res <-
purrr::map2(list_titles, list_tables, function(x, y) {
knitr::knit_child(text = c(
"\n",
"# `r x`",
"\n",
"## Shift function",
"\n",
"```{r, echo = FALSE}",
"y$sf |> dplyr::mutate(
dplyr::across(`12`:ci_upper, ~round(.x, digits = 2)),
p_value = format(round(p_value, 3), nsmall = 3),
adj_p_value_bh = format(round(adj_p_value_bh, 3), nsmall = 3)
)",
"```",
"```{r, results='asis'}",
"cat(legend_sf)",
"```",
"\n",
"## Difference asymmetry function",
"\n",
"```{r, echo = FALSE}",
"y$daf |> dplyr::mutate(
dplyr::across(Est_q:ci.up, ~round(.x, digits = 2)),
p.value = format(round(p.value, 3), nsmall = 3),
adj_p_value_bh = format(round(adj_p_value_bh, 3), nsmall = 3)
)",
"```",
"```{r, results='asis'}",
"cat(legend_asym)",
"```"
),
envir = environment(),
quiet = TRUE
)
})
cat(unlist(res), sep = "\n")
cat(legend_sf)
q = quantile; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.
cat(legend_asym)
Est_q = quantiles of differences; Est_1.minus.q = 1 - quantiles of differences; SUM = sum of quantiles; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.
cat(legend_sf)
q = quantile; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.
cat(legend_asym)
Est_q = quantiles of differences; Est_1.minus.q = 1 - quantiles of differences; SUM = sum of quantiles; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.
cat(legend_sf)
q = quantile; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.
cat(legend_asym)
Est_q = quantiles of differences; Est_1.minus.q = 1 - quantiles of differences; SUM = sum of quantiles; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.
cat(legend_sf)
q = quantile; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.
cat(legend_asym)
Est_q = quantiles of differences; Est_1.minus.q = 1 - quantiles of differences; SUM = sum of quantiles; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.
cat(legend_sf)
q = quantile; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.
cat(legend_asym)
Est_q = quantiles of differences; Est_1.minus.q = 1 - quantiles of differences; SUM = sum of quantiles; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.
cat(legend_sf)
q = quantile; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.
cat(legend_asym)
Est_q = quantiles of differences; Est_1.minus.q = 1 - quantiles of differences; SUM = sum of quantiles; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.
cat(legend_sf)
q = quantile; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.
cat(legend_asym)
Est_q = quantiles of differences; Est_1.minus.q = 1 - quantiles of differences; SUM = sum of quantiles; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.
cat(legend_sf)
q = quantile; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.
cat(legend_asym)
Est_q = quantiles of differences; Est_1.minus.q = 1 - quantiles of differences; SUM = sum of quantiles; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.
cat(legend_sf)
q = quantile; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.
cat(legend_asym)
Est_q = quantiles of differences; Est_1.minus.q = 1 - quantiles of differences; SUM = sum of quantiles; ci.low = lower bounds of the confidence intervals; ci.up = upper bounds of the confidence intervals; adj_p_value_bh = p value adjusted for multiple comparisons using the Benjamini-Hochberg False Discovery Rate method.