This document includes the code for Rowen et al. submitted to Field
Crops Research in 2024 titled ” Insecticides may facilitate the escape
of weeds from biological control”
This includes the code and statistical output for the Pre-plant cover data. The code covers Results section 3.2, Fig 2&3, and Fig S2&3.
Abstract 1. CONTEXT: Preventative pesticide seed
treatments (hereafter preventative pest management or PPM) are common in
large acreage row crops such as corn and soybean, and often include
active ingredients of both fungicides and neonicotinoid insecticides.
While PPM is intended to protect crops from soil-borne pathogens and
early season insect pests, these seed treatments may have detrimental
effects on biological control of weed seeds by insects.
2. RESEARCH QUESTION: Here, in two 3-year corn-soy rotations in
Pennsylvania USA, we investigated a PPM approach to insect management
compared to an integrated pest management approach (IPM) and a “no
(insect) pest management” (NPM) control. This was crossed with a grass
cover crop treatment to see if this conservation practice can help
recover some of the ecosystem services affected by chemical pest
management practices. We hypothesized that PPM and IPM approaches would
release weed seeds from biological control by insects, resulting in
higher weed pressure, but cover crops would increase biological
control.
3. METHODS: We measured the effect of these treatments on granivorous
insect activity-density, weed-seed predation, the weed-seed bank, and
mid-season weed biomass.
4. RESULTS: We found that, contrary to our hypothesis, planting a cover
crop decreased carabid activity-density, but did not have consistent
differences in weed-seed predation. Pest management and cover crop
treatments also had inconsistent effects on the weed-seed bank and
mid-season weed biomass, but insecticide use did affect the biomass of
glyphosate-resistant marestail (Erigeron canadensis L.). At the
end of the trial, glyphosate-resistant marestail was more abundant in
IPM and PPM plots without a cover crop.
5. IMPLICATIONS: Our results suggest that reducing insecticide use may
be important when combating herbicide-resistant weeds. As the adoption
conservation agriculture, including the use of no-till and cover crops,
grows, so does the use of neonicotinoid seed treatments and herbicides.
Planting cover crops and/or avoiding the use of insecticides may combat
these problematic weeds.;
Import libraries
# importing and formatting data
library(readxl)
library(plyr)
library(flextable)
library(reshape2)
# creating figures
library(ggplot2)
library(patchwork)
# Running models
library(car)
library(glmmTMB)
## Warning in check_dep_version(dep_pkg = "TMB"): package version mismatch:
## glmmTMB was built with TMB package version 1.9.15
## Current TMB package version is 1.9.14
## Please re-install glmmTMB from source or restore original 'TMB' package (see '?reinstalling' for more information)
library(DHARMa)
library(vegan)
library(pscl)
#library(VGAM)
library(performance)
library(corrplot)
library(emmeans)
Set up colors for graphs
colors = c("seagreen","darkseagreen4","darkgoldenrod4", "darkgoldenrod3","tomato4","tomato3")
colors.treat = c("seagreen","darkgoldenrod3","tomato3") # only for insecticide treatments
colors.2017 = c("#085C3D","seagreen","#FC9078","#FFE2DB") # for 2017 when IPM had not yet been implemented
# c("seagreen","darkseagreen4","tomato3","tomato4")
colors.cc <- c("darkgrey","antiquewhite")
Import data
wsb.data=read_excel("~/Dropbox/1PhD/Smith & Wickings Field Experiments (AKA smickings)/Manuscripts in progress/Weeds/PeerJ/Data&Stats/2_weedseedbank_2017_2018_2019_Apr2021.xlsx",sheet="weedseedbank_2017_2018_2019_Apr")
wsb.data$TimeYear <- wsb.data$Year
wsb.data$Year <- as.factor(wsb.data$Year)
wsb.data=mutate(wsb.data,Treatment=ifelse(Plot_ID=='105N' | Plot_ID=='106N'| Plot_ID=='203N'| Plot_ID=='204N'|Plot_ID=='305N'| Plot_ID=='306N'|
Plot_ID=='401N'|Plot_ID=='402N'| Plot_ID=='501N'| Plot_ID=='504N'| Plot_ID=='602N'| Plot_ID=='603N'|
