targets::tar_read(DB_IPAQ_0_12) |>
  dplyr::select(-n_visits) |>  
  dplyr::group_by(MONTH) |> 
  skimr::skim()| Name | dplyr::group_by(…) | 
| Number of rows | 154 | 
| Number of columns | 3 | 
| _______________________ | |
| Column type frequency: | |
| factor | 1 | 
| numeric | 1 | 
| ________________________ | |
| Group variables | MONTH | 
Variable type: factor
| skim_variable | MONTH | n_missing | complete_rate | ordered | n_unique | top_counts | 
|---|---|---|---|---|---|---|
| patient | 0 | 0 | 1 | FALSE | 77 | 1: 1, 2: 1, 3: 1, 4: 1 | 
| patient | 12 | 0 | 1 | FALSE | 77 | 1: 1, 2: 1, 3: 1, 4: 1 | 
Variable type: numeric
| skim_variable | MONTH | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist | 
|---|---|---|---|---|---|---|---|---|---|---|---|
| MET_MIN_WK | 0 | 0 | 1 | 5222.97 | 3627.95 | 876 | 3144 | 4539 | 6396 | 27960 | ▇▃▁▁▁ | 
| MET_MIN_WK | 12 | 0 | 1 | 4192.22 | 4722.84 | 0 | 1551 | 2796 | 5502 | 23106 | ▇▃▁▁▁ | 
tar_read(change_IPAQ_0_12)$hd_pbci_diff |> 
  dplyr::filter(q == 0.5) |> 
  dplyr::mutate(dplyr::across(estimate:ci_u, ~round(.x, digits = 2)))targets::tar_read(change_IPAQ_0_12)$pChange in IPAQ-SF MET-min/week between 6 and 12 months (N = 77). On panel A, the errors bars over the points are the standard deviations around the means, while on panel D it is the percentile bootstrap 95% confidence interval around the median estimate. On panels E and F, the error bars are percentile bootstrap 95% confidence intervals not corrected for multiple comparisons. On panels B, C and D, the horizontal and/or vertical segments are the estimates of the deciles (panels B and C) or the quantiles (panel D, step of 0.05) of the distributions; the thickest segments are the median estimates. On panel B, the diagonal black line depicts the identity line. If any, significant results (based on adjusted p-values) in the shift (panel E) and difference asymmetry (panel F) functions are highlighted using thick red circles. A small pseudo-random movement has been added horizontally and vertically to the raw data displayed on panel B to minimize the presence of points fully overlapped. The estimates of the deciles of the marginal distributions (panels B, C and D), the quantiles of the individual differences (panel D), the decile differences (panel E) and the quantile sums (panel F) have been computed using the Harrell-Davis estimator.