Table of content

res <-
  purrr::map2(list_titles, list_tables, function(x, y) {
  
  knitr::knit_child(text = c(
                    
                    "\n",
                    "# `r x`",
                    "\n",
                    "## Shift function",
                    "\n",
                    "```{r, echo = FALSE}",
                    "y$sf |> dplyr::mutate(
                    dplyr::across(`12`:ci_upper, ~round(.x, digits = 2)),
                    p_value = format(round(p_value, 3), nsmall = 3),
                    adj_p_value_bh = format(round(adj_p_value_bh, 3), nsmall = 3)
                    )",
                    "```",
                    "```{r, results='asis'}",
                    "cat(legend_sf)",
                    "```",
                    "\n",
                    "## Difference asymmetry function",
                    "\n",
                    "```{r, echo = FALSE}",
                    "y$daf |> dplyr::mutate(
                    dplyr::across(Est_q:ci.up, ~round(.x, digits = 2)),
                    p.value = format(round(p.value, 3), nsmall = 3),
                    adj_p_value_bh = format(round(adj_p_value_bh, 3), nsmall = 3)
                    )",
                    "```",
                    "```{r, results='asis'}",
                    "cat(legend_asym)",
                    "```"
  ),
  envir = environment(),
  quiet  = TRUE
  )
})

cat(unlist(res), sep = "\n")

1 6MWT distance (0-12 months)

1.1 Shift function

cat(legend_sf)

q = quantile; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.

1.2 Difference asymmetry function

cat(legend_asym)

Est_q = quantiles of differences; Est_1.minus.q = 1 - quantiles of differences; SUM = sum of quantiles; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.

2 IPAQ-SF MET-min / week (6-12 months)

2.1 Shift function

cat(legend_sf)

q = quantile; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.

2.2 Difference asymmetry function

cat(legend_asym)

Est_q = quantiles of differences; Est_1.minus.q = 1 - quantiles of differences; SUM = sum of quantiles; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.

3 IPAQ-SF MET-min / week (0-12 months)

3.1 Shift function

cat(legend_sf)

q = quantile; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.

3.2 Difference asymmetry function

cat(legend_asym)

Est_q = quantiles of differences; Est_1.minus.q = 1 - quantiles of differences; SUM = sum of quantiles; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.

4 EMAPS | Intrinsic motivation (0-12 months)

4.1 Shift function

cat(legend_sf)

q = quantile; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.

4.2 Difference asymmetry function

cat(legend_asym)

Est_q = quantiles of differences; Est_1.minus.q = 1 - quantiles of differences; SUM = sum of quantiles; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.

5 EMAPS | Integrated regulation (0-12 months)

5.1 Shift function

cat(legend_sf)

q = quantile; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.

5.2 Difference asymmetry function

cat(legend_asym)

Est_q = quantiles of differences; Est_1.minus.q = 1 - quantiles of differences; SUM = sum of quantiles; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.

6 EMAPS | Identified regulation (0-12 months)

6.1 Shift function

cat(legend_sf)

q = quantile; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.

6.2 Difference asymmetry function

cat(legend_asym)

Est_q = quantiles of differences; Est_1.minus.q = 1 - quantiles of differences; SUM = sum of quantiles; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.

7 EMAPS | Introjected regulation (0-12 months)

7.1 Shift function

cat(legend_sf)

q = quantile; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.

7.2 Difference asymmetry function

cat(legend_asym)

Est_q = quantiles of differences; Est_1.minus.q = 1 - quantiles of differences; SUM = sum of quantiles; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.

8 EMAPS | External regulation (0-12 months)

8.1 Shift function

cat(legend_sf)

q = quantile; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.

8.2 Difference asymmetry function

cat(legend_asym)

Est_q = quantiles of differences; Est_1.minus.q = 1 - quantiles of differences; SUM = sum of quantiles; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.

9 EMAPS | Amotivation (0-12 months)

9.1 Shift function

cat(legend_sf)

q = quantile; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.

9.2 Difference asymmetry function

cat(legend_asym)

Est_q = quantiles of differences; Est_1.minus.q = 1 - quantiles of differences; SUM = sum of quantiles; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.