Plot_ID=='102S'| Plot_ID=='106S'| Plot_ID=='201S'| Plot_ID=='204S'| Plot_ID=='303S'| Plot_ID=='305S'|
Plot_ID=='402S'| Plot_ID=='406S'| Plot_ID=='501S'| Plot_ID=='504S'| Plot_ID=='603S'| Plot_ID=='605S','1NPM',
ifelse(Plot_ID=='101N' | Plot_ID=='104N'| Plot_ID=='202N'| Plot_ID=='205N'| Plot_ID=='301N'| Plot_ID=='303N'|
Plot_ID=='405N'| Plot_ID=='406N'| Plot_ID=='502N'| Plot_ID=='503N'| Plot_ID=='604N'| Plot_ID=='606N'|
Plot_ID=='104S'| Plot_ID=='105S' | Plot_ID=='202S'| Plot_ID=='203S'| Plot_ID=='301S'|
Plot_ID=='306S'| Plot_ID=='404S'| Plot_ID=='405S'| Plot_ID=='502S'| Plot_ID=='503S'| Plot_ID=='601S'|
Plot_ID=='606S','2IPM','3PPM')))
wsb.data=mutate(wsb.data,cover_crop=ifelse(Plot_ID=='101N' | Plot_ID=='102N'| Plot_ID=='106N'| Plot_ID=='203N'|Plot_ID=='205N'| Plot_ID=='206N'| Plot_ID=='303N'| Plot_ID=='304N'|
Plot_ID=='305N'| Plot_ID=='401N'| Plot_ID=='403N'| Plot_ID=='406N'| Plot_ID=='502N'| Plot_ID=='504N'|Plot_ID=='505N'| Plot_ID=='601N'|
Plot_ID=='602N'| Plot_ID=='604N'| Plot_ID=='102S'| Plot_ID=='103S'| Plot_ID=='105S'| Plot_ID=='202S'| Plot_ID=='204S'| Plot_ID=='206S'|
Plot_ID=='303S'| Plot_ID=='304S'| Plot_ID=='306S'| Plot_ID=='401S'| Plot_ID=='404S'| Plot_ID=='406S'| Plot_ID=='501S'| Plot_ID=='503S'|
Plot_ID=='505S'| Plot_ID=='601S'| Plot_ID=='602S'|Plot_ID=='605S','cover', 'fallow'))
wsb.data=mutate(wsb.data,Treated=ifelse(Year == '2017' &Treatment=='2IPM'|Treatment== '1NPM','1NPM',Treatment))
wsb.data$Year=as.factor(wsb.data$Year)
#head(wsb.data)
Fig S2 Weed community in the weed seed bank. Stacked bars are colored
by weed species with > 20 individuals recovered over three years.
Grey stripes show one direction of blocking in Latin-square experimental
design. Species abbreviations: Cabo = ˆCapsella bursa-pastoris
(Shepard’s purse), Cah = Cardamine hirsuta (hairy bittercress), Cha =
Chenopodium album (lambsquarter), Coc = Conyza canadensis (marestail),
Osx = Oxalis stricta (yellow woodsorrel) Poo = Portulaca oleracea
(purslane), Sop = Solanum ptychanthum (eastern black nightshade),Ta =
Taraxacum spp. (dandelion), Dii = Digitaria ischaemum (smooth
crabgrass), Pand = Panicum dichotomiflorum (fall panicum), Sef = Setaria
faberi (giant foxtail), Sev = Setaria viridis (green foxtail).
### Weed stats for each field year (Table 1)
# Forb biomass
forb.summary <- ddply(wsb.data, .(Year, Field), summarize, mean.forb.count = mean (forbs), N = sum(!is.na(forbs)),sd=sd(forbs),se=sd/sqrt(N));forb.summary
## Year Field mean.forb.count N sd se
## 1 2017 N 60.083333 36 39.795459 6.6325765
## 2 2017 S 57.361111 36 27.446731 4.5744551
## 3 2018 N 39.166667 36 23.462432 3.9104053
## 4 2018 S 31.805556 36 25.156447 4.1927412
## 5 2019 N 17.000000 36 17.019317 2.8365528
## 6 2019 S 2.916667 36 3.228224 0.5380373
grass.summary <- ddply(wsb.data, .(Year, Field), summarize, mean.grass.count = mean (grasses), N = sum(!is.na(grasses)),sd=sd(grasses),se=sd/sqrt(N));grass.summary
## Year Field mean.grass.count N sd se
## 1 2017 N 3.2222222 36 3.0529715 0.50882858
## 2 2017 S 66.5000000 36 51.8594254 8.64323756
## 3 2018 N 1.7222222 36 2.7423776 0.45706293
## 4 2018 S 15.7777778 36 15.3122008 2.55203346
## 5 2019 N 0.1944444 36 0.4671766 0.07786277
## 6 2019 S 3.1944444 36 4.3148875 0.71914791
richness.summary <- ddply(wsb.data, .(Year, Field), summarize, mean.richness = mean (total_richness_wsb,na.rm=T), N = sum(!is.na(total_richness_wsb)),sd=sd(total_richness_wsb,na.rm=T),se=sd/sqrt(N));richness.summary
## Year Field mean.richness N sd se
## 1 2017 N 6.361111 36 2.598382 0.4330636
## 2 2017 S 10.944444 36 2.848001 0.4746669
## 3 2018 N 6.305556 36 2.670682 0.4451136
## 4 2018 S 7.527778 36 3.307879 0.5513132
## 5 2019 N 3.638889 36 2.058471 0.3430784
## 6 2019 S 2.333333 36 1.820518 0.3034197
To analyze data, we used a 4-way interaction model with Treatment, cover crop, year and field and random effects: Plot ID (experimental unit), and blocking factors Block (column) and Plot (row in Latin-square design).
