clc clear warning('off','all') for n=1:5 switch n case 1 filename = 'PredTestV1.xlsx'; case 2 filename = 'PredTestV2.xlsx'; case 3 filename = 'PredTestV3.xlsx'; case 4 filename = 'PredTestV4.xlsx'; otherwise filename = 'PredTestV5.xlsx'; end datatest = xlsread(filename); % Read test values from the Excel file % assign the real data to the variable from testing dataset real_columntest = datatest(:, 1);datatest(:,1)=[]; % Specify the weights for each column (5 weights) weights = [0.0032, 0.0009, 0.0724, 0.3964, 0.5270]; % Calculate the weighted average weightedAverage = sum(datatest .* weights, 2) / sum(weights); % Calculate fold performances mae = mean(abs(weightedAverage - real_columntest));% Calculate MAE rmse = sqrt(mean((weightedAverage - real_columntest).^2));% Calculate RMSE mse = mean((weightedAverage - real_columntest).^2);% Calculate MSE mape = mean(abs((real_columntest - weightedAverage) ./ real_columntest));% Calculate MAPE mae1(n)=mae;rmse1(n)=rmse;mse1(n)=mse;mape1(n)=mape; % Print the results fprintf('Fold %1.0f',n); fprintf(' Performance Results\n'); fprintf('MAE....: %.8f', mae);fprintf(' RMSE...: %.8f', rmse); fprintf(' MSE....: %.8f', mse);fprintf(' MAPE...: %.8f\n', mape); %/*****************************%/**************************************************************/ end