# Origin-Destination prediction from Road Segment Average Speed Data using GraphResLSTM Model # torch version: 1.12.1+cu116 # torch_geometric version: 2.1.0.post1 # numpy version: 1.23.3 # pandas version: 1.4.2 # matplotlib version: 3.5.1 ## 0. Data .npy usage ### Load the array from the.npy file using numpy.load `import numpy as np` `loaded_array = np.load('example_array.npy')` `print(loaded_array) ` ## 1.CNN.py is a comparative algorithm applying the CNN Algorithm for OD Prediction. ## 2.GCN.py is a comparative algorithm applying the GCN Algorithm for OD Prediction. ## 3.LSTM.py is a comparative algorithm applying the LSTM Algorithm for OD Prediction. ## 4.CNN_LSTM.py is a comparative algorithm applying the CNN AND LSTM Algorithm for OD Prediction. ## 5.GCN_LSTM.py is a comparative algorithm applying the GCN AND LSTM Algorithm for OD Prediction. ## 6.GraphResLSTM.py is a algorithm applying the GCN AND RESNET AND LSTM Algorithm for OD Prediction. ## 7. func_Data_Input.py serves to delineate the procedures for data ingestion and model training. ## 8. func_Loss serves to describe the loss function. ## 9. traci traci code for generate data.py is the traci code for generate data.