
Multimodal Scene Recognition using Depth-

Aware Segmentation and CNN-SPP 

Overview 

This work presents a new environment perception deep-learning network, following the 

multimodal approach, where depth and RGB images are used as input to increase the indoor scene 

segmentation and recognition. It uses depth-aware segmentation to overcome this problem as well 

as CNN with Spatial Pyramid Pooling (SPP) especially in occluded and low light conditions. They 

evaluate it on benchmark dataset including NYUD-v2 and RGB-D Scene where it reaches accurate 

results in segmenting and recognizing indoor scenes. 
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Project Setup 

Prerequisites 

 Python 3.6 
 Libraries: Install the required libraries by running: 

pip install torch torchvision opencv-python numpy scipy matplotlib 

System Requirements 

This code has been tested on Windows 10 with the following configuration: 

 CPU: Intel Core i7 

 RAM: 16 GB 

For optimal performance, consider using a machine with higher specifications. 

 

Data Preparation 



The NYUD-v2 and RGB-D Scene datasets need to be downloaded freely available online and put 

in a folder called Depth. These images are taken directly and hence paths should match the 

requirements in the code. If required, then modify the load_depth_data function accordingly. 

 

Code Explanation 

The model consists of several key components, each implemented within the provided code: 

1. Preprocessing: The preprocessing function preprocess_depth_data applies Gaussian Blur 

to reduce noise while preserving structural details, normalizes the image to a range of [0, 

255], detects edges using the Canny algorithm, computes the gradient magnitude to 

enhance edges, and performs morphological closing to ensure smooth, continuous contours 

for segmentation. 

2. Falzenwalb’s with CRF Segmentation  

o segments_fz splits the image into segments by treating pixels as nodes in a graph, 

connecting adjacent pixels based on color variance and spatial proximity, with the 

scale parameter controlling the sensitivity to color variance (larger values create 

larger segments) 
o The DenseCRF model refines the segmentation from Felzenszwalb by using it as initial 

labels, applying pairwise potentials to smooth boundaries and reduce noise, with bilateral 
filters accounting for spatial closeness and color similarity. 

3. Feature Extraction 
o Voxel Grid Representation: The create_voxel_grid function takes a depth image 

and creates a voxel grid. Each voxel represents a 3D space segment and stores points 
from the depth image. 

o Point Cloud Generation: The depth_to_point_cloud function transforms 2D pixel 
coordinates into 3D coordinates, creating a point cloud by mapping each depth pixel to 
3D space using camera intrinsics (focal lengths and optical center). 

o Surface Normals Calculation: The compute_surface_normals function estimates 
surface normals using nearest neighbors within a radius. These normals help to 
understand object orientation and geometry. 

4. Feature Optimization 
The PCA class from sklearn.decomposition is used to reduce the data's 
dimensionality from 10 to 2, while retaining as much variance as possible. The principal 
components are derived as eigenvectors of the covariance matrix of the dataset. 

5. Scene Classification with CNN-SPP: 

o CRFSceneClassifier integrates information from ELM, Vision Transformer 

features, and depth data to classify the overall scene context using a CRF. 

 

Implementation Steps 

Step 1: Preprocess the Images 



Run the preprocessing function to prepare the RGB and depth images: 

            processed_depth_image = preprocess_depth_image('path_to_depth_image') 

Step 2: Segment the Image 

Use the Felzenszwalb's algorithm and Conditional Random Fields (CRF) for segmentation. 

            segments_fz, refined_segments = segment_with_felzenszwalb_and_crf('path_to_image') 

Step 3: Feature Extraction and optimization 

voxel_grid = create_voxel_grid(segmented_image) 

point_cloud = depth_to_point_cloud(segmented_image, fx, fy, cx, cy) 

normals = compute_surface_normals(point_cloud) 

features = voxel_grid, Point_cloud, normals(segmented_image) 

  pca_features = apply_pca(features)  

Step 4: Classification with CNN_SPP 

 Use the extracted features to classify scene: 

model = CNN_SPP_Model(num_classes=10) 

predictions = model(pca_features)  

Step 5: Save and Load Model Parameters 

To save the trained model: 

               torch.save(model.state_dict(), 'cnn_spp_model.pth') 

To load the model for further evaluation: 

               model = CNN_SPP_Model(num_classes=10) 

               model.load_state_dict(torch.load('cnn_spp_model.pth')) 

                model.eval() 

 


