o/L980v2ZkbFdwbOLNBN8YsEYEnRboZ3b8fK3ZWL0Gav2Mmwrs356pEb2ZuaQ2Z+KaEBBgZ1bIJKLeeTE3/y+8lTgXyZw8ynqX/RyLCL52+/kW1HsigoNzG8azNevHUQbsmNWqlAJpNRXGEmwFdHQZkRhVKOUiHjzy2HawS51b3/y1pSokMJ8tOxInefV5Bb3dcnVtIpOOm8BrrldgslDiMLT+7A4rTTI7QJTfyiCFT7/OuLtmwOF/mlNcu2na64wlzZvc1VsynHntKMM2pjLFwa1Go1ycnJnsf7VyK1Wn1eZqtFoCsIlxIZnuBWIW/4l6VOrURWy1PkEK0vbYMSWV1wsMFzWE5bbV1mN5NvLWPasWVsKDiChESHoEZMTr6KWH0wAWofTE6b1+Ke2rgkN/nWciL1gWSai2gflMiGgprdl6pzSC72lmbQN7xFzfPhrnN2usqC7C3c3X0wP6zeTaBBh0pS8Wyr0ZTYTOiUakbFdeF6WVcC1D4sPrmTVXn7CdcGkGsp4d2DC/mm+1RGxnTi6sjW/JKxmZPWYsI0/oyK7YK/UkewrmagVFhm4kzajgX56kmICKx13/HsIu6KvYZv09fW+fpgtYEIXQDb92fy17YjNYLcKiarnXkr9zG0VQfmZq4DKhcAnkm5tSo9QpuglitZdHIHd3UdSHJ0CEdPVlbuWLjpAIs2H6Bd42hC/Q30bZNEkJ+e3aVpXkFudSeMefxWsAV1YQA9myUiSXA8u4DG0aEczMhn/f40ALo1jyfU30BBmRGX282S7fW/X45nF+F0uSmyG5mdtq7eY2eeWEWCT6jXB7ZzUWgtxyG5yDQV4aPUcF1MJxZkbuOB7TMJ0/jxaec7iNEHnVM60LnSqpUkhNX+3qouLMBAWVbdH56L7Uai9DVToYRLk1wuR6u9MG29ryQi0BWES0xCRBCHMvM5ll1Eq8QI9qbWXYJrYB0zhFBZFL6FfyybCo/WeYxCJidQfSp4Mzlt7C/L5JEd33oVkd9SdIytRcd5ruVo+oQ3+7u6QsOrsPVKDcm+EdjdThJ9whosTF81hto43Q0HahUOKypVZYBx68AO+Oo0lNmd/Jq1lXmZWzyL8UbGdmJ8Yh+uj+tCnrWMUK0fcmS4JDehOj+CMHBn0lVYXY7K3GFt3XV/JeBIVgGtG0Wy50ROnceN69+OxjHBfP3YjXy5eAtHsgrw1Wm4tkdzhnRujlwpMTK6M/NP1szJliHj8WbXonApiAr2Z+3e2tMrqqzYcYyXeg7wBLoAKvmZL+jwUWh5pc1NPLFzDi8c/oEPp47lje9XsmbPCdyShCRBRl4po3q2olFkMBa3nRknVtV7zj9zd/FBp0nc+/YCfn3xdqwOJ1M/mk9atRJtv6zbS2JEEK9OHIyvToPjDCo1uCUJBXDSUlzvcYfKs3HS8PnqYnPaKXWYeWXfL2wuOubZHqj24YEmQ3ij7c38b9ccJm/5gjnd7yPwX0yTUCoUjOrVmhlLttbarASgZUIE6bYCz9+B08mREaz2I7/UiCRJyGQywgK876H0705ybklCLVfir9L/K21jBeGfEIGuIFxCQv19mHB1R574ajE/rNrFvSO6c/8nC2pdvBMd4k/HlNg6Fwb5qXVcF9OJmSdW1RlgDohoia7aynOL08bze36q9XgJidcOLKBzSGNCtX6MbCA1Ilzrj59Kx6PNRuCSXGjkqgY7lQF1lnw6k7q4yYYIioot9GiRQHJ0KOV2M+8eWuTV4vSexlfRI6wZ/9v5HUcrTn2IaGQI54VW16OVKfHV6NFr1OhpOJiXyWSs25fK/df1ZOpH87E6aqZWdG8eT1x4IP56PW0b6Xl5wiDsThcyGQT7+niChcnJV5HgE8bs9DXk28qByoV99yUPJtkQQUmZDZlMVufPvIrd4UIpOxXYtg9KPKvOXFqlis7BjZnb8wG+OraCFw5/z5SRg3n8xr5kF5Wj16gJ9tPjb9CiVlaWqztprj/QNLlsKBQyWiVGYrY5eHT6Qq8gt0pqbjEvfbuUlydcQ8eUGI5kFdRytkohfj6VqQ9Udt6r74PUmTQpqYvD7aLEYea+bTNIN3mPp8Ru4oW9P/F/bcYyIqoDv2VvZ1dpOv1qeSpxIek1Kh69oS9v1dKCOsBHy4sTruapo9/V+tpIXQBvNB/Puu3p/LRqN83jwhnZsxVmmx2VQoFGraAMEy/v+5kD5X/nVmt8GZ/Ym2si24oFa8IlTXwUE4RLSInRQpukKAa2T+FAeh7r9qXx9uThxIUFeI6RyaB7iwTevHMon/62AZ2m7hJJfmodb7Ybh6KWx6jJvpE81HQoPspTj76OVuRS5qhZFaCK3e1kQ8ERAOJ9QmkdEFfnsQ82HUKASkeI1pdwXQA2lwNflY6wegr0N/WLIqCOPEGdUsPQqPZ1vhbglsTelFfYeHnCNQQYdFQ4rV5BboJPKFdHteWuzdO8glyofLx+15bplLnqz4s+XViAgd6tGvHj6t189sBoerZM9LSVDfLVM2lwZx6+vg8G3alAK9CgJzzAlzB/X68ZsSCtgevjO/N1lyks6P0Yv/V+nHfa3kqn0CQCdD74aNXkF1fQLDas3jG1SYrkuLlydlkpU/BI02H4q8+uMYheqSHREMaTLUfyStsxRAX4E+ivo31yDE3jwggNMHhKTilkcoIbmMFUyRQgyWifHIPRYq83gD2UmU+J0czN/dqhUtY9Ez1+YAcCffUo5Qr6hjWv9/pDotoRoDq35ihmp40thcdqBLnVfXTkD8Yk9ABgZe5+HGfwBOKfsDhtFNkqyDaXUGAtR6mR0Sohgk/uG0XvVo0IMOiICPRl3ID2fPbAaDILS2jlG1/jPDqFmtebj+elL1bwxtyV3H5NZ5rEhfHkV4sZ9cIshj/7Nbe+/j1bdp9kTHQv5H/n6RTaKnjv0CI+PvInBdYyTA7rBb1fQThXYkZXEC4hTqeb9fvTuKFPawa0T2bB+r2UmSw8e8tA/PVaTFY7Wo2KHUezeHTaQh4c1ave+qg6hZqOwUnM7/0o8zO3sKskDZ1CzfVxXWkZEFsjqMwyFzU4xqpjQrS+vNFuHJ8e+Yu/cvZ4FolF6QJ5oMlgWgXEsac0kw0Fh9EoVAyIaIXZaeO1NmN5dOe3lNi9FxlF6QJ5vtUN6OS1B+4GlYaJSf04VH6SvbXMDD+YMhQkid7tE/BTVy66WpG7z+uYqSnX8PXxlXXOCltdDqYfXc6DTQcTpDnzXM5OTWJZvPkgz3/zFzf0bsPdw7rhliSsdgebD6bjp9eiq6eObnUqhZIwfc1yOSabDZkMGkUH83+ThnCysIwf1+yutQnFzYPa8m7uAhobIni65Uhi9SFnfC+n81FqGpwNDVD7MC6hF0/smlPnMX3DWrBudxpDOjZn9e76O6wB7Dx2kshOvrw2cTDPzPyzRuvh63q0ZGiXZigVcgIUPkxJGcSGwiM1cs6hMo1nVGxnNOdYN7fQVs7K/P31HpNjKUWjUKKQyVHK5RdsFsnhdlJsM3GsIpfF2TtYkbcfl+SmW0gyjyaM5OkZfzK6Vyuu790au9PFxgPpTHznR1wuN6/dM5h2rRKYlbqKE8Z8FDI59ycPZsWGExzKzGfS4M6cyCmqUdIwt6SCt+asZtKwTtyW2JcZGSs9+34/uZ1bEnuxvTiVnqFNMZxBS2FB+DeJQFcQLiUy+GbpNt6ZPIKv/9zC/SN74afXsC81l89+28CJ3GKMZhsGnZoHR/emQ0p0gzlyOoUanU7NHY37Y3baUcjkdf4yivNpOCCqfkywxpf7mwzhnuSrKbYb0ShU6BUalDI5d2yeRma1wPnL4yvoGpLMA02G8GHH29lVksaWwmMoZHJ6hjUl0RDGr1lbuTt5YJ3XVsgUvNJmLIfKTvJL1mbKHRYaGyK4OaEnpTYTt2z8mPl9HsGPypk782mry5N8w3l+z4/13t+KvH3c1+SaBr8P1QX7+fD8rVezbl8ac1bs4JNf1xPi78PoXq0Y07cdwf71P9otsZuwuuyYnTb81T5o5Ep8VacqJBRXmPhu+Q5+Xr0Ho7UykIsJ8eeOIV3olBLLOz+vBiprKz8xph8J4UF8FHM7WoXKKwf7QmoflEi7wER2ltRsqBGsNnBrTF/KdHZC/H3QqBr+1aNTqzhyspDlO4/x1SM3suPoSY7nFBFk0DGiewsMWg1BvqdmaEPUBr7uejev7V/gWSgpR0bXkGQeb34tQf/g+2B02rC76q4wUsUhuVDI5IyI7ojiLHKiz4TN5aDUbmJe5mY2FR5FJVfQK6wZ4xN789bB39lYeJTtgcdIiQnh/V9qX9T4y/K9jL+hDXc1vopwrT8SoHdpmbT2Z5QKOVe1S2b8G3PrHMOsP7bz7fM38W3mGq/FjfMzt5DsG0GutZTGqojzet+C8E+JQFcQzoDRYsNqd5BTXIFWrSLYT49cCSa3lbV5h7C5nXQOSSJE40uo7tybjagUct64YyhqlYIXbr2auSt3sXT7ESYO6sxDo3uTnl+CQashLNCA1iDny/Rl3NKoNyFqg6ddbp3nlivxV9f/V76RIZxAtU+N2dYqGrmSriHJXtuqHomHaCvvu9Bazu2bPiPbUjP/clPhUfxUK2niF8XWouM094vBjZuFJ3ewqySNp1uMRKeoOy823ZzPnZunMzy6PRMS+hGpD8BtA4fNhcql4pqoNiw+uZNJjfsD0Ck4ia+On5p9kstktXYeq87hdp1JEYUagv18uLZ7C7o2q6z7KEkSQb76eh+9W10OUo35vLJvnieVQo6MnqFNeazFCMI0fhQbzbw+dwXLdx7zem1WYRkvfLOE58cP5Ikx/SgzWRnetQW+eo2ngcK/KUDtwxvtbubXrG18n7aeIrvx72YebZjYqB86SUtSshqlQkHPlon1nksmg96tG/HMjD/Yl5bHX9sOc+vADjw0qhe++to/pOlUGpJUEbzW9mbckhuj04qvSvd3WsU/q7SgkStpFRjH1uK6Z6J1CjU+Cg3xPqHEG0L/0fWqK3eYcbrdpJkKuH/bDK/yentLM/lRs5G32t3CK/t+4eO0P/hs1F3I5TKW7TjqtTCtd+tGPHBTD2wKG39k7GTj3xVVPm11F2UmK+0bR7Pj2Ml6WzU7XW52Hs6mVUAsO6tVQCmxm4jSBfHV8RU83XIUBqWY1RUuHSLQFYQGFFeYeevHlSzbcdSzCCjYT88913bDHW7h3aOVTR0+OQYpvpG83W48EfqAMzq32+2myGak3GGh0FpBuM4flV7G/NV7aZcczawl2wB4Zc4ydBoVof4+2BxO8kqM3DqoPc5Gbm7Z8BFfdbmbRN/68zbPhEGl5eXWN/Hg9lk1ylHJkPFMy9HoFfU/xj5cnl1rkFtlee4+xif2ZtrRZV4VIfxUOnqGNa23BmmpvTJ/eG9pJpNiBrLnQA7fr9pFQamJ6BA/brmqA01DQz2rxhN9wojQBpBrLf379aYav6RP19w/Gtc/aBgZHnjmQVWWuYg7Nn3uVdfXjUSJw8jc1HVMTOpHaYWlRpBb3Qfz1/HDM7cQ7OuD/AxK0l1IlSkMPRkW3R5JkpDL5JVPFE6r0OGjVTOkc1MWb6m9nfDgTk0pM1nZl1bZRMMtSQxol1xnkFtd6N8fuML/4b1UF6b1p394S2anrquzasHImE4cLs/mw44TzrgebbnDgtPtRCGT41/tNQ6XE4vLQb61jPcPL2JqyjU8vH1WrTWkC20VvH7gVyYm9ePp3d9zz67pzL3pQR4c2ZttRzIx2xy0TYrCqXYweec0FDIZI2I68kzLUUBle2atWolWo6LCXHvFE68xm2zogr1/nkmGcKwuB3tLM7G5HCLQFS4pItAVhHqUGC088MkC9qd7d60qKjfzyrfLeXJ8P66OaMOS3FOdvu7fPoNPOk5C41bjV0/+rMlmI9Wcz4v7fvZa5JLsG8mLA27g8GHvVewWm4OM/FLPn39dd4B3uwxhQfZWXj+wgFdbjyVE989mrnQKNc38o5nd4z6mH13GuoJDuCWJTsFJTE4eSLQuEB9V3YGu2+1mY+ERWvjH4JYkThjzasyguiQ3xytyidQFeu47UO3DJ50mNbhYKM4nBK1czUetJ/HcjCVsPXwqVzenuJxtR7IY0K4xj93UF5VWhtqt5ONOE5m8efrftVbXc3tSP3Zum1HnNSYl9SdcV/eCufOlzG7mnYMLvYLcbsEp3BU/kGMZRRzeV8ROZzZbD2XVc5bKussZhSWE+l8aXb+UckWDM6h+PloevaEveo2aBRv2eWYRlQo51/Voydh+7bj1jcp836axYbwy+WrMcivfnFiNVqGiV1gzfJQa/M5xcdnZMqi05FhKeK3tWJ7e/X2NPOAeIU0Y36g3SpnijBb9ldnNHDPmMvP4Kk5aignR+HFLQk9aBMTiliS2FB3D5LQS7xPK5MYD2VeWWW+1kcPl2YRq/PBX6QAZMpWEVi2nT4dE7DY3ZqcdjVaD1W3H6nJ4lYIbH9ebQZ2asPtYNqN6tGxw7I1jg1hadOqDrEqmYEBEKz47ugSdQn1OT0ME4UISga4g1CM1p6hGkFvdF79u4bUHr/YEugBppgL2F54kgiAyC0qJCQ2odcFYgb2cu7d+UWOW5mhFDnduncacbvcTHezHyaLyWq9dZrISpvZnRrt72VZ6HKm2zhHnwFelw1el438truNhtwOQoZTJCdQYsDsdlNpMqBXKWruXldhNXBfbmTifUJQyOS0CYtlSeIwvj6/wCg4C1Qaui+nESUsRXYKTPQvjaqsOUV2ASs//mo3gz82HvYLc6pbvPEb/do0pDSmig08yq7YeZ2bfe9ldlsbyvH2Ea/25O3kgnx+t2f1sUqN+NPOPPrtv2DlyuF1e7Yb7hrZgdEAPpr75G2WmyhXskkvy5OTWp8LS8EzcpSTfWoZMAXeN6MydQ7twPLsISapsYSwDlu86xrCuLWidGEHrFuE8tGMWadU+DL59cCFDotrxUNOhZ11N4lyo5UoSDWH4WiuY2W0KGwoOc6g8G4NSy7UxnQjRGM44PaLMbub9Q4tYlL3Tsy3HUopMJuObE2v4MWOjV5m0SUn9KLbV3R2uSrqpgOHRHbk+rgsFtgqyzEUEa3wxO20cKMtiUGQbnmh+LS/tnYebU/9W/JazjY+vvoON+9Px89ESHmggr6T2LmvhgQb8AtSkZ1T+LBQyOc+2Go2ExMq8/dyTfPW/9uFDEM6UCHQF4W/ldgt2txO5TEaQxoDN4eTntfW30C0sNyHZZBiUWozOU+V1NpQdxudoEF2bJTBt4UYmD+vmFeyWWk18enRJne1sTU4b36at5YHre/L4tMW1HqOQyygz2rj9zZ/p3SaRPtc68Ve6UNeTE3o2AqoFEMW2CnIsJczP3MrxilwC1QZuiO9KkNrgeVRcaCvnpX3zvNIRFDI5g6Pa8l6H23hw+0xPA4bGvhF0C6272UVdAjUGOhqSmbDq+3qP+27ZDp6bNICVRXvJKnAw+NGvuXNIF568aiQ6tYoR0R0ZFNmG+ZlbOGkuJlIXyKi4zmjkqhoBS7ndgtllQylTEPIPu2pVVz2YUcuVTIwdwB3/9zNm26lH45kFpXRtFs+izfV3uGsUHnzexnWmykxWys1WVu06htXhpFvzBKKC/bwWiJ2u2GZkV0ka36WuJcNcSKDawOiYzgxKauv1uH9Ur1a4XW7Mko0Jmz4lx1Ja41yLs3diUGqZknJ1rR+66mNzOTA6rJhdlXWJ1XIlMiC0ntJ3eqWGOIOGCoeF4TEdGOpuj1KuOOsqA3tK072CXIDrYjpxsOwkc9PX1zg+w1RElC6gwfMGa3xpExDPIzu+5bjx1IfzOH0wjzYfwY/pGxib0JNPOk9iTuo6thQdRy6T0SWkMQEGLV88fAMrdhzlldsH89Bnv2E87cOTr17DB1OuY2HJJhoZwmgdEM/I2M74KrW8tG8eQWoDw6IrvyeCcCkRga7wn1dsM+JwuzhmzMXitJFoCKPEbiRQZTijrj9Wu6NG1ykZlYGAze5k7b5UBnduSqvESM9+h+RibQPteZfn7WVMhx517u/VqhFbD2fidLtZsfM4G/anM+vxsSRHn3spqdoU24yszT/Ea/sXeM8EndzGwIhWPNxsOG7JzZO75tRoC+ySKheayZExKak/nxz5i1GxnVH+g/aoMpmszhmnKml5JfgotSzI3crzvcewaPMhvli8Gb1GzbgB7T0B613JV2Fx2tEr1TUaKhRaKzA5rcxJX8exijz8VXquj+tCim/UeQl4VXIFQWoDxXYj/cNasnzrMa8gF2DTwQymXtcTnUaFxVZ7bmiH5Bi0KhUFpUYUcjl+eg3K8/Rhpy6lRguvzF7Gil2VucNNYkKJDvUjNERPjrkEuUyGDBk6pQbfvwPBIlsF7x1cxJLcUx8eyx0W3j28iAUnt/Fxx9s9CxpVCgUoFGwrOFFrkFtlQdZWbk/qe1aBbonNyKHybII1Bn7O2MyKvH1YXQ5a+MdyZ+MBNPGL9Kp4cbr69jWk1G5ixvFVNbYPjW7PA3Wk02wqPMIHHW9nVuqaOs/rp9KR7BvJmHXvYzqt0kiGuYjHdnzLp53vYEHWVvxUOtoFJXJH4/74qfQsz93Lj5mbsO/RIpfL8dNr+fGZ8SzecpBVf5eB69Y8nv5tG2O02BgV34VrYtrhq9Thltx8l7oWpUzOV13vPuPcZEH4N4mGEcJ/jsPpwmixYXc4KbJWsPDkDsasf59X9v3CMWMeZpcdCbC6HTxwQ0+09ZRCUsrlhAQYKHd4Nxno5t+EPSdyScsrJjzQwNd/bvHMkBQbTbglqcF2uHaXs0agHeSrp21SFB2SY5g4qJPXjLPV7uTFb5dQYjzzhgcOt4sCazmpxnz2l2ZSYC2j9LTHpCV2I/93WpBbZWnuXlblHqDEbqwR5Fa3KHsn3UKSuSmuG7c16vOP2qPKqOwCVZ8gXz0Ol5MiW4VXo4bvlm+nzHTq+6OWK/FX62sNcpfm7uGGde8xP3Mre0szWFdwiAe3z+KZPd9TZKs45/FX8VVpGRPfHYCm+hi2HzxZ4xi3JDHzr628NnEIGlXN4DUmxJ8nx/Tnng/mMejJL7jxlW9Zuy+VAks5edYyciyVzQRsrtqD5HNhtNh4b94aVuw6RlxYAJ8/NpIn7unFUd805matJc1UwNGKXN448CtppnyyzSWYnFYOlp30CnKrO2HMY+aJ1ZirtX92ul0sydld6/FV7G4nGaaGaz9XcbgcHCg7iV6p4e4tX7IgayvljsonOTtLUpmy9UvmZWym4gI1P3BJbq8UDAAfhQaLy06Fs/ZrVvz9vRsR07HO8z7QZAhbCo/WCHKr2NxOZqeuw1+lp21gAh8e/gOn5Ob2jZ/x8ZG/yLGUoNYq+HbZdm565VuufX4GJ3KKGNqlGUO7NONkYRm3vvk9ZQ4zbx34nU0FRzhpLkKrUHF743681vZmInQB9S4kFYSLRczoCv8ZFRYbZUYL36/axcnCMp4a35/lhXv4+MifdA1J5p7kq/k+fT33bPkSu9tJrD6Y8Ym9+fqpG7jj9Z9rzLYBjO3fllKnkSkJ15DnKOGvvN0EawzoHTpO5BQRYNBhstgpqbBgd7hAVzkbJiklUnwjOVKRU+d4WwXEoUDOyB4t2Z+ey6RruhDkq+dYdiGBvjr0f69cn/HXVs9ingPpedjsDdf7hMqZrd2l6bx3aJFn1kwhk9MvvAUPNx1KiNaPEpuRWSfWINUS5FY5bswhz1Za77VckpuTlhImJvXH7x/MiAHoNCqGd23OD6vrDoJG9mjJloqj+Cg1OBynFnsVlZvrLZ9UpdRh4r1Di2rdt6M4ldmp67g9qe85ze6ZnXZMTitLcnbTLTSFvaUZuHHX+fRgyfYjqBQKvn70JtbuTWXzoQzUSgXDuzUnITyIJ79eTGpu5cLFR8b0IjRezVO757K7NB2orGF7Y3x3ro3pSNA/+IBRxWJzsHjLQWJD/Xn93mt4+ehPHD1yqsvcnLT1NPOL5skW1/Hkrrk82eI61PIwcuqpxAGw6OQObmvU2zM7K1FZ6aMh8rMIrkodFuxuB+8eXOaValTdp0eXcHVkG89M9PkkQ0ag2sf72jKQGqjy8eHhxXza6Q7i9MHM/bt0G1R2+ru/yWCa+kUxdv2H9Z5jdf4BxiX2RI6MZn7RZJoKKXVUfqjdWHiEjzr0YcbiyiovDqeLxVsOeVXFCDDoiA0LYFJEfzJNhRidVvzU+nrLAQrCpUAEusJ/QoXZxrx1e/hw/joAbrumA5LSzZfHVxDvE8qdjQcwdetXXrMqmeYi/m//fAZFtOHFOwby2CencmV99RreunMYKpWCuYt2UFJhJSEygPd7T8RPq+XBj39Dr1GRHB3CkZMFdEyJRamQY7bZmb18J1qVitt79uPJPXV3kprYqD8f/LiOni0SuWNwFx77YiEHqi2MUyrk3NS3LW/fNZxHp/2O010ZwFVYbERQ/6N1l9vF3rJMHt8523u75GZZ7l4yzUW83+E2HC4n+8rqnqmFyhkn7Rn8siuxGXluz4+MiOlAt5AUT26jw+WgxGGmwFpBhqmAMK0/cT4h+Cg1tT6SNug03D6oEyt3Hye/tGYKQ0J4IEO7NuOmLe8wNLIDSzafyhmWyWgwHaXEZuSbE3U/JobKR+ZjE3qcdaBrdtrYWHiUZ3Z/j0tyY1BqebblaJr4RqHpZGD70SwMOg0+WhVlRitWR+WHlkVbDrI/PZdpD49mWM8muCVYuzONW14/9f4ZN6AdofFa7twy3etpQZHdyGdHl3Cw7CSPtxiOAjmlDjOFtnLCNP74qXVn1VTiWHYRLrfEQ2N78X/H5tVopQxwsPwk7x5axN0pA/ng8B/cm3I1vcOa89bB3+s8r8ll8yrrppIrGBzVlsWn5bNWp5GriNWfeX6y2WklTOvPwfKas+fVzcvcxJTkQWeUunQ2KtNfunp9iDI5bfiqtPgoNPXOyB4qzwbg/9qOJVBtQKtQoZErCfi77nVd+f5VXJIblUyB3e1kSFQ70kyFXmPYa0rj+r6t+HnV3lpf/9iYPhyxZLG15DhjE3oSrQ8SQa5wWRCBrvCfkJpb5AlyZTIY0q0pBdZyyh2WyhX4R5bW+ejwr9zd3NilG69OvIblO4/hq9Nw19CuvPH9CtbsPdUFavvRLOat2cfU63owskcrFAo5v6zbhyTB+Ks64OejpajCSFZBGVsPZzKq3y3cltCHWWmrva4nQ8aDKUPQO7UMbJ9C8/hwJr//M5kFZV7HOV1uZi/fgV6jYnTv1vywahcyGQTUU9KsSrHdxHsHa5+xhMpyRQfLTtLYN6LBX2aHyrMZ3bIL36XV3o2p6p6a+Ufz4eE/2Fx0lP9rM5Z+4c2xuZ1kmAp5ctdcTlpOlVMLVPvwTMtRtPSPrTXNIcTfh5mPj+Gz3zawZPthbA4Xeo2KoV2aMXFwZ14/9gv+Gj3Dwzpy19e/eF7XrXl8rSkA1VldDo5UZNd7jNFpbTCwqE2hrYKnd831pIEYnVa2F58g31pKl5ZN+eyxkSh1lSvzw3X+HM8oZtaiHaTmFnPzoLa8dew3VuXvp1NQElNbDKFxVDDHsisf3V8/sCWP7PmmzpSYVfn7uT2pL9+dWMPSvFPBTCNDOK+2uYk4n9Aauea1kcsqV9/r/BUcSq/7+7SrJI0pKVdTaCsnSG3wrPz/q450BLVciVwmw2S1expepPhGEqcPJqOO1tQ3xnX1vD/tbidGh5XD5dlkmguJ1gXT1D8KX5UO9d+pKQ7JTeEZpJ1kmAqxu53o5Kfe+0aHBYvLgdlpQyVXoJQpCNYYzqoDmkIu55qoykWQ1VMYFmfvYnRcF76pIw83WG2gTWAcs46vpkdoE0K0vl61apUyOa0D4thcVHe95WZ+0UhINDZE0Mwvml+yvNv8fnziD17rMY7YsADmLt1Fbknl96lpbBgPjOpJo+ggFGoZvSKa/aM8ZUH4t4lAV7jilZutfL5wo+fPAQYdJU4jKmXlI8/WAXG8eeC3es/xXdpanm4zkn5tGiNJ8P2qnV5BbnUfL1jPt/8by7HsQuat3UOXpnG0TKhsi6lRVzZ9ALjlpe/59NHrGN6zI79mbiHXVkasLpgRMR1RSQrkbgUp7cJZvft4jSC3urkrd/H5A6P5YdUuOjeJO6P2qlaX3SuwrM2CrK281PImBkW25WjFn3UeF6wxEK0LIsEntEb+YZWeoU04UHbSUwv0/UOL6BiUiMXt4O4tX9SoEVpiN/HYju/4suvdtQa6crmciEBfHrmhD/de2wOny4VcLuOgKZP7935JW/9EJsdezQtfLveU59KoFDxyfd8Gmw7IZDJ8zqDgvVJWe4BTYCnHjYTFVbnITYYMH4UamUzON6lrvHKd5cgYFt2exdk7OelTyNuZv3v9XFoHxPHylBGkppXgCLaw6sh+ALYWH+cpy2xennQzt73yA346LW65m4xqs3S1+TljI/0jWnoFuieMeUza9Dnf93yQiNNW9xeUGnG5K9MqQgMqfw5JUSE0iwtnV1nt7//q9pSkVzYTcDtYnL2DnmFN6wx0r4poxdH0QirKHfRpnYROoyJQY+DTznfw6I5vPTOaVd+30XFduLVRH3RKNRannV2laTy7+wevfHlfpZaXWt9E28B4fFRaAlR6FPrKhZESEntK0tlWrcRblQhdABUOMyanlRCtH0W2Cr46toKF2Tuw/p3vnOgTxgNNB9PEL5rgs0gJCVQb+KzzHXx5bAWLs3dicdn5PXMbn3W5A6PTyvzMrV6pQlG6QN7vMAGDUsv/WlyLXy3l1PzUeiYnX1VvoHtLYi9i9MHo/66D3Te8Be8eXOS5lkNy8b/939E3tAXP39sPg0JXGcjLTv3sBeFyJAJd4YrncLi8HvlLUuVClyhNECqZosGWsFBZOsvmduKn1VNQamT28rofpwLMXLKN1o0iuWd4d0b1bEmAoXIGxKDRMHZAOxZvOYTN6WTS6z8TGezHpGs608K3MQU5Jl5ftopnxw8k2M8Hm91RZ/eoKkaLjVKjhUaRQTw3fmC9TSqqaOQqfuvzOBISNpeTJTm7+fr4Ktycmg20OO1YJRtDotrxY8ZG8q01g22FTM4DTQYTqvXjg44TeHDbLFJN+V7HdAhqxB2N+/Pg9lmebfm2cpySxOzUtXUWwncj8emRv3ix9Y2eEman89Nr8dODw+2kwmGhlS6Wj4MnsX5XOlPeWkDp3/VoWyZE8Oy4q4gObrg9c4QugOtiOrG3nsV17QITOT011OK0kWst480Dv3nq48qR0SO0CY80G45erib7tJnJFgExnLSU0CusGfdvm1FjNnZPaQaP7JvFtM53cvM67xzMk5ZiDpoz6dwkjvzSihoLImtTYjfX6FIGYHbZmXViNfc3GYxOqaao3MSOoyeZs2InOcXlRAT5MrZfOzqmxKDTqOjePJ4yWf0flKDy/SFHhl6hxui0YVDU/t4M0fhyV+OrePCd38ksKGXhK5PQ/b3gMEzrzwcdbqfYbmR3SRpahZpOwUnoFGpP+kuOpYSHt9ecza5wWnl057d80+1ekpThyGQy9pZlcrg8GxkwIKIV96YM4s0Dv3mlM1wd2YZxGz6mbWA8T7S4jpf3zmND4RGvc6ea8nlo+ze83f4WOgQmoj/DnN4KhwUZcGfSAK6P64rVZUcuk7Gx8CgpvpHM7DaFncWpWNx2mvpFk2yIIFTr1+BCrwSfMB5rNpy3Dy6skVM/Kak/HYISvWZifRQabknsybepp57EuCQ3y/P3sjx/L480G8aIkI61vl8E4XIiAl3hyierXMBU/nd7y1KjhQClgTX5BxkY2RqNXIkcWa1VBapE64LQyit/8TpcboorzPVe8nBmPg+N7oWPVo2/T+UvF4fThdPlJjzQwJAuTVm8uTKAzSkq55XZy4DKagIzHx9DqF/lDIoEDVZngMrZymkPXl9vDVMAk8NKob2CT48sYU3+QVySmzifEMYn9OanXg8xYeMnnhSO1oHxGJRa1AoV0zvfyav75rO1+LjnXPE+oTzZ4joidYEAROoC+bjTRLItJazOO4BcJqN7aBOKbUYe3v4NJXbvag4OycmqvAP1jndb8Yl6F8JVUcmVBFWrf3tV2xR6Nm+E0WJDr1GhUikJNJz549buoSk0MoRzwlizWYhKpuDhZkMJO63marHdxMRNn2GqVjnAjcTagkMcLs/m6273cG/KYG7f9Klnv49SS4jawGfHltb5cy6yVfBn9i76RbSoMRu6sngv3dq04bN5mwjT+iFDVu/3K9k3Av86Cvovzd3DHY0HYDY7ePGbJazbn+bZl19qZM+JHLo1i+elCdcwsH0KefYypqXVbLpRRYaM9kGNSDMWsDr/IO0DE+kYnMTdyQP5KWMTRbYKtAoVg6PacXtiX6bN20xydCj/u6k/ReVmSo0WDDoN+9Jy2X40i36tk7gqrg2+Oo1X0Gd0WJl2dFmd3z+X5GbxyR1cF9eZyZu/oNh+Kq97bcEhwrT+vNluHK/u+4WjFbmMje/B/tIsyhxmVucfJFTjR1O/6BqBLoCExHuHFvF5pzsbDHQdbhe5lhLeObiIjYVH0CiUzOh6D2aXnQWZWymwlROlCyTBJ5Q4nxB+y9rOobJsnmo58oyqGRhUWoZEtaN3eHMWndxBqjGfaF0QI2I64qfS1aj3a1BpuTWxDxHaAL4+scpTSSRKF8iUlKvpFpIiglzhiiACXeGK56fXMqxLc77681RO2qJ1BwlsBeMTe3GsIpceoU1YW1D3zOm4xF74qnVYnDYUchmBvjo6JseiUso5kVPMoUzvWUwfrbqyf72PjlKjhfxSIz+s2kWZyUrHlFgeGt2bdsnRfPPXdjILSlEq5PRv15h7R/TwpDYAaNUqrmqXzIqddT+S1KqVJEQEEezXcA3LLEsRd2yajs19qoJEhqmQV/f/wojojnza+Q7Gb/gYlUzBtTEdUSsqg/sofRAvtL4Bp+Qi31qOv0qPXqkmWGVAoTj1CF/tUmPOlWgblMAf2Tt5dvcPFNhqdnZTyRTIkJ1REF9b2Pb/7J1nYJRl2raP6b2k955ACJ0Qeu9IEURQLIgCKvbu6trXsuraC2JXREFEFCmC9N57SSAJIb23yWT6zPdjyJBhZgLurvu97ub4BTNPnukz533d13WeZpsVQ7MVm92BWCRELBYSrL74+NUKGWqFjFDd7/f1rGpsApeAd3rNZkHuen4rO+aJ6e2si+WxjMlEyrxFbp3FyEdnf/MSua2ptDSyomg/V0X3IF0b7dmGrzQ3EirXcqi27TaATRUnmJU01EfoWpx2xCIBFrudmvpm+oamegV2tEaIgMmxvWmyWZCLJJ4teM+5HHbkQjG/Hj3jJXJbs/v0eTYePsO0Qd2wi9UMDksP+LkZGdmF88YqronvyyMHv+bzAXehkyoZrOzCmN7dEYmE4IKcc1XMf3UFt43vi6HZwhOfraG60b0oUsokTB3YhVE907j/w59RyiR88tAM4sJ0HvFnddrZWZ3T5vM3MDyd+w986SVyW6g0N/DC8R94uNMkqswNiIQinju2zHP9ypKDfNbvTr7M3+J3MVzcXIvBbiKctmOjy0113Lzrfc8Ohtlh494DX/Bu5q30DErE4rRRa3UPbFZaGknTRPFO5i2/y5tWJZGjksi5NXkYNqcDsVCIsA3Pap1UydS4PoyM7Or5TpCLJGglysumFLbTzp+FdqHbzn89ErGI64b1YMXOE55K7LItx3mz60R+LT5K/4gOPNRpIjmNpVT6EWXXJwwgVOquFlocVgQCePeuKWw8nIvZZuPm0ZlEBml476cdHMlzC5hJ/TMI1ilpaDZR2lSPU+Ri/KAO7D5SyOKNB3l3xXYWP3kDgx9OAtwWSWKxCL3St+rYJz2eEK2Smkb/VeRrB3dDKbt85aXS1MDfjv/oJXJbs7LkADMS+tNZG8u8tJFewy6Ap32gpYLrD5vdwYMLVvLVUzPYUZUT8LbGRfdAKhTTKziJ38r9T3kDpGmiuDTZuMZg5LvNh1m+7bgnKrdPxzjunTYQo6yZFF04KrEcuahtr91LabZYKa5u4MVvNnCioJwgjYLpI7qxqM8wxFIBMpEEBBDhJz3L7nKwqfxEm+dfU3qI8dE9GB7R2SN0/VWM/WF2+IaSAPQOTibeEUxKdAif/XSAv8yewvz9n/iELAgQ8Ncu13DWUEZ2QymDwtLZcMnz3j0ogaYmG99uarstZ/HGQwzrnkq4Xs1TXafxj1Mr2VB+wlNJFiJgTFQ3bk8dRZ3VyDNHl/JMt2s9leRGg4XrXljmdc7rhnanusHIez/t8Lq82WJj8abDlNc18ej0YTy3aD3z3vye7/56k2f3woWrTXuuBFUYTXYzpW3Ym+U3VaIQSdhaeZrNFSe9rrM67VSaG9BLVX6FMhBwgdOCwWbizdOrfdp0qi0GHjj4JQ93mkSkQs+OytNMis1kaHgGEQr9Px3AIBAIkIqu7OddLBT9W2zn2mnn/yrtQred/wmCNUq+fvx6nvt6PQfOFGN3OHn4/dU8dsMwYhKCKTHV8Fm/O/m5+AArSw5itJlJ00ZxS/JQOmljPD8EDouQV5duYvORixXWJZuPEKZT8dq8ibz/804q6gyMz0qnwdbMr2VHCJfo6KiKReIQk5EUwdDuKTgcLt5bsYNHZgwjOqTtSpBepeCzh69j/js/UFbrPTF+VZ90bhvXx9PP2BZWp71N316A78/v5u3etyAWiFD9Ez6iJqsNq83BV2sO8fLoG3jy5Lc+Yre7PoG70sYSLFNzW8oINpafCNg2MjdlOOGKi89PtaGJpz7/lX3ZRV7H7cspYs5ry3j/oat5LG8xt6YMIzM4+XdtvVY1NDH7tSWYL/gQ1xlMfPzzXj7+eS+RwRq+eux6wnT+BYELl6fqG4gmmxmRQMiE6F7sqjrj8bmtsTQRKddTbq4P+Ldd9fHkN3nvGkgEIoZHdMZgM3H/rf1wulwUNVTzad872Vh+/MKgk40uulhmJQ+lwtzAfQe+YEJ0T/R+BNQdaaMQCYScr2jb77aoqsHTnxwkVfF4xtXc23E8h2rPIROKydDHYrCZWF16CIVIygd95qCVKD0Lj6SoYII0CuoM7p5igQAmD+jMvDeXBbpJNh4+y40je6FXK6hqMHL8XBlDu6V4noe+oansqPJf1U1UhZLT2Pb7HuBg7TkMAfqcRQIhzgBiWiQQ+rSxXIrFaWe3n9YHcFf7Hz+ymGHhGTzb9dp/6nPXTjvtBKZd6LbzP4FQKCA6RMfrt0/EbLVT32RCq5Qjl4kJUiqJULp/qGYlDeHq2CwEAndlKrTVEFR9UzMLV+/xErktVDUYeXjhLyx88FrUcilOiYNd5WfpKUvFaYOH3v/FY+oPEKZT8dh1wzl5voIQrapNpwShUEBcmI5Ff7mB/LIa9ucUoZJLGdkzDY1CdkXDZwANtrb7isE9dOdwOdEFqCQ5nE4abM2ebW+5SIJOovT4jSqkEoQCAb/uzcHlcvHJhPnsrsvhtLEIuUjKqOBuBIu0KAXuye9gqYqXelzPs8eWedl1CRFwe9oougUleN1+bmmNj8htwWp38P6y3Vw7vS+PHv6GpYMeIF58ZXHIdcZm3lmxwyNyL6W81sCKXceZPToLqdj3tXLh7uNuy8kiTRuFw+kkUqXn9V430WR3W2GFSNXMShrCa6f9O38IEDAtri9/PbrEc5lMKOaFbtexrvQo18T3ZdqBNzzXSYVi7kgZxZOdr0EocEc4lzfX48TJvR3GoZUo2dNKdAkQ8HCniSSpwmk22gnWKD2tA/7QqxW01nzNDit37P0ErVSBy+XChYs+IanIRBKMNgsigdCruq5RyPj7nAnc/d6P2B1O4sODKKqs9xvI0potR3Pp1ymeX/fnsPlILoO6JLkjj6VK7kwbza6qM34XTFanA90V2GEpRFK/g6lqsRydROUJV7iUYeEZAR04WrA7HW3OAACcM1Zhcdr5d4boWqx2jGYrZbWN2J1OYkJ0KGUSlPJ/rve2xmygyWGm1tJEqEyDSixHKhThdIFCLPFJGGynnf8LtL8r2/mfQqdSoFNBRJD/QAW5WIo8QBXQZneyctdJv9cB1BqayS6sZHDPRI5VFdJwzok4VcS8937wxP+2UNVg5C+fruaj+6/FbLNd1hJMIBAQrFESrFHSu0PcZR6lf65kezJeFYpC5BvSANBoM7Gx/Dif5m7y9N2Gy7TMSx3J8IjOaKVKZBIRg7omse1YPuv2nWHjgVwGd00iMSYBq9XB28f38Pe5EzwV6CCZmszgFFYMeYRtlafJM1QQqdAzJqobUqHIa8CsvrmZpZuOtHn/j50r4wnVcBwuJ1/kbeHRjEl+QycuxW53sv2Yr81Ua1bvPs3VA7oQofN974RIVNyQOLDNQITZycPQy1SIBEL0UhUuXGwuP0mGNIE4WwRXRfZkTbl324AQAc92vZYwuZahERkYbCa66eMZGJaOyWGlR1Ci15Z8qjqSm5IGk6gOo9LSQLwyhEiFnu8L93C6oRiVWM41cX24I200oXItQVIVE2N6oRLJUEnkiJU2pgzswqdr9wZ8HFMHdkF7IVbZaLew4OxvlJnrKDNfvB+tQyTi1aFcFd3T01MrEYvomhTJ90/dzIJVuyitbsRo8e+80Rqj2YbswiJDKhZ7paaFyXT8rft1vHjiR0yt2gPkIgljorqRoYttc1BPJBDSPSiBd7LX+Fx3S/JQhAgQCYQ+PeWp6kge7DSBYFnb8lQqFLcZCAGQog5H1ka7gcPlpMHajPNC0Eig76kWGowmlm07xlfrD2A0WxEJBYiEQq4e0Jk7Jva/7OBqa6xOO/mGCp47/gP5TRXoJSqe7XYtDqeT1aWHaLSZSNdGMz2+PzqpEtUVfObaaec/RbvQbaedK6SkpgGrve3t6a3H8ujfNY4QkZYdFSWsrDrlI3JbcDhdfLJ2L3+bPfaPuLs+iAUiegYlcbgu8ODTtfH9/G73G+0Wlhbs4pO8jV6XV1oaeenkCmosTVyXOACNUs5frhuB2Wojp6iCBqOVzUfz4MIM1U0jexF5ySJDf8EXdFp83zbvv83uoL7Jf6hHayw2GyKBkH01uRe8bC//o+t0uXA42664Gc02CLB9LRaJGRHZhcO1BWyo8O05vjFxEMnqcK/KZpBUzR3Jo/ly9X5W7j7J4zcN4+oefVhffYQ6m5F4eRgjQrpQWNpAUIiKh9Mn4nA5fXovjY4LfcohqdyRNoq3Tq/mREMRs5KGUG1u5LVTK72qiftqcumgieKd3rMJkXm/FnKphBlDu7PuQA5FVfU+jyMmVMf1w3sgv7BQMdktbCg71ubztqxwD1khKV7b+3KphMTIYJ6+cTRWm4Mmc9s9rgA9U6MxmqzszS5k8oDOCIUXhW6QTEW/0DS+GXAP+2vzqTDVE6HQ00kbw/LCPTTampkU04uVJQf9nvvGxEFkN5Z4tZ/IhGJuShrM+OgebC47wQ+DH2J54V6O1xeiEEuZFJNJz6AkgqTKNge+AFRiGVPislhcsCPgMbOTh/v1b3a5XNRamjhSX8DqkkNYHHZ6BCUyObY3aoncr6g0mq18s+EQS7ceZfrwbozuk4pN4EAqFFFc0ciSzYe5fnjPKxa75aZ65u11D7EqRFLeyLyZBWfWe3kQH6zN59uCnTzTdRrDwjPaWzDa+T9Du9Btp50r5EriQEVCISKBiLW7c+jTMY43fmg7SnZ/Ttvxuv9OwuRanupyDXP3fuRj9QUwP20MqgDVXJPdwuf5mwOe+9O8TVwT14cquwWrzMrdt/QhVKZBhJC8glo+WbOfeeP70Dkh8opbLS5FKZOSHB3M0fzAaVxikRCZVIzD5UT8O+JbBQKICtZSVus7jNhCenw4EnHgLeoQmYYHO03gusQBLCnYSZWlkVhlCDMTBxIsVaOXKH22dmVOGWv3ZWOxOXjhi42EaJUM655MlCqIomoDtx39AYlExLKnZ6GUyxDh+5h0EiX/6HkTKZpIlhTsJL+pArVYzojILty2e4HfLfMzhjLez1nnt+IdqlPxyUPT+XTtXlbvPY3JYkMuFTOhTyfmXtUXuVKEzWlHIhRjdzkv25tcYzEEHBZTK2SgcLfndE+ODvja6lRyUqND+fq3A7xwy1ifxRKAUiTlnfw1nDNWESxVcbA2n1dP/owLFzKhmH/0uhm9VMXywr2eyqpGLGd28jCuju2N2Wnj+0EPcrqhGIVYSmddHDUWA9O3v4XJYeXjvE08mH4VMxL6IxYICboQpnAlyEQSZiUP5VDtOb/xw3NTRhCt9D/kWWVp5L4DX3oNLu6vzePrc1t5K/MWMnSxPq9hs9nKmn3ZfPjIFH6u3sPtxzZ4euVT1ZHM7zUWs8MKXF7oGm1mFpxZ7/n7iTG92FB23G/QhgsXLxxfTpdBce1Ct53/M7QL3XbauUIigzSo5VJP0pY/JvTthMlio7iikV7JcdguUwF2uQg45PJHECnXsmjAPSw7v4dfy45gcljJ0MVyW/Jw4pQhhMj9t3TsqTnbphXYxJheFDVX8+KJFV6BEZnByTyeMZk375mA/jLbu5dDJZNx06herNgR2N1gZK9Uttecdv87oitq8ZV55wapldw0uievL90a8Ji54/t4WZj5I0yuJUyuJUEZitVpRy4So5EoA/qgCgV4bdvXNDazfLv347PaHQj9/LnD6aDO2kx+UwWrSw/TZDOTpo1kQZ+5FDfXsqb0cJt9oevLjnJPx3F+K97hejX3TRnE3PF9cTidCASQbSxm/rGFGOwmbkoawpTYLEQCIWqxnKYA8dkA8cpQxJeJydWrFbw67yrmvrGM4mrvYBK1XMpr8ybw7k872HWygDX7spkxtDvzJw1A12rRJBKKSFSH+63aWpx2Hjr4NVPj+7Bk0AMY7CYECAiSqtBI5EiEYkymet46vYoMXSxGu4Vnjy3zaoMw2E28cGI5K4c+5tW7f6UESVW803s2B2vzWXp+N/VWIynqCGYnDyNKGYTWTx9xjcXA30/+5Nedw+K08+DBr/lxyMM+r+GJgnKemTOSN8//zIkG75723KZyHj3xNe/0vJUIp/ayC3iL086Wyot+1+Oie3DfgS8CHu/CxTcFO7inw1h0flLc2mnnP0270G2nnStELhMza0xvPly5y+/1iRFBdIwNY092AWE6FWdLquiZGsNvh/xPWwOkRIf4JGz9kUhEEsJFOm5NHsq0+L4IAKFAGDB5rIV6a+BBtmR1OFPispi7ZyH2S6p7B2vzuWv/ZyzsczvAvyx29WoFD1w7mLd/2O5zXVJkMLdM7MUDJ75AJZJxfeKANnseWyMRiRib2ZEjeaX8dsDXh3b+5P7ER+qv/H5e4eN0uqBDTBg5xf6jkwE6xoVxaVeFzWGnzmbkqaNLOVJX4Ll8f20eS8/v5pO+t/NDYeA+W3BHvjbZTQHjawUSWFmyl49zN/pc98GZddRampiTMpzJMZl8e35nwNuZlTyEM41lnGk8RII6lC66OBQiqU/FL1zvdrY4lFvCyl0nsTucZHaIZUDnRBau2s2uVt6+3289Sp+OcYzomeZ1jjFR3fjgzDq/izKby8He6lxmJQ4hWRXh1frQQqm5nt01/n2IwT2496/4y+qlKkZGdqV3cAoOlxOZSNJmP6vVaWdnVeDvD4vTxsbyE1yX0N9rMSUWiWgUGXxEbgtOXLx9djXv624LuLhtwYXL6/kUIrisndqphmJMDiu6K6gYt9POH0270G2nnSvFJWDKgC5YbHYW/XbQq1+3R0o0r8y5ipMF5Xz0yx7euXsK973/Ey/eOo6Nh88GrNrOGd+HcD/DTf8OrDY7TSYLzRYbIqF7S1+vUiAUClBK5FccWQrQRRd4AG56fH8+PLPeR+S2UG0xsKb0MNPj+/3ux9CaRmszdpGdUVkp9EtP4Mtf95NdVIlaIWNc/zS6p0fxdM4SFCIp72fdRpDUV8AZrM1YnHYqzA04XS4iFXokQiF6qZpgjYpHZwzn5lGZfLfpCNUNRhIi9Mwc0ROdSk6w6t85D+8mXK9m9tgsnvjMdwiqhVtG9yZE6y0YGm0mvsjb4iVyW3C4nOyuPovmCl7flrQ/f5gdVj7P2xLw+qXnd3Fz0iBuSR6GQiQlt6mcbZXZXgNfE6J7YXbYePTwN57LNGI5L3a/nk66GB+bsyCNkpE90+iREs2Wo3nsPn2ej37Zjd3pK1w/WbOXnqkxBLXqM5UIRDzV5RpeOL7cZ/BMJZLxYrfrWLLuGLGhekb2TPWkFoK74jo2qptfYd9CVkgKQv71lemVVjpLmmsvmwx4rP48U2J7ew2npcYH82Ze4H5ggLymCqyuy8efCwUCUtWR5Da5BwwvV50Hd0+y8wrCYNpp5z9Bu9Btp50roLHJREFlHeFBGq4b2p3pg7txoqACs9VGRkIEMqmY77cevdDnaeBMcRWDuyax+/R5/nrjSF75bhN2x8UvfoEAbh2XRZ/0f85B4XLUN5n4dtNhlmw54hmGiwvT8/C1Q+mVFuPujfwdxKtCCZfrqDQ3+FzXIyiB1075t8ZqYWP5cYZHZFyR80PjBTG6vfI0+U2VdNbF0j0ogVdO/sS+mjxcuIiQ67htxAju0vdHIhTRJGjmnLGSF7tfR5hMi97PgFCNxcBPRfv5pmC7pyIlE0qYEteb2cnDCJFpCNWoCNWoeOKGYMxWG0qZFKX0j41BzeoQx9SBXVix07clY9qgrvTuEOu1vWxz2mlymFldeijgObdWnGJe6ki2VZ4OeEyqOhJpG0L3UO25gIsXgPs6jMcJVJnriVTo6aiL5tGMyZyoK2Rp4W5uThpCuExHTnUZ8xJHsabiECWmWgx2Mw8d+ppvB97n188X3C4jf1+yqc0BwTMlVT4SMEimZkBoBxYNuJvP8jZzqPYcEqGIERFduDFxEKu25fDlugMAHM4t5pHpwzxiVyqSMCU2i+VF+zxxuK0RC0Tc13Gc3wponaWJSksjh2rPIRdJGBDaAaVYhuYKbM3awt9w2qUoRVJEl4hPoUjgifJuC6sfO7VLCZKquS1lOE8e/Q6APEM5XXRxAavF4K6s76/NY4Jcd0XCuJ12/kjahW477VyGpmYLRquNNfuyWbXnFM0WGylRIcwZ34fYUB1/+Ww1j80YTl1jM6N6pSEUCHhh0W+8Nm8CVQ1GKuuaWPT4THaeLKCosp6oEC0T+3VCLhNftufzn6HBaOKl7zay8ZD3FmxRVT0PLPiZv8+9ihHdUxG3MVh1KXqpknd738rtexfS6GOqL2BiTC+iFUE0OyxsrThFYXON1xFmh+2KepHrLE0crivg2WPfY3HakYskTI7NZM7ehV7io8LcwCs5K1CKpCweeB8pykhStJEBz1trNrDk/C6+Oufdg2tx2lh6fjd1FiP3p1/laeFQy2SoZVe+GKi1GLC7nOQZKhAAKZpIz8DS5QjWKpk/aQDTBndj8cZDlNcZiAzScMPInkToNQRfEu1ssJkx2i0+Eb6tOWMoQy9V0k0fz7F634FHkUDIXzpfTVAbLRaBwhMAXug6nU66WO7Z/zkFxottFwqRlLvSxvBS9+s5V1LHu9/vobrBSGyYjkeGT6VO3MDfz/6E1Wnns9xNPNxpot/nyOVyoZRLMTQH3iJXyqR+86GDZGqCZGoeTZ+MyW7F4XSSW1DLnJd+pLzVsOHqvdncNDLTq6obLFXzSd87+NvxH8huLCVYqsbssKKWKPhr56lEKYJ9bq/CVM8DB78ir1UfrQABk2IyubvDGGwuhzuOVyBEIBBcNlyiNWEyDSFSNTUBEtkAronv65Oap1co6KyNazNaWiIQobnCHvaskBRuTBzE4oIdLD2/m7s6jOGBg1/5bRFJVofTURvNZ7mbGBnZFXW70G3n/zPtQreddi5DvdHELa8v8SQ5AeSV1fDk52sZk9mBOeP6cvd7P/LFI9dz7FwpY3p34Nf9OTz40UoGZCQybXA37A4no3qmUdvUTIeYsH/asP1KqGls9hG5rXlt6RZ6d4j7XT6aQoGQBGUISwc9wPqyY56423mpI1GKpegkCo7Wn0cnUfJA+gQcLid/O7HcI4o762KRiy7/mGutRp488p1niGpsVHd+LT3qt8IG7rCCBWfX80TnqW32Ojpw8W0b1k7ry49xR9qoy94/f9RYDCw8u4FfSg56fvglAhFT4rKYkzLiiqrYoToVoRdCRCw2OzKxCJ06sAiRXCagANwpd892nc63BTsupKS5B6vStdE8ljGZZHXghQFAhi7W7+VqsZzMkBRu2vWej3uHyWHljexVaKVKhPVyT1/tmeIqNh3O5dphXXmm33SeOv0du6vPYHX6rxir5DIm9svgu0viiIUCAf0zEujbLY6UqGDk8sDPg8MMVz/5dZuPcfHGQ/z1hpHIpO7KtlAoJFYZzN86zcRqdVBUVY9WKSdMr0KrkCOXeFfAay1N3LHvE594YRcuVpYcQCGWoJOo+Dh3A+D+HDyUPpFYZfAVLYI0Ejn3pY/n2WP+U+P6hKT4jaSWiSRcG9+XxQXbAw4kjo3qfsUx2TqpktnJw5gS14cfCvdQZKzhvd638ubp1Z6WBpFAyPCIzsxKGsJTR5fQSRd7Re/Tdtr5o2kXuu38V2F12N3VLqf1QsDBCSwOGwPDOpKkDr/s0NWlVDca+ceyrV4itzXrD55h+pDu9EyNYfn2Y+jVCuaM64vT6WL9wTPsPFnAzgs/9r1SY3hlzlUekWu122lqtlJYWUdDs5nEiGC0SplXz+Hvxel08sP2tn1Naw3NlNcafpfQBfdUe4hMw4z4/lwV3QOny8m+mnzuO/CF14/purKj9AtN441es7hn/+dYnDamJ/RHG2Abts5qxOxwv156iZIfhjzEzooc3slZw6CwdP7RRggDwKbykzyUPrFNoXu47txlbbB+Kz/ObSnD2zzmUqrNjbydvYb15d7Puc3lYFnhHswOG3eljbnswE8LuiuwXtNI5JSZ6kjTRHoFM1zKoPB09lWfZXbyUOakjMDqtCEWipAIxQQFaBloTYRcR4IqjPNG70G5t3rNYl3ZUb8WdS18fHYDH/WZ53P5D1uO0zsjlo7aaEqbA6fIyaViZo/uzdq9p6k3urfgO8SG8cxtIznWVMDm2sNsqrbTx5XC1Pi+6CVKZJeItkD+1a2prG/CYnd4hC5AWU0jT3/1K4fOXrQBC9WqePS6YfRKiSFEp6LGbMDmcnCyochH5Lbmp6L9fNrvTj7N3YgTFycbirl938e83/s2ekqUCC/jeCATSekfksYrPWbybs5aykz17suFEibF9GJu6siACymdVMnful/H00eX+ojdjtrogI4bgdBJleikSu7vOB6DzcR5YzX3p1+FVqLA5LCiFsvYWZXDgwe/osbaxPPdZvi8Ju208/+DdqHbzn8NjdZm1pcdpbM+nndz1nKwlc/jd+d3EqMI5v2s24hR+m4/BsLpdLLjRODtP4DFmw7xxMwRPPPlOm4elYnRbKF/RgKzRvfm4NliHA4n3VOiCdIoPOKyyWRhx4lzvLp0Mw3Gi710neIjeG3eBKJDtAEtqdrC7nTRcAWhCldi0B8IkVCITqqiyFjDs8e+91sx2lN9llR1JBNjehGvCiFKofcZwLE4bBQ0VfHCieWcNZQB7i3fvqGpPNJpEqOju1FmqqX5MhPedtfl41Wb7ZdP3rrc7fjD4rT7iNzWrCo5xLzUkf7/1mr3vA4SsRit0j3AY7RbcLlAJZH5nfCXCMXEKIKZnzaGRw4t8vvY0zSR9A1JQytRIERIfZMJuUCEy+5CrbyyIcQgmZq3M29h3t6FVLeqqIfINWw+E9jiDaDEVBuwv3fZb8e5enIWR5rOIW1jWztYq2TRX27gb4s3UF7byLPzRvLE6W+8hOWJhiK+KdjBO5mz6aqP9wrT0CrlCARuC79QrYqpg7owqEsSAoEAQ7OFn3efIFijQN4qlbCqoYm5by7z8VOubjTy+CereffuKXRTRPBTyX7qrMY22zvA/f4oba4jVK719Lc7XE5ePfUz72fd5tPGUGVuxOlyIRDguU4vUzMsojPd9AmYHTasTjs6iQKlWNamUFWKZQwM68iPQx5hWeFujtcXohLLmR7fjy76uID90ZdDLBShl6ooMFbzwMEvcblcSIRij88uwIDQDr/re7addv5I/jRC97nnnuP555/3uqxjx45kZ2cDYDabefjhh1myZAkWi4WxY8fy4YcfEhER8f/j7rbzH6bZbuH7wt1oJAq+zN/iJXJbKDHVcvf+z/ik7x2XrezWGpppNltxcXmf24o6A6fPV3LLmCzCdCocTicfrtxFs8VGx7gwUqND6SMRE65TIxIJcblcHMkr5cnP1/qc63RhBbf+YylL/nrT7664AkjFInqlxbB2f3abx8WF6n/3uVtjdtj4to1tUYCfi/fz7aD7ESJAKhT7DMyUmuqYs/cjr4EYFy72VJ/lrv2f8XbmLYTJdfQKSmJrVeChqnhlyGUn4bvq4y/7mLJCUi57zKVsrTjV5vUuXOytyeXq2N6ey+wOB7UGE99sOMja/dmo5VJeuXM8ZqGCbRWn2VRxAhcwLCKDkRFdCZIqfZ47lVhGvCqU13vdxHs5v3r6ZMUCESMju3B/+lUEy9TUN5nYfCSXrzccpLCyjhCNiulDujFjaA/sYht2nOByx0Nf2ucJEK0IYvGAe9lZlcP68mO4XCAXSukTkopGrOBAbX7AgaZAIRF5pdVEy3uSGZnU5va9SCgkJlTHq3MnYBFYefr4Er/VU6vTzgMHv+KnoY8QIrpYOZdJxfTvlIDD6eK+qYP4ZsMh5r65DJvdQbhezbTBXZkysAvSC0K3sdnM+gNn2gwNefvH7bx170QWnt3AjIT+AY+7HAXGKiyteqxrLQb21uSypGAXZaZ6IhQ6rovvz6DwdEQCIVanHbFQRKxME3ABbLHaMJqtiEVCtBf6jlvE8Py0MZgcFkQCEep/Q5CDQCAgXRvNx31u543sVZxqKAbcjhpTYrO4LnHAFbUqtdPOf4I/jdAF6Ny5Mxs2bPD8Xyy+ePcffPBBVq9ezbJly9DpdNxzzz1cc8017NwZ2N+xnf8eTA4r3xXs4oOs23jz9OqAx5Wa6sg1lAcUui6Xi8r6JhqMZvacPs+43h0RCQVtTn9HBWspqKhjQEYC0aFaNEo53z15IzaHE6FAgEQsQt+q37KuycRbywMnplU3GNl4+CzXDOp6RWlslzKsewpvLNuK2eZfgPTuEItS9q9tKZocFo7VB566BjDYzZjsFm7a9T4jIrrwcKeJnqpuo83EW9mrA4qkSnMDWypOESxVc3vaqDaF7uzkYZfdileL5XTSxvhNpQKIlOtJVv++RbHN4fAKFAiE+ZJqckl1I7Ne+w5Ds4VgjZL3HpiCXWJn1q4PqG01dHSwNp9PcjeysM88YpWhXp7AEpGYGEUQOomSN3rNwu5yYHHYCJFpkArF6KRK6ptMPPXFWnadOu/5O4PJTFJ8EPtrc/mhfDcFTVXopUqmxGYxOqqbTySwQCAgSKZmQkwvhoR3wup0cKA2D5PDSo/gROZ3GMPmipN8kbfFywYr9ML98IdGKSdKoSf4Ci22dCo5pc0mDvuxUmvB4rSxreI0U+P7eC7TKuU8e/Noqhqamf/OchpbDbZV1jex4JfdHD9Xzgu3jEWnklNUWc+mI7lt3pf8shrP5+pEfRHXJfRnbemRgMfLhGJiVcFUm33Fc0vIRq3FwLPHlrG35uJtNzssiIRCTtQX8X3hxddpxgXx27oa29hsxmiy8uOO4xwvKEclk3DN4K50jA0nVOc+TioS+0RH/6uYHFa+OreV6xL601ETjUggwGy38VPJAa7f8Q6f9L2dFE3bfeD/Cg6nE5fLhVjU3gfcTtv8qYSuWCwmMtL3g9PQ0MBnn33Gt99+y4gRIwD44osv6NSpE3v27KFfv3/Nv7Od//ucqC8iTK7lrKH8sr6T2ypP0z+sg9/rag3NvLtiB78eyMblgs4JEQzpmszmo3kBz3f1gM78Y9lWNAoZ6QnhiIVCn0n51lhtDs6VB+5PBFi15xSje3XwEshXikYp4717pnL3ez96ef0CxIXpeHH2uDYHnaoam6iqN3LifBkahYzM1FikUjF65cW/ESJEeQUVm5at1o3lx7mv4zjP5RaHjb3VbYuKDeXHmJ08DJ1UyaykIXx9zndxMCkmk8HhnS7b5hGh0PH3njdw9/7PKL6kNzREqubd3rcSJPYVXlaHDYPdgs1pRyQQekQkuAejegUntXm7gNcxdYZmnvx8jcdN4JlbR4LMySMHF3mJ3BYabSbuP/Aln/W7kwiF3us6kVDk6Zv0x4EzxV4iF+C5OaPZ5TjOqlMXrclqrU28mb2an4r3817v21CJZZgcVirMDYgEQsJkWqRCMScbinn8yGIvt4eFZzdwW8pw/tplKi+e+NFz+U2Jgykoqvd7v6YN6UaERo1SeuWVxeJLXDz8caS+gEmxmV52VjKphIWrd3uJ3NhQHclRIdjsDg7nlpBTXEVGQgQVdQYsARaHrbE53MecaigmWhFMjCKYEpP/z/M1cX1wueDt3rP5PG+zx/dYiIAQmQan08mWilNeIhfgyc5TOVZXyPKii6Ef5eZ6XjixnA6aKN7tfSvBMjWNzWYOnS3msY9Xe3kNbz6aR5fESN6cP5nQNr6L/lkcTie/lR1jdGQ3egYnYnc6KWquRiWWc0vyUMJlWt48vZpXes5EK/n3hkbUGZopqqrn510nsdodDO+RSo+UaI9HeDvtXMqfSuiePXuW6Oho5HI5/fv355VXXiE+Pp6DBw9is9kYNeri1HR6ejrx8fHs3r07oNC1WCxYLBe/ABsbA29ZtfN/G5PDisvluqLUIn9btOC25Vq4eo/Xtv+7K3bwytwJnCgop6rBd/hmYr8MDCYLRVX1SMTCK/KMDLSl2xqb3XlFx/lDKhbTJSmSlX+7jR93HGPv6SJkEhFTBnahb3p8wGE3p9NJSU0jDy5YSX7ZRWEhEYuYPTaT64b18NihaSUKro7N4mj9eb/nAveEeUscsM3loNFuIhR3Jd3hcl52QdJst9JJF4PT5WJYeGfGRfdgeeFeCo3VhMt1zEwcSIRcd8Xm+1GKID7ucwcnGgpZX3YMh8vJkPBO9AtNQyOSee0QAdRbjXxbsIMfCvd6qm/d9PE8ljGZeGUYcrGESLmeFHWEl7VUazppY7zun9Fs5XSh+znRqeSkJ4WRZ6ig0Fgd8H5XWho5YyhHIZZ6RIPT6cRosyISClBKfPs06wwmvv7tgNdlKdEhyIJh1Un//rv5TZV8mb+FnkFJPHd8mafanqAM5ZWeN/DQoa997KQcLief5G7kua7T6R2czMHac8xI6M/oyG5c84Sv40FsqI6JfTv9LpELXNF2u16i9Pn8W20Odp4oACAtJpT7rx+IU2bnZFMRUqGYu4P6UVbZhM3moKy2kR4p0Zw67/+1BNCr5DiFF9+3r536mZd7zOSF4z/42ItdFdOTweEZzNmzgBCZhqe7TuO7gp1sqzzNwLCOCBFQbXXb3rUmURWGWiL3ErmtOWMo4+v8rczvMAaj2eojcls4UVDOBz/v5MFrBntaGf5dNNia6ROSilws4dWTP7OjKsfzedZJlNzbcRzXJwzA6nDAv3Eeraaxmfs+WOH5DAGs3nuaUK2KTx+eTlyY/p+abWjnv5s/jdDt27cvX375JR07dqSsrIznn3+ewYMHc+LECcrLy5FKpej1eq+/iYiIoLw88FTyK6+84tP3286fk3RtDIXN1aRoIpAIRG1O2I+N6u73crPVzk+XmPYfLyhn0W/7+frxmXyz4SBr9mdjaLaQFhPK9CHdCdIoeOJTd6rVgM6Xr+4ByCRiQrRKGpstjO/TkUlDOiGXixAiJK+khiXrj9E3PR6V/PeFOlx6G+F6NXPG9WXmsJ4IhAK0lxlCqm0yMfeN730Evc3u4JPV+9Ao5Fw7pBtyiQSBQMCAsA7Eq0L9ijSRQMjtqaM8tkrg7u1sweVyES7TUmkJvLjspIthS/kpfik9yPT4foyO7MaD6ROwOG1IhGIvaySLw4bRbnH3MgpESC5UOy8lVK5hmLwzvYKScOFCF6Dlod7qjtfdd0ml7Vh9IbN3L+DTfneQoYtFLZbzYvfrePzwYh/v4CRVOC/3mElwq4S2ylbP7fShXdlbneu3knsppxuK6aKLw2K30Wgzsbn8JAfq85EJxUyKziRZE0FoK2cHh8vp02s6cVA6P1W0HQu8quQQ46J7eLWUjIzqytf52/x6prawuGAHT3W5Br1UiVggwtrkoleHWHaeKMDpciERixiT2YH7pg7y23tebTKQ31TB7uozyIQSxkR1QytREqpwP6ZIuZ4gqapNp4epcX2wu5xellY2hwOny0V6XDhPzR3OczlLvXx/F5xbx7jIHvSQRiOTipjQtxPfbz3qFe7SmpkjelHuuFi9PWso5/njy7irw1iUIik5jaU4cdE7OIUjded46NBX7oE0Ux2PHFrER33mUW6q47HOVxMq11JtbqTokvfNxJhe/FS0L+DjBPi5+ACzE4fx447jfkVuC2v3ZXPX5AFtnuufQSQQIBNJeOTQN55B0hYabM28eOJHnu16LYJ/Q4qc57xGE89+/SthOhXzH5pMkFYBuDAYrSzfcILb31rGt0/6n22oajSAS4BAACKRgKA/IOWwnf+7/GmE7vjx4z3/7tatG3379iUhIYHvv/8eheKfW60+8cQTPPTQQ57/NzY2Ehf3xyRVtfPHopMq6aiNZmvFKabEZbGscI/f47ro4vwatputVs4WV/v9gVu69RhdkqI92/4KmZSS6gZW7DjOoVx3z+fozA6or9AbV6uUMXdcH1ISgzloPsuTeYs8P+BddHHcPWs0qZoIpJIr7z1r2WIX4BY51gs/rlqJgjCZFt1lEprc7hL5fqvWLXyxbj9je3dErnMLzGCZmg+z5vD6qZVsr8z2DKYlqsK4t+M4dlWf4eSFIZVUdaRXJV0sFDI9vj8fnF0X8Pauje/HSyd+pNRUxxunV/Fb2TFe7XmjTx9pnaWJL/O38nPxfpov9Mz2Dk7m0YzJxCiC/fYmai8RwQ3WZkwOK1WWRkKkGspMdT4itwW7y8ErJ3/ivd63opeqcAng1Z43UWCsZE+12794UFg6qZpI9BKVV5U/uFXLSHxMEIdqT9NZf/nvHJ1Eid3hIM9Uwd0HPvMku4Hbzi1dG82bvW7xiF2RUEhkkIaaxmbPceHBKoob2m4BMDmsPoN9nbQx/FJ8sM2/O2soI0ymIbSl910OL84eh8XmwGp3IJOIUEglPv7RTqeTElMd9x743GvQ7PNzmxkY2pGnu0wjWK5GK1HwaKfJnnSuSxkd2Y1qi4HP87YwLCKDHkGJ6KVKpGIRErGIx2cN5YnT33jsuVrza/kRdFIF13UfyJJ1x3j5tqt4+su1WGzei+UxmR0Y3jcJl8ROsFTtWaDkN1XyyKFFvNrzBspM9eQ3VfBJ7kafQA+j3cL60qO81/s2T4+tExchMo1X4mCEXM95YzVKkZREdThCBITJtIwI7oZeoqLO1sTaqkOYbQ6O53uLzEux2h00Gs2E6XyH/swXhtekEhEaxe+rsDtcTk43lviI3Na8f2Ydffun/q7ztkWz2cbIrFQEYVbeLF5BcZ57wREp13PDiEGMNqZx+nwFA7tcLDjUNhk5dq6MT1bt43RhBSKhgEFdk7jn6oFEBGlQ/wvFhHb+PPxphO6l6PV6OnToQG5uLqNHj8ZqtVJfX+9V1a2oqPDb09uCTCZD9jvSj9r5v0uQVMWrPW/k3n2f83DGRJwuFz8XH/CyOOoXmsYzXaZd/DFuhcnqwGoP3J/3+vebee+eqXy76TC/HTzjcWIQCgSM75POw9cORXsFHqgAYrGIUf1Sef30SjZVnvS67kRDEQ8d/5IPsuYQ4lL5xNj6w2AztRqKElBnMfDXI0soNLlFTZhMyxOdp9AzKBFVgC3gepOZDQcDh0yAezvcYLJ4/WiGSjU80mkSD3eaSGlzHVKRhBqLge8KdnLggvOFSCDk0YxJXgOAYoGIHsEJjIrsyoby4z63dXeHsZxpLPUSP8fqC1lXepTpCf09orneauSRQ99wvME7/etAbT6zdn3AVwPuanPIzOlyUmFq4Jlj33vaMOakjCCvDX9agJzGUs/UvFaiQCYUEyrT0CMoEZFAiAABWonCZxtVq5KTFBnMufJazFYbRdYark8c0OYuhBB39VwgxEfktpDdWMqrJ3/iiYypBCvUBKkVzBrdm8c/vTiY2dhkIUSm8ak8t0YkEPq855xX2BJ06WPVKOVczj241mpk/v5P/UZL76zO4d2cNdybdhUhSjX9QtN4O/MW3spe4/H21UkUXBPXlz6hqTx88GuaHVZ+LTtCiEzDwj7z0EtU3DYuiyJblV+R28JPxfu5Jr4vw7OS2bA3ly8evZ7dp86TW1KNViljQr8MNBoJcw9/SLImgjczZ/F+zq+e9zhAjCKExwu/bfPxbqk8xY1Jgz3PlV6iZGpsFgtb7XxYnXbuTBtNrDKYUw3FKEVyMjSxnDhbwfM/bkItlzJ1WFfEiK4oeEYmuaQlp8lEk8nCki1HyC2tQa+SM2Nod+LDgzzDa5fD4XKxoaxtv+4ai4EGW7Pf79t/hjpzMw36Oj484704LjfX82buKm6OG0IXV/LF443NLNt2jIW/XCx6OJwuth7NZ9fJ8yx44Bq6J0Yhah9m+6/nTyt0m5qayMvL4+abbyYzMxOJRMLGjRuZNm0aADk5ORQWFtK//z9vAdPOn4sIuY6F/W7nZH0RPYISmJHQnzxDOS6gky7WLUYCuS04XcSHByEWCv1uBTY2W7jn/RV89tAMHrhmMCcLykEgoHNCBEqZBM0VepO2UGtv8hG5LThcTl468SMf973dp3p5KTUWA8sL97K8aC91ViMasZzJsb1Z0HceX+ZvZlnhXqosjTx8aBEL+swNPDzlcnElLcGt+4YdTgeNNhMyoQSpUIxYJWJRwXZ+KtrvlcL1cKdJJKrCvM6jl6ooN9UzJqobNyUN5vvzu6i1GklQhTIuqge7q8/yYe56n9tfVriHUZFdCVe4q/LH6gt9RG4LFqeN106t5NUeNwbs462zGrltzwKviFWlWErDZfxRAcytfENlIskVmeMHqRX8bfY4bvvHUg6cLGbEyC5sLD/BjUmD+DJ/q9+/mZk4EAECtldk+xW5LWyvyuZh18XFWlbHOPqlx7Mn2/38rN+Ty+SpmW26FwwNz/BUpVs4VHeOgWEdA/aMAvQISkT8T6RgHa8r9CtyW84ZLQ3BZLZR5zARpFHQP7QDnfrGYHU6sDsdGO0Wlhft5f4DX3q1W9RYDMzf9ylLBt7PlCEZvJ//a5v3w+K0U9BUxW91x7hu6CCKKmoJ0SpIjelAUkwQh+rP8frBlVicNg7XFfDM0aXckDiIZ7teS5mpHplIckUpY5f2pktFEqbEZbG+7BjnjJXoJErStdF8lreJzRWnPMcKEDAsvDOv3XUV97z5E69/u41zRfVcM6grW9oYlE2MCELSKuq7vsnExsNnefm7jV6f9/UHzzAgI4EXbhlHsPbyPe8OlxNLAMeU1gRyVflnCNbL+ezkpoDXf1u8g6X9sjz/N5ltfLzK/86eze7g2S/X8/kjM/xWu9v57+JPI3QfeeQRJk2aREJCAqWlpTz77LOIRCJmzpyJTqdjzpw5PPTQQwQHB6PVarn33nvp379/u+PC/xhBUhWDwtMx2624cJGoCrui4QStSk5eWTUT+2f49Om2EKxRolcrCNWpiAi6sqQrf9icdr4/v7vNY4qaa6hubsJpFqBXyZGIfT+qNRYDDx78iuzGUs9lBruZxQU72FZ5mo/6zGN31VmKTbW4cPFW9mrezZzt17tUp5AzpHsSu08HHi7TKGVoVXIsdisGu5kdVTnsqMpGiICRkV3JDE5mfsoYbkocjMVpQywQuaf2/SwuBAIBSeoIJCIx357bQf/QjvQMSuSz/M3cd+ALDHb/oRdlpjqEF17PRpuJpQW7/B7XwqHacwF/bO1OB78UH/QSue7bqGdEeAa3JA1FLBJSaWpkYe5vVLQSZGKBCHWApLe2EAgEpESFsPSpm/lw5U6GhmYwZ/8CHk6fxH0dx7O4YIcn7lgvUXFT0mDGRnVHIhBxsN7XG7o1TlwUGquJVOrdf69W8PKcq9h0JJev1u/ncG4J94j60ysoiUN1viEoOomSWclDePzwYq/LV5cc4sOsOV4xwl6PCQH3dRx3xUOBLdgcDrZV+9rGpagjeDJtGnmFtWzdco7jji30TY9nbFZHgtQKgi70PJc213HTrvcCnr/K0sjZpjKi5EFX1CsqEMCx+vNsqDjOvR3HI9eLWVlzmMOHClCL5YTI1FSYG3C4nBQ21/D3Uz/z3cD7WVd2lJ+K9/P3HjeQqArz6gG+lD4hqSgucSsJkWn4IGsO35zbRgdtNAvOrmdHVY7XMS5cbK48gcPl4L4ZA3nxy038sP0YN4zoSeeECE76GaATCODeKYNQyS8K8FpDs4/IbWHXqfMs2XKY28b2Qe7HftBgM2G7ENksFggZFpHBjqrAft0SgYhQ2b+nmgtwqrHYK5TiUhwuJ/vrc4lQapFJJPy8+2Sbi/eS6gZqGo3tQvd/gD+N0C0uLmbmzJnU1NQQFhbGoEGD2LNnD2Fh7krRW2+9hVAoZNq0aV6BEe38byIX/z6zcrFISHJUCFMGdKbZYmX9gTNe16fFhPL2/KuveGuvLWxOR5tDNS1UGBr5y+e/8trtE0mKCPbyi7Q4bKwrPeolcltT1FzDdwU7ebbrtczb9zHg3m4PtD0uEokY0SONhb/s8USuXsqNI3uikkkoNddz575PvB7DlspTRCn0LMiaR7Qy6LKPDUAulpCqieSRjEnYXU5sDjs7KrMDilyAMLnW0wvscDlosF3sQVWIpIyO6EaKPBKby8G+xrPsr8nDFkDoNtpMrCr1diCYEd+Pm5OGYHLYKG6uQS1WolRL+bTvHZwzVvLAga9x4mREZOcrquD5QyYVkxARxFM3jcblcrEgax6PH15MR200L3W/3tOWoZMosTptuHAhF0lQCC//nr5UROnVCqYM6MKwbik4cWGyW3gp4npWFO1jedFeaqxNSIViRkV25Y60Ubx1eo2XoAe33+uX+Vt5O/MWnju+zKsFQCdR8HjGFJJU4b/7eRAKQIx3S0SsMphn067j8Q/WUFR18X7sPFnAx2v28tnD00mODEEkEpJ7mfYSgA3lJ5ifNprB4en8WnYk4HEyodtBoyUBrqS5BolQTEdlLHNjR3O+og6BQEB8hJ6N1cf5rmg7FqcdAdBBG4XD5WR50V5uTBzESydX+L0NsUDElLgsLA6bT6KZVOR+DXRSJc8dXxbwfm6rOs2tPUegVshoMll48dsNvDZvIh+u3MX6Q2ewXbATjA/X88j0YaREBSO9sEhuNJr5ct3+NsXfsm3HuHZIdy+ha7JbKTW5WwZ2VbvbtnoGJzI/bTQPdLyKt3PW+D3XVdE9A3opt6aqlcdwkFQV0LmmvtVnPRB1ViOniyqJj9BTVmO47PEV9QbS49pDpf7b+dMI3SVLlrR5vVwu54MPPuCDDz74D92jdv7bCFIrMVvtjOieyk0jMzl4pgibw0mv1BjC9Gr06t9fwXO5XFRbDJSaajlSex61RMbwiC6ka2PYVhk4BEGAgHC5lpLqRu57/ye+fnymV+Wh3mrkxza2kgFWlhzg+kTvieu2Ut70agWfPDyde95bQUXdxSqnQADThnTl2iHdMbos3HfgC79CvcxUz6OHv+GtXrM8rQVtUW1uxOK081vZcZrsJnoGJfFB1hxePfWz32Q7gGlxfQmSuBcbcqGENE0kZwxlTIzKZEbkQH7dncP6s247teFZPbir1zgvt4fWuHB5DQzNTxvNkPAMHjq0yGvIJlkdwSOdJuFwOlk+5CFWFh9gRkJ/VG1UdG12BwaThdLqRgwmM/HhQagUUvQXbJ4MJgtWmx2Hy4lSLOXt3rdQbqrnrKEcnURBsjqCKnMjcaoQZEIJSomMyTG9+bnkQMDb1EkURF1YZDTbLZgcVgQI0EmVnu3oWouLeksTE2J6cVVML8DdZ17SXEuN2cCdaaM4UldAvc379c1vqiBIquK5rtNpdlipsxiRiyREKvTUWAwBe7/bQiQUMS6qh9djmhs3ile/3uolcltoMlm4460f+OHZWwjWKK8oAEEhkqKRKOgZlESsMtjHQ7mFqXFZbCg/7llEHas7zxtdZ/PxL3u5ec9Sz5CqTCJiyuAuvDFoNi9kL0V74dw6iYI91WcZF9Wd25KH89W5rV4uFUqRlGe6XssvxQcveAyXoJRJCNOr0SpkOJwODtTmI7kCYXigPo+M+HD25RRxNK8UkUhAx/gwbhzVC5vdgVYpx9Bs5oftx3j3fAWjenVg6sAuOF0uTrWy5fJHg9HsEcvgXpQfbyjk/gNfej2eQ7XnmLf3Y57qfA03JQ7mm4LtXufJDE5mfocxbVb5ay1NHKjJY1HBdgqa3G0bU+P6MDEmk/21eVgcNgaGdUQllqGRKOiojbrscxMnDeW1xZt5YNoQxvbuwKo9bScXRodc/nuqnT8/fxqh2047fzRCoYCYUB1KuZRms4W+nRLQKGSo5FI0StnvTilzOp0Um2p58OBXXhZC72b/ylcD7uKzvE0BLZv6hKRwLLccu8NJRV0TBRW1XkJXIBBQZWm7YtF4SZ9piFTdZoVFIhKREB7E13+ZSX5ZDYfOFqNRyhnZIw2ZVESwWsme6rM+Fb/WnDWU0WBrvqzQrbEY+OjsBla2Ejlfn9tGiEzD33vcwGd5m3x6RdM0UUyKzURyQeAoxDJmxA7A4XAxWNyN2S9+7xWQsS+niLgwHQvun0ajw4xIJETVanhHLpLQXR/Pb+XHiVOGMC66BzfseBejw7sPNr+pgocOfcVHfeZRa2lCL1UF3AqvbzJhsdk5cKaYN37YSn3TxdegZ2oML906DrPVzns/7+R4fhlyqZiRWalc1T+dalsjmcHJuFwuKiwNJKnCvRxCohVB9NQncri+wO9t35EyGrlAQr6hgs/zN3OyvhilWMrk2N6MjuxGsExNsEyNWizDaLdgdtg8g2fxqlDC5FrqrUY+6jOXA7X5HKzNRywQMSS8E+FyLY8c/oZCYzXJ6nBe7HYdTxxdwnljFR9mzWnrpW6TBHUYaZpIzhrK0YjlxEpDOZq/OeDx9UYzR/NKGd4jlTRNJDKhuM1e0QnRPQG3rdyCrLk+ixghAqbG92FkZBfu3v+55/IZ0QN5e9l2frtkQNNic7B001GsNgcvj7oRsUuMXiLijV6zePDgV7xwfDlzUkfwZf+72FV1hnqrkU66GJLU4Sw6t431ZceYFJbFnDe+B9ztUA9NG8KALgmoxDKszsC2iC04XE5PO1aYTo0TFz27RILdSX2Tidvf/AFLq8Ha3NLdLNlyhEWPz/RqYwiEWHTxe85gM/HUkaUBv6dePfUzPw55mEi5nqP151GKpUyN7UO4XEdwG/HONRYDb55ezW/lFwfaKi2NLMzdwC8lB/l7jxu4/+CXvHZqJZNjM5mfNoYoRRDRiiC/MdDgrgZHioLJLqrinR938OZdk9pMtUyKDEZ3hQPE7fy5+f35ou2081+AyWyjqr6J8loDlfVNNJkuipsgtYKYUD3pceHEhOrQqxX/VBRvrc3Infs+8fHJNDmt/FS8n6e6XONj5QQQpdBzV8J4vl5zcVv9xHnvbVqXyy182iJEpvEaHrspaTDaADZjdqeDWksT55urqaGBTslhzB3fl5tGZBIVrPUERRyq9e3tvJTj9f6Hw1posppZVrjHS+S2UGMx8PChr3m002RCLvxQBkvVzE0Zwbu9Z4NFQIPRREVzA5XmBvQyFXcljeOvC3/1SYEDKKpq4IVFv3Eot4R3Vmz3Ep4qsZzbUtxJivd1HM9X+Vt9RG4LZoeN7wp2Umqqw2i3cNueBV6xri6Xi9KaRj5ft48DZ4p5+stfvW4L4HBuCXPfXIbRbGXL0VyqG40UVzfw1dqDzH99BUmSaI5WFXK8spgT1UW8eupnr8p5iELDyz1uYHxUD6/BryCpisc7Xc3wiC4UNFbTaLQwPWIA10b1w+yw8cbpVdy650PP0JdUJCFIpiZKGUSEQkeEQufpo9ZLVdRYm9hRlU2cMoQIuY5vC3Zwx75PPH7JvYNT+KnkAOeNVYTINL87Ork1oXINb/eaTWZwMpGKIHJLLp+AtvfCcJ1SJGNW8tCAx/ULTfMSWxEKPe9n3cq3A+/jsYzJPNv1WlYOe4y708YSpwzlluSh6CUqNGI5afJoH5Hbmp93nCRMrGfK01/y9pIdREmDWTroAR7LmEyuoZwlBbvoGZzI1bG92VZ5mlm7PmB92TGS1RGUV19coNYamnnqy1/Ze7qIIWGdyLyCpL2e+iTOlrhfi2uHduODgl+Ze2QBIqmAxz5Z5SVyW6hvcgeIXD2gS5vn7pESjahVutg5Y6VPdb+FBFUYNyYNosRUS6hMw50XWhky9LFens6X4nQ5OdNY5iVyW1NqqmPp+V1Mje2DC7d7zpf5W6izGnkzc5bf7zClSMoLna7nk5/c/sOnCytwOV08NnO439tQyiS8PGc8oZp2P93/Bdoruu38z1HdYGTRxoP8tPMEhmYLCpmECX06MXd8H8L/hSGz1rhcLnZV5Xh6/i7l24KdzEsZydLBD7IofxsnGgqRCSWMDOlGli6VFz7ZSGnNRSGlvyTZKFSq5vqEgbx08sdLT+1hWlxfz2DMhOheTIzJ9Nv/VmtqYmd1Dh+eXecZzJIIRFwV3ZO7O471eH4CqMSXt+Nra0sf3EK/rWG8RpuJ3VU5LOp3L3aXE6EAzhc3cONz33LfjMHY9Sa+LdlBflMFg8M60bOxE+Y2olv35RRx/zWDWbX7FFarnYenD/W4ZEQqdDzd5RpSNBG8cPyHNu/35oqTXJ8wAJFASKmpjgVnf+ORThNRiGXUGkzc+voSnrl5NK8t3RLwHKU1jZwoKKdvejx7TrsFm14l54VbxlJQVMemnUXUNDYTH6Fn5vChWMwOaNV5ESJX82DHidzdYRxlproLtmZaFEIppdWNfLbyoCf2t196HE9cdS17TNl8XbiVl0/8xN+6z0BzGU/lZHU44TKd38jlNE0UE2J6cdf+T1GJZLyTOdvHo9npdFJjbaLCXM/JhmJ0EhWZwUnIhGIf/2KAMIWWFzrPoMlqpqj08n2VLcEnCrGUGfH9EQuELMrfRkddDKEyDU12M8FSFfd0HO/13gUIkqoJkqpJ1XjbTtqdDmYlDmFaXF/EQiErtwVuKwJ3C9DWo3kkRYSwcs8pMlLDEUSb6ReeRp2tGYPNxOunVnL2kj7iOfEj+P5HXzu9t5ZvY1HaTMQCEV31cRyvL/J7u931CdiaXdQamkmNDqFfz1g+O/wLWSEp7DlZ5OP925rl24+z5uW5xIfrKays97leLBTy8PShhLbaOSpr9q2e6iQKnu56LQC/lh7hs9zNJGsiiFeHukN71JFttpXUWpr47vzOgNcDbCg/zsd9b+fzC9X9FUX7uTFxME12M98NvJ9TdcV8XbAVq8tBH10qY8J78OnP+9l18uIwrdPlYlTPNDrFhbPwlz0cyStFIhYxqlcqs8dmEaxRIvwnChjt/PloF7rt/E9R02Dk7vd+9FREAEwWGz9sP8bOkwV88eh1hOv/9SncRpuJLRVt94d9kreREZFdmJ88ht05BVhsdnZuPs97x5d6bbeJRUIGZiR6/a1IJGJQeEf6lKf6DTbopI1halwWPxTuYdngB9FLVej8ZM4bTGa2Vp3mlVPeAzQ2l4OfSw5QYqrl5R4zPYJhZGQXPjgTOORBIhAFtjC7QKPN5InUDcS2qmySXNGoRQqe/Hwt5yvquG/6QM5Kz7M452I/YIw8iFNH2+47BCiqrCdEp+KXvaeYP3mAR+iqxHJGRHal2W6+rF2S1WlHLBRhvTD5va7sKHd1GINUKGH9gRyqGowEa5QUVdW3eZ5NR3IZ2DmRPacLkYpFvDn/ahau2u2pVALkFFfx28Gz3DKmN7eOyfLyaNbL3a9juMJdhbXa7RzIKeb+D3/yet9sP1HAzpPneW7OaK6K7Mna8iOYHbbLCt0QmYa7OoxhVGQXvj63jQJjFUFSNVNjs+gaFM+CM79xY+Igro7NQi9VIWq1eHI4HRQ11/LIoa+9/HqlQjG3pQxnSmyW3y3tMJUWqUuCLFKGQibBZAk8XT+xbyfPv3VSJddE9WNiaBa7T58nP6+GbqE6hqYkI7QJvRYJl+JwOam1NFHaXMvGCrfTyvCIziSrI7BYL99CYLU7EIuEdE2KJCROyhOnltGtIp4H0yfw6qmfvUSuTqLknuTxlOSa2JfjK2Ir65toNtsI0at5ufsNPHb4G043lngdk6GL5YnOU3C4XHz91HVEqLUsKPwVm8tBpDyIc9n+t/RbcLpc5JfV8PGD1/Lqks1sO57veb+kxYTyxMyRJITrvf4mVhXi9X+ZUMLrvW7m87zNXq1F+2vz+P78bh7PmEy4XEeIKHDBwOFytulpDG67N5fX/21kN5bw91M/Y3PauS5+AE+nT+fw2RKOHa7g1n3LvBa7MaE6BEKQSIV0SYjiudljcDicuFyglEvQyNtbFv6XaBe67fzPYLM7WL3vtJfIbU1ZbSNf/3aAuyYPQCmTUmdpQoAAF6AWyzy9oVfClQZfOlxORAIRxWWNfLzK/3DZreOz/Kakhcg0PN9tOjurclh6fhelzXWEybVcG9+XkZFd0UqUzEsdGTB0or7JRDMWPmwjnexAbT7lpnqP0JUJJUyI7snq0sN+j78hcZDfdozWCK/A7k0oEKCSy9h+6BznK+pQyaVkdYnh1kM/eR1ndtnQKC9vYaRWyDBbbbhc7q3vyf07e65TiWWY7Fa66OPabM3I0MViczo81k9Wpx2b05089cueUwgEBIyObY3V5vD0QY7O7MDuUwVeIrc1X60/wNBuyfRIiQl4viaTlb98tsZvL6LT5eLVb7aw8ImprC0/Qp3V6Nfu7VKCZWr6hXUgVROFw+VAgIAgqYomh5lnu01DLZb7HZyqsxqptRh4uNMk9tfk8UvJQRpszViddj46+xt6qZJJ0Zl+P0s6tQKJRMRdkwbwxg/+PYXHZHZA12ootMFo4uCZYp764lcvofP60i08MG0w47PSCfITCetwOam2GHj44NecadWzu+T8LgaGduS29DF8sLLt56h/RgJCgYDwcBWLS9yVx2P1hbx44kduTRlOuExLYXM1WomCGEUwRecNPL9sdcDzWe0OgmRBNFqa+Uevmykz1bG10r1Y7hOSitlh48FDX1FpbuTNXrMoaqrguvgB5BoqMNrNRGhDAp67BblUjFQs5i/Xj+Dx60dQZ2hGrZAhE4sI9bPAj1eGEiJVe3Z6xkf3YEdltpfIjVeFMjyiMyqxjDOGMnoFJ2F3OpAKJeikCp/vH6FASLhM6wn98IdYIPLpgxe0shX8JG8jJU21dHak8fPOi37kSpkEnUrO3Al9WF97hK7OOHoFJxOibm9R+F+mXei28z9DraGZ5dt9tw1bs3LXSW4b24dGZzNNdjN1ViOxymAOVOaRaygnQq5nYFhHXLiQCsWoxDK/QQFaqZIREZ3b9JnUiOUES1Xo5QpmDO1BmE7NJ6v3Ulnv/lEJ16u5fUI/hnRPQq/yP70cItMwIaonfUJSEQgEuFwuQqQqJJexvmowmnh3xXZGDk/ysujyx49F+3hcMxmRUESYXMu9HccRLFWzvGivJ3JXK1FwU+Jgro7tjU7S9o+KWiz3ilAVCYT0CkoiWKam3mrkQG0+oyK6InaIWb3XvYU8sEsiW6p9/Y13VeXwXL+ZLNsaOKUpRKtEIZN44nCtfrZ3Q+Ua5qaM4K7azwKeZ2bCQLQShadSLxGIkAhFuACLze6xbdIoZRiaAwc79EiN5myxe7E1uX8GT36+NuCxAJ+s3ssrc6/ybNm3YHbYMDus1BlNfP30DAQit0NGg8HCl78cZPMRd5CA0Wwlu6CKDF0M6itoPWnNpb2WQSL/ux1NNjNFzTV8nLuBI7UFSIRihkZ04r3et/J5/ha2VLjFyOe5mxkc1okw0UWxXWluoKV8FyrTMKlfBkqZhA9/2eV5zRQyCdOHdGP2mCx0rdp4quqNPP7pah+Rb3c6+ceyrSRGBDOgc6LP/a2xGHjyyLdeIreFndU5zIod5kmw80eXxEgKKuo4UVDOg/0H8dT2i1XavKYKnjq6xBO/3eyw0GQz81LSzX7PBW43hyCNgkJjNUvP7eLG5EE8c+x7OmndC5yXylZQbq73HP+3E8v5ot9dHM4p5e8ZN/Fz2V6GZKXw5drArhxBGgVKmZRrnvsSgVDAHVf1ZVj3VKobm6k3mjDb7MilYq/WBa1Ewd973sBd+z7D5nJwVUxPHj20CHB/fz3ddRoigZC1pUdosDWTpArH6nRgsDUiF0moMNeTqA5D3sr2TidRMi2+L/trAwddDI/ozK5WXsJykYRwmZZay0U3mDUVh7m21wA0ShmxoTpumZhJZLgag7OZaI0emzOYHwv3kayOQCNWYLRbMDksOHHhcrmQCEXoxEqk4n/OJrCdPw/tQred/xkEAgE1jW371yZHBdMsMvOXQ4vpqo+nd0gKM3e84xF04BZmc1NGECHXUdhcww2JA316AQH6hXUgVKYJ2Kc7M3GQx08zWK1kRO9k0tKCEDnd1dtml4WfKvZyJP8UD6RPCDjFLBKJiFTor+QpAMDpdLH5SB57s4sYMDhwpbCFZocFh8tFS005WKZhVvJQZiYOpMpiQCQQECzVYGiwsnDFPux2B6N6daBDXBjBfqppCpGEW5OH8Ub2Kq6J7svUqL4cPF1MaaGBDmEa7us1gSCFkjPna2gwuge6dCo5NQ7frdlKSyPVNDCsRzJbjvi3JLt78kC+33rU8/9eaf4fc5I6nLs7jPXbmjEraQhd9fE8ceRbT6z0yMiuKERShFIhmR1iOVdey6o9p7hmUFe+Wu9fcMgkIsb27shtry91PxcyqUfMBSK3tNrL8snqtFNraWJpwS6mx/djl/E0i09t9ywcYpXB3DVpLKP7pvHkQnciWHm1gYzEWBSif3/kudFuYWP5Ce9+cYeFn4sP8FvZMd7InEWNxcDx+kIqLY0e0/9aSxN7a87yXcFOykx1hMl0TE/ox9DwDCb1y2Bo9xQajWYcTidBaiVKuQS51Dv84NM1ewNO1QMs+GUXaTGhhF1SrWywNgfsgwV4Pfdn3rl7Fne+vdyrVx7c0/pPzBzBXz5dTVFVA7dM7HVh58f7fjTaTB7nE71E5XN9ayb160yNvZHZuz/grrQx/Fp6lFJTXUCHgWqLgTJTHd+tO8ILJRuYNT4TUW8B04d3Zdlm38W8QABPXD+CH3ccp95o5s6J/VEp5Nz06ndUN1z8TuyVGsMLs8cRHeJeiIiFIjpqY1gy6AE+yd2AVCimwWZCJhTzRuYsvsjbwu7qi57j+2vyWFa4h8czJuPCRZomipLmOlI0FwcWpSIx3fTxDAjtwK5qb79ycC92bkoazCMXBDXANXF9WF92zOc53NOQw0cPXINT6eCV7B85U3Jx4ZKkCufprtNwOJ0cry+kxmrg09xN5DW5wzXCZVpuTh7icSRp57+XdqHbzn8Um91BY7O7P1MoFBKkbrtf8N+Ky0VcmJ6cYv9bZiKhgCdvHcHt+xbidLmYENOL2/d+7BE2LThcThbmbuD5btM5UV/Iyyeq+GuXqT6ekSFSNQv73M6DB7/06lcUCYRcG9eXa+L6eIRutbmR+w9+6TO80oJEKObeDuPQy/71Lbh6o4kv1u2jptFdrRYi8PiH+iMrONVruKTZYqWuzsxna/cxsmcKHeLCufe9n72e1x93niAmVMfHD1xLVIj3VrnZYaNvaCrv9biNkgIjt7zgbQsmEYt4cuYIkqNCSI4K4UheKVX1RjpLQv3ev1dzV/DG1bOJC9ezYvtJj4NGfLie2yf0w2y1Ybba6NcpHpvDQZDG/3suRKbhqoieDNCns67yCMWmGmIUQVwdl0WdtYl79n9Gscld4QuTabmn41j36yeGm0dlsmLHcVbuPsl790yluKqBjYe9p/blUjH/uGMS32467NlmF0DA2OkWtCq5Z9vW4XJyzlDJvH0L+TBzLl/lb2NFyT6v44uba3ny2Hf8JWMKt4zL5KtfDxIVqqFHfAeC/g3vn0tptlv4+6mf/F/nsPLqyZ+5p+M4j3Bxudwi97njy7y2wBtsJl45+ROrSg7xWs+bCNGo/S6UWrDbHezLadvh4+T5Cp93tsPpYH9N4GoiQG5TOYfNeXz9+EyyiypZtz8HoUDAwC5J6FRy/vr5Wo/X77G8MvqEpLDXT698C8MiMojW6fz2H/dJj+OOSf24Yf/bOFxOgmVqjtYFTihsodLcQESQhuMF5Xy8ci8qmYRJw9LpGB3BZ2v3UVbrFugZCRHMnZxFvaKeKSM6YTRbSYkO4dGPV/mc81BuCfPe/J6vHpvpCceRiyTEqUL4S+cpnjCXcdE92FWV4yVyW3Dh4tVTK1nYZx4lzbWcNZQzO2WYl1tCsEzN012nsb7sGN+f3024XEcHTSSddLF01Ebx8skVVFkaESJgUmwm/UM78HAr4duC2WlFFSzmlt0LfeKxzxkrmb/vExYPvI9ycz3PHPve+/mzNPLG6VUUGqu5NXlYwHj4dv78tAvddv5j1DYaOXm+ApFICC6oamgiIkhDp/iI/4ifYXiQhhtH9uKZr/z3pA7umsThpjyqLQZuSR7K8qK92F0OMnSxTI8cQLIyAofThcll4ZfK/XxXsItbkofwxJHvuMMyykfoCgQC4lQhLOgzj3JTPUfq3FGiA8I6IhWJCWpVBS6+8IMQiDWlh7kjddS/5XlwuVyeH+lD2aUMDEtne5X/KXOVSMag8I6e/5utNvZlF/LIwlWkx4cTH5HFM1+t87t4KKluYP67y/n8keu8BMsZQxnvZq/lqfjreOnrX3ySmmx2B88v+o2FD0zjrskDuP2tH9h5soA7rpnBp+c3+Hh6Gu0W7j/2ObM7D2XJ8BuxW50IBQJEQiFShYB8YyWdQtUoRTJGxXRBIA4s6g2NNua89gPDe6SQHJ7I6KwO7C07y3elOyk21aISy5gQ1YvZKUMJkV3c1g/Xq/np77NwuJzY7E7mjMvihhE92XTkLA1GCx0SQ8jKiMWGnfSkUI7m6SiqamBvdiFDuiez6XBgkTR9SDfP56PB2swjhxcRJdejlSp8RG5r3juzlq+G3sOyzccY0DEZneKP+YytKzsa0GcVoMBYhUosQydRIhYI0YjlbKs87eOT3MLx+kJ+KT7ADYmD2pzed4H7u+SfQHwF0/YGm4lgjZKuiZGcLa6ipKaRT9bs8enxX7bxBI/PG8b+mjy/C8YwmZa5iSMROoR8//TNOJ1OsgsrOVFQQd/usSjUInbUn/JYyZU2116RZVucMpSCios7FV/+epARPa9DmVTNU3cNRSNUIBQKKDJV8035Ro4VFpKsjuC1CbN45KNfAp63rNbA5iO5TBvc1cuVQCmWYXM66K5PYEJ0Lx49/E3Ac7hw8WPRPk9L0qXphEKBkBCZhsnRmYyK7MqRugL21eRyprGUNE0kj3SaxLmmSlI0keyryeWRQ4v8RnkPCe/E4nM7fERuCxannY/PbiBdF3jnalnhHm5IHBTw+nb+/LQL3Xb+I9Q0GqlpbGbHiXNsOZqHze6gZ2oM1w/vyYEzRfTuEOvVe/dHMSAjkSFdkth2wnfoaHTfNFZU7gAgQxvLG9mruDF2ML2lHfl42V6On3MPnITqVFw3ohtXdemF9sL07oqifTzUaYLfwa8wuZYwuZauQfEB79eG8rZ7hx0uJycbitsMYqi1NOFwObG7HIgFItRiOQo/UcgCgcBTWfpy9UHeeXAS5eZ6LyN9cHtTvp91G9pWbg1Gs5W/fLoGp8vFjSN7YbLYOHS25NKb8FBYWU9RZb2X0K0yG5gcmcXHq/a0GUf66dp9vHTreK4Z1IUfd5xg5fZTPNrzal4985PPFqZEKCIzLJlGRzPrdp0lr6SGudN789S+77x6G9/PW8u0uL7MSR3hd7vS0GyhyWzllz1u4f/xL/sY1DWR+4a5458tNjvni+tRCxWeKmuNxcCJ+iIWF+ygoKmKIKmKq2N7Mzq2G3fG9edgXT4/FO/h/YNuZ4uBYR15ZN4ggiUqpGIxozM7sO90IU1mq8/9SYgIYlSvDh4f5zJTHRXmBp7vPIN1JUd9jm+N0W6hxFrDq7dPoMBcQS9NYpvH/zM4nE7PVnBbVFwYaJwSm4XNZb+svdQPhXuYENPLq5f3UhRSCUO6JrNip2/vdgt9OsZ5+cKCO5FtYFg6/zjtW9FsQSmSMiq8K3WGZqx2B+W1Bn7aecLvsGF+WQ079hbxxoBZPH/8By/f2V7ByTzXYQafrNzL6j3ZmG12xEIhw3qkcMfV/fis5DdUZpnX4NWiczv4YciDvJuz1mc3qYV4ZQgqgZzcUvdOkV6toGdKDGJErCjex+G6Ar9/l99UgUCA5+8CsWZfNkO7pxCuV2OwmbA63Sl+UqGYRzIm4XA5L9vbn91YwsjILljNdr+JjGa7lSJTDfce+JyGVuE2357fyaCwdJ7oPIXnj/3Avlr/i0CtREGYXMumira/OzdVnOS6SxIiWxAgIDM4ifymCqIU+oCDu+38uWkXuu384TRbrJTWNHLXuz9ibPVjvvloHluO5fH4dSOoaWz+jwjdYK2SZ24ezYGzxSzeeIiS6kaiQnTcO7k/SQlB/HDM/cPixEVWUApdSOb+t1d6fVFXNxj5YMVuxpV25K4p/QFosDXjcDn/6S/Ktvr3LneM2WGjwlzPO9lr2FV1BicuNGI5V8dmcWPSIK/KI7gnkyf1zeD7bUepbjTy6PtreG7OZOqEjWyuO4HFYSNTn8Lo6K5opQokreyjth3L97QZpMeGs/v05bdYd54sICUqBKVcilAoIEkdhkMC7+UcbPPvDpwpQigQcO+UQUzsl8Hnv+4npljHJ73u4LuSHRyuK0AiFDE6shvT4vvitLl4d9kuNh/J45tnr+f+E5/5RBU7cbGsaA/BcjU3JQ72GSSMuMRH2elyse3YObYdu7gwuufqgUjF7uek2tzI+2fWsaaVC0W9zcjbOWtYWXKA93vfRtegOJYU7vRU+7ZXZbP9wpDi7akjmR7bn2+euJHXlm5i9+nzuFwgFYsYl5XOPVcP9FoktISPhEg0nLAH7jFtwWA30yCv49OTG/hu4P3/9l5EkVBIrCL4sseFyrSMiuzC+OgeOFzOgFG8LVRa3NvuNRYDh2vP0WS3kKGLJUymIUimptlsxe50cOvYPqzdl+3XR7nlvROi9W3XkArFjIrs6neBeVVkT26OGcaS346x51QhIqGAKQM68+PfZlFa30B1g5FtB8+x6XCeR/iu2HqCawZ25au+d5NTV0aD00isOpgYcSh3vfUjBRUXe23tTicbDp3l4NliPnh4Cj9U7vT6jJqdVk7VF/NM12k8e2yZz+deJZLxYveZfL36EBqljEduGEJ8jJaddTn8ULmb6xMHMC91FO/lrPWxKAO8Yq8DYbXbceGi0FjN29lr2FWVgxMXoTINT3ae6uND7A+lWIZcJKHR1ozIz/eiwW7mrv2f+bUa3FGVzRf5m3mm2zQeP7yYzvo41CI5ZeY6NlecRIiAN3rNupDw17YtoN3l8OsE0z+0A3emjeJkQzGbyk+wu+oMV8dlESHX+Z25aOfPS7vQbecPp8lk5bmv13uJ3BZcLvjH91tY8tRNNJksqBX//mGZSwnWqhjePYWUqBCCguQ4BE7ymyqosTXRL6QDx+uLOFJXwHXRg3j47dV+qxEAv+7N4ZbRvQmRaegZlHhFOfWBGBHRhWWFewJeLxII6ayL83tduameW3d/6JXqZbCb+aZgO0frz/Nazxu9fkjlUgm3jc/it8NnqDOYKK1p5PbXfmRs745MHNQHhUJCSlgoOoVvf2R20UXPWqfL5RF8beHCxQe/7CQpMoTRmR2IUQZTbKm7UKUM7FcqEghBADqVgh4pMbx0Wyg2mwOJWMRjGZM9vrdqkRy1VE5eaQ0bD+cyuEsiBxtyfURua74r2MnVMb19hK5CJiGrYxz7/XidgruPe2K/DM+Wbl5TpZfIbU1+UyWf529hftpoXupxPTkNpXx7fif1ViNJ6ghuThpMuFyHVqJAJ1fy8m1XYbHbsdmdSMUilDIJSrl3RT5M5q5wVloaSVddfpAwWR3O3dluwW8LUB0EdztLndWICxdCgdCrreZyTIzpxce5GwMuxKIVQSSo3FG/QTI1leYGQmUaSkyBxa5WosDpcnL11je8qprDIjJ4OOlqFvyym1/3ZTOiZypv3jmZ579ZT0XdxYl8vUrOMzePITpMQ5W5kQpzPRKBmBCZGrVYTphcy8OdJiITivm1VevFyLAujFX05qa/fYfF5kAoEPDojUOISlTxVv4v5DSWohLLGT2wO7MnXsfzn24gp7iKif0zECJkxtOL6ZoUyV0z+7K2/BD6kjAvkduaOoOJJeuPEtVbz5CIdL7I3+J5Dh87sphfhj7GogH38EXeZg7WnkMiFDEsIoMbEwfz644zrNt/hvcfupqvKjax44i3u0u0IoiXul/PP07/wsmGYq/rXEIXerXCJ7mvNb1SY3CI7fz95M+MiOzMuOge1FgMrCk9zEOHvmZhn3n0DEoMWDkGGB3ZlQi5nkaVyef9ZHfY2VRxok0/7V+KD3Jr8nCe6DyFZef3UG6qJ1kdwaL+9yATSdhQfpwuuji66ePbdHBI10b7pFMOCO3ATUlDuPfAF15R6T8U7SUzOJkXu19HkFTVXuH9L6Fd6Lbzh9NgNAW06QF3hWPL0TymD+n+u85rsJlwuVyoxPLfHdErEAjQBctYUriL7wp2YnHakAklfNrvDhYVbGNbxSkmaft4BjoC8eP244zo2oWhERm/6/YvJUEVSrI6nPwm/+EHYyK7IfUjpGssBt7MXhUwuvZ4fSFH6s4zMtI7+jNEq+Kbx2/gH8u2cPJ8Oc/NGY1BYmR59U4a65pJM0QxM9Ftp9W6uhEdcrF1oqy2ke4pUW3myQMM7JzEwwtXUmcw8dPOE7x/71RCFGoGdU1i/QHfYZYWBndN8hLSGoUMPEV/7wWR0+lk+Q63xViXtEj2Nga2dQP3RHyDzeQzgKJTyXl+1lhu+8dSyuu83TKEAgF/nzvBfT9wV3O/8ZMe1po1JYe4NXkYYXIt/cI60Fkfh93pRC4So7jE6kt7BX3qSepwdBIF3xZt5x89bkYjlnsGhC4lTRPpEbACBIhb/WhXmRtxuJzIBBIEQthacZrvzu+kytxAlCKIWUlD6Buahlosp8FmxIUAl8uJWCDyGYhUieXMTxvNh2fX+9wHiUDEC91mECrXeKp6QVIV18T14b0zvwZ8nJNjenOk7ryXyJUJJcyJHcXcN5ZRUu3uMf91fw51BhMv3DIWk9VOQ5OJML2a1OgQRFIBC/N/Y1XJIU9/p06iZE7KCMZEdSNEpuHuDmO5M200JxuKceGimyKJa577ypMwdt/0gTSE1PFG69Q8SyMfG39jVcUB/j7vJj74fg+zRvVm6ZbDGM1W+nWL5/PCTVwVmsn7OwP3UAOs25/DwtHXsL8mlxsSB7K4YAcyoYQRkZ3ZXHGS8VE9mJM6gruEEsQCIdn5Vcx7+UfKahq5a2o/fq7dw45q3/d6qamOx498yys9ZvL00aVMi+pHlj4Vu8OFXqZk5rAeLFjlP51QLBJy/fCe1NkaGRfdnVUlh6gyNxKtdL8vpEIxH+Ss4+GMSczZ85Hf9oo4ZQgjIrtQ0lxLvwvWh60x2M3srQ7clw7u/tpCYzWPH1nsEaPbKk/zdf5W/trlGrKCU5CJxFyfOKBNoTs3dSRC18XbFyLgzrTR3L3/M7+fnYO1+bybs5Y5F5x1/NlHtvPnon250s4fTlmtWzBolTLGZHbg6v6d6ZUWQ+vvvqLKep9eukDUWZpYW3qYJ458x6OHF7O4YAfV5kZsl9nCao3BbmbJ+Z18mb/FY3dkcdpYdG4bf+9xA0qxjPLGtkUuuKsy18b2RSP+19ouQuVa3smcTZomyue6oeEZ3J9+ld+JeafLddkfjGWFu30szkRCIVEhWp6/ZSyLn53JFzUb+Ovpb9lRlc2x+kKWF+1l+va32FB+nHrLxcrouKyOnsCHZVuPYjTbmDLAW0S3ZlCXJEqqG6gzuH+ososqWbbtKMEKFfMn9kcSoCIsFgq5++qBOJ3uuNO2krIA7E4XDU3uHy2XCx+zeX9c+uPbQmSwhqVP3cwH905lfFY6yVEhXDu4Kyuem03/jAQUMvcPn83luOwWfLPD6iUENBIFQTKVl8i12x3UNBopq22kos5AnSFw76NaIufZrtPdOxAmA690vQm5nx/iEJmGl7vfwMd5GwDoE5KCVCCi2mxgW8Vpnju+jEcOLaLGZuDhQ1/z0skfyW+qwGA3c8ZQxlPHlvLMsaVUWRqpMDey6NxWXj/9C5/lb6agqZJqc6PXfbomvi9vZ97i8X0VCYQMC89g8cD76KCN9tq6lgjFXBXTk1S1/+3vWGUw1yUO4N0cb3/hhX3moVPJ+ejxKXz/7E0khAcB7gCQO95ezmtLN9NostAzJQaBzMXfTv3Aj0X7vIaYGmzNvJm9ilUlBzHazITKtUQo9PTRpdFX14GDZ4o9O09BGgXdMyL5tGCj3/tZaqrjs+KNPHfbaOQSETKpmK8eu56Rmakcrz+PSiRrs2oKYLE5EAkELDj7GyMiuvBFv/ksHfQAWcEpHK0/z6unV9Jga0YuklBrbiJar8didff5Du6RxK/lgfu0K80NlDTX8mbn2RzaWMvNzy9l1gtLufa5rxnSLZlxvTv6/I1ULOKNOyYhV4r44Ow6XjzxI0fqCigx1bK/Jo+/Hl3CurKjzE4Zxsn6Ij7peztprdoYRAIhQ8Mz+LDPXIqNtVSaG6m2Nrm9klshEAj8LtwvxYW7D7w1Tly8eOJHREIh60qPkagKZ37aaL+f+dnJw7A4bATL1dyeMhKAvqFpHK47F3CBCPBb2XHMDisVl9zvdv6ctFd02/nDCdepeGLWcDolh7Gl5gQGZzPj5Ik8pB7Mpz/vY8uRfKJCND7btP6oMNUzb+/HXgNGh+vO8VneJhb0mUsHTRRi4eW30+0uB0vO7/K5fH3ZMcwOG890vRal9fLitVNCBDGq4Danw6+UCIWetzNvodpiYE/1WSRCEUPDM1CKpAF7K61O+2X7e+utRhxO/9vWQgksOruNw3W+w3kuXLx2aiWZwcmeKp5KLmX+pP58sHIXO06eY1L/zswY1h2xWMSKHcc9/bsioYAxmR25fngP7vvgJ6/zLt1ylOmDuxMRpOGj+6fx+CerqW7lbxysUfLSbeNpaDLzwqLfaDJb6ZIYyewxvQnVqfy2t4hFAnqmRrN2fzbHzpQxaFxHv9ZHLegkSnRiORabHaPpQkuNAIRSFwa7mXWlRzAKLYybmMz9mgHIkaC9pJVDiJAQmbrNLXixQIRY4P1+NNosNDssVFkaabZZCJVoOXa2nI9/2kdpTSMdY8N4ZPow0uPCUF3yWKVCMT2Dk/ii/3w+zd3EHUlj+KbvfawqOciB+jzEQhHDQjszKroLSwp2srXyNFKhmIc6TcTqcvD88WUeG6yxUd3ZVH4ioJ/s7uqz7K4+w+aKk14OCUvP7+KWpKFcnzjA0xKjlSgYENaRTrpYnC4nAtxCRi3xX6UOkWl4N+tWlhbs4qfifTTYTKjEMibFZHJT0mDeyl5N1YU+3TnJI5gW35cDtXksOLsei9NOz6BEFvxlCo2NZq5/7jsASmsaWbByF1dldaIOoyfBzh+f523mquieOGwCjuWV8M3GQ/RIiaHeeFGYju/bkdUVgQMYwN1LSmcXNpuTWoOJ+e8s5+X545AKJZRb6kiKDOFofmnAvw/TqTDYzSSoQolQ6KmzNrG69BBCBMxMGEhxcw1PHP6ORFUYr/a6Ea1ewfdP30xuSTVV9oaAw2ot7Kk+S06+ga3HLnpMN5mszHnje56fNZY54/uyfPsxGoxmOiWEMyazI1KpkDUVhzhQ69+XekP5cfqFpnHOWMm46B68nzUHs8OK0W5BJ1FS0FTJnXs/8fpcdNXH83L364m44Petl6q4KroHmyoCDxIGSVVIhCK/u1UuXCw+t50bEgfRZDMxMaYXoyK78UvJQYqba4hWBDE+ugd7qs/yzLHvCZKq+LL/3QgEApRi2WXt2+wuB2WmenZW5XB/x/GoAryP2/lz0C502/nDCQtTcqo2l9cPe/sYqsVyXpo0E5lUzKR+nQP8tTt1SiwS0mBr5i9HvvUSuS2YHFbu3f85ywY/dEUDN6cbSvza1YB7e2xb5Wm+zLybXqkxHMr17yogFgqZ0KcTUvG/72PU4tDQqQ07nNbIhGLkIkmbAyaJqnCvZKLWGO0Wfi5p+8d8Uf42Huw0EY1EjlohY/rQ7iRHhbDgl108+dka7ps6iBtH9OSG4T0pqqqn3mgiOSqEvacLuef9FT4pYfVNJpwuF3KphK5JkSz5600UVtVRUtVAVIiWuDA9n/+6j6WtQh7yy2pYufskT904iiE9klArZJ5KpsvloqS5jh4ZUcglYnafPs9d0/u3GdbxUPoEnGYhCzbtYsXOExiaLSRHhTBzdA+iE5R8U7CdZoeVxQU7CJVpeL3nTcSJ3Il3LUQodEyP78+x+sBeriMiOnu1DNSYDRyqO8eb2aupaXXfskJS+Md9V/H0wt/IKa7i9reX8fb8q+mfkYBY5C2UVWIZnXSxPNP1WuwuByJEXB8/kGvi+mJ3OchpKOX2fR9TaqojQxfLk52nEinX80PhHi+v1wkxvXih9Za8H74/v5vb00b5WIF9dW4rXYPiGBLu3bLze3p7Q2Ua5qQMY0ZCf5y4ECJAKZJQYWpkY7lbAE2KzmRqfBbz93/qFRl7pK6Ab85t583MWSx+5npufGEJAM0WG2KxkNXnD7V5280OK2cN5ZitdoLD1EwelsGRU2Ve8cLhISp2mdveLXG4nDRaTTyzYAMnz7vdJ3YfK2RYemdWVu5n+qihHP04sNCdNqwLp02FvJN5K08cWey16FiYu4F+oWm83fsWHjjwFQvP/sb9Ha8iWKOkT3o8R9roj21BJBBi8jMb0Wyx8egnq3j0+qEMHxGPwWqm0FzFIeNZOoii+fYyrhg/Fu3jng5jkQhFqEVyQEWDpZkfivawMHeDz/HH6wu5+8DnfJQ1D4VYgsluJU0bRZIqnHNG/+1as5KG8FPx/oD34WRDMRqJAo1YzpG687x3Zi1jo3rQTR9PrqGC2/d+7KnaVlsMFDRVcn18f8wuO6cu6Vv2h0wkZnvlae5MG037aNqfm3ah284fitFm5ufSA6wu9/3habKbefzkNyyedh9qiXflymy10WSy8tvBMxRW1TFzWE8sUgsNtmbuThpHgiIcq9PGjvrTbKo8gdVpx2A3c6j2HKOiul72fgUSua3ZWZ/N324dx62vL/XE8rYgFAh4Ze5Vnn7N/5+Mi+rR5g/CrOQhPh6/LVid9oAelC3kGEoxOSxoLlQ1tEo5w3uk0j0lGofTXb2TiEXoVHI0ShnPfLWOfdmFXiEQrVHJpbR0qYhFIoK1SoK1SnqkxGA0W/nbN7+x/qD/auxL324gPeV6vivewbT4PgTJ1JjsVrZVnmJgSDr/uGsiD33wC699vYXXZ8/iuZzvvQSSWCBiTuIIeihSuPHv33qlQuWX1fDS1xsZlZnKs2Nn8PhJt09otcXAAwe/4ov+81GKZV47Br1DkgMO5QRJVdzdcSxBFxZeNoeDkw3F/PXoEp9j99fk8aRpMS/MuYFbXlyKywV/W7yBJX+9KWBogtdreuFt2GQz00OawNv62SjFUqRCMXqpigpTA0sv2cHQiOUBFwItFDfX0kETxes9b+L10794bUF/mruJDG1sQKN9o82MyWFlX00eBcZKohXBDAzrgEgg8ixG5WIZ8lZtHLWWJqwuO2qxHJPDyl0dxlBSX89zaTMQCAUcazjP8vI9nDdWYXM5eOTQIpYPeRidSk6D0UxMqA6Bi8u+p8EddLGu4ihbKk/RIyiRR0ZNxm4S8Nlad1+twWglSHf5RbMEsUfkAqzedZpPhk3j16OHUcQKmDigE6t2+fpU90mPY+qAbiB18sihRX4dEvZUn0UiEHFn2ijeyl7NvNSRHsvAWEXwZRe5g3Sd+Cg3sLvJ95uPMT+hN09lf0tWSAoz4vtjclh9Wg0u5XxTFbHKEK/+VavLzuKCHQH/ptBYzenGYoKlGubu/YgYZTAvdruO93J+9eqxVYlk3JE2Cq1EwZoS/4Oe4A6yECBALBRxxlBKflMlCy70iUuFYu5MGcWQoC5IhWJcuHCJHIgFEoLEMq6OzWJdWeC2D51EgUosp8baFPCYPwKb3YGh2YLBZEEAqBUyNEpZwBavdq6MdqHbzh9Ks8PKdwWBqwNmh411lUe5IXHgxcusNg7nlvDggpUIhQI+fWgGH6zcyazJPXksZhpL1x/j2/PZKGQSRvdJ47M+Q3jl7I+caizmQG3eFQndK6mYdtLFEBmk4dsnb2TdgRx+2X0Ki81Oz9QYt9uCTunp1/z/Qb3VyAdn1jEjoT8nG4p9fHABbk0eRqRcH/Acl26r+0MtliP0087vT4BplXKGd09hhx+f4hamDuzisyXfgsliazM8weWCldtPIexkZdr2N3m/922Ey3UIBQKu2/U2V0X25MunZrBu7xmW/XqSJ4ddi0jlIttQgsghoosmnvo6C2/8sNVL5LZmw8Fcxg/oSLI6gvwLHrENtma2V55mQnQvr6puiEzDyz1msqJoP8sL91BjbUImFDM2qjtzU0cS0qrCWWdr4t0za31ur4Xi5lqym4vI6hjPvuxCqhuMVNU3+TzPTSYLzRYbB3KKsNoddEuOIkitIEijRC2Ro0buYymH4KJlVwtmp63NYTZwV13PNJbxTcE2/tHzJh45tMhznuzGwJXKRquJI3XnePrY95haxWdLBCLu6TiOwWHpaKUKL49mAIPdxMqSg8xMGEhPdTIb9+bx1foDlNUaEAigf0YCf518LT/V7mFN+WEsTjvry47xzl2Tee37rTx1wyiarTZuiBjC5LA+rK86wsqy/V4R3i2kaaN484KX7pG6Ap63f88LqTcwbXA3lm8/xob9uTw0pz8b2/Bp7aKLI7fYe6K/yWzlvaW7eHP6bN7JX83MIYMY0TuZ5RtPUlzdQKhWxc2jetEtORq9WsHZxjK/IreF7VXZzEkdgVgowmAzIxNKyG0qJ6exlGlxfQOKyxR1BBqHyifgojUNTSZUF2KhZyUN4a3sNTzReQoKkdTrdbsUvVTl6bt2XrBVLDfXtemiALC29AgPp09ELZZRaKzmscOLuS1lOHd1GEOZqZ4gqYpIhR6pUMyTR75tsy1rXFQPdFIlMpHE6/0eowhiQY872HToLPM/X0FZbSNyqZir+qRzw4heHDxTzJCsRDpoojjj5zvT/VwMZWXxATppYzwzCX80DUYzP+08wZfr9+NwuhjTO43YSB0ZsZGkx4ajVba3T/yztAvddv5QLA7bZY3F91SfYWJML08cbp3BxP0f/ozd4WTqwC78dvAMPdNiOXyinDd/8J5y/2zVflZuP8VbD0zlqTOL0UuubJNJKhDTLzQtYDpTuFxHR200AoGAYI2SGUO7M7Z3R3C5Laj+fwrcFmxOB7+WHeVwXQF/634dpxtKWFt6mAZbM8nqCK6J64PL5Wrzi1okENBNH9/m9vuUuCxC5ZqA17dGKBQwvEcqP+447lXlaiE6RMus0b2RSfx/9RhMljbjcAHyimsZ3D0Sh8vJLyUHmJEwgLey1wCwuvwQG6uOMyqhGx3SozhuKiBREkr9Sdh1Kp9Xz+/mq8euZ9tR//2HLfy0+RTjRvXgw6aLKXr7a/IYHdkNs8PmNQAWItNwfcIAJsdm0my3YHM6yG+qpN5qRCQQEiIQIRQKsTkdFBoDiw6ATbXHGdC9O/uy3a9Hg9FbONQ3mVi4eg8/bDvq5XTRJTGSf9wxiXC9/wqkEAEyodhjyQawoew4E2My2wxvmBybyfqyoxyvL+LdnLXM7zCG5y+0O7gXSf7fWzVWA48f+dYnMc3mcvBW9mrC5TqqzY2Mj+7htXCwOGz8VLSfb7Pu59OV+1mz96KjgMsFu06e50BOMW8/MJkicw3H6ws5WV/E6JTuPHjNEF5ZspHj59wJg0qZhEkDMnh/2FwePfG1V3Wud3AyZoeNKuvFivZZQzml1lpG9UwjMULP178dxNYoYHBoJ7ZX+1ZkZUIJT3SeynuLfG0Bd508T22jidkThxMuUyHSwhOzhiNyCpGJJehbRZ9vrfSfStiaY3XuVDOpUMTx+kKWFe6hwWrkuW4zsLucLC/c69Wv2yMokee7TuevH/o6YbQmOTqEMovb/ixSrie/qYItFScZG9W9zV2iafF9EQuE7KzMwYmTNHVkm+EvLThcToqaa5gQk8m3BTsoN9fz8skVKEVSYhTBfJB1G3tqcllXcoSnOl9LWWO9ezDYVM/Kqv3sr8nDhYtIuZ4xUd08n8P+oR2QCETYXA7e7T6Hl7/ZyI4TBZ7bNVvt/LjjBJuP5vHe3VN5/P21vHz7DbyTt5odVTkeQa0Wy7kl2Z16+P6ZdbyVOes/4qlrMFn4fO1evtl0iDun9KN/93jWVR/miOkUheZCFM19iUJPqPLKvofb8aZd6LbzhxJosr01YqHIMzFrtdlZuvWIx4h9fJ90Xli0npfnTGDWq9/5/fuqBiPvLd3FzAmD6R+dekX3K0yh5Zku03jYz5ZhmEzLh1lzCG4lmkVCYcAt5P9ftKQVlZrqmLtnIX1DU5kc2xulWEaZqY43Tq9CLpLwZq9bAp4jVK7l4U6BbYJS1BH0Cbmy57QFvVrBu/dM4cftJ/hu82FqDc2o5VKuGdyVm0dl+jXwb0EhvfwCQqeWexw6ugclsih/u9f1ZoeNVWUXt2sj5Dr+mj6Dj1a5BYnD6bqsmC6vM6AXefsWiwRCVhTtp9baxK0pwwiRuS2zjHYLO6uyefbYMp8I2EFhHXmk0yQUIlmbMbktWJx2xOKL1fOkqGDPNrIQAWfLathzusDHzu1EQTnz31nOpw9NJ8jP+1QqEDEqsiurW3n+ri09zEd95rG96rRf94g0TRR9QlL5ONftOnCgNp/5HcagkyhosJkYFdkFpZ/kvQZrM5/mbmzz8X5zbhvT4/uR11RBz+Akz+XBMg3hci1VDU1eIrc1VruDt77bzu03D+aJ+sWoJQqsVgfz31nu9bo2W2ws3XyUM0XVfDXvXupcjeyvyee3sqM82WUqEoGYHkGJXr2uZyzFDAvvQlJCGkN7JYNTSDflFHqVJ/FtwQ6qLI0IEdA/tAP3dhhPmFQb0Gc7u6iSvyxYS2SQmq/+cj0GQTN6hQqF2Ps9fiX1QoHA/T4WI6Y0r5kOdSnERwYhsonooo1jYv9enGooxuq0k66NoaS5lm8LdjKoWyJH8gJX3qeP6sriyo3oJAoUIhnp2mh2VObwYo/r2F6V7dVH3kK8KpTBYelM2foPTE531VchlLBo4L0+i6lLGRLeCaFAyPUJA5iZMBCz08qOyhwWnF1PsamWJoeFJed28kKnmazaks2KHcdpaDKTFBXMtSN7cWO3ISwv283DGRM9LUEAYoGQ+WljOGso41xxnZfIbU2dwcTnv+5jSLdk5v59Oe8+MJkH0idwqrEYuVBCqEzDqpJDfHhmPXekjqKLPnCapT8arEYsTjsqkRyV5Mrb2prNVhZvOsxD1w3GFmnktsMfeF2/qvQQE6J7cW+HcQTL/72hL/8LtAvddv5QJEIR0YogSk3+TdMBRkd2I1Tq/vAaLVb251wcFJBLJfRNT2DNvrarHvtyCnnsxmFof4fNV6hcyxu9bqbYVMuaksPYXQ4GhaXTTR9PkESFSPR/uy9KKhQjEghxuJy4cLGn+qxPhXpQWMfL2vjEKoP5uO/tvH5qpUf0Sy4Io3s6jvPdBr8CgtRKbhmdyZSBXS74fQlQK6QBK7ktyCQiOsaGkVNcFfCYqUM7ow4V8ZBkIjqJkpMNbSeEVZgbCNZdfF+IhALEQmGbYjcySEOdw7s/b1BYOmtKD3O4roBNFSf4sv9dRCmCMNhMxKvC+KzfnYiFIo7Wnef7wt0UGqvZUZVDqiaSPiGpJKjCUIllbfaPdtXEk3ekFrFQyJv3TeSE6TyfntiEUiTl+sQBJEaG8+bDExDYhfw/9s47PKp63f6fPb1lJr33AkkoAZJA6B2lFwERQREUxIa9Hs+xvTGmDwABAABJREFU994bKioKghQVRJHee4cQIAnpvU9vvz8GhgyZCXjOvfd3zr2s5+EPZvbs7Nkzs/f6vu9611qzI5dlm47SdGHYr6CijnNltWR1bEt0dXI1c1OGsb36tLvDYrBbeObYcl7KuIm1ZYf4pfSAe3J+bFQmwyO68MThHzwI69H68yRowshtKmVuyjB3F6Y1TA4re2t9+5qCa5DoYXUIH59Zz0t+4Wilrs9HKZZyR+JQ1mzy7ZgAcKa0hnBZAFJBzA0xPXn9uy0+P89DZ0s5WVTBAVEuaqmCV3rczJG6QpL8wnk0fRzz935Bo9VAz6BkBod14rnjyz2GlZI0YTzTZQp9gjsgFSQ0tZg5kFvKmg153DW+D3eM7MXOE4U+j3VYdgc+L9zAqrK9qCVyFnQcSb+QNM7rqznScJ5ewcleB7guQsDVdYlVBPPSoo0eKX1+Kjl/v20ov9Qf4GjTeSSCmC/ObqDRamRBh5EM6ZXKvlMl7Mlt27GZ0K8TYn87E7Q96ReQTn5hLRPE/YmJ0KE3WHgvcxbfFGxlY8VxrE47SrGMkZHdmJ00mHv2fekmuQBGh5U1pQcZG53Fch/BN4EyDb2CkllZvI+VJXupMTcTrvBnSlwOPw14iNVFe9lQcZzn06Zz55s/uW0pL37eL3+ziRGZHXhs6kRClJ5kL0CuYWRkNwaaOvHSok0+zyXAlqPnmDOyJx+s3sFTn/7OBwsm0FUXw6bKkxTraxgXlXnBrsxlB3g1qDE1UWqs58fzu6i3tBCvDuHGuD5oJAqCrqIbtuN4AVHBOpKSA7jv2Aqv26wpO0hnXTTjorPQ2804cUVVX/P5vTKuEd1r+C9Bo8WAxWFjc+UJivQ1xKiDGRzWCbkgZX7KCJ4+utTr60LlWgaGpbtJpUgQkEsvEUyrzU5ksJYDZ3xr2MDFpcxGG9rgv1Z1DVZoCVZo6ayLxuHkv8Qm7F9FlakRm8OO0W5BK1UhEUQe1QtwOQ1Um5roH5rG5soTPvc1I2GAV//d1vCTKunsH8MbPWZidzow262oJHJkIonPIbargUQiJkj7114f4Kfi6RnDmfX6EndVvzVy0mLQBko5Vl1Mql8kwSoNwXI/r04cFyEg4Ke8pG/bdfI8AzOS2HDIu2wFYOKQdD6pXuv+f6QygCS/cPfQWb1Fz/cF25mZOICP8/7gz4pjWJ12BAR6BiXxjy6T+fLcJnZUn2Zl8T76hqQiEcTcENOLb3yETEgFMdeFdOf2fT/xyIyBHBfy+fLwJqbG9SYnKIWPz6x367DlIgkjYjP46OGJPPz+Gne4xa97TtI9JcodoFJlasThdKIRKwiS+fF177t4J9fVrnVF8dayqngvd3YYwcSYnhhsZkwOK+vKDjNv7+dtBp3EgpgIhT8PpY0hVKHDK5x4jXz1hoKWKqytKoBqiYKcgA6sa7pytHSD3siA0DQCJX7tasIBVm07SefBWj47t55F+Vt4pssU6iwtnNfXMCE6i+VFe7g/dRTz9n5Go9XT+/ZcSyVz9nzCR9lzKGqsZf2a82w7Xsjonmk4nE4SwgOZObQH325oO3DbNSGc6/omc9eRzwEuJMRFcMeeTyi9sPiPV4fQxT+WYz7kQ4PC0pGJpBw5VO1BcgGaDWae+GQdXzw+mU3VJ9yWbLMSB4IAt+x/n+enTGNsZSo/b82lplFPdIiWWddlo5frUUllmApFTH3/G/eCCSAxIojnbh9OVmAiN8X3xel0NfeD5Bp+Kz1Eob7tQnTJ+Z28mzmLerO+ja45VK7lg+zZLC7YzuLzlzTFFaYG3j+9js2VJ3i1282cqa/k85/3eJDc1vjjQB4T+3UmRNu2qhmk8MNmaqLah/b+IuwOp7sjUlBRR525hU2Vx5gSm0OD1cDGiuPuokeMKsjnsOVF1JqbefXkz2ypOul+bH9dPsuL93Bvh+sZFdX9isWCRoOJiYM6sayirYxIKogZHN6JQaGd6OQfTZ2lmRpzCwX6ampMTQyL6IJCJEMiEuP/L1yv/zfj//9d/Rr+49Fg1rOl6hSvnVztETP6Tu5aHk0fS7/QVB5LH8cHeb97VLNStZG81G06/uJLq2atSsG4Pp3c7bY/D54hIymCwgrfFeHWr/1nIfkX4nt9oclgwmCyIhJcSWRicfs3/3qznkJ9Fa+d/JlzF4agJIKYYeGdua/jSI8LrtFu4aeiPdyWOIhj9ee9TgcPCetMpDLgqo835AoX9P8pJEYE8u1jN/Haj5s5dMHazU8lZ/bIbK7P6sjWk/ls3F3CGnMhGYnhPDVoCmtq9vNdsXcCmRWUSHOzmeTIIM6W1fLjliN8fN8kjuaXeb0pjsjugF1tJf+8y/YoTRvF450m8MLxS5UWsSBidFQP7tr7BUWt4kWdONlTe5bjjcV8kDWbs80VVJoakQgiTjeVMj2+H4Ut1Wyt9uxQyEUSnu90EzsOneeRKQPJ7hrFxG0/kuEfR05QCo8c+s6jsmp22Pil7ABnWyp4bu5Y5r76EwAOJ+B0OUXsqTnDr6UHMdotdNbFMC2+Dxqxksc7TcDudGB12JGJJEgFMf4yNfUWPbft/tjn5yIgMCA0jSFh6YRe8EO9CKvdht5uRowIjURB35CO/FLqe9o/MzCR083laKVKRJc173UKJUmRQexop0oqCBDt78/DMWMxNrXvJQsuQqgUuWQWdqeDfxz9kW/73Muu6jxGR/VAb7ewpvRgG5J7ERaHjW8LttInuCOThnZm2/FChnRPRioWI1WLmT2yF8OzOrLwtz0UVtYT6KdiTP+OxMX68+iJbzHaLWgkCp7pMgWzw8rzGdOQCCKKDLWsLTvEI2ljeff0bxy4zLt2cFgnHk0fx9I/jvLFWu8paza7gyV/HGFc72wWnt+AQixlSFhnZu36CAdO7jv6Jem6aIaPzEArVlJja+aHxk08lj6Bk2er+PtXv7fZZ355Lfe8vZqPH53A7N0fopEqeL3bDEROEatK9hGm0FFnbvG43hvtFh44uIhPet7BnR2G8XvZEQx2C9lBSSRrwjhUV+BBclvjWEMxGyuPM1DXmT8O+B7YBPjmjwN0iA4hQONJ6hoseqyCnaggLfnltT5e7QrFuDi3IBIE1FI5U+N688zRZR7ewd8WbCNBHco7WbcS4eM6arFZWVN6yIPktsb7eevIDEq8ItHtlhRFo83A0nLPgk7fkI7MTxnOzuo8lp7fiVAk0Ce4A31COnK+uYrs4GT+KDtKtDqIYn0Ng8M6Ea0K+rco2Pw74drZuIZ/GcXGWl480bbdYnPaeenEKj7XzOP6iAwGhqZztqWCJouRZL9w1BIFYUrPqpAgCAzokkhkkJay2iZ+2X2Sif06E6BR8ctu7xcTgI7RISiuQt/5P4GGFiN1TQa+/mMfJ85XopBJGZuTxrAeHQjW+a6uFhlquGvfQg9CY3O6Bs7OtVTybuZtHkNhjTYDb576hXezZrGqZD+/lR1CbzMTrw5hZsIAMvziOXWmBlsEKGQS1GoJRrsrYEKE0KZKfCVUGhsQCSKcOFGJ5T7DAP5VKGRSOsaE8tLt11NvMmBzOBDEoBbJmf/OCgorLy16ThVVsmzrUf5261CmRfdlSYlnRUQiiJkdPZQDp0qJCtZRVtvE+D6d0EsMvP/QeNbtyGPV9uM0GcwkRQZx84ju9EyN5ZShmEfSxpHkF0atuZm/H/W0KRsUms7e2rMeJLc19DYz3xVsY1JMTz4+sx6xIKLW0oK/TMVjncYz1zKMFcV7aLaa6Owfw7DwLgg2Ed36xuGnlPPR2fUATIvvw8dn1vvUu55qKqUqoo7O8eEcL6zgxoEZ1FqbuXvflx7He7KxhJ+K9/BixjQyAxO83nj9JEp6BSV7eO22xoiIrtSam8ltLmNKbA7gsujS20z8VnaYg3UFKMQyxkVncmfKcI41nKfQy/CdgMAtCQP4IG8dk2Nz2nQN9A4zkwd0paiqnqToIKw2O7uOF3m4B/TsGItGriBIrqZWrkcqEWP1YWcHkBwdRKnl0mflwMnyol2k6aJQSuRcF5HBU4e9zwBcxPbq08xPGYEySMa3/5hKlL+/+zmdWoFOHc7zs67HbLVRaW7k3fw1HDrsqsAGy/14N3MWS8/vZE3ZQXelvKM2kvkpw9lceZLx0VncmTKcs80VSAQRPYOTUYvl2ExOnyT3InadPM/oEcMAV5LipsoTHnrxk40lbbxj708Yy/srfQ8iNrQY2XbwPB92ux3BKibQqcFssvNo1A0YzFbiQgNosOvJM5ZyorGEzZUn0NvM7K09y4CQNESCQIBUxQ+FO3ii0wTeyl3r828BLCvaQ9/0Tj5tCS+ivK4Js81TB1xnbuGJw9/TYDEwf8gotrVT4R+R1cEtjerbOR6VSsZrJ1d7Dcgo0FexYP/XfJQ9x2tlt8FmaGPbdzm+PreZx9LHtythiAsN4GiZAWUrGUJmYCIzEwZw594vPNwsDtcX8n3hDt7oMYN3ctcyJqoHx+rPMyY6kzl7PuGb3vcQow5q95j+r+Ea0b2Gfwm1pmY+PeNbXwbw2Zk/ebbrVLdM4EoI9FOx8KGpPP31OvbnlfDUl7/x1p3juD67I+v2tdXuySRi/jFzxFUPi9kdDhr1JkprGimoqCNEp6FDdMhVaUivhIYWI5uPnOP5xes9ppBPFVWyeOMhPn9gCuGBbS94VaZG3jj1i09Cc6a5goP1BYyI6AqASiLn+ohuPHnkB+bv/YJRUT14s8cthMv9qWsysnDVXp45ttV9DD1TY3n2lhE8d+ZH9tWdI0Edyu3JQ+gVlOwx9e4NteZmDtUV8G3BNs42V6CVKhkd1YMb4/oQIFEhuUJgRrPViN5mZn35UWotzXQLiKerfxxaqbLdFLtGoYVbDn0AwH2JoziwodaD5F6E3eHkhUUb+OEf01lVvtdNIhLUoSxIHM3azXmkRYVx/6T++CkVGAQTN+16lwc6jmLogATG9EulxW6m3FjHz1V7eHnXEj7reQfHGor44twG6i1tq77DI7pe8Xu/ueokMxMHsL06l3MtlST7hSMSRIQotOikSu7vOAq704FEECFvNdRlauVjGqUM9Gob1xp/1B5mUGYqtU0GwsJVvHJytQfJdZ8np4Onjixh1YCH8SY6CFb48Y8uk3nt5M9sqTrlnkQXIXB9ZDfmp4xg9q6PeDB9DOAiublNZSzY/7U7RhtgY+VxOvhF8H72HB48sIgzzRXopEo66WJQSxQMDe/EkfrzWB12hoR3QnRB5tBg0XOioZijDUWMjcoie0QwBxrykYukzO3eAz+7mmcX/onN7uDvM4cT5OdaNCplUq7L6sCvu73r+AUBxvRL5YHcLz0eP9pQRFZgEvILXsOt38PlCFPoeLbrVIoNtSwv2k2zzUSqNpKb4vqik6ndLWONUo5YLEJjU3Bv7GhECbCrLo/uIbG8cnJ1G3nC6aYy3jj1Ky9mTGNDxTG+OreZZ7tOIbWV/WGtqf1WPLgG2pRiGXKRhCC53xWjqQEcdme71mMAG/afIS7Yn7pmI2pFE2+v2OqO8xYJAv26JHDflD6IBBG3JA7gu4JtdA+IZ2dNnnuIEVwdkAZr+++j0tSAVCK64qIlLMDP5d5Q1eA63wonLx1f6ZYVWWPNjO6dyppdbYcZo4N13DmuNxX2Ol6ZP5K0iDCsDhvbqrwPPgIU6qspNtR6vXc5nE63XMQXcpvKsDjb92331yhJDQtjuDODr867NMZzk4fy1JElXi3bGqx6/nF0GY91GsfDB79jYc6d7K45Q2ZgIh/m/c7fOk/6bytE/CfiGtG9hn8JTpxt2m2Xw/X8VXjPtEJYgB+v3zEGg9lKWV0TRrOVhycPpHtSFF//sZ/yuibXhbZzPAsmDSAy8Ora7labnXPltTz48c/UNhsY2j2ZtNgwCirqSI0JpkN0qNeI2auF3mRpQ3IvorSmkRe//5NnbxlB4GXOAw6nk9Pt+JICrC7ZR/eAOEIuaCMzAxMIVeioMrnCAJx2UBcF8Pkvbas/e3OLuO/DVbx992Qm7HmVAn0VTx1ZwrTYPtyeMqSNn+lFVJua+OTMeo82dK2lhW8KtrKu7DCf58wjQuJbHtFoMbDw7EaWFF2qenxfuAOtVMl7WbeR4heO1Ids5OIgiAiBbP9k3jnmO8HN7nDyx+4zfD9gAQXNNehkSurqTHy59BBHzpUx7cke+KnkBPqpKGuo4aVO03HWS0Dn5JHj31DcqjIrFcRopEq6B8bzXeE2r38vUhlAk817m9t9TE4HTifckTyUn4sPkB2URJPFgFamQtbOAIlCLCNOHYJYEHm0hn2hxWYiyF/NFw9OwY6T7e3ctO1OB6tLDjArYQAySdtjECHi1sSBLEgdxZH684gEgYyAOCqNjcze9RFNNiPdAuIBV9X6/gNfeyWIec3lvHXqV97NvA2D3WW5tqsmD7vTQaDcj74hOm6M603AhSHURouBl4+vAgEmxmQzY+d7Ht636yuOkqqN5JNHp6MWyT3a1iqFjAUTB3C6uLoNcRMEeGjaAHY25dJ0mSxBJZGRrA1nVfFeNFIFnf1j2eElNlgrVfJa95t55cRqD4eWk40lrCzex+OdxjM4rDP+MhU1TXq+WLOHn3efwGRxJTrOGNYDU6C1DcmNVQVxf+poxIKITZXHUUnkPN5pfJsBP4lI1G5CI0C/LgmIJfBFzp00Wgztxl+3OjtX3MLmcKBVKTCYrfx9kafEweF0svVoPuW1TTw6pz+37/6UV7vfTIhc28Y73e50EHBBHuML4Qp/BDEM7Z7staBxETcO7cr6fXm8t3IHWR2ieWbeMLZVX/rOP3d6Oc8PnsbArol8+8dBzpXVolMrGd03lSHZibxXuIZp8X1wBpsJ8FewrZW9mC9srjzh4Q5yEWJBhIDQ7utVErnbVcgXRCKBEJ2GyYpe/FKxH61URa25pd1Al1JjHTaHg2C5n+se64QIZQDLi3bzqGNcu3/v/xquEd1r+JfgxGXt0p6V0NUOplwOnUaJTqMkIugSiZ3UvwtDu6dgczgQiwRkEjF+f0GbW9dsYM6bP9IrNZa5o3PYfOQcW46cQywW4XA4iAzyRyEVX7FK6Q1mq41lW4+26ye582QhVi9DVlbHlQmN3mbG3mrnAXINn/eaywMHviG/pZJRoT2Yt3Clz9efKa2huLKBQaHpbL6gKVtStJMbYnt5JboWq4UyY71PrWWVuYl3c9fycNpYr9UOm8PO2rJDHiT3IpqsRubv/YKf+j/os8ovEcSkaaMoNdZR22TwaeN0EaeKqpDuFLN08xEMZgsmi6uKMnNYJkfOlTG0u8smLUwSyC87dlNVq+f+W/p4kFyAzv4x7K09i79MzejI7h6WXBehkShI1oR5tV+6iCC5H1qpkk2VJ5idPJgPc3+n1trCI2ljiVQGIPWiozPbrbTYzIyJ6sEXZzcgEcRXtGxK18YwMD4Jf5WKYw1FbSzOLkduUyktdhOBXoiuXCJlf905lhTupFdwCg6ngzdO/kqTzeXU8FDqGFRiOQ6Hg/XlR9tN5TpUVwCCS6u/vdqTfKdqI3m9+0z3//fUnmFr9Sm+7n0X8/Z85jXgIbepjI/y1/FU50ltbAuDtCo+uf8GDuaVsnTLYVqMFlLjQhg/MJ29zXksPL+hzf5mJQ5GLZHTJ6QjYkHkk+hOiunJT0V7vIY6OHHyyonVZAYmghnmvb2cgopL1VSb3YFCKWF58R7AFd/sL1Wjk7q00s8fX9GmYt8rKJlnu051p8fpNEoWTOzPrDeWeL22SMQipgzrwqPHv6He3MLUuN5Mjs1pN6UsVhWEVCIiItDP5+AXQFZKNME6Df/4xrcf75nSGiorDSRqQnn88GK+63Nvmyrn/tpzTIzuyZf5vh0Rpsb2JkCp5O4JfTl4prRNGiXAgK4JpEaH8fRC1/E0G8ycqCklURNKhakBvc2M2WHlnfxf+TB7DlO0qYTKdRjsZjbWHeP2Q79jcdjYW3uWj3vejsVu84jo9gVfMxwCkBOc0u7CYnRUdw+rSl8Qi0QEyTV83nMev5YeuGInB+BsSwVRykDKjPWkaaMoMtRgdzpwXIWV4f8lXCO61/AvQSoS0y8klQ2Vx31u0z80td0W9V+BWCQi8C9O8l+E2Wpj8YaDdE+KZNqgbtzx1jL0rXLg950u5ts/D7DwoalEh/j/5f0bzFbOlrXfCnQ6oaZRT1iAp3xBIZZeMY0oTRuF+rJqT4QygI+y51Bv0VNfZfZ4P96wZk8uw4d1dRNdgB+LdnF/6mikrT4jp9NJs93c7s0SXGb3D6WN9fpck9XIovwtBMv96Owfi4CrVSsWRNwQkUN3XSLNzVaw6NGpFG1iLkMUWp7qPJH5e7/AX3Vlmx+tSoGAQF2zi5SF6NTMGJZJZJAWq93u9pe1W50s33wMqVjM46JBbfajEMtotpr44PTvvJBxI5lBiSwv2kN+SyVaiZLrI7shF0uZHJvjU88KMC22D7XmZkZFdaPRYuBI43nKjPXM3PUB3/a+hzhNiMf2teZmvs3fyuqS/UyOy+G+1JFsqjzOdREZ/OxjsSFCYFp8b/xVF1rnkisv+vykCmQi7xVltUTOxJhehCn8+eTMerctYIwqiLs7XEd2UBJKiYxmq5EjDe07I8xOGsJbp35tQ3LBRVofOLCI9zJnIRaLWZS/ld7BKeytPeuV5F7EpsoTPJg2BolIjMFmpsLUgNPpJEIZgEIupVeXGLqlRGB12Gl2GFlw+CtqzM3IRVLkYgnNVhNOnPy98w2Y7Vbu2PMp5cYGAB5OG8sDqaN5J3etR4VucFhn5u751OcxOXGypHAHAyQZHiT3IpQKl5zg5W7TCZJrqDI1Ea8OpslqdMdqt8ae2rO8fGIlj6aPJ1juhyAIJEYG8fLsUTz33XoM5kuLC51awd9vG8Yvtfvci64l53fSO7gD0+P68r2XMBCpIObpLpMJ1Ci59fosXvneO/mUSsRMH9Idm8PplXS2xsY95+g1oAOnmkrZVHmCfiEdPYIwlhXt5p3MWWyrPsWZ5oo2r8/wj2NweCckYgn+fnIWPjqFxRsOsWbXKZoNZuLCApgypAuDuibzweodGMwWJg/qwuTBXagVGrkpvi8JmlDO66tZeHYTN8f3473c39hU5d2RpsVmYlXxPoaEdaKLf6zbptEXhod3YePhPDKSogjQKLE47EgEEcEKLfd1HMnBunyvi9EIpT8jI7t77Z54g0gkIkodyLTYvmyo8n1PvQiNRIHJYSFMriNVG8X7p9dxd8p1OHFpeYv1tUSpAohRBaOVKv/PWpFdI7rX8E/DYDMjOAXmpQxna9Upr21WiSBmbsqw/5F0mSuhxWhm4+GzvDxnFAs+XOWVFFY36nno0194754JhPn/Nf9YuUSMv/oqiIaqrTRCLpIyJqoHmypPMDGmJ72DOyDguiD/WnqQzRUnuCm+r1dfx0C5hkC5hgPl7fvJAtjsdsR4EspyYwMWh82D6NZb9FgcNsrb8T8GV0vS4qPaaHHYeCR9LDqpmr21Z3A4nUyN7U24PICFq/bx1s6lOJxO/NUKpg3uxtSB3TwSo8Cls/2h3/206M3EhvpTVNXg81jG9+mEXCrh2/SbcOKKkl6x/RibjpzlrXmXWnlbj57D6XQFD5gttjbWTqWGWibF9MTssPLIoe/o6h/LDTG9iFQFYLCZ2VR5gjPN5VgddmbE9/cqb8gJSmFIcGeW/H6EEQOSEWSCmzSa7FbezP2VZztPJUDh+l3Umpu5ffenlBpdRGlR/hbu7Xg92UHJBMo0nGup5MRlw0QiBJ7pOgVdq9+WWiInShno3o833BDTq139nlaqZEREV3oGJWNx2BBweTb7y9TuSqpUJEYpbhsWcREKsZSMgDjezl3jc5uzLRWUGeuJ1QRTpK+hV1AyJxtKfG4PriGyUmMdx8uL+PzsRox2C2OiejArcSDH9cWUG+opNdTRJ6QDyX7hfJA5G5PDis1px2C3ECTT0GI1UmVu5skjnsNnb576ldlJg1nSbwF/lB+hoKWacKUOlUTWbkUd4HRzGamSRK/PyQQJk2KyeeH4Cg+SF6sK4uH0sUQo/Nt0DbZW5TInaQjgJEShQ62QMaBrIj8/N5ujBWWU1DQSGKQkOkLLdyVb2FztSegePbSYlQMfJtEvjO8Lt5PfUoUIgT4hHbkjeQgBMg2NNiNDuiVTUtXI4g0HParFSrmUd+aPQ6dVcLai/cU7gMlqQ3rhunKysYQ4dQjgIrqddTG8kDGNRfmbeTvzVtaUHuKn4j1Um5qIVAYwNa43w8K7uBdpaqkCm9rOnFHZTBuSAbgWE0qFhOLKRrYezufvtw2jUdfAvCOfoLdfcvLpFhDPy91uQi6W8mbur+0e88bK44yLzsTudDAuKpOVPpLguvjHIrJIePjTNaREBfPW3WP5ong9MrGUKbE5BMn8+LzXPF4+scpd9b94rh9NH0fwP+FDrlOo6B+aymsnBZ8dGqkgpot/LO/m/sbTnSdTZqhjbvJQkvzCuG3XRx6R30EyDc92nUqaLuqqvYH/N+Ea0b2Gvwyrw06NuYlzzZUk+YVxuqmM13rM4KXjKz1aVsFyP57tOpVQuQ+/zf8PSIkMpqC8jga970z2M6U1NOlNf5noqhQybhzUjbV7fWskE8IDvaZ/aWVK7kgayoTobBYVbOHrc5uxOu2EyLVMiMlmSf/73Zn03uB0OokO8UciFnn1n72Ivp0SONzkaeYfrw5BfllrzuqwIxGJCVPo2tUOixB8BlJIBBE/nt/lHhIB+KZgKx21kTw14gYO5JVQXN1Ig97EJ7/u5sCZUl69fbQH2a2z6Ll73xeEKQK4b2o/Hv1wrVcJQ5/0eBLCA1n42163PjJIq+Kmwd15ZOpgj302tFz67L9YtZ/7xo5k7t7P3FW8IkMtaomcCKU/5cYGjjYUtYlIFiMiKzCRsaFZ9NJ2ZHXlXoqNNQTKNIwJyURlUXPr8z/SoDfRPyOR7fajHq/fU3MWo82C3CxDIoEfCncwOrIHo6O7X4jWdS0i9tScodrYyBs9ZnKk/jy/lB6gxWqigzaC0VE9qDQ2YLZb3JX+QKmaR9PHcf+BRV51gzlByUQqA71+Xq0hEkTu1rk3KMQyJkRns9aLrANcfrGnm8quqH3cWHmC2/2GEChXY3HaUHhJWrscEkHE6pL9GO0WZiUOYkJ0Ngfr89lV7fJFHhiaTqQqEIPdQqGhGqvDTrwmhG3VuSwp3MngsE7cnNCPcIW/h/+yEycLz23kh8LtfJUzny1VJxkW3rXdCvNFaCRKmvRtg0C0Kjnd0iK4c9+nbYJCigy1PHzwOz7KnsOh+kKPUB0nTo43FiNGRL/QjticLqeUMK2OQRnJrCjaw+LiPzlzqG11FMDssLK/9hzHGoqZmzyMMIUOsSCi2WrEZLfyyolV7K45g0gQ8bfMG1g1cBbrD+RRVd9CWnwYOWlxNNibMWNFrZYik4jbdUPomhJOvrEQcIUYjIzoRpouighlAE1WI4frC1hatItfSg4wv8N1fJQ9B5lIgsVuo9bSTL1F7+r2iEQka8LJbSzlySNLiFEFoZEqqDI1UmasZ2BwOgsfn8zBlnw+ONPWhuxwfSFPHVnCRz1vv2ISocVuw1+mpsLQwPiYbGxOB2vLDnm8Lic4hSfTJjLvVZer0JnSGr5cs4/pIwdw75GFrCzey/DwrjzVeSKvd5+BHQctVhM6mRoRwlVHp3uDUizjlsQBfJ2/xevzMxMH8GfFMRakjsTmsBOi0BKtDmL6jvfaFB9qLS0sOPA13/a55xrRvYZruBqUGGr5o+wIfUI7Mm37uxjtFvoEd+C5jKnobWYqjY0k+4UTowpEJ1Ui/Tdpl6jkrqpIe6lbF3G6uJqUqJArbnc5IgK1DOyayJajbQf0JCIRT908zKfFWJPNyPx9X3gMzVSbm/j87AaO1Rfxj66Tff7d+hYjZbVNjMxO9WnDFuinIqtjFM/u/tbj8cmxvdpISxw4OFpfzE3xfdla5TuVrm9IR+/HY27hueM/eZDcizjdVMZLZ3/iwenX8cC7l6ou+04Xc7q4il5pcQDUmJp55tgyigy1FBlq6aCK4O37xvLxit3kFrs8bjVKOVMHdGXGsEz8NUrun9SfO0b3wuF0IhIEdCoFEomYFqsJs8OKCBEDuyby2ZrdOJxOft19kmHZSbyWcTOvnFrl9iP+5Mx6XsyYxgMHvnEniV2ETqrkxtg+hCl1rNp+giUbjjC6byo9AlNpbjTz5e9HPL5jh8+VURHe6LEPJ06azWaseid+/jImRmfTYDXy0vGV7lSxrKBE5qcMJ0zhz3u5v1Gor2ZgWDoKsZQSQx337vuSZpvJZUuVPJwghR8SsYSO2gg+yJ7NO7lr3BVEtUTO+OhsZiYMIOgCgb1oF+dwOtFIrhxZ2mgx0GwzsbfmLE6cDAhNo3tAvNfP2Ol0omqn4nsRIgSUYhmTY3JYXbqfBR1Hsqa0bfDCRQTI1MhFUp7reiPfF2xjXHQmd+37wk0SM/zjSPeP4s2Tv7CjlW5SLpIwJbY3L3WbxqOHFlOor+LvXSZz174v2vwNg93CipJ9tFiNGO0WCluqSNNGedXoXsTk2Bw2/dE28GFs33RWlO/2mYZncdj4rnA7E2N68mHepWEvhVhKt4B4Sgy1PHvsJ0oMtQTL/Zga25usoCTKjQ1eJQCtYbZbOdtUjr9MRZQqEJvDjs3p4OPT65kY05O5KcNwOp2UGet5s3A1N3TPIUsazoaK47y8awkOHPzQdwEba44xslcqq3d4lwEoZBIGdE/g60Mu+7CxEdmESQJICg+n2WKgRWxh2fldrnPrsPBm7i+QCzqpirczb+FMUzmJfmEEyNSIBIH15Udpshl5O/NWHjy4CFPLJanGlpqT3N1xBItObvb5vosNtRypP8/YqMx2vZzvSx3JjurTvHbyZ5RiGbcnDeHr3ndxorEEm8NOTnAKhhYbd7z8E6W1lwo4a/eeYtrg7rzWaSb3HP2C9RVH6aCNYHp8X9dg7X8Rj9RIFcyI70+oQsfCc5vc0pRQhY4Z8f2JUwcjF0tpsZq4ZdeHPNNlMjtqTvvssNmdDj7O+4O/db7hiiFC/9twjehew19Cg0XPM0eX8Uq36cze/bFbU7qzJo+dNXlEKgMIkKlxOuH1HjP+bUguuNpx/bskulOk2oPuKiQI3hCsU/P0zcNJiz3K0i2H3VY83ZOjePCGAcSE+LcZpAGXTdvbuWvaTIZfxO7aM5xqLKVfaKrX551OJ099+RtfPXIjNY16dp3y1E8G69R8vGAS35Z6Vgfu6zjSHb/aGnKRlLdz17Co990MC+vCn5clHYGLdDyYNsZr0ESLzdQmjrg1cpvKUMS1HYb5bsNB0uPD8FO6tGetHT0Wl2zjuH8Rs6b3IVYZgs3uQKdQEOanRXbBFk4hl6KQX/rONVuNVLc0U6SvQSKIMNotyGUSvvvHNJ78eB2FlfXc//4vLJjUjy9730WVpZEKfSPBEi3WBvik2zy21ZxkV4OLNOX4d6BPQCqVZXqS08KJDNCR3TEag8HCnpJ6th3Lb1P5UigkmC8b2lKL5WjlCjYdyWdkn47kNpfx5OElHhXQfbXn2F+bz3Ndp9A7JIXfyg97JVu/lBy40OZ2IVDuR6Dcj7czb8XudGBzOFwacJEUjUxJrbmZfbXn+K5gGwUtVehkrsjfybE5PkND6i16nju6nB01l4a1firazTtZt/HpmfX8Xn7EfYMNVei4JWEAXQPiEOG79QowJLwz5cZ6RkZ15+fSAwgIZPjH+dT/3t3hOkoNdXydv5mXu0/nb4eXukluZ10Mz2VM5fFD37c5T2aHje8KtyESBKbF9WFx4XZqLc2kaiPJ9dKx0NtM+EmVKCUy8lsqmd9hBA8cWOS1SthJF02qNpKmTnZWXUYGc7rE8Fyxb69agG1Vp7glYYDHYy9kTGNxwXbWlF0i/WXGeo42FNE9IIFnu07h+8LtPl05RAikaaOISwvhj/Kj3L77Uz7Ins2Z5nJmJw3m6/zN7i5Fil8EMxL6UWtuJlShZVnRbhy43me5sZ7ttad4YsQkymoaPeLZwXVNfXX+SL4p2YzNaad7QAL6OhuNgglB5sRot1JtakLsZUbj0bRxSAQxDVYDTx9ZSq2l5ULLvwO3JQ0mt7GUO5KG8n7eOvdrZCIJzXaT240gUKYhTReFgOuacvHxdWWHmJsyzCfRlYkk5ASnMGnrm4Ar7OL9vHXIz0pI1IQhEgR+KtrNIzGTPEgugNlqx+5wsGFnPiOTurOybC/fF25nbFRmu12QfwZamYoJ0dkMDE2nztKCTCRBIZZisds4WF/AT0V7yLswtBYo17C10ndRAlz3aftVOLn8b8M1onsNfwlGu5UQhY4CfZXXNK4yY737xnO2ueLfJm3rIjRKGaN6pvH52j0+t1HIJKTGhP7TfyNQq+LW4ZlM6NvZpYkViRAJAiH+vi+Cdhzsqm7fEujHCwb33sz+BQTEYhGHz5Xx95nDaTKYWLPnFCaLlV5pcXSKC+eYvoCNVcfRSBSk66KZlzyMeE0IGi9EVytVcmviQP5xZCnPd5tGr+Bkvivcznl9NUqxjFGR3ZmVONBrG6zJYmBXOyT3Ig405ZMaE+pBdOuajW7pRf6FdLjWONJw3oMEjY3K5PH0CV7332Q1Umls4GxLBauK91NmrCNErmVsdCb+GjUfPjye3SeL2X6wkA9W7eDdFdt5/rbrwSnhkeXraGgxIhGJGJiRSL+O3QA4trWCjw8v4f37JtBo0ZOcEsARmZV6WwMp8mBunziVn7ee5Ic/jwAur9GcTrEsPOKpVR0Z3p0fNxxlZGYaduy8cGyF1za/Eycvn1jFj/0fQCKIsXm5STlwsrP6NJNie3k87i2it8bUxDu5a/mj4pKUosbczFf5m1lXfpjPes0j7LLXNVoMbUguwNmWSubt/pTXeszgzpTh1JqbkYulaCQK/KVKmi0WRkRksK78sNfPJ00bhVaqZNK2N8kIiOPdzFn8UrqfB9NGs+T8TtaXH3O/3yC5H3OSBmN3OPij4iiPdRrP9qpTdPKP5lhjEXKRhKe7TOJcc2W7ldcfi3bxac+5/FC4gw3lx+gT0tEr0e2ki2FAaBqrivYxNjqL5UW7eTvzVj7O+8O9f7lIysjIbsxNHspDh75jTswQxvVO5+ddro6KVCImRKfhhcBpqMQy7E4HmypP8GvpAY8ENrvT4WE+1cU/BrPd6kFyW+NQfQG/lx9hSlwO3xd6J9FDwjpjdTr4oXAHmypPEKMKQuQU8Jepeejgtx7ftTPN5fzj6DLuTBlOg1lPVlCie5G6qmQf46KzePDYIp664QZuNWfy5+6zGExWOiWH0bNTNF8VbWR7bS5jIjKZFNKb+9/5hTE56QweEMP8AwvppItmbHSmR1R5gExNun80r5/8mZ2tKu8OnGyvPs3+unzezZxFgEzNZ2f/dGukRYKA2W4jWO7HgtRRhMq17K/Lx+l0cnNCfxoset7JXYvVYSdUrmN24iC+zN/scW4EBF7uNp0tlSfbLFzMDpvH98coNhMR6IfeZCEiUIvZauN8VT06tYKC8jrm9M5iZdle90wDgMlmocVmosFqwO5wECTXoBDL/mlfW4nIleR2z76FPpP7XOdGhO0Kco0ryTn+t+Ia0b2Gv4Qmq4EUvzDONLXfNgPXgEbvkA7/A0d19VDIpKgVMib378rybUe9bnPPuL4o5f9aJVoukxL6F5LarA77FW2hakzN2HzYkCnlEt67ewKv/7iJJxaupUN0CJP6dkEpl2Cz2TlVVIkIBd/0vgdBcA0ytBcUIRGJuT6iG6X6OsZvepPv+95NTlaK29xfihiVVO41atLudFxRmwkgE4vb6G2TIgJRSF3nTX0VDgJqiRyp2Lujh8lm4fNzGz1usJWmRo43FpMVmMiDaWNwhpvoNjSAu6bcTHFxI50TI7Da7TQbXDpem8PBhkNn2XDokrtCoEZJUmwgn575020bdRFfnd/Eo93HM0eRzcJf9zF5UBf2NOR5eM2maaMYHZzF/C9X0j8tkZKGSo+BmsthsFs4WFfADTE9WVq0y/t7bSfsoDXOtVR5kNzWKDc28PHp31mQOsojNc9gMxOnCeHG+D5IRWLym6tYUbyHILkf93S4jr21ZzlUV0CgTMOA0DTS/WMw2K0IIicLOo7C7nDwZ+Uxj+9Et4B4nu96I08fXQrAkfrzzNj5Ph9mzyZMoeOeDtdxd4frKGypRiS4Foori/fye7lrAbGn5gwfZM+hR0ASaomCJL8wivQ17LjCYtFkt1JmrCNc6Y/BbmmjTQdXtb1nUBKlhlo+z99AvbWFWxIH8lvZIabH9yNOHYwDJ34SBVJBzIMHFpHbXM46xSEenjiOsb07sXzrEWaO6sGOplP8WLyLWnMzSrGMERFd+SB7Dq+cWOUeLhwUmk6zzUSw3I9acwtzkoaw8JxvGy5wOSt8nTOfXdVnKNBXeTyXE5zCA2mjqTQ1sunCd18nVRGgUHP/wbU+f5ufn93A0n73Eyi79Nlvr8plRnx/FqSOJNLPH5VYytxJPak36ZFIxDicDmYmDGBWzBA27jvHXYtW0WI0c7a0mt6WSGxOO0caznNf6kiPIcnh4V0pNtR6kNzLP6ePz6znqU6TuDNlOD8W7aLc2IDJbkUnVfJWj1vaRCZ/cW4jXf1jeb37DM40laOTqbg5oT9jo7NYVbKPMkM98ZoQRkV2RyKI2OnFSu5yGBxmHps5CJ2/jPyWKlQSOcmaMCrs9dw5Mcfj+iUSBOrMLawtO8Si/C1uyZNKLGNSTC9mJPT/pyu+UkFMB79I9tWd87nNeX01WYEJHpKdy9E9IJ6r8U/+34ZrRPca/hL8pSoaLAY6+V85YjBY9s8L8f87EaxTM29MDmGBfiz+84B7MC08wI/5Y3vTt3MCZquNZqMZsciV1BOg+e8V8MtEEtdwRjvT3dHqIBQ+dI96k5UnFq4l74I2NK+kmleWbnQ/P3d0DlMGdCVIcfXaLJ1MxR0pQ7kpoS/ryg5Ta26ha0AsWYFJqCTeSS6AwW4mwz/uikbq/UPTWFr4s8djt47Ici8y4lTB+EkUNHtJBrqI8dFZXh83263sqT3rQXJbY39dPlurTjEsvAuTt73F1toTvJhxE1KxwOmaCuaP78MHXuJRBQHevGsc22ty25BccJH8V/NW8WnWnYT6+dGnSxwfF/5OoiYUnVTFyOAexEnDePj9NbSYLDiA0qtIsSoz1rfbHckM8D7x3xrVpiYW+wjAuIg/K49zd8fr3f+3OexYnXYMNjNPH1mCyW6jq38sD6SOJlYdzLqyw2yqPOGugq0q3U+UMpCXu93E344uxV+i4h+dp3B3hxHsqj6DzekgKygRnPDk4R842VRCv5BUolWBmOxWXj/5M2/0uAWVWM7e2nO8fGIVVqetjca12WZi4dmNPJw2ltNNZfQITOBgXf5VBWxYHXZEgkAnXTTnL4sojlIF8kbGTBROOSEyEQEyNcuL91Cir+Ph9LE02gzYnQ5EgkBJQz1mm40xodmIhYPMTh5MoJ+aQD81CTH+PHHkew/9stFuYXXJfnZW5/Fmj5msKzvMiMgM6swt1JiaeLX7zQTJNNgcDq/Jdq1Ra25GEATezZrF2eYKDtUXIBUk9A7pQLmxnv215zz8oTUSBYUt1e3+luxOB7tr8jxcAqJUgUSqApCLpXxbsJWzzRX4SRWMi8qiV3AKJ/Ir+fsXf9BiMnu4NvhrlBidlz6zl4+v4qVuN/HqydWcbCyhs38MK4p8d9XANVjmwMHZlkqe6DSRZquRl064fMI/yPvda1DR0YYi3jz1Ky92m4ZYEOEnVeInVTI/ZfgFnb6dTRXHyApKuuAM4RspfhF0Co7k70d/5HjhJUcblVjG7KTB9AxIQYNL156mjUIsiFhetJsvzm302I/BbuG7wm1Um5u4P3WU147claCVqbg9eQj79vomumqxnLkpw9lZc6bNdXdqbG/GRWfhL1Nhx4HBakZ1BU3+/yZcI7rX8JcgF0spaK5kVuIgr8Ts4bSx9AhMQHBCmNL//89BXgWCtGpuHtKdcTnpGC1WRIKAXCpBIZOwdMsRvt9w0E2AO8WF8eiNg0mKDEZ1hUqvzW5H4qPC2B4UIinDwrv4nGIHmBnfn/2158gIjEcjlntMqOeX17pJrjcs3nCQ67I6IhIJHqlSV8LFG8VtSYOv+jUykZRjDXkMDe/MnxVttb0AWYGJWA1OapsuDXrdNa4Poa3kHSqJnLs6jODVkz972wUDQ9Px92LE3mI2o7cbr5hBv6J4LxOjs/ll4KPUmJspNtQSrQoiSK1mSHYA8WEBfPbrHvd57ZESxT0T+hIaquIf+zf73K8DJysqd3F/9mhufWkpo/qk0jM0Hb3Rwq+rz3HwzCWyeb6ijtiOwe0eJ7hIf6PFe9uyg1/EVQ2X2Jx2t2esL1gcNqytftMlhlpu2/2xB9HcV3eOfXXnuCtlBOEKHdPi+xCm8Oe5Y8spM9ZTaqzj1ZOreSh1NAsOLOKGHW9yfUQGj6WPZ0PFcZ448j2F+mqui8jgqS4TabQY0MlUgIDsgpZTbzOzrGhXu7Gx26tzeTh9LNurc5kU05PcxjIGh3dqd5hNhEC8OoR6s55JMT050nCeWnMzDifMix+GyqZiya+HqWxoISZEx+eD7qLO2cydhz7l59L9pGujCBTpyDtXwy9bT1HTpCcqWMesEdcRKFxaiByoz/c6pAeuAdNlRbsZHdmDu/ct9Di3sepgXu12M/1D0nxKF8AlmxAQWHZ+F5urTpDiF4HD6WBVyT7qLC2MiujmYelocljbDTe5dGzNbicKqSDmo+w5rCs7zAetBuUADtUXkuIXwTuZtxKkVdJs9FyITB2Uwccll+Q6Z1sqeProUuYmDyNUrkUhllLnRfp2OVpsJtaVHWZN6UEGhqbxbuZtSEVi9rbjX32k4TwNJgOBEg2SC97cIkHk7mBNje8DuIa93jv9m1c5EMDTnSdxz/4vPdwwwEVcP8j7ncfSFXTTxSNC4KG0MTicTr4p2OrzuH4vP8Lc5GEE/ZP8MskvnNsSB/HVZVIMgGFhXegVnIIT+HuXG3jp+EqsTjv+UhVf5sznZFMpLx5fwdnmCnQyFWOiMpkam+MzrOd/G64R3Wv4S/CXqXmqyw3kNpVyV4cRvJPrmrS9Ka4vMxMGcKAun4/y/sDmtNMrKIUREV3RSOQoJf9+q0eFTIqilbygocXIs9+uZ+Nhz4voifOV3Pb6Uj65/wZ6JEcjEnm2fuqaDBgtVn7ZfZLK+mYSI4K4LrMDCpkErfrqKsF+MiV3d7iOYw1FbZK6AKbE5iASBJ448gNSQczL3aeTHegy7zdbrfy6p/0hBL3JQlFVPSu2l3DnmN6oFVeeiPeGi+4FdqcDiSBGK1W2cWyQCGJONBYzLc51Q9lQcdyjwtAnuANPdJrIB0t3ER2sIzkqmFkjsokPD/BIuVNJ5AwJ64xcJOWTM+vdvpBKsYwJ0VncmjioTSuwwWBkX24RSQmBFBna9/98L3MWm6tO8nHeejehEgsiBoam81DaGIK0Kl6ccz1KmRRBEGhoMfLN7/u596Y+bW5+l+NwfSFmrCjlUj772XvlKtBPhdFipZMuvt3KtVoip4t/LPtOlnB3wvV8WHBpOCdGFcTrPWa49bhOp5MGi54mm4kmq4EQuRalWIZOpkIiuOzi2qsWSgSxO5K53qLnb0eW+nQM+OjMHyzqfRd37V1IpCqQV7pN54EDi6i1tHCisYQwhT8PdhzNW6fXsK78CMMjunKmuZxCfTVjonowMbonLVYT3xRsZVd1Hg6cRCj9uTG2D0PCO1+RCDlwurWb5/XVOHGSoAklWO7nMzp1WHgXDtYV8Gr3m9HJ1IyIyCA7MAm7BT77ZU8bOdMPmw5z9/g+/NLnCRqFFgLw49HPfuXQ2Uu63sr6Fg6eKWVkdiqP3jgIp9TB91cIWvmj/AiTYnq2tRzT13Dn3s/5uvddrK846rPDc11EBnKRBIPdTLGhts01I19fxfSQfu7/V5kavWq2L0esKpgj9S4N/Iz4fjRYDW1I7kWcaS7nkzPreXbOddz60lL34wO6JqLVyjhwuqDNe/vbkSX4S9U813UqCerQNrZ9rSEWRMhFEreudEvVKYaGdyav2bfM5yK2VJwiIjYAP4nvooMYEY+lj+PFE23TJHsHp1Cgr273d/7luU18mD2H97Juo4NfJDtqctvtyIHrc5+TPKTdbXxBK1UyI6E/10Vm8F3Bdor01YTItdyc0J8YVdCFxSIMCE2j58BktlSepHdIBz4/+ydryw6791Njbubr/M38VnaIz3vNI/zfuCD1X4VrRPca/jIilf4oxFLi1SGEdfPnVGMxN8TmcMeeTz2M6nfXnOGLcxv4KPt2EtUhyK/CI/P/F+rMLVTUtbQhuRfhcDp5/rv1fPXINAL9LlVE65oN/LD5EF+u2+vRunt/1Xb+MXMEfTvFtwlB8IUQhZbPes3lj/Kj/FS8h2arkURNGLMSB5KkCePbC36KVqedxw4tZlm/B4iWBOFwgLUdj8uLsNkdbDl6jlkjsv4y0bU57FSaGnn/9Dq2VLmGOAJlGqbF9eGGmF5YnXbMDitWhx2tRMWdKSNYcOBrJsX0ZGbCAE42liAWRHQLiMPhdCIXSeiZGkO/zgmU1jQSrFOh9RLlHCDXcF1EBr2CUzDYzVgdriqFr+GO0upGHv9iLR8+PIFAmcbnjeqdHrdwrKGIl0+s8njc7nSwsfI4FaYGXu4yndGPfNXmtfdN73vF8yUTSRFwVakf+NizIh0ZpOW+qX0JCVVyzlyOxW7j+Ywbeejgt22GRcSCiGe6TGHb4UJe/GYjr88bw4KOIznTXMHw8C501Ea6qzImu5UzzeU8e2w5Ra1a8t0C4nmmy2TClf7cFNen3WrY4LB0RBdcQfQ2k3ui2xfWlx9jYFg6a8sO8XX+FqYn9OP90y4ifryxmK4Bce7I6e8KtjE/ZQSrS/dzS8IAqs3NPHhgkUcYQ7mxgXdOryVMqSNGFUR+S5WvP32hqunCqpL93J86indz1/Jq95t54tD3Hob54Ooi3NXhOsCJQixDccERRiNRsu5grk/N/oerd9IjOZrkmECWbT7mQXJb47d9uYzI6kDnjqE+ifZFmB02r+4rAI1WA39WHOXG2N5860VqEiTTcHvyELQyFT0CE/jJi4Qmt6mMCGWAm/SXGeuRXvDFrjQ1ttkeXC35Dn7h1JmbGRbehRtic/j07J/tvo8/yo8wL2UYAAF+Sm4c2I0b+nfhtoMf+nxNg1WPWiJnalxvVpfu97ndoND0NprrjRUn6BWc3O4xgWvgzGC2thsPLwgC3QLi+TJnPp+f3cDBunwkgpgBoWnc2WE4r5xY3e7fqDY3IRIEMoMSEQsiDD4WhK3R0o505GpwscP2SNpYLA4rUpEE1WVFpIvbTI7L4WBdgQfJbQ3X9fw3Hkob61U7bLPbaLGZkYolbRI5/9Nwjehew1+GWCQmRKHFbLcSLNfSxT+GJw//4DWNSW8zc9/+L/mh74J/W6JbZ27mVH0Zf2wuaHe74upGmg1mD6K7/3QxC3/b22Zbm93B3xetY8lTM66a6IJLW1piqGVu8jBUYhllxnreP70OsSDijR4zMditrC7dj93p4JuCrTyQOhqlXEa/zgn8vt/3cIVEJCI6WEdFbTNVDS0Eaf+aj2K5sZ61ZYeZlzKMBakjERCoNTdjddipNDXww/mdbisfuUjKY+nj+CBrNr+WHMBgNROpDGBHdS4/Fe1BJ1MxPb4vOd1iWPDWzwiCwMS+nducB73NTINFj0QkRi6SoBTJiFZqvFoVAdQ26/lo9U6cTvh58ykmDuzJh2faVqPkIgnJ2gie27nC5/s92VhCqbmWQRlJbD7iqYszma10D0jgUL3v78uw8C4oRDIyU6J58IYBvLdyOzaHg5gQHa/eM5LX81dz7PClataSvgtY3OdePj+7gZ01eThxkhPcgTuShlJRrufNJRsAeHv5VhY9Oo3JsbI2cZ4lhlrm7fm8TSv2cH0hc/Z8ynd97iFVG0X/kFS2eYnlDZb7cU/H690awiqjd0LUGuXGeq4L78bU8L5YLQ6ClBriO4WxtGIHWqmSAJmah9LG0DekI1urThGu9GdkRDeabSbeyV3rM3Hs47w/eLrLZI8Y2csxMrIbeU0uIn5eX025sZ5ewSm8k7uWF7vdRJmxjiP155GKJAwL70yYQsc3+Vv5pfQgX/Sah1QQ4SdTUddk4Os/fBMuiVjE/rxiIoO1/LDRt7QI4Mt1e3kzeQxRqkCfhBJcVXpfg6XgWkC81O0mjHYLa8sOYbBbkApihoR35q4OIwiSqWmxGonXhOIvVXuVeHyU9zuvd5/BAwe+ocGq56tzm3m68w08fOhbTJfZ3YkFEa90m06wXMvzGdNosRlx4uScF+eT1jA7bFjsNn59YTYSsRidSo5ZsNFJF41GokAqElNmrPNwC4hSBhIgU3OwvuDC4N3GNvuNVgVya+JAHjz4jcfjB+ryuaeVhtwXsv2TaDaYCNFp2nTgLkIplvFR3u+IBTEPpY1BIZbidLosCSsMDVflUOBwOhFfGNBN00VfcfvMwCtr6a8GSokMJe3fT2tNLXxX0L4mf1PlSRakjvZ4rMliwOSwsq7sCMcbilBLFUyK6Um4wv/fzkXpanGN6F7DPw25WIpcDDWWpnZbUI1WIwfqCrguMuN/8OjaR71FT4m+ltymMlK04RyrL6bRS7LR5WgxXdqmqqGFL37zPVDhdMIXa/fwxLQh+PtdWRdbbWrivgNfU6SvYVnR7jbPP3NsGX/vfIO7CrK/7hxGuwWlREav1FgC/VTUNRvavA7guuyObD9egM3hQCb5az/7WlMzTiBBHcITh38gv6WSsVGZ3BTfl1pLC+daKrkuIoM5SUNYWbyXRQVbeO74TwwMSeWJzpN44fgKtl9GrPbWnmVIWGfef3A8hiY7Aa3OT6NFz0/Fe4lTBeMEVhTvcfu93hDTiyHhnb0OdDicTvbkur6HGw6d5dbRU1mjPkjhZa36G2J6UWduuWJrfHXJfsb06dGG6K7aeJK7hozgzr2fe70ZBsjUTIjO4pUTq7gpvh+j+nbk+uxUthw9R5fUMJ7NW9rG7H/ajnd5pfN0ZoQO4u7k6xEJYDLbcVqdyDQCHzw+DsEqYsWm4xjNVo+Fit1hR28z807uWp96w1pzM7+UHmBGfH+e7DyRTZUn+L5wOyWGOtRiOWOiezAzYQCBEtd+65oNSOxXdg2JVAYSLwpnzus/Ut/iIjNxYQHcNakPSYpQGqwG7tz7OR21kcxKHIhUEDMtvi9Wh40z7VSLiwy1WBw2psb25kcvThMJ6lDmJA9h7p5P3Y+9cfIX7uowgqc738DS8zsRcA0JdfaPoURfx337v3b7fi8v3s2E6Gw6XWj3FlR4HwgcnpXCbWOz2FF/iiar0UNT7g3nK+uROCTMShzEwTrfC6FRkd1Z70O/Dq7OwvGGYhRiKT/2fxCbw45UJEYiiN16bJPDxtqSg7zSfTqPHvqujQd3ncVVOV3c91721Z5jc+UJ8prKWNznPn4s2snmypM4nE5yglO4NXEgDRY9M3Z94NbyLu5zr1eP7cshFYkJC7oki3DYnDyYNoZDdQUY7VbSdJEYbVa+OLuBclM9z2fciMFu4eUTq3gobQzvZN7K8qI9nGkuRyNRMCIig5zgFJ49trxNZbzZZkKEQL+Qjmz34ZqQHZhEmEYHFoGaxhZCA7wPfyklMm5JHMjUbW+zssSzWDEsrAs5wSntdj/UErnH+dFJVe0GiwTL/eiojfT6nMPpoMFiIL+lkkN1hWilSgaEpSEXSdtUW612Ow4cbRa6l8PqtFJxBU2+zWn30OQ3WQycaCzhkUPfecgw1pQeJDsoiee63ugOnPlPwjWiew0eqGs2YLHZcTicyKUS/FRyZO3onADONFUQJPdjUkxP+oV0vJBK5bJvWVG8l2pzE4fq/32Ibo2piQUHvuZMcwWf9LyDRflb8BMrSYqOYKuXRLOLEAQIbkUwnE4nZ8va6mlbY/+ZEsxXISsAKDbUeLScL8e+2nOYHTZyApPZXXeWdG20O37XX63k8wcmM+/dn6hp9Kzu5KTFMnVgBne/v5IgrYoAv6uvMDdaDNicDtaUHnQPQdyZMpxAmYY7dn/qYYsVLPfj1W43Eyz3483cX0nTxbCx4ngbknsRGyuPMyA0lesiurkfa7GaWJS/lWS/cPbUnmVVq/x5pUTGmeZKmiwmJsf1RCfzXZW22uw88fE6Xpo/jZ9r9rG27KDbTqp/SKqH3ZcvmO1WAgIVJEcGkV9Ri+MCp1284RAjeqfwRveZvHpytUeMbJo2ime6TmFDxXE2VLn+PZU+iUGh6dzQvytH6s/7TLRqtBhZ9ssuTpyv5L37x/JH0yF+LT/grr4FyTTM7DMQscIltTHaLfxSeoBaczO3JAxkX63viWyANaWHGBeVRZDcj/FRmfQPSXPLFGQiiVvj53Q62XGiED+dlAR1aBv7qtYYHNCFr9ft48XZI7n3g5XYHU7OV9bz2Me/8fr80TT7NzIioiurS/Zz/4FC/tZ5Ev1COlJwBVcBgB8KtzM/ZQSZgYn8VLyH/JZKdFIVoyK7MyS8M7+XHvYYrnPg5IO838kOSkYQBELkfpzX1/Bl/qY2Q3hnmis4r68hUhmAIAhIRCJsDs9Fy5AeyUwY2ZF5Rz7BaLeQpUtGIZNgsvjWYQb6qXA4nKRpo7g+IoN1F+zQWiNRE8b46Gzm7f3M536ygpI43ljM8qLddFbG88anO0mOCuK5W6/nwqA/KrGMMKWORflb+DB7Dgfq8jlYV+Buv0epAnnm6HLeyryFkZHdGBzWyfVeBRGzEwczI74/AgIqiYyjDUXcf2CRxzGsrzjKxOjsdoNfuvjHuiua4LKf/KloD1+e2+RRre/iH8tLGdNwOF26apEgYHc6eO3kz8SoghgfncX0+L4oxDK+LdjKZ2f/9LqI7OIfy8mmkgsBKUKba0tOcAp3xYxk5vNLqG0y0CkujIemDCIhPACdl3mJELkfX+bMR283IyCQ21TKyuK9bK46ydyUoSw8t9GnRv3GuD4eFoghCi2vdJ/O/L1ftJFM6aQq3s+aTYAXS0e700GxvpZ79i30kNu8lbuGCTHZzEkajFaqosVqotxUz88l+7E4bGQHJZMTlIxWqkTmhfRKBAkhCi1nW3xbgYoFEdJWHTKD3cLDB7/16l6yr/YcX57byLzkYe1aU/474hrRvQYAWoxmThRW8PqyLeSXu8ibTq3gpsHdmTowo932e6hCy9s9bmFx4XZuP7cZq9OORBAzKCydN3rM5LWTq9FchSfq/wQaLHoeO/y9m2wEyNScbiqj2Wri854D+GbdAewO75ZYvdPiPPx1BUFAEMDpfXOAKy4SWmNH1ZV9HQ/XF3Jb0mDmxV1HcWkT36w7SKhOw8CuiYToNHz/xHT255Vw8GwpcomYgRlJ1DUbWfChy9/ykSkj0CqvXm91rrmCcGWAO289XRdNil84Dx38ts22NeZm7tq3kCX9FrDk/A6GhHfyul1rLC7cTo/ARPdAhMFuZmdNHt0D490kN1jux+MpkxAbJWzam0+h1cyW+gL6pCYQoFEiFrlutCKRQE5aLDtPuoZpCivrmffaSsb1TePdnrejUkrRqRQ024xoJArEgqjd9mTPoGS0MiVP3jSU8EAtxwvL+fui37HZHew+WszkQV34ImcelcZGai0tRKsCUYplrC7Z55FP/9qp1W4/6d/L2hIfgI7aSDJDEyhPNjN2QCrfVm1mW41n277W0sI759YgkkJOUApTd7zjfm5CdLZXKzelWMag0E6Ey/wRRIJb0yoVSwlTeh9OatSbWLHtGODkoRnjeOjYIq8Lg+kx/TicW87Pu0+SGBnEgC6JbGpV/X5r6TZevncEevUlXeKrJ1YzaPAThCv8r2g/F6MKRiQIyMQSJkX3xE+mRCyIiFQGcKzhPB94kaWAiwAu99IRaQ2NROFyWwBEAgzqlsSfBy8ROpEgcPu4bO48+om7Cryl7gQje6Wycttxn/udNrg7Oo0CsUjEQ2ljGRbeha/yN3NeX0OgTM3k2N7kBCdzrKHYJ4GSiySMjuzO/L2ueGJBcJ2n7ccL2ZNbxHVZrthtsUjM8IiufHr2T27d+SF9QjrQwS8SOw6WF+3meGMxc5OHopEoEAQBZSvpWGuf5CpTI2+c+qXNcXxbsI0VAx6mq3+s146dTCTh0fRx7u6KxW5jTelBPj6z3mM7hVhKoibU7WpyurmMFE04oXItVeYmig21fJD3O2JBxJc58zndVOb1dykWRNyRPISP89ZTZqzn7g7XMTtpMIfrC3E6nS6trEXCPW+sdlfeT5yv5I63fuSj+yaRmRKNSHSJlJvtVuosepYV7WJL1SnsTgeZgYn8vctk/CRKqk1NvN59Bk8c/r5NUMPIiG7cFNcX+WUWixHKABbm3MnBugL+KD+C3emgX0gqA0LTXQOhXmRXjRYDd+z5tE3UuBMnK4v3EiBVc11EV1aV7OeH85csD38rO4xOquSD7DkkqEPakN1ghR/T4/uyqx1f3f4hqYhxnROjzcLK4r3tWvT9UnqAWYmDfD7/74prRPca0BvN7DtdzEOfel7sGvUmPvl1F/nltTw+bYgH2a02NSEATlw/7tm7P/bQpNmcdv6sOMaR+vO8lXkLctG/RxRwg8XAsVYXbTEiNBIFNeZm1lYf4MlbhvDioo1tggyignX8feYIj4EpsSDQs2Osu13uDUO7p+B3lcRS6sOXtjVkIgkhTn9ufu0HzBYbw3t0IFCjZMOhM4ToNGSnxtA7PZ5GvYkThRU89eVvVDfq8Vcr+PuM4QzKSHJb7lwJjRYDDVYDB+sL3YRkcmwvDxJ3OcwOK98XbufR9PEoxTKvDhKtUdBS7VEROlBbwPWRGawqdpFcf6maNzrdyuuLtnIk/1Kre82eU/irFXz+4BTiwwIRi0UEadTcNb4Pu08VuT+/ZoOZH/48QkpsCM4gM0tP7WBMVA/6hnRkWHgXdwDB5VCJZXRRxjPt2e+wO5yo5FJuGtKdVc/OQhAEVHIpaoXrczXaLGytPsWvJfvZXn26TfCH1WlnS8VJJsX19EnsFnQcySOHvuPlXjNoshnYdti3NvXTM38yNLyLB1FsshqJUPp7VC5nxAxgRHA3ft+TR15pPQF+SqrVRkQBYq/VrYtwOJ0YzBbOlNawct0pvp50FwvzN7K56iQ2p52O2kimRfRDaJDxzI8uUvPjliM8duNgD6JbXteEyOYZCmJ12tlSdYrewSn0DEpiTzut4TFRPbhn35eEKnT0D01DYZJSYqhlU+UJnukyhTuShvLD+R3uAZ8AqYqH08ahFGSk66I52Vjic9/XR2bwa8lBRkf1QKdRcdfYPmw/XuCu1uakx3Gg8SyGCyQX4Jfy/bw/7Ha2Hy2gurGtJjY5MojhPVLcCy+dTMWAsHS6BsRdSD8TsDvtTNjyBs9n3MhNcX1Zcn6nx3dCLZHzXNepLC3ahd5uRiGWEiEPoKrBJbP5+vd9ZHeMcc8J+EtVfNZzLnfv+5Lt1ac92vnjo7OYEtsbMQJVpkbqLXrOt1QTLPcjRh2MRqJAKZFhddgp8eLlbHc6eOzgd7yeOZPvC7bxc8kBdwene0ACD6eNcS1YLnQFWmymNkEXHbWR/K3zJH4vO8LTR5bSYDWQqAnlxrg+vJd1G7N3f+w+x3angxeOr+DlbtP5+Mwf7Kk56z43sepgFnQcyfbq025pwEsnVuInUZCijQCg2tgEeZo28hK7w8lLP2zk0/snu+0L7Q47ec3lzN/7hUeLfnt1LjuqT/NEpwmcbiqj3FjPe1mzKTfWc6Au39VRiOqOn0Tp7oBcjiC5H8MjutIrKBkn4CdReBDs1nA4HWypOtmG5LbGsqJdDAxLp29IRw+iCy5Z4N37FrKk7wKCLyO6jWY98eoQPu05lx3VufxccsBDyx0k07h8fRWuhUqz1egzevsiTHYrLTYTIfxnaXWvEd3/46hrMlDXYuDlJRsJ0anRKOXUNOlpNlyqNvxxII+5o3Pw1yipM7dwvLGYr85t4lRjKTfE9EIjVfgcvKg2N/Fr6UFuSxz4P/WW2sXhVt6WSrEMqU3C8JAMPtf/yZKSHdwSO5Avn5zCqi0nOFFQiUIm4fqcjgzv1oFgresi6XA4qG7UI5eKuW9iP2559QevVWCNQsaMoZmortLhYHh4V75sJxFJLIjoEZjA7BeX0yM5ijvH9GbDobOs23caBOjXOYG0uFDC/DWM6pnK4G5JTKzpgkImISzADz+lnGajmZPnK9l3ugi5VMKAromoFTKvxMfmtBOtDPJIEErUhHksFLxhS9Uppsf3w+50opEo2p00DpCpPYhQs81IqFzrJsgzYwaw6OeDHiT3Ihr0Ju54axnL/3Gr+8YfFazj1bmjeGbRevQmCyOzU5k7Jge5RIzd6aSHNpHNDcewOu3c2/F6yoz1bd6PSizjlU4z+HzVXvfnajBbWfjbXkwWG3Ou7+kmuQDH6otZ1A75Bygx1mK12RkS3rnNlHyiJpRmq4kCfRUOqZ1tNSfb3ZfebuZcSyUjIzJYeyFed1XJPqbG9ubd078BMCduKAF1gcz4cInH+T1XVstDkwcil7ZQXN1AkFZFXFgAfko50gsLIJVcSpeECM6U1vD73jwm9ulCan0y0zr3RyQIFFU18tOK4xw6e0mLWFbb5KGzvgirxcHBy4z9Swy1BCsyeaLTRObu+bSNO0KKXwSPpI3FT6rk6953U2yo4dljyz2uMc8c/ZHPcubRJ6QDRrsFlVhGiCiA9fvzeDF3E/MnXMcDx772qllO00YRqQwkShWIUixFIhbhr1Gw8KGpvLD4T04VVREf7k+u0VNr2Wg18Oq5lbzzwAS+X3eY9fvPYLHZ0ShkTOzXhVuHZ3k9B639bOvMLS6LxiNLmJ8ynBUDHmJd2WHqrXoSNWGkaSNZlL+VjZWuqvENkTn8vjvP3TUqrWnE2erzFIvEJGpCWdJvAScaizlQV4C/VMWIiAw0UjkyQUKhoYYnDn/voVUPkKl5otMEMvzjsLYzFJfbXMb07e/xdOcbuDmhP1aHq1snFoQ2Hqy15mYPnXCQTMNTnSbyyMHvPOQ9Z5oreOH4CoaHd+GD7DnM2f2Jm9CeaS7nuWPLeSFjGqJUgVJDHVqpEpEgUGao58fznnrtZpuJg3UFiAURd8eNZMFXbSvT4NJOG82XuhKNViNPHPreqx2YEydvnPqFhTl38m3+VgLlGlK1kQwJ79xm2/ZwNe19vc3sTq/zhWabCZPdghMnQTINtZfNFjRZjeyszmNcjCs8x1WgcA0f7qk5A4JAv+COvJc1i6VFu9hUcZxRUT24NWEgga2OUSyIUFxFQUrmJU3w3x3/eUd8Df9laGgxsmTzIQZlJPPKnFEYzFbqW4xEB+uoadSzcN1et1n+si1HmD8xh+8Lt3uYYvcLTeW5Y8vb/TtrSg9yS8KAf+lYa4zNWBxWygwN6GRK/GVq/GVqn/GvviBr1ToaGtqFZVuOMiInnTWVBygz1vNN0RZ+lu5ndLceTM9Jx+500CcykWCVi+TWNhnYfOQsP2w6TFltIy/PHsl7d0/g2W/Xu6suAAnhgbwyZxSBflcv2dBKlfQKSvZZ5RofnYXN6iAm2J/pQ3pwx1vLaDFdqjgdzS/n+42HWPjQVOLDXJ60of6XBjEq6pq554OVbmkKwLsrt3F9dioLJvbHX6Ok6YIm14kTkSDgJ1YSq2g/QehyOC9otI/XFzEmqgdL2gluGBuV6SFr6RmUhFgQESjXUGqoI9s/hfcOLfH5+ga9ib25RVyfnQqATqUkJy2OFc/cit5ooclg4tlv/uDwOZclVESglluGZ6IKUqDHxHNdp1JlauTnkv2Y7FayApPopIjji9V72XioreZ16abDzBjaw+OxKFXgFc9JlDwIAYEETQhx6hAPL9tkv3D3AsxgN9Js851nfxEGm5l58SNQiOSsKt3L1qpTjIvOYnRkd/bUnqWXpgNz3l/uIavp2yme2df35B/f/MH5yksaQn+Nkn/MGE5Wx2jUCjl2u4PJ/buycscx1xS6wcyyTcd4Z5lvb1iJl4qVSBAID/Bj9xnP73OiJhSAMLmOL3vNZ+X5/ayvOYIYgac6T0JvM/Nl/iZqTM1EqgKYFteHL3Pm89ihxRxvdCVUzUkeyncF21CJ5dwQ0wuL2cE/vv2d3Sddi5aQABVvD5zFx+d/d1d25SIpU2NyuCmhL4X6ahZ0HOX29/bXqJBLJLx15zjMVhsiMXxb3nbxcqKxmAdOfMW4ntl8cf0N6CQqECDUzw+J2BUBW9BSxammUgJlanoGp6AUy9z2TDqpirs6jODZY8v5IO931pcf4+VuN7G27BC/lR7ilQt2d2JBxMTInvSUpXL/n5fIW4i/hksCFGi2mrA5bcjFUvqHptE/NM3jeKtMjczd82kbj+Z6i57HDn3PJz3vIF4djEos86het0azzcipphJ6h6S0OwBlx1NuMDGmJ4sLt3uQ3NZYX3GM0VE9+GXgY/xecZhqUxMJmlA6aiP55MwfbK8+jZ9EidFuYUpsL6bH92dUZLc2dlliQcQz6VNZv/OsO+THG1ouhFq0WE2UGGrbLLBaw+KwkdtUxlNdJqH0kUb5X4HWn2W72wkulxutVNWG6ALsqT3L8IguOJxOcptKeeDANx6LvNWl+/mt/DAfZs/hnpTrkYnE+Mk8ixtBCj/GRGX6jGUGl2+31Ifrzb8zrhHd/8MwW21olHKqGlp46fsN1DRdMM0XCXRJiODJm4bwweod7M8roUFvwmCztkl+UUvkNLTTdgFXS+tfSdcuM9Tz3PHlHlPMkcoAHk+bQJo2Cp3i6oXxmUFJ7pZvrDyY3QVV7DxexCt3zGBhyQa2V+fSYNWzuHgbXf1juSt+JDajE1QukvvkwjXsy7vUEn3gk1+4Y1Qvvnx4KrVNBqoaWogJ8SdAoyRYp/bplekNIQotz3Sdwhsnf2FT5Ql3C1wqiJkYk81tSYN54sPfuGt8Px7+9BcPknsRDS1G7v9olVe/33nvLKO42lUV69Mpjpuuy0CrlWETHJjFFiqMZvbXnuPjM39gtFsZHt6F22KH0C8ojU/y12NzulqcqdpIcpu8e4mCi6yCE7lYwoyE/mysOO71phKpDGBybC/UF6IoGy16CvXVLD+/mzFRPagwNlBS1eBTM30R244VMLR7irsiqZbLkUkknC2t4b4PV3m8vryuiVeXbuJsaRemjOjCGVsJSZpQ5iQNQSGWceRUBTO/WOLzb9ocDvbnFTO6V7r7sWhVIEFyP5/JUzKRhAHhachlEuRoeT/rNh46+I1bJ253ONyeriebSugRmOAxhOcNKX7hPPLeGoZkJfNs2o3849RSHj+0mEfSx3FH/DA+WbnHg+Qq5VLuGd+Xue8s9+jWgOs78+CnP/PlQzeSkRSJ2WpDKZPyt5uH8eLiDWw9ms91WR34cp3vYxrULYm9l0l4BmUksas+z0NvKRdJyQ5y+aA2GkzMf2slqbGh3JMzhk4J4bx6YjVbqy/JNs62VLC16hRjozJ5tfvNzN79Mfd2vJ6swCSGhHUit6mM544vZ4Ksn5vkAqzYeoLT52u46bqBJCUHIRKDTqnEgZPfyg9zuqkMnUTFxNieBMo0BMo1KBUylK26L+MlWW2m8QHqLC18fX4TK8v28GaPmUSrghCLBfJbqlhw4GsPpwCJIGZuylAmxfRCK3XpyQeEpvFo2jg+zPud081l3HfgK+5MGcGA0DSO15WAHbpo49h2uIAHfvnFwyP7psHd8dcoabDoyWsqZ3HhdmrNzcSqgpmZOIAoVQBaqet3b7CaWHZ+t88gEidOPshbxyvdpjM+OosffCxIZSIJE2N6XnHKP0SuRS6SuvXc/UNTuX33p+2+Zsn5nTyRPoGZCQMw2MysKT3EvD2fu/dhc9q5LWkQ46Oz8JepeSB1DLcmDmJ50W7qLXrSddFcF5HB0dMVfPeHb+s3kSAQrFNTb25hR3UeBvuVHXYKWqr+W0kuuO6f10d0a3fgL0CmRkAgVOHv0ylGJpYgFkTobUaeOPyD106GxWHj0UPf8V2fe/GTeXdO6BYYT6Im1Kd/9X0dRxLoJY3y3x3XiO7/YZwtrSEhPJD7P16N0wkpUcHMGJZJcmQQTQYzCpmU5269nteWbiQjMYJddW2HpcpNDSRqQn1OkgPEqUPa6BavFjWmZubu/Yyqy6QRZcZ67j/4NZ/2nEuGIu6q96cSyxgb1YOfSw9gdlpRK2TsPV3MA+/8yo3DMri9xzCXZZdYxunz1by2cBtv3TkWh8PB5iNnPUjuRXy+dg+fr93D36YPZWxOOlLpP/+zCpL78VDaGBakjuJUYykSkYjUCznqWERo1UrK65p82oiBy++3oq7Jg+ieKal2k9zbx2aT0lnHGwUrKT3n0uaJBRGDQtOZlzKMdzNn8cP5naws2UdHTSQhhmAeSRnHK3mr+KloNzMSBvC3I96rrBJBzOTYHKSCGH+ZGpEDvsi5k4/y/mBDhUsyIBdJGBGRweykwUhEYow2l0VaubGBxw99jwMntyYNIlUbiVR65eqBXCZu45XZ0Gzk+e/+9ElYf9p+jOlDu/PpmfU0WQ081XkSg8I6cbr42BWJtfGyqfsAmZpXMqazv+4cvYJTEHCRoVXF+9hZncdDHcYhEy59J8KV/ryTOYtqcxO7qvPoFhCHVqriq/zNvJW7ljWDHkcnVbYZgLmI7gEJSAQxVQ16Plixk7sn9mZSVC/WVR4mWO5Hs9nM0cukHiOzU1m7N7cNyb0IpxPe/mkr79w1HocTFv6+lyA/Fd88dhN/HshjVM80ft19yqNrcRFKuZSZwzJ5/ItLka9JkUHMndST+49/6X5MhMALGTe6De6rG1ooqKinoKKeoZkprC8/6kFyW+OX0gMMCE1jSb/7UYgkiEViKo2NPHpoMfcljuLnX9u+7sT5Sv722R+IBIFvnr6RXGspTx5Z4tGuXla8m6HhnXkkbVwbG6dQubbdDssdyUPRSORopArqLXrm7vkMvd2MRqIgJzgFtUROmbGeT/LWEyLXcn1kN8SCCD+pkjHRmQwJ70x+SyV6m5lETRhaqYLwkECeX/wnrx/f0yYEJi02lKE9UmiyGXnm2DJ2tgpTyGsu58/KY9wc349bEwfiL1PTZDOyqdL34BzAsYYiHE4HtyYOolBfza7LCJdcJOHNHreguYrAAJVYzqSYnm4dqcPpbHewCaDC2OB2/lBJ5IyN6sHQ8M5UmhoRcC3+NRKFm2TrZCp0MhUPpo7B5rQjE0kQBIH0aBeZvXy24iL6dopHIhZxuL6QL/M3cm+HkVd8P7HqttHcFpsdiUjk05v3r0IQBHKCUwiRa6n2UWG+Kb4v26ty6RoQ61PLOy4qE5lYypHq0+1Kxeotes42V/j0ww2W+/Fe1m28dvJntlfluu/boQodD3QcRWddLJKrmCX5d8N/3hFfw38ZgnRqXv5hA06nK7Zx1ohs3vlpK0cLLt0kszpE87ebh6FVyXnh9E9t9vFzyX5uiOnFKyd9p8hMj+9LsMy7l6HBaqbZZkIQXDfC1rovq83G76VH2pDci3Dg5L28tbzSdQYhKu/7vxx+UiX3drwemUjKrvo8pvcZwqYj56isb+G9ZTt4b9kOJGIRNrurChUfFoBCJqWmycD3VzCL/+TX3fTrkugeePhncfEcXB7NaBXbGZ7ZgdPFV7Zmyi2uJj0uHICGC6R4zsieFFfV07FLAE+e+N5jCMbudFBkqGV50W6mxPZmUFg6zVYjH5z9ne8z7+fU3ko+yriD5eU7Mdkt3Nvhej45s97jRqYWy3m6yw1UGBv5reyw2//0toRB3N9xJPd0vI46cwsOnGypPOkaRLFZmN9hBNeFu6bHL15Ynz6ylNe634zOqUGjkHmtXl/ExL5d3ANAF1HbZKCivv10qpXbj3NLzwG8eHKle3I8u2NMu97IABmJER7/N9jNBCn8KNLX8OW5TViddmJUQdwY15uH08YiR0qgyrMKEqLQEqLQkq6LpqilhlNNpeQEp7C75gy7qvN4L2s2d+37os1kfqwqiOe6TmHDrnO8e/d4/vbVOhb9doCv/zaVWSkDabQYyK+rRinzrL5ldYjmk1/b+tG2xtGCcqx2Ozhh3d5cbA4Hy7YeYXhmB46cK+Oj+ybx9k9b2XXyvJtQdE2M4G83D+NEQQURgVoSwgMZ1SeVzORofijbjsluRSWW0Ssohbkpw4i4kKoIuBdeAKmJwbx3YFW7x7cofwvpOpe8wuaw82vpAWxOOzqJyutw2EUM7Z6Myk/C4zu8V7o2VBwnUR3GrKSB7vhjcP0On+k6lc/P/sma0oNuu6xQuZZ5KcPICU5BK1UhQuCXC5ZPD6aOoWtALFsrT9Fg1TMiIoNH08axrGgXvYM7uMm0QixFIZYic8iw2+3Y7S65j59GwRPThvDdhgOs2HaMFpOFAD8l0wZ1Y3L/rmhVcn44v8OD5LbG4sLt9A3pSFZQEsAViSa4rqOBcg1Pd76BanMTK4r3oreZ6aSLYUREV2SCBNlVaDeVEhm3JQ2m2tzEnxXHEAkiJILYp7czQJhC56H5VEhkKCQyr0ldrSEWidxuAQAqhZTnbr2Ovy/6vQ3ZjQnR8cRNQxFkDr44toESQx0BcjWBMo3PCqlEEDMgxCUDMVtsNJvMbDp8lsNny/DXKLmhfxeCtKp2hzqvFgEyNZ/1mstDB7/xqKRKBTE3xfclXh1CqELHm6d+9fr6dF00MSoXKS+4QsAHQIG+yu0C4w2hCh2Pp0/Anman3NiAWirHX6pGK1H824Y+XQlXTXStVitPPfUUK1asIDAwkDvvvJPZs2e7n6+srCQyMhK7/eo8Q6/h/z90KgXHCioI1qqZOyqHee8sR38ZodifV8Ks15fyw5M3k6aLalNx2V+bz4z4/gwN68wGL9WDgaHpDAxNbzN1anPYqLPo+b5gO79XHMVgM5OqjeS2pEF09IskQK6hzqzn98rD7b6HYw3FOIQrJ9h4vG+Zmrs7XofRbsFstNMlIZxjBZcq0hdJriDA49OGEKBRUt2op6y2/aSomiY9f0Gp8JchlYjplRpL1RUIHIBWLafJYGLHiUKWbTlCs9FMx+gQ7pnShweOLvIguf1DUpmVNIgSQy3F+lpONBaTFZREcmo447e+zsa6Y/RMieeFzzdwfU4K6bEx+AXKGR7Rlc2VJ6gxNxOjCiJFG8G2qlz6hHTg5+OXkqa+KdzKsIgu3Lv/K683lndy16CTKlGJLl1E6ywt3LVvIY91HM8do3vx9k/eE366JIQTE+Lf5vH2Kt4XUdOkJ0McRLjCnyilS2cbHxZAVLCO0hrvn3V6XBj+F25ujRYDBqsZBFe6Xr/QVOqtevbUnKXYUMsbp37lRGMJD6aOAVzuDK2rLTqpCrPNxqL8rWyrPsVbmbeglSp5+eQq/t55Mj/2e4ANFcfYXXMGqUjMyMjudPWP47MVe1m+7Sixof68NHsUc99ehloh4/79i3iq80Q21R9jWM9kTpdcWhCJRJcWb+3B7nBwrrzW7SlrMFtZvfMEq3eeIDJIy/Qh3bl3Qj8sNhsajYzjzUX80XSQIQkZdE8Zzv6WM6ys2sYHB+uYEJ3Ny91uQiKISdCEIhWJMdmtGGxmRIKIxPBAdxVOJBJ8xjVfRH5LJU6c1Fv01JiaqTY3kaAOpcGmJypI66E7bo1ZYzJZWby3XcK1tGgnE2Oy2wxYBck13Jk8nDlJQ6i3tCAVueJQtRIligs3/Xqznq1Vp3il+3R2VufxVm4rQlK8F6VYxus9Zrh9CO12B/V6IwXldZwqqkKrktMxJoTDZ8vI7BBNdLCO+WP7MHNY1gW9O/ipFEglYmrNzfxQ6Dl5fzm+OreZRE0YCpGczIBEfjUe9LltrDrYTRiDFVqCFVoe1oRhclgRnPBZ3p+cN9YQrQpiVuJA1yCaSIRKLEfmpbLnL1PxaPo45iUPo9zYwJCwTvxR4T1aGWBGwgAPq7N/Fjq1kr6d41n+j1v49s8DHC+oQCmXMjanEwO7JhKsU1NpbHR3HhcXbOPR9HE8dWSJVyuzR9LHopLIMFttHC0o574PV2K22lHKpWR3jGHhb3uJCdFx05Du/zLZFQSBKFUgH2TPptrUzOH6QuQiKV38Yygx1JJ2wS99SFhnClqq3NcQEYJLBtNpPMEXFuphCn+ffydC4c8dycPoGhCLwWZuEx3cGsEXnBjCLiu2/Kfiqonuiy++yDfffMPDDz9MQ0MDDz74IHv27OHTTy9pcJztGYpew78fLpCyCX078/3Gg21ILoBcKgank8UbDjJndA6OC5OfDVYDv5cdoUBfxd+OLOGtHrcyK2YIJYZa8gxlnDNUMDmmFynaCK+r8wpjI3P2fEK95VIl5lB9IYf2f82tCQOZFt8HJ07Mdt/m7BdhdzqwWu006I20mCyYrTaCtCoUUonPrHO1RO4aEJHDO/PH8+HPO/l190ksF9qFCeGBPD5tCOlxYQiCgMPhINRfQ0lNIyE6DWKRiOrGFg/y4K9WtOup+18BjVLG8KwOvLtyu882nVwqpnNCOL/uOcEbP17SVOeX13LzmAyPQajRUT0YGtaZBw9849EWk4skLEgdxbe972Hmrg/4sc8DfPrADegdJiRSgRNNJUhFrkjSenMLf5YfQyNV0C0gjkcOfucRMdo/JJXdNWfaTSL79MyfPN35BtZXXkqLsjhsvHhqBc+nT2P+hBy+XXfQXdkVCQKDMpJ4cvpQrx7PUcHePWJbIyUqmGprI2/2mIlOpsJosSKViPjgnonMfXtZmyphTIg/b8wdQ4i/Br3FhMVh47eKw6wo2kOdRU+sOphJMT25JWEAjx1aTLPNxG9lh7kpri82p53vCrbxc8l+mm0mguR+TI7pxfjobIqM1TRY9dx/4GtuTRzIzIQBnGuupLZFT4o1lsz4ZJwO2Hm4iIdXfuE+nqKqBvbnFXPX+D6sLt3H2ZYKRIKILVUnua3HEH7adNxd1T5dXEVWh2h+3uXb0SEuLIBiY63PYbiy2ibeWOYa0Jo6sCv2To3ulL7ojkFkqOLZUnfSbVH0xYVo1+e7TiVI7scHp9exvdrVDo1VBTErcRDvPTCOh953EcPW+k5v0EpVOJxOmi0G1BIZ46OzGB+dTYjcj7jhEW7/5MuhUkk5Uti+bVKT1egzjtj/QhKZ7/hTJ9lByRTpa9o4agAY7RYe2L+IZf0fpKHZQHl9Mw98/LOHDEQpl3Lv+L7szS2iMjyQXqkxBGk9Zw/qLXpsDrvPFvdFnGupxOq0E6bQcGvSQH4rP+zTL3pWwiCCLtNrmu1Wvs7fzOJC1/BhgjqUeSnD2Vady8aK41gcNiZF9yQzKAmxSECECLVE7pYX+MvU6KQqQuR+xGtCOFRf6PWYB4Wm01Eb0ebxfxY6tRKdWsn9E/tjMFsRBIFgrcpdZGldhNhSdYowpT8fZc/h24Jt7LxgC9g9IJ55KcPp4BeBSiKnst41wOt0OlkwpS+9usSwvTaXJruecIWMRpsBqUWESnb13uS+ECzXEizXEqcOxuqwYXM6iFUHu8/rxOgsrovoesEKzkmiJhyxIHLPOIArMEMuknh8l0WIeDfrViKUAawo2sOfFUcJkvsxNa43wXI/rymT/9tw1UR38eLFfPHFF4wZ46pOzJo1i5EjR3Lbbbfx5ZcuHdZfGbz5q3j55ZdZsWIFubm5KJVK+vTpw6uvvkrHjh3d2wwaNIgtWzwnZefNm8cnn3zy33Zc/8kQiwQig7T07RTPvHc8nROyOkRz89AeBGiU6E0W4qL9KTLVcLa5gm3GekLkWu7qMAKVWIbWqWH3kWK2HMjHarPTOz2Oh/uPJ1CjQuZFr1pjaualEys9SG5rLCrYwsiobgSKNXTxj203mSlI7ocEMesP5fH+qu1U1rtuHnKpmNG90pk/trdHXKo3BPipePCGAcwf25tmoxm5VIJcKiFAo3R/pyViMY9MHUyQVkVFXTM2u4OYUH92nihk0fr9NBvMjO/bGZnEs3Jd36LH7nDidF5MVvvXqhcSsRiJVOCWEZl8/ft+r9vcNjqb36sO069rKvx46XGxIMLSquOik6qYGpvDHXs+a2OzY3bYeO3kz7zd41Ymx+YgFotA4uDd42vYXn3aXRGWCmKmxuUwI34ATxz+nsNefBgzAuLYWuU9He0iKkwN+Hux43Hg5OmTS5gUlcNXT02hqdGK1WonLiwAlVzqcyGjkkvpFBfGifOerbzoYB2TB3SlS0IEUcE6BIkTf5WKZr2Z7zYcpKy2kbiQAN6/ZyInz1ew+1QRgiBwfXZHOsWFE6xzfZcMDgvz933hkWSX31LJG6d+oV9IR17ImMaCA18D8F3BNjrqIt3EAVxWTJ+e/ZNt1bk8nj6eWbs+oslq5P3T65CJJEQoA3gxdTpz317e7uLpt725vHzX9cw75LIVO9tcQSddNC+d+Yk375vEu0t3sje3iNU7T/D2/HGs3ZPbJgHsImZc153vy7ZxZ+wIpBJxG41oa+RkxPBJ7aVFybLyXSQFhLbZbkpMDjHqYGbsfN/jO1ZkqOX9vHWMjczkiVuGUFXTwqjIbqxsZwhvZGQ3zjSVU2aq54/yo0yIzkImkjJ798e8kHYTo3JSWbu77fdMEATkV2GJJPon719+UiXXR3Zjwf6vfG5jddpZVribCUE53P7WMg+rKwCj2cprP27mldtH8+OWw3SKDSNQ6zrmZquRw/WFfJy3nic7T7yiHMBPqnQXnXQSFa90m87fjizxID8CAjMT+tM7JAVxK+cam93G4Ybz7u9qqELHs12n8LejSynS1xAgU/Nq95s5VFfA7Xs+odLUiFosZ3x0FjMSBhAk11wI0hFQSRUoJXIW9b6b7wu3s7pkH802E7HqYG5NGMiA0DSfXrT/CvxUCq/XBQGB7gEJHKp3DTX/eH4Xu6rzmBTTk9lJgxFwLUrStVEoJDIsNhvLtx7Fbnfw2t2jOOTI49YDqz26YX4FCt7qcSsd/MJRSv91sgtcqLS23ZdKqkAlVYBTQG8zsbbkEIIg0DskBZVYTrDSD6kg5v7U0bzaSkr4aa87ON5QzL2XfT9/KT3A9ZEZ3N9x9BWlIv/puGqiW1paSufOl3zkkpOT2bx5M0OGDGHmzJm89tpr/y0HeBFbtmzh7rvvJjs7G5vNxpNPPsmIESM4efIkavUlInPHHXfw3HPPuf+vUv1nRdX9T8JgMnPT4O6IxSJ3JRNg6sAM+naK550V2yioqOONe0bzRf6f/FpxqQWWSxmlxnqeT7mJe95e5VH9OnG+km//PMDHC24gPTYc2WUDRXang/2XeWtejqWFO7k9eQg3x/fj19IDPofZpsX0pbnRwt++WufxuNlqZ8X2Y5RUN/DCbSPdBMUXVAoZKoXMJykWBMgtquTrP/ZjuHCTkohEXN8zlW8fu4n3V+1gfO9OyC9oI+uMLVicNsr0DcgFKdW1enYfLmFoZjLJUcEEqP/576UggUF94vHXKlj8xyH3uY8I1HLrqExUUU6ez/2VvmEdPSJLbQ4HMiQoxFJMditjozJZUbzXq5fkRXx6dj3PdpmKQizlsUOL2yQkWZ12FhfuAARmJg7gsJckNFd7+sptc7lY6vUm7sDJyrI9TIjLontS1BX3Ay4bphdnj2T2Gz+6ZQwzh2UysGsi3/55gI9+dk2Y90mP565xfbDa7QzsmsjWY/k0GEzkFlXRNTESm91JXFgAGUkRyCSuy2WjWc9X5zb5jGveXn2aIeGd6eIfy7GGIqrNTaTi/bhPNpZwrKGIPiEd3XGmFoeN8/pqLHbbFTsELSYLcqnEvWhcXrSbO1OG88CBRTx5ejE3jx7A/dP6UtXQglot5Y35Y3n8szWYrK1IjwAzr+uBJlJg56nTpKqjmNCvE8s2u1rOErGIPunxhPiraTaYKattRKWTkH/+0gK0sKWaILkfyX5htNiM6KQqborvR7w6hHv3f+X+jgkIjInqwYSYbJqtRsx2G2lxUUgcYmYE9Wdz1UmvC+BIZQBDwju7PGctesoMdcSpQ5i75zMcOHn29I+8MPQmenaO5qcNx8kvr8Nfo2TKgK7oZEqGhXflUCsP7cuRqAm9KjLsDRKRGKVY1q5dFbiCA37afrQNyW2Nr3/fx6wRWeQWV9GnUzx6m5k1pQd5K9c16Le75gyDwtL5s+KYz31MiM5CLb5gmyZX0y0gnhUDHmZr1SnymssJkWsZFdkdmUhCkNwPq8NOo8XA/rpzBMv9WHh2o3tfM+L78+nZP93f9RczpvHZmT89rt96u5nvz+/gz8rjfJUz36PyLQgCwQo/5qUMY0ZCf/fjAbK/5kjzz8J8QSpjsluRiSQ8nDaGmTs/cN9Pig21bu9plVjmGna8IEkxmKzsPV3EsMxkymRVLD3n6UohQiAjIJ7SxgZCBX/ONtRR3dBCelwYaoXM5yL8X0GNqZlnji1jb12rAcnT0De4I3/rPIkghR+DQtOJVgXyyZn1qMVyxIKId0+v9bq/dWVH6KyLZWJMz/9I27CrxVX/ssPDwzl37hzx8fHux6Kioti0aRODBw9m1qxZ/w2Hdwnr1nkSma+//prQ0FAOHDjAgAGXPFpVKhXh4eH/rcfyvwVl9c1EBeuw2x0kRQZxrqyWtNhQBmUkcd8Hq7A5HHRLisSgauHX0211XnNihvDMl+u9DoKYrXbueX8lq5+bTZDUk9Q1Wn0PjlxEibEOi8NGsb6WZztP5ZkTy9q030aEZzAmqju3vvijj73A3tPFVNQ3X5HotgeD2cqyrUf5bI1nrKjN4eDX3SepaWzh6RnDEYsElDIp1aYmXjv1M9uqTrkvqImaUO4ZMIoNO8+QX1HH8MwUAtX/3DE5gW9LtqAIlPLifcNRCHIEoMVh5KfK3WzOdRmQ15laUCtkbqIL8MfeM1yf0J1VpXvp5B/DO7lrvP+RC8htKkMrU1BpavIaA3oRy4p2My2uL1JB3GYA5mRjKdlBSe2m7gTKNK6ghu7TefboMg9LJI1EwbNdpxDuI7LWFyIDdfzw1M2s2nEcvdFCWlwY895Z7uGqsPnoObYdz+el2aPYfOQcv+27VBH01yh59fbRLN96hKSIIHeFzey0sbas/cHE1cX7GRXZnWMNRUSpAj0spy7HT8V7mJs8zE10L8LstBLgp6S+ua2UQC6RkBQVREZCBGKxiACZmnqLnlNNpeytPcuL3W7indw1vHZ2FRJBjFaqJL4hmGc63cgvL8xmx4lCTp6vJDzQjxFZHUFiZ2mpK6Xru+KtvD1gFharDaVCyvgB6eyqP02JpYZ4qY57Y65nd22eR4RygEyNSBC4I3kYJrsFmUiCyW7F5rTzRKcJ7K09y+ri/dzZYRiNFgMPHljkdpUQCyLGR2UxLa4Pb2feypfnNrGj+jR2pwOpIGZweCdmxPfnuWM/MSO+H6tK9jM22qW7vfj7MtmtPHz8G7r6x3LD5J6Eyf2xOmx0CY1GJ1cxKCydxYXbfOqAXVWtf76FezXV4BRlJG8caV9fm1tcRVSwjpMXOhFGu8VNxABWFe/ltR4z2FNzxqttWIwqiAGhaVicNmrNzSjFMnfV9IbYXm22tzrsnNdXc9fehTRY9XyZM99tHSgRxHQPjOftC9eI7gEJlBjqfBYpqkyNfHb2Tx5MHeMRNwyuReyV7Mn+q1FrbqbO3MKPRbvIaypHI1EwMaYnPw14iCcO/UBu86VAkEhlAC93m45OekkGJQgCUomYiYM78/x5T5eZSGUAL6TdxKGTFXyz7hjvNu8hITyQKQMzOJpfzp7cIu6d0M+rrOqfRY2xmaePLuVAfdvzv6PmNC8cX8HfOk1CsInppI7l1W43IxIEXr7gzewL3xduZ1BYJ0J9SnP+83HVRHfIkCF8//33DB061OPxyMhINm7cyKBBg/6rj61dNDa6hkUCAz3N2hcvXsx3331HeHg4Y8eO5emnn/ZZ1TWbzZjNl6aam5raX5H/b0NcaACTnvmGj+6dxJzre/Lkl79x48BufPrrbnd7c+KQTizzYpyukyoJFvw5VeRbVmAwW9mTW8Sonqkej2ulV65mhsq1qMQKnjjyPX/vNJkV/R9mbekhzrSU4y9VMymmJyIEKmr0lNW2/7n9tO0oHaKCkEn/uQut0Wxh0R++W6q7TxVRVttEoEZFvUrP/L2fU3RZ9G1+SxWPHP+Gt/vO4uPv9jGoaxJ6kwX1VaamtYZaIiNeE8Ki/C38XuE9whZAJ1LRdJmd1E+bjvFR5kTOX5CDXI1huVIsZ91lJu2Xw+KwcbqpjKygpDbZ6psqT/Blzp38cH5HGxeBi7hoiZQVmMjSfvdzqqmMYkMNIXItiZowGi16bA4HdqfDIzK4PUgkIkJ0Gm4dnkWj3sQNzy7yah1mdzh5/rv1fLzgBg+i29Bi5KFPfuazB6dQUFFL4AXNpMPp9GmufxHlxnoCL2gfx0Rl+rRjA6gyNZGuiyLFL4IzzZccT7bUn+DGQRl88sulBVZUsJa/3zaM2AgdxYZa5CIpIgHe7n4rc/Z8gh0Hiwu30y8klb93mYzT6aTeqidZE06gTH1hyLOZoCQJqgAzJ43lfHVgDTGqIO7qcB0DQ9O4c98X/4+9v46O8ly///HXuGbi7kYEAgGCe4HiDoVCi1SoUKHe03Pa01N3dwMqtNACLaUttBR3SIAIJESIu2cyLr8/hgwZJkKPvj/fX/daXauMPjN55rn3fV372pv7s9fz6rXLabK0s+r0uy5V9nXFe7khejRPpizi8cxNACwId/jRioUiTDYLZ5tK+Ljgd3JaHFruCYF9eX3wcip0jTx1hXuL1W5ja/kJJgen8FnhPob7xXNL7DVY7TaEAiGH6nK5L+NzDBYTg3xieDLrO+aHD+X3avfh18zmUpcN2Xa/h9lTlo2PRMV7Q27mqewtLn7cvjIPHk6eTT+vsB7/nr1BLBQSpw6iQNu9zaK3RH1VGn47EBHgBcCh2lyXDX6tsZUP8n/jzbRVfFzwO8fq87FjRyIQMTEohaVRozhcl0dGUzGHanOZFJTCPYnTnMNKV6LFrHOSXACzzYJcJEFvNeEpUVBjaHG26qeEDODHivQej31n5Rluj5/sRnT/22g0atlXk8NL5350kRqcbCwk3iOYNwav4KK2lipDE9GqAIIV3mjECmTiy2uERiljzsh+qFUSl2q9SizjuaRl/OOj38mvuNzVqWtp50ReGQvH9mdU3yg+3HGUu+aO/qeu8V2h1azrkuR24HB9HjqrkRfW7ed0QSW+nio+eGSuMzK5O1Tqm/6l+SqD1YTWbEBnNSFEgEwkwUuivKpI+/8WrvpIHn/8cXJzu9bZhYaGsn//fn777bd/24H1BJvNxtq1axk1apSLnGLp0qVERkYSEhJCZmYmjzzyCHl5eWzdurXL13n++ef5xz/+8V855v8l9CYzZquF4pomsoqqEIuFTOgfh1QsYlBsCLe9+S3bnlzFwjH9iQ/z42zR5TCAUD8NhbnuliUBck8uVrvno1+JMwUVbkRXLBCS4hVOVnNZt89bEjWKMl09M8MG83j2JjzEcm6OvYZpwQPRW408lf0dUqGYNX4ze//8RjMWqx3pP1lQuFBeh9Hcs5vIvrOFJEX4Y7Xq3UhuB6x2Gx+X7mbBxFEcyCxiwoDYf+oiqBDLmBc+lM+LDrhcxDtjoHc0OUW1bjpLrcHE2jd/ZP1fr8MiNDPCvw/bytxN8TuQpAlFAD3KGzpgsVsZ5d/Hjeja7HYMVhMfDl3N3ac+c2lNCxBwfdRIpocMRCwUOXx1rSZ2Vp6mzWKg0ajlwiXyFyz35p0hqwhV+iC8SrILIJWIOV9a06NFmdZgorCygeTIQGc1reP2g1lFjEiOct4mEgid8o/uECD3pNnczqqY8ZS113dZ0Q1WeDE3bCj9vSIQIOCtwSvRWYzUmVovbUAEqALknC2s5Oi5UmKCfXjvwbm8nb+T3flZTgKkkSi4KXYC34y+lyWH3sSKjUN1uRyqy8VbqmKQdzRDkmPxlqlpMLSxseQwX1wR/HKhrYq16ev5e8pCHk2ew7qifYjFQh7P2OR2jtmx88XFg/yt33yG+MZSrW9mdlgaYqGINrOe70qO8kHBbufjTTYLu6rOsr/2HK8PWuGUdFyJt/J28kTKAm4/8QlvX3Dt4EmFYl4cuIzc1grs2J0eqr2h2dTurGiND0jmgUvVxgpdExqJAn+ZB95SFaJ/sW3rJ9NwT8JU7rmky74SPlI1XjIlwxIjKD/UvewgNsSXhtZ2UqIdQ1pdpYodq8+nQtfIoogRrOlzLRKhGJvdxu/V2axN38AzA5bw5cWDWOxWdlad4VxrOR8PW413FyEBJ+sLnCQX4HBdHpOCUvixIh2D1eySWugpUVJn6LmoYLRZuh18+2+i1ax3I7kdyG+r4p28nTyQNJPBPjFu1oQdEAgEjOob5WZvOSsojR/2nnchuZ3x3YFMpqQlUFjVgN5o7vEa32Jqx2K3I8AhgdFIuq8AH+xlzgHgSG0+McG+nC+t5ZrUOOzQa+iFEME/rU9vNGrZWnaCTSWHnR2aAJmGW+ImMi4g6d/iqPHvwFUT3cjISCIjuzfmDwkJYcWKFf+Wg+oNa9asITs7m0OHXCMpV69e7fz/lJQUgoODmThxIoWFhcTGxrq9zl/+8hfuv/9+579bW1sJDw//zx34/wANhjZyWyrZW5sNCBgZl4jGpmLNW9uYPbIvT62cyi2vfcuy577iswevQy5zZYN6oxkPicIt9UlvNaHx6l2D5KNxr976yTU81nc+txz7gPYuEmpmh6bhJ/Pgp/LTTAtOpc2sZ3d1Fm900hlFKH35W7/5eFo9EAjosVKSGheK8l/YVRvNvZM8k9mCxkvGunL36ndnZDWX8uCgOew6lE9+eR1yqQS14o8PMShFMv7Sdy7P5Wxzu89P5sHf+s7nvte6liXEBPugEErZ3XCe5dFj+bmTR+iVcFRnZIz2T2RrD4RYgIAkz1BUohiG+fVha+lxGkxtJHuGc21QCiqJHKlAxNej7iWvtZLM5hI8pSomBPRFKZbiIbls2fVU1hYXshyrDuSm2An00QSjs5qo0DWhFstRS+RXrSsrrW3u9TFVV4RsdODUhXJmDr+chCYTipkanNpjetn88KFEyP3pK4tkX7M7sbkpdgJDfePYVHKEjcWHEAuEXBOUwrKoUejMJhrNWhI1IRysPceSef1YMLEffcL9eTxrk5vWtNWs543cn7El2Fk/4k4eOP0FdYZWghVeXBcxgqkhqc5hE5PdwpcXu7ZqA3jt/A6+GnUPTaZ2Npcc7XYjBbCx+DB/SZ5LiMLbuaBpLQYXktsZBquZl8//yO3xk3j49Fdu959vreBwXR6fDr+dnytPc7A2F6vdymCfGGaGDkYmFPPw6S8BB9mbENiXwh58Qwd4RboE2eyrPce+2nN4iOW8Pmg5SZ69671NVgtaiwGL3YoAAVKhCI1E2aW+NM4jiL+nLOSN3J9dHEziPYJ4NG4+L3+9n9tmjODHTu4uV2L55DQCvT3wuHRN6OPRtStBma7BaWP2yqAbee38Dir1TZc2TbAmYQpRKn/sOLoL2c1ljPJPcNkgGq1mjjW4BkT8WJHOm4NXsrcmB63FgNlmIVjhRZW+mQZjG8EK724jfcGhc73ajst/Ci0mHd+W9nzu7q7O4q6EqWi6Ibkd8PFQYhaaXWK7J/kN4M6j3/f4vHW7TvLQ4vEUVTV0KZvTmg0UaKt5N28XZ5tLECDghujRXBc8EoFdiMViQyIWoZRLUMkc58LV1VztDO4TxrVpCWw7nE3OhRqmBqfyceHv3T5jpH8fF0/iq0WDsY0P8n/jh3LXoehaYyvP5WyjzaxnXvgQ1D2Q9/8W/u/Ulq8Sd911Fzt27ODAgQOEhfXcbho2zKFJKigo6JLoymQyZLJ/z6Tk/0XU6Ju54+Qnl+xIHNhecYpoVQBP376YR97ZSYCXmk/uX4TWYKKhVUeYQsbi8QM4kVvGxepG9p4qYmr/VL4qc10cy3WNBCWo8VDKuk1bApg5PKnL28OUPnw56m4+zt/N7hqHZU2MOoDl0WMZ7tcHT4mCmaEDqTO2sTBsKMuiRnO0Ph+TzUyKVwQSoZjnsrfxSr8VjOnnGCLqCgqZhGnD+lBnaKVS30i7xUiUyh+JUNyDXZAr+oT59/qYATGO6FSdpeeWNoDNbiMiwBuJWOyMYf6j8JIqGR+QTF/PMD4r3EdOSxlykYSpwanMDB3E4fQSHl0ygQ93HCM935HmplbIWDS2PzdMGoxeqOfV3B2IBELeSlvFo2c2ulRaZUIJ9yfNIFETAkCiJoQguVe3i9yYgESkQjEaqRKNVMm9idMcw29XtK98ZGoGeUeT6h2FSCBAeoVuT2c1upDcgd7RPNp3Dja7je/LTnKyoRChQMAo/0Rmhw1GLVLgIe19wxV+qRXcEwK9PTiUfdHtdpFQgKTTZLpGquSWuGs40VDQpeZzqG8cw3zjufu17dQ0tbHp6WUcqDvvrEwvCB9GsNyLO0984jJk+W3pUX6qSOeVQTeyoziDl85t5/qoUZjFZg5ZcgmwDutxoOqzwr1MDR7AZ8NvRygQYrPb8JaqXTYDuyrP9kgA2iwGirQ1pPnG8F3psW4fBw6XCV+pB55ix0Jus9t67A50PMdLqkIllnUpY8lrrSJY7k29oZXFkSMQIEBnMSIWCB1DUboGh9OLUMEs/yGM0fRFZzPya90ZdtacQX9JUiJEwM1xE3j/gnuXsc1i4PW8n3lp4A09XgMajG18U3yErWXHabMYUIqkTA8ZyA3RY1BL5G4SLD+5hlF+fUgeFkaxtg6r3Yaf0JP6Oj3PfrKPC+V1eKsVvLx6Jo+v3+kiKxKLhNw9dzTDksLxVMidcdap3lGoRLIuCwLg6BwoRVIq9U3MCh3MrXETKWirZlPJUc61OH738R7BrIgZS7NJ5zJdL0ToVhVvMrXzQf5vvDF4BW/m/cKmkqOs6TOVx89u4pfK01wXOcLpWtAVZoYNdqkC/y9gtJkp6CGpExxDtO0WA/70vgb4KzxYE38tD59xbM6ECJ0Dyd2htKYJtVJGU6u7vl5vMbKnOpv9tedYHjPWUe0XKzHrBDz3xV4O5xRjs9tRyaXMHpnMqilD8dOoGB2QwHsFu3p83+H+fchvbuSmVzZhtdnZc/oCm5+5gW3lJ7rsKkmFYtb0mYrJZsZsNSP5AzpqvdXE9vJ0BAi6vKZ8XPg700JS/yS6fwR2u527776bbdu2sW/fPqKjo3t9zpkzZwAIDv73efX9v4Imk5Z709e7kNwOXGyv5YXCbdy16Bo+3X6SflFBtJjaMSoNbKw+i6ifjbtGDEVlVfDWpiM8PvEafqs96zZVvLX6GGvmj+CFL/d1eQwLxqSgUXR90ZOJJIQqfbgvaSZ3JUzFjqMl6iVW0mLR82NFBicaCpAKxcwMHYS/XIPJZuaitpbfq7Mp0zUwPWQgKqWYvy6dSOXbLRRVN7B6+nCmju7jdHoQC4XsqcvmvQu7XCJVh/vF87d+8wmQ9z7gpJJJGZYYwfHcroex/D1VhPh5ciCngH7R4T1WmTwlCixmG4PiQims7Lr1dbXwkqnwkql4OHk2eouJdoOR0znVzH/3S3QGE/Ghfiwel8pfl01EKhYhk4jxUMiQiEV8dcFReX7p/HZujr2G9SPWUKStprCtBn+5J4N8orHbbM5KnY9MzXtDbmbNqU+p0je7HMcAr0geTZ6LUnSZsAsFQqQi1ypBi0mH3mqi0ajlZGMhIoGQsQFJKERSJ+EobLv83cmEYv7ady7VhhYePP2Fi1Qgt7WSb0uP8sHQW1FJAnqVMvSLCkYll3bpFQ2gkkuJD/VzsyMDmD40ya0qEyD35ONht/F18SG2V6TTatYTovBmceRIrvHvx+oXtzoDDP763k7eWLOCX6sy+aH8JPPCh7Lq6HtdOonorCaezd7GQ8mzWJu+gQ1F+7kjfjJzwtLYfkXl5EpoLQZKdQ0M8un+2nhlZ6YrNJq0BMg9EV9FtVwmEjt/a2abtcvrTVfH4CFWdEl0B3hHMtwvnkG+0ZhsFiQCERKhGDt2LrRWEaHy4+mE6/n5UC5L1n9Fm86IRilj1uhkPhi1msdzv8Zks3Jf0nSO1Rd0q0/MaXGP8u5AR7DHPafWUaitQSWSMTGwHyqxjFJdA3ed/IyXBt2A2WrB9wqi7CVTIxKK8JQoaTXqqK7U8ch7Pzs7TtuPnqNNZ+Ttu+ZR1dBKcW0Tfp4qBiQEcaAhh7+c+5KFkSMY6huLr8wDtUTOS4Nu4N5T693cSBQiKc8NWILFauXHcY/QYGzlZEMBT2e7SvXy26r429lN3Jc4gxh1AG1mPQN9olGKZcwMHeRWkTtSf4EaQwtLo0bTRxOMUiTjnSE38er5HXiIFYwPSGZfrbsfc6TKn1Ux4//rQ2dXQiaUODtEPUHeS0u/A0KhkAFeUfwlaS5vXfgFodCxrnRn0weOTqbBaiQ+1L1IorOa8JV5MMQ3jtdzfyJQ5skjUQu48YWvXa5P7QYTX+85w5mCKt66aw5eEhWpXlGcaS7u8j2H+cYhF0h47NNfnLMIrToTH2w5zkfzVvP8ue852VDofHy8RzCP9Z1LRmMRnxTu4auRd+N3lX87ncWI2Wbls+G3A6C3mvm+/AS/VWU5Sa/Baia7pZzx8uSeXuq/gv9niO6aNWvYuHEjP/zwAx4eHlRXO3Zsnp6eKBQKCgsL2bhxI9OnT8fX15fMzEzuu+8+xo4dS//+/f/HR//fR7W+2SVO8EqcaynHJ0qOSCBAooTXL2x3WRQ2c5RIlT9P3bSEddvTeXn2CtaV7eFg/XnHkAgCWi06xvePI/AODa9vOeBsD3t7KFg5OY3ZI/uhUfW8u+/so6g1Gbioq2PNyU9p7URKf648TaImhFcHLef+Uxuo0DUyPWQgaxOno5IoUHnBB/cuxCa1cKKhkAczP6e4vY5rg/qT5hvb5dTpsfp87jm1jneG3NztoIbzGNUKnlk1lTVvb+NCp7QpAF+NkpdXz+SNrQcJ8/fixrEj2V6R3m3VbHbwECwGKNY14aVW4HFpI9BuNjh28WKZW4pcb/CWqVAIpBjb7BzJKcFwqdpgtdlRK6T4qJUufweLzUq9sY1JQSlEq/ypM7axYP8rjA5IJFodQGlDEU9nfsfraSsIUnoDDuIaovTm02G3k9tayaG6XKRCMVOCB6CRKPhH1reM9E/g2uD+XRqQtxjbabMaeDLzW5dhobfyfmGsfyJ/6TcPX5mHMx4WYFJQCjbgr2e/6VIP22rW81DGl3w4bLXLxLDZYqVNZ6SioQW9yUywjwar1cYLt0zn3nd/cAvaEAoEPLx4Apv2uw/2BXl7kBIdjMFkRn6FyNtfruHm2GtYHDkKux2MZjN7jxcx59X1mCyXF8H0ggo2/JjBsOQI3hx4E4cbc3uMZq3QNyIUCPGVedBgbGNj8SFmhw7uMUyhA8ZO31OLSefUS8qEYlQSOYlX0a6PVQfhI/JgclB/vizuXuYwxDcWmfjyEiIRiohU+fX6+v4yDW1mvdttSyJHMj4wmVaLHqlQjEIkxUt6eYPx4bBbaW838+A7P7nMB7TqjHz162mOZpXy3r2rkcgFnGosQiwQurScO0PQzRimzWaj3tjKr1WZlLTXc0/CNAb7RLO/9jzNpnZG+Scw0DuK3JZKDDYzU4L7u5Gqjn/7yNT4S018+sB1vLx5n3Nw92xRFen55cwd25faqlp21x3nlfQSJ5HNyixjoHc0z6dej4/M4SX+7Zj72FC0n6P1F5wdjfnhQ5ELJdQbW7nxyNu8mbaq25hYgLfzdrJ+xB2sTd+AWCDkoeTZjPRLoJ9nONktrvMShdoans7ewl19prIgfAgSoYj7E6fjKVFxf9JMJgal8GXxQUra6/CRqlkYMZwZIQP/T2gyPaVKFkYM50Dt+W4f08cj+A/ZaXnLVUwO7s+YwCSadTrGp8ayOyO/28fPHpuEWWxBLnF/j3pjG7trsvipwuFk9ETiIt747mC3m/DzpTUcyy1hxpBknku9nr+e+ZrTV5DdIT6xPN53IXtPFrkR8O8P51BZ38bdi6fh01dBo0mLRqLEbLfwTfFhvr+00dldnc288CG9blQajVp2VZ3l86L9NFwKAQqQaVgWPYYxAUn8/exm5ya+zdx7QuV/A//PEN33338fwM3dYd26daxcuRKpVMru3bt54403aG9vJzw8nAULFvC3v/3tf3C0/3t03rl1h+zWUm5fMJy/Z3/bZeWjpL2Of1zYxGNTF3LidDkPjJzF2oTpNOv1+KvVyMWOnbN/ipqU6GBMZgs2O5cSyWTO9tuV0JoNGGxmLDarM1JTLpKgt5m46+RnLiS3A7mtlTyf8z0vDboBkVCIQiR1WWCsUgufFu7hp4oMJgWlcH/STCJV/txyrPuwkCJtLTnNZYwL7H3H6atR8c7d88gvr2fXqVwsVhuD4sPoE+bP61sOUNOk5aHrxnM0o5TH+87n6ZytbmR3hG8fFkWMYPv+c8wcnoxCKqHNpiO/voojdfnEqAOIUPoSqfJHgACZWIzqKtuAcqmE6CAfnl4xBZPFit0OQqGgS82p2Wbhzj7Xcr6lgovaWgZ4R3JL3DVkNF7kiczLVm2hSldHk46qaaNRywCvSKx2G+9e+JVTjY5z7XhDAe1mAwsihrkteDqbib+d3eRsp3bGgbpcJOd+5OHk2USrA52DXpOD+3O+tdxF73glKvSN1BlanES3VWdgz+kC3tx2kJZ2h/2SQACj+kbzwMJxrH9oMR//cpwjOcUAjEiO5I5ZI2lu1/P7adeFKzE8gBdXz+D3jHxGp0XgpVSgEEtd/iYqiZyqOi3XPe3uH9wZ4QHebNiVTpi/J9KBvV/8K/VN+ErVNBjbaDHrabeYGOIbxy89uF8IERCtDnDq/96/8CtnmkqclfM7+kxmmG8cSpG0W9eICJWfY+MnsDE3fAjfl590iS3ugEgg5N6EaS7te6FAyJywIXxauLfbY4z3CEJnNbm04hM1ITyRspD1Rft4f/9vWOxWRAIho/0TWJs4A1+pGrlYio9Yzfbjp7odgi2qamDHsfOE95PzY1U6HmIF9yRMBeCprC0u59Ewv7guuwANJi3lukZ+qsjgmQGLOd1UzMqj77v8lmVCCX9PWUiSZwhGq7nH6qFKLiU1NpR37p6H2WLDarMhFYvRKKXsrc3hrU7WYZ1xuukiP1akszRqFPKO7lfiDG61TMRmtyMTihEALRY9a05+RrQ6gCJtTY9uIBa7lfTGIgZ6R3GqsYhnsrfy7pCbeW3wCp7L3sqB2vNIhCKkQjF2u53lMeOYGTqQNouR6w+/6VKBT/OJYWnUKILk3oQovPGTeXQ71HW1aNK3Y7ZbUYqkqGX/mvwh3iOIAV6RXVoaigRCHuk75w8ngqmlctTI8ZN7cNe8UZzKK6O53f230T8miOhIL7ylKhRdzIaYbVYnyQUIknp3KZnqjG/3ZTIkIZwAjQfPDLieVrOOQ7V5CIAxgYlI7RJ2HbngEmXfGSfySrnxqVKkYiGv3D2TJ6u/o0TnugHcW5PDNYF9CejBxlFrNrCx+BCfXzHMWmts5fXcn7gpdgI3RI9x3p+ouTrf8/80/mmiazKZqK2txXbF7iEiIuJfPqiu0Jv9RXh4uFsq2v8/42raR2qRnAAfJekXu7csKdLWYpGZmTYskWXPbMRuh4/uW4jdCjpMpDdcxGqz0dcrDKlYjI+i+x291Wal2tDCa+d/4vClKFC5SMLMkMHc2Wcyx+sLeiQ1h+vyeCh5lpvcoMWko0rfxPH6Aj4atpp9Ned4Pud7/pGyqNe4zJ8qMhjgFemM+ewJAsBus7Fs4iDOFlZyOOciX/2ewbQhicwd1ZdXNu/j14x8nlg5ic0j72Nr2XEu6mvxlChYEDYcpUXB/W/9yLjUWMRiARaJhSfObGZZ9GiG+sbye3UWR+svkOwZyrXBqRQ2V5OgCUHzB9KDejMpbzcbyG2r5NHTX7lIOWRCCfclTefjYau59fhHJHuGdam1M9jMPJPTtYsJwPqL+5kTPsTlthaTjmp9c5cktwN7anK4O2EaYoGAm2Ov4d0Lu1CL5aQ39rwAAOS3VdPXKxyL1caBzCKe+tJVl2m3w6Hsi9Q0tfHXpRMZmxLD35ZNwo4du8DOc3nfEaEI4JPHFlBU0Ui73kRsqC+NtPJC0RbuHjCD7ZWn+LbiKNdFDOemqGswGm3Y7XbqWtpRySXEBPtSVNW124ZSJiElOogXN+1Bo5SRKO5dF+gn83Bu+FQiGUabmaG+sWwYsQaL3cre6hx+rDjl8jccHZCISCDk16qzvNApGclit7KnJpuDtefZMGINLw28gfvSN7hVlT0lCl5KXYYAuPHIuyRognlt0HKey9lGcaeqqL9Mw5P9FxKudK/eqsVy7kmY1iWBU4qkPNZ3Ht5SFR8OvZXt5acQCoTcFj+Jm485UrY6YLXb2F97nszmUjaMWIOvQEibzsSm/Wd6/N427zvL433Hc6zesWn5rTqTIb6xvDZ4OXed/Ay91YRIIOTO+Gu7TINqMrUjE0lI0IRQZ2xlU8kRt8cYbWaeyNzMptH30mzW4deDzrfFqMOKDbVC7qJXrzW0sLGkZ0/dzSVHmR4y0CnrUYilLrZdzcZ2NhTtw2y34iFR0GjsPmK7Aw1GrYtm8p28nbyZtpK/9pvPgzYzbWYDRpsZf5kGiUCETCTm3Qs73GQmpxqLnH66y6JGc3v8tf/UQBNAg0FLXksF35Ufo8WsI0YVxNKoUXhJVHjL/zmvcV+ZBy8OXMb6on1sLz/l3AAke4bxUNIsYjwC/6nX7YBaJeH9h+az4ad0dmfkY7Ha8FLJmTO2LxOHx3CytYB4b/f3MFhM/HDFEKvFaus2zr0DzVo9tktyBH+FB/4KD2I1gS73W212PFU9SzZMFhsyiYgms/u5YsfeyZfahMlmRSWUuiTn6azGHodZvyg6wGcj7uCr4kPEqAO6TLv8X+APE938/HxuuukmjhxxvQDY7XYEAgFWa882TH/iv4Mx/kk9trGECEjzjeFsW3Gvr3W0Pp9Zvl6snT+GQfFhGOwmPij8lV+qL2eoCxEwKSiF+xJn4itXO9rHRiNioQCNwvHjqzG0cOORdwAY7BuDSCAkv62a78qOMTmoP+mNPVeh7dgp1tYRrPB2ub3VrGNX1VmeS13C01lbKdBWoxLLrsoSy2izYKV3O5xmrZ5HPvmJjPwKIgO9mTeqHzOGJWM0W9ifWch97//Io0smkFteT5CPByqhjIVBIzl7sYKikkae3LoXH7WSvy6bhJ+nCoEQtpYe466EKbyVt9NlwGNvTQ6fFOzlzbQVZLeUMdQ37qr0kleDJnM795xc50ZyjDYzL+T8wJuDV7IscjQzwwZ1ad/0W1X31kjgsJI621zCpKAU5202u53DdXk9Ps+OnazmEn4oP8XfUxYiFgip0jfjfxVVl472dmu7gbe2Her2cfkV9VQ0tLL1UDZikRBDcAt9PEM52lDAUQrYXH6U6EsJWVUFzU7bJW2MjnPacgZ5xzDNN42Pdhzn11MX0BvN9IsKYtnEQbx++2xWvbLJmcLWAalYxDOrprF+1ynsdjh6roRb5y/k0+Lfu03785V5oBbLqTY0E6b04bkB17Or6izbyk7QZjGgEEm5Nrg/7wy5mWeyt5LXWkmSJpRHkucgRsj6ov2sjpvEAO9IBDj0qNvKTlCpb2JtxgY2DL+Tb8fcz8big5xocGilrwnsx9zwIcgEYv6S+TV1xlbq6lppMrWzps8UVGI5lfpGfGUexHsE4StVd2nJpZbImR40kCRNKB8X/k5WUykykYSJgSksDh1JVm4NiVFiCtqrGemXwADvSLaUHnchuZ3RZGrns8K93BI7AZlIRkNrz9Xw+pZ2N4umkw2FxKmDmBU6mN+qM3m83wJCrriGdKBS34TRZmZhxHCezt7S5WPAsXnYWHyYlTHjuz4OYxs5zWX8VHkas81Cmk8s1wb3RyWWXYp4pUtJRWfUGVt7HBw02iwcvUTo6wwthKt8e3w9cFTs0zsFPpxvrcBoNZPXWsWruT869fdigYjJwSnc3WcaZ3rZbO6oyODG6LHIRH9cttBg0PLXs1+T0en6l9Vcxg8VJ7k3fjrTQwf2SHZNVovbwGsHfGRq7uwzhRUx4zBYzYgvEffOcph/Fj4KNRasDB7vx7IZA8AOBruZXXWn2V2vZXnM2C6r0gab2W0oTCQSoJZLe7Q/jAnxRSbpnq55qRXMG9WPivoWthzM7PZxwT4abFJrl13TeaFDEAuE5LZUOK81KV4RTApKQSIU4SVVcbgur9vrFjiG/LKbyxjp14f7kmbgfxUzMP8N/GGiu3LlSsRiMTt27CA4OPi/EuP3J/441GIZk4P681t11yf99OBBWMxc9cCJl1qBt1rJwdxCMhUX+LXGVc9ow86v1ZkYrRYeSpzNjsPnSc+tQCYVM2dUX/rGBvBJ4R7ujp5GvCKEk7nlWK02lve5hibaMNstV1WFvvIxdrudgrYaQhXe7Ks55zRsb7cY8ZQqkQnF3VpnAaT5xqAR9z640NJuICPfIe8oqWnija3uu1qFVMxHj8zn3fyd7D6cRbjKl/lBw5kS2YfFY1OxWOx8dzCTMwWVKGRibps/jO/LTnQ5xWy0mbn31AY+H7mGVrP+35JF3mbSs75wf4/60A8LdvNi6lLez/uVuxKnORflDmi7uEBeCa3ZtZ0nuPTf1UBvNfHI6Y28mbYSi9FOu93AG/zc7cVVLpKQ4uWwBGxu11Pf2nPq3p7TBQxPiuCXE7ksXJBAZqfWph07RV0MEp5tLiFBE8wUzWDueGmbUxIBjuS9E3ll3D5zBOseuo6fT+RyILMIi9XG0MQIpg9NZPO+s/yW4XCSMJgt7M+4yKrIa/i0xN3yRyQQ8mDSLL4uPoRYIOKZAUv4R9Z3LgOOequJH8pPcby+gLfSVtJk0hEg1yBEQF5bJc+mLuHr4sNYbTamhPTn2uD+TA1JxWAx8VHBbi60VaEQSbklbiLLoscgsIOnVIVCLKXW0OIie8ppKeeh01/iJVHhI1PTZtYzNXgAt/eZzJVXjpZ2PWcKKvls1wlCfDU8tWQxjdp22vRGjmSWsvrzbTRr9QgFAh5bPoEGfy0GT7NLG7cr7Ko6y+ywNIJkIkJ8NS4BMd5qBfcsGE1SnB8CgYCGRh0GqxEBAsYFJDEvfCgaiQKhQICPVM2tcdcgE0ldtOCdEST35L38X3kgaWa3KWodONlQwPKYsW631xpauOfUOpcZicN1eXxcsJt3htxMrDoAu92RJtddgAo4hs0ECBxSL6uJnJZybHY7yV5hKISOym7Hr6JU14BGosRfpum2i6UWy4lVB7oM4o3xTySvrYoHT7tKbyx2K79UnqFYW8ej/eax5uSn3R6nvpNcwmSzoDU7nDsaTVoiVf74yzR4SZVuUhG92cRXFw+5kNzOeDP/Z4b6xbkR3UZjGza7nZL2esRCIUIc8wMCcEu3k4skyEUSWk06tBYDe6rzsNqtpPnG4i1V/UukN0DhydigRFosOs42liAXSbk5/hqkiLsl5wqRlEiVn8vGP7u9lNmj+rLx9+7TFldem9ZrbLynSoHdDtOHJvLzCXfPXaFAwNrFo/i6yr0YkKwOZah/HM9kbeFwJ9eb3dVZvHdhF68OWk4fjyCajL2nmpptFp5IWYjH/9h9ozP+MNE9c+YM6enpJCYm9v7gP/E/g0aq5KHkWaglcn4sT3cOOkiFYuaGDuHGyLF8tiOdhZP7IkTQ4y5tYnA/jCYLf/3sF957ZC6vZnzX7WP3151jTZ8p7DtdhMliJSbYhx1HzxMW4sG8wOGs25bO02dcf2j9o4N58pZJzAgZ1KNXq0osI1zpWrWwY0drMTDYN5a16Rtc7vu9OosZod2/pkIkZUrwgKtKcMko6L7t3gG1p5QHznxO3qUIzSJtLa8UbGdhyHD6WeJ48tPfXAYF7pGO4peqM92+ntFmZl9NDrNCB/f63leDdquRY1eEOVyJcy3l2IHF0SPRWYyA68Ix0CeaL3oYUAJHe7AzlCIZYwKS2HCFrqszBAjo5xVBUc736K0mTCYr2w7kIJDYuT58tJu9XQfuSZiG6hIZN/US6uF4jAWJWHQpZc3eq5k6gFQoYox3Mq99cdCF5HbGBzuOMjI5yimPCPL2AIGAG1/YSFWjawXn4+0n+NvKa3h5wA18cnEPea2VCBAwzC+O5dFjOVB7nv2155kUlMLJhsJuXTyqDc1sLTtBlNKfF8/9wKfDbsOKnbtPruOT4bdR1FbDo2c2OgnXQO8o1vSZglos5++Z3/Jg8iwGeLt6ozd00/5uNrc7K9wF2hqMNguSThX/lnY9L2/e51xg75w9ii9+zuCrPe6Lt81u57nP97L1+RvRWvQu8ouuoLeaEADnWsu4b/5YHvrY0am6ZcZQFk7sx69Vmfwjby96q5EkTRgrA8exefS9HG8o5MVzPzgJa7xHEPckTKOvZzh0Q3R9ZR6UtdcjEfReABALRW4jbXWGVp7O2tLlILDOauLuU5/x7ej78JaqmBs2lHeuCMbojOkhA5EIRLyZ9zO/VJ4hUuWHRCimUtfEIJ8oHk6ezUi/Ps60snWFe3kiZQEPnf7SbXhTIhDx95SFfHFF2/nGmLH8vZMu/0qcb62gzaynj0ew0x7vSiRpQhEJhGgtBo7XF/B8zjaXimG40peXB95ApMoPm91O4yUbQ4FAwPcVPdvRfX5xPw8mzsJT7iB5jUYtNYYWag2tbCk7TmFbDR4SBVNDBjAxMAWhoN2NvHaEhuytyXG5vb9XBC8OXPaHtbqd4a/U4I+GOE3QVT1eJpKwIHw4G4svy1beyNvBZ5Pv4kxBpUtYTQdWTBlMqL9rZbTNqMdstaKWypF2Ggj1Uit46Lrx9Anz54vd6c4OSHJkIA8uGkeTrJlj2a5rgL9Mw+tDVrDh4gEXktsBo83C/Rmf892Y+xnkHdPrZ0zQhCCAPzxU/Z/EHya6ycnJ1Nf/a7ZIf+K/Ay+pinsSpnFr7ESK2mqw2ezEagKpqtNy+8tbKaltJixIw4zQQd1GO47wi0cukrDzeB6xIb5kNBf12E4D2Febwxv3ziKjtpjMthKUIhlqqZyPN59g3xl3PXDmxSqeWb+H5++cymCf6G51mTfHXoNK5FphFAqEBMg1eEmUbtZJ35Yc460hq6jUNzk1ex1QiWS8mbYKlfDqPGzFop4Xvrkj+3KutdxJcjsgE0qYHTSU5f/Y5EJy1XIpLeb2XuUVZ5pKmB4y0OU2vcVEm8EAFgFHckqobGwlLtiXwX3CUculyKSuP2ut3ojeZMYmvjrLcQEC7k//nPUj1rjdl6gJwU/m0aUnIzgsa7wuDSi1tOtpaNWx7XA2y6YPINkzrFud7jVBfclvrXJqKG0W+GznCaw2G8/dNpX74zzZWH6IFrOORE0owQpPJgamkOoT5bQJ8vVUIhWLujXjBxgQG8K5khrGpsRwqrmAhVHDEQmE3aY5CREw1DcOm05A5sWuF/oOOOKDBbz341FeuHk6CqmEd++ez73vfU9Z3eXWvEwqRttqJqhZw9NJS1AppAgFAux2O5X6JuQiCXf1mcLkoP6sOdV9JQ0cBv9vDF7JC6nXY7RZ+Efmd7w4cCl7qrP5pHCPy2NPNxWz+vhHvDToBuaEDea18zt4M22lkxg0GNuuqvLuJ/NAInA9x3JLa50kVyYRERngzYNHcrp6OuAgu206I5U0EusR2KN+O1zpS72xjb01OTyQNJtB8aFEBHoxe0ISt5740MXurlzXyG/VmTySPBvFJX/ZDuS3VXP3qXX8o/8ihvrEIRA4HBI6E3YfqYp/9L+O3EtykJ7iUycFpbjJJMw2C8cbCrp9TrvFyJG6C8wOT2NG6EB+qsjgYrs7KfaXaVgVO55PCvfgKVHy6fDbyW+rQm8x00cTTLW+mQ2F+1gZM56dlWcw260cbyjAQ6Lgo6Gr2V6RzpG6PGx2O8P84pkXPoTvy06yp+ZybLJUKMZDrHCzC7wSu6rOMso/oVuie2vcRDylSjIai/jLmY1u95fpGng2exsvDlzKrsqzFLfXIRGKWRo1yqUa3BXytVUYrGY6aJ7WYmBn5Vm+7qRvrjO28t6FX9lRkcHbaavwwnE+m20WWs16Xj//kxvJBUe34ouiA9wYMQ6hQIBEIkIt+c9XIdViGXf3mepM/6sztfHIuS945Y5lZFyo4Lv9WTRp9UQH+7BqShohvp74qh2fqV7fRrG2lu8rT6KzGOmniWRG2EAUSJ0SQU+VgqXXDGLGsGTMFgtCoRCpWISXWkG9wYMfxj3EvtpztJr1pHiGE+sRhMVu44ey7gNwTDYL28pOcGPkmB6v/2FKH8KUvn9oruS/gT9MdF988UUefvhhnnvuOVJSUpBIXHfGGs3VmfD/if8OVGIZKrEMP7kHVpsNrc5IjJ8vH6xdiEAAEpEIu8Rh9v99+UkXze3EwH7ckzgdhV1K9sVqhELB1cU7CuCd/J3suNSSlIskzPQfwm/p3duxXDe5P+9f+JW7E6bxTfERfqvOdIk4vTnmGqaEDEApcSemfTyCaTS1u7Xt2q1G7k/fwKN953JD1Bj21GSjs5gY6BPFGP9ElJ30cr1hSJ+wHhPYpoxI4JvKfW63Twjoy+4T+W6WL2artdv2aWfIRRLnQmyymGg262nTGzmeWcYb3x3CYr38ugqZhJduncGguFAUMgf5a9LqeO27A+w6mcfLa2Ywyj+BbT0kevX1DKPdYiBI4cWmkiPcHj/JJdRBI1HyVtoqbj/xsZvOK1DuyUsDlxGg8KSlXc8L3+xl1ylHi660tpkXVy3jr2e/drEXAxgXkMxdfaay4ui7AMSoAsgtrXUS1kc/+IWpaQm8MXcVMpmIk42FmKwW/KWeLhsFlUzKrOHJbOkmYlUpkzCybxSf/5bOg4vG8U1tDQdqz7M4ciQbi7vW9i6MGM6ZpmJCTYFcm9aHYH8P2ttN7D9bRF2LaxuvoqGF+FA/6pq1CAQCRCIhkYHefPLAdZTWNpNbWktkoDfRQT4cO1/Cgx/uQGc088LN0xmfGotULMZPrqH/pSpro7Gt1wGjdouRYIUXniIlZ1qKATvhSj/uPbW+y8fbsPNc9jbWjbiDl87/6Pz+jBYzB2rPo5EoiVMHOSVAXWFJ1Ehkos7VXAOf7TpJTLAv8yf0pU+EHzaphalD+/Dz8Tz03ZjrN7bqOGEqYFHEcP6R1X2XaEHEMH4oP4WPVI1SJuHFW2dgFpl54dz33ZK0l879yLdj7usymOLlcz/ywdBbWXPyUxZFDGdR5Ai8L5F9kVBErDqQALmG1fGTuD/98y439p4SJXPChrhdPy72YOnYgYymi0wJcdjwvTvkZtYX7WVHRQY6qwmpUMykoBRuj5+MCCGDfWI411rOLcc+cJFgpXiF81DSbORCMW8PWcXDp7+i9VKC5PH6fGaHpvFC6lJUYjkmm4VHTn9Fqe5ygUomlHBvwvReiSY4Kup9PbtODL0pdgJJnqE0m9p5M7drBwlfqZqHkmexvSKdUf4JWLFRY2jhREMB60fcyY/l6WwuPdrlc1ViOXagRt+CSCCg3tDqQnI7o7S9ng8u/MbdCVMRC0XUGdqQiyT8Vu1+PRjjl8TqyMkcyyrl6X2/IxWLmDwsnn6RQaiVMjyukvDa7XaaTe1oLQZazXp8ZR5IhKIeq8TeMjUzQweR6h3FZ0V7yWkup9nUzraa49yYOoa0hHDsNjtSidhFrtBgaOPRM1+R2XL5+nmoLo/PLu7hldQbSSbMSXbFIiG+3aSSAiyOHOlye0l7XbehJB0401TM/PChvJ12E6uPf0jbJTeWQLknE4P64S/TMCkopVe7zv8F/jDRnTRpEgATJ050uf3PYbT/+xAJhXiqFVitNkxWK1WNrVQ1tBHqp+GW6IncFDuB3NYKbHYbCZpQxAIRfnIP2ox6po/qw5kLVfT37D4GugN9NWFsLb3ckopS+ZNRWN4tSQz20eDpK2VHZgYH686zNGoMG0bcSaW+CalQjKdEyf6a81hsXZ9bXlIVFruNhRHDeD/fdeK+xaznL2e+JlDuyRP9FtLXM6xLstwblDIpU4ck8ksX2icAjUqKrsH9QhEm8yOr2L0DYjRbMentBMg93bLUO2PJpQtSraGFJlM7F9tqUDZ78MomdxmA3mhm7Xs/8O0Ty4kK9KFZq+evn/7CsUtBF29sPsTbD8/ip8rT3VaSl0ePY3v5KcYEJPFN8RFuiB6DTyeiq7Ma0YgVbBp9H0fr8vi1OhMhAiYH92eYXzx+Mg9MFiub9p11klyAg1lFPPqugUeXz0Ukh5ONhYgFQob79aFa38TKo+86ifMAnyj0OjMCAQxLjGDMwChGpUTxWckefqk640I8+nmG8/zApQTKPVHKpdw+awRldc2cyHP1BVXJpbx060y+/j2D9+6Zz1vbDnHHwuH8LecbVsWOx1Oi4OviI872vKdEwQ3RY4lVB5LRWMTYiCSiR8q4aChHI1by3PhrqarS8tn2U4zqF42nSk6Ir4a8slqmDU1EeSlKWyAQYLHY2HH0HNdfM5DzpbUcPVeCRinjo/sWcepCGS9/u4+0PuH4aFwvxwKEhCl9sdhteEmVNBi1bgNMfjIPdHozrboWik11LIsaw66qsz1KkRpNWip0TQz0jnJOezeb29lRkQ4IuDdxGg9kfNHlOTItJJUAmWsb1WK1MmtMEj7BUr6uOMhnBRXIL0qZkjqAdZMX8dKGfWQUVLq9VnpOBanDolCL5czuJhBjXEASceog3sr9hQ+G3srJ+kJ2V59lVdw1zkGsrmDHzrayEyyOGMlnRa52Z1qLgQZjG3HqQD4p3MOx+nxeG7zcWdlWSeSoJHLEQjHPp17PCzk/OM8LgBh1AM+nLnWr5gIormLjrBTJnDG5fnIP1vSZwoqY8VjtNkQCh3WiWiLnbFMxRdoaNhS5uwllNZfxt7Pf8Org5aR4RrBp9Foym0rJb6vCT+ZBsmeYg1j6JbC3JpsnUhZQpW+mVFePr8yDZE0o2yvS6e8djkQg6lG3P8gnmkHeUWwavZaNxYep1jcRrvRlcdQofKQqPCQK6gyt3Va/50cMo8bQgkIkYeXR91yKJRKBiPuTZnJH/GS3azfAnJAhHKw7x8u5P/Lz+Ef5rux4j99tR7Rvo1HLD+UniVYHuG1URvklsNhnDLc+t8VlAGx3Rj5xIb68smYmqO14SHue3TBYTeS3VfNU1haX3+Vgnxge7TsHjchhRygXu8ujvGVqvGVqHu83H/OlIoinRIFcLEXdRf2jSd/Oe/m7XEhuB8QIsdntGDFzqLoEi91GomcIIrsQf9XVFR7FVyHVkYkkCBEQpfJj85j7+L06m2CFN2qxjB0V6RRpa6nSN7EoYsSl4tr/naLnHya6e/d275H4J/7vw2Ayk1dWx6Of/kRN0+VqUZC3By/dOoNhYfFIL013NhjbyGi8yLclR2kx64iKC8BPraa/V4RbVa4DfTyCMdjMblGx5h5a9ONSY9hV79DytZj1vJ//Kx8V7MZXqsZit9F4yZR6avCALj3+BAIBfjIPZoelsbcmh9xW90U1QO5JjEdArxKE7qBRyXlo0XjEQgE/Hc91EgSBACakxuGjVJGsCXeLaDXYTagVXetAN+/O5NZJk3g2z326WyIQ8eLAZRisZh45/RUX2qrwEMuZHjqIKUFh9IsKJLvYXc9ltdn5+OfjPHb9ROpb2p0kF6CirgWbxc4LqUt5KmuLy+LtaJdPpULfSE5LOROC+tJmuVyxbTC2UdJezzclR2g0thGu8mNJ5EiG+8UjEghdfHO1OiMb9ziq+WKhkJF9owj21dBuMHHHS9uQiEXcM2802oBmVh5911kZAAdxWxE9DpsONvxtMed0pSjk8EX5fn6uctd7ZreUsfbUet4echN+Mg98NSqeWTWV8voWfjqei85gYmBcCEMSImhq03HX3NHsOZOPRCzi4+9P8o/Zi8nSFmOx2Xht8HIEl74LjUTJj+WnONtUTLQ6kPkHX3VZoL+vOMGUoAG8+8BcPv7+BEWVDTS16Zg+LIlALw+XId1zJdVMHtyHW1//1iUu+6Ofj7Fo7AD+tmwSxTWN+FxRgZGJxLw4cBnZzWXUGlsIUXjjK/Pgi6IDHKxzbLjmBA1FYBby7Ne/sXRxX/QCA+dbum+3d6De2Eq0KsDprGGx29CajVxsr2Vn5RneSbuJdUX7OFafjx07QXIvFkYMY3rIQJeQFwC72E6DVz1PZV6OJ2016/mi5AA/VWXw5spV/OXtXRTXuA53JYQFMtwvjIdPf8XdCVOZEjyAb0uOUqFvIlCuYVZoGkKBgEfOfEWsRxBioYh7Mj5iclAKDca2XiVUhdoarg3qOiyoytDMrLDBpDddJLuljOP1+UwJSXV5jJ/Mg6E+cWwcdTcl7fU0GNuIUgfgJVHiI1Eh7kLbH6H0xUMsdzmnr8ScsDTEneQSCrGsS4LsK/XottMAjgG0grZqIlX+CC1CsppLudheS6tZz0vntmPDzjWBfdlXe47tFenEqYPwl2vQWvS8lPMDNux4S1VMCk7p1p9ZIhAxI2QQaqkCtVTBg0mzMNssSIViF7eDnv4WU4L6U6yr5/Xcn93uM9utvHRuO2+mrXQL94hRBzLMP445+18GHOdoma5rC7/Or2eyWfi1OpOs5lKi1QEu9wsQsDriWm5/cVuXLgcFlQ28tHE/j904oVeiW65r5LbjH7sl1qU3FnHniU95ffAKBCZHh6Ursgvuw3PdwSqwsrPKPdBGLZbzxYi7+Lb0GA+f/dK5ORUiYFxAMg8nz8ZX3vt7SIQiwpW+PX6/Hb990aWK9aSgFN7J28mOysvDpMfIZ3PpMW6Pn8zssMH4yf5vkN0/THTHjRv3nziOP/FfQm2zltVvfIf5Ch1jdVMbt7z2Ld8+sZxwfy8ajVqezPzWRW92qrGIIw15vJ12E385s9FNsxWjDuCp/tc5M8E7UNxeR3JKYLetf5VCQp3F1TbIare5RQ63mbtfPAQCAb4yD94YvJJfKs/wbelRagwtBCu8WBQxgmuD++MlVTkrKf8MvNQKHlw0njtnj+L4+VJMFiv9ooJQyiV88tMJVswexjelh10I0aGG86wZNZNdp9xF/r9nFDAwIYTHEubzYfFvTo2xSCDk5UE3cLy+wKVNp7eaWF+0j58qMnhl1QoefPMnt0EncFhYGUxmth911aVZbDZ0egs/VqTz6uAbqdQ1UaZrwFemJkkTyg/lp9hSdpzrIkZQ1t5AvEcQJrOVBnsbz+d8z4G6y0lDmc2l/FSRwYrocVwXOcLlfQxmM606I3NG9GXxhFSOniuhqKoBL5Wc1++YQ0FlPdsOZ/P4qokc9crnXEs5SrGUWaGDmRs+BB+pmlpaeSJnI9X6FtaNuIPncrZ1+3cp1NZQ2l7vbJn5eapRyqVEB/pgttqQSRwG+H6eKrR6I+0GMwqZhBBfDUatDUORmL6h0djaBbS0Gdh78jzLZw5iXvgwWi06rj/4ZpfuMruqzxIp98dss3L0fAlHz5fw9d4z3DtvDPNH93N6GseG+LH0+a8wmFw3e3Y7bN5/lmAfDQPjQ1zuazJqyWwu5ensLS4SER+pmsf6zcNHpqaorZbxPv04U1DJ2cJKHhSP4ag2l9grFveuEKHyw2KzOquSIoGARE0IF9tr+anyNFktZSwIH8Zt8ZOw2+20mvX8WnW2S0Kjtxt5N3+X2+3gqB6/XriD1XNH89iHlwevYoJ9GZoYjrdMxUsDbqS4uY5AuRfLo8dR1O6Y2P+oYDeF2hqG+MTyaN+53H3qM8d3Y9JdVcSrt0TlslnrjFCFNwGdFuGNxYcZ6hfvlDB04HJIwNUt2HKRlNvjJ/Py+R+7vH+4Xzy+nTaFTUYtRpsFm92G7NIGqyOxS2sx9EiYAXZXZTHKPxGzzUKLWedm41fSXk+8RzDpjUUUaKvdJCmbS47w7pCbKW9vIOuKdDSpUMxrg5a7VK5lIrGLbKUDYoGICKUvpV0QJYlQzFcXuyfsdux8XXyY+eFDeT33JyQCEZOCUrizzxSezvoO2yX7R6vNio+0Z/cZAQIkQhHbyk5gsJrp6xmGAIHzvE3zjSEzv8plwwmQEOaPr0ZJk9bA0XPF6I1mDFZzt/KyVrOO187vcCO5HagztrK/9hx1+hZWx0/qluheLRoM2i6r7s+mLGFzyVG+LnWVc9iws7c2h1aznqdSrsNf2fP56y1RcnfCNB4+/WWX90eo/BjiG8sdJz/hxuixDPKJYV9NjgvJ7YwP8n9jkHf0/7tEF6C5uZlPP/2U8+cdC1/fvn256aab8PT8v+GZ9ie6RrveyLvbD7uR3A6YLFY+3HGUh5eMZ1PZkS6HKir1TY7o3LSbKGlu4EhzHgKBnQmB/RwODxXplLa7tuoNVjNn2y4yaVB8lzrditpW4uKC2U/3kY0CBAQqPLHZ7FisViRiUZfkw0em5rqI4UwOSkEgcFzgvKXqPxT32BM8lHI8lHImpMai1Zs4dr4EqVjELdOGIbDD0ymLeTxrk5PsFrfXIYq2k5YQxqk894GbV785wFePLeWLEWtoNGnRW02EKnxoMGm71aLVGVv5pOw3Fk8awBub3RcQ4aXv5UpiBbD7ZD7qCDk3H/uAOHUQfnIPtGYDL7Y4KjxCBEwPHchdJz9jbcwMLlxsoFxd6UJyO2PDxf0M9o1BKZKiuqRrEwqELB6fyrDECA6cKyQ2zIeQEDXHM8u4460tTB7Uh7vmjMJLquLpAddhslkQIMBDIkeAkHpDG89kb6Fc10ikyp/CtppeteG/VWXSxyMYndWIxWZFLpKiVMjwvLRQtemN/HziPC9v2ueil5aIRTy0aDzZebV8sMOhE4wO8kEsEmLHjt5i4uPht2G2W5EKxfxSeYbvy04643i3VB3n6fFL+enYZUnLm9sOMig+lJToYMwWK7+eyuOZVVNJiPdFJBBitljZeSif9390vN/GPRlMSUtw+TzVhhYeOf2VmwSh0aTlL6c38sWouzBr7fx6JJ+YEF9mDU9m78kiElP9SPGP5M28X7q11YtQ+uIpUTImIMlpLygXSrkheozTBaS0vZ7Xc39yed6KmLFOh4sOmG1Wvu1GX9mBjMaLPDZyHmKh4zudMCCOh64bj1wqpqK+hY17MjiRV4ZIKOTawfHMHNGXamsD4UpfEjWhCO0CHs/a5BwsO910EZlQ3KuWeFHkCB4/u6nLz2+x22gxO6KGTTYLDSYttquZP+gFaomcawL7IRWK+aBgt3PzKhOKmRk6mFvirsFX5kG7xci5lnJeO7/D6arhKVFwXeRIFoQPw0em7jVEABwFAbPVQqW+iWuD+7sNFX9ffpLb4ya5eOd2RotZT2ZTKfcnzaLG0Mzu6izaLUaSPEOZHZqGr0x9VbaP3lIVq+Mm8bdM9+9bLBRx5opO15VIbyzir/3mMdKvDwqRFIPFzN2nPnMJKllfuJ/ro0ZytAfnmKG+sYBjNuWGqDFIhCI+HHoru6uz+Kkyg0ilP9k5l3XUkwbHceO0QZSZ6qgyNuEv9SROOYE2gwGz1dIt0TXZrM7AjO7we3UWy6PHcayhgJmhg3p8bG/oiihLhWJiNIE8eKb7VMb0piKazO340zPhlIgk9PMK55kBi3k992fnedvhBvPXvvPZVnaSrOYyHj79FR8NXd1jPDjAZ0V7eVy5wBl48r/EHya6p06dYsqUKSgUCoYOHQrAa6+9xrPPPsuvv/7KoEH/2h/0T/znYDRb2Xe25x/nnjMF3DN/NFt70EJV6Bv5tHAPa2Km0kcTzBntRV449z0KkZTro0Z1+ZyPS3bzxqybMFutbs4L9c3t3BMxkvUl+7olNMP84hDahbz9wyGqGluJC/Fj1vBk1AoZqitiFiUicY8xhv8OdBDeeaNTXG4fIo5l65gH2Vp6nHNt5ajEcmRyEU+vmsK6nSf58eh553BOTLAvjyyeQLifNyq51Fk10ltMzonc7nC4Lo/Vg6+FLpyBJqTGopRJGZMSzXdXmId/uzeL9x6cS6G2hnOt5S5EQYiAR/vO5ffqLMb7JeNp1BAa4sFLmd1XYwC+Lj5MbL/5TqIrk4i4fvIAGk1tlNpL+bHuAFKhmHED+7Lu2kW8vvEQWUXVJEcGOq1xzBYrLW0GfjtzgXFDo5ybLAdl733B76gKfVzo8KZViKTMDkvjptgJeEtVXCiv4/mv97g9z2yx8vw3v/P+PQsI9/eirK6ZRRP6I5EIOdVYxLsXdjoHnlQiGXPC03grbSX3Z3xOu8VIg7ENhdx9Mfzop2M8e9M0RAIh8yf145fK07yXvp1ms44olT83Dh7LzvE3sfypzdS2aLF2It/1hlbez/+1W52t2W5lQ+F+7oybwrjRERxoPIfHEDNpAdHEqoMQIuDpAYv5y5mv3X5PKrGM51KX4iVWopJeHriRi6UITAIeTJrFK11UI4f4xrIkchTKK7wxtWa928a2K2jtBr78y1K81AqkYhFSsZickmrufmebi0vGhfI6vtidwacPXIeXUI3aJqf+UnW7A1a7jUN1eTycPJs7T37aZVVtfEAydrudCr1rXLBGouDxlIW8mfszj/ad42z1Rih9r8pS7GrgI1MzMSCFkf4JtJn1mGwWx5CSQIyXTInVZiWjsYgHM750qZC3mPV8XPA7hW3VPJQ0mwC5JzKhxLmp6grjApMRCYWcbS5hmG8cQ3xiOdkpeCevtZJ2i5FlUaP5qgsZxDWBfYn1COSW4x8QrQpgVEACCqGUBM+QS9Xb3kkuODpqw/3jWR03kU8K9ricu3bsCAUCrD0Q9w7nk8WH3mRlzDiUYpkLyQX4ofIUy2PHMtw3jmNdFGFUIhkPJc9GgIBHk+eyufQon188gEwoZkJQPz4YeivpDUUUyxxV8sXX9CdteBD35brGzqtEMv7adz4xdB/AcTWbIoPVjFQo5lBdLpOD+iG7CivD7qAQSglReLu4iIz060NOU3mP+mqAnZVn6OMZ3Ot7+Mk8GOOfRJpPLPXGNprN7U47z08L9vB9xeUhZolQRLmu6yjuDpxvqbi64fX/Av4w0b3vvvuYPXs2H3/8MeJLi5TFYuGWW25h7dq1HDjQvVfmn/jfw2rt+cTrmOLvzdvyXGs5FpGFdUX72N7JpzdI4UWEys9t8WuzGLgvex2vzF3BHXNHcDD7IlarjRFJUVhNdvIu1vNUv+t4Inuz248jVOHDY8nzsBrtHDtXTF55PZneVZjMFsb2jyHU1xNvj/+tnUmLVo/JYkUuFROs9OKmmPForUaO1OfxRt7PVOoamdNvCB+Nn4/VYkMpkeEhk6NRyVxiPcHhn1veixbNhh2TzYJQIHCp/MgkIlZcm4YBIymxQQT7aKhqvCwBadMZeeCtn3h69QzaIrT8VJOO1mIkURPC9NCB5LdWMVgdj0IuQyGUopCL3SQkVyK/rQpzp0FBoRiymkp4+tx3Lgvel6UH+LHqFK8uWcF735xgypAEArwcKXr5FfXc+vq3DO0TTly/y5qyCl0jsR5BPVqAAQz1jePjgssBDHqriU0lR8hrqeTZvkt594fu41btdti45zQLx/bnve2HmTIsnv21593kEu1WIxuLD1Oha+Th5Nn8PfNbwNH2vxI5xdVYrFaMEhN3nvzURXuY2VzKQ6e/ZHrIQNY/sYjpD6xD1Mlz0g4cr+/eogrgYF0uCyOGc0v6B87bNpceJVDuySuDbiRJE8rGUffwWeFeMhovIhYKGR/Ql+ujRuEpUSCwiWhs1VHR0ILNZifM3xNfsYaB3lF8O/o+NpcepaCtBk+pkkURw4hWBXQ5SS6Aq5qy1kgUhIVdJg71Le3c/8H2Lq3gWtoNPPjhj7x+xxw27j3DzJFJqMVytJ3a+K+e38Fbg1fy6fDbeCdvl5Pc+co8WBI5kukhA2k0trEwYjinLqW/jQlIdOgKLzhkFgVtlzXuq2In/FsskYwmMzXaNkw2C8ZLRCf7Qh3HMtNZu2gcGomdFrOeF3N+6FbXuqcmh5Ux4wlReDMvfCjfdNPZ8ZKoGOYXj0woQSwQIhaKWJMwhe3lp/ip4rSTIH9UsJtnU69nakgqG4sPOWU+S6NGE6zwRm8x8dyAJRRpa/GWqR0DuyLpHw5T0EiULIoYweSg/hyoPU+dsZUIlR/YYbR/Ivtrz3X73PGByZS212PDRpG2hjnhaS73hyq8WZs4A4lQzKN952K12znRkM+XFw9RbWhmfEAyaxKm4iGSsa/2HM9e8dvdVHKEnysyeH/oLQwZL+FQVjFTx8Zz+5mP3K4r7VYjf838hvUj7uz2nBALRL0OEid7hnGxvRa5SILoX9xEecmU3NtnOo+cvSwLFAtFPc6+dOBqEkLbjAaMdhMFbTW0mnXEa4IJUXjzaf7vbO9GntDbNVn5L8o1/p34pyq6nUkugFgs5uGHHyYtLa2HZ/6J/zVEIgED40JJz+/es3JwfBgIeq+gKUUyhAIhdydM45bYiVxsr0UoEBCl8ue9ITfz2BlXGympUMztcZPx81Cht5gYMySCvNZKXi/bxgqfa2lo0jMuKobNo9fydfFhzjaXIhdJmOibQqo6hrWv/0hkgDdv3z2PjAsVeKkVbDuczfNf78HbQ8mNEweREB6Al7p37d6/E41tOk7klvL9kRxMZgsDYkOYPyoFjUrK3vocl+rYxrJDbCw75AzoeDhpNqOliW5EVyoU4y/zBMroDgIEyEQSF5Lr56nipdUz2Nucyfoz+1gSOYrPHlvELS98R0X95QtybbOW178+xBt3zsFcJ6TdbsLHpiLnfC01DQbwUdCkbeH97Uf4+qnre72gqcVyp1wCwIiZZ85v6bIi2WLW8XLhD9w4YRKWSySnTWfk9je3oDeaqWvR4tEpqc5st3KsPp8pwQP4ubLr5KBIlT8aiaLLYIUzzcVYrTbOFLoPKHbGyQtlLJ88mHfvnYfFbuPdHirq+2vPszRqNL4yD4LlXhRWuFc2FDIpdpGdjwt+7zbq9efK08wIGciaOSORSlwXwt4Grex2O4YuKn01hhYeyPiC5wdcj1oi58bA8dweOxmRUIBarEAtldPSrmfTvtN8/tspdJe6CxKxiHmj+rJ6xgjsYiuLwodjx1EBVoil3WpixQIRc8KHsL0bH25weC9fGSd9IreU9h4iT4trmmg3GNmfWcS0IYnMDxnG56WX3Qfs2Lk7fR1zQtNYmzgdjURxSXojZEdFBudbKthZdRpfmYaVMeOw2u1kNF3k5mOOjcEbaSt589Jw1KzQwfTx6L7i1WbSY7SZKdLW0GLWE6sORC2Wu3WNrHYbdeZW3ijawZH6C9iwIxIIGeefzM0LJvDMV7/x7KppNNDW6+bxh/JTXBcxnEURw2gwtrklXPrJPHgxdRnrCvYy0j+BKSGpPJX5LXf2mUKcOohPht9Gu8XolGZgtxOi8OXR5LkYbQ4CLkRAjaGFdUX7qDE0EyD3dBBciQqff3KewVOqxGq3obUYWBw5kjdzf2Z3VRYPJc/mUF1ul9cRqVDMTbETeOKMoz2V0XSRB5Nn4S1V0WRqZ6hPLI+nLOTTwj08nrkJg9WMEAEj/fvwVtpKRAIhv1Zn8kD657w6+Eaez/m+y2Nrsxj4R9YWXhiwlL/cMJ7NVYe7va7ZsfPuhV08EDMbL5kSb7Ur4fWUKFkRPbZbLbYAAQsjhvNE5mZeSF36L0e4S0Vi+ntG8kL/pbxx4WeqDc2cbrzIHfHX9vrcUX49h3s1GNrYV5vDOxd2uVjxJWlCeTZ1CVYBLumFIoGQCn0TY/2T2FvbvVf21OCBV5U6+t/AHya6Go2G0tJSt2S0srIyPDz+7/mn/YnL8FQpuGvOKFa94q6j6sCaOaOQyESkekf1qKuaFTYYX6kaoVDo9OntjFcG3UizScfJhkLkIglDfeNoNLXxbt4u8tuqUEsUzA4dzPMDlyFGhFe8CovNhrnVTpI2ljhJFGazlcO/lvBazklsdjsyiZjWdiMFlQ188ourtOJITjHDkyL5+42TkYhFeKsV3cZT1xvasGHDZncsRF4S5VWlo12J2mYtq1//ltLaZudtZwor+XrPad64cw7l1q5bOx0EcGvZCcJVvk4btw4oxTJuiB7jYu5+JYb4xuKlUPDmXXMobWgkxE+DxlvKj3XH6OsdzgNJs3gq6zuKtbW8/+A8TmSWk55fjkQsZPyAOORSMU9/+RtzRvbjmQ2XSd3QhHAiR/rw+hZHZ+bkuXLG+Cexr6cLWkgq6k5BHrurs3okxnmtlQTGKBGJHAvpyQtlaPWOC+y50lp8pGoCZBonGVhfuI8301ait5rcjN/jPYJ4vN8Cnsz6ttv301oMbpXvKyEWCQnz96K0tolyXUOvHY3fa7IZ6RfPRJ8BfPCluy3WrBFJ2IQ2dvaQfAfwZfEh/jJmLt5K1wVhoHd0l9HQHRjiF9dtyEKtoYUyXQPZzaUsjx5HbbWOUD9PFHIp7QYTn/96inW/nkKjlPLgdeMIDdSg05n56rfTvLRpL3+5/hqiPHofaANQSxV4W1TMDB3k9M3uDJlQwgNJs5BdQXTPlXad9tYZBRUNJIT5893BTJZeO4xdtWeouaKC9kPFKU43XeSjYbfhI1PTbjESpfbj+ZzveTZ1CemNRbx9YRcNxjaECBjuF8/NcdfwU0UGSrGMt9NWkagJdXOS6ECDsY2Dtbm8nfeLy2CYgwRcT7DME9ElJ5d6Qys3HfvAxc3EarexpzabnNYyXr5+Bb9n5BOb0rtmsdWsRywUsfzIuzyYPIvVcRPZXZ1Fq1lHsmc4QQov3rmwk9NNxXxbdoxZoYN5pO9cHsn4ipvjJiAVimi0mBFKHHMKwQofPC5JVRRc3lhHqv15tO8cp5+uWiy/arlCd/CRqVkSNYqMhiJujZt4qTtQxZuDV/L3rG9dgn0CZBqeGbAE7PCXfvOw2q1Y7DZyWyp4IXUZ959azxP9F3LPqfUu8dw27Byqy+NMUwnrR9zJwZpcYj0C2VGR0aO1Xn5bFSKhkJgob44c6Tkl8mRDIe2hJp789Ddev2MOPp26hiKhkGuDB3CupZyfrtiACxBwf9IMh/+2wptA+b9HRuerVDNalkg/rwi0VgN6iwkZEkb49uFoQ9efJUThTZwmsNvXtFgtnGws5MVz293uO99awe0nPuGz4bezq+IMFmyoRDJeHLiMSn0jy2PGcbThglsKHzg6Kwsjhv1TVp7/Cfzh1X3x4sXcfPPNvPLKK4wc6fD4PHz4MA899BDXX3/9v/0A/8S/F7Ehvvx16URe/Gavy1COWCjksaUTiQr0Ri2T8UjSbJ7O3kqdsdUtOz1C5cfYgKQeI/68pCqw28loLHIMuVSe5r38X10ec66lnJjSo7yddhNCoYDy2mYMRgtPbvjNxZ1BLBLy7MppyKViqhvb3EhuB46dL2HLwSxMZjPzx/QnzM8LodBBdltMOow2C00mLW/l/uJsdQbIPbk+chTTQlLxkfU80dsZbToDT36+y4XkdsBksXLf+z+w/m/X8W3F0W5JX6muHplQ0mX1Llzpy7Tg1C4jgj3Ech5MmkV6cxEbmvbjKVNQX99GWalD7vBjZTo3xU5gZex4Pivcy6LgURzKuUiwjwabzcY7PxymqMrx2BnDklgyPpVv9jneZ9G4AXz00zHne63/OZ23H57F8Yb8Ls3lQxTezAx12A8BWGzWbhOUOqPG2EK40he73c7JPFeruszcah5Imskjl1KW2q1G1qZv4O6EqdwYPdY5WJPmE4O/TEO9sY3H+y2g2dTOx4V73Ahgoa6a0SnRHMjsXp8+NiWGxlYdPx07zzVTuzbH74x2i5HrQkew80AB2cWuA1F+GhWTh8djsVm7XAQ6o0LXgF1gd9mU+cs13B4/idtOfNzlc4QIuD5yZI/kPqOxyBFRKxCw8uVNeKkVrHtwMSq5hC9+z+C51VMZkBDMz5UZ/Nx2Hi+5ir/dOR6xWUy7wYin6uorMQqRlIXhw0nUhLK59Cil7fWOSmZAMjdGj8FX6oHnFW1wn6uQGnl7KGjS6mlpNyBFwmv9VrKx4iC7azIx2iwoRFKmBadyc9w1zt+uSixjlF8iA0ZGkt54kUilH+8PuRmZUIJIKEQiECERiLi7z1QEAkGPgTEWq4XTTcVdOn6cb63gtuMfsWHkGvxEHhgsJj4r3OtCcjujxtDC7vqzCNtUjFZE9PrZ4zwCseM49/+R9R23xU3CX+ZJcXsdXxYfdEtg/LnyNMuiRvNG2grONpdwtqnUQeAlCjQSJaoeCMcfCc65WnhLVYwP6kurScc9sdPQXvLF/mrY3ZQbGyjV1ROm8CVE6c2pukJWn/jI7TUeTprNtnEPsbs6y4XkdobWYuD9C79yR/xkDtblUtGLbnRaSCrZzaUOO8SrC4ok62I1b207yMPXTUDZaR7EU6pkbeIMbogew+aSozSYtESq/JgU1J+9NdlU6Zt5LvX6bsMjrFYrDVodNptDwywUCfDz6HkNkorEBCg1BHQaLvtbynweOf0V2Ve4ZgQrvHgn7Sb8Fd1vrBpN7XzQhX9xB2oNLRyqzWVV7Hg+LtzDEykL+a7sOPtqcpgUlMLrg1fwVu4vLh7KQ3xjeTR5Lj+XZzAnYsgflsD8J/CHie4rr7yCQCBg+fLlWCwO7YdEIuGOO+7ghRde+Lcf4J/490KtkDFtSCLj+sewOyOf4pomYoJ8uGZgPEqZBKnEod1rr7exVD4RryA5FpmZDeV7yWwuYVxAEvcnzbyqfHBPqYo5YUOQiSRuJLcDRdpa3r2wi3vip7F571nC/D3dLMgeWTyBs0VVDIoNYcuBzC5fpwNbD2Xx/M3TeWPrQR5dcg0SkRCrxMqeqiz6eIa4Da/UGlp4M+9nzreUc1/ijG49B+tbtLTpTRzILMRmh9H9onlw0Xj+/vkucrrwszWarRzOLGGUX0K3jgU+UjVtFn2XRNhTquT+pJkM8Y1lfdE+SnUNyIRipgansuTSwN+L575H102y0Yai/awfcSdfFB3g94ZMPBRS0vPLuWfeaJZPTkMgAK3exKkLZdw0dSjThiaybtcJQv08ya+4rK+ubGjloy0n+XT+7bycu93pE+wgMkmsTZyBt+TyhUwkEBJwFRWMUI03PhrH87wutQUlYhGTB8fj4SkjQhPI92Mf4nBdLhuK9lNrbOXtvJ0sjRrF4oiRHKu/gL9Mw/nWCr4tPUazqZ1otT+PJs/BYrdy+4lPnNq0Wkszt0wbxpHsYreEOnDompeMT8WOnUM5F7l5weBej3+gdxRqlJw67+pZOzQhnMdvnMQTF77hhYG9yz58ZRqEXbSII1X+PNZ3Hq90Si8Dh8fvkymLOFyX12N0q1gockzk2x3PbdXpOV1QQXyoPx8+tIA6aSPzD77icmzbyk8wKTCF+xJn9Pr5XWAHb5mKMf4JpHpHYbXbsGOnztCKQiTDJrBjtVqdlU+AqUMSeXf74W5DZNQKGfGh/hzKvsjSawbiqZYj1gu4JXISN0Vdg11gRyGRIBNI0MhdSblcLEEuljAlZABmqxWz3YJEKEKAw5rsoraW3NZKvKUq0nxjkQnFXWoxG83tvHeha9s0cLif7K3OZl7YEHRWEz9340XbgZ21Z3gsaRFSgYQ0n5hup/YlAhHjA/tyqPayk8dQvzjuPvlZl793kUDIcwOuZ1fVWTYWH7oiQS2Cv6cspFBbTZjS15kU12RqR281ESj3dAZU/LthNtsw6+CbQ6fZd7YQi9XGsKQIll0zCA+hmnXbT7JoWj+ezOk6Fe+l89sZ6d+H73tIcgTYV3uOexOn01qp61UvvihiBPeeWscN0WMY5hffY9cszSeG8yUOh4ZfTuZx99zRLkQXHNdpT6mSexOmobea0VoMNBq1LIwYjlgg6rZ40qhtZ9/ZQtbvPEX5JVnZ4Pgw1i4cQ5i/F56Kq/97+Ms1vDhgGTWGFn6pOoPFbmWsfxJ9NME9ktwWkw6z3eoy4NYVfqvO4ta4ifxek41QIGDfpa7a7uosKnSNLI0aTYTKjxazziF/EUp5JnsLJxoLSfGJZJBP9FV/lv8U/jDRlUqlvPnmmzz//PMUFjqqYrGxsSiV/7eyjf9E91DKpSjlUpZMGOhyu95oJiO/gr+t20l96+XKRJifJy/cOovA/iqEQiHesqvboQkEAhI9Q3g7r+toyA7srs5iTZ8pFFU3EOzr+sP091QRG+JLXIgfErGI/MqeJ7wb23QEequZkBrH2vd+YPW8oXzevJsnUhby8Okvu/U9/LU6kxtjxnZJdOtb2nl8/S6OdwpfePv7QwyMC+WV1bN4+KMdZBW72xxdKK4nLLj7yd0ZoYM4XpdPgibE7T6r1YrRamaEXx8G+8Zgt4PFbkUqFHGy4SICgb1bkguOlumJhgIG+USjtRm4Nm0wN08bxkc/HWN3Rj4mi5X4UD9umjoUoUBASnQwT62Yilbv/pq7TlzgYmUjdy2cyN/7+WCyW1CJZQjsAiwGqNZq8VYraMeAWCBgVuhg1hft6/bYAuWeBHbSN84cnsSWg5m8fs9Mjrdf4MmSr2m40IZYIOKaoL58MGw1YoSIhEKkQhG3H/uY14au4PGzm1wCOi60VbGrKpNbYq/h42G3seLou44o66AUfvz9PC/cOoMXvt7jcm4HeXvwt2WT+PnEeYYnRdLQqsNisjPIJ5qMxq6lA0qRlARNCI9nf82N148mQjYBk9FKsKcncqkEvVBPVkspbWYD4wOS+b2HxXRx5AgCurDf8ZGpGReQzCj/BA7X5VGpbyJK5ccQ3ziE4ByE6w6j/RN598IupEIx984fzdQhiZzIK+VwzkWuHRfLHYc2ddni3V2TRZxHENdHjew15avZ1E61vplPCvaQ0XQRiVDENYH9uCF6DDqLgTNNxTyTvYVQpa8jGlp0+W8ulQi5YeJgvtjdtbb3gYXjOHq+2PEdjUtFIhLhpVbiRdfrjMlqRmcx0WZxtPzFAhEigRAfmRoJIsxWMxfb67k/43MX+YNUKObWuInMCh3sRkosNmuvk+W/VWcxNiAZsVDYozsCQJtZj5dagUIg5YmUhdx+4mM3kiEWiHiy/yLsdjvflV3urAgRdPt7nxs2hCJtDeu6+M1lNZdyf8bnPN5vAUsOvcmLA5eS3ljE18WHabMYnBvWh5LnuPj7/quwWq2U1zdz86ubXTxrL1Y3svVgFm/fNY85I/tyvKn7dDtwyABazLoeH2O127DabRyoPc9baau6dJcAR0Jntb6ZNouBbWUneWrAdeyvPdflRlSAgGWhY3njM4d1ntlipalNj69GRbPWEcN+MKsIq83OyOQofDQKfNUe+OJBpNq/x+NtaGvn45+Ps3mfawBEen45K1/8hnfunseg+DAkfyDcyF+pwV+poZ9PODabrcduK0CTsZ30hkISPN3XnithsVkRCYRMDnK3rzvfWsHjmZuciX56i4nvxz3IiUsd029LjpKsCf2XfYT/VfxTProASqWSlJSU3h/4J/6fQXl9M2ve3orV5lgA/TQqZoxMJMhPzcmCUqZ7JuPr+cfaECabhaJe8t9NNgsGq4mi6gbumOWawT01LQGVTMqLm/Yyd1Q/NEq5S6LblRAJHVrMv2/YRbCPBrlGSGlFA2B3s6u5Et+WHOOBpJkuw2G1LVqe+uI3F5LbgdMFFTz6yc/8ffm1LHzqc7f7NUoZMnHX1bxIlT/jApLIaLqIl9h18W40aDlcn8f6on2U6RoQIGCIbywrY8bze3UWA32iaDH1fPEHBxFRieXMDBmExuDB0ue+cg4fAeRX1POXT39myfhUbp42FF+NCpPFSkywr1Pa0IEL5fXc84ZDx7V88mBGJkfx2Ge/oJJL+PCRBeysPc03pUcoa2/g0b5zWBwxgk1d+KuKBEIeSZ7DwbrzJGhCCJZ7I1eIeOu+2XxYsYsTjZfdBix2K79WZXKk7gIfD7uNzPoS+nmF80DfmXxbctQtha4DnxTuYZR/ArND0xjqF4tGLEcsFrH9SA7P3zwdrcFITZOWEF8NErGI9btOMiwxgtMFjursjgO5/P3aRaw5+Ykb0ZEJJTybej3rCvdxrrWcJ1q/IVLlx/tDbsFbqqJZa0BklfBq3xUcrD7P3QnTON1U7Ez364whPrH0947sVkvesaGcGz7E5Xa9xcSyqNFu0bYdSNKEIhQI6OcZjs1sJykykAVPbkBnNPPampl8dfFgjzrGzaVHmRk2uEuia7xUtSpqq6Vc38ALV7gHbCk7zi+Vp3l18HKym8toMetpaSlHazY408RaTTo2lO1l4YSRhPt7sm7XSWfwSVyIL2tmjyLAW41IBrtevxmAOkML/t10CrRmA40mLUIEGKxmmvTNfF92AoPNzG3xkwmSe2G0mbn9xMduAQwmm4V3L+zCX6ZhSnB/RJ2Ghnr6jjpgsVmxY0eAgFCFj5udWWfEeQSiUchRyWXI7RI+HnYbe2ty2F2dhdFqJsUrgllhgxEAn1884HLuKcRSxAJRlxv1maGDuOfUum7ft7S9nkp9I6FKb+45tY6vRt3DcL8+VOqbWFe4lz01OZTrGnlnyE3/tjZzQ5ueBz740S2YARzSrgc+2M6WJ1dwvLJnRwChQECMOtBNm90ZXhIVAhzDZpnNJdwQNZovuyC7nhIlhkubhWpDM3uqs/lH/+t4PmebyxCWXCThoT5zyM6up6DScR2USUR4ecip0bVQ3dzG+eJafjiSQ35FPa9vOUBKdBCv3jYbv6tYH7V6kxvJ7YDVZuepL3az/uHF+Hv+cxuP3khuvaGVcl0j++vOE6byxVOi6HEmYahvHNEqfwLlGg7Udt2d7BhABFw6CjqrCQv/e4uxqyK68+fPZ/369Wg0GubPn9/jY7du3fpvObA/8d9Fq87Am1sPYr2kF1q7eDR9E/zZXnOSs7ocAr09idd7I5AFXdJ0Xd0OTSIQX9XFUyqU0Ko1UtPUxsC4UCfpSIkOJj2/nIyCCjxVcqYOSSS/ontf13H9Yzid73jugNhgjjbn4iNT9TpcBA4zfpPN4hzWaDG1ozeaOZJT3O1zzhZVYrHa6BPmz4VyVyI9ZUgikeEams3t/FJ1BoPVjEokY2pIKnPC0thRkcFNsROQii8PfzTotXxWtJdvyy6TRDt2TjQUkN5YxBuDVxCi8MGGjS9H3kWRtpZvSo50OZgUpQogu7mcMKE/93/+owvJ7Yxv9p1hwZj++GpUeKsV3DV7JPd/+CMioQCJWOQSPCGXiJk7sh/LX/warcHEhsdX8tz5rRyrv1yZefncjzyXuoRItT9fFx92xkoO8olmVcx4jtRdcIZhJGhCeGPwStoMWheS2xlai4G3835hWfRobjvxMd+Mvpfvz/TcztxQtJ+Hk2c79YfzRqfwy8k8bn39W0J8NXiqFDS16ahuauO6sf2ZMSwJi83GgjH9EYmEtBt0fDR0NY0mLTWGFnJbKpEKxUwI6suXRQfYU5ONSixjVuhgboweixw5hfV1WLFhs9kQG6UEtAYgCBKwfsSdfFKwh11VZzHazATINCyKHMHM0EFXJQECB5kzWE3IL7WZr48ahcVu45uSwy7ShuF+8dwZfy3v5//K3/otwGqAe97+3mnjFRigJutC924e4PgdWLqwJDJYzWQ2l/Boxle8P+xWXkrf3qW+XGc18Xz2NtYmzuD+DMcGsFRXj4dEjp9Qw+H6C2wqO8qWsuPcEX8tHz2wCGyOOG2T2YrZZkHhJeLD/N3sOZON2W4lRh3A8uhxDPeLd6m8NpvaOVafz0cFu53EMFjhxbKoMXhKldx09H0+GHorJxoLekwZ+7jgd4b4xrqY28uEErwkqm51t+DQI2rECuRiCStixvWY4LcsYiw+cse1UCQQ4i/XMC0klbEBSRisZgSXvqcNRfvJbC7FT+bB3LAhXBPYF7lQwoTAvm7uC54SBW1XkaB2sDaXQT7R5LSU83XxYaRCMWeaivlrv/m8mfszZ5tLyGutZKhvHM2mdir0jZxtKkUtljPCPx6lSPaH5A11zVrK6pq7vV9rMHEqr5zZiYNZX9L1hk2AAKvdxoLwYT2GRCyMGEbupdjrjwv2sGn0Wvp6hvNx4R6KtDVOh4Z7E6a7bDi/KTnCtSYt76TdRJG2lkp9EwFyDUN94/jtSAEffH+McH9PhidFcsO0gWyvPcn2ilNoLQYSPEK4ffkI2mptPLPud7IuVrP2/R94e83cHq0urTYbWw/1LL+ramyloU33TxPdntBq1rOp5CgbLjocTBQiKQsihvNZYdd/A7lIwuywNDRSJXYThCp9XPS4V0IkECITXl7PBvtEoxD+723Groroenp6OqsOf6af/X8TZosjxhTggevH0urXxG1ntjIxsB9rEqYgRIDeauqkKbVf1QCDt0zFoojhbtGUnZHqHYUAAeNTY3lr2yFevX0Wz3z1O+dLa/D3UvHhz44W3oGsIm6eNowfA70prnHXFSllEm6dPoIDWQ7tmwABNmxU61vwv4oowlh1IIpLE8d2u512i4njl76TnnAgq4iJqXEuRHd0v2i81Qq8xCpui5/MTbHX0G41YLZaudBaicVuY2XMOLd2qdaidyG5nWG123gh5wce6Tube06tBxxejXfGX8tv1Zn8UH55+t9DLCdGHcCa+MmYrTbO9zLlvmnfGe5fOBa5VMKQxHA2/e0GjGYrBpMZD4WMvWcL2Xkyl6dWTOHTncfRGkwsGjeAc9oyF5ILjkrso6c3MtI/gaf6X4efzIMWs56cljLeyttJfqdhtbzWSo7VXWBXddcVjg4cq8/n7oRpaC0GzDari8F7VyjU1qCzmpybLB8PJR/dt5DN+8+wed9ZKhtanQNarToDd769lcJL1Zt7Fo5i9OAI3s//jbNNxchEEqaFDGRK8ABajO1MDR3InPAh+Ms1KEVSjBYrR+rz+Kxkj3NoJkLlxw2hY8krqyM80JMbo8dwW/wkbHY7drudhnoD7c0W7HItfj0saHWGVlrNOjaVHKVC30iQ3IvFkSPxlqq4KXY8iyNHcL61gjaTnliPQCr0jZS3N/B4vwWUlreyL7PQxavWZrO5OSB0ha58P5tN7aw9tYGR/n04XJfXo/a4VNeAXCTBR6qm0aTFW+oY/mkytTsXVQs23s7fydvsxFuqYlZQGosjR9BiM3HD4fdcWvVF2lqezPqWeWFDWB03CV+5B3qLiV2VZ3k1d4fLe1fpm3nl/I+siBnHiphxFGirOVDTfeoiOEJwLDbXaqlKJGNJ1Mhuh3VkQgnzwoc6J8snBPblWH1+l7rPBeHDGOgTiVLmuuh7SBR4SBQYrGZ+q8rkuZxtjPDrw+P9FpDqHclPFaepNrTw+cUD3Jc4g/TGIheyJuxFA94Bi93m1IIfrb/AGwNXcrDuPA9lfMGbaStZefR90huKCFF4c8+p9S6VaSEClkSNZFXMhG7dKa5EQS8SM4DzpTUM7xtBjDqgy66fv1xDkbYWrUXPoojhfFt6zO0xqd5RTAxK4aeKdMKUPvw96TrAsTl+eeANjsAZgaNVL0BAiMLbJXjh16pMfq3KJEkTiq9MzdmmYoZ79+HgmSLef2geZqmJCks9p9oKGBWQgNZi4KviQ5xsLORkYyHLwsfwwNIxvPjlfs6V1FDX0t4j0TVbLdQ3996Na2zrfnP1r6CorcZJcsFhG/ba4OVMC0nllys05iqxjDcHr0QtkqG3mLDarSyNGs3u6qxuX39cQJKzsCERiJgWMtDFI/x/hasiuuvWrevy///E/3dgtzv+C/HVEBvjyReVZ3hp4DLaLUb+fnaz0+pJJBAyKSiFexOmXfWkboImhME+MV3GUMqEYh5KmkWAQsP9C8ay+vXveOijHTyyeAJikRCVXEZVg+O9rTY7j6/fybM3TePL3RnsPp2P2WJFIIAhCRHcPnMEh3MuEhvsAzgsjO6bPJxNZUdoNrW7pQZ1hgAB88KHIL1EdFv1BjKbSrptK7s+F6d1lVouZe6ofiyZkIpG6WiZ+4gdREZrlqGzGhkbmOQ2hQ6ONujWshM9vleFvhGxQIxGoqDVrOdcSzlr0zfwZtpK8loryW2tRCYU88LAZQTLvRELhTTp9Dy6fDxHzpRwKKu4S5ut6qY2DEYzBpOZnOIaXv52n9NRQiIWMW1IIp/cfx3Vja38dNwxJDN7fCKvF7vb0kCH/U8upxoL2Tz6Pm448na3n8lst9Jg7F6O0vF6HRpIkUDokl/fFTwkCtotRlrNeudmwsdDyc1Th3Hd2FRsdjtCARzMvsg/vrhMZK6fNACvGCE3HHvbpXWdn/cLXxcf5s20lWC182DGF3w16h6ECNlbk8lLuT+4vH9pez3PXdjKzZET8dElEiD0YO3bP3K+1HVBH5sSw+M3TMJX434+NBjb2Fh8kK+KXQMDfqxIZ0H4UG6Jm4i/XIO/XEOrSYfOasRDpODY6QqmPfcp6x+5nuPnXCU3J85UMDUxtceqTLJnWEcknRMmq4XvSo9hsVvxk3lQ2Yt2FRxx4d5SFSqxDKlARFFZM3HBfrSaHIt4nDqIcb7JyIVSKkyNbKk8xqLoYTyTubVbPeq28pMsihzhILpWE+/04Hf85cWDrB9xJ+eby3v1JQZ372KlRMbcsCFU6BrdtIkqsYzXB61ALpDQ2m5Ao5LjKVXyl75zWRI5ks8v7qfW0EqY0oflMeMIU/ggEopoMLZhtdmRicTIRRKnlZdcJGF8YDKDfWLYX5vDvpocjtTlMT4wmViPQBqNbbx2fgdvDF7B5tKj/FblcJ4QISBC6YtMKO428hkcg1UHO7Wdy6pbeC5xGY+c/4KDtbmMD0xmakgqq49/RMMVMhsbdjYWH8Zbqub6yFFIr8KK8WpcNfw0KhQSCW8MXsldJz+l9IqQnGiVv0MqlL2NR/vO5fXBK/ih7CQl7fV4y1TMCBlEsMKLLaXHWRAynCGSJMI8fHjl/HaujxrFr1VnGeWfQJG2BoPNQrxHEDaznZcG3sBtxz+i3XpZrnC+tQKxQMRrg5ez52QBd90wgifzNrkMfEqFYlbGjOfxlPk8lbUFgK/KDvL+gNX4eaqob2ln75kC+oR1r9GVS6TEhvlCzw0pQn3//QXFVrOeTwpd0yHNdisPnf6StQnTWRgxnP0152i3GOnnFc4w3ziUIhlGm5mD1bm8nbeTexOnMS98KNu6WKcC5J7cmzidR09vRCIQ8UbaSjTd+G//t/GHNbp6vR673e4cPispKWHbtm0kJydz7bW9mxf/if+bEAmFJEcEcvv8Yfh7ejBfPBSD1cw/slwnYq12G7uqzlKua+DVQcuvypLLV+bBswOW8HXxYbaVn6DVrEeAgKG+saxNnE6wwttxDCIhL946g6PnSnj7+0Oo5TL+sWoKQT4ap2b0YnUjd72zjUVjB7D+ocVYbXakYhEyqZj739/OgjH9iQ72wUslp6SmCalJRow6gHcu7OSv/eZx2/GPuzRrfyR5tjPe1GiycCq/jExxKUsSx/T6+cYPiMVDIWPqkETkMglSsRBPlbuPr1oi77H9Z7JaqDe1dXt/B5pMWtRiubOqabFb+TD/N5ZHjyO7pYzFkSOQCSRorQa+KjxEVpMjfOOaiSncNm8Y//j0dzeZRZifBrlMQvqFcu5573uXaXizxcr2ozkUVTXw8uqZztsVMjHVPWjnwNHu7s1iq87YSoTS16XSeyWkQjGCS+yr1tDCcL/4HtuZc8LSOFqXx+zAodTo2sjIr8Bqs5EaG4KHUoaPSkljq46XNu9zPkcmETF7bDIrM97pUp9ZZ2zlpXPbWZswnfsTZ6KRKGgytvNW/s/dHseG0n3MG5vG2te3k1vmrhE/kFXEy5v38fB1E/DRuJKDcy3lbiS3A1vKTjDQJ4Zrg/sDoJEq0aCkpd2AxWrFW6XCbrcjFrlWUz786Sjbx63k6+LDVBua3V5XiIC1CdPddOM6q5GTDY5NYotJ1+vADYC/TEO7xciTKQvxsnsgUpooqW5i3cC7MdrMVDe1sWVPNq26JuLCfflk3J1Y7bZu/YE78E3xER5MmsnZppIeyZ3VbuNUQyE2u52RfgnktnYfGhKs8ELSRaXbR6bmjvjJrIwZx46KDFrMOvp5RTDCL566Wh0VrW1IxCLajSY8VQo8ZUpSfaKI8wjCbLMiFYlRiCTUGdr4pmgf/TzD8ZGpKWyrwUuqYoB3JGqxHKlQRLW+mdtOfOySAPd7TTYx6gCeGbCEh09/xb3p65kdlsZ7Q29xDqida6lgdlhalxVPcFh9pXhF8Op5R+V7hE8fjmeVkVdSz63zJrOp6jC3xk7kbHOJG8ntjM3FRxxDe6Ler/mJEQGo5VK03YSCCAUCrk3rg1wqIQgvPh5+G0VttfxadRaBQMgY7yTkJjneQkcQyNPZWwhX+jIjdBDjA5ORCMXktlbyVfFBloWN5eCJYmYMT+LHylPcGDOWRqMWg83Mrcc/dDlHBnpH82TKAr4ZfS/flBxxDqMN843nxugxeIpUxA4PZMnhN7rUc39UsJtHk+cwPiCZfZeS3nbUnmLasAS++DXD5ZrfpjfQbjQhALxUCmQSx6ZmxtAkPvjhaJcOMADJkYEou4gV/6PQm8zoDCbHEK9YhMVmxVOidAYWdcBgNfPCuR/wlCgY6hvP2sRplwY5PTDbrBysy+WZbIck9YWcH/hH/0UM8o7mu9JjFLRVo5bImRk6mPnhQ/il8gwTgvryyqAb0UgU/7In878Lf5jozpkzh/nz53P77bfT3NzM0KFDkUql1NfX89prr3HHHXf8J47zT/yH4e2h4KlbJnNCm89Dh9fxVtoqXj3X/WR3Tks5Rdqaq/ae9ZGpuTluAtdFjsBssyIWChEhdHE5EAuFPP/17wR6a1g+OQ25VEJpdRPXT0jl2Y2X412b2vR89NMxp9/rislptOmNNLbpGBgXwpe7M5g1oi9f7E7n5S8P8Owdi3nqwrd8UrCHz0bcwS+VZ/il8gwGq4m+nuGsihmPl0hFe6sZi8RRbTqaXUrsUD/aMTA2JcYph7gSg+JD8VQprmoIoTfIRRKiVb0b9QcpvGg2uba2MptLeXbAEob4xmKz2znVWMjjZ10n67NbyghRePP8rTfw8Nu/uKSlLR4/kDa9kZc27+vW8im7uJqCynqmDO7DrvQL6I0WgnqJwZSLJC6paV3h54rTvDzwBsJVvggRkttawbH6fJdjnxjUzzkIsa3sBGsTp3PmaHGX3r6x6kBG+SVQr23nzS2H+PnEeZfPNCwxgmdXTSO/og59J93yuP4x7KvP7rEVfKapGKFASKpPFCAgu6WsRyJvsVs5XHcBTQ++tLsz8rl3vuuGqlbfwvqi/d08w4ENRftJ9Y50sXPzVMlZMKY/kwf1QSCESYPjXarIJouNTTsz+XDqrTyTtdWlwxGi8OaR5Dm0mnU0mdsJEnt1ejcBkkuDWkfqL7A8ZhzrCvd1WykNlHviIVHwcuoNSI0yHv9yFxkFl6vIqbEh3DtvDAaTmVMXyjl1oRyzyc68GQk9fmaAWmMLOquJxqvYFLaa9ZS1N7AmYQqbSo64VPE646aYCd3OEvhd0u3eGjuJZq2enOJqqkxa1u06yYFLk/feHgqWjEtl4bj+eKuVLhvaWkMLT2d9x5qEKbyQ84NLNV0mlLA6biLTQwdy58lPXEhuB4q0tbx9YSerYsfzfM73bCjaz4ZO54ZCJGXDiDU0GNvYc0Wgip/MgxdSl/JW3i/YsSMTSpgTNJTb1m+jTWfkbukIpAIRnhIlW8vc/ckjlL4siRrFAK9IWi16TDYLLSZdrxIGuUTMA4vGuXRLOmPFtYNdNmHeUjWDfdUM9HHI2AwmCxarFYvAyrSQgeyoSKdK34wAiFEHcrKxELFAyOq4SaR4RaAIkmESmClsq6GfJpzzrRUu31EHTjdd5L6Mz3l3yM3cHDuBxZEjEQoEeIgVKMRSLDYrPxSf7FHz/PnFAzySPMdJdCsMjcT6RgFwTWocrXoDzVo963edJP1ChcM2MS2e+aNS8FIrkMskPLlyMo+v2+V2rfVSK3j2pqn4a/758C2DyUxDq44fjmQzMjmK+lYde844nHYGJ/XhxkHjeK94J8caXSVnLWY9e2tyHOvhpb9vs6mddztZ7JlsFv5y5mv6eoYxN2wIoUoffGUehMi9sAHzw4ehEEn/T8gVOuMPE92MjAxef/11AL777juCgoI4ffo0W7Zs4YknnviT6P4/jFqaeS1vBwqRFIlA1GtM5dayE/TzikB+lbs2uUiKXNS9MN3bQ8lfl05ixUvf8Ptpx49QKBDwxaPXkxob0mWMa0ywL9em9eGBD7bz6m2zeOf7w1Q3tbFyimNS/WJ1I4+9t4v7l85ApLLxU1kGaf4xXBvUH4FAgMAi5O0th/nlRC52u8O1YUy/GG6dMQyJUsCTeZt4delK7F/ZOZjtajc1NCGcZ1ZNQ6W8ehsYo9lCU3s7dkAjd0xgd0AoFDIrbDCfFP7e7cR3kiaUCl1jl61ds82KTOho8T+RubnL16jUN/FeyS/cOG0gL3yxD4Bbpw3DQ+GovvQ0QAKw9WAW108YyK70C2zfl8vicSNdop6vxLSQgciF3Z8fMepAHus7lwp9IyXt9Y7qil8ct8dP5u0LOznZUEiE0pfrI0exNn0DAIN9YgiQafhs+B28dn6Hk6zJhGKuDR7A6rhJnK4r4fDeSnZnXCAiwBuL1UZlQwt2OxzPLeXBj37ksesnuhxLsJ+GYkPP1UTgklbWE73BRL2hd7JVo29BLe/+vLfZ7WQWVaFWSdBZTMhEYgQCgXPApjvkt1U5q9ydIRYJndXhmcOS+XJ3Bk1tlzXNIcEaNhUfZU3CFDwlSqr0TXhKlCjEUn4qz+DTor0sjhzB6rhJzuhfjUTOrNA0MptL0VtNHKnLY9WlQBK39xeIeDJlEUqhFIVFwdKXv6Kl3ZU4nCms5O53v+fDtQs4V1pLs1ZPXbMWH2nvG+cwpS81hhbClX69PjbWI4iTDYUoRBLeG3oL96dvcKlaigRCVsWMZ0xAkpPId4cmrY4739zK4zdM4o63trpEGDe16Xl/x1HSC8p5/uYZeF+KIm82tfNpwR7u6HMtj57Z6OZ9bLSZOVSX59Sxd4eTDYXcGX8tSpHU7bdvsJoxWs3MCk3jzj5T2FV1lnazgUTPUIIV3rx7YRenm4rxkap5MXUZp7OqnG4IuSV1jA1KIlChcetADfKJ5u4+U3nvwq+81Ck5a6B3FH/tN59QhbeLS0VneCjljO4XzZt3zuGdHw47vbnD/Dy5aepQxqREdynXadEaKK9v4WBmESKRkEmD4rkraipp3rF4SGScbCxk5dH3XK5t/jINb6etwkeqJkThjbdMzcZuLMbAsXG40FrFCP8+qK9orWsthh7tAMFxDe1M9H2lHrTUG+gfHYyPp5KMgnIe/uAnl4rthz82sGnvWT578DqiAn0Y1TeaTY/fyGe//P/Ye8voKO/1+/szrnF3JR4CAYK7u0OhhULdW+ru7i01apTSUqBAocUdiksgBIgQ4u46Ls+LCQNDrO3pOb/znH/3Wu1aTO6ZuWfmlv29rn3tfYKzOaVIJSLG9oli5uAk+7HzV2AwmUjPK+ellTt5545JvPj9Tgdf9L1ncnBWynjv/klYsLYZAB7mE4eLVGlf3OnMhnY7PxcairnQ2nnp7xnFi4mzbCEc/6X400RXo9HYo3537tzJjBkzEAqF9OvXj4KCrgd3/sF/J+oNLXzeGuogFYrarZRdD63ZgNlihr+xPRHq486qp2/k/XUHOJpRgMVqtZ20t0/m8IU8ftiTSmlNI57OKmYMTmRc72iyi6t4+47JfLrpMMczC4kO9KJ7mB8D4kI4e7mU+hYdR9OKWDymNym+4Xbj+oq6Jua99gP119yEzRYr+89d5nxBOV89PIsHwify6qW1PDV/Fo8Yh3L0YoFNExwThEVsptxai5fJCYPFgouskyEEk4n6Fh1bTmaw93QOZouFvrFBzB7SA7VSglOr6b1cIOGpuOm8fvGXNtUyV4mKR+Mm88b5jW1eXymSIhWJUUlkrLt8rNOq5Imay9zbazwpMUEsGtOHqEAv3J2U1DR2PSTRojcS6OWKu5OSnw+ksXDiIvp7duPodQNpAAEKd26NGI5cKGGodywHrrOmCVJ68GLiLJ5JW20fYAA4WJmBi0TJ+8kLmeyfTKSzHxqTnu/639NK6wQoRFJ85c4siZmIWiK3tYmFIrKbynjw1HLejF1ATbiRGyf0IK+5EolQRIDcgy2HM1m95yxnL9vcMnzc1Ha7umaNHhdx15V5V4kSK1bMZgtB8q7JVqTKl99rO5+0FghgXfExdpWl469w4/F4m2NEZx6iMqGkHZrrCHe1gpVPzOOxLzfbK7sxoV68dXYNqwoOoRbLCVJ62N0lrmB/xUVuDB1sJ7pCgZDB3jH4XnalXFfPVzl7eDphOq90n8uq/ENkNJYgRMBAr2huCRlBfl4DeZpmsoqr2pDcK2jW6ll7II2pA+JZsfMUpy8Vg5VOPYzB5j387JnVPBA7AT+Fa4fBGe5SNUmuwSgjpOgMJjwFLnw/4D4uNZWR0VCCm1TFIO8YpAIxrtd5gxvNJupbv/srEeEHz+Uye2h3vth81IHkXosTmUVkFVXSNyaYCl0DjUYt5boGMhtLO9zPULVXu/ML1yOvpRIfuSt5LY467/mhAzlak01PtzCCVZ6M8Ekgs7GEGOcAUmtz6eMRyazgfnjJnfkh7yC3xI7ESSmjSaNHKhExzK8nrlIVo32724eGVWIZD8dM5P5Ty6m7rnt0pi6fRUc/Y9XAB/BVuHa4vx7OKgYnhhMV6NU6hAlikQB3tRKxuC1Brqhr4r5PfrEPhQIs23KMXt0CeXHxaKxSMwWaaiRCkYMcoUrfyO3Hl7F60EMEKGzH8rV2Ye1ha+kZermHt9EbW7ENIv8ZTPLqzbazObx31xTMZgtPfrm1XVlCfbOWJ77awicPTMPL2QkXpYIn5g1Hq7c5brioFMgl/9q9tFlj4OEvfuWB6YP49JoFxrVo1Oh57JMtLH18igPRVYlk3Bs11sF5xPQHBh2NFtMfsuL7v8SfJrqRkZFs3LiR6dOns2PHDpYsWQJAZWUlzs5dT7b/g/9OmKwWe0utyajDQ6bu0LfxCnq5hzt4zv4dkEnFhPt58PqtEzAYzZgtFsQiES5qObOHJjGiZzfqmjU0tugorKxnzYE0sour7HZkAJP6xRHo5cLrt07A2DpxrlLIkEuuHu5ag5Fvt59wILnXorqhhfUH0wnxdeWF3nN4Nm014WpvpiWn8EPe73x1frOdhHjLnHkhcTaR+HS4qi2paeTW99Y6VNYyCitZvTeNTx+cTmSAB05yBS5yJUO944hzCWB53n7O1RUgFdkS0Yb7xKe4m0IAAQAASURBVPNB5hZymtuGU0wMSEYqENFiNHQZwWvFil5k4PXF4+3pZACuTgokYpH9O2sPCaE+uKnkrH12AQfTc1m2/jhPz5nB4epMfio4QmFLNW5SFVMDe9tvrgDPJMxAkbGFnWVp9oviHZEjeSfjVweSewUNRg2Pn/mBlQPuQ2s2sqLwAHvLbVZTISovFoQNZrBXDJ5yJy42FPN93kEqdQ34Kdx4ufscpEIRZ1WZfHx6g/39FCIpN8QO5K3oCTzx2Vb2peUwtHsEaw/YHB8OpOXx5vCxbChpP2IabO19pdjWmRDIhHjonPCRu3To8+kiUZDgFkRGYccxm0KBgIQwX95KXUOTSUeZtg6zycpYvyTWtuNFfAWjfbojMLffImwyatGZjXa963sPTcRssHIxt9KhYtRs0rU7mNbeDc5dpuarvnfw/Lm1nKnL59XzG0hyDWFh+FBinP2RCsVgFvDK8t0cupDPsodm8smmjitrADtPZ/PJfdNZsfMULToDWfnVPB0/nduOLWvX1uuW8OFIBCKymsv4KmcP7/VcyJ0nvmzTalaKpLzcfQ5fXNrFfdHjuPvtjeSUVjMgLpQ3bx3PAK/2JRJGs5F6o5bNJakcqspEAAzxjmO8fw88XZX4ujrz1pr2rZiu4Ifdp4kI8uCWk5/zbvICElyDOFSV2eH2BostgKUreMtcCFN72YluiMqLeaEDUYvl5DSWE6b2pt7Qwqvn13OhoRghAuJdA1GJ5Q4xuh4SZ6YMjGXtvnT6RobgLFUgFYnp6xmJp8yJan0TE/x78mvJ6TYk9wqaTTq+vbyPJTETu7wH+Lh13YavbdJw79Jf2vh3gy1I4e1V+xg6LpACbRXvJS/k4dTvHWz1mkw6dpenM9Q7lrJ2KpDXw2y1oDHpqTe2IBKIkAiECAARtgVdZ8OavnJXmo224220TyKRrt48OjsQV7WCNQfOOLicXI9LJdU0tujt0gQXhQIXxd83sJWaU4zZYiE+xJc3ftrb4Xb1LToy86rp6RbGmbq81tjeqfhc51WtFsvb7SJci17u4TiJ//5kvb8Tf5roPv/888yfP58lS5YwcuRI+vfvD9iquz179uzi2f/gvxXXVoYsWPm9MpORvgnsKGvf9kkmFDPWr3u78aV/B5yV7Z843q5qSmsauOuj9e1qST1dVIzvE4NIKOzwNcCWAvfbsYud7sP2k1l88tA0VuYdJLe5kgdjxnPb8S/aaDIr9Y08cHo53/e/t12iW9nQxKPLNjuQ3CvQGU08+OmvrH9hIU6tu+sqV+IqV/J4zFT0FiNWKyjEEvZUpLcbG5roGsTiiOGoJQqMFjPOkq4nntUSOe5OjlUsqVjE2N5RbD7WvhWTWChk5qDuyGQSZDIJUwfEM7JnJFZgol8yA72iEQmEWLC2eotevQG6SlU8HjeF+6LHktlQgkQoxk/hSnp9x56uNYZmMhpL+CHvd4dwiIKWKl49v4FJAcncGzWWAV7RxLsEYbZaEAtFGC0mnjjzYxtJhdZsYHnBPhaFDGfeqB5YLFYWjenN1hOZNGv1VDe2UFzSyFifJHZUtD3uRQIhD8VMwEvmwt7UHGobtYxMjuSl2Lk8cm5FG/2nTCjh3Z4LkVhFxAZ7t3FcuIIJKTGU6+toMunwlbvyecptVOoamBnclx1lae1WddViObP9+mMxta3p1hta+ChzG9tKz9hJvhABY/ySeDh+IiaLmW5OvlxqartguoLe7mHt2pCJjRJmKYbwQOhEqoyNeKrUSIwSlv18gt2nL5ESG8yt4/sSHeyNTCJGo+t8EFFnMDpoNZ9ato2fX7yRlQPu46f8Q+woS0NjNhDnEsii8KFEqH2Yd+gjwKaXdpOqWNb3DnaXpXOkOguL1Upfz0jG+CWx/PJ+9lacp49HJEtmDebej3/hyMV8nl+xgxcWjsHlOt200WImr6WKu044amXP1ReyMu8AX6TcgbVR2KGG/QpqGjWUt9RTZ2jBarWiFss777BU5/BS9zmsLeh4UaMSyXCXqbmz22jujx6P1mygVt9MRkMxCS5B9POMxFmioFrXaG8pW7C2e34dqcnigeipiAUiVLKrcjIxIt5LXsBzaWsY7B3TZfrettKz3Nlt1N9S7CipbmiX5F7B7+fzuWNGX5bmbkUlljM7uF+bBLR9FRcY7dudQIUHEoEIYydFmoFe0bxyfj2/V2UiE0oY65fEvNCBnK65zKSAXvyYd6hDPff80EHsr7jAU/HTGOGTgItUicliRms0kFnYeSgRQH5lLRF+XXeC/goyi6rwdXPq9Lu8gvNZFTw3cyZ6ixEXicIuV7gWSpGUaYF9WFXQ/lCsXCRhUkAvu1vRfyv+NNGdNWsWgwYNoqysjKSkJPvjI0eOZPr06X/rzv2D/xzEApGDBdjqgiN83HsRJZpazjc4XixlQjEf9Lq5XYus/wS6BXjx8b3TeHnlLqoarlYcEsN8ef2WCbg5db1CtlqtDkEI7aFJq8PVVc6m8yeZFdyPdYXHOxw8MlstfH5pF88nzmwz1FLbpOn0wtOs1XM6p5hxvWIcHneVOxLWEb4J9PKIYHX+YbKbSnESKxjn3wNPmROPpa7kxtDBpHhEMiu4L7+WnKIj+CvccGrH/cFFpeCBaYPJL6/D3UnJlAHxeLuq0eoN7D2TQ/+4ENSKq5UngUCA0zWLCR+Ja4fvCVddJ64MT20tOdPp9gDHq3Ns7dF24tg3l6QyN2QAHjInB81cen1hp7rh1cWHWNb/Lix6AZ4uKtY9v5BfDqWz58wlVu88x4u3jiLeLYgf8g7aderdXYN5MGYCXjInSqsb2JN6if1puRRX1TOmTxTLetzJjuqzHKrOxIKVgZ7RzAjoi5tMhZNMzgd3T+XJr7c46MwFAhjdK5p7pw3gltRPAfisz618lbOHraVn6OMewQe9buaT7O0Orfwk1xDuC5vAsvUneO7G0Q6frdGo4Z2Lv7UJFrBgZXvZWfQWI0/HT+fWiBE8eXZVu9+PEAGLw4e3WbTVN2t5/KstnMkpYVTPbswcksjjn++gvPaqTrmgoo7z+eVM6huHSCggNsSb9LyOCXV0oLeDLlxnMJGVX0tKQgCLwodxQ+hAu1ylUtfAjIPvo7PYqksuYjk6i5FFRz9jlG8i04JSALhYX8Ttx5fZz9WtpWd4Ju5q0NH+c7k8pjO2Ibr1hhYeOr2i3YGwBqOWR1K/58uku5CKRZ1W7UJ83VBa5WxIeYzi6no85U4ku4e18Zu+gip9Iw2GFnvcc3tYGD609VxwIUjpibtUhZfM2TaIdQ3R/CMNZAtWfN3V9B4djLPy6ndgFVhZV3iMt3rehFwkQdNF+19vMWIwm9Cbjf/ydP3+tPZtH6/FhfxyglWebCg6zrKUO1iVf9hB3iVAgFQowmIVMikgmV+K2/fwcpOqCFN783trlV1vMfJrySlO1OTwTvJNfJ69k0/63MKjqSvb6LlvCR/OKN8ErFgRCUSYrRYqtfVU65tpMGrwdO36nujh9O+7b/q6OWEwmZFLu/495DIxy3P3sbkklW3Dn2p3G5VEzsLwoRRpauzf1xUoRFI+7HXzf42FWGf4SxHAvr6++Pr6OjyWkpLyt+zQP/i/gYtUyQPR41ncKvRvMGp4NPUHnkucic5sYHd5OhqTgQSXIMb6J+EkVthalf8HUMml9I0J5qdnbqKqvpn6Zi0Bni6oFLI/LOQXCASEdhA8cQXdArwwWIxozAZ6uYfz/Lm1nb7mkaqsdrVZ2e3opK7HhbzyNkT3erhKVZitVsLVPoSqvdCYDPyUf9jeZns67Sde7j6HXu7hDPOOZ3/l1QlsJ7GciX696OsSRbDSE4lRAu0UvD1dVHxw9xT2pV3m419+p7CyHheVnOkDE4gN9sFJeZXoGi0mmlpbeEKBwIHg681GzBZbBr3RakYtliEVSTBbzDQYtbSY9X+oEqQQS6nR24iUSCBEJZbRYtLbK2Q/5R/isdgpqFqJu8Vi6ZJA68xGyox19PIIQywS4e2q5pZxKUwflIjFYkEulTDLqy+jfBMwWS0YLCYuNhTz7sXfyGgswV/hxuKxI+jXPZg3V+5Hozdy06he9JfE0zcwBplETJC7G1ahmbMNeZytzSdC7cubt02gWWvgeEYhErGQAfGh1JiauPXMZ1QZmhjn14OsplK2ltr2/2TtZarS1zEvdCBLYibSYNDgK3elsLSB177cR6S/JxKJiFp9MxarLQiiyaRrQ3Kvxb6KCzwYPZ4ebiHcGTmKr3IcBx+lQjEvJc7GrZ1FbJNWb5cIzRvRk8e/2uyg6757cn8Sw/z4cU8qn246TFKEPzeN7MUTX2/pcH9uGNaDDYeuGtB3C/CkZzd/1BIFTUYt3+cc4GRNLgWatpUyqViCyWrGYDGxtfSM/Xu7HgaLqY3e/fSlYiZ5xDk8drm5gmp9x8OFpdo6NOgZ00nXA2D6wEQeWLoRhUzKq4vGohZJifDyYWXuwXan+SUCEWaLhcdip+AtP8DWklS7BtVNquL2iJH09YzkZG0uqbV5dHPyw4KV8w1FWK1Wop39kYskOEkUiIUiopz8OpUvDfCMoknYgkXi2KZ2laoY5BWLwWLkclM5vdzDiVT6EacKwoqVtKZ8tpSftn+GCLUPFxtL6OkW+i8T3ett8NqDSCjEaraiMxup1jfiLlU5ENHRfomoJHJEAiF3R42hxtDcJrL2WheK61GhayC9roDZIf3xlDmxtI8tMS23qQIniZzeHhEcrMzghsMf8WGvRXx3eT+BKg8m+PdgV9k5enmEM6V/PN9s7dgL3cNZ+W/xyL2Cod3DeWvNXvzcnVDJpR1qyQGGp4TzcsEalJ0MiINNsvR0wnRq9c1sLD5Js0lHd9cQhnjHohbJ/nb54r8Df5qptLS08Oabb7Jnzx4qKyuxXHdjz83tWlT/D/47EaLy5N3kBbyU/jMNRi1V+kYeOLWcPu7hPBY3FavViptUhUwsQdHFyfHvhlgkwt1J+YeMyduDm1rBLeNSeH7Fjg63uW18X8StU8UigbBNctL1sGClPSct9z9Avv9IFRqgRFPDOxnthzQAfJS5lR8G3McT8VPp5uTLz4XHiHMO5K7gsfyy/wIvnN6LwWiie4Q/t0/oS7C3K27qq99hTWMLL6/c5eAw0dCi47udp9h+Movlj83Fx82JGn0T6wuPs6n4FI1GDeFqH26NGE5v9wiazTrKtfWcqy/ESSynr2c3ClqacJepKdXU8eTZVTQaNKwb+kiXRveDvWL4tG4nLybOJlztTb2xBTepmqzGUlblH6JK14TeYkTVytqvEJ+uIJeJcLnmd5GIbYT3enyZs5vNJakOj5Vq63gtaz0PRUxkxpAENhw8b0uNWziWUb2isGChUFPNA6e/s5P0K7g9fATzBw9CJZFTo23k3kNf2SuP04NS+DDTkRTmt1TxxoWNiBEy2DuWHu4hJLtE4uPuxL1TB7K54hTfXT5AP89I7o8ez++VHWtBr+BwVRazQ/ozLagPEwOS2VGWRrm2ngi1D0NbPUpd27GPymr1AQ72dqW2SeNAcucOTcJVreDepRvsrf3jmYVMG5jAE3OHEx3hgaerCqsVcotr+XDtIfpEB6GUS0m9VIJYJGR0chQPzxpiPx6dJApuChvcIXGPdgpAKZLZFz8dIdktDF2L47nbnuXd+U5kNFeQ2niZ+6cO4kJ+BXnlbUMzbhqZTHFVPWWtVe4nv9nKCwvGIAA+7XMrD51e4ZBsNjWwN/NDB/F7ZSaHLu1kiHcst4QPp1rfiFgoQiQQsrf8PO9nbGZiYC9uDh/K5uLT/Fpy2p7uJUTAWL8klsROxE2q4p6oMXaHkushFoiYGtibh1O/57WkG9rYQ/byCONgRQZVmiYeDJ7Mih2neDfjCAIBDEwM5ZNht7Oy9AC7K88xO6Q/G4qOozcbmRDwr8kWRydH8dXWjrXxIqGA+DBfPjxrk/9cX7l2k6oY4ZOAqFVK5ypV8VzCTFv8eulZNCY9fT274SpR8lHWNs5eI4UC2/X9le5zaTJp+TRrO7dEjuDek98QqfbFX+mGxqTns+yddjnER5lbmRzYi1fPb2Bj0QneTV7At5f3cX/4BOaN6MFPe8+2+QwCATw9fwTOyj8WtPRXoJRLuG/aIDYfu8jNY3rz2a9H2t0uJSaIJlELlboG5gT37zL8yUPmhIfMiYdjJmKyWv5r/HH/KP400b3ttts4cOAACxYswM/P7w8lR/2D/39AKZaR4hnJmkFLuNxcQaWugWClJwFKN1wkyg6tZP7/CIFAwODEMCb2jbEnfV2LOUOTSIrwxyAwEO3sT3ZTGT3dwzodKol3CbRfaK9FdJB3p6trgQDG9e68mgvQYtTxa3HHkgSw6VqrDc1EO/szJ2AAM4L6Uler45a31tKsvUoGjlzI58iFfB6bM4zxfaJxbSUX6XllbWzUrqC8ronPfj3C/bMGsPjkZw4DWBmNJRyuyiJE7cUjp793SDkSCYTMCxnAzOB+iIUi6gwtmKxmLjeWsSh8GMtydrf7fqN8E2ky6rg7ajQfZ25zkND0aLU4soVhXF10SUUS+ntGtUmyuhYCBIQ5de1XrDEb2pDca/FVwW6WDr2dDQfPY7ZYWbknlb5xIZglJu468VW71buvcveCQMCNYQORiiSM8+3BxhJbi9VFomg3CrWPRwT3R43jTF0eJ2tyOSPIZ9qMHhjkerZknaHe2MK9UWNpNun+UAKYsXXB5iGzDcTcHD60y+eALWIbbNP0pTVXrQfFQiFTByZw89ur2+hXPTzkBEYq+fryXs5k5iERihjqHc8nj09BZBFS36zl66dmEuTijlImRXWdDZuP3IUfBtzPlzl72FGWhsFiwkdui1Qe69cDIQJmBKawMv/3dvdZJhQzPagP9793NblOILD5X1+P9sj99ZCLJHi5qvlyySz2ns1h3cFzNGn0RPh7MHtIEnXNGl778arnd2FlPbVNGpb9dJRxKTGsGHIvFxuKSavLJ8ktBIlQzE2Hl9oJ1PayNAQIGO2byLzQgeyrPI+HzJkF4UPwV7hjtJgZ5dedEb6JaEw6Pm6VtWwrO4vGrOfZhJnEOgewJGYin2Rtd9CpqsVynk+caR8yO1GdQ2+PCIfP5yxREqr0QdngxNyXf8BkvlrIWncgnc1HM3j//snEuPjhKXPiVE0uEWofB6JrtJjRm41IhKI/TIg8XVT0jAxwGCq+FhP6xXCi/hJ6iwm5SIK3zJna1kG5AIU7H/Ve1Mbb10WqxEWq5K5uNnlPvaGFqQfeaddR6KHoCWQ0lnCwMoN5IQM4U5uHAAE5zeXtDv+m1RfwaNxkBK2hHS+c+5mXus9hSdpyVo57kDA/d77bfsp+niSG+fLgjMGE+3vYgyP+HVDJZUwfmMCp7GJEQgEPTBvEil2n7M4nErGIG0f2YMrQOJ67+BMuEgULw4f8YYtQkVCEiP//8YA/TXS3bdvGli1bGDhw4L9jf/7B/zGkQjHuMvUfDoL4/zNcVAoemTWMOUN7sGLXKSpqmwjwdOHmMb3x93DGRSUH5DwcM5HXL2zksdjJHK7K6pBM3NltdBt9rt5sBJGVJbOG8OoP7RO6ucN7IJZ03bozY+10+vUKGg0aqhtbePn7XUzuH8fX2447kNxr8e7P+xmWFIErUN3QzKq9nbf9d5zKYuHE5DYuA0KE3Bo5gpuPftamimm2Wvgh/xDOUiUp7pEM84ljd3k6BouZkb4JiIRCfsz73e4jKhdJmBLQm8Xhw2gwarj12BdtBkPO1uXz8OkVrBxwf5tqRA+3EDyk6g5TnoZ4xyAW2Fr+ThJFh/6pXUkgWkx6Sg21BHu7UlhZj0AgQCIRsq3sXKeG82sKjzAtqA9ecmduiRjOgaqL1BlaaDbpcZEoqLwmxKKnWyi3R47k/lPL7UNpHlI1PjJXqluaeLP7jeypOIcV+DhrGwvChnS6zwB9PSMd/t2k0aHRGzlw7jINzTqSIv2J9PPERS13MH6PDvJCLhFT36x1mKTvEx3EiczCNm4db98zgWJxJa8f++Xqg2b4teQUO8vT+LzP7WyvOUN3l1DCJZ5tSC7Ybqw+ClceiZ3EA9Hj0ZmNCAS2yuQVYjM/bBCFmhoOVDoOl8pFEt5PXkhDo56cklpG9ozklkm9cXNVYrGaqdI2ohbLUUhs7zvYK5b3BJs7HByTCET08bB9dx7OKmYO6k5yZCD5FbWUVDfw1ZZjxIT48NDMweiNZg5fyCP1UgnHMwuJD/Hlk42H8fdxokxVRbNJR5DKk4VHPm3jbGPFys7yc3jJndFbTPT17Ea9oYV3Lv7G5VbnhBhnfxaFD+OJ2Kl8mbObPRXnOVCZwQNGDbvL0unpHsYPA+8nu7EMk8WMSizDW+HCytyDdp/YjlrOvmJX7vl6kwPJvQKdwcQLX+/kq8dnceOpD7FitSdbtph0NBi0tsSs5nLcJSpuCB2In8Kty4AJmVzEc4tH8N6q3zl8If+a31/AhH4xTB0dy5L05QDMDu6HyWrmsbjJxLkE4it3xU2qshfdDCYTzRoD2SVVlNc2EeztSqiPOyKpgCClRxtZx2jf7gz1iqOsqYE4Uxjll5vxd/bju+T72Fh+gl9K2680Nxm1yEUStGYDVfpGmk1a1GI5ac15CIP0fP7wdISIEAuFCIUCvJz/M/dUZ6WcET0iqW3SkBDqx8S+sVQ3tiCRCXFxlpHbUsElXQkvJ81FKZLaF7z/y/jTRNfNzQ13d/d/x778g3/wH4erWoGTUsari8ehN5mQCkUoZI43gFCVF0/FTyO3qZzH46bwXsZmh5uTEAH3Ro0jzuVqlUhnNlKrb2ZV/iFO1ORwS/AI3rxjAp9vOkpBqy7Yy0XFzeN6M7ZXdKcDCtX6RuoNGi7WFxPvEsTu8vQOtxUgwF/swfMrtnM+t5xbxqe066V4BVYrbDp8njsm9sNktjgMFrUHg8mMztR2IO/m8CEcrspqQ3KvxY95vzPerwdj/LpzpjaPbs5+PJr6A3d1G8W3/e6h3tiC1mTAWaJgd3k6p+vyOFZ9qcPp5wajlp/yD3NP1Bh75chitSAViPks5TbuOflNm/1JdA3m8bipvJy+jjJtHaN8E5kZ3A+JQESNoQkQ4CZV4SxRtGtvdT1aTDoUrYMfo3t1Q2e1hSl0hkajFq3ZYIvnNIr5Nuk+9Bgp1lQzP3QQH2ZdjRS+O2oMT5/9iQajBrFAxJKISURK/fnt9wz2V5eS6dHEjSN6Ut7YwInqHCb6J5PoGkx6B8N4sc4BuF9zY2to0fL11uOs2nfGoRrr5aLi8wdnEuLthqhVP6mQSbltfAqf/HoEH1c1rio59S063J2VlNU4hsso5VISIn2YfnBlu/uhMxt57txqPu9zO6t3pdFrWKdfGXqLiZ1laawtOEqNvolApQcLw4fS1yMSD5kTj8dN4Y7IkWwsPkmTUUeiaxDDfOKpqGrmhtdX8dyCkcTHe/F+1mZSz9k6Fi4SBTMC+zE3pD/ucjVSkZibQgezIq/9RLpbIoY7zCUIhQIq6pp47MvN3DC8B0/NH8mW4xnsPJ2NQiphQkos908dxLGMAspqbd/Pi9/s4rnFIxkSEcvmktOd2jduKj7Fiv73cKgqiw+uk7RkNpby5NlVPBo7mbu7jeZk7WUajVoOVGSQ4hGJn8IVvdWEp9yJopYa5GIp7lI1vq2kFGB0a3z09TiXW9ZhdC9AVUMLl8ur8Za7UKKpZaRvAs1GHTvK0njr4iaHbbeWnWWkTwJPxk/tdHhZbzHyfckBRk4I4YHZA8kprEFnMRIb6s3JhkssSV+OzmxkSoBN6uEhcyLBNbjN62h0Bk5lF/Hcih32UAwAT2cV7945iUejJ3PHqS/tj8e5BHJv5FhKK5p4ctkOqhuvnvMKmYSHZg/irYRu/FZxitTaXIdCg7NE4TCcnNdchY/ClVpDM1tLz/Bmw0bG+SXxdMKMP1wx/TtxraxPrIBd5el8fm6nw/U00TWIV5NusC9W/lfxp4nuK6+8wvPPP8+KFStQKv+aPvIf/IP/BtTpbfZVu8vTESBguE883nIXZEYxaoncvtJ1k6mRCEX4K9wwWsxsGPIIByszyG2uwFvuwhi/7qhEMixGAVWaZpr0OioFdTyc+r39RvZ8xhr6e0bx+O2DCJF7YQXEYqFNKyrv+Dyq0Tfx1oVNHKjMQCQQ8l3/e5AJJegt7bs/jPFNpEVr5NjFQgI8Xais6zq5K7+yDr3RhFgkws/DmeLqhg63lUvEIGhb0e7pHsZP+e1b0FxBg1FLk0mHm1jNE/FTaTHquKvbKHaXpxPtXEM/j254KJ0wWc1oTXr85K7s6sDe7gq2lp5hYfgQ+4Bajb6J73L34yF14rt+d5NeX8iR6mykQjGTApJxkSh55PT3ZDbZ3A++zd3P2sJjvN9rIUuztpFeX4STWM6jcZPp6RbKhqKOB0vAZvZfXncSJ6WMSf3isArMXUYeRzn5ITVIeWPTXnaezsZoMiMWCRnZM5IHpg/mjHceByoziHLyo0LbYB+Qej5mNumnqnlj9zqH19t0+AKzh3fn5X43sDR7K2/2mM9rF34hq9ExSTBS7cu7yQvsg2ZGk5mNhy/wYztV/KqGFm55dw3rX7jZnmCllEmYM7QHvRMCcXaS8s3zszDozBSU1FNW5Vg9XzymN7vK0ju11SrW1FKrb+bkhWJuGtYbsLmh1Bta0FlsJvoqsRwBAp5I/ZGz9fn252Y3lfFs2mqGeMfyXMIMvOTOeMmdWRIzAaPFjEIso75Zi7NMwVdLZqL0EbL42GcOrfwGo5blefvIaCzihYTZeCicmBc6EC+5MytyD1DV6rjhI3fh1ogRDPKKbkNMuwV6csOwJOJDfFn09mqHYdTjmYVE+Hvw0T1TeeZb2/CTwWTmxW92sfndxaTVdR6wpDUbkAklLM3a3uE2n2bvoG//SCYFJLMq/zA6kxGFSEahpoan0n5yWOg5SxQ8lzCTIJU7p6pz7WEg1+NScdfDsyVVjfT3iiLeJRC1WE6Ztq4Nyb2CPRXnSXQNZm7IgA6jYWVCCb5yF17P3oBKLGN2UH9mBKdQpWvELLJwT9QYBnnFIBGKOq1AFlTW8fAXv2G5TkNT3djCHR+sY93zC5ns34vfSm3SplvCh2HQWrjvw43ojI7afq3eyBs/7OPDe6Yy1JTM7YmjSW28zGd5O0hyCyG9vsihu+cmVdFi0hOi