{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Collecting pytorch-tabnet\n", " Downloading pytorch_tabnet-4.1.0-py3-none-any.whl (44 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m44.5/44.5 kB\u001b[0m \u001b[31m746.8 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hCollecting tqdm>=4.36\n", " Downloading tqdm-4.66.5-py3-none-any.whl (78 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m78.4/78.4 kB\u001b[0m \u001b[31m1.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m-:--:--\u001b[0m\n", "\u001b[?25hCollecting torch>=1.3\n", " Downloading torch-2.4.1-cp38-cp38-manylinux1_x86_64.whl (797.1 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m797.1/797.1 MB\u001b[0m \u001b[31m712.7 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:29\u001b[0m\n", "\u001b[?25hCollecting scipy>1.4\n", " Downloading scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.5 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m34.5/34.5 MB\u001b[0m \u001b[31m752.6 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:02\u001b[0m\n", "\u001b[?25hCollecting numpy>=1.17\n", " Downloading numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m17.3/17.3 MB\u001b[0m \u001b[31m752.1 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting scikit_learn>0.21\n", " Downloading scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.1 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m11.1/11.1 MB\u001b[0m \u001b[31m518.1 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting threadpoolctl>=2.0.0\n", " Downloading threadpoolctl-3.5.0-py3-none-any.whl (18 kB)\n", "Collecting joblib>=1.1.1\n", " Downloading joblib-1.4.2-py3-none-any.whl (301 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m301.8/301.8 kB\u001b[0m \u001b[31m286.8 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting nvidia-cusolver-cu12==11.4.5.107\n", " Downloading nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m124.2/124.2 MB\u001b[0m \u001b[31m871.8 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:04\u001b[0m\n", "\u001b[?25hCollecting filelock\n", " Downloading filelock-3.16.1-py3-none-any.whl (16 kB)\n", "Collecting nvidia-cuda-nvrtc-cu12==12.1.105\n", " Downloading nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m23.7/23.7 MB\u001b[0m \u001b[31m472.3 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:02\u001b[0m\n", "\u001b[?25hCollecting nvidia-curand-cu12==10.3.2.106\n", " Downloading nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.5/56.5 MB\u001b[0m \u001b[31m1.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0mm\n", "\u001b[?25hCollecting fsspec\n", " Downloading fsspec-2024.9.0-py3-none-any.whl (179 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m179.3/179.3 kB\u001b[0m \u001b[31m1.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hCollecting sympy\n", " Downloading sympy-1.13.3-py3-none-any.whl (6.2 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.2/6.2 MB\u001b[0m \u001b[31m1.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m0m\n", "\u001b[?25hCollecting nvidia-cuda-runtime-cu12==12.1.105\n", " Downloading nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m823.6/823.6 kB\u001b[0m \u001b[31m2.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting nvidia-cuda-cupti-cu12==12.1.105\n", " Downloading nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m14.1/14.1 MB\u001b[0m \u001b[31m1.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting nvidia-cublas-cu12==12.1.3.1\n", " Downloading nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)\n", "\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[91m╸\u001b[0m\u001b[90m━━\u001b[0m \u001b[32m383.6/410.6 MB\u001b[0m \u001b[31m392.7 kB/s\u001b[0m eta \u001b[36m0:01:09\u001b[0m\n", "\u001b[?25h\u001b[31mERROR: Exception:\n", "Traceback (most recent call last):\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_vendor/urllib3/response.py\", line 438, in _error_catcher\n", " yield\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_vendor/urllib3/response.py\", line 561, in read\n", " data = self._fp_read(amt) if not fp_closed else b\"\"\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_vendor/urllib3/response.py\", line 527, in _fp_read\n", " return self._fp.read(amt) if amt is not None else self._fp.read()\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_vendor/cachecontrol/filewrapper.py\", line 90, in read\n", " data = self.__fp.read(amt)\n", " File \"/usr/local/lib/python3.8/http/client.py\", line 459, in read\n", " n = self.readinto(b)\n", " File \"/usr/local/lib/python3.8/http/client.py\", line 503, in readinto\n", " n = self.fp.readinto(b)\n", " File \"/usr/local/lib/python3.8/socket.py\", line 669, in readinto\n", " return self._sock.recv_into(b)\n", " File \"/usr/local/lib/python3.8/ssl.py\", line 1274, in recv_into\n", " return self.read(nbytes, buffer)\n", " File \"/usr/local/lib/python3.8/ssl.py\", line 1132, in read\n", " return self._sslobj.read(len, buffer)\n", "socket.timeout: The read operation timed out\n", "\n", "During handling of the above exception, another exception occurred:\n", "\n", "Traceback (most recent call last):\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_internal/cli/base_command.py\", line 160, in exc_logging_wrapper\n", " status = run_func(*args)\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_internal/cli/req_command.py\", line 247, in wrapper\n", " return func(self, options, args)\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_internal/commands/install.py\", line 419, in run\n", " requirement_set = resolver.resolve(\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_internal/resolution/resolvelib/resolver.py\", line 92, in resolve\n", " result = self._result = resolver.resolve(\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_vendor/resolvelib/resolvers.py\", line 481, in resolve\n", " state = resolution.resolve(requirements, max_rounds=max_rounds)\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_vendor/resolvelib/resolvers.py\", line 373, in resolve\n", " failure_causes = self._attempt_to_pin_criterion(name)\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_vendor/resolvelib/resolvers.py\", line 213, in _attempt_to_pin_criterion\n", " criteria = self._get_updated_criteria(candidate)\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_vendor/resolvelib/resolvers.py\", line 204, in _get_updated_criteria\n", " self._add_to_criteria(criteria, requirement, parent=candidate)\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_vendor/resolvelib/resolvers.py\", line 172, in _add_to_criteria\n", " if not criterion.candidates:\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_vendor/resolvelib/structs.py\", line 151, in __bool__\n", " return bool(self._sequence)\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_internal/resolution/resolvelib/found_candidates.py\", line 155, in __bool__\n", " return any(self)\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_internal/resolution/resolvelib/found_candidates.py\", line 143, in \n", " return (c for c in iterator if id(c) not in self._incompatible_ids)\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_internal/resolution/resolvelib/found_candidates.py\", line 47, in _iter_built\n", " candidate = func()\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_internal/resolution/resolvelib/factory.py\", line 206, in _make_candidate_from_link\n", " self._link_candidate_cache[link] = LinkCandidate(\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_internal/resolution/resolvelib/candidates.py\", line 297, in __init__\n", " super().__init__(\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_internal/resolution/resolvelib/candidates.py\", line 162, in __init__\n", " self.dist = self._prepare()\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_internal/resolution/resolvelib/candidates.py\", line 231, in _prepare\n", " dist = self._prepare_distribution()\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_internal/resolution/resolvelib/candidates.py\", line 308, in _prepare_distribution\n", " return preparer.prepare_linked_requirement(self._ireq, parallel_builds=True)\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_internal/operations/prepare.py\", line 491, in prepare_linked_requirement\n", " return self._prepare_linked_requirement(req, parallel_builds)\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_internal/operations/prepare.py\", line 536, in _prepare_linked_requirement\n", " local_file = unpack_url(\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_internal/operations/prepare.py\", line 166, in unpack_url\n", " file = get_http_url(\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_internal/operations/prepare.py\", line 107, in get_http_url\n", " from_path, content_type = download(link, temp_dir.path)\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_internal/network/download.py\", line 147, in __call__\n", " for chunk in chunks:\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_internal/cli/progress_bars.py\", line 53, in _rich_progress_bar\n", " for chunk in iterable:\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_internal/network/utils.py\", line 63, in response_chunks\n", " for chunk in response.raw.stream(\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_vendor/urllib3/response.py\", line 622, in stream\n", " data = self.read(amt=amt, decode_content=decode_content)\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_vendor/urllib3/response.py\", line 587, in read\n", " raise IncompleteRead(self._fp_bytes_read, self.length_remaining)\n", " File \"/usr/local/lib/python3.8/contextlib.py\", line 131, in __exit__\n", " self.gen.throw(type, value, traceback)\n", " File \"/usr/local/lib/python3.8/site-packages/pip/_vendor/urllib3/response.py\", line 443, in _error_catcher\n", " raise ReadTimeoutError(self._pool, None, \"Read timed out.\")\n", "pip._vendor.urllib3.exceptions.ReadTimeoutError: HTTPSConnectionPool(host='files.pythonhosted.org', port=443): Read timed out.\u001b[0m\u001b[31m\n", "\u001b[0m\n", "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n", "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", "Collecting pytorch-lightning\n", " Downloading pytorch_lightning-2.4.0-py3-none-any.whl (815 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m815.2/815.2 kB\u001b[0m \u001b[31m445.9 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting fsspec[http]>=2022.5.0\n", " Using cached fsspec-2024.9.0-py3-none-any.whl (179 kB)\n", "Collecting lightning-utilities>=0.10.0\n", " Downloading lightning_utilities-0.11.7-py3-none-any.whl (26 kB)\n", "Requirement already satisfied: packaging>=20.0 in /root/.local/lib/python3.8/site-packages (from pytorch-lightning) (24.1)\n", "Collecting torch>=2.1.0\n", " Using cached torch-2.4.1-cp38-cp38-manylinux1_x86_64.whl (797.1 MB)\n", "Collecting PyYAML>=5.4\n", " Downloading PyYAML-6.0.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (746 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m746.5/746.5 kB\u001b[0m \u001b[31m2.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting tqdm>=4.57.0\n", " Using cached tqdm-4.66.5-py3-none-any.whl (78 kB)\n", "Collecting torchmetrics>=0.7.0\n", " Downloading torchmetrics-1.4.2-py3-none-any.whl (869 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m869.2/869.2 kB\u001b[0m \u001b[31m3.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hRequirement already satisfied: typing-extensions>=4.4.0 in /root/.local/lib/python3.8/site-packages (from pytorch-lightning) (4.12.2)\n", "Collecting aiohttp!=4.0.0a0,!=4.0.0a1\n", " Downloading aiohttp-3.10.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m3.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hRequirement already satisfied: setuptools in /usr/local/lib/python3.8/site-packages (from lightning-utilities>=0.10.0->pytorch-lightning) (57.5.0)\n", "Collecting nvidia-nccl-cu12==2.20.5\n", " Downloading nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_x86_64.whl (176.2 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m176.2/176.2 MB\u001b[0m \u001b[31m1.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:03\u001b[0m\n", "\u001b[?25hCollecting nvidia-cuda-nvrtc-cu12==12.1.105\n", " Using cached nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)\n", "Collecting networkx\n", " Downloading networkx-3.1-py3-none-any.whl (2.1 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.1/2.1 MB\u001b[0m \u001b[31m2.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting nvidia-cusolver-cu12==11.4.5.107\n", " Using cached nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)\n", "Collecting filelock\n", " Using cached filelock-3.16.1-py3-none-any.whl (16 kB)\n", "Collecting nvidia-cublas-cu12==12.1.3.1\n", " Downloading nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m410.6/410.6 MB\u001b[0m \u001b[31m1.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:06\u001b[0m\n", "\u001b[?25hCollecting nvidia-nvtx-cu12==12.1.105\n", " Downloading nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m99.1/99.1 kB\u001b[0m \u001b[31m3.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hCollecting sympy\n", " Using cached sympy-1.13.3-py3-none-any.whl (6.2 MB)\n", "Collecting jinja2\n", " Downloading jinja2-3.1.4-py3-none-any.whl (133 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m133.3/133.3 kB\u001b[0m \u001b[31m2.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hCollecting nvidia-cuda-cupti-cu12==12.1.105\n", " Using cached nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)\n", "Collecting nvidia-cufft-cu12==11.0.2.54\n", " Downloading nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m121.6/121.6 MB\u001b[0m \u001b[31m1.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:02\u001b[0m\n", "\u001b[?25hCollecting nvidia-curand-cu12==10.3.2.106\n", " Using cached nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)\n", "Collecting nvidia-cudnn-cu12==9.1.0.70\n", " Downloading nvidia_cudnn_cu12-9.1.0.70-py3-none-manylinux2014_x86_64.whl (664.8 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m664.8/664.8 MB\u001b[0m \u001b[31m1.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:11\u001b[0m\n", "\u001b[?25hCollecting triton==3.0.0\n", " Downloading triton-3.0.0-1-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (209.4 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m209.4/209.4 MB\u001b[0m \u001b[31m1.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:03\u001b[0m\n", "\u001b[?25hCollecting nvidia-cusparse-cu12==12.1.0.106\n", " Downloading nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m196.0/196.0 MB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:03\u001b[0m\n", "\u001b[?25hCollecting nvidia-cuda-runtime-cu12==12.1.105\n", " Using cached nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)\n", "Collecting nvidia-nvjitlink-cu12\n", " Downloading nvidia_nvjitlink_cu12-12.6.77-py3-none-manylinux2014_x86_64.whl (19.7 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m19.7/19.7 MB\u001b[0m \u001b[31m1.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0mm\n", "\u001b[?25hCollecting numpy>1.20.0\n", " Using cached numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB)\n", "Collecting yarl<2.0,>=1.12.0\n", " Downloading yarl-1.13.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (461 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m461.8/461.8 kB\u001b[0m \u001b[31m2.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hCollecting frozenlist>=1.1.1\n", " Downloading frozenlist-1.4.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (240 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m240.9/240.9 kB\u001b[0m \u001b[31m2.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting attrs>=17.3.0\n", " Downloading attrs-24.2.0-py3-none-any.whl (63 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m63.0/63.0 kB\u001b[0m \u001b[31m3.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting aiohappyeyeballs>=2.3.0\n", " Downloading aiohappyeyeballs-2.4.3-py3-none-any.whl (14 kB)\n", "Collecting aiosignal>=1.1.2\n", " Downloading aiosignal-1.3.1-py3-none-any.whl (7.6 kB)\n", "Collecting async-timeout<5.0,>=4.0\n", " Downloading async_timeout-4.0.3-py3-none-any.whl (5.7 kB)\n", "Collecting multidict<7.0,>=4.5\n", " Downloading multidict-6.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (129 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m129.7/129.7 kB\u001b[0m \u001b[31m1.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hCollecting MarkupSafe>=2.0\n", " Downloading MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (26 kB)\n", "Collecting mpmath<1.4,>=1.1.0\n", " Downloading mpmath-1.3.0-py3-none-any.whl (536 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m536.2/536.2 kB\u001b[0m \u001b[31m2.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting idna>=2.0\n", " Downloading idna-3.10-py3-none-any.whl (70 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m70.4/70.4 kB\u001b[0m \u001b[31m1.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hInstalling collected packages: mpmath, tqdm, sympy, PyYAML, nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, numpy, networkx, multidict, MarkupSafe, lightning-utilities, idna, fsspec, frozenlist, filelock, attrs, async-timeout, aiohappyeyeballs, yarl, triton, nvidia-cusparse-cu12, nvidia-cudnn-cu12, jinja2, aiosignal, nvidia-cusolver-cu12, aiohttp, torch, torchmetrics, pytorch-lightning\n", "Successfully installed MarkupSafe-2.1.5 PyYAML-6.0.2 aiohappyeyeballs-2.4.3 aiohttp-3.10.9 aiosignal-1.3.1 async-timeout-4.0.3 attrs-24.2.0 filelock-3.16.1 frozenlist-1.4.1 fsspec-2024.9.0 idna-3.10 jinja2-3.1.4 lightning-utilities-0.11.7 mpmath-1.3.0 multidict-6.1.0 networkx-3.1 numpy-1.24.4 nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-9.1.0.70 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.20.5 nvidia-nvjitlink-cu12-12.6.77 nvidia-nvtx-cu12-12.1.105 pytorch-lightning-2.4.0 sympy-1.13.3 torch-2.4.1 torchmetrics-1.4.2 tqdm-4.66.5 triton-3.0.0 yarl-1.13.1\n", "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", "\u001b[0m\n", "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n", "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", "Collecting xgboost\n", " Downloading xgboost-2.1.1-py3-none-manylinux_2_28_x86_64.whl (153.9 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m153.9/153.9 MB\u001b[0m \u001b[31m2.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:02\u001b[0m\n", "\u001b[?25hCollecting lightgbm\n", " Downloading lightgbm-4.5.0-py3-none-manylinux_2_28_x86_64.whl (3.6 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.6/3.6 MB\u001b[0m \u001b[31m2.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting scipy\n", " Using cached scipy-1.10.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (34.5 MB)\n", "Requirement already satisfied: nvidia-nccl-cu12 in /usr/local/lib/python3.8/site-packages (from xgboost) (2.20.5)\n", "Requirement already satisfied: numpy in /usr/local/lib/python3.8/site-packages (from xgboost) (1.24.4)\n", "Installing collected packages: scipy, xgboost, lightgbm\n", "Successfully installed lightgbm-4.5.0 scipy-1.10.1 xgboost-2.1.1\n", "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", "\u001b[0m\n", "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n", "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", "Collecting sklearn\n", " Downloading sklearn-0.0.post12.tar.gz (2.6 kB)\n", " Preparing metadata (setup.py) ... \u001b[?25lerror\n", " \u001b[1;31merror\u001b[0m: \u001b[1msubprocess-exited-with-error\u001b[0m\n", " \n", " \u001b[31m×\u001b[0m \u001b[32mpython setup.py egg_info\u001b[0m did not run successfully.\n", " \u001b[31m│\u001b[0m exit code: \u001b[1;36m1\u001b[0m\n", " \u001b[31m╰─>\u001b[0m \u001b[31m[15 lines of output]\u001b[0m\n", " \u001b[31m \u001b[0m The 'sklearn' PyPI package is deprecated, use 'scikit-learn'\n", " \u001b[31m \u001b[0m rather than 'sklearn' for pip commands.\n", " \u001b[31m \u001b[0m \n", " \u001b[31m \u001b[0m Here is how to fix this error in the main use cases:\n", " \u001b[31m \u001b[0m - use 'pip install scikit-learn' rather than 'pip install sklearn'\n", " \u001b[31m \u001b[0m - replace 'sklearn' by 'scikit-learn' in your pip requirements files\n", " \u001b[31m \u001b[0m (requirements.txt, setup.py, setup.cfg, Pipfile, etc ...)\n", " \u001b[31m \u001b[0m - if the 'sklearn' package is used by one of your dependencies,\n", " \u001b[31m \u001b[0m it would be great if you take some time to track which package uses\n", " \u001b[31m \u001b[0m 'sklearn' instead of 'scikit-learn' and report it to their issue tracker\n", " \u001b[31m \u001b[0m - as a last resort, set the environment variable\n", " \u001b[31m \u001b[0m SKLEARN_ALLOW_DEPRECATED_SKLEARN_PACKAGE_INSTALL=True to avoid this error\n", " \u001b[31m \u001b[0m \n", " \u001b[31m \u001b[0m More information is available at\n", " \u001b[31m \u001b[0m https://github.com/scikit-learn/sklearn-pypi-package\n", " \u001b[31m \u001b[0m \u001b[31m[end of output]\u001b[0m\n", " \n", " \u001b[1;35mnote\u001b[0m: This error originates from a subprocess, and is likely not a problem with pip.\n", "\u001b[?25h\u001b[1;31merror\u001b[0m: \u001b[1mmetadata-generation-failed\u001b[0m\n", "\n", "\u001b[31m×\u001b[0m Encountered error while generating package metadata.\n", "\u001b[31m╰─>\u001b[0m See above for output.\n", "\n", "\u001b[1;35mnote\u001b[0m: This is an issue with the package mentioned above, not pip.\n", "\u001b[1;36mhint\u001b[0m: See above for details.\n", "\n", "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n", "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n", "Collecting node\n", " Downloading node-1.2.2-py3-none-any.whl (102 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m102.8/102.8 kB\u001b[0m \u001b[31m1.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hCollecting zope.deferredimport\n", " Downloading zope.deferredimport-5.0-py3-none-any.whl (10.0 kB)\n", "Collecting zope.deprecation\n", " Downloading zope.deprecation-5.0-py3-none-any.whl (10 kB)\n", "Requirement already satisfied: setuptools in /usr/local/lib/python3.8/site-packages (from node) (57.5.0)\n", "Collecting plumber>=1.5\n", " Downloading plumber-1.7-py3-none-any.whl (25 kB)\n", "Collecting zope.lifecycleevent\n", " Downloading zope.lifecycleevent-5.0-py3-none-any.whl (18 kB)\n", "Collecting odict>=1.9.0\n", " Downloading odict-1.9.0-py3-none-any.whl (15 kB)\n", "Collecting zope.component\n", " Downloading zope.component-6.0-py3-none-any.whl (68 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m68.8/68.8 kB\u001b[0m \u001b[31m4.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hCollecting zope.interface>=5.3\n", " Downloading zope.interface-7.0.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (257 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m257.1/257.1 kB\u001b[0m \u001b[31m2.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hCollecting zope.event\n", " Downloading zope.event-5.0-py3-none-any.whl (6.8 kB)\n", "Collecting zope.hookable>=4.2.0\n", " Downloading zope.hookable-7.0-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (25 kB)\n", "Collecting zope.proxy\n", " Downloading zope.proxy-6.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (67 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.4/67.4 kB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hInstalling collected packages: zope.interface, zope.hookable, zope.event, zope.deprecation, plumber, odict, zope.proxy, zope.lifecycleevent, zope.component, zope.deferredimport, node\n", "Successfully installed node-1.2.2 odict-1.9.0 plumber-1.7 zope.component-6.0 zope.deferredimport-5.0 zope.deprecation-5.0 zope.event-5.0 zope.hookable-7.0 zope.interface-7.0.3 zope.lifecycleevent-5.0 zope.proxy-6.1\n", "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", "\u001b[0m\n", "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n", "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n" ] } ], "source": [ "!pip install pytorch-tabnet\n", "!pip install pytorch-lightning\n", "!pip install xgboost lightgbm\n", "!pip install sklearn" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Collecting pandas\n", " Downloading pandas-2.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.4 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m12.4/12.4 MB\u001b[0m \u001b[31m2.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting matplotlib\n", " Downloading matplotlib-3.7.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (9.2 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m9.2/9.2 MB\u001b[0m \u001b[31m2.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting seaborn\n", " Downloading seaborn-0.13.2-py3-none-any.whl (294 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m294.9/294.9 kB\u001b[0m \u001b[31m3.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hCollecting pytz>=2020.1\n", " Downloading pytz-2024.2-py2.py3-none-any.whl (508 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m508.0/508.0 kB\u001b[0m \u001b[31m2.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hCollecting tzdata>=2022.1\n", " Downloading tzdata-2024.2-py2.py3-none-any.whl (346 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m346.6/346.6 kB\u001b[0m \u001b[31m2.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hRequirement already satisfied: python-dateutil>=2.8.2 in /root/.local/lib/python3.8/site-packages (from pandas) (2.9.0.post0)\n", "Requirement already satisfied: numpy>=1.20.3 in /usr/local/lib/python3.8/site-packages (from pandas) (1.24.4)\n", "Collecting pillow>=6.2.0\n", " Downloading pillow-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl (4.5 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.5/4.5 MB\u001b[0m \u001b[31m3.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting pyparsing>=2.3.1\n", " Downloading pyparsing-3.1.4-py3-none-any.whl (104 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m104.1/104.1 kB\u001b[0m \u001b[31m2.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hRequirement already satisfied: packaging>=20.0 in /root/.local/lib/python3.8/site-packages (from matplotlib) (24.1)\n", "Collecting importlib-resources>=3.2.0\n", " Downloading importlib_resources-6.4.5-py3-none-any.whl (36 kB)\n", "Collecting fonttools>=4.22.0\n", " Downloading fonttools-4.54.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.7/4.7 MB\u001b[0m \u001b[31m2.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting kiwisolver>=1.0.1\n", " Downloading kiwisolver-1.4.7-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.2 MB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m3.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m00:01\u001b[0m00:01\u001b[0m\n", "\u001b[?25hCollecting contourpy>=1.0.1\n", " Downloading contourpy-1.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (301 kB)\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m301.1/301.1 kB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0ma \u001b[36m0:00:01\u001b[0m\n", "\u001b[?25hCollecting cycler>=0.10\n", " Downloading cycler-0.12.1-py3-none-any.whl (8.3 kB)\n", "Requirement already satisfied: zipp>=3.1.0 in /root/.local/lib/python3.8/site-packages (from importlib-resources>=3.2.0->matplotlib) (3.20.2)\n", "Requirement already satisfied: six>=1.5 in /root/.local/lib/python3.8/site-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)\n", "Installing collected packages: pytz, tzdata, pyparsing, pillow, kiwisolver, importlib-resources, fonttools, cycler, contourpy, pandas, matplotlib, seaborn\n", "Successfully installed contourpy-1.1.1 cycler-0.12.1 fonttools-4.54.1 importlib-resources-6.4.5 kiwisolver-1.4.7 matplotlib-3.7.5 pandas-2.0.3 pillow-10.4.0 pyparsing-3.1.4 pytz-2024.2 seaborn-0.13.2 tzdata-2024.2\n", "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", "\u001b[0m\n", "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n", "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n" ] } ], "source": [ "!pip install pandas matplotlib seaborn" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Collecting scikit-learn\n", " Using cached scikit_learn-1.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.1 MB)\n", "Requirement already satisfied: numpy<2.0,>=1.17.3 in /usr/local/lib/python3.8/site-packages (from scikit-learn) (1.24.4)\n", "Collecting joblib>=1.1.1\n", " Using cached joblib-1.4.2-py3-none-any.whl (301 kB)\n", "Collecting threadpoolctl>=2.0.0\n", " Using cached threadpoolctl-3.5.0-py3-none-any.whl (18 kB)\n", "Requirement already satisfied: scipy>=1.5.0 in /usr/local/lib/python3.8/site-packages (from scikit-learn) (1.10.1)\n", "Installing collected packages: threadpoolctl, joblib, scikit-learn\n", "Successfully installed joblib-1.4.2 scikit-learn-1.3.2 threadpoolctl-3.5.0\n", "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", "\u001b[0m\n", "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n", "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n" ] } ], "source": [ "!pip install scikit-learn\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Collecting pytorch-tabnet\n", " Using cached pytorch_tabnet-4.1.0-py3-none-any.whl (44 kB)\n", "Requirement already satisfied: scipy>1.4 in /usr/local/lib/python3.8/site-packages (from pytorch-tabnet) (1.10.1)\n", "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.8/site-packages (from pytorch-tabnet) (1.24.4)\n", "Requirement already satisfied: tqdm>=4.36 in /usr/local/lib/python3.8/site-packages (from pytorch-tabnet) (4.66.5)\n", "Requirement already satisfied: torch>=1.3 in /usr/local/lib/python3.8/site-packages (from pytorch-tabnet) (2.4.1)\n", "Requirement already satisfied: scikit_learn>0.21 in /usr/local/lib/python3.8/site-packages (from pytorch-tabnet) (1.3.2)\n", "Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.8/site-packages (from scikit_learn>0.21->pytorch-tabnet) (3.5.0)\n", "Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.8/site-packages (from scikit_learn>0.21->pytorch-tabnet) (1.4.2)\n", "Requirement already satisfied: jinja2 in /usr/local/lib/python3.8/site-packages (from torch>=1.3->pytorch-tabnet) (3.1.4)\n", "Requirement already satisfied: fsspec in /usr/local/lib/python3.8/site-packages (from torch>=1.3->pytorch-tabnet) (2024.9.0)\n", "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /usr/local/lib/python3.8/site-packages (from torch>=1.3->pytorch-tabnet) (12.1.105)\n", "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /usr/local/lib/python3.8/site-packages (from torch>=1.3->pytorch-tabnet) (11.0.2.54)\n", "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /usr/local/lib/python3.8/site-packages (from torch>=1.3->pytorch-tabnet) (12.1.105)\n", "Requirement already satisfied: sympy in /usr/local/lib/python3.8/site-packages (from torch>=1.3->pytorch-tabnet) (1.13.3)\n", "Requirement already satisfied: typing-extensions>=4.8.0 in /root/.local/lib/python3.8/site-packages (from torch>=1.3->pytorch-tabnet) (4.12.2)\n", "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /usr/local/lib/python3.8/site-packages (from torch>=1.3->pytorch-tabnet) (12.1.105)\n", "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /usr/local/lib/python3.8/site-packages (from torch>=1.3->pytorch-tabnet) (10.3.2.106)\n", "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /usr/local/lib/python3.8/site-packages (from torch>=1.3->pytorch-tabnet) (12.1.105)\n", "Requirement already satisfied: triton==3.0.0 in /usr/local/lib/python3.8/site-packages (from torch>=1.3->pytorch-tabnet) (3.0.0)\n", "Requirement already satisfied: networkx in /usr/local/lib/python3.8/site-packages (from torch>=1.3->pytorch-tabnet) (3.1)\n", "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /usr/local/lib/python3.8/site-packages (from torch>=1.3->pytorch-tabnet) (12.1.3.1)\n", "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /usr/local/lib/python3.8/site-packages (from torch>=1.3->pytorch-tabnet) (11.4.5.107)\n", "Requirement already satisfied: filelock in /usr/local/lib/python3.8/site-packages (from torch>=1.3->pytorch-tabnet) (3.16.1)\n", "Requirement already satisfied: nvidia-nccl-cu12==2.20.5 in /usr/local/lib/python3.8/site-packages (from torch>=1.3->pytorch-tabnet) (2.20.5)\n", "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /usr/local/lib/python3.8/site-packages (from torch>=1.3->pytorch-tabnet) (12.1.0.106)\n", "Requirement already satisfied: nvidia-cudnn-cu12==9.1.0.70 in /usr/local/lib/python3.8/site-packages (from torch>=1.3->pytorch-tabnet) (9.1.0.70)\n", "Requirement already satisfied: nvidia-nvjitlink-cu12 in /usr/local/lib/python3.8/site-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.3->pytorch-tabnet) (12.6.77)\n", "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.8/site-packages (from jinja2->torch>=1.3->pytorch-tabnet) (2.1.5)\n", "Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.8/site-packages (from sympy->torch>=1.3->pytorch-tabnet) (1.3.0)\n", "Installing collected packages: pytorch-tabnet\n", "Successfully installed pytorch-tabnet-4.1.0\n", "\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n", "\u001b[0m\n", "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.0.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n", "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n" ] } ], "source": [ "!pip install pytorch-tabnet" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import StandardScaler\n", "from pytorch_tabnet.tab_model import TabNetClassifier\n", "import numpy as np\n", "import torch\n", "import lightgbm as lgb\n", "from sklearn.neural_network import MLPClassifier\n", "from sklearn.metrics import accuracy_score, confusion_matrix, classification_report\n", "from lightgbm import early_stopping, log_evaluation\n", "import matplotlib.pyplot as plt\n", "import joblib\n", "import seaborn as sns\n", "\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(183650, 13)" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Load the Data\n", "df = pd.read_csv(\"preprocessed_data.csv\")\n", "df.shape" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
callsigntransponderCodeheadinglongitudelatitudealtitudespeedgroundSpeedgroundTracktrueAirSpeedradialdistanceattackType_mapped
0FDB66233605.32407156.35902524.80719914000.0250.0294.671091-0.965865306.001.995807111.6219891
1DAH196615031.38203527.16220440.93652421000.0290.0382.4545671.404307387.444.588111138.7505621
2ETD30432534.01381455.10227724.10695310000.0250.0289.264399-2.306524290.002.20689858.3183031
3ETD30432530.54070354.99237724.13863810000.0210.0241.2142730.584097243.602.29438047.5959401
4DAL65711715.831628-122.41361645.04306026000.0320.0466.687985-0.453656453.122.890930267.7303621
\n", "
" ], "text/plain": [ " callsign transponderCode heading longitude latitude altitude speed \\\n", "0 FDB662 3360 5.324071 56.359025 24.807199 14000.0 250.0 \n", "1 DAH1966 1503 1.382035 27.162204 40.936524 21000.0 290.0 \n", "2 ETD304 3253 4.013814 55.102277 24.106953 10000.0 250.0 \n", "3 ETD304 3253 0.540703 54.992377 24.138638 10000.0 210.0 \n", "4 DAL657 1171 5.831628 -122.413616 45.043060 26000.0 320.0 \n", "\n", " groundSpeed groundTrack trueAirSpeed radial distance \\\n", "0 294.671091 -0.965865 306.00 1.995807 111.621989 \n", "1 382.454567 1.404307 387.44 4.588111 138.750562 \n", "2 289.264399 -2.306524 290.00 2.206898 58.318303 \n", "3 241.214273 0.584097 243.60 2.294380 47.595940 \n", "4 466.687985 -0.453656 453.12 2.890930 267.730362 \n", "\n", " attackType_mapped \n", "0 1 \n", "1 1 \n", "2 1 \n", "3 1 \n", "4 1 " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# separate input and output\n", "X = df.iloc[:, 1:-1]\n", "y = df.iloc[:, -1]" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# split training and testing data\n", "\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "# perform normalization\n", "\n", "scaler = StandardScaler()\n", "X_train = scaler.fit_transform(X_train)\n", "X_test = scaler.transform(X_test)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Model 1 TabNet" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.8/site-packages/pytorch_tabnet/abstract_model.py:82: UserWarning: Device used : cuda\n", " warnings.warn(f\"Device used : {self.device}\")\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "epoch 0 | loss: 1.02016 | train_accuracy: 0.78522 | validation_accuracy: 0.78671 | 0:00:14s\n", "epoch 1 | loss: 0.6787 | train_accuracy: 0.80819 | validation_accuracy: 0.80629 | 0:00:27s\n", "epoch 2 | loss: 0.59917 | train_accuracy: 0.83701 | validation_accuracy: 0.83501 | 0:00:39s\n", "epoch 3 | loss: 0.55748 | train_accuracy: 0.83991 | validation_accuracy: 0.83716 | 0:00:52s\n", "epoch 4 | loss: 0.5329 | train_accuracy: 0.85374 | validation_accuracy: 0.85102 | 0:01:05s\n", "epoch 5 | loss: 0.50906 | train_accuracy: 0.85605 | validation_accuracy: 0.85587 | 0:01:18s\n", "epoch 6 | loss: 0.50236 | train_accuracy: 0.86189 | validation_accuracy: 0.86131 | 0:01:30s\n", "epoch 7 | loss: 0.47514 | train_accuracy: 0.8688 | validation_accuracy: 0.86559 | 0:01:43s\n", "epoch 8 | loss: 0.45188 | train_accuracy: 0.87579 | validation_accuracy: 0.87531 | 0:01:57s\n", "epoch 9 | loss: 0.44336 | train_accuracy: 0.87162 | validation_accuracy: 0.87125 | 0:02:10s\n", "epoch 10 | loss: 0.42717 | train_accuracy: 0.88501 | validation_accuracy: 0.88413 | 0:02:23s\n", "epoch 11 | loss: 0.43645 | train_accuracy: 0.87777 | validation_accuracy: 0.87525 | 0:02:37s\n", "epoch 12 | loss: 0.42316 | train_accuracy: 0.88792 | validation_accuracy: 0.88731 | 0:02:52s\n", "epoch 13 | loss: 0.42117 | train_accuracy: 0.87365 | validation_accuracy: 0.87258 | 0:03:08s\n", "epoch 14 | loss: 0.40456 | train_accuracy: 0.88397 | validation_accuracy: 0.88345 | 0:03:23s\n", "epoch 15 | loss: 0.39211 | train_accuracy: 0.89 | validation_accuracy: 0.8893 | 0:03:37s\n", "epoch 16 | loss: 0.38246 | train_accuracy: 0.88229 | validation_accuracy: 0.88089 | 0:03:53s\n", "epoch 17 | loss: 0.37446 | train_accuracy: 0.89175 | validation_accuracy: 0.88892 | 0:04:08s\n", "epoch 18 | loss: 0.36294 | train_accuracy: 0.88754 | validation_accuracy: 0.88592 | 0:04:25s\n", "epoch 19 | loss: 0.3684 | train_accuracy: 0.89856 | validation_accuracy: 0.89679 | 0:04:41s\n", "epoch 20 | loss: 0.35626 | train_accuracy: 0.89302 | validation_accuracy: 0.89191 | 0:04:54s\n", "epoch 21 | loss: 0.35245 | train_accuracy: 0.90208 | validation_accuracy: 0.90052 | 0:05:07s\n", "epoch 22 | loss: 0.35038 | train_accuracy: 0.88784 | validation_accuracy: 0.88492 | 0:05:22s\n", "epoch 23 | loss: 0.35887 | train_accuracy: 0.89962 | validation_accuracy: 0.89812 | 0:05:35s\n", "epoch 24 | loss: 0.34405 | train_accuracy: 0.91066 | validation_accuracy: 0.90898 | 0:05:48s\n", "epoch 25 | loss: 0.33424 | train_accuracy: 0.90915 | validation_accuracy: 0.90732 | 0:06:04s\n", "epoch 26 | loss: 0.34734 | train_accuracy: 0.90383 | validation_accuracy: 0.90166 | 0:06:20s\n", "epoch 27 | loss: 0.32994 | train_accuracy: 0.89141 | validation_accuracy: 0.88832 | 0:06:35s\n", "epoch 28 | loss: 0.34049 | train_accuracy: 0.90376 | validation_accuracy: 0.90155 | 0:06:48s\n", "epoch 29 | loss: 0.32832 | train_accuracy: 0.90123 | validation_accuracy: 0.89834 | 0:07:01s\n", "epoch 30 | loss: 0.3235 | train_accuracy: 0.89091 | validation_accuracy: 0.88786 | 0:07:15s\n", "epoch 31 | loss: 0.31989 | train_accuracy: 0.90417 | validation_accuracy: 0.90215 | 0:07:31s\n", "epoch 32 | loss: 0.32753 | train_accuracy: 0.8935 | validation_accuracy: 0.89137 | 0:07:46s\n", "epoch 33 | loss: 0.31401 | train_accuracy: 0.91726 | validation_accuracy: 0.91525 | 0:08:01s\n", "epoch 34 | loss: 0.30833 | train_accuracy: 0.91501 | validation_accuracy: 0.91299 | 0:08:17s\n", "epoch 35 | loss: 0.31728 | train_accuracy: 0.91213 | validation_accuracy: 0.91054 | 0:08:33s\n", "epoch 36 | loss: 0.30768 | train_accuracy: 0.90486 | validation_accuracy: 0.90125 | 0:08:49s\n", "epoch 37 | loss: 0.31152 | train_accuracy: 0.9172 | validation_accuracy: 0.91625 | 0:09:08s\n", "epoch 38 | loss: 0.30685 | train_accuracy: 0.9191 | validation_accuracy: 0.91702 | 0:09:26s\n", "epoch 39 | loss: 0.30628 | train_accuracy: 0.90535 | validation_accuracy: 0.9031 | 0:09:44s\n", "epoch 40 | loss: 0.30083 | train_accuracy: 0.88028 | validation_accuracy: 0.87838 | 0:09:59s\n", "epoch 41 | loss: 0.30308 | train_accuracy: 0.9067 | validation_accuracy: 0.90457 | 0:10:17s\n", "epoch 42 | loss: 0.30467 | train_accuracy: 0.91244 | validation_accuracy: 0.91029 | 0:10:35s\n", "epoch 43 | loss: 0.31414 | train_accuracy: 0.91929 | validation_accuracy: 0.91582 | 0:10:52s\n", "epoch 44 | loss: 0.28988 | train_accuracy: 0.92069 | validation_accuracy: 0.91585 | 0:11:08s\n", "epoch 45 | loss: 0.29514 | train_accuracy: 0.91773 | validation_accuracy: 0.91421 | 0:11:24s\n", "epoch 46 | loss: 0.29769 | train_accuracy: 0.91039 | validation_accuracy: 0.90882 | 0:11:40s\n", "epoch 47 | loss: 0.32679 | train_accuracy: 0.90811 | validation_accuracy: 0.90585 | 0:11:56s\n", "epoch 48 | loss: 0.29883 | train_accuracy: 0.90078 | validation_accuracy: 0.89785 | 0:12:12s\n", "\n", "Early stopping occurred at epoch 48 with best_epoch = 38 and best_validation_accuracy = 0.91702\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.8/site-packages/pytorch_tabnet/callbacks.py:172: UserWarning: Best weights from best epoch are automatically used!\n", " warnings.warn(wrn_msg)\n" ] } ], "source": [ "\n", "# Initialize and train the TabNet model with training history tracking\n", "tabnet_model = TabNetClassifier()\n", "training_history = tabnet_model.fit(\n", " X_train, y_train,\n", " eval_set=[(X_train, y_train), (X_test, y_test)],\n", " eval_name=['train', 'validation'],\n", " eval_metric=['accuracy'],\n", " max_epochs=100,\n", " patience=10\n", ")\n", "\n", "# Extract training and validation accuracies\n", "train_accuracies = tabnet_model.history['train_accuracy']\n", "val_accuracies = tabnet_model.history['validation_accuracy']\n", "epochs = range(1, len(train_accuracies) + 1)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Learning Curve for Training vs. Validation Scores" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAIjCAYAAACgdyAGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD1tUlEQVR4nOzdd1gU19fA8e/s0jsKCgKKIPaCYu+9G3uLxpao0RhjTGKJidHkZ4omeRM1scXee4tdY+8F7AWRJiJSpPfdef8YWEVQAal6P8/D4zL17jDgnrn3niPJsiwjCIIgCIIgCIIgCEKxoCrsBgiCIAiCIAiCIAiCkH0ikBcEQRAEQRAEQRCEYkQE8oIgCIIgCIIgCIJQjIhAXhAEQRAEQRAEQRCKERHIC4IgCIIgCIIgCEIxIgJ5QRAEQRAEQRAEQShGRCAvCIIgCIIgCIIgCMWICOQFQRAEQRAEQRAEoRgRgbwgCIIgCIIgCIIgFCMikBcEQXhHDRs2DGdn51ztO2PGDCRJytsGvUOOHTuGJEkcO3ZMtyy7Pw8/Pz8kSWLFihV52iZnZ2eGDRuWp8cUCo63tzft27fH0tISSZLYsWNHYTfptYYNG4aZmVlhN0MQBKFYEoG8IAhCESNJUra+ng8ChfxTs2ZNypYtiyzLL92mSZMmlC5dmtTU1AJsWc6dOXOGGTNmEBkZWdhNydLff/+NJEk0aNCgsJtS7AwdOpTr168za9YsVq9eTd26dfPlPC1btszW36cZM2bk6XnTj/vbb79lWrdixQokSeLSpUs5Pu6tW7eYMWMGfn5+edBKQRCEgqNX2A0QBEEQMlq9enWG71etWsWhQ4cyLa9SpcobnWfJkiVotdpc7fvNN98wZcqUNzp/cTFo0CCmTJnCyZMnad68eab1fn5+nD17lnHjxqGnl/v/Vt/k55FdZ86cYebMmQwbNgwrK6sM6+7evYtKVbjP99euXYuzszMXLlzg/v37VKhQoVDbU1wkJCRw9uxZpk2bxrhx4/L1XNOmTeOjjz7SfX/x4kXmzp3L119/neFvUs2aNfPl/HPmzGHMmDGYmJjkyfFu3brFzJkzadmyZa5HKAmCIBQGEcgLgiAUMYMHD87w/blz5zh06FCm5S+Kj4/P0YdbfX39XLUPQE9P742C1uLk/fffZ+rUqaxbty7LQH79+vXIssygQYPe6Dxv8vPIC4aGhoV6fl9fX86cOcO2bdsYPXo0a9eu5bvvvivUNr1MXFwcpqamhd0MndDQUIBMD2fexMveY7t27TJ8b2RkxNy5c2nXrh0tW7bMs/Nnxd3dHS8vLxYuXMjEiRPz9VyCIAhFnRhaLwiCUAy1bNmS6tWrc/nyZZo3b46JiQlff/01ADt37qRLly6UKVMGQ0NDXF1d+eGHH9BoNBmO8eKc7PS517/++iuLFy/G1dUVQ0ND6tWrx8WLFzPsm9UceUmSGDduHDt27KB69eoYGhpSrVo19u/fn6n9x44do27duhgZGeHq6sqiRYuyNe9+3LhxmJmZER8fn2ndwIEDsbOz073PS5cu0aFDB2xsbDA2NqZ8+fKMGDHilcfPipOTE82bN2fLli2kpKRkWr9u3TpcXV1p0KAB/v7+jB07lkqVKmFsbEzJkiXp27dvtobtZjVHPjIykmHDhmFpaYmVlRVDhw7Nclj8tWvXGDZsGC4uLhgZGWFnZ8eIESMIDw/XbTNjxgy++uorAMqXL68bqpzetqzmyD948IC+fftSokQJTExMaNiwIXv27MmwTfp8/02bNjFr1iwcHR0xMjKiTZs23L9//7XvO93atWuxtramS5cu9OnTh7Vr12a5XWRkJJ9//jnOzs4YGhri6OjIkCFDCAsL022TmJjIjBkzqFixIkZGRtjb29OrVy98fHwytPnF6SlZ5R9In8ft4+ND586dMTc31z20OXnyJH379qVs2bIYGhri5OTE559/TkJCQqZ237lzh379+mFra4uxsTGVKlVi2rRpABw9ehRJkti+fXum/datW4ckSZw9ezbL6zFjxgzKlSsHwFdffYUkSRnuI09PTzp16oSFhQVmZma0adOGc+fOZThG+tD048ePM3bsWEqVKoWjo2OW58uOnFwXUO6zDh06YGpqSpkyZfj++++znMrSpEkTWrduzezZs196rOfduXOHPn36UKJECYyMjKhbty67du3K8L779u0LQKtWrcS0JUEQipV3oztFEAThLRQeHk6nTp0YMGAAgwcPpnTp0oDy4dTMzIyJEydiZmbGf//9x/Tp04mOjmbOnDmvPe66deuIiYlh9OjRSJLE7Nmz6dWrFw8ePHhtr/GpU6fYtm0bY8eOxdzcnLlz59K7d28CAgIoWbIkoAQWHTt2xN7enpkzZ6LRaPj++++xtbV9bdv69+/PX3/9xZ49e3QfwEEZjbB7926GDRuGWq3myZMntG/fHltbW6ZMmYKVlRV+fn5s27bttefIyqBBgxg1ahQHDhyga9euuuXXr1/nxo0bTJ8+HVCGGZ85c4YBAwbg6OiIn58fCxYsoGXLlty6dStHIyZkWaZ79+6cOnWKjz/+mCpVqrB9+3aGDh2aadtDhw7x4MEDhg8fjp2dHTdv3mTx4sXcvHmTc+fOIUkSvXr14t69e6xfv57/+7//w8bGBuCl1z0kJITGjRsTHx/P+PHjKVmyJCtXruS9995jy5Yt9OzZM8P2P//8MyqVii+//JKoqChmz57NoEGDOH/+fLbe79q1a+nVqxcGBgYMHDiQBQsWcPHiRerVq6fbJjY2lmbNmnH79m1GjBhBnTp1CAsLY9euXTx8+BAbGxs0Gg1du3blyJEjDBgwgM8++4yYmBgOHTrEjRs3cHV1ze6PQCc1NZUOHTrQtGlTfv31V93PcfPmzcTHxzNmzBhKlizJhQsXmDdvHg8fPmTz5s26/a9du0azZs3Q19dn1KhRODs74+Pjw+7du5k1axYtW7bEycmJtWvXZrqua9euxdXVlUaNGmXZtl69emFlZcXnn3/OwIED6dy5sy6B3M2bN2nWrBkWFhZMmjQJfX19Fi1aRMuWLTl+/HimXARjx47F1taW6dOnExcXl+PrlC671wVAo9HQsWNHGjZsyOzZs9m/fz/fffcdqampfP/995mOPWPGDJo3b86CBQte2St/8+ZNmjRpgoODA1OmTMHU1JRNmzbRo0cPtm7dSs+ePWnevDnjx4/PNDXgTactCYIgFAhZEARBKNI++eQT+cU/1y1atJABeeHChZm2j4+Pz7Rs9OjRsomJiZyYmKhbNnToULlcuXK67319fWVALlmypBwREaFbvnPnThmQd+/erVv23XffZWoTIBsYGMj379/XLbt69aoMyPPmzdMt69atm2xiYiIHBQXplnl7e8t6enqZjvkirVYrOzg4yL17986wfNOmTTIgnzhxQpZlWd6+fbsMyBcvXnzl8bIrIiJCNjQ0lAcOHJhh+ZQpU2RAvnv3rizLWV/7s2fPyoC8atUq3bKjR4/KgHz06FHdshd/Hjt27JABefbs2bplqampcrNmzWRAXr58uW55Vuddv359hmsiy7I8Z84cGZB9fX0zbV+uXDl56NChuu8nTJggA/LJkyd1y2JiYuTy5cvLzs7OskajyfBeqlSpIiclJem2/fPPP2VAvn79eqZzvejSpUsyIB86dEiWZeXn7OjoKH/22WcZtps+fboMyNu2bct0DK1WK8uyLC9btkwG5N9///2l22R1/WX52e/A89d26NChMiBPmTIl0/Gyuu4//fSTLEmS7O/vr1vWvHlz2dzcPMOy59sjy7I8depU2dDQUI6MjNQte/Lkiaynpyd/9913mc6TVbvnzJmTYXmPHj1kAwMD2cfHR7fs0aNHsrm5udy8eXPdsuXLl8uA3LRpUzk1NfWV53rR5s2bM13L7F6X9Gv76aef6pZptVq5S5cusoGBgRwaGqpbDsiffPKJLMuy3KpVK9nOzk53nvT2P//73qZNG7lGjRoZ/uZptVq5cePGspub2yvbLwiCUByIofWCIAjFlKGhIcOHD8+03NjYWPc6JiaGsLAwmjVrRnx8PHfu3Hntcfv374+1tbXu+2bNmgHK8NfXadu2bYYez5o1a2JhYaHbV6PRcPjwYXr06EGZMmV021WoUIFOnTq99viSJNG3b1/27t1LbGysbvnGjRtxcHCgadOmwLO5wv/++2+Ww+Fzytrams6dO7Nr1y5dT6Usy2zYsIG6detSsWJFIOO1T0lJITw8nAoVKmBlZcWVK1dydM69e/eip6fHmDFjdMvUajWffvpppm2fP29iYiJhYWE0bNgQIMfnff789evX111TADMzM0aNGoWfnx+3bt3KsP3w4cMxMDDQfZ+T+2bt2rWULl2aVq1aAcrPuX///mzYsCHDlJCtW7dSq1atTL3W6fukb2NjY5PldXqTkonP/xzSPX/d4+LiCAsLo3HjxsiyjKenJ6DMXz9x4gQjRoygbNmyL23PkCFDSEpKYsuWLbplGzduJDU19bX5MbKi0Wg4ePAgPXr0wMXFRbfc3t6e999/n1OnThEdHZ1hn5EjR6JWq3N8rhdl57o87/kEfelTdJKTkzl8+HCWx58xYwaPHz9m4cKFWa6PiIjgv//+o1+/frq/gWFhYYSHh9OhQwe8vb0JCgp6w3cpCIJQuEQgLwiCUEw5ODhkCJzS3bx5k549e2JpaYmFhQW2tra6QCAqKuq1x30x2EgP6p8+fZrjfdP3T9/3yZMnJCQkZJmNPLsZyvv3709CQoJurmtsbCx79+6lb9++usCoRYsW9O7dm5kzZ2JjY0P37t1Zvnw5SUlJ2TpHVgYNGkRcXBw7d+4ElAzwfn5+GZLcJSQkMH36dJycnDA0NMTGxgZbW1siIyOzde2f5+/vj729faY625UqVcq0bUREBJ999hmlS5fG2NgYW1tbypcvD2TvZ/6y82d1rvRhx/7+/hmW5/a+0Wg0bNiwgVatWuHr68v9+/e5f/8+DRo0ICQkhCNHjui29fHxoXr16q88no+PD5UqVcrTZIx6enpZzhkPCAhg2LBhlChRAjMzM2xtbWnRogXw7LqnP8h4XbsrV65MvXr1MuQGWLt2LQ0bNsxV9v7Q0FDi4+Nf+jPUarUEBgZmWJ5+z7yp7FyXdCqVKsODBkD3YOxluSWaN29Oq1atXjpX/v79+8iyzLfffoutrW2Gr/QEik+ePHnTtykIglCoxBx5QRCEYur5Xq90kZGRtGjRAgsLC77//ntcXV0xMjLiypUrTJ48OVvlzV7WIye/oo56XuybXQ0bNsTZ2ZlNmzbx/vvvs3v3bhISEujfv79uG0mS2LJlC+fOnWP37t0cOHCAESNG8Ntvv3Hu3LlMwXF2dO3aFUtLS9atW8f777/PunXrUKvVDBgwQLfNp59+yvLly5kwYQKNGjXC0tISSZIYMGBAvpaW69evH2fOnOGrr77C3d0dMzMztFotHTt2zPeSduly+7P/77//CA4OZsOGDWzYsCHT+rVr19K+ffs8aWO6l/XMv5gQMp2hoWGm0nwajYZ27doRERHB5MmTqVy5MqampgQFBTFs2LBcXfchQ4bw2Wef8fDhQ5KSkjh37hzz58/P8XFyK6u/KTmVH9clK9999x0tW7Zk0aJFmbL1p5/jyy+/pEOHDlnuL0obCoJQ3IlAXhAE4S1y7NgxwsPD2bZtW4ZSab6+voXYqmdKlSqFkZFRltnMc5LhvF+/fvz5559ER0ezceNGnJ2ddUPJn9ewYUMaNmzIrFmzWLduHYMGDWLDhg0Z6mBnl6GhIX369GHVqlWEhISwefNmWrdujZ2dnW6bLVu2MHToUH777TfdssTExCwzzb9OuXLlOHLkCLGxsRkePNy9ezfDdk+fPuXIkSPMnDlTl3QPwNvbO9MxczK0vFy5cpnOBeimZ6RnSn9Ta9eupVSpUvz111+Z1m3bto3t27ezcOFCjI2NcXV15caNG688nqurK+fPnyclJeWlyRnTRwu8+HN5cZTBq1y/fp179+6xcuVKhgwZolt+6NChDNul9za/rt0AAwYMYOLEiaxfv56EhAT09fUzPKDKCVtbW0xMTF76M1SpVDg5OeXq2K+S3euSTqvV8uDBA10vPMC9e/cAXlnXvUWLFrRs2ZJffvklw30Pz665vr4+bdu2fWV732S6hSAIQmESQ+sFQRDeIum9os/3giYnJ/P3338XVpMyUKvVtG3blh07dvDo0SPd8vv377Nv375sH6d///4kJSWxcuVK9u/fT79+/TKsf/r0aaaeYHd3d4AMw+t9fHx0JcmyY9CgQaSkpDB69GhCQ0Mz1Y5Xq9WZzjtv3ryX9vS+SufOnUlNTWXBggW6ZRqNhnnz5mU6J2Tu+f7jjz8yHTO9Lnh2Hix07tyZCxcuZCh7FhcXx+LFi3F2dqZq1arZfSsvlZCQwLZt2+jatSt9+vTJ9DVu3DhiYmJ00yh69+7N1atXsyzTlv7+e/fuTVhYWJY92enblCtXDrVazYkTJzKsz8nvSVbXXZZl/vzzzwzb2dra0rx5c5YtW0ZAQECW7UlnY2NDp06dWLNmDWvXrqVjx4666gI5pVarad++PTt37swwRD0kJIR169bRtGlTLCwscnXs150XXn9dnvf8z0qWZebPn4++vj5t2rR55bnS58ovXrw4w/JSpUrpeuuDg4Mz7RcaGqp7nZPfCUEQhKJE9MgLgiC8RRo3boy1tTVDhw5l/PjxSJLE6tWr83Ro+5uaMWMGBw8epEmTJowZMwaNRsP8+fOpXr06Xl5e2TpGnTp1qFChAtOmTSMpKSlTr+XKlSv5+++/6dmzJ66ursTExLBkyRIsLCzo3Lmzbrv0QCE7dd5B6QV0dHRk586dGBsb06tXrwzru3btyurVq7G0tKRq1aqcPXuWw4cP60rv5US3bt1o0qQJU6ZMwc/Pj6pVq7Jt27ZMc4wtLCxo3rw5s2fPJiUlBQcHBw4ePJjlKAwPDw8Apk2bxoABA9DX16dbt266YOZ5U6ZMYf369XTq1Inx48dTokQJVq5cia+vL1u3bs001Dw3du3aRUxMDO+9916W6xs2bIitrS1r166lf//+fPXVV2zZsoW+ffsyYsQIPDw8iIiIYNeuXSxcuJBatWoxZMgQVq1axcSJE7lw4QLNmjUjLi6Ow4cPM3bsWLp3746lpSV9+/Zl3rx5SJKEq6sr//77b47mTVeuXBlXV1e+/PJLgoKCsLCwYOvWrVnmBJg7dy5NmzalTp06jBo1ivLly+Pn58eePXsy3fNDhgyhT58+APzwww/Zv5hZ+N///sehQ4do2rQpY8eORU9Pj0WLFpGUlMTs2bPf6Ngvk5PrAmBkZMT+/fsZOnQoDRo0YN++fezZs4evv/76tSUpW7RoQYsWLTh+/HimdX/99RdNmzalRo0ajBw5EhcXF0JCQjh79iwPHz7k6tWrgPKAT61W88svvxAVFYWhoSGtW7emVKlSb34xBEEQ8lPBJskXBEEQcupl5eeqVauW5fanT5+WGzZsKBsbG8tlypSRJ02aJB84cOC15c5eVsJKlpXST8+XwHpZ+bn08lDPe7GsmSzL8pEjR+TatWvLBgYGsqurq/zPP//IX3zxhWxkZPSSq5DZtGnTZECuUKFCpnVXrlyRBw4cKJctW1Y2NDSUS5UqJXft2lW+dOlSprY9fw2y46uvvpIBuV+/fpnWPX36VB4+fLhsY2Mjm5mZyR06dJDv3LmT6Rpkp/ycLMtyeHi4/MEHH8gWFhaypaWl/MEHH8ienp6ZSqQ9fPhQ7tmzp2xlZSVbWlrKffv2lR89epTp5ybLsvzDDz/IDg4OskqlylCKLqufk4+Pj9ynTx/ZyspKNjIykuvXry//+++/GbZJfy+bN2/OsDyrUm4v6tatm2xkZCTHxcW9dJthw4bJ+vr6clhYmO6ajBs3TnZwcJANDAxkR0dHeejQobr1sqyUP5s2bZpcvnx5WV9fX7azs5P79OmToQxbaGio3Lt3b9nExES2traWR48eLd+4cSPL8nOmpqZZtu3WrVty27ZtZTMzM9nGxkYeOXKkruTii+/7xo0bup+RkZGRXKlSJfnbb7/NdMykpCTZ2tpatrS0lBMSEl56XZ73qt/dK1euyB06dJDNzMxkExMTuVWrVvKZM2cybJNV+bbsyqp8W3avS/q19fHxkdu3by+bmJjIpUuXlr/77jtdecN0L/v7kn7/ZdV+Hx8feciQIbKdnZ2sr68vOzg4yF27dpW3bNmSYbslS5bILi4uslqtFqXoBEEoNiRZLkLdNIIgCMI7q0ePHty8eTPLud2C8K5ITU2lTJkydOvWjaVLlxZ2cwRBEIQiSsyRFwRBEArciyWjvL292bt3Ly1btiycBglCEbFjxw5CQ0MzJIoTBEEQhBeJHnlBEAShwNnb2zNs2DBcXFzw9/dnwYIFJCUl4enpiZubW2E3TxAK3Pnz57l27Ro//PADNjY2XLlypbCbJAiCIBRhItmdIAiCUOA6duzI+vXrefz4MYaGhjRq1Igff/xRBPHCO2vBggWsWbMGd3d3VqxYUdjNEQRBEIo40SMvCIIgCIIgCIIgCMWImCMvCIIgCIIgCIIgCMWICOQFQRAEQRAEQRAEoRgRc+SzoNVqefToEebm5kiSVNjNEQRBEARBEARBEN5ysiwTExNDmTJlUKle3ecuAvksPHr0CCcnp8JuhiAIgiAIgiAIgvCOCQwMxNHR8ZXbiEA+C+bm5oByAS0sLPLlHCkpKRw8eJD27dujr6+fL+cQhPwi7l+hOBP3r1CciftXKM7E/SsUZwVx/0ZHR+Pk5KSLR19FBPJZSB9Ob2Fhka+BvImJCRYWFuIPmVDsiPtXKM7E/SsUZ+L+FYozcf8KxVlB3r/Zmd4tkt0JgiAIgiAIgiAIQjEiAnlBEARBEARBEARBKEZEIC8IgiAIgiAIgiAIxYiYI59LsiyTmpqKRqPJ1f4pKSno6emRmJiY62MIQn5Rq9Xo6emJ8ouCIAiCIAiCUASJQD4XkpOTCQ4OJj4+PtfHkGUZOzs7AgMDRbAkFEkmJibY29tjYGBQ2E0RBEEQBEEQBOE5IpDPIa1Wi6+vL2q1mjJlymBgYJCrQFyr1RIbG4uZmRkqlZjhIBQdsiyTnJxMaGgovr6+uLm5iXtUEARBEARBEIoQEcjnUHJyMlqtFicnJ0xMTHJ9HK1WS3JyMkZGRiJIEoocY2Nj9PX18ff3192ngiAIgiAIgiAUDSKCzCURfAtvO3GPC4IgCIIgCELRJD6pC4IgCIIgCIIgCEIxIgJ5QRAEQRAEQRAEQShGRCAvvBFnZ2f++OOPbG9/7NgxJEkiMjIy39okCIIgCIIgCILwNhOB/DtCkqRXfs2YMSNXx7148SKjRo3K9vaNGzcmODgYS0vLXJ0vNypXroyhoSGPHz8usHMKgiAIgiAIgiDkFxHIvyOCg4N1X3/88QcWFhYZln355Ze6bWVZJjU1NVvHtbW1zVH2fgMDA+zs7HJVsi83Tp06RUJCAn369GHlypUFcs5XSUlJKewmCIIgCIIgCIJQzIlAPg/Iskx8cmqOvxKSNbnaL/1LluVst9HOzk73ZWlpiSRJuu/v3LmDubk5+/btw8PDA0NDQ06dOoWPjw/du3endOnSmJmZUa9ePQ4fPpzhuC8OrZckiX/++YeePXtiYmKCm5sbu3bt0q1/cWj9ihUrsLKy4sCBA1SpUgUzMzM6duxIcHCwbp/U1FTGjx+PlZUVJUuWZPLkyQwdOpQePXq89n0vXbqU999/nw8++IBly5ZlWv/w4UMGDhxIiRIlMDU1pW7dupw/f163fvfu3dSrVw8jIyNsbGzo2bNnhve6Y8eODMezsrJixYoVAPj5+SFJEhs3bqRFixYYGRmxdu1awsPDGThwIA4ODpiYmFCjRg3Wr1+f4TharZbZs2dToUIFDA0NKVu2LLNmzQKgdevWjBs3LsP2oaGhGBgYcOTIkddeE0EQBEEQBEEQijdRRz4PJKRoqDr9QIGf99b3HTAxyLsf4ZQpU/j1119xcXHB2tqawMBAOnfuzKxZszA0NGTVqlV069aNu3fvUrZs2ZceZ+bMmcyePZs5c+Ywb948Bg0ahL+/PyVKlMhy+/j4eH799VdWr16NSqVi8ODBfPnll6xduxaAX375hbVr17J8+XKqVKnCn3/+yY4dO2jVqtUr309MTAybN2/m/PnzVK5cmaioKE6ePEmzZs0AiI2NpUWLFjg4OLBr1y7s7Oy4cuUKWq0WgD179tCzZ0+mTZvGqlWrSE5OZu/evbm6rr/99hu1a9fGyMiIxMREPDw8mDx5MhYWFuzZs4cPPvgAV1dX6tevD8DUqVNZsmQJ//d//0fTpk0JDg7mzp07AHz00UeMGzeO3377DUNDQwDWrFmDg4MDrVu3znH7BEEQBEEQBEEoXkQgL+h8//33tGvXTvd9iRIlqFWrlu77H374ge3bt7Nr165MPcLPGzZsGAMHDgTgxx9/ZO7cuVy4cIGOHTtmuX1KSgoLFy7E1dUVgHHjxvH999/r1s+bN4+pU6fqesPnz5+frYB6w4YNuLm5Ua1aNQAGDBjA0qVLdYH8unXrCA0N5eLFi7qHDBUqVNDtP2vWLAYMGMDMmTN1y56/Htk1YcIEevXqlWHZ81MZPv30Uw4cOMCmTZuoX78+MTEx/Pnnn8yfP5+hQ4cC4OrqStOmTQHo1asX48aNY+fOnfTr1w9QRjYMGzaswKYsCIIgCIIgCIJQeIpEIP/XX38xZ84cHj9+TK1atZg3b56uZ/JFKSkp/PTTT6xcuZKgoCAqVarEL7/8kiFI/Omnn9i2bRt37tzB2NiYxo0b88svv1CpUqV8ab+xvppb33fI0T5arZaY6BjMLcxRqXI3w8FYX52r/V6mbt26Gb6PjY1lxowZ7Nmzh+DgYFJTU0lISCAgIOCVx6lZs6butampKRYWFjx58uSl25uYmOiCeAB7e3vd9lFRUYSEhGS4H9RqNR4eHrqe85dZtmwZgwcP1n0/ePBgWrRowbx58zA3N8fLy4vatWu/dKSAl5cXI0eOfOU5suPF66rRaPjxxx/ZtGkTQUFBJCcnk5SUpMs1cPv2bZKSkmjTpk2WxzMyMtJNFejXrx9Xrlzhxo0bGaYwCIIgCIIgCO+WwIh4giITqFPWGgM9MYP6bVfogfzGjRuZOHEiCxcupEGDBvzxxx906NCBu3fvUqpUqUzbf/PNN6xZs4YlS5ZQuXJlDhw4QM+ePTlz5gy1a9cG4Pjx43zyySfUq1eP1NRUvv76a9q3b8+tW7cwNTXN8/cgSVKOh7hrtVpSDdSYGOjlOpDPay9emy+//JJDhw7x66+/UqFCBYyNjenTpw/JycmvPI6+vn6G7yVJemXQndX2OZn/n5Vbt25x7tw5Lly4wOTJk3XLNRoNGzZsYOTIkRgbG7/yGK9bn1U7s0pm9+J1nTNnDn/++Sd//PEHNWrUwNTUlAkTJuiu6+vOC8rwend3dx4+fMjy5ctp3bo15cqVe+1+giAIgiAIQvEnyzIBEfGcexDO+QcRnPeNICgyAQBHa2M+a+NGz9oO6KmLRpwh5L1C/8n+/vvvjBw5kuHDh1O1alUWLlyIiYlJlonJAFavXs3XX39N586dcXFxYcyYMXTu3JnffvtNt83+/fsZNmwY1apVo1atWqxYsYKAgAAuX75cUG/rrXD69GmGDRtGz549qVGjBnZ2dvj5+RVoGywtLSldujQXL17ULdNoNFy5cuWV+y1dupTmzZtz9epVvLy8dF8TJ05k6dKlgDJywMvLi4iIiCyPUbNmzVcmj7O1tc2QlM/b25v4+PjXvqfTp0/TvXt3Bg8eTK1atXBxceHevXu69W5ubhgbG7/y3DVq1KBu3bosWbKEdevWMWLEiNeeVxAEQRAEQSieZFnGJzSWdecD+GyDJ41++o8Wc44xeet1tnkGERSZgJ5KwsJIj4dPE/hqyzU6/HGCPdeC0WrfrINMKJoKtUc+OTmZy5cvM3XqVN0ylUpF27ZtOXv2bJb7JCUlYWRklGGZsbExp06deul5oqKiAF46hDopKYmkpCTd99HR0YDSu/piD2tKSgqyLKPVal87tPtV0nty049VkNLPl9W/z7elQoUKbNu2jS5duiBJEtOnT0er1WZq84vfZ3Vt0pe9eK4X25BVu8aNG8dPP/2Ei4sLlStXZv78+Tx9+jTTfulSUlJYvXo1M2bMoGrVqhnWjRgxgt9//53r16/Tv39/fvzxR3r06MGsWbOwt7fH09OTMmXK0KhRI7799lvatWuHi4sL/fv3JzU1lX379jFp0iQAWrVqxfz582nQoAEajYapU6eir6//0vf6/HXdunUrp06dwtramv/7v/8jJCSEKlWqoNVqMTAwYNKkSUyaNAk9PT2aNGlCaGgoN2/e5MMPP8zwXsaPH4+pqSndu3fP8/so/WedkpKCWp1xGkf674UopycUR+L+FYozcf8KxZm4f7NPlmXuh8Zxwe8pF3wjuOj3lNDYjKNi9dUStRwtqedsTX3nEtQpa4mExJoLASw+4YdPaByfrLtCFTtzJrarQAs3G5FP6Q0UxP2bk2MXaiAfFhaGRqOhdOnSGZaXLl1al6H7RR06dOD333+nefPmuLq6cuTIEbZt24ZGo8lye61Wy4QJE2jSpAnVq1fPcpuffvopQ0KzdAcPHsxUI11PTw87OztiY2NfO8Q8O2JiYt74GDmVmJiILMu6BxbpvcgxMTEZhvnPnDmTcePG0bRpU0qUKMFnn33G06dPSU5O1u2r1WpJTEzUfQ+QkJCQ4XtZlnXbvHiuF9uSvj88e6Dy8ccfExAQwNChQ1Gr1QwdOpTWrVujUqky7Jdu165dhIeH07Zt20zrHRwcqFSpEgsXLmTWrFls3ryZb7/9li5duqDRaKhUqRJz5swhOjqaOnXqsGLFCubMmcMvv/yCubk5jRs31h3zu+++Y9y4cbRo0QI7Ozt++uknLl26pHuvsbGxAMTFxWVox/jx47l37x6dOnXC2NiYoUOH0rlzZ6Kjo3XbjR8/ntTUVKZPn87jx48pXbo0w4cPz3CcLl26MHHiRHr16kVycnKe3I/PS05OJiEhgRMnTpCamprlNocOHcrTcwpCQRL3r1CciftXKM7E/ZuZVobH8XA/WuJ+tIRPtERsasagW0+ScTYHVwuZChYyzmYyBuowSA4j+h4cSxvg6QBMqQ7HglUcDZa4/TiGkas9KW8u09VJQwXLgn9/b5P8vH+zM7o3nSS/6WTkN/Do0SMcHBw4c+YMjRo10i2fNGkSx48fz1DPO11oaCgjR45k9+7dSJKEq6srbdu2ZdmyZboA8Hljxoxh3759nDp1CkdHxyzbkVWPvJOTE2FhYVhYWGTYNjExkcDAQJydnTONDMgJWZaJiYnB3NxcPBnLIa1WS7Vq1ejbt2+G7PbvGj8/P9zc3Dh//jx16tTJ8+MnJibi5+eHk5NTpns9JSWFQ4cO0a5du0w5DgShqBP3r1CciftXKAwxialc8n9K9TIW2Job5vo44v7Nml94HCNWXiHwacZYxkhfRW0nq7Qed2vcHS0xzGGy64i4ZJac8mP1uQCSUpXRm01cSzKxbQVqOoqIPicK4v6Njo7GxsaGqKioTHHoiwq1R97Gxga1Wk1ISEiG5SEhIdjZ2WW5j62tLTt27CAxMZHw8HDKlCnDlClTcHFxybTtuHHj+Pfffzlx4sRLg3gAQ0NDXT3u5+nr62f6IWk0GiRJQqVSvVGSuvRh0OnHEl7O39+fgwcP0qJFC5KSkpg/fz6+vr4MGjTonbx2KSkphIeHM336dBo2bJgpK35eUalUSJKU5e9BuletE4SiTty/QnEm7l8hv8UkpnD4dgh7rj3mxL1QkjVaajlasuOTJm/cCSXu32eiElIYvdaLwKcJGOurqetsTYPyJWjoUpKajlZvnH2+tJU+33Stxsjmrsz/7z7rLwRw2iec0z7htK9ami/aV6KSnXkevZt3Q37evzk5bqEG8gYGBnh4eHDkyBF69OgBKAHukSNHXlmnHJQSXA4ODqSkpLB161ZdPW1Qers//fRTtm/fzrFjxyhfvnx+vg0hn6lUKlasWMGXX36JLMtUr16dw4cPU6VKlcJuWqE4ffo0rVq1omLFimzZsqWwmyMIgiAIwlsiJjGFI7ef8O+1YE54h5KcmjH/ztWHUXgGRlKnrHUhtfDtkqrR8ul6Tx6ExmFvacTOcU0oZZ77Eb+vUtrCiB96VGdUcxf+OOzNds+HHLwVwqHbIXSvVYYJbSvibJP31b2E/FPo5ecmTpzI0KFDqVu3LvXr1+ePP/4gLi6O4cOHAzBkyBAcHBz46aefADh//jxBQUG4u7sTFBTEjBkz0Gq1ugRkAJ988gnr1q1j586dmJub8/jxY0DJgJ6d0l5C0eLk5MTp06cLuxlFRsuWLd+4PJ8gCIIgCAJAbFIqR26H8O+1YI7fyxi8u9ia0rWGPZ1r2rP4xAO2XQlizTl/EcjnkZ/23eHEvVCM9dUsGVI334L45zmVMOG3frUY09KF3w/dY+/1x+zwesTua8H0q+vIp63dKGMl4qXioNAD+f79+xMaGqpL6uXu7s7+/ft1CfACAgIyDJ9OTEzkm2++4cGDB5iZmdG5c2dWr16NlZWVbpsFCxYASsDzvOXLlzNs2LD8fkuCIAiCIAiCUGSlB+97rgVz7BXBe6XSz3I5DWnkzLYrQfx7LZhvulSlhKlBYTX/rbDxYgBLT/kC8Fu/WlR3KNj56hVKmfP3IA9uBEXx68G7HLsbyvoLgWy9EsTgBuUY28oVG7Pc50MQ8l+hB/KgzGV/2VD6Y8eOZfi+RYsW3Lp165XHE72VgiAIgiAIgvDMK4N3G1O61LSncw17KttlnYi5lqMl1R0suBEUzeZLgYxu4VqQzX+rnH8Qzjc7bgDweduKdK5hX2htqe5gyYrh9bnoF8GcA3e54BvBstO+7LoaxI5PmuBobfL6gwiFokgE8oIgCIIgCIKQW/HJqcw5cBdHaxN61XbAWvQW61wNjOTvY/c5djdUl7UclOC9cw17utR8efD+PEmS+KBhOSZvvc6a8/6MbOaCSiUqL+VUYEQ8Y9ZeIUUj06WmPePbVCjsJgFQz7kEG0c15KR3GDN338QnNI6xa6+w+eNGGOrlLFO+UDBEIC8IgiAIgiAUaxsvBrL8tB8Av+y/Q6fqdgysX5YG5Uu802V+oxNTGLz0PDGJqQCUtzGlSw2l572KfRbBuyxDbAg89YMIX+Xfp37w1BeiH9Gr9nD+Z1SdwIgEjnuH0qpSqYJ+S8VabFIqH628RERcMjUcLPm1T60idX9KkkTzirasHFGfrvNOce1hFN/vvsWsnjUKu2lCFkQgLwiCIAiCIBRrF3wjALA01icqIYWdXo/Y6fUIFxtTBtR3oncdR0q+g/N9158PICYxFRdbU+YPrKME76lJEOkP3mezCNj9IDXhpcfTPzWHD2rt4O/z4aw95y8C+RzQaGUmbPDkbkgMpcwNWTKkLsYGRbOn29HahD/6uzN8xUXWng+gTllrenu8vJS3UDhEIC8IgiAIgiAUW7Isc9FPCeT/GVoXQz0V6y8EsssriAdhcfy49w5zDtylfTU7BtYrS2PXku/EkPCkVA3LTvvSTHWN7y3vUP7AbCVoj3n06h0lFVg6grUzWJdP+9cZjs+G0NuMMD/H37hx5M4TAiPicSoh5lBnx5wDdzl8+wkGeioWD6mLnWX+Z6h/Ey0rleKzNm78cdibaTuuU7WMBVXsLQq7WcJzRCAv5EjLli1xd3fnjz/+AMDZ2ZkJEyYwYcKEl+4jSRLbt2+nR48eb3TuvDqOIAiCIAhvD9+wOMJikzHQU1HT0RJDPTU1Ha34pksVdl99xPoLAVx9GMWea8HsuRZM2RIm9K/nRN+6jgVS7quw7PR6REx0FAuN/sD0YWLGlQbmUMI5c7BeojxYOoFaP/MB48Nh75fY3FlLE9e5nPaJYP2FACZ1rJz/b6aY23blIQuP+wAwp09N3J2sMm8U8xgiAwFZmeKADLL2uddp32daT8b1egbgUBeM3jzoHt/aDc+ASI7fC2XMmsvs+rQpFkZZ3BtCoRCB/DuiW7dupKSksH///kzrTp48SfPmzbl69So1a9bM0XEvXryIqalpXjUTgBkzZrBjxw68vLwyLA8ODsbaumDqliYkJODg4IBKpSIoKAhDw3dvOJ4gCIIgFAfpvfHujlYZknKZGuoxoH5ZBtQvy81HUWy4EMgOzyACIuKZc+Au/3foHm2qlGJg/bI0c7NF/Rb10mu1MotPPKCz+jymJIJVWWjz3bOg3aQE5HRuds3+cOg7CLvHZ81DOO2jz8aLgXzW1k0kQ3uFKwFPmbL1OgCftHKlu7tD5o2uboSdY0GbmjcnVelB2Ubg1g7c2oNt5Zz/vAGVSuKP/u50nXcKv/B4vtx0lUUfeBSpef3vMhHIvyM+/PBDevfuzcOHD3F0zDjHZfny5dStWzfHQTyAra1tXjXxtezs7ArsXFu3bqVatWrIssyOHTvo379/gZ37RbIso9Fo0NMTv66CIAiC8KLzvhGAzPsWVyHYFOwzf56pVsaSH3pYMrVzZfZcC2bDxUAu+z/lwM0QDtwMwcHKmP71nOhX16nID3nOjqN3n3D/SSw/G55QFtQZCjX6vNlBjSygZl+4vIK6YTsobTGYkOgk9t94nHVwKhAUmcCoVZdJ1mhpX7U0X7SrlHmjK6th16eADOb2oGcISGmBt6RMddC9Tvs+w3oyLouPUHIg+J1Uvg5NV0ZZVGirBPXlm4OhWbbfg7WpAX8PqkPfhWc5eCuExSceiNKDRYSqsBvwVpBlSI7L+VdKfO72S/+S5Ww3sWvXrtja2rJixYoMy2NjY9m8eTMffvgh4eHhDBw4EAcHB0xMTKhRowbr169/5XGdnZ11w+wBvL29ad68OUZGRlStWpVDhw5l2mfy5MlUrFgRExMTXFxc+Pbbb0lJSQFgxYoVzJw5k6tXryJJEpIk6dosSRI7duzQHef69eu0bt0aY2NjSpYsyahRo4iNjdWtHzZsGD169ODXX3/F3t6ekiVL8sknn+jO9SpLly5l8ODBDB48mKVLl2Zaf/PmTbp27YqFhQXm5uY0a9YMHx8f3fply5ZRrVo1DA0Nsbe3Z9y4cQD4+fkhSVKG0QaRkZFIksSxY8cAOHbsGJIksW/fPjw8PDA0NOTUqVP4+PjQvXt3SpcujZmZGfXq1ePw4cMZ2pWUlMTkyZNxcnLC0NCQChUqsHTpUmRZpkKFCvz6668Ztvfy8kKSJO7fv//aayIIgiAIRdFFvwi6qM7T495kWNQMFreEyysgKSbTtiYGevSt68TWMY05MKE5w5s4Y2msT1BkAr8fukfjn4/w0cpLeAY8LfD3kZcWHX9AWSmEutJtJcirNTBvDlx3BACqO//ykbsSDK455583x37LxCenMnLlJcJik6hsZ87/9XfPnJvh4lLYNQ6Qoe6H8Pkt+OwqfOYF4z1h/BX49BKMuwjjLsAn52HsWRh7BsachjGn4ONTMPoEjD4Oo47BhGvw6RXoNFsJ3vWMICoQLi+HDQNhdnlY1R3OzIfQe9mKJ2o5WfHde1UBpSrEWZ/wPL9eQs6JLr68kBIPP5bJ0S4qwOpNz/v1IzDI3rB2PT09hgwZwooVK5g2bZpuSMzmzZvRaDQMHDiQ2NhYPDw8mDx5MhYWFuzZs4cPPvgAV1dX6tev/9pzaLVaevXqRenSpTl//jxRUVFZzp03NzdnxYoVlClThuvXrzNy5EjMzc2ZNGkS/fv358aNG+zfv18XpFpaWmY6RlxcHB06dKBRo0ZcvHiRJ0+e8NFHHzFu3LgMDyuOHj2Kvb09R48e5f79+/Tv3x93d3dGjhz50vfh4+PD2bNn2bZtG7Is8/nnn+Pv70+5cuUACAoKonnz5rRs2ZL//vsPCwsLTp8+TWqqMhxqwYIFTJw4kZ9//plOnToRFRXF6dOnX3v9XjRlyhR+/fVXXFxcsLa2JjAwkM6dOzNr1iwMDQ1ZtWoV3bp14+7du5QtWxaAIUOGcPbsWebOnUutWrXw9fUlLCwMSZIYMWIEy5cv58svv9SdY/ny5TRv3pwKFYpGDVNBEARByInHUYkERiQwTv/as4WPPJWvA9OUXmiPYVCmdqZ9K9mZ8123akzuWJn9Nx6z7kIAF3wjOHw7hMO3Q2hVyZbP21WkpqNVgb2fvHDZ/ykX/CL4Sj+tN96lFVjmUY+5fS1l/nXQJQYYHOdnVQ0u+j3ldnC0SIT2HK1W5otNV7kVHE1JUwP+GVoXU8MXwq5zC2D/FOV1w7HQ4cdcDX/PUklX5avBaEiOB79T4H1Q+Yr0hwfHlK+D08Cq3LMh+M7NwCDr5IXv1y/LZf+nbLsSxKfrPdkzvimlLYr/6JXiTATy75ARI0YwZ84cjh8/TsuWLQElkOvduzeWlpZYWlpmCPI+/fRTDhw4wKZNm7IVyB8+fJg7d+5w4MABypRRHmz8+OOPdOrUKcN233zzje61s7MzX375JRs2bGDSpEkYGxtjZmaGnp7eK4fSr1u3jsTERFatWqWboz9//ny6devGL7/8QunSpQGwtrZm/vz5qNVqKleuTJcuXThy5MgrA/lly5bRqVMn3Xz8Dh06sHz5cmbMmAHAX3/9haWlJRs2bEBfX0n4UbFiRd3+//vf//jiiy/47LPPdMvq1av32uv3ou+//5527drpvi9RogS1atXSff/DDz+wfft2du3axbhx47h37x6bNm3i0KFDtG3bFgAXFxfd9sOGDWP69OlcuHCB+vXrk5KSwrp16zL10guCIAhCcXEhbX58E31v0ALd/4aECKVHPvy+8u/lFWBXUwnoa/TNlATMSF9Nj9oO9KjtwP0nsSw67sM2zyCO3g3l6N1Q2lYpxYS2FanukLljoShafMIHFVreNzoNKUDtQXl7gnofQtAlzK+voWPVpey5Ecqac/6i1vhz/jjizb4bj9FXSyz6wANH6xeC41N/wOHvlNdNJkDbGXkXxL/IwAQqtle+ZFn5vfA+pAT1/qeVwP7iP8qX2hCcmyqBfZVuSvWCNJIkMatHDW49iubO4xg+WXuF9aMaoq8WA7wLiwjk84K+idI7ngNarZbomBgszM1RqXL5C6Cfs3IflStXpnHjxixbtoyWLVty//59Tp48yffffw+ARqPhxx9/ZNOmTQQFBZGcnExSUhImJtk7z+3bt3FyctIF8QCNGjXKtN3GjRuZO3cuPj4+xMbGkpqaioVFzp7i3r59m1q1amVItNekSRO0Wi13797VBfLVqlVDrX6WgMXe3p7r16+/9LgajYaVK1fy559/6pYNHjyYL7/8kunTp6NSqfDy8qJZs2a6IP55T5484dGjR7Rp0yZH7ycrdevWzfB9bGwsM2bMYM+ePQQHB5OamkpCQgIBAQGAMkxerVbTokWLLI9XpkwZunTpwrJly6hfvz67d+8mKSmJvn37vnFbBUEQBKEwXPANx4YoHLVBgASVO4OxNTQaB/5nlCD+1k54fA32TISD30D13kpQ7+CRKXiqUMqMOX1r8UmrCsz9z5sdnkEcvv2Ew7ef0KFaaSa0rVike559QmM5eCuEJqqbWKc8ASNLqNQlb09SrSfsnwpRAXzi4c+eGyZs9wxiSqfKmIuM5uy++oi5R7wB+LFnDeo6l8i4wfHZcHSW8rrFZGg5Nf+C+BdJEti4KV+NxkJSrDKP3vugEtxHBYLPEeXryPfQfw1UePaZ1thAzYLBHrw37xSX/J/y8747fNu1asG0XchEPELJC5KkDHHP6Ze+Se72S//KxS/9hx9+yNatW4mJiWH58uW4urrqAr85c+bw559/MnnyZI4ePYqXlxcdOnQgOTk5zy7V2bNnGTRoEJ07d+bff//F09OTadOm5ek5nvdisC1JElqt9qXbHzhwgKCgIPr374+enh56enoMGDAAf39/jhw5AoCxsfFL93/VOkD30EZ+bj7Sy+bsv1gN4Msvv2T79u38+OOPnDx5Ei8vL2rUqKG7dq87N8BHH33Ehg0bSEhIYPny5fTv3z/bD2oEQRAEoai56PuUuqq7yjelqipBPCifkZybQO8l8MUd6PAT2FRSpkN6roZ/2sDCpnBhCSREZjqus40pv/dz59DEFnR3L4MkwYGbIXT68ySfrL3CvZDM8++Lgn9OPkCWYZz1BWVB9T6gn8fDn/WNwV3p5a/ycDOutqbEJ2vY4RmUt+cphq49jOTLzVcBGNmsPH3rOj1bKctw5IdnQXzrb6DV1wUXxGfF0AwqdYKu/wcTrsPY89DuB7B3V35X1g+A2/9m2KW8jSm/9lNGiC495cuea8GF0HABRCD/zunXrx8qlYp169axatUqRowYoZsvf/r0abp3787gwYOpVasWLi4u3Lt3L9vHrlKlCoGBgQQHP/uFPnfuXIZtzpw5Q7ly5Zg2bRp169bFzc0Nf/+MSVIMDAzQaDSvPdfVq1eJi4vTLTt9+jQqlYpKlbLICJpNS5cuZcCAAXh5eWX4GjBggC7pXc2aNTl58mSWAbi5uTnOzs66oP9F6Vn+n79GL5bZe5nTp08zbNgwevbsSY0aNbCzs8PPz0+3vkaNGmi1Wo4fP/7SY3Tu3BlTU1MWLFjA/v37GTFiRLbOLQiCIAhFTWR8MndDYqivuqMsKJd5FCCglFprNFZJFDZ8v5L4Tc8IQm7A3i/ht8qwfQwEnM+U+MvV1ow/B9Tm4ITmdK1pD8Ce68F0+OMEn6735P6T2KzOWCiexCSy9XIQFsRRP/GUsjCvh9WnqzscAOneQUbXUjpNVp/zz9BR8a4JiU5k5KpLJKVqaVXJlimdqjxbKctw6Fs4mTadsd0P0Pyrwmnoy0gSlKoMTcbDhwehynugSYZNQ+Da5gybdqhmx+gWyvTNSVuuFqnfg3eJCOTfMWZmZvTv35+pU6cSHBzMsGHDdOvc3Nw4dOgQZ86c4fbt24wePZqQkJBsH7tt27ZUrFiRoUOHcvXqVU6ePMm0adMybOPm5kZAQAAbNmzAx8eHuXPnsn379gzbODs74+vri5eXF2FhYSQlJWU616BBgzAyMmLo0KHcuHGDo0eP8umnn/LBBx/ohtXnVGhoKLt372bo0KFUr149w9eQIUPYsWMHERERjBs3jujoaAYMGMClS5fw9vZm9erV3L2r9AjMmDGD3377jblz5+Lt7c2VK1eYN28eoPSaN2zYkJ9//pnbt29z/PjxDDkDXsXNzY1t27bh5eXF1atXef/99zOMLnB2dmbo0KGMGDGCHTt24Ovry7Fjx9i0aZNuG7VazbBhw5g6dSpubm5ZTn0QBEEQhOLgkp+SWb6pgTKMmbKv+T9NkpRgv+dCpZe+02ylFz81Aa6ug2Xt4e9GcG4hJEZl2NWttDnz36/D/gnN6FTdDllWhlC3/7/jfL7RC9+wuJectOCsOO1HskbLWNtrqDRJYFsFytTJn5PZuCllzJB5T3MYY30190JiueAbkT/nK+ISUzSMWnWJkOgk3EqZMXdgbdTpGeplWUlqd0b5LEin2UqwXJTpGUKf5cpDL1kD20bCpeUZNvmqfSUalC9BXLKGMWsuE5eUWkiNfXeJQP4d9OGHH/L06VM6dOiQYT77N998Q506dejQoQMtW7bEzs6OHj16ZPu4KpWK7du3k5CQQP369fnoo4+YNWtWhm3ee+89Pv/8c8aNG4e7uztnzpzh22+/zbBN79696dixI61atcLW1jbLEngmJiYcOHCAiIgI6tWrR58+fWjTpg3z58/P2cV4TnrivKzmt7dp0wZjY2PWrFlDyZIl+e+//4iNjaVFixZ4eHiwZMkS3TD+oUOH8scff/D3339TrVo1unbtire3t+5Yy5YtIzU1FQ8PDyZMmMD//ve/bLXv999/x9ramsaNG9OtWzc6dOhAnToZ/4NesGABffr0YezYsVSuXJmRI0dmGLUAys8/OTmZ4cOH5/QSCYIgCEKRcdEvAjPiqaD1VRaUa5z9nY2tlYzeY87Ah4fBfTDoGUPobdg/GX6vCnu/gjDvDLtVtrNgwWAP9oxvSvuqpdHKsN0ziDa/HeOLTVfxDy+cgD42KVVXBm5Aerb62oPyd9h23Q8BMLq2hl7upQClV/5dI8syX225xtWHUViZ6PPP0LrPcgVotfDv53B+ofJ91z+U+644UOspySPrfQTI8O+EZw8jAD21innv16aUuSHeT2KZuu36Oz0iozBIsrjimURHR2NpaUlUVFSmJGyJiYn4+vpSvnx5jIxyP+dIq9USHR2NhYVF7pPdCUIunDx5kjZt2hAYGPjK0QuvutdTUlLYu3cvnTt3zjLpnyAUZeL+FYozcf8+0+Ov01gEHWeVwS9KCa0J116/06skRML1zUr27tA7z5ZXaAsNxoBra3jhM9v1h1H8cfgeR+48AUCtkuhdx4FPW7vhVKLgctD8c/IB/9tzm5YlIlgRPw4ktTLqwKxU/p1UkwL/Vw1iQwhs+zfN/rVCXy1xekprSpln/Rn5bbx//zzszf8dvoeeSmLVh/Vp7GqjrNBqYNd48FoDSNB9PtQeXKhtzRVZhsMz4PQfyvctpypJ+tIeEl30i2DA4nNotDIz36vG0MbOhdXSfFcQ9++r4tAXiQhSEN4RSUlJPHz4kBkzZtC3b99cT0EQBEEQhMIWn5zKjaAo6qUnustJb/zLGFtB/ZEw9hx8sAMqdgIkuH8Y1vaGv+oryfGSniW6q+FoydJh9djxSRNaVrJFo5XZdOkhrX49xpwDdwqkhzJFo2XpKWVUwmS7y8rCih3yN4gHUOtDnSEAON1fT52yVqRoZDZdDMzf8xYhi0/48H+HlXxSM7tXexbEa1Jh+8dKEC+poNfi4hnEgxKwt52hJOcDOPaTUv0h7d6u51yCqZ0qA/C/Pbe47P+0kBr67hGBvCC8I9avX0+5cuWIjIxk9uzZhd0cQRAEQcg1r4BIUrWyUj8eXj8/PickCVxbwfsb4NPL0HAsGFpAuLeSHO/3qrD/a4jw1e3i7mTFiuH12TqmMc3cbEjVyvx11Ie15wPyrl0vsfvqI4KjErEz06NyyN60BuVTkrsX1RmqBKp+J/m4mpKoeN35AFI1L68Q9Lb45+QDftyrjNyY0NaNQQ3KKSs0KbD1Q7i+CVR60GcZ1OxXiC3NA5KkJOfr+LPy/dn5ylB7rfIz/7BpeTrXsCNFI/PJ2iuEx2bObyXkPRHIC8I7YtiwYWg0Gi5fvoyDg0NhN0cQBEEQcu2CXwQGpFCdtEA+L3rks1LSFTr+BBNvQac5ULICJEXDub9gbm1YPxAeHNP1TnqUs2b1hw2Y3FHpoZy5+yaeAfnXQynLMouOPwDg28pBSHEhYGKj9MgXBCsncFPO1TpuD9Ym+jyKSuS/tKkGb6tlp3z5357bAIxv48aEthWVFalJsGko3NoBKn3otwqq9Sy8hua1hmPgvfmABJdXwPbRoElBkiR+6V0TF1tTHkcnMn6DJxqtmL2d30QgLwiCIAiCIBQrF/0iqC75YiAng6mtEmDnJ0NzaDAKPrkIg7Yo8+aR4e5eWNVdyXZ/aTkkxwPwcQsXOlZTeijHrr1CWD71UB67F8rdkBhMDdS0T04rfVuzvzLsvaDUVUrZ6l1bz/seSpndtznp3YrTvnz/7y0AxrWqwOdt3ZQVKYmwcTDc3QNqQxi4Hip3KcSW5pM6H0Cfpcpog+ublQcXqUmYG+mzcLAHxvpqTt8P5/8OZb+EtZA7IpDPJZEjUHjbiXtcEITciEtKJSA8XvwNEfJNikbLFf/IZ/XjyzbM3+zsz1OpwK0dDN6qBPX1RoK+qZLt/t8J8HsVODQdKSqQOX2VHsrgqEQ+XeeZL8PNFx33AeDDOhbo3z+gLMyv2vEvU6ENWJWFxChGWHohSXDSOwy/IlCSL6+tOuvHjN1KED+2pStftK+IJEnKA5z1/cH7oFL94P2Nyn3ytqreG/qvVR5Y3N0D6/pDchwVS5vzc+8aAMw/ep8jt7NfxlrIORHI51B6hsL4+PhCbokg5K/0e/xtySorCEL+S9Vo6bvwLM3nHKXhT0eYuMmLbVceEhKdWNhNE94iN4KiSEjR0Fg/rcevbD4Nq38d24rQ5Vf44jZ0+FHJnJ8YCaf/hD9rYX7sOxYN9sDEQM3ZB+H8ejBveyivBkZy7kEEeiqJDy0vgTYF7N2hdLU8Pc9rqdTgMQyAkrfX0KKi0iu/9vzb1Su/5pw/03feBGB0Cxe+6lBJCeKTYmFtX2WKhb4pDN6i5Fh421XqCIM2K+/5wVFY0xsSo+ju7sDQRkq+gM83euEdEvOaAwm5pVfYDShu1Go1VlZWPHmizP0xMTFRfolzSKvVkpycTGJioig/JxQpsiwTHx/PkydPsLKyQq1WF3aTBEEoJnZ6PeJWcDQAIdFJbLsSxLYrQQC4lTKjSQUbmlawoYFLiWd1lgUhhy76RSChxUN1D7QoPfKFycgSGn0CDT6GeweUmuG+x+HcX7g5N2V2H3fGrfNk4XEf3J0s6VjdPk9Ou/iEMje+u7sDlnd+VBYWVmb02kPg6E8QdIkx7eM4dhc2XXrIF+0rYaRf/D9HrDsfwDc7bgAwqrkLUzpWTgviY2BNHwg8BwbmShBf2PdjQXJpAUN2KNcg4CysfA8Gb2Nal6pcfRiFV2Ak7f84QXM3WwbWL0ubKqXQV4u4J6+IQD4X7OzsAHTBfG7IskxCQgLGxsa5ehAgCPnNyspKd68LgiC8TopGyx9HlB7Hie0qUrecNafuh3HqfhjXg6LwfhKL95NYVpzxQ62SqO1kpQT2bja4O1mJD3dCtl3wfUol6SGm2lgwMAO7moXdJIVKDZU7K1+HvlPqbu+bRNdPzuPVtDz/nPLly83XcCttjqut2Rudyi8sjn03ggH4tGo8bLkOagNlyHNhMLOFqu/Bja3UC9uBg1V3giIT2H31EX3rOhVOm/LIhgsBfL39OqBkZ5/aqXLGnvjAc2BoCR9sB0ePQm5tIXCqD8P+hdU9IdgLVnTGYMhOFn3gwVdbrnHiXijH075KmRvSr64T/es54VTCpLBbXuyJQD4XJEnC3t6eUqVKkZKSkqtjpKSkcOLECZo3by6GLgtFjr6+vuiJFwQhRzZfekhgRAI2ZoZ81Kw8JgZ6NK5gwyQgMj6Zsz7hnLofxun7YfiFx3PJ/ymX/J/y5xFvTA3UNHApqeuxr1jaTDzkFrKk1cpc9IvgvfT58Y71QF0EP862mAQ3tkFUAByfzeRO33EtKIoLvhF8vPoyOz5pgqlh7tv9z6kHaGVoVckW54AtysLKXcCkRB69gVyoOwJubEV1fTPDGgxn1uEg1pzzL9aB/KaLgUxNC+KHN3Hmmy5VMgbxAWeVIH7IdnB4B4P4dPY1Yfg+JfFj6B1Y1pHSQ3ayakR9/MPjWH8hkC2XA3kSk8T8o/f569h90UufB4rgX77iQ61W5zrYUavVpKamYmRkJAJ5QRAEoVhLTNEw7z+lDNgnrVwxMcj48cLKxIBONezpVEMZUhwYEc8ZnzBO3Q/n9P0wIuKS+e/OE13JKltzQ5q4lmRIY2fqlLUu2DcjFGneT2KJSkihkcFdZUF+lZ17Uwam0OkX2DAQzs5Hv9ZA5r9fm65zT+H9JJbJW68xb2DtXD2wCotNYvOlhwB83NQRtm1SVrgX0rD6dOWagE0lCLvLQMOzzFE7c/VhFNceRlLT0apw25YLWy4/ZPK2a8gyDGvszPSuVdMS28XBun4QcAYMLZSe+Hc5iE9nWxFG7FOG1z/1heWdYMhOytm4MaVTZSa2q8ihWyGsvxDAqfthGXrp+9dzol9d0UufU+LxhyAIgiAIb2TDhQCCoxKxtzBkyMPv4KeysGEQXFkFMY8zbe9UwoT+9coyb2BtLk1ry97xzfi6c2WaV7TFSF9FaEwSO7weMWDROQ7czLy/8O664BcByDTUS09016hQ2/NKlTtDpc6gTYU9X1DKzJC/B9VBTyXx77Vglp32y9VhV53xIylVSy0nK+onX4CEp2BepvATrEmSrhSd2fVVdKpeGlCSxBU326485KstV5Fl+KBhOb7r9nwQ3x/8Tz8L4t/F4fQvY+0MI/YrD3Sig5RgPuAcAAZ6KrrUtGfNRw04/lVLPm7hio2ZAU9ikpj3332azznK0GUXOHDzMSn5UOHhbSQCeUEQBEEQci0hWcP8o0oJrFk1n6C+vROSouDOv7DrU/itEixqDv/9DwIvglaTYX+VSqJqGQtGNXdl1Yj6XP2uPetHNqRtlVIka7SMXXuFbVceFsZbE4qgi74ROElPKKENB5U+ONYt7Ca9WseflXJk/qfg6gbqOpfgmy5VAPhx720u+Ebk6HDxyamsSguMP27uguS1VllRa4AyR7+w1RqgvN8ntxjjEgYoSTCj4nM3FbUw7PAM4ovNShA/qEFZvu9e7VmJuXX9we9kWmK7bUX//isMFmVg+F4ld0VcKCzrAOvfh5Cbuk3KlTRlSqfKnJnShr/er0PTCjbIMhy/F8ro1Zdp8vN//HbwLoERokrYq4hAXhAEQRCEXFt11o+w2CScrI1o+XChsrDmAGj5ddpwUwmCr8KJObC0LfzqBttGw42tkBCZ6XiGemoauZZk4WAP+ng4otHKTNx0lRWnfQv0fQlFjyzLXPCNoL6UNqy+TG3QNy7cRr2OdTllvjzAwW8g4SlDGzvT3b0MGq3M2LVXclSecdPFQCLjU3AuaUL7sjLcP6yscC/g2vEvY2wFNZSEe5UebqaynTlJqVo2Xw4s3HZl006vICZu8kKWYWD9svzQvXrGOvHpQfwH28CpXmE3t+gytYGhu5XpHpJKqTW/oAls/QjCfXSbZbeX/r87oh59VkQgLwiCIAhCrsQmpbLwuPKh7Jeq/qgeX1WyiHeYBS0nw8j/4Etv6LEAqvZQhqLGh8O1DbBlBMx2geWd4dT/QcgtkGXdsfXUKmb3rsmwxs4AzNh9i3lHvJGf20Z4tzx8msDj6EQaqNPnxxfhYfXPazROGWocHwZHvkeSJH7qVYPKduaExSYxdu0VklNfP5Q4VaNlyUnlgdbI5i6or28CWQtODcCmQn6/i+yr+yEA0q0dfFTHHIC15wPQaov27+7uq4/4fKMXWhkG1HNiVo/qqFQSpCTA+gHge0L5+zZ4q5KpXXg1Yyvo8ReMPQ/VegIyXN8M8+vBrvEQlXGk1at66UesuMTqs36F8S6KNBHIC4IgCIKQK8tP+fI0PoUKJY1o5J/WG9/oE6U3Jp2ZLbi/D/1WwqQHMPRfaDwebCuDrFHmmh6eAQsawR814N+JSi3u5HhUKonvulXlszZuAPx26B4/7r0tgvl3VPow9MYGSmJFyhbRRHcv0jOALr8pry8th4eXMTHQY+FgD8yN9Ljs/5Qf995+7WH2XA8mKDIBGzMDetd2gPRh9UWlNz6dQx2wdwdNMu/JxzAz1MM3LI4zPuGF3bKX2nMtmAlpQXxfD0d+7FnjhSD++LMgvmyDwm5u8WJbEfqugNEnwK298nf/ykqYWwf2fw1xYRk2f7GXfmD9sgB8/+8tPAOeFsIbKLpEIC8IgiAIQo5Fxaew+OQDAGZXvosUdheMrZVA/mXU+lC+GbT/AT45D59dhc6/QoV2oGcEUYFwaamSEXp2eTg8Ewn4vF1Fvu1aFYAlJ32ZsvU6miLeuyfkvYt+EZQkCkfNQ0AqXgFV+WbKlBNk+HcCaDU425jyez93AFac8WOnV9BLd5dlmUXHld+3oY2cMQrxhLB7ynz0aj3zv/05VU/plTfwWknv2kq1itXn/AqxQS+373ow4zd4otHK9K7jyC+9az4XxA+EB8dA3xQGbYGyDQu7ucWXfS0YtBlGHFAqHGiS4Nxf8GctJYdKFlOtypU05cee1elU3Y4UjTIVJTw2qeDbXkSJQF4QBEEQhBxbcvIBMYmpVCtlRG2fBcrCpp+DkWX2D2LtDPVHwuAtMMkXBm5UhuVaOkFqIpz6HfZNAlnmw6blmd2nJioJNl4KZPx6z2wNRxbeHhf8IqirShtWX6qq8uCoOGn/g/L78fgaXPwHgHZVSzOulTIsfsrW69x5HJ3lrqfuh3ErOBpjfTUfNCoHXmuUFVW7g5FFgTQ/R6r3VuqrP/VlpGMAAIduhRAclf18AAVh/43HfLpeCeJ71XZQ/saoJEhJVCpvPDiqBPGDtxSfqRxFXdmGMGyPkizQ3h2SY5UcKn/WUqZZJcdl2FySJGb3qYmLrSnBUYl8tsFLPMhNIwJ5QRAEQRByJDw2iWVpyedmu3ohRQaAmR3UG5n7gxqYQKWO0PV3mHAdus0FJLiwGPZ+BbJMv7pO/PV+HfTVEnuuBzNy1SUSkjWvPbRQ/IXGJPEgNI76qmI2P/55ZqWgzXTl9X//05Vm/LxdRZq52ZCQouHj1ZeJTsyc4T29N35AfSes9FLhxjZlRe0iNqw+nYGpksEecLy/ngblS6CVYeOlolOBwjPgKePWXSFVK9PDvQxz+tZCnR7EbxwEPkdA30TpRS5XTKZxFBeSBBXawKhj0G+1MtUqMVKZZjW3NpxfDKnPet7NjfRZONgDY301p+6H8cfhe4XV8iJFBPKCIAiCIOTIohMPiE/W4FHGgKrei5SFLb5SgvG8IEngMRS6zwckuLgE9n4JskynGvb8M7Qexvpqjt8LZciy81kGPsLb5ZKfMj++mWH6/PhiGMgDeAyHMnUgKRoOTANArZL4c0BtHKyM8QuP54tNVzMkhrsRFMWp+2GoVRIfNi2vlHZMigarslCuaWG9k9dLqynP3X2MrGUIwKZLDykqJcJ3ej0iVSvTqpItv6YH8alJsHGwUg0gPYh3blLYTX17SRJUfQ/GnIGei8CqHMSGwL6vYF5d8FwLmlQAKpY25+feNQCY9999kckeEcgLgiAIgpADT6ITWXnGD4DZTueRYkOUD1+1h+T9yWoPhu5/oQTz/8CeL0CWaVHRljUf1cfcSI+Lfk8ZuPgcYWLe5Fvtgl8EpiRQQaP0TBfbQF6lVkadSCq4sQV8jgJQwtSABYPrYKBWcehWCAuOPyvRteiE8p671bTH0doEPNOG1bsPAlUR/ihfqrIyF1rW0CpuPzZmhoTGJnPtqVTYLQPAMzASgB61HdBTq9KC+A/g/iEl98D7m8C5CD8oeZuo1MoIjnGXlMSQZnYQFQA7x8LfDeHWLgC6uzswtFE5ACZs8Hrn68wX4d9+QRAEQRCKmr+O3icpVUszJwNc7i5RFracqmTmzg+1B0GPvwFJSYS35wvQavEoV4INoxpiY2bAzUfR9Ft4lkeRCfnTBqHQXfSLoI7KGxVapSfa0qGwm5R7ZWpDvY+U13u/1A0hruloxffdqwHw28G7nPQOJTAinr3XgwEY1dwVIgOUMmgAtQYWeNNzLK1XXu21ivfrKUnvTj0u/EA+KVXD7UdKPgJ3JyvlZ7BpCHgfSAviNyoJCoWCpWeg/G6M94R2Pyh5MMK9YdMHcGU1ANO6VMXdyYroxFQ+XnOZxJR3d3qVCOQFQRAEQciWoMgE1l8IBOBHu2NIiZFKfeya/fL3xO7vZwzm9yrBfLUylmwa3YgylkY8CIuj78KzPAiNzd+2CAUuJjGFW4+iqae6oywoLmXnXqX1N2BWGsLvw+m5usUD6pelf10ntDKMX+/JT/tuo9HKNK9oS9UyFuC1HpChfHOwLld47c+uKt3AxAZighlW8g4qCe5Hq/B+Uri/p7ceRZOs0VLC1ICylnqwaSjc269Uz3h/A7i0KNT2vfMMTKDJePjs2rPcK/smQ7gPBnoq/h5UhxKmykPc73beLNy2FiIRyAuCIAiCkC3z//MmWaOlQzk1TneWKwtbf6MMi8xvGYL5ZbBnImi1uNiasXlMY1xsTAmKTKDforPcepR15m+heLrs/xStDM3S68cXx0R3LzKyhA4/Kq9P/goRvrpVM7tXo4aDJU/jU9h7XUmI93FzF9Bqn6sdP7igW5w7eoZQ5wMAStxeQ4uKNgAcvv2kMFuFV9qw+joOJkibh8O9fUoQP3ADuLQs1LYJzzGygE6/gHMzSImDrR+BJoUyVsbMG1hbV8Vk48WAwm5poRCBvCAIgiAIr+UXFsemtIzTM0seVD5U2bsrPW4Fxf196LEAkODyctjzOWi1OFgZs+njRlS1tyAsNpkBi89y2T+i4Nol5KuLfhEYkEJ1OT3R3VvQIw9KibbyLZRSi2mVGQCM9NX8PagOVib6ymYOFjRyLQn+pyHSHwwtCvb37k15DAMk8PmPDnbKnOb0+emFxSswEj1SmRI7G+7uAbUhDFwPrq0KtV1CFlRq6LlQefj16Aoc+xmAJhVs+KJ9JQC+3XmTG0FRhdnKQiECeUEQBEEQXmvuEW80WpmermB3Ny3ZVpvpStbhguQ+UPlQhwSXV8C/E0CrxcbMkPWjGlK3nDXRiakM/ucCJ71DC7Zt76CCqOd80fcp1SVf9OVkZZi2jVu+n7NASJKS2EttoCRYu71bt8qphAkLB3tQt5w133WrhiRJz3rjq/XMuwoRBcHaGSq0BaBl7B4APAOikOXCqwXuFRhJf/UxKkQcey6Ib11o7RFew9IRuv2pvD71O/ifAWBMC1faVC5FcqqWMWsvExX/blUwEYG8IAiCIAiv5B0Sw3avIAC+Mf8XNElK2avC+uBba4BSqkhSwZWV8O9noNViaazPqg/r62pyf7jiEvtvBBdOG98Ba8754zZtL3uu5d81TkzR4PUwkvq6+fENC/7hUX6ycYMmnymv90+BpGdzxxu6lGTLmMbUcy4BSTFwa6eyonYxGVb/vLSkd6UfbMVUSiIyIYUHYXGF0pSIuGT8w+NppLqlLGj2hVLTXCjaqvWEWu+DrIVtoyAhEpVK4vd+7pQtYUJgRAITN3llKN34thOBvCAIgiAIr/THYW9kGQa5pVLy7kZlYZtvCzegqtX/uWB+lS6YNzHQ45+hdelcw45kjZaxa69wxies8NqZ5kFoLAMXn+PHvbffiuz6yala5h7xRivD//bcyrfM0dceRpGcqqWxbn78WzKs/nnNvlBKOEYHwbGfst7m5nZIiYeSbuBYr2DblxcqdgALR6SECAabXACU3AeF4WrasP56emkl/so2LJR2CLnQ6RdlhEdUoFLxAbA00WfB4DoY6qk4cucJfx+7X7htLEAikBcEQRAE4aVuPYpmz/VgJAkmGW4DWQNuHYrGh9+a/bIM5g311MwbWIdutcqgleHPw96F3VJ+2X+Hsw/CWXziAc1mH2X8ek+uPYws7Gbl2r4bwTyJUcqmBUclsvqsf76c56JfBBJaPKR7yoLiWj/+VfSNofOvyutzCyAkiyzcnmnD6msPKp4jElTqtLny0Ec6AsCVQgrkPQMjseUppeVQQAKHOoXSDiEXjCyg1xKQ1HB9M1zbBEC1Mpb80KM6AL8duvfOTKsSgbwgCIIgCC/1+yElgBpZMR7L+2lDe1t/U4gtekHNftBz8bNgfvd40GpRqyS+7lwZPZXEed8IXS9cYfAJjeXgrRAA6jlbo9HK7Lr6iPfmn6bforMcvPm42A0HXXHGD4Cq9hYA/HXsPtGJeT8/9YJvBBWlh5hqY8DADOxq5vk5ioSK7ZUEdrIG/lUqMuiE3YfAc8o9XnNA4bXxTdX5AFmlh1vqPSpJAYXWI+8VGEltVVqvbakqYGheKO0QcsmpPrSYpLze8wU8VR4i9qvrxIB6TsgyfLbB660Y+fQ6IpAXBEEQBCFLXoGRHL4dgkqC8dImQFbmKdoXsWCqZt9nwbznatj9KWi12Fsa8557GQAWn3hQaM375+QDZBnaVC7F5o8b8++nTelV2wE9lcQF3whGrb5M69+OsfqsH/HJqYXWzuy6GhiJZ0Ak+mqJ5cPrUaGUGZHxKSw+nrfXWKOVueL/lHqqu8oCx3qg1svTcxQpHX8GfVMlaE9PbAfPXru2AQv7wmlbXjC3Q67QDoB2qst4P4kt8ORksixzNTASd1XasHrHugV6fiGPNPsSHOtDUjRsHw1aZWrPjPeqUd3Bgoi4ZMauvUJyqvY1ByreRCAvCIIgCEKWfjuoBFCfVYrCzO+gEii3mlbIrXqJmn3ThlyqwHMN7FKC+VHNXQBlKLh/eMEn13oSk8jWK0qiwNEtXAGo7mDJ7/3dOTW5NWNaumJhpIdfeDzf7rxJ45//Y86BO4REJxZ4W7NrZVpvfLeaZShtYcRXHZQSUEtP+fIkJu/afTs4mpikVBrrpQXyb+P8+OdZOkLLKcrrQ9MhPkIJUK5uUJbVHlR4bcsjsnMzAJoaKYH0lcCC7ZX3DYsjKiEFj/QeeQcRyBdLaj3otRgMzCHgrJLJHqV044JBHlga6+MVGMmsPbcKuaH5SwTygiAIglBIbgRF8X+H7uVborA3ccE3gpPeYeipJEanpvUIur9ftEt/1ejzLJj3WgO7xlG5lCktKtqileGfk74F3qSVZ/xITtVSu6wV9ZytM6yzszRicsfKnJ3ahpnvVaNcSRMi41P466gPTX/5j4mbvLj1KLrA2/wqT2IS2X3tEQBjyz+G5V1oXyIEdycrElI0zDuSd4mmLvhGADIN9dLnxxeBvAz5reEYKFUVEiLg8HfgcxRiHoGxNVTqXNite2Nax/oA1JTvIaEt8HnyXoGRqNBSU502eqQ4Jg4UFCXKQ5e03BJHf4KHlwGldOMf/d0BWHnWn51pFVfeRiKQFwRBEIRCEJWQwvAVF/nziLduvnFRIcsyv6b1xk+pFILRw1NKresWkwu5ZdlQow/0/ictmF8LO8cxumk5ADZfDiQiLrnAmhKblKpLAje6uatSCzwLpoZ6DG3szH9ftGThYA/qOVuTopHZdiWIznNPMvif8xy9+6RIzKNffz6QFI1M7bJWVPD6GfxPIf37OZPTeuXXXwjIs5EPF/0icJRCKaEJA5X+u9F7qtaHLkrvIldWweEZyusafUHPsNCalWdKVydVZYiJNhY3KYhLfgUbyHsGRFJReoixnKjkXLCtVKDnF/JYzf5QrZeSW2Lrh7ryja0ql2J86woATNl6nbuPYwqzlflGBPKCIAiCUAhm779DaFrW7w0XAopEkJbu9P1wLvhGYKCWGBK/UllYdwRYlS3chmVX9d5pwbwarq6jUdS/VHewIDFFy6qzfgXWjI0XA4lOTKW8jSntLB/CHzVg22iIyrqHSK2S6Fjdjs0fN2bHJ03oWtMetUri1P0whi+/SPs/TrDp0kNSCmnaZ3KqljXnlQcTn1WNh0eeyoqgyzRKOUeLirakamVdgsQ3IcsyF/0iqC+l1Y8v4w4GJm983GKhXCNwT6sVH3Jd+de9+A+rB0Clx1MTZYpJXdU9vAIjSdUU3A3tFRiJu25YfR0lm75QfEkSdP0dLBzhqS/sf/aw+bO2FWnmZkNCioYxay4Tkw/JOAubCOQFQRAEoYBd9o9g7fkAAAz0VPiFx3PuQXght0rxfG/8zEr+GIR4gr6JUuu6OKneG9rOAEA6v5DRzZS58qvO+pOQnP9TGVI0WpaeVIbvjmzmgvrYjxAZANc2wDwPOPojJL+859rdyYr579fh+FctGdmsPGaGetx/Esu0nbf4n6e6UDIy77sRTGhMEqXMDWkWvUdZqJ8WXP/3A1+1U3rAdno94uajqDc6l29YHGGxyc8Nq38Ly869SrvvleH0AKWrg32twm1PHoowU6bnNNTzJiFFw50C6i1NTNFwOzia2pKYH/9WMbaGXosAScmPckuprqJWSfw5oDZlLI14EBbHpC3XkOWi88A8LxSJQP6vv/7C2dkZIyMjGjRowIULF166bUpKCt9//z2urq4YGRlRq1Yt9u/f/0bHFARBEISCkpyqZeo2pZetj4cjfT0cAVh3IaAwm6Vz9O4TvAIjMdaHvtErlIUNx4BZqUJtV654DFOGz4bdo7PpHRytjYmIS2bLlYf5fup/rz3iUVQiNmYG9C4bBz5HAEmZk5uaAMd/gbl1lPrg2pf3SDpamzCtS1XOTm3NN12qUNrCkMhkiV8Peef7e3hR+hSQYfVKob6xRVnYcxEYWUHoHaqHH6BbLaVKwJwDd9/oXBf9IgBoop8WyL/tie5eZFoSuvwGhhbKQ7TiWDv+JSJMlUC+gb4SUBdUGbqbj6JI1crU1UvPWC/mx781nJtC0wnK613jdaOeSpga8PdgD/TVEvtuPGbpqYLPk5KfCj2Q37hxIxMnTuS7777jypUr1KpViw4dOvDkyZMst//mm29YtGgR8+bN49atW3z88cf07NkTT0/PXB9TEARBEArKkpMPuBcSSwlTA2ZUeMCk6FlYE82Bm48Jj00q1LZptTK/HVQCp5/dvNELuwNGltD400JtV64ZWSgJ+gD1xSV81LQ8oJSD0+TjVAZZllmUVopteJPyGF5Zqqyo1Ak+PAR9V4JVOYh9DDvHwpKW4Hf6lcc0N9Lno2YuLBpUGwmZ3dcec+1hZL69hxd5pZWcM1Cr+MDsMiTHQAkXqNz12QfoYz/yRWtn9FQSx+6GvtEok/O+EZQkCgdN2kMXpwZv/iaKm+q9YWogVO9V2C3JUxGmFZCRKJ36CBuiCiyQ9wyIxIx4ypN2T4nSc2+Xll+DvTskRsKOMboHpO5OVkzvVg2An/fd4eHT+MJrYx4r9ED+999/Z+TIkQwfPpyqVauycOFCTExMWLZsWZbbr169mq+//prOnTvj4uLCmDFj6Ny5M7/99luujykIgiAIBcE/PI65R5Se1J9amGC2ZwyWvvuYbH2cFI3Mlsv531P8KgduPubmo2gsDWS6RixXFjYe/2yIb3FUf5Ty77399K+gwcpEH//weA7efJxvpzzhHcadxzGYGKgZ7G4NXuuUFQ1GKz2r1XrAJxeU4dOGFhB8FVZ0ho2DIeLVtdirlbGgro3yEOLHvbcLbKhoesm5rjXtMb+5RllYZyioVFB/NJiVhsgAnP23MKC+EwC/7L+T6/Zd9Iugbnr9+FJVwaTEm74FoYhIVZtAqSoAeKjuFlgg7xUYSU3VA1TISr6P4jjKSHg5PQMlN4q+Cfgeh3N/6VYNblCWIY3K8fegOjhavz25NvQK8+TJyclcvnyZqVOn6papVCratm3L2bNns9wnKSkJIyOjDMuMjY05derUGx0zKelZL0h0tFLqJSUlhZSU/EmMkH7c/Dq+IOQncf8KxVlh3b+yLDN12zWSUrU0KW9FO+8flCHWQBdOMoWurDsfwPBGTi/Nbp6fNFpZVzd+tut11L5+yKa2pHp8CMX5d93SGbVLK1QPjmJwZSnv1xvC38cfsOD4fdpUKpkv13rhMWXIcD8PB8xurYOUOGSbSqQ6Nn7uWqqh/lio1hfViV9Qea5Cur0b+e5+tPVGom36hTIa4gUpKSl0Lqvl6lM9zj2I4ODNYFpXss3z9/C80Jgk/k0rOfdRhRjYfQlZpUdqtb7K+5H0UTX5AvWBScjHZzN2yGm2Xn6IZ0Ak+68/om2VnAVMj6MTCYxIYFha/XiNYwO0xfkeFHTS/+6mlqmL/pNb1FPd40BkfQLDY7CzMHrN3m/GK+Ap3dPmx2vLeKAR99Tbx9IZqe0P6O37AvnwTFKdmoBdDQC+7axUKHiT//sL4vNDTo5dqIF8WFgYGo2G0qVLZ1heunRp7ty5k+U+HTp04Pfff6d58+a4urpy5MgRtm3bhkajyfUxf/rpJ2bOnJlp+cGDBzExyd+nNocOHcrX4wtCfhL3r1CcFfT9eylU4oyPGj1JZqx2A6rAs6SqDAAV5gkPaaS+y9mIyszdsB83y4JPyHMpVOJ+qBordRLNAhcBcMOqAw8OnyjwtuS10rjTkKNoLq3AqWJt9CQTrj2MZt7GfVSwyNtzBcTC2Qd6qJBxTrxP4vG5mAJXjRvhv2/fS/ZqjXmlilQLWk/pmOuoz/9N6uXV3LHrib9NK2QpY2btEobQrHQqRx6pmL71CnG1NKjz8dnP/kCJFI0aZzMZo7N/APDIojaXTlzSbSNpbWhjYItp3BMid3xN01LdORSkYuZ2TxIfaFDloH1XwiRATeO0QN4z3IigvXvz8B0Jhe3aU2M8gEZ6dyEVlu08invJ/Pu7F5MCDyP1qJ02L/9mlDEPxD31dpJtqG9ZB/uoKySuHcTxSjPRqPK2dGN+fn6Ij8/+0P9CDeRz488//2TkyJFUrlwZSZJwdXVl+PDhbzRsfurUqUycOFH3fXR0NE5OTrRv3x4Lizz+Hz5NSkoKhw4dol27dujr6+fLOQQhv4j7VyjOCuP+jYxPYebcU0AK0xqb0PjaVgCktjORHl+Da+uZUNqTs48q46t24LPONQukXem0Wpl5888Acfzp5oWJ31NkCwcqD/6Fym9D7WptB+QF2zGI9KOvczRe6kpsvPSQG6l2jO9cJ09P9dnGq0AI3WqVYXCNR+jdfoJsZEm1ATOpZmD6mr1HkXr/MOoj0zEMu0eth6uomXgOTZvvkSu0BZ7dvz8ObkHH+ecIiU8hrlRNBtRzzNP3kS45Vcv/fjsBJPN5OzfK/6ckDy7daTKdXVpm2FYqlwi7xlLl6UF+GfE9FxZc53FCKkn2tehdxyHb5zy/+xYm3KciSqm7Wu+NoZZFmbx6S0IhSr9/q3YYAYsXUUnyx5BksHGjc6f8q+l+5M4TuOSJh54PyFCl3RAqi6z1b6/4hsiLm2Ee94hOeufQdvwlTw5bEJ8f0keGZ0ehBvI2Njao1WpCQkIyLA8JCcHOzi7LfWxtbdmxYweJiYmEh4dTpkwZpkyZgouLS66PaWhoiKFh5g8q+vr6+f4hryDOIQj5Rdy/QnFWkPfvnEO3iIhLwc3WlKHhvyOlxEHZxqgbfgx+J+HaeurGHseQ3hy69YToJC0lzQougN5/I5j7oXHYGSXTLGQ1AFLLqegbmxVYG/KXPtQfCQenoXd5KaP79GfT5YccvRuGX0QibqXN8+QsAeHx7L+pfP4Y3aICeoe/B0CqMwR9U6vsHaRKJ6jYDi4vh6M/IoXdQ2/jAHBtAx1mgbVS4q2EuTHj27gxc/ct/vzPh54eTpgZ5v3Hur03gwiNTaaUuSFd9C4hJUWDVTn03Noo8+Of5z4Azs1HenKLEtcWM7blB/y07w7zjj6gRx0njPSzV7P7sn8UdVTeqNGAVVn0S5bL8/clFC49Gxcws0Mv9jG1JB88A0vl69/jG49icZKeYC1HgUofPYfaID6/vL0s7aDnQljTC/XlpagrtodKHfPs8Pn5+SEnxy3UZHcGBgZ4eHhw5MgR3TKtVsuRI0do1OjV9UKNjIxwcHAgNTWVrVu30r179zc+piAIgvD223TpIXsCVCSl5H8tcYBzD8LZdElJYrek+g1UfsdBzwi6z1cCIedmYOGIOjmaYTb3SNZo2XYlqEDaBsrc/flHleGmvzmeQZUQASUrQK2BBdaGAlF7sJIE6cktXOK8aF9VmYK35OSrk8vlxD+nHqCVoXlFW6rqB8ODoyCpoN7InB1Irac8eBjvqVQMUOkr5esWNEa170sMUpQem0ENyuFc0oSw2CQWn8i79/G89JJzgxuWQ89rpbLQY2jmIB5ApYbW3yqvzy1kaA0j7CyMCIpMYM05/2ydLzI+mbshMdRTpU2HLPuOlZ17V0gSONUHwEPlzc1HUSTm499kr8BIaktpZefsa4J+/s7HF4qACm2g4Vjl9c5PIPbtq15W6FnrJ06cyJIlS1i5ciW3b99mzJgxxMXFMXz4cACGDBmSIXHd+fPn2bZtGw8ePODkyZN07NgRrVbLpEmTsn1MQRAE4d1081EU03be4mCQio/XeZGQnL/BfFKqhq+3KzXjP3Y3wPnyz8qK1t9CSVfltUoFNfsC8IGpkpR1/YWAAstGfuxeKDeCorHXj6fxk7Ts6q2mKcHk28TYCmr2V15fWMSo5sr13+H5iJDoxDc+fHhsEpsuBQLwcXMXuLBYWVGpM1jnskfZ2Ara/w/GXYAq3UDWor6ygja3J8NTXwz0VEzqWBmAJSce5Mn7eN7zJecGu8RD4HmQ1OA+6OU7VeoEjvUhNQGjs78zoa1SM/yvo/eJSXx9EqdLfkoG8+aGSnUHyjZ84/chFFFpP9tGBt6kaGSuB0Xly2m0WpmrgZHUVqXdU2JI/bujzXdQqhrEhynBfAH9v1pQCj2Q79+/P7/++ivTp0/H3d0dLy8v9u/fr0tWFxAQQHBwsG77xMREvvnmG6pWrUrPnj1xcHDg1KlTWFlZZfuYgiAIwrvp/w7d070+dT+cESsuEp+cmm/nW3DMhwehcdiYGvBF0t9K7W3H+tBwTMYNaw4AwCH0JA4GcTwIi+O8b0S+tSudLMvM/0/pjZ/teAopOVbJ8Fu1R76fu1Ckl6K7swcPy1jqlrMmWaNl+Wm/Nz70qrP+JKZoqeFgSSMHNXitV1Y0GP3Gx6aEC/RfA8P2INtUwkATh/ro/wDoVN2OOmWtSEjRZLi/84Ku5Fwte0rcSXs/lTqBedZTFQGlp7XNdOX15RX0cUnFxdaUp/EpLDnp+9pzXvSLQJ9UqmvT3ks50SP/1nJSAvk60j0ktPlWhu5BWCwxSanUUaf1yDvWy5fzCEWQvpFSkk5tCN4H4eI/hd2iPFXogTzAuHHj8Pf3JykpifPnz9OgQQPdumPHjrFixQrd9y1atODWrVskJiYSFhbGqlWrKFMmcwKUVx1TEARBePd4Bjzl8O0nqCQY6KrB1FDN2QfhDFt2kdikvA/mfUJj+fuo8sFxSa276Pv+p3yY6P6XMgT5eaUqg30tJG0qkxxvAbDufECet+lF5x5EcNn/KWZ6qTSJ3K0sbPZl1sOm3walqypTGWQtXPyHUc2V/Dprz/u/0T2QkKxh1Vk/AEY1d0HyUkrOUSrtfHnFuSmpPZcgI6G6vRMeXkaSJKZ1UWpyb7oUyL2QmDw51ZOYRF3JueH17eBqWiDvkY3RjeWbgWtr0Kaid+IXvmqvJDH75+QDQmOSXrnred8IakgP0JeTwaQk2FR8o/chFGH2NUHPGDNtDC5ScL4F8p4BkRiQQlUpbXqHo0e+nEcookpXhXZKvhIOfgORgYXbnjz0lv5PLQiCIAgZ/Z7WW9mzdhkalpJZMdQDcyM9LvhF8MHS80RnY9hvdsmyzLTt10nWaOnhIuF+My1jbqupYPuSwCStV75dyjEA9t94TERccp61KSt/pc2Nn1n+DqqEcLBwhMpd8/WchS69h/zKStpWsMDF1pSYxFQ2XMj9g5PNlwN5Gp+CUwljOlW1fTasvv4opYc6L5WqSmCJpsrrQ9NBlvEoV4KO1ezQyvDT3tt5cpr15wNJ0cjUKWtFjajjkBgJlmXBtVX2DpA+V/7aRjqWiqCWoyXxyRrdPZeV+ORUbgRFUU+llJ2jbKO8v35C0aHWBwclqK6ruscV/6f5MqXIKzCSqpI/+qQoD4esy+f5OYQirsFoZaRZl9/BMn8qfBQGEcgLgiAIb71zD8I56R2Gvlri0yZ26GkScHeyYt1HDbEy0cczIJLB/5wnMj5vAufNlx9y7kEERvoSPxksUzJ9l6kDjT59+U41+oCkxiTUk/Z2MWlJ7x7mSXuy4hnwlFP3w1CroFviLmVh/Y/evrnxL6rYCSydIOEpqptbGdVM6ZVfdsqXFI02x4dL1Wh1CfNGNnNB78FheOoHRlZQs18eNvyZ2/a9kPWMwP+UMlwUmNypMnoqiaN3QzlzP+yNjp+cqmXNeaX3cliT8nB5hbKizgeZR5O8jEMdqPIeICP9N4vJaXP51573JzAi6zrJXgGRpGplmunmx4skxW+9ssqI2frqe4THJeMfnv0a2tnl9eL8ePFw6N0jSdBvJdQe9Fb9/EUgLwiCILzVZFnm94NKb/z7dUpRbls3Ol4fh3RrBzUcLVn3UUNKmBpw7WEU7y85/8a94OGxSfyY1iv6V/X7GPsdArUB9Pj71UGyWSklyy7wacnLAKzLx6R36T2jn1eMwCD0BugZQ52h+XKuIkWtB/U+VF5fWEQP9zLYmBnyKOrZUPKc2H/zMYERCVib6NPXwwnOL1RW1BkCr60bnzuJBiXRpmfCPzwDtBrK25gyqEFZAGbtvY1Wm/v7Zt+NYEJjkihtYUgnu2gIOKNk3689OGcHav2Nst/dPTQ29KWZmw0pGlk3OuZFF/wikNBSm7Qe+XIikH/rOSmBfEN95e9RXg+vT0jWcOdxDO4qMT9eePuIQF4QBEF4q530DuOCXwQGeiq+sD6JFO6NWk5Bb/tHcPI3qtqbs2FUQ2zMDLkVHM3AxedeO4/3VWbtuU1kfAqNSqXS2vc3ZWGLSVCqyut3TsuqXi1sP6YGEg9C47iQD0nvbj2K5vDtJ0gSDFPvTzt3PzApkefnKpLqDFVKAD6+jlHwRYY3cQZg0fEHOXpwIssyi44rvfFDGjljHOkND46llZz7KB8a/oy20WdKr/+TW3B1AwDj27hhbqjHzUfR7Lya+xKG6cn/BjUoh77XamVhxY5gkTkn0SvZVoJa7yuvj8xkUtpc+R1eQdwOjs60+QXfCCpKDzHVxoC+KdjVyu1bEIqLtMDaQRNECaK5HJC3gfyNR1FotDJ11WlTOsT8eOEtIgJ5QRAE4a0lyzK/pfX+jahrg8XFuQCEmyolsTjyPewaR0UbIzaObkhpC0PuhsQwYPFZnuSilNcp7zC2eQYhSTILrNciJUaCXU1oMiF7B6jcBQzMUUUF8GmFcEApRZfX/jqmfKgdVFmN2YN9ysK8yK5eXJiUgBpKyT8uLGJwg3KYGKi58ziGk97ZH5Z+1iec60FRGOmrGNKoHFxYpKx4k5Jz2WVsBc2+UF4fnQUpCZQ0M+TjlkpZvV8P3MtVXW6vwEi8ApWScwPrlAKvtJKEHsNy186WU5QRKX4nqZF8hS417ZFl+PXA3QybpWi0eAZEPpsf71Tv7Z/mISi/i7bKtAuPtHnyeckz4CklicKBJ4Ckm5MvCG8DEcgLgiAIb60jt59wNTASY301n5ochIQI5BIunHb7Gk2HX5SeU881sKYXrmapbBzViDKWRviExtF/8TmCoxKyfa7EFA3Tdig143+pdB8r/wOg0ksbUq+fvYPoG0PV7gD01T8NwN4bj3mah0nvfEJj2XtdKes6wfIEyBols3rpanl2jmIh/cHFrV1YpobSv54TAItO+GT7EAtPKL3x/eo6UVIdr+sZp8HHedrUl6o/SpnvHx0E55WHCB82LY+9pRFBkQmsSCsflxPPl5yzfXgIEiLAwgEqtM1dG62coG7aVIYj3/NFWzfUKokjd55w0e/ZaJMbQVEkpGhoop827L6sKDv3zkgbXu+husfdkJg8TTzqFRiJuyqtN96mIhhZ5tmxBaGwiUBeEARBeCtptc964z+ub43ppQUAaFpMRZbUaOt+CAM3goEZ+J6Ape1xVoeycXQjHK2N8Q2Lo9+isy9NzPWi+f/dxz88nkrmifQJUXr+afalUpc9J2op2etL+O3B3d6I5FQtW/Mw6d3fR32QZehUyQqbu+m1zgso8CxK7GoowaKsgUvL+LBpedQqidP3w7kRFPXa3W8HR3PiXigqCT5q6qI8EEqJh1LVwLlpAbwBlBrJraYpr0/9DvERGOmr+SJtCPtfR+/n6CFQhpJzjZ9Lclc7B0nustLsC2Wo/CNPXML+o19d5aHJL/vu6KYyKEG9TAN1ev14MT/+nVFWqSffxOA+sqwkPcwrXgGRYn688NYSgbwgCILwVtp34zG3g6MxN9RjtHo3JMdA6RrIVbo/26hiexixH8zLQNhdWNIGp7ibbBzdiHIlTQiMSGDA4nP4h8e98lz3QmJYeFz5sLii9GallFvp6s+GPudEuSZg6YSUFM3EckqP7/o8SnoXGBHPDi9l7vRUp+tKb6tlWajU6Y2PXSw1GKX8e3kFjuZqutSwB2BxWk/7q6Rv06mGPWWtDZ+VnGswumCzItfspzw8SIxSgnmgZ20HqthbEJOYytz/vLN9qHXnA56VnDMKBb+TuUty9yIzW2j0ifL6v/8xoXV5DPVUXPJ/yn93ngBwwfcpjlIYJTShoNJXsosL74a0Hvkqsg+GJOdZwrsn0Yk8ikp8lrHeUdxTwttFBPKCIAjCW0ejlfn9kDLXdnx9M4yu/KOsaPOtEpg8z64GjDyizGWPD4OVXXEI2s/GUY1wsTUlKDKB/ovO8SA0NstzabUyU7ddJ1UrM6nsPewf7gNJDd3/Aj2DnDdepdLN324cewhjfTU+oXFc9HvzD7cLj/ug0co0q1CSst5pSczqj3yz3tbirHJX5SFOXCjc3M6o5kopuj3Xg3n49OUjMR4+jWfXVaXnenRzF7i3HyIDwNj62dz7gqJSQ7uZyuvziyEyELVK4uvOyrzj1Wf98Qt79YMoUErOrT2v5GMY1qQ8XFmprKjQThke/6Yaj1OuT9g9SvvuYHgTpZb37P13SdVouegXQT3pjrJtGXcwMHnzcwrFQwkXMLFBT06hmuTHlTxKeOcZGIkKLbVVaQ/mRCAvvGVEIC8IgiC8dXZ6BeETGoeViT5DNVsgNUHp9XFrn/UOFmVg+D6lxnhqImweht21v9kwsgFupcx4HJ1I/8Xn8A6JybTrhouBXPZ/ir1BPKNj5ysLm05QgpHcShter/fgCAOrGQNvnvQuJDqRzZeUIfpTqkZAyA3QN1Fqg7+r1PpQb4Ty+vwiqjtY0rSCDRqtzNJTvi/dbdkpPzRamcauJanpaPVcybmhhROAVmir5DnQJCmJ74BmbrY0r2hLqlZm9oE7rz1EhpJzVUq8eZK7FxlZQtPPldfHfmZME0csjPS4GxLDnIN3iUpIoZFe+vz4hnlzTqF4kCTdz7yu6i6eAZFo3qB8YjqvwEhcpUeYkqBM7bDNRuUQQShGRCAvCIIgvFVSNFr+OKwMpfyyniEGXquUFa2/ffWQZ0MzGLAWGoxRvj8yk1JHv2LDhx5UtjMnNCaJAYvPcefxs7JZT2IS+WmfUjN+dZltqOPDlAzMLSa/2ZuwrQT27qBNZYTVFUDpJY6Mz33Su8UnHpCs0VLP2ZqqgWlBWq0BSi/pu6zOMCWr+qMr8PCSrld+48XALK93VHwKGy4qD1VGt3CFJ7eVHAsFUHLupSTpWa/81Q3w+AYAUztVRpJg7/XHrx2unF5ybnCDcuh771NGp5jbv/zhV27UH6UcMyoQy1trGNOyAoCuhF8TA5Ho7p2VNry+gZ43sUmp3MvioWlOKfPj0xLdlaktqiAIbx0RyAuCIAhvlS2XHxIQEY+NmQED4teCNhVcWkH5Zq/fWaWGTj9Dp9lpGe1XU3LH+2z4oArVHSwIj0tm4OJzumRo3+++RUxiKiNs71Dh8V5ln+5/g57hm7+RWgMBcAjYRRV7C5JTtWy7krva4BFxyaxLGzY9sb4x0p09yor671DJuZcxs4XqvZXX5xfRzM2GKvYWxCdrWHPOP9Pma877E5+sobKdOc3dbHTZ4qncNW+GoOeWgwdU6wnIcHgGAFXsLejr4QjAj3tvvzTPgmfA02cl5xqUfS7J3eC8DX70jaHFJOX1iTkMq2tDKXPld6UE0TikBirrRI/8uye9R17tDchvPE9eo5W59jCS2pKYHy+8vUQgLwiCILw1ElM0zD2ifHCbWhf0rm9SVrT5NmcHajAaBm5QhmP6HsdqfRfW9bGnlpMVT+NTeH/JOf46ep9/rwVjJcUyVZM2tLrxp+CYR3WKq/cGSY306AofV1Pqgec26d2yU74kpGio4WBJw7DtIGvBpSWUqpw3bS3u6qclvbu5HSn2CaOaK/O3V5zxz1CLPTFFw/LTypD70S1ckBIjC77k3Ku0/lYpeXj/kDJKAJjYrhJG+iou+z/lwM3HWe72fMk5m+QgeHAMkJRs9Xmt9gfKnOj4MIwvL+aztm4Az+rH21ZRaosL7xb7WqA2xFIbRXnp8RvXk7//JJa4ZA0e6vSM9SKQF94+IpAXBEEQ3hobLgQQHJWInYURPZ6uAGSlp9QhF8F1xQ5pGe3tIewuFms6sq6TGo9y1kQnpjLngBJ4rCizE/34J1DSDVp+nXdvxsxWV7u7o/Y4xvpqvJ/E5rinKiohRReojW9WBik9iVlRCDyLCoc6SmkqbQpcXkHXmmUoY2lEWGwS2z2fjYLYdiWIsNhkylga0bVmGbiyWsm/ULo6lCsCw8FLukLdtDn/h6aDLGNnacTIZsp0gV/23yVFo82wy5OYRPZcDwbSSs5dSZuKUqENWJfL+zaq9Z+VzDszl35VTalbzpr2ZmkJyUTZuXeTnqHye4gyT/7yGya88wp8iikJuElppTtFFQThLSQCeUEQBOGtkJCsYf5RpfflO49E1Hf/BSRo/U3uD2pfEz46omS2jwvFdF131jZ+TIPySo9hL7NbuIfvUc7T/S+lrndeqtUfAMObm3mvZmkA3RD57Fp91o+YpFQqljajTcpxSIwEa+e8nfv8NkifZnBpGfpyKiOaKr3yS04+QKuV0Whl/jmpBJsfNnNBX5LhwhJln4IuOfcqzSeBgRk88oSb2wFlLr+NmQG+YXGZ7p/0knMe5aypYW8CnmuVFXWG5l8bq/WC0jUgKRr9s3+y+eNG9LZJa5eYH//uSpsnX0fyxj88ntCYpFwfyiswkpqqB6jQgoUjWNjnVSsFocgQgbwgCILwVlh11o+w2CQcrY3pEJJWbq5mfyj1hpmKLR1g+H5w6wCpiRhtH86ayuf4uUs5ZhstVbZpOBbKNniz82SlUmcwtICoQD4qqwyL/jcHSe/iklJ12dc/aemK6kLafO76o97dknMvU7U7mJWG2MdwexcD6pfF3EiPB6FxHL4dwqFbITwIi8PCSI8B9Zzg7j6IKqSSc6/y/+3dd3hU1dbH8e+ZSQdCC4QWmvQaamhWmg3FLl2uigUUzev1CgKxY7kXuVYsYEOK6EVREUEQECmhBQi9JwRICJBCQpLJzLx/nBCMCZBAJpNJfp/n8TGzT1tHt5E1e++1K9aAHk+aPy99CbKzqOjrxdg+zQD479K9pGTYAHPLuZlrzQR6RI+G5julJUCFmtD8JtfFaLGcX+4S+THGyX1wbKv5WSPy5VdOIt/DxyxQdyXb0G2OSSLU0LR6KduUyIuIiMc7k5nNtBXmH9peDk3CcmCZuVb4uueK5wG+FWHQ7NxRW+/fX+D+jYPwOnPMXO97JaP+F+PtbyaYQJPjP9OiViWysh15pntfzOzIGE6n22hQPYBbK+2DEzvNdf+hQ1wTryfz8oFOI82fIz+moq8XQ7uZU8s/WnmAj1aa/WtY9wZU8PU6v+VcpwfMf0+lSffRZjJ++mBu4br7u4TQuEYFTqVlMW25+S4Ltx0j8UzOlnNtav2tyJ23a2Ns2g9CupnbPX4zApx2qFwfKtdz7XOl9MpJ5Bs4YqnMmcteJ5+WU/W+g0WF7qRsUyIvIiIu5XA4+WrNIRZFF1xoqzh8tuogp9NtNK4ewHVH/rKnd7VGxfcQixVufhNufMOsTp+UMxX4tvdcu3d4zp7yxo4fGNa5JlC4oncZNjsfrTSngj9+3VVY139sHggdDP5VXBauR+s80vwCKHYdHI1iZI+G+FjNQnGbY5Lw8bKYI9fx2+HQH2BYofOD7o46P9+K57/EWvEGZKbibbXw3I1mccPpqw5yNOksn+fUThga1gDvlBjYv8y8puNw18doGNAnwvw5Ybv5d43Gl28Vqpu1RoBOlj2XXbl+W1wyDqeTjrmF7roUV4QipYoSeRERcalvNsQy8YftPDpzI+Fzo0jLzC7W+yen2/g4Z+3ya+2OY8SuAy8/uOafxfqcXN0ehftnQ9VGZpXwhj1d85xz6veAyiGQmcIdAVvx87awJ/7MJaedztt4hBOpmdSp7McdDe2we6F54FyFdsmvUi1oNdD8OfJjagb6MbBDndzDd3WsR81Kfue3nGvp5i3nLqbjcKjexNwPfvW7APRtFUzXhtXIzHbw+Neb8m45t+krwGlu1VicX4BdTIMeuQUdAaivRL7cy1mi1Nmyh61xyWRm2y9xQX5RsUnUJZEgkswv5mq3L+YgRUoHJfIiIuIyp9OyeGPRrtzP/9scx4B3V7HjaEqxPeOTPw6QmpFNi5oVCDv4vtnY9WHXFjdqfiOMjYJrnnHdM86xWKDdvQAE7PzWrJYOzFoXe8FLbHZH7vTpR669Cp9NnwJOuKo31Gjm8pA9WlhO0btt30JaIqOuMSu+GwY8fHUjSD8FW3O2NSzNlf+t3tB7kvnz6vcgNR7DMBh/i1kzIio2CcjZcs7fCptnmud2cmGRu4KcixGggYu/FJPSL8TcT76b116ysh1sv4z/V0TFJBFqyRmND25T+pa+iBQTJfIiIuIyby3ezel0Gy1qVWL2w92oXdmPA4lpDPzgT2auPXxZe6L/1ckzmczI2df79VYHMI5vA59K0PPp4gi/9GhnTq9n328Mb2dO4/9p61GS020Fnv795jjiks4SVNGX+9pXzRltpXQnnqVFvS5QOxTsmbDpC5rUrMSnwzszfURnGteoaG7Pln3W3MmgtI8gt7zNfB9bGqx4HYDQkCrc2u78l1wjezSCvb+aRf4CgqD5LSUbY+325o4P/SfrSyaB+mYi38bYjzfZl7VOPio26S/r4zWtXsouJfIiIuISW48kMTvSXEf+4m2t6X5VdRY+eTW9W9QkK9vBhO+jGTNrc24F7csxbcV+0rPstK9TkfZ7c0bje4wx11qWJTWaQZ2O4LTT9vRvtKhVicxsB/M3H8l3qt3h5MOc0fiHr26E3455kJlsFuX76zRmKZhhnB+VXz8D7Nn0aRXMDS2CwZ4N63N2RAh7tPRsOXchhgF9XjR/3vgFJJrVwP91YwuCKvrQt1UwbetV/kuRuyFm0b+S1mEodH+85J8rpU/1JuBfDR9nFq2NQ0VeJ38s+SzHUzLoYFHFein7lMiLiJRRyem2Kx7xvlwOh5OJ30fjdMIdHeoS1thMrKtW8OHTEZ2ZcEtLvK0GP287xi3v/MGWnGm+RRGfksGXaw4D8HqTaHMLK/9q5lZwZdG5ondb5jCoa30AZkfG5vt3vHDbMQ4kplHZ35shYfXPr+fu+og5TV8urfWdEFAdUo7A7p/Pt+9eCMmx5rE2d7svvqJo2BOa3WhWhV9qJvUh1QJYN74PHw/rBEmxsHeJea4r944XKQzDyK1e38mymw2HTxfp/2NRMUl4k01bizlTSyPyUpbp/+giImXQxyv30+Hlxfzz261uSebnbohly5FkKvl6Me7mFnmOGYbBQ1c3Zt6jPQip5k/sqbPcPW01n/5xoEixvv/7PjKzHYTVr0CLXR+YjVeHg19gcb5K6dHmLrNw07Eo7gxJw9fLwu74VDbFJOWe4nA4ef93c9R1ZM+GVIz7AxL3mMsNQge7KXAP5O1nbisHsO7j8+2ROT93esA8x1P0ecHcaWHnAohdD4DVYmAYRs7aeCc0vBqqX+XWMEWA3IJ3Xax7OZGayZHTZwt9aVRsEi2MGHywgX9VcyaSSBmlRF5EpIyZufYwry3chcMJ3248wtz1Fy6K5gp/LXD3dN9mZpXvAoSGVOGnJ67m5ra1sNmdvPLzTh76YgOn07Iu+Ywjp9Nzp+1Prr8BI+UIVKoNXR4qvhcpbSoE5U6Nr7T7fNG7c/8cAJbuSmDX8VQq+nrxQI+G50fjOwwpu19wuErnB83t5Q6vguPR5l+lecu5i6nZ8vwXOUsmwbkvzOzZsDmnfsK5Ly5E3C2n4F2YdS/gvOQOHX+1+a/r4+t2Lv3LX0SugBJ5EZEy5IeoOCb+EE0/y3oiA8byoHUhL/y4nT3xqSUWw5u/7iYpp8Dd8O4NLnpuZX9v3h/ckVcGtsHHy8LSXQnc/M4frD906qLXvbt0Hza7k+sbVaDxzpx94699tuxXJ86ZXs/WbxjctS6QU/TurLmM4r2c0fih3RpQ5Wws7PnVPF9bzhVd5brm9nJgjsRH5nwp0uo285inuW68uS1jzOrz/WLfb5ASZy5JaTnAvfGJnFOnA1h9qOo8TX0jodDr5LPtDrYdST5fsV7r46WMUyIvIlJGLNkRT/g3W7je2MQHvu9S03GC571n0Tx7D2NmbeJsVtH34y2qLbFJzFlvjhC/dHsbvKwWyEyFeSPhx7GQFJPvGsMwGNqtAd8/3pPGQRU4lpzB/R+v5f3f9+Fw5J9qfygxjW83mUXeXqmzCtJOQNWG0GGYS9+tVGh2E/hWhpQjdHRsp1lwRTJsDn6IimPVvkS2xCbh523hoasb5RRlc0LTfpoyfbm65hS92/qNZ2w5dzGV656P/bcXwGE/X+QudDB4+borMpG8vP3MnSOAzsbuQifye+LPcNZmp5PF/EJTibyUdUrkRUTKgD/3JTJ61iZ6sIWPff+LlzMb/KthwcFU3484HH+Kl37a4dIY7A4nE38wC9zd2aEuXRtVMw/88hxs/5+ZNLzbCX75F5w5ke/6VnUC+fGJXtzRoS52h5O3ft3NiM8iOZGamee8/y7di93h5JYmftTdnrNm+frnzX2zyzpvP2h9OwDG1m8YnFP0bta6GN5bZv7h9f4u9Qnyzjq/L/i5CuxSdA16mPtQZ5+F7Ayo1S63EJdH6vW0uW74xE744z/mtnOgafVS+tQ/V/BuLzuPpZCWmX3JS6Jik6hKCg2M42ZD3U6ujFDE7ZTIi4h4uI2HT/Pwlxvo6Ihmuu8UvJw2aHErjI6EisE0Io5nvOYxOzKGn7YedVkcc9fHsjWnwN1z5wrc7fgBomYCBtTrCvYsWDcN/tselr0CGcl57lHB14sp97bnrbvb4e9t5Y+9idz8zh/8uS8RgL3xqXwfFQdARPVl5vU1WpqF4MqLc3vK7/iBO9pUw9fLwq7jqaw7eApvq8Ej1zaGqNmQmQLVm0LjG9wbryczjLzLEjxhy7mL8a8CVz9j/vz7q+B0QIOeENTUrWGJ5JPzhVk37704nBRqZ5Oo2NO0PzetvnpT80srkTJMibyIlHtns+y8sGA7v2w75u5QimzH0RRGfhZJS9sOPvf9Nz7OLGjaH+7+DCrWgAHvAPCQ10I6G7sY9902Yk6mF3scp9OyePPXvxW4S46DBU+aJ/R6Gh5cDMO+N9c/2tJg5VtmQv/nf8F2viqxYRjc0zmEBWN60jy4EidSMxk6fR3/Wbybfy/ejdMJ9zT3oeaOGeYFN0wAi7XY36nUqt8dKteHrFQqxyzhlna1cw/d3aketSv5nl/PHaYt565Y23ug2lUQ1KxsfGHU5SGoHHL+s0bjpTTKSeQbOWMJJK1Q0+ujYpPooGn1Uo7o/+4iUu59uHwfn68+xLPfbi2RdeTF5cCJMwyfsY5Gmbv4yu9N/JwZcNUNcO+X4OVjntT8RggdgoGTdwM+ITvzDE/M3kRWtqNYY8lX4M7hgO8fg4wkM3G/bpw5knnV9fDw73DvVxDUHM6eNqtov9MBNswAuy33nk2DK/H96J4M6hqC0wnvLtvHr9vjMQwYX2kh2NKhTkdocUuxvkupZ7FA+/vMn7fMyZ1eb7UYPHZtE9i/DE7uA9/A88Xx5PL5BMDodfDYas/acu5CvP3ML7/AHLFseZt74xEpSMWaUK0xFpx0tOxl4yUq16dm2NibcIYOhhJ5KT+UyItIuXYs+Syz/9jGx97/4Y7sn1069bw4xSWdZein6whO28NMvzcIcJ4194G+7+v8ycaNkyGwLrXtx5jk9w1bjiTzVs7oeXGIKqjA3dr34eAK8A6AOz89/8UCmAl9q9vMxOj2D8zRwdRj8NPT8H5X2Pat+UUA4O9jZfKd7XhnUAcq+noBMLylhao7c9Z/957k2VOdL9e56fX7l9Gpuo1X72jDu4M6UL96gLl0Aczif76V3BdjWWL1Lls1GNrdZ87WGTS3bHw5IWVTzjZ0nSx72HT4dIHFT8/ZdiQZnA46WHOm1tdVIi9lnxJ5ESnX/v3rHoY6f6afdSPjvGbzw9qd7g7pkk6kZjL003VUTNnLLL/JVHKmmdMQB80xRw//zq8y3PYuAINYRHfLdj754yDLdsVfcSx2h5NJfy9wd3wbLH3JPKH/axDUpOCLrV7m/uZPbIQb34CAIDh1AL57ED66xtwiK2e/69va1+HnJ3sx6dZWPF/xR3OtfcOrofF1V/wOHimoiVnIyWnHiP6OIWENuLltbUjcB/uWAAZ0fcjdUUppZRjQaURuQTGRUimnf3a17iElI5v9J85c8NTNsUk0No5RiXTw8ofg1iUVpYjbKJEXkXIrOi6ZRZv2MsJqVm72N7JocOwXdh1PcXNkF5acbmPY9HVYTu5hju9rVHammtPLh8wD34oXvrBJb+g0EoAPK06nAmd5Zt5WjidnXFE8+Qrc2c7Cdw+ZiXbzWwq3/tbLF7o9CmO3wPUTzCnh8dtg1r0w40Y4vBqABtUr8I8W2fhsm21eV15H4885Nyq/dc75tsicKv7NboRqjUs+JhGR4pIzIt/esh8vsi+6Tj7P+vg6oWVrBo3IBSiRF5Fyyel08srPOxhkXUYVIw0wE8J7rcuZExnr1tguJC0zmwc+j+Rs/F7m+L5GNZKhVlsY9j9z1P1S+r0MVepTJes4bwXO41RaFk/N3Yz9ItMVL+bUXwrchffLKXC3JAJO7IKKwXDbO0VLtH0rwrX/NBP6Hk+Clx/EroXPboKZd8OxLecrbTe7CUK6XlbcZUabu8DiZf5zSdgJGSkQ9bV5TFvOiYinC2oGfpXxc2bS0oi5YCLvdDqJik0iVOvjpZxRIi8i5dJvOxPYdCCeh70Wmg29J+KweNPecoBtm/4sdUXvMmx2Hv5yAydi9zLH91VqcBpqtoJhPxR+ix3fSuaadODmrEX09dnG2gOncvcfL6q3ft2VW+BuWLcGsPe389XSb/8AKgRd1n0JqGZ+6fDkZnMWgWE1p4t/dA1sn2+ec65YV3lWoTo07Wf+vGUORM2CrDNmEcHyuuRARMoOiyW3en1ny+4LFrw7mpzBidRMOuZWrO9SUhGKuJUSeREpd2x2B5MX7uQO6yqCjdNQqTZ0H4PR/CYAbsleysJStBWdze5gzKzNHNi/h9k+r1Kbk+YeucN/MJO5omh0NXQ1R2vfCZhBIGn8d+ke1h44WaTbmAXuzJkLLw9sg1fGKbNKPZj3b9qnaHEVJLAODJgKY9ZDm7vPt7e5C2q1ufL7lwXtcqrXb5uXd8u58rzkQETKjpxEvpNlDwdOpHEqLSvfKVExSfiTQXNLzmw6FbqTckKJvIiUO1+vPcyhxFQe9/7JbOg+Brx8MToOB+AO6yrmrbu8Ueri5nA4eWbeFrbs3MVs31cJMRKgaiMYscDcnudy9ImAao3xz4hnevB3OJwwds7mAv+AVJA8Be461qVLg6qw4AlIS4AaLaHvi5cX14VUvwrung6ProK+L8EtU4r3/p6s2Y3gWxlS4sxCgb6VteWciJQd9c118t289gJONhcwKh8Ve5q2xkGsOKBSHahct4SDFHEPJfIi4hZxSWcJ/yaKrUeSSvS5yek2/rt0LzdaImnAMfCrYlZvBrjqBuwVa1PVOEP1I0vZE59aorH9ndPpZOIP0ayK2sls39doZByHyvVhxI/maPXl8qkAAz8EDLokL2Jo1WjiUzJ5Zt4WnM5Lr5efsz4mt8DduJtawsbPYPdCsPrAXZ+At//lx3YxtdpCz7HgX8U19/dE3n7QeuD5zx2Hmf9+RUTKgjodweJFkPMU9YzEAtfJR8UmEZo7rb5TCQco4j5K5EXELd5ctIv/bYrjH5+v51jy2RJ77nu/7+V0ehZP++WMxoc9cn6vbYsVa4chgFn0bnZkTInF9XdOp5PXF+3i53XbmekzmSZGHATWNUfiq4Rc+QPqd4MeYwB4gU+o6ZXGsl0JTF918KKXnUrL4s1FuwH4v37NqJEZA4vGmwd7TzKTbSlZ7QeZfzcs0HWUe2MRESlOPgFQuz0AHY09+RJ5m93Btrjk8xXrtT5eyhEl8iJS4hJSM3LXoCeeyeLxrzeRme364nIxJ9P5YvVhrrZso6njAHgH5K4Xz9VhKABXW7axemMUGTb3FL37YPl+Zq/Yxpc+r9PSEmNWgR++AKo1Kr6HXD8BgprjdfYEc+t9B8Abi3ZddJbEm4t2kXzWLHA3tEttc6u57LPQ6FroNrr4YpPCq98N+r5sFhis2sDd0YiIFK/cgnd72HIkCZvdkXto9/FUMmwOOlr3mw1aHy/liBJ5ESlxs9fF0sGxg0j/Jxnkt5rNMUm8/NMOlz/3jUW7yLI7GFfpF7Oh44j8xeKqNcLZ8GoshpP+tmX8El3yRe++XHOID36N4nOfN2hnOQgBQWYSH9SkeB/k7Qd3fAiGlUbHFzG+wW5sdidjZm0mNcOW7/TNMaeZu+EvBe5WvgHHosyq+XdMMysMS8kzDOj5JIQOcnckIiLFLyeR7+q1hwybg53HUnIPbY5NohYnCeaUucNJnVA3BSlS8vSnLhEpUTa7g6/XHeaf3nOp6UzkZa8Z1CGRmWtj+HbjEZc9d+PhU/y87RgdLHtplbnF3H87Z2r53xkdhgFwj3UFc9YedllMBdmXcIY3f9zEDJ+3zK10/Kua1elrtnDNA+t2gl5PA/BQynu0rpxJzKl0xs+PzrNe3ixwtx2nE+7qWI8u7IRVb5sHB/z3ytbsi4iIXEhOwbtmxFKR9DzT66Niks5Pqw9upRohUq4okReRErUo+ji1zuygi2UPAF7Z6cysPRdw8vz8bUTHJRf7M51OJy//tBOAV4KWmI3t7oPK9Qq+oNVtOHwDCbGcwBq7in0JJVf07vWFO3nf+jZhll04fQNh2HzXb7V27bNQszWWsyeZWWsuVgv8uOUo3+SMvgPMjoxhW1wylfy8GHd9bZj/COCE0KHQ6nbXxiciIuVXpVpQpQEWHHSw7MubyMee/kuhO62Pl/JFibyIlKgvVh/iQa+cqe0NrwarD41P/8lz9aLJzHbw6MyNJKUXbhu0wvpx6zGiYpNo53OU1imrAAN6PnXhC7z9sbS9B4D7rMuZHRl74XOL0boDJ/Ha8xPXWrfi8PLHGPo/qNPB9Q/28s2ZGu9F1cOL+Ki9WfAuYsF29sSncioti7d+zSlw17cZQSvHQ3KsuQ3eTa+7Pj4RESnfckblO1v2sCknkU8+a2P/ibTzI/JaHy/ljBJ5ESkx0XHJHDm8j5st68yG/q/CNf8EYFT6J7Spms2R02cZOycKu+PS26AVRobNzhu/7ALgjVq/m40tb4UazS5+YU7Ruxst61m8cZfLi945HE5e/zmaZ7y+AcDS80kIKcHRhdrt4JpnAeh98C0GNDbIsDkYM2sTL/+0g+SzNlrWDmRYhXWwbZ65FvHOT85X/BcREXGVvxS8O5qcwdGks2w9koQX2WYtGdCIvJQ7SuRFpMR8ueYQI7wW423YoUEvc0uZnk9BjZZY0hOZGbIAP28LK/ac4L+/7SmWZ3725yHiks4SWimFFom/mo05a8Ivqk4HnMGt8TVsXJ+1nF+3Hy+WeC7kp23HaHxsIU0sR3H4VYHubqgAf3U41A7FyEji334zCKrgw574M8zfHAfAGzdUxvqL+cUL1z5bsl80iIhI+ZUzIt/Bsh8rdjbFnCYqJonmRix+ZIFvZahezAVhRUo5JfIiUiJOp2WxOOoAg6zLzIbuj5t/9/KB294FDKrs+ZZPe5nr0d9Zto/fdsRf0TNPnsnkg9/NKXf/rvcHhiPb3CatbqdLX2wYGB2GA3CvdQWz1rluT/nMbDtTftnGU17mFnCWXk+DX2WXPe+CrN7mFHurD74HljCry34Mwzx0d4fatFv/L8hMgXpd4epnSj4+EREpn2q0AN9AAjhLCyOWDYdOExX7l0J39Tpp5xQpd9TjRaREzN0Qy63OFVQx0nBWbQTNbjx/MKQLhJn7uffa+QoPda0JwNPfRHEoMe2ynzn1t72kZmbTo7aTq2L/ZzYWZjT+nHb34rT60MZyiDOHNrH/xJnLjuVivlpzmF6pvxBiOYGzQjB0HeWS5xRKzZZw/XgAmm1+lX/3rU6fljV5qfoSiFkNPhXhzo/B6uW+GEVEpHyxWHOnzney7Gbj4b8n8pohJuWPEnkRcTm7w8nM1Qf5h9Uscmd0e8z8n/Jf3TABKodA0mHGBXxPpwZVSc3I5pGvNpKelV3kZ+5LSGVWpDmK/mbd1RjZZ83CcY2vK/xNAqphtLgFgHutvzMnsvhH5ZPTbXyydDtPes0HwLj2n+ATUOzPKZIeT5p/KMpM4a4jr/NpHwsBq980j930JlRr5N74RESk/PlLwbttccmcTMsi1LLfPKZCd1IOKZEXEZdbujOeZqlraGw5bm6pFjok/0m+leBWc19y67oP+Li3haCKvuyOT2Xc/7bl2dO8MF5buAu7w8mAFhWpt2+m2dgrnNy54oWVs6f8QOuf/LhhP5nZxVv07v3l+xho+5maRhLOKvWh44hivf9lsVhh4Ifg5QcHfocvbgdHNrQaCKGD3R2diIiURzkF77pa9wIQyBmuMo6ax+opkZfyx+2J/Pvvv0/Dhg3x8/MjLCyMyMjIi54/depUmjdvjr+/PyEhITz99NNkZGTkHrfb7UycOJFGjRrh7+/PVVddxcsvv1zkJEBEis8Xaw7x4LnR+E4jwLdiwSc27Qtt7wGng+pLn+GD+9tgtRj8EHWUz1cfKvTz/tyXyLJdCXhZDF6oHQkZyVC9KbS4tejBN74eZ+V6VDbS6Zq5ll+3X9m6/b+KPZXOt3/u4DGvBQAY1403awaUBkFNofck8+esVKhUx/yipahfhIiIiBSHep3BsFKLRGpz8vxofLXGEFDNvbGJuIFbE/m5c+cSHh5OREQEmzZton379vTv35+EhIQCz581axbPPfccERER7Ny5k+nTpzN37lzGjx+fe84bb7zBhx9+yHvvvcfOnTt54403ePPNN3n33XdL6rVE5C/2JaRyav8melq34zSs0PWRi1/QfzL4V4X4bXQ9NovxN7cE4NWfd7L+0KlLPs/ucPLKzzsBeKBrLapv+8Q80OupyyuEY7FghJpb0RX39Pp/L97NCONHs25AUHNod2+x3btYhD1mLkWw+phF8PQHJRERcRefClCrLQCdLHvoYGh9vJRvbk3kp0yZwsMPP8zIkSNp1aoV06ZNIyAggBkzZhR4/urVq+nZsyeDBw+mYcOG9OvXj0GDBuUZxV+9ejW33347t9xyCw0bNuTuu++mX79+lxzpFxHX+GL14fNr41vdBlVCLn5BxRpmMg+w4g3+0cLOgPZ1yHY4efzrTSSkZFz08u82HmHnsRQC/bx4uuYmOBMPgXWh7RUkyaGDcWLQy7qdmAM7OXgFBfjO2XokiVVRO3nIuhAA44YJ+esGuJvFAkO+hf/bDY2vdXc0IiJS3uVMr+9k2UPouUJ3Wh8v5ZTbyg5nZWWxceNGxo0bl9tmsVjo06cPa9asKfCaHj16MHPmTCIjI+natSsHDhxg4cKFDBs2LM85H3/8MXv27KFZs2Zs2bKFVatWMWXKlAvGkpmZSWZmZu7nlJQUAGw2Gzab7UpftUDn7uuq+4u4UmH7b2qGjRWboplgXQ1AdpdHcBamz7e6C+uWOVgOLsf545O8cs+37D6Wwp6EMzw2cyNfjuyMj1f+7yHTMrP59+LdAIy+pj4B6/8FgD3sMRxOAy73v7eKdbA2ugbj4Arusa5g1tquPNu/2eXdC3A6nbz6szmlvoKRiaNWe+xNbrz8+FzNu1Lpje0y6PeveDL1X/FkV9p/jbqd8eIjrvXbRw17Ajghu1Zo4f5sIXKFSuL3b1Hu7bZEPjExEbvdTnBwcJ724OBgdu3aVeA1gwcPJjExkV69euF0OsnOzubRRx/NM7X+ueeeIyUlhRYtWmC1WrHb7bz66qsMGVJAca0ckydP5sUXX8zXvnjxYgICXFs9esmSJS69v4grXar/rjhmcJfjV3y9sjkVcBV/bEmALQsLde8A/wFcb1mN1+E/OfDNBO6pcy3/OWllY0wSj320mLsaOfJd80ushYRUC9V9nYQe+hLj9EGyrBVYHB+MfWHhnnshdZ2t6cwK7rau5Ka1d9LCto8CvksolOjTBocPJjHM9zcA1lbox4lffrmi+KTo9PtXPJn6r3iyy+2/fllp9AcaZ5vr4+2GNws3xeKMOlaM0YlcnCt//6anpxf6XI/aCHj58uW89tprfPDBB4SFhbFv3z7Gjh3Lyy+/zMSJEwH45ptv+Prrr5k1axatW7cmKiqKp556ijp16jBiRMHVoMeNG0d4eHju55SUFEJCQujXrx+BgYEueRebzcaSJUvo27cv3t7eLnmGiKsUpv86HE7e/+/vjLeayWpg/3Hc3OrmIj3HWJcGv00iNOFb2ox6mpBWFh6dFcXK4xZu79We29rXzj33eEoG/5q6CnAQcXs7uq41p+dbe4ym/zV3XN6L/lX2DTj/O4u6GScJdUTj3XAYN7WpVfTb2B288/4anvT6DF/DhqN+D7rc96yKyJUg/f4VT6b+K56sOPqvM/bfGClHADDqduCmW28rzhBFLqgkfv+emxleGG5L5IOCgrBarcTH560AHR8fT61aBf/heOLEiQwbNoyHHnoIgLZt25KWlsaoUaN4/vnnsVgs/POf/+S5557j/vvvzz3n8OHDTJ48+YKJvK+vL76+vvnavb29Xf4/yZJ4hoirXKz/rthzgvbJvxHknYIjsB5ebe4AaxF/5XQfDTvmYxzdjPdvz3PjvV8y5tgZ3vt9H8//sJ1WdavQsrb5Zdt/l+0gw+agU4OqDKi0GyMhGrwrYO3+GNbi+G/M29ssRhf5MfdalzNnY29u63CJ9f4FmLcphuzE/dzruxwAS58ILD6lpFJ9OaPfv+LJ1H/Fk11R/63fDaK/BcBSrwsW/XcgJcyVv3+Lcl+3Fbvz8fGhU6dOLF26NLfN4XCwdOlSunfvXuA16enpWP5WddpqNYtDndte7kLnOBz5p+GKiOt88efB3CJ3lrBHip7Eg3nNbe+CYYUdP8DOn3i6bzOuaVaDDJuDR2duJPmsjei4ZL7bZH47P+GWlhirzP3o6fRA8VZaz9lTvp9lA9v3HeDwyaIVvUvLzGbKkj087fUtXjigaX/zDyQiIiJSOH/9/6b2j5dyzK1V68PDw/nkk0/44osv2LlzJ4899hhpaWmMHDkSgOHDh+cphjdgwAA+/PBD5syZw8GDB1myZAkTJ05kwIABuQn9gAEDePXVV/n55585dOgQ8+fPZ8qUKdxxRzFMrRWRQjl8Mo2svctoaYnF4RUAHYdf/s1qtYWeT5o/L3wGa1YK/70vlHpV/Tl8Mp2n50bx6s87cTphQPs6dGAPHP4TLN7miH5xqt0OarfHx7Az0Ponc9bHFunyj1ceIChtL7dZcwp63jCheOMTEREp63Iq1wNK5KVcc+sa+fvuu48TJ04wadIkjh8/TmhoKIsWLcotgBcTE5NndH3ChAkYhsGECROIi4ujRo0auYn7Oe+++y4TJ07k8ccfJyEhgTp16vDII48wadKkEn8/kfLqqzXnt5yzdBwK/lWu7IbX/ssckT91AH57kaq3TmHa0E7c+eFqlu1KAMDHy8Kz/ZvDon+Y17S/HyrXvbLnFqTDMDi2hXutyxm2/jae7tOswAr6f5eQksHHKw/wjtc8LDih9R3mFwMiIiJSeMGtofWd4B0AlYu+xE2krHB7sbsxY8YwZsyYAo8tX748z2cvLy8iIiKIiIi44P0qVarE1KlTmTp1ajFGKSKFlZ6VTeSGtUywRuHEwAh79Mpv6u0PA/4LXwyADdOh7T20adCdVwa24dlvtwLwj56NCLEdgj2/AAb0HHvlzy1I27tx/vo8LYmlTvoulu5sy01ta1/ysrd/20OL7F309d2I07BgXP+8a+ITEREpyyxWuOczd0ch4nZunVovImXP95uPcm/2T+aHZjdC9auK58aNrjk/Rf/HJ8GWwb2dQ/i/vs3o1yqY0ddfBX9ONY+3ug2CmhbPc//OvypGK7NC7n3W5cyKjLnkJXviU5m7PpZnvL4BwAgd7Lr4RERERKTMUyIvIsXG6XTyv1Vbucv6BwBGca9R7/sSVAyGxD3wx38AeKJ3Uz4e3plKZ+Ngm1nFll5PF+9z/y6n6N0A62rW740j9tTF9/x8/ZdddDOi6WndDlYfc6mAiIiIiMhlUiIvIsVm3cFTdD21AH8jC3vNttCwV/E+wL8q3PyW+fOqKRC//fyx1e+C0w6Nr4c6HYr3uX/X8Gqo0oBA4yw3WSKZs/7Co/Kr9yeybFc8z3rNNRs6/wOq1HdtfCIiIiJSpimRF5FiM/PPvQz3WgyAtcdoMIzif0jL26D5LeDIhgVPgsMOZxJg80zz+NXhxf/Mv7NYoMNQAO7zWs43G45gs+ff4tLhcPLawp30tWwk1LLfLMxz9f+5Pj4RERERKdOUyIuUMxk2u0vuezTpLN67F1DLOE12QE1oc5dLnoNhwC3/Bt9AiNsAkZ/A2g8hOwPqdjJHy0tC6GCcGHSz7CTgzGGW7kzId8qCLUfZHpfEP73nmQ3dHoOKNUsmPhEREREps5TIi5QTTqeT//tmC20ifuU/i3eTXcAI8pX4eu0hRloWAuAVNgq8fIr1/nkE1oE+L5g/L30J1n9q/twr3DWzAApSuR5Gk94A3GNdwey/Fb3LsNl569fdDLCsoZkRC36VoccTJRObiIiIiJRpSuRFyokPlu9n++bVPGH5hm+WRTLok7XEJZ0tlntn2OzsilxMO8tB7BZfcx24q3UaCfW7gy0NMlMgqDk0v9n1z/2rnOn1d1tX8ufe43mK3n2x+hDxSan80+c7s6HnWHONv4iIiIjIFVIiL1IO/LYjnvcWb2W6z1uM9ZrPr77PUTVmMTf/9w9+3X78iu//89Zj3GP7EQCj/f1QofoV3/OSLBYY8I5ZBR6g11NmW0lqfjP4V6OWcZqrja18syEWgNNpWbz3+z7usa4ghONQoQaEPVqysYmIiIhImaVEXqSM25eQylNzo3jU+iN1jZMAVDHO8LHP2/zL9iFPffUnET9EX/baeafTyaJVa+hn2QCApfvjxRb7JdVoBvd+CTdMgHb3ldxzz/Hyhfb3A+ae8nPXx5Jtd/Dusn1kZaQT7vO9ed41/wSfCiUfn4iIiIiUSUrkRcqw5HQbD3+5kSpZR3nMyxwx585Pc9dqD/Zaxk8+z7Nh7Qru+GA1+0+cKfIzomKT6H7iWyyGk6yG10PNFsX5CpfW/CYzUbZYS/a55+RMr+9j3YQ9NYHPVx/iq7WHGGpdQg3nSagcAp0ecE9sIiIiIlImKZEXKaPsDidPzNnMwcQ0XvGfgw82s6J727uh3ysw7HuoVJurLMf43ncSvRJmcdu7K/l245EiPWfuH9Hca10OgE+vMcX+HqVecGuo0xEv7NxhXcUrP+/E157GU745X5xc+y9z5F5EREREpJgokRcpo95ctIuVe05wnfd2rnOsBcMKN71xvqr7VdfDY6uhxa14k83z3rP4yPkKb837nafnRnEmM/uSz0g8k0ngrjlUNDLIqNIErurt4rcqpToOA8zp9eDkH16LqORIgepNoP0gd0YmIiIiImWQEnmRMuj7zXF8tPIAVuy8U3Wu2djlQXP0+K8CqsF9M+HWqTi9/Oll3c4i3+dI2/I9t77zB9FxyRd9ztzIQwy3LALAr9eYktv6rbRpcxd4+dPUEsf1lige9zG34eP658Hq5d7YRERERKTMUSIvUsZsPZLEv77bCsBHLaIITNkH/tXgunEFX2AY0HkkxiMroXZ7quYUwhuV/A6DP1jKjFUHcTqd+S6zO+B45HzqGYlk+lTJLfpWLvlVhla3A/CR//v4OdKhVltoNdC9cYmIiIhImaREXqQMSUjN4JGvNpKZ7eD2pj70Pv6peaD3RHP0/WJqNIMHf4MeTwJmIbz51vF89/PPPPzlBk6lZeU5fespg7tsCwDw6vIgePsX+/t4lJzp9T72nL3kb5hU8tvhiYiIiEi5oD9lipQRmdl2Hpu5iWPJGVxVowJvVV+AkZFsjgx3HFG4m3j5QL+XYfgPOHMK4c33mUTjPdO5ZeoK1h04mXtq/NGDdLHswW54Ye02ykVv5UEa9IRqjc2fQ7pB077ujUdEREREyiwl8iJlgNPpJOKH7Ww8fJpKfl58cZMfPlFfmQdverPoW7M1vg4jpxCej2FnvPds3sqI4KlPFjL1tz1Ex6VwY5a5Nj6rxR1QqVYxv5EHMgzo84L5xcnNb5bfegEiIiIi4nKqwiRSBny19jBz1sdiMeDd+0Op9+dwwAlt7oYGPS7vpucK4W36AueicfRiOwstz/GvZQ+zYGVTfrWsA8D/mieK70U8Xavbc9fKi4iIiIi4ihJ5EQ+3Zv9JXvxxBwD/urEF12WthNi14B0AfV+6spsbBnR6AKNBT/juQaoe28LHPm+z31Ebb8NOSs2uBNZuXwxvISIiIiIihaWp9SIeLPZUOo9/vRG7w8ntoXUY1a0mLJlkHrw6HCrXLZ4HBTU1C+H1HIsTg6ssxwDwv2ZM8dxfREREREQKTYm8iIdKz8rm4S83cDrdRpu6gbxxVzuMVW9D6lGo0gC6F/OUdy8f6PsSxvAfcFa7ihMVW0HT/sX7DBERERERuSQl8iIeyOl08sy8Lew6nkpQRR8+HtYZv9TDsPpd84T+r4G3n2se3vhash9bx+om/yp6ET0REREREbliSuRFPND7v+9j4bbjeFsNpg3tRJ0q/vDrBLBnQeProcUtrg9CVdlFRERERNxCibyIh1myI55/L94DwEu3t6Fzw2qwbyns/hkMK9z4upJsEREREZEyTIm8iAfZG5/K03OjABjevQGDutYHuw0WPWeeEPYI1GzhvgBFRERERMTllMiLeIjkdBsPf7mBM5nZhDWqxsRbW5kHIj+GxD0QEATX/su9QYqIiIiIiMspkRfxANl2B2Nmb+LQyXTqVvHngyEd8bZa4EwCLH/dPKn3JPCv4tY4RURERETE9ZTIi3iA13/ZxR97E/H3tvLx8E5Ur+hrHlj6EmSmQO1Q6DDUrTGKiIiIiEjJUCIvUsrN2xDLp6sOAvDve9rTuk5l80DcRtg80/z5pje1FZyIiIiISDmhRF6kFNt4+BTPz48G4MneTbmlXW3zgMMBv/wLcEK7+6B+mPuCFBERERGREqVEXqSUOpp0lke+2kSW3UH/1sE81bvp+YPbvoEj68G7AvR50X1BioiIiIhIiVMiL1IKnc2y8/CXG0g8k0mLWpWYcm8oFkvO3vCZqbBkkvnzNc9AYG33BSoiIiIiIiVOibxIKeN0Onnm2y1sP5pCtQo+fDK8MxV8vc6fsPItOBMPVRtB99HuC1RERERERNxCibxIKfPesn38vPUY3laDaUM7EVIt4PzBk/thzQfmzze+Dl6+7glSRERERETcRom8SCmyKPo4/1myB4CXb29D10bV/nbCOHDYoEkfaNbfDRGKiIiIiIi7KZEXKSV2Hksh/JsoAB7o0ZD7u9bPe8KexbD3V7B4maPxhlHyQYqIiIiIiNspkRcpBU6eyeShLzaQnmWnV5MgJtzSMu8Jtgz4dZz5c7fHIKhp/puIiIiIiEi5oERexM2ysh089vUm4pLO0rB6AO8N7oCX9S//aZ46ANP7wsl9UKEmXPOs+4IVERERERG387r0KSLiKk6nk4gF24k8eIqKvl58OqIzVQJ8zp+wfT4seBIyU8C/Gtw9A/wC3RewiIiIiIi4nRJ5ETf6au1hZkfGYBjw7qAONKlZyTyQnQm/Pg/rPzE/h3Qzk/jKdd0XrIiIiIiIlApK5EXc5M99ibz44w4AnruxBde3qGkeOHUQ5j0Ax6LMzz2fghsmgNXbHWGKiIiIiEgpo0RexA0On0zj8a83YXc4ubNDXUZd09g8sGMB/DAGMpPBvyrc8ZG2mRMRERERkTyUyIuUsNQMGw9+sYHkszbah1ThtTvbYtizYMkkWDfNPKleV7jnM6hcz73BioiIiIhIqaNEXqQE2R1Oxs6JYl/CGYIDfflkWCf8zsTCvJFwdJN5Uo8nofckTaUXEREREZECKZEXKUFv/bqbZbsS8PWy8MnwztSM+w1+eBwyksGvCtwxDZrf5O4wRURERESkFFMiL1JCvt8cx7QV+wF4684WtIt+E9a+bx6s29mcSl+lvhsjFBERERERT6BEXqQERMUm8ex3WwF4rnsAt218COI2mAe7j4HeEeDlc5E7iIiIiIiImJTIi7hYfEoGo77cQFa2g/+rv49Hdv4nZyp9ZRj4IbS4xd0hioiIiIiIB7EU9YKGDRvy0ksvERMT44p4RMqUlAwbD32xgVOpabwV+A1PJEzCyEiGup3gkT+UxIuIiIiISJEVOZF/6qmn+N///kfjxo3p27cvc+bMITMz0xWxiXi0M5nZPDAjkpNx+/mf3yvck/W9eSDsMRi5CKo2cGt8IiIiIiLimS4rkY+KiiIyMpKWLVvyxBNPULt2bcaMGcOmTZtcEaOIx0nPyuYfn6/nTOw2FvhNpB17wLcy3DcTbnpd6+FFREREROSyFTmRP6djx4688847HD16lIiICD799FO6dOlCaGgoM2bMwOl0Fuo+77//Pg0bNsTPz4+wsDAiIyMvev7UqVNp3rw5/v7+hISE8PTTT5ORkZHnnLi4OIYOHUr16tXx9/enbdu2bNiw4XJfVaRIMmx2Hv5yA+mHNvCNz8sEkQzBbeCRFdBygLvDExERERERD3fZxe5sNhvz58/ns88+Y8mSJXTr1o0HH3yQI0eOMH78eH777TdmzZp10XvMnTuX8PBwpk2bRlhYGFOnTqV///7s3r2bmjVr5jt/1qxZPPfcc8yYMYMePXqwZ88eHnjgAQzDYMqUKQCcPn2anj17cv311/PLL79Qo0YN9u7dS9WqVS/3VUUKLTPbziNfbeTs/jXM9nmDSsZZcz380O/AX31QRERERESuXJET+U2bNvHZZ58xe/ZsLBYLw4cP5+2336ZFixa559xxxx106dLlkveaMmUKDz/8MCNHjgRg2rRp/Pzzz8yYMYPnnnsu3/mrV6+mZ8+eDB48GDAL7w0aNIh169blnvPGG28QEhLCZ599ltvWqFGjor6mSJFlZTsY/fVmsvYt5yuff1PByIT6PWDwXPALdHd4IiIiIiJSRhQ5ke/SpQt9+/blww8/ZODAgXh7e+c7p1GjRtx///0XvU9WVhYbN25k3LhxuW0Wi4U+ffqwZs2aAq/p0aMHM2fOJDIykq5du3LgwAEWLlzIsGHDcs9ZsGAB/fv355577mHFihXUrVuXxx9/nIcffviCsWRmZuYp2JeSkgKYsw5sNttF3+Nynbuvq+4vJSvb7uCpb7aSvftXPvOeip9hw9HoOuz3fAlWfyhj/57Vf8WTqf+KJ1P/FU+m/iuerCT6b1HubTgLu5g9x+HDh2nQ4MqrbR89epS6deuyevVqunfvntv+7LPPsmLFijyj7H/1zjvv8Mwzz+B0OsnOzubRRx/lww8/zD3u5+cHQHh4OPfccw/r169n7NixTJs2jREjRhR4zxdeeIEXX3wxX/usWbMICAi4kteUcsDhhK/2Wqh5egPveL+Lj2HnWOUObGg4GodFRe1EREREROTS0tPTGTx4MMnJyQQGXnxGb5ET+fXr1+NwOAgLC8vTvm7dOqxWK507dy7UfS4nkV++fDn3338/r7zyCmFhYezbt4+xY8fy8MMPM3HiRAB8fHzo3Lkzq1evzr3uySefZP369Rcc6S9oRD4kJITExMRL/gO8XDabjSVLltC3b98CZzWIZ3A4nIz7fjv2Ld/wH+9peBkOHK0GYr/tQ7CW3X+v6r/iydR/xZOp/4onU/8VT1YS/TclJYWgoKBCJfJFnlo/evRonn322XyJfFxcHG+88cYFR9L/LigoCKvVSnx8fJ72+Ph4atWqVeA1EydOZNiwYTz00EMAtG3blrS0NEaNGsXzzz+PxWKhdu3atGrVKs91LVu25LvvvrtgLL6+vvj6+uZr9/b2dvkvmZJ4hriGw+Fk0o/b8Nk6k9e8p2MxnBA6BMtt72KxWN0dXolQ/xVPpv4rnkz9VzyZ+q94Mlf236Lct8jbz+3YsYOOHTvma+/QoQM7duwo9H18fHzo1KkTS5cuzW1zOBwsXbo0zwj9X6Wnp2Ox5A3ZajUTpnMTC3r27Mnu3bvznLNnz55iWQ4gco7T6eSFH7fjt/FjXvf+1EziuzwEt70H5SSJFxERERER9yjyiLyvry/x8fE0btw4T/uxY8fw8ira7cLDwxkxYgSdO3ema9euTJ06lbS0tNwq9sOHD6du3bpMnjwZgAEDBjBlyhQ6dOiQO7V+4sSJDBgwIDehf/rpp+nRowevvfYa9957L5GRkXz88cd8/PHHRX1VkQI5nU5e/XknFSPf4VnvuWZjjyeg78tgGO4NTkREREREyrwiJ/L9+vVj3Lhx/PDDD1SuXBmApKQkxo8fT9++fYt0r/vuu48TJ04wadIkjh8/TmhoKIsWLSI4OBiAmJiYPCPwEyZMwDAMJkyYQFxcHDVq1GDAgAG8+uqrued06dKF+fPnM27cOF566SUaNWrE1KlTGTJkSFFfVSQfp9PJW4t2UXntGzzh/b3ZeO1zcN1zSuJFRERERKREFDmR//e//80111xDgwYN6NChAwBRUVEEBwfz1VdfFTmAMWPGMGbMmAKPLV++PG+wXl5EREQQERFx0Xveeuut3HrrrUWOReRS/vvbHqr/+SIPev1iNvR5EXo95daYRERERESkfClyIl+3bl22bt3K119/zZYtW/D392fkyJEMGjRIRSukTPvg9z3UWDGOIV45dR1uegvCRrk3KBERERERKXeKnMgDVKhQgVGjlMBI+TF9xR6Clz3NXV6rcGJg3PYudBzm7rBERERERKQcuqxEHszq9TExMWRlZeVpv+222644KJHSZOafe6n122husUbiwIrlro+h7d3uDktERERERMqpIifyBw4c4I477mDbtm0YhpG77ZuRU+jLbrcXb4QibjR3zV5qL3qY3tbNZBveWO/9DFoOcHdYIiIiIiJSjhV5H/mxY8fSqFEjEhISCAgIYPv27axcuZLOnTvnK04n4qmi45KZOG8ddX95gN7WzdgMH6yD52AoiRcRERERETcr8oj8mjVrWLZsGUFBQVgsFiwWC7169WLy5Mk8+eSTbN682RVxirjc2Sw7P249ytdrD3PsyCE+9fk37SwHybT44zPsG4xG17g7RBERERERkaIn8na7nUqVKgEQFBTE0aNHad68OQ0aNGD37t3FHqCIq+1LSGXm2hi+23SE1IxsWhqH+cH3LWobp7D5VsNn6FyMkK7uDlNERERERAS4jES+TZs2bNmyhUaNGhEWFsabb76Jj48PH3/8MY0bN3ZFjCLFLjPbzq/b4/l67WHWHTyV235v5R28kj0FH3s6VG+K95BvoJr6tYiIiIiIlB5FTuQnTJhAWloaAC+99BK33norV199NdWrV2fu3LnFHqBIcYo9lc6syBi+WR/LyTRzxwWLAX1aBvPPqitosuk1DKcDGl4N930F/lXdHLGIiIiIiEheRU7k+/fvn/tzkyZN2LVrF6dOnaJq1aq5letFSpNsu4Pfd59g5trDrNx7gpyNFggO9OX+LvW5v3Ntaq95CSI/Ng90GAq3vA1ePu4LWkRERERE5AKKlMjbbDb8/f2JioqiTZs2ue3VqlUr9sBErlR8SgZzImOZsz6GY8kZue3XNKvBkLD69G5RE6/sNPj2H7B3sXmwzwvQ8ynQl1IiIiIiIlJKFSmR9/b2pn79+torXkq1bLuDCd9HM2/jEewOc/i9WgUf7ulcj8Fd69OgegXzxOQjMOs+iI8GLz+44yNoPdB9gYuIiIiIiBRCkafWP//884wfP56vvvpKI/FSKv26PZ4562MB6NqoGkPC6nNjm1r4elnPnxS3CWbfD2fioUJNGDQH6nVyU8QiIiIiIiKFV+RE/r333mPfvn3UqVOHBg0aUKFChTzHN23aVGzBiVyOmWsPAzD6+qv4Z/8W+U/Y+RN89xBkn4WarWDwXKhSv4SjFBERERERuTxFTuQHDhzogjBEise+hFTWHDiJxYAhYQ3yHnQ6YfW7sGQS4IQmfeDuz8Av0C2xioiIiIiIXI4iJ/IRERGuiEOkWMxcGwNA75bB1Knif/6A3QYLn4GNn5ufOz8IN70J1iL/JyAiIiIiIuJWymKkzEjPyua7TUcAGNrtL6PxZ5Ng3gg4sBwwoP9r0O0xVaYXERERERGPVORE3mKxXHS/eFW0F3f5cctRUjOyaVA9gKubBJmNpw/B1/dC4m7wrgB3T4fmN7k1ThERERERkStR5ER+/vz5eT7bbDY2b97MF198wYsvvlhsgYkU1blp9YO71sdiMSA2EmYPgvREqFTbLGpXu72boxQREREREbkyRU7kb7/99nxtd999N61bt2bu3Lk8+OCDxRKYSFFsiU1iW1wyPl4W7ukcAtHfwfzHwJ4JtdqZSXxgHXeHKSIiIiIicsUsxXWjbt26sXTp0uK6nUiRfJWz5dytbWtTLf2Qub2cPROa3QQjf1ESLyIiIiIiZUaxJPJnz57lnXfeoW7dusVxO5EiSUrP4sctRwEY0q0BrP8UnA646ga4/2vwrejmCEVERERERIpPkafWV61aNU+xO6fTSWpqKgEBAcycObNYgxMpjG83HiEz20HL2oF0rOUNs2abB7qPBovVvcGJiIiIiIgUsyIn8m+//XaeRN5isVCjRg3CwsKoWrVqsQYncilOp5NZ68wid0O71ceI/g4yU6BqI2h8g5ujExERERERKX5FTuQfeOABF4QhcnlW7z/JgcQ0Kvp6MbB9Hfhiunmg80iwFFsJCBERERERkVKjyJnOZ599xrx58/K1z5s3jy+++KJYghIprJk5Re7u6FCXColb4dgWsPpC6FA3RyYiIiIiIuIaRU7kJ0+eTFBQUL72mjVr8tprrxVLUCKFEZ+SweId8QAM7dYANuSMxrceCBWquy8wERERERERFypyIh8TE0OjRo3ytTdo0ICYmJhiCUqkMGZHxmB3OOnasBrNA23m3vEAnR90b2AiIiIiIiIuVOREvmbNmmzdujVf+5YtW6heXaOgUjKy7Q7mRMYCMKRbfdgyG7IzILgNhHR1c3QiIiIiIiKuU+REftCgQTz55JP8/vvv2O127HY7y5YtY+zYsdx///2uiFEkn992JnA8JYPqFXy4sXUwbJhhHuj8D/jLrgoiIiIiIiJlTZGr1r/88sscOnSI3r174+VlXu5wOBg+fLjWyEuJ+XqdWeTu3i4h+MaugpP7wKcitLvXzZGJiIiIiIi4VpETeR8fH+bOncsrr7xCVFQU/v7+tG3blgYNGrgiPpF8Diam8cfeRAwDBnetD0teNQ+0uw98K7k3OBERERERERcrciJ/TtOmTWnatGlxxiJSKLNyRuOva1aDEK9k2PWzeaCLityJiIiIiEjZV+Q18nfddRdvvPFGvvY333yTe+65p1iCErmQDJudbzYcAWBY9waw6Utw2iGkGwS3dnN0IiIiIiIirlfkRH7lypXcfPPN+dpvuukmVq5cWSxBiVzIT1uPkXzWRt0q/lzbpBps/Nw8oNF4EREREREpJ4qcyJ85cwYfH5987d7e3qSkpBRLUCIXMnOtOa1+cFh9rPsWQ+pRCKgOrW53c2QiIiIiIiIlo8iJfNu2bZk7d26+9jlz5tCqVatiCUqkINFxyUTFJuFtNbivSwisn24e6DAUvHzdG5yIiIiIiEgJKXKxu4kTJ3LnnXeyf/9+brjhBgCWLl3KrFmz+Pbbb4s9QJFzzm05d2Ob2gRlxcH+pYABnUa6NzAREREREZESVOREfsCAAXz//fe89tprfPvtt/j7+9O+fXuWLVtGtWrVXBGjCCkZNr7ffBSAoWH1YcNU80CT3lCtkfsCExERERERKWFFnloPcMstt/Dnn3+SlpbGgQMHuPfee3nmmWdo3759cccnAsD/Nh7hrM1Os+CKdA0JgM0zzQOdVeRORERERETKl8tK5MGsXj9ixAjq1KnDf/7zH2644QbWrl1bnLGJAOB0Opm5LgaAod0aYOxYAGdPQWA9aNbfzdGJiIiIiIiUrCJNrT9+/Diff/4506dPJyUlhXvvvZfMzEy+//57FboTl1l38BT7Es4Q4GPljg514eucInedHgCL1a2xiYiIiIiIlLRCj8gPGDCA5s2bs3XrVqZOncrRo0d59913XRmbCHB+y7nbQ+tSKWk3xK4Dixd0HO7myEREREREREpeoUfkf/nlF5588kkee+wxmjZt6sqYRHKdSM3k1+3HARjarT5seME80OJWqBTsvsBERERERETcpNAj8qtWrSI1NZVOnToRFhbGe++9R2JioitjE+GbDbHY7E461K9C6+oW2PqNeaCLityJiIiIiEj5VOhEvlu3bnzyySccO3aMRx55hDlz5lCnTh0cDgdLliwhNTXVlXFKOWR3OJl1rshdWAPYOheyzkD1ptDwajdHJyIiIiIi4h5FrlpfoUIF/vGPf7Bq1Sq2bdvG//3f//H6669Ts2ZNbrvtNlfEKOXU77sSiEs6S5UAb25pWwvWzzAPdP4HGIZ7gxMREREREXGTy95+DqB58+a8+eabHDlyhNmzZxdXTCIAzFxnFrm7t3MIfsc3QMJ28PKH0EFujkxERERERMR9riiRP8dqtTJw4EAWLFhQHLcTIfZUOiv2nABgcNf6sD5ny7k2d4F/VTdGJiIiIiIi4l7FksiLFLev18XgdMLVTYNo6H8WdnxvHujyD7fGJSIiIiIi4m5K5KXUycy2882GWACGdmsAm2eCPQtqh0LdTu4NTkRERERExM1KRSL//vvv07BhQ/z8/AgLCyMyMvKi50+dOpXmzZvj7+9PSEgITz/9NBkZGQWe+/rrr2MYBk899ZQLIhdX+GXbcU6lZVG7sh+9mwfBxs/MA9pyTkRERERExP2J/Ny5cwkPDyciIoJNmzbRvn17+vfvT0JCQoHnz5o1i+eee46IiAh27tzJ9OnTmTt3LuPHj8937vr16/noo49o166dq19DitHMtWaRu/u71Mfr4HI4fQh8K5vr40VERERERMo5tyfyU6ZM4eGHH2bkyJG0atWKadOmERAQwIwZMwo8f/Xq1fTs2ZPBgwfTsGFD+vXrx6BBg/KN4p85c4YhQ4bwySefULWqiqN5il3HU9hw+DRWi8H9XUNgQ06Ru9BB4FPBvcGJiIiIiIiUAl7ufHhWVhYbN25k3LhxuW0Wi4U+ffqwZs2aAq/p0aMHM2fOJDIykq5du3LgwAEWLlzIsGHD8pw3evRobrnlFvr06cMrr7xy0TgyMzPJzMzM/ZySkgKAzWbDZrNd7utd1Ln7uur+nigu6Swv/7gDgL4ta1It6xjOPYswAFvocNA/q1JD/Vc8mfqveDL1X/Fk6r/iyUqi/xbl3m5N5BMTE7Hb7QQHB+dpDw4OZteuXQVeM3jwYBITE+nVqxdOp5Ps7GweffTRPFPr58yZw6ZNm1i/fn2h4pg8eTIvvvhivvbFixcTEBBQhDcquiVLlrj0/p4gKRMWx1lYm2BgdxoYOGlhxHFg3n9p7nRwomJLVkfuA/a5O1T5G/Vf8WTqv+LJ1H/Fk6n/iidzZf9NT08v9LluTeQvx/Lly3nttdf44IMPCAsLY9++fYwdO5aXX36ZiRMnEhsby9ixY1myZAl+fn6Fuue4ceMIDw/P/ZySkkJISAj9+vUjMDDQJe9hs9lYsmQJffv2xdvb2yXPKO0SUjP5aOVB5mw9Qla2A4AeV1Xjqd5N6FCnAl7vPgNA1b7/x82tbnZnqPI36r/iydR/xZOp/4onU/8VT1YS/ffczPDCcGsiHxQUhNVqJT4+Pk97fHw8tWrVKvCaiRMnMmzYMB566CEA2rZtS1paGqNGjeL5559n48aNJCQk0LFjx9xr7HY7K1eu5L333iMzMxOr1Zrnnr6+vvj6+uZ7lre3t8t/yZTEM0qbk2cymbZiP1+tPUyGzUzguzaqRnjfZnRrXN08aft8SEuACjXxan07eJWvf0aeojz2Xyk71H/Fk6n/iidT/xVP5sr+W5T7ujWR9/HxoVOnTixdupSBAwcC4HA4WLp0KWPGjCnwmvT0dCyWvDX6ziXmTqeT3r17s23btjzHR44cSYsWLfjXv/6VL4mXknM6LYuP/zjAF6sPkZ5lB6Bj/Sr8X7/m9LiqOoZhnD95fU6Ru47DwcvHDdGKiIiIiIiUTm6fWh8eHs6IESPo3LkzXbt2ZerUqaSlpTFy5EgAhg8fTt26dZk8eTIAAwYMYMqUKXTo0CF3av3EiRMZMGAAVquVSpUq0aZNmzzPqFChAtWrV8/XLiUj+ayN6asOMmPVQc5kZgPQrl5lnu7bjOua1cibwAOc2AOH/gDDAp0eKPmARURERERESjG3J/L33XcfJ06cYNKkSRw/fpzQ0FAWLVqUWwAvJiYmzwj8hAkTMAyDCRMmEBcXR40aNRgwYACvvvqqu15BLiA1w8bnfx7ikz8OkJJhJvAtawcS3rcZfVrWzJ/An7MhZ+vBpv2hSkgJRSsiIiIiIuIZ3J7IA4wZM+aCU+mXL1+e57OXlxcRERFEREQU+v5/v4e4VnpWNl+sPsxHK/eTlG5uodAsuCJP92lG/9a1sFgukMADZKXDllnmz10eLIFoRUREREREPEupSOSlbMiw2Zm59jDTVuwn8UwWAI2DKjC2T1NubVcH68US+HO2zoGMZKjSAK7q7eKIRUREREREPI8SeSkWx5LPcucHqzmWnAFA/WoBjO3dlNtD6+BltVz84owU2P4/2Pw1HIk02zqPBMslrhMRERERESmHlMhLsfhu4xGOJWcQHOhLeN9m3NmxHt4XS+AdDrOgXdTXsGMBZJ812w0LtLwNujxcMoGLiIiIiIh4GCXyUiyi41IAeKhXY+7rUv/CJ54+BFGzzXXwSTHn24OaQegQaH8/VKrl2mBFREREREQ8mBJ5KRbb4pIBaF03MP/BrHTYuQA2zzRH4c/xDYQ2d0GHoVC3E1yoir2IiIiIiIjkUiIvV+x0WhZxSebU+NZ1KpuNTifErjOnzkfPh6zUnLMNaHwthA6FlreCt797ghYREREREfFQSuTlikUfNUfjG1QPoLLtBGyYDVGz4OS+8ydVbZgzdX6Q9oYXERERERG5Akrk5YpFx6VQjRTe4114ex04HeYB7wrQeqCZwNfvrir0IiIiIiIixUCJvFyx6LhkBlr/pG3aGrOhfg/oMARa3Q6+ldwbnIiIiIiISBmjRF6uWPTRZHpbDpofrv0XXD/evQGJiIiIiIiUYZrrLFck+ayNwyfTaWvkJPJ1O7s3IBERERERkTJOibxcke1Hkwkgg6ssR82GOqFujUdERERERKSsUyIvVyQ6LpmWxmEsOKFSHahY090hiYiIiIiIlGlK5OWKRMel0Pbc+vja7d0bjIiIiIiISDmgRF6uSPTR5POJvKbVi4iIiIiIuJwSeblsZzKzOZiYRmvjkNlQO9Sd4YiIiIiIiJQLSuTlsu04moKvM5OmljizQVPrRUREREREXE6JvFy2bXHJtDIOY8UBFYMhsLa7QxIRERERESnzlMjLZdsel0xryyHzg6bVi4iIiIiIlAgl8nLZtsUl09ZQxXoREREREZGSpEReLkt6Vjb7T5xRxXoREREREZESpkReLsvOYyl4O7NoajliNmhEXkREREREpEQokZfLEh2XQgsjBi8cEBAEgXXdHZKIiIiIiEi5oEReLsu2uGTanCt0VycUDMOd4YiIiIiIiJQbSuTlskTHJdNGhe5ERERERERKnBJ5KbIMm529CX8pdKet50REREREREqMEnkpsl3HU7E6smh+rtCdKtaLiIiIiIiUGCXyUmTRcck0M2LxJhv8q0LlEHeHJCIiIiIiUm4okZcii45LzjutXoXuRERERERESowSeSmy6KPJtDEOmR80rV5ERERERKREKZGXIsnMtrP7eCptLKpYLyIiIiIi4g5K5KVI9safAbuNlpYYs0EV60VEREREREqUEnkpkm1xyTQ1juBDNvhVhqoN3R2SiIiIiIhIuaJEXookOi4577R6FboTEREREREpUUrkpUii4/5S6E7T6kVEREREREqcEnkpNJvdwc7jqX/Zek6F7kREREREREqaEnkptL3xZ7Bn22hpHDYb6nRwb0AiIiIiIiLlkBJ5KbToo8k0MeLwM2zgGwhVG7k7JBERERERkXJHibwU2va45PPT6mu1A4u6j4iIiIiISElTJiaFti0umTZGTiJfJ9StsYiIiIiIiJRXSuSlUOwOJzuOpdDGcshsUMV6ERERERERt1AiL4Wy/8QZsmzZtDpX6E4V60VERERERNxCibwUSnRcMlcZRwkwMsGnIlRv4u6QREREREREyiUl8lIoedbHq9CdiIiIiIiI2ygbk0LZHpdyvmK9ptWLiIiIiIi4jRJ5uSSHw8n2o8m0sahivYiIiIiIiLspkZdLOngyjfQsG62NQ2aDRuRFRERERETcRom8XFJ0XDKNjWNUMDLBOwCCmrk7JBERERERkXJLibxcUnRc8vnR+FptwWJ1azwiIiIiIiLlmRJ5uaRoFboTEREREREpNZTIy0U5nU6ijyb/JZEPdWs8IiIiIiIi5V2pSOTff/99GjZsiJ+fH2FhYURGRl70/KlTp9K8eXP8/f0JCQnh6aefJiMjI/f45MmT6dKlC5UqVaJmzZoMHDiQ3bt3u/o1yqSYU+mcycg6P7VeFetFRERERETcyu2J/Ny5cwkPDyciIoJNmzbRvn17+vfvT0JCQoHnz5o1i+eee46IiAh27tzJ9OnTmTt3LuPHj889Z8WKFYwePZq1a9eyZMkSbDYb/fr1Iy0traReq8zYFpdMAyOeSsZZ8PKDoObuDklERERERKRc83J3AFOmTOHhhx9m5MiRAEybNo2ff/6ZGTNm8Nxzz+U7f/Xq1fTs2ZPBgwcD0LBhQwYNGsS6detyz1m0aFGeaz7//HNq1qzJxo0bueaaa1z4NmVPdFwKbY2cafXBbcDq9i4jIiIiIiJSrrk1K8vKymLjxo2MGzcut81isdCnTx/WrFlT4DU9evRg5syZREZG0rVrVw4cOMDChQsZNmzYBZ+TnJwMQLVq1Qo8npmZSWZmZu7nlJQUAGw2GzabrcjvVRjn7uuq+xeXrUdOc43lEAD2Wu1wlPJ4pWR4Sv8VKYj6r3gy9V/xZOq/4slKov8W5d5uTeQTExOx2+0EBwfnaQ8ODmbXrl0FXjN48GASExPp1asXTqeT7OxsHn300TxT6//K4XDw1FNP0bNnT9q0aVPgOZMnT+bFF1/M17548WICAgKK+FZFs2TJEpfe/0o4nRB12MronBH5rScMYhYudHNUUpqU5v4rcinqv+LJ1H/Fk6n/iidzZf9NT08v9LkeN096+fLlvPbaa3zwwQeEhYWxb98+xo4dy8svv8zEiRPznT969Giio6NZtWrVBe85btw4wsPDcz+npKQQEhJCv379CAwMdMl72Gw2lixZQt++ffH29nbJM67UkdNnSV+7kja+hwBo03cobWq1dW9QUip4Qv8VuRD1X/Fk6r/iydR/xZOVRP89NzO8MNyayAcFBWG1WomPj8/THh8fT61atQq8ZuLEiQwbNoyHHnoIgLZt25KWlsaoUaN4/vnnsVjO1+8bM2YMP/30EytXrqRevXoXjMPX1xdfX9987d7e3i7/JVMSz7hcuxMSCTESqGykgdUH79ptwKt0xiruUZr7r8ilqP+KJ1P/FU+m/iuezJX9tyj3dWvVeh8fHzp16sTSpUtz2xwOB0uXLqV79+4FXpOenp4nWQewWq2Auef5ub+PGTOG+fPns2zZMho1auSiNyjbtsUl/6XQXWvw8nFvQCIiIiIiIuL+qfXh4eGMGDGCzp0707VrV6ZOnUpaWlpuFfvhw4dTt25dJk+eDMCAAQOYMmUKHTp0yJ1aP3HiRAYMGJCb0I8ePZpZs2bxww8/UKlSJY4fPw5A5cqV8ff3d8+LeqDouBTCcgrdUTvUnaGIiIiIiIhIDrcn8vfddx8nTpxg0qRJHD9+nNDQUBYtWpRbAC8mJibPCPyECRMwDIMJEyYQFxdHjRo1GDBgAK+++mruOR9++CEA1113XZ5nffbZZzzwwAMuf6eywOl0Eh2XzIPnRuRrt3dvQCIiIiIiIgKUgkQezLXsY8aMKfDY8uXL83z28vIiIiKCiIiIC97v3BR7uXzHUzI4mZZJW9+cRL5OqFvjEREREREREZNb18hL6RUdl0JdEqlqnAGLN9Rs5e6QREREREREBCXycgHb4pJpY8kZja/ZErzyV/UXERERERGRkqdEXgq0PS6ZthZNqxcRERERESltlMhLgbbFJdPGOGR+UMV6ERERERGRUkOJvOSTkJJBQmrG+an1SuRFRERERERKDSXykk/00WRqc4ogIwUsXhDc2t0hiYiIiIiISA4l8pJPdFzK+dH4Gi3B28+9AYmIiIiIiEguJfKST56K9bXbuzcYERERERERyUOJvOSzPS6ZtoYq1ouIiIiIiJRGSuQlj5NnMjmanEEbyyGzQSPyIiIiIiIipYoSeckj+mgKNTlNTSMJDAsEt3F3SCIiIiIiIvIXSuQlj+i/ro+v0QJ8AtwbkIiIiIiIiOShRF7yiP7r+nhNqxcRERERESl1lMhLHtFH/1qxPtStsYiIiIiIiEh+SuQlV1J6FrGnzp4vdKeK9SIiIiIiIqWOEnnJtf1oCkEkU9s4BRgqdCciIiIiIlIKKZGXXNvikmljOWB+CGoGvhXdG5CIiIiIiIjko0ReckXHJdPGOGR+0LR6ERERERGRUkmJvOSKjkumrUUV60VEREREREozJfICQEqGjUMn01WxXkREREREpJRTIi8AbI9LoRop1DVOmg212ro3IBERERERESmQEnkBYPtf94+v3gT8At0bkIiIiIiIiBRIibwAORXrzxW607R6ERERERGRUkuJvAA5FetV6E5ERERERKTUUyIvpGVmcyAxjbZGTiKvredERERERERKLSXywo5jKQQ6zxBiOWE21Grn3oBERERERETkgpTIS95p9VUbgX8Vt8YjIiIiIiIiF6ZEXtgWl6xp9SIiIiIiIh5CibywPS6FNpZD5gdVrBcRERERESnVlMiXc2cys9mbkEobQxXrRUREREREPIES+XJuw6FTVHSm0dASbzYokRcRERERESnVlMiXc+sOnqL1uWn1VRpAQDW3xiMiIiIiIiIXp0S+nFt74KSm1YuIiIiIiHgQJfLlWHpWNtuOJNPWoor1IiIiIiIinkKJfDm28fBpsh1OQr0Omw0akRcRERERESn1lMiXY2sPnKQ6ydR3HjUbandwb0AiIiIiIiJySUrky7F1B05xrWWL+aF2e6hQ3b0BiYiIiIiIyCUpkS+nzmbZ2XIkiRusUWZD035ujUdEREREREQKR4l8ObUp5jQOezbXWreaDU37uzcgERERERERKRQl8uXUugMn6WjspRLp4F8N6nZ0d0giIiIiIiJSCErky6m1B09xg3Wz+aFJH7BY3RuQiIiIiIiIFIoS+XIow2YnKiaJ6yxRZkMzTasXERERERHxFErky6HNMUlUt5+gpSUWp2GBq25wd0giIiIiIiJSSErky6F1B09yXU61eqNeFwio5t6AREREREREpNCUyJdDaw+c5IZz0+q17ZyIiIiIiIhHUSJfzmRm24mOOUFPS7TZoEReRERERETEoyiRL2e2xCYT6thBgJGJs2ItqNXW3SGJiIiIiIhIESiRL2fWHTjJDRZz2zmjaV8wDDdHJCIiIiIiIkWhRL6cWXvwpLadExERERER8WBK5MuRrGwHiYd30NhyHKfFGxpd6+6QREREREREpIiUyJcj2+KS6OHYZH5o0B38At0bkIiIiIiIiBRZqUjk33//fRo2bIifnx9hYWFERkZe9PypU6fSvHlz/P39CQkJ4emnnyYjI+OK7lkerD1wiutzptUbTTWtXkRERERExBO5PZGfO3cu4eHhREREsGnTJtq3b0///v1JSEgo8PxZs2bx3HPPERERwc6dO5k+fTpz585l/Pjxl33P8mLzviOEWXaaH7TtnIiIiIiIiEdyeyI/ZcoUHn74YUaOHEmrVq2YNm0aAQEBzJgxo8DzV69eTc+ePRk8eDANGzakX79+DBo0KM+Ie1HvWR7Y7A58Yv/E18gmq1J9CGrq7pBERERERETkMni58+FZWVls3LiRcePG5bZZLBb69OnDmjVrCrymR48ezJw5k8jISLp27cqBAwdYuHAhw4YNu+x7ZmZmkpmZmfs5JSUFAJvNhs1mu+L3LMi5+7rq/n+3OTaJno6NYAFr0z7YsrNL5LlSNpV0/xUpTuq/4snUf8WTqf+KJyuJ/luUe7s1kU9MTMRutxMcHJynPTg4mF27dhV4zeDBg0lMTKRXr144nU6ys7N59NFHc6fWX849J0+ezIsvvpivffHixQQEBFzOqxXakiVLXHr/c347As9ZowCITKpKwsKFJfJcKdtKqv+KuIL6r3gy9V/xZOq/4slc2X/T09MLfa5bE/nLsXz5cl577TU++OADwsLC2LdvH2PHjuXll19m4sSJl3XPcePGER4envs5JSWFkJAQ+vXrR2Cgayq722w2lixZQt++ffH29nbJM/5q3affUdc4SbbFl853PwXe/i5/ppRdJd1/RYqT+q94MvVf8WTqv+LJSqL/npsZXhhuTeSDgoKwWq3Ex8fnaY+Pj6dWrVoFXjNx4kSGDRvGQw89BEDbtm1JS0tj1KhRPP/885d1T19fX3x9ffO1e3t7u/yXTEk8I9vuIOjYCrDA2bo9qRSgbeekeJRE/xVxFfVf8WTqv+LJ1H/Fk7my/xblvm4tdufj40OnTp1YunRpbpvD4WDp0qV07969wGvS09OxWPKGbbVaAXA6nZd1z7Ju+9EUemLuH1+hzc1ujkZERERERESuhNun1oeHhzNixAg6d+5M165dmTp1KmlpaYwcORKA4cOHU7duXSZPngzAgAEDmDJlCh06dMidWj9x4kQGDBiQm9Bf6p7lzeY9hxhq7AHA0qyvm6MRERERERGRK+H2RP6+++7jxIkTTJo0iePHjxMaGsqiRYtyi9XFxMTkGYGfMGEChmEwYcIE4uLiqFGjBgMGDODVV18t9D3Lm/Rdv+FlODgd0IiqVRu6OxwRERERERG5Am5P5AHGjBnDmDFjCjy2fPnyPJ+9vLyIiIggIiLisu9ZntgdTuomrAQDsq/SaLyIiIiIiIinc+saeXG9nUeT6MFmAKqF3urmaERERERERORKKZEv4/ZtWUUNI4WzRgDWBuWz2J+IiIiIiEhZokS+jDP2LgHgWFA38PJxczQiIiIiIiJypZTIl2EOh5PGSX8C4N3iRjdHIyIiIiIiIsVBiXwZtufgAVo79wNQu5PWx4uIiIiIiJQFSuTLsISNP2MxnBzyboJXlbruDkdERERERESKgRL5Msw/ZikAiXWudXMkIiIiIiIiUlyUyJdRjmwbzc+sB6BS25vdHI2IiIiIiIgUFyXyZVTsthUEkkaSsyKN22tEXkREREREpKxQIl9GpWz9GYAdFbrg7e3t5mhERERERESkuCiRL6Oqxi0H4Ez93u4NRERERERERIqVEvkyyJl8hHpZB3A4DWqEan28iIiIiIhIWaJEvgxK2PQjAFtoQusmjdwcjYiIiIiIiBQnJfJlUNbOXwHYW7kHPl76VywiIiIiIlKWKMsra7IzqXliDQD2q/q6ORgREREREREpbkrkyxjnoT/xdWYQ76xC4zbd3R2OiIiIiIiIFDMl8mVM8jZz27mVzlDa16/q5mhERERERESkuCmRL2Ms+5YAEFO9F37eVjdHIyIiIiIiIsVNiXxZcnI/gWmHsTmt+DXT/vEiIiIiIiJlkRL5MsS5dzEA6x3N6dCsvpujEREREREREVdQIl+GnN2xCICVdKSj1seLiIiIiIiUSUrky4qsNHyPrAYgPvgarY8XEREREREpo5TIlxUHV2J1ZBHrqEG9pu3dHY2IiIiIiIi4iBL5MsK5x1wf/7sjlG5XBbk5GhEREREREXEVJfJlgdOJfc+vAKykg9bHi4iIiIiIlGFK5MuCE7vwSo0jw+lNWp3u+PtofbyIiIiIiEhZpUS+LMgZjV/jaEXHq+q4ORgRERERERFxJSXyZcHeJQAsc3QgrFF1NwcjIiIiIiIirqRE3tNlJOOMWQPAH85QOjXQ+ngREREREZGyTIm8p9u/DMNpZ5+jDlXqNqOCr5e7IxIREREREREXUiLv6XKm1f/uCKVbY02rFxERERERKeuUyHsyhyPv+vjG1dwckIiIiIiIiLiaEnlPdiwK0hI44/Rjk7M5nbU+XkREREREpMxTIu/JckbjVzna0qJudSr5ebs5IBEREREREXE1JfKe7OgmAJY5QgnT+ngREREREZFyQYm8Jxs0hwf93uZXexfCGml9vIiIiIiISHmgvco8WHxqJkuTgrEY0LmhEnkREREREZHyQCPyHmztgZMAtKoTSGV/rY8XEREREREpD5TIe7C1B04BENZI6+NFRERERETKCyXyHqx+tQBa1g6kuwrdiYiIiIiIlBtaI+/BHrvuKh677ip3hyEiIiIiIiIlSCPyIiIiIiIiIh5EibyIiIiIiIiIB1EiLyIiIiIiIuJBlMiLiIiIiIiIeBAl8iIiIiIiIiIeRIm8iIiIiIiIiAdRIi8iIiIiIiLiQZTIi4iIiIiIiHgQJfIiIiIiIiIiHkSJvIiIiIiIiIgHKRWJ/Pvvv0/Dhg3x8/MjLCyMyMjIC5573XXXYRhGvr9uueWW3HPOnDnDmDFjqFevHv7+/rRq1Ypp06aVxKuIiIiIiIiIuJTbE/m5c+cSHh5OREQEmzZton379vTv35+EhIQCz//f//7HsWPHcv+Kjo7GarVyzz335J4THh7OokWLmDlzJjt37uSpp55izJgxLFiwoKReS0RERERERMQl3J7IT5kyhYcffpiRI0fmjpwHBAQwY8aMAs+vVq0atWrVyv1ryZIlBAQE5EnkV69ezYgRI7juuuto2LAho0aNon379hcd6RcRERERERHxBF7ufHhWVhYbN25k3LhxuW0Wi4U+ffqwZs2aQt1j+vTp3H///VSoUCG3rUePHixYsIB//OMf1KlTh+XLl7Nnzx7efvvtAu+RmZlJZmZm7ueUlBQAbDYbNpvtcl7tks7d11X3F3El9V/xZOq/4snUf8WTqf+KJyuJ/luUe7s1kU9MTMRutxMcHJynPTg4mF27dl3y+sjISKKjo5k+fXqe9nfffZdRo0ZRr149vLy8sFgsfPLJJ1xzzTUF3mfy5Mm8+OKL+doXL15MQEBAEd6o6JYsWeLS+4u4kvqveDL1X/Fk6r/iydR/xZO5sv+mp6cX+ly3JvJXavr06bRt25auXbvmaX/33XdZu3YtCxYsoEGDBqxcuZLRo0dTp04d+vTpk+8+48aNIzw8PPdzSkoKISEh9OvXj8DAQJfEbrPZWLJkCX379sXb29slzxBxFfVf8WTqv+LJ1H/Fk6n/iicrif57bmZ4Ybg1kQ8KCsJqtRIfH5+nPT4+nlq1al302rS0NObMmcNLL72Up/3s2bOMHz+e+fPn51ayb9euHVFRUfz73/8uMJH39fXF19c3X7u3t7fLf8mUxDNEXEX9VzyZ+q94MvVf8WTqv+LJXNl/i3Jftxa78/HxoVOnTixdujS3zeFwsHTpUrp3737Ra+fNm0dmZiZDhw7N035uXbvFkvfVrFYrDoej+IIXERERERERcQO3T60PDw9nxIgRdO7cma5duzJ16lTS0tIYOXIkAMOHD6du3bpMnjw5z3XTp09n4MCBVK9ePU97YGAg1157Lf/85z/x9/enQYMGrFixgi+//JIpU6YUKian0wkUbWpDUdlsNtLT00lJSdE3kuJx1H/Fk6n/iidT/xVPpv4rnqwk+u+5/PNcPnoxbk/k77vvPk6cOMGkSZM4fvw4oaGhLFq0KLcAXkxMTL7R9d27d7Nq1SoWL15c4D3nzJnDuHHjGDJkCKdOnaJBgwa8+uqrPProo4WKKTU1FYCQkJAreDMRERERERGRoklNTaVy5coXPcdwFibdL2ccDgdHjx6lUqVKGIbhkmecK6gXGxvrsoJ6Iq6i/iueTP1XPJn6r3gy9V/xZCXRf51OJ6mpqdSpUyffYPbfuX1EvjSyWCzUq1evRJ4VGBioX2TisdR/xZOp/4onU/8VT6b+K57M1f33UiPx57i12J2IiIiIiIiIFI0SeREREREREREPokTeTXx9fYmIiChw/3qR0k79VzyZ+q94MvVf8WTqv+LJSlv/VbE7EREREREREQ+iEXkRERERERERD6JEXkRERERERMSDKJEXERERERER8SBK5EVEREREREQ8iBJ5N3j//fdp2LAhfn5+hIWFERkZ6e6QRAq0cuVKBgwYQJ06dTAMg++//z7PcafTyaRJk6hduzb+/v706dOHvXv3uidYkb+YPHkyXbp0oVKlStSsWZOBAweye/fuPOdkZGQwevRoqlevTsWKFbnrrruIj493U8QieX344Ye0a9eOwMBAAgMD6d69O7/88kvucfVf8RSvv/46hmHw1FNP5bap/0pp9sILL2AYRp6/WrRokXu8tPRfJfIlbO7cuYSHhxMREcGmTZto3749/fv3JyEhwd2hieSTlpZG+/btef/99ws8/uabb/LOO+8wbdo01q1bR4UKFejfvz8ZGRklHKlIXitWrGD06NGsXbuWJUuWYLPZ6NevH2lpabnnPP300/z444/MmzePFStWcPToUe688043Ri1yXr169Xj99dfZuHEjGzZs4IYbbuD2229n+/btgPqveIb169fz0Ucf0a5duzzt6r9S2rVu3Zpjx47l/rVq1arcY6Wm/zqlRHXt2tU5evTo3M92u91Zp04d5+TJk90YlcilAc758+fnfnY4HM5atWo533rrrdy2pKQkp6+vr3P27NluiFDkwhISEpyAc8WKFU6n0+yr3t7eznnz5uWes3PnTifgXLNmjbvCFLmoqlWrOj/99FP1X/EIqampzqZNmzqXLFnivPbaa51jx451Op36/SulX0REhLN9+/YFHitN/Vcj8iUoKyuLjRs30qdPn9w2i8VCnz59WLNmjRsjEym6gwcPcvz48Tz9uXLlyoSFhak/S6mTnJwMQLVq1QDYuHEjNpstT/9t0aIF9evXV/+VUsdutzNnzhzS0tLo3r27+q94hNGjR3PLLbfk6aeg37/iGfbu3UudOnVo3LgxQ4YMISYmBihd/derRJ9WziUmJmK32wkODs7THhwczK5du9wUlcjlOX78OECB/fncMZHSwOFw8NRTT9GzZ0/atGkDmP3Xx8eHKlWq5DlX/VdKk23bttG9e3cyMjKoWLEi8+fPp1WrVkRFRan/Sqk2Z84cNm3axPr16/Md0+9fKe3CwsL4/PPPad68OceOHePFF1/k6quvJjo6ulT1XyXyIiJSpo0ePZro6Og869tEPEHz5s2JiooiOTmZb7/9lhEjRrBixQp3hyVyUbGxsYwdO5YlS5bg5+fn7nBEiuymm27K/bldu3aEhYXRoEEDvvnmG/z9/d0YWV6aWl+CgoKCsFqt+aoaxsfHU6tWLTdFJXJ5zvVZ9WcpzcaMGcNPP/3E77//Tr169XLba9WqRVZWFklJSXnOV/+V0sTHx4cmTZrQqVMnJk+eTPv27fnvf/+r/iul2saNG0lISKBjx454eXnh5eXFihUreOedd/Dy8iI4OFj9VzxKlSpVaNasGfv27StVv3+VyJcgHx8fOnXqxNKlS3PbHA4HS5cupXv37m6MTKToGjVqRK1atfL055SUFNatW6f+LG7ndDoZM2YM8+fPZ9myZTRq1CjP8U6dOuHt7Z2n/+7evZuYmBj1Xym1HA4HmZmZ6r9SqvXu3Ztt27YRFRWV+1fnzp0ZMmRI7s/qv+JJzpw5w/79+6ldu3ap+v2rqfUlLDw8nBEjRtC5c2e6du3K1KlTSUtLY+TIke4OTSSfM2fOsG/fvtzPBw8eJCoqimrVqlG/fn2eeuopXnnlFZo2bUqjRo2YOHEiderUYeDAge4LWgRzOv2sWbP44YcfqFSpUu66tcqVK+Pv70/lypV58MEHCQ8Pp1q1agQGBvLEE0/QvXt3unXr5uboRWDcuHHcdNNN1K9fn9TUVGbNmsXy5cv59ddf1X+lVKtUqVJuPZJzKlSoQPXq1XPb1X+lNHvmmWcYMGAADRo04OjRo0RERGC1Whk0aFCp+v2rRL6E3XfffZw4cYJJkyZx/PhxQkNDWbRoUb6CYSKlwYYNG7j++utzP4eHhwMwYsQIPv/8c5599lnS0tIYNWoUSUlJ9OrVi0WLFmlNnLjdhx9+CMB1112Xp/2zzz7jgQceAODtt9/GYrFw1113kZmZSf/+/fnggw9KOFKRgiUkJDB8+HCOHTtG5cqVadeuHb/++it9+/YF1H/Fs6n/Sml25MgRBg0axMmTJ6lRowa9evVi7dq11KhRAyg9/ddwOp3OEn+qiIiIiIiIiFwWrZEXERERERER8SBK5EVEREREREQ8iBJ5EREREREREQ+iRF5ERERERETEgyiRFxEREREREfEgSuRFREREREREPIgSeREREREREREPokReRERERERExIMokRcRERG3MwyD77//3t1hiIiIeAQl8iIiIuXcAw88gGEY+f668cYb3R2aiIiIFMDL3QGIiIiI+91444189tlnedp8fX3dFI2IiIhcjEbkRUREBF9fX2rVqpXnr6pVqwLmtPcPP/yQm266CX9/fxo3bsy3336b5/pt27Zxww034O/vT/Xq1Rk1ahRnzpzJc86MGTNo3bo1vr6+1K5dmzFjxuQ5npiYyB133EFAQABNmzZlwYIFrn1pERERD6VEXkRERC5p4sSJ3HXXXWzZsoUhQ4Zw//33s3PnTgDS0tLo378/VatWZf369cybN4/ffvstT6L+4YcfMnr0aEaNGsW2bdtYsGABTZo0yfOMF198kXvvvZetW7dy8803M2TIEE6dOlWi7ykiIuIJDKfT6XR3ECIiIuI+DzzwADNnzsTPzy9P+/jx4xk/fjyGYfDoo4/y4Ycf5h7r1q0bHTt25IMPPuCTTz7hX//6F7GxsVSoUAGAhQsXMmDAAI4ePUpwcDB169Zl5MiRvPLKKwXGYBgGEyZM4OWXXwbMLwcqVqzIL7/8orX6IiIif6M18iIiIsL111+fJ1EHqFatWu7P3bt3z3Ose/fuREVFAbBz507at2+fm8QD9OzZE4fDwe7duzEMg6NHj9K7d++LxtCuXbvcnytUqEBgYCAJCQmX+0oiIiJllhJ5ERERoUKFCvmmuhcXf3//Qp3n7e2d57NhGDgcDleEJCIi4tG0Rl5EREQuae3atfk+t2zZEoCWLVuyZcsW0tLSco//+eefWCwWmjdvTqVKlWjYsCFLly4t0ZhFRETKKo3Ii4iICJmZmRw/fjxPm5eXF0FBQQDMmzePzp0706tXL77++msiIyOZPn06AEOGDCEiIoIRI0bwwgsvcOLECZ544gmGDRtGcHAwAC+88AKPPvooNWvW5KabbiI1NZU///yTJ554omRfVEREpAxQIi8iIiIsWrSI2rVr52lr3rw5u3btAsyK8nPmzOHxxx+ndu3azJ49m1atWgEQEBDAr7/+ytixY+nSpQsBAQHcddddTJkyJfdeI0aMICMjg7fffptnnnmGoKAg7r777pJ7QRERkTJEVetFRETkogzDYP78+QwcONDdoYiIiAhaIy8iIiIiIiLiUZTIi4iIiIiIiHgQrZEXERGRi9IqPBERkdJFI/IiIiIiIiIiHkSJvIiIiIiIiIgHUSIvIiIiIiIi4kGUyIuIiIiIiIh4ECXyIiIiIiIiIh5EibyIiIiIiIiIB1EiLyIiIiIiIuJBlMiLiIiIiIiIeJD/BweITaknTdjoAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot Training vs Cross Validation score\n", "plt.figure(figsize=(12, 6))\n", "plt.plot(epochs, train_accuracies, label='Training Accuracy')\n", "plt.plot(epochs, val_accuracies, label='Validation Accuracy')\n", "plt.xlabel('Epoch')\n", "plt.ylabel('Accuracy')\n", "plt.title('Training vs. Validation Accuracy for TabNet')\n", "plt.legend()\n", "plt.grid(True)\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plot Testing vs. Validation Learning Curve" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAIjCAYAAACgdyAGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADPN0lEQVR4nOzdd3xT1fvA8U+SjnSXTkpb6GCvsqcsmbKRDYLiFhfiVhDH163oz4WCAoqAbBBFhsjee5UNbaGFlgIddKbJ/f2RJlA66Eibjuf9evWlTc495yS9ueS555znqBRFURBCCCGEEEIIIUSFoLZ2B4QQQgghhBBCCFF4EsgLIYQQQgghhBAViATyQgghhBBCCCFEBSKBvBBCCCGEEEIIUYFIIC+EEEIIIYQQQlQgEsgLIYQQQgghhBAViATyQgghhBBCCCFEBSKBvBBCCCGEEEIIUYFIIC+EEEIIIYQQQlQgEsgLIUQ58O6776JSqazdDVGFRUREoFKpmDt3rvmxopyXKpWKd99916J96tq1K127drVonaLsxMbGMmzYMDw9PVGpVHz99dfW7tI9mc75+Ph4a3dFCCEKJIG8EKJKU6lUhfrZvHlzidtKTU3l3XfftUhdpWXEiBGoVCpef/11a3dFFGDgwIE4OjqSnJycb5mxY8diZ2fH9evXy7BnRRceHs67775LRESEtbuSpzVr1qBSqahRowYGg8Ha3alQXnrpJdatW8ebb77JvHnz6NOnT6m088gjjxTqOv7II49YtN2goCBUKhXPP/98ruc2b96MSqVi6dKlRa43JiaGd999l8OHD1ugl0KIysrG2h0QQghrmjdvXo7ff/vtNzZs2JDr8QYNGpS4rdTUVN577z2AXKOMU6ZM4Y033ihxGyWRlJTE6tWrCQoKYuHChXzyyScyS6CcGjt2LKtXr2bFihWMHz8+1/OpqamsWrWKPn364OnpWex2yuK8DA8P57333qNr164EBQXleG79+vWl2nZhzJ8/n6CgICIiIvjvv//o0aOHtbtUYfz3338MGjSIV155pVTbeeqpp3L8XS5evMg777zDk08+SadOncyPh4aGlkr7s2bN4s0336RGjRoWqS8mJob33nuPoKAgmjVrZpE6hRCVjwTyQogq7aGHHsrx++7du9mwYUOux0ubjY0NNjbWvSQvW7YMvV7P7Nmzuf/++9m6dStdunSxap/yoigK6enpODg4WLsrVjNw4EBcXFxYsGBBnoH8qlWrSElJYezYsSVqx9rnpZ2dndXaBkhJSWHVqlV8/PHHzJkzh/nz55fbQD4lJQUnJydrdyOHuLg43N3dLVZfeno6dnZ2qNU5J5S2b9+e9u3bm3/fv38/77zzDu3bty/1a3mjRo04ffo0n3zyCd98802ptiWEEHeSqfVCCHEPBoOBr7/+mkaNGqHVavH19eWpp57i5s2bOcrt37+f3r174+XlhYODA8HBwTz66KOAcf2xt7c3AO+99555qqdpTXFea5FVKhXPPfccK1eupHHjxtjb29OoUSPWrl2bq4+bN2+mVatWaLVaQkND+emnn4q87n7+/Pn07NmTbt260aBBA+bPn59nuVOnTjFixAi8vb1xcHCgXr16vP322znKREdH89hjj1GjRg3s7e0JDg7mmWeeITMzM9/XCzB37lxUKlWOadZBQUH079+fdevW0apVKxwcHPjpp58AmDNnDvfffz8+Pj7Y29vTsGFDZsyYkWe///nnH7p06YKLiwuurq60bt2aBQsWADBt2jRsbW25du1aruOefPJJ3N3dSU9Pz7PeL774ApVKRWRkZK7n3nzzTezs7MznytmzZxk6dCjVq1dHq9USEBDAqFGjSExMzLPu/Dg4OPDggw+yceNG4uLicj2/YMECXFxcGDhwIDdu3OCVV16hSZMmODs74+rqygMPPMCRI0fu2U5ef6eMjAxeeuklvL29zW1cvnw517GRkZFMnDiRevXq4eDggKenJ8OHD8/xt507dy7Dhw8HoFu3brmWsuS1Rj4uLo7HHnsMX19ftFotYWFh/PrrrznKmNb7f/HFF8ycOZPQ0FDs7e1p3bo1+/btu+frNlmxYgVpaWkMHz6cUaNGsXz58jzPg/T0dN59913q1q2LVqvFz8+PBx98kPPnz5vLGAwG/u///o8mTZqg1Wrx9vamT58+7N+/P0ef78xRYHJ3/gHT3yU8PJwxY8ZQrVo17rvvPgCOHj3KI488QkhICFqtlurVq/Poo4/mucSioM/phQsXUKlUfPXVV7mO27lzJyqVioULF+b5vpk+x4qi8P3335v/riYXLlxg+PDheHh44OjoSLt27fj7779z1GGamv7HH38wZcoU/P39cXR0JCkpKc8276Uo7wtAfHw8I0aMwNXVFU9PT1588cU8//ZBQUGMHz+eWbNmERMTc89+REdH8+ijj+Lr62u+ps+ePTvH627dujUAEyZMML93eZ0XQoiqTUbkhRDiHp566inmzp3LhAkTeOGFF7h48SLfffcdhw4dYseOHdja2hIXF0evXr3w9vbmjTfewN3dnYiICJYvXw6At7c3M2bM4JlnnmHIkCE8+OCDADRt2rTAtrdv387y5cuZOHEiLi4ufPPNNwwdOpSoqCjzlOlDhw7Rp08f/Pz8eO+999Dr9bz//vvmGweFERMTw6ZNm8wB0ejRo/nqq6/47rvvcoyKHj16lE6dOmFra8uTTz5JUFAQ58+fZ/Xq1Xz44Yfmutq0aUNCQgJPPvkk9evXJzo6mqVLl5KamlqsUdbTp08zevRonnrqKZ544gnq1asHwIwZM2jUqBEDBw7ExsaG1atXM3HiRAwGA88++6z5+Llz5/Loo4/SqFEj3nzzTdzd3Tl06BBr165lzJgxjBs3jvfff59Fixbx3HPPmY/LzMxk6dKlDB06FK1Wm2ffRowYwWuvvcbixYt59dVXczy3ePFievXqRbVq1cjMzKR3795kZGTw/PPPU716daKjo/nrr79ISEjAzc2tSO/J2LFj+fXXX1m8eHGOPt+4cYN169YxevRoHBwcOHHiBCtXrmT48OEEBwcTGxvLTz/9RJcuXQgPDy/ydODHH3+c33//nTFjxtChQwf+++8/+vXrl6vcvn372LlzJ6NGjSIgIICIiAhmzJhB165dCQ8Px9HRkc6dO/PCCy/wzTff8NZbb5mXsOS3lCUtLY2uXbty7tw5nnvuOYKDg1myZAmPPPIICQkJvPjiiznKL1iwgOTkZJ566ilUKhWfffYZDz74IBcuXMDW1vaer3X+/Pl069aN6tWrM2rUKN544w1Wr15tvvkAoNfr6d+/Pxs3bmTUqFG8+OKLJCcns2HDBo4fP26ezv3YY48xd+5cHnjgAR5//HGysrLYtm0bu3fvplWrVoV+/+80fPhw6tSpw0cffYSiKABs2LCBCxcuMGHCBKpXr86JEyeYOXMmJ06cYPfu3eaA+l6f05CQEDp27Mj8+fN56aWXcr0vLi4uDBo0KM9+de7cmXnz5jFu3Dh69uyZY9ZIbGwsHTp0IDU1lRdeeAFPT09+/fVXBg4cyNKlSxkyZEiOuj744APs7Ox45ZVXyMjIKPYsjcK+LyYjRowgKCiIjz/+mN27d/PNN99w8+ZNfvvtt1x1v/322/z222/3HJWPjY2lXbt25pu03t7e/PPPPzz22GMkJSUxadIkGjRowPvvv59raUCHDh2K9bqFEJWYIoQQwuzZZ59V7rw0btu2TQGU+fPn5yi3du3aHI+vWLFCAZR9+/blW/e1a9cUQJk2bVqu56ZNm6bcfUkGFDs7O+XcuXPmx44cOaIAyrfffmt+bMCAAYqjo6MSHR1tfuzs2bOKjY1Nrjrz88UXXygODg5KUlKSoiiKcubMGQVQVqxYkaNc586dFRcXFyUyMjLH4waDwfz/48ePV9RqdZ7vhalcXq9XURRlzpw5CqBcvHjR/FitWrUUQFm7dm2u8qmpqbke6927txISEmL+PSEhQXFxcVHatm2rpKWl5dvv9u3bK23bts3x/PLlyxVA2bRpU6527tS+fXulZcuWOR7bu3evAii//faboiiKcujQIQVQlixZUmBdhZWVlaX4+fkp7du3z/H4jz/+qADKunXrFEVRlPT0dEWv1+coc/HiRcXe3l55//33czwGKHPmzDE/dvff6fDhwwqgTJw4MUd9Y8aMyXVu5/W32bVrV473RFEUZcmSJfm+x126dFG6dOli/v3rr79WAOX33383P5aZmam0b99ecXZ2Np+/ptfi6emp3Lhxw1x21apVCqCsXr06V1t3i42NVWxsbJRZs2aZH+vQoYMyaNCgHOVmz56tAMr06dNz1WE6v/777z8FUF544YV8y+T1/pvc/d6a/i6jR4/OVTav933hwoUKoGzdutX8WGE+pz/99JMCKCdPnjQ/l5mZqXh5eSkPP/xwruPy6vezzz6b47FJkyYpgLJt2zbzY8nJyUpwcLASFBRkPlc3bdqkAEpISEier6kg+/bty/VeFvZ9Mb23AwcOzFF24sSJCqAcOXLE/FitWrWUfv36KYqiKBMmTFC0Wq0SExOTo/93ft4fe+wxxc/PT4mPj89R96hRoxQ3NzdzH/PqvxBC3E2m1gshRAGWLFmCm5sbPXv2JD4+3vzTsmVLnJ2d2bRpE4B5Hehff/2FTqezWPs9evTIkaCpadOmuLq6cuHCBcA4Gvjvv/8yePDgHCOrtWvX5oEHHih0O/Pnz6dfv364uLgAUKdOHVq2bJljev21a9fYunUrjz76KDVr1sxxvGk0y2AwsHLlSgYMGJDnKGNxk+cFBwfTu3fvXI/fuU4+MTGR+Ph4unTpwoULF8zT1Tds2EBycjJvvPFGrlH1O/szfvx49uzZk2M69Pz58wkMDLxnroCRI0dy4MCBHMcuWrQIe3t786ilacR93bp1pKamFval50uj0TBq1Ch27dqVY7r6ggUL8PX1pXv37gDY29ub1xTr9XquX7+Os7Mz9erV4+DBg0Vqc82aNQC88MILOR6fNGlSrrJ3/m10Oh3Xr1+ndu3auLu7F7ndO9uvXr06o0ePNj9ma2vLCy+8wK1bt9iyZUuO8iNHjqRatWrm302jm6bPT0H++OMP1Go1Q4cONT82evRo/vnnnxzLapYtW4aXl1eemctN59eyZctQqVRMmzYt3zLF8fTTT+d67M73PT09nfj4eNq1awdgft8L+zkdMWIEWq02x3Vg3bp1xMfHF3vt+Zo1a2jTpo15KQCAs7MzTz75JBEREYSHh+co//DDD1skH0Zh3pc73TmjBzD/fU2fgbtNmTKFrKwsPvnkkzyfVxSFZcuWMWDAABRFyfHvSe/evUlMTCz250IIUTVJIC+EEAU4e/YsiYmJ+Pj44O3tnePn1q1b5vXJXbp0YejQobz33nt4eXkxaNAg5syZQ0ZGRonavztgBqhWrZo5kIiLiyMtLY3atWvnKpfXY3k5efIkhw4domPHjpw7d87807VrV/766y/zmlRT8NO4ceN867p27RpJSUkFlimO4ODgPB/fsWMHPXr0wMnJCXd3d7y9vXnrrbcAzIG8Kbi+V59GjhyJvb29OWhJTEzkr7/+YuzYsfcMtoYPH45arWbRokWA8Uv7kiVLeOCBB3B1dTW/hsmTJ/Pzzz/j5eVF7969+f7774u8Pv5OpmR2prX+ly9fZtu2bYwaNQqNRgMYg7avvvqKOnXqYG9vj5eXF97e3hw9erTIbUdGRqJWq3Nl/zYtdbhTWloa77zzDoGBgTnaTUhIKPZrjoyMpE6dOrmSnZmm4t+dp+Duz48pqL87v0Vefv/9d9q0acP169fNn4nmzZuTmZnJkiVLzOXOnz9PvXr1CkwKeP78eWrUqIGHh8c92y2KvD4XN27c4MUXX8TX1xcHBwe8vb3N5Uzve2E/p+7u7gwYMMB8foHx5pa/vz/3339/sfocGRmZ5/mS398wv89+URXmfblTnTp1cvweGhqKWq3Od5vEkJAQxo0bx8yZM7ly5Uqu569du0ZCQgIzZ87M9W/JhAkTAPLMdyGEEPmRNfJCCFEAg8GAj49PvonfTOvQTfsF7969m9WrV7Nu3ToeffRRvvzyS3bv3o2zs3Ox2jcFY3dTstfDWsLvv/8OGPd8vnstLBhHE01fNC0lv8BYr9fn+XheI3Lnz5+ne/fu1K9fn+nTpxMYGIidnR1r1qzhq6++KvKe39WqVaN///7Mnz+fd955h6VLl5KRkVGokccaNWrQqVMnFi9ezFtvvcXu3buJiori008/zVHuyy+/5JFHHmHVqlWsX7+eF154wbwGNyAgoEj9BWjZsiX169dn4cKFvPXWWyxcuBBFUXJkq//oo4+YOnUqjz76KB988AEeHh6o1WomTZpUqvuiP//888yZM4dJkybRvn173NzcUKlUjBo1qsz2Yy/u5+fs2bPmpHh3B3RgDGaffPLJknfwDkX9TEDen4sRI0awc+dOXn31VZo1a4azszMGg4E+ffoU630fP348S5YsYefOnTRp0oQ///yTiRMn5rqZUlostTtFSd+XwsycePvtt5k3bx6ffvopgwcPzvGcqY2HHnqIhx9+OM/j75UzRQgh7iSBvBBCFCA0NJR///2Xjh07FuoLZbt27WjXrh0ffvghCxYsYOzYsfzxxx88/vjjpbInu4+PD1qtlnPnzuV6Lq/H7qYoCgsWLKBbt25MnDgx1/MffPAB8+fPZ8KECYSEhABw/PjxfOvz9vbG1dW1wDJwe2Q0ISEhx/ZUeWV+z8/q1avJyMjgzz//zDHyalruYGIaPT5+/Pg9ZymMHz+eQYMGsW/fPubPn0/z5s1p1KhRofozcuRIJk6cyOnTp1m0aBGOjo4MGDAgV7kmTZrQpEkTpkyZws6dO+nYsSM//vgj//vf/wrVzt3Gjh3L1KlTOXr0KAsWLKBOnTrmrNcAS5cupVu3bvzyyy85jktISMDLy6tIbdWqVQuDwWAehTY5ffp0rrJLly7l4Ycf5ssvvzQ/lp6eTkJCQo5yRflc1KpVi6NHj2IwGHIEkqdOnTI/bwnz58/H1taWefPm5boZsH37dr755huioqKoWbMmoaGh7NmzB51Ol28CvdDQUNatW8eNGzfyHZW/8zNxp6J8Jm7evMnGjRt57733eOedd8yPnz17Nke5wn5OAfr06YO3tzfz58+nbdu2pKamMm7cuEL36W61atXK83yx9N/wToV9X+509uzZHLMBzp07h8FgICgoKN9jQkNDeeihh/jpp59o27ZtjudMuzzo9fp7bmFYGv9WCCEqH5laL4QQBRgxYgR6vZ4PPvgg13NZWVnmL903b97MNcrXrFkzAPP0ekdHRyD3F/WS0Gg09OjRg5UrV+bY+ujcuXP8888/9zx+x44dREREMGHCBIYNG5brZ+TIkWzatImYmBi8vb3p3Lkzs2fPJioqKkc9pteuVqsZPHgwq1evNm+rlVc5U3C9detW83MpKSm5thG712u/s04wTpGdM2dOjnK9evXCxcWFjz/+ONf2UXf/zR544AG8vLz49NNP2bJlS5HWAQ8dOhSNRsPChQtZsmQJ/fv3z7Gvd1JSEllZWTmOadKkCWq1OscSjKioKHNQUxim0fd33nmHw4cP59o7XqPR5HqdS5YsITo6utBtmJjyLtydmfvrr7/OVTavdr/99ttcI8ym96gwn4u+ffty9epV8xIGMH4Ov/32W5ydne+Zy6Cw5s+fT6dOnRg5cmSuz4RpZwLT1mtDhw4lPj6e7777Llc9ptc/dOhQFEXhvffey7eMq6srXl5eOT4TAD/88EOh+53XZwJy/30K+zkFsLGxYfTo0SxevJi5c+fSpEmTEo0c9+3bl71797Jr1y7zYykpKcycOZOgoCAaNmxY7LrzU9j35U7ff/99jt+//fZbgHvmHpkyZQo6nY7PPvssVx+GDh3KsmXL8ryBcufWl0X5TAghqi4ZkRdCiAJ06dKFp556io8//pjDhw/Tq1cvbG1tOXv2LEuWLOH//u//GDZsGL/++is//PADQ4YMITQ0lOTkZGbNmoWrqyt9+/YFjFNEGzZsyKJFi6hbty4eHh40bty4xOvJ3333XdavX0/Hjh155pln0Ov1fPfddzRu3JjDhw8XeOz8+fPRaDR5bh8GMHDgQN5++23++OMPJk+ezDfffMN9991HixYtePLJJwkODiYiIoK///7b3NZHH33E+vXr6dKlC08++SQNGjTgypUrLFmyhO3bt+Pu7k6vXr2oWbMmjz32GK+++ioajYbZs2fj7e2d6yZBfnr16oWdnR0DBgzgqaee4tatW8yaNQsfH58ca1RdXV356quvePzxx2ndurV53+0jR46Qmpqa4+aBra0to0aN4rvvvkOj0eRIqnYvPj4+dOvWjenTp5OcnMzIkSNzPP/ff//x3HPPMXz4cOrWrUtWVpZ5xPfOhGrjx49ny5YthV4+ERwcTIcOHVi1ahVArkC+f//+vP/++0yYMIEOHTpw7Ngx5s+fb55hURTNmjVj9OjR/PDDDyQmJtKhQwc2btyY5+yP/v37M2/ePNzc3GjYsCG7du3i33//NW+beGedGo2GTz/9lMTEROzt7bn//vvx8fHJVeeTTz7JTz/9xCOPPMKBAwcICgpi6dKl7Nixg6+//tqcrLEk9uzZY97eLi/+/v60aNGC+fPn8/rrrzN+/Hh+++03Jk+ezN69e+nUqRMpKSn8+++/TJw4kUGDBtGtWzfGjRvHN998w9mzZ83Tubdt20a3bt3MbT3++ON88sknPP7447Rq1YqtW7dy5syZQvfd1dWVzp0789lnn6HT6fD392f9+vVcvHgxV9nCfE5Nxo8fzzfffMOmTZtyLRcpqjfeeIOFCxfywAMP8MILL+Dh4cGvv/7KxYsXWbZsWalM2S/K+2Jy8eJFBg4cSJ8+fdi1a5d5y8WwsLAC2zKNyud1U/KTTz5h06ZNtG3blieeeIKGDRty48YNDh48yL///suNGzfMdbi7u/Pjjz/i4uKCk5MTbdu2tVi+ACFEJVGmOfKFEKKcu3v7OZOZM2cqLVu2VBwcHBQXFxelSZMmymuvvWbeaujgwYPK6NGjlZo1ayr29vaKj4+P0r9/f2X//v056tm5c6fSsmVLxc7OLseWUvltP3f31k2KYtzy6O6tnzZu3Kg0b95csbOzU0JDQ5Wff/5ZefnllxWtVpvva83MzFQ8PT2VTp06FfieBAcHK82bNzf/fvz4cWXIkCGKu7u7otVqlXr16ilTp07NcUxkZKQyfvx4xdvbW7G3t1dCQkKUZ599VsnIyDCXOXDggNK2bVvFzs5OqVmzpjJ9+vR8t58zbfF0tz///FNp2rSpotVqlaCgIOXTTz81bwd2Zx2msh06dFAcHBwUV1dXpU2bNsrChQtz1WnaNq5Xr14Fvi95mTVrlgIoLi4uuba6u3DhgvLoo48qoaGhilarVTw8PJRu3bop//77b45yXbp0KfS2gSbff/+9Aiht2rTJ9Vx6erry8ssvK35+foqDg4PSsWNHZdeuXbm2divM9nOKoihpaWnKCy+8oHh6eipOTk7KgAEDlEuXLuXaIu3mzZvKhAkTFC8vL8XZ2Vnp3bu3curUqTzP31mzZikhISGKRqPJsRXd3X1UFOO2cKZ67ezslCZNmuTapsv0Wj7//PNc78fd/bzb888/rwDK+fPn8y3z7rvv5tiKLDU1VXn77beV4OBgxdbWVqlevboybNiwHHVkZWUpn3/+uVK/fn3Fzs5O8fb2Vh544AHlwIED5jKpqanKY489pri5uSkuLi7KiBEjlLi4uHy3n7t27Vquvl2+fNn8+XRzc1OGDx+uxMTE5Pm6C/M5NWnUqJGiVquVy5cv5/u+3C2/a9j58+eVYcOGma8hbdq0Uf76668cZfLavq2w8tq+rbDvi+m9DQ8PV4YNG6a4uLgo1apVU5577rlcn+n8rk1nz541n8t39z82NlZ59tlnlcDAQPO50r17d2XmzJk5yq1atUpp2LCheRtR2YpOCHE3laJYMGOSEEKIcmPw4MGcOHGiwHWgIrcjR47QrFkzfvvttxKtBRaiMmnevDkeHh5s3LjR2l0RQgiBrJEXQohKIS0tLcfvZ8+eZc2aNXTt2tU6HarAZs2ahbOzMw8++KC1uyJEubB//34OHz7M+PHjrd0VIYQQ2WSNvBBCVAIhISE88sgjhISEEBkZyYwZM7Czs+O1116zdtcqjNWrVxMeHs7MmTN57rnnciSqE6IqOn78OAcOHODLL7/Ez88vV94HIYQQ1iOBvBBCVAJ9+vRh4cKFXL16FXt7e9q3b89HH32U5x7YIm/PP/88sbGx9O3bN8/s4kJUNUuXLuX999+nXr16LFy4EK1Wa+0uCSGEyCZr5IUQQgghhBBCiApE1sgLIYQQQgghhBAViATyQgghhBBCCCFEBSJr5PNgMBiIiYnBxcUFlUpl7e4IIYQQQgghhKjkFEUhOTmZGjVqoFYXPOYugXweYmJiCAwMtHY3hBBCCCGEEEJUMZcuXSIgIKDAMhLI58HFxQUwvoGurq6l0oZOp2P9+vX06tULW1vbUmlDiNIi56+oyOT8FRWZnL+iIpPzV1RkZXH+JiUlERgYaI5HCyKBfB5M0+ldXV1LNZB3dHTE1dVVLmSiwpHzV1Rkcv6KikzOX1GRyfkrKrKyPH8Ls7xbkt0JIYQQQgghhBAViATyQgghhBBCCCFEBSKBvBBCCCGEEEIIUYFIIC+EEEIIIYQQQlQg5SKQ//777wkKCkKr1dK2bVv27t2bb1mdTsf7779PaGgoWq2WsLAw1q5dm6PMxx9/TOvWrXFxccHHx4fBgwdz+vTp0n4ZQgghhBBCCCFEqbN6IL9o0SImT57MtGnTOHjwIGFhYfTu3Zu4uLg8y0+ZMoWffvqJb7/9lvDwcJ5++mmGDBnCoUOHzGW2bNnCs88+y+7du9mwYQM6nY5evXqRkpJSVi9LCCGEEEIIIYQoFVYP5KdPn84TTzzBhAkTaNiwIT/++COOjo7Mnj07z/Lz5s3jrbfeom/fvoSEhPDMM8/Qt29fvvzyS3OZtWvX8sgjj9CoUSPCwsKYO3cuUVFRHDhwoKxelhBCCCGEEEIIUSqsuo98ZmYmBw4c4M033zQ/plar6dGjB7t27crzmIyMDLRabY7HHBwc2L59e77tJCYmAuDh4ZFvnRkZGebfk5KSAOM0fp1OV7gXU0SmekurfiFKk5y/oiKT81dUZHL+iopMzl9RkZXF+VuUulWKoiil1pN7iImJwd/fn507d9K+fXvz46+99hpbtmxhz549uY4ZM2YMR44cYeXKlYSGhrJx40YGDRqEXq/PEYybGAwGBg4cSEJCQr7B/rvvvst7772X6/EFCxbg6OhYglcohBBCCCGEEELcW2pqKmPGjCExMRFXV9cCy1p1RL44/u///o8nnniC+vXro1KpCA0NZcKECflOxX/22Wc5fvx4gSP2b775JpMnTzb/npSURGBgIL169brnG1hcOp2ODRs20LNnT2xtbUulDSFKi5y/oiKT81dUZHL+iopMzl9RkZXF+WuaGV4YVg3kvby80Gg0xMbG5ng8NjaW6tWr53mMt7c3K1euJD09nevXr1OjRg3eeOMNQkJCcpV97rnn+Ouvv9i6dSsBAQH59sPe3h57e/tcj9va2pb6RaYs2hCitMj5KyoyOX9FRSbnr6jI5PwVFVlpnr9Fqdeqye7s7Oxo2bIlGzduND9mMBjYuHFjjqn2edFqtfj7+5OVlcWyZcsYNGiQ+TlFUXjuuedYsWIF//33H8HBwaX2GoQQQgghhBBCiLJk9an1kydP5uGHH6ZVq1a0adOGr7/+mpSUFCZMmADA+PHj8ff35+OPPwZgz549REdH06xZM6Kjo3n33XcxGAy89tpr5jqfffZZFixYwKpVq3BxceHq1asAuLm54eDgUPYvUgghhBBCCCGEsBCrB/IjR47k2rVrvPPOO1y9epVmzZqxdu1afH19AYiKikKtvj1xID09nSlTpnDhwgWcnZ3p27cv8+bNw93d3VxmxowZAHTt2jVHW3PmzOGRRx4p7ZckhBBCCCGEEEKUGqsH8mBcy/7cc8/l+dzmzZtz/N6lSxfCw8MLrM+KifiFEEIIIYQQQohSZdU18kIIIYQQQgghhCiacjEiX26lpIBGk/txjQa02pzl8qNWw53r8k1ldTo06enG303ZCe8um5oK+c0uUKngzj3ui1I2LQ0Mhvz77ORUvLLp6aDXW6aso6Ox3wAZGZCVZZmyDg7G9xkgMxN0OsuU1WpvnytFKavTGcvnx94ebGyKXjYry/he5MfO7vZ5V5Syer3xb5fX+QvG/7ezy1k2P3eWNRiM55olytrYGN8LMH4mUlMtU7Yon3tLXCMKU1auEcb/L+o1Ii0t7/MX5BphUtJrRH7kGlH0snlcI/I9f+UacZt8jzCywDUiI0vP5RtpXE1Ko1ENN9wd7Up0jcj3/AW5RhSnrHyPKF7ZYl4j1Dpd/ucvlPwaUdDf726KyCUxMVEBlETj6Zr7p2/fnAc4OuZdDhSlS5ecZb288i/bqlXOsrVq5V+2YcOcZRs2zL9srVo5y7ZqlX9ZL6+cZbt0yb+so2POsn375l/27lNt2LCCy966dbvsww8XXDYu7nbZiRMLLnvx4u2yr7xScNnjx2+XnTat4LJ7994u+9lnBZfdtOl22e++K7jsX3/dLjtnTsFlFy++XXbx4oLLzplzu+xffxVc9rvvbpfdtKngsp99drvs3r0Fl5027XbZ48cLLvvKK7fLXrxYcNmJE2+XjYsruOzDD98ue+tWwWWHDVNyKKisXCOMP3KNuP0j1wjjj1wjjD8luEYY5BphJNcIIwteIy79NFf551iMMmPzOeX3lz8vuN5iXiN0GzYUXFauEcYf+R5h/Cln14jMzEzlwgMPFFy2hNeIRFAAJTExUbkXGZEXQgghhBCikkvN0ONYwPMfrTnFmgteAPQ9d52xZdMtIUQxqRRFUazdifImKSkJNzc3EmNicHV1zV3AAtNddDod69ato3fv3tjK1PrcZEqcUTmdNpvn+QsyJa44ZWVKXPHKluAaoUtLy/v8BblGmMjU+qKXLaNrhC4hIf/zV64Rt8n3CCN7ez799xwL90ZxKzkNW33+r83JxZEAH1dqeToS5G5PiIsNNT0cCPRwwtPJjhf+OMS/4XGMa1+TtwY3K9Y1QpeezrpVq/I+f0GuEcUpK98jile2GNcInU7H2lWr6NOjR97nL5T4GpGUlIRbjRokJibmHYfeQUbkC+LklPOEKKhcUeoE0OnQa7XG3/M7Ee78QNxLUcre+QG2ZNk7LziWLGtvf/siacmydna3L+rWKmtrm//fvyRlbWxuf2G3ZFmNxnjOFub8NZUtDLW6dMqqVKVTFspHWblGGBX1GqFW3/v8BblGFKdsUT73co0odtlCnb8g1wiTKvw94kpiGj9uOW+MvzQ2eLg7EeTpRE1PR4I8Hanl6UQtT0dqeTjh5ljw+fTgffVYfS6JxSdvMnmwGvNfoIjXiEKfv1XoGqEoCutOXOVifCoKimmeuPG/gOGO/7/9uPG/huz/RzGWs7NR0zbYk7YhHtjb5JHr605yjTAqwufeYGtbuPMXive5L+jmw10kkBdCCCGEEKISWnU4BkWBlrWq8dujbXCyL/5X/851vanhpiUmMZ11J64yqJm/BXtadSmKwrt/nuDXXZEWq/P7TedxstPQqY433Rv40K2+D17OhbxBJSoMCeSFEEIIIUSFlpGl58fNF6jp6cADjf3Q2t5jJLIKUBSF5QcvAzCsZUCJgngAjVrF8FaB/N/Gs/yx95IE8hagKArv/xXOr7siUamgf9MaONiqUaFCpSL7R4WK7P9HhTr7MXI9Znz8Zkomm89c41pyBmtPXGXtiauoVNAs0J3u9X3o3sCX+tVdzHWIiksCeSGEEEIIUaEtPXCZr/49A8D7q8MZ0TqQh9rWItCjCNOBK5kTMUmcib2FnY2avk38LFLn8FYBfPPfWXZduE5EfApBXkWYSi5yUBSFD/8+yZwdEQB88mATRrauaZG6DQaF4zGJbDwZx8ZTsRyPTuJQVAKHohL4Yv0Z/N0duL++D/c38KF9iKfc+KqgJJAXQgghhBAV2r6LNwCw1ai4marjpy0XmLn1Al3rejOufS261PVBo65aI5ArDkUD0LOBL24OhcyfcQ8B1RzpXMebLWeusWj/JV7vU98i9VY1iqLwyT+n+Hn7RQA+GmK5IB5ArVbRNMCdpgHuvNSzLlcT0/nvVBz/nYpl+7l4ohPSmLc7knm7I3Gw1XBfHS96ZE/B93EpwtpyYVUSyAshhBBCiAptf+RNAGaOb0WWXmHe7ki2nrnGptPGn4BqDoxtW4sRrQLwrAJrhbP0BlYdjgFgSHPLToEf1TqQLWeusfTAZSb3rIutRm3R+is7RVH4bN1pftp6AYD/DW7MmLaWC+LzUt1Ny5i2NRnTtiZpmXp2XYjn35Nx/HcyjqtJ6WwIj2VDeCwAYQFu3F/flwFhfoR4O5dqv0TJSCAvhBBCCCEqrNikdC7fTEOtgla1quGitaVnQ18uxqewYE8ki/df5vLNND5de4qvNpyhb5PqjGtfixY1q1XadcLbz8UTfysDDyc7utTztmjd3Rv44uVsx7XkDP47FUfvRtUtWn9lpigKX6w/zYzN5wF4f1AjHmpXq0z74GCn4f76vtxf3xdlsMKJmCT+OxXHxpOxHLmcaP75ftM5fhrXkm71fcq0f6Lw5BaaEEIIIYSosA5kj8bXq+6Ki/b2FPJgLyfe7teQPW915/NhTQkLcCNTb2Dl4RiGzthF32+2s2BPFCkZBewfXUEtP2icVj8wrIbFR8ztbNQMbREAwKJ9lyxad2X31YYzfL/JGMS/O6Ah49sHWbU/KpWKxv5uvNC9Dqueu4+9b3fn06FNaBPkQabewFPzDrDxZKxV+yjyJ4G8EEIIIYSosPZHGAP5VrWq5fm81lbD8FaBrHruPlY925HhLQOwt1Fz8koSb604RruPNjJt1XHOxiaXZbdLza2MLNaHXwUsP63eZGTrQAA2n47jSmJaqbRR2Xz97xm++e8cAFP7N+SRjsFW7lFuPi5aRrauyfwn2tKviR+ZegNP/36A9SeuWrtrIg8SyAshhBBCiArrQJQxkG+ZTyB/p7BAdz4fHsaet7ozpV8DgjwdSc7I4tddkfT8aiujZu7i76NXyNIbSrvbpeafY1dI1xkI8XaiaYBbqbQR4u1Mm2APDAos2X+5VNqoTL7deJav/z0LwNt9G/DYfeUviL+TrUbN/41qxoCwGuj0ChPnH2Tt8SvW7pa4iwTyQgghhBCiQkrL1HMiOhEoXCBv4u5ox+OdQvjv5a7Me6wNvRr6olbB7gs3eHbBQbp8vpmft10gOV1XWl0vNaZp9Q829y/VHACj2xhH5Rftu4TBoJRaOxXd95vO8eUG49aIbzxQnyc6h1i5R4Vjo1Hz1YgwBjWrQZZB4dkFh/j7qATz5YkE8kIIIYQQokI6ejmBLIOCj4s9AdUciny8Wq2iUx1vZo5vxfbX7+e5brXxcLIjOiGN//19kg4f/8eHf4cTnVAxpo/HJKSx++J1AAaX0rR6kwca++GqtSE6IY1t5+JLta2K6sct5/l83WkAXu1dj6e7hFq5R0Vjo1EzfUQzHmzuj96g8MIfh/jzSIy1uyWySSAvhBBCCCEqJNO2c62CSp6Bvoa7A6/0rsfON+7noyFNCPF2Ijkji1nbLtL5s028sPAQRy8nWKDXpWfl4WgUBdoGexBQzbFU29Laasxr8BftiyrVtiqiWVsv8Mk/pwB4uWddnu1W28o9Kh6NWsXnw8MY1jIAvUFh0h+HWHko2trdEkggL4QQQgghKihTxvoWNQs/rf5etLYaxrStyb8vdWH2I61oH+KJ3qDw55EYBn63gxE/7WJDeGy5m06uKAorTNPqW5TuaLzJqDbG/c83hMcSfyujTNqsCH7edoEP15wEYFKPOjzfvY6Ve1QyGrWKz4Y2ZVTrQAwKTF58mGUHJDeCtUkgL4QQQgghKhyDQeFglGlE3sPi9avVKu6v78vCJ9vx1/P3MbhZDWzUKvZevMETv+2nx/Qt/L47krRMvcXbLo7j0UmcjbuFvY2aB5r4lUmbDfxcCQtwQ6dXWH5QAjuAOTsu8r+/jUH8C/fXZlKPulbukWWo1So+GtKEMW1rYlDglaVHWLxfth+0JgnkhRBCCCFEhXMh/hYJqTq0tmoa1XAt1bYa+7vx9ajmbHu9G091CcFFa8OF+BSmrDxOh0828uX608Qlp5dqH+5l+SFjIN2zoS+uWtsya9c0Kv/HvksoSvmapVDWftsVwXurwwF4rlttXupZOYJ4E7Vaxf8GNWZcu1ooCry+7Ch/7JVlFdYigbwQQgghhKhwTNPqmwa4Y6spm6+0fm4OvPlAA3a92Z13+jckoJoDN1N1fPvfOe77ZBOvLT3C6atlvx99lt7A6uwkZGU1rd5kQFgNHO00XLiWwr6Im2Xadnny++5I3ll1AoBnuobycq+6pbprgLWo1SreH9SIRzoEoSjwxvJjzN8Tae1uVUkSyAshhBBCiApnf3bQ2KoI285ZirO9DY/eF8zmV7ryw9gWNK/pTqbewOL9l+n99VbGz95bponxtp2NJ/5WJp5OdnSq411m7YLxvRjQtAZAlR2dXbAniikrjwPwVOcQXutdr1IG8SYqlYppAxryaMdgAN5ecZx5uyKs26kqSAJ5IYQQQghR4ZhG5Iuyf7yl2WjU9G3ix4qJHVn2TAceaFwdtQq2nrnG6Jm7iU0qm+n2y7LXpw8Iq1FmsxPuNDJ7T/m/j10hMU1X5u1b06J9Uby14hgAj98XzBsP1K/UQbyJSqViav8GPNHJGMxPXXWCuTsuWrlXVYsE8kIIIYQQokK5kZLJhfgUwLqB/J1a1qrGjIdasvmVbjTxdyMlU2/efqw0JaXr2BAeC8DQFgGl3l5emge6U8/XhYwsA6sOV52tyVYeiuaN5cYgfkLHIN7u16BKBPEmKpWKt/o24OkuoQC8uzqcn7ddsHKvqg4J5IUQQgghRIViGo2v7eOMu6OdlXuTU01PR/43uDEqFaw4FM3+iBul2t7aY1fJyDJQ28eZxv6lm/QvPyqVilHZo/IL91aNpHdrj1/l5SVHUBR4qF1N3unfsEoF8SYqlYrX+9Tj2W7GYP5/f59k5tbzVu5V1SCBvBBCCCGEqFDM0+otuH+8JYUFujOipTGwnfbnCfSluOe8KVv9kOb+Vg0khzT3x85GzckrSRyLTrRaP8rC5tNxPL/wIHqDwtAWAbw/sHGVDOJNVCoVr/Sqxwvd6wDw0ZpTzNgswXxpk0BeCCGEEBZzLu4Wq4/EcP1WhrW7IiqxA5HGUe6WQeUzkAd4tU89XLQ2nIhJ4o99pZME7vLNVHZfML4Xg5uXbbb6u7k72vFA4+qAcVS+stp1/jpPzTuATq/Qr4kfnw5tglpddYN4E5VKxeSedXmph3HLvU/XnuK7/85auVeVmwTyQgghhLCIlIwsRs3cxfMLD9Hqw38ZOmMnMzaf51xccpWYaivKRkaWniOXjSO+5WV9fF68nO2ZnL2P+BfrTpOQmmnxNlYdNm451z7EE393B4vXX1QjWxtnIfx5OJqUjCwr98byDkbd5LFf95GRZaB7fR++GtkMGyskFyzPXuxRh1d6ZZ/368/w+tKjxCWXTdLHqkbOPCGEEEJYxG+7Iom/lYmdjRpFMU5//nTtKXpM30q3Lzbzv7/C2XX+Oll6g7W7KiqwEzFJZGYZ8HCyI8TLydrdKdBD7WpR19eZm6k6pm84Y9G6FUVheXa2+iFlvHd8ftqHeBLk6UhKpp6/j16xdncs6kRMIo/M3ktqpp6OtT35fmwL7GwklMrLc/fX4fU+9QFYtP8SXT/fzPQNZ7hVCW/uWJOcfUIIIYQosVsZWeYERx8PacLON+7ng0GN6FzXGzuNmojrqfy8/SKjZ+2m5f/+ZdIfh/jraAxJ6VVrqypRcgey949vUbNauV+XbKtR8+7ARgD8vjuS8Jgki9V9LDqR89dSsLdRm6e0W5tKpWJE9qh8aS0nsIazscmM+2UvSelZtKpVjVnjW6G11Vi7W+XaM11DWfxUe5oFupOaqeebjWfp+vkmftsVgU5u5lqEBPJCCCGEKLFfd0ZwM1VHsJcTg5rVoIa7A+PaB/Hbo204+E5PZoxtwYMt/KnmaEtimo6Vh2N4bsEhWry/gYd+3sPcHRe5dCPV2i9DVADlYf/4ougQ6kW/Jn4YFHj3zxMWW2ay/KBxm7dejarjorW1SJ2WMKxlADZqFQejEjgTm2zt7pRYRHwKY3/ew42UTJoGuDF7Qmsc7Wys3a0KoU2wBysmdmDG2BYEezkRfyuTd1adoOf0Lfx99IosuSohCeSFEEIIUSK3MrKYlb138Avda+daM+psb8MDTfyYPqIZ+97uweKn2vNU5xBCvJ3IMihsPxfPu6vD6fTZJvp8vZUv1p3m8KUEDKWY6VtUTIqisD87kG9VjhPd3e2tfg3Q2qrZG3GD1RaYcq7TG1h9xLg+/sFyMq3exMdFS/cGPgD8UcGT3kUnpDH25z3EJWdQz9eFXye0wbUc3TSpCFQqFQ808WP9S535YHBjvJztibieyrMLDjL4h53svnDd2l2ssCSQF0IIIUSJ/LozgoRUHSFeTgxoWqPAsjYaNW2CPXizbwP+e7krG1/uwlt969MmyAO1Ck5dTea7TecY/P0OHpm7j3SdvoxehagIom6kEn8rA1uNiib+btbuTqH5uzswsWttAD76+2SJE8FtPXON6ymZeDnb06m2lyW6aFGjWtcEjFvjVdTPcFxyOg/9vIfohDRCvJyY93gbqjnZWbtbFZatRs24drXY8mpXJvWog6OdhiOXEhg1czePzt3H6asVf/ZGWZNAXgghhBDFlpyuY+ZW02h8nSJncA71dubJzqEsfro9B6b0ZPqIMPo2qY69jZqtZ67x9O8HyMiqmIGAsDzTtPrG/m4Vbo3yk51DCPRw4GpSOt9vOleiukzT6geG1SiXWdM71/XGz01LQqqO9eGx1u5Okd1IyeShn/dwMT4Ff3cHfn+8LT4uWmt3q1JwsrdhUo+6bHm1G+Pa1UKjVvHfqTge+L+tvLrkCFcS06zdxQqj/H3yhRBCCFFhzN0RQWKajlBvJwaEFTwafy/VnOx4sEUAP4xtya+PtkFrq2bz6Ws8v+CQJEcSALen1VeQ9fF30tpqmNKvIQA/b7tIRHxKsepJTNOx4aQxOC5v0+pNNGoVw1tlJ73bW7GS3iWl6xg/ew9nYm/h62rPgifaUqMcbO1X2Xi72PPB4MZseKkzfZtUx6DAkgOX6fr5Zj755xSJaZII9V4kkBdCCCFEsSSl6/h5+0XAOBqvUVsug3i7EE9mjW+FnY2a9eGxTF58BL2sma/yDlawRHd369XQl051vMjUG/jgr/Bi1fHPsStkZhmo6+tMoxquFu6h5YxoFYBKBTvPXyfyevFuWpS1lIwsJszZx/HoJDyd7Jj/eFtqeZbvLQ4ruhBvZ34Y25IVEzvQJtiDjCwDP245T5fPN/HztgsyI6sAEsgLIYQQolhMo/G1fZzpf4+18cXRqY43M8a2wEatYvWRGF5belQS4FVhiWk6TmdnQW9RQQN5lUrFtAGNsFGr2Hgqjk2n4opcx/JDxmn1Q5oHlOvt9wKqOdKpjjcAi/aV/6R36To9T/y2nwORN3HV2jDvsbbU9nGxdreqjOY1q7HoyXb8PL4VdXycSUjV8b+/T3L/F1tYdTja2t0rlySQF0IIIUSRJabp+Hnb7bXxlhyNv1P3Br58O7o5GrWKZQcvM3XVcdmyqIo6FHUTRYGaHo4Ver1ybR9nJnQMAuD9v8KLNOJ46UYqey/eQKWCwc0tf/PM0kZn7ym/5MDlcr08JjPLwDO/H2Dn+es42Wn49dE2NCzHsx0qK5VKRY+GvvzzYic+HdoEX1d7ohPSePGPwyzaV7GWaJQFCeSFEEIIUWRzdlwkKT2LOj7O9GviV6ptGbeuC0Olgvl7ovjgr5MSzFdBByvw+vi7vdC9Dt4u9lyMT2H29ohCH7cyezS+fYgnfm7lf9129wa+eDrZcS05o1izD8pClt7ApEWH2HT6GlpbNbMfaU3zmhX/HKvIbDRqRrauyeZXuvFox2AA3l8dzqUbqVbuWfkigbwQQgghiiQxTccv2WvjX+xReqPxdxrUzJ9PH2wKwOwdF/l83WkJ5qsYU6K7ijqt/k4uWlve6FMfgG//O8vVxPR7HqMoCivM0+rLZ5K7u9nZqBnWMgCAP8rh9HqDQeG1pUdZc+wqdho1P41rRdsQT2t3S2RzsNPwdr8GtA6qRkqmnleWHJHlVXeQQF4IIYQQRTJ7+0WS07Oo6+tM38alOxp/pxGtA3l/UCMAfth8nm//K9kWXqLiyNIbOHwpAYBWQRU/kAdjMN68pjupmXo++efkPcsfuZzIhfgUtLZqHijlWTCWNDJ7ev3m03FcKcQNi7KiKApTVx1n+aFoNGoV341pTpe63tbulriLRq3ii+FhONpp2HPxBnN2Rli7S+WGBPJCCCGEKLTEVB2zTaPx3euiLoPR+DuNbx/E230bADB9wxlmbj1fpu0L6zh1NZnUTD0u9jbUrSQJyNRqFe8PbIxKBSsPx7Av4kaB5ZcfvAxA70bVcba3KYsuWkSItzNtgj0wKLDsYPlJWvbnkRjm74lCpYLpI8Lo1ai6tbsk8lHL04m3sq/7n609xbm4W1buUfkggbwQQgghCu2X7RdIzsiifnUXHmhsnS++T3QO4eWedQH4aM0pfpURmkrvQPa0+ua1qpX5zaPS1CTAjVHZI9bTVp3Id4vFzCwDq4/EABVnWv2dRrcxvsalB6MpLzOjt52NB+CxjsEMalbx3tOqZmzbmnSu601GloGXFx8mqxwnTywrEsgLIYQQolASUjOZvSMCgBe717FqQPV89zo82y0UgGl/nuCPvZLRuDLbX4kS3d3tlV71cNXaEH4liYX5nMdbzlzjZqoOL2d77qvtVcY9LLkHGvvhqrUhOiGdM4nl40bMkeylGu1DZU18RaBSqfhsaFNctTYcuZzIjM0yG0sCeSGEEEIUys/bLnIrezS+dzmYhvpKr3o8dp8xo/GbK46x4tBlK/dIlJYD2dPOW1bCQN7T2Z7J2TNMvlh/mpspmbnKmM7twc1qYKOpeF/ftbYa80yCXXHWD+RvZWRx7ppxenbTAHfrdkYUWnU3Le9l50n5v41nOR6daOUeWVfFuxIIIYQQoszdTMlkbvYU9kk9rDsab6JSqZjSrwEPtauJosDLi4+w5tgVa3dLWFhMQhoxielo1CqaBbpbuzul4qF2tajn60JCqo4vN5zO8Vxiqo5/w41btw1pUXGngI9sXROAYzdUXM/jZkVZOh6diKJADTct3i72Vu2LKJrBzfzp06g6WQaFlxcfISNLb+0uWY0E8kIIIYS4p5+3X+BWRhYN/Fzp1dD6o/EmKpUxYdjwlgEYFHhh4SH+DY+1dreEBZnWxzfwc8GpAiV5KwobjZp3BxpHGhfsieJEzO2Rxr+PXSFTb6CerwsN/Vyt1cUSa1jDlab+rugVFetOWPczappWH1ZJbwxVZiqVig+HNMbL2Y7Tscl8teGstbtkNRLICyGEEKJAN1IymZu9Nr68jMbfSa1W8cnQpgwMq0GWQWHi/INsPXPN2t0SFmIK5FvWrHzT6u/UPtSTfk39MCjw3p/hKIoxK5xpWv2QFv6oVOXrs1dUnesY1/ebthK0lqOXjTdKZFp9xeTpbM+HQ5oAMHPreQ5EFrzjQ2UlgbwQQgghCjRr2wVSMvU09HOlV0Nfa3cnTxq1ii9HhNG7kS+ZegNPztvP7gvXrd2tSi01M4u1x6+WevZocyAf5FGq7ZQHb/dtgNZWzd6IG/x5JIao66nsi7iJSmWcUlzRNQt0A+DQJeuubT5sHpF3s2o/RPH1blSdB1v4Y1Bg8uIjpGZmWbtLZU4CeSGEEELk60ZKpnl7t0k96pTrEUFbjZpvR7fg/vo+pOsMPDp3nzkIFJb3wV8nefr3A3y+7vS9CxdTSkYW4VeSgMqZ6O5uNdwdeLZrbQA+WnOS+XsiAegY6kV1N601u2YRphwHEddTuWGldfLXb2UQnZCGSgVN/CWQr8imDWiEn5uWyOupfLzmlLW7U+YkkBdCCCFEvmZuvUBqpp7G/q70LKej8Xeys1Hzw9gW3Ffbi9RMPY/M3su5uFvW7hZZegMrDl0mIj7F2l2xiJSMLFYdjgbg110RxCWnl0o7Ry4noDco+Llp8Xd3KJU2ypsnOodQ08OR2KQMftp6AaiYe8fnxc3BFl8H45KBw5esc5PNNK0+xMsJF62tVfogLMPNwZbPh4UBMG93JNvOVq0lVRLICyGEECJP129l8NuuCAAmda9brkfj76S11TBzfEta1qpGckYWP26x/n7DMzaf56VFR+j51RY++ecUtzIq9jTQv49dITXTmC06XWfgx80XSqWdAxHZ0+qrwGi8idZWw9T+Dc2/O9hq6NO4/CSYLKlazsZA/mBkglXaPyyJ7iqV++p4Mb59LQBeW3qUxDSdlXtUdiSQF0IIIUSeTKPxTfzd6N7Ax9rdKRJHOxve6tsAgNVHYkhItd52Vzq9gd+zp0jr9Ao/bjlP9y83s/JQtDmhWUWzZP8lADrX9Qbg9z2RxCZZflT+QFTVC+QBejTwMb+3fRpXr1TZ+oNdjOf8IauNyCcAECaJ7iqNNx6oT5CnI1cS03lv9Qlrd6fMlItA/vvvvycoKAitVkvbtm3Zu3dvvmV1Oh3vv/8+oaGhaLVawsLCWLt2bYnqFEIIIaxBURSS08vn6EH8rQx+22UMPsv72vj8tKjpTgM/VzKyDCw9cNlq/dh4MpbYpAw8nez48aEW5mnTkxYdZviPuzgebd3EX0V14dot9kXcRK2Cz4c1pXVQNTKzDPyw6ZxF2zEYFA5m5zhoVavyJ7q7k0ql4qsRYbzcs675hlRlYRqRPxxlXDZRlhRF4Uj21HoZka88HO1s+HJEGGoVLD8YzboTV63dpTJh9UB+0aJFTJ48mWnTpnHw4EHCwsLo3bs3cXFxeZafMmUKP/30E99++y3h4eE8/fTTDBkyhEOHDhW7TiGEEMIaXllylGbvb+BgVPlLyDZz6wXSdHrCAty4v37FGo03UalUPNSuJmDcm9tao9/zdhtviIxsHUifxn6sf6kzr/auh4Othv2RNxnw3XbeWnHMasm/impJ9k2RrvV88HXV8lKPugAs3HuJK4lpFmvnbNwtktKzcLDVUN/PxWL1VhSezvY8370O3i721u6KRfk5gpOdhpRMPWdik8u07cs307iRkomtRkWDKnhOVWYta3nwZOdQAN5afoz4WxlW7lHps3ogP336dJ544gkmTJhAw4YN+fHHH3F0dGT27Nl5lp83bx5vvfUWffv2JSQkhGeeeYa+ffvy5ZdfFrtOIYQQoqxtCI9l2cHL6A0K83dHWbs7OVxLvmNtfI+KszY+L4Oa+eNkp+FCfAo7z5f9dnTnr91ix7nrqFQwpq3xpoLWVsOz3Wqz8eUuDAirgaIYbzR0+2Izv+2KKPXt3EoiS29gWXYgP6JVAGDc/7xtsAeZegPfW3BU3rTjQLNAd2w1Vv/KKixErYKmAdnb0EUllGnbR7Kn1dev7oq9jaZM2xal76Wedahf3YXrKZlMWXG8wi5dKiyrLrjJzMzkwIEDvPnmm+bH1Go1PXr0YNeuXXkek5GRgVabc/sNBwcHtm/fXqI6MzJu37VJSjJuc6LT6dDpSmfKo6ne0qpfiNIk56+oyMrD+ZucnsWUlcfMv689cYV3U+uhtS0fXyxnbDpLus5A0wBXOoa4V+jPur0aBjXzY8Hey8zbFUGbWmW73dS8nRcB6FbXG19n2xzvpbeTDdOHNWZkyxp88PcpTsfe4p1VJ1iwO5Ip/erTNjj3dHJrn7+bTl8jLjmDao62dAr1MPfj+W4h7Ll4g0X7LvF4x1oWyTC/72I8AM0D3Sr0OShuM/0dm9ZwYdeFG+yPuM7wFn5l1v6hyBsANPF3kXOqElIDnz7YiKE/7mHtiass2x/FoGY1LFZ/WVx/i1K3VQP5+Ph49Ho9vr45t7Px9fXl1Km89wLs3bs306dPp3PnzoSGhrJx40aWL1+OXq8vdp0ff/wx7733Xq7H169fj6OjY3FeWqFt2LChVOsXojTJ+SsqMmuev0svqolNUuNlr5ClQEKGnul/rKeZp/VHD5IyYd4hDaCivfNN/vnnH2t3qcQC0wFsWB9+lYUro3GzK5t2M/Ww6IDxvayjusqaNWvyLftUMOx0VLEmSs2p2Fs8NHs/LTwNDKplwD2PmdXWOn9/Oa0G1IS5ZfDv+pw5iuq6qTmTqObNeVsYFVryWQXbThnfO33sWdasOVPi+kT5ocRfADTsOBXNmjVlNyNpywnjOaVcj2TNmogya1eUrV7+KtZc0jB15TFSLh7O8xpaEqV5/U1NTS102QqXAvP//u//eOKJJ6hfvz4qlYrQ0FAmTJhQomnzb775JpMnTzb/npSURGBgIL169cLV1dUS3c5Fp9OxYcMGevbsia2t7GEpKhY5f0VFZu3z91BUAtt3GxOwfjm6FdvPXWfW9giibfx4q2+zMu/P3T765zQ6QyRhAW68PKZNhZ5Wf6d/E/ZyICqB6271GN0ttEzaXHIgmrS9Jwio5sDk0fehVhf8Xg4AXk3J5KuN51i0/zIHr6s5mWTDM11CeLRDLextNVY9f6+nZPLK3i2AwqtDO1LXN+caY99GNxn18z72xWv48KHOBFYr/mBI/K0M4ndtAeDJB3vg6iD/1lQGpvP34f6dmXlqB7FpKjp07Ym7Y+n/ffUGhTcP/AfoGfdAJ+r4Opd6m8I6eukNXP55L0cvJ7EhyZfZ41tY5N+ysrj+mmaGF4ZVA3kvLy80Gg2xsbE5Ho+NjaV69bz3y/T29mblypWkp6dz/fp1atSowRtvvEFISEix67S3t8fePvetGltb21L/R7Is2hCitMj5Kyoya5y/mVkGpv55EkWBoS0C6FK/Ot6ujszaHsHmM/Gk6cFVa73PVFxSOgv2GrcVm9yrHnZ2ZTR0XQbGtQ/iQNRhFh+I5vnudbEp5TXXiqKwYJ/xvRzXrhb29oV7L33dbflkaBgPtQvi3T9PsD/yJtP/PceyQzFM7deQzrWN27BZ4/z9+/hldHqFsAA3GgXknvbfrrYPnep4se1sPD9ujeCzYWHFbutItDGfQV1fZzxdS3d2pCh7Pm5OBHs5cTE+hRNXb9G1Xukn1LwYm0xqph5HOw31arijuceNNVFx2drC9BHN6ffNNrafu87ig1d4qF0tC9ZfetffotRr1cwhdnZ2tGzZko0bN5ofMxgMbNy4kfbt2xd4rFarxd/fn6ysLJYtW8agQYNKXKcQQghRmmZuPc/p2GQ8nOyY0s+4pVQDPxfq+DiTmWVg3XHrbpkzY8t5MrIMtKjpTuc6Xlbti6U90KQ6Hk52XElM579Tpb+LzZHLiRyPTsLORs3wVoFFPr6xvxtLnm7P1yOb4eNiT+T1VB7/bT+PzztInOUSwxeaoijmveOHFfB6XuppzGC/7GA0EfEpxW7voHn/+Kq17VxV0jx7+7eDZZTw7vAlYzuN/d0kiK8Cavs483qf+gB8tOYkkdeLfz0qr6yeAnTy5MnMmjWLX3/9lZMnT/LMM8+QkpLChAkTABg/fnyOxHV79uxh+fLlXLhwgW3bttGnTx8MBgOvvfZaoesUQgghytqFa7f45j9jRu93+jekmpNxhFalUjEwzJiM588jMVbrX2xSOvP3GNeqVvRM9Xmxt9EwPDvL+u97Sn9N7rxdxi3n+jfxw8OpeDMbVCoVg5v7898rXXm6Syi2GhVbz17ns6MaTl8t2227jkUncupqMvY2avP5mpcWNavRrZ43eoPCN/+dLXZ7+yOMScla1apW7DpE+dY8+297qIy23zyanbG+mewfX2U80iGIdiEepGbqeXnxEfQG6+ehsSSrB/IjR47kiy++4J133qFZs2YcPnyYtWvXmpPVRUVFceXKFXP59PR0pkyZQsOGDRkyZAj+/v5s374dd3f3QtcphBBClCVFUXhz+TEyswx0ruudK4vuwOzfd5yLJy453RpdZPb2i2RmGWhZqxqdKtlovMmYNsbt37aeuUbU9cInFCqqmymZ/HXUeFPmofYln87pbG/DGw/UZ/1LXYwZ3A0qpv9ruW3eCmNx9mh8n8bVcbvHevVJ2fvKrzwUzYVrt4rcVrpOz/Fo4zrRlhLIV1otaroDcDgqAUMZBFhHLycCt7e+E5WfWq3i82FhONvbsD/yJj9vu2DtLlmU1QN5gOeee47IyEgyMjLYs2cPbdu2NT+3efNm5s6da/69S5cuhIeHk56eTnx8PL/99hs1auS+M1xQnUIIIURZWrz/Ensu3sDBVsOHgxvnGu2u5elEs0B3DAqsOXoln1pKT7pOz6LsQO2pziGVbjTepJanE53regMwf29kqbWz9MBlMrIMNKrhap4+bAnBXk58MqQxKhT+O33NPP28tKXr9Kw6bLwxMaIQywTCAt3p0cAHgwLfbCz6qPzx6EQy9Qa8nO2o5Snr4yurer4uONppSM7I4lwxbvgURUaWnpNXjDeHwgLcS7UtUb4Eejgytb9xKduX688QnWCFtUmlpFwE8kIIIURldS05gw//PgnA5J51CfTIOzAxTVdeZYXp9X8fvUJCqg5/dwe6N6jcs9ceamsclV+y/zIZWXqL128wKPy+x3iT4KF2tSx+UyTE24k23sbRyy/WnbZo3flZd+IqyelZ+Ls70D7Es1DHmEblVx2J4Vxc0ZYB7I803qBoUbNapb2pJMBGozaPjpf29PqTV5LR6RU8nOwIqOZQqm2J8mdEq0AebOHPlyPC8HevPH9/CeSFEEJUKTq9gbJcJvfe6hMkpWfR2N+VCR2D8i3Xv6kfapVxe7rSnPadl3m7jYHnmLY1K30SqPvr++DnpuVGSib/HLN8csFt5+KJvJ6Ki71NriUUltIn0ICtRsXO89fZcS6+VNq4k2la/fBWAffcQs+ksb8bvRv5oijw9b9FG5U/kB3ItwqSafWVXfOaxr/xwciEUm3nSHaiu7AAN7k5VAWpVCqmj2jGgALye1REEsgLIYSoMrL0Bh6avZ93DmjYm51MqzT9dyqWv45eQaNW8cmDTQvc8szHVUuHUOPa9NVHy25U/tjlRA5fSsBWoyrUtOmKzkajZnT2Wvnfd1t+er2pzqEtA3C0K51dfj3sYVRr49/q83WnUZTSuzN16UYqO89fR6WCYS0DinSsaVT+72NXCp2cT1EUDkaaMtZLIF/ZtTAF8qU8In8kO9FdU5lWLyoRCeSFEEJUGSsORXMwKoFknYoJvx5kzbHSW4+ekpHFlBXHAXjsvmAa+987wZJpev3KQ9GlGpzdyRR4PtDYD28X+zJp09pGtQ7ERq1if+RNTl1Nsli90QlpbDwZC2DRPYvz8kznYLS2ag5fSmDjydLbTm/ZwcsoCnQI9SSgWtHWqzfwc6Vvk+ooCvzfxjOFOibieirXUzKxs1EX6jMjKrbm2QnvzsbdIjFNV2rtmEfkA+WcEpWHBPJCCCGqBJ3ewLfZ27952CtkZhl4dsFB5u64WCrtfbH+NDGJ6QR6ODCpR51CHdO7cXXsNGrOxt3iVBlsL5aYqmPVkWgAxlkgu3pF4eOqpVcjYy4AS47KL9wThUGB9iGe1PZxtli9efF2sWdCx2DAeK6VRtZvg0Fhyf7LQOGS3OXlxe51UalgzbGrhMfc+6aJadu5pv5u2NtoitWmqDi8nO2pmZ03xBRsW1pyuo4L8cY9xGVEXlQmEsgLIYSoElYcjCbqRioeTra83lTP2DaBKAq8uzqcT/45ZdFA6PClBObujADgw8FNCj3F2s3Blm71jVnVy2JP+aUHL5OuM1C/ukuV26/7obbGGxcrDkZzKyOrxPVlZhn4Y59xf/qyuinyVOcQXOxtOHU1mb9KYXbJrgvXiU5Iw0VrQ+9G1YtVR73qLvRvapxp8vW/9x6VPyDT6qsc0zZ0h6ISSqX+Y9GJKAr4uzvg5Vw1Zh2JqkECeSGEEJWeTm/g203GhFtP3BeM1gam9a/Pq73rAfDjlvO8vOQImVkGi7T1xrKjKAoMae5v3u6ssAaG+QPw5+GYUt1b2WBQzKPRpZFdvbxrH+pJiJcTKZl6Vh2OLnF9605cJf5WJj4u9vRsWDaZ/90d7XiicwgAX204Q5a+5OfvnUxJ7gY1q4HWtvij4y92r41KBevDYzkenVhgWQnkq57mpbxO/sgl4znXzIJbQQpRHkggL4QQotJbfvAyl26k4eVsx5g2xoRdKpWKZ7vV5ovhYdioVaw4FM1jv+4r8ejsrG0XOHU1mWqOtkzp16DIx3dv4IOTnYbohLRSTQC18/x1Lsan4Gxvw+Dm/qXWTnmlUqkY09aU9C6qxDkJTJn/R7epiW0BSQ0t7dH7gvFwsuNifArLDl62WL2JqTr+OW7M6l/SJIi1fVwYFHbvUfmE1EzOxhn3E28hgXyVYUp4d/hSQqncvDxqTnQn6+NF5SKBvBBCiEotM+v22vinu4TmmuY+rGUAPz/cCkc7DdvOxjPyp13EJaUXq62I+BT+L3urrSn9GuJZjGmcWlsNvRsbpzGvOlx60+vn7Y4A4MEW/jjbl0529fJuWMsA7G3UnLySxMESTOs9fTWZvRdvoFGrzBnxy4qzvQ0Tu4YC8H//niUjS2+Rev88GkNmlnHZRRMLJJ17oXsd1Cr492RcvmuhTVOrg72cZAp0FVLfzwWtrZrEtNtr2S3JdL7J+nhR2UggL4QQolJbdvAyl2+m4eVsz9i2ea9d7lrPh0VPtsfL2Y4TMUk8OGMn56/dKlI7iqLw9spjZGQZuK+2Fw+2KP4otyl7/ZpjV9BZeLo0wJXENP7NznRe2tnVyzN3RzvzvsLzS5D0bv4e47E9G/hS3U1rkb4VxUPtalHdVUtMYjoL9kRZpM4l5r3jAy2y7CLE25khzY2zYfIbld8faUx0J9PqqxZbjZqm/u6A5afXX0vOICYxHZUKmsiIvKhkJJAXQghRaWVmGfjOPBofgoNd/ut8mwS4sfyZjgR5OnL5ZhpDZ+w0r9ctjGUHo9lx7jpaWzUfDmlcouCnY20vPJ3suJ6SyY5z8cWuJz8L915Cb1BoG+xBXV8Xi9dfkZhuZPx17Ao3UzKLfPytjCyWH7Ru5n+trYbnu9cG4PtN50jNLNnykFNXkzh6OREbtYrBzWpYoosAvNC9Nhq1ik2nr+UZsO2PkPXxVVXzWu6A5RPemabV1/Z2rrIzj0TlJYG8EEKISmvpgctEJ6Th7WJfqJHnmp6OLHumA2GB7iSk6hgzazcbwmPveVz8rQz+93c4AJN61KWWp1OJ+m2rUdOvqR9gTHpnSTq9gYV7yza7enkWFuBGY39XMrMMLD1Q9DXmKw8Zs96HeDnRIdSzFHpYOCNaBVLTw5H4W5nM2RFRorpMW871aOBbrOUh+anl6cTQ7JkqX23IOSqv0xs4kh10VbUdFAQ0DzT+zQ9ZeET+9v7x7hatV4jyQAJ5IYQQlVJmloHvNxlH45/pElrorNuezvYsfKIt99f3ISPLwFPz9punTufng7/CSUjV0cDPlcfuCy5x3+H29Pp1J66SrrPMumeA9SdiuZacgbeLPb0aFm9LscpEpVKZt6KbvyeySMm2FOV25v+xVs78b6tR81LPOgD8tOU8iWm6YtWTmWVgxSHjDIMRrQMs1j+T5++vg41axbaz8eY94wHCY5JI1xlw1doQ6u1s8XZF+Wbagu50bLJFtoM0OXLZmLE+TKbVi0pIAnkhhBCV0uL9l4hOSMPHxd6cnbywHO1smDmuJSNbBWJQ4O0Vx5m+/nSemc03n45j1eEY1Cr45MEmFstY3qJmNfzdHUjJ1LMxez27JZiS3I1uHYidjXwNABjYrAYu9jZEXE9lx/nCL2U4EHmTU1eT0dqqGdbC8kFvUQ0M86eurzNJ6VnM2nqhWHX8dyqWGynGbfQ61yna1omFEejhyPDsLPhf3bFW/s5t59TqqrUVogAfVy3+7g4oCvkmQywqRVHMszwk0Z2ojORfcCGEEJVORpb+9mh818KPxt/JRqPmk6FNeLG7cZTzm//O8fqyozmSz6VmZjFl5XEAHukQbNHpm2q1ioHZ65Mtsc85wNnYZHZfyM6uXsSbG5WZo52NOTnh70VIemfacm5QmD9ujral0rei0KhVTO5ZD4DZOy4SfyujyHUszp5WP7RlADaltI3ec/fXxlajYse56+y+cB24Hci3CvIolTZF+WfacvBgEXKTFOTSjTQSUnXYadTU96vauUBE5SSBvBBCiEpn8b5LXElMx9fVvkTbgalUKl7qWZePH2yCWmUMcp78bb85mdj09We4fDMNf3cHXu5V11LdNzNNr998+lqxp0rfyRSk9mjgg5+bQ4nrq0zGZudQ+PdkHFcT7739YPytDNYcuwKUr8z/vRv50jTAjdRMPT9sOl+kY2OT0tl82jj7Y3jL0pth4O/uwMjWxlH56RvOoCiKOWO9aU9xUfU0z74ReshCI/KHs0fjG/i5YG9T9Ju5QpR3EsgLIYSoVIyj8cYAZmLX2sUajb/b6DY1mTmuFVpbNZtOX2P0zN1sOh3H7B0XAfjf4MY4lUJG5PrVXajr60ym3sC641dLVFdKRhbLsrOrl6fAs7yo6+tCm2AP9AbFnAywIIv2XUKnVwgLdC9X21qpVCpe6WUclf99TyQxCWmFPnbZwcsYFGgdVI2QUl6n/my32thp1Oy9eIMlBy4Tm5SBRq2imSQlq7JMI/KHom7muYypqI5KojtRyUkgL4QQolJZtO8SV5PSqe6qNY/6WUKPhr4seKId1RxtOXI5kQlz9mFQYEBYDbrV97FYO3dSqVQMamac8r3qSMmm1688bMyuHuzlRMdQL0t0r9Ix3eD4Y19UjiUUd9MbFPN+7ePK4U2RTnW8aBvsQWaWgW//O1uoYxRFMWerH97Scp+b/Pi5OZhzV0xbdQKARjVcC9wiUlRuDf1csbNRczNVR8T11BLXdzQ70Z2sjxeVlQTyQgghKo103e218c92K97a+IK0qFmNpc90IKCacVq6m4Mt7/RvaNE27jagqXF6/a7z14lLuveU77woisK8XdnZ1dvWlGRi+ejTqDpeznbEJmUUmGBw8+k4ohPScHe0pX/2NoHliUql4tXexlH5xfsvExGfcs9j9kfe5GJ8Co52GvqW0Wt6pmso9jZq0rJ3ZZD946s2Oxs1TfyNs1tKuk4+S2/gWLRkrBeVmwTyQgghKo0/9kYRm5SBn5uWERYcjb9TqLczyyd24PH7gvnl4VZ4u1hun+281PR0pHlNdwwK/HX0SrHquDO7elmMtlZUdjZqRmRnVC9oy0FTkrvhLQMsfrPIUloFedC1njd6g5IjO3x+luy/BEC/Jn44l8Iykbz4umoZ2/b2jIZWtSTRXVVn2obu0KWSBfLnrt0iTafH2d6m1JeJCGEtEsgLIYSoFNJ1en7YnL02vlvtUk1u5OOiZUr/hmWWYXtQdtK7VUdiinW8KfAcGFajXGRXL89Gt6mJSgXbzsZzMY+R7KjrqWw5cw0gRxBaHpnWyv95JIbTV5PzLZeSkWW+SVRaN8Dy83TXEBztNNhp1LQOkhH5qq55TVPm+oQS1WPawq6xvysamYEkKikJ5IUQQlQKC/dGEZecQQ03LSNaWX9Pb0vq17QGapXxy2nk9XtPk77TndnVx7ULKoXeVS6BHo50rWvcP31BHqPy8/dGoijQua43QV5OZd29Imns70bfJtVRFPhy/el8y/197AqpmXqCvZxoVcbT231ctCx7pgN/PNUOH1dtmbYtyh/TrgWnriaRkpFV7HqOZK+Pl0R3ojKTQF4IIUSFd+do/LP3l+5ovDV4u9jTsbYxQd2fh4s2Kl9es6uXZ6akd0sOXCY9e/02GM+zxfuMU9DLY5K7vEzuWRe1CtaHx3I4n229TNPqh7cKQKUq+9HLBn6usu2cAKC6mxY/Ny0G5XayuuI4mr31XJgkuhOVmATyQgghKrz5e6K4lpyBv7tDpV0DPvCO6fWF3ZqpvGdXL6+61vPB392BhFQdf9+Rl2DNsSvcTNVRw03L/aW0U4Gl1fZxYUhz4wyVvEblL1y7xb6Im6hVMLRF5ZrJIiom002dg1HFWyefrtNz6opxKUlTuXkpKjEJ5IUQQlRoaZl6ZphG47vVxs6mcv7T1rtxdexs1JyLu8XJK/mvd75Tec+uXl5p1Crz1mh3Jr37PTvXwJi2NSvUuttJPepgq1Gx7Ww8u85fz/HckgPGLee61PXGV6a2i3KguSnhXVRCsY4Pv5JElkHBy9kOf3cHy3VMiHKmcn7bEUIIUWXM3xNJ/C3jaPywlpV3RNFVa8v99YyjwIXdU96U5G5Eq8Bym129vBrRKhBbjYqDUQmExyRxPDqRg1EJ2GpUZZ4QrqQCPRwZ1dp4Y+KL9afNMzqy9AaWZQfypmz9QlibKeHdoaibhZ59dCdTorumAe5WWSoiRFmRQF4IISqhTafi6PL5Jn7bFWHtrpSqtEw9P265AMDz91fe0XiTQc2M0+tXH47BYCj4C27k9ZQ7sqvXLPW+VTbeLvb0blQdgN/3RJpH5ns3qo6PS8UbuX7+/tpobdUciLzJptNxAGw9e4245Aw8nOzo3sDXyj0Uwqixvyt2GjXXUzKJupFa5ONNa+tlfbyo7Cr3Nx4hhKiCdl+4ztO/HyDyeirvrw7n5JUkq/YnXafn7RXH+HTtKRJSMy1a9++7jaPxAdUcGFqJR+NNutX3wdnehpjEdA7cY/3ogj1RKIpxynQtz/KdXb28MiW9W3kompWHjEkGK2quAR9XLQ+3DwLgi3VnMBgUFu8zjsYPbuZf6W+CiYrD3kZDwxquQPGm15tH5ANlfbyo3OSqLYQQlcjRywk8/ut+MrIMONlpyDIovLb0KFl6g9X69MW608zfE8WMzefp/NkmftpyPkcm8OJKzczixy3GtfHP318bW03l/ydNa6sxjxKvOpz/9Pp0nZ5F+ytWdvXyqG2wB7V9nEnN1JOm01PX15k2wR7W7laxPd0lFGd7G8KvJDF/TyQbT8UCMKJ15b8JJiqW4ia8S0zTcSHeuEWnjMiLyq7yf+sRQogq4lxcMg/P3sutjCzah3iydlJnXLU2HItO5JftF63Spz0XrvPLDmPbQZ6OJKVn8fE/p+j+5RZWHLp8z+nhBfl9dyTXUzKp6eHIg1Uo27Zpev3fR6+gy+cGzd9Hr5CQqsPf3YFuFSS7enmkUqlyLEsY165WhV5zW83Jjsc7BQMw7c8T6PQKTQPcqF/d1co9EyKnFrXcgaKPyB+PNk6rD/RwwMPJzsK9EqJ8kUBeCCEqgUs3Unno573cTNURFuDGrIdbEejhyJT+DQGYvuEMF7NHKcpKSkYWryw9gqLAiFYBbHy5K58Pa0p1Vy3RCWm8tOgIA77bzvaz8UWuOzUzi5+y18Y/V0VG4006hHri5WzHzVQd28/l/d7Nq6DZ1cujB1sE4Olkh5ezHYOb+1u7OyX22H3BVHO0xXQPbbgkuRPlkCnh3ckrSaRlFn4G1+E7Et0JUdlVnW8+QghRScUlpzPulz1cTUqnjo8zcye0wdneBoDhLQO4r7YXGVkGXl92tEQj4EX10ZqTXLqRhr+7A1P7N0SjVjG8VSCbXunKq73r4Wxvw4mYJB76ZQ8Pz95bpLX8v+0yjsbX8nTkwUoQXBWFjUZNvybGreT+PByT6/ljlxM5fMmYXX1kBcuuXh65OdiydlJn/nmxMy5aW2t3p8RctLY80zUUADsbNQOb1rByj4TIrYabFl9Xe7IMCkcvJxT6OFPZZhLIiypAAnkhRJVnMCjM3XGxyGvxyoPEVB3jf9lLxPVUAqo5MO+xtlS7YzqhSqXi4web4GCrYe/FGyzYG1Um/dpy5hrz9xjb+nxY0xwBkIOdhme71WbLq115pEMQNmoVW85co+8323hlyRGuJKYVWHdKRhYzt2aPxnerjU0VGo03GdjMePNi3YmruUarTHud923ih5ezfZn3rTLydrHH26XyvJfj2wcxrl0t/je4MW6OFf/mhKh8VCoVzQOzt6HLHmUvjCOXjFPrmwZIojtR+VW9bz9CCHGX5YeieXd1OE/PO2DVpHBFlZqZxYS5ezl1NRlvF3vmP96W6m65t8UK9HDktT71APjkn1PEJBQcKJdUYqqO15ceBeCRDkF0qO2VZzlPZ3veHdiIfyd3oV8TPxQFlh64TNfPN/PZ2lMkpevyPO7XXRHcSMkkyNORIVVsNN6kRU13Aqo5kJqpNycsA+N7b9pjXpLcifxobTV8MLix7B0vyjXTOvmDkYW7yR6XlM7VpHTUKmjsL4G8qPwkkBdCVGmKojAre3Q3LjmDbfmsOS5vMrL0PDXvAAejEnBzsGXeY20K3GJsfPsgWtR051ZGFlNWHkdRSm+K/XurT3A1KZ1gLyde71P/nuWDvJz4fmwLVkzsQOugamRkGfhh83m6fr6ZuTsukpl1++bKrYws89/r+fvrVMnReDCOVg0MM06JXnXH9PqlBy+TrjNQv7oLLWtVs1b3hBCixEzr5A9dSijUv1lHsvePr+PjglP28jIhKrOq+Q1ICCGybT0bz+nYZPPvyw5ctmJvCkdvUHhp0WG2nY3H0U7DnAmt75l1WqNW8dmwpthp1Px3Ki5H8GdJa49fZfmhaNQq+GJ4UxzsNIU+tnnNaix+qj0zx7UkxNuJGymZvLs6nF5fbWHNsSsoisKvOyO4maoj2MvJnL29qhqUPb1+8+k4ElN1GAyKeVr9uPYVO7u6EEI08XfDRq3iWnIGl2/eeyaZef94mVYvqggJ5IUQVZppdLdDqCcA68NjSUzLe0p3eaAoCm8tP8aaY1ex06iZOa6Veb/de6nt48IL3WsDxlHz+FsZFu3b9VsZvL3iGABPdg6lZa2i77etUqno1ag66yd15sMhjfFytifieioT5x/kwRk7mbXN+Pd6oXvVXBt/p3rVXajn64JOr7D2xBV2nr/OxfgUnO1tGNysai45EEJUHlpbDY1qGG9SF2ad/JHsRHdhge6l1ykhypGq/S1ICFGlnYhJZPu5ePNodV1fZzKzDPx99Iq1u5YnRVH4aM1JFu2/hFoF34xuxn118l5/np+nuoRSv7oLN1N1vLc63KJ9e3vFca6nZFLP14WXetYpUX02GjVj29Ziy6tdebF7HRztNByKSiAhVUeIlxMDJNM2AAOb3Z5ebxqNH9rCX6aVCiEqBdP0+nutk1cUhaPZU+vDJGO9qCIkkBdCVFk/b7sIQL8mfgRUc2RoiwAAlh0sn9Prv990jlnZff50aFP6NPYrch22GjWfDwtDrYLVR2LYEB5774MKYdXhGNaeuIqNWsWXI8Kwtyn8lPqCONnb8FLPumx+pSuj29SkhpuWdwc2qvKj8SamdfK7Llxnw0nj3/IhSXInhKgkmtd0B+DQPXaVibyeSmKaDjsbNfWqu5RBz4SwPvkmJISokmIS0lh9xLhO/IlOIQAMae6PWgUHIm9yMT7Fmt3L5bddEXyx/gwAU/s3ZHgJsk03CXDjic7G1zxl5bESLyW4mpjOO6uOA/BC9zqlki3Yx1XLxw82Yeeb3elc19vi9VdUgR6OtKjpjqIYcye0Dfagjq98iRVCVA6mpWMnYpJI1+nzLWeaVt/QzxU7GwlvRNUgZ7oQokqauzOCLINC+xBPmmQnxvFx1dKpjjFIXF6ORuVXHormnVUnAGOg/Nh9wSWu86UedQn2ciI2KYNP/jlZ7HoUReH1ZUdJSs+iaYAbz3QNLXHfRNEMumM9/Lj2MhovhKg8Aqo54OVsT5ZB4Xh0Yr7lTPvHh0miO1GFSCAvhKhyktJ1LNgTBcCT2SPTJkNbGqfXLz8YjcFQelu0Fda/4bG8vOQIYNyT/aUeJVt7bqK11fDJg00AWLj3EjuLue3eH/suseXMNexs1Hw5PAxbmfJe5vo19cPd0ZZgLyd6Naxu7e4IIYTFqFQqWpin1yfkW+6oJLoTVZB84xJCWIXBoHAg8gY6veHehS1s0d5L3MrIoo6PM13umqbdq6EvLvY2RCeksfvi9TLv2512nb/OxAUH0RsUHmzhzzv9G1p0S7G2IZ481K4mAG8sP0ZqZlaRjr90I5X//WVMmPda73oypdtKvJzt2Ti5C6ue6yhTSoUQlY454V0+6+Sz9AaOxxhH5JtKojtRhci/+EIIq/hl+0WGztjF60uPlmm7Or2B2TuMCeOe6BSCWp0zMNbaaujX1JhEbtmB6DLt252OXk7g8V/3kZlloGdDXz4b2jRXXy3h9T71qeGmJepGKtOz1+AXhsGg8MqSI6Rk6mkT5MGEjiWf7i+Kz9PZHletrbW7IYQQFmcakT8YdRNFyT1T7kzsLdJ1BlzsbQjxcirj3glhPRLICyHKXNYdwfTyQ9HsKOa07uL4++gVriSm4+Vsz6DmeW9hZppe/8/xK6RkFG2U2hLOxibz8Oy9pGTq6RDqybejm5dalnYXrS0fDjFOsZ+94+I9MwObzN0ZwZ6LN3C00/D58KZoSuEmgxBCCNEkwA2NWkVsUgZXEtNzPW9KdNckwK1UbngLUV5JIC+EKHMbwmNz/GM8deVxMrLyz0ZrKYqiMHPrBQAmdAzKd4u0VrWqUcvTkdRMPetOXC31ft0pXafnkTn7uJmqIyzAjZnjW6G1tcxWbvnpVt+HIc39MSjw2tKj9/xbnIu7xadrTwHwVt8G1PKUERAhhBClw9HOhgZ+xqVbeU2vN62Pl2n1oqqRQF4IUebm7owAYHz7Wni72HMhPoWftlwo9XZ3nr9O+JUkHGw1jG1bM99yKpWKB5tbZ0/533dHEp2Qhr+7A3MntMHZ3qZM2n2nf0M8new4G3eLHzadz7dclt7Ay0uOkJFloFMdrwLfRyGEEMISmgca18nnlfDOlLG+WaBkrBdViwTyQogydepqEnsu3kCjVvF0l1Cm9m8IwHebzhFRynu3m0bjR7YOxN3RrsCyD7Ywbum18/x1YhLSSrVfJmmZen7MvqHx/P21qeZUcB8tqZqTHe8NagTA95vOcepqUp7lftp6gSOXEnDR2vDZsKYWTb4nhBBC5KVFLXcg94h8Wqae07HJgIzIi6pHAnkhRJn6dWckYMwOX8PdgQFN/ehUx4vMLANTVx3PM5GNJZy+msyWM9dQq+DRQiRmC/RwpG2wB4oCKw6VTdK733dHEn8rg0APB/M6/bLUr4kfPRv6kmVQeG3pUbLu2lEgPCaJr/81JsR7b2Aj/NwcyryPQgghqp4W2ZnrT0Qn5Vj+FX4lEb1BwdvFHj83rbW6J4RVSCAvhCgziak6VmYHxQ93CAKM09jfH9QYOxs1287G8/exK6XS9qxtxpHuBxr7UdPTsVDHmILpZQcul9oNBpPUzCx+3GKc0v58tzpW2Y9dpVLxv8GNcdHacPRyInN2RJify8wyMHnxYXR6hV4NfRnS3L/M+yeEEKJqqunhiIeTHZl6Aydibs8YO5w9rT4swE1miIkqRwJ5IUSZWXLgEmk6PfWru9A22MP8eLCXExO7hgLw/upwktN1Fm03NimdVYeNNxAe71T4bdL6NvHDwVbDhfgUDl1KsGif7vb77kiup2RS08ORIS2sFyT7umqZ0q8BAF9uOG1e7vDNxrOcupqMh5MdHw5pIl+YhBBClBmVSnV7G7rI29PrJdGdqMokkBdClAm9QeG3XcZp9ePbB+UKBJ/uEkqwlxNxyRl8WYT9zAtj7s4IdHqFNkEeNM+enlcYzvY29GlcHTCOypeW1Mwsc7K/5++vbZXR+DuNaBVIh1BP0nUG3lh+lINRN/lh8zkA/je4Md4u9lbtnxBCiKrH9O/3nTfWj2T/f1ige9l3SAgrk0BeCFEmtpyJI+pGKq5aGwbnsX+71lbDB4MaA/DbrgiOXU60SLu3MrKYv9t4A+GJziFFPn5oC+P0+tVHYkjXlc4Web/tMo7G1/J0LBdT1lUqFZ882BQHWw27L9xg/C97MSgwqFkN+jbxs3b3hBBCVEHNs0fkD2WPyCem6oi4ngpAU3/JWC+qHqsH8t9//z1BQUFotVratm3L3r17Cyz/9ddfU69ePRwcHAgMDOSll14iPf32ftR6vZ6pU6cSHByMg4MDoaGhfPDBB6W+vlUIUbC52UnuRrQKxNEu7y3V7qvjxcCwGhgUeHvlMfSGkn9uF++7RFJ6FiFeTnSv71Pk49uHeuLnpiUpPYuNJ+NK3J+7pWRkmbPpP39/HWysPBpvUtPTkVd61wOMN0N8Xe15f2BjK/dKCCFEVRUW4I5aBTGJ6VxNTOdodAIAtTwdy3SXFyHKC6t+Y1y0aBGTJ09m2rRpHDx4kLCwMHr37k1cXN5flhcsWMAbb7zBtGnTOHnyJL/88guLFi3irbfeMpf59NNPmTFjBt999x0nT57k008/5bPPPuPbb78tq5clhLjL+Wu32HrmGiqVcVp9Qab0b2BOtrZgT2SJ2s3SG/hl+0UAHu8Uglpd9HXdGrXKPEpeGnvK/7YrkhspmQR7OTG4We6ZCtb0SIcg2gR5oFGr+HRoU9wcba3dJSGEEFWUk70N9aq7AnAo6qZ5Wr2sjxdVlVUD+enTp/PEE08wYcIEGjZsyI8//oijoyOzZ8/Os/zOnTvp2LEjY8aMISgoiF69ejF69Ogco/g7d+5k0KBB9OvXj6CgIIYNG0avXr3uOdIvhCg987LXxt9fz+eeGeN9XLS8mj0S/Nna08QlpxdYviD/HL9KdEIank525n3hi8OUvX7LmWtcS84odj13u5WRxcyt2Znq769dbkbjTTRqFb891obtr3eja72iz2YQQgghLMmc8C7qJkcu385YL0RVlPf81jKQmZnJgQMHePPNN82PqdVqevTowa5du/I8pkOHDvz+++/s3buXNm3acOHCBdasWcO4ceNylJk5cyZnzpyhbt26HDlyhO3btzN9+vR8+5KRkUFGxu0v50lJxm0tdDodOp1ls2ebmOotrfqFKE1FOX9vZWSx5MAlAMa2CSjUMSNa1GDJ/ksci07ig9UnmD68aZH7qCgKP2Vv5za2bSAaDOh0hnsclbea7vaEBbhx5HIiyw9E8WjHoGLVc7c52y5wM1VHkKcjDzT0LpfXAw3g5WhTLvtWXHL9FRWZnL+iIivp+dvU34X5GDPXX7qZBkAjP2f5PIgyURbX36LUbbVAPj4+Hr1ej6+vb47HfX19OXXqVJ7HjBkzhvj4eO677z4URSErK4unn346x9T6N954g6SkJOrXr49Go0Gv1/Phhx8yduzYfPvy8ccf89577+V6fP369Tg6Fm6/6eLasGFDqdYvRGkqzPm77aqKlAwNPlqFxDN7WXO2cHX39oDj0RpWH71KoC6aeu5FWy9/LhGOx9hgq1LwTTrNmjWni3T83eraqjiChl+3nqZ6YniJ6gJIz4IZhzSAivuqJbN+3doS1ymKRq6/oiKT81dUZMU9f5PSAGw4FHUTAypUKFw6uou4ExbtnhAFKs3rb2pqaqHLWi2QL47Nmzfz0Ucf8cMPP9C2bVvOnTvHiy++yAcffMDUqVMBWLx4MfPnz2fBggU0atSIw4cPM2nSJGrUqMHDDz+cZ71vvvkmkydPNv+elJREYGAgvXr1wtXVtVRei06nY8OGDfTs2RNbW1l3KiqWwp6/iqLwf9/sBFJ4qnsD+rerWaR2Yp1OMW93FGviXJg4vD32tppCH/vk7weBeIa3DmTEgIZFajcvHVJ1rPxsMzGpENT8Phr6leza8MPmC6RmnSPEy5Ep4zqiKcb6fVE8cv0VFZmcv6IiK+n5qygK35/eTEKacdSynq8LQwZ0sHQ3hchTWVx/TTPDC8NqgbyXlxcajYbY2Ngcj8fGxlK9evU8j5k6dSrjxo3j8ccfB6BJkyakpKTw5JNP8vbbb6NWq3n11Vd54403GDVqlLlMZGQkH3/8cb6BvL29Pfb2ufdFtrW1LfV/JMuiDSFKy73O3+1n47kQn4KTnYYRrWsW+Vx/tU991p2IJeJ6Kr/svMSLPeoU6rhzcclsOh2PSgVPdK5tkc+Yt5stPRv6subYVVYdiSWspmex60pO1zE7O4v/iz3qorWXbLvWINdfUZHJ+SsqspKcv81rurPp9DUAwgKryedAlLnSvP4WpV6rZVays7OjZcuWbNy40fyYwWBg48aNtG/fPs9jUlNTUatzdlmjMY7QmbaXy6+MwVC8tbFCiOL7dVcEYEwW56It+gXPVWvL1P7G0fTvN58jIj6lUMf9vM2Yqb5XQ1+CvZyK3G5+THvKrzocjU5f/GvK3B0RJKbpCPV2on/T8pWpXgghhCjPWtSsZv7/poGS6E5UXVZNkTx58mRmzZrFr7/+ysmTJ3nmmWdISUlhwoQJAIwfPz5HMrwBAwYwY8YM/vjjDy5evMiGDRuYOnUqAwYMMAf0AwYM4MMPP+Tvv/8mIiKCFStWMH36dIYMGWKV1yhEVXXpRiobTxpn3Nxry7mC9G/qR6c6XmRmGZi66rj5pl1+4pLTWX4wGoAnO4cUu928dK7rjZezHddTMtmSPRpQVEnpOmZtM+4b/0L3OjKlXgghhCiC5ncE8mGy9Zyowqy6Rn7kyJFcu3aNd955h6tXr9KsWTPWrl1rToAXFRWVY3R9ypQpqFQqpkyZQnR0NN7e3ubA3eTbb79l6tSpTJw4kbi4OGrUqMFTTz3FO++8U+avT4iq7PfdkRgUuK+2F7V9nItdj0ql4oNBjen19Va2nY3nr6NXGBCW/yj2vF2RZOoNtKjpTstaHsVuNy+2GjWDmvnzy/aLLDt4mR4Nfe990F3mbI8gKT2L2j7OMhovhBBCFFGzmu54OtlhZ6OmXnUXa3dHCKuxerK75557jueeey7P5zZv3pzjdxsbG6ZNm8a0adPyrc/FxYWvv/6ar7/+2oK9FEIURVqmnj/2Gbece7hDUInrC/Jy4tmutfnq3zO8/1c4Xep545rHVP3UzCzm7TauPbf0aLzJ0BYB/LL9IhtPxpGQmom7Y+HXtyem6fhlu3E0/kUZjRdCCCGKzNnehr9f6IRabbzBLkRVJWe/EMLi/jwSTWKajoBqDtxf38cidT7dNYQQLyeuJWcwff2ZPMssPXCZhFQdtTwd6dkw76SZJdWwhisN/FzJ1BtYfSSmSMfO2XGRpPQs6vo606+JX6n0TwghhKjsqrtp8XHRWrsbQliVBPJCCItSFIVfszOyj2tXy2KjzvY2Gj4Y3BiA33ZFcOxyYo7n9QbFnOTusfuCS3W0e2gLfwCWZq/FLwzjaLyxfy92r4taRuOFEEIIIUQxSSAvhLCo/ZE3Cb+ShL2NmpGtAy1ad8faXgxqVgODAm+vPIbecDvx3foTV4m6kYq7oy3DWgZYtN27DWrmj0at4silBM7F3SrUMb9sv0hyehb1fF14oHHpzBYQQgghhBBVgwTyQgiLmrszAoDBzfyLtH68sN7u1wAXrQ1HLycyf49x5F9RFH7aalx7Pq5dLRztSjf9h7eLPV3regOw7ODle5ZPTNUxxzQa36OOjMYLIYQQQogSkUBeCGExVxPTWXf8KmCZJHd58XHR8lrvegB8vvY0cUnpHIi8yeFLCdhp1CXa6q4ohmaP+q84GJ1jZkBeftl+geSMLOpXd6FPIxmNF0IIIYQQJSOBvBDCYhbsiSTLoNAmyIOGNVxLrZ0xbWsRFuBGckYW//v7JDOzR+MfbOGPt4t9qbV7p+4NfHBzsOVqUjo7z8fnWy4hNZPZOyIAmCSj8UIIIYQQwgIkkBdCWERGlp4Fe6MAGN+hVqm2pVGr+HBIE9Qq+PNIDOvDYwF4vFNwqbZ7J3sbDQPCjJnnlx3If3r9z9sucisjiwZ+rvQqpUz6QgghhBCiapFAXogqZOWhaIbN2MmWM9csXvc/x64SfyuT6q5aepfB9PHG/m45ptF3r+9DbR+XUm/3TkNbGKfXrz1xleR0Xa7nb6ZkMmeHKVO9jMYLIYQQQgjLkEBeiCoiNimdN5cfY3/kTR6evZdP155CpzdYrH5TkruxbWtiqymbS8vLveri62qcSv9Ul9AyafNOzQLdCfF2Il1n4J9jV3M9//P2C6Rk6mno50rvRr5l3j8hhBBCCFE5SSAvRBXx5frTpOn0VHO0BWDG5vOMmrmb6IS0Etd95FKCOdncqDY1S1xfYblobVk+sSNLn25Pm2CPMmvXRKVSmUfll96Vvf5GSiZz71gbr1LJaLwQQgghhLAMCeSFqAJOxCSyJHsd9y+PtOb7MS1wsbfhQORN+v7fNjZkrzEvrl93RQDQr6lfmSWbM/F3d6BVUNkH8SYPtvBHpYK9F29w6Uaq+fFZ24yj8Y1quNKzoYzGCyGEEEIIy5FAXohKTlEUPvz7JIoCA8Jq0KJmNfo19ePvFzrRNMCNxDQdT/y2n/dXh5OZVfSp9vG3MvjryBWg9LacK8/83BzoGOoF3N5T/vqtDH7NXmowqUddGY0XQgghhBAWJYG8EJXcxpNx7Dx/HTsbtXn/dYCano4sfboDj91nzPQ+e8dFhv24k8jrKUWqf9G+S2TqDYQFuNEs0N2SXa8whrb0B2D5wWgURWHWtoukZupp4u9GjwY+Vu6dEEIIIYSobCSQF6IS0+kNfLTmJACPdgwm0MMxx/N2Nmqm9m/IrPGtcHOw5ejlRPp/s52/jsYUqv4svYHfd0cCVXM03qR3o+o42WmIupHKuhNX+S17qYGsjRdCCCGEEKVBAnkhKrH5uyO5EJ+Cp5MdE7vln9W9Z0Nf1rzYiZa1qpGckcVzCw7x9opjpOv0Bdb/76lrXElMx9PJjn5N/Szd/QrD0c6Gvk2Mr3/y4iOkZuoJC3Dj/voyGi+EEEIIISxPAnkhKqnEVB1fbzwLwEs96+KqtS2wvL+7A3882Y6JXY0B//w9UQz+fgfnr93K95h5u6MAGN2mJvY2Ggv1vGIa2tKYvT4103jzQ9bGCyGEEEKI0iKBvBCV1Lf/nSUhVUcdH2dGtQ4s1DG2GjWv9anPr4+2wdPJjlNXkxnw7XaW37W1GkB0CuyNuIlGrWJsu7Lbcq68ahPkQUA1BwDCAt3pWs/byj0SQgghhBCVlQTyQlRCEfEp5i3h3u7XABtN0T7qXep6s+bFTrQP8SQ1U8/kxUd4ZckRUjOzzGW2XzXW2buRL35uDhbre0WlVquY1KMuNdy0vNO/gYzGCyGEEEKIUiOBvBCV0Cf/nEKnV+hc15uu9Yq3TtvXVcvvj7flpR51Uatg6YHLDPxuB6euJpGYpmN/vDFQfbh9kAV7XrENaxnAzje707KW9fa1F0IIIYQQlZ+NtTsghLCsPReus/bEVdQqeLtvgxLVpVGreLFHHdoEe/DiH4c4F3eLQd/toF2IB5kGFfV9nWkTLEGrEEIIIYQQZUlG5IWoRAwGhf/9bdxublSbmtSr7mKRetuHerLmxU50qetNRpaBLWfiAXioXU2ZQi6EEEIIIUQZk0BeiEpk5eFojkUn4mxvw0s96lq0bi9ne+Y80po3HqiPRq3C3U5hYBXeck4IIYQQQghrkan1QlQSaZl6Pl93GoCJ3ULxdrG3eBtqtYqnu4TSv7EPmzf9h4Nd1d5yTgghhBBCCGuQEXkhKomft13gSmI6/u4OPNoxuFTb8nXV4lLwtvRCCCGEEEKIUiKBvBCVQFxSOjO2nAfg9Qfqo7WVkXIhhBBCCCEqKwnkhagEvlx/htRMPc1rujNA1q0LIYQQQghRqUkgL0QFFx6TxOIDlwCY0q+hZJEXQgghhBCikpNAXogKTFEU/vd3OIoC/Zv60bJWNWt3SQghhBBCCFHKJJAXogL771QcO89fx85Gzet96lu7O0IIIYQQQogyIIG8EBWUTm/gwzUnAXi0YzCBHo5W7pEQQgghhBCiLEggL0QFtWBPFBeupeDhZMfEbqHW7o4QQgghhBCijEggL0QFlJiq4+t/zwDwUs+6uGplU3chhBBCCCGqCgnkhaiAvtt0lpupOmr7ODO6daC1uyOEEEIIIYQoQxLIC1HBRF5PYe7OCADe7tcAG418jIUQQgghhKhKJAIQooL55J9T6PQKnep40bWut7W7I4QQQgghhChjEsgLUYHsi7jBP8evolYZR+NVKpW1uySEEEIIIYQoYxLIC1FBGAwK//srHICRrWtSv7qrlXskhBBCCCGEsAYJ5IWoIP48EsORy4k42WmY3LOutbsjhBBCCCGEsBIJ5IWoAG5lZPHp2lMATOxWG28Xeyv3SAghhBBCCGEtEsgLUc6dv3aLwd/v4EpiOv7uDjx2X7C1uySEEEIIIYSwIhtrd0AIkb+1x6/wypKj3MrIwsfFnh/GtkBrq7F2t4QQQgghhBBWJIG8EOVQlt7AF+vP8OOW8wC0CfbguzHN8XHRWrlnQgghhBBCCGuTQF6Icib+VgYvLDzEzvPXAXj8vmBef6A+thpZCSOEEEIIIYSQQF6IcuVQ1E0mzj/IlcR0HO00fDasKf2b1rB2t4QQQgghhBDliATyQpQDiqKwYG8U7/0ZTqbeQIiXEz+Na0kdXxdrd00IIYQQQghRzkggL4SVpev0TFl5nKUHLgPQu5EvXwwPw0Vra+WeCSGEEEIIIcojCeSFsKJLN1J5at4Bwq8koVbBa33q81TnEFQqlbW7JoQQQgghhCinJJAXwko2nY5j0h+HSUzT4eFkx3ejm9Ohtpe1uyWEEEIIIYQo5ySQF6KMGQwK3/53jq83nkFRICzQnRljW1DD3cHaXRNCCCGEEEJUABLIC1GGElN1TFp0iE2nrwEwtm1N3hnQEHsbjZV7JoQQQgghhKgoJJAXooyciEnkmd8PEnUjFXsbNf8b3JjhrQKt3S0hhBBCCCFEBSOBvBBlYPnBy7y5/BgZWQYCqjnw40MtaezvZu1uCSGEEEIIISogCeSFKEUGg8IHf4czZ0cEAF3qevN/o5rh7mhn3Y4JIYQQQgghKiwJ5IUoJQaDwtsrj7Fw7yUAXuxehxe610Gjlq3lhBBCCCGEEMWntnYHvv/+e4KCgtBqtbRt25a9e/cWWP7rr7+mXr16ODg4EBgYyEsvvUR6enqOMtHR0Tz00EN4enri4OBAkyZN2L9/f2m+DCFyMBgU3lphDOJVKpg+IoyXetaVIF4IIYQQQghRYkUO5IOCgnj//feJiooqceOLFi1i8uTJTJs2jYMHDxIWFkbv3r2Ji4vLs/yCBQt44403mDZtGidPnuSXX35h0aJFvPXWW+YyN2/epGPHjtja2vLPP/8QHh7Ol19+SbVq1UrcXyEKwxTE/7HvEursIP7BFgHW7pYQQgghhBCikihyID9p0iSWL19OSEgIPXv25I8//iAjI6NYjU+fPp0nnniCCRMm0LBhQ3788UccHR2ZPXt2nuV37txJx44dGTNmDEFBQfTq1YvRo0fnGMX/9NNPCQwMZM6cObRp04bg4GB69epFaGhosfooRFHkDuKbMaS5BPFCCCGEEEIIyynyGvlJkyYxadIkDh48yNy5c3n++eeZOHEiY8aM4dFHH6VFixaFqiczM5MDBw7w5ptvmh9Tq9X06NGDXbt25XlMhw4d+P3339m7dy9t2rThwoULrFmzhnHjxpnL/Pnnn/Tu3Zvhw4ezZcsW/P39mThxIk888US+fcnIyMhxMyIpKQkAnU6HTqcr1OspKlO9pVW/KHsGg8KUP8NZciAatQo+H9qEfo19KuXfWM5fUZHJ+SsqMjl/RUUm56+oyMri/C1K3SpFUZSSNvbDDz/w+uuvo9PpaNKkCS+88AITJkxApcp/PXBMTAz+/v7s3LmT9u3bmx9/7bXX2LJlC3v27MnzuG+++YZXXnkFRVHIysri6aefZsaMGebntVotAJMnT2b48OHs27ePF198kR9//JGHH344zzrfffdd3nvvvVyPL1iwAEdHx0K9D6JqMyjwx3k1e66pUaHwUG0DrbxL9NESQgghhBBCVCGpqamMGTOGxMREXF1dCyxb7Kz1Op2OFStWMGfOHDZs2EC7du147LHHuHz5Mm+99Rb//vsvCxYsKG71edq8eTMfffQRP/zwA23btuXcuXO8+OKLfPDBB0ydOhUAg8FAq1at+OijjwBo3rw5x48fLzCQf/PNN5k8ebL596SkJAIDA+nVq9c938Di0ul0bNiwgZ49e2Jra1sqbYiyYTAovLXqBHuuxaBWwRfDmjKgqZ+1u1Wq5PwVFZmcv6Iik/NXVGRy/oqKrCzOX9PM8MIociB/8OBB5syZw8KFC1Gr1YwfP56vvvqK+vXrm8sMGTKE1q1bF1iPl5cXGo2G2NjYHI/HxsZSvXr1PI+ZOnUq48aN4/HHHwegSZMmpKSk8OSTT/L222+jVqvx8/OjYcOGOY5r0KABy5Yty7cv9vb22Nvb53rc1ta21C8yZdGGKD16g8KbK4+y7KAxiP96VHMGhtWwdrfKjJy/oiKT81dUZHL+iopMzl9RkZXm+VuUeouc7K5169acPXuWGTNmEB0dzRdffJEjiAcIDg5m1KhRBdZjZ2dHy5Yt2bhxo/kxg8HAxo0bc0y1v1Nqaipqdc4uazQaAEwrBDp27Mjp06dzlDlz5gy1atUq3AsUopD0BoXXlh5l6YHLaNQq/q+KBfFCCCGEEEII6yjyiPyFCxfuGRQ7OTkxZ86ce9Y1efJkHn74YVq1akWbNm34+uuvSUlJYcKECQCMHz8ef39/Pv74YwAGDBjA9OnTad68uXlq/dSpUxkwYIA5oH/ppZfo0KEDH330ESNGjGDv3r3MnDmTmTNnFvWlCpEvUxC/7KApiG9G/6YSxAshhBBCCCFKX5ED+bi4OK5evUrbtm1zPL5nzx40Gg2tWrUqdF0jR47k2rVrvPPOO1y9epVmzZqxdu1afH19AYiKisoxAj9lyhRUKhVTpkwhOjoab29vBgwYwIcffmgu07p1a1asWMH/t3ff0VHV+f/HX5NeSEJIIAk1IE16DVIEVkooZkVRaUJAiv6WKIqsigLBirqKyCK4X6W4qxRRYV1FMISmiIJgEGnSNJRACAhppM3M7w/MyJiAGUhyZ5Ln45w5y9x75973xPfJ2Vfu5/O5U6dO1bPPPqv69etrzpw5GjFihKNfFSiW2WLV3z/crY93nZS7m0lzh7bVwAo+Jx4AAACA83A4yE+cOFGPP/54kSB/8uRJvfzyy1ddbf5q4uLiFBcXV+y+TZs22b338PBQfHy84uPjr3nO22+/XbfffrtDdQAlYbZY9feVu/Xx94R4AAAAAMZweI78vn37in1WfNu2bbVv375SKQpwRoR4AAAAAM7A4SDv7e1dZKV5SUpJSZGHx3U/zQ5wamaLVVOuCPH/HEaIBwAAAGAMh4N83759NXXqVF28eNG27cKFC3rqqafUp0+fUi0OcAZmi1WPfZCkVd+flIebSfOGtdWAloR4AAAAAMZw+Bb6q6++qu7du6tevXpq27atJCkpKUlhYWH6z3/+U+oFAkYqMFv02Mrd+m/Sqcshfnhb9WtBiAcAAABgHIeDfK1atfTDDz/o/fff1+7du+Xr66sxY8Zo2LBhDj3AHnB2RUN8O/VrEW50WQAAAAAqueua1O7v768JEyaUdi2A08jJN2vS8u+1bu8ZQjwAAAAAp3Ldq9Pt27dPycnJysvLs9v+17/+9YaLAoz0a1aexr67Q7uSL8jLw03zhrVV3+aEeAAAAADOweEgf/ToUd15553as2ePTCaTrFarJMlkMkmSzGZz6VYIlKPj57MVu2i7jqZlKdDHQ+/EdlRU/WpGlwUAAAAANg6vWj9p0iTVr19fqamp8vPz0969e7VlyxZ16NBBmzZtKoMSgfLx48mLunP+1zqalqVaVX310f/rQogHAAAA4HQcviO/bds2bdiwQaGhoXJzc5Obm5u6deumWbNm6eGHH9b3339fFnUCZWrzT2f1t/d2KivPrKbhAXr3/iiFBfoYXRYAAAAAFOHwHXmz2ayAgABJUmhoqE6dOiVJqlevng4ePFi61QHlYOV3x3X/kh3KyjOra8MQrXywMyEeAAAAgNNy+I58ixYttHv3btWvX1+dOnXSK6+8Ii8vL/3f//2fGjRoUBY1AmXCarVq3obDei3hJ0nSnW1r6eXBreTl4fDftwAAAACg3Dgc5KdNm6asrCxJ0rPPPqvbb79dt956q0JCQrRixYpSLxAoCwVmi6b/d6+WbU+WJP2/njfp8egmtkUbAQAAAMBZORzko6Ojbf9u2LChDhw4oPPnzys4OJgQBJeQnVegh5Z+r8QDqTKZpGf+2lyjOkcaXRYAAAAAlIhDY4jz8/Pl4eGhH3/80W57tWrVCPFwCecyczXs7W+VeCBV3h5ueuu+9oR4AAAAAC7FoTvynp6eqlu3Ls+Kh0v65VyWYhdt18/nslXVz1MLYzuofT0eLwcAAADAtTi8qtfTTz+tp556SufPny+LeoAykXT8gu6a/7V+Ppet2sGXnxFPiAcAAADgihyeIz9v3jwdPnxYNWvWVL169eTv72+3f9euXaVWHFAaNhw4o4nvf69L+Wa1qBWoRaM7qkYAj5cDAAAA4JocDvKDBg0qgzKAsrF8e7KeXv2jzBarujeurvkj2qmKt8NtDwAAAABOw+FEEx8fXxZ1AKXKarXq9fWHNDfxkCTp7va1NeuulvJ05xnxAAAAAFwbtyZR4VitVk39eI+W7zguSXr4toZ6tE9jnqwAAAAAoEJwOMi7ubldMxCxoj2MtvXwOS3fcVxuJun5QS01vFNdo0sCAAAAgFLjcJBftWqV3fv8/Hx9//33evfdd/XMM8+UWmHA9Vq2I1mSNLxTXUI8AAAAgArH4SB/xx13FNl29913q3nz5lqxYoXGjh1bKoUB1+NcZq6+2HtakjQsihAPAAAAoOIptZW/brnlFiUmJpbW6YDr8vGuk8o3W9WqdpCa1wwyuhwAAAAAKHWlEuQvXbqkuXPnqlatWqVxOuC6WK1W27D6oR25Gw8AAACgYnJ4aH1wcLDdYndWq1UZGRny8/PTe++9V6rFAY7Y8fOvOno2S35e7vprm5pGlwMAAAAAZcLhIP/666/bBXk3NzdVr15dnTp1UnBwcKkWBzhi+fbLd+NjWtVUFW+erAgAAACgYnI47YwePboMygBuzMXsfH22J0WSNDSqjsHVAAAAAEDZcXiO/OLFi7Vy5coi21euXKl33323VIoCHLU66aRyCyxqGh6gNnWqGl0OAAAAAJQZh4P8rFmzFBoaWmR7jRo19OKLL5ZKUYAjrFarlm0vXOSujt3UDwAAAACoaBwO8snJyapfv36R7fXq1VNycnKpFAU4YveJizpwOkNeHm66s21to8sBAAAAgDLlcJCvUaOGfvjhhyLbd+/erZCQkFIpCnBE4SJ3A1qEK8jP0+BqAAAAAKBsORzkhw0bpocfflgbN26U2WyW2WzWhg0bNGnSJA0dOrQsagSuKjO3QJ/sPiVJGhrFs+MBAAAAVHwOr1r/3HPP6eeff1avXr3k4XH54xaLRaNGjWKOPMrd/3afUnaeWQ1C/dWpfjWjywEAAACAMudwkPfy8tKKFSv0/PPPKykpSb6+vmrZsqXq1atXFvUB17R8x3FJ0hAWuQMAAABQSTgc5As1atRIjRo1Ks1aAIfsT0nX7uMX5Olu0uD2LHIHAAAAoHJweI784MGD9fLLLxfZ/sorr+iee+4plaKAkihc5K5PszCFVvE2uBoAAAAAKB8OB/ktW7ZowIABRbb3799fW7ZsKZWigD+Tk2/Wqu9PSpKGdmSROwAAAACVh8NBPjMzU15eXkW2e3p6Kj09vVSKAv7Mmj0pSs8pUO1gX3VrGGp0OQAAAABQbhwO8i1bttSKFSuKbF++fLmaNWtWKkUBf2b59t8WuetQR25uLHIHAAAAoPJweLG76dOn66677tKRI0d02223SZISExO1dOlSffjhh6VeIPBHh1Mztf3n83IzSfd0qGN0OQAAAABQrhwO8jExMVq9erVefPFFffjhh/L19VXr1q21YcMGVavGc7xR9lbsuLzI3W1Nayg8yMfgagAAAACgfF3X4+cGDhyogQMHSpLS09O1bNkyTZkyRTt37pTZbC7VAoEr5RaY9dEuFrkDAAAAUHk5PEe+0JYtWxQbG6uaNWvqtdde02233aZvvvmmNGsDikjYd0bns/IUFuitnk2qG10OAAAAAJQ7h+7Inz59WkuWLNHChQuVnp6ue++9V7m5uVq9ejUL3aFcFC5yd2+HOvJwv+6/QwEAAACAyypxEoqJiVGTJk30ww8/aM6cOTp16pT++c9/lmVtgJ3kc9n66nCaTKbLQR4AAAAAKqMS35H//PPP9fDDD+v//b//p0aNGpVlTUCxVnx3eZG7bg1DVaean8HVAAAAAIAxSnxH/quvvlJGRobat2+vTp06ad68eUpLSyvL2gCbArNFK787IUkaFsUidwAAAAAqrxIH+VtuuUVvv/22UlJS9MADD2j58uWqWbOmLBaLEhISlJGRUZZ1opLbePCsUjNyFeLvpd43hxldDgAAAAAYxuHVwvz9/XX//ffrq6++0p49e/TYY4/ppZdeUo0aNfTXv/61LGoEtHz75WH1d7evLS8PFrkDAAAAUHndUCJq0qSJXnnlFZ04cULLli0rrZoAOykXL2njwVRJ0pCOLHIHAAAAoHIrlVub7u7uGjRokD755JPSOB1gZ+V3J2SxSp3qV1OD6lWMLgcAAAAADOUUY5TffPNNRUZGysfHR506ddL27duvefycOXPUpEkT+fr6qk6dOnr00UeVk5NT7LEvvfSSTCaTHnnkkTKoHGXNYrFqxY7Lz44fGsXdeAAAAAAwPMivWLFCkydPVnx8vHbt2qXWrVsrOjpaqampxR6/dOlSPfnkk4qPj9f+/fu1cOFCrVixQk899VSRY3fs2KF//etfatWqVVl/DZSRLw+n6eSFSwr08VD/FhFGlwMAAAAAhjM8yM+ePVvjx4/XmDFj1KxZM7311lvy8/PTokWLij3+66+/VteuXTV8+HBFRkaqb9++GjZsWJG7+JmZmRoxYoTefvttBQcHl8dXQRkoXOTurna15ePpbnA1AAAAAGA8DyMvnpeXp507d2rq1Km2bW5uburdu7e2bdtW7Ge6dOmi9957T9u3b1dUVJSOHj2qNWvWaOTIkXbHTZw4UQMHDlTv3r31/PPPX7OO3Nxc5ebm2t6np6dLkvLz85Wfn3+9X++aCs9bVuevCNIyc5Ww74wk6e62EfysnAj9C1dG/8KV0b9wZfQvXFl59K8j5zY0yKelpclsNisszP654GFhYTpw4ECxnxk+fLjS0tLUrVs3Wa1WFRQU6MEHH7QbWr98+XLt2rVLO3bsKFEds2bN0jPPPFNk+xdffCE/Pz8HvpHjEhISyvT8rizxpEkFFnfVq2LVkV1f6ojRBaEI+heujP6FK6N/4croX7iysuzf7OzsEh9raJC/Hps2bdKLL76o+fPnq1OnTjp8+LAmTZqk5557TtOnT9fx48c1adIkJSQkyMfHp0TnnDp1qiZPnmx7n56erjp16qhv374KDAwsk++Rn5+vhIQE9enTR56enmVyDVdmtVr1+htbJWXrgd7NNaB9baNLwhXoX7gy+heujP6FK6N/4crKo38LR4aXhKFBPjQ0VO7u7jpz5ozd9jNnzig8PLzYz0yfPl0jR47UuHHjJEktW7ZUVlaWJkyYoKefflo7d+5Uamqq2rVrZ/uM2WzWli1bNG/ePOXm5srd3X6utbe3t7y9vYtcy9PTs8x/yZTHNVzRtiPn9PO5bPl7ueuOtnXk6elyf3OqFOhfuDL6F66M/oUro3/hysqyfx05r6GL3Xl5eal9+/ZKTEy0bbNYLEpMTFTnzp2L/Ux2drbc3OzLLgzmVqtVvXr10p49e5SUlGR7dejQQSNGjFBSUlKREA/ntHzH5UXu/tqmlvy9CfEAAAAAUMjwhDR58mTFxsaqQ4cOioqK0pw5c5SVlaUxY8ZIkkaNGqVatWpp1qxZkqSYmBjNnj1bbdu2tQ2tnz59umJiYuTu7q6AgAC1aNHC7hr+/v4KCQkpsh3O6UJ2nj7/8bQkaRjPjgcAAAAAO4YH+SFDhujs2bOaMWOGTp8+rTZt2mjt2rW2BfCSk5Pt7sBPmzZNJpNJ06ZN08mTJ1W9enXFxMTohRdeMOoroJR9vOuk8gosahYRqJa1gowuBwAAAACciuFBXpLi4uIUFxdX7L5NmzbZvffw8FB8fLzi4+NLfP4/ngPOy2q1asWO45Iu3403mUwGVwQAAAAAzsXQOfLAH31//IIOnsmQj6eb7mhby+hyAAAAAMDpOMUdeSDfbFHi/lS9ufGwJGlgy5oK9GE1UwAAAAD4I4I8DPVzWpZWfHdcH+48obMZuZIkbw83jekaaWxhAAAAAOCkCPIodzn5Zq3be1rLtx/XtqPnbNtDq3jrng61NbRjHdUL8TewQgAAAABwXgR5lJufzmRo2fZkrfr+pC5k50uSTCapR+PqGtqxrnrdXEOe7izbAAAAAADXQpBHmcrOK9Cnu1O0fEeydiVfsG2vGeSjezvW0T0d6qhWVV/jCgQAAAAAF0OQR6mzWq3ac/Kilu84rk+STikzt0CS5OFmUq+ba2hoVF11b1Rd7m48Wg4AAAAAHEWQR6lJz8nXf78/qWXbj2tfSrpte2SIn4Z0rKvB7WupRoCPgRUCAAAAgOsjyKNU/Hjyoob8a5uy8sySJC8PN/VvEa4hHevolvohcuPuOwAAAACUCoI8SkXCvjPKyjOrVlVfje1WX3e2raVgfy+jywIAAACACocgj1JROJT+/m71dX+3+gZXAwAAAAAVF8/6QqnYd+pykG9eM9DgSgAAAACgYiPI44b9mpWnkxcuSZKaEeQBAAAAoEwR5HHD9v82rL5ONV8F+ngaXA0AAAAAVGwEedywvYXD6iOCDK4EAAAAACo+gjxu2N5TFyUxPx4AAAAAygNBHjes8I488+MBAAAAoOwR5HFDcvLNOnI2U5LUvCZD6wEAAACgrBHkcUMOnM6QxSqF+HspLNDb6HIAAAAAoMIjyOOGFM6Pb1YzUCaTyeBqAAAAAKDiI8jjhuxjfjwAAAAAlCuCPG6I7dFzzI8HAAAAgHJBkMd1M1usOnC6MMhzRx4AAAAAygNBHtftWFqmcvIt8vV0V2SIv9HlAAAAAEClQJDHdSscVn9zRIDc3VjoDgAAAADKA0Ee14358QAAAABQ/gjyuG5XPnoOAAAAAFA+CPK4Llar1fboORa6AwAAAIDyQ5DHdUm5mKNfs/Pl7mZS47AAo8sBAAAAgEqDII/rUjg/vlGNKvLxdDe4GgAAAACoPAjyuC6Fw+qbRTCsHgAAAADKE0Ee14WF7gAAAADAGAR5XBcePQcAAAAAxiDIw2EXsvN08sIlSQytBwAAAIDyRpCHw/alXL4bXzvYV0F+ngZXAwAAAACVC0EeDuP58QAAAABgHII8HMb8eAAAAAAwDkEeDuPRcwAAAABgHII8HJKTb9bhs5mSpOa1CPIAAAAAUN4I8nDIwdMZMlusqubvpfBAH6PLAQAAAIBKhyAPhxSuWN8sIlAmk8ngagAAAACg8iHIwyF7T12UxIr1AAAAAGAUgjwcUrhifTOCPAAAAAAYgiCPEjNbrDqQkiGJR88BAAAAgFEI8iixY2lZupRvlq+nu+qH+htdDgAAAABUSgR5lFjh/PimEQFyd2OhOwAAAAAwAkEeJbbvt/nxLHQHAAAAAMYhyKPEfn/0HPPjAQAAAMAoBHmUiNVqta1Yzx15AAAAADAOQR4lcjo9R+ez8uTuZlKT8ACjywEAAACASosgjxIpnB9/U3V/+Xi6G1wNAAAAAFReBHmUyO/D6pkfDwAAAABGIsijRAofPcf8eAAAAAAwFkEeJVJ4R74ZQR4AAAAADOUUQf7NN99UZGSkfHx81KlTJ23fvv2ax8+ZM0dNmjSRr6+v6tSpo0cffVQ5OTm2/bNmzVLHjh0VEBCgGjVqaNCgQTp48GBZf40K6+KlfJ349ZIkqVkEQR4AAAAAjGR4kF+xYoUmT56s+Ph47dq1S61bt1Z0dLRSU1OLPX7p0qV68sknFR8fr/3792vhwoVasWKFnnrqKdsxmzdv1sSJE/XNN98oISFB+fn56tu3r7Kyssrra1UohQvd1arqq6p+XgZXAwAAAACVm4fRBcyePVvjx4/XmDFjJElvvfWWPvvsMy1atEhPPvlkkeO//vprde3aVcOHD5ckRUZGatiwYfr2229tx6xdu9buM0uWLFGNGjW0c+dOde/evcg5c3NzlZuba3ufnn45uObn5ys/P//Gv2QxCs9bVucvTXtO/CpJahYR4BL1ouy5Uv8Cf0T/wpXRv3Bl9C9cWXn0ryPnNjTI5+XlaefOnZo6daptm5ubm3r37q1t27YV+5kuXbrovffe0/bt2xUVFaWjR49qzZo1Gjly5FWvc/Hi5YXaqlWrVuz+WbNm6Zlnnimy/YsvvpCfn58jX8lhCQkJZXr+0pBw2E2Sm9wzUrRmzSmjy4ETcYX+Ba6G/oUro3/hyuhfuLKy7N/s7OwSH2tokE9LS5PZbFZYWJjd9rCwMB04cKDYzwwfPlxpaWnq1q2brFarCgoK9OCDD9oNrb+SxWLRI488oq5du6pFixbFHjN16lRNnjzZ9j49PV116tRR3759FRhYNnPC8/PzlZCQoD59+sjT07NMrlFa5s/7WlKmBnVvr1431zC6HDgBV+pf4I/oX7gy+heujP6FKyuP/i0cGV4Shg+td9SmTZv04osvav78+erUqZMOHz6sSZMm6bnnntP06dOLHD9x4kT9+OOP+uqrr656Tm9vb3l7exfZ7unpWea/ZMrjGjciJ9+sw2cvry3Qqm41p64V5c/Z+xe4FvoXroz+hSujf+HKyrJ/HTmvoUE+NDRU7u7uOnPmjN32M2fOKDw8vNjPTJ8+XSNHjtS4ceMkSS1btlRWVpYmTJigp59+Wm5uv6/fFxcXp08//VRbtmxR7dq1y+6LVGA/ncmQ2WJVsJ+nIoJ8jC4HAAAAACo9Q1et9/LyUvv27ZWYmGjbZrFYlJiYqM6dOxf7mezsbLuwLknu7u6SJKvVavvfuLg4rVq1Shs2bFD9+vXL6BtUfPuueH68yWQyuBoAAAAAgOFD6ydPnqzY2Fh16NBBUVFRmjNnjrKysmyr2I8aNUq1atXSrFmzJEkxMTGaPXu22rZtaxtaP336dMXExNgC/cSJE7V06VL997//VUBAgE6fPi1JCgoKkq+vrzFf1EXt/S3IN68ZZHAlAAAAAADJCYL8kCFDdPbsWc2YMUOnT59WmzZttHbtWtsCeMnJyXZ34KdNmyaTyaRp06bp5MmTql69umJiYvTCCy/YjlmwYIEkqWfPnnbXWrx4sUaPHl3m36ki2Xvq8or/zWuWzaJ/AAAAAADHGB7kpctz2ePi4ordt2nTJrv3Hh4eio+PV3x8/FXPVzjEHjfGbLHqwOkMSVKzCII8AAAAADgDQ+fIw7n9fC5L2Xlm+Xi6qUH1KkaXAwAAAAAQQR7XUDg/vml4oNzdWOgOAAAAAJwBQR5XdeWK9QAAAAAA50CQx1Wx0B0AAAAAOB+CPIpltVptd+R59BwAAAAAOA+CPIp1Jj1X57Ly5GaSmoYHGF0OAAAAAOA3BHkUa1/K5WH1N1WvIh9Pd4OrAQAAAAAUIsijWHtPFg6rZ348AAAAADgTgjyKtZf58QAAAADglAjyKNa+FB49BwAAAADOiCCPItJz8pV8PlsSQ+sBAAAAwNkQ5FFE4WPnalX1VVU/L4OrAQAAAABciSCPIgqDPMPqAQAAAMD5EORRROFCd80iCPIAAAAA4GwI8ihi76nLz5BnfjwAAAAAOB+CPOzkFph1ODVTktS8Fo+eAwAAAABnQ5CHnUNnMlVgsSrI11M1g3yMLgcAAAAA8AcEedi5cli9yWQyuBoAAAAAwB8R5GGncKE75scDAAAAgHMiyMMOj54DAAAAAOdGkIeNxWLV/pTCO/IsdAcAAAAAzoggD5ufz2UpK88sbw83NQj1N7ocAAAAAEAxCPKwKZwf3zQiUB7utAYAAAAAOCPSGmz2/TasvlkE8+MBAAAAwFkR5GHDivUAAAAA4PwI8pAkWa1W7bviGfIAAAAAAOdEkIck6WxGrtIy8+RmkpqGE+QBAAAAwFkR5CHp92H1DapXka+Xu8HVAAAAAACuhiAPSdJehtUDAAAAgEsgyEPS7yvWE+QBAAAAwLkR5CHp96H1zSKCDK4EAAAAAHAtBHkoPSdfv5zLlsQdeQAAAABwdgR5aP9vd+NrBvko2N/L4GoAAAAAANdCkIdtfnwz7sYDAAAAgNMjyOP3+fE1mR8PAAAAAM6OIA9bkGd+PAAAAAA4P4J8JZedV6DDqRmSpGYRBHkAAAAAcHYE+Uru26PnlW+2qlZVX9UO9jW6HAAAAADAnyDIV3KbfzorSereuLpMJpPB1QAAAAAA/gxBvpLb8luQ79G4usGVAAAAAABKgiBfiR0/n62jaVlydzOpS8MQo8sBAAAAAJQAQb4SKxxW375usAJ9PA2uBgAAAABQEgT5Suz3+fGhBlcCAAAAACgpgnwllVdg0bYj5yRJPRrXMLgaAAAAAEBJEeQrqV3Jvyozt0Ah/l5qXpPnxwMAAACAqyDIV1KFq9V3axQqNzceOwcAAAAAroIgX0lt5rFzAAAAAOCSCPKV0NmMXO09lS5JurURQR4AAAAAXAlBvhL66vDlu/HNawaqeoC3wdUAAAAAABxBkK+ENh8sfOwcd+MBAAAAwNUQ5CsZi8WqLw+lSWJ+PAAAAAC4IoJ8JbP3VLrOZeXJ38td7eoGG10OAAAAAMBBBPlKZsuhy8PquzQMlZcH//kBAAAAwNU4RZJ78803FRkZKR8fH3Xq1Enbt2+/5vFz5sxRkyZN5Ovrqzp16ujRRx9VTk7ODZ2zsmB+PAAAAAC4NsOD/IoVKzR58mTFx8dr165dat26taKjo5Wamlrs8UuXLtWTTz6p+Ph47d+/XwsXLtSKFSv01FNPXfc5K4v0nHztSv5VktSDx84BAAAAgEsyPMjPnj1b48eP15gxY9SsWTO99dZb8vPz06JFi4o9/uuvv1bXrl01fPhwRUZGqm/fvho2bJjdHXdHz1lZfH34nAosVtUP9VfdED+jywEAAAAAXAcPIy+el5ennTt3aurUqbZtbm5u6t27t7Zt21bsZ7p06aL33ntP27dvV1RUlI4ePao1a9Zo5MiR133O3Nxc5ebm2t6np6dLkvLz85Wfn3/D37M4hectq/MXZ9PBM5Kkbg1DyvW6qHiM6F+gtNC/cGX0L1wZ/QtXVh7968i5DQ3yaWlpMpvNCgsLs9seFhamAwcOFPuZ4cOHKy0tTd26dZPValVBQYEefPBB29D66znnrFmz9MwzzxTZ/sUXX8jPr2zvXCckJJTp+QtZrdIXP7hLMsn3wjGtWXO0XK6Liq28+hcoC/QvXBn9C1dG/8KVlWX/Zmdnl/hYQ4P89di0aZNefPFFzZ8/X506ddLhw4c1adIkPffcc5o+ffp1nXPq1KmaPHmy7X16errq1Kmjvn37KjAwsLRKt5Ofn6+EhAT16dNHnp6eZXKNKx09m6Xz32yVp7tJE+/pIz8vl/tPDydS3v0LlCb6F66M/oUro3/hysqjfwtHhpeEoWkuNDRU7u7uOnPmjN32M2fOKDw8vNjPTJ8+XSNHjtS4ceMkSS1btlRWVpYmTJigp59++rrO6e3tLW9v7yLbPT09y/yXTHlcQ5K2Hr28yF1U/WoK8vct8+uhciiv/gXKAv0LV0b/wpXRv3BlZdm/jpzX0MXuvLy81L59eyUmJtq2WSwWJSYmqnPnzsV+Jjs7W25u9mW7u7tLkqxW63WdszIofH58Dx47BwAAAAAuzfDx1ZMnT1ZsbKw6dOigqKgozZkzR1lZWRozZowkadSoUapVq5ZmzZolSYqJidHs2bPVtm1b29D66dOnKyYmxhbo/+yclU1OvlnfHD0niefHAwAAAICrMzzIDxkyRGfPntWMGTN0+vRptWnTRmvXrrUtVpecnGx3B37atGkymUyaNm2aTp48qerVqysmJkYvvPBCic9Z2ez4+bxy8i0KC/RWk7AAo8sBAAAAANwAw4O8JMXFxSkuLq7YfZs2bbJ77+Hhofj4eMXHx1/3OSubLT9dHlbfvVF1mUwmg6sBAAAAANwIQ+fIo3xsLgzyDKsHAAAAAJdHkK/gUi5e0k9nMuVmkro1DDW6HAAAAADADSLIV3CFw+pb1a6qYH8vg6sBAAAAANwop5gjj7Kz5ac0STx2DgAAAK7BbDYrPz/f6DIAO/n5+fLw8FBOTo7MZvN1ncPT09P2pLUbRZCvwArMFn15iPnxAAAAcH5Wq1WnT5/WhQsXjC4FKMJqtSo8PFzHjx+/oQXEq1atqvDw8BtehJwgX4HtPnFR6TkFCvL1VOvaQUaXAwAAAFxVYYivUaOG/Pz8eNoSnIrFYlFmZqaqVKli93j0krJarcrOzlZqaqokKSIi4obqIchXYIWr1XdrGCoPd5ZDAAAAgHMym822EB8SEmJ0OUARFotFeXl58vHxua4gL0m+vr6SpNTUVNWoUeOGhtmT7iqwwoXumB8PAAAAZ1Y4J97Pz8/gSoCyVdjjN7oOBEG+gvo1K0+7T1yQJN3amMfOAQAAwPkxnB4VXWn1OEG+gvrqcJqsVqlJWIAignyNLgcAAAAAUEoI8hVU4fz47tyNBwAAAJxaz5499cgjj9jeR0ZGas6cOdf8jMlk0urVq2/42qV1HpQvgnwFZLVabY+d69G4hsHVAAAAABVTTEyM+vXrV+y+L7/8UiaTST/88IPD592xY4cmTJhwo+XZmTlzptq0aVNke0pKivr371+q17qaS5cuqVq1agoNDVVubm65XLOiIshXQAfPZOhMeq58PN3UITLY6HIAAACACmns2LFKSEjQiRMniuxbvHixOnTooFatWjl83urVq5fbwn/h4eHy9vYul2t99NFHat68uZo2bWr4KACr1aqCggJDa7gRBPkKaPPBy3fjb2kQIh/P63+kAQAAAGAUq9Wq7LwCQ15Wq7VENd5+++2qXr26lixZYrc9MzNTK1eu1NixY3Xu3DkNGzZMtWrVkp+fn1q2bKlly5Zd87x/HFp/6NAhde/eXT4+PmrWrJkSEhKKfOaJJ55Q48aN5efnpwYNGmj69Om2ldGXLFmiZ555Rrt375bJZJLJZLLV/Meh9Xv27NFtt90mX19fhYSEaMKECcrMzLTtHz16tAYNGqRXX31VERERCgkJ0cSJE0u0CvvChQt133336b777tPChQuL7N+7d69uv/12BQYGKiAgQLfeequOHDli279o0SI1b95c3t7eioiIUFxcnCTp559/lslkUlJSku3YCxcuyGQyadOmTZKkTZs2yWQy6fPPP1f79u3l7e2tr776SkeOHNEdd9yhsLAwValSRR07dtT69evt6srNzdWTTz6p5s2by9fXVw0bNtTChQtltVrVsGFDvfrqq3bHJyUlyWQy6fDhw3/6M7lePEe+AtpyiMfOAQAAwLVdyjer2Yx1hlx737PR8vP686jk4eGhUaNGacmSJXr66adtK5KvXLlSZrNZw4YNU2Zmptq3b68nnnhCgYGB+uyzzzRy5EjddNNNioqK+tNrWCwW3XXXXQoLC9O3336rixcv2s2nLxQQEKAlS5aoZs2a2rNnj8aPH6+AgAA9/vjjGjJkiH788UetXbvWFlKDgoKKnCMrK0vR0dHq3LmzduzYodTUVI0bN05xcXF2f6zYuHGjIiIitHHjRh0+fFhDhgxRmzZtNH78+Kt+jyNHjmjbtm36+OOPZbVa9eijj+qXX35RvXr1JEknT55U9+7d1bNnT23YsEGBgYHaunWr7a75ggULNHnyZL300kvq37+/Ll68qK1bt/7pz++PnnzySb366qtq0KCBgoODdfz4cQ0YMEAvvPCCvL299e9//1sxMTE6ePCg6tatK0kaNWqUtm3bppdfflm33HKLfvnlF6WlpclkMun+++/X4sWLNWXKFNs1Fi9erO7du6thw4YO11dSBPkKJjuvQDuO/SpJ6k6QBwAAAMrU/fffr3/84x/avHmzevbsKelykBs8eLCCgoIUFBRkF/IeeughrVu3Th988EGJgvz69et14MABrVu3TjVr1pQkvfjii0XmtU+bNs3278jISE2ZMkXLly/X448/Ll9fX1WpUkUeHh4KDw+/6rWWLl2qnJwc/fvf/5a/v78kad68eYqJidHLL7+ssLAwSVJwcLDmzZsnd3d3NW3aVAMHDlRiYuI1g/yiRYvUv39/BQdfnvobHR2txYsXa+bMmZKkN998U0FBQVq+fLk8PT0lSY0bN7Z9/vnnn9djjz2mSZMm2bZ17NjxT39+f/Tss8+qT58+tvfVqlVT69atbe+fe+45rVq1Sp988oni4uL0008/6YMPPtC6desUFRWlwMBAu4A+evRozZgxQ9u3b1dUVJTy8/O1dOnSInfpSxtBvoL55ug55Zktqh3sqwah/kaXAwAAAFwXX0937Xs22rBrl1TTpk3VpUsXLVq0SD179tThw4f15Zdf6tlnn5Ukmc1mvfjii/rggw908uRJ5eXlKTc3t8Rz4Pfv3686derYQrwkde7cuchxK1as0Ny5c3XkyBFlZmaqoKBAgYGBJf4ehddq3bq1LcRLUteuXWWxWHTw4EFbkG/evLnc3X//GUVERGjPnj1XPa/ZbNa7776rN954w7btvvvu05QpUzRjxgy5ubkpKSlJt956qy3EXyk1NVWnTp1Sr169HPo+xenQoYPd+8zMTM2cOVOfffaZUlJSVFBQoEuXLik5OVnS5WHy7u7u6tGjhy5dulTkfDVr1tTAgQO1aNEiRUVF6X//+59yc3N1zz333HCt18Ic+QqmcH5898bVbUN7AAAAAFdjMpnk5+VhyMvR/x89duxYffTRR8rIyNDixYt10003qUePHpKkf/zjH3rjjTf0xBNPaOPGjUpKSlJ0dLTy8vJK7We1bds2jRgxQgMGDNCnn36q77//Xk8//XSpXuNKfwzbJpNJFovlqsevW7dOJ0+e1JAhQ+Th4SEPDw8NHTpUv/zyixITEyVJvr6+V/38tfZJkpvb5Vh75doGV5uzf+UfKSRpypQpWrVqlV588UV9+eWXSkpKUsuWLW0/uz+7tiSNGzdOy5cv16VLl7R48WINGTKkzBcrJMhXMFsOpUlifjwAAABQXu699165ublp6dKl+ve//63777/f9seArVu36o477tB9992n1q1bq0GDBvrpp59KfO6bb75Zx48fV0pKim3bN998Y3fM119/rXr16unpp59Whw4d1KhRI/3yyy92x3h5eclsNv/ptXbv3q2srCzbtq1bt8rNzU1NmjQpcc1/tHDhQg0dOlRJSUl2r6FDh9oWvWvVqpW+/PLLYgN4QECAIiMjbaH/j6pXv5x9rvwZXbnw3bVs3bpVo0eP1p133qmWLVsqPDxcP//8s21/y5YtZbFYtHnz5queY8CAAfL399eCBQu0du1a3X///SW69o0gyFcgyeeydSwtSx5uJnW5KcTocgAAAIBKoUqVKhoyZIimTp2qlJQUjR492ravUaNGSkhI0Ndff639+/frgQce0JkzZ0p87t69e6tx48aKjY3V7t279eWXX+rpp5+2O6ZRo0ZKTk7W8uXLdeTIEc2dO1erVq2yOyYyMlLHjh1TUlKS0tLSin2O+4gRI+Tj46PY2Fj9+OOP2rhxox566CGNHDnSNqzeUWfPntX//vc/xcbGqkWLFnavUaNGafXq1Tp//rzi4uKUnp6uoUOH6rvvvtOhQ4f0n//8RwcPHpQkzZw5U6+99prmzp2rQ4cOadeuXfrnP/8p6fJd81tuuUUvvfSS9u/fr82bN9utGXAtjRo10scff6ykpCTt3r1bw4cPtxtdEBkZqdjYWI0bN06fffaZjh07pk2bNumDDz6wHePu7q7Ro0dr6tSpatSoUbFTH0obQb4C2fzbavXt6gUrwKfo3BIAAAAAZWPs2LH69ddfFR0dbTeffdq0aWrXrp2io6PVs2dPhYeHa9CgQSU+r5ubm1atWqVLly4pKipK48aN0wsvvGB3zF//+lc9+uijiouLU5s2bfT1119r+vTpdscMHjxY/fr101/+8hdVr1692Efg+fn5ad26dTp//rw6duyou+++W7169dK8efMc+2FcoXDhvOLmt/fq1Uu+vr567733FBISog0bNigzM1M9evRQ+/bt9fbbb9uG8cfGxmrOnDmaP3++mjdvrttvv12HDh2ynWvRokUqKChQ+/bt9cgjj+j5558vUX2zZ89WcHCwunTpopiYGEVHR6tdu3Z2xyxYsECDBw/WlClT1KxZM40fP95u1IJ0+b9/Xl6exowZ4+iP6LqYrCV9SGIlkp6erqCgIF28eNHhBSJKKj8/X2vWrNGAAQOKXdDheox79zut339Gf49uool/KbtHHQBl0b9AeaF/4croX7iya/VvTk6Ojh07pvr168vHx8egCoGrs1gsSk9PV2BgoG1O/pW+/PJL9erVS8ePH7/m6IVr9bojOZRV6yuIvAKLth1hfjwAAAAAlJfc3FydPXtWM2fO1D333HPdUxAcxdD6CmLnL78qK8+sEH8vNYsom1EEAAAAAIDfLVu2TPXq1dOFCxf0yiuvlNt1CfIVxJZDvz92zs2Nx84BAAAAQFkbPXq0zGazdu7cqVq1apXbdQnyFcTvz48PNbgSAAAAAEBZIshXAGczcrUvJV2SdGsj5scDAAAAQEVGkK8AvvxtWH2LWoEKreJtcDUAAAAAgLJEkK8ANv/027B67sYDAAAAQIVHkHdxFotVXx7isXMAAAAAUFkQ5F3cj6cu6nxWnqp4e6hdvWCjywEAAAAAlDGCvIvb8tuw+i43hcjTnf+cAAAAQEU1c+ZMtWnTxugy4ARIfi7ONj+eYfUAAABAuTKZTNd8zZw584bOvXr1arttU6ZMUWJi4o0V7YATJ07Iy8tLLVq0KLdromQ8jC4A1y89J1+7ki9IYn48AAAAUN5SUlJs/16xYoVmzJihgwcP2rZVqVKlVK9XpUqVUj/ntSxZskT33nuvtmzZom+//VadOnUqt2v/kdlslslkkpsb96Il7si7tK8Pp8lssapBqL/qVPMzuhwAAACg9GVlXf2Vk1PyYy9dKtmxDggPD7e9goKCZDKZ7LYtX75cN998s3x8fNS0aVPNnz/f9tm8vDzFxcUpIiJCPj4+qlevnmbNmiVJioyMlCTdeeedMplMtvd/HFo/evRoDRo0SK+++qoiIiIUEhKiiRMnKj8/33ZMSkqKBg4cKF9fX9WvX19Lly5VZGSk5syZc83vZrVatXjxYo0cOVLDhw/XwoULixyzdetW9ezZU35+fgoODlZ0dLR+/fVXSZLFYtErr7yihg0bytvbW3Xr1tULL7wgSdq0aZNMJpMuXLhgO1dSUpJMJpN+/vlnSZf/iFC1alV98sknatasmby9vZWcnKwdO3aoT58+Cg0NVVBQkHr06KFdu3bZ1XXhwgU98MADCgsLk4+Pj1q0aKFPP/1UWVlZCgwM1Icffmh3/OrVq+Xv76+MjIxr/kycCXfkXdjmny6vVs+wegAAAFRY17oDPWCA9Nlnv7+vUUPKzi7+2B49pE2bfn8fGSmlpRU9zmq9niqLeP/99zVjxgzNmzdPbdu21ffff6/x48fL399fsbGxmjt3rj755BN98MEHqlu3ro4fP67jx49Lknbs2KEaNWpo8eLF6tevn9zd3a96nY0bNyoiIkIbN27U4cOHNWTIELVp00bjx4+XJI0aNUppaWnatGmTPD09NXnyZKWmpv5p/Rs3blR2drZ69+6tWrVqqUuXLnr99dfl7+8v6XLw7tWrl+6//3698cYb8vDw0MaNG2U2myVJU6dO1dtvv63XX39d3bp1U0pKig4cOODQzzA7O1svv/yy3nnnHYWEhKhGjRo6evSoYmNj9c9//lNWq1WvvfaaBgwYoEOHDikgIEAWi0X9+/dXRkaG3nvvPd10003at2+f3N3d5e/vr6FDh2rx4sW6++67bdcpfB8QEOBQfUYiyLuweiF+ahIWoB5NCPIAAACAM4mPj9drr72mu+66S5JUv3597du3T//6178UGxur5ORkNWrUSN26dZPJZFK9evVsn61e/fL/v69atarCw8OveZ3g4GDNmzdP7u7uatq0qQYOHKjExESNHz9eBw4c0Pr167Vjxw516NBBkvTOO++oUaNGf1r/woULNXToULm7u6tFixZq0KCBVq5cqdGjR0uSXnnlFXXo0MFulEHz5s0lSRkZGXrjjTc0b948xcbGSpJuuukmdevWrYQ/vcvy8/M1f/58tW7d2rbttttuszvm//7v/1S1alVt3rxZt99+u9avX6/t27dr//79aty4sSSpQYMGtuPHjRunLl26KCUlRREREUpNTdWaNWu0fv16h2ozGkHehT3Y4yY92OMmWUvpr4YAAACA08nMvPq+P96pvtad5j/Orf5tCHdZyMrK0pEjRzR27FjbnXFJKigoUFBQkKTLw+L79OmjJk2aqF+/frr99tvVt29fh6/VvHlzuzv2ERER2rNnjyTp4MGD8vDwULt27Wz7GzZsqODgaz+2+sKFC/r444/11Vdf2bbdd999WrhwoS3IJyUl6Z577in28/v371dubq569erl8Pe5kpeXl1q1amW37cyZM5o2bZo2bdqk1NRUmc1mZWdnKzk52VZX7dq1bSH+j6KiotS8eXO9++67evLJJ/Xee++pXr166t69+w3VWt4I8hWAyWQyugQAAACgbPw2lNvQYx2U+dsfH95+++0iC8QVhu527drp2LFj+vzzz7V+/Xrde++96t27d5H523/G09PT7r3JZJLFYrmB6qWlS5cqJyfHrnar1SqLxaKffvpJjRs3lq+v71U/f619kmwL1l15Q/LKef1XnuePWSc2Nlbnzp3TG2+8oXr16snb21udO3dWXl5eia4tXb4r/+abb+rJJ5/U4sWLNWbMGJfLVCx2BwAAAAClKCwsTDVr1tTRo0fVsGFDu1f9+vVtxwUGBmrIkCF6++23tWLFCn300Uc6f/68pMsBvXC++fVq0qSJCgoK9P3339u2HT582LYg3dUsXLhQjz32mJKSkmyv3bt369Zbb9WiRYskSa1atbrqo/AaNWokX1/fq+4vnDpw5ar/SUlJJfpOW7du1cMPP6wBAwaoefPm8vb2VtoVax20atVKJ06c0E8//XTVc9x333365ZdfNHfuXO3bt882/N+VcEceAAAAAErZM888o4cfflhBQUHq16+fcnNz9d133+nXX3/V5MmTNXv2bEVERKht27Zyc3PTypUrFR4erqpVq0q6vHJ9YmKiunbtKm9v7z8dDl+cpk2bqnfv3powYYIWLFggT09PPfbYY8Xe6S6UlJSkXbt26f3331fTpk3t9g0bNkzPPvusnn/+eU2dOlUtW7bU3/72Nz344IPy8vLSxo0bdc899yg0NFRPPPGEHn/8cXl5ealr1646e/as9u7dq7Fjx6phw4aqU6eOZs6cqRdeeEE//fSTXnvttRJ9p0aNGuk///mPOnTooPT0dP3973+3uwvfo0cPde/eXYMHD9bs2bPVsGFDHThwQCaTSf369ZN0eV2Bu+66S3//+9/Vt29f1a5d2+GfrdG4Iw8AAAAApWzcuHF65513tHjxYrVs2VI9evTQkiVLbHfkAwICbAvGdezYUT///LPWrFljG3b+2muvKSEhQXXq1FHbtm2vu45///vfCgsLU/fu3XXnnXdq/PjxCggIkI+PT7HHL1y4UM2aNSsS4qXLj8MrXByucePG+uKLL7R7925FRUWpc+fO+u9//ysPj8v3iqdPn67HHntMM2bM0M0336whQ4bYVsv39PTUsmXLdODAAbVq1Uovv/yynn/++RJ9n4ULF+rXX39Vu3btNHLkSD388MOqUaOG3TEfffSROnbsqGHDhqlZs2Z6/PHHi4xuGDt2rPLy8nT//feX6LrOxmRlpbQi0tPTFRQUpIsXLyowMLBMrpGfn681a9ZowIABRea1AM6O/oUro3/hyuhfuLJr9W9OTo6OHTum+vXrXzVgonScOHFCderU0fr16294MTpX9p///EePPvqoTp06JS8vrz893mKxKD09XYGBgbY/tlyPa/W6IzmUofUAAAAAUEFt2LBBmZmZatmypVJSUvT4448rMjLS5VZpLy3Z2dlKSUnRSy+9pAceeKBEId4ZMbQeAAAAACqo/Px8PfXUU2revLnuvPNOVa9eXZs2baq0o3peeeUVNW3aVOHh4Zo6darR5Vw37sgDAAAAQAUVHR2t6Ohoo8twGjNnztTMmTONLuOGcUceAAAAAAAXQpAHAAAA4BRYhxsVXWn1OEEeAAAAgKEK52tnZ2cbXAlQtgp7/EbXKGCOPAAAAABDubu7q2rVqrbnjPv5+clkMhlcFfA7i8WivLw85eTkXNfj56xWq7Kzs5WamqqqVavK3d39huohyAMAAAAwXHh4uCTZwjzgTKxWqy5duiRfX98b+iNT1apVbb1+IwjyAAAAAAxnMpkUERGhGjVqKD8/3+hyADv5+fnasmWLunfvft3D4j09PW/4TnwhgjwAAAAAp+Hu7l5qYQcoLe7u7iooKJCPj88Nz28vDSx2BwAAAACACyHIAwAAAADgQgjyAAAAAAC4EObIF8NqtUqS0tPTy+wa+fn5ys7OVnp6ulPMsQAcQf/CldG/cGX0L1wZ/QtXVh79W5g/C/PotRDki5GRkSFJqlOnjsGVAAAAAAAqk4yMDAUFBV3zGJO1JHG/krFYLDp16pQCAgJu6BmB15Kenq46dero+PHjCgwMLJNrAGWF/oUro3/hyuhfuDL6F66sPPrXarUqIyNDNWvWlJvbtWfBc0e+GG5ubqpdu3a5XCswMJBfZHBZ9C9cGf0LV0b/wpXRv3BlZd2/f3YnvhCL3QEAAAAA4EII8gAAAAAAuBCCvEG8vb0VHx8vb29vo0sBHEb/wpXRv3Bl9C9cGf0LV+Zs/ctidwAAAAAAuBDuyAMAAAAA4EII8gAAAAAAuBCCPAAAAAAALoQgDwAAAACACyHIG+DNN99UZGSkfHx81KlTJ23fvt3okoBibdmyRTExMapZs6ZMJpNWr15tt99qtWrGjBmKiIiQr6+vevfurUOHDhlTLHCFWbNmqWPHjgoICFCNGjU0aNAgHTx40O6YnJwcTZw4USEhIapSpYoGDx6sM2fOGFQxYG/BggVq1aqVAgMDFRgYqM6dO+vzzz+37ad/4SpeeuklmUwmPfLII7Zt9C+c2cyZM2UymexeTZs2te13lv4lyJezFStWaPLkyYqPj9euXbvUunVrRUdHKzU11ejSgCKysrLUunVrvfnmm8Xuf+WVVzR37ly99dZb+vbbb+Xv76/o6Gjl5OSUc6WAvc2bN2vixIn65ptvlJCQoPz8fPXt21dZWVm2Yx599FH973//08qVK7V582adOnVKd911l4FVA7+rXbu2XnrpJe3cuVPfffedbrvtNt1xxx3au3evJPoXrmHHjh3617/+pVatWtltp3/h7Jo3b66UlBTb66uvvrLtc5r+taJcRUVFWSdOnGh7bzabrTVr1rTOmjXLwKqAPyfJumrVKtt7i8ViDQ8Pt/7jH/+wbbtw4YLV29vbumzZMgMqBK4uNTXVKsm6efNmq9V6uVc9PT2tK1eutB2zf/9+qyTrtm3bjCoTuKbg4GDrO++8Q//CJWRkZFgbNWpkTUhIsPbo0cM6adIkq9XK7184v/j4eGvr1q2L3edM/csd+XKUl5ennTt3qnfv3rZtbm5u6t27t7Zt22ZgZYDjjh07ptOnT9v1c1BQkDp16kQ/w+lcvHhRklStWjVJ0s6dO5Wfn2/Xv02bNlXdunXpXzgds9ms5cuXKysrS507d6Z/4RImTpyogQMH2vWpxO9fuIZDhw6pZs2aatCggUaMGKHk5GRJztW/HuV6tUouLS1NZrNZYWFhdtvDwsJ04MABg6oCrs/p06clqdh+LtwHOAOLxaJHHnlEXbt2VYsWLSRd7l8vLy9VrVrV7lj6F85kz5496ty5s3JyclSlShWtWrVKzZo1U1JSEv0Lp7Z8+XLt2rVLO3bsKLKP379wdp06ddKSJUvUpEkTpaSk6JlnntGtt96qH3/80an6lyAPAKjQJk6cqB9//NFufhvgCpo0aaKkpCRdvHhRH374oWJjY7V582ajywKu6fjx45o0aZISEhLk4+NjdDmAw/r372/7d6tWrdSpUyfVq1dPH3zwgXx9fQ2szB5D68tRaGio3N3di6xqeObMGYWHhxtUFXB9CnuWfoYzi4uL06effqqNGzeqdu3atu3h4eHKy8vThQsX7I6nf+FMvLy81LBhQ7Vv316zZs1S69at9cYbb9C/cGo7d+5Uamqq2rVrJw8PD3l4eGjz5s2aO3euPDw8FBYWRv/CpVStWlWNGzfW4cOHner3L0G+HHl5eal9+/ZKTEy0bbNYLEpMTFTnzp0NrAxwXP369RUeHm7Xz+np6fr222/pZxjOarUqLi5Oq1at0oYNG1S/fn27/e3bt5enp6dd/x48eFDJycn0L5yWxWJRbm4u/Qun1qtXL+3Zs0dJSUm2V4cOHTRixAjbv+lfuJLMzEwdOXJEERERTvX7l6H15Wzy5MmKjY1Vhw4dFBUVpTlz5igrK0tjxowxujSgiMzMTB0+fNj2/tixY0pKSlK1atVUt25dPfLII3r++efVqFEj1a9fX9OnT1fNmjU1aNAg44oGdHk4/dKlS/Xf//5XAQEBtnlrQUFB8vX1VVBQkMaOHavJkyerWrVqCgwM1EMPPaTOnTvrlltuMbh6QJo6dar69++vunXrKiMjQ0uXLtWmTZu0bt06+hdOLSAgwLYeSSF/f3+FhITYttO/cGZTpkxRTEyM6tWrp1OnTik+Pl7u7u4aNmyYU/3+JciXsyFDhujs2bOaMWOGTp8+rTZt2mjt2rVFFgwDnMF3332nv/zlL7b3kydPliTFxsZqyZIlevzxx5WVlaUJEybowoUL6tatm9auXcucOBhuwYIFkqSePXvabV+8eLFGjx4tSXr99dfl5uamwYMHKzc3V9HR0Zo/f345VwoULzU1VaNGjVJKSoqCgoLUqlUrrVu3Tn369JFE/8K10b9wZidOnNCwYcN07tw5Va9eXd26ddM333yj6tWrS3Ke/jVZrVZruV8VAAAAAABcF+bIAwAAAADgQgjyAAAAAAC4EII8AAAAAAAuhCAPAAAAAIALIcgDAAAAAOBCCPIAAAAAALgQgjwAAAAAAC6EIA8AAAAAgAshyAMAAMOZTCatXr3a6DIAAHAJBHkAACq50aNHy2QyFXn169fP6NIAAEAxPIwuAAAAGK9fv35avHix3TZvb2+DqgEAANfCHXkAACBvb2+Fh4fbvYKDgyVdHva+YMEC9e/fX76+vmrQoIE+/PBDu8/v2bNHt912m3x9fRUSEqIJEyYoMzPT7phFixapefPm8vb2VkREhOLi4uz2p6Wl6c4775Sfn58aNWqkTz75pGy/NAAALoogDwAA/tT06dM1ePBg7d69WyNGjNDQoUO1f/9+SVJWVpaio6MVHBysHTt2aOXKlVq/fr1dUF+wYIEmTpyoCRMmaM+ePfrkk0/UsGFDu2s888wzuvfee/XDDz9owIABGjFihM6fP1+u3xMAAFdgslqtVqOLAAAAxhk9erTee+89+fj42G1/6qmn9NRTT8lkMunBBx/UggULbPtuueUWtWvXTvPnz9fbb7+tJ554QsePH5e/v78kac2aNYqJidGpU6cUFhamWrVqacyYMXr++eeLrcFkMmnatGl67rnnJF3+40CVKlX0+eefM1cfAIA/YI48AADQX/7yF7ugLknVqlWz/btz5852+zp37qykpCRJ0v79+9W6dWtbiJekrl27ymKx6ODBgzKZTDp16pR69ep1zRpatWpl+7e/v78CAwOVmpp6vV8JAIAKiyAPAADk7+9fZKh7afH19S3RcZ6ennbvTSaTLBZLWZQEAIBLY448AAD4U998802R9zfffLMk6eabb9bu3buVlZVl279161a5ubmpSZMmCggIUGRkpBITE8u1ZgAAKiruyAMAAOXm5ur06dN22zw8PBQaGipJWrlypTp06KBu3brp/fff1/bt27Vw4UJJ0ogRIxQfH6/Y2FjNnDlTZ8+e1UMPPaSRI0cqLCxMkjRz5kw9+OCDqlGjhvr376+MjAxt3bpVDz30UPl+UQAAKgCCPAAA0Nq1axUREWG3rUmTJjpw4ICkyyvKL1++XH/7298UERGhZcuWqVmzZpIkPz8/rVu3TpMmTVLHjh3l5+enwYMHa/bs2bZzxcbGKicnR6+//rqmTJmi0NBQ3X333eX3BQEAqEBYtR4AAFyTyWTSqlWrNGjQIKNLAQAAYo48AAAAAAAuhSAPAAAAAIALYY48AAC4JmbhAQDgXLgjDwAAAACACyHIAwAAAADgQgjyAAAAAAC4EII8AAAAAAAuhCAPAAAAAIALIcgDAAAAAOBCCPIAAAAAALgQgjwAAAAAAC7k/wM4fL+PUIZqEwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Get final testing accuracy\n", "y_pred_tabnet = np.argmax(tabnet_model.predict_proba(X_test), axis=1)\n", "test_accuracy = accuracy_score(y_test, y_pred_tabnet)\n", "\n", "# Plot Test Accuracy as a horizontal line\n", "plt.figure(figsize=(12, 6))\n", "plt.plot(epochs, val_accuracies, label='Validation Accuracy')\n", "plt.axhline(y=test_accuracy, color='r', linestyle='--', label='Testing Accuracy')\n", "plt.xlabel('Epoch')\n", "plt.ylabel('Accuracy')\n", "plt.title('Testing Accuracy vs. Validation Accuracy for TabNet')\n", "plt.legend()\n", "plt.grid(True)\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Save the Model" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Successfully saved model at ./deep_learning_models/tabnet_model.zip\n" ] }, { "data": { "text/plain": [ "'./deep_learning_models/tabnet_model.zip'" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Save the model\n", "model_path = './tabnet_model'\n", "tabnet_model.save_model(model_path)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load the Model" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.8/site-packages/pytorch_tabnet/abstract_model.py:82: UserWarning: Device used : cuda\n", " warnings.warn(f\"Device used : {self.device}\")\n", "/usr/local/lib/python3.8/site-packages/pytorch_tabnet/abstract_model.py:454: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n", " saved_state_dict = torch.load(f, map_location=self.device)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded Model Accuracy: 0.9170160631636265\n" ] } ], "source": [ "model_path = './tabnet_model'\n", "\n", "# Initialize a new TabNet model\n", "loaded_model = TabNetClassifier()\n", "\n", "# Load the previously saved model\n", "loaded_model.load_model(model_path + \".zip\")\n", "\n", "# Make predictions with the loaded model\n", "y_pred_loaded = np.argmax(loaded_model.predict_proba(X_test), axis=1)\n", "\n", "# Evaluate to confirm it's working as expected\n", "print(f'Loaded Model Accuracy: {accuracy_score(y_test, y_pred_loaded)}')\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Confusion Matrix" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy: 91.70%\n", "Confusion Matrix:\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAKyCAYAAADIG729AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVQVWxvA4R9IGYCUn92CGJSNqNjd3d15Fa9xTVSwu7s7sNtrd2BioGJigKB0zvcHevQICHpBRN9nrbOWZ8+ePe+87jmHfWZmj4aiKApCCCGEEEIIIYRIcpopHYAQQgghhBBCCPG7kkG3EEIIIYQQQgiRTGTQLYQQQgghhBBCJBMZdAshhBBCCCGEEMlEBt1CCCGEEEIIIUQykUG3EEIIIYQQQgiRTGTQLYQQQgghhBBCJBMZdAshhBBCCCGEEMlEBt1CCCGEEEIIIUQykUG3EEIIIUQSefDgAdWqVcPQ0BANDQ3c3NyStH0vLy80NDRYuXJlkrabmjk6OuLo6JjSYQghRLxk0C2EEEKI38rDhw/p3r07efPmRU9PDwMDA8qWLcusWbMICQlJ1m23b9+emzdvMmHCBNasWUPx4sWTdXs/U4cOHdDQ0MDAwCDOPD548AANDQ00NDSYOnXqd7f/8uVLxowZg7u7exJEK4QQvw6tlA5ACCGEECKp7N27l6ZNm6Krq0u7du0oUqQI4eHhnD59msGDB3P79m0WL16cLNsOCQnh3Llz/PPPP/Tp0ydZtpErVy5CQkLQ1tZOlvYToqWlRXBwMLt376ZZs2Zqy9atW4eenh6hoaE/1PbLly8ZO3YsuXPnxsbGJtHrHTp06Ie2J4QQP4sMuoUQQgjxW3j8+DEtWrQgV65cHDt2jCxZsqiW9e7dG09PT/bu3Zts23/79i0AGTNmTLZtaGhooKenl2ztJ0RXV5eyZcuyYcOGWIPu9evXU7t2bbZt2/ZTYgkODiZdunTo6Oj8lO0JIcSPksvLhRBCCPFbmDx5MoGBgSxbtkxtwP1J/vz56d+/v+p9ZGQk48aNI1++fOjq6pI7d26GDx9OWFiY2nq5c+emTp06nD59mpIlS6Knp0fevHlZvXq1qs6YMWPIlSsXAIMHD0ZDQ4PcuXMDMZdlf/r3l8aMGYOGhoZa2eHDh3FwcCBjxoxkyJABCwsLhg8frloe3z3dx44do1y5cqRPn56MGTNSv359PDw84tyep6cnHTp0IGPGjBgaGtKxY0eCg4PjT+xXWrVqxf79+/H391eVXbp0iQcPHtCqVatY9d+9e4eTkxNFixYlQ4YMGBgYULNmTa5fv66qc/z4cUqUKAFAx44dVZepf9pPR0dHihQpwpUrVyhfvjzp0qVT5eXre7rbt2+Pnp5erP2vXr06RkZGvHz5MtH7KoQQSUEG3UIIIYT4LezevZu8efNib2+fqPpdunRh1KhR2NnZMWPGDCpUqICrqystWrSIVdfT05MmTZpQtWpVpk2bhpGRER06dOD27dsANGrUiBkzZgDQsmVL1qxZw8yZM78r/tu3b1OnTh3CwsJwdnZm2rRp1KtXjzNnznxzvSNHjlC9enXevHnDmDFjGDhwIGfPnqVs2bJ4eXnFqt+sWTMCAgJwdXWlWbNmrFy5krFjxyY6zkaNGqGhocH27dtVZevXr6dgwYLY2dnFqv/o0SPc3NyoU6cO06dPZ/Dgwdy8eZMKFSqoBsCWlpY4OzsD0K1bN9asWcOaNWsoX768qh1fX19q1qyJjY0NM2fOpGLFinHGN2vWLMzMzGjfvj1RUVEALFq0iEOHDjFnzhyyZs2a6H0VQogkoQghhBBCpHLv379XAKV+/fqJqu/u7q4ASpcuXdTKnZycFEA5duyYqixXrlwKoJw8eVJV9ubNG0VXV1cZNGiQquzx48cKoEyZMkWtzfbt2yu5cuWKFcPo0aOVL/8UmzFjhgIob9++jTfuT9tYsWKFqszGxkbJlCmT4uvrqyq7fv26oqmpqbRr1y7W9jp16qTWZsOGDRUTE5N4t/nlfqRPn15RFEVp0qSJUrlyZUVRFCUqKkrJnDmzMnbs2DhzEBoaqkRFRcXaD11dXcXZ2VlVdunSpVj79kmFChUUQFm4cGGcyypUqKBWdvDgQQVQxo8frzx69EjJkCGD0qBBgwT3UQghkoOc6RZCCCFEqvfhwwcA9PX1E1V/3759AAwcOFCtfNCgQQCx7v0uVKgQ5cqVU703MzPDwsKCR48e/XDMX/t0L/jOnTuJjo5O1Dre3t64u7vToUMHjI2NVeVWVlZUrVpVtZ9f6tGjh9r7cuXK4evrq8phYrRq1Yrjx4/z6tUrjh07xqtXr+K8tBxi7gPX1Iz5kzMqKgpfX1/VpfNXr15N9DZ1dXXp2LFjoupWq1aN7t274+zsTKNGjdDT02PRokWJ3pYQQiQlGXQLIYQQItUzMDAAICAgIFH1nzx5gqamJvnz51crz5w5MxkzZuTJkydq5Tlz5ozVhpGREX5+fj8YcWzNmzenbNmydOnShf/973+0aNGCzZs3f3MA/ilOCwuLWMssLS3x8fEhKChIrfzrfTEyMgL4rn2pVasW+vr6bNq0iXXr1lGiRIlYufwkOjqaGTNmUKBAAXR1dTE1NcXMzIwbN27w/v37RG8zW7Zs3zVp2tSpUzE2Nsbd3Z3Zs2eTKVOmRK8rhBBJSQbdQgghhEj1DAwMyJo1K7du3fqu9b6eyCw+adKkibNcUZQf3san+40/SZs2LSdPnuTIkSO0bduWGzdu0Lx5c6pWrRqr7n/xX/blE11dXRo1asSqVavYsWNHvGe5AVxcXBg4cCDly5dn7dq1HDx4kMOHD1O4cOFEn9GHmPx8j2vXrvHmzRsAbt68+V3rCiFEUpJBtxBCCCF+C3Xq1OHhw4ecO3cuwbq5cuUiOjqaBw8eqJW/fv0af39/1UzkScHIyEhtpu9Pvj6bDqCpqUnlypWZPn06d+7cYcKECRw7dox///03zrY/xXnv3r1Yy+7evYupqSnp06f/bzsQj1atWnHt2jUCAgLinHzuk61bt1KxYkWWLVtGixYtqFatGlWqVImVk8T+AJIYQUFBdOzYkUKFCtGtWzcmT57MpUuXkqx9IYT4HjLoFkIIIcRv4e+//yZ9+vR06dKF169fx1r+8OFDZs2aBcRcHg3EmmF8+vTpANSuXTvJ4sqXLx/v37/nxo0bqjJvb2927NihVu/du3ex1rWxsQGI9RizT7JkyYKNjQ2rVq1SG8TeunWLQ4cOqfYzOVSsWJFx48Yxd+5cMmfOHG+9NGnSxDqLvmXLFl68eKFW9unHgbh+oPheQ4YM4enTp6xatYrp06eTO3du2rdvH28ehRAiOWmldABCCCGEEEkhX758rF+/nubNm2NpaUm7du0oUqQI4eHhnD17li1bttChQwcArK2tad++PYsXL8bf358KFSpw8eJFVq1aRYMGDeJ9HNWPaNGiBUOGDKFhw4b069eP4OBgFixYgLm5udpEYs7Ozpw8eZLatWuTK1cu3rx5w/z588mePTsODg7xtj9lyhRq1qxJmTJl6Ny5MyEhIcyZMwdDQ0PGjBmTZPvxNU1NTUaMGJFgvTp16uDs7EzHjh2xt7fn5s2brFu3jrx586rVy5cvHxkzZmThwoXo6+uTPn16SpUqRZ48eb4rrmPHjjF//nxGjx6teoTZihUrcHR0ZOTIkUyePPm72hNCiP9KznQLIYQQ4rdRr149bty4QZMmTdi5cye9e/dm6NCheHl5MW3aNGbPnq2qu3TpUsaOHculS5cYMGAAx44dY9iwYWzcuDFJYzIxMWHHjh2kS5eOv//+m1WrVuHq6krdunVjxZ4zZ06WL19O7969mTdvHuXLl+fYsWMYGhrG236VKlU4cOAAJiYmjBo1iqlTp1K6dGnOnDnz3QPW5DB8+HAGDRrEwYMH6d+/P1evXmXv3r3kyJFDrZ62tjarVq0iTZo09OjRg5YtW3LixInv2lZAQACdOnXC1taWf/75R1Verlw5+vfvz7Rp0zh//nyS7JcQQiSWhvI9s2YIIYQQQgghhBAi0eRMtxBCCCGEEEIIkUxk0C2EEEIIIYQQQiQTGXQLIYQQQgghhBDJRAbdQgghhBBCCCFEMpFBtxBCCCGEEEIIkUxk0C2EEEIIIYQQQiQTGXQLIYQQQgghhBDJRCulAxBC/LmuPQlI6RB+OZbZ9FM6BCGEEEIIkUh6iRhRy5luIYQQQgghhBAimcigWwghhBBCCCGESCYy6BZCCCGEEEIIIZKJDLqFEEIIIYQQQohkIhOpCSF+Ozs3rmTD8rnUbNiS9j0HARAeHsbaRTM5e/wQERHhWBcvTae+Q8loZKJar0W14rHa6jdsAvYVqwMwf8oYTh7eE6tO9lx5mbpkczLtjRBCCCGESM1k0C2E+K08vHebI3u3kzNvAbXy1Qunc+3CaQaMmEi69BlYMW8y08cOxnnmcrV6PZxGY1O8jOp9ugyfZxPv0MuJVp37qN5HRUUxpEcrSpWrnEx7I4QQQgghUju5vFwI8dsIDQlmzsSRdPvrH9J/MVgODgrk3wM7adv9L4rYliCvuSU9Bo3m/p0bPPC4qdZG+vT6ZDQ2Vb10dHRVy9Klz6C27NF9D4ICP+BYvd5P20chhBBCCJG6yKBbCPHbWD5nErYly1LUrpRa+aP7HkRFRqqVZ8uZG9NMmbl/54Z6G3Mn0bVJZf7p245/D+xEUZR4t/fvgZ0UsS2J2f+yJO2OCCGEEEKI34ZcXi6E+C2c/fcgjz3vMmHu6ljL/P180dLWVjv7DWBoZIy/n6/qfdN2PShiWxwdXT1uXDnP8jmTCA0JoWbDFrHafOf7FvdLZ+k7bHzS74wQQgghhPhtyKBbCJHq+bx5xaoF0xg+cZ7a5eDfq3GbLqp/58lfkLDQUHZvWRPnoPvkoT2kz5CBEvaOP7w9IYQQQgjx+5NBtxAi1Xv84C7v/d8xrFcbVVl0dBR3b17j4M7NDHOdQ2REBEGBAWpnu9/7vVObvfxr+QsWYfu6pUSEh6Oto6MqVxSF4wd34VC5Flra2smzU0IIIYQQ4rcg93SLP4KGhgZubm4pHQaOjo4MGDDgu9b5GbGPGTMGGxubZN1GcipiW4IpizYyacE61SuveSHKVqrBpAXryGdeiDRaWty6dlG1zstnXvi8eYV5Iat4233y8B7p9Q3UBtwAd25c4dXLZ1SqUT/Z9kkIIYQQQvwe5Ey3SNVevXqFq6sre/fu5fnz5xgaGpI/f37atGlD+/btSZcu3U+Jo0OHDvj7+yc4ON6+fTva33lm1NvbGyMjo/8QnToNDQ127NhBgwYNVGVOTk707ds3ybbxs6VNl54cefKrlenq6aFvkFFVXrFGfdYsmkEGfUPSpkvPivlTKFDIigKWRQG4cu4k7/3fUaBgEbR1dLlx9QJuG1ZQp2nbWNv798BO8hcsEmubQgghhBBCfE0G3SLVevToEWXLliVjxoy4uLhQtGhRdHV1uXnzJosXLyZbtmzUq/drPcrJ2Nj4u9fJnDlzMkSiLkOGDGTIkCHZt5OS2vUYiKaGJtPH/U1keDhWxcvQue8Q1fI0Wloc2rWZ1QunoygKmbPmoG33v6hUq6FaO8FBgVw8fYz2PZ1+9i4IIYQQQohUSC4vF6lWr1690NLS4vLlyzRr1gxLS0vy5s1L/fr12bt3L3Xr1lWr7+PjQ8OGDUmXLh0FChRg165dastPnDhByZIl0dXVJUuWLAwdOpTIyEjV8q1bt1K0aFHSpk2LiYkJVapUISgoiDFjxrBq1Sp27tyJhoYGGhoaHD9+PM6Yv768PHfu3Li4uNCpUyf09fXJmTMnixcvVlvn68vLnz17RrNmzciYMSPGxsbUr18fLy8vtXWWL19O4cKFVfvSp08f1fYAGjZsiIaGhur915eXR0dH4+zsTPbs2dHV1cXGxoYDBw6olnt5eaGhocH27dupWLEi6dKlw9ramnPnzsW53ylh9NTFtO85SPVeR0eXTn2HsGzbMVbtPs2g0VPIaGyqWm5Twp6JC9azcudJVu06xaSF66lSpzGamuofk+nSZ2D17jNU/mowLoQQQgghRFxk0C1SJV9fXw4dOkTv3r1Jnz59nHU0NDTU3o8dO5ZmzZpx48YNatWqRevWrXn37h0AL168oFatWpQoUYLr16+zYMECli1bxvjxMY+D8vb2pmXLlnTq1AkPDw+OHz9Oo0aNUBQFJycnmjVrRo0aNfD29sbb2xt7e/tE78u0adMoXrw4165do1evXvTs2ZN79+7FWTciIoLq1aujr6/PqVOnOHPmDBkyZKBGjRqEh4cDsGDBAnr37k23bt24efMmu3btIn/+mMugL126BMCKFSvw9vZWvf/arFmzmDZtGlOnTuXGjRtUr16devXq8eDBA7V6//zzD05OTri7u2Nubk7Lli3VfqgQQgghhBDiTyeDbpEqeXp6oigKFhYWauWmpqaqS6WHDBmitqxDhw60bNmS/Pnz4+LiQmBgIBcvxkysNX/+fHLkyMHcuXMpWLAgDRo0YOzYsUybNo3o6Gi8vb2JjIykUaNG5M6dm6JFi9KrVy/VttKmTYuuri6ZM2cmc+bM6Hw18da31KpVi169epE/f36GDBmCqakp//77b5x1N23aRHR0NEuXLqVo0aJYWlqyYsUKnj59qjq7Pn78eAYNGkT//v0xNzenRIkSqrPrZmZmAGTMmJHMmTOr3n9t6tSpDBkyhBYtWmBhYcGkSZOwsbFh5syZavWcnJyoXbs25ubmjB07lidPnuDp6ZnofRdCCCGEEOJ3J4Nu8Vu5ePEi7u7uFC5cmLCwMLVlVlafZ6lOnz49BgYGvHnzBgAPDw/KlCmjdna8bNmyBAYG8vz5c6ytralcuTJFixaladOmLFmyBD8/vySJ+cu4NDQ0yJw5syqur12/fh1PT0/09fVVA35jY2NCQ0N5+PAhb9684eXLl1SuXPmH4/nw4QMvX76kbNmyauVly5bFw8Mj3tizZMkCEG/sYWFhfPjwQe0V/tX/kRBCCCGEEL8bGXSLVCl//vxoaGjEugw7b9685M+fn7Rp08Za5+tZwzU0NIiOjk7U9tKkScPhw4fZv38/hQoVYs6cOVhYWPD48eMf34kfiCswMJBixYrh7u6u9rp//z6tWrWKc7+T05exf/rBIr7YXV1dMTQ0VHstnz/tp8QphBBCCCFESpFBt0iVTExMqFq1KnPnziUoKOg/t2dpacm5c+dQFEVVdubMGfT19cmePTsQM6gsW7YsY8eO5dq1a+jo6LBjxw4AdHR0iIqK+s9xJMTOzo4HDx6QKVMm8ufPr/YyNDREX1+f3Llzc/To0Xjb0NbW/masBgYGZM2alTNnzqiVnzlzhkKFCv1w7MOGDeP9+/dqr069BhHwwZ9uTavy5tXLH247tRvRrwMXTsX/fyaEEEIIIVIvGXSLVGv+/PlERkZSvHhxNm3ahIeHB/fu3WPt2rXcvXuXNGnSJLqtXr168ezZM/r27cvdu3fZuXMno0ePZuDAgWhqanLhwgVcXFy4fPkyT58+Zfv27bx9+xZLS0sgZlbwGzducO/ePXx8fIiIiEiWfW7dujWmpqbUr1+fU6dO8fjxY44fP06/fv14/vw5EDMT+bRp05g9ezYPHjzg6tWrzJkzR9XGp0H5q1ev4r1EfvDgwUyaNIlNmzZx7949hg4diru7O/379//h2HV1dTEwMFB76ejqsmP9corbVyBT5qwArJw3hWG92tCmdhmG9GgVZ1tPHj1g9MAutK1tT69Wtdm1eVWsOudPHmFgp8a0rW3P4G7NuXbxdIIx3r5+maG9WtOmdhn6d2jA8UO7Y9U5uGszfdrWpW1te/7p2x7Pu7fUlq9eOJ3OjSvRq1VtTh/dHyumySP/itVmw1ad2bBsbqKvvBBCCCGEEKmHDLpFqpUvXz6uXbtGlSpVGDZsGNbW1hQvXpw5c+bg5OTEuHHjEt1WtmzZ2LdvHxcvXsTa2poePXrQuXNnRowYAcSc/T158iS1atXC3NycESNGMG3aNGrWrAlA165dsbCwoHjx4piZmcU6S5xU0qVLx8mTJ8mZMyeNGjXC0tKSzp07ExoaioGBAQDt27dn5syZzJ8/n8KFC1OnTh21WcenTZvG4cOHyZEjB7a2tnFup1+/fgwcOJBBgwZRtGhRDhw4wK5duyhQoECS7k9YaCj/HthJxRr11coda9SjTIWqca4THBSIy7A+mGXKgsu8NbTp2o+taxZzZO92VZ17t68z2+UfKtaoz8QF6yhu78jUMU48exz/JG9vvF8wecQAClsXZ9KC9dRs2JLF08dz/fLnx6CdPX6INYtm0KRNV1znryVXXnNch/flvV/MLPhXzp3kzL8HGe46l9Zd+7Joxng+vPdXxb1xxXw69R0Sa9u2JewJCQnG/dLZROdOCCGEEEKkDhrKl9fTCiF+KWFhYejp6XH48GGqVKmS0uEkuQVrdrB8ziQWbzkca9mW1Yu4fPYEkxauVys/tHsrm1bOZ9HGg2h9vKd8/bI5XD5znOnLtwEwc8IwwkJDGDJupmq9Ef06kDufOV36D48zlnVLZ3PtwmmmLtmsKps1YRjBQYEMc4m5UuCfvu3JZ1GITn1iBs7R0dH0bl2bGvWbU79FB3ZtXsXjB3fp/48rAN2bVePvcTPIZ1GYJTMnkDVHbmo3bh3n9hdOG0tkZCTzZs+Mc7kQQgghhPj16GklXEfOdAvxi/rw4QMbNmxAU1OTggULpnQ4yeLuLXfyFLD8rnUeeNzAsoitasANYF2sDC+fPyEw4ENMnTs3KGpbUm096+JluO9xM/5279ykqF2p2OvcuQFAZEQEjx/cpajt5zqampoUtS3JfY+YOrnymvPogQeBAR94dN+D8PAw/pc1B3dvufPY8x41G7SId/v5LApz95Z74pIghBBCCCFSjUSMy4UQKWH06NGsX7+eSZMmqSZz+934vPbGyMT0u9bxf+eruv/7E0MjYwDe+/mSQd8Afz9fVZmqTkZj3r/zjb9dP18MM361jpExIcFBhIeFEhgYQHR0VOx2jYx58cwLiBmkO1SqyT9926Gjo0tPpzHo6aVl2WxXejqN4dCerRzcuQl9g4x0HfAPOXLnU7VjZGKG79vXREdHo6kpv4cKIYQQQvwuZNAtxC9qxowZzJgxI6XDSFbh4WHo6OimdBhJqmm77jRt1131fuuaxRSxLUkaLS12rF/OlEUbuXrhFPMnj8Z1/lpVPR0dXZToaMLDw9HT00uJ0IUQQgghRDKQ0ylCiBSjb5CRwMAP37VORmMT1cRln3x6b2hkElPHKI46/u8wNDaJv10jE977x243bbr06OjqYWCQEU3NNHFuO2M87b546sXpo/tp3qEnd65fwbKoLQYZjShdviqPPe8SEvz5cXeBAR/Q1UsrA24hhBBCiN+MDLqFECkmd34LXjx5/F3rFLC0wuPWNSIjI1VlN65eIGv2XGTQj5nBvUAhK25du6S23o2rFzC3LBp/u4WKcuvaxdjrFLICQEtbmzwFCnLL/XOd6OhobrlfwtzSKlZ7iqKwdJYLbbv/hV7adERHRxH1MeaoqEjV+p8883pI7vwWicqBEEIIIYRIPWTQLYRIMdbFy/D8yUPVBGgAr148w+vhPd77+RIeHorXw3t4PbxH5MdnnztUqoGWljaLpjvzzOshZ48f4sCODdT6Ylbwmg1acP3yWfZsXcuLp15sWb2IR/fvUL1eM1WdDcvmMm/yKNX7qrUb88b7BeuWzOLFUy8O7drC+RNHqNXo87PCazduzbF9bpw4tIcXTx+zbLYrYaEhVKheN9a+Hdvvhr5hRoqVKQ+ARWFrbrlf4oHHTfZtX0/2XHlJn0FfVf/urWtY2ZVOgqwKIYQQQohfiTwyTAiRYq49CeCfvu2pWL0eVeo0BmCsUzc8blyNVXf26l2qCdSePHrA8rmTeHTvDvqGGalevxn1m3dQq3/+5BE2rZzP29feZM6ag9Zd+2Fb0kG1fP6UMbx9/ZLRUxerym5fv8yahdN5/vQxxqaZaNS6C47V1AfUB3ZuYs+WNfj7+ZIrrzkdeg2mgGURtTr+fr6M6NcB55nLMTYxU5VvW7uE/Ts2YpDRiF6Dx5C/YMx673ze0LddPWav2omDTf4fyKQQQgghhEgJiXlkmAy6hRAp5tqTAK5eOM26JbOYsnjTHztr97qlswkKCKDbX/9gmU0/4RWEEEIIIcQvITGDbpm9XAiRouxKOfDqxVPe+bzBNFPmlA4nRRhmNKb2F5fHCyGEEEKI34ec6RZCpJhrTwJSOoRfjpzpFkIIIYRIPRJzpvvPvJZTCCGEEEIIIYT4CWTQLYQQQgghhBBCJBMZdAshhBBCCCGEEMlE7ukWQqSY0MiUjuDXY1SiT0qH8MvxuzQ3pUP4JUXL13csmhoaKR3CL0e6iUgMOXSE+HFyT7cQQgghhBBCCJGCZNAthBBCCCGEEEIkExl0CyGEEEIIIYQQyUQG3UIIIYQQQgghRDKRQbcQQvwGytrlY+vM7jw6NIGQa3Op62iltjyTsT6Lx7bh0aEJ+J6dzs65vciX0yze9tzm9ozVTlHzbKxy7cCD/eN4d24617aNoHdLx1jrlitWgLPrh+B/YQa3do6mTd1SSbafyW3ZkkW0ataYMiVscSxXhgF9e+H1+JFanc4d2mJd2ELtNW7sqBSKOOktW7KI1s2bULakHZXK2/NXv96xchAWFobreGccy5bCvoQdgwb0xdfHR63OhfPnaN+6BWVL2lGlggOzpk8lMvL3mj3x9evXDBviRHn7UpS0s6Jxg7rcvnVTtXzBvDnUr1ODUsVtcChTgm6dO3DjxvUUjDj5BQUFMnniBGpWrUipYla0a92CWzdvqJaP/GcoNkUs1F69undOwYiTX0I5URSF+XNnUcXRgVLFrOjepQNPnnilXMApYPPG9TRpWBf7knbYl7SjbavmnD51IqXD+qmuXL5E3149qOLogHVhC44dPRJv3XFjR2Fd2IK1q1f+vAB/Ed+Tp1+JDLqFEOI3kD6tLjfvv2CA66Y4l2+e0Y082U1pOmARpVtO5Kn3O/Yt7Es6PZ1Ydfu2rhjnjMe2ljl4+y6AjiNWYddkApOWHcS5bz16NC+vqpMrqwk75vTg5OX7lGoxkbnr/2XBqFZUKWOZZPuanC5fukjzlq1Zs2Ezi5asIDIykh5dOxMcHKxWr3GTZhw9flr1+mvQ3ykUcdK7evkSzVu2YvX6TSxYvJzIiEh6dutCyBc5mDrJlZPH/2Xy9FksXbmat2/fMGhAX9Xye3fv0rdnN+wdyrFh6w4mTp3OiX+PMXvGtJTYpWTx4f17OrRpiZaWNvMWLmH7rr0MGjwEAwNDVZ1cuXIz7J9RbNuxm5Vr1pM1WzZ6du3Eu3fvUjDy5DV21AjOnzvLeNfJbNmxmzL2ZenRtSOvX79W1SnrUI4jx0+rXhMnT0/BiJNfQjlZuXwJ69et4Z9RY1izfjNp06alV/fOhIWFpXDkP0+m/2Wm/19ObNiynfWbt1GyVGn69+mNp+eDlA7tpwkJCcbCwoJhI0Z/s97RI4e5ef06Zpky/aTIfi2JzdOvJhETnAshhPjVHTpzh0Nn7sS5LH/OTJSyyoNd4/F4PHoFQD+XTXgdcaFZzWKs3HFOVdfKPBv921aibOvJeB1xVWtn9c7zau+9XvhSyioP9StZs3DTSQC6NnHA64UvQ6fvAODe49fY2+ajb+uKHDnnkWT7m1wWLF6m9t55wkQqliuDx53bFCteQlWup6eHqVn8VwqkZvMWLVV7P3aCK5XL23PnYw4CAgJw274Nl8lTKFmqdEydca40qleLG9fdsbK24dCBfRQwt6B7z94A5MyZi/6DnBgy6C+69+pN+vQZfvp+JbXly5bwv8yZGTfh83GSPXsOtTq16tRVe+/09zB2bNvKg/v3KFW6zE+J82cKDQ3l6JFDzJg9X3W89Ozdl5Mn/mXLpvX06fcXANo6Opia/p7Hz9cSyknvvgNYt2Y1Xbv1pGKlKgCMc5lM5Qr2/Hv0CDVq1U7J8H8ax4qV1N737f8Xmzdu4MZ1d/LnL5BCUf1cDuUq4FCuwjfrvH79moku41iweBl9e3b/SZH9WhKTp1+RnOkWQojfnK5OzO+roeGfL+1VFIXw8EjsbfKpytLqabPStQMDJm7mtW9Aoto2zKCH34fPZ0BLWefh3wv31OocPutBKas8/2UXUkxgQEweDAwN1cr37d1NhbKlaFS/DrNmTCMkJCQlwvspAgNjcmD4MQced24TGRlB6dL2qjp58uYlc5as3LjuDkB4RDi6urpq7ejq6hEWFobH7ds/J/BkduLfYxQuXASnv/rhWK4MzRo3YNuWzfHWjwgPZ9uWTejr62NuYfETI/15oqIiiYqKiuP/XpdrV6+q3l++dJGK5ctQv051JjiPxt/f72eH+tMklJMXz5/j4/OWUmU+H0/6+voUtbLm+vVrPzvcX0JUVBT79+0lJCQYa2vblA7nlxEdHc0/QwfToWPnP+aHiN+JnOkWQojf3D2vVzz1fse4vvXoM34DQSHh9GtTkeyZjchs+nkwOXlQY85ff8ye4ze/0dpnpa3z0KRaMRr2W6Aq+5+JAa/fqQ/Y37z7gKF+WvR0tQkNi0ianfoJoqOjmTzJBRtbOwoUMFeV16xVhyxZs5IpUybu37/HzOlT8fJ6zIxZc1Mw2uQRHR3N1IkxOcj/MQe+Pm/R1tZG38BAra6JiYnqvm57ewfWr1nN/n17qFa9Jr4+PixeOB+Atz5vf+5OJJPnz5+xedMG2rbvSOduPbh98yaTXMejra1NvQYNVfVOHP+XIU4DCQ0NwdTMjIVLlmNkZJyCkSef9OkzYGVty+KF88mTNy8mJqYc2LeHG9fdyZEzJwBly5ajcpWqZMuWnWfPnjF31nR69+jK6nWbSJMmTQrvQdJLKCc+H48HExMTtfWMvzie/hQP7t+jbasWhIeHkS5dOmbMnke+/PlTOqxfxoplS0ijpUWrNu1SOhTxA2TQLYQQv7nIyGhaDFrCgtGt8T45hcjIKI5duMeB07fR0IipU7tCURxLmlO6xcREtVkoXxY2z+jGhMX7OHr+bjJGn3Jcxo/l4YMHrFyzXq28SbPmqn8XMLfA1NSMbp078OzpU9XA4nfhOt4ZT88HrFi9PuHKXyhT1oEBgwbj4jyGkcOGoK2jQ9fuPbl25TKaGr/HRXbR0QqFixSh34CBAFhaFsLT8wFbNm9UG3SXKFmKzdvc8Pf3Y9vWzQweNIC1G7bEGmT9Lia4TmbMqOFUq1SeNGnSUNCyEDVq1sbjTswVDl9eLl3A3AJzcwvq1KzC5UsXf8tL7iHhnIgYuXPnYfM2NwIDAzh86CAjhw9h2cq1MvAG7ty+xbo1q9m4dTsan764Raoig24hhPgDXPN4RukWEzHIoIeOthY+foGcXO3ElTtPAXAsYU7e7Ka8OjlFbb0NU7tw5tpDqnedpSormDcz+xb1Zfm2s0xaelCt/mvfD/zPWF+tLJOxAe8DQlLVWW6X8c6cPHGc5avW8r/Mmb9Zt6iVNQBPnz75rQbdEyc4c+rEcZZ9lQMTUzMiIiII+PBB7Wy3r68vJqamqvdt23ekTbsOvH37BgMDQ16+eMGcmdNj3fecWpmZmZE3Xz61srx583LksPoxkS5dOnLmykXOXLmwsrahbs1quG3fSueuv+f9mDly5mTZyrWEBAcTGBSImVkm/h40gGzx/L9nz5EDIyMjnj198tsOur+Vk0/3tvv6+mJm9nlirHe+vphbFEypkFOEto4OOXPlAqBQ4SLcvnWTdWtXM2qMcwpHlvKuXrnMu3e+1KhSUVUWFRXFtCmTWLdmNfsPH0vB6ERiyKBbCPFDOnTogL+/P25ubikdivgOHwJDAciX0wy7QjkZO38PAFNXHGLFjrNqda9s/Ye/p21j74lbqjLLvJnZv7gf63ZfYMy83bHav3D9MdUdCquVVS5dkAs3Hif1riQLRVFwnTCOY0cPs2zlmkQNEO/djZkgzuw3mVhNURQmuYzj2NEjLFmxmmzZs6sttyxUGC0tbS5cOEeVqtUB8Hr8iFfeL7GytlGrq6GhQaZM/wPgwP69ZM6chYKFCv2U/UhuNrZ2eD1W79dPvLzImjXbN9eLVqIJDw9PztB+CWnTpSNtunR8eP+es2dPM2Dg4DjrvX71Cn9//992YsIvxZWTbNmzY2pqxsXz5yhYMOYpD4GBgdy8cZ2mzVqmcMQpKzo6mog/4FhJjDr16qvd9w/Qs1tn6tStT4OGjVIoKvE9ZNAtRBLq0KEDq1atwtXVlaFDh6rK3dzcaNiwIUpcz2FKQrlz52bAgAEMGDBAVbZy5UoGDBiAv79/sm5bpKz0aXXIl+PzH625s5lgZZ4Nvw/BPHvlR6Mqtrz1C+TZq3cUKZCVqYObsPv4DdWl4a99A+KcPO2Ztx9PXvoCMZeU71/cjyNnPZi99hj/M4k5ox0VreDjFwjAkq2n6dGiPBP612fVzvM4ljCncVVbGvZbmNwpSBIu48ayf98eZs6ZT/p06fF5G3O/ZQZ9ffT09Hj29Cn79u6mXPkKGGbMyIN795gy2ZVixUv8NmelXMc7s3/fHmbMnkf69OlV95xmyBCTA319fRo0asy0yZMwNDQkffoMTHIZj5W1jdqge9XyZdg7OKCpqcnRI4dZsXQJk6fN+G3u223Trj3t27Rk6eKFVKtek1s3b7B162bVWbng4GCWLl6IY8VKmJqZ4e/nx8YN63jz+jVVq9dI4eiTz9kzp1AUhdy58/D06VNmTJtMnjx5qd+gEcHBQSycP5cqVatjYmrK82fPmDl9Cjly5sK+bLmUDj3ZfCsnGhoatG7bjiWLF5AzVy6yZcvOvLmzMMuUiYqVq6R06D/NrBnTcChXnsxZshAcFMS+vXu4fOlirCdK/M6Cg4J4+vSp6v2L58+56+GBoaEhWbJmJWNGI7X62lramJqakjtP3p8daopKKE+/Khl0C5HE9PT0mDRpEt27d8fIyCjhFYRIAnaFcnFoaX/V+8lOjQFYs+s83UavJbOZAZMGNSKTiT6vfD6wbs8FXBcf+K5tNKxiSyZjfVrVKUmrOiVV5U9e+lKw9mjVvxv2Xchkp0b0buXIi9f+9HRenyoeFwawedMGADp3aKtW7jzelfoNG6Gtrc2F8+dYt2Y1ISHBZM6chSpVqtG1R6+UCDdZbPmYg64d1SfrGTvehXoNYs6oOA0ZhqamJk4D+hMeEY69vQPDRo5Sq3/m9EmWLllIRHg45hYFmTFnHg7lyvO7KFLUiumz5jJ75nQWLZhHtuzZ+XvIcGrXqQdAmjRpePz4Ebt27sDfz4+MGTNSuEhRVqxe91vPPBwQEMCcmdN5/foVhoYZqVy1Gn36/YW2tjZRUVE8uH+f3bvcCPgQgFmmTJSxL0vvPv3R0dFJ6dCTzbdyAtChU1dCQkIYN2YUAQEfsLUrxvyFS2PNeP47e/fOlxHDhvD27Rsy6Otjbm7BgsXLKGNfNqVD+2lu375Fly8+d6dOjnkcYb36DRnnkrj5Vv4EqTVPGkpyn3oT4g/SoUMHfH198fT0pG7dukyePBmI+0z3tm3bGDVqFJ6enmTJkoW+ffsyaNCgeNt++PAhAwcO5Pz58wQFBWFpaYmrqytVqsT8Eu7o6MiJEyfU1vn333+pWLGiWtno0aMZM2YMa9asYdasWdy7d4/06dNTqVIlZs6cSaZMn+8pu337NkOGDOHkyZMoioKNjQ0rV64kX758sS4vv3TpErVq1cLJyYkhQ4YkKl+hkQnX+dMYleiT0iH8cvwu/X6zgieFaPn6jkVTJhiKRbqJSAw5dIT4cXqJOI39e0whKsQvJE2aNLi4uDBnzhyeP38eZ50rV67QrFkzWrRowc2bNxkzZgwjR45k5cqV8bYbGBhIrVq1OHr0KNeuXaNGjRrUrVtXdYnN9u3byZ49O87Oznh7e+Pt7Y29vT0zZ87EwMBAVebk5ARAREQE48aN4/r167i5ueHl5UWHDh1U23vx4gXly5dHV1eXY8eOceXKFTp16kRkZOyR8rFjx6hatSoTJkxI9IBbCCGEEEKIP4FcXi5EMmjYsCE2NjaMHj2aZcti3480ffp0KleuzMiRIwEwNzfnzp07TJkyRW3g+yVra2usra1V78eNG8eOHTvYtWsXffr0wdjYmDRp0qCvr0/mL2YaNjQ0RENDQ60MoFOnTqp/582bl9mzZ1OiRAkCAwPJkCED8+bNw9DQkI0bN6ougTM3N+drO3bsoF27dixdupTmzZvHWi6EEEIIIcSfTM50C5FMJk2axKpVq/DwiH0vq4eHB2XLqt+nVLZsWR48eEBUVFSc7QUGBuLk5ISlpSUZM2YkQ4YMeHh4qE0m8T2uXLlC3bp1yZkzJ/r6+lSoUAFA1Z67uzvlypVTDbjjcuHCBZo2bcqaNWsSHHCHhYXx4cMHtVdYWNgPxS6EEEIIIURqIYNuIZJJ+fLlqV69OsOGDUuS9pycnNixYwcuLi6cOnUKd3d3ihYt+kOPngkKCqJ69eoYGBiwbt06Ll26xI4dOwBU7aVNmzbBdvLly0fBggVZvnw5ERHffgazq6srhoaGaq8pk1y/O3YhhBBCCCFSExl0C5GMJk6cyO7duzl37pxauaWlJWfOnFErO3PmDObm5vE+TufMmTN06NCBhg0bUrRoUTJnzoyXl5daHR0dnVhnyuMqu3v3Lr6+vkycOJFy5cpRsGBB3rx5o1bHysqKU6dOfXMwbWpqyrFjx/D09KRZs2bfrDts2DDev3+v9ho8JGl+kPjdGRum58lRV3JmMU7pUJJFlyYObJ3Z/T+34+/vh2O5Mrx4EfdcCr+yM6dO0qxRfaKjo5O0XX9/PyqVt+dlaszJ6VM0b9wgWXKSWvvJ5k0b6NurR5K36+/vR8XyqTMnZ06fpFnjpD92IHXnZcumDfTrnTx9RY4fdZKT2FJzTpLr+1gG3UIko6JFi9K6dWtmz56tVj5o0CCOHj3KuHHjuH//PqtWrWLu3LmqSc7iUqBAAbZv3467uzvXr1+nVatWsT4QcufOzcmTJ3nx4gU+Pj6qssDAQI4ePYqPjw/BwcHkzJkTHR0d5syZw6NHj9i1axfjxo1Ta6tPnz58+PCBFi1acPnyZR48eMCaNWu4d++eWr1MmTJx7Ngx7t69S8uWLeOcaA1AV1cXAwMDtdef9DiU/2JIl+rsOX6Dp97vAHAsac6/Kwfy5vRUHh92YXy/+qRJ8/nj/J/utQi5NjfWy+fstERtz9gwPZ4HxhFybS6GGdSveOjerDzXto3g3bnpXN8xUu3RYQCVShXkhtsoXp+awrJx7dDW+vwjkkEGPW64jSJnFvVH6a1yO4etZQ7K2ub7rrx8bcmihVSsWJls2bID4P3yJX16dqNUMWscy5Vh+tRJ8fbPz20soF3rFpQqZo1D6eKxlvv7+9GzW2eqODpQ3KYI1SpXwGW8M4GBgao6Hh53aNa4AaWL29K3Vw/e+/urlkVGRtKiaSNu3rih1m7ZcuXR0tJi755d/yEDscU8J7oyWT/mZJLLeFo1a0RJ26I0b9wgUW2EhYXhOt4Zx7KlsC9hx6ABffH9+PnyiW2RgrFeB/btVS2/63GHFk0aYl/Cjv69e/D+vb9qWWRkJK2aNeLWza9y4lAOLS0t9u3Z/WM7H4+k6Cf9evegemVHStgWpXIFB4YPHcybN69Vyy9dvED/Pj2pXMGBUsVtaNaofqz/23Nnz1C3VnXsS9oxfOhgIr64aikgIIC6tarz8uULtXUaNmyMh8dtrl65/F/ToOZTP1HlxDsmJ6WLW1OxfOJy8kl4eDjNGtfHpogFd++q31519swp2rZqhn1JWyqWK82gAX3V/ii/63GH5k0aUKaELf3i6CctmzXiZqx+Uv5jP0naYwd+Tl5evHiOTRGLWK8b191Vdc6dPUO92tUpW8qOf4YOJiJCva/Uqx27rzRolDx9JSmOn/f+/gz7exD2Je1wKF2c0SOHExwUpFqe2o6fn5GTBfPmYF3YItarVHEbVZ0/LSdhYWGMHD6Uxg3qYmdViAF9Yz+681f6PpZBtxDJzNnZOdbg2M7Ojs2bN7Nx40aKFCnCqFGjcHZ2jncSNYiZfM3IyAh7e3vq1q1L9erVsbOzi7UtLy8v8uXLh5mZGQD29vb06NGD5s2bY2ZmxuTJkzEzM2PlypVs2bKFQoUKMXHiRKZOnarWlomJCceOHSMwMJAKFSpQrFgxlixZEuc93pkzZ+bYsWPcvHmT1q1bx3tfuvh+afW0aV+/DKvcYq6WKGqeDbc5PTl09g6lW06k7dDl1K5QlPH96qvWmbn6CLmrDFN73XnozfbD1xK1zYWjW3HzwctY5V2bOuDcty4TFu3DrskExi/cx8yhzahVvggAGhoarHRtz9Ktp3FsPw27Qjnp3Pjz3AXj+tVn6dbTPPX2U2s3IjKKTfsv06tlhe/OzychISG4bd9Kw8ZNAIiKiqJPr+5ERESwau1GxrtMZJfbDubPnf3NdiIiIqharQZNm7eMc7mmhiYVK1Vm1twF7Np3kHETJnLh/FnGjx2tqjN21AhKlirNxq3bCQwMYOmSRaplq1cux8bWjqJWVrHartegERvWrvmR3Y9TSEgIO7dvo0Gjxmrl9Rs2plqNWoluZ+okV04e/5fJ02exdOVq3r59w6ABfWPVGzvehcPHT6leFStXUS1zHj2CEqVKsWHLNgICA1m2+HNO1qxagbWNHUWKxpWThmxYl7Q5SYp+UqJkaaZMn8nOvQeYNnM2z589w+mv/qrl192vUcDcgmkzZ7N1+y7qN2zEiGFDOHH8XwCio6MZ9vcgmjZrwer1m7hz+xZbt2xWrT9rxlSaNmtB1qzZ1LarraNDrdp1WL92dVKl5HNOGn3OSd+POVm5diPjJkxk986Ec/LJjGmTMfvi0ZOfvHj+jAF9e1GiZGk2bd3J/EXL8Pf3U+tLY0d/PHa2xBw76v1kOTY2dhSNs580Yn0S9hP4eXn5ZNHSlRw5flr1sixUGIjpK8OHxPSVVeti+sq2L/rK7Pj6irYONWvVYf26ZOgr//H4GTbEiYeenixcuoLZ8xZy9fJlnMeMUi1PlcdPMuekfYdOHD1+Wu2VN19+qlWrAfyZOYmKikJXT5dWrdtSqnSZONv4Vb6PAVCEECKFhETI6+uXnk1vtVdLpyXKa98PqveTlh5QLt/yUqvTqN8CJTgkTDG1HxhrfT2b3kqJZi6KoihK5Y7T41z+5avvhA3KiUv3lepdZymKoij/c3BSLTvn/lCZvvKwWv2Zq48oZ656Kno2vZUcFYcoiqIohiX7K3o2vZWpyw8pCzaeUPRseiuO7acql28/UdLZ9Ylzu5U7TVdCw8KVjKUGxFqWmLzt2rNfKVW6tOr94WPHlYIFCyrPvd+qylatXa/Y2dkpH4LCEmxv4+ZtSrFixRK17aUrVinlypdXvbeyslLu3POM2eaadUrnLl2VkAhFefDoqVKlajXFxz8gznYePXmhmJubK/cfPknUdoPCo7/5ctuzTylVunScy6bNmKXUqVsvwTZe+b5XChUqrLjt2acqu3XXUzE3N1fOXbqqKjM3N1f27D8UbztWVlbKrbueSlB4tLJi9TqlU+euSlB4tHLv4ROlStWqyhu/D3Gu5/nkuWJubq7c9fRKMNag8Oif3k8+vfYfPKJYWFgoH4LD463TuUtXZfCQoUpIhKI8f+WjmJubK/6BoUpIhKK4TJysjBw1RgmJUJRzF68oDRo2VAJDI+Ns5/S5i0rhwoUVv4CQRMUWHP7t186POfn0/tDRmJw8e/lWVbZqTUxO3geFfbOtQ0ePK9Wr11BuejxQzM3Nlas37qhtp1ChQkpgaJSqbP+ho4qFhYXyPihcCQ6POXZu3/VUgsMVZeXHfhIcrij3H8YcO2/9AuLc7sOPx849zycJ7m9iXz8rLw8eP4tV9uXruXdMX/ELCFWCw2P6yohRY5TgcEU5e+GK0qBBQyUgJDLOdU+djekr7z6EJLi/P+tz9vbHz4/L126oyo4cO6FYWFgoT168+uWOn181J+43PRRzc3PlzPlLkpMIRXEaPETp3qNnrPKf9X2cGHKmWwghfmFlbfNxzePzDPW6OlqEhqnfOx8SFkFaPR1sLXPG2UbHhvbc93rNmWsPv7mtgnkzM6xrTbqMXE10tBJruY62FqHhX207NILiRXKhpaXJW79AvN++p0oZS9LqaVPWLh+3HrxAS0uTWcOb03f8hjjbBbh65ylaadJQokjub8YYn6tXL1Po45khgOvu7hQoYI6JqamqzL6sA4GBgXg+9PyhbcTlzZvXHDtymGLFS6jKzC0Kcu7cWSIjI7lw/jwFzC0AGOc8mr8GDSZ9+gxxtpUla1ZMTEyT7DK/a1euqM6W/SiPO7eJjIygdGl7VVmevHnJnCWr2uWvAK4TnKnoUJo2LZritn0bivL5/7qAhQXnz50hMjKSixfOUeDj4wcnOI9mwMBv5CRLTE6uXU2anCRHP3nv78/evbuxtrH95tMeAgICMDTMCICxsTFmZmacO3OakJAQrl29QgELCyIiIpjgPIaRo53jnd+jUOEiREVFcfPG9UTFl5CrV9RzcuO6O/njyclDz/hz4uvjg/OYkYx3nYyenl7suAsVRkNDg507thEVFUVAQAB7du+kVGn7z4+ltCjI+Y/HzsUL5zH/eOyMT2Q/uZpE/QR+Xl4+GdCnJxXLl6FD25Yc//eoqtzoU185G9NXrl65grl5TF9xGTeGET+zryTB8XP9+jX0DQwoXKSoqqxUGXs0NTVjXeb7pV/2+EmhnGzftoVcuXNjVyzmNijJSdx+le9jkMvLhRDil5YzizHeb9+r3h8+60Fp67w0q1EMTU0NspoZMrxbTQCymBnEWl9XR4vmNYurLk+Pj462FqtcOzB8phvPXvnFWefIOQ86NLDH1jIHAHaFctKhoT062lqYZoz54mrz9zKGda3B1a3/4H73Oat2nsOpYzVOXnpAaFgEx1b8xfUdI+nRvLxa2yGhEbwPDCFn1h+bLM775Uu1Szd9fXwwNjFVq2Py8b2vz9sf2saXhjgNpFQxa6pWLE/69OkZ4zxBtWy083iOHDpInRpV0dbWpnPX7uze5UZaPT0KFylKj66dqVOjKnNnzYjVrlmmTHh7x760/0d4e7/EzCz+y1kTw9fnLdra2ugbqPctExMTtfu6e/bpx+SpM1mwZDmVq1bDdfxYtcvCR48dz5HDB6lbsxra2tp06tqdPbt2opc2LYWLFKVXt87Uq1mNebNnxorBLFMmvF8mUU6SsJ/MmDaFUsVtKF+2FK+8vZk1d368dQ8e2MftWzep37AREHMrxuRpM1m8cD6N6temYEFLGjRszPKliylRshQ6urq0b92CerWrs2HdWrW20qZNS4YM+kmXk6/6iY+PjyoHn3zKkU88OVEUhVEjhtK0WQu1P5K/lC17DhYsXs6cWTMoaVeUcmWK8/rVayZPm6mqM0rVT6qipeonbuiljTl2enbrTN2aVZk7O55jJ4lyAj8vL+nSpWPQ4KFMmT6LOfMWYWtXjL/69VYNvL/sK40b1KagpSX1GzZmxbLFFP/UV9q0oH6d6mxcH09fSarPlCQ4fnx9fDA2Vv+c19LSwsDQMN51funjJwVyEhYWxr49u1W3PoDkJD6/yvcxgFaStSSEECLJ6enqEBr2edB99Pxdhs90Y/bwFiwb146wiEgmLjmAg13+OM8i169kjX46PdbuvvDN7YzrV497j1+zcd+leOu4LjnA/0wMOLHKCQ0NePMugHW7LzCoY1XVts+6P8KhzRTVOvlzZqJ1nZKUbjGRw8v+Yt6G4xw6fZvLW//h9FVPbn1x73hoWATp9OI/U/gtoaFhZNL5eRPzDR4yjB69evPEy4tZM6czdZIr/4waA0D+/AVYvurzHzX+/n4smDeHFavWMdFlHDa2tkyfNYfWzZtQxMoax4qVVHX1dHUJCQlJkhjDQkPRzfRzctKtx+cJbApaFiIkJITVK5bTqk07APLlL8Cyleo5WTh/DstWrmWSy3isbWyZNnMOrVs0pYiVFRUcP+dEV1eX0NDQJIkzKftJh06dadi4Cd4vX7Jw/lxGDBvCnPmL0NDQUKt38cJ5Ro0Yzuix48mfv4Cq3K5YcdZv3qZ67+X1mD27drJp6w46tm9D6zbtKFuuPI0b1KFY8eKYWxRU1dXV0yU0NKn6SRg6/7GfbFi3hqCgIDp1if8pBD4+b3EeM5K69RtQs1YdgoKCmD93NoMH9mPhkhVoaGiQP45+smD+HJavXMckl3FY29gyfeYcWrdoQlEr6zj6SdLkBH5eXoyMjGnbvqPqfZGiVrx984ZVK5bhWLEyALZ2xVm/6XNfeeL1mN0f+0qn9m1o1aYdDg7ladywDnbF4ugrSfSZ8rM/Z+HXP35SIifHjhwmODiIevUbqpX/yTmJz6/yfQxyplsIIX5pvv6BGBmkUyubvfYYmcsPxrzWKLJXHMru4zGXWj1+7hNr/Q4N7Nl/6hZv3gV8czsVSpjTqIotAZdmEXBpFvsXxUxu9PzfiYzoETPpVmhYBD3GrsPY/i8K1h5NgZojeeLty4fAEN76BcbZ7twRLRg6fQeamprYWuZg++GrvPUL5PSVB5QrVkCtrpFBOnziaSchRkYZ+fDhg+q9iakp73zV8+H78b2JqdkPbeNLpmZm5MmbD8dKlRk5eiybN23g7ds3cdadOmkirdu253+ZM3P54kWqVqtBunTpKFehApcvXVSr+/7D+1i/7v+ojEZGfPjwPuGK32BiakZERAQBX+QWwNfXV+1Swa8VLWrF69evCP9i9twvTZs8kVZt2sXk5NJFqlSvQdp06ShXPnZOPrx/j5GRUZztfK+k7CdGRsbkzp2HMvZlmTx1BqdOnoh1yf3lSxfp17sng/8eRt36Db7Z3rgxoxg0eAjRisJdjztUrV4DExMTihcvweXL6j+GxeQkqfqJek5MTU1VOfjkU45M48nJxYvnuXHdnZJ2RSlmXYh6taoB0Lp5Y0YMHwLApg3ryJAhA38N+puCloUoVrwELhOncOH8uXgva506eSKt27RX9ZOqH/uJQ7z9JOkeq/iz8hKXIlbWPHv6NN7l48Z+7CvRH/tKtRoYm5hQrHgJrsTVV5LoMyUpjh8TU1PevXunVhYZGcmH9+9jrZMajp+fnROIubS8XAXHb34Gw5+Vk8RKqe9jkEG3EEL80q7ffU7BvJnjXOb99j2hYRE0q1GcZ97vuHb3mdryXFlNqFCiACsTuLQcoKXTUko2d6VUi4mUajGRns7rAajSeSaLNp1UqxsZGc2LN/5ERys0rV6M/aduq92/+0n7BmXw+xDM3hM3SaMZc/bv0yPEtLXSqMoA8mQ3Ja2eDu53f+yZngUtC/Hoi3vDrG1sePDgPr6+vqqy82fPkiFDBvLly/9D24jPp32Pa4B54fw5Hj16SMtWbQCIjo5SPSYlMiKS6C9m+g8LC+PZ02cUtCyUJHEVLGjJo4ffvo8/IZaFCqOlpc2FC5/7kNfjR7zyfomVtU286927excDA0N0dHRiLbtw/hyPHz2ixZc5ifiYk8hIoqM+P+0hLCyMZ8+eYZFUOUmmfvLpCRVf9oFLFy/Qp2d3Bgx0okmz5t9cf/u2LRgaZsSxUmVVn1D1k0j1fvLs6VPCwsKSsJ+o58TK2gbPB/d590VOzp2LyUneeHIyZNgINm/byaatbmza6sac+YsBmDR1Bn37/QVAaGgomprqf3ZqfnzUYVzPw43pJw/j7SdRXx87z5Lu2IGfl5e43LvrgalZ3AOLHZ/6SsW4+0pUdBx9peCvc/xYW9sS8OEDd27fUpVdvHCe6OhotVmkU83x8xNzAvD8+TMuXbygdml5XP6knCRWSn4fgwy6hRDil3b4nAeF8mYho/7n52X/1a4yhfNnxTJvZoZ2rYFTx6oMmrw11uXl7RuU5pXPBw6euR2r3XoVrXDfPkL1/vFzH+489Fa9vF7EfDneffRKdRY7f85MtKhVgnw5zSheOBerJ3akUL6sjJoT+1mWZkYZGNqlOgMnbQHAPyAEj0fe9GlVkVJWeXAsacE590eq+mVt8/Ho2ds4z9Ynhn1ZBx4+9OTD+5gzu2XsHcibLz//DP2be3fvcub0KebOmUnzlq1VA8GbN25Qv04NXr/+/Hxl75cvuevhgbf3S6Kiorjr4cFdDw/Vs0FPnTyB245tPHhwnxcvnnPyxHHGjx2Nja2d6nmkn4SFheE6wZlRY8apBhs2tnZs2rCOe3fvcuTIIWy+eOzfjevu6Ohof3Mw+z3KlHXg0Rc5AXj69An37nrg4+NDWFgo9+56cO+uh+q5v29ev6Zh3ZqqZ2br6+vToFFjpk2exKWL57lz+xajRwzHytpGFeeJ48fYvnULng/u8/TpEzZv3MCypYto0ap1rJjCwsKYNGEcI8c4q3JibWvH5o0xOTl6+BA2tp9zcjOJc5IU/eTGjetsWLeWux4evHz5ggvnzzF08EBy5MiJtY0tEPPHYZ9e3WnVpi1VqlbD5+1bfN6+VXtG7Ce+vr4sWbSAof/EHI8GhobkzZuPdWtWcd39GhfOn1PLydUrl8meIwc5csY9ceKP5ORRXDkZFpOTs2dOMW/OTJq1+CInN2/QoO7nnGTJkpX8BcxVr1y5cwOQPUdO/pc55kfDcuUrcPvWTRYtmMuTJ1543LnN6BHDyJI1W6w/bMPCwpg4wZmRXxw71rZ2bIqnnyT1sfMz87Jr5w7279vD40cPefzoIUsXL2Tnjm2qHxu+9M7XlyWLFzBkeNx95eL5c9jYfNFXrl4me/ak7Sv/9fjJmy8fZR3KMXb0SG7euMG1q1dwnTCOGjVrkynT/4DUd/z8jJx84rZ9G6ZmZjiUU58X5U/NyUNPT+56ePD+vT8BAQGq7+yvpfT3Mcg93UII8Uu77fkS97vPaFzNjmXbzgBQrWwh/u5SHV1tLW7ef0HTvxZz6MwdtfU0NDRoW7c0a3ZdiPNeb4MMabHIE/cZ9PikSaNB/7aVMM/1PyIiozh5+T4VO0zjqfe7WHWn/t2EWWuOqU0C123UWpY4t6VXS0dmrD7ClTufL59sVqM4K3ac/a54vlTA3IKCloU4eHA/TZu1IE2aNMyZv5AJzmNo17o5adOmpW79hvTq00+1TmhoCF6PHxMZ+XlG9vlzZ7Nr5w7V++ZNGgCwdMVqSpQsha6uLtu3bmHqJFfCw8P5X+YsVK5SlU5dusWKaeH8uZQr70hBS0tV2ZBhIxj69yA6tW9Nrdp1qVK1umrZ/n17qVWnLmnTpo3V1n/JyaGD+2nSrAUAzqNGqF1+2qJJzD2Bew8eIWu27ERGRuD1+LHaPaBOQ4ahqamJ04D+hEeEY2/vwLCRn5+VqqWlzeaN65k22RVFgRw5czJo8BAaNWkWK6ZF8+fiUL4CFgU/5+TvYf8w/G8nunRoQ83adalctZpq2YH9e6lZO+lz8l/6SVo9PY4eOcSCeXMICQnG1MyMsg7lmNy9l+oPyN073QgNCWHZkkUs++K5sMVLlGTZSvVnv052nUC79p3U/pB0njCRkf8MYf3aNbTv2FntGeb79+2lUePYuf2vOfnUT9KkScPseQuZMG4M7dt8zEm9r3ISEvvYSUjJUmVwnTSNlSuWsnL5MvTS6mFtbcP8hUtizeq96NOxU1D92Bn29yA6d2hNza+OnQP791IrCfsJ/Ly8ACxZOJ+X3i/RSpOG3HnyMmnqDKp+fP7ylyZPjN1Xxk6YyKjhQ9iwLnZfObBvb5zH4Y9Kqs9Z10lTcZ0wjm6d26OpqUnlqtUYOuzzj8Cp8fhJ7pxAzBUhu3buoH6DRvHORA5/Vk769OzGy5cvVO8/fWdfv31PrV5Kfx8DaChxXRMohBA/QWhkSkfw6zEq0SdWWQ2Hwrj81YBiTVzivIw7tbPMm5n9i/th1cCZD4GxJ8zyuzQ3Ue2cPHGcGVMns23nnliXsf7q/PzeUb92TdZv3kr27DkStU50IvrCqRPHmTFtClvddqfCnPjRsE4N1m3aRrbs2RNeAdD8ahKzuKTmfuLp+YCundqza+9B9PX1E7VOYj4yTp44zsxpk9nqlvpy4uf3jgZ1arJ+01ayJfLYSazUnBdPzwd069SenYnsK4k4dIA/7/hJDMlJbKk5Jz/yfayXiNPYcqZbCCF+cQdO3yZ/TjOyZTLk+Wv/lA4nyWU2M6TLyDVxDri/R/kKjjx94sWb16/JnCVLEkX3c7x88YLhI0cn+gs+scpVcOTp0yepNCfPGTZidKIH3ImVmvuJz9u3jHeZlKR/HMPHnDxNnTl5+eIFw0eMTvIBN6TuvPi8fct412TqK3L8qJGcxJaac5Jc38dyplsIkWLkTHdscZ3p/tMl9kz3nyYxZ7r/NIk50/2nkW4iEkMOHSF+XGLOdKeu8/1CCCGEEEIIIUQqIoNuIYQQQgghhBAimcigWwghhBBCCCGESCZyT7cQIsXIPd2xyX26IrHk/mUhhBAi5ck93UIIIYQQQgghRAqSQbcQQgghhBBCCJFMZNAthBBCCCGEEEIkExl0CyGEEEIIIYQQyUQG3UII8Ye4cvkS/Xv3oGrFctgWKci/R4+oLbctUjDO16rly1R1nng9ZkDfXlR0KI1DqWJ0bNuKSxfP/+xdSTIJ5QTg0cOH9O/Tk3Kli1OmhC2tmzfB2/ulanlYWBiu451xLFsK+xJ2DBrQF18fn5+5G8lu88b1NGlYF/uSdtiXtKNtq+acPnUCgPf+/rhOGEe92tUpaWdF9cqOTHQZT0BAQApHnbyuXL5E3149qOLogHVhC4591XcWzJtD/To1KFXcBocyJejWuQM3blxPoWh/joRyoigK8+bMonIFB0raWdGtcweePPFKmWBTUM2qlbAubBHr5TJubEqHJlJQQsfPyOFDY/WZnt06p1C04nslYq41IYQQv4OQkBDMLQpSv2FjBg3oG2v54eOn1N6fOXWSsaNGULlqNVVZv949yJkzN4uWrUJXT5f1a1bTr3dPdu8/hKmpWbLvQ1JLKCfPnj6lU7tWNGjUhJ69+5I+fQYePvREV0dXVWfqJFdOnzzB5OmzyJAhAxNdxjFoQF9Wrt3wM3clWWX6X2b6/+VEzly5UBSF3Tvd6N+nN5u27UBRFN6+ecNApyHky5efly9fMN55DG/fvGHazNkpHXqyCQkJxsLCggaNGjOwf59Yy3Plys2wf0aRPXsOQsNCWbt6JT27dmL3/sMYGxunQMTJL6GcrFi2hA3r1jDOZSLZsmVn3pxZ9OzWmR279qGrqxtHi7+ndZu2Eh0VpXrv6fmA7l06UrV6jRSMSqS0hI4fgLIO5XAe76p6r6Oj87PCE/+RDLqFEOIP4VCuPA7lyse7/OtB8/F/j1GiZCmy58gBgJ+fH0+fPGG08wTMLSwA6PfXQDZvXI/ngwepctCdUE7mzp6JQ7kKDBg0WFWWI2dO1b8DAgJw274Nl8lTKFmqNABjx7nSqF4tblx3x8raJtli/5kcK1ZSe9+3/19s3riBG9fdadS4KdNnzVEty5EzJ337D2D4kMFERkaipfV7/qnhUK4CDuUqxLu8Vp26au+d/h7Gjm1beXD/HqVKl0nu8FLEt3KiKArr1qyma/eeVKxUBYDxrpOpVN6eY0ePULNW7Z8Zaor6+keX5UsXkyNHToqXKJlCEYlfQUKfKRAzyDY1S33ftUIuLxdCCBEHXx8fTp88QYNGjVVlGTNmJHeePOzZtZOQ4GAiIyPZtnkTxsYmFCpUOAWjTR7R0dGcPnmcnLlz06tbZyqVt6dty2Zql6B73LlNZGQEpUvbq8ry5M1L5ixZuXHdPQWiTn5RUVHs37eXkJBgrK1t46wTGBBIhgwZftsB9/eKCA9n25ZN6Ovrq36w+tO8eP4cH5+3lPriWNHX16eolTU3rl9LwchSVkR4OHv37KJBo8ZoaGikdDjiF3f50kUcy5WhXu3qjHcejb+/X0qHJBJJvg2FEELEsnuXG+nSpadSlc+XlmtoaLBwyQr+6tebsqWKoampiZGxMfMWLcHA0DAFo00e7975EhwczIplS+jdtz/9Bzpx5vQpBg3oy+LlqyheoiS+Pm/R1tZG38BAbV0TE5Pf7r7uB/fv0bZVC8LDw0iXLh0zZs8jX/78ser5+b1j8cL5NG7aPAWi/LWcOP4vQ5wGEhoagqmZGQuXLMfI6Pe8tDwhPj5vATAxNVErNzExwec3O1a+x7FjRwgICKBeg4YpHYr4xdk7lKNylapky56dZ8+eMWfmdHp178qa9ZtIkyZNSocnEiCDbiGEELHs3LGNmnXqqN1nqSgKrhOcMTYxYfmqdejq6bJj21b69+nJ2o1bMDPLlIIRJ73o6Ggg5tLqNu06AGBR0JLr7tfYunnjH3cpaO7cedi8zY3AwAAOHzrIyOFDWLZyrdrAOzAwkD49u5M3Xz569Ir7nsQ/SYmSpdi8zQ1/fz+2bd3M4EEDWLthCyYmJgmvLP4IO7Zto6xDeTJl+l9KhyJ+cV/eglHA3AJzcwtq16jC5UsXf9tbVn4ncnm5EEIINVevXMbr8WMaNmqqVn7xwnlOnTjOxCnTsbGzw7JQYYaPHI2urh67d7qlTLDJyMjICC0tLfLmUz+bmzdvPl55ewNgYmpGREQEAR8+qNXx9fXFxNT0p8X6M2jr6JAzVy4KFS5C/78GYW5RkHVrV6uWBwUF0qt7F9KnT8+M2fPQ1tZOwWh/DenSpSNnrlxYWdswdpwLWmm0cNu+NaXDShGf5nzw9fFVK/f19cX0NztWEuvlyxdcOH+WRk2apHQoIhXKniMHRkZGPH36JKVDEYkgg27xnxw/fhwNDQ38/f1TZPvBwcE0btwYAwODFI3jv/g6hytXriRjxowpGlN8cufOzcyZM1XvNTQ0cHNzA8DLywsNDQ3c3d1TJDaRdNy2b8WyUGEsChZUKw8NDQFAU1P9vkNNTQ2Uj2eFfyfa2joUKlyEJ48fq5U/8fIiS9asAFgWKoyWljYXLpxTLfd6/IhX3i9/m0nU4hMdHU1EeDgQc4a7R9fOaGtrM2vugj9qJurvEa1EE/4xZ3+abNmzY2pqpnasBAYGcvPGdazimRvgd7dzx3aMjU0oV94xpUMRqdDrV6/w9/fHLBVOYvonksvLRYLOnTuHg4MDNWrUYO/evWrL7O3t8fb2xjCF7udctWoVp06d4uzZs5iamuLn54eRkRHXrl3Dxsbmh9r08vIiT548/6mN/6J58+bUqlXrp2/3SytXrmTAgAGxfsS4dOkS6dOnT5mgxH8WHBzEs6dPVe9fvHjOvbseGBgakiVLzCAyMDCQw4cOMtBpSKz1raxtMTAwYOTwoXTr0Rs9PV22b93Ci+cvcEilfzQmlJP2HTszxGkgdsWLU7xkKc6ePsXJE/+yZEXMGV59fX0aNGrMtMmTMDQ0JH36DExyGY+Vtc1vNeieNWMaDuXKkzlLFoKDgti3dw+XL11kweJlHwfcnQgNDcFl4hSCAgMJCgwEwMjY+Le91zA4KIinX/ad58+56+GBoaEhhhkzsnTxQhwrVsLUzAx/Pz82bljHm9evf+vHQn0rJ1myZqV123YsWbSAXDlzkS17zCPDzDJlolLlKikYdcqIjo5m547t1K3fQCYcFEACnymGhixcMJcqVatjYmrK82fPmDFtCjly5sLeoVwKRi0SS45ykaBly5bRt29fli1bxsuXL8n68QwPxDy6IHPmzPGuGxUVhYaGBpqaib+oQlEUoqKiEvUl9PDhQywtLSlSpAgQM2BO7dKmTUvatGlTOow4mcljKlK1O7du0bVTe9X7aZMnAlC3fgOcJ8T8++D+vaAo1Ijj8T1GRkbMXbiEebNn0r1zeyIjI8mbPz8z5syLdVY8tUgoJ5WqVOWfUWNYvnQxk10nkCt3HqbMmI2tXTHVOk5DhqGpqYnTgP6ER4Rjb+/AsJGjfvq+JKd373wZMWwIb9++IYO+PubmFixYvIwy9mW5dPECN29cB6BOzapq6+07dJRs2bKnRMjJ7vbtW3Tp2E71furkmGfn1qvfkBGjx/L48SN27dyBv58fGTNmpHCRoqxYvY78+QukVMjJ7ls5GecykY6duxISEoLzmFEEBHzA1q4Y8xct/SOvjDh/7ize3i/VnhAh/mzfOn7+GTWG+/fus2unGwEfAsiUKRNl7MvSu29/eVZ3KqGhKIqS0kGIX1dgYCBZsmTh8uXLjB49GisrK4YPH65afvz4cSpWrIjfxz8qPp0hXb16NUOHDuX+/ft4enqSJUsWRo0axfr163nz5g05cuRg2LBhdO7cWdXGvn37GDFiBDdv3uTQoUPkyJGDgQMHcv78eYKCgrC0tMTV1ZUqVWJ+EXd0dOTEiROqWCpUqKD2/lPZ8ePHY+2Xn58fffr04dChQwQGBpI9e3aGDx9Ox44dYz2y41Mbly5dYvjw4Vy7do2IiAhsbGyYMWMGdnZ2qroaGhosWbKEvXv3cvDgQbJly8a0adOoV6+eqs6+ffsYMGAAz549o3Tp0rRv356OHTvGyuGns8xjxozBzc2NQYMGMXLkSPz8/KhZsyZLlixBX18fiHlWcI8ePXBzc8PAwIC///6bnTt3YmNjo3Y5+JeuX7/OgAEDuHz5MhoaGhQoUIBFixYRGBhIxYoV1eqOHj2aMWPGkDt3bgYMGMCAAQNU+7tjxw4aNGjwQ1cIhEYmqtofJVo+kkUiacrjhYQQQogUp5eI09hyT7f4ps2bN1OwYEEsLCxo06YNy5cvJ6HfaYKDg5k0aRJLly7l9u3bZMqUiXbt2rFhwwZmz56Nh4cHixYtIkOGDGrrDR06lIkTJ+Lh4YGVlRWBgYHUqlWLo0ePcu3aNWrUqEHdunVVl95s376drl27UqZMGby9vdm+fTsXL14E4MiRI6qyuIwcOZI7d+6wf/9+PDw8WLBggWoil/jaCAgIoH379pw+fZrz589ToEABatWqRUBAgFrbY8eOpVmzZty4cYNatWrRunVr3r17B8CzZ89o1KgRdevWxd3dnS5dujB06NAE/x8ePnyIm5sbe/bsYc+ePZw4cYKJEyeqlg8cOJAzZ86wa9cuDh8+zKlTp7h69eo322zdujXZs2fn0qVLXLlyhaFDh6KtrY29vT0zZ87EwMAAb29vvL29cXJySjBGIYQQQgghRGxyebn4pmXLltGmTRsAatSowfv37zlx4gSOjo7xrhMREcH8+fOxtrYG4P79+2zevJnDhw+rzlLnzZs31nrOzs5Urfr50kRjY2NVGwDjxo1jx44d7Nq1iz59+mBsbEy6dOnULnH/8HEGYRMTk29e9v706VNsbW0pXrw