targets::tar_read(analysis_INCLUSION)
targets::tar_read(analysis_sex)
targets::tar_read(analysis_age)
targets::tar_read(analysis_height)
targets::tar_read(analysis_weight)
targets::tar_read(analysis_bmi)
targets::tar_read(analysis_angioplasty)[, c(1:2)]
targets::tar_read(analysis_bypass)[, c(1:2)]
targets::tar_read(DB_6MWT_0_12) |>
dplyr::select(-n_visits) |>
dplyr::group_by(MONTH) |>
skimr::skim()
Name | dplyr::group_by(…) |
Number of rows | 150 |
Number of columns | 3 |
_______________________ | |
Column type frequency: | |
factor | 1 |
numeric | 1 |
________________________ | |
Group variables | MONTH |
Variable type: factor
skim_variable | MONTH | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|---|
patient | 0 | 0 | 1 | FALSE | 75 | 1: 1, 2: 1, 3: 1, 4: 1 |
patient | 12 | 0 | 1 | FALSE | 75 | 1: 1, 2: 1, 3: 1, 4: 1 |
Variable type: numeric
skim_variable | MONTH | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|---|
DIST_M | 0 | 0 | 1 | 605.44 | 71.96 | 411 | 559 | 603 | 636 | 816 | ????? |
DIST_M | 12 | 0 | 1 | 618.00 | 81.49 | 400 | 574 | 622 | 652 | 880 | ????? |
targets::tar_read(t_test_results_6MWT)
##
## Paired t-test
##
## data: DIST_M by MONTH
## t = 2.8614, df = 74, p-value = 0.005481
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 3.813784 21.306216
## sample estimates:
## mean difference
## 12.56
# Rearrange data
data_6MWT <-
targets::tar_read(DB_6MWT_0_12) |>
tidyr::pivot_wider(names_from = MONTH, values_from = DIST_M)
# Compute Pearson correlation
cor.test(data_6MWT$`0`, data_6MWT$`12`)
##
## Pearson's product-moment correlation
##
## data: data_6MWT$`0` and data_6MWT$`12`
## t = 16.202, df = 73, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.8227583 0.9256709
## sample estimates:
## cor
## 0.8845449
mean_diff <- mean(data_6MWT$`12` - data_6MWT$`0`)
sd1 <- sd(data_6MWT$`0`)
sd2 <- sd(data_6MWT$`12`)
dav <- mean_diff / sqrt(((sd1^2 + sd2^2) / 2))
round(dav, 2)
## [1] 0.16
tar_read(change_6MWT)$hd_pbci_diff |>
dplyr::filter(q == 0.5) |>
dplyr::mutate(dplyr::across(estimate:ci_u, ~round(.x, digits = 2)))
targets::tar_read(change_6MWT)$p
Change in 6-min walking test (6MWT) distance between 0 and 12 months (N = 75). On panel A, the errors bars over the points are the standard deviations around the means, while on panel D it is the percentile bootstrap 95% confidence interval around the median estimate. On panels E and F, the error bars are percentile bootstrap 95% confidence intervals not corrected for multiple comparisons. On panels B, C and D, the horizontal and/or vertical segments are the estimates of the deciles (panels B and C) or the quantiles (panel D, step of 0.05) of the distributions; the thickest segments are the median estimates. On panel B, the diagonal black line depicts the identity line. If any, significant results (based on adjusted p-values) in the shift (panel E) and difference asymmetry (panel F) functions are highlighted using thick red circles. A small pseudo-random movement has been added horizontally and vertically to the raw data displayed on panel B to minimize the presence of points fully overlapped. The estimates of the deciles of the marginal distributions (panels B, C and D), the quantiles of the individual differences (panel D), the decile differences (panel E) and the quantile sums (panel F) have been computed using the Harrell-Davis estimator.
targets::tar_read(DB_IPAQ_6_12) |>
dplyr::select(-n_visits) |>
dplyr::group_by(MONTH) |>
skimr::skim()
Name | dplyr::group_by(…) |
Number of rows | 154 |
Number of columns | 3 |
_______________________ | |
Column type frequency: | |
factor | 1 |
numeric | 1 |
________________________ | |
Group variables | MONTH |
Variable type: factor
skim_variable | MONTH | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|---|
patient | 6 | 0 | 1 | FALSE | 77 | 1: 1, 2: 1, 3: 1, 4: 1 |
patient | 12 | 0 | 1 | FALSE | 77 | 1: 1, 2: 1, 3: 1, 4: 1 |
Variable type: numeric
skim_variable | MONTH | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|---|
MET_MIN_WK | 6 | 0 | 1 | 3999.91 | 3588.04 | 0 | 1680 | 3318 | 4914 | 20040 | ????? |
MET_MIN_WK | 12 | 0 | 1 | 4192.22 | 4722.84 | 0 | 1551 | 2796 | 5502 | 23106 | ????? |
tar_read(change_IPAQ_6_12)$hd_pbci_diff |>
dplyr::filter(q == 0.5) |>
dplyr::mutate(dplyr::across(estimate:ci_u, ~round(.x, digits = 2)))
targets::tar_read(change_IPAQ_6_12)$p
Change in IPAQ-SF MET-min/week between 6 and 12 months (N = 77). On panel A, the errors bars over the points are the standard deviations around the means, while on panel D it is the percentile bootstrap 95% confidence interval around the median estimate. On panels E and F, the error bars are percentile bootstrap 95% confidence intervals not corrected for multiple comparisons. On panels B, C and D, the horizontal and/or vertical segments are the estimates of the deciles (panels B and C) or the quantiles (panel D, step of 0.05) of the distributions; the thickest segments are the median estimates. On panel B, the diagonal black line depicts the identity line. If any, significant results (based on adjusted p-values) in the shift (panel E) and difference asymmetry (panel F) functions are highlighted using thick red circles. A small pseudo-random movement has been added horizontally and vertically to the raw data displayed on panel B to minimize the presence of points fully overlapped. The estimates of the deciles of the marginal distributions (panels B, C and D), the quantiles of the individual differences (panel D), the decile differences (panel E) and the quantile sums (panel F) have been computed using the Harrell-Davis estimator.