8qRKZzt25ocO+j8hudfCaDZxqCqLdzN+a/O39Poi7j7xNV/3uwvP/+HK7p8muu+99x6XL1/Gx8eH0NBQJNfpTVJTO9a0/YN/ANBs1NFi0iEAnKXKTmOB/yyu3CirdU3IxRKkQlucqlIoRS29emEv09Zz94mv7AMdAL+VnCZc7c2LibP5ueAot0SOsEs41BIFEqGEJqMGs9VCL/cwhnjHohLLUIikNDTr+GDDfnafvsR3z83h8bM/tLkpHq3O5mh1NhFqH+6IHMUTJ39kSkAvHomd3KaNqDMZaTRqWJn/uz1RzGy1sDLvIK/1uIFnzv7UZogrXO3DHd1GsfOILe2mUaNrN2bzevi6OSEVi1G4SLlxZDInszoeyhmfEsPB2rb+wyqR7A/pQwWAm0yJxqKnxtCMv8KNWyOGs7rgCLfl7EFjtlV0pwel4C13wUPm5PAbXQ+t2UCTUcuDp7+j0aAl3MmbmUH9UIqlzPr9Ayb696SvRzcGeUXz1NmfOFbT1uKp2aTj1fT1PBQzkYdTv6fJpOPFc+tYO/gh1GJ5u3ZTYKuOVlZqUMqkLL1vGm4qBWBlpG8CZ+sKUIikNJm0DmRPLpLwfNQcbn13rX1gCcBktrDjVDanL5Ww8sl5uEnU6C1GMhptnqiJrkFY6sT8tLt94v/zvnPEhXnjI3flqbM/8VjcZACOVV/CCvT37Eakk69D6lGjRsd3O9u3YLL9Xc+eMznMHJyISGgbxqyxNLKsbDsnL9jsoEQCISN9ErivzwQ+3XTYTvT83J04o+l6MK5EW8uEvtEopGI0Jj1ZjaXsr7jIeP8enK0r4HJzOS4SJffHjONSUzkfZGxxWOQdrMwgtS6f4T7xAIiFYsStVVdXtQJXtQK5k5BHz6zs0Ff1WE0OBZoqPBROuMvUTA/sw3Cf+Nbzy4oAAfsrLjJp/9sku4fybMJM/JW2CphSJmXO0B7MeWVlu44rl0treH/9QYYlRZKWa2uZf//0XCp19V3qV3u6hXK85lKnVV+t2UB6fSGDvWJZlX+YoT6xiEVC7jv2bZuhzEajlifO/Mi3/e9mtG8iTq1+2w0GDfVGDVtLUnGXqfFsZyjzCuQSMXfN6MfQ5DDONNjev1RbR5NRS7DSw0Gbfy1+yP+dsf5JHZJUhVjKpIBeLM/dT4tJz3d5+/kubz/J7mH0cgunWafl48xtPBY3xeF5VquVumYt1tbktczCStycFO2mPBpMZr7dfoL7Z45nuG88awuOEiL3ZvWOs+iMJvrGBDN7dAI+7rZ9LK5sYO2udJZtPsZNo5K56eXVzBiSwHtDbsbXyZkqQyMr+t+DFds9zU/hyqq83/GSOVOlb2SsX9J/RaW03qhh2aWOA2tKtXUcr77ExIDk/+Be/Wfxp4nutGnT/g278Q/+X0CzUUe9sYUf8n7neHUOIqGQ4d7xzAruh1wo6TRC94/AarVSpqvHYDZytOYSqwsOU61vQi2WMyWwFzeGDsZFoqDFrOf+U9+2S6Bymyt5++Kv3BA6kPWFx1kQNtgefCATiZGJbETB55rnVDc18/iXNo/UvjHBnGnI7dBvF2w2Ri5SJa4SFZeaytFbjMitEuqatTRp9NQ1a3FzViCXitq0oHeWnUMkEPJ1v7vYV36B9IZCZEIJI3zjCVR68F3uAXyt/gA0afRo9Aa7hrQjzBzc3d6ejg/xYVhSOPvT2rqn+Hs4c8ekfnxe6FhhEgmEeApd6OcS3aFXKNgqSmarlXmHPwBsMaPLUm7nodMrHH6LRqOWFbkHOFKVxds9b+Tmo591WBmMcwkkra7AHq+aXl9Een0RkwKSeTZhBs+dW0ORpoZGo6ZdknsFhZoaJEKRPRnKipVPs3bwdb87udxUgVIko0xbx7qiY+Q2V+Itd+GlhDkYGmDV0zdiFBmoMjQCVgY4xxLfPYyqpibcXZSca8znx5KDlGnrGeOTxK5jOQ4k91pUN7Swam8qt4wZjkIqtVeUp3n3Zc26zqvba3adY+H8FJ7PXMNDp1cQqHQnwcXW3v254ChPx89AbzZisJiQCSU0avQdxvNewd4zlxjXJxpnpZwKXQOLjn3m4HBgtlrYWX6OcIUvT9wwnNdW7UEggKpGDf6eXd/kfeQuJPR0RSmXcrY2n80lpxniHcedJ75yGBr6Pu8gE/x78k7yTTx8+nsH8vd97gF6uoW20cfb9xELmddVt6/H6sKjRKh8cZHb4n7Lm+q5/diyNtGmp2pzufPElyzvdw8CAUhFYo5cLGiX5F7BgbTL3DmxH8czCpjULw53dyWfZh9kuE98p9G/EU4+VOoaO/z7FdQamglReRGp9sVJKmfZpd0dOo9YsPJp9g5eS7oBsA1ovXVhk123KxaI+D75fsQiYRuNrkwi4sOHJrOzKZXZhzc6fDexzgG8mnQDL5z7uU1EMUC1vqnT6j7YfFmfS5jJy+nr7K+dWptHam0evnJXvux7B55yR9nN0YsFfLX1OHnltcgkIkYlR/HxvdP47NcjDlrfK9ifdpl7pw5kkHcM3V1DqG3ScCg9n+cWjUTiY+bL4u3kFl7VQS+cPYzSy1qCvVyxWmH9gfOEeLkjSxLx1sVNdmLvp3Dl5rChfNB7EVqTnucSZjDEO65LbfJ/Alqzwe4H3hF2lKXZOmry/82q7p8mui+88MK/Yz/+n4XFarGnizU0a9EaTEglor9sm/VH0WDQYLCYMFstiARCnMRyhySrvxsak54LDUUsab1JiQRCzFYLK/IOsK7oGJ/0vgUr4PovkF2bxlPPGxc2OgQGNJt0rMo/zP6KiyxLuR2TxUJhS8ftufMNRXjJnPgqZw/Tgvp0+b0UVzbYgwD8PJzJ07efgHUtCluq8ZLbgg4EZgEZZZU89912B8ui+BAfHrtpKsuE2zlZd9VQfVvpWfaUn2e4TzyT/JOJcw3i5fSfSa8vwl2q5o2Yq57WK3ad4om5w1ny+a/tmtwvGtPHYQhIIZPw9I2jGNGzgBU7T5FXVoubk4KpAxKYOywJLxc1d8lGc7Q62x4POsQ7jm0nMuifGIa7VO1gn3Qt5gYPYEPR1cGOif7J/Fp8us2CQyQQEqryQigQcq6ugKHecextvRFfjznB/VmZd7DN45tLUhnuE0+IygtvuTN5LV0nFhVpavCSOVOtbyJU5cXDsZM4V1fAmsIj1OpbCFZ58ljsFNxlapwlCjxkTrQodBRpanjr3CZiVUH0k8by4epDdn9mgQD6x4bw5pwFvJ37C3P8BnLfqrYtXle1gnnDezAkMZwmjR6jFjCaGOeXxOeXdhKs9CSjoH1ngSvILKokUHE1calYU0uxphapUMxXKXdQq29mWc5uKnT1zAsYhKuxaz9PgUCAANsi9fPsnR3aeK0sPMC3KXezNXkx9VotAgS4quQcq77kkGp3LXzkLvjIXXCTKKnTt/BR1laeiJvKbceXtUvUtpaeIUDpzjj/JAc3jFJtXack6orXc2doMLTYY4+rdY18mLmlDcm9ggpdA1tKU7ncVI7RYubG7kO4qaEnP+xsKwEJ8nLlzukpiJ2tzJwTjVoiRiCw2V/FuQQSpPRoNwJbgICxfj2o7UTzfgURal+KWqp5p+dNmK1WDnWhET9Vk4vRYkZrMvBd7n47yQUY7hUPZgF3Tx7A0o2OyWM3jUnmoCadX8vaOr9kNJbw3Lm1PBU/jbtOfNXu5+kqRdNNpqK/Zzd+HHg/P+Uf5nxDMTKhmAWhQ+juHkydoYWsxlJ85C54Cl34fNNRfjl8dd/1RjNbjmdw4FwuS++dRlltU5ugnmslDc5SBU1CPdOHJlDrWsuyzJ0O22Y2lvL0xVU82m0KKtXV6vt3O07xTvw4h+p1mbaeNy9u4uawISS6BjPOvweS/yOf+evR1QIDwGQxY6br7f7/ir/0S9TX17Nu3TouX77MY489hru7O6mpqfj4+BAQ0Na25R84Qms20GLUs6/iPHmNFSwIHEFTi54f9pymsLIeT2cV84b3INjHDS+Xv3dS02A2Ua1v4vNLO9hbfgGj1YyrRMX0oD7MCen/b5vA1Jj0fHt5H88lziBC7YPObEQuknCoKoufC47yTNpqXku6AbPFgofir33m0pZaLrdUdpiKVaqt47vcA9weOaLL17rQUIy7VNWlJ6vOaGDDoasX2xatgRBR13IBV6mSFpOeR2ImUdeo45Z317QhohcKKnjww1/54vEZ3Nn4ucMghMFiYkdZGlqzAT+lmz3qs9bQTJW1nuRIf1JzSkm9VIK/RxbLHprF97tOcTA9F7PFSlSgF7eNTyG5WyDuTkoMJhN1Og35zVWsLTmMs0LJksX9CVZ5IhWKcZbLkbfaS3nLnflhwP3sKEsjvb6Qoa5x/Lw7iyPphbx94wKez1ztQF6FCJgT0p9YlwAeO/OD/fGRvgk8nPq9/d9igYiFYUMY7hvPpaYyDBYzsc7+pHh243x9YZuqxI2hgzBYTB3m0m8qPsUE/x5cbCjGX9n1AK2bVE2zSYeHVM2nfW7liTM/OlialWhrOVqdzeygftzRbSRgO6ZuO76McLU3Q5QJ3P/BJsyWqzdTqxWOXCwgf2kd3z2+EKuVNlVUP3dn3r1zEit3n+arrcftlbQQHzeevGE4L8XNRW8xoZBLHAZsrodcKsZobXu8vpe8gF9LTrP+mkXGXcHjMGrN3DWlL73jA5GKRRRXNbJh73lOZRfbtxvbOxq1QkaNvom9FRfavDaAu1TNu8kL+Ln4KFtKz9grsd2cfHkwegJHq7PbxLWKBSJeSJxFpb6BtPoCElyDiHL2Z3vZ2U7PuXWFx3irx41sLklFIhAxIaAn04NS0JoNlGnrEAmEeEjUiERXnTSUYpl9Yd0RItQ+KFsXtOYOonOvxd7y80wPSuH1C7+wv/IiLyTPYWJjDMcvFjG5fxwh3m6IxUISunnzctbPnDt89ZqkEElZGDaEGn0TryXdwGeXdnK8OocktxBCVJ4oRFKS3cPwkbvgK3fBWaKg0dg2PhzAS+ZMhJMPDY06yiqb8PdxwtIFsbkiMdKaDawvvKpBD1Z6MNtrEDe/sZqHZw3l1cXjWLHzFJdKqhEJBYzrH8Wi0590+LoFLVXU6pvbDazo4xGBVNC1LZVb6yLy3qix6C0mxAIhFboGbj++zN618VO48mzwXAeSey2atXqWbjrE/BE9efVHR6ebAXGhDqlhSrmEkb0jmHf8ow736bPc7QzqF41AYDufa5s0SCztU6cf8g+xauADmK1W/lucZtVieZde0ykekSiF//3BD38Vf5ronjt3jlGjRuHi4kJ+fj6333477u7ubNiwgcLCQr7//vuuX+T/YWhMeo5UZfP8ubWYrGY29n2c9QfP8e12R63c3rM5DEsK55n5o/6QzvKPokrfyKKjn9mtisBWCV2eu59Ttbm83fPGv53s6k1G8luquT1yJJ9k7+Biaxa7WCBiuE88H/S6mefOrbVFKP7F97ZYLZixsjq/fYPsK9heepYbQwcxJaB3pzG5UqEYk7XrwSKTxYr2GjuooxfzWTh1Gt8V7OvwOa4SFe5SNV4yZ0Jk3ry2dm+HkaINLTo2H7rIuG492VDS1uZmrF8SByocNbMf527hg5sX8+aKA5zJKWHzsYucySlh5qBE7pzUH1e1ArPZQmlNIxkFFSSG+mGVWMhoLmJTySmOVmVjwcqWUlvVLMbZnw+SFyFvvXRrTQYE2G44FquVCCdfrGSSeqmU91Yc4qlZs9FJdGQ2l6ASyRjiG0tGczFPnPnRgWxIhWL7xVcsEPF2zxs5VXuZW45+7qCn7OsRydf97mJd4TGym8rwV7hxQ8hAjlVf4pXz6zv8nks0tQzxjuV4TQ63RIzg65y9HeqIXSRKvOXOFGlq+KrvHfxceLRN9PUV/Fx0jBG+CYSrffggcwsGi4nZvgP4Yv1xB5J7LUprGjmQlsvwHpGE+7qTVXy1wvzyzWN55YfdZBY5dgIKKuq45+MNfP7gTCTuFsb0iWL9gY4dNyakxFJuqEMqFGOwmFCJZdwdPoYGg8aB5AIoJVKs7lZqgip58tJeBnvHMi2kD8/ePhwRIrYeyWTPicsMSghDIBBgxtqhVvT5xJkszdrOmTpH/+VLTeU8cGo5H/dejN5sZF3RcUQCIQO9ormr22gyG0t4OX09IoGQZSm3083Jl9+KO/Y/BqgztCARilCIpLyXvIBTNbk8eOo7+/UsTOXNfdFjiXUOwLNVj2yxWBjuE9+pW8mckP52mzFzJzKEK9C1+sSCrWL2ZvYGvp/0ADMGdmfD7+kcTM9FJZPSaIhiSdRkXspaS35rV0FrNrAsZzcPRo8ntTaPGYEpPBM/g7N1+ZyuvYxIIMRP4YYQAUqRlHd63sT9p5a3WQDIRRLe7DGfYk0NF+pLGOGbgMVqJcUj0qFKez0SXYOpMzSjFMkc9M4z/frz9aYTaA0mXlu1h95Rgdw6vi/+Hs5IxSKqTQ2dhrsAHKnOortbiAPRlQhELImZiPMfbOOLhCJ7/HSxppa7Tnzl8L4jvbqz6UDbOYFrkXqphMfnDL/udQXcPrGfQwfLVa7kQPXFTnXQGrOBtNpCogO97edoR/kBZquFE9U5zA7p1/mH/A9CKhQxK6gvK9rpfAEoRVLG+/dEKfn3BVn8X+NPE92HH36YRYsW8fbbb+PkdJWUTJgwgfnz5/+tO/e/iApdA8+krcaKldnBfSmram5Dcq9gf1ouyd0ymT04CZn0X2+D1Otb+CRruwPJvRbp9YWcqsllrH/Sv/xeV9Bi0tNoaEEhknDnia8cLtYmq5ld5efIbirjxcRZpNcXoTeZ8FG4/qX3Ukvk9knpDvfHrMdoNRPrEtAh0RUJhHR3DWZLcSriLqoQSomE5Ch/9pyx6T+bdQbOZpYx078f60uPtfuc+6PHUdxSwzvJN2HWwcH09nV6V9renmo1/XxjyNNUOpCJYKUHPd3C0FtMRDn5UaKpxVPuzMygFNzUCu6dn4KzVc3hC/kIwE5a7vpwHfkVdYT7efD+gxPJN1bwa95pNGY9vdzDuTNyFMtz97OvtYKX2VjKyryD3B01Gq3JwInay7x+foO9wpzjW07f+CDO5ZaRnlfO3e/8QoiPG0FerhiMdZiTZJxQn2szDNRs0uEhs6WszQsdwJm6PFa149xwvCaHx878wLMJM5CLpMS5BOAmVfJR1tZOq3RecmcajVp0ZiOXmsq4NWI4X1/e2/Z7RsCDMeNZW3AUiUCEr8KNX7pwW1iRd4DnE2ZyqlVjGany41xu+7ZUV/DL4fOM6RXFreNSeLw1FjcxzJey2sY2JPcKrFZ4e81+Pn9oBreO9WD3qUvt6mrVChk3DO/BoYu5fJF4FwKBFaPJggABb+Y6LgZinQMQSeGW418gEYp5r9dCDlZm8MjpldQbW5AIRIz0TeS9JRNQiGzXHRFCfOQubfyTI9Q+GCymNiT3CixYeTfjNz7pfQuLI2zEo1LXwPsZm+3fndlqQSIUY7XSoafxtRAKBDwWN5kNRSfakNe8lkoeSV3JK93nMtg7BqVYhpNEweLwYVxqKqegHQnLA9HjUYuv5mFLhKJOfZgB4l0DyWsN9/CSOXNvxDhOZhTz+qo9DjZt5/LKCPVx4/V7bmDJBcekvJV5v/NR70U0m3TcdGSpw3X5x/xDDPGO5dmEGUQ5+bFm0EOsyj/E4aoshAIBg71imRsygCNVmbzdOk2/pvQwPw18kEXhw9hfebHDc2NB2GAyGkro5xnl8HiScyjvXry6IDqVXWyv7vt7OPPQbV2TN6vVyrUUsJuTH88nzMRd6ERVfTNWbITzjxRvNCY9X+XsaUOuXUUqzte1DXG4Hk0aPTKJCL3RjEIm4c3bJuLr5lhIEQgEVGo7dpm5gkpdA2qFjSD7uTvTbGm/wg62GYOuZBr/SbhIVdwQMpAybT07r0sZdBLL+bD3ImRC8X/VPv/d+NPs6eTJkyxbtqzN4wEBAZSXd33w/b+MFpOOr3P22KtKs30G8c6Pnd8cV+05w+jkKHyk/3qV1Wg1s7+y85Xw2sKjJLuHOUxn/1VYrVa0Jj31Rg2fZu/osCVZ0FLFufpCYp0DKGlpG6v5RyAUCJELpfgr3Dok8mDzzrRarZ1WjicFJHOiJod7osd0+T0IhUJG9Yzik41H7JXdj38+wlt3jycwwoM1JYcp19UDEO3szwPR4wlTeeMkUSATianUNLWxwgFbctMjs4Zy9nIpJzILOZdbxtjkFO7vOYG3Lv+CUiTl5e5zWZG7H4lIzPOJs1CKpOgtJg5VZjD94Ht82PtmItw8iPS36TZzy2qY/fL3WKxWfN2d+fTRqbxwfi2ptVdJyu7ydJQiKW/0mI8Qgb0ytKn4JIsihlKireW5tDUOldG9lef5uvcQftp11u6/WVBRZ/cLdnNW0GdIJCdrruqMwaa5nBbYh+WX9zHatzu3H/+SjpDVWEqFroHDlZlMC+qDSCBikFdMm5CAazEvZCA1+mYej51Cf48oZGIJoWpvvszZbddoJ7gEcUvEcDIaS9hRlkawyhOL1WIPr+gIec2Vdk0n0GEl91po9UYMJgt9YoKZkBLD1hOZDE4MZ+fp7E6fl1tWg8FgxtfNie+fmMdLK3eSeumqXKNHhD8vLBhDVnElH68/DNfw2pXPz7WHDFzBI7GTeP3iLzQatXyechsfZ24jrf6q1ZXRamZ72VmOVmezov+9GPVmZAIJN4YO4v3r/FyHeMeyo7TzIbn8lioMFhOBKg9O1VzmnpPftNlmb8V5vGXODPWO61B6BDZP63qDhiClJ7vLO67mf5C5hWT3MJRiGa5SJVqzgZe7z+FsXT47y9JoMemJdvbnxtBBuImckJht3YomjZ6aWi1zQwbw2aWd7b62EAHTg1J48/xG3ugxH3epGiejirmrfmiTDAeQX1HHN5tOMWfIAD7Puxo5XmtoRiwQ8tzZNe1esw5WZvB1zl7ujRpLgNKduSH9uTF0EE0mHWdr81lwZKlDMEm1vollObuYGdiXFxJn8caFjQ4DfRKBiHujx1KmrcNH7opCJMFNqrJr7S2tzgXtobKumSClBxKBqEP3CoChPvGEqbwY4h2Ls0SBDCkinYR3tuzn4LlczBYLvaOCuGtyfwI8XHDtJB5dZzayr53KdK2pCX+Pq9dliViEXCqmRWuwX0sFAvB2U3PDyB7EBPjQOyoItVzabsGom5Nfh/twBSEKLza0zkksmtiL9RXtFzEAYl3+++SbCrGU+6LHcmvkCLaWpNJo0tHDNYReHuGIBSJcZX9f1/i/EX+a6MpkMhob21bNsrOz8fLy+lt26n8VOrPRgVRIETu0MNtD+R/wQf2jMFnMXQrTa/XNXWq8ukKtvplSbS1bS85gtJpZFD7MXr3pCDvL0hjqFYu/2OMvv6+zRM6CsME8nba6w20mBvRCJZbjJXdmSkAvtpaetbetZEIx04JSGOETT5NRS7Sz/x96X7VCymcPTOeej39BqzdiNJl59JMtjOgZwcvj5uPjoUIsFCERitpMhmstBsb0imJgcghhfu5gtVJY2kCwpzv3ffILdU1XCde+tMv4uTvz5cMLUKpt7b3FEcP5LHsHL6Wv496osYSrvRnhm8j4gJ4IEdpbbI0aPR/98rv9RvDcohF8eXm3w/F4BRqzgSfPruKrvnfYK0MtZj16i5HPL+1q0/43WEx8VbiL9x+YxJOfb6e26epNWygQEOjhyoSARL7N2+vgRrGn/Dyfp9xGbnM5JdraDr2Br+D3ygzeSr4Rt9Y46odjJ5FWV9Am2GGMb3fuix5Hha6B3yszsADBKk/C1d6M9k2kt3u4/TwQCQRgFVCqrWOQVzReMmdEAiFigajTdqabVEWtoZnfhj5Orb4ZV1S4OSkcfq/rkRTuh0ImQSmT8OjsYcwYlEhVQwvHLnbupwo2aySRSEiQlyvv3TkZncFEQ4sOtVKKVWhFrZTSWx2Iq1pBffPVffBwUdqlDGAjO95yF1Jr8+jpFkZRS40Dyb0WDUYNH2VtZYBnFOfriri920hO1+ba7e4A5CJppylwV6AxGTBbzGwpbT9tbn3hcZb2vgW5SMKagiMdTonfHz2OBJdAvrncsTQIbCSyTFuHl9wZgUCAr8IFuUhCiNKTW8KHE6L0orHBwBerTpJTUk2gpwt3T+6Pt5sTIoGQCb7JXG6qYEe5I4kXCYQ8GTeVUzWXeTZxJh9kbiFc6YMgw6lDkghw4Gwut02b60B0wXZPaC+S9go2FZ9kccQwFGIpBS22kIb7Tn7LMJ84bggdSItJx/6Ki3ZN/LrC48wLGcj5+iKWpdzO+YYiSjS1eMmd6eUeztaSM2wqPsmGIY+iEEu5I3IUb13chEosQyWWcvPYXgzrHY5YYhseKypvYPXONM5eLuVAah6TAnrxS0n73Q5/hRtuUhVzD32IQixlXtBAegtjuPvj1Q6peYcv5HPkYj4vLRzLkO7hOCvl7b4e0K6bxc7KNF4ZeiPF1Q3cNL4Hnu4qmk063KQqTl0s5scdZwn1dSNbW0J5cAk3x/Vud8jZaDHRZNSS6BqEk1je4XHsLXNGbVFS1dDMw7OG4BooYv/F9vXqLhIlMX/wvvGfhFIsQyaS0GTQcFPYEPsQOvBf4Qzx78afJrpTpkzh5ZdfZu3atYCt9F9YWMgTTzzBzJkz//Yd/F+D+JrWnAUrTkqZAzFou72wS53on3lvpUjaaYxssMrzX5oWrdI18mjqSocBoWmBfbp8XrNJT3FlI6t3nOP5m0Z3utLvCGqJgp7uYQz0jOZwddvJ425OvkwN7E2toZl7T3zD/dHjuLPbaPKaK22ETOmB0WJGLpLgKlEg+YNG3wqplKhALza+tIidqVmcyixGJhUzfVACga5ueCrbXy1brBaaBRomTYrkm7w9XEgrRoiA5cn38ciHm9slTWW1jTzyxW98/sAMkIG7TM2jsZNpMun4NHtHa7SuCQEC+npG8mjsZHzlLpjMZo602u0IhRAe6M72g2c7/Exas4HDVdkM8Y5lX8UFhAgQImxTlb2C36sz0FuMfPDIRJpqTJzPK8NVrWRYUgQKmQSZTMRnfW7l/pPL8VG40McjEolAxM8Fx7g7cgwl2q4r+SarBXepGlHrOeQtd+aHgffxTc5etpaeJc4lkMdiJ+EkVfLw6e+5dI1OcEPRcYKVHiztc0sbb0utycAY3+6Eqb2p1NUjAHtMcUeY4J/Msku7mR86kAi1DwfLM5g9rDtf/tZ+XKhAADeP6YOydaDPVa0guVsgjS06MgsrSM1pf6AObN6l6lZdYaNBg0ls5tfS42wqPkWNoRmz1YJKJOPGsEH89OJ8bnn9Z8pqG+kR7o9QIGCkbwLbSs8CEKL2slcPR/kmsuUa94L2cLAyg0XhQ3ntwi/sqTzPlyl3MC9kIKtarftcJAriXAI5UZPT4WuIBEKbmb5Zj7UDNths0vHYmZV8lLyIz1Ju47m0NQ7XEBeJkodiJhCp9sVstVDfSdfmCq4d4BIKhLjL1PTz6kZds5anv97GyeyrGuwgL1eEQiEvfb+TE1lFNveRm4czK7k/26pSqTW0EK7yZphPHFtLzxDt7M8n2ds5W5fPQNcYDpdUtLcLdpgsFpo1BoewF4VIikIk7TD5D2yJcJW6RjxkTsS7BFKjb+aj3ovYXnqW8/VFuElVPBk/lUajjjfO/0KLWc+20jSG+sRy+/EviXMJwEPmRHZjmT144v3khajFciRCMWP9uhOgcMdH7oxYKEQco+XhzG/tpC/KyY87bxhD6mk/Vmw/zYbXFqCx6NhR5tgCD1V58XLSXF5NX48FK1FOfkzz6ctNb/7UJhoabJKcV37czeaYW6ADniUWCOnpFsrJWsdrTrW+CbPcwJ039eK97N/ILbBJSIQIGOAVzQdLJiEViHn04gqKNDXcFTXKgeiarRbq9M2sLTzGttIzzA7uz1s9buSh1BVtuo4KkZQ3ut+IvtbKppcXs6sqDS+1R7sDggqRlFeT5iLg77lf/90QCYS4yv4zMcT/bfhLgRGzZs3C29sbrVbL0KFDKS8vp3///rz22mv/jn38n4GTWM4Y3+6szLfZBGmFOib3i+OTTR0nSg3vEdGh8P3PQimWMikgmbWFHbddFoQNtock/FlU6Rp5OX1dmyl4o9WMi0TRaTs42smP1MxS9qddZtbg7gyID/1L++Ahc+LZxBkcrcrmp4LDFGtq8ZQ5MSkgmZG+iajEMnQtFj7pfhsqmcyeqPSvQiGVIhWJmNQ/lrG9bW1yJ0XHlQqwadBO1uby2aWrVZ5QtTcllY2dVvKzi6uobdLg1mpB12LWc/fJrx0s06xYOVZ9iUVHP+P7AffhJLx6ofdzc6Za19hpCxJsmu1oZ3/2VVxgsFdMl5fvE7U5pDcU8suQR+nm74lUIkYkFKBW2IYcop38+XnwEvKaK9lSegaDxURfz24oJTLCRN5dTsaP8Il3WCiKBEK85S48FDORu6PGUGdoQWc28uzZ1Q4k9woKNTUsOb2Cpb0X4yW/aq2lEEtRiKX0lITSYtIjFgi4M3IUJ2ty2j1mo5z8iHcNtA+izQruSx+vCMyDrGQXVbH/rGP3QigQ8MqisXi6OC54qnVNmIVm5o3uwe4zlyipbr+KOb5vDFKxiFp9M/ktVewqO9dmuKzFrOfLnD02D+Kn55JbXIuzi4xLTWXcEDKAg5UZtJj0GMxGux7VWaLo0AruCsxWi70L0GzSMf/Ix6zs/QBTFf1RekgI8/JAbzWyMu9gh7/dCO8EJAIR5+oK6eMRwdYOqrrV+iYWHfuMnSOe4Z2eN6ExG8hvqcJZIidY6YlCJEPVOjAT5xLQ4etcQYiqbYfRYoWtxzMdSK6rWsED0wdx90fraWx1tdDqjTz35U68XFRM7BfLLSNHUmGo487jXyIViRnt192+6NNY9Lioul6Yq2RSByI1IyilS3cHAJ3ZQL2hBZFAxPn6It68uMmhq7K19AzDfeJZ2mcxT539ifyWSkJVnnyRchvrCo9xuCobKxZG+CRwc/gQgpQeiIVCavXNXGoqQyQU0GDUsCLvIIevsybLbirjsfPf83ryfKIDRlFTpWW+z1AWhQ/nYOVF9BYT/T2jCFJ6IBIIeb/XQgQIkAulXCqoprqh4xhto8nM/rTLzB7a/kyIs1TJ3VGjOXnMkehGO/uDCB44vdzhmLNg5VBVJvktlSxLuYMyja3KrRI5DlmVaeu55ejn9k7QJ9nbeTp2OqsHPsgPuYc4VpuNUCBgkEcMN4QOpLC5mqWV23kn4CaWXt5Gn/oIvul7JwUtNRS0VJHbXImbVMVY/yTWFRwjMsq3y9/0H/xn8aeJrouLC7t27eLQoUOcO3eO5uZmkpOTGTVq1L9j//6nIBVJmBs6gMPVWbwXv4iM/Gom949jw6F0Smva3uSUMgn3Th1IQWUtUomo0xbPH4FKLGdR+DDO1OVzqamtnnpaYB/C1N5/6bWNFhONRi3H26nsbCs9y5TA3qzM69gHdJp3X55ba7OC+X7XKaICPfH8i9ZqHjInxvn1oI9HJFasWKwWe3rZMyu30z3Kn5G9IzhfX8i5pnziXYNwl6nt0ah/FlarlRp9M0eqsthSmorObCTJJYS5oQNQCGS4d1DR1ZgNfHGdDjBU5cWF3M6rQwAX8suJ8PfEZDGzozStQ1/gZpOOz7J38EjMJPrGBnPkQgE6owmpqOtTXy6SYGyd3n8wZgJChKR4RLT7G1/BAM8oLpfU8MHqQ0zpH0ekvyeB3q74ujnRYNLyyHXV/t3l6ajFcj5PuY27u43hk+z24069Zc4kuAS1+zeFWIpWb+CpM6t4vee8DlvxYAsEKdPW24luk1GLxmzgfH0RYCXBJRilWIqLRMny/vewNGs7Bysz7FXTCQE9mRSQzFNnf8KKlbN1+dwTNYYLDcVIhCJuntGTeaN7sOVwFnWNGmKDvZk+KBEnhQyr2EqdrhkzFrIaS1lTeJQ6QwshSk/eWDKW7Es1vPn9fod2bVK4P/dMHoBaKWVn+TnCVN6dDsqtLTjKTWGDSYkOpt7QQnZlEeuLTvBhr0V8nLWNiw3FWLHS2z2cSl1Dhz6uV6AUSdv4ya4vO4rysjvf70jl4ZlDmDwojhcTZvPi+Z/bkN1ItS9LYicgFgpYmfc790WPxVfuatetX4/JAb0QCAR4K2y/T6i6fTnccJ8Elmbt6FDukuQagqydY7yxWccPux2dHaYNSGDtgTQ7yb0WVQ0tfLfjFAajmZ5R/ryTuJDDDZlkNJQwP2gQcaoglGIZSUMl9oHU9hAd6EWRvtpOUEf5JDItsI89+a4juElVrX7ShQQo3Xnj4sZ2tztclUVfj24s7XULVoGVLy/t4WxdHlMCe/Ni91kIEHChoZiNxSd5KHoCRZoa7j3xDc0mHV/3u5MqXVMbknsFFqwszd3GJz1vZfpT34MAfnjhhtZzBoZ5x7VbHCmq6nrIq6Cy49RDgFCVN0/FT+Pti7/aj605wf35KmdPhwurYk0tByouckvEcFLr8hyudfWGFl44t7aN3On1jF8IV3lzX7dx3Bw+1Laot8Kz6Ws413o9OV2by8zAvozwSyC7qZzDVVmYrRaGeMcS4eTDWxc2Ee3s7zDY+A/+O/CXe9SDBg1i0KBBf+e+/D8BD6maT7rfxqs/7kFnMBHm48ZXS2bz3roDHDh32T7UktwtgKduGEGTRsft76/j6XkjmNI/HqnkX3Nf8JQ783HvxeyvuMCGopPUG1oIVXuxMGwIkU6+f9laTGMy2C8I12NryRk+7XMLmY2l7ba+7w0fx8WsairqbNWl8romKuqacVUrEYv+2iSoWCTCR+FCvaGF8sZ6fjuZydebT/DOvRNJs+Zwy5lPHSqasc4BvN3zJnwUXZvoX49KXSN3nfjKof2e0VjCz8XHeD1xHknWUNxVbcnuzrJzbUiEwWJEIetaMqGU26oUtfrmTm3SAPZXXGRJzESenDuCyvpmjGYLzmKlPQWsIwz3iedCfTEr+9+Hr8IVsVDEXd3GcKLmcrs2XSKBkFsjRlBXamTR2D7sPJWJ3mrCxUMKWjMfZG5p1/O22aTjnhNfs3rQQ5yuyeHodUTaR+7CZ31uxdpqH1ehqydc7UN/z27IhVLUUjnHay4R5ezPmdr8Lr+7I9XZRDv5o7UYWJN/lECVO+FqHyxWC/ktlVxuqmBCQE8UQinxLoEsCh+KxWq1p4Ddc/Kba2zRbFXo7aVn6eMRgY+bK68VreHbWXcjE0iQSSSIRUIaDBo2FBy3EY9z6xxa/VmNpewsP8eisKF8+cRMlv1yHJVCyqzB3Yn098TDWUWVrpHDVVk2DX0nUcuW1kr+lMDeWK1WItW+vHp+A+XaeuaHDeTxuClYLBYejp3Emxc2siBsCEeqOx6GG+ffgz3XSTiym8t4JCWF73ekUlbXhItcQT+PKNYNepifC49yrr4QpVjGaI8kIuV+nLlQTq+oAEQCAe9e/I03e87nubQ1bQj2cJ94bosciVJ8tQKnNRkwWkyYrGaMFov9/JQJxbzbmpJ2fWci2smf1xLmITKIKGtptA8rqRUyLFYrVddVGYd0D+eejzsebAPYfjKLgfGhpJ+tYPHQ4dQ3a/nhSCqfXDyJQCDgjVvH0z82hKMZba+BYpGQJ+YP57wll4VhQxjqE0dRSw2NRi2+CjdCVV5267HrsSBsCBuLT9LDNYSd5W2H/lwlKhZFDCXZLYyClmoqDQ24SVTcHTWaV89vYHnufoftZwf1o9mk587jX1FraKanWyi1hhZ2lnU+UFiiraXeoEEiEaHVGzmQmovIS0h6fSHe8vavmQGejp2yMF93Zo9MJKmbHxarlaYWPSZt22O52aTDbLGgFEtRS+SM9UtikFcMu8rOkddSSQ+3kE5tBQE2l6byeNwUxvn3wFlytZt1JTK5PYSpvXGRK8lpKadSV4+fwo0Xu8/inYu/cbQ6m20lZ3i++yweOLXc4ffaUZaGt8yZt5NvwlvmQkuLAbPUilL+v+tL+/83/CXWdPLkSfbt20dlZSWW68Ti77///t+yY/+rEAlFnMgs4uC5XL55ZA53f7Qeb1c1D80czGNzhqHRG5FLxdQ1aVm19wzj+kQDsHTTYUb06Ib7v0h0wVbxnBbYh8FesVixIhaIuoz+M1stNBptmeIKka3Vez0kHVhx6S1GHkldyYvdZ7M4bBhrCo9Qb9AQpvRmondvTp8v4dMNVw3l/dyduVhQgZ+7M+7O/5pQ3lWqQie08OVvx5k1tDvZwkJ+zG9bWc5oLOGuE1/xbf+7cJM6VieaNDp0BpOdXng4Ke2RuTXaZl49v75djanZauGZ9NVsGPxIm79ZrdZ2q7Bn6vK5tftovtjYsbxEIhbRI8I28GDF2qVDgMlqxmgy8+qqvaRdLkEiFvPA9IHc220sL51f1+5zujn50dMtjP6eUagltgpFi1GHr9yF13vcwKvpGxy0hWqxnJe7z0FikLLxyBkyiyp57a6xrC77ne/ObOWLvre38fu9Fk0mHftKLnKz5yju7TaeHWVpGKxGBnvHEq725mT1ZV6+sN6hiiMXSXil+1yS3EI4WJGBSCBE+gf05RKBGLPVwqHKTBLdgvjm8l57C9lH7sKckP4UtdQQqHQnp6mcT7J3dPhaQ7zjOF2TS5NJi1goolLXgAABjWYtXnIbyTWYjWwsPkmccyC/FJ3sUM/6Xd4BBqRE8/ri8QiEAged+pWOibaTaOkraG5NAnOSKCjV1tHDLZSzdfm8nL6eJNdg5ocMIsk9lGcTZlJvaGFqYG82FbddLEWofZga2If7rnNJcJYokCoExAb7EB9ia9O6yBVo64wILzkx2j0FvdbMrwcvcybH5t05KrkbD0yfyMJTS3n9/C88ETcVncXIuboCZCIJ/T2jKGipsg0HYpN1lGpr2VdxASvQ37MbQoGQ7MZS4lwD8ZA5Eevkz7ohD/Nz4TFSa/OQCcXMCu5HkjKMzzYcZfvJTAwmmxf2oIQwHpszDJVMikImcfC+loiE6Ayd+8M2a/UopBJG9ozkXE45j3212UF7et/SX/jwnmnEhfjw88Gr1eGekQHcOT2FM8ZsCvU1GMwmu43b8n5383L6L7zSfQ4fZW1ziANWiWQsDB+Ch0zN0qztjGhddF4LD5kT7yUv4Pvcg3ycuc2+AJKLJNwQMoCXu89h5sH3HBYC80IHcrImxy5ZEQqECKx0eQ0B2/kvl4rR6o3kl9TjG+TG3B4DcJa0L9sI8XHDw1lJTaOGKQNjmToqluVFe/ngzHqsWPGVu7IwbAgNBl9cpErqDS2cry9ifdFxNCYDSW4hzAxKwVmqxEvuzFCnRLpLWuxDVJ1BazLgJlWRVpvPoapMhnjH4SSRU6NvX6pzY+gg4lwC7b/NFXjJnHkucSbuMjUDPaN4+uxP7S5KKvWNPH32J96MWcCSj36jVzebB7GPq/ofwvtfgD/Nml5//XWeffZZoqOj8fHxcdCP/l1a0v9lVNY38eOeVCL9Paiqb6a6sYXqxhbu+MBGOKRiIQbT1Zv54MRwgr1dKaysp7i64V8mflcgEors7cGuUKtvZnd5Or+VnEZrNpDkGsLN4UPxkDmhaq2+WKxWYl0COpxWbzBqWHJ6Bb8NepKxohTKDU2UFTeyZOUWhylxgOkDE/hu5ykGJYT96x8U2HYyA6sVJg+O5YGLX3e4XYm2lvT6IoZ4xwJgMJqpaWrhq63H2H4iC53RRJCXKwtH92J4j0hbopjVxIkOBrTARjK3Fp9ldlA/B82uQCBgVnBfbg4filggxGS1kN1QytLs7VxoKWRi/xi2HM1s9zUXjemNQtbqbyoQEqH2cfDnvB4eMieKqxo4kWmrZOiNZl5ftZfnFo3k2fiZfJK93X5xFyJgkHcMT8RNtefKNxo0NBg17C5PZ5Rvdwpbqvks5VYuNZVToWsgQOFOD7cQZAIJJ8+XsOt0Niuem8Oz2asobKnGT+FKUUtNp5VIgPTmAgovaTmUns+n989gxc5TJM4I5lTjZV44/3Ob7XVmI0+eXcVPAx/AVapiR2ka90aPRYig0/ca4RuPyWpGLpLy8OnvHbat0DWwNGs7kwN6cX/UOBZHDGdvxYV2rfGkQjHzQgfyWfZObo8Yia/CDYlQxPu9FiIXSXjjwi/cFjESZ4mc/RUXGOfXgxfT236Oa7E8dz/PJcywhx1ci8KWauaGDOj0+QBJbiGAbfg0QOHOY7GT+ShrG7dFjgAr1BmaWXjkExaED2GgZzS3RYxgtG93vsvdT15LFW4SFRMCetLTLZRn0n5qM40+zi+JX0pPMHd0Iv2iggEbEXxnzX72pbV/LuxOvcTcoUnEOvuT0VjKfae+JVjlSYTaB6PFzJqCI8wPHYRaIqdC18CDp74j9xpbtFX5h0hwCeLxuCmszj/MnJABeMmdcUbFreHDmRPcHwEgMUlZ/M4aiqrq7c+1WK0cTM8lLbeUH5+azw3Dkli+4yqxL6ttYmLfWMwWCy1aAyezitAZHX/v6CAvXNRyzFZ49rvtbQas6lt03PXhOm4Y3oNVz9xIk1GHSiLjdP1lPi77rU1SGNjO3YKWKp44+yNv97gRC3CpqQxniYIoJz97ceHrfnciEdhCMq7Fk3FT+Shza5uIZZ3ZyHe5BxAJRDwWN4XXL/wC2CrmSrGMfdcsOC83VeApdybWOYBDVe1fb8DmNe0mUdPUYiPw7s4KbgrriZNU4aCbv4Jmo5ZSUzXP3jySldtSGTcikvvSvnYg3eW6et7O+JXzDYXcFzWeB09/56CtP1OXx8q8g7zb8yZ6eYTz88E0EqJ98PBQ4CpRtZEfXIt4l0BMeiteQjd+qTjF+5lbmBLQi4XhQ9tsG6ryYqBXNPefWt5GDlGltw1Xf9n3DkQCYYchMmBLSSzV16KUSdl6IpPtJ7N449YJDEoI+0Ndun/w78Of7gt/9NFHfPvtt2RkZLB//3727dtn/2/v3rZm7P/gOlihqLIef08XckrbauOuJblg89C84hmoM3Rdzfm7UaFt4Oajn/Juxm9kNZZS2FLNbyWnmf37BxyqzEDT2sJ1k6kwWszMCErp8LX6uEcgl4roHuzPTzvS+GlPWhuSO6JnJDKpmMyiSv6OdZPFYqWoqgEnpYxmq5bmLqyQtpSkojPZXCkq6pqY//qPbDx8wX7jK6qq57VVe3hr9V5qGluo0NZ3mLZ1BdktpRjMjjfOKl0j20rPcvPRT5l84G0eOLWcCn0Dn6fcRpa2mCmjo1kwJtk+pQ/grJTx4IzBzB/RE7lEQkVdEwdO5HNz2JBO33+abx9+O5DR5vFXvttDfqqGHwfcz/J+d/Npn1vYOPQxno2fgRABFdoGyrX11BiaWXTkc4b5xHP/qW/5/NIuFh39nPWFxzlfX8RPBYeZdvBdajUa1h5IY2hSOMcasu0Va6PF3K5e8nrIhBKMJguFlfXsO5tDWW0j9WYNX+bs6fA5ZquF5Zf3MzO4L81mHWXaOiYGJHe4/SCvGNRiGfUGDR9mbe2QEP9WchqdxciRqiw+7XMr/tc5Nfgr3Hin500Ua2pYFD6Ulfm/M+fQB0w/+C4vnvuZy03lzA8ZxI2Hl3KhoYTno2Zjtlo6DSEAuNxUjslqwWRxJFISoa0KLcDmjNIRglWeeEqukmRXmQovmQvPJcxk+eV9WLHydNpqKvWNvJexmXmHP+LptJ/YUZbGGL8kvu57J+/0vIlztQXcdnwZxRrHTkW8S2BroMZJ+sQE2U309UZTh8EnV/D9rtO8EXeTnbAVtlSzr+ICh6oyGeQVzcygvtQbNCw5tcKB5F7B+YYiPs7aRqjam9prKnMqiRxfhSueMme2nci0k1xXtYJpA+NZMCaZsb2j0BtMfPbbEaYPSbAPBo7s2Y1QHzf6x4bg4aSke7gf3zw6h7sn90ckvHoBWjw2hUPn80jPLaNZ275Lgs5o4rudpyioqcXZWcptZz/jtez1ZDeVIRNKCFF54a9wQ4CAnm6hZDaWAlCrb0EhlnHviW9oMGhQi+W8eWEjv5WcpkrfSK2+GZPVzKTAq8e1n8IVmUjShuReix/yfqe3RzhuEiWLw4fxeNwUVK1xyFdQb2xBqzMy1iep00rpQK8oTl4ssuvHp/SPp7Jci8hqI7lNRi0V2npOVl+mTFvHpaYKnGUKooO9eOPu8ZxvKWCMf1K7/uVbS89Soq1p10vYbLXw2JkfaTRqMZstZOVXUdxSy6zgvh3uqwABN4UN5pGlm3l26S7u9B1Hf48ofi05TaNRS7jax2H7mcF9+b6TYUqDxcTagqNtruHtIb25gAh/m0WmxWrlmeXbaNF17HL0D/4z+NMVXaFQyMCBA/8d+/L/BKyAh4sKjc6Ai6pr0bqTUoZGZ0QggGAfty63/zvRYNDw8vl1bdKQAIKU7tQaWrjWPNJP4caEgJ6IBEI2FB23J9oIsVkcPRw7CRepCrPYwrKHZrL+93Q2H79IfbOWMF93Zg1JIsjLlce/2kyQl4uDHtlssVBraMZktVCmrSOnqZw4lwACFO64SlUddhOEQgGR/h7sO5vTpYcw2Cy/tGYjGo2Rt9bsbTeFCmBX6iVuGN4Dd9+uB9icxHKHm0iFtoHbjn/h8L0WaWp4P3MLx6ov8UT8VJ5LW8NTI2Zw44he1DVqEAmFuDsrUctlSCUiCivrWfjWKho1eta8PJ95IQP4qaBt/HGKeyR91TEsP72h3X37bvspJveNJ97XNuhVq28is7GEFXkHudxUgbNUweSAXvw0+EFym8rtfp1WrG30tg16DfkVdcwench3lVeH7Kr1TbhJ1Z16VQKM8khitymX5G4BZBRVEOrrjlBo07B2hhM1OdwTNYYYZ39yGyu4J2oMUqGYTcWn7N0FkUDIKN9EHowej0IopdzUQGU7x/UVCBBgNUKsMIRzpyv5vP/tlOhqKNXWtWoSrZyvLyJI5ckDp5Y7EOaMxhKWpH7Pg9HjeaPHPJ5NW82XSXehQNKls4STREFmYwl6s4k+HhH2IR/XVrLyWfZOXkqczRNnfmzjNeslc+al6LnsPJLDnGFJyFrPH6FAwBsXfqG3RwQ/5h9yeH+9xUR6fRHp9UX8VnKaod6xPBE/jTmh/ak1NtvDGxQiKeP9ezAlsDePp/6ARChCKhbbz1GD0dxlaEZFfTN6nYVfhz7GwcoMztTl4yZRMzWoNy5SJS4SJefrC8lp7jh46FRtLndHjWFj8QnuVoxxiJVtaNax7vdzSMUiHpk/hKgwD3bVnKXKWENwjCffTp7FrhM5tJj1fLRkMuezKvF2VXPLu2vsQScAn/92lAWje/Hq4vE8/e1WZg3ujtFkJj2vnACPrrtgReUN+PmpcZUqEQgELA4fRqJrMHnNlchEYgIU7kiEIl48Z6vu39VtNGqxnMmByQSpPNhXcYE7uo1mfeEx3i35DaFAyGCvGG6OGMrq/COU6+rp5R7O75VtF6/XQm8xUqKp5YeBDyAVinBpHbadFJDMrtaELIVIisgsYs2uczzTawavZW1oc3wGKT14NGYKt71m08VOHRDP2culLN14mI0vLkIkh+9zDzDMJ54DVRfZlHqSG0MHE+caiLfMmbyGSsp19ajFcl5NuoEqfSNvX9jkcC3YVHyKET7xrG7nGmaymvmt+DST+idw/9KNDOkdypTA3mQ2lnDougE6AQKejp9GS4PJXkha8vFvfPnkDE7VXubT7B28kDiTO45/ab8/JbgE8X7Gljbvey0OVWWyKHxYp9sAyAQSTNfIi0xmCztPZzN/RM8un/tXYTKbWhfQApsk5C8mi/4v408T3SVLlvDpp5/y4Ycf/ht2538f7s5KZg3uzscbD/HwrKGIhcJ2TbEBpGIRiWF+vL1mH4MSwlBK/7PtD53F2GZ4LMU9gifip9qsf5qruNhYQoDSHalQjEIkJUDhzvSgFKYF9SG3uQKL1Uq8SyAykcQ+6CYSClHIJJgsZl5aOBaVXEpZbSNbj2cS5OPCssdn4OmiwiI0YTAbaTbp2FySyo6yNIwWMz3cQpka2JstpWc4Vp3Nx71vIUDh1iHZHZUcxUcbfsdD4oRcJHEILbgefTwiSa8vIFYW3O5gybVYuTuVp28c3ukUOcBkvz72imajQcOynF3tLh7ANiiVXlfI60nz+DBrK6m1eXzT7y5O1eQyQBKFUSBC22LgpZU77TrAm19ZyzfPzGK0bxI/5P9OkaYad6maeSEDcTE5cf8Hv2Jox8vyCirrmwnzdadW38TXOftYV3RVH1xvbOHT7B38WnyKz/rc2ungTI2hGTe1ApVcSmONY3Xm1+JTLAofxtIOXBV6uIbgp3DF01VNRIAn/eNCKKqsd/hN1WI5vnIXKnVNNJquvr5IIESAgPeSF7Kz7JxdMrAoYhiZDSVYrBZiXAIQC4TIhRJUUjktjR17l4aqvHgycjoHz+Tz1mpbMMHqfWl8tGQKJpmZTUUnKdXW8XziTO4+8U2HVeFPsnfwy5BHEVghvbGAWFMQg71j2V/Rvtk82Ia/tpaeZX/FBeaFDGRB2BA85U5IRGKG+yRQrW/i/YwtvJ18ExkNJRxrHSQb4ZNIlDyAl7/ZjcFoZlK/WDvR1VoMHK2+xOKI4XyevavD9wY4UpWN1WoltTaPqYF9eCxuCiaLGYFAwK6yc9x38luaTTqmBfZBKb56PZJKRIhFQkzmjkm8v4czZ3NKGN4jksmBvZngn4xI6FhFPFzVeUoc2GzvBAjRWYxcK/CwYqVJo+fNu8dzxHiBd86udXjeioL9LImZhLNczgNnl/N2zELmvfJjm3PDYrWyYucpnrtpFKuevomLBeU8+912enULwM2paxsxpUrM0qxtvNr9BkRCIUuztvNexmZ750cpkrIgbAi3R46iwahhqHcszlIlN4UNYWXeQZLdw7j9+DIHwvlz0TGym8r4POU23r64CbFA1GHS5LUwWS1t7BNjXAIIUXlR0FLFQK9odp/M4afdadwk6slX/e9mc+UpLjYVIRdJGeGeSIIqhKpyLW5qBfNG9CTUx43HvtyMwWSmvL6RNEsOEU6+/Fx4lO1labhIlIz2627zKz/5jQOhXVNwhEFeMbzf62YeOLXcHpZRq29u4299LdLqC5ga1wexSMjuo5dJ6uXJA9HjWRQ+jHWFx6k3thCp9mVmcF9Meisznvne/twmjZ4Dp3MZ5hPPropzSAQiVg64n8+yd/B7q1yjq66c2WJBKZJ2uVAd4B7DmpzfHB7LLKrEbLbY5zr+TtTom9hXfoF1Rceo0jXir3TnhpAB9PPs9pcHy/8X8aeJ7qOPPsrEiROJiIggLi4OicSRfG3Y0H7l6B/YIBGJGNcnmt+OXWTf2RwWjunFt9tPtrvtreNT2HEyi3A/D56/aTTOf6AC/HeiSudYMRrlm8ji8GEsSf3eYZDKQ+bEY7GTiXMJRC2WE6r2otmoxU2qQiIQoZK03W83tZK5Q3vw8Be/klNaw6CEMJ5eNJxGi4YKXT0rs/bRYNTQzcmPGcF9MVksdku0/JYqNpek8nL3OWhNeu44vowfB97fZojsCtQKGc/cOIodx7KZGd2XH/MPtbudu1RNomsQL51bx9sxN3eadAQ2gmg1C3g8dgqPnFnZ7sVysGcMvkoXFK0DCTqLkZ3Xma1fjw3FJ4hzCbQHFuwoSyOnqZw3L27koejxDHXpzplrAgZ0RhM3vrianhEB3Dq1Hy5+MiQiMeFuHny97UQbecj18Gpt45Zo6xxI7rUo0tTw+aVdPBQzgYdOr2h3m921acwe1p2SqgbC1T7U1F5tL28qPsULiTN5IHo8K3L324dfbJXW7tzoM4Tb31xPdaNNdycWCblrcn9iQ71ZHD6MUb6JKMRSqnVNuElVWLDyY94hfi05xVDvOMxYWHj4U3v782BlJi4SJeP8klgQNgRniRz5NdP8AQp3wOaC0sMtFIlQhJNEQT/naAIlHogEIu5Ys9G+fVltI3Oe+4F7pvbnngFjqTe1UKlr7FQnaLZabIQ1bCDF+hoqL5q5b8RYTlbntBsSEKzyJMUjgi8u2cjoTwWHmR7UB09sNyw3mYpJ3r0Z6prAyYocnGRybg4ZhkogZ9P+DJ7ZZSPl3cP8HBYIJZparFgR0PUN3dr6/6mBvZn1+wdt7Lv6enTjRv8heAqcKalows3JhFQsQt46qLXjVMdEdeGYXgT4OmE0tFbZhW1v/OI/MGgkEgjxkKmQCx3vPWKRkKkD4imXVrOxsK0FmwUr7+dsJtk7jGl+fVi972ynC8Dvdpzi1cXjeOUHm+3h6UslPD53OJ9sPNxhcUIll9I91J+XT6xibsgAPs3e0abzoTEbWJazm/ujxjEruB8KsZQWo45Go5bx/j25+8RX7ZKptPoCnj+3ljd7zEckEHKuvqDdIcIrECAg8ro2Pdgsyz7rcytPn/0JV4mKyhrbMfzDjjP8+vtFJvaPYUrgIAwGE79vK+CdzGN8cNcU3r97CghsVcq1zy9g75kcFGox684f593kBbyY/jNSoZgZgSmIBUIeT/2h3eP8UFUmvgpXZgX3tVtOBqs8O+2wqMVyVFIZXz48mzve/5lmrR7/kR5U6Bu5IaQ/EoEEV7GSvak5vPvTwTbX7iPphYwLD2EX5yiub+C71We4aVwfHhs6Bb3FSHfX4E6jp/t4RIAAZgX3Y007VWeAYV7x5BbWtukC+rqp/20k99HUlVxouDqkmNVYykvp6+jn2Y0XEmf9Q3Zb8aeJ7gMPPMC+ffsYPnw4Hh4e/5UDaJ9++invvPMO5eXlJCUlsXTpUlJSOtaO/qfh4azik/um89PeVGKCfXhi7nBW7j5t99IN9HThlnEp+Lo7IRQIWDimN25/ISnsX4XTNdO0KrGMu7uNZuGRT9tcvGr0TTyTtpqlvRcTpPBALZGj7mAS9wqEQgGBXq588dAsWrQGpE4CqvWNfHFpl4NP66naXFYXHOGJuCnc1W20nQSYrGZeSl/HV33vYFvpWU5U5zDWv0e776WUSRieFEFUjSfungqq9U3suM5Ox0fuwus95vFh5jZqDS2IxUJEQkGn7dhADxdEQgExqgCW9lrMR9lb7WTcWaJgun8Kc0L64yy+2l41WSxdVmIqtA1YsNra51g5WJnBpIBkdpens+zSHpJiItt93pnLJdz3vu2mmhITzDu3T2TqwAS+3Np+WhfYJqNd1QrqDZpOfY7B5nl7V7fRHf79XH0+j/eexjur93HzjKEOiUZWrLyUvp4pgb34IuUOmvU66jQaYjz92HX8Eves/IX6a24QJrOFTzYeJi7EhwmBPXn5/DoHc/1uTr48mzCTSCcfhvrE8XjqD200fg1GDWsKj7Kv8iLL+93tQHSVQhkfJC5CaVaQX1JPSrdgDp/P48dd5xEAQ7tHsPLJebz78wGHRcVnm46yfPspnrphOMKgjqvCV1CmrSdI6YHeauJQXhnig/Dt4Lt5P3Oz3aZNKhQz0jeBeSEDef7cWsxWC6EqLxJdg8lqLMVb5oyydbFo1Fl55ds9qBUylHIpq6ozuFTi6N4xuX+cg+e2slUTe7GhhBSPSI52YieW4hFBg1GLv9yNr/veydNpP9ltwOYEDCBFFENBXiOuUUqO1WXT2KAlRhVAsncoD80YQtrlsnbDTiYNiKVCVMPxkgxmBHWsrxzhm8CynN0d/l2IgCTXEIQIHWQLABaxmcnDYnj43HcdPt+KlW8v7+Wu8DEsydjc4XZg0+Nfe901mszI5CJum5zCF5vaXxDeP3sgVrGFGGd/dBajA8n1V7gRrPJEbzZyoaGYb3P3MdqvO1qzAYPZiN5sJLOptNPkyvT6Qsq0dXR3CyHBJbhTi8DBXjEorgtLuAIvuTPvJN+EyWLht5KrEohGjZ6f9rS1GvN1d+bdn/ez92wOVqvNGWfBmGScJHJ6uYeT21TBR70WoZbI8ZQ6sbP8XKeJb78Vn+arvnfYrznj/Xtyz8mOB4XnBPdHIZYS4CHhh6fmk1lYyfrdF4gK8KRXsgdv/LSXoxfz0eg7n2ORiyT4ylxJzy/n8c+30ic6kNfuGsstEcM7XMALEXBD6EAkAhGLw4ciF0lYW3DUXo2WCERM8OvJRLcUHnh/U5vnTxuY0Ok+/RXoTQY2FZ9yILnX4lj1JQ5XZTHRryciUftuSP8v4U8T3RUrVrB+/XomTpz479iffxlr1qzh4Ycf5osvvqBv3758+OGHjB07lqysLLy9/1oYwr8Dni4qbpvYjyaNHrFIwPAekZjNFgQCkIrFtiEkoQD532An9lfhJJbbDeWnBPRifdGJDi9eZquFby/v49HYyTQaNG1uQh3B3UmJVWrmcGUWBZqqdsMIrFh56+KvfN3vTn4uPEaNvgmpUEy42puCliqG+sSxs+wcQ7zjMBosGIxm9EYTMokYmVSMk0KGk1JOjFJOlbaRvh6RzA0ZwJGqLLRmA/EuQbjJVHyYuZX0+kJ6uoVSbWpkSGJ4h1PkAPNHJvPBht85k1PC/BE9eDdlIQisrcNXEiQWcZuwCIlQhEwotuvD2oOfwtWh+maymBEKhLhIFLydfBNuYjkrnpuDUAQihJzJLmXtnnQKKq6arwd62jTOaoGAe6cM5NNf26bvySQiXls8Hje1gkpdAyWdBAeAbSjDaOm4AjY1sA9SmZBnbhxFpbmBmUF9HRK8rFjZVHyKUm0dz0TNAJOEtTvS+W5n+1UptVyKp5ec245/0cb+6FJTOXcc/5IfB96PyWwmq52p9iuo1DWQ11xpb+E2a/W0NBn56ZcL+LqqmTeiJwveXOVAtI9nFuLhrOT9u6bw5up9ZBReHY7S6o2s//08S27r1+n3BTZvzqKWGsZ49OCjS6c5nllIem4Fjy+cilgipM7QggABByszePD0dziJ5SztvRid2cix6kucqcvHS+5MkMITkVGEi1LGreP78uiXv7XbcfBzd2Jo9wiE1wxSectdcJOqWF90nMfjpnCs+lK7lV0BAu7oNoqDFReZEzKAKGc/vu57J7WGZpqMOsRNcqqaGylxLeWD1HUOkg23yyq+6HM7K564gbUH0/j18AWaNHoi/D1YNLEXUWGeCISQSBCmTo59J7GCfh6RHOvAgu1KS7ybk1+bv5msFkQSQZsBuutxrr4QsUhor7IJBQIi/D2QScQUVzc4dEAkYhE3DOvB6v1ncVPLaRJo8IuW8cIto1i57Qy5ZbZzJjbYm8WTelMqq2RHxVluDh9qt9OLdQ7grm6jMVstZDeVoRTJeDh2EocqMynV1rK15AwjfBOIdg6wa2c7Q0FLFd3dQnASy/m8z23cffLrNmQ30SWYpxOm4yztuODgekWzmxLHZ5uOdLioD/Vxo7y2iT1nrv4mZbWNvL16PxfzK7h3+gguaot56+ImSrV1fN7nVlJr8zr9DHqLkUajFpVIxr3RY5EIRWhM7RP8nm6huMvUlGnrUIpkuDspGRAfSr/YEIRCAVUNzaTnlXVKcgcmhXCupYAZ/n3ZcSzbfu6czCrmvVW/8+i8ITwVP413Lv7m4BokE0p4In4KGpMemUiCUixjQehg5gb3p0BTjdVqJUDuweZDGdz37cY2+3Dz6N6ou0jI/CtoMGn5uZOEU7DJRPp6ROLzj2b3zxNdd3d3IiIi/h378rfg/fff5/bbb2fx4sUAfPHFF2zZsoVvv/2WJ5980mFbvV6PXn+VuDU2th/B+e+CQipB8R/Q3VqsFuoNGoytNxiJUIyrVImwizahq1TJswkzuefk1/TzjLLb1HSEU7W5CAWCP1Xl15uNGCwmQtVefJy9rcPtrFj5peg4t4WPINrFHw+ZGo3JgFwkIcE1mDp9M3WNWl7/cQ9HMwqwWm03sCGJ4Tw+dzg+bmoEAgFuMhXVhibeP7WFnm6hyEQSjlVf4vI1U94zgvqyvGAvd0wfw8XCCnuQxbWYNbg7+RW1bDluq4a8+/NB3v35IP3jQnhp4RisZnB3bTuoJhNKGOfXg02dhDzMCu7ncKPo5R5OdmMp7/RcgJNYzg9FB/mt5DQaswEBAvp5RvLGA+P4ftMZtp+wDWfMH9HTRvQlYuYO787wlDBKaxo4d6mCzUcy6BHuz91TBuDjavteJEIRHjKndhPzrkCIAJlIjJNYQZPJkXgO94lnZlA/lBIZWoGepRe3MsY/icHeMZytKyBA7I5apMBb7YwePYtOfcby5Hs5fCG/w/ebNDCWX0pPdOjxqbcY+eLSLm6PHNnha1zBhYYiUjxtlXCt3shnvx2hvLaJZ+aN5Lb31zqQ3CuoadTw3HfbeXzOcO77xPHYT8stxVfuio/cpUO9tUxo84c1mTPYdiTLrl89fCGfg2cD6dMjkEVHP7NvH6Bw59WkG3gpfZ3D8bih6ARhKm9eip7Ld7+mcs/kAby6aBwfbvjdIfwgOTKAVxaNaxM17CSR81D0BF5I/5nTtbk8kzCddzN+c9Cqy0USnk2YQZ2hBaVYjlIkbT1f1LjJ1DQ0a1lz4SyKbiZWX267aKoztLD42GesGbQEfXgdz/UYhkIsRSWV4KRQsPzyfvZVnMdgMdPDLYRbI0cQpPBo49/tKXfihe6zefvir+yvuGgn5CKBkHF+SdwWORKFSNpuEpfFakFj1ts7IR1BJhIjEgoZ1jOcQd1DGds/ipzmMjRmPZFqP6qrtHyx4RgyiRipWMSdk/ozPiWGLccvUqlr4JWsdfT1iOTeRf3xljqDQECxtpq1FQc4W5LPBP+ezAzqy/6KiyS5hvBgzAReOLfWISBDJBAyO7gfnjJnxvv3oMmoA6wdhi9cC2eJEq3RyL7K8+wsS+Pdngso0FRxsuYyUqGYyQG9CFC624lsV1DJpTwzfxQv/9BWv62QSXj2xlF8vLF9udfmYxncOCqZd7J/tZPtIk0N0nYsx9q8r1jGOwkLcRer8ZE7sbTPYt65+BsFrTMAMqGE8f49mBrYmzuPf0mNoZkBntE83+pre2Ux56pScNvEFF7/sX3XJxeVnKE9w6ktr6KfLJYHdztqaHeeyuaRmcMY6h1HslsYh6oyqdI34q9wp4dbKBXaerq7BmOwGGnW6pCJJHjKne0WgFq9gUGx4Zy4UMzpS7YKa7C3K3dM6MeghDCcle1X1f9VdGYpCbaEuP/Gjvv/Bf400X3xxRd54YUXWL58OUrl3+Pp+nfBYDBw+vRpnnrqKftjQqGQUaNGcfTo0Tbbv/HGG7z00kv/yV38j6PRqOV4dTapNfmEOXkjEggp19YT5exHX89uHZp9g81MPMbZn2/73Y3BYmpjedQeLK1awD8Kg8WMxqRHJBDS2IVpubvUiXjXQN66uMnespEIRIz0TWRR+FB0egOXy2rsq3WL1cr+c5c5X1DOqqduxNNFhVgoYlpgH45WXbIPIlyLif49kQrFHK7OotbQzIdLZrLveC4bD1+gSaunW4Ani8b0wWS28OzytsT86MUCftx7BpFQwJR+8QR6uSC8RovoLFVwe7eRnKy9bHcwuBZDvWOJcwlk8bHPAVsC1Hj/HnyavRMPmRPPpq12aIdasXK0+hJn6wr4btY9iIVCXFUKfFydaDBo0JmN5DaX83XOPuqNLSQGBfPpk1NwEStxV1wlCwrkzAnuz7HqjmNMB3hFAfBl3/+PvfcOjKpet78/03t67wkEAiQkEHrvIB2kg6KoqNixezx2j703VLAgYqFIEWnSew8kkN57TyaZ3t4/BgJDZgLnvufc+7vnuv6CmT2z90xm772+z7OetZYiF0nI0VaQ2VzO6NAk/KVqfKTO71ePA73NzNd5e3i92wJiWyLZfPgSrQYTCdFBTB3ajZlh/bE4bB1eiAclR/N66S8en4erqW83wrXpSCaLlT/P5PL+/VPJKa+lssHzDaOkpgm7w0GYv5dLTHf36GDkSHkjZQH3n1zZTssqRMCLSbMw2SyMDkliW57rb+1IWgm9k8JI9I5s8+Z8sOsE3ry02YXkXkGhroZXc9ezdMgEXvphF88vHMPXj82mTqtDqzcRG+KHWiHFV61Ae/nvjsCpQZYIxQwJSuD15Hl8nL2dAQHxfNVvKZeay6g1tRCrDiLFN5pjtTm8lrGRDUMfd/nNAphtNnp3D+PFwp88fld6mxmbw87PpUf5maNMC+/DrVH9WXDk47Y2L8CJ+jxO1OexPGEyY0OS2pFdf5mGp7pN5dGEiVxsKkMoENDDOxKhgLboZneQC6XorA309e/kMZQDYHxoMrWmZmaOTGRz6WnuSfvcpcPS3TuC15fNwNTiAJkdHA6SYkOJDfGlytoEOD23K2x1hCg02B12/MUqwrS+XGwqJVzhR6a2jF6+MXSPieCxs6vbkRKbw87PxUcJlHlTrq+nj38nTFYLo4MT+Th7u8eBJ7VYTqjClzJDXZsn89G6HHr6RBGvcSaOFbRUEyDzYlPpKZotehK9I52pX1KlWwsxpVzKmN7xdIkI5IutRzmbV45ULGJsahduH9uHDzce5EKB547Jr/vPMyK5B+vLnBXGreVnWRQzhAMduEL4yzRoBEqe/mwT/l5KPlo2nb5+nfiq3z0YbBa0Fj0OYE9VOg+d/rbNFvJoXTZPnlvDe71vayPyErGIUSmdqdfqWfXHSZeByFA/L95bNhmZSExgTTCPbtrazgPZ4QCrzUaIzAuZSMLk8FSMNjOiy57wXhIFNSYtv5WeJLelCrVYzuyoAXTxCsVfpkEhk9ItKph3752MxWrH7nAgFgnxVSv+bURTgOCGLjaBMg2OGw2a/B/BP010P/74Y/Lz8wkODiYmJqbdMNrZs2f/ZQf3z6Kurg6bzUZwsKsAPzg4mKys9qTm2WefZfny5W3/12q1REZG/tuP878LequJozXZxGqCKNM3sqMiDZvDTi+/GCKV/qQ1FJLq36kt9MEdFGIp3bzDaTC1kuoXx64OWmud1MHIhVIEjps/uYtaa9BI5Ig8pKpd+95Dg7px94kvXTSuFoeNHZVp5LRU8krP2Tx7+0ge/ch1xV7XrOOX/WncM2kAUrEIH6mKt3ot4GxDAT8VHaXO1EKkyp/pEX2xOxy8cOFXhAgoNzTw4IWV/DL6UWYMTkIgEOBwOFi1/STrD3n+HjYfvcjb90zi7vfXsfa5he0qbEFyb1b2v4+NpSfYVHaKRrOOGFUg82MG098/nmfS1lJvakElkvFK8hx+KT7K7OgBnGssdBuhC85oyw+ytvH8rbciFgs50pjJ5tLTzoAP32j+ljiD38vPsqboENsr0ng+cQaDAxPaKmPldc3EaIIYEBDvlux6SRQ8mjCJF8//ypnGQkQCISOCurO822R8JWoMZgsWix2xTIRSLGNoYDf6abrwytd7yC676tJwqbia3w6l8/SCESjCJQxMiiKnzL2Lg1QsciFI7mB12NrS/dwFlYCzejYkMAGL3YZEKCK3vA6lXEpEgDfbT3k2yb+CnLJaIgJ92oiuRCzi+QVjUMtkBAu8+WnIw6wuOMjBmkxsDht9/DpxV+dR+EpUbSRu+uBERvfuzIZD6eSV1xPsqyZI7s3j3abw6JlvEV/uslzyoLkDZ5iAPFZEVUMLs15ZzdCkWF5Z7HQtabbq0VuNVLc08nPRUTK15ShFUqaEpzIypAf+Mg2jgnuQ6hdHq9VIg6mV/gHxVOgbOVR7iRfO/0q40o/VfR9EYBbRYNEjFgrbBmDtdgcKhZhaU8ddL5FA2BbYsShuKE+cXePxb/hh1jZGBHd3+9yV7+3KJL7ZaqXBpKNK14RIICRQ2T5Qw4adaFUgSzqN5ExDgVuy6CtVMTOyPz8XHsZHpuabovZVwEvNZTybuYZP+izh6XNreab7NBotevxlanwFKmZHDWBCWArf5u/nk+wd2HHgL1UzI7Ifn/ZdQojclzuPfcZX/ZdyrC63w8rb6sIDfJR6B9/k73O6jsg0PNRlAh9m/9FuWwECHk2YyIHqiy4WUv5SNSa7lZN1eTzYdQLnm4r4x6VNLp8/UObFJ33uJFoVgMhNtVWtkNE9OpjXl9zSRgStQiv5VfXsPed50QDOzkdX4dWF5JVY4CvODu5wX+exXMiqpqJeS0W9Frvd3tZBsJlaWHr4a4x219+NXCQhVhWE1W6jxqh1qVj7qVXMHZHCzMFJHMssplVvIjLcm8gAH85cLOOddQc8Dh6q5VIkYud3ohLL0FoMnGoooFxfz8CALmRrK3k3c6tLl+BwbRbJPlG82WsR/pevod6q/745GqVIytSIPh4Hq8HZmfQ0oP1/Df800Z0+ffq/4TD+ZyCTyZDJ/j1thf8XYLZbiVQF8OiZ710utpnacjaUnOCNlAUYbeYOie4V+MnU3NlpJH9WpXu0U5ofM5jfSk8yK3oAKm5Ol3SxuZQU3xgazTqSfaI53+Te0mt29EC+yN3lcZCroLWatMZikgKi21XfADYdzWDeyF74X06W85GqGBWSRIQygEJdDXVGLSvz9lJnauHOTiMYEtiVBnMrarECq8CGn7caiVBEvVbH/g50uwBNrQbkUgl1Wh37z+cxc0hSuwpZgFzD7bHDmB7ZFwHO6rNCJOW30lP08I5gUngvenhH8H3BQfZWZzA/ZjBrbjAsVthag0Pk4N5TX7vcYDKaS/m5+ChvpixAJhKzKn8f/7i4iXVDH8MPNTqjmVU7TnCpuJovn76VndVp/Fp8jFqTFolAxKiQRO7tPAarxc6ZRqekwuaw4yNS06g18NupS5zPr0CtkDF3RDKxof5MDk3lw3WHXEjuFTgc8Nba/QxKiGXmkETW70t3a6peWNFAD5/IdhZ316KTOhiHAxbHDWdVvvvW5cKYIVgdNjaXnWJsSBIyiZhAbxVVjS2o5Tf+7avlUkyXI2L7dIngqTkjiQzyocGi487jXyATinmk6y0sjBmCQCCgytjEPzI20j8gnkUxQ7HY7FiwohXqmDamGzKBBB+JCqlEhENg58v+SzlTX0h6o+ep7ytIay6kc3gAVY0tHEovpKS6ibBwNYdqMjHYLHyQ5eoHmqktZ23xYb7odw/Bcm/8ZGr8ZGpUYhmZzeVsKT+DyWbhrZ4LiREFs2LDcfafz8Nqs9M7PoIHpw4mNtQPiViEyHrjyfF6cwuDArtS1FqD2Wb1SHTA2f35vfysM7GtA9QZW9hensbWitNoLQY6qYO5PWY4nTXB+CuuVoO9JAoO1WSS6BPJh6mLeevSZhe9bg/vCF7uOQchAoaH9ODxsz943GeFoZGzDQUIEPBi+jqWxY+j3txCT+8opkf05a4TK1ykH/XmVlbm7yWzuZzHuk2iwaLjfFMJRzsY/APnwKRUJKZfQGfqTa34yzTOinLyPL4rONCWFNbTJ4rFccPJ1lYiFUk4VV9AD+8IlnQaiVwkpVRfT7w6hExtGWuL2ktLak1a7jnxJb8OfazDSfwrQ4w6q4m3L21jXtDQDo8fIDrEhxqL69/55fT1vJ48lw+z/uD0NdHGarGcu2JGI6iSIRQImDKgOztOZ8M1fcAcbYULyQ2V+/J6j/n4CtWkF1Zhc9iRmqRo9UaXoUsfpZNoTh3QA6PVzKayU7yXsZFnImZ16K4xc2gSaoXzOmCwmvm9/Cwrcnexsv99mO2WdiT3Cs43lfBN3l7u7zKuLSb9vwsqiZwFMUM4UHPJrSa9iyaU8WHJSG8iqOf/Av7pb+HFF1/8dxzHvwQBAQGIRCKqq11bf9XV1YSEhPwPHdX/HBpMrfzj4ka3FQWT3crfz//Cj4Mfuun3C5RpeCV5Li9fWOcS5ShAwO1xw5AIRXxfeIB91Rl82X/pTVmbyEQSLHYbYQpf7o0fw8Onv3NbmUvyjuTNi5s6fK+dleeJ7hRASqewdkTXmWbU/mLlL1Pz1qVNpDeVEiz35qM+i/mx6DBf5+1pq4iEyH14LGEiKb6xzqqDRtFmg+UOUrGorWX057k8RqZ0xt+rvV5OLpYiF7vGei7uNByr3UaFvpEHT6+i6rL+0+aw02xunxx0LRbEDubtS5vdkgubw86zaT+xYdhyfi46is5m4veysyyMHYzZ7OBiUTVldc3MfG41D84YxIo+SxGLBAgQUFjeyBMfbufvd10lJLPCBpBo68yil392sVrafTaHlE5hvLN0MkcvevYhdjjgl/3nuXfyAFY+PptHPttMTdNVLbRULEIiEHN3p1EdEt3FccPZvO8Ss0b1x1+q5tuC/W1VxwCZhttjhzMmJJGHz3xHXksVedoqlkSOwWqzYbPZ6ZcQiVAgwO6hxScWCRnWsxM9YkLwVsmRS8UEeDurJPsq8tsskZ44t6bda012K7dG9ueDzG3srbnY9nuKUgXwZNcpJHiFEyD3QmAUMDY0iX0d+OtegUQgwnZNa9bHX8bnOTuZGdmfJcdXIBIIGRrUjanhqfhKVVgcNvZXX+LTrB083n1yWxXMX6ZhSFACyT5R2B1QVN7EnA/WuLR1T2WXsvidn/n7wjGMTe2CVCQmTOHrVnJzBZX6Jh7ueguf5eygsgNv6Sso1ddhtJmRXxdvewU1hmaWnVpJyTX61oaGVk415DMnchB3xA0n4DLZFQtF9PaL46vcP5kW0ZcV/e6hxWKgyawjSO6NSCDEV6qm1WrA4rC5TeK6Fodqs+jlF8M3+fuwOex8lbuHV3vO4e1LWzx6cR+py2Zaax/i1MHUmrQ3tHMDZ6rYJ9nbMdmtKEVSHuwyAV+ZmjvjRjgHUwUCClqrWZW/j2JdLb8MeZS3Lm7hkYSJvJ7xW9v5/kW/u/m24IDn/ViN7Kw8z9yoQW3Wbs1mPWa7Fa3FgEYiRyaU4C1VYrSZOVqbTS9VHL3jwzmb676TJBDA+IFdWJa+z+XxIl0tT55bw5K4kTzebQqFTbUI7UKCJD5sPniJjQdPIhOLWfXEHCw2m8vw5LWV6McTJjParyfvrTvIrjPZbbI0gcDpj/703JH4adpLKOViKRPDeuEA7BIr900eyIrf28sXk2JDuH1snzbPab3NxBc5uxgTkki5voHj9e4HN69ga8UZ7ug04r+d6ILTOePLfktZU3iILeWn0VlN+EhUzIjsy+yoge3uvxarFb3ZglQsQiF1f779p+I/iu5LpVJSU1PZs2dPW+XZbrezZ88eHnzwwf/Zg/sfgNlu7XC4SGczcaahkDCl3029n9FuIUdbwbphy9lblUGJrg5/mYZhQd04VpfDyxfWA1Cir+dYbQ6TI1Jv+J5Dg7rx6OnvebXnHELkPnzS907ez9zWVskQCYSMCO6O8iaqzjqrEaFA2K56CtAlItDt4yKLmDd6LmRN8UGGB3fnzYub28kDqoxNPJ22lrdSFjAkMIF5I1J49UfPFkhjesdzOMNZ+XQ4buZW5wqxUES4yo/vBj5ApaGREn0dGrGCOHUQhboat68RCYSk+sXxUZbngT6rw8a28nPcFz+W97J+p1BXg8VuRyAQtmWxG81W3v3lIO/+ctDltQIBbZGoSpGUKUF9Wfzqr279RNPyK/hy2zGmD0rk253uPaLBKWOw2RwEBypZ/cw8SmoaySmrw0+tJLlzKL9WHCVV2pf748fxRe6udq+fGz2IJHU0ay5sZ1C3GCaEpzA8uDsmuwWHwzl0ZLRaeODkKgr1TjKwsewkd0SPZERyZzRKOefyypk3IpnGViO948MRCARkFlfzx6ksDCYLd4zry4WCcvz8FRypu0iuvoJHuk3ES6xk7w2I6ZPdp/LIme/anYMlujoePvsdn6Yuoa+8U1ubvr9/5xsOUvX3jee7IqeFkVIuRSoVIRGK2V6ZhkYi561eC7nYVMq7mVupMDSiEEmZEJbCorihblv5GqmSBq2eZ1Zua6ddvII3ftrL4MQYghVe3BUzilczN7jdzluiJMUvBhkiHuwyAaPdPRm8FqEKX48kt9HgDCsp8eAG8mvpUSaEJrcRXQBvqZKl8WOoMjaxInc3DoeDRJ9IIpX+qMRyFGKp87hu4qS0OewIL1caj9XlEKbwwYbdY9fpCraVn2V0SCIZTSUepUBtxytRIBaK2jTCepuZtzO38HryPP4oP0ehrgZ/mYZmix691cTX/e9FKhBzX/wYPsr6g4lhKdgcdnZVXkAulNxwQGlf1UUmhfVCLVFQZWji9YyNLhXXnj5R/D3pVrzECkDAmoqDvDx/Ho999Dt1ze0X988tGE25pc6tJVqloYm3Lm3hu94PsGp1Gi0Gk0sBwmixcj6/grtv6c+5vDIGJ8YhFYvooglDgIAlcSMZ5JPAmz/vZe8518WuwwG7z+RgsVj528IxbgsJXlIls6L6U1HXQrlG70zjPJxOYWUDPmoFk/p1IyrYx2Wm5GJzGSa7hTClHw4c7VIZA2Qapob3IUoVgNlu5UhtVocBRP9uBMq9uKfTaBbFDm27bqhFcpSSq/fLZr0BndHCb0fSyS2tw0ctZ86IZIJ9Nfhrbm5g8X87boro+vn5kZOTQ0BAAL6+nhOoABoaOrZ2+Xdj+fLlLF68mD59+tCvXz8+/PBDdDpdmwvD/xW0WAyU6OtuuF2Wtpwp3JiQgtMhYXXhQcaEJHG6Pp9AuRcFrdX8WHSo3cm+reIcAwO73LCqqxRJmRHZl2fPr+WRrhMJV/rxTq9FABhsJjQSBXUGLRKhCLVY3jaU4A5dvcIIkGpcrKCu4K4J/d16EZfWNvHEl1t5+96JGO0GjxpYgI+yt5PoE8WIlM78vD+tnX8pgK9GwcLRvXnkMycZGZYYe1NRz9dDJBC2tZl7+ESi1Zu4PXY4e6oz3G7vJVHQbDF4lJVcQZa2nHs6OV0KfKUqRAIhapWcGUMSefuX/e22jw72RS2XEh7gTYbW2VofE9yT7ceyPZrmA/x+LJNVT8zpkOhqFDJMdjP/SN/IsbpcolQBhGp8CJJ5EyfyorN3MBuLj3OLfx9GD0nkt7JTlOrrCJZ5MzWyDyIESCRCnrhrMIEqJUKhgEajji9ydiISCMhpqXabWLe+4hh3jh/OwfQCYkP8GJncmW0nM9l4OB2b3UHfrpF88/gcKupbSIoN4WhDFjqlnVuCUhjn6IkQITaHDR+xZ01esk80Jbo6jwtNBw7ez/6dj1V3tulNJUIx40N7suM6j+crGBHUg+yiusvdCRjaPYYiXQ3Bch/ONBTwcs85/FBw0KVdbrCZ+a30JAerL7FqwH1u37eqUevWWeQKrHY7289kMWNYDwYHdWW5YzKf5ex0GcCLVPrzfurt+FweeFLLnJZ14Qo/yg3u7wkCBEyN6ON5v9jaQlM84YeigzyjmI6v4uoN21uqxFuq5Onu07E6rMiEEsTX6FJ9pSoilH4oRNIONeB9/OI4c9n9xO5wIBQIMdwEqWkw6wiQaRge2INBgV1YXXCQBrP773dO9CC2lbefa/ky708+T72b4oomSmuaCAv0olNoAHKpGKlIiJdEwQNdJ3C0LhuxQMSbKQtQiqX4SlU0mj13m5z3bgH1xhbuPPZFu8CTC00l3HHsc9YOfpgJocn8UnKM94u28Mnj09lzKp/dJ3Mxmi30iAlh4bgUIgN8EUkgqSyK9GZX6Y1YIOLlbnP49c8LbiVM4JwNOJ1TxoqtR1n/wmL8vJQoxFJGBndnRmRf6pr07Ujutdh/oYBHZprdEl0Ao8nGJ78dZm9aHqF+GiYP6M6AhGh0RjObjmaQll/B/ZMHcsf4vkjEIrSXu2bGy78LtfjqtfvezmNI9YtjY+lJ9lRnoBRJnUE2Igk5zeUEXJYG/XdDLZWj9iAVbNIbOJRewMvf73bpWm05dolRvTrx3PzR+P0fILs3RXQ/+OADNBonYfl/Pfp37ty51NbW8sILL1BVVUVKSgo7duxoN6D2n4xGg461JYfb7JQ6gt8/IVa/4qFqddhvqD0z2swe28HXQimWMT60J9GqAD7P2UWDuZXO6hA6aYIZHZwIDqgqM7A7v4CZCf1YXXTQ43vNCB6AXSdkYt8EPtl8Vac2c0gS0cE+bl9jtzuobdbRYjKxtal9mtK1qDA0oreZiFZ78cUjt/L9rtP8djidVqMZqUTIi4vGkdIjBJvDwarnb0WECKvAitaqR+aQuFw0/xk06wx8sOEgPeKDuT1qOKtL2rcnY5SBBNyEVEQjlrfptiaF90YkECASChmX2pUfdp+lssFZcZk0MIG5Y3pSYW6kyaIjMSAcvd1Ekk8k0bIgDhZ6nsIGZ7XGarMjEYs8Vgrnjkzm9eyNbQEGxbratjbszsrz/DDoQULkvlRWtyBrFtFFHUJ3rzC6eUdwpqGA/NZq/GUaRockUqyvJauqnOHBPTjqwSf2CqqNzcgVIsb2iqeqsYUFb/zokmaUU1bLhoMXWPHoLNJbCknwD+W9zG2cu6xPFgtEjAruwUMJt9Bs1bPvsl/qtRgc1PWGJC2/tRoLV7+bQLkXjyRMRCaU8HvF2bYKrEggZHxwMjP8B/LQB1sApyXU/dMGUy9sRGc10t0rghaLweN5WW9u5fOcXTybOB3Vdb/DivqOq4AA5TXNFLbUkOznjN8eG5pERlNpW3ph8GWv3muLIH4SFS/3nMOyUyvdauuXdh6NrIMhVJPd6iKRcocyQ73Hiprd6sBicYDYhlju3I/OZEJntCCWipgV2Z8fitzr3r0lClL94vgk2xlZ3T+gMyvz9qIWy9zGwCZ6RzIpvDcBMg0KkZQ4VTAX8ip5Zese3p51Gy9k/ewi+RAiYGZUf7p5hfOkG9lLia6Oep2Oe9+7Wj33USt4656JREV68+S5NWRdU238PHcXA/zj+Sj1Dh46/a1HWcaYkCTEiPi2aL/HVD+d1cSq/H0s7TSajaUnSW8u4a5znzMqLJF7F/dGKhRTbKxF7ScmQK3G4XDwTq9FFOlqWVdyDJ3NRC/fGMaHpPDNllNsPOi58+HvreJIRiFNOiMV9Vr8vJR4SRQ8n3QrudpKLmR51nhfwYEL+cwcclVney3MFisHLjiJcmVDC1+7Cc/ZfOwiM4cm4e+loqtXGOBMVhwW1I1xoT05WZ/HkriRqMRy7j35tcu1JVNbzobSE3ze9242lZ5kWmRfl+JOs1nfNjArEojwvUnLt38VGlv0vPT9Lree23vP5ZMQFcxto3sjk/z7bU7/J3FTRHfx4sVu//3/Kh588MH/k1KFKzBj5Y/ys8yJHnjDKui40GRMNgsy0Y1/6BqJAqVIigPHDd+3p0/0TRM7tURBH/9OvNPrNowWC006A8UVjXyy6wTHLhVjdzjQKGT8MmYhl7RlLq22K3ggbgLnL1bx9ZaT/PrCbVwsrkIsFjFtYCK1Ta1kl9YSHdxeohEe4I1ELEIsEWJo7XjCH8Bodd5U/TRKlk0dxKLRvTGazSi8JByvy+Hp8z9Sa9QSqvBlemRfguTevHDiF/r6d+KxhElt3ovXwma306wzkl9RR0ZhFb4aJYN7xKCUS5GIRPx64Dxbjl1i24lMnlo0go+T7uK36hMU6qrxliiZHTmAIJsfUm6sobwlrBclulrGhyYTINO0Jdj5aZR888Qc3vhpDz27hOIXJ+KRS9fk1Oc7q3Z/T7yVipYmZ6DJDeCjluMpRzmlUxhBQUqOnXJPzEx2C5/l7OC5HjMQKkT8WZ1OSUst3b0jWHD0YxdysyJ3Nw92mUCQ3Juz9QWMC+3ZLvnuWsRrQpGLpNS0tPLYii3tIjvBSdQf/uw3fn3hNmafeM+l8md12NhVdYFL2jJW9LuHzOaKdpVjmVCC3nrj5DSr3YbJbEF22U/bX6bh3vgx3NN5NJnacgQI6KoJI7Owhle/3YOPSs7soUnMHdkLP40CpUXI8bpcXkqazQfZ2zrc157qDB7rNqkd0Q3zv/ECKSRQw57qDEIUPgQrfFCIpQy/zjHBYreBwxmKAiAWiYlVBfLjoIdYmbcXo92CUixFJZIzOLArCd7OFrXNbncbBywVim4o5fCXadr2dwVanZHqphZW7z5DSU0jAd4qHpg6CI1Szjc7T/L7sUysNhvfPjeHutAWtlemtXvPN5Ln81nOTuw4iFYFEqkM4KWes6k2NDMiqAd7qp2LGJVIxqvJc9FaDGwqO0W5voEAmYZ50YPo3SkOP28FJ86W8VzX2diVVnL05ajFcnr6RnOkNpunz/3o0UrMfl3HpKnVgAkLj59dTY6bgJTj9bnI8iXcGz+Gty9tafe8t0TJmJAkdFYT2yvPefxOAXZWpHF//Fg+63sXT537kSaLjh1VaeyoSkMllvFC4q0Ey3yoa9ax51wuZ3LL6BzmzwMDb0Ehl+AjV9KsM7L3jOdqrEgoYEC3aFZsdWpnW41Xzxe1WE5Ra62LHt0TrDa7x8W03eHoMN0ScAl58JdpiFU5JWJai4EumlCSfaIZHtyNO4594fa3WGFo5N3MLSyOG06uthL/QA06i5FCXQ2fZO/gXGMR4AwOub/LOHp4R7ikjv67oDUY+W7n6Q6j7H/em8a0gT0I9P6L6LqgubmZ3bt3U1RUhEAgIC4ujtGjR+Pl1f4G/hf+Z5DZVM7QoATSm4p5qMsE3ri0ye12MyL7IRIIsTrs3Iz3hFggZHpkX3ZUpDE1og9rPVibiARC5kY7Ixv/GfjL1egw0WqxsONYDicySxCJhIxIjGXZ1EF4S5S8kjSX9PpStlY7PSJjlcFMCerDmYuVfLbhCA4HfL/rNPdPHcSOk9m8vvZPKuq1bH7FvXRFKZMwdUB3Ssqb6Rka1aGeTiIQubSmZBIxgT5q6k0tPJf2U9sFDZwVtIzmUgYHduX1lPk8eOobMrXlrBpwn4vli9Vmo7CqkQc+2eiigRMJBdx9S39uHdqTNXucrU2b3cEbq/cR5u/F1KHdGBLYE73BjL5IxCVTHaN6ebE8YRJPnvvR7QW5v39n/GRqSlqNPNRlQrv0umBfDa8vuYVLrWU8cHpVu9eX6ut5/Oxqvh14P46BEg5leE4/ig3xQyIR8elj0/l43REuFjvlJAqZhOmDenDnhL48e6l9JetaHK7Nxuqwg8jOzto0HuwynntPft2OGNgcdj7K/oO3ey1kb1UGi+OGeyS6IoGQCWHJANQ2t1JS0+Rx/1q9idN5pXRSB7d53V6LMn0Duyou8HT3qfxSfIxbQwYSIHFeB9VyKbVGLReaPDspyEUS9Dorqw+caasoAW2LoSDFVc9Yr85Kkh51Vps0CjlSiQitzohA5KzSAdQaO7b+sjnsbpPtQny9CPZVe5QviIVChiXH8mrOaRbGDGn3fKO5lRxtFTsqzmHHwajgRJJ8ovCTqdFIFQjtIh6Mnsiec7lUNbTQJTKQyNBAfsw7TITGjz7+nZCLJIgvV7yuVIWFDiED/OM5Vu+5ezQ3chCaawaBtHoj3+8+7SKZ8VHLUSlk3PP+Ope/911vrufx+UOZ32cox5qzaDLr6eYdTqjCly9yd3G2oZA4dTDv9l7EoZpMPs7ega9Uxfu9bye7pZwyfQOvp8xjc9lpl0HCWpOWF9PX0dMniuUJk7HFtKKUS/nox5P4eqm4dVgMe4wZrCpw7xICECTzQq93rYJHBHgjVDnI6cDT9mBNJsu6jMNbrKD5mlCXMIUvH/W5A2+pkgpt0w0XYSa7FQECevhE8vOQRyhoraZYV0eI3Idu3uHIBBKyimp48NPfMFmcv6k/z+ay4vfjDOkRwyt3TECtkPHS7eN4bMUWHA6QioXMGZ5CsK+G8vpmfJRy9qXltTkiRAb6uByD2WElpUtEh8cJTicUqwdCLBIIiQz0prTWfagLQI/o4DZ7MT+ZmvdTb+fuE1/yavpGPu57B6+lzOXnoqNt11R/qZru3hEIBAKytBXUGJs5WpvDU92n8Xr6b3TxCuVCUwlPn1vbrvr78OlvebLbFCaF976puZP/PzCYzGQUep7RAWho0XtcJPwn4Z8iumvWrOHBBx9slyDm7e3NihUrmDt37r/04P7Cfw0OHHhJleyoOE8vv1he7jmbb/L3t7WF/WUa5kQNpItXKBWGRoKvuaF2/L4wL3owH2VuY27sYIp1tRypzXbZRiIQ8Xavhf/lFatKLqNrZBCv33kLFqvz4iWViNraUq3NJlauPsfIPl1QKqVU5mlZvuYPGluuXtT3nstjwaherNrhlCKkxkegcdPWAudAzwPTBvPe+v0s6zOQ7woPeLQwGxvaE6nQ9ZQxWy1sKz/nQnKvxZHabAYHdm0zsf+zMp2ZUf3bjNubWo3c9e4vtF621xILhdw9sR8T+iUgFYvQm8y06F1vShX1WlZsutqC6905nPsmD+TeDzbw0aNTeafXIr7I3dUWPKASy5ga3ofJ4b1RISfjRCO9RschV7RfxVuE1g4T6lqsRraUnWFabH8SIoPIKm0/HCcQwBNzhvN58Q5K9XUsnDeYGMUorDY7AhHsq09HK9A5N+wANocdu8MOCOjjF8e6kuMeq18Aq/L3cVvsMLwkCgKkGurMLciEEiaG9WJu9MC2G4vXZW1tTumN26JZJTWExvq6JboAv1ec5aPUxUyTDOHjb45SWOXUo/aIDua1ZeP4qfiIx2O+JbgXO45ls3rnWQ6mF/DhsmkIBAK3U+QKmaRtYBCcJP3l1bsY3b8T4xOTqTA0EKrwpagDOy+pUNyu+gnO5Kg3757EvR+sd2vD9Mz8UQgl8FzSDIQCIS1mA5rL0bI1xmYeOPWNi9PH9oo0guXerOh3DxqUrD94gc+3HHWRMsmlYt66ZxI1tlrmHPoAOw6iVAHcFTeSwYFd8ZIqCVBqeLzbZO48/rlbY/z+/p2J14TyzMo/uH1sHzqH+ZNbXtdOF/7IjKGsO3S+3aLGYLLw2nd78VLKeOH2cUzvEoLRYWFX1QXGBCfxbI8ZyIRirA4bgwMTMNksfFdwgJfS1/N68nyKdbU0mFo9umVcaCrhUG0WlZZG3in6jcfnTmfJP9Zx5GIh3/19Nj8Wt59tuIJ5EUPYsNdVj989OphTzZ4X4uC89mc1l7N2yCOcqMtFbzPT3TucMIVf2yKisUVPV6+wDhdhndTBCHBW56/MCvTxv5qIWtPUygOf/Nbu9xLqp8HPS8mp7BKG9exEapdIVj81n2aznk6R/hyty6ZcX0O3roH0D4jn6PkiAHrHh6OSXy2MaPVGhgYmkFFbTkqnMNLyXYfCriAxxummdIWoXg8ftYIl4/vxspvUtytYOmmAi01ZmMKXHwc9xMGaTL7I2c2STiOdMimpmke7TSJY5s2J+jwcDgdzoga2eZg3mFtptRqwORy8mr7BYyfig6w/GBmc+G8nugKhAPlNJK9eicL+T8ZNE92zZ89y5513snDhQh577DESEhJwOBxcunSJDz/8kNtuu42EhASSk5P/ncf7F24C3X0iON2Yj69UzQdZ2xgQEM/DXSfgfzkpxWS3sqXsNF/l/cnawQ+7TcvxhEdOf8s/UhbgcDhYEjeS22OHs638LC1WA928whkU2BV/qfr/d2tGo3Qve3DgILO0hkw3BOsKzNariVvx4QG8cddEfNwMol2Bj1rBE7NHYLJbeKfXIp48t6Yd2U3yieShrhPwvq4K2mTV82tJe9uaa/Fb6Ulujx3Oyfo8NpaeZHRIEn4yNVabna3HLraRXC+llB+eXcipnBIe+mQTZXVNfP/UfJf3EouEeKvkGEyWtpabWCQko6iK0tpm7n5zA58tn84rSXMRCMFityISiNCbzdRVG7nri99oNZiYOTgJX42yzbasSFdDRlMpI4J7tJs0vh4HazKZHzOYjx6YxocbDrH7bE5bRSUy0Ien541E4mdnx7k0AF5obp9ulquvYH70YM43ep5gv2KtJEBAN+9wfivtWEOdra0gSumPQCDg+0EPcKD6EgMD4/mj/Bz3n1pJo1lHiNyHOdEDmRzeGz+vGyc7eqvllNk8V79EAiECm5DmFiO3Du3JwfQCTmaVcLG4mvV/pvNK/7m8kPFLO7Kb4hPDFP9+LPvWGS18sbiaXWdyiAr0oXN4AMG+rnKCGkMzWquBi01lqMRSknyimTO2J5sPXCQ61hu5RMptsUPb9M7uMC40GaUbhwORSEhsqC+rn5vHN3+c5MD5Aqw2O6nxEdw5qQ95jnLmHXcmovnLNNwfP5Z+/p2RCEQ8fe5Ht3Z21cZmVubtZYitJ59ubu/rajRbefyLrax8dha+UhX15lZKdHW8mL6O2VEDuLfzGLykSoJkXqwe+CArcnezpzoDq8NGoMyL2ZEDmRLem0c/2srF4moOXCjg/fum8tO+9i351C4RfPJ2+2O4Aq3exFs/7eWrx2fxyCebefPeiaC28kr6OtKbnAsclUjGtIg+rBn0EPec+Iolx7/gvd6381WeZ/cVgE1lp3g5aTYPnv6GC/pChiTFcPBCIb8fzOLTEUt47Mz3LiRegIDZEQMJtwTz4RnXmHCHw/n8zcDptpGMWNj+Fm/Rw5zQwR0S3cWxI/D1MFhltdrYfCTDheT6aZQ8t3gkKh8RB5ouctJ+EVG9hZ4+0YSFqsmvLeOpQ9+5XFdlQgkvJN3KiidnEO3r73KNttnsCIRCCkyVPHX7MF77Zh+Xil2HjBMig3hr6USEIoHH67tQKGBESmeEYgEmhwW73cHJjDIOni/AarfzyIyhxFwnaRMIBPjJ1EyNSGVUcA/sDgcRCj/ujx/LJ9k7XKRz3xTso5tXOG+mLMBLoiRSFUBeS1WHiWVWh42jddkdDmL+K+CvUjJ5YILb4ewrSI4LQyT6z48Jvmmi+8knnzB9+nS+++47l8d79+7N6tWr0ev1fPTRR3zzzTf/6mP8C/8kpAIxQoeA8WHJ/FZ2kuN1uW5b8lGqgH9qQEopltHHvxPzj3xEgiaMWVED8JEpGRLYlUvNZeS0VNJqNXJP5zH/yo/jAoEAl0pi5zB/ls0YSGigBqvVzp+ncqlqaMVosfDNE3OIDfZDKBRQ29yKxWpDKhajkElcqgdwJdVGgUomZcPQx9lWcZYLjcUoxTJmRPYjTh3k1kFCgKDNS9UTSnT1BF5uR7dajW0r/VaDiX2XwyeG9+zE0/NGsmr7CTYcujrE1GowEernfO3ican0jAujprEVjVKGwWThxz1nGZIUy5HLMoKGFj3zX15L366R3DK4C326RnAqq5TN+zO5cM0AWUOLgVB/DcX6Oh4+/V3bZ0j1i7vh38DmsGM0W1n9x1kenj2YO6emUq/VoZRJ0Tr0iOQW3stqn+x0LY7X5fFsjxkdbrMgegi+UjUtFj1KkeymFmTeEiUykQQ/mZqRIT24/+RKlypnlbGJj7O3c7D6Eq93W4hSJnHR6F0LoUDAkJ6xfHfefYX7rujRDPXuztebT5JRVIVKLmVcny4smzKQF77fyY+700DQiw3jHmdr+RkuaktRi+WM809BY1dx4EwBUwd3J6OwmgsFlaw7cJ5PHpzBso83snL5bHwvV3YrDY08c26tiyOIRCBiUexQHp03lGadkUCNihxtJeNDk93KNsIUviyLH4vCQxXJS6HAKrDSe0QAcyclEa7w43xzER+WuEYS15taeC1jI6/2nENnTUhbFLc7DPXpzuffHff4vNVuZ92eC0zp15fviq/6sK4rOc6sqAEoxTLkEinhEj+Wd53Mw11vcVaFHZBf3MCsv69x0VdLxEK3KXsSsYiGlo49c+u1emRiMYmxIViVZpYe/8rFz1tnM7G2+AiZ2nI+6XsnC458jFAgoFTXsbNNvamlLZDn95rT3DF4HAcvFFJW00yYwpdP+i4hV1tJQWsNGomCsSFJ5BTU8/SKP9oN86YXVjJz0ijWlHgeyBUioJdfbIe+rrEhftQVtjAvYjA/l7VfAEwP60tf/zjK9A04HHbkIikqkazNskpvsnAi+ypJ9lLK+PDRKXxa+gdnS6+SwM3lp5kalsqUyFRey9jYbj8mu4W/n/+F7wc9QLCX67VVJhFTr2tlckQqJ+ryWHZbX4RGMccuOPc7qldnAn3UvJj1M6/1nOfxs5psFowiE8U+pZyoz0MiEDFiZCIPz1mE1CFBJZd57PYJBcI2edeCmCG8m7nV7XxIpracNy5u4p1eixgf2pO6G6QHApS7CXn4V0MkEjG2d1d+/PNcO195cMrjls8eRoDmPz897aaJ7pEjR/j88889Pn/fffexbNmyf8lB/YX/f/CVq7ij00jyWj3f+EQCIc/1mIH/P+G6IBdJuCNuBLsqL5DVUsFrF10vXr5SFY8NegjZvzGNJdBLwz2T+vH013/w6ePTCAxQsqH0BLUVWiIUfkwe3Ru1WI6vVIkIEZWNLbz58x6OXSpGKBDQr2sUQ5NimdA3wW0VQCWRo5LIuS1mKLrIfogFohuagd9oMM9fpqbF4pRWdNGEIRU620kOQCETs3Ryfyb2TaCqQetCcgHWH7zA8lnDCPP34tNNR3jrl31twwWRgd48OnMYcaF+vLtuv8vrTmWXEuStpqXZwgcb2t8Y/TQKmix6lp74Cq3lquyj0awjQunnNm3nCvr7x7P54CUW3pLCo+e/paC1BqVYitnmnJJ/I2U++g6qoM7P7vwQ98WPZUWua1tRIZJya2Q/xocko201IhFJCFX4MDyoO+tKPROnXr6x6PUWAv00mG1Wfi466rGVn9ZUTIGxkuWzhvOaB0/k28em0uLQudhoXcHiqBH4Nvhx2yc/uwx7nM0rJy7UnzfumsjDn23ix13niAnwY06vQWwoPo9cLCE42IdiUy3V0RU4cHBr7y4slw7lo1+OIBIJKaxqoKJei69GSZ2phWUnV7Wz6LI4bHxbsB+VWE4PewxmhY3OmmDU4v709e/EhpITFOpq8JGomB7Zl2nhfdr8ej3BT65hVEQPTtfnY7fa+Nuln9qeu34obHdlepv3qycEy3woqHTvgXsFp7PLeHLE4HaP/1J8lGGB3UjwDsdXqsJXoaJZZ+Spr3/nVLZ7GYnBZEWjkLUbLjSYLUQEeFNW53lBGhnkg95kZvGU3ryauc5jnPS5xiLqTC2k+EbTajHiJ9N0WL1TiqROnTlODbV3qByhQMC9kwZidzh4LX0jCrGEMIUfpfp6dlde4KmomdjdDFBVNbagb7KS5BPZVmm+HuNCk9vJq66HWinFS6wgoimML1PuZVvNGSpNjQRJvZkdNRCxSMj9p64uEL0lSuZFD2JGZD/8ZGqEQgFyydV9LJ6Yyi81hzjb2J4Ezo4eyEdu4oyvwI6Dr/P28FyPGS7zD0q5FLVdxuzD7/NYwiRifANw4KBzeG8EAthbmcE9x7cSqwpCLHIvWzDbrVxqLuOh09+6VJIzmkv5qewwX/dbilkowGwTIRWJMdos6K0minW1WB02olWBKETStu5kR05Dmdpyak1aUnxjXBaGnhCvCb3hNv8KBHip+Hr5bF5b8yfHs4rbrlVRQT48v2gMUR7ciP7TcNOMpKKigi5dunh8vkuXLpSXe/Yg/Qv/vfCXq3E4Qnmk6y0keIXzU9Fhai6vNHv7xfJI11uIUPq7DVHoCH4yNd8PXMYbFzdxsj4fBw4ECBgY0IWne0xty/3+dyK5UxjrXl3Exqrj/HTEtSKxpugw98ePZVxoT2RWGYve+BGt3sTcUT2ZNrwH55oLqDJXsrfWwlBRAnaLAIFdgFgodGllS0RifC4TdrPVSrNZj85mosmsJ0jhhVQgJkChQSGUMjU8lbXFnlujk8NT2V11AYC7Oo9EI5Fjsdqw2x0sv3U4GqWMdQcvuJ3+338+n8duHcZ9H22g/LobdWltM09+9TufPzyTxJgQ0i8PHggFAm7pm8DMoUk89Olv7d4zITIIpVzKzspzLiQXYGPpSRbEDHE7tQ3OSuKciIG8v/8IQwdGtl3UddcMt5To6ujqFU6locnjdxIg01BvamVwQFdGBffg5+KjNJp0TAnuS6w8iOzSWk5eLKNzWACtBhO+Xs7Iy60VZ9zqGgUIuD1iBJv2XeL+KYMwCsxsLG1vJXQtPsz9gw+T7+Rt5SQ+23KU4mqnW0WIr4Y7xvehf1IkUoWQgQHxHLumI6ISyxjhm8jtn/7idqK5oLKe73aeZt6IFD7bcpS6Zh1mi43DacU8s3g4z2etdQlB2Fl5nmC5N+8svr2tMZ2WX0FUuA9nGwo9+tAC/FB4gLWDU7j79Q3cNaUP/RIjiVT5k+ITg1QkRoAAH6nyplxVwPl3GRKUwDuXtiAVSLgtdgjDgrs7wxMEArQWAxtLTlBnarkhoXInk7geIqHQrQ1hnamFC00lvH7xN1YNuI8QhQ9Wm81txfYKDpzPZ0LfBFZud/277z+Xx7xRKbz7q+fUsAWjU9h3Lp9bhndxse1yh3XFx7gtZhhKkYyXkmZRpKslvamEHRVp7YITJoSltGl4I5T+NGgNvLN0MhEB3kgkAubFDOK1jI0uxPW4LosXlozhjdV72wa9wClRamgy8HLyXP5xcSNnGgqJUgUgFYqpMjQxMCCeRxMm3tDLVSoWk9I5nNAmL9buOYtGGUCUTyQ9A0Mo1FXzcsZ6l+2bLXq+zPuTCkMj98WPJVDhxcyhPTl6qRixSMigntF8dXar2335ydRtXsSecLI+z62OXSoQkeIbzZsehqkBpkSk4i1xL0FqtRh59Mz3bmcu6k0tPHv+J+7pNJoKQyNjQ5PYXHaa7wsOtDmsCBEwOiSRJ7pPJb0DmccVHKvNoYdPJBFKf4JkXm332+uhFEnp7Rd7w/f7VyHUz4tX7hyHxWqnpsnZDVTLpfhrVP/0/f9/K26a6Or1euRyz5UtmUyG0eh5ZfsX/vsRoHBe8OZEDWBcaM+2m5UQIQE3qO54gkggJEzpx+vJ8zE7rBisZhRiKTKh+L+kyzVbrLQazBTXNNKiNxEX6odaIetQU+unVnGmMp+f3JBLBw4+z91FV68wIqUBaPUmHpg5EO84AXenfe5y0fsgV8xjnadQn2flQk4Vy2cNJ8RX4zL002zQU6ir5c2s3yhovaoL7uUbw98TbyVM6cvC2KFkastptRqpMWpdPCzj1EEMDuzCt/n7WNZlHJFKf7R6I7tOZ/PF78eYMqA7rQYzAd4q6t0kDw1JjGVvWl47knsFdoeDTzYd5h93TeR8fjlmq50BCVGU1Dbx0Ke/tWvLq+RSnpo7AoEAt0M0R2qznUlaMUNZW3TYJYBCIZLyTq9FHEkrITku1KNDxeay0zzXYwb7O0gOmx01kFqTlhC5N+lNpdwWMwyZTco/ftzLgfRtbQRSKhYxa1hPRqfEE4iSdxJv57Xs9VRfIxfxlih4rNMU0tKqya2ox2a3Yxc5Oqy0gVNHahCYkAiFfPnorZitNhwOBwKRgAONGcw/+QFBci8+63c3pbo61peeoMHUyrTwvuw6mtuhbc++tDyWTOjLZ1uOEhviR3WjlicXDeONvI1uk76qjc08f2kt7yU57RtTuoWQq63kz8oLHX6GZouBBlMro/t04qVvnZXpQB8VP/9tEb6KG2uQ3cFhdzArcgAPdplAqb6ORrMOX6mKHRVpHKnNYlHsMMBBsm+0W09ZcC6mHUIHPeNCudCBS8CwlFjOtra3oIpQ+lFr0lJr0vJ6xkZeT56HXWTjuTtGUljeyNbDme3Oid1nc/j+qXlsO5HZ5gcNsOL3Y2x+dQkHzhe4rQb37xbF0MQ47nlvHSOHxNzw++niFUpnrxB+KTzG0fpsBAgYEBDPl/2X8m3+fvZeDnUJknkxI7IfD55yOpjMjxrMIN84ZFJJW+TsoICupPhEk3ZN2tr3JfuZFtqX1X+fS2ZeHQWV9UQEejMoMQatQ8fz53/msW4TCZb7kK2twGAz0907ArlQgkQgpOJyN8aOA4VIilosb7fQUcgkxAT78cjMYRjNzmuEQ2rjsUOepYdby89wZ6cRAPTqHEZsiB9Gs4Uyfb3b30BndQgOQEDHQXRCBG6f91OoeTRhErcf/dStn3KQzIuJYb3cWtMBHK/L7TAQJFtbgZdUQZa2nF+Lj/FtwX6X5+042F2VToOplSe7T+3gE1z5HEJsdjveEgXv9F7E0hNft+sGiQRC3uy1sE3O8t8F/8vyhBBfV3css82KUCBwCVT5T8Q/1WPeuXMn3t7uJ/Sbmpr+FcfzF/4NkIjEBIr+tfZvXpenrm/Kl8wDWvQm9pzL5f0NB9vSnsApkH/z7ontBnKuoN7Ywqr8fW6fu4Kfi4/yeLfJ9O0aQbfu/jya/m27bUx2K2/lbOKjnney41gOi95cy+qn59Mp1B9wVnKrjM08eHZVu6rAucYi7j7xJWsHPozIKuZe/4lUabWERmpopIWfKg7RzTucqRF92FVxnh8HP+T0/HSIWX/sAu+vd8oJhiTGsvyLLYxN7ULEdfY6AIN6xPDHicwOP+vF4mp0RjOJsaFkFFbx9q/7Gd07nhcWjWXtvnNkFFYhk4oZ2zueuSNS+PqPEzw5Z0S7sRZvkYIXe84mVOlLD+8IZkcNYG91BrVGLd28I+jr3wmxQ8yPGRn0iA5GKnB/+agwNJLfWsX98WP5Irf9tPPwQKcR+/nGIj7PPUGgzIteqjieWrWt3XS12Wpj7d5zCID5I3vx/fo0np80F7PETLmhHn+phhCJL2t3prHzVA5LxvfFgfPm6X05Lc4TQhU+2B12Mkqq0QW28FL6uvafxdjE7EMfsLTzaJ7uPs3p+WoTsatiNzOHJOGtkpNVWsOxS65DdVa7nRaDiXB/LwJ91Pxj7R5ee3hch8l7Jfp6qs3NJEYHo9SIaTK0dOgy0bYvh41+iZF8t+MMABP7JqC8nGVvtVlpMOtw4Ez2EiC44SLX4rCxtzqDDaUn2qrnSpGUWVEDWN5tMk+eXcMDXccjFYi5NbK/22HM+dGDWVm8h4dmDGbp++vdLgpUcilTh3bn/gtftntuXGgyD1wmiCfr82m1GnklYwONZh3RgYE8d98wKkp1vPXD/raEPrPVxp/ncvnmiTm8t24/+87nY7M7MFvtfLH5KK8vuYVjmUX8vDeNqsYWQny9WDgmhb5donhv3X7mjeyFRqxAIhB5DKoYGNCFvv6dmXv4Q5fOQqGuhs1lp3in920YrWb85RpmRw3gjYubaLYYGBbUjT4BnagyN6KxKlE4JPhIVSjFUv6RsoDtFef4teQY1cZmvCVKNDI5IjkMT41lqD2KFzPW8/7J9fT378RryXPZV32RlfnfuRC553rMIFjuzUfZf7QtytViObOi+rMgZgg+bsIKVHJp27zC0dpsdDeQHP1RnsbS+NH4qpV8+egsPt50yGNlv49/HM1mHQMDu7Rz57kWQwITPL5HhNKPlQPu5ZX0DW3dIwEC+vp34vnEmR4DGBwOR4eDrldQoqtjVEgidx77wuM2ZxoLsThsN/Qo762JQ6s34qtW0kkTwrqhj/FD4SH2V1/E7rAzIKALSzqNIFDudcMOi9asx+KwIUCA1+WY6H8VLFYrzVYDaQ1FHK3PRioQMzGsN2EKX5c47f8k/FNE90ZhER1FA/+Fv3AtbHY7xzKLeMWN7cv5ggrueu9Xfnh6fttAzrWw46DgBjqo9KYSHA4Ht45M4qcK9+lH4KwA/1R+mFtHJfHu2oO888s+XrtzAgHearRmA1/k7/RoNzYvfDDHMkp475cDNF0jO+gSEcjb98zB11uOTeBgSedRyC9f2Oq1er7YepUYOC3ELOw+m8vnD89sNzUuFYswmG8cO2q12TmTU4ZaIaNJZ+DF73eSGBPCrKE9eXzWcCxWG0cvFfHQp5toaNGzfNZwRocktdmivZW8gB6+kWyvSOPnkqNIhSJuCevFhLCUdkN4E/t34/MtR/ho+BQ+z9/p9ng+zNrO/fFjWT90OeuKj5PXWoWfVMXc6EEEyb1pNLfS1ctpe6QUy2hsNHi0EAJYd/ACc0ekEOyj4f53fiPUz4tAbxVavZGiy5IDsUjI6N7xmC02vOVyZkb2b1eluRbTIvriI1Hh7S3ljwrPBvpWh43Pc3cxNqQn3/x2hoWjU3lh0VhOZZfS2GLgjnF9eW7+aH7cc4af91/Vw6vkUv62cAyrtp8gJsT/ptqf6dpiZg9PJqO5hDJ9A0OCEjhUm+Vxe4VISoDcixacVbyhibEsHtcXmVRMg6mVgzWZ/FB4kFJ9PcLLlceHuk4gUObVzkcZoMHYwqe5O/n9ulhavc3M6sKDGGxm7u48iq/z9jA2pCdLOo1EJhSzrvT4VVIslBKu8MPisIDGyktLxvL+z4dcpDkRAd68dNdYVpbubkeulnUZx9HanDY5jAMHJfp6clsqabE6jfj311xkYeRQnrl9BK995/SjVStkzBmWjFQp5KnbR/CkYzg2mwOpQ4JYKMRLJWdK/x70T4hyVu4FAoK8NU4J0awRvP3LPlotRkaHJLGjKs3t972k00ieOrfGrXxGbzPz4oVf+XbAMnZXXeC5tJ9QS+S82nMu4Upf5h7+oK3L0M0rnBeSZhEs92ZN4UFqTFqe6TEdH4kSvc3Mrsrz3HH8c2JUgbzb+zYeiB/P84ZfiFIFcKwuh09ydrjse3hQN+QiCY+c+c7l8Varke8KDlDQUsPzSbfi4+Zv3mI2IBAIaL2JgBPtNd2qAG8VT8wagUloRiWWuciXwJkgeKg2i3vjx3K8Ltftok0sEHF359GY7Raazfp2rjYykYRu3hF83vcu9DYzLVYDflI1cpEELw+SBbPVQrPVwLyYQUyP7MPF5jLWl5xwe88IknlT1FrjVod/Lf4oP8uimKG8nele0tXLN5aaGgNKqw5ftRKpUEyIwoeHuk5gyeUquEIkvaGlmNZiIL+lipX5e8nVVqGRyJke0ZdJ4b3dSlKsdjtGkwWxSHhTVmImq4UKQyPLTq+i3nQ1EXFj2UmSvCN5q9ei/3K39/9l3DTRvT6l5S/8hf8/aNYZ+WijZwJaUa/lRFYJE/omtHtOIBB4bJlegVwkQSgQEBXszenz7YckrsWphnzu7O50ijiZXdo2CGLD7rE9n+oXR7gpmKe/aT+Rn1NWy5J3f+WX5xe1y2DPq6jFcI2coLimiW5RQVwsruZ4ZjHLpg7i8y1H254vqKwnMSaE3HLP090+agUWq42f96fx9t2TSO0SgdFspbHVwEs/7Gq3vVImQSEVM1aTxP7qi8yJHICfXMPsQx+4VIgO12YTpfTns753u3gt9+0aicVqx6SzMTSwG4dq21ecHTgobq1DI5TzUNfx1Jt12Bw2vszdw87LSVQigZARQd15NGEiP5xM8/j5wFmtyyyuZumkARRWNnChsNKlPS0WCXntjglsPJzB0kn9kQjFzI4eyMGaTLfDIal+cfT378yprFKUcimWGwxWgdN39b7JA/njZBZfbD3qYq8U4qvh/fun4q1S8OW248SHB+CllPP9rtMcvVTMp49No5Ib+/YqxFJG94rncEMW3xccZOuIp/CRqDzGtc6I7Eu5rh6bFT5/eCY+agVCoYAafTMrC/ayqeyqp6wdB0frcjhVn8+KfvfQXRSO6LpBHpPD2o7kXouNpSf5buAyVubtJbO5nBTfaBbFDWNe9GAu1pY7rZiU/ujNJqZH9uO1SxtI9Irk4yenUF3bSr1WT2SQD0q1GF+VnBhTIDmtlRhtFnr4RDAnaiDFujo+yHFNefOWKDBcRy5/LD3Eh0lLiAz0JtTfm5eWjKHCWs+nZ3dw/rIUoLdfLA91mUCMIqjtdUHerjfyZp2B+z/aQGFVA2fzyvn8ienktVaR1+pqth+vDqHZrKfR7P5vAU5tcYmujlvCUhgX2hOHw8F7mb+zv8Y1JjpTW86S41+wZtCDHKjJpNzQ4DYyOktbQbGulnhNKF/1uwerw86io5+0225u9CBeSl/f7vErOFibSY2x2YXoWmxWmix6SnR1hCv8iFMHeXz9FST7Rrv830slR28WsDhmBJ/nuS5681qrGBKYQIW+nnd6LeLl9HUuHRY/qZpXk+eiEcswO2ysLjjAwtihbgmdr0yN7w2OrVlnxCK0sLMqjbVFR6i9rJHt69eJp7pP5Y/ys2wpd3Y9QuQ+xKoDCVX4kN58Y5cEo83CUL/unAzKZ3+NqySrn39nHoi8hUc+3Mori8e7PCcXSdqKHDdCi8XAmsKDfFdwVUveZNHxSc4O1pceZ2X/+9rce4xmC1q9kc1HL5KWV4FKIWXuiBTiQv3xdSP7azS1cqm5jC6asHYk9wrSm0t58+Imnuk2nQDlfxbZ/feNx/+Fv9ABDCYLlQ3tT7ZrsfnoRQb3iGnnqSsXShgW2I19NZ41oKNCElEIpTRYjQgR0FH2i0ggwHFNb9V82RPW5rC7aFSvxazggXz1wym3z4HT5uuPk1ksGOWqIdMbXW/WGw+lM29kL/7+3Q6+2HqUJ2aP4JMHp/PL/vNkFFVxOqeMl28fx+ajF90O7QDcOiSJrccvIRGJaNabuKVPAuH+3vioFfhrlPx64DzbT12tCr5yx3infU+TnrnykfTwDWT24Q/c6tlK9PW8nL6Ol3rOJkjuJLt+GiXfPTmP86VlPNV9KneahrO3KoOt5WdothgQC0RMDuvNffFj8ZWrMVktWOxWbj/6qcuwjs1hZ091BuFKPyzWG98MDGYrTS0GHpg2GK3eyM7T2eiNZrpFBTO6dzzrD14gvbASHGAyW5BaJXzadwlbys6wsdQ5QBWu9GNmRD+GBnXDYrDxt693MHt4Mv16d/YY+gGQ5B1JsMyHgxkFfPRb+wVaVWMLSz9Yz6/PL+LXA2k8Pms4r6/9k+OZJXir5Gi8JfgrIm+4QBse3B2lXErfgDi+6nsPAN8PWkaloYlNpaf4syq9zRFgfGgy86IHU6Ft5FJeNZuOZnDf5IHkV9TRtZufC8m9FhaHjdcyNvJJ3zsJEnljs9tothgo09ffsN1rc9g531hMgnc4DeZWLHYb/nINFquNUIEfz327g7LaJla/OBeRREC5oYFyQwM7q88TpQpAI5ZTW9ZCjbEZhUjKnKiBfNn/HgpaayhqreG9rN8puc6yq6tXGOX6RrdOCJurT7Dy6dlIhCKONWTzYvo6guXeTo2vUcvZhkKWHF/BP1LmMSQwwW3L+FhmSVvQR1Orgac+/YNXl84k31zJrvo0Wi1GunmFc2enkW1DpR0hq6mCvgGdMNusrMzfQ5GuluUJk4n3CsFmt3O6IZ8tZWdoMLeyInc3UyJS2zmPXIt91ZfoognDR6Yir6WqHdHWiOVwEzaH60uO82T3qUiEIvRWE+caCnnt4kbe7307O6vOk+wTTRdNqNt44Sv76eUb0+5xpVTG1IhUEDj4tmB/23XkZF0+jyZMZOmJr7gzbgQ/DHqIgtZqKgyNRCoDiFL6s638HH8//wtTI1KZHzOYP8rPMTmit1uZhSc0tTq7QTKlgC0tx9lT4xq0caohn7RTRbyXehsykYRhQd2w2G3UmVoo0tXQyzf2hlHTQ4O6cSGnkj6m7tzReyRpTUU4HA56+kRTWNrIIx9spU6rI9Tvv04Qa4zNLiT3WlQamng/63ee7zETkUPEmdwyHvtii0si3J9nc0npFMZ7905p64QaTBYarC0sO72SmRH9MFqtbknuFRyqzeLxbjde9P9vw19E9y+gt5rQWU3YHHZEAiEKkQT1vzmL29ZBhyA8wJvkuFBiQvzcGqTLhVJne7Mu263FkZdEwYLowVisNqrqWhgU2JUD11VUrsWggATOZTu1kzKJCNnllB2xQES4ws/t1HuIzLfDKivA9pNZjE/tSpDv1QpFfHhA27/FQiG55bVIRELmjkjhl/1pvPPrfmKCfZkxJInZw3ripZIjVgr4+x2jee37Pe1y24f3jGNAt2i+2XmSZ+eP4tU1u8mruDrs5KNW8MiMIcSG+nE4vYBXlo6j1FTH5wU7kQrETI/py/H6vHZtx2txuqEA8zXRsa0WI/XCZv4wH+cfR4qRCsWMCenJtwOX0WBoJUTpg1QgxkfuvFm1WA0cr8vl3d63oRBJabEa2V5xjj1VGZjtVk7U53F30gTWHfRMIgQC6BIZiI9Kzu1v/0RcqD9Dk2KRisWU1jRx5zs/Y7LYeOn2cazdd47RveI5eD6fOq2eB2YMZFJQKmKxAAtWRA4Ru0/m8N66g9jtUFjZyB3hY/iu4ABCgYDxwcmMD+yFXCjFaDezqzaNeeFDaDYY+Wqb53CQVoOJzUcvsva5RVTWa9u8K6ODfMlqrUCnMzAtog8bPQRfjAvtiUosQ2820WjS803hPo7X5WLHQYBMw/zowSyOG87RumyGB3VHZzWyqzQdZb2GL34/Rpi/F6H+XtRqW2/oOFGoq0FvNWOz2yjU1bLs5CqSfaOIUwd3+DpwepNKhWLi1EEIENBo1mG2WVH4ifjy6Rk0N5kQ2UVo7Aq+6fkgNqGNP2rO8EfVWUquOV8NNjMHai4xI7Iff5Sfc0siZUIxD3e9hS9yXDsTUqEYb4mSckM9IjHYsHGpuYzvBi6jxtiM0CEkVOHDmcZCvi/Yz2vpG9kw7PF2RLdZZ2DjIdf9ltU1c+c/1tGnSwTDU3shl4kZFtuJBrMWH9GNCdiV1m+L1UCgzIvHEibxU/ERPsvZiUQoYnhQNz5IvZ01hYfZV32R+TFDOiS6AkDgAK3OiMXWnuzLRVJarZ616FegtRiw2m1IhCKKdbU8fvYHhgQlcLq+AG+Jkp+Lj/Bc4gyeOrumnWOAQiTl9ZT5uHE9A8BPrmZqeB8GBXahVFeP0W4hTh1ESWsd7/RaxFPnfuTLvD9ZM+ghMpvLOVRz2CXc5LuCAxytzeHD1MVoLYabJrqNrXoe/Xwzdc16/r5sBHvyM9xuZ3HY+ChrO2/1WshDp79xcYR5tsd0Bgd24bAHHXGATEOCVxiGGBszX/geuVRCfHgAQoGAryvOo72cXHmli/NfgcFqZnWhcwGtFsmJUgWgsxop1l+9x+yvvsQT3aZg1VvakdwrSMuv4LMtR1l+6zBajWZqDVpeyvuFSkMTvf3i2Oxh8XsFDhzkNlcRqrxR/fx/F/4iuv/HUWfU8n3hAX4vP4vOarqcqJPCXZ1GtlXw/h1Qy6Wo5dK2VDBw2qA8M28kQqGAoxeLaWo1kF9ZT1SQD74aJTqDCZ3JjNFkxWx38FX/pbycvt7FDaG7dwQvJs3CaLNw94kveaP7QpaqRnO4NsujRmxB+BCe2+C80Uzok4BM6jwtNCI5CyKH8E5Oe11WRxP3V2Cx2SitbUQsumpdplbImDsihX5J4QQHqNFZTfhIlAQHqpjYL4HfjmRQ1aClpLqRft0iMYiNFBubGNwjht9fu4utxy5xqaQaH7WcucNTEItEvLJmF8/NH839H2+kqdX1htfUauDlH3az6vHZjB3aiQdOr3RxLDA5LDfUpwEUtlYTofRDZzXxZ1U6/7h41bZMh4l1Jcf4o/wsKwfcR5CbSOkqQxNf5+2h2aInQKZhWkRfvux3D0+nrSVbW4F/JwWhfhqPVf5hSXGYLVbsdgcf3D+Np776nW92XL1oCwUC7rqlnzMVbddpft2fxg/PLMRotrBy20lKa5sJ8lYxZ3gKKrmUitoWVDIpg3rE8OSckSglYlb0uwuRRcL2Izk8sXo7zToj3io5tw5LQh4hxWa3U1rbcdVs//l8pg3qQXKnML55Yu7lkBIRGfpijtZVMStyAEk+UbyfuY2Wy+REKhQzJTyVudED8ZGqyG6u4O4TK1wWcXWmFj7J2cGFphKWdRnH7srzDPBKwFYq5c0N+wGYPjiRX/anMW1Yd+r0HXdLABrNrWgkcpae+IpWq5FCXS2Tw1Nv+LoE73BON+SjESuoMTXzxsVNbUN298aMJd4WxScbj5B/ecHlpZQxc3gSH/ZbwhMZ37ssqkYEd0chkvBYwkRSfKNZU3SISkMTQgQMCuzC4rgRbCg50RbBHK0K5LbYocRrQqgxavGXabA5HBhtZiJV/rRYDHTzinCa9guc7z8quAd3nVhBRnMpw4K6uXwWu93hMTDkdE4Zp3OcgRg9XwrDJLUyKKgLkizPw2oyoZg+/nFUN7UglDmwOxwuulmT3cK2inPsqc7gvd63U2dq6TDrbGJILxaEDOPXvemcyi7l6duHIxdJXDTCTZcT/25UlezpG4VMJEZr1vNR9nbsOBgW1I1fi48xOTyVRrOOdy5t4d3et3G2sZBDNVlY7TZS/eIYFdKDb/P3s7zbZLfvbXfYcQgcSIRighU+qMVy9lVf5IfCg/TwjuDTvkswWs1sLTvD94Xuq5Y5LZXsqkwn9Satt0wWK6t3nSa9sIqFY3uxvc6z5AYgv7WaFouBOqPrufFV3h7e7307jWZduwAUf5mGFf3uoVzXwN7KSzy1cARvrtnXbp7ASynj7Xsmu50puanPYrcgFghYNeA+NGIFZfp6vKVKAqQaDtVk8V7W79gcdhx2BxsPZ7gluVfw+/FL3DtpAE+v3MayhX2ZFN6LJJ8owhQ+yIQ37pxJ/40++P9T+M/7RH/hplFnamHZqVUupvoGm5nfSk9yvC7HRRP0r4ZaIWPeqF6s/MNZeQr2VfPuvZN5fe0el6jHtXvPERvix+cPO03UV24/wdbjl7Da7NzStyvvzV6MRWCl0awjQKZpu5AvuKxje+jCKu7tPIb3et3GKxkbaDC3tr23n1TN0/HT2bY/h8oGLZ3C/Fk2bVDbqlwhkzIqLJGslnK2Vp5xOX6Dw0iQj5qaplY8ITU+gj1pecQE1zNtYKKTQEvsjB8by5uXNlNwOZpRJBAyLLA7d0eN5t5JA5BInIMFVybn26CCOyf0xWyxIhKJkIpFOBwOPlo2nY2H09uR3Guh0IhZdmplm27tCkx2y01lrqvEMppNegx2M29e3OR2G53NxN/O/8SnqXe1Te/Wm1q4/9Qql5jYOlMLq/L3crQ2mzdS5rP0xFesLN3Nikdncd+H69uR3ZROYTwxewRSsQgvlRx/bxVbX1vCofRCsktr8PNSMiQxloMXCnh5tbPy99D0IexNy3XROwNsOnqRSf26sWhMb+4Y3xe5RIzqcjJSsNCP+1dsbCNo4NT97T6dS9fwILpF3VjD6ADsjssxopdvevXGFsJV/gjqBXxTsI84dRBrBj9Io0lHtbGZMKUv+6ovIhIIqTW08I+Lv3kMYzhQc4nbYoaiqfBn2RebadFfJY3Rwb5sOpLBwPooogMC3L7+WkQo/TlQfakt7KREV4dCJO0wMCReE4rZZuGRrpOwOGzcdXxFG+kbHtidUEMwj329xWUhqNWb+G77aYoqG3hmwgz+nvkzAD4SFbeE9UIkEOErUzMzqj+jQ5LabBAFCFiRu5sdlzXdyT7RPJowkQ+z/mjT4IJzQCxS4c/w4B58nbuH7RXn2o7JX6bhvs5j+Lr/Ug7WtNeSK+RSesaGtiUtuoNaIcOImXtPfs23A+5nWfx4PspxH4Jwb9w4Vm8/w7p96Wx4YxEfeghLMNosvHHxN57rMQOL3T1pHheUzChZL2a9tLrNT3fr4Uwmx6WyvuxqcIrFYeNCUwn9Azp7nCmQCESMCU6iQWvAIbNx9rK3rbMabORQbSZjQ3vy9qUt3HHscwYFdmFwYFdEAgFZ2gqWHF9BV68wpG6m/3VWI+cbi3k3c2vb70YmFHNLWC9WD3qA5WdW82Xubh5JmMjmstPtXn8t1pUcY2RI9w63uYJWg6ktYEejklLiQcd+LbQWAwqxFMs1WuF6UwtPnlvDqz3nIBGK2Fp2FrPdwojgHiT5RIEdnsv6iZyWSu6JGcOXT93KL7vPk5ZXgVQsZlRqHLOGJxOg/q+RXHB+X3fEjeSFC7+4kO0AmYYnu01h1YB7ufv4l9gtdDi0C855hiadgVnDk9AoZWRWlfNN/j5C5L481X1Kh6E7cpGETpobd3X+t+Evovt/FGabla1lpz0mR1UamlhbdJh7Oo1ui350hxazvu2m7ICbJsZSiZiFo3pRVtPEjtPZPDhtCO+vP0hWSQ3De8bRt2skQoGA7LJadp7O5uHPNvH8gjH8duRqa2r7qWy2n8pGKZOwYHRvFo3ujZdcTn6L6/DRl3l/MiKoO2/2WkCjqZUWi5FQuS9edhXr96STWVLL8wvGMDw5rt3wmL9czbIu45gfO4T1JceoM7cQqwoi1jeQJRP68ebPe91+PolYxNSBPbjvow2o5BJGJnfGV6ygSFfL/adWulSXbQ47+2oyKNRV80Xfu/GTt2/bNZpasV8O55AJxSjEThIsEAiwWG3sPO3Zvic5LowcXUU7kgtOr8nXkufxa7HnlryXREGkMgCt1cCfVekedcsABa01NJp0KCVSqgxNbK9IcyG51yJTW865hkKGBiZgsVvx8ZbxwzMLyCmrZV9aPlKJiIn9EvD3UqFRyNr8ja12G1axlfgYPxQKMYfOF/LNjpNtZCAm2JfIIB8e+nST2/1uO5lJt+gg6ppbWTCqN3aHA4EY1h8+70Jyr8BqsyESCXE4nLIaT57GAEOTYhEJr9boGkytfJ67i63lrgulVfn7eLr7NFosBp47/xODArrgFT0YvdXcoQUZwM8lR7mt8wiX9Cy5VEznUH9Ucilfbj3BN3+fxerCQx4rfMk+zqGi6x0dPsvZyas95/LUuR/b/V7CFL78I2UecqEEB/DChV9dKptzQgfz90/+9Njt2J9WwPxxKQTJvPCVqXmm+zSUIlmbVaFIIGw3iHRb7DB2V17A6rDxZPcpPHL6O+rNrovLIYEJeEkUvHxhXbuI1npTC69f/I1nekxjaKBrNRdALhGzcExv1h+64FEDP31od7bXnMXmsHP/yZWsG/oYQTIvvirY0/bbjlUFcVvkcIyVAn7cvY8RyZ3YVX6hQz12mb4BhUhKpNK/XSiJSCBkceRIFr/6i0toxK97L/BZyjRqA7UcqL0qx1pTeIh3ey+iQt/QzqdZLBDxdq+FHL1QzGur97D+9duuOYZ6unqFsb/6EvfFjyVOHUxBazWHa7NdWvligYgnu03F+zpJgc1h51xDEcvPrnZ53GS3sqnsFIWtNXzS507qdTpECD0OVV5BrUmL+CaivgEsVltbR7C6Tkd0eCDH8JxeJkCAn0ztVqZVY2zm3pNfs2PkczzdYyoOB22zFdX65jbd8tdFfxKqOM20Yf2YMn4EVoeNE805PJP5Ax/2vgPVf9FvU2c1ce/Jr6i7Tj9bZ2rhmbSf+KjPHbyWPBeJWOTi8+4JYpEQr0ghdx7/ou03WKSrQW8zk+wT7bJQvBaLooZ6tI3834yb/kQnT54kNTW13ZTuFZhMJjZv3sycOXP+ZQf3F/59aLLoPA6rXMGWstMsiBniluiabBbqTS18nbeHP6uccaDxmlDuiBtOql/cDdN5ALxVCp6eN4r7pwxCbzJjtlr54Zn5nMouZc+5PCxWG6nxEax6fA5r/nTeaK4QjX5dIxmaFIdMIqa4ppENBy8wc3AiXko5Xb3C2k2q76+5xP6aS0SpAohVBfFi4q1YTA7uvmUAQoEAlULqFO5r9YjFQhetlb9Cg79Cw/Juk7HYrchFUkRCIeP7dKG4uoGf9qW5fC65VMyrd0xg4+F0Wg0mWg0mpwuCWcdH2X94vPkV6Wo5UpfNLaG9kFw+z7RmPWcaClhXfBwbdupNLXTWhPJAl3EEy32c6VcCOmxlJUQHcs6NKT84L6S1Ri1DAz3bWD3YZQKn6vPJa6mi3nzjlnhhcy1Cu5AmdGwqc69HvYIt5We4P34cATINGqkCu8RO906BRESpKdXXU2WrI1CuwC6yY3PYaTS1srX8LLsqz2OxW0n2iWHepP74eMtZuzsNgBlDkvj5ur/J9fhlfxpPzB7ByaxSLhZXMW1QIlaze6JT2dBCiK+GAxfyuPuWfrz8g3s9pVImYdbQnm0ONRabjd1VF9qRXHAShDcubuLLfvcwK3IAd3UeibdU2a6t6g4N5lYaJS38+NJ8th3MItzfm8GJMajlUqYPTuSdX/dTXNHE8oRJvJf1e7vX+0nVvJA0C5VYhkTgej3P1JbzftbvvNN7EdnaCk7W5SEQOBOiunqF4S1WYrJbcABp1wzveUsUOEyCDjscALuO5bJi6j00WFoJVfhe/sxazHYr2yvSqDFq6eETweDArqjFckIUPqwe9AAHqjPZU5XRjuT6SdXY7Xa0Fn07knstvsjZzbDB7Ymu1WbDarPz3PzR/OOnPe3Ibv9ukYwe1ImHLqwEnF2LMw2FjA1NIsUvBqvDjgDILa3jpy3nOZ7ptJDz1yiosHhOtLuCOlMLPXwi+XvirWitBnZXXMBktzI+tCfn0iowWlwr+waThYc/2MKTi4azMGUYR7VZtFgMJPtG4y/T8EmfJaQ1FrG1/Awmu4VE7ygmhKWwu/I83r5qXrtnAlabjXhNKLktlWwpO82zPaazr/oiL11Yx+vJ81hTdIi9VRfbhv+6eoXxaMJEJAIhVrvNxdO1yazj3Uz3qWgA55uKyW+txlYnxj9GTaDMy+2C+wrCFL4eFxzXQywSIRA4ZWS7T+fwxdjp/FJ21OPirn9AZ843Fne4+HB2E4S46Emu05ZUGppYUeiqGQ9T+LZb4OnNJvR2Mydr88hrrSJI7s3IkB7IrplfAOe8ys7KC+1I7hU4cPB5zk7e6XUbvgoVtw5J4uAFz7/1qCAfZFIxL539td1nffPiJt7rfRvfFxx0+vte/q4UIimLoocyM7I/3vL/emX6/1XcNNEdOHAglZWVBAU523deXl6kpaURFxcHOAMj5s+f/xfR/V8CAQIaTB3flDpKlio3NHDX8RUuq+Pclkr+dv5nZkUO4O7OI/GT3XgC1Vslx1slZ19aHk/NGcmjn2+m9pqEsIyiKn7Zn8bbSydT1dDC1IHd6Z8QRXZZLbtO56A3mUmIDOLDZdOobmwlxM8LL4mCD1Jv576TK9vpT+uMWl5PnodCLEUtFWGx2qjX6vhww0F2ncnBbLXRu3M4908ZRHSwL2rFVZIvFYmRisQ0tugxW21UNbSwaEwqUwb0YPfZHJp1RuJC/enVOYw1f551cTpA4Ewxu14Ddj22lZ9lYEAXAkVeaC0GjtflkOAdwdOJ06g0NOEvVeMlUXC4JotEnyi6eoehVsjpnxDZNjl+PWw255ChJ7x1aTPvp95OlCqA30pPtjkjBMm9eaDLOMQCEX87/zPjQ5MJvgndto9EhcViQyGXdhjYAM5KSrQqAF+pCpvDTpm+nkdOf+dizC4SCLkzbgTTI/ux+OinLmRHZzWBwMGM4f2JC/bn/XUHiQn25btdHS/iSmub8dUo+XlfGv0Solj0xlrevGcSw5LiOJje/iay9dhF/L1VDIgJ4b7JA1m5/YTL4sLfS8mHy6aDw4H8csWl0aJjTWHHHs6byk5xX9w4svLriQiwoFErECLosGoerQrkbEMBWYIKZg5LRSYS462SIxAIGN+nKz/uOcvDH27m66dn8fPgR8jWVqC1GKg2NqEQyZgW2QdvkRyZWMbkiNR21lfpTaXccexzevvFkuobx4SwZHJbKlGJ5UgFYgwmG1ax63klF0nbhnI6glZnwq4XEK0KwoqVWkMzWS0VnG8s5mR9PrktlfxWdhKZUMI7vReR4htNpCqAcWE9WXY5QOJaiIUi/GUavi/c3+F+my16Kg2NBFzXcdLqTdzz/jomD+jGplfu4Lcj6WSX1KJRyrhlSFdQWXki4zsXTWxeaxXjhckEKpzvdSyriEc+ciV7jToj8eIbnytX5iAC5F4E4MUdnUZgsJlpMRo5m+u+st9qNPPiyt34ahR88ehMbCozwXIf5zCxUEiJvo5BgV2RCEUUtNZw/8mv287ppTFj6OIIYFHMEF5MX0eFoZHC1lqWdh7DV3l/8uiZ75kVNYDvBg5DbzOjESuQCkW8lvEbJfo6fhz0kEsRo9Vi7DBEAWBb+TnujxtHfb2eW6P6dzh4Nz9mMIGym+0KihjYPZqjF4tpNZo5eKaIhzvfwkf57eUiwXJvHk2YyPIzq928kxOd1MFuq8lCh4B4TQi5LVVuXuXEoICuaCRXiyMtJgMXmkp47sJPLm42H+X8wX2dxjE1IhXfy2RXa9W3yXM8IUtbgdVhw2Q1kxDllFFllrSX2wgETtmWXmhkQlgKLRYjR2qz2u7ldaYWHjn9PXd0Gs6DXcdT3FKHRCgmVhOIDAle8n/vEPr/FG6a6DquW65c/39Pj/2F/zfhwEGkMqCdV+S1CJH7uL3d1hm1vJa+0eOk/vrS48yM6ndTRPcKIgN9eOH7nS4k9wqMFivPrvqDtc8upGdcKI98vtmlxZxZUsPmoxd54baxxIcHoJRLifcKZf2w5fxadJQDtZkIEDAyuDuzogbgK1UjEjr1rUVVDdzx7i8u3rZHLxVz9FIxf1swmgl9E9qSgwDqmnW8u24/e8/lYbXbmdC3K/HhgZTXNaOUSzmUXsD76w+4VCUiA72RScRYHJ7jKK9AZzW1VSTMNgtdvMJ4/vzPZGmv6rLCFX78PelWHDhoNLfiK1WzcHQq6w+lu63snskp55nRQ9o8JK9Hq9XI0+d+ZM3Ah1gYM4Qmix6pUIxCJKWwtZoHTztT5Q7XZPFZv7tYXXjQ4/GHK/yw6BzYvBzorSb8pep2VbhrEabwRS2W4y/TUG9q4du8/UwKd8oJTtfnc77JWYFZmb8XpVhG/4B4/qg4h1Ik5cnuUwlT+LK3+iIbyo+TEhXDhjduw9hqQyGV0Ihnkn1FXtCkM6CUS7Da7bz9yz5evWNCO6KrlEn4/UQmr94xgVOZJSTGhLDllSUcuVhIY6uBblFBxIcHsuNUFn4aJZMHdKfB2EqzWecy+OcOaY1FnC+s4NnPnQEAry8dz9DABA648Sa+gpkR/bAbBGzcl8EjBZtRSCVMHdSdoUlxBHip+OaJuXz1+3EcDshrqmF3TTpGm5levjFMDO3FTzvTmNC7G10jg0jyiSJK6e82lvhsQyFjQ3qikSgYHtyDplYDqw+f4Zd95/ngkckuIQFNZh1h/jcmKJ3D/fl40xGG94yjX3I4h2qzOFWfj0Qo5s64EfhIVbyWsYEKQyOPnfme9UOXE670QyQQug1pqDe1IBOJ23nsuoPejX1eQWU9DS16Vu92nhu3jOqMssqG3m7kk5qtbdKEK57PPX2jSfSOdCbkXW5tu6tiH80o4u7ps/i2aK/HRUuI3IdAmQaLzdbWwZGJJLRajWyrPItKIXX7uitobDGgN1iJ8PVmZd5ejtVl80LSrA5TI38oPcj4sBQ0dgV3dxrFtwX7+TBrGw90Gc9X/Zfye9kZjtflkK0tZ270ICoNjS7+t2X6ehei21HE7hXobSZqTM18uymNF+8ew6GaTLcL/j5+cQwP6o7QQ6Tv9fBSynly9kjm567BaLby9ZaTPDRrEJ8n38OGyuNktpShEEkZG5LE0KBu2B0Oaoyeq8n3xY/F100nMlDpxdJOY3gybY3b18mEYhbFDkUlvVoUabDoeCLth3YVVZvDzmd5O4hS+TMytAfgrEjfjI+3zWHH7gCJSMTLi8ezavtJ9pzLbbvmRwR48+itQ+kaHciehgvorCb8ZWo+6nMnGU2lfJy9HavDRpNFx4dZf2Cx25gbORC5pOPf2X8C/qVijL+S0f73IEjuzYKYwbySscHjNnOiB+LrJknH4rC1TUFfgUQgYlRIIpPDe6MWO1e2WpMBL9nNrRCFQkGHAyE6o5n0okrKapvd6ijtDgev/LCbvl0jUcqlSIViguXeLI0fw4LYoUgQohBLkVwzUdrYauCZVX+4kNxr8cZPexmaFNdGdOu0Opav2EJG0dXFwZ5zeSwe24fVu0+7JD9di7tv6Y9KJkEvsKMWy9uGf9wh0ScStViOzW7H5nBwz4kv21VFyw0NPHjqG74fuKytXebvpeTjB6azfMUWjGbXi+bgHjHEaoLo6hVGttb9IMOUkD7U1OmIDfQnQOMkLI1mHZ/kXDWB19lMnKrP5/bYYW7JrkQg4onOUzl4sJCUgYGcbMllakSfDtPJFsYMIVCqwWKzYrRZiNUEcbahEIlQxJSIVB5OuIXXMzZS0FrDj4WHeCNlAX9WpfNu79vZUHKcPdVXNdvbKs6hEEn5ss9SJg/oxlfbPFtsDU2K40xOGXEh/lTWO1uGNU2tGM0WgnzUNLYauHV4IpMGJ6B3mBAAQUovIoK88FEqMBgtDOsZh1ImobJBy9IP1lNS08gri8djsVrZUXGeXv7RHvd/BXKRBMs1wRMfrzvCR8unktta5bZStix+HBYd3Pn6Ly5Wc+cLKogI8Oar5bMJ8dVw7639ePTs9+Re44l6uqGA7woO8Erveey5kEOQjxpfjYrP+t7NCxd+4VxjET4SFVMjUhke1B0fqRKZSIJKLKexVc8rq3dzOKMIgD+OZjO1ex9+Kj0CODWZmbpS+iVEcTLLfQKcRCxiaFIcl0qqCIlWMO/IRy6L5d1VF4jXhPJmygIeP/sDtSYtPxYe5uGEW5CJJCT7RLH7ulAFm8NOib6eXr4x7Kw8f/0u2yBAQLQqsN3jRVVXv+PVu8+w4JZk1pYddOlm9fGL45GEiRytzWZPVTp/VqUzPKg7E8N64SNVEhPc3orJaLGy70wB98SN4cvC9hVMiUDEK8lzsDrsrC48QLNFT0+fKFJ8Y1CKpAiEMHZAZ3477N4uC5znfIifmiUnvqDK2MSE0JQObRTBSUzLdfWEq/yIVAUwLaIvFYYGzjUUUthSwx1xIyhsrUEkFHKyPp/vrjt3KwyN9LwmNMJfprmhN3RXrzD0VjM6o5mnPtnG2w8u4kDtJX4pPkaNsZlQhS/zowcxJCjhpiRv1yLUz4u1zy7krV/2cTK7hK82nyAlI4zbxg/gka6+OAQO9lVfZPGxz5ke2ZdXk+fwavoGl0WPSCBkWfw4enfg9tDTJ4rHu07mk9wdLkmZ3hIl76Qswkd89T7ZYjLwXf6+Dr+TlQV7SPSOJFDphVIso5dvrIt70PUIlDljg6UiMQq1lGa9gYTIQBaP60NTqwGlTIJMKqZe1MSsk++67PvHosPMihrA68nzeCZtbVshJVLp/3+C5MJfw2j/pzEosCtDAru69Q/s7RfLxLBeSNxkkDddZ1juL1XzVq+FnKjP4+X09dSZWlCIpEwK68XiuBEESNUetd1X4Kntfi3O51dgs3nuGtgdDtYfvMB9kwciueyFa7PbsDvs5OlraDDpiFEH4iVRECT3pqnV0OF+7Q4Hf5zM5I5xfQEoqKh3IbngHIj4cOMhPrh/Gi9+v8PFfkouFXPvpIEM6hGDSiHDYDIzNSKVtUVH3O5PgIB50YMQCoQYbWZ+KTnqsfVvddj4NGcnf+sx4/K+JPTqFM7WV5dw5GIRGYVVBPgomdivGxKpELlYwoepi3npwjpO1Oe1vY9UKGZB1GDmRg8CixCD2YLNbkejlONwONqZ06/I3c3fE2/lpaTZ/FR8hGxtBSKBkCEBXVkUMZxNf2YyJrUL31TtJEdbwZf9l3K0Lsctwe7jF8fQoG4g4HKLdaXLIuBgTSaRSn9eT57Hs2k/UW5oQCQUMiU8leN1OS4k9woMNjMPnlnFj0MeZeOhDOq07TsEcomYO8b14W/f7uCl28bx7DdXW51NrQYCvFW8dPdYTpmyeDDj67aI2nhNCC8mzqbC1sDO+jRsdjupmk74C7xRXpYr9I4Pp9Gs4+eSI6gkUnr5xnQYRDHSP5HjJ64uGqsbW3nhy918/vDdHKy/xOay0+isJhK8wpgVNYAwmR+3PvtDOz9lcPq/vvbjn7y4eAwf5G1zIblXYHHYeOHSz3zX/0EMZgumBi3Pf7eTqcMH8mTfacjlYn4oPMQDp1dhtFkIkfswP2YwIwMSSS+8+tvfcuQSKwbNIKe1gjONzgn+H8oO8Ma8RTz9aTNl1w3siUVCXlk8nl8PnGfp9P7O79VNRyi3pZKv8v5kcdxw3s3cysn6XPTWUfjJ1CzpNKod0QX427m1rB78EJ9k72gXJ3wFgy+38q9HsK8rsdp/uoBne8zgb+d/xoGD7t4R3N9lHA+d+tZF85/eVMK3Bfv4uv+9RAb6uLXGW7n1JM/dNoo3ui9kbcVB0ptKLzusdOO+LmPJaCpl6Ymv2rb/ufgoXhIFH6XewczIfqTXlDOoh7M17w6PzhzG8eYcqoxNAEiFohtWtu+LH4tMJuadrC2cuey80D+gM0viRlDQWsOsQ+/Tyy+W++PHsqHkOPd2HnvZAk6KyW5BIXIlRjKRhNHBiezyEKQhEYgYGdwDuUBKUVUDTTojU576lnsmDeCt/ouQSUSAgECZGqnk5hLEroVIJMDHT8Zrd43HZnXKtIqrGxEioL7WyO6zOYwYFIMDB+tLjtNiMfBFv3u41FxGia4OP5na2bUQy9F04B3vK1dzS1gvRoUkcqI2jxpTM100oSR4h6GRKJCJrx673mbmVIP7mYgryG2paqv0y0USFsYOYVPZKY/keF70IKQCUVsXwddbzpCUGPadLSA23IegIAUOqYPlR75320FYX3KcWFVQm1+wQiQl2U34x38q/imie+nSJaqqnBc7h8NBVlYWra3Otk1dXcfm+X/h/z34ydT8LXEmaY1FrC06QqWhkSC5N3OjB9LPv7PH1bWv1PXx11Lm8VnOTpcbusFmZn3pCQ7UZLKq/32EKH06PJabMdr2VSsoqu5YD3axqAqj2YJELKLB1MLZhiLevrTF5SbVWR3CO70WUdXYwpRB3eifFIlELCKvtJ7GRgNDk+LwUStoaNFTUa/FZrNjsljZdNR9deVEVgl6k5mn5o7ESynnUnE1XkoZveMjkIpFbd6KO8rPMSo4kdyWKk7Vu14IhQh4ovsUQIDFZkVvM7HHzU39Whyvy3XpoojFArRCHVleeTh62iiy1nBb2i6CZN481X0qndTBvJY8D53VRE5LBVKhmC6aMAx6C0999gfn8isQCgQMTozh4elD8PNTEKMKdElcsjnsvJS+jl6+MSyKHUqUMoAAmYY/jmbxxvYD3DG+L/Hh/qQXleAv03C0NpvXk+dxsCaTjaUnqDVqCVP4sSB2CMODuuEjVVFn0vLgqVVuK92l+nrez9rGXZ1H8kq6s/swMbwXj57+zuP3orUaONScwVdPzOKNH/dyKvsqkUyIDOKxW4fy0740pgzoTmZJNXXXyGW6RAbyzO0j2FR7nC2VV62QAmVe/D3xVl6/uNHFFWEjJ51uBHcvZNu+bCRSEXaBjSpjE7+WHOfhrhN49Mz3bm9g/jINI/wTuf3Mry6P51fUkZ5fxdhuPQmSe+PAaf11uCYLWYEPlg4GD49dKsJmdXgcLAQn2T3SnMmkgD489OkmcspqKa9r5v3HJvPgiS9dLPiqjE18kLWN4/65vH7veB58fzNSsYhxfeKxOew8n3grQqGAHG0le6syOKy9xNdPzOL4xRK2HruE0WKlZ1wok/t3Z8uxi1TUa0lvLe5Q/3+kNod7Oo9BJhQjvmahHaLw5vnEmbye8ZvLwFG9RUeetpKP+97JQ6e+aSdRiNeE8GyP6fi7kVL1iA5BJZeiuzy9/+ba/XyyfBpf9VvK57m7uCNuOC9dWEeTRYcQAUOCEpge0RdfqQqhQEBGUykjgrvzzr2Tuef99S7dIYcD3lyzj68em80byQsRCJy2YjaHndP1+byd2d6fW2sxsOzUKtYNeYwgjYZ75/Qj8oAPW45canvv8ABvHpo+mK5RgdyRdjUOuEhXy9SIPvzmIZBkZmQ/fCRK7ju50uX7O16Xy8m6PF7pOYfP+i7B5nCwInc3awY/zI6Kczx25nsaza1EqQKYFz2YQYFd8b98b/CSKHgkYSJFutp2iWpigYiXe87hbH0B40NT+Gr5bD7ffJTDGYWs2HqMc3nlPDh1CJFB3v8lkttoamV7ZRqHazJ5JHYKX6w7waGMgrYul5dSxpIJ/bC3CnkxYTZv5PzGzsrz7Kq8QLJvNKFyH1L94mi1GNhbnc740BS8JQqkHiJ7nd1JBZOjet/w2IQ34RxxbQNcjZy3ey3kmXNr23k0Tw7vzcTwXqiv0QB7yZTYfRwMHhjB25c2M7ChC6X6+g61/T8XH+GxhEkcqc3hxcvDqP9X8E8R3dGjR7vocCdPdppHCy5HqP4lXfjfB3+ZhtEhSfT0icLucCAUCAi8wcCRWCAixTeGtMYiUv3iKG6t9Vi1qjVpnR6KXSbho/A8zRkX6odaIaPV4HmgZWL/btz21k8dHptGKUcscl5k8luqee58++3zWqv4KvdPlnUZTxBCvq3fha9UxTP9ZnDwTBFv/LSX6qYWQv28mDM8mRaDCZEQjxIHgPTCKh76dBNrn1vIjCGJCASCNt0dOCvLea3VfF94kBeTZjEnaiA7KtLQWg10UgczISyFvVUZ5LdWERaYgN5mxmzrWLflwOGiBW4y67j7+Ip2JKLQWsOjZ77j6/73Ea7wI0zpS5jSF73JzKYjGby77qqBu93hIL2gkhVbj/HwjCHcGTeCk9dUgK/gXGMR5xqLWBI3ksHKHgT6qnjp3rEEqzVIxCJW9r8Xq8POH+VneSdzC8MCu/Fh6h04HA7EQhGhcp82Ld6Z+sIOh9bSGot4qOsEopT+2Ox2xEJRh0QJYHvleVSRcl6/azwWi4OaxlbkUjHVja2cyCphxuBE8irqeH/9VQlGVJAPAV4qzBIzWy+46pmXdh7Npzk73Vp/VRgaeT5rLV9OXQpW0OnNKERSclsqOVSbxZspC/gga5uLFKGnTxTP97iVl1fscZEuADx720gK5WXsvniaFN8YPs7eDsCd0SPJKW0v27kWDgdUN7WiFsswmT3/Xi80FTM+IIWcMqcGdfaonnxbuteF5F6L/NYqfKLlrHvhdsRCAQIxnG0u4LUzByjR19PXrxOPJNxCqa6eJzNW83bibbQazEjEQvIr6rnvw/W0Gs3MG5XCRb17aUPbZ8BBib6OQLkX40N74nW50qYSyxkdkkR//3i2lJ0it6WKeHUIkyNS0YjliEVi1g1dzu7KC5xuKEAmFDMlIpUuXmEEeJgXUCmkvLBoLM+s2tZGkB56fzPjU7vwxLRpmCVmSvX1yIRi3khZQKm+nvcyf6fc0IAAAf0DOtPNO5zIED/Wv3A7P/x5hn1pedhsDvp1i+SuCf0I8FahUchZV3yMj7O3s27ocr7O3+Px8xtsZg7WZDIyuAc2hZ07Jqdy56RUrAbnhL7OaGbF78cJD9O4VLAvNJXwaMKkdo4z4FxIT4/oyz0nvnLrSmDHwZuXNvPT4IeZf+Rj1gx6iIdPf+tiDZjbUsWrGRsYGpjAsz2mtw32Bcq9+DB1MWcbi9hZkYbBZqa7dwSjQ5I401DAxLBe+MnU+IWpeXnxOCxW50LtenebfwZ1phbuPfEVpfp6Pku+hxe/+rPtt3wFWr2JDzce4vFZw5HJRHzZ8z4ydWVUWRsIlnszODCBi82lLDu9CgHwfcEBVvS7h2hVgMsC65+FWixnZHAPfip237kD5/kvwOnTfT6/glU7TjChf1c2DnuCPVXpZLdU4CtRMTWiDxqxgoOni8ivqKdnXCh94iPRKGU0mXUsPfElJruV22KHuXV3uRal+nqC5d58P2gZkcoA5B4I/X8ibvqvWVhY+O88jr/wP4wbkdtrESDX8LfEGdx9fAXjQnuy5QYm4Lur01nWZXyH26gVMp6YPZyXVu9y+/zMwYmYLFaCfNQuJvnXY8GoXihkUmqMzXycs8PtNp3VIcyOGcjtxz+l0axDKhTzUtc5/G3FTrKvuVhW1Gv5cOMh9qbl8cF9U+nTJYIDHdi6iEVC/NQKpOL2p5VIKCJS6U+zRc/ys6uJVQUxPLgbSrGMCn0jD5xahc5qYs2gh5CKJEiFYpJ8otpNxF+LGFUgDhysLjiIzmqkh3cE7/a+jc9ydnKhyZVMmOxWvi9wJhtpcN5cWg1mF6KnVsh4YsFQYiJ9OdaQxaa6E8yI7svsqAGsK2lvMp7kE8n4sGTey/ydBlMr0/V9uTWgPzqriX3VF/mx6HDbtifqnGT5sa6TGBvak1MN+ZyszyPZJ5pzjTe+thS0VHNXp9FsLjvFbbHDb7i9VCim3tyCUCpALZQgCfCitklHgLcKsUjES6t3UdV4tdWslEl4Z+kU/DRK1pWcdyEDKrGMTpoQXr8mDe56lOkbKNXXc+ZkNa0mE+PjktlUcYpfi49Roqvj6e7TkAjFNFucKVY2u53Nf2ZyvsC1CtY5zJ+AcBlvXtyHSCBkUcxQ+vjFcbqhAL3dhLfqxsRAo5DdcEhIJZZjNF0l2AOTovg6zb1NVFevMJ7rdCurNp3m4PkCrHY7AgH0T4jipVvn82X5Tk405LLk+Aq+7r+U15Ln0WIycii9gJPZrlp+i9mKXHhjXaBcKEEulDI5PNXFzkollqESy7g9dhhaq5Eyff3/x95fB0Z1r9v/+Gvc4+4JCTESggd3dylWCi0tpVB3b0/91L2lLXVDC0WLu0NwCCEkxN3H9ffHkCFDJoF77/l8f/ec2/VXMntkz56Zvdf7edazFkdqcgmWe5OgCUEtlnNbdG/GhndFJBDcNMpcJhHTJzWG7x6fwcdr9rnM+CvrtSgFUirMtYTIfbirwyB2V5x3G+h04OBw9WWO1+TxVc8FzpjqnmqG9huOl0SBn1KFj0KB6Nr+X9FWEKLwxWiztJIEtcTEiO4keIXyyrlVHKnOvTY47M8dsQPoF5jE3e8tRyIW46NWuIY4m/Hl5a283WU2T578hcYWi8d032jONxS3m4KotRq53FTOqn6P8l3e7jb9r/dVZTOyLp8BgcnIxVKqjI2IBAJ6+MWR4h1Bub4Og82MUiRlXHhXtzhfzTViq7UYMdotlBuMSIQiFCLpLQXXgDOy/otLWyjS15CgCaWu2tSK5LbEd1uO8v7CCdz+yu/06xTLE7MH8GfFUX7J38uosAxe7zwTh8OBj1TF7ooLTIjo/j8KSlJJZUyN6sXa4mMef4cCBNwZNwibBT5Zt8/lDX82v5yPVu7n7tE9GBXfg9SoEHZm5fLar9e9qX/beRK1XMonD0yiVFqJXCTBZLdiddiR3gI595Yq/58mnv5vxS0T3ejomw9W/I3/O/AWKfm5z4NUGhva9P9rhvnaD7E9yCRiBneOR7NQxsdr9lFYWQ+Ar0bB3GHdyUyJ4oNVe3loUj8eW7LOo0axR2IkEYHOH7Hd4Whz8Gpe3EDevbDOdbEZGpzG7mP5biS3Jc7klbEt6zJjeibz+bqDrYa9mjGiW0ekkrZ/UuPCu/J17g4cOMjXVZKf5z58EKH0w+/aRcFXpmJ+hyHtEt05sf156/xat8z4IJkXb2bMYsnlba18RXdXXuDBpNGu/7eeuOSqCKvkUj55dAK/Vu7m9ZPXX3N58UFe7zyDYSFp/JC3x6VrmxTRgwilPw8c+w6d1cjtMf0ZE9YFkUDIubpCN5LbjC6+MXTyjeTOw1+45BCVoY0eW8o3wlemprNPNB01oQhtwnbTuwAGB6dSpKtB6BCQW1bD4k9WY7LYuG9cb7olRHC5uAq9yYxELGJ4t47MG94dP40SgUBAk8W9WhylDCD7JiEO4CQA1RWw/9xVlvSdzL6abGpMTRyuvszh6stoxHJUYjkqsYy30+bw+85TrZ5j0qBUVpY709xsDjtPn/qVtzJmM7ipEweqspnVdxDrDrX9nYgI8EalkOAtVaI3tE12x4V3xWq8/pu0Y/cor5AJxbyQMI3HPtrgpkF1OODwxULOf1DBl09OJldXTo2piZ/y9jI7ph97qy/yyMx+LHh7tUsWAHDoYiEvDBrEmnb8lTXX/HPfzJjlUT6lt5q40lTBM6d+c/Nk9ZYoeKHTVDJ8Y/D2METbFlRyKZ07hPHhfROw2OwIJA6sAhtHa3LRWo28nDYVb6mKt9pIBLQ6bLxybhUPJ47mzezriyGNWM7Xve4lRhV4baEbwLGaK7TX+OzuF8eg4FQWHV3q8rEFZzXuzfNrmBrZk1//MQuRVYJaKWVWdB8+azEweqzmCiKBkM+6z+dkXT5ZtfmIBSJuj+3PkTZS01riiraCNJ9INtykOriy4DAZPjFc1pY7zzU1eQgFAkaGpLMgYRjeEqVbq70ZNoedSmMDH1zc6IpllwhEjAjtzP0dR7Syf/MEg83s0gT39I1n16G2iw/gdKcwWayoFTLqmgycrL1Kum80FxtKePD49y7JlFwkYVJED7fjbrKaqbcYEAkF2Ox2/KVqxDeJyNUZzWTV5PF+1zt49exql4YanN+Jh5PGUKKvRdagdAtAAqf39pINzqLCuF7JhPp7tfLn1RrNLPp4NctemsOHXedRqK/hYkMxg4JT+LkdO8OufrEIuTVHi/803DLRLSxsv93UjKioqP/2zvyNfx+Y7BYWHv2ad7vOIVzp166Nkkoka9fHtRkapYyB6R3o3CEMs8WK3eFALhGjkEl5/bdtHMkuJCbEj48XT+KL9QddUcFquZTxvVO5fWgXLhRUMDBd3abpuEokI1Th49aCHh3QlZd+a7uVCPDrjhMMzujA5w9O4f5P/2hFdtNiQ3hkygB81G1XkFRiOQ90HMmnHirNUqGY19JnuF3YA6Qank2dyNvn17XSXs2I6o1GrGgV+VlpauTJk7/wcbc7mXfoC7fKpO2auX0ziq4tJgDuGNWV9XVH3NKWwLlIeerkr/Tw68A/0m/DjoN6k5bVRUf5LGczixJG0tUvlm1lZ/gweyPxmhB6+sczI7oPa4qOIhWK0VqNyEUSnkgez4PHv3drjx+rucI/M2bzmwdi3AylSEqKVzjeUiUWo52P1uzj7sHDeCV7hcf7hyl8SfeJIkYViNUEj3+13pUutWTDIcIDvJnSL40p/dMQICApKgiZREyDzsiZvFKSQyPcnq/5YnwzyIRiLFYzDToj//xhNx/Mu5OfS3azu/ICVocNs93GEP94FiQMReAQ8PMrM2hoMrJ21wW2HLuEze4gNsyX769e/27WmXUsOrqUnv4dGB3WhVClhkHpcez20FkQCgQ8PKMvf1YcYVHCCF464/n4dPGNcU5cy+SIhUKsdjvYnYl7N0YPDw1KY/uR3FaDVs1o0pv4fcsp5vYdSLxvMHqriS1lzoq4VqLjjzfvoLZRj9Zo5kpJDTuO5uIrVtHDr0ObAzsLE4YjFYqdji8OZ+W0pSyuzqxj8bGlrfa1wWLg6ZO/8l3mov8S0W2Gt1pBnVnHT3l7WVZw0EX8J0f2RHRjasANKNRVEyTzZkRIOjsqzmFz2GmyGll09FuW9XsYP5maEaHpfH7pL6QCMWEKX4+uGrNj+vHhxQ1uZKslVhcdZUZ0H2I0zgX9hIju7K/MpqNXKCPDMvCWKLHZ7RysvoRUIOKplAnIhBKO1uTe0oIyROFDTmMZHTQhnK1v+5pfZqjD6rBxz+GvXOcYm8PBprJTbCk/wz8zZtPNL64V2a0xNTHv4Bdu0gqLw8bG0ixO1V3l28z7buq8YLZbXc4HYkSYLe3LmADMFitikZDZwzIwSbRk1ea1Ggo22iwsKzhIk8XIo0ljMDtsrC06ytqiY1SbmohQ+jEjug9DQjq1eywr67XoTVa+K9/FC52mYLZbKbpmyxau8GNl4SFiZMH8uvNku/u89UQO3z0xg282tXaPMVlsrNp7GnN8A4XGap5KHg8CAeuKT9Bg0be6v0gg5KHE0cg8DGT+X8AtE92YmBiPGtyW2lyBQIDVenM/uL/xnwABNoedN86tYVZMX1d2uieMDeuK4hbaleC0GfPTuF+k7HYHHUIDgEss332KCwXlzB7ShdgQP2x2Bw6Hg83HsqlrMrg8LcVCISFyH7fVNDgrpWUG99s0YrnH6fyWKKttQiQQkBgZxNpX7mLbiRyyLhcjl0qY3K8TMcG+qFTta57UEjmTInuQ6BXGV7nbOFtfhFggYlBwCosSRhAk90IoEGK3O6jXGais1ZOmjGXtwCdZX3yCq7oqguReTInsyZHqXNdk+I2oM+s4VVdAZkCCW7U3QRPqtuCIDw9wHasBXWKZf7K10XozjtVe4UJ9MQNDUgiWe7NIMYKFCcP4o+got+370G0/Hkkcw5yYfkyL6oXFbsNLokAiEHG45nIrDWitWUupoZZBQSltVq/viR/qmvYur2ti09FskuICeTphEkuubnU7sWf4xvBs4mRqrE2kekdw8lIZ9dob7NmqG/h07XVi/cn9k6ht0vP6L9ux2u18/fQUguXersVbnraSZO+Im9ooDQ9N4zvRSWYOzsBotvL60p0M6h7HnM6DcAjs+KtV1Ft1PHvqdxeJCJR5Mbt/P2YMu40LuVXEhvijLJa5aZYdODhSk8uRmlzUYjkfTJlHYlQQy3adclnaJUcFc9/kXmTZcvg1bx8L44fxeueZfHV5G0XXPHJlQgmjwjozLSoTmVCCCJgzrCs/bD3O7qw8hoansanc/eI70K8T76082OZ7Bth2/DL3T7yTh89+R77uepdiZeFhEjShvJw2lbdzVuMv07DwjiEEqzW84TuTzy5tYXPpSdfwjY9ExfwOg4jXBOMlUXC2vogdFedQXQu5CJJ5IUTED1d2tyK5zbDj4PPLW3g1ffotEbuWMNssrCk62qoboRHLXcewPVSZGl1Dmp/lbOFoTS71Fh3n6gsZEJyCUiTlwaTRZNXlsyB+KK+cXeX2+GZZhidP45ZYVXSEhzqOQiqSoBHLeTNjNoeg9Q5fAAEAAElEQVSqc/j+mn9ur4AEegd2vBblKuCKtoJ4TSgWuxWlSOrRTxicVlmhch82lpykoya0XaIbJPfG5nB4PP/YHHZePbuKZf0ecSO6BquZpbk724wBLjHUsqEki9kxfd3kKjdCKhS7QlWuGMrJSEpm1+m2XQ4kYhGBPmoy4sJIjgvCJPLm7QutBwGbsbE0i3vih/D8qWVcaLzu91uor+Hdi+vZXXGBVzt7/n7Z7Q5+33mSKcNS+TL/Lx44/h1hCl8CZBq0VqPLQuz1pFlsqvbsptEMs9XmsWAT4qvhgal9iQz1wksj5Zu8nfzj7Cr+mTGbr3vdywunl7s5rgTJvXk8aRz7Ki+Sp61kfofBBMm88ZW1jpr/T8UtE92TJz2vPhwOB8uWLeOTTz5Brf6veeD9jX9f+EgUzIjqy6eXN6MUyxga3Mmj3VOcOoh5cQPRyNrXFuqMZgwmC/vO5lFRr6VjeADpcWF4KeVIJSLGZabwxbqDzmGp/HLO5rtXRVOjg+kUHUJqdPC1/VMxN3ZAq8lmndWEzw3VniarEX8vJTWNrVfCzQj10wAClDIJSpmEmYMyGJuZDAIHZxoLeDdvLwqhlIkRPYhS+uOv8HyR1UgUJGhCeLPzLIQCIUKBAPk1r1Jw/p6Kqxu4+/3l+GmULBiTye87snhzwSgkkUJwCKgyN3qc2G6JozW5JHuHuxHdubEDXIM9AIM7x/Puit0EeqspNdS2WUVqxs7Kc2T6JyCTSPCVqthVcZ5vct0r4T/1vp9CXTVby8/QzS8Oh8NBpc1ClbGRBHUoKpGslQXUuxfX82HXeQQpvFlXfNwVDOAvVXNXh8EMCemE6toFs6bJ+Rl9sGwfYzOTeG/onTTYdWitRqJUAeQV1fLnzmzuGdcDlUTOldKbu8HklFRxKrfUWdkElv55lA/uuJMv8v/iVO1VzHYrEoeYKeE9WVncWqsM0NM/Hi+xkuTIIC4VVaFWSHl02gCqGnTc9/YfPDq9P6KIMl4//4fb46pMjXx8eRO3RWVyT+8hqMQyxoZ1ZemVnR5fR2s1sqb8CI8NHcfkfmlYrDaarAYKDJX8UL7NRU6+yt1On4COPJY8jkilP7VmLQqRlJO1VxEj4tVzqwiQebFw6AhUcil/HjzPOw+M5kxjgZskRCGS0tTOgCg4L8gNZr0byW3G5aYy3r6wjgXxQ3n+9DJO1OZxX8JwJoV357HksSxMGEa5sR4hArwkShRiCTa7nYVHvnYjfCsKD5EZkMDzqZPZ206YBsDxmrz/VnhRk9XoMcmuytRIpNL/po/3lap49tRvyEVS3ut6ByabhdP1BRyuyWVAcAoqiZxx4V3JbighWOHDY0ljWXJ5m4t4qsVyN11tW6g2NmG0WZAIxZQa6rj36DduOt39VZfwl2l4t8schBbYVHKSJO9wNGI5L6ffxnOnfm+1YBMLRDyXOplfru4nXOFHrDoQim585euYEtmTc/Vt36HJauRSY4mb1tVgM7O59FSbj1GJZFjsVmpMWqQiMV5ihctOqyVkQgl9AhPZX5XNoeocFnYdgVouRWv0TOBHdk/Ebrfz4pzhILGxoyL3pue67eVn8WuDCB6rvcKhqhzGRXRrtc2BA5PFyortZ3i6z2Rez15FqaHOrXovF0lI9A4j0DvHoyd8M0RCgSvYphkfPjSe2EgfVhYd5s+iUtRiOZMjexKnDqLS2MDqoiO80XkmJruFamMTYqEQoUDI71f3u2xEd1dc4JnUiQwKSvEYkPGfiFsmup07d2512/bt23nmmWfIycnhqaee4vHHH/+X7tzf+N8LmUTK2PAunKq/ykunl/NGxix6B3bkj6KjFOiq8JOqmRaVyYiQdPzl7VdWGvVG1h08zydr9rvIBjiHo95fOJ7EiEDUcikvzx3OP37a2kqz5KNW8NSMwSzdfISX7xgBOON6B4ekclVXxYrCQ6771pl1iARCt4rdX1VZTOqfyrcb246NvX1IV7zV18m62W6lwFTJQye+dxs42FR2kjTvKN7pcnur911jbCJPV8mPeXvIbSpHI1EwPrwrY8K7uohundbAoo9XU9Oop6ZRj69azhsLR1Jn0mNssuJwQKSfD593m0+hoYajNbnsrbzY6sIluuaE4tr/mP708O+AvIUPpkou5dV5I/l07X4UsptP4AoFQkwWKzKJhDqzlq8vb3fb/lKnqRTra4hUBbCvKpslOduwOGwoRVJGh3UhRh3AS2nTePrUr26P01lNPHTie6ZFZrK87yOUNNQjRIhSICPEywsf2fWFSVSgj+vvjYez2Xg4m2BfNXKphKp6LXqThcduG4Ba6jyeQT63EEOtlNOkN+GjknP/tD4kxQVwuu4qQ4M78XDiaJrMRvZnFdA/Kh1BhJC1pUddrVMhAgYFpfJo4lje+nE3u1tUlpbvOc2A9Dg+vn8SoWFqZh/8uM19WFl4mHlxAyk11DEkpBNrio+5kZdmKERS7okfilomx1su5Ej1ZR48+b3H5zxYncPB6hzmxQ4gwzcWs81KuNKXZ07/5ho02lx6iq96LmBi31RqtHq+6LaALeWnWFN8lAazHq3NQMfwALJy29Yoh/l7uWllb8TZ+kIe6DgSP6maWrOWJZe3MSI0HT+xBqVY5kaGak1aph/4yKPVXLNMx34Tvb8Dh0ebpWpjE1y73QGtBo5qTFqPr7u74gJLei7g5/x9HiuYAGk+UTRa9EyM7IHNbufznC0s6jiC+45+g5f4+uJSI1HQIyCeerOOEaHpDA1JI7uxhEaLgURNGHLxzX+HMepAFGIpdWYtj5z40eP3pMbUxEtnlvNc6mRmx/bjjoOf8c+M2cRrQviix938XnCQI9WXESKgd2BHZsX0ZVPJSXZXnOf3vg/jLVF47IiBU0fcMyCB+Ye/bHc/b9TQO3DwUOIo+gYmYrvm8GN32DlanUuqTyT+Mg0NFj1Whw2jxUxOYynxmhB8pCq3TpRaIueJ5HGcqS+g0WLg64KtvPfgWJ78fFOrQeUeiZE8PLkf/l5O0qq1GG76/QFoshg8esg3Y1nBQXr4dyBY4eN2u0goZFDnDjz+1Xq81d34sue9rCg9yIm6PERCIf39k5gcmomXVMHc4d05fLHtqvmAtDi37R89PJ4GdQPT93/v9v3eV5VNmk8U/8yYjbdYxR0HP2V1/8f54cpuTtVdbZVM6cDB2+f/pJd/PBUNJQTLvf/jCe9/y0MjKyuLp59+mn379nHPPfewadMmgoKC/tX79jf+l8NPrubZ5EkU6qtZVngAP5maxQkjiFT6I0CAr0SF7Bb8EU/kFPPB6tZJW1qDiQc+W8Py5+cQ7KthSEYCiRFBfLv5KKfzSpFJRAzpksCo7oks3XSEp6YPdpM9+Ms03Bk3kFkxfdlQkkW1qZFErzDiVEE8mzqJx7OcEY3bK8/ydc++7Dt91eP0bqeYEIZ3T3SrLmitxlYktxlnGwr5+NJmHksch4/cuT/VxkZ+u3qAX65erxjVmrV8lrOFNUXHWNJrAcFyb66W11JW6yQNQoGAqBAftpy4xA+bTzAgI5bbhqXxw9U9nGpwpocNDErhrrhBvHtxvVurcWhIGgXaKm6P6c+UyJ54C5UYDTby62qw2uz4qBUIRTAgvQNxof54aSTIRRKPMavN6OeV7LIGsjnsXNFWuG3v6Z9AnUXLoyd+dBtQ1NvMrC46wsm6q3zc/U4CZa2JkdFmYU3xUYZ6d+aRtzditzvoHB/G2/eMo07rrOJqFHJUcilJkUFuKXoVdddP5BKxiBFdO7r+754YgVwixmixEhPsy6RBqUSHOF0PDp8uZuuxbNJiQ/ly/SE+eWwi35fu4O0s94rhwKAU5icP5ZGP1jNpYCpLuy0mX1eBzW4nwSuU4xeK+WT5AdJjQ92ILsDeM3mkx4Zi9vFrNxFPLBBhslm458hXRKsCeb/rHXyRs5VjNVdc5KqTdySPJY/DaDNTZWzEV6xCa26/2gogFUpI9YlgY0kW+yqz3abprQ4bf5YeJ90nik9zNiMRiOnmH8cjSWPwl2mQCyXMGpHRLtGdPawLf1a1PVwGTrIbpw6ittb5Wa0qPMLi+OFIWxA7h8PBvsqLHo+Tj0TBM6mTEAqE9PSP9xgc0YxO3pG05KM1Ji3lhjq+uLyV4zVObXMP/w4sShhBmMKnxUXeM4k12MzsrDjHI0lj+DB7Y6vtQ4JSeSxlHIerL9NkMSAVipkbO4AAmYZufnGMCe/S+v20cCJoSbgrjA108o5slTzZDCECJkZ0d1Vz25NUFOtrMdosmGwWfKQqnjz5C8+kTMJit5LqHcH0qEwATtcV8Oyp36k0NpAZkEC9WYfdYefbzPv47ep+/iw+jtZqJETuw/To3owOyyCvqcLNX9sTolQBrr/tdgc4nOeNu4985SLnEUo/FieMpNasZf7hJa5Ka7w6hCdTxnOqNp94r1CilAFu0slguTfL+z3Cn0XH+SV/H3YcfPPMVM7nVpKVXYJCJmFK/zRCfDVucxNqiYKMWwhKSPGOYH87XtQVxvo2HWs7dwgjNsQPsUOEwqLgntDhPBAtwWixcPD8VVaePsujUweSFBnEgLS4VpHj4BzCfnByP+7/xNkBigz0JjrCh+n7v/e42DpbX8h3V3YxJqwLf5Yew2S3eOywNsOOg/UlJ+ju14FFx5bySfe7/qPdGP5LRPfKlSs899xzrF69munTp3PhwgXi4uL+X+3b3/g3QIBSQ4BSQ4wqCLPNmZzj3Y5f7o2oa9Lz+bq2NYAWq42z+WWE+GlQyaQkhAfw1IxB1GkN1DTquVJaTUFlHc/OHoqvh0Gw5ineu2OHYLXbMGNh/M53mBzTgw+7zeP7K7s4WXeV5y7+ytv33sH+rAJW7DpNVYOOUD8Ns4d0ZUyvZLfnttlsbC87266F0/byszzYcZTr/2pTkxvJbYkSQy2fZG/i8eTxbuEGL88dwfpDF/ls7QFG9Uqkf/8I7jn5hZuh+PmGYlYUHuK9axO+edoKwhS+dPQK5XJTGdMieiG3yTh8sZAVe05T1aAlzN85jOXnpSQyyJuIEA16o5Wp4Zn8Wuh5H+PUQXg7NM4LFk6LHAEC10m3m28sjVYDKwsOtenCkaetYFvZGebGDuD97A2tts8M78uG/dnoTRYGpMXx2LQBrNxzml2nndZkQzPimdQ3jbfuGc1d765opb0VCQW8efcoFPLr5EkmEfPEbQOxi+2ERilZVXaI38ucLb9xvbqycvIdCKwCnrx9AN+X7kAhkfBulzl4S5RUm5rYWJrFvsqLWGw2Fk/tzSvfbef7DceJCPRGIBBQWrMPk8VGqJ+GGYMzPL7vA+evEpnevs3V4OBUtpefo9Fi4Gx9IS+cXsas6H48lDiKBosBjVhOsaEWAfBo1k+81XkWQkQEi1rHzzajoyaU51Mn4y1VcaGhGLFQxOzYfryQNpWf8/awptjZwZgY2Z1HT/zoaptvKTvNlrLTeEsUfNBtHlYvI7cNTmPlrtbkcnBGB3qnR/LpsT9abWsJsVDk1nUo0degt1nciK7RZuGAh5TGWFUQn3S/i6PVuTx18hceThrDzorzbeql7+owyCXRqTVpOVJ9mVfOrnIjCEdrcjlWc4U3Os+kl388GqnTqsuTtAacHquLO47gh8zF/Ji/h3P1RchEYu6IGUCabxRzDnzmpj39s/g4aT6R/CNtOt43sThriWC5N/9Iv417Dn/lUcv6TOpExAIRlcYGZEIJfQMTOViV02al+WJjCd394vCWKKk0NvDW+TW83nkmFpONp0/+6vKjlghEjA/vxqTIHjx24kcaLAZGBKfzVOpEZsf0A5yVQC+JErlI4hwUbmdh7C1RkqAJxWy10agzUlxfxw7tKZYXuZ/ri/W1PHf6dx5KHM2kyB6sumZjmKstZ/Gxb1nScwGbSk4yI7qPa0it3qyjwazndF0BoUoffu/3ECKBs0U/oVcq43umIBQIXD7dNyJArqGjJrRVwEUzQhU++EhV7UbyBsl92twmlQlZ8shUvlx/iLveXeYahO0SH85Dk/oxrmcKGqXTSu3FOcNYf/gCK/ecwd9LyZTBqSREBuCnUaKtNzNvRHc++/Mgi6f0YXnBgTY/Z3Bqi++MG0iAVEP5TRYhAFe1VUwI745KLOfh4z/wRc978JX+Z+p2b5noLl68mG+//ZbBgwdz/PhxMjIy/h/u1t/4d4Of4r/3A7HY7OSVea5KzBiYzrwJ3bjYWMLHlzchF0kYG94Vb6mS+LAAQv3MpMWEoJS3PehWVa+lulHH2gPn0JssdEsIZ1XvJ7hqrOCTnM1Mi+zFI0ljsDsc6Gx6pg9KZ3LvNBAADvBWy1vpxPRWM1n17VvaWB02yg31BCq8qDfp+LUNktuMXRUXeCRpLGqF870IBQK6JYQz7ZWfEAoEzB3TlXtPf9kqNQecJPrt838yv8Ngfs7fy3Opk3nx9ArytBVMC+7Diz/95dYCK6pq4Eh2ISO6d+S2/un4BygJVKsYG9gNk83CmtKjbiQizSeKJ+Mm8u3a4zw/exgAEqGYXv7xHK5xtpNVEgVykbjNKNBm/Fl8nFfTb3O7TSoUMz2iD4mOaJ7cvZHpAzsza0RnmkwGunUKxWg3s3bveT798wDfbz3Or8/OZvkLc/jjwFm2HsvBYrWRmRrFPaMyUSulKKXXvw9eSjkDusWyruQ475y97kJQY2ri85wtrC48wmc95pPRMZRI82AOVuXwYfZGqk1NhCv8mBTZg7mxA3j65G/c02kYXkoZjXpTq4Q+tUKGQiVmQHose8+4D2Zerah1ah7bQZpPFNtaHLtifS3vXlyHAAFKkRSj3Zmo9UPvxVQaGxAiYO3B8wQFKT06GCR7hfNK+nQqjQ08kvWjm2+rSizjhU5TCZZ7s6b4GLUmrUdtaIPFQKGumh3VZxnYvRNfdJvE2t0XKK5qINBbxYyhnQkP9EIgdbQ7pCdAQBffWL5qIXUJUfigvMFvWigQtGoXRyn9+bTLfDYUZ7HkitNje1/lRV7sNJW3zq9184UVC0Qs6jiceHUIcrEUi92Kzmri7Qt/eiQIDhy8ce4PVvZ/FA0K1GI5s2L6tqmPXl5wiH4BiSR5hTEmrAtmu5UETQj3HvnGIyk9W1/EFzlbeCJpQpvHxhOCZF782vdBVhUeZmvZGUx2C2k+UczvMJir2krG734bOw6iVAFMj+rNpIgePHfqd4/nBqVIio9USd219nWcOhgNCtKCohgclIrJYaVMX4efTMWeyos8fPwHV0V9a8UZ4r1CmB3Tt1VamEwo5uW0aTx/alkrmYhIIOS19BnIkXCpqJLHlqzjk8cnsOLiIdrC0twdfNlzAasLj7RwcbDzwcUNvJA2hRpzE34yNdXGRp4+9Ztb98pZ5e7Bg4nOwoL4JnHzvlI173e9g4VHv2nlfOEvVfNp9/nsr2xfBz4jujchN8gW6s06as067CZ4/sstXC5xnw84mVvCfR+v4tdnb3elZVptdq6U1vDdc7dxWVfKj3l7KLhQja9UxaSIHgzrmUbPxChEKgfLznn+XjbDaLNgsltptBhvibD6yzQU6qu5I7Y/T538lTJD3d9Ed8mSJcjlciorK5k/f36b98vKyvqX7Njf+L+Btkx7Zg/JYPKoFOYf+dKtQvjr1f30DkjgpbRpN9X+1jTqePmnLW4kb+ORi6gVMj5/cDJPJUzk7hNf4idVMzmyJ1OjeqGRKcCDb3mj2YDBZkIsEKEWyd20rm2hOXnGaLdQqGt/ktrqsGGyWxiSkcD7q/bSIcyfS0VVGC1WMpOjONmQ166s4GJjCfHqYO7pMISXz6zgqq6KYUFp7MrKa1MHtvV4Dr2To5EqRHirZPhIVYRUh/JDlwc411iE2W4h2SuCsgotr3+7k6dnDHG1Ab0kCh5KGs2xg1ewOexkNxQjFoja3UeAOrMWL4mSpb0WUmaox2GFGHkwO47m8uyWzfxj/nC8woX849JyLjSUIBWKGRyeysePj+e7tcfZefIK9364kl+fvZ27RvRgYp9UhGKwCW3srDyNuFFEuMKPRK8wlGIpcpGUJruBJVe2edyfcmM9n1zazBPJ43n97B/kastd2/J1lXyYvZEe/h14q8ssjlfmkhwVzJHs1sdzZO+OrKw4wJNzBjIqvyOHTxex9VgORouVuiYDapGceHWI2/O3hEQgxFPr3IHDrcLYrLvWmyxkXS6m8EA9Xz0zmafO/OImJXk6ZQJ2h51HT/zYigDprCaeO/U7S3vdy/nGYvQeKpjN+PTSX3zUbS5as5lojT8P3tYHhw2kYhFFpirUKhkiBAwOTmVXxXmPzzEiNJ3TdQVuHZBpUZlIb/gNyUQSJkZ0dxF+kUDIG8m302g08l3+9Yv8z/n7GBfelW963cuZ+kJKDbVEKQPo5BOFwWbG69qwqd5q5kRtXrudF53NxJn6QoaEdEImknBbdG/qzDrWFB11I3ARSj/e6TKHf55f6wpj6eoXy4jQzm26CADsqjjP3VFD0TZaCA9wdpdqtXoq6rTklFTip1GRFhOCTCpGI3fqyuViKXKxlHmxA5kc2dP1XDWmJo7WXEEsFGG2WynUVfPexfVMiujBY8njePvCn26vLURAT/94TDYLA4KS6eobR4ZPNNtLz/N5/l9orUYSNWFMi87kRG0eS3N3tloQLC88xNjwrgTeQHS9pEq6+sbyU5/7+Tp3B0euxZGPC+vKvLhBqMVyjAYr9328mh6JkeyvvdhuNVJvM5OvrSTZK5xE7zB6+HVAKBA4ZxnECs7UFxAs9+HB49+3kkz1D0picmQPtpWf4Wx9IV4SBRMjeuAnVbdpMxes8OH73os5U1fAptKTOBwOhoZ0ood/PD5SJSNCO/NH8TEKda2HWbv4xtI3MNHttnqzjp3l59hZcZ4Bli6tSG4zTBYb7yzfxdsLxuGtkiMUCrh7Yne+zP2LTWWnrj+fRceHlzbyZ8lxPul2J0IEqMU3D4sRC0Q0WvXIhZKbeo1PjuzJm+fX8GDiKFRiGfsrs0nxjmjz/v/OuGWi+/LLL/+/3I+/8X8UYpGQ5KggLha6t4nuGNvVlVx2Iw5VX+aLnC0s7jiyTQuheq2eL9cf8kjytAYTiz/5g9Uvz2PToGdw4CRuMg+RiDWmJhotBn7N30+etgJvqZLbojJ5KHE0lYZGTtZ7tlXzl2lcOjyJQOTKhm8LAgRIhWLkcikTeqdgsthcXr3h/l7kmTwTpJa42FjCz/n7uHpNgzklJJOXVrXvD7xq7xkenNyPYn0tKd4RDEyJ55mlGxEJhcjEYsriLIzqk8AzCwciENqoMjYiEYrwkaoIV/rxeY/5vHxmJRXGBhwOR6ukphsRrQrgeE0en+Vs5p2MOcR4B1PbaECnt/DPRWO4IMrj+1O7Xfc32S38VX6KvVUXeH/CnZTXarlQUEFhRR0Z8eEoVRL+LDpGmNKXeE0oR2ouU26oRyCAULkv/jINy662b4+1vzKbhxNHt0lCj9VcYVBQKqFKXwSC1hewiABv+qRHcVfWeiZGdic0QkmkTMr3o27jvZ/3Ul6npU6v562MWSw8+k0rizWZUEyGbwyNViNn25lkD5J5uUibRCRCLpNQXtfE8YvFvNBpCuXGevZUXCRU4YNcJOXn/H0eq3zgJNBfXN7GtMhehCrblj8A+EjU7Cg7wpOnfnaRbn+pmrviBhOrDsZLruLZ1EkoRFK2lJ12VXdFAiFjwrowPrwbj5z4wfV8s2P6ohLJaNQZMZgtnMkvw2q1kxYbQqwsmO6+cRyvy2NAUApXrtZi9NW5hv+asaEki00lJ+nsG0OATENnnxiUIum1UA7nSlVvNd1URwq4VfV8pSoWxg9jXtxA9l7TC2f4RhOpDODnvL1uiYPx6hDO1LVvEWXHQV5TJd//dprP7p9Mvd7AY1+uo6jq+n4pZBIentKPcT2Tsdid9FoqEVKor+bD7E2u5EBfqYrJET35tPtdPJ71s6vyurb4GF/3uhdfqcrtfDklqhdykYR6swV/qYbOPtEsPr7Uzc2iWF/LjopzLEoYwaKOw/kixz2ZssbU1Ga13lemxlem5pmUSQgEzgpsjUnLhpITxKoCqc6xYTBZUMokNNnadrRxHQeRhJfSprK+5ARfXN6C2W6ji28MequJOFUQpfq6ViR3SHAnJkV2Z9Gxpeis1xdsv109wOCgVJ7tNMlND+22/1IVA4NT6Okf73x98fWFV4DciyU9FrC66Ahri45SY9YSpvBlRnQfRoSmt7ruNFmMvH1hHU/ET2DTmhzaw9FLRRjNFrxVcqRSEVe0tW4ktyXytBX8lL+HxQkjmRjRgyMe4tibkeQVhsFmRiYUI0DAi52mcf+xbz06TDgXUA7O1hdSbWzCS6JAfAte4f+u+Jvo/o3/v8JXo+Shyf1Z9PFq121zhnbleO2VdmMyN5eeZmHC8Da3W6x2NhxuO0FKZzSz9UQO0wekt5lmVmNsYnPpKT7J2ex2+4GqS3T1i+XNLjO56+AXlJtaX0wXx4/AW+KsJvjLNcyI7uuyd/GE7v5xCBDgpZLz6JQBNOlNLm9fnclCiOjmume1WE6o3IdhIWmIBEKC5N5uMbeekF9ei0Yho8pUi0goJDrYl88fnEK91oBIDntqz/PguaUuLZ9MKGFCRDfmxg5ALpLS2SeaH3vfT6WxAbPNyszoPnzeIqnpRsyJGYBMKOan3g8gEgqxYiU8UMMT0wZRbKjhw+OneaDjSLr4xSJEQLG+lj+uDbJ9cGU988YM55kvN3OxsJLOHcI4VZtPd/8OfJS9kTqzjmlRmaT5RGF32Gm0GlCIpS7i3xbsOKg1a5EIRG0Swz+Lj/F2l9vZJLouWRELhQzMiOPuid155dIKbA47xYZaDlRmc1t0b5489SNvzrmdqko9Swt3ECz34qc+97O17Aw7ys9iddjp4d+B26IyKdHV0CewI7/k73Ud6xsxO7Yfa4qOIROK8VOqmNo/jb1n8jhwqgCdfxObK07SzS+WRE0YEqGo3WEagBO1ebzYaSoF2ipXzPCN+CBjLl9e3sbmMnd7yRqzlvey16O3mpka2RMfmYonksdzf8eRZDeUIBAISNCEcK6+iMezfkZvM9NRE8qdcYPo4heDwCTi840HWLP/nJvTSp/UGF6dO5NP8jfR3zuFfbsL6dDb83ffjsNFAmPUgRytzqXEWMvr6TPxkiqwOmyEKton8eA+NAXgc81Wanp0b9dtBqu5lf+s1WG7pdhVqVCM3mhGazRz93sraLzBGaBvSoxzKOl8PluOOoND+qfHkpYY7BZUUmfW8V3eLnKaSnmx01Q395KtZWcYFJzKmqKjaK5JMCZG9GB98XGW5G7n06538dGljW169H55eStLey3EW6J086UWIrhp2E+AXEOVsZFHT/zk8m+dEzWAokvOxUlJdQO9FB3bewqSvcKJUgVw79Gv3WQ0W8pOs63sDG9kzGzVLZIIRMzvMIgFR772WLXfVXme8Dw/7k0Y5uqueUJLgnvj+7ojpj+TI3sgFAiw2R34SlVIb0hGM9rMrCg8iAMHCoGURv3NAyxqGvVIxCIMIgO/tBOWA7Cx5CTz4gaR4RfTprZYJBDyWNI41hUf562M2SzN28mIkHR+6L2ITy/9xdFrQ60RSj/mxAwgMyDe5ZoRINfQaDYwJCT1pvv974r/lutCS+zZswedTkfv3r3x9b35SeVv/I0bkRwVxCvzRvLO8l3ojGYyEkPZUd2+BMbqsFGkr2lzUrSqUYfZ2r5X4rHsQkZ1TyTAuw2ia25qRXKbkVWbz29X9/Nh93nMOfiZq+rhJ1WzOH4kfQMSkbbQIHZQB9E3oCMHqluv9lViGU8mT3BNX6uVMjYfy8bPS0VyVBAHz1/l07ET+KWgtTNFM7r6xpLkHc4skZR9lRcRCURIhWIUMgkGU9tyAl+NEolE5FbN9tMoEcvg94IDfHvNhL4ZJruFlYWHqTY1MTmiB8neEfjJ1K5BkYmy7hysusTJuqutXmtOTD86+UTy+9X9vHR2BY0WAz4SFZMjezA9ujfF+hpe6zyDn/P38eXlbdgcdpK8wpgZ7bxov3ZuNaHxauQSMb5qBfVmHRa7jc9zthCi8GFRwgi+vbKT9y9uwIEDf6maF9Om3bSaDk7brrZILjiToMQCESPHxLD4tt4YzRbkMjEHay/x2PkfXPKaMIUveysvEiT3pldAAu9fWcdTSRPYd8Sp+VtXcoJFCSN4vtMUvMQKpEiwGm2EEohcIGZJzwU8mvWTWyVSJBBye0w/gmTefFK+mfs6Dsdst9IpOoTkqGBG90kkOSyQnwr2uBK9kn3CactFoCXEQiFyvYKHYsbygul3t1ZtqNwHtVTeiuS2xHf5Oxkb0QUNCrAKqKs1EiYLcPqJGu2kaCJZ1u9hwFlFDpJ706g38sWmg6zc21rPffD8VZ78aiPv3DvWOflfcoqRql43fR+dvCP5snIblxpLXdVflVhOvCYElVjmVu1rCY1YTopXuMdtFrsVq92GVChBIZZyW1Rv1pUcd20/VnOFx5LHsba4bVtClVhGoMSb9NgwNh252Irk9k6J5uGp/VnwwSpKqq9/5vvP5eOllPHhQ+OxOeycqLu+CNlfdYmpUZlEKv1drgvVpiYeSRzD9KjeeEsUSIQiluRsY/W1qOUYTWC7ceLgrJKPCstgecH1DkjvwI4IbpIKV2fW8ciJH7jcdL0jYnFYUcic57+z+eU8KR+At0ThFoTSEvclDOeF08s9asXtOHjx9Ap+6/sQYoHIVaEcGJzC3srsdqUpfxQdYU5s/3aJbntQSmQoJR60bC2gs5rIbXJWmkvMNSRE+JNf3rZkQC2XYrXZyLpcTFKiP8U3CQjR2UzORZvcl4+6z+OzS1vYXn7W9T1P0ITwZPIEvCQKhoWm8WPeHvZWXmR3+Xl+6LPY6WHdaQp2h1NLv6fiAjP2fYTJYaWDOphak5ZU7wh8pP+5FmO3THTffvtttFotr732GuDUio0ePZqtW52tjqCgIHbs2EFq6n/uquD/Guqa9JitNo7lFKE3WugcF4qfRkmgz7/2B+GllDO4cwd6JUVxMreEqEBfxJU3jwxuL5ZVepOBBACpRIywjeD5OpOWn/LaJpYAa4uOMSO6D2sHPEmZvh65SIK/TO2UQdzghxkg9+LFtGlsKMliRcFBKk2NrlS0xQkj3MhYg87Iqn1ncTgcvHbnKJ78egPZedWMC+nKhvLWC4COmlCeTZ3EfUe+ocRw/QQrsAsY0yuJ1XvbtmIa1ysZiRw6KNztAU12a7u56bsqznNn3CAOV+cwIrSzy/pHIhDxZsYsTtTksbzwoDM6U+HP3NgBxGmCWXRsqRuZqrfo+D5vN/urLvFJtzuZsf8jGq3XL3bZjaX84+xK5sYO4L6E4dSYtPhqlHRPjMTmsBGk8EZrNXJn3EAeOP6dW4u7xqzlg4vreTJlAtvbsaNK84niSjsT1uBMF6oyNhKgUXPH8Y89pqR18o6kSFeDQiRFZzUxJ6Y/b55fi03gQCGSYrCZMdutfHxpE7/7PExTk5X3Vm7n6KVCHA6nr/HiCb35PnMR+bpKLjaWIBdJ6OIbw+6KC3ydu53XO88kwzcGuUiCWiLn44fH80P+blaf28d7Xefw8pmVnKorYG7sQHr4x7f7vtN9opzhDO/+QWSQDy/fPYNyQQ1/lZ/CbLeyIH4IW0vbHy402ixcqCumb1AiTTYDG+qOsaH8BFqrEQECegXEc3fkUI6fKmNq33TnY0wW/tjf9n6dziulql5HeIA3CqkEgVHkRupuhL9MQ6jCl+xrsd7NREglllGkrebZ1Mm8fGaFB69pIW9kzHKl7jWjwaynwtjAvsqLKMRSgmTedPaNxl+qZlRoBn9dazMX6WtwOByk+US1mSJ2e0R/Nuy/SJf4cFbta30sH5s2gGe+2ehGcpvRqDfx1BebeP+xMdxT5+5Zu7n0JIODU/kp33mOilYFECjTILlWbawyNrK25Dhx6iBmRfdFbzO3OzAIcFVXxcCgZNf/MqGYBzuOQiGS0GQxoBLLEHqo7pYZ6txILsCh2hweypzAhsPOBd43a4/y6qRZPHP+l1bENFoZSKDcq5UsoSWsDhuHq3PoHZDAvmudigRNKCc8dCFaQm8z02jR3zRW+L8KncWIyW5FIBAgFghdLh8bKk7w5sg5pHcMJT0+FICSqgZWbT/HicvOlLXxvVPZfDSbinotKUn98JdpPMZBN0MiELlkBQEyLx5KHMX9HUeisxqRCsVYHDaO11zhj6JjboloOpuJneXnEAtEHmPnlSIpz6ROIr+pkjcyZv23YrP/XXDLRHf58uU8/fTTrv9XrVrF3r172bdvH8nJycydO5dXXnmFFSs856v/jX8v1Dbp+WHLMZbtOuXWWuwYEcgH900gzN+rnUf/16FWyFArZPRJjcZssTI6rEv7KTpiGWHttCW9VfKbpp2Ny0wmt7QKZa2MqCAfvJTXxf5Gu6VN+5lmNFmNWO02wpR+BCtu7kHoJ1MzM6o3Y8O6OO1wACt2/G7QezkcDpr0RqoadLz+63beWTCWnJIqJgf0JkoVyPKiAy4T8Dh1EO92mcPW4rO8nDgdiUBEqaGOtVVH2FB+nE+HLmDPqTyPEcdRQT5M6teJYkslIZIot21n6wtb6SJvxMGqSwRI1dSZdfjJ1DSZDVzWlvNE1s909AplbHg3vCUKqk1N+MrUrCg85HG4A5wJWptKTzK/w2A+utQ6ivin/L380HsxDpOAmYMzUMokmIUCztQVMCu6L59e+svj/hbqa9BaTQwJTmWnh2EpuUjCE8njOdqO9g1gRnQfll09wEPJo1EKZejtJoQI6BPYkTFhXQmSe+EvU1Nr1vHPjNmcayjiUHUOM6Iy8ZOqGBKcysZSZ2V0TFgGGMTc8fZvLh02OOU0767Yw6Yj2Xx8/0QuU8aI0HTqzHr6ByWT4h3B6qIjvHdxPXfFDWJ4aDo6h5EVRc5p9o+yN/FM6sRrizcHt8f0Y1c7Nlx3dxhCcVkjVrud/PJaHvzwT355YSaVvvVoJArCFf7stHoeMGsJrdWEwWrmxbPLONNwnfA5cHC4+jIna6/ySef51GkN+KgVnC+owGprn3T9dSybhyb35+W5wzmZW8KbqbN58NR3rQa/1GI5H3ebx5fXtKUqscwlJ5CJJPQKTOBwdQ5f9ryH5VcPukInegd2ZEH8UPylalfqHjhJ7oqCg/QKSCBU4cuFxmLqzDqCFd4oRTIeShxNvCaYlYWHqTA28Nb5tXzS/S6W5u5gV8V51wCbSixjTuQAIo2hLNn1F8/fPhSb3f09RwX64ADOF7RN8Goa9RSXNpLsFc7FxutexvVmPR3UzhRIAQImR/R0kVyAUkMtt0VmMi6iGx9mbyTJ23PVuiV8pCpX5buTdyTPpE6iytTIh9kbcQBDQjoxMCi5VYDDnorWleJCXTVClZ0u8WGczC1l39mrKGQSvp5wH9uqTnOsPtcp/QlKZXRYZy41tn+uBchpKiNBE+oiujaHHWk7UcHNaI4TrjE2YcOOw+FAIBDgJ1EhFolptOgx2iwYbRbMdis+EhVCgYCruioqDA2k+0Y5da/XQngcDqg0NWKwmag1a0lQhzIjug+7Ks7TPygZkdrBEcVZPj79Bw4cdNSEMntKfyZUJ7N2zwVG9Uhk0bUhPS+RituiMtuNWx4SkuomkfGTaajTGhCZbCwrP0ittYlAmRfJXmFUGhvcpCdbSs/wWY+7SPWJ5KvL2zhTX4hMKGZ4SDp3dhhEka4ao91Mkb4Gk92CRCBCI1G0G8H874hbJrr5+fmkp6e7/t+0aRPTpk2jb9++ALzwwgvcdtttbT38b/wbQWc0s3LPaX7Z0bp6mFNcxcKPVvH9EzMI8P7XW5GYLDamv/ozK16f0+6U+rzYgcja0cdplFIWj+/Da79u97i9Q5g/qdEhjHjmawDuGNqV+aN74a1yXvSECNBIbmHK9RZPCA6HgyaLAYPNTI25iSqj077KS6LAarMibnGRkopFJEYGUtWgI7uokjve/p0eiZH0aIikR1I8o3p1xuKwOdvOAik6vYWrRw18dexPjGYrCeEBzBjenemJUj7MX8fHj47n182n2JZ1GYvVhlwiZkyvZO4Z0wujwEiMMrjVIF577cBmNFoMTIvKdBEprc3Iw8e/x2S3klWbT1bt9UG9NQOeYG1R2y1egNVFR/io2zyPRBdgZ/k5pob0ZmLvVJRyKVazFalQTIw60I0E3IjXz61mSc8FdPGN4Zer+6kwNiASCBkQmMz9iSPJb6qgl38865XHPWoY03yi6BPYkbfP/8mQ0E4s6/8wv+TvY1RYBhcaivg6dzulhjoCZBpmRPdheEgadRYduU0VqCVmGiwGbo/tj9Zq5FxDMfdFjeIfP25zI7ktcb6gguOXihmX1o33L67nr7LTre7zfvYGwpV+bhHP5xqKePD496R4RfBOl9tRieW8mj6dN8+tcXNukAnFPJA4ilh1EAuvGdJrlDI+enACGoWUMcquiAUCvKQqMnxj+b3wQJvHFiDFOxw7dh5NHkOJvo5/nl+H1na9Km+yW/imcBtz/YYSafN2Wzh7gkoupV9aLBV1Tew7m4/JYsXcCD93f4jDdZfYWJGF3WGnt18i4yO78nXuDnZVOgn5lIiermE0AG+pkj6BiRhsZqZH9+ae+CHIRVJkQjH+Mo1bCIHV7qwa9vCP5+mTv2Jx2BgQlIxEIGJlwWGEAgEPJY4mVOHL852moBHLEQqEnK8vondgR+bFDaRQX4NGLCdM4s+ybaf4ctdf2B0OLlytoG+nWLdp/M4dwrhY2DbJbcb5K5VEJ7h/x2PVQZQZ6gF4LGksyhuq0uEKP26LzmTuoc/RWU3kaStakeUbMTO6DxEKP6ZGZWKz23jt3B8cuWYfCE7v4S9ztvJNr4VEqfxd1V1PVV6AN3JW8d4d81i++Sxbjuew9fhl9p7OZ8rATjzRexIOmY3fC/ezqvAQz3WactPjECr3ZXp0JrsqzpOvq+RYTS5jwrq0O/sQJPdGLpSQ21TOZ5f+4lD15RZa1f4MDE4hqyaPzy9vdVVVpUIxo8MymN9hMGFyX07W5fN7wQHytJX4SJRMjOzB4OBU3jy/hstNZXT3i+PFtKncGTuQVJ9I7j6yxG1xmdNUxj+yV3Bvh2G8dNdQFry9Gr3JwsjuiUjFIrr5xZHhG8MpD3IvP6maRQkjEdtEmK02pGIR1Q06Hv5iLf0zYpg5sA9/Fh+jSF+Dv0zD+13vILuxlI+zN2Fx2Lg7fjB+UjUBci/e6TIHm8OOzWHnQkMxC4585eZoFKUK4LX06eyvyqZvYNK/vAr+/0/cMtG1Wq3IZNdPIIcOHeKRRx5x/R8WFkZ19c1z5f/G/37oTWZ+9UBym1FS3cCpKyUM69p6wMBitVGnNWCyWDGYLPiqFUjEIrd0mvYgAEQiIXU1Rl5LnskHees5VnPdI1QmlDArsi8jgzLQtNNqkUul9E+L45mZg/li3UGXNk4ggN4pMbw0Zxi/77r+Hn/ekcXgjHgy4p2VjwCphgnh3dudgu/uF3dT/Vozqk1NFOiqePXsardYzTh1EK+lzyBK6Yfs2gVao5SzYEwm+89ddd3v2KUiZ5jEeuf/D0/uz+1Du1JW28icf/7mFn15uaSa13/YyYS+KYzv24PHL/7A22Pv4MFJ/VwnS5vAhslmxkuiwlflPI4Wiw2JxEncb8VmJsU7giJdDdHqALRmA8uvHsTURhVYJBC6VRraOkYyYdtaugpjA35qpYuUO4A+gR2pMLYdPwtODd0nlzZzp98wvumxEIHQSeQPVuXwRNbPvNF5Jq+eXcXrnWeytewM60tO0GDREyT3ZlKE86K2vewsNuxY7Tb0FiO3x/bj9bN/uPnXlhrq+DB7IxtKsni+k9PL2GS3oBLLeDplIk8lT6TCVI/AIeCoB4uylli59wxpCSEeSW4zshtLXWSnJS40FvPMqd94rfMMguXefNnzHrIbSykx1BIo86KLbwxCoLpKT2JUENOHpzMkowMiqZDtFec4WpOLRChmbHgX0nwjGRSU4lHfKRaIeDltKlKxmN8LD1JpbKCjJpTl/R+iSF/DfUeXuu57vDaPJxMmYrU7SI0ORiCgVZQ3OB0IPrl/Eiv3nOav49cJzBfrDtIhzJ+PF08kzBaISilBoZBw9+ElVFwbBk3ziWJO3IBWizaNRIFGorhp8lOjRU+sOpiHjn/HvLiBpPlEs63sDBXGBsIUvgwNSeN8fRFdfGO489AXVN6Q7icViolRBfBy4nTueWuVWzcpyEfN+N4pLNt5EqPF+RvRm8yo2vEAb4ZSLqGmxe9KgIDRYRn8kreP7zMXEabwcw3QAZQb6tlTcYGzDYWuCu2yqwd5MHEUj5z40WPnIzMgAb3VxAPHv2NyZE/6ByUxJbIHx2uvuJG2BoueB49/x4+973cRoaEhnfjWg/dwjVnLw2e/Y2avvmyYNJ/qBh0ikYAmoZ5l5fvYVnFdyiERijwmJrbEmPAueEtVLOl5D2XGeg5XXaaLXyxRSv82h+yeS5lEob6GB49956bBL9bX8s8Lf3KpsZQU7wg36YDZbuXP4uMU6mp4oONIXj670rWt0tTIN7k72FiSxT8zZvNE1s88kjSGB499zyfd7+Leo1+32UH55soORoZ2RmcyE+CtomdSFFKRGJVdwpudZ7G26Cirio5Qa9YiE4oZEZrOgvhhZJ0ppaiqgd4ZkYRovHliyQaGdu+AMtbOlL3vudngLS84yG1Rmazs+xhWswO5WOIKzvCWKjHbLPx69QBfXt7aav8KddU8kfUL73Wdwz2Hl/B1r3tdgUv/7rhlotuhQwf27t1LXFwchYWF5OTkMGDAANf24uJi/P39/5/s5N/4/xYVdVq0xvYreltP5JCZHI1acX3xU9ek51JxFe+u2O0S44tFQkZ07cgjUwfcUgVYJZcyZ0hXcktr+HTNfhZM6smiLqPI1ZYjF0qIUQax5XAOT/25mQ8XTWj3OQO8VYzukcTgjHiKqxrQGc3EhvghEgr4av0h1hx0b8su3XyEt+4ZA2IHBpuZvoGJxKmDyfOgHZMKxTyWNM4tvrMtNJn11Jl1PHj8+1YnwTxtJfce/Zrf+z5MSItKVJCPmo1v3A1AXZOBH7ceY1uWs7rSr1MsE/ukojOaePXnba3y3Zux7sAFRvXpiFggosRQQwevILRmE3a78wQY5uNDk95IZb2WrSdyyCmuwt9LyeS+nVCp5aT5RLZJ9ANlXgQrvPkubxfPd5qM2W7laM0Vj/cFp8buZheycIVfu5XkWHWQG4kRCgTY7U6rK0+a2ZaIlAdwPLuY8BAv7j68xM0C7beCA8zvMIQHj3/PoOAU3rqm22y0GDhZm4/ZbuX7vN0ApHpHohBIOFiT0yqkoRmXm8rYWX6OEaHprC85gc5q4h9nVvJd70WU6uvwkd5c5tKgM1BhaN8aq9LYQKTSz+O2cw1FzD/8JY8kjqG7fwc6qIMJUfigFsvQWo1sKjnJxMgeRPQV46WBeoee+/d/6xa/u638DPHqED7qfidNFgMn6q5X6AUI+LzHfPZVZvPiGXe52qeX/nIOFfa+nzsOfX59gxBkYhFyqYQBaXHsOdNaXzlveHc2Hr7gRnKbcaW0hkUfr2bp49MxS0wsubwdjURBhMqfWTF9SfeJatNK6pbggGM1uTyWPJ4LDUV8eNhdF/tz/j7u7ziCVO9Ivu29iPcvrGdfVTY2hx0BAjJ8Y3gqZQJqu4JhXRMormogMsiHmYMyUCmkZDXk8d4D43juq80IBAJ6doogLSbUFVHdFgZ2jeXRi9eHQp9JmUigVMNjyWNbEZFqYyOPnPiB5ztN4ZNL1wdpLzaWsL7kBJ91n8/SKztd0dI+EhWTIrvTJzCRJ7N+psFi4MPsjeyqOM9zqZNYnDCcT3O24C1RoBLLqTPrqDA2UKCrchFdp71bNKfrW1utNVoMlJhrkCtEFF6uRx0i4NHTP7S63+9XD/BY8liPARTglA4drc6lT1AiwXJvfGVq12L8y54LeOnMCje9rkYs5/6OIwlSePP8qWVtDpquKT7G6LAu+EvVLjlYM07W5VNn0RGtCnSLzQbnovb3ggM8mDiK/VWX0NtMFOiq2rSz85YoGR/anSa9iS8enEKIn8aVtqmUKFBKnO9xQmR3HA7nua2qVseLS7bxwLTeVPvW8FnxRhYEj6JOayCtUzD3n/7G42utLDxMrCyYvX+VUtOoZ8GYXnSKC8FXpURrNfFzftuzJ1WmRs43FBOm9OPLy9t4InkcCnH7w3j/Drhlonv//ffzwAMPsG/fPg4fPkzv3r1JSUlxbd+5cyddurTO9P4b/35weCq13AC7w93+22K1crmkmgc+XYO9xeOtNjubjmVzpayGzx6cjL9X+xciuVTC6F7JvP7rdsrrmnjt+x2o5FLC/L2w2uwUVNS5nt9qa3tK3uaw02DWgwhEIogL9+PXbSd5f+VuCirrPT5GZzRjFJh5+8yf7KvKpodfHB93u5MvcpxTrs0nyzSfKJ5KmXBLulxwDkR8kbOlTSKms5r4JX8fizoOx6S3cyyniG82HXElxnVLiOChyf2YPjADcMoufNQKquq1rgGHtrBhbzYje2aQ5heFXCpxS5Fr1Bs5fqmIZ7/bjKWFQ8WPW49z79hevDF0Fg8c+7ZVtcRXquKtjFl8lrMFm8NGsb7WSTbbiNwEOFCZw21RmXzhoZLQjOnRvdnRxvCUEAGjQju73aaRKMhtKidS6U+/wESO1+YxICgZH4mKGnMTeysvYrPb6RPYkXkxA6n20vND3q5WPr8bS7IQAJ/1mM/Bqkv8nL8PpUjKsNB0uvt3uEYA9PQNTKS+yUiFWctvN2nnrys+wZsZM1lfcgJwTo4vzd3JE8njEJtFN3XDiA8LoNHetr0ewM6Kc3zd615+L/DsE1xn1rGq6DB2HPycvw9viZIaUyOFeufA3OTInvxWuJ8/Bz7J7Qc/cSO5zcjVlvP6udW80nk6O0rPcag2B5FAyF0xgyk0VHmMtbY4bDx/ehm/932IHn5xHKvNQyaUoJbKnNpIjZLnZw9Da9jk9v0VC4UMzujA7W/91uZ7Lqpq4FJRFf06xfJs6iSMNotzGOhfMEhjw0GDxYCXRMlvV1t/vg4cfJazhQzfGNJ9o68t8Gw0WPQIcMZx/371AGPCu7BgUk9kDilSsQgrNn7K38O3V3bR3z+Jr56ZjJdcwceXN1FWXMEdo7ryzfqjHvdpdM9EKqz1eEtV9A5IZG7cAAJaeHTfiHJjPXnaSoQIWpG7zaWnyG4oZWpULx5PHgc4gw42lGTx4LHv3Loxp+qusq8ym+GhnUn0CkcoEFBn1hGi8KFYX0OBrpoufrGAU9v7dpfbeenMCjetu+Dab/bhpDFYjA6WbjrCq/cORymStrJq21t5kQilPx93v5Pv83a7ZE9RqgBmRffFR6rihdPLGFSTwpPJE/CTX2+rB8q9+GfGbHRWJ9lUimWEK3z5o+gYequJfF37g6Z/lZ1iUHAqq4uOtNq2vewsfQMTWxFdgB3l57inwxBWFB7G61pkuCeMC+nOtODerN51jifPbwIEDOwcxx3DuiGWC7ALnJ9TgFSDRqrA4XCw+Vg2L/+4haXPTOOT4g2cbSikX2AiJ7KLmTwolZVl7XuDLys9wANDxvPYJxt4bMl6ZgzpzLhBicjkIo+/85Y4VJVDmk8UP+fvZXHHEf+3iO6CBQsQiUSsX7+eAQMGtPLVLS0tbTcx7W/8+yDEV4NcKm5TQwgwuHMHNC2ruVoj76/a40ZyW+JScRVn88voGh+Bl6p97atQKHDzItQZzR6TZgxt7F+9Wcf28rP8kr+PUkMdXhIFkyJ6MDwzg31n257SfXRWfzebnKO1V3jr/FrujBvI4o4jMdktSIViRAIBgTdpg7aEQCBwDcG0hZ0V55gbOZDVe87xzSb3E+6Jy8Xc9e5yPlw0gZ5JkcgkzqrmzaruAOW1TYzy6oxMKEYodJdZ1DUZeHrpRmz21p/Z1xuPcNuwNF5Km0axvpb9VdlY7Ta6+3cg3SeKjy9t5lTdVSaEd8dks1BqqGNQUAqXGks97seXOVtYOeAx9lZe5FxD6ypxd784BganMGvvRx4f/0DiKKRCCbUmLQ6cEhcfqZI4dTCnaq/yZMoE6sw6tpadptLYSLjCj59634/ILmbXsTy+XnOUsAAvJnftTZjUn6+ubnNbeGwoyWJr2RnuiOnPgvih7Km8wHdXdrq+C+k+UTybMokH3vuTJ+YMoKydKWlwukncOM1/uPoyYqGIWmsj43qlsHJv27KEeSO6Uyepb/c1Gi0G5EIJizuOaGX0D+AtUfBI0ljePLeGPG0FEoGISWE9eSWxK0ajDYlexpq+T3C89opHW6dmHKnOxWq3MSGyG119Y6m36AhRefOP820PHtscdn7K28vjyeOZeeBjxoRluB2PAG8Vb909mppGPVuOX8JqszO8WwK1jfqbDqptz8qhZ1IkSrEMpViGyWqm2thIVt1VTtVexUuqYExYF5Qi6X+p9SoUCOlxzZO5PXx7ZSevpc+g0WLk3iNfUWfWuVUhVxcd4dGksYwM7YxKrKbRpOeXaw4m+2qyWZg4nPdz1rO36iJCBLzWaSYPyfry019Z1Gudn4NCJmHagDTmDO1GrUnLG8mz0WstBIm88ZK2LQM7UOXUbNeZdYQpfFtN8+frKnnv4no+6DqXdy6sc5NR3QiT3UKRroY3zv/hJpFJ9Y7gxbSp2B12lz7XT6bmjc4zabIaOVWbj1goootvLEqxFI1EQY1RR53WwMYD2cxK6ce3Ba2lDr9d3U+NsYmnUyZitFlw4KDa1MQfhUdc2trdlRd47BpJbwlvqRJvqZKwa+En5YZ61hYfJck7rM3314waUxOx6iCP2/Q2E6FCH4/bzHYrIoEIu8NOnVlLqKL1/QYEJDNIls78N1e62V0u23WKtfvP8cGD41mnPUSBvprpUZn0C0pCbBPx7eajDEiL45Q+j7PXBjztDgdCoZAOEX6sLG1f+lSoqyYg4fpiaPnO04zMTMAhbt9y88b3Z7Hf+v3/N+O/5KM7f/78NsnsF1988S/Zob/xX4fdbnfpcP4VkEslTOuf7nEYDSDAS0WvpGi32yxWW5uxh81YuecMepOFQG81caF+bVZ3lVIJHcMDOZPX9iSuVCxCIW2t52ww63nx9HK3BJlGi4Gf8veyrfwMby+4g8XvrKVe576qTY4KokHU5CI2kyJ6MCmyB0W6GnKayrA4bFjsNlK8wt30cLcCB3hsx7WESCDAanGwdHPrqgI4T3Kv/bKdX5+dTaCP832rFdI2tY7NCPf3Itk3HB+Fe8WrSW/khy3HPJLcZtTrDKwsPkyJvpaufrEIBAL2V2XzcfZm+gclcU/0MMaEZ7Cu7BjrSk7wc5/7WVZwwKNXpt5upkBXxdtdbmdXxXlWFx6h0thAqMKXGdG96ReUxIbiLD7tOZ81xcfYVX4es91Cum80M6P7EKMKwo6dWpMeu8OOn0xNsa4WlVhGqk8ka4qO8s0V9xS4H/L2cH/cSMQSFX8ecspUlmw4xNxR3Xgp/TZezl7udn+z3cqmMmdLv5tvLP5SNZ18IvGTqnE4oLpBT1pcKA06I4FyL3TtBFFoxPJWemUHzontbwt28PSYKZy7WtYqERDgvnGZ+Hsp8ZfJ8ZOqWyWpNSPZKxyL3Ua/wCTSfaL4Jncn5xuKUIikjArNYHxEVz659BdXtBXIhBLe6zSXI8dLWfTdWtci6d2FYzkuanvx17zfedpKinTVfHhtUHDdwKfajRcFOFGXx4KEoSRoQrg3YRhqqfsCN8BbTYC3moTwAByASCjk0IWr7T4ncE0X71y06a0m8rWVPHLiB7fv3XdXdjEqtDOPJI295aEaf5kao83cyirrRpypL8Rot/D6udWt2t3N+Ch7EwOuWXXlNVW4vgtRygBkIjF7q5y2W3YcvHhhGWNCu/Lh42OwmBzYbHZi/QMpqKhl+qs/03Bt0T+sawL/uGNEu/vW7EKwrvg406Iy3eQLLeErVbVLchM0oaT7RPPQidZyq/MNxSw++i2/9n3QLSGsmWxGeJDTiEVCYkJ8Wb7zNG8njeGu6MH8XrzfFQIhQEDfwI7M6zCQh45/T0UbEgCbw35Lg7J2h51Gi4FA2c0XOpHKAKraqMYmeYVzpY3vg1ggwmZ20MMngR8admG0WYhSBbg5y8yLHMyD76zz6OlutFh54ZstvPvYKBae+oo3zq8hozSGtzJmUVGr5YHbevNpxTrX/c83FHNX6jCqGnTtDmKD83jeOD2yYV8288Z3QS2Wt1vVzQzoyN7KC4gEQiT/Ie4L/6PAiLFjx7J06VJCQ0P/VfvzN24R1Q06apv0rD90Hp3JQs/ESLp3jMRLKUcqufmXU2swoTeaEQmF+N+gc9UoZdw5oodzBX7N6L4ZYf5efP7gFPw07lWFm4UzAOhMZuq1Bl74/i/GZSbz8OT+HsmuUi5l5uAMVu8/0yaJG96tI1Jx6/d5ojavzZjEMkM9q8sPM7F/Kj/+dcJt2+jMRDZd86h9LGkcAgHcf+xbN6P5WFUQb3eZjUrkbME26kzkV9RSUFFHsK+G5Mgg1App66Q1h/PCcbkdu7Lbonqz6Uh2u6S1ulFHSXWDy8dYJhbTIzGq3cGm24d1o9hUg0lgRiaSuC5MOqOFrNy2J7ABvl17nAdmjeDREz+6/DqHBaXzXdfF7M3K58zlcnKkBxjWK543khM5U1vAVz3v5amTv7jJHVQiGQ8ljUYmlDBx9zvc3WEIb3e5HblIggABgTINQqGQ8RHd+PzSFrylCl7tfBtigYgifTUdNaFsKTvND3l7XANtKpGMaVGZzI7py9n6olYkF661mvP+4sO0O4kN8SO/vBaHA37cfIJ/hA33mAYWofDHbncgaZITqw7izXNrXc4fPhIVk7v2JNrXl9vUvXk3e12r12zG+IhubCtz903tHZCAwWbiuU6T8ZWp+HjxJI5dKmT1vrM06I10CPFn3sju+HsrkSiEKERyPu1+F/cd/aZVWlqU0p83M2bxzoV1HKrOYWxYV15Ln45EIMZks2DFRp1ZzxNJ47ncVIbJbGPzzlzWHXAfKtMazCi9bz4QJRdJ2XXNnk14iyOYEqEYHPBZj7vxbUc723KR3iEsAIlY5CaluRHN0+oAWquRB4595+Yq0Yy/yk4TpvDjjtgBqG5i+t8MZ8emfb23XCjB7nB4DEVphgMHfxQe4b6E4ZhbSAgGB6dyqMo9NMaOgw1lJ9hQdgKFSIoQAfcIhhJhCHWRXIC5w7qjlEsx26yu1EiRQEiAXNPi+Tvx5eVt7KvKZlpUJkOCO7Gz4lyr/RMLRe3GdU+L6sW3V3a1eRxqzVrWFZ9genQmMqHkpu4z3ioF94zuxeJP/uDpLzYxc1gGX/W+jyJjDWKhgGh1IEqphG/ydrRJcpvR3sCq6z4iCTKhmNym8jYdDcBJCIeHprPoaGu9q0wopn9QEt9dC80JlnszPrwbYUpf9FYzTRYD249fZmjnNFYUH+D7vN08lzqZx0/8hM5mItErjIKS+lYhIS1R26SnqspArCqIfF0lp+qusqn0JG/cPRIfLzllRfWu+zZY9BRbqmmqtjMipDM/5O9u83kz/RM4c9n9elNeqyWvsYrp0b1d7+lGBMg0dPKJ5L2L6xkW0um/HbTxvw3/I6K7d+9eDIa2W15/4/8Nahr1vPLzVg6cv+q6be2Bc/io5Hz5yFTigv1d0/M3ol5roEFn5NedWVwoqEAtlzKpbyd6JEa6kU4/LyWPTOnPwnG92ZGVg95koXvHSGKCfQnwVrnZ8oAz7eVmcofkyCAKr+ljNxy+yKD0DgzpkuDxvt4qOY9NHcj7q/a02tYxIpAFY3q1mliuN+v41YNmsCW2VJzi2z6L+XlLFnaHA7lUzPjMFEb1TCQr+wKZAQl4SRT8o8WkbTPydZUsPPoNv2U+THF5I098td5tslqtkPHq3JH0SIpAJb9+YfWVKpnfYRDPnvrd4z4JEDAitDNLDx33uL0lKhuuV5C8VHJevH0Yc9/5nbqm1r/D6YPTOW+8yltn1wDQNzCR51InEyDTIBBw0wXRX8cv8cTMAXzYbS77KrOpNjTRRdSRu15f6fY57zyZS0J4AK/cO4zj1Vf4ouc9VJuayGksw1eqIskrjOM1edx9ZAn9AhPpG5TIoeoczjcUIRdKmRzZg3ClH34yNY8mj8VgM1NqqEUqlDAgKIVVhUdaTXXrbCZ+zN9Dr4B4jxPfLbGs9ADThqTz7m/XhzB+/eskC+7o3YrozojpQ3FxI/XKBl7IWua2rd6i4/uCXRTqq3kwcTSbvU96lGFEqQIYFZrBfS0unkIELEwYToTS30UKRHIHGWmhZKSGYDdDob6a9wrXcPZCIcOC03g6dSJRSn+W9XuEHeXnKNRV0c8nmShFEFaLHZsRBvqlUqCtYmNpFlPDeyGXSHj9/B9caLiufc3wjeH51Cms8yCf+WPvWZ5e2J+VhYfbPH4qsYxoVQCnrg0b2a+JR9oaQGrGkOBOaMRy1O202m+EWCRkSt80lu855XF7TLAvHcKdQ89mq4VNJac8ktxmrCg8xLSoXrdMdBUiKQMCk112ZZ4wMrRzqzhaT7iqq8JgMxOvDkaAwJnWJ1O3u0xorlbaHXZanmJH90giNsSXalMTm0pOsr7kBE0WAx00wcyLHUi8Jhg/mQa1WE6fgI4crM7hqZO/8GLaVMaFd2VjSRZVpkYilP7cHtMPb4mCqZE9+Tq39QIRIMkrjLfOr233/W0qPUmKdzj7q7KZFpmJl0SBbzvV85ToYKb2T2f1vjP8uvUk9Y0GZo/MoMJSz4WGYpL9w7izwyBymsra9DDv4hvbZshPS2jECm6L6s0v+ft4KW0qj2f97LEz8lTKeM7WF7bSDEuFYt7regfHanKxO+w8mjSWBE0oa4qOsrPiHBqxgimRvYhMCWL19nO8M2guL1z4nd+v7ufLnvfwZ/FxDDYzRcXtk3aAwvI6gny8XFriFQWH+KbXQi4VVBEk96LC0EC0KhCJUMS3hTv4vNt8zESypvioRycbsUDEnVGDeX3JbrfbQ/01HKvLZVBoCnqriRUFh9w6jRFKP15Nn8H7F9fjJ1XxUOIYVOKbW2z+O+B/HAH8N/6/RaPOwBfrDriR3GbU64zc++EqVr00l0Dv1ieceq2BPWfyePWXrW6Vw6OXikgID+CzBye7Pa6Z+M4b0eOm+yWViBjXK8Vj+g84p0jHZqaw+JpvJ8CP246TFhvqMWnN30vFiG4d6RwXxqp9p7lUVIVaIWN0jyS6JITjo1Yik7p/fW0O+00n1Y02CxqVjE1v3k291ojZamN7Vg6/bT1Jzy7xhCl9+fRS6xSZlmhoMrLww1WuKra/l5JZg7vQr1MsWoOJOq0RvdHiel9SkYQM3xjuihvMD3m7aTnGJxIIeSZlIha7lQ5hN3ctiQpyD8kI8dOw7Pk5/Loji3WHLqAzmkmKDGTG8HQk/g7+cfF6e/5A1SWePvkr73S5HV+1kuFdO3Kl9FCbr5UWG4LdCgEaL0aHZWA02Jj88o8eFzOXS6r5+o+jDBkVhUQgJsU7gkiFP0sub+Opk7/iwEG/wCRmx/Rl8TH36f7t5WeYHzuE0YFdESBAJBCToolEIhZRZWzkp7zWi51mKETSdr1BAc7UFzAvYUir/Q2Vux/LESHpJHuFU2io56PctnWaO6rOMiuiH2+lz2ZT6UlWFR+mytSIt0TJ5MieDA3pxIunl7suniqRjJfSphEq90EsFFFtbKTMWM8v+fsovuZ/eVtUJnG+wdRfcVbqtlecJUThw70JwwiUezEupCslNY2s3nOWyKAmFFIJpTUN1Gr1fDluIWW2GjQSOfOOfN7qon2q7ir3HPmSb+5cxNxXlrtpu89eLUfhkNPTP77N0Ix7Ogyl6QY5Sqmhlnvjh/Lg8e89ynK8JUqmRvZ0I7lWu5U6s54CXTWn6wrwksgZEJSMECFCBM7wFJWae8b0xGCxsOHQBTfNf3JUMO8vHO86R9Vb9BytaV/7rrUaabIa8bWpEN1CWqJaIuf+xJEcqL7k0YZLLZYzO7YfRuvNiW6w3Ae5SIpYIGJWVG+O1F4hMyChzRjclugd2JGPNhwgKsiH+SN7MjgjDp3AyH1HvnGTjNTWaDlWc4VZ0X2ZGzuAALmGF9Om8sHFDewoP8ezp34nSunPyNAMxoZ3JcU7gt+v7md5wSG+7b2IM3WF1Ft0FOqq3b43bXnjtoTZbqHJYmR5wSGWFxxiRnRv5scNwfeatMtgNaO3mThbX0SDWUeKdwQLp/TknkndMVotiEQCtpWfYXnBIRcJjVeH8FLaVD66tMnNhxucv/WnUibcktONVCRmenQmedoKPrm0mU+638nWsjPsKD+H0W6hk3ck8zsMwluipMrUxEfd5rGm6Cg2u51+QckMCEriYn0xyd4RLOm5gOO1V1h8bKnba5yuLyBBE8rzg6fxw/rjvDt6HiWWavaUXWRAQDKJ3mEcMrZtT9kMP2+lW8em2ed7x9ErPDliIgEKNVd1VehtZjp5R1JorOanvL180G0u711Y73b+i1D68UzKJIrzmlrFEI/tl8TTl3+kzFTPC50mc3tMPw5W59Bg0dNRE4pQIOCTS5tJ8grnrYzZtxSd/u+C/xHRjY6ORiL5zyht/7vAZLG1khO0RJPexJ7TV5jSL62VbrfJYGpFcptxuaSaj//YxxO3Dbplz9uW8FYpWDguk8sl1ZzOcx9IEgkFPDd7KNuzctAarldf8spq23V4CPRRI5GIuG9cH+q0eoQCASG+GsRikUf/SZFASKjCt5W/ZUsoRVIq67Ss2HqWReP78NvGw6w7fAGxUMgv/WZik1o9Ttg2Y0JId37aesJFcqODfXlz/mh+2HKcJesPuczwEyMCeXbWEMIDvCmqqmft/nPMG9+ViRHdWV9ygnJjPbGqIEaEpnOhoZhZBz5hVY8n+eiPfW22bTtGBBLoq6TK2IjOakQsFCEVivFVK1k0vg93DOuO3WHnaO1lVlfs5eyF1ifZcw1FFOlrSPNRMblvJ5bvOYXOYGZ4t46My0xBJZditdnZfSqXIV0SCLhGKkxWG1uPXWzXKWDvmXwenz7QdaHTSBXckzCUVJ9I1hUfZ3HHETx98lcGBCUjFUoo1ldTY2rilaSZbNyXzbQDP9GkN+GjkjN9UGemD8zgkqG0TWsgcFYXb9ZqlgrFrQacBAKQCIVoxHKiVYHMiulLV79YKsp0WCSWNieom7G15hR3aQbRW5FMUmQUGpUco8lCYVkDdm8ht4cPoNxUT4jMh17B8WhkclRiGTXGJn7M28PywusLjMtN5Ryuvkwv/3iW9FzAV5e3s6fyAquLjjAntj9ihNQ1GjAYLKTGBLP5aDZNBhMJ4QFM6pvGntN5DOvRgY8vb2pFcpvRYDGwtuwo4/sk8/tO9yG4xz5az9fPTOPrKzvYVJLlOt4+EhX3xg9lSEinVpq+18/9wafd5/N65xl8kL3R7Xg1k5WWw2cWu9Od4+HjP7i0oZ19ogmSexMi98FgN+MvVVNhqMdLoeCBCX1YODaTg+evYjRb6ZEYgY9KQZDv9Ta9UCBwS+hqC0KBgCO1uSRpwvBr0eZvC8Fyb77pdS8vnVnpdi7oqAnl9c4z8ZYoMdoaiFMHkechOlokEHJP9FDGBndj96krhASpmBrVm16BHakyNRGq8OW++GEsyfUcZpPmE4WXWMErd45CIBDgq1bQaNHz6cW/2tRF/15wgJFhnfGXa/CXaXgseTwPJo7mXH0RAoEz6UwiFKEQSZgR3YfRoRmoJQoWJgyj0WIgUulPnUXH15e3k+odia9U5XGYrSXSfaLdYnuXFxwizTuKEWGdabIY2FiSxec5WzDZraR4R5DoFeayLrM6bEiFYoaGdOKjbvN47dwfXG4qI1dbzsMnfuDbzPtYfPRbyo31iARC+gcmcX/iSAKltz5cqJEoeThpDBXGBtYXZxGjDuStjFn4SFVoLc7z54fZG3kseTw+khDi1EHYHA5O1uazs+I8nX2j0YjlGG3WNivfl5vK+KPyEOHBAdz1xkp6JEZw25B0gqW+XKwrpVvHcKRiUZvSPrlUTEpMEG9nXSer3hIlDmDx5N5srTrFc2d3ujoIT6dMYHfFBY7VXqHunI65cQMIV/pRYWjAV6bCaLOwouAQt4cOcnud20d0IdtYRJ1Zx5zYfq7K++TInhitFnQ2Iw4c/DNjNkqx7D9GstCM/zLRLSwsJDIyEoFAwLlz17U/DoeDoqIioqKi2nn03/ifoqy28aZ62IMXChjRPdEt0tZgtrB896l2NaDbsi7z8JT+/+198/dS8e6948gtrWblntNojWY6hgcwumcyfx3LbjXc5qNW3GREC3xUCmpETfgr5VjsNsxCCwgdQGui6yNVMSe2P6dPtt1OHRXShW1HLrPpaDbHLhXx41OzOHqpiPK6Jr5ee5RHbu/T7v501sTy8llnq1wggFfnjeSF7/9qtXq+VFzFPR+s5PsnZrByz2k2H7vEusMX8PdSct+43kxM70mOoYTZB67bOh2rv8xrd47kuW83t3KvCPHV8MmjE/ilcC9rio66CE24wo+Hk0aT6h1JgEbDsZorvHKpteyiJbaWnSFBE4qfRsmvL81EIBCgN1s4dLaAX7ecpF5nZFyvZEJ81a64zKpGHWfz2x/SsTscVNbqCPfzcd3mK1UxOiyDAUHJlDTU8ULMdHYeu4JWb2ZQh24MTIvnu01HWdmiE1CvM/L1xiPsOnWFDx4Yh1ggwtoG2c2qzWdgULLHeN9mDA5M5dAZdx1z75RofGRKfuv7EAIEqCVyFCIpqlA5Z5o8Dxi1RINFz/bKs/T2SuKBT7ZR2+TeQkyNDsZPo+Q8TfS+PRGT3YZS7SBXW+FGclviSE0uG0uyGK3swfjEnuSZyqgza3GYBJitNt5ducctSetiYSXrDl3gH3NHYLZbPWoxW2Jz2Un+mTm3FdGdNSKDLcWnCZRp+K73IqqMjUiFYuQiCU0WAwLAS6Kgi2+MS5dapK/hjXN/8ELaFD7udidVpkZqzVqilAGoxHKC5F5oJNcXzA1mPQuPfOOK8B0dlsGYsC58mL3RjSx28o7kpbRp+CqUBEi9mNo/nbYQIPdieGjnNjX5AEEyLyQCEY+e+In3us6hqyjWLfLXE2QiCUle4XzdawGNZgO1Zi2Bci9UYrlLa5zXVMELnaaw8Mg3bgsxIQLeTJnNmRPVPLRyLa8uHM6nVzdx7Px1z2VviYIHE0fzRvpMnj/jLo9J9Y7gnxmznVXLFvUGs93GzvL2P99f8/fxVMpEvKVKVzUuxIMTgMFmIU9XxfvH17sN03XxjeUf6dPwFiuRiSXcFTeIN86v8fhaAgRMjezF86fd9/+7vF108YslqzafD665V6jEMp5NncTjJ35yK0KY7VY2l57iVN1V3ukyhwVHvsJos1Bn1rG97Czf9lqIxWFDKBBSa9LiJ9GgvEUJCjhDKILkXsiFEjIDEig21LCn8gIRSn86+0Zjtdt4OmUiAXIvakxNfJ+3h3XFx90WzV18Y3k2dWK7pH9L+WmW9FjIhgMXeWhGX34r38uLR89hc9iZGdGXxVN689GK/R4f++C0vvxZfsytyzcpogcqkZT15Sf4LGeL63ZfqYqe/gn8cK3Dlast56UzK1CIpPhIlWgtRldleH7EUMRCISkxwcwc0RmHt5lXL61kfHg34q5FRzdDLpYgF/9nEdsb8V8e1Y+NjaWqqnXFq7a2ltjY2H/JTv2NtiHxMIDV6j4iEaIbdExag5nsovb9BC1WW5vhA7eKAG8VmcnRvHj7MGYNzkBvsrDwo1UeHRwm9UnFV9N29dhks1CgreLlsysZv/sdJu99j4l73uW9i+s9GnM7HA5ipMH0DUj0+HxRSn8mBfVi3QFnRbyqQcfP24+7yP3OrFykAglB7UzqOvPOnX9nJkVz/mp5K5LbDKvNzvur9nDHsO6u22oa9bzx2w6mvPgjwUJfN63fa5dWIQu2s+yFOYzs3pEALxWhfhpuH9qVH56fzj8vruXXq/vdqnYlhlpWFByi2tRIkb6GSKU/yV7t59rbHDbMdiuHanJ45uxvjN/3NrOPfsRp9SX++dAohnTtwMq9Z5j7zjKqGnQYzRZO55agkN18XayUtV6ACAQCLCY7S9cc5+63VvHr9pP8efA8//x5N7e9+jODMuIZ1rW1VvtySTU7jl1hUFBqm6/3R9ERFiYMd8uCbwmVSMaU0Ey3ISyxUMjDk/sjkgow220Y7RbKDHXsrbhIo0NPhPLmEpI4dTDHa6/wXu6fvLlwFAqZ+4XifEEFJ3NLWDg2k7d+386CD1ZyqaKiXRkGOM3eg4NU3PXGSk7sr0bjUGGz2/llR1abcbGbjlzEZne0W/kG0FvNyG8YlEyKDCIoSs4nVzaz9MpO5h38nFfPrubZU79xz5GveDTrJ3K15fhIVbyZMYskr+t2Tcdqr3DXoS+x2G0kasLo5R+PRqxAKZa5tf1tdhs7K865SG6YwpdpUZk8kfVzq4rouYYiF+HRWtr3+wToE9CRELlPm9vvTRjG7ooLOHDw/sUNaK0myj2kyd0IgUCAr1RNtDqQLn6xRCj93Qbqkr3DOVpzhR/73E+fgI4Ir+luZ0b1pfyKkR+3nODF+UN54dLvrYJFGiwGXj/3Bzbs/NLnQebGDmBu7AA+6z6fO+MGIRIIqWnUUVhZR3ldE3VNeqfV000+30J9DSZ7+5IKm93GxYYSnjv9u8eAhEVHl6K3mREJhAwKTuW2qMxWzyESCHk6dSJHanJbBcDkaStx4HBL3hob1pV1xcfb7LSVGerZVnaGESHXFzXby89yoDqHSXvfY8Ked6gxN6GRyrHabdSatNSatBisZux2O5WGBioM9R4H6yRCMf5yDZkBCQwLSWNqZC8GBiXjJVYQow66RnK1LM3d6ZQu3NAZOlmXzwunl/NM6sQ2j6nJ7iy+PDdvMJ8UbmRbxRnX8ywrPoA80sZb940iKfK6hVlKdDDvLB6DLVjP6tLr+vhIpT8zontjsJn59oaBsQcTR3FVV9lqsNNgM1NmqHeRXLFARKCXmhWvzWHWbSmsMx5gZdlB3ulyOw8njsb7X+A5/e+G/3JFt7nCcyO0Wi1y+X+GcPl/M/y9VPio5K3ssVpifGYKKoX7ylcqFrpVeNuC3INl138HPholSVHBvP7rDnQe/F4jA32Y2KcTUnHbX8EqUxN3Hv7CzfnA6rCxpew05+qL+CZzIQEt7G3qtAZe+GoLD04fSG+fRNaUH6FQV42fTM3Y4G4M8uvE80u2uJH59YcucPvQrq7/C4rquSNmAO9f2uBxny7pSuiTEs2mo9kMSI/jr2Nt56wDnLpSircH32CjxcrB0wUMDEpmx7VKnEggZFftOWZF92X62E48NLk/AgR4q2QUGKvYX5Xt9hz+Mg1vdJ7JVW0l715YT425iQiFPwvih2Kx23j57AqPQzOTI3uxpugYX+Vuc91mc9jZVXmOA9XZvDtsLmXVTWRdLuGrDYd4eHJ/zuaXMaxrR9Ydah0F2ww/jZJAn9bT9SazlV+2Z7Ejq3XlTWsw8cTX6/n28ensOZPXSraxfPdpXl48mO0VnrXfKZpIZBYp76fN493La93cHjqog3m642S++uMoDdd+LyG+Gl69cyRlgmoWH1jl0ktGKP14oOMoCrRV+Ms0dPGN5WRdvsfXlArF9AnsyDe5O7A6bChFMn57YTYbD1xk95krCAQC+qTGMLpHEpeKKnlm5lCeWbqJqkatW6vXE6pMjYhEzvPrpsPZdAgJYGyvZLa08z2radJjsdrooA5u9/lTvCOoqHUnN9OGdmJZ2fVqkx2Hi5A2Y2nuTmJVTlLwcfe7KDPUsaX0FHYH3BHXnz8Kj/Jz/l43IpbsFc7bXW4nROFDg8XA3srrcqupkb34KW9Pm3HRDRY9ywsOMjduYJvvpRkBcg1Lei3g2ZO/uWkVVSIZ9yYMI8krjDkHPwOcaVY6m4k3zqzm3W53tGs7VmfSYb22IJQKxUgEIjdbQZVYjkQg4uUzK1iUMJwnUyYADkRmCXN/XEbX+HCumMrcrKZuxBc5W/lH+m0uOcLWMuf8wpsd53DPW9dnABLCA/jo0fGugba24C9VIxG0XwipMWnbtBwD5zHaX3WR0aFd8JYqWZgwnJnRfVhddIQqYxPRqkAGBiezsSSLZR6CSkQCpydHy+rnkJBOPJH1c7v7tbH0JC92msK6awErVofdJUvpG5hIhk80NaYmNpacZFPpSSx2K139Yl2Jab8VHCBaFcDca4N5LW3PwGldd+NtAAarCa3FwJ/FzkHgbn5x9PSPRyIUcUVbwfays+Q0lWG121tZh7WESipD5WviZGHrc8Z7uevo4hvL/Nv7kOYdRZPFgJdUwZ6Gc3yf4+wOqsQyxod3447YAQTIvbjUWOo2aOYtURCtCuTb3J2MDutCdht+5QCDglOQiERE+qjxUsnoHhqLSCD8n6UG/pvjlonuY489BjhXui+++CJK5fVVgc1m48iRI2RkZPzLdxDg6tWrvPbaa+zcuZPy8nLCwsKYM2cOzz//PFKp1HUfTxXlQ4cOkZnZelX67wiTxUpeWTX3jOnFeys9V4Y6hPmTGBXY6nZvlYLbBqSz+3TbMa0J4QFIRP86P94AjYqfnprJx2v2sevUFax2OzKJiJHdk1g8oU+78b31Zh1Lcra6kdyWKDHUsqE4i+lRvVBea0U6HM5K2qL31pCZFMXbc+dQ12Sg0WBk66HL3Hl8RSvZh9Zodpvi3Xc2n3ljulGsr2VF0SG3C4tKLKNnUBxDxqjZejwHuVSMznjzCnizbvdGnL5czuM9R5IZkIBAICDRK4yj1bncd/QbwpV+fJAxlyCVF2abhbXFx9weKxOKeafL7XySvdlt8r3MUM+x2iuMDO3Ma+kzePLkL26Pi1YF4i1RuJHcljDbrbyf+yePjJtI1oclbDp6kcUT+hAZ5Ivd7qBbQkSbaWyPTO2Pl6J1a1FnNLNiT9vhCAaThT2nrzA4owNbj7tbL1U1aIlVB/FB17n4SdXobSa2l59lc+kpFCIpj3YYx8zXf6VDqB+PjJuIQiOm2thEsMIbk86Gv8CLB8b3Y2rfdAK8Vfh7KdlSc5JPzrhf7Iv1tTxz6jeeT52MzeHgH+nTuO/oN25G+eCslrycNo2VBYdccoqLTcXIRWKsdju3D+2KwwGn80q5851lGC1WkiKD+HDRBCr0DXhJFG364gJIBCK3qfyft59geNeEdiNir5TWILaKmRHWlzdz/mjzfnd3GEwHWShPTh/EwfNXEQoE9EyO4t1D7UtdTtdd/375SlX4SlWkeEdgsJpZWXiI7/JaWxVdbCxh0dGlLM1c2MrTs5t/XLsJeQBby88yPbp9GVEzwhS+vNt1DlqLkZymMjRiOfFeoZyqzWfuQXd/d73VhA0HeysvMiGiW6uhK6vdSqWxkQ+zN7K/6hK2a4RrUFAKDyeNIUjmhVAoRC2RMymyB0ne4Sy5vI1z9UVIBCK+y3iA6kYd04aksaeubTkNOFPMpEIxeyovuCqAD3QYxfq9F1kwphcRgT4YzRZ2n77CvtP59PLvwOF2ZBozY/q263oATgJ5s6SwzaWn6BOYSJDYGy+JAi+JgocSR6OzmNhTeYF7Di9pc5HSLzCxlaeETCi+aRpXvVnnNuHf1S+WSmMDzyRPYlhYJxotRu4+vMTtt1Okr2F98QleSJtC/8AkVhcd4VjNFSZF9GBhwjCPxLbJYsBkt2KyWZCLJAgRcqGxmEilPy+kTeFyUzm7K85jsllJ943im173srzgIAerLtHZJ9oj0e3qF4tMKmJPadvSkpN1+Zysy+ezHvPZVXmOBfHDGK3MYFBQKnYcCBGgEEpcw5s3VpYTvcI5XpPH4erL3B0/hI6aUI/OFF4SBfd3HOkitbfqIf2fjlsmuidPngScFd2zZ8+6CCaAVCqlc+fOPPHEE//6PQSys7Ox2+189dVXxMfHc+7cORYsWIBOp+O9995zu+/27dtJTb3e6vT3v3kb8t8FYqGQbScuM3tIVx6a3I+lm46gbzEc1DMpin/cMRy90Qwegrs6RgTSJT6ckx78U/umRvP0zCEYzBayiyoJ8FIil0pQeyAut7y/YiFhAd48O2sIj982CIvVhlQsQiYV37S6bLXbXJXOtrCxNIvRYZ1dRFcAKGUS9CYLhy4Wcu5SJT9vP8Gl4raHyyICvF0uAmKRkJmDMvBXqJkbM4BZMX3ZUnqaOouWZK8IuvvHoRBIEStFfHz/RE7nlZEUFUxuaU2bz69RyhC3EeYhl4rZUJrF/lpntatAV+1q+Y4L7eqKuTTZrTRda+NGKv2ZEtmTzICOiIVCRod3QW8zt/Lo3VJ2mj6BHUn1juD8NaupYLk3n3W/izU3kOYbUaivQaER462S06AzYrHaGNU9kXqdgRdvH8bKvadZufeMa9EQ5KNm0fje9E2JQexBWtNoMHqs6rdEVm4JmcnRrYhuRIA3dWYtH2VvpFBf43Q2iOjB8n6PoBRK2XjwEvVaAycul3DiwxK8lDK8lM6Oh9ZgItRPww9Pz6RDmHMRXKir5pOctitan+b8xS99HuRA5SU+73IPeyousqvmLGa7lS6+sUyLykRrMXAQBzKhGJPdykPxY/jur+NtJp1lF1Wy61QunTr7Mzosgy8ve15kAEyN6kV9vZHeydGcyS+jXmtAdAuLz7+OZTO2fxIvpkzlbGMhBbpqt4r0PXFDiJD58+RXG9AoZKTFhuJwOJCInKbwtnbSyCQeZCE2hx2t1ciP7UgxSgy1nK0vpH9gEoOCU920tO0NDwKYbOZb8uptho9Yye7yC5xpKERnMXKo+jJ23F9DJBASJHfaOK0vOc6g4JRWVa4ak475NxAqm8POjopznG0o4vvMRa6pf41EQQ//DiRoQlyaekOT8zchFgs9ujbcCIvdivjaMGVPvw4MDuxESXoTK/eeZu3B82gUMkb1SKRrdCTp8hDONXzjkTT2DkggQRNy09ez3+S4g/N8c+OQsFAgRCNV0N2/A3KRxCPRlQrF3N9xpLN1LvNyyRqqTU1EKv0p0rd9noxTB7kkJRKBiNnRfbGaHAQpvTA5LDx/epnHBWJn32gqm5qYFzmIbj5xfJ77F2uLjzE8NN2N6DY78jT7Tjtw4C1W8HH3u5AJJbySfhsvnF7m1hE6WZfPsqsHeCNjFrWmJs7Vuw/3igRCUrzCeSxpLNWmJgz2mwdZmGwWBgQmIwBqzTpWFByiQFeFv0zN9Og+BNu98ZdrCJJ5IRNKXFIU52/B4QwYOb2ctzJmsaEki00lJ9HZTIgEQgYEJXNfwnACPRD8/+u4ZaK7a5dz1X7XXXfx8ccf4+V169OP/1OMGjWKUaNGuf6Pi4vj0qVLfPnll62Irr+/PyEhN//B/ztCJBIytX86s974hVfvHMXql+dxpawGg8lCQngAWoOZ137dzmvzRnl8vL+XincWjOX7LcdYe+CciyQ/OX0Q0cG+3P/JHxRVObWvIqGAQZ078MzMIW0mmN0qfNT/dU2QzeG46cVQe2113gylXML4zBSWX6serjt0nmkD0nnjN+fErFwiZmT3RAZldEAhlVBc3YBaIWPHycsoZBI+vG8CfhrnvgaqnN/vuxIGeXztbgkRJEUGUd2gY+ORC20O+U3p24mTVzzbXw3PjOe72i2tkpjCFL4MC0tHLBJhsJppsOjp5BOJr0zF0OBO/JK/j89ytmB3OOjqF8uihOHkayv5NMfdFu2PwqPc33EkO8rPkRmQQIp3OEqRjFJ9+/G1AFXGRryUMmx2BxV1Wu56bzkSsYhhXRJYMLYXU/qnU1HXhEzijBaODfFFKZdSb9KBwDll30wI2iL6LSERi7B5qHzfNiSdLwu2uC5ADRY9P+TvYUv5ab7KWMi2E+7EuFFvcjNoL6ttwtSiGrqh2NkaFSLwaIvVaDFwpakChVhKcXUDJ3fV8I9Z09HaDRypzmXBka8QC0WMDstgaeZ9vHp2FcmqSF4+srvd97dy7xm6p44mM6AjG0uy3C6o4AwUeShxFCqxjH3lF+gx0p8HfDO5lF+NWCjk9+dvx2K1Y7XZ2XIsmw1HLroWD2q5lKGZ8RiFZgoM1QiAceFdeCplAlk1eXT360BdrYmJz/zoSsLbdy6fYF81mZ0iGRrciY2lJ9vc98HBqQjtNzi4mPVUmxpbBVnciL9KT9PTP56BQSkszd1BjVlLpbHBZZDfFlK9I2/JUaEZUrGEgcHJfHRpU5uDiwOCktFZTRhsZkw2a6vfrM5i5Me83W1W3CuNDawoPMTdcYORi68XelqS5VqTnkBvFZcLqknvHcOxmrY7aEqRFKVYRpJXOLfH9iNBHs7ZnHKW7TrF5dJql8NJdlElaw6c48NF4/mp9wN8eXmry7kgUPb/Y++8o5s616z/U+9y790GY4wNmGZ6770lEFoIIZDee++93iRAEiCBFELoNYQWeu8GDMZgjHtvstWl7w/ZwkKSyZ2Zb2buney1WAtbR9LR0fE5+32e/eytZUpMD0aEp7G14DRtfSKIV4fgJ3X3OgeQicT4SBQtWpyl+cWiEHkucGglCr5Nn88bGatdvJrjVMG8mjqJELkPUqGEexMG8P7FDQBsyD/BpOh0Pr+01et7TopKZ2P+CeQiCR91nIkSOVqtHLFYRGVDnct7Nb3fS4mTyM6t5M+d1zhm2UGXtpEs6DaPLEMBP+XsJ0EdjH8j6as06ph9eIGLLMdkt2K0WUjUhvHBhQ1uf5PgIP0vn/2V33o/gd5iQiWWYbCamR7bm5ERaeToSrlUW0iyTyQzYvtwsSbfoxMHOAb4WmlCkQjFbC445Xa93lp4hiGhqTzVdgwyoYSxkZ2d/tZZdUXc28phkVior+LB40sYHdGZL7rMRiQQIhQIOVpxBYlQhPTfzDHhvwL/tEb3+++///+xH/80ampq8Pd3jxocO3YsBoOBxMREnn32WcaOHev1NYxGI0bjzZtiba13W6r/LQgP0NKxVTgvLt2KUAidEiJRKqRcuF5MRW0Dr80cgkbpfpGy2W2UG+v4MX8fsmQJywbeiUosQyYRU17ZwLT3fnaJg7Xa7Ow6nc31kiq+fXwyfpr/XgG7UCBwqQp4QoIm1Fl50FtMWARW7hnele2nsqiq03Psch6zhnRhcKfWFJTX8sqMwWw/kcUHv/5JbYOB1hFB3DuiGwM6tmJCr1TPqWZeIJWIndu+eNcg3l2xy+3G2S0pmikD0pj27k9uz0+OCSE5MhRqbt6MhAjoFdSGZ5PHOdOOSg01zDr8NWv6PMm56hs8eHyJywLgZOU1TlZe46m2o5kS05OVzXRzufXlxKqDeTxpJGKBCFEj4fQU0XkrguU+DveF7m35/bhDG2y2WPn9uMOtYuFjE9l95grDOycRFeFDlU3H91nHqTbVE68OoWdQG0r01YQr/VHKpYT4qSmp8t6yH9Ahge23kNZubaJISgzgizNZbtsX6au5UlfcoouIE43b2Ow2YpXBLE17CLvFsXCstNSxqugQhytuvke1uZ4oZQBWm4DhPdvwTfYO/ihxrdYuu7aXHUXneL/jNEQ2gUtn5VaE+WtJjQvFV67k9Uu/8XaHqazIPciu4vOYbBaStZG8lDKBF8/+6mJndbDqMs8nTOAf6w+w/WQWZosVtULGmO7JfPP4ZJ79bjOVdQ0senYii/N2uHRA1uUfRytR8Hmn2azbeZGfdtwksiKhgCcm9aN1RCA7T1zlnuED2Vl83uMgk0woYUpYL/QNFmh2CThXnee0kWsJVruVSpMOP4maRen38eTJ5azNO8aUmB5OIuQJ97YaSOBf8EttDrlIwvsdp/H8mV/cyG6COoSn247htXO/AdDFPx6l2HVwssFqYmsLhB9gc8Ep7oju7kJ0m0OrljN/dA8+WPkny0ffyc/5+7yGS4yP6kqwTMsnnWZhsllosBip9Klk+IQYnvPpx+nLhSxaewSdwURuSRWLNh/hqUn9eDZ5LI8njXRWZ212OzqLgWSfSH7M2cdVXQkLut5LhNLfTZqhFMmYHNWdJR7kJuCopt4R3QPtLSEfOrMBk83iCL2Qqvk4bQYNVhOlhloCZWpUYrmLv+3g0FRKDDUsu7aXQ2WXmRbbm95BSW5zBgBDQlNp5xOFTCThrQ5TUIvlSEU3r8NFt7gdhCl8eSNxCi8s/IPckpuPHbucx9Ktx/nHI+O4M6oHJpvjHDBYzXx/dY+b9lzf2DWw2mwtOncYrGYOlF1iUnQ6Q8M7YLPb2FRwilmHvnap2idqwng99Q7evbDOo4a2V1AbJAIRJfpqN5LbhB3FGaT6RjMpujv3JgykzFDHntILVJnqKdHX0KnR0aLeYmRl7iGX631n/3jGR97e8/7/IgT2loxM/5ciOzubzp078/HHH3PfffcBUF5ezvLly+nVqxdCoZA1a9bw4Ycfsn79eq9k9/XXX+eNN95w+31NTc1/a8X6n0VVXQP/WH+ArccuOYd3ArUqHp3Qm77t491kATabnVJjDbMPL8BfpuaDjtMpN9axqeAEBquZ9uoYOmrj+WbdUfaecc+9/2jeaAZ5STD7j6DaWI/ZbsVssyIRipAJxWhvmQQ1Wy2svHG4xcGJTzrNpJNfHGWGWr69uosaUwP9gpPpqW7LJ6v2sj8jB7lUzMfzRhMZ5Mu8z1ZTXOU+mTt1QEfuHdGNAI2KijodZqsNiVhIgPqv6ZsqautpMJhYsecM2QXlaFVypvTrQGyoP5dulPLWzzspr3FcZMP8Ncwd1Y3+HVuhlcuoMxlpsBodpvZSFWKE+Csc71tvMfLe+XVsLz7Hqj5PMO/ot87oz1shEYhY2uMBZh9e4CTC8epgFnSdi0oow2CyYLPZEYuE1AsMjNv7kdfBlnh1MPcHjGThmqO8Pmso8z5b7SY9mNynPY+M741dbOVIeTahCh9EAiE15gY25Z/kcHkWr6ROosFiom9QEofO5fHSUs/fZWSgD189OoEnF26itKqOsAAt0wel0aqVP09kfO/1M48K60RMSQz/WOfZugccLiA/vzCNIB811To9P+46wao955yhCTEhfswfn06Jooyvcxw3n196PYrWpkSAkDxLGfcfd48HbcKI8I48GD+caW/+4pZOF+av5dmZfZFphByvvYJIKCTNPxZwTKd38o/FZrcTLPdhzpGFLtGnAVI1nybfwyOfbnSzLgOHDOnl6YMpqKrisuI6P3lJBFSJZCzqMJ+Zb6wkLsyfId1akd4mhsPnb7Bo82E6tYpgxtBOKAIFbsN80coAnmk1ng3bL5McGcKMwZ0Bx43/7Yw1PJo0gsn7P20xJezptmM4UHaJjr4xTInpSYPVRLG+GoVYyvq8Y/zmIZHt8TYjGR7eEX+ZmlpTA3qriQqjjkqTQ6+tFsu9To5XGXTo7WbW3jjKueobKERSxkR0pqNfDF9e3sbvRWcQCYSs7fsUYQrXwJByQy0j97zv9bOAoz2/ru/TLYYW1NYbWLn3DNdLKxk1pDUvXvzZzd+4d1AbXkqZSIBMQ7mxljfOrXYhWwIEDA5J5Y7A3jzy6QbqDSbEIiFb3r6XIF81BouZWksD6/OOszH/BDXmBuLVIcyK70uk0p/nTv3C0h4PeNRoVhp1fJy5iZ3FGS6/d+j+Z5DsE4FPY5XaYDVRqK/iq8t/cKjsMjbstNVG8EDiUNr5RLpYyN0KndmA3mpiX+lFdBYjg0JTyKuv4Kfr+ykx1BAm9+Xu+H601oS16ASQVVvoHCgEeL71BLZvvuE1+lwpk7D69VmI5Q4Lukqjjon7PvboMT0lpic9Alvz+MllXt8fHGl4r6RMQm8xsbHghFeiGir35cO06cw6/LXL79tqI/i400ykAhFvnl/Dfg+Ev/lrLO4+n2C5DxWGOmoterYWnkZoFzAuqitvZKxyi59O84vjvY53/Z/S5NbW1uLj4/OX+Nr/KNF9/vnn+eCDD1rcJjMzk6SkJOfPBQUF9OvXj/79+7N48eIWngmzZs0iJyeH/fs93wQ8VXSjoqL+1xNdcAz46I1mymrqkUlE+KoUaFVyxM30fPUGI3V6E9fLKtjScJQLNXksSr+Pl8786hbdqRLLeL/dDH7bdIE/T7u229KTovnwvlFo/oJrAzj0tZ6yzy02C2XGOv5x6Xf2NA5gSIVihoSm8kDiUILlrsLiSqOONzNWc6jcvaI3K64vE0LTOXmxEF+1gjZRgRytzuLtS2sJV/jzdvJUQqS+jbpgMR/+9ic7T3lPUfrmmYlY1EaiJcHkFFQCAtRKCVFBfgRoXCtX5kbNbJmxFpPNQpjcF4VYCmYh9UYTUpEQ38YKuMVmo1ZnoLpej1QpRC8wsCbvKFWmehI1YQwP74hcKEYhlqEUu1biK4x13LH/M/ylKh5IHMYLZ35p8bg/njSSQ2VZzoSr11PvoJs6kaz8Mn4/fgmT2UrHhHAGdIlnX9UFPs50d5ZQiqR81v4eCnPqiQn158UlW8kvd7dyk0vEbH33XmoFDSy/tpc/is5htJkJkfswMSqdjn4xvHBmBZ92noXFZiVKEsT2U1l8vf6QS2hIWqsInpnRl43lx+igisNXoqTKpCMxMISnTv1IQQuG9RKBiLXpz3LHG8td0r6a4+k7+zKmZzIGo4X3V/zJn2c8t5Jfu2cwRyXnKTZU81TsOJ7+cgtTh3TgtOaix/OvCVKhmDV9nmLtzgt8t/Wo8/dh/ho+eXQ0719b69Z2TdKG82K7CTx/5heCZFrujOnh5kd6T8wACo9Z2HLE+w3x5emD6dslhsn7P/UaFAHwQNww0tWJFFkqOVSbyUh1N+77cA3gkOD0Toljf8ZV7h7dGYVGRKmhlmC5Fn2dlWWbT3Iqu5DHJvR2JiQarRbePr+GcZFd2Fea6XH6XiGSMiGyK1NielJuqqPUUEMbTTiRqpszE5VGHbXmBlbfOEqpoYZoVSATorqhEsvADjqrgV+vH+JKXREaiYLhYR1RS+RsyjvJU8mjvd7UK4x1COygsxox2ywcKstyEhOJQMQ36fMIE/mD3TGN3xSQU2qo4cFjiz22sJvQRFhul85VbzBRbzByubiE2HB/TlZf5Uz1dVRiGQNDU/CVqAhT+FJvMfLS2V85cwtxacKwkA4k1Sbwya+Oe9iGN+8hKsiXEkMN845+4zYsCY7F16y4vtjsdvxlDi9ssVCEr1RFtU5PSVUdtWY9co2QbaWnqbXoaecTxaDQFJeig9VmdXaRxAIhg0NTSdSGYbXbOVl5ja7+CYyN7IL6Nr7Et6LWrMdssyIVilyIstVqpcpcT2ZtAQfLLiMTShgR3hF/mYY5hxdQaqxFLpKwMGU+M99c2cI7wPPT+jOuZwoykYRKo47hf77rcbsAqZoP0qYz9+g3Lb7e5Kh0nmo7hhJjDbMPLXCrDjfH2+2noJUq2VJwColQxJiIzkQqA6g3G5CLpdx7ZFGLnUqATf2eJcSDBzI4BveqTPUcLHM4sfQOaoOvVPV/zlXhnyG6/6MRwE899RSzZ89ucZv4+Hjn/wsLCxkwYAA9e/bk22+/ve3rp6ens2OH98EPmUyGTPYfH7b6n4RKLkUll3p1LtDpjfx+7BLvr9zNj69OZXfOeT7vcjdfXt7mMZ++3mLk+fM/sXDcfPadveYiY9AbzS4/e4LBYkJnMXCi8hrHK646Kyn+MrXzplBh1DHn8EIX/0aTzcKWwtOcrrrO4vT5Lu1Kf5mal1ImklmTz/r841QYdUQpA5ge24fc67VMeGm5M/FKLZfy5OS+fNvxfuadWcSckwtY2ftx4nyCqait588z3ltTAGv+PM8zk/tzPCuP45fzUMmljOmejK7BhBDwayS7tWY9O4rOsejKdqfOTSQQMjSsPY8njSL4ljhjsVCIv1YJMhufZG5mR/FNm6w/Sy6w+OpuXmo3gQRNKBEKP7fKtgCHBrC0MU2qJZToa/CVKgmSaZkbN4iu6tY8vnADF3NvWk7tOJXFoi2HWf7SFBanR/Bt9i7OVuUiE4kZHJLKrPh+CI1C1mRe5PUft3v93n3UchqERuYd+dZF01hiqGHhle10D2zNa6mT2VxwinhVMOEhfuT63eD7FydTVWWksLaauFB/ck2lvHj5J/IbKlnNzereb0FPEKLwbZHoCgVCrGIL3z45mUe+Wk9FbUOzxwRMH5zGsC5JrM47Sqo43ivJBfh6zWE+fnIESomUZ//xOyVVOgJ8lRTpWj7uJpuFBpOJib1TOXThOhcaj/WjU3rxSc4GN5ILcKm2kE8zN/Niuwlc05VytNz93Ozjn8x9J9e0+N7rDmTQoX1wiyQX4FTtVYJVGt7IXM1TrcZw/GI+baODuZRXytXCch4a14sv1u3n1OeF+Krk+KgV1Oj0LhaGPdvFOv8vE4kZE9GZ986vY2G3+6g06tje7LxO1ITxWupkdhSfY/aRBVSbGohVBTElpgcqsczpDOAvU+MvU/Ng66EYbWbUIhkSsYRqYz17yzJ59/w6l67DvtJM0vxieaTNCF4/t4o3O9zp8eYeINNQ3+iuYLZZqTDq+ChtOrHqYFQ2BScvF/DBzv2U1dQTEejD7GFdaR8XSqBCw/S4Prx3Yb3XYzkjrs9fiqBVyaUoZGJkynAOl2VRoK8gRO5DiMyHQKmGQLkWpVhGfkOlV5ILsKPkHNM79UUuEWMwW5BJxNSa9Sy4/IdHkgsQqQxwbJO1nbPVuaT6RnFv/EASFRG8/8uf7G68FgZqVfROjcVXoSUhJRIlclTNhsxrzHpeObuSASHtuDu+H7uKM9hdfAGR0DH41MkvDqPV7EZ0jVYzeqsJmUCMwkPAg9ZDFdhqtZJvqOSh40tdPNJX5B7k7rh+vJwykcdPLiNIpiWvzPPnbo6M7BKGd0tCJpIgAK+a8AqTDht2/KXqFt1QJkWnIxIKqTE1tEhyAbYVneGN1DtJ0oRTZqxh9Y1jrMs/5vg8vR5zFEVaMOsRIvAawWywmhEJhEQqA5gRdzPcyeEvXIcdkAsltw1F+b+G/1GiGxQURFCQuxWWJxQUFDBgwAA6d+7M999/7xZv6wlnzpwhLCzsP7ub/6tgtJqpNespMdRQpK8iXOFPsFyLVqJA1ihCN5jM5BRX8t6vDo8+OzYEAgFRykC3dlVz1FuNHK+5Qq92sezLuDmx3bFVhMcgAOc+WUzcaCjnoeNLXbz/frtxmPSAVrzR/k6kQjFLr+1xMylvQqG+inX5x7k7rq+LmD5IrkUuiqONNpwakx5/sYaHP19HVr6rzYvOYOLNn3by2QNjmRHbh5+u72fZtb08mzwWo9lyW6KeX1bDvoxrvPXzzVjOn3adom/7eF6eNgirzYbVbmN70Vk+vLjR5blWu43fC89Qoq/h/bRpbjdfo9XMhvwTLiS3+XPfubCOb9PnUWqsdSG6CpGUXkFJnK+54dZm9YRQhS8p6mjuCuhHeWUDH/zxpwvJbUJdg5FZ76xk9SuzeCP1Dsw2GxarlewbFTz4/nruHtaF/LKaFo/ZrOGd+fLy715vDkfKrzAyPI06cwNaqQKz3cqmohOsLjjCV13mcN6YzWeZ55z2cSFyH8aHptNRG4tMJEYjUDAtprdb3n1zDA1rT7W1geBALStems7l/DLO5xTjp1bQOyUesUTAwpxtCAUiis57r8oClNfWIzZK+eTXA1xv1P1V1xoIUmpbHJoSCYQYDBZe/WETH88fw76Ma2w/cZmQYBVnz7gvKKVCMXMSBtArqA036stRiKTcEdOdNP9YFl3Z4ZQvCOyOuO+WUFFbz1+xJpAIRVixsaDrXOx2O5daFzGlbVsSVYNYv/cCBeU1dEmM5ERWPtX1BjeP7uSYEHxVCnR6o9OFpbU2DIlIwgtnf+H9jtOZ13owfxSexY6NURGdefD4YhcillNfyvsXN3CsIpvn243HV6qizFBLmbGWdXnHqDMbaOcTybDwDlhtNjeS24TTVdfZVniGWHUQFUad1yqWSixDJZahEEmYEdeHP4vPEyz04+2f/uRk1s3h0NJqHaezCxiU1oqXpw+mX3AyR8uzPabMjY5Io7N/vNvvb0WDxYjZZkUukuAjVTIoLIWu5gQA5CKpo2LdiNulndmwc772BgnhAUjEIqRiEUar2et1fGR4GiFyH+4/thg7dsZHdmVgaDvOVt7gzPFyJ8kFxzm//qDDAu2XXadZ8+rdqEJv6vdLDNW09YlgTERnZ4hHE05V5hAs9+HLLvfga1chakwva7CaWJ93jIKGSoLlPkyM6oZaIvdo9dUcVeZ6Hjy2xGOlc1nOXmJUgXyXPp9lOXtavBc1QaWQOEOTfKUq7knoz6uN+uxbsebGUR5LGsFr5zzb7PUNbktgY4jQrUFMnmC129HbHEPEDVYzk6PTiVMH82vuQU5VXmNEeEe+ueI5/hmgZ1Abt0HMalM9BQ2V/Jp7yNkNnBzdHV+JEr3NzKaCE2wuOIXBYiLFN4p7EwYSpvD7p6vt/674HyW6fxUFBQX079+fmJgYPv74Y5dktiaHhWXLliGVSklLSwNg7dq1LF269Lbyhn8l1Bjryakv49Vzv1FsqEYtltM9sDVhCl9GR3QiQKpBI1FQXFnn0ka12SBRHUqxvvq2TgYZ9TeIj4x2El2RUMCUfh2QSrwbkddZDDx4fAm1HiZ5j1ZksyBrO/e3HsK2wjMtvvfG/BOMi+xCsMhVwqCRKDDr7eRdK2NvYa4byW2Orzcc5IMHRvLT9f1cqMnHYDUhFYsRCGhxcCnYV015rftKfd+5ayz11zB3ZDoimQC1Tcn3nR4CO2TU3mBN8RHnANGpqhyK9NVuN99as55fcw96fW+r3cbG/BMk+0TiL1U7W7JKsYy5rQYy9cAX+EiUBEjVXhcKMqGYwaGpHDiRy70rV/HDs1Nb9EyuazCy5+xVBndOZMaby110oBsOXWBin1TO5bj7NDahd4cY/nHEu2crwKb8k4yMSEMsECMSCOke0Jq9ZZm8lrGKRV3ncl1XypnqXMaHd2OUXxd++eMMSzI2YbPZ6ZYUzQt396dfUFv2lmW6vXa4wo+pMT2x2m2IRUIUIhmhvloO1edy7moR3205yudPj2Zj4UnuiupFacPtrX/KqnUu1aLfD2Ux864uTimIJ/QLSubQuVwuXC9hzMtLuXdEN16bOZSD9e77LBWK+aTTTPaUXHTRUoPDi/OjtBk8f+YXCvVVGOxmfNUKqnXep+PDA30QISRQpqHcQypUEwaHtideHczTp39yqZYpRFLu7zQUU7mZJyb15YOVf3Lumut33jY6mA/njSKzqJjth7O4d2R3Qv00+MlUfN75bmx2G7/lHmZd/jE6+cUxKCSV77J3ea027i65wKSodBI0obx3YR0Hyi43e+w832Tv5N0OU5kQ1ZW1ecc8vsaWglN81XUOu4ozSNCEeNwGoM6kp9ai59ET39NGE0H1ZVxIbnPsOp3N0M5tGNI5kWfajmFydDq/XD9AiaGWeHUQ9yYMxEei9FiNbEK1qZ4b9eX8fP0APhIlbbThdA9ohVaq9Er0rLS8mAHHsJlMIuaFuwbhq1ZQ0KD3mpJ2R3R3HjnxPfZGLe3g0FQeO/kDX7Wfy7N7PetKwXFt/GH7CZ6b0h9FI5EsNdQyJ2EADx1f6lGHXWqo4fVzq/ik00xEAiGbCk7ydbPIWnBUZGfG9WF6bG+nA4InZFTntdjOf/v8Wrb0f56XUyZh1ttvG5o0tnc7rI32cgKBgB6BiYwMT/M4bCgVimmlDuX11Ml8l72bAr0jwEMlkjExOp1psb24UJ1Hg9VEB78YVCIZ9VbvJdl+IcmsuXGU76/tcbw/AroHtubdjnex8PJ2Xmk/iXU3jnlMipMJxTzcZpiLLKfaVM9bGa663mMV2ewrzeTjTjN54Phil1S43SUX2F1ygeeSxzEsrMPfZJd/EaK7Y8cOsrOzyc7OJjIy0uWx5hLjt956i9zcXMRiMUlJSaxcuZLJkyf/d+/u/zdUmRt45exKxkR2ZkhYe+QiCQUNFZyuvM6Jimv0C2mH3aCnrKaec9duTn1uP3KF9ORER8vkNpAJxc4BN7FQyEfzRjs1bLfCarNhMlvYV5rpkeQ24ffC08xvPRhjC0MrQGM12POKObuwnFB/DYubEXjP21UgFTgqwkqRFAFCpBIRPZJjOHTBvcLWhLE92vHles9DTRsOXeCe4d24fLWMFZsukJFTjEAAPZJjeG70JPbpMvg130Fk1+cdI1EzzulwAA5Nr7eBqiZkVOfRwTfGxefSZLMgEQr5IG0aq28c4cWUCTx/+he3m5wAAa+mTsZmgrd/2UmYv5YbpdVOb09vOHO1kIFprdyGnc5dK2LOsG4M7ZLo5msL0KlVBCKJ8LaLpjJjLdGqQIQ4vov7E4ewv+wSFcY6Hjq+hFdSJxEi9aWoUMd9H6xxylAADpzPYeprhfz86lR6BLVhZe4hcuvL8JOqGBmRxvCwjggQEiLX4itVcb24kunv/ez09u2bGs+hSgeJKjBW0i42kT9OtLi7hPlrqWwmf8i8UYLG1J2eAW04VOGeTBYg03BvzCAeXe2o8FtsNr7ZcoRT2QX0GuFOwKbH9uZg2WXW5Lmfw6cqc3j7/FqebzeeR098z+9lpxjXJ5llv5/0ur+TBqXwe+FpZsf35+PMTR63iVT60yUgnjv3f+YmcdBbTXyWvZm32k5l2fYTzBrSBY1CytHMPBDY6ZIYRYBWyanaqxzSZzG2bzrT3vmJLx4aT1qrCC5W5xOm9GNZjsNLd0/pRWYn9OetC967RgA5ulKOVmS7kNwmmGwWnj+zgqXd72db4RmPsowmkmG5nf2gxcAXl38nr6GCp+LH8eZvnp0GmrB02zE6J0YSoNEQINeQoA7FbLNgsltYn3ecQn0VkcoAxkd2QSGWuUSx1pgaeCtjDal+0TzeZiQlhhoqjHXUW00IzAKECDy2k/sGJ7Ps2r4W9ystIJb0mYmE+TuqilKhY+F4699fgjqEvIYKp8/unTE9+CZ7B1a7DRlSt2HJW3HuWiF6o8VJdOPVIRyryG4x7CGztgCjzUKJocaN5Dbhx5z9JPtE0i+4LWIPnswWm9WjG0Nz2LCTWVtA7+AkaqwNPDapD28s9yxL7Ns+DrVKit5qQttoFeIjVfJE0ijuiO7Ojzn7KTZUEy73a5SiaNjSOOz1Xse7UEvkWG02lGIZGdU3mHLgc+f9bUpMTyZFp7M8x/N35iNR0NE3hm/Ks+kRmMjZqus0WE0cLs8iq7aQL7rMZkn2br5Jn8cHFzdwtDzb2blo0u43j7Q22yysyzvmcXhtelxvPri4wWP0McCHFzfSMyjxb6IL/NfFYP1/xOzZs7Hb7R7/NeHuu+/m4sWL1NfXU1NTw9GjR/+tSG6FUcfhsst80Gk6Rfpq5hxZyJ37P2N5zn5SfKNpsJq4c/+nXNWXEBKkRtbMJmvjwYuMCu2MXCh1y8m+FeMiu2Kz2Ll/TA82vT2HbknRKGTuvnzVOj2r9p0lv6a6xbQeALPdSrGhmjba8Ba3i1eHeO3EVtTWI0Tg0Wv1VjSdFxOj0vGRKtAq5bwwdRBaD7ZrAAPTWmGz2cgprvT4+NQBaew8dYWH/rGOjJzixveAQxdyeeCjtaTaEugXmAyA3mp282f1prdqDplQ7GYwf6O+nDv3f8HmglNMje2FWixnWc+HGBbWAaVIikwopndQEj/2fJjuAYms2HkGu91hAyb3YpMmEgrwUcmdwR0gICLgpuYwKsiHLx8aT1JUEI9P6MPXj0yga5sowvw1pMaF8tK0QTw/dSBSoRiZh5tWc0Qo/QmQqvGXabDa7QTLfHgzZQoKkZRSYy2PnPieOr2RV5ZudyG5TahrMDLl1Z/p75fCux3v4qdej/BhpxmkB7RGK1EQJHdUFusaDHy+br9L6p1UInIauB8su0zP9jHIWuhKdEuKprpe75ZA9tI325gRNICH40cQ3igfUYikTIpKZ2HXuRQaKvno4ZF0Sby5AM+8UUpnX9cWt0ggZGBoitcqJTi8Ms02CzGqIP4oPsug7gmkxnn2BB+R3gaFv4Dvc/YgF0l4JHG4S0scoKNfLAu6zuWPorMt6niX5+9lcPdWPP3NJt5dsYtR3duiN5p5++edTHn7J6S1SsrNtWTbCujZLpbnF2+hTm+kjTacHz3c8G8XlNDBL9Yj2W+CxW5lW9FZhoZ18LqNWCiif0iy18drTQ2Y7Bb2N0YP+0gUlFZ712AC5JZW3RKUYGdN3jEm7vuE5Tn72FmcwQ/X9jBh3ydsyj9JldHxehablY35Jxgb2YUEdShzji5i3rFveeHsCmYc+pInTy2n2FCDycNCP1TuS2uNd3ld76AkfOVKYoL9nXHpIgT0C3b/7FqJwoX0JKhDyGgMORCLbt9yV8ikNO/M+0qVbkE0nlBvMbI4e1eL2yy/to9Kk7t7iAN2JB6Gl29F0zYCEUTHa3jn3uGE+t2sEitkEqYNSuOFaQN57sKPbgPRPlIl4Uo/7k0YwOy4fnQPas2ZqutY7XYmR3VnUnQ6rTQhRCoD0EoU/Jp7kOfP/OJSxFmXd4z0wNaMDE9z279AmYaFXe+jqtxAZH4UHaqTWJg6n8cTRiETiqkw6dhccIpQhR9r847yRuodbOz3LMt7PMT6vk/zSadZJPlEuAwl15kNrLjuPuwpE0ro4h/PyUp3l6SbR9XOurzjWGy37xr8u+NfoqL7Nxx1znhNCPOPfufid3mk/ApHyq/wVNvRjI/qymMnvue3Pk8wsU8q32x2DPfUNRjZduQyPm3t3BM/gE8vuU/bg2OiOEzhS/feJjr4x1BTY2DNqXPY7dAzORZ/rQI/tZJqnZ7nFm/h+OU8fnllGtK/cpESiBgf2ZXMi55bhwAzY70PesSG+HO9tJJuSdEtJpGF+WuxC+xEKQPoG5zkJJmhfhpWvjyTb7ccYeuxTIxmK1FBPkwb2InUuDDmf77a4+tJxSKGdE5k5vueHQ+sNjsf/ryXD58Yzt7yi/QITHS7aIsEQtpqI8is9f7ZB4WmUGGsc8YRV5vqeef8Wow2M3+WXODPkgu01oQSrwomzT+OcZFdiVD6oRbL0UgU1OkNXM5zSCjKaurx1yrRKGXUNYYnRAT6MGN4RzomhlNh1KGVKPBVKCmuqOHRCb15bvFWUmND+XDeaBZsPMRT32zCZLHSNjqYuwakkRIbitFi4Ys1++mZHItKLGVYeEc25nsvk86M64tCJKXKpCNM4YdOb6Qw08Ci1Plk1uejtxupr7Z4tM9qgt5kYfvZS+jDapkQ2QWxUIxcKEEsunmMTRYrBzJctbzXiysZqnLYYVntNn7O38c784fz4qJtbjHQUUG+vD5rCEKxYyHQXJtc22DkgY/W0ic1jldHTiE8UEuxsZo9JReYe3QRtWY9flIVH0ybycIVcPxyPjq9kUs55fQPTmZP6UXA4f15o1nynTccLLvMi8njuFRXhEIh4s25Qzl2KY+N+y5SUdtAdLAvEwemIPGz8eolh1PDO+fXMTGqG193vZcifRV6i4l22iguZJdiNlrZmO+9Kgxwpa6IsAQNXdtEcf/oHizcdMjFoWTZllPMuqs7C3P/4OlBE/nz7FWyC8qJita4+P6C4zol9bBou/m4AAR4jfZuwvnqGwwObe/xsRSfKIr0VXTwi/X6fL3VRLWpwVn1NNktqOTSFhP6bg3Gyai5wfce/Gbt2PkqaxvtfCLpLFNTa9ZT0FBJe78Y5h/91m2he01Xyvxj3/JLr0fdZFlBci2fdp7FkyeXu5HKLv7xvJQywU324C/X8Eib4Zytuu4iZSoz1hKpvOlq0bzim6UromNCOGeuuvu7NmFCrxR8VDe7d0qRFH/p7e2qVI2Vz5aQWVvgtYghFooZEZ7W4iJQLpIQr3Z0SbRSJfUCPRcV2Xz91HiEViFmq8Nj+rwul7tPfOlMcGuOcmMdT51c7nYd/irrDz5Mm04Hv1hnxdnSKMm5FSabhadOLeeRxBHcmzCQ7UVnqbMYSPWNIkUbzcc/72PXqZuFn6/XHmZcr3Z8OGAWm0qPMzysI2XGWrLrijlReY00v1gilQFeq65mm8Xj8NuCLnMoNdze9z+7rhijzeLRBen/Ev4muv8isNitvHdhvUdTd4DPL23lhx4Psir3CKtyjzC1fy9W7D7tTIkqKKulOspIa20oTySNYunVP52DY0IE9AtJZnZ8fyqMdYSofPj4171sPnpTZ/jZmn20jwvjk/vHcP56MccvOyoFO49dYWSvTmwvch+0aoKPREGgTEO/kGT2l2V6bFmODO9Imn+c19cI8dfwwW9/8s49I1jdLH72Vswe1oVsYyHfdLvPJfddJBLip1Eyf1QP5o/ujtVm50p+Oaey81HKJF5vgN2Sojl8MbfFwayK2gaqK40kasJID2zl9niQXMsTbUdx/9HvPKZxhcp96RbQCqvd5tSxmWwWZ3RvE67UFXOlrpg/GofaBoWk8mrqRAAkIhG+6psXyw0HzzNnWDe+WLefttEhvHzvABbk/s6nJ9c4W2UJ6hBeSB5Pp6AI0pOieWXGEJ76ZpPLAFvmjVJeXfYHQoGARY9N4sW7BuGvVSITi7m/9RBOVV4jv8G9Ej42ogv+UhUFDRUkaB0VK6lETE2dgUc/20hUkC+dEyMpCvCuLXUe3wo9M7t1o0Bfhc6iJ1IZgBgRvhIVErEIm93uJtPILqzADw0hch9KDDVsKzmDJFTMilensfXwJU5cLkAmETGwWwLtWgXz5IXvGRiSyo+vTGX6mytc9NxWm51LN8oIVfvwasZKtyn5KlM9z134kU+n3OO0Pdp9/Cqvzx2HGBG7Ss87HCL+QvyqxWbFT6YmXdqKncUZrLh+kHa+UUy6owMasZxW2lDevLSKjMKbxMKOnTV5R1mTd5RIpT/J2khsJVJeX7yTDx8e4dUvuTl8NQqGdErk3RW7uHrLQjLzRgmR8n4U6qvw1TiIUF5ZDXExvm569H2llxgUmsLvXvT4duwovaRuNYdMJMHsgSyLBEIeTBxKQmP6l3cIXIe+yjMY1SOJ3/70fp2a0r8DPo0yrTJDLUuv7mlxH5dc3U2MKggbNiZEdeWTS1s8/n2DQ6e/KvcI97YagFx0U0Jmt9tRCaV81nkWZYZa9pdeQiwUMjAkBY1E4VXb6y9V8X2PBzlVnkN5Qx1V1nou6fKJUQU5g3bs4NSTrio+xMMTRvPIpxuweOiKhQdoGZjWCqHwJh0VCUWMCE9j8dXdXo+BSixDIhAh8xIL3ASxQIQAxwJeKBC6aZ0jFH4k+0R6dCkBmBrTC2mzDlKKbxS/3TjMlOOfIhIIEQluRi77S9U80mY4KvHN62G1qZ5/XNrqsdhgsVt59vTPrOv7FJpGwtlEED3BYDXzUeZG7orpRa/ANmwsOEG8NJS7Xlvhpqm322H9gQsE+aiZ0bMPj5783qVCLBdJeKbtWPoEJeHrIYDFUzpgz4DWjsASL1ygOYJk2r9UiPp3x7+EdOFvOKQLhS1YLVntNg6VZZEe2JoTlVeptur44vGxtI0OBmB/Rg6DAtrzzoV1XKkr4pNOM/mi82w+6DidH3o8SKpvNO9krCFApkEjVnDHkFSentaX2JCb0/7ncop4ctFGF1nE0j+O01odSiu199jlexMGohTJnHZhn3WaRbeAVsSpgukV1IaFXefySOKIFs2ufVUKXpo2mOOXb/DlwxNQy131xgIBzBzcmYEdW9E1KMFjqpJEJCS3pBKb1Q4COx+v2sPyHSeJCvYjJsSzq4GPSu4Me2gJZTX1vNvhLnyaXcDNVgulhhpKDTWEy/1Y2v0BZ/u7CV384/kwbTpVpnoimiWWWU12lnd6hKXtH+bHTo/ydKuxRKsCXZ5badJhatTryqUSpg3s5Hxs7cEMArRKnpzUl9fmDuLZi8s5WpHtQnqu6kp44Phi8uoreOPuoeSXVXt0aQDHQMxHq/YglYoxmS2UVuvIyq7g605zeThxOOEKP1QiGSk+UXyUNoN5rQehlShp5xuNQiTFaDJTU69nWNckXpk+hGenDCDcX0uY/+1z2cODtLx3YQN3H/6ah44vZfzej3nrwhoqzHXUNugRCYVEB/u6Pe/L3w7yTttpzqrUvooLGKRGamPLGT4umvETW1MSUMJLmb+QrSvh26s7uW4tZs1rsxjQMYEQPzVxof48PKEXy56fynf5271aQVWZ6rluLuG9OSP59aUZzB7alYc/Xk9KfSI/dHqYWRH9SPkLsbZdAhJ47dwq7j78NZUmHZ93mc3FmnzevbKGFzJ/ZlPpcWLV3p1q8hsq6aRJYPM+h6bvVGYhPQPauGwTrw5mRHhHhoV1IETuQ6wqiOy8co8k1wmBAJFAiKDx9IkI1BKk0HJHdHeXzdblHeOumF6E3OKJ3YT+we2Qi8TEqlp22xkb0QUrdiSCmzfpNtpwvul2H3GqYJdFrCf4S1WYrBbaaiMA2FJ8ign927m0upsjLtSfUd3aOuOqBeCVdDUho/oGduyIBEJ8pKoWbcIAdpVkUNOsfW+yWciqK2L2kQWM3vMBP10/QJI2nGRtJAI823A1wWYGW4OQKyd0HNteTsUxAQ+HjEFrV/Jpp5nIhBK2F51lVITjmnC5tpA99ef45NHRxDVzVhAIoHdKLEufnuKMP28OtVjOmIjOXvfjsTYjUYllDA5NbfGzDwxtx3VdGd9l72LRle3sLj7vMrcQKNfyUdoMegW5nqsyoZhZcX2ZEtPDJVTCV6rizfZ38lTSaAJlGkw2C3KRhMlR3Vne8yG3zqDZZmVnCw4XFruVjQUnMVstzp9vhwarkXJjLQ1WEwfO5bY4OLpi9xnsFoHbLIvBauat82u4Wu/5uisRiknzcy0APZU8hmXX9lJp1BGvDm5xH6fE9EByG4nZ/wX8fQT+RVDooWp2K4r0VQTI1FSb6jFaLXx4YwOz7upHK3k4eSU1BMg0jArvxOaCU2wuOIWfVIVEKKbSqMNqt/FRpxlsyj/J99f2IABeSZnEshemoGsw8crSbZzKLiQjpxixSOgS6fr5Lwf4fPrdvH1+LUfKb7Y8VSIZcxIGMiSsPcpGP8UAmYZewUm09YloTEYT/6U0F6FQQFyoHz4qOTlFFax6dRYns/K5eKMEf62S4V2SkEvFHi/WRpOFeqOJmnoDwX4ajBYrPko5b90znPmfreatn3bw7pwRfLZmHyeybt7c1HIp/drHO6viLSE5LIwIpR+ixtVzuaGWtXnH2JB/gtrG1KIZcX34Ln0+deYGKkw6AmVaTDYLQTINkUp/1I03tpKqOr5ce4idp69gsdoQCByhHa9NmsLiwh3OuNoEdTBy4U3CHxXkS7/UePZmXMNuh9eW/8ELdw3kWF2WS+pWc5jtVhbf2MVwYToxHiK1m+NKQTkWq42PVu1l69FMbHY7ErGIwZ1a8crAO4kK8kUqFrtV+SrrGthzJpsFmw47ZQpioZAhnRN5fGKfFt0FpGIRya2D+PDUBefv7Ng5Un6Fh48vYUGXuUgFEuaOSOfVZa7DMOeuFfPlz4f5fPocrpgKsGJjY94JAhRq0kJiOFOVi0os4+m2YxALhSy6spPF13bzYrsJ3DU+FX9RDyx2G5f1+WTU57LlNvGwR6qyGBbdHpvdwvNLtlBVp+fjX/Yhl4p5clI/bphrGBySyh/FZz0+P0zhS6jC11l1Wpt3jDJDLU+3HcPrGQ7ro435J/myyz0cq8im1FCLUiTFYDM7q8VpfnFEi0I4keUYrNx86BI/DZvCuvyjRCkDeaLtKOotBk5W5iASCHklZRJBMi2LV3uXoLSLCSFPX0avwDacyMzHRyUnMdJBVFN8oknzi3UmNVWadLx7YR0fd5rJ74Wn2VJwmhpzAzGqIGbH96N3UBJqkYxH24zgyVPLPb5ftDKALgHxFDRUsqHfM9RbjMhEEoQIkIskbl7TniARiQlX+PFIm+E8fnIZOouBt6+s5tPHJrFyxzn+OJaFweyQM0zolcLdQ7u6xZxLBCKv7gbgqDrbsSMVSjBZW5akgINsNUeFsc7FtmtXcQa7Gm3DpEIxv/R61G1xCw6P9B0ns3j7l50unYfNRzMZ1Kk1L901iFV9nuDX3EOMCO9AVl0RWbVFHKzIJFdZxqNzeuEv1GAzQ5ivFoVU4jUMyE+m4uE2w4lSBvDz9QPOLmC4wo+H2wwnPaAVKomc2fH9+aPorEdJSp+gJB5OHM7FmnwCZRr8pGrCFX6svXGUCVHdnNf/ILmWF9tNwGyzkFlbgFQoJkkbgUQgxNfDPcJXqmJydHeGhLXHhh0hAhQiqceh60qj7rbkNaP6BjqLAT+RmtaaMIQIvFbowRHpu7c0k2RVFEcP57X42jq9Eb3eQcY9OVgsytrBex2nOaPfm+AjVfJ029HcfXiBc/8lQhFXdSWUXj/A40mjeOrkco/n6ZiITre1dfu/gr+J7r8IghWeKyQu28h9uFxbwKDQFM5V5XKlrohXLv1K3+C2zAkejMAs4M7g3kTJAllVeNg5uJCkDeeRNiMwWEwMCG3H+ChHApLZauHn3H0IBWJeu38QEoGYxz7ZyLFLN2gbHeIkur+fuIzOaOKZGWMRJgu4WleMXCwlXhWMTChBI3WvTLRkNeMNYpGIYF81vioFdXojfdvHM7RzImKx99ZMtU7PTztPsnLvWac8IchHxfzRPeiWFMWKl2awaNMhXli8lXuGd+XJSf0orKhFrZASE+LH6Sv5tIsJQSoWeZVLhPlrCA/QOklusb6a+45+40IuM2sLeOnsr4wKT2NgSAptfSJQieRYzHYaGkzYRXbkAivV9QbmfrqKgmZpZHY7HMm8wflPSlj4zHiydcWUGWuZGtsLWbNMeF+1gtdmDWX1/nP8svs01To9crWI1YWnWjyuxyuu8lDaCKrKjcSE+Lnkx98Ko9nCjhNZTqlAmL+amYM7o9ZIsRjtKBBCs/uM3mhmz5ls3v7FdVjFYrPx+/FLhPlrePueYTz29QaP8pCn7urLhqLjHtv+NxoqOF55FXGRkl7tYrmjb3tW7XNtTZ/KLuBsZjGju6egs+sJkmk5VXWN2YcXutz4opQBvN7+Dr66/AcyoZh7Ti90PhYs0/JMsnuMeGtNGJNDu5OoDgcB1Fn0XK4v4MeyA3z77CS2H85iy9FL6E1mZBIRmw5cYtrw3tSa9c7FShMilf683WEq798SVrC/7BIz4/s6De2rzfWcrLzKkvT7MdjMlBpqUInlFOurqDUYiBWF8tSXW5zP1+mNGOqsfNttPkIhvHR2JTfqb9rz/XL9AB19Y3hm9HiOXcpzCd1owj1jurCqZB8PxA7j1Y07eXfOSKefbqBcw7sd72Jl7mHW5R2lxqwnq7aIZVf38GjSSGbE9nXqzv2kKgSN/0/ShvNBx+l8krnJabMkQEB6YCteajeR7OoSyky1xKgCEQtEfHNlB7n15fhJVUyJ6Um8OsSNFNwKrURBlDKABV3v5dvsXRyvuMqj55dyZ9ce/DJiGnKhBIlIhFouaxzMvAmxUMyAkHYuQRi3YlBoKkqRDLVEToPFSLQq0OXY3orOfnFO2YLeYmTJ1T+9xiebbBYWXdnBSykTXFrwACVVOhe/7+bYdeoKqbFhTB3QwRHEYTXzdvspWOw2as0N+EpV1FsMaMQKh9fwX5nItzritsdEdMFkN2O3O1ruvlKlcwYiUKZhSfr9vHruN7KaaY2nx/ZmQEg77jm8wEVPLBdJeChxGBnVN+gSkOCUmTRVYsOVLS+6myASCm9bKKlsnEl4q/2dfJX1h9dFv0okQ9zYQRALhAwIaccuD37KAMk+kbT3jcFqsxGrCOaSxLu+uAlCgQBvQbRnq3Ox4VnaFKUMZHH3+bydsZZsXTEChGglSk5X5bC96Cxfd72X76/t4Uj5FezYCVf4MTm6O8PDOrYYrfx/Cf+jEcD/2/DPRMr9d6PMUMs9Rxa6+GA2h0gg5IceD/Ls6Z/5Ln0eE/d94tQsdQ1I4MmYsUx/awU2u51hXRIZ1z8ZhUKMUCBEKZIgV4o5V32Dn3L2c01Xio9EweiIzkyM7sYXl7ayoziDoaHteaLtKHYcyubopRvsPec+8RkeoOXxiX3okxrvInH4n0BNvZ73f/2TP064a4IBnr2zP/UGh89uz3axaJQyhALHxfP5JVs4ftlR3Z3ctz1to4N5++edbl68comY7568g6ToYGdyzocXN3oMh2jCJ51msuL6QV5vfwczXl9JeU09/holn90/hmOX8/h6o/uUbROGdU0krqccpUzKuMguLhGaNXo9DVYjVqsdsU2ExWpDrID7T3zXouwF4Pu0h9l9+Bp5ZdVeo5JlEhHr37iHES86vKnXvTsTmVzMpvyTXNWV4CdVMSk6HR+J0nnDKqvWMeWdn1ps6615bRZ6i5lvNx3l4PkcbHY7XROjeGBsT06br7Agx7NtETjO7XuDhxDjF4BEJKJS18DRS7l0aRuJQixBKBQiEAjwUckoMdSwtzSTr7zk1PtL1Xze+W7s2Ln78AKXx5b1eJAHjy1xWlvNix1CW2EMP2w+yckrjvOkU+sIHhjbAx9fGaVVOi5eKSU+zGH0bzCZqazTs2jzYZ6Z3pfwMA2Hqi5hE9pI8Y1CLZbzxeXfuVzrPiw0P2EQPfyS8BOpEQqE2AV2VhTu59fcQ04pSlttBE+2HsOqLRfYevSmFVGYv4Z/PDYOocLOM2d+8krEege1oT+deH3xTQIll4p57I7ehMUriJQFUFGhJyLABz+1wmlB1YQGswGd1ejwNRaIEAlaJiC1Zj0mg5WCmmpMQjM6i4EwuS9nrxTxyx9neeGuAVSoqjhenU2iNozO/vEsu7bXGZTQKzCRl1Mn/aWKVZWxHqPNjN1ux9Y44a8VK5GL3d1kmuNGfTnTD37pcS5CJZLxS+9HnUEuZquF7UXneOO856FWkUDIL70eJa6x1Vxp1DFp/yfOCmiUMoDO/vGIEHJFV8S56huIBSI29X8WcCwMRQIBIquIj1buY9tx73ZcgVoV/3hqDCI5WLHx/oWbCX0CBHQLSOCFduMJU/g5Fx6eUKHXkV1XxK95h6g06ohWBjI9tg/BMi3+Cu/xy/UWI2XGWoKkWkRCIVMPfOF1tuS9jnfRyS8OjUTxXz4wVWGs41xVLuvyj1NvMZLsE8Gd0T24pivhmdM/u23/VZc5dGs2Y1FhrOPlsyudzgYasZwEdSgz4/sQLPdh9Y0jVBh1JGrCGBmaxsZ9mSzd4rkz4quS89nTo7nvzEKPjwNs6f98i6l7VSYdBqsZmVDCgbJLvH3e4WMeowpiUlQ6Hfyisdnt1JgbOF+Vx/iorn+pQPavin+ZCOC/8dfhI1HwRvs7eOT49x5bMPNaDeZ0ZQ7/6DKbH67ucZl67hOYxE9/nHJWJLccvcSWZjfDNe/MZOGVHS5m2qVGM0uv/cnvRadZ1G0eOfVlbC8+R6Bcw6we/biY6zktSiYR06lVJDKJGIvVitFsRSYRuUzJ/3ehSqf3SnIBvt54iLWv341QIEAllyKXSrhwvRiVXOokuQCr953jvpHpfPP4ZFbsPs3xrHzEQgED01ozZ3g3An2UTt9ck83CnyUXvL0lABvyT9AlIIHsumJmDenMp6v3UVnXgFIuZePhiy0+d/fpq2yYOBuVSuJCcisNOn7LPcKagsPOaOIYVRDvdJhKsjayRaIbLNOiqzehkkuxtTB0N7JbW7LyHVP2mz+czZna67x1bI1LtXVN3lGGh3fg8Taj8JepKa3WtUhyAZZtP8HDE3oytHMic4Z1RSAQcOlGKQofIQuOeye54EidE4oEmCxWArQqRDIB/TomsO3EJTbuv0hFXQPRQb5MG5JGl+QIfrnu2SsZHG33U5U5DApJpaNvLGeqrzuCOMLaU28x8kWX2ewszsBqseFf7c+jyze4LHxOXSngvk9W89K0QVy6UcqaAzf9ZAUC+On5aYiEQl7+djv+GiWj0tvSq1cEn2Rt8pq+1i8wmf4+7Vm25SQ7T17BaLGQHB3CXcM68npSJG9eXoXVbiOztoCHTy/hqxFzybhWRF5ZDVKxiJemD0IqFXGtobjFauOBsss83Xcs3z05maz8coJ91bRPCAM7XC2q4Os9h9EZTKTGhTGxdwo6k0NOoG1seSslcgQ2EQ0mE8cv51FUUUtcWADt48JQK6VOa6wmWI123li2g4MXrqNVypBLJVTp9E4P7ycWbuSHl+/knaK1bC08jUIk5e0OU5AKxWwtPM3B8iw25Z/kjqh0VB46Rs3hd8uQT4PFSL3VQK2lAbFAhFIkdfjl2qxODbWvTEWgTMO36ffxRsZqrulufj+tNaG8nnoHfs0cCSQiMT2CEpkR24efrx9w0cJLBCLe7HAnAY3bm61WFCIJUqEYlVzOC60mYG8Qsff4NRosNsa068njaWP4ImcLtWY9sw59jdFmRiIQsbDDPC5cb9nyq7y2HolAjEBo497Di1yqxnbsHK3I5t6j37C8h7uWtQmVBh1vnl/t0nnIrC3gj+KzzIzp6wiA8EB2A2QaAmQaolWB1Jga+PbKTq8kF2DZtb0kdgjDYrcRKNNQbarHZLNQZzFQ2FBJtDIQpUTm0IcjwEeidPEo93oMjHU8eXIZl5otHDOqb7Aq9wivtZ/MBx2n8dyZm046qb5RxN8SPhIg0/Bm+zsxWs3YDAIENiFiOSy89gfbim7Kjw6UXeL7a3t4su1oHpL14Ou17m4Ns4Z1ZmOp96pvR79YhyNJC2g630xWCx18Y5zDe7n1ZS5OSnKRhCXp9/9bk9x/Fn8T3X8RSEUS2mjC+anXwyzK2sH+sktY7Tba+0YzN2Eg0aogDDYTy67t4ffCm3+EGrGcvkHJfHrEsx6uT0ocFfZaj4kxAEX6ahZk/cGjbUbw6InvWZd3nBmxfXhycl+6JUXxw/YT3CitIkCr5M5+HRnXsx0CoKC8hvUHz3OjtJpQfw2T+6Sikkvx17bs4/tfiS1HHK4RoX4ahnRtjY9WTnllA9uPZ1FZ10C9wcS1wgrS28YAjgAMpUyCWCQk2Fft4rv53daj/H7sEhN7p3JHvw74qRWEBWidN/ommGyW22rBivRV9A5K4kTFVdr5t3b+XiwSUtfg3ZwdHB65ArvAheRWmxr49NJmtzZrbn0ZT5/6kfc7TmNniXcT/4nh3Vm/5wL3j+pJTIgfe85edXMxSIkN5f4xPZj90UrG90zBKDDzRsZqjxP92wrP0kYTzh3R3dEbbz8ZbDBZKDfWcTgz1/mdASx/5c7bphB19o8nr6CGiCQ/rDYrtToDj3+1kSsFN0ndhdwSXl36Bz++OaXFPHtw2HsF1QYyL3Q4J/wuMzCsHTuLM/gkczNWu42uAQnMih7ApNeWeU3a+2T1XpY8dSdrD2Y4t7HbYfuJyyx56g4e/Mc6iiprWXfwPIN7x3sluW21EdwV1I+7311JQ7PjeCG3hJe//YOZwzrxSLsRfH7VIVUw2swsz/+TKYM7kHmtjLsGpLHrzBUUAYIW/TabkFmbz6DWqXRuHQVAVV0DT3yz0SUt7fjlPJZtP847944gMkpDoFmD2exY6FisNpZuO8qWo5ec549aIeOj+0bRISEcufRmBdVktnLo4nXAYeF2qw7eaLZy4Ox1egclsaf0AnqriRfPrOC79PnsKj6P0WZm5Y3DjIxIw2i0/iWdv91up9xYx6IrO9hedBajzUKUMoAvOs9GIBBwpuo6BQ2VhCn86Owfj6LxmvtllznoLAbKDLWEyH1QimUeCaK/TM2MuD5Mjk5nc8Epyoy1tNKEMjAkBaFNSF2dmZ8PH6K4oo64cD+WdXkEO3ae+3Yr568XO19n05GLBGpVfPboGPLqK5xEUSNR4CdWu1XTPUEtkfHplU1epREVxjrW5R3jnoT+bsNKJouFjfkn3OQ1Tfgxdx+9gtp4reo6X8dm4WC590IDwKXaQsRCEftLMxkcmkqxoYa3z6+h1FDDex2nc6zyKmvzjlHQUEGATMMd0T0YGZHWouNGjamBry5vcyG5TbBh541zq1nd50mCpBpqLHqGhrXnocRhHrsDfmI1RXW1vPbDH4T4q2nTW+1Ccptgx86nVzazKG0ewbtv3jskYhFzhnVlZHpbJh/Z4va8JtzfeshtpThNkIrEaCUKXk6ZyNq8Y2wtOEWD1YQAAV0DEngwcejf2txb8DfR/ReCWiJHLZHzQrsJPNtIpgQI0IgVXNEVIRAIGBaWxryEwehtZurMevzFGi5klXq0lAGYMTKNX67vbfF9dxef5+HEYYDDn7LcWEeSTwSj0tvSs10s2B10x0eloLbBwOYjmXy+bp8LEfhx50lmD+3KjMGdXAbGquoaMFttlNXoUMmlqGRS/DVKRKL/vCFIvcHE6/cOITRcyZayk2SbagkP8uOjPsPJvFLO578eoLreQG29Aa1KjslsZf3BC4zu0ZYZgzrx6RpXM/z88hr+sf4ACpmEta/d7UZywXtqUXMEy32oMTcgF0m5UXqz0lrTYKRVRKDLQNytCPFzv7lUGXVetYTFhmrOVefyXNtxfJi50Y2YDghKIUUSy0XzOa6ZihAG2ln3xmx+23uWzBslqBUyJvduT1J0MBablaKKWu4b34Vvr+1s0bZqxfWDDAlrT1SwL0KBoMWUtq5toghV+DJ9YCcXorv10GXGtO3Cr3me45ObvJm/P3GKXilx1BmN/LzrlAvJbYIAgVeNdXPYsZNfUcOq3ed4fm5/5h/7xlkhB0cs8+H6HBfieSsMJgsXc0tIjQ1zxiir5VIm9mlPZKAPPz53F7mlVZzIygOrgCGh7SnQV1JurHORJs2I6MeHP+31+l4//nGKZV3vxEeicO7jwbLLPNdvPMM7JvHwV+swW2307B5xW7cHwKlPBIe2esGmw26RwOCwW3tpye+sf+MeVu05w5JtjnZtoI+KGYM68f7cUby4ZCsWmw2d3sgjX61n9WuziA6+6ThSVFnXYiQ3wOXr5URG3PSFNdos7CzOYEhYKpsLTlFhrMNmt1NsrP5LRLfCWMfswwucUbMSgYhPOs0ks7aAd8+vc1lQKUVSnkseR/fA1gTJtQShdcoOWkLTfsxrPRirzYpIKKJSV8+ve86wZOsxl8/89fpDPD91IH3bx7sQXXBUZZ/4chM/PH8n/YKT2Vt6kfFh3TiQkcPQzonOzoondGsThUAoYF+pewx1c2wtPM2EqG5upL3G3MBvee5Vyeb44foeYlRBBLRAdoUCwV+ytrPabewvu0R6YGsePfE9NeYGvu56L8tz9roMNxfqq/ji8lY2F5zk6673ev3OTTYLO1qwu7RhZ/WNI/zQ8yEEOJwNvGlZq3QNzPl4JRW1DSyYNJ63c1d6fV07dtYUH2bxs5M5fjEftUJGWkIECpkEu8jGJ51m8cJZ1wAKhUjK88njiJIFYrPZEP6FajWAn0yNHTujwzsxPrILVrvdGeDjJ1W7dTH+r+NvovsviOYnsclmIVdXxnsX1hOnDmZGXB82FJzkXHUuMqGYkeGd6JgcQ692sRy8cN3ttdQqKUUFLes3zXary8Rw001TIBC4uRzkllTx2VrP8Yg/bD9Ou9gQBqU5qphlNTo+/m0Pu89kOweRIgN9eHbKAFJiQ/BV/+eE9HcOSWXZjT1sOec6jLWh8ATTo/rw8j2DiA8LYMnvR5kxpDNCgZDVB85xtaic56YMpLiqjl//PONC0nxUcr54cBwahWcvULFASK+gNi3eZMZEdOa77F2833Eacxevdf7+512nmD20a4tE964Bafg1i2S22+2szz/e4nH49NIWfk5/lFW9nmRt/lFy6kvxk6gYEdiJ6nITfxy6wpyJXXjs3BJqzHqCZVru7zqM/j1jMNstCGVWfNQy6vVmuiVFYRfBheo8egcl0SuoDVKhmNz6MjYXnHJWTEuNtVjtNuRiCQM6JrDrtOf0PJVcSqfWkYx4YQnPTunvMlC2fv8Fvu42nrzAcrfKkEwo5t3UaVRWGJg1rDN+SiUlNXVsPOj5uFtsNmwm8JWoPBqwNyHdJ5Fzp0qYObITz5352YXkgmPAqazy9nZzFXUNBPoqEQkF9GufwOOT+hLqp3b8zWiV+GuVxEf7YbCamSRPJ0dXSpjC16G1v7aXCzV5hEn8WyQ0AL8fyqJ/Ujs2FDjIpg07dmxIxDKCfdUcvXQDH5GSXkFt+LkF2YZIICTZ52a6m05vZPMR7xIcq83O6v3nmDGoEz5qJZ+u3kd5TT2fr93PrCGdmTsynUWbHWTJYrPx3dajvDB1IMpGW0CV/PZVSZVCisHm2uE4W5XLgNB2zn0WCgScrrzusu+eYLSa+SFnr5PkAkyKTqfBauLVc7+5LUwbrCZez1jN0u7349tsiO6fQdNw6qnsAhZvcW9bW2123l2xi0WPTSIy0If8ctf5i/Kaei7llnFfwiCeajsKQ4ON6YtWsPipO1h7IIPCCvfAALFIyCMTe4PEdlvf5nqL0YWI1tQ74uOFchvlXmJlm5BdV3zbzpVKLKdXYBKr84543aa1JoyChko6+sWwKf8kNeYGR5emocKF5DbHVV0Jv+YeZG7CIKQidwpTa9a36JYBcKmuECECAlqoohpNZtYeyHAOaGqUUufgpDecr85DkSRmQi93u7UUn0h+7fUYl2oLyakrw0eopLUinLV7zvPdpbPMHZ1O96Ro/NV/jaT6yzT4yzSUGmqw2WyIhEKCvNj6/V/H30T3XxzF+mrmHFlEn+AkhoV1YO6Rb1w0UQfKLhOrCuIfc+7h+a+3uVVo9HozQXItV3WeffzAcUNpSvvykSi9to3Ka+r5bqv3ixrA4q1HSY0LQyQU8PCX69yqb/nlNTy2YD1fPjSB7m2j//IK91bY7XYy9XlsKfbsOPBz3n4+Sp2JRiFj3cHzjO+dikgoQG80c+hiLou3HuXeEd2Y2DuVP89epbbeQFJ0MGkJ4SgkYucNuwk1pnqsjYT4mbZjKDXUeGyd9Q9ORiQQEqkMoLxc7zLlvuNkFveNTGfawDR+2e0uJembEseo9LZImw35We02p+VPS7haXcqvqy8ya2gnJiX0oLrOQFlpPW0jQmkV5c99p75xZtqXGmt5M3OV87mBMg3LejxEkFrLO/eMxCYw807HuzhWkc3mgpPorWba+kTwQdp0DpdnsfSqI01KKBCy7+w1nrmjP3KphD1nr7oEcyhlEj6ZP4av1h/AaLbw/q9/8tbdwxiY1orMG6WcyS7gjSU7efO+ocxvNYS1+UfRWQy0VoTTJ6AtaokcoV2IQilCIHDEQ+v03mUOG/ZeZGq3Xiy6tt3j4z4SJel+iazI3cQUTQq5Oe4ks8KoIyL49oOqbSKCGNejHc/eOdCZtlbbYMBf4/jbqTLWc6Emj7fOr3HxEw1X+PFa6mTMNiuWmttXw0oq6ogX3axshcp9EQgEaBQy7hvZnX0ZORw6f4PU9oGk+cVxuirH4+tMiOyGstERwGqzUa3TYzTfxo7pWhHHI/OICvJl01tzeGzBBq4VVfDLrtMsf/4ulmw75tTcHrxwnQaT2fl3E6BREuijatGjeliP1ryXv8rld1KR2Blp2juoDVabDYXo9qS53mJk8y0JceMiu7LoynavhNCOnW+zd/JKyiSPvtx/BaU1dR5JrvM97LDizzNM7J3KP9a7L0QOZlxHJNKxqziDxR0eQm8y8+aPO/ioMcHw0MXrzipx64hAnpjUF5PEiMUuI1Lp7zHMpQltfSKQCRzXkmqdnjd+3M7ec9f48dUpt+1KacSK2yhKHVrRmfF92FhwwmtS3r0JA/jh2l4eShzK6xmOQb6R4WmsvtHyfWTNjaNMjemFv8i9qqsQtTxkCA5/4NsNv1XXG1xmPG6noQWQi6SYLVZyayqp0xsJ8lEjEQvxV6tQSGTYbGAvlXB0Tzm19QYu5N7sfL68ZBvzR3dnyoAO+Cr/epEn+G9ye1v8TXT/haEzG/jy8jbMNguz4voy/9h3HoX/1+vLePfiOp6ePpRZb/3m8tjqneeZOraX19UzQJ/gts4L5uz4/ii8JBvZ7HaPrc7muJxfhkQs5MTlfI8tZnBc/D9ZvZdFj00iyPf2LUlPqDLV8/21PS1us6LgAE/EjEVnMHEgI4exPds5H9t09CIHLuZwR9/29E2NRywScimvjCW/H+PJyf2c29WZ9WTVFbEwazsZ1XmIBEL6hbTlzfZ3cr46j48yN6G3mohSBjAzri+d/ePZXHCSh2KHc/c7v7nt06wPVrDu9dmM7NaW5TtOkFdWQ5CPirsGphEf5u8WUyoWiujgF+NVY92EKFUA2QXlPL1oC2KhkLAALUKhgC8fHs/C69udJNcTyo116K0OghqgVVJqqOG5Mz+73ESv6UrYWnCa55LHMiO2jyMS1AZtYoI5ePE6PdrGMHdEOnnl1ew8kUVSdDB9UuP5bM0+/jx7FYC7h3UmJSmYQmMVviq4q1M74tUhGOotfL7yAMF+PsRoQgkL8kMTrEAmFmEWWai3WiioqcRfpEUuEWMwe76pbj58kQU9JzAjtg8rcg+63MhD5b681XYqn684QJCPyuvg1pW6IqJa+eCjklNT7/mYaZQyAnxUjHhxMf4aJdMGppEQHsD245d5YGxPgn1VFBmqePrUj24+nYX6Kh47+QO/9noMm/32i7ywQA1VlpsdmWmxvTlefpVewW2IDvbjkfG9WLzxOMtS7uSt9neyo/gcv1w/6KxsigRCJkR2Y37rwU6rqZp6w19oOINSLiW/vIYFGw/RuXUkCx+dyNcbD3IiK58Tl/PoEB/Giax8BAJHG7s5TdCqZDw/dSBPf7PJ42v3SI6mQdJAkb7a5ff9g9uxt/QiCpGUh9sM58frB7g7rq/b8/UWE3qrCTt2BDjCLm5NulKKpS1e9wCOlmdjsducMoR/HoLbVuVPZxcwqY/nwAWpRITRbqXOYqDBZkQqFnE5v4ynv9nM9EGdeHJyX0QSAXKFCDuORYoQAZdq8pka04uPMz0fX3AE+fjIVBhMZr7/45jTRefohTz6BLVlT6n3iv6Y8C63De0Ah5PJ113n8PSpH126I1KhI1mx0qQjsyYff6namYTnL1O7fe+3os5iwOaFiEuEYuLVIVxroXgzKSr9ttZbdrvDTrEJF6+X0sU/nhMt6N1HhXfip62n+WX3GcBx3vdqF8uL0wcR4qtBbzTz0pJt6LwkcS7eepTxPVPgb1ew/1L8TXT/hWG0mTlQdonuga05WXnNSUY84Wh5Ns8nj6N/x1bsOeNoI3eID2dy3/ZEa3zoE5TE/jJ3yxp/qZrH2gznzYw1zEsYxPDwDqgknomu3W5HKhG3qF8UC4VYLDY2HPKeUgOQU1z5lzSV3mDHzvX6lm8wl2oK0BluVgBFQgFapcw5GFNVp+fbLUf5dstR5zaf3j8GhcxRMag3G9hScIpPL90cMrDYrewqPs++kkwWdJvL2j5PUmPWU2yoZk/JBYr0VUyKTudcZjF1HoIo5o/qgVImISQmhOenDEBvtiAVi9wIbnP0DW7Lp5lbvE43d/SL5eqNSuf3YrHZyCurZkz3tshkIo8m77eiyYWwzqzn/QsbPFaK7Nj58OJGfujxIENC27Nxz0W+3XLUxR+3d0ocr84cglws5rEFGzh91RGO8MqsgcQkapl7fJFL29RXouK11Mm8MGMAJoMds8WCTCJBJhXSIDDwwfmNTv/IbzrPY1i3Nmw46PkGbbXZKa9oYHK7dO6I7s6fBRepsxhorQpDbVXy+fJDnL1WREyIHz4S73eaH/P38srsQTy/6HcsVtebrVgo5JXpQ/hpp6N6WFnXwFcbDjJ1QEcSIgKZ9t4v/PbGdL7O+sOrGb3BamZ5zj7ujR5I2+hgMm94HlYDGN6zDY9ddNi9DQlNpV9wW+448BnfqO+jnW8Uk/u2Z2SfNpyvzONUyTUUYilfdJmNAChqqCbRJ8zhp9rMq1UiElJvMBEfFsC1Ii9JacCkPqmEhWgorKxh8+FMft1zhr6p8YzvlYJWKSfUT8MTk/pisdqcvrvO4yQS0a1NFP94aDwfr9rDjdJqwFHlH9urHcP6tuKp8z+4PCdc4UeyTwS7ijNY2v0ByvW1WGwWlM0CAqx2GxXGOr6/uocthacwWM2EK/yYGdeXhV3n8uSp5c5FneOcvn2VrsqkQyQQtmj95A0CuK1GXSIWYbV6frxflzjey3fIUg5UXmRw59ZsPXqJospaFCoRYg0subqLncUZmGwWwhV+TI/tzcDQFGx2G+er89hWdMbtde9vPYRopUP/XKc3snr/zWHVNX9m8OFjIzheke1xEDRKGcDwiA5IGp109BYTDVYjh8qyKNJXEa8OIc0/DrVYhkwkIdknihW9HuN01XWu1pXgL1PTwS+G3wvPsLngJJ90moXRaqajXyxF+jPUmOoJkmtblBipRDKnh++tCJJreSZ5DA8dW+LxbyzVN4rExljyliCXikmNC6Oo0nE9+m3HOZ6dO4gzVbkeZRvBMi3d1K2Zufemjtdmt7P/fA7zPl3N0qfvJDOv1CvJBcc1aueZLKYP8J5G9zf+efxNdP+FYbfbsdptRKsCPbbJXbbFTl5DBW/PHobZMhiL1aHp8W3Ue76YMoHdxef55fpBCvSVKERSRoR35J74/lQa63m7w1TEAmGLq3iVXMqQToms2uc5+Qmgf4cE7HY7etNfSBL6TxBduH2ykVIso8HouOj0SolFbzIzd0S62xBaEyICfWgfH+78ud5q5PNLWz1ua7ZbeeXsSl5KmcAjJ753eWxt3jEWp8/nh6en8O6vu9HpjbSJCua+EelEBGqdKUW+GiW+f+FzasUKvkufx2Mnf3Bpg4MjbeulpIm8uOCmTZdcKmZK/47MHtoFpUJKr6A2LU7l+0iUKBsN3Q1WMwfLvE9S27DzZ8kFekiSWbjJvf144HwOzy/ewntzRlLT6DCRGBlEWmo4Mw596dbirDbX8/TpH1nW40ESA24e+zJDLfMOf+uimfvsymY+GDWTwxdyXRwzmtAhIYz0pBj8lUqsVitt7NH8+Ocp/ig9xvVmIRm5JVWEy/zRiOXU3VLpFiPkekMpl5XXWfXKTBb/fowD53Ow2+30SI7lrgEd+f34ZbafdJ1Y/23PWX56YRqLtx7FKrBxoqJlF4S9pZnMjOvLa7OGMvfj3zzeHO8b1Y08cxm9gtpwZ0wPlCIZc44sxGSzsLXwNG00YZRba3no+BKXxcPynH10D2jN6+3vcA70NBhMNBjN7Dt3lfzyGrq3jeH5qQO4//M1Hkla2+hg1EEiHj7/HXd07s7n3cbw+uId9E6J45Uf/uDT+8dw4EIO245fdi5YU+NCeWnaYGKC/ZBJxagVMnq1iyU5ZgpGkwWL1YZcJqbIXMnL51e4DO108o/jtdTJSAViXm9/BzuLzlFtbuChxGEuDiSlhhpmH17g8ndQqK/ig4sb6Bvk6LQ0JbJd1ZXQIzDRrXKpFEkZENKOYLkPATINl2uLEPoIUYqkfy1goRmEQuiRHONxPqIJAzu24uilG26/79QqHKPU6Kxuri86xmcj7uFUVgED0uLpkBzC7MNfu5yjhfoqPsrcxMnKazzVdgzzWg1iamxPfss9TLmxjmhlAHfG9MBqsyETSWgwmtA1GDGYbi6Siyrr+G7NcT6fOIdvb2znRMU17NgRC0QMCknhkTbDkQhFXKsrQSmWUq6rR282EyTwJddczkeZGzFazbzbcRppfrEoxFIC5Vq6BiTQ3jeaQ2VZbMg7QaI2jMXp81GJ5eitJiZFdeePwrNsKzrL2MjOfJK5+dZD4sTYyC7OkAlPaK0OZUG3uXySuYkrdY5BP5lQwsiINOa1GuTRlcBsddiaOSKdlfiqFcwZ3o0dp7Kw2yG7sIJte67wUd+ZfHFti0shpat/Ao8ljOKt73a7LX4B8sqqOXAhh0Dt7Uu1pVW3nwH4G/8c/g6MaIb/zYERnlBp1HHvkUV0C2yFAAeBagkLu85lX2km7Xyj6OQfi0asQNZMz2SxWqg01TsHL2RCCdrbeFTeiqLKWqa8/ZNHraRMImLFSzMI9dWwaMthlu846eEVHJBLxWx48x6UKjEGqxmLzercV7PNirSFSVmAyoZ6vriyhd89VDOaMDWqF/oMGXklNTw9uR9+GgVikYiVe86wdNsxl4py2+gQPrl/DKF+Ny+QP+Xs4x+XPYcPNOEfXWbzZsYat+GONtpwPuk0E7FZgt1uRyYRu1W9bocKnQ6bFcr1dchlEuQSMXqzia+vbqPeZmRUeCd6BbVBI1RQZzBSXlOPzWYnyFeNSi5x2j2VGWqZeuBzN1LXhAdaD+GumF7IxVIu1xYy89BXLe5Xz8BEkisSWbT+qNdtfnt5JusOZLBizxm+fnI8vzcc91h5akKvoDa8lDKRQJkGo8XEjzn7+fbqLkewSWgX+gekIBYIEQmEBMq1LNt+nHUHztNgNBOoVTF1YEfG90xxGZ4sb6hDZzRSpzdyJa+cVTszuJxfhlouZdGTk8gTlfDKOUd1Jliu5aV2E4lXh1BsqEYmFBMg0yBDQnG5DpFQyK7TV1h7IMMjyQZ4dHxvzlwt4PnZ/Rm778MWj6GPRMnS7vdjM9oR26Qs3XaMHSezMJgspMSFMm9Ud1pFBJBjKkFvNfLT9QOcaYzhBYfmdl7rQUw/+KVXS7WR4Wk82mYEEquE7Scv88HKP7FYbQzs2IoHx/akwWCitKaer9YfcC4EJGIRQzq3ZvrIDjx38SeKDdUAjAnrQuu6WFIiw7Fabby7YpdHaZJULOKn56fRKsI92rYJBosJncVAob6KOrOeGHUQMqEEmUBMoaEKm91GqMLPLe5VZzbwZsZq9pR696L+KG0G32XvIquuiARVCG93nMKMQ185ZSz3xPenf0gyO4oyyGsoJ1CmYVhYRzQSBUqx1BkQ8VdQbqzjcOll2gijmfHeCo8ESC2X8uPz05j/+WrneSMUCBiQlsDscZ14+sJyZ4IlOBLl3m87EyQ23s1cx7EKz0OeAN92m0eQTMPP1w+QHtgauUhCsb6GOrOeroEJnK7ModRQS2t1GLHiEH7cdpptR28uYmND/Jg6tAMdWochEIKfUolIIORk1TU+zdzM/LihJAjD+W7zUU5dKUAiFtGvQzx3Dm7PT0V7+LPsAr/2eowYdZDLftVbDNjtYLPbkAjFKMRSivU1GKwmLtbk8e759XzVdQ5fZ/3B2epct88VofBncff5f8lCq8xQi6VxmFohkiIXufqPg6MiXWfRs7XgDCcrryIVihkZ0YkOfjFILGJ2n87mnV92ORd8nVpHMGNEGmEhaixCi0O/bREw78PV5JV5DnQC6JgQzqszhzDx9WUt7vM79w5nRJe2t/1s/9fxd2DE/xH4SpXMju/H4qu7eSVlUotE10+qQiwUsSL3IOQ6fl7Q9V4ilQFOAikWiQlW+GC0mKix6NFZ9OgbW1chCt+/tE8BGgVLn76TV77fxuVm2rS4UH/euHsYwT5q5DIJd/btwC+7Tnu1PRvbox2I7bx7fh1HyrN5KWUCYoGIjQUnKDPUEqbw467YXkQq/T1e8PKLa7gnbgD7SjM9tt/8pWpGBXdmYeVR3pw1lF1nspnUpz1SsYgZgzoxqU8qGTnFNBhMtI0JwVclx68ZSbLZbVzXtSyNACg11OIjUboR3cu1hegtJmI0jkGCGlMD5YZarNiRCERob5MUVFFXT15VFQXWCtaWHOZaXSk+UiWjQjvxQsoEFCIxSrHcuWjxlyjdHDKa4CtRsKjbfTx68geXm6oAAROjujEusivyRkLRUhXF+XpSFboG7+05gO0ns5g1tAsr9pwhKtSH/UdbtkI6XJbllE9Um/X8XnSGNppwXmo9mdW7Mnjw6Ab0RjO+Kjnj+6YwZVAH7h7a1WnZ46tSIG60rKs21lNtbuC77J3sLc3EYrPSwS+GR+8dQKBAi8gmRi4VE6ZqxaedZrE27xjPJY/ju+xdPF34o7NL4CtRMbfVQHr5J7H9ULbTZcAbdAYj0cH+1JgaaKuNILO2wOu2XfzjkSDmWFYBX6zdz9ju7fjk/rFIxSKuFVfwzebDPDSuF3niCt7PWu/y3CCphvsSBnKqMqdF3+DtRed4KHEoOflVvNMY0Rwd7MvMwZ25UlDOsu0n0CplvD5rKP5aJbUGAyqFlD8rMng0Y6nLEOSmohN83ykdLTKOXLrhVX9vslh5f+VuPpk3Bh+150W0XCxF3lgFdB47swGDzYxIKEQjcjxPfsvQkdFm9ii/ao61ecd4JWUSH2ZuoMxQR7Wpgfc7TuONjNXcHd8PqVDE7MMLXdwI1uQdY2xEZ+6I7oG/VO1SHPD4Ga0W9FYTH1xYz97STF5PvpOvH53A68u2O9vg4Lgmvj93JIE+Sn5+YZpTrhUd4suxmis8kfGDW/v+cm0RYjlYcUR3t4Rfrh/gmeSxrM47yuo8x6Lz9dTJ1Fn0zD68wEWjrhRJeXngZDRKKav+dMgYrpdU8f6PewD4ZP4Y4tsHsrXwDG+fX8vUiF5QLOPu5c3stoxmNh66yPYTWXz+2BgqzDoWX93NC+3GOztCgFukMUCwXEOtSU8n/zh+6/M4h8uzeKHdePaXXWLVjSOUGmrQShRMjEpnakzPv2QnB9xWblJvNpCtK+GRE0tdPIf3l10iVhXEV13nMKhjK7q3jWH9ofNcLaogUKsiyscfX5EcX7WccpMOi9HWIskFaDCakUnERAT6uES8N4dKLqVLYtRf+mx/46/jb6L7LwyhQEj/kHacq75BrVlPj8BEDpd7Nvm+r9Ug1ubdrLBVmep54NgSfun1iMuFu9KoY0vBaVbkHnCSs2SfSB5rM4JoVeBtV9FSiYRW4YF88dB49EYzxVV1BPmoUCtkBPnctOlRK2V8cN8onlu8xa3S0al1BHNHdmPu8UUUG6r4vMts1ucdZ3ez3PHM2gJ2l5xnbERn7k8cSuAt+1VWXc+WYzdYPOp+3r2wzjEc1Yiu/gk83WYsUouUZ6f05x/rD/DUHf2Qih3EUimXopRL6d8hocVjH68O8fp4E0LkPlSbPLei8vUVhCl8uF5fzieZW5wT8YEyDTNi+zAqopPHqnVFnY5rZRVsqT3G1uKbQ2j1eiPf5exia/Fpvul2HyrJX6vGS0QSYtXBLO/xEFm1hZytvoFWomBQaAoyoQR/mRqj1YzBZkYhkhKjCiK3Bf3zhPBuvLxqV4vvabFa8VHJeebO/ghuo2EE3LR2IoS81HoST36+meKqm+Shut7AD7+f4OiFPL54aCzBvq7nhdFiIrehnIeOL3GRSZyuus7pqu95vM1IhoZ1IFCuodKoY2PBCZ5NHstb59e4Vc+qzfV8nLkJSxsrg7sk86WHqfnmSIwIYvfZbIp01UyL7e2sFt8KIQJmxvdFgZx3ft6F2WJl2Y4TLNvhGi/68vfb+P7ZO10m5KOUASzsNpdTlTm3JX0Wu5Xc+nIOnL8pe7qzX0e+23qE+8f0pK7BwHv3jqSyroEF6w9RZzASGeLDqF5JGMMsLLnh+h0frctioKoD2457lraEB2i5Y2Aq3dpF0SA0YDFaUIvltyWO5YZaPs7cxN7STOfnjFUF8UK7CSRpw1A0kiiTzXJbS60yQy3Bci2fdJrljCs22Sws6nYfFruV2bdEPzdhY8FJEjShhCv9PO6v1W6jzqTnYm0+e0syMdstjI7ozOTo7rx7YR3DQjvwzdOTqK4zUFqtIzLQF1+VnGAfDRWGOs7qbrDPcBGD1UxQsYbJMd15VTmZJ8+4Vv+6B7TGagaj0Hxbj9oyY63LNt0DW2O2WT0O6TZYTbyauZLv+t/PjuPZLmmGsSF+dEwIp7Zx+FkiEDEqpDMzF3k+fw0mC29/v5vn5vfn9csr0VtNLkTXE4QCIb4yFVabggarkZHhnRALBMyI7cOYiJt6VbVY7tFS7D+CKlM9ZpuFx0587zFY43p9GW+fX8urKZMJU2u5b2Q6eqMFuUSMRCKiwljH70Vn+SFnD6+0vsNlvsMTUuND0SikfHz/aO77eJWbHEkiFvHx/NF/yXrvb/xz+Jvo/ovDR6rk0TYjqDDW8VibEUQpA9hUcNI5mBam8OXehIHorSZ+Lzzj8txqcz1Hyq8wOtJxISkz1PJ11ja23rLdxZp8Hji2mI87zaSLXxxyL8NozRHc6JYQE+K51adVyumSGMnGt+aw/sB5LuQWo1bIuKNve6JD/Fhe8CeFhkp6B7Xhuq7MheQ2x8aCk3QJSKB3UBLqZvq52FB/nvluMwIBvD7qDqzYqDU34CtVUW8x0GA1YDbbyC+q5clJ/fD7D3j2DgpN5cusbV5vrhEKf8dwjJeqWoBUQ359FXffUl0pN9bx+eWtXKzN55m2Y93Irtlio0GidyG5zVGgr2TRlR08nTzG4w2m2lCPyW7hbGUuJpuVDv7RyAVSgpRaguRaegUnAY4J7jqLnnJDLXtKLrKzOIOu/gm80G48Dx1f4vFz9w1uS5DUe8WiCf07JCCXShjdPZkGm4Eu/vEtErM0vzjnTVsuEnNXVC9W7zrvQnKbI/NGCfvO5TC+ZwpC4c2BoxqLnlfPrfRqd/SPy78zMDQFcBCnckMtlSZdiy3ixVd3M6R3e6KCfMkrq/a4TaCPikAfFfszcpg3sStnddeZ32owi6/udjmOUqGY59uNQyWScehCTos69dJqHQVltQwMaceOYkcV7tNOs3j7/FqilYG3tU8CR0hEVv7NYbe0VuF8snoPD47ryXdP3snbP+/g0MVm7eML8NufZ3lySh/ujxvKopybVm2VBh0SH5HHdL8eydE8OKU7S/N2s+jMRqx2G0qRlHGRXbk7vp/XCl2FoY4Hjy9xGyy9Xl/GA8e+47vu80n1jXYeu9vp8iOU/kiEYpdrRU0j4fkxZ3+Lx2pl7iEGh6a6tb51RgP1BhNXSsqoqDUyJCgNnaCBpVd3Y8fOBx2n89SpH/khZy+t1CGEyH2pzKnn084zKTfU8dSp5WTWFqCVKBgX2YWBISnoLAZitUH80vNRnjn9EwX6ShI1YTwQPZysvFKS4oNvawEWqQxA0IwLT4pK5+ss75HaFruVdcVHGdcnmWW/O2Rl6UnRvDZzCH4aJZk1BdSYG+gTlMTBs9e9duPAYRMpMondChC3g0goRCN0Pb5/tXr7z6DaVM/u4gzsOEi+Nxwtz3ZeK8QiERql42+q3FDL8px9/Jp7CIDfy04xoU8Ky/7wLMcTCgTMGNQJtUJObLCIVa/NYuXeM+w5fRWrzUZ6cgyzBnfGV61AKf2b6P5X42+i+28AH6kSH6kSo9XC3ISBzE7oT62pAZFASLGhmjV5x9hT4nkS/XD5FfqHtEMtkVNn1ruR3CbYsPPBxQ0s7X7/XyK6fwUapRyNUs6cEV1pMJiRiISoFDIqjTrWNcowxkZ24avb6GBX5h6io1+sy83LX6OgVXgAv+05x54z15jUrx29OsSiN1sQCyTUVpsIDFQSnxqIWPwfsQ0CpUjCk0mj+Shzo9tjMqGE59uN82pxFir3xV+m5kEvhBEcreXZ8f3diG5xbS3ry7zrXwG2F5/joTbD3IhupUHH4uzdrCs45vK+3fxb8Vr7yQTJtejNDs2awWamxtTAlbpitBI5L6dO5O2MtVSZ6/m66xy+ztrurJT7SJRMjenJpOh06mst9EmJY/95z56tcaH+RAX5AqBRyNAgY17rwRwsu+zViWB+68FOv0gfqYrufm34+OiPLR6DX/88Tf/2Cfg3GwApN9a1aF1kw87vhWe4J6E/QoGACVHd2FLg2Yu5CTqLgRv15Xz6wFjmfbaKqjrXkAmNUsZ7c0ayaPNhQv00qKVyjldkE60M4oceD3Ko7DLlxjoilf508o9nf2kmKcpYzuUUe3nHmygor2FMYmfCFH4MDW2P3mriSPkVytS1zGs1uMV9V4kcXqvHLt/sdlhtdux2h23dmgPnXEluI+x2+OTX/Sx5YTKBMo2z89NKHs7Zq4UkRQWTXXjTrSHMX8ODU7rz6LklLjrwBquJFbkHOVl5ja+6zsH3Fn9und7IvuJLXt1TbNj5+OImPu8yGz+pCoVIyuCwVLcFfXPMiu/rcp0Ax/mkt5o5X5Pn9XngGPS6FeX1Oi5dL+PN5Tsor73ZuYkPC+Dl2WNZWryTRVd2MDu+Px9lbiRbV0J2k+2VXcDCK9vIrC0gUunPOx3uYm3eUR44vhiD1YwQAT2DEvkwbToGkwUlMqRSMXExfghw2D56u64DTI/tjcAmIFzuS6GhmiC59rZONCeqrvJp7z60CQsmOtiP/LJqFI1afkOTxaBMQ0FJy4ESAEUVdQwKSUHpxY7yfwo2u409JRfxkahumx5nx05ufRnhSteCTYPVxJobRxkT0ZnREZ2QCSUExvhwtaCSA7dc90RCAW/MHoavxkHgZRIJIb4S5o1MZ0q/DtgBtVyGWv6/6zj9O+FvovtvBJlIjKyxrRMo03C2Ktdt4v9WSIUiRAIBZpvltsNsJYYaKoy6//L0FalYjFR981S02W1Oz8sgmZYbDd4tjgCy60rcyKKfRskn949l9ke/UlqtY+GGoyzccLTx/UQseHSiY/jsP0hyATRSJQNCkolSBfBzzn5OV11HIhDRLySZu+P7cbbyOqcq3cmeSCDk5ZSJSG0SSvQtVz5X5h7i2eSxLnn0YqmAIkPLaXYmm8UlzQ6gxtDA91f3sDrf3Q3hWGU2z5z+iY/TZnCtvpQl2X+SWZuPUiRjcGgqYyM78+Wl33k2eSzvXFhLRvUNXkyZgL9UjbVxqEQrkTuqZX5WXpkxhOcXb+FUtqsONS7Uv/HYu5L3YJmWtztM4d3z69A101RLBCKebDuaGKXr8JIQIfoWbOzAEWBy63lR5IGs3IqChgqsjQOPgTJNixWfJjRYjQQo7Pz8wnR2n77C7jPZ2O3Qq10sfVLjWLXvLP07JDC0cxsCVSqeSR7HO+fX8tOR/XQLaIWPRMHBsix2FmXwUpvJLNt0kmgv3ZDmiAjwoUtgFN0DEzHbLHya6bC6u6orQSOR01oT6pw6vxUz4vogEYjp1iaaI5kOsmu12tAopPgo5ew44d1dA2Dt7vOMTu/CD7l/opUoaKUI46l1m/ny4Qlsbqa5njQglWX5e7wOO2bVFXGoLIsR4R1dEsisWFHJZEQpAsjTe74GZNYWOP1XlWIZDycO50zVdY+LmfGRXYhWeh6CkwrFtw2eECBA2Gz/as16coorefzrDW7Sm2tFFTz2xSa+fW4S888uYn7rwchFEmeLPETugw0bO0vOMy6iM3NbDebxkz+4BPfYsHOg7DJnqnJZ1uMh1t44xuq8IxhtZu6M6s7jbUaSWZNPicH9GjI1phcBUg2frzzAV2Pm8fylH/+CkZrj2pRTXMmCjYcI0Cp5deZQ1EoHAYtQ+iNEQLW5gYTAvyDb8lXTIzLaZWDQ+dnsNkw2KxKB8D/oT/wfR7WpgV9zDzErts9fmjm4dRuLzcKWglN80eUeTlRe5bnTv1BtrkcjlvPuhOncO7Irq/aeo7beSJvoQCb2ao9KIUGrcK1UyyVS5L5/V2//O/A30f03RoTCD5VY1qJP6qiITijEMnRmQ4u+hU2o/gspXP9ZCAQCAmQaKox1WOw2lxuEJ2i8WP5EBPjw28sz2XrsEtuOX8JitdEjOYap/dPw0yiQir2f/qX6Gqw4NHwtDTQEyrUIBAKmxvTk3oSBWOxWTlbm8Ov1Q8xtNZCXhRP54doep+9sZ/94HmkzHEOVjet1VajFMowm75+twqjDbLO6EF1/lZJAmZZrOu/+qs3T7JpgsltYm++9EnyxJp+8hgrev7Deub8Gq5nfbhzmj6KzfNb5bj65tIknk0Zzz5GFvHhmBd+lz3c7PmKRiEAfFR/PH0N5bT3bT2RhsVrp3yGBqCBfN5JrslixG4UkCCJYkvoIIilc0uejszbQJzjZo62dRCjCV61w0RLeisggX8x2CyaLxfldhyv8vW7vfJ4yAJFQhK9URZw6hM7+9S1WRgUIiFcHc8/hhfhKVCzocS8DOrTiSkEZkUE+gIDJfTpwOruAN5Zv5/W7hxKgVfFKyiTqLAYOll7CYrcxPa43WrGSwkId7ePD6NQ6koUbD3ltEQdolcSE+GG1WTE3hho0NFskvHN+He91vIuvsv5wkV7IhBJmxfdlfFQ3fGRKHp/Yl2nv/oxULKK8tp7lz02jrEbHs1MG4qOSs/nIRdbsz3Dbj4u5paT3aY9SJOWd5Gl8u+4oZTX1GExmnpjUl88abfq6p0Tz3VnvwQXgWND1CEpELpRQZ9GzsyiDK7pigmVaPu8ym3qLgWdO/+SR1DVfzATJtXzf/UE25B9nXd5xas0NxKtDmJMwgFTfaK9OLVqJglHhaSy44jk1DyA9sBUSwc2/w9LaOhatP+JVX17XYGTLwUyGJnTgmq6UULmvs6I6MbQ79RYD73a8C53ZwK7iDK/plDqLga+yttHWJ8Lplf1b3hGEQgFLu9/PurzjbCk8RZ3ZQGtNKPck9KeVOpSHPl7PlYIKTl8p4vMnpnCtvohkn0gu1niPGO8XlIzdCC/cNQizxUpxZS1xoY6/GYVISp/gthwuy2JO2iC+23jM62cP8VMTGxSA/y1V+nqzgTqLgU35J8nWFRMgVTMpujt+UiX+/6TM4T8KO3YqjHWszjvCM8njWJPn/ZroI1ESfovThtFmpWtAAr/dOOxSUa+zGHjk3BKilQG8NW4qKqGcUJVPi/eZv/Hfg7+/gX9jyIQSZsf396rLaqMNJ7bR+kUtkdNaE8b2onMtvmak8vZE4T8LH4mSu2J68lXWH+wrvciwsA5syD/hdfvhYR1ReWiPCYUCArSOVLHR6W0bW0RSlwjdW1FhrONsVS4rcw9TYawlXOnP9Ng+JKiDvcaABsg0tPOJwmy3YrZZiIkK4kpuOXPeXs19o7rxdZe5jnQoBBhMFn7ccpo1+zPY9PYcr1WuJiRpw5EJXYdfFEIZ40O7tagb7Rfc1u15l2sKb5sBv7M4g45+sS6BECqxjKHBHRCaRDwXPxGRXcj8+MH8lLvfRWpgtJioteipMxvQW00OH9IAOQ+O7en1/Wrq9aw/eIEfth93Jo35qhXMHdGNUekd8ZF7XsTIZCIm9U1lyVbvXYiJA9vx1fWtPJg4DF9UqMVyAmRqwhV+HtvQ4FggjAjv6PJzt4AEtBKFi69rc3QPbE21qYFqs+NfSV0dz/1jG4UVtfiq5Mwa2ZkeqdEExUmZktCOSqMOYQMOeze7nXqLkfM1efxy/QAqsYwZcX1okxpKhbGGZ6f2591fdru9p1go5O17hiOQ2vnp+gHyGyoYGZ5GR79YZ+u+QF/JM6d/4t6EgTzQegjZdcVIRWK6+CdgsVkIaFw8RAb68NUjE5BLxPxxMotXvt/mTJdTy6XcNTCNj+aP5plvN7sMjqrkDrutbzrez5INxzmQcR0Ai9VG//YJdIgPY93B84jFgtsOiVWb67HYrOwtv8IbGatdtv/+2h5mxPbhu/T53HNkoYsziFosdzvP/WVqZsb1ZVxkV8DuGHTyElt+83iKGBPZmZU3Dru8vvNxgYjH2ox02i3WmfVgc6SatYQ9p67xcFo3BEKbM2SgvW8MndWtUIil7C/NpJ1PlMdkQ6XQUe1rsJnYV5rJ3fH9WMBNIv5r7mG2FZ7lp56PMDaiCwKBQ1Zy7EweD/+8hKZ1SVFlLXuP59CnRxQPJw7jweNLPO6rSixjTGgXFq8/zpnsIkwWCytfnul8XCNR8EK78Txy4nv2Vl5g3rh0Fq137w6JRULeuWcEQWoVkmaDYzqznv1ll3jj3GqX68bqvKOMCE/jsTYj/r/ocW+FSCAkShnA+Zo85EIJPQMTOeRliPvhxGGob3GJUDUGYXiTjdxoqOCFc7+wqNt9f5Pc/yX4+1v4N4ZGqmB0RCdsdhvLru11tmAFjdqvl9pNIFB2k7yNCO/IN1d2ekx9AWjvG41U+P//lBELRYyN7MLhsiw25p/kq65z2FuS6bHiHCzTMjk63Wtam+P1hG5VRE+oNOp47dwqFwJ5o6GCI+VXGBnWkUeSRnh1nfCVud5IzYF2CipqeH35Do/bt48PQyZ1xPd6swkSImBsZBdEQtcEID+1ko6iGHoEJHK4wv0C7SdV8XjSKDctouU2ZAMc1TFhsyZnnCqYN9pMYcPei9y/dB06gwm1Qsa4Xsks7DsPcWM6UYVRx+nKHD6/vJXSxqqbWCBiUGgKjyWNdBtKqWsw0GA0s2zHCX7984zLY9U6PR+v2ku1Ts/dQ7t6nEI2YGJw9wQOnc8l84Z7Jax/x3iCwxXszDjPsLCOyEUSOvvH4ydR8naHqTxw7Du3SFiAJ5JGOoe4qkz1PH3qR7oHtubLLnN46PgSt6jkVupQXmw3nmdP/+z8ubC0jsKKWgJ9VHz22Gh+Lt7Lt6c2keYXS4ImBKFOQBdbAsEKH+YeXeTSrSgzwtvn1zI2ojPt/WKwhVlY9MQkvt10hFPZBYiEAnqnxPPQuJ5UimoYs/8DJynckn+K9f2fQSWSOS31Sgw1vHthHSqRjHClH+18oohVBrnYBSrlUpKigvlk9V623GLzpjOY+G7rUWYM6sQ9w7ry3dab1a8xPZK5cKGMBRsPOz2nfdUKhEIhy3eeZGin1vio5MjE4hYXCgBxqhBMNguvnVvl0U3gp+v7idc4nEGmH/zSeS2YFJWO2kP7WSwU/dOkyV+qZmn3+3n93GqnAwo4HB5eTZ1MRLNugNVuw/oXLOjNVitSoYgwlT9yoYQnEkbTVhbFK99uZ8Fz41iXd5yuAa2cVm1SoZhn246ha2Arx0Cx3SHJOF5xFU+W99XmBhZd