weed.forbs.overall=glmmTMB(forbs~Treatment*cover_crop*Year*Field+(1|Plot_ID:Field)+(1|Block:Field)+(1|Plot:Field),ziformula=~1, family="genpois", data=subset(wsb.data))
#summary(weed.forbs.overall)
#Anova(weed.forbs.overall,type=3)
simres <- simulateResiduals(weed.forbs.overall)
plot(simres)
x=emmeans(weed.forbs.overall,~cover_crop:Treatment:Year:Field,type="response")
forb.WSB.table = as.data.frame(x)
#check for multicollinarity between predictors
weed.forbs.overall_noINT <- glmmTMB(forbs~Treatment+cover_crop+Year+Field+(1|Plot_ID:Field)+(1|Block:Field)+(1|Plot:Field),ziformula=~1, family="genpois", data=subset(wsb.data))
check_collinearity(weed.forbs.overall_noINT)
## # Check for Multicollinearity
##
## * conditional component:
##
## Low Correlation
##
## Term VIF VIF 95% CI Increased SE Tolerance Tolerance 95% CI
## Treatment 1.01 [1.00, 6.95e+05] 1.00 0.99 [0.00, 1.00]
## cover_crop 1.01 [1.00, 1461.10] 1.01 0.99 [0.00, 1.00]
## Year 1.02 [1.00, 6.35] 1.01 0.98 [0.16, 1.00]
## Field 1.01 [1.00, 6.93e+05] 1.00 0.99 [0.00, 1.00]
Reducing non-significant interactions. The results of this model are reported in the text (section 3.2). Note: some interactions are not significant but they help with model fit, and are thus retained.
weed.forbs.selected=glmmTMB(forbs~Treatment+cover_crop+Year*Field+(1|Plot_ID:Field)+(1|Block:Field)+(1|Plot:Field),ziformula=~1, family="genpois", data=subset(wsb.data))
summaryOutput <- summary(weed.forbs.selected)
anovaOutput <- Anova(weed.forbs.selected,type=3)
r2Output <- r2_nakagawa(weed.forbs.selected)
emmeans(weed.forbs.selected,pairwise~Treatment|Year,type="response")
## $emmeans
## Year = 2017:
## Treatment response SE df asymp.LCL asymp.UCL
## 1NPM 65.46 7.24 Inf 52.71 81.3
## 2IPM 51.73 6.05 Inf 41.14 65.1
## 3PPM 55.07 6.18 Inf 44.19 68.6
##
## Year = 2018:
## Treatment response SE df asymp.LCL asymp.UCL
## 1NPM 39.49 4.67 Inf 31.33 49.8
## 2IPM 31.21 3.90 Inf 24.43 39.9
## 3PPM 33.22 4.17 Inf 25.98 42.5
##
## Year = 2019:
## Treatment response SE df asymp.LCL asymp.UCL
## 1NPM 9.72 1.49 Inf 7.20 13.1
## 2IPM 7.68 1.23 Inf 5.61 10.5
## 3PPM 8.17 1.32 Inf 5.96 11.2
##
## Results are averaged over the levels of: cover_crop, Field
## Confidence level used: 0.95
## Intervals are back-transformed from the log scale
##
## $contrasts
## Year = 2017:
## contrast ratio SE df null z.ratio p.value
## 1NPM / 2IPM 1.265 0.1247 Inf 1 2.390 0.0445
## 1NPM / 3PPM 1.189 0.1137 Inf 1 1.807 0.1673
## 2IPM / 3PPM 0.939 0.0967 Inf 1 -0.607 0.8163
##
## Year = 2018:
## contrast ratio SE df null z.ratio p.value
## 1NPM / 2IPM 1.265 0.1247 Inf 1 2.390 0.0445
## 1NPM / 3PPM 1.189 0.1137 Inf 1 1.807 0.1673
## 2IPM / 3PPM 0.939 0.0967 Inf 1 -0.607 0.8163
##
## Year = 2019:
## contrast ratio SE df null z.ratio p.value
## 1NPM / 2IPM 1.265 0.1247 Inf 1 2.390 0.0445
## 1NPM / 3PPM 1.189 0.1137 Inf 1 1.807 0.1673
## 2IPM / 3PPM 0.939 0.0967 Inf 1 -0.607 0.8163
##
## Results are averaged over the levels of: cover_crop, Field
## P value adjustment: tukey method for comparing a family of 3 estimates
## Tests are performed on the log scale
simres <- simulateResiduals(weed.forbs.selected)
plot(simres)
# test the fit of fixed factors
weed.forbs.null <- glmmTMB(forbs~1+(1|Plot_ID:Field)+(1|Block:Field)+(1|Plot:Field),ziformula=~1, family="genpois", data=subset(wsb.data))
model_null_comp <- anova(weed.forbs.selected,weed.forbs.null)