4EDNB2CefLqH+uo1KlSqptbF48WIyZszIiRMnqFOnjqq8Q4cOtGzZEgAXFxdmz57NxYsXqVGjBgsWLCBfvnxMmzYNAAsLC27evMmkSZPijRVi7v1auXKl6sx227ZtOXr0KBMmTCAgIIBVq1axfv16KleuDMCKFSvUbgOILweDBw+m4MfLggsU+HzJo6GhIRoaGt/MoRBCCCGEECJhcqZbxOvevXtcvHhRNYDU0tKiefPmLFu27Jvr6ejoYGVlpXrv7u5OmjRpqFChwjfX+zQA/iQwMBAnJycsLS3JmDEjGTJkwMPDQ22SiR/Vs2dPNm7ciI2NDX///Tdnz55NcJ3Xr1/TtWtXChQogKGhIQYGBgQGBsaK58t9T58+PQYGBrx58wYADw8PSpUqpVa/TJmEn62YO3du1YAbIEuWLKo2Hz16REREBCVLfn5msKGhIRYWFt9sc+DAgXTp0oUqVaowceJEHj58mGAc/0VYWBgfPnxQe4WFhSXrNoUQQgghhEhpMugW8Vq2bBmRkZFkzZoVLS0ttLS0WLBgAdu2beP9+/fxrpc2bVq1+6ITOynY17NiOzk5sWPHDlxcXDh16hTu7u4ULVo0SR63UrNmTZ48ecJff/3Fy5cvqVy5coKXULdv3x53d3dmzZrF2bNncXd3x8TEJFY8Xz+bVkNDg+j/+Dil5GhzzJgx3L59m9q1a3Ps2DEKFSrEjh07/lOb3+Lq6qqagfPTa8ok12TbnhBCCCGEEL8CGXSLOEVGRrJ69WqmTZuGu7u76nX9+nWyZs3Khg0bEt1W0aJFiY6OjjXJWULOnDlDhw4daNiwIUWLFiVz5swJzk7+aQbHqKioBNs3MzOjffv2rF27lpkzZ7J48eJvtnHmzBn69etHrVq1KFy4MLq6uvj4+HzXPllaWqruGf/k/Pnz39XG1/LmzYu2tjaXLl1Slb1//5779+8nuK65uTl//fUXhw4dolGjRqxYsQKIyUFicvg9hg0bxvv379Veg4cMS9Jt/K78/f2oVN6ely+ep3QoyWLLpo30793ju9f73fMya8Y0JrqM+09t+Pv74ViuDC9SYY7OnDpJs0b1//MPjF+TnMQmOYlbas6Ln987HMuV4fWrVykdym8vNfeTh56eVK1UnuDg4JQO5bcng24Rpz179uDn50fnzp0pUqSI2qtx48YJXmL+pdy5c9O+fXs6deqEm5sbjx8/5vjx42zevPmb6xUoUIDt27erBvutWrVK8Es1U6ZMpE2blgMHDvD69et4z8iPGjWKnTt34unpye3bt9mzZw+WlpbfbKNAgQKsWbMGDw8PLly4QOvWrb/70V49evTgwYMHDB48mHv37rF+/XpWrlz5XW18TV9fn/bt2zN48GD+/fdfbt++TefOndHU1Iw1E/snISEh9OnTh+PHj/PkyRPOnDnDpUuXVDnInTs3gYGBHD16FB8fnyT5MNbV1cXAwEDt9Sc+JuZHxDzvtzJZv3r0kr+/H9UrV8C2SEECPs5nAHD08CF6dOlExXJlcChVjHatm3P2zKkEt3P2zCnatWpO2ZJ2VCxXhkED+sYa0G7asI5GdWtRupg1DerUYPdON7Xl58+eoX7t6jiUKsaIoX8TEfH5SpCAgADq167Oy5cv1NZp0KgRHh53uHrlcmJTAqjnxd/fj97du1C1YjlK2halRmVHJk5wJvDj86I/2bdnN80a1adMcRuqOpZjzIjh+Pv7fXM7tkUKxnod2LdXtfzyxQtx1vHxeau23RqVHSlvX1L1GJhPXr54Tv3a1WPF2q5DJ/bsdOP5s2fflZcvLVm0kIoVK5MtW3Z27tiOdWGLOF++vr5xrn/p4oV417l18wYQc+vIyOFDadygLnZWhRjQt1esdjw87tCscQNKF7elb68evP/4dAaI+ZG3RdNG3LxxQ22dsuXKo6Wlxd49u354/+PyZU78/f3o2a0zVRwdKG5ThGqVK+AyPna/id3GAtq1bkGpYtY4lC4ea3li2v1Vc3Lv7l2GOA2kWuUKlLSzokHdmqxbsyrRbYWHh9OsUX2sC1tw18NDVZ7a+gmo5wVgost4WjRtRHGbIjRrVD/R7Vx3v0aXju0oVdwG+5J2dGzXmtDQUNVyjzu36d6lIw6li1PevhTOo0cSHBSkWv7e35++vXpQurgtzRo3wMPjjlr7LuPGsmrlcrUyIyNj6tZrwPx5s39k18V3SIrPFICTJ47TukVTStpZ4VCmRKxjJKH+9+LFczq2a02p4jZ0bNc61o8AfXp158ihg2pl+fLnx8rKhjWrVvzAnovvIYNuEadly5ZRpUoVDA0NYy1r3Lgxly9f5sZXX3zfsmDBApo0aUKvXr0oWLAgXbt2JeiLL5S4TJ8+HSMjI+zt7albty7Vq1dXezxXXLS0tJg9ezaLFi0ia9as1K8f95eijo4Ow4YNw8rKivLly5MmTRo2btz4zTaWLVuGn58fdnZ2tG3bln79+pEpU6ZE5wAgZ86cbNu2DTc3N6ytrVm4cCEuLi7f1UZcpk+fTpkyZahTpw5VqlShbNmyWFpaoqenF2f9NGnS4OvrS7t27TA3N6dZs2bUrFmTsWPHAmBvb0+PHj1o3rw5ZmZmTJ48+T/HKH5MSEgIO7dvi/NZrmNHjaCAeex7969euUxpe3vmzl/Mus3bKFGiFP179+LuV3+ofenF8+f81bc3JUqWYuNWN+YvWoq/vx+DBvRT1dm8cQNzZk6ne68+bHXbQ49efZk4wZkTx48BMRP+DRviRJNmLVi1biN3bt9i25bPP67NnjGNJs1akDVrNrVta2vrULNWHTasW/PDedHU0KRCxcrMnDMft70HGDvBlQvnzzHBebRqHferVxk5fAgNGjVmq9seJk+fya1bNxk3OuFnao8d78Lh46dUr4qVq8Sq47Znv1odY2MTIOYRhc6jR/CX098sWLSMfXt2c/L4v6r1XMY702/AoFhPdDAyMqJMWQe2bEr8lUVf58ht+1YaNm4CQPWatTh6/LTay76sA8VLlMTExCTONmxsbGOt06hxU7Jlz07hIkWBmKuCdPV0adW6LaVKxz1HxdhRIyhZqjQbt24nMDCApUsWqZatXrkcG1s7in4xH8Yn9Ro0YsPaxPeLhHydE00NTSpWqsysuQvYte8g4yZM5ML5s4wfO/qb7URERFC1Wg2aNm8Z5/LEtPur5uTOnVsYmxjjMnEK23fupUu3HsyeOZ0N69Ymqr0Z0yZjFsd3Y2rqJxA7L580aNiY6jVrJbqd6+7X6NW9C2XsHVi3cQvrN22lRavWaGrG/An+5s1runXuSI6cOVm7YTPzFy3hoecDRv7z+UqwJYsXEhwcxMat2ylRoiTOo0eolt247s7Nm9dp07Z9rG3Xb9iIfXt2q/14IZJWUn2mHDl0kH+G/k39ho3YvH0nq9ZsoGbtOrHqfav/TZs8iUyZ/sfmbW6Ympkxfcrnv90O7N+HpoYGVapVj7Ve/YaN2LJpA5GR8hzXZKUIIX47gYGBiqGhobJ06dKUDuWbQiLk9fUrKDxa7eW2Z59SqnTpWOUrVq9TWrZqrfx76qxibm6uvPLxj1Xny1eNmrWU6bPmxLvcbc8+pVChQkpAaKSqbN+hI4qFhYXiHxSmBIVHK02aNlPGu0xUW895govSrHkLJSg8Wnnm/VYxNzdX3gWEKEHh0YrLxMnKiFFjlKDwaOXMhctK/QYNlQ8hEXFu/+TZC0rhwoUV3w/B39yPhPLy5WvJ8pVKuXLlVe8XLFqiVKpUWa3O0hWrFIdy5b7Zjrm5ubJn/6F4l584fe6b/wcXrrgrZcrYq9736dtfmb9wiRIUHq1sdduldO3eI962N27ZrrYPX74S6ku79uxXSpUuHe/yF699lUKFCiubt+1IdP/8EByulCpdWpk5e26cy50GD1G69+gZq9zKykq5c89TCYlQlFVr1imdu3RVQiIU5cGjp0qVqtUUH/+AONt79OSFYm5urtx/+CRJjq+EchISoShLV6xSypUvn6j2Nm7ephQrVixRdb9uNzXlZOSoMUrrNm0TbOvwseNK9Ro1lFseDxRzc3Pl2o07qbKfJJSX6TNnK3Xr1ktUO42bNFWmTJsR7/I16zYqpcuUUYLColRlN27fVczNzZV7nl5KSISidOrcRVm1dr0SEqEot+96KlbW1kpIRMzxWLduPeXytRvxtl+xUiVl3cbNSZYXeSW+n3x6JfSZEhASoTiUK5fo/6f4+l+NGjWVI8dOKCERMcdijZq1lJAIRXnt+16pUqWq8vjpyzjb+xAUphQpUkQ5fupsiucztb4SQ850C/EbuHbtGhs2bODhw4dcvXqV1q1bA8R7pl+kHteuXMGyUGG1socPPVmycD7jXCehGc8tBF+Kjo4mOCgozitXPilUqAgaGhrs3LGdqKgoAgIC2Lt7F6VKl1FN5BcREY7OV7cE6OnqcevmTSIiIjAyNsbUzIxzZ88QEhLC1SuXKWBuTkREBC7jxjJi9FjSpEkT9/YLFyEqKopbN64nuD8Qd16+9ObNa44dOUyx4iVUZVbWtrx69YpTJ0+gKAq+Pj4cOXwQh3LlE9ye6wRnKjqUpk2Lprht34aiKLHqNG/SgKqO5ejRpRPuV6+qynPmzEVoaAh3Pe7w/r0/t2/fpICFOR/ev2fBnNkMHT4y3u0WKWrF69evfui+9atXL1PoGznavcuNtGn1qFqtRqLbPPHvMd77+9OgYewrL77F3KIg586dJTIykgvnz6uu0BjnPJq/Bg0mffoMca6XJWtWTExMv/vWg/gklJO4+k1SiKvd1JITgIDAAAwNM36zjq+PD2NHj2SC62T00sZ9lVVCfpWcQOLykhBfX19u3riOsYkJ7Vq3oGJ5ezq1b6MWZ3hEONra2qoz3wC6ujH5u3b1ChCTl0sXzhMZGcnZM6cw/5iXlcuXUrxESdVVJ3EpUtSKa1eu/Kf9EPFLis8Ujzt3ePP6NZqamjRr3IDKFRzo1b0LDx4kPDfPl8wtCnL+/Dmio6M5d+aMqp/MmDqZ5i1bkTlLljjX09bRwaKgZZIePyI2GXQL8ZuYOnUq1tbWVKlShaCgIE6dOoWpqWlKhyX+I2/vl5iZfb5UMzw8nGGDBzFg0GCyZPn2s9g/Wb1yOcHBwVSrXjPeOtmyZ2f+4mXMnTWDUnZWlC9TgtevXjF52kxVnTL2Drht28qd27dQFIXbt26yY9tWIiMj8Pf3Q0NDg8nTZrJk4XyaNKhDQctC1G/YmBXLllCiZCl0dXXp0KYlDerUYON69UtV06ZNS4YM+rz0fvlDeflk6OCBlCluQ/VKFUifIQOjnMerltnY2eEyaQpDnf6ipG1Rqjg6kCGDPkP/+fbl5T379GPy1JksWLKcylWr4Tp+rNql8KZmZvwzagxTZ8xmyoxZZM6cma6d2uFx5zYABoaGOE+YyMjhQ2jbohl16tbHvmw5pk+dTPNWMffdtWjSkCYN6nL40AG1bX+6TPfly8TlRS1HL1/GeZnvJ27btlKzVp14b0OJy47tW7Ev68D/Mmf+rlhGO4/nyKGD1KlRFW1tbTp37R4z6NfTo3CRovTo2pk6Naoyd9aMWOuaZcqEdyL7RULiy8kQp4GUKmZN1YrlSZ8+PWOcJyTJ9r7V7q+ek0/cr13l0IH9NG7aLN46iqIw8p+hNG3W4psDwIT8KjmBhPOSGC+ex8zHsHDeXBo1acr8RUuxtCxEt84dePLEC4CSpUrj6+PDyuVLiQgP58P798yaMQ1ANS9Epy7dSJNGizo1qnLs6BHGOE/gyRMvdu10o1vPXowbO4pa1SszeGB/AgIC1GIwM8sUax4NkXSS4jPl+Rf9pFv3nsyZvxADA0O6dGj7XbcGDBw8hMePH1GzaiWePH3CwMFDuHL5EvfuelC3XgMGD+xPreqVGTd2FBFfPXnHLFOmH/qeEYmnldIBCCH+O1tbW67IL9m/pbDQUHQzfT67PHvmNPLkzUftuvUStf7+vbtZtGAeM2bPwzie+3Yh5o+7cWNGUrd+A2rUqk1QUBAL5s7GaWB/Fi5ZjoaGBl179MLXx4f2rVugKArGJibUrd+AlcuXoqkR8xuurV0x1m3aqmr3iddj9uzaycat2+ncvi0t27TFwaE8TRrWxa5YCcy/eJ68rp4uoSGhsWJLTF4+cRoyjO49+/DkiRdzZk5n2uSJDB8Zcy/dw4eeTJ44gW49elOmrAM+Pm+YOXUKE5zHMGZc/H8QdevxeTKbgpaFCAkJYfWK5bRq0w6A3HnykjtPXlUdG1s7nj1/yrrVqxg/MeaeukpVqlKpSlVVncuXLvLg/j2GDB9BvVrVcJ08DVNTU9q2bEaxYiVU/1efJhv8ctKlxAoNDSOTTtyTFV53v8ajRw+ZMDHx8zW8fvWKs2dOM+WLH2ISK3/+Aixf9fmHFn9/PxbMm8OKVeuY6DIOG1tbps+aQ+vmTShiZY1jxUqqunq6uoSEhHz3NuMSX04GDxlGj169eeLlxayZ05k6yZV/Ro35z9v7Vru/ek4AHjy4z4C+vejeszf2ZR3ibWP9ujUEBQXRuWv3/xTLr5IT+HZeEuvT5K9NmjVXXR1iaVmICxfO4bZ9G/3/GkT+/AUYN2EiUydPZPbM6WhqatKqTVtMTExVk6Hq6+szcco0tba7dGzHQKfB7N2zm+fPn7NzzwGcR49k0YJ5OP09VFVPT0/vhz4/ROIkxWeK8rGfdOnWQ3XPtfMEV6pVKs+hQwdo2qxFomL53//+x9z5n+dBCA8Pp2e3zox3mcjiRQtIlz49O/ccoFf3LmzZsolWrduq6urp6hIamnTHj4hNznQLIcQvLKORER8+fJ6F/9KFCxw5dIDi1oUpbl2Y7l06AlCxXBkWzFWfpfbAvr04jx7J5KkzKF3G/pvb2bRhPRky6DNg0GAKWhaiWPESTJg4hYvnz3Hz4yXfenp6jBnvwtlL19h78Cj7D/9LlqzZSJ8+PUbGxnG2O37saAYOHkJ0tMJdjztUrVYDYxMTihUvwZXL6o/P+/D+PUbGRj+Ul09MTc3IkzcvjhUrMWL0WLZs2sDbt28AWLFkMTa2drTv1BlzCwvsy5Zj2MjR7NyxTVUnMYp+vOQ7/KszBV8qUsSKp8+exLksPDwc1/HOjBg9lmdPnxIVFUXxEiXJnScvOXPl5ubNz5fYf/j49AQjo8Tl5UtGRhn58MWs9l/avm0LFgUtKVS4SKLbc9uxDcOMGanwxUDnR02dNJHWbdvzv8yZuXzxIlWr1SBdunSUq1CBy5fU+8X7D+8xjqd/fa/4cmJqZkaevPlwrFSZkaPHsvmLfvNffE+7v1pOHnp60q1zBxo3ba72w1NcLl04z43r7pSwLYqdVSHq1qwGQKvmjRkxbMgPx5ZSOYFvHz+JZWpmBkDefPnUyvPkzcerL87K16pTl2Mnz3D42ElOnrlAj1598fN7R/YcOeJs123HNvQNDKhYqQqXL12kUqXKaGtrU7V6jdh5ee8f7+ez+O+S4jMlrn6io6NDtuw5eOXt/cOxLV28kDL2ZSlUuAiXL12kStXqaGtrU7lKNS5f/LqfvMfISPpJcpJBtxBC/MIKFrTk0cOHqvdTZ8xm0zY3Nm7dwcatOxg1NuY5zstWraV5y9aqevv37WHMyOG4TJ5GuQqOCW4nNDRE7Z5CAM00Me+/flSftrY2/8ucmTRp0nDwwF7KVXCMtS7Ajm1bMTA0xLFiJaI/Pvf90+yokZGRau0+e/qUsLAwChYslGCsEDsvcfnU/qfL6EJCQ1Rn5FX7+DHuuO7Rjs+9u3cxMDBER0fnm3XMTOO+NHXJogXYOzhgWagw0dFRREVGqZZFRkYSHfU5L56eD9DS0iZf/gKJju+TgpaFePTQM1Z5cFAQhw7sp2GjJnGsFTdFUdjptp269Rqo7vH/URfOn+PRo4e0bNUGgOjoqM/9IiJS1Vcg5jFTz54+o6Bl4vpFQuLLyZc+9YVv/ajyI77V7q+WE0/PB3Tp1I569RrQt/9fCbYxZNgINm/fyaZtbmza5sbcBYsBmDx1RqLWj0tK5gQS11cSki1bdswyZcLr8WO18ideXmT56ikOACampqRLn56DB/aho6tL6TJlY9V59+4dixbMU80FER0Vpf65+kVeADwfPKBgQcv/tB8ifknxmVKocBF0dHTw8vrcTyIiInj58kWibyP72qOHD9m/dw+9+/YHPvWTCAAiIyOIjv6qn3g+oKCl9JPkJINuIYT4hZUp68Cjh56qM545cuYkfwFz1evT82Pz5s2nuiR5/97djBo+lIGDh1DUygofn7f4+LxVu9dv4/q1dO/cQfW+XHlHbt+6yaIF83jyxAuPO7cZM2I4WbJmVf0h+8TrMXt37+LJEy9u3bzBEKeBPHzwIM4/qt/5+rJ08QKGDI95tI2BoSF58uZj/ZpVXHe/xsXz57Cx+fwIwGtXL5M9ew5y5Mz5Q3k5dfIEO3dsw/PBfV6+eM6pE8eZ4DwGG1s71fPNKzhW5NjRw2zeuIHnz57hfvUqk10nUKSoFZky/Q+AY0cO07Du53vfTxw/xvatW/B8cJ+nT5+weeMGli1dRItWn3/gWLdmFf8eO8rTp0/wfHCfKRNduHTxPM1atooV98OHnhw6sI9evWMexZY7T140NTXYsW0rp04cx+vxI7V7Yq9duYxdsWLfdd/1J/ZlHXj4RY4+OXBgH1FRUXHeonDzxg3q16nB69ev1covXjjPi+fPadQ47oH6Q09P7np48P69PwEBAdz18FB7RvMnYWFhuE5wZtSYcaofPGxs7di0YR337t7lyJFD2HzxaMgb193R0dHGytrme3c/Tl/n5NTJE7jt2MaDB/d58eI5J08cZ/zY0djY2qmOrbhy4v3yJXc9PPD2fklUVJRqfz89Wzkx7f6qOXnw4D5dOrajjH1Z2rbviM/bt/i8fcu7d+9U63ydkyxZs1KggLnqlSt3bgCy58ipdv9/auknceUF4OmTJ9z18MDH5y2hYaGq+D/9sPf69Wvq16mhepa4hoYGHTp2ZsO6NRw+eICnT54wd/ZMvB4/UvvRa8O6tXjcuY2X12M2rl/HxAnj6DdgIAYGBrHimjJxAu3ad+J///ufKi97du/k0cOHbNuyCRvbz3kJCQnB487tb94aIP6bpPhMyZAhA02btWDBvDmcPXMar8ePmDBuDADVqn+e6DKh/veJoig4jxmJ05BhpEuXDojpJ9u2buHRw4fs3rVTrZ+8ePGcN69fJ3hFnPhv5J5uIYT4hRUwt6CgZSEOHdxPk0Te17Vty2YiIyNxHe+M63hnVXnd+g1wnjARAH8/P549e6paVrJUaVwmTWXVimWsWr4MvbR6WFnbMG/hUtWALyoqmjWrVvDE6zFaWloUL1mKlWs3qAa1X5o8cQJt23dUDWYh5h61UcOHsmHdGtp17Ezhop8Hlwf27aVhk6Y/nBc9PV22b93C1MkTiQgP53+ZM1OpSjU6de6qWqdeg0YEBQWxacM6ZkydRAZ9fUqWLE3/gU6qOoGBAWpnpbS0tNm8cT3TJruiKDE/egwaPIRGTT5PKhUREcGMKZN48+Y1enp6FDC3YOHS5ZQoWVotZkVRGD9mFIMGDyXtxz+E9PT0GDveFdcJ44gID2fI8JFk+t/nnB08sI/uPfskOi9x5ejgwf1q9wS6bd9G5SpV4/yDPjQ0BK/Hj1VnRD7ZsW0rNja25MmbL9Y6AH16dlObrKl5kwYAXL99T63ewvlzKVfeUe2MypBhIxj69yA6tW9Nrdp1qVL183Nk9+/bS606dUmbNm3id/wbvs6Jru7HfjPJlfDwcP6XOQuVq1SlU5duqnXiysn8ubPZtXNHrP1dumK1atLAhNr9VXNy5NBB/N69Y+/uXezdvUtVL2vWbOw/fCzenCRGauknEPfxM3b0CLXLtz/Fv+/QUbJly05kZARejx+r3Rvbpl0HwsLCmTLZlffv32NhUZCFS5ar/cB469YNFsybQ3BwEHny5GXE6LHUrdcgVkxnTp/i6dOnTJg4RVXWolUb7ty+RZuWTSlS1IruvT5/Xhw/dpTMWbJgV6x4UqVFfCWpPlP+cvqbNFpa/DPsb8JCQylqZc2S5asw+OKpIwn1v0+2btmEiYkpFRwrqsp69O7LsL8H0aZlU8o6lFO7Mu7Avr2UsS9L1jiuvhBJR0P5nmvqhBAiCYVGpnQEv57oOD6ST504zoxpU9jqtjvOy7hTu4eeD+jWqQNuew+gr6+f6PV+97ycPnWS6VMmsXn7TrS0Yv9GnpjHxZ08cZwZUyezbeeeVJcjP7931K9dk/Wbt5I9e9z3tv4IyUlskpO4pea8ALRp2YxWrdtSq07dlA7lt5aa+0lEeDh1a1XHdfJUbO2KpXQ4qZZeIk5jy5luIYT4xZWr4MjTp0948/p1vM/ZTM3evn3LONeJ3zXght8/LyEhwYwd7xLngDuxyldw5OkTr1SZo5cvXjB85OgkH0hJTmKTnMQtNefFz+8dlatUpWbtOikdym8vNfcTb29vOnfrLgPun0DOdAshUoyc6Y4trjPdQsQlMWe6hRBCCJG8EnOmO3VdAyGEEEIIIYQQQqQiMugWQgghhBBCCCGSiQy6hRBCCCGEEEKIZCITqQkhxC9EbumOLY2m3Lscl3eB4QlX+sMYZ9BJ6RCEEEKIWORMtxBCCCGEEEIIkUxk0C2EEEIIIYQQQiQTGXQLIYQQQgghhBDJRAbdQgghhBBCCCFEMpGJ1IQQ4g+xZdMGtmzagPfLFwDkzZefbj16U7ZceQC2bdnEgX17uOtxh6CgIE6cuYi+gYFaG0+8HjNz2hSuu18lIiKCAuYW9OzTjxIlS//0/fmZXr9+zczpUzhz6hShoSHkyJkL5/EuFC5SNKVD+8+uX7vMprUruX/3Dr4+bxk3eSYOFSqrllcsFfc+du8zkBZtOwJw/+4dFs+bwd07t0mjqUm5ilXoPeBv0qZLB8CBPW5MGjcyzna27z+OkbFJEu/Vz7VsyWJmz5xG6zbt+HvYPwA4jxnFhfNnefvmDenSpcPaxpYBA53IkzdfCkebvBI6VhRFYf7c2WzfuoWAgA/Y2Nrxz6gx5MqVO2UD/0mkr4jEioqKYsG8OezdswtfHx/MMmWiXv2GdOvRCw0NmWA0tZFBtxBC/CEy/e9/9BswiJy5cqEoCrt3ufFXv95s2LKdfPkLEBoain3ZctiXLcecWdPjbKN/nx7kzJmbhUtXoaeny7o1q+nfpye79h3C1NTsJ+/Rz/Hh/Xs6tGlJ8ZKlmLdwCUbGRjx98gQDA8OUDi1JhIaEkK+AOTXrNmTUkAGxlm/b96/a+wtnTzFlwmjKV6oCgM/bNzj17UrFKjXo5zSc4KAg5s6YxETnEYydGNOPKlapQckyDmrtTHQeQXh4WKofcN+6eYOtWzZibm6hVl6oUGFq16lL5ixZ+PD+PQvmzaFH187sO3SUNGnSpFC0ySsxx8qKZUvYsG4N41wmki1bdubNmUXPbp3ZsWsfurq6KRh98pO+Ir7HimVL2LJpA+NcJpEvf37u3LrFqBHDyKCvT+s27VI6PPGdZNAthBB/iAqOldTe9+n3F1s3beTmjevky1+A1m3bA3D50oU41/fz8+PpkyeMGjsBc4uYPxr7/TWQLZvW8/DBg9920L182RL+lzkz4ya4qsqyZ8+RghElrVL25ShlXy7e5cYmpmrvz5z8F5tiJcmaLSYH506fQCuNFv0H/4OmZsxdawOHjKRz68a8ePaUbDlyoqunh66enqoNf793XLt8gcH/OCfDHv08wUFBDBsymNFjx7Nk0QK1ZU2aNVf9O1u27PTpN4Cmjerz8sULcuTM+bND/SkSOlYURWHdmtV07d6Tih9/tBnvOplK5e05dvQINWvV/ukx/yzSV8T3cne/hmOlypSv4AjE9I39+/Zy6+aNlA1M/BC5p1sIIf5AUVFRHNy/l5CQYKysbRK1TsaMGcmdOw97d+8kJDiYyMhItm3ZhLGxCZaFCidvwCnoxL/HKFy4CE5/9cOxXBmaNW7Ati2bUzqsFPHO14fzZ05Rq15DVVlERDha2tqqATeArm7MAPvm9atxtnNo32509dJSoVLV5A04mbmMd6Z8+QqULmP/zXrBwcHs3LGdbNmzkzlz5p8U3c+X0LHy4vlzfHzeUqr053zp6+tT1MqaG9evpUTIP430FfG9bGxsuXj+PF5ejwG4d/cu165dweHjLWEidZEz3UII8Qd5cP8eHdq0JDw8jLTp0jFt5lzy5sufqHU1NDRYsGQFA/v3xqF0MTQ1NTEyNmbuwiUYGP4el1rH5fnzZ2zetIG27TvSuVsPbt+8ySTX8Whra1OvQcOEG/iNHNy3i3Tp01HesYqqzLZ4KebPnMrGNSto3KINoSHBLJ43EwBfH58429m3azuVq9dSO/ud2uzftxcPjzus37Q13jqbNqxjxrSphIQEkztPHhYtWYG2js5PjPLnSuhY8fF5C4CJqfotBSYmJvjE01d+B9JXxI/o1KUbgYGBNKhTkzRp0hAVFUXf/n9Ru069lA5N/AA50y2EEH+Q3HnysGHrDlat20TTZi0YNWIojx56JmpdRVGYOMEZY2MTlq1ax+r1m6lYqQoD+vTk7ds3yRx5yomOVrAsVJh+AwZiaVmIJs2a06hJM7Zs3pjSof10+3fvoEr12uh8ce9tnrz5GTp6PJvXr6JGhRI0rlWRLFmzYWRsgqZm7Ml+bt9054nXI2rVTb0/WLzy9mbyxAm4TpryzfuQa9Wpx6ZtO1i+ai25cuVm8KABhIWF/cRIfy45VmKTviJ+1MED+9m3dzeuk6excct2xrlMZNWK5exy25HSoYkfIGe6hRDiD6KtrUPOnLkAKFS4CLdv3WL92tWMGJ3wvbUXL5zn1MnjHD9zkQwZMgBgWagw58+dZc9ONzp26ZassacUMzMz8uZTn0U4b968HDl8MIUiShk3rl3h2RMvRo2fGmtZleq1qVK9Nu98fUibNh1owJYNq8mSLXusunt3bie/eUEsLFPvLQl37tzmna8vLZo2UpVFRUVx5fIlNm5Yx6VrN0mTJg36+vro6+uTK1durKyscbAvybEjh6lZu04KRp98EjpWPs374Ovji5lZJlUdX19fLAoW/HmB/kTSV8SPmjFtMp06d1PNdVDA3ALvly9ZtnTRH3eV1e/glz/Tffz4cTQ0NPD390+R7QcHB9O4cWMMDAz+cxxf78vKlSvJmDFjksQJMGbMGGxsbJKsPQBHR0cGDBiQpG3G5UfynNx940f+fxRFoVu3bhgbG6OhoYG7u3uyxJbUvLy8UlW8IulEK9FEhIcnqm5oaAhArLOXmpoaRCvRSR7br8LG1g6vx4/Vyp54eZE1a7YUiihl7Nu9HfOChcj/1czLXzI2MSVtunT8e/ggOjq6FC9ZRm15SHAwx48eVLsnPDUqVbo0W912s2mbm+pVuHARatWpy6ZtbnHOOK0AKArhiTzeUqOEjpVs2bNjamrGhQvnVMsDAwO5eeM6Vta2PzXWn0X6ivhRoSGhsb5v06RJQ3S0kkIRif/ilzjTfe7cORwcHKhRowZ79+5VW2Zvb4+3tzeGKXS/4KpVqzh16hRnz57F1NQUPz8/jIyMuHbt2n8e4DZv3pxatWolTaDJZPv27Whrayf7dr7Oc0r9f3/pR/5/Dhw4wMqVKzl+/Dh58+bF1NQ04ZV+sg4dOuDv74+bm5uqLEeOHHh7e/+S8YqkM2fmNOwdypMlSxaCgoI4sG8PVy5dZN7CpQD4+LzF18eHZ0+fAvDgwX3Sp09P5ixZMDTMiJW1LQYGBoz6ZyjdevRGV1eX7du28OL5C8qVd0zBPUtebdq1p32blixdvJBq1WvGPPZn62ZGjUndM29/EhIczIvnT1XvvV++wPP+XfQNDPlf5iwABAUGcuLoYXr2d4qzjR1b1lO4qA1p06Xj8oVzLJozna69B5BBX/0578eOHCAqKoqqNVL32bv06TNQoIC5WlnadOnIaJiRAgXMef7sGQcP7KOMfVmMjIx5/foVy5cuRldXD4fyFVIo6uSX0LGioaFB67btWLJoAbly5iJb9phHhpllykSlylUSaD11kr4iflQFx4osWbyQzFmyki9/fu56eLBm1QrqN2yc0qGJH/BLDLqXLVtG3759WbZsGS9fviRr1qyqZTo6Ot+cvTEqKgoNDQ21WVMToigKUVFRaGklvPsPHz7E0tKSIkWKADFnBJNK2rRpSZs2bZK1lxyMjY1/yna+zvOv4Ef+fx4+fEiWLFmwt//27KTf8j39M6mkSZNGZkn9A7x7945R/wzB5+1bMujrU6CABfMWLqW0fVkAtm7eyOIF81T1u3RoA8CYcS7Ua9AIIyMj5i5cwtzZM+neuT2RkZHkzZefGbPnYW7xe14aCv9n7y6jqngaAIw/SKvY3UUqIAhK2C2KAYrdjR3YiaDYLbZiF4rdLXYXoJSgIoqCgtLs+wG9cglF/yivOr9z9hzv7uzs7NzZi7NTUEXfgAWLl7Fk0QJWuS6nZKlSjBk74a+ZzMbH6xEj7HvJPq9YNBeAJs1bMm6KMwBnTh5FkiTqN26Wbhxejx6ycfUKoqM/UbpseUaOm0JjK+s04Y4e2Eutug3SVMb/NiqqKty+dZMtm9348P4DBQsVpFo1EzZt3U7Bgn/2uuTfkplnpWfvvkRHR+M4bQqRkR8wMq7GilVr//o1ujPyr5YV4fvGTZzE8iWLmTljOu/evaVwkSK0bdee/gMHZXfShJ8hZbPIyEgpd+7ckre3t9S+fXvJ2dlZ7vjZs2clQAoPD5ckSZI2bNgg5c2bV9q/f7+kq6srKSoqSgEBAVJMTIw0ZswYqVSpUpKKiopUsWJFae3atXJxHDlyRDI2NpaUlZWls2fPSr6+vlLLli2lIkWKSLly5ZJMTEykkydPyq5dp04dieRePhKQ5vOXfRk5fPiwpKmpKampqUl169aVNmzYkO69fHH37l2pbt26Uu7cuSUNDQ3J2NhYunHjhlzYffv2SZUqVZJUVVWlxo0bS0FBQbLzp06dKhkaGso+X79+XWrYsKFUsGBBKU+ePFLt2rWlW7duyY737NlTat68uVya4+LipMKFC8vyrk6dOtKwYcNkx8uWLSs5OztLPXv2lHLnzi2VLl1aWrVqlVwcnp6ekqGhoaSqqipVq1ZN2rdvnwRId+7cSTef0stnSZKkTZs2SdWqVZNy584tFS1aVOrYsaMUGhoqOy912QgMDJRatGgh5cuXT8qZM6ekp6cnHT58WBb+wYMHUtOmTaVcuXJJRYoUkbp06SK9efMm3TSlzPPU+btp0yapbNmyUp48eaT27dtLHz58kCRJkrp37y53H2XLlpUkSZJiYmKkIUOGSIULF5ZUVVUlS0tL6fr162nuI3X5rFOnjjR48GBp2LBhUr58+aQiRYpIq1evlqKioqQePXpIuXPnlipWrCgdOXJEFldCQoLUq1cvqVy5cpKampqkpaUlLVq0SO4eUpfhs2fPSgEBAWm+o3PnzkmmpqaSioqKVKxYMWns2LFSfHy83Pc2ZMgQycHBQcqfP79UtGhRaerUqRnmZ3qi48WWeouKTRJbqi27v5P/1+1FeKzYUm3Z/Z2ITWxiE5vY/r0tM7J9TPeuXbvQ0dFBW1ubLl26sH79eiTp22MVPn36xOzZs1m7di2PHj2iSJEidOvWje3bt7NkyRK8vLxYtWqVbKKfL8aNG4eLiwteXl4YGBgQFRWFlZUVp0+f5s6dOzRt2hRra2uCPnet3Lt3L3379sXc3JyQkBD27t3L9evXATh16pRsX3qCg4OxsbHB2tqau3fv0qdPH8aNG/fN++rcuTOlSpXixo0b3Lp1i3Hjxsl17f706RPOzs5s2rQJT09PIiIi6NChQ4bxRUZG0r17dy5dusTVq1fR1NTEysqKyMhIAPr06cOxY8cICQmRnXPo0CE+ffpE+/btM4x3/vz5mJiYcOfOHezt7Rk4cCA+Pj4AfPjwAWtra/T19bl9+zYzZsxg7Nix37zv9PIZID4+nhkzZnDv3j08PDwIDAykR48eGcYzaNAgYmNjuXDhAg8ePGD27NmyMhAREUH9+vUxMjLi5s2bHDt2jNDQUOzs7L6ZttT8/Pzw8PDg0KFDHDp0iPPnz+Pi4gLA4sWLcXR0pFSpUoSEhHDjxg0AxowZg7u7O25ubty+fZtKlSrRpEkT3r17Jxd36vIJyd3uCxUqxPXr1xkyZAgDBw6kXbt2WFhYcPv2bRo3bkzXrl359OkTAElJSZQqVYrdu3fz+PFjpkyZwoQJE9i1K3md1NGjR2NnZ0fTpk0JCQkhJCQk3Vb5Fy9eYGVlhampKffu3cPV1ZV169bh5OQkF87NzY1cuXJx7do15syZg6OjIydPnvyhPBUEQRAEQRCEv1m2dy9ft24dXbokd2Fs2rQp79+/5/z589StWzfDc+Lj41mxYgWGhoYAPHnyhF27dnHy5EkaNkweE1ShQoU05zk6OtKoUSPZ5wIFCsjiAJgxYwb79u3jwIEDDB48mAIFCpAzZ065Lu4fPnwAkteU/FZ3XFdXVypWrMj8+fMB0NbWllUEMxIUFISDgwM6n2fw1NTUTHPfy5Yto0aNGkByhUdXV5fr169TvXr1NPHVr19f7vPq1avJly8f58+fp0WLFlhYWKCtrc3mzZsZM2YMABs2bKBdu3ZpXlikZGVlhb29PQBjx45l4cKFnD17Fm1tbbZt24aCggJr1qxBTU0NPT09Xrx4Qd++fTOML718BujV62t3xwoVKrBkyRJMTU2JiopKN31BQUHY2tqir68vO+eLZcuWYWRkxMyZM2X71q9fT+nSpXny5AlaWlpp4ktPUlISGzduRENDA4CuXbty+vRpnJ2dyZs3LxoaGnJdtT9+/IirqysbN26kWbPkbplr1qzh5MmTrFu3DgcHB1ncqcsngKGhIZMmTQJg/PjxuLi4UKhQIVl+TpkyBVdXV+7fv4+ZmRnKyspMnz5ddn758uW5cuUKu3btws7Ojty5c6Ourk5sbOw3y++KFSsoXbo0y5YtQ0FBAR0dHV6+fMnYsWOZMmWKbDiHgYEBU6dOBZLL67Jlyzh9+nSa+xAEQRAEQRCEf1W2tnT7+Phw/fp1OnbsCICSkhLt27dn3bp13zxPRUVF1hIIcPfuXRQVFalT59sTTpiYmMh9joqKYvTo0ejq6pIvXz5y586Nl5eXrKX7v/Dy8pJVjr8wNzfPIHSykSNH0qdPHxo2bIiLiwt+fn5yx5WUlDA1NZV91tHRIV++fHh5eaUbX2hoKH379kVTU5O8efOSJ08eoqKi5O6vT58+bNiwQRb+6NGjcpXd9KTMewUFBYoVK8br18lr9Pr4+GBgYICamposTHovBDLj1q1bWFtbU6ZMGTQ0NGTfb0bfz9ChQ3FycsLS0pKpU6dy//592bF79+5x9uxZcufOLdu+vNxInc/fUq5cOVmFG6B48eKye0+Pn58f8fHxWFpayvYpKytTvXr1NN9b6vIJ8nmtqKhIwYIFZS8VAIoWLQogl4bly5dTrVo1ChcuTO7cuVm9evUPl2kvLy/Mzc1RUPg6a6alpSVRUVE8f/483fTBt/MjNjaWDx8+yG1iDVJBEARBEAThb5etle5169aRkJBAiRIlUFJSQklJCVdXV9zd3Xn//n2G56mrq8tVBjI72VWuXLnkPo8ePZp9+/Yxc+ZMLl68yN27d9HX18+2JRqmTZvGo0ePaN68OWfOnEFPT499+/b9dHzdu3fn7t27LF68mMuXL3P37l0KFiwod3/dunXD39+fK1eusGXLFsqXL0+tWrW+GW/q2cwVFBRISsra5YI+fvxIkyZNyJMnD1u3buXGjRuyvMjo++nTpw/+/v507dqVBw8eYGJiwtKlS4HkFyxfuvqn3J4+fUrt2rUzna5fee+py2dG10u578tz8CUNO3bsYPTo0fTu3ZsTJ05w9+5devbs+cvK9I/kx6xZs8ibN6/cNnf2rF+SLkEQBEEQBEH4f5Ftle6EhAQ2bdrE/Pnz5SpB9+7do0SJEmzfvj3Tcenr65OUlMT58+d/KA2enp706NGDNm3aoK+vT7Fixb47O7mKigqQPGv6t3zp9p3S1atXv5smLS0tRowYwYkTJ7CxsZG1QkNynt28eVP22cfHh4iICHR1ddONy9PTk6FDh2JlZUXlypVRVVUlLCxMLkzBggVp3bo1GzZsYOPGjfTs2fO7afyWL93oU7Zgfhnb/CO8vb15+/YtLi4u1KpVCx0dnW+2KH9RunRpBgwYwN69exk1ahRr1qwBwNjYmEePHlGuXDkqVaokt6VX2c0qFStWREVFBU9PT9m++Ph4bty4gZ6eXpZfz9PTEwsLC+zt7TEyMqJSpUppWvJVVFQyVX6vXLkiN7+Cp6cnGhoalCpV6qfSNn78eN6/fy+3OYwd/1Nx/WsiIsJpUMeCly+efz/wH8jz0kU6tG39n19gRUSEU7eWOS/+wHzyvHgBO5tW/zkP3r+PoE3TOrx6+SKLUvb/5fqVS/Tp0vY/5dOfXE7Cw99Rt5Y5oa9eZWm8f3KeZNWzk54/OV9+VVkR0vqTy8mundsZYj8gu5PxT8i2SvehQ4cIDw+nd+/eVKlSRW6ztbX9bhfzlMqVK0f37t3p1asXHh4eBAQEcO7cOdnkURnR1NRk7969ssp+p06dvvujXaRIEdTV1WUTcWXUIj9gwACePn2Kg4MDPj4+bNu2jY0bN2YYb3R0NIMHD+bcuXM8e/YMT09Pbty4IVehVlZWZsiQIVy7do1bt27Ro0cPzMzMMuy+rampyebNm/Hy8uLatWt07tw53V4Bffr0wc3NDS8vL7p37/7N+/+eL3nYr18/vLy8OH78OPPmzQOQ653wPWXKlEFFRYWlS5fi7+/PgQMHmDFjxjfPGT58OMePHycgIIDbt29z9uxZWf4NGjSId+/e0bFjR27cuIGfnx/Hjx+nZ8+e362A/he5cuVi4MCBODg4cOzYMR4/fkzfvn359OkTvXv3zvLraWpqcvPmTY4fP86TJ0+YPHlympce5cqV4/79+/j4+BAWFkZ8fHyaeOzt7QkODmbIkCF4e3uzf/9+pk6dysiRI39oeb6UVFVVyZMnj9z2ry4R86PWrV5J3XoNKFEy+YXHnFlOdLKzoYaxPh3atk4TPjDAn369utGwjiVm1QywbtqQ5UsWpftdp3Tt6hV6dOlAzRrGNKpbk8UL5pGQkCAX5rLnRbp1bk/NGsbUr23O6BFD5F4GeHs9pmO7NlhWN2bY4AG8fx8hO5aQkEAnOxsePrgvF6dlzVooKSlx5PDBH8wZeWtWraRevQaU/JxPIS9fMnhgP2pUM6RuLXMWzJud5n5SevHiOVMnT6BZ4/pUNzagedOGrFi2hPhUPUUkScJtwzqsrZpgUrUKDevVYs0qV9lxL6/H2Nm2xszEiCH2A3gfIZ8HHdrZ8OB+qjyoVRslJSUOHzrwn/Jgy4bVWNauR7ESJTl2yIN6NfTT3cLfvZWdc/LYIXp3tqVpbVNsreoxe8Zkue8tPbduXGVwny5Y1auBTbO6rFq2gMRUeXv21DH6dGlL09qmdGjVmB2bN8gdf+rjRd+u7WhWtzoTRg3mQ4q/p4kJCfTrZofXowdy51Q3r4mSkhKnjh3+yRxKW05cZjrRoZ0NJlWrYGfTKlNxhL15w4RxDtSvbUkNk6q0b9uGUyeOy4XxevyI/n16UtPMhNoWNXCcOplPHz/Kjr+PiGCI/QDMTIyws22Nl9djufNnzpiO28b1cvvy5y+AdcvWrFi+5GduPUMp88TH25uxo0fSuEEdqhsb0Nq6GVs3u2Uqngvnz9G5QzuqGxtQ09yU4UPs0w0XERFOo/q1MaysLZsrB7L32UmPKCtCZvzXvz0AQwcNoEmDupga6dOgTk0mjHPg9etQ2fEXL55jWFk7zXb/3l1ZmCuXPbG2aoJFdWMmjHOQ+9sVGRmJtVUTXqZ6IdumjS1eXo+4fesmwq+VbZXudevW0bBhQ/LmzZvmmK2tLTdv3pQbk/s9rq6utG3bFnt7e3R0dOjbty8fU/xgpWfBggXkz58fCwsLrK2tadKkCcbGxt88R0lJiSVLlrBq1SpKlChBq1bp/+iWKVMGd3d3PDw8MDQ0ZOXKlXKTeKWmqKjI27dv6datG1paWtjZ2dGsWTO5SbFy5szJ2LFj6dSpE5aWluTOnZudO3dmGOe6desIDw/H2NiYrl27MnToUIoUKZImXMOGDSlevDhNmjSRWyP9Z+TJk4eDBw9y9+5dqlatysSJE5kyZQqA3Djv7ylcuDAbN25k9+7d6Onp4eLiIqu8ZyQxMZFBgwahq6tL06ZN0dLSYsWKFQCUKFECT09PEhMTady4Mfr6+gwfPpx8+fL9dCUys1xcXLC1taVr164YGxvj6+vL8ePHyZ8/f5Zfq3///tjY2NC+fXtq1KjB27dvZZPefdG3b1+0tbUxMTGhcOHCcq3wX5QsWZIjR45w/fp1DA0NGTBgAL1795ZN6ib8PtHR0ezf506rNrZy+1u1saVxU6t0z1FSUqa5dStWrF7H3oNHGT12Avvcd7NyxdIMr/PEx5uh9v2wsKzFtt37cJm7gPPnzrB00XxZmBfPnzNy6CBMq9dg+x4Plq9cS0R4OKNHDJWFcZw6CdPqNdi2y52oyCjWr1klO7bFbQNVjYypoi8/FwCAdas27Ni6OdP5klp0dDQee/fQxrYtkPx7MNi+P/Hx8bht2YHTTBcOeOxjxbKM/wMa6O9PUpLE5KmO7N1/GIcx49m9awdLFi+UCzd7ljN73XczavQYPA4dZckyV7l7mj5lEtVrmLFjz16ioiJZmyIPNm1cT1UjY/QN0uZBy9Y2bN/y83kQExPN0QP7sLJuA0C9hk1xP3JWbjM1s8TQ2IT8BZLX/31w7w4u0ydi1dKGDTv2MW3mfLwfP2T+zGkZXsf3iQ/jR9hjambJmk27meI8l8sXz7F6+SJZmGuXL+I8ZTwtbexYv30vwxwmsWfHZvbt3iYLM9d5KkYm1Vm9aRcfoyLZunGN7NiubW5UMTRCt7I+qTVp3oq9u7b+VB6lLidftG5jS5Nm6T9P6Zk4YSyBAQEsXuaK+76DNGjYCIdRw2WVodevQ+nXuyely5Rhy/ZdrFi1Bj/fp0ye+LV3z5rVK/n06SM79uzF1LQ6jlO//r7ev3eXBw/u0aVr2hfhrdrYcOTQQbkK6X+ROk8eP35IgYIFmOkyl737D9On3wCWLFrA9q1bvhnPqRPHmThuDK3a2LBr737cNm+nWfMW6YadNnkiWlraafZn17OTHlFWhMzIir89AKbVzZi7YBH7Dx9j/qIlPA8OZvSIYWnCrV63kdPnLsk2Xb3KQPIww/FjRtHOrgObtu3k8aOH7Nn9tfFx8cJ5tLPrQIkSJeXiU1ZRwap5C7Zt2fRfs0L4nh9aVFfINqnXjM5KkZGRUp48eSR3d/dfEv+WLVskZWVl6dOnT78kfuHPld3rKv4/bqnXqPY4eESqYWaW7vrV8xYullpYt8zUWtfTZzhLdh06Znh81px5Uus2NnL7Dh8/Jenr60uh7z7I0qKnpyd9iE6QC6OtrS2FR8VKUbFJkoGBgfTAy1eKik2SNmzaKvXq3VeKik2SvH2fSQ0bNZLFlXp7Gvhc0tLSkrx8A39qne4Dh45KNczMZJ9Pnjkn6ejoSM9D3sj2uW3ZJhkbG0sfPmZ+PWfXVWukevXryz4/8vaV9PT0JK8nfhmeY2BgID328U2+5uatUu8+faXoeEl66h8kNWzUWAqLiEz3PP9nLyQtLS3pid+zTKUt9RrV2/YclKrXMMtwDetH/iGSnp6etGHrHtm+BUtXSXXr1ZcLt3TVesnCsmaG8UxzniNZt2ojt2/3geNSFX196enzd9KL8FhpwOBhUt8Bg9LEa1mzlvT8XYz0IjxW0tc3kK7c8ZJehMdKK9Zukrr26C29CI+Vbjz0leo3aCSLK/V22ytQ0tLSkq4/8P3hdbpTl5OU24JFSyRr65aZyntDw6rSLvd9cvtMTatLW7fvkqLjJWnz1h2Smbm59DE2UXb8/iNvSUtLS/LxDZSi4yWpV+8+ktuWbbJyZWBoKEXHS9KHT3GStXVL6ead+xlev179+tLWHbuy5DfnW3nyZZs8ZZrUuUvXDI9HRsdLNWvVylSa3DZvlTp17iKdu3hZ0tLSkkLfvv/tz85/zZd/tayI7fvlJKv+9hz9/Lf1w6c4KTpeknwDgyUtLS3pzv3H6YZ//ipM0tLSkiKiYqToeEma6TJHmjxlmhQdL0lXrt+SWrdpI0XFJKR77qUr16XKlStL4ZHR2Z6ff+qWGdm+TreQfZKSknj9+jUzZswgX758tGzZMkvi3bRpE5cuXSIgIAAPDw/Gjh2LnZ1dpie8EwThqzu3b6GrW/k/xREU9IzLnpeoVs00wzDxcXGopOrur6aqRmxsLF6PHwGgq1cFBQUFDnjsJTExkcjISI4cPEANM3PZpHqaWtpcu+JJQkIC169dQfPzcnwzZ0xl2AgHcuVKfznC4sVLULBgIe78ZBe327dvoqf3NZ/u3b2LpqYWBQsVku2zsKxJVFQUvn6+mY43KjJSrkfW+XNnKFmqFOfPn6NZ4/o0a1SfaVMmyrUkaWnrcOXKZRISErh29Sqan1v0ZjhOZcSob+RBieQ8+Nlufvfv3kZLJ/05PgBOHDmIqpo6dep/XdJPT9+Q16GvuOp5AUmSePc2jPNnTlLDIuMJNePj41BRkS8rqqqqxMXG8sQ7ufUuPi4+nTBqvHkdSmjISwAqampx8/oVEhMSuH3jGhUrJZeVhS4z6D9kBDkzmG+jaLHi5C9QkAd3b30jN9KXupz8LEMjI44fO8r7iAiSkpI4euQwsXGxmJgmD/eKi49DWVlZrieVqmpyb687t5PTraWtw41rV0lISOCy50VZy+/G9WsxMa1O5SppW/m/qKJvwJ1bP37/6clMnkRGRZI3b74Mj3s9fszr0FBy5MiBnW1rGtSpiX3/Pjx9+kQunJ+vL6tcV+A0c3a6vcyy69lJjygrQmb8ir897yMiOHz4IIZVjdJMWDts8EDq1jKne5eOnDtzWra/QIECFC5cmCuel4iOjubO7VtoamsTHx+Ps+M0Jk91RFFRMd3r6VWuQmJiIg/u3/uBOxd+lKh0/8OCgoIoWrQo27ZtY/369SgpZc2y7a9evaJLly7o6uoyYsQI2rVrx+rVq7MkbkH414S8fEnhdIaFZEaPLh0wq2ZA6+ZNMDKuxsDBQzMMa25Zk/t373DsyCESExN5HRrK6pXJwzPC3rwBoGSpUqxYtY5lixdiVs2AOhamhIa+Yva8RbJ4pkx34tTJ47S0aoyykjI9+/Tn0MH9qKmpU7mKPvb9e9PSqjHLlyxKk4bCRYoQ8rlC9qNS59PbsDAKFCwkF6bg589vw95kKs6gZ8/Yvm0Lbdt1kO17/jyYkJcvOXn8GM6z5uDoPIvHjx4xKkUX+6mOTpw6cZwWTRuhrKxM7779OXjAA3U1NSpX0WdA3960aNqIZam6rcN/y4PQVy8pWCjjsnLkwF4aNLFCNcVQH31DIyY6uuA4yYFGlsbYWtUjd24Nho+ZmGE8pjUsefTgLqePHyExMZE3r0PZtG4l8DVvTc0suHjuNLduXCUpKYngoEB2bUseF/z2bXKY0ROnc/7MSTrbWqGkrESn7n0+vxhQQ1u3Cg5D+9PZ1op1K9N2yyxUuAihr0J+OI/+y/OU0tz5i0iIT6C2ZQ1MjfRxmj6FhYuXUaZsWQCq1zDjbVgYG9evJT4ujg/v37N4YfJQjbDPedSrTz8UFZVo0bQRZ06fYpqjM8+eBXJgvwf9BtozY/oUrJo0wGHkMCIjI+WuX7hwkTRjM3/W9/Lk7p3bnDh2FNt2dhmGef48GICVy5fRr/9Alq5YSZ48eenTo6vshVRcXBzjHEYyYrQDxTMYypZdz056RFkRMiMr//YsnD+XGiZVqW1Zg1chISxetkJ2LGfOnIxyGMfchYtZtmIVRsbVGD50kKziraCgwJz5i1i9cgU2rZqjo6NL6za2rF+7GtPqNVBRVaV75w60bN4kzVARdXV1cufWIORl1j0/QlpZU8sSfrkePXrQo0ePLI2zXLlycrNTZ5UxY8YwZsyYLI9XEP5FMbExFFb5uQnnXOYt5NPHjzzx8WbR/Lls2rieHr36pBvW3KImw0c6MHPGNCZPGIuyigp9+w3kzu2bKHxugQkLe8OM6ZNp0ao1TZs15+PHj6xcvgSHkcNwXbMeBQUFKlbSZO3Gr3/QIyLCWbV8KWs3bmH2LCcMqxoxf+FSunRsRxUDA+rUrS8Lq6qqSkx0zE/da0xMLEV+Mp/SExoain3/PjRq0lSusiElScTFxeE0azblypUHYPoMZzq0syEwwJ9y5StQqZIm693k88B1+VI2uG3FZeYMqhoZsWDxUjq3b0sVA0Pq1vuaB2qqqkRHR/9UmmNjY2UrbKT26MFdngX6M36a/Nwigf5+LFswm269BmBqZsHbt2GsWjqfBS4zGDPJMd24TM0s6D9kJAtnz2Dm9AmoKKvQtVc/7t+9LSsrLVq35eWLYCaMGkxCQgK5cuXCtn0XNq5ZgYJCcpjyFSqxeOVGWbzv30ewcc1yFq/cyNL5s6hiUBXH2QsZ2KMjupUNsKhVVxZWRVWVmJgfz6esKifLly4mMvIDq9dtJF++/Jw9c4oxo4azYdNWNLW0qVRJkxnOLsyb48KSRQvIkSMHnbp0pWDBQrJJRTU0NHCZO18u3j49uzFytAOHDx3k+fPn7D90DMepk1nlupzRY8bJwqmpqRET83PPSmrfypOnT58wfIg9/QcOwsKyZoZxSJ8noe3TbwANGzcBwNF5Fo3r1+bEiWO0s+vA4oXzKV+xIi2sM56ALLuenfSIsiJkRlb+7enRqzdtbNsS8vIlK1csY9L4sSxdsQoFBQXy5y9Atx5fVxiqom/Amzev2bhhHXXrNwDAuJoJ23a5y8IEBgZw6MB+du7ZR8/uXejcpRuWtWpj27oF1UxM0NLWkYVVVfu531Qh80RLtyAIwv+x/PnyE/kh/VUSvqdYseJUqFiJplYtGDJ8FKtdl31ztv4u3Xty/vINjpw4w5kLV6jz+Q95qVKlAdi1fVtyK+hIB3R09ahmYorTrLlcv3Ylw25pC+a60KlrN4oWK8atG9dp1Lgp6jlzUrN2HW7dkF9W8f379+Qv8HMTDObPn09uFuSChQrx7q38EolvP38uWKjwN+N6/TqUPj27YWhkxJRp8qsmFCpcGCUlJVmFG6B8hYoAhISk3/I6b7YLnbt2p2ixYty8npwHOXPmpFadOtxMnQcf3lOgQIHv3G368ubLR2Tkh3SPHd6/l0paOminGqqwzW0tVQyq0qFrTypqalPdzJLhDpM4enDfN1tl7Dp15+Dpy+zcfwKP4xewrJ1c+fkyw76CggL9B4/kyNlr7PA4jvuRc+joVZELk9qKRXOx7dCVwkWLcff2DerUb4y6ek7MLGtz97b8KgyRH96TL9+P51PqcvIzgoOC2LFtC9OdZlLDzBxtHR0G2A9Gr3IVdmz/OsGbVQtrzlzw5OSZC1zwvMYA+yGEh7+jVOnS6cbrsc8djTx5qFe/ITdvXKd+/QYoKyvTqEnTtOXkfQT5f7KcpJZRnvj5+tKvdw9s27Wn34D0ZyH/olDh5GeqQsWKsn0qKiqULFWaV5+fixvXrnLy+DGMDfQwNtCjX+8eANStaZbhJFO/69lJjygrQmZk5d+e/PkLUK5cecwtLJkzbyEXL5yXm508NX19Q4KDgjI8PmPaFEY5jCVJkvD2ekyjJk0pWLAgJiam3Lwp/5v64f178ucX5eRXEpVuQRCE/2Paurr4+/t9P+B3SFISCQkJ310WUUFBgcJFiqKmpsbxI4cpVqw4OrrJa8rHxESnGYeZQzGHLP7Url29QoC/P+07dgEgKSlRtmxKQkICiSnSEhsby/PgYLR1fm79eh1dPfxTjJczrFqVp0+f8Pbt16Wxrl6+TO7cualYsVKG8YSGhtK7Rzf09Crj6DQrzf1WNTImISFB7j86zwIDAdLtMnvt6hX8/f3o2CmdPIhPICnFS5DY2FiCg4Jl+f2jNLV0eRbgn2Z/9KdPnDt9HKuWbdIci4mJkbVOf/H1O/12TygFBQUKFS6Cqpoap08coUjRYmhqy48pV1RUpHCRoigrK3P6xFEq6xuSL53/2N26cZWgQH/atOsIQFJiklxZSUr8WlbiYmN5+TyYSilaaTIrdTn5GV9ag3IopMq3HIpISWnzrGChQuTMlYvjx46goqqKmbllmjDv3r1jletyxk2YDEBSYmKq+5d/Web79Ck63xi//yPSyxNf36f06dWNli1bM2TYiO/GoVe5CioqKgQGBsj2xcfH8/LlC4oXT34u5i9ayq69+9np7sFOdw+mOjoBsGHTVtp37Jwmzt/57KRHlBUhM7Lqb09qX/5Wx6VasjIlH28v2Quv1Pa67yZv3nzUrd9AViYyKifBQUHExsZm6fMjpCUq3YIgCP/HzC1q4u/nK7eGcVDQM3y8vXgbFkZsbAw+3l74eHsRH5/8x/nIoYOcOHYUf38/ngcHc+LYUZYuXkCjJs1kk7KcOX0SG+tmctdy27COp0988PN9ypqVK9iwbg0O4ybKJl+pWbsujx4+YLXrcoKeBeL1+BHTJk+geIkSaSrLsbGxzJ45g0lTHWUVV8OqxuzcvpUnPt6cOXmCqlW/LtH44P5dVFSUMTCs+lP5ZGFZE78U+WRuUZMKFSsxcdwYfLy98bx0kWVLF9G+Y2dZF+wH9+/TqkVTQkOT10INDQ2lT4+uFC9enJEOYwl/946wN29kY9oBzMwt0NWrzNTJE/DyeszjRw+ZMX0KZhaWcq3fX/JglrMjU6bNkOVBVaPkPPDx9ubUqRNUTbFM5f17/y0PTM0sCPT3S9Mz4sypYyQmJtKoadrlmyxq1eHi2dPsd9/JyxfBPLh3h6XzXdCprE+hwsnjFC+eO003O2u583Zs3oC/7xMC/H3ZtG4l2zetY8iocbKy8j4inAN7dxEU6I/vE2+Wznfh/JkTDBoxNk0a4mJjWTJvJqPGT5XlUxWDqnjs2Y7vEx8unD1JlRR58vjhfZRVVKisb/jDeZS6nEDy2H1vLy/Cwt4QExuDt5cX3l5esjVuQ0NDadWiqWx96HLlK1CmTFlmTJ/Cg/v3CQ4Kwm3jeq5e8aReg4ayeLdv3YLX40cEBgawY9tWXJxnMHT4SPLkyZMmXXNdnOnWvRdFixYFksvJoYP78ffzw333TqoafS0n0dHReD1+9M3u3v8lT54+fUKfnt0wt7Cka/eesmfg3bt3snNSPzu5c+emnV0HXJcv5bLnJQID/HGeMQ2Axk2aAlC6TBk0NbVk25c1jctXqEjBggXl0vS7n53M5AuIsiKklRV/e+7fv8f2rVvw9vLi5csXXLt6hXEOIyldugyGVY0AOOCxj6OHDxHg70eAvx9rV6/EY587HTt3SZOmt2/fsmaVK+MmJi8tlydvXipUqMjWzW7cu3uHa1evyJWT27duUqp0aUqXKfNL8+pfJ8Z0C4Ig/B/T1NJGR1ePE8eP0tYueUKvGVMncStF17CO7ZJbMA8dO0WJkqVQVFJk4/o1BD0LRJKSW2Dbd+xM5649ZOdERUbKtUoBeF66wLo1K4mPi0NTW4eFS5ZjWau27Hj1GmbMnD0Ptw3rcNuwDjV1NQwMqrLMdS1qKSbnAljtuoxateugnaKFxWH8RCaOHU2fHl1o1tyaBo0ay44dO3KYZs2tf3qVgy/5dPz4UdrZdUBRUZGlK1bi7DiNbp3bo66ujnWrNtinmEwuJiaawIAAEhLiAbh62ZOgoGcEBT2jcf3acvHfe+QDQI4cOViy3BUXZyd6deuMunpOLGvVZrRD2srkyhXLqFW7Ljq6X/Ng7PhJjBszil7dO2PV3JqGjZrIjh09chirFj+fBxUqaaGpo8vZU8dpafN1HPrRA3upVbcBuTXS/ge+aYvWfPr0kX27t+O6eB65NTQwMqlOv0FfWzc/RkUS/CxQ7rzrVy6xZeMa4uPjqFhJG6e5S9LMeH788H5cl8wDCfT0DVi4Yn266267rXXFzKI2lbS+tlwPGTUepyljGT6gBw2aNqd2va8zrp8+cYSGTZqjpvbj+ZS6nABMnzpJrktu+7atAThy4jQlS5YiISGewIAAWaulsrIyy1auZvGC+QwdPIBPnz5RpnQZZsx0oVbtOrJ4Hj68j+vypXz69JHy5Sswaep0rFu2TpMmz0sXCQoKwtllrmxfh05dePzoYfLcB/oG9LcfLDt27sxpihUvjnE1kx++/8zkyakTxwl/947DBw9w+OABWbgSJUpy9OQZIO2zAzBi9BgUlZSYOH4MsTEx6BsYsma9G3lSzP6fWb/72UmPKCtCZmTF3x51NTVOnzqB6/KlREd/olDhwljWrMWc/vZy83SsXrmClyEvUVJUpFz5CsyZt5BGn19qpTRnVvKLmSJFisr2OTq7MHniWLZt2Uz3nr2pov91vfujRw5jY5vxRIlC1lCQfsVMWoIgCJkQk5DdKfj/k5hOl8OLF86xaP5cdu87mO4yO3+68PBwbKybsmWHOyVLpR3vq5hDIVPxXDh/joXz5uC+/9Afl0/h4e9o1bwZ23btkY2h/553UWm7HV65dIFVS+ezfvu+Py4PMuN9RDjd2lmz0m0HxUukLSsFcqc/kVxKf3I5AejS0Y5Onbti1cL6+4Ez6U/Ok595djLrT84X+DVlRUjrTy4nvr5P6durOwcOH0dDQyO7k/PHUstEM7Zo6RYEQfg/V6t2XYKePeP161CKFSue3cnJciEvnzNu0tR0K9w/onadugQ9C+R1aCjFiv9Z+fTyxQsmTJ76nysN5jVr8yL4GWFvXlOkaLEsSt3/j1chLxk2ZlK6Fe7M+pPLSXj4Oxo0bESz5mmHCvwXf3KeZNWzk54/OV9+VVkR0vqTy0nYmzc4zZwtKty/gWjpFgQh24iW7rTSa+n+12W2pftfk15L978uMy3dgiAIgpCVMtPS/Wf1gRAEQRAEQRAEQRCEP4iodAuCIAiCIAiCIAjCLyIq3YIgCIIgCIIgCILwi4iJ1ARBEP6PiFk2hMwS45fTiowWE0WkpqEu/qsnCIKQ3URLtyAIgiAIgiAIgiD8IqLSLQiCIAiCIAiCIAi/iKh0C4IgCIIgCIIgCMIvIirdgiAIgiAIgiAIgvCLiEq3IAjCP2jDutVUM9Bh3uyZaY5JksSQgX2pZqDD2TOn0j0/IiKcZg3rUM1Ah8gPH351coVsduvmDYbYD6Bh3ZoYVtbmzGn5cjF5wjgMK2vLbQP79c6m1P53d2/fZMwIe1o1rUtNk8pcOHda7vi6VcvpZNuChjVNaFrPnGH2vXn08H66ccXFxdGjkw01TSrz1Mcr3TDPg5/RqLYpTeuaZfm9/E6uy5emKQetWjQF4H1EBLOcZ9CyeROqGxvQpEFdXGY6ERkZmc2p/rXWrVlFJztbzE2NqFvLnOFD7AkM8E8T7t7dO/Tp2Y0aJlWxqG5Mz26diYmJyYYUC9nhe+XkX31+/iZiSktBEIR/zKOHD9i7eyeaWtrpHt+2xQ0FBYVvxuE4dRKaWtq8fh36K5Io/J+Jjv6EtrY2rW1sGTlscLphLGvWwtFpluyzisqfO7t6dHQ0lTS1ad7ShokOw9IcL122LCPGTKREyVLExsaya9smRg7qyw6Po+TPX0Au7Iol8ylUqAi+T3zSvVZCQjzTJjpgWLUaD+/f/RW381tVrKTJ6rUbZJ8VlRQBeP3mNW9ev2bk6LFUrFiJly9f4OQ4jTevXzN/0ZJsSu2vd/PGddp37ExlfX0SExJZungBA/r2Zu+Bw+TMmRNIrnDb9+9Drz79GTdxMkqKivj4eJMjh2gb+1d8r5z8q8/P30RUugVBEP4hnz59ZNL40UyaNoN1q13THPfx9mKL2wY279hDk/q10o1j987tREV+oE//QXheuvCrkyz8H6hZqw41a9X5ZhgVFRUKFS78m1L0a5lb1sLcMv3yD9C4aQu5z0NGjOHQfnf8nj7BpPrX1uornhe5cfUyTnMWcvXyxXTjWr1iCWXLVqBa9Rp/RaVbSVEx3XKgqanFgsVLZZ9LlynDkGHDmTDWgYSEBJSU/s7/krquXif32dHZhXq1zPF6/IhqJqYAzJ09i46du9K7bz9ZuHLlK/zWdArZ63vl5F99fv4m4hWaIAjCP8TF2ZGatepSw8wizbHo6GgmjhvN2IlTKFQo/cqTv58va1atYLrzbHLk+HZruPBvuXnjOnVrmdOyeROcHKcSERGe3Un6LeLj49i/bze5c2tQKUXvkXdvw5jjPJXJjrNQU1NP99xbN65y9vQJRo6d9LuS+8s9C3pGw7o1sWrSgPFjRhHy8mWGYaMio8idO/c/VWGI+twdOE/evAC8ffuWB/fvUaBgQbp17kC92hb06t6F27duZmcyhWyWupykH+bfe37+ZOJbEgRB+EccP3oYb6/HbN6+J93jC+bOwsDQiLr1GqR7PC4ujgljRzF8pAPFi5fgxfPgX5lc4Q9iUbMWDRo2omSpUgQHB7N00QLs+/dl87adKCoqZnfyfgnPi+eYNmE0MTExFCxUmIXL15AvX34geV4E5+kTaWVjh45eFUJevkhz/vuICJynTWTKjNnkyp37N6f+19A3MGCG8yzKlSvPmzdvWOW6nJ7dOuO+/yC5csnfY3j4O1avXIFtu/bZlNrfLykpiTmzZ1LVyBhNTS0A2e/oyuXLGOkwBm0dXQ7t96Bf7x647z9E2bLlsjHFQnZIr5yk9i8+P386UekWBEH4B7x6FcK82TNZsXo9qqqqaY6fP3uGG9evsW3X3gzjWLZ4PuUrVMSqRctfmVThD9TMqrns35pa2mhpadO8aUNu3rhODTPzbEzZr2NsUp0N29yJiIjg4L49TBk/itUbt5O/QEH27NzKp48f6dqzb4bnz3aeSqOmzalqbPIbU/1rpRyCoKWtg76BIc0a1eP4saPY2LaTHYuKimLwwP5UqFiRAfbpzxHwN5rpNB2/p0/ZuHmbbF9SUhIAbe3a07qNLQC6unpcu3YFj73uDBsxKlvSKmSf9MpJSv/q8/OnE5VuQRCEf4DX40e8e/eWzu1tZPsSExO5fesmu3Zspa1dB54HB1HXsrrceWNGDsXIuBqr12/mxvVr+D59wumTx4Hk1jyABnXM6dWnPwMGDf19NyT8XytVujT58+cnKOjZX1vpVlfPSanSZSlVuixV9A3p0KYZh/bvpWvPvty+cY1HD+5R38JI7pw+3drTqGlzJk2fxe0b1/C8cJYdWzYCyc9TUlISdWoY4DBhGi1a2aRz1T9Lnjx5KFu2HMFBQbJ9Hz9GYd+/D7ly5WLhkuUoKytnYwp/n5lOjlw4f471blsoWqyYbP+X8e8VKlaUC1++QkVehWTcNV/4O2VUTr74V5+fv4GodAtCJvTo0YOIiAg8PDyyNR2BgYGUL1+eO3fuULVq1d9+fUmS6N+/P3v27CE8PDzb0iH8uOo1zNjpfkBu3/QpEyhXvgLde/YhX/782LSV76bW3rYlIx3GUbtOfQDmLFhCbIolbB4/esD0KRNZu3ELpUqV+fU3IfwxQl+9IiIigsIZzA3wN0pKkoiLiwNgmMN4+g78+hIqLOw1Iwf3Y/rMeehVMQBg5YatJCUmycJcPH+GrZvWsXLdVgoVKfJ7E/+LfPr4keDgYJq3TC4HUVFRDOzXGxUVFRYvc023183fRpIkZjnP4Mzpk6zbuJlSpUrLHS9ZshSFixQhMCBAbv+zwEBq1qr9O5MqZKPvlRP4N5+fv4modAv/1/5fKruLFy+Wteplp9KlSxMSEkKhQoWy5frHjh1j48aNnDt3jgoVKlCoUCEUFBTYt28frVu3zpY0CZmTK1duKqUaG6aurk7evPlk+9ObPK1Y8RKULFUKgNKl5SvWXybKKl++Ihp58vyKZAv/Jz59/EhQitbKF8+f4+3lRd68ecmbNy8rXZfRsFETChYqxPPgYBbOn0vpMmWxqJnxDOD/zz59+siL4K/3G/LiOU99vNDIm5e8efOxaf1qLGvXo1ChwkREhLN313bC3oRSr2ETAIoVKyEXn/rnpaFKlipNkaLJrVflysu3bHp7PSSHQg4qVNL8lbf2S82fO5s6detRvEQJ3rx+jevypSgq5qCZVQuioqIY0LcXMTHRzHSZy8eoKD5GRQGQv0CBv3bs/8wZ0zl65BCLlq4gV85chL15A0BuDQ3U1NRQUFCgR8/euC5fira2Dto6uhzYv4/AAH/mLxRLQf0rvldO/tXn528iKt2CkAl5vzF75O+kqKhIsXS6G30hSRKJiYk/PJNlfHx8proo+fn5Ubx4cSws0s58LQjC3+vRo4f06dlN9nnenOT1uFu2asPEKdN44vOEA/s9iPwQSZEiRTC3sGTQkGF/7Frd3o8fMXRAT9nnpQvnANCsRStGj5/Ks8AAjh7az/uIcPLkzYeuXhWWr9lEhYqVsivJ/xdCQ18xzmEkERER5C9QACPjamzetosCBQpw4/o1Hty/B0CLZo3kzjty4jQlS5bKjiT/crt2bgegd4+ucvsdnWbRqk3yEIIu3XoQGxvH3DmzeP/+PdraOqxcs57SZUQPon/F98qJ1+NH/+Tz8zdRkP4fmu8EIQMpW7rLlSvH8OHDGT58uOx41apVad26NdOmTQNAQUGBlStXcvDgQc6cOUPZsmVZv349hQsXpk+fPty4cQNDQ0M2b95Mxc/jp6ZNm4aHhwcDBw7EycmJt2/f0qJFC9asWSOrbKduca9bty4GBgaoqamxdu1aVFRUGDBggCwdAN7e3vTp04ebN29SoUIFlixZQqNGjb7ZKnzs2DGcnJx4+PAhioqKmJubs3jxYllaU3cvP3fuHPXq1ePIkSNMmjSJBw8ecOLECWrXrs28efNYvXo1wcHBFC1alP79+zNx4kRZHDt27GDFihVcu3aNlStXYm1tzeDBg7lw4QLh4eFUrFiRCRMm0LFjR1keuLm5ydJatmxZAJ49eya3LzAwMNPfb0xCpoP+MxISxU9yakqKYmkyIXMio8WPSmoa6qJ9RRAE4VdSy8TPrFinW/jrzJgxg27dunH37l10dHTo1KkT/fv3Z/z48dy8eRNJkhg8WH62R19fX3bt2sXBgwc5duwYd+7cwd7e/pvXcXNzI1euXFy7do05c+bg6OjIyZMngeQJqlq3bk3OnDm5du0aq1evZuLEid9N+8ePHxk5ciQ3b97k9OnT5MiRgzZt2shmN83IuHHjcHFxwcvLCwMDA8aPH4+LiwuTJ0/m8ePHbNu2jaJFi6Y5Z9iwYXh5edGkSRNiYmKoVq0ahw8f5uHDh/Tr14+uXbty/fp1ILmLvaOjI6VKlSIkJIQbN25w48YNADZs2CDbJwiCIAiCIAjCV+L1p/DX6dmzJ3Z2dgCMHTsWc3NzJk+eTJMmyWPthg0bRs+ePeXOiYmJYdOmTZQsWRKApUuX0rx5c+bPn59hd24DAwOmTp0KgKamJsuWLeP06dM0atSIkydP4ufnx7lz52TnOzs706hRo3Tj+sLW1lbu85dW+sePH1OlSpUMz3N0dJTFHRkZyeLFi1m2bBndu3cHoGLFitSsWVPunOHDh2NjIz877ujRo2X/HjJkCMePH2fXrl1Ur16dvHnzoqGhkW4X93z58n2z27sgCIIgCIIg/KsyVek+cODA9wN91rKlWL9VyF4GBgayf39p3dXX15fbFxMTw4cPH8jzefKnMmXKyCrcAObm5iQlJeHj4/PNSndKxYsX5/Xr1wD4+PhQunRpuXOrV5dfiik9T58+ZcqUKVy7do2wsDBZC3dQUNA3K90mJl/XefXy8iI2NpYGDRp881opz4Hk1vmZM2eya9cuXrx4QVxcHLGxseT8PAHQfxUbG0tsbKzcPklRVcy+KQiCIAiCIPzVMlXpzuysxAoKCiQmJv6X9AhChnLkyJFmBvH4+Pg04VJOCKagoJDhvu912f6e1BOPKSgo/Oc4ra2tKVu2LGvWrKFEiRIkJSVRpUoV2TI0GcmVK5fs3+rq6pm6VspzAObOncvixYtZtGgR+vr65MqVi+HDh3/32pk1a9Yspk+fLrdv4uSpTJoyLUviFwRBEARBEIT/R5ka052UlJSpTVS4hV+pcOHChISEyD5/+PCBgFTrWv6soKAgXr58Kft89epVcuTIgba29k/Fp62tTXBwMKGhobJ93xvv/PbtW3x8fJg0aRINGjRAV1eX8PDwH762pqYm6urqnD59+ofO8/T0pFWrVnTp0gVDQ0MqVKjAkydPvnuesrJypp798ePH8/79e7nNYez4H0rjvyoiIpyGdSx4+eJ5difllxg/ZiSb3dZndzL+ShER4dStZc6LP7DseF68gJ1Nq//8MvN9RAQtGtUi5OWLLErZ/xfXpQtYOMf5P8fzJ5eVXTu3M8R+QJbH+yfnSVY9P8L3/cnlJDz8HXVrmRP66lV2J+WvJyZSE/4Y9evXZ/PmzVy8eJEHDx7QvXv3LFuXUE1Nje7du3Pv3j0uXrzI0KFDsbOz++lxyo0aNaJixYp0796d+/fv4+npyaRJk4CvLe2p5c+fn4IFC7J69Wp8fX05c+YMI0eO/Kl7GTt2LGPGjGHTpk34+flx9epV1q1b983zNDU1OXnyJJcvX8bLy4v+/fvLvTTISLly5Th9+jSvXr365ksCVVVV8uTJI7eJruWZs37NSurUa0CJkqV44uPNhDEjsWpUFwtTQ2xbWbFtyya58Hdu36JXt47Ur1UDC1NDbFo2Y+vmjd+8RmCAP/16d6NRXUvMTQxo2awhK5YukutNcubUCbp0sKWOpSmW1Y3o2K41hw/ul4tn08Z1NKxjQcM6Fmkq0g/u36NzexsSEuRnmO7ddwDr16wiMjLyJ3JH+JY1q1ZSr14D2XIyIS9fMnhgP2pUM6RuLXMWzJud5vtI6cb1axhW1k53e/jgvizc8WNHsLNpRY1qhjRtWI+N69fKxePl9Rg729aYmRgxxH4A7yMiZMcSEhLo0M6GB/fvy51jWas2SkpKHD6U+SFu6dm0fhW16tSjeImSHDm4j5omldPdwt+9lZ1z++Z1enVuSz3zqrRv3ZQjB/d99zqSJLFt8wY62FhRz7wqrZvVw23dKtnxe3dvMbBXZ6waWFDf0phOti3YudVNLo4TRw9h07wBTeuZs3TBbLljIS9f0MHGSrY27xcdu/bk6OH9vHge/DPZI5OyrPh4ezN29EgaN6hDdWMDWls3Y+tmt2+en5myEhjgT+8eXalX2wJTI32smjRg2eKFcr8zVy57Ym3VBIvqxkwY50B8it5WkZGRWFs14WWqFyht2tji5fWI27du/qc8SC318+My04kO7WwwqVoFO5tWmYrDcdoUmjdtSHVjA+rWNGPY4IEE+PvJju/ftzfDfHv7NrlMZufzI3xfVpSTPbt20rtHVyyqG2NYWZsPHz6kG+7C+XN07tCO6sYG1DQ3ZfiQr5P+vo+IYIj9AMxMjLCzbY2X12O5c2fOmI7bRvm/y/nzF8C6ZWtWLBdrwv9qPzWR2sePHzl//jxBQUFpup4OHTo0SxImCJDcy+LLmtPjx48nICCAFi1akDdvXmbMmJFlLd2VKlXCxsYGKysr3r17R4sWLVixYsVPx6eoqIiHhwd9+vTB1NSUChUqMHfuXKytrVFTU0v3nBw5crBjxw6GDh1KlSpV0NbWZsmSJdStW/eHrz958mSUlJSYMmUKL1++pHjx4gwY8O1WgEmTJuHv70+TJk3ImTMn/fr1o3Xr1rx///6b582fP5+RI0eyZs0aSpYs+UNLhgnfFx0djcc+d5a7JldivB4/In+BgsyYNYeixYpz/+4dnBynoKiYg/YduwDJQwzsOnRGU0sbdXV17t65jbPjVNTV1bFp2z7d6ygpK9PCuhU6upXR0NDgiY8PTtMnk5SUxOBhyS9/8uTNS6++AyhfvgJKyspcPH+O6VMmkL9AASwsa/H0iQ8rVyxl0dKVIEkMHzIAM3NLNLW0SUhIYJbTNCZOcUyzjnwlTS1KlS7N0cMHsOvQ+Rfm5r8lOjoaj717cF2d/MItMTGRwfb9KVSoEG5bdhAW9ppJ48eipKTM0OHpv+CrWtWI0+cuye1bvnQx165doXKV5LkyLl08z4SxDoydMAkLi5r4+/vhOHUSqqpqdOycXCanT5lE9RpmzJm/kOlTJrF2zSpGOYwFYNPG9VQ1MkY/1TwZAC1b27B9y2asW7b+qTyIiYnm0P69zF+2GoAGjZpRw1x+Uknn6ROJi40jf4GCALx88Zwxw+1pZWvHFKfZ3Lp+ldlOUylYqHCac1NaPG8W169eZvCw0VSopMWHD++JTPH7qa6WExu7TlTUTH4u79+9zdyZ01FTV6eVjR0REeG4OE1h4lRnSpQshcNwe4xNa2BZqy4A811mMHDwCHLlzi133Xz58lPdzBIP950MGjaan5G6rDx+/JACBQsw02UuxYoV5+7d28yYNoUcORRl32lqmSkrSkrKWLdqja5uZTTyaPDE25vp0yaTJEkMHT6SpKQkxo8ZRa8+/bGoWZPRI4ayZ/cu2TUXL5xHO7sOlChRUu46yioqWDVvwbYtmzCuJj9fyc9KnSdftG5jy4MH93jq45OpePT0KtO8hTXFihfnw/v3uC5fyoC+vTly4jSKioo0aWaFZc1acudMnjiOuLg4ChZMLpPZ9fwI35dV5SQmJhoLy1pYWNZiyaL56YY5deI406dOZsjwEVSvYUZiQiK+vl97JK5ZvZJPnz6yY89edu/YjuPUSWzftReA+/fu8uDBPcZOmJQm3lZtbOjYzoaRo8aQN1++TN658MOkH3T79m2pWLFiUp48eSRFRUWpcOHCkoKCgpQrVy6pfPnyPxqdIHxTkyZNpEGDBv3Sa0ydOlUyNDT8pdeQJEm6dOmSBEi+vr6//Fp/iuh4saXeImOS5LZ9B45INWqYpdmfcps4eZrUqXPXb4bpP3CQNHzk6G+GSb1Nn+Es2bXv+M0w1i1bS7PnLZQiY5Ik9/2HJRvbdrJjbWzaSnsPHJEiY5KkxctcpSnTZmQYz/xFSzO8VnZ/J3/qduDQUamGmZns88kz5yQdHR3pecgb2T63LdskY2Nj6cPH2EzF+eFTnFTDzExatGSZbN+w4SOlQYOHyIVbt3GTVKt2belTXPL3Z2BgID328U2+5uatUu8+faXoeEl66h8kNWzUWAqLiEz3ev7PXkhaWlrSE79nmUrf6w/xctvOvYek6jXM0uz/svk8C5X09PSkTdvdZfumOblITZpayYUbOGiY1KV7zwzjuX7PW9LV1ZNu3n+SYZj0tj797aUhw0ZJrz/ES+cu35LMzM1lxwYMGiotWrZKev0hXtq6y0Pq1ad/hvG4bdsj1axVO91jP1NW0tsmT5kmde7SNdPlL72ykt7m6DRTat+hoxQdL0nPX4VJWlpaUkRUjBQdL0kzXeZIk6dMk6LjJenK9VtS6zZtpKiYhHTjuXTlulS5cmUpPDL6lzw/KbcFi5ZI1tYtfyreew+9vlmmX4S+lfT0Kku73PfJ9v2u50ds2V9OLnhelbS0tKTQt+/l9kdGx0s1a9WStu7YleG5vXr3kdy2bJOi4yXpkbevZGBoKEXHJz+L1tYtpZt37md4br369b8Zt9i+vWXGD3cvHzFiBNbW1oSHh6Ours7Vq1d59uwZ1apVY968eb/gtYDwLwoPD+fQoUOcO3eOhg0bZndyfsq+ffs4efIkgYGBnDp1in79+mFpaUnFihWzO2nCH+TO7Vvo6lX+ZpioqEjy5s2b4XFvr8fcv3sH42qmmb5ucNAzLnteoppJ+udIksT1q1d4Fhgga1nS1NQi6FkgISEvCXn5gqBngVSqpElwcBAH9+/FfsiwDK9XpYoBjx7ez7KJ+wS4ffsmeinKzr27d9HU1KJgoUKyfRaWNYmKisLXzzdTcZ4/e4b3ERG0bvN1ecO4uDhUUg0VUVNVI/TVK1k3YC1tHa5cuUxCQgLXrl5FUyt5vowZjlMZMcqBXLnkW2+/KF6iBAULFvrpbsP37t5GW1cvw+PHDh9ATU2deg0ay/Y9enAPkxpmcuGqm1vy6P69DOPxvHCOEiVL4XnpPO1aNqatdSNcZkzhw/uIDM954u3Fw/t3qPr5+SlVpiwxMTE88fbiw/sIvB4/pKJmcov52pVLGTFmYoZx6VXR53Xoq58et566rKQnMiqSvHnzZTrO9MpKakHPnnH50kVMPv/OFChQgMKFC3PF8xLR0dHcuX0LTW1t4uPjcXacxuSpjhkOK9OrXIXExEQefON7+hGZyZMf9enTJ/bv20vJUqUyHL528IAH6upqNGrcVLYvu54f4ft+RTlJj9fjx7wODSVHjhzY2bamQZ2a2Pfvw9OnX1u6tbR1uHHtKgkJCVz2vIjW53Kycf1aTEyry3qcpKeKvgF3bt365ffxL/vhSvfdu3cZNWoUOXLkQFFRkdjYWEqXLs2cOXOYMGHCr0ij8A/q1asXAwYMYNSoUbRqlbnxMP9vIiMjGTRoEDo6OvTo0QNTU1P279///RMFIYWQkJcULlIkw+P37t7mxPGjtGlrl+ZYs4Z1MKumT9eObWnXoRNtbNt993o9u3bA3MSA1i2aYGRcjQGD5IcMRUZGUrOGMTWq6TNscH/GjJ+EmbklAOUrVGTQ0BEM6teLQf17M3jYSMpXqMhMx6kMHeHAFc9L2LWxppNdG27flJ9YsHCRIsTHx/M27E1mskXIhJCX8mXnbVgYBQoWkgtT8PPnzOb7vr17sLCsSdEUFQYLy5qcPnWSa1evkJSURGBgAJs+j+cPe5Mc71RHJ06dOE6Lpo1QVlamd9/+yZULNTUqV9FnQN/etGjaiGWLF6a5ZuEiRQgJeZlmf2aEhrykUKGMn5/D+91p2NQK1RTDft6+DaNAAfl8KlCgIB8/RhEbE5NuPC9fPCf01UvOnjrOpOmzmDDVGR+vR0waOyJN2DZW9alnXpU+3eywadcR69ZtAciTJy8Tp83Eaep4+nbvQFOrltQwr8nyRfOwtetEyMsX9OxkS1e7Vpw9dVwuzi/3+Oon8yl1WUnt7p3bnDh2FNt2aX9nMpJeWfmiW+cOmBrpY23VGKNqJrIXcgoKCsyZv4jVK1dg06o5Ojq6tG5jy/q1qzGtXgMVVVW6d+5Ay+ZN2L51i1yc6urq5M6tQcjLn8uD1L6XJz9i5/atmJkYYW5qxKVLF1i1ZgPKKirphvVw30MzqxZyQ9Gy6/kRvi8ry8m3PP88Z8PK5cvo138gS1esJE+evPTp0VU2xr9Xn34oKirRomkjzpw+xTRHZ549C+TAfg/6DbRnxvQpWDVpgMPIYWnmUClcuEiauRKErPXDY7qVlZXJkSO5rl6kSBGCgoLQ1dUlb968BAf/t0k8BOGLffu+P2lNVpk2bRrTpk3L8ni7detGt27dsjxe4d8SGxuDikr6E875Pn3CyGGD6DdgEOYWaceart24lU+fPvLg/j2WLZ5P6dJlaGrV4pvXmzV3IZ8+fuSJjzeLF8xl88b1dO/VR3Y8V65cbN+9j0+fPnH92hUWzHOhZKlSmJjWAKCtXQfa2nWQhT+4fx85c+XCwLAqNi2bsXnbbkJDXzF+7EgOHj2Nyuf/eH6ZVC8mg0qN8ONiYmIpkkHZ+Rmhr15x2fMSc+cvkttv286O4OAghtj3JyEhgVy5ctO5azdcly9F4fP/FypV0mS929dKUkREOK7Ll7LBbSsuM2dQ1ciIBYuX0rl9W6oYGFK3Xn1ZWDVVVaKjo38qzbGxMaiopl+5eXj/LoEB/kxydPmpuFNKkpKIi4tj0vRZlClbDoBxU2bQu0s7ggIDKFOuvCzs8jWbiI7+xKMH91i5bCElS5WhUdPmANSp15A69b727rpz6wZ+vj6MGDOB9q2bMc15LgULFqJv9w5UNTaRjUNXVftvz8+3ysrTp08YPsSe/gMHYWGZ8Zj2lDIqK1/MmbeQj59/ZxbMn4PbhnX07N0XAONqJmzb5S4LGxgYwKED+9m5Zx89u3ehc5duWNaqjW3rFlQzMUFLW0cWVlVNlZiYnysrqWXl82PVoiVmFpaEvXmD24Z1OIwajtuW7WkmE7139w7+/n44u8yR259dz4/wfVn9O5sR6fMs9H36DaBh4yYAODrPonH92pw4cYx2dh3Q0NDAZa78ePA+PbsxcrQDhw8d5Pnz5+w/dAzHqZNZ5bqc0WPGycKpqamJv7+/2A9Xuo2MjLhx4waamprUqVOHKVOmEBYWxubNm6lSpcqvSKMgCMI/K1++/Hz4kHYyO38/Xwb27YmNrR19+g1M99ySpZJnUtXU0ubdu7esdl323Up3sWLFAahQsRJJSUk4OU6hS/eesi6dOXLkoHSZsgBo6+gS4O/PhnWrZZXulMLDw1mzcjlrNmzh4f37lC1bjjKft4SEBJ4FBsi6SX6ZsC9f/gKZyRYhE/Lnzyc3A27BQoXkZhyH5Fbd5GOFvxufxz538ubLR50U/6GH5NbJEaMcGDp8JGFhYRTIn59r164AUKpU6XTjmjfbhc5du1O0WDFuXr/O4CHDyZkzJ7Xq1OHmjetylYb3H95ToMDPlYu8+fITmcEswAc93NHU0kFHV75raMGChXj3Lkxu37t3b8mVK7dci3hKhQoVRlFRSVbhBihXrgIAoa9C5CrdJT7PcFyxkhbv3r5l/eoVskp3SnFxccyfPYPJji48Dw4iMTERo89DREqXLcujh/epWbseAB8+Pz/58+fPMC++JXVZ+cLP15d+vXtg2649/QbYp3Nm+jIqK18UK578O1OxUiUSkxKZMW0K3Xr0Srfr+IxpUxjlMJYkScLb6zGNmjRFXV0dExNTbt68IVfp/vD+Pfmz6Dckozz5GRoaGmhoaFC2bDkMDAypaVGdM6dO0qy5/O/xXvfdaOvoolf52/+f/l3Pj/B9WVlOvqVQ4eTf6AophiiqqKhQslRpXqVYTjclj33uaOTJQ736DRkxbDD16zdAWVmZRk2asmKZ/Gzl799HkF+Uk1/qh7uXz5w5k+KffyydnZ3Jnz8/AwcO5M2bN6xevTrLEygIgvAvS67Y+snt8/N9Sv/e3WnRsjWDhqbtvpqepKQk4uJ/bLx0UlISCQkJ31znVZKS5Jb0SWnB3Fl0+vwfw8SkRLmlqRITEuXi9fN9StGixX660iCkpaOrh3+KsdqGVavy9OkT2TJEAFcvXyZ37txUrFjpm3FJksR+j71Yt2yNsrJyumEUFRUpWrQoyioqHD1yGMOqRun+Z//a1Sv4+/vRsVPyjNRJKcpGQnwCSYmJsrCxsbEEBwWj841x2d+iqa1LYIBfmv2fPn3kzKljtGhlk+ZYZX1Dbl2/JrfvxrXLVDYwzPA6+oZGJCYm8OJ5kGxfUFAgAEWLl8jwPElKIj6D59Jt3UpqmNdEW0ePpMQkEhO/Pj+pn0t/P1+UlJQoX+Hb32NGUpcVAF/fp/Tp1Y2WLVszZFjmfmcgc2VFLnySlOHvzF733eTNm4+69RvIyoWsrCTIl5XgoCBiY2N/uqykll6eZAUJQJLSzF/x6eNHThw7Shubtt88/3c+P8L3/apykppe5SqoqKgQGPh11Z74+HhevnxB8XR+Y969e8cq1+WMmzAZgKTExAyfHQDfp0/R0dH9hXcg/HCl28TEhHr1kt+sFilShGPHjvHhwwdu3bqFoWHGf5AEQRCEH2duURM/P19Za7fv0yf0790dMwtLOnfrQVjYG8LC3hD+7p3snF07tnLh3BmCngUS9CwQj7172OK2HqvmLWVhdm7fwoA+PWSfjxw+yInjRwnw9+P582BOHD/KsiULaNykmew/zuvXruLqFU+ePw8mwN+PzW7rOXzoAM1SxPvF1SuePAsMlC0BVrmyPoEB/nhevMDePTvJoZiDsila/+7cvomZhWWW5t2/zsLyc9n53ApqblGTChUrMXHcGHy8vfG8dJFlSxfRvmNnWTf/B/fv06pFU0JDQ+Xiun7tKi+eP8fGNm2FIDz8Hbt2bifA3w9vLy9mz3Li5PFjOIxNO89LbGwss5wdmTJthmyoWlUjY3Zu34qPtzenTp2gqrGxLPz9e3dRUVHGwLDqT+VBDXNLAvz80vQWOXPiGImJiTS2sk5zTmvb9rx88ZwVi+fxLNCfvbu3c/bUcdp3+jpcyH3nVoYN7CX7bFLdHC0dPWY5TuaJtxfeXo+YO3M6pjUsZK3f7ru2cenCWYKDnhEc9IxDHu5s37KRxs3S9j4J8Pfl9Mlj9BkwGICy5cqTQyEHhzzcuXzpPEGBAejqfW0NvXfnFoZG1TJsif+e1GXl6dMn9OnZDXMLS7p270nYmzeEvXnDuxS/Mz9TVg4fOsDxY0fw9/PjeXAwx48dYfGi+TRu2ixNBf3t27esWeXKuInJSxzlyZuXChUqsnWzG/fu3uHa1StUNfpaVm7fukmp0qUpXabMT+XB9/IEkid+8/byIizsDTGxMXh7eeHt5SV78RgaGkqrFk1la2Y/Dw5m3ZpVPH70kJCXL7l75zajRwxFVVWNmrXryF3v2LEjJCYm0tw67e/pF7/7+RG+LyvKCSTPf+Ht5UVwUPKLO9+nT/D28pKN186dOzft7Drgunwplz0vERjgj/OMaQA0bvJ10r0v5ro40617L4oWLQokl5NDB/fj7+eH++6dcs9OdHQ0Xo8fZXr4iPBzfmqdbkEQBOH30NTSRkdHj5PHj2LbrgOnTx4nPPwdRw4d4MihA7JwxUuU4NCxM0ByC/WyxQt58eI5ikqKlCpVhiHDR2Pb7usa3RHh4TxP0SqnpKiI2/o1BD0LRJKS47Pr0JnOXXvIwsRER+Pi7Mjr0FeoqqpRrnx5nGbOoXFTK7k0x8TEMGfmDGbNXSj7j2HRYsVwGDeJ6VMmoKyiwnQnF9lEQbGxsZw7e5plK9Zkef79yzS1tNHR1eP48aO0s+uAoqIiS1esxNlxGt06t0ddXR3rVm2wH/x1sryYmGgCAwJISIiXi2uf+x6qVjWifIX0V184uN+DBXPnICFhaFiVtRs3p7tu8MoVy6hVuy46ul9bVMaOn8S4MaPo1b0zVs2tadioiezY0SOHsWphjbq6+k/lQcVKWmjp6HLm5HFa236dBOzQgb3UqdcQDY08ac4pUbIUcxatYOmC2ezesYXCRYoxdtJ0uTW6IyIiePH86zw2OXLkYM7C5Syc48ygft1QV1fHzKIWg4c7yMJISRKrli0i5OULFBUVKVmqNAOHjKSVjfzkZJIkMcd5GkNGjEFdPScAqmpqTJjmzILZTsTHxzFizEQKFykqO+f0iaP06pf57t+ppS4rp04cJ/zdOw4fPMDhg19/Z0qUKMnRk8m/Mz9TVhQVldiwbi3PAgNkvzMdO3WhS7ceacLOmZVcaSiS4j4dnV2YPHEs27ZspnvP3lTR/1rGjh45jI1t5id6+57UeQIwfeokbt64LgvTvm1rAI6cOE3JkqVISIgnMCBANq5cRVWF27dusmWzGx/ef6BgoYJUq2bCpq3bZWtwf+Gx150GDRuRJ0/aMvnF735+hO/LinICsHvXDlauWCb73LNb8gtrR6dZtGqT3CNnxOgxKCopMXH8GGJjYtA3MGTNejfypFq9xPPSRYKCgnB2mSvb16FTFx4/ekiXju2oom9Af/vBsmPnzpymWPHiWbbGvZA+BUmSpB85oXz58igoKGR43N/f/z8nShCEf0NMwvfD/GsSEtP+JF+8cI7FC+aya+9BWSX2b7J753bOnjnJilXr0z2upJjx3xzh2y6cP8fCeXNw33/ojys74eHvaNW8Gdt27clwbHhqkdFpf1QuXzrPisXz2LRz/x+XB5lxxfMiyxfNYeP2fSgppW1L0VDPXPvKn1xWfH2f0rdXdw4cPo6GhkaWxfsn58nPPD/Cz/mTywlAl452dOrcFasWaXv+CJmjlomf2R9u6R4+fLjc5/j4eO7cucOxY8dwcHBI/yRBEAThp9WqXZfgZ894/TpUNtHZ30RJSYkx4yZldzL+SrXr1CXoWSCvQ0Nlk1f9KV6+eMGEyVP/c4XBomYdngc9483rUIr+hc9PTPQnxk91TrfC/SP+5LIS9uYNTjNnZ2mFG/7sPMmq50f4vj+5nISHv6NBw0ZpJvUTst4Pt3RnZPny5dy8eZMNGzZkRXSCIPwDREt3Wum1dP/rREu3kFnptXT/6zLb0i0IgiD8nMy0dGdZpdvf35+qVav+lmnzBUH4O4hKd1qi0p2WqHQLmSUq3WmJSrcgCMKvlZlKd5YNPNizZ49YB1AQBEEQBEEQBEEQUvjh159GRkZyE6lJksSrV6948+YNK1asyNLECYIgCIIgCIIgCMKf7Icr3a1atZKrdOfIkYPChQtTt25ddHR0sjRxgiAI/xrRlVoQfp7oSp3Wi3fR3w/0jylZQCyhJQjC75VlY7oFQRB+lBjTLQiC8GuJSndaotItCEJW+iVjuhUVFXn9+nWa/W/fvkVRUfFHoxMEQRAEQRAEQRCEv9YPV7ozahiPjY1FRUXlPydIEARBEARBEARBEP4WmR78tGTJEgAUFBRYu3YtuXPnlh1LTEzkwoULYky3IAiCIAiCIAiCIKSQ6THd5cuXB+DZs2eUKlVKriu5iooK5cqVw9HRkRo1avyalAqC8NcRY7qz164d29i1czsvX7wAoGIlTfoPtKdmrTpAcg+m+XNcOHb0CHFxcVhY1mTi5KkULFQoO5Mt/Gbr1qzi9MkTBAT4o6qmRtWqRgwfOZpy5SvIwvzrZWXdmtUsWTSfzl26MWb8RAAcp03h2tXLvHn9mpw5c2L4Od/KV6j4W9OWVWO6d25ex+ULp3n+LBAVVVV0qxjSa+BwSpUpJxfO6+E93NYsw+fxA3LkUKSCpjZO81egqqoGQI92zXj9KkTunB79h2LXpZfs861rl9my3pWgAD+UVVSpUtWYvoNGUrR4ySy5FzGmWxCErJSZMd0/PJFavXr12Lt3L/nz5//ZdAmCIACi0p3dzp09g6KiImXKlkWSJA7u92Dj+nXsdN9HpUqaODlO5eL58zg6z0JDQ4NZzjPIoaCA29Yd2Z104Tca2K83TZs1p7K+PokJiSxdvADfp0/Ze+AwOXPmBPiny8rDB/dxGDWc3LlyY1q9hqzSvWfXTspXqECx4sX58P49rsuX4uPtzZETp3/rHDhZVemePMqe2g2aoKVbmcTERNxWLSUwwI9Vm/eipp5cifV6eI/Jowdh16UXNSxro6iohL+vD+Y166H8eQhij3bNaNy8DU2tbWRx58yZSxbHq5cv6N+1DW3sutCkRRs+RkWxeuk8oj99ZOn6rClPotItCEJW+iWVbkEQhKwiKt3/f2qZV2fEaAcaNW5K3ZrmuMyZR6MmTQEI8PejtbUVm7ftxMCwavYmVMg27969o14tc9a7baGaiSmRkZH/bFn59PEj7dvZMHHyVNasckVbW0dW6U7tiY837WxacejoSUqXKfPb0virZi9/H/6Oji3rM3vpOvSrVgNgRP+uGJma0a3PoAzP69GuGa3bdaa1XZd0j186e5LZ08ez/8x1cuRInnromud5HMcPZ/+Z6ygpKf/ntItKtyAIWemXzF5ua2vL7Nmz0+yfM2cO7dq1+9HoBEEQhP8DiYmJHD1ymOjoTxgaGvH40UMSEuKpYW4hC1O+QkWKFy/Bvbt3sy+hQraLiowEIE/evAD/dFmZ6eRI7dp1MEtx7+n59OkT+/ftpWSpUhQrVuw3pe7X+vgxCgCNPMnlICL8HT6PH5AvXwFGDexGp5b1GTO4N4/u30lz7u6tG2jfvA6De7Vnz7aNJCZ8fQNbSVsPhRwKnDyyn8TERD5GRXL6+CGqmtTIkgq3IAhCdsj0RGpfXLhwgWnTpqXZ36xZM+bPn58VaRIEQRB+k6dPfOjaqQNxcbHkzJmThUuWU7FSJXy8vVBWViZPnjxy4QsULEhY2JtsSq2Q3ZKSkpgzeyZVjYzR1NQC4G1Y2D9ZVo4eOYyX12O27dyTYZid27eycP48oqM/Ua58eVat2SDrZv0nS0pKYtWSuejpV6VchUoAvHr5HICtG1bS234EFTV1OH3sIOOH98PVbQ8lS5cFoKVtJypp66ChkZfHD+/htmoJ796G0W/IaACKlSiJ83xXZk0dw9J5TiQlJqJbxYDpc5Zlz80KgiBkgR+udEdFRaW7NJiysjIfPnzIkkQJgiAIv0e5cuXZ5e5BVFQkJ08cZ/KEsazbuCW7kyX8n5rpNB2/p0/ZuHlbdiclW70KCWGOizOr1qxHVVU1w3BWLVpiZmFJ2Js3uG1Yh8Oo4bht2f7Nc/4EKxbM4lmAL/OWb5TtS0pKAqBZS1saN28NQEUtHe7eus6Jw/vpOWAoADYdusrOKV9JC2VlZZbOdaJn/6Eoq6jw7m0Yi+c40qCpNXUbNuPTp49sWbeCmZMdcF64EgUFhd92n4IgCFnlh7uX6+vrs3PnzjT7d+zYgZ6eXpYkShAEQfg9lFVUKFO2LHqVqzBsxCi0tHXYumUTBQsVIj4+Ps3L1Hdv31KoUOFsSq2QnWY6OXLh/DnWbHCjaIou0v9iWXn8+BHv3r6lQzsbjA30MDbQ4+aN62zbuhljAz0SExMB0NDQoGzZclQzMWX+wiUEBPhz5tTJbE79f7Ni4SyuX7mAy+K1FCpSVLa/QMHk77pMOfnZ2UuXK8+b1/KzlaekrVeFxMQEQl+9BODQvp3kyp07ubVcSwf9qtVwmDyTu7eu4fP4wS+4I0EQhF/vhyvdkydPZsaMGXTv3h03Nzfc3Nzo1q0bTk5OTJ48+VekUfiDlStXjkWLFmV3MjLl3LlzKCgoEBER8Uuv8/+YJ4GBgSgoKHD3Lx9/KXxfUlIS8XFx6FWugpKSMtevXpEdCwzwJyTkJYZVq2ZfAoXfTpIkZjo5cub0Sdasd6NUqdJyx//FslLDzIw9HgfZ6e4h2ypXroJVC2t2unukOzu5BCBJxMXF/fb0ZgVJklixcBZXLpxh1qLVFCshv3xX0eIlKFioMM+DA+X2vwh+RpGixTOM1/+pDzly5CBv/gIAxMbEoKAg/9/TLxOqfWlNFwRB+NP8cPdya2trPDw8mDlzJnv27EFdXR1DQ0POnDlDgQIFfkUa/xjf6/I0derUdMfDC/82BQUF9u3bR+vWrX/L9Xr06EFERAQeHh6yfaVLlyYkJIRC/8iaukKyxQvnU7NWbYoVL86njx85cvgQN29cx3X1OjQ0NGhja8u8OS7kyZuX3Llz4zLTCcOqRn/1bNRCWjNnTOfokUMsWrqCXDlzEfYmeZx2bg0N1NTU/smykitXbtmY9i/Uc+YkX958aGpq8Tw4mOPHjmBuYUn+/AUIDX3F+rWrUVVVo2btOtmU6v9mxYKZnDt1lCkzF6GeMxfv3oYBkCt3blRV1VBQUMC2Y3e2rF9JhYpaVNDU5tSxgzx/FsjEGfOA5CXFfB4/wMDYFPWcufB+eI/VS+dRr7EVGhrJcwKYmtfCY9cWtm1YRZ2GTYn+9Am31UspUqw4FbV0su3+BUEQ/osfrnQDNG/enObNmwPw4cMHtm/fzujRo7l165asS9W/KCTka/epnTt3MmXKFHx8fGT7cufOLfu3JEkkJiaipPRTX8E/Iy4uLt05BIS04uPjUVb+uZldFRUV/5oZdYXMe/fuLZPGj+XNm9fk1tBAS0sb19XrMLewBMBh7ARyKORg1PChxMXHYWFZk4mTpmZzqoXfbdfO7QD07tFVbr+j0yxatUlea1mUFXkqqircvnWTLZvd+PD+AwULFaRaNRM2bd1OwYIFszt5P+Wwx24Axg7tI7d/xPjpNLJqBUBruy7ExcWxetk8Ij+8p0IlLZwXrqR4yeTeEcrKKpw/fZytG1YSHxdP0eIlaW3XBZv2X8tW1WrVGTNlFnu2bWTP9o2oqqqhW8WQGfNWoKqq9pvuVhAEIWv99DrdFy5cYN26dbi7u1OiRAlsbGywtbXF1NQ0q9P4R9q4cSPDhw+XdVU+d+4c9erV48iRI0yaNIkHDx5w4sQJSpcuzciRI7l69SofP35EV1eXWbNm0bBhQ1lc5cqVo1+/fvj6+rJ7927y58/PpEmT6NevH5BcMR05ciTu7u6Eh4dTtGhRBgwYwPjx44HkltQVK1Zw4MABzp07R/HixZkzZw5t27aVXePBgwcMGzaMK1eukDNnTmxtbVmwYIHsRcGX1tGaNWsyf/584uLi6NChA4sWLZJV9F6/fk3v3r05deoUxYoVw8nJiYkTJzJ8+HCGDx8OQEREBKNHj2b//v3ExsZiYmLCwoULMTQ0BGDatGl4eHgwePBgnJ2defbsWYbdyTw9PZk4cSLXr19HVVWV6tWrs2PHDvLnz09sbCwODg7s2LGDDx8+yK6TsnweOXKE4cOHExwcjJmZGd27d6dnz56Eh4eTL18+AC5dusT48eO5efMmhQoVok2bNsyaNYtcuXKlmyY/P79MfZ9f8qRcuXI8e/ZMdqxs2bIEBgYCsH//fqZPn87jx48pUaIE3bt3Z+LEibIXNV++16NHj3L69GkcHByYPHky/fr148yZM7x69YoyZcpgb2/PsGHDZPk7ffp0uTSfPXuWcuXKUb58ee7cuUPVz91Bz58/j4ODA/fu3aNAgQJ0794dJycn2fXr1q2LgYEBampqrF27FhUVFQYMGPBDvTnEOt2CIAi/1q9ap/tPJtbpFgQhK2X5Ot2vXr3CxcUFTU1N2rVrR548eYiNjcXDwwMXFxdR4c6EcePG4eLigpeXFwYGBkRFRWFlZcXp06e5c+cOTZs2xdramqCgILnz5s+fj4mJCXfu3MHe3p6BAwfKWtGXLFnCgQMH2LVrFz4+PmzdupVy5crJnT958mRsbW25d+8enTt3pkOHDnh5eQHw8eNHmjRpQv78+blx4wa7d+/m1KlTDB48WC6Os2fP4ufnx9mzZ3Fzc2Pjxo1s3LhRdrxHjx4EBwdz9uxZ9uzZw4oVK3j9+rVcHO3ateP169ccPXqUW7duYWxsTIMGDXj37p0sjK+vL+7u7uzduzfDMcZ3796lQYMG6OnpceXKFS5duoS1tbWsp8WYMWNwd3fHzc2N27dvU6lSJZo0aSK7TnBwMDY2NlhbW3P37l369OnDuHHj5K7h5+dH06ZNsbW15f79++zcuZNLly6lyZeUMvt9fnHjxg0ANmzYQEhIiOzzxYsX6datG8OGDePx48esWrWKjRs34uzsLHf+tGnTaNOmDQ8ePKBXr14kJSVRqlQpdu/ezePHj5kyZQoTJkxg165dAIwePRo7OzuaNm1KSEgIISEhWFikXV/2xYsXWFlZYWpqyr1793B1dWXdunU4OTnJhXNzcyNXrlxcu3aNOXPm4OjoyMmTf/YkQYIgCIIgCIKQlTLd0m1tbc2FCxdo3rw5nTt3pmnTpigqKqKsrMy9e/fEzOWpZNTS7eHhQatWrb55bpUqVRgwYICscleuXDlq1arF5s2bgeSu6cWKFWP69OkMGDCAoUOH8ujRI06dOpXuuHIFBQUGDBiAq6urbJ+ZmRnGxsasWLGCNWvWMHbsWIKDg2UtuEeOHMHa2pqXL19StGhRevTowblz5/Dz85NNEGNnZ0eOHDnYsWMHT548QVtbm+vXr8tevnh7e6Orq8vChQsZPnw4ly5donnz5rx+/VpuuZRKlSoxZswY+vXrx7Rp05g5cyYvXrygcOGMZ73t1KkTQUFBXLp0Kc2xjx8/kj9/fjZu3EinTp2A5K7XX1qYHRwcmDBhAvv37+fRo0ey88aNG8fs2bNlLd19+vRBUVGRVatWycJcunSJOnXq8PHjR9TUMtfNLb3vM2Xrf3pjuhs2bEiDBg1kvRUAtmzZwpgxY3j58qXsvOHDh7Nw4cJvXn/w4MG8evWKPXuS15JNb0x3YGCgXEv3xIkTcXd3x8vLS1amVqxYwdixY3n//j05cuSgbt26JCYmcvHiRVk81atXp379+ri4uGQqb0RLtyAIwq8lWrrTEi3dgiBkpcy0dGd6QPHRo0cZOnQoAwcORFNT87+k659mYmIi9zkqKopp06Zx+PBhQkJCSEhIIDo6Ok3LqIGBgezfCgoKFCtWTNaK3KNHDxo1aoS2tjZNmzalRYsWNG7cWO58c3PzNJ+/tCJ7eXlhaGgo12Xa0tKSpKQkfHx8KFo0eUmQypUry83IWrx4cR48eCCLQ0lJiWrVqsmO6+joyLppA9y7d4+oqKg049mio6Px8/OTfS5btuw3K9yQ3NLdrl27dI/5+fkRHx+PpaWlbJ+ysjLVq1eXte57eXlRo0aNNHmS0r1797h//z5bt26V7ZMkiaSkJAICAtDV1U1z7cx+n99z7949PD095Vq2ExMTiYmJ4dOnT+TMmRNIW54Ali9fzvr16wkKCiI6Opq4uDhZl/HM8vLywtzcXO4ljqWlJVFRUTx//pwyZcoA8uUSkstE6t4NX8TGxhIbGyu3T1JU/ePXqxUEQRAEQRCEb8l0pfvSpUusW7eOatWqoaurS9euXenQocOvTNtfKfVY4NGjR3Py5EnmzZtHpUqVUFdXp23btmmWFEk9QZaCgoJsrLOxsTEBAQEcPXqUU6dOYWdnR8OGDWUtm1nlW2nIjKioKIoXL865c+fSHEtZOc9ovHRK6uq//i11VFQU/fv3Z+jQoWmOfal0ppbZ7zMz154+fTo2NjZpjqVsYU+dVzt27GD06NHMnz8fc3NzNDQ0mDt3LteuXfuh62fWj5SJWbNmpRlPPnHyVCZNmfZL0iYIgiAIgiAI/w8yPabbzMyMNWvWEBISQv/+/dmxYwclSpQgKSmJkydPEhkZ+SvT+dfy9PSkR48etGnTBn19fYoVKyabSOtH5MmTh/bt27NmzRp27tyJu7u73Djpq1evyoW/evWqrKVWV1eXe/fu8fHjR7l05ciRA21t7UxdX0dHh4SEBG7duiXb5+PjI7fmtbGxMa9evUJJSYlKlSrJbT+6VJWBgQGnT59O91jFihVRUVHB09NTti8+Pp4bN27IhkHo6upy/fp1ufNS55GxsTGPHz9Ok9ZKlSplOKP6z3yfysrKaWb9NzY2xsfHJ91rf1mvNKPrW1hYYG9vj5GREZUqVZLrRQCgoqLy3VUGdHV1uXLlCilHn3h6eqKhoUGpUqW+eW5Gxo8fz/v37+U2h7Hjv3+ikK6IiHDq1jLnxYvn2Z2UH+bn60uj+rX59OlTdiflr/cnl5NdO7czxH5Alsf7J+dJVj07H95H0NG6HqEhL7IoZf9fbl7zZHBPO7GutyAI/zd+aCI1SG5Z69WrF5cuXeLBgweMGjUKFxcXihQpQsuWLX9FGv9qmpqasgnD7t27R6dOnX74j8SCBQvYvn073t7ePHnyhN27d1OsWDG51uPdu3ezfv16njx5wtSpU7l+/bpsjHHnzp1RU1Oje/fuPHz4kLNnzzJkyBC6du0q61r+PV+6tvfv359r165x69Yt+vTpI9ci3bBhQ8zNzWndujUnTpwgMDCQy5cvM3HiRG7evPlD9zx+/Hhu3LiBvb099+/fx9vbG1dXV8LCwsiVKxcDBw7EwcGBY8eO8fjxY/r27cunT5/o3bs3AAMGDODp06c4ODjg4+PDtm3b5CaFAxg7diyXL19m8ODB3L17l6dPn7J///5vTqT2M99nuXLlOH36NK9evSI8PByAKVOmsGnTJqZPn86jR4/w8vJix44dTJo06ZtxaWpqcvPmTY4fP86TJ0+YPHmybHK2lNe7f/8+Pj4+hIWFER8fnyYee3t7goODGTJkCN7e3uzfv5+pU6cycuTIb1b6v0VVVZU8efLIbaJr+c9bs2ol9eo1oGTJ5JcgLjOd6NDOBpOqVbCz+fa8EV/ExsYyc8Z0alvUwMzEiJHDhvA2LEwuzLWrV+jWuQPmpkbUr23JwvlzSUj4Ohj/xYvn9OzWmRomVenZrXOaisxg+/6cOnFcbl/FSpUwMKjKZrcNP3Prwg9IXU5CXr5k8MB+1KhmSN1a5iyYN1vu+0ztxvVrGFbWTnd7+OA+AIEB/vTu0ZV6tS0wNdLHqkkDli1eKPfbcuWyJ9ZWTbCobsyEcQ7Ep+j9ExkZibVVE16+lK8Atmlji5fXI27f+rG/D9+TFc9O7x5d0+THjOlT0oTbv28vbdtYY2qkT91a5syc8bW3T3Y+Ozs2rcWsZl2KFi8JwN2b1xg1sBu2jS3o3KoB610XkZiqXEiShPt2N/p0bEnL+qZ0bdOIHZvWfPda1y9fYHi/LrRuUAO7ZrVwHD9cdszf14fZ08bRzbYJrRvUoH+XNnjs3ip3vt8Tbwb3ao9NY3OmjR1K5If3smOJCQkM7d0Rn8cP5M4xqWGJopISZ08c+dGsEQRB+CV+7n/Pn2lrazNnzhyeP3/O9u3bsypN/5QFCxaQP39+LCwssLa2pkmTJhgbG/9QHBoaGsyZMwcTExNMTU0JDAzkyJEjcpWj6dOns2PHDgwMDNi0aRPbt2+XtfrmzJmT48eP8+7dO0xNTWnbti0NGjRg2bJlP5SODRs2UKJECerUqYONjQ39+vWjSJEisuMKCgocOXKE2rVr07NnT7S0tOjQoQPPnj3LdOX+Cy0tLU6cOMG9e/eoXr065ubm7N+/X7aclYuLC7a2tnTt2hVjY2N8fX05fvw4+fPnB5K7h7u7u+Ph4YGhoSErV65k5syZctcwMDDg/PnzPHnyhFq1amFkZMSUKVMoUaJEhun6me9z/vz5nDx5ktKlS2NkZARAkyZNOHToECdOnMDU1BQzMzMWLlxI2bJlvxlX//79sbGxoX379tSoUYO3b99ib28vF6Zv375oa2tjYmJC4cKF5XoEfFGyZEmOHDnC9evXMTQ0ZMCAAfTu3fu7lX7h94iOjsZj7x7a2LaV29+6jS1NmlllOp65s2dy/txZ5i5YxHq3zbx585qRw76+VPLx9mbQgL5YWNZk5x4P5sxfyPlzZ1i8cL4szPw5sylSpCi73D0oVLgwC+bOkR07dvQIORQUaNi4SZprt2pjw+6d279Z4RP+m9TlJDExkcH2/YmPj8dtyw6cZrpwwGMfK5YtyTCOqlWNOH3uktxmY9uOkqVKUbmKPgBKSspYt2rNytXr2X/4GGPGTsDdfTeuy5cCkJSUxPgxo2hn14FN23by+NFD9uzeJbvG4oXzaGfXgRIlSspdW1lFBavmLdi2ZdMvy5MvfvTZAbBtayeXLyNGjZE7vmnjBpYuWUiv3v3Yu/8wq9duwMKypux4dj07MTHRnDjsQZMWbYDkiu+UMYOpVt2Spet3MG7abK55nmfDKvlysWrxHI4f2kefQSNZvcWDKS6L0dKt8s1rXTp3inlOk2hk1YplG3Yxb8VG6jZqJjvu6+NF3vz5cZjkjOtmd9p37YPbqqUcdN8hC7N49nQMjauzZO0OPn6MYufmdbJje3duRk+/Ktp6+mmu3bBZSw64b/upPBIEQchqP71Ot/DnSG92bEH4fyBmL/85J48fw9lpOucuXklzzHX5Us6ePsWuvfu/GUdkZCR1a5rjMmcejZo0BSDA34/W1lZs3rYTA8OqLFm0gKuXPdm2y1123rmzZxgzajhnL14mV67ctLG2YvSYcVjWqs2li+eZP3cO+w4c5sOHD3Ru35Y1690oVrx4muvHx8VhUaMay1xXU8PMPM1x4b9LXU4uXTzPEPsBnDp7kYKfh/Ts2rmdxQvmce7iFZQzGDaTUnx8PI3q16Zjpy70Hzgow3BzZ8/i0cMHbNy8jbdv31K/tgXXb99HVVWVhfPnEv3pExMmT+XundvMnuXElu275Sbq/OLWzRv079OTS1dvZnrFiG/JimcHklu6tbV1GDN+YrrHP7x/T6P6tVmyfGWG5ft3PTupZy+/dPYkyxfMZPvBswBsXLWEOzevsnjN1wrqNc/zzJoyhm0Hz5AzZy6CAv0Z1MMO1017KFWm3HevCcmt0D3srOjSa6Csgp8ZyxfMJPhZAC6Lk1vR2zQ0Y8m67ZQuW57D+3Zx/fIFps9dRsjL50weZc+SddvJmTPtXDCvQ0Po0bYZ63YcpHjJ0nLHxOzlgiBkpSxfp1sQBEHIfrdv30RPr/J/iuPxo4ckJMRTw/zrOu3lK1SkePES3Pu8skFcXBwqqYYAqKmpERsby+PPy+1paetw9eoVkpKSuOLpiZZW8jwQC+fNoX3HTulWGiC5FVNbRzfLuw4LX6UuJ/fu3kVTU0tW4QawsKxJVFQUvn6+mYrz/NkzvI+IoHUb2wzDBD17xuVLFzExSV4+skCBAhQuXJgrnpeIjo7mzu1baGprEx8fj7PjNCZPdUy3wg2gV7kKiYmJPLh/L1Pp+56seHa+OHL4IHUsa2DTqgWLF84nOvpr5fbKFU+SkpJ4HRpKa+tmNKpfG4eRw3gVEiILk13PzsP7t6mk/XWZ1/j4eFRU5J9zFVVV4uJi8fV5DCRXwouVKMn1yxfoaWdFj3bNWOQyXa6rd2q+T7x4++Y1CgoKDO7Vns6tGjJ59CAC/b9d1j5FRaGhkVf2uXwlLe7cuEpiQgJ3b12nXEUtAJbNc6LXwOHpVrgBihQtTv4CBXl47/a3M0QQBOE3EJVuQRCEP0zIy5cUTjF042e8DQtDWVmZPHnyyO0vULAgYWFvgOQK2b27dzh6+BCJiYmEhoayynU5AGFvksOMdBhLQIA/zRrV51nQM0Y6jOXWzRv4eHth3bI1DiOHYdWkATOmT5EbxwtQuEgR2brzQtZLXU7ehoVRoKD8pJUFP39++/k7/559e/dgYVmTosWKpTnWrXMHTI30sbZqjFE1E+yHDAOSe1vNmb+I1StXYNOqOTo6urRuY8v6tasxrV4DFVVVunfuQMvmTdi+dYtcnOrq6uTOrUFIFpWTrHh2AJpZtcDZZS5rN2yid99+HDq4nwnjHGTHnwc/JylJYu2alTiMncD8hUt4//49/fv2lD0H2fXsvH4VQsFCX5flrFbdHK+H9zh36iiJiYmEvQll28bVALx7mzzHw6uQF7wODeHi2ZOMmujEyAmO+D55jPPk0Rle59XnMfpbN6yiQ7e+TJuzhNwaGowb2ifDyvrjB3e5cOYEzVp+Xblj2NgpXDp3il4drFFSVqJ9116cPnYIVVU1tHQrM2nkQHp3sMZtTdohcQUKFuZ1aEia/YIgCL9bppcME/5cYgSBIPxdYmJiKaLy6yehs7CsyYhRY3BynMrE8WNQVlGhX397bt+6icLnOSOKFi3KshWrZOfExcUxsF9vnGa6sHqVKzlz5WL/oWPY9+/D7t076dS5qyysmqoqMTHRaa4rZI2sLiehr15x2fMSc+cvSvf4nHkL+fjxI098vFkwfw5uG9bRs3dfAIyrmcgNUwgMDODQgf3s3LOPnt270LlLNyxr1ca2dQuqmZigpa0jC6uqlnXlJKvypK1de9m/NbW0KVSoMP169yA4KIjSZcogSUkkJMQzdvwk2Thul7kLaFDHkuvXr2FZs1a2PTtxsbFyQwmMq1vQa+AIls1zZp7TJJSVlenYvR+P7t1GQSH5OZeSkoiPi2PURCdKlUmeW2T42GkM7dOR50GB6XY5T5KSJxHt0K03Nes2BGDkeEe62jTh4tmTWLWSH1cf6O+L4/gRdOrZH+PqX3vglC1fiTnLvo7j/vA+gq3rXZmzbD0rF81GV9+QSc4LGNa3Mzp6+tSwrCMLq6KqSmxMzE/lkyAIQlYSLd2CIAh/mPz58/Hhw4f/FEfBQoWIj49PE8+7t28plKIVrFuP5PG0x06d5fylq9Sr3wAgw6Xj1q5eibmFJXqVq3DzxnUaNmqCsrIyDRo25maqZfrev39P/vwF/tN9CBlLXU4KFioka7n84u3nzylbPjPisc+dvPnyUade/XSPFytenIqVKtGseQuGjRjFyhXLMlyecMa0KYxyGEuSJOHt9ZhGTZpSsGBBTExMuXlTfsWFD1lYTrLi2UmPvoEhAEFBzwAoVDg5PytWrCQLU6BAAfLlzy/XxTyl3/Xs5MmXj6hI+Tyw6dCV3Ucv4rbnKDsOncOsZl0Ain+e3K5AwUIoKirJKtwApcuVB8iwJblAweQ8KFOuomyfsooKxUqU5E2qc4ICoNdvrQABAABJREFU/JgwvB/NWtrQsXvfb6Z/zbJ5tLLrTKEiRbl/5ya16jZCTV2d6uY1uX9Hvst9VOQH8ubL/834BEEQfgdR6RYEQfjD6Ojq4Z/JMbgZ0atcBSUlZa5f/TqhVGCAPyEhLzGsWlUurIKCAkWKFEVNTY2jRw5RrFhxdNMZF+vv58fRw4cY9LlbcVJiIgkJyctGJSTEk5QkXwHz9X2Kjq7uf7oPIWOpy4lh1ao8ffqEt2/fyvZdvXyZ3Llzy1UO0yNJEvs99mLdsjXKysrfvbaUJJGQkJDukol73XeTN28+6tZvQNLnSvmXmbgTEhJk+wCCg4KIjY1FR1cvTTw/IyuenfT4eHsBUPhzZbuqUfKqFYGBAbIw7yMiiAgPp3g6K2D8zmenoqYOwYH+afYrKChQsFARVFXVOH/qGIWLFKOiVvI19PSrkpiYQMiLYFn4F8HJLxiKFE1/RQ9NbV2UVVR4HhQo25eQEM/rVy8pUuzrePVnAb6MG9aXBk2t6d5vyDfTfvfmNYKfBWBt0wFInhk/IfFz2UlMkMunuNhYQl4EU1FTJ924BEEQfidR6RYEQfjDWFjWxM/Plw/vv46LDHr2DG8vL8LC3hATG4O3lxfeXl6ysaChoaG0atGUB/eT11bW0NCgja0t8+a4cP3aVR4/esiUSRMwrGqEgWFVWbwb16/l6RMffH2fssp1OevXrmHshElpJr6SJAnHaZMZPXY8OXPmBJIrHu57duPv58fBA/tlFRFIXqP4dWgoZikmchOyVupyYm5RkwoVKzFx3Bh8vL3xvHSRZUsX0b5jZ1Q+dzd+cP8+rVo0JTQ0VC6u69eu8uL5c2xSLbUFcPjQAY4fO4K/nx/Pg4M5fuwIixfNp3HTZmkq6G/fvmXNKlfGTUxefjBP3rxUqFCRrZvduHf3DteuXpErJ7dv3aRU6dKULlPml+QJ/PizExwUxCrX5Tx+9JAXL55z7sxpJk0YSzUTU1m3+HLlylOvfgNmz3Lm7p3bPH36hEkTxlGufAVMq9eQS9PvfnaMq1vwLMCfyBSt3Xu2bSTA7ynPAnzZtnE1u7eup/+wMbLnvKqJGZW0dFk4axp+T7x56vOYpXOdMDI1k7V++zx+QL/OrQl7k1x2cubKjVWrtmxZ78rt65d5HhTIsnnJS3PWrNcYSO5SPm5oX4xMzWnTvivv3obx7m0Y78PfpUl3XGwsrotcGOIwWbYkqp6+IYf27sTf1wfP86fR068qC+/9+D7KyiroVDH4qXwSBEHISmJMtyAIwh9GU0sbHV09jh8/Sju75Baf6VMncfPG1y6o7du2BuDIidOULFmKhIR4AgMC5MaBOoydQA6FHIwaPpS4+DgsLGsycdJUuWtduniBtatXEhcXh5a2DouXLadmrTqktmf3TgoWLESduvVk+wYMGsL4MaPo0rEdljVr0b5jZ9mxY0cOY25hmWZtZiHrpC4nioqKLF2xEmfHaXTr3B51dXWsW7XBfvBQ2TkxMdEEBgTIWlm/2Oe+h6pVjShfoSKpKSoqsWHdWp4FBiBJULxECTp26kKXbj3ShJ0zy5lu3XtRpEhR2T5HZxcmTxzLti2b6d6zN