2YF/bghLt3ovBqw7kMGEXilEqP15r+NdvHt+ncsiO1zhxytt7uD4+XwmD05l+siOBGhUiG5RFfjLHJG+V+qKMfnY+CRiND9sPUFGTjFCgYC+qfE8PL4X4QFaJLeQvDJjHa+fW+3x+/298DRJ2jAmRXX36qpgt9sxmi2IREJnKtt/BL5SFXfH9+OZ0z/x5KllLOo2jx9z9rGx4ISLtOTB1kMd/sO3SC/MNiub8r17wINDz/1XEif/xn8P/ia6/+YIkGmYGNWN0RGdydGVYLCaaaUJRSIUu1UoxQIRb7W/k5fPrXSrwATJtLze/k7nQND/b/hKVbyXNo2zVblsyj/BF11m8132Tg6VZWHDjkggpG9wWx5OHIZWonRp7f9HYLSY2FJ4ymuVdGvRGfqFtKOzfxwmi5VAZcttNq1SzpOT+npMWfNVyXlr9nACNWpeTZnM3KOL3FqyAgS8kjrJbcK7CYEKDa+mTmJncQY/Xz/QGGLgSP65N2GAx2nnJJ9whAi8DnwBdPFP4IfGATqZUMIbSVN4/qttzohWcAwJ/bzzNIfO5/LtE5MxCk2crszhxbMrXF7LYrfyR9FZ8hoq+LjTTOc+1dQb+HHnSQb9P/bOOj6qO23f17hn4i5EICQhENzdixWKlEJpC1Sou25ld+vu7i2U4oXi7k6wECQQd0/G9ffHkCHDTALt7rvb9/fm+nz4gzlnzpyZjNzn+T7PfXdNYsmOllP0vt94hGmDu/gUujmNZawpOcqrd49m18lc1uw+Q1W9nugQf6YMSyM0UsFz2YsAVx9nmaGW9poIAmVq4pTBLOr/EN/kbGV7xRmsDjtdA9pxZ9JwYpRB7ouZClM92Q3FZDcUEy7XsnjAQ+wsP8Oh6hwkQjHjIrvSwS+Sl0+vcHviJmnCOX62FIAX7hjOu3mrUYqlfNPnbk7XFXGyLh+ZUIxSIqPRZsRPrPDZlrO6+Cg3RHXjbxcWEyLz49V5t6BrtGK12QkL0FBJHfcf8KzM2XCwtugoH/S4gwePfOvRW6y3m7E7HcxNHEq5sQ5ts/dVvcWAzmTxErnN+XXnCX588ma+23AYm8NBbKg/qbFh3PbmYvfytUAAj9w0iMU7Mtl05Dz+Kjlmi42FG44zPr07iwpbtl+7I3EwS/L3t2qZ9XPuHroFJPBjv/t47NhPBEhUzIzrj/Qa9mRNmO1WjDYLVqedanMjZoeNCIU/SpEMtcTlOR2hCODNrrMw2i1UmRvxkyjQiOX4S1Ue/cNKkQw79cSFBZBf3nLfd7cOUcglEgQmEbPVI1m/8RxvnznIgLR4NpecwomTssuxubUWPb/0f5B8XSUlhlrkIglGu4WVhYcIlWsJlWuRC6WYHJ4946WmOmLVsa0+9ybbK7VYzsCQFJYOjOdsQzHFhlpStVEEijU4HbA3OJsvz/9Og9WITChmdEQX5icNJ1Tmh/DyBbe/VEXPoETMdivOUCcZcVE4nE4ECJBIRGh8BN/orSa+v7ij1b/vwtw9jAjvTIjoyu+SzWan0WDG6rCz5VgOmTnF+CllTB/chbAAjTvZ84+SEdCOEWHpbCk/xe37P+HptBu5NX4Q9VYDUqEYlViKv0SJxMd7y+awX1cLn8GHf3sb/x3ahO7/AbSXl+2uZZ4dKFPTLSCeXwc8zM+5uzlRm49U5PqyGxORgb/4z32p/Fn8pSoGh6WSEdAOh9PBc2lTcODEZLciE4kR4VqSvLri+Weotxn5NW9fq/v8lLuLCIU/b55ZzdOpNxKjDEIh8T1MoFbImNQvjS6JkXy+Zj+n88uQS8SM753CzcO6usMbwhRafuh7H1vKTvJb0VFMdgvp/rHcnjCYELm21WGJILnLb3NkRGccOBEi8EqLao5UKGZoWBpbW7Bqi1IEEiRTc77RJdRGhXdm474LHiK3ObllNazef4YbB6fwwTnfUcjg6v292FhOsEyDw+Fk58mLZOWVoVHIWvXPtTkcHDpXwLheqV7brA475cZ6Djae45j6AnNnZ6ARK6myNvB7xX5OnLriFqAUSamy6Cgz1REoU6ORKtBIFTycMo57k0dfrl8LvD4f9QYjn3e5m1CNhgu6Ep47vpi+wUlMje3jcjoRKzlZm+8RnGBz2pFJxMSE+CNQ2VE2SJmbOJQHj3xHfbOK5urio3TSxvBWt1t52Ed0M7iqXMPCO7Ekfz+f5m1ggrovSzaf5NnZw/go27cTyWc5W3hUJGXpwEfZWHqCI9UXkYokjIvsSke/KGrNOpL8IhAJXf6xhfpqNpYeR3Sp9Qs3q81OVl45HWNDCA3Q8PDkgby+eJv779epXTjzx/bmTEE5m464Vhl+3XmCTx+cwt3vL+OLQVM42ZDv09nglrj+RCkC2Vja8kUPwCVdOVanja8ubOXtrrORICZQfu2qrclupdFqxO50sLfyHF/lbHUHaYgEQoaFpfFYygR3BdjhdCAWCImQ++MEn7HnUpGYMD8Ns0Zl8OpP230+rlAgYM6oHtTq9cx67xfsjivvdYVM4vbXXlN8lAXtR3F7wmCcwIn6AlYXHaHWosdfomJCdDd6BCXye9FR3u1+q1frQaQiAGtt6y1JiRFB7u9JqUiMVqAgsyaXY7W5/Jy7i9e73sKrWas41yxK3uywsbr4KHurzvN9nwVeoUFNfsJyzbUHqvR2M6fqvWOOm1NhbsDudLCt5DS5l50OMrTtqKk3Mu/NpR5JlSv3nmZgp3j+ftvoPyV2tVIlT6VNYmxUBt9f2sGrWSsJlmmYEz+I3sHtW211kYnEpGmjW3W8ANdqYxt/DdqEbhseBMjVBKDmvg6j3BWhALHy32Yp9mdoLer330mFuaHV7bn6CtRiOafrC5l/6HN+7HM/7SQhLe6vUcpJj4/g5TvGYLHZMZitVNXrKa/RIRIILy/zCgiUqbkppjcjw12CVSGSXtNgvQmRQHjdS7SBcjWPp0yg0WriUI1n5TpGGcQHPW7n6cxF7ttGBXfl2Z9bHs4B+HXHccb07uBzSKg5vxUdJsUvEpsZvl53kITIIPSma7sZVDTqqDXrvMRGe00E2fXFPJ46gffOrmNvlW+HACECegYl8VXONldfZTMkDglipxilTOrhtWs0WymtaWDJ6iyG9Ehgk+Q4K0pcS/bNI0mDZRo+6znfo3p+ojaf23sMR2cws732NPd2GOUlcps4XV/I95d2cGv8ID48t95re6WpgTR/V0rSkZpL3J0wimduGYZA4vSI+72ad8+t44fcnSzq/zCjIjqDU4ATJwa7mQRNKFKRBKvdRpGhmtv3f8rA0I6Emnz3QjdHJBLy/oIbyS2vIa+shvlje3P3+L4IBQLyy2v5dsMhTuaWuvfXGc3Y7A6GZ7SnrEzPW11nk1mbx+L8vdRa9MSpQrgjcQhxymBsTofX8OTVCBGiEEqZGtOHMlM9KX6R1zxni8PGmfpCQmR+HKzO4c0znlaAdqeDzWWnKDXW8na3W6k26/j0wib2X1456hrQjrvajyBRFebVnqQUy+iZEsOsUV1ZtDmT5tdsErGI1+bdQIS/hgOn8z1ELkBhZR2DlGkAXNJVYLZZidFG89DR7z1cMuqsen7K3c3eyvO8mD4Vf6kSjVju0XYwM64/x2p9D7I1Mf+G3l6CsMrcyKm6QgaEdORYTa6HyG1OtbmRr3K28VDyWDR/MBK+OVf3UvuizqLn6ZNXvoNkQjH3Jozh/pv68e6vnj7Hu0/n8sOmw9wzvh8y6R+XMlqpkoGhKaT7x7pbtq6u3PtCeLmP//MLm1vsPe8ZmNhiwaGN/zxtQrcNn2ilKrS0PsDx/xMCBNd0dwiQqrA4XX2dJruVj89v4Lm0KQTIW36ddEYzF0oq2ZOVx/mCSg6fL8TphIhAPz68bxJxYQGIRSJEQpHPytHV2Ox2TDaLy5LtOpdsmxMk1/BS+jTqrQY2lZ7E4rAyIKQjsapgFGIJXQLi3BVdtVjm5Ql7NVX1+mv+MAAYbGZsTgdWm5OiqnrEIqEr5vkadIgN4tWsVTyROsGjbUYhltIvpAN7Ks4yI64vi/L2+rz/pJieHKm5iNlhJVoZBEBNo4Gj54v4/cAZ7A4HgzsnMqxrElqVHIfDSWZOMQ99uopQfw3Txqex4pT3VHakIoCbYnpjddh5MnUi8xOHsaLwIF0C2qFSSUmKCkKvFJNVX+RT5Daxs/wMdyQM8Rl0EKUMdA9GiQRCpBIRIQo1laYGxNcIC2i0mSk0VHH/kW/pHZjEXe1HEKkMRCqS4HA6qDA18M7Z3zE7rOTqKhiW1A1azhIAICbEn+kv/0RNo4E7b+jNuaJKdp281Op91Aopz84ajvzyAOiIiHR6BiW6Kt9CibuP3GK3MjK8Mz/n+Q5tGBbWiTuThnG8Lo/TdYUESFWEyv2Q2yWtpjXqrCZWFR5mbuJQvsnxHuprIliu5VxDKY8e+9Hjdc2szWPBoa95MnUiI8M6o5VduehWiKWE+mmYM6I7UwZ0YsPBc1TWGegYE8LQjCQ0ChlyqYSJfdNYvf8MuWU1RARqmD68M707xeKvlhOQq6LWosfitPJ7ybEWreAu6crZUZ5F14B2TIruwc95rjaQWe0GoJUoGdYlif1Zeez08feYOqgz6fERHreJhCJGRXRhbUkmIyPS+elS62EZG0tPcHf7EWj4c0I3QKpidESXVl0tuga04+xVYtvssPFezu+8kTab9PhwTl3lLb1s9ylmj+jxp4RuE9caVPSFRqzg1S4zefbEL16fw0hFAC90noqf5D9ToGnj2rQJ3TbawGVXNSYig1VFh1vcZ2JUDw5VXRkc21t1zufgntPppE5vwiq0UmaqY7P1GOZEKyM6x/GQuj8fL93H/jMF3PH2Ela8eBvBWtcXrcFmxuywIhaIPHpza3UGKuv17D+ThxMnfTrFIZYIUEmkSEUSgtR/7Is6WKEhWKFhgd9Ir23zE4fRSRvDj7m7qDbriAzyo6S65Up3TKg/AgSIBaIWhxgBOgfEoRbJqBe4+tbyymvRKGREBGoorfFtPh8XFgAKBzsvnuGe9iM9hK6fRMHTaTfytxOLuaXdAAKlan7M3eUeeFKL5UyL7UNGQDueyPyZdP8YVGIZZTWNzH93icdz2ncmn49X7+WbR6cToFHw9NdrsTucjO3bgdUV3u+HKTG9GBOZwdL8A5Qaa+mojbr8eH3RSpSoxDLG9kghx1DGyuLWvakdOCk0VBMi9/NwgvCXqJge15cfLu0kVhXsqhAJpNQ0GhCJRQwOTWVTWcsOKUNCU4lUBLJq0BNIhJ7vpzqLAYPdzJFqlyi6qCsnMFHe6t8iNS6M6gY9NY2uNo2Tl0oZmpHYqtDVKGUEapRukduErxUaqUjCze36sarosNfA37iobgwLS2P+wS88Bnw+v7CFmXH9mNNKstrh6osMCOlIjUXfYkIhuATjk5k/t3jx8G72WgaFpnjdrhBJUWikBKpU3DG2J0KEXsNUARolXz0yjS2Z50lPDeObgi18nrma7oEJvNJlJk9k/kSSJoIvLw80tsTq4qOMjEhHLZaT7h/DvMThdPKPwU+iAAU8P2sktwyt4sctR10xwyFa7hjVi5hQLVqVd8W+ozaKKEUgGrHC3crREmaHFcd1DLNa7VbqrSbsTjtyodR9YSARihkf1Y2lBQeo9LFyJhIImZs4lI9aCAf6qWgn00YM5NRXnkJXb7JgMFsI4j8rKhViKX2C27Ns4KMszN3D8do8ZCIxE6N7Mjg05T/iHtHG9dMmdNtoA9dV/bzEoeyuyPb5gxirCuaGqK5M3fWe+za70+HVY6ozmskuKMcvQMqbF1d59KVt4DhaiYLXp92KYJmAfVn5/LY/i3H9kqlz6vk5dxe5+koCpCqmRfclPSAGmwke+3w1WflXliY/XLGX/mnteODGAfy85QCTB6STEBGI2WbDiZMAlfJP29oEyNT0D+lIsjYSmUDMrOFdeWvJzhb3v21kDxRyESPD01lfetznPrLLP3JSsQSFzMG43imsPZjNJ7/t5a27JnD/xyu9/HCD/VT8885RvJm/AoDM2lwSNZ4m9YEyNf9Mv5kqSwNqsZwf+95HqbEO5+X2j3UlmTx27CcCpSpe7jITgVXI41/+5lO4NxrMvLN8JzMGZ7gz6IP8lWSaPQeN+gV3oF9IMqsKDnNr/EDWlWSyOG8fQoGAAaEdGR/VDblTgp9SSaI4FFnZtf8OUqEY2+Vwj3h1KM93nEqw2A+j0cqsiMFMj7YQpFDz0reb2HU6l2EZSdw3czg7Ks74jDKWCsXMTxpOsNx3pbPS3IDNYfcYDPo4bx2v3zuRRz/8neoGz0GbmBAtb981gRV7TiERi7Da7Bw6V8CDkwcQolVRWe/bf/v2UT0QiqHMWIdEKGq18goQJFXzdZ+7efb4Yi5d9pRViWUuj+oDn3s9VydOFuXvJUYVzI3RPXwGD2TVF9IjMNEdie6LWGUQVeZGn33STdicdnaUn2F6XF+f20VCISJaXqoO9FMytHcCc/Z97P5+OVSdg0wo5oted6IUy3wKwOZUmxtRixVMje3D+OgeiBBgsluwOx0ESFUE+ikJ9IulY1wYVpurV9zXIGcTAVIVn/eaz4nafGKUQa2KXX+JCqGg5VkIh8NBjUVHrr6SZQUHqLcaSFSHMSOuH0qxjGCZhgCpii9738U/Ti0js1nrTbQyJc4fnQAA4DJJREFUkIc7jmN3xVn3atLVnK4v5LEM39aW4n/DjMafQSGWEiUO5MGOYzHazAgEAvwkilZfpzb+O7QJ3TbauEyARMk3fRbw8fkN7Cg/415eHR3RhTuThvF61m8eE8+hcq1nkpPDQWZOMZcqqzirv+gWudHKQBQiKRWmeuqtRp7K+omPps5n/5l84qK0rCw9xNrSY0yJ6M0tkYNwOJzYnHZqdAZe+HIzZwu9gyH2ZuUhFYuY1L8TSpmEn7YcY/+ZPEDA4Ix4buybToBahkT8x9sb/KQK1GIZ1RYdI3t0YMfxSxw+7z1E1KdjLEO6JOInU/BAx7EUGqq9ho1kQjFf9bwboUXM/kt5FFTUMSwjiZuHZLB4+3G2HjvPD8/MYMfJi+w/mY8AAf0zYunaMZK3L652L2X66u+r1Rl4e/FOSmsaee2eMUiFQoJlGlYXH+FgVQ5SoZjHUsYzNCyNAKmKmkYDz88bhlohw2qzc/hkER+t3OsWtgnhgShlEh6eMpCiqnoMRivBwVrgynOaHT+IDcWZjIhI586DX7oN/MGV8LW84ABf9r4bjUSBUixjTERGqx7QarHc7WU9PDSd++LG8vGqvWzLzMFmd+CnlDGhfyrjBiazYHofyuv0bM3MQaGQ8NHYubyUtcQjBSxC4c8/Os/w6brRRLGhhmCZBrVY7q6enq4v5MPCtXzw2ARO55Rz6FQRQqGA8b1TSI+PIECj5PZRPZg+uAvFl1tPIgP9+Oax6TzwySoP5wGRUMDMYV0Z0yeZ17NXUmSsIVTux81x/UlQh+InVfq0KRQJRSSow/iwx+00Wl2xygnqUFYVHfYp6Jv44dJOBoWm+By2DZVruagrZ2hYKqIW2j20UhWVptZFJkCJsQa7w/Gnhl/NdisLc3d7XUTvrjzLgaoLfNJzHhEKfw//6qsJl/sjRMD6kuP8kLvTHb3cQRPBIynj6OgXiUos9+l60BJhCn96i6TIRVJOZLYcqT05picasXdV2O5woLeasGLnpVPLPFxrjtXksqzgII+ljGdYWCeC5RoiFQG83OVmzHYrJcZa/KUq/KVK3ste2+KQbGvEhQX8S20L/w7kIgnyP9FG1sZ/jjah20Ybl5GKpUSKpTyWMp6HO47D5rAhFAg531DCvYe/ofCqKOKZMf0JaLYMW6838daSHbz14A18fmw1E6K6MzmmF+WmehqtRtqpQqg0N/DNxe2c0uUzoU8qmmAxpwoKeCP5Vn74/SifH1+KzeGgQ3QIT0wf4lPkNmEwWwnyUzLvnSUYmsXhZheUs3BLJl89Oo348AAP0/brRSgUuoSDHN64cxz7zuTz0+YjlNc2EhHkx5yRPejdMdY94BIs0/Be99uoNjeyvPAgJcZauvjHMT6iOxcLalnw9Y/uQAhwBRE8OWMopTUN1FsNZGrO0H2UyyLpoO40Hxxb6a44ukIbkjzOr05n5PnvNnCmoJxFL93C++fXsq38tKttILIrU2J7I0RAj8AENGIZNRYdR/WX+Dl3N3n6SvwlKiZGdWfZq7P5ZMkBxvVOocFg4pftmTQazXSIDqFfcjwDFHFsv/wDHCbXYrJbmBLXm/sPf+shct3vAauRJ479xFe978ZfqkIukpDuH8upOt8T57fGD0SIgO/73otF72T2a4uoa/Y6NRjMLNycyfHzJTw9dzBP3jqIua8u4/d92VTXG/hq3j1UWxopNdYSofAnWOZHoEyNqJWqUojMj/Wlx5kQ1Z1f8q/0Np+oy+OOY5/QIyiBlIHRTIntRaT6SiqUUi5FKZe6W20AtGoF3zw2nbKaRk5eKkGtkNEzOYZsfRFTD7zt7js+31jKnspzDAlN48nUCaglcuQtRO4GyTSIEXDAWEuSJowDVRdafC4AZaY6r7jrJkaGp3P3oa8ZHJrC8PBOPgNxasw6r/QrX8Qqg/+0w4veZmZ1sW/vVavTzqL8vUyN6cP7rbiXzIjrR76+gnfO/u5x+/nGUu499A1vdp1F/5Bktw/09aKVKunkH8OoiM4+X59UbTTT4/p6+ck2WAxsLD3B4NBUlhUe9GnN6MTJ29lr6BYYT7Bcg0Bwxd0kWuXqmW80m1D6CPxpThf/OHIKvWOgH582mIA/aTHWxv8d2oRuG21cRdMSa41Rx6qiw3x+0Tv0YUhoGmOjMjxEZL3OiN3hoMhQzUPJNyAUCHjoyHceE9Id/SJ5vtMUdldkM7pPBzZVHuO+2LHc/85vHkKwXVjANQd97hrXh4c//c1D5DbRaDDzyKe/8f2TNxOivdIvZjRbMJitiMQCrEIbOY1lZNUXESBVMiAkxRUAYXH9mKvlMmRSMf5qBTf06kiflFgcTicigcAdwGGxW2mwGjlYncOR6ovIRFImRfcgWKZBK1ZQWq3jgY9WesXH6kwWXvpxEz88eTMaiQS5SMwXeb4HVSZF9/BanqzVGdl3Jp937x/PooLdbLssRvU2M8sKrqQ1acRyfh3wMO+fXefR01pmr+PLi1tZX3qcz2bM552fdrP52BVBdexCMUt2nODvt43mxZRp/D17Kf5SFTaHnQsNpV59pM0pMFRTYW4gQKamyFDD4ynj+fHSLraXZ7k9jNViObfGDyRSGYjd6UCBnHdXbfEQuc3Jyi8nK6eChAQtKbGhZBdUsD8rn71H85k8IJ0UbVSL53M1UcpA9lee459dbia7odjDwcGJk8PVF+kT1B6N7NpODACBGiWBGiWpca7Wkp1lZ3jy9M8+991RkUWv4ESGhXVqUeiKBEIC5X7cEJmB3mZuVbQ3IWxhIFIpljEyPJ3M2lzuThpJqbGWU3Weqw61Fh3t/SIIlmncVdKrkQnFDPTRo/tHaO09s7sim9ntBpDhH8fxZs4eACqRjDvihzA8oDM5jWUsiB/Nb2WHPHq6nTh5PWsVC/s/+Kf6QwNlah7tOI7REV34OXc3hYZqgmQapsb0ZkBoijtFr4lGq5FvLm5naf5+BoelsqKVGF2AHy/t4tGUcT4HvzQyObcnDmFj2QmflXsBAua1G85H3115jBCtiqdvHkaXhMjrGoZt4/82bUK3jTZaIFCh5sbongwL78QveXvJM1QSJFVzc1x/ohQBXh6eerMVq91BmEKL2WrmpVPLvI55tqGEJzMX8mnPeZh0dpJFUXz/+1EPkQuuKM/Wvr/bRwVTUafz6qdsTmlNI4VVdYRo1ZgsLmuzbzccIjEqiO7dw3n02I8eP+xvC37n1viBjA/twYPvrmZgejyzRnQnUKNEKha5vX+bsNqt5Ooruf/wNx7OAisKD9ItMJ6XU2fyxe/7vURuEw6nk8/W7OPVuTfweMpEVCI5a0sy3UNtMqGYKTG9mJMw2Ku/c+tlUZoSH8oLe32LKnANjl1oLGtxcKvQUM2XF7ZyQ/90D6HbdH4v/rCR5S/O4ekOk9lYeZxIZQCZxXktPl4TFxvLSfaLpEdQArfv+5Tp7fpyW8Jgigw1SEVigqRqfi8+xtay03zUYy4ms5Utma7HFwoEPv2F1+zK5r64XqReFroA+RUthxW0hObyIN/TmQt5sfM0qs2NrCvJpM6iJ14dys1x/QmXa1sMK3E6ndTqjDgvhwTIpWKUl3tBK4z1fJ+7Az+JgmCZHwabmTJTncf9F+XtoU9Qe+QiidtGz+6wU23RIbjsaqwQSQmQqVGIpAwJS2uxdxMgQR2GWOC7iqmRKLg1YSA7y7M5XpvHy11upkBfxfqS45jsVroHJjA0LBW1WM6rXWZy/5FvvcSWAAHPdprSYmLX9SAAEtShXNL5XqGxOx18cWELL6ROY0/lOVaWHKTUVMvo8AzmRA5hxa5TzD28BIvNTkZSBH8bOZ3j5kt8mXflIrzaoqPUWOtT6NaYddicdgQIcDqdBMk0XtXpQJmGgaEppPhFYXc6EAgEBEs17qCI5uhsJn7J30uYXIvVYW819Q7gXEMJRrsF/xacfAIlaj7qPpenTyz06JVWiqQ8nDQemUnGi7eOolZnIECtJFirwk8pQ/wvJKS18X+HNqHbRhutEKhQE4iah5LHYrBZkInEaGS+BUBYgJqaBgMBSiUvHfNtIg+uYaDD1RcZFtqJrqJ43j7uXQ05nVfK5AGd+HGz7+XOyCA/ckqqrnn+ZwsrSI+L4PjFEh78eBVyqZi7p/bm5r3ve0VU2p0Ovr+0kxCZlmlDu/DOkp0s33OKrx+dTnJ0CCKR5w9evdXEvYe+9qhYN3GsJpdKQwO7T+d6bWvO/ux8V6ynXciC9qO4s/1wLukqECIgXh2KRCDG//Lkdr3OiM3hBJy0jwomKSqYGouuVUu4cVHdeTt7TavnsLH0BPMHDPO5zeF08uvOE4ztmUzfDh0QOYUMC0zndH2BV2WwOQGXK1dqsZzn0qfw6NEf+ZzNBMs12BwOKs0N+EtUfN3nbgRWIU6nnZfmjyQxKhCzw4YUMTuOXWLJtpPuQb2aRiMyoZTmlqyJEUGtPjdwJZ9ZHTaUIhlKiQyJUERn/1je7T6HD89tQG8zMzQslXCFP+1UIUQqAlC3IHLr9Sb2nM7lm/UHySuvRSIWMap7B+6d0I8QfxVioYjZ8QMJkmko1Fe7gjUkSpYW7HcvixcZahALRRjtFpRiGTVmHdvLs1iUt4dCQzVykYQxERnMTRxKkEzNpOge/Jq/zyOYozkPdBjd4uAdgJ9EyQ1RXam3GLA5HHT0i6SjXxR2p90l6BAgF0vpoIlgUf8H+SZnG7srz2J3OugZlMj8xGGEy/3R/gt2Uf5SFbcnDOGFk0ta3GdkSAbnL1UzrkM3hkamorebsDcImf3qLzQarnxWt2VeZPvxizw1aygzowfwS9GVxLmrX6NGi5EGm5HvL+1kS9lJTHYrqdpobk8YTKo22ueA4NWJmb7YUOIK96i16K+rVUIllrVamVdJZaRqo1jY90FyGsu4pKsgQuFPekAs2ATYrU4kYhFJkcEentdttHE9tAndNv7S2OwOGvQmzFYbAgFIJWL8VYr/+JedUipDKW29j0wuETN5QCccTicFBu9+suZsLD1BX/8OSARinxXP0ppGTBabT+9IaOrPvbatmL9agcFs5bEv1mBzOHhgcn/WFB9tNYf9h0s7+KLn3byzZCcmi42HP/uNxc/OJtDP84d+d2W2T5HbhN5mxtlK8hm4KtdltY3c9+EKbuzfiTkje9AnuL3HPg0GE+cKK/j89wNk5ZWhkEkY26sjL98+Brmo9feBWCCk1Nh61dPssLZoK9UuLIDJ/TtxMLuApbtOUqc3Eh8WyNQRA5nTScTz2Yu9hLZKJCP5cpiBTCQhIyDOZUOUt4dD1TmoRCIeT5lAn+D2FJTWsfPCabp1jeBXw3ayj7qihCUCEcMj0vnksUk89cl6iqrqaRcWgFos4/jFywN6EhH90tq1+LyqzY1c0lWwtOAA9RYDiZowbo7rh1aiQCtVkagO56W06RisZoxmK+U1OjLPVaDprEaikSC7yhasXm/kg5V7WLX3ytCQ1WZn7cFsdpy4yOK/zcYpt/HDpZ0efqj+EhUPdRxLgjqMzy9s9hjcqTY38kbWanZUXEmZMtmtrCo6zM6KM3zbZwFhci1f9r6LpzIXkqevdO+nFst5NGU86f6tx98C6G0mhAIBflIFepuJfH0VP+fuoujyYN6MuL508o8lVhXMoynjuS95NOBqo7iWW8T1IBAI6BvcgTERGWzw4U4yPrIbA8OT8Y9TIhIKMehNlNTV89H3Bz1EbhNOJ7y1aAc/vXgzy0sOuKvQMcpg9z52p4MKcz13HvzSo23iVF0Bjx37idviBzE9rt81EzN90eTvbHHYwOkK1shsJcRkQnR3gqWtv44ysQSZWEKwQkOf0Pat7ttGG3+ENqHbxl+Wer2JdQez+XbjIfcSfUyIPw9NHkjP5Gg0yuvrIfxPIRaJmD28O0brtTPOrU47DUYzgXI1arnUPfnfnLeWbOftuyfwzrKdHLtQ7LEtQK1kcOcE3l26s8XWAJlERM/2MRzKzsd4uY83OSmY9/JbjzquMDfgFFw5ZlW9nvyKWg+hq7eaOFTlPXzSnNONBfRLa8eWYy0PE/VKjuFsYQU6k4Wftx5j+4mLfPvYdLQqOTqjBZPVhsVqcwdXWGx2LDY7i7cfZ93BbL5/8uYWf2T9xEokQjEhcj+vQcLmSAQin9UmrUrOK3PH8tRXa8lr5ipwMreUk1+VckOfjrw4dDrPnPH0P300ZbxHsp1cJCVSKeWB5DFYHTZMdldIw4fn1hOhCKBn90TmH/jcIzDC6rSzoew4Oboy/nnXFO54dSnTRqRjNFnJLatBIIC/zxndon1UjVnHiyeXegwI5eoq6CiPIk0Vy4bs8zgc0DE2lPLaRj5YuZvyWpcjwHvLd/Hpg1PoFB/uYVNXXqvzELnNMVttmAUW7jv0tVsENVFn1fP3U8t4v/tt9AxMJEoZSKWpgURNGFn1RR4itzm1Fj3vnV3Lc2lTaKcK4ZOe86ix6LjUWE6ATE2SOgyNROGOovVFnUVPZm0ey/IP0Ggz8kTKRNYUH/Xwy87TV3Kk5hI9gxL5Z+cZ/2MeqFqpkkdTxjM1tjc/XtpFmamOCEUAc+IHEasK9vAXFgkEaFFxobjlVRu7w8muY7n0D0tme3kWKX5RaCRXvhOrzY388/SKFnuDf8jdxfio7n/quXQOiGVJwX4AdlVk80jHccw98LlPL+04VQiDQlN8tkC00cZ/gjah28ZfkgaDiS/XHuCX7ZketxdW1vH4l2t4ftYIxvbqiFz617F1Kaqs47a3FvPJ4zcSIFW16svZMyCJ83nVZCTJmDywEz9tPua1T2lNI49+vprPH5qKEyeHzhYgEYvp1C6MExdLWHfoLLeO7M53G32HXNw9sS8KqZizRVeqYE4n7j7IP8LFkmq6Jl0ZeBIJhEh8WEQ1Z2XZQd4edwfbj+d4RaCCqwd5zsgefLDySipTVb2O6gY9m46e54fNR6i67NGaHB3CneP60Cs5hi/WuobNGo1mlu86xXPDprKz6gzZBpdosjntSIVivu+3gEPVF5ge25djNS23UAwL70RusXfV98Z+nVi266SHyG3OugNnGd4jkSR1ODm6MuJVoTyYPIbOAXFIBSLsDruHt6tcJKHWouOBw9+6K/5/6zSFd7N/90pFayJHV8ZFSykP3zSADhGhPPTRKgalJ7BgYj+ig7U+3/8mu4XF+fs8RK6/RMV76bfz+dJDvHR6l8f+3ZKi+OLhafz9x41kXizBYrPz4Cer+O0fdxDk5/obmy1Wft7iu40GYGhGItsrsrxEbnM+Ob+Jf3SejkIkRQhY7DZ+ydvT4v4AeytdoSxN0/ohcj93tfxa1Jh1PHjkO3d/b6o2mhJjbYuhMIerL/J78VFmxvVv1amkwWoApwCRQIBK8scutv2lSvylcbzUZRpWhw2pUIzKh21XsNKPrEstO640UVhaT3CMH8EyDa9lzPQY9nLFHxe1ev+lBQe4r/0oFH8w4r1HYCIqkQy93cxb2Wv4oc+9fNn7Lt4885u7mi8SCBkSmsojKeP+LVXxNtr4s7QJ3Tb+kuiMZi+R25x3l+9icJfEv4zQrazT8c+FWzBZbKzeeYapPfryVd4Wn/vKhGJuiu2FIEzEwbP5zBrejSPnitwDRs0Z0iURjUJKoJ+K6noDy3adwGK10TUpCqPZSqi/muhgLV+vP0RpjcsLNDpYy90T+9A3JQ61Qk5E4JWlyawL5QyKSfHyu21OhMIfHJ5iONTfs01CLpYyI64v28pPt+hxarCZCdTKef/eSTz99Tr0zarWcqmYx6cOISu/zKNq9fi0Ifyy/ThrDpzxONa5okqe+HIN/7xtDCO6tae0uoFnbxlOZk4Jr/28HbvDQY/UOH7pMYpKZx0KsYQyYx3vn13Hj/3up09we582VcEyDfd2GMVj76312jasaxJ3v+89UNic5dtO8/7tt+MUO5GKRAgRcrGxnI2lJ7A57QwJTSXZL4pguYZKUwMPH/nBo60l2S+Sl+tWtPoYG6uO88++M5A4xHzx8DREIgEWoZV8YwWNDSai1YEohVICLg9HGm1WAqUqnkydSImhlnUlmdwdN5Kvlh9m7+k8r+MfyynmxR828uKckZy8VMori7ZiMFs5cq6I0T2TATDb7JTXtRwo0Cs9mtU1vmOYm7jQWIricgRxoNyPequBimv419qdDiwOGzaHq4XJ6XSikErcw28tYbCZ+ez8Jo8htonRPVh+DXeAJfn7GROZQahI67WtzmxAb7CQXVROYUUd4YEausZHI5eJ8Vf8sf5dtQ9xezVh2mu3FIQEqugZGsa8pKHuvvAmqs2tp50BlBhrMTqsKPhjQlctlvN+j9u5//A3mB02bjvwKQ90GMObXWfjxInBZsFPokAsEBEg+78TJd/GX5M2odvGX45Go4l1h862uo/eZOF8USV9UuL+Q2fVOja7g9N5rl7atQfO8kHviYwL78baMs9KrVIk5d1ut6GVKFAoZYzrnYrVaufD+29kz+lclu48SW2jgXZhgcwd25PEiCD81a4f0cTIIGp0Rt741TXoJha6DPCHZbTnpTmjiAz2QwCIxUKC1EpElyeSB3dO4M1ft2NzOPj0twMsf3U2C/N2ezglNGdewjC2HLgSdayUSegUHwG4lpPrLHpO1xW4qqZ972V3RTbfXNzuJXjnJg5DJZPSs0MMv/3jDk5cLCG3rAatSk5qXBjLd59ixZ5T7v39VXKSIoN5ZdFWn+fldMJ7K3bxwb2TcDrhkc9WU9FMfB05X8TPG47x3oMTWNZwEJlYzMc957Is/yDPpU1ma9lpFufvo8xUh1Ik5YbIrtyeMAQFUh6fPoTXf9lGTolLhErFIhRSCSZLy0EFAIWV9YicIoIUrtCBR499z7lm/am/FR0hUhHA573upMJUT67e82LG1oL/a3N0NhMSiZAAqZIag45DNbm8d+F3D8eMboHxvJw+A4FQwOm6QvZUnqPRaiRBE8YbXWcRIFDz8qmWq6cnLpW4WlTKa3nx1pH87bsNnMordQtdmURMTIg/h8/5vkASiYRYrdd+LnqbmTC5FrlIgskuJlIR0KqjglggQioQ88vWY6w+cAazxUZGUiRzR/cixF/t0bphttjQmcyYrTYkSoFXUl+E3J9cXTmtUWFuwFdXea1Bz+n8Ml78ZpOHBZxKLuWZWUPpkxJHoOrfJ+jqLHq0GtdFatMFrC8m9E0l0E/hjtptztWWYL6IUPijbMHmrTWkIjEpflEsG/QYywsOsK/yPFvLTyMRihgZ0ZkwtfZ/NCGsXm/Ebnc5bUvEQqw2u6sHWyn3Gppto402odvGX47K+tZts5q42pLrv0mD4cq52OwOHv1oDY/OHMSUrn3YUX2aRoeJZGUkgyJTUAtlKCSuHxeRUIhIJkQukzCxTxoD0uJxOp1IJWL8rupB9lcreGP+ONYezObnrUcpr9WhkkvpGB1CQnQAIokAqVDs0R8KLqP/BycP4N3luzCYLCzZdJLPht7J45k/eXhxSoVi5iUOI1URy82rrvSdPjNzOCq5hApTPU8c+5nshiv9wiKBkCkxvXi722weO/oTVqcdtVjOvMRhjI7ogvzyuQRKxAzNSKKHwcxbS7bz6i9buXpOrX+neLfFVktUNxhQK2Q89dVaD5HbhM5k4YlP1/Hh4xOYm/kJa4uP8VrGLbybvZZO/jF83HMuUqEYJ05yGsoQCgRo5AoyEiL56MHJ6C1mDGYLAQoVNpsDsUiIze67Bxpcfp427FSaGnjh5BIPkdtEibGWH3N3opV4CyEHTvcScEuk+EUiF0rRGS2criviudO/eO1TpK/GIXDy1LGfyWq2XJ3dUMza4mM8kjyO+2/qx0fLWu7PPni2gNyyGlLjwmgfFUyo/xWhJJOImTW8m8eFSXPO51XRNSWeHJ334GQTITI/DHazu03DX6piVvxAdlScafE+w8LS2HToPO+t2O32yi2qqmftwWxeueMGBnVOQCmTUKcz8sOmwyzbfQqTxcq3L0z1uvDS28xoJcoWL/DAtdoivKq1x+qwUd1g4PFP12K1eYp5vcnC899u5LsnZhAY/+8RutXmRp7M/BmVSM6TswfzxMdrffbh3zaqOzoMRIq9q88AEoFLjDb/vF7N9FjvIIjrRSoSEybSMj9xODPb9UeAAI1Y8adDNa6HRoOJnJJqPl29jxMXS5BIRIzo2p5Zw7ux/UQOarmMUd07EKBRtFmPteGmTei28ZeivL6RJdtP0CE69Jr7JkZe21rpP4VWpUAgwC3ezFY7r/24HT+ljD6pcShlKkyRYvyi5chaaLcQCATXdFLwVyu4eWgGY3t2dHmtShxUWOp55/waSky1RMj9mR0/kGhlkHu4RSWXMrFfGrFhAXzy216+23CEer2JTyfOp8JST3ZDMVqJkp5BiVwqruGWF3/B4YCU2DAemjKA1NgwDE4L9x7+hgK953CM3elgacEB1GI53/VdQKPVRJwqGKVIitJH/6JGKaN/p3h+P5jttU0ll17z4iVAo8BosXKuWd/x1dTpjFwqqqGTNobT9YX8/dRS3u1+G/MOfM5H5ze494tVBvFJz3kAVJobmXfsMyrNjdwZP4LTqxvoFB/OsIwkNh093+JjTRySwts5v3FX0kiO1rQc8FFpaiBY5r0Uvan0JOOiu7Ekf3+L9701YRAKsZQycx2fXtroc5/HUybw/aWdHiK3Oe+dW8uXGfcQvElFVUPLveMAS3ed5Mb+nRia4ZlGF+SnZP7YXny9/pDXffafzufjsZNYWXTI50ASwLS4PhyovMBNMUHUNBoQCQW0U4UwIao7a3ykhoXJtdwWM5TVF7L55rHpiIQCBAIBFqudlXtP8cIP6/n95flYrDae+3Yd+7OvpM/58rzdVn6asZFd+SLHd0sRwKiIzsiu6j1vNJr4fsMRL5HbhNMJn/62j1fmjSFI868NstVa9Dx69Ee3OI2SBfHpE5P5fs0R9mfnE6RRMXNYBr2SY5FLxRSX16OTm5H5eT/fMIWWF9KnMv/A5z4vpG6NH4hK/MdaFnwhFYmRiv5nBviaozdZWHPgDG8v3em+zWZ2sObAGTYfO88H907i09X7+WLtAb56ZCpJkcFt1d02gDah28ZfDCEClu4+yeLnZvPszGEkRARhdzg4cr6IlXtOu3+kkyKDvAIM/puIRQL6prZjX1aex+0NBjObjriE0ooXb2tR5P4RREIhIpEQp9DGovw9qAVKbose6qpAioUcqbzINnsWtyYMxGEVIBQI8FcqGJSeQHq7cGx2lxm8GCEZgQFkBLa78jxCxfz+yrzLLRAid7zmwaoCL5HbnMX5+xgd0YVPz2/A5nTybvc5KPHdh9i7YywD0xPYfcpTGJZWN9CjQ3Srzz0y0I+LJa1btwGcy60iun0Qp+sLqbcaKdRXk+wX6VFxHR2Zgb9UdTnlaRsVZtcSsdApwGKzsWzXSd5bMJEj54uoafReYeiZHE14pIqqvEYya1v3Cz5RW8C8xGF8fsEzZW9N0RE+7jmP8w2lHgllTTyddiNBl22ZTDYbl1pYeu+ojeLFU0tbPYdVZQcZ178jP6z3PVTWKzmW1fuycDrhgRv7o76qD9ZPKWf2iO70TI7li7X7OVtQgVIuZVLfNKYN7oLdbuO1jJn87cSvXvHIE6O6014TQaPFyJpdZ9lw+CwapYwZQzJYkDSG4eGd+DJnKxcby/GTKBgf1Y2pMX3ILajDX63g8S/XuJ03grUqbh3RnUHpCew5dYn20SEeIhcgt7jWq5q5o/wMt8YPYn3pcZ/vZX+JivlJw/GTXhWMYnX67G1uzqFzhbRgfvKHqDQ1eJzz8pIDHK2/yKNTJvKCaiSNBjOLtmWyN2sXIVo1k/t34lRuGSmxoYQFeA98RckDWNj/Qb65uI3NZScx22109ItkXuIw0vx9++j+pzDbrdRZDAgErgHZa9mcNRrMvLNsp89tJouN1xdv54EbB/Do56tZ8OEKlj0/x8sSsY3/m7QJ3Tb+WgjgwRsHUqszsuP4Rd5euhOJWOSy0lowkcXbMzl4toC3757wlxK6QX4qnp4xlHnvLKGy3rtids/4Pvip/nU7tFqdkcycYo6eL6L3gHBGBnTl29WH+ez4r9gcDoQCAQM6tePOyb3Irinm9LEaiqvqGdC5HRkJ0QRfo2Ic4OM1tTpsrCtpeTAQwGi3UGiopszUQKW5gRO1+QwL7+RzX6fTyfyxvRjTM5kj5wopqW6gVmdkcJcE+qXG88nqfVhaqJ5Fh2i9Wjp8oVJIqWwmtgr0VYTJtW6hGyR1pd7JRBIarEYPb9McYxkZHWI5kF3AW0t28NH9N7J89ynWHczGZLURolVx05BO9O4azZNZPxEm1yK5hml+nVWP1WGnX3Ay+6rOuW832C08kfkzL6VPxWi3sLsim3C5P8EyP3oGJ+IvVbkHlxwteP0CWB12jHZvi7rmXDSUc2OYb3/SLgmRBPsr6RgTSnF1A1GBfhitFnRmM1KJyN1/6qeU0zM5hg7Rwe6WDo1SjtVm54MVB7htYje+7nM3R6ovkqurwE+iZGh4GucaSvgmZxuvd5nF2N++ca98HLtQTMeYUD5+YDJvd52NE1c7h1asoLRKx/bjF/l1x3GPc62q1/Pe8l3MHdOTAWnxPodWf9l4nAWzR/PIqe/dHsk2p52XTi7l5c4z3AEWZocNkUDIoNAUHkwe67PqjoBr+kEDOHw4i/xRdpR7W61Ni+iH2qbkl23H+WHzEY9tG4+cY3SPZPzVcqRiMQEaz6APuURKpETKQ8ljubv9CHcyWqjCd7uDLxwOx7/dGqzK1MjKokP8XnyUBquRRHUYtyUMJk0b06K925r9WV7tTs3JLatBo5Dhp5RRpzNyKq+UwZ0T/63n3cb/TtqEbht/KQSAQibmnveXu2+z2OysO3SWrZkX+PTBm7h3Yj+U8r+G20ITAoGAUH81Pz19C8t3n2T9obPozRZSYsOYO7on7cID/mVhXtto4MFPVpGVX86r94whUhrIg++upqz2ylCSw+lk16lcTuaW8cUTUxg1MJCLNRVEKbXszMphYEqiR+/l9eB04jOS9mpEgivdjcsLD9I9MMHDGxRcbhqnikqIDvGni18EJouV7u2j6ZIYidFi5WRuCf+4bTR/+36DV29ssFbF/LF90KrkyKXiVgfFBneLZ1nWlaG2AJkKXZ2rLaJrQDzPp99EkNT1OjicTo/Qh50VWczpNoQfNhxzJcp9soofn72ZWWMyMNjMNNpMrKk4zA/H12N12tFZTaRqoxEJhC0GTwBgEfJs6mQ+OL+WrWWncVwee6q3GLjQUMao8C4kqMI4U1eMQiRBJpDgsDvd39IKsRStROGzx1R8HUJEI5bTPjIEtUKGznhlKbtrUhTP3T6UZeV7mXtzBlGSYA5dKGTxtuNUNxiIDfXnlpFdUQeIqHfqSfWPRqtQeFinScUiJvRN440fd3LnTT3R28yIhSIqzQ08l/kLA4JTeK7DVHYfzfMQK+2jggn0U7J6fxYzBmegkF35XMslYpbuPNHi8/lpyzGmDEj36UF9KreMrbtyeX/QHXyRv8ntMlJmqmNT6UnmJQ1nQftRWBw2JEJxq+4AcomYfqnt2HDknM/t4LJoyy+vRSGT4BDbqTY3sqHkBGaHlYGhKSSpwwj4E/683QMTCLcGU6nTe4ncJjYeOUdaXBgRAS1XRP2kSv5ILESdRY/FYWNz6Uny9JXEKIMZHdEZmVCC/7/oolBuqufug196zAecvBxicVNML+5MGk7gVZVmi83eos1fcyrqdWhVChoMZo6eL2oTum0AbUK3jb8YDoeTt5f4Xp4yW+288MNGvnpkKgezCxnQqR0q+b/eY/bvQioRE+qvZs7IHkzpnw4CEAkFBGv/9f41k8XGtxsPk5XvWrruGB3Kb3uyPERuc+p0Rn7ZfJzbJ3Tn6eyfEQmEDA1No4stAnGjAJlEgsFsYe/pPCrqdHSMCaFTuwg0ShkSsWd1UioSMyI8nY2lLYsOqVBMvDqUVzJm8srpFTRajR6iz+F0UGcxsLPyDJsbT+JshJ7aJPq178jHS/bx0o+bmDq4M3NH92LF3lN89/gMftufRWZOMVKxiGEZSQzukkigRkFhVS33TerPO0t9v0/G90vhjL7QbZQvEYgYEppKtCiYZ1MmoxBJCVFe+dkXCgSXh5Rc7QlWp50firbz9n3jePLTdVQ3GLBjZ3XlIRb68H21Ou3srTzHpOgerCj07l8F6BPYnsLSBp79aCP/vHs093cYw9mGEoQCAZ0DYrHY7Tx/crFH8IVMKGZW3ECmx/UlUK5GIZQyObIP3+d7x0s3WIx08Y/jRF1+i3+jMZFdybbl8+vLMzmeXUJxTQP9U+MJVCvZXnuKI9WXGBvcjae+X0dmzpXl88LKOvZm5TFpQBpDBsfw3cXtzIjpT7jSD3GzXtjYUH/8lQqe+3gT04Z3ZlJKGg4cTAvuz+7MfKxaJ99ucHnYDs5I4PZx3Sm11VBkqkYrEaBzGrFZbWguxw/vycpt9QLLarNzKreM6YO6sO90nte+y3eeJjuvkpmjBvHKoEhqLDoEAgGbSk9yrr6YoS2sOFyNVqlg/g292XLsQovhLHNG9mB/dj7xEQE0GIwYrQ6GBXTmQO15/n5yKWKhiE97zidSGdDqYw0OS+Xri9vc/78prC8NZWZ+P+Dd096cJTtPMKBT/HU9n2tRY9axozyLt7LXeHyGPz2/kYc63sCYiC5/SrQD1FkMfHh2nYfIbc7ywkPcENXNS+hKxSJiw1p/7cA1HFqvd10Iav8NK2ht/P9Bm9Bt4y/FhqPnWvwxASiuqqe8Vsd7y3eRkRj5lxK6Tajk0hYTq66F0WLFYLJgs7sm/ps8Q/UmMyubTbwLHULW7W/dgm3DoXPMH9cbcA2NbSk/RZmpjte7zGLjvnO8t3y3x2vtp5TxwX03khITivSq+Nd0/1hC5VoqTPU+H2t8VDd+Lz7GlrJT/LPzdDaXnkLRzLaoxFjLnQe+oNpyxSnhaM0lFhXt5q2pczAvsrF4+3FUMikzhmTw647jqOVSZg/vBriqxf4qOcv2nKRjegD+CUKemjWE79Yecbsv+CllTBvamR7dI3j81I/ux5nfbgRLt57it91naDSYeX7WCEb2SEZ6WdBrxHKmxPTiu0s73PfZWnEKu9PBl89MIfNcCTqDmYyAdj6FLsB3F7fzdrdbUYikLC24EskqEggZHpbOzaED+cc3W6jXm5j76lJWvDCHoRFpAFQZG3nwyHde1mNmh41vc7cjE0mYEdsXf6WS6XF9yDdWsr3CM6FsUd4eHksZz7yrEtaa6OgXSawyiLsOfcnXF7fydZ976Ctuh85u4nhdLmXGev7RaTo79+d7iNwmZBIR6XERRAqCsZ0u5eN9+0mOCWF871TUCikKmRStSsFj04aw/0we32w4xHu/7kZ9eRDyxn6deG3xNkprGpg0IJVhQ9rxxNkfqLNeafORX5LweMoEBoZ0JECmpuE6XFWq6nVoFEH8/PRMFu84zur9ng4OZ/LL2XboItXqGj6+tB5wWWpNjul5zWM3R6OQ8fIdY/jnwi2eftASMQ9NGUhNo4HxvVN5d9lutmZecH1+hUIGZyTw5oTbeDt3FQsOf8X3fe5tVSQGSTWkaaPdQ4UR8gDq1RbOFrYeHlFUVe91gfpnKTJU8/qZ37xud+DkvbNrSdSE0UuW5OOe18bqsLG9vGWXDYCfc3fzbNpkr9WgSX1T+XLt/hbbF9qFBWAwWWm4HJk8pmfHP3WObfz/R5vQbeMvRX7ptZenLpZWo1XJ+f3AGW4b1eMvYyPTYDBhszlA4FpKbt6Tq7eZMdot7K88T7W5kWS/SJL9Il2m6peXgKvq9Xy97iCrD2RhstiQikWM6dmReyf2w+5wIBGLGJ7aDplEhM3moNHQetSwyWLDbPccCjpdX0ipqRa92eq1f4PBzD3vL2PFS7d7hEwABEhVfNHrTh448i1FhhqPbcPDOjEmIoOHjn6P0W7hw3Preb7TTSgu2xbVmHU8fPQHD5Hrfkyrkb9l/8I/p97C/NeWs3jHcYZ3a09iZBCdEyIQCgQIhULkEjGv/rKVqSM68dKFX6gwNzAirDP/fGAECmTIhGIUMikbK4/x6MnvsTrtJKrDmNtuGOkBMdijHUwemobTAQdPFqI3mbHJRRjtVsx2C1NiejM2MoM8fSWri46wr/I8Oyqz2FV5hruShhMT1Ak/m5wIhT+lxjqv52F22PgmZzuvdZ3JLe0GcKG+jDqDkfZ+4ZiNdsR2MfdM6Ie/So5ELCJIe2X591xDiZfIbc5PebuYEN0dJTKCFGqeSJnA3IQh/FZ8hAabgTS/GEaEpyMTifmmzz28lb2GU3Wu4SyZUMKYyC5MienFU5mLAKi3Gnn51AomRHfnrTNrGBmRzvTYvlhNTn7d4V21FwkFvHXXBDYfPc/LC684Fmw6ep5PV+/jlTvGMqBTPEq5FK1KzpieHenVMRaH04nD6cDqtLHrWB4zhmRw+6geRMWomXPoY4QCAf1DklGIpBQbashuKObl0yv4pOc8esrUdEm8dgJau/BAXlm0ldpGA3+bPQKNUs7CrVe8q+PDA7lzSk8ezfre9X9VKC91nvqH0wHFYhEXiqr4/KGbuFBcRXFVPSH+KtLjI1h7MJvxfVJ54OOVHissNoeDrcdyOJFTyoePTebek19yvrGU3jLffdLg8r59ucvNvHRyqbs6b7JYr+lIIhYJkUr+9e/BSlODR0XZF19e2EKCOozgPzHIZnHYWnTlaKLYUOM1zAigVsh4cPJAPlix22ubXCLmqZuH8eXl1MRJ/dLQKP56RZA2/ju0Cd02/lLEhF17SCIsQE293kReeS0GkxU/1f+M0K3TGbHa7NTpTShlEiRikc/+VoPJQmFlHR/9tocDZwpw4qRnhxgeuHEA7cIDcYjsrCo8zGcXNnt8yftLVLzXfQ7t/SLQ6S3Mf3cJBRV1pMWFMbJ7BzRKGZV1el74fgP/vHMUHzwxgd01ZzA5LNhFNpKigt0hFb6ICfGn+CpRCvBb8WHG9Mjgx24zeOPHHZy4dMWw32y188u2TO6b2B+Z9MrXg0AgIEoZyNe97+GSrpwDVReQiST0De7AhcZSHjn6g3sY6kjNJXf/KUCFqb5Vx4ZKcwPVjgaSIoPIKammsk7H20t3UtNo4LsnZtAlIZKqej2n8koZJ2rvdkfYUn6SLeUnEeKynersH8e02D4s6v8gFrMDuURCmaWG+49+404ji1UFMz9xGHaxjXey19EtMAGNRMGKgoNc0lWglSqZFN2DO5OG89OlXYyM7EJn/zhUUhlCIXzQ/Q7uPfy1R1hD03FfybjZPcWuFsqpFOgxGay8t2SPR5U0JsSfv88ZRXJMKAgdbCg73uJrA67AiDJDHcFyDQKBgGCFhmCFhkfUN2DHiVx8pa/VT6rkjYxb0NvM6GwmhAIBW8tOc//hb2m0XRFKJ+ryeSxlPHang9+Lj3Gg6gLfZNzrdjZoztCMJC6VVnul1QHYHU6e/XY9y16YQ7vwQPftQpmT97J/p9qk47HEidQ0Gli8I5MJA1LZzQnuThpBj6BE9ledp9FqZEBIMjGqYL7K2crnFzbRTjWLhIggQrQqn8OdTa+jAIE7UOGb9Qf54N4byUiMpNFgxk8tI61dOAcazzIlpjdp2mgcOFmSf4D7Ooxq9TW/mgC1gpE9OnD7m4tJigomyE/J0QtFvPnrDm7s34kNh8+22EZU1aBn1Y4sbkjtxvbyLHoFJSEQ+BbaAoEAtVjOrQmDuE+sQGBzpQKO7pHcYtQ3uFL8pP9iRbfpYjyzlbhscPXTXs9wni8kQhFCBB7fD1cTIvdDIvCWJmqFjCn9O5ESE8pna/ZzMrcEiUjEsK5J3DKsG4u2HeNCcRV3j+vDzUMz/i3Dv238/0Gb0G3jL4PeaGZMjxQ+WbUPewsTzOEBGsQiERV1OsIC1BRV15P6P/CFVlnvao/YcuyCeygqMTKIp2cMIykq2N3/ZbHaOHqhiEc+W+3RI3joXCFz3vyFrx6eSrWm1sO/tYk6q557Dn3NsoGPsvngBRoMZj55YAq1OgO/HzhDdYOBxMhgXpo/kg8vrGdj2ZVqW3ZjEbeMGsyzX3oft4mZI7uwouKA1+1mu4191efZWHqCt2+bw9+/2OpOBAPYdeoSt43q6SF0m/CXKjlUfZECQzU2h43FeXs9BFQT+fpKopQu4dOaYX0T5w3FxIT4k1NSjdMJAoFLyIRq1dTrjehNFvxVSspNdV73deAEp5PM2lwya3OZGtOHwdLOnBed83rdC/RVvHByCfe2H8X4qO5sLT/t4WFbZqrjzTOrSVKH80GP2z0sjxRiGbHKIH7sdz/Ha/LYVn4akUDIDVFd6egX5RHBqpBKUcmtzH9nqZdvbWFlHXe9t4yfnrmF6DC/1gfYLuOrCiYRi/E1kikWiHj/3Dr2VrY8PAVQY9GhEkuptxqpMjdidFiQiEVefrGT+6fz8sLNLRzFNcz3zYZD3HlDHwI1CuwiO6+cXkGJsZan293Ena8vc6eJtY8NIi0okD2VZ7l9/6c4mwkef4mKVzJuZmn+fpw40arkfPbQTcx9+1f3cnQTgRolL98xhjd+3Y5cKuaF2SNRyaW8v3I3ZTWNRAX5MW1YZ07U5bG9MgsnsKb4COHyAF7pMoPga1hZ+SLUX8VXj07jq/UH2X3K1T8cHqDh5qEZHsOzvli3/yzvDRzHjrrTLYrcJrRSJSl+UXx6fhMBUiXp7ZKI9Pdn7cFsnyEpSpmE+yf2R6tS+DhayxhsZox2KzWWRuRCKQKBa1BMLBRhbiHWG1ztOH8WsUBEn+D27Ktq2Zt6Zlz/FgcDNUo5vTrG0iE6BIfDid3hWkEzWazceUMfHrlpEFql3Kv1qo3/27S9G9r4r1JZr6eyTsfmY+ex2uxMH9qZh28ayDtLd3ntKxGLeGbmMH7cdASBAIZ3bc+hs4Wkxob9W8+pql7P/R+t5EKxZxXyYkk193ywjC8fmUbXpCgAdEYLz323wefQjNMJBix8caFlkWB2WFlasB+R2Y/37pnIZ2v2cahZzGq/9Dh+ytvlIXLBVVWZlebkxgFprNrjbUk0rGsi8Ula3j/hLXY6+cewv8rVQvHahRXMv3EkT3+63r3dlUDl+0JDKBBicVh92iA1Rym6smzoJ7n2D7BKJMdk0SOXiAkNUCOXSHjzznE8+vlq4sMDefimQdTpDITJ/a95rDhFMO3C/Xl09zct7rO+5DjdgxJaDGrI0ZXxTc427m8/BrXsyoWUUCgkWKZhREQ6A0NTEOA7nMBmdxnZtxTOYHM4eGfpDj64dxL9gpLZUuY7cQxcg35NFw3Xg1wsIVR27ZWRAKkKg+1Kv+n2qtOM7N6edQc9e781ShmlNb6rlU2cuFhCdkE59XoTg7q1Y2dFNi+nzOT1H3d4ROYG+6k40niBpQWeF2AigRC9zcSTx37mi953um4TCokLDWD5i7ex+dh5th7LQSgU0D+tHT2TY3hn2U6yC8p5f8EkNh455xEbfia/nM3HLjC5fxoP3HADB+rP83DHG9CI5V4it9Fgwmpz1RjFIkGLgtFfrcRstdMnJY6HpwxELBZSbW1EIHZes59YZ7IgE0oYF9m11f2aEAtEpGijyAiIQ+6QkZNXw3sLJvLZmv3sy7oyeJeRGMnzs0b49NBtjVqLnk/PbWRdSSZWp52bYnq7UgLFCgaHprZqJzgoNAXxnxS7gTI1j6dM4I4Dn/p0DxkY0pFEzbW/z/3Vf0zUt/F/m/81Qrddu3bk53tOFL/22ms8/fTT7v+fPHmS++67j8OHDxMSEsIDDzzAk08++Z8+1Tauk8o6HW8t3U56+wiG93HZwFyqrKJ/WjvaR4Xwxe8HyMwpRiwUMqhzArNHdGfN/iz2Z+dz17g+7DmdS3Sw/7/9vI6cL/QSuU3YHU7eWuISKCH+arILyj2smgD81XIevmkg3TtFIRIJ+DhmHucaSvjw3HoKDd5hB7srzvJY6o3sOZXrIXIBRvVuz0NZ35KgDsPmtLuiXi+L0BeyF/Ns/5sY3yeVxVuPU1RVT6i/mqnD0rGqTDx9+mevJUK1WE7XgHZ8cHYdAOcbSwlJUOCvkrsFybCu7dG04lU7MboHi/L2trhdLZYTqwp2/z8joB0SgchjSEoqFDM3YSjDwzshE0kQCYT0nqrn+LlSnA4nHz8wmWe/Xc+5okrOFVUyc1hXYkMDkNtkrQ7FiQUiRkV1YW/lOZ9DWU2MjuzCT5e8L6aas640k3mJw1BfFXxhtlvR2UzsrzzP2YYSIhQBjIxIRymSob6cBlfdoGPN/taHbo6cL0JvstInpD0BUhW1Ft+ieFxEN6Q+lnKvxuFwUN1owGC2MC2mLyuLfDtAAKT4RZGvr/J4jZaXHODLCQvYdzrPQ5yKhNfuZ5VKxFhtdt74dRu9UucQLNUQJgogu8Cz91guE7P47JX3zoiwdCaH9UHmlGC3O5HKhZTp6wm5LNRFIiFBfirG9uxI/7R4tmXmkJlTzEer9mB3OOnVMZbyWp2HyG3Oyr1Z9EuLZ1bXAV7bjGYrxVX1fLhqN/uy8nE4nWQkRnL/pP50iHbZsF1NiFbNqB4dONGQxzOZC5kR3Z+bwvrSISaEM/m+wzwA4sIC8BMr0Cqub/WpwFDF29lrECJALZFze+xQUv3CWDChL09OH4LBbMVPJUcmFvn0vm6NOouepzMXejh8RCkD2V2RTYG+ine6z2Fr2WmffbISgYgF7UciR4rBZEH5J4ZuQ+V+/Njvfr66sNUVYuGwEaHwZ2bcAEZFdG7RR7eNNv4s/2uELsA//vEP7rzzTvf/NZorV7ENDQ2MGjWKESNG8Pnnn3Pq1Cnmzp2Lv78/d91113/jdNtohap6Pb8fPsOsiV34oWgHn5xYiQMncaoQZkj7k+Efz2vzx+J0uIak9mXl8ty36wnRqnh9/jj0JjNvL9nB6n/O/beeV3WDnlV7T7e6z9nCCrdbQXG1p+BKbxfOWw/cwLKig3x0cBX1VgNykYQxERl83HMen5/fxPpm4QTg6ssL81ezco/n48aHByATS3g/bS45xVVIxCISOgaysfI4vxTuweyw8eLZX5kc3ZP54wdwMqcUk8VKQkQAz59Z7BX7qRbLeaPrLL7M2eohgKsc9YQGaKjTm1DJpUwf3KXVfr8gqYZBoSnsqvBteXRfh9Gom0WLKkRS7kwazqcXNgEQItXwVZ972Ft5loeP/kCxsQap0GVhdlfvEUgFIqobjQzMaEdhZR06o5kPV+zmxTmj+HDVbp65YTJPZf3sdjZozjNpNyITSqj1MfjWnFC5HxtLWrZLAzDZrV6PYbRZOFaby9OZizyEwEfn1nNX0nCmxvXFZnZSWtOI2dry8m8TDqeTQImSz3veyf1HvqXycv9xEwNDUri7/QjsAgdV5kaECFCJZchEnk0L9UYT5wsrePnnrRRW1vHsnKFMiezNipKDXo+pFEl5uOMNvHt2rcftVocNvdjAx4/dyA9rj7I98yI2h4Oc4iq6JUVxzIcbQxMjurXnQHY+Ties2ZfNmA5d3L2zzTHbbVRbdAgQ8GzyFMwlQp7/aIt7SV4tl3LT4HTShsdCM51ZVW/gVG4pu05d8uh3ntK/E1+v936Ozfl63UG6JUV5CEKrzc7J3FLu/2iFR5vU8YslzH93Kc/PGsHoHsleQk4oFIDEwavZK5gZ259Rft2x2xy8MHskAKdzy1i47Ri5ZZ698dMGdeHXrSeYO6YXXIc2rL7cA+7ASYPVyIcX1/HxxfWkaqNRS+TUWvR09o/lidSJ1z7YVRQaqj1ELrgCXzQSBdUWHYvy9vBOt1t5LWsVxcYrzyNc7s8/ukynpsLCBxvX4wRG90imd8dYAtSKa7ZkNCEVSYhQBPBwxxtY0GGUu30lQKq+ZvBKG238Gf5XCV2NRkN4eLjPbQsXLsRisfDtt98ilUpJS0vj+PHjvPvuu21C9y+IzW4nJS2Qe49/5VFVytdX8uaFVUyP6cvU8L7IBVKqG/R0ax9Nt/bR5JbV8POWo5zOK+PFW0eilP05G6+WsDscHvZBLZ+/S+jGhl7xdhQLhbz5wA08cfxnj75Uk93KqqLD7Ks6z9e97+ZUXSFFxiuV3WFhaSiEMo+Y2YhAP1654wbeX7ybPc1iheUSMTNHZvB611k8nbUQu9NBrdVAVn4pr/6ylS4JkYzp155/dLqZQn01GyuPY7ZbSfePpWtAO77M2cKeq3o3/aQKYkK01OuNfHDvje7Y35bQSpX8rdMUvr24nZWFh92CL0imYUHSKPoHJyNtJsSUYhlTYnujlSr5Mmcrn/Scx4fn1rOt/Iqwt1xOX9tdkc23fRYgUwqoiirl08du5KEPVnM0pxiFTMLj04Zy5EIBS/s9yvHaPM40FrGz4gxxqmBmRQ8iUKDBYXOS7Nf6xL7OasZfqgLfRVTAFUctEXp+RVaZG3n82E9efbUOnHyes4WMgHaUXjRTVFFHp/hwSqq9xV4TEYEaxEIhYpGIGGUQP/S5j+z6Yg7V5KAQShkblYFaJGdn5Rm+ytlKlbkRpUjKhOge3BY/mCCZ2i0u8stquPeDK6LtrUW7ePXu0aR0iGZJ6T4uNJYiFYoZFtaJme368d3FHR5xyADjo7qzvPAgqX7RPDVzKI9PG4LN7kAmERMfGcgdb/7qs3c+2E/F0C6J3Pbm4svnUkvHjiqfASlNomZKZG/qcu18cFWLks5k4YeNR6ms1fPE9KHuXviS6gaW7jrBI1MGcfcHy9wWUxFBflwsbT0S+kJxlVcjTqPRzLPfrmtxFuC1xdsYmJ7gs2J5sbGcWGUIN4X2443F29l35koIRvf20bx460i+XHfQHQc+tEsiiZFBvLtsJ+eLqnjrrvHXXHqPUQZ53ebA6Q6+AJgR27fVY/jCYrexvMD7wmBXRTZz4gexqyKbTaUnqTI38mTqRIQCAeWmekJkfi67wAYR89+6EjW96+QlgrUqvn18BtHB15+2BnhFLbfRxv8U/95cv/9hXn/9dYKCgujatStvvfUWNtuVisn+/fsZNGgQUumVL6bRo0dz7tw5amt9W1aZzWYaGho8/rXxn0HvNPPuxTUtLi8vKdxPvdXAbW/9yvbjOYiFQu77cAUv/bgJoUDAl49MZXjX9h5JSn8EndFMZb2OExdLOHGxhMo6HTqjGZVcRmqc74upJpQyCfLLww4dokPcP8bzb+jF7srsFoevKkz1fHdpBw8mj3HfphLJmBzTC4FT4JFu9bdZw/nnws0eIhfAZLXx3bojnD5ezbRo1w/duMiuVFS7FNsztw3huVO/UtRQw5KVWSxIGkmYXMv+qvPcvv9TL5GrEcvxl6m4f1o/Fj49i8TIoOvy47SbILIqiq+6LOCj9Pl8kXE3LyfM4uCWcpZvO02tzuCxv59EwYSo7vza/yFqLXoPkducRpuJt7PXIBNKeCBpLOeshTx/x/DLfcMuP9PuSTGs3XWObeuLMJ9Q8HbSHdwbPo5PfjjEzX9fxNJdJ2mnDHE7IPjiSM1FZsS1LhT6BXdA3Owr0mgz8/2lHa0Oj5mMdr5df4iVe08zbWAXWity3T66J1q1670jFokIVmgYGN6Rx1LHc1eH4WglSvKNVUTJA3k4+QZmtRuIRCjm1/x93L7/E7fzQ2WDjneX7vIQbVabnSc+Wce61bncphnB8r6Ps2rQ4wwISeaxYz+xo8KzrSLFL4pREV2IV4UyKCyFQJWKEK2aiEA/AjVKEsOD+Oyhm4gM8uxv7RwfwbsLJvLGr9vdsc1hgRoQOHFI7V42dY2NFiIU/owP787Xa1p2EVh36Cx1OiM1jXpqGg3EhGopKK8lJtSff9w2Bv/Lnzmz1XZNL22NUublEpBXVuPTYaIJm93BrpMXfW6rMjfyXPspzH1rCXuzPJPejl4o4v6PV/HApP6M7pnMm3eOZ0LfNJ74Yg0Op5OjF4poMFzbHzhIpvEpdpuQCcX0DelwzeNcjd3pwGDztiU811CCn0RBF/84AI7V5PLQ0e956eRSfsnby6tZKzGZbXy4dJ/Xfavq9dz34QqPC/U22vgr8b+movvggw/SrVs3AgMD2bdvH8888wylpaW8++67AJSVlREf75kMExYW5t4WEOCdqvLaa6/x97///X/+5NvwwiGyk6evbHWfjVXHGdipHUt3naROb2TR87OQCEXIxOJ/aRihptHAz1uOsnjHcXeMrFwqZtqgLtw2sge3Du/K8t0nW0xlmtgvzS2wNQoZb9w5jvs/XMmQ3vG8ePbXVh97fUkmdyQMASBUruXdbrcSIFVhdtoY2jWRzUcvEB8eiMVm9+pvbM4vW47z1bM3sbc6m07+MQSnB7L6wBmkCiGZtbksFO5iyuABmK02Gq1GDlRd8HmcBR1GsaLgIPOThuMU2Kmz6lGJ5chFLV9A6I0WftpylB83HwVcARl2uwNTs6X6AZ3iCVB7VmzEQhFO4JdW+nsBDlVfRCgQsL0yiwGhKdhsdib1S0UkFLA3K5dnvvGsxC3bdZJRPTpw/40DeODjlXy6ei9jenXgna63suDw127bsyaUIim3JwxGKBC2mCamFst5uOM4AhVX+gUNdguHq32Lnya0EqV72frohSKemjGUN3/d4fVemtQvjVHdkxH5iO6tNjeSr6siRhVMhMLfNTAmgBujezA5pic7yrP4+PxGvszZwqMdx+NwODmZW+p1HIDD5wo5fK6Q1LgwZs1Io1NoNE+mTmRh7h4KDdUEStVMi+tDv+AOSAQiJkX3QCnxFo4KmZSuSVF89/gMCivrqGowEBGoIa+8lhd/2OixVD9jcBeUfmK+vLCZJ2YN4slP1rlbfZZtPc2CsaMpKm+45srJ6v1Z1DQYyMovY9bwbix74TbKaxvZffoS7y2YRGW9HqfTyfg+KSzefrzF4/jyVC1vwQqsOQWVdT5v76iO5Lft2S0OGuqMZhZty+TGvp14d/lOr37/YxeKPVaCfOEvVfJm11nMP/gF+quEqUgg5LWMW1CJ/7jbjEwkpntggteFDsBLp5bxdtfZ/F58jHUlmRjtFqotOkLlWl7pPJN1Wy9w/GKJj6O6nERKqhv+5ZjzNtr4n+C/KnSffvpp3njjjVb3yc7OpmPHjjz66KPu2zp37oxUKuXuu+/mtddeQyb7c8bQzzzzjMdxGxoaiImJ+VPHauOPobNfu6pRbW0kSuP6Qdh89AK3jeuOViUnSPHnv0xrGw18vmY/y3af9LjdZLHx05ajNBpM3DuxHy/dNoqXftjkJVC6tY9i3phe7kEViVhE5/gIlr4wB5HMSbW59d5Q0+UAh7e6zkYlllFn1iP2EyFWiHho8kD2nymge4dodpxoXVAZzFYqa/R82ms+QTINoiAxs4ZmkFXrSlQ6UH2BaFkQyaJBDA9PJ1IZyNL8/e7QhjhVCHMTh1Br0bOn8hw3xvTiuRO/4HA66ReczOz4gQTK1D4Fr8FsYWWzPmZfguW7jYd4fvZI/K4aarM4bF59qFfjxInZYeP1M78RrtDyWc87uX9SfxqNFp7+ep3PC5BNR86TGBHEqO4dWHfoLNuOXXQNPvV/iBWFh9hT6RpWGhCSzJSY3lRW6/EPUPBcpyn8XnyU34oOU281IhIIGRSSwv3JYwiVeVtQXY+1kkgowO5w8vnv+7ltZA9+enomWzMvkFdeS6BGyQ29UogM0viMKK02N5JdX0ycKpizDUW8d3atO6BDiIB+Ick8mjIOhVDCh+c3cE/7kdjt17YnM1lsdA2IRyoW0jsoiU7aGOxOJwIBBEs1CH0I7qtxOpxIxSIUUjGfrd5LRb0e41XBI7cM64q/WoGfXM6C5FHUGY189eRUPlu5n0PnCtmWmcNNQzpRZ7n2519nNDMwPZ7f9mfx3vJdfPv0VIxOC5uOnGfTkfPEhPgTFqDm8WlD2HTkvM+KYpCfklnDunnZTUVdxxBrQoTviqrSqWD9gdZTCTceOcdNA9N9DrWKRdd+rYUCIXGqEJYMeIRf8/expewUNqeDXoGJ3J44hBCZX6sXo60dd0REOh+f3+g1bFZtbuT+w9/ySMdxzEscisVhRyIUIRGKOHSqiCXbTrZwVBeZOcV0atf6algbbfw3+K8K3ccee4zbb7+91X0SEhJ83t67d29sNht5eXkkJycTHh5Oebnn1GvT/1vq65XJZH9aJLfxrxEiv7YdTpQsiMoalzCTiEXk5FcT7KdC1U6GQ+TAgRMhAjQSuVcvZUuYrTZW7GnZyum3/VnMv6EPA9Pi+e0fd7Bk1wnOFVSgVsqYPqgLCRFBBPl5ejzKpRLiwgKoMNYTrQykrgWDe3BV/Jw43Q4M8xOH0SvElZQU6q9m4TO3sD8rj1O5LQdBNCFFgkLgev/6qxVM6teJg7VXKrfLSg4QqQmgQFeF1WnjlYyZSIVihAIB1eZGlhYc4EDVBWa3G8iKwoNuQbWs8AC/FR3mo553EK8KpdBQzbby0wgQMioinSCJH2q5rNVktpySaoxmq5fQlQvFRCkC3RGnvhAJhMiEEhw4KDHW8nLWcv6ZOoMfNh1pscoOsHTnSV6ZO5Z1h85SWaejTm/k/eW7WTCpD891nIpQIKCguI65Ly/DYrOz7Pk5qJRS5rQbxPS4fjgcDkQCIRKBCLVUjsVuw+5wuKuuGrGC4eGd+DG3ZbeGXGM5gzonsP2460Llh81H+HXncYZ2SSImxB+d0cLBs3nMGdnD675Gm4USQw35+kqcOHnimKdrhgMneyrPUmCo4rOe81FK5NidrsS8QI2y1aXj9IQwVHIpmstWaQrxH/veazSY2JqZw0e/7aF/WjwvzhnND5sO0zUxiiF94hGLhAguv0bVtkbMJgv+UhUBWjVo4Y07x2O12XE4nUhEQhq0raf6ASRHhxKoUdE5PoJB3eL5rng7MyMHopJL0V8OaSmsrOPNX7fzwb2T+GrdQfacdvnbCgUCBqTHc++Efhw8m0+vjnH4KWTIL6/ERIdoWw2jkElE9E9r53ObSCBAd41qtMVm93nxIBBAz+TrK6aIhSJC5H7clTScme36A67BTuUf/NtdjUai4KMed/DAke+8xG60KogBoR29nA+aVr5aw5dLRRtt/BX4rwrdkJAQQkJC/tR9jx8/jlAoJDQ0FIC+ffvy3HPPYbVakUhcX2abN28mOTnZZ9tCG/9dZEKpR6b71QgQMDK4CwtOreSe8X0Z1DmBkup6YqP9+algF6uKDtFoM6GVKJkW24epsX2uy5ZmTzMPSl84na7AhJuHZKBVK1gwri96s8tI/2rRdjWhCi2z4gfyzPFFLe4zOaYXR6ovum3GIhXNhtlEImJC/Anqk0Kgn5K1h3y7GoCrahgfFoif7EoLh0ohI51YpEKx2y3gp9xdfND9dh448i1rfXhjhsj8GBPZhfkHv/C43eq089ixn/ii110e2xbm7SbFL4p3HryJRz/4vcU0KD+lzDWhfhUaqZLZ8QPZVNZydWhgSEeKm9mwHa6+iNli95i290VVg97dUpIcG0p4gJrfD2Tz9q+ewlQsEvL5QzehVsiQiERIRWKaarc1Rh0NNiM/5O6kwtxArCKYiTHdUQil+MtVzIjrx/LCg17LyeB6zyYFhNHpxnbsy8rDbHX1rJosNtYfdlUA/VVyfvnbbBRS7yEni8NGrr6SMLk/n1/Y0mJ6VIG+in1V5wiUqBEJhKiVMm4e1oVPf/PtCSwUCJgzsica+Z8LVrFYbWw6ep5XFm0F4PcDZ6jXG3l+7jBO1OXzzzPLKDXVES7XMiOuH10D2vFa1kpuiOpGt4AEAmQqr+q1QCAgPT68xQs6P6WM5JgQXl+8jVuGdSWhXQBfZa4hQKxmxrDOfLvuiHvfYznFPP3NOmYM7sJ9E/shlYgxWawcOlfII5+tprSmAZVcyhcP30RCRCByqRQ/pYy37prAXe8tdfcWXzk3+OftY1C1YJ0lFAroGBPqfj92ahdOdIgWk8XG4XOF6E0W14Wvj3CHG3qloPyDcwVSkYSgP1G9bfF4QjGp2mhWDnqMjaUnOVydg1wkZUpMLzr4RbiGNK+iT0qce6XCF0KBgH6pcf+2c2yjjX8n/yuG0fbv38/777/PiRMnuHTpEgsXLuSRRx5h9uzZbhF7yy23IJVKmTdvHllZWfz666988MEHHq0Jbfx1CFFoeCl9OlqJ7zaE+xPHsOtYLv+8fQz1ehN3vbuUiHA1WypPMDYig0X9HmT1oCf5R6fp7Kg4w/2Hv23Rh7Q5hutwVGi+j1wmIchPdU2R20TXgHYMDUvzuS3FL4qpsb356JwrrUsmlNA72Dv3XimX0a19NEF+LbdojOrubX0EIBWImRnb3/3/Wouej85v4L3ut9MnuD1ChPQKSuLVlFks6vEwX3e9lyOVl5AIvAfQ9DYz2fVFpPvHetye3VDMe3lruH9ay8NcUwZ0JtjPd7pRiNyvxYnxULmWhzvewIdXJZqZHFZk15F2JBIKUMgk9EqOJTk6lMV/m83QjCQUMgkquZSxvTqy7IU5pMaFeQ3d1Zj0LMzbw9Q977Iwfw+by07yTe42btz1NhtLT1Bn0hMgVfFN73u8BoX8JSre7jabGGUQof5qvn5sOomRnvukx4fz3RMzWuxjNNotLMnfT5QykAuNvntum1hfchylWMbm0pOIRSKm9E9nWNdEr/2EAgEv3T6KQI3vnnad1USlqZ7aVlpudEYLH67a4/6/VCTi+bnDeeX0Cp45/gsn6vKpMNVzsq6A504s5h+nl/NM2hReOrGUIzUXsdq9/Vj91QpenzfOa7gNXD3fb9w5ni/WHiArv5ykyGAKDdXYnQ6WFR+ga7cwZgzr4jG8WVxVz9qD2agUMp75Zh0zX13Ie8t3uS3O9CYL93+0kkaj67MtFolIjglh2QtzmNAnFbVChkImYUjnRH55djZ9U9shl3qKy1qznnJjPbvqzjB7dFf6pcXx4/PTmT6tI8G9HXQcouKLZybz+C2DuHV4d1Y2WzkSCQVM6pfGY1MHt+pR/Z9CKhITLPfj5rh+vJJxMy+mT6VXcJJPkQuuAdxbhrYcdjFjSJcWLwzaaOO/jcD5Z0Or/4McO3aMe++9l7Nnz2I2m4mPj+fWW2/l0Ucf9Wg9aB4YERwczAMPPMBTTz113Y/T0NCAVqulvr4eP78/HhHZxh/DardTa9Hxa95+NpWfwGy30ck/hmnh/ci5UEdpRSMqmZRlu0/y3JxhZHSI4GRdAd9c3O62Sxoe1ok7k4azqeQEMrGUm+P6+RzwaSIrr4xb3/il1fP67vEZdEls3Z6qNWrMjWTW5rMobzeF+hqCZRqmxPZiYGgKz2QuclsEvdDpJgaGdkR7+cfF7nBQrzfhdDpRSCVU1uu5872lVF21vNorOYbX5t3QolF8jUnHsoKDLMrfjeHyIFa8KoSHk8fRXhHJobOFfL/hMDkl1ajkUsb0TuamYZ14L3cNmbW5JPtF0ieoPcOC01E5ZVidDvY3nOXzi5s9fGW/7rqAh99eS53Oc3q9fVQwnz44xavFA1yDgIfPFpLaIZgCSxU/XtrJ+cZS1GI546O6cWN0Lz49v9HLa3jlwMfYfaiAN5fsaPF17xwfwdRBnQnRquiaFOXuy2w0mrFYbUikQgxOVyVWJZahuSqxbUvJKZ492fJ745teC0gPjMHhdFBnMVBlbqDAUE2wVEOsKtirhaaivhGDyUqNzkCoVo1MKiLEr+WWnUpTA+N2vM53fRZwx4HPWtwPXBdN93cYw0unlvJ933sJkftR1aijsk7Pkh0nqNUZ6RATzOR+6SjlErRKz+daa9ZRa3EJ+1xdBVqpa2Uk2S/Sy63iVG4p76/YzbRBnS/3xarY3ZDNa1mrWjy/J1MmohHL+ej8Br67fH5XU92oo7LWwKm8UnaeuIjN7qBb+2gGdU7g63UH2XY8B4BFz86i3FnDE2d+BFyhBXPjhtE/MMXtHZ0SF4pUIURkljDn9cUtntfr825gVI9kj9sMJgtGi0uMS8ViNErvJfg6i57TdYU8lbkQq9POp13nIxGJePzET9RbPVtGbozsxd0dRmA1OsnKK0MoENCpXTgKmeR/9fJ+vd7Isl0n+WHzUXdIjlouZfaI7swY0uUPRxC30ca/wh/Ra/8rhO5/ijah+9/BaLXQaDXicMK+U3n8sO4YhZV1/Pz0Lby8cDMvzBtBvaiRnRXZLLsqOhRcU/Rf9bqH1cWHuSNxaKstDKXVDTz46Soulvj23mwXFsAnD07xskX6M1SaGrA7HTidTjJrcnnl9Eqs2OkemMDd7UcQqwx2n2tNo4GNh8/x2/4sjGYrXRIjuHtcX+RSMdkFFew6eQm5VMyEvqkE+inRquSIWzFX11vMGB0WivQ12J0OYlVBCKxC3l++22eKVIBGwWePTcYht1FpauBUXSFKoYy+Acmcy6uioc7MqB4d+Dh/HRtKXUELz6RO5uJBPYu2uVoi5BIxY3oms2BiP0K03n+D2kYDS3ae4Iu1B4gM8uP9BRNRB0hcWfV2C5m1eXxybhMNNk/hECrX8mPf+8AiZNZrCymv9a4+CgUCPntoCrGhAWhVco9qnMVupc5qYHnBQbaVZ2F3uv4Gc+IH4S9VoZEoqDA08Ejm91xobLk3ul9wB55Pm0pQMycGk9WGxWJDKhW7Lef+LFWmBm7a/S4f95zLQ0e+R2dreWBrRlxftBKXL/HP/e5HKBASowxCJpJgslqw2OwoJFKfVnG1Zh1rio/x8VVVc4BugfG80uVmD7F7qbSaS6U1fLfxENkFFSx7dTZPnf6Z/FZcU2KVQXzUYy6Tdr3Fov4PkqTxnpPQmUy8v3w3RVUN9OgQjVAg4HxRJduO57h9qsMDNLxw60g0/hLuP/2VRwiKRCCiozYSiVBMgb6KVzrfzDeLjrPvTF6L5zVzaAaPTBmE+Dos9JpTZqxjyq53sDntSIVivu2zgLsPfukVytLEAx3GcHO7ftc9O/C/BYvVhs5oobrRADgJ0qhQKaTXtdrSRhv/Tv6IXmt7d7bxX0chkaKQuJa9hqS1J1ilYe+pXPQmC8/dMYz38lazoMMonyIXXLZPr5xZwd9Sp1zzscRCAe/dM5G731/uldwUHqDhg3tvRPYHfwRbonkVSywU8duQJ1xdl04IUVzZVlbTyB1vL/YQcIWVdaw9mM1bd46nR1oUHZOCsDrsiIRCKs117Coqpm9IB+Qiic/lRpVUhgoZwZeH/swWGycLSlqMSq1tNPLJ8v3MvLETmytPcag6hxqLjs/YxPTovoxL7cm2zBwe6DYOp9PJxrKTyERi5o3txa0jumOx2ZFLxMgkYvx8uAkAmG12qnU6fnx+Bo0CPYWOSkJ1WqRCMctK97Oy2DuyVoCAZ1InoZUoEMlEfPf4DP72/QaOXbjSrxsZ5Mfzs0eSHB3qfmy9yYLJYkUkFFCDjrsOfkGD9UrluchQw+/Fx3i7661kBMSBgFZFLsDJugLsl32f6/UmKut1LNxyjOLqeqKCtcwe3o0QrbrF538tVGI5YyIz2FBy/HLM8h6f+4kEQqbG9GHu5aqv3enkjv2f8G2fBSRrI5FLpMhbaemsMDf4FLng8k9dnLePeUlDkYukmCxWzuSX88IPG937KGUSCvS+I7KbKDBUuy/EfPm2AqjlcuaM6sHUl37k0NkCn/vcPDSDlXtOExSg4Jb0gXyVu8W9zeq0c6rOtTqS7BdJmDSgVZELLjtAwXVEGjfHYDOzovAQtst/+6FhaWwvz2pR5AL8lLubcVHd/r+Ls5VKxARKxAS20lbVRht/NdqEbht/KQI1SrolRaGUubxy9zacob0mgvUlx1u935n6IuRiiTt5qSUkEjG/H8zmm8emcSq3jK2ZF3A6YULfFNLjI6hpNCCXeX6Jm6w27DY7jQ4TAoFLfAXL1ddlydSEr6VbcC0HvvjjRp9Vyj4pcaR1DOWTC5tYX5KJyW5FJBAyODSF+zqM4Ze8PbRThzI0LK3F3romdCYzS3a2bg+093Qej9w0CP+LYbzesy9FtirKTHX00Saz7sBZcoqqOHmplJuHDuK2qGEEaZQEyK//B6/aoCO2u4IHz3ztUa3sGZjI39KmEKcI5tv87W5BmqQO59GUcaT4RSG6LJrCA/14564JGCxWymsa8VPJ8Vcr8FcpEAoFmMyuVoEvfj/Agex8/n7nSN4pWeUhcpuwOx08fXwRKwY9hgCXgGwtDEJ2uTrXoDfx5doD/LL9ynDfkfNF/LYvi1nDunLnDX3+lNhViKXMTRjCvAOf80rGTC7pyr38j0UCIS93mcH6kkwabSY6aWPI1ZVjddp5NWsl7/e4nYBW3gv1FgM/XtrZ6nmsLDrE9Li+yEVS9CYrry/e5rHdarMTKFW5rep84S9R4XC6XCzCFf4t7hegVvDG3eN4+qt1WK8aCruxfyfiwwP5ftNhpgxIZ0psF4RCAT/k7XDb9AH0DerAI0njkTklKGQSL8uz5tzQO6XV1iZf6KwmTtVdEeIp2ih2lHv70Danzqr38m9uo402/ju0Cd02/nKoFTLS4iJosBnYcCmTYeGdyKorvOb96swG8nPr6RAjQCmVoPLRD+evVjCpfyde+mETfVJieWTqQCQiEY0GM7WNRhr0ZsQiETqJGT+lnHqdCYHcyZ6Ksywt2k+ZqY4IeQDTY/oyMCwFpVCKUChEJvb8KNVZ9G53B7VYjlTk+6PWNKl9NTKxmBfmDefBI9+Rq78SHGF3OthWnsXRmly+73svT2YuJE0bfU2ha7U5KKtp3b/W4XSiM1r4efMxft58jFfnjiXQLOa2j371SH/acOQcg9ITeHjKQOwKPf5qOVanHaPdQrHRZVEWqQhAKZKhELsq9TaHnfPWQj68uM7rcQ/XXOShY9/zWsosUuVxSCRChAIhDpuTtCDvXmmtWoEWhUd7SWW9Dr3RQubFYmx2BzOHdSUlNhSRglaX2M0OK3srzzEqvDP9g5PZVdmy08XwsHQ0EgUHzxR6iNzmLNyWSY8OMQzu4j0Ydj0EyzR82ms+72WvY0pML26O68em0pM0WI2kaaMZGdGZFQUHWZS/FyEC5iUN4+sclxtCdkMxVkfrNlAmu4Xz16hcN1iNWB0u0ZmdX47hKuF4NKuEidE9+O7SjhaPMSm6B8WGWgaHpvocdGxCo5DTo0M0v788l03HznGuoIogPwWT+6cjl0oQCgQse/421AoZUomIGbF9mRTTg5zGMix2GwmaMGSIUYlcFxb3TujHO8t8C/nxvVP+VGS4SChE0cz1wOF0XpefsrC1WLx/gXqzHovTTq7O9b0Qrw5FJhS3Req20UYLtAndNv6SKGQSGuxQbzVQY9YRobi2RVygXM09Xy9EKZPy8QOTCdYqCdR4C8BAjZKX5o3gkr4ckVBERZ2e91fs9lg+7dQunOdnjyDYX8lTJxdSZqrjpog+9A5oj83uRCB0sr0ki8FhqXy24gCje3UgMSIIqVzI6fpCvrm4jXMNV4asbm7Xn0CpCuFVP5CVPiyIAO6e2Ict5ac8RG5z6q0GvsrZyn0dRvHdxR08lTapVbErEQuJCPIjK7+8xX2EAgGSy2b2wVoVYQEa5r+7BF9d/LtOXaJTuzCUcim9OsaSabnAh+c3uH05ZUIJM+L6cmv8ILRSJQ1WI1/lbm3xsfP0lWQ3FrNs2TlOXnI5Dkwb1Jm0mdceCqyo0/Hst+s82hlEQgF3jetDjfPasd7nGkq4MaYn93UYzYHqCx4Dd01oxHJmxw/EZLLz1TrfLTRNfLnuIJ0TIzyS4Ux2K/rLVezWkudEQhGxqmD+lj4Zm8OOzmbigQ5jqDDXs6n0FLP2foTZYSVc7s9DHcdyrOYSWfVFdPGPI8MvHocVnDInghZEllAgQHONRC0BV+KoKxu8358fLNvDry/fwuayk27v5eZEKgKYHteXl0+t4Pn0KQRcY/leI5ejkcOsod2x2mxIxC3/LKllctTI3S05V3NDr46o5FI+/32/295Lo5Rx85AMpg/u4nNA8loEyTRMjO7hjs/OrMmlf0gyR2sutXifcLk/cuG/zxKsiRqzjq8vbuO3wsPu+HSJQMSkmJ7MTxz2/12rRBtt/DtoE7pt/GURIyReHcqWslO8230OywsPtrhvZ/9YdDoLBrMVg9nKq4u2MntEN7q3j/ZyJzDazGytOEWaMpYGvYkHPl5JdYPnANTpvDJuf+tXfnl2FoEyNQ/Fjefb1Uf4+OSv2B1O5BIxo3t1oM8NNlLbhbLg/RW8sWAspyQXWZx/JeK2xqLjx9xdrC0+xrd9F3gJ9pashvp3i+VvZ1p3h9hSdop72o/kVF0BZh8WTh6Po5AzY0gGW475jgIGV2zvocvV5Ul901i++6RPkdvEou3H+empmbyzdAczJqV7mM+bHVZ+zN2Fzmbi/g5jaLQZqTK3Hru6s/Y0vTsluIVu75Rr+3JW1et58JNVnC/yrNraHU7W7D/DU10HXPMYTW0loTItn/WYz99PL6WgmY9ve00E/0yfTqBUhc5g5Wxhy9HMAOcKK9yvm8nmilH9KXcXey8Lpf4hydwaP4hgmQZZC4K3aRgs7PL/BQIB46K6kqaNRitV4nA6+DV/H2XGer7pei+5hbXs2pPHG/YdDM1IYkBaPFq13GuZPkiqYVJ0D7fzhy96BiUiuuw86SsdrN5g4o0fd/LZrfP5LncH60uOY7RbkIskjI3syrzEoTRajLzQ+SYvB4dr0ZrIvR4CNEr6dY2lX7cYBAhw2kGCGJlY7NOO73qwOex00sbQXhPBhcZS9lae486k4QTLNC2+pxe0H/lvr7BWmxv56NwG1l3lh2112llWcACDzcyDyWPbxG4bbVxFm9Bt4y9LkFLDbe2GcP/RbzhdV8Cc+EE+U6n8JAqeS53CR4uuVNpO5pYSFqBhf3Y+Y3t29KhwGewW9lacZXCHTizcleklcpswmq18tmY/D0y+gVtfW+xho2Wy2vht7xlO5JTyxSNT+XHTUbTBUhaf3OvzWNUWHW9k/cZL6dPwl12pKmmUMmJD/SmoqPPYXyoWUWdt3RfY4rDhcDovi6XWl0mlEhFxoQFM7JvK6v3e/YVBfkruGteHJ7/6HYC4sAC2ZrYsigHqdEYaDCamDc7A1GAhWhnoVeFbVXiYeYlD3UvhrT8fu1uY+avkZCRcu5pbWFnnJXKbKKqqx8+hQitRellANSFAwNjIDMA1wJfmH81nPe+k3mqk2tRIuEKLUiQjRNnUJmFFKZP6jD1uQimTgBPMdivZDSU8cORbjyrxisJD/F58jE96ziNVG42kFfeMJgJlaox2Mx+dX09HTSTdgxIZHp5OqiyWhz9cTWFlvXvf3acvMWNwV+aP7YVcKkEqEeEE6nVGnE4YENKRBHUol3Tegl0mFPNwxxsIulwxbYrZvbqHfPvxi1woquKxmYOYN3AY9sv9uGKhEAlCQv2013xO4HKAsDudqMUy5OI/LkTrdSYsNhun8soorKgjJlRL+9ggvivYzvryTPoFd+C+DqMJ5s+7qFSbG3ktayXvdp/D+9lr2VFxhrey1/BW19m8fHoFF3VXVkkUIin3dRjFgNCO19Xe8Ecw222tziqsLznO3e1H/Fsfs402/n+gTei28ZcmSR3GtJg+fHhuA891msxrGTNZkr+frPoiFCIpYyMzmBk3gKWbTrHjxEWP+5ZUN7D9eA79Utvhr3Z5PDboTeiNNqb7DUZnsLD56PlWH39r5gXmj+3l5RXbRF55LZuPnufuCX34veKIz32a2F91gQaTCavJiUouxWi24XQ6+fj+yXy8aq/LVsnhGoZq1Jtppwql1pLb4vGCpGqcOBkV0QWt5NoelsFaFQ/cOIA+KXH8uPkoF4or0ShkjOnVkUl903h98XZKql1L/RarHcV19jPa7HYq6vREyAO8hK4DJ/urLtA7uD1ykcRjiOhqMjTxnDlWhVou5bOHpuKnat1z1OFwsL4FF4kmftl0gqdGT+K5k4t9DireGj8QWbMlZqFQSIjCjxCFH0l+YV77C8ROxvRKZvmulmOkx/VJQamQ0mg18GTmzz5bISwOG08c+5lfBjx43VXPAImGLzLuoaSqgZ1HLyIS2ojvZuPD+2/kb99uICu/nOdmDWNAWgJHc4pYsvsEcWEBdE+KRiSCnzYfY/fpXGJD/fnw9jv45PxGtpSdci+Bd/aP5cnUiR5pfVqVnPcXTGLeO0u8enUr6nRoJHK0IhVSyRWxXqczUmM2IJOIWwwRqDY3crK2gNXFRzDaLXTxb8ek6B4UGaqpMNfTKygJhUjq5XXscYwGPZk5xfzjp80ekbwquZQXbxtFSIwf3xVs50DVBT7reSfxgmA0sj9WZTXZLPySv5d9VRd45Mj3PJYygYc7jqPK3IBWquS97rdRZ9FzqbECpUhGkiocg96KxejAKrD7tHf7s+ypPNvqsK0TJ3srzjE1rs91Ha/S1IDN6YpllgrFaMTyP3Wx0UYbf3XahG4bf2kCFWrmJgxjVEQXfs7dhUgoYmZcf5L8wpEKxFzIq2b+q8sprfbuxfRXK6htNLqHwmobDSzbfYJAjYrYUH/kUjF6c+uT0Ta7A7O19QGfZbtO8vK8MfxWUtfqfk6cNFpMGE0Ovl53kDUHzmCy2IgI1DB7eHfmjOrBfR+toF5v4vdd55gzbCCZtS0L3alxfThWc4kpMb2u+wcqyE/FyO4d6JYUhVAoRG+ysHh7JvPfXepRpdx9+hKje3Qgu6Dlnt5u7aPILqig0WAmPsYffZ1vuyWDzczJ2nzGRXZrsf1EKZIyJCQVVXIxT988zOUTLPIUCQ6HA4FA4FGdtztadkkA2HDoHDNHZPB2+hy+KdjKmcuR0zHKIG5PGEL/kOTrXuqtMjXy3rnfuX34MDYfOU+Dwfv5alVy7hjdC5lYxKHa4hYryeCazD/fWErf6xS6DToT93+0ikulV9oqvt94hM4JEbx9zwQKK+uoaTQw5e8/eDgPKGQS/n7bKMb1TaFzQgR+KjkfLt7LpMG9uT95DEa7BZlQjFAg9HIHEQmFJEQEseKl2/l1+/9r777Do6q2Bg7/ptfMTHpvEAiB0ELvvSNSVVRUxIJir6j3s16vWLBdvRakWFFABZXekd57DQQCKaT3TD/fH5GBMZMElc5+n4fnmnP2nDlz7klmzZ6119rBsh2pSJJEp+Q4xvRuTaBJ7wlyC8sqyMovYdvhUyzbkUqoxcjY/m2IDDJ7dRbMs5bwyNYZpJadXRS3vSCNr9PW8HKzUewuTOffe35iWHRbxjfog9lHCkBxuZVTucU8N3VBtba05VY7Ez+fz9RnRrHCsJcT5bm8tu9H3m15B3bJ5ZmtPh9FjgpWnt4HQGrZaR7ZOp1pHR7gpd2zKXFUcGN4WxIdsfy66hgFpRWkZuYhSVV1qd+57waSYkKqdVj7u+pKT4KqDoJ1KbJV3XcfHFro6cDnrzZwS2xHBke2QimT15lXLQhXExHoCle8QJ2RQJ2RGN1wrC4HBcUVuMrk9H9pWo2PCfOvejOrFx6AXqOipNxKbnE5Rp2Wo1n5tGgcRrajkKSY0BpreAJ/9KyvPYWgqKwSOXKCNHV/PRpoMHD72z9QUHo2AFIqFCzbcYQTOYX8/PJdWO0O5HIZCl3V6vV5p6rPFKcExHNDZGukP8ph5VlLkKgKGA2qc4KKylIK7WWsyz2MDBldQxvhp9QR8sf1UchlrNt3vNpX8Wv3pnHfoPZEB5u9vhY/e85y7h/Unslz1nBzt+bEhFo4eCKj2jiA5v5xvLR7Fi81HUmOtZjfc71nYY1KLe+m3EFaZQ79OjTArDZQ6bRTYqtELVdidTk4WJLB6pz9KGUK+ke0IFIXQJDWj54tEvh53d4ar7dCLkOFkq9n7eblu25Cp1UiUbUoK1Bt9JQtOx/Fjgq2F6Zxb4yCjx8ezgc//87Ww6c8+9skRvPMTd3RqBXY3U5S66huAHC09DQdghrWOS63pIxHPvIOcs/YfSyLT3/dwE3dmnP/e3Oq5VVX2hxMnLKArybewqzVuzmRU8B/7h7I1PmbCLYYeeam7rXO3quUCkIsRu4f3IFbe6UAYNCo0WqqArj84nJOF5Xx3Yrt5JdUEB1i4cmRXdl2JIMxk2Zy78B2jO7ZEpNeS4GtjMkHfvMKcs9wSi5e3j2bae3HsyBzBz+e3IReoeaehF6e6h1nlJRbmbFkS7Ug9wy3JPHFb5sZ0a897x79lRPludjcDrZkH+WGqJS/lAt8btpNm8D6bMw7QnpFHvWMobTSNOShj+Z6PkyfUVhayfgPfmTOi3cQHWw57+eqTavAenWOaR1Q+xiHy8HOohM8u+Nbr9nhQns5nxxZypHSbPqENSPaEEisPghVDdViBOFqIu5i4arhrzPgdku4KmUcOpXDkA5N+GXDvmrj5DIZj4/oyszl23liVDe06qpA9/9mLEKjUvDkXZ25f+dnhGjM3Nunf62B7t392rBse+3pDfXCAzmamc/gqNYsy665Vm2bgPocPpHnCXI7NYljbL82FJVbySkqIzbEQpnVxsn8QvJKygn1M3F/Qm8GRLTk67Q1nKzIJ0jjx00xHWjmH4sM2F2cwYyjqzhcmoVeoaZ/RAvuiO9KgMaPIls5E3d951UD9OPURbQNSOCVZqMI1Prh76dnyhOjeH7aQnakng1UdWoVRzLy+OyxUUz6fgVr96Z53swTIgJ5dHgXlmw9zInTBbROjGZO5jrcPr5WrW8MxV9t4Hh5LvtLTnFzbEduje/Myux9VLhsJJmiaOYfQ7nDSuOASA6VZFHqqCTKEIjL7SZAbeD+LVPIqizyHPPHk5toZIrg3ZQ7SIwOISrIzKm86sE4QJ9WDTmWlc8TI7sRqjeddzqGLwsydzAqsiOfzt3IkVP53NqzJU+N6k5JhRWTXsvuY1k8M2U+k8ffQLjGRNB5zNSGnMeHI4DsghJSa+jmB3+0Xf5lfY2LB92SxGe/buT+G9ox7p3ZPP7JPD59bCTj3pnFQzd2Oq/rolYpCfxTB6yC0gom/7iaRVsOebZtOpjOnDW7GT+4A0+N6sZbs1bRrXl9NBoFNreDVTk116B1Si5W5eynR2gTFmftYlb6Rm6L7+IV6EqShNXhYOOBE7We78YDJ3jwpnZnz9VWxuaCVDqFJBKqPL8cYqVMQYp/PEv++L02qfSeBWgjwtrz5W/bqgW5ZzicLr5YsIlnb+7xtxfCnStYYyLBGObzQwJAA7+wOtNgihyVvL3/lxpTIJZl7+GmmA48vf0b/td23HlVuxGEK50IdIWrilwuIyrYjFGnpll8OEnRIcxYusWzWKZZvXDuHdiOLYdO0q9tI4JMBsqsVj6bv5EjGXl8+PgQXjs8hxJHJSWOSoojShg7sDXTF1SfNR3asQkdGsdRWFrJAmrOBR3ZtRnfLN/Orf1aMCg8hflZ26uNMal0PNN4CE+9uxCAIR0a06tlAyZ+sYC8krMzxmaDlhfG9MQRWMEBRwH+pYnE60L5v+QR2N1OlDI5QVoT+dZSph9bxaz0DZ7HljqtzE7fyJKs3Uxr/wCfHFniFeSesbkgldf2/uhpZxvq78eb9wykwubgSEYefjoNFqOOOb/vptxq5+buLXjghg4UllXip9OQXVjKtEVb2JGawWPDu6DTKFmdX/0DR4TOn/da3YlWoUIjV9LEHM3dGz4hUONHu6AENHIVJyvy6RjUgL1FJ3lqxzdejSQSTRG80GQYgWo/r0AX4GBJJi/tmc3rzW/hk0dH8PBHP3P8dKHXmG7N6vHEiG6olHLMhrpzmOtiddnpG9yCT3f8gNPl5vXvliOTgUalxOZweoLMb1ds57HhXWgTWB+NXOVVjeJcGrmKlgHx5/Xca/bUnMICVeXw3v/x91rHbDhwgomjewJQUmFj7d40OifHe9rt/lUOl4vFWw95Bbnn+vS3DXz00DBiQixMW7iZZ27tTlplTq1NOQAOl2TSyBQJVFXvSK/I80ovkSSp1mog3s6muUQbAugUmIjCJaeorJIth9I5kplPdJCFDo1jMWhV1QL+IK0fd9brxrLsPbiRyLeV0tgcBUBjvygmHVpf67Ov3n2UR4Z1vjCBrtbE5FZjeGjLNE5WeH/oidYH8lbL25mzZC+je7b0rEn4szxbKbm22kvuLcneTevAenyRuoKnkgajU9aeKy8IVzoR6ApXpTN/yEd2a0bPlgnYnC7sDieZ+SVk5ZdyS/eWmAwa9Bo1ucVlLNx8kCCzAZVRRvqxs+1L3zwyl4caDWBai1HMX3uAUzklhPgbua1nCkFmA8ezC2hWP4I2idE+GzuM6NK0KrhWt6PCbufuBj1pYY5j5qm1HCvLQSNX0S+8OWNiuuIsk3E0K58gk4GRXZtzz+RZ2P/UDaq43MrEzxbyyVPDeCfnZ746uYrJze4iRhdImJ/FMy7fXuoV5Hodw1HBpH1z6RmWzLJs34um1ucdpsJlIxAjBSUV/LB6F3PX7cVi1DGyS1M27E9nzZ5jKOVy/jNuIEcz8/h53R5O5hTjdLuJDDLz77H96dwkHpNBy/QOE9hXdJLFWbsA6B/enMbmKPw1RiqdNgZGpiBJEm4kcm0l/JaxnRCtmY9b382OwuO8uX9etXM8VJLJk9u/ZnLKGO7a8L9qM8Zb8o9S6rASHRTIZ4+N5FReMWv3pqFRKenTqiF+Og1B5r9eN7Um7QMTsNqcXoGhJFU1/TjX0Yx8Ku0ONGoVDyX2Y/KB33we7/GkgegU5xcAKRW1V9WQJOoqvIFcJvOayduw/wR9UhqgVPy96gCFpRV8s2xbrWNmrd7FsE5Nmbd+L1nlRejVdQdNBqXWa9Hin4PaMx0J2yfFsnp3zbVs2yfFsqfkBO0DG/BUvRupLJYwF/tzWqr6YNkoOoTtRzJ4acFiVEoFL4zuRc+WCRj/1GgmQGPk5WajeG3Pj2wrOMbDif09XfLqCrhryKz4S1wuF/mOMipddvRo+F/rezhSlsXy01UpO71Ck6mnD+XN6av5fW8arROjaZMY7fNYteWMn1HqqCRAbeTnU5uZ0LCfCHSFq54IdIWrmkIuJ9hSNdtjdTgJ9fdDo1J6vXnbHU6sDif1LYGk/6lLlkty88HR+VhUBvo0bUZbVRAxxkAaRgaTW1zGk5/9ikwm4z93D2Bw+8b8umEfecXlRAVbGNGlKfXDAxnxypdEBJq5q29rUo8XsG5zFu/ccgclFdaq+p0aNZsOpNMiJgqNSsHQTsn8sHJntSD3DLck8eX8bQzv357JR39h4t5v+LLdBM/+coeVmcd9lzE7Y0vBUR5rNLDWMZvzjuKvMPLN8m3MWFI1o51fUsHP6/Yxrn9b1uw5htPtZuIX8+ndqgHP3twTvVaNDLA7XSREBKFUy8izllDmtBFjCOKRxAHVVm/rlBrGN+jDsdJsovWBntmoEdHtKHZUMvXoyhrPMddWwpaCo3QOacSanOpdy/YWnyTaEEiwxUiwxUjLhEjvx1tLyKwsYH3uYdRyJb3CkjEotTW2ZK5NkjmKwhJrneP8jTpUSgVmjY6eocmEas1MP7qKAyVVqSFJpkjuTehFY3MURlXtzRsqnDYqXXb6d21I9zb1OJSey8xFuzj0p5Jqe9Ky6NgkjjW1BH4dk+PIKjw7myejqnyYQfv3Ahm3G7IKaq+NvP/EaYZ2SsZi1JFrK8GgUBGus1SboT9X3/BmfHhoEQBquZIYQ/VaviEWI2N6t2bt3jSfebpymYz7bmjH8vIdPBQxmKc/mc+RjLMfcBMiAnnm5h70atkAhULOdyt28PLXS4gOsVS7hwI1frQNqM/sLk+w6vQ+Dpdk8mLTkaSWZ5OSEMn2VN+56QAdG8eiUf39t9lCWxnHynOYtG8eJ8pz+TrlEW57+Xv6tU6kc9MmAPwyL5Vl2xd6HvPV0q00ignBz0dnyCh9QJ3PWc8YwoHiDOyu2hfhCsLVQgS6wjVDq1KCjwXOZ0r8lFvtmFW+Z/iKHOXMPlU1QzohoR9Q9SZdXF4V2Dz44U80jQ+jX+tGmPQacovL+fDntYwb0JaYEH+OZOTx0ldLuLlbc7o0rceJjCLCw6tmRfaVnkSnUKO0O/nmpdEU5dt48rNfan0tGw6c4IE/8gsL7GXsLz5FqKEqr7DS5SDLWlTn9ShxVtb61bmcqtJg363wLkB/+FQueq2KtonRbD50ErcksWTrYZZsrcpV1qgUfPvcrTgUDr5N28CsExs8KQchGhP3JvSmS0gjr6+b/dUGGpoiuKNeN17f+xMA7YMaICF52gbX5Pecg/QIbewz0D0zs+ZLVmUhj26dwfFzPtx8lrqMzsGJvJA8gsDzXFlebK9gb9FJ1uYc5NbILiTHhbH3eM0LzW7u2QKzruobh2CtiVaKeiSZotAp1LglNyq5AqVMjsZHpYxKp40Kl73q63ngo8OLWJZ1tgRYU0sMT93dnx8X72fRprMpA/mlFTx4Q0fW1RD4KeQyxg9uz+RZZ9vjdk6OJzk+DK36770NyOUy5DJZjTmqAHqtCrvDyS09WnDMfor9uRk82LAf/7frB5/jW/rHI0Pmads8LLqtz1lvk15LeIAfr901gP/MXE5Z5dkKGAatmpfv6EuqK4PhIR259d/fViuNlpqZz6P/m8fnj43kxg5NmLd+H+VWOx/NW8e742+oluoS8EelhkGRKchkVdU+Klx2QgYHsP1934GuQi7j/sEdqs0Q/xWnKgp4aMs0T7qHw+XGLUks3HKQhVt8p1PlFpfjrOFDtFaupqV/HDsKj/vcr5Ip6BicyJTUFSRboi9aG2NBuJREoCtc8+QKmSdoi1AH4KfUUur0PTMnQ0af8GaUVlirrXDfk5bNnjTvAOdUbjHBFqNntuiH1bv49T9jOWbP4rZN07zyEbcUHCXOEMwHTe7GXcd3mn+OHXYVH6d9UAOsNic6rYompii6WJKobwjH6XaxufgI87O3eb0uk1JXY5AL0DYkgb1HT3vNLBu1aga2S6pKobilJ4dO5fDenDXkFJcjk0G7RjE8Nao7Jn81/z20kPl/6tKUYyvh9X0/8bhrEEMiW3lVgPBT6ega3Ij9UW34+dQW3HXkap7hdLuqtU6GqoVCyRbfX9HmWUt85jICrM09xPsH5/NY4sA6S00V2yt47+BvLPijUL9L5ua5W3sy9q0ffM7It0uKoV6496yZ3e3E6rIz88Ra8m1lJPiF0T+8BTq306t7Vp61hE+PLGVp1m7+1/YeXt3zY7UW0HuK0nmsZBof9h/HoRO5pOcUMrh9Y/q3SWTptkO8eld/Jn2/gtJzSp/56TW8elc/TuYWseWPKhEWg5ZB7ZP+Ue6yQi6jc3I8a/bUPIvct1UiqZl5jO6ZQohdw+epy0kyR/J681v4LHUZ6eVVvzcauYqBkS25IbIVT23/GoDBESncU78Heh9fncvlMkL9/WjbSMn3L9zG7mPZZOYXExvqT7N64aB0I0mhfDZ3U7Ug94xKm4PvV+6kd6sG9G+dyI9r97AjNaPWnOVzS535A/ooLS/f0Zc3Zi7H5jh7P+g0KibdM4hQ/7/WGe4Mt+SuKmd3cL7X3xClQoZKqcBRQyALEBNsQV3DLHKQ1o+Xmo7i/s2fc9rqvYBTIZPzYrORzEnfiFNycX9C71rbigvC1UIEusI1L8jPyDO39GDMpJnMXr6bCZ0GMOnwzz7H3h7bhczTpZw4dZLwgLq/3g4yGSitOBtcalQKnDInz+78zueim+PluewuO0G7pBiW70it8bgtEyI5Wn62hq1ZreeHVbtYsvUwb907iB66lkz5bQOfH9uNWqmgZ0oCH3e/j89OLmZd3iFaBdTzGeSd0S24MRq5CqvzbBAwqG0St/ZqyW8bDzB98RbkMhndm9dnxjOjPakgaqUCk0HLyfK8akHuuT47spQ+YU29Al0Af42R+xr05ubYTiCTKHVYsagMtXaBSwmI53BJVrXtI6LbopX7rlF6tOx0ra9/WfYeHmrYr8b9ZxwuzUKGnFuiO5HnKGFhxk6sdgefPz2CT37eyOZD6UhSVeA4snszbu7WgkC/s8FBga2MKanL+enkZs+2xVm7+PTIUl5pOop2QQ0wq/UU2Mq4Z9NnZFYW0ik4kd1FJ6oFuWfY3E6mnVzOf+4fiF6l4cDxHMa9U9XQoV/rRD5+eDgnTheSXVBCdLCFlg0iWbr9MO/8MZsbGWTmzfEDUevOfniwOhyUVFg9M7Qh5toDtPyScvYcy+KRYZ3ZfDAdq49a0yEWI4PaJeGn1+Bv1CGzB9PCEseU1OW0D2rAo4kDCNL44ZTcBGn8sLucbMg7zLj6PegSkoReocGkrjkQl8tlBPzR3jvU3w/5OTWWXS4X+WUVLN7qe6HcGct2HGZ0z5bEhlZVF/irE5j+Bj19UhrSqUkcmw6mcyq3mHrhgaQkRGLQqtH8jdlyl9vFifI8DEpNtVbNvxccoFfLhBoXAALc2bd1jY06ACL0/kzv8CCrTu9jQcYObG4nzSwx3BDVigUZO5h3aisPNuxLI3NkjccQhKuJCHSF60J4gB/fPDead2evoeS4xH8a38qMkys5/EfB9EhdAHfGdaOFMZ7RL89Ep1Hyw7/GoFUpfb6JA2jVSpJiQ/jPzLMBafcW9VlyehdOqeYZl0/TlvDW4DtZufNojV/7jhnYkunZSzw/9w5txv3T5tK/dSKrdx9j8pzVXuNnr9rNwo0H+fDxIdglJ882vhE/pY42AfXZUuDdMa5rcCMmJt/I10fX0CesJVBVoaBv64bc/c4PXjNTRzLy+H7VTqY9dRPxoYHI5VWRQG2tSKGqzfKhkiyCfOTCBmr8CNT4kV1azN6yk4yKbc+U1OU+j6ORqxgUmcJd6//n2aaWKxkV054x8V29ZkTPcLvdniL/NXFJbg6WZBKqs9Q4Jr+0HD+7AWNqEHlFFUSFxjClTQ+W5O7kP+mzGTmoA4+N7oRJqUOhUGDSa9CqzgbeDreLFaf3egW55z7/i7tnMbPzo+iVauakbySzsqpqRNeQJJ+1k8+1Of8o5mQteQXlTPxigWf74q2HWLz1EA2jgvE36li6/Qhvx4YQYNYwYXgHGsQEoTHKeCf9Z+7X9KZdUANyi8v4YdVO5q3fR1FZJfFhAdzepxWdm8QR4Fd9Ri+/pJx/TV/EpoPpPDWyG1Ofuol/f7vc01xEJoMOSbE8f2tvAvx0noYJFrWBN1Nu47MjS5mfsZ2NeUeQISPeEMRjSYNpZonhlrhOtb7umpxpHe35WaFAhgy7o+bfQ6jKNVcq5J7Z+Q5JsX+5m5lOo0KnUTGwbdJfO+kaFNrLuWfTZ3zd8aFq+37K3Mh7g8eyJy2bDB8l9W7u1pyo4LpLpwVp/BgW1YauwUk4JTeHSzOZk76RYI2Jed2exk+pxXge3RYF4WogAl3huqBTq4kPDeSVu/ridLqx2V280/wOJLmE2+3G7YJlG1IZ+evXuN1gczqpdNl55KZOvPXtap/HfHRYF+au2+sVrEaFmjlYVvNXuQAZlQW4NU5eHteH/3y5wiuQVikVPDKyI5nKHM/ipUERKVSUOSgqraB/m0Ru/c+3Po9bZrXzny9X8t9HRuGv1aFWqHil6U2UO61szEtFjowOIQ3QyFV8fWwN36WvI04bSvukGMYNaMeE//7kFeSeUVph4/H//cKUJ0eh1SvQoDqv1dtlTt9tk8/QylWkmOuR4ywmK7KQ3zK8y7IZlBreS7kTJXJ+6PIYR0qzUMgUNPALQ6tQ1dgeVi6XI6fuSgKyWsoUFJRW8PXSbXy11LuqwLT5W3hydFf6heh4K7WqUsRv3Z8lRFs937fIXs7XaWtqfA43El8eW83DDft7BcNahYoyR+3XTkJCkiS2HDzlc//hU7m0TYzm/mFtkTQuGjUMpr47gBWn9/HNvt+xuR0szdpNnDKMu9+eRVbB2UVqqZn5vPzlEnq2rM/E0b0IOifYdbndrN9/gk1/1J5+Z85qBrdL4uU7+qBTqyipsBHgp0epkBFkrn5N/NUGHk0cyL0JvSh1WNHIlWgVKixqg1fHuwtCDk3rhXvVh/6z5LgwZDL4fU8acpmMh4d18eridqk53E7mntpKmdOKSq7ArNJRfM69kG8v47Ujs3n7kVGs2prGgvUHKamwkhARxD0D25EUE3Le6SgKuYIQXVVQHKYz0yGoISq5wmeakCBczUSgK1xXAowGCkoreOizn2stwB9o0pNlK8IZUsE7Dw3iy/nbPPm5zeLDubNva07mFjF7jXeDCKvVWS0Aa2KOondgc4wKLbmOEuaf3kaFzMo+VSrT/jWSXUeyyMwpJS4kgCYNQ/gteyvfH12HQanhzvhu3BDZimJbJfP+cxe/rj1Q6+Kf1Mx8rFYXanPVLFqQzo8g/Ij1C/aMyaksYVb6RgC+OLGMj26/hyNpBV55nX92Kq+YnMIygmR6DmTn0NwSy+w/jlGTBqbwWvdbDHpkFTK0KhVDI9swKqYDK07vpcxhpZklhtaB9ZEjQymXY1YbCKtl9vXP+kY0Y87Jms9PKVPQyBxRbfuZNq6ZeSXVglyoqojx9ner+eyZ4UTo/MmzlaKoITBwSe5aqwsA7Cw8jkNyUWQ/m7pxqqKABn7hpNeSemFW6ZBJMhQ1BPT339iOhCZmPjuxgGPpVSkQRqWWoVFt+G/rsTyx/Sv6h7bkf/PWeQW551qx4yjDOzclqPHZWr/5JeX8sHInfVIaMqJLU4w6DZIkkV9Swbx1e9meegqb08Xsf91R47nrlGp0SnWdzQ3+qWA/I/cNbscD7/9U45jberVCKZdz/HQB7z94I9HnMRt6MZU6rKzIriobllVRyMiY9tWqkhwpzWbc9v/RK7wpnz4xHKVcgUap9BngWp12SpyVyKgqLWdUarG5nChkMq9vQ+QyOZq/WWZOEK50ItAVrjv+Rh139GnNi18urnHM0K5NWJCzjYXZO2hqieamUR14Rt8NpUyOXq5h0ncr2eCjM1NiZDCx0fVZkLkDf7WBVxvdQt5pK78uPEhhaVV71Gd7jiBMGcD87B38nLmZ5v5xBMYbGVSvIYFqPcO0bbghphVmmYGKSgffLNxJUVklgzo08tkC9s+yC0s9OYe+pJZke1Irih0VOGSOauWqfNl1NJP48gDiI/1RaPyrzTadK8kUiZ+y7pkls75qjJ9SS4mzgjFxXVDKFT4XIP0VkboAEk0RHCrJ9Ll/aFRrlDLvr6izCkq4Z/IsnhrVna/rqA/7/eJdDO3RlpP2PPQ11MI9nxXrmj9yjOOMwRwrqwpIf8vYxr+SR3jqpPoyLLodOpmajknxvM9ar309WtQnNsnA8/u+86qbW+a08s3x3zlensvzTYYRrQ5i8VbfNX7P+HrpdhJjggk0Vs3OShLc3b8N2YVlvPzVErILq8qLhQeYuLNvKzo3rcdLXy6u9cPYpdQgKogJN3bk43nVGzuMG9CWlgkRZOaV8ONLd2LUaVD/xbSFi8FNVW7/xJ3f8U2nhzlUksnaXO+cXJfkpm1QAnaVnQCdP1pF9Vz1fFsp805t5cf0TeTaSghQGxkW3ZYRMe2Yl76VSEMgrQPr4y8WnAnXOBHoCtcdmaxqtXi7RjGer2DPlRQTSvc28YzfWZUju6foJHuKzi4KaeVfjydHDyFpXQgLNh/EanfQtF449w/qQEyIBRt2ugQ14o7oHnz83Ua2Hj779fKRjDxW7Ejl9j4pTO02ntu2fMiOwqquV2FaC+b0IKYt2szk8UOYumYNS7adbT/sdLrPqwFCoKl63qr3BTj7ny82uonyYhcmv7obF1iMOv47by1v3DOQ1LR83m81loe2TKXc5T0THKo180aL0X+pVq1GpSJYdeFm04K1JianjOH/dv3gVUpJjowboloxLqGnV/mzwtIKnvrsN7IKSgm2GEnLrr3k2a5jWYwc3JiBsS28CurbnS7kMlAqFMiR09wSy66imlvV9g1vRoDKwJ3x3XlpzywAsiqLOFp6mvsSevN56rJqj2kdUI9RMe0xa/XYHC6axYezO+3sYr1b+jbnlWMza2zzujb3ILfEdkSSqLGW8xlZBSU4nGcXVcplcCA9h6mLNlcbN+n7ldw3qD3jBrS98GkIf1OAwcDwLsn0a53Iz2v3kp5TRFSwmeGdm6LTqAgyGQj+U4rFmQYNDrcLm8uBn0qHUqbAX3PxA0KjUkOnoESOleWQby/j0a0zeK/VHWRbi5mTvpESRyUJfmEMi2qD3e0iUGOsMch9YttXnvQnqCpTOPXoClae3sdHrccyZv1HmNUGPm5z90WfXReEy0kEusJ1yWLU8ca4gfy+N42vlm4lI6+YEIuRW3um0CslgXu2f4LN7XsR2rbCY3x8YiGv9L+J0T2rFnOplQr8/sjtM6LhxeSRzFy+0yvIPdc3S7fTJTmeriFJZ+vDuuHAyRz6t2nE+n0nvIJcgDV7jjLliZt8fqV+RlSQ2bMSvSYN/MJQyhTUM4YgFSspVlXSPjkG+Zyaa6LqNSrqRwRWLU5bsZMuzeqhqVTzQ+fHWJC5k035R1DK5PQJb0an4MQr4o0zRGvmteY3U+G0sb3wOGq5gtYB9VHJFNXOr7jcenYxFVULqmqblNSoFMQbQwjSGJEkicKySnakZrBiRyoKhZwh7RvTKCaYRxIHcO+mz6p1dQMIUBsZEtUatVJFx+CG9AxNZsUfs7jvH5zPhMR+fN72Pn7N2EZaWQ4WtYGBES0J1Zk9+cUhZj/eun8wj//vFw6kn8ak14DGTU4dbV6XZe/mwXr96yxVFebvh1JxziynTMaXS2peKDd98RZm/WuMz2YFl4u/wYC/AcYP7oDd5UStUNa44CzPWsKhkizeOzT/nNJnSgZEtOT+Br0v+n2tVqi4KbYjCX5htAyIxy25sbtdRGj9eTJxMFa3A5VciYREmE7vM5/W7nKyMHOnV5B7rmNlp/nx5GamtLufUWvf4/2DC5jY5EYMysuXmywIF5MIdIXrlsWoY3C7JDo1iUOSJGTIMBu1VLrsNPALq7WRwYiYdpi0OqjhvcFmczF79W7fO/8wY9FW7ru5myfQbW9J5KWjy3nr3sE89JF3+TOVUsFLd/Sj0u7gzj6t+XJp9WBDpVTw2tj+WOpYjKKSKbkhMoV4TRg/zd/LiN7J7Cg5xrgBbZmyYJPPxzw4pCM/r9uLJMHe46e5rWcKT0/5jYz8Eh4Y0oFx9fogQ4a/3IBWunKCnBBt1SxxnDGk1nHnds3anZZFh6RY1u+veSa2X5tEAowGZMg4mVvMPe/OoqCkgtaJ0YRajMxcuYPTRWW8/+gNvN/qLl7f95NX3dLG5ihebXYT/n/kSZrVep5rciPDotuwOe8oDbThmJUG9JKWMfFd2FaQRqmjkrSyHFoGxHkFXCFmI+8+MJi84go2HTyBU153R6tShxWZTKJPqwYs2OS78QDAbX1aei1GW7/vOE53zXVmHU4XB9JP15o6c4bN4aC0ws6mAyfYcTQTs17DDR2a4KfXEGi68LOnKqWi1ooKDpeDAyUZPLX9G6/ZcJvbydxTW0gry+GNFqN9VhK5kJQyOTqlmoe2TvME2/5qA7fFdWFQZEuUchl+NTS+gaqqDT+m+/49PuPnk5sZFt2G55oMZdK+eTzWaKAIdIVrlgh0heuaTCarNgNqlGt5PGkQOwqP+6wu0C4wocZGBWe4XRKFpbWvnD+alY9JWfXcLSxxlBU6yC2qWpR07sKwAD89b947CMktcTyrgI5NYokPD+Db5ds5kpGHXCajS9N4HrqxEyajlqKKCgKMNb8RWrR67qvfm5NFhUzP3sOGXelYWrjp1a4pkUFmpizY5CldVD8ikLH92lBcbmXOHwvvDFoVGw+e8ASH53bbksngs8dG0rph7dfnSmPUnU3dmLNmN8+P7sXmQyd9Ng8w6TUM6dwYhVxGYVkl49+fQ/ukWG7t2ZLtRzJIzykkMsjMPQPbsX5nOj1b1mda+wfIs5VSaC8jSh+ITqGultphVhtIUEeQW+zgu3m7KCqrpF54IHf3b0OHgERUWjlKmRx/Hx3dSsptTJm/iZQGkUTo/D2Lj2qSZI5Cr1bz0I2d2Xb4FKcLy6qN6dqsHo1jwqh02ih1WnG6XSQnhjKqezMWbDxIudXu89hnugnWptLmIDUzj4c++tnrXp++ZCv9Wyfy1KjuBNSVgnOBFToqePfA/Bqv266iExwvz72ogW6Fw8rG/CO8smeO97nZy/no8CKOl+XwYMO++PkuHw1U5Yb/uRnEnxXYy5Ahw6jUkuAXSqnDekV8CyMIF4MIdAXBhxCtmW86PsznqctYnLULu9tJsMbErXGdGRTZss6OQXKFHKVcXuvsl9mgRStT81yjYTQ1xvLgO3ORkLwWMd3dvw1dm9bn53V72H0sC41KSa+WCfRp1ZAAPz0Wow5JkkjNyMPmcPHYx/PwN+q4qUdzmsSGeTUvOJdKUmJRGPH307No8yGm9x3Fiwe/56Nm9xAVZEatUiIDTheVMXv1Lq9c5hs7NmHuOt91aiUJ3vtxDR89NBx/v6unDmfDqBB0GhWVNgdp2QUs2nKQyfffwNuzVnHqnHqljaJDeHZMN34v3setAZ1JzcijR4sEmtUL5+63f/AqFff5/I2M6dOK8soYQv1NdeYs5xWX88jHczl48myjiFN5xazZc4w7+7Tizr5tsBh9X1M/vZaC0gre/+l3tAYF7YIS2Jh3xOdYlUxBn9BmKOVKQswGvnx2NN8u38a8dfsoqbARG+rPYyO6kFQ/GLfcRUZlKQszdjArfSNquYKBTVKY0mMEr0xZ5nMRY6OY2mfPAUoqrIz/4EcqfXQtW7T1EJFBZsb2b4NeU3fu+IVS6bLX2Y76p5ObSfALu2gdw8pddt49UPMCwd8yt3NzXEfUcqXPGtJQ1VUtQmeptWpHkMYPt+TmhxPrGRbd1meeryBcK0SgKwg+KGRyQnVmnkwazISG/XBLbuQyOWaVvlpxel+UChndW9Rn2XbfwQbAwLZJfPDT7/gbdaT0UBETbCGvuJySChsRgSZ6NK9PRKCZu9/5wSt39uDJHOb8vpvJ9w/huakLOJlbBMDUJ28iPaeIA+k5rN9/glYNo5g0biAymayqS9MfbUHLrXaKy2y8P+d3BrdL4t0f1/Dut7/zr9Ej+TlnI+0VjRn79ve4fLQpTogIJD4skG1HfOceQ9ViJYer9kVOVxqDVsWEIZ14Z/YqAH5cu4dTecVMvKUnKqWCMquN6FAzabZs3k7/mUcSB6CQy9l5NIP+bRIZ986sah9q3JLEl0u20iAiiP5tEpHXct+UVdqYumizV5B7ri+XbqNnywY1BroWg5ZhnZPZezyb75fu4uOnhvHQtqnVusMpZQpeSrqJOSv2cFv3VgT46QkxG7l/cHtu65WCDBkytcTu4hM8tfMrjpXlYFLpGBDRgi/a389re37kh1PrWZO/nzfvHcODb82l6JwZ3PAAP6KDLLVea7vTyW8b9/sMcs/4YfUubure/JIGuhVO3zPU5yp32nC6L869Xeqwcqgks8b25GcsydrFmPiuNe4PVBsZFduBybUEzCNj2nOsLId9xad4JHEAGhHoCtcwUThPEGqhV2oI0BgJ0poI0BjPK8iFqnq9Dw/rjLGGRTnxYQG0bhjF8h1H+GH1Lu6e/AOPj+hKRKCJ2Wt2cf+g9gxq35g3Zi73uUDsdGEZ7/+0hjv7tPZsKyyt8PoKftvhU8xctYNdxzL4eN46svJLsDucZOYX8+vG/azdm0bz+hE0jApmy6FT/HvKSqIrIvAzq/ns8ZEkRAR6jqVUyOnfJpEPJwzlo3ne5ax8cfsIkq9kWrWKwe2TeHlMX4L/qGyx6WA6E6cuYMexUwSEq3n4wBReODDTk8MN0CQ2jNlrdtc6c//Fwk3kl/husGG1OyksraDC5uDXDbV3c5uxeItXu+kznE4XNoeTjo3jmPbkTTw5ohv7DuXwaoPRPJ1wIykB8TQxR3FzVEemtnyA7RtzmL5gK4WlZ89Jr9YQYvZDrZPz8ZFFTNz5HQdLMrG7neTZSvk67Xee2fEN/0oeTqDGj6zKIuZkbeDGLk08x/DTa/hwwrAag/EzSsptbDxQvdrJucoqbZRV1h14XkhBGr8aayKf0cQchd9FymV1uJ2U1NEoBKoC4pPleTXuVyqU9A5rSnNLrM/9SaZIhkS15uU9s9EqVPirDaLEmHBNEzO6gnCRBJv1fD3xFt6ZtZoN+0/gliQ0KgX9Widyc/cWPD9toWfWtLC0kqmLNnFTt+a8/9PvjOzSjDW7j/mcVT1j6+FTPD6iK2qlArvTRYi/X7X8yB/X7GH480158tPf+GH1Lmb/3xhW7EyloLQCtyTx/LSFvHXvIH5Zv4/fNh3ghU8XYzZouWdAOz6cMJRyp40ym40QPz+0ahUauZLYEP9aA5XwAJPPeqQut4tiRyUnynM5UZ6HWa0n3hBMsb2CSH0AZpUO1SWeWSoqq6S00sbRzHwMWjXdmtWjU3Ic5TY7ZXYrktLN/NxtTNi5ELvbSYIxjPda3enJk40LCyAzr5h+rRORkNiblk1mvnfFg+OnC3H9KRCusDkoLK3g2xXbUSsUjOzajIpaZjgBjmUXUGl3eKp7SJJEUVkldoeLcpud0kobVoeTsAATVoeDkgIrG34/TaekFqiVCo7uLeC+TT97cmtPF5ZRPyLI6znSynKYn7nD5/NnVRbx7fG1DI9uy5TU5SzJ2cXn7R9g28EM+qQ0YEDbJPyNOk+b6JrIZKBS1v2BUVHHcS40uUxOr9BklmT7XkSqlCkYEtUajfLizDIX2MqIMwbXOS7BL4wKV+0fAgI1fkxqeSvLs/cwK30jxbYK2gU1oHtoY1IC4pm0dy6F9nJGxbTHqBKL0IRrmwh0BeEi0arUxIYE8OLtvam0O7HanTicLlbuSmXChz95feULVW1In725J0XllWQXlnA4o+4mDlkFpUQEmgixGDlxuhCr3XvFfXG5FSSYNG4g3yzfjt3hpLjcSqPoqjfUjLxi7n9vDjd0aMLHDw+rap8rk7Fh/3Eq7A4C/PUEyvReOYm3927Fj2v3+FyoBXDPgLaYjd5vnuVOK8fLcnlmx7fknlP6yqjU8lijgewqOkGrgPrU9wu9ZPmCpwtLmfjFAnYdy0SrVjLhxk4EmQ3oNSq0SiUWs5kKl50EWygPGvrSKrAeIVoT/uqzi8FUehnjRqewsfAwMmTc2L8bjlJ48+vVXh3Hzq0rW2lzsPHACZ6d8hvjB3cg2GKk3GpHLqu5vBtUNTo59xuF7IISXJLE1sOn+PTXDeQUVS0oUymrPkzd2acVN3VrzoMf+u4MFmLxXtRW6rDyZZrvdtdnrMjeyxftxzMldTlWlwOdQcnbDwwi0GhEeZ7fdgSaDPRv3ajWD0th/n7o1Jf2Q0+gxshjjQZyvDyXw6VZXvuUMgWTWtyKRnHx3jL1SjWnSvNJMkXWWBpMr1DT1BKDWVX3Qr1AjR8DwlvSPaQJTsnFlvyjFDsqKLSXc2u9zpy2FTEmvium8ziWIFzNRKArCBeZyw1bDp1kzprdtXYgc7mrWqnq1Co6JMVyML3uQDc62Mz/je+OVqvCKNPy6IjOfPbLRs+iqDPB074T2UwaN5DTRWXEhwWQGB3CJ4+MYPrizWw+dJKZK3cwc+XZmbz4sACGdW6Kv6b6m2CgSc+HE4byxCe/eC2+Ari9Vwo9WzbwCshsLgcFtnLGb/4Cm9t71rLMaeX1vT8zOWUMHxycz79b3IJWcfHbsBaWVnDvu7M5lVdMm8QoXr2zPws2H+CRj+eSX1xOVLCZW3um0LVZPYbHtPN5jDxrCY/v+JIj5wRF351cS5IpksmPjODJD6saUDSLD/eanSyttDJxynxaN4wmOtjCxKkLeGJEVzo1ieP3vWk1nvNN3Zp7ym4VlVVyOCOP4nIrr3691Gucw+nit437ycgr5l+39SY5Loy9x7O9xkQHm6tVNXC4nXW2LHZILtxS1QccvUKN1W3HX2c47yD3jE5N4ggPMNXYfviBIR2xXIbFjEFaE++3vot9RSeZd2orlS47TS0xDI9ui0am9PqQc6HpFBrmZ2zn1eY3MWHz1Gq1kDVyJa81v5lNeYcZHu37nvwzu+Tkg0MLWJq9x2t7C/843km5A4vq6lkwKgh/lwh0BeEik8tllFRYiQg01RroKuVy5HIZn/y6AZvDybDOycz5veZavFFBZgoo4eGdUwHQKdQMj27Lj/8Zw+Pv/8LhjHw6NI7llD2PIV0bc9fbP5BXUu55fHiAiX/d1psAk55FW862GDXqNLx132D8a8i11KpVtKwfya//vpu1e9PYk5ZFiMWPG9o3xqDTVDUtOEeZw8rXaWuqBblnSEh8eWw1N0S1Yn7Gdm6L7YxaeXFn87YeOcWpvGIC/PS8emd/Hv7oZ1Izzy7cSs3M59VvltIhKZZX7+pXra5rob2cJ7d/7RXknnGgJIP3jv/Cwzd14YXPFvHYiC4Y/lhU5XK7mbd+H063m5u7t+C/c6vynWet3sXrdw9gR2oGZT7KdiXHhdEm8WzJtkq7gwaRQdz51vc1vsYdqRlkFZQwumcLXpi2yLNdo1LwxrhB1eotq+QKQrQmjpWdrvGYCpnck8c6KDIFP6UW098IlgLNBqY8MYrnps5nT9rZINyoVTPhxk50ahyHSnF52vEGafzoFtqYZEs0Trcbo1KLQXXxa0P7awyMrd+D/x1czLQOD7Asew8rs/fhkFyk+MfTL6I5m/KOcGN02xorLpyr0FbGh4cWVgtyAXYWHuep7V/zTsoYgsVCNOEaJwJdQbjIDFo1brfE0E7JrNx1tMZxPVrWJ6ewFItBy8yVO+ncJJ6BbRuxYHP1gv4KuYzHbunMN5lrPNsqXXa+Pb6WXGsJ7zw6mEfe/YV7h7ZhdfEehod34OOnhiKXy6i02dm87yQ/rtrLk5/+wpfPjiY1I48Km4Puzetze69WBJn1tbZx1aiVaNRKbuyYzI0dk2sc53K7ybWVsD73UI1joKpG6WONBjI/Yzs9Q5MxqfUXbYFMudXOrxv2A/D4iK58v2qnV5B7RlyoP5V2B3vSsujePMFrX56tpMavlwF2FB7nwZYDeOPugexJy8agUVNmtRMdbGHfiapAMtT/bKvhU3nFTFmwiY8fGc60RZtZuzcNl1vCqNMwvEsyt/dK8Qq2C0srkMlkNS5yO2PRlkPc1acVcpkMlVJOr5YNGD+4AyEWY7VcWj+VjjHxXWssSwbQLaQxG/KOEGMI4o563f5WkHtGRKCJd+67gXKrnSMZefjpNdSPCEKvUWHQnn8ebKG9HKfbhUtyo5IrMam0qOT//K3tctSVrWcM5b6Gvfn44GKGxbSlfWADCu3lVLps6BVqboxqg/k8glyoanSxOHNXjfsPlGSQYy35S626BeFqJAJdQbjA8qwl5NvLWJ69Fwk3PUKaMKRjE/Ydz+aG9o35deP+ao8JsRh5YkQ3zAYts1+8A7db4lReMaO6NSc21J/Zq3d7ZmOb1QvnvqFt2Wg9wKb86kHJkuzd3B7fhY+eGIrN5qSHrDk7i9P47tRajpRmoZDJ6RbSmEmP9Gfmwt3MXLGdV+7sT2ZeMdEhZixGrXfb13/A6rJT4bLjqqV5wbkUMjl5tlKe3fktH7cZd1GCDbdb8rS9bVk/grdnrfTa3zulAbf1TOF0URm5RWXIZXJyisoI8NN5rsumvNQ6n+dIZQaFOTI++XU9UUFm/u/2Pvy6cT9mQ1X+8p8XGq7dm0ZadgEjuzTjvkHtcbmraiqXqcp4aPcXfNhqLCG6qrQOs15LTlF5tef8swqbHZVKwfSnb8bllogKMhNkrvkDREO/MLqHNGZVTvV7NFDjx9j63dl8+iiftrkXf42hzioFdQm2GAmmalHfX1XptJFadprJB35jf3FVuTuLysDouI4Mi26H5TwDwiuJVqGivl8YTzYZjN3tQiZBsNaEW5JwS24MyvOfWd5TlO6z9fS5VmTvIckc4bOVsCBcK0SgKwjnweVyU1he8ccqfTvhAX4oVXICDHpkyCi2V6CSK3BJEh8dXsyCc1auf3lsDV1DGjMxYSjhASZaNYxi1updpGbkYdJrGdopmZu6NyfQr2oWVfvHIhyzQUtZpZ2Q9kZu6NAEt1tCqZBT6qrk1UOzap1RXJWzn6GRbdl5NJM0w0m+P7Xu7GuR3Kw4vZd1uQd5p9+dfPPjbtRKOc3rR+Cn13jq7V4ISrmCHGsxHQIb8Fvm9hrHNTJFcKqygN5hTdlWcIxjZTn899Ainmk8BP1feHM/H3qtii5N49l0MB2ZTEbJOZ25bu+VQnJcGI9/Ms9rsWCQ2cDb9w2mUXQIGpUSpazuDwI2u4vNBzOBqhnb4nIr2w6f5M6+bfh1w37cbjcmvcbr+TPyivng5989P9/WpwX2hGKOleUw7ehKHmrQH6NGi06rJtAs1bmArWVCJPM3HuDzBZvQaVTMfeWuWs/ZrDbwQvJwOp5O5Ou0NZysyMeg0DAoMoXb4jpzOreMDsZGmJS6fxzk/hNuyc2+4lM8tGWaVzBX5CjnkyNLOVSSxXNNhp737OeVxqTSU+m0kWsr5dMjS9lacAy1XEm/8OYMiWqFv8ZY5/U/k0td6xgk3JLEJS5wIQiXlAh0BaEOZZU2th4+yZs/rPS0SpXLZHROjudft/WiTFFJmbOSlaf3Y3XZ6RzciBujWvP+wQWeYHRNzn4KbKW82/IOgi1G2jWKQSaToZDLMOm1qHyU47I7nbjcbvQaFeY/8iltDifbc1JrDXIBKp12TpbkkVg/iDe2+s7jtLmdvHf0Vx7oPRiLUVctD/VC0ChUROsDSaofycKsnbhqePO9Pb4ry7P28HTjIQxZ9SYAS7N283Bi/wse6Crkcvq2SuSTXzcgUZVaUm61ExfqT5em8Tz44U/VZlvzisu5/705zHnxDqKCLXQOSeTdgzUX5Jcho6Ulnk9P7vRs23bkFBajjuJyK92b1+fXjQcY0aUZ0xdv8XkMlVLBwI6NeGDPZwAszNrJuPo9MaLF36ijvNJOjxYJLN/hO9VAq1bSs0UCN744DYBB7ZPQaerOxzSr9QyJakXHwETsTiclFTa2H8hgYfoRBrVLwmLUoVZe3LeOMoeVCpeNFdl7OW0tobE5klYB9fBTaSmyl+OSJCxqA/cn9GbqsZXY3d6LIlec3svd9XtctYGu1eVgc/5RJu78zut35tPUpXx/Yj1ftL+fGENQLUeAZv6xdbaC7hqShFJ+eXKhBeFSEYGuINRCkiR2HcvkiU9/9druliR2p2VRYCvn/eO/srXgmGff7PSNROj8+U+L0by5b54nKN1bfJIsWyFJ5qhan7OgpJz80kq+WbaN9JwiAk16bu3ZkpgQf+xOBwnGsDrPu7ElCp1Kw8LsmmdRAY6V5RDUSHdBZ3H/LFIfgMPt4vXmt/DqnjleNUCVMgX3N+gNSDyU2I/MinycVL2xOyQXlXXUC/27LEYtU54YxaGTOdzQvjHfr9rJyK7N+XLpthprF9udLr5YuJlnbuqOn1JHl+BG/J5bPX8aoHdoMi67RP82ifyyYT8OpwuVQo7LLfHqN0v5/oXbmLtuL+2TYjmRU8iKHd6pEBqVgtfu7cfPOZs816vSZfcEPTKZjGCLgadv6k5GXnG1jmpalZKPHhrG9EVbcLokAvz0jOvXFqPW94cGm8OB1WVHp9KgViiRy+SE6E1IkoSfwkZEGwsGrdrnB7ILrcRRyQ/H1zP16ArPbK2fUsu09g9wsCSTr9PWcLw8F3+VgaHRrfmp65O8vHu21+8gwOz0DTzTeMgFyde91EodlTy/c6bPD4ZFjnKe3zmTD1rdRaC25tQelUxBz9AmLD+91+f+Bn5hROkDfe4ThGvJ1fcXQBAuocKySt6etcrnvnuGtOGLk8uqvcECZFYW8tzO73il6U3ct/lzz/bfcw7WGugWlFYwa81uPp+/0Wv7ip2pdG9ej2dv7klOTjmNzVGevMQ/C9aYCNOa8VfoybX7Lt90Liu2Gju4XQgWtYFSeyUSEp+0vZcT5bkcL8slRGuiXVADJEnCIbnQKzSM3znF67HqixSkKBUKEiICCTMbaRIXxtq9aTSND2PynFW1Pm7lrlQeHtqJQJOBfzUdwdv7f/kjF7sqIJMjo39EC+6p35NfT20joYMfc2+8g9Xbj1E/JIj/m7GYskobuUVlRAaZUSsVPDmyG+MHd+Cn33dTXG6jQWwgHZrFMDPjdxZkn02BMSg1Xl9Xa9UqtGoVH04YSmpmHj+t3YPV7qRNwyi6NK3H1EWbWLTlED1bJvD4iK4EmqrPbuZWllDhsjHn5CZyrSVE6wMZFt0WFQqC9SZkMpknp/hScEtu1uUeZMrR5V7bp7Qbz4rTewnVWngkcQBuyY3D7eK3jG38dmo7b7cawz0bP+W0tdjzmKI/FqldjYHuitN7cUg1txo+XJpFqbOSQGoOdIO0Jp5MugGb28HaPy0GTTJFMqnlredVj1cQrnZX318AQbiErHYH6TlF1bZrVUpSEiP4YLvvYvxQ1UnqtK2YRqYIDpZU5WrW9jVhcXklR07lVgtyz1i16xgt60dh0mv4T8vRTNgylYzKAq8xZpWe11vcwv7CU4SVhxKu8a/zNYbqLn7dWj+1jhb+cXx0aCEnKwoI0ZiRyWDasZUcKs5iQsO+7LWdJNde6nlMU0s0avnFK32kVCiw/BH8TX3yJsqtdmpJdwWqcrXP8FcbmNhkKI8mDmBP0UlkQKI5krU5Bxmz4SOcbhdquZIPDi/gkYYDCDYZyCkqw6TXEBFkJjLITEFpJb+s30diVAiD+zZkUeYu9toO8dn2X6rN5t0Q0QqDovoHkiCzgSCzgRb1I3C5qxYtWe1Oxt/QgYeHdUGllONvqB7Q5FtL+SptNT+kb/Da/lXaGh5rNJC+oc0I1F3aygNF9go+P+Id5HYNaYxLctHIFMnnqcvYd87Cs+HRbRmYlML3x9fxWKOBPLdzpudxSaaoi3r/XCx2l4NDf/y9qE16eT5xxpBaxwRp/XiuyTBKHZWsyTmAU3LTLiiBUI0Zs1qP+iI2wBCEK4W4ywWhFo4aun9FBJlJLcuuNf8NYHtBGg39wj2Bbo/QJj7HFZZWsHZvmlc9W1++W7mdzx8byetTVzLl3vvZWnCUFdl7cUpu2gTWJyUgnn2Fp+gb3pzRL3/H+0/ewLfpv9d4vEamiEvWAjRQ48dDDQdQ6rQy79QWsq3FJJkiua9+b1af3s87B8+mh6jlSiY2GXrJVs4HW4woSipoUT+CnUdrDjLaJcWi/iPNo7C0AofLjcslo6k2Dknp5o4NH5FsieaNpNvRujVY7Q78TTrW5h8k111E83oR9G+TiEGrQq/REGQ20jCqqktdgbWMIkc5B0sykeG9OijeEMId9bqhV9c88649p5PY+fRa2FyQWi3Ihaq6xu8dnE+yJfqSB7oOyVXtw9t9Cb04bS3m6R3feAX/RY5yph1bSWpZNgMiWtD4nG9KFDI5g6NSvBqXXD1kBJxHY4rz/d0I1poI1poI01mQJAm1QnlVznILwt8l7nZBqIVRq0anUVFp82524Ha7z2vVuVImx07VQpm2gQmYlNUjEJfbzcItB4kKstTaUALgdGEZSoWCDftPcOvLM3n/oRt4pnE9Cm3lOFxuLEoDPUKaUFJq58aOyazdcYL74/vyWdqSasfyU2p5rdnNXu19L7ZArR+B+PFoo4E4XC6ckouvjq1hVvp6z5jWAfV4MukGovR/veTUPxFg0vPw0M6MmzzL5365TMadfVqRU1hKQUkF7/20hnV/1Lu1GHWM6JrMlE7jOZKRx2v/W+Xp+qVUyOmd0oCuQ4y8dm8fdHINeo13wFppc+C2wc3+XRmka0tggJ7NRaksyt1Oz5BkBke1IqiWfMy/6nRlMV8eq73d79TUFfyryXCCdJeuzqqvxf9+Si3PHfyuxoWMa3IOMCqmvefDgRwZ/25+C34+fteuBmqFkkGRKXyVtqbGMUEaP8J0lr903Au9qFMQrhYi0BWEWhi0aoZ3bsq3y70XdZ3MLSLeEIparqy24vtcnYMb8db+X+gc3IgXkof5rAtbXGZl5sqdPHxjJ4w6NQWlNTcBUMrlKBRyWjeMYuvhU9z++vdoVAqaxIbhdks8PqIrTeuFI7mgR8sE9hzLQlfix+TkO/khax17i9LRKFT0D2/BbfGdCbyILU3rolIoUKFgbP3ujIxtj8PtRCmTo5IrL9tq+QaRQbx4ex/e+H6Fp9YuVKWqTLylJ2nZBTSND+e2N76l4pwPP0VllUxdsIXdR7MY26+tV2tbp8vNoi2HOHG6iPcnDKlW3aKgtIJl2w/z6a8bPCXNFHIZPZonMPnmuzAbtRf8K2aZrGohYm32Fp887/rHF4pKpqCBX7in45xOoabSbedkRfWGHudalLWLhxv2Y3h0W26P70KA2ohOef5NJ640RqWWEdHt+PHkpmr75Mh4KukG1DLx9i0I50P8pghCLbRqFWP7teFoZh4bD6R7trvcEqu2HWNUXAe+PeE7NSDZHE24zsJHbe5Gq1DV2vwgr7iMVbuP0r9NoxpzdAG6Na9HRl4R9w5sz9bDcwCwOVzsOZ7Nv27tRXx41SxogLEqmPL3i6eo1IpOqeS5hsNQquRVC4zUOjRXSOtPtUJJoOLyBdznMuo09G3dkM7J8fy+9xjHswoIDzTRvH4Es9fsZminJrw9a5UnyNWqlPRt3ZCuTeuhVatIzynE7XbTODaU/Se8W+keSD9NakYewaazr9Vqd7B8+xEmfe/dtMLllli24wiZBSW8/8CNBJkvcKCLDIVMXuMsKYBGrqozNedC89cYeTRxAA9trSqJplOoybeV1fm4YnsFLklifEIfLJpL9w3FxWJR6bizXjdiDUF8f2I9mZWFADS1xHBvQi8S/MKuidcpCJeCCHQFoQ4Bfnr+PXYAmQUlzF61i7JKG43rhTK4bWNK5GU4cPJz+mavVdKdghN5rslQQrTnsdBLBpFBFpbvSOXLZ27h1w37vWYEz9BrVEy4sRMvf7WER4d1YfL9N7D3eDYxIRY6J8ej06jQa87OYp0Jdk16LRU2BxqVApPu6vw691LSa9ToNWo6NalqKnHgZA7vzF6NW5K4b2B7Nh+q+sCTHBfG87f2YsnWw0yes4Zyq41GMaHc3qslk8YNZOSrX2J3egeSc1bvplF0MP5//H9TVmnnk9+q58mesf/EadJzCskqKEGpkBPq74dJp0H5D8t8yaSqe3RNzoEax/QJa4pBfum/7m5sjuK1Zjfz5v55lDgqMal0ddaDTTJFopdrMNSSw3w1USlUBKoN9A9vQdughD+aOshQyhSYlDoR5ArCXyACXUE4DwF+egL89DS4NRCr04lGqUSrUqGwSjQ2RXFDh1YcKc3C4XaRZIpEq1BjVJ7fIi9/o44xvVN45eulvPLVEt65fzBfLNjEmj3HPDVdUxIieW50T5ZvP8LuY1mkZuYxqmtzerRIqPP4Bo0Gg+baCAAupV1HM1iy9bDXNrvThSRBRKCJibf05NGP55JbfLYV7+aD6Ww+mM69A9vx2eOjGPv2D16Pr7A5cLjPBr85RWUUlVVWe+7wAD9iQvxxOF38umE/Rp2ab1fsIMBPzzM3d6dj47h/VBIuSGdiQsN+bMw74jP1xqzSMTquM36aS//ByKjS0j20MW0C65Namo0kSbQLSmBjnu/GGAqZnBuiWl0zQe4ZKoUKi0KFRWOgwmlDIZNfMd/CCMLVRAS6gvAXaFQqNKqzbzZBWhNdQhphczlQm6PRKdRo5EosagMy2fn11ZTJZHRJrke7RjFsOpjOE5/+ws3dWnDfoPZY7U6MOjV6rZr3f1zD0u1Vb/b+RjEze7Gd+//zGWqlAo1Kwa09U/jk1/VeQe65pizYRJ+UhiREBJKaeTa/tHlCOLtSM9FqVDSJDcVm9w4yG0QG8dCNndColaSeysOo09CmUTQyqoLs2Wt2M/GLBbz/wBA6J9dD/g96t/orjXza9h5e2/MTaeVn83Ubm6N4ueko/BSXrn7un2kUKjQKFW01VR/knm8yjPGbp3i+wj9DjoyXmo5Er7h683HPh1hIJgh/nwh0BeEf8lPp8FPpCOLvr04PMOl57a7+LN9xhJ/W7mHqos38unE/Qzs1oXm9CCb892dyiqpyFbVqJY1jQy/U6V+xqvIuq2Y/1XLlJSuDdkbj2FBUSoXXorQjGbn0bZVI64ZRdTaXmLlyB/cPas/TU+YDVS19h3Rowm2vf0dxhZWHhnVicNvGKOVynG43TWJDmXhLT178cjFp2WdLbCnkMm7q1pw7+rSmf5tGjJs8i8lzVpMcH06A399ftGfR6jEqI/iw9VgqXDbybWWEak1o5CpCLkFt5b8iTGfhi/bjWZm9lwWZO7C6HCRbork9rgsWtQHTVdrqVxCEi08EuoJwhVDIZRzNzOP50b3Qa1SkZRewYMtBPvhpLe5zOhk8PLQzzhrq+14LyhxWjpRm8cmRpewsPI5CJqdTUEPGJfQCSSJYa0KnUGO4yIGvXqPijt6tmLpos2fb5Dlr+OyxEWTll9TZXCI9p4gBbRsBVUHu5PGD2XIoneKKqsoKH89dx+A2SfRu1YBFWw7x7C09eerzXzld6L34yuWWmLlyJ3qtmg5Jsbx2V3/+b8aiarPBf4dSqSRUWRXUxtfRfOByC9L4MTy6Ld1DG+OWQK9U46cS32wIglC7q7GatiBck/z99Axq15h7353NgZM5lNvsnDhd6AlyEyICee+BIRi16ovasvdyqnDaWJK1i/s3T2Fn4XEAXJKbNbkHuXvjJ+TYSvjg4EIOl2ZRYq+5DNuFoNequb13Cg8O6YheU5XGkJ5TyBvfLSMsoO7Z+yCzAaVCzvgh7Zn7yl3kFZfzylfLPPslCRZuPchTI7tzc7cWHEzPqRbknuuHVbvQqJW0bhiFQi7D6b52P+zURCFXEKw1E6oziyBXEITzImZ0BeEK0iAyiP89Opx/f7uMqGALjw3vQqDJgEalQK9R8+WSrdzSo8U1m6Nb4bTx9oFffe5zSW7e3D+Pfze/hce2fclXHSegkivQXcT8RbNBx5herRjeqSkZ+cW43BJRQWYkSaJZvXB2H8uq8bG39myJTC5h1mkZ/frXlFTYq405nlWI2aDhnoFtef275T6OclZZpY3SChvZ+aWM7NIMg+bazku9FPJKynC5JKwOB3qNGrVKgVl/bf5uCcL1SgS6gnAF0WvVtGoQxdQnb6K80k5+aQValZLdaZmUVti4d1A7/I26817odrVZlbO/1tquebZSypxW/NUGfj65hTvju13UQBdAo1aiUSsJMHnngf7fbb25863vvRpHnNG/dSIhFiMDnv+i1mPHhltQKBRoVEqkunIhqJoFzikuo1uzehh0ItD9uypsdk7mFvHGdyvYnVb1YeVMB7vHRnQlxHxl1HUWBOGfE6kLgnCFkclkBJoMxIT6kxQdgr+fjm7N6nNrzxSCzUaUin9WQ/VKdrys9hbIADnWYswqPZvzUim0191M4GKJDDQz8/nb6duqIUpF1Z/SqCAzE2/pwUPDO5JWeZroYEuNj1fIZQxokwRUNaro1bJBrc9n0KoxG7TEBFtIjg9HoxLzFH9XVkEJd731vSfIhbMd7Ma/N4f8Et/VNARBuPpcFYHuqlWrkMlkPv9t2bIFgOPHj/vcv3FjzV2mBOFKp9WoCDQZCDQZUP3DJgFXg/p+dVeTCNNaKLCXIZPJLnHfLm9ajYroEAsTRnTgl9fGMv/1u/nvY0NRxdl5cu+XTEtfwb/u6olO47v26XO39kStOvsnuH1SLEGmmhsBjOzajBU7j9AwKviazdG+FPJLy5g8ezU2h8vn/uOnC1m1OxX3dZgDLQjXoqsi0O3YsSNZWVle/+655x7i4+Np3bq119hly5Z5jWvVqtVlOmtBEP6qriFJqGQ1B/ShWjMahYrT1mI6BjckQH35O0RtLUtl3M7/saHsIOXKChQKOXfU78oTSYM4rcrni4kjGN4lGYtBi16jonNyPF9NvIXuzevjbzh7/haDhi+eHEV0sHdpL7lMxrBOybRvFEPnJvH46UWQ+0+4XBKbDqbXOubntfvIKxOzuoJwLbgqvvtSq9WEhYV5fnY4HMybN4+HH364Wq5iYGCg19ja2Gw2bDab5+eSkuptVwVBuHT0Cg3/13QEL+2eXa3lq1qu5LkmQ/ny2GqMSi2DIlqilF/+We5kczSTU8bwyZGlzD21hU7BjVDLlWzLP0aQxo9ArZHRA5px78D2ACgUMoL8queAKpVKIgL8+OKJm8jIL2bLoZNoVEraNooht6iMyCALAX46tOqqGWKr3Um51U6FzY5SLkejVl7T+dsXitPtrrM0XFmlDbf7cn5fIAjChXJVBLp/9ssvv5Cfn8/YsWOr7RsyZAhWq5WGDRvyzDPPMGTIkBqP88Ybb/DKK69czFMVBOEv0CnVdAlpxFcdJ/DZkaVsyT+GUi6nS3ASN8d2YHb6RtLL83i/1Z34q41XRIkpi9rAf/b+xJj4ruTbS1metYcKl50kcyTdQ5twqiIff1MEAZq6FzgplUqCLUaCzAYaRAZhsztxON1EBZkw6s7WDS4qq2T6ki38uGa3ZzFcTIiFJ0d2o35EIFqVCj+95rpId/mrlAoFFoOWonJrjWMSo4I9HygEQbi6yaTzWep7hRk4cCAACxYs8GzLy8vjq6++olOnTsjlcn788Ufeeust5s6dW2Ow62tGNzo6muLiYkymv9/lShCEf67UUYnN5cCNRJ61lIOlGUTpAokxBKFTqDFfId2w9hSmo5QrmLRvLgdKMrz2qWQKXml2Ey0D4gjU+F2Q5ysqq+TFLxezdm+az/3v3D+YhrFBFJVXEhcQiFGkOnixOhxMW7yZL+ZvrnHMt8/fSlL0td99UBCuViUlJZjN5vOK1y5roDtx4kTefPPNWsccOHCARo0aeX4+deoUsbGxzJo1ixEjRtT62DvuuIO0tDR+//338zqfv3LhBEEQHC4X6/IOsjx7L4uzdvkco5IpmN3lCSL0/n/7ecptdkorrSjkMvKKKrjtje9qHBtiMfLaw72ZcWoFDyX0J0ofgJ/28s98X0nyS8t5YdpCNh88WW3fI8M7cWPHZPwNV8YHKUEQqvsr8dplTV148sknueuuu2odU69ePa+fp0+fTmBgYK0pCWe0a9eOpUuX/pNTFARBqJGEm3hDCMuz99Y4xiG5WJS1k9tju6BW/rU/uRV2O0VllWzYd5zwADOxof7MXu07oD4jp6gMbDIOlmRw79bPmNb+ARHo/kmgn4F/392f1Iw8vl+5i6LSSupFBHB77xT8/XQiyBWEa8hlDXSDg4MJDg4+7/GSJDF9+nTuuOMOVKq686d27txJeHj4PzlFQRCEGqkVKsqcVpyS71JVZ+wqPMGQsNYEKc8/fcHudJCWlU9ZpQObw8WbP6ykZ8sESiptdT623GZHq1BT6rTy5v65TE65A8sFrlDhltzIZVdF4R6fgvyMBDUy0igmBLvThV6txqgVaR6CcK25qhajrVixgrS0NO65555q+7788kvUajUtW7YE4KeffmLatGl88UXtnYkEQRD+ifNZEGdQapBJf60aQnG5jbyiCuZvPsCy7UcAOJlbRGJUMCt2pNb4OJkMwvxNFJ2oKo+1p+gkdpfzLz13TXKtJeTbSvktYzs2t4P2QQ1pbonBX2NEcZUGvRa9mL0VhGvZVRXoTp06lY4dO3rl7J7rtdde48SJEyiVSho1asQPP/zAyJEjL/FZCoJwPdHLNUTo/MmsLKxxTL+glsil8w8EyyvtZOQVgwxPkAuwZvcx7h3QjqkLN2N3+p5F7tQkjp0laTjOmWW2uf95oJtvK+Wl3bPYWnDMs23eqa0EqI38r804Yo3BV22wKwjCteuq+qv03XffsW7dOp/77rzzTvbv3095eTnFxcVs2rRJBLmCIFx0FrWeJxIH17i/qTkaf/yQy89/Rjc9pxCny80v6/d5bXe63MxcuYN/jx3gs3RYfFgAD45qzzcZazzbVDIFWvk/K5WVZy3hg4MLvILcMwrsZYzf/AWFNtFgQRCEK89VNaMrCIJwpVEqFDQ2RfN6k9F8kraYUxUFQFWDiz6hzRgV0gkdGsyG81sQVlhawbcrtnNbr5SqhWV/8suG/SgVCmY8fTOLtx5iT1o2GpWC3u0SSIgL4P8OfU+Otdgzvmdo8l+aTfbFJblZmr2nxv1FjnK25KcyILLlP3oeQRCEC00EuoIgCP9QkN5Ia1d9Xq53Cwq1jEqnHT+lnp2HMpEHKAgPPf9FaE63m4VbDvLQjZ2ICDSz78TpamN+WruHhVsO0r91Q14f15+TFXl8cXI5k3Z419atZwzh3vjeteYRVzrtlDut5NpKcUkuQrUWVHI5TrcbmUyGQanheHkuLsld63mvzT1Er7CmqBXibUUQhCuH+IskCIJwAfj76VEpFVjtTkpcleiUavq2SMTf768vdpIkWLLtMLf2bMnS7Yd9jqm0OSgqt+F0uCktcHJvTG9+Um8itSwLo1JL36AWtDTFY1LoUat8d0grsJXxy6mtfJ22hlJnVacwjVzFjVGtGVu/O5nlBchkclTyut8q1HIFctF+WBCEK8xVlaMrCIJwJTPqNASZDdQLDyI8wPS3glylQkGT2FDe/+l3IgJN3Nythc9xIRYjT47sSkWljSiLP+W5blIqGzHO3I9Rum6ElgcTpPPDYvQ9m1tsr+CHE+v535ElniAXwOZ2MCt9A5P3/4ZGqWZN7gGi9YEYlLWX3rohqhVKuWg5LAjClUXM6AqCIPxJrrUEt+RGIVMQpL0wrXvPl79RxyPDuvDEp79QUFrOTd2b0zQ+jFlrdlFSbmVk12a0SYzBqFOzIzWD1g2jcLslDp2yEWGxEOinx2zQYtJr0WvVNT6P3e3k2+Nra9y/7PQe7m/Qm2VZu9HIlYyr34MPDy3yOTbRFEGMPugfv3ZBEIQLTQS6giAIf8i3lbKz4Djfn1jPaWsx4Tp/Rsd1pJkllgCN8ZKdR1JMCM+P7oleq+GRj+di0mt4eGgnLEY9UxZs4qN560CCtkkxxIT4U1hawe97jhHgp8ffqKNjchxarYra5pN3F6Vjr6Ps2NKs3QyNbsv/Di/mq44TeKBBX2YcW0Wlyw6ADBkdghrwQvJwgrSibbogCFceEegKgiBQla/68u7ZbMo/24wh21rEjsI0ugYn8XzysEsW7Bp1Gnq0SKCwtJITpwurOqKV23jwg59xuqsWhQX46Qm1GPl99zG6Nosn3N+Pr5dvB2DKgk28M34wLRMi8dNqfZY2q3DW3WGtwmXDpNbjRuKZ7d8ypf39DI5MIbU0G6vbQaJfOCq5kmAR5AqCcIUSObqCIFz3HG4XS7N3ewW551qTe4D1uYcu6Tlp1SokJGJD/XloSCf+/e0ynG43KqWC50b35O37BuOW4FBGLgs2H2Jkt+Z8/vhIlHI5bknitW+WUWF18PueY5T5aBvcxBxV5zm0CqjHrsLjAJy2FeOWJIK1JjoEN6RHaBMi9AEiyBUE4YomAl1BEK57hfYyvj++vtYx3x5f61Wf9lJQKRT83229OZqVT1F51YKx18cO4GhmPuMmz+LH33ezZvcxZq7cwY0vTmfXsSxmPHMLAIWllZzMLeTb5dtZv/84zj91UvNT6WoNdkM0JuoZQz31cyN0/hfpVQqCIFw8ItAVBOG6J0dGRmVBrWNOlOch49KVzyosq2DynNV8Pn8jJ05XtRdumxhNaaWVWat3+XzMx/PWUWGz06tlAgC5JeUE+xt564dVlFR4z+oGa0280eJWovWB1Y7jrzbwYeuxfHlstWfb6LhOBKoNF+rlCYIgXBIiR1cQhOueBJhUOkoclTWOCVAbkJAuyfm4XC6W7zjCkm2HaRAZRJh/VeWH4V2aMXXhplof+8WCTUy4sRPLd6QSG+LP15nbKSit4HRRKQEm7+VpYToLn7e7j92F6SzJ2oVLctMpOJEOwQ35+tgafjq1GYCW/nH0DE1GKZpBCIJwlRF/tQRBuO4ZFBoGR6Tw3Yl1NY4ZEtUas+qv18X9O/LLKvhqyTYAjmTkER1iwU+vISLQxJGMvFofu/d4Nv5GHdHBZkx6LYdP5QJQVmn3OT5Q40eX4ERa+sch4SazspBHtkwjy1pMPWMIt8R2omtI0iWtOiEIgnChiEBXEITrnl6l4bb4Lqw4vY9sa1G1/dH6QIZHt0OjUF2aE5LgVN7ZfODvVuxg4i09QZJQKuQ4XTW349WqVbjdEm/eN5ivlmz1bI8KNtf4GKVCieWP2VqTSs+Hre8GmQwkiSCNH3K5yHITBOHqJP56CYIgUJWzOqX9/dwQ2QqNvCqg1SpUDItuy6dt772kjSNkMhkq5dkuY4u3HuLQyRz0WjU9myfU+tj+bRIx6tX8vvsYP63dC1Tl9uo15xekK+QKQnRmQrQmQnRmEeQKgnBVEzO6giAIfwjVmnk0cQDjG/TBKblQyhToFGqMKu0lPQ+1SkGfVg1YsOmgZ9tXS7ex93g2z93SizV7j2G1V2/2YDZoGdOrFQ//92cOnKxKWYgOtvDqXf0xG3y3AhYEQbiWiUBXEAThHCb1pcnDrY1Zr+OBGzqyZneaVw3c7Ucy+Hz+Rv770DDenrXKk38L0Cw+nJfv6MvRzDy0GjXtGsUwrFMybRKj8fe7/K9JEAThcpBJknRplhFfBUpKSjCbzRQXF2MyiSLogiBcPg6ng4z8UibNXMHmQycBUMhldGlWj+dv6YUkSVTaHRSUVhJsNqBWKgi2GHE6XZTb7MhlMvz0l3YmWhAE4VL4K/GaCHTPIQJdQRCuNPmlZbhcEpV2JzqNCpVShr9B1LMVBOH69VfiNZG6IAiCcAUL9BNlvQRBEP4usZxWEARBEARBuCaJQFcQBEEQBEG4JolAVxAEQRAEQbgmiUBXEARBEARBuCaJQFcQBEEQBEG4JolAVxAEQRAEQbgmiUBXEARBEARBuCaJQFcQBEEQBEG4JolAVxAEQRAEQbgmiUBXEARBEARBuCaJQFcQBEEQBEG4JolAVxAEQRAEQbgmiUBXEARBEARBuCaJQFcQBEEQBEG4Jikv9wlcSSRJAqCkpOQyn4kgCIIgCILgy5k47UzcVhsR6J6jtLQUgOjo6Mt8JoIgCIIgCEJtSktLMZvNtY6RSecTDl8n3G43mZmZ+Pn5IZPJahxXUlJCdHQ0J0+exGQyXcIzvHqIa3R+xHWqm7hGdRPX6PyI61Q3cY3Oj7hOdbuY10iSJEpLS4mIiEAurz0LV8zonkMulxMVFXXe400mk7jB6yCu0fkR16lu4hrVTVyj8yOuU93ENTo/4jrV7WJdo7pmcs8Qi9EEQRAEQRCEa5IIdAVBEARBEIRrkgh0/waNRsNLL72ERqO53KdyxRLX6PyI61Q3cY3qJq7R+RHXqW7iGp0fcZ3qdqVcI7EYTRAEQRAEQbgmiRldQRAEQRAE4ZokAl1BEARBEAThmiQCXUEQBEEQBOGaJAJdQRAEQRAE4ZokAt1avP7663Ts2BG9Xo/FYvE5Jj09nUGDBqHX6wkJCeHpp5/G6XR6jVm1ahUpKSloNBoSEhKYMWPGxT/5y2TVqlXIZDKf/7Zs2QLA8ePHfe7fuHHjZT77SysuLq7aNZg0aZLXmN27d9OlSxe0Wi3R0dG89dZbl+lsL73jx48zbtw44uPj0el01K9fn5deegm73e41RtxL8PHHHxMXF4dWq6Vdu3Zs3rz5cp/SZfPGG2/Qpk0b/Pz8CAkJYejQoRw6dMhrTPfu3avdM+PHj79MZ3x5vPzyy9WuQaNGjTz7rVYrEyZMIDAwEKPRyIgRIzh9+vRlPONLz9ffaJlMxoQJE4Dr8z5as2YNN9xwAxEREchkMubOneu1X5IkXnzxRcLDw9HpdPTu3ZsjR454jSkoKOC2227DZDJhsVgYN24cZWVlF+2cRaBbC7vdzqhRo3jggQd87ne5XAwaNAi73c769ev58ssvmTFjBi+++KJnTFpaGoMGDaJHjx7s3LmTxx57jHvuuYfFixdfqpdxSXXs2JGsrCyvf/fccw/x8fG0bt3aa+yyZcu8xrVq1eoynfXl8+qrr3pdg4cfftizr6SkhL59+xIbG8u2bdt4++23efnll/n8888v4xlfOgcPHsTtdvPZZ5+xb98+3nvvPT799FOef/75amOv53vphx9+4IknnuCll15i+/btNG/enH79+pGTk3O5T+2yWL16NRMmTGDjxo0sXboUh8NB3759KS8v9xp37733et0z19OHyDOaNGnidQ3Wrl3r2ff444/z66+/Mnv2bFavXk1mZibDhw+/jGd76W3ZssXr+ixduhSAUaNGecZcb/dReXk5zZs35+OPP/a5/6233uLDDz/k008/ZdOmTRgMBvr164fVavWMue2229i3bx9Lly7lt99+Y82aNdx3330X76QloU7Tp0+XzGZzte0LFiyQ5HK5lJ2d7dn2ySefSCaTSbLZbJIkSdIzzzwjNWnSxOtxN998s9SvX7+Les5XCrvdLgUHB0uvvvqqZ1taWpoESDt27Lh8J3YFiI2Nld57770a9//vf/+T/P39PfeSJEnSs88+KyUmJl6Cs7syvfXWW1J8fLznZ3EvSVLbtm2lCRMmeH52uVxSRESE9MYbb1zGs7py5OTkSIC0evVqz7Zu3bpJjz766OU7qSvASy+9JDVv3tznvqKiIkmlUkmzZ8/2bDtw4IAESBs2bLhEZ3jlefTRR6X69etLbrdbkiRxHwHSzz//7PnZ7XZLYWFh0ttvv+3ZVlRUJGk0GmnmzJmSJEnS/v37JUDasmWLZ8zChQslmUwmZWRkXJTzFDO6/8CGDRto2rQpoaGhnm39+vWjpKSEffv2ecb07t3b63H9+vVjw4YNl/RcL5dffvmF/Px8xo4dW23fkCFDCAkJoXPnzvzyyy+X4ewuv0mTJhEYGEjLli15++23vdJeNmzYQNeuXVGr1Z5t/fr149ChQxQWFl6O073siouLCQgIqLb9er2X7HY727Zt8/obI5fL6d2793XzN6YuxcXFANXum2+//ZagoCCSk5N57rnnqKiouBynd1kdOXKEiIgI6tWrx2233UZ6ejoA27Ztw+FweN1XjRo1IiYm5rq9r+x2O9988w133303MpnMs13cR2elpaWRnZ3tdd+YzWbatWvnuW82bNiAxWLx+oa3d+/eyOVyNm3adFHOS3lRjnqdyM7O9gpyAc/P2dnZtY4pKSmhsrISnU53aU72Mpk6dSr9+vUjKirKs81oNDJ58mQ6deqEXC7nxx9/ZOjQocydO5chQ4ZcxrO9tB555BFSUlIICAhg/fr1PPfcc2RlZfHuu+8CVfdOfHy812POvb/8/f0v+TlfTqmpqfz3v//lnXfe8Wy73u+lvLw8XC6Xz78xBw8evExndeVwu9089thjdOrUieTkZM/2W2+9ldjYWCIiIti9ezfPPvsshw4d4qeffrqMZ3tptWvXjhkzZpCYmEhWVhavvPIKXbp0Ye/evWRnZ6NWq6utTQkNDfW8t11v5s6dS1FREXfddZdnm7iPvJ25N3z9PTo3JgoJCfHar1QqCQgIuGj31nUX6E6cOJE333yz1jEHDhzwSsoX/t51O3XqFIsXL2bWrFle44KCgnjiiSc8P7dp04bMzEzefvvtqz44+SvX6dxr0KxZM9RqNffffz9vvPHGZW+ZeDH9nXspIyOD/v37M2rUKO69917P9mv5XhL+uQkTJrB3716v3FPAKx+wadOmhIeH06tXL44ePUr9+vUv9WleFgMGDPD8d7NmzWjXrh2xsbHMmjXrmp+A+TumTp3KgAEDiIiI8GwT99HV4boLdJ988kmvT2S+1KtX77yOFRYWVm1185lVqWFhYZ7//fNK1dOnT2Myma6qPyZ/57pNnz6dwMDA8wo42rVr50n0v5r9k/urXbt2OJ1Ojh8/TmJiYo33Dpy9v65Gf/UaZWZm0qNHDzp27HheC/GulXvpfAQFBaFQKHzeJ1fzPXIhPPTQQ56FLud+o+RLu3btgKpvDa7XAMVisdCwYUNSU1Pp06cPdrudoqIir1nd6/W+OnHiBMuWLatzpvZ6v4/O3BunT58mPDzcs/306dO0aNHCM+bPC2WdTicFBQUX7d667gLd4OBggoODL8ixOnTowOuvv05OTo5nKn7p0qWYTCYaN27sGbNgwQKvxy1dupQOHTpckHO4VP7qdZMkienTp3PHHXegUqnqHL9z506vX4yr1T+5v3bu3IlcLvfcSx06dOCFF17A4XB4ruHSpUtJTEy8qtMW/so1ysjIoEePHrRq1Yrp06cjl9e9rOBauZfOh1qtplWrVixfvpyhQ4cCVV/XL1++nIceeujyntxlIkkSDz/8MD///DOrVq2qlv7jy86dOwGum/vGl7KyMo4ePcqYMWNo1aoVKpWK5cuXM2LECAAOHTpEenr6VffedSFMnz6dkJAQBg0aVOu46/0+io+PJywsjOXLl3sC25KSEjZt2uSpXtWhQweKiorYtm2bpzrOihUrcLvdng8KF9xFWeJ2jThx4oS0Y8cO6ZVXXpGMRqO0Y8cOaceOHVJpaakkSZLkdDql5ORkqW/fvtLOnTulRYsWScHBwdJzzz3nOcaxY8ckvV4vPf3009KBAwekjz/+WFIoFNKiRYsu18u6JJYtWyYB0oEDB6rtmzFjhvTdd99JBw4ckA4cOCC9/vrrklwul6ZNm3YZzvTyWL9+vfTee+9JO3fulI4ePSp98803UnBwsHTHHXd4xhQVFUmhoaHSmDFjpL1790rff/+9pNfrpc8+++wynvmlc+rUKSkhIUHq1auXdOrUKSkrK8vz7wxxL0nS999/L2k0GmnGjBnS/v37pfvuu0+yWCxe1WCuJw888IBkNpulVatWed0zFRUVkiRJUmpqqvTqq69KW7duldLS0qR58+ZJ9erVk7p27XqZz/zSevLJJ6VVq1ZJaWlp0rp166TevXtLQUFBUk5OjiRJkjR+/HgpJiZGWrFihbR161apQ4cOUocOHS7zWV96LpdLiomJkZ599lmv7dfrfVRaWuqJhQDp3XfflXbs2CGdOHFCkiRJmjRpkmSxWKR58+ZJu3fvlm688UYpPj5eqqys9Byjf//+UsuWLaVNmzZJa9eulRo0aCCNHj36op2zCHRrceedd0pAtX8rV670jDl+/Lg0YMAASafTSUFBQdKTTz4pORwOr+OsXLlSatGihaRWq6V69epJ06dPv7Qv5DIYPXq01LFjR5/7ZsyYISUlJUl6vV4ymUxS27ZtvcrYXA+2bdsmtWvXTjKbzZJWq5WSkpKk//znP5LVavUat2vXLqlz586SRqORIiMjpUmTJl2mM770pk+f7vP379zP5+JeqvLf//5XiomJkdRqtdS2bVtp48aNl/uULpua7pkzf3fT09Olrl27SgEBAZJGo5ESEhKkp59+WiouLr68J36J3XzzzVJ4eLikVqulyMhI6eabb5ZSU1M9+ysrK6UHH3xQ8vf3l/R6vTRs2DCvD5nXi8WLF0uAdOjQIa/t1+t9tHLlSp+/X3feeackSVUlxv7v//5PCg0NlTQajdSrV69q1y4/P18aPXq0ZDQaJZPJJI0dO9YzgXgxyCRJki7OXLEgCIIgCIIgXD6ijq4gCIIgCIJwTRKBriAIgiAIgnBNEoGuIAiCIAiCcE0Sga4gCIIgCIJwTRKBriAIgiAIgnBNEoGuIAiCIAiCcE0Sga4gCIIgCIJwTRKBriAIgiAIgnBNEoGuIAjCVWrGjBlYLJbLfRp1uuuuuxg6dOjlPg1BEK5DItAVBOG60L17dx577LHzGjtlyhSaN2+O0WjEYrHQsmVL3njjDc/+l19+GZlMxvjx470et3PnTmQyGcePHwfg+PHjyGQyn/82btxY4/OfO85gMNCgQQPuuusutm3b5jXu5ptv5vDhw+d3AS6jDz74gBkzZlz053n99dfp2LEjer3+qvgAIAjCxScCXUEQhHNMmzaNxx57jEceeYSdO3eybt06nnnmGcrKyrzGabVapk6dypEjR+o85rJly8jKyvL616pVq1ofM336dLKysti3bx8ff/wxZWVltGvXjq+++sozRqfTERIS8vde6CVkNpsvSeBpt9sZNWoUDzzwwEV/LkEQrg4i0BUE4Zp31113sXr1aj744APPTOmZWdc/++WXX7jpppsYN24cCQkJNGnShNGjR/P66697jUtMTKRHjx688MILdT5/YGAgYWFhXv9UKlWtj7FYLISFhREXF0ffvn2ZM2cOt912Gw899BCFhYVA9dSFl19+mRYtWjBt2jRiYmIwGo08+OCDuFwu3nrrLcLCwggJCan2WoqKirjnnnsIDg7GZDLRs2dPdu3aVe24X3/9NXFxcZjNZm655RZKS0s9Y+bMmUPTpk3R6XQEBgbSu3dvysvLPdf/3NQFm83GI488QkhICFqtls6dO7NlyxbP/lWrViGTyVi+fDmtW7dGr9fTsWNHDh06VOs1e+WVV3j88cdp2rRpreMEQbh+iEBXEIRr3gcffECHDh249957PTOq0dHRPseGhYWxceNGTpw4UedxJ02axI8//sjWrVsv9Cn79Pjjj1NaWsrSpUtrHHP06FEWLlzIokWLmDlzJlOnTmXQoEGcOnWK1atX8+abb/Kvf/2LTZs2eR4zatQocnJyWLhwIdu2bSMlJYVevXpRUFDgddy5c+fy22+/8dtvv7F69WomTZoEQFZWFqNHj+buu+/mwIEDrFq1iuHDhyNJks9zfOaZZ/jxxx/58ssv2b59OwkJCfTr18/r+QBeeOEFJk+ezNatW1Eqldx9993/5PIJgnAdEoGuIAjXPLPZjFqtRq/Xe2ZUFQqFz7EvvfQSFouFuLg4EhMTueuuu5g1axZut7va2JSUFG666SaeffbZWp+/Y8eOGI1Gr39/R6NGjQBqnI0GcLvdTJs2jcaNG3PDDTfQo0cPDh06xPvvv09iYiJjx44lMTGRlStXArB27Vo2b97M7Nmzad26NQ0aNOCdd97BYrEwZ84cr+POmDGD5ORkunTpwpgxY1i+fDlQFeg6nU6GDx9OXFwcTZs25cEHH/T5OsvLy/nkk094++23GTBgAI0bN2bKlCnodDqmTp3qNfb111+nW7duNG7cmIkTJ7J+/XqsVuvfunaCIFyflJf7BARBEC6XJk2aeGZuu3TpwsKFCwkPD2fDhg3s3buXNWvWsH79eu68806++OILFi1ahFzuPT/w73//m6SkJJYsWVJjvuwPP/xAUlLSPz7fMzOkMpmsxjFxcXH4+fl5fg4NDUWhUHidd2hoKDk5OQDs2rWLsrIyAgMDvY5TWVnJ0aNHazxueHi45xjNmzenV69eNG3alH79+tG3b19GjhyJv79/tfM7evQoDoeDTp06ebapVCratm3LgQMHvMY2a9bM6/kAcnJyiImJqfH1C4IgnEsEuoIgXLcWLFiAw+EAqhZ2nSs5OZnk5GQefPBBxo8fT5cuXVi9ejU9evTwGle/fn3uvfdeJk6cWG1G8ozo6GgSEhL+8fmeCQTj4+NrHPPn3F+ZTOZz25kZ6rKyMsLDw1m1alW1Y52b/1vbMRQKBUuXLmX9+vUsWbKE//73v7zwwgts2rSp1nOty7nPeSa49zWzLgiCUBORuiAIwnVBrVbjcrm8tsXGxpKQkEBCQgKRkZE1PrZx48YAnsVVf/biiy9y+PBhvv/++wt3wj68//77mEwmevfufcGOmZKSQnZ2Nkql0nMtzvwLCgo67+PIZDI6derEK6+8wo4dO1Cr1fz888/VxtWvXx+1Ws26des82xwOB1u2bPFcZ0EQhAtFzOgKgnBdiIuLY9OmTRw/fhyj0UhAQEC1NASABx54gIiICHr27ElUVBRZWVn8+9//Jjg4mA4dOvg8dmhoKE888QRvv/22z/35+flkZ2d7bbNYLGi12hrPt6ioiOzsbGw2G4cPH+azzz5j7ty5fPXVVxe0VFfv3r3p0KEDQ4cO5a233qJhw4ZkZmYyf/58hg0bRuvWres8xqZNm1i+fDl9+/YlJCSETZs2kZub6zNdw2Aw8MADD/D0008TEBBATEwMb731FhUVFYwbN+4fvZb09HQKCgpIT0/H5XKxc+dOABISEv52XrQgCFc3EegKgnBdeOqpp7jzzjtp3LgxlZWVpKWlERcXV21c7969mTZtGp988gn5+fkEBQXRoUMHli9fXi2P9c/H/+STT3wulvI1Aztz5kxuueWWGo83duxYoKpeb2RkJJ07d2bz5s2kpKScx6s9fzKZjAULFvDCCy8wduxYcnNzCQsLo2vXroSGhp7XMUwmE2vWrOH999+npKSE2NhYJk+ezIABA3yOnzRpEm63mzFjxlBaWkrr1q1ZvHixz5zev+LFF1/kyy+/9PzcsmVLAFauXEn37t3/0bEFQbg6yaSa6r8IgiAIgiAIwlVM5OgKgiAIgiAI1yQR6AqCIAiCIAjXJBHoCoIgCIIgCNckEegKgiAIgiAI1yQR6AqCIAiCIAjXJBHoCoIgCIIgCNckEegKgiAIgiAI1yQR6AqCIAiCIAjXJBHoCoIgCIIgCNckEegKgiAIgiAI1yQR6AqCIAiCIAjXpP8HUCTUASlHJcEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Perform Manifold Discovery Analysis (t-SNE)\n", "from sklearn.manifold import TSNE\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "\n", "tsne = TSNE(n_components=2, random_state=42)\n", "features_2d = tsne.fit_transform(train_features_with_rbf)\n", "\n", "# Visualize the MDA results\n", "plt.figure(figsize=(8, 6))\n", "\n", "sns.scatterplot(x=features_2d[:, 0], y=features_2d[:, 1], hue=train_labels, palette='viridis', s=50)\n", "plt.title('t-SNE Visualization of hybrid model')\n", "plt.xlabel('t-SNE Dimension 1')\n", "plt.ylabel('t-SNE Dimension 2')\n", "plt.legend(title='Class')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "KV5jYjQBFwhj" }, "outputs": [], "source": [ "import os\n", "os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # FATAL\n", "import scipy\n", "import scipy.io as sio\n", "from scipy.sparse.csgraph import dijkstra\n", "from scipy.sparse import lil_matrix\n", "\n", "import sklearn\n", "from sklearn.metrics import pairwise_distances_chunked\n", "from sklearn.decomposition import PCA\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.neighbors import NearestNeighbors\n", "from scipy.spatial.distance import pdist, squareform\n", "from umap.parametric_umap import ParametricUMAP\n", "import umap\n", "\n", "import numpy as np\n", "\n", "class paramsMDA:\n", " \"\"\"\n", " paramsMDA operator sets the parameters for MDA analysis\n", "\n", " \"\"\"\n", " # set the hyperparameters of gamma prior used for projection matrix\n", " alpha_phi = 1\n", " beta_phi = 1\n", "\n", " # set the hyperparameters of gamma prior used for bias parameters\n", " alpha_lambda = 1\n", " beta_lambda = 1\n", "\n", " # set the hyperparameters of gamma prior used for weight parameters\n", " alpha_psi = 1\n", " beta_psi = 1\n", "\n", " ### IMPORTANT ###\n", " # For gamma priors, you can experiment with three different (alpha, beta) values\n", " # (1, 1) => default priors\n", " # (1e-10, 1e+10) => good for obtaining sparsity\n", " # (1e-10, 1e-10) => good for small sample size problems\n", "\n", " # set the number of iterations\n", " iteration = 2\n", "\n", " # set the subspace dimensionality\n", " R = 16\n", "\n", " # determine whether you want to use automatic relevance determination priors for projection matrix (ard or entrywise)\n", " prior_phi = 'entrywise'\n", "\n", " # determine whether you want to calculate and store the lower bound values\n", " progress = 0\n", "\n", " # set the sample size used to calculate the expectation of truncated normals\n", " sample = 200\n", "\n", " # set the seed for random number generator used to initalize random variables\n", " seed = 1606\n", "\n", " # set the standard deviation of projected instances\n", " sigma_z = 0.1\n", "\n", "def selectNdimNSORTidx(data, N):\n", " # selects N number of highly variable features from a data matrix\n", " gvar = np.var(data, axis=0)\n", " var500idx = (-gvar).argsort()[:N]\n", " varNsamples = data[:,var500idx]\n", " return varNsamples, var500idx\n", "\n", "def find_nnCorr(X, k=12):\n", " \"\"\"\n", " Compute neighborhood matrix\n", "\n", " Parameters:\n", "\n", " X: High dimensional data in tabular\n", " format. The rows denote the observations and columns denote the features.