ANOVA Table reporting the effects of insecticide treatment and cover crop on forb abundance in weed seed bank
Model: | |||
---|---|---|---|
N = 216 | |||
Model significance: | |||
Distribution used: genpois | |||
Conditional Nakagawa R2 (including random effects): 0.97 | Marginal Nakagawa R2 (fixed effects only): 0.89 | ||
Fixed effect term | Chisq | Df | Pr(>Chisq) |
(Intercept) | 690.263 | 1 | 0.000 |
Treatment | 6.425 | 2 | 0.040 |
cover_crop | 1.599 | 1 | 0.206 |
Year | 61.028 | 2 | 0.000 |
Field | 0.176 | 1 | 0.675 |
Year:Field | 28.144 | 2 | 0.000 |
Estimate of Random effects |
weed.forbs.selected=glmmTMB(forbs~Treatment+cover_crop+Year*Field+(1|Plot_ID:Field)+(1|Block:Field)+(1|Plot:Field),ziformula=~1, family="genpois", data=subset(wsb.data,Year!="2017"))
summaryOutput <- summary(weed.forbs.selected)
anovaOutput <- Anova(weed.forbs.selected,type=3)
r2Output <- r2_nakagawa(weed.forbs.selected)
emmeans(weed.forbs.selected,pairwise~Treatment|Year,type="response")
## $emmeans
## Year = 2018:
## Treatment response SE df asymp.LCL asymp.UCL
## 1NPM 35.79 4.58 Inf 27.86 46.0
## 2IPM 30.04 4.19 Inf 22.85 39.5
## 3PPM 37.55 4.74 Inf 29.32 48.1
##
## Year = 2019:
## Treatment response SE df asymp.LCL asymp.UCL
## 1NPM 8.62 1.41 Inf 6.26 11.9
## 2IPM 7.23 1.28 Inf 5.11 10.2
## 3PPM 9.04 1.53 Inf 6.49 12.6
##
## Results are averaged over the levels of: cover_crop, Field
## Confidence level used: 0.95
## Intervals are back-transformed from the log scale
##
## $contrasts
## Year = 2018:
## contrast ratio SE df null z.ratio p.value
## 1NPM / 2IPM 1.192 0.164 Inf 1 1.275 0.4095
## 1NPM / 3PPM 0.953 0.127 Inf 1 -0.361 0.9308
## 2IPM / 3PPM 0.800 0.114 Inf 1 -1.564 0.2616
##
## Year = 2019:
## contrast ratio SE df null z.ratio p.value
## 1NPM / 2IPM 1.192 0.164 Inf 1 1.275 0.4095
## 1NPM / 3PPM 0.953 0.127 Inf 1 -0.361 0.9308
## 2IPM / 3PPM 0.800 0.114 Inf 1 -1.564 0.2616
##
## Results are averaged over the levels of: cover_crop, Field
## P value adjustment: tukey method for comparing a family of 3 estimates
## Tests are performed on the log scale
simres <- simulateResiduals(weed.forbs.selected)
plot(simres)
# test the fit of fixed factors
weed.forbs.null <- glmmTMB(forbs~1+(1|Plot_ID:Field)+(1|Block:Field)+(1|Plot:Field),ziformula=~1, family="genpois", data=subset(wsb.data,Year!="2017"))
model_null_comp <- anova(weed.forbs.selected,weed.forbs.null)
ANOVA Table reporting the effects of insecticide treatment and cover crop on forb abundance in weed seed bank
Model: | |||
---|---|---|---|
Model significance: | |||
Distribution used: genpois | |||
Fixed effect term | Chisq | Df | Pr(>Chisq) |
(Intercept) | 453.612 | 1 | 0.000 |
Treatment | 2.690 | 2 | 0.261 |
cover_crop | 5.018 | 1 | 0.025 |
Year | 31.922 | 1 | 0.000 |
Field | 1.878 | 1 | 0.171 |
Year:Field | 16.488 | 1 | 0.000 |
Estimate of Random effects |
Figure 2: : A) Estimated marginal means (95% confidence intervals
[CIs]) of forb abundance (per 946 cm3 soil) in the weed-seed bank before
planting in each field and year, and B) for 2018 and 2019 and fields
combined. Means for treatments with cover crops indicated with a solid
line, means without cover crop indicated by a dashed line. Raw data
shown as open small shapes behind means and CIs
To analyze data, we used a 4-way interaction model with Treatment, cover crop, year and field and random effects: Plot ID (experimental unit), and blocking factors Block (column) and Plot (row in Latin-square design).
