

S1 Figure. Modeling the influence of max and K_D on PCR reaction quality.

The PCR model was used to generate reaction profiles using different input values. A) The PCR model: the amplicon yield in a given thermal cycle is a function of the prior cycle's amplicon abundance (prev), the maximum theoretical yield of the completed reaction (max), and the inhibitory activity of accumulated products (K_D). After a reaction's max and K_D values are obtained by fitting the model to qPCR data, the abundance of the initial template can be calculated (seed). B) Modeled reaction profiles using different seed values of 0.1, 0.001, or 0.00001 and with invariant max = 1E4 and K_D = 1E3. The different seed values shift the positions of the reaction profiles, but the profile shapes remain the same. C) Using invariant seed, max, and K_D values, the maximum possible per-cycle efficiency was set to 100% (2-fold amplification), 95% (1.9fold amplification), or 90% (1.8-fold amplification). D) Reactions in which the value of max was reduced in 2-fold increments. E) Reactions in which the value of K_D was reduced in 2-fold increments. F) Different ratios of max/K_D change the reaction profiles and can produce the same yield at a given cycle. Shown are three examples that produce the same yield at the 30th cycle (marked in red): max = 1E4, $K_D = 1E3$ (max/K_D) = 10); max = 1.83E4, $K_D = 5E2$ ($max/K_D = 36.6$); and max = 7.8E4, $K_D = 2.5E2$ (max/K_D = 312).

Additional model evaluations: PCR amplification profiles reveal reaction quality Experimental qPCR data of efficient reactions can exhibit max/K_D ratios on the order of ~10, so modelling was initiated using a PCR model (S1A) using a fixed 10:1 ratio and the seed values were altered to represent differing initial template abundances (S1B). Consistent with our prior characterization of this PCR model [22], altering the seed value did not change the shapes of the reaction profiles, but the relative spacing of the data reflected the changes in template abundance. Shifts in reaction curve spacing are the basis of relative template quantification using either this global fitting approach or Δ Cq methods.

qPCR protocols may implement additional calibration measurements to determine the per-cycle efficiency by comparing the Cg values of known template dilutions [19,21]. To model the impact of reduced reaction efficiencies on max and K_D , forced reductions to per-cycle reaction efficiencies were implemented by changing the '1' in the PCR model to lower values such that the maximum per-cycle yield ranged from 100% (2-fold amplification during the first cycle) to 90% (1.8-fold amplification) (S1C). Expectedly, the modeled data indicated that a reduction in reaction efficiency not only lowered the plateau heights (overall yield) and decreased the maximum slopes, but also caused substantial shifts in the profile positions to later cycles. For example, although the same seed values were used for each modeled reaction, a reduction in maximal efficiency to 90% shifted the reaction curve by ~2 cycles (corresponding to a ~4-fold reduction in the apparent template concentration). These data were subsequently fit using the PCR model with the maximum efficiency restored to '1' to evaluate the impact on the seed, max, and K_D values for each curve. Consistent with Δ Cg, a reduction of maximal efficiency to 90% caused the resulting seed value for that reaction to lower by ~4-fold (26.7%). Importantly, this distortion was accompanied by a reduction in both the max and K_D by ~19% and ~55%, respectively, which caused the max/ K_D ratio to increase by ~80%. This trend in increasing max/K_D ratios continued until the per-cycle

efficiency was reduced to 65%, at which point the algorithm failed to fit. Therefore, even though the max and K_D values obtained from a given reaction's fit are influenced by several experimental variables (such as fluorophore response, per-well measurement variations, and measurement technique), the max/K_D ratio is an unitless metric of reaction quality that can be used to distinguish changes in reaction performance from bona fide changes in template abundance.

To clarify the influence of the max and K_D values on reaction profiles, each was varied independently. Reductions to the max term in the model lowered the plateau values, yet had a negligible effect on the on the emergence of the data above baseline (no Cq variance) (S1D); whereas reductions to K_D delayed baseline emergence, lowered amplification slopes, and lowered plateau heights (S1E Figure). Because the max term represents available resources and the K_D term represents inhibition, this modeling suggests that reaction 'poisoning' is primarily responsible for non-ideal reaction profiles, not reagent limitation.

Endpoint PCR amplicon abundance is frequently used to evaluate PCR efficiencies under different conditions. The molecular mechanisms that stall reactions have not been fully resolved, but it has been proposed that amplicon reannealing eventually outcompetes primer annealing [20]. It is commonly asserted that PCRs become exhausted (plateau) because of reagent depletion; however, the remaining concentrations of primers and dNTPs in exhausted reactions substantially exceed the concentration of generated amplicons [31], and the residual primer concentrations are well within a range that would otherwise support robust amplification (for example, reactions having 500 nM of each primer generate ~100 nM of amplicons). The modeling data presented above suggest that the trajectories of amplicon accumulation toward endpoint values may be more informative of reaction quality than overall yield. To evaluate this idea, reactions were modeled with different max/K_D ratios such that the same amplicon abundance was present after 30 cycles, a common end-point protocol (S1F). It can be seen that the amplicon abundance at a given cycle preceding the plateau can be highly variable and dependent on reaction quality. Thus, end-point analyses can be misleading indicators of reaction efficiency. Taken together, this modelling activity revealed that elevated max/K_D ratios are telling of underlying problems and that this ratio can be used to comparatively evaluate reaction quality.