\n", "\n", " k: int, optional, default: 12.\n", " number of neighbors in the data\n", " \"\"\"\n", " X_std = X - np.mean(X,axis=1, keepdims=True) # subtract the mean from the data\n", " X_norm = np.linalg.norm(X_std, axis=1, keepdims=True) # Normalize the data to make each\n", " # feature of unit variance\n", " DD = np.sqrt(1 - X_std @ X_std.T / (X_norm @ X_norm.T) + np.finfo(np.float32).eps)# Compute\n", " # the Euclidean distance\n", "\n", " D = lil_matrix(DD.shape)\n", " x_idx = np.arange(DD.shape[0]).repeat(k+1)\n", " y_idx = np.argpartition(DD, kth=k+1, axis=-1)[:,:k+1].flatten()\n", "\n", " # Select only neighborhood distance info\n", " y_idx = np.delete(y_idx, y_idx==x_idx)\n", " x_idx = np.arange(DD.shape[0]).repeat(k)\n", "\n", " D[x_idx, y_idx] = DD[x_idx,y_idx]\n", " D[y_idx, x_idx] = DD[y_idx,x_idx]\n", "\n", " return D\n", "\n", "def discoverManifold(GT, neighborNum=12):\n", " \"\"\"\n", " Discover the manifold of deep learning feature space\n", "\n", " Parameters:\n", "\n", " GT: High dimensional data in tabular\n", " format. The rows denote the observations and columns denote the features.\n", "\n", " neighborNum: int, optional, default: 12.\n", " number of neighbors in the data\n", "\n", " \"\"\"\n", " sz = GT.shape\n", "\n", " # if sz[1] > 1:\n", " #print('Constructing neighborhood graph...')\n", " # Compute the distance of the data points over the manifold\n", " D = pdist(GT, metric='euclidean')\n", " D = squareform(D)\n", " # Select the distance from the first data point\n", " geoDistance = D[0,:]\n", " # Find one endpoint of the manifold\n", " cMax, ik = np.max(geoDistance), np.argmax(geoDistance)\n", " corrTrainMax = D[ik,:]\n", "\n", " # Discretize the distance vector to obtain the outline of the manifold\n", " hist, bins = np.histogram(corrTrainMax,bins='auto')\n", " clusterIdx = np.digitize(corrTrainMax, bins).reshape(sz[0],1)\n", "\n", " return clusterIdx\n", " # else:\n", " # return GT\n", "\n", "def bsdr(X, y, parameters):\n", " \"\"\"\n", " Bayesian supervised dimensionality reduction\n", "\n", " Parameters:\n", "\n", " X: High dimensional data in tabular format. The rows denote the observations and columns denote the features.\n", "\n", " y: int vector\n", " labels of the data\n", "\n", "\n", " parameters: parameters set by paramsMDA() class\n", " \"\"\"\n", " np.random.seed(parameters.seed)\n", "\n", " D, N = X.shape\n", " K = np.max(y)\n", " R = parameters.R\n", "\n", " sigma_z = parameters.sigma_z\n", "\n", " log2pi = np.log(2 * np.pi)\n", "\n", " # If we want to estimate the best reduced dimension using 'ARD' method\n", " if parameters.prior_phi == 'ard':\n", " phi_alpha = (parameters.alpha_phi + 0.5 * D) * np.ones((R, 1))\n", " phi_beta = parameters.beta_phi * np.ones((R, 1))\n", " else:\n", " Phi_alpha = (parameters.alpha_phi + 0.5) * np.ones((D, R))\n", " Phi_beta = parameters.beta_phi * np.ones((D, R))\n", "\n", " # Initialize the variables\n", " # For Gaussian-distributed Q, initialize the mean and variance\n", " Q_mu = np.random.randn(D, R)\n", " Q_sigma = np.repeat(np.eye(D).reshape((D,D,1)),R,axis=-1)\n", " # For Gaussian-distributed Z, initialize the mean and variance\n", " Z_mu = np.random.randn(R, N)\n", " Z_sigma = np.eye(R)\n", " # For Gamma-distributed prior lambda, initialize the alpha and beta\n", " lambda_alpha = (parameters.alpha_lambda + 0.5) * np.ones((K, 1))\n", " lambda_beta = parameters.beta_lambda * np.ones((K, 1))\n", " # For Gamma-distributed prior Psi, initialize the alpha and beta\n", " Psi_alpha = (parameters.alpha_psi + 0.5) * np.ones((R, K))\n", " Psi_beta = parameters.beta_psi * np.ones((R, K))\n", " # For Gaussian-distributed b and W, initialize the mean and variance\n", " bW_mu = np.random.randn(R + 1, K)\n", " bW_sigma = np.repeat(np.eye(R + 1).reshape((R + 1,R + 1,1)),K,axis=-1)\n", " # For truncated Gaussian-distributed T, initialize the mean and variance\n", " T_mu = np.zeros((K, N))\n", " T_sigma = np.eye(K)\n", " for i in range(N):\n", " while 1:\n", " T_mu[:, i] = np.random.randn(K)\n", " if T_mu[y[i]-1, i] == np.max(T_mu[:, i]):\n", " break\n", " normalization = np.zeros((N, 1))\n", "\n", " XXT = X @ X.T\n", " phi_indices = np.repeat(np.eye(D).astype(bool).reshape((D,D,1)),R,axis=-1)\n", " psi_indices = np.repeat(np.block([[np.zeros((1, R + 1))],\n", " [np.zeros((R, 1)), np.eye(R)]]).astype(bool).reshape((R + 1,R + 1,1)),\n", " K, axis=-1)\n", "\n", " # Estimation progress\n", " if parameters.progress == 1:\n", " bounds = np.zeros((parameters.iteration, 1))\n", "\n", " for iter_ in range(parameters.iteration):\n", " #if iter_ % 1 == 0:\n", " # print('.', end=\"\")\n", " #if iter_ % 10 == 0:\n", " # print(' %5d\\n'%iter_)\n", "\n", " if parameters.prior_phi == 'ard':\n", " for s in range(R):\n", " # update priors (eq. 15)\n", " phi_beta[s] = 1 / (1 / parameters.beta_phi + 0.5 * (Q_mu[:, s].T @ Q_mu[:, s] + np.sum(np.diag(Q_sigma[:, :, s]))))\n", " for s in range(R):\n", " # update variance of projection matrix Q (eq. 16)\n", " Q_sigma[:, :, s],_,_,_ = scipy.linalg.lstsq((phi_alpha[s] * phi_beta[s] * np.eye(D) + XXT / (sigma_z**2)), np.eye(D), lapack_driver='gelsy')\n", " # update mean of projection matrix Q (eq. 16)\n", " Q_mu[:, s] = Q_sigma[:, :, s] @ (X @ Z_mu[s, :].T / (sigma_z**2))\n", " else:\n", " # update priors (eq. 15)\n", " Phi_beta = 1 / (1 / parameters.beta_phi + 0.5 * (Q_mu**2 + np.reshape(Q_sigma[phi_indices], (D,R))))\n", " for s in range(R):\n", " # update variance of projection matrix Q (eq. 16)\n", " Q_sigma[:, :, s],_,_,_ = scipy.linalg.lstsq((np.diag(Phi_alpha[:, s] * Phi_beta[:, s]) + XXT / (sigma_z**2)), np.eye(D), lapack_driver='gelsy')\n", " # update mean of projection matrix Q (eq. 16)\n", " Q_mu[:, s] = Q_sigma[:, :, s] @ (X @ Z_mu[s, :].T / (sigma_z**2))\n", "\n", " # update variance of projected variable Z (eq. 17)\n", " Z_sigma,_,_,_ = scipy.linalg.lstsq((np.eye(R) / (sigma_z**2) + bW_mu[1:R+1, :] @ bW_mu[1:R+1, :].T + np.sum(bW_sigma[1:R+1, 1:R+1, :], axis=-1)),\n", " np.eye(R), lapack_driver='gelsy')\n", " # update mean of projected variable Z (eq. 17)\n", " Z_mu = Z_sigma @ (Q_mu.T @ X / (sigma_z**2) + bW_mu[1:, :] @ T_mu - \\\n", " np.repeat((bW_mu[1:R+1, :] @ bW_mu[0, :].T + np.sum(bW_sigma[0, 1:R+1, :], axis=-1).T).reshape((R,1)), N, axis=-1))\n", " # update lambda (eq. 18)\n", " lambda_beta = 1 / (1 / parameters.beta_lambda + 0.5 * (bW_mu[0, :].T**2 + bW_sigma[0, 0, :])).reshape((K, 1))\n", " # update Psi (eq. 19)\n", " Psi_beta = 1 / (1 / parameters.beta_psi + 0.5 * (bW_mu[1:R+1, :]**2 + np.reshape(bW_sigma[psi_indices], (R, K))))\n", "\n", " # update b and W (eq. 20)\n", " for c in range(K):\n", " # variance update\n", " bW_sigma[:, :, c],_,_,_ = scipy.linalg.lstsq(np.block([[lambda_alpha[c, 0] * lambda_beta[c, 0] + N, np.sum(Z_mu, axis=-1, keepdims=True).T],\n", " [np.sum(Z_mu, axis=-1, keepdims=True),\n", " np.diag(Psi_alpha[:, c] * Psi_beta[:, c]) + Z_mu @ Z_mu.T + N * Z_sigma]]),\n", " np.eye(R + 1), lapack_driver='gelsy')\n", " # mean update\n", " bW_mu[:, c] = bW_sigma[:, :, c] @ np.block([[np.ones((1, N))], [Z_mu]]) @ T_mu[c, :].T\n", "\n", " # Updtae score variable T (eq. 21)\n", " T_mu = bW_mu[1:R+1, :].T @ Z_mu + np.repeat(bW_mu[0, :].reshape((K,1)), N, axis=-1)\n", " for c in range(K):\n", " pos = np.where((y-1).flatten() == c)[0]\n", " normalization[pos, 0], T_mu[:, pos] = truncated_normal_mean(T_mu[:, pos], c, parameters.sample, 0);\n", "\n", " # Calculation of lower bound for each of the estimation\n", " lb = 0\n", " if parameters.prior_phi == 'ard':\n", " lb = lb + np.sum((parameters.alpha_phi - 1) * (scipy.special.psi(phi_alpha) + np.log(phi_beta)) - \\\n", " phi_alpha * phi_beta / parameters.beta_phi - scipy.special.gammaln(parameters.alpha_phi) -\\\n", " parameters.alpha_phi * np.log(parameters.beta_phi))\n", " for s in range(R):\n", " lb = lb - 0.5 * Q_mu[:, s].T @ (phi_alpha[s] * phi_beta[s] * np.eye(D)) @ Q.mu[:, s] -\\\n", " 0.5 * (D * log2pi - D * (scipy.special.psi(phi_alpha[s]) + np.log(phi_beta[s])))\n", " else:\n", " lb = lb + np.sum((parameters.alpha_phi - 1) * (scipy.special.psi(Phi_alpha) + np.log(Phi_beta)) -\\\n", " Phi_alpha * Phi_beta / parameters.beta_phi - scipy.special.gammaln(parameters.alpha_phi) -\\\n", " parameters.alpha_phi * np.log(parameters.beta_phi))\n", " for s in range(R):\n", " lb = lb - 0.5 * Q_mu[:, s].T @ np.diag(Phi_alpha[:, s] * Phi_beta[:, s]) @ Q_mu[:, s] -\\\n", " 0.5 * (D * log2pi - np.sum(scipy.special.psi(Phi_alpha[:, s]) + np.log(Phi_beta[:, s])))\n", " # p(Z | Q, X)\n", " lb = lb - 0.5 * (sigma_z**-2) * (np.sum(Z_mu * Z_mu) + N * np.sum(np.diag(Z_sigma))) +\\\n", " (sigma_z**-2) * np.sum((Q_mu.T @ X) * Z_mu) -\\\n", " 0.5 * (sigma_z**-2) * np.sum(X * ((Q_mu @ Q_mu.T + np.sum(Q_sigma, axis=-1)) @ X)) -\\\n", " 0.5 * N * D * (log2pi + 2 * np.log(sigma_z))\n", " # p(lambda)\n", " lb = lb + np.sum((parameters.alpha_lambda - 1) * (scipy.special.psi(lambda_alpha) + np.log(lambda_beta)) -\\\n", " lambda_alpha * lambda_beta / parameters.beta_lambda - scipy.special.gammaln(parameters.alpha_lambda) -\\\n", " parameters.alpha_lambda * np.log(parameters.beta_lambda))\n", " # p(b | lambda)\n", " lb = lb - 0.5 * bW_mu[0, :] @ np.diag(lambda_alpha[:, 0] * lambda_beta[:, 0]) @ bW_mu[0, :].T -\\\n", " 0.5 * (K * log2pi - np.sum(scipy.special.psi(lambda_alpha[:, 0]) + np.log(lambda_beta[:, 0])))\n", " # p(Psi)\n", " lb = lb + np.sum((parameters.alpha_psi - 1) * (scipy.special.psi(Psi_alpha) + np.log(Psi_beta)) -\\\n", " Psi_alpha * Psi_beta / parameters.beta_psi - scipy.special.gammaln(parameters.alpha_psi) -\\\n", " parameters.alpha_psi * np.log(parameters.beta_psi))\n", " # p(W | Psi)\n", " for c in range(K):\n", " lb = lb - 0.5 * bW_mu[1:R+1, c].T @ np.diag(Psi_alpha[:, c] * Psi_beta[:, c]) @ bW_mu[1:R+1, c] -\\\n", " 0.5 * (R * log2pi - np.sum(scipy.special.psi(Psi_alpha[:, c]) + np.log(Psi_beta[:, c])))\n", "\n", " WWT_mu = bW_mu[1:R+1, :] @ bW_mu[1:R+1, :].T + np.sum(bW_sigma[1:R+1, 1:R+1, :], axis=-1)\n", " lb = lb - 0.5 * (np.sum(T_mu * T_mu) + N * K) + np.sum(bW_mu[0, :] @ T_mu) + np.sum(Z_mu * (bW_mu[1:R+1, :] @ T_mu)) -\\\n", " 0.5 * (N * np.trace(WWT_mu @ Z_sigma) + np.sum(Z_mu * (WWT_mu @ Z_mu))) -\\\n", " 0.5 * N * (bW_mu[0, :] @ bW_mu[0, :].T + np.sum(bW_sigma[0, 0, :])) -\\\n", " np.sum(Z_mu.T @ (bW_mu[1:R+1, :] @ bW_mu[0, :].T + np.sum(bW_sigma[1:R+1, 0, :], axis=-1))) - 0.5 * N * K * log2pi\n", "\n", " if parameters.prior_phi == 'ard':\n", " lb = lb + np.sum(phi_alpha + np.log(phi_beta) + scipy.special.gammaln(phi_alpha) +\\\n", " (1 - phi_alpha) * scipy.special.psi(phi_alpha))\n", " else:\n", " lb = lb + np.sum(Phi_alpha + np.log(Phi_beta) + scipy.special.gammaln(Phi_alpha) +\\\n", " (1 - Phi_alpha) * scipy.special.psi(Phi_alpha))\n", "\n", " # q(Q)\n", " for s in range(R):\n", " lb = lb + 0.5 * (D * (log2pi + 1) + logdet(Q_sigma[:, :, s]))\n", " # q(Z)\n", " lb = lb + 0.5 * N * (R * (log2pi + 1) + logdet(Z_sigma))\n", " # q(lambda)\n", " lb = lb + np.sum(lambda_alpha + np.log(lambda_beta) + scipy.special.gammaln(lambda_alpha) +\\\n", " (1 - lambda_alpha) * scipy.special.psi(lambda_alpha))\n", " # q(Psi)\n", " lb = lb + np.sum(Psi_alpha + np.log(Psi_beta) + scipy.special.gammaln(Psi_alpha) +\\\n", " (1 - Psi_alpha) * scipy.special.psi(Psi_alpha))\n", " # q(b, W)\n", " for c in range(K):\n", " lb = lb + 0.5 * ((R + 1) * (log2pi + 1) + logdet(bW_sigma[:, :, c]))\n", "\n", " # q(T)\n", " lb = lb + 0.5 * N * K * (log2pi + 1) + np.sum(np.log(normalization))\n", "\n", " if parameters.progress == 1:\n", " bounds[iter_] = lb\n", " state = {}\n", " if parameters.prior_phi == 'ard':\n", " phi = {'alpha':phi_alpha, 'beta':phi_beta}\n", " state['phi'] = phi\n", " else:\n", " Phi = {'alpha':Phi_alpha, 'beta':Phi_beta}\n", " state['Phi'] = Phi\n", " Q = {'mu':Q_mu, 'sigma':Q_sigma}\n", " Z = {'mu':Z_mu, 'sigma':Z_sigma}\n", " lmbd = {'alpha':lambda_alpha, 'beta':lambda_beta}\n", " Psi = {'alpha':Psi_alpha, 'beta':Psi_beta}\n", " bW = {'mu':bW_mu, 'sigma':bW_sigma}\n", " state['Q'] = Q\n", " state['lambda'] = lmbd\n", " state['Psi'] = Psi\n", " state['bW'] = bW\n", " if parameters.progress == 1:\n", " state['bounds'] = bounds\n", " state['parameters'] = parameters\n", "\n", " return state\n", "\n", "def logdet(Sigma):\n", " # logarithm of determinant\n", " U = np.linalg.cholesky(Sigma)\n", " return 2 * np.sum(np.log(np.diag(U)))\n", "\n", "def truncated_normal_mean(centers, active, S, tube):\n", " \"\"\"\n", " Compute the mean of truncated normal distribution\n", "\n", " Parameters:\n", "\n", " centers: Mean values of the untrauncated distribution\n", "\n", " active: int vector. active label group for which the computation is being performed\n", " S: sample size used to calculate the expectation of truncated normals\n", " tube: 0\n", "\n", " returns the mean of truncated normal distribution\n", " \"\"\"\n", " K,N = centers.shape[0:2]\n", "\n", " # Compute the difference from mean\n", " diff = np.repeat(centers[active, :].reshape((1,N,)), K, axis=0) - centers - tube\n", " u = np.random.randn(1, N, S)\n", " q = scipy.stats.norm().cdf(np.repeat(u, K, axis=0) + np.repeat(diff.reshape(K,N,1), S, axis=-1))\n", " pr = np.repeat(np.prod(q, axis=0, keepdims=True), K, axis=0)\n", " pr = pr / q\n", " ind = np.block([np.arange(0,active), np.arange(active+1,K)])\n", " pr[ind, :, :] = pr[ind, :, :] / np.repeat(q[active, :, :].reshape((1,N,S)), K - 1, axis=0)\n", " pr[ind, :, :] = pr[ind, :, :] * scipy.stats.norm().pdf(np.repeat(u, K - 1, axis=0) + np.repeat(diff[ind, :].reshape((K-1,N,1)), S, axis=-1))\n", " # normalize data\n", " normalization = np.mean(pr[active, :, :], axis=-1).reshape((1,-1))\n", " # compute expectation\n", " expectation = np.zeros((K, N))\n", " expectation[ind, :] = centers[ind, :] - np.repeat(1 / normalization, K - 1, axis=0) * np.reshape(np.mean(pr[ind, :, :], axis=-1), (K - 1, N))\n", " expectation[active, :] = centers[active, :] + np.sum(centers[ind, :] - expectation[ind, :], axis=0)\n", "\n", " return normalization, expectation\n", "\n", "def mda(data,clusterIdx):\n", " \"\"\"\n", " Manifold discovery analysis\n", "\n", " Parameters:\n", "\n", " data: High dimensional deep neural network feature data in tabular\n", " format. The rows are the data points and columns are the feaures.\n", "\n", " clusterIdx: int vector.\n", " pseudo labels of the data computed using discover_manifold function\n", "\n", " returns low dimensional representation\n", " \"\"\"\n", "# Use SVD to find components with non-zero eigen values. This step is optional and used for\n", " # reducing computational load\n", " _, singular_values, _ = np.linalg.svd(data, full_matrices=False, compute_uv=True)\n", " non_zero_indices = np.where(singular_values != 0)[0]\n", " data = data[:, non_zero_indices]\n", "\n", "\n", "\n", " # prepare data and pseudo labels\n", " Xtrain = np.copy(data.T)\n", " ytrain = clusterIdx.reshape((Xtrain.shape[1], 1))\n", "\n", " # Make NaN values to zero\n", " Xtrain = np.nan_to_num(Xtrain)\n", "\n", " # Set the parameters of MDA\n", " parameters = paramsMDA()\n", "\n", " # Run Bayesian dimensionality reduction\n", " state = bsdr(Xtrain, ytrain + 1, parameters)\n", " # Estimated expectation of projection matrix\n", " vec = state['Q']['mu']\n", " # Compute projection of the data\n", " Ypro = data @ vec\n", "\n", " # Apply deep learning-based visualization technique to obtain MDA components\n", " reducer = ParametricUMAP(parametric_embedding=False)\n", " Yreg = reducer.fit_transform(Ypro)\n", "\n", " return Yreg" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 829 }, "id": "iTvs4aP-UVrG", "outputId": "14039c10-c8b2-4e73-d6d4-427a6dbd9706" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/10\n", "100/100 [==============================] - 13s 112ms/step - loss: 0.1255\n", "Epoch 2/10\n", "100/100 [==============================] - 11s 109ms/step - loss: 0.1080\n", "Epoch 3/10\n", "100/100 [==============================] - 10s 102ms/step - loss: 0.1068\n", "Epoch 4/10\n", "100/100 [==============================] - 11s 112ms/step - loss: 0.1065\n", "Epoch 5/10\n", "100/100 [==============================] - 11s 113ms/step - loss: 0.1063\n", "Epoch 6/10\n", "100/100 [==============================] - 11s 112ms/step - loss: 0.1063\n", "Epoch 7/10\n", "100/100 [==============================] - 11s 113ms/step - loss: 0.1062\n", "Epoch 8/10\n", "100/100 [==============================] - 11s 111ms/step - loss: 0.1061\n", "Epoch 9/10\n", "100/100 [==============================] - 12s 117ms/step - loss: 0.1061\n", "Epoch 10/10\n", "100/100 [==============================] - 11s 107ms/step - loss: 0.1060\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydZ3gUVReA39mS3fRGOoGQBAi9995EiggWiqhgBUTBXj97wQZiA8SCKChFUIoo0kSq9BpKCKGE9N63zf1+TLLJpkCCdOZ9nn2ye+fOnXNnNzNnzj1FEkIIVFRUVFRUVFSuczRXWwAVFRUVFRUVlUuBqtSoqKioqKio3BCoSo2KioqKiorKDYGq1KioqKioqKjcEKhKjYqKioqKisoNgarUqKioqKioqNwQqEqNioqKioqKyg2BqtSoqKioqKio3BCoSo2KioqKiorKDYGq1Kio1JCwsDDGjh17tcWoIMfff/+NJEn8/fffV1SOq3XcmvLjjz8SFRWFXq/Hy8urxvufOnUKSZL4+OOPL71wl/k4PXv2pGnTpv9pjJp8zz179qRnz57/6XhXgrFjxxIWFnZR+14vc7zZUJUalcvG999/jyRJSJLE5s2bK2wXQhAaGookSQwePNhhW8l+kiSh0+nw8fGhTZs2TJ48mejo6PMed8aMGUiSRIcOHS7pfG52ZsyYwffff3+1xbgojh49ytixY4mIiODrr79m9uzZVfZdtWoVb7zxxpUTTkVF5ZKhu9oCqNz4GI1GfvrpJ7p27erQvnHjRuLj4zEYDJXu169fP+6//36EEGRnZ7N//37mzp3LjBkz+OCDD3j66acr3W/+/PmEhYWxY8cOTpw4QWRk5CWdz7Fjx9Borr3nge7du1NYWIiTk9NlGX/GjBnUqlWrgpXqch/3UvD3338jyzKffvrpBX8Pq1at4ssvv1QVm3JcD9+zisq1d2VWueEYOHAgixcvxmq1OrT/9NNPtGnThsDAwEr3a9CgAffeey/33Xcfjz/+OF9//TWxsbG0a9eOZ555hlWrVlXYJy4ujq1btzJt2jT8/PyYP3/+JZ+PwWBAr9df8nH/KxqNBqPReMUVrqt13JqQkpICcFHLTjc7RUVFyLJ8XXzPKirqr1PlsjNq1CjS09NZs2aNvc1sNvPLL79wzz331GgsX19fFixYgE6n4913362wff78+Xh7ezNo0CDuuuuuais1gwcPJjw8vNJtnTp1om3btvbP5X1ZLBYLb775JvXr18doNOLr60vXrl0d5lvV+ntla/off/wxnTt3xtfXF2dnZ9q0acMvv/xywTmU93kou/xX/lVWljlz5tC7d2/8/f0xGAw0btyYmTNnOowdFhbG4cOH2bhxY4UxqvK1WLx4MW3atMHZ2ZlatWpx7733cu7cuQrzd3Nz49y5cwwdOhQ3Nzf8/Px49tlnsdlsF5wzKBakJk2aYDAYCA4OZuLEiWRlZTnI/vrrrwPg5+eHJElVWmHGjh3Ll19+CTgugZZn9uzZREREYDAYaNeuHTt37qzQ5+jRo9x11134+PhgNBpp27Yty5cvr9acqnOcOXPmIEkSe/furbDfe++9h1arrXC+d+/eTefOnXF2dqZevXrMmjXLYXvJd7lgwQL+97//ERISgouLCzk5OVV+zyUyOjs70759ezZt2lTt+UmSxOOPP87ixYtp3Lgxzs7OdOrUiYMHDwLw1VdfERkZidFopGfPnpw6darCGNX5nQH89ttvNG3aFKPRSNOmTfn1118rlUmWZaZPn06TJk0wGo0EBAQwbtw4MjMzqz0vlauHuvykctkJCwujU6dO/PzzzwwYMACAP/74g+zsbEaOHMlnn31Wo/Hq1KlDjx492LBhAzk5OXh4eNi3zZ8/nzvuuAMnJydGjRrFzJkz2blzJ+3atTvvmCNGjOD++++v0Pf06dNs376djz76qMp933jjDaZMmcLDDz9M+/btycnJYdeuXezZs4d+/frVaG4An376KUOGDGH06NGYzWYWLFjA3XffzcqVKxk0aFC1x+nevTs//vijQ9vp06f53//+h7+/v71t5syZNGnShCFDhqDT6VixYgWPPfYYsiwzceJEAKZPn84TTzyBm5sbr7zyCgABAQFVHvv777/ngQceoF27dkyZMoXk5GQ+/fRTtmzZwt69ex0sJjabjf79+9OhQwc+/vhj1q5dy9SpU4mIiGDChAnnneMbb7zBm2++Sd++fZkwYQLHjh2zf+dbtmxBr9czffp0fvjhB3799VdmzpyJm5sbzZs3r3S8cePGkZCQwJo1ayqcuxJ++ukncnNzGTduHJIk8eGHH3LHHXdw8uRJuwXv8OHDdOnShZCQEF588UVcXV1ZtGgRQ4cOZcmSJQwbNuy886rOce666y4mTpzI/PnzadWqlcO+8+fPp2fPnoSEhNjbMjMzGThwIMOHD2fUqFEsWrSICRMm4OTkxIMPPuiw/9tvv42TkxPPPvssJpOpyiWnb7/9lnHjxtG5c2eefPJJTp48yZAhQ/Dx8SE0NPSCcwTYtGkTy5cvt//WpkyZwuDBg3n++eeZMWMGjz32GJmZmXz44Yc8+OCDrF+/3r5vdX9nf/31F3feeSeNGzdmypQppKen88ADD1C7du0K8owbN84+7qRJk4iLi+OLL75g79699t+UyjWMUFG5TMyZM0cAYufOneKLL74Q7u7uoqCgQAghxN133y169eolhBCibt26YtCgQQ77AmLixIlVjj158mQBiP3799vbdu3aJQCxZs0aIYQQsiyL2rVri8mTJ19Q1uzsbGEwGMQzzzzj0P7hhx8KSZLE6dOn7W1169YVY8aMsX9u0aJFBfnL06NHD9GjR48K7WPGjBF169Z1aCs5RyWYzWbRtGlT0bt3b4f28nJs2LBBAGLDhg2VylBYWCjatGkjgoODRWJiYpXHE0KI/v37i/DwcIe2Jk2aVDqH8sc1m83C399fNG3aVBQWFtr7rVy5UgDitddes7eNGTNGAOKtt95yGLNVq1aiTZs2lc6jhJSUFOHk5CRuueUWYbPZ7O1ffPGFAMR3331nb3v99dcFIFJTU887phBCTJw4UVR2aYyLixOA8PX1FRkZGfb2ZcuWCUCsWLHC3tanTx/RrFkzUVRUZG+TZVl07txZ1K9f/7zHr8lxRo0aJYKDgx3mv2fPHgGIOXPm2Nt69OghADF16lR7m8lkEi1bthT+/v7CbDYLIUq/y/Dw8Aq/i6q+55YtWwqTyWTvN3v2bAFU+lspDyAMBoOIi4uzt3311VcCEIGBgSInJ8fe/tJLLwnA3rcmv7OWLVuKoKAgkZWVZW/766+/BODw/7dp0yYBiPnz5zvI+eeff1Zor+p/WuXqoi4/qVwRhg8fTmFhIStXriQ3N5eVK1fWeOmpLG5ubgDk5uba2+bPn09AQAC9evUCFNP2iBEjWLBgwQWXMjw8PBgwYACLFi1CCGFvX7hwIR07dqROnTpV7uvl5cXhw4eJiYm56PmUxdnZ2f4+MzOT7OxsunXrxp49e/7TuI899hgHDx5kyZIlDn5MZY+XnZ1NWloaPXr04OTJk2RnZ9f4OLt27SIlJYXHHnsMo9Fobx80aBBRUVH8/vvvFfYZP368w+du3bpx8uTJ8x5n7dq1mM1mnnzySQc/j0ceeQQPD49Kj3MpGDFiBN7e3g6yAnZ5MzIyWL9+PcOHDyc3N5e0tDTS0tJIT0+nf//+xMTEVLo8UtPjANx///0kJCSwYcMGe9v8+fNxdnbmzjvvdBhPp9Mxbtw4+2cnJyfGjRtHSkoKu3fvdug7ZswYh99FZZR8z+PHj3ew5IwdOxZPT88Lzq+EPn36OCzBlkQt3nnnnbi7u1doL5l/dX9niYmJ7Nu3jzFjxjjI1a9fPxo3buwgy+LFi/H09KRfv3727y0tLY02bdrg5ubmcJ5Vrk1UpUbliuDn50ffvn356aefWLp0KTabjbvuuuuix8vLywOwX/RsNhsLFiygV69exMXFceLECU6cOEGHDh1ITk5m3bp1FxxzxIgRnD17lm3btgEQGxvL7t27GTFixHn3e+utt8jKyqJBgwY0a9aM5557jgMHDlz03FauXEnHjh0xGo34+Pjg5+fHzJkzL0rBKOGrr75izpw5fP7553Ts2NFh25YtW+jbty+urq54eXnh5+fHyy+/DHBRxzx9+jQADRs2rLAtKirKvr0Eo9GIn5+fQ5u3t/cFfRiqOo6TkxPh4eEVjnOpKK/gligeJfKeOHECIQSvvvoqfn5+Dq8S354Sx+X/chxQbsxBQUF23zFZlvn555+5/fbbHRQCgODgYFxdXR3aGjRoAFDBV6VevXoXlK/k/NavX9+hXa/XV+mfVhnl51mieJRfvippL5l/dX9nVclZ2b4xMTFkZ2fj7+9f4bvLy8ur1vemcnVRfWpUrhj33HMPjzzyCElJSQwYMOA/RaIcOnQIrVZrv/iuX7+exMREFixYwIIFCyr0nz9/Prfccst5x7zttttwcXFh0aJFdO7cmUWLFqHRaLj77rvPu1/37t2JjY1l2bJl/PXXX3zzzTd88sknzJo1i4cffhhQrEZlLUAllLcgbdq0iSFDhtC9e3dmzJhBUFAQer2eOXPm8NNPP51XjqrYsWMHkydP5uGHH+bRRx912BYbG0ufPn2Iiopi2rRphIaG4uTkxKpVq/jkk0+QZfmijlkTtFrtZT/GpaQqeUu+35Jz9uyzz9K/f/9K+1YnzcCFjlPS55577uHrr79mxowZbNmyhYSEBO69994Ljn8+LmSluZRUNc/qzP9SI8sy/v7+VQYYlFe+Va49VKVG5YoxbNgwxo0bx/bt21m4cOFFj3PmzBk2btxIp06d7E+j8+fPx9/f3x65UpalS5fy66+/MmvWrPNerF1dXRk8eDCLFy9m2rRpLFy4kG7duhEcHHxBmXx8fHjggQd44IEHyMvLo3v37rzxxht2pcbb27vS5ZTy1oQlS5ZgNBpZvXq1Q/6eOXPmXFCGykhNTeWuu+6iZcuWlZ6bFStWYDKZWL58ucMTc2Vm9sqigCqjbt26gJLPp3fv3g7bjh07Zt/+Xyl7nLKWAbPZTFxcHH379r2ocas7z6ookUWv11+0DDXh/vvvZ+rUqaxYsYI//vgDPz+/SpWphIQE8vPzHaw1x48fB7iorLol5z8mJsbhe7ZYLMTFxdGiRYsaj3kxx7/Q76ysnOU5duyYw+eIiAjWrl1Lly5drqhip3LpUJefVK4Ybm5uzJw5kzfeeIPbbrvtosbIyMhg1KhR2Gw2exROYWEhS5cuZfDgwdx1110VXo8//ji5ubnVCqcdMWIECQkJfPPNN+zfv/+CS08A6enpFeYZGRmJyWSyt0VERHD06FFSU1Ptbfv372fLli0O+2q1WiRJcrDgnDp1it9+++2CcpTHZrMxcuRIzGYzS5YsqTSCpeRpuOzTb3Z2dqVKlKurq0OodFW0bdsWf39/Zs2a5XAO/vjjD44cOVKjCK7z0bdvX5ycnPjss88c5P/222/Jzs6+6OOU3PSrM9fK8Pf3p2fPnnz11VckJiZW2F72N3ApaN68Oc2bN+ebb75hyZIljBw5Ep2u4vOq1Wrlq6++sn82m8189dVX+Pn50aZNmxoft23btvj5+TFr1izMZrO9/fvvv7/oc1fT41fndxYUFETLli2ZO3euw3LqmjVrKmQnHz58ODabjbfffrvC8axW6xWZl8p/Q7XUqFxRxowZU+2+x48fZ968eQghyMnJYf/+/SxevJi8vDymTZvGrbfeCsDy5cvJzc1lyJAhlY7TsWNHeyK+CykpAwcOxN3dnWeffRatVlvB2bIyGjduTM+ePWnTpg0+Pj7s2rWLX375hccff9ze58EHH2TatGn079+fhx56iJSUFGbNmkWTJk3Iycmx9xs0aJB9bvfccw8pKSl8+eWXREZG1thPZ9asWaxfv57x48dXsLwEBATQr18/brnlFpycnLjtttsYN24ceXl5fP311/j7+1e4Ibdp04aZM2fyzjvvEBkZib+/f4UnZFAsFB988AEPPPAAPXr0YNSoUfZQ27CwMJ566qkazaMq/Pz8eOmll3jzzTe59dZbGTJkCMeOHWPGjBm0a9fuopdgSm7wkyZNon///mi1WkaOHFmjMb788ku6du1Ks2bNeOSRRwgPDyc5OZlt27YRHx/P/v37L0q2qrj//vt59tlnAaqcd3BwMB988AGnTp2iQYMGLFy4kH379jF79uyLClPW6/W88847jBs3jt69ezNixAji4uKYM2dOjXxqLpaa/M6mTJnCoEGD6Nq1Kw8++CAZGRl8/vnnNGnSxO6fB9CjRw/GjRvHlClT2LdvH7fccgt6vZ6YmBgWL17Mp59++p98AVWuAFct7krlhqdsSPf5qCqku+Sl0WiEl5eXaNWqlZg8ebI4fPiwQ9/bbrtNGI1GkZ+fX+Uxxo4dK/R6vUhLS7ug3KNHjxaA6Nu3b5Xylg2lfuedd0T79u2Fl5eXcHZ2FlFRUeLdd9+1h8mWMG/ePBEeHi6cnJxEy5YtxerVqysN6f72229F/fr1hcFgEFFRUWLOnDn2kOTzyVE+5LZkn8peZUNRly9fLpo3by6MRqMICwsTH3zwgfjuu+8cwmeFECIpKUkMGjRIuLu7O4xRVSj5woULRatWrYTBYBA+Pj5i9OjRIj4+3qHPmDFjhKura4VzXNl8q+KLL74QUVFRQq/Xi4CAADFhwgSRmZlZ6XjVCem2Wq3iiSeeEH5+fkKSJLscJaHWH330UYV9APH66687tMXGxor7779fBAYGCr1eL0JCQsTgwYPFL7/8ct7j1/Q4QgiRmJgotFqtaNCgQaVj9ujRQzRp0kTs2rVLdOrUSRiNRlG3bl3xxRdfOPQr+S4XL15cYYyqvucZM2aIevXqCYPBINq2bSv++eefaoc7U0nqhqrmX5Vs1fmdCSHEkiVLRKNGjYTBYBCNGzcWS5curfT/TwglLL1NmzbC2dlZuLu7i2bNmonnn39eJCQk2PuoId3XJpIQl9HrSkVFRUXlspOWlkZQUBCvvfYar7766tUWR0XlqqH61KioqKhc53z//ffYbDbuu+++qy2KispVRfWpUVFRUblOWb9+PdHR0bz77rsMHTr0oqKYVFRuJNTlJxUVFZXrlJ49e7J161a6dOnCvHnzHGo9qajcjKhKjYqKioqKisoNgepTo6KioqKionJDoCo1KioqKioqKjcEN5WjsCzLJCQk4O7u/p9ToauoqKioqKhcGYQQ5ObmEhwcjEZTtT3mplJqEhISKlR+VVFRUVFRUbk+OHv2LLVr165y+02l1JQUPzx79iweHh5XWRoVFRUVFRWV6pCTk0NoaKj9Pl4VN5VSU7Lk5OHhoSo1KioqKioq1xkXch1RHYVVVFRUVFRUbghUpUZFRUVFRUXlhkBValRUVFRUVFRuCFSlRkVFRUVFReWGQFVqVFRUVFRUVG4IVKVGRUVFRUVF5YZAVWpUVFRUVFRUbghUpUZFRUVFRUXlhkBValRUVFRUVFRuCFSlRkVFRUVFReWGQFVqVFRUVFRUVG4IVKVGRUXl0pKTCZtWQuzhqy2JiorKTcZNVdBSRUXlMnM6BkY0BptV+TxyMjwz/aqKpKKicvOgKjUqKiqXjke6lio0AAs+paBpJOKf6ej8wzCM+Q686lw9+VRUVG5o1OUnFRWVS0dWKkJAag7EJUOmBM7rn8DFGov+3DpM77cGIa62lCoqKjcoqlKjoqJy6Qisy5FzsOk47D4LJ80gScpLowED6WDOv9pSqqio3KCoSo2Kisolo/CxT0hKgvpAE0B/EArSFOOMLENehgacXK+2mCoqKjco15VSc+7cOe699158fX1xdnamWbNm7Nq162qLpaKiAlgTznFy2DB8AG1xm06GI3Mg5SSkxUB26/cVs42KiorKZeC6cRTOzMykS5cu9OrViz/++AM/Pz9iYmLw9va+2qKpqKgApuW/kFUELuXaNTKcWAeNO4XgP/45e7tssaDR66+skCoqKjc0141S88EHHxAaGsqcOXPsbfXq1buKEqmoqJTl5L+70GkgU4bAMu35QIvGYI1sDYA1N5dDw4aRtW4dxvBwmq1ciWujRldFZhUVlRuL62b5afny5bRt25a7774bf39/WrVqxddff33efUwmEzk5OQ4vFRWVS485M5Pjc+cjnCAHOA5kAsnAGSA7VY/X1KUAnP34Y7I2bACg6PRpjk+YcJWkVlFRudG4bpSakydPMnPmTOrXr8/q1auZMGECkyZNYu7cuVXuM2XKFDw9Pe2v0NDQKyixisp1zpGlsGoC7JkNQj5v17hZs5CEIKEIbEA2cAA4BURpIVjvw6lJkzjSpw95GzaU+tXYbJiTki7vPFRUVG4aJCGuj6QRTk5OtG3blq1bt9rbJk2axM6dO9m2bVul+5hMJkwmk/1zTk4OoaGhZGdn4+HhcdllVlG51slYtoy8rVtx79IF7yFDSjcc+hl+vQc0OpCt0OMt6P5qleMceestjrz5phLihLKu3c4NtBLUMkJGnShSTh/Hv46M1QKnTmgoKlT6Np79HP6NNoM1F+q/DCGjLueUVQBLUhIFO3ZgbNQIQ/36lXfKzwcEuLpdUdlUVCojJycHT0/PC96/rxtLTVBQEI0bN3Zoa9SoEWfOnKlyH4PBgIeHh8NLRUVFIeW774gZOpTEqVM5fvvtpHz3XenGmJUgaRSFBuDo0vOOFfbIIzgHB9s/uwCJhSDXj0L64TeSkpOI6ijjGwwBdaFVf08iP/uMFutW4x/6HWT+C7mHYM9oyDl0GWarUkLhwYMca9CA07ffzrFGjchetqxip0+nUBDmxpEAd7Z7GTly/12Qn3vlhVVRqSHXjVLTpUsXjh075tB2/Phx6tate5UkUlG5vklfuFB5Y7MBkLFoEQC5MTGseWUjv06R2bMKhNCAf7PzjuUcFETf6Gi6rl3LLTExNP3zT6THniCl50CObdiKV6QPGo2iJ0kaMMiZ1H5oDN6dmoAlHShZ3hKQd+QyzVgFIP2LL5ALCpQPskzK2287djh1EvM7L7M2Aw7kw+lsE+cWL0Fu54G4vzaknLriMquoVJfrJvrpqaeeonPnzrz33nsMHz6cHTt2MHv2bGbPnn21RVNRuS4xRkaSs26dotRotRgiIgDYNmoUWceTEDaI2Q5erVoR/tynVY4jWxVrjt7dHf8+fUhet46NAwYofjOyjEGS8PMQhHQHYQL5HEhGdzQJSUgRkeDetFSR0RjBu/Nln/ulQgiBdJ3l3ZGMxjIfJCSXckH4udmkWaCwjBtVehHkmyBx3TnSGkTg0ukWGn75Jc7h4VdGaBWVanLdWGratWvHr7/+ys8//0zTpk15++23mT59OqNHj77aoqmoXJeEvvceXoMGofXxwWvQIELfew+AvNhYRLH1RtJqyfe5FZwrzwd17PPPWejqygIXF45MmwbA2SVLkLRau3+NWQhysuF4diS2wwbEOQk5rgBrv85YEhJINb+G2fsBqPModN0GziFXYPb/DVtuLkdvvZUdej0HWrSgKC7uaotUbfyffx6nsDAANB4eBE+d6tihcXNc2rRzaNJIEJsB5xLAlC2T+eef7GrVioQPPlAdvVWuKa4bR+FLQXUdjVRUbmZ2PfYYsTNnKoqJJNFn61Z827Wr0C//zBl+CwtzKFA5JCaGhOXL2ffss/Z2LeCq1VLvtoFEbFhh7ysEbLI5U5BfCEDdCRNoPmPGZZ3bpeLsK6+Q8P77iuKm1aKtXRs5KgrfgQOpN2ECGr2e1M2bOfPaa+Tv2IFLVBRNFi26ZiwbwmLBfOYM+qAgNOUtNQBmM4fvvp1jK/5Eq4G2QXAwEYw2x25GScIpKIjmhw+j8/K6IrKr3JxU9/6tKjUqKioOyDYbcd9+S35cHCHDhuHbvn2l/TL27uWP1q0d2vpv24ZPmzbsnjiR+KVL0UgSRosFn44daTFzBlKXZlBUBEKQYYUdeY6Xn3bffEP2unW4NG5MyPPPo3Fyumzz/C/EPvAAaT/+CDYbEorJW0ZJNJgMOGslimwCLeAFCI0GAgIInTiRyKeeQleZInENIrIyKHz/BQx75/LPTouSfKgMzoAE1P/1V3yGDr0KEqrcLKhKTSWoSo2KyqVDtlr5q1s30rdvB8C7dWtu3b79vKUP5M0bsf3vGbBaOebkSdyGfxy2ewEajbIqHjhuHBHXqOUme/16jvbrh5Blys5WAs4BuZTWv3I4G5JEwK230mXVqisk6aUj79gRtg66DREXh0aWcaV0jk137cK1TZurKZ7KDc4NF9KtonK1MJ09y6E+fdgREsLJJ5+0+5vcyAghsJ46hZydXWFb8vz5bPHzY2tgIM0efJBOP/xAp++/55Z//rlgLSdN1x7o/96FfvM+wr+bi1Smv7O/PxqdTlnSkRW/jeqQ+Ntv/BUUxJ/e3sR98UXNJnoRJK9axb7nnqOwTh3yURSZkheU3uhLcEhbKATJf/xB9qHrL2zdrWEjbjlxgv42G22XL8fg74/GzY3QDz9UFRqVawbVUqNy0yObTGR06IAlNhbD+PF4vPUWOmdn+/ZDffqQvXGjPfQ5fMYMgm7g1P6isJC0AQMwb9wIej0+P/2E8113AWA6d45tderYnYDRaOh48iTGi0ytYEpJ4dSsWRhDQnAymTg5caKyQavF9447iCoOM68KS3Y2f/n7I1ssdh+eHgcO4NHs/CHoNUaWQaOh8OxZ1kVEIIojvhACP0qtMQKILf5bouQ4aTQI2TEjc9jDD9P6AmVeVFRUSlEtNSoq1UDIMkkuLiTu38+GvDz++PhjfnNx4fcGDbDm5wNQePSoXaFBp6OwXL6k65W8PXs4OXkyZ995B1vxXAEK5s1TFBoAi4XMRx+l5NnHlJhYqtAAyDKmhISLlsHg70/D116j7kMPEdC/HyHeLrhowFcrE37n7Rfc35yaimw2OzgrF549e9HyVCAuGu6uD1118Oxt5B8+iChRoErOSVQURQYDsrs71n79aHzXUHp0bUmjZg1oOGEcg3NzcSmONgJAo7lmfYVUVK53rps8NSoqlwPLoUNYZJlNKDWLQNH0vWNi2P/CC7T54gt8776bxE8/BZ0ObDZ8ypYTuE4pPH6cA507K0tpskz2P//Q9K+/AMVSgyQhC0EBQH4+AWYzWoMBt+bNcWncmIKjRwFwjozErVWrSyKT+GYGIZKJEHcUM8en78OI86dscAkPx6t9e7J27gRJwhgcjE+XLpdEHgDeewgS4hQFZusqvOq3Ru/rizUrCwBDUBBd9+xBW8ayV0JQmfftFyxgc//+WLOzca5dmwYvvnjpZLwKCCGI/+UXsg4eJLB/f/wu5TlXUfkPqEqNyk2N5O1NPqUKDSg+EDagMD4egHpTp+LcsCGFx47hM2QIXr17XwVJLy1Za9ciytRFy16zhuMzZqDRasnbtw9vV1cS8/IoAjCbKejfn5br1qFxcqLV5s0kzZkDQhD4wANoyyZz+y/oylyOJAl05/fPAZA0GjqtW8eZb79FLiqi9pgx6D09/7MoRcnJHHjlFZof2Y9RLv51aCR0BVl03baNuE8/RdLpCH/66UoVmvL4dOjAwPh4CuPjcalXD63B8J9lvJoc/eADDrz0EpJWS/Q779Bj9WoC+/W72mKpqKg+NSoqJzQaNghByS1eB3gCvTdsIKBnz6sn2GUka/16Dvfpo3zQaLAC8cXLSlrATZJwK3dpaLNrF+6X0SFUJJzDemtXOHMKnF3QLlyJpnuvy3a887GmfXsy9+yhYYCNFnVAICHpdPDVFmhcMWfPzcaqRo3ILbbWodHg3aYNbWfNwqdciL+KyqVC9alRUakmEQUFdHB3px4QCjTq1o1+27bdsAoNgFfv3tT75BMM9eqhq1OH5DJ+MjbAUsmzzuVOriYFh6DbcQTdlgPojsRfNYVGttnI2LkTYbNxNAH+PAy/ZdTmj1r9SZMvbJW5GXCtV09Jzojil5a2cyd/tm9PcokvVg2IW7mSv+6/n+2vv46lpCaVispFoi4/qdz0SEYjzXNyaJSWRuayZei8vfGuJIPuDYHFBDMmwo4VBNdrSfDubcT9sY4T5cqNCEmiSKvFaLOBJFHvnXdwLq4NdTmRjEZocokjl2qIRqvFu00bsvbtw2azcSQXyD8HsQmc3LiFh2JjMXpXXjbiZqHdV1+xdcQI0v/9FyHL9mivuB9/JKBHj2qPE79hAytvu01RkIQg8+hRBpQUWlVRuQhUS42KCmDNyOBQq1bEPfwwMXfeSezYsVdbpMvD0qmw5jvISoH962DGY9QdMYJ6990HgM7NDZ/69fFu25Y2a9bQLTeXbjk51H3ppass+OXHlJqKKSUFgG4rVlD33nvxaN8egWKNEDYbpsxM0qOjr66g1wAuoaH03boVv759ESUWGyFwDg6u0Thn165F0moRNhtCljmzevXlEFflJkK11KioAJm//4652DEYIH3ePOrNmIHW3f0qSnWJiPsHFo6CgjTIjwBJA8IGsg3OHkGj1dL5hx/o8PXXaJycrruq0/8Fa34+0ZMnc27uXCjOPRN8//20mDuXDt9/T2FGBifr1sVavCyiNRrxbtDgaop8TdFu5kz+GTqU7Ohogm65hcbPP++w3ZaXhyU9HUNoKJKm4jN0rZYtHYqn+l2iSDqVmxfVUqOiAuhr1XL4rHFxUZZCrneyE2H+MMhLApsZTEcUZUZT/DzTfaS9q9ZguKkUGoADY8dy7ttv7QoNQMIPP5C2di0Azj4+3LV2LXX69iW0Tx/uWrMGFz+/qyXuNYd7eDiDDhxglMVCr1Wr0Lu52bdlfjebHT7e7A4L40D79lhzcyvsH3nXXXT5+GNqtWhB+NCh9P/ppyspvsoNiBr9pKKCYjo/9fjjpMycicbFhYgff8Rn2LCrLdZFI2w20p5uiF9urFJh0QhEothmG0+EQgOENYc+9yvh0zcpf3l4YKvkZtvg3XeJePnlqyDRDULCWXaF1cVkKb29hH34ISHPPXcVhVK5nqnu/VtdflJRASRJot6XX1J32jQkvb5SU/n1RNyXrxFeEAt7yzTmAt28YNAL4BV6lSS7tvBs25aMDRsqtPsNGnQVpLmB2LER2eb4vCxnZlwlYVRuJq7vK7eKyiVGYzBc9woNQFHMDih/D0kHHt+nKjRlaPnzz9QaMACKnV0lg4Gm336LR4sWV1my65yw+oSWCRDT6yT8Hx13wd2sBQXIZZYCVVRqyvV/9VZRUVHIzYVD+yE/H5eu9yBcy20PCgHvahSePLYXdm8Ai/myiHmlMScmYk5OrnSbISCAdqtWMcBq5VZZ5taiIkIffPAKS3gD0rIDQZ/OoGWrIKLahNFq7Z8Yyta/Koc1LY297duz3tWVX11dOTlnzpWTVeWGQlVqVFRuBA7th1Zh0LMlolVdajt7kRo4BDkChAuIUH+YveXC48x4Cca2hsd7w6Odoajwsot+uRBCcHLyZHYGB7MzMJDTr7123v43m5P0ZWf0BFz3JOC7Kw59j1uq7CabTOxp0IBzO3diBZzNZqIffJCz8+ZdOVlVbhhUpUZF5Ubgg9chJwshIP9cOjl33oHuk+UUuI6Gv4uQlidD8AWsNPm5MO+D0s9Hd8PW35X3vy2E1nWgTRis+vWyTeNSUnDgAImffWb/HP/22xTFxV1FiVQqo2jfPlIzM9GiJPCTUG5Mhx56yB7uXSXFcS42k4ncQ4ewZGdfZmlVrnVUpUZF5UbAagHAJoO5zKqR+af52I4cq94YWq2Sw6YseieIPwOPjUacO4uIP414ZDgiKeESCX75kAsrWpnkoqKrIInK+dCUS6cAimKD2Yw1P7/ynWwm2DIcFukpmhvO32G1Wd2sGau9vPhTklhTy5WcQ4cuq9wq1yaqUqOicpWwZmWRPHMmKV9/ja2qi3d1eeoVMBjIv8CD7XkxusCkqaUh3p0HQaeBcO4M2Gz2p2jJamVPeF3OTp3632S+zLi1a4dn3772zz533IFzVNRVlEgFIGvFCk4MHszpBx/EkpiIMSIC96goysZKaSVwrR+JrkzeGwdOzECcWUxRjo2TC+NITUojBIgA6gJe6QVsbNaMY9OmXf4JqVxTqHlqVFSuAnJhIQdbt6bw6FGsgHvr1jTfscNeJPBisJyMZUXjJtS3mAgpflzJd3WndmZ2zfxF0pOgIBdqRyoKTn4+pvo+OFkVE1ChDXZlgAy0O3wY18aNL1rmqrAVFHDi4YfJWr0at7Ztqf/jjzj5+wNQcOwYqR9/jM5gIPDtt9F4epIwfTrZ69bh1rYttV95BY2TEwDCaiV7wwbQ6fDs0QNJo1FKHuTkIHl6qn40V5iC3bs5WlJXTaPBuVkzGu3dS96xYxzu3wPf/GQMOgjxgsIiSGoxhIjfllUYx7r9SdY9+imJB8FTo1gom5Tr49wdDuyGzht3UesyVpdXuTKoVbpVVK5h8v79l4KjR0kHMoEze/Zw9quv/tOYOWnpWEwmomXYaoXtVjiVnUvOX39V6Ju6cCF7GjdmX5s25Gze7LjRNxBC65dabLIzSPAJ4WwRnMqHeAu0qa28zt7aiYzFlyYL7KklS1jeujV/dO9OzKRJpC1cgEdeBs5b1hD/6EMAJD7zDMeiotB88w3iyy855+NDwocfcuqZZ8hctYqzb73FyYkT7WNKOh1e/frh1asX1sxM0ufMIT44mERvb1Lbt0fOuHy5U+QDGzGNCMZ0uye5nz1/4R1uAvK3b1f8YIQAm43CffuwmUzsHjyYxppkIv0g1Bs0Erg6g7x2OZbielxlifnHSOJB5X2BDJU9CgQ1gwGPQ8ysWZd3UirXFKpSo6JyFdAHBlKAYu0oIaYKU7kpJoa8DRuw5eWdd0ztksV2J0sZsAHZQPKCBQ79Co8f5/g991B45Aj5+/YRPXBg1ctfO7dAzwbUy42jtheYJKhfC1z04KoHd0sO/4waTcrcb6o1b9lkIn7CBI6EhnJq6FBsWVkAZB05wsbhw8nYu5eULVs48+OP1HERNPKCei6CuttXIQ7t58y0afhR7HNRPNeicsU2k7//HmvxuCXkHzjA7ogIjj74IGeTkykCLHv3kvvhh9WSu8aYixAv98MpNxEnSw5uf35E1i+XKUy5qIikB0cR3TSShFeubeXJpUMHRVmWJNBqcS7OB1Rw4gTaSu5GWg1onJ0rtFusHvZ8UhbATZIc0jL5dASDL+gN4N24ZkU2Va5vVKVGReUq4NygAZ6e5RLJ5OeR8PvvHP/8c/JiYwHI+PZbjjVsyMnevTnetCnWSp5aS5BnzqClBIYybQJIP3WKhPffZ5eXF3uCg0n/5ReQi9UpWcaWm4s5MbHyQWd/ZM9XI2k01G8dab8nHcqB5UmQaIPlD40jr0xB0KpIefddMmbNwhIfT86yZZy9bTAAWdHRiGKZhCyTbTYTVFx6S5JAg0D8+jPulEbIlLwquBFZreTv3+/QdO6jj+xKoQCySs7Z5bLU5KShFRb7uZIkyFu3HCEEZx57jD1OTuzR6Tg5ciSiBsnmhM1Gzj//kPPPPxSlp3Nm4UJi2vrjFrOAQNdYYj7/iOP333N55nQJcG3blvClS/Ho3x+f0aOJWLUKrcGAV9euHE+zBzMBYLGCR8d2lRaVDb/3Xpy8S7P7Bb73HpEfTMG9G0ROgoDiCHIhoOFYNe/QzYRaJkFF5SqQNe0DIkU+GRKYhHJz9spLZ9Ng5SZ/4MUXuWXXLhJfesl+pbecPUvGd9/hcdttFO7bh0uHDhgiI0sHdXenVmEBPlZlSQsASUJjs3G22Jphy87m3Ouvo3F1tUcCOUdGYqwqMZrRBZAQAtJMIDt54SMUc/+uzNJuFpvMsblzaXb//Zx++GFMJ07gM3o0QW++6eC3UrR2jcPwRVu3IqxW/Dp2ROfqiq1YJm1kJJJTLiI5EQlluUJTtx56X19IT0cAeSjzLH8Rk/R6jGXPC0BlWaL1elwfeaTyef9XfILJs7niqskvWWlBatGTjPnzSZs5094ta+FC0rp1w6/MkllVyGYzh1q3pvDwYUCZu2wESUC0FcJCoH0r+HfpEhr8cHmmdSnwGjoUr6FDHdrarlhB7JQpxMQepp75DBpzEdruA6n11HuVjuFWpw5Do6NJXLsW17p1CejSRdnQzgJ/l+YjkkI7Vi/hpMoNg6rUqKhcSQqOkbXyew689AF1DaCXwKCBRi4Qby59YpdNJk7//DNaneO/aNGxYyS98grIMpKTE+Hr1+NafEF3//4HcocNoa4wkWNTLBhaJye0e/Y4WjOsVrKtVvQotY+a/v47kq6KS8FTbyC2bWB3dBKJhTIk78LVxUgjl3Kh0ZKEztWVuHvuIX/bNrDZSHr7bQz16+N73332bq7NmpGzbbv9s4sWkGVcQ0IYuGULR7/8Ep2rK01feAFtwhm451ZMmZlkhDbAuX5zwuPjSahVi7z8fA4BJWfMVwduVjBERmLs0IHY8ePx7dMH/8mTkSSJ2i+9ROaqVVjT0tC4uBD6zDP4jBmDLiKiJt9e9dFo0HyyjfinbkfOTMfadRThjz5B4htvOJ42gGkfYXJ3w3D/GHu7kGVOffMNZ3/+GdlsxqlWLfwbNbIrNABuQHqRMoYAYs9ALW/QuVZcrrnW0Xt5EfXBBxfuWAZnf3/C7ylnler1KjS5E+LWQ1BrqNP5Ekqpcj2gRj+pqFwpMtdQuPpWDoySyQLKFiEwakBoIFPWKEtDkkTrzz7DPyiI06NGgcWCsWlTJHd3CkucLTUavEaMoM5PpY66wmRCZGdTUFjIyccfR165Egkoq4IIIK34L0Dfs2dxrl27SrHzo6NZ38QxtiRYkigUgsMo/jue4eHcsW0b0aGhpYlyJAjwNhJy5+0w/TtwcUHk5JDcvBGF8Qk4SeDz6ms4v/Zm5Qf+7nN4dRKyUBxHd2RAyJyfsUoSh8aMJMvk2L2BBvJkCALsCxN9+uC/Zg2SJGHLy6Pw2DGMERHovLyqnO/lJH/7do517my3vrlK4Ffs5eq2YhVOtw4AYP+kScR+/rnDvkbAt/i9QCnlZaPUv8gK1AsFn7e/p86YMaio3Eio0U8qKtca56aT+bfiN1K+qlKRDM0++xznwECQJEKGDSP80UfxvPNOGp87R/0DB6i/Zw86X9/SpRRJQlPun1syGMhNSODv1q3JLFZoJBQ/Gy2ATkcOOOQE4QJhzdoyvgslhMybR56bG14oFgP55EnOvPQSstmMKBlfgIdcBCsWw/R3lUN5eBAQHUPoqj8I/HdX1QoNwOK5gKLQCAHBRoj7/HM8mzSpWNcKsBmUC1pZaZ03r8Ma5oOlUzM0sTG4tWlz1RQaANeOHam/YQPut9yCt15DrZIrsFZLwYrlnH3wQc4+/DDnvvuuwr5FgLnMdyVTqtCAMveTyRoMjRpdxhmoqFzbqEqNisqVQuuJa5RyGyq/2OMSEUHQhMe5LT6eu81mui5ZgrY414rOzw/nZs2Q9HqCPvoIXWAgoCy1BLz6qsM4BXFx/NOpE+aMDLt1RlCaer7B8uV43X67Ig4Q9thjOIeEIISgKDERayURVsagIBp9+KFd+Ql74gk8+/QhPS8Pa/G4ElBw9Cg2SUJGueFqNeDuVDzIqVj7eJKLC7pbbkXb+gK5Q0LrIcrcxAuFhJOfH15Nm9L47fcpm9JHpwdtoWNor14HzkYgOwuORWO9d9j5j3cBErZuZeOzz7J/5sz/VEnavUcP6q9ejW+/fkg6RWLZaiP+x/lk/vADmd9/T1BREZWpmrmBgdSbM4dclHMsyry8gUSzzKKOHTlaXDepaP9+Mj7/nILyYfsqKjcoqlKjonKlCHsHz051CboHvPSglSQkjQaNRoPGaiX/+HEkSUJTlX8LYIyKotHp0zRKSqJBdDT6kBCH7UnLl9sdgAsBE8oShaX4pfXwQNuwIdlaLdlAyowZ/KHRsNrdnQ3BwWzy9uZcRASJwcHkvPkmJavTkc89R//0dG5JSaHZZ59h9PfHt2NH0GiQtFp07u4EPvwwCIGs1SID/i6AVqcspw25u+bn6+3PEC3bY5M0JBVBQq16NCkOew9/7AVu/WsRIfX0BAVBPR3oAWcgp1gb0GjKRNPIMsSfRcgyCcuXsyo0lN8DAoj7pnqh6AnbtrGwWzf2fPop6x57jA2TJ9d8PuVwm/czhkfGoR8wEO3L/0POzVU8im02tDYbnrVrOzg4Szod7ebPx3/sWAq9vLCBXYEs+Y6DAEkIdj35JDu6d2d3y5YkTZrE6W7dyPrhGvYeVlG5RKg+NSoqVxJhA0sa6Gtx5PkXOfXxx/ZNGqOR/pXUK6oOhWfPcmr6dPKPHydh5Ur7zc4V8Cru4z9hApr+/dlQJvJEj3IjLHFPaYCyVFViJfD59Vecy0WqlGDOzubYZ59hyckh4qGH8IyKInv9enLWr8elRQt89DLSwb3QtRf06n9R8yrBmp+P1sXFIZLq5IwZbJ04ERvgh/KEpgWa1wJfIwgZyC+ZjIR0+13In3zFqsBAZItF0XgkiX7R0bhfoHzCphdfZNfHH9sLLBp9fXksLe0/zaksluRkjtarhzAp34TG2ZmoM2fQ+fhgM5spOHUK1/Bwu8K7/4kniP3iC/v+BiCgeKoplFrnSggB3Dt0oN727dzMmNPTyd65E9cGDXAJD7/a4qjUgOrev9XoJxWVK4mkBacAABJ/+gkbpf41hqIiLLm56CvJy1GC/PdabP97Vnmaf+09NANuw1ZQwPbOnTEV55oxuLhgEwK9h5Y2j9XFo+tQRNMn0PsHcKiMEgXK033JMkaJ7439ZqjRYI2JqVIWJ09PmpVb/vLo1Yu0P/7g5L33ovPyotG8efj06lfNk1M1OldHJxqbycSWJ5/EhqLMFJaRe1cmDKxT3KADuV1fuOV2NGMfpfDkSeSyFT+FoODMmQsqNV7169sVGkmrxbt+/f88p7LoAwKo98cfJL/2Gmg0BL77LpKrK3kJCbgGBuLeoIG9b9ZHH+H5xRdEAakovjY+lJrdjSjnoyzpgHfxsuW1jjkxkRPjxlF47Bh+I0cS+vrr9kR7NcWal8eBZ54ha9cufNq1I3XRIqyZmUg6Ha0WLyagCoVd5fpFtdSoqFwlNnfqxLkyT84ScGdREVqDodL+IiMda6PaYC62q2h16PafJCcpma1t2zr07bBpEz5du1YYI/PwYVa0aqVYKlAsOe6UOp3WATxRbtxotfjv2YO+SfmqOlWT/scfHBw4sHhCElp3d7pmZFRZ00oIgTkjA72n53mX3cpTlJ7OguLqziXLTjLYszR7G6BfCLg4a2HDWfALAkC2WtnQti3ZB5Uc+8agIPpFR6O/wPVAyDIbn3mGoz//jFdEBLf++CNel/FJP+nff1k+YACmzExqtWzJsHXrMPr4UHTwIInNmwOlodzplCo0AsjBMdoNwMlgoNuRIzjVq3fZZL4U2BITOdy/P7nR0cpSHBA5Zw4BY8de1Hh7Hn2UU999BzYbekCnKY0udG/WjK7lkjSqXLuolhoVlWuc2hMnOig1Aig8dw63qm6WZ8+AqcztympBxMXiHNUEjdGIXLx0Iel0VZrWvZs0YeC2bcR+/z0iIwNtXh5pmzZhy8xE0mjQPvMMXsHB2BIScB45En2TJsiFhVizstAHBl6wAKRDZmIhsOXkIBcVoXWtGK5kzs5m/a23kr59O4Zatei1ahW+7doh22wc+PBDTi1bhnuDBnR47z3cyoWcG319Cbn1Vs79+Se24nNXRGnZiUwT7M6AbqE2SDlnV2o0Oh3dN24kbvZsZLOZug8+eEGFBpRsyj0/+YSen3xywb6Xgr8nTsSUnQ1A+oEDrOnfnyA/PzzWrMapXN+SchhuKIpOCJAiSeSWeV6NnDr1mldorEePktGhAwU5OaWNOh0Fhw5d9JiZO3bYlSMlIq/4nEgSUrEjvmyzcWb5cgrOnaPu0KG4nie9gcq1j6rUqKhcJXw7dEDS6ZRlDUnCycsLY1BQ1Ts0iILadSDxnPLZxxepWUucPD1ps3w5x154ASHLNHj3XYzBVde7qdWmjUPVYiEEhWfOoPPwcEg9D5C9Zg3Hhw1Dzs/HvVs3Gv7xR6UKCkDRyZOI7Gz0np5YcnJACPyGD6+y/9Hp00nfsQMAU0YG/44fz4Bdu/i9e3cSt25FAKn//kvyjh2MOnKkgkLVe9kyYn/4gaJz50j/6y/Obt3qsD0pBzYdBu//vUujefPscug9PWnw3HNVnp9rAUtOjr2UhRCCzN270QuBrwRGCYpK7s0olpoiFMWmkYc77q1aU++770jduZO8gwfx7t4dv1tuuUozqT6FX32FyM/HBcgtabRa8b711ir3kYuK4N+tEB6JJrROhe0BAwaQfeAASBJWWcalVi0sqaloXVxo9MknCCH4e/hw4n9diixg5xNPENmhKca2PajVpQt1Ro5UK7lfZ6jLTyoqV5FzK1YQ/c47aF1caDl1Kj6tW5+3v0g4hzxzOthsaB59Ains8j597w0Lw3zmjN2pts60aQQ9+WSFfodfeYVjU6agEQJfwO+uu/C67Tb877kHjU6HsFop3LcPrY8PhmIr0u6nn+bYZ5/ZfVVc69Wj+7JlLCxeXilBAh7IzMRwnvwyOceOsbScX4wfyvIaGg11XnyR8HffvejzcKU5Mncuax94QCkPAdRG8ZVppFES9slgT0p4UAYLEh5+fnSIj0ej119d4S+SvNdeI//ddxGyTJYkYfXxIfiHH/ApWc4sh3z4ALZe7ezJHjUvvYn2BaVEghACW3Y2krMzJ6ZPJ3vfPvz69KHOffdRGBeHMSQEnbs7OYcOsaFZs9KyIii/Nz8UxcqnfXv6bN583Z7TGwk1+Z7KdY8lL48t997Lb+HhbHvgAawFBVdbpEtOyG230e/ff+m9YQOGjRtJrV2b9BYtsOzcWWl/KTgE7dsfoX1v2mVXaABsubmlJnuNRgk7LkfKxo0ceu89LEJgQom+Kdyzh8D770ej0yEXFRHbowcn2rXjWEQEqVOnAhBx/33UctdjLHa3afLCC1gqqRZuqFULJ0/P8wt6+jT1UByd9UAgxQpNMUWnTlXYRdhsZMydS8r772M6ceL8419hGo0Zw8i9e7l14UJadOuGU3GYfH7JVwHoNUoenloa8BICTUoKlnPnrqbYDgghKP/MfL5naJcnn6QgNJQTQKoQSF274j1gQJX9bY8/XJq9GpDffwNhMmHLz+dI797s9vZmX0gIwT160P7nn6n38MNoDQbcoqLQFTvjx7/ycoXlPAH4F7/P2LGDk5UkQlS5dlGVGpVrln0vvcTpn38mPy6O2O+/57fQUDYNG4bpclVWvoqYN20i7+mnkc+dw3roEJmDBtmrVl9NQv73P/t7nbc3tSpJv59dph4RKOn6tT4+pdt//ZWCMktDiS++iJycgNeLw7klqIg7orTc9uX71B83jlpt2uBU7inslsWLL7gEoA8Kwh1oCEShODsDSsJAWcY1LIwDAQHs8/Ii5bPPAIh/9FHix44l6ZVXiGnVCtPJkxc6HVeO/Hz8stOo36o57X/9ldpjx+LTrRuajh3QuoDGCZxdJfRGJRs1Wi36gAD051l2vJKcXrqUn319+dHZmf3vvEPegQNsj4xko15P9D33OEagFWPTajl65gy5KMVKzyxbRkKZEiAVKCoX4yWUwqfJX35J7j//ACClpxPXtSsx7dphKhPJlxcTw18NGpC6fAVuKIpwCYE4+mXkHjhQw9mrXE1UpUblmiX78GGELNsjc0wZGZz57TdWh4Rw6u23/1NW12sNW9nQaVlGpKYiKrFaXGmCnnqKJv/+S+SiRTSPjsZQpxK/hV69kMqY5531eoKff57sf/6p9OaFELB4NoWxsRyMgz1HbWS+ryw7aPV67ty1i7AhQwjp3Zvb1qwhpGfPC8rp3KwZIdOmoXFxQevpSeDLLxP28cfU/d//aLZiBRkff4w1JQU5O5v4yZPJ37+fzLlKGQZkGTk/n5zffrvIs3SJSU+DXs3h7r7QtRFOyxfS7Jtv6PDPPzTcuh2vzbvxHnMPzmPGYPrkO9x798F78GCi1q9H41Te7nDlseTlsfGeezBnZiKbTOx99VUO3nWXYi2z2Uj5+Wd29OpFzNSp9ig8gPyYmDLZEhWytm2r8jiaVx2XE6URo5HOHMCWnqxE3lGsnNhsFO7dy5kyxS/3PvYY+bGxFFEa9RcE1C9+L2lK8zsF9u59kWdC5Wpw3ToKv//++7z00ktMnjyZ6dOnX21xVC4DtYcMIWnDBpzAnmDNFSgqKiLhtdcQsky911+/ukJeIpz69EFydUUUFSlZeRs2ZO/48Xg2bUr4c8/VKNz5UuPWvj1u7dtXud2jUSP6bNpE3Jw56D09cZMkjg0fDoBr69Y0+esvXDp2pKA40itwyhQ0mkJizgoKi6PTk87m4jJ/Pn733YdX/foMWLas0mOVLF+Ut9xYMjJI++svivR6PLp3J/T559EVL1mZYmMR5ZQra3w8+qAgLAkJikOuEOhDQ2t+ci4Hi3+AM3Gln997GR54rPRz89Ywcz4AHoDHfQ9UOVT+6dMUpaTg3bLlFfMLMWdn2yPxSrAkJztEIWVu3UrCtm3knzxJyy+/BMAtKgrJycnhuwoePbrK42gHDkHafgixbAlSLWc0f74Bz82ntpsvmT5GLKn5pUkIbTbMZSxxRYmJCFkmv1ieOvUg1Ah6KxgDwGIFaTv4t2xJ4LD/Vl5D5cpyXVpqdu7cyVdffUXzcg6FKjcWDSdPpuOsWbigrHGHoCQZKzEPn3rjDQ7ee+8Fx0levpxD48Zx6tNPr1nrjrZuXXx27sTl2Wex3nUX+44cIf+nn0h++WV21K2L5RpfcvPt0IG2s2bR9I03SProI3t7/p49xH/wARGbNhG5YwcNY2Lwf+45GD4Ok7WMYqLRXHD5J2nePDZ7e7PJzY2z5R5kTr/4Illr1mDLziZz1SrOlCQF3LcDp21r8GrTQlmK0mjQ166NW7du1P3lF/R16iA5O+M7aRKed955qU7Hf0NXTvm4SIX2xKxZrKxXj7Xt27OmQwcsldT1uhy4BAcT1Lev8kGScA2tTUjn0uSBEsUJJ4Xg3JIlZKxdizU3F52bG5137sSjTRtcGzWixYIFeHfqdN5jaaKaoH3hNTTHl4FFSXcgFWTR5NmhBL72mj3fEoDXqFH2/SIef9z+vlCC+r0grA+E9Aef5uDkqig7tceOvejEfypXh+vOUpOXl8fo0aP5+uuveeedd662OCqXEUmSqHv77RwbP57aQIgrGHVgkeFEPsTJkDt/PmFvvIF7ZGSlYyQvX86e22+3h04XnjlDo2JH1WsNXaNGuL//PjGjR2Ok9InDmpBA/JQp1CujLFyrSBoNkkbj4A905qOPcGnZkoAy5v8zW7YjfGtBSqrSIMtYUlIQQlTqP2NOTeXo2LH2p/3Yp57Ct3lTXAx6aNGGohMn7Nuw2Sg6eRJ++wkmj0YC6ul0ZD03CXOtEJw6dybr4EG827WjUVxchWNdaiw5OaStW4fB3x+fLl0uvMPIsbDweziwR6mdNeXLGh9TCMG+Z56xL+dk7d3LmZ9/JuKRR2o8Vk2RJIm+K1cS/cILZC1ahF4j4ZmxC4+2UFgAPv6wcRtoTOCSnMyBfkrG6YipUwl9+mm67NplH0vOzyfl5Zcp2rMHtwED8H3xxSqUjJK82ApaN1dCnn8T70GDyP7tN5zCw/F5oNSiFT5+PG46DZlPjKOWETSHgPalq1+ZR5UElG69el2GM6RyObnuVNCJEycyaNAg+pY8Cajc0OgCAtABfkYwFEfJ6CQIclbeFwJ7z/OEnbpqlaLQWK2KE2EVyxrXEh4tWzr8Y0qShDU19arJU4IlJ4dto0ezMjycHY88grWSOlUag4Gw4qKTUHqrSVm0yN6WvGkTx4cNJTwt1aE+UcqMGWSvXl35sdPSSpUWwN8JnEf0h9t7QpfG+A8uDvstfiqvNXIkfDfd3l+SBd6mdHI0GjZ07crGrl3Z0L59hark6Zs3sy4igj+8vDj+1lvnjdapDuaMDNY3bMiuO+5gS9euHHnllQvv5OYOf+6AjYfgQAIMHWHflHXgAFvuuovNd9xBRpmbf6VcpWwdQghSP/+c9M8/x5aYSNHpsxzeCR4+UCcS3DxAp1GSBZYl9plnMCUlObQlP/00mV98QeHmzaS+8gqZM2ZUftDR74CuOBO3mzfc/gwALu3bE/Tee/g+/HCFrNZ+d48gvJYHHpIGOUaD9R8n5K7Pk6obib7P/YSvX4+zuhpw3XFdKTULFixgz549TJkypVr9TSYTOTk5Di+V6wtJkvCJrINOKt9e+l4bfVi5+cgyyDaHfm5NmjjU7HG/Di5S4U89hefAgfYbvqTVEvDww1dVJoD9L7zA2YULyY+LI+6774iuwlIa/MQTeI0YgUWjwQag0eBcJsNx0saNBBVX0C5/2y08frzSMV0aNMCjY0flgyRRx01LXIHMyUKwJJzD35pP1LJl1H7+eRr9/jv+994LPn52JQcJhJcPh156yT5m9v79nPvlF/tnIcvsHDqUglOnsGZnc+z110lbt+6858RmNpP699+kb91aqQJ0cOJEzGVu1Cfef796S6BaLUQ1gVp+9iZLTg7re/bk3G+/cW7ZMjb06oWpiqKakiTRcupU+z+KV4sW1Bk58sLHvQSkTZtGwnPP2ZMHgvJd7z2o/E1KBHOxPlzeJmcuF5JesGVL6ThaLUVVpDqgeW/45hS8vxlmnYCQBpX3K4Pk6Yl2+TqkPv2RevRBM2sd2pEf4P/pz9SZOxe37t2rOWOVa4nrZvnp7NmzTJ48mTVr1mA0Gqu1z5QpU3jzzTcvs2Qql5sma/8htUE9nPUlTqIQU8YPMUy2kf/KAzBvLjpAF65H+/U/SPU7UnvMGHJ//ZW8/ftxat+epl99dXUmUQM0Oh0tf/+dnK1byT9wAM/u3XFp3Lha+wqrldzVq8nbuBF97dp4jxyJzt//wjtWg+xDh+wKIrJMTnR0lX0bzJiBLTeXnO3b8erZk7Ay/4e+bdtyToBXSfGiMhRVET4rabW0WLeO5HnzsBUUsPuF5ygo9ieNN8l0FQLfIUPwHTKkdKfXp8N9/eFsHDRuCRNfRnr/K3JREqtpgYKsLHt3W2EhlvR0h+MWVJLfBpTzfGbMGKJ/+slePDL0vvtoO3euw/JZyh9/lJuIdNE+GrkxMVgyS9PEWfPyyI6Oxr+Km2/khAkE3norppQUvFq1QnuFIqNyli9Hi6KwlKg1MnAyEXL3utJ6/u+0SUklY9Ei0hYvtu/nFByMS7k6Y659+mA+ckRRbGw2nLt1q/rAXgHKqwZoWrVFs3hVjfZRuba5bjIK//bbbwwbNgxtGROizWZDkiQ0Gg0mk8lhGyiWGlMZL/ycnBxCQ0PVjMLXIXJBAQVTP6Twnw1Eb95GVpEFF6ChBGYBgcFgKBMBLdpI6JencKRDT4qK86hoPT1pcvIkuuIcKsJmq7LQ4vWI6exZzj7wAAVlrAvaoCAaHjyIztf3P49/9OOP2f/cc/blvLZff01EGQtS+g8/kPLpp0iurhRmZ1N0+jTOkZE0mD8fl4YN7f2sublsHzIE85bNuFocrRaGWrVoWclSW8Jnn5H4xRc4BQdTa/x49pVx+gTovGYNnpUtSQuhOHK4KKn4djzzDJvLLI/5tWjBffv22T/vGDKE5JUrQaNB5+pKz0OHcK4kKir9m2848cgjlE911z82FtcyVqk1tWpRVEZRcnF3p89FWowtOTmsCAvDmpODEAKdiwuD4+IwFBf2vFY4N2kS6TNmYLXZ7OcnHyWCMerpp2lT7NMmhCDp++9J+uEH3Fu2pM7LL+Pk5+cwljU5mZTx4zEnJuJx3314P/aYWrbgJuWGK2jZp08fDhZX1i3hgQceICoqihdeeKGCQgNgMBgwVFHxWOX6QuPiQuGQYSx6+z0MskwE4KuBNKGkjzeUe/i1HBXkvTnWrtAASmTMkiVIqamkvf8+IjcXfUQEdf78E6cqHI2vF2KGDyej+KlXC/YsqbbERHJXr8a7jJPuxdLwmWdw8vYmfccO/Hv0oM6oUdgKCjg6dizpv/+OVFCAkeLIlmLyd+/mQMeOtE9KQiMJ2Difc7O+JG/7fiwWGX0ZWTWShL5M0r4SstasIW7yZECpL1V4+jSUVFsG0GoxVGXJkiS7QgOgDQlx2Jx64ABClu3WkzaLF3P2228xp6URMnp0pQoNgDUxUdmnXIJEqZw1pM7ttxPz3XcIwEULUbU9ITMdvGuuZOo9POi1YQPRb72FkGUavfwyhlMH4b7RkJ0BI56ASR86rs1eBQLfew/rpk3I+/aRBpSoqMaAAJq88IK9nyRJBD3wAEFlHHjLImdlkdaxI+LUKfSA1LSpqtCoXJDrRqlxd3enadOmDm2urq74+vpWaFe5zjGb4M2xsHEZ1G0I7y+G0EjO/PmnEsEky0oRv+L7SX0/X3BLt1fBE0CeBQrW7KswtGnXLnJnz7Z/tsTGkvTYY9T56y8Acpcvp3DbNpy7dsV90KDLOs2yiIICciZMwLx+PfpOnfD4+ms0FygNYM3N5diAAeTt2AFlkpjZUMz9JXqePjDwksgoSRLhDz1E+EMP2dvOTJlC6pIl9pu7iYp+ErasLEynTuE8dxwc3kgdAbW6wMa/IUdIBAUEIhIT0bq7U6fMd1NCQXS0cqMWAmw2LKdP0/Srrzjy1FMgy9R7+unzFvAsS3DXrvabvqTRENSpk8NykNZgIOyxxxz2kfPyMO/Zg65uXXR16wLgOXw4xilTcC8sxIKSkTbk2WdxKVfhOWLqVCwH9lPnzG7cnEAqOAfDOsGfB6Cay+hl8W7Rgi5LlhQLJkM/P8jNVM7NvI+hTU/oeuV+t5UhMjIQ+/YhoSSz8wZcX3qJepMnY6zBUmjRypXYyiz/FXz7LZ6ffIKmuMSBikplXFeOwio3CQs/gzULwVQIJw7CO8oSh1eDBvZQ4SSNhuywMDrt2EHI4iWkpYMtCPJkiC+CI6mQEpeFtsyyi8bdHZ2ra4UnWUtCArHvv8+WwEBO3H476R9+SPzgwWT98MNlnWbmypUcaNaMA82bkzR2LEXz5iHHx2NaupTc55+/4P5H+vQhb8sWB4XGAUnC74UXcL2MYalFp045nM/K1rK1np4YnAUc3lgiFq6u4OsLsiwIeONFmicn0zw1FfcePSrs79mnD5JOp+Rr0Wjw6teP3H/+wamwECezmXNTppBdrkJ3VQS1b8/QlSupf8cdtJgwgdsvkEXYmpDAucaNSerRg/iICPIXLgTA2LAhDQ8epMFtt1EPpeCkbu5cLPHxDvvrvLxo8u0sPIyKcUkSAuJi4NCeasl7XixmyMlwjHJKKbMgJgR89iF0bQqjh0BCfMUxLgNymUzYJcUhwwcNwjmghv4u5SrGYzRCDf2Cck+cIHXLFmzlkgGq3Lhc10rN33//rWYTvhFJPgua4uVE2QYJpwAIHzqUDm+9hVtoKAEdOtD/zz/xatcO5x498N0Yzdmw/uzPhTPF16/C7Hw8HnoI/+eew/+ZZ2h08CBuAwZUCHVNPXmSXS+9xKnkZKKBjGLFKaf4BnY+LAcPkvfZZ5g2bKjRFM0JCcTccQeFhw9TeOgQZ5cswVaylGGzYTuPE24JRfv3Vdqu9fOjcVISzaxWgt5//7Ka7P1GjFBCrYuXf91atLBn8gUw1K9P861b0fgEgtYxqZzRGZo1h5BubdH7+1eZ4t+1aVOa/fMPgQ8/TOhrrxG1ZAnpy5cjyzI2mw0BZPz5JwDpK1dybNgwzo0fT0EVKfbDBw7ktl9+offnn+N8AV+j3K++wpaQgCSBh68N+c1HYO9mZW4RERQV1xgCsKWnk/3jjxXGkAKCS6OwQMnBHxhSoV+NMRjhlpGlY3r4OFpplv8Cb70ARw/D2lXwyJWJftJHReF8++2lYvbogaFDhxqPYxgwAJdRxTLr9SRLEps8PDhdzWrrMV9+wZ+N6rO+a1f+at0ac3Z2jWVQuf64bpafVG4i+o2AxTNK/SaGPAgoyx/tX32V9iXZYsvg1KgRXg8/wrk/V+OtBzctZFkhd/Fimhdnqs3+5x/OvP021kaNcPXwwJaYSMaZM+QWFlLWXTUB8NFqcYqIOK+Yps2bSevVC4pDdD2+/BL3cksXVe4bF4coY2ERQiiFIHU6sFox3HHH+QfY9ze+tSykJhTvj/JUrHFxodnu3TjV8Km4gnxpaWRu3YprRATu5SJSylJr8GBabNhA1rp1uLVsSa077kBYLBQeP44hJARd2aftp36EGeOgMAeEoEULoG5TiGxTYdyyfi4A7h074l4S0g3g50d+icOtLCP5+LCvSxeyylhsfGfPJnLnTpzbVBy/upTI4FsHXL0AcuHhnvDDdmjSFo2bG3JOjr2YYqVLIwHBMO0HePNJEDK88jHUrnvRMjnw5o/QeQBkpkLfu8G/jLIUfUBRpmw2sNkw7dlL1rBhSDodXq+9hlOzZpdGhnJIkoT/kiUUrV+PsFpx7ttXsbTVdJxffsR70yJc/WFbisX+/xL3v//h3r49PsVJ+ypDxG6gTswT1H8GTkfDvyujOfPTT0ROmHDR87oQltxcZJPpmnPcvtm4bqKfLgXV9Z5WuQaI3gXb/oSwKOh9Z7WcH4UscyrAk3oiz26MSZJdCMrMx5KWxq46dew1aTQGA8bWrcnesgXAIYrFCLQbNIiQ+fORc3MRRUXoIyIqWDwyH3qIgrlz0WhseEeC3hVy6rXEa84/JK74HXNyMgF33FGps6ktN5f9DRtiSUkBlHDWhu+9h3X7dvTt22O8777zW1h++wLx2RMkxMPJk1BgA6sWemz997x1ms6HJTOTnH//Bb2enSNGKOHNkkSLb78leMgQUp59lsJdu3Du3JnA6dPRODvX/CBCQFE+bFqg3OC7jQQXD8z//kvuRx8hgKyzZynYuRNjs2aELV+OU92KCsAqNzdsZZY53EJCkMrlOJEAz44diVq2rEa+HGWxpaSQ2KULwS4nsOtYGg2MfxMe+R95q1cTf+ediPx8XHr2JHTVqos7L+XIP3ECc0YGnq1aXXzNpm2bYEgP0Giw2WTiszUIWYAkofH0pPbp02jcSlPgZe/bhzU3F++OHa9YnajzEuUFudkUWWF7iuMm39tuo9ny5VXuKt4NgZwE+2Xj39/B9/FZRI4bd1lEPTFzJnueeAJhsxH+6KO0nTVLdWq+xFT3/q0qNSo3FLbWEWjPKJYZIcAcVBfDoVPkbt/OgXJ1ZHyHD6do+SJci+AgSnZiDdAIiPz5ZwqPHyetuGCmx4gRBP/0k4P1IPvll8n74AO8w2WcfRW9SxaQ5BHF/jVHQZLQeXnR9cABnMs5kAKYTp8m6fPPkTQaAiZNwlBJnyo5HQ1jm/DvUTidVGqpqdcsinYHjtTonAEUnjrFnvbtyU1NJR3F0dgFJTLJOTSUMKMRS5lK4tqQEOqfPXtJLty2xESSIyMRRUXkC0FRySVJq8Vj8GDCKvF7WWk0Isr4SeglCWO5S5kA8lAU2L5nzmC4SMVGmEyI4S2Q4k8glSR3/OgX6KtkspaLipCzstAGBFR+PmKPwNMj4FwcDBoFr844bz2n2I8/Jvq55wDw6tCBzhs2oL1YRWn9avhtIYUmQfLs7x02Be3di6FlSwCin3+e2OIyHN5dutBp3Tq0VztytIE75CsPKPvTIatMWJ3f8OE0Od/y8CtGsCm/DyHgeEwI4T8cRe9WPo9xKcl//smhJ55ANpmIeO45wp94olpimrOz+dXHxyESrtfff+NfiX+YysVT3fv3de1To3LzYk5Lw1LJGrm2cVNEieIhQVr6GU53dcM5+yi6WrUUc7xWi9bTk/zFi5GLlBDolkAroB3gBVjPnrUrNKD41xRs2uRwLPcXXkBq3RqdsZwhKe6o8lcIrJmZpFRRmsFQty51P/6YOh9+WDOFBqBuY7j7WQpNpc65AihMzzzfXlWSOHs2pvR0kgELSgRVbvFfvZOTg0IDYD13jrz16y/qWOWxHDiAKCgAWUYuq5jYbFjKWV9KqDN2rMPngEoixUq+Etlk4uSnn1Y6jlxQQMrnn5P47ruYz5yptI9kMKD54nek1t0huB5MfAf6lC4PaoxGdIGBVSt4z4+G2GgoyIPFX8PS7yrvB8hmM0fKZD3O+vdfEn/9tcr+F6R3f/jsO5ze/gDJxUWxMmm1aHx80Bcvr5ozM+0KDUDmli2kVlGu4r+Qe/Qop7//nuwqEixW4BUlPF2SoHHDQHQoUWZotYSUKUhZKV1KFRLh5E792f9UqdDkHD7MsSlT2DFwIAUnTlB09iyHJ00i6fffqyWmrbCwQmi/Rc1ef9VQfWpUriuEEERPnMiZmTNBoyFq6lTqPflkaYf3P0dKiEcc3EuSSfBvhsCSlE+nVx+m+V/bODdDCRmW8vPJXrRIyVKqAZOsWCYANN5eGPv3h/IRSOWijDSengRu28aBrhG05AyyAI0EqWZ3kPLsDslFW7awZ+lSilxdqff88wR17XppTsZjHxG+P83hCTz8wcpzflwIjcGAVYgK0UsGScI9McGhTaDkotk0cSL9du0679PvBbHk4eS8kFqvSxTtBvMqMBcvkSAEvuPHV7pb81mz8GzblrQNGwgI8sf/8B4S/t7CqaLSMhll8+U4FTsEC1kmaf16bEVFBPbty8nBg8n7+2/QaEj55BMaHzmCvlwCOABCI+Dri1TiEs6Ulu/QaiHh9MWN8x/Q+vsTuH49WVOmIGm1eL3xht3/R9JoHPP+wEX5wJyP1A0b2HzLLUoNNo2GjkuXElzGmbhSxkyA7v0gNQmRnEn9u+8GkwlNZCQeF/IHGvAhhPeE7HNoogaBZ+WO2SVyYbVWuBmmrFyJk5cX+x95BEtGBgHDh2N1c8OzYUMi7rvPbrV1Dgyk7ujRnJ4/HwCfqCj8LtX/uEqNUZefVK4rMrdsYXvZC4Yk0SclBadyznmrwkLJPR1f0oWw2tB+2zF7TZik998n4eWXQQjqaJWnepsAIYHbSy/j+va7JE6YQNasWQC49OpFndWrkYp9DWSbjU1PPsnRefNwrxNKh+7N8LRkkp9m4fQfW7GZzZisVjyAktRvEhAjSXTfvRu/Vq0u2TlJnfUlGX+txnfwbdR6sIoqzGYTLP4ckk5Dn+HQshtydjb54x/F9u92NF27cvTfXRw/fhwrxdW2hSBCCHQo1iyP4knkCzgJFEkSbT75hKjixHgXxfaxcHoeCOWmn7ezJXL7FzGdO4dzq1YXrJIsr/0T210DlC9Zkshr24Uj2/dRlJtLiceNa4MG9Ni3D43RyJZRozhdvGzh06YN/rt3O+TVCVuwAJ8RIyoc53wUJCaSf/Ys3s2aoatsmeiDp2HuJ0pEn0YDC/6FxlV//7HTphH9jFKQ0btTJ2Up6BL46ZyPEx98wJEXXwTAf/Bg2v36K5oaKDaZW7dy9IUXECYT9d98E78BAxy2/3v33ZxbulRRnCSJWj170r0Glr60yEhsJ08qDwoaDW7vvINrGYvWxfLviBFK/S9Ztis1Jb+Hlj/+yOHJk7FkZdkVvhyNBoss0+zFF2lTpgahkGUSFi0i66knsSUlo/Vwp976Dbj8Byd1FUduuIzCKjcHZ156iaTp05F0Oup98w21yt1grLm5jjsIoZh/y+HdoRN5ZxaXBKXgGVkXgkqzBvs/+SQFe/eSvWIFhVobrkVmpWimqyvG+8YAEDhjBl4PPogoLMS5c2eHp9djP/7IgS++ACAjN5cdkoZuDz9M3KRJIASSVosrSiXiEn8XAfgLQfyaNZdUqfEbPxG/8RPP3+m9h+Cvn5Qb69IZMHsbBZ9/jeXXJWCzIS9cQJPnXiC8X39iFixAyDLW2bPtFwgb4KQDLy38XuLKIkmVnvsakbbFrtAg6XAb0QbaV1+piP/6K47mgV4SNDcKPGIO0yEhgcKYGDQ+PsgWC67h4UgaDXmnTtkVGoCM3btxNxpxMZnsVjVDJU7J5+PUkiVsHDkSYbXiFh7OoK1bK+Zjee5jaNQa4k9CryHQqOV5x4x4+mkChw7FkpGhVGy/SKuJJSGB1GnTEBYLvhMmYIyKqrJv5AsvEHLPPVjz8nCLiqqRr5QlJ4edt96qOG4Lwe7bb6fHiRM416lj76P38ipNpSAERYmJNZqLKCws3V+SEEVFNdq/Kpx8fZEkCQHYNBr0Tk7oXFyoO348/gMHsu+++xz6S8XKTey8eQ5KjaTRIK3+E1tSMgC2nFwSRt5NZMzJSyKnSvVRfWpUrhnSf/2V0++/T0FREaa8PE6MHImpTIVjAJ9evfAo8/QTNHJkpdFFbb6aTZ2778KjTiCN7r6F+isOQBknX43RSPjChbQqKKB2ThFuC3/B5aNpeO7ej7aBYs2RJAnndu1w6d69gjk+Oy7OXjdK2GzkxMUpiehKjmGz4bjKrmACvKtZnPKS8s+y4oy8VkCCbauQo6OVcF8AIZCPH6NWjx50mjmTzl99hXP58GQr5ASWZu51DgwkfMyY/yaXf2/slyFhBb/zFCwsR9ahQ2xbvIxMG6RaYXM+iBZt0Lq54daqFS516+IWGWlfJtA6O1eIoqv9wQc41amD1tubkI8+wrVs2Hg12PnMM8qSCpB/6hTHii17Dmg0MOReeOy1Cyo0JbiGh+PVtu15FRpbdDR5940mb/RIrHsck/nJJhMnOncmeepU4j/7jP2NGhE7Zow9eWVlOIeG4t6oUY2dv4vOnMGWm6tYM4RAWCzkHzvm0Cdg4ECH/FAFR4+S9cor5D75JJZduy54DLe337Z/d5patXC+RFXrG73+Oh7FGeld6tWj1+HD3JqeTqN338XJ2xvfXr2U42o0yKBYMbVaPCopqyIf2u/w2XT6NNl7914SOVWqj2qpUblmiHnlFfJQnAFLPCNS582j9rPP2vtoDQY6bt5M2l9/oXV2xrdPn0rHcvLyouPCxZVuK48kSTjdcWeNZI0YOpTdxU9qwmaj4ejR+N11F/HTp9tzg9Tq3x/bX38hC4EGKNDr8X32WcIGD67Rsf4rtoICNKH1kU4cUHw7ZBuENUJ/uyvWbVuVSByrFadBtzns12j9ek507w6FhbgCeo0GY8duDFz+MvlnzuDj64tt8WKKGjfGWFkxyerQejoYfCH7EAQPhLD7q71r9oED9hulAIoE2KZMr7K/c0AArT78kL0vvACyTP3HHqPuE08gTZp0cbKDw41ayDLWMlW/q8J0/DinR43CfPIkXqNGEfL55zUurCry8sjp3R1RfDzzH6vwOhaLptgfyBwTg/n0aQe/orQffsB7yBB87rwTIQSJ33xDxqpVuDZrRt1XXkFTLtrJlJFB2rZtuIWH49moUZWyuERGYgwNxZSg+F5p3d3xKGeJdPLycvjcADBNmQJaLQUzZuC7dy+68+RDcn7wQfQdO2I7dQp9p04Vsw1fJMaAAHrv3Ys1Lw+dm5uDQidJEu1XrOD0zJmY0tJIj4sjf+1aPBs2pMucORXG8r2lF1m79yEL5feYbJE53Lo1UkQE2adO0dDVlXq9euH3+usYLqGlVsURValRuWbIiYvDjdIChzJgqcTlS2s0EjBkyJUUrQJ+rVox/N9/iV26FPewMBqNHYtGq6X19u2kr1iBS4MG+N9zD7asLBLee4/Ejz9GY7Gg++MPbK+8gtbV9cIHuQScfe89zrz6KgaDoGmfehj1MgwcA32GY+wDGt9aWHftRNejJ4a7hzvs69a2LXUGD6bwl1+Um7csI8fH49u8Oa6FhaR26wYWCwIwTJqEy3334dKmTc2e9HXO0OK9i5qbb6dOaIxGe1I29wYNMDaseokFoPGzzxLx0EMIi+Wic9eUpW779kQXR03pAGn//vPvAJwZPZrkvXuJEwIxcyatgOYzZtTouLaYGESZ6t/k5mI7fAhNT8UHSV9FNJ0lWVkeSZ43j+OPPgqSRNry5VjS0mhQRoa8U6f4s317TKmpIEl0mjOnglUu/ddfyfzzT1xbtKDDxo3ETZ2KsFioO3kyOg8P4l9/nbydO/Hs3Rv/SZPw69uX1LVrAfAB5TdltYIkYVq9+rxKDYCucWN0l8HKKUkS+irqSelcXYko81B1PpxfeYeG+3YQvWYLSRYliWcRQGwsBsCak0P0smU4LVtGk08/xe+/KNMqVaI6CqtcE5z5+GOOPvcc5QNza0+fTsh/cUS9yshmMztdXEqXeYCIH3+k1r33XvZjFx4/zp6GDR3a2sTGYgwPr/4YK1eSMWRIcRIeGcaPR3fbbWi+/hrz8uUIWSYTJQwcoNaECdSp4Q36v5D+77+cmDEDnYcHjV95BWc/P6U8QFoKDBoGwTUMla8JsszRhx8mfu5crLKME+DWqBHto6OxZmVhjovD2KxZhSWkvS4u7CgstC9PSpLEPbGxeNSrV+1Di5wcssLrInKLQ4cNBrxi4tCU8ec53rYtObt3262eGldXWhw/jlNwMEcfeoikuXPtv0vnBg3oULxklLl7N5sHDMCcmooVZcnFpU4dhp0ujdpKW7yYY8OH262StV95hbrvvGPffuaFF0j8+GO7g23d6dMJePxx0rdtQ2s0Yhs1CltcnP34XitXYriCBWQvBSI7G3Q6pDIPKEII/u3fn+Q1aygbM+iDkiqixB5nAXqcPVuhAKpK1ah5alSuK85+9BE6FLNtWS3bpdi/BcCalkbS66+T+NJLmMtcYK9lhM2GXFwCwUax0/AlDpetisqWQqLvvZcTTz2FNS+vWmM4Dx5MrU2bcH/+KRJCQ9gzaxY7Bg0i4bffELKMmVKFBiBt5kzMVeSWuRz4duhAh7lzafP55zgHBsJTj8IjIyl6YRJ5HZogzp299AcVAr58AXoYCTiwBJ0QGDUaNIBP377EP/ss+7292dC6NQv0epaGhJC2fbt9d3Oxf0bpcILscnmALoTk4YH7mvXoBw5C1+8W3P9c66DQANRbsQKfQYNwCQzEp39/mh89ilNxNXOP9u1LFW2tFo/ixJRCCLYNGYIlLQ0JZSlYAxWirzJ//720BAOQXi5BYs6GDaUh4pJEzqZNSFottbp2xbttW7yWLUPXrh2aOnVwmzIFp4EDazR/UIpVnpw7l4wr7LcihKDwhafJDfQiN8AT84zPlXabjZN33YV1zRps5fZxRbFAa4tfTsDWzp2vqNw3C+ryk8o1gc7HB0tKChaUC6kANAEBeN16KwDCYiG2WzdMxRf/jG+/peGxY461ha5BEqdPRy6+uAtAGxyM97Bh9u2WhATSZ89G0unwnTABXbkCi7LFAjYbGqOxxsd2a90arYsLtoICe1vutm3k7NiBOTWVxvPmXXgQswmn719H2rKOlm6wzwNScyAL5UJdmSdITf1DLhlWK/z8PWcLIbYAyMzBq18/mu87gKTTIazWCkUzc44d4/D774MQNH7+eTyrs7yxcx3M+xAAbycrrVsZyLj9RbJ/W8aZzz/HHSWTcVZx98KEBDYNH86w4mUqrxYtMGzdSkkQmd7ZGb+LCP3VtWqF+69VlwrQBwURvnJlpduCHnkES2Ym6StX4ta8OeEffAAo/2dFCY55ibR6Pe2KI/1KcG7cuFRp0WpxLZc3xr1bN/J377b3cS+XzVvXuDG+VRQcrQ6p27axtmdPZLMZJIkuP/9MWA1D8S8WeddOLJ99onyw2Sh69kl0d48kd8cOspcuxQUl6tGIci3LLf5bdlFWC2TGx7O3dWvcWrYkYubMCj5NKheHaqlRuSaI+uYbNK6u2FDWoYt0OqJWrLD7Z5hiYzEdPWovzmdLTaVwx46rKnN1SP3lFzSAnxH8jWAMDlIS3cXFcXb0aA6HhpL85pskv/YasV27KhfpYtLmzWOXuzs7XVw4/cwzXNRKcUEBGnB4YbORXaa69PmQf/2ewwvWsfMI7DoKYZ5KvhotkIziN1C2NlPg66+jDwysuZyXAq0Wm6eXotAUk3XkGMefeorVBgOrDQb+7dwZudi6YMnN5a+uXYn78Ufi5s3jr65dMVfD0Zf0MuHIQuDhVIRfz+4k791LPoryaim3S2FSkv37q/vNN7QJCyMYqFOnDnds3YoxKQ4WfAnRu//DCag+kkZD3RdfpPXmzTSYMQNdsU+JxsmJwMGDlUy+Wi0ao5Fbdu4kqJwjePBTTxH0+OMYwsPxvX0I9ZtJMMQZHo4if+MqcouKoG1bnFq1ovbbbxNYNkHmJSBm1ixEmci9I1OnXtQ4pjNniO7end1+fsSNH688RFwAkVMuk7mQsaamkFycOVygWGJcUJQZH5QHAFHmZQWsQhC3dy8H58xhrb8/BadOXdQcVBxRLTUq1wSeXbrQLTub7M2bKYyLw6tbN5zLVMnWBwUhOTsr+SmKE3A51cA35GqQ/vvv5O7ZQ0tv8CiuD5h/cg9H+/XDZcsWThYWKg6ToOTuOHoU06FDOLdujS03l9gHHrBXAE+aNg3voUPx6Fb9kGdJp8OtXTvy9+wBWUYIgaSFWp7g2qbhhQcAUtZsILt4pUoWEJfo+MQJ4P/223h07IjGYMCpTG6Sy0Xh2bOc+OAD5Lw8DLt3Y4mJQV+nDv7Dh1NkDMSLDLIAf8ATOFDGxydj2za2hoQQ9uSTGHv1wpSWZt9mzswk69Ah/C+UDbbjreATABkpgIA6OvQp39stL7mAO5BG6VJqxAMP2BV0Y6NGtIiLo7nNpli11v+GeHKYcl4lCT5dhug2kNQlS7CkplJr2DAMh/fB8SPQsx80af5fT+F56bB4MSdnzsSUmkqd0aPxqMSBV6PXE/7ZZ4R/9hmsmg2fKYUiMw8fZ0fvQUp0N8pvJfDFFy+59c6pTFkMSavF4ONznt5Vc/LBB8nduhVsNlJmz8a5cWMCL+DAq+3aHU3LVsj7lGUv7eDb+XfMWCy7dlELKHHfLvt/YkNRdKXi9/k4WhTycnL4u3lz2q5axelly3AODKTxpEnXRmHR6wxVqVG5ZpC0Wrx69MCrkkJwWk9PwpYtI2HSJITJRMA772CoX/8qSFl9cnfvxkNXqtAAuOoEmr/XIluVNP4lT26FKNFeB/r2peW+fRQmJ9sVmhKsZW7A1aXhypXEv/oq5r3bcDp7kJAQcNIDSWvhu7fhwVfPu7+tjmM0kdVanEiwOHeH1tUVr379cLpC1hnZbGZLt24UxcfjV/ykLgFSTAw5774LKA6ZRsAbZRmoPLbkZBJfeolsZ2fcUb4HE6A3GnGvxm8qdedeMuoMIlD3I9YCC+5RVpwSfsDoDEWFUFA8ZmSLFug6dcK7WzfCRo6sMI6k1XLsgw848srLyDbQSeClFWhuGYrG6IouNxcZML32HOFSoaIgaTSIpevQdO1ZwzNXfbRGI/Wfeqr6O6TFK0kdZRsnT4pSV5rizYcff5yg4cOr3P1iaPq//5H8999kHTyIc1AQbT755KLGKTp+3MG3qCg29oL7SAYDruu3YP1zFRgMFIbWJat5c0JQfnMJgIFSpQ7A092dyL//5kjPnthyc/EAksqNW5Sbyx89ethzCcV8+y3DoqMval43M+ryk8p1g3u/fjQ8coSokyfxvueeix7HVlTE7scf58/mzdn9xBPYLlF20vJ49eyJVXZIZQKAWWAvzpeFckMtcRy1ZmZy/IEHSN661Z7mH5SnPPdKSgbk7NxJ/Kefkl2Ff4LO1xe/ceOo064O9epJikJTjDz7dbLPk/is8Nw5slLSkFxKnUS1gEGjwb1NGwIffZTmW7deMYUGIP/kSQpPn0bYbA5+CuWfZ40oCs12KmJEufB5FRYioSwTBEsS/kVFHL/vPgpPnmRvjx5s9vYmevRoh99H6urV7Orfn8ytP5A+1kDedE/O1nWlIFeidvPSp0QBpO/fT/J33+FVt65DdfcSTs+ezeEXX0S2Kd++VUC6FWSLjGtuLgbAGSBXydosAdhkCp54tMbn7bLS9S7Q6kDSoKkkmt9yEcr4+bBFHyD3kbE0PXWKLno9ndu1w72GmaBL8C25jhQ7PXsPHVqt/SRnZ/TD7kQ/cDCGgAAkrRYz2H9PZa8oWmdnGu/ZQ8I77yDn5iKh/P7K/2ZlcEiOmH3kCL9GRXFgypSLW3q+SVEtNSo3HYdee40TM2eCLJN9+DA6V1davP/+JT+OV/fu1Jn3E/GPP0SIVrkxncmDPJtimakDpKKsr5fFFBeHV3AwqShmagmQ/fzQlatEnbZyJYeGDLFrTY0XLsS/zBOxbLEQPWAA2evWARDVAHyLrfRCgNUm2DVoIL0TkyrcdLP37mVL+/ZgtSp5aFxcqOXqisjOxr13b+otXIj2KqRFcA4NRefpiTU3F3NxvZ6yvgol5SjygGMoS0ESivUGFAfOkpuJVPwyAlLxOcxcs4ZDd9xB/sGDIMuk/PQTemdnAh54gKITJ0hetw5DqJagRa7kf1+E/G4BPqmCvAANRcdtFR2nzWaO/+9/dNiwwaG5YP9+Yh97rML8RLGMZXWDXAsczINQI3hqofDUGf5DCdFLT3hz+Hw3bF+OlDILkh2rnWsv5RLKN++i/fJ/yCdBFFdMKfztN3I++giv11+v8XCh772HsUEDio4exWvwYDy6d6/xGAZ/f1rOncvBCRNwKSggVKcj3mjE5OKC36230vD990nfsIG8U6ccrDdhKL/PQhS/Gy2wp9zY2ceOsefllzH6+9PgoYdqLNvNiKrUqNx0ZO7bVxq5Ictk7dt32Y7lP2oUYvhwTDExZK9di+3gQaxr1pB5+jRyhw7Ytm+vYMoJePhhat95JxETJnDym28w1KpF54ULKyS1O/fFFw77Jsya5aDUZP35p12hATgWA606uuAsCsjMh01HwWxNJXb2bCKLq2HLViuFn33GtldeAavVfuMvLCjA21SIu7MBj48/vioKDSjJ0Dr+9RfRzz2HJS8PERODlJtLgSSh0+vRmM3kAUdRloEEkA3kShLhXdrhvmMfwmJBCIEZ5QLooM5pNIizp9AJ2a5spn73HSnffkuIH4S4gkcrHdmts9EVQFCJFpNgIwRFSS2PXIklMOPHHzFWUrLAG8eLconTcaIJzpigjQsUNWyM5eGHMSUloYuKwnPwYDx69qz+SbwchDWBsCa0HPkSiXq9felUC4SMGoVssZDy/fdYkpOpNWIEzhezdJyeDF/+DwCr2XGTZcM65EaRSEPuRKpBpKCk0eD/4IM1l6UctUePJqTY6iNJEiUZh8xpaWxp3Zqis0pqAaMk4VL8P+sO+FGq5MiShHtYGPlxcQ6pLSRJIn33blCVmmqhLj+p3HQE3nILgN06EdCv30WPJWdnY4mNPW9NHUmrxRgVRcDjjxPx1Vd0PXmSWy0WOmzdSoOffkLn46NEmzg5EfDEExxPTWVG7dpsXbgQjzFjGBQXh18lDsLZBw/aL3wCsF6guKRAwjpzK38fNrD2EBRZFZP37gkTSN+5E4C0evXIeuYZbEVF9outQHFuNCDAYsG8eGEVR7gyeLdvT5eNG+m2ezfNs7NplJREk8JCciZMYJskcRBFEShrNRFC0CRrB436BBDwzFMEjhxJkNFIQ3BI+KiXBC1ENp28wVOnWMqOCIG/v+IngRVqx1oxyIoPjCRBkoAdNjhug4BKrC/1yySlK0Hn54eRUgsSQMCAAXiFhVF+oaFEUZKBs6ENMZ0+TdqcOaT8/jsJU6dypFcv0qoTnn+F6HHoEB4hIRiAWl270vDzzzl2773EPvooZ159lT2NGpF7EZGLoqB0QdatjF+wEALT1k1YHrkX69B+pVFRVxhJkio8eCQtXWpXaACKNBrqffcdDVautGcxLlFgNHXq0OvZZ2mJYj0sQQhB0AWq1auUoio1KjcdDZ9+mtZffEHoyJG0/vJLGtbEKbIMBStWcCYggHORkSR27IhcnNBOzstFjj9RXDyyckoUKr+RI+mQnk4XWaazyUR0Sgq7p08nPzGRoowMDnz7LTs//rjSMQpNJnuSLxkwtGjhsN2rf388y1wMQ197DenIESK69alw48w5fJiiVasQ8fEA9tDkkn6+EjhJKDlzAoMqlSd17lwONGnC4a5dyb+M1q+ySJKEPiAAjcFArbZt7ZYrSaMhpHt3blv1O53rwV0tIdgTjDlnCWwbjuWXX6CoCBPKHI1AoBO08wKDRrkw1nVWnD7DgYQUOJkKZ+MhJRl8vcEk4F8r/C1DnICDArbNmIFr5864REbiGhVF29WrqVVJfTL/J57Ao39/vIDIkBD6791Ll1WraLplC7ri+k0AOTguTwZNnIickYGlnBKd8vXXl+6k/kdcGjakS3w8vaxWWm/ahNbZmYxFi0o72GwcL/ZVSlm0iJRffnFIZVAeS2oquTt2YPPwpSBT+b/x8AN3P8jXaMgEzlkgrgDYvhmOXiXnWlmG/02G+t7QqwUcPYyunEVT6+yM39ix+AwahBQZiVWSlEKZkoTT2LGIwkIKUKw4riiKtKdGQ9277rry87lOUZefVG46JI2G+hMnUn/ixP80Tvr48VB8MTbv2kXuN9+QFR9L3FQlUVlwlAeR6/ejCQqr9pin1qyx+4UAIASnZs/G78gRar/+Osb69SlatAjTsmWEuLkRnZ5u7xtSLs2+xsmJJmvWkLd3LzoPD2y7d5M2ahRCo8EVyJckJI0GSa/Hr1s3rEuXAoqVw4/SMNRsg4EOIYFwLh6nu4djeKhiheT8PXs4OXZs8YE1HO3fn9bnzl2x7MkA4aNHU5iUxKlFi/Bs1Ih206Zh9PSgdpgRzKVLQLJVqTlkRlmaguIlNlmDXisp0TAaCZNWQyg2+/dhQfF/yMoGLx/IAA6j3HxKEIDX1q1ErliBy3kKl2pcXIj84w9ksxlJr7c/4euDg2l46BA5f/yBPjiYs+vXkz1tGkIIwsaNI2j0aPJeegkpv4wbuVaL0zWYbt8exq3VonF1RS4js+VUHEd6dCJtxz5AcapvsXZthdDv1MWLOT5iBAiB5ORE/SeeonDmVCQNJOVBXpnczNlWsAlAkio44V4RlsyHrz9T3h/LhUdHELh+H0m//ELykiVojEaaz52LJEkIIXAfM4asmBjMeXkYOnTA86mnKEpMRDz7LBLY/aa0Li41rpx+M6NaalRULhJ7zhwAScJ85oxdoQFIOJrD3o4dqpXQq4SAiAjKe6u4nz1L+oIFRPfoQeEvv5A9YgRFCxZQ6/RpynomxH77bYXxJK0W97ZtcW7QgMJVq0CrRZJlooDavr7Ue+gh+mzejFtEBIb+/QEl1FRCeeIxAgEmE/LU6XgXWnD78SekShw/C8uGnsoy1pSUalWsvhTIycnkDLiFrGB/wg4fYNA//9Bt7lyMvr6g08OL3yh/AXoPRzd8HIZu3So4aJutMnh6ASDpnXB+dFKFpz4Zpah5XEpp2YuyL1AilrKfeKJasmucnCrcsHT+/viMGYN7v340eu89wp98EqxWTs+eTfySJdT56y+8u3RB7+EBGg2urVtT56OPqneyrgKSJBH24YcObV4uNsJS99k/Z//9N5kTJpBxxx2kv/EG5kQlwWHs+PGlldjNZuJ+/pnDBXAkrzQfTAlaIL4Q8k+d4b9gysgg+t13OfT66xQUWy6rxdlTSmg7KIpx/Gk0Oh2tf/mFPunp9M3MJPCOO5T5Tp5MzpNPosnLwxAUhN+yZWg8PXFu2JCcMhXRBdBw2rT/NJ+bDVWpUVG5SLzeesv+XhsYiLaSyIncMylkbdyIEIKiuLgLhrc26N0bT5RoCG+gKeAnBNhsWBITOX7//QitFmQZCSXBXIkSVLYcQmU4NWtmd5DWabU0uPVW2n31FT7FKfr1zZvjPm+ePYkclEYI2fLzydi+nexDhyod271bNzTOzkporFaLS+vWFUo+XC7yJ03EumE9Ii0N80/zKZpa7gZ/y2j4IxNWJMNbC5H0egJWr6bWq68qTjGSpKT6b9cOaVcsrPgH9sTh9cE0vHv3dhhKCxSFN0SWlFpPdVHCd0sUmkYoSs2lslBl7dhB7IcfghAIs5kD48eji4qi3ubNtM7Opr3VStMdO+w1na5Vgh57jEaTHsDPE0JrQf0gcC1TFSAIsHzzDeZff8X65pscqleP0++8gy0/32GpVFityChWMxmQy9SksgHpVglDmaSdNcGSmcmJ555jU0QER199leh332VNu3aYs7MvvDNA/9tBp/z+AbhztH2Tk48P2mIHZmE2k//ll/ZtcmIipuJsxJIk0ePvvwl44gk8776bNuvXU/eRRy5qPjcrqlKjonKReEycSPCBA/j//jsh0dF4DRyIS3jFfBkavZ6jw4axOzycHQEBJM6cWeWYIYMHI6GsqXsDtVDW1TUovhUZhYVIxY6QJRf7qOL+DZ9++vzyPvUU7k8+ia5hQ1yHD8fn888r9HEZPZpa5RLF6QMCODZrFhs7d2Zds2YceumlCvsZ6tal8dat+D/6KEHPPUejNWuumMlcPn6sNIGaJGE7caJiJ2dX8Pa3f9Q4O+P/1ls0WLEC79tvx//hh2m4ciV4eEKnblDsN9R67Vpqv/46+Pmha9yYJocO0XDdRjy7dVNCvfV6mgHNg3wYDNRHUQI9LzJtf3ksmZnlJitjzc21f7yeliV8HnmMBrU11AnQotVpKQqKBI1GKahpMChLTCi/a4PJRNyrr2I1mRyWY0Nfew2/u+8GQOvhQcNly4hatw5j48YY6tUj4scfcW5YvWzZ5Tk4aBDx06ahzcrCWwg0NhtFSUnseeEFfvb355eICBLLheY70KQ5/LkDJr8M076B97+svJ9Oh+Ti4tCkKVPDzujvT+vPPqPzokXU6tDhvEEIKhWRxE2U1ae6pctvBIpSU7EmJ+PSoEGFIn43Ktb8fHKPHMGlXj0MF2slkAsxnbgHOet30vYJ0mIfpuWULytNnlYZtvx8jo64i9Tf/wQg4L778OnWjROPliZMk3Q6OuTkVKh8XMLeZ57h+LRpuAGNNRpMsqxEvqCk3m8A1Ab7E6uQJLR3302dhZcmKklYLBzr0oWCnTuVysJGIyeKihzqGQ1OT8fpIlPTX2oK33+PwldfUdaFrFbclvyG05Dbr8ixhRAIiwWNkxNF69Zh3r4d5zvvRB8VdeGdq4G1oIDN7duTe/gwAAG33Ua7ZcuuKWXGnJhI1qpVOAUF4TlgwPll27YOlv8AfsHw6EvYNDqQJLIHDMD8zz9YhSAFxUFaRlHmJcD/jjvwf/BBTn77LamrVmHUavFu3ZqACROQJQnT999j2rcP99q1ce/bF7dHHkEXGVntOdgKCtjk6urQloPiMG+3XEoSejc3Rqamov2PxScLly0j8557EAUFON9zD94//ODgTyRbLESPGkXakiXovLxosnQp3jd5BFR179+qUnODYbNa2RgUhDktjXyUcNWOf/+NWyWlB24k8k+e5O8uXTAlJaF1caHzqlX4XcycM/6HyHwXSQOyFU4uAU3tH/H28sIUG4vXwIEYq5Fjw5ySQt6ff5IyfjxFhYUO2YGRJDpkZ9uLCJbHWlDA1u7dcd+9m0JKfQeMQAqKY2pLUJ5yi5/i/BYswPUSVSlOfPRRsspF08goyexK5B+ckYGTlxcAeadOcWbxYgx+ftS79140lSy9CAQZrMNEPN50x5lLV7dLCIH5p/nYDuxH37cf+n631Gz/oiIKvvwSOSEB4z33oL+IitlVkfTrr5yaPh29ry9RH32E60UsjVjz8khatgytszMBQ4ZUen6vFqb4eA61bIk1XfmVBj33HHXK+c9UB1tiIun33svB9espiYOSKHXCbvbPP2waPpz0pNLiAoGUZof2LH7pKA6t9vQkIDoabVDlkXrlEUKwvV49TPHxdqtfvp8ftf7P3lmHWVG+b/wzc3K7u2CJBZYO6S4lRFEUETERCzsQVH4GYAegoihlICagpHR318KysCzbnadnfn/M2bPnbMAuYXzd+7q42HPOzDszJ+Z93ue5n/u+/XZOVsqs3pmZiVtwcHXD1AmyxYJsMCBWMxelz5tHQrkujSCgDQ+nW134Pf+DqA9qqsF/Iag5PHAg2evW4fz1j/Hyom9R0d92Tn8FDj3+OOe++ELRqBBF/Dt3ps+OHXUfKPN25JJfEOyJmZyDkPBpP9QbNihaMno9Lffswb1ly8sOdSYyEmtaGrIsUwSO9uvw556jYQ1t2gApixZx6N57CUFxwnaGASV74+fjQ0l+Pir7c8FffUXINRLnOtusGeaEhCrPn0IpAzR/4w28AwPJ/vFH8PPj9Pr1WEpKQJKIuesuenz/fZV9LzCLNOYBAgIaWpi+RkjzwJKVRf7mzXi1aUOQnah8rWHLzsb4xx+IQUHohw6tkkkoGDUK0y+/KEGiKBJw4ADqWny+l0PRoUNsb99eIbqqVLhFR9M7MbHWWb9/A9I//JALzz9f0Uqv1dLRYKDgt98wnDyJz+DBeHbqVKuxio8fZ5vT+94gEOJClO/cBaM/u87mufC93FE4ZWpw8NCc4ff997jfdVetr6X01CnOPPEEluxsIp9+mrD778eQmcnSFi0wFxYiSxIhPXty46ZN1z1TduG990iaNMmxaBHd3Oh1Gc7c/zpqO3//c0L+elwTWPbupTIVNaekOlu//y241J1l+crr0O43I5T9gmQFUQ0X16kQDh6sGNdsJvfbObi/FKzotGuag74PaKpmHqSyMgdPwFsQ8Lj3XvwmTCDn1Cn2P3A3QbbNREdnQrPhcMd3oLGXo+w3zOooxa2bNCEwNpZid3cKli93rCqzZs26ZkGNe9++VYMalYq+Bw+i8fSkdN8+TtiVi0vApSyVvHgxrV57jTPz5iHqdLR48kn0QUFk8at9CxlZtrJr9s0UPn8Od+y8EFmmxezZxFxlm70zbBcvUjR1KmWLF4NdmND90Ufxc3LtliQJ46+/KjYJNhtIEsYVK/CsHNSkHoJfH4WyPOj9PHSpSt5M/eUXcjZvxu+GG4i6+26KDh6s6I6z2TCcO4e1sBCNE3/i3w51YKBLB6Daz4/0t9/m4pQpIIpcnDqV5ps21cpdXh8RgejujlRWhqcOmtuTLLIMDdzy2AcuQU15sUZCCXwkKojtANkHDiAUFRE+dizqSqWl6uDRrBlt160DwJqZSfbUqciSxI0rV5K8ejUab2/iJkz4S0p/wXfeyYW338aalwdA5NNPX/dj/q+gPlPzP4aTfftybNMml3JHYHAwwzIrr/n/t1By5gybunXDnJODqNPR7Y8/CB4w4IrGkoqWUHR4DkXnvPFq+wYp94zDcOwY2Lkt4ggtZm8z4Z2h0RAALYRtAH13l3HyZs4k86mnAKU7quG+fSQtWcKh555DEEGWoNNQiG0rwKAZ0OslQCk/7ezXj4Ldu13GCxk2jE5LlyKoVFx46SXSP/hAmYhVKnz69aPZ2rVXdL2VIVsspD7wAMWLF4PNhk0QSG/enF5Du6M7to/ELAsX9ytdUAYUvRYARBGtry8WwGLvGPFq3Jhbjh7lmGYsZSQCErIMeU9cxPpZjosppVerVvQ4cuSaXUNmXBy25GSQJGzYnbgFgeiiIgxvTMW6aRNZGi26HbvQOp1HUa9eNNm8uWIwSYI3w6EkW/nQACbuhJgujk2SFyxg//33I6jVyFYrrT/6iNAbb2Rbq1bIkoQgCHg0a0aPo0evelK0mUwUJiTgERmJ7m/mNclWK4ljx5K3ZAkqX1+a/Pwz5yZMwOTkdu3VsSPNNm1CvExgIcsyGc8+S/7XX4PNQPOGVkfGFGB7ApwzK4R5DRACuNkVnQO8PIk1laC2u8hnCgLp9o/Kp2NHuu7cWUUDpyZIRiNJ8fFYkpMBUIeF0ejkSUTPv9Zxy5SWRu7KleijovAbNOgfxaP6O1BffqoG/4WgxpKVxb62bUlKT8cC6FQqhp84gWfTpn/3qV13WAoLKTx6FM/GjdFfC+fotC2QvhljkR8n73uPjAsXuCAKSJLscE7s+y40u02A840g8QG49xnQVYicGw8exHLhAu69eqHy82N9z57kbNvmeD28CfS8Uw2dH4Nhnziel6xWig4dQhsQgGSxYDMY8G7VylG6sObnkzBsGCU7dqCLjSVu1SrcavMZyzIYi0Dv7cgIceoYfD8XPLzg4WfBT5koT33zDdvHjcMXJaXb1R+CdJBjhOP5FdoshSg+S27h4cT268ehSpL9t546hTpO4AwvYCIN8yobaSMOobPIFcGESkXg4MF0WrGiTh9RTbAmJpJp5z5ZUEjW5eW/0EYNCU5Rgp0zNkWwLdx+jQUoGbLu+flo7JwhDIXwqq/rAe6cD53uczzcecstpNvbcgECevSg99at5G7cyIXPP0fj50fj//s/9LXkeNSEsvR0VvboQUlSEio3N/ovW0b4Vdh81BYlp05RlpSEX9eu1WaaJIMBQadDEEVO9u9P0YYNjtd0KLID7kOGEGwXoQOQTCYuDBqEYds21BERBDzwAEWvv+5os/eM8CDAV3G1LjGq2HjG5uDQ+IkQ++QjuL/wKqbSUjxEEG/qDIX55JphT4Hr+fU4ehSvWpYUDfv3c75jR5fnYrZuxb1Hj1q/X1cKc2YmKk9PVLXILP3XUF9++o9CExxM17Q0OhUXY0xKwiM+ntKzZzk/axYeTZteN97CPwEaHx8Cr9WN5/xyWDMCBBG9LNHy5w/Y3fUFZJt9+WdfCpxfB81ulSHhLMyeAqcOwYcVXUj6du3Qt2vneOzdogW5O3cq3B8BvAMBBGit1P5lWcZ08iR5H36IIIq4v/gi2mqCFbWfH/HbtyMZjcpkUotVXNqXH5M45UU0agst72iM15tbocQKN3cFo0G5pg0rYdU+EEX2vvIKMShkTE8NBNtjtSA3iJMgoVAJFPRA5I030nHFChIrkZ9VOh1uYWFo8aYtyqSfal5GunQbJmyIKDchtbc3LWbP5lpBFRGB4O+PXFBAgT1TU468s+cIUlc4dOcD551eF1Qq1840vTfEdIULu0EQQaWBWFcSuldcHOl24ragUuFlF1AL6NuXgGvYtXJy5kxK7RkEm9HInuee45ZrlN2qCRcXLuTo/feDLKMNDqbbnj24xbhKF4hO71fUm29ycsMGRagQ0KKUhoyrVlHy5Zd4P/kkAMl9+2LcuRMAa0oKBR9+iKhSKdlHWcbkHo7w6jOgUlNSpoV7xqEB/PQQHw3qNXOQT/yJ9rvtEBgC207Ato3oJBFGOckSiCJaJ+uJy0ETFYWkVmOzWhEBlVqNptL1XmtIVisn7riDnN9+Q9BqabZwISGVpBXqUTvUBzX/o1B7eeHZpg1Fhw6xs0sXJJNSjW769ts0eumlv/ns/h7Iskzh0aMgivjExzsCgawdOzh9003IRUUUAyUqFQNnxOLnLTrKDcLJWRUBTTkE8G0EcgYI38sgg7zxdy4VXrR97z0shYXk7NhBSIcmxD/aF1oNh7A25EyfTvbrr4PdRRogd948Yg4exKtVKzizD94bCwUZMPQxGDfNseq9HPJ37+bwhAqPq52fJzKgyZOI3r2h1Ilzdewg5GRBcCh6WaZ8qhIFyDKAhxo8NBDmAb49unE2oiVe7doR/fDDIEm4m0y0As6irKg7PPYY2kqrqogRI+izYQMbe/fGYcGZn48xKwuPSlYPVwrBzY3AtWspfOEFVKdOgV2hFpTYTQAQRcJkCZNWT5mhwkYh5MYbEZ1bdrNPw43T4OwGMBTADQ9CgOt5Nps6FUN6OtkbNuDftSutrpPCr2R11UG25uRw8Y470DVvTsDLL9f6+1AXnH7lFSQ7N8ycm0vKl1/S6LHHELy8qu3c0TVogBe4iOaJAKKIzd4lJRmNjoCmHDaDAbFcb0ilQtezJ4yaAEBgcTFuwcFosrJoGAKq8rLUxXMw/3144T0IDoWRd+EJNJ+ZxelJkxDUalrMmoUuJKTW12srK8Pg5obNrgcUMm4cmqioWu9/Jcj59VdyfvsNUMT5Eh58kOBRo2pdMqtHBeqDmv9xpH7zjYtr7YXZs/+TQY0sy+y6+24uLF6MFogcN452X35J2jNPkzVnDoKslCgkQLDZOL/2DL63CUqFRlCBWiakOWSeVMbzCoGQ5hCxGoQtyo6yDKZSC+rc3BrVdDXe3nT74Ycqzxv27iV7yhTH4/LASGWzcfShh+i2eze8NRJyU5VA68cZ0LQzdK2dHkvqvHkuj20WMP3wE278VPGkKIKPn2JsdHorN94XR96yFFKOQZ5Z+QcQ7wcBeijpPZSm9z6Etry9VRTxfP55Qt95h1BAFR1NkNM1OcM9IqLKc5cyNbwSaDt0IGjDBrxTU9kVHe0gj+sAQ7uO+DRphHunzrTo0pWzQ4dizctD16QJjb76qmKQta/D2v9T/m7YCyb8Ceqquk9qd3c6LVp0Tc+/OjR7/HHOLlqEMSsLQRAIS0+n+OefKRYErBkZ+E2ejPHCBbzat78mJYzCI0coSE11PNbZbLj9+CM506eDWo33vHm43XOPyz7qsDA8W7akzK4+rcauN+PujufYsYDSJSV6eSE5CQnqhg3Du2NHDKtWoW3bFr933qkY08uLyCFDyFmwoCKgAaVUZarqTt9g4kRinnjCvknduCjZ8+e7qHPnrlhBgzqNUHfYnN4HUII+2WarD2quAPVBzf84dCEhFUGNSoX2WnBN/uGQJYmijRuRSkvxGTgQ0c2NnC1bKFq8mCgUGfuARYvI+HYRniJ4qsAqQ6ZNIb7KQNIGiI+X0TTXUJKmIf1gJjdPh9MbQbJAo96gVcPp2yErAHx9FW/LjAwrIVu34nXLLXU6Z2ulTILz36V5eQpZtTygAUCArPOXHdeWlkbp9Oloyju4nKDTosw24QLoGoG3H0z/FNKPwzt98ZRlPNtBfjYUVJwep/Lt/JQXp8CLU2j86adEPvYYAN4zZqAfMgQpKwvdwIGIPj7VnpdHbCwxY8eSbOffhAwYQEDXrpe9nitB6oYNZEkSUSjlJjkoiNC1f6Iq58wArVJTsWRmoo2IqLA4MBYrQU05zm2BUyuh5S0AWI4epXjiRKTcXDxeeAG3ceOuy/k7w6tBA0aePk3u/v0Y5s3DtGQJWK0gy2T/+isJX30FkoQuOpr2u3ahu0oOz8n/+7+K7iYU5WptuWKz1UrRww+jv+suF1sIQRAI376dolmzkAoL0bZqhWw24zZoEGp7xkMQRSJ+/pnUO+5AKirCu38vwrs3QVCX4fvbzxBU9T4lmEwIgkBKjkycPSYW3D1h9GPVnntdghlZlslctw5DWprSVeXU0aWqQU/qWiJw5EiSp03DeO4cAFHPPfefEU291qgPav7HETNxInlbt5K9YgX6yEhaVWN6+L8AyWgkcfx48tesAasVKT8fEXBv25bQWwZz+vV38UQJEspQMjINnO55KpS5/Wz5vUyCgrlwWq3HWlKqcCVkiL1boVjYrJD7sxeoysjNtZHr5K53JfV39z590MTEYLlwAZMsO9pUs4HGjz6qZFF63gFbflBM8zQ6pXXqEpCtVvL79MGWlIS3LOMhCJTab9ZxdoV6AHyBZQfA3X7zXvmu0rGDQoh293YNapz5KQBnH3+cgCFDcGvQAEEQ0FXjgVUZgiDQecANNN74HZIkE9g+WuFTXAekrVqFWRQ5a/fL8o2IoJ1TQAMg6vXoqvvc7O3mTk8AINtsFAwejJSVBTYbRffeizo+/poK99UErY8PYf36kZ+URMZ33ylPqlQUlZU5dE1Mqamkf/klDaZOvex4pvR0TtxxB8X79qGxC841/L//Q+3tjeSU5ZWpxlfHbFY4MJUEAUVvb3xryNKVw3PQIJrm50NhPsLwFrBwm3KQVT/A7ydA66raGzxuHDk//EBuicCBJJnY557A79lXFD7NVeLo5MmcfPttAPSBgcS2a0fZ/v2Inp5Ef/wxhTt24NaoEdo6lLHqAo2fHx0PHSJ/3To0QUH4/AWk5P9V1Ac1/+NQubnR8fffkazWf5QSaa1gLIGvR0L+BvCOhLv+hKDq1XzPjB9PTqWuGwEoPXSIM4cP4SFCqdNsXM6gkOWKJiCL034+wPoykCjGDcWHKfV3yCjti2fftrR45BkCuntg83gF4759mM+dQwACp051IQbXFipvbxrs20fR4sWKVkd8PDlbthARH0/YUHvw8twiaN0H8tKh12gIr5CBLz10iMI//8Q9Ph7fIUMAkNLSsJ05AyiTUVNA/dFHeN46Av37Y+DkLmXnMVMqAhqgINOErz1fJEngHwOpCVySK3SwZUs6Z2WhquRpUyMK8xHeeppAnT1g+HkejBwHna+98rVf69Ykl5f8VCr8avv56L3gxjdhlX1ybtwfmivvrVxYiOSUXQOwHj/+lwQ15fB98EFs2dkUL12KrmVLCv78E6vBoHypZdkpar00Ep98ksIdO0CSMKWkkPLRR5yYNQtUKsLbtUHQaCizWLAAJYKAu683EflKy777888jXIVlgCAIkHAYcp0kJ1KSIOkUNGvjsq3fjTfSetcuirZswaNdO3z797/i44LSIZd7221YExKQzWaHx5QxNxfNyy/Tdvly8hYu5PioUdjs3V2t/vgD/yuUirgc1N7eBNldvOtx5ahv6a7HPxe/PQ8XP1D0+a1ApDtMLkaWZbInT1Zu5q1bEzpnDgdbt8acluaye/m631sDflpIchLvEYEoAdxEJagxSpAjKeUnK4odgbN+Z3SEQEgzNdHv/oC+/dXfeMzZ2RTt3IlbkyZ42DtlKsNmNHJ27lzMubnEjB2LVw1eNheeeor0mTMdj6Pefpvwl15CNpnIjoxEzs9XohNRJOD4cdRxcWC1wKk94OEDDZVWV0tREZLBwNkPP0Re+R4xTWQMpXBkJ2hadiX+lVfQRkSwv21bl+OL9n8t16/Ht5KrdY3IzoAulUojX/0BfS+dfboSSBYLB158kfQ1a/Dv0IFOs2ejraEsVi2yE2H+NFi3DqKbwpvzkUOjyOvUCeuhQ8o2Wi2Bx4+jukZE5ytB9tKlnLjjDmSLBbcmTWi3YwfawMDL7revY0dK9u93PDahtLaXw8/Xh7QCV6fqVoBaKxC3bz/6VpcJEmUZzuyA4hyI7w/6SnovqclwY2Ml/SkIShZyU6rC7bqOyO7dG/P27WCzIaN0wJWzh25YsACvggLOPP20i+CfR+vWdDp8+LqeVz2qR71OTTWoD2quP2wlJeR8/DG23Fz87r8ffbNmGL/7Drm4GP3o0Yh18UxZ1Bt2blGijHI88TN5m1PJfPpph/y81y23UCKK5P70k8vuKiA4UMDTJhMkQKYJCi3gqYaSdl3xufsevLQabKcTMJitoFbjN2ECqqgofnBzc5QdguNgwHMCgmjvm+nzPTSqaLeUbTZSP/2UkkOH8Bs06LKtmGVnznCgc2es+fkgCDT/9ltCxoxRxpJlcjdswJKfz+mvviJj7VoEUUTl4cFNx47hXqkLw3T2LEcaN8a5L0sTEUF7u0+M5fBhip99FrmkBI/Jk9GPqJ5YnDx3LkcffRTZZsOvRw/ynbR0NEFB9D54EDc7uTdl1izO2ttyBSqCmnanTuFeF4fk58fBb98of8e3g592uGj8/GPw2zyYaldrVqmgdVdYuBUpL4/Sd99Fzs/H7eGH/9IsTU0wZ2VhSk3Fo0UL1w6uS+DirFkk2j9PUFrcnSnbIrh6lwENUdL8USMHEP3Ln5c+wJJJsMJO+g1pAq/vBfdKQeXaX+DjyaDWwEsfIt3Ql1MvvkjOqlV4d+hA/KefVugGXSNkNGyI7fx55YFKRYYokmixEDFyJN1++IFzgwaRsWmTi2K2oNfTq6zsPy+E93egXqemHn8pDKmpqPR6Um6/ndItW0AQyJ0zh/AuXbBu2gSCQOk77xBw7BhibWXiG98EW7e4PleUg8nelo3NBjYbxsOHaWInwhZu3IguKorYL7/ELToazdbfkaY+hJQOoXrlX5EFvGd/hpdTxqHyT6TpE09wetYsAJrd5A6ikXK5OevuaeTvlvDp2xdtWBjnXnuNC9OnKzfG+fNBkhxBSnVImzMHa7kXlyxz/vXXHdufePJJLsyejQyU90PINhvWoiIy1q4ltpIVQrmMujPUTiqzmjZt8F+/vsZzAcXd/OhjjzkI5fnbthH94IMUHDyIZ9OmtPzkE3ROwWjUxIkE3XYbCaNGUbJnD6JWS4P33qtbQAPw7gK49V4wlEKPgf/MgAbgfIISzNi/b5xTWuBEf3+87DyMfwq0wcEV3Wi1ROTEiehjYrh4113oysqo7BKnB4SYGErs+jieVEwcwiU+M9lmo3DvbnxWvltRusw8A/t/g573uW486Dblnx3n3nmH5E8+AVmmNDERQaWizTXuLvN46CGKXnnFUaaLX7eO1m3borFPmPoWLVBXCmpkoxFrfj6af4hDfT2qoj6oqUetYUlIwLxtG5o2bdDaFTdNyckca98ea14eJVSoh4LSGm3dtEl5IMtIaWmY161DP2pU7Q7YbRKs+wxSUpTHbp7Q6mY8hgRT8NVXykQjSXgOH47K05NmP/5YdYzbHoQm7Si4ZTCqnBxyzFDSrS9tWre+5KE7fvIJkcOHY8zOJjxsI8K5+YoOjSxQuOMYpz+9G5WvL2327SN3+XJlJ7tlQd6qVZcMapyFyhBFRDsPxVZWxgUnAToBkJ2Iqh4NGlQZy71dOzxvuIHiPXsUIqdeT+Ny8mgtIZnNyJX0T4Juuok2zq3NlaAPD6fN9u11Ok4ViCJ0vzpexKVgNRgoPHUKz5iYq7MT6DUMFrwHKrXyGQ+8/dqd5D8EgTffjKV9e0w7d9LMZiMFpfwqAw1GjaLp3LlcXL4c49rlFHz7MwBuvm6EvvdZteNJFgu7b7qJ3A3ruWm04qPmCGx0Hko51GQEt+o5WCVHj1aQtG02iq9Dycdz8mTULVpgPXkS3Y03om3f3vFazqZNJB854ihhl0Pt54f6GmeM6nFt8a8pP82YMYNff/2VU6dO4ebmRrdu3XjnnXeIq8PqsL78dOUw7dhBTp8+YLGAIOD37be4jxnDEW9vZLvGggBkAEGCgMr+tQrRapUOCTv8tm1D27171QPUBKsZts+D0nzofDcERANQ9OuvlKxciS4+Hv+JE11aSquDZDKRu3IlCAIBQ4ZUaZeUZZlzv/1GzqFDRA4YQLhzB48hC9bcCLkHMeaqOP6+DWM2oFIR+fLLlJ4/T5bdJwlBIHbGDKIvoQVkzsnhUO/elJ04gcrLi1YrVuDbsyeSxcKfXl4OoUQrIIeFYTOZiHv2WVrU0E0i2V2RZUnC7/bbr0iA7cgjj5D8xRcAeDZrRrMpU/Bo0gTvzp3rPNY/AaUXL7KyWzdKU1JQubkxYMUKwpyUfWWLBYxGhNq26+7dBOt/g6hGcMejoNFcnxP/G2E+cYKsYcOwnjuHpkcPVM8/j2eLFng2cSXnW1KSMScm4Natd40lrsyVK9ljJ7hHNIS23ewJkfYjoM/z8OxIRSugx1B4/+cqWbrU777jyNixCCoVss1GkJ8fIT4++M2Yged1Vto1pqezPjYWyWzGw94xVx6QNf74YyLtfm71+GtR6/lb/pdg8ODB8vz58+Vjx47Jhw4dkocMGSJHR0fLJSUltR6jsLBQBuTCwsLreKb/W7BZLHLpuXPyxZtvlo+AfATkHSAv1GjkBaGh8hqQD9v/HQJ5E8jHW7eWTzRoIGfPnCkblnwmZ/p6yBk6rVw8derffTk14tCHH8qfgfy5SiV/Jgjy+T/+cN1AkmTZXCzva9pE3iYI8jaQt4F8dMgQ2ZyXJx+/6y55V1ycfPrpp2Wb2XzZ40lWq1x29qxsLS11eT71u+/kVVqtvBLkg6NHy5LVei0v0wGrwSBfWLpUTluzRpZsNlmSJDl7wwb5wrx58tbgYHkjyBtBTn7nnety/OuN3c88Iy9QqeT5IH8D8vI2bRyvmVevlAsDPeVCPXLpyGGyLSP97zvRfyCkWnx/L4eMFSvk5eD4t1KLbDp7VPkdjYiT5faiLLdFltsJsvzdJ9WOkbp4sXz47rvl/SqVnATyOZDPiaJsTkq66vO7FLI3bHCc9x8grwN5s4eHfPrpp2XJZruux65Hzajt/P2vydRURnZ2NsHBwWzevJletdDFgPpMTV0gyzK5s2aR9PLLFNjVNctXLIVU+LnkAC0Ad/trJUFBdMvKUgYpWA8nbkSWrCCoEOLXgO/1KzdcDX5s145ceyeLoFLR5K676P/NN1W2K9yyhWN9+zocu21Ay6VLCayBgHslsJWVYSsrq9K5UrhlC2UnTuCGCfW23/GIDkd4/A2IaODYRrJaOfbSS2SsWIFv+/a0/ewztJXS5TaTibXdu5Nn73iJufNOui9ejCAIXHjvPZImTXLonai8velZ6Nr58k9H/p49rB88mLKCAnxQiK6yINBx7lzCHniA4sggyM9zlPU0GtC+9S6qJ1/4W8/7ekPatA7p23kIwaGIL7yC4FdRkrMlJGD8+EMQRfTPPo+qUaOrO5bFwu6hQ8n5UyERN33tNeJetwsZ9gmEQruwk6iCByfDY29UO475yBHS2ri2doesX49bbbvsrgDm3FzWN27sUPnVBgbS7+xZ1PUmk38r/ueJwoX2G61/PWHruiB32jSyX30VLUoXUXlyuAwoT7wLKPotJvvrNqDl999XDJL2Ecg2uw6MBGkf/2OCGqm4mJIPP0TKzsb93nvxbtiQvKNHFbKsLONVDX8FwKdXL2wajaNEhChSevz4NQ1qzPn5FB87hnfr1g5X5/TPPyfpMVflVE83aLlnI6rV5xziZ4kffUTiRx9VECxFkU6V9HsyN21yBDQAyUuW0O7dd/GIjkbl6emqpvovupHLskzhtGnkTp1KrCSRREXZQJBljjz0ENqyMrRFRa6CejJIU19CHHMfQmDtjQ+vBYqOHcOYloZ/t26oPT0vv8MVQC4owHr3rbB9k/JYFJEP7kO9SiHhSwUFFPXujlxQAIB52W/4JpxFuIrPXtRo6LJ6NUVHjqDy8HAtYY19Bj59Rflb7w5Dx9Y4jqZZM9RNm2JNTFS+jyEh6Co5aF8trEYjZ95/H0t+Pk2efRa3iAi6b9nC2fffR1CraTxpUn1A8y/CvzKokSSJp59+mu7du9PyEnbyJpMJk6lCZaCoqDKvvx7OKDxxgiMdO+JmMDgUbUHJytQEURBoOm0acmoq3iNG4OUsTKXyRlkn25T/1XXQBrnOyL3lFszlXVlz59Llzz8xZGeTe+gQUYMH027SpBr39R86lJylSx1ERr9Bg67deW3bxq6BA5GMRkQ3N7pt3Ihf586kf/JJlW1LDJCTcJGQ43ugTTcAipw6w2SbjYJyHRUnaCrzSETRIZoXet99ZP/4IwWbNiG6uRF3CbJwbWHKyuLMK69gTE8navx4Qm6++arHrA6GVavIffVVyqgIuJ21hixA2ptv0nTi05g/qjCcVInYjbtM/JU4+9FHnHj2WQDcY2PpuWcP2ho8w64G0uuTYMdmpyck5J1bHd5CtmNHkZ0kseXMTGynTqGupkVdtlqRS0oQfHwu29YsiCI+lTSNAHhoCrTsDGnnoOtgCIuueQytlrBt2yj+7DNkqxWvCROqNdG8EmRv3kzu9u0kfvQR5pwcAM7OnEnnjz8m8K67aLdw4TU5Tj3+WtROcvIfhscff5xjx47xQzXGgM6YMWMGPj4+jn9R19lp9V+Lfdspe3oce+Pj8TUYsFER0JRTfJ0DnPIvjQA0eOQRwl9+mYjZs/EaONB13Ji3QBep/K2LhOjqU8x/NWSTCfOGDUqJxWYDsxn1sWPcunUrDxUXM/jnn9FcYmXW/NtvafjGG4Q99BBtN27E+xquHBNnzHAYO0omE4l2t2d1cHDNCrHrKrJjITfdBOVGeIJA2PDhVTYP7NqVpo8/rjwQRTp89BF6e6lL5eZGmw0b6JqaSvfsbALs6sRXg/3Dh3Nx3jyyV6zgwC23ULBnz1WPWR2sZ85Qgp1gTUV20RkWlQrdtHdw+/UPNE0aodcqsakw5j6EiMjrcl41IeHVVx1/lyUlkfzuu1c0jiUzk9O9e3PIw4PEoUOxVSoXymcSKlk9AM1bOswSVY2bgF6vvBGiCO7uiNWICJp27iQ9NJR0Pz9y+vdHKq2sXlMHdBkAI8dfMqAphyooCN+pU/F7803UkdfmM0pZvJitffpwYsoUR0ADStC274knWB8QwLEJE/iXsjP+0/jXBTVPPPEEf/zxBxs3biTyMl/wl19+mcLCQse/lPLW4HpU4MBOuKsXCfO+IQyovFZVixAaXTGfaoBglFVwRMuWtP2s+pZOAPSx0CEROqYq/+tjr8sl1BlaLaqYGKUl3A5NixaAYoZ5ftYsDo4aRdL777s4nJdD5eZGzJQpxM2Zg28t+VyXgyU9HUtGhtJNYl8BC4KAaO+yafz552grfd893CAwTACh4mccdddddFq8mOhx42j94YfEv/VWlWMJgkCn2bO5PSeHO/LzaeYkvFb+ui48vPaWB5eAbLNRuGePo6wHkL9jx5WNJcucnzSJnV5e7IuNpajSOPrBg118qaoLamIi/REEAc1NQ9HvO4H619WoVmxG9amrizkmI7z/DNzdCT5+ESzX1kEcqBJonH73XY49cL9jIjUfPEjJRx9hvIzO0MXnnqNk+3aksjKK1qwhvZy7Yodwi11CofxH3KY96iV/OF4XQ0PxWr4CVecuqLt2w2vFasRqyvoF48cr6tSAaeNGznXpQvG+fXW65H8Kkiu51jvDA+UeZ/nyS7aKIqtUKjaFhJAeE05RqC+m92b8ZedZj7rjX1N+kmWZiRMn8ttvv7Fp0yYa1kKOXKfTobsKX5L/BNYvB0GgzKpkXnS4puwj4yCyGcR2ELFa4PRGGUupjFoUCb3tthoGdYKgBl34dTr5K4MgCASsWEHBI49gy8zE88kn0fXpA8D5Tz7h1LPPgiCQ8csvSAYDjZ1W1NcDac8/T84HHwAQdP/95Pr6YsnNRePvT1O7IaF7fDwdz59HMhoxr1yC9c2H8dBZEAODYfQzLuNFjR5NVC3aXnVOpQ5LURFZK1YgursTMmzYFZtLWs+epeTjj0EQ8Hz2WdQNGuDdvj3Fhw87AhvfK2wTz//jD1LfUZRpTWVlnBwxgo4pKajsLezaZs3wGT6cwt9/d2QWy4McNdDRGwIvnFBcrdVqBK0Wof/g6g82Zyosnqlk804eAK2+RjLrlcLXy4vcsjK7pKMC+bsFZORlYGzaCs377yucIFnGd84cPCZMqHYc8/nzSsYRQJIwX7jg8rr44KMIgUHI+3YjdO2JOLQq/0vTtx8+W2sONq3Z2VjPn3cQyAGMx45xrHdvOpw9iza0qqv2Pxn6yEgElYiXv4RkgxK7hqUGZcGmQrkf+gIWSULIyiIRxRMu5tXJqLp2R93j2ixo6nFt8a/pfnrsscf4/vvvWbZsmYs2jY+PD27OYmaXQH33UzX4aR5MepCEfDiVD81R0vdGwCxC5xEVho8AmXQga28W3oMGETV79hVpovyTsW/4cLL/qFjF+vXuTZdyAcE6wrxrF8XPPAMGAx6vvYa+GrM648mTnLZnicrR6OBBJI0Gt4YNUdeULcnLhNQkiG0JHrXUWqkBlqIitrVogTo1VelwU6lotWUL3t261WkcqaiIzCZNkOz8DDE4mJAzZzAXFpLw8suY0tKIevhhwmorvlgJGR9/SN6rz2GxQondkVT09aXl6tV42QMlyWwma+ZMMn76iYKyMqwCBJ89Rpw76DQqiImFnacvf7Dx/WDfxorH3W+C2Suv6Lxrwt4OHcg7cMAhcgdKeddLDTq7FqIaCAL0bdsSYlfNroycuXO58PDDDtXjhr/8gt81NEaUJYlzbdsiHzuG3j5dSEAayr2i+Y8/4l/pMzXl5nLu88+RzGYaTpjgsNj4p8CYkU7hS3GERCodTqX+N3Hy+VUYUMRDy295MoptRCkVWWx3oM+i+ejvua/Wx7OkppL51FNYLlzA96GH8Bg0CHNCAvoOHVDXwp+rHrWfv/815afPP/+cwsJC+vTpQ1hYmOPfkiVL/u5T+3fjtvvgwWeJjAlEUIkcA04BZd260NloQvANdilvhLz9Ga0uXCDmq6/qFtAU5cKBtZB5/pqefvqff7Jp+HC233MPJeU+LlcBnw4dKtL0oohvp05XNI5cVkbBjTdi3bMH65EjFN5xB9bTVSdTyWCo8pwoCHjFx9cc0AD4h0CrrpcNaPIPHWJN+/Ysi4jgZA2S/lmrVlUENAA2GydvvbXabTP/+IOD48aR8H//h63SuVuOHEHKynLYCUjp6VhPnEAfHk7LL7+k4+rVNQY0ktVKwaFDGFJTq32dkiKCV35Kiyho1QCC/JSJVSoq4uwTTzg2E7VafEaPxuThgS0ri9DuPWg561N0LVpC977w7R/Vj18Zne1deuUR/Q3XvmsvYvJkiqngAIHCYcuzKosKI1ACXATEaiY+S1YWBcuX49mzJ41WrCDs1VdpsmHDNQ1oAGxZWZiOHsUsy5SimL5m2c9bAIRKar+SxcKWnj05MXUqCdOns7FTJyyVmzQsZiVj9jfBvPk7R0AD4JG3Cp2XElSawZE9k1EI5ib73xJKgHPwk1l14ttcHDmS4qVLMe7dS8aECZxt1IiUG2/kbNOmmE6dunYXVo9/V/mpHtcBogiTP8Bj8gf0O3uW1B9/RBccTPS99yoqva+sQv7yMeSUsxjyApG+/AnPN1oh1DI7BsDFBHiuK5Tkg6hGnvIztvh+qGur5loDCk+dYuOQIUoXhyiSs2MHN585g1ATobYWaDR5MjaDgdwNG/Dr3p0mb755RePY0tKQnQmbNhu2hATUTZu6bOfWti1eQ4dSvGIFAF7DhqFv1eqKz98ZsiyzdfhwjGlpyJLEkZdfxrddO8IGu5ZcNH5+LqqpALaiIsdvrrzLJWfDBvYMH65kBGSZktOn6VDewp97ALVXBuh0ioK0IIBOh9igAVsef5zjn3+O2sODAd98Q8NbbnE5vrW0lC19+lCwbx+IIu2++IKGDz3kejHrfkO8mITFBluSodC+bPaRJPSFhRiPHEHbqBGihwdHH3yQ/C1bkG02Ur74As9mH9Fg89G6vXn3TwKdm2JR3q4njH7i8vvUAZLFwoGXXnKUxySUm7GAUgKxW6cCyqR68exZnJvNjQkJnGzXDtkeWEZ88glh9lLltYYqIABVYCDWnBxHIOOmBr0AkW6gkV15Z8UJCRSfVPyxZBSF3vy9ewnubw8MP50Kc99SbCcmfwq3Vfqs/wKU7N6Nd6VbmL5VSyw7jmEDrP7+WIwlFJWZUaNch3MIlrv/ABmffUZYOeEeKFi+nOI//8StbVsC7r/f5T5kPHiwokQIjjKeVFRE3syZhF2Km1iPOuFfk6mpx/WHZ6NGxL38Mg0efBCx3HYgtj2GBveR/X0OJatPUfbhhxTb21BrjeUzoUxZqcmSjdKXb2ebtzcH+/TBWlx8mZ1rRt6+fYpnkSwj22yUJCVhKm9NvZgMo/tB50iY8ZILF+BSELVamr3zDt337qXFxx87+Bp1hSomBlWTJkoAoFIh+PigvuGGKtsJokiDZcuIXb+e2PXrabB06VUFZc6QrVYMFy8iO117yZkzVbbzad0alZ2jVr50cG/Vil2enuzy8iLTTqrMXrdO6Zix2UCSyF69WhFpfL8rPN4B1eOjCOlhQ9MqHk379gT+8Qepe/dy8rPPCJZlfEpKWDdmDDaLxeX4Kd9/rwQ0AJLEkaefrrqI0SkzUHJhRUADUARo0tI416YNiTExmE6coDQhwUHwFlQqSqu55stCpYJ7noX3foIxT9bceXaFKD13jtKzZ12ekwF/saqEggyUOGWwyg4eJHHIEEdAA5D24ouOvy2FhWSuWMGZuXPZcP/97Hn1VSwlJVd8roJGQ+Qff2AVBGQg3BNa+EC8N/hoQD98mMv2buHhLoR3RBH3mBjl75MH4Ys3lN+jxQxvToD8HP5qiM0GkOuUOM3NiiZ27S68+/ZFB+gsFrTNorCBSzdoOUpRxDDLkf/TTySNGEH2nDlceOghMqZNc9neo18/5TtV/j1yqukL2kuJZtSjrqgPaupxWVh27KjoFJIkzE4/5lpB7fSjlWVsZmXNU7h1Kxer0V+pLfw7dFCySYKAoFLh0bBhBfn16bGwZwtkpMKcd+GnBVd8nFohPRXmzoJff1BaqjUa/LZswf2pp3B7+GH8d+xAFRJS7a6CSoVnv3549uvnaLO9FhA1GsKGDXO8P6JOR2ilLM3Ft99mX1gY0rlz2AICKFSrKQBK9+5FKitDKi0lcfx4TKmpeLdp4xIseDRvzp/xsfgf3gVHgTxQpVsJjMklaMcOdP36YUxLoxvQAbgBaGkwYDMaXc5BrhRwVn4MwIBbodfQKp3JglqNxj652woKyH79dcLtJGlBrUa22QipoZRWE05++imLg4L4MTqa1GU/w5w74Lkw+OJOMNYchFvz8yn6/XcMtTBfLBe1dEaHd98l7OFH8G3TRjEzLb9GQG8PCoxnzpDQrRvmpCSXfWW7xo4pM5NNLVuyZ9gwTj38MKkLF3Jg+nTW3nln7S6+Bpz95RcSZZkE4JSponFLHjQMsbMr90rr70/nX37Bo2FD3KKi6LhwIZ6NGysvFlQKYCQJiguu6tyuBCEPjaek6WRO/hlF0pk+eL2xi5LVqynbqPCopJISrKcvIqFkyiqXNATA04nwXrBsmXKPtJfUCn76Cd6eCl2bw7iRRHw6G/9nn8X7jjsIfu89h7Che3gIQYYcmDQRLl7gr4IsSZx44QVWBwSwuW1bio4d+8uOfb3xryk/1ePvg6Z7d4zllgGiiLZ377oNMPI52LUUMs8jSQJnT1Yo1lrz8mrcTTKbKTt/Hn1kJGp3d4p27sSSnY1P376ovbzwad6cvitWcOqTT9D4+tL2rbcqshwJx6HMpswMKuDEtXf5dSAjHXq3qZDe37AaZi9AFRqKl72r6e9C89tuw7JyJTabDW+NBiEnB+zqrpbsbJInT3Zsq8rNxYBrGQoASaJg1SpCRo+m+TvvcPHbb3Fv3JisQ4dwV51HyKZiBpag5FA6KaGhNPjjD4JkmXwgF2VycAOkCxcgPt4xfNRdd5E0axZFx48D0Oqdd6oKu2k08PnvRD9xmLPDbqEsOVnZt3lzsO+HLCNbLDSdPh33Jk0oPXmSoGHDCLB3ttUGeYcPs7ucoyMIFL8/Grk5CLIN9v8CPmEw+uMq+1nS0jjTsSPW9HQAwmfNIvCJmktWQmkp8cA55S0jGgjv3h3dC4pVQ+r8+SQ+/DCy1YouLIx2Bw4AULx+PXKloBDA3Z4FTFm0CGNamuN5b1mmRJa5aLcruBKUJCZy5r0KscJUCxS+8zm+TZsgdO/j2klgR9jQoYTZDS1d0K4HNIqHs/bPrOtAxST0L4YgisRMmwZOGZViJ72aElkmt6QiJegb6kV2RjHl4XZgeDgRTsaW+ri4imywKOKZmwrv27vlzpxCdTGZkA0VKt6+EyZgPXYU7d1DEJba9dZWLYM9Z5QSbm1RXATv/R+cPws9ukJkKLTpBRFV5TNkWUYymxG1WlIXL+bs++8DYCkoYP+oUfS1lwz/7agPaupxWbg9/DCywYB5zRrUbdrg+X//V7cBAiPhi1NYk46yse8QNPnZjpdC77+/2l0MFy+yo1cvys6dQ+3rS4NbbiFvwQIA9I0a0WbvXtR+foQNGoS7vz8XvviCi599RuxLLymeSRYBl77en7+BVz9w2Ak4o+jIETJXrsSjSRPCRo6sMqHKZjOIYs1O4KuXQ16FIitLFsGHX8LfnFa2ZGaS8tBD+JXfbI1G0iZNoulmRV1WMpuraKUIKKRIuwa047lz48eTNm0aLXfvRhsdzYFnnqEkIwPCQI4F4YKdByJAcQnYCgu4OGECQePHI2rBV4AcM5TKkDp7No0+/9xxTI23N3127ybxpZewXryIr9WgvJ/+ldR1BQFdy7YMOH6cvN27cYuIQJWXx4X+/ZENBgQ3NwInTUIQRaIefNB136TT8PsSCAqBUffX6LJd6twOLct4e9qc+q1tkJFQ7X75Cxdizcx0PM78v/+7ZFCjadmSgPbt8bYHK+qWLdE6KfhG3H8/EfcrmjXO30d9s2Yu74eg0xH0xBOEvfYagFIutX+m5URXQRDwq9RhVxMuLlnC6XffRe3jQ+uPPsK3TRuHGKQzpNbtoZpyqguSzsCyHyEgCOKaIZ04CF37I367U3E81+qg/63VBkV/B7xvuYXMqVOxZmZSeallkt2Ju30wudu349+lC60WL3bJqoa8+CLmlBQKli3DnJWFqjAP2akCJx85QOkrk9DfdQ+qhg1ReXmhMhRDkRPvLjUFzp9FbtocJKl2Wdt7boadm8ELSFoOgCSqsc3eTLHkji4gAI+oKPK2bOHAyJFYcnOxiCIWSaooc0oSpQkJSCZTja7r/yb8a1q6rwXqW7r/XlxcvpzNI0agRYmmTcCItDTcwsIwpaVhy8/HrXlzBFHk6MSJJH/2mVKKEATUsozzJ9boyy8JHT+esqQktsbHI1ssyIB369Z027IJoYkvSE5fbT0w+h54Z5HLORXs28e2bt2UsookuRrvAQVvvknB66+DSkXArFl4Pfxw1QtbuQzG3aL8LQjg4wtncv/2m3Xxpk2c6dvX5TlRq8Xn0UexlZURfP/9ZH79NVlffw0o3TYZKIktb5QSSblRqQggioQ8/zy733+fIklyECejm8PQwVC2HXLPQH6B8rwmKoq4Li0QN6xRXAgkOFQI/nePpWkls9DEF14g86P3aRcA7mqQ1WqE+cuh3001Xt/F778na+VKPKOjCevVC7d27VA7lfhsRUVIRiMaYykMbgVGI0g2uHk0zFpc7Zim/HyWxsdjzMxElmXa3xhD64jzIKpBssK4udCzKrE1++OPSX/2WSWgEAQ0ERE0v4zYp1RSguH770GScBszptby/1mffELWJ5+gDgoieu5c3Fu3drxmLS1le+vWFNnLUwYteIRAjz5qfB75ErpVv4gAKDx6lPVt2oAsI6hUaAMCuCk1FUGlYs/o0aT++CMAocOG0XXZMhfulyzLmLduxZaRgX7gQMSiAujbGspKkVUy6JSfoyhAnpsen93ZiFot4j+MT2LNyqJw+XJ2PPywS8CvCwtjkFMGrCakfvAB5194gQCNTLNKfRA5JWA2gTooCP/Nm1HPmIy8YqnyogA2BPaJAUgFhagsFrxat6Txn+vRBgfXfMAwlZIhigbZro4tyXCuyI1dxwyIQHCL5nDqJCFasNjAbIF05ZCEAsWATyQ0/GAJgXfcUbc37C9Ebefv+qCmHn8ZMrdsYZ1T6UpQqRiVl0fON9+QNHGisjLu04f41as5OvRGUtZvqiCuiqCXlEx1ZCygd0d86VsuJhZx9L77XI7Tf+ufaO8aWOHxAMos7aaGI64k1UPjx5Py9deOG5guNJRB9hJCFYdgUSQqLQ1Br0dQqRDKDQhlWamJL5gDPn4wdzH0HkBl2HJzMf78M4KnJ2533IFQQ7bAGZa0NPJnzkS2WvF74gm0lYw2bUVFFK1Zg8rPD6/+/V1W9dacHI42aIBsl7O34tQ+rFIhiCLNVqzg5BtvkLVtG2UowUt5MAOK+JijM0oU8Z8wgV2ff05l2umgFnpCTEbOn8WRog+fMZ3A9ye7bHeqGIKW/EZApQ6o3c2aEZKWQIyn3VILEGKbwtbqMyPJc+Zw6tFHHS23DSZOpNXMmY7Xs7/4gpTHHwebjZh+nfBP3IdQ/m0SRDhrdlGUdkZpaipnFy5E5eZG04ceQpOwGs7ugMbdocPt1e5jKykhacAADLt3I+j1RH/zDepN67EcOoTQfwBer06tIN9fZxh++YWs22/Hrxl491Gek0rBsAlsxXrU/QfituD7iu+vHSmLF7N3zBiX54ZkZKAPCUGWJPJ27kSWJAK6dauSRSh4+WXS3n6bMkCt09H0+Ym4z/0AWZYpFiAtW/mZeHuAvz8cSFEIso2++IKQSr/f2l2kAbauA3cPpVX/Gi8gDo0fT4qT71n7xYuJqIWgZemsl7F99zYWI3gkgyAr3mIqAdIKlZhaK4q4Dx+CtP4P8kwQ5Kb8ZpLKoMC+UtBj74Tz96NtalrN8hkNPMBQBpEVO0kynEyFI8kVtjYy0Nwd4txhSU7FbxSgFdDkaSi94RsC76rZXPTvRn1QUw3qg5q/F7Iss+/JJzk9ezaCRkPnOXNoOHYsuzw9kZ06YpouXoxu2WK2L1mOVVZ+3O2j/MktK6RVR4WoKgMWQcu57lNIfHWqkklQqdAFB9P32BGEgQ0gp7SiR1YrKD4z6847jiNZLKwNCcFil34HJdPT2070NGzYQGZ5G6odfg/ej23hfKWj470P0T9ZUVfHZlO6G6q5wUqFhWS2aoWUkoINMMTGoh08mJDHH8fdiV/iso/RSFLz5ljsK35VYCCNEhJQ+SjGoLbCQk526IDZ3kUT+NhjRH/6qcsYZYcOcbpbN3IMBsp7Zdzs/8rhNXgwmRcvUlzOTREEtGo1bv7+ePj7I5w5A1YrbvHxNF2zht/btycnK6tiAEFg3B/L0L40EUt2NoaeA9E/NwmP1q2hiT+yyeTg6RS+OA2fF10DHYDjd92F58olRHvIjqBGDo3Euv4ogiiicfq9mjIy2BARgdVeVnMDxCZN6GfXAbIVF3PYz8/RQuvjBo3K+6FFEYJCYU8NejhXAVmSsCQnowoMxPD0REq//YYDZokiQOfjQ5+tW/G9Ru36lzuP4rF34JXzCydyISMZPC3QxGznG4gi2ucnoX/dtUOnLDmZNU2bOspNMtBt9WrCK5HLqxzPZuOMVku+E8HbLSSE1nImkqQkLZ2TpiGBcNJOXxHUam7IzUVdw/3YXFDAhZ9/Ru3hQfTttyu2IQYD3NIdjtnFCO+4Dz6aX4d3qHqUHDxIxhdfoPb2JvyFF8jeuJGiI0eIGDMG79qU745thed7KXo2Vkg6IGLIV94TbxGQ7ARxQUA/5EaK1q0iy6RkSipDR0X5t+X+/Xi0bw+AISODA6NHYystpemrrxKangSvPYNBDaoIpeKdUwwbjyvVUucw2kMFXTzhD1drMEKAziPBY1ER4lUKeV5P/M+J79Xj3w9BEOg0axZ3FBVxZ1ERjR54wNGO7Qyb0cjxLbsIECBGBe09wKtlK5p/X3HjupAJ3682s/PVqeQBklaLX48edFq7FsE/EOathwEDoWEkuGshoiF8+KNj/5zNm1nfuLFLQAMQ5aSPouvWDY3TJKTr2BHrAvs5SBJlzz+D5MSjwG4i6QxZksj95htOd+xIQUoKeSgKpSGlScSs/hzLjW0wJ1avcGs+dQpLuQS+zYYtM1PRu7Ajf9lveGvOEt4R3AIg57PPsFVq3XVv2xaPW291BDSgiKeVTz8yULxmDR1mzOCm9HTiJk+m0cSJ9Dp0iP4ZGXQ5cYL2qam0PHSIlgcPoo+IYOjBgwQ6BWKdp03DY8hwNEfP455RSsBPS/Ho0gXc3eHzbxE8PJX35umX8Xnh5Wqvtelnn2HsNwyTDFYbGMxw5NRFVvj5scLXl4RXX8W8Zw+mnTtJ+/BDR0BTfj3edvIz2DuB7N8pjQiROioU1YJC4cvfqj2Hq4UgimjtfAnrrl2ctygBDYCpqIgDEydel+NWdx7e097g7BlIOACFuZBaBAnlmUtBQE6p2mnjHhODR9u2jjZmM3BmxgyslYXzKkMUsVbKQpmKi+GJF0GjcgloQJl0yyFbrTUaY1pKSljVsSO7x49n+5gxbL7lFqXVf9v6ioAG4McFkJVR4+nJRUXYPnob25tTkM8nVbuNMTmZI926kTx3Lmfef5/DffoQPmoUzd96q3YBDUCiwo8SgMIMHAENQLGkBBgqALUa91enou/X30X7phzOmlGCKKK1qzGb8/NZHxlJ3ubNFO7bx94RI8iJawsrd6F/Zy4nuk5kRXE8x+JG4R7f2qUNXUAJatyqSU66AdrePf7RAU1dUE8UrsdfDo2T6J6o0xH9xhtceOUVADzatePoSy/hlZWFDmUeyimFglWb0WWX0DAmCKE4m+1OHYg2wGA249OgAV4tWypPtukMX6+t9viSxcLeESNcb9b2tucQJ1dqUa8nbMcOyn75BbRatP5+lAxz4njIMnJJCdTQqg2K2WD2xx8joJR+8rFzVAqggRq8VDaksQPhx43IETEYvvwS2+nT6EaMQN2qFYJe72jXRaVCG6t0NchWK+plLxLVXXmTglvB6VWaajUvvO+8E8pF8uywopRtBJRSk2Qw4BYaSnwlfQ0ATXAwGqe6vnt4OLcfPUrxuXOo9Ho8wi/h7XXz7TD8NiXIuET5RePnR+zCb9nh4+MoeUkoq8goWUZ86y2y7eac1kau3TIiEG/v5ABQBwYS8NBD5H71FcF60KrsF2sVQB8IbS9DcL0KlJ44ga24GHW/flhOJSDI9nKfLGMu11D6KxDTjAJdKApLSkGRjJKpkiTUd46pdjf3hg3J2b8ftc1GJKDavJl9MTG03LgRz7Ztq91HEASCp06leMoUx3P+o0bBq+8gvvI2+natMR5WfrBWIMtUMfEE9O+DNiys2nEzN26kxEnLJ23lSsouXsTD3aPSCYigq748I8sy1lsHwcG9IAhIX89BvecEQrDrb7Zo2zYKjEbK+8pKTpyg2cLH8brrbdDVMqsf39Ohvi5Jzo5eyl9qQIyNxW/FCtTNmhG4bBXZPbpj2LPXZZggLZRZQNRpafD1PDT2+8v5zz6rsgBMmT+fwIULETp0pu1YaGt/3mY2k7NzJ8dfeIHCfXvxFKCdJ6CCQKC8z8sbiLi1L7onN9TuGv8FqM/U1ONvR9SUKbQ7doyWW7YQEBqKJSvLQVB19mAx79tPlq0zeQkClkpLHBuQv7b6IKYyrCUlWAsLXYiAns2accMff+BRecL09MRzcF88t89HM/sR3NtVGPdpht2MGHtp5/Hyji0bcB4lqCkAzpjgz1Q4mAti2gW4qT3FTz1F8WOPUTZ7Nvn9+iEdOULk8uXoWrZE26wZkT/9hCY6GlB0Mby8shHsJt2CAKHD21RLvAy66Sb8K/k4laAQta2Ae+vW+FXXfnsJCIKAd2zspQOaio0vGdCUQ+3piZcTV0OF0upc+SbldvYs4aGhCPZt4u+6C7fmzV22if7yS5qsX4/PzTe7cmekqq7r1wpJr7zC3vh4DnTpwqltO2lYSVU27rnnrtuxq0AUCXrRHqAKAggCISNuQffq67iv24pmcPUE7LZvv41nbCy+VLzvtqIiUi6jVhw4eTLNVq8m+IEHiP7gAxp++aXj2A0OHiHi11/xfOYZDIMHE9CzK1GhWuIiIC51E3z9XrVj6oOCXB4LGo1ShuzWB0Y/4LhO3vhYIedXh/Q02L9bIdPabFCQh7xza9VjNW2Kc6O8DGT/8jn8MLz6cbdthC5NoXU4zLerATdpD9NWQ69R+D4wHk1UpGPzkNdfJyglhYDTp8lKTOTs3LkYc3Jovms3ATff7Chbi0C+TYXVy5v4s+fwH3O3Y4zqFNg9yxdxlaDSalHr9RTs3YssK5mi9VZvVOdL6bf8Nzo98jAtH3uMPidP0uDX/52ABuo5NfX4ByFjxQoyhg0jC2WFDhVBTbmEvP/DD2P48kuOgEvbZTAQNXw4rZYvr3F8a2kplpwcdJGR7B48mJwNG8DO1+hz/Di6kBDyd+/GWlRE8alTqN3dibznHlRPDMB6cCfZORKCAH5jHkboNgzNjTfV3OZtx/G4OEynT1MGlLM4KtOD+4eCjxay89yRSuwe6Wo17k88gddHH1U7bu6iRbgvuxe9b4U1V0Zua0J/rV6PR7Jaydu6lfSlSzk/c6adjSsT88ADxM+ejaouthfXESdiYrA4tVXXZPXn/thjeD7yCIKnJ2q7GnK1SD4HN3aF7ExQa2D+z8g3DsdcWEj2rl2YcnOJHDIEnZ/fVZ23paCA7ZXGiJo0iZCHHiJ761a84+MJuEIfsSuFLMskL1hA1tq1+LRuTZPnn1c4KbXY7+TIkeQvX64EA6KI35AhtPj996s6H8lkIrl7d4z792NGSa40igJNYCDsyK52n8OvvsrxGTMQdTo6f/klDe+2T/LmYkhcDd4NIbJjzddiNGJtHAxlpQ4dGfWm/Qht27tuJ0ks9/LCVlbmyCK1HQnRbYGXikHrRKo2GCDePmb59PnnfmjtOqatqIiSTZvQhIXhbv/sDz7zDKc//hgAbUAAgw8dwj1SCX6sBQWkffIJtuJiQh56CHfn9n2UsvzG5s0x2D3uPJo1o++JE1U1ncrfu6ee4qwTeR5gwMmTeFca99+CeqJwNagPaq4/JJuNM7NmkX/gACH9+9Ng3Lgaf3SVsb1/f9iwAQklixCAslpUlf9r0oRGBw+S/+STlC5ZQoJKRZHBgKdKReSwYTT9/HNFo6YaZK9dy8Fbb8VWVoZnXBwh/ftjKi1F27AhUePG4RYTw95bbiGz0o07oE8fOkuHOLynAIN9KecRFUqbpBQEtRrjsWMk33475nPn8Bk9mqivvnLpakqdMoXM6dMxAeVTdeVppaU3eKhBZ/PAVlTmuFF6zp6Nh5O3jDNsRUWcbhFOdKdSdJ6QexrMnR4navbsS77HsiyT/MUX5G3bhl/XrjR49NHL2jJkbdhAyenTBA8ciGelTFZtULB3L6kLFqANCqLhc89d0vOrcOlSEm+9lRKU1bIXSoBb+Rvks3AhHmPH1s5SorgIjh6CBrGUIbJm4EAKT5xwvOwRHc3NBw+i8/ev87WVw1pYyDZfX5fnPFq1otORI1c85t+JkgMHONanD7biYkQPD1quW4dXly5XN+aff5IyaBAlKDYDAFo1dOzRAO3GczXuJ1mtCKJY8VmXpcPyG6D0IiBAz6+g6QM1779tM7ZnHoHSYsTnpqB68NFqt0v77TcO3Xab0tIOeARCj5dCEZ9Lc+XKpadC20jXnb/+GYbddsnrl2WZn3S6iqYIQaDthx8S9/TTl9zP5RxXryZp9mzcoqNp/e67aCp1sDkjecEC9lfSARuSmYn+Ui3i/2DUdv6u59TU45ri+Ouvc8Ku7Jv8zTfIkkTsjYOgtBQaNblk66WqoMAh+uaGQgD1Dw7G6+WX0QcG4n/nnQgaDYFff03g118TU5fzevRRbAZFt8GWkEBagtIqHHDzzbhPnUr+nj1VAhqA3E2byL2jHwZjRYq2NCWD0mPH8Gzblgv33IMpMRFsNgoWLcKjSxcCHq24aXr370/m9OnogCAgG4UrUj4Vewhw1k7t8fGCSFlGjaIZI5rNVGIPVLxX3t7Ebj9O0ogRGBMS8I2NxVerxXL4MBrnNvRKyJw5k5zXXkPQ6fC57bbLBgWn33yTM6+9hhkQ3Nzou2sXPk66KJdDyalT7OrRA2w2ZFkmb+tWOq9fX+P23iNGUGznfYDSGRLaBLw1UHIOJBOY2rfh6KOPIj/8MA3eeYdwJ2XXauHlDd16AXBw/HgKK7kil164wIVly2hSgxBkbaD28cGzY0dK7B5WOkBz/DjHW7Wi8cqV6KKirnjsvwOe7dvT/tQpihctQhsTg2fHmrMhtYXK2xuZioAGwGyF7E4jiLjEflVa4RO+hrJyzRgZ9k5Gjh1H8ZYt2AoK8LrpJmSDAZWXF6JGg9ijN+Ley6vlaj09EZzW+KU5kMV4TA8/jC42luBnnlFaq0PDoUMXOLhHuZ95+0KXXpcdXxAEtL6+mHJylIWLLKOrYRFWHXJ27mTrkCEIoogsy5SlpNDzEtmz6HvvJWXJErJWrwYg7tVX/7UBTV1Qz6mpxzVF2ooVFR1Nokjm7E+gVSR0iaOsa0sOdOtGwiOPVGtkGdi0sctjAZCzsgho25aAsWNrpetSE2ylSqq4chSfu3w5xosXaywjCVotUly3Sk8KaOz1fsvFixXuuyoV5kqCa179+hH50Udo9Soi3MBLVPg15SRd586QwuJSclBIfCWCQOllPLZ0MTHErlmDd0QEmhMnKPvkE7JuuAFLeWt2TrayqrSj7MgRkp9+GltREdbsbBJHj1a4RTWgdOdOil97DT8gHFCbTFxYtKjG7atD7oYNyGazQ9wwb8MGbOXE52pQvp0L9ODVGMIGQmB/SN9/BKmsDNlk4tzTT2O4nGGlIQcubICSdMz5+dWamx6dMoVzdv7TlaLV77/j1qwZnkAY4CtJuB87xsm2bZFluapJ5zWEZDKR9uCDnA4KInnAACx2raVyXHj3XXbGxLC/SxdKy78fl4BstVI4ZgzGl1+maMwYckeMuOrz199wA34TJ1bJuqni29VtIJXWiYMrIIsaTnTuzIn+/Tl7223sdXdnT0AAe4KDKdq27ZJDWfPzSZk2jQtTpypqzOWLLkFAEEUuvvAmuV9/TdqUKVwYP97xGj+uhSkz4KnJsGYvBAbVfBAndF28GI1dkiF6zBiia6F9U47M9euVzjX7b6Rk/VpsLzyB7ZXnkTOrdn8JgkCPVasYkpHBsNxc4t94o9bH+jejPqipxzWFf/v2FcJcsozPqQqOh3viCVT7dpL+1VecfrRqCjiyYYgj6BDAkaWwPn6/yw21eN8+0j/7jJL9+ysPUSMa24mO1d6WbTZ82rVzldZXqdD4+dH+u+8wfz4HHyqIyxG3347O3mbpX76PKCKoVPhWYxwY/PTTtDxyiLg7+nLj8NZ0HDmUZr16oa8cSAmCS6nO/XIy9MCeESPQnj2rTBSSBBYLxhUrYOa70CxYCShvaAqb/sR88aLLvrLZjNXJ76YyUl5+mQTgNHASUEkS2qDa3bzL4encDqtSoY+JuaSKrKhWE+T0HoqCgFerirKH1TuyirWD2dnaoDKyD8PXjeDn/vB1LI1bVU3XqwFzejp7HniA/EOHLntNLijOgVVvw6p30Hlq6LBxI87mDgKgz8vj+GOPsUarZX1oKLmbNtXtGLVA3kcfUbhgAbacHMo2bSJjwgTHa8nvvkvSSy9hunCB4n37OHrzzZcdz7x3L2a7nQaAaeVKrE4luyuBIAiEzZxJs4ULEexy/P5DhhB81111GyjuYfCzSwqIGtJTh3D6wAHSUDzGykNWW1ERZx6ouSwlW60c7dWLC6+9Rsq0aZy54w6af/wxuvBwdAH+BMqSMkHasyqFK1ZU7OzppbSsv/QGxFyC01UJIf37c2tuLrcbDHT97rs6CTL6tW3rCMh1apHeehvSvDlIn3+M9aaeLlpfztCHhKC9itLqvw315ad6XFO0/fBDJJuNzDVrkNPSaFap01IEsNko2rWryr766Cia+EJGgfJYQOGaaC+ep+iJR/H5dA65y5Zx6tZbHXL0zZctw394DR0KToh59FH8unWj6MABzj3zDDZ7hiJk7FiHA3KbuXNpMmkSZRkZmAoL8W/fHvewMC48/jie2IMsQcDPiVsQOmMGNp0Ow/HjBD36KG41lX6atIQFGxCBRoAxPZ20Sp1DUePH4+/pSdmuXXj270+Q3dywJkgWCwW7dyukS/v7hSyjDgyEl5yk/JPOwKjBeP64Fm1UlBLcyDIenTqhuwTJNuPiRRdR5lxRZGAdtVYC+vShxezZnJ85E11ICPGff17VW0uWKVy9Gmt+Pr5DhtD8u+/w2L4Vc0Y6PgJYf92HbcFsVCE+uLe7Cc+UIZTs2QP26zbfPBTz6rVoe1ZTAtj3PliUgodsM+GesRBvFA0WEacOH/t7V5yQoEwetYHZAG93hWy79sm2rzEOX4ABhTdVnle0ajSkzJmj7JKVxcFRo+iXmUnZiRPIViuebdrUmndW46kkJlZkGWw2zHYhwsIdOzg3aVLFhjYbxnPnkG22S3oLifqqWdFyZ+mrRci4cQTefjvWoiK0ISF1v3adL9xyAIrOgFsIhxvEuyxWZHAE+daCghqHMSQmUubkTm3JyODUs88iSzb6Bmoo84DzTrJP+hpEMusKQRSVrFAdET5sGO1mzuTcvHmEe+jQHNtd8WJSIqQkQ2zjmgf4j6A+U1OPawqNlxed583DS61GCyQ79UkWWiDPitJNMaCqjQB3T8C/W3viwiDMXfkX6m43SZzzBab9+8mwTw7lqPz4UvBu04bI+++nR24u7XbsoMP+/TRzKqcIgkDRuXOs69ePzcOG8XuTJuQdOID/xx8rtgKAtnlzPJ24F2enT+foG2+Q+Msv7L3tNkqddDUuBV1oKAHlasWCgCYkhKYzZhD+wQc03r6d0DfeuGxnVcrtt+MGJKHwjyyA6s470Q8eWCWbgSCg3reDCCdfK2NSEqZzNRM0vSp9RpqgINTu7jVsXTNiHn+c3gkJdNmyBa9qJoZzEyaQMGQIZ+++m6Pt2mFNScE7I41AZDSyDFYrVqMH9BmL4BNAyw0bCGnbhlC7OKNoMlFwR/X2BYhO76EkKzL14PAfEwFZEBDUatSengT26FFlCEt+PieefJIDI0eS9uOP7Hv0UVa1aMG++8ZgTUsEWQJZomD/GY5370kxSmeeCbCKIm7OwaksY8nJ4fSECexr1Yr97dpxYvRoytLS2DpwAJuiwzg05k6s1ThxXwretylaQLJKhQlQdeumcJhWr67CYwsYOvSyZokaKQNPpyYZr3hQ+1w7s0OVu/LDvlT585IQ1eDbHJvkhjGjovRS+V2LfOklDElJXJw1i5zly10yvtrQUASnkpMM2Gw2QjSglyz4aSHMDXQiaKOiaLi4er+wq4Xt5AmMb7yG+cvPa8y2lKPpxIkMPniQlgu/qRD7FEWFNxZSvd7Pfw31mZp6XBeofXxAFDlVJpFmEYh+4H7U7W8gYPUaPOLjiXYS6nLAyxuW70F18Tye01+HJYrpYbEJrBLYsrMVEThRdFgSaK6A+CaoVPh07Vrta8emTUOyKiI4NqORkx99RPdvvkHfpw+29HS0LVu6CNyd//BDx9/WkhLSvv2WJpfR9AAlgOrwxx+kLlyIraSEsDFj6pQitpaVYVq+nBggDTiHkknyWL0a9a23ous2APdt6xAF+z1bkqBFK9JfqHjfbQUFZH76KTFO1+CMltOnk7xhA0VnziCo1XSuZMFwLWArKSF77lzHY/P58xRu3owmNhYpOVk5b0FA1b7CwVrl4YGbzYpedHSmIxUUYLlwgez/+z+k4mL8n3oKt5yzWL7YhloUELuATavi9GobKhSbHG9fNU2/XETm0ZNYiopo9PDDuEdUpaweHDVKKRlJEpm//UapIGCTZYoSElC3rNDyyziOi0N2LmCWJOK7dEHt56dkDWSZ0JEjyXDyFcr88UdO/f47VoOi+5y5+Eeyt21jwPmUKkTuvK1bOfHEE1hLSmj86qtE2n2TPG+6iYjff+f4/fdjysmhYP58zO7u+HTvXsEhEgS0kZG0sBtTWk+dwrR0KWJ0NPrRo12P5eaNTyvwilMeijoRtFfX9l/w88+kPfUUstWKMTaWtF27QBSJ/+gjYp988orH1QgCZvv7LgG+o0YRPHw4+oYNUQcHs7d1a6Qypasw+uWXiZ0+HQC1ry/Nf/2Vs088gWw0kpeWhoRyrzFYFb+mMHcI9VLByZPXLFPlDFviGUq7dQSLWcksbduC+6LLB09Coyao5v+I7Z3XQa9HNf2j63J+/0bUt3TX47ogf8cO9g0dirWgAJ/Onem0Zo2DIFcbyLJMdr8+GDdvQZJBHRdH+IEDyqr5ppsoO3oU99atabFqFbraCMDVEhtuvJGMP/9EliQElYrY++6ji9MEVBmbmzShLCnJMfk2/+QTGvwFcviG9HQSwsPxAQpxtT1QoaTftSJEh3nhHhWBcPeD8PhzHG3fnrIjR5TzVakIe+45ot95p8bj2MxmCo4fxz08HLdLKCdfCWRZJuuFFzj/wQcuzzf9/Xe8W7Sg9OUXMaWl4fnUM7jdPgoAU3Y2hydNIvmbb+hqs+AuKnFEcecuWNMzFY0bWcbsJtMmWlboEECRGZIHPUDG/O+QTCY03l50Xv8nXh07X/Y8V2u1LitoIxVeqSGdWtKnl6IUfOZoQ/LW7QJJUlb9KOKGkfHx6PV6zCEhaO+6C9+OHdnrJBZoAIedgjN6rV5NmJPvks1gYENoqEKyl2VkIPCee+g4fz6iSkXWzz9zYtQolzG6HVpJ5tINpC76FbfYWOK++gp9TAzWkyfJ7dABTCbFJXziRLydNU1kGb5+HNZ+DqIKHpgNgx657HtVE6xZWZyIiACrlVzsWUWUz8YgCAzOzUV7hVpBZ6dP59SUKciAX6dOdNmyxVHeOf/GG5x/4w0HmV/l7U3PGrJDx555hvMff0w4Fd5owZ4iAV/NhzvHXdG5XQ6mWR9jeunZisyqKOJVbKmdVMF/DPUt3fW4psj97TfOPfssSBIN3nvvshb1ft260T8zE0te3hXVzQVBIGjNn5T+8guy0YjHbbchurujc3en3ZEjSEZjzc61V4G2M2awfu9ezHl56ENDaVldRskJrebP58CIEVjy8gi86SaiyjsknFCamEj6kiXogoOJuO++WgmgXQ760FAKe/RA2LaNckH2ciuGHPtjvQTm1GIa/7IAj87K5B39wQecHj4cqawMXUwMobd3gdR9EN6h2nZ7lVZLQLs6dqdUg+LkZJJ++QW30FAa33knokpF6apVZH/wARqUSQ4g8L778B0yBEtuLicOHsF45gzs3I1Hp/do8Pqb7H/0MUqTkhCBnYBWgqge3Wkx9yvO2QOFMkClc9CuEFDEDRPmzKPrl1/i3qQJXq1bV2TGTu6ErGRo0w98q2b+fDp2pGDPHsfEaEPJ9sk2G2F3PQDPPKO8t+fPU9qvH6Zz55Dtn4U/oDpxAotd+8RryBDc4+IIf+QR0uylU/8+fSiqhjxsMxhcHpuzs12sPQQg5ZtvCOjZk0bjx6OqvFIXQLVwCFFaiHrmBnjoZ9ArCwvjL7+A2ezI4hjmzXMNagQBHvoMRr8Fai3oa9ZDqQ0s6elIVitlKO9feRFTQAlupRrKbYaMDBJmzUKWJJo+9hge1bTGN5o8mdDbb8eSn493hw4u5FttaGhFd6Ioor1EYB7/4Yf4enhQ7GQVkmUU8b91dJWOrbogdc0a8o8eJWzAAAIq8bXEBg0pscqcsCi/gVAfd9peY8fx/xrqMzX1uCzMGRnsi45GtlqVmUKlouO5c/867Y3awlpWRumFC3g2bIhKd3kegWyzYTMYUFcjhFV2/jzbWrdWWsolidA77qDdkiXX5DxtJhPnvv0W0969mL76CtlmowiFJ+K8WolfvhxfJzK1tbAQc/I59LufRrxo73Dp+CgM/+yanFdlFF+4wI9t2mC2W1PE3X8//ebNI/mhh8j4+mvHdh5AC4OBon37ODZyJJbsbASgVSgEuENWGWyr1LmaC/ScN4+4sWM5ExNDQUYGubKMRQ0DG8DRbCVL46+HM/mKoGOnbduUsgzAz+/C/JeUv70D4JMDEBxN2ZkzZH73HZqAAAKGD+f0K69gSE4m4oEHMFut5GzfTmC3bsSOH+8SsMuyTM6vv3Ly3nuRSktp7qXFXTJjskKJVcRj7D0ELVig6IycPIlsteLesiWHHpnAmbkVGUHfuKb0P3gItZPSsyxJbG/fnqLDFR2FpSoVTZ5+mrbvv48sSRzs0YOinTsBaDIQIpxFbrtNhJuVwMWwYAFFdm6YLAjYfHwIOHkSfWgo1wOFe/ey/YYbsAE+2I0dsbux15A9sRmN/N6iBWX27jZ9SAjDT51CLi1Ftlhqdf+RLBaO3H47F5cvR+3jQ+fff8evZ8+q2xUXY/z2W4yJiWQ6l2PVapqVllbrqVYbnPjkE/Y8/bTDW+7GjRsJceJt2Uwm1nl4YHbydGr79ddEXaJr67+K+kxNPa4ZTBcvuhLYbDZMKSl1Dmqydu6k4Phx1F5eBHXujFeDBtf2RK8R1O7u+NRBSlxQqaoNaACyV6zA5qTJk/HTT0jffntNsjUqnY7GDz4IDz7IKR8fCt59FzfsnTxOEAMCXB6rfXxQe2RDeUADsO9z6D0FvCs4JeXrnavtzDm/fLkjoAFIWLiQPl9+Sf7GjY5tioE0QeCsnx+eRqOjhKZXg799XvdwuluVr8Q0/v5EDxmCoNFQ1qMHp376iUIAK3yXCJ72cXLtSQ+VIFCwZUtFUPPjjIpBS/Jh47cYu45lf4cO2MrKFG2dNWto88cfLtfUqJqMHNgzjLfdRuDIkchff4Y46QlkGbz0oCqVUPfp49jOw6ndvf2Xc4m7ZxxJDz+M1WKh4RtvugQ0oHTNdN64kR2DB5O/dy8mFGJr0blzlJw7h2fDhkrwDMR0h/DKCbY8pUvLvHEjlkOHENq3x3LgABZZ5nRREUK/fgw4duy6lD5OPfaY43tZLrDp8HWr4bdWeOIEpU5Edjktjb1xcVjT09ECwePH0/CLLy75/bSUlJC0bx8GQYDCQg688Qb91q512cd68SK5DRo4MjoeApTav2BBM2ZccUADkFDeyGBvCz+7aJFLUGM+cwZLJZPK/M2bXYOabRsofnYCeem5lKjcMEY3otG0afhWE5zVo777qR61gEfLlugbNVIIuioVupgYPGrb9mrHkRkzWNmtGzvGj2fL6NGsiI1lx5AhFB48eH1O+i+GLMsUvv8+6b16kTtxIlKJ0guqtxtQAkr628+P0vvHUTphPJazZzGnpCgZsKtE4fz5NabIperGV1Vzo3bqFEp9/312uruz28eHrG+/vfwJHN4Fc6fD1lVVXnIPC3PhDLgFBCCoVKi8vEAQMGPnBckyNqORIiqCFqPTqXtooZ1dgFUAvNu25fYjR3APCeHcxx+TXB7Q2FHeEVYOPSDIMl7O6rju3hVlN0kGd2/y1q5VAlGbDWSZvBUrHMFCbSEIAuKWdUpnlX149+hQdr33HuvbtSNrg6uJoGQwcPGWW1CfPo0+KYn0MWMw2duynaHx86PptGmUopS3ZCDl11/ZGBeLcXA7mhWdIcBdIOMIWCtXdNqMxrxxI/n9+1M2axbSgQMUAwlAiSRRfPIkxszMOl1nbSE7CS6Wn7sVJdPmdVv19gLuUVGKppEgoEXJspnT0x02Ktlz51K6d2+1+5Yjc+NGDGlpju9fxrp1Lt1SADldOlWUqACdDOlAImCohjheF7hHRDg6zWRZxq0S/08TEYFbpSAybOTIigcF+RSMuokjexNJvphPdnIaJVu3cqhPH0ypqdSjKuqDmnpcFqJeT6sdO4iaOpWoV1+l9a5dSktmHXDE3nFQDkGWyV21ii2dOpHsRMSVTCbKjh6toi9hM5vJ3LyZ/H+ol07JV1+R/8ILmLZupfjzz8l94gkAgocNI3bSJFReXrhFRNDYUILlpx8pmT+PhLg4TkVHc6phQzJnzKDESeysLjDu3Ikmu8IQ0Dm4EYCU/v1Ju/9+JGcl3+ie0NJJKLDv6+Cp8A1Kjx7l/AsvIBuN2IqLOXPffVguIdLH9jUwrht8+io8PgR+cC1jxd56Ky2feAJRo8E9JIRBP/+MIAjEfPIJors7Jqo6sluoCGzMTgtZk9WuASMI+DZsiKd90jlhJ4peCp4+PsR9/TX+AwdWPPnU16C3c1Ha9IVBD+LmrN0jimi8PBHPVw0wLovmrRwZAVkUSU3LpPjkSQoPH2bn8OGKurEd1vR0pLw8heMiy4rWzMnqpf2TKwWZAjAgCHQnD+FpM9AyQEZjhB3f+3DyWDOSy/qS3/0z5LZ3Y1q2TBGKlCSF44OSzVKJIrrg4DrJ9tcFTWbMwLmJ3BwSwhlPTzzHjqV1DTYX+qAgev32G95xcXhVEn0s55HVxMUph7tzECEIqPR6l4aF3P37saVWVePViGARRcrs5pGXg2S1YsrLq6K63HXOHLzj4hBEkYjBg2n5/PMur6v9/Gi/bBkBQUF4e3vT+o03CBoxomLcC+c4nmXGhmszAJJEUV2FIv8jqOfU1OMvwZKwMAxOKyQPlJVzOXrs3IlHVBTHu3fHnJyM6O5O0z/+wKdvX6xlZfzZqxfq/fsJATy6dSN27dpr1sJozM7m/KJFqHQ6Gtx3X40mcbn79nF8+nQQBFq99hp+TkJ7OQ89RMmCBY4Vn7pxYyIryfebf/6JkrsUgnWOtaqmBoDX0KHE/PgjYh2CxvxXXiF12jQMKDc+5x+0F/aViyAQ9OabBDoTn2UZ8s6CWg8+FQZ9hb/9xInb73BxE2h36hTucXHVn8Dke2DlYpDs0UezdvDjgSqbybJcpVRgKykhc9UqdlYinrvZ/1lQEoSd332dE0t/58y2fcokDLScOZOG9k6zVe7uGAwGSsCRrQlEcW/PRfmudZw9m/DqDEItJigrAu9AR9Ymedo0Ut57D42hiGaBMj5uAnzyAwy9NEHeBUYjvPosbF5HWWQD1v32J845s/5HjuDTqpXy3litnG3eHIu93CK4udEoIQFNNZ19R197jSNvvul4rBfhtkr+ivlWFTszZIolCQPKd6DB2LF06NKFEnvALaNks9IAW7t2tFmwoE6+XrWFacsWcm+9FTkvD7lZMzzeew+/YcPqNEbRnj0c6NLFkXERgOB+/Wi2Zs1l9ZyOTZvGsWnTUHt40OXrr4l0UlReP3AgjdatU7J49ucsKArapTod/fbvx/syonu5e/awZehQzDk5BHbvTq+VK9FUml+q++7XBpnLlnHkllvQURHUlKPT6dN4NGlS5zH/rajt/F2fqanHX4ImI0c6bhpqFPGzcghA9sqVpH/4oUPKXzIYuGBf1aQsWgT799MaZZLy2LGDtB49MF8qe1BLWIqL+bNTJw6/+CIHnnySTf37I9kqs1LAmJPDhr59SVm6lIvLlvFnnz4KT8QOfc+eLl0W+n79qoyhatUa1GoQBKQa7m/FK1ZwYezYOl2DKjoaFUpHiQ5lAi8PGh0/cFHEXNkjSRAgoHFFQCNJMOlu3J+/g3hvaKhXPiuv7t1xu9TNM8RpRlWpILx6q9HqbuoqT0/CbrsN1GrH6tuKwhcyCQI2UUQd25jfF/7Mnh0HyBcEstzdafbBBzSwT84A8c8+iwh4AzfY/7VGKVn4qdXE3XsvYU7WAS7Q6MAnyKX7K2bKFHo8fCudY0R89CiT6dz3sGRlkfvttxTXJqum12OZMp2DHhHs+e1PPFUqVHY7DfcGDfBs2rTivVGridm8Gb/HHsP3/vuJ2bqVkoQEcpYvp/jECZJnzybrjz+QZZnQQYNcbtwmSdFWKV+eyjLkltkwSRJaoAfQHwj99ltKo6JwmzgRm1aLAcgCPNq3p0cdjUrrgvxx45DtmVfh1Cm0aWmX3qEaeN9wAy2XLsV/2DAChg8n/qefahXQALScMoXRZWXcnp3tEtCAnWxPRcBgBfJ0GsInTaLv3r2XDWgA9k2YgDkvD1BMJ087d5HZccW8NK0Wo/28yiEDNpXqPxXQ1AX1ROF6XHeUnDpF5mefEYRy8xAEAcHNDVtZGTqUboj8N9/ErVUrFyVc2WpFttkoffNN/HB1t+bQIba3a0ePI0fQ1EHfwpiWRsLUqVjy82nw2GNYLBbKkpMdr+ft2UNJYiLeTlkJa3IymT170qmkhFLguM2GpaCA4tOnCejUCQCPceOQDAYMq1ahjY/H57XXqhxbdWQ5fkN8kIqNyKUxpO5OcKnll6N45cpaXw+AftAgQHlvynu1isFhnyADgs2Gl3OtvjpsXYntt+8ptlsp6YFGXjp816y5NHn0oclw+gjsWg9xrWFS1Zv6pSCIIv127mTP6NFYCgtp9PDDNJgwgQtz5iCo1XgNGMDR3r0d25vKynBr185looh+6y0C+valZPNmzs6cibawkDKU9u6WX3xB2JV0k3g6rQZFFZLOjZPx8Q6/rLD/+z/CLiO0eGHGDAq3blWGkGUCo6Pxvv12Gj/zTJXOOk14OKEzZ2ItLmZf27YYk5KQAWO5wiDQaMoUGk6ahEd4OJq0NNxRiLcXCqGhr7JZYjEcKFBc4RugZASTsAvTjRhBq5MnCX3/ffKWLsXTasX/llsu6cd1tZBycysEAEUR6QoXI4E330xgLXyr6oJWr7zCpmHD8BQsNPMEnRZCbx+NaoYTgdxqBgRQV0/udzZJFWSZgk8+If/cOXw+/hjRy+uqzi9o4ECCBg8me80aRJQMpRgYSK9amJL+V1GfqanHdYfRTmgTsP8oZZnOK1cSMXIkznJ8hqNHFfIoSkdR1JtvIqWnE5CWhkzFl1VGmayMFy+SvWZNrc9DlmV2DhxIyvz5pP/2G7sGD1bEx5wgaDToKtXv8156Cdm+unQHYgCdtzdqm81B8hUEAe9HHiFk2TL8pk+vqqFzYB18/SJCaS4qtYGABoXEHT9O5KJFaJ3LOqKIzkmYrTbQxMTgYQ9sQFnVZQL59v/dR40ias0avMonhNQU+OVbOLjH9f0pyMXqKo2CaDAhX876wcMLPl0B+43w/R4Ide2Ks2VnkzlsGCkREeRMmIBsNlcZwq9jRwYnJjIsO5vm06bhFh1N3PTpNH3jDXybN3ftFhMEPCMjq4zh0b8/IW+8gdVspgSFkCoLAnmrV5O/fv2lr6E6PDYZGtk/i8Bg8mI7YbWvyAEy3333skOYnUmpkoTW15dW773nQhiVrVbSZs/m2ODBnLzlFo7dfDPGpCTH62qnQD959mw0np50/eormgR60dkbunspNlR7UuBArhsnCgVUQCjKd+ECSuAjo3wn9jRvjqmggMA77iBozJg68+PqCs+nn3b8LXh741ZXA8u6orAADu+HA3tcXOorQ7LZwMuLzjOm09IHPHWKYKX4yzcw/WVlo1+nwVh3GOcJa6u3ZGn+0kuOvwVZJjgnh7KFCyl0uu4rhahW03nlSnodOkSfM2e4UZYZlJ2N/gqU1P8rqA9q6uECY0ICBT/8gKmWHka1gW+XLgr5UlA0+73bt8e/Rw+aO4lclaPxDz/QbP162pw9i9/NN1OSl4dNFB0rzlIUX53z9u11dfhxWwsLKTlxAtlmU1RfrVYsubm0mzkTjY8PuqAgui5ejK6SXYGUk+OSUfEWRcKKijjWtSuHOnRQFF4vhzSn0o8kQW4quoYN8L/nHuJOniRk2jQ0TZrg2a8fMb/84rKrLEnk7NtH5qZNZG/YgDE93eV1QRCI+v13whctIvSLL7gYHIwB5f3KBUzt2uFZHvScPgF9W8CT98CwzrDIfqPOyYCvpqKqpIQvqEBKdXX3rityH38cw+rV2NLSKJk7l8JKCsKXg1tQEIO//x73kBD0AQH0+/JLfC+Reo967jmXx9k//cThAQNItn/fZFmuQuisDgVJyRzybcnRrmMo+3YrxDZzrMhtQIkokvjmm5csg1bOEEVUw+k5O3Ei5yZOpHDtWvKWLaOwkhCfcwlRGxKCISWFpBHDiLEUoxKgwAqF9vqE1WAkyC70J6Bk7CpfaRmw5/bb2TZ+PKe+/BJLJZG/aw2vN94gYM0afOfOJeToUdSXMFG9auzaCm0jYVBHuKmz8vfCqsGIZLPx+9Ch/NytG5uefwG92lV7Ul74GVw4Bj+8onDFrGZFYTk/vcpYjR99lP47dxLftSsdRFERFrTZMO/bV7dzlyUoywTJtVtREEV82rTBo3G9WWVtUE8U/h+GZDYjy3KtBOQAilat4vzw4WCzIWi1NPzzTzx7VeN8fAUw5+SQumgRgkZD5H33ofbyQpZlEu+8k7yffgLAe+BAmq1a5WiBPLdwIXvHj0e2WIhCSacXdepE7qlT2EpLafjss8S9+26t69WyJLGhSROl3GS3Neh14AA+NTlrA6a8PI6PGoXfhg2K+qkgkCvLOOd3Gn78MeE1dHA4kJYIj7RWbo6yBB0Gw1tV25+rO+eNt93GhaVLAaWc5AHEz5pFIydOiTN+8vKi1N5SLgAdXnmFluXE0tefg68/qQjSohvCziT4dDIselfRICoAU45yL5dELb6nziOGXblZXmrLlljK0+UqFR5jxxK0YMEVj3c5yLJMwcaNnH32WUqchOrcfH2In/Qypf/3f0pZ69NPcRtXjfz9r99g+O0HtixZi2STEAQBXUQEPY8f5/ydd1KwciW5goBk/955NG5Mj6NHayzhlBw+TMHmzXi2aYOvUxmtHLsDAlwyQM6dLgD4+2PIz0cXGkr7pUtJ/ugjbL/8QCt7giXLBBedWeeCwAWtljCTCW+U9mTnzhkdCoH8hP05lZsbI8+cweMq25f/SshmM+bduxH9/NC0bFnxwtBusH+Xq6GrTgfnShW+lx2pmzfzq10zyB+4M1Txeiq/lZjdvdEuXQav93U98IfHIbIF1aF04UIK7rtPYbbLMp4vvojP22/X7oLKsmBZf8g7Bm4hcPNaCLw+HKd/K+qJwv9lFOdT9EAX8rvrOB7nxqm33qrVbpmTJzsmO9lsJrtSG/bVQBsYSMNnn6XBxImoy0tMgkDjH36g+ZYtNNuwgWYrVzoCmtILF9jzwAMO0b8U4IAoYo2PZ2BhIYNNJpq9916dCHiCKNLlzz8Ju/VWAnr3puOSJWhOnqR03jykSi3k5dgxbhynNm/mMIpuRV54OKZK21xOZ8a0fz85U6ZREDICadB4eOBteOWXS+5Tjuw9exwBDSj6HDbg6MSJWKrRTpEliTKnNlcZwPkG4O3rohmDt6/yt83q6KvW+oFHMw9UQ27De922qgGNLMNvS2D6K7Br22WvwaPcj0itBpsNd6eW1esBQRDQ+PhQZg9oNEALLTQ3FmKbOgnBZEQuKaHogQeQnFrhAVjxMzwzjqI1K5EsViWjZ7NhvHABc1YWjVesIHr5ciRZVgJjSaL09GlKami/BvBs04bIJ5+sNqABcIuLc0kTiEDg8OGEjR9Pkzlz6J2Tw2Czmb6pqfjecAMF+/eTbwWLnRzso3a9kft268bNx45R0KIFSVR4VZns/xqidPeUw2YwsLdSdqscsiRhWLOG0l9/RaqjVs/1gmwwkN29Ozm9epHVqhVFTs7zhtIyCswykqJ1R3oZbE41kfT++y7ZOWeCcTGQkKvIFAFYbJB0voiSMzkQ4xRYtOgN4TWLcrqPG4fv/Pm4jR6N99tv413L+y4AB95Gzjtpv74s5K2XWSTVo0bUE4X/B2F98y48k3cj+kCAj8zeT1+laORIvFtUv8Ioh1RJk0Gyy5NfTwiiiHc1ypjnXn8dl55iAEGgkV2WvjZdD9XBIzaWjj/9hCzL5A4fTv6KFQAUv/02qkmTyJg5E5WfHw0++QT31q3J2bkTvc2GBsV4zysuDpxErzShoQTfe2+Nx7OmpJDRs6eDR1ISG0vEyZOO4K02UKFMWgFUrOKtQOr8+QR17ox7x44VwZ0goHZzw+JUEnPRHnnoKdi4CvbvBB8/eNuemh/1OKxYBHmZCCo1qumL8OpXA7H44xkwbYqy8v1oOvy8FnoPqPH8fV59FVVkJOYjR3AbNAj3oUNrfe21hWw2gywj2LOShsRERJSgLkQNOqfYV6MGswWw2ZBychCdOFSGtX+wPwuKTE56PyoVWn9/dPZMhkd8fIU9OMoEeTWmqk2/+46Eu++m9OBBRK0W/1tvpdFnn7lwXZy/797t25Nx5gx7SiBMC1ZZKcv6xcaiS0pCu307mZ060f6TT9h0//3IkuTg2JT3W5VP794oOjXi779junABnbNYJJBz772U2nVxNC1bErZ7d53kBq4UxlOnMCUm4tGlC+pK2jmG5cuxOJV2it94A88XXiDtp584uvUISOCpgg4+cMYAZRIkTJqER1wcIbfcAkBY1640uesuzixejAUotcC+DCVbY5NBL0DJs8/geeIk7P4VVGrofJuyEKgBgiDgcd99eNid0+sCKTcVwWazu3zK2BKP1k/OV4j6TM3/IMTE/YjlIqkS+HnjaDm8FLwiIx1fCBHw6dLlmp1T0Z497G7alK0+PiRNmXJJTkPJwYMUzJvn8qPWBQczaP9+Art1uybnY7t4EZM9oAEwnDlD0oMPUnb4MMVbt3Jq8GAK9u5FZX/fTIBKlqGsjBZr1hD+3HPEzp5Nh8RENPabbsa337K/UyeODBlCmV0N1rhlC7LBoGTAbDasZ85gq2VLa+4TT1DWtSs9ULpYyuznUS5Md2HiRBJuuIHkBx90sTToNncugp1YG9avH7FjxlQM6uUNy7bD0Rw4lAHtblCeD4uBXxLg8w3wWyJSZgnWe27D9uYU5fydsWSR/U20KTf5pT9e8joEUcTrwQcJ+OST6xLQFH32GcmeniS7u1NgXx379O6N2tcXtUqF2lnZz6nEoOnWDVUl7Z2D2w6RbQSjrLzXbt4eBA0ezA0bNiDl5XFu7FgSb74ZjZNeintgYBVyeV2gb9iQNjt20M1goEthIU0XLLgkebf1/PmovLwwyJBkggtmCJs4EZ+0NIfeilRUhEdGBl2GDCFOFGkJBAsColqNCohF6TpsgBIse5aVcSwujpM9e3KobVuyFi7ElpnpCGgALMeOYfzzzyu+ztoi99tvOdGiBWeHD+d4s2aYEs9gWnAn0jQ35FlNEa0prjsIAoIocuqZZxzplhIbbM2D0nIqnChSfOxYxS6iyODvvmNsQgL3njuHykvRprLZb0v+KhC8fRQjz97jkP1aYX3qEWxPT0A+f45rDcPZ8Ap/ExmKfiqoFe+rHlVRz6n5H4T01hiEjYsB5Qa+/6I/bQ+nXZZbY9qwgeyhQ5GNRlRhYQTv3AkBAZy85x7y163Dq107WixZgq6O/ApZltkZEYE5M9ORfWm5fDmBTiaLzihYv57jAwYgoaxAAbru3YuPs7z9VUIqLCQ9MBDspaNSlM4QZxhatCDvxAmX57yA7hcu4F7J96rsx3fImzmJ4izITBLRR0XTcdcu0jt0wFae2REExMBAoi5evKyfjGH3bjKcgsoUFPftcghANBVzdXxiIrpGjRyvmwsLMeXn4xkTU2eNDGnZz9juHeUgdguj70H92YKKDUYPgY1rlaBGEGDyW/DM5Dod41rBmpbGxchIFw5F+JEjaFu1wpCYSObXX6MtLcHz23lgKAOVCvGeB1F1vAH9mDEIlfyV1jRuTKmdJC8IAjH3jqP9/AUAnOrShbK9ezFJkmsJUqWit8Vy1R5ZdYEsy+Ru2oRkMBA4aBCiWk1KVJQSMNt/YwHz5qHt3JnkPn2wZWej8vEicsJgzIeysOWUcPbAAYfHFoDKCxo/C4YLkPYdBMyZh2X8eBeSfMiGDbj17Vv1hK4hjjVqhLm8+0ulInBkY6JbJSjXLYHs05DcP2Ixr18PgoDPRx/h+dRTrPP3x+Kk0qyDis9JFOm6Ywe+drf6yijasoWLfXrjoVLEDNUCeJ88i6ZhLHJONtZ2jaHMfjcKDkV9MBGhcofjVaBsyRKKHhuNtiFYMgVkIZLQvyBT/m9CPafmP4zsmEEkJ0NWKhzeDukJeaz29ubQgw9ScvgwcuWyjh26fv0Iu3iRkH37CE1MRB0Tw4Vp08hdvhyppITCHTtIvII2RdlmU1pby48rCBgvIT/u3b077q1bI6IEEVGDBuHdoUOdj3spiD4++M2bB25uIIr4PfaYMsGpVKBS4d6mTZV2b1CyJPmV/GbkXYtw3ziJ8Hho3h8i4yWM589TPGcONudOJY2G0D//rJVBXsn33zs6WAQq9GfKIaCUDvywS8ZXKmdpfXzwatDAMdEa0tPZddttrGvejNOtwpG7esO0x6rVyZG3bVb4L7KMbJMwLv6B4qggyu4fi2HqFErT8zD6hiJ7esGto+HRZy97PdcLUkGBKykUsOXmAuDWuDENZswgfOYsPI8k4Lb4Fzz2H8Pz8y9we/DBKgENQOSdinWEoFYjyzLhd9xJyf79HLr9dtJ278YsSa5lAUEgaNSovzSgUQ4rENi3L8FDhiDaS1NB332HaNdsch89Gs977kHXogWNz58n9oMnady9GPfTS/HVbyFg1mTlu+8E7w5g9YXk7VDqAWcfeAC3yZPJQGkLP6fTKeak9vdXliSy58wh+eGHybtGzvOAUt5yKvNYs84gl986RKA4Bc85cwg6epTAkydJM5s5/uqrNHjpJcd+OpRsVKibGxF3380N69bVGNAAePfqRdOcXLRvTINnXsAnLRdNw1jlOo8chOIiR7aV9FQ4d+26QwHcRo1Cf9fjGI7pkFXR+NubJ+pRd9Q5U2MwGNi/fz/+/v60qMTRMBqN/Pjjj4yrrqPgH4D/SqYm8aUXOfnue7RTw8FKHFYBiGvUiNgdO1DVoh36xJgxZC1Z4ghIvDp2pMMlTOTS588n64cfcIuNpeH06Q5hvON33kn2jz8qK2W9nk5HjuAWG1vjOLbSUnKXLlU4Brfcck1cratDeXu3oNFQun8/mV98gdrHh9AXXySvRw+Onz7tkN1Xo2SIByQk4OWkBmt+dwCapPWOskZhBiScbUXc3XeTP3my471TRUQQdfHy7dG5+/Zxbvp0An77Tem4QiF7nqKCC6FGCWrK/XvcR40i7ocfahTJ29KnD7nbtinXC3SIhEgfUL35Ndzq2nYsfb8Q22P3AYrXkiTZ+SNOPBJEEe3Tz6Of9s5lr+d6QpYkMgcMwGh3/Na0aUP47t0Obk1dYS0t5fycOZSmpBB60414HNvHjhdfxVQ+qaKoWgMUAVGjRxM2aBAeI0agqiQF8HdAlmUwm6te/1Nt4LzdN00UoeddnE0Po+D99xEAt1iIfQ32TgRrCY4vmsrLC31xMbkVT+HRvDk9Dh8m8513SH/1VWUhYLMRvWABgZfgl9UWxZs2cXbYMKTSUvTx8RiMF2k7phBRpQQ16fshaZkSiORZreTu2oUgCKi9vOixVskguoki5Oai7dkTsQbbk9pCvpiCtV0jJasrCODphfp4CsJVCuvVo26o7fxdp6Dm9OnTDBo0iAsXLiAIAj169OCHH34gzF6OyMzMJDw8HFs1q79/Av4LQY2UepFlkVFIKBOhGghBScOWS575CgLxzzyDfy30QnJ+/51jN9/suHE1njmTSLvfTpVt//iDY+UlJZUKr1698Bw4EI2vL1Fjx5L9/feYMzIIHj3axUdIliQKdu9Gtlrx69atTiTa6wUpP59Uf3/SUPxxfFCIlrz0EmGV2jQNn92H/vBCBFFJj19MAI8ZO/CJiyO9e3esp04hiyIeb71F8Msv13jM3A8/JGvyZCSTiXwUD6PGKFyadCpK7qB09JQnv9Uok22L1avxGzy42rGX+/pidbJ1MAFBemhzQwuCvliC1SeArJEjMe/fj753bwIG9IJ1qzCeSECugY+l6tYDj/Vba7yevwqyyUTpb7+B1Yr7rbciXqEnWO6KFRy/4w6ksjL8Bg2iVYQK8/pVFJvBUwupJXAyT2mpt4kieHvTuKBAEZWMjCT84EFU18kQshySyUTZ8eNoIyNRyzLGpx5DOp2AZtSdaCe9UnPG6L3RsONnpU9fEP+fvfMOj6La3/hnZnezm95Jo4QQegepUhVEkWZF7IhYUPHae++9YbuKoiiCoAgiSO8QWiCUQAikJ6T3sm3m/P6YzWY3jdDuvb97eZ9nHtjszJkzszPnfM+3vC9Me5kjn6yicudOZCBiLITeATvrKXTIaM9XWb3mhicmknX77VS7JOwaoqLokZZ21kn8rlAqK7Hn5eERHU3RihWkPXgjwbFWLBUShfECyTFrlaO9n7UYsGABbaZNQ0lPB7sdOSamWS+arbSUrA8/xF5eTtDVV1OZnIypTRtaTZjgdpy6cS3K268geXggv/IOcr8BZ3Q9QgjMJ0+i8/PD4yJx3lnhgoSfnnrqKXr06EF+fj5JSUn4+vpy6aWXknEx9vcfluZDgQABAABJREFUA9uCedhwF0ssp86gASgXgqIdO7CXl5+2vZCJE+m9cSPtnn+eHn/80ahBU52UxO7u3Tk8ebIzC1NVFDI2beLI889z4IEH2H3DDYTdcguhPXsiZWY6k+CEECTceitxQ4eya8QI9k6c6PQm/DuhGo0kyjL5aCWfpwBFkvBtxANgmj6H/OpIaqogJw3ywqcQOHgwuqAgqq6/nmQ0L8uu55+naMuWRs9nPnSI/MceQ1gszkonfyAhIICsyEgqqEsUNun1buGo2ru176GHyG2COTf8yiu1FbpjnI4ywZggCElORIzrS/Gdt2PdswdsNswbN1KRW4xh7Q48HnlSO6D+RCVJ6EaMav4mniNsO3dSftUVVNx4HXaXJM/6kIxGfG66CZ9bbz0rg0YoCkIIjk2fjupIii5Zs4bcP1dh1EGwJ3jqITYA2vpCwO230/rxx2nvMGhASzyvdim9vxAwp6ayt21bEvr3Z29UFOWTrsS+Yhnq0SNYXn0R208/YMvIQGmMnuDeOdDvSgiKhMvuhGufRN+qFTq0gpv8tZC/GDxd0uUkNA6X+iaK7OmJMTISUz1dJFt2NmV//nlerlXn44OxQwcknY6QyZPpe6yYiPmZFB32cBo0tarbruXw3jExVD31OGWx0ZR1iaXqnrvdxpqqhARqjh51EjAevOIK0t98k+w5czh4xRUcfeAB4idN4ni9xYc8eiyG1dvQ/7nhjA0a1WYj8aqriO/YkT0REZz68stzujcX0TzOyFMTFhbGunXr6FmrLCsEs2bNYuXKlWzcuBFvb++Lnpp/M+xzv+T3u2dhc3z2oS4vw4I2QRuBKMDTYKDH/v14tUC0rTnsHz6csp073fIzLJJElcujJQOXdOqE3VEV5HP33YR88w2VSUls7eLO/TB4xw4ChwwBwFZWRuo//4liNtNu+nS8GqHHvxCoSExkU7370gnw+Mc/8Bo7llZXXeW2khOKQtH27SDLBA8d6gwDrWvfnhpH/pCk19Pu3nvpOWdOg/MVf/EFefXYZgWQ3q8fl2/YQOavvyJ7eNB26lSS7rmHvPnz6xI80XJ9ctEm+Cnp6XiGhbm1tf+zz9j18stgs2GsqOC6VuDnmK2ETkeuGool20HpL0l4XXstrZYsQQiBfeEClEMJ6EZdhnrkMPZtW9APGIjH40+fl1V5Y7Dt3UvF0IEIVWhzlsGA/74EdGcoIdEchKpyYNYs0r79FkNQEL5lZXUSDpJEh0BBm4C6/VUBFf0vw3/xeoSikOHvj3DhbgldsgTv6647b/1z66vdzp62bbE5crQsQIkEFgExOuhq1GGJaktRciro9QQ//zw2iwWPdu0ImTGj0d/JnJrK0S5d3GQravXVBFpY0wNNN8oIVAIGowc9l/xG6IQJ2E6d4lC9UvZ28+cT7BBktZaVkb16NaaQEMJHjz6rvKPqzEyqUlII6NsXg58fWe++S7pDlsDYvj1tPv2UhMcfx1ZWRuennyZ6wgTKu7gz7/rF7UXXty/JU6dSsmQJAGEPPkjkiy+yo57XxIq2SNB5e3OFg8DyXFH4228kXX+987NkMDC4ogL5LEOk/6u4IJ6ampoa9C4vhyRJfPnll0ycOJGRI0dy3DFhXcS/D7pbptOjm/tLLaHxmhSgeXDKgGTAbrOROnPm2Z1ICKjUaGfNWVluCtUerVtjrBdCCjSZnAYNQOW336KUlDTKwlr7N6EobL3sMg4//TRHX3mFjZdcoonH/Qvg2aYNOh+fuoRFSSJVkjj88cfsvvpqdowe7U7mpdMRMmIEIcOGueW1eLVv7wynCUXBKzq60fN5DR/uRmdfq1g99Kef8PD3p8PMmbS/4w50JhOtH3ywAXnYKcf+qsVCZT2Ji5ydO9k4ezbVxcXUVFVRrtNRZa8jG0MIfIY7Kq0cffdx5MVJkkRyZTWr4/ay47eliDvuwvu35Riffv6CGTQA+++8Q+OdqZ0HbTbKLh/ZZJL72SBn6VJSv/5aS2QvLMTsej2enli71Bm1QpKQZAn/x14AHL/3Tz8hOUqvvW+9FS8HB8qFQPWRI06DBiAHqBDaJHxMgVybQuVJR6mx3U7hyy+T9847ZN53Hxn3399om6b27QmoV4Fo9PMhCM1TWPtm9g0BLyMM0EMfxYq/40k1RETQ6tG6JHFjly4EOIgVLSUlLO/Th81Tp7L68svZ/cgjZ3zNOcuWsTomhq2jRrGmUyeq0tJo/eST9I6Pp+tff9EnIYGwCRO44tgxrj51itiHH0bZvatBO6K8nMpdu5wGDUDenDkoJSUaB47L+6qCNoadTYn+quXw6L3wzktOzSlrcTGpn7+HzU8jtQSHZ/A8PscX4Y4zMmq6dOnC3kb0LObMmcPkyZOZdJ4VVC/izCGZTHQ9fJxB779HQK0OCTg9N7h8toHT3X5GKM+H13vDE6HwbFtaXTUaPaBz8EUE9+yJl92ON5pBJQNtb60XrDcYkIxGvNq3p72LIFzkHXfg4fDGVKWlURofryXaKgqWvDyKduw48/6eBfS+vgxevZqAgQPx69uXgEGDsLkYMcWbN1PmeBeac3b2mTsX/3790Pn4EHXzzUQ3kY9k6tmTQg8PN3r8EqMR/0Y8E34DB3JJfDwx775Ll4ULqQkLQ9LpkHQ6jKGhBLjSxgPFLmy3QlVRFIWaJ15DCYtESDLS6KvwnfsTYatXE/Daa4Rv2YKX411OXbaMzffcQ87GjRydO5f156EIoCY1FXNmHdeI5Yd5lIQGURXqjegQgNI1lFPJiViFZnjVssNSUIDqQnx4psj/+2/Wx8ayNiqKjO+/x5ybWxe6EIIqs5leGzZQHBHBcbOZtbuO8VO+J5a7n0S67UFsc37jwE9LiLvuOk6tWIH3lCm0LS2lbVkZofPnX9BcMH1oqLOvAm2R4oryAUOcycxOOCbOkoULm2y37fz5WqWfLKMPDKRD30ryXSqVjUbw94Ee4XUcLrgsRKLef59O27YRs3w5XfbudQrSZixbRqVLhePRTz/FbnYNip8eR555xhmKthYWkuLwcCpGI2adrvH3rpEya9klqd8VksFAr5Ur8e3XD1OHDngOGIAAPIKD6e3Cz9Mi/PNTuG0y/PhPeO9VuCQWkZTI1hGXkrVpFyXlkFMGsX2h9X23o2uk8u4izg/OyKi55ppr+OWXXxr9bs6cOUybNu2CEwZ9/vnnREdHYzKZGDRoELt37z79Qf9jkCSJ2Mce52pFYXRZGV3unIbRw33ANaCtxCKfPQ2/SMJ2eGISPHs9pDj0e/5+E3I1/hbrqVxK5s3HIMt4CEHIkCHoTSasaC7rQCAAqExNrWPa1OsJ/uorJzNpl7ffZlRGBlHPPMPh+fP5PTyc3bNm4RESoqldu7itvdq1QygKFfv3U/XZp1TdOxPzN/9sduUjFIXKkyfdWHZbgqChQxm+cycj4+Mb9bBsHTqUFXo9+3Q6MsLDqdmwocE+Xu3bM3z3bsZXVNDvp5+a5QpSIiLIQOOkyQAkR5i3Mfj07EnbJ54gfOpUrtixg9h77iHm9tvpdcMNZD/3HNUHDzr3bT1qFHpPTyS9HkmWiRg6lKjO3aiWQylvNwDbfc+ClzeeV1xBwLPPYho2zHlsXlycm6cp7wyMSqW8nKqNG7E6JjchBMdmzGBXTAxxbduSGGKg0EOm8u7pUFaCl1QNFWXIxYVM9IfVAtIFpAkorzVuztI7ZCsrY8+111KdkoI5J4eEGTPw69ZNq85zPF/Rd92FISaGvFOnUBzyCBWVNWR3HgQvfcrO1z8g9auvyFm6lJ2TJlG8axeSwYD8LwhlGyMjiZ07F9nHB8nDg/rmk3HESDw6dcKO5rXLxrGQ0enwaEZAUufpSZcDB+inKMQsmoeXP+R4QYEXhEdAeKTmyDDoQJHA1roNhsvr2KMlScLn0ksJmDgRnUs+k0e9e6Izmc64glGqt7+k13P8yy9Z0b07G6+8khU9elDjqoIOeIwZixxTx9dkmDQZXVQUPoMGEegSGmw1axYFGzawZ9IkyvPzaf/RRwzavZtxFgvDjx3DEByMehr5Ezf88r3bR2Exc2j0UMqOHEMIzRBVVMg5BBHqsZa3exFnjP9X5HuLFi3i9ttv56uvvmLQoEF8/PHHLF68mKSkJFq1IKP8fyGnpgEWzoF3HkLIMpmlKhtzjeh8/Blw5520vvFGvJvjf8nPhhs7gtWiDfx+gbA0HRbNgt0/gapQcAxObNIGUB1aUmGXNWs4cMUVbuEU39696X/gAEpREZLJhLJ/P0X33I25vJxWL7yINOUafo+IcOMcGbdzJ/aSEg7cfz+K2UzXV14htH9/Dg0fjr/FTIROyynIVsASFEi1tw9+nTvT/aWX8L70UiRJwlZWxpbLLqMsPh7Z05MhS5cS1kSFEMUF8OSNcCgOeg2Bp+ZAdCfQ66nOyGBT9+4oTcTZYwDfoCDaFBa2KHegev9+bLm5+AwfroW5gJK4OPaMHYtSWYlndDRD9+7FIzj4tG2BZjAcGTSIqvh4jeTPw4NeR486ae/zDxzg8Ny5mIKC6DtlCjVDBjhFPfHxITAjB6mRJNv0v/5i5YQJgBZyaTdhAle1ICG2ets20kePdpIbBj73HHnzf4C8LPx9ocICRRXQ2gsCHY9XQIA7C/03xZBj16r3xqF5/Qx9+xK+YQO6gIAW3ZdaVB4/zsZ67MEDV67Et2dPTi1dijEsjKjrr0exWvmxdWusJSUIIZAkialHjhDQqRNLHdw92s2Q6Pnee3RsQjPpQqE2wfX3gAAsFRUItPdu6IIFRF11FX/17k1lVhYIgR7o0bs3MQsW4NmCXCTzgQNIs/uSb4Ote+DG1qBz/B4l1ZCcp+XyhM+aRexnnyHLMqXr1lGdmEjA5Ze75eapisKWW24hbdEiZA8Phv/4I+0dHEAtRd7ateycNAnVbMYrOpqR27ezomfPOnZ0WabPm2/S3cXTCxp3ke2PpUg+PhimXOMMkwohqE5IQDIYUHQ6tnXr5qQqkAwGLs/NpXjrVvbfcAPCasW3Vy8GbdmCwd//9J2dNh7W1gnUltlhTRkNjE8D0MYo0WP5X+ivuOqM7sf/Olo8f4vzBFVVxcqVK8V11113vppsgIEDB4oHHnjA+VlRFBEZGSneeuutFh1fVlYmAFFWVnahuvifh6l9heiDtvWThXju1hYdpqqqyPvkTZHVCWEbgBCDHVvKESFO7hTiQaMQ9yFyL0OsArHSsW328BCq3S4SRo8WO0HsALERROrLL9e1XV0tDnsaxXJwbkmPPip+Arft1Lp1bn2qSkgQu4ODxTYQqTIiTdLa3gRii+M8yx2fi2fOFKqqimNvvy1+k2XxG4jfJEmsiolp+qJfniHUfrIQfRBqb4S1I0J0MAjxw+dCVVWRMHmyWId2vcvrbRtApIJQLRZnc5bsbJH1+usi5/33hc3lmTv1xhtiH4h9IA6EhwtrUZHzO8VmE9aSEqGqaot+p1pYCwtFHLhtBfPnN9ivKC5OHBw8UBTpcdvsx4832XbS/PnirwkTxNaHHxaWFr47ydHRIhFEIogjjmtN9EQovbR7K/ogToQiTnVCpMtaHywBCLUVQg2XhTKwg1j3+GPiA0kS8SCOO+5vqiyLktdeE0IIUZ6UJDJ+/VVUpKSctj+q3S429eollsuyWK7TidVhYcJaUtLovvl794qlI0aIX/v1EyeWLHH+fX2/fuJ3nU57lkAUbN7contxIZC5dKlY7OkpFoLYeu21QrHZROmRIw3eoaNvvik2deokNrRpIzLnzWu2TVVVRVaAl8jriDjeAbHThEgJQKT6IbaD2AZip+PZ2h0aKo7Mni22Of6+3WAQ5XFxznbsn30grAO7CcukMcKadKyJEypC2I4JoeQ32SdzYaEo2b9f1OzYIaoXLBBLWrWquz5JEkc/+uis7l/BmjXOMat2qzh6VGxo00YsBTEXxDcgtk6aJPZdd53YNWaMKNq0qfG2Fi8WqbffKiwhCDUYIYIRP0uI9SCWOp4V1y0ORJEPQtmy8az6/r+Kls7f55zpl5qaynfffce8efMoKChgzJimhe3OBVarlX379vGMS6mdLMuMGTOGnTt3XpBz/n+HtaiI1LRqlFMS7YIE3p5AeNtmjynZtInCf36N2LGJsuxcsu3g7Qmje8nog4Ihoj2YPOHFI5Cyg7KfNyM2zHUeX2O1YktNxfvkSWfc3wsIcdH8UQsLSa1xZ+s9/uGHRI0fT/bKlQAEDx5MqIvQZeG335I+cyY1aF6hYgE1Qlu969Hcu3o0DpEqIP2bbzBHRaE4VtsCQIhmc4hEVormIwaoBL0NhLAhvfAA1tYxFC9b5qSVr5+jpAe8b7nFyRZsLyvj8IAB2Bzu8cIFC+ixezdIEqdeftl5nD03lwPjxjFgzx6EqlJ14gR6f390np4UffUV1qwsAqZNw6tfvyb7DaD390cfGoq9qMiZS2GqV1VWmZzMlhEjaKdYES7OJEmvR24igRmg06230ql+TtRp4OrRqvW9BQc5lRcAaNMKKiWoFqB4+6A88SR6vR3Z0wvplrsZmJKK55zPqTabqUZLXjVJEqKqilN//83WiRMRdjuy0ciodesIdQmb1Yek0zF082bSvvwS1Wym7d13Y2jC2xPavz9TNm9GtVopmjOH7Nmz8b/uOoYsX86hJ57AnJ1N9N13ExgZgSgtRTpDr9H5QOspU7impAR7VRVGB+mfKSIC2WhEdYh7IkmkvPwyks0GQnBo+nQCBg/Gp57HqhaSJBGWnE7h7beiP36cyLuuJOipp9nfvj0yqpvXQSkoIOnTTzVFcTQvSP4PP+A7aBBi1Z+oz2seLOlEEtx7K2ysR9gpzFB2Jdg2AzL4zgXTnViKikAIpwirMTgYdflyyu7SCCI7m0wcMhhQbTaC+vShw6X9oLy0Tm2+hfAfNAhjVBSW3FwQAt8ePfCKjcVusZBHXRVY6fLllKO980Xr1jFw61aCXZ6z/PnzSXbkmWUDbaN9MPpAZVElMi6iqA7U3kMPnYz4+08YPuqM+n0Rp8dZGTUWi4UlS5Ywd+5ctm3bhqIovP/++8yYMeOChXUKCwtRFIWweqWqYWFhHDvWeIzSYrFgcaG6L28BL8t/C4SisGPkSCqOJiMJQUYRjJ4+BuNd7vwLQggqtm/HXlpK4bZtFL/zDp1N4OMJBSYIE5BYDSmiDR3eW4LO5EhwC+0AoR2Qlh11a08Gyj7/nDIX7iIFyJwxg64JCdo+DrVjt34Arfr3p8ujj6JYLIRffjk6l4TEnJdfpow6LahqoZWc1paf1g4eBsf5LED6yy8T+uKLGAIDsRZqykldX3mlyXtm6z8Wj70bETUg2er6BaBfv4JuQRJWuyCtQgt71Rptek9Penz8MQEzZgCaoZLavz++OTl1fY6Px5KSgjE2FkWSKEMjDZMB3717OfTSi5Ru30GBQ8+mTb9+GOPjQaej6JNP6Bgfj6leArArJL2eLqtWkfrAAyilpUQ8+SQ+rlpZVgvWr56hV3srNXmQUAphsjZ4G4RK0HlmbA6aPZvCF1/U+ub4m83FEhQCdB5QeAICIowEHkjRkmGd3wtOzLoK4fL+VgBe/v74zJxJwr33OpNIVZuN45984m7UmIuhYC/4x4KfxlxtCAigYzPkh/WRfd99lMybp/0Gn39Oh61bGbhgAaK8nKorR1N1TzwYjXj+vBjD1Y3rmF1I6IxGtxwtY2AgI5YuZe9DD+FfkkMfzxp0kpUqFWrskFYsqElNbdKoAdCHhBC+8m+3v3l16IA5ORlwn6R1aDQCIQCqisExNosjB7U4oiPBn6ONcAxZfnUYNAAqVDzA0bfTOOp4Pzs+/jg933sPgKq33nIeFmqzccXdd2O48Rp8Xr4VecZI8PKBr9dC75YL8Oo8PQkYMUILPbZqRc/585H1eto+8ggnHM+IkYbho8wvvnAzagrrJWFnZFTTd+NGAm++mersbDzRSuFBu3eBQGsTGFGROrkvOi7i/OCMEoX37dvHrFmzCA8P5+OPP2bKlClkZmYiyzLjxo37j8tTeeutt/D393dubeqJEP43ozotjYojR0BVEQJsdiid9JA2ALgg6YoxHBo+nKMTJ5L7zjvoJRAesL0M9lVCQpUm8Ja0O53D197iXIHby8s5ccstVP7yC76OpbcEhOh06OtxVwCoLnwekiwTcc01DfbxCA4m/PLLiRo/3m2wzlmyhJrsbOr7WGwOD0ztQOuFNmiEohkcRUDiq6+is9no9fHHjDl8mPbNlLDrbn2ItDxfqivdUidAgO7HLwn1hChv6BkMHR99lDHZ2Qzbs4crCwsJ9DUgzf8nlBRz6oYb0OfkYEDzLhgkaBWuw7D2R2x7t5GtquSildaXoCUFn3r1Nc2gARCCzH37KBOCFLudEzYbCffeS8mBA032HcC7f396xMXR+9gxWt3lLn3Ah3cTmPA70ZEg+WmGVooKaSqkWlRsDj2f84XQF17A64ortHwFNPbjymKoqNDuraJAWQm0aQOt2okGBk32zTfju2cPQUKgk6BLGPRvD236h2PwkNH7+jpL5yVJQu9KhV92AnVBLKwch1jQEeV48yriTaFs6VKtsw56/AqHF9H63TeoCQe0naxWzA/POqv2LwSirrqKMQsXMNyvBn8PjQk5zATtAmFIjExA76aTz5tCp59/Rufv71aZp6IJrHrIEh19odXQgUQ58ouk0WO11YBOB7KMdPmVgMbeq9Zy4ghXOlCoSrc6DRqA5Pffp+zQIa09f/+6ZCshMIaG4rdpEXKFg97BXA2fPec8tiYnB5sLe3ZjSPv8c7IXLkQ1mzFnZ3PEoWnX8Ykn8GvfHkmWscuyk1qhFl4uorEAOocMTN2NUcm74goGnzqFQFu4eKItwPyB1h7gZ4A0C9jHT2m2jxdxdjgjo2bQoEEYjUbi4uLYs2cPs2fPbuA5uVAICQlBp9ORl5fn9ve8vDzCw8MbPeaZZ56hrKzMuWW6lJH+t8MYFqZVI7jwrNR/IWvmfETRurqKHR1aWCfdAhUuI1iFg4Km6vhxylavBiDj8ccpWrQIa1oaBqB1+/Z0Hj6cjitW4P/II5hc6OIlIPy119zO3e+334i88UbnxBQwZgzt7723wXUIVeXgjBmUonlhXBH2wAO0//hjhJcXPpJEIFr4KQCtsqv2EuwVFRSuWoXfaUgGdT4+hP29jfIOA7Vz145m3fpo+lAO3hR/D4h95x08IyMJ7N8f6dYJ8I+74KlZcOVA1OTjbivarjEQ3VpBnvcm+ntH0Fuy06HeuRtKZ2q8QiraoJq9Ywdr+vblyKuvNnsNtRBCUJWRgaW4GGG1Ijb/hoRAlkFXzz+rgluF2flC6yVL8Lv1VgwdOxI4axYxc/+JZ9dhqIOuR2+EoBDw9NFBF/fQmvmXXzAsXIgPmpHaMQCCvECWQEo9Bi/eT6+33sLkGHu82rShh0tIzxb3Nphr+YxUzMvvPqv+G7t00SZmAEXRPoOWOF8LIRoVPv23Iv0EOtkR6qOOVsGkUzEU557mYBcIAYs+x/frJxn0xE0Mysuh07p1FHfsSCJgl2C0v0Soj46OpxLRmbVlh3zJIHR/rEGadgfyEy8gzfmOvZMnsyEwkHWenuwcMoTsRXbQ1Xkq7KKhYag4FkJ+X3yB5DAe9H364PXoo5oXyMmzhLZ4UxTirr+eVVFRrAgJIfXbb8lasIDkN9+kvB4jdXVKiltVX60yu6zTcc3OnfR65BE63nMPbR5/3Fm15T94MDFPP+3WTvt333XT2dIHBKC3WJBVlQ5ohown2tglAyessK1SIlXnje4/zAnw34Izqn4aN24cO3fuZOLEidx2222MGzcOSZIwGAwkJCQ0ELg83xg0aBADBw7ks88+A0BVVdq2bcuDDz7I0/Uetsbwv1b9VLhpE4cfegiluppOL79Mm9tuc/u+tE8njiQku/2tyrE1FpcMBrqvW4f/5ZdzePBgqnY5iK4kiaDrrqOji7KsardT+N57mFNTCb7vPrxdckLsVVWYc3PxatcOSZZRamrQN0Fvn/Hqqxx86SW31ZIhKIi2d99N1zffdA5MOYMGYXUp768BTtR+kCSCR45kqEP0sEU4uBfWLIPufSA4DK5x5PfodBDbFTZoq0jSUmCQu4lSNmoyJb8uQ6BNxO3qFZgVpmm8hSeAWhM9GI1IrTak1XbqVDLqKR/bHee/vqam2fJYVVHYesMNZC1dCpLEkM6difQ5htFXk/2x2WHLAS+qy6oBiJk+ne7ffdfye3M+sPQbWP4dRLSDRz+CkDp+/vL776f6n/9EcuQGeYeAt6+L3RXbFVYnotpsmPPzMYWFOZWqAUq+Hoe/sgZZB0KFkizwf6FGo9Q/A1jT0sicMQPryZME3nYbYa++iiRJqKdOUXXpJYhTOQCYPvsKj7sbGuT/LoiqSmz9QtHbzHX3zAiShwk2ZkJgC/Wp/l4Iz0zT/i/rYNRk+OA3hKpSsW41plvG4+G6LP51LYxsmFOZ9f33nLzrLiTqwscAfX79mYjJYSCHIuQe7Jw8mdwVKwAIGT2a4WvX1hkeNhuipAQpNFSrLkw+DHcOh4pSMHrCl6vIyS4lzoUAUSfLyKqqeYv0ekbs2YNfr14ApH/+OQcffNC5b8w999D966+bvqeq2qRYbM2JE5z69FMkvZ7QUaMocxAQWoF8NKOy9t22enigCwig17x5hF51sfrpTNDS+fuMcmpWr15NZmYm33//Pffffz81NTVMdZTpnQ0F9pni0Ucf5Y477uCSSy5h4MCBfPzxx1RVVTF9+vQLfu7/jwgZNYpRDhduY/Bq0wZdQrKbUKLFIcSsoHluat2vBiD83nvxu+wyAAInTdKMGr0e7HYCxo93a1vW6xsVb0z99lsO3H8/wm7Hu2NHRu3Y4UwKbAxFS5bgiaZ7BKD39mb00aMY65Xwe/Tpg3XfPiezsRFtZaSiMRR3euGFJs/RKHpdom21+HQ+/PgltAqHlz50/tlis+HhJYG3QFKBMvAbfSn2fkMoWb4ctVcvRPJiKC9BEtokrVi1e1obs/dxbBiNdFy6FFNUFL7dulGenExpfLzbglTW693rnhtBzl9/aQYN4CkE8rFjFJggpAvoPYGrpjN63T/J+u47SnbuxNS9O/aqqiYNywuCa2ZqWyMwDBqE9NVXgHbNVWbNqKFWs3yqdpxsMODVSH6WtfWdVMWvwbcVKDY4staPYa+fOSW9R3Q0HRrR0pIjIvDZn4g9bgdym7boup2bzMj5huTtg2HNYcrvvxkpJw1PLxl9RAQ89m7LDRqAw7s0t55i14QwEzSOIkmW8Rs6DPz9oMoRqzV4QKfGy8bN2dkEouXf1MJoBO+fnoPV3jDmNqSpPRm8dCkF69cjVJVWY8Y4DZrq5cspvOsuRHU1/s8/T8Czz0LHHrDyJCQfgujOEBKOffmLdEd771OAKlVFAfSqiqQo5CxejF+vXghVpfjpp2mPlu/iAfg58v2avKfNvHOesbHEfPpp3b7ffEPl++9TlJGBwWJBUVVqAI8hQ+j7zjtuBRD/VbDZYO0fUF0F464B3xaUwl8InEuJ1Zo1a8S0adOEyWQSHTt2FM8884zYt2/fuTR5Wnz22Weibdu2wsPDQwwcOFDEOcoIW4L/yZLuZqAePyaKwnzEMQNivw6xDMSuGTPEMn9/txLETeEmYfvpZSFcyoxVRRF5X38tTt59tyj4+efTliCrNpso27lT/CZJbm0feuaZZo87euONYptOJzaD2ChJIvXFF7XS0y+/FAcnTxYpL7wgFLNZKOXlIv/220V6YKDIAHEKRCaI423bikOvvy623367SP7mmwb9VO12kXP//eKYn5842auXMCcmtvj+2WtqxN7YSGcJuNobofZEiBiEePyOuh0PbBNVA0zC1hdREqmVJqeASAJxGEScB2K1hNh7ww1u7dsqKkTyp5+KlZ06iYUgFsqyODl37mn7lbpwobPsdYePdq5U6s6b1TpIxHkYnKWsK0BsHT78jMvIzwS24mJR+OWXoui774RSU9PsvqqqisoPPxRFo0aJsgcfFEpxsRB7tgrxxZtCrP/ztOdSVVUcfvE5sSbWW6zqGi3yt207X5fx/wb58+Zppf16vYgDkfXmm2feyLrf3OkgnrrJ/fv43ULcMFaIKaOE2LK+yWbKExNFAhrVQu0zV9QPoY6RhbgcbduwsNFjbXl5IlWWnc9vKghzI2O+areLtMBAkYJGH1C/jHo5iLSvvxZCCGEtKRHx1L0XKSBSo6PP/P40A6Wmxknb8Cc4399FOp0o2rv3vJ7rPwKqKsTMSdrYF4MQl3UUorLivJ6ipfP3eeGpKS4uFp9++qno06ePkGX5fDR5QXDRqGkIS0mJ2Hb1ePFbYKDYPGGCsJSUCEtZmdhy+eXiL2+92BeNUCcixCSEiPvjrM5hy80VJzp3FomOwcV1sNk3c2azx1oLCsSRiRPF7tatRfLMmUIxm0XO3LliIxovzUZZFscffNC5vz0rS+S3bStyQeQajeLA9OniJxA/63TiJxDH5sxxa7/k22+dfCqJOp042adPy66pokLEjx4tNoKI90ZYulM3AdS+2BXlQgjNAPxJksRPIFaDOFh7Puo4XP5u1UpUHGucz0NVVVGenCzMBQUt61tlpVjRs6c4HIoQXRGlYXUTQo4RcQwacHQsB2HOb5ovpKXI+PNP8UurVmK+j484+PbbQgghlMpKcbRjR5EAIgHEiREjhKoo53yu5qDa7aLor79EwZIlwl5VdUHP1Rxq0tNF9ldficJVqy6o0Vgfx6+/3o2z6NDAgWfX0LLvhZg9UYgPHhOi6uwnqaM33igOofFJrZMkYb/CKMTlmnFzpDUi9dqRwu7C8VSLwgcecDNoUkFU/vZbg/2Uykrn9zsaMWr233WXUGw2IYT2Pu3s1EmcdDFqCt9//6yvrSkk9ukj9ul0YlGtUeMwbI40YWCqqnrB34vzBeupUyLrwQdF+m23icodO4TIyawb9xybuubs5oum0NL5+4wShZtCYGAgDz30EPv372fPnj2nP+Ai/mPgERDApSv+4triYkb8+SceAQF4+PkxfN06xl+po18vRy6DJENm4lmdo+iDD7Ce0DJc3JzfkkSHhx9u9lhDSAjdli9nQGYmsf/8J7LRSOmWLXUJnKpKiUuIQBcVRcixYwTt2UNoZib5jgTA2vLfU45E51rY0tPdkkFtLno1zSHjjTco26yVpJZVQXK2I2xXmxRj8gKjlsMhyTL+3boh6XQUoFU8ueYIebdvz+XNlNpKkoRvbGyzYTpX6L29uSIuji7tNf4S/yCI6igR4KvDqIBPIxJFei+vljGnNgNbVRWbbrwRc0EB9spK9j39NAW7d1O1bRvW5LrcraotW7DWE908nxBCkDR1Kkevvpqk66/n0KWXorroDglFIff55znety+Zd9+Nch6oHoTFgpqT4ybXUX3iBDu6dWP3ffex9aqrSHJU2LQEqs1G/rffkvP221iaeSbVmhps+fkN5GkMERFun89aEXrSnfDJcnj0/QaVk81BtVjIffhhUnr35tSDD9Jp3jza7dtHt19/ZVRlJQycQHoyJMdD8CnwW76Z/DaRqPn5bu3Y68kgYDBgGj26wflkb288J04EScK/thpTpwNJot306fSZO9eZd1X8ww/4eXlRERVFVf/++Hz3HcEXgBk6dtUqgqdPx+TnVxe+UlX8G8k9Lf3xR5J8fUny9KTIUcr+nwqhqqSMGUPRl19SumABKaNHk73ktzqNNgdKjvx75CDO2KhRVZXvvvuOCRMm0KNHD3r27MmkSZP48ccfEULQ7zQkYRfx/wj9r9aMGVkbHOg9ttndy9au5fiUKZycPh2LS6WZcCG8CwDaGo349ezJsHXr8D9NRVJj8BswwE0V3G/oULfvJU9PDJdcghwaSmDfvnUDiiwT4EgUrIXvNddoOSoOw8a/XjJ1UzDXm2jKzTJVgdHoagBPb/jwJ3BJ5h31559EjBtHYPfuiO7dyTEYKAV0oaFEr12L3suLc4Ww2bB+OYeCEUM5FhxITVE5QpKxVkFFqkCt0e6ZCa2qqBaSyUTP77/n6LvvcvTtt89aCd1aWopSU+M2slVlZqKvX52o16NzEMZdCFgyMij67be6Phw44DRAAQpmP0TNu29gPHKAsnnfk1PP2LCXlpL9zDOk3XUXZcuXn1ZRWdm7h4r2kVR2iKKsRyfWRkWyzMuLhNtvJ6+qypl8f+Czz7C3UED2xLRppM6cSeZzz3Gob18sWVkN9ilbsYKE4GAOhYVxcvx4VJcqrPqaac0ZRhcCha++SsmcOVgOHqT0yy8peOklfPv1I/iGG5B0OpJ+S6QoA9rq6hI7PYqKKGodiXnZMmc7PjfeqP2ntkryxRcbllE70GrxYoLmzCHy1VcZ9ttvxD7yCL0/+YS+LgnAlVu3kj59OuYDB1Byc6GqitALlJNpCA+n3TffcFl8PKGjRuHToQO93n6byHrCz/aCAk7ddReiqgphtZL/5JOY61Vr/SdBKSrCcuSINgYrCsJiIXP2P8gqgJxSqLFCRRWU2c+Lz+TMcSbuH1VVxdVXXy0kSRJ9+vQRN910k5g6daro1auXkCRJTJ48+axdS/8KXAw/nSHM1UIsel2Iz+8V4nDzlPBVR45o8XtJEnE6nTjQubPT3W5OTBTH/P21kIssi7JFi86pW6qiiLQ33hD7Lr1UHH/wQWGvrGxyX1tVlYi75x7xZ7duYvcDDwi72ezeltUqquPjRf5LL4mSefNa7P4t+OMPLfyl04mNIDI//VT7wlwjhN3eoL9V6enCVlkpdo0dK1bpdM6wT+b335/RtTeH6lkzRZkJUWrUtkQjorI9osQTUVhPFqFQhzjWr4/IW75cmAsLxR+RkU4X+WI/P5G2YMEZn19VVbFq5EixCMQiSRILw8OF2SEBkff22+Kgh4c45O0tin/6SShWq6jOzHSGBM4nrAUFYpssOyn8t4Eo27FD62PCflHmg7D6a1ulDyKpW1chhJYHkfH882JfSIjYI0nigCNcdjQ2VtiaCc1VDBsoyrxkUWZCbPKIEIO5VfjxuOjA3eIVotxkC4oPHDht/5Xq6gaSF2nTp4u0664Tp559VijV1UIIIRJCQsQ+SXLmbhR8+62zjaxXXxVxsqwdL0niQNeu53JLhWq1CvtXnwr7Uw8LZfuW0+6ffuWVdWFdEGmXX+78rjIuztnnPJ37M5kvI/KCgtxCdVUrV4qiJ54QlYsWnXMIL+/TT53nrt3UZp7BkoQEsX7kSLGqVy+R2ojsyPmA+ehRt3uVCKJy7doLcq7zAdVuF0eiokSCTicSQOwHkSDXPau7QdQEIKo/bJl8UUtxQXJqvvvuO+Hr6ys2bNjQ4Lv169cLX19f8cMPP5xZT/+FuGjUXDjkf/99g4HY5qJpZMvNFeXLlglzE3kj/2qodrvIvuMOkShJ4lhQkKhc3zDR0ZyVJWpSUpocSIvXrxcpL7wg8pcubfI8tooKsXHIEPEbiKWenmJNQIDToFml14ujjz12vi5JlIUHijITTsPmhE77HXJ02oRR36hJkhEFy5eL4++9Vxfzd9my/zx9Uq6tulokf/GF2Dh2rNh67bUirkcP5+9/oEcPt3unKopQVVVUHDsm1kRFieUg1kZHi6rU1PN2D2qR89lnYptOJ7aBODl7trMftjdfcho0tVvBNROEEEIcvfJKt+c33mHUJMiyyHnyySbPVdG7iygzIQ54BAojzwt4ybl58ZT4Dr34CcQvJpMwFxeftu+qoog9QUFOo2R3bT8kSSTIssi4804hhBDxJlPd5CxJIvfDD51t2IqLxcHevbXjvb1FaSNj9pnA9vA9whogCWuQXlgDZaHEbW92/8IPP3QuYhJBFL7zjhBCCMuRIyJ73Dhnv49L7s9kbS7chco/qkpIEPt0Oud2bPjwJvdV7HbxR3i4WCTL2jshSaLoAhTCqIoiUocNcxo0Jzp3Fsq/MQ+sJahJTBTJl10mDnXsKDbXG/fjQOR4IcQ7L5++oTPABcmp+eWXX3j22WcZ3UhM87LLLuPpp5/m559/Ph8OpIs4Cwi7Hfu/SQrCu39/zUUsSaDTYezQwU1JWR8Whu+kSRiboWi/YNi8Aj5/CeLqcm9OvfceZT/8AEKglpSQPW2a2yEZL7/M3tat2RcTQ/IddzTIWQAIvOwy2r/6KqFTpqDa7eRt305xvdLQtG+/pTguDgDVbMZus2ksuzod2O346/VU/vijG+NyS2ErKCD9qqs42a8f+fPnI8d2dIbRFKBI0bgxcl15yhxxb0nSyuST//EPkp54omHjOh15jZQzu0K12VjZpQv7Zs0ib+1asn//narDh53nMh8+TO4nnzj3l2QZSZI4+uyzmB25EubMTJJciPPOBEJVSfjwQ1ZNmUL8W2+h2u3O7yIefJDBpaUMKikh5pNPnJQTUp9+zntQi6CHH0GpqqLsb3d5ALvL/9XKSqpTUsj85huKXEJZAB5PPQeSxA61HRb01FHeSVTjidRtAMEDBzL6778xOkIn9sxMyl9+mYq330YtLXVrT5JlOi1dikdUFLKXF379+2vUCUKAqlK5bh0A4S6UCfqwMDyzsyiJbkPZyGFIhYX02LeP3ikp9MvLw7+RMftMIJYtqUsakyRNt6gZBP3jH4R/8QV+N91E2GefEfT446hmM7mjRmFdtw4vx+9RjkSKHSwK2B0RZe9nn0WSJGw5OaSMG0di69ZkP/QQwm5v5owtg1evXnRct46gm2+m1T/+QQeXUFd95P/yC965ubRSVQIBSQjKE88ur7A5SLJM2zVriPjuO8K/+orouDjk8xCOvpDIX7GCrA0bKExORvXza6Bx5SEDt50d6eW54ozI98LDw/n777/p06dPo9/v37+fq666itz6yV3/IfivJd+zlmP9dSLkbHEM1hLywEcwjHr/gjDFNoWSv/4i95NP0AcF0eattzC1b/8vO3djKF+7lup5X+AT9wc+vjqNa+P9xaiXTWFzUBBhFRV1L6NORxerFUmWseTksLce/0n0rbcSfM89mGo5Jo4fgQVfgqc3ym0Pseamm8nbuhWA7o8/zgBHst+xN94g8cUXnSKTel9fvBUFpbqa9r6+GCoqAPDo25eIuDinICaAvboa1WrFoxHBRCEEma1a4eHQtLIDxq+/xmvRfMqSjrGmsIIaiwVZkmgrBAoas2morP1bJaBUllEVlSAgqZH7N3DePNrfcUeT9zfjt9/Yef31zs8eQDjuiXqhM2YQ8+23bsftHDuWwvXrndaVf4cO9HzjDQJuuOGM+K4OfPABOx9/XPsgSfR/4QUGNqPtVQv7A9MRCzSDVrpjJrqPv6ZwwQJO3Hqr0xwBjUOo9tfQ33gjmX/+6RRE7frxx0S7JLkrhw6ya8V+Ln02ze1cXboEc/jwLHS6uruilpSQ17UramEhCIGhVy9C9+518rLUR/G8eWTV5n3odPhdcw3RDqLLym3bsOXk4FFZgeXeu5376Lr3wH/fgdPei5bCNnYIxO9x5rLpPv8e+ZY7z6yN48fJrreoCV68GIuvL4bSUjwsFnQdO+IxZAgAqePHU7FmjXZOSSLyo48IOU1hwfmCvaKC7UFBqHZ7LTsSNTodI5KT8fk3j2v/btiKi9keEuK2MlB9fPBxSOgEekD0rr0Y+vRvqomzQkvn7zPy1BQXFzcrixAWFkbJWSYZXsTZQSgK5e8PwVCxBQ9/8PAHY4DAcPxD1GPzL9x5VZXKn36i5KWXsOzdC0Dg1VfTdc0aOi5c+C81aIQQWEtLnRVOAIVz53LiiivIWfAHx1OgrFQbGFn1C9aSEgoqKlCo82DoLrsMUVBA2dy5ZAwZgj/usgyVCxaQO3IkNRs2QP4puH4ILPgavv2AnAlDnAYNwJH338fs0FJqd+edGF10jbwMBnRmM97gNGgArPv3Y3GpHEybO5c/AwJYERjI/vvua+Apqly2jJrCQspxiFIC5atXo1+0lKSRV2B2qEeqQA6a0VMGnFDhhI8fJQJM7aIxoSVvu6p1eUZF0fONN4h2qA83hfrihiY09XJXvRxFr2ffgAEcvv56atLSKFy8mOC+fesmcCEIyU7BOnMqFTNvcRp/LUGOq8dECHI2bWrRcfrPv0dfaEOfb0H/yT81Q0qnw4Lm4VLQBkZPx3XZgKxff63TLQJSP/zQrU1dz14MfeYO5s6dRExMIOHhPtxxR282b57uZtAAWHfsQM3L0yZrVcV24ABKaiqq3U7u0qXkLFyI3cVzF3jHHUS89x5eQ4YQeOedtPnmG+d3PsOGEXjjjcinchCSRJ4KKRaFnMNH3DxXLYFSU0PGu+9y4tFHqYiPd79n3yxAGnQpREQhP/wk0rTmn43GoGvbFl14eJ0mlKcnnoMHEzJuHP5Tp+J5++1OgwbAfOxYXUGAToclqTHTuw6H33uPxe3asWLwYEqOHDnj/rnCkpKCcBg0tQjt1+9/3qABrSCBeuORPGwYYUuX0nr9emJrlPNu0JwJzohRWFEU9PqmD9HpdNjPg4vwIlqOwvnzMRYnIgVrn2sXuqoC5qMb8ep6+sFHqCo1mZl4BAe7CwM2g5JnnqH83XdBp6PszTeJ2LYN46BBZ3sZZwxhs2EvLUXV6dg8ZAiVx49jCApi+Pr1BPTpQ9HcuW77F5WCf4AMUdEYQ0Lw6d2bY4cOESAEQpbp7eNJadtw8hzzVi3TbymaweChqqDXU/3773jaLoeqOoNEOlWvMkWSnBVXnlFRjE1MpHDLFrzatePQyJEoqurUdHIdNOVg7Ue0VVRohozjXUr9+muibryRVpddhlJRwclJk6jZtMl5rBWtVL7Kw4OVkZEIm41A6krHPdu3J6x3b2SjkXZ33EHYuHGoZjP5335LtmPl2waIQFMvjk5Pb9Jr4IqoKVPwateO6vR05+qoynFOGYiYNYusL74AoGL/fkrXrUNyCA226tgRva8v6qF4MKrIevBa+QsHJhdg7jeULrfeSkDHjs2eP2zgQNJXrNAGWFkmbHDLVZolna6ulB/wdCigW9CMGW+c/MWYHP93GlyShIdihYQ90HuAW7t33dWXu+7qC4Bt/34sn79LTUwMup49sfz4I1JICB7jxmkvam0c0GRCCg0l/pprKHDIBPj27s2QuDh0JhOSJBH6+OOE1nqlGoHhyvHkv/wyeao22VRa7Xi++SbRDqX0liDxxhsp+usv0OnI/vxzLjlwAO+uGkuwFN0e/crNp2nBHUfnzSPuxRfRe3oy8vPPaTtmDOGbN1P6yiuImhr8Hn8cfevWTR4fcMMNFLz7rpO13M8hP9AY9j79NIffeQeAqqws1k+cyPUpKWfUX1eYYmPx8PXF6lh4SEB0C6R4/hfgERZG5H33keNg/a4GMlavxtS3L4PffPPf2znO0KgRQnDnnXdibILzwPKfJuz2PwBLejrmBAm/jgKhahXYQnWI2UVPOO3x9qoqto0dS/HOncgmE4OWLCHi6qtPe1zlDz9o/1EU0OmoWrKkWaOmbOdOTsyejVJdTbsXXiDspptafI1uOJaAevc4pKI8JBXKzTpsWdpqzlZczJ7bbmPsoUMY2raF3bsdrmvwMBlg2Di47yUkSeKydevYd8cdlK9cCYrCgaXL6VrvbZCAsG7dkI8d03SIFAV9TAx06KLlFaiCY2US2dUSQRFhlDiUefu9/rozdwLAIyiISIcmTdTs2WS88QYKUGoyEagoIASBr7+Oh0MwUampaZA/YDtwgOqcHEq2baNqyxZcTQ4VqOnYkbSFC50eEj3aZGyWZYZ98QVtr9SUkq3x8Zh/+w2PkSPxHTqUMrSJOxTNECkbNqxFBg1o4n/jk5LI/PVXrEVFpL34Ikp1NdWqSvCYMRo1vyxrxoCiYC8rc3q/bMnJ2IcPJ94GotSh8K6HghXrkFZtJOHjj7n58GF827Rp8vx9n34axWIhe+NGwocOZWALxT4bg6TXO40Y16uvNRxNJhOGgQMp2bIFoyToIfLhmqHw+3boM7BBe7Z9+ygeMsR57Tg4U1BVrBs3EvDPf1L+4otIJhMBX3yBubDQadAAVCQkULJ1KyFjm6dRALAdPUrhjBmYJB3eqE59pbJt21p8/UJRNIPGoUouJImSNWucRk2jxwhBxaFDSAYDvvX2y/jtN/ZMn45AWxj8NXkyM3Jz8ejUidAW5l2GT74Uj81BWIpr8L19Fr7jxrl9r9psqDYb1tJSDr/7rssXKpVpaaiKgtzCZ7k+dN7e9Nmzh5MPP4ytsJDWTzxB6LXXNtjPXlpK/ldfoVqttLr7bjwiIxtprWVQSkqwpqZi7NLlPz6npuMXX3B81y6K9u/XJGyEoPjgwX93t4AzNGpuv/3208a8bz+Ny/oizi+CrrmGxDdex7fCjkcMSEYQZijvdBPh/a477fFpc+fWJbJaLOy/5x4isrNPe5w+OhprYaGTq0AfHd3kvkpNDQevugqlogJUlaM334xP797OAdNeXk7Bd9+B3U7IHXdgcAnXNMCDkzWDRgK9DkK8FPqHww5NWxCzg8+j9YcfYk1Lozo+Ht9Rowj/9VdwyU0xhYSgZmQ4P6tAoaqt0Gu9KDYg9M03sb3/PrbERLyuuQa/hx7S+Gc+/oW0px7haOopQCDl59N+zBj6zZ2LT9u2TXa//Wuv4T9sGJaMDIKuugpjeLiW2+GSS2Nq1Yo2t95K5k8/ARAVGQmPP06JEAidDp2qOo0XCY3rhuRkN0I/CfACfBWFkE6dAKj66itK779f+z4oiFZ79uAxfjzHV60ipTbvJimJPk3f/QbQGY1EO7h9oiZMIGf+fPSBgbS9914q4+NJe/FFJ8eIVC+0lOdyHQIocNhxQlGwlpeTuXYt3e66q8lzy3o9A+upv58tPDt0wLN1a6qzsqhC89LVetIsQJ8tW/AdMAClVzByaTGSpGrfrl7qZtQo5eVIRiOW33+vM2ig7l/AtmEDgStW4H13XSKlpaCgzgBEewb3PPwwVRkZRE2cyMDvv29UkFPYbBQOHIhUWYknmsctBbBKEv6XXtri65d0Okzt22NOT9f6KgSVqamsdbwznd54g3YPPODcXy0vY3fHdpTklyEBAUMGM2jbdiRZpnTfPhKmTiXAcf88gJLqamry8/Hw9W1Zh6rKkN6eSnCgBQIEbPsU0u6BaI3XKuPnn4mfMQPVYiFi6tQG4ZDQQYPO2qCphVfnzvSslzzuCmG3kzhiBDVHjoAkkf/11/RKTER/FiSW1du2kT52LJjN6MLDid6xA48zDHWplZVIXl7N6lSdL0iSRNS0aWTu34+k0yEUhTaOhdO/G2dk1MybN+8CdeMizhZevXrRbe8+Sp57DsuilaCqeD7yCGEvf9Ci45Xq6jpXuBAaeVoLEDp/PgU33YQtORnvG2/E9557mtzXmpeH4gg7ACAE1UlJeHftirDbOTpyJNUJCSBJ5H7+Ob0OH0bnIq5YtHIlqS+8gKTX07ciA9nFrpYk8HUZ60NGjQLAIzKSLg5jrSkYgoK0FbRjwtFLEGqEEgWKDFBoBtNnnxG7bFlDsrgJUylbtQXp+D8RdjtCUahKTm7WoNH6KxHcgpf/kh9+oM3NN2OvqMDw+uvYczSrTRICT6BSkpCEwNS7N+GPPkrJHXcQCdRSHkrgrMOpTknBKyaG8tdfd7avlpZS8NprBPfrR8bKldjRJrag/mcfC/eOjaWjS6Ku/6WX0nPFCvJ++glj27aYIiNJf+IJhN1O6+eeozojAykuDqEoWoKuJKGCc4Lyu8D5C5WHD5P16aeUlpQQfN11+I8Zg23ePOxAAZqnyw5EPvEEvgO0MJMuugMcKgXJ4X2yy9i//grdJQPInjOH4nnzkEwmIm67DcmFINIZutLpkMPCoJ6BYgwNpducORydPVvLDWvblorjxxGKQsaiRQT06UPXp55qcA3qqVPIjgTNWvgGBODz8MO0fe65Zq9ftdlQzWb0DkOjx7JlJM2YgfXUKUKnTSPZxfuR+OCDBA4f7lS5zpg6npJ87Z0WQFlcHIUbNhA6ZgynfvtNM9Qdx/oAVZKET7t2zfbHDWUFYDW7/y0/HaI18dV9d92FcOQ45SxahIckYXU8NzqgXUVFs8ra5wPm5GRqXASDbTk5VO7aRcAVV7SsgZxU+OhhKDxF1vIT4GC9VnJzyZo+nei//9ZIFE+Dw5MnY1y+HD9ANRoJ2bIFw8CG3sPzjT6PP46Hry95cXFEDB9Ol2YWIP9KnFH1010t6LQkScytl8/wn4L/2uonB4QjbCG3dDUE1OTksPGSSzCfOgVAr48/JvY0FQYVGzaQ9+abqP7+tH71VbxOwwosFIU9PXtSffw4ADofHwYeO4YxPJzqw4c51LOn2/5d1q/H36EGbs7MZFeHDlo4RpKIDlaJdqgF1D656VYf4lOrCBo6lGFr1jRg5604fpysP/7Au21b2tx4o3OgKz94kD3jxmHNzcW3d29iUpLwCzPjNR3Qg6SD8gSoKRhL+Ko1Da4rZ9ky4qZMcXoi2t9zD32//LLZe3E2KBg1Cuu2bRp7pyRRKElUtWpFh9deI/zuu1Frasjp2xd7UhI1QAVQm+Vj9PbmiuxsDP7+5HXpgj05GaGqZAG1U4ZHnz6UqCr+3bsz4LPPMDpyey4EVKsVVBXZZKIyK4s/xo6l5NgxZIMBbDanqvrAF19kwGkm5eZQsHkzic8/D0D3N94gZMQIt++tp06xq0tnjpdXUOT4W1BYGJ3z8pz5QQLotn49QY5nEYA9G+GZMYCKUKB8PyhVUI1Evr1uKJU8PYm59VYsCxeii4nB4+qrMS9YgBwait8332Do3bvRfitmM0JR+Lt3b6ocUhKSXk/MzJlc4shPcoWw2cgNCECqrq5r47nniHIxYBtD0dKlHL/1VtTqakJvu42O8+YhyTLlx45RkZSEvaCAxJnuKuqd332XmCeeQKgqR8OMpBe6h0j7LVtG2KRJpH31FYccHkGBlnht8PHh6vLyJj39lqwskqdPp+bYMYJvuIH2b7+N9OgQOHlAs8wDwuCfieATgKWggL9atXI7PhTteRZo+WV6oNPRo5gcId0LAXtJCfEREZpx5ciP6nX0KJ4tpa24uQekH8NSrZBywP0rG6AfMYKuGzc2aZgJIVg/ZAiFu3ZphhzQFpDatiUsPf3sL+w/FC2dv8/IqJFlmXbt2tG3b99GeTtqsXTp0jPr7b8I/+1GzdnCWlqqJbK2bUtAE+X6taj6+2+Kr7oKGe3FOw60feEFYu6/n8pjx9jz3HNUpqXRYfp0er32GsqJE8gBAVhqakh66il0skyHF15whp5sBQXER0Q4vSUCCJ4xg46OMuCSDRtIuPxytz4M6gB6GVQB8oirMHy9HKHTNTpgliclsaZfPxSzGVSVjg89RL9PP3V+X33iBIWLFuI1/xs80jPwnAlyOMgeWn4SQN5iiVZbrUiNJMlnLV7MqeXL8e3alU6PP47sEkY6X7AdPEjhFVeg5uVRBRwDFJ2O4BEjGLFhAwBKaSlVCxZQtWMHmdu2UV5Whlfv3vT5/nu8HB4Py6ZNFE2aRHlFBfVJFwalpeHpupLeOB9+eFrzZN39CQy55rxfF0DhwYMs7tMH4bKyB5i4bh2t6/3uLYU5P5+/o6OdsgE6o5HLNm6kauVKZH9/DPG7yFzwK3YBqYCrClU3HBISkoSpUyf6H6unX/PwMDiyHXDQtlRohk2lqoUvXdGnquqscyOOvP46h194QXPtC8HoDRtoNXJk49cbH0/+tdeiFhYiXX01bX/+udFntRZCUYjz93fjRury++9UWa3svPlmUFUMvr54Vla6hXWG7N1LQP/+2EpKSIwOoqQGarQiO4KCTFySU4rOaES12zl4zz1k/vij9l7r9fSbP5+oZvLoDo8ZQ9mmTc5xIObLL4m47WZY+bXmsRl3F4TU0SzsvukmshYtAsCrfXvCU1PdS3kliW55eegbCWVXJSdTsmMHfr1743ea8e50KFmxgrQHH0RYrbR+/XVatdRboSgwTI/NBocPgdHqXjRQjeYl7JWYiGe9fCW1qAjLihXkJySw8aOP3L4bAAR5eRFxFrxX/+lo6fx9RuGn+++/n19++YXU1FSmT5/OrbfeStAF1HC5iH8NPAICGuiRNIXSxx5zvnx6tJVB4WuvUfbaa85BxQIkvvkm/r/8gkdqKsgymaGhpOflaeeLDKDLe5+DJGEIDSXwhhsoXrgQ0HIJ8ubOpd0bb+ARFoZP377og4KwO8JXxshIPJb+jm7fZhh6BXTSvDxNZXplLVniNGgAUr77zmnUVB4+zJFLB2BUzeTWQBcDqAaQpTqDRqig8xNU7diBj8tqP+vXXzn66qvovbzo9cknBLuUop4PCFVFKS9H5++PoVcvwrOySJg5k9Qff9S0iBSFGpfVmC4gAL9Zs/CbNYuIJto0jhpFRH4+NU8/Da6keED59u2Y2rbVDMPcFPjkTu3iAd6bCt9ng3/juU7HFy4kfdUqgnv2pM8//uEUDgRQKiqoPnIEU2wshkYEOQv37XMLVbhe/9mi6sQJJ58MgFRTQ+rw4WCzOT0HtWiPViVWXNtfCTx8wDvSSExj+RSVpXXtSiA5Mp89JdD7+GB3hIKC77nnnJI9uz33HH6dO1OWmEjElVcS3EwSvqlfP9qegbaTsNtRXTw7oHkdjnz4ofM9sVdX4z9hAub4eITVSuwrrxDgCE3qAwKo7NAXv5T9BEtgVmS6bNmLzlFAIuv19PnuO3rPnUvuypWc+OgjTn75JfrAQMLqJfvWovro0bq8I72emqQk8PaDGxohhgQG/PwzrW+6CVt5ORGTJlE+f76m4aWqIMu0/uabRg2akh072DV6tOZdkST6LFxIRK2+1FkgcMIEAiecviCjAXQ66DOC4jVbsVo1w7E20GTDQfwoy+jrza9qYSFFffqgZmfTWLlOBRDWDLfU/wLOKOD4+eefc+rUKZ588kn+/PNP2rRpw4033sjq1aub9dxcxH8PLPV4iGQ048YfzQXcGegN+AIFqalaIqiqEuUwaAAOffQl4vN7nZ89e/bETl3liQyaEjdgCAyk386dRN57L1EPPEDf7dvR9bwE7nzMadA0B8/WrevyGWQZT5fqhIr3nmNAezN9YqFPFyiUoGQ9VGqC4lqakR2KE3ATp6w4dozd06ZRceQIJfv2sf2qq7DXmyTcsPFjeNwXngqG+F+xV1WR+N57HHjuOcpd1KtrUX3wIIdbt+ZgYCBJgwdjLy1F0utpfddd2kzqcEe3mzHjtNdfH5LJROgttzg/69B+vxO33MIuvZ6Um25CzT5RZ9AAKDYozmnYmBAkL/iB1dOmkfTTfLY/+QTb/3Gf82tzcjIHOnQgccgQDrRtS7njN3VF6IABDaqtoi6/nKhzYMD169EDj5AQJJ0OSafD38sLHLw9jcF1cvATYK2A9pdaMDWWHzXtGbePZsdt0UdG0GXPHqJ/+okOK1fS1lHueraQJIk2N9xAj5deatSgUW02yvbvp6YFSf31IRuNhN9X9zt5tG5N0OTJWtjWJdTh3bUrl2VlcXl+Pu0c4aTavg1YuxavmY/DdTPouG4nvo2EoFWzmX133EHBpk0Ubt3KjokTqUpNbbCfsNkIriVx1OtBUQiaOLHZa5B0OiKnTKHd7bfjERBAyEMP0dNup3tVFT3tdoKa8JhkfPllHZ+VEKR+0LLcw1rUJCWRctNNpN58MxaXQoPGYM/P14ojmsI7fyAP0Yw8K5pBUgnUAOh0tP/6awz1eOEsy5ejOn7z2iRsVxR6eBDSSJjyfwlnFH6qj/T0dObNm8ePP/6I3W7nyJEj+LSQ5+TfgYvhp3NDWUoKWzp2pI+qIqN5VQoc/9Zfg59Ec6HGAn5oBssOx796HVw7HqSfi8A3CFtJCfHBwXg6HkUBRHzzDa1cqkPOFqqisO+++0j78Uc8W7dm6K+/OpNhrSNbYSgrcOZJ5xWCdymU+oM9FIz+UHgEMoug53ff0dbB6pqzfDlx9TgzxqWk4N1YYmvOYXirzvgSsoFNhwaQszkOSZLQe3szITERr6go52B7fNQoqnbudJYChz31FFFvvAFAyd695K1ejW+3bkROmXJGDLyuODVvHicfeQSpHkW/B2iu+ys98TKakQQQ1Rk+PgAGlyHUXErue8P5443D2FyYHALCdNyWVQl6Eyn33KNVtSkKyDI+Q4fS3YWksBYZf//N4c81z13Xu++m3dVXn1nlSsImLYm03xUQrPmpKo4fJ/n99wGI6NyZ6icex98xX+codRIIqiyzTVWxAjHg9HL1eO5y/F9f1/j59m9ArP0RW5HC8W0nOXwgAeHtzaBPPiGmntxGk7Ba4YtX4OAuGHQZ3P2UG29Oc7BXVLB9xAjKDxwAWabP3Lm0ufPOlp3XASEEpX//TeWuXZT/+itqWRneN9zAgXnzsJWV4dulC5dt3oypVSuE3U715s0gSXiNHNnikv/KEydYU49raMjy5UQ4DBahqpy65x7KvvsOyd8f0623osoyQZMmEdBI6NFeU8PBp5+mKC6OsMsuo8err1KZkEDqc88h7HbavfACgY5CgaaQOHs2GV98ob1rOh0hV1zBgJUrW3Q9hfPnk+Fa3Wsw0DMvD0M91XChKGTefjulCxaAXk/rb74hqInfR7VYOD5pEmVrHDl7koRkMNB9xw5NeqYezH/8Qdk1WihYoHnFtwcGYisvJ6hvX66Oizvnqq//VFyQnJr6yMzM5Pvvv2fevHlYrVaOHTt20aj5fwi1uBh7bi5KaCimkJAmJ8o9r7/OwRdeoB0QhDYxqGielVb19k1GS9xrBwQDBUGQVKw5Ggb0gdBgmfK7fiRg6DC82rXjaJcuWJOStDCEJBFwyy20nX/hGJEBxPU94OQRjZ9EgCV2EB5PfkSp2cruUaOwOeumJaLvv5+en38OgDkvjzWdO6M4Qg3esbGMOXzYLezixNHV8IV7tdPy+VBdppVc24D2U6fSZsAAcp95BnQ6pIAArLVSIzodITNn0raJBGQhxFkZNpaiIlaHhhLczOvfdvIA2tx6LYy7B3zd3eBi23N8f/WbVLlIjUkSxPaGK9cehpDuLTZqzgk/vwbzHQRzPoEwJx7Co912UTIyKO3QzhniEgJs468CvwACX3sD4efH4TFjsBw4ABKYWreiT2IyOp/mx4iK5GP81rkbCOFcMV918CCBPRv3IFri47EePIjp0ksxLPsGvn+/Lmfl8XfhrsZDLfWR9uWXHHrgAeexej8/rnKtLmwhhKJwMDwcpbjY6c3ssG4dupgYvNq0QdbrEapK5oQJVK1aBYDPpEm0Xrq0RVVFqtXK6o4dMTs8C7LRyBXJyU5vafnixWTXhn4kCTkwkE6FhU0+z/sffZTjn3yi9VWS6Pbss5TOmeP0hsgeHgw6eRJjZKQWvi0tRRcQ4NZXS34+e8aMoeLQIUxt2jBgzRp8WpBMLFSV/UYj1OOPinz7bcLrVaWVr1hBmounSfLwoHtZWZOVTEIILJmZVPwwF9sX7xEg1eDVtx8sWAf+9QwmVSWlZ098EhNRgARZJvC++xjsGJv+m3FBZBJAI9j75ZdfGDt2LJ06deLQoUPMmTOHjIyM/2iD5iIawrp3L3n9+pETHEx+9+4ci2nFilbe5G3e2Oj+xqAgbGiu0nw09thStGThIuqo8QvQDBqdl4HoNyVazYfef8JV9+qZdAV4mWQ2bYR9N9/Kxq5dKYmLwxQbW7cClOVG4+HnG9LjHyF5OAaaqGhMX/yO6NOf1N9+xyJc6P6FIMgln8YUFsaonTtpf//9xD76KCO2bGnUoLGWl1Pt1QGCoqkVOBTtBqGoPrQFwoDWgHnRIk49/jjCZkOYzRqFfm0fDQZCGvFYCSE4/Mgj/GU0srpVKwrWrj3t9dp27KD8spEUDR5A6vXX4ysErnSZrvIGAkhftgfL0NsbGDQAorrYlVQZgJBIGDXVC/y0hOOIxx9H71jFSkYjbU5TkXNW+O39uv9Xl8HGhsRuorDQLWdHkiD46ecJ/2kBxvbtMQUH03frVmI+/5z2H39C74RjpzVoqDhF9WeXa8SJ4Nx29O6NpbjYbdfqzEz29uhBTv/+FE2fTnaPHqh/L3HnVvnju9Neqmq1UrFnD7a8PLdjzzb/SK2sRCksdJOmsGdl4dO+vfN5Nu/f7zRoACqXL8dy+HCL2pc9PBixeTPtpk+n9U03MWLzZrfwr72goG5nITRhT0Vp2JADRbt21fVVCEq3b9eoIlQVVBXVbKb62DHMqakkdOrEvuBgDnbrhiWrjvHb2KoVQw8coN/8+XR88EHklq7pFcVp0KhoixEbUNZISLV+yElYrc7y88YgSRKmtm0J3fUXkSYLXgYg8QB8+1HDfWWZ1Oho1gBr0bieSo8ebdk1/I/gjIyaWbNmERERwdtvv82ECRPIzMxk8eLFjB8/HvlfQPhzEecP9vR0CoYPx7Z/PxKQGgDbKiGtsIZll19GRfLxBsd0nzGDqAkTyEfz0lSjxX+9AHXaNPwWLyatY0fyDAb8L7mEUVtew+8ygaGjFgP3e6AHpoW5nJAHIxx07qrVSsonnxD58cdOsimvAQNo5SjHvaAYPBZWZ8HC/Ui/H8Xm5cfvgwax+9NPyaEuvl0iScj1BC79unalz2ef0fPddzG1qu+nghM//sgvwcH8Gt2RbYk9UKe8Dzd+jvTQejqPGev24hnqHywE0T/9RLvvvqPb4cN4NeKGzl+5ktSPP0bYbFgLC9l7ww3NTm4VCQlsGjGc4zu24HtiL52PbGJwEATpcBo2Eu4J1wIo/rNxNWa590w69nGQ6klaZOqqO/WYpi3XMm0Bz06d6H3yJN127KBvejp+TVTvNIejc+awpH17lvfvryUV14dPoIs2iGjUANP16oXO5R7qevREX++e6nx8iJg1i8jZs52GWLPY+THBvrn4ebrnNchCcKIes/HeO+7A00WLSNjtmAvK3fahqJGcJRfYy8tJuOQSDg4cSP4rrzilG7yBmMsuo2b//tP3uR5kPz98Ro/W8mh0OmRfX3xdy9cBy4kTDY6TXDwOQlFIefFF9o8axYnp0yn95BMsO3c6v/eOjqbbq68SPX06XvV4anynTEHnkjweMHNms1Vb4WPHOrKztd87dPx4LefEIXmh8/PDFBND2j/+gcWROG0+cYKUW27B6mLYZL3yCiduu430Z57hQN++pN10E8dDQ0kbMgRrE9IKksGA9+jRDRLNS1etoua4+1jpN2ECRpey7qBZs9C1JDJQWe4ixSFrnx0QQpD91Vccvf12/AIDtT447lW7605Psvq/hDOqfvrqq69o27YtMTExbN68mc2ugnIu+P33389L5y7iwsEaFwdms0bSZoRDLt5riwLJn31Iv0/dkx11RiMT//wTa2UlmwcPpsJloM785ReChgxhlMsLLlQ71rhd6KXVSF4dkGJ/wV6tx3ogoW6lKQR6b2+MsbF0Pn4cYbG0iHDqvCEgWNuAEz9/R+GBA86vnLdEkth8773c1EKRPMVqZcfMmUh2O+0B7yUrOJqUTuf169EbvQm49FIqXGgPVOrCeAAiIoLU7dvpOHs2xg4dGj1HLa+QdoDAXlaGarGg8/RsdP/4GTMwSiq9fTWSQUkCkw5ifKGqtInrAMoOH8Zr/378+/Z1/zKsH2NXH6H1Z69RlZJMZIQH1T7D8PLu7Wak6f388D3LyrC87dvZ9dBD2oeMDNaNH8/UU6fcQx+PzYNXr9EuYuB4uKJhgqik1+O3bhOWRQtBVTFOvQmpCamXFkO1ozdI9B0Nx+qlZNgKC7EUF7Nv1ixKDxzAkpWF25QmBDXhXfDK3a7dZL0Enbo1eSp7VRWJM2ZQ7SB6M6CFdGsZjyuXL+f4X38Ru3Ur3mdwryVJosOff1Lw+ecoJSUE33knHi6yFDVHj3L0llvwQFu4AAQ9+SRGB0M1wOHrr6fkjz/wBso3b6bM0Sf/UaNo9dZbWG024saNw1RTg6deT/R77xH5j39o1xEZSfuDB6lctgxdWBi+kyeTv2ULJXv3EjJ8OMED3HW1uj3/PDovL4p37yZ05Eg6PvggNVOmkPHmmxo/V0QEmzp0wEdVMTj6YVIU2LKFk23aoEyciOHSSyn47DOnlpew2ShatAgvoKakhJzbbiN6+/ZG71dV585YNm50k9FACMxJSXi63BOdry+xe/dSuWYNuoAAvFua9D7rGXjC8fyaPGFaHaFp1scfc/LRR51koT1uuw0lKIhWQ4YQfQ7VW/+NOKOcmjvvvLNF8fvvv//+nDp1oXAxp6YOtiNHyO/ZEyEEOh2slKDaJVx8+Vuv0e3ppr0lCbNnc/Kzz9z+FjJ6tJM3BSD9scfIdagZmzp3pvvu3ZR+/jlZzz1HjoOW36DTMSIlBa/TMPFeKKg5OVjeehVRWkpq6/ZsefvtRvfzjoridpfVXnOwV1fzk48PUULQCof3Q5a1PKEff0Sprub4xImUb9igDVJCaIR0kkSZ0UiJ1YqQJPS+vow/fhxTI6E4c24um3r2xFZUBEIQdfPN9GtGU+fPkBDsRUUIoJ0J+vlqho3ZDvvcoyXOMJQNhxdHlrlk5UpCGynHVc1m9vfsidmxwjXFxND30KHzYpgmf/cd2+tVeN1cVoZH/XdXUcBcpZUANwLVZqPy6FGM4eEYG/GqnRWKU+DbwShlBaypp+HX4603yNyfQNZvvzmTv41oHDgegNyhA1GbN6H78knYuBTadIS3F0N0Q9I2oapsHjGCmu3b8UWrVqs1x1wFUVVA6dCBwrAwOt9zD7F33IElJ4eKvXvx7t4dzyaM4+awe+JEUh16VHq0cOmlNpubN2WzyYTJYnGyV4NmdAWhPT85ffti378ff+oEQiPee49WjYhzps2fz67bb3d6Ykb89RcRV13Vor5ay8tZFxDgzG/ycfSj1hirfaZrdb79JMlZmOAlSZhq2YhbtaKTI/ybvXkze99+G73JRP8nnmDHsGFIQhBG3QJEkiQC+/en3cKFTS5AzgiH90PqcRgwDMLrvMMJ48ZRUptMDASOHUtvl8//C7ggPDUXZRL+e2Do3p3ABQsomT4d1WxmsDdsU8GqQof+Pen8WENKdlf0ePddiuPiKNmzR/uDJJG3cyeL27cncvJkrOXl2L7/nloVFHNSEsW//IISF4cXEI0WwjK1avVvM2iEEFRfPQY1+TgIQYQsE9qrJwUHtRVxZDgEBkJ2DvR85pnTtFYHvZcX3f7xD2pcibFUFauDIVbn5UXX9euxl5djSUkhadIkbJmZiKgoilwMJ1tpKSV79zY6sJvCwxl54ACnlizBIySEyKlTm+yParNhLytz5sukmyHCAyJNoBp0yH7eKOX1wiE+Plhq6fdVlZS3327UqKlKSMDsEqIwnzhB1cGD+J4Hmvbwyy5D7+WFYrEghCBs2LCGBg1ohmETBo21pIQdw4dTceQIksFA6JQp5MXF4R0dzcC5c/E9jRJ4kwiKgYeOozu1j5jF00lJ1gQqvGQIP3mYQwcOOA0aSafDd+BAagYMIGDMGEInTNAWh68vOO1pajIzKd6+XfN+4B4edP1/FVB58iQFJ09SsGMHlvXrKV64EMVhhPT44w+CWyBU64r01aud/7cDubLcIDykDwyE2qT2ev3SA34nTlC/mL7wo48aNWpOfv21drwQGCWJ1M8+a7FRU3H4sJPvyIaW6xfq4YHVasWDhmHVKiHw1OkIGDkSaePGOiVwR/VaRWYmy8aNQ7FakWSZ3M2bCRQCgZZP6OPYjEJg3r+fjKlT6bh3b4v62ix69NW2evDp25eSdeucPDw+50ga+N+MMzJqLuI/E0JVyf/xR2oSEwm46ir8hg8nfd48arKyCLvySnQmEz4dO6J30VMC8LrpJrxuugklL49wo5GuPj7Yq6sbnzjqQWcyMXzjRvbfdx/Zf/yBpbKSGrMZ0tJI+uQTrLKMQCvpltCSiwMffhi9xYIB7cGzSBJhruq6/2KI4mLUY3VJdnpVZfx993Bg1kNEdoVohx6gQIc0fkATrTSOAR98QEZgIGUvvuh0GQfeeqvWnhCk3nwzhYsWaZ6ygAA6Ll+Oz4gRZLZpg72qShugZRlfF7d2fXhGRRHTjKSF9dAh7NnZ6Pv2baj67Vjmez37Kq1VLw4+8ogzBBbg74+uWzdwyY0o3bmzUS0dj6goN/0sdDrtb+cBvtHRXB0Xx4l58/AICqLb7Nln3Ebm3LmYExMJBxSbjbzFi6kBzDk5bL/hBq50CTeeMTwDIOZyOnXrSKuCLKyKINgoo9fJRE6cSNKHHyLJMkJR6PTII7S54YYzPoVHcDCyyYRqsWAQAiN14cpaWIB0l7+1Akrnz3fqf9ntdtLfeOOMjRrJaHTn92nE+9Zz2TISBg1ym0i8ceRjAVYvL9SKCqd3SQLkJgpKTEYj/mgcV3ohYNUqCr7/ntDp0zX19yNHMLZrh0cj3jafTp1Q9Xp0djuy4/z5juTcAMdW6rK/ArR55x3aPvYY1Tt2ULl8OYbYWAIctA1Fhw6hOBiphaJQXVJCh2HDKN62DRWo1usJURQt0VhRqImPx5yYiKlbwzBizR9/YIuPxzh6NMaz5F+KfvlllIoKSjdvJmDECKJdNNYuwh0XjZr/AqS/9BLZr78Oskz2++8jjR1L7po1IMscczz8xlatGLF1a6OTpM6F4KklBk0t1IICfPbvp6qykjC0QbUMbdWIqjpXR12ADOCExYKCtsJpB7RdsQLv8ePP4orPD6TAQKQ2bRE52c6yY0O/S/CRZcK7u04bArH9e6T2Lfc+SJJEuxdeoGLIEKo2bcJzwAD8Hdw2p55+moqFC52eE6W0lIzZs2kzcSL9pk0jefduLPn5tJs82a1a5ExQ9tFHlDz6KKApqre77TbSHSXyXh46IrrHwrOvwcQbyLvhBlQHWY8KmMaPJ6BvX0pdjBrVYkGpqWlgGBtbt6bT/PmkPvYYAO0/+ADjeTJqAAJ79mTAGRKkuUKUltJDCGd4JABIQJuoKo83TIY/G0hPvEjgnh1gMYOPDzz4BL26dMczMpKyw4eJuOqqszJoQGMpHrR4MfvvvRdLURG+FgveaIsEFchD44RyzSGoVX6rDffIknRW7MZ93n+ffS4kfV2efLLBPn4DBxI5ezYFn36KjBbyMaC970UA+fnovLwIN5vRqyqShwdtFzT0UJWuWwcbN+KHe/VKxtNP43fFFRwcOhRrRgaShwddli4lqN64YQwJYfD69aROuRpzSSWuEp+lQL4kYXE8B6Cx9wqHweY1dCheQ4e6tRfSuzd6T0/NsJEkPENDGbpyJfl//41SU4NfUBCZrgSBQnDqqadoXy+xvnLOHMoeegh0Oipee42gP/7Asx7HVUugM5no9D9Qtn0+cE48Nf/f8N+YUyMUhTg/vzrac1kmn0bKPGWZNrfeyoAffjjnc5YnJxP/2GOUbdxIYGUl3oBr7YYdbbAVQH80KQUVOIJW9lqbaNczOxv9WU7a5wtK8nEszz6BKCnBY/ajGCZNofCzzzCtmY13K60IQQiwqz3Qzz141mR3rkju3p3KxERcizwl6rh+7LJMluP38x8xgj6bNrXovIrZTNILL1C6bx8R27cj1ZaRShKBH35ITefOWIuLCb/6ajwCApzHrW3bFnNmZl1Dej2jDh4kbsgQ7BUVIAShEyZwyfLl53Td/w5UfPEF1Q884Pa37TodNlWl7bRpDGkmD+mMkHsKjh+F7r0guKEcxOlQc/w4JatWYYqNJXD8+Ia/t6Kg5uZw6pHHYPFi559TAdf6JIOHB7GhodhPnXJW0ghvb3pv3Ypv/WTvFqAsMZGcP/8ksF8/rfqoHlSzmQPR0djy87UXRaej29KlbJoyxaWSR6LbBx/Q+pprMLRpg5qaipKejmHgQKf4bvJdd5H/449IioKMS36OpwdBM2aS/eVX2sJDkvDs2pV+jSTt20tL2RcYiBXcjBokicsKCtg/bRola9eiA3xbt6bfnj0Yw8ObvPbcuDjiP/gAvdHIwJdeIsAlVFm5YwdHLr0UK5oR5g14DxpEx7g4tzbyBw7EVhuil2U8b7yRoF9+afqGX0STuCA5NRfxH4SqSvj5G5S5c+juWU2qDSptaNUdQUGYS0vd+CdQVbJ//ZWO//gHvjExZD70ENXx8fhPmEDk6683W0rpCiEEG8aNozojQ1vtoiUFukIPeKIZM23RBigdWiiqtjJG6HRI56Dvc76g69gJr8XL3P4W8tBDWCOMiN/uRfIBJQ9qNh/G+6kkdJ3PXfXXs1cvLPWMGtd1tF5VCUTTJCrbsgVzaiqeMTFubVTEx2MvKcF/2DBkRyVP4hNPkPbFF6CqtEK75xJooSyTifAm8hMaiHDa7VQePcql8fHkLFiAISiI1mchyfCfAGP37jgFLCQJTCaiZ8zAu317YusZO+eE8AhtOwtUHTpEwsCBCIsFhKDNK6/Q9sUX63bISIWplyNnpBLVNobc6HYoaemAxnOUjUY9IAO977uP9jNmcPyWW7BkZRF83XW0/+STBh62lsK/Wzf8Gwmp1MKalaXx5tRCUbD/8xOMQYFYiku0MUgIcpYtI3j0aNTNmymfPh2EQG7dmqDdu9FFRGBs0wYcOSu1kIBofzvlW1e7n7SJdbik02l6cg6PTG3ANfbllzEGBzN4zRqqjh7FkpmJ3+DB6E+zsA0fPJjxLgakK0r37qVWXUxB8063f/rpBvvpO3TAFh/vDM/qoqMBKD96lPRffsEYGkqHe+5x6mZdxLnjoqfm/yNOHINJQ6GsxEEOB4qAPXkaVUfndevY//DDVKeloVRX1w0CskxAv37EdO1K8YIFzpVP1PvvE+YIVZwO1rIyFrus8qGOXbgWMtDHxwd9Zd16qT6/A4B92o2YuoQSfN3N6LsP5T8JyoH9VA3ph1MPAvBJPIncPqbZ41oCe0EBGVdeSU18PGpICN6hocj1CLQUIBONH2Nofj4Gl3ue8uyzZLz1ltanvn3pu20bOi8vNvfpQ3lCAgD+kkQbHEmXQ4cStnZtkyGIxKee4mS93KZLt28naOgF/k0qyiAnDdp10kpYzyMqjx5l/9Sp1KSmEtu5M95HjyL7+eH3ww8Yr7jivJ7rXJH2zDNkv/eec+IztGrFQFdD4YFb4M9FTtkMdeKNFO46jm3fPixeXmTLMtbKSoLHjKHn8uVNlvVfCNiSkkjo00cTjUUzRHq3kqmU9MQTiDkvT8sBkmVkLy+GeHsjaq9Np8P75Zfxef55lKoqjt9yC6WrV+Pp7020rhhvg8CgA0tULAdTarBmZyMZDHResoTgJgR4T733HhlPPokAvCJbEbNsBT6XnFk+XEuQPHs22V98UfebBQVxaVFRg/2U3FyKb7pJy6m5/HIC58+nOj+fv3v2RLVYEKpKu8GDadO/P6ZevQiaMaNFbM3/i7hgjMIX8R+AT9/UJgQchGkS6GXwkCHysccIufxyxh4+zOTKSqJnzqzTlFFVrEVFVO/bV5fYKcvUOCbClsDg50dAr17aqkiWkWSZIJOJ2tQ/GU3YMquyEovLy2mcOhX8/BC1bnU9hBT8SljC5+hfvBSx6OVzuSNnBaGqbmrOrpB798EwfSZCAbMCtonXIOllmP85/PWruxfsDKEPDSVm3z66C0HPggIiGpFAsKOpIXf96Sc3g8ZeWUmGS9l55f79FDni+MGjRjkFCcuEgHfeISo5mfCtW5vNqejyxhtETpumeetkmdhnnyWwGb4TYbFg27kTpQmishZh/3YYEwU39IEJHSEn/ezbagQJt9xCZWIiSmUlSfv2YfnoI0JPnfqPMGgqc3JIWbmSCkfIzyMszE101RBRz+NTUVb3vaoiV1bQau9eImtqaF9RwbDSUgYdO4bq58fOoUM1UsZ/wVpVCEHZ5MmEW614o3lnO/qCEZVgYWXwi09jQzPQhaqiVFaiOiQOHA04PcQ6b2+6/vEHQ2pq6PPLjwSYBAYP7TvjDbfTd/duut82lT4TLidQMTfZp4gnnqBvdja9k5LomZV7QQwa0Eqqa41MJImQJgjwdOHhhG7aRGR5OcFLlyL7+HBq1SqU6mqEouAjBF47d1L0xRdk33MPeS+/TPnhw5z84APy/vrrolD02UD8D6GsrEwAoqys7N/dlXPDrGlCRMlCjUDbIhH2vpGiYs/uBruWJiSIP7y8xG8gfgNxYs4ckfXkk2KfJIl9Op3YB6Lop5/O6PTVubli9wMPiK3TponcTZuE5cQJcTQgQBwGcRjELhDb9Hpx4rbbROWHHwrzX38JVVWFZdcukXfJJSIrMlIkt0WIa7VNvQZR0h2R0SZK5FzSQ1g/uVKIv2cLUV3UeAdqaoSorDybO+dE+YYN4qCvr0gAkTJ+vFAslgb7qKoqMq64QiSCSASR6q0XanuEiEGIJ+86p/M36M+334pUo1Gkgsho21ZYjh8Xqqo22M9eXS026fViIzi3/N9/174zm0Xis8+KuKuuEic++KDR45uDzWwWy6+7TnwA4suwMJG9Y4fzO1VVReG+faJg8yZR0ruHKNIjigySqPnyi7O74NsuFaKXLERPhOijE+L1WWfXjgNVmZkiZ8UKUZWRIYQQYm1QkFgJYiWIVTqdSHr22XNqvwFsZiF+uVOIF4KF+GK0EKXZQgghKuLjRepTT4mczz4TitXa4LCcuDjxiaen+ADEx0ajyNi0SShms0i89lqxTZbFnnbtRMX+/e4HbVotRBu9EJFo/25e06DdHUOHijWyLHaA2AEi86OPzu/1NgK1pkbkgttW5ScJESYJES4LW/wesTwwUPwmy+I3SRK/6/Wi9OuvRa7BIHJBFHTvLpTi4gbtKna7ULesEeKtJ4T4/UchVFXYbpoorIE6YfZHVPoilA0N78G/GvlLlojE224Taa+/LhSzucXHZf/1l1gIYiGIHTIigbot3t9H/GkwiOWSJJaDOP7WWxfwCv5/oaXz90Wj5v8jDu0X9lhfsdWEOO6POOqH2HPzTU3uXpmSIlK//VYUbN0qhBBCtdlE7nvvidTbbhOF8+efly7Zi4vFob59xQ5ZFttAbANx6quvGt23ZM8esbt1nVFTNRiRimOTEFmtEOI1nRDzRgglJ0dYvvlKWJf/oU3S330pRJhBiBBJiFeeOqu+mr/6XJQYEaVGRKpOG0xOjesvRNZx9/2SkpwGTe1WFeEwajpIQjRiCP0rkDVnjtgoSWIjiISrrxaKzdai46oyM0X+tm3CVs8gzN++XawbM0Ys6tJFfADaJknin23aCFVVhaqqYu2ECeJ7EBskRKEezajRI4r8vM7IeFLtdlGwebMoGNNVqD2pM2peueeM7oErCrdtE0tNJvEbiKUmkyjYulUc+cc/NKNGpxOrDAZRum/fWbffKNa9KcTjkhCPIcQTOiHmThSVBw+K7R4eYptOJ7ZJkki65ZYGhy2//nrxoSxr91iWxW9XXun8TrXbmz5f8lEhlszX/m0Eq728RDyIA44twWgUtoKCc75MVVGa/X0LL7lE5Op0IleWRa4sC+tlA4QYe4kQfy4RQghRvG+f2HL55WLj0KHi1MqVQgghlMJCYTt0SKiNGH2HX31VLDIYxBJvb7Fr+nSxIjZWrB0yRBS08hLJJpzGwGKDXlRlZZ3z9Z0pTn78sVgXGyu2DR8uyhMTz6oNVVXFoZdfFr+HhIjDId4iHsRaEKtArACnQbMcxNp27c7vBfw/Rkvn74s5NecZlenpCEXBN+bccy+aQ87iRWy88Sa3v12bk4Nnfdf1vxCW7GySp0+n5tgxQm68keh33nGKVJoLCyk7doyAbt2oSU9nY/9+DB8OISFQmgSlrsUMMkS/DGqlRNXPQQhHrNpw5ww8l3wPwiX0s2Y39Gu5i7l45Up0113tRsaVZQG9D3S6MgS+PwHeGmWgLSuLEy608QDRUeBpksA3AOKL6lzp/2JY8/Kwl5fjGRvbosqozCVL2HnTTQhFwbN1a8bu2oVnZCTmwkKWtWlDgNlMAVCIVnKvQyMxa33TTbTp3599T2gK0u0k6CW7XLa3N76pmZy4807Kt2/Hb8QIOs6b12gSplBVdk6eTK6DpTYqQGJga4HkHwjzd0B79yRse0EBea++ilJURNC99+LThHbUzsmTObVihZOYLHz8eIYsW0bOzz9TnZJC2OTJ+J0jWZlQVU6tXImlsJDIiRMxrn8K9s4D1RHGbdWFLOV20p9/3hkqkoxGhprdQyUrb72VpIULEYqCpNMRM3Eik10kM84W8WPGoF+/3u1v7detw/fyyxvsa0lNJXP2bGw5OYTef3+TgqkFTz9N0YcfInt7E/njj/g2kseiFhRQ+corqAUFeM6ciXHMmLO+huK9e1k7oOG7LOl0eOh1WCzuopDe0dFMSE096/OdKQrWrSOutgJMp8MrOprLG9HGaglqcnNJ++UXApPjOfD1T1S7DGk66vJCvIKDGJ2W3iS3z/8SLubU/IshhGDvQw+xLDqa5R06EDdz5gWNh+pa1StFlKSGVSz/YhijouixZg0DMjJo//77ToOmYNculkRHs2r4cJbExFB16hRCwI4dWljas1ZLwDFRenUBJB32nCiEi+Kxbf68hqXqZSUt7l9lcjJ7r5lCfRNAJ4HBBJQXQupB598NrVsT+tZbzhk8cFAvTCYJ/IPgs0X/NoMGtDwMr44dW1xivnfGDCfDbU1WFskOiYvypCS6mc30AC5BK02trZoyAGkLF3J0zhxnO1nCVRNLxuuDj8l47jmK//oLe1ERxcuXk/HCC9irqqg5dQohBNbcXDLffJMTjzxCnsOgAcguFZQ/Oxf+OtHAoBFCkDJuHEVffknpokWkjBmDOTGx0WuTPT3d7oPObkcoClG33UbHl146Z4MGYO/997N14kR2T5/O6t69sbUboxk0sqNqsPdUTLtXuuXGmBwCra4Y8uKLeDpkL0yBgVz62muNnq/6xAn29u/PVl9fjk2fjupKgtcIus+fDx4eWuGAJCEZjZi6NF6pd3LiRMpXraImPp6MmTOp2LSp4fk3bqTo3XfBbkctKyPrhhtInjMHs6uyNiCHhuI3Zw4Bixadk0EDYHZNjnaBUBSMFithaLQHAWg8M7a0NGxlZY0ecyFQ4fr8KQrVJ0+i1iO1BLCWlrJl4kR+Dwpiy8SJWEtL3b63FBezqn9/4h97jA1fuhs0UFfOLgF9fIpJ+zdyef1/xEWj5jzAkp3N9thYklwG/5PffkvJWSjnthStRoyg/R13aB8kiX7vvYcxOPiCne9ckPDqq9gdCbn2igqSf/iBXp98giIZ2LVHRg4LIHx8IL6TRhP48I2EPDwYulyLNPaZusotSUIKCIBxLqyo3XvBkBEt6oN19d9UX3UFHRUbFS5lWFZVIzKL6AwYjBAR63ZcyNNP06moiI4FBYTHJZD30w5WdR/P4pffIf6TT7BbLPw7UbJ+PelvvEHJxo1N7nPqr7+wlJe7sdCaMzIAzYipLcn3dXx2NZNkwCOwTglbAQ516Y7vrr0EpKRjmnG3plJcm3iuKNRsW8vfEYEsj4xkk48POyIiSHnuOfI+/ZT6+tf22Q+S/d775M6fj+pyL9WqKsz792vtqirY7VTt2NHo9XV7+WU8QkLQAxGqCn//zV4/Pyrj4+vaq67GnpsDu+bC+jeh8GST96s+FLOZlH/+0/m5JjubdXe/gfnaX2DEozDtR5B7EJy6jdatQK8DbxN0WbSoQVuBnTpxd2oqdx49yt0ZGYT06NHoOY/deSeVCQkolZXk/vADOY0kk7vCGBFB7LZt+I4Zg/eIEbRfuRJDVBTWrCxyHnmE7AcewHL8OEJRMB85Uvd7SZJboUDhggXsNpk4Vt/DY7WS8NBDrOnbF4vLQuN0qEhJoWj/flRFOe2+oSNH4uOqnyRJoNNhlCRc67k8HJsBSHnnHeff7UVFlK9di9WVc+k8InTMGCSDwZlQH3rFFciNUGEceu45cletwlZSQu6qVRx67jm37/M2bKAmJ8dZwq7gTp7oSZ0MQ5AvqPHu3DcX0Twu8tScB6S+9BI1Dql7V5xudXUukCSJofPm0eeNN9CZTP+xBg2gGSTgXEXKeXn4SBJX7NuHZ5cuyAYDBrTVlyv0ioJ+2x7sP/0A/gF4/rgQacQoWLMCzGYYN5GqnBwOPvYY1qIiYmfPJur66xucXs3OpvKaSejtdvzQ5sijQkLv6Un7xx6gW+4GdAYZ7ngdghuG73SB2lRccvw4C0eORHWQ2mWuX0/amjVc+9df53yLytevp/jHH/G59FJC7rnn9AcAJ2bMIOu775yfuy1cSKt6GlDZf/3FJhfmU9mxtb3mGkBjBHZFWzQyt9pBNmzUKIZ98AFrx43DUliIb2wsY9evx+DCQh00YQJl69eDXkdsa4Uw+SjdO8POg2B2kEIKtMr4WsZZG9DeACeKa6h5QytPP/XNN3hffz3q4cMEVlURLMtIqkoFmqSGZ+/ejd4H3y5duDItjQMdOmDL0WgghdlM6vVT6HndJdhOnSLrz30EDbPh3xWEJCNteBseOwRB7dzasmRmUr5hA6YOHfAdNgzQyur13t6afIUD5YmJbH9yDpdv26b9YelcFBXsAjy9IDRQxatLQ4FKAL3JRFATXpRamNPStBAVgE6HuZHxpT68BgwgZu1a52fVYuHksGHYHHpiRfPmUdqrF7awMHT5+QB4SxI+I7SFgRCCk7ffDoqCgvZ7laOFJEGbLGqys8n9+2/a3Xxz452wWWHjz2Dy5tDWJPY9r/HthI8ezdi//0bXjDfZ4OPD2D17yPj1V3Senvh26kT6Tz8h0tOpdHj4nOMImkfR6vAc1SQmcvzSS1FKS5EMBmKWL8f/yitPe8/OBL7dunHptm1k/fADxvBwYh55pNH9Kk6ccHpFhaJQedLdgHZjCZckFA8PAmJjqTlyBCN1XF6t/B1riYjzx9D9v4CLOTXnCCEEu7t2pTopiRJwEjJFTZjAyGXLLnIOAIX79rH6ssuwlZcT6ulJiMNrIxmNdN+xA+9+/Zo9XlitYDA0CLUIIVjTsSPVjgkASWL03r0EOtpL+eorDj3+OJIQxJqrCXf5KXbZtQG70yOP0NehJN4ULOnpFPzwA6mHDrFnyZIG399fVIRnUH0KwpYj4+mnKXnnnToPiSQRu2sXXo3kFzj7lJLC7g4d3Lh/Ai67jD718iq2Tp1KxuLFTo+XAYgZMID+cXHOZ7P0pZeofO01EALd1KlYb7qJnPXrCR40iI633IIkSag2G+bCQjzDwtye6bwvviDtoYdQVZXAbtF08Upzfrf5AGTZtZVoIJogY+2RnR1ccEfq7ATt0tEkNGrh4TjG+MUXBN5/f4P7YMvNJe3226k5cABzeblGYOdAUBDExsqgqFqkaARIjhlDANKUz2DYg879a5KSODxgAGpFBQBtP/yQCMfElfXHH+y48UYntT6Awd+fa2tDC6VFHIiJoKLE5rzGsDF+xD7YG4Z/CUHdG/S9KZTs2MGeceNQKis1T5ks02/bNvybKbNvDObDhznes6fb32qJ+mphDA1l7PHjeAQEoNbUsMel9N8OVKNpSzklPYDBa9cS3lioKeUw3NcHZO2pLCqDv3Zp3FkAo3//nXYOY/pMYC0oYG/v3lhPnXL2ywYgSQzevp3AIUNIv+ceir77zsm95TVwIF3i/nUeDktSEmpZGaZ+/UidP589d92FpNMhFIUB331HjENTqhaHXn+dI2++id7Li8Hff0/riRPJ+/13jl5/PZ4GQWQwRAVBnjWAoPUHNXLC/3FczKn5F6FgyRJqkpKQgWA0jpaBb7/NiD/+uGjQOBDSvz/Xp6dz9a5dRLh4lITdTqFDj8gV9rIySletovrwYQAkD49Gc0fslZVUnTzpXBUhBKWOkEP50aMcuP9+lKoq7NXVHFPBIsuogFnU0agf/+gjSpoRNbTl53O4f3+yX32VmkYMGr23Nx7nmMRX8MEH7nk+jnyS5mA7darBy2sszYM5r0NhXW6Ch7+/GwOrDk3zxvXZDHjlFSLLy4ksLydi4ULaTZnCkM8+o9Ottzrvu2ww4BUR4XacUlFB2uzZGncKYHfxJggBaUIzHKuALLTJsTZ1Kt/SkBhWAPVJ6xXH/j5NGHgZs2ZRsWED9oICpHqhwMgwkFRVi2LoQSmpyzGXAALd1eELf/yxTm4EOOVCSNh6yhRGOlSra5lrIydMqDs4IJgyF4MGIG99OWr2dlg1vkkW3Pqw5OWxa9QoFAdxpQpEPfXUGRs0AIY2bZC9vaH2uUczEl25ay0FBRQ4Qpeypyd6l0IDm2N/157rgFCXvthyc0nq0YNDnp7kju7pNGgAgv0h0tWB3Mw9sJeUYElPbzQP0SM0lEsOHqTz3LmEz5qF75gxRN11F8MOH3byKUkGQ90BkuT+2QGlqgprZuY55TqqhYVUT7ueyh6dqHnmcW0Me/11Urp0IW3QINIvuwxTVBR2Dw+sioIcHt4ok3fP559nakUFA155hbJVq8j780/Crr2WS4uK6JFwlNZHCpDjyog4XnLRoDlDXJx1zxGVG1bRuycM7Ql9u4OvDCG9eiHXEt5dBADGgABCBw7EIzKyjgxQCMxlZWwaOpQto0dTvGcP1lOnONi9O0njx3OoZ0/y6uUSlGzaROqLL1KwdCk6b2/8e/euIwLU6wl2sODmNFJRUhoTS5aAPYq7yrHdhfm4Pso3b8ZeVASKgj8Qg5bgKckyniEhTPr992Zd6i1CI0R+6mkSIL3698cvNtapo+VnkuhQkgifvATXDoLqKqz5+Vh/+ME5iRnQkizRqBzc2pN9fJw6PI3BmppK2e+/Y3WpNhE2W11uBlBVDeZYzfiwKlBdL43CjDZBCkD19aVGkiijLjRVirYKr0+VL7dvj76J3BPLsWN1FPQ6HX7DhxN0443EfPEJXsHeqEKbSxU7ZK8HWzmoVrB3uR3zikPUPPskqiMUowsIcEv01dXzvoWNHs3INWtof9dd9HzjDbrOmEHylVdypHNn0mbMaJCArl2YCpUZ0AxhnCsyv/nGzRsENDpBtwQ6f3/ar1qFrlMnqtCMFCPaM+D6xJpc9I96Hz1K4DXX4DNkCFF33dVggpCBsh07yP7qK2pSUkgZPRrLkSMIs5ni3IZ2i6cjwSFs+HBaN6ESXvT99xwMDeVIdDQnJ05scP0AHiEhRNx1F10+/5xBa9fSa+5cfF3kG8KefLKOtFCSKD50iOP33+9MAShbtYqDrVpxuG1bjg8fjlJV1eAcLYH5ofuw//kH6slkbJ98iPmTDyl46SXn9zVbt3Ls3nv/j73zDo+iatv4b2Z3s+m9NyAQeu8gIE0BCyI2UFQsKFawi4gNKRZEsSsKgooFBRGk9ya9lxAISUhCei/bZs73x2w2mwYJoH6+5r6uvZJpZ87Mzs55zlPuG6vVqnm6srI4Pnt29YasVrJGDEaa/Dhl33zO/uHDyfjtNwx+fng0ikbatwtOHK2zMdyACjTk1Fwm/A/Nw9eeAK+XoG0nSFuwAL9adHb+64j56ivibrwRS2Iinv36cWLhQi2JUJLY2qMHsTodVqeBMuXllwmxhx2yly/n6I03akaRotDs/fe5avVqTrz+OtbcXJo8/DDe9heddw16Nerou4h77TWch01ZkjBcQBfH2MgpGCJJRHh4MDwtDclgoGDbNpAkhKoiyTLmnBySf/wRvYcH0aNG1VnPxeeBByj+8kvHACIAb7ubXgiB+sHbqN/NQ4pujG7250jRjZBdXWm1Zw+5CxdiyErB7zu7V0EVkJoExw9w7psfkS0WQqmQsRBAzqFDnHjqKSKuuYbcRYtwadSI0EmT0NXicSrevJmz116LsFiQXFxosno1nv37o/f3J/iRR8i0G57uHTpg+HID5l0byV6yBI9zyyjNz9cq1oTADc1IUfV6In5dxvbnnqNo716KqEhOTkLTCHNB89KUAnLr1gS5Vs240uA3ahTnX30V9Hqw2Qh//nl87B4UW+e2ZN01CBVITIPSMsj43o3YGTPQz3gHkbYAAOtHH+Bx/DQhjz5K/sqVFG3ciN7Pj5i5cwFQsrMx79mDITaW0GuuIfSaayjZtYu4Xr0cg445Pl7zgjldS0gfkF1kCO0D+rpJF9Tk3Q29/fY6HVsTPPr2rcTsXd43VxcXbECLl14iwMnzovfxofmvvwKgFBRQsmgRZWVlmLHnYg0fzmE7K7Ps7o6X1eowrG0WOH8KwppruSDmYmj323aaoyegc+cak2qFzUbyI484DNPCFSvIX7oUv3qqmhsbNaLV8ePsbtQIS14eFBSQ9tlnuLdsSeSECSQ/9BDCHvYu2bGDnLlzCZ4woV7nAFAOH6rExq7Gnai+j81WyRgpz8GrhJcfJ2j/JoQ7REsqu4VM1ooVhAweBDf2hLhjCAFlPQaSLvvi1rkzoc8/f8kG7n8JDUbNZcLDG8qnm5LQkl1Lfv6ZtObNCX/99X+4d///4N62LZ3OnkXYbGSsW0dceTmpECjYXwjlkCQkp8Es84cfNBkA+0slfcECIidMoNMnn1Q7T9iNNxJy3XVk/PEHAK2nTaPZhAlkbNhA1ubNgOa50AtBzoYN+NaiYOzZvTvRs2eT9uabyF5exMydS/6aNZx96ilKEhJQgcARI2g+fz5ru3alxB6CSfruO65evbpOJdfNvviCrCFDyJwxA9liwX/0aILtvDDi9yWor2lCeSLhNLaxt2HYsBvQZBSCn3gCstLhx9lkFVk5lg1I0PJonKPEX0L7oQu0UJAAzn/0EaY5cxxVTSX79qEMHIitqAhjYCD+3brhExlJ6datZH/xBcL+vQirlax338Wzf38AGn/8MYF33olSWIj3gAHIbm7oBt1IxKAbGfnCOXZPmYIpJwd/Hx+K1q/H4uGBMTycHaNHk5Oernli7PfBiObNOQp4g6PixfXUKe2fdUtg5Y8QGQMPTwZ3D0KnTMGlUSPKjhzBe8gQvJ2UpPU9BpJ53ROcsZeve7dpQ+c//4R9eyhNS634AqwWLG9Nw+3Dz2i1fj1KYSE6T08knQ7rqVOc79ULNTcXdDqCfvgBj1tvpcCpNF27MQIjWogNwMUPQm/rCZ2ugfbPXPQZKN2yBUtCAmE33si5efMoO30aZJmW772HV5u65+PUBLUGT2S7L74g+O67Lxgi1/n40Pr4cYI//hhVUQh+9ln2du1a0a7ZjBoaii614l5mJ0JeKsgGaPbea3h3v7B+mFCUap4ZZ+kSYbOBTlen31H2b79pBo0Tyuw8MmpJSaVKSvUSPTX64Tdh/eA9x3vI5frhBDVpTtZLLwHg3r8/zR5+mLQxYxCKgouvLy0fe4zSkydJnTMH2cuL8Icewm3Vbw6JG1VAoEFFatUK1q0g6/AxdudplZnRqzYgmyB/yRLUoiIinCRSGlAzGoyay4Q1AAzJONLyS90ARSH9jTfwGjgQr1oIw/7rkPR6fDt3Ru/tjVJSor0A0AYzq/0jGQw0cQo/udoVbgHQ6aopV1dqX6ej9/LllJw5g97T0+FiH7BxIxuaN6c0IcERavBs1ara8WpZGaU//YSw2Qh54AHCJk4EIPvbbzlz990ItEHYAmQvXYrrN984DBqAjLVrOfb880SOHo3vRRKhAYJuuYWgGvRjxImjIOs0ThRFgRPHajg4lNKXPuDPsY86Vu2570F6rl6N7ssvUYqK0OEkKCpJuBqNYDZXzJBXr+bMmjWVZpjhBgP+VisScB4tP8YgBC1V1RG+kiTJUSVUFZ5RUQycP5+cLVvYUf47kCSKz5xxDP4OoVNJ4saTJynYsweRmUnK0087vC8BN98MO9bCkyMd2lYkn4bZPyFJEgHl1AZoni2xZSOkpyENGkL7Dz4g4rbbsObnEzRoEHp3d5TgEKpC8vRyXI/OwwNxYC94+1D4yWcVoUBFIf/VV/G49VaMzZvXGBoo91qoJS643LEUQqqfqypy3nmHzOefB0D29qbHjh1YTCZcIyIwhlbNMro4hMlE3o4dnPrmG2SDgeDx40m1D7rodIRNmEDwPffUyVBwadyY8HfecSwbgoOxZGRovx1VJeixx1D37KHswAHce/XCvXNnlIIC/MaOxeBcnl0LZKORkBdfJGP6dACMLVviO2IEQlUpevxxyj7/HMnPD59FizA6Gaw1QSksrLYu4KabAAh75RVS7Enf+qAg/J2emfrAdepM5Igo1ONH0V87DMNNNxN4E3jffjtKQQGu9nB4iI8MSz/BGNGIgm0bOHjfw46Qd+p779G2Swv8dNlIioIsgWv/wYQ+8QTKqqX8mQtW+6OVZIIQwE0ICtesaTBq6oAGo+Yyocbeg9lrAS45Wg5BwsqKbVanGUwDqsM1OJi+n39G/Jw52M4kEJqZiV6SCAwOxn/pUlxbtkTvJObYaNIkSk+eJG/NGjw7dqTZnDkXbF+SJDybNau2rsfy5RwaNw5TaiqNxo8npAq5lVAUMgYPxmznRSl8/33C9uxBdnUl5+eftXbs+5YbCzUxOSfMmkXi++9z1dat+PXsWa974+jvwGth5utayE0VSNfWTMSV51a9pD9n61a6nD3L2TvvpHjNGkAL6xR6eRH19NNkv/aatqMsY7aHiMqhA7KsVrLQjLdyD48ZOLlvH5tdXTF4eTFw/nwaOyfM2iGEIGnqVNI+/xyh01WIndvPUc6aWv6i1wuBW0gIPnfdBYBn06bkr1yJe9u2hI4fDx+87Ag7ArBzXY33QZ02BfXdadqCpxe6P7YQ2LdvpX10rVqjv+c+bAvmafc4OBiXpzWjQpjN2IYPgl3bATB2vYqi8gNl2eE59L/rLkzHj5P9+ecIwBARQfHx40h2Q1k2GDShyjog5913K/pfUkLxjz8S9MYbdTq2Kkxzv6RgwhNsKzVjQzPuzwcFMWD3bqwpKXj36YPBTv53KWj51VccufFGLOfP4z9sGBETJ162KnjEtGn43nQT1sxMOHOGvGeeQe/lhdk+oRG5uRTccQdBOTkXNMSCbr2VxDffxGqvknJp3Bi32FgAgidOxLNvXyzJyXhefTX6S6xWlPR6jI9XD1u5NG2KEIKMDRuwnTlKxPfPI6k2OLENd9N3lXL4VJuNxF3H0PfriEdWMqbGrVGbtSdjxgyUkhKHQVOO8smIWy3e5AZUxr+ipDsxMZGpU6eyYcMG0tPTCQ8PZ8yYMUyePBmXeiRp/lUyCeqhA4jVC0hYsoOiP3eDJKEPCqLV0aOX9QL5t0PNyQGzGdmZl8EJ1qW/UnbnrQ4SKvX+8Rxct4HMU6fQe3rS++efCbvCXBN1geXoUdKqlMKGbt6Ma79+JD3zDOkffACK4vAyhDzzDM3efZejr7/OsTfeAFXFBW3GIOn1NH78cdrWlCxYR6ibN6D+sggpqhHy488g1TCIFJ86xcYWlXlROi1ahEdUFGereFKi580jcOxYMufMIeebb8Dbm2ObNqGiGS7lXDYS4CFBVxcwSFCmwnaLZtjkA0gSOldX7s/NRV8l5yV72TKO2mfJyDKqqlKi02kzfCFQZBmTqjqym2RJ4ubcXFycjNhKWPUzPG3PLdHpoNsA+Hpttd2sIa6aB6ocHh7o98UjhVY3OpXMTERqCrrWbZDs+U/qsl9R7nHymEkSmQFNsJ5JQPLwIOSPP3DtV53wMX/NGuLsFWs2WSbd15figgICunZl4NKluF/A43KmZUss8fHavZEkgmfNIqAWDpQLofTVKZimv6ldB5AMxNujuUMOH8a3yjN9qRBCICwW5DrmjNUV+W++Sf6UKaDTIds9t840B8FmM2VpaVhyc/Fu167GHJ38XbvY3auXlosmSbg1bszV8fFIS3+CUydg8DDoVv9Ksrpg78SJxH3wAY0D4aoqFEU7d4PZKcrmJ0kYPTwQpaUI++/ALEno/P1Jz8mhPDgmA1FoVZZt09NrzXv7L6Cu4/e/wlNz8uRJVFXl888/p1mzZhw9epRx48ZRUlLCu06znH8KcodO0KETTSdayF24UHO/jhr1nzZozO/PwvzScyAEhnvuw/Wzr6rNsixffqpVQKmacZD83XdkFmjzYltxMbvuuYcR9sqUvxOyv78W5nCqSpLt32Xka69RduIEhevXo3d3p9FLLxFmz3/xjI4m2E3FZAJbeZW5zYZbdHS1c9SrP1cPRL564AX30RuNuFNRYWQA4h5/HEtODuUqFI597WSCwU8+SfCTT2r9nDGD4y+/jFKlEqujoeIl4SpBJwNsLn85C4FSVoa1qKiaUVN66pSWMCCEVvIty0SMHo0xOBiXgABKzpwhfdcuCo5p4bTWL71Uu0EDMORWeOE9WP49NGoGkz6oeT8vbzA7UfmXlKAuX4LuwUer7aoLDobgYPulCPLWraNs7Xp8VDDao1xCkgjbuw8lIwNdeHitFWK+115Ls0WLyF60iOSEM5ScOIFQVHL27mXfCy/Q95tvar20sK++4tzw4ai5ubgPGoTfww/Xfh9qgZqfj2nGNMeyDMTIUKKDTA9vPJxDt3VpT1FI++03rIWFRIwYUem7kewyDFcapcuWaf8oCiqa8WxEe3Zd77uPhM8+49CECSAE/r160Xf9+mpeopL4eJTyeboQlJ09i23KMxi++EAzhmdPgyUbMMU0x3z+PF5t214ReRnFbCbO7jnOLakcmbRZoZUbHLVq7zkPwEUIhD3XqZzmQBICJSeHQMAd7XfsARh9fGh+7Nh/2qCpD/4VRs3QoUMZ6jRjj4mJIS4ujk8//fT/hVFTDtnFhcAHHvinu/GPQ83JcRg0ANYF8zCMuRd93yr5RYFBnLJAlqq9vGRLUaXN1oIChBB11jeqivT164l77x0M7gbav/U+njEXj/ED6MPDCfjsM3KffBKhqvhNm4aLPe9G5+WFnJKCq6JAfj5Zzz+Pd58+KHo9ic9NRALKlMo/rICL5AJcCaj2KhTnOi6zPWmyQJLwQXtp+o8Zg48Tw3A5Wk+aRNjQoazv3h3VZnPwkxjQbBOTCtl2Y2aoAQ4rcEaF6OuvxzUwsFp7AcOGcXbyZK3ySVEIGjlS0ydy7rPNRt6+fRi8vfGuIa/JGbbTp7F6NcIw6xf0FzAS5U+/Qb2tcohO8r8423bi66+TZE/sl4FOXuAqQ4Z3MFG+vsj2QV0xmbCe3o7xt+eQtiVAVEuY+iOENCJg1Cg8kxMIXfs7Qi84DCQoCiUXoe13v+oqmmdmohYXI3t7X9rzXsMxAvD19qL1qrUYLlCuXxP+vPNOzv30EwAeU6cy5MABDH+RCHA5XNq3x7Jnj2NZSBLykCF4338/hptuYoOnp+OdkrtzJ/EzZtDSKUyXd+wYCX/8QTGaUVCeAi39skj7R1FA1mG+dzipeYWkF4PStBW9tm/H4FdVwKPuUM1msr78ElmvR7VaKSyDzSegXQQIGxSmQYwBevpBWjGYbeASHkRpqmZ8l9s/ApDc3Wn600/kL1+OZLXiM2IE3tdd18B5Vg/8K4yamlBQUID/ZbC4NuAvhMlUeaoiA6WlqGVl5P38M8Jmw/fmmzmxfTdZTmRoXmiU7OUx5NhHH638gs/NhGN7oFELiK6cK1MVhXFxbBgyRKOalyBr0xqGJ2chuV38xWwrKqLAwwPjokUEX3ddpZmcsFoxHTlSaf/SXbs4NX067qZCUux+4/IaLjcXTUjTtxaelSsFt6ZNCbn7bjLshoMhKgqTPafLDJg7d6b7unWVcpSqwq9TJ4YcOcLB3r1R7AbRWaGjiaqQ4lSVmmbVQlKR148g6tnnahyEPdq0ofPOnWQuWoRLeDgRj1b3lMh6PQE9elz02kwrV5IzfLgmrijLFNx8MyZPT/L37SNo8GDavfWW4zvSXTMMfvgd9cE7obgIafS9SDdVl86oihSn8KAKHC3WXo7W0hzKqc/yt23j8NChqCUleBqgQwgYTuyCk7Gw+hwlq7ahvDrZUdXSQQ9pCsTef/9Fzy9UlXPTp5O/fj1evXrR+O2365WrIvv44Pb6VMpeedmxTgLS8ouwLFhAQPfudW7LlJXlMGgAShISSF+9mqh6llk7Q6gqIjcXyd+/1gHa46WXyPvmG/Q2m8OzaDi0G9c/G6EMGABVqqQKpk4lJSGBiAULKDl3jhU9eqCYTAi0BH4/7BQCIWGIvBwkVcFmU9iSUIitvBDqxAnOffUVMc8+e8nXdnr0aPKWLiUIyEQzTjLzYE+eljvmBkT6aSHcaG+tCOJ4ahYCbbvOaET19MQYEEDUxx/jPXgwPrVw+jTg4vhXGjWnT5/mww8/vKiXxmw2Y3aKrxfWkB3fgCsPOSICRo8hccu3NBkAXj4gto8h8Z0o8tZr4nnnJk+mLD3dcYwJTcAtBi0p1f+WW2jtLF+QcALu7QXFBVo10Ds/w8DaKddz9u6t0F8RUJxtoWTFe3je+toF+24rLmZLt26UxMUBED5qFF0WLXJslwwG3Lp3p2zfPkcOhLFDB6xZWSgyGPXaTKwcZapcp4H7ciFJEi2/+YbwRx9F2GzoAwP5s08frDk5SAYDsdOnX9CgKUfR1q0OgwagyKoQT4UeTTlKVRBLlxK/9DdilizBtzx/xglenTvj5VT5Jc4lo7zwJCItBd3Yh5DH1k3jqmjmTLCXlEuqivLLLyTbtxUeP46Lnx+tXnnFsb9u6A3IyflgsVSiBLgQDP7+KEVFFd5FJFRJws+J2fnYiBH4lJSgAwqtkFoEjX2AZCuFn9xBynObiXSKykgS9J/3NaFjxlB6+DAZH3yAITSUsJdeQleFGyllxgxS33kHhKDkwAFkg4EmF5HvqAq3SZMpbRpL8p13oJcg3Qb5AooWLKCLk9juxaB3d0d2canEr+JSgzeurlCSksgbNAjlzBl0MTH4rV+ProZw2O7HH8eiqpRPV3SSwKssFxZ+Ccg0kSHBPgnyRBNiLfruO0ruuYeUTZuIKilBQavUs6IZFyFDhnBk00YCUAhzg/hSHAYN9n2sVVS06wPVYiHPTvRZLghL167k792LQJvclAH7C6CLv4zB3Z0TXtGYc47jaj+/otPRNiNDIxFtwGXjH/Vpvfjii1p89gKfkydPVjomNTWVoUOHcttttzFu3LgLtj9jxgx8fHwcn6gGuum/DbtOHMO9GXiWO0ZKcgkOP+TwwtjS05GpPFiWenvTbMUKuuzZQ+uff67sAfjhQyiz820IFT6/MAeQf5cuSPanW5LAwwfSF3yphUMugKy1ax0GDUDaDz9grpLX02T5cgIeegifkSNpsmIFXv374927NyoyPnoJTyO4uurwbd2cAXv3Vxaw+wshSRI+PXvi26cPni1bcvXp0/TYvJn+Z88SZCdMuxiqGj4CbZCoWk0gA2b7ymwnBesLwXbnTYjVy+HgPpSJD6NurJ7oWxMkT0+E07NQ6RsUggInlWnHMU6VSnVBywULHLlGPlddRdh99xH1yiu0+OEHACxxcUTl5BACBAKNAdUGSCAioHjTFkxCC9OVQ9f3akLuuZei3bs53rEjeV9/Teb06Rxr2bKSIjlAyf79Fd5NVaXIKQxTH3hfdx0JHt4ct0GuvS8e9czp0nt40H3+fGRXV5AkYidMILh/f4TNRsljj5AX4ENBt84oTr+TC6Ho5ZdR7HQHSlISRZMna9Vlj4+FV56F3BwAcvfsIVdVOQgYPSDCV1M8R1WRU87SKCqSbjroKEMnueI5MB07hmXmTPzQpGqaA0YXA/2eeADb2rXYzBYyzHAwHyQLtLTvU65yFV6bOGcdIBkMGEJCNBJPtDC64iS1AZrnWW7VBuKyIKmItMSkSuK9orRUU05vwBXBP+qpeeaZZxg7duwF94lx4iJJS0tjwIAB9O7dmy/q8CKdNGkSTz/9tGO5sLCwwbD5G1B06hSZfx7gKqeJuCSB0UcLL/lSQdPuav/fJSSE7ufOIdfGmOni9BqQJDBeeMDyadmSbuOvIWXVWgxGiO0Ah5ekEZWdjdGeHFoTqsbWJb0enZPIH2g8FxFVCP/ar1xJyvvvY8vPJ+yBB/C4FMI0cxGkHwH/puBVt3Jga14eia+9hjk1ldB77iFw+PCKa/H1xb+GSp0LIWjkSIJGjSLrhx+Q3dww29lk87FLLAAuHu5kmkyACrJcSbG7Nggh4NjhiuRrSUIcOQgDLp5v5PPWW5i2b4eCAsxoooyAI5k7+ArkLPn27ctVWVmoJlO171stKiK/f/9Kmkk6wNMHCiPAZYiR7Nk2QCHVAp4yBE2ciNf0mUiyTNLDDyM7hWNtKSkU/PIL3sOGORTgfQYOJPe33xzX5N28+SXlkxk8Pbl271623ngjRfHxeERH08vJ01hXNBo9mqjbbkPYbOjsxqFp3teYv/gMAOXIYYrvuQufXXsv2pbIy6v43lUVkZoCIwZUrPtzK6zZRei115L8ww9YgAxFJUzCUcYvXXsD3jM/QTzxGKUbN1JQakIFXNq0oXT3bodBKKEZFgPdrSgLv3JofYH2nvEt7xPQBMANvEJDwFQGa37RJkzX3ALuHhSfPk3m+vV4tWxJkBPfmPn8edLnzUN2dSVs3Diip00j9cEHtfNLEoaioookeUmi0cSJtHznHYcnxlblHScAfcDF874aUEeIfwlSUlJEbGysGDVqlLDZbJfURkFBgQBEQUHBFe5dA5yRcutI8ROIzDsR6tMI8Yz2yR2N+APEWhDpAxG5UwaKvc2bi6M33CAsmZkXbjQzTYgbmgrRESGu8hbi4I6L9qPg4EGxyR+xMwqxyiCJdUFBQrFaL3iMqqri8GOPiWUgfndxEcnz5tXjyi8D2WeEmBoixAsI8ZJRiFNr6nTYgUGDxEadTmyUJLFRkkT+tm0X3N9y+LAwb9smVIul0npbXJywbFgv1KIibb+8PGE+fVqcAXEORBKILSB+AJHeuqmIa91K7ANxvFMnYUlLq1NfrSOuERY/nbD4ycLiKwtl3+46HSeEEIrJJM68+abYfPXVYv/DD4uTM2eK3XfdJc7OnStUVa1zO5cC8+bNIh0qfU6D2Of0Odq2rdgnSWIfiFPXXuu4v9a8PLEbxN6q+4M4bjCIgsWLhRDac3f6kfFiv0EWB2TEeRdE6QtP/6XXVV+UTJ4kcow6kaNH5OgRucEBdTrOtHq1SNfrtXun1wvTM08KEUDlT0mJsJaUiMOTJ4sdo0aJ5B9/FOKbL4R44j4hvvtaCKfvWFVVUbx2rSj45RehFBeLcw8/LA5BpY8ahDhlRGyj4nMQREqVj80PIU6dEGJULyFaoX1u6Szydu8SS1xdxS8gfgFxes4cIYQQ1vx8sT08XGyUZbFRksSerl1FxltviUOS5Dj3QUkSJ198Uezs21fETZlS7Z1z8r33xBoQB+yf1DffvHJf0v8w6jp+/yt4alJTU+nfvz+NGjXim2++QecUewytB+PmX8VT04AKWDesp/DawexQQB8Kg28DvQGSDsHJbaCYwT8Set0DeIXDi/UgKLRaIS0RgsPBrXa9JmekfvcdCTNnovf1pfWcOfjUkcDKVlyMZDDUWb/psrHsSdRtH2POV3HxAl3jrvDExUMQm11cKmjmZZkm06bR6MUXa9y36KWXKJ0xAwDDVVfht3497FmC+ZmxlO7XwiFSZCQ+u/YhBweTe999lM2fD+AQncwEmrvL6Hpehfuq9fXSohGFhaizpiHOpyGPvge5Dl6a/w9Qzp0jOybGkdcjgLQq+0ju7rQ9fRqloABjixYOD4stO5tDQUGoVHD/6KkIu+qCgojNyOBoi1gy4s9Q5tRmWxdonF9aIy/RPwHb3r0U9rXrXSkKxicn4DHr/bode+IE1r17MXTtir6kAIbauWJ0OoiIgn0JNVZw1QWmuDjiO3ZEmDTR0EA3CPKA3dmV9/Pr0wffHdsRqsCoB50Mrq4SJW/NRjd9IkUlEOgK7l4Q3+M2jn6/xCEP4hETw5AzZ8hZuZIjVcg62y5cSNrddzuux61jR2L3XtiDlbNrF8VnzhA8YECNxJ0NqI7/KZ6atWvXcvr0aU6fPk1kZGSlbf8Cm+w/BeXMGbIE5ACkw+LPwV8PFqcwc2h59a5L3QwTBwwGaBRb4ybVbCbpqacoWLsWzx49aPzJJ+i9vYm46y4i7Cy19YH+b+aEKDtfwNFPVSzFmvZh2wll1OXueHbuTNHevVq5qqri3a1bjfup+fkOgwbAun075sWLMC55gLKjFT56kZKC+Zt5uD33AgX79jrChBJayEUCUFXUc0n1FteTvL3Rvf5WvY75/wBdVBQ+P/1E8aRJKMVFpBkMqIlJDn4R0Oj+DWFhFUrRdugDAwl69FGyP/kEAbhGRiKlpTlCL8JiofDh0XhmnkH2geTCikTWRCs0roFg7p+CvmtXvLf9ieX339A1icHl7nvqfmyrVuidy/Y//gY+/wACAmH6nEs2aABcW7SgxcmTFK1Zg0uTJnidPY7tx29g/f5K+4VNmYLX3i0UTp2GTosMYTELkh+fSKI92U8HXB0IUlCoI/9O0ulwsfNUuTrnJ0kSkosLvjfeiDxvHrlffokhMpKwWbMu2ueAHj3+lgKC/yL+FZ6aK4UGT81fDyUxkbg2Ldldqs38XdCqApwR1R46DtfDfesg5spoY6W8+iqpb76pDRY6HUF3301IbCzCZMLttlvQffEuJMTBTaNh3MTLeon+FYgffSuZP/5CucyzX/e2tN66XzPkLgDz+fOceeYZTOfOEfbAA4TVkqOmFhaS5edXiVDQd+4cjH88Sd5qEE55q25vv4tbn1hML99E3iZQLNrgXYCWuBlqAOOU1zG+9ErV0/xPI2t0O5RzR9mzXUsy9UW7LzZAhITQJS4OvY9PteOEEJTu2oVSXIxrq1Yk9e6NLVmr3woZdRM+f/6GbH8cCyyw1e689I6O4uqk5GrtXS6EEJjPnSNz/nx07u6EPPww+nry2PwbcG76dJInTwbAf8QIWi5eDJLEeTcdnuXkigLyVNhvd3ZKQBM3aHPwBDvHP0r2xo24RkTQe8UKfDt0ACD10085O2UKsqsrzT/9lMAaeJ8acOVR1/G7wahpwBWH5fBhVg0bSm7aeWQqXv7laDXpUZq99Cp41p6wW1+cuvVW8n791ZEwaHRzI8xqwr0JyG4CtQCsJeCtB/1nP8BNd1yxc18JxI0aRfbPPzuMDh9XaDuwM/y0GTyujNeo5K23KLaHplyGDcP3119gQlsshxIo2Y9mUPl443v8JPKTMQiLCdUMZWmQdBoyi6Hr7TfjOuou9CNGXjIp4mXDVAp6F03wsh4QQnDw9dc5s3AhXjExXDV3Lp6NGtXpWNuJXehf7UlqMuzfpa0rl5NwRXu+g4YOpc3KlbU3YodSVETZ9u3oIyNxffNR2LO10vYN56DECn1278avFs/bpSLu9dc5M306XlYrsj2Z1RgdTYd9+zD8S5JVzSkppMyciVpWRviTT+JhNzZq21cpKcGteXMkSaLoxAnS2rcm1J7BIEka79JxpeKYFr5G2qQXgNGIUlaG7Or6zz3rDXCgruN3A01hAyg8cYJNvXuzqnFj4mbOvOyQnkv79lx/NpFr166lSZVSYtndnZjXZl9RgwbA97rrNIPGPtC5lJVR6Cs4eU5w8DAcToLDBbA2C8q2bbyi564rrCkpZCxZwvqOHVkdG0vyt986toU/9ZRDS0cCIr2Bo/vht++v2Pk9XniBwORkAo4dw3fFCiRXN6T39qMbOQ73G9vj8sBYfBPOIbvIYDUhSaBzBc8YyPcB74kT8frxVww331Lvl7xSVkbBH3+Q9sYbFO3e7Vhf9PvvZE6eTPGqVRdvRAh4azwM8IDBPrBhcb36cHbRIg69/jrFCQmkb9zI5lGj6nysrGqurJAw8LA7NVSoFIIqXLMGtaSkpsMrQeflhefQobi2bQsdKkIQQoAqwCU0nIFnztRo0Njy8jj/ySekz51brXTYAUWB/KxKXjmA3O3bOfXaa8gWi1aNZdfhMiclcahr19rb+3+EtKVL2RMbS/onn5D5zTcc7tMHi13AUklJIXfsWDJatyZ7yBDKli/HGBmJu1OOk2S1kmCDHAWKVUi3QoZS8R26yxD04itg/y3q3NwaDJp/GRo8NQ1gTcuWlJw+7SCr67V8OWFXiNFSMZvZe8st5G7bhnuTJvRYvRrXC5RUXyqEEOQsWkThxo24REWR9uqrKFThNEErKW96x620/eHnSztR4gkoyoOWXcFQd82Y9KeeIu/99wEt3ygTQJIYfOQI3vbyb3NKCiU9muKOBddyJ8T0z+Cu+msBXRaEgGnXwYFVCAFmE+xdp+VpB95+O63nz68z260QgtNPP02q/drLEXn7NQRcczvp48Y5ynbDv/sOnwtxhuz4A55xei6NbrA2v87fw/4pUzgyY4bjOTf4+HBXXYnXFBvWJ9piyI7DZoNzWQGU+F9F1rJljgHRH2idnIzw8iJh9mys+flEjxuH94XYpBUFxo+ALas02oK3vobrambuVUpLOdixI6bTp0EIvHr3pt3WrZUZelNOwXODIeucJuHwznoI1HiS0hYvZt9tt6EDqgfJoM369fgOvLDG2F8NceQQ6s/fQXAo0v3jOf7mm6T+/DNerVrRbOJEdg4aRFUawFbLluF3/fVktmqF7dQpB6NwHpq4qGvLlrjdey9HJk1CVVVNqBXNw1auMVUuq1CezN38hx8IuuP/lzf3v47/qUThBvx1EEJQXK4QDCBJFJ88CVfIqNEZjfRYvvyKtHUhSJJE4J13EnjnneQuXYqgOmEc2GdkjWJq2FIHLJgOX2gxelp2hY82g6v7hY8BzCdOOAwa0AjC8gGLEBSfPu0waoyRkRinvwevPqEZFi3bwU2XTgx2yZAkeOE32PItZx9/mKyzNiSrVrFz/qefKNy1i5affEJAlSqQmpC/aROp77+PROXvI+WntXgUpWgLdiOjcNEifO68E9VqRdLrUb+bj1j1O9JVVyM//ARSQU7lxs1lYDFf1KhRbTbOL1qEoaAAyZ5zJVSVaCdOn4tCp8fwwSHEvhXIQtCk23CUwiJ0TZtSmp+PEfDv0wc5IoLtPXuSv28fCEHiJ59w1erV+NVmLOh08OXvdepC0c6dmOLjK5Z37KDs1CncW7as2OmL5yDHXpuVGg/fvgETP8NWWoqCxmNjKy6mFI2+39kH4VKPStK/AiI+DtvgnlqVmaqQtHAhp3YfBDSphpwVKxwTlfJ+S7KMW+vWqGlJSEWnKANOoDEK64FAVcV0/DipL7wAaInAClAIFMoyg7dvJ+XJJymuQnaYOnNmg1HzL0WDUfMfh1JUhKefH6acHCTAX5LwzspCLSqqVZG4LrBs345p0SJ0ERG4T5xYr7JU67ZtmL+eixwUhOuLLyHXU2zOrVWrairb5fDT6Yh5/PF6tQdog+fcKRXLJ/fClqVw7cWNDlGFPRZAlmUMPj749+pVecO9j5EiuRE3ZzaFFn96nzhJyBXOq7gYVEVB0hvIFtGcP1mh+SChJX6XJCVx5IYb6LJnD15dulywLWtOjuPYqkamR7CZfLuXBp0OXVQUh4YNI2/VKgyuRjoYzBhlEMuXoK5biWHeIgiJhgx78ux1YytiQRfA4bvv5vwPP4AkEezqiuuQIQT06kXrCRPqfE8AMBiReo50DKg6f39ijx2jZOFCJA8PPO+/H2tuLvnOoow2G0dvvpmr0tORL7M0u5rRodMRP20axSdPEnzjjTR7+WWkIieiOwSUFFCans4fPXtiTErCiPYdWtGMVD2aEG/jt97CvXXry+rf5UJdtwrMZsqflKKDB5H0eq2sWlW1hGwgF634QAIs3t64+cmIOV0IvgeOzAarRbsuNzT5FaP9r+N7s7cjVJVTH35Iq5kzOTZkiKNkH1lGV0PCdwP+HWjIqfmPI2nCkwSacggDWgPhqkrZ22+TPnCgw01fX1j37yevf3/KPv+c4smTKSjncKgDbMeOUXTNAMzfLaTsvXdJaRxFWj09PW4tWhD70094tGtXaSYqAS6KQsb06ZjttO11hiTh0F0oRy3CfKrVSv6GDRTu3IkQAmP79ng6aSOJyCCi7h9N/z//rBaKK0xM5LcHx3N8/zFSt2xl6bXXYq1DnsaVgBCCPc8+y0Kjke99fdl9002OgaTcIFHL/xeCgh07yFyxgu2dO7Oje3dyt2yp1qb/NddgCAlBBdydbNOoTuBx8xg8Bg9G9vbGc9gwLCEh5Nlza9ysmkHjwPrVCA9v+OYAvDwP3lpK8a3Ps2PwYDZ16kSynU+nKhSTSTNo7H0WZWVkL1tGYOfOV4SDSB8ejs8LL+D9+OPI7u4YfH2rVUBJhYWYEhJqbqCkBM6nVkgkXADubdrQeNYsZDc3dF5eGHv0IO377yncu5fTr77KvptuQtzydEVln6yD4Y9y6vPPMSUl4YFmyBjQQi9mtMqt6PfeI3zixEu+B1cKUtNYHE+arCM4PFgzaOy/Mze058+G5unMBYqLi+HHu5FMml6ZYtAMGi+0vxJaKKq2rBhzdja+AwfS6cgRXO3s9fqAAJpUCZc24N+DBqPmv4zzcUSZFtL5NmjRx4mHRAgse/diO3Pmkpq1rF6tzRZtNi0R8fe6udcBbFu3gM2GZI99e5aWsOPmERSfPVuvPvjfcgvtDxxAh/Zy06NdH0Dml19yvG9fVDtZV51gcIHHZ1UMGB2vhn7VBTVVi4WjAwdybNAgjvTuzZnx45FkmchffqHRxy/QaDi0ui6LdoZFeCl2j0NhPpyNA0Uh9/hxVKtVG4BVFUt+PsUpKTV2SajqJRmeQlXJXLuWtW3bsjIqijN2yYfz69dzbNYshKJoRHmlpRSjzept9o8iQYy3dhtcoqLYf/PNFB48SMG+fewdNqyaOKDex4fuJ04Q+sAD6P0Die2vo9MdRhpPGIvu+slEr1pFi4ICon7/HVtRkeM415reTKWl4OMP14+lNLoDG9u2JXv9egoPHuTQffdx5sMPyd+2jfytWx33RXZxqaZnpaoqcXPm1Pu+1QWyXk/XRYvQSxI6wEuScPP3x1iDgCNrlkPrIOgYCbcMgrKy6vtUQcTTT9OzpIQeBQWUZGdX8kZmLV/O6TX7Seg6kZRO41A/PQjt+uKVvZhWTbWQSwGa2SCj/R70AQGUpqYS9+KLFNdRy+mvgtQ4ArlPF/B0h5atCP99Lb2WLyfyhhsIBqLQcmGczT/XZs0g84RjuXELLT9GqvJxfpxUpzZi7V5b95Yt6RwfT7fz5+mWmopnx45/0VU24K9Gg1HzH4by/l0YXLSXotG/ykaDAdlOOFVf6Fq1qnjZ6nToW7So+7HttfJMIbRPqQDFplB0CS9cSacj8s03q29QFCwpKbXPnmvDbU/C4iT45jDM2QAu1Wf6BZs2UbRtm2M544svMKelIel0uBduwD3cyeGzcx5sWQEDQ+GmlnBHZ4JbNMPg5YWk0yHpdHhGReFdw4CYP28ecZ6enHRzI9uJVO9iyN+zhw1hYey79lrMx45RlpLCocceI3f3bsoyMhz7lb/4VaAYKAJKgQEh0MwTut/YD9nLS2MztlfSKKWllCVX51Ux+PnRcu5cOp/OImKjDZ8fTOjunaeVZTsh9O67HUZjvk2rBHKgczckp3Bo2s8/I+yGb3lo6+yzz3Kwb18O9uvH0ZEjte2yTKfFi5FcXRFoisk2WcalDorll4qgYcO4avNmYoYNI3z4cFpt2lRNlVtYrVjuG4VaWqY5abZvhO/n1qn9crHfICcF8XIkT51K6sz32PHul3zVrjtbh0aR+dFRjpzRhEnPA0lo98srMhJd06aceestzr77Lju6daOsFgP6L0f2eaQH+6DLPoghwowhuBSpZSvCrr+e7r/9RpvPPsMYG0uzNm0I6N8fq5sbLq1b0+fXXyGsoqQ7djAYXXUO72L5M1zusbGiPccGIGbkSCKcOGYkWcYlNLR2/bm/Abn79/N7q1b86O3NttGjMWVnX/ygBlRCg1HzPwDVYkGpwyzPef9TN1xL2eF9Dr+six8YY0GRJKSgIIJ++skhtldfGG+6Cc/p05GbNMHQty8+v/5a52MNvXvj9tmXlLgYyAEOouWe+F0kd6M2REyeTKf0dBrPnauVe0sSyDKylxfGSxE3DYmCpu1qDT3JVUMakoTsYh+8fcK1kIC2AbxDYfrjWhIAQPxR3Dcv4dZt22h17720GTeOW7ZupXTvXhIeeIDkF1/Elp+PLSuL8w8+iCgrA6uVrJdewnT4cJ26f3TcOCz2F6VMRVJdyenTRAwdirtdUVwFjO3ba0aDpPHm9AkGvaw9Mm6HduLTuTOGgACHAeYaHY2H0QXmfgQrl9UppOIMzw4daLd4MR5+fuiRyOx/A9LjzyC/OQv98k2V9jUGBVUKi+kAvcXi2J6zbBnFBw4AEDhoEFcdO4alcWPKAI8mTWg/dWq9+lZX2PLyOP/xx5SeOEHs4sU0X7oU93btKu+kKFhvuQadUoIqwGTSPuqqi3s01fPnUe3fX8t338W7c+dK28u9rZ6AqaQEL3MKZVBJfsGENrgH3HYb+bt3awzRioKtqIjcjX8f3YGw2SiaNImcTp0ovP8+RHGxnRlbgdQESD/n2Nfv4YdpduoUzY8eZcDGjdxRWsqNx47h06oV3LEAIruD3g2p5Q00/+wLrPZrLDdiQEsQBmjs6UmbF1+ksxOlwv8XbLn1Vgrj4rAVFZH0ww8siYoi24kCoQEXR0NJ978c5+bP59C4cQibDYMsE/vii8S8+Wat3ApCCHZdfz1ZK1cSGAY9rtHGZ6FA0hY4mqIjYswYOtWSo/B3oTQlhZNvv41qsRD7xBP4XIrqdRXkr15NyquvUnT2LObsbFyjo2nz66941VEPqi4Qqkr83XeT9b3GL9Noxgwiy7WYchLhk+GQdhSa9YXxSxE3tIacdM22lGUY/yqMr2DqLT1+nKMdOzoo2z179aLZV1+RUMX7Fb1uHR6DBl20fxujojDZZ+MCzYgVXl5cc+IEbuHhmLKySFy8GBdfXwL8/EgaNgyjG0RHgps9tUcF5MbNYHs8JadOkThnDpJeT5NbRuI25nooLdEMmidfgFdmXvJ9lGoxHEGraFrbvDkme1hSAqr+orsePoynk0GhKgqWnByMgYEXbPtSoZSWcrBTJ61CSQg8e/ak/bZtDnVmB14YBz/M1Ww+AcW5IFSQ/f3wOJddY9+EEJiefATr3M9BkjC+MQPjsy+gmM2cfecdzn/1FUpiIgatSYqBeKBZa3A/DsertHetOwT+spw9d92DOS8P1T4MNHrkEdpXUaC/krDm5SFsNlyCgiiZOZPil17SnhVZxi1Q4B0NyBJ4+sKKFHC9tOTq/L172WpPsBdohpwb4Ifm6Yp65RWiX3sNIQRqcTGyp+f/Cz6a75213AAkifBhwxiwYsU/16n/J2hgFK4B/2tGjbWggNWBgQ7RNdB+uF3Wr6+1hNSUlsbaiAjHsrsXBPqDnw9ENIJduySMA++gy6JFf3X3Lwt5O3eS9OGH6L28aDplCq7+/ijx8eiaNEG6wHeb+umnxD/6qLYgy7g1a0bs9Om4Rkbi1r37FXmxCTuhmezqWnOZrKqArMOUkEBqj7bIJWUYDOATKnO4y0haTHqFQPtgnPHJJyQ+9lilw7uWlpIybBilmzcD4NKyJU32769Tdc3Z2bM5+fTTAEgGAyH33kuz557Dq3nzavvaMjM52awZamkpCJUQHxl/Lx26xk2RP1kEbaowuc56E956tSL06OkFiYUX7dPl4FjXruTu20cAWngh374+4vHHaTZnzt86UOVv2MCxKoZlp2PHKlcVqSo0NVRoPwkwF4PF7krxPJOKbPeWOcP2505KB/SutM7z7Hlk+/NV9OefHOnTR8uHAs6ghQwF0HcwZByBs5ma1+0qd2jrDmJ/Mpn7D7K7Sml7/2PH8PoLKqHOPP885955B4Cg224jXAgsv/zi8OjpWzQjoIefRpMwcRa0ujTvbDn23Hwz6XZ6Bwm7QeO0vd22baQ9+yylf/6JITKSZqtW4XYFJk+Xgx1jx3L2m28qVsgyEdddR/965CX+r6KBp+Y/AKWkpJJBU464Sc9Qkp1OaLf2NP/8JwxO1Rh6b28kFwPCos0GSosguwj82oKshy7dBGX2Qe//K0rPnmX3gAFaQq0kkb16Ne1tJsjIAG9vvFeuRd+9e43HWs6fd5C9oaqUnTpF0q23ai77/v1pdgXc75Ik4VpTYmg57CGolCefxJpdpuV6lEFuoYrt1GK2L1pM9L330vaDD3Bv377iOJ0OY+PGyK6uRK1aReFPPyEsFrxvv73O5cJNnnoKny5dKImPJ2DQINwv0E99cDBNN28ma9Ys5OJi5IMHyU1JwdizHT6xrapXlASFVBg0sgyBV55ksSpaLFpE9uDBKMnJ6GJjiV24EF1YWGXhwVogVJXM+fMpi48n4Kab8OrZ87L6UlPJtT6wClWcJIF/ECInE0kIJMl+y2QZfP2Qqu5fjrIa2H7NFYnuXj17EnvLLRQuXoxBVfGSJNLCwgieMIGIfv0IOHeaXiu+xuOPjciyhDJpGrqIKNzzqxudlr8gj6MsMdFh0ABk/fwzvo89ht7upUEIjLfeATXlwF0i2n/xBbbCQnI2bMBI9QqorE8+odRefm89f55zjz9O878x/FYTenz+OZ5RURyfNQulrAyDpyftXn31H+3Tvw7iP4SCggIBiIKCgn+6K1cEqqqK3TffLJaBWAbidxDfgpjj9Fmqk0VRXFyl404v/lz8JmvHrAKxzx9hHY4QIxHqrXohVPUfuqK6Ie2HH8QfUOlz3kUWOXpEjossCq4dXOuxxUePis1ubmKjJImNILaDOATioP2T98svNR8Yd0yIX78V4kxczdsvASe7dhXHQBx3+iwDsQnEH5Ik9lx3nRBCiIy5c8Xh9u3F8WuuEaVx9Tu/dd8+UfjRh+L08OEi/vrrReGmTZfU17gmTcQuSRLHQZwHUfL++0KxWIQpO1uo5c+LxSLEuFFCBEpCtAoVYs/OSzpXfaHabMKWmSlURanXcWeeekpsA7FNpxPbZFkUbN9+2X1Jee89scPNTez08hIZCxbUvNOuLUJ0DROiiV7Ybh8sijq3EcX9ewnb3j21tquazaJ4wFWiwBVR4IoouWd0xX23wxoXJzKCgkQ6iAwPD2Gu6XoKC4QoLqpoV1HEtr59He+QTe3bC5vJdEnXfiHkrlsnNkKlz9k33xQlX3wh8kaNEsVvvy1Uq/WKn1cIIc6+8IL2PTt9DnTpIs7ef7/Yp9OJfSD2gTjWtu1fcv66omzJEpHu4SHSQWSPHSsy//xTmPPy/tE+/X9CXcfvhvDTvxyqzcb5X38lb+1aig8fZk+VpDIPoM2AAfTYsKHS+hOFP3D47VdxP1fKUGsOBrPd/33dE/DAX1PuWl/YSks5/emnWPPzaXzPPXjFxgJQfOIEW9u106a4soyLiwsdFDOyqoIkoe/bD+/1m2ptt+TECfZ37461uNiRLOuJljjrM2oUjaqG3jb8AQ8O17w7egN8uwZ69b/s6zvz/POYnWavJiAVjUPEBujc3bn2MjhqTB/OoeSpCaQo9iRJSUIyGGh96hTGiwk57tkOy36ErHSSTidxeH3Fc9VYkvAZNYpDK1dizc8nsH9/eq9Ygd7dzq5ss2nesP8HOQoXwu6QEKyZmdqCXk/4xIk0cfo+LhXlr9SLhr6EqNc9EhYLyuaN4OKCru/VNebeqMXFKCdPoouJQfavWtJYMxSTifOLFyNsNsJuvRW955URUK10jrIytvn5VRBRShLdT53CvVmzK36uqhBCkPv775SdOIFsNGIIC8N/+HBMR45wql8/R58aff01Affd95f3p8Y+Wq1k+vpqtAV2+C5fjvEKMbv/L6Ah/PQfgazXE3H77YSPHMn+Jk1q3MeZ/6McrbxH0fJNjQZcykmDvb+DXxh0qwd1/F8IIQRbb7yRzI0bkWSZU3PmMOzYMdwjI/Fs1YrOS5Zw9u230Xt702zcOMQDYxGFmrKu25QLu2tzli7VkgPtyzagBM2wydu5k7CcHFwCAig+epTS48cJ+PFDdOVhFVWB+R/WaNTkrV5N9qJFuERHE/nCC9XKeKuhdWsSgCC05Nvc8mu3/5WtVkxnzuDqKsHUMZB6BgaP1vhyqiaf1oCyaW9o3DLlK4RAWCyUHTxYYdTkZcPCD8BUBneMh0bN4MBuuOVqR6m2exVC5Fwgbft2rIVa6CJ782bOfvopsc88o+1QT/XsOmHDQvjsSVBscN9bcMOjl92ka7NmGuOxooDN5iBfqw2l+/ZhOX0a9549cbmAUVjnPJ56Gn2Siwv6a6qXcTtD9vRE7tq1Xu3qXF2JHDOmXsfUFzo3N7rs2cOphx9GNZmImTHjbzFoQPs+AoYPhyq5Qx7du9PqyBGKt2zBrW1bPHr0qKWFvx7CbK5k0ACOKrcG1A8NRs3/CErWrsUtJQUfNIIt0GLIAUCTWnJkpPIoc0AEDBn/N/Sy7rAWFJBp9y4JRcFWWEjG+vU0ufdeAEJuvJEQJ44Jtc9plH070BXsQC5YB9mNIbBmIy/16y+rnw+IA0qTkjgSGEh3Py/cCotIVUAKkQl0k5DKZ9Ze1SnUC7dv5/iwYY78gNKjR2l1kVL2yBtv5FB4OGfS0vCgQlBPQaOyd1cU0mfPprFlrybLoCrw8wdaSfkND1z0HuLmjl7KcejdIElILi6426u9LEcOUTZ2GG5FGbgYJVgyD/6I0zxT4MiP8Xemk5EkfEeNImX9esd2SZax1FUY8iKwZmUhLBZcnJLZyU2H98ZqJUIAnz4Ona6BiNjLOlfsggWcuusuTPHxBNx+O6HjxtW4n2qxcObqqyn7809AS7CO2bwZ9549Ofv11+QdOEDI4MFEjhhxWf35/4aitWtJfeQR1LIyQl57jYBa7s+FYCsqIn/1avR+fvgMHEjnHTso2beP03fdRXxKCoqHB8Jiwc3NDY+mTYmYMQP3rl2RXV3/giuqDtfYWFxjL+85uhKQPT1xHTsWk73qVI6IwHjDDf9sp/6laDBq/kdQTkTWGUhHm/k3fu01gq+7Dt+/WTuoKlSLBaEodVZ2BtB7euLi768NluXlzBeYScv+/sj7XoeUg5rhsfVzePUEeFUnEHQJ9MF22smDgca26sxncSSviAE6aKyDhDzw9XHHYCpGDY5AmvhqtaTD/HXrNIPGzmSbv3r1Ra/RGBDAdYcOkbpsGS7+/kQOH86xXr0o2bOncmgi5bRm0IDmoUk5fdG2ATw+/Zzi228htLSMXG9fzP4BuPfsiZBliqeM5+y0zx2naRwJXkouHPoTmrZwXAdoFbbh7pAtuRMw7Dpaf/YZ7nPncsTumdF7edFo7Ng69elCSJ8xg7SXXgIgYNw4oj//XPN6FGRWGDQACMg7f9lGjeXECfy7dcPtgQcIeOCBWsu88xcudBg0oIUK0iZNIl1RSNu2DUmv5/THH9Prhx+I/odEEMvOnePQuHGUnDlD1N13EztlymVVfinFxSSOGKFxIQlB6sMP49GrF64XUhyvAltBAYe6dtVUxYHQxx6j6UcfceqWW7CcO4dJVXEvKSESyMjP5+j582T27YsM+F1zDa1WrECyE+EpebmcnfMBpjIzUWPG4FOPfvxb4P3VVxhvugmRm4vxppuQAwL+6S79K9GQU/M/AmGxkDxkCKWbNgEQMGkSwdOn/7OdApLmzuXIY48hbDaavfACrerRp+wdO9j9wAMUZGSQ5+WFZDTS49ln6fzQQ9V3zk2GyVVCAg8vgY4jqu1qOrqf3e26oKOCrCyDivAPaHkt19pN/sNCxq9vP2xbN2FTwKt/f1quWlWJaC9n6VJO3myXTdDp8OzalQ5OA2FdUbBhA3E33IAoK8MQGkrrHTtwXfIu/PqJZtAIAZ9sg7a9wGbW6Il1tTOgipISrCkpHBo8WKv8Alx8vQlQ8yjOq9hPp4OWTaHErwu2uDg8WkThYi1EEip4ekCfQTDlPXCrUCXP2bGDkoQEggYOxK2GMuT6wJqezpGwsErrmu/YgWevXlrI6akecGa/ZoGFx8KHB8F46QKR+UuWkDBypBYqs9kIffVVwl97rcZ9s2bN4vyzz1ZaZwaS0UKXAMgy0XfcQS87P9GFoBYVYfr2WxAC1zFjkGt4F5mOHqXw22/RhYTg98gjF/VcbOvdm/zdux3yEB2//Zaou+66aF9qgzkhgbimTSuta7xsGd5O3lGA3J07KTpyBP9+/fByVgsHMr/9lvgqum89iorY5+uLUBRMQDO0cOsqoBWVK5Q8g4Nxf+ghipYtJvf4SQrL9SZdXRl8+DCe/w88LA34+9DAU1MD/peNGtDCNKa9e5E9PTH+w3wLAJacHFYHB1fSp+m7e3e9PEdCVfkgPJzSrCwHAd3YnTuJqFp+aymF54O1v+WP9ORDENmeqhBCsLvKrNwMJKJ5uADaSBAjQ7GAjBatEPHxFSq+QLMffiDAaVYuhCBt9mwy583DGBND048+whgaClMegT9+0kiAPl0CjS+eR2DNysJ89ixurVuj8/TUzrt8LqQlQN8R0K43rH0NNkwFWY/S/00SvztGWVwcnt27EzphQqX8kKJduzhc5X55yCBXETGPCNMh5aJ5aWQZ10mTcX/tjYv290rAnJjIsSo5YbHr1+NVzrdUWqTl1ag2GHA3eF0a23U5EseOJffbbx0eKdfWrWl97FiN+1pSUjjVrh1qeYjNYCDfZiNPCBxF1bJM21dfpc0rr9TYRjmE1Uput27YDh0CQN+2Lf579yI5GciW+HgSOnRAWCygqngOH07U0qUXbHelry+ioAAv7EzR0dF0OXoUvZO0RH0gVJX4rl0xHToEkoTO358WJ0+id0o+Tp43j0P33w+ApNfT4fvvibrtNsf2nGXLOOkk5Cq5uNCzqIiEBx4g59tvsQBN0RLkN6AZNTY0fh0ZTcrAmbDCTMXvs8OcOTR94olLurYG/DvRkCj8H4Sk0+H2Dya7VYWtqKiSQQNgyc2tZe+aYS4qosRJkwgg++TJ6kaNizs88jssehQsxXDdqzUaNAApTz9dkWdihxEIQXuhegCeEqiyRNC2P4ls1469VQaHqvxAkiQR8fTTRDjnL82fg/jpK4pMQNpRXK/tguFEbnWG2SowBAVhcNbd0uthhFPOU9pBWP+69r9iQV73PPmLwVYCJX/+ScacORibNiX8+ecJfughjI0aIRkMWp/LDb4qBg2ATcgYFGv5BaHWV8n8IrAVFaFaLLg4udVVi4W0N9+keO9ejJ06YTpwAAnw6NMHz759Kw5297oiycHlcG3ZspI+mesFJgEukZG0jIujcMUKZFdXco4dI3fGDLyE0FiZ3dyIuusuWr7wwkXPazt82GHQANiOHsV64AAuTs9z8apVWtinfPm33xA2G9IFErBDbryRom+/dXg6bOfOcX7OHKImT75on2qCJMs03biRnE8/RS0rw/+BB9D7+2MrKuLIgw+Su2ULVqc+qjYb22+/nehnn6Xn1KmY9uzBs2VLAkePJnvRIiQXF5p99RWyiwtN583Du18/cn/6icx16whF+82VooXOy3+XLmiEeeXQUfHYelTxIjWgAeVo8NQ04C+DEILdN95Ipp3i26tNG/ru2VOv3BohBAv69CH1zz9BltEZDDx8/Di+FyK3uwgOeHkhiouxUVFpJIBsp2WAHm+/TfBzzwGQOm0aKS+/jAJYgoLwGTqUmKeewqcWiYWS5GQyB7TjfEohBXZJohgZIm66Ac9rB2n077ffDe7uNR7vjIKjRylJSCDgqqswBgTA6fUwd3ClfQ59Aaa86se2WL0a32uvJXf5chKffx6RnYFfaS6oUOwkCKQ36ol+7BEscz7UYlGqiufS33G57sqUlJ79+GOOPvkkqCqNxo+n3SefIEkSyc8/z/lZsxwGRsgTT+B/ww149u9foZl1iVCKi8n/9luEquJ3113onEgoVYuFlAkTKFixAveOHYn+6qvKhuSF2i0rI27cOHJXrcKrc2daLVyIS0hI3Y49d47sRo0q6WIFnDmD3smzVrxyJeeuu05bkGX04eE0S06+YI6MYjazOzS0wpuk0xE+YQLBt95K+uTJIAQhr7+OZ79+depnbTg+YQJJH38MiqJ5USRJq6pDk2YoAfo3bYrtzBmQJEI/+QTPW29FdnOrLuopBLt79sS8ezc6tHBelUI7gqgQKNTpwCIg4s476bjg2/8XsgYN+PvQEH6qAQ1Gzd8P1Wol/bffUE0mQkeMuCQODFNBAbtnz6YsN5eODzxASIcOFz/oAjgaG0vp6dPIVBgxtqgoslNTKzHiDkpIwN2pdLf48GF2Xncd5vR0bRejkQGnTuHmXKljx/rBg7FuXo9wcujIQFcd+Pvacwd69IHlWy5Y2nt27lwOPPQQCIFLUBAD9+zBPTwEPu4B6ZqIZcFZOPlTzcf7XX89zZcv1xa+/xymjHckBydlQKHqStis9/AdNQqdry/WJb9iO3wIw8BBGPpdfdF7WRdY8vJYHRhYyWvXe/NmAvr142i3bpTs3autlGX8R44k9uefL+k8QlE4+tRTpP34I+4REfjn5KAkJ2taSa1aEbt/f3XB0SuIolOnSFu+HI8mTYgYMQJzRgZ6D49KIaC8lStJufFGAu1hLxvgM3ky3k5MukIIcqZPJ/fDD9GHhBA+fz6uddAnO//RRyTYQzKyuztt164l6dprUe0eFclopFViIvrgS2R6/vhlij5/h8ICC3FpYLKB6uKCsFgwo00KwoFYu6EDIHt706KgoNYmVZuN7V5uFJtsmKio3CxHM4P2Gw3zgEa+UDj6SQKmf3Bp/W/Avxp1Hb8bVLob8JdCNhgIv/VWIseMuWRSL1cfH/q99hpD5sy5bIMGoMmiRbhGRmIBbF5e+LzwAj2Tkug4bx4Gf38M/v50/OqrSgYNaC9oU2qqpq+jKCilpeTbadarojA+Hl11BQvNfim3pHZtg+TEC/b1xGuvOQYIa24uiV99BQZXeGQ73LGQ4ugnSFpc+w9ZXbmCjIF9yT9wAJYudPRBAMEdm9H84CECH3kEvZ8fkiThMvIW3F9744oZNIA2qFYJQ5ZzJ3ledVWF4rmqaonBl4ikL78k8cMPsWRmkn/gAKnJyZgBmxCYjx+nrNx4ugQIIShbs4air7/GZk+4dkbBsWOs7tiRg889x/aRI1nTqhVrw8JYFRBAil0N+uQHH3D0ppsoVBQSgAS05PSiWbMqtSVJEoGTJ9M8PZ2YQ4fqZNAAhD3+OO22baPZ11/T6fhxdAYDakmJdu9VFVFWhvnUqUu7AT99CnOn4SlbCPODTk00w7zt7NlIQ4aQhfZMhV51VeXjLiIcKuv1XHVtbzr6ynT3gign51wg4G+FMFnGa/idGBLU/4xBk7pyJRuvu45d48djauCrqRcacmoacEUhhMCSkYHe1xfdFeCasBYVgSRhuIIspx5du9L+3DmEEJVc2FH33EPUPffUepwxNBRDQADWvDwQAkmWaxX+a3LTcEI//ogTKo5k0kgXPV5utgrHjMEAfhdmfdW5uVW4+IWoCN0ZPaHTGDzaj8Z3Zx75336L5OODS7duFK5bh8DOkKwDt53b2N+tCz1uH4SbXfdKknW4XTccahCyvBBsBQWU7N1LydrfUY/txvW62wl86IkLkgG6hocTceedpNorg7w7diTQngAcPXMmstFIyZ49eA8aROiECfXqjzOKT5yotFwGpKHlYrQA9DWJi9YR+ZMnUzBjBgByQADhBw6gj4pybE/+8UdUe2IvQH5cHO5oicGHHnwQYTJhfnoirSPBVgZZWVq4BqhRgNVy/DhZd92FkpyMx7334v/uu3VSFve+6iq87YaF4u+PLigIxZ7HpvP2rlsBQdIx2L8aIlpAt+u052/jEq2vkmbM+LpDx59+IvTWW2k0fjyZe/eic3HBNyaG5KuvxnzwIMgyIR9c3AiRP1pA2CN3wuk4Im64BWZ+TOLgwZRt2waKgtUmIUU2rjdZoa2oiGOPPELutm34X301bT/9FF0dwr3/NBJ/+ontTkUIqcuWMSIpCdlQe5VjAyrQ4KlpwBWDUlrKoYED2RkWxvbAQHLXrLms9g688grf+fjwnY8PR9566wr1sgL1jcnrXF3ptXYtAf3749utG11//RXPWoyCVr174yJDOx20lKG9DnJUge71mVoejZ8/fLEIvKsT+Tmj4yefOAwZn/btiXm0crKspNMRvXAhbU0m2ubmEj5mDN6Avw4iDOBhtzX0wPEyd+jWDzw8YcB18ERl5mUhBOfXriV58WLNmKwCU0ICh2JjSbt9MKG7PiAyYycBHz6F6GCEFbWrupuOHqVx7950nj2brr/+Sp8dOxzXJLu6Ev3WW7TasIGIyZMvmkR9IQRXUaYvz89QAPPgwRgvI7m08P33Hf+reXmU/Phjpe1uYWGOcmokqVJpsmo2kzP9GRrfAiez4USWlnviBRiNkB0VhWqunE2SdfvtWI8cQc3NpWj2bEqqSnfUATovL5pt24bfvffid/fdNN22Db3fRarG4vfCk53gq2fh9RvgZ+13Z4uqKNcWgOTuSdhttyFJEpIsE9K9O4EdO6L39qbJnj00OXiQZikpGHv0oHDzZkcIrCqEopD8w08c0QWSdO8zqDM/Br2esE8+QW8P67q1b49Blin58UdUVeXA9OlscnXlkE7Hya5dseXk1Nj2qcmTSVu0CFNSEmnffkv8v0QYcu+TT1ZaLjt/noKTJ/+h3vz70OCpacAVw/mvviJ/82YA1NJS4h54gF7nzl1SW3nHjnFo6lRtQQj2vfgiTUaNwvNimkV/MXw6daL3+vUX3U9u3QazAKME3mjemjybgmXUWFwnXLxKphwh11zDtadPc2TmTGxmM/knTxJUQ4Vbea5IwdSpGNFKto12+6BUhVwkosMj4eOPaz3X7kce4fTnnwPgFRvLsL17MTh5ETLmzMGWm0t4eyjOBUMxuBlBqAq8dC/0v1EzmJxQsnkzyYMHO8rhwxcsqFeieF2gmEzkLFuGEIIWPj7kFRSQSgWZIpKkhbkuA7KvL4rJ5JCOqKqrFPPgg2Rt28a5H3/ELTISOSMD1aT56AI8IbJ7IfFbwVqqGTPl9V+qGYr27eP8xx8TPnGiwxtjO3u2ggBRp8OWkHBJ/TY2b07UV1/V/YCN34IqKhKZ//gUZeCDpL2zAH8fcPPWBMPz3FviPmsW/k8/XW1yIOn1uHboQPqcOSTZPW+uLVvSZudO9L6+lfY99+67JEyaBEKQ8/vvCKuVxq+8grF1a5olJmLavp2MgQMpOHRI84L9+ivnf/qJxmgeI3XfPk5fdRUtjh4l65tvKD14kIA77sCrTx+KDh6sCHuqKsXHj1/KLbwiKE5IYNvNN1N47BihQ4bQ68cfa/U+m7Oyqq/876S+XjYaPDUNuGJQ7KEiAISoUXOqrijXFaq0rpb2Mr/7jqPXXsvphx7C+v8k/mxo3x7TkCGcUiBehX0K2PR6jJeQpLnlnns48dFHxM+dy8q+fcm/wMtZcncHSaLECkVWiXSjJ7ss4NW5C61qIZcrO3mSjLlzSbIbNABF8fGk2qvWHNDrQQjOnoQTh+FwAqTl2JOerVYoLaYq8ufOrfRCzv3ww/pc+kWh2mwcGjyY43fcwYlRoygMCaER0BIt7ATg16IFclISR+69l6ynnqJ46lSUKjQBF0PgwoWOMJH7yJF4ViGVkw0Gen33HbdZrdyYmEiLNm0IBSKAyObgHg5mexasr9NxEhrRY8ozz3CkXTsHQaLHEKfqNiFwr0XYUCkuJuO99zj/+uuYk5LqdU01wi8MhN2YknUQEI7l4EHU/AKyk+DMETh3Bop37CXz2WfJd3pmnCGE4NykSY5lU1wcOTUQE+Zv3lzxfAjhmBSB5kktW7bMkRMEoKxYgTO5ggSocXGcHDCAsw8+SMZHH3G8b1/SbrsN123byhsCILgKceDfiX2PPkrhsWMIReH8qlXEXUA4tSqRpWQw4PU36WT9L6DBqGnAFUPI3XdjcOIgafTyy5fcVmC3bgQ7za7Dr7kG3xryV/LXrSN+zBgK1q4l4+uvOXn77Zd8ziuN6CXLKLm6P0kCTAYD3X74od4hL9Vq5fy6dQhVRSiKtlxFcd0ZAR99hFReOtuqDU3PJHKDycSA3bsx1lCyXLB2LYfbtSNx3DiiAeeMA0OVXI/QiRPR+flhdooknMvUJvYMGgFB1XNW9IGBFQs6HbpLrbypBSWHDlG4fbtjufjUKVy+/JJG06Yx8vffGbFxJZ7nEjj/zXxSFixg//vvk/zKK2R17YqoIiB4IbgNGkR0Tg7RRUUE//KLg76/Ksq/36BnnsFTknADyjJkVCuEd6/Yz5lKoAwtVFZ8/Dipdu9kQOlRAiIlfIIgLEbFJfFAxcGqCit+Qnwzh8RrB5L67LOcnzqVk126YK1pll8fDH8SegzXEnxDY2DCVxhatNDyvySpMr2RTkep072vBnsoUaAlaxceOIBqtVbaxbtnz4qJkCRpy07QR0VV4hMiMJBCKjMPS0BxuQFjh7p4MQFCEAX4C0HLRx8l6uGH63gTrjxKU1Ic4UlJkihNTa1136uXLnVwORl8fRm4Zg16ey5Q8alTnJ4zh+xdu/gPFS7XCw3hpwZcMbhGRdHt+HHyN2zAtVEjvC+DCFDW6xmyfj0pf/yBJMtEXnddjYmSRTt3ai9gVQVFoXjnzsu5hMtC7urVZC1ZglvTpkROmIDOxYVBGzdizslB7+mJ7hLKiWWDAa+mTSlOPItQtJe777m4Wvd37dePqIwMlIwM9NHRF81RSZ8zp5LOUwgaX0jUmDGEDxtWaV9jZCSN3n2XhPvuq7S+9K7n8HyxZvmLgJdfpnTHDky7d2No0oRQp9yUK4Gq4QwA1z59KF67FuWzzyBpC5YSi2Obij0slZKC/8GDuPTuXedzSTodUh0T1n1Gj8YlNhbzoUMY2rcn5fH+xA4vxcUbstaCj92eyqYiTGYBSg7sp3BQX5S9ZzF4CfxC0Z7v7PSKxl8eDz9+CUg0UgQnZLAqCkpODsWbNuHnxOpbbxjdYMrSStpjeiBk+XLyX3sNJTERS3q6tl1RcK8lrCdJEo0/+ogzY8ditvPYpM6diykzk7ZLlzqMv+hJkxBWK3mbNuHbpw+Nq+S9eD38MObduyldvBh906YEfPEF6/v3J9xqpfzXZGjVCrVKkjhoxo6f/ePbtes/ymvT9KGHODBhgqMarHEtquhCVXH9aAYD9Sb0rYPwmjkd+WqtEvH0m29yaMoUR+FB2ODBDFi9uk4J5P8lNPDUNOAvg+XsWYq3bMG1TRvcu3b9S86Rv349xwbbXfU6HT79+9N23bq/5FwXQt6GDRwaPNhhYIU9+CAtvvjiirSdf/IkO6/qQllRKa28oZUP8PVKuHroZbd9eswYcr77DtBm1AIIee45Yt5+u8b9VZOJE4MHU2yfoUe8+iqRtYS1Kh1XVobk6vqXDCzJb79Ngl0IM2baNJQ//8SwdCkGNEPhGJVJFUPRQlNtkpPROVUw/ZUwp6ZyYFg7PHzyyEuD3ATNK1aVXjDUKBFjFEgSmG1g9QS/xp7w0wGIbqblJrU0OgQ+hYBzOZBtj9a22LMHj7/otwba95/96quYDh7EY8gQ/J96qtJ3WrpjB6l33IEtIwOf++9H6t6duAcqK8r3Sk3FeBlaYbnHj3No2jSMcXE0HjGCkAkTiB80kII9Wsm+Hi1vqZzqT9+yJUG7dtWosfV34vzKlRQcPUrwwIH4d+mCarGQ/t57FO/ahWffvoRNnEjZi49T9M6njmMMwWC+/0GCX5nDam9v8qowmQ9au5bQwYOrnup/Eg3kezWgwaj5+1C6fz9n+vRx0L1Hzp+P/733XpG2hRDkrVuHNScH/6FDyV+5kswFCzA2akSjadMqhcCuyPksFvLuu4+yX39F37Qp/osXY6gi3nfy/vtJnzfPsawPCqJPZqZ2vM1GyttvU7xnDz5XX01YkB5p60qIbQuPvqqJRKachD/mgN4FbnoWAiKdLxhaGCo8KpIEz78FDz132ddmTkzkYGws2Gwa5b8kEfXKK0S+9FKtjL5CUSg9cgS9vz/G6OjL7sOVgGJPypUliTOurpXyLoqAdHcwl2pJ20bAo0sXml4Gb82lwJKfz8ZOnShNTMSA5hUrpnIopakbhDrd9tQiUG+6CbdB1xB4xx3as90tGPJzHLkoyQSTXyQInTyZ4Msoib8SiI+M1Hh87CGjUm9viuz5ceUDTZs1awi+5hrHMbacHIqXLUPn54fn8OH19jyI/HyszYJIKrSRa9VylCQ0w1UGIlevxuvaay/72q4kVJuNIz17Ytq3z7HOo0cPovSlmHYccdws2RXyZIgygizByTI46hT+bdutGx127/6be//PoMGoqQENRs3fh5RHHiH3yy8dA7GxdWta1CIYWBeUpaeTd+gQvm3bkjJjBmn2Kh5jo0Z03b8fycUFW34+xoiIK+4NKH7/fQqeflobRHQ6DF27ElxFgfvPmBhMZ886ll1jY+lpJzpLmjKFlGnTHIOQlzc0CwZ3oww336cZKI/FQpl9uh0QCR/GgcEpXHX/dbB1dQVz3pLd0LZzna9BCIF52TKU+HiM112H3ik/KXvpUk7ddhvCZsMQGoopLw/VaiX6hReI+X+g9O4MpbgYc3Iyrk2b1sgObNq9m309ehCDNrCVPwm62ztgHHw3+duPYIiMJChQoNu0BJq0gpc/gYCaZQ4sublYCwpwb9z4ijxXeQsWcM7JuM+kQileD3T3dtASAbCnCKxC28ctOpqOhw+jP7YPJozSDJs7xsEbn1yU5O6vQsZ335H544+4xsTQ+PXXOR0Q4PjNC8BdAkWGVEUrrS+RJMIfeIDOX34JgJKbS0LHjtjsVZI+Y8cS7jQ5uBCEEJjj4pBSkom/cQinzdp9ChbgXF/XZNUqvIYMuXIXfQWQNHMmaZMmVUtqjb3nVqwLFqPXa8+EzR28ZEDR8vT1eliZB3k2zdPXQpJoXYXY8n8VDYKWDfhHoXPOddDp0FUpgQW7svW335K7aRM+3boR9dBDNc7ScnZuYe3goSilZchGI/5msyOebk5K4uyrr3L+yy8RZjO+AwfSbsWKK0L8Vw7l3Dlt0FAUUBSNer8Kyst3yxGgV+DIAWjXiYL16x2jlADSCyGuGIbFqHju3gRn9kGJk3BTVhKkn4Eop8ToD3+CL96GzDQYcXe9DBqAkjfeoOS110CSKJ48Gf8//8RgZ6oNHDEC79RUyk6e5ODAgY6ExuQZMwi48UZ8evXClJXFueXLcQ0MJPL66/+ROH7x7t2cvOYalMJCXKKiaL1tWyVPkVBV9k2cSLlkamO0gSEBKCsK55pxz+A1DvhtPkyx5wUlnoKyEvhsVbXzJc2fz/4HH0QoCiFDhtDr998vmwDNe/hwDI0bY7WLhYYPHUry2rUIRSFWgjIT6I3abDzLpvXfHc0gKE1OpmDDBgJuvhl2Z2jekBpypkznzxP/5ptYCwtp8thj+FUVf71CyPnjD06U54bodJjOnqXI1RW/khIH+aOHrP216uC4AshypQrA4hUrsJ47R6n9GkvmzyfglVcwNmmCsNkoOXoUQ0AAxiphQqEoJI4cSdGyZYBmHJYz/aSiqX9LgHuvXngMGPCXXP/loGD7dmryJujuGof+j5WI4hLtZWGGAnOFce7jA830kG0DH2jIp6kBDXekAZcNIQSZ33zD6YcfJvObbxBCoO/blwydjjSg2M2N8BpKeVPmzuXwPfeQ+s03HHvkERJqItg79x3Hn+2PYg9jqVYrxVV+yOnz5yPs5GX5GzaQYaelrytUm40jd9zOigB/1rVvT2aV6iK3UaM0o8Z+Xo9x46q1Eea0TgJCMhPh5v6Qm4NXz56VZtIWwKJCUpEEXfpAeHPQ6UGSEJKMMLiRczjeEVLRTuoJT70BM+ZCj/pLGJSVl97aeVZMVcjcXIKDMcbEVBDI2WHNysKUlcXSNm3Yfv/9rB8+nJ1VCAD/LiQ//zxKsVY2bklLI23mzErbS+LjybUniucC+4EtQCLg5mxUnzqs3W8AVYFTh6gK1WbjwPjxjvuRsXo1qYsXX/Y16Hx9aX7gAFHff0+TVato9ccfXL34bboPBY8AKLPAgSJItWnPiRmN40inh2adwT15LdgsmjunBoOmKC6OdY0bk/jJJ6R++y07+ven1MmDeCVRsG2b5joAUBQKtmzhvJcXZwFVAj8ZdJLWVU97KDOwXz+aO6mZ6wICMFOhzK0AKa+/jlJayuE+fTjUqRN7GzXi/KefOp+axBdfdBg0UFn40go07uVOk8WLiNm06bKFUa80Sk+coGjDBixQqZrM5/rr8QgOhOISzcsogV6q7IQrLQXVquUMyUDQtGl/a9//DWgwahpw2Uj/+GPix44l4+uviR87lvMffcShe+7BZs/TKCguprQG/pisP/7QBnL7wJFZLrxYDtUK+x9EZAqiBTQDolUV75Ytkeyhh+A770Q4l4lKkqZ3Uw8kXDuI+J9+xpybR+GRI2wbNIizdvc4gEu3bgTv2YP31Kn4//wzXjUkxjZ+7TXavPMWTTygiz9461QoKoS4YzSaPp3wiROxurhQQIVon7H3QHj5Ywr2nyTNayQFagxlLiH8ubaM3TeM4NQtrVGXPwqHFlw2+ZYcHl4xCCqKtlwFxogIAm64wbHs1qwZvgMHcvL11zE5lQqf+uILlCoMuH8HhMVS6T4Ii6XSdoOfX7UwTPneZmdemt5DQLFpPCySDH1r4IBR1Wrlx2WHD1P022+oxdX5eOoDna8vfqNH4zVkCJIk4dayA37RcCAPCqmQTyiHAkQ1h9Am4LrjM5hbu1F56L77Kt0X1Wwmb9euy+pvNag2yNyHb5fGDlJFdDq8evWi/eTJ5EkS6YBBrrj/AZNeYoTVSr8NGypRBXgMG4auceNKzZuTksj+6SeKy/stBGeffBLVZiNr1So2NWlC4rvvVjpGwu61kCRCu7TB5/fTeN0y6v+dQQOQMmMGwmRCRjNciYqi9a5dtFi2DF10Y3B105L27RyIwsnyKVUgess2YtatI+bYMQKdDMQGaGgIPzXgspHz++/aP/YXXM5vv2GtQl1eZne3O8OzXTsyli1z5Kp4tW9feQdhozTFBKcr+FP0gOuJE3TIz0dSFAx+fiS1acPZyZMBrew4ePToiiaEQGRlIfn4OAyhSqcoKaFwy5Zq64+99BJNnLwvhg4dMFxATFOSJIIeehg+mw4ldpJAVzeIbYXs6kqTWbNwu/56cu68jsY6M1bfALzf/ojcpb+ReNddmsGhKBSgzczD20OrnmcRBz6HA59CaRb0eqbW8xefOoU1Px+fzp2R9dV/1j7z55N/880oZ89iHDkS90ceqfEaombORImJwSssjOjx49F7emL97Td6oFXq5AFxsgx5eVh270LXLBZdLfpXVxoRr7zCqeHDEVYrOk9PQidOrLTdGBxMh7lzOTJ+PIpdOVpFG/DS160jZ98+Arp0gauGwJxlsP5XaNQc7nm6UjvFZ8+y8447EHo9kt1AcPP3xzJzJimAITaWJnv2oPO5sMRFndFiIPvPdMCkHOIolROHAfx8IKql3V4TAvb8BuPn1tiUKT298gpJwrtduyvTT9AokX/tDxl78Eei4yejSPw5A9fGjTGePYvpiSdo6+GB+7PPgpcHxqQkDB074TL2vhpDJZIkET5tGqfvugtkGUlVCbz7bkSVPBFhs7F3yBByt2xB2N8zZnCEoT1GjaJ5kyYYAwNp+sgjcIVZq68o7JpzOgBZxqNFC7y620mM/P1x//V38seMwpqdTaqieaFcASFJBP2xEmPvy2PH/l9Hg1HTgMuGR5s2FKxbp8X4ZRnP9u0Jcncna/lykGX0np4EDh1K/g8/kDV7NvqAAMJmz6bp5MlYs7PJXr8e3549aVm1jFjnhtl4M3qWVHrR64Qgf/t2gu08Ko1eegm/wYMxp6XhN2AAeh8fbEVFSBYLBSNHYt2yBcnLC9/ffsOlanzdxYVAdyOJRWZN0wZtdmkqLKQoJQWvSK0KybRtG8Xz5qELCcHnhReQaxrQvH3gl/Xw7utaWOOpKRBYQXgXWppNqNHu4SjLhyfvJFen6duUJ1e6oRk1Ia20GZok21/uJ36p1ag5NW0acXaiQ7+rrqLXunXVcor0bdsSGB9fTcTTGalr1rDu+usRNhuywYB7z54Ede5MYFoa2O9NANA9JJjCtq0QBfkgSXjMX4jxzrtqbPNKwnfoUDrEx1N28iQenTtjqIFMMPq++zj/zjvknjhBVf7pMmd17f43ap8asOeBB8jbv9/hQYwZOxb3+fMrwhvx8RT99hu+FxA/rQ/K0tNJXl8RAivPR3Hx8MA9OJimg5qhK1irbZR1EF27kdL44Yc58eKLjuUWb7yB0cMD1WK5Ml6L+J8go1yZXuCrLqHjuhJyP/2MjPnzAXApLYX58/GvYSJTFZbMTJJeeB4FkBA0mvQCwfffj1JcTOJTT2GzV04VAWUbNuD8VGcDLpKEe/PmtPv++3+Uh6Y+iHjhBXJXrEDJy9O0z6p4fvUDBuGfdJ6kOXMwnjiBS8+e+AQEYOjXr8bcxAZURoNR04DLRvTUqdjy8ijYsgWffv2InjqVaL2elK++wpKdTfhddyEyMki+806HV8Y0ZAgtz56lzSefXLBt71ELkMZ7VQTd7dBXIUHzts90hBDEP/kkqR9+iKTTEaoo+AKiuJjCceMIPH260nGSwUDYgu/pcNcodpdqhF5FQKbFwqdRUTS/5RaGvvwy6QMGOPzBpp07Cdu4seYOd+gCC5fVvO1MnDYoqVrCMQlxGK/t4/DSoNPhEh2NOHuW4myt5FfrpA6CWtXYpK20lLhXXnEs523fTkYTD8JDvOCVOTCy8sB7oRf/8dmzHQO5qijsf+EF1MOHaec0a5YAH8WGKLEHSYSgbNobf4tRA1q1m/Ei+l9qWRlGNM9SeSDGxcuLkKvrlotUfPZsBfurXo/s5obOaHTkbQHI5azNVwA6o9HBb+SK3aAB5JIS2n3yCQFDhsBPr8L2RRAWCw9/WWtbTZ9/Hs/WrSk+fhz3gABynn6ak1OmoAsKotm2bRjrqcruDKGq5GzZTGCllVqASc3PryjbEgK1oKCmJqoh7ZUpmFJS7e0LMt+fTcTUaeg8PYl68EEyZs8mTwgHQaGKPWdClpGNRsIeeohmU6b8awwaAI+2bel65gylx47h1qJFjca5rNfT5Omnazi6ARdDQ05NAy4bOg8PYufNo+uZM8TOm4fOwwOd0UijRx8l9pVX8GjaFNOhQxX5EIqCNSkJtQ7aUDpPT4Jvud1BDCcADAZ8a2EyLdi6lVR7UrJQFM5jt4eEQK1BTwrAMGIkjXMKSZFlktAqKcpx6pdfODlnjhZaUxRQVcybNmkucFWFD6fBrX3hjac0pb8LYcAwFCFQZRkBlEQ0I/jpp/EeOhTZywuvQYPISE9HAeI2Q8ohsEk+0OImGPzuhdt2hqpCUQE8dy/EHanzYXpPT0eIQJIk8vbvx2QyOexJR36Kj0/FdynLSG7u1dr6u2DNzyfj99/JXreO7VdfzUpvb2y+vkhAIJrOkg/Q75tvMHh5XbCtcjSxl1xLOh1CVYkaNYqwL7/UpAIAc48ebHjmGZZER5N4CerZVeHi70+7d94Bu6xCuWGDTkfhzp2asXDHGzAnHib9Af4RtbYlrFas6emoxcWkPvqo4zdmy8ri7MiRl9XPY5Mns33CfPJTnFb2eRtkHT5jxqBzUgAPeP75ygcX5MLKhbDjD+23aLNRdOwYSmJloU5hsUCOln8X+sYbBIweXel7s8gyhkaNiHnuOfqdPEnr9993SAr8HRBWK+aEhGrVjvWF3s8P7z59ajRoGnB5aPDUNOBvgftVVyEZDI5YuWvbtsh1HGRivv+eRJ2Ogt9/Rx8URNM//kCupZTRlpdXbZ2Kxl/h4eSWrwqdqyvdn3uOXTVUYKnOekU6HfqmTZH0evj6A3jXrm+1bwdYLPDmx9iSk7GlpuLSsSOyPbavWq2cmvoWOUkqsgR+7pCbcgTX66+n06FDSHq95mWy3xPVBgeXgDLkLRrfVrtmjd7dnVbTpztCDgGuEOLsRIg/Di3qllPRZfp0snbtovTcOdwjI7ElJ6MCx4EYtJdFBpB+6jQDm0Qjn0sGDw/cZ82GpNMQEqHlEf1VEAK+/xr2/Qk9+2LqM5gd3bphTktDAYTd25F/+DBRd9+Ni82GpNMRcvfd+NeDfK3Nq6/i3bIlhSdOEDpsGIH2kmjPm26iNCmJ5V26oNpsIATbx4whsHfvy1aPj336aaJHjeDcY9eRv+cUxamaDIGP3XhXbTayt29HdnEhoGfPWj0TB0ePJuPXX0GSkIQgmIqXfNmxY9jy82uUlqgLzi1ahGKBjbPAr7GO4OGjaf2kRvZnaNSImGPHKFm3DkOjRrj36VNxYEEO3NMRMjVrSLn+frb9vJfCw4fxdNHhLoHNbiNHRwdCgOYLkj08iP7uOyLMZvaOHcv5ZcvwbtWKHj/9hEdMDEJVyV6+HKWoiIDrr0f/F3OPWZKSOHP11ViTktAFBhKzYQNuVzJfqQFXBA1GTQPqjeITJ8jZuBGvdu3w79u3Tse4tmhBzMaN5Hz2GTp/f0JefrnOLmNJp6NJDQq/NcFv8GDcW7Wi1K4FEzh8OIGjRyM3bozLRfg6+s2YQZNhw9j9zjsk2BWqfZs1o/WLL2KNiaHwww/RhYURYCf+48CuCt0pVYX9Oyj+9luy770XVBV9s2aE7dyJLjCQrIULybGXBKsCckoABGXHj1MWH497q1ZkfP45QX5+FJWUUADovb3x7tLlotfc7IUXCL/9dqxz38d70RyHPiAGF+jcq073DcA7NpZbExIwZWbiGhLCoeee49Ts2ZQCR6iIAEqyTPr942g1ZgyyakF6eAikJoK3H3y1FtpcvM+XhM9nw6vPaPXN382laNAIzPbEWAEVwodo4bPWdXxmqkKSJKJHjaq2XuftjdVmq1wVpaqUJidftlFDSQYu33eiWfdC6A5J2yDrRBP8Bg1CtdnYMmwYGXb5j8b33EP3+fOr/X6UsjLNoAGw6y2ZgPJArc3e30uFV4sWmOzCjLlnVSIbVf6e9SEh+NxVQxhy6zKHQQMgr/ia4qPa/8UWBc9Ab1q3jsU1NAS3tz6sVKouhGDXa69x4JdfMHh60v6VV/CIiQHgxN13k2n/jt2aN6fL3r3o6zhRuhRkvvkm1hS7YZaXR/oLL9Dkjz/+svM14NLwrws/mc1mOnbsiCRJHDx48J/uzn8OeTt3sq1DB44/9hi7+vVj7/DhWPLyOP3+++xo25b9Hh6cCQ4m99lnKY2PZ/fgwWyIiOD4hAm49+xJ9MKFRHzwAfq/yO2q8/Cg8+7dtFq0iLbLltHm119xHTXqogYN2Aezq6/mlt9/Z/TmzYz45Rfu3b8fV19fvB56iIgjRwhdswZDbKx2QI9+FYOEJEOvAeQ++6xjnS0hgaK5c8Fmw7p/d4UaMRWhHMloxCU0lMxvvuHMI49gSkmhxL7dWljIpm7dKDx+/KJ9d2/SBJ8330eaMRc69oABN8Avf0J43WQM0hcuZE+HDhy65hrUnBxknY6Os2Zx9Zo19Pj2W0Kvv14LNel0CCBs6FB0jRsjffcBpGtssBQXwLuXL91QK1bbq+wUrfrFIyneEQYrf5FJOh2oKuE1GCVXAj6tW+PVvLnjXrhHReFnJzG8LGyejGStCI9GXwVK4lmSPv6Y7B07HAYNQOKCBZTUwD0jG40Y/P0rlbWrOh1mtEqh4KefRn8Ziaadv/qKgH79MAYH0+Thh4l57LG6HejlV2lR6AyoTqn/OcKA3+a9uP24AhrHVNo3ddMm9s2ciWq1Ys7PZ/Xo0ShmM5bsbIdBA1B26hR5a9Zc8rXVBWqZkz6BqqLWQ+W9AX8f/nWemueff57w8HAOHapOmNWAK4OiPXtImT4dpaSEsMceI+CmmxzbUufNq8QLk/n776yPiUHJz8cH8AdEaSkFs2aRsXAhuTk5CEUhac4cPFq0oNHfQNym9/Qk5DIGNUmSiOrX7+I73vUwWK2wfT206QiPvQSfVM6xkIQKY4cQtHUDKRIodmtGoIXF3Pv1Q+fjQ6adGr4EjTzMGSfeeIMeP/xQl47DHQ9onzqgaN8+bPn5yO7unCyv5NHpODxkCL3OndMSre0aPZEjR3Ji1ixKz52j8Z13ElAummhyetELAZeZa3BBtGoHiVtggAoWCdeQ/vjiQ/6OHeiMRmKeegrJYCBw4EAC+/f/S7qgMxq5dvt24j/9FKGqxD70EIY6KnfXBCUzk/zx4zGU/IHX1RV2ryRBvgu47d+PZ3m5rxNqqmSSZJnOS5Zw6J57sObk0HjiRJpOmULp7t3Inp54dOwI5kIoSAb/WI26GLQEaElCukh1lHtkJP2qEFOC5k2xfrcA9fAh9NcMQX9NZUmCTMUbY+Nu+CTuAaM7ylMfY3ziFcrOnUMCWs2YUes5S51L1IXAVlqKtaQEg5ubFs52ehfp/fxqaOHKIXDCBAp+/VXTs9PpCL5AOLsB/xz+VUbNypUrWbNmDb/88gsrV678p7vzP4nigwc53KuXo8S4YO1aYhcsIPjuuwFwqeJhEYCSn48OjUumvCwawJCZqem/GCEyVMJ143dw793g8de5iP9WSBLc94T2scN/9myyx4wBRUEfG4tnlzYwdzJGPXSKhLxSOJ4LJXYHT8HatZxfsgT3du3I27wZSw2nKc3JoSg5Ga/LFI9Us7Ox/LkDc04u6Vu3cf6rrwBwdSY/UxQs589jKyjQZv126N3caGcvG6+EuyfA6p+htFir7Bo/+bL6eEE8PxFx9SdaaZAkEGIVoamDCGzShLBnn8WzY8e/7tzlsNlwDQyk3ZQpV6S5/Pvvx7RqFWZZwdgIjE002zAvC0xmCBwyhIAePWh8330k2g3f1lOm4B4ZWWN7/v36MaBKKbVXnz4Qtx8WToLTs0BvBa8IuP9PzB/Pwzz1NQSC4pjmFIwag0enTkRfd12dw8OWmW9ifuMV0OmxfDgbt59/w3DDcADOzJ3LXjvfk8Egc9UfS0FAaWYmKuASGEjgBVSmo4cMwT0sTDNuhCDm5ptxtT+XLebOJW7cOITFQvgjj+BbXzkEVYV5n8Ku7dC9N9z/6AU1tNy7daPFqVOU7d2La7t2GJs2rd/5GvC34F8jaJmRkUGXLl1YunQpgYGBNGnShAMHDtCxHi+yBkHLi+Pc1KkkO5UIA/hdfz2tly8nff16kn/+maxv5yOVmHF3Ax9fSDmvJeL6AOV1GQKw6HWkSAr9OmhhckmWkNr2gs+3VQrF/Juh2mxk7tmDi7c3/m3aAGBLS0NJS8OlXTukY/vhtt6VjlmTBGZHgopEm/ffp/Ejj7DNy4tisxlnX4cMlKGxEDcbM4ZBCxbUabARqkrOtm0IVSWwb1+UP3dSOHQgOqsVSYICBRKsVNOfcQOMISG02roVY3mY7WLIOg/H9kFMK4j+61701k2vY5Bfq7TuwB0yliwJfUAAHU+fRvdX5VQUFsC4EfDnJmjSHOYthyba/bGVlpLyyy8ARN5yC3p3d4o+/5yCjz6irLSUol69iHnhBXxrSCo9HxWFas/TQAbRAbIjICPBm1ZPzSL6wQcd+5YkJiIZDLhH1F79VCPWfId4426kdgLCAQFCAqvbtZimVIRshICzZtgFuOn1dHrpJdq9/voFm7b+8D1lj46rqPzT6TCMHoPbl/O1U3fpQt7+/YAWGoy+805Kjx8nf/9+jYROpyPmscfo8MEH1doWqkrRF19QumkTeTod0tChxI4ahc5Jf0s1m1EtlkvLpfl4Frz6bEVe3GvvwOPP1r+dBvwt+J8StBRCMHbsWMaPH0/Xrl1JrAOpE2j5N2YnbonCWkp6/9chTCYwGus0GLo2a1Z9XdOmpK9fz/prrkGSZYSi0DwaurbRXoRZeQYsJiuFaA+UN1oMv9mzj+OvFGHY+rW9IwKO7IC8TPCvWRX53wTFYuH3a67hvJ2RuPNLL9Fj2jT04eHoy2UIOvWEkffCr99oyxNeI/hgEufmzXMQE4YOH44pJQUPmxkFLSxlQ7uXKlBezBT/7be0vO8+IgcOrLVPakEB+e+8w9FFi8hO0MplQ4YNo72lGJ3ViqKATdGYWIMlyLBbNUY0T5sBkDIzSezShZijRzHUxTsUFAb9b7j4fvWAEAJTRgYGb2/07lrJuC2uGEMrexqNALUMrLkqKGDLzKTs+HE8e/So1pa1qIitt99O+vr1+LZty9VLl+JRX6/XpzNh91bt/+Qz8MrjsHA1qtXKxv79yd2jEdLFf/ghvadOJWf8eMDOgJ2QwPrffmPYyZPVDBLXG2+k9LPPHIKpgc98QORNt4NnaLUueFSRE6grTB++iBEBYfYVdobJ/C1rK5HZSZL23PkAks3GsTfewJyVRddauKRs27ZSdl+VxGBVRW5WYQy7hoVpeU6Kgo8QeFss1DUTpXDWLPKefx50OtwUBf9evSoZNKDlEdWk1l4nbFzj6DMAm9Y2GDX/A/hHE4VffPFFJEm64OfkyZN8+OGHFBUVMWnSpHq1P2PGDHx8fByfqCpKr//rEGVl2G6/AVuoG7YWYaj791z0mMBRowibMEGLr+t0+AwcSPTUqaQsW6YlidrDUucytJegLEPvm6+msaTxa+QDWUDk6FvwnD6boLHjKxqXZPD0AU/fv+Bq/36cW73aYdAA7J8xA3N+PorNxvHnnmP/Aw9QfPYsvDMftiTCjlR48lU6fPklHRcsoNXMmVx98CAZS5ZwMDaGth7gJWvVKj5oP07J/il/lZc6s+JWgSU3l63R0eycNo28hAr+j4yVKykqLEJVwWqr0JTxE9o5FDTCQRf7uRACtaiI4n8oxKtYLGy5/nqWhYWxxN+flCVLAND3uIui90DKAc5D3IsgnOJ1ZR9/TE2O52MzZpC+Zg3CaiX/8GH2PP54/TuVlVERV1UUyNJyPfIOHnQYNAC5e/aQY9c0A+0QN8BWXEyOXWzTGb4ffID3W2/heuedZDZvzsZ7nmL71ddTdu5c/fuIdu9MWVmO+2DOyyMvMQVVhZMbYdMXcOB3TRMzIV5Q5FQMVaZAmlNbOiDp00/Z2LMnpTX0x7apen6NbtRduEysMAw6z5mDV/PmtAHaqio+P/5IaGGhgw/JJSiIZlXkLspRWl5ZZH/nlK2qrqR+WejQuSLcJMvQ/gokfDfgH8c/atQ888wznDhx4oKfmJgYNmzYwM6dOzEajej1eprZvQldu3blXjtRVk2YNGkSBQUFjs+5S3xR/Fuhfv0ZYq1Wmkx2Fspj91feYd0KGNQerukIm7VZiyRJxLz/Pr3NZq6y2Wi7fr1WWtyihUNzRZIkfMpzI5t0wH3Od4T7edNBD9300DbQD/8PP9de7K27wbMfQ2A4NGoB7/wOLpc4s/p/gPQFC9jq68tWLy9yqw76kkTa4sX86eKC6d13EV9/zY6mTSk4fBgiGkGI5r2RdDqi7r6bZs89hzE0lLjnnsNFBlmCDl7Q2xuijJqxUU44aAJcAwOJGjKE2rCtdWushYUY0H7YIRL42AdideTtqFUcdRLaOSz2v+XnK4fhEj0Dl4vkRYtIt99b1Wxm9/33Y8nMxFxWht5vKGIyMBUi8sHTDYySJt+Qv3Ah+UuXVmuvNCXFYWQIRSF361Z2t2lDwksvVVIlL124kKxhwzgdHc2fbm4cGzoUW36+tvH2+yrIH4GintdSnJBQjdkawHPgQE2o1b5/AYAk4R4dTcKHH3Lq9dcxpWosupLBgOezz3Jszx7ST50CVaXwwAGOT5hQ7/uWvnEji/39+SU4mLV9+2IrKUEpK2NXAsSnwvFNkJsCiXth6zxIOwl7LHDUAmctcNSKQ1pCQjNqJCBv1y52V028FwLZUH34cH3quUoaa54xMQz88kt8nfbxiY8nRAj8gK7vvINHkyY1Xo+xY8dKRofLBbTXaoNQVXIWLuT81KmUHalCRPncq/Dg49C2g/b3+dfq3X4D/v/hX5FTk5ycXCl0lJaWxpAhQ1i8eDE9evQgspakuar4T+XUCIG1T1sSdhynnA7NIks0NZmRDAZIT4OejStUdg0usPccBNRcaq0qCvuffZZzixfj3bIlvZ4YjbuvB3S/AVw9ULOzMU16Cs6cwDhyBLpHJlXim/hfgPn8eXZGRjrc1QIo7NePNLu3ptNzz1H4zjsOGnmHlpReT4sNG/CsgdNHKS1ljZcXeqHS3VMLA+lksKlwuAQKVZDbt8f/7rtpctVVqCdO4NquHe7dulVqJ33hQk7ec49j0LWhqT33d4F9VlBbtabNjTcgv/W2w+Fg1es5Wv79o507IjgYLBb8J0wg8NVX/xH6+fiPPmL/k086yrXd9XoiDQZEWRmezSWa3yAwr4e1p6DABkYFfFQcuUgxzz5L04cf5uygQVjT0hABARzPyEC15074SBKe9rabffghkY8/Ttlvv5E7YoTj/pUA2TodYY89RswHHyBUlX2tmuKenkSuGdL+r737jo+iTh84/pkt6YWQRgKhJFQB6YKAUhUQOAugHqAiiuKh4A9FBQsep+KJFVFBjqbIwXmCWEGBo/cqNQgkJCQhnfRsnd8fs6kQCJBkyfK8X6+8XuzszOyzQ7Lz7Lc9Jm0dGI969Wj8+ONEO6pGt3vvPVo8/zwFGzaQ8eGHpBw4QIq/P35NmpC5aRM2RwV5naJw+5o11L37brL/+INt5W7YPq1bc8eRI1d13b4LDaUwpWQ97FunT6ftm2+yefRoUr/55qJCmUUK0X5XfaKiaPLooxyfPh0dJS2FoK2ZNPTCBf7817+IW7kS/5gjtCs4R2HRyykKSt1AfKJjUcqVkDDv309qufWW4gGbTkfwyJE0//rrS8Zlz88n4/nnMW3dikefPgR88AG6cjXNriTm6afJ/PJL7f9VUYhcv56Aqx1QLG4ILjWmpmG5/m8fx7ejqKioSic0N529O0jacwwftG9cAG52lXOPPkrEv/8N8THadOQiZhOcO1thUqPT6+n80Ud0/uijSz8fcwSv3d9o36y+3AcFGTDlw6p9T05mTk4us3iZAtw5Ywb2unUx+vpiio3l4KxZxclM0Q1BsVqJf+45Wl1iXSW9lxdN33iDU2++yfZc8DZqq6v+aYHATp24f/t29G5u5O/axelevYrrD0V89RUBjhlpABlr15aZeWZAmxp+2AaBOog9eZLNH32MO9BQUagbHk7defNQhg4t7qqwKQqNdu7Eo4JvzjUlvGVL7AYDqsXCaSAsLAz7uXOogClHJSUXfim1ooMF7QZc1EV35v33sXzyCTrH77eSnEyrOnUwvvIKyZ98gq6oC89gIGv7dnLPnsW0cSP+ej1GR8uNB2glMc6eBcCcmkrqyVgA8ilVMiI1ldyTJxlelKw4xnx49u1L/b59qQ8cfu45Yj/7rKS0BGBXVaKfeorbY2MvWb263vDhV33dzGlpZR6nb9wIwB1ffcXGmBgyt28ve4BOR8vXXsOzRQtseXlEDB+Oe0AA9vR0Ts+eXZ/dIE0AADSPSURBVLKfolBv8GBiVqxg+1NPAZAAFPhAjyAwmd1QBj+I28uvXpTQABg7dMB7wgTyHItWXlAUbI4+UM8WLSp8PzovL4K+/PKqrwNo1+LCxo2kL1hQnJypqsr+YcPol5FxTecUtUOtSGrENSgowGyF8nMCrEWLeLW6FULqQXqq9jgkDJrfcu2vt+F7bUqvY2E01v7H5ZIa7zZt8GnfnlzHGkmezZrh26VL8UBWS926WENDsSYnYyx37OUW6mr6+uvUDQvDmpJC4LPPYjcaudNgwFCqGT99/vzi7j+A1A8/LJPUeLZpU1xhHLSupFwgyQ4GPbQKseNjtJKYA9EZKm1HjiRy8GC6rl/PyUmTUIDmH3zg9IRGzc8nd9gw/CwWFKAjEJ+ZiaKq2IH8JG1cSHkFUPaal07YAd2FC7R++WXczp8n4ZNPtOTbaiX5118x5+Sgqiqpdjst0G6AJgBVJdixQq4xMBD3sDBMKSnFYzxA696wFRQUJzOXkrFlS5mEppgjQfVp3ZoG48Zxbr5WqDL4nntoOn365S/UJfjUqUO244atAMGOtYQUnY5eW7Zw8OmnSdu6lcDu3Wn70UfojUb0nheXtWj/ySc0HD2a+KVLKTh3jjodO9LshRfYM2WKVs7DakUFzheAPgS8/Ayw8NKtLaB1V9eZMwffV1/FeuECWS+9hNuBAwQMGkT9KVW/WGPC3Ln8+be/gariDWW+ZBRmZrIuKAh7YSFN33yTyBdlYLCrqZVJTePGjS85IFCUcvud+PjqsWfbyjQ7uxctpOfjCz/sgAWztQ/4JybB9RQmbNSsJKHR66Fxxd/AaiudwUD7zZtJ/uor8jdtIvfnnzkSEkKDDz8k6KmnMPr50Wv3bk5/9BHWo0dh+3bUvDztm265afKlpT3+OHlffQVA8vLlhO3ahc7dHWtBAQlr12Lw8kJful6PXo+hXBE/rw4dyENrlbOi1WjKQivo2PKezgSc2QtAAz9tAcC8bdsACOjTh65//HF9FyYzFRbPhJwL8MDT0ObiGUiVZUtMhOzskhWCgYzcXEovq2a7xHGlNXn6aezz5pXd6Eg6ombNwr1+ffKPHsWtSROiSyUPFsDWrh0eYWF4tGtH67vvpo5jppnOYKDLunWceOEFcuPjST15EtViQWc00uIKN8bAXr3IPny4TCufJ9DEMV1aURTazJtHkxdeAMC7efNr6vbrumQJux94AKvFgn+zZjSbNq34OZ1OR8f5FVf3Ls3821p0b7xGaHIyuT3uJHzUKPQeHgR368aJOXO0mIGQop6giRf/btstFrY+PY6EVvsxPNKAAL/mdAt7BZ+wVtzy449X/d4qy5KRwZ8TJhQnkQVQ3P1+wRG3JT0dgOgpUwjs1w//qlgRWtwwasWYmqpyU42pAWznz3O2cUPcTNq3XktUFI1PnaqeF7NaYdb/wW/fQpNW8M5XUM81Z5uZYmI4GhVVplJ1m5gY3Mp1k1pSU8nbsQP3Zs3wbNXqkueypaYSX7pgJhC8ciXuAwfyS/fuZDi6rKKGDaPe2bMU7N2LsUEDGixfji4kBK+oKBSdDmt+Puvbtyfzzz/JQkts3IHBv/1G2JyJEHMC0OpOnb0A+vufo2HpLoZrpaowqgOcdoz/0BvgP0ehQeXXqzGtWsmFpV9j8/HF/+nx5Awbhv38eTLRbkQ5bm74eXqiy8pCAdIpW0ldAQwKDNm3H723Nz7Nm5M6fz5JTz+txafT0Wj1avyHlJ12XpiQwMYmTYpbwHRubvSOj8e9EiU88s6eJfPAAQLat7/iVGubycTJGTNIWroUU1wcAIG9e9Nl/fpLdj1dD3NGBqakJLybN79s61GFscbFkdWyqbZSr6olkEcDg+l58k8Mfn6c+Owzzq5aRZ2mUXQa3Bdjk2bQ9uJaX8c++YR9e9/H42tHwmBTqatvTj8+uM53eHn5J0+yu3yXlrs7iZ6eeIWG4h4dXeapTj/+SEi53wtxY6rs/VuSGuHy7BYLGVu2oPf2ps5tt1334Ne8XbuILldLqsWePXgXlQ64mthycogLCCjTpRG6bh2JKSlsGTmyzL7D4+Px9PMjadlSYic/R16hnTp39qLzmjXoPTwwX7hA/PLl5Bw/Tt2uXWnw8MNaNfPpT6J+v0gr2QAkW0MI3HwUQ1AQV0VV4fulcGAHdOoBfxkJWRlwV7nzvLkEBj9aqVMWfjaHpOeeI6foU0ino8m33xL/xhukHD2qbdPr8YyKwhYXh1JYSKHRSJbFUtzl5AUEe3rSpVwXn2q3Y01KQl+3bnG19PKSf/yRk6+8Ano9Ld97j+CBAyt9Oa5Gfmwsm8p17XXbupUARxXu6qTabJz6v/8jZflyPJs1o9XSpXhW0M1o/m0tuYPLXoNDVrh140YCe/Wq9GvunjyZU4FrMLwciWLQEjcjXtxHJcp9XAfVbmd/t27kFE2zVxRar1xJ8H33acUxe/Uic+tWADwaNKDnkSMYy90LVJuNnC+/xBIdjdfQoXj261etMYvKcamBwkJcK7vZzPa+fcndtg0jEDhsGO0d1bKvlWeHDni0bUuhY4qoZ7t2eF3DdFMAna8vgXPnkv7MM2C14jNuHB59+3J80CAUtNYWFW2MR+6//413/x7U+3gCDRpDoQV2bt9E0ooVNHjsMdzq1CFq/PiLX+TlT1A8vVGP7cN2aw9CJr2lzYC7Wl/NgRkTHVWyv4C8HHhoHASHQ3oy2G3a1OmmF6+cWxHTN1+TX/prld1O1rp1eP/1r/DGG1qXjc1G4dmz9CosxG6xkPj55xx+/nm8HdcHgIICVFUtk7AqOh3GK6y+Gzp0KKFDh1Y63mt1yUS6hmaWJS1YQMKnnwJa98zx0aPp6Oh+LM/QvgP4+qLm5ICqTfc3G/R4XeVYq8YjRhD94lcYXolCtdhRDDrqK92vfKCDOSkJ07lzeLdte1UznhSdjvb/+x9JixdjSUuj3uOP4+loQVUUhS5r15KwZAm2ggLCR426KKEByJgyhZyPPgK9npzZswn97Tc8L1PKQdxYpKVGuLTkX3/lj3vuwY+SQbSRy5YR8te/Xtd5bdnZZPxbK15Zd+TI616e356Xh2oyoXfUtfn2ttvw3LOneOaaFajv7k6HB7vCns0oitaVdO4CKDO+JMJRX6c6qaP7oezQFlxTAaXXIFj4C5w+Ch9MgpxMGP0iDKj8tc0d/VfOLVuOSS1e6BZbvXpEfvstB3s5KjyqKkF/+QttHIvw2fLz2du4MWpqavF5jIGBdCo3++dGc+z55znrKAdQb8QI2i9fXuXdT5dy+qWXiP/oo+LlG4whIfRITq5wf+vhw2S9PIXMvXtI9Q8g8v0PCC1V1Lay0vbs4eThFVi6Q1iLO2mq3IOuEt+j01eu5MRDD4HVintkJLfu2IFbuS7a6hQfEYH53DlOU7IoZb/4+ArrbYmaId1PlyBJTc3LOnGC8z/9hH9AAKEPP3zJKZ/VKXX9eqL798dAyU2z7rBhNL/O1poq8/0SWPQ++AfC63OgWRsAdowaReqyZSSjDWD1AQKAAXe3wBgfjYKW1CTjT9DOsxj9/as91At9b8U/9nBRnkFhv/vxnL/yus5pT04m8a7+pBw+gh6tZSAP6LB9O/bCQlKWLcO9QQMipkxB71UykD3xn/8kvnSVZJ2O2yyWGkkSrkdudDSq2YxPmzY1tgZQ1vbtHLjjjuIZX/UnTqTZJWotOZvqGEi9LyoKU1EpHL2eiNdfp+E1zAa7VnGdOxO9bx+lJ34bvbx4wDFtXziHdD+JGmfJyiJu7lzsBQU0GDuW3IQEfr/zzuKBmK1ffJG2Bw+ib9ToksfnHzxIxtKlGEJCCHnuuQrHQYA2Tka1WstMSVVjTmP/91fgXwfd40+jeHkR1KcPZ+rXRy1awVVRnD5tudjhPTBtjPZvnR7GDYAN8aDTEfnooxxZtqx4QbkstOQmOaI9EedjwGIGL29CFq9DXwMJDcDpP9OJMIGfB2SZFPINIZS5khfS4dOpcO4M3DMK7n38iufUhYYS9PMvnGrcuGR2kKLgFhqKZ2RkhQullanxpNfj1abNDZ/QAPhcZl2W6uLfvTsdtmwhbfVqPJs2JWzs2CsfVMNi5szh2JQpoCj4eHqWvTHV8Pdu+yOPcGHfvjLbrJdZkkHcWG78TwFRK6h2O7v79uXktGmceusttnfpwsk5c8BqxYg2rTLuwgWyZ8265PGF0dFEd+tGyiefkPjKK5x58MEKX+vs4sX84OPDam9vDr/0Eqqqop5Pwtq7M/YP3sb+2gvYHtYWlVN0Otpt345n69ag1+PXty/hr71WPRfhav1ZasVYuw1SEiFXWznbs0ULTOV2VwHPh56AtadhwTp062LR1w+DY5sgP6vSL2vLyyPv0CFsOTlX3rkUz3Yd+DNDz754OJui4hMfR8E/Z6IWrfY9bSR8vxB2r4c3x8KWXyp1Xo+ICJrPnYvO2xudlxfNPvsMz8jIyx7j17s3kQsX4n3bbQQMHUrUkiWyzMNl+HfvTsiIEZiio0mcPRu7qexvl81sZtvrr/PdgAHsfvfd4laTmpB35gxHnnsOe2Eh9oICsjMysOp0mABbUBAhNZyENRg3jvLvXjHI9//aQrqfRJXIP3OGTVFlp/H63n8/CatW4UXJAlh1Q0PpfvZsmfowACmffsq5iRPLbOtgsVz0YWLJyuKnoKAyC9H12raNgLjT2MaXnXFjiM1AqVOywkn5gaROF3ca/tIGbNr0WW7pACt2a3WD7HYW1q9P/vnzxbvf8eqrtH/rrZLjD/wK792rHe8bBG/vgHoXV1kvrSA6mmN33IE1NRV9nTq0Wr8e744dKxWuOSWF0+PHU/jHIRomJ6FYzFpV5g4d8d+xG+UOf8jP1XbW6WHsVJjwj0pfjqKPoqv5P8rbtYtTgwdjS0/Hu3t3mv76K3r5275I3uHDHOrUSbvGNhuBI0bQcsWK4uc3v/wye99/v7i17M7336ezY92c6pa5cydbb7+9zDbvzp1J2qutrRTYpQv9N23CcJmW26q277nnOOVYkweg3+7dBJUrTSJqVmXv39JSI6qEW0gIOi+v4kJ+AK0mT8a7bt0yy/dnJSeTOXDgRd8EPZo3L3mg12Ns2PCS346subllEhrQ1uagcalv9ooC/nW0BQYpvfkGSmgAGkbB0i3wwFh4/AX4cm1JdWedjtHR0TR96CHC77yTe1atKpvQACx/rWTBw7xM+OXK4yQS334bq2PVWVt2NvGvv17pcN1CQmi1ciWtZ81CKSzQpqGrKvb9+8h/cTJ0uENLZkBreerQs9LnBu3/52r/j+LGj8eWmQlA3s6dpFTF2jsuxm42E//xx9rfjVUr057hGHRdJGHLFpRS3X+JFcyOqiq29HSyv/iCnMWL8Wvd+qLZeJmOhAYgfc8eEn+pXKtfVen06acMy83lnpMnGWE2S0JTi0ibmqgSBh8f2q9Ywdb77sPqWHMldvlyOv3rX+x94IHi/XwBy8aN2I4dw9CmTfF2vwEDCH/3XVLnzMFYrx4NFyy45Ot4hIcTPmQImT//RKEK3i1aENynDzpvb9R/zML+8XvgXwf9nAW1o8m4TWft5xLc/fwYtPwy63rodJSpjaBc+TtK+YRQLVdOoDJ0TS7uGjJ9+gnuG/6HoUEkJMTAoJHQveKK4lXi92+xnY4uMxbHllX5bribQeklDYpSfBVwjyhZGNN2/Di9Tx7H3QDn7LBRVQkvtw5TlcaUk0NSly5YY2NBVclbupTwhx4i4ZtvHAGq2IpGozvo3NyqLZ6KGLy98W3WrMZfV1wf6X4SVWb3E08Qs3BhmW33pqSQ+NlnxP3973gAEYBBUQiKi0NfaopkwfHjnJ89G8XNjbApU3CvYPqk7cB+8obcBRkZ2IKC8V63GbcWLS/az/znn2S9/TaKmxsB//wn+oCAS5ytljvyP3h3MJgLoG59eGs7BDW87CF5Bw5wrFcv7Dk5KJ6etFy7Fr9LVA+/kvy336LwzbKtPD4/r8Ht7mpOZIr8+m+YNpLUNIg/p23S+fjQYvfuCldvdmV2i4WEv/+d7I0b8e3RgwYzZqBzdyd13Tp23nUXoBXpdEdbJdija1ciGjXCs3NnDD+txrZrJ9hsqICxng9+brnQKBJ63UG6fxTJZ1LxjIyk0YQJ17RSsWq3kz53LgW7dmH096fg00/LlG8JO3GCmKVLyT1xgnr33ktOair7X3gBVJX6Q4Zw56pV6GrDlxRRbWRK9yVIUlO91vfsSVq5ZuuBLz6J/6z55L79NnlvvAE6Hb4ffojXc88V72OJPcChtrdjK7AACm4REbQ7cQJduXE3AHkD+2Lbskn7dq7XY3xyPJ4fzymzj/X8ec41bFhc1FDx8cF7zBgUiwm/iRMx3tLmovPWWjnpkHoW6rcE98rV7rKkppJ/+DCerVrhFhZ2TS+rqio5QwZh/W0tALpWt+C/ay9KTYx7UFXoEwxZWg2fvDwotOrx3RSDW6kWiNpAVVWw21H0+ivvfBnnZswg4c03i8tChE2ZQsN33yVj2za29SzbDZgPBANhOh2oKiGB/igXLmhPKgruvuBdR7stnDPB4YSSY+uPHcutFbSiXk7Ku+9yfupUrS6czYYH2vovABiNNExNRVduFl9BUhKWnBx8mzW78bqORY2TMTWixrV69dUyj30N4L/yXxQe2ofPq68Skp+P15Ej/DZjBiuMRrbefz8UppP3eW9suSawaavHmmNjMZ05c+kXyc8vO8WzsADVZML63JNYWoRjfWgI6WMfx2axkI22eJYtN5fcOXPI+XI+SR3bYttUcUXhWsc3ECI7VjqhATAGB+Pft+81JzSgjX/x/f5HvJetwHvhEvy37ayZhAa0wciOhAbA2xsCb426oRMaa04O8R9+yNl33sGUlARA3pYtHK9Xj8NubsSPHYtaqlTG1crbs6fk78JuJ3fnTgACuncn4oknAK3byQx4+vgQ7NgPVaXQx6/4eVVVcTOqWuZTCNHny75O0uW6Qy8j++eftX8UvceWLcHNDcXXl+Cvv74ooQHwDAvD7xqLe4qblyQ1osqEDxpE97+/SoQ3tPCHAY4epD139OTCnj0o7u6sbtmSC2lpFFitnPn+e448OwiPutmULsus8/HGrYLuJ7eXpmljSQA8PHAb/yz2T95D/WYRJCdh/e1Xcn5dQypQRwdBejArjmEnKthNYP74qTIVk8W1UYxG3Ec8iPsjj6Jc54rKV8XLB6Jal4whUhR4vXIVqJ1Btdk42Lcvp198kZjXX2df585Ys7I4+/DDWNPSwG4nc9EiLpSajXS1/ErXZVIU/Bzr+yiKQvt//Yv+587R78wZ7j55km5TpmAoShR0OnJCwzhhg7M2yPcEowrYAStYy/2ZGB0rXl8tz44dS/5udTr8hg+nUUEBDbOy8H7ooWs6pxCXIp2UokpFTJ1OxPGtsHsTAAk5kJtvJvbjj/EePpzSw1TtwMlv99DmQ2j+Nzj3I+iMOhouWF1h2QHjkL+gO3gc+/Fj6Dt1QRcejvXzD0t2sNkpACL02hgCRYEQPWTaQKdqjw1ehdo0aN3F3VuuLmfjRkxnzuB31103dMvGZSkKfP4bfP661mLz4N+g053OjqpCBTEx5BbN5lFVzImJXNi6FVtqaplBztbz5ys+yRXUmzwZFIWcLVvw6daNsBdfLPO8Z6kaWD5Tp0J+Prm//45nt24kxcWRpWoLPAaq2krVOkfO08gbYhyz9FEU2s6vXPKY/MsvHH/lFUwpKXhGRNDk6acJGDOG/J078enTh5DXXqsViyWK2kfG1IiqZ7EQ3b8HmXv3kZmvjRfINxoxFhaSXm5XN72ekUe+gAN/B4MXdP8c6l9d8Tj7DyuxPToMDAawWjmcDQ11JR/MqgrZdrDooMFd4PXY3+Dhz6rmvd7AbMePk/vXB7HFnMHtwYfJjWxK4rRpgJY8tuzri8eDz8Dj79RYccWbkTUri22hoahmc3EXUefDh8maN4/0OXNAUdD5+dH80CHcKlhtu7rYrVbWdu0K+/ejAvXcoaO/Y10pnQ7TPcM5sS8ac0wM/oMH03TJkisOFD63dCkHHnnkou31hw+nw3/+I91J4prIQOFLkKSm5mT/8Qe7+/bFkp6OW1gY5qQkVLRvg0VrmSrAHcuXE1kFzc/2tT+jblyH0qYdKRfyKJz4LL6lPjv/tEGTf04k9J4B0HrQTXETz+raGduhg2CzkafCYZ0Bu8VKXbRWrHqREN4MeO076PnA5U8mrkvajz9y8plnUE0mGk6dil+nTrg3aoRp/34siYn4/eUvuDW8/My16nD8q69Y99hj+IG2SKaHBwMeeRBWrsKuQpynL4WJSVoypig0fP99wiZPvuw51zVpQkFR7aZS9EDvmBi8GjeuhnciXJ3UfhJO5XfrrfQ5d47Cc+fI/PVXDk+ciAL4o9UwUoE28+ZVSUIDoBswGAYMBqAecD7mDCkffYgByPH2ofEXcwkdNapKXqu2sMedBZsNmwq7bGByLNSXA0QBBiNacpcc48wwbwpBQ4cSNHQoprg4DnXtStz582Aw0HLFCoKefdZpcRWmpYGikK2qZAMGqxX7yh9Qs/NAtWPLKCmloaoqBSdOXPGchsuMr9LXcEFbcfORTk1RbfQeHng3bYp327bF2xS0qZzuQJRjVkZ1qPf+B7SyqTSzqXTMzqHeTZbQALg9OgaAbChTR8oO6PwgqJEODO5w25Drfi3VbMaWkYE1IaFG6wbVNqcnT8aSnKw9sFo5M3EieUeO1EjdKlVVSfzhB87MnUv+OW1xn6YjRuBeag2n9k8+iZp1AVTt/9CnqAsX7W/XEB5+xddpM3s2Og+PMtv0isItH3+Me3BwVbwVISok3U+i2qmqSvQzz3B23jzthgrccfQoXrfc4uzQXFra3Lmk/+0ZTqpa6xhoyY2qwL2fvoq3rw7ufAgat77seVRV5eSrrxI/fz6eDRty61df4du65JjcZctIGzOmeF0gY5s21Pvf/9AHBVXPG6ul4hcu5M8nnsCNkrIhClq3jO8999Dqxx+rZfCsardzeMoUYubOxeaoNm0MCKDfwYN4NWxIbmIisT//jHd4OI0GDSLnzh5Yd+9CtavYVDhs1/5mzYC3PwQEQEYWmBu0pfuPP+J1iXFAlqwsChMS8G7aFGtODorRiFE+c8V1kDE1lyBJjXPZTSYUg+G6FxoTFVPtdg6++CKxS5agt9lolJPF2VINJwrQKhga9xuA4d9rKnXOpP/8h4NF3YR6Pd7Nm3PnsWMA2AsKiKtTB9VsRsXR9KvT4TdlCn7jxpH18stYjh3DmpmJEhRE3dmz8XRMN64K1m1bsa5eia5JJMZx451WGsOenY09LQ1948YVJia7+vUjY8MGvNESGdCWHHC3gUWBoNU/EDB0aJXHFrtwIftLtYrqALtOR9vXXydgzx4shw/jPnAgnsOHo/fzw9CiBQVzZpP67j+x5hdgBlKAAqD0SkQ2N3DrdRd3/PZblccsRHmy+J644ejc3SWhqWZnly3j5EcfYc7IwD8/ixAPLZEp+gEI9gH9obWQklSpc+afPl2yxojNRkFMyRgctaAAk9nMOSAOOA/YVRU1J4e0u++mcNUqrMePw/nzWI4eJWXoUOy5uZd6matm3bmD/Lt7Yf7iUwpfmEjhpL9VyXmvVsHq1SSFhJAcFUVqjx4Vvj+vyEhUnY4swA8IAtwca9EZVcj/6INqiS83OvqibW52O54//IBp7Vrs8fEUzJ9PxoABpN5+OxkPP4zS4w7IL8CAlsg0ROs2Lv0N2GgG9fff2dO0KXaTifglS9jerx8Hx47FlJpaLe9FiCuRpEYIF5J35kxx4hiih6LJt0U3I6MOvI1agpP2+iS233svm/v04djLL2MrdzPO2ryZhPffx9tRMV3R60FRCH3gAU4+M4YjTcL5s1M7fBsrNIsCf18oBHIMBrxHjcJ25oxWAgBHUqWqqHl52K5jPZbSrL/8qA10dlSetqz8b5Wc92pdGD8ezGYALLt2kb9oUZnnrUlJpIwYQcDu3URERWFA+/8on94rKQmY08svenD9gu8su4aPF1C/dWsM2dklK/yWYvrtNzL69SuJC+1GUf5mkQckAWdOn2ZTnTocHDOG9A0bOPfVV+yTBfWEk8jsJyFcSPi993L0rbdQgGybjUyrltiojh8/HeQVgp8XRH/9LckF2nFpGzeS8sn73LlmLYVNW7KlQwfMaWmAdnyr99+nMC0NjwYNYN0yPDZvJ/kcNGkNbj7aOUKCYN8fkFZggXnzCG3VCtvJk8XL/6s6HcaWLTFU0ZReXbPmJTdlvR59s+ZVct6rpRYWlpQoUBTUgoIyz6c+/DCmbdvAZsMXaHrvvRSsXo0FihMcgJNHT7EvOJgWM2bQ/LXXqiy+kEGDaNS0KZmnT2NQVXwBv6NHUS8zpu0CWgtN6UTGogPFrv0+2NBm0RXJLixEp9OB3Y5qs5G5Y0eVxS/E1ZAxNUK4mMwDB4j/739x8/Plz1emUgftJlREB/i4QaJZG/xZWq/moWw/ewFMpjLbg9q14/aDBwEw3WYg6ZSNnAvQtmvZ40/GwJlk7Ubd+bvvMKxZgy0+HtXfH0Pz5vhNmoQ+MLBK3qdqt2N6fSqWfy9FFxmF5/zF6JpEVsm5r0bu7NlkTZoEgK5+fUL27kVfr17x82f9/FBzHCmAXo/fSy+Runo1pmPH0AN6IyRYtHJLRfqdPYtXFa5bY01L49yzz5K3YgXulHybrfuPf1CwbJnWReigAglovydFE7C9vMA2+TUOvfUWIUAu2ppTRcpUHtPrCerbl9tlrI2oQjJQ+BIkqRE3mzX+/nhlZ1N6krUOresjC627qLT+4V5sSsynvIDWrel55AgApjt8yI7LIykObmkHesfsXUWBI0cg3tGL1XnNGoIHDKjid3RjsvzxB7b4eNx69ryoOGPK8OHkr1qlPbDbCf3f/3Dr2JHMpUtRVBV7ZCQ777mnzDG9jx/Ht2XLKo3RtGsXSd26ldnWIDER+7GjFAy5C9UOeWZtyn8SZcfPNOrZjnpbDpK8bh17R47EJz2ddLu9uLWpzbRp+Nx6K+e+/hqvRo1o8dZbuJWaKi7E9ZKk5hIkqRE3mzNvvEHCP/5RpqXGgDZOIpOyLTWtvKHZtGn8+uo7F53ntl9+IXTQIABs6/8Lrz1ERpKdQrOR0HAjOp2NTDWUvXvjAKhz++103bgRnZtbdb21WsOel0fWO+9gjY3F++GH8So3w8lutbKzf3/SN2n10urdfz+dv/uuyssJqKpK+vjx5H75JQB13n6bOtOmkdO8EWq89v9msUCBTUt2M9ASGy9fD9pk5l40yN9mMpF99Ci+rVtjcL/56qiJmiVJzSVIUiNuNrbCQk4+8wxpX3+NzWYrTmjMQNvVqwkcOhRbzBnYtgFDVHPo3ovTn3/OsQkTihdcixg3jvaOG2Gx7EzISIYGTbWaW2g3zcytW7EVFBDYu7ckNKWY4+OJe+opTKdOUfeRR6j3+utlkha72Uzahg0oBgNBffpU6yxBa2IiitGI3rEQXk5kfdSkxDL7eP0ZD25u4OWFwcen2mIRorIkqbkESWrEzezCjh0cHzsWVJVWc+dSp3dvZ4d004ju2ZO8nTuLBzY3/uYb6o4cWWOvb8vKIv7JJ8nfsQNDmzYozVKoG5GPV7830O1Mw/TipOJ9DSMexuurf9dYbEJUhtR+EkKUUef227m91IBQUXMKjx4tM1Or4OjRGn39pClTyF61Cmw2rIkJBKsQ2AbUPaOwdpuN57c/YFn9HYY+/XEbObpGYxOiKklSI4QQ1cx/6FAyli7VFjG02/EfOLBGX9904kRJUqVCoWOpIEUB3YE30T+ZjnFI1a9mLERNk6RGCCGqWcP58/Fo3RpzTAx1hg/H5447avT1/R54gLwtW4rHSfm3L3lOxaOCo4SofSSpEUKIaqZzd6feyy877fWDJk3CEBREzPQX8K6XQt3u2va8VMhkGA2cFpkQVUuSGiGEcHGKohAwejTmIH+2DfoLqZlg9ILko9Dl48tXaReiNpHaT0IIcZMIGTCE8EGDSDkOifsgOPIWQh97zNlhCVFlpKVGCCFuEoqi0O2XXzCnpmLNysIzKqrKF/kTwpkkqRFCuDRrfj4JS5diN5upP3IkbnXrOjskp3MLDsbNsfhebaRaraDXS0ImLiLdT0IIl6XabOzs358/nn6aIxMnsrVrV6x5ec4OS1wju8XCiYcfZrvRyJ6QEDJ//93ZIYkbjCQ1QgiXlfvnn2Tu2KE9UFXyTp0qeXwVsr9ZSvygAWS99y6q3X7lA0S1SFm4kPQVKzAChrQ0Tt99N/tvvdXZYYkbiHQ/CSFclltgIIpej2orKenpERZ2Vec42b8/WevXowBpa34jbMd26q36oYojFZVhTk5GQasyD9qaO6bDh7mwaRN1evVyYmTiRiEtNUIIl+UeHEz7JUsw+Pmh8/Lilg8/xLf1lacw527ZQupnn5G1eTOZ69djB2yABUhe/WN1hy0qEPzww5RvJ1OAtBUrnBGOuAHVqpaan3/+mRkzZvDHH3/g4eFBr169+P77750dlhDiBtZg1CjqO4pHVmZg6fFmzbCcOgVAYbnnVABd9VXQFpfn2bw5hi5dUPfsQUFLaC4ArUaNcm5g4oZRa5Ka7777jnHjxvHOO+/Qt29frFYrR44ccXZYQohaoLKzZPJ27SpOaADcAFPp8wAhU6dWaWzi6nTdtYv/RUVhjonBCkQ++yz+PXo4Oyxxg6gVSY3VamXSpEnMmjWLJ554onj7Lbfc4sSohBCuJnfjxjKPdYCqgEEBsx0azpxJ2CuvOCU2oVEUhb5nzjg7DHGDqhVjavbv309CQgI6nY4OHToQFhbGoEGDpKVGCFGl1BnTcS/12KAHvSd0bgH6ds2p/9JLTotNCHFltSKpOePIyt98801ee+01fvrpJwICAujduzcZGRkVHmcymcjOzi7zI4QQFbHaTGQBBWgfjsFu0DFCe67jvC9RdLXiI1OIm5ZT/0JfeeUVFEW57M+JEyewO9aFePXVVxk2bBidOnVi0aJFKIrCt99+W+H5Z86cib+/f/FPRERETb01IUQtlGDWZjhZgSwgXwW9DnhoPMbb7nRucEKIK3LqmJoXXniBMWPGXHafyMhIkpKSgLJjaNzd3YmMjCQuLq7CY6dOncrkyZOLH2dnZ0tiI4S4JNVmw6qW29i8CazZBGHyuSFEbeDUpCY4OJjgStQf6dSpE+7u7kRHR9OzZ08ALBYLsbGxNGrUqMLj3N3dcXd3r/B5IYQoouj1BI4YQfq334KioHN3I2Tl75LQCFGL1IrZT35+fowfP57p06cTERFBo0aNmDVrFgAjRoxwcnRCCFfRfOlSknv3xnz+PMEjR+IZFeXskIQQV6FWJDUAs2bNwmAw8Mgjj1BQUEDXrl3ZsGEDAQEBzg5NCOEidG5uhP3tb84OQwhxjRRVVcv3Irus7Oxs/P39ycrKws/Pz9nhCCGEEKISKnv/lvmJQgjhUBgdTfa6ddhycpwdihDiGkhSI4QQQNqCBRxr1YpTd93FsdatsZw/7+yQhBBXSZIaIYQAEqdNA0dvvCUhgfSFC50ckRDiaklSI4QQgOLmBkWFL1UVxWh0bkBCiKsmSY0QQgARn36KYtAmhHq0aUPguHFOjkgIcbVqzZRuIYSoLpb0dArj4qg3cya+3bvj1bkzisGAZf9+sNkwdOokdZ+EqAUkqRFC3NRseXkc7doVy+nTGIEUQOfjQ3ifPlh//BEA9/vvx/+//5XERogbnPyFCiFuark7dmA6fRo3QHH8qLm55DkSGgDTqlVY9+51VohCiEqSpEYIcVMzhoUBpRIaoBA4BcSX3lFaaYS44clfqRDipubVujWNPv4Ym06HCqQC6YAJrSsqAfB45BEMnTo5M0whRCVImQQhhEAbW7PJxwdTue25wHC7HaVourcQosZJmQQhhLgKem9vTOXWplEB1c1NEhohaglJaoQQwqF3QgJ2x79VwAz02bzZiREJIa6GTOkWQggHz+Bg7rHbSdu4EWNgIHVuvdXZIQkhroIkNUIIUYqiKAT36ePsMIQQ10C6n4QQQgjhEiSpEUIIIYRLkKRGCCGEEC5BkhohhBBCuARJaoQQQgjhEiSpEUIIIYRLkKRGCCGEEC5BkhohhBBCuARJaoQQQgjhEiSpEUIIIYRLkKRGCCGEEC5BkhohhBBCuISbqqClqqoAZGdnOzkSIYQQQlRW0X276D5ekZsqqcnJyQEgIiLCyZEIIYQQ4mrl5OTg7+9f4fOKeqW0x4XY7XYSExPx9fVFURRnh1NlsrOziYiIID4+Hj8/P2eH41RyLTRyHTRyHUrItdDIdShRm66Fqqrk5OQQHh6OTlfxyJmbqqVGp9PRoEEDZ4dRbfz8/G74X8yaItdCI9dBI9ehhFwLjVyHErXlWlyuhaaIDBQWQgghhEuQpEYIIYQQLkGSGhfg7u7O9OnTcXd3d3YoTifXQiPXQSPXoYRcC41chxKueC1uqoHCQgghhHBd0lIjhBBCCJcgSY0QQgghXIIkNUIIIYRwCZLUCCGEEMIlSFLjon7++We6du2Kp6cnAQEB3Hfffc4OyWlMJhPt27dHURQOHjzo7HBqVGxsLE888QRNmjTB09OTqKgopk+fjtlsdnZoNeKzzz6jcePGeHh40LVrV3bv3u3skGrUzJkz6dKlC76+voSEhHDfffcRHR3t7LCc7t1330VRFJ5//nlnh+IUCQkJjB49msDAQDw9PWnbti179+51dlhVQpIaF/Tdd9/xyCOP8Pjjj3Po0CG2bdvGyJEjnR2W07z00kuEh4c7OwynOHHiBHa7nXnz5nH06FE++ugj5s6dy7Rp05wdWrVbsWIFkydPZvr06ezfv5927doxYMAAUlJSnB1ajdm0aRMTJkxg586d/P7771gsFu6++27y8vKcHZrT7Nmzh3nz5nHrrbc6OxSnyMzMpEePHhiNRn799VeOHTvGBx98QEBAgLNDqxqqcCkWi0WtX7+++q9//cvZodwQfvnlF7Vly5bq0aNHVUA9cOCAs0Nyuvfee09t0qSJs8Oodrfddps6YcKE4sc2m00NDw9XZ86c6cSonCslJUUF1E2bNjk7FKfIyclRmzVrpv7+++9qr1691EmTJjk7pBr38ssvqz179nR2GNVGWmpczP79+0lISECn09GhQwfCwsIYNGgQR44ccXZoNS45OZlx48bx9ddf4+Xl5exwbhhZWVnUrVvX2WFUK7PZzL59++jfv3/xNp1OR//+/dmxY4cTI3OurKwsAJf//6/IhAkTGDx4cJnfi5vNDz/8QOfOnRkxYgQhISF06NCB+fPnOzusKiNJjYs5c+YMAG+++SavvfYaP/30EwEBAfTu3ZuMjAwnR1dzVFVlzJgxjB8/ns6dOzs7nBvGqVOn+PTTT3n66aedHUq1SktLw2azERoaWmZ7aGgo58+fd1JUzmW323n++efp0aMHbdq0cXY4NW758uXs37+fmTNnOjsUpzpz5gxffPEFzZo1Y+3atTzzzDNMnDiRJUuWODu0KiFJTS3xyiuvoCjKZX+Kxk8AvPrqqwwbNoxOnTqxaNEiFEXh22+/dfK7uH6VvQ6ffvopOTk5TJ061dkhV4vKXofSEhISGDhwICNGjGDcuHFOilw4y4QJEzhy5AjLly93dig1Lj4+nkmTJvHNN9/g4eHh7HCcym6307FjR9555x06dOjAU089xbhx45g7d66zQ6sSBmcHICrnhRdeYMyYMZfdJzIykqSkJABuueWW4u3u7u5ERkYSFxdXnSHWiMpehw0bNrBjx46Lapp07tyZUaNG1fpvJZW9DkUSExPp06cP3bt358svv6zm6JwvKCgIvV5PcnJyme3JycnUq1fPSVE5z7PPPstPP/3E5s2badCggbPDqXH79u0jJSWFjh07Fm+z2Wxs3ryZOXPmYDKZ0Ov1Toyw5oSFhZW5PwC0atWK7777zkkRVS1JamqJ4OBggoODr7hfp06dcHd3Jzo6mp49ewJgsViIjY2lUaNG1R1mtavsdZg9ezZvvfVW8ePExEQGDBjAihUr6Nq1a3WGWCMqex1Aa6Hp06dPcaudTuf6DbRubm506tSJ9evXFy9nYLfbWb9+Pc8++6xzg6tBqqry3HPPsWrVKjZu3EiTJk2cHZJT9OvXj8OHD5fZ9vjjj9OyZUtefvnlmyahAejRo8dF0/pPnjzpEvcHkKTG5fj5+TF+/HimT59OREQEjRo1YtasWQCMGDHCydHVnIYNG5Z57OPjA0BUVNRN9U01ISGB3r1706hRI95//31SU1OLn3P1FovJkyfz2GOP0blzZ2677TY+/vhj8vLyePzxx50dWo2ZMGECy5YtY/Xq1fj6+haPJ/L398fT09PJ0dUcX1/fi8YReXt7ExgYeNONL/q///s/unfvzjvvvMODDz7I7t27+fLLL12mBVeSGhc0a9YsDAYDjzzyCAUFBXTt2pUNGza4zjoEotJ+//13Tp06xalTpy5K5lRVdVJUNeOhhx4iNTWVN954g/Pnz9O+fXvWrFlz0eBhV/bFF18A0Lt37zLbFy1adMXuS+GaunTpwqpVq5g6dSozZsygSZMmfPzxx4waNcrZoVUJRXX1TzYhhBBC3BRcv3NdCCGEEDcFSWqEEEII4RIkqRFCCCGES5CkRgghhBAuQZIaIYQQQrgESWqEEEII4RIkqRFCCCGES5CkRgghhBAuQZIaIYRTjRkzBkVRGD9+/EXPTZgwAUVRile/LdpXURSMRiOhoaHcddddLFy4sLhCfXkDBgxAr9ezZ8+ei57bvHkzQ4cOJTw8HEVR+P7776vyrQkhapgkNUIIp4uIiGD58uUUFBQUbyssLGTZsmUX1fEaOHAgSUlJxMbG8uuvv9KnTx8mTZrEkCFDsFqtZfaNi4tj+/btPPvssyxcuPCi183Ly6Ndu3Z89tln1fPGhBA1Smo/CSGcrmPHjpw+fZqVK1cW16BZuXIlDRs2vKiytLu7e3Exzvr169OxY0e6detGv379WLx4MU8++WTxvosWLWLIkCE888wzdOvWjQ8//LBMIcdBgwYxaNCgGniHQoiaIC01QogbwtixY1m0aFHx44ULF1a6onbfvn1p164dK1euLN6mqiqLFi1i9OjRtGzZkqZNm/Lf//63yuMWQtw4JKkRQtwQRo8ezdatWzl79ixnz55l27ZtjB49utLHt2zZktjY2OLH69atIz8/nwEDBhSff8GCBVUdthDiBiLdT0KIG0JwcDCDBw9m8eLFqKrK4MGDCQoKqvTxqqqiKErx44ULF/LQQw9hMGgfc3/961+ZMmUKp0+fJioqqsrjF0I4n7TUCCFuGGPHjmXx4sUsWbKEsWPHXtWxx48fLx5/k5GRwapVq/j8888xGAwYDAbq16+P1Wq95IBhIYRrkKRGCHHDGDhwIGazGYvFUtxtVBkbNmzg8OHDDBs2DIBvvvmGBg0acOjQIQ4ePFj888EHH7B48WJsNlt1vQUhhBNJ95MQ4oah1+s5fvx48b8vxWQycf78eWw2G8nJyaxZs4aZM2cyZMgQHn30UQAWLFjA8OHDadOmTZljIyIimDp1KmvWrGHw4MHk5uZy6tSp4udjYmI4ePAgdevWvWgquRDixidJjRDihuLn53fZ59esWUNYWBgGg4GAgADatWvH7Nmzeeyxx9DpdOzbt49Dhw4xf/78i4719/enX79+LFiwgMGDB7N371769OlT/PzkyZMBeOyxx1i8eHGVvi8hRPVTVFVVnR2EEEIIIcT1kjE1QgghhHAJktQIIYQQwiVIUiOEEEIIlyBJjRBCCCFcgiQ1QgghhHAJktQIIYQQwiVIUiOEEEIIlyBJjRBCCCFcgiQ1QgghhHAJktQIIYQQwiVIUiOEEEIIlyBJjRBCCCFcwv8D/KtKIGk0mMsAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Apply MDA on the extracted features\n", "neighborNum = 12\n", "clusterIdx_train = discoverManifold(train_features_with_rbf, neighborNum)\n", "Yreg_train = mda(train_features_with_rbf, clusterIdx_train)\n", "\n", "# Plot the MDA results\n", "plt.scatter(Yreg_train[:, 0], Yreg_train[:, 1], c=clusterIdx_train, cmap='jet', s=5)\n", "plt.xlabel(\"MDA1\")\n", "plt.ylabel(\"MDA2\")\n", "plt.title('MDA visualization of the hybrid model')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "-3Ye__WaXUIY", "outputId": "f179fdcb-b04c-4879-8813-cbd7c3f007c8" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Found existing installation: tensorflow 2.15.0\n", "Uninstalling tensorflow-2.15.0:\n", " Would remove:\n", " /usr/local/bin/estimator_ckpt_converter\n", " /usr/local/bin/import_pb_to_tensorboard\n", " /usr/local/bin/saved_model_cli\n", " /usr/local/bin/tensorboard\n", " /usr/local/bin/tf_upgrade_v2\n", " /usr/local/bin/tflite_convert\n", " /usr/local/bin/toco\n", " /usr/local/bin/toco_from_protos\n", " /usr/local/lib/python3.10/dist-packages/tensorflow-2.15.0.dist-info/*\n", " /usr/local/lib/python3.10/dist-packages/tensorflow/*\n", "Proceed (Y/n)? y\n", " Successfully uninstalled tensorflow-2.15.0\n", "Collecting tensorflow==2.12.0\n", " Downloading tensorflow-2.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (585.9 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m585.9/585.9 MB\u001b[0m \u001b[31m2.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: absl-py>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.12.0) (1.4.0)\n", "Requirement already satisfied: astunparse>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.12.0) (1.6.3)\n", "Requirement already satisfied: flatbuffers>=2.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.12.0) (23.5.26)\n", "Collecting gast<=0.4.0,>=0.2.1 (from tensorflow==2.12.0)\n", " Downloading gast-0.4.0-py3-none-any.whl (9.8 kB)\n", "Requirement already satisfied: google-pasta>=0.1.1 in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.12.0) (0.2.0)\n", "Requirement already satisfied: grpcio<2.0,>=1.24.3 in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.12.0) (1.60.1)\n", "Requirement already satisfied: h5py>=2.9.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.12.0) (3.9.0)\n", "Requirement already satisfied: jax>=0.3.15 in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.12.0) (0.4.23)\n", "Collecting keras<2.13,>=2.12.0 (from tensorflow==2.12.0)\n", " Downloading keras-2.12.0-py2.py3-none-any.whl (1.7 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m53.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: libclang>=13.0.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.12.0) (16.0.6)\n", "Collecting numpy<1.24,>=1.22 (from tensorflow==2.12.0)\n", " Downloading numpy-1.23.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.1 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m17.1/17.1 MB\u001b[0m \u001b[31m47.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.12.0) (3.3.0)\n", "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.12.0) (23.2)\n", "Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.12.0) (3.20.3)\n", "Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.12.0) (67.7.2)\n", "Requirement already satisfied: six>=1.12.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.12.0) (1.16.0)\n", "Collecting tensorboard<2.13,>=2.12 (from tensorflow==2.12.0)\n", " Downloading tensorboard-2.12.3-py3-none-any.whl (5.6 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.6/5.6 MB\u001b[0m \u001b[31m76.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting tensorflow-estimator<2.13,>=2.12.0 (from tensorflow==2.12.0)\n", " Downloading tensorflow_estimator-2.12.0-py2.py3-none-any.whl (440 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m440.7/440.7 kB\u001b[0m \u001b[31m33.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hRequirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.12.0) (2.4.0)\n", "Requirement already satisfied: typing-extensions>=3.6.6 in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.12.0) (4.9.0)\n", "Requirement already satisfied: wrapt<1.15,>=1.11.0 in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.12.0) (1.14.1)\n", "Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /usr/local/lib/python3.10/dist-packages (from tensorflow==2.12.0) (0.36.0)\n", "Requirement already satisfied: wheel<1.0,>=0.23.0 in /usr/local/lib/python3.10/dist-packages (from astunparse>=1.6.0->tensorflow==2.12.0) (0.42.0)\n", "Requirement already satisfied: ml-dtypes>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from jax>=0.3.15->tensorflow==2.12.0) (0.2.0)\n", "Requirement already satisfied: scipy>=1.9 in /usr/local/lib/python3.10/dist-packages (from jax>=0.3.15->tensorflow==2.12.0) (1.11.4)\n", "Requirement already satisfied: google-auth<3,>=1.6.3 in /usr/local/lib/python3.10/dist-packages (from tensorboard<2.13,>=2.12->tensorflow==2.12.0) (2.27.0)\n", "Collecting google-auth-oauthlib<1.1,>=0.5 (from tensorboard<2.13,>=2.12->tensorflow==2.12.0)\n", " Downloading google_auth_oauthlib-1.0.0-py2.py3-none-any.whl (18 kB)\n", "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.10/dist-packages (from tensorboard<2.13,>=2.12->tensorflow==2.12.0) (3.5.2)\n", "Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard<2.13,>=2.12->tensorflow==2.12.0) (2.31.0)\n", "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard<2.13,>=2.12->tensorflow==2.12.0) (0.7.2)\n", "Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from tensorboard<2.13,>=2.12->tensorflow==2.12.0) (3.0.1)\n", "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from google-auth<3,>=1.6.3->tensorboard<2.13,>=2.12->tensorflow==2.12.0) (5.3.2)\n", "Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.10/dist-packages (from google-auth<3,>=1.6.3->tensorboard<2.13,>=2.12->tensorflow==2.12.0) (0.3.0)\n", "Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.10/dist-packages (from google-auth<3,>=1.6.3->tensorboard<2.13,>=2.12->tensorflow==2.12.0) (4.9)\n", "Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from google-auth-oauthlib<1.1,>=0.5->tensorboard<2.13,>=2.12->tensorflow==2.12.0) (1.3.1)\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorboard<2.13,>=2.12->tensorflow==2.12.0) (3.3.2)\n", "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorboard<2.13,>=2.12->tensorflow==2.12.0) (3.6)\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorboard<2.13,>=2.12->tensorflow==2.12.0) (2.0.7)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests<3,>=2.21.0->tensorboard<2.13,>=2.12->tensorflow==2.12.0) (2024.2.2)\n", "Requirement already satisfied: MarkupSafe>=2.1.1 in /usr/local/lib/python3.10/dist-packages (from werkzeug>=1.0.1->tensorboard<2.13,>=2.12->tensorflow==2.12.0) (2.1.5)\n", "Requirement already satisfied: pyasn1<0.6.0,>=0.4.6 in /usr/local/lib/python3.10/dist-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard<2.13,>=2.12->tensorflow==2.12.0) (0.5.1)\n", "Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.10/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<1.1,>=0.5->tensorboard<2.13,>=2.12->tensorflow==2.12.0) (3.2.2)\n", "Installing collected packages: tensorflow-estimator, numpy, keras, gast, google-auth-oauthlib, tensorboard, tensorflow\n", " Attempting uninstall: tensorflow-estimator\n", " Found existing installation: tensorflow-estimator 2.15.0\n", " Uninstalling tensorflow-estimator-2.15.0:\n", " Successfully uninstalled tensorflow-estimator-2.15.0\n", " Attempting uninstall: numpy\n", " Found existing installation: numpy 1.25.2\n", " Uninstalling numpy-1.25.2:\n", " Successfully uninstalled numpy-1.25.2\n", " Attempting uninstall: keras\n", " Found existing installation: keras 2.15.0\n", " Uninstalling keras-2.15.0:\n", " Successfully uninstalled keras-2.15.0\n", " Attempting uninstall: gast\n", " Found existing installation: gast 0.5.4\n", " Uninstalling gast-0.5.4:\n", " Successfully uninstalled gast-0.5.4\n", " Attempting uninstall: google-auth-oauthlib\n", " Found existing installation: google-auth-oauthlib 1.2.0\n", " Uninstalling google-auth-oauthlib-1.2.0:\n", " Successfully uninstalled google-auth-oauthlib-1.2.0\n", " Attempting uninstall: tensorboard\n", " Found existing installation: tensorboard 2.15.2\n", " Uninstalling tensorboard-2.15.2:\n", " Successfully uninstalled tensorboard-2.15.2\n", "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", "chex 0.1.85 requires numpy>=1.24.1, but you have numpy 1.23.5 which is incompatible.\u001b[0m\u001b[31m\n", "\u001b[0mSuccessfully installed gast-0.4.0 google-auth-oauthlib-1.0.0 keras-2.12.0 numpy-1.23.5 tensorboard-2.12.3 tensorflow-2.12.0 tensorflow-estimator-2.12.0\n" ] }, { "data": { "application/vnd.colab-display-data+json": { "pip_warning": { "packages": [ "numpy" ] } } }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting scikeras\n", " Downloading scikeras-0.12.0-py3-none-any.whl (27 kB)\n", "Requirement already satisfied: packaging>=0.21 in /usr/local/lib/python3.10/dist-packages (from scikeras) (23.2)\n", "Requirement already satisfied: scikit-learn>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from scikeras) (1.2.2)\n", "Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.0.0->scikeras) (1.23.5)\n", "Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.0.0->scikeras) (1.11.4)\n", "Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.0.0->scikeras) (1.3.2)\n", "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.0.0->scikeras) (3.3.0)\n", "Installing collected packages: scikeras\n", "Successfully installed scikeras-0.12.0\n" ] } ], "source": [ "!pip uninstall tensorflow\n", "!pip install tensorflow==2.12.0\n", "!pip install scikeras" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "background_save": true, "base_uri": "https://localhost:8080/" }, "id": "kBUJ68SQRKjs", "outputId": "a5a214d7-b969-4233-b472-01d929977d1d" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "141/141 [==============================] - 1s 7ms/step\n", "36/36 [==============================] - 0s 5ms/step\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning\n", " warnings.warn(\n", "Exception ignored on calling ctypes callback function: .match_library_callback at 0x7f34009b8550>\n", "Traceback (most recent call last):\n", " File \"/usr/local/lib/python3.10/dist-packages/threadpoolctl.py\", line 1008, in match_library_callback\n", " self._make_controller_from_path(filepath)\n", " File \"/usr/local/lib/python3.10/dist-packages/threadpoolctl.py\", line 1147, in _make_controller_from_path\n", " lib_controller = controller_class(\n", " File \"/usr/local/lib/python3.10/dist-packages/threadpoolctl.py\", line 113, in __init__\n", " self.dynlib = ctypes.CDLL(filepath, mode=_RTLD_NOLOAD)\n", " File \"/usr/lib/python3.10/ctypes/__init__.py\", line 374, in __init__\n", " self._handle = _dlopen(self._name, mode)\n", "OSError: /usr/local/lib/python3.10/dist-packages/numpy.libs/libopenblas64_p-r0-5007b62f.3.23.dev.so: cannot open shared object file: No such file or directory\n", ":126: DeprecationWarning: KerasClassifier is deprecated, use Sci-Keras (https://github.com/adriangb/scikeras) instead. See https://www.adriangb.com/scikeras/stable/migration.html for help migrating.\n", " bi_lstm_classifier = KerasClassifier(build_fn=create_bi_lstm_model, epochs=5, batch_size=32, verbose=0)\n" ] } ], "source": [ "from sklearn.model_selection import GridSearchCV\n", "from tensorflow.keras.wrappers.scikit_learn import KerasClassifier\n", "\n", "from keras.layers import Dropout\n", "import numpy as np\n", "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.cluster import KMeans\n", "from keras.models import Sequential\n", "from keras.layers import Dense, Conv1D, MaxPooling1D, Flatten, Bidirectional, LSTM\n", "\n", "# Load the data from a CSV file\n", "data = pd.read_csv(\"/content/stressinput.csv\", header=None)\n", "\n", "# Split the data into features and labels\n", "features = data.iloc[:, :-1].values\n", "labels = data.iloc[:, -1].values\n", "\n", "# Scale the features using StandardScaler\n", "scaler = StandardScaler()\n", "features = scaler.fit_transform(features)\n", "\n", "# Split the data into training and test sets\n", "train_features, test_features, train_labels, test_labels = train_test_split(features, labels, test_size=0.2, random_state=42)\n", "\n", "# Define the CNN layers for feature extraction\n", "cnn_model = Sequential([\n", " Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(train_features.shape[1], 1)),\n", " MaxPooling1D(pool_size=2),\n", " Conv1D(filters=64, kernel_size=3, activation='relu'),\n", " MaxPooling1D(pool_size=2),\n", " Flatten()\n", "])\n", "\n", "# Reshape the data for CNN input\n", "train_features_cnn = train_features.reshape(train_features.shape[0], train_features.shape[1], 1)\n", "test_features_cnn = test_features.reshape(test_features.shape[0], test_features.shape[1], 1)\n", "\n", "# Extract features using CNN layers\n", "train_features_cnn = cnn_model.predict(train_features_cnn)\n", "test_features_cnn = cnn_model.predict(test_features_cnn)\n", "\n", "# Define the RBF network (same as provided)\n", "# Define the RBF network\n", "class RBFNet:\n", " def __init__(self, input_dim, output_dim, hidden_dim):\n", " self.input_dim = input_dim\n", " self.output_dim = output_dim\n", " self.hidden_dim = hidden_dim\n", " self.centers = None\n", " self.weights = None\n", "\n", " def fit(self, X, y):\n", " kmeans = KMeans(n_clusters=self.hidden_dim)\n", " kmeans.fit(X)\n", " self.centers = kmeans.cluster_centers_\n", "\n", " # Calculate the width parameter for the RBFs\n", " dmax = np.max([np.linalg.norm(self.centers[i] - self.centers[j]) for i in range(self.hidden_dim) for j in range(self.hidden_dim)])\n", " self.sigma = dmax / np.sqrt(2 * self.hidden_dim)\n", "\n", " # Calculate the hidden layer activations\n", " X_transformed = np.zeros((X.shape[0], self.hidden_dim))\n", " for i in range(X.shape[0]):\n", " for j in range(self.hidden_dim):\n", " X_transformed[i, j] = self.rbf(X[i], self.centers[j])\n", "\n", " # Add a bias term to the hidden layer activations\n", " X_transformed = np.concatenate((X_transformed, np.ones((X.shape[0], 1))), axis=1)\n", "\n", " # Solve for the weights using least squares regression\n", " self.weights = np.linalg.lstsq(X_transformed, y, rcond=None)[0]\n", "\n", " def predict(self, X):\n", " # Calculate the hidden layer activations\n", " X_transformed = np.zeros((X.shape[0], self.hidden_dim))\n", " for i in range(X.shape[0]):\n", " for j in range(self.hidden_dim):\n", " X_transformed[i, j] = self.rbf(X[i], self.centers[j])\n", "\n", " # Add a bias term to the hidden layer activations\n", " X_transformed = np.concatenate((X_transformed, np.ones((X.shape[0], 1))), axis=1)\n", "\n", " # Perform the prediction\n", " return np.dot(X_transformed, self.weights)\n", "\n", " def rbf(self, x, c):\n", " return np.exp(-np.linalg.norm(x - c) ** 2 / (2 * self.sigma ** 2))\n", "\n", "# Create the RBF network\n", "rbf = RBFNet(input_dim=train_features_cnn.shape[1], output_dim=1, hidden_dim=50)\n", "\n", "# Fit the RBF network on the CNN-extracted features\n", "rbf.fit(train_features_cnn, train_labels)\n", "\n", "# Predict using RBF network\n", "train_rbf_predictions = rbf.predict(train_features_cnn)\n", "test_rbf_predictions = rbf.predict(test_features_cnn)\n", "\n", "# Concatenate RBF predictions with CNN-extracted features\n", "train_features_with_rbf = np.concatenate((train_features_cnn, train_rbf_predictions.reshape(-1, 1)), axis=1)\n", "test_features_with_rbf = np.concatenate((test_features_cnn, test_rbf_predictions.reshape(-1, 1)), axis=1)\n", "\n", "# Reshape the data for Bi-LSTM input\n", "train_features_with_rbf = train_features_with_rbf.reshape(train_features_with_rbf.shape[0], train_features_with_rbf.shape[1], 1)\n", "test_features_with_rbf = test_features_with_rbf.reshape(test_features_with_rbf.shape[0], test_features_with_rbf.shape[1], 1)\n", "\n", "\n", "# Function to create the Bi-LSTM model\n", "def create_bi_lstm_model(units_lstm=64, units_dense=32, dropout_rate=0.2):\n", " model = Sequential([\n", " Bidirectional(LSTM(units_lstm, return_sequences=True), input_shape=(train_features_with_rbf.shape[1], 1)),\n", " Bidirectional(LSTM(units_lstm, return_sequences=True)),\n", " Bidirectional(LSTM(units_lstm)),\n", " Dense(units_dense, activation='relu'),\n", " Dropout(dropout_rate),\n", " Dense(1, activation='sigmoid')\n", " ])\n", "\n", " model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n", "\n", " return model\n", "\n", "# Create KerasClassifier for GridSearchCV\n", "bi_lstm_classifier = KerasClassifier(build_fn=create_bi_lstm_model, epochs=5, batch_size=32, verbose=0)\n", "\n", "# Define hyperparameters for grid search\n", "param_grid = {\n", " 'units_lstm': [32, 64, 128],\n", " 'units_dense': [32, 64, 128],\n", " 'dropout_rate': [0.2, 0.3, 0.4]\n", "}\n", "\n", "# Perform grid search\n", "grid = GridSearchCV(estimator=bi_lstm_classifier, param_grid=param_grid, scoring='accuracy', cv=3)\n", "grid_result = grid.fit(train_features_with_rbf, train_labels)\n", "\n", "# Summarize results\n", "print(\"Best Accuracy: {:.2f}% using {}\".format(grid_result.best_score_ * 100, grid_result.best_params_))\n", "\n", "# Retrieve the best model\n", "best_bi_lstm_model = grid_result.best_estimator_.model\n", "\n", "# Evaluate the best model on the test data\n", "test_loss, test_accuracy = best_bi_lstm_model.evaluate(test_features_with_rbf, test_labels)\n", "\n", "print(\"\\nBest Bi-LSTM Model:\")\n", "print(\"Test Accuracy:\", test_accuracy)\n", "\n", "# Use the best model for predictions\n", "best_test_predictions = best_bi_lstm_model.predict(test_features_with_rbf)\n", "best_test_predictions = (best_test_predictions > 0.5).astype(int)\n" ] }, { "cell_type": "markdown", "metadata": { "id": "Cl1tzpJS3RSD" }, "source": [] } ], "metadata": { "accelerator": "TPU", "colab": { "provenance": [] }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 0 }