See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/338711283

Problem Definitions and Evaluation Criteria for the CEC 2020 Special Session

on Multimodal Multiobjective Optimization

Technical Report - December 2019

DOI: 10.13140/RG.2.2.31746.02247

CITATIONS
52

5 authors, including:
Jing Liang
Zhengzhou University
120 PUBLICATIONS 17,651 CITATIONS

SEE PROFILE

5 Cai Tong Yue
Zhengzhou University

107 PUBLICATIONS 3,478 CITATIONS

SEE PROFILE

All content following this page was uploaded by Cai Tong Yue on 21 January 2020.

The user has requested enhancement of the downloaded file.

READS
7,044

Ponnuthurai N. Suganthan
Qatar University
653 PUBLICATIONS 67,359 CITATIONS

SEE PROFILE

ResearchGate


https://www.researchgate.net/publication/338711283_Problem_Definitions_and_Evaluation_Criteria_for_the_CEC_2020_Special_Session_on_Multimodal_Multiobjective_Optimization?enrichId=rgreq-e81524fc1fb26313593925474caecc1d-XXX&enrichSource=Y292ZXJQYWdlOzMzODcxMTI4MztBUzo4NDk2OTU2MDE1OTQzNjhAMTU3OTU5NDYyNjE4MQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/338711283_Problem_Definitions_and_Evaluation_Criteria_for_the_CEC_2020_Special_Session_on_Multimodal_Multiobjective_Optimization?enrichId=rgreq-e81524fc1fb26313593925474caecc1d-XXX&enrichSource=Y292ZXJQYWdlOzMzODcxMTI4MztBUzo4NDk2OTU2MDE1OTQzNjhAMTU3OTU5NDYyNjE4MQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e81524fc1fb26313593925474caecc1d-XXX&enrichSource=Y292ZXJQYWdlOzMzODcxMTI4MztBUzo4NDk2OTU2MDE1OTQzNjhAMTU3OTU5NDYyNjE4MQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jing-Liang-28?enrichId=rgreq-e81524fc1fb26313593925474caecc1d-XXX&enrichSource=Y292ZXJQYWdlOzMzODcxMTI4MztBUzo4NDk2OTU2MDE1OTQzNjhAMTU3OTU5NDYyNjE4MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jing-Liang-28?enrichId=rgreq-e81524fc1fb26313593925474caecc1d-XXX&enrichSource=Y292ZXJQYWdlOzMzODcxMTI4MztBUzo4NDk2OTU2MDE1OTQzNjhAMTU3OTU5NDYyNjE4MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Zhengzhou-University?enrichId=rgreq-e81524fc1fb26313593925474caecc1d-XXX&enrichSource=Y292ZXJQYWdlOzMzODcxMTI4MztBUzo4NDk2OTU2MDE1OTQzNjhAMTU3OTU5NDYyNjE4MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jing-Liang-28?enrichId=rgreq-e81524fc1fb26313593925474caecc1d-XXX&enrichSource=Y292ZXJQYWdlOzMzODcxMTI4MztBUzo4NDk2OTU2MDE1OTQzNjhAMTU3OTU5NDYyNjE4MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ponnuthurai-Suganthan?enrichId=rgreq-e81524fc1fb26313593925474caecc1d-XXX&enrichSource=Y292ZXJQYWdlOzMzODcxMTI4MztBUzo4NDk2OTU2MDE1OTQzNjhAMTU3OTU5NDYyNjE4MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ponnuthurai-Suganthan?enrichId=rgreq-e81524fc1fb26313593925474caecc1d-XXX&enrichSource=Y292ZXJQYWdlOzMzODcxMTI4MztBUzo4NDk2OTU2MDE1OTQzNjhAMTU3OTU5NDYyNjE4MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Qatar-University?enrichId=rgreq-e81524fc1fb26313593925474caecc1d-XXX&enrichSource=Y292ZXJQYWdlOzMzODcxMTI4MztBUzo4NDk2OTU2MDE1OTQzNjhAMTU3OTU5NDYyNjE4MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ponnuthurai-Suganthan?enrichId=rgreq-e81524fc1fb26313593925474caecc1d-XXX&enrichSource=Y292ZXJQYWdlOzMzODcxMTI4MztBUzo4NDk2OTU2MDE1OTQzNjhAMTU3OTU5NDYyNjE4MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cai-Yue-3?enrichId=rgreq-e81524fc1fb26313593925474caecc1d-XXX&enrichSource=Y292ZXJQYWdlOzMzODcxMTI4MztBUzo4NDk2OTU2MDE1OTQzNjhAMTU3OTU5NDYyNjE4MQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cai-Yue-3?enrichId=rgreq-e81524fc1fb26313593925474caecc1d-XXX&enrichSource=Y292ZXJQYWdlOzMzODcxMTI4MztBUzo4NDk2OTU2MDE1OTQzNjhAMTU3OTU5NDYyNjE4MQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Zhengzhou-University?enrichId=rgreq-e81524fc1fb26313593925474caecc1d-XXX&enrichSource=Y292ZXJQYWdlOzMzODcxMTI4MztBUzo4NDk2OTU2MDE1OTQzNjhAMTU3OTU5NDYyNjE4MQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cai-Yue-3?enrichId=rgreq-e81524fc1fb26313593925474caecc1d-XXX&enrichSource=Y292ZXJQYWdlOzMzODcxMTI4MztBUzo4NDk2OTU2MDE1OTQzNjhAMTU3OTU5NDYyNjE4MQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Cai-Yue-3?enrichId=rgreq-e81524fc1fb26313593925474caecc1d-XXX&enrichSource=Y292ZXJQYWdlOzMzODcxMTI4MztBUzo4NDk2OTU2MDE1OTQzNjhAMTU3OTU5NDYyNjE4MQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Problem Definitions and Evaluation Criteria for the CEC
2020 Special Session on Multimodal Multiobjective