weed.grasses.overall=glmmTMB(grasses~Treatment*cover_crop*Field*Year+(1|Plot_ID:Field)+(1|Block:Field)+(1|Plot:Field),ziformula=~1, family="genpois", data=wsb.data)
#summary(weed.grasses.overall)
#Anova(weed.grasses.overall,type=3)
simres <- simulateResiduals(weed.grasses.overall)
plot(simres)
emmeans(weed.grasses.overall,pairwise~cover_crop|Year:Field)
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
## Year = 2017, Field = N:
## cover_crop emmean SE df asymp.LCL asymp.UCL
## cover 1.239 0.325 Inf 6.03e-01 1.875
## fallow 1.094 0.338 Inf 4.31e-01 1.757
##
## Year = 2018, Field = N:
## cover_crop emmean SE df asymp.LCL asymp.UCL
## cover 0.656 0.379 Inf -8.66e-02 1.398
## fallow 0.524 0.375 Inf -2.11e-01 1.259
##
## Year = 2019, Field = N:
## cover_crop emmean SE df asymp.LCL asymp.UCL
## cover -0.733 0.574 Inf -1.86e+00 0.393
## fallow -6.550 1368.206 Inf -2.69e+03 2675.084
##
## Year = 2017, Field = S:
## cover_crop emmean SE df asymp.LCL asymp.UCL
## cover 4.202 0.214 Inf 3.78e+00 4.622
## fallow 3.842 0.219 Inf 3.41e+00 4.271
##
## Year = 2018, Field = S:
## cover_crop emmean SE df asymp.LCL asymp.UCL
## cover 2.486 0.257 Inf 1.98e+00 2.989
## fallow 2.634 0.246 Inf 2.15e+00 3.116
##
## Year = 2019, Field = S:
## cover_crop emmean SE df asymp.LCL asymp.UCL
## cover 0.922 0.349 Inf 2.38e-01 1.607
## fallow 1.189 0.310 Inf 5.81e-01 1.798
##
## Results are averaged over the levels of: Treatment
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
##
## $contrasts
## Year = 2017, Field = N:
## contrast estimate SE df z.ratio p.value
## cover - fallow 0.145 0.356 Inf 0.406 0.6848
##
## Year = 2018, Field = N:
## contrast estimate SE df z.ratio p.value
## cover - fallow 0.132 0.434 Inf 0.304 0.7611
##
## Year = 2019, Field = N:
## contrast estimate SE df z.ratio p.value
## cover - fallow 5.818 1368.206 Inf 0.004 0.9966
##
## Year = 2017, Field = S:
## contrast estimate SE df z.ratio p.value
## cover - fallow 0.360 0.111 Inf 3.238 0.0012
##
## Year = 2018, Field = S:
## contrast estimate SE df z.ratio p.value
## cover - fallow -0.148 0.206 Inf -0.718 0.4729
##
## Year = 2019, Field = S:
## contrast estimate SE df z.ratio p.value
## cover - fallow -0.267 0.349 Inf -0.764 0.4452
##
## Results are averaged over the levels of: Treatment
## Results are given on the log (not the response) scale.
x=emmeans(weed.grasses.overall,~cover_crop:Treatment:Year:Field,type="response")
grass.WSB.table = as.data.frame(x)
grass.WSB.table