targets::tar_read(DB_EMAPS_0_12) |>
dplyr::select(-n_visits) |>
dplyr::group_by(MONTH) |>
skimr::skim()
Name | dplyr::group_by(…) |
Number of rows | 152 |
Number of columns | 8 |
_______________________ | |
Column type frequency: | |
factor | 1 |
numeric | 6 |
________________________ | |
Group variables | MONTH |
Variable type: factor
skim_variable | MONTH | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|---|
patient | 0 | 0 | 1 | FALSE | 76 | 1: 1, 2: 1, 3: 1, 4: 1 |
patient | 12 | 0 | 1 | FALSE | 76 | 1: 1, 2: 1, 3: 1, 4: 1 |
Variable type: numeric
skim_variable | MONTH | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|---|
INTRINSIC | 0 | 0 | 1 | 5.61 | 0.87 | 3.00 | 5.00 | 5.67 | 6.00 | 7.00 | ????? |
INTRINSIC | 12 | 0 | 1 | 5.60 | 1.29 | 2.00 | 5.25 | 6.00 | 6.33 | 7.00 | ????? |
INTEGRATED | 0 | 0 | 1 | 4.95 | 1.46 | 1.33 | 4.00 | 5.33 | 6.00 | 7.00 | ????? |
INTEGRATED | 12 | 0 | 1 | 5.24 | 1.58 | 1.00 | 4.58 | 5.67 | 6.33 | 7.00 | ????? |
IDENTIFIED | 0 | 0 | 1 | 6.02 | 0.76 | 3.67 | 5.67 | 6.00 | 6.67 | 7.00 | ????? |
IDENTIFIED | 12 | 0 | 1 | 6.00 | 1.09 | 2.33 | 5.67 | 6.33 | 6.75 | 7.00 | ????? |
INTROJECTED | 0 | 0 | 1 | 4.39 | 1.24 | 2.00 | 3.58 | 4.17 | 5.33 | 7.00 | ????? |
INTROJECTED | 12 | 0 | 1 | 4.67 | 1.54 | 1.00 | 3.33 | 5.00 | 5.75 | 7.00 | ????? |
EXTERNAL | 0 | 0 | 1 | 1.49 | 0.77 | 1.00 | 1.00 | 1.00 | 1.67 | 5.33 | ????? |
EXTERNAL | 12 | 0 | 1 | 1.34 | 0.66 | 1.00 | 1.00 | 1.00 | 1.33 | 3.67 | ????? |
AMOTIVATION | 0 | 0 | 1 | 1.48 | 1.00 | 1.00 | 1.00 | 1.00 | 1.33 | 6.00 | ????? |
AMOTIVATION | 12 | 0 | 1 | 1.17 | 0.55 | 1.00 | 1.00 | 1.00 | 1.00 | 4.00 | ????? |
targets::tar_load(change_EMAPS)
res <-
purrr::map(change_EMAPS, function(x) {
knitr::knit_child(text = c(
"\n",
"### `r x$variable`",
"\n",
"```{r, echo = FALSE}",
"x$hd_pbci_diff |>
dplyr::filter(q == 0.5) |>
dplyr::mutate(dplyr::across(estimate:ci_u, ~round(.x, digits = 2)))",
"```"
),
envir = environment(),
quiet = TRUE
)
})
cat(unlist(res), sep = "\n")
targets::tar_read(p_pca)
targets::tar_read(cluster_tendency)
Red: high similarity (ie: low dissimilarity) | Blue: low similarity
h_vec <- vector("double", 100)
set.seed(123)
seeds <- round(sample(rnorm(10000, 1000, 500), 100), 0)
for (i in 1:100) {
set.seed(seeds[i])
h_vec[i] <- hopkins(DB_EMAPS_0_12_M0_scaled)
}
mean(h_vec)
## [1] 0.9053554
Comment: Data seem clustered (Hopkins statistic >0.7).
h_vec <- vector("double", 100)
set.seed(123)
seeds <- round(sample(rnorm(10000, 1000, 500), 100), 0)
for (i in 1:100) {
set.seed(seeds[i])
h_vec[i] <- hopkins(DB_EMAPS_0_12_M12_scaled)
}
mean(h_vec)
## [1] 0.8935322
Comment: Data seem clustered (Hopkins statistic >0.7).
targets::tar_read(final_clusters_emaps_viz)
targets::tar_read(nonpartest_global_month0)
## $results
## Test Statistic df1 df2
## ANOVA type test p-value 39.282 4.316 310.9785
## McKeon approx. for the Lawley Hotelling Test NA NA NA
## Muller approx. for the Bartlett-Nanda-Pillai Test NA NA NA
## Wilks Lambda NA NA NA
## P-value
## ANOVA type test p-value 0
## McKeon approx. for the Lawley Hotelling Test NA
## Muller approx. for the Bartlett-Nanda-Pillai Test NA
## Wilks Lambda NA
## Permutation Test p-value
## ANOVA type test p-value 0
## McKeon approx. for the Lawley Hotelling Test NA
## Muller approx. for the Bartlett-Nanda-Pillai Test NA
## Wilks Lambda NA
##
## $twogroupreleffects
## INTRINSIC INTEGRATED IDENTIFIED INTROJECTED EXTERNAL
## High AU-Mod IR 0.11257 0.08062 0.09233 0.12713 0.52522
## Very High AU-High IR 0.88743 0.91938 0.90767 0.87287 0.47478
## AMOTIVATION
## High AU-Mod IR 0.52983
## Very High AU-High IR 0.47017
ssnonpartest(INTRINSIC | INTEGRATED | IDENTIFIED | INTROJECTED | EXTERNAL | AMOTIVATION ~ cluster, data = tar_read(DB_EMAPS_0_12_clust) |> filter(MONTH == "0"), test = c(1, 0, 0, 0), alpha = 0.05, factors.and.variables = TRUE)
##
## The ANOVA type statistic will be used in the following test
## The Global Hypothesis is significant, subset algorithm will continue
##
## ~Performing the Subset Algorithm based on Factor levels~
## The Hypothesis of equality between factor levels High AU-Mod IR Very High AU-High IR is rejected
## All appropriate subsets using factor levels have been checked using a closed multiple testing procedure, which controls the maximum overall type I error rate at alpha= 0.05
##
## ~Performing the Subset Algorithm based on Response Variables~
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED IDENTIFIED INTROJECTED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTEGRATED IDENTIFIED INTROJECTED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC IDENTIFIED INTROJECTED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED INTROJECTED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED IDENTIFIED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED IDENTIFIED INTROJECTED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED IDENTIFIED INTROJECTED EXTERNAL is rejected
## The Hypothesis of equality using response variables IDENTIFIED INTROJECTED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTEGRATED INTROJECTED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTEGRATED IDENTIFIED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTEGRATED IDENTIFIED INTROJECTED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTEGRATED IDENTIFIED INTROJECTED EXTERNAL is rejected
## The Hypothesis of equality using response variables INTRINSIC INTROJECTED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC IDENTIFIED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC IDENTIFIED INTROJECTED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC IDENTIFIED INTROJECTED EXTERNAL is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED INTROJECTED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED INTROJECTED EXTERNAL is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED IDENTIFIED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED IDENTIFIED EXTERNAL is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED IDENTIFIED INTROJECTED is rejected
## The Hypothesis of equality using response variables INTROJECTED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables IDENTIFIED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables IDENTIFIED INTROJECTED AMOTIVATION is rejected
## The Hypothesis of equality using response variables IDENTIFIED INTROJECTED EXTERNAL is rejected
## The Hypothesis of equality using response variables INTEGRATED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTEGRATED INTROJECTED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTEGRATED INTROJECTED EXTERNAL is rejected
## The Hypothesis of equality using response variables INTEGRATED IDENTIFIED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTEGRATED IDENTIFIED EXTERNAL is rejected
## The Hypothesis of equality using response variables INTEGRATED IDENTIFIED INTROJECTED is rejected
## The Hypothesis of equality using response variables INTRINSIC EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC INTROJECTED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC INTROJECTED EXTERNAL is rejected
## The Hypothesis of equality using response variables INTRINSIC IDENTIFIED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC IDENTIFIED EXTERNAL is rejected
## The Hypothesis of equality using response variables INTRINSIC IDENTIFIED INTROJECTED is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED EXTERNAL is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED INTROJECTED is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED IDENTIFIED is rejected
## The Hypothesis of equality using response variables INTROJECTED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTROJECTED EXTERNAL is rejected
## The Hypothesis of equality using response variables IDENTIFIED AMOTIVATION is rejected
## The Hypothesis of equality using response variables IDENTIFIED EXTERNAL is rejected
## The Hypothesis of equality using response variables IDENTIFIED INTROJECTED is rejected
## The Hypothesis of equality using response variables INTEGRATED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTEGRATED EXTERNAL is rejected
## The Hypothesis of equality using response variables INTEGRATED INTROJECTED is rejected
## The Hypothesis of equality using response variables INTEGRATED IDENTIFIED is rejected
## The Hypothesis of equality using response variables INTRINSIC AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC EXTERNAL is rejected
## The Hypothesis of equality using response variables INTRINSIC INTROJECTED is rejected
## The Hypothesis of equality using response variables INTRINSIC IDENTIFIED is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED is rejected
## The Hypothesis of equality using response variables INTROJECTED is rejected
## The Hypothesis of equality using response variables IDENTIFIED is rejected
## The Hypothesis of equality using response variables INTEGRATED is rejected
## The Hypothesis of equality using response variables INTRINSIC is rejected
## All appropriate subsets using response variables have been checked using a multiple testing procedure, which controls the maximum overall type I error rate at alpha= 0.05
targets::tar_read(nonpartest_global_month12)
## $results
## Test Statistic df1 df2
## ANOVA type test p-value 52.305 4.353 298.6204
## McKeon approx. for the Lawley Hotelling Test 32.769 6.000 69.0000
## Muller approx. for the Bartlett-Nanda-Pillai Test 32.337 6.074 68.9316
## Wilks Lambda 32.769 6.000 69.0000
## P-value
## ANOVA type test p-value 0
## McKeon approx. for the Lawley Hotelling Test 0
## Muller approx. for the Bartlett-Nanda-Pillai Test 0
## Wilks Lambda 0
## Permutation Test p-value
## ANOVA type test p-value 0
## McKeon approx. for the Lawley Hotelling Test 0
## Muller approx. for the Bartlett-Nanda-Pillai Test 0
## Wilks Lambda 0
##
## $twogroupreleffects
## INTRINSIC INTEGRATED IDENTIFIED INTROJECTED EXTERNAL
## High AU-Mod IR 0.08445 0.06436 0.0997 0.07776 0.59561
## Very High AU-High IR 0.91555 0.93564 0.9003 0.92224 0.40439
## AMOTIVATION
## High AU-Mod IR 0.66666
## Very High AU-High IR 0.33334
ssnonpartest(INTRINSIC | INTEGRATED | IDENTIFIED | INTROJECTED | EXTERNAL | AMOTIVATION ~ cluster, data = tar_read(DB_EMAPS_0_12_clust) |> filter(MONTH == "12"), test = c(1, 0, 0, 0), alpha = 0.05, factors.and.variables = TRUE)
##
## The ANOVA type statistic will be used in the following test
## The Global Hypothesis is significant, subset algorithm will continue
##
## ~Performing the Subset Algorithm based on Factor levels~
## The Hypothesis of equality between factor levels High AU-Mod IR Very High AU-High IR is rejected
## All appropriate subsets using factor levels have been checked using a closed multiple testing procedure, which controls the maximum overall type I error rate at alpha= 0.05
##
## ~Performing the Subset Algorithm based on Response Variables~
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED IDENTIFIED INTROJECTED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTEGRATED IDENTIFIED INTROJECTED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC IDENTIFIED INTROJECTED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED INTROJECTED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED IDENTIFIED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED IDENTIFIED INTROJECTED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED IDENTIFIED INTROJECTED EXTERNAL is rejected
