function BCDusingDNN(nsize,tdata,threshold) dnnobj=dnn(nsize); dnnobj.initializeweights(); mat=dnnobj.weights; popsize=100; solperpop=20; nogen=100; vbar_t=1; universes=convertmat2vect(mat,popsize); iter=1;maxiter=1000;bestfit=inf; while bestfit > threshold && iter< maxiter [output,universes,fitval]=dnnobj.train('GMVO',tdata,popsize,solperpop,nogen,universes); [universes]=sort_universes(universes,fitval); vbar_t=updatavbat_t(vbar_t); dnnobj.updateweights(universes); bestfit=getbestfitval(fitval); end