## cover_crop Treatment Year Field response SE df asymp.LCL asymp.UCL
## cover 1NPM 2017 N 3.14993 1.543554 Inf 1.20556 8
## fallow 1NPM 2017 N 2.00258 1.185838 Inf 0.62740 6
## cover 2IPM 2017 N 2.83838 1.417413 Inf 1.06660 8
## fallow 2IPM 2017 N 3.00300 1.431021 Inf 1.18014 8
## cover 3PPM 2017 N 4.59517 1.911397 Inf 2.03347 10
## fallow 3PPM 2017 N 4.42741 1.858701 Inf 1.94447 10
## cover 1NPM 2018 N 1.16977 0.826896 Inf 0.29268 5
## fallow 1NPM 2018 N 1.41942 0.853760 Inf 0.43664 5
## cover 2IPM 2018 N 2.83219 1.414501 Inf 1.06414 8
## fallow 2IPM 2018 N 2.12896 1.109134 Inf 0.76685 6
## cover 3PPM 2018 N 2.15771 1.106250 Inf 0.78993 6
## fallow 3PPM 2018 N 1.59268 0.927207 Inf 0.50884 5
## cover 1NPM 2019 N 0.42399 0.431114 Inf 0.05779 3
## fallow 1NPM 2019 N 0.00000 0.000090 Inf 0.00000 Inf
## cover 2IPM 2019 N 0.71993 0.538388 Inf 0.16624 3
## fallow 2IPM 2019 N 0.36549 0.375901 Inf 0.04869 3
## cover 3PPM 2019 N 0.36363 0.374063 Inf 0.04842 3
## fallow 3PPM 2019 N 0.36507 0.375666 Inf 0.04858 3
## cover 1NPM 2017 S 74.08217 17.391094 Inf 46.76174 117
## fallow 1NPM 2017 S 49.17459 12.126195 Inf 30.32766 80
## cover 2IPM 2017 S 70.15562 16.530394 Inf 44.20775 111
## fallow 2IPM 2017 S 52.44448 12.818481 Inf 32.48248 85
## cover 3PPM 2017 S 57.41624 13.875083 Inf 35.75487 92
## fallow 3PPM 2017 S 39.31731 10.092417 Inf 23.77320 65
## cover 1NPM 2018 S 16.98584 5.101000 Inf 9.42896 31
## fallow 1NPM 2018 S 14.88226 4.743518 Inf 7.96820 28
## cover 2IPM 2018 S 11.30606 3.762911 Inf 5.88860 22
## fallow 2IPM 2018 S 13.52035 4.209479 Inf 7.34466 25
## cover 3PPM 2018 S 9.03211 3.146998 Inf 4.56259 18
## fallow 3PPM 2018 S 13.43956 4.215667 Inf 7.26748 25
## cover 1NPM 2019 S 2.42529 1.265234 Inf 0.87238 7
## fallow 1NPM 2019 S 4.72439 1.899120 Inf 2.14871 10
## cover 2IPM 2019 S 1.96385 1.128988 Inf 0.63645 6
## fallow 2IPM 2019 S 2.08919 1.000345 Inf 0.81735 5
## cover 3PPM 2019 S 3.34060 1.493806 Inf 1.39058 8
## fallow 3PPM 2019 S 3.58960 1.581141 Inf 1.51394 9
##
## Confidence level used: 0.95
## Intervals are back-transformed from the log scale
weed.grasses.null <- glmmTMB(grasses~1+(1|Plot_ID:Field)+(1|Block:Field)+(1|Plot:Field),ziformula=~1, family="genpois", data=wsb.data)
model_null_comp <- anova(weed.grasses.overall,weed.grasses.null)
model_null_comp
## Data: wsb.data
## Models:
## weed.grasses.null: grasses ~ 1 + (1 | Plot_ID:Field) + (1 | Block:Field) + (1 | , zi=~1, disp=~1
## weed.grasses.null: Plot:Field), zi=~1, disp=~1
## weed.grasses.overall: grasses ~ Treatment * cover_crop * Field * Year + (1 | Plot_ID:Field) + , zi=~1, disp=~1
## weed.grasses.overall: (1 | Block:Field) + (1 | Plot:Field), zi=~1, disp=~1
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## weed.grasses.null 6 1348.0 1368.3 -668.02 1336.0
## weed.grasses.overall 41 1184.7 1323.1 -551.36 1102.7 233.31 35 < 2.2e-16
##
## weed.grasses.null
## weed.grasses.overall ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Reducing non-significant interactions. The results of this model are reported in the text (section 3.2). Note: some interactions are not significant but they help with model fit, and are thus retained.