## The Hypothesis of equality using response variables IDENTIFIED INTROJECTED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTEGRATED INTROJECTED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTEGRATED IDENTIFIED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTEGRATED IDENTIFIED INTROJECTED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTEGRATED IDENTIFIED INTROJECTED EXTERNAL is rejected
## The Hypothesis of equality using response variables INTRINSIC INTROJECTED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC IDENTIFIED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC IDENTIFIED INTROJECTED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC IDENTIFIED INTROJECTED EXTERNAL is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED INTROJECTED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED INTROJECTED EXTERNAL is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED IDENTIFIED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED IDENTIFIED EXTERNAL is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED IDENTIFIED INTROJECTED is rejected
## The Hypothesis of equality using response variables INTROJECTED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables IDENTIFIED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables IDENTIFIED INTROJECTED AMOTIVATION is rejected
## The Hypothesis of equality using response variables IDENTIFIED INTROJECTED EXTERNAL is rejected
## The Hypothesis of equality using response variables INTEGRATED EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTEGRATED INTROJECTED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTEGRATED INTROJECTED EXTERNAL is rejected
## The Hypothesis of equality using response variables INTEGRATED IDENTIFIED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTEGRATED IDENTIFIED EXTERNAL is rejected
## The Hypothesis of equality using response variables INTEGRATED IDENTIFIED INTROJECTED is rejected
## The Hypothesis of equality using response variables INTRINSIC EXTERNAL AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC INTROJECTED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC INTROJECTED EXTERNAL is rejected
## The Hypothesis of equality using response variables INTRINSIC IDENTIFIED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC IDENTIFIED EXTERNAL is rejected
## The Hypothesis of equality using response variables INTRINSIC IDENTIFIED INTROJECTED is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED EXTERNAL is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED INTROJECTED is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED IDENTIFIED is rejected
## The Hypothesis of equality using response variables INTROJECTED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTROJECTED EXTERNAL is rejected
## The Hypothesis of equality using response variables IDENTIFIED AMOTIVATION is rejected
## The Hypothesis of equality using response variables IDENTIFIED EXTERNAL is rejected
## The Hypothesis of equality using response variables IDENTIFIED INTROJECTED is rejected
## The Hypothesis of equality using response variables INTEGRATED AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTEGRATED EXTERNAL is rejected
## The Hypothesis of equality using response variables INTEGRATED INTROJECTED is rejected
## The Hypothesis of equality using response variables INTEGRATED IDENTIFIED is rejected
## The Hypothesis of equality using response variables INTRINSIC AMOTIVATION is rejected
## The Hypothesis of equality using response variables INTRINSIC EXTERNAL is rejected
## The Hypothesis of equality using response variables INTRINSIC INTROJECTED is rejected
## The Hypothesis of equality using response variables INTRINSIC IDENTIFIED is rejected
## The Hypothesis of equality using response variables INTRINSIC INTEGRATED is rejected
## The Hypothesis of equality using response variables INTROJECTED is rejected
## The Hypothesis of equality using response variables IDENTIFIED is rejected
## The Hypothesis of equality using response variables INTEGRATED is rejected
## The Hypothesis of equality using response variables INTRINSIC is rejected
## All appropriate subsets using response variables have been checked using a multiple testing procedure, which controls the maximum overall type I error rate at alpha= 0.05
targets::tar_read(p_change_emaps_profile_alluvial)
tar_read(prop_trans_prof_motiv)
targets::tar_read(p_BARRIERS)
Barriers to physical activity (N = 77). Answers have been translated from French to English for the reader’s understanding of the figure. The most frequently evocated barriers have been highlighted with darker colours.
# Load the model summarises
tar_load(model_6MWT_n1)
tar_load(model_6MWT_n2)
tar_load(model_6MWT_n3)
tar_load(model_6MWT_n4)
tar_load(model_6MWT_n5)
summary(model_6MWT_n1)
## Heterogenous linear mixed model
## fitted by maximum likelihood method
##
## hlme(fixed = DIST_6MWT ~ MONTH, random = ~1, subject = "patient",
## ng = 1, data = DB_PRED_6MWT_0_12, var.time = "MONTH")
##
## Statistical Model:
## Dataset: DB_PRED_6MWT_0_12
## Number of subjects: 75
## Number of observations: 150
## Number of latent classes: 1
## Number of parameters: 4
##
## Iteration process:
## Convergence criteria satisfied
## Number of iterations: 19
## Convergence criteria: parameters= 4.7e-10
## : likelihood= 2.6e-12
## : second derivatives= 1.1e-18
##
## Goodness-of-fit statistics:
## maximum log-likelihood: -807.98
## AIC: 1623.96
## BIC: 1633.23
##
##
## Maximum Likelihood Estimates:
##
## Fixed effects in the longitudinal model:
##
## coef Se Wald p-value
## intercept 605.44000 8.81756 68.663 0.00000
## MONTH 1.04667 0.36334 2.881 0.00397
##
##
## Variance-covariance matrix of the random-effects:
## intercept
## intercept 5118.307
##
## coef Se
## Residual standard error: 26.70012 2.18060
summary(model_6MWT_n2)