1X0v1aSjh45jI2t3X/PjM+y4tlRVlbm2tUrbN28iejoTxQrVpyGDRvTd4C93LWcZs1h7uyZDLbvTw6FHFQzNcV11do0LyJ+97NTvqImFbV0uHjmhGxc9c1rnuzcvJb4uHjKV9Ji8qxFmJp9XVM8R44cTJ29GNdFsxkzuBdq6upUq2FJ38GjZGFiY2N4HhRIYor1w3vbj0BRUYl5TpOIjY1FW68KsxavRkMjeQLHS+dO8j4inLMnDnP2xGHZeUWKFWfj7qNy6d66YRWm5rXkWq4HDBvLHMfxjBncm3qNmmFZp6Hs2PlTx6jb2Ao1NbE8mCAI2U+s0y0IQrYR63T/vAvnz7Fw3hzc9x+Stfr8KeLj4rC2asKsOfMwMq6W3cn5q/3J5cTX9yl9e3XnwOHjaGhoZFm8f3Ke/Myzk3qdboDrly+wbsUiXDft+ePyIDPeR4TTr3NrFq/ZRrF0Xk6IdboFQchKmVmnW7R0C4Ig/IFq16lL0LNAXoeGZrie7/+rkJAQevfrLyrcv8GfXE7C3rzBaebsLK1ww5+dJ1n17FS3qM3L50G8ffOawkXTLv/2pwt99RL7kRPSrXALgiBkB9HSLQhCthEt3YIgCL9Wei3d/zrR0i0IQlbKTEv339enSBAEQRAEQRAEQRD+T4hKtyAIgiAIgiAIgiD8IqLSLQiCIAiCIAiCIAi/iBjTLQhCthFjutNKTBI/yakp5lDI7iQIgvAXiY5LzO4k/N9RV1HM7iQIwh9LjOkWBEEQBEEQBEEQhGwkKt2CIAiCIAiCIAiC8IuISrcgCIIgCIIgCIIg/CKi0i0IgvCP2L1zO3Y2LallVo1aZtXo3rk9nhcvyI737dkVY30duc3ZcarseEREOIMG9KFx/VrUMNanWcO6uDg7EhUVlR23I/wm69asopOdLeamRtStZc7wIfYEBvjLhendoyuGlbXlthnTp2RTin+/dWtWY1hZmzmznNMckyQJ+/59MKyszZnTp7Ihdb/PrZs3GGI/gIZ1a6Z7v5IksXzpYhrUqUl1YwP69e7Bs2eB2ZPYX+Tjx48snDuL1s0aUMfMiL7dO/H40QPZcUmSWL1iKc0b1aaOmRGD+/ciKEUevHz5Audpk2jTvBF1zIywtW7CGtelxMfHZcPdCL9LZn5ng4OCGD50EHVrmmFR3RiHkcN4GxaWTSkWfpSodAuCIPwjihQtytDho9i6050tO/ZgWsOMEUMH4ef7VBamjW07Tpy9KNuGjXSQHcuhkIO69RqwaOkK9h06xjSnWVy/eoWZKSrmwt/n5o3rtO/Ymc3bd7FqzQYSEhIY0Lc3nz59kgtn29aO0+cuybYRo8ZkU4p/r4cP7rNn9w60tLTTPb5lkxsKCv/GZIDR0Z/Q1tZm/KT0fxM2rFvD9q2bmTR1Glu270JdXZ2B/XoTGxv7m1P668x0nMz1q5eZ6jSbLbs8qG5uwZABvXn9OhSAzRvXsWv7FsZOmMraTTtQV1dn+KB+sjx4FuBPkpTEuEnT2LbnAMNGjWXvnl24Ll2UjXcl/Grf+5399OkTA/r1QkFBgTXr3XDbsp34+HiGDBpAUlJSNqdeyIxMzLUmCIIg/A3q1K0v93nw0BHs2bmDB/fvUbGSJgBq6uoUKlQ43fPz5M1Lu/YdZZ9LlChJuw4d2bRh/a9LtJDtXFevk/vs6OxCvVrmeD1+RDUTU9l+NTU1ChVOv+z8rT59/Mj4sQ5Mne7EmlWuaY57e3mxyW0923e606BuzWxI4e9Vs1Ydataqk+4xSZLYunkTffsPpF79hgA4zZpD/doWnDl9imZWzX9nUn+JmJgYzp0+yZyFyzCqZgJA3wGDuXThHHt376C//VB2bttEz779qV2vAQBTZ7hg1bAWF86eplFTK8wta2FuWUsWZ8lSpQl6FsDe3TsZOvLfeJH1L/re7+zdO7d5+eIFO/d4kDt3bgBmzJxNLXNTrl+7ipm5RXYkW/gBoqVbEAThH5SYmMjxo4eJjv6EgWFV2f6jhw9Sv5YZ7dpYs3TRfKKjozOM483rUM6cOolxioqX8PeLiowEkl/CpHTk8EHqWNbAplULFi/8dtn5W8x0cqR27Trp/oc3Ojqa8WNGMWHSlH/uZUR6Xjx/TljYG2qYfc0rDQ0N9A0MuX/vTjamLOskJiaSmJiIioqK3H5VVTXu3bnNyxfPeRsWhmkNc9mx3BoaVK5iwIP7dzOMNyoqijx58mZ4XPj7pP6djYuLQ0FBQa5sqaqqkiNHDu7cvpUtaRR+jGjpFgRB+Ic8/R979x2X0/cAcPyT0RKaNt+MllUyG/bICtlfewvZexPKHolk701W9iZ7+2qoSFSiKNKu5/dHXD0a4ofCeb9e98Vz7rnnnnu6z32e85z12Ide3f4lPj4OFVVVFi11pkzZcgA0bd6SosWKoaNTCN/Hj3FaspCAgAAWLV0ul8bEcaO4cO4ssbGx1KlXn2kzZ2fHpQjZIDk5mfnzHDCpYoqenr4U3uzjvVOoUCEeP/Zh6eKFBAQ8Zcky52zM7c917Kg7Xl6ebN+1N939C+Y5YlylitSq+7cLC3sNgJa2lly4lpYWYX/IuNR8+fJRqbIJ69esQrd0WTS1tDh53J3/HtyjRMlS0vhbTU1tueM0tbQID0+/DJ4HPmPPzm0MHTk23f3Cnye952xlYxNUVFRYumgBQ0eMQiaTsWzJIpKSknj9+nU251jIClHpFgRB+Ivoli7Njr1uRL1/z5lTJ5g2ZQJrN2yhTNlytOvQSYqnp2+Ato4Otv168fx5ICVLlpL2jR43kQG2dgQ+C2D5ssUsXjA3wzGcwp/FYfZM/H192bhlu1x4+45f3DvaOgzo24vngYGULFXqy2R+ey9DQpg/dw6ua9ajpKSUZv/5s2e4ef0au/a6ZUPuhOw0ffZc5syYgrVVPXLnzo2BYXkaN22Ot5fnN6f16lUoI+0G0KCRFW3advgJuRVyovSes5qamixYvIw5s2awfdsWcuXKRdPmLTAqX4Fcuf6OOSN+d6LSLQiC8BfJm1eRUqX+AaB8hYo8+u8/tm/dzJTp9mniVqpUGUhpaUld6dbW1kFbW4fSZcpQoGBB+vbsSr+Bg9DRKfRrLkLIFg6z7bl44TzrN22lcJEimcatVNkYgMDAZ39kpdvT8xFvwsPp3KGtFJaUlMTtWzfZuWMbHTr9y/PngViayQ+9GD1iKKZVq7Fu45ZfneVs92muiPCwcLlnRXh4OAaGhtmVrR+uRMlSuKzbTExMNB+iPqCto8Pk8aMoXrwEWtopLdxv3oTJDTl4Ex6OnoF8Gbx+9Yoh/XtRqXIVJk6d+UuvQcg+mT1nzS0scT9+mrdv35A7dx4KFChAgzoWlGjWPJtyK3wLUekWBEH4iyXLkkmIT38pGh8fbwC0tTOuTH+aNTWjNITfn0wmw3HOLM6eOcW6jVsoUaLkV4/x8fYCQOcPHctcs1Yt9h44LBc2ffJEdMuUoXff/mioa8i1/gO0b2PNmPETqVuv/q/Mao5RvEQJtLV1uH79KoZGRkDKWOWHD+7LTdD4p1BRUUVFRZV37yK5fsUDuxGjKfax4n3z+jX0DVLK4ENUFI/+e0DbDp2lY1+9CmVI/14YGlVgysw55MolpmD6033Lc1ZDQxOA69eu8uZNOPXqN8gwrpBziEq38E3q1auHiYkJS5cuze6s/HY2btzIiBEjiIiIAGDGjBkcOHCAe/fuSXFmzJiBi4sLr169ws3NjQMHDhAREcGBAwd+at4UFBRwc3OjTZs2P/U8QvZavnQR5pZ1KFq0KB8+fOD40SPcvnmDFavW8vx5IMfdj2BRuw7q6ur4Pn7MovmOmFathr5BylJIly9eIDw8jAoVK6Gqqoq/vx9LFy3ApIopxYqXyOarE34Wh1kzOXb0CEuXrySfaj7CPo4fVMufH2VlZZ4HBnLU/TC169SloLo6vj4+LJjvSNVq1dE3+HNaMFPLl09Nbkw7gIqqKuoF1aXw9CZPK1q0WJZ+tPhdRX/4QGBgoPQ66MULvL28KFiwIEWLFaNr9x6scXXhn1L/ULxECVYsX4ZOoUI0aPjnjHu/duUyMpmMf3RL8/x5IM5LFvBP6dK0bGWDgoICnbr0YONaV0qW+odixUuweqUT2jqFpNnMX70KZXC/nhQpWoyho8YS8faNlLZWBitLCL+/rz1nAQ647aNMmbJoaGhy//5d5js60K1HL3RLl8nOrAtZJCrdf6ivrQk6ffp0ZsyY8c3p7t+/n7x5835nrtL6myvxY8aMYejQodJrLy8vZs6ciZubG7Vq1UJDQ4P69esjk8l+2DnTq+gDhISEoKGh8cPOI+RMb968Ydrk8YS9fo1a/vzo6RmwYtVaaplb8PJlCNevXWH71k3ExMRQuEhRGjRuQr8Bg6TjlZSVcNu3h0UL5pIQH0/hIkVo0LAJvfv2z8arEn623bt2ANC3V3e5cPvZjrS2aUvevHm5fu0q27akdKktUqQojRo1ob/t4OzIrpCNHj36j369e0ivF853BKBVaxtmOcyld9/+xMTEYD9jGu/fv6OKaVVWuq5Nd1z87yoq6j0uy5fyKvQlBQoWpH7DJtgOGU6ej9+duvfqS2xMDHNnTyfq/Xsqm5iydMVqqQxuXLvCi+eBvHgeSCsr+V4R1+5++7hw4ffwtecsQMDTpzgtWUxkZCTFihen3wBbuvfs9auzKnwnBdmP/EYv5BgvX76U/r9r1y6mTZuGj4+PFKampiat8yeTyUhKSiJPnl//G8yPqnTHx8enWaIjp/mypftLR44cwdramuTk5K/+aPK9Mqp0Z5fYxOzOQc6TlCweyV/KLSaJEQThB4qJT8ruLOQ4Koq5szsLgvDbUs5CFUoMEvlDFSlSRNoKFiyIgoKC9Nrb25v8+fNz7NgxqlatipKSEpcvX8bf35/WrVtTuHBh1NTUqF69OqdPn5ZLt169eowYMUJ6HRcXx5gxYyhevDj58uWjZs2anD9/Xu4YDw8P6tWrh6qqKhoaGlhZWfH27Vt69erFhQsXWLZsGQoKCigoKBAQEADAhQsXqFGjBkpKShQtWpQJEyaQmJgolw87OztGjBiBtrY2VlZW9OnTh5YtW8qdOyEhgUKFCrFu3bp0y2njxo2oq6tz5MgRDAwMUFVVpX379kRHR7Np0yZ0dXXR0NBg2LBhJCV9/pB++/YtPXr0QENDA1VVVZo1a4avr2+atEuVKoWqqio2NjaEh4fL7Z8xYwYmJibS/62trQHIlSuXVOnu1auXXJfv5ORk5s+fT7ly5VBSUqJUqVLMmTNH2j9+/Hj09fVRVVWlTJkyTJ06lYSEBCk/M2fO5P79+1J5b9y4EUjpGZG6C/vDhw9p0KABKioqaGlpMWDAAKKioqT9n/K1cOFCihYtipaWFkOGDJHOJQiCIAiCIAhCCtG9/C82YcIEFi5cSJkyZdDQ0OD58+c0b96cOXPmoKSkxObNm7G2tsbHx4dSGcw+a2dnh6enJzt37qRYsWK4ubnRtGlTHj58iJ6eHvfu3aNhw4b06dOHZcuWkSdPHs6dO0dSUhLLli3j8ePHVKxYEXv7lJmTdXR0CAoKonnz5vTq1YvNmzfj7e1N//79UVZWlusSv2nTJgYNGoSHhweQMgNqnTp1CAkJoWjRokBK63F0dDSdOnVKk/dPoqOjcXJyYufOnbx//562bdtiY2ODuro6R48e5cmTJ7Rr1w4LCwspnV69euHr68uhQ4coUKAA48ePp3nz5nh6eqZ0tbx+nb59++Lo6EibNm04fvw406dnvKTSmDFj0NXVpXfv3oSEhGQYb+LEiaxZs4YlS5ZgaWlJSEgI3t7e0v78+fOzceNGihUrxsOHD+nfvz/58+dn3LhxdOrUif/++4/jx49LP6YULFgwzTk+fPiAlZUVZmZm3Lx5k1evXtGvXz/s7OykSjrAuXPnKFq0KOfOncPPz49OnTphYmJC//6iq7EgCIIgCIIgfCIq3X8xe3t7GjduLL3W1NTE2NhYej1r1izc3Nw4dOgQdnZ2aY4PDAxkw4YNBAYGUqxYMSCl8nj8+HE2bNiAg4MD8+fPp1q1aqxcuVI6rkKFCtL/FRUVUVVVpUiqZRFWrlxJyZIlcXZ2RkFBAUNDQ4KDgxk/fjzTpk2TZvHU09Nj/vz5cnkyMDBgy5YtjBs3DoANGzbQoUMHqSt9ehISEnBxcaFs2bIAtG/fni1bthAaGoqamhrly5enfv36nDt3jk6dOkmVbQ8PD8zNzQHYtm0bJUuW5MCBA3To0IFly5bRtGlTKR/6+vpcuXKF48ePp5sHNTU11NXVAeTKIrX379+zbNkynJ2d6dmzJwBly5bF0tJSijNlyhTp/7q6uowZM4adO3cybtw4VFRUUFNTI0+ePBmeA2D79u3ExsayefNm8uXLB4CzszPW1tbMmzePwoULA6ChoYGzszO5c+fG0NCQFi1acObMGVHpFgRBEARBEIRURPfyv1i1atXkXkdFRTFmzBiMjIxQV1dHTU0NLy8vuZlIU3v48CFJSUno6+tLY8TV1NS4cOEC/v7+AFJL97fw8vLCzMxMblyzhYUFUVFRvHjxQgqrWrVqmmP79evHhg0bAAgNDeXYsWP06dMn0/OpqqpKFW6AwoULo6urK1dRL1y4MK9evZLylydPHmrWrCnt19LSwsDAAC8vLylO6v0AZmZmX732zHh5eREXF5dpee7atQsLCwuKFCmCmpoaU6ZMyfDvl9l5jI2NpQo3pJR/cnKy3LwAFSpUIHfuz2PAihYtKpVReuLi4nj37p3cFhcX9015EwRBEARBEITfjah0/8VSV6ogpZXazc0NBwcHLl26xL1796hUqRLxGay/GxUVRe7cubl9+zb37t2TNi8vL5YtWwaAiorKL8s/QI8ePXjy5AlXr15l69atlC5dmtq1a2eazpezsSsoKKQb9mk94uzytbK8evUqXbt2pXnz5hw5coS7d+8yefLkDP9+/69vLSNHR0cKFiwoty2Y5/hT8iYIgiAIgiAIOYWodAsSDw8PevXqhY2NDZUqVaJIkSLSxGbpqVKlCklJSbx69Ypy5crJbZ+6L1euXJkzZ85kmIaioqLcBGUARkZGXL16VW6pLA8PD/Lnz0+JEpmvBaylpUWbNm3YsGEDGzdupHfv3lm48m9jZGREYmIi169fl8LCw8Px8fGhfPnyUpzU+wGuXbv2f51XT08PFRWVDMvzypUr/PPPP0yePJlq1aqhp6fHs2fP5OKkV95fMjIy4v79+3z48EEK8/DwIFeuXBh8XK/5e0ycOJHIyEi5bez4id+d3t8kIuItDeuaExz04uuRf0NOSxYxz2FWdmfjjxQR8ZZ6tc0I+g3vHX8/Pxo3qEN0dPQPTfd3LpPdu3YwdLDtT0n7by+XyIgImjWwJDg46AflKmd56u+HtVV9YmJ+7PtJ+L3fOx6XLtKxbetsb1j6G4hKtyDR09Nj//793Lt3j/v379OlS5dM34T6+vp07dqVHj16sH//fp4+fcqNGzdwdHTE3d0dSKlo3bx5k8GDB/PgwQO8vb1xcXEhLCwMSBl3fP36dQICAggLCyM5OZnBgwfz/Plzhg4dire3NwcPHmT69OmMGjVKGs+dmX79+rFp0ya8vLyksc8/kp6eHq1bt6Z///5cvnyZ+/fv061bN4oXL07r1q0BGDZsGMePH2fhwoX4+vri7Oyc4XjurFJWVmb8+PGMGzeOzZs34+/vz7Vr16SZ2fX09AgMDGTnzp34+/vj5OSEm5ubXBq6uro8ffqUe/fuERYWlm737q5du6KsrEzPnj3577//OHfuHEOHDqV79+7SeO7voaSkRIECBeS2P2lt1p9p3epV1KvfkGLFS/DYx5uJ40bRrFE9zKoZ07ZVc7Zv3SwX/9bN65hWMkyzhYW9zvQ8J48fo3P7NphXN6F5kwZs2pB21v9bN6/TpWNbappWolXzJhw6sF9u/9Ejh2nWqB51zWuwaL58T4bgoBe0aWklNxM+QPdefThy6AAvnj//lmIRsmCN6yrq129I8eIpP1jOdZhN5w5tqWZSkY5tW2cpjbDXr5k0YSwN6lhQs5oJndrbcPrkCbk4w4bYYtWwHtWrVKJhXUsmTRjLq1eh0v6goBf07tGVmtVM6N2ja5ovp3aDB6ZJs2y5clSubMKWTRu+59IzlLpMIiLeMmhAXxrVs6SaSUWaNKyLw2z7NPdoakFBL5g+dRLNmjSghmllWjRtxEpnJxJS9SoKePqEvr26U7+OOdWrVKK5VUOcly2RW+Hh6hUPrJtbYV7DlEkTxsod//79e6ybW6WpANrYtMPL6xF3bt/6gSWS4st7JSQ4GLtBA6hZ1Zh6tc1YvHCe3CoiX7p54zrGFQzS3f57+ADI2eWyYa0rtes1oFix4lLYkUNudO3Yhjo1TWjWwJIFjvI/DspkMrZtXk+H1s2oXcMY6yb12LB21VfOs4r+PbtQ18yURrVrphvH89FD7Ab2plHtmjSuU4vhg/vj6/N50tTg4CBs+3SnnllVbPt0T1Meo4cN4uzpk3JhpcuWo2IlY3Zs2ZSl8hCyLvV7x8fbm/FjRtGkYV1qmFamjXUztmWhzNe4utCja2dqVjXGsla1NPuz8qzy8vKkY7s21KpWhaGDbYlMtURtYmIinTu05eGDB3LpWtSuQ548eXA/cuj7C0DIElHpFiSLFy9GQ0MDc3NzrK2tsbKywtTUNNNjNmzYQI8ePRg9ejQGBga0adOGmzdvSrOd6+vrc/LkSe7fv0+NGjUwMzPj4MGD0prgY8aMIXfu3JQvXx4dHR0CAwMpXrw4R48e5caNGxgbG2Nra0vfvn3lJgnLTKNGjShatChWVlbSBG8/2oYNG6hatSotW7bEzMwMmUzG0aNHpS7XtWrVYs2aNSxbtgxjY2NOnjyZ5fxnZurUqYwePZpp06ZhZGREp06dpHHUrVq1YuTIkdjZ2WFiYsKVK1eYOnWq3PHt2rWjadOm1K9fHx0dHXbs2JHmHKqqqpw4cYI3b95QvXp12rdvT8OGDXF2dv6/8y98u5iYGA667aO1TTsAPD0foampxWzH+exxO0Lf/rY4L1vMzu1b0xzrdvgYJ89dkjZNTa0Mz+Nx6SJTJo6lfcfO7N5/mIlTprFty0a5dINevGDYEFuqVa/Bjr0H6NKtB7NmTOWKxyUgZSm9WTOmMGLMOFauXsdR98NcvHBOOt5xtj1DR4xOM7GhhoYGZuaW7Nmd9n4Uvl9MTAwH9u/Fpl17ufA2Nu2watY8y+lMnjSegKdPWebswj63wzRs1Jixo0fg5eUpxaleoxYLFi/loPtxFi114sXz54wZOVzav2j+PAoVKszufQfQ1tFh8YLPk2AeP3aUXAoKNGpilebcrW3asmfXjkwre9/iyzLJpZCL+g0asszZhUNHTzBrzlyuX7vC7JkZrzYR8OQJyckypk63Z/9Bd8aOm8ie3TtxWrZEipMnT16sW7dh1er1HHQ/zrjxk9i3bw8uK5YDKcs/Thw3mg4dO7N5+y48H/3H3j27peOXLVlIh46d5SqAAHkVFWneomWaH9r+X1+WS1JSEnaDB5KQkMCmrTuZ7TCXQwfcWOnslGEaJiZVOHP+stzWtl0HipcoQYWKlXJ0ucTGxHD44D5atWknhW3fshFX52X06N2P7XsP4bRqHTXNLOSOWzzfgUNu+xg6ciy73NxZsHQF5StWzvRciQkJNGhsRdv26a+qEh39gRFDBlC4SFHWbdmJ64YtqKrmY/iQ/iR+/HHCadF8dAoVZvPOfWjp6LB88QLp+FMnjqGgkIsGjZqkSbtlaxv279n5w95PQtr3jqfnf2hqaeIwdwH7D7rTb4AtTksXs2Nb2s/o1BISEmjcpCkdOv2b7v6sPKtmTptCjZq12Ll3P1FR71m7xlXat3njekyqmFKpctr7s1WbtuzYuuV7Ll/4FjJB+Aa1atWSTZ48Obuzkan379/LChQoINu3b192Z0X4ipgEsX25RcUly20HDh+V1axVK0146m3y1BmyLt26S6/PX74q09fXl4W8jsj0uNTbsOEjZYOHDJULW7t+k6x27Tqy97FJsqi4ZNkcx/myZs1byMWxGzZC1rN3H1lUXLLs2q17MjMzc2nfkKHDZStWrZFFxSXL9rodkvUfYJvh+Xfu2S+rXbtOuvuy+2/yu26HjhyT1axVK919i5c6yaytW2UpHWNjE9nufW5yYdWr15Bt27E7w2OOnTgtMzAwkL2LjpfFJMhkTZs2k50+e0EWkyCTnTp7Xta0WXNZTIJMFhoeKWvUqLHsaWBwuum8+xAnq1ixouz8pSs/vUw+bWs3bJLVrlPnm9J1cV0jq9+gQaZx7Gc7yDp1/lcWkyCTvXgZJtPX15dFRMXKYhJkMoe582VTp82QxSTIZFdv3Ja1sbGRRcUmppvO5as3ZBUqVJC9fR/z0+6VU2fPywwNDWUvQl5LYZu2bpeZmprK3n2Iy1Ka76LjZTVr1ZItdXLOceXy5kOi3Lb3gLusZs1a0uuAkHBZpcqVZSfOXkoT99N2+6GPzKh8edndR74Zxsls27xjj8zUtGqacI8b92T6+voyL//nUtiNe54yfX192X0vf9mbD4myJlZNZe4nz8nefEiUHTlxVmbVtJnszYdE2bOXb2QNGjaSOzb1FhoRLatYsWK61/Wj7qW/bcvKM2XqtBmyrt26Zym9nbv3yapWrZqluF8+qypXrizz9PGTxSTIZJu2bJP17ddfFpMgk/k+CZQ1atxEFhbxPt10njwLkunr68se+z/L9vL8XbesEC3dQpbExcVx69YtHj16JLfkV06SnJzMq1evmDVrFurq6rRq1Sq7syQI/7e7d25jZJT5ey4q6n26a6537tCGJvVrM6h/H+7dvZNpGvEJ8Sh+0d1fSVmZ0NCXhHzsuvjg/j1q1JKfhd/M3IKH9+8BUKrUP8TGxuDt5UlkZASe/z1ET1+fd5GRrHR2Yvxk+Z4XqVWoWJnQ0Jd/7Lj17HDnzi3Kl///n9fGVapw4vgxIiMiSE5O5thRd+Li46hWvUa68SMjInB3P4yxSRWp94++gSHXrl0lOTmZqx4e6OunzA+xZOF8Ov3bhSJFi6abVl5FRQwMjX5Yd+qvlcmrV6GcPX2KqtWqf1O6Ue/Tfw9+EvjsGVcuX6Lax3Q1NTXR0dHhqsdlYmJiuHvnNnoGBiQkJDDHfgZTp9vLrQ6RWvkKFUlKSuLhg/vflMfMfFku9+/dQ09PHy1tbSnM3MKSqKgo/Pz9spTmhXNniYyIoI1Nuwzj5JRyuXf3NgZG5aXXN65dQZaczOtXr+jUtiXWVvWZPG4koS9DpDiXL56nePESXL54HpsWjWnTvBFzZk4lMjLim8+fWind0hRUV+fQgX0kJMQTGxvL4QP70C1dhqIfW/j19A25eT3l/XTj2hXK6aW8n5YvWUj7Tl0oXCSD91NeRfQMDLl39/b/lUfhs6w8Z99HvadgQfUfet70nlX6BoZcvXolZd6ha9fQ+/icnWU/nZGjx5IvX/rL5xYtVgwtLe2fMmxF+ExUuoUsOXbsGA0aNKBVq1a0b9/+6wdkg8DAQAoXLsz27dtZv3691IVdEH5nIcHB6BQqlOH++/fucOrEMdq27yiFaWvrMGnqDBYsdmLBkmUULlKEAX164OX5KMN0zMwtOXvmFNc/VoyeBTyVxtK+fp0yFjw8/DVaWvJd1LW0tImKiiI2NpYCBQsyc85cpk0aT/d/O9KiVWvMLWqzZNF8Ov3blaAXL/i3gw0dbKw5fVJ+joNP1xgSHPxtBSRk6Gv3TlYtWLSUxIRE6ljUpHqVSsyeOY0ly5wp9c8/cvGWLFpAzWom1LGoycuQEJY5r5T2jRo7nqdPn9CscQOeBT5j1Njx3L51Ex9vL6xbtWHsqOE0t2rIrJnT5MbwQsq9EfyD7ouMymT8mFHUrGpM4/p1yJcvHzPs52Q5zcBnz9ixfSvtO3ROs69H185Ur1IJ6+ZNqFK1GoOHpnS5V1BQYP6ipaxetZK2rVtgaGhEG5t2rF+7muo1aqKopETPrp1p1cIqTbdUFRUV1NTy/9D3ypflEh4WhqaWtlwcrY+vw78yN8Qnbvv3Ym5hSeGPE6umltPK5WVIMDo6n68/+MULkpOT2bR+NSPHTMBxwVIiIyMZNqgfCQnxH+M852VIMGdPn2D6LEem2jvg4/WISWNHfvP5U8uXLx8r12zixNHD1K1lSgOLaly7cpklzq7S95qho8byLOApNi0a8TzwGUNHjeXu7Vv4+njTrGUrJo8bSduWTZg3e4aU30+0dQrxMkQ8Z3+Urz1n7929w8njx2jXoWOGcb5FZs+q6fazOX3yBC2bNiZv3rz07T+Qw4cOoKKsTIWKlbDt35eWTRvjnGoozCc6hQoRIu6Ln0rUSoQsadOmDe/evcvubGRKV1dXbsZzQfgTxMbFoqOY/oRzfr6PGTlsCANsh2BmbimF65Yug27pMtJrYxNTXjwPZNuWTcx2nJ9eUrRt35EXz58zws6WxMRE8uVT499u3XFd6ZylCQw/adCwMQ0aNpZe3755A9/HPoybOIXWLZrgOG8RWtra9OjSEdOq1dH8WIn/NKlebGxsls8lZC42No5CGdw732LF8mW8f/+O1es2oq6uwbmzpxk3egQbNm+TWlIAevXpi0279oQEB7NqpTNTJo5n+UpXFBQUKFy4MM4rP48vjI+PZ9CAvsx2mMtqVxdU8+Xj4JHjDB7Yjz17dtGla3cprrKSErGxMf/3dUDGZTJ2/ERsBw/hWUAAy5YuZuE8RyZPm/HV9EJDQxk8sB+NrZqm+6V6/sIlfPjwgcc+3ixeNJ9NG9bRu29/AEyrVmP77n1S3ICApxw5dJBde93o3bMbXbv1wKJ2Hdq1aUnVatXQNzCU4iop/7gygR93r3wS+vIlVzwus2DR0nT357RyiYuLk+vpkyxLJjExkVHjJknjuGc5LqRF4zrcvnmDWuaWJMtkxMfHM33WXEr9owvApOmz6dWlPc8CnvKPbulvzgekPAPnzJxCZWNT7B0XkpyUzLbNGxg9bBDrt+5GWVmZQoUKs8jJRTomPj6eEYP7M83ekQ1rXFFVzcduN3dG2A3Abe9uOv7b7XMZKSmJ5+wPlNl7x9f3MSOGDmbgoCGYW1imG+dbZfasKldOj/WbPv8YFRHxFpcVy9mwaRtzHWZhUqUKi5ctp2un9lSsbEy9+g2kuMpKSsTE/LhnipCWaOkWBEHIwTTUNXj/LjJN+BN/P2z79aZt+470Gzjoq+lUqFSZ54HPMtyvoKDA8FFjuHz9Du4nznLq/CUqfpwQqESJkgBoaekQHh4ud1x4eBhqamooKyunSTM+Ph7HOfZMnjaT54GBJCUlUbV6DXRLl6HUP7o8fPi5G+i7yJRr1NDU+Oq1CFmjoaH+f/9Y+jwwkJ3btzJztgM1a5lhYGiI7WA7yleoyM4d2744nya6uqUxM7dg/sIlXLp4gQcfhx58ae3qVZiZW1C+QkVu3bxBo8ZW5M2bl4aNmnDrxg25uJGRkWhoaP5f1/E5j+mXibaODqXLlKVeg4ZMnT6T3bt28Pr1q0zTevUqlH69e2BcpQrTZqS/5F2RokUpW64czVq0ZPjI0axa6Zzhso2zZkxj9NjxJMtkeHt50tiqKVpaWlSrVp1bt27KxX33A8sE0paLlrY2b8LD5OKEf3ytpa3z1fQOuO2joLo6dVN9qU8tp5VLQXV13qe6fu2P11i6TFkpTENTk4LqGrz82MVcW1ub3HnySBVuQPqx82Wqbujf6uQxd0KCg5kycw7lK1SiYmVj7B3nExwUxKXzZ9M9ZtM6V2rUssCwfAXu3L5B/YaNyZM3L/UaNObOT753/nYZPVP8/fwY0LcX7Tp0YoDt4B92vm95Vi2cN5eu3XtSuEgRbt24QeMmTVFVVaV23brcuvnFc/ZdJJqa4r74mUSlWxAEIQczMDLiyRN/uTB/P18G9OlJy9ZtsBuWta6Mj7290db5elfj3LlzU6hwYfLmVeT4MXcqG5ug8fGDuLKxCTevXZWLf/3qFSoZm6Sb1lpXF8wtLDEqX4Hk5CSSEj9/qU5MTCQ56fOShH5+vuTJk5cyZfWydD3C1xkaledJFsffZuRTq2EuBfmvC7ly5UaWnHHPok/LTcZ/0VUc4Im/P8fcjzDkY5fi5KQkEhNTZmVOTEwgOVm+8uXn54uhkdH3X0QqWSmTTz2m0sv7J6GhofTt1YPy5StgP9sxS71BZMmylPs+naU49+/bQ8GC6tRr0JDkj5XPTzNMp7xXPpfJ88BA4uLiMEw1Bvn/9WW5GJuY4Ov7WO5HtmtXrqCmpkbZsuUyTUsmk3HwwH6sW7WRxvRnGj8HlIuBoRFPn3y+/somKSu3PAt4KoVFRkYQGfGWokWLSXGSEhN58Tzwcx6eBQBIcb5HbGwMuXIpoKCgIIUpKORCQSGlBf5LT5/4c+KYOwOHDAUgOSlZvoy+eD898fdD3+DHvJ+E9J8pfn6+9OvTg1at2jB0+P833CAzmT2rrl+7ypMn/vzbJaWXQ3Jy0uf7IkH+vRMXF8fzwOc/9JkipCUq3YIgCDmYmbklT/z9pJZgP9/HDOjbk1rmFnTr0YuwsNeEhb3m7Zs30jHbtmzi/NkzBAY+w8/3MQvmOXDzxjU6du4ixdm5fSsD+/WSXr99+5a9u3fy9MkTfLy9WDB3DqdPHmfM+ElSnPYdO/Mi6AVLFy/g6ZMn7N65nVMnj9O1e880+X7i78fJE0cZNGQYkNIClCuXAgf27+XSxfMEPH0iLSMEcPfOLapUrZpui7nwfcwtLPFPde9Ayvhjby8vwsJeExsXi7eXF95eXtI46tDQUFq3bCqt5apbugylSv3DrJnTePjgAc8DA9m0cT3XrnpQv2EjAB48uM+ObVvx9vIiODiI69euMmHsKEqWLIWxSRW5PMlkMuxnTGXM+ImoqqoCYFLFlH179/DE35/Dhw5iUuXzUpVBQS94FRpKLTPzn1Imly5e4IDbPnx9HxMU9IKLF84ze+Z0TKqYSutVP3zwgNYtmxIaGiqVUb9e3SlatCijxo7n7Zs3hL1+Tdjrz2Od3Y8c4sTxozzx9+fF8+ecOH6UZUsX0aRpszQV0fDwcNa4ujBhcsqykgUKFqRMmbJs27KJ+/fucv3aVbkyuXP7FiVKlqTkx6U5f0a5mJlbUqZsOSZPGIePtzcely/hvHwpnf7tiqKiYrrl8smN69cIevGCtu3Szv+SU8ulppklT5748+5jr6JS/+hSp14Dlixw5MG9u/j7+WI/bRL/6JamarWUCQSr1zTDwKg8c2ZMwcfbE2/PR8ydM4Matcyl1u9H/z2gk00LuTXrX4YE89jHi9CQEJKTk3js48VjHy+ioz8AUKOWOe/fvWOB4yyePvHnib8vs2dMJnfuPFStJr+ut0wmY+7s6YwYMwEVlZT3U2WTKhx028vTJ/4cPXKQyqneg8HBQbx+FUr1mrW+uYyE9H353vH1fUy/3j0wM7ege8/e0rPhTarP6PTeOyHBwXh7eRESEkxSUpL0bI7+kHJfZOVZ9UlcXByOc+yZNmOW9IOgSRVTdu3Yho+3N6dPn8Qk1ZLAD+7fQ1ExL5Uz+AFd+DHEmG5BEIQcTE/fAEOj8pw8cYz2HTtz+tQJ3r55w9Ejhzh65JAUr2ixYrifSOl6mJCQwOKF83j9KhRlZWX09A1wWbOe6jU+f9GKiHgr10IDcPigG0sWzkeGjMqVTVi9fjMVK31e07N4iRI4rVjFovlz2bF1M4ULF2HqjFmYW9SWS0cmkzF75jRGjZ2AyseKlbKyMjNmOzJ3ziwS4uMZP2kqhQoXlo45eewoAwfb/biCE6R758SJY3TomDLJ18zpU+S6FXZq3waAoyfPULx4CRITEwh4+lRq4c6bNy/Oq1azbPEihtnZEh0dTamSpZjlMJfadeoCoKKszJnTJ3FZsZyYmGi0dXSwsKzN/IGDpQraJ3v37EJLS5u69epLYbZDhjJx3Gi6/dsBC8vadPq3q7Tv+FF3zMwt0qzL/KPKRElJif1797BwniPx8fEULlKUho0a06ffAOmY2NgYAp4+lVrjr13xIDDwGYGBz2jSoI5c+vcf+QCQO3ceNqxby7OAp8hkKe/Pf7t0o1uPXmnyNN9xDj169qFQoc/vB/s5c5k6eTzbt26hZ+++cu/DY0fdadvux0zK9MmX5ZI7d26Wr1zFHPsZ9OjaCRUVFaxb2zDYbph0zJfl8onbvr2YmFSR65r9SU4tl3J6+hgYGnHm5HFsPq6fPX3WXJYunMvoYYNQyKVAlarVWbpiNXk+/jiQK1cuFi5dyaJ5cxjUtwfKKiqYWdRm2KhxqcoolmcBT+XWxV7t4szRwwek1z06p8zuvmLNRqpWSxl+s2DZSta5rqR/zy7kyqWAvqERS1esRltHvmv/gX270dTUxrJOPSmsn+0Qpk0cS98enTEzt6R9x88/tp465k5NMwtpFnTh//fle+f0yZTPaPfDh3A//Pkzulix4hw7lfIZnd57Z6WzE4cOukmvPz2b127YTPUaNbP0rPpk1UpnatepJ9dDaPzEKUwYN5o+PbvSvIU1jRpbSfuOHXWneUtrVFRUfli5CGkpyMTMU4IgZJPYxK/H+dskpdNl99LF8yxdtIA9boe/aVKz34XHpYssXjiPXfsOprvqQO5cCukcJWTFxQvnWbJwPvsOHvnt7p2E+Hism1vhOH8hVUyr/rB0f+cy8fPzpX+fnhxyP0H+/Pl/aNp/U7nExKcdP+5x6QLLlyxg+95Dv931Z0VCQjwdWjVjpuMCjE1M0+xXUUx/KTbh637n987bt29o3aIZ23fvleZvEb6dchaasUVLtyAIQg5Xu049Ap8949WrUIpksP7q7ywmJpoZsxzEMn8/QZ269Qh8FsCr0NAM18LOqUJCQug7YOAPrXDD710mYa9fM9th3g+vcIMoF4vadXke+IzXr0IzXOf6d/YyJISefQekW+EW/j+/83snOCiISVOniwr3LyBaugVByDaipTut9Fq6/3aipVsQhB8pvZbuv51o6RaE75eVlu7fqw+EIAiCIAiCIAiCIPxGRKVbEARBEARBEARBEH4SUekWBEEQBEEQBEEQhJ9EzFojCIKQg4jxy4IgCD+XGL+cVtCbmOzOQo5UXFMsoyX8GKKlWxAEQRAEQRAEQRB+ElHpFgRBEARBEARBEISfRFS6BUEQBEEQBEEQBOEnEWO6BUEQ/lLNGjcgODgoTXinzl2YNHU6fXt159bNG3L72nfsxNTp9r8qi4IgCMJvZNeWdVy5eIYXzwJQVFLCqKIxfQaNoEQpXQBCQ4Lo3bFFusdOtJ9P7fpNAHgVGsKKhXN4cPcWyioqNGpqTa+Bw8id53PVJSE+nu0bXTl78ihv34ShqaVNl14DadKizc++TEH4ZqLSLQiC8JfatmsvyUlJ0ms/P18G9utNY6umUli79h0ZbDdMeq2sIiaVEQRBENL3373btLTphL5RBZKSktjkupzJowbhumU/yioqaBcqwtYDp+WOOX5oH/t2bKJaTUsAkpKSmD5uKBqaWix02cib8DAWzZ5K7jx56DXw8+eR4/RxvH0TzogJ0ylWvCRvwsNITk7+pdcrCFklKt2CIAh/KU1NTbnX69eupmTJUlSrXkMKU1ZWRltH51dnTRAEQfgNzVq0Uu71qEn2/NuqAb4+nlQyqUru3LnR1NKWi3Pl0llqN2iCiqoqAHduXuV5wBMclriioalFWT3o3m8wG1Yto2ufQeTNm5db1z14eO8W63e5k79AQQAKFy3+ay5SEL6DGNMtCIIgkBAfj/uRQ7Rp2w4Fhc/Llh11P0xdi5q0bd2SZUsWERMjlpURBEEQsubDhygAqWL8JV8fT574+sh1Cff+7wG6ZcqhoaklhVWtYU70hygCn/oDcP3yefQMKrB3+0a62zSm37+tWLtiMXFxsT/vYgTh/yBaugVBEATOnj3N+/fvadXGRgpr1rwlRYsVo1ChQjx+7MPSxQsJCHjKkmXO2ZhTQRAE4XeQnJyMq9MCylcyQbdMuXTjnDziRsl/ylC+kokU9vZNGOoaWnLx1D/2zHrzJoyywMvgIB49vEteRUWmzFnMu8gIVix24F1kBKMmiXlHhJxHVLoFQRAE3Pbtw8KyDoUKFZbC2nfsJP1fT98AbW0dBvTtxfPAQEqWKpUd2RQEQRB+EysXO/LsqR8LV2xMd39cXCznTx/j354DvjntZFkyCigwbpoD+dTyA9DfbgwOU8cwZPQklJSU/5+sC8IPJ7qXC4Ig/OWCg4O4fu0Kbdu3zzRepcrGAAQGPvsV2RIEQRB+UyuXOHLj6kXmLluLdqofc1O7fO40cbGxNLRqKReuoalNxNtwubCIN28A0NRMGQ+uqaWNlk4hqcINUPKf0shkMsJehf7ISxGEH0JUugVBEP5yB932o6mpRe069TKN5+PtBYCOmFhNEARBSIdMJmPlEkeuXjyL49LVFCmW8eRmJ93dqGlRj4Ia8pN6GlasTMATPyLevpHC7t66imo+NUrplgGgfCUT3oS9JiY6WooT9PwZuXLlyrCSLwjZSVS6BeEb6OrqsnTp0mzNw/nz51FQUCAiIiJbzh8dHU27du0oUKBAtuZD+DGSk5M56LYf69ZtyJNq/dPngYG4uqzA89F/BAW94PzZM0yZNJ6q1aqjb2CYjTkWBEEQcqqVix04d9KdcdMcUVHNx5vwMN6Eh6WZ4Cz4RSD/3b+DlbVNmjRMq5tRUrcMC2dN5omfD7evX2HzmhW0tOlIXkVFAOo1ak7+ggVZ4jiNwKf+PLx3m3Url9C4eWvRtVzIkRRkMpksuzMh/Fi9evVi06ZNODo6MmHCBCn8wIED2NjYIP7k3+/169fky5cP1Y/LWmSH+Ph43rx5Q+HCheVmmf5VXFxcmD59OmfPnkVbW5uYmBjKlCnD3bt3MTEx+aa0YhN/Th6FrLvicZlBA/py0P04urqlpfCXISFMmjAWP19fYmKiKVKkKA0aNqK/7WDU1NSyMceCIAjCjxb05sesTNG8tkm64SMnzqRx89bS642uTpw7eZQNe46SK1faNsDQl8GsWDSHh3dvo6SsQqNm1vQeOIzcqX8cfvYUl6Vz8Xp4n/wFC1K7fhN69B/yQyvdxTVVflhawp9LOQuzpIlK9x+oV69e7Nq1C2VlZZ48eYKGhgaQfZVumUxGUlKSXCua8PMkJSWhoKCQ7odYRr7lbzRmzBhu3rzJhQsXAAgICKB06dKi0i0IgiAIv6kfVen+04hKt5AVWal0i+7lf6hGjRpRpEgRHB0dM423b98+KlSogJKSErq6uixatEhuv66uLg4ODvTp04f8+fNTqlQpVq9enWman7o/Hzt2jKpVq6KkpMTly5dJTk7G0dGR0qVLo6KigrGxMXv37pWOe/v2LV27dkVHRwcVFRX09PTYsGEDkFKxU1BQYOfOnZibm6OsrEzFihWlit8nFy5coEaNGigpKVG0aFEmTJhAYuLnml29evUYNmwY48aNQ1NTkyJFijBjxgxpv0wmY8aMGZQqVQolJSWKFSvGsGHD5MrjU/fyLl260KnT59mdARISEtDW1mbz5s0AX73m9GzZsoVq1aqRP39+ihQpQpcuXXj16lWa8v3UrXvjxo2oq6tz6NAhypcvj5KSEoGBgcTFxTF+/HhKliyJkpIS5cqVY926dZn+jfz9/WndujWFCxdGTU2N6tWrc/r0abnyW7RoERcvXkRBQYF69epRunRK62iVKlWkMEEQBEEQBEEQUohK9x8qd+7cODg4sHz5cl68eJFunNu3b9OxY0c6d+7Mw4cPmTFjBlOnTmXjxo1y8RYtWkS1atW4e/cugwcPZtCgQfj4+Hw1DxMmTGDu3Ll4eXlRuXJlHB0d2bx5M6tWreLRo0eMHDmSbt26SRXnqVOn4unpybFjx/Dy8sLFxQVtbW25NMeOHcvo0aO5e/cuZmZmWFtbEx6eMsNlUFAQzZs3p3r16ty/fx8XFxfWrVvH7Nmz5dLYtGkT+fLl4/r168yfPx97e3tOnToFpPwIsWTJElxdXfH19eXAgQNUqlQp3evr2rUrhw8fJioqSgo7ceIE0dHR2NikjFH62jWnJyEhgVmzZnH//n0OHDhAQEAAvXr1yrSso6OjmTdvHmvXruXRo0cUKlSIHj16sGPHDpycnPDy8sLV1TVNt+Av/0ZRUVE0b96cM2fOcPfuXZo2bYq1tTWBgYEA7N+/n/79+2NmZkZISAj79+/nxo0bAJw+fVoKEwRBEARBEAQhhejv+wezsbHBxMSE6dOnSy2cqS1evJiGDRsydepUAPT19fH09GTBggVylbzmzZszePBgAMaPH8+SJUs4d+4cBgYGmZ7f3t6exo0bAxAXF4eDgwOnT5/GzMwMgDJlynD58mVcXV2pW7cugYGBVKlShWrVqgEprcpfsrOzo127dkDK2OLjx4+zbt06xo0bx8qVKylZsiTOzs4oKChgaGhIcHAw48ePZ9q0aVJ368qVKzN9+nQA9PT0cHZ25syZMzRu3JjAwECKFClCo0aNyJs3L6VKlaJGjRrpXp+VlRX58uXDzc2N7t27A7B9+3ZatWpF/vz5s3TN6enTp4/0/zJlyuDk5ET16tWJiorKcCxtQkICK1euxNg4ZUmnx48fs3v3bk6dOkWjRo2ktDL7GwFoampKaQDMmjULNzc3Dh06hJ2dHZqamqiqqqKoqEiRIkUAePfuHQBaWlpSmCAIgiAIgiAIKURL9x9u3rx5bNq0CS8vrzT7vLy8sLCwkAuzsLDA19eXpKQkKaxy5crS/xUUFChSpIjU3blZs2aoqamhpqZGhQoV5NL6VHkG8PPzIzo6msaNG0vx1dTU2Lx5M/7+/gAMGjSInTt3YmJiwrhx47hy5UqaPH+qvALkyZOHatWqSdfm5eWFmZmZ3ORiFhYWREVFybX2p74egKJFi0rX06FDB2lisP79++Pm5ibXPT21PHny0LFjR7Zt2wbAhw8fOHjwIF27ds3yNafn9u3bWFtbU6pUKfLnzy9Vzj+1NqdHUVFR7rru3btH7ty5M6zYf5L6bwQQFRXFmDFjMDIyQl1dHTU1Nby8vDI9d1bFxcXx7t07uS0uLu7/TlcQBEEQBEEQcjLR0v2Hq1OnDlZWVkycOPGrXZQzkjdvXrnXCgoKJCcnA7B27VpiYmLSjZcvXz7p/5+6YLu7u1O8uPyajUpKSkBKBf7Zs2ccPXqUU6dO0bBhQ4YMGcLChQu/K9/fcz0lS5bEx8eH06dPc+rUKQYPHsyCBQu4cOFCmuMgpYt53bp1efXqFadOnUJFRYWmTZtm+Zq/9OHDB6ysrLCysmLbtm3o6OgQGBiIlZUV8fHxGV6TioqK3I8NKipZm/gj9d8IUiZJO3XqFAsXLqRcuXKoqKjQvn37TM+dVY6OjsycOVMubPLU6UyZNuP/TlsQBEEQBEEQcirR0v0XmDt3LocPH+bq1aty4UZGRnh4eMiFeXh4oK+vT+7cubOUdvHixSlXrhzlypXjn3/+yTBe6gm+PsX/tJUsWVKKp6OjQ8+ePdm6dStLly5NM2nbtWvXpP8nJiZy+/ZtjIyMpOu5evWq3OzsHh4e5M+fnxIlSmTpeiClwmptbY2TkxPnz5/n6tWrPHz4MN245ubmlCxZkl27drFt2zY6dOggVc6zes2peXt7Ex4ezty5c6lduzaGhoZyk6hlVaVKlUhOTs507Hh6PDw86NWrFzY2NlSqVIkiRYoQEBCQ6TGKH9fMTN07Ij0TJ04kMjJSbhs7fuI35U/4LCLiLfVqmxEUlP6cDTnZ7l07GDrYNruzIQiCIHzFu8gI/rWuT2hIUHZn5afYsGoZLkvmZnc2hL+AaOn+C1SqVImuXbvi5OQkFz569GiqV6/OrFmz6NSpE1evXsXZ2ZmVK1f+8Dzkz5+fMWPGMHLkSJKTk7G0tCQyMhIPDw8KFChAz549mTZtGlWrVqVChQrExcVx5MgRqUL9yYoVK9DT08PIyIglS5bw9u1baQz04MGDWbp0KUOHDsXOzg4fHx+mT5/OqFGjsrx81saNG0lKSqJmzZqoqqqydetWVFRUMv1BoUuXLqxatYrHjx9z7ty5b7rmL5UqVQpFRUWWL1+Ora0t//33H7NmzcpS3lPT1dWlZ8+e9OnTBycnJ4yNjXn27BmvXr2iY8eOGR6np6fH/v37sba2RkFBgalTp0q9ADJSqFAhVFRUOH78OCVKlEBZWZmCBQumiaekpJSmhV8sGfb91riuon79hhQvXgIfb2/Wr13N3bu3iXj7lmLFi9OhY2e6dk97j31y88Z1+vXuke6+bTv3ULFSynCFxz7eOMy259F/D9HQ1OTfLt3o3be/FPfqFQ8cZtsTHvaaeg0aMtN+Dnk//hDz/v17unRqj+va9RQr9rm3h41NO1avWsmd27cwrSo/xEEQBEHIOXZuXksty3oULpryDL936zpb1q0gwN8PZRUVGja1pmd/O2n97K3rXdi+wTVNOkrKyridupYmHFIq9gvsJ/HU35d37yJQ19CklmU9eg0Yimq+z3PZPLh7kzXLF/EswB+dQkXo3KOf3Nrf5066s8HVidjoaBo1b82AoWOkfaEhQUweNQintdvl0mzbuQd9OrWkTaduFC2W9QYaQfhWoqX7L2Fvb5+m8mRqasru3bvZuXMnFStWZNq0adjb2393N/SvmTVrFlOnTsXR0REjIyOaNm2Ku7u7tOSUoqIiEydOpHLlytSpU4fcuXOzc+dOuTTmzp3L3LlzMTY25vLlyxw6dEia4bx48eIcPXqUGzduYGxsjK2tLX379mXKlClZzqO6ujpr1qzBwsKCypUrc/r0aQ4fPoyWllaGx3Tt2hVPT0+KFy+eZoz81675Szo6OmzcuJE9e/ZQvnx55s6d+93d611cXGjfvj2DBw/G0NCQ/v378+HDh0yPWbx4MRoaGpibm2NtbY2VlRWmpqaZHpMnTx6cnJxwdXWlWLFitG7dOtP4wv8vJiaGA/v3YtOuPQCenv+hqaWJw9wF7D/oTr8BtjgtXcyObVszTMPEpApnzl+W29q260DxEiWoUDFlxv6oqChs+/elaLFi7Nizn5Gjx7FqpTN7d+8CUpbEmzhuNB06dmbz9l14PvqPvXt2S+dYtmQhHTp2lqtwA+RVVKR5i5Zs37r5RxeNIAiC8IPExsZw0v0AVi1TVmR54ufDtHF2VK1hwfL1O5kwYx7XPS6wwfVzo067zj3ZeuC03FZKtwy16zXO6DQo5MpFLct6TJu7lDXbDzJqoj33bl1n+cLPq8+8DA5i+rihVDatjvP6XbTp0JVl8+25fT1l/p/IiLcsm2dP38GjmL3YhXMn3bnucVE6fsViB3rbDpercAMUVNegag0zjrrtRhB+JgVZ6r64gpBDBQQEULp0ae7evYuJiUl2Z0f4QURL9/c5deI4c2bP5PylqxnGcZg1kydP/Fm7IWsV24SEBBo3qMO/XboxcNAQAHbv3M7yZUs5e+Gy1Hq9dPFCzp09zcEjxwkPD6dBHXNu3HmAkpISSxYtICY6mklTp3Pv7h3mOc5m64496Q5XuX3rJgP79ebytVsoKyt/RykIgiAIP0rQm5g0YZfPnWLFYgd2HE7pxbfR1Ym7t66xbM12Kc51jws4ThvH9sNnUVXNlyaNJ34+2PXuxHzn9VQ0zvxH/NQO7t3Ovh2b2LzvBADrXZZy8+olXDbvk+LMnT6eD1HvmbVoJT6eD7GfOIJtB88A4Dh9HHoG5WnfpRfnTx/j4pkTTHNcmu65zhw/zKY1ztK5UiuumbU5coS/m3IW+o6Llm5BEITfzJ07tyhfvkKmcd5HvadgQfUsp3nh3FkiIyJoY9NOCrt//x5Vq1WTKtwA5haWBDx9yrvISDQ1NdHR0eGqx2ViYmK4e+c2egYGJCQkMMd+BlOn22c4P0T5ChVJSkri4YP7Wc6jIAiC8Ov89+AO5QzKS68TEhJQVJQfJqaopER8fBx+Pp7ppnHisBvFS/7zTRXu8LBXXLlwhkrGVaUwr0cPMKlWUy6eaQ0zvB49AKBYyX+IjY3F/7E3799F4uv1iNJl9Xn//h1b1q5k0IgJGZ5P36giYa9C/9hx60LOICrdgiAIv5mQ4GB0ChXKcP+9u3c4efwY7TpkPH7/S27792JuYUnhVGuth4WFoamlLRdP6+PrsLAwFBQUmL9oKatXraRt6xYYGhrRxqYd69eupnqNmigqKdGza2datbBK09VdRUUFNbX8hAQHZzmPgiAIwq/z6mUIWto60uuqNczw+u8+508fIykpibDXoWzfmDLh7ZvwsDTHx8fFce7UUZq0aJOl882bMQGbRrXobtME1XxqDB8/Xdr3NjwMdQ35oX4amlpEf4giLi6W/PkLMHryLBbOmcKIAd1o0LQlVWuas27FYqzbduJlSBB2fToxqEc7Lp87JZfOp2t89TIkS/kUhO8hJlITfgu6urqIkRCCkCI2No5CiukvO+fr+5gRQwczcNAQzC0ss5Re6MuXXPG4zIJFS785L6ZVq7F99+fufgEBTzly6CC79rrRu2c3unbrgUXtOrRr05Kq1aqhb2AoxVVSViI2Nm2XRkEQBCH7xcfFyfV0Mq1hTp9BI3FeOIeFs6eQN29e/u05gEf376CgkLYd78qls8RER9OoWassna//0DF06T2QoOfP2OjqxBrnhQwZPTnL+TWv0wDzOg2k1w/v3uKp/2NsR4ynX+dWjJ/uiIaWNiMGdKOiSVXUNTSBlNZ6gNi42CyfSxC+lah0C4Ig/GY0NNR59+5dmnB/Pz8G9O1Fuw6dGGA7OMvpHXDbR0F1derWbyAXrq2tnab1Ivzj608TGH5p1oxpjB47nmSZDG8vTxpbNUVFRYVq1apz69ZNuUr3u8hIND5+6REEQRBylgLq6kS9l/+sadu5OzaduvEm/DVq+QsQGhLMRlcnin4xYSakdC2vYV4bDc2MJ6NNTVNLG00tbUr+U5r8BQoydkhv/u05AE1tHTS0tIl4Gy4X/+2bcFTzqaGklHZekIT4eFYsdmDMlDmEvHhOUlIilaqkrJZRvGQpfDwfUtOiLgDvP36eFlTXyFI+BeF7iO7lgiAIvxlDo/I88feTC/Pz86Vfnx60atWGocNHZjktmUzGwQP7sW7VRlpj/hNjYxNu37pFQkKCFHbt6hV0S5emQDrLwu3ft4eCBdWp16AhyR/XbU9MTJT+TU61lvvzwEDi4uIwNCqfJh1BEAQh+5XVM+R5wJM04QoKCmhpF0JJSZkLp4+jU6gIZfXll3h9GRzEg7s3adLC5rvO/WnFnYSEeACMKlTm3u0bcnHu3rqGUYXK6R6/Y/Maqta0oJyBEcnJySSl+vxJSkyUe/3siR958uThn9JlvyuvgpAVotItCILwmzG3sMTf3493kZFASpfyfr17YGZuQfeevQl7/Zqw16958+aNdMzDBw9o3bIpoaGhcmnduH6NoBcvaPtx+bHUmrWwJm/evMyYNhk/P1+OHzvKtq2b6d6jd5q44eHhrHF1YcLklCX6ChQsSJkyZdm2ZRP3793l+rWrmFT5PJHOndu3KFGyJCVLlfohZSIIgiD8WKY1zHn29AnvU7V2792+kaf+vjx76sf2javZs209A4ePSzNp5smjB9DU0qZaLYsvk+XKxbMM6NpGen3z6iVOuh8g4IkfoSFB3LhyEeeFcyhfyURaH7x56w68DH7BupVLeP7sKUfcdnHp3CnadOyWJv3Ap/5cPHOC7n1TenyV+EeXXLlyceKIGzeuXOR5YAD6Rp8nI/3vwR0qVDZNt8VcEH4U0b1cEAThN6Onb4ChUXlOnDhGh46dOX3yBG/fvMH98CHcDx+S4hUrVpxjp84CKeutBjx9SmJiglxabvv2YmJShdJl0v7Cnz9/flatWYfDbHv+7dAWdQ0NBtoOpn3HTmniznecQ4+efShUqLAUZj9nLlMnj2f71i307N2XipU+t0gcO+pO23ZZn+hNEARB+LVKl9WjrL4hl86epHnrlB9mb133YNeWtSTEJ1C6nD5THZdSvZb8/CHJycmcPnaIRs1apbuCxYeo97wIDJBeKyopc+LIftY4LyQhPgHtQoWxqNuQDl0//8BbpFhxZs5fzurlCzm4dzvaOoUZPm4aVWuay6Utk8lwWjCL/nZjUFZJWe5LSUmZkRPtWbnEkcSEeAaNmIC2zufPqotnTtC1t+3/XV6CkBmxTrcgCNlGrNP9/S5eOM+ShfPZd/AIuXL9Xp2W/Px86d+nJ4fcT5A/f/7szo4gCMJfL711ugFuXLnIupVLcdm897f7rMmKm9cus9Z5MSs37iZ3nrRtkWKdbiErsrJOt2jpFgRB+A3VqVuPwGcBvAoNpUjRotmdnW8S9vo1sx3miQq3IAhCDlfDvA7BLwIJf/0KncJFvn7AbyYuJoaRE2emW+EWhB9JtHQLgpBtREu3IAiCIGS/jFq6/3aipVvIiqy0dP95/UQEQRAEQRAEQRAEIYcQlW5BEARBEARBEARB+ElEpVsQBEEQBEEQBEEQfhIxplsQhGwjxnSnlSweyWnkUlDI7iwIgiAIf6H4xOTszkKOo5hHtNl+SYzpFgRBEARBEARBEIRsJCrdgiAIgiAIgiAIgvCTiEq3IAiCIAiCIAiCIPwkYiV4QRCEv8S6Na6cPX2KgKdPUFJWxtikCsNHjka3dBkpzr49uzjmfgRvL08+fPjAxSs3yF+gQJq0Ll04z+pVK/F97IOikhJVq1VnidOKX3k5v8zundvZvWsHwUFBAJQtp8fAQYOxrF03m3P263ytDPr26s6tmzfkjmnfsRNTp9v/8rz+Krdv3WTj+nV4ef7H69evWeK0ggYNGwGQkJCAs9NSLl+6yIsXz8mvpkZNM3OGjxxNoUKFsznnP8+6Na6cOXWSpx+fMSYmVRgxaozcM+ZvvFdSW7dmNU5LF9G1Ww/GTZwshd+/d5fly5bw8OEDcufKhYGhES6r16GsrJyNuRV+plehoSxfuoirHheJjY2lRMlSTLN3oHyFigCcPX2S/Xt24e31iMjISLbu2o+BoZFcGvv37ubEsSP4fPzMPnvperqf2UL2E5VuQRCEv8SdWzfp9G8XKlSsRGJiEs7LljBoQD/2HzyCiqoqALGxsZhb1sbcsjbLly5ON53Tp04wa/o07IaPpEbNmiQmJeHv6/srL+WXKlS4CMNHjqHUP/8gk8k4fPAAw+2GsGufG+XK6WV39n6JrJRBu/YdGWw3TDpGWUUlu7L7S8TERGNgYECbtu0YNdxObl9sbCzeXp4MsB2EgYEh7969Y57jHIbbDWLH7v3ZlOOf79bNG3T6tysVKlUiKTGJ5csWY9u/L/sPuaP68RkDf9+98sl/Dx+wd89O9PUN5MLv37vL4IH96NNvIBMmTyVP7tz4+HiTK5fokPqnevcukn69ulC1Wk2WrViNuoYmzwOfUSBVhTk2JgbjKqY0smrKnJnT0k0nNjYGM/PamJnXZoVT+p/ZQs4gKt2CIAh/iRWua+Vez5zjSMM65nh6PqJqteoAdO3eE4BbN66nm0ZiYiIL5jowYvRYbNq1l8LLli33k3Kd/erVbyD3eujwkezeuYMH9+/9NZXurJSBsrIy2jo62ZG9bGFZu26GvR3y58+P69oNcmETJ0+la+cOhAQHU7RYsV+RxV/OZfU6udf2c+ZSv7YZXqmeMfD33SsA0R8+MHH8WKbPnM0aVxe5fQvmOfJv1+707T9ACkvdO0D482xav5bChYsyfZaDFFa8RAm5OM2tWwNIPYzS06Vbymf27S96jwg5j/gJTRAE4S8VFfUegIIFC2b5GG8vT16FhpIrlwKd29vQuF5thtj2x8/38c/KZo6SlJTEsaPuxMREY2xcJbuzky0yKoOj7oepa1GTtq1bsmzJImJiYrIxlzlPVFQUCgoKf1XXz6j3Kc+YAl88Y/7Ge8Vhtj116tSllpm5XHh4eDgPH9xHU0uLHl07U7+OOX16duPO7VvZlFPhV7h04RxGFSowYcwImtSzoGvHtrjt253d2RJ+ItHSLQiC8BdKTk5m4VwHTKqYUk5PP8vHvXj+HIBVK1cwetx4ihUrzpZNG+jfuwcH3I9TsKD6T8px9vJ97EP3Lp2Jj49DVVWVJU4rKFvuz23dT09mZdCseUuKFitGoUKFePzYh6WLFxIQ8JQly5yzOdc5Q1xcHEsXL6RZ8xaoqalld3Z+ieTkZObPS3nG6KV6xvyN98qxo+54eXmyfdfeNPuCXnx8pq5wZtTYcRgYGnHk4AEG9O3FvoNH+Ocf3V+cW+FXCHrxnH27d9Kley969x3Ao0f/sWieA3nzKtKyVZvszp7wE4hKtyAIwl/IcbY9fn6+bNi8/ZuOk8mSAeg3YCCNGlsBMHO2I1YN63LqxHHad+z8w/OaE+jqlmb3vgNERb3n1MkTTJ00nnUbt/5VFe/MyqB9x05SPD19A7S1dRjQtxfPAwMpWapUNuY6+yUkJDB21HBkMhmTp83M7uz8Mg6zZ+Lv68vGLfLPmL/tXnkZEsL8uXNwXbMeJSWlNPuTk1Oeqe07dqKNTTsAjIzKc/36VQ7s38fwkaN/aX6FXyM5WYZRhQoMGTYSAAOj8jzx82X/np2i0v2HEt3LBUEQ/jJz59hz6cJ51qzfTOEiRb7p2E/jMMukGsOtqKhIiRIleRkS8kPzmZPkVVSk1D//UL5CRYaPHI2+gSHbtm7O7mz9Ut9SBpUqGwMQGPjsV2Yxx0lISGDs6BGEBAfjunb9X9PK7TDbnosXzrNmw6avPmP+9HvF0/MRb8LD6dyhLaaVy2NauTy3bt5g+7YtmFYuj5aWNgBlypaVO650mbK8DAnOjiwLv4C2jjZlysj/zXXLlPmjP0f/dqKlWxAE4S8hk8mY5zCLs2dOs2bD5jSTtmSFUfmKKCoqEvD0KVVMqwIpFYvgoKA/dnKo9CQnJ5MQH5/d2chWmZWBj7cXADp/2WRZqX2qcAc+e8baDZtRV9fI7iz9dDKZDMc5szh75hTrNm6hRImSXz3mT79Xataqxd4Dh+XCpk+eiG6ZMvTu258SJUuiU6gQAU+fysV5FhCAZe06vzKrwi9kbGLKs4AAubDAZwEU+Ys+R/82otIt/HbOnz9P/fr1efv2Lerq6r/8/NHR0XTv3p1Tp07x/v37bMvH9/Lw8MDW1hZvb29atGjBiBEjsrU8hV/HcbY9x44eYYnTCvLly0dY2GsA1NTyS2vBhoW9JjwsjMDAQAB8fR+TL18+ihQtSsGC6qipqdG+Y2dWrVxOkSJFKFqsGJs2rAegcZOm2XNhP9myJYuwrF2HIkWLEv3hA0fdj3Dr5o00MzX/yTIrg+eBgRx1P0ztOnUpqK6Or48PC+Y7UrVadfQNDLM76z9N9IcP0vsEIOjFC7y9vChYsCDaOjqMGTkMLy9Plq9wJTkpibDXKe+3ggULkldRMbuy/VM5zJrJsaNHWLp8JflU80nXrJY/5RnzN94r+fKpyY1pB1BRVUW9oLoU3qt3X1xWLMfAwBADQyMOHXQj4OkTFi1xyo4sC7/Av9160rdnFzasdaVRk6Y8+u8hbnv3MCnVEJTIyAhehoQQ9voVAM8CUn6Y0dLWRls75UeqT5/Zz5+n9BTx83uMqurnz2wh51CQyWSy7M6EIHzp6tWrWFpa0rRpU9zd3eX2xcfH8+bNGwoXLoyCgsIvz5uLiwvTp0/n7NmzaGtrExMTQ5kyZbh79y4mJia/PD/fqmbNmujr6+Po6IiamhqqqqrZVp6xib/0dL+F5J/4SK5SMf0vtTNnO9CqTVsAVq1YjqvLikzjJCQksHzpYtwPHyIuLpaKlYwZO2EiZX/S8lm5suF9ntr0qZO4ce0ar1+/Qi1/fvT1Dejdtz9m5hbZmq9fKbMyeBkSwqQJY/Hz9SUmJpoiRYrSoGEj+tsO/qO7U9+8cZ1+vXukCW/V2gbbIXY0b9Iw3ePWbthM9Ro1f3b2soVxBYN0w+1nO9Lapu1fe698qW+v7hgYGDJu4mQpbN2a1ezauY3IyEgMDAwZMWoMplWrZWMuBYD4xOSflvalC+dY4bSE54HPKFa8BF2698SmXUdp/+GDbthPm5TmuP62QxgwyA6A1S7OrFmV9jN7mr0D1q1tfkq+FfOI0clfUs5CM7aodAs5Ur9+/VBTU2PdunX4+PhQ7Bu62yQlJaGgoECuXFl/KMhkMpKSksiT5+vvmjFjxnDz5k0uXLgAQEBAAKVLl/5tKt3a2tosWLCA3r17Z3dWRKU7HT+z0v27yu5KtyAIgvB3+pmV7t+VqHSnlZVKtyg1IceJiopi165dDBo0iBYtWrBx40a5/efPn0dBQYGIiAgANm7ciLq6OocOHaJ8+fIoKSkRGBhIXFwc48ePp2TJkigpKVGuXDnWrVsnl8axY8eoWrUqSkpKXL58GX9/f1q3bk3hwoVRU1OjevXqnD59Wjp3vXr1WLRoERcvXkRBQYF69epRunRpAKpUqSKFpeft27d07doVHR0dVFRU0NPTY8OGDUBKxV1BQYGdO3dibm6OsrIyFStWlCr2n1y4cIEaNWqgpKRE0aJFmTBhAomJn2uucXFxDBs2jEKFCqGsrIylpSU3b96UO0d4eDh9+vRBQUGBjRs3ZlieJ06cwMjICDU1NZo2bUpIqsk9EhMTGTZsGOrq6mhpaTF+/Hh69uxJmzZtvulvLQiCIAiCIAh/OlHpFnKc3bt3Y2hoiIGBAd26dWP9+vV8rUNGdHQ08+bNY+3atTx69IhChQrRo0cPduzYgZOTE15eXri6uqbpvjZhwgTmzp2Ll5cXlStXJioqiubNm3PmzBnu3r1L06ZNsba2lsbt7d+/n/79+2NmZkZISAj79+/nxo0bAJw+fVoKS8/UqVPx9PTk2LFjeHl54eLigra2tlycsWPHMnr0aO7evYuZmRnW1taEh4cDEBQURPPmzalevTr379/HxcWFdevWMXv2bOn4cePGsW/fPjZt2sSdO3coV64cVlZWvHnzhpIlSxISEkKBAgVYunQpISEhdOrUifRER0ezcOFCtmzZwsWLFwkMDGTMmDHS/nnz5rFt2zY2bNiAh4cH796948CBA5n+jQRBEARBEAThbyQmUhNynHXr1tGtWzcAmjZtSmRkJBcuXMiwBRlSxpiuXLkSY+OUpUceP37M7t27OXXqFI0aNQKgTJkyaY6zt7encePG0mtNTU0pDYBZs2bh5ubGoUOHsLOzQ1NTE1VVVRQVFSnycRmUd+/eAaClpSWFpScwMJAqVapQrVrKGC1dXd00cezs7GjXLmWdThcXF44fP866desYN24cK1eupGTJkjg7O6OgoIChoSHBwcGMHz+eadOmERMTg4uLCxs3bqRZs2YArFmzhlOnTrFu3TrGjh1LkSJFUFBQoGDBgpnmNSEhgVWrVlH24xImdnZ22NvbS/uXL1/OxIkTsbFJGS/k7OzM0aNHM0xPEARBEARBEP5WoqVbyFF8fHy4ceMG//77LwB58uShU6dOUrfwjCgqKlK5cmXp9b1798idOzd169bN9LhPFeBPoqKiGDNmDEZGRqirp8zU7OXlJTdD7fcaNGgQO3fuxMTEhHHjxnHlypU0cczMzKT/58mTh2rVquHllbKcipeXF2ZmZnKTnVlYWBAVFcWLFy/w9/cnISEBC4vPkzvlzZuXGjVqSGlklaqqqlThBihatCivXqXMnhkZGUloaCg1atSQ9ufOnZuqVatmmmZcXBzv3r2T2+Li4r4pX4IgCIIgCILwuxGVbiFHWbduHYmJiRQrVow8efKQJ08eXFxc2LdvH5GRkRkep6KiIlcZVVFRydL58uXLJ/d6zJgxuLm54eDgwKVLl7h37x6VKlUi/gesx9usWTOePXvGyJEjCQ4OpmHDhnJdtnOSvHnzyr1WUFD4ahf/r3F0dKRgwYJy24J5jv9XmoIgCIIgCIKQ04lKt5BjJCYmsnnzZhYtWsS9e/ek7f79+xQrVowdO3ZkOa1KlSqRnJycZiKyr/Hw8KBXr17Y2NhQqVIlihQpQkBAQKbHKH5cbzUpKemr6evo6NCzZ0+2bt3K0qVLWb16tdz+a9euSf9PTEzk9u3bGBkZAWBkZMTVq1flKr8eHh7kz5+fEiVKULZsWRQVFfHw8JD2JyQkcPPmTcqXL//VvGVVwYIFKVy4sDRBG6Rc+507dzI9buLEiURGRsptY8dP/GH5+pNFRLylQR1zgoNeZHdWfoplSxYx12HW/51ORMRb6tU2I+g3LKfdu3YwdLDtD0/3dy4Tfz8/GjeoQ3R09A9N93cuE49LF+nYtjXJyT92RmVRJukT5SKkJyLiLU3qWRAcFJTdWfkpli9dxALH2V+PKHwTUekWcowjR47w9u1b+vbtS8WKFeW2du3afbWLeWq6urr07NmTPn36cODAAZ4+fcr58+fZvXt3psfp6emxf/9+qbLfpUuXr35gFSpUCBUVFY4fP05oaGiGLfLTpk3j4MGD+Pn58ejRI44cOSJVqD9ZsWIFbm5ueHt7M2TIEN6+fUufPn0AGDx4MM+fP2fo0KF4e3tz8OBBpk+fzqhRo8iVKxf58uVj0KBBjB07luPHj+Pp6Un//v2Jjo6mb9++WS67rBg6dCiOjo4cPHgQHx8fhg8fztu3bzNd51tJSYkCBQrIbUpKSj80X3+qtatXUa9+Q4oVL4GPtzcTxo6iacN61KpqTFvr5mzfslku/plTJ7Ht14f6tc2wrFmVHl07ccXjUqbnWLViOVUqGqbZzKpXkYu3bcsm2rRsSq2qxjRtWI+F8xzlhgkcPXKYpg3rUce8Bgvny/dkCA56QesWVkRFRcmF9+jVhyMHD/Di+fPvKR7JGtdV1K/fkOLFSwAQEhyM3aAB1KxqTL3aZixeOE9utv/0DBtii1XDelSvUomGdS2ZNGEsr16FSvtv3rjOcLtBNKxrSc1qJnRs2xr3I4fk0rh6xQPr5laY1zBl0oSxJKTqKfP+/Xusm1sRHCz/Zc3Gph1eXo+4c/vW/1UGX0pdJhERbxk0oC+N6llSzaQiTRrWxWG2fZq/R3ouXjhP184dqGFaGUuz6owYOlhu//VrV+nRtTNm1avQoI4FSxYtkCvroKAX9O7RlZrVTOjdo2uaSozd4IGcPnlCLqxsuXJUrmzClk0b/o8SSOvL+2Suw2w6d2hLNZOKdGzb+qvHR0ZE4DhnFq1aWFHDtDJWDesx12E279+/l+IcdNuPcQWDdLdPk2N6eXnSsV0balWrwtDBtkR+XEECUn507dyhLQ8fPJA7t0XtOuTJkyfNPff/Sl0mPt7ejB8ziiYN61LDtDJtrJuxbcumLKXztfvkk4iItzRuUAfjCgbSvCiQs8oE0t4rX8t/egICnjLcbhB1LWpiXsOUnt3+5cb1a3Jx0rtPjh11l/bntHL5221Y40qd+g0oVry4FHb4oBv/tm+NRXVjmtSzYJ6DfbrHPg98Rl2zqtS3rJHu/vRERLylReN6VDc24n2q++32zRtUNzZKs4WFvZbiHHM/TIsm9WlgWZMlC+bKpRscFEQ766ZpPgO69+yD++EDvHjx/30mC/JEpVvIMdatW0ejRo0oWLBgmn3t2rXj1q1bPPjiQyUzLi4utG/fnsGDB2NoaEj//v358OFDpscsXrwYDQ0NzM3Nsba2xsrKClNT00yPyZMnD05OTri6ulKsWDFat07/S5uioiITJ06kcuXK1KlTh9y5c7Nz5065OHPnzmXu3LkYGxtz+fJlDh06JM1wXrx4cY4ePcqNGzcwNjbG1taWvn37MmXKFLnj27VrR/fu3TE1NcXPz48TJ06goaGRlSLLsvHjx/Pvv//So0cPzMzMUFNTw8rKCmVl5R96HgFiYmI4uH8fbdqmTLDn5fkITU0tZs+dz94DR+g7wJblyxazc/tW6Zg7t29Ry9wc55Wr2bZ7H9Wr12T4kMF4e3lmeJ4evftw6vwlua1M2XI0bmIlxTnmfhinJYsYOGgI+w+5M91+NieOH2X5ssVAyrJ49tOnMHLMOFxc13H0yGEunj8nHe8w255hI0anWUVAQ0MDMwtL9uzKem+W9MrpwP692LRrD6T0vrAbPJCEhAQ2bd3JbIe5HDrgxkpnp0zTqV6jFgsWL+Wg+3EWLXXixfPnjBk5XNp//95d9PQNWLTUib37D9Hapi1TJo7nwsfrTE5OZuK40XTo2JnN23fh+eg/9u75/GPfsiUL6dCxM8WKFZc7b15FRZq3aMn2rfI/oPw/viyTXAq5qN+gIcucXTh09ASz5szl+rUrzJ45PdN0Tp88weQJ42ht05bd+w+yacsOmrVoKe338fZmiG1/zC0s2bX3APMXLeHC+bMsW7JIirNo/jwKFSrM7n0H0NbRYfGC+dK+48eOkktBgUap7rVPWtu0Zc+uHV/9sSSrviyTT9rYtMOqWfMspfHq9Stev3rFqDHj2XfgCPZzHPG4fIkZUydLcayaNefM+ctym7mFJdWq10BLSwuAmdOmUKNmLXbu3U9U1HvWrnGVjt+8cT0mVUyplGqukk9atWnLjq1bvufy0/VlmXh6/oemliYOcxew/6A7/QbY4rR0MTu2bc00na/dJ6nNmDoZfX2DNOE5pUwg43sls/ynZ+hgW5KSklizfhM79uzHwMCQoUNsCXv9Wi6e/WxHufulQcNG0r6cVC5/u9iYGA4e2Edrm3ZS2LbNG3FZvpSeffqza/9hVqxeTy1zyzTHJiYkMHnCGExMM58D50uzZ0ylnL5+hvv3HjzKsTMXpU1TM+UZE/H2LXNmTmX4qLEsX7WWY+6HuXTh82fyPIeZDBk+Ks1nsrqGBrXMLdm3W/47qvB/kgmCkO2ePn0qA2R3797N7qx8l6SkJJm+vr5sypQp33RcTILYvtw+xCfLbQeOHJXVrFUrTXjqbcq0GbKu3bpnGqdps+ayxcuWZxon9XbngadMX19fdunqDSls6vQZsm7de8jFs5/jIOvYqbPsQ3yy7PrtezIzM3Npn93Q4bKVq9bIPsQny/YeOCTrP9A2w/Pt3LNfVrt2nXT3ZaXcDh05JqtZq5b0+tTZ8zJDQ0PZi5DXUtimrdtlpqamsncf4rL89zh24rTMwMBA9i46PsM4ffv1l40dP0EWkyCTvXgZJtPX15dFRMXKYhJkMoe582VTp82QxSTIZFdv3Ja1sbGRRcUmppvO5as3ZBUqVJC9fR/zQ+6lL8skvW3thk2y2nXqZLj/fUyCzLJ2bdm2nbszjDNvwSKZjU1b+XI7eUZWqVIlWVjEe1lMgkzWtGkz2emzF6S/TdNmzWUxCTJZaHikrFGjxrKngcHppv3uQ5ysYsWKsvOXrvz0Mlm81Elmbd3qu9I9eOSorEKFCrL3MQnp7g8KDZeVL19BtnufmxRWuXJlmaePX8q9uWWbrG+//rKYBJnM90mgrFHjJlLZfbk9eRYk09fXlz32f/bL7pOpH58x/8998mnbtGWbrEvXbrLzl67I9PX1ZaHhkTmuTDIrl8zy/+UW/Cpcpq+vL/O4dlMKC4t4L9PX15edu+ghhenr68vcj5/KMJ2cVC5/2xYZkyS37T90VFazZi3p9fPQN7JKlSvLTp2/nCbul9tsh3my4SNHy7bu3CszrVr1q/EjY5Jk6zZtlXXu0lV2+ryHTF9fX/Yi9K207+zFq2nCUm9XbtyV1TIzl14Pthsmc3ZZLYuMSZLt3n9I1m+AbYbn3b57n8yydp1092X33yQnblkhWroFQfhmz549Y82aNTx+/JiHDx8yaNAgnj59SpcuXbI7a3+cu7dvY1S+QqZxot6/p0A6PUQ+SU5OJvrDh3R7kWTEbf8e/tHVxbTq5xn+jU2q4On5iP8epvQ4efH8OR4XL2JZuw4ApUr9Q2xsDN5enkRGRvDo0UP0DPR5FxmJy3InJkyamuH5KlaqTGjoy+8et37nzi3Kpyqn+/fuoaenj9bHniIA5haWREVF4efvl6U0IyMicHc/jLFJlTSTC6b2/v17ChZUB1KWHdTR0eGqx2ViYmK4e+c2egYGJCQkMMd+BlOn25M7d+500ylfoSJJSUk8fHA/S/n7mi/L5EuvXoVy9vQpqlarnmEcL09PXoWGkitXLjq2a0PDupYMHtgPX9/HUpz4+HgUvxgqoqysTFxcHJ6PHgGgb2DItWtXSU5O5qqHh9RKuGThfDr924UiRYume/68iooYGBr9sG73XyuT7xX1Pgo1NTXy5El/JdbDhw6goqJM4yZNpTB9A0OuXr1CYmIi169dQ+9jmcyyn87I0WPJl08t3bSKFiuGlpb2Ly2T91Gf7/H0ZOU+gZRx+q4uK5ntMI9cudJ+Bc0pZQLpl8vX8v8ldXUNdEuX5vDBA0RHR5OYmMje3bvQ1NJKk7bD7JnUtahJl07tcdu/V27+lpxULn+7u3duY5jqb3f96hVkycm8fhVKhzYtaNG4HhPHjuTlyxC5425ev8bpUycYN2lals/1xN+Pta4rmTl7bqb3W9dONjRtWJshA/tw/+7n+XVK/vMPcbEx+Hz8TPZ89B/l9Ax49y6SVSucGDtxSoZpVqhYmVehL//YcevZQVS6BUH4Zrly5WLjxo1Ur14dCwsLHj58yOnTp9OMURf+fyEhwejoFMpw/727dzh54hjt2nfMMM7mjeuJjo6miVWzLJ0zLi6OY0eO0KatfLfKZi2sGTRkKL27d6W6SUWsmzWmavUa9B2QMgFYgYIFsZ8zl6mTxtO9c0daWrfG3KI2ixfOp1OXlHG8ndvb0L6NNadOHpdLW6dQyjUGBwdnKY9fCgkOltIACA8LQ1NLWy6O1sfX4WHy3Tq/tGTRAmpWM6GORU1ehoSwzHllhnFPHD/Ko/8e0tqmLZAy0//8RUtZvWolbVu3wNDQiDY27Vi/djXVa9REUUmJnl0706qFVZruuioqKqip5SfkO8vgS1+WySfjx4yiZlVjGtevQ758+ZhhPyfDND6N6Vu1wpkBAwexfOUqChQoSL9e3aVxpeYWlty/d5dj7kdISkoiNDQUV5cVAFIX2lFjx/P06ROaNW7As8BnjBo7ntu3buLj7YV1qzaMHTWc5lYNmTVzmtwYeEi5N773vvhSRmXy/3j79g2rV62kXYdOGcY5sG8vzZq3lBuCM91+NqdPnqBl08bkzZuXvv0HplTOlZWpULEStv370rJpY5yXLUmTnk6hQoSE/JoyuXf3DiePH6Ndh4yfMVm5T+Lj45kwdhQjx4ylaLFi6aaTU8oE0pZLVvL/JQUFBVav3Yi3tyfmNUypYVqZLZs2sNJ1rdwPpYPthrFg0VJWrd1Ao8ZNcJg1k+3bPncLz0nl8rd7GRKMjo6O9DroxQuSk2VsWLuaUWMnMnfRUiIjI7Ab2JeEhJRnWUTEW2ZOm8T0WQ5punJnJD4+nikTxjBs5FiKFE3/ftPS0WHilBnMW+TEvEVOFC5clIH9euLtlfJjZ4ECBZk+y5HpUybQq2snWli3xszCkmWL5tOhcxeCg17QtWNbOrW15swp+Tk1tD9+7wgJEZXuHyX9n2QFQfildHV1/+8luX6lkiVLys2SLvw8cbGxKBVKf8I5P9/HjBw2hAGDhmBmkXb8GKSMw3Z1WcESpxVofhxL+jVnz5wiOvoD1q3ayIXfunGd9WtWM3HKNCpVrszzwEAWzHVg9aqVDLBNmTCpQaPGNGjU+PMxN2/g+9iH8ZOm0Kp5ExznL0JbW5vu/3akatXqUp4+TaoXGxubpTx+KTY2jkKKP2Zivl59+mLTrj0hwcGsWunMlInjWb7SNc1EgTeuX2PalElMnzmbcuX0pHDTqtXYvnuf9Dog4ClHDh1k1143evfsRtduPbCoXYd2bVpStVo19A0MpbhKykrExsb8kOvIqEzGjp+I7eAhPAsIYNnSxSyc58jkaTPSTUP2cSLJfgNspTHX9nMcadKgDidPHqdDx86YW1gycvQ4ZttPZ/LEceRVVGTAwMHcuX0LhY+tM4ULF8Z55edxqPHx8Qwa0JfZDnNZ7eqCar58HDxynMED+7Fnzy66dO0uxVVW+vll8r2ioqKwGzSQMmXLYjvYLt049+/d5ckTf+bMnS8XXq6cHus3ff7hJSLiLS4rlrNh0zbmOszCpEoVFi9bTtdO7alY2Zh69RtIcZWVlIiJ+fll4uv7mBFDBzNw0BDMM3jGQNbuk2VLFlG6bFlaWmc8WV1OKRNIWy5Zyf+XZDIZDrNnoqmpxYbN21BWVmb/3j0MG2LL9l17pR9UBw4aIh1jZFSemJgYNm1YR9duPYCcVS5/u7jYWBRT/RgjkyWTmJjAmPGTqWVuAcCcuYto2rA2t27cwMzCkjkzp2HVrAWmVTPuVfSlFcsWo1u6DM1btsowjq5uaXR1S0uvjU2q8OJFINu3bMLeIeV5U79hY+o3/PyZfPvWDXx9HzN2whRsrK2YPXchWto69OrakSqm1aTPZOX/8zNZSEu0dAuCIORg6hoavHuXdkZ8f38/BvbtTbv2Hek/cFC6xx4/6o799KnMX7iEWmbmWT7ngX17qV2nnlzXbICVzk60sG5F2/Yd0NM3oEGjxtgNH8mGtavTneU/Pj4ex9n2TJk+k+eBgSQlJVGteg10S5eh1D+6PHz4uRv1u4+z/n/vpH8aGupyswhraWvzJjxMLk74x9da2jpkRkNDE13d0piZWzB/4RIuXbzAg/v35OLcunmDYUMGMXbcRKxbt8k0vVkzpjF67HiSZTK8vTxpbNUULS0tqlWrzq1bN+XivouMREND8ytXmzVflskn2jo6lC5TlnoNGjJ1+kx279rB69ev0k1D+2OLTpmyZaUwRUVFipcoycuQz90ne/TqzeVrtzh++hwXLl+jfoOGAJQoIT/r8ydrV6/CzNyC8hUqcuvmDRo1tiJv3rw0bNSEWzduyMWN/AVl8j0+fIhi8MB+5MuXjyVOKzIcgrB/3x4MDI0oX6FipuktnDeXrt17UrhIEW7duEHjJk1RVVWldt263Lr5RZm8i0RT8+eWib+fHwP69qJdh07Sj2oZycp9cvP6NU6dOI5p5fKYVi7PgL69AKhnWSvDCQ6zq0wgbbl8T/5vXL/GxQvnmbdwCVVMq2JUvgKTp81AWUmZQwcOZHjuSpWNCX35kvgven18kp3l8rcrqKEhN4P4p8+T0qnufQ1NTdTVNXj5MqWHwa2b19m2eQO1TCtSy7Qis2dMIer9e2qZVuSQ2z7Sc/Pmdc6cOiEdM3hAbwAa1zPHdeXyDPNXoWJlXjwPTHdffHw88+bYM2nqDJ4/DyQpMYmq1Wqgq1uaUv/oSkPHIOW+AX7Ys1cQLd2CIAg5mqGhEe5HDsuF+fv5MqBPL6xbt8Fu+Mh0jzt29Agzp07GccFiatetl+XzBb14wc0b11m6PG2X6tjYmDTjynLlTnmdXk+NNa4umFtaYlS+At5eniQlfl7LPjExkeSkzxV1Pz9f8uTJS9lULcbfwtCoPO6HPy+NY2xiwtrVqwgPD5dmi7525QpqamqULVsuy+l++jEh9ZffmzeuM3SwLSNGjaF9x4y7FENKhatgQXXqNWgo/bDwaSbulDL4XCbPAwOJi4vD0Kh8lvOXmS/LJD2f/m4ZfbkvX6EiioqKBAQ8lcb3JyQkEBwcRNEvujwqKChQqFBhIOX+K1KkaLrzETzx9+eY+xF27TsAQHJSEomJCQAkJiaQnJwkF9/Pzzfdmc2/R1bKJCuioqIYNKAvioqKLHN2yXD5w+gPHzh5/BjDRozONL3r167y5Ik/9nNSltlLTk76fJ8kyM/cHhcXx/PA5z/1PvHz86V/n560atWGoRk8Y1LLyn2yaOlyYuM+t5o9+u8h06dMYsPmbZQoWSpNmtlZJpC2XL41/4DUwpzri14yCrkUkMkyXo7Ux9uLAgUKoqiomGZfdpfL387A0Ihj7p8/k41NUpbVfBbwlMKFiwAQGRlBRMRbihZNWaVi/eYdJKV61l88f5bNG9aydtN2ChUunO555i9aJtfK7PnoP2ZNn8zqDVsoUSL9+w3gsY9Xhj8sr1vtgplFbQyNKuDj5SmXp8TERLlnr//Hz+Qy3/B5KWROtHQLgiDkYGYWljzx95MqbH6+j+nfpydm5hZ069mLsLDXhIW95s2bN9Ixx9wPM23SBEaNHU+lypWlOKnXEd65fSsDP7bUpHbAbR/aOjpYfJwcLbU6deuzZ9cOjh91J+jFC65d8cBluRN16tZPMzmYv78fJ48fZfCQYQDoli5DrlwKuO3by6UL5wl4+oQKFStJ8e/evoVp1arfveycuYUl/qnKyczckjJlyzF5wjh8vL3xuHwJ5+VL6fRvV+mL7MMHD2jdsimhoSnrcD94cJ8d27bi7eVFcHAQ169dZcLYUZQsWUr6YnXj+jXsBg+kS7fuNGrchLDXrwl7/Vpu3dxPwsPDWePqwoTJKZPVFChYkDJlyrJtyybu37vL9WtXManyeUnCO7dvUaJkSUqWyvgL1f9TJpcuXuCA2z58fR8TFPSCixfOM3vmdEyqmErrEH9ZJmpqanTo2BmXFcu54nGZgKdPmDNrBgBNrD5PCrZx/Vp8H/vg5+eLq8sK1q9dw/hJU9LcFzKZDPsZUxkzfiKqqqoAmFQxZd/ePTzx9+fwoYNyZRIU9IJXoaHf1FPjW8oEIPDZM7y9vAgLe01sXCzeXl54e3lJY8tDQ0Np3bKptA5yVFQUtv37EBMTzQz7OXyIipLug9RfYgGOHz9KUlISLawz7iIaFxeH4xx7ps2YJf2oZVLFlF07tuHj7c3p0ycxSbV05YP791BUzEtlY5OfUia+vo/p17sHZuYWdO/ZW7q21M+Y77lPSpYqhZ6evrR9uudKlykr/TCWU8okvXLJSv6/LBdjExMKFCjAlEkT8PH2JiDgKYsXziPoRRC169QD4Py5s+zfuwdf38cEPnvG7p3bWbvGlX+7dkuTp5xQLn87M/OPn8kfW4L/0S1N3foNWTTPgfv37uLn+5gZUybyj25pqlVPWYu7dJmylNPTlzadQoVRyJWLcnr6FCiQMrb/3JlTtG/9ednCEiVLyR0j3W+ly0pdwLdv3cSFc2d4HvgMP9/HLJrvwK0b1+nQOe2ktk/8/Th94hi2g4em5Lt0GRRyKXBw/14uXzzPs6dPKF/h82fyvTu3MTH9/s9kIS3R0i0IgpCD6ekbYGhUnpMnjtG+Y2dOnzzB2zdvcD9yCPcjn1thihYrxtGTZwHYt2c3iYmJOM62x3G2vRTHunUb7OfMBVLW73z+RRe05ORkDh9wo1Vrm3Rn2O43cBAKCgqsXL6MV69C0dDQpE69+tgNGyEXTyaTMXvGNEaPnYDKx4qVsrIyM2c74jhnFgnx8YyfNFXuF/4Tx48ycFD6Y2K/pZxOnDhGh46dyZ07N8tXrmKO/Qx6dO2EiooK1q1tGGw3TDomNjaGgKdPpVZWFWVlzpw+icuK5cTERKf8+GBZm/kDB0sV9cMHDxAbE8O6Na6sS7VWbrXqNVi3UX493PmOc+jRs4/U+gukTDQ3eTzbt26hZ+++VKz0eW3dY0fdadsu48mq/t8yUVJSYv/ePSyc50h8fDyFixSlYaPG9Ok3IMMyARg5Zhy58+Rh8sRxxMXGUqmyMWvWb5KbCOrypYusXb2K+Ph49A0MWea8AsvaddPkae+eXWhpaVO3Xn0pzHbIUCaOG023fztgYVmbTv92lfYdP+qOmblFmnXNf1SZAMycPkWuS26n9m0AOHryDMWLlyAxMYGAp0+lceVeno+kGeZbNmssl/6nYz45sH8fDRs1pkCBAhnmadVKZ2rXqYdhqokox0+cwoRxo+nTsyvNW1jTqPHnlv5jR91p3tIaFRWV7ywFeV+WifSMOXxIrqW3WLHiHDuV8oz53vskq7K7TCD9e+VrviwXDQ1NVrquZfmypfTv05PExATKltNjmfMKDAxT5nLImycPO3dsY8E8B2QyKFWqFGPGTUh3csycUC5/u3J6+hgaluf0ieO0/Th54ozZc1mywJGRdrbkyqVAlarVcXJZQ55MVr34UlRUFM8Cnn5TXhITEli6aD6vX4WirKxMOT0DVriup1qNmnLxZDIZDvbTGTFmvNxn8nR7B+Y7ziI+PoGxE6fIfSafPH6UAbZDEH4cBdnvNHuTIAh/lNjEr8f52ySn80i+dOE8SxYtYO+Bw1lapuZ3c/nSRRYvmMfu/QfTXXLpy66ZGbl44TxLFs5n38Ejv105ferOe8j9BPnz5/9h6f7OZZIQH491cysc5y+kimnVH5bu71wmb9++oXWLZmzfvZcSJUr+sHRFmaRPlIsQn5h2GMDli+dxWrKQnfsO/Xb3RVZ4XL7IskXz2b7nQLqfyYp5/rxr/n8pZ6EZW7R0C4Ig5HC169YjMPAZr0JDM1zP+HcWExPNzNkOGa5xnFV16tYj8FnAb1lOYa9fM9th3g+tcMPvXSYhISH0HTDwh1a44fcuk+CgICZNnf7DK1GiTNInykVIj2Wdj5/Jr0IpUuT3ui+yIjYmhmkz5/zfn8mCPNHSLQhCthEt3Wml19L9t8tqS7cgCIIg/EjptXT/7URLd1pZaekWpSYIgiAIgiAIgiAIP4modAuCIAiCIAiCIAjCTyIq3YIgCIIgCIIgCILwk4gR8oIgCDmJGNKdlhjSLQiCIGQDMX5Z+FHEnSQIgiAIgiAIgiAIP4modAuCIAiCIAiCIAjCTyIq3YIgCIIgCIIgCILwk4gx3YIgCH+JdWtdOXv6FAFPn6CkrIyxcRWGjxyNbukyAERGRuCyYjnXrnrwMiQEDQ1N6jVoyGC74eTPn19K5/q1q6x0Xoaf72NUVFSxbtWGIcNGkCfPn/mRcvvWTTauX4eX53+8fv2aJU4raNCwUXZn65f6WhmcPnWSPbt34vXoEZGREezaewBDI6NszPHPt3vndnbv2kFwUBAAZcvpMXDQYCxr1wVg7+5dHDt6BC/PR3z48IFLV29SoECB7MxythDvn8zLICEhAWenpVy+dJEXL56TX02NmmbmDB85mkKFCmdzzoXs5LJiOatWOsuF6ZYuzcEjx7MpR7/eujWunDl1kqcfv7eYmFRhxKgx0veWoKAXNG/SMN1jFyxeShOrZr8yu5kSLd2CIAh/iTu3btKpcxc2b9uFy+r1JCYmMmhgP2KiowF4/eoVr1+/YuTocexxO8zM2Y5c8bjEzOmTpTR8fLwZOngA5ha12bHHjbkLFnPh/Fmcli7Krsv66WJiojEwMGDilOnZnZVs87UyiImJpkoVU0aMGvOLc5Z9ChUuwvCRY9ixZz/bd++jRs1aDLcbgp+fLwCxsTGYW9Smb3/bbM5p9hLvn8zLIDY2Fm8vTwbYDmLXnv0sXuZMwNOnDLcblA05FXKasuX0OHP+srRt3LI9u7P0S926eYNO/3Zly47duK7ZQGJiIrb9+xL98XtLkSJF5crnzPnLDBoyFFVVVSwt62Rz7uX9mc0SgiAIQhorVq2Vez1ztiMN65rj6fmIqtWqU05Pn0VLlkv7S5Yshd3QkUyeOJbExETy5MnDyeNH0dM3YOCgIQCUKvUPw0eNYfyYkQwcNIR8+dR+6TX9Cpa160qtl3+rr5WBdas2QEqrw9+iXv0Gcq+HDh/J7p07eHD/HuXK6dGtRy8Abt64ng25yznE+yfzMsifPz+uazfIhU2cPJWunTsQEhxM0WLFfkUWhRwqT+7caOvoZHc2so3L6nVyr+3nzKV+bTO8Pn5vyZ1O+Zw9c5omTZuhmi/fr8zqV4mWbkEQhL9UVNR7AAoWLJhhnPdR78mnpiZ1HY+Pj0dJSUkujpKSMnFxcXh5Pvp5mRWEHCwpKYljR92JiYnG2LhKdmdH+M1FRUWhoKBA/r9wOIIg71ngMxrVs6S5VUMmjhtNSHBwdmcpW0W9T/neUiCD7y2ej/7Dx9sLm7btf2W2skS0dAuCIPyFkpOTWTjPAZMqppTT0083ztu3b1nj6kK79h2lMHMLS7Zv3cyxo0doYtWM8LAwVq9aCcDr169/Sd4FIafwfexD9y6diY+PQ1VVlSVOKyhbrlx2Z0v4jcXFxbF08UKaNW+Bmtqf13NIyLpKlSsza44jurqlef36Na4uK+jdoyv7Dh7+I3uVfU1ycjLzP35v0cvge4vbvr2UKVMWkyqmvzh3XydaugVBEP5CjnPs8fPzZe78xenuj4qKYtiQgZQpU5aBg+ykcDNzS0aMGovDrBnUrFqZ1tZNsaydMm4qVy7xkSL8XXR1S7N73wG27thNh07/MnXSePz9/LI7W8JvKiEhgbGjhiOTyZg8bWZ2Z0fIZpa169LEqhn6BoZYWNbG2WU179+/48TxY9mdtWzhMHsm/r6+zF+4JN39sbGxHDt6hDbtcl4rN4hKtyAIwl9n7hx7Ll04z5p1mylcpEia/R8+RDHEth+qqvlYvMyZvHnzyu3v3rM3F6/c5OjJs5y7eJV6DVJmDi1RouQvyb8g5BR5FRUp9c8/lK9QkeEjR6NvYMi2rZuzO1vCbyghIYGxo0cQEhyM69r1opVbSKNAgQL8848uzwMDszsrv5zDbHsuXjjPmg2b0v3eAnDq5HFiYmKlOUZyGlHpFgSBjRs3oq6unt3ZEH4ymUzG3Dn2nD17Gtd1GyleokSaOFFRUQwa0Je8efOydPnKNOO3P1FQUKBQocIoKytz/Kg7RYoUxdCo/M++BEHI0ZKTk0mIj8/ubAi/mU8V7sBnz3BdtxF1dY3szpKQA0V/+MDz58//qonVZDIZDrPtOXvmFGvWb8r0x/0D+/dRr34DNDU1f2EOs05UuoXfUq9evVBQUMDWNu1SLEOGDEFBQYFevXr9+oz9QjNmzEBBQQEFBQXy5MmDtrY2derUYenSpcTFxWV39oQcyHGOPe7uh3GYu5B8+fIRFvaasLDXxMbGAikV7sED+xIbE8N0+zl8+BAlxUlKSpLS2bRhHb6PffD382X1qpVsWLeGcRMmkzt37uy6tJ8q+sMHvL288PbyAiDoxQu8vbz+qgltvlYGkREReHt58cTfH4CAgKd4e3kR9geP81+2ZBG3b90kKOgFvo99WLZkEbdu3qB5S2sAwl6/xtvLS2qV8vN9jLeXF5EREdmY619PvH8yL4OEhATGjByG56P/cJy3kOSkJMJevybs9WvxA85fbtGCedy6eYOgoBfcu3uHkcPtyJ07F82at8zurP0yDrNmcvTIIebOX0Q+1XzSe+PT95ZPAp894/atm7TNoV3LARRkMpksuzMhCN+qV69enD17lnfv3hESEoKKigqQMp6jaNGiFChQgPr167Nx48bszehPNGPGDPbu3cvp06dJTk4mPDyc8+fPM3v2bEqUKMH58+fJnz9/ltLauHEjI0aMIOIXfxmMTfylp/stJCf/vEdylUqG6YbPnOVAqzZtuXXzOv379Ew3jvvx0xQrntIyPqBvT7y8PEmIj0ffwJABtkOkcd0/Q65cCj8t7ay4eeM6/Xr3SBPeqrUNsxzmZkOOfr2vlcFBt/1MmzIxzX7bwXYMGjL0V2Txl5s+dRI3rl3j9etXqOXPj76+Ab379sfM3AIAlxXLWbXSOc1x9rMdaW3T9ldnN9uI90/mZWA7xI7mTRqme9zaDZupXqPmz86ekEONGzOSO7duEhERgYamJlVMqzJ02EhKliqV3Vn7ZYwrGKQb/uVz1GnpYtwPH+LYqbPZMr+MchamJheVbuG31KtXLyIiIvD392fChAl07doVgO3btzNv3jxKly6Nurq6VOlOTk5m3rx5rF69mpcvX6Kvr8/UqVNp3z7lF7G3b99iZ2fHyZMniYqKokSJEkyaNInevXsTHx/PqFGj2LdvH2/fvqVw4cLY2toycWLKF8zFixezYcMGnjx5gqamJtbW1syfP19uPNaaNWuwt7cnPDwcKysrateujb29vVwl9+DBg8ycORNPT0+KFStGz549mTx5srRU05dmzJjBgQMHuHfvnly4t7c3xsbGjB07ltmzZwMps6FOnjyZHTt2EBERQcWKFZk3bx716tUD0la6/f39GTVqFNeuXePDhw8YGRnh6OhIo0aNALC3t2f37t38999/cuc2MTHB2tqaWbNmZenvKCrdaf3MSvfvKrsr3YIgCIIgCBnJSqVbdC8Xfmt9+vRhw4YN0uv169fTu3fvNPEcHR3ZvHkzq1at4tGjR4wcOZJu3bpx4cIFAKZOnYqnpyfHjh3Dy8sLFxcXtLW1AXBycuLQoUPs3r0bHx8ftm3bhq6urpR2rly5cHJy4tGjR2zatImzZ88ybtw4ab+Hhwe2trYMHz6ce/fu0bhxY+bMmSOXv0uXLtGjRw+GDx+Op6cnrq6ubNy4MU28rDA0NKRZs2bs379fCrOzs+Pq1avs3LmTBw8e0KFDB5o2bYqvr2+6aURFRdG8eXPOnDnD3bt3adq0KdbW1gR+7CbZp08fvLy8uHnzpnTM3bt3efDgQbrlLwiCIAiCIAh/K9HSLfyWPrV0r1mzhpIlS+Lj4wOkVDifP39Ov379pJbuuLg4NDU1OX36NGZmZlIa/fr1Izo6mu3bt9OqVSu0tbVZv359mnMNGzaMR48ecfr0aRQUvt7itnfvXmxtbQkLCwOgc+fOREVFceTIESlOt27dOHLkiNSy3KhRIxo2bCi1ngNs3bqVcePGEZzBuLeMWroBJkyYgJOTE9HR0QQGBlKmTBkCAwMpVqyYFKdRo0bUqFEDBweHLHUvr1ixIra2ttjZpSwf1bx5c3R1dVm5cqVUTg8fPuTcuXNfLaNPREt3WqKlOy3R0i0IgiAIQk6VlZbuLEQRhJxLR0eHFi1asHHjRmQyGS1atJBaqD/x8/MjOjqaxo0by4XHx8dTpUoVAAYNGkS7du24c+cOTZo0oU2bNpibmwMpFfzGjRtjYGBA06ZNadmyJU2aNJHSOX36NI6Ojnh7e/Pu3TsSExOJjY0lOjoaVVVVfHx8sLGxkTt3jRo15Crh9+/fx8PDQ65lOykpSS6dbyGTyaQfCB4+fEhSUhL6+vpyceLi4tDS0kr3+KioKGbMmIG7uzshISEkJiYSExMjtXQD9O/fnz59+rB48WJy5crF9u3bWbIk/bUTP53vywneZLmVMpwdWxAEQRAEQRD+BKLSLfz2+vTpI7W+rlixIs3+qKgoANzd3SlevLjcvk8VvmbNmvHs2TOOHj3KqVOnaNiwIUOGDGHhwoWYmpry9OlTjh07xunTp+nYsSONGjVi7969BAQE0LJlSwYNGsScOXPQ1NTk8uXL9O3bl/j4+CxXlqOiopg5cyZt26adXEdZWfmbygPAy8uL0qVLS2nnzp2b27dvp5ldOqN1QMeMGcOpU6dYuHAh5cqVQ0VFhfbt2xOfaiZVa2trlJSUcHNzQ1FRkYSEBGmMfHocHR2ZOXOmXNjkqdOZMm3GN1+fIAiCIAiCIPwuRKVb+O01bdqU+Ph4FBQUsLKySrO/fPnyKCkpERgYSN26dTNMR0dHh549e9KzZ09q167N2LFjWbhwIQAFChSgU6dOdOrUifbt29O0aVPevHnD7du3SU5OZtGiRdJsibt375ZL18DAQG7sM5DmtampKT4+PpQrV+67yiA1b29vjh8/LnVVr1KlCklJSbx69YratWtnKQ0PDw969eoltdBHRUUREBAgFydPnjz07NmTDRs2oKioSOfOnaVZ5NMzceJERo0aJRcmyy1auQVBEARBEIQ/m5hITfjt5c6dGy8vLzw9PdNdJzh//vyMGTOGkSNHsmnTJvz9/bnzP/buPK6mrf8D+OeU0jygzJU0aB5kHjILt0yPMTLmGusm4zWWzMQlV4YQrlnmZCiizFOFEs2RRNJtIJ32749+zuM4Rfc+nHWyv+/Xq9fN3tvpY919TmedtdZ33buHjRs3Ijg4GACwcOFCnDhxAs+ePcOjR49w+vRpmJmZASivTr5//34kJCQgMTERhw8fRr169aClpQUjIyN8/PgRGzduRHJyMvbs2YPAwECxnz9t2jSEhobC398fT58+xZYtW3D27Fmx9eELFy7E7t274ePjg0ePHiE+Ph4HDhzA/Pnzv/pvLy0txcuXL/HixQvExcVh48aNcHR0hK2tLWbOnAkAMDExgaurK9zc3BASEoKUlBTcunULy5cvx5kzZyp8XGNjY4SEhODBgweIiYnB8OHDUVZWJnHd+PHjERERgbCwMIwdO/arWWvWrAkNDQ2xL5paXjV5eW/RxbEtXjzPZB3lh5g9czp2B0vWU/in8vLeolOHNnheDdvp0MH9mDZ54nd/XGoTSdW5TZKePUP3Lh1RVFT03R+7OrcL3SuSoq9eweABfSv83U2+r+p8n/yo15Tq3CY/6rlDnW7yU/jUiavMkiVLsGDBAixfvhxmZmZwcnLCmTNnRFOwFRUVMXfuXFhbW6Njx46Ql5fHgQMHAJR32letWgUHBwe0aNECqampCA0NhZycHGxsbODv74+VK1fC0tISf/31F5YvXy72s9u1a4fAwED4+/vDxsYGYWFh8PLyEps23rNnT5w+fRrnz59HixYt0Lp1a6xbtw76+vpf/Xc/evQI9evXh56eHjp16oRDhw5h7ty5uHr1qtjU8Z07d8LNzQ3e3t4wNTVFv379cPv2behVstejv78/tLW10bZtWzg7O6Nnz56wt7eXuM7Y2Bht27ZFs2bN0KoV7SX6o2zfGohOnbuiQcNGOHk8BHZWzSr8yn3zBgAQfvE8JrqPReeObdC+dXO4uQ7BteirX/0Zd27fxG/TJqN75w5o09IOQ/7TD6GnT1V6fdjZM7CzagYvjylix3fvCkIXx7bo4thWoiMdFxuD4YMHoLRUvIKe+4SJCNq6BX///fc/aRYJ27YEonPnrmj4//uJZ714gamTJqBVcxt06tAG/mtWSvzsL3lMmYieXTuhhZ0Vujq2x+9zZuLVq2zR+du3bsJz6iR0dWyPVg62GDygL86cPin2GNevRcO5d0+0bWmP3+fMxMfPlmX8/fffcO7dEy9ePBf7O/37D0R8/CPcu3vnf2qDL33eJnl5bzFpwjh069QeDraW6NHVEcv8fEVLcL6lpKQEgwf0hY2FKRLi40XHN2/aCBsLU4mvVg62omtktU0A4OaN63BzHYo2LezQpWM7rFu7+qv3yfPnmRX+e20sTHH+3FnRdQ/jYuE+dhTat3ZA+zYtMNF9HJ4kJIg9zhg3V7RysMUYN1eJN6dTJ/+Ki+fPiR1ramQEa2tb7Aneie+Nnj+S/tfnz+1bNyu9Vx7GxYquOxcWisED+qJVcxs4deuMXTu2iz1OfPxjDB7YD60d7DBt8kS8+6zoaWlpKYYOGoC42Fixv9OuQ0fUqFFDon3J9/flc2fFMj8MHTQADraWGDygb5UeY9zokRL3yBKfhWLXVKfXlC/b5FvZK/KtNnmSkIDZM6ajR1dHtLS3Rj/nXvhrT7DYY8jUc4cjhEjd+PHjufbt27OO8T8rKyvjmjZtyq1du/Zf/f3ij/T15VfhhzKxr9d5hZy9vT13/dY9rvBDGffmXRGX9jxb7Gv0mLHcsOGuor+z2NeP27R5K3frbgz3ODGZW7FqDWdubsHdffBQ4vE/fW0I+JNbtWYdF33zDpfwLJXbFrSLa9asGXf2fLjEtU+T07n27TtwQ4YO5yb8Okl0/H5sPGdtbc1dunKNi4iM5qysrLgHcfFc4Ycy7l1hCefs0pe7dTemwp/fr/8AbseuPRWeq0q75eYXcfb29tzNO/e54o8cV/C+lOvd5xfObdRo7n7sY+5CxGWuVatW3MrVa7/6OFu37+Ru3rnPJaVlctdv3eUGDR7CDRo8RHR+46bN3Oq167jrt+5yiUlp3PYd5e0UdiHi////CblWrVpxW7bt4OLiE7meTk7cjl17RH9/3oKF3JZtOyr82UuXr+CmTJ323e6lL9sk+3UeF7znL+7O/VguKS2Tu3z1GtejZ0/O87fpVXq8xb5LuLHjxnMmJibc/djHouNv8gq4jBevxL6cevXmZsycLfNt8iAunrOwsODW/bGRe/Islbt67SbX08mJ81u2otLHKHhfKvHvXffHRs7W1pZ7k1cgapMWLVpyM2bN4eITk7i4+ERu8pRpXJs2bbn8ohKu+CPHTZo8lfPw9OISnqVwUz08uclT/vvvPHbyDOc+4dcKf/65i5e4du3acX8Xf/xh7ULPn+/z/Mkv/CBxr8yZO4/r3KULV1RS/tp2IeIyZ25uzgXv3cc9TU4X/f/9/N/dt19/bsnS5Vz802Ru6LDhYvfnps1buEU+Syr8+TuD93L9+w/4bm1CX9++T4o/ctwinyXczuC93PQZMzlnZ5cqPc5w1xHc3N/ni90rOW//Fp2vTq8pX7ZJVbL/mzbZd/Awt9h3CXf12k3uaXI6dzjkOGdtbc3kuVMV1OkmRApWr17NPXjwgHv69Cm3YcMGTkFBgdu2bRvrWP+TV69ecRs2bOBUVVW53Nzcf/UYrH9ZyuLXlx3O46dCuVatW1faWc7Ies2Zm1twB48cq/Sawg9lnFOv3pz/+o1fvebLr7Hj3LmZs+aIHcsv+sgNGjyE27v/EOc9Y5ZYp/vYiTPcwP8MEv15wMD/cMdPhpZ36jdt5hb5LKn0Z/mv38gNGTrsX3e6T54+y7Vq3Vr05wsRl7lmzZpxmVk5omPBe/dx9vb2XH7hhyr//zh77iJnamr61TcG48a7czNnz+GKP3Jc5svXnImJCZdX8J4r/shxy1as4hYsXMwVf+S467fucv369+cK3pdW+DhR129xFhYW3Nu/i7/LvfRlm1T0tX1nMNehY8dvPtaFiMtcTycn7mH8U4lO95dfD+LiORMTEy76xm2Zb5OVq9dKvLE6ez6cs7Ky4l7n/V3lx3V26cvNmjNX9Oc792M5ExMTLiX9hehY7KMEzsTEhHvyLJUr/shxTk69uIsRkaL2derVmyv+yHHZb95x3bp1F/u7n3/lF37gLC0tuctXr32XNqmoXej5832fP6L/d0UlXKvWrbn1GwJExzx/my7xYUHQrt1ch44dRR1za2tr7vGTZ+X/H/b8xY0b784Vf+S4p8npXLfuPSq9V5PTnnMmJiZcYlLad7tX6Kvq94n/+g3/qNPt4+tX6fnq9JryZZtUJfu/aZOKvhYsXMy5jhgp+rO0njtVQdPLCZGCW7duoXv37rCyskJgYCA2bNiA8ePHs471P9HV1YWvry+2bt0KbW1t1nF+Wvfv3YWZmUWl50+fOg4lZSV06y5ZRPCTsrIyFBUWQlNT8x/97IKCv6Hxxd/ZGrgJtWrVRv8BkpXqjUxMkJaaiqysF3jx4jnSUlPR1NgYGRnpOHk8BFOmeVb6syytrPEwLlasQv4/ce/eHZib/7edYh48gLGxCWp/toVg23btUVBQgGdJz6r0mO/y8nDmzCnY2NpBQUGh0uv+/vtvaGpqAQBq1aoFHR0dXI+OQnFxMe7fuwtjU1N8/PgRS30XY8Ei3wprTwCAuYUlhEIh4mJjqpTvW75sky+9epWNiIsX0NyhxVcf583r1/BZtABLl6+CkvK3d1MIOXoY+gYGsG/uAEC226SkpASKX9SWUFJSwocPH/D40aMqPebjRw/xJCFe7Dlh0KQJtLS0cCzkCD6WlOD9+/c4dvQIDA2bosH/76JhYtoMN25cR1lZGa5HR8PExBQAsG7NKgwZNhz16tev8OcpKCrCtJnZd51KTc8fSd/r+fO5yEsReJeXh379B4qOVXgP1lRC9suXomn0JqbNcP36NZSWluLmjRsw/v97ZYnvInh5z4SqasU7kdRv0AC1a9f57tPuyX996z75J0LPnIJju1YY0PcX/LFuLYqLi0XnqtNrypdtUpXslflam1Tk74L/vp4AsvXcoU43IVJw6NAhvHr1CsXFxXj06BEmTvz+BV+kjeM45OTkYPjw4ayj/NSyXryAjq5upeePhxxFr96/fHVrud27dqCoqAg9evaq8s89H3YWjx7GoW+//25jd//eXRwPOYoFi5dU+HcMDZtiqqcXJk0Yi8m/jsO036bD0LAp/HwW4TevmbgWHYX/9HfG0EH9cfeOeAV/HR1dfPz4Ea9f51Q54+e+bKc3r1+jVu06YtfU/v8/v/nGz1i3djVaOdiiY7tWeJmVhT8C/qz02nNhoeXt1L+8nQQCAVatXY+tgX9iQN8+aNbMDP36D8SO7VvRomUrKNasiVGuQ+HSpyf2/7VX7LGUlZWhpqaOrBcv/tG/vTKV3TuzZ0xHq+Y26N65I1RVVbHYd2mlj8FxHBbMm4NBg4fCwtLqmz/zw4cPCD19SqwDKstt0rZde8Q8uI+zZ05DKBQiOzsbWzaXbz35Oqdq9+KnN4+2dv+te6Gqqobtu/bgzKmTaNncBm1a2CE6+io2bdmGGjXKN46ZPnM2UlKS0at7F6Slp2H6zNm4e+c2niTEw9mlH2ZO90Tvnl2xxGeh2LpmANDR1cWL79QmAD1/KvI9nj9fOhZyBG3btUfdevVEx9q2a4/wixdw8/87S6mpKaJ6GJ/uwUW+frh4/hx+ceoOBQUFjHP/FadOHoeykhIsLK0w0X0cfnHqjoA/1kn8TB1dXWRlfb97hYj71u/oqurV+xcsXbEa23fuxjj3CTh96gR+nzNTdL46vaZ82SZVyf5v2uRLD+7fw/mwsxg4aLDomCw9d2jLMEIIkWEfPrxHTcWKq7zHPLiPlOQk+C1bWenfP3vmFLYEbsK6PzahVu3aVfqZt2/dwKKFv2PB4iVoamQMACgsLMD832dhweIlX53ZMGjwUAwaPFT055MnjkFVVRXWNrbo59ILe/cfxqvsl5gzazrOhIVDUVERAFBTqfzf+P79+ypl/NL79x+gW0k7/VOjx45D/4H/QdaLFwj8MwDz587Gxj+3iO04AAC3bt7Awvm/Y5GPH4z+v50AwL65A/YdOir6c2pqCk6fPIGDR45hzKgRcB3hhnYdOmJgv1/Q3MEBJqbNRNfWVKqJ9++//kl+VVXWJjNnz8XEyVOQlpqKP9b7Y83K5Zi3cHGFj7Hvrz0oLCzEOPdfq/QzIy5eQFFRIVz69hc7Lqtt0rZde3h5z4Kf7yLMmzsLCoqKmPDrZNy7ewcCuW+PS7x//x5nQ0/DfeJkieOLF8yDrZ09Vqxei7KyMgTv3IGpk37FvoNHoKSkhLp16yLgzy2iv1NSUoJJE8bBb9kKbN2yGSqqqjhxOgyTfx2Pw4cPYrjrSNG1SjW/X5uU56Xnz5e+x/Pnc9kvX+JadBRWr10vdnzgoMHIyEjHtMm/orS0FKqqanAd6YbNmzaK7kEjI2PsCP7vhwx5eW+xedNG7Az+CyuWLYGtnR38/9gI1yH/gaW1DTp17iK6VqlmzW+ODpJ/73s9d/4zeIjoe2MTU9Spo4MJ40YjIz0djfX0qtVrypdtUpXs/6ZNPvf0aSJ+mzYZv06agrbt2ouOy9Jzh0a6CSFEhmlpaSM//12F546FHIFpMzOYW1hWeD7s7Bn4Ll6AVWvWoXWbtlX6eXdu34Ln1MmYMXMOnF36iY5nZmTgxfPn+G3aJDjYWsDB1gKnT51A5OUIONhaICMjXeKx3r59i62bN2H23PmIi4uFvr4B9PUN0KJla5SWliItNUV0bf678n+jtnatKuX8kra2FvLz80V/rl2nDnLfvBa75s3//7l2HZ1vPFYtGBg0QZu27bBqzTpcvRKJ2JgHYtfcuX0LHlMmYeasuXDu2++rj7dk8UJ4z5yNMo5DQvxjdO/phNq1a8PBoQXufDHin//u3b9uA8l/h3ibfFJHRwdNDJuiU5euWLDIB4cO7kdOzqsKH+P2zRuIjXmAFnZWsLc2h3OvHgCA4UMGYv7c2RLXhxw9jA6OncSmJVdEltrEbfQYRN24g7CLlxAZdQOdu3QFADRq1Oibj3fhfBiKi9+LPVeA8imRL148h+/S5bC0soa1jS1WrFqD588zcSkivMLH2r41EG3atoO5hSXu3L6Fbt17QkFBAV279cCdW7fErn33HdsEoOdPxf+O//3587njx45CU0sLjp+9qQfKR/e9vGfi+u37OHvhEiIio2BpVT6rpFGjxhU+1pqVK+A6chTq1quHO7duoXsPJ6ioqKCDoyPu3P7iXsl/h1q1vt+9QsRVdp/8r6ysbQAA6elpAKrXa8qXbfJvslfkyzb5JOnZM0wYNxoDBw3BhC8+AP0Sy+cOdboJIUSGNTMzQ3JyksTxoqJCXDh3Vmxt4OfOhp7G4gW/Y9nKtejQsVOVftad2zfhMWUiPL28MXDQELFzBk0McTjkJA4cPib6cuzUBS1atsKBw8dQ77Ppkp+sXbVc9MutrEwott2QsFQotgfms2dPUbduvX9dH6CZmTmSP1tramNri6dPE/Hm/7dRA4Ab165BTU0NTZsaVflxP2X8fK357Vs3MXXSr/ht+gyxT+IrEnL0MDQ1tdCpS1eUCYUAIGqH0tJS0TEAyEhPx4cPH9DMzLzK+b7myzapCMdxAFDpWvrZc+fjUMgJHDx6HAePHkfA5q0AgFVr1mGap5fYtZmZGbh962aF6/0/J4ttIhAIoKtbF0pKSjgbehr16tWHWRXWaR4POYpOnbtIvDF7//495ARyYqO7Ajk5CCAAV8Her8lJSTh75rSo7kGZUIjS0o8AgNLSjygrE4pd/+zZUzQzM/v2P7iK6Pkj6Xs8fz6/7sTxEDi79Kt0fbu8vDzq1q0LBUVFnA09Axtbuwrf8N+8cR3JyUkYNnwEAIi9tpZ+FG+TDx8+ICM947u1CZFUlfvk33iSUL4to45O+Ydc1ek15cs2+afZK/NlmwDlucePdYOLSz+J30lfYv3coU43IYTIsDZt2yM56ZloJPiTc2FnIRQK0ecXF4m/c/bMKSycNwfTZ8yGlbU1Xr/OwevXOWL7YB/Ytxe/jh8t+vPtWzcwbcpEDHMdga7de4j+zrt3eQCAmjVrwsjYROxLXV0dKiqqMDI2gYKColiGG9eikZaWiiHDXAEAFhZWSE1JRtTVKzh6+CDk5eWgb9BEdP39u3fQum27f91Obdu1R9Jn7dSmbXsYNjXCvDmz8CQhAdFRVxGwcT2GDHMVTWmPi41F31+ckJ1dvo9wbGwM9v+1Fwnx8Xjx4jlu3riOOTOno3FjPdjY2gEonxI7dfKvGD5iJLp174HXOTl4nZMjtvfnJ2/evMG2LZsxZ958AICGpiYMDZvirz3BiHlwHzdvXBdbB3zv7h00atxYYtrc92qTq1cicfzYUTx9mojnzzNxJfIy/HwWwdbOXrSX6pdtUr9BAxgbm4i+9A0MAACNGuuJrUsFyjugdXR00L5Dx0ozyVqbAMCuHdvxNPEJnj17ii2bN2HH9m2Y/ft8UcGu7Oxs9P3FSWIv1/S0NNy9cxsDBkp+yNCmTVvk57/DsiU+SE5KwrNnT7Fw/lzUqCGPFq1aiV3LcRx8Fy/AjNlzoaKiAgCwtbPH0SOHkZyUhFMnT4i1yfPnmXiVnV3l2Sv/pl3o+fN9nj+f3Lp5A88zMyu8V96+zcWhg/uRkpyEhPh4rFzuhwvnwjBz9u8S13748AHLl/pi4eIlkPv/qee2dvY4uP8vPElIwMWL52Fr/982iY15AEVFBVjb2H6XNiGSKnpNSU9LQ0J8PF6/zsH7D++REB+PhPh40TrqL19TMtLTsWXzJjx+9BDPn2fickQ45v8+G80dWoiWT1Sn1xSJ15MqZP83bfL0aSLGj3FDm7btMHLUGNHrSW5urkQmWXju0JpuQgiRYcYmpmhmZo7z587iP5+tlT4ecgRdunaHuoaGxN85euQQSktLsXypL5Yv9RUdd3bpB9+lKwCUr2v6fEr4qRPH8b64GDu2b8WO7VtFx5s7tMD2nXv+Ueb3799jxfIlWLl6neiXW9169TBr7nwsXvA7FBQV4bt0hWgd14cPH3DpUjg2bd72j37O5z6107lzZzFo8FDIy8tj45+BWOq7GG6uQ6CsrAznvv0xearHZzmLkZqSIvr0X1lJCeEXz2Pzpo0oLi5CHR0dtGvfAat+nSzqaHxqp6BtWxC07b9r5xxatETQLvF2WrV8KdxGjYWubl3RMd+lK7Bg3mzs27sHo8aMg6WVtejc2dAzGDBwML6XL9ukZs2aCDlyGGtWLkdJSQnq1quPrt26Y+z4CZW2SVWVlZXh5Ilj6NtvQKXVpQHZaxMAiLp6Bdu3BqKkpAQmps3wR8AmtO/gKPo7paUfkZqSIrHe8fixo6hbtx7afLZ+8JMmhk2xYVMgAv8MgJvrEAgEcmhmZoY/t2yHjo540aUjhw+idu06cOzUWXRs4pRpmDvLGyOGDUK79h1EH14BQFjoGbRp2w4NGny96u8/Qc+fb7fJ//L8OXb0CGxt7dDEsGmFP+vUiePwX70KHDjY2Nhi+649sLK2lrgu8M8AdOjYSWxEcvbc+ZgzyxtjR7midx9nsZ0szoaeQe9fnKGsrPy/NgepREWvKT6L5otNVR7yn34AgNDz4WjYsJHEa4qCggJu3riOv/bsRnFxEerVq49u3XqI1YqoTq8pX7ZJVbL/mza5eP4c3ubm4sypkzhz6qToeIMGDXH2QoRYJll47gi4T3NjCCFEyt6Xfvsavikrk3xJvnrlMtatXY0jx06JOrE/k0MH9+NS+AVs3rqjwvNycoIKj3/pSuRlrFuzCkdPnK527fTs2VO4jx2Fk2fOQV1d/bs9LrWJpOrcJh9LSuDcuyeWr1oDO/vm3/Wxq3O70L0i6e3bXPTt0wv7Dh2pdG04+T6q833yo15TqnOb/JvnjlIVhrFppJsQQmRch46dkJ6WhlevslGvXsX7bFZnNWrUwOy58//nx+no2Anpaal4lZ1d6X6ksup1Tg78lq38rh0GgNqkItW5TbKysjBuwq/fvcMNVO92oXtF0ovnz/H7gkXU4ZaC6nyf/KjXlOrcJj/quUMj3YQQZmikW1JFI918V9WRbkIIIYQQaavKSHf1Gu8nhBBCCCGEEEKqEep0E0IIIYQQQgghPwh1ugkhhBBCCCGEkB+E1nQTQnjvw4cPWL58OebOnYuaNWuyjiMTqE0kUZtIojaRRG1SMWoXSdQmkqhNJFGbSKqObUKdbkII7+Xn50NTUxPv3r2DRgX7XvMRtYkkahNJ1CaSqE0qRu0iidpEErWJJGoTSdWxTWh6OSGEEEIIIYQQ8oNQp5sQQgghhBBCCPlBqNNNCCGEEEIIIYT8INTpJoTwXs2aNbFo0aJqU4xDGqhNJFGbSKI2kURtUjFqF0nUJpKoTSRRm0iqjm1ChdQIIYQQQgghhJAfhEa6CSGEEEIIIYSQH4Q63YQQQgghhBBCyA9CnW5CCCGEEEIIIeQHoU43IYSQr6LSH4QQQggh/14N1gEIIYSFsrIyPHv2DK9evUJZWZnYuY4dOzJKxc7q1asxc+ZMieNCoRAjRozA/v37GaSSvtjY2Cpfa21t/QOTyK7w8HCEh4dX+NzZsWMHo1TsGBoa4vbt26hdu7bY8by8PNjb2yM5OZlRMvboXiHf0qVLF4SEhEBLS0vseH5+Pvr164eIiAg2wYhMWbRoEcaOHQt9fX3WUf416nQTQnjnxo0bGD58ONLS0iRGcQUCAYRCIaNk7KxevRq1atXCuHHjRMeEQiGGDh2Khw8fMkwmXba2thAIBJWO7n86x9f7xMfHB76+vnBwcED9+vUhEAhYR2IuNTW1wnvhw4cPeP78OYNEsoHuFUlCoRC7du2q9IMIPnYwL1++jJKSEonj79+/x9WrVxkkYq9///4VPl8EAgGUlJRgZGSE