% Define time range (in hours) time_hours = 0:23; % Define the network data traffic profile (just an example, replace with actual data) traffic_profile = [10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, ... 80, 85, 90, 80, 75, 70, 65, 60, 55, 45, 40, 35]; % Define different SIR values SIR_values = [5, 10, 15, 20]; % Preallocate arrays to store activity rates for different SIR values activity_rates = zeros(length(SIR_values), length(time_hours)); % Calculate small cell BS activity rate for each SIR value for i = 1:length(SIR_values) SIR = SIR_values(i); % Example calculation for activity rate, replace with actual calculations activity_rates(i, :) = 3 * traffic_profile / max(traffic_profile); % Example: Same activity rate for all SIR values activity_rates(i, :) = 2 * traffic_profile / min(traffic_profile); end % Plotting the activity rates for different SIR values figure; hold on; for i = 1:length(SIR_values) plot(time_hours, activity_rates(i, :), 'LineWidth', 2, 'DisplayName', ['SIR = ', num2str(SIR_values(i))]); end for j = 2:length(SIR_values-1) plot(time_hours, activity_rates(j, :), 'LineWidth', 4, 'DisplayName', ['SIR = ', num2str(SIR_values(j))]); end xlabel('Time (hours)'); ylabel('Small Cell BS Activity Rate'); title('Small Cell BS Activity Rate vs. Time for Different SIR Values'); legend('Location', 'northwest'); grid on; % Monte Carlo Simulation for Random BS Activation % Define a finer time range (in hours) for the Monte Carlo simulation time_hours = 0:0.1:24; % Define the probability of turning on a BS at each time step % Here, we use the Monte Carlo simulation to generate random probabilities % This randomization represents the uncertain nature of BS activation in real networks probability_turn_on = rand(size(time_hours)); % Generate random probabilities between 0 and 1 % Set a threshold for turning on a BS (adjust as needed) % If the randomly generated probability exceeds the threshold, the BS turns on threshold = 0.5; % Example threshold for BS activation % Determine which BS are turned on based on the generated random probabilities BS_turned_on = probability_turn_on > threshold; % Plot the results of the Monte Carlo simulation figure; plot(time_hours, BS_turned_on, 'b-', 'LineWidth', 2); xlabel('Time (hours)'); ylabel('Base Station Turned On'); title('Random Turning On of Base Stations (Monte Carlo Simulation)'); grid on; % Clarification: The use of the Monte Carlo method is implemented here by generating random % probabilities at each time step and comparing them to a threshold to determine BS activation. % This approach introduces randomness and simulates uncertainty, which is the core concept % of Monte Carlo simulations.