weed.grasses.selected=glmmTMB(grasses~Treatment+cover_crop+Field*Year+(1|Plot_ID:Field)+(1|Block:Field)+(1|Plot:Field),ziformula=~1, family="genpois", data=wsb.data)
summaryOutput <- summary(weed.grasses.selected)
anovaOutput <-Anova(weed.grasses.selected,type=3)
r2Output <- r2_nakagawa(weed.grasses.selected)
simres <- simulateResiduals(weed.grasses.selected)
plot(simres)
#(weed.grasses.selected,pairwise~Treatment|Year,type="response")
# test the fit of fixed factors
weed.grasses.null <- glmmTMB(grasses~1+(1|Plot_ID:Field)+(1|Block:Field)+(1|Plot:Field),ziformula=~1, family="genpois", data=wsb.data)
model_null_comp <- anova(weed.grasses.selected,weed.grasses.null)
ANOVA Table reporting the effects of insecticide treatment and cover crop on forb abundance in weed seed bank
Model: | |||
---|---|---|---|
N = 216 | |||
Model significance: | |||
Distribution used: genpois | |||
Conditional Nakagawa R2 (including random effects): 0.97 | Marginal Nakagawa R2 (fixed effects only): 0.9 | ||
Fixed effect term | Chisq | Df | Pr(>Chisq) |
(Intercept) | 28.284 | 1 | 0.000 |
Treatment | 2.157 | 2 | 0.340 |
cover_crop | 5.304 | 1 | 0.021 |
Field | 72.290 | 1 | 0.000 |
Year | 23.769 | 2 | 0.000 |
Field:Year | 9.362 | 2 | 0.009 |
Estimate of Random effects |
Remove 2017
weed.grasses.selectedno2017=glmmTMB(grasses~Treatment+cover_crop+Year+Field+(1|Plot_ID:Field)+(1|Block:Field)+(1|Plot:Field),ziformula=~1, family="genpois", data=subset(wsb.data,Year!="2017"))
summaryOutput <- summary(weed.grasses.selectedno2017)
anovaOutput <- Anova(weed.grasses.selectedno2017,type=3)
r2Output <- r2_nakagawa(weed.grasses.selectedno2017)
#emmeans(weed.forbs.selected,pairwise~Treatment|Year,type="response")
simres <- simulateResiduals(weed.grasses.selectedno2017)
plot(simres)
# test the fit of fixed factors
weed.grasses.nullno2017 <- glmmTMB(grasses~1+(1|Plot_ID:Field)+(1|Block:Field)+(1|Plot:Field),ziformula=~1, family="genpois", data=subset(wsb.data,Year!="2017"))
model_null_comp <- anova(weed.grasses.selectedno2017,weed.grasses.nullno2017)
ANOVA Table reporting the effects of insecticide treatment and cover crop on forb abundance in weed seed bank
Model: | |||
---|---|---|---|
N = 144 | |||
Model significance: | |||
Distribution used: genpois | |||
Conditional Nakagawa R2 (including random effects): 0.92 | Marginal Nakagawa R2 (fixed effects only): 0.82 | ||
Fixed effect term | Chisq | Df | Pr(>Chisq) |
(Intercept) | 3.510 | 1 | 0.061 |
Treatment | 1.231 | 2 | 0.540 |
cover_crop | 0.086 | 1 | 0.770 |
Year | 69.086 | 1 | 0.000 |
Field | 51.292 | 1 | 0.000 |
Estimate of Random effects |
Figure 3: Estimated marginal means (95% confidence intervals [CIs])
of grass abundance (per 946 cm3 soil) in the weed-seed bank before
planting A) for in each field and year, and B) for all years and fields
combined. In A) means for treatments with cover crops indicated with a
solid line, means without cover crop indicated by a dashed line. Raw
data shown as open small shapes behind means and CIs
wsb.data$total_richness_wsb<- specnumber(wsb.data[8:60])
#summary(wsb.data)
weed.richness.overall=glmmTMB(total_richness_wsb~Year*Field*Treatment*cover_crop+(1|Plot_ID:Field)+(1|Block:Field)+(1|Plot:Field)+(1|Plot_ID:Field),family='genpois', data=wsb.data)
#summary(weed.richness.overall)
#Anova(weed.richness.overall,type=3)
simres <- simulateResiduals(weed.richness.overall)
plot(simres)
x=emmeans(weed.richness.overall,~cover_crop:Treatment:Year:Field,type="response")
richness.WSB.table = as.data.frame(x)
