1. Machine Learning Algorithms/Code
· Implementation Language:  Python
· Libraries/Packages: List the libraries and their versions (e.g., scikit-learn, TensorFlow, Keras, pandas).
· Code Repository: 
# Import necessary libraries
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.preprocessing import StandardScaler
from keras.models import Sequential
from keras.layers import Dense, LSTM, GRU
from keras.utils import np_utils

# Load your dataset
# Assuming you have a dataset stored in 'data.csv'
data = pd.read_csv('data.csv')

# Separate features and labels
X = data.drop('class', axis=1).values
y = data['class'].values

# Feature selection
selector = SelectKBest(score_func=f_classif, k=10) # Adjust k value as needed
X_selected = selector.fit_transform(X, y)

# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X_selected, y, test_size=0.2, random_state=42)

# Standardize features
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# Convert labels to categorical
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)

# Define LSTM model
def create_lstm_model(input_shape):
    model = Sequential()
    model.add(LSTM(100, input_shape=input_shape))
    model.add(Dense(2, activation='softmax'))
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model

# Define GRU model
def create_gru_model(input_shape):
    model = Sequential()
    model.add(GRU(100, input_shape=input_shape))
    model.add(Dense(2, activation='softmax'))
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model

# Train LSTM model
lstm_model = create_lstm_model(X_train.shape[1:])
lstm_model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=64)

# Train GRU model
gru_model = create_gru_model(X_train.shape[1:])
gru_model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=64)

# Evaluate models
lstm_scores = lstm_model.evaluate(X_test, y_test, verbose=0)
print("LSTM Accuracy: %.2f%%" % (lstm_scores[1]*100))

gru_scores = gru_model.evaluate(X_test, y_test, verbose=0)
print("GRU Accuracy: %.2f%%" % (gru_scores[1]*100))
2. Computing Infrastructure
· Operating System:  Windows 10.
· Hardware:  Intel i7, GPU (e.g., NVIDIA GTX 1080), and RAM (e.g., 16 GB).
· Environment:  Conda environments
3. README File
# CKD Classification with Feature Selection and Deep Learning Models

This project involves preprocessing a dataset, selecting significant features, and using deep learning models (LSTM and GRU) to classify chronic kidney disease (CKD). The code includes data loading, preprocessing, feature selection, model training, and evaluation.

## Requirements

- Python 3.x
- numpy
- pandas
- scikit-learn
- keras
- tensorflow

## Installation

1. Clone the repository:
   ```bash
   git clone https://github.com/username/ckd-classification.git
   cd ckd-classification

4. Reproduction Script
#!/bin/bash

# Step 1: Set up the virtual environment
echo "Setting up the virtual environment..."
python3 -m venv ckd-env

# Step 2: Activate the virtual environment
echo "Activating the virtual environment..."
source ckd-env/bin/activate

# Step 3: Install required packages
echo "Installing required packages..."
pip install numpy pandas scikit-learn keras tensorflow

# Step 4: Ensure the dataset is available
if [ ! -f data.csv ]; then
    echo "Error: data.csv not found in the project directory. Please place your dataset in the project directory and try again."
    exit 1
fi

# Step 5: Run the classification script
echo "Running the CKD classification script..."
python ckd_classification.py

# Step 6: Deactivate the virtual environment
echo "Deactivating the virtual environment..."
deactivate

echo "Reproduction complete. Check the output above for model performance."
· Single Script or Notebook: Provide a script or Jupyter notebook that can reproduce the key results of the study from start to finish.
· Automated Execution: Ensure the script is automated as much as possible, requiring minimal manual intervention.
· Random Seeds: Set and document any random seeds used to ensure reproducibility of results.
5. Data Preprocessing
## Data Preprocessing

### Handling Missing Values
The dataset contains missing values that need to be addressed before model training. The following steps were taken to handle these missing values:

1. **Identification:** All missing values (NaNs) in the dataset were identified.
2. **Removal:** Rows containing missing values were removed from the dataset to ensure that the data is clean and complete for model training.

This approach was chosen to maintain simplicity and avoid potential biases introduced by imputation methods.

### Example Code for Handling Missing Values
The following Python code snippet demonstrates how missing values were removed from the dataset:
```python
import pandas as pd

# Load the raw data
data = pd.read_csv('data/raw_data.csv')

# Identify and remove rows with missing values
data_cleaned = data.dropna()

# Save the cleaned data (optional)
data_cleaned.to_csv('data/cleaned_data.csv', index=False)

6. Description of Models Used
    This study proposes the Least Absolute Shrinkage and Selection Operator (LASSO) and SES feature selection approach for CKD feature identification. Later, A combination of the Long short-term memory (LSTM) and Gated Recurrent Unit (GRU) ensemble deep-learning model is proposed for the CKD classification task. The features selected by the hybrid feature selection method are input into an ensemble deep-learning model

7. Assessment Metrics
 Evaluation metrics such as accuracy, precision, recall, and F score assess the model’s performance. The experimental results are compared with individual classifiers such as Decision tree (DT), Random Forest(RF), Logistic Regression (LR), and Support Vector Machine(SVM ). The results show a 2% improvement in classification accuracy when considering the proposed hybrid feature selection approach and Ensemble Deep Learning model LSTM and GRU.

8. Limitations/Validity
The results show a 2% improvement in classification accuracy when considering the proposed hybrid feature selection approach and Ensemble Deep Learning model LSTM and GRU. Further analysis indicates that certain features, including HEMO, POT, bacteria, and coronary artery disease, contribute minimally to classification tasks.
