
APPENDIX
A PSEUDOCODE FOR MODEL PREDICTIVE PATH INTEGRAL FOR MULTI-

AGENT COLLISION AVOIDANCE

Algorithm 1 MPPI FOR MULTI-AGENT COLLISION AVOIDANCE
Input:
K – number of sampled trajectories; T – planning time horizon; i – current agent; x0 – current agent state;

Ni – neighboring agents; XNi = {(p j
x, p j

y,v
j
x,v

j
y,r j) | j 2Ni} – information on neighboring agents;

r(·), f(·), c0(·) – running, terminal and control cost functions; F(·), G(·) – transition functions;

umin, umax – control limits; a – desired safety probability; l – MPPI hyperparameter;

u
init – default initial control action; Uinit = {u

init

0
, ...,uinit

T�1
} – Initial control sequence (obtained from previous step)

1: Predict neighbors trajectories p1,p2, ...,pN

2: Compute linear constraints ORCAt = {ORCAt
i| j | j 2Ni} based on XNi

3: Find µ 0, S0 based on u
init

0
,S, a and ORCAt

4: for k = 1 to K do

5: Sample ek

0
s N (µ 0,S0)

6: Sample {ek

1
, ...,ek

T
},ek

t
s N (0,S)

7: for t = 1 to T do

8: u
k

t�1
 u

init

t�1
+ ek

t�1

9: Limit u
k

t�1
using bounds umin and umax

10: xt F(xt�1)+G(xt�1)ut�1

11: ˜S(Uk) ˜S(Uk) + r(xt) + c0(ut))

12: end for

13: end for

14: ˜S(Uk) ˜S(Uk) + f(xT)

15: r  mink S(Uk)

16: h  ÂK
k=1

�
exp

�
� 1

l
�
S̃(Uk)�r

���

17: for k = 1 to K do

18: w(Uk) exp
�
� 1

l
�
S̃(Uk)�r

��

19: end for

20: for t = 0 to T �1 do

21: u
⇤
t
= ÂK

k=1
�
w(Uk)uk

t

�

22: end for

23: uresult u
⇤
0

24: for t = 1 to T �1 do

25: u
init

t�1
 u

⇤
t

26: end for

27: u
init

T�1
 u

init

28: return uresult and new control sequence Uinit for next step
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B OPTIMIZATION PROBLEM FORMULATION FOR SINGLE-INTEGRATOR
DYNAMICS

In case of single-integrator dynamics case, the control vector is defined as velocity of agent ut = (vx,t ,vy,t)
and state defined as position xt = (px,t , py,t). So, the transition functions and equation of movement are
the following:

F(xt) = xt; G(xt) =

✓
1 0
0 1

◆
(36)

✓
px,t+1
py,t+1

◆
=

✓
px,t

py,t

◆
+

✓
1 0
0 1

◆✓
vx,t

vy,t

◆
(37)

Let µvx ,µvy ,svx ,svy be initial distribution parameters and µ 0vx ,µ
0
vy ,s

0
vx ,s

0
vy be new parameters. We

also involve an auxiliary variable tµ 0vx
, tµ 0vy

, ts 0vx
, ts 0vy

to replace the module in objective function with linear
expression. Thus, elements of SOCP linear objective function can be defined in next form:

f = (0,0,0,0,1,1,1,1),
x = (µ 0vx ,µ

0
vy ,s

0
vx ,s

0
vy , tµ 0vx

, tµ 0vy
, ts 0vx

, ts 0vy
)

(38)

Then, the objective function and linear constraints are the following:

minimize tµ 0vx
+ tµ 0vy

+ ts 0vx
+ ts 0vy

s.t. � tµ 0vx
 µ 0vx �µvx  tµ 0vx

� tµ 0vy
 µ 0vy �µvy  tµ 0vy

� ts 0vx
 s 0vx �svx  ts 0vx

� ts 0vy
 s 0vy �svy  ts 0vy

µ 0vx +F�1(a)s 0vx  vx,max,

µ 0vx �F�1(a)s 0vx � vx,min,

µ 0vy +F�1(a)s 0vy  vy,max,

µ 0vy �F�1(a)s 0vy � vy,min,

s 0vx � 0, s 0vy � 0,

(39)

Let a j,b j,c j be coefficients of ORCA linear constraint for some neighbor j. Then, inequality from
Eq. 30 parameters can be written in next form:

A0j =
✓

0 0 a j 0 0 0 0 0
0 0 0 b j 0 0 0 0

◆
, (40)

b0j =�c j (41)

c
0
j
=� 1

F�1(a)
· (a j,b j,0,0,0,0,0,0) (42)
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C OPTIMIZATION PROBLEM FORMULATION FOR DIFFERENTIAL-DRIVE
ROBOT DYNAMICS

In case of differential-drive robot dynamics, described in Eq. 3, the optimization problem can be repre-
sented as linear program (LP).

First, let’s repeat the steps described in section ”Finding Safe Distribution Parameters” and shown
in appendix B on an example of single-integrator dynamics. Let µv,µw,sv,sw be initial distribution
parameters and µ 0v,µ 0w,s 0v,s 0w be new parameters. We also involve an auxiliary variable tµ 0v , tµ 0w , ts 0v , ts 0w to
replace module in objective function with linear expression. Thus, elements of SOCP linear objective
function can be defined in next form:

f = (0,0,0,0,1,1,1,1),
x = (µ 0v,µ 0w,s 0v,s 0w, tµ 0v , tµ 0w , ts 0v , ts 0w)

(43)

Then, the objective function and linear constraints are the following:

minimize tµ 0v + tµ 0w + ts 0v + ts 0w
s.t. � tµ 0v  µ 0v�µv  tµ 0v

� tµ 0w  µ 0w�µw  tµ 0w
� ts 0v  s 0v�sv  ts 0v
� ts 0w  s 0w�sw  ts 0w
µ 0v +F�1(a)s 0v  vmax,

µ 0v�F�1(a)s 0v � vmin,

µ 0w +F�1(a)s 0w  wmax,

µ 0w�F�1(a)s 0w � wmin,

s 0v � 0, s 0w � 0,

(44)

Next, we will find inequality (Eq. 30) parameters based on ORCA linear constraint coefficients
a j,b j,c j for some neighbor j. Then, inequality from Eq. 30 parameters can be written in next form:

A0j =
✓

0 0 [a j cosqt +b j sinqt ] 0 0 0 0 0
0 0 0 0 0 0 0 0

◆
, (45)

b0j =�c j (46)

c
0
j
=� 1

F�1(a)
· ([a j cosqt +b j sinqt ] ,0,0,0,0,0,0,0) (47)

It is easy to see, that final inequality can be represented as linear and not include any variable associated
with w.

[a j cosqt +b j sinqt ] sv 
[a j cosqt +b j sinqt ]

F�1(a)
·µv �

c j

F�1(a)
, (48)

So, we can exclude every variable associated with w from the problem 44, since these variables do not
affect the consideration of collision avoidance constraints. Now, the final LP is obtained:

minimize tµ 0v + ts 0v
s.t. � tµ 0v  µ 0v�µv  tµ 0v

� ts 0v  s 0v�sv  ts 0v
µ 0v +F�1(a)s 0v  vmax,

µ 0v�F�1(a)s 0v � vmin,

s 0v � 0,

[a j cosqt +b j sinqt ] sv 
[a j cosqt +b j sinqt ]

F�1(a)
·µv �

c j

F�1(a)
, 8 j 2Ni

(49)
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