## Heterogenous linear mixed model
## fitted by maximum likelihood method
##
## hlme(fixed = DIST_6MWT ~ MONTH, mixture = ~MONTH, random = ~1,
## subject = "patient", ng = 2, data = DB_PRED_6MWT_0_12, var.time = "MONTH")
##
## Statistical Model:
## Dataset: DB_PRED_6MWT_0_12
## Number of subjects: 75
## Number of observations: 150
## Number of latent classes: 2
## Number of parameters: 7
##
## Iteration process:
## Convergence criteria satisfied
## Number of iterations: 1
## Convergence criteria: parameters= 1e-10
## : likelihood= 3.4e-13
## : second derivatives= 3e-14
##
## Goodness-of-fit statistics:
## maximum log-likelihood: -804.75
## AIC: 1623.5
## BIC: 1639.72
##
##
## Maximum Likelihood Estimates:
##
## Fixed effects in the class-membership model:
## (the class of reference is the last class)
##
## coef Se Wald p-value
## intercept class1 0.92959 0.78224 1.188 0.23469
##
## Fixed effects in the longitudinal model:
##
## coef Se Wald p-value
## intercept class1 618.45200 10.92629 56.602 0.00000
## intercept class2 572.47456 24.12087 23.734 0.00000
## MONTH class1 2.19493 0.64589 3.398 0.00068
## MONTH class2 -1.86242 1.09135 -1.707 0.08791
##
##
## Variance-covariance matrix of the random-effects:
## intercept
## intercept 4235.124
##
## coef Se
## Residual standard error: 21.73450 2.55354
summary(model_6MWT_n3)
## Heterogenous linear mixed model
## fitted by maximum likelihood method
##
## hlme(fixed = DIST_6MWT ~ MONTH, mixture = ~MONTH, random = ~1,
## subject = "patient", ng = 3, data = DB_PRED_6MWT_0_12, var.time = "MONTH")
##
## Statistical Model:
## Dataset: DB_PRED_6MWT_0_12
## Number of subjects: 75
## Number of observations: 150
## Number of latent classes: 3
## Number of parameters: 10
##
## Iteration process:
## Convergence criteria satisfied
## Number of iterations: 1
## Convergence criteria: parameters= 9.8e-11
## : likelihood= 2.3e-13
## : second derivatives= 9.1e-15
##
## Goodness-of-fit statistics:
## maximum log-likelihood: -799.71
## AIC: 1619.42
## BIC: 1642.6
##
##
## Maximum Likelihood Estimates:
##
## Fixed effects in the class-membership model:
## (the class of reference is the last class)
##
## coef Se Wald p-value
## intercept class1 2.93787 0.74700 3.933 0.00008
## intercept class2 2.81747 0.75951 3.710 0.00021
##
## Fixed effects in the longitudinal model:
##
## coef Se Wald p-value
## intercept class1 588.73829 12.39353 47.504 0.00000
## intercept class2 617.86859 12.67690 48.740 0.00000
## intercept class3 712.71000 52.53194 13.567 0.00000
## MONTH class1 -0.70141 0.44815 -1.565 0.11756
## MONTH class2 3.56567 0.51972 6.861 0.00000
## MONTH class3 -8.11139 1.32606 -6.117 0.00000
##
##
## Variance-covariance matrix of the random-effects:
## intercept
## intercept 4559.21
##
## coef Se
## Residual standard error: 15.02270 1.81554
summary(model_6MWT_n4)
## Heterogenous linear mixed model
## fitted by maximum likelihood method
##
## hlme(fixed = DIST_6MWT ~ MONTH, mixture = ~MONTH, random = ~1,
## subject = "patient", ng = 4, data = DB_PRED_6MWT_0_12, var.time = "MONTH")
##
## Statistical Model:
## Dataset: DB_PRED_6MWT_0_12
## Number of subjects: 75
## Number of observations: 150
## Number of latent classes: 4
## Number of parameters: 13
##
## Iteration process:
## Convergence criteria satisfied
## Number of iterations: 1
## Convergence criteria: parameters= 1e-10
## : likelihood= 1.1e-13
## : second derivatives= 2e-14
##
## Goodness-of-fit statistics:
## maximum log-likelihood: -795.67
## AIC: 1617.34
## BIC: 1647.47
##
##
## Maximum Likelihood Estimates:
##
## Fixed effects in the class-membership model:
## (the class of reference is the last class)
##
## coef Se Wald p-value
## intercept class1 1.67944 0.85377 1.967 0.04917
## intercept class2 1.32031 0.85122 1.551 0.12088
## intercept class3 3.27207 0.73008 4.482 0.00001
##
## Fixed effects in the longitudinal model:
##
## coef Se Wald p-value
## intercept class1 517.47416 21.95123 23.574 0.00000
## intercept class2 736.76149 24.08361 30.592 0.00000
## intercept class3 600.46864 7.75010 77.479 0.00000
## intercept class4 716.48954 32.14137 22.292 0.00000
## MONTH class1 -1.94655 0.81868 -2.378 0.01742
## MONTH class2 2.00029 1.02097 1.959 0.05009
## MONTH class3 1.86415 0.41295 4.514 0.00001
## MONTH class4 -8.02674 1.85553 -4.326 0.00002
##
##
## Variance-covariance matrix of the random-effects:
## intercept
## intercept 1602.019
##
## coef Se
## Residual standard error: 20.34771 1.89292
summary(model_6MWT_n5)
## Heterogenous linear mixed model
## fitted by maximum likelihood method
##
## hlme(fixed = DIST_6MWT ~ MONTH, mixture = ~MONTH, random = ~1,
## subject = "patient", ng = 5, data = DB_PRED_6MWT_0_12, var.time = "MONTH")
##
## Statistical Model:
## Dataset: DB_PRED_6MWT_0_12
## Number of subjects: 75
## Number of observations: 150
## Number of latent classes: 5
## Number of parameters: 16
##
## Iteration process:
## Convergence criteria satisfied
## Number of iterations: 1
## Convergence criteria: parameters= 1.9e-05
## : likelihood= 2.3e-08
## : second derivatives= 1.1e-10
##
## Goodness-of-fit statistics:
## maximum log-likelihood: -793.24
## AIC: 1618.48
## BIC: 1655.56
##
##
## Maximum Likelihood Estimates:
##
## Fixed effects in the class-membership model:
## (the class of reference is the last class)
##
## coef Se Wald p-value
## intercept class1 1.47921 0.64617 2.289 0.02207
## intercept class2 1.16064 0.72325 1.605 0.10855
## intercept class3 -1.34808 0.90409 -1.491 0.13594
## intercept class4 -0.18085 0.73602 -0.246 0.80590
##
## Fixed effects in the longitudinal model:
##
## coef Se Wald p-value
## intercept class1 596.44041 10.53783 56.600 0.00000
## intercept class2 603.49269 11.01307 54.798 0.00000
## intercept class3 716.99703 31.31971 22.893 0.00000
## intercept class4 748.60884 23.42899 31.952 0.00000
## intercept class5 502.70072 25.53577 19.686 0.00000
## MONTH class1 0.17891 0.59780 0.299 0.76473
## MONTH class2 3.90563 0.71218 5.484 0.00000
## MONTH class3 -8.16887 1.34904 -6.055 0.00000
## MONTH class4 1.53208 0.92494 1.656 0.09764
## MONTH class5 -2.28154 0.78589 -2.903 0.00369
##
##
## Variance-covariance matrix of the random-effects:
## intercept
## intercept 1702.061
##
## coef Se
## Residual standard error: 15.68832 1.95686
tar_read(compa_latent_mixed_models_table_6MWT)