Optimization

J. J. Liang!, P. N. Suganthan?, B. Y. Qu3, D. W. Gong* and C. T. Yue!

! School of Electrical Engineering, Zhengzhou University, Zhengzhou, China
2 School of EEE, Nanyang Technological University, Singapore
3 School of Electric and Information Engineering, Zhongyuan University of Technology, Zhengzhou,
China
4 School of Information and Control Engineering, China University of Mining and Technology, Xuzhou,
China
liangjing@zzu.edu.cn, epnsugan@ntu.edu.sg, qby1984@hotmail.com, dwgong@vip.163.com,
Zzuyuecaitong@163.com

Technical Report 201912, Computational Intelligence Laboratory,
Zhengzhou University, Zhengzhou China
And
Technical Report, Nanyang Technological University, Singapore

December 2019



In multiobjective optimization problems, there may exist two or more global or local Pareto
optimal sets (PSs) and some of them may correspond to the same Pareto Front (PF). These
problems are defined as multimodal multiobjective optimization problems (MMOPs) [1, 2].
Arguably, finding one of these multiple PSs may be sufficient to obtain an acceptable solution for
some problems. However, failing to identify more than one of the PSs may prevent the decision
maker from considering solution options that could bring about improved performance. Recently,
many researchers [3-10] proposed different multimodal multiobjective optimization (MMO)
algorithms, so there is definitely a need of evaluating these algorithms in a more systematic
manner on an open and fair competition platform.

In the MMO test suite of CEC’2020, a set of MMO test problems with different characters are
designed, such as problems with different shape of PSs and PFs, coexistence of local and global
PSs, scalable number of PSs, decision variables and objectives. In addition, a fair and appropriate
evaluation criterion and reference data are given to assess the performance of different MMO
algorithms.

The Matlab codes for the MMO test suite of CEC’2020 can be downloaded from the website
given below:

https://github.com/P-N-Suganthan

1 Introduction to the CEC’2020 MMO test problems
1.1 Some Definitions

Given a multiobjective optimization problem Min f(i):[fl(i), f,(X), ..., fm(i)], a feasible
solution x, is said to dominate [1] the other feasible x, if both of the two conditions are met:

1) The solution x, is no worse than x, for all objectives, i.e. f(x)<f(x,) for
i=1..,m,;
2) The solution x, is strictly better than x, for at least one objective, i.e. f(x)< f(x,) for

ie[l,m].