weed.richness.selected=glmmTMB(total_richness_wsb~Year*Field+Treatment+cover_crop+(1|Plot_ID:Field)+(1|Block:Field)+(1|Plot:Field),family='genpois', data=wsb.data)
summaryOutput <- summary(weed.richness.selected)
anovaOutput <-Anova(weed.richness.selected,type=3)
#r2Output <- r2_nakagawa(weed.richness.selected)
simres <- simulateResiduals(weed.richness.selected)
plot(simres)
emmeans(weed.richness.selected,~cover_crop:Treatment|Year:Field,type="response")
## Year = 2017, Field = N:
## cover_crop Treatment response SE df asymp.LCL asymp.UCL
## cover 1NPM 6.54 0.677 Inf 5.34 8.01
## fallow 1NPM 6.91 0.713 Inf 5.64 8.45
## cover 2IPM 5.42 0.570 Inf 4.41 6.66
## fallow 2IPM 5.72 0.601 Inf 4.66 7.03
## cover 3PPM 6.46 0.668 Inf 5.28 7.92
## fallow 3PPM 6.82 0.704 Inf 5.57 8.35
##
## Year = 2018, Field = N:
## cover_crop Treatment response SE df asymp.LCL asymp.UCL
## cover 1NPM 6.49 0.673 Inf 5.30 7.96
## fallow 1NPM 6.85 0.707 Inf 5.60 8.39
## cover 2IPM 5.38 0.567 Inf 4.38 6.61
## fallow 2IPM 5.68 0.596 Inf 4.62 6.97
## cover 3PPM 6.41 0.665 Inf 5.23 7.86
## fallow 3PPM 6.77 0.699 Inf 5.53 8.29
##
## Year = 2019, Field = N:
## cover_crop Treatment response SE df asymp.LCL asymp.UCL
## cover 1NPM 3.75 0.435 Inf 2.99 4.71
## fallow 1NPM 3.96 0.458 Inf 3.15 4.96
## cover 2IPM 3.11 0.366 Inf 2.47 3.91
## fallow 2IPM 3.28 0.386 Inf 2.60 4.13
## cover 3PPM 3.70 0.430 Inf 2.95 4.65
## fallow 3PPM 3.91 0.452 Inf 3.11 4.90
##
## Year = 2017, Field = S:
## cover_crop Treatment response SE df asymp.LCL asymp.UCL
## cover 1NPM 11.07 1.061 Inf 9.17 13.35
## fallow 1NPM 11.68 1.118 Inf 9.68 14.09
## cover 2IPM 9.17 0.895 Inf 7.57 11.10
## fallow 2IPM 9.67 0.944 Inf 7.99 11.71
## cover 3PPM 10.93 1.050 Inf 9.05 13.19
## fallow 3PPM 11.53 1.106 Inf 9.56 13.92
##
## Year = 2018, Field = S:
## cover_crop Treatment response SE df asymp.LCL asymp.UCL
## cover 1NPM 7.64 0.769 Inf 6.27 9.30
## fallow 1NPM 8.06 0.810 Inf 6.62 9.81
## cover 2IPM 6.33 0.649 Inf 5.17 7.74
## fallow 2IPM 6.68 0.684 Inf 5.46 8.16
## cover 3PPM 7.54 0.761 Inf 6.19 9.19
## fallow 3PPM 7.96 0.801 Inf 6.53 9.69
##
## Year = 2019, Field = S:
## cover_crop Treatment response SE df asymp.LCL asymp.UCL
## cover 1NPM 2.39 0.312 Inf 1.85 3.09
## fallow 1NPM 2.52 0.328 Inf 1.95 3.25
## cover 2IPM 1.98 0.261 Inf 1.53 2.56
## fallow 2IPM 2.09 0.275 Inf 1.61 2.70
## cover 3PPM 2.36 0.309 Inf 1.83 3.05
## fallow 3PPM 2.49 0.324 Inf 1.93 3.21
##
## Confidence level used: 0.95
## Intervals are back-transformed from the log scale
ANOVA Table reporting the effects of insecticide treatment and cover crop on forb abundance in weed seed bank
Model: | |||
---|---|---|---|
N = 216 | |||
Model significance: | |||
Distribution used: genpois | |||
Fixed effect term | Chisq | Df | Pr(>Chisq) |
(Intercept) | 330.084 | 1 | 0.000 |
Year | 36.616 | 2 | 0.000 |
Field | 17.016 | 1 | 0.000 |
Treatment | 10.781 | 2 | 0.005 |
cover_crop | 1.117 | 1 | 0.291 |
Year:Field | 43.502 | 2 | 0.000 |
Estimate of Random effects |
Figure S3: Estimated marginal means (95% confidence intervals [CIs])
of species richness in the weed-seed bank before planting A) in each
field and year, and B) for all years and fields combined. In A) means
for treatments with cover crops indicated with a solid line, means
without cover crop indicated by a dashed line. Raw data shown as open
small shapes behind means and CIs. Significance of PM treatments
included in panels where GLMM indicated PM had a significant effect, and
the P values for pairwise comparisons are given.