## AIC BIC entropy %class1 %class2 %class3
## model_6MWT_n1 1623.961 1633.230 1.0000000 100.00000 NA NA
## model_6MWT_n2 1623.495 1639.718 0.5212070 74.66667 25.333333 NA
## model_6MWT_n3 1619.422 1642.597 0.7691509 52.00000 45.333333 2.666667
## model_6MWT_n4 1617.344 1647.471 0.8647545 13.33333 9.333333 74.666667
## model_6MWT_n5 1618.482 1655.562 0.7620378 48.00000 30.666667 2.666667
## %class4 %class5
## model_6MWT_n1 NA NA
## model_6MWT_n2 NA NA
## model_6MWT_n3 NA NA
## model_6MWT_n4 2.666667 NA
## model_6MWT_n5 8.000000 10.66667
lcmm::summaryplot(
model_6MWT_n1,
model_6MWT_n2,
model_6MWT_n3,
model_6MWT_n4,
model_6MWT_n5,
which = c("AIC", "BIC", "entropy")
)
lcmm::postprob(model_6MWT_n2)
##
## Posterior classification:
## class1 class2
## N 56.00 19.00
## % 74.67 25.33
##
## Posterior classification table:
## --> mean of posterior probabilities in each class
## prob1 prob2
## class1 0.8855 0.1145
## class2 0.2202 0.7798
##
## Posterior probabilities above a threshold (%):
## class1 class2
## prob>0.7 92.86 68.42
## prob>0.8 76.79 42.11
## prob>0.9 60.71 26.32
##
lcmm::postprob(model_6MWT_n3)
##
## Posterior classification:
## class1 class2 class3
## N 39 34.00 2.00
## % 52 45.33 2.67
##
## Posterior classification table:
## --> mean of posterior probabilities in each class
## prob1 prob2 prob3
## class1 0.8895 0.1089 0.0016
## class2 0.1166 0.8834 0.0000
## class3 0.0064 0.0000 0.9936
##
## Posterior probabilities above a threshold (%):
## class1 class2 class3
## prob>0.7 84.62 85.29 100
## prob>0.8 76.92 79.41 100
## prob>0.9 66.67 61.76 100
##
lcmm::postprob(model_6MWT_n4)
##
## Posterior classification:
## class1 class2 class3 class4
## N 10.00 7.00 56.00 2.00
## % 13.33 9.33 74.67 2.67
##
## Posterior classification table:
## --> mean of posterior probabilities in each class
## prob1 prob2 prob3 prob4
## class1 0.8703 0.0000 0.1296 0.0001
## class2 0.0000 0.9190 0.0776 0.0034
## class3 0.0415 0.0226 0.9352 0.0007
## class4 0.0002 0.0009 0.0033 0.9957
##
## Posterior probabilities above a threshold (%):
## class1 class2 class3 class4
## prob>0.7 80 85.71 94.64 100
## prob>0.8 80 85.71 87.50 100
## prob>0.9 50 71.43 82.14 100
##
lcmm::postprob(model_6MWT_n5)
##
## Posterior classification:
## class1 class2 class3 class4 class5
## N 36 23.00 2.00 6 8.00
## % 48 30.67 2.67 8 10.67
##
## Posterior classification table:
## --> mean of posterior probabilities in each class
## prob1 prob2 prob3 prob4 prob5
## class1 0.8150 0.1445 0.0002 0.0061 0.0343
## class2 0.1355 0.8385 0.0000 0.0260 0.0000
## class3 0.0006 0.0000 0.9994 0.0000 0.0000
## class4 0.0152 0.0414 0.0013 0.9422 0.0000
## class5 0.1847 0.0007 0.0001 0.0000 0.8145
##
## Posterior probabilities above a threshold (%):
## class1 class2 class3 class4 class5
## prob>0.7 75.00 78.26 100 100.00 62.5
## prob>0.8 61.11 65.22 100 100.00 62.5
## prob>0.9 38.89 47.83 100 83.33 62.5
##
Comment: Based on the metrics shown above, the 4-class model could seem to be the best model but the 3-class model also showed good metrics and had less classes containing very few participants compared to the 4-class model. Thus the 3-class model was chosen.
tar_load(model_6MWT_n3_permut)
summary(model_6MWT_n3_permut)
## Heterogenous linear mixed model
## fitted by maximum likelihood method
##
## hlme(fixed = DIST_6MWT ~ MONTH, mixture = ~MONTH, random = ~1,
## subject = "patient", ng = 3, data = DB_PRED_6MWT_0_12, var.time = "MONTH")
##
## Statistical Model:
## Dataset: DB_PRED_6MWT_0_12
## Number of subjects: 75
## Number of observations: 150
## Number of latent classes: 3
## Number of parameters: 10
##
## Iteration process:
## Convergence criteria satisfied
## Number of iterations: 1
## Convergence criteria: parameters= 2.7e-11
## : likelihood= 3.4e-13
## : second derivatives= 6.8e-16
##
## Goodness-of-fit statistics:
## maximum log-likelihood: -799.71
## AIC: 1619.42
## BIC: 1642.6
##
##
## Maximum Likelihood Estimates:
##
## Fixed effects in the class-membership model:
## (the class of reference is the last class)
##
## coef Se Wald p-value
## intercept class1 -2.81747 0.75945 -3.710 0.00021
## intercept class2 0.12040 0.40895 0.294 0.76843
##
## Fixed effects in the longitudinal model:
##
## coef Se Wald p-value
## intercept class1 712.71000 52.53197 13.567 0.00000
## intercept class2 588.73829 12.39370 47.503 0.00000
## intercept class3 617.86859 12.67692 48.740 0.00000
## MONTH class1 -8.11139 1.32607 -6.117 0.00000
## MONTH class2 -0.70141 0.44820 -1.565 0.11760
## MONTH class3 3.56567 0.51977 6.860 0.00000
##
##
## Variance-covariance matrix of the random-effects:
## intercept
## intercept 4559.21
##
## coef Se
## Residual standard error: 15.02270 1.81553
lcmm::postprob(model_6MWT_n3_permut)
##
## Posterior classification:
## class1 class2 class3
## N 2.00 39 34.00
## % 2.67 52 45.33
##
## Posterior classification table:
## --> mean of posterior probabilities in each class
## prob1 prob2 prob3
## class1 0.9936 0.0064 0.0000
## class2 0.0016 0.8895 0.1089
## class3 0.0000 0.1166 0.8834
##
## Posterior probabilities above a threshold (%):
## class1 class2 class3
## prob>0.7 100 84.62 85.29
## prob>0.8 100 76.92 79.41
## prob>0.9 100 66.67 61.76
##
plot(model_6MWT_n3_permut)
tar_read(plot_preds_6MWT)
tar_load(predictors_6MWT_classes)
summary(predictors_6MWT_classes)
