load_pretrained: True strict_load: True pretrained_path: "./pretrained/DCC_x4st39_Set14_2n8d32T_4_epoch=119_val_psnr=28.32.pth" loggers: log_images: True network: target: models.modle_sr28_New.DCC_st39 # Super_Resolution.bicubic_plusplus_main.bicubic_plusplus_main. params: upscale: 4 growth_rate: 2 num_blocks: 8 dim: 32 trainer: base_lr_rate: 5e-4 num_epochs: 1500 use_Y_channel_in_val: True check_val_every_n_epoch: 20 lr_scheduler: target: training.schedulers.KneeLRScheduler #KneeLRScheduler CosineAnnealingLR_Restart params: peak_lr: 5e-4 warmup_steps: 0 total_steps: 1000 min_lr: 5e-6 # optimizer: torch.optim.Adam([torch.zeros(3, 64, 3, 3)], lr=2e-4, weight_decay=0, betas=(0.9, 0.99)) # T_period: [155, 155, 155, 155, 155, 155] # restarts: [155, 310, 465, 620, 775] # weights: [1, 1, 1, 1, 1] # eta_min: 1e-5 # last_epoch: -1 degradation: train: blur: False img_noise: False kernel_noise: False load_kernels_from_disc: False kernel_path: [""] ksize: 21 rate_iso: 1.0 sig_min: 0.2 sig_max: 2.6 img_noise_level: 0.2 val: blur: False img_noise: False kernel_noise: False load_kernels_from_disc: False kernel_path: [""] ksize: 21 rate_iso: 1.0 sig_min: 0.2 sig_max: 2.6 img_noise_level: 0.2 data: train: lr_path: ["/FU2K_LR_bicubic/X4"] hr_path: ["/FU2K/HR"] ##64 ##288 augment: True scale: 4 patch_cropsize: 288 pool_lr: True pool_hr: True is_train: True val: lr_path: ["\\benchmark\\Set14\\x4"] hr_path: ["\\benchmark\\Set14\\GTmod12"] augment: False scale: 4 patch_cropsize: False pool_lr: True pool_hr: True is_train: False loader: train: batch_size: 64 shuffle: False num_workers: 8 pin_memory: False persistent_workers: True val: batch_size: 1 shuffle: True num_workers: 8 pin_memory: False