If a solution is not dominated by any other solutions, it is called a nondominated solution. The
nondominated solution set is called Pareto optimal set (PS). The set of vectors in the objective
space that corresponds to the PS is called Pareto front (PF).

The definitions of Local PS, PF and Global PS, PF [1, 11]are as follows:

Local Pareto optimal set (Local PS): For arbitrary solution x in a solution set P_, if there is

no neighborhood solution y satisfying Hf/—i” <o (o is a small positive value), dominating

any solution in the set P_, then P_ is called Local Pareto optimal set;
Global Pareto optimal set (Global PS): For arbitrary solution in a solution set B, if there is
no solution dominating any solution in the set P, , then P, is called Global Pareto optimal set.
Local Pareto Front (Local PF): The set of all the vectors in the objective space that
corresponds to the Local PS is defined as Local Pareto Front.



Global Pareto Front (Global PF): The set of all the vectors in the objective space that
corresponds to the Global PS is defined as Global Pareto Front.

Fig. 1 shows a bi-objective minimization problem with two Global PSs and one Local PS. Solid
lines with stars are global PS/PF, while dashed lines with circles dots represent local PS/PF. Note
that a certain multimodal multiobjective problem may have several Local PSs and Global PSs.

Xl f2 -~
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PN \ Local PF
¢ m »
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Global PS; Global PS, f,
Decision space Objective space

Fig. 1. lllustration of Local PS, Global PS, Local PF, and Global PF.

The method to judge whether a given multiobjective optimization problem is MMO problem or
not is given in this report. For a multiobjective optimization problem, if it meets one of the
following conditions, it is a MMO problem:

1) It has at least one local Pareto optimal solution;

2) It has at least two global Pareto optimal solutions corresponding to the same point on the PF.

The solution which is not dominated by any neighborhood solution is called local Pareto optimal
solution. The solution which is not dominated by any solutions in the feasible space is called
global Pareto optimal solution.

1.2 Summary of the CEC’2020 MMO test problems

The characters of the MMO test functions are shown in Table I. In the last column of Table I,
N_ops represents the number of PS to be obtained. N_ops = N_global + N_local where N_global
represents the number of global PS need to be obtained and N_local represent the number of local
PSs need to be obtained. Only the shading problems’ local PS need to be obtained. The equations
of MMF10 and MMF10_|I are the same, but their reference data are different. The reference data
of MMF10 only include global PS and PF while those of MMF10_I include both local and global
PS and PF. MMF11 I, MMF12_I, MMF13_I, MMF15 | and MMF15 a | are of the same
situation.



Table I. Information and features of the MMO test problems suite

MMO  test %5 S -~ 5 +
< jl
roblem s = @ > = =
P E z S £ g g 5
name S 1S o S S S =
S S o] o> o S 1
= = E £ S < z
g 2 ¢ E S e e 8 To
o35 =© &5 o “— 73 S o o 8
8 s S O o o o S = Q5
< = c L B D D g 2 °| -
Q o Q o = st = O & |
(2~ " ©°o g ‘5_6 g n o 2 2
1 MMF1 X X v Convex Nonlinear % 2+0
2 MMF2 X X v Convex Nonlinear % 2+0
3 MMF4 X X v Concave Nonlinear % 2+0
4 MMF5 X X v Convex Nonlinear % 2+0
5 MMF7 X X v Convex Nonlinear % 2+0
6 MMF8 X X v Concave Nonlinear % 2+0
7 MMF10 X X v Convex Linear x 1+0
8 MMF11 X X v Convex Linear 4 1+0
9 MMF12 X X v Convex Linear v 1+0
10 MMF13 X X v Convex Nonlinear v 1+0
11 MMF14 v v v Concave Linear 4 2+0
12 MMF15 v v v Concave Linear v 1+0
13 MMF1 e x X 4 Convex Nonlinear % 2+0
14 MMF14 a v v v Concave Nonlinear v 2+0
15 MMF15 a v v 4 Concave Nonlinear v 1+0
16 MMF10 | X X v Convex Linear X 1+1
17 MMF11 | X X v Convex Linear v 1+1
18 MMF12 | X X v Convex Linear v 1+1
19 MMF13 | X X v Convex Nonlinear v 1+1
20 MMF15 | v v v Concave Linear v 1+1
21 MMF15 a |l Vv v v Concave Nonlinear v 1+1
22 MMF16 11 v v v Concave Linear v 2+1
23 MMF16 |2 v v v Concave Linear v 1+2
24 MMF16 I3 v v v Concave Linear v 2+2

