Supplement 1 Glossary of Notation and Abbreviations

a: area searched during line-transect survey, where a=2Lw, L is the total length of transects surveyed, and w is the width of the strip searched on one side of the aircraft

a: vector of the area surveyed for each transect segment $(a_i = 2L_i w)$

A: total study area size

 \mathbf{A} : an (n_i, n_η) interpolation matrix used to convert raw random effects into transect-specific values. For SPDE models, this is constructed with a Delauney triangulation. For basis-penalty smooth models, \mathbf{A} is simply the design matrix associated with spatial smooth parameters.

 \mathbf{A}^{pred} : an (n_h, n_η) interpolation matrix used to convert raw random effects into gridcell specific predictions. For SPDE models, this is constructed with a Delauney triangulation. For spline-based smoother models, \mathbf{A} is a design matrix associated with locations of grid cell centroids (obtained using the "predict" function in mgcv).

c: vector of observed counts of individual animals

 c_i : observed number of individual animals on transect segment i

 $[\mathbf{c}|\xi, \eta, \mathbf{x}]$: conditional probability density function of observed counts, given parameters, random effects, and known covariates

 ${\operatorname{CV}}\,$: coefficient of variation

 \hat{D} : estimate of density of animals (number of animals per unit area)

DSM: density surface model

EBS belugas : Eastern Bering Sea belugas

 $g(y_j, \mathbf{z}_j; \hat{\boldsymbol{\theta}}_g)$: probability of detecting an animal at distance y_j , given that it is available to be seen and is associated with covariates \mathbf{z}_j , assuming perfect detection on the transect

h: grid cell index

i : segment index

j: group index

k: bootstrap replicate index

L: transect length

 n_g : number of groups detected

 n_i : number of transect segments in DSM

 n_h : number of grid cells in DSM

 n_n : number of random effects in DSM

 \hat{N} : estimate of the total number of animals in the study area

 $\hat{p}(\mathbf{z}_j; \hat{\boldsymbol{\theta}})$: model-based estimate of the overall probability that an observer detects a group of whales, given covariates \mathbf{z}_j that affect detectability. This term accounts for all sources of perception and availability bias (Marsh and Sinclair 1989; S4).

 $\hat{p}_g(\mathbf{z}_j; \hat{\boldsymbol{\theta}}_g)$: average probability that an observer detects an object that is available to be seen in the area searched, given covariates \mathbf{z}_j that affect detectability, assuming transect detection probability is 1.0

 \mathbf{p}_g : vector of $\hat{p}_g(\mathbf{z}_j; \hat{\boldsymbol{\theta}}_g)$ for a collection of sightings indexed by j

 p_i : shorthand for $\hat{p}(\mathbf{z}_i; \hat{\boldsymbol{\theta}})$ for transects. Note that making the change from group-level detection probability (subscript j) to transect-level detect probability (subscript i) requires that we omit group-specific covariates, such as group size.

 \mathbf{p}_i : vector of the overall detection probability (including both availability and perception bias corrections) for each segment, p_i .

 p_j : shorthand for $\hat{p}(\mathbf{z}_j; \hat{\boldsymbol{\theta}})$ for groups

 $p^*(y_j, \mathbf{z}_j; \hat{\boldsymbol{\theta}})$: probability of detecting an animal at distance y_j , given that it is associated with covariates \mathbf{z}_i

 \hat{p}_A : estimate of availability probability, defined as the probability that a group is at the surface within an observer's field of view

 $\hat{p}_{MR}(0, \mathbf{z}_j; \hat{\boldsymbol{\theta}}_{MR})$: estimate of transect detection probability, defined as the probability of detecting an animal on the transect (or left-truncation point, if applicable)

 ${f s}\,$: vector of knot locations for SPDE models

 S_j : size of group indexed by j

SPDE: stochasic partial differential equation

Q: precision (inverse covariance) matrix for random effects

Var : variance

w: distance (width) searched on one side of the transect

 \mathbf{x} : vector of known covariates used in the DSM

 y_i : perpendicular distance from the transect line to the sighting of group j

 z_i : covariates that affect detectability on segment i

 z_i : covariates that affect detectability of group j

 β_0 : DSM intercept parameter

 $\pmb{\delta}$: vector of 'realized' random effects for transect counts

 η : vector of random effects for the DSM

 $[\boldsymbol{\eta}|\mathbf{x},\boldsymbol{\xi}\,$]: probability density function of random effects for the DSM

 $\hat{\theta}$: parameter estimates required to estimate detection probabilities

 $\mu\,$: mean of a Tweedie probability density function

 μ_i : expected number of whales encountered on transect segment i

 $\boldsymbol{\xi}\,$: vector of unknown parameters for the DSM

 ρ : power parameter for the Tweedie probability density function

 $\phi\,$: dispersion parameter for the Tweedie probability density function

au: Matérn precision parameter

 $\kappa\,$: Matérn inverse range parameter

 λ : penalization parameter(s) for basis-penalty smooths

 $\lambda_{m,h}$: predicted abundance from model m for unsampled location h

 $\lambda_{m,max}$: maximum predicted abundance across all sampled cells