## Secondary multinomial model for external class predictor
## fitted by maximum likelihood method
##
## externVar(model = model_6MWT_n3_permut, subject = "patient",
## classmb = ~DIST_6MWT_M0 + MET_MIN_WK_M0 + MOTIVATION_CLUSTER_M0 +
## meteo_defavorable + manque_temps, data = DB_PRED_6MWT_0_12,
## method = "twoStageJoint")
##
## Statistical Model:
## Dataset: DB_PRED_6MWT_0_12
## Number of subjects: 74
## Number of latent classes: 3
## Number of parameters: 12
##
## Iteration process:
## Convergence criteria satisfied
## Number of iterations: 65
## Convergence criteria: parameters= 9.9e-05
## : likelihood= 2.6e-06
## : second derivatives= 4.3e-05
##
## Goodness-of-fit statistics:
## maximum log-likelihood: -780.17
## AIC: 1584.34
## BIC: 1611.99
##
##
##
## Maximum Likelihood Estimates:
##
## Fixed effects in the class-membership model:
## (the class of reference is the last class)
##
## coef Se** Wald
## intercept class1 -17.20337 62.36430 -0.276
## intercept class2 7.60341 7.74625 0.982
## DIST_6MWT_M0 class1 0.01139 0.01428 0.798
## DIST_6MWT_M0 class2 -0.01481 0.01463 -1.012
## MET_MIN_WK_M0 class1 -0.00024 0.00101 -0.235
## MET_MIN_WK_M0 class2 0.00012 0.00013 0.909
## MOTIVATION_CLUSTER_M0Very High AU-High IR class1 9.12534 61.89733 0.147
## MOTIVATION_CLUSTER_M0Very High AU-High IR class2 0.40474 0.73971 0.547
## meteo_defavorable1 class1 -7.54157 88.84566 -0.085
## meteo_defavorable1 class2 0.46055 0.91156 0.505
## manque_temps1 class1 -7.17773 89.33639 -0.080
## manque_temps1 class2 1.25477 1.31232 0.956
## p-value
## intercept class1 0.78266
## intercept class2 0.32632
## DIST_6MWT_M0 class1 0.42501
## DIST_6MWT_M0 class2 0.31145
## MET_MIN_WK_M0 class1 0.81434
## MET_MIN_WK_M0 class2 0.36331
## MOTIVATION_CLUSTER_M0Very High AU-High IR class1 0.88279
## MOTIVATION_CLUSTER_M0Very High AU-High IR class2 0.58427
## meteo_defavorable1 class1 0.93235
## meteo_defavorable1 class2 0.61339
## manque_temps1 class1 0.93596
## manque_temps1 class2 0.33900
##
## ** total variance estimated through the Hessian of the joint likelihood
##
# Load the model summarises
tar_load(model_IPAQ_n1)
tar_load(model_IPAQ_n2)
tar_load(model_IPAQ_n3)
tar_load(model_IPAQ_n4)
tar_load(model_IPAQ_n5)
summary(model_IPAQ_n1)
## Heterogenous linear mixed model
## fitted by maximum likelihood method
##
## hlme(fixed = MET_MIN_WK ~ MONTH, random = ~1, subject = "patient",
## ng = 1, data = DB_PRED_IPAQ_6_12, var.time = "MONTH")
##
## Statistical Model:
## Dataset: DB_PRED_IPAQ_6_12
## Number of subjects: 77
## Number of observations: 154
## Number of latent classes: 1
## Number of parameters: 4
##
## Iteration process:
## Convergence criteria satisfied
## Number of iterations: 34
## Convergence criteria: parameters= 1.5e-10
## : likelihood= 4.5e-13
## : second derivatives= 3.5e-17
##
## Goodness-of-fit statistics:
## maximum log-likelihood: -1488.88
## AIC: 2985.76
## BIC: 2995.14
##
##
## Maximum Likelihood Estimates:
##
## Fixed effects in the longitudinal model:
##
## coef Se Wald p-value
## intercept 3807.59740 800.89659 4.754 0.00000
## MONTH 32.05195 76.00845 0.422 0.67325
##
##
## Variance-covariance matrix of the random-effects:
## intercept
## intercept 9355385
##
## coef Se
## Residual standard error: 2829.45253 228.05682
summary(model_IPAQ_n2)
## Heterogenous linear mixed model
## fitted by maximum likelihood method
##
## hlme(fixed = MET_MIN_WK ~ MONTH, mixture = ~MONTH, random = ~1,
## subject = "patient", ng = 2, data = DB_PRED_IPAQ_6_12, var.time = "MONTH")
##
## Statistical Model:
## Dataset: DB_PRED_IPAQ_6_12
## Number of subjects: 77
## Number of observations: 154
## Number of latent classes: 2
## Number of parameters: 7
##
## Iteration process:
## Convergence criteria satisfied
## Number of iterations: 1
## Convergence criteria: parameters= 2.3e-10
## : likelihood= 9.1e-13
## : second derivatives= 7.2e-15
##
## Goodness-of-fit statistics:
## maximum log-likelihood: -1452.14
## AIC: 2918.28
## BIC: 2934.69
##
##
## Maximum Likelihood Estimates:
##
## Fixed effects in the class-membership model:
## (the class of reference is the last class)
##
## coef Se Wald p-value
## intercept class1 2.67999 0.46854 5.720 0.00000
##
## Fixed effects in the longitudinal model:
##
## coef Se Wald p-value
## intercept class1 3840.89686 652.94808 5.882 0.00000
## intercept class2 3321.92590 2508.72561 1.324 0.18545
## MONTH class1 -58.71239 67.13797 -0.875 0.38184
## MONTH class2 1355.84623 261.80607 5.179 0.00000
##
##
## Variance-covariance matrix of the random-effects:
## intercept
## intercept 1481643
##
## coef Se
## Residual standard error: 2417.23850 195.11440
summary(model_IPAQ_n3)
## Heterogenous linear mixed model
## fitted by maximum likelihood method
##
## hlme(fixed = MET_MIN_WK ~ MONTH, mixture = ~MONTH, random = ~1,
## subject = "patient", ng = 3, data = DB_PRED_IPAQ_6_12, var.time = "MONTH")
##
## Statistical Model:
## Dataset: DB_PRED_IPAQ_6_12
## Number of subjects: 77
## Number of observations: 154
## Number of latent classes: 3
## Number of parameters: 10
##
## Iteration process:
## Convergence criteria satisfied
## Number of iterations: 10
## Convergence criteria: parameters= 1e-09
## : likelihood= 2.3e-13
## : second derivatives= 1.3e-17
##
## Goodness-of-fit statistics:
## maximum log-likelihood: -1448.61
## AIC: 2917.21
## BIC: 2940.65
##
##
## Maximum Likelihood Estimates:
##
## Fixed effects in the class-membership model:
## (the class of reference is the last class)
##
## coef Se Wald p-value
## intercept class1 2.48601 0.69032 3.601 0.00032
## intercept class2 -0.32362 0.82697 -0.391 0.69556
##
## Fixed effects in the longitudinal model:
##
## coef Se Wald p-value
## intercept class1 3175.94038 668.19712 4.753 0.00000
## intercept class2 2157.01113 2630.67708 0.820 0.41225
## intercept class3 12590.06427 3862.36130 3.260 0.00112
## MONTH class1 -18.25823 68.29452 -0.267 0.78920
## MONTH class2 1574.66656 282.80923 5.568 0.00000
## MONTH class3 -479.68502 375.03154 -1.279 0.20088
##
##
## Variance-covariance matrix of the random-effects:
## intercept
## intercept 494489.9
##
## coef Se
## Residual standard error: 2316.61529 194.50568
summary(model_IPAQ_n4)
## Heterogenous linear mixed model
## fitted by maximum likelihood method
##
## hlme(fixed = MET_MIN_WK ~ MONTH, mixture = ~MONTH, random = ~1,
## subject = "patient", ng = 4, data = DB_PRED_IPAQ_6_12, var.time = "MONTH")
##
## Statistical Model:
## Dataset: DB_PRED_IPAQ_6_12
## Number of subjects: 77
## Number of observations: 154
## Number of latent classes: 4
## Number of parameters: 13
##
## Iteration process:
## The program stopped abnormally. No results can be displayed.
summary(model_IPAQ_n5)
## Heterogenous linear mixed model
## fitted by maximum likelihood method
##
## hlme(fixed = MET_MIN_WK ~ MONTH, mixture = ~MONTH, random = ~1,
## subject = "patient", ng = 5, data = DB_PRED_IPAQ_6_12, var.time = "MONTH")
##
## Statistical Model:
## Dataset: DB_PRED_IPAQ_6_12
## Number of subjects: 77
## Number of observations: 154
## Number of latent classes: 5
## Number of parameters: 16
##
## Iteration process:
## The program stopped abnormally. No results can be displayed.
tar_read(compa_latent_mixed_models_table_IPAQ)
## AIC BIC entropy %class1 %class2 %class3
## model_IPAQ_n1 2.985761e+03 2.995137e+03 1.0000000 100.00000 NA NA
## model_IPAQ_n2 2.918285e+03 2.934691e+03 0.9956238 93.50649 6.493506 NA
## model_IPAQ_n3 2.917214e+03 2.940652e+03 0.9379943 88.31169 5.194805 6.493506
## model_IPAQ_n4 2.000000e+09 2.000000e+09 1.0000000 0.00000 0.000000 0.000000
## model_IPAQ_n5 2.000000e+09 2.000000e+09 1.0000000 0.00000 0.000000 0.000000
## %class4 %class5
## model_IPAQ_n1 NA NA
## model_IPAQ_n2 NA NA
## model_IPAQ_n3 NA NA
## model_IPAQ_n4 0 NA
## model_IPAQ_n5 0 0
lcmm::summaryplot(
model_IPAQ_n1,
model_IPAQ_n2,
model_IPAQ_n3,
model_IPAQ_n4,
model_IPAQ_n5,
which = c("AIC", "BIC", "entropy")
)
lcmm::postprob(model_IPAQ_n2)
##
## Posterior classification:
## class1 class2
## N 72.00 5.00
## % 93.51 6.49
##
## Posterior classification table:
## --> mean of posterior probabilities in each class
## prob1 prob2
## class1 1.000 0.000
## class2 0.012 0.988
##
## Posterior probabilities above a threshold (%):
## class1 class2
## prob>0.7 100 100
## prob>0.8 100 100
## prob>0.9 100 100
##
lcmm::postprob(model_IPAQ_n3)
##
## Posterior classification:
## class1 class2 class3
## N 68.00 4.00 5.00
## % 88.31 5.19 6.49
##
## Posterior classification table:
## --> mean of posterior probabilities in each class
## prob1 prob2 prob3
## class1 0.9805 0.0000 0.0195
## class2 0.0000 1.0000 0.0000
## class3 0.1326 0.0111 0.8563
##
## Posterior probabilities above a threshold (%):
## class1 class2 class3
## prob>0.7 97.06 100 80
## prob>0.8 97.06 100 80
## prob>0.9 92.65 100 60
##
lcmm::postprob(model_IPAQ_n4)
##
## Posterior classification:
## class1 class2 class3 class4
## N 0 0 0 0
## % 0 0 0 0
##
## Posterior classification table:
## --> mean of posterior probabilities in each class
## prob1 prob2 prob3 prob4
## class1 NaN NaN NaN NaN
## class2 NaN NaN NaN NaN
## class3 NaN NaN NaN NaN
## class4 NaN NaN NaN NaN
##
## Posterior probabilities above a threshold (%):
## class1 class2 class3 class4
## prob>0.7 NaN NaN NaN NaN
## prob>0.8 NaN NaN NaN NaN
## prob>0.9 NaN NaN NaN NaN
##
lcmm::postprob(model_IPAQ_n5)
##
## Posterior classification:
## class1 class2 class3 class4 class5
## N 0 0 0 0 0
## % 0 0 0 0 0
##
## Posterior classification table:
## --> mean of posterior probabilities in each class
## prob1 prob2 prob3 prob4 prob5
## class1 NaN NaN NaN NaN NaN
## class2 NaN NaN NaN NaN NaN
## class3 NaN NaN NaN NaN NaN
## class4 NaN NaN NaN NaN NaN
## class5 NaN NaN NaN NaN NaN
##
## Posterior probabilities above a threshold (%):
## class1 class2 class3 class4 class5
## prob>0.7 NaN NaN NaN NaN NaN
## prob>0.8 NaN NaN NaN NaN NaN
## prob>0.9 NaN NaN NaN NaN NaN
##
Comment: The 4-class and the 5-class models did not converge. The 2-class model seemed to be a reasonable choice.
plot(model_IPAQ_n2)
tar_read(plot_preds_IPAQ)
tar_load(predictors_IPAQ_classes)
summary(predictors_IPAQ_classes)
## Secondary multinomial model for external class predictor
## fitted by maximum likelihood method
##
## externVar(model = model_IPAQ_n2, subject = "patient", classmb = ~DIST_6MWT_M0 +
## MET_MIN_WK_M0 + MOTIVATION_CLUSTER_M0 + meteo_defavorable +
## manque_temps, data = DB_PRED_IPAQ_6_12, method = "twoStageJoint")
##
## Statistical Model:
## Dataset: DB_PRED_IPAQ_6_12
## Number of subjects: 76
## Number of latent classes: 2
## Number of parameters: 6
##
## Iteration process:
## Convergence criteria satisfied
## Number of iterations: 11
## Convergence criteria: parameters= 2.2e-07
## : likelihood= 1.3e-08
## : second derivatives= 1.4e-10
##
## Goodness-of-fit statistics:
## maximum log-likelihood: -1433.2
## AIC: 2878.4
## BIC: 2892.38
##
##
##
## Maximum Likelihood Estimates:
##
## Fixed effects in the class-membership model:
## (the class of reference is the last class)
##
## coef Se** Wald
## intercept class1 1.29289 4.05010 0.319
## DIST_6MWT_M0 class1 0.00047 0.00636 0.074
## MET_MIN_WK_M0 class1 0.00024 0.00024 1.004
## MOTIVATION_CLUSTER_M0Very High AU-High IR class1 0.02629 0.99719 0.026
## meteo_defavorable1 class1 -0.30177 0.97011 -0.311
## manque_temps1 class1 0.52264 1.16166 0.450
## p-value
## intercept class1 0.74956
## DIST_6MWT_M0 class1 0.94087
## MET_MIN_WK_M0 class1 0.31554
## MOTIVATION_CLUSTER_M0Very High AU-High IR class1 0.97897
## meteo_defavorable1 class1 0.75574
## manque_temps1 class1 0.65278
##
## ** total variance estimated through the Hessian of the joint likelihood
##