N_ops represents the number of PS to be obtained. N_ops = N_global + N_local where N_global
represents the number of global PS need to be obtained and N_local represent the number of local

PSs need to be obtained.

*Please Notice: These problems should be treated as black-box problems. The explicit equations

of the problems are not allowed to be used. However, the dimensionality of the problems and the
total number of function evaluations can be considered as known values which can be used to

design your algorithm.



1.3 Definitions of the CEC’2020 MMO test problems
The equations and figures of true PS and PF are present in this subsection.
MMF1

f,=|x -2
f, =1—/|x —2| +2(x, —sin(6z|x, — 2|+ 7))’
Its search space is

x, €[13], x,e[-11].
Its global PSs are

X=X
X, =sin(67 |x, — 2|+ )

where 1<x <3.
Its global PFs are

f,=1-f,

where 0< f, <1.
Its true PSs and PF are illustrated in Fig. 2.
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Fig. 2. The true PSs and PF of MMFL.
MMF1_e

f =[x -2|
Min . {1—m+2(x2 —sin(67|x, 2|+ 7)), x, €[L, 2)
1- [, —2| +2(x, —a* sin(6z|x, ~ 2|+ ))?, x, €[2, 3]
where a>0&a #1(a controls the amplitude of the global PS inx, €[2, 3]).
Its search space is
x €[1,3],x, e[-a% a’].

Its global PSs are

Sirl(671'|x1 —2|+7r), X €[4, 2)
X, =
a"sin(2z|x —2|+7), x €[2,3]



where a>0&a=#1.

Its global PF is

f,=1-Jf, f,e[0,1]

When a=e, its true PSs and PF are shown in Fig. 3.
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Fig. 3. The true PSs and PF of MMF1_e.

MMF2
f1=X1
1- % +2(4(%, —/x,)?

—ZO(XZ\_E‘/@”) +2), 0<x,<1

—2c0s(

1- % +2(4(x, —1—x)?

—COS(W) +2),1<x,<2

Its search space is
x, €[0,1], x, €[0,2].

Its global PSs are
X, =X,

_Jx
"o (Xz _1)2

0<x,<1

1<x,<2

Its global PFs are

f,=1-Jf,

where 0< f <1.
Its true PSs and PF are illustrated in Fig. 4.
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Fig. 4. The true PSs and PF of MMF2.
MMF4
f1 = |X1|
. 1-x7+2(x, —sin(z|x]))>  0<x, <1
2 1-x2 +2(x, —1-sin(z|x))? 1<x, <2
Its search space is
X, €[-1,1], x, [0, 2].
Its global PSs are
X=X
sin(z]x|)  0<x, <1
X, =
sin(r|x,[)+1 1< x, <2
Its global PFs are
f,=1-f?
where 0< f <1.
Its true PSs and PF are illustrated in Fig. 5.
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Fig. 5. The true PSs and PF of MMF4.



MMF5
f, =[x -2
. 1- % —2|+2(x, —sin(6z|x, — 2|+ 7))*  -1<x,<1
© - =2+ 2%, —2-sin(Bz|x, 2|+ 7)) 1<x,<3
Its search space is
x €[-1,3], x,€[L3].
Its global PSs are
_[sin(6z|x ~2|+7)  -1<x,<1
27 \sin6r | % 2| +7)+2 1<x, <3

Its global PFs are

f,=1-Jf,

where 0< f, <1.
Its true PSs and PF are illustrated in Fig. 6.
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Fig. 6. The true PSs and PF of MMF5.