4cOHw9TUlEE6Nk6cOIGlS5fC0dER48aNw8CBA6vVdmEAdboJITw0ceJEODg44MyZM/Rm8P+dOXMGPXr0gKamJv7zn/+gtLQUgwcPRkJCAi5dusQ6ntSkpKSwjiDTAgMDsWvXLowcOZJ1FOZOnjwp+v7cuXPQ1NQU/VkoFCI8PBwGBgYMkskGulckeXp6YteuXejTpw8sLS15/bvn81lFjx8/xsuXL0V/FgqFCAsLQ8OGDVlEY05TUxPHjx+HlpYWmjdvDgC4d+8e8vLy0KNHDxw8eBArV65EeHg42rVrxzitdDx48AD379/Hzp074enpiSlTpmDo0KEYO3YsWrRowTpeldA+3YQQ3lFVVUVMTAyMjIxYR5EpERER6NevH/bu3YugoCA8e/YMERERqFu3LutoREbUrl0bt27dQtOmTVlHYU5OrvKyOAoKCjAwMMDatWvxyy+/SDGV7KB7RVKdOnWwe/du9O7dm3UU5uTk5EQfOlTUFVFWVsbGjRsxduxYaUdjbs6cOcjPz0dAQIDodaasrAyenp5QV1fH0qVLMXHiRDx69AhRUVGM00rfx48fcerUKezcuRPnzp1Ds2bNMG7cOIwePVrsw09ZQ51uQgjvdOnSBbNmzYKTkxPrKDLn+PHjGDRoEMzMzBAREYE6deqwjiRVn49efouLi8sPTCKbZs+eDTU1NSxYsIB1FKZiY2NhYWEBeXl5NGnSBLdv3+bdc+Vb6F6R1KBBA1y+fBkmJiasozCVn5+P3NxcAOU1EW7dugUdHR3ReUVFRejq6kJeXp5VRKZ0dHQQHR0tcZ8kJiaibdu2eP36NeLi4tChQwfk5eWxCclQSUkJjh07hh07diAiIgJt27bFixcvkJ2djW3btmHIkCGsI1aIppcTQnhn2rRp8Pb2xsuXL2FlZQUFBQWx83wpkDVgwIAKj+vo6EBLSwsTJkwQHQsJCZFWLKb69etXpev4uqb7/fv32Lp1Ky5evAhra2uJ546/vz+jZNJlZ2eHly9fQkdHBwKBgNfThCtD94okb29v/PHHHwgICOD1PaOtrY2srCzo6urC0dERRkZGEoXU+Ky0tBQJCQkSne6EhATR7x0lJSXe3UN3797Fzp07sX//ftSsWRNubm7YtGmTaNbixo0b4eHhQZ1uQgiRFQMHDgQAsWlrfCyQVdk0rJ49e0o5iez4srARERcbGwtbW1sAkCiwx6c3gFpaWkhOToaOjg7S0tLovqkA3SuSoqKicOnSJZw9exYWFhYSH0Tw5cNNNTU1vHnzBrq6urhy5Qo+fvzIOpJMGTlyJMaNG4fff/9dtF759u3bWLZsGdzc3AAAkZGRsLCwYBlTqqysrJCQkIAePXogKCgIzs7OEjMhhg0bBk9PT0YJv42mlxNCeCctLe2r56vzlhSEkB9vwoQJ2L17N+rXr4/09HQ0atSo0qmwfN4yjIgbM2bMV8/v3LlTSknYGjhwIKKjo2FmZobIyEi0bdsWioqKFV7Lx4ruQqEQK1asQEBAALKzswEAdevWxbRp0zB79mzIy8sjPT0dcnJyaNSoEeO00rFkyRKMHTu2WhfXo043IYQQpKSkoLS0FMbGxmLHnz59KioKxQcbNmzAhAkToKSkhA0bNnz1Wg8PDymlkk2ZmZkAwJs3fV8KCwvDs2fP4OHhAV9fX6irq1d4nSyPvEgL3+8VIq64uBjBwcFISkrC2rVr4e7uDhUVlQqvXbdunZTTyZb8/HwAgIaGBuMk5H9FnW5CCC8lJSVh/fr1iI+PBwCYm5vD09OTt5V2HR0dMXbsWIwaNUrs+N69e7F9+3ZcvnyZTTApa9KkCe7cuYPatWujSZMmlV4nEAh4OYJZVlYGPz8/rF27FgUFBQAAdXV1eHt7Y968eV+t6P2zGjNmDDZs2FBpp5uv6F6pXE5ODp48eQIAMDU1FSsixjedO3fGsWPHaE03+abMzEycPHkS6enpEnu7V4caEdTpJoTwzrlz5+Di4gJbW1vRHpfR0dGIiYnBqVOn0L17d8YJpU9DQwP37t2T2Ebt2bNncHBw4GWFVCJp7ty5CAoKgo+Pj+i5ExUVhcWLF8Pd3R1Lly5lnJDICrpXJBUWFmLatGnYvXu3qA6AvLw83NzcsHHjxkpHewm/ZGdnY8aMGQgPD8erV68ktlTjS92Zz4WHh8PFxQWGhoZISEiApaUlUlNTwXEc7O3tq8UyBOp0E0J4x87ODj179sSKFSvEjs+ZMwfnz5/HvXv3GCVjR1NTE5cvX4adnZ3Y8bt376JTp074+++/GSVjx9fXFzNmzJB4I1xcXIzVq1dj4cKFjJKx06BBAwQGBkpsl3bixAlMnjwZz58/Z5SMrTt37uDQoUMVjsDwpTjWl+hekfTrr7/i4sWLCAgIEPsgwsPDA927d8fmzZsZJ2Sjuo9gfm+9evVCeno6pk6divr160sUHuzbty+jZOy0bNkSvXr1go+PD9TV1RETEwNdXV24urrCyckJkyZNYh3xm6jTTQjhHSUlJcTFxUmsX05MTIS1tTXev3/PKBk7zs7OUFZWxv79+0UFoYRCIYYMGYLCwkKcPXuWcULpk5eXF21r87lPVXf5ONqgpKSE2NhYia1snjx5AltbWxQXFzNKxs6BAwfg5uaGnj174vz58+jRowcSExORnZ2N/v3786Y41pfoXpFUp04dHDlyBJ06dRI7funSJQwePBg5OTlsgjH0M4xgfm/q6uq4evWqqPo/KW+TBw8eoGnTptDW1kZUVBQsLCwQExODvn37IjU1lXXEb+LvghpCCG/p6OjgwYMHEscfPHgg0cHii5UrVyIiIgKmpqYYM2YMxowZA1NTU1y5cgWrV69mHY+JT1vIfSkmJga1atVikIg9GxsbBAQESBwPCAiAjY0Ng0TsLVu2DOvWrcOpU6egqKiIP/74AwkJCRg8eDD09PRYx2OG7hVJRUVFqFu3rsRxXV1dFBUVMUjE3ty5czFjxgzExcVBSUkJR48eRUZGBhwdHTFo0CDW8Zho3LixxJRyvlNVVRXNgqhfvz6SkpJE516/fs0q1j9C+3QTQnjH3d0dEyZMQHJyMtq2bQugfE33ypUrMX36dMbp2DA3N0dsbCwCAgIQExMDZWVluLm5YerUqbzrYGpra0MgEEAgEMDExESs4y0UClFQUICJEycyTMjOqlWr0KdPH1y8eBFt2rQBAFy/fh0ZGRkIDQ1lnI6NpKQk9OnTBwCgqKiIwsJCCAQCeHl5oUuXLvDx8WGckA26VyS1adMGixYtwu7du6GkpASgfLmKj4+PqI34Jj4+Hvv37wcA1KhRA8XFxVBTU4Ovry/69u1bLaYNf2/r16/HnDlzsGXLFt7sHPItrVu3RlRUFMzMzNC7d294e3sjLi4OISEhaN26Net4VULTywkhvMNxHNavX4+1a9fixYsXAMrXH86cORMeHh4Vjm4S/ggODgbHcRg7dizWr18PTU1N0TlFRUUYGBjw9g0yALx48QKbNm1CQkICAMDMzAyTJ09GgwYNGCdjo1GjRjh79iysrKxgbW2NuXPnYtiwYbh+/TqcnJzw7t071hGZoXtF3MOHD9GzZ098+PBBNNofExMDJSUlnDt3DhYWFowTSl+9evVw6dIlmJmZwdzcHCtWrICLiwtiYmLQrl07UeV7PtHW1kZRURFKS0uhoqICBQUFsfO5ubmMkrGTnJyMgoICWFtbo7CwEN7e3rh27RqMjY3h7+8PfX191hG/iTrdhBBe+1QgjLb7KVdUVFRhMRtra2tGidiJjIxEu3btUKMGTQojlRs+fDgcHBwwffp0LFmyBBs3bkTfvn1x4cIF2Nvb87aQGqlYUVER/vrrL7EPIlxdXaGsrMw4GRv9+vVDnz594O7ujhkzZuDEiRMYPXo0QkJCoK2tjYsXL7KOKHXBwcFfPf/l1p6keqBONyGEEOTk5GDMmDGVFkzjY9Gwe/fuQUFBAVZWVgDKqy7v3LkT5ubmWLx4MRQVFRknlI7Y2FhYWlpCTk4OsbGxX72Wjx/O5Obm4v3792jQoAHKysqwatUq0QjM/Pnzoa2tzTqi1NC9Qv6pn2EEk5CqoE43IYQX7O3tER4eDm1tbdjZ2X11CjkftwxzdXVFWloa1q9fj06dOuHYsWPIzs6Gn58f1q5dK1qzyictWrTAnDlzMHDgQCQnJ8Pc3BwDBgzA7du30adPH6xfv551RKmQk5PDy5cvoaurCzk5OQgEggqL/AgEAt59OFNaWop9+/ahZ8+eFRbI4hu6VySdPHkSvXr1goKCAk6ePPnVa7/cXu1nJxQKER0dDWtra2hpabGOw1R+fj40NDRE33/Np+t+dp/qq1RFdZhyT3PmCCG80LdvX9SsWVP0Pa3bFhcREYETJ07AwcEBcnJy0NfXR/fu3aGhoYHly5fzstOdmJgo2rLl8OHDcHR0xL59+xAdHY2hQ4fyptOdkpICHR0d0ffkv2rUqIGJEyciPj6edRSZQPeKpH79+ok+iOjXr1+l1/Hpg4hP5OXl0aNHD8THx/O+062trS3aolJLS6vC9yifdtTgy33ys/2OpU43IYQXFi1aJPp+8eLF7ILIqMLCQtF2adra2sjJyYGJiQmsrKx4OfIPlL/BKSsrAwBcvHgRv/zyC4Dy7VyqyxYl38Pn0zvT0tLQtm1biXXupaWluHbtGi+ngrZs2RIPHjzg5b/9S3SvSPr0GvLl96ScpaUlkpOT0aRJE9ZRmIqIiBDtFHLp0iXGaWTDz7Z2nTrdhBDeMTQ0xO3bt1G7dm2x43l5ebC3t0dycjKjZOyYmpriyZMnMDAwgI2NjWirksDAQNSvX591PCYcHBzg5+eHbt26ITIyEps3bwZQPoLH16nEnTt3Fo3GfO7du3fo3Lkzb0ZgPjd58mRMnz4dGRkZaN68OVRVVcXO83XtMt0rknbv3o0hQ4aIZl19UlJSggMHDsDNzY1RMnb8/PwwY8YMLFmypMLnD1+mUv/xxx+ws7ODhoYG0tLSKrxP+C4pKQk7d+5EUlIS/vjjD+jq6uLs2bPQ09OrFpX/aU03IYR3Pl93+Lns7Gw0btxYonI3H+zduxelpaUYPXo07t69CycnJ+Tm5kJRURG7du3CkCFDWEeUutjYWLi6uiI9PR3Tp08XzZaYNm0a3rx5g3379jFOKH1ycnLIzs4WTSH+JDExEQ4ODt9ci/gzkpOTkzj2aS0zn6aCfonuFUny8vIVfhDx5s0b6Orq8vJe+fz58/mUar49fxQVFZGWlob69etXep/wWWRkJHr16oV27drhypUriI+Ph6GhIVasWIE7d+7gyJEjrCN+E410E0J44/MiNufOnRPbf1koFCI8PJy3U9xGjBgh+r558+ZIS0tDQkIC9PT0UKdOHYbJ2LG2tkZcXJzE8dWrV0NeXp5BInYGDBgAoPxN8ejRo8VGYIRCIWJjY9G2bVtW8Ziitcvi6F6p3KeO5JcyMzPFfh/xCU2lLtesWTPMnTsXnTt3BsdxOHToUKWj/HycETFnzhz4+flh+vTpYlu8dunSBQEBAQyTVR11ugkhvPGpiI1AIJBYK6SgoAADAwOsXbuWQTL2fH19MWPGDKioqAAAVFRUYG9vj+LiYvj6+mLhwoWME8oOJSUl1hGk7lOHgOM4qKuri+0prKioiNatW8Pd3Z1VPKb4sja5quhekfRpxwyBQICuXbuKrXMXCoVISUmBk5MTw4TsODo6so4gEwIDAzF9+nScOXMGAoEA8+fPr/ADGoFAwMtOd1xcXIWzy3R1datNjRWaXk4I4Z0mTZrg9u3bvB3BrQhNeyRV4ePjgxkzZkisu+Sz5cuXo27duhg7dqzY8R07diAnJwezZ89mlIwtulf+y8fHR/Rfb29vqKmpic4pKirCwMAAAwcOhKKiIquIzOzcuRNqamoYNGiQ2PHDhw+jqKjopyumVRWVLYHjs0aNGuHQoUNo27Yt1NXVERMTA0NDQxw7dgwzZsxAUlIS64jfRJ1uQgghla6/jIiIwJAhQ5CTk8MoGSGyzcDAAPv27ZOYMn3z5k0MHTqUpp8TkeDgYAwZMoSXs2UqY2Jigi1btqBz585ixyMjIzFhwgQ8efKEUTJ20tLSoKenR1ubfmbGjBm4efMmDh8+DBMTE9y7dw/Z2dlwc3ODm5ub2A41soo63YQQ3vHw8ICRkRE8PDzEjgcEBODZs2c/3d6QX6OtrQ2BQIB3795BQ0ND7Je8UChEQUEBJk6ciE2bNjFMSWTJkSNHcOjQIaSnp0sUHeTj9nJKSkqIj4+XqAeRnJwMc3NzvH//nlEy9uheId+ipKSEhIQEGBgYiB1PTU2FmZkZiouL2QRjLC8vD0FBQYiPjwcAmJubY9y4cbxd+19SUoIpU6Zg165dEAqFqFGjBoRCIYYPH45du3ZVizorkiU3CSHkJ3f06FG0a9dO4njbtm2rRQXM72n9+vXw9/cHx3Hw8fHBunXrRF+BgYGIioqiDjcR2bBhA8aMGYO6devi/v37aNmyJWrXro3k5GT06tWLdTwmGjdujOjoaInj0dHRaNCgAYNEsoHuFUlCoRBr1qxBy5YtUa9ePdSqVUvsi490dXURGxsrcTwmJkZiW0++uHPnDpo2bYp169YhNzcXubm5WLduHZo2bcrbD6sUFRWxbds2JCUl4fTp09i7dy8SEhKwZ8+eatHhBqiQGiGEh968eVPhp8UaGhrVpiDH9/JpvVyTJk3Qrl07sQI/fDd9+vQKjwsEAigpKcHIyAh9+/bl1ZvlP//8E1u3bsWwYcOwa9cuzJo1C4aGhli4cCFyc3NZx2PC3d0dv/32Gz5+/IguXboAAMLDwzFr1ix4e3szTscO3SuSfHx8sH37dnh7e2P+/PmYN28eUlNTcfz4cd4Wqxw2bBg8PDygrq6Ojh07AiifWu7p6YmhQ4cyTseGl5cXXFxcsG3bNtHv5NLSUowfPx6//fYbrly5wjghO3p6etDT02Md49/hCCGEZywsLLiNGzdKHN+wYQNnZmbGIBF7cnJyXHZ2tsTx169fc3JycgwSsdepUydOQ0ODU1VV5ezt7Tl7e3tOTU2N09TU5Fq1asVpaWlx2tra3KNHj1hHlRplZWUuNTWV4ziO09HR4R48eMBxHMclJiZytWrVYhmNmbKyMm7WrFmckpISJycnx8nJyXEqKiqcj48P62hM0b0iydDQkDt9+jTHcRynpqbGPXv2jOM4jvvjjz+4YcOGsYzGzIcPH7jBgwdzAoGAU1BQ4BQUFDh5eXluzJgx3IcPH1jHY0JJSYmLj4+XOP7o0SNOWVmZQSK2CgoKuAULFnAWFhacqqoqp6amxllZWXE+Pj5cYWEh63hVRkMahBDemT59OqZOnYqcnByxkam1a9fyaj3357hKynt8+PCBlxV1AYhGsXfu3CnaL/Xdu3cYP3482rdvD3d3dwwfPhxeXl44d+4c47TSUa9ePeTm5kJfXx96enq4ceMGbGxskJKSUuk99DMTCoWIjo7GnDlzsGDBAsTHx0NZWRnGxsZi+1PzEd0rkl6+fAkrKysAgJqaGt69ewcA+OWXX7BgwQKW0ZjgOA4vX77Erl274OfnhwcPHkBZWRlWVla83opPQ0MD6enpaNasmdjxjIwMsT2q+aCkpASOjo54+PAhevXqBWdnZ3Ach/j4eCxduhRnz57FlStXoKCgwDrqN1GnmxDCO2PHjsWHDx+wdOlSLFmyBEB5BeLNmzfzbv/LDRs2ACifMr19+3axrWyEQiGuXLki8YufL1avXo0LFy6IOtxA+R7EixcvRo8ePeDp6YmFCxeiR48eDFNKV5cuXXDy5EnY2dlhzJgx8PLywpEjR3Dnzh0MGDCAdTypk5eXR48ePUSF1Fq0aME6ksyge0VSo0aNkJWVBT09PTRt2hTnz5+Hvb09bt++zcsPaTiOg5GRER49egRjY2MYGxuzjiQThgwZgnHjxmHNmjWiXRGio6Mxc+ZMDBs2jHE66dq8eTMyMzMRExMDU1NTsXMJCQno1KkTAgMDMW3aNEYJq46qlxNCeC0nJwfKyspinU0++VRxOS0tDY0aNRIrSPJp/1hfX1+0atWKVURm1NTUcPr0aXTq1Ens+OXLl+Hs7Iy///4bycnJsLW1RX5+PpuQUlZWVoaysjLROsMDBw7g2rVrMDY2xq+//srLWREODg5YuXIlunbtyjqKTKF7RdKcOXOgoaGB33//HQcPHsSIESNgYGCA9PR0eHl5YcWKFawjSp2FhQWCgoLQunVr1lFkRklJCWbOnInAwECUlpYCABQUFDBp0iSsWLGCVx/QODo6YvDgwZgyZUqF5zdu3IgjR44gMjJSysn+Oep0E0J4qbS0FJcvX0ZSUhKGDx8OdXV1vHjxAhoaGrzsgHfu3BkhISHQ1tZmHUVmuLq64vr161i7dq1oBPP27duYMWMG2rZtiz179uDAgQNYs2YN7ty5wzgtYSUsLAxz587FkiVL0Lx5c6iqqoqd/3ymBF+UlpZi2bJlGDt2LBo1asQ6jsy6ceOG6IMIZ2dn1nGYOHXqFFatWoXNmzfD0tKSdRyZUlRUhKSkJABA06ZNoaKiwjiR9Ono6ODy5cuwsLCo8PzDhw/RuXNn5OTkSDnZP0edbkII76SlpcHJyQnp6en48OEDEhMTYWhoCE9PT3z48AGBgYGsIxIZUFBQAC8vL+zevVs02lCjRg2MGjUK69atg6qqKh48eAAAsLW1ZRdUyt6/f4/Y2Fi8evUKZWVlYudcXFwYpWJHTu6/u69+vs89x3EQCAQQCoUsYjGnpqaGhw8fSuy/TMjntLW1UVRUhNLSUigqKkJZWVnsPF8r3X+SmZkJALz98EpBQQEZGRmoV69eheezsrKgr6+PkpISKSf752hNNyGEdzw9PeHg4CCxD2j//v3h7u7OMBlbmZmZOHnyJNLT0yV+gfn7+zNKxY6amhq2bduGdevWITk5GQBgaGgoNhOCT51toHxU183NrcKt9fjawbx06RLrCDKpa9euiIyMpE73Z5YvX466deti7NixYsd37NiBnJwczJ49m1EydvhavPRrysrK4Ofnh7Vr16KgoAAAoK6uDm9vb8ybN0/sg76fXVlZ2Vf34ZaTk6s2v3dopJsQwju1a9fGtWvXYGpqCnV1dcTExMDQ0BCpqakwNzdHUVER64hSFx4eDhcXFxgaGiIhIQGWlpZITU0Fx3Gwt7dHREQE64hEBhgbG6NHjx5YuHAh6tatyzoOkWGBgYHw8fGBq6trhdPu+TgrwsDAAPv27RMVx/rk5s2bGDp0KFJSUhglI7Jk7ty5CAoKgo+PD9q1awcAiIqKwuLFi+Hu7o6lS5cyTig9cnJysLS0FNWG+FJpaSkePXpULTre1OkmhPCOtrY2oqOjYW5uLtbpjoqKwsCBA5Gdnc06otS1bNkSvXr1go+Pj6hNdHV14erqCicnJ0yaNIl1RKkrLCzEihUrEB4eXuFU6k+j33yioaGB+/fvo2nTpqyjMBUbGwtLS0vIyckhNjb2q9daW1tLKZVs+dpoHF9nRSgpKYkq3X8uOTkZ5ubmeP/+PaNk0pWfny+qdfCtIpR8rInQoEEDBAYGSnwwdeLECUyePBnPnz9nlEz6fHx8qnTdokWLfnCS/x1NLyeE8E6PHj2wfv16bN26FUD5G8CCggIsWrQIvXv3ZpyOjfj4eOzfvx9A+brl4uJiqKmpwdfXF3379uVlp3v8+PGIjIzEyJEjUb9+fbH1unz1n//8B5cvX+Z9p9vW1hYvX76Erq4ubG1tIRAIKtx7mq+dSwASH1IRoHHjxoiOjpbodEdHR6NBgwaMUkmftrY2srKyoKurCy0trQpfW/lcEyE3N7fCrTqbNWvGuzXu1aEzXVXU6SaE8M7atWvRs2dP0cjC8OHD8fTpU9SpU0fU8eQbVVVV0Tru+vXrIykpSVQttKL1u3xw9uxZnDlzRjS9jwABAQEYNGgQrl69CisrKygoKIid9/DwYJRMulJSUqCjoyP6nnzd+/fvoaSkxDoGc+7u7vjtt9/w8eNHdOnSBUD50p5Zs2bB29ubcTrpiYiIQK1atQBQTYSK2NjYICAgABs2bBA7HhAQABsbG0apyP+KppcTQniptLQUBw4cQGxsLAoKCmBvbw9XV1eJyql80a9fP/Tp0wfu7u6YMWMGTpw4gdGjR4u2Ebt48SLriFLXpEkThIaGwszMjHUUmREUFISJEydCSUkJtWvXFhuhEggEvJxyTyomFAqxbNkyBAYGIjs7W7RLxIIFC2BgYIBx48axjih1HMdhzpw52LBhg+hDTiUlJcyePRsLFy5knI7IisjISPTp0wd6enpo06YNAOD69evIyMhAaGgoOnTowDgh+Teo000IIQTJyckoKCiAtbU1CgsL4e3tLdo/1t/fH/r6+qwjSt3evXtx4sQJBAcH83J/1IrUq1cPHh4emDNnDq8q6FbF48ePK6z8z8eCYQDg6+uL4OBg+Pr6wt3dHQ8fPoShoSEOHjyI9evX4/r166wjMlNQUID4+HgoKyvD2NgYNWvWZB2JuaKiogqfP3ytifDixQts2rQJCQkJAAAzMzNMnjyZV8sQfjbU6SaE8MLJkyfRq1cvKCgo4OTJk1+9Vk1NDc2aNaNfbjxnZ2eHpKQkcBwHAwMDianU9+7dY5SMnVq1auH27du8X9P9ueTkZPTv3x9xcXFia7s/zQLg45pUADAyMsKWLVvQtWtXsYKVCQkJaNOmDd6+fcs6IpEBOTk5GDNmDM6ePVvheb4+f8jPh9Z0E0J4oV+/fqLCR/369fvm9fLy8li1ahW8vLx+fDgik6pyn/DNqFGjcPDgQfz++++so8gMT09PNGnSBOHh4WjSpAlu3bqFN2/ewNvbG2vWrGEdj5nnz5/DyMhI4nhZWRk+fvzIIBEbAwYMwK5du6ChoYEBAwZ89dqQkBAppZIdv/32G/Ly8nDz5k106tQJx44dQ3Z2tmifar56+/YtgoKCEB8fDwAwNzfHmDFjRGvh+ay61oigTjchhBc+r6T7raq6JSUl2LdvH+bOnUudbh77maqmfi9CoRCrVq3CuXPnYG1tLTH67+/vzygZO9evX0dERATq1KkDOTk5yMnJoX379li+fDk8PDxw//591hGZMDc3x9WrVyWWphw5cgR2dnaMUkmfpqamaNaDhoYG7YLwhYiICJw4cQIODg6Qk5ODvr4+unfvDg0NDSxfvhx9+vRhHVHqrly5AmdnZ2hqasLBwQEAsGHDBvj6+uLUqVPo2LEj44TSV1ZWhqVLl1brGhHU6SaEkC8oKipi4MCB39x/lxC+iYuLE3WYHj58KHaOr50JoVAIdXV1AECdOnXw4sULmJqaQl9fH0+ePGGcjp2FCxdi1KhReP78OcrKyhASEoInT55g9+7dOH36NOt4UtO/f3/RqNyuXbvYhpFBhYWF0NXVBVC+lVhOTg5MTExgZWXFyyU8ADBlyhQMGTIEmzdvhry8PIDy15nJkydjypQpiIuLY5xQ+vz8/BAcHIxVq1bB3d1ddNzS0hLr16+vFp1uWtNNCOGlp0+f4tKlS3j16pXEyDdVkeWvWrVqITExEXXq1IG2tvZXO5J82y9VKBQiOjoaVlZW0NbWZh1HZnTo0AHe3t7o168fhg8fjrdv32L+/PnYunUr7t69K/HhBJ9cvXoVvr6+iImJEe0SsXDhQvTo0YN1NKmRl5fHy5cvoaOjA3l5edH+1KRcixYt4Ofnh549e8LFxQVaWlpYvnw5NmzYgCNHjiApKYl1RKlTVlbGgwcPYGpqKnb8yZMnsLW1RXFxMaNk7PwMNSJopJsQwjvbtm3DpEmTUKdOHdSrV09i2yO+d7q/LATFJ+vWrRONWq5fv55tGBkjLy+PHj16ID4+njrdn5k/fz4KCwsBlFfs/uWXX9ChQwfUrl0bBw8eZJyOrQ4dOuDChQusYzClo6ODGzduwNnZGRzH8fJ19Ws8PT2RlZUFoHxJj5OTE/766y8oKirydmaAvb094uPjJTrd8fHxvN2n+2eoEUEj3YQQ3tHX18fkyZMxe/Zs1lFkyu7du7F69Wo8ffoUAGBiYoKZM2di5MiRjJMRWeHg4ICVK1eia9eurKPItNzc3G/OlPjZGRoa4vbt26hdu7bY8by8PNjb2/NmT/fFixfD19e3SvcCVeou3zosISEBenp6qFOnDus4TBw8eBCzZs3CtGnT0Lp1awDAjRs3sGnTJqxYsQJmZmaia/mypVrz5s3h5eWFESNGiI10+/r64sKFC7h69SrriN9EnW5CCO9oaGjgwYMHMDQ0ZB1FZvj7+2PBggWYOnUq2rVrBwCIiorCpk2b4Ofnx5uCcvn5+VW+VkND4wcmkU1hYWGYO3culixZgubNm0NVVVXsPB/bhFRMTk5OtGPE57Kzs6Gnp4cPHz4wSiZ9CQkJePbsGVxcXLBz505oaWlVeF3fvn2lG4zIJDk5ua+e/7Q1oUAg4M0HNSdOnMCoUaMwd+5c+Pr6wsfHR6xGRPfu3VlH/CbqdBNCeGfcuHFo0aIFJk6cyDqKzGjSpAl8fHzg5uYmdjw4OBiLFy9GSkoKo2TSJScnV+XRSb682fnc528GP28nvr0BJJU7efIkgPIt94KDg6GpqSk6JxQKER4ejgsXLvCyyJyPjw9mzpwJFRUV1lGIDEtLS6vytV/uDvAzq+41IqjTTQjhneXLl8Pf3x99+vSBlZWVxLZHHh4ejJKxo6SkhIcPH0qsmXr69CmsrKzw/v17RsmkKzIyUvR9amoq5syZg9GjR6NNmzYAyreHCg4OxvLlyzFq1ChWMZn5vH0q4ujoKKUkRFZ9+mDm02jc5xQUFGBgYIC1a9fil19+YRGPEEKYoE43IYR3mjRpUuk5gUDAm7WGn7O0tMTw4cPx+++/ix338/PDwYMHeblFSdeuXTF+/HgMGzZM7Pi+ffuwdetWXL58mU0wQqqBJk2a4Pbt27xdl/uJvb09wsPDoa2tDTs7u6/OpOHrFllEXHBwMOrUqSPao3zWrFnYunUrzM3NsX//fl6Nbv9MqHo5IYR3+DJV+p/w8fHBkCFDcOXKFdGa7ujoaISHh+PQoUOM07Fx/fp1BAYGShx3cHDA+PHjGSSSDXl5eQgKCkJ8fDwAwMLCAmPHjhWbRkwIvc6W69u3L2rWrAmgfMo9Id+ybNkybN68GUD576GAgACsX78ep0+fhpeXF0JCQhgnlL7KClMKBAIoKSnByMgIo0ePxpgxYxikqxoa6SaEEAIAuHv3LtatWyfqTJmZmcHb2xt2dnaMk7FhamqKvn37YtWqVWLHZ82ahRMnTvByTeqdO3fQs2dPKCsro2XLlgCA27dvo7i4GOfPn4e9vT3jhNL3aQ3zlz5/M/i12TU/kw0bNlT5Wj4u4yEVu3r1KrZs2YKkpCQcOXIEDRs2xJ49e9CkSRO0b9+edTypU1FREVVwnz17NrKysrB79248evQInTp1Qk5ODuuIUrdu3TosXboUvXr1Ev3uuXXrFsLCwuDl5YWUlBTs2bMHGzduhLu7O+O0FaNONyGEF6ZPn44lS5ZAVVUV06dP/+q1/v7+UkpFZFloaCgGDhwIIyMjtGrVCkD5L/mnT5/i6NGj6N27N+OE0tehQwcYGRlh27ZtqFGjfLJcaWkpxo8fj+TkZFy5coVxQun7VHzvy7dTn1cYbt++PY4fP/7T729e1Q8X+LqMh0g6evQoRo4cCVdXV+zZswePHz+GoaEhAgICEBoaitDQUNYRpU5XVxfnzp2DnZ0d7OzsMH36dIwcORJJSUmwsbFBQUEB64hSN3DgQHTv3l2iAO6WLVtw/vx5HD16FBs3bsTWrVtldjkcdboJIbzQuXNnHDt2DFpaWujcuXOl1wkEAkREREgxGZFlmZmZ+PPPP5GQkACgfPR/4sSJaNy4MeNkbCgrK+P+/fto1qyZ2PHHjx/DwcEBRUVFjJKxEx4ejnnz5mHp0qViIzALFizA/PnzoampiV9//RWtWrVCUFAQ47RE2v7Jfu25ubk/OI3ssbOzg5eXF9zc3MT2X75//z569eqFly9fso4oda6urkhISICdnR3279+P9PR01K5dGydPnsTvv/+Ohw8fso4odWpqanjw4IFEsddnz57B1tYWBQUFSEpKgrW1NQoLCxml/Dpa000I4YVLly5V+D3fVWWLLIFAgNLSUiklki2NGjXCsmXLWMeQGRoaGkhPT5fodGdkZEBdXZ1RKrY8PT2xdetWtG3bVnSsa9euUFJSwoQJE/Do0SOsX78eY8eOZZiSsLJ+/XrR92/evIGfnx969uwptiPCuXPnsGDBAkYJ2Xry5Ak6duwocVxTUxN5eXnSDyQDNm3ahPnz5yMjIwNHjx5F7dq1AZQvAfuysCdf1KpVC6dOnYKXl5fY8VOnTqFWrVoAgMLCQpn+PUSdbkII4bFjx45Veu769evYsGEDysrKpJhItuTl5eHWrVt49eqVRDt8uac5HwwZMgTjxo3DmjVrRJ3M6OhozJw5k7dvBpOSkqChoSFxXENDQzSF2tjYGK9fv5Z2NOYyMzNx8uRJpKeno6SkROwcX5bxfL614MCBA+Hr64upU6eKjnl4eCAgIAAXL16U6FDwQb169fDs2TMYGBiIHY+KioKhoSGbUIxpaWkhICBA4riPjw+DNLJhwYIFmDRpEi5duiRWTyQ0NFRU8PTChQsyvW0lTS8nhBAi5smTJ5gzZw5OnToFV1dX+Pr68nKLkk///oKCAmhoaIjNCBAIBLycClpSUoKZM2ciMDBQNPtBQUEBkyZNwooVK0RVmvmkffv2UFdXx+7du6GjowMAyMnJgZubGwoLC3HlyhVcvHgRU6ZM4VXxvfDwcLi4uMDQ0BAJCQmwtLREamoqOI6Dvb09L5fxVGWKLN8sX74ce/fuxY4dO9C9e3eEhoYiLS0NXl5eWLBgAaZNm8Y6IpER0dHRCAgIEL2OmpqaYtq0aWKzjGQZdboJIYQAAF68eIFFixYhODgYPXv2xPLly2Fpack6FjMmJibo3bs3li1bBhUVFdZxmImNjYWlpSXk5OREx4qKipCUlAQAaNq0Ka/b58mTJ+jbty9SUlJEa/0zMjJgaGiIEydOwMTEBMePH8fff/+NkSNHMk4rPS1btkSvXr3g4+MjWqurq6sLV1dXODk5YdKkSawjSp2+vj48PDzg7e0tdnzt2rXYsGED0tLSGCVjh+M4LFu2DMuXLxfVhKhZsyZmzJiBJUuWME5HyPdDnW5CCOG5d+/eYdmyZdi4cSNsbW2xcuVKdOjQgXUs5lRVVREXF8fbKY6fyMvLIysrC7q6ujA0NMTt27dFawxJubKyMpw/fx6JiYkAykdgunfvLvZBBd+oq6vjwYMHaNq0KbS1tREVFQULCwvExMSgb9++SE1NZR1R6nbt2oXx48ejV69eoh0Rbt68ibCwMGzbtg2jR49mG5ChkpISPHv2DAUFBTA3N4eamhrrSERGvX//XmK5SkVLfGQNrekmhPDOlStX0LZtW9GWR5+Ulpbi2rVrFRZ1+VmtWrUKK1euRL169bB//3707duXdSSZ0bNnT9y5c4f3nW4tLS2kpKRAV1cXqampvF7jXxk5OTk4OTnBycmJdRSZoaqqKnpjXL9+fSQlJcHCwgIAeLm+HQBGjx4NMzMzbNiwASEhIQDKd0SIiooSdcL5Zu/evRgwYABUVFRgbm7OOg6RUUVFRZg1axYOHTqEN2/eSJwXCoUMUv0zNNJNCOGdz0fuPvfmzRvo6upWixfv70VOTg7Kysro1q0b5OXlK73u0xtEPgkKCoKvry/GjBkDKysrKCgoiJ13cXFhlEy6JkyYgN27d6N+/fpIT09Ho0aNKr1X+Lr3cnh4OMLDwyssuLdjxw5Gqdjq168f+vTpA3d3d8yYMQMnTpzA6NGjERISAm1tbVy8eJF1RCIDdHR0UFxcDBcXF4wYMQI9e/b86u8iPujSpQtCQkKgpaUldjw/Px/9+vXjZT2EKVOm4NKlS1iyZAlGjhyJTZs24fnz59iyZQtWrFgBV1dX1hG/iTrdhBDekZOTQ3Z2tqjo0SeJiYlwcHBAfn4+o2TSN3r06CrtIbtz504ppJEtX5saLBAIePXhTFhYGJ49ewYPDw/4+vpWui2Lp6enlJOx5+PjA19fXzg4OKB+/foSz6ev7RDwM0tOTkZBQYFo31xvb29cu3YNxsbG8Pf352VxRqB8RO748eOIj48HAFhYWMDFxYW3Hc3S0lKEhYVh//79OHHiBFRUVDBo0CC4urpWmwJZ35ucnBxevnwpMTDw6tUrNGzYEB8/fmSUjB09PT3s3r0bnTp1goaGBu7duwcjIyPs2bMH+/fvR2hoKOuI30SdbkIIbwwYMAAAcOLECTg5OYlVWhYKhYiNjYWpqSnCwsJYRSREpo0ZMwYbNmyQ6b1Qpa1+/fpYtWoVr4qkkX/n2bNn6NOnDzIzM2FqagqgvBBf48aNcebMGTRt2pRxQraKiopw7Ngx7Nu3DxcvXkSjRo1EBRv5IDY2FgBga2uLiIgI0f7TQPl7lLCwMGzZsoWX9RDU1NTw+PFj6OnpoVGjRggJCUHLli2RkpICKyuralH5n9Z0E0J4Q1NTE0B5tVR1dXUoKyuLzikqKqJ169Zwd3dnFY8QmcfHGQ/fUlJSwtsROfLPeHh4wNDQENevXxd1qN68eYMRI0bAw8MDZ86cYZyQLRUVFfTs2RNv375FWlqaaDYAX9ja2kIgEEAgEKBLly4S55WVlbFx40YGydgzNDRESkoK9PT00KxZMxw6dAgtW7bEqVOnJKbhyyoa6SaE8I6Pjw9mzJgBVVVV1lGIjCssLERkZCTS09MlqqV6eHgwSsVOYWEhVqxYUen6ZT6u6Z49ezbU1NSwYMEC1lGIjFNVVcWNGzdgZWUldjwmJgbt2rWrFqN1P8KnEe6//voL4eHhaNy4MYYNGwZXV1c0a9aMdTypyM/PR25uLoDyDuatW7fElsApKipCV1eXt8sQ1q1bB3l5eXh4eODixYtwdnYGx3H4+PEj/P39q8XSJhrpJoTwzqxZs/D5541paWk4duwYzM3N0aNHD4bJiCy5f/8+evfujaKiIhQWFqJWrVp4/fo1VFRUoKury8tO9/jx4xEZGYmRI0dWuH6Zj96/f4+tW7fi4sWLsLa2lii45+/vzygZkTU1a9bE33//LXG8oKAAioqKDBKxN3ToUJw+fRoqKioYPHgwFixYgDZt2rCOJXXa2tqiAq+Ojo4wMjKqNiO40uDl5SX6vlu3bkhISMDdu3dhZGQEa2trhsmqjjrdhBDe6du3LwYMGICJEyciLy8PLVu2hKKiIl6/fg1/f39MmjSJdUQiA7y8vODs7IzAwEBoamrixo0bUFBQwIgRI6rFp+o/wtmzZ3HmzBm0a9eOdRSZERsbC1tbWwDAw4cPxc7RhxLkc7/88gsmTJiAoKAgtGzZEkD5Pt0TJ07kzW4IX5KXl8ehQ4d4X7VcTU1NtIPKlStXeFks7Z/Q19eHpqZmtfpggqaXE0J4p06dOoiMjISFhQW2b9+OjRs34v79+zh69CgWLlzIu3VkpGJaWlq4efMmTE1NoaWlhevXr8PMzAw3b97EqFGjkJCQwDqi1DVp0gShoaEwMzNjHYVUEyUlJUhJSUHTpk1Rowa/x3ry8vIwatQonDp1SjQjorS0FC4uLti1a5eo7gjhn4EDByI6OhpmZmaIjIxE27ZtK539wMctw1auXAkDAwMMGTIEADB48GAcPXoU9erVQ2hoKGxsbBgn/DZ+v/oRQnipqKhIVH35/PnzGDBgAOTk5NC6dWukpaUxTkdkhYKCgmjbMF1dXaSnp8PMzAyamprIyMhgnI6NJUuWYOHChQgODoaKigrrOESGFRUVYdq0aQgODgZQviWjoaEhpk2bhoYNG2LOnDmME0qflpYWTpw4gadPn4o+tDMzM4ORkRHjZNK1YcMGTJgwAUpKStiwYcNXr+XLMp69e/ciODgYSUlJokEBeo39r8DAQPz1118AgAsXLuDChQs4e/YsDh06hJkzZ+L8+fOME34bjXQTQnjH2toa48ePR//+/WFpaYmwsDC0adMGd+/eRZ8+ffDy5UvWEYkM6NGjB0aPHo3hw4fD3d0dsbGx8PDwwJ49e/D27VvcvHmTdUSps7OzQ1JSEjiOg4GBgcT65Xv37jFKJl0DBgzArl27oKGhIdqKsDIhISFSSiVbPD09ER0djfXr18PJyQmxsbEwNDTEiRMnsHjxYty/f591RMJIkyZNcOfOHdSuXRtNmjSp9DqBQMDL4oydO3fGsWPHqtXU6R9NWVkZiYmJaNy4MTw9PfH+/Xts2bIFiYmJaNWqFd6+fcs64jfRSDchhHcWLlyI4cOHw8vLC126dBEVbTl//jzs7OwYpyOyYtmyZaKiR0uXLoWbmxsmTZoEY2NjBAUFMU7HRr9+/VhHkAmampqi9do0Jbhix48fx8GDB9G6dWuxte0WFha82nv5cxzH4ciRI7h06VKF1f/58gFNSkpKhd+TcpcuXWIdQeZoa2sjIyMDjRs3RlhYGPz8/ACUP6eEQiHjdFVDI92EEF56+fIlsrKyYGNjI5pCfOvWLWhoaPBmixJCCPlRVFRU8PDhQxgaGkJdXR0xMTEwNDRETEwMOnbsiHfv3rGOKHWenp7YsmULOnfujLp160oU2tu5cyejZLJDKBQiLi4O+vr60NbWZh2HmczMTJw8ebLC7Sr5uCPC1KlTcfr0aRgbG+P+/ftITU2FmpoaDhw4gFWrVlWLWVY00k0I4aV69eqhXr16yMzMBAA0atRIVE2WEADo0qULQkJCJKb45efno1+/frwsZkMq9+rVKzx58gQAYGpqCl1dXcaJ2HJwcMCZM2cwbdo0AP+t5L59+3ZebgkFAHv27EFISAh69+7NOorM+O2332BlZYVx48ZBKBSiY8eOuH79OlRUVHD69Gl06tSJdUSpCw8Ph4uLCwwNDZGQkABLS0ukpqaC4zjY29uzjsfEunXrYGBggIyMDKxatQpqamoAgKysLEyePJlxuqqhkW5CCO+UlZXBz88Pa9euRUFBAQBAXV0d3t7emDdvnmjkm/CbnJwcXr58KdF5evXqFRo2bMibLV1q1aqFxMRE1KlTB9ra2l/dBis3N1eKyWRDfn4+pkyZggMHDoimOcrLy2PIkCHYtGkTb6efR0VFoVevXhgxYgR27dqFX3/9FY8fP8a1a9cQGRmJ5s2bs44odU2aNMHZs2dpNtVnGjVqhOPHj8PBwQHHjx/HlClTcOnSJezZswcRERGIjo5mHVHqWrZsiV69esHHx0c0S0RXVxeurq5wcnKibU2rKRrpJoTwzrx58xAUFIQVK1aI9huOiorC4sWL8f79eyxdupRxQsJSbGys6PvHjx+LFdYTCoUICwtDw4YNWURjYt26daJq/+vXr2cbRga5u7vj/v37OH36tGgE9/r16/D09MSvv/6KAwcOME7IRvv27fHgwQOsWLECVlZWOH/+POzt7XH9+nVYWVmxjsfE4sWL4ePjgx07dkBZWZl1HJnw+vVr1KtXDwAQGhqKQYMGwcTEBGPHjsUff/zBOB0b8fHx2L9/PwCgRo0aKC4uhpqaGnx9fdG3b19edrqDg4NRp04d9OnTBwAwa9YsbN26Febm5ti/fz/09fUZJ/w2GukmhPBOgwYNEBgYCBcXF7HjJ06cwOTJk/H8+XNGyYgskJOTE43mVvQrUllZGRs3bsTYsWOlHY3IIFVVVZw7dw7t27cXO3716lU4OTmhsLCQUTIia4qLi9G/f39ER0fzuvr/5/T19bFt2zZ07doVTZo0webNm9GnTx88evQI7du3rxZVqb+3evXq4dKlSzAzM4O5uTlWrFgBFxcXxMTEoF27dqIZenxiamqKzZs3o0uXLrh+/Tq6deuGdevW4fTp06hRo0a1KEJII92EEN7Jzc2tcHpfs2bNeDk9lohLSUkBx3EwNDTErVu3oKOjIzqnqKgIXV1dyMvLM0xIZEnt2rUrnEKuqanJu0JQ+fn5Vb5WQ0PjByaRTaNGjcLdu3cxYsSICgup8dGYMWMwePBg1K9fHwKBAN26dQMA3Lx5k7fT8Fu3bo2oqCiYmZmhd+/e8Pb2RlxcHEJCQtC6dWvW8ZjIyMgQ7Wd//PhxDBw4EBMmTEC7du2qzbp/6nQTQnjHxsYGAQEB2LBhg9jxgIAA2NjYMEpFZMWnaWpfbudDSEXmz5+P6dOnY8+ePaJpsi9fvsTMmTOxYMECxumkS0tLq8odyeqyzc/3dObMmQpnRfDZ4sWLYWlpiYyMDAwaNAg1a9YEUF4XYc6cOYzTseHv7y8azfbx8UFBQQEOHjwIY2NjXlYuBwA1NTW8efMGenp6OH/+PKZPnw4AUFJSQnFxMeN0VUPTywkhvBMZGYk+ffpAT09PbA1mRkYGQkND0aFDB8YJiSz4GdaQkR/Pzs4Oz549w4cPH6CnpwcASE9PR82aNWFsbCx27c8+fTgyMlL0fWpqKubMmYPRo0eLvc4GBwdj+fLlGDVqFKuYzDRr1gyHDh2CtbU16yhERgmFQkRHR8Pa2lpi5ww+c3V1RUJCAuzs7LB//36kp6ejdu3aOHnyJH7//Xc8fPiQdcRvok43IYSXXrx4gU2bNiEhIQEAYGZmhsmTJ6NBgwaMkxFZ8eUasq5du2L9+vXVag0Z+fF8fHyqfO2iRYt+YBLZ0rVrV4wfPx7Dhg0TO75v3z5s3boVly9fZhOMoTNnzmDjxo0IDAyEgYEB6zgyIzw8HOHh4Xj16pXEDKMdO3YwSsWOkpIS4uPj0aRJE9ZRZEZeXh7mz5+PjIwMTJo0CU5OTgDKX1MVFRUxb948xgm/jTrdhBBCSAVUVFSQkJAAPT09zJ49G1lZWdi9ezcePXqETp06IScnh3VEZp49e4akpCR07NgRysrK4DiO1qcSMSoqKoiJiZEY7U9MTIStrS2KiooYJWNHW1sbRUVFKC0thYqKikQhNT7WFPHx8YGvry8cHBxE67o/d+zYMUbJ2HFwcMDKlSvRtWtX1lHId0RrugkhvJSXl4dbt25V+Mm6m5sbo1RElvwMa8i+tzdv3mDIkCGIiIiAQCDA06dPYWhoiHHjxkFbWxtr165lHZGpgoICidcTPhYMA4DGjRtj27ZtWLVqldjx7du3o3HjxoxSsUVb7kkKDAzErl27MHLkSNZRZIafnx9mzJiBJUuWoHnz5lBVVRU7z9fXlKtXr2LLli1ITk7G4cOH0bBhQ+zZswdNmjSpFnUSqNNNCOGdU6dOwdXVFQUFBdDQ0BD7ZF0gEFCnmwAAunfvjvHjx8POzg6JiYno3bs3AODRo0e8nRrq5eWFGjVqID09HWZmZqLjQ4YMwfTp03nZ6U5JScHUqVNx+fJlvH//XnT80+g/HwuGAeX7uw8cOBBnz55Fq1atAAC3bt3C06dPcfToUcbp2ODjOvZvKSkpQdu2bVnHkCmffte4uLiIvT/h82vK0aNHMXLkSLi6uuLevXv48OEDAODdu3dYtmwZQkNDGSf8NppeTgjhHRMTE/Tu3RvLli2DiooK6zhERv0Ma8i+t3r16uHcuXOwsbGBuro6YmJiYGhoiOTkZFhbW/Ny/9h27dqB4zh4enpWuA2Uo6Mjo2TsZWZm4s8//xSrnTFx4kTejnQTSbNnz4aamhrvKv1/zecFCSvCx9cUOzs7eHl5wc3NTex3z/3799GrVy+8fPmSdcRvok43IYR3VFVVERcXB0NDQ9ZRCKlW1NXVce/ePRgbG4u98blz5w569uyJN2/esI4odWpqarh79y5MTU1ZRyGk2vH09MTu3bthbW0Na2triXXufN0ii4hTUVHB48ePYWBgIPGBr7m5udgsI1lF08sJIbzTs2dP3LlzhzrdhPxDHTp0wO7du7FkyRIA5csxysrKsGrVKnTu3JlxOjZatGiBjIwM6nRXIC8vD0FBQYiPjwcAWFhYYOzYsdDU1GScjMiK2NhY2NraAoDEtk98Lc64c+dOqKmpYdCgQWLHDx8+jKKiIl4uU6hXrx6ePXsmsbQrKiqq2ryXo5FuQggvnDx5UvR9Tk4OfH19MWbMGFhZWUl8su7i4iLteIRUCw8fPkTXrl1hb2+PiIgIuLi44NGjR8jNzUV0dDSaNm3KOqLUJSUlYeLEiRgxYgQsLS0lXk/4uifzp9kPysrKaNmyJQDg9u3bKC4uxvnz52Fvb884ISGyycTEBFu2bJH4IDMyMhITJkzAkydPGCVjZ/ny5di7dy927NiB7t27IzQ0FGlpafDy8sKCBQswbdo01hG/iTrdhBBekJOTq9J1fC1SQkhVvXv3DgEBAYiJiUFBQQHs7e0xZcoU1K9fn3U0Jm7cuIHhw4cjNTVVdEwgEPC66BFQPivCyMgI27ZtQ40a5RMrS0tLMX78eCQnJ+PKlSuME0rfzp07MWTIEKolUonMzEwAQKNGjRgnYUtJSQkJCQkSo7qpqakwMzPj5e4ZHMdh2bJlWL58uWi7wZo1a4qqvFcH1OkmhBBCCPmXzM3NYWZmhlmzZlVYSE1fX59RMraUlZVx//59NGvWTOz448eP4eDgwMt9uuvWrYvi4mIMGjQI48aNo6rdAMrKyuDn54e1a9eKCjGqq6vD29sb8+bNq/IH5j8TPT09BAQESMy6O3HiBKZMmSL6cIKPSkpK8OzZMxQUFMDc3BxqamqsI1UZ/+5kQgghpAq6dOmCvLw8ieP5+fno0qWL9APJgLCwMERFRYn+vGnTJtja2mL48OF4+/Ytw2TspKWlYeXKlWjVqhUMDAygr68v9sVXGhoaSE9PlziekZEBdXV1BonYe/78OYKDg/H69Wt06tQJzZo1w8qVK6tF5eUfZd68eQgICMCKFStw//593L9/H8uWLcPGjRt5W9F82LBh8PDwwKVLlyAUCiEUChEREQFPT08MHTqUdTymFBUVYW5ujpYtW1arDjdAI92EEB4pLi5GeHg4fvnlFwDA3LlzRXs9AoC8vDyWLFkCJSUlVhGJDJGTk8PLly+hq6srdvzVq1do2LAhPn78yCgZO1ZWVli5ciV69+6NuLg4ODg4wNvbG5cuXUKzZs2wc+dO1hGlztnZGaNHj8bAgQNZR5EpHh4eOHbsGNasWSMa0Y2OjsbMmTMxcOBArF+/nm1AxrKzs7F3714EBwcjISEBTk5OGDduHJydnXk1utugQQMEBgZWOKo7efJkPH/+nFEydkpKSjBy5EgcPnxYtDSjrKwMbm5uCAwMhKKiIuOE0jN27NgqXbdjx44fnOR/R9XLCSG8ERwcjDNnzog63QEBAbCwsICysjIAICEhAQ0aNICXlxfLmISx2NhY0fePHz8WG4USCoUICwtDw4YNWURjLiUlBebm5gCAo0ePwtnZGcuWLcO9e/fQu3dvxunYcHZ2hpeXF+Li4qgw42fWrFkDgUAANzc3lJaWAgAUFBQwadIkrFixgnE69urWrYv27dsjMTERiYmJiIuLw6hRo6CtrY2dO3eiU6dOrCNKRW5ursQSBABo1qwZcnNzGSRii+M4vHz5Ert27YKfnx8ePHgAZWVlWFlZ8XLmzK5du6Cvrw87OztU93FiGukmhPBGhw4dMGvWLDg7OwOA2F6PALB3715s2rQJ169fZxmTMCYnJydal1vRr0hlZWVs3Lixyp/A/0xq1aqFqKgomJubo3379nBzc8OECROQmpoKc3NzXq7T/dqoJJ8LqX1SVFSEpKQkAEDTpk15X0QsOzsbe/bswc6dO5GcnIx+/fph3Lhx6NatGwoLC+Hr64sDBw4gLS2NdVSpaNWqFVq1aoUNGzaIHZ82bRpu376NGzduMErGRllZGZSUlPDo0SMYGxuzjsPclClTsH//fujr62PMmDEYMWIEatWqxTrWv0KdbkIIb9SvXx/Xr18XVQTV0dHB7du3RX9OTExEixYt8O7dO3YhCVP5+fmi0RVDQ0PcunULOjo6ovOKiorQ1dWFvLw8q4hMubi4oKSkBO3atcOSJUuQkpKChg0b4vz585g6dSoSExNZRyQy4t27dxAKhRJvkHNzc1GjRg1oaGgwSsaOs7Mzzp07BxMTE4wfPx5ubm4S7fPq1SvUq1cPZWVljFJKV2RkJPr06QM9PT20adMGAHD9+nVkZGQgNDQUHTp0YJxQ+iwsLBAUFITWrVuzjiITPnz4gJCQEOzYsQPXrl1Dnz59MG7cOPTo0aNa7eXOn0UjhBDey8vLE1vDnZOTI7YlR1lZmdh5wj/a2tpQUVGBgYEBHB0dYWRkJFYUq379+rztcAPlSzJq1KiBI0eOYPPmzaJp9mfPnoWTkxPjdESWDB06FAcOHJA4fujQId4Wg9LV1UVkZCQePnyI3377rcIROx0dHaSkpDBIx4ajoyMSExPRv39/5OXlIS8vDwMGDMCTJ0942eEGgBUrVmDmzJl4+PAh6ygyoWbNmhg2bBguXLiAx48fw8LCApMnT4aBgYGo4n11QGu6CSG80ahRIzx8+BCmpqYVno+NjeX9/qB8p6amhjdv3kBXVxdXrlzhZbG0r9HT08Pp06cljq9bt45BGtng6+v71fMLFy6UUhLZcvPmTfj7+0sc79SpE+bNm8cgEVsfP35Eamoq6tSp89XrBAIB79buNmjQAEuXLmUdQ2a4ubmhqKgINjY2UFRUFNWd+YSPa90/+bT8i+O4ard0hzrdhBDe6N27NxYuXIg+ffpIVCgvLi6Gj48P+vTpwygdkQXdunVD586dYWZmBo7j0L9//0orxUZEREg5HRv5+flVvpaPU4aPHTsm9uePHz8iJSUFNWrUQNOmTXnb6f7w4YOogNrnPn78iOLiYgaJ2FJQUBAr0kj+6+3btwgKCkJ8fDwAwNzcHGPGjKm2a3f/V3yv7P+lz6eXR0VF4ZdffkFAQACcnJyqVaV/WtNNCOGN7Oxs2NraQlFREVOnToWJiQkA4MmTJwgICEBpaSnu37+PunXrMk5KWCkuLkZwcDCSkpKwdu1auLu7V1r4iS+ju58XlqsMx3FUNOwz+fn5GD16NPr374+RI0eyjsNE586dYWlpiY0bN4odnzJlCmJjY3H16lVGydjx8vJCzZo1qXr7Z65cuQJnZ2doamrCwcEBAHD37l3k5eXh1KlT6NixI+OEhKXJkyfjwIEDaNy4McaOHQtXV9dvzhaRVdTpJoTwSkpKCiZNmoQLFy6IKlMLBAJ0794df/75p6iSOSGdO3fGsWPHoKWlxToKU5GRkVW+1tHR8QcmqV7i4uLg7OyM1NRU1lGYiI6ORrdu3dCiRQt07doVABAeHo7bt2/j/PnzvFyvO23aNOzevRvGxsZo3rw5VFVVxc5XNB3/Z2dlZYU2bdpg8+bNonoZQqEQkydPxrVr1xAXF8c4oXTk5+eLZgp9a3YRn2YUycnJQU9PD3Z2dl/98DckJESKqf4d6nQTQngpNzcXz549AwAYGRnxdhobIeTHiIqKgrOzM96+fcs6CjMPHjzA6tWrRXsNW1tbY+7cubzdCqlz586VnhMIBLxZsvI5ZWVlPHjwQKLWypMnT2Bra8ubpQjy8vLIysqCrq5upbOL+DijaPTo0VWqUL5z504ppPnf0JpuQggv1apVCy1btmQdg8i4zMxMnDx5Eunp6SgpKRE7x8dRqU+KiooqbBNra2tGidj5cn9hjuOQlZWFPXv2oFevXoxSyQZbW1v89ddfrGPIjEuXLrGOIHPs7e0RHx8v0emOj4+HjY0No1TSFxERIfrwn+6T/9q1axfrCN8NjXQTQgghFQgPD4eLiwsMDQ2RkJAAS0tLpKamguM42Nvb83JUKicnB2PGjMHZs2crPM+nEZhPmjRpIvZnOTk56OjooEuXLpg7dy7U1dUZJSOyLDMzEwB4v2PGwYMHMWvWLEybNk20L/WNGzewadMmrFixAmZmZqJr+fih3pcePnwIS0tL1jHIv0CdbkIIIaQCLVu2RK9eveDj4wN1dXXExMRAV1cXrq6ucHJywqRJk1hHlDpXV1ekpaVh/fr16NSpE44dO4bs7Gz4+flh7dq1VP2fkK8oKysTPVc+7S+srq4Ob29vzJs3r1pVYv5evvVv/rQ9FN+mVX/u77//xv79+7F9+3bcvXuXt+1Q3dH0ckIIIaQC8fHx2L9/PwCgRo0aKC4uhpqaGnx9fdG3b19edrojIiJw4sQJODg4QE5ODvr6+ujevTs0NDSwfPlyXnW6BwwY8M1ratSogXr16qF79+5wdnaWQioiy+bNm4egoCCsWLEC7dq1A1C+9n/x4sV4//49L/eqTklJYR1BZl25cgVBQUE4evQoGjRogAEDBmDTpk2sY5F/iTrdhBBCSAVUVVVFa5br16+PpKQkWFhYAABev37NMhozhYWF0NXVBQBoa2sjJycHJiYmsLKywr179xinky5NTc1vXlNWVoanT59i+/btmDFjBnx9faWQjMiq4OBgbN++HS4uLqJj1tbWaNiwISZPnszLTre+vj7rCDLl5cuX2LVrF4KCgpCfn4/Bgwfjw4cPOH78OMzNzVnHI/8D6nQTQgghFWjdujWioqJgZmaG3r17w9vbG3FxcQgJCRGtPeQbU1NTPHnyBAYGBrCxscGWLVtgYGCAwMBA1K9fn3U8qfon1XJPnz6NyZMn86bT/fHjR1FValp/+l+5ublo1qyZxPFmzZohNzeXQSL2goODUadOHdEsmVmzZmHr1q0wNzfH/v37edUpd3Z2xpUrV9CnTx+sX78eTk5OkJeXR2BgIOto5Dvg3+IRQgghpAr8/f3RqlUrAICPjw+6du2KgwcPwsDAAEFBQYzTseHp6YmsrCwAwKJFi3D27Fno6elhw4YNWLZsGeN0sqt9+/ZwcHBgHUNqFBQUoKenR2tPv2BjY4OAgACJ4wEBAbyq1P25ZcuWQVlZGQBw/fp1BAQEYNWqVahTpw68vLwYp5Ous2fPYty4cfDx8UGfPn1E+5aTnwMVUiOEEEK+IBQKER0dDWtra2hpabGOw1R+fj40NDQqPFdUVISEhATo6emhTp06Uk5GZFlQUBBCQkKwZ88e0VZIfBcZGYk+ffpAT08Pbdq0AVDe0czIyEBoaCg6dOjAOKH0qaioiF5DZs+ejaysLOzevRuPHj1Cp06dkJOTwzqi1Ny4cQNBQUE4ePAgzMzMMHLkSAwdOhT169dHTEwMTS+v5mikmxBCCPmCvLw8evTogbdv37KOwpy2tjZevXoFAOjSpQvy8vJE51RUVGBvb08dbiIhICAAV65cQYMGDWBqagp7e3uxLz5ydHREYmIi+vfvj7y8POTl5WHAgAF48uQJLzvcAKCmpoY3b94AAM6fP4/u3bsDAJSUlFBcXMwymtS1bt0a27ZtQ1ZWFn799VccOHAADRo0QFlZGS5cuIC///6bdUTyP6A13YQQQkgFLC0tkZycLLEPM998elOsq6uLy5cv4+PHj6wjkWqgX79+rCPInPT0dDRu3LjCgmnp6enQ09NjkIqt7t27Y/z48bCzs0NiYiJ69+4NAHj06BEMDAzYhmNEVVUVY8eOxdixY/HkyRNRxfs5c+age/fuOHnyJOuI5F+g6eWEEEJIBcLCwjB37lwsWbIEzZs3h6qqqtj5yqZc/2wGDhyI6OhomJmZITIyEm3btoWiomKF10ZEREg5HSHVh7y8PLKyskQ7AHzy6UMtPq6Bz8vLw/z585GRkYFJkybByckJQHnNCEVFRcybN49xQtkgFApx6tQp7Nixgzrd1RR1ugkhhJAKyMn9dwWWQCAQfc9xHAQCAW/eIBcXFyM4OBhJSUlYu3Yt3N3doaKiUuG169atk3I6Isvy8vJw5MgRJCUlYebMmahVqxbu3buHunXromHDhqzjSZ2cnByys7Oho6MjdjwtLQ3m5uYoLCxklIwQ8qPR9HJCCCGkApcuXWIdQSYoKytj4sSJAIA7d+5g5cqVvC8uR74tNjYW3bp1g6amJlJTU+Hu7o5atWohJCQE6enp2L17N+uIUjN9+nQA5VwjtyUAACR8SURBVB/eLViwQOxDK6FQiJs3b8LW1pZROvauXr2KLVu2IDk5GYcPH0bDhg2xZ88eNGnSBO3bt2cdj5DvgjrdhBBCSAUcHR1ZR5A59EEEqarp06dj9OjRWLVqFdTV1UXHe/fujeHDhzNMJn33798HUD5LJi4uTmx5hqKiImxsbDBjxgxW8Zg6evQoRo4cCVdXV9y7dw8fPnwAALx79w7Lli1DaGgo44SEfB80vZwQQgipwM6dO6GmpoZBgwaJHT98+DCKioowatQoRskIkX2ampq4d+8emjZtCnV1dcTExMDQ0BBpaWkwNTXF+/fvWUeUujFjxuCPP/7gTT2IqrCzs4OXlxfc3NzE7pP79++jV69eePnyJeuIhHwXtGUYIYQQUoHly5dXuBWWrq4uli1bxiARIdVHzZo1kZ+fL3E8MTFRYk0zX6xfvx6lpaUSx3NzcytsKz548uQJOnbsKHFcU1NTbHtCQqo76nQTQgghFUhPT69wuzB9fX2kp6czSERI9eHi4gJfX1/RFnMCgQDp6emYPXs2Bg4cyDgdG0OHDsWBAwckjh86dAhDhw5lkIi9evXq4dmzZxLHo6KiYGhoyCARIT8GdboJIYSQCujq6iI2NlbieExMDGrXrs0gESHVx9q1a1FQUABdXV0UFxfD0dERRkZGUFdXr3Cfaj64efMmOnfuLHG8U6dOuHnzJoNE7Lm7u8PT0xM3b96EQCDAixcv8Ndff2HGjBmYNGkS63iEfDdUSI0QQgipwLBhw+Dh4QF1dXXR9MfIyEh4enrydlSqog8hgPJRTCUlJejp6aFmzZpSTkVkkaamJi5cuICoqCjExsaioKAA9vb26NatG+tozHz48KHC6eUfP35EcXExg0TszZkzB2VlZejatSuKiorQsWNH1KxZEzNmzMC0adNYxyPku6FCaoQQQkgFSkpKMHLkSBw+fBg1apR/Rl1WVgY3NzcEBgaKVSDmCzk5ObE9y7+koKCAIUOGYMuWLVBSUpJiMkJkX+fOnWFpaYmNGzeKHZ8yZQpiY2Nx9epVRsnYEAqFiI6OhrW1NVRUVPDs2TMUFBTA3NwcampqrOMR8l1Rp5sQQgj5AsdxyMjIgI6ODjIzM/HgwQMoKyvDysoK+vr6rOMxc+LECcyePRszZ85Ey5YtAQC3bt3C2rVrsWjRIpSWlmLOnDkYMmQI1qxZwzgtkbYNGzZU+VoPD48fmEQ2RUdHo1u3bmjRogW6du0KAAgPD8ft27dx/vx5dOjQgXFC6VNSUkJ8fHyF9TMI+ZlQp5sQQgj5QllZGZSUlPDo0SMYGxuzjiMzWrZsiSVLlqBnz55ix8+dO4cFCxbg1q1bOH78OLy9vZGUlMQoJWHly45TTk4OioqKoKWlBQDIy8uDiooKdHV1kZyczCAhew8ePMCqVasQExMDZWVlWFtbY+7cubx9nXFwcMDKlStFH0IQ8rOiNd2EEELIF+Tk5GBsbIw3b97w9s1wReLi4ioc6dfX10dcXBwAwNbWFllZWdKORmRASkqK6Pt9+/bhzz//RFBQEExNTQGUbw/l7u6OX3/9lVVE5mxtbbFv3z7WMWSGn58fZsyYgSVLlqB58+ZQVVUVO097mpOfBY10E0IIIRU4deoUVq1ahc2bN8PS0pJ1HJlgZ2cHGxsbbN26VbSm/ePHj3B3d0dMTAzu37+P6OhojBgxQqwDRvinadOmOHLkCOzs7MSO3717F//5z394e38kJSVh586dSE5Oxvr166Grq4uzZ89CT08PFhYWrONJnZzcfzdS+rxeBMdxEAgEEAqFLGIR8t3RSDchhBBSATc3NxQVFcHGxgaKiopQVlYWO5+bm8soGTubNm2Ci4sLGjVqBGtrawDlo99CoRCnT58GACQnJ2Py5MksYxIZkJWVVWGlbqFQiOzsbAaJ2IuMjESvXr3Qrl07XLlyBX5+ftDV1UVMTAyCgoJw5MgR1hGl7tKlS6wjECIVNNJNCCGEVCA4OPir50eNGiWlJLLl77//xl9//YXExEQAgKmpKYYPHw51dXXGyYgscXZ2xvPnz7F9+3bY29sDKB/lnjBhAho2bIiTJ08yTih9bdq0waBBgzB9+nSoq6sjJiYGhoaGuHXrFgYMGIDMzEzWEQkhPwh1ugkhhBBCyHeVk5ODUaNGISwsDAoKCgCA0tJS9OzZE7t27YKuri7jhNKnpqaGuLg4NGnSRKzTnZqaimbNmuH9+/esIzJlZWWF0NBQNG7cmHUUQr47ml5OCCGE/L/8/HxR4Z78/PyvXsvXAj9Pnz7FpUuX8OrVK5SVlYmdW7hwIaNURNbo6OggNDQUiYmJSEhIAAA0a9YMJiYmjJOxo6WlhaysLIkq7/fv30fDhg0ZpZIdqamp+PjxI+sYhPwQ1OkmhBBC/p+2tjaysrKgq6sLLS0tscI+n/C5wM+2bdswadIk1KlTB/Xq1RNrH4FAQJ1uIsHExITXHe3PDR06FLNnz8bhw4chEAhQVlaG6OhozJgxA25ubqzjEUJ+IOp0E0IIIf8vIiICtWrVAkAFfiri5+eHpUuXYvbs2ayjEBknFAqxa9cuhIeHVzgrIiIiglEydpYtW4YpU6agcePGEAqFMDc3h1AoxPDhwzF//nzW8Zjr0KGDRMFKQn4WtKabEEII+YcePnzIy23ENDQ08ODBAxgaGrKOQmTc1KlTsWvXLvTp0wf169eXmDWybt06RsnYS09Px8OHD1FQUAA7OzsYGxuzjkQI+cGo000IIYRUwd9//439+/dj+/btuHv3Li+nl48bNw4tWrTAxIkTWUchMq5OnTrYvXs3evfuzToKkXFUJ4LwAU0vJ4QQQr7iypUrCAoKwtGjR9GgQQMMGDAAmzZtYh2LCSMjIyxYsAA3btyAlZWVqCr1Jx4eHoySEVmjqKgIIyMj1jGYmz59OpYsWQJVVVVMnz79q9eqqanBwsIC//nPfyAvLy+lhGxRnQjCFzTSTQghhHzh5cuX2LVrF4KCgpCfn4/BgwcjMDAQMTExMDc3Zx2PmS+rLn9OIBAgOTlZimmILFu7di2Sk5MREBBQYUFCvujcuTOOHTsGLS0tdO7c+avXfvjwAY8ePUK/fv0QHBwspYRs6evrY/LkyVQngvz0qNNNCCGEfMbZ2RlXrlxBnz594OrqCicnJ8jLy0NBQYH3nW5Cqqp///64dOkSatWqBQsLC4lZESEhIYySybY7d+6ga9euePfuHesoUkF1Ighf0PRyQggh5DNnz56Fh4cHJk2aRAWOCPmXtLS00L9/f9Yxqh1ra2vs3r2bdQypGTRoEM6fP091IshPjzrdhBBCyGeioqIQFBSE5s2bw8zMDCNHjsTQoUNZx2Lmn6xJ9ff3l1IqIut27tzJOoJMyszMxMmTJ5Geno6SkhKxc/7+/lBUVETfvn0ZpZM+qhNB+IKmlxNCCCEVKCwsxMGDB7Fjxw7cunULQqEQ/v7+GDt2LNTV1VnHk5qqrkkVCAS83HuZfF1OTg6ePHkCADA1NYWOjg7jROyEh4fDxcUFhoaGSEhIgKWlJVJTU8FxHOzt7Xn5/KE6EYQvqNNNCCGEfMOTJ08QFBSEPXv2IC8vD927d8fJkydZxyJEZhUWFmLatGnYvXu3aBsoeXl5uLm5YePGjVBRUWGcUPpatmyJXr16wcfHB+rq6oiJiYGurq6odsSkSZNYRySE/CByrAMQQgghss7U1BSrVq1CZmYm9u/fzzoOMzt37kRxcTHrGKQamD59OiIjI3Hq1Cnk5eUhLy8PJ06cQGRkJLy9vVnHYyI+Ph5ubm4AgBo1aqC4uBhqamrw9fXFypUrGadjj+M40Fgg+VlRp5sQQgipInl5efTr14+3o9xz5sxB3bp1MW7cOFy7do11HCLDjh49iqCgIPTq1QsaGhrQ0NBA7969sW3bNhw5coR1PCZUVVVF67jr16+PpKQk0bnXr1+zisXc7t27YWVlBWVlZSgrK8Pa2hp79uxhHYuQ74o63YQQQgipkufPnyM4OBivX79Gp06d0KxZM6xcuRIvX75kHY3ImKKiItStW1fiuK6uLoqKihgkYq9169aIiooCAPTu3Rve3t5YunQpxo4di9atWzNOx4a/vz8mTZqE3r1749ChQzh06BCcnJwwceJErFu3jnU8Qr4bWtNNCCGEkH8sOzsbe/fuRXBwMBISEuDk5IRx48bB2dkZcnL0mT7fde3aFbVr18bu3buhpKQEACguLsaoUaOQm5uLixcvMk4ofcnJySgoKIC1tTUKCwvh7e2Na9euwdjYGP7+/tDX12cdUeqaNGkCHx8f0bT7T4KDg7F48WKkpKQwSkbI90WdbkIIIYT8Kzdv3sSOHTsQHByM+vXr4+3bt9DW1sbOnTvRqVMn1vEIQw8fPkTPnj3x4cMH2NjYAABiYmKgpKSEc+fOwcLCgnFC6RIKhYiOjoa1tTW0tLRYx5EZSkpKePjwIYyMjMSOP336FFZWVnj//j2jZIR8X/RRNCGEEEKqLDs7G2vWrIGFhQU6deqE/Px8nD59GikpKXj+/DkGDx6MUaNGsY5JGLO0tMTTp0+xfPly2NrawtbWFitWrMDTp0951+EGyutB9OjRA2/fvmUdRaYYGRnh0KFDEscPHjwIY2NjBokI+TFopJsQQgghVeLs7Ixz587BxMQE48ePh5ubG2rVqiV2zatXr1CvXj3RNlGEkHIODg5YuXIlunbtyjqKzDh69CiGDBmCbt26oV27dgCA6OhohIeH49ChQ+jfvz/jhIR8HzVYByCEEEJI9aCrq4vIyEi0adOm0mt0dHRoHSYBUL6//caNGxEfHw8AMDMzw9SpU9GsWTPGydjw8/PDjBkzsGTJEjRv3hyqqqpi5zU0NBglY2fgwIG4efMm1q1bh+PHjwMov09u3boFOzs7tuEI+Y5opJsQQgghhHxXR48exdChQ+Hg4CD6kObGjRu4ffs2Dhw4gIEDBzJOKD2+vr7w9vaGurq66JhAIBB9z3EcBAIBhEIhi3iEECmgTjchhBBCqqywsBCRkZFIT08X7Tn8iYeHB6NURNY0bdoUrq6u8PX1FTu+aNEi7N27V2yP6p+dvLw8srKyRCP+lXF0dJRSIkKItFGnmxBCCCFVcv/+ffTu3RtFRUUoLCxErVq18Pr1a6ioqEBXVxfJycmsIxIZoaKigtjY2AqrUtvY2PBqr245OTm8fPkSurq6rKPIDDk5ObHR/ooIBAKUlpZKKREhPxat6SaEEEJIlXh5ecHZ2RmBgYHQ1NTEjRs3oKCggBEjRsDT05N1PCJDOnXqhKtXr0p0uqOiotChQwdGqdj5VgeTb44dO1bpuevXr2PDhg1UjJH8VGikmxBCCCFVoqWlhZs3b8LU1BRaWlq4fv06zMzMcPPmTYwaNQoJCQmsIxIZERgYiIULF2Lw4MFo3bo1gPI13YcPH4aPjw8aNGggutbFxYVVTKmQk5ODpqbmNzveubm5Ukokm548eYI5c+bg1KlToqUJ+vr6rGMR8l3QSDchhBBCqkRBQQFycnIAyiuZp6enw8zMDJqamsjIyGCcjsiSyZMnAwD+/PNP/PnnnxWeA8CbAmI+Pj7Q1NRkHUMmvXjxAosWLUJwcDB69uyJBw8ewNLSknUsQr4r6nQTQgghpErs7Oxw+/ZtGBsbw9HREQsXLsTr16+xZ88eepNMxNDUYHFDhw6lNd1fePfuHZYtW4aNGzfC1tYW4eHhvFx6QPhBjnUAQgghhFQPy5YtQ/369QEAS5cuhba2NiZNmoScnBxs3bqVcToi6/Ly8lhHYILWc0tatWoVDA0Ncfr0aezfvx/Xrl2jDjf5qdGabkIIIYQQ8l2tXLkSBgYGGDJkCABg0KBBOHr0KOrXr4/Q0FDY2NgwTig9VL1ckpycHJSVldGtWzfIy8tXel1ISIgUUxHy49D0ckIIIYQQ8l0FBgbir7/+AgBcuHABFy9eRFhYGA4dOoSZM2fi/PnzjBNKD021l+Tm5kYzAAiv0Eg3IYQQQiplZ2dX5TfH9+7d+8FpSHWhrKyMxMRENG7cGJ6ennj//j22bNmCxMREtGrVCm/fvmUdkRBCpIZGugkhhBBSqX79+rGOQKohbW1tZGRkoHHjxggLC4Ofnx8AgOM4XlQrJ4SQz1GnmxBCCCGVWrRoEesIpBoaMGAAhg8fDmNjY7x58wa9evUCANy/fx9GRkaM0xFCiHRRp5sQQggh/8idO3cQHx8PADA3N0fz5s0ZJyKyZt26dTAwMEBGRgZWrVoFNTU1AEBWVpbYPt2EEMIHtKabEEIIIVWSmZmJYcOGITo6GlpaWgDKt4Fq27YtDhw4gEaNGrENSAghhMgg6nQTQgghpEqcnJyQl5eH4OBgmJqaAgCePHmCMWPGQENDA2FhYYwTElny9OlTXLp0Ca9evZKo4L1w4UJGqQghRPqo000IIYSQKlFWVsa1a9dgZ2cndvzu3bvo0KEDioqKGCUjsmbbtm2YNGkS6tSpg3r16olVwBcIBFTpnhDCK7SmmxBCCCFV0rhxY3z8+FHiuFAoRIMGDRgkIrLKz88PS5cuxezZs1lHIYQQ5uRYByCEEEJI9bB69WpMmzYNd+7cER27c+cOPD09sWbNGobJiKx5+/YtBg0axDoGIYTIBJpeTgghhJAq0dbWRlFREUpLS1GjRvlkuU/fq6qqil2bm5vLIiKREePGjUOLFi0wceJE1lEIIYQ5ml5OCCGEkCpZv3496wikmjAyMsKCBQtw48YNWFlZQUFBQey8h4cHo2SEECJ9NNJNCCGEEEK+qyZNmlR6TiAQIDk5WYppCCGELep0E0IIIaRK7t27BwUFBVhZWQEATpw4gZ07d8Lc3ByLFy+GoqIi44SEEEKI7KFCaoQQQgipkl9//RWJiYkAgOTkZAwZMgQqKio4fPgwZs2axTgdIYQQIptopJsQQgghVaKpqYl79+6hadOmWLlyJSIiInDu3DlER0dj6NChyMjIYB2RyJDMzEycPHkS6enpKCkpETvn7+/PKBUhhEgfFVIjhBBCSJVwHIeysjIAwMWLF/HLL78AKN+/+/Xr1yyjERkTHh4OFxcXGBoaIiEhAZaWlkhNTQXHcbC3t2cdjxBCpIqmlxNCCCGkShwcHODn54c9e/YgMjISffr0AQCkpKSgbt26jNMRWTJ37lzMmDEDcXFxUFJSwtGjR5GRkQFHR0fav5sQwjvU6SaEEEJIlaxfvx737t3D1KlTMW/ePBgZGQEAjhw5grZt2zJOR2RJfHw83NzcAAA1atRAcXEx1NTU4Ovri5UrVzJORwgh0kXTywkhhBBSJdbW1oiLi5M4vnr1asjLyzNIRGSVqqqqaB13/fr1kZSUBAsLCwCgpQiEEN6hTjchhBBC/idKSkqsIxAZ07p1a0RFRcHMzAy9e/eGt7c34uLiEBISgtatW7OORwghUkXVywkhhBBSqVq1aiExMRF16tSBtrY2BAJBpdfm5uZKMRmRZcnJySgoKIC1tTUKCwvh7e2Na9euwdjYGP7+/tDX12cdkRBCpIZGugkhhBBSqXXr1kFdXR1A+ZpuQr5FKBQiMzMT1tbWAMqnmgcGBjJORQgh7NBINyGEEEII+a6UlJQQHx+PJk2asI5CCCHM0Ug3IYQQQiqVn59f5Ws1NDR+YBJSnVhaWiI5OZk63YQQAhrpJoQQQshXyMnJfXUd9+eEQuEPTkOqi7CwMMydOxdLlixB8+bNoaqqKnaePqAhhPAJdboJIYQQUqnIyEjR96mpqZgzZw5Gjx6NNm3aAACuX7+O4OBgLF++HKNGjWIVk8gIX19feHt7i+oAABD70IbjOAgEAvqAhhDCK9TpJoQQQkiVdO3aFePHj8ewYcPEju/btw9bt27F5cuX2QQjMkNeXh5ZWVmIj4//6nWOjo5SSkQIIexRp5sQQgghVaKiooKYmBgYGxuLHU9MTIStrS2KiooYJSOyQk5ODi9fvoSuri7rKIQQIjPkWAcghBBCSPXQuHFjbNu2TeL49u3b0bhxYwaJiCyqag0AQgjhCxrpJoQQQkiVhIaGYuDAgTAyMkKrVq0AALdu3cLTp09x9OhR9O7dm3FCwpqcnBw0NTW/2fHOzc2VUiJCCGGPOt2EEEIIqbLMzExs3rxZtGbXzMwMEydOpJFuAqC8071+/Xpoamp+9ToqukcI4RPqdBNCCCGEkO+C1nQTQogkWtNNCCGEEEK+C1rPTQghkqjTTQghhBBCvguaQEkIIZJoejkhhBBCCCGEEPKD0Eg3IYQQQgghhBDyg1CnmxBCCCFV0qVLF+Tl5Ukcz8/PR5cuXaQfiBBCCKkGaHo5IYQQQqqkssrUr169QsOGDfHx40dGyQghhBDZVYN1AEIIIYTIttjYWNH3jx8/xsuXL0V/FgqFCAsLQ8OGDVlEI4QQQmQejXQTQggh5Kvk5OREW0FV9LZBWVkZGzduxNixY6UdjRBCCJF51OkmhBBCSKXy8/ORm5sLADA0NMStW7ego6MjOq+oqAhdXV3Iy8uzikgIIYTINJpeTgghhJBKaWtrIysrC7q6unB0dISRkRG0tLRYxyKEEEKqDapeTgghhJBKqamp4c2bNwCAK1euULE0Qggh5B+ikW5CCCGEVKpbt27o3LkzzMzMwHEc+vfvD0VFxQqvjYiIkHI6QgghRPZRp5sQQgghldq7dy+Cg4ORlJSEyMhIWFhYQEVFhXUsQgghpNqgQmqEEEIIqZLOnTvj2LFjtKabEEII+Qeo000IIYQQQgghhPwgNL2cEEIIIVWWmZmJkydPIj09HSUlJWLn/P39GaUihBBCZBd1ugkhhBBSJeHh4XBxcYGhoSESEhJgaWmJ1NRUcBwHe3t71vEIIYQQmURbhhFCCCGkSubOnYsZM2YgLi4OSkpKOHr0KDIyMuDo6IhBgwaxjkcIIYTIJFrTTQghhJAqUVdXx4MHD9C0aVNoa2sjKioKFhYWiImJQd++fZGamvp/7d1/TFX1H8fx10G8eLtcdkW9hU6vFEQ4kSUt9R+NpsncnMWaK0thVltqYUaW/NFWscA2dZRtYJNf/ZySxgg1ZwoqNmur4a8RJebQRZvmTMEJcu7tD+fte78q3rTjubeej7/wnHPPeXH/4uX7c86xOyIAABGHSTcAAAiLy+UK3sedlJSkjo6O4L7Tp0/bFQsAgIjGPd0AACAskydPVktLi9LT0zVr1iwVFhbq0KFD2rx5syZPnmx3PAAAIhLLywEAQFiOHTum7u5uTZgwQT09PSosLNQ333yj1NRUrVmzRj6fz+6IAABEHEo3AAC4IdM0tW/fPk2YMEEej8fuOAAARA1KNwAACMuQIUPU1tam5ORku6MAABA1eJAaAAAIy/jx43Xs2DG7YwAAEFWYdAMAgLB89dVXKioqUnFxsbKysuRyuUL2JyQk2JQMAIDIRekGAABhiYn5a4GcYRjBnwOBgAzDkGmadsQCACCi8cowAAAQlqamJrsjAAAQdZh0AwAAAABgER6kBgAAwlJdXa26urqrttfV1am2ttaGRAAARD5KNwAACEtpaamGDx9+1Xav16uSkhIbEgEAEPko3QAAICydnZ3XfEe3z+dTZ2enDYkAAIh8lG4AABAWr9ergwcPXrX9wIEDGjZsmA2JAACIfJRuAAAQlieffFIFBQVqamqSaZoyTVO7du3S0qVL9cQTT9gdDwCAiMTTywEAQFj6+vo0f/581dXVKTb28ltH/X6/FixYoIqKCjkcDpsTAgAQeSjdAADghgKBgE6cOKERI0bo5MmTam1tldPpVEZGhnw+n93xAACIWJRuAABwQ36/X0OGDNGRI0eUmppqdxwAAKIG93QDAIAbiomJUWpqqn7//Xe7owAAEFUo3QAAICwrV67U8uXLdfjwYbujAAAQNVheDgAAwjJ06FBduHBB/f39cjgccjqdIfvPnDljUzIAACJXrN0BAABAdCgrK7M7AgAAUYdJNwAAAAAAFmHSDQAAruvcuXNKSEgI/jyQK8cBAIC/MOkGAADXNWjQIHV1dcnr9SomJkaGYVx1TCAQkGEYMk3ThoQAAEQ2Jt0AAOC6du3apcTERElSU1OTzWkAAIg+TLoBAMAtO3z4sMaPH293DAAAIg7v6QYAADfl/Pnz+uCDD/Tggw8qMzPT7jgAAEQkSjcAAPhb9uzZo7y8PCUlJWnVqlV6+OGHtX//frtjAQAQkbinGwAA3NBvv/2mmpoaVVZW6ty5c5o7d656e3tVX1+vcePG2R0PAICIxaQbAAAMaPbs2UpLS9PBgwdVVlamX3/9VWvXrrU7FgAAUYFJNwAAGNC2bdtUUFCgRYsWKTU11e44AABEFSbdAABgQC0tLTp//ryysrI0adIkvf/++zp9+rTdsQAAiAq8MgwAAISlp6dHGzZsUFVVlb777juZpqk1a9Zo4cKFcrvddscDACAiUboBAMDf1t7ersrKSn300Uc6e/asZsyYoYaGBrtjAQAQcSjdAADgppmmqS+//FJVVVWUbgAAroHSDQAAAACARXiQGgAAAAAAFqF0AwAAAABgEUo3AAAAAAAWoXQDAAAAAGARSjcAAMC/QH5+vh599NHgvx966CG99NJLtz1Hc3OzDMPQ2bNnb/u1ASASUboBAAAslJ+fL8MwZBiGHA6HUlJS9NZbb6m/v9/S627evFnFxcVhHUtRBgDrxNodAAAA4N8uJydH1dXV6u3t1datW7VkyRINHjxYRUVFIcf19fXJ4XD8I9dMTEz8R84DALg1TLoBAAAsFhcXp7vuuks+n0+LFi3S9OnT1dDQEFwS/vbbb2vkyJFKS0uTJJ04cUJz586Vx+NRYmKi5syZo+PHjwfPZ5qmXn75ZXk8Hg0bNkyvvvqqAoFAyDX/f3l5b2+vXnvtNY0ePVpxcXFKSUlRZWWljh8/ruzsbEnS0KFDZRiG8vPzJUl+v1+lpaVKTk6W0+lUZmamPv/885DrbN26Vffee6+cTqeys7NDcgIAKN0AAAC3ndPpVF9fnyRp586dam9v144dO9TY2KhLly5p5syZcrvd2rt3r/bt26f4+Hjl5OQEP7N69WrV1NSoqqpKLS0tOnPmjL744osBr7lgwQJ99tlneu+999TW1qZ169YpPj5eo0eP1qZNmyRJ7e3t6urq0rvvvitJKi0t1YcffqiKigodOXJEy5Yt09NPP63du3dLuvyfA7m5uZo9e7ZaW1v17LPPasWKFVZ9bQAQlVheDgAAcJsEAgHt3LlT27dv14svvqhTp07J5XJp/fr1wWXlH3/8sfx+v9avXy/DMCRJ1dXV8ng8am5u1iOPPKKysjIVFRUpNzdXklRRUaHt27df97o//fSTNm7cqB07dmj69OmSpLvvvju4/8pSdK/XK4/HI+nyZLykpERff/21pkyZEvxMS0uL1q1bp2nTpqm8vFz33HOPVq9eLUlKS0vToUOH9M477/yD3xoARDdKNwAAgMUaGxsVHx+vS5cuye/3a968eXrjjTe0ZMkSZWRkhNzHfeDAAR09elRutzvkHBcvXlRHR4f++OMPdXV1adKkScF9sbGxeuCBB65aYn5Fa2urBg0apGnTpoWd+ejRo7pw4YJmzJgRsr2vr0/333+/JKmtrS0kh6RgQQcAXEbpBgAAsFh2drbKy8vlcDg0cuRIxcb+9SeYy+UKOba7u1tZWVn65JNPrjrPiBEjbur6Tqfzb3+mu7tbkrRlyxaNGjUqZF9cXNxN5QCA/yJKNwAAgMVcLpdSUlLCOnbixInasGGDvF6vEhISrnlMUlKSvv32W02dOlWS1N/fr++//14TJ0685vEZGRny+/3avXt3cHn5/7oyaTdNM7ht3LhxiouLU2dn53Un5Onp6WpoaAjZtn///hv/kgDwH8KD1AAAACLIU089peHDh2vOnDnau3evfvnlFzU3N6ugoEAnT56UJC1dulQrV65UfX29fvzxRy1evHjAd2yPHTtWeXl5Wrhwoerr64Pn3LhxoyTJ5/PJMAw1Njbq1KlT6u7ultvt1iuvvKJly5aptrZWHR0d+uGHH7R27VrV1tZKkp5//nn9/PPPWr58udrb2/Xpp5+qpqbG6q8IAKIKpRsAACCC3HHHHdqzZ4/GjBmj3Nxcpaen65lnntHFixeDk+/CwkLNnz9feXl5mjJlitxutx577LEBz1teXq7HH39cixcv1n333afnnntOPT09kqRRo0bpzTff1IoVK3TnnXfqhRdekCQVFxfr9ddfV2lpqdLT05WTk6MtW7YoOTlZkjRmzBht2rRJ9fX1yszMVEVFhUpKSiz8dgAg+hiB6z1xAwAAAAAA3BIm3QAAAAAAWITSDQAAAACARSjdAAAAAABYhNINAAAAAIBFKN0AAAAAAFiE0g0AAAAAgEUo3QAAAAAAWITSDQAAAACARSjdAAAAAABYhNINAAAAAIBFKN0AAAAAAFiE0g0AAAAAgEX+BMcxbSKUgJj6AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Classification Report:\n", " precision recall f1-score support\n", "\n", " 0 1.00 1.00 1.00 4057\n", " 1 0.91 0.97 0.94 19920\n", " 2 0.82 0.39 0.52 415\n", " 3 0.84 0.79 0.81 2275\n", " 4 0.84 0.71 0.77 1903\n", " 5 0.91 0.97 0.94 2751\n", " 6 0.80 0.66 0.72 1363\n", " 7 1.00 0.97 0.99 2781\n", " 8 0.87 0.64 0.74 948\n", " 9 0.96 0.09 0.16 317\n", "\n", " accuracy 0.92 36730\n", " macro avg 0.90 0.72 0.76 36730\n", "weighted avg 0.92 0.92 0.91 36730\n", "\n" ] } ], "source": [ "class_labels = ['Ghost injection', 'No attack', 'Aircraft standing still',\n", " 'Aircraft displaying false information', 'Jumping aircraft',\n", " 'Transponder code alteration', 'Trajectory modification',\n", " 'Non-responsive aircraft', 'Aircraft spoofing', 'Message Delay']\n", "\n", "# Calculate accuracy\n", "accuracy = accuracy_score(y_test, y_pred_loaded)\n", "print(f'Accuracy: {accuracy * 100:.2f}%')\n", "\n", "# Confusion Matrix\n", "cm = confusion_matrix(y_test, y_pred_loaded)\n", "print('Confusion Matrix:')\n", "\n", "# Calculate percentage for each cell in the confusion matrix\n", "cm_percent = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] * 100\n", "\n", "# Combine the count and percentage into a single annotation, skipping zero values\n", "annot = np.empty_like(cm).astype(str)\n", "nrows, ncols = cm.shape\n", "for i in range(nrows):\n", " for j in range(ncols):\n", " # Display both count and percentage only if count is greater than 0\n", " if cm[i, j] > 0:\n", " annot[i, j] = f'{cm[i, j]}\\n({cm_percent[i, j]:.2f}%)'\n", " else:\n", " annot[i, j] = '' # Leave the cell empty if the count is zero\n", "\n", "# Plot the confusion matrix with counts and percentages, skipping zero values\n", "plt.figure(figsize=(10, 7)) # Adjust figure size if necessary\n", "sns.heatmap(cm, annot=annot, fmt='', cmap='Blues', xticklabels=class_labels, yticklabels=class_labels, cbar=False)\n", "\n", "# Add labels and title\n", "plt.title('Confusion Matrix')\n", "plt.xlabel('Predicted')\n", "plt.ylabel('Actual')\n", "\n", "# Display the plot\n", "plt.tight_layout()\n", "plt.show()\n", "\n", "# Classification Report\n", "report = classification_report(y_test, y_pred_loaded)\n", "print('Classification Report:')\n", "print(report)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Model 2 - DeepGBM (Deep Learning + Gradient Boosting)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "\n", "# Split the training data into training and validation sets (e.g., 80-20 split)\n", "X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.2, random_state=42)\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "\n", "# Set up early stopping callback\n", "callbacks = [\n", " early_stopping(stopping_rounds=10),\n", " log_evaluation(0) # Change 0 to a larger number if you want less frequent logging\n", "]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.001668 seconds.\n", "You can set `force_row_wise=true` to remove the overhead.\n", "And if memory is not enough, you can set `force_col_wise=true`.\n", "[LightGBM] [Info] Total Bins 2780\n", "[LightGBM] [Info] Number of data points in the train set: 117536, number of used features: 11\n", "[LightGBM] [Info] Start training from score -2.200181\n", "[LightGBM] [Info] Start training from score -0.611556\n", "[LightGBM] [Info] Start training from score -4.449747\n", "[LightGBM] [Info] Start training from score -2.793914\n", "[LightGBM] [Info] Start training from score -2.987226\n", "[LightGBM] [Info] Start training from score -2.606530\n", "[LightGBM] [Info] Start training from score -3.257348\n", "[LightGBM] [Info] Start training from score -2.560781\n", "[LightGBM] [Info] Start training from score -3.658842\n", "[LightGBM] [Info] Start training from score -4.811742\n", "[LightGBM] [Warning] No further splits with positive gain, best gain: -inf\n", "Training until validation scores don't improve for 10 rounds\n", "Did not meet early stopping. Best iteration is:\n", "[100]\tvalid_0's multi_logloss: 0.0224216\n", "Epoch 1: Train Acc = 0.9424261502858698, Val Acc = 0.9414987748434522\n", "Epoch 2: Train Acc = 0.965925333514838, Val Acc = 0.9640961067247482\n", "Epoch 3: Train Acc = 0.9805421317723931, Val Acc = 0.9801252382248843\n", "Epoch 4: Train Acc = 0.9678141165260006, Val Acc = 0.9670909338415464\n", "Epoch 5: Train Acc = 0.9734719575279064, Val Acc = 0.9730465559488157\n", "Epoch 6: Train Acc = 0.9835369588891913, Val Acc = 0.9824734549414648\n", "Epoch 7: Train Acc = 0.98587666757419, Val Acc = 0.9837326436155731\n", "Epoch 8: Train Acc = 0.9814865232779744, Val Acc = 0.9800571739722298\n", "Epoch 9: Train Acc = 0.9858000952899537, Val Acc = 0.9843111897631364\n", "Epoch 10: Train Acc = 0.9822267220255921, Val Acc = 0.9818949087939014\n", "Epoch 11: Train Acc = 0.9872975088483529, Val Acc = 0.9858086033215355\n", "Epoch 12: Train Acc = 0.985144976858154, Val Acc = 0.9841069970051729\n", "Epoch 13: Train Acc = 0.9827286958889191, Val Acc = 0.9810441056357201\n", "Epoch 14: Train Acc = 0.9879356112169888, Val Acc = 0.9852300571739723\n", "Epoch 15: Train Acc = 0.9853066294582086, Val Acc = 0.983052001089028\n", "Epoch 16: Train Acc = 0.9725190579907432, Val Acc = 0.9702899537163082\n", "Early stopping due to no improvement\n", "DeepGBM Test Accuracy: 0.9706779199564389\n" ] } ], "source": [ "\n", "# Train LightGBM with validation set for feature engineering\n", "lgb_model = lgb.LGBMClassifier()\n", "lgb_model.fit(\n", " X_train, y_train,\n", " eval_set=[(X_val, y_val)],\n", " eval_metric='logloss',\n", " callbacks=callbacks\n", ")\n", "\n", "# Extract the booster model\n", "booster = lgb_model.booster_\n", "\n", "# Get leaf indices for training, validation, and testing sets\n", "X_train_gbdt = booster.predict(X_train, pred_leaf=True)\n", "X_val_gbdt = booster.predict(X_val, pred_leaf=True)\n", "X_test_gbdt = booster.predict(X_test, pred_leaf=True)\n", "\n", "# Train the NN on GBDT-transformed training data and capture validation accuracy\n", "nn_model = MLPClassifier(hidden_layer_sizes=(100,), max_iter=100)\n", "train_accuracies = []\n", "val_accuracies = []\n", "\n", "for epoch in range(100):\n", " nn_model.partial_fit(X_train_gbdt, y_train, classes=np.unique(y_train))\n", " train_acc = accuracy_score(y_train, nn_model.predict(X_train_gbdt))\n", " val_acc = accuracy_score(y_val, nn_model.predict(X_val_gbdt))\n", " train_accuracies.append(train_acc)\n", " val_accuracies.append(val_acc)\n", " print(f\"Epoch {epoch+1}: Train Acc = {train_acc}, Val Acc = {val_acc}\")\n", " if epoch > 10 and val_accuracies[-1] < val_accuracies[-11]:\n", " print(\"Early stopping due to no improvement\")\n", " break\n", "\n", "# Get test accuracy\n", "y_pred_deepgbm = nn_model.predict(X_test_gbdt)\n", "test_accuracy = accuracy_score(y_test, y_pred_deepgbm)\n", "print(f'DeepGBM Test Accuracy: {test_accuracy}')\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Plot Training vs. Validation Learning Curves" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAIjCAYAAACgdyAGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADtNUlEQVR4nOzddXgUxxvA8e/F3SDESUISSLAEd3d3lyCltBQK5UeR0lIKpQKUQqFQw93d3V2CSyBGEiJA3O/298fCQUgCSYjCfJ7nHri9ud25m7vLzs477ygkSZIQBEEQBEEQBEEQBKFY0CjsCgiCIAiCIAiCIAiCkH2iIy8IgiAIgiAIgiAIxYjoyAuCIAiCIAiCIAhCMSI68oIgCIIgCIIgCIJQjIiOvCAIgiAIgiAIgiAUI6IjLwiCIAiCIAiCIAjFiOjIC4IgCIIgCIIgCEIxIjrygiAIgiAIgiAIglCMiI68IAiCIAiCIAiCIBQjoiMvCILwgRg0aBBOTk65eu7UqVNRKBR5W6GPyLFjx1AoFBw7dky9Lbvt4e/vj0KhYNmyZXlaJycnJwYNGpSn+xQKzoMHD2jZsiWmpqYoFAq2bdtW2FUSBEEQihDRkRcEQchnCoUiW7fXO4FC/qlcuTKlS5dGkqQsy9SrVw8rKyvS0tIKsGY5d+bMGaZOnUpUVFRhVyVTCxcuRKFQUKtWrcKuSrHj7e3NjRs3mDFjBitXrqR69er5dqyXF5Ne3rS1tSlZsiR169blm2++ITAwMN+O/T7Cw8OZOHEilSpVwsjICD09PVxdXRk8eDCnTp1KV3bZsmUZfnNLlSpFkyZN2Lt3b4Z9vyzzySefZHrsyZMnq8tERkbmy+sTBEF4G4X0tjMZQRAE4b2tWrUq3f0VK1Zw8OBBVq5cmW57ixYtsLKyyvVxUlNTUalU6Orq5vi5aWlppKWloaenl+vjFxe//vorEydO5Pjx4zRs2DDD4/7+/pQpU4aRI0fyxx9/ZGufx44do0mTJhw9epTGjRsD2W8Pf39/nJ2dWbp0aY5H0GfPns3XX3+Nn59fhtH/5ORkNDQ00NbWztE+81K9evUICQnB39+fBw8e4OrqWmh1KU4SExMxMDBg8uTJ/Pjjj/l+vJefwT59+tC2bVtUKhXPnz/n4sWLbNmyBYVCweLFi+ndu3e+1yW7Lly4QLt27YiNjaV3797UqFEDXV1d/Pz82LZtG7dv3073HV+2bBmDBw9m2rRpODs7I0kSYWFhLFu2jFu3brFz507at2+v3r9CoUBPTw89PT3CwsLQ0dFJd/wyZcoQGhpKUlISERERlCxZskBfvyAIglZhV0AQBOFD179//3T3z507x8GDBzNsf1NCQgIGBgbZPs77dNi0tLTQ0vo4/iT07duXSZMmsWbNmkw78mvXrkWSJPr16/dexynMDjSQqws6ecnPz48zZ86wZcsWhg8fzurVq/n+++8LtU5ZiY+Px9DQsLCroRYREQGAmZlZnu0zO6+xatWqGX6XAgICaNmyJd7e3nh4eODp6Zlndcqt58+f07lzZ7S0tLh27Rru7u7pHv/xxx9Zt24d+vr6GZ7bpk2bdNENQ4cOxcrKirVr16bryAO0bt2aHTt2sHfvXjp16qTefubMGfz8/OjWrRubN2/O41cnCIKQPSK0XhAEoQho3LgxFStW5PLlyzRs2BADAwO++eYbALZv3067du2wtbVFV1cXFxcXpk+fjlKpTLePN+dkvwyXnT17Nv/88w8uLi7o6upSo0YNLl68mO65mc2RVygUjBw5km3btlGxYkV0dXWpUKEC+/bty1D/Y8eOUb16dfT09HBxceHvv//O1rz7kSNHYmRkREJCQobH+vTpg7W1tfp1Xrp0iVatWlGyZEn09fVxdnZmyJAhb91/ZhwcHGjYsCGbNm0iNTU1w+Nr1qzBxcWFWrVqERAQwIgRIyhXrhz6+vqUKFGCHj164O/v/87jZDZHPioqikGDBmFqaoqZmRne3t6ZhsVfv36dQYMGUaZMGfT09LC2tmbIkCE8ffpUXWbq1Kl8/fXXADg7O6vDfF/WLbM58o8ePaJHjx5YWFhgYGBA7dq12b17d7oyL+f7b9iwgRkzZmBvb4+enh7NmjXD19f3na/7pdWrV2Nubk67du3o3r07q1evzrRcVFQUX331FU5OTujq6mJvb8/AgQPThSsnJSUxdepUypYti56eHjY2NnTt2pWHDx+mq/Ob01Myyz8waNAgjIyMePjwIW3btsXY2Fh90ebkyZP06NGD0qVLo6uri4ODA1999RWJiYkZ6n337l169uyJpaUl+vr6lCtXjsmTJwNw9OhRFAoFW7duzfC8NWvWoFAoOHv2bKbvx9SpU3F0dATg66+/RqFQpPscXb16lTZt2mBiYoKRkRHNmjXj3Llz6fbxMoz8+PHjjBgxglKlSmFvb5/p8d7F0dGRZcuWkZKSwsyZM9M9FhUVxZgxY3BwcEBXVxdXV1d+/fVXVCpVunIqlYq5c+dSoUIF9PT0sLKyYvjw4Tx//jxdOScnJ9q3b8+BAwfw8vJCT0+P8uXLs2XLlnTl/vrrL0JDQ5k7d26GTjzIv119+vShRo0a73x9ZmZm6OvrZ3oh087OjoYNG7JmzZp021evXk2lSpWoWLHiO/cvCIKQXz6O4RdBEIRi4OnTp7Rp04bevXvTv39/dZj9smXLMDIyYuzYsRgZGXHkyBGmTJlCTEwMs2bNeud+16xZQ2xsLMOHD0ehUDBz5ky6du3Ko0eP3jlqfOrUKbZs2cKIESMwNjbmjz/+oFu3bgQGBlKiRAlA7li0bt0aGxsbfvjhB5RKJdOmTcPS0vKddevVqxd//vknu3fvpkePHurtCQkJ7Ny5k0GDBqGpqUl4eDgtW7bE0tKSiRMnYmZmhr+/f4YT/Ozq168fn376Kfv37083Cnfjxg1u3rzJlClTALh48SJnzpyhd+/e2Nvb4+/vz6JFi2jcuDG3b9/OUcSEJEl06tSJU6dO8dlnn+Hh4cHWrVvx9vbOUPbgwYM8evSIwYMHY21tza1bt/jnn3+4desW586dQ6FQ0LVrV+7fv8/atWv5/fff1aG9Wb3vYWFh1K1bl4SEBL788ktKlCjB8uXL6dixI5s2baJLly7pyv/yyy9oaGgwbtw4oqOjmTlzJv369eP8+fPZer2rV6+ma9eu6Ojo0KdPHxYtWsTFixfTda7i4uJo0KABd+7cYciQIVStWpXIyEh27NjB48ePKVmyJEqlkvbt23P48GF69+7N6NGjiY2N5eDBg9y8eRMXF5fsNoFaWloarVq1on79+syePVvdjhs3biQhIYHPP/+cEiVKcOHCBebPn8/jx4/ZuHGj+vnXr1+nQYMGaGtr8+mnn+Lk5MTDhw/ZuXMnM2bMoHHjxjg4OLB69eoM7+vq1atxcXGhTp06mdata9eumJmZ8dVXX6lD3Y2MjAC4desWDRo0wMTEhPHjx6Otrc3ff/9N48aNOX78eIZcBCNGjMDS0pIpU6YQHx+f4/fppTp16uDi4sLBgwfV2xISEmjUqBHBwcEMHz6c0qVLc+bMGSZNmqTuZL80fPhwdWj7l19+iZ+fHwsWLODq1aucPn063e/QgwcP6NWrF5999hne3t4sXbqUHj16sG/fPlq0aAHAzp070dfXp2vXrjl+LdHR0URGRiJJEuHh4cyfP5+4uLgsI6T69u3L6NGjiYuLw8jIiLS0NDZu3MjYsWNJSkrK8fEFQRDyjCQIgiAUqC+++EJ68+e3UaNGEiD99ddfGconJCRk2DZ8+HDJwMBASkpKUm/z9vaWHB0d1ff9/PwkQCpRooT07Nkz9fbt27dLgLRz5071tu+//z5DnQBJR0dH8vX1VW/z8fGRAGn+/PnqbR06dJAMDAyk4OBg9bYHDx5IWlpaGfb5JpVKJdnZ2UndunVLt33Dhg0SIJ04cUKSJEnaunWrBEgXL1586/6y69mzZ5Kurq7Up0+fdNsnTpwoAdK9e/ckScr8vT979qwESCtWrFBvO3r0qARIR48eVW97sz22bdsmAdLMmTPV29LS0qQGDRpIgLR06VL19syOu3bt2nTviSRJ0qxZsyRA8vPzy1De0dFR8vb2Vt8fM2aMBEgnT55Ub4uNjZWcnZ0lJycnSalUpnstHh4eUnJysrrsvHnzJEC6ceNGhmO96dKlSxIgHTx4UJIkuZ3t7e2l0aNHpys3ZcoUCZC2bNmSYR8qlUqSJElasmSJBEhz5szJskxm778kvfoOvP7eent7S4A0ceLEDPvL7H3/+eefJYVCIQUEBKi3NWzYUDI2Nk637fX6SJIkTZo0SdLV1ZWioqLU28LDwyUtLS3p+++/z3CczOo9a9asdNs7d+4s6ejoSA8fPlRvCwkJkYyNjaWGDRuqty1dulQCpPr160tpaWlvPdbbjve6Tp06SYAUHR0tSZIkTZ8+XTI0NJTu37+frtzEiRMlTU1NKTAwUJIkSTp58qQESKtXr05Xbt++fRm2Ozo6SoC0efNm9bbo6GjJxsZGqlKlinqbubm55OXllaGOMTExUkREhPoWFxeX4T1586arqystW7Ysw74A6YsvvpCePXsm6ejoSCtXrpQkSZJ2794tKRQKyd/fX/27GRERkeX7JgiCkF9EaL0gCEIRoaury+DBgzNsf32eZ2xsLJGRkTRo0ICEhATu3r37zv326tULc3Nz9f0GDRoAcpj1uzRv3jzdiGflypUxMTFRP1epVHLo0CE6d+6Mra2tupyrqytt2rR55/4VCgU9evRgz549xMXFqbevX78eOzs76tevD7yaK7xr165Mw+FzytzcnLZt27Jjxw71SKUkSaxbt47q1atTtmxZIP17n5qaytOnT3F1dcXMzIwrV67k6Jh79uxBS0uLzz//XL1NU1OTUaNGZSj7+nGTkpKIjIykdu3aADk+7uvHr1mzpvo9BTAyMuLTTz/F39+f27dvpys/ePDgdAm+cvK5Wb16NVZWVjRp0gSQ27lXr16sW7cu3ZSQzZs34+npmWHU+uVzXpYpWbJkpu/T+yyZ+Ho7vPT6+x4fH09kZCR169ZFkiSuXr0KyPPXT5w4wZAhQyhdunSW9Rk4cCDJycls2rRJvW39+vWkpaW9Mz9GZpRKJQcOHKBz586UKVNGvd3Gxoa+ffty6tQpYmJi0j1n2LBhaGpq5vhYmXkZFRAbGwvI0QsNGjTA3NycyMhI9a158+YolUpOnDihLmdqakqLFi3SlatWrRpGRkYcPXo03XFsbW3TfR5MTEwYOHAgV69e5cmTJwDExMSo6/O6AQMGYGlpqb5NmDAhQ5k///yTgwcPcvDgQVatWkWTJk345JNPsozuMTc3p3Xr1qxduxaQI5zq1q2rnv4gCIJQWERHXhAEoYiws7PLkBkZ5HDaLl26YGpqiomJCZaWluqOQHR09Dv3+2Zn42Wn/s35qdl57svnv3xueHg4iYmJmWYjz26G8l69epGYmMiOHTsAOdx6z5499OjRQ90xatSoEd26deOHH36gZMmSdOrUiaVLl5KcnJytY2SmX79+xMfHs337dkBOYOXv758uyV1iYiJTpkxRzwEuWbIklpaWREVFZeu9f11AQAA2NjYZOiDlypXLUPbZs2eMHj0aKysr9PX1sbS0xNnZGchem2d1/MyO5eHhoX78dbn93CiVStatW0eTJk3w8/PD19cXX19fatWqRVhYGIcPH1aXffjw4TvnGT98+JBy5crlaTJGLS2tTOeMBwYGMmjQICwsLDAyMsLS0pJGjRoBr973lxcy3lVvd3d3atSokS43wOrVq6ldu3ausvdHRESQkJCQZRuqVCqCgoLSbX/5mckLLy+0GRsbA3II/L59+9J1nC0tLWnevDkg/za8LBcdHU2pUqUylI2Li1OXe8nV1TXDBZqXF9Ze5n8wNjZOd+HvpWnTpqk76VmpWbMmzZs3p3nz5vTr14/du3dTvnx5Ro4cSUpKSqbP6du3LwcPHiQwMJBt27bRt2/fd71dgiAI+U7MkRcEQSgiMsuwHBUVRaNGjTAxMWHatGm4uLigp6fHlStXmDBhQoakUpnJakROysbqo+/z3OyqXbs2Tk5ObNiwgb59+7Jz504SExPp1auXuoxCoWDTpk2cO3eOnTt3sn//foYMGcJvv/3GuXPnMh2de5f27dtjamrKmjVr6Nu3L2vWrEFTUzPdElujRo1i6dKljBkzhjp16mBqaopCoaB3797Zeu9zq2fPnpw5c4avv/4aLy8vjIyMUKlUtG7dOl+P+7rctv2RI0cIDQ1l3bp1rFu3LsPjq1evpmXLlnlSx5eyGpl/MyHkS7q6umhoaGQo26JFC549e8aECRNwd3fH0NCQ4OBgBg0alKv3feDAgYwePZrHjx+TnJzMuXPnWLBgQY73k1uZ/abk1s2bNylVqhQmJiaAnMCuRYsWjB8/PtPyLzvfKpWKUqVKZZnsMDu5NN7k7u6Oj48Pqamp6ebXV65cOcf70tDQoEmTJsybN48HDx5QoUKFDGU6duyIrq4u3t7eJCcn07NnzxwfRxAEIa+JjrwgCEIRduzYMZ4+fcqWLVvSLZXm5+dXiLV6pVSpUujp6WWazTwnGc579uzJvHnziImJYf369Tg5OalDyV9Xu3ZtateuzYwZM1izZg39+vVj3bp1fPLJJzmuu66uLt27d2fFihWEhYWxceNGmjZtirW1tbrMpk2b8Pb25rffflNvS0pKyjTT/Ls4Ojpy+PBhddKsl+7du5eu3PPnzzl8+DA//PCDOukeyCObb8pJaLmjo2OGYwHq6Rl5FSq8evVqSpUqxZ9//pnhsS1btrB161b++usv9PX1cXFx4ebNm2/dn4uLC+fPn8/QaXvdy2iBN9vlzSiDt7lx4wb3799n+fLlDBw4UL39zdHdl2Ht76o3QO/evRk7dixr164lMTERbW3tdBeocsLS0hIDA4Ms21BDQwMHB4dc7ftdzp49y8OHD9NNCXBxcSEuLk49Ap8VFxcXDh06RL169bJ1YcHX1xdJktJ9tu/fvw+gzt7fvn17zp07x9atW/OkU52WlgaQ6Sg/yBdEOnfuzKpVq2jTpo1YM14QhCJBhNYLgiAUYS9HRV8fBU1JSWHhwoWFVaV0NDU1ad68Odu2bSMkJES93dfXl71792Z7P7169SI5OZnly5ezb9++DCfnz58/zzAS7OXlBZAuvP7hw4fqJcmyo1+/fqSmpjJ8+HAiIiIyrB2vqamZ4bjz58/PcqT3bdq2bUtaWhqLFi1Sb1MqlcyfPz/DMSHjyPfrWcBferkueHYuLLRt25YLFy6kW/YsPj6ef/75BycnJ8qXL5/dl5KlxMREtmzZQvv27enevXuG28iRI4mNjVVPo+jWrRs+Pj6ZLtP28vV369aNyMjITEeyX5ZxdHREU1NTPS/7pZx8TzJ73yVJYt68eenKWVpa0rBhQ5YsWUJgYGCm9XmpZMmStGnThlWrVrF69Wpat26d606gpqYmLVu2ZPv27emWPwwLC2PNmjXUr19fPVqelwICAhg0aBA6Ojrq5Q5Bvvh29uxZ9u/fn+E5UVFR6s5xz549USqVTJ8+PUO5tLS0DJ/dkJCQdJ+HmJgYVqxYgZeXl/oi2+eff46VlRVfffWVupP/upxEDKWmpnLgwAF0dHTU00wyM27cOL7//nu+++67bO9bEAQhP4kReUEQhCKsbt26mJub4+3tzZdffolCoWDlypV5Gtr+vqZOncqBAweoV68en3/+OUqlkgULFlCxYkWuXbuWrX1UrVoVV1dXJk+eTHJycoZRy+XLl7Nw4UK6dOmCi4sLsbGx/Pvvv5iYmNC2bVt1uWbNmgFka513kOfe29vbs3379kyXs2rfvj0rV67E1NSU8uXLc/bsWQ4dOqReei8nOnToQL169Zg4cSL+/v7q9bHfnPNuYmJCw4YNmTlzJqmpqdjZ2XHgwIFMozCqVasGwOTJk+nduzfa2tp06NBB3cF/3cSJE1m7di1t2rThyy+/xMLCguXLl+Pn58fmzZszhJrnxo4dO4iNjaVjx46ZPl67dm0sLS1ZvXo1vXr14uuvv2bTpk306NGDIUOGUK1aNZ49e8aOHTv466+/8PT0ZODAgaxYsYKxY8dy4cIFGjRoQHx8PIcOHWLEiBF06tQJU1NTevTowfz581EoFLi4uLBr164M86/fxt3dHRcXF8aNG0dwcDAmJiZs3rw505wAf/zxB/Xr16dq1ap8+umnODs74+/vz+7duzN85gcOHEj37t0BMu3M5sSPP/7IwYMHqV+/PiNGjEBLS4u///6b5OTkDGu858aVK1dYtWoVKpWKqKgoLl68yObNm9W/O6+Hrn/99dfs2LGD9u3bM2jQIKpVq0Z8fDw3btxg06ZN+Pv7U7JkSRo1asTw4cP5+eefuXbtGi1btkRbW5sHDx6wceNG5s2bp35/QA7JHzp0KBcvXsTKyoolS5YQFhbG0qVL1WUsLCzYunUrHTp0wNPTk969e1OjRg20tbUJCgpSLxWYWY6PvXv3qqNQwsPDWbNmDQ8ePGDixIlvvRDi6emJp6fne7/HgiAIeabA8+QLgiB85LJafq5ChQqZlj99+rRUu3ZtSV9fX7K1tZXGjx8v7d+//53Lnb1tSSkg3RJYWS0/98UXX2R47pvLmkmSJB0+fFiqUqWKpKOjI7m4uEj//fef9L///U/S09PL4l3IaPLkyRIgubq6ZnjsypUrUp8+faTSpUtLurq6UqlSpaT27dtLly5dylC319+D7Pj6668lQOrZs2eGx54/fy4NHjxYKlmypGRkZCS1atVKunv3bob3IDvLz0mSJD19+lQaMGCAZGJiIpmamkoDBgyQrl69mmGJtMePH0tdunSRzMzMJFNTU6lHjx5SSEhIhnaTJHkZMDs7O0lDQyPdUnSZtdPDhw+l7t27S2ZmZpKenp5Us2ZNadeuXenKvHwtGzduTLc9s6Xc3tShQwdJT09Pio+Pz7LMoEGDJG1tbSkyMlL9nowcOVKys7OTdHR0JHt7e8nb21v9uCTJy8JNnjxZcnZ2lrS1tSVra2upe/fu6ZZhi4iIkLp16yYZGBhI5ubm0vDhw6WbN29muvycoaFhpnW7ffu21Lx5c8nIyEgqWbKkNGzYMPWSi2++7ps3b6rbSE9PTypXrpz03XffZdhncnKyZG5uLpmamkqJiYlZvi+ve9t398qVK1KrVq0kIyMjycDAQGrSpIl05syZdGVeLrWW3eUaXx7v5U1LS0uysLCQatWqJU2aNCnDMnsvxcbGSpMmTZJcXV0lHR0dqWTJklLdunWl2bNnSykpKenK/vPPP1K1atUkfX19ydjYWKpUqZI0fvx4KSQkRF3G0dFRateunbR//36pcuXKkq6uruTu7p7hs/hSaGio9PXXX0vly5eX9PX1JV1dXalMmTLSwIED0y3T+Pp78vpNT09P8vLykhYtWpRu6UBJyvr373Vi+TlBEAqTQpKK0LCOIAiC8MHo3Lkzt27dynRutyB8LNLS0rC1taVDhw4sXry4sKtTpDk5OVGxYkV27dpV2FURBEEo8sQceUEQBOG9JSYmprv/4MED9uzZQ+PGjQunQoJQRGzbto2IiIh0CfQEQRAE4X2JOfKCIAjCeytTpgyDBg2iTJkyBAQEsGjRInR0dLJcmkoQPnTnz5/n+vXrTJ8+nSpVqqjXoxcEQRCEvCA68oIgCMJ7a926NWvXruXJkyfo6upSp04dfvrpJ9zc3Aq7aoJQKBYtWsSqVavw8vJi2bJlhV0dQRAE4QMj5sgLgiAIgiAIgiAIQjEi5sgLgiAIgiAIgiAIQjFS6B35P//8EycnJ/T09KhVqxYXLlzIsmxqairTpk3DxcUFPT09PD092bdvX7oysbGxjBkzBkdHR/T19albty4XL17M75chCIIgCIIgCIIgCAWiUOfIr1+/nrFjx/LXX39Rq1Yt5s6dS6tWrbh37x6lSpXKUP7bb79l1apV/Pvvv7i7u7N//366dOnCmTNnqFKlCgCffPIJN2/eZOXKldja2rJq1SqaN2/O7du3sbOzy1a9VCoVISEhGBsbo1Ao8vQ1C4IgCIIgCIIgCMKbJEkiNjYWW1tbNDTeMeZemIvY16xZU/riiy/U95VKpWRrayv9/PPPmZa3sbGRFixYkG5b165dpX79+kmSJEkJCQmSpqamtGvXrnRlqlatKk2ePDnb9QoKCpIAcRM3cRM3cRM3cRM3cRM3cRM3cRO3Ar0FBQW9s89aaCPyKSkpXL58mUmTJqm3aWho0Lx5c86ePZvpc5KTk9HT00u3TV9fn1OnTgGQlpaGUql8a5ms9pucnKy+L73I/+fn54exsXHOXpiQp1JTUzl69ChNmjRBW1u7sKsj5IJow+JNtF/xJ9qw+BNtWLyJ9iv+RBsWf8WlDWNjY3F2ds5WH7TQstaHhIRgZ2fHmTNnqFOnjnr7+PHjOX78OOfPn8/wnL59++Lj48O2bdtwcXHh8OHDdOrUCaVSqe6I161bFx0dHdasWYOVlRVr167F29sbV1dX7t27l2ldpk6dyg8//JBh+5o1azAwMMijVywIgiAIgiAIgiAImUtISKBv375ER0djYmLy1rLFah35efPmMWzYMNzd3VEoFLi4uDB48GCWLFmiLrNy5UqGDBmCnZ0dmpqaVK1alT59+nD58uUs9ztp0iTGjh2rvh8TE4ODgwMtW7Z85xso5K/U1FQOHjxIixYtivTVMyFrog2LN9F+xZ9ow+JPtGHxJtqv+BNtWPwVlzaMiYnJdtlC68iXLFkSTU1NwsLC0m0PCwvD2to60+dYWlqybds2kpKSePr0Kba2tkycOJEyZcqoy7i4uHD8+HHi4+OJiYnBxsaGXr16pSvzJl1dXXR1dTNs19bWLtIN/TERbVH8iTYs3kT7FX+iDYs/0YbFm2i/4k+0YfFX1NswJ3UrtOXndHR0qFatGocPH1ZvU6lUHD58OF2ofWb09PSws7MjLS2NzZs306lTpwxlDA0NsbGx4fnz5+zfvz/TMoIgCIIgCIIgCIJQ3BRqaP3YsWPx9vamevXq1KxZk7lz5xIfH8/gwYMBGDhwIHZ2dvz8888AnD9/nuDgYLy8vAgODmbq1KmoVCrGjx+v3uf+/fuRJIly5crh6+vL119/jbu7u3qfeUWSJHVyPSH/pKamoqWlRVJSknivC5CmpiZaWlpi+UVBEARBEARBKIIKtSPfq1cvIiIimDJlCk+ePMHLy4t9+/ZhZWUFQGBgYLr185KSkvj222959OgRRkZGtG3blpUrV2JmZqYuEx0dzaRJk3j8+DEWFhZ069aNGTNm5GkIRUpKCqGhoSQkJOTZPoXMSZKEtbU1QUFBolNZwAwMDLCxsUFHR6ewqyIIgiAIgiAIwmsKPdndyJEjGTlyZKaPHTt2LN39Ro0acfv27bfur2fPnvTs2TOvqpeBSqXCz88PTU1NbG1t0dHRER3MfKRSqYiLi8PIyCjdRR0h/0iSREpKChEREfj5+eHm5ibee0EQBEEQBEEoQgq9I1/cpKSkoFKpcHBwEEvTFQCVSkVKSgp6enqiM1mA9PX10dbWJiAgQP3+C4IgCIIgCIJQNIieUS6JTqXwoROfcUEQBEEQBEEomsSZuiAIgiAIgiAIgiAUI6IjLwiCIAiCIAiCIAjFiOjIC+/FycmJuXPnZrv8sWPHUCgUREVF5VudBEEQBEEQBEEQPmSiI/+RUCgUb71NnTo1V/u9ePEin376abbL161bl9DQUExNTXN1vNxwd3dHV1eXJ0+eFNgxBUEQBEEQBEEQ8ovoyH8kQkND1be5c+diYmKSbtu4cePUZSVJIi0tLVv7tbS0zFH2fh0dHaytrQtsyb5Tp06RmJhI9+7dWb58eYEc821SU1MLuwqCIAiCIAiCIBRzoiOfByRJIiElrcBvkiRlu47W1tbqm6mpKQqFQn3/7t27GBsbs3fvXqpVq4auri6nTp3i4cOHdOrUCSsrK4yMjKhRowaHDh1Kt983Q+sVCgX//fcfXbp0wcDAADc3N3bs2KF+/M3Q+mXLlmFmZsb+/fvx8PDAyMiI1q1bExoaqn5OWloao0ePxszMjBIlSjBhwgS8vb3p3LnzO1/34sWL6du3LwMGDGDJkiUZHn/8+DF9+vTBwsICQ0NDqlevzvnz59WP79y5kxo1aqCnp0fJkiXp0qVLute6bdu2dPszMzNj2bJlAPj7+6NQKFi/fj2NGjVCT0+P1atX8/TpU/r06YOdnR0GBgZUqlSJtWvXptuPSqVi5syZuLq6oqurS+nSpZkxYwYATZs2ZeTIkenKR0REoKOjw+HDh9/5ngiCIAiCIAiCULyJdeTzQGKqkvJT9hf4cW9Pa4WBTt414cSJE5k9ezZlypTB3NycoKAg2rZty4wZM9DV1WXFihV06NCBe/fuUbp06Sz388MPPzBz5kxmzZrF/Pnz6devHwEBAVhYWGRaPiEhgdmzZ7Ny5Uo0NDTo378/48aNY/Xq1QDMnTuXNWvWsHTpUjw8PJg3bx7btm2jSZMmb309sbGxbNy4kfPnz+Pu7k50dDQnT56kQYMGAMTFxdGoUSPs7OzYsWMH1tbWXLlyBZVKBcDu3bvp0qULkydPZsWKFaSkpLBnz55cva+//fYbVapUQU9Pj6SkJKpVq8aECRMwMTFh9+7dDBgwABcXF2rWrAnApEmT+Pfff/n999+pX78+oaGh3L17F4BPPvmEkSNH8ttvv6GrqwvAqlWrsLOzo2nTpjmunyAIgiAIgiAIxYvoyAtq06ZNo0WLFur7FhYWeHp6qu9Pnz6drVu3smPHjgwjwq8bNGgQffr0AeCnn37ijz/+4MKFC7Ru3TrT8qmpqfz111+4uLgAMHLkSKZNm6Z+/N9//2XixInq0fAFCxZkq0O9bt063NzcqFChAgC9e/dm8eLF6o78mjVriIiI4OLFi+qLDK6ururnz5gxg969e/PDDz+ot73+fmTXmDFj6Nq1a7ptr09lGDVqFPv372fDhg3UrFmT2NhY5s2bx4IFC/D29gbAxcWF+vXrA9C1a1dGjhzJ9u3b6dmzJyBHNgwaNKjApiwIgiAIgiAIglB4REc+D+hra3J7WqtCOW5eql69err7cXFxTJ06ld27dxMaGkpaWhqJiYkEBga+dT+VK1dW/9/Q0BATExPCw8OzLG9gYKDuxAPY2Nioy0dHRxMeHk6NGjXUj2tqalKtWjX1yHlWlixZQv/+/dX3+/fvT6NGjZg/fz7GxsZcu3aNKlWqZBkpcO3aNYYNG/bWY2THm++rUqnkp59+YsOGDQQHB5OSkkJycrI618CdO3dITk6mWbNmme5PT09PPVWgZ8+eXLlyhZs3b6abwiAIgiAIgiDkjScxSfjHkqNprYKQ30RHPg8oFIo8DXEvLIaGhunujxs3joMHDzJ79mxcXV3R19ene/fupKSkvHU/2tra6e4rFIq3drozK/++P5S3b9/m3LlzXLhwgQkTJqi3K5VK1q1bx7Bhw9DX13/rPt71eGb1zCyZ3Zvv66xZs5g3bx5z586lUqVKGBoaMmbMGPX7+q7jghxe7+XlxePHj1m6dClNmzbF0dHxnc8TBEEQBEEQsu/E/Qi+WHOF2CQttj85g3ddJ7pWtcNYT/vdTxaEfCSS3QlZOn36NIMGDaJLly5UqlQJa2tr/P39C7QOpqamlCpVikuXLqm3KZVKrly58tbnLV68mIYNG+Lj48O1a9fUt7Fjx7J48WJAjhy4du0az549y3QflStXfmvyOEtLy3RJ+R48eEBCQsI7X9Pp06fp1KkT/fv3x9PTkzJlynD//n31425ubujr67/12JUqVaJ69er8+++/rFmzhiFDhrzzuIIgCIIgCEL2SJLEstN+DFp6gdikNBRIPIqM5/sdt6j902GmbL+Jb3hsYVdT+IgV/2FkId+4ubmxZcsWOnTogEKh4LvvvntnOHt+GDZsGL/88gtubm64u7szf/58nj9/nuV88NTUVFauXMm0adOoWLFiusc++eQT5syZw61bt+jTpw8//fQTnTt35ueff8bGxoarV69ia2tLnTp1+P7772nWrBkuLi707t2btLQ09uzZox7hb9q0KQsWLKBOnToolUomTJiQIbogM25ubmzatIkzZ85gbm7OnDlzCAsLo3z58oAcOj9hwgTGjx+Pjo4O9erVIyIiglu3bjF06NB0r2XkyJEYGhqmy6YvCIIgCIIg5F6qUsXUHbdYfV6eTtqlii3VNQNJtqrIqgtBPIqIZ8XZAFacDaCeawkG1nGimXsptDTFGKlQcMSnTcjSnDlzMDc3p27dunTo0IFWrVpRtWrVAq/HmDFj6N27NwMHDqROnToYGRnRqlUr9PT0Mi2/Y8cOnj59mmnn1sPDAw8PDxYvXoyOjg4HDhygVKlStG3blkqVKvHLL7+gqSnnHmjcuDEbN25kx44deHl50bRpUy5cuKDe12+//YaDgwMNGjSgb9++jBs3Tj3P/W2+/fZbqlatSqtWrWjcuDHW1tYZltL77rvv+N///seUKVPw8PCgV69eGfIM9OnTBy0tLfr06ZPleyEIgiAIgiBkX1RCCt5LLrD6fCAKBUxq486vXSpgpA0Dapfm8NhGrBpaixblrdBQwGnfpwxfeZlGs46x8Jgvz+LfPgVVEPKKQhJZGzKIiYnB1NSU6OhoTExM0j2WlJSEn58fzs7OovNUAFQqFTExMZiYmKChoaHe5uHhQc+ePZk+fXoh17Dw+Pv74+LiwsWLF/PlAktefdZTU1PZs2cPbdu2zVbEglC0iPYr/kQbFn+iDYs30X7Fx6OIOIYuv4RfZDwGOprM612FFuWtsmzDoGcJrD4fyPqLgTxPkPMk6Whp0KGyLd51Halsb1ZIr0R4U3H5Hr6tH/omEVovFHmBgYGcPXuWJk2akJyczIIFC/Dz86Nv376FXbVCkZqaytOnT/n222+pXbt2oURJCIIgCEJe2XsjlOCoRFpXtMbe/N2RbYKQH049iGTE6svEJKVhZ6bPf97V8bB5e0fKwcKAiW3cGdPcjZ0+ISw/68/N4Bg2X3nM5iuP8XIww7uuI20r2aCrlberTQmC6MgLRZ6GhgYrVqxg/PjxSJJExYoVOXToEB4eHoVdtUJx+vRpmjRpQtmyZdm0aVNhV0cQBEEQciVVqWL6rtusOBsAwI+771DN0ZwOlW1oV9kWS2PdQq6h8LFYeS6AqTtuoVRJVC1txt8Dqufo86enrUmP6g50r2bP1aAoVpzxZ/eNUK4FRXFtfRQ/7rpDn5ql6Ve7NDam716dSBCyQ3TkhSLP3t6ekydPqkPrP3aNGzcW65gKgiAIxdrTuGS+WHOFc4+eoVBAZTtTrgdHczngOZcDnjNt123quJSgo6ctrSvYYGpQdENhheIrTali2msXk7pUsePnrpXQ087d6LlCoaBqaXOqljZncrvyrLsQyOrzgTyJSWLBUV8WHX9Iy/JWDKzjRO0yFlkmbhaE7BAdeUEQBEEQBKHA3A6JYdiKSwRHJWKkq8XcXl40L2/Fk+gkdt8IZadPCNeCojjt+5TTvk/5dttNGpW1pIOnLc09rDDUFaevwvuLTkxl5JornHwQCcDXrcoxorFLnnWuLY11GdXMjc8au3DwdhjLz/hz3u8Ze28+Ye/NJ5S1MmJgHSe6VLETn2khV8SnRhAEQRAEQSgQe26E8r8NPiSmKnEqYcC/A6vjZmUMgLWpHkPrOzO0vjOBTxPYeT2EnT4h3H0Sy6E74Ry6E46etgbNPKzoUNmWxuUscz1yKnzc/CPjGbL8Io8i4tHX1uT3Xl60rmidL8fS1tSgbSUb2lay4e6TGFacDWDrlWDuh8Xx7bab/Lr3Lt2r2zOgtiNlLI3ypQ7Ch0l05AVBEARBEIR8pVJJ/H7oPvOP+ALQwK0kC/pUzTJkvnQJA75o4soXTVy5HxbLTh+5U+//NIHd10PZfT0UY10tWlawpoOnDfVcS6It1vAWsuHMw0g+X3WF6MRUbEz1+HdgdSramRbIsd2tTfipSyUmtHZn0+XHrDzrj//TBJae9mfpaX8alrXEu44jjcuVQlNDhN0Lbyc68oIgCIIgCEK+iU1K5av1Phy6EwbAsAbOTGjtjlY2O95lrYz5X8tyjG1RlhvB0ez0CWHX9VBCo5PU2cEtDHVoU9Gajp621HCyQEN0goRMrDkfyJTtN0lTSXg5mPHPgGqUMin45aRN9bUZWt+ZwXWdOPEgghVnAzh6L5wT9yM4cT8CBwt9BtR2pGd1B8wMdAq8fkLxIDrygiAIgiAIQr7wj4xn2IpLPAiPQ0dLg1+6VqJrVftc7UuhUFDZ3ozK9mZMauPBpYDn7PQJYc+NUJ7Gp7D6vJxYzNpEj/aVbejgaUtle1ORUEwgTalixp47LD3tD0BHT1tmdq9c6FMzNDQUNC5XisblShHwNJ5V5wJYfzGIoGeJ/LTnLr8duE9nLzsG1nWkgm3BRA0IxYfoyAuCIAiCIAh57sT9CEauuUJMUhpWJrr8M6A6ng5mebJvDQ0FNZ0tqOlswfcdynPm4VN2+ISw/+YTnsQk8d8pP/475YdjCQM6VLalg6ct5ayN8+TYQvESk5TKqDVXOX4/AoD/tSjLyKauRe4Cj2MJQya3K8/YFuXYfi2Y5WcDuBMaw/pLQay/FER1R3MG1nWidQVrdLTENBIBxKdAyJHGjRszZswY9X0nJyfmzp371ucoFAq2bdv23sfOq/0IgiAIgpB/JEniv5OPGLT0AjFJaVQpbcbOkfXzrBP/Ji1NDRqWtWR2D08uftucvwdUo31lG/S0NQh4msCCo760mnuCVr+fYMGRBwQ8jc+XeghFT8DTeLouPMPx+xHoaWuwsF9VRjVzK3Kd+Nfp62jSu2Zp9nxZn42f1aF9ZRu0NBRcCnjOl2uvUu/XI/x+8D5hMUmFXVWhkIkR+Y9Ehw4dSE1NZd++fRkeO3nyJA0bNsTHx4fKlSvnaL8XL17E0NAwr6oJwNSpU9m2bRvXrl1Ltz00NBRzc/M8PVZWEhMTsbOzQ0NDg+DgYHR1dQvkuIIgCIJQnCWlKvlm6w22XAkGoEc1e37sUhFdrYIJYdbT1qRVBWtaVbAmPjmNQ3fC2OkTyvH74dwLi+XegVhmH7iPp70pHTxtaV/ZFmvTgp8jLeS/c4+e8vmqyzxPSMXKRJf/Btagkn3xCU9XKBTUcLKghpMFYTFJrDkfyJoLgUTEJjPv8AP+POpL64rWeNd1orqjeZG+OCHkD9GR/0gMHTqUbt268fjxY+zt089NW7p0KdWrV89xJx7A0tIyr6r4TtbW+bMsSGY2b95MhQoVkCSJbdu20atXrwI79pskSUKpVKKlJb6ugiAIQtH1JDqJ4asu4xMUhaaGgu/aeeBd16nQOhiGulp08rKjk5cd0Qmp7L/1hJ3XQzjtG4nP42h8HkczY88dajpZ0MHTljYVrSlhJC7cfwjWXwzk2203SVVKVLY35d+B1bEqhKR2ecXKRI+vWpTliyau7Lv1hBVn/LkU8Jxd10PZdT0UDxsTvOs40snLDn0dsSTjx0KE1ucFSYKU+IK/SVK2q9i+fXssLS1ZtmxZuu1xcXFs3LiRoUOH8vTpU/r06YOdnR0GBgZUqlSJtWvXvnW/b4bWP3jwgIYNG6Knp0f58uU5ePBghudMmDCBsmXLYmBgQJkyZfjuu+9ITU0FYNmyZfzwww/4+PigUCjQ1NRkzZo1QMbQ+hs3btC0aVP09fUpUaIEn376KXFxcerHBw0aROfOnZk9ezY2NjaUKFGCL774Qn2st1m8eDH9+/enf//+LF68OMPjt27don379piYmGBsbEyDBg14+PCh+vElS5ZQoUIFdHV1sbGxYeTIkQD4+/ujUCjSRRtERUWhUCg4duwYAMeOHUOhULB3716qVauGrq4up06d4uHDh3Tq1AkrKyuMjIyoUaMGhw4dSlev5ORkJkyYgIODA7q6uri6urJ48WIkScLV1ZXZs2enK3/t2jUUCgW+vr7vfE8EQRAEIStXAp/TccEpfIKiMDPQZsWQmgyq51xkRglNDbTpWcOBlUNrcf6b5kzrVIHqjuZIEpz3e8a3225S86fDeC+5wKbLj4lJeve5glD0KFUSM3bfZsLmG6QqJdpVtmH9p3WKdSf+dTpaGnT0tGXT53XZNao+vao7oKulwZ3QGCZuuUHtnw8zY/dtAp8mFHZVhQIghvjyQmoC/GRb8Mf9JgR0shfWrqWlxcCBA1m2bBmTJ09W/2HduHEjSqWSPn36EBcXR7Vq1ZgwYQImJibs3r2bAQMG4OLiQs2aNd95DJVKRdeuXbGysuL8+fNER0enm0//krGxMcuWLcPW1pYbN24wbNgwjI2NGT9+PL169eLmzZvs27ePQ4cOoVKpMj0JiI+Pp1WrVtSpU4eLFy8SHh7OJ598wsiRI9NdrDh69Cg2NjYcPXoUX19fevXqhZeXF8OGDcvydTx8+JCzZ8+yZcsWJEniq6++IiAgAEdHRwCCg4Np2LAhjRs35siRI5iYmHD69GnS0tIAWLRoEWPHjuWXX36hTZs2REdHc/r06Xe+f2+aOHEis2fPpkyZMpibmxMUFETbtm2ZMWMGurq6rFixgg4dOnDv3j1Kly4NwMCBAzl79ix//PEHnp6e+Pn5ERkZiUKhYMiQISxdupRx48apj7F06VIaNmyIq6trjusnCMVdYoqSA7efcOxeBO0r29DMw6qwqyTkkiRJRabD+DHaeCmIyVtvkqJUUc7KmH8HVqd0CYOc7USlBI2CGUm0NNZlYB0nBtZxIjgqkd3XQ9jhE8LN4BiO34/g+P0IdLZq0KScJR08bWnmbiVGOYuB2KRURq+7xpG74QCMbubGmOZFez78+6hoZ8qv3Sszqa07Gy4FsfJcAEHPEvn3pJzosUm5Ugys40hDN0uxHOMHSnTkPyJDhgxh1qxZHD9+nMaNGwNyR65bt26YmppiamqarpM3atQo9u/fz4YNG7LVkT906BB3795l//792NrKFzZ++ukn2rRpk67ct99+q/6/k5MT48aNY926dYwfPx59fX2MjIzQ0tLC2toalUpFTExMhmOtWbOGpKQkVqxYoZ6jv2DBAjp06MCvv/6KlZV8Qm5ubs6CBQvQ1NTE3d2ddu3acfjw4bd25JcsWUKbNm3U8/FbtWrF0qVLmTp1KgB//vknpqamrFu3Dm1tbQDKli2rfv6PP/7I//73P0aPHq3eVqNGjXe+f2+aNm0aLVq0UN+3sLDA09NTfX/69Ols3bqVHTt2MHLkSO7fv8+GDRs4ePAgzZs3B6BMmTLq8oMGDWLKlClcuHCBmjVrkpqaypo1azKM0gvCh0ySJK4EPmfT5cfs8gklNlm+ALf1ajB9apbmu/YeGOiIP43FRVRCCt/vuMXx+xF413His0YuosNVgN5c0qtVBSvm9PTCUDcH36H7+2HveIgJBce64NJUvllVgALogNmZ6fNpQxc+bejCo4g4dvqEssMnmIcR8ey/Fcb+W2EY6GjSorwVHT1taeBmKTKGF0FBzxIYuvwi98Pi0NXSYHYPTzp4FsIgWyEwM9Dh04YuDK1fhmP3wll+NoAT9yM4cjecI3fDcSphwIA6TnSvZo+pvnZhV1fIQ+JsJS9oG8ij44Vx3Bxwd3enbt26LFmyhMaNG+Pr68vJkyeZNm0aAEqlkp9++okNGzYQHBxMSkoKycnJGBhk7zh37tzBwcFB3YkHqFOnToZy69ev548//uDhw4fExcWRlpaGiYlJjl7LnTt38PT0TJdor169eqhUKu7du6fuyFeoUAFNzVcndTY2Nty4cSPL/SqVSpYvX868efPU2/r378+4ceOYMmUKGhoaXLt2jQYNGqg78a8LDw8nJCSEZs2a5ej1ZKZ69erp7sfFxTF16lR2795NaGgoaWlpJCYmEhgYCMhh8pqamjRq1CjT/dna2tKuXTuWLFlCzZo12blzJ8nJyfTo0eO96yoIRV1IVCJbrwaz6fJj/CJfZax2sNDH096M3TdCWXshkHOPnjK3l1e+ZdcW8s7x+xGM3+RDWEwyAPMOP2DDpSAmtnGno6ftBzsKV1Q8j09h5NornPZ9CsCY5m582dQt+yN/sU9g7wS4ve3VtkdH5dvB78CwFLg0kTv1ZZqAcf5HzJSxNGJ0cze+bObKndBYdl4PYadPCI+fJ7L9Wgjbr4Vgqq9Nm4rWdPC0pXaZEmiKkc5Cd9H/GcNXXuZZfAqljHX5d2DeLXNYnGhqKGjmYUUzDyseRcSx8lwAmy49xv9pAtN33Wb2/nt0qWrHwDqOuFvn7LxbKJpERz4vKBTZDnEvbEOHDmXUqFH8+eefLF26FBcXF3XHb9asWcybN4+5c+dSqVIlDA0NGTNmDCkpKXl2/LNnz9KvXz9++OEHWrVqpR7Z/u233/LsGK97s7OtUChQqVRZlt+/fz/BwcEZktsplUoOHz5MixYt0NfXz/L5b3sMQENDvoovvZbfIKs5+2+uBjBu3DgOHjzI7NmzcXV1RV9fn+7du6vb513HBvjkk08YMGAAv//+O0uXLqVXr17ZvlAjCMVNUqqS/beesOnyY075RqrTihjoaNK2kg3dq9lT08kCDQ0FfX0j+d9GH/wi4+m66AxjmrnxeWMXtDTFyFtRk5CSxs977rLyXAAAZUoaMqCOI/+d9CM4KpHR666x/Iw/UzpUwOsjPJkvCPeexDJsxSUCnyVgoKPJnJ5etK6YzYS0KhVcXgKHfoDkGFBoQp0RULkX+J+Gh0fA/yTEh8P19fINwKriq4596Tqg/e6/ebmlUCgob2tCeVsTxrcqx9WgKHb6hLDreigRscmsuxjEuotBlDTSpX1lGzp42lC1tMgaXhg2Xgrim63yfPiKdib8O7A6Nqb599koLspYGvF9hwqMa1mOrVeDWXHWn/thcXLm+/OB1HK2wLuuEy3KW6Et/s4VW6Ij/5Hp2bMno0ePZs2aNaxYsYLPP/9c/Yfn9OnTdOrUif79+wPynPf79+9Tvnz5bO3bw8ODoKAgQkNDsbGxAeDcuXPpypw5cwZHR0cmT56s3hYQEJCujI6ODkql8p3HWrZsGfHx8eoO7+nTp9HQ0KBcuXLZqm9mFi9eTO/evdPVD2DGjBksXryYFi1aULlyZZYvX05qamqGCwXGxsY4OTlx+PBhmjRpkmH/L7P8h4aGUqVKFYAMy+xl5fTp0wwaNIguXboA8gi9v7+/+vFKlSqhUqk4fvy4OrT+TW3btsXQ0JBFixaxb98+Tpw4ka1jC0JxIYfOR70InQ9Rh84D1C5jQfdqDrSpaJ0h9Leua0n2jW7IN9tusPt6KL8dvM+x+xH83tMr53N9hXxzNfA5Yzf4qKMqvOs4MrGNB/o6mvSpWZr/Tj5i4bGHXAmMovOfp+laxY7xrd3F8mJ5aP+tJ4xdf434FCUOFvr8O7B69kf3wm7DztHw+IJ837YqdJgHNi9WzbGuBLU/g7RkCLogd+ofHoFQHwi7Kd/OzActvVdh+GWa5GsYvkKhoGppc6qWNufbduU57/eUnT4h7LnxhMi4ZJad8WfZGX/szPRp72lDR09bytuYiE59PlOqJGbuv8vfxx8B0KaiNb/19BRTo95gqKtF/9qO9KtVmnOPnrHirD8Hbodx3u8Z5/2eYW2iR79apeldszSWxmLFhuJGfNo/MkZGRvTq1YtJkyYRExPDoEGD1I+5ubmxadMmzpw5g7m5OXPmzCEsLCzbHfnmzZtTtmxZvL29mTVrFjExMRk6xG5ubgQGBrJu3Tpq1KjB7t272bp1a7oyTk5O+Pn5ce3aNWxtbdONXr/Ur18/vv/+e7y9vZk6dSoRERGMGjWKAQMGqMPqcyoiIoKdO3eyY8cOKlasmO6xgQMH0qVLF549e8bIkSOZP38+vXv3ZtKkSZiamnLu3Dlq1qxJuXLlmDp1Kp999hmlSpWiTZs2xMbGcvr0aUaNGoW+vj61a9fml19+wdnZmfDw8HQ5A97Gzc2NLVu20KFDBxQKBd9991266AInJye8vb0ZMmSIOtldQEAA4eHh9OzZEwBNTU0GDRrEpEmTcHNzy3TqgyAUR6HRiWy5Eszmy4959FrovL25Pt2r2dOtqj0OFm/vkJsaaLOgTxWae5RiyrZbXA54Tts/TjK1YwW6VbUTJ+aFKFWpYv4RX/486otSJWFlosvsHp40cHu1BKqetiYjm7rRo7oDv+67y5YrwWy5Gszem08Y0diFYQ3LoKct5s/nlkolMf+IL78fug9AXZcS/Nm3KuaGOu9+cmoiHJ8JZ/4AVRroGEGzKVDjk8wT3GnpgnMD+db8e4iPhEfH4OFRuWMfG/Kqkw9gZCV36F2aQpnG+RaGr6mhoK5LSeq6lOSHjhU55RvBTp9QDtx6QnBUIn8ff8Tfxx9RxtKQDpVt6ehli4ulUb7U5WMWl5zGmHXXOHQnDIBRTV35qnlZkdDtLRQKBXVcSlDHpQQhUYmsOR/I2guBPIlJ4reD9/njyAPaVbLhu/blxRKMxYiIpfgIDR06lOfPn9OqVat089m//fZbqlatSqtWrWjcuDHW1tZ07tw52/vV0NBg69atJCYmUrNmTT755BNmzJiRrkzHjh356quvGDlyJF5eXpw5c4bvvvsuXZlu3brRunVrmjRpgpWVFZs3b85wLAMDA/bv38+zZ8+oUaMG3bt3p1mzZixYsCBnb8ZrXibOy2x+e7NmzdDX12fVqlWUKFGCI0eOEBcXR6NGjahWrRr//vuvenTe29ubuXPnsnDhQipUqED79u158OCBel9LliwhLS2NatWqMWbMGH788cds1W/OnDmYm5tTt25dOnToQKtWrahatWq6MosWLaJ79+6MGDECd3d3hg0bRnx8fLoyQ4cOJSUlhcGDB+f0LRKEIiUpVcn2a8EMWHyeur8cYdb+ezyKjMdAR5Pu1exZ92ltTnzdhDHNy76zE/+SQqGgSxV79oxuQA0nc+KS0xi30Ycv1lwhKiHvphkJ2ecbHke3RWf44/ADlCqJDp627B/TMF0n/nVWJnrM6enFti/qUbW0GYmpSn47eJ9mvx1n1/WQTC8OC28Xn5zGiNVX1J34wfWcWDGkZvY68Q+PwMLacGqO3Il3bw9fXIBaw7Ofpd6wJFTqDp3/hLG35ee3/gXcWsr5guLC4Po62Pop/FYWFtWHA9/JHf/UpPd45VnT0dKgqbsVv/fy4vJ3LVjYryptKlqjo6XBo4h45h1+QLPfjtN23kn+OenHs+R8qcZH5/HzBLovOsOhO2HoaGkwr7cX/2tZLn878YnP0dg3gTq+v6JxfpGcmLEYszXTZ1yrcpyZ1JTfe3ni5WBGqlJi27UQJm+9WdjVE3JAIYm/aBnExMRgampKdHR0hiRsSUlJ+Pn54ezsjJ6eCNXLby+z1puYmKjnlwvv5+TJkzRr1oygoKC3Ri/k1Wc9NTWVPXv20LZt20wTBApFW1FrP0mSuBoUxcZLj9l1PYTYpFeh87WcLehezZ62lWxyljU7C0qVxF/HH/L7wfukvRgF/q2HF/XdSr73vgtSUWvD7FKpJJaf9eeXvXdJTlNhoqfFj10q0TEHmaglSWKHTwi/7L1LaLTcoavhZM6U9hWoZG+aX1XPc4XZhkHPEhi24hJ3n8Sio6nBj10q0rO6w7ufGBcB+7+BGxvk+8a20HYWeLTP2wqmJUPQ+fRh+K97PQzfpSmUKp+v2fBjk1I5eDuMnT4hnHwQSZrq1Wl2bWdz+tRypFUFaxEdkguXA54zfOUlIuNSKGmky78Dq1GltHn+HvT+Adj5JcS+3nlXgFN9qNQDyncE/XyuQwE44xtJ3//OA7B/TEPKWRsXco3yXnH5W/i2fuibRGi9IHwkkpOTiYiIYOrUqfTo0SPXUxAEoTA8iU5iy9XHbLr8mEcRr6JM7Mxehc7n9Vx2TQ0FXzRxpYFbScasu8ajyHj6Lz7P0PrOfN2qnDgRz0eh0Yl8vfE6p3wjAWjgVpJZ3T1zPNddoVDQycuOluWt+fvEQ/46/pCL/s/p+Ocpule15+vW5ShlLC7KZ+WMbyRfrLnC84RULI11+at/Nao5vqPTIklwdaU8Ip4UBSjk0fem34JuPnQOtHTBuaF8az71tTD8Fx372NA3wvCtX8uG3xiMSuVpdYz1tOla1Z6uVe15Fp/CvptP2H7tMRf8nnHO7znn/J5joqdF5yp29KzuQEW74nNBqTBtvfqYCZtukKJU4WFjwn/e1bEzy8ekdknR8oWoq6sAkCzKcFuvOh4aAWg8Pi8nZPQ/Cbv/B24toGI3KNem2CS/flNd15K0qWjN3ptP+POoL3/0qVLYVRKyQXTkBeEjsXbtWoYOHYqXlxcrVqwo7OoIwjslpSo5cDtMzjr/IIKXA1v62pq0qWRNj2oO1HK2yPd5kZXtzdj1ZX1+2nOHVecCWXzKj9O+kczt7SWW8MljL0fQv9t2k5ikNPS0NfimrQcDaju+V44CfR1NxjQvS88X8+e3Xwth4+XH7LkRyhdNXRlSz1lcmHmNJEmsOBvAtF23UaokPO1N+XtA9XdfSIm4D7vGQMBp+b51JTmZnV21fK+z2ssw/Erd5YsKEfdedeT9T0HcE/BZK99e1rHM69nw8+7CjoWhDn1rlaZHVRtWbd3Dc9NybL4aQnBUIivOBrDibAAV7UzoVd2Bjl52Yo3vTKhUErMP3GPhsYcAtCwvT2fIi6irLPkehh2jICYYUEDtEaQ1nIDvwWOUbdsWjfhQuLkZbmySEzDe2yPftA3BvS1U7C5/nrSyMfWkCBnZ1JW9N5+w63oIY5q7UUbkdyjyREdeED4SgwYNSpfcUBCKIkmSuBYkZ53f4ZM+dL7ma6HzRvl5EpcJAx0tfuxciSblSjF+03XuPoml44LTTGjtzuC6TiLJUh6ISkhh8rab7L4uh7B62psyp5dXniYLszXTZ17vKgys48S0XbfxCYpi5r57rL0QyDdtPGhd0fqjT2qYnKZkyrZbrL8UBECXKnb83LXS2y90pCbBqd/lefDKFHneepNvoNbnoFmIp5oKBZRyl291Rshh+IHnXnXsn1yHJzfk25k/XoTh13stDN8jz8LwLXShf1MXRrcox2nfSNZfCuLgrTBuBsdwM/gWP+6+Q5uK1vSqUZraZSw++s8hyLkZxm64xv5bclK7EY1dGJef8+GTY+HAt3B5mXzf3Bk6L5SnZry+VLBZaaj/lXwLvyN36G9uguf+cGOjfNM3h/Kd5PD70nWhGEwPrWBrSjP3Uhy+G86fRx/yW0/Pwq6S8A6iIy8IgiAUuifRSWy9Gsymy0E8fCN0vls1e7pVtcOxROGHLDbzsGLfmIZM2HydI3fDmb7rNkfvhjO7R87DvoVXjt+PYPwmH8JiktHUUDCqqStfNHHNt/WNqzmas/Xzumy7Fsyv++4S9CyRz1dfoZazBVM6lKeC7ccZ7hwem8RnKy9zJTAKDQV809aDofWd396p9Dspj8I/9ZXvu7WEtrPB3LFA6pwjWrpQppF8a/GDPI/f7/gbYfiH5Ru8CMNv+loYfuYJFnNCU0NBw7KWNCxrybP4FLZeDWbDxSDuhcWy7VoI266F4FjCgJ7VHehezR4rk4/zdyUkKpFPll/idmgMOpoa/NKtEl2r2uffAR8dg+2jIDpQvl9zuLxiwrtC5Ut5QLPv5KkjwZflTv2tLXICxsvL5JuxLVTsKkeJ2Hjla46G9zWqmRuH74az7Vowo5u5ieVXizjRkc8lkSNQ+NCJz7iQ35JSlRx8ETp/MpPQ+e7V7KntXKLIjXZbGuuy2Ls6q88H8uPu25zyjaTV3BP83LUSbSvZFHb1ipWElDR+3nOXlecCAChjacjvPb3wdDDL92NraCjoWtWeVhWs+fv4Q/4+8Yjzfs9oP/8UvWs4MLZFuY9qXeXrj6P4dMVlnsQkYaKnxfy+VWlU9i0d14Rn8jz4a/IcYoys5EzyFboU6Y5KOkaWb4Th330tDP/0izD8NfIN5DD8lx17h9rvHYZvYajD0PrODKnnhM/jaNZfDGKnTwgBTxOYtf8evx24R5NypehZw4Gm7qXy7cJWUXM18DnDVlwmMi6ZEoY6/DOwGtUcLfLnYMlxcOh7uPiffN+sNHRaKC99mBMKBdhXl2+tZsjz529sgts75OUSzy6QbyVc5dD7St2hpFvev5735OVgRgO3kpx8EMmi4w/5uWulwq6S8BaiI59DL7McJiQkoK+fj0k2BKGQJSQkABTpzJ5C8fN66PxOnxBiXg+dd3oROl+54EPnc0qhUNC/tiN1XEowZt01bgRHM2L1FbpXs+f7DuUx1hPfm3e5GvicsRt88IuUIzAG1XViQmt39HUKdq66oa4WY1uWo2cNB37Ze5dd10NZeyGInT6hjGrqyqB6Tuhqfdjz57defczEzTdITlPhWsqIfwdWx7lkFiORkgTXN8D+SZDwVN5WfQg0+x70zQqsznlOoZBHV0t5QJ0v5OkCQa+H4d94dTs9D7T0wem1MHxL91xfwFAoFHg5mOHlYMZ37T3YfT2UDZeCuOj/nMN3wzl8N5ySRrp0q2pHzxoOH/Ta9NuvBfP1puukpKlwtzbmP+/q2Jvn06iw/ynYNgKi5AuJ1PgEmv8Auu/5/mpoyhEcZRpDu9/A95Acbn9vnxy5cvwX+WbjKYfeV+gKpnbv+2ryzJfN3Dj5IJJNl4MY1dQV2/xMKii8l6J9plQEaWpqYmZmRnh4OCCvZy7mMeUflUpFSkoKSUlJYvm5AiJJEgkJCYSHh2NmZoam5od9AisUjLCYl6Hzj/ENj1NvtzPTp1tVO7pWtccpq45DEeZiacTmz+vyx+EHLDzmy6bLjznv95S5vbzybwSpmEtVqph/+AF/HnuIUiVhbaLHrB6Vs1wX/p1CrsrJqdzbyZ2wXLI3N2BB36p4133GtJ23uREczc9777LmQiCT23rQorzVB/f3XqmS+HXfXf458QiA5h6l+L2XV9YXop4+hN1j5TBkAEsPOZld6VoFU+GCpK33qjPWYhrEhcOj18Lw457IHTTfQ3J5Y5tXSfPeIwzfQEeLHtUd6FHdAd/wODZeCmLzlcdExiXz94lH/H3iETWczOlZ3YF2lW0w0PkwTuVVKom5h+7zxxF5ikZzj1LM7V0lfy7qpsTD4Wlw/i/5vqkDdFogt1te09KVf5vc28lz8O/ukefT+x6Wl0oM9ZEjWxzrQaVuUL4zGBTu344aThbUcrbgvN8z/j7+kB86VSzU+ghZE+vIZ+Jd6/dJksSTJ0+Iiooq+Mp9ZCRJIjExEX19/Q/uBKqoMzMzw9r6/RM/FZd1O4XMvU/7JaUqOXRHDp0/cf9V6LyetgZtK9rIofNlil7ofG5d8HvGV+uvERyViIYCRjZxZVQzt0IPhy1K30Hf8Di+Wi9HMAB09LRleqeKmBrkol5pKXBiJpycA5JS3mZfA6oMkOejvsdSZyqVxOYrj5m5/x4RsckA1HMtwXftyxfKSgX50YbRCamMWneVE/cjAPnzOrZF2cy/j2kpcjK4E7MgLUlOCtfwa6j7ZbHLzJ0nJElOcvayUx9wWn5fXmddWT1an2pTjT0HDue6/VKVKo7cDWfDxSCO3gtX/5Ya6WrRwdOGXjVK42lvWmzPkxJS0vjfBh/23nwCwPCGZRjf2h3N/PjbEHAWtn0Oz/3k+9UGQYvpoPf273Wefwfjn8LtbXL4feCZV9s1tMClmRx6X67t+0cH5NJp30j6/XceHS0NTo1vQqkPIFdDUfpb+DY5WUdedOQzkd03UKlUkvp6Fkshz6WmpnLixAkaNmxYpL90Hxptbe08G4kvLj+cQuZy2n6SJOHzOJpNl4PYcS196HwNJ3N11vkPNfQ8JimVqdtvseVqMACeDmbM7eWVdZhyASgK30GVSmL5WX9+2XuX5DQVpvra/Ni5Ih08bXO3w7DbsHW4nHUc5BDVsFugevF50zaEil2gykBwqJnrkOe45DQWHvXlv1N+pKSp0FBAn5qlGduiLCWMCm7+fF63oW94LMNWXMYvMh59bU1m9ahM+8pZtEXgOdg5BiLuyPfLNIZ2c6CEy3vX44ORmgSBZ+VO/aOjcvj9ayQtfcIMylKyzSS03Fu/Vw6BJ9FJbL7ymA2Xggh4mqDeXs7KmJ41HOhSxQ4Lw+JzceVJdBKfrLjIzeAYtDUVzOhSiZ7VHfL+QKmJcHg6nFsISGBiBx3/ANfm2Xt6fv6ORj9+tZzdy980kKdvlGsjh9+7Ni/Qi2aSJNFt0RmuBEYxrIEzk9uVL7Bj55ei8LcwO0RH/j3l5A0U8ldx+dIJWRNtWLxlt/2yCp23NdV7kXW+eIbO59ZOnxAmb71BTFIa+tqaTOlQnt41HAplxKywv4Oh0Yl8vfE6p3wjAWjgVpJZ3XOZ5V+lhDPz4egMeZkzfQtoP0dOsBYbJq8NfnXlqwzqACXLQdUBULl3rsOdg54l8NOeO+oRQ2M9LUY3c2NgHSd0tPI/4iIv2/DwnTBGr7tGXHIadmb6/DOwWuZZ+hOj4NBUuLxUvm9QAlr9DJV7Fp9kdoUlLlyefqAOww979ZhtFWg0Acq+X4depZI45/eUDReD2HvzCclpKgB0NDVoUcGKXtUdqO9askhHPF1/HMUnyy8RHpuMhaEOf/WvRk3nfAgrD7ogj8K//F2o0h9a/QR62V+dosB+RyPuy6H3NzbCs0evtuuZysvZVewOTvXlefj57Oi9cAYvvYi+tianJjQp0IuX+aGw/xZml+jIvyfRkS86isuXTsiaaMPi7W3tl5Sq5PCdcDZdDuL4G6HzbV6Eztf5gELncyo0OpH/bfDhzEM5IVhzDyt+7VapwE+GCus7KEkSO3xC+G7bTWKS0tDT1mByWw/613bM3QWNpw/lk/Gg8/L9sm3k+dnGVm8eWB5FvroSbm2F1Bejlhpa8uhWlYHg2ixXJ8LnHj3lh523uRMaA0CZkoZMbudBU/dS+XqRJi/aUJIkFh57yOwD95AkqOlswaJ+VTN+HiVJft/2TXzVAa3SXw4/LuS5u8WSJJEacp2AbT/hEnUCxcvPo3UlaDge3Nu/9xrj0Qmp7PAJZt3FIG6FxKi325np072aPT2q2+dfwrhc2nU9hP9t8CE5TUVZKyMWe9fAwSKP65iaJF/0O7sAJJWcx6DDH1C2Zc53VdC/o5Ik5/94uZxdbOirx4ysXy1nZ1s13y6sSZJExwWn5WSujV0Y39o9X45TUIrL+ajoyL8n0ZEvOorLl07ImmjD4u3N9pMkieuPo9l0+TE7fEKITnw1vajYhc5Lknxy9MxPDs3Oh7mIKpXE4lN+zNp/jxSlipJGuszqUZkm5Url+bGyUhjfwaiEFCZvu8nu6/LJp6eDGXN6euYu27YkyUtDHZwid8p1jKHNL+DV790nsEkxcsjq1ZXyGs8vmdiBV1+5g2rulKPqKFUSGy8FMfvAPSLjUgA5ymBK+/K4WeV+Xv7bvG8bJqSkMX7TdXa9aI8BtR2Z0qF8xvwNzwNgzzh4cEC+X8INOsyVRwCFXFO3X6MaaF/8Gy78C6nyag2UKi/nGyjfKU9GWW8GR7PhUhDbrgarpzYpFFDftSS9ajjQorxVoa7CIEkS8w4/YO6hBwA0KWfJH32q5P3fjMeX5Qt/kffk+559oPXPoG+eq90V6rmMSgkBZ+RR+tvbISnq1WMWZV4tZ2dZLs8Pvf/WE4avvIyRrhanJjTBzKD4TNt4U3E5H81JP/TDSHUpCIIg5Kvw2GR23Qhk0+XHPHgtdN7GVI9uVe3pVs2+UOeBZ0tsmDzC8fIWeu3ViKORtZyZOo/DhjU0FAxrWIZ6riUZs/4q98PiGLz0IgPrODKpjUeBL7VWEI7dC2f8puuExyajqaHgy6ZufNHEBa3cJP2LfgzbR8rzjgGcGkDnhfJaz9mhZwLVB8u3sFtwZSVcXwcxwXLithOzwLkhVPWWR0azsS64poaC3jVL066yDQuO+LLktB8nH0TSet5J+tcqzZjmZTEvQnOUg6MSGbb8ErdDY9DSUDCtU0X61nrj/VOmyXOHj/0sXyzR1IH6Y6HBWDnrtpA3DC2hxQ9Qb7T8fp//G8Jvw6bB8hSQhuPkpcg0c396XtHOlIp2pnzT1oN9N5+w/mIQZx895eSDSE4+iMTcQJsuVezpVcOBctb5c+EpK0mpSsZt9FFfUPqkvjOT2nrkbVK7tGQ49gucniuPwhuWkiN33Nvm3TEKmoamvK69cwNoOxseHpZH6u/tkcPvT8yUb9aV5E59xW5gljd5Blp4WOFubczdJ7EsPe3PVy3K5sl+hbwhRuQzIUbki47icvVMyJpow+LtWsBTvll7hnsxmihfxM7ramnQpqI13as5UMelRP5kFn5fcRFyR/31jvvroYkvKTTlzl7ic/m+Q21oO1Meoc9jSalKft13l6Wn/QFwLWXE3F5eVLTL/jzN3Cio72BCSho/77nLynPymswulob83suLyvZmOd+ZJIHPOtg7AZKj5aRPLX6AGsPeOwyZtGS4uxuurHixjNrLOSFm8oWcqgPlE+Js8o+M56c9dzhwW74oZKqvzZjmbvSv7ZhnKxbktg3PP3rKiNVXeBqfQglDHRZlNgc5+DLsHP0qQZtjfWj/O1iKE/a8kmX7JT6XO/PnFkKSvJIDFi5yh75Sz/fq0L8u4Gk8Gy4FsenyY8JiktXbPR3M6FXdgQ6e+R9FFRaTxKcrLuHzOBotDQU/dq5I75rZvCCXXSFX5XXhw2/L9yv1gDYz82RKSJE8l0mJh3t75ZF630Ovkn0ClK4jj9KX7wyGJd/rMLuuhzByzVVM9LQ4PbFp8Yi4y0SRbMNMiND69yQ68kVHcfnSCVkTbVh8RSWk0PS3YzyLl8PnqznKofPtKttgUpT+kMc/hdCrEHLtRaf9GsQ8zlhOoSGPetlWAVsv+V+rivJox9kFcGK2PBqp0JCXJGr6Xb7MCT5xP4JxG30Ij01GW1PB2Bbl+LRhmXy7IFIQ38Grgc8Zu8EHv0g5XHhQXScmtnFHTzsXEQdxEbBrDNzdJd+3qw5d/oaSrnlX4ZeiAuHqari6Kv1nxsZLTpBXsTvom2VrV2d8I5m26zZ3n8QC8oWab9t50DgPplHkpg1XnQtg6o5bpKkkKtia8M/A6tiZ6b8qkBwrZ/G+8A8gyRcyWv4oTzcQyezy1DvbLylaDrc/u+DVRUVzJ2jwPzlJYx5lK09TqjjxIIL1F4M4fCectBcXZ/W1NWlX2YZeNRyo7mie5/kebgZH88nySzyJScLMQJtF/apRx6VE3h0gLUWOrjn5m7wUpUFJ+WJU+Y55dogify6T8EwOu7+5GfxPob5AqdCUl0Gs1F1eyz4Xy3IqVRItfj/Oo4h4vm5Vji+a5MNvcQEo8m34gujIvyfRkS86isuXTsiaaMPia9KWG6y9EIi1vsSKT+tT1sassKskn+SqO+wvwuOjAjMpqICSbi867VXkjpl1pbfPg48OhoPfySdCIM+lbPotVBuc5xmCn8WnMGnLdfbfkkdxazlbMKeXV/qOVh7Jz+9gqlLF/MMP+PPYQ5QqCWsTPWb1qEwDt9xlh+fOTnmps4RI0NCGJpOg7ug8G5nMkkoph+9fWSmP1qte5H7Q0pNHtKoOAMd67+zgpilVrL8UxG8H7vMsXp4/36ScJZPblce1VO5zMOSkDVPSVEzdeYs15+XvRQdPW2Z2q5x+GsedXbDna4gNke9X6iln8c5lVn/h7bLdfsmxcHGxvDJDgrzKA6alocFXck6IPJzmEBGbzJYrj1l/KYhHEfHq7WUsDelV3YGuVe2xNH7/4+29EcpXG66RlKrCxdKQJYNq4FgiD6dhhV6X58KH3ZTvV+gih5+/5yj0m4rVuUxMCNzcIo/Uh157tV1LT14toVIPcGuRo8/TliuPGbvBBwtDHU5NaIKBTvGbnV1c2lB05N+T6MgXHcXlSydkTbRh8XQ54BndFp0F4MsKaYzqXQjtlxQNoT7pw+Of+2detoSr3FlXd9wr52rkAZBHM/aMh/Bb8n3rStBmFjjWyd3+siBJEhsvPWbqzlskpCgx1tPix84V6eRll6fHya/voG94LF+t9+FGsBwS3MnLlmkdK2JqkItjJEbB3vFwfb1836oidPkrRyHueSb+qVyPKyterZ0OclKpKgPkJHnG1m/dRXRiKvMPP2DZGX/SVBJaGgoG1HFkTLOyuXp/stuGkXHJjFh1hQv+z1AoYHwrdz5rVObVCGt0sPw+v4x2MHeWl+9zaZrjOgnZl+PvYEo8XFoKp+dBfLi8zcQO6o2Rp35kI5dDdkmSxOWA56y/GMSu66EkpioB0NJQ0NS9FL1rOtDQzTLHOS4kSWLBEV9+O3gfgIZlLVnQt0reRXMpU+HkHHluuCpNXoqy3W9yNvd8UGzPZSJ9XyxntwmePni1XdcUPDrII/XODd95sTpNqaLZnOMEPE1gclsPhjUsk88Vz3vFpQ1FR/49iY580VFcvnRC1kQbFj+pShUd5p/i7pNYule1o4FuQP63X3Lsi077tVed9mcPMy9r7vyqw27rJc9nz8F6wNmiTINLS+Doj6/mrlbqKSfEM7HJ00MFPI1nzPprXA2MAl50iDtVxFQ/b97vvP4OqlQSy8/688veuySnqTDV1+bHzhXp4Gmbux36HpYT2sWGyNMa6o2BxhMLP8maJMnzx6+skKM0Ul4keVRogltLeZTerSVoZv2ePoqI46c9dzh0R+6MmRtoM7ZFWfrULJ2jjlF22vBmcDTDV14mOCoRY10t5vXxoqn7i6X5VEo58//h6ZASKy/FV2+0nC1dO++jQIT0cv0dTE2Ey8vlxG0vc3wYWcttV20Q6OTtcm2xSansuh7K+otBXAuKUm+3MtGlezV7elZ3yNZoelKqkgmbr7P9mhzxMbieE5PbeuQu4WVmwm7B1s/gyXX5vnt7OZTeKP9WAyn25zKSJL9fNzbKo/Uxwa8eMyz1Yjm7HmBfPctdrL8YyITNN7A01uXk+Ca5mzpViIpLG4qO/HsSHfmio7h86YSsiTYsfv4+/pCf997F3ECb/aPrcfbYobxtv+Q4ObHWy9D4kKsQ+QD1nL7XmZV+rdNeRe6053L5oFyJj4TD0+TOHBLoGMmdn9oj8mzeKsijHQuO+jL/iC9KlYStqR5zenlRu8z7zyPNy+9gSFQiX2/y4bTvU0AeZZvZrTLWprkYIUyOk5eUu7RYvm/hIs+Fd6jxXnXMF8lxcHubHHofdO7VdiMreVmrKgPeOof/xP0Ipu+6rV7xoayVEd+1L5/tKQjvasOdPiF8vcmHpFQVZUoa8s/A6q9C+UOvy8nsQq7I9+1rylm8rcpn69jC+3vv72BqElxbBSd/f5XLwdAS6o6C6kPzZenMe09iWX8xiK1XH/M84dUyo7XLWNC7RmlaV7TOtCMXHpvEpysucy0oCi0NBT90qkC/Wo55UyllmnxR49gv8vQXPbMXo/Dd8j2vwwd1LqNSQeBZeaT+1jZIfPbqsTYzodbwTJ+WkqaiyexjBEcl8kPHCnjXdSqQ6uaV4tKGoiP/nkRHvugoLl86IWuiDYuXx88TaDHnBImpSmZ1r0xnT+v3a7+UBHnu4uvh8ZH35WWB3mTq8GKE3etVxz0fks3lSvAVOST58UX5fglXaP0ruDXP08NcCXzOV+uvEfA0AYUChjd0YWyLsuho5X4kKy++g5IkscMnhG+33SQ2KQ09bQ0mt/Wgf23H3CXGCjgrz2t97iffrzkcmk/N8xHGfBFxH66ukLPqx0e82l66rhz2XL5Tpq8jTalizYVA5hy8T9SLjlFzj1JMblf+nUs3ZtWGSpXEbwfusfCYHL3SuJwl83pXkaM5UuLl5eTOLpQTgOmaQvPvX+R8yKORUSFb8uzvYFoK+KyRk7q9zA2ibwF1R8orOujl/TlrcpqSQ7fDWX8piJMPInjZazDR06KTlx29ajioV964FRLNsOWXCIlOwlRfm0X9qlLXNY/mqoffhW2fyX9DAMq2gQ5z3znNJa98sOcyylR4eFT+TbuzU75QPuZGllPTVp7157vtt7Ax1ePY143R1So+o/LFpQ3FOvKCIAhCjkmSxNQdt0hMVVLL2YLu1exJS0t79xNfSk16rdN+Tf434q7ciXiTse0b4fFeRTvRll1VGHJAXoP84Pfw1BdWd4NybeUkYRbOeXKYqqXN2fNlA6btvM36S0H8dfwhJx9EMK+3F66lCnbN55eiElKYvO0mu1+s/ezpYMbvPT0pY5mLUcDUJDg6Q07mhQQm9tD5TyjTOE/rnK8sy8rZ3Zt9D/f3yaP0vgch8Ix82zteHiGsOlD+fL+40KGlqcHAOk509LRl7qEHrDwXwKE74Ry/H8Gguk6MbOqWo+kUMUmpjFl3jSN35bD94Y3KML6Vu7z6wf0DsPt/EP2is1e+M7T5tcA6PUI+0dKRQ+q9+sH1DXBytryO+OFpcPoPqPMF1Pw02ystZIeulpzRvl1lGx4/T2DT5cdsvPSY4KhEVp4LYOW5ACrYmtC4nCVLTvmTmKqkTElDFg+q8c4LVNmiUsq/F0dngDJFnkbVZiZU7iVWV8gLmtpQtiW4NoM/a8p/2y4uhvpjMi3eo7oD84/4EhqdxObLwfStlcdLCAo5IjrygiAIAgAHbodx6E442poKZnSp+PaR1rRkeZ7i6+Hx4XfSr2P7kpHVG+HxXmBslV8vI/9oaMiJztzbwfGZcP4vuLdHnuNd70uoPzZPRpQNdbX4tXtlmriXYtKW69wKiaHdH6eY3M6DAbkdAc+lY/fCGb/pOuGxyWhpKPiymRsjGrvkbq5ryDV5XuvLBHJe/aH1T3mf36CgaGrLyaI8OshZoq+9WMbuuT9cXirfrCrKYfeVe6qjS8wMdJjasQL9a5dm+q47HL8fwb8n/dhyJZixLcvSu0bpdy5F+CgijmErLvEwIh5dLQ1mdq8sJ0mMfQL7JsKtrXJB09LQbjaUbZXPb4ZQoDS1oUo/uTN7c7O89NrTBy8uki2A2p9Brc/yPKLJ3tyAMc3LMqqpG6d9I1l/KYiDt8K4FRLDrZAYAOq7luTPvlVzl/TyTZEP5Midl5FQbi3laSEmuczHIWRNQ1Ne7nDb5/IyiDU/zfTvmZ62JsMbuTB9120WHvOlR3V7tPMq94GQY6IjLwiCIBCXnMbUHXKW9uENXdKN/ipUaXKSnPAbr8Ljw26/WqLrdQYl5dHr18Pj8zg5XKHTM4VWM+QR173j4dEx+UT62lpo9aM8+pkHne3WFa2pWtqMcZuuc+J+BFO23+LI3XBmdq9MKeO8y1qdmYSUNH7ac4dV5+QRXRdLQ37v5UVle7Oc7+zN7NKGpeSTcfe2eVvpwmRiK+dOqP8/CDgl51S4vUOOUNk3QV7W0KOD3Kl3bgQaGriWMmb5kJocvRfOj7tu8zAinslbb7LybABTOpSnrkvmIcnH7oUzau1VYpPSsDHV458B1alkayyPoh36AZKj5YR8tT+HJt+ATh4u9SUULZpa4NlLzjx+a6v8OxRxF47/Kk+pqDkM6owEwzxcsx3Q1FDQsKwlDcta8jw+ha1Xg9l1PYTqThZ83arc+3fsVEo4twiOTIe0JNA1gdY/y5EIYhQ+/1TqIecfiAqAy8ugzohMi/WtWZqFR315/DyR7ddC6F7NvmDrKaiJjrwgCILA3IP3CY1OorSFASObvkrapXFqDu2uz0LTJ5NOu75F+pF2Wy95iaSP5UTLshwM2CbPK9w/WQ5j3jgInBpA21lQyuO9D1HKRI9lg2qw4qw/P+29y7F7EbSee5JfulaiZYX8CZO+GvicsRt88IuU15YeVNeJiW3cc5ehOOIebB3+al5r+U7Q7vc871gUGRoa8lJOzg2h7XN5yacrK+QLYTc3yzez0q+WsTO1p0m5UtR3LcnKswHMPXSfu09i6fvveVpVsGJy2/KULiGPikkS/HvKj9kHHqCSoJqjOYv6V6VUwiNYOgaCzst1sK0iXyix8Sy890EoWBqacme+Qle4s0Pu0IfdhFNz4PzfUGOonBgvH7K6mxvqMKS+M0Pq5830Ip4+hG0jXiWVdGkKHeeDqegs5jtNbWgwVk6OeXoeVB+S6VKH+jqafNKgDL/uu8vCo750qWL3zigiIX+IjrwgCMJH7lZINEvP+AMwrVOFVx22R8fQPP4TAJKeGQpbr/Qdd1OHj6fTnhWFAsp3BNfm8onP6bngfxIW1ZNDExtPfO/5qhoaCgbVc6aua0lGr7vGndAYPl15mT41HfiufXkMdPLmT3mqUsX8ww/489hDlCoJG1M9ZnX3pL5bLpJVqVRwbqE8d1eZXKDZpYsMfXN5RLTmMHlawdWVcH2jnKTs6Aw4+pM8L7XKALTLtWVIfWc6V7Fj7qH7rD4fyP5bYRy9G8Hg+k4Mru3ASl8NLkfK60D3ruHAD23LoHtmpvy5U6XJKyo0/U4+3jvWhBY+UBoaUKEzeHSE+3vlkflQHzjzB1z4F6oPhrpfFs0oKZUKLvwtR5WkJcqf51YzoKr3x/ObURR49oXjs+TVEa6ulH9PMjGgjiN/n3jIo8h4dl0Pkaf2CAVOTGoQBEH4iClVEt9svYlSJdGusg2Ny70YsUmOgx2jAPAr2ZS0sQ9g4HY5s3j5TvKooji5ekXHAJpMgi8uyGsaS0o4vwjmV5OToakyydKfQ2WtjNn2RV2GNyyDQgFrLwTR7o9T6dZ7zi3f8Fi6LjzDHy+Wv+vkZcu+0Q1z14l/7g/L28OByXIn3rU5jDgnjxh+rJ8ZWy/5Qsa4e9D1XzlqAwl8D8FGb5jjDvsnYxH/iGmdKrJ3dAMauJUkRani7+OPqDvzOJcjNdDUUDCtUwV+9nqK7r8N5OzlqjQo1w6+OC/PjRadeEFDQ87l8elx6LsB7KrJneNzC2GeJ+z5GqKD372fgvLskfybsW+iXE/nRjDirJzY72P9zSgsWjqvEt2dmiuvlJAJI10thtSTozD+POqLSiUWQSsMoiMvCILwEVtzIRCfoCiMdbWY0v61daUPTYWoQCRTB27Z9hYnU9ll7gi9V8OArVCyLCREwo6RsLg5PL783rvX1dJkUlsPVn9SCxtTPfwi4+m26Ax/HH5AmjLnFwtUKomlp/1o98cpbgRHY6qvzYK+VeQlzHKarEqS5HmVi+pBwGnQNoT2c6HfpqI5AlgYtPXlxHeDdsGoK3JyKSNrSHgqJ5haWAv+a07Z4K2s6OfBfwOr41zSEJUEhloSq3s7MzD0JxQrO8udH2Nb6LUK+qwRocdCRgqFnOjwk8PQfws41JIvrl34B/7wgl1fvVrGrjCoVHKkwOu/Ge3myBeNzUQ29EJTZYD8uxTzGHzWZlnMu64Txrpa3A+L48DtJwVYQeEl0ZEXBEH4SIXHJjFz310AxrUqh5XJi7lw/qfg4r8AKNvNRamZv4nVPkguTeHzM9ByBugYQ/Bl+K8pbP8C4iLe/fx3qOtSkn2jG9K+sg1KlcScg/fp9c85Ap8mZHsfIVGJDFhynh923iY5TUXDspYc+Koh7SvnIiN0TCis7iHPrUyJA8d68PlpOZRXXATKXAkXaDYFvroFfdbLkRwaWnKG7h2jUPzmTvMH0zjQXY+FvSvzT+mj1NrbBq6vBxRQc7g8Cu/RobBfiVDUKRTyNI4h+2HgDnCsLy/ldmkJ/FFFjr565lewdXoeACs6wp5xkJogR6mMOCPP5xe/GYVLW09eiQXkPAvKzJehNdXXxruuEwDzj/giSWJUvqCJjrwgCMJH6sddd4hNSqOyvSn9azvKG1PiYftI+f/VBiE5Nyq8ChZ3mtpQdySMuizPOwR5ebL51eSMzMpMEgjmgKmBNvP7VGFuLy+MdbW4HPCctn+cZNPlx289oZIkiW1Xg2k19wSnfZ+ir63J9M4VWT64xquLOdklSXJCt4W15bXUNXXlixfeu8Aij5Jffeg0taBcazmS46vb0PwHKOEKqfFwdRXay1rR5kAj6oX8hyLxOVhVkkdY284EPZPCrr1QnCgUUKYRDN4Ng3bLIeyqNDkh4/xqsPVziPTN3zpIknwBYVFdOZ+ItgG0mSVfYDB3yt9jC9lXbbC8Cs1zf7ixMctiQ+o7Y6Cjya2QGI7cDS+4+gmA6MgLgiB8lE4+iGCHTwgaCvipS6VXGWcPT4fnfmBiDy2mF24lPxTGVtBlEQw9KC/LlxwtzwX9qwH4nXivXSsUCjpXsWPP6AbUdLIgLjmNcRt9+GLNFZ7HZ5zb+Dw+hZFrrjJm/TVik9LwcjBjz+gGuVufPv6pnKV/81BIipJf2/AT8sULDXF6kSvGVvL81JGXYPA+ebktbQMUCU9J09BB2WwqfHoM7KsVckWFYs+pPnjvgCEH5DwWkhJ81sCfNWDzMHnFibwWFQQru8gh/SlxULoOfHYKan0qfjOKGh0D+bcc4ORseUnATFgY6jDgxUCAGJUveOJbIwiC8JFJSlXy3babgDzHraKdqfxA4Dk4/5f8/47zxGhfXnOoCcOOyEuD6VtAxB1Y3gE2eMsnuO+zawsD1n5am/Gty6GloWDPjSe0nneCkw9ehfGfeBBJq7kn2H0jFC0NBf9rUZZNn9XBuWQu1hm/t1cehb+9TQ4Hb/wNfHIISrm/1+sQXlAowLEOdF4I/7tHWq+1HPaYiar2SHkEXxDySula0H8zfHIEyrYGSQU3NsCfteQLdWG33v8YkiSP+i+sA4+OgpYetPpZjgoo4fL++xfyR41P5NU3nvrCra1ZFhvawBldLQ2uBUVxyjeyACsoiI68IAjCR2bhsYf4P03AykSXsS3KyhtTE+X520jg1V8eoRHynoamnIn5yyvy8nQKDbkzvKCGvORPalKud62poWBEY1e2jqhHGUtDwmKSGbD4AjP23GXDIw2GrrhCeGwyLpaGbB1Rj1HN3NDSzOFpQFIMbPsC1vaG+HCwdJc78I0nyFMJhLynZ4Lk2oIkHYvCronwIbOvBn3Xy5nu3dsDktx5W1QX1veH0Ou52290MKzuLs/DT4kF+5ryKHydEWKFhaJO1xhqj5D/f2J2lquvlDLWo09NOTnh/MP5PDVDSEd05AVBED4iDyPi+OvYQwCmdqiAsd6LztfRGfJVd2Mbee1eIX/pm0PbWTD8pJwYLi0Rjv4oZy2/u0cewcqlSvam7B7VQB3uuOxsIKfD5D/3g+o6sfvLBlSyN835jh8dl0/qr60CFPJ61J8eB9squa6rIAhFjK2XnK/hs9NQvjOggDs74e8GsLYPBF/J3n4kCa6tkUfhfQ/J+TNaTIch+6CkWz6+ACFP1fwUdE3kCLK7u7Is9lkjF3Q0Nbjg/4xzj54WYAU/bqIjLwiC8JGQJIlvt94kRamiSTlLWle0lh8Iughn/5T/32Ee6JsVWh0/OtYV5fDSbovlpcSe+8O6PvII1nskndLXkRPYLRlUHUsjHcx1JJYNqsbUjhXQ087hKFhKAuwZL2eYjg6SE1IN3gstp8vZjQVB+PBYV4Sey+X13Ct2BxRwbw/820ReoSLoYtbPjQmVo3a2fS7nBLGtCp+dlDOhi1H44kXfDGoNl/9/YlaWF5mtTfXoUV1eAnPBETEqX1BER14QBOEjsfVqMGcfPUVPW4NpnSrKyc1Sk2D7CHleZOXe8prDQsFSKKBSdxh5EeqPBU0deQRrYW04OAWSY3O966buVhwf15ApVZXUcymR8x0EXZRH4i78Ld+vPkQeqXOsk+s6CYJQjJTygO6L4YsL8t8IhQY8OACLm8OKzhBw9lVZSYLrG+Tfrvv75N+yZt/LiT4tyxXaSxDeU+0RoGMET67D/f1ZFvuskQtaGgpO+UZyJfB5AVbw4yU68oIgCB+BqIQUZuy+A8CXzdxwsDCQHzj+C0TeByMraP1zIdZQQNcImn8PI86BWytQpcLpeTC/unxynMtwe21NDTRyuixzWjIcngZLWr6YcmErJ8Rq/7tcT0EQPi6WZaHr3/KKClX6y0kuHx2Fpa1hWXs5Aeb6/rBl2KtVLD49Dg3GigSNxZ2BBdQYKv//xMws/xY5WBjQpYodAPMPPyio2n3UREdeEAThI/Drvrs8jU+hrJURwxqUkTcGX5Y7igDt5sh/rIXCV8IF+m2APuvB3Bninsgnx0vb5D7hVE48uQH/NoWTv72I1OgFI86IBIiCIMi/T53+hFGX5cSdGtryevBre8tzqDW0ocm3chJMq/KFXVshr9QZBVr68nnDwyNZFvuiiSsaCjh6L4Ibj6MLsIIfJ9GRFwRB+MBd8n/G2gvy8mYzulRCW1NDHnHd9oXcUavYHTzaF3IthQzKtZZH55t+B9oGEHgW/mkEu8ZCwrO8P54yTc5M/E8TCLsJBiWg50ro+o+cnE8QBOElcyc5p8qXV6HGMDmM3royfHoUGn0tVrH40BhZQvXB8v/fMlfeqaQhHT1tAVhwVIzK5zfRkRcEQfiApSpVTN4qrxnfq7oDNZxejLqfmCVnoTW0hDYzC7GGwltp60HDcfL8+Qpd5QsvlxbD/KpwcTGolHlznEhfOUT2yHQ5pL9cO/kiQvmOebN/QRA+TGYO0G42TAyE4SfAulJh10jIL3W/lFcfCDwL/qeyLPZFE1cUCth/K4y7T2IKsIIfH9GRFwRB+IAtPuXHvbBYLAx1mNjGXd4Y6gMn58j/bzsbDHORBE0oWKb20GMpeO+CUhUg8TnsHgv/NIbAc7nfr0oF5/+Gv+rD44vyMkOd/5KXnzIqlWfVFwThA6etLyfuFD5cJjZQdYD8/xNZDwC4WRnT5sWqOCKDff4SHXlBKEQPwmI5fj+isKshfKCCniUw99B9AL5p64G5oQ6kpbwIqVdC+U5QoXPhVlLIGecG8qhXm5mgZypnEV7SCrZ8Ki/5lBNRgbCyE+wdL69jX6axvNSUVx9xQi4IgiBkVG+MnAfB7wQEns+y2MgmbgDsvhGKb3hcAVXu4yM68oJQSJJSlfT59zzeSy5w6kFkYVdH+MBIksTUHbdISlVRy9mCblXlTLKcmgNhN0DfAtr+VriVFHJHU0te13fUFag6EFDA9fWwoDqcmitfrHkbSYKrq2BhXflkTNtAjszov1Ue+RcEQRCEzJg5yBd74a2j8uVtTWjuYYUkwcJjYlQ+v4iOvCAUkl3XQ4mMSwbgD7FMh5DH9t8K4/DdcLQ1Fczo8mLN+Cc35bnxAG1nyclrhOLLsCR0nA/DjoB9DUiJg0Pfw6I68OBQ5s+JDYO1fWD7F5ASCw614LNTUHMYaIhTAkEQBOEd6o8FhSb4HpKz2GdhVFNXALZfCyHwaUJB1e6jUuh/tf/880+cnJzQ09OjVq1aXLhwIcuyqampTJs2DRcXF/T09PD09GTfvn3pyiiVSr777jucnZ3R19fHxcWF6dOnI+Vy/V1ByA+SJLH8jL/6/gX/Z5x79LTwKiR8UOKS05i64xYAwxu64FrKGJSpsH0EqNLAvT1U7FbItRTyjF1VGHIAOi8Cw1Lyuu+ru8kd9md+6mKKO9thYW24v1fOMN18KgzeKy8nJQiCIAjZYeEMlXvK/z8xO8ting5mNCxriVIliVH5fFKoHfn169czduxYvv/+e65cuYKnpyetWrUiPDw80/Lffvstf//9N/Pnz+f27dt89tlndOnShatXr6rL/PrrryxatIgFCxZw584dfv31V2bOnMn8+fML6mUJwjtdCYziRnA0HbQvsNB2H5oomX9EjMoLeeP3g/d5EpNEaQsDRr64Is7peXKSOz0zec14MQf6w6KhAV59YdQlqDMSNLTg3h74sxYax36mmv9CtLYMhcRnclbpT49B/a9AQ7Oway4IgiAUNw3+ByjkvzNPbmRZ7MsX5yCbrzwmOCqxgCr38dAqzIPPmTOHYcOGMXiwvC7hX3/9xe7du1myZAkTJ07MUH7lypVMnjyZtm3bAvD5559z6NAhfvvtN1atWgXAmTNn6NSpE+3atQPAycmJtWvXvnWkPzk5meTkZPX9mBh5qYTU1FRSU1Pz5sUKufLy/f/Q2mHpqUeYEM9vWovQeZbMUS0DNvo25PzDCKqWNivs6uWpD7UNi6pbITEsPS2Pwk5t744mKlJDbqN1/FcUQFrLn5D0LCCb7SHar5jRNICmU6FyXzQPTELD7ziap3/DHpAUmqjqjkHV4H/yiLxo02JDfA+LN9F+xZ9owzeYOqFZvjMat7eiOjYTZbclmRbztDOmtrM55/yes/DIA6Z28Cjgir5SXNowJ/UrtI58SkoKly9fZtKkSeptGhoaNG/enLNnz2b6nOTkZPT09NJt09fX59SpV2sZ1q1bl3/++Yf79+9TtmxZfHx8OHXqFHPmzMmyLj///DM//PBDhu0HDhzAwMAgpy9NyAcHDx4s7CrkmegU2HNTk76aZ9CR5AtIY3S2szmtPlM3nuMzD1Uh1zB/fEhtWFSpJPj9hiYqSUGVEipiH1xg730lDe5Px1yZwhMTL84HGkLQnhzvW7RfMWQ6BBvnypQPXo9KQ4erpYcSleAC+7OYPy8UeeJ7WLyJ9iv+RBu+YqyqQVO2ori7k5Ob/yVW3y7TctX1FZxDk/UXAymn9MNUp4Ar+oai3oYJCdnPJ1BoHfnIyEiUSiVWVlbptltZWXH37t1Mn9OqVSvmzJlDw4YNcXFx4fDhw2zZsgWlUqkuM3HiRGJiYnB3d0dTUxOlUsmMGTPo169flnWZNGkSY8eOVd+PiYnBwcGBli1bYmJi8p6vVHgfqampHDx4kBYtWqCtrV3Y1ckTfxzxRSU9YpD+SUiTt9mpQmmjeYndUTWxr1yHyvamhVvJPPQhtmFRtfp8IIHxdzHS1WLB0HqUMtZF4+wfaCY8QtI1oYT3Stqa2ORon6L9irt2pKZM4vDBg7Ro2VK0YTElvofFm2i/4k+0YeZUm86gcW8XjTUvoWw7LNMykiRx5r+LXAmMwk/XhW/alCvgWsqKSxu+jAzPjkINrc+pefPmMWzYMNzd3VEoFLi4uDB48GCWLHkVzrFhwwZWr17NmjVrqFChAteuXWPMmDHY2tri7e2d6X51dXXR1dXNsF1bW7tIN/TH5ENpi5Q0FWsvBlNe4Y9rmq8c3lp1IFz8j0nGu9kdVYNFJ/z4z7tGYVc1z30obVhUhccm8dtBOZnM+NblsLMwgoj7cPxXABStf0a7ROlc71+0XzGnUIg2/ACINizeRPsVf6IN39B4PNzbhcbtrWg0nZxl8tQvm7kxaOlF1l4M4oumbpQ0ytjvKihFvQ1zUrdCS3ZXsmRJNDU1CQsLS7c9LCwMa2vrTJ9jaWnJtm3biI+PJyAggLt372JkZESZMmXUZb7++msmTpxI7969qVSpEgMGDOCrr77i559/ztfXIwjZseeGvOTcIP2T8gb3dtBkMmgbYp/0gCaaPhy6E86tkOjCrahQ7EzfdYfY5DQq25vSr5YjqJTyEmPKZHBpBl5ZRyUJgiAIgiDkmI0nlG0NkgpO/pZlsUZlLalsb0pSqor/TvplWU7ImULryOvo6FCtWjUOHz6s3qZSqTh8+DB16tR563P19PSws7MjLS2NzZs306lTJ/VjCQkJaLyxFq6mpiYq1Yc571goXpad8UeXFDpqvMjrUHUgGFhAdTnh47cmewFYcEQs0yFk34n7Eez0CUFDAT91qYSmhgLOLYLHF0DHGDr+IbLUC4IgCIKQ9xqOl//1WQfP/TMtolAoGNXUDYCVZ/2JSkgpoMp92Ap1+bmxY8fy77//snz5cu7cucPnn39OfHy8Oov9wIED0yXDO3/+PFu2bOHRo0ecPHmS1q1bo1KpGD9+vLpMhw4dmDFjBrt378bf35+tW7cyZ84cunTpUuCvTxBe5xMUxbWgKNppXUIvLRZMS4NzY/nBOiNBUweXxBvUVNxh780n3HsSW5jVFYqJpFQl322/CYB3XScq2pnC04dwZLpcoNWPYGpfiDUUBEEQBOGDZV8NXJqCpIRTv2dZrLlHKdytjYlPUbLktH/B1e8DVqgd+V69ejF79mymTJmCl5cX165dY9++feoEeIGBgYSGhqrLJyUl8e2331K+fHm6dOmCnZ0dp06dwszMTF1m/vz5dO/enREjRuDh4cG4ceMYPnw406dPL+iXJwjpLD/jD8DnJqflDVX6y2s/A5jYqEOfvzffB8CCo2JUXni3hUd9CXiagLWJHv9rWQ5UKtg+EtKSoExjqJp5bhBBEARBEIQ88XJU/upqiH6caZHXR+WXnvYjJqloLwNXHBR6sruRI0cycuTITB87duxYuvuNGjXi9u3bb92fsbExc+fOZe7cuXlUQ0F4f5Fxyey6HkppRRhuCVcBBXj1TV+o3mi4soIKCReppHjEruswupkbrqWMCqXOQtHnGx7HouMPAfi+Q3mMdLXg/N8QeAa0DaGDCKkXBEEQBCGfOdYBpwbgfxJOz4O2szIt1qaiNa6ljPANj2PFGX9GvujYC7lTqCPygvCxWHs+kBSlilHm5+QNrs3AzCF9IQtnqNQdgKnm+5EkebRVEDIjSRLfbrtBqlKiqXspWle0hmeP4NBUuUCLH8DcsVDrKAiCIAjCR6Lh1/K/l5dD7JNMi2hoKBjZxBWAxaf8iE9OK6jafZBER14Q8lmqUsWq8wFooqS96qi8scqAzAvX/wqAagkncVU8ZrtPCP6R8QVUU6E42XIlmHOPnqGnrcEPHSugkCTY8SWkJshXxasPLewqCoIgCILwsXBuCA615NVyzszPslj7yjY4ljDgeUIqq88HFGAFPzyiIy8I+WzfzSeExSTTweA2+knhYFACyrXNvHApD3BvD8APFgdQqiQWHhOj8kJ6UQkpzNhzB4DRzcriYGEAl5fIIW3aBtBx/qv8C4IgCIIgCPlNoXg1V/7SEoiPzLSYlqYGXzSWR+X/OeFHUqqyoGr4wRFneoKQz14muRtpdlbe4NkHtHSyfkKDsQDUTTiKvSKcLVeCCXqWkM+1FIqTX/be5Vl8CmWtjPikgTM8D4CD38sPNvtenqYhCIIgCIJQkFybgW0VOTrw7IIsi3WpaoedmT6RccmsvRBYgBX8sIiOvCDko5vB0VwKeI61RjQuz0/KG7MKq3/JrhqUaYJCUjLV4hBpKom/XiQ0E4RL/s9YdzEIgBldKqGtoYCdX0JKHJSuAzU/LeQaCoIgCILwUXp9VP7Cv5DwLNNi2poafN7YBYC/jz8iOU2MyueG6MgLQj56ORr/je1VFJIS7GtCKfd3P7HhOACaJh7AkudsvPSY0OjEfKypUBykKlVM3iqvGd+rugM1nCzgynJ4dAy09KDTnyKkXhAEQRCEwlOuDVhVkgcYzi3Kslj3avZYmejyJCaJTZczX7JOeDtxxicI+eRZfArbfUIAiZYpB+WNVQdm78mO9cChFhqqFL4rcYQUpYq/jz/Kt7oKxcPiU37cC4vFwlCHiW3c5bVa938rP9j0OyjhUrgVFARBEATh46ZQqAekOP83JEVnWkxPW5PhDeXzlkXHHpKqVBVUDT8YoiMvCPlk3cVAUtJU9C71GL0YP9AxggpdsvdkhQIayD+C7ZL3YkYsay8EEh6TlI81FoqyoGcJzD10H4Bv2npgbqANO0dDSqwc6VH780KuoSAIgiAIAuDRESzdITkazv+TZbE+NUtT0kiHx88T2Xo1uAAr+GEQHXlByAdpShWrzspLanxmclreWLEr6BplfyduLcCqEpppCUyyOE5ymop/TohR+Y+RJEl8v+MWSakqajlb0K2qHVxbDb6HQFP3RUi9ZmFXUxAEQRAEQZ7m92JAinN/QnJspsX0dTQZ1qAMAAuP+qJUSQVVww+C6MgLQj44eDuMkOgkShuk4vjkZVi9d852olCoM9h3TduNIYmsPh/I07jkPK6tUNTtv/WEI3fD0dZUMKNLJRSxobDvG/nBJt+AZdnCraAgCIIgCMLrKnYFCxdIfA4XF2dZrF9tR8wMtPF/msCu6yEFWMHiT3TkBSEfLPt/e/cdX2V593H8c7IHm7ASZgKCgLJBhnvj3oM6aB9bVx20tdVqHe2j1afaoVat1oWzLqptpaWoIFtZgiiyN4QdICQkOef54yRBJCDBkDsn+bxfr7xyct33OfkeLsH8cq3STe7ubDePUPFOaHZ4dDf6yup6DjTtSOKurfy0yUR2FpXwzIQlVRtWNdr2wmLueXceANcem0PHZunwj1uj09Uye8PAGwNOKEmS9A1x8XD0T6KPJz8Guyo+SrlecgI/GBw9NvexDxYSdlT+gFnIS1XsizV5TF2yifi4EMfteD/a2PvK6Ah7ZcXFw5BbAbg8/C7J7OLFSUvZvGNXFSZWTfbIf75ibV4B7ZqmccPxHeGzv8FXoyE+Cc79M8QnBB1RkiRpb0deDI3awo71MP35fd521eD21E9JYEHudkZ/vrb68sU4C3mpir04eSkA/9NxO0m5n0FcIhx5ycG/4JGXQMM2JBds4MeNp7JjVwnPTXRUvi6Yu2orz0+K9vV953QnpWA9vF96Puuxt0HzwwNMJ0mStB/xiTAkukyUiX+Eooo3bW6QksjwQe0BePSDhUQijsofCAt5qQptyd9Vvuvm99M+jjYefiakNz34F41PhEE3RV8z9HcSKOa5SUvZurPou8ZVDVYSjvDLd+YQjsCZR7bi2E4Z8M+fQMEWaHkkDL4l6IiSJEn71/NyaJAF29fCzJH7vG344A6kJ8XzxZo8xn6RW40BY5eFvFSF/vbpCgqKwvRomUzzpX+PNva64ru/cO8rIL0Zafmr+WHjGWwrKOaF0nX4qp1embqM2Su3Uj85gV+d2RXmvgVf/gPiEuDcJ6K/4JEkSarJEpJ3Dz5M+AMUV7w8tHF6Et8b2A6ARz9Y4Kj8AbCQl6pISTjCi6VHzv2i/QJCBVuhYVvIPv67v3hiKgy8AYDr4t8lRJhnJy5he2Hxd39t1Ti5eQU8NHo+AD87rTPN47bBv34WvXjMz6Bl9wDTSZIkVULvK6BeC8hbCbNf3edt1xydTUpiHLNXbmX8gg3VGDA2WchLVWTsF+tYuXknjdIS6b/lX9HGXsOiZ2lWhb4/gJSG1N++mCsbzWFLfhEjS39xoNrl1//8gm2FxfRo3ZBhA9rBv34KOzdBi+6715pJkiTFgsTU8mWiTHgESioeiMqol8zl/UtH5cc6Kv9tLOSlKvJC6SZ3PzoiRPzS8UAIeg6rum+Q0gD6/wiAW5LeBSI8/fFi8nc5Kl+bjP9qPe/NXk1cCP73vCOI/+LvMG8UhOLhnMchISnoiJIkSZXTdzikNYXNS2HOG/u87YfHZJMUH8enyzYzZfGm6ssXgyzkpSqwYN02Ji7cSFwIhiWVbnKXcwI0alO132jAtZCYRuO8L7iw4Xw27djFK1OXV+33UGAKikq46+9zAbh6UAe6NyqObnAHcPQIyOwZXDhJkqSDlZQOA2+MPv74dxAuqfC2lg1TuLhfayC6Vl77ZiEvVYGy0fhTD8+gwZd/izb2vrLqv1F6U+gzHIDb0v8BwFPjF1NQVPE/hootj3+4kGUb82nZIIURpxwWPWoufwM0Ozy6Nl6SJClW9b8GUhrBxoXw+Tv7vO3aY3NIiAsxadFGpi9zVH5fLOSl7yivoIi3Z0SPnLup3TLYtiY6dajz0EPzDQfdCPFJNN80g6ENlrB+WyGvTXNUPtYtzN3Ok+MWAXDP2V2pt3g0zH0TQnFw7uPRXV8lSZJiVXJ9OOr66OPxv4NwuMLbWjdO44Le0VH5P41dWF3pYo6FvPQdvfHpSvJ3ldC5RX26rBkVbexx2aFby9wgM3omJ/DLBtFN9Z4ct5jCYkflY1UkEj0zvqgkwgldmnNqdjL849boxUE3QVafYANKkiRVhQE/guQGsP6L6LG6+3D98TnEhWDcV+v5bOWW6ssXQyzkpe8gHI7wYum0+h/2SSc0f3T0QlWcHb8/g2+BUBxZGyZybL1VrM0r4M3pKw/t99Qh8/aMVUxdsomUxDjuPbsbodG3w45cyDgMjrs96HiSJElVI7UR9P9h9PH4/4N97Ezfrmk65/TMAuDRDxyVr4iFvPQdfPRVLss25tMgJYGzIuMgUgKt+0PzLof2GzfpAN0vBODeJv8G4M8fLqKopOIpSqq5Nu/Yxf/+6wsAbj7xMNps+Bg+ey06pf6cP0NiSsAJJUmSqtBR10NiOqz9DL769z5vu+H4joRCMGbeOr5Yk1eNAWODhbz0HTw/KXqO+8V9WpP02cvRxt6HeDS+zJDo1Ot2uWPpm76eVVt28k7pWn3FjgdHf8mmHbs4rEU9/qdfE3jv5uiFo66HNv2CDSdJklTV0ptCvx9EH49/aJ+j8h2b12PoEa0AeMxR+b1YyEsHadH67Yz/aj2hEFzTbl10B86ketDt/OoJ0KIrdDmTEBHubzYGgMc/Wkixo/Ix45Olm3jtkxUA3H/eESSOuTO6WWKTHDjhzoDTSZIkHSKDfgwJqbBqOiz6YJ+33Xh8RwD+NXcNC3O3VVe6mGAhLx2kkZOjo/EndmlOi0WlR851Ow+S61VfiKNHANBp3ft0S9vCso35vDt7dfV9fx20opIwv3xnDgCX9mtD36IZMOslIATnPA6JqcEGlCRJOlTqNYc+V0cf72et/OGtGnBy1xZEIvD4h4uqL18MsJCXDsL2wuLyzeW+37cpfD4qeqH3VdUbJKsPZB9PKFLCb1t+CMBjHy6kJFzxP4aqOZ75eAlfrdtOk/Qkfn58Frx3U/TCgGuh3cBgw0mSJB1qg2+C+CRYPhmWTtjnbTed0AmAv89axdINO6orXY1nIS8dhLemr2R7YTE5zdIZmP8hFO+EZodD677VH+bonwDQfd275KRsZ/H6Hfxrzprqz6EDtmJTPn8c+xUAvxx6OI0n3gd5q6BxezjxrmDDSZIkVYcGmbtPehr/0D5vO6J1Q47r3IxwBP78kWvly1jIS5UUDkd4ofTIuasGtSc0c2T0Qu8rIBSq/kDth0Dr/oRKCnkw62MAHv1gAWFH5WukSCTC3e9+TkFRmKOym3B+owUw/fnoxbMfg6T0QPNJkiRVmyG3QFwCLBkPy6fu87Yfl47Kvz1jFSs351dTuJrNQl6qpI8XbmDx+h3US07gwqwtsHomxCXCkZcGEygUgmN+CkCf9W+TlVzAV+u28595a4PJo/369+dr+eDLXBLjQ/zv0A6E3i2dUt/vf6DD0cGGkyRJqk6N2kKPy6KP9zMq36ddYwblNKU4HOHJca6VBwt5qdJemLQUgAv7tCZt7ivRxi5nRI/SCEqnU6DFEYR27eD/2k4G4E9jFxLZx8YhCsb2wmLueXceANcem0PO7P+Drcuj/xM76d6A00mSJAXg6BEQioeF/43uYr8PZaPyf/tkJWu3FlRXuhrLQl6qhGUbd/Dh/FwArurXAj57PXqh95UBpiI6Kl+6g/1R69+gWdIu5q3JY+wXucHm0h4e+c9XrM0roF3TNH6cvRY+eSZ64exHq/e0A0mSpJqiSTYccVH08fjf7fO2o7Kb0K99Y3aVhHlqvKPyFvJSJbw4eRmRCBzXuRkdNnwEBVugYRvIPj7oaND1HGiSQ1zBFh5sH/1t5qMfLHBUvoaYu2orz09aAsD/npFN0j9Lp9T3uRqyjwsslyRJUuCO/gkQgvn/grVzKrwlFAqVj8q/Om0567cVVmPAmsdCXjpAOwqL+dunK4DoJnfMeCF6odf3IK4G/FWKi4chtwJw3MbXaZBYzOyVWxn31fqAg6kkHOGX78whHIGzemQyZNmfYfNSaNAaTv510PEkSZKC1eww6HZe9PH4/9vnbUd3yqBH64YUFIV5ZsLiagpXM9WA6kOKDe/MXMW2gmI6ZKRzbNPt0d01CUHPYUFH2+3IS6BBa+J25PLbDtHfZj76gWvlg/by1GXMXrmV+skJ3NczD6Y+Fb1w9h8hpUGw4SRJkmqC0s2bmfcu5H5Z4S1fH5UfOXkZm3fsqq50NY6FvHQAIpFI+SZ3VxzVjrjZL0cv5JwAjdoEF+ybEpJgcHTK9qlbXiMtIcz0ZZuZvGhjwMHqrty8Av5v9HwAbj+5LY3H3ApEojM5Op4UbDhJkqSaokU36HImEIGP971W/sTDm9O1VQPyd5Xw7MQl1ZevhrGQlw7ApEUbWZC7nbSkeC7s3RJmlRbyva8INlhFel8J6c2Iz1vBr3OiBeQfxy4IOFTddd8/5rGtsJgerRty6faXYNMiqN8KTvnfoKNJkiTVLMf8LPp57luwseIN7aKj8h0BeH7iUrbuLKqudDWKhbx0AJ4vHY2/oHdrGqwcD9vWQFpT6Dw02GAVSUyFo64H4Oxtr5EUH2Hqkk1MW7Ip4GB1z7iv1vOPz9YQF4JHBu0ibsrj0Qtn/RFSGwWaTZIkqcbJ7AmdToVIGD5+eJ+3ndqtJZ2a12NbYTEvlv6cXtdYyEvfYsWmfMZ+sQ6Aqwa1gxkvRi8ceSkkJAeYbD/6/QCSG5K4aQF3d1wKRHewV/UpKCrhrlFzAfjBUZnkTPo5EIn+d3PYqcGGkyRJqqmOvS36efZr0c2BKxAXF+LG0lH5v05cwvbC4moKV3NYyEvf4qUpywhHortkdkzNh69GRy/UxGn1ZVIawoAfAnBR/mskxMHHCzYwY/nmgIPVHY9/uJDlm/Jp2SCFnyW/DRu+gnot4LQHgo4mSZJUc7XuGz3aOVICE36/z9vOPDKTDhnpbMkv4qUpy6oxYM1gIS/tx85dJbz2SemRcwPbw+xXIVwMrftB88ODDfdtBlwHiWkkrZ/DzzutBuBR18pXi4W523hyXHRd1yNDSkia+lj0wpm/h7QmASaTJEmKAWWj8jNfhq0rK7wlPi7E9cflAPDMx4vZuaukutLVCBby0n78fdYqtu4sok2TVI7v3Axmjoxe6H1lsMEORHpT6DMcgCuK3iQuBB/OX8+clVsDDla7RSIRfvnOXIpKIpzauRED59wVXefV/ULockbQ8SRJkmq+doOg3RAIF8HEP+7ztnN7ZdG6cSobtu/i1WnLqzFg8CzkpX2IRCLlm9xdeVR74ldOgY0LITEdup0XbLgDNehGiEskZfUUbjksegTdn1wrf0i9NWMVU5dsIiUxjoea/5vQ+i8hvRmc/lDQ0SRJkmLHsaU72E9/AbatrfCWxPg4risdlX9q/CIKiurOqLyFvLQPU5ds4su120hNjOfivm1gRulofPfzIbl+sOEOVINM6Hk5AD+IvEMoBGPmreOLNXkBB6udNu/Yxf3/+gKA3wwooeGnpVPqz3g4OkNCkiRJB6bDsdC6P5QUwqRH93nbhX1a06phCuvyCnljesXT8GsjC3lpH14oHY0/t1cWDePy4fN3ohd6XxVcqIMx5BYIxZG+/AN+1GkbAI99sDDYTLXUb9//kk07dtGteQoXLL8/uklL13Oh6zlBR5MkSYotodDutfKfPgs7NlR4W3JCPD86JhuAJz9aRFFJuLoSBspCXqrA6i07+c+8rx05N/ctKN4JzbpEd9KMJU2yofsFAFyf8C4A/5q7hgXrtgWZqtaZtmQTr38a3Rjx6Q7jCOV+DmlNYejvAk4mSZIUozqeBJm9oCgfJj+2z9su7d+WjHrJrNqyk3dmrKrGgMGxkJcq8NKUZZSEIwzMbkqXlg12nx3f+8robwdjzZARADRY/C+u7FRIJAKPfeiofFXZVRzmzlFzALi1eyGZcx6PXjj9IajXLMBkkiRJMSwUgmNK18pPexryN1V4W0piPD88pgMAj3+0kOI6MCpvIS99Q0HR146cG9Qe1s6B1TMhLhGOvDTYcAerRVfofAYQ4daUfwLw3uzVLF6/PdhctcQzExbz1brtNE+L44a8R6JHFHY5s3wmhCRJkg5S56HQojvs2g5Tn9znbcMGtKNxWiLLNubz3merqzFgMCzkpW94b/ZqNu3YRVajVE46vPnuTe66nBHbG5Yd/RMAGi98h4tzwoQj8PiHiwIOFftWbMrnT2OjJwE822kSCblzILUxnPFIbM7ekCRJqklCITjmp9HHU56EgoqPUk5PTuB/jo6ulX/sg4WEw5HqShgIC3npa75+5Nz3jmpHQngXfPZ69GLvK4ILVhVa94Hs4yBSws8a/AeAUbNWsXxjfrC5YlgkEuFXf59LQVGYC9vk0W3BE9ELpz0I9VsEG06SJKm2OPwcyOgMhVth2l/2edsVA9vRICWBRet38P7cio+sqy0s5KWvmb5sM5+vziM5IY5L+7WBL/8BBVugYRvIPj7oeN9d6ah8s69e56yceErCEZ4Y51r5g1FcEua2Nz/jw/nrSYkP8xueIBQugsNOgyMvDjqeJElS7REXt3tUfvKfobDi5aENUhK5enB0rfyjHyyo1aPyFvLS15SNxp/TM5PG6Ukw44XohZ7DIC4+uGBVpf3R5edx3tH4AwDenL6SVVt2BhwstuzcVcKPRk7njekriQvB346YTsr62ZDcEM78vVPqJUmSqlq386OnMe3cBJ/+dZ+3fX9we9KT4vly7Tb++8W6agxYvSzkpVLr8goYXToF56pB7WHTElgyHghBr2GBZqsyoVD5qHyrr17mpPaJFJVEePIj18ofqC35u7jir1MZ+2UuyQlxjDy7EUcu+HP04mkPQIPMYANKkiTVRvEJ5T/HMulR2FXx8tBGaUlcOag9AI9+sJBIpHaOylvIS6VenrKM4nCE/u2b0C2zIcx8KXoh53ho1DbYcFXpsFPLd/68u8VEAF7/ZAVrtxYEHKzmW7N1Jxc/NZlPl22mfkoCL13dk8Gf3w0lhdDxZOh5edARJUmSaq8jL4n+XL5j/e6ZsxX4wZAOpCTGMWfVVsZ9tb4aA1YfC3kJKCwu4ZVpy4HS0fiSYpj1SvRi7yuDC3YohEJwdPRc+dZfvcDRbVPYVRLmqfGOyu/PwtxtXPDnSdFj5uon8+YPetJvyo2w8hNIqg9n/cEp9ZIkSYdSfCIMuTX6eOIfoajigaiMeskMG9AOqL2j8hbyEvCvOWvYsH0XLRukcEq3FrBoLGxbDalNomdX1jZdz4UmOYR2buaerGkAvDJ1Oeu3FQabq4aauXwzFz45mdVbC8jOSOftHxxJ5/9+Hxb+FxLT4JKR0LB10DElSZJqv57DoEEWbFsDs17a520/OiabpIQ4pi/bzJQlm6oxYPWwkJeA5yctA+B7R7UlMT4OZrwYvdDjMkhIDjDZIRIXX/7bzOwFz9OvdRqFxWGe+XhxwMFqng/n53L501PZkl9Ej9YNefPqw2n93mWwbEJ0JP57b0eXX0iSJOnQS0iGwTdHH0/4AxTvqvC25g1SoqdQAY9/VPt+xrWQV503c/lmZq/YQlJ8HJf2bwvbc+Gr0dGLsX52/P4ceQk0yCK0fS2/bj8bgJFTlrFpR8X/GNZFb89YyTUvfMrOohKO7pTBK8M60uTNC2DVp5DSCK76O7QbGHRMSZKkuqX3lZDeHLaugM9e2+dtPzo2h8T4EFOXbGZRXjXmqwYW8qrzXig9cu7MHq3IqJcMs1+FcDG07gfNDw823KGUkASDbgKg88K/cmRmOvm7SvjrhNr3G8uD8fT4xYz422yKwxHO6ZnJX89vTfrLZ8PaOZDeDK7+J2T1CTqmJElS3ZOYCoOjP8fy8cPR/a0qkNUolQt6R5c//mdl7Sp9a9e7kSopd1sB/5yzBoDhgzpAJLJ7Wn2vWjwaX6b3lZCWQWjLcn7TcT4AL0xaxtb8ooCDBSccjnD/v77gf//1BQDfH9yB35/SmKQXh8KG+VA/E4a/Dy27B5xUkiSpDuv7fUhrCpuXwtw393nb9cd1JD4uxJLtIXJr0X5QFvKq016duoKikgi92zbiiNYNYfkU2LgQEtOh+/lBxzv0ktJg4PUAHLHkWQ5vkc72wmKenbgk4GDBKCoJ89M3Z/OX8dFZCT8/rQt3DUwk7vkzov+TaNQOvv8+ZHQKNqgkSVJdl5QOA2+IPh7/OwiXVHhb26Zp/OmSI7m7VwnN69eeva8s5FVn7SoO8/LU6CZ3Vw1qH20sG43vfh4k1w8mWHXr9z+Q3JDQ+i/5dZfon8dzE5ewraBujcrn7yrmhy9+ytszVhEfF+KhC4/kusMLCT03FPJWQsZh8P3R0Lh90FElSZIE0O+a6L5FGxfAvFH7vO2Uri1IT6y2VNXCQl511ujP15K7rZBm9ZM5vXsrKNi6+x+A3lcFmq1apTSE/tcA0Gf5s3Rslk5eQTEvTl4WcLDqs3nHLoY9M5UP568nJTGOv1zRh4szN8DzQ2FHLrToDlf/CxpkBh1VkiRJZVIawFHXRR+P/x2Ew8HmqUYW8qqzyja5GzagLUkJcTD3LSjKh2Zdohvd1SVHXQeJaYTWzOLe7rkAPPPxYnYUVrxxSG2yestOLnpqMjOXb6FhaiIv/88ATkxfAi+cDTs3Rze0u+o9qNcs6KiSJEn6pgE/ih4JnDsP5v8z6DTVxkJeddKclVuZvmwzifEhLh/QNtr49U3uQqHgwgUhPQP6XA3AoNXP075pGpvzi3hpSu0elV+wbhsXPDGJhbnbadkghTeuHUifks9g5HlQmAftBsMVoyCtSdBRJUmSVJHUxtFiHmDcQ9HNq+sAC3nVSc+XjsYPPaIVzeunRI8UWz0T4hKhx6XBhgvKwBshLpHQson8qkf0oM2nP17Mzl0VbxwS66Yv28yFT05mzdYCcpql89b1gzhs6yR4+eLozIycE2DYm9EpW5IkSaq5jro+uln12s9gwX+CTlMtLORV52zcXsh7n60G4OryTe5GRj93GRodna6LGmZBz8sBOC53JK0bp7Jh+y5embY84GBV74Mv1zHsmSls3VlEzzaNePPaQWStGg2vXQ4lhdD5DLjsteiu/pIkSarZ0ptCvx9EH9eRUXkLedU5r32ygl3FYXq0bkivto2hqAA+ez16sfeVwYYL2uCbIRRH3MIx3NE7uj7+qXGLKCiqPaPyb05fyTUvTqegKMxxnZvxyjUDaLzgLXjz+xAuhu4XwMUvQELtOZ5EkiSp1hv0Y0hIhVWfwuIPg05zyFnIq04pLgmXr/suP3Luy39AwRZo0Bqyjw8sW43QNAe6nQ/AqZteIrNhCrnbCvnbpysCDvbdRSIRnhy3iJ++MZuScITze2Xx9JV9SZv9PIy6FiJh6PU9OP9piK9l55NIkiTVdvWal+/5xLj/CzRKdbCQV53yn3nrWLO1gIx6SZxxZKtoY/kmd9+DuPjgwtUUR48AIP6Ld7mtX/TP48mPFrGrOHaP8wiHI/zvP7/gt+9/CcAPj8nmdxf1IHHq4/DPn0Rv6v8jOOtR/xuQJEmKVYNvgvgkWD4Jlk4IOs0hZSGvOqVsk7vL+rclOSEeNi2BJeOAEPQaFmi2GqNFN+g8FIhwZt5rNK+fzOqtBbw1Y2XQyQ7KruIwI/42i2cmLAHgjqFduOP0LsSNfwj+c2f0piG3wukPQpz/JEqSJMWsBpnRE6ggula+FvOnVtUZ81bnMW3JJhLiQgwb0C7aOOvl6Oec46FR2+DC1TRHR0epE+a+wU/6pwLw+IcLKSqJrVH5HYXF/M+LnzJq1moS4kI8cnEPfnh0Nvz3bvjo/uhNJ9wJJ91T944clCRJqo2G3AJxCdHBuhXTgk5zyFjIq854oXQ0/tTuLWnZMAXCJTCztJAv+82dolr3hQ7HQriYCwreIaNeEis372TUzFVBJztgm3bs4vJnpjL+q/WkJsbz9FV9Ob9nJvzrZzDxj9GbTn0AjvlZsEElSZJUdRq1hR6XRR/X4lF5C3nVCZt37GLUrGgROrxsk7uFY2HbakhtAl3OCC5cTVU2Kj97JD8e0BCAP3+0iOIYGJVfuTmfC5+cxOwVW2iUlsjL1wzg+E5N4d0b4ZOngRCc+QcYeH3QUSVJklTVjh4BoXhYOAZWzQg6zSFhIa864fVPV1BYHKZbZgP6tGscbZzxQvRzj0s9aqwiHY6B1v2guIDLSt6jcVoiSzbs4B+frQk62X7NX7uNC56YxOL1O8hsmMKb1w6kd1Y9eOsH0aUUoXg47ynoOzzoqJIkSToUmmTDERdFH4//XbBZDhELedV6JeEIIyfvPnIuFArB9lz4anT0BqfVVywUKh+VT5rxHNcPaArAYx8uJByOBJlsnz5ZuomLnpzEurxCOjWvx1vXD6Jj40R4/Qr4/B2IS4SLnoMelwQdVZIkSYfS0T8BQjD/n7Du86DTVDkLedV6//1iHau27KRxWiJn98iMNs5+FcLFkNUXWnQNNmBNdthp0KI77NrGFQn/oUFKAgtzt/P+3LVBJ9vLmHnr+N4zU8krKKZPu8a8ce1AWqWG4dVL4Kv3ISEFLn0Fup4TdFRJkiQdas0Og27nARA/8ZGAw1Q9C3nVemWb3F3avy0pifEQicCMkdGLva8MLlgsCIWiR7MBKZ8+xQ+PagHAox8sqFGj8q9/spwfjfyUwuIwJ3Zpzks/GECjuAJ46QJY/BEkpsOwN+CwU4KOKkmSpOpyzE8BCH3xLvUKYmfT5gNRIwr5xx9/nPbt25OSksKAAQOYNm3fxwQUFRVx3333kZOTQ0pKCj169GD06NF73NO+fXT69Dc/brjhhkP9VlTDzF+7jUmLNhIXgu8dVXrk3PIpsHFBtLjrfn6wAWNBt/Oi64x2buYHqeOol5zAl2u3MeaLdUEnIxKJ8PiHC/n5W3MIR+CiPq156oo+pBZvhRfPhuWTIbkhXDkquuZfkiRJdUeLbtDlTEJEOGzte0GnqVKBF/Kvv/46I0aM4O6772bGjBn06NGDU089ldzc3Arvv/POO3nqqad49NFHmTdvHtdeey3nnXceM2fOLL/nk08+Yc2aNeUfY8aMAeCiiy6qlvekmuOFyUsBOKVrS7IaRc9DZ8aL0c/dz4Pk+sEEiyVx8eWj8qmf/JnvH9UKiI7KRyLBjcqHwxHufW8e//fv+QBcd1wOD114JAk7N8DzZ8LqmZDWFK5+D9r0DyynJEmSAlR61HDW5imwreYtDz1YgRfyjzzyCNdccw3Dhw+na9euPPnkk6SlpfHss89WeP/IkSO54447GDp0KNnZ2Vx33XUMHTqUhx9+uPyeZs2a0bJly/KPf/zjH+Tk5HDsscdW19tSDbA1v4h3ZkSn0Fw9uH20sWArzBsVfdz7qkByxaQjL4UGWbB9LT9qMJW0pHjmrsrjw/kV/8LtUNtVHObm12fxfOmyibvO7MrPT+tCKG81PHc65H4O9VrC1f+CVj0CyShJkqQaILMnJSf8inFd7oP6LYNOU2USgvzmu3btYvr06dx+++3lbXFxcZx00klMnjy5wucUFhaSkpKyR1tqaioTJkzY5/d46aWXGDFiRHS38n28ZmFhYfnXeXl5QHQaf1FRUaXek6pW2Z//wfTDa9OWsrOohM4t6tG7dX2KioqIm/034ovyiWQcRnGLnmD/HqAQcUfdQPx/7iDtk0e5vO+LPDNpFX/87wKGZDfe598t+G59WJHthcXc8OosJi3aREJciAfP787ZPVpRlLuAhJfPJ7R1OZEGrSke9jY0zraPv6Oq7j9VP/sw9tmHsc3+i332Yewr6nsdeWPG1Pg+rEy+UCTAubGrV68mKyuLSZMmMXDgwPL22267jXHjxjF16tS9nnP55Zcze/ZsRo0aRU5ODmPHjuWcc86hpKRkj2K8zN/+9jcuv/xyli9fTmZmZoU57rnnHu6999692l955RXS0tK+wztUUMIR+M3MeDYWhrgku4RBLaL/mR8z/x4a5y9mbtZlLGp+esApY0t8uJCTPx9BcvE2JmRdy/DFR1MUCXHd4SV0aVQ9/4xsK4KnvohnxY4QSXERftA5TJdGEeoVrGbQwgdJLdrM9uQWTOr4c3YmZVRLJkmSJKkq5Ofnc/nll7N161YaNGiw33sDHZE/GH/84x+55ppr6NKlC6FQiJycHIYPH77Pqfh//etfOf300/dZxAPcfvvtjBgxovzrvLw82rRpwymnnPKtf4A6tIqKihgzZgwnn3wyiYmJB/y8D+avZ+OUmTRMTeCXw04kNSke1n1O4szFROIS6XzR3XROt9CrrLjGS+Gj/2Vw4YcMG3A5z09ZySf5Tbn1sn77HJU/2D78phWb8/n+CzNYsSOfxmmJPH1Fb3q0bgjr5pLwyghCRZuJZHQm+fK3OL4WTZsKWlX1n4JjH8Y++zC22X+xzz6MfbHSh2Uzww9EoIV8RkYG8fHxrFu35+7X69ato2XLin8Qb9asGaNGjaKgoICNGzeSmZnJL37xC7Kzs/e6d9myZfz3v//l7bff3m+O5ORkkpOT92pPTEys0R1dl1S2L16augKAS/q1pUF66VKMOa8CEOoylMRGrao8Y51w1I9g8qOENszn5oGLeOWTVD5dtoXpK7YxMKfpfp/6Xf4+zVudx1XPfcL6bYVkNUrlxR/0J6dZPVg5HV46L7r3QcsjCV0xisT0/efQwfHfw9hnH8Y++zC22X+xzz6MfTW9DyuTLdDN7pKSkujTpw9jx44tbwuHw4wdO3aPqfYVSUlJISsri+LiYt566y3OOeecve557rnnaN68OWeccUaVZ1fNtTB3Ox8v2EAoBFeUHTlXVACzX4s+7uXZ8QctpSH0vwaAxtP/xCV9WwPRHewPlSmLN3LJU5NZv62QLi3r8/b1g6JF/NKJ8OI50SK+dX+46j2wiJckSVIdEPiu9SNGjODpp5/mhRde4IsvvuC6665jx44dDB8+HIArr7xyj83wpk6dyttvv83ixYv5+OOPOe200wiHw9x22217vG44HOa5557jqquuIiEh5lYQ6Dt4sfTIuRO7tKBNk9I9Dr78BxRsgQatIef4wLLVCkddDwmpsHomN2evIjE+xKRFG/l06aYq/1aj567lymensa2wmP7tm/D6jwbSokEKLBwLL10Au7ZB+6PhincgtVGVf39JkiSpJgq8kL/kkkv43e9+x69+9St69uzJrFmzGD16NC1atABg+fLlrFmzpvz+goIC7rzzTrp27cp5551HVlYWEyZMoFGjRnu87n//+1+WL1/O97///ep8OwrYtoIi3pq+EoDhZUfOwe6z43sNi56LroOXngF9rgYgY+ZjXNA7Oir/pw8WVum3eWXqcq5/eTq7isOc3LUFL/6gPw1TE+HLf8Krl0LxTuh0Cgx7A5LrVen3liRJkmqyGjFUfeONN3LjjTdWeO2jjz7a4+tjjz2WefPmfetrnnLKKQS4Ib8C8ub0lezYVUKn5vUYVLZme/NSWDIOCEHPYUHGqz0G/Rg+eQaWfswtF27mjekhxn+1nlkrttCzTaPv9NKRSIRHP1jII2O+AuDSfm34zbndSYiPgzlvwts/hEgJHH42XPBXSEiqgjckSZIkxY7AR+SlqhIOR3hx8jIArhzUfvcu6jNfin7OPg4atwsmXG3TMAt6XgZAy9mPc27PLAAeHfvd1sqXhCPc/e7n5UX8j0/oyAPnHxEt4meMhLf+J1rEH3kpXPicRbwkSZLqJAt51RrjF6xnyYYd1E9J4Pxe0cKScAnMfDn6uLeb3FWpwbdAKA4W/Jtbu+8kLgRjv8xl7qqtB/VyhcUl3PTqTF6cvIxQCO45qys/OaVz9BcyU5+Cd28EItD3+3DuExBfIyYUSZIkSdXOQl61xguTlgJwUZ82pCeXFnkLx8K21ZDaBLp4ekGVapoD3c4HoPXnT3JWj0wAHjuItfLbCooY/twn/HPOGhLjQ/zp0l5cPbhD9OLHj8D7pZtZDrwRzngE4vynS5IkSXWXPw2rVliyYQcfzl9PKARXDvza9PmZpZvc9bgUEpKDCVebDbk1+vnzUdzaK45QCEZ/vpYv1+Yd8Eus31bIpX+ZwqRFG0lPiue5q/tHfykQicAHv4Gx90ZvPOY2OOU3ULZkQpIkSaqjLORVK5QdOXfcYc1on5EebdyeC/Pfjz7udUUwwWq7lt3hsNOBCO2/+Aund28JHPio/PKN+Vz45CQ+X51H0/QkXvvhQIZ0yogW8f/+JYz/v+iNJ90DJ/zSIl6SJEnCQl61wI7CYt78NHrkXPl0bIDZr0K4GLL6QouuAaWrA47+SfTzZ69xS780AP45Zw0Lc7fv92mfr97K+U9MYtnGfNo0SeXN6wZxROuGEA7DP26BKY9Hbzz9/3aP/EuSJEmykFfse3vGSrYVFpOdkc7RHTOijZFIdJdzgN6Oxh9SbfpBh2MgXMxhC5/j5K4tiETg8Q/3PSo/adEGLnlqChu2F3J4qwa8de0gOmSkQ0kxjLoWpj8f3UjvnMdhwA+r771IkiRJMcBCXjEtEonwQtmRcwPbERdXOvV6+RTYuAAS06H7BQEmrCOO/mn084wXGHFUIwD+PmsVSzfs2OvWf81Zw9XPfsL2wmIGdGjC6z86iuYNUqB4F7x5NXz2OsQlwAXPQK/vVd97kCRJkmKEhbxi2sSFG1mYu530pHgu6NN694WZpaPx3c6D5PrBhKtLOhwTXcJQXMDhy1/i+M7NCEfgzx/tOSr/0pRl3PDKDHaVhDmtW0te+H5/GqQkQtFOeO1y+OI9iE+Ci0f6CxhJkiRpHyzkFdOeLz1y7sI+ramfkhhtLMiDz9+JPvbs+OoRCu1eKz/tGW4Z0hyAt2esYuXmnUQi8KcPFnLnqLlEInD5gLY8Pqw3KYnxULgdXr4IFo6BhFS4/HXoMjTANyNJkiTVbAlBB5AO1vKN+Yz9ch0AVw5qv/vC3LegKB8yOkOb/sGEq4sOOw2ad4Pcz+mx+g2GdDyGCQs38MS4xaxaGcfEdYsBuPnETtxyUidCoRDs3BIt4ldOg6T6MOxv0G5QsO9DkiRJquEckVfMGjllKZEIHN0pg5xm9XZfmFF6dnzvKzyurDrFxcHRI6KPp/yZW47JAuBv01cxcV30jPlfn9udW08+LFrE79gIL5wVLeJTGsGVf7eIlyRJkg5ApQv59u3bc99997F8+fJDkUc6IPm7inn9kxUADB/cfveFtXNh9QyIS4QjLw0mXF3W7Txokg07N9F3498Z0KEJAPGhCH+8+EiuOKpd9L5ta+H5obD2M0hvBlf/E1r3CTC4JEmSFDsqXcjfcsstvP3222RnZ3PyySfz2muvUVhYeCiySfs0auZq8gqKadc0jeMOa777Qtkmd51Ph3rNgglXl8XFw+Bboo8nPcoD5xzGuT1acX3XEk7v3jLavmU5PHsarP8S6mfC1f+Clt0DiyxJkiTFmoMq5GfNmsW0adM4/PDD+fGPf0yrVq248cYbmTFjxqHIKO0hEonwQukmd1cc9bUj54oKokeXAfS+Kphwgh6XRgv0bWvIXvku/3fhEXRsUHpt4yJ49nTYvAQatYPvvw/NDgs0riRJkhRrDnqNfO/evfnTn/7E6tWrufvuu3nmmWfo168fPXv25NlnnyUSiVRlTqnclMWbmL9uG6mJ8VzUt83uC1/+A3ZuhgatIef44ALWdQnJMPim6OOJf4BwcfTx+i/hudMhbyU07QTD34fG7YNKKUmSJMWsgy7ki4qK+Nvf/sbZZ5/NT37yE/r27cszzzzDBRdcwB133MGwYcOqMqdUrmw0/vzeWTRMTdx9oWxafa9h0SneCk7vKyGtKWxeSmjeKBrmLyVh5NmwfR206A7D/wUNs4JOKUmSJMWkSh8/N2PGDJ577jleffVV4uLiuPLKK/n9739Ply5dyu8577zz6NevX5UGlQBWbs7nP/PWAnDV14+c27wUFn8EhKCnv0QKXFI6HHU9fPBr4j+6n8HbNxAqyYfM3vC9tyCtSdAJJUmSpJhV6UK+X79+nHzyyTzxxBOce+65JCYm7nVPhw4duPRSdwxX1XtpynLCERiU05TDWtTffWHmy9HP2cdB43aBZNM39PsfmPhHQluXkwiE2xxF3LA3IKXBtz5VkiRJ0r5VupBfvHgx7drtv1BKT0/nueeeO+hQUkUKikp47ZPosYdXf300PlwCM1+KPu59RfUHU8VSG0VH5cf9ltz63Wl82d+Is4iXJEmSvrNKr5HPzc1l6tSpe7VPnTqVTz/9tEpCSRV5d9ZqtuQX0bpxKice3mL3hYVjYdtqSG0MXc4MLqD2duxtFF89mik5P4HEtKDTSJIkSbVCpQv5G264gRUrVuzVvmrVKm644YYqCSV9UyQS4fmvHTkXX3bkHMDMF6Ofj7w0umO6ao64eCJZfYmE3HxQkiRJqiqVLuTnzZtH796992rv1asX8+bNq5JQ0jdNX76FeWvySEmM45J+XztybnsuzH8/+thp9ZIkSZLqgEoX8snJyaxbt26v9jVr1pCQUOkl99IBGTklujb+3J5ZNEpL2n1h9mvRc8qz+kCLbgGlkyRJkqTqU+lC/pRTTuH2229n69at5W1btmzhjjvu4OSTT67ScBLAlkL497xc4BtHzkUiMKN0Wn3vK6s/mCRJkiQFoNJD6L/73e845phjaNeuHb169QJg1qxZtGjRgpEjR1Z5QGniujhKwhH6d2jC4a2+tuv5iqmwcUF0E7Vu5wcXUJIkSZKqUaUL+aysLD777DNefvllZs+eTWpqKsOHD+eyyy6r8Ex56bsoLCph0rroxnbDvz4aD7tH47ud79nkkiRJkuqMg1rUnp6ezg9/+MOqziLt5V9z17G9OESrhimc3PVrR84V5MHn70QfO61ekiRJUh1y0LvTzZs3j+XLl7Nr16492s8+++zvHEqC6JFzI6dGN7m7vF9rEuK/tqXD3LegKB8yDoM2/QNKKEmSJEnVr9KF/OLFiznvvPOYM2cOoVCISCQCQCgUnf5cUlJStQlVZ32+Oo85q/JICEW4uG/rPS/OLN2PofeVEArt/WRJkiRJqqUqvWv9zTffTIcOHcjNzSUtLY3PP/+c8ePH07dvXz766KNDEFF11UfzozvVH94oQpP0rx05t+5zWDUd4hLgyEsDSidJkiRJwaj0iPzkyZP54IMPyMjIIC4ujri4OIYMGcIDDzzATTfdxMyZMw9FTtVBExduBKBzo8ieF2aUjsZ3Hgr1mlVzKkmSJEkKVqVH5EtKSqhfvz4AGRkZrF69GoB27doxf/78qk2nOmvnrhKmL9sMQOeGXyvkiwvhs9eij93kTpIkSVIdVOkR+e7duzN79mw6dOjAgAEDeOihh0hKSuIvf/kL2dnZhyKj6qBPlm5iV0mYVg1TaJayffeFL/8BOzdDgyzIOSG4gJIkSZIUkEoX8nfeeSc7duwA4L777uPMM8/k6KOPpmnTprz++utVHlB108SFGwAYlNOEUOhrhXzZ2fE9h0FcfADJJEmSJClYlS7kTz311PLHHTt25Msvv2TTpk00bty4fOd66buaUFbIZzeFVdEj6Ni8FBZ/BISg1/eCiiZJkiRJgarUGvmioiISEhKYO3fuHu1NmjSxiFeV2bRjF5+vzgOiI/LlZr4c/Zx9LDRuF0AySZIkSQpepQr5xMRE2rZt61nxOqQmLYqOxndpWZ+MesnRxnAJzCot5N3kTpIkSVIdVuld63/5y19yxx13sGnTpkORR/ra+viM8rbQ4g8hbxWkNoYuZwYVTZIkSZICV+k18o899hgLFy4kMzOTdu3akZ6evsf1GTNmVFk41U1l6+OHdGpa3hY366XogyMvhYTkIGJJkiRJUo1Q6UL+3HPPPQQxpKjlG/NZsWknCXEh+ndoCkRIKsojtGB09IbeVwSaT5IkSZKCVulC/u677z4UOSQAJpauj+/VthH1khMoKiqizaYJhMLFkNUHWnQLOKEkSZIkBavSa+SlQ6lsWv3gjqXr4yMR2m0cF33cy9F4SZIkSar0iHxcXNx+j5pzR3sdrHA4wqSy9fGlhXxo5TTqF64hkphGqPsFQcaTJEmSpBqh0oX8O++8s8fXRUVFzJw5kxdeeIF77723yoKp7pm3Jo/N+UWkJ8XTo00jAOJKj5yLHH4OoZQGAaaTJEmSpJqh0oX8Oeecs1fbhRdeSLdu3Xj99df5wQ9+UCXBVPeUHTt3VHZTEuPjoCCP0BejAAj3/J7rQCRJkiSJKlwjf9RRRzF27NiqejnVQXutj184hlBRPtuTWxJp3T/AZJIkSZJUc1RJIb9z507+9Kc/kZWVVRUvpzqooKiET5ZuAmBIp9JCftEHAKxt2Av2sy+DJEmSJNUllZ5a37hx4z02u4tEImzbto20tDReeumlKg2numPG8s0UFIVpVj+ZTs3rQSQCC6OFfG79I2gXcD5JkiRJqikqXcj//ve/36OQj4uLo1mzZgwYMIDGjRtXaTjVHZMWbgRgcE7T6H9fuV/CttVEElLYWO+wgNNJkiRJUs1R6UL+6quvPgQxVNfttT5+UXS/hUjbQYTjkoKKJUmSJEk1TqXXyD/33HO88cYbe7W/8cYbvPDCC1USSnXL1p1FfLZyC/D1je5KC/ns44IJJUmSJEk1VKUL+QceeICMjIy92ps3b879999fJaFUt0xZvJFwBLKbpZPZKBWKCmDZRADC2ScEnE6SJEmSapZKF/LLly+nQ4cOe7W3a9eO5cuXV0ko1S1l58cPKRuNXz4JigugfiZkdA4wmSRJkiTVPJUu5Js3b85nn322V/vs2bNp2rRplYRS3bL3+vjobvXknOCxc5IkSZL0DZUu5C+77DJuuukmPvzwQ0pKSigpKeGDDz7g5ptv5tJLLz0UGVWLrd6yk8XrdxAXgqOyS38RVHrsHB2dVi9JkiRJ31TpXet//etfs3TpUk488UQSEqJPD4fDXHnlla6RV6WVTas/snUjGqYmQt4ayP0cCEH28cGGkyRJkqQaqNKFfFJSEq+//jq/+c1vmDVrFqmpqRxxxBG0a9fuUORTLTexfFp96Wj84g+jnzN7QVoTKCoKKJkkSZIk1UyVLuTLdOrUiU6dOlVlFtUxkUiEiYs2AnsfO0fHEwNKJUmSJEk1W6XXyF9wwQU8+OCDe7U/9NBDXHTRRVUSSnXDgtztrN9WSEpiHL3bNoZwePeIfI7r4yVJkiSpIpUu5MePH8/QoUP3aj/99NMZP358lYRS3TBhQXRafb/2TUhJjIe1syF/IyTVh9b9Ak4nSZIkSTVTpQv57du3k5SUtFd7YmIieXl5VRJKdcNe58eXTavvcAzEJwaUSpIkSZJqtkoX8kcccQSvv/76Xu2vvfYaXbt2rZJQqv2KSsJMWfyN9fGLSqfVe+ycJEmSJO1TpTe7u+uuuzj//PNZtGgRJ5wQLbjGjh3LK6+8wptvvlnlAVU7zV6xhR27SmiclkjXVg2gcBusmBK96Pp4SZIkSdqnShfyZ511FqNGjeL+++/nzTffJDU1lR49evDBBx/QpEmTQ5FRtdCE0mn1gzpmEBcXgqUTIFwMjTtAk+yA00mSJElSzXVQx8+dccYZnHHGGQDk5eXx6quv8tOf/pTp06dTUlJSpQFVO+1zfbzHzkmSJEnSflV6jXyZ8ePHc9VVV5GZmcnDDz/MCSecwJQpU6oym2qpHYXFzFy+BYDBOWXr40sLeafVS5IkSdJ+VWpEfu3atTz//PP89a9/JS8vj4svvpjCwkJGjRrlRnc6YNOWbKI4HKFNk1TaNk2DTUtg02KIS4D2RwcdT5IkSZJqtAMekT/rrLPo3Lkzn332GX/4wx9YvXo1jz766KHMplpqwjen1S/6IPq5dX9IaRBQKkmSJEmKDQc8Iv/+++9z0003cd1119GpU6dDmUm1XNn6+MHfLOQ9dk6SJEmSvtUBj8hPmDCBbdu20adPHwYMGMBjjz3Ghg0bDmU21UK52wr4cu02AAblZEBJESwZH72Y40Z3kiRJkvRtDriQP+qoo3j66adZs2YNP/rRj3jttdfIzMwkHA4zZswYtm3bdihzqpaYvGgjAN0yG9AkPQlWfgqFeZDaBFr1CDidJEmSJNV8ld61Pj09ne9///tMmDCBOXPm8JOf/ITf/va3NG/enLPPPvtQZFQtMmHBPtbH5xwPcfEBpZIkSZKk2HHQx88BdO7cmYceeoiVK1fy6quvVlUm1VKRSKSC9fEeOydJkiRJlfGdCvky8fHxnHvuubz77rtV8XKqpZZs2MHqrQUkxcfRr30TyN8Eq2ZEL1rIS5IkSdIBqZJCXjoQE0vXx/du14jUpHhY/BEQgeZdoUFmoNkkSZIkKVZYyKvaTNxrfbzT6iVJkiSpsizkVS1KwhEmLfra+vhIBBZ9GL1oIS9JkiRJB8xCXtVi7qqt5BUUUz8lgSOyGsL6+ZC3ChJSoN2goONJkiRJUswIvJB//PHHad++PSkpKQwYMIBp06bt896ioiLuu+8+cnJySElJoUePHowePXqv+1atWsX3vvc9mjZtSmpqKkcccQSffvrpoXwb+hYTSnerH5jdlIT4uN3HzrUbBImpASaTJEmSpNgSaCH/+uuvM2LECO6++25mzJhBjx49OPXUU8nNza3w/jvvvJOnnnqKRx99lHnz5nHttddy3nnnMXPmzPJ7Nm/ezODBg0lMTOT9999n3rx5PPzwwzRu3Li63pYqUHbs3JBO31wff2JAiSRJkiQpNgVayD/yyCNcc801DB8+nK5du/Lkk0+SlpbGs88+W+H9I0eO5I477mDo0KFkZ2dz3XXXMXToUB5++OHyex588EHatGnDc889R//+/enQoQOnnHIKOTk51fW29A07d5Xw6dLNQOn6+KICWDoxetH18ZIkSZJUKQlBfeNdu3Yxffp0br/99vK2uLg4TjrpJCZPnlzhcwoLC0lJSdmjLTU1lQkTJpR//e6773Lqqady0UUXMW7cOLKysrj++uu55ppr9pmlsLCQwsLC8q/z8vKA6FT+oqKig3p/2m3Koo3sKgnTskEybRomUbxkPAnFO4nUa0lx446wnz/jsj9/+yF22Yexzf6LffZh7LMPY5v9F/vsw9gXK31YmXyhSCQSOYRZ9mn16tVkZWUxadIkBg4cWN5+2223MW7cOKZOnbrXcy6//HJmz57NqFGjyMnJYezYsZxzzjmUlJSUF+Jlhf6IESO46KKL+OSTT7j55pt58sknueqqqyrMcs8993Dvvffu1f7KK6+QlpZWFW+3Tnt3WRxjV8fRv1mYYR3DdF31Kp1y32d5k6OZ2W7fv2CRJEmSpLoiPz+fyy+/nK1bt9KgQYP93hvYiPzB+OMf/8g111xDly5dCIVC5OTkMHz48D2m4ofDYfr27cv9998PQK9evZg7d+5+C/nbb7+dESNGlH+dl5dHmzZtOOWUU771D1Df7uknpgB5XHzMkQztmUnC0w8CkHnMFbTqNnS/zy0qKmLMmDGcfPLJJCYmVkNaVTX7MLbZf7HPPox99mFss/9in30Y+2KlD8tmhh+IwAr5jIwM4uPjWbdu3R7t69ato2XLlhU+p1mzZowaNYqCggI2btxIZmYmv/jFL8jOzi6/p1WrVnTt2nWP5x1++OG89dZb+8ySnJxMcnLyXu2JiYk1uqNjweYdu/h8TfQ/yGM6tyCxYCPkfg6ESOh0Ehzgn699Efvsw9hm/8U++zD22Yexzf6LffZh7KvpfViZbIFtdpeUlESfPn0YO3ZseVs4HGbs2LF7TLWvSEpKCllZWRQXF/PWW29xzjnnlF8bPHgw8+fP3+P+r776inbt2lXtG9ABmbx4I5EIHNaiHs0bpOw+di6zJ6Q3DTSbJEmSJMWiQKfWjxgxgquuuoq+ffvSv39//vCHP7Bjxw6GDx8OwJVXXklWVhYPPPAAAFOnTmXVqlX07NmTVatWcc899xAOh7ntttvKX/PWW29l0KBB3H///Vx88cVMmzaNv/zlL/zlL38J5D3WdWXnxw/uWHbsXGkh77FzkiRJknRQAi3kL7nkEtavX8+vfvUr1q5dS8+ePRk9ejQtWrQAYPny5cTF7Z40UFBQwJ133snixYupV68eQ4cOZeTIkTRq1Kj8nn79+vHOO+9w++23c99999GhQwf+8Ic/MGzYsOp+e+Jr58d3zIBw+GuFvMfOSZIkSdLBCHyzuxtvvJEbb7yxwmsfffTRHl8fe+yxzJs371tf88wzz+TMM8+sinj6DlZsymfZxnzi40IMyG4Kaz+D/I2QVB/a9A86niRJkiTFpMDWyKv2KxuN79WmEfWSE2BR6X4IHY6B+Jq7yYQkSZIk1WQW8jpk9lofv7BsWv3xASWSJEmSpNhnIa9DIhyOMGnRRgCGdMqAwm2wYmr0Ykc3upMkSZKkg2Uhr0Piