# YOLOv5 🚀 by Ultralytics, GPL-3.0 license # COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics # Example usage: python train.py --data coco128.yaml # parent # ├── yolov5 # └── datasets # └── coco128 ← downloads here (7 MB) # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: D:/YOLO/yolov5-master/corn/datasets # dataset root dir path是绝对路径 train: images/train # train images (relative to 'path') 128 images train是在path绝对路径条件下的训练集路径,即:wzry/datasets/images/train val: images/val # val images (relative to 'path') 128 images val同上,但是是验证集,这里我为了方便,让训练集和验证集是一个,也没啥大问题 #test: # test images (optional) # Classes nc: 2 # number of classes names: ['kedu', 'biaochi'] # class names ## Download script/URL (optional) #download: https://ultralytics.com/assets/coco128.zip