MMF7
f =[x -2
f,=1-|% 2| Jr{x2 —[03]x, —2[ -cos(24z|x, 2|
+47)+0.6x, — 2] -sin(67|x,—2|+ 7))’

Its search space is
x, €[13], x,e[-11].
Its global PSs are

X, =[0.3]%, ~2[" cos(24x|x, ~ 2|+ 47) +0.6[x, - 2]] -sin(67|x, ~ 2|+ 7)

where 1<x <3.
Its global PFs are



where 0< f <1.

Its true PSs and PF are illustrated in Fig. 7.

104
0.8
0.6
0.4 I

X, 0.2 Py

0.0 L
\ e

0.2 Y/ \/
\
0.4 |

-0.6 4 v

0.8 . .

(@) True PSs of MMF7
Fig. 7. The true PSs and PF of MMF7.

MMF8

f, =sin|x|

J1=(in|x])? +2(x, —sin|x |~ [x,])*

1.04

0.8 -

0.6

0.4 4

0.2 4

0.0 4

(b) True PF of MMF7

0<x,<4

JI-(in|x,])* +2(x, 4 —sin|x |-[x|)* 4<x,<9

X, €[z, 7], %, €[0,9].

Its search space is

Its global PSs are

where —z<x <7x.
Its global PFs are

where 0< f <1.

_ sin|x | +[x|
L |sinfx|+]x]+4 4<x, <9

0

f,=1-Jf,

Its true PSs and PF are illustrated in Fig. 8.
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Fig. 8. The true PSs and PF of MMFS8.
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MMF10 / MMF10_|I

x—0.2') x—0.6)
where g(x):2—exp{—(Wg4j :I—O.Sexp{—( O.ZGJ }
Its search space is

x, €[0.1,1.1], x,€[0.1,1.1].
Its global PS is
X, =0.2,x €[0.1,1.1].
Its local PS is
X, =0.6, x, €[0.1,1.1].

Its global PF is

f, :%, f e[0.1,1.1].

Its local PF is
f, =%‘16), f e[0.1,1.1].

Its true PSs and PFs are shown in Fig. 9.
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Fig. 9. The true PSs and PFs of MMF10.
MMF11/ MMF11_|

f1:X1
¢ _9

2

Min (X,)

X




2
where g(x):Z—exp{—Zlog(Z)-(X;—g'lj }-Sin‘i(npﬂx), n, is the total number of

global and local PSs.
Its search space is

x €[0.1,1.1], x,[0.1,1.1].

Its global PS is

X2=E%—,&E[QL111

p

Its it local PS is

X, :i+i-(i -1), x, €[0.1,1.1]

2np n,
where 1= 2, 3,...,np.
Its global PF is
gl 1
2np
f,=—"=1 €[0.1,1.1].
fl
Its local PF is
g i+i.(i -1)
2np n,
, = , f,€[0.1,1.1]
fl
where 1=2,3,...,n,.

When N, = 2, its true PSs and PFs are shown in Fig. 10.
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Fig. 10. The true PSs and PFs of MMF11.



MMF12 / MMF12_]|

Min {fl:xl
f,=9(x,)-h(f;,0)

x—-0.1

2
where g(x):Z—exp{—Zlog(Z)-( j}-sine(npﬂx), n, is the total number of

2
global and local PSs, h(f,, Q) =1—(LJ —Lsin(Zﬂqfl), q is the number of discontinuous
g g

pieces in each PF (PS).
Its search space is

x €[0,1], x, €[0,1].

Its global PS is discontinuous pieces in

“ - 1
2 _—.
2n,
Its i local PSs are discontinuous pieces in
1 1 .
X, =—+—-(1—-1
2= o (i-1)

p p
where i=2,3,..,n,.

Its global PF is discontinuous pieces in

f,=9"-h(f.,q")

where g" is the global optimum of g(x).
Its local PFs are discontinuous pieces in

f, =0/ -h(f.9/)
where g, are the local optima of g(x).
The ranges of discontinuous pieces depend on the minima of f, =g -h(f,g").

When n, =2, its true PSs and PFs are shown in Fig. 11.



(‘Slohal PS - I (;Iobal PF
,,,,, Local PS = . _._ Local PFF
08 | | \
. - - - e A
08 f \ \
2 %05 | \
\
04 | i \ ,\v
0 \
02| T - - i [ \
0 , . . . 05 , . , ,
0 02 04 06 08 1 0 0.2 04 06 08
Xl fl
(a) True PSs of MMF12 (b) True PFs of MMF12

Fig. 11. The true PSs and PFs of MMF12.

MMF13 / MMF13_|

f1 =X
min g(t)
fZ

t
X

where g(t) = 2—exp{—2 Iog(2)-(%j } -sin® (n, 7 (1)),

t=X,+4/% , n_ isthe total number of global and local PSs.

p

Its search space is
x, €[0.1,1.1], x, €[0.1,1.1], x, €[0.1,1.1].
Its global PS is

X, + % -1 x, €[0.1,1.1].
2np
Its it local PSs is

1 -1
x2+\/Z:H+n—,xle[0.l,l.l].
p p

where i=2,3,...,n

e

Its global PF is

—-0.1

2n . 1
_ _ J5 ] |sin® o
2—exp| —2log(2) 08 sin {npﬂ[Zn D

Its local PFs are



where i=2,3,..,n,.

When n_ =2, its true PSs and PFs are shown in Fig. 12.
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Fig. 12. The true PSs and PFs of MMF13.

MMF14

f, = COS(T/y %) COS(T/ )+ GOS(%/g X 5) COS(T/g X ) (1 8 (X X s Ko 1)
f, = COS(%/5 %) COS(T/5 X, COS(/g Xy )SIN(T/g X 1) (L4 G (X Xy -1 Ko 1t)
vpin | T = COST X COS(T/5,)-+-SINT/ X ) (1 0 (ks Xy 1 X))

fm—l = COS(% Xl)Sin(% Xz)(1+ g(Xm’ Kipag 1eees Xm—l+k))
fm :Sin(%)ﬁ)(l‘*' g(va Xinsg veee Xm—l+k))

where g(Xm,Xml,...,Xm,hk)=2—sin2(np7z(xmfw )) n, is the number of global PSs.

Its search space is
x. €[0,1], fori=12,...,n,
where n is the dimension of decision space; m is the dimension of objective space;

k=n-(m-1).
Its it (i =1, 2,..., ny) global PSs are
x =—+ 1 1), x e[01]for j=1:n—1.
2n, n,

Its global PFs are



where g" are the global optima of g(x).

When n,=2,m=2n=3, its true PSs and PFs are shown in Fig. 13.
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Fig. 13. The true PSs and PFs of MMF14.

MMF14_a

f1 = COS(% X1) COS(% Xz)’ o COS(% Xm-z) COS(’% Xm—l)(l+ g(Xml Kinag 10001 Xnigak ))
f, = COS(%/) %) COS(T/j X,)+++COS(T/g Xy _3)SIN(/y Xy 1) (140 (X Ko 1o X 1)
viin | T = COSC X COS(T/5,)-+-SINT X ) (1 8 (X Xy - Xy 14))

fm—l = COS(% Xl)SIH(% Xz)(1+ g(xm’ Xm+l ey Xm—1+k))
fm =Sin(%x1)(1+ g(xmv Kpag 10001 Xm—1+k))

where  g(X,,, Xy 1---» XmM)=2—sin2[np7{xmk —0.55in(7rxmw)+iD , n, is the number of

2np

global PSs.
Its search space is
X, €[0,1],fori=1,2,...,n
where n is the dimension of decision space; m is the dimension of objective space
k=n—-(m-1).
Its it (i =1, 2,..., ny) global PSs are
X =0.55in(7zx“)+ni~(i—1), x; €[0,2] for j=1:n-1.
p

Its global PFs are

(f,) =@+o’

M=

Il
iN

where g" are the global optima of g(x).

When n,=2,m=2n=3, its true PSs and PFs are shown in Fig. 14.
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Fig. 14. The true PSs and PFs of MMF14_a.

