library(glmnet) as <- read.csv("E://User tgvf554//October and November//Tian Sun//LASSO regression.csv") head(as) x<- model.matrix(X1~.,as) y <- as$X1 cvRs <- cv.glmnet(x,y, alpha=1, nfolds=10, family="gaussian", ) plot(cvRs) lambda_min <- cvRs$lambda.min lambda_min #best value of lambda lambda_1se <- cvRs$lambda.1se lambda_1se coef(cvRs,s=lambda_min) Active.Index<-which(coefficients!=0) Active.coefficients <- coefficients(Active.Index) ####Lasso Process diagram for filtering dynamic variables fit <- glmnet(x,y,family = "gaussian") plot(fit,xvar="lambda",label = "lambda") coefficients <-coef(fit,s=cvRs$lambda.min) coefficients