MMF15/ MMF15_|

fl = COS(% X1) COS(% Xz)’ o COS(% Xm-z) COS(% Xm—l) (1+ g (Xm 1 Kt 1o e X1k ))
f, = COS(7/5 X,) COS(/j X,)++COS(/4 X, ,)SIN(T/ X ) (14 O (X Xt 1o+ X 124)
vin | T = COS X COS(T5,)-+-SINT/ X ) (1 8 (X Xy s X 1,4)

fm—l = COS(% Xl)SIH(% Xz)(1+ g(xm’ Xm+l """ Xm—1+k ))
fi = SINCZ %) (14 9 (K Xt 01 X 1))

—0.1) | .
where g(X,,, X,y .-, xml+k):2—exp{—2log(2)-(xmlg‘—8J }-smz(npﬁxmm)’ n, Isthe

number of global PSs.
Its search space is
X, €[0,1], fori=1,2,..., n,
where n is the dimension of decision space; m is the dimension of objective space;
k=n—-(m-1).
Its global PS is

X, =i, x; €[0,1]for j=1:n-1.
2n

P
Its it (i =2, 3,..., np) local PSs are

X, =~ +—(i-1), x, €[01] for j=1:n-1.
2n, n

p p

Its global PF is

(f,) =a+o’

M=

I
5N

where g" is the global optimum of g(x).

Its it" local PFs are

(1) =gy

j=1



where g, are the local optima of g(x).

When n,=2,m=2n=3, its true PSs and PFs are shown in Fig. 15.
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Fig. 15. The true PSs and PFs of MMF15.
MMF15_a/MMF15 a_|

fy = COS(/5 %) COS(T/) X,)+++ COS(%/ Yo, ) COS(T/g Xy 1) (14 G (X Xyt 1o K1)
f, = COS(7/5 X,) COS(/j X,)++COS(/4 X, ,)SIN(T/ X ) (L4 O (X Xt 11 X 124)
i ) T = 0085 ) 00S(%/5 1)<+ SN Xy ) (14 G0y Xy veves X 14))

Fot = COS(T4 ) SIN(T X,) (14 0 (X Xt 1v-s X 124)
fr = SINCT 5 (14 9 (K Xt 01 X 1))

2
where g(X,, Xpp vos Xp10) = 2—exp{—2 Iog(z)(%j }-sinz(npﬂt) ,

t=x . —05sin(zx )+2i n, is the number of global PSs.
-+k m-2+k n

m-1
p

Its search space is
X, €[0,1], fori=12,...,n

where n is the dimension of decision space; m is the dimension of objective space;
k=n—-(m-1).
Its global PS is
X, =0.5sin(zx,,), x; €[0,1] for j=1:n-1.
Its it (i =2, 3,..., ny) local PSs are
X, = 0.53in(7zxn71)+i(i -1), x; €[04 for j=1:n-1.
n

p

Its global PF is
M
> (1) =g’

=1



where g” is the global optimum of g(x).

Its i local PFs are
M 2 3 2
2(f,) =@+g)
j=1

where g, are the local optima of g(x).

When n,=2,m=2n=3, its true PSs and PFs are shown in Fig. 16.
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Fig. 16. The true PSs and PFs of MMF15 _a.

MMF16
f = cos(% X) cos(% xz)---cos(% Xy o) cos(% Xt ) (1 9 (Xys X eees Xgre))
f, = cos(% X,) cos(% x2)~~~cos(% xmfz)sin(% Xt ) (14 9 Xy X veves Xare))
Min f, = cos(% xl)cos(% x2)~-sin(% xm_z)(l+ (X Xippg re-er xm_M))
f., = cos(% xi)sin(% %) (14 9 (X Xt eees Xngii))
f :sin(%xl)(l+ (X Xt 11 Xzi))
where

2—5i“2(2”p,g”<xmk )) 0<x <05

g(Xm’ Xm+1 LA Xm—1+k) =

2
Z_exp{_zlog(Z)(xm%goj'j }.sinz(an_lﬂ'Xm_“k) 0.5§Xm71}k <1

n is the number of global PSsand n_, is the number of local PSs.

p_9 p_I

Its search space is

X, €[0,1], fori=12,...,n,
where n is the dimension of decision space; m is the dimension of objective space;
k=n-(m-1).

n
Itsih(i=1,2... 7”) global PS is



X, :i+i-(i—1), x; €[0,0.5) for j=1:n-1
2n. n

p p

n
Itsi"(i=1,2... 7”) local PSs are

X, =i+i-(i—l), x; €[0.51]for j=1:n-1.
2n, n

p p

Its global PFs are

(f,) =@+o’

M=

I
AN

where g" are the global optima of g(x).

Its local PFs are

(f,) =@+g)

M=

I
2N

where g, are the local optima of g(x).

When n,=4m=2n=3, its true PSs and PFs are shown in

MMF16_11
Test function is the same with MMF16. The parameters are set as:

N, o =2,n, ,=1m=2,n=3,

p_I

Its true PSs and PFs are shown in Fig. 17.
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Fig. 17. The true PSs and PFs of MMF16_11.

MMF16_12
Test function is the same with MMF16. The parameters are set as:

N, o :1,np_, =2,m=2,n=3,

Its true PSs and PFs are shown in Fig. 18.
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Fig. 18. The true PSs and PFs of MMF16_12.
MMF16_13

Test function is the same with MMF16. The parameters are set as:

Ny o :2,np_, =2,m=2,n=3,

Its true PSs and PFs are shown in Fig. 19.
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Fig. 19. The true PSs and PFs of MMF16_13.

2 Evaluation criteria

2.1 Performance indicators

Four performance indicators, the reciprocal of Pareto Sets Proximity (1/PSP) [3], Inverted
Generational Distance (IGD [12]) in decision space (IGDX) [13], the reciprocal of Hypervolume
(1/HV) [14], and IGD in objective space (IGDF) [13] are employed to compare the performances
of different algorithms. Among the indicators, 1/PSP and IGDX are used to compare the
performance in decision space, while 1/HV and IGDF are used to compare the performance in
objective space. The reference data including reference PFs, PSs and reference points of HV are
available on http://www5.zzu.edu.cn/ecilab/info/1036/1163.htm. For all the four indicators, the

smaller value means the better performance.



2.2 Performance comparison method

Algorithms are ranked through the Friedman of k algorithms over N case problems. Each
algorithm is assigned four ranks according to the four indicators (1/PSP, IGDX, 1/HV and IGDF).
The mean value of the four ranks acts as the final score. The algorithm with the smallest score
ranks first.
2.3 Experimental setting

Running times: 21 times

Population size: 200*N_ops

Maximal fitness evaluations (MaxFES): 10000 * N_ops

where N_var represents the number of variables and N_ops means the number of local and
global PS to be obtained.

3 Results Format

Provide the best, worst, mean, median, and standard deviation values of each indicator value for
the 21 runs.
The participants are required to send the final results as the following format to the organizers and
the organizers will present an overall analysis and comparison based on these results.
Create one txt document with the name “AlgorithmName _IndicatorName.txt” for each indicator.
For example, the reciprocal of PSP of MO_Ring_PSO_SCD for test function MMF1, the file
name should be “MO_Ring_PSO_SCD _rPSP.txt".
Then save the results matrix (the gray shadowing part 24*26) as Table I1-Table V in the file:

Table Il. Information matrix for 1/PSP

. Standard
*E* it Runl Run2 ... | Run2l Best | Worst | Mean | Median .
deviation
MMF1
MMF2
MMF4
MMF5
MMF16_13
Table Ill. Information matrix for 1/HV
Run . Standard
*Ex txt Run2 | ... | Run21 Best | Worst | Mean | Median L
1 deviation
MMF1
MMF2
MMF4
MMFE5
MMF16_13
Table IV. Information matrix for IGDX
. Standard
*Ex ixt Runl | Run2 Run21 | Best | Worst Mean | Median L
deviation




MMF1
MMF2
MMF4
MMF5

MMF16_I3

Table V. Information matrix for IGDF

Xt

MMF1
MMF2
MMF4
MMF5

MMF16_I3

Standard

Runl Run2 | ... | Run21 | Best | Worst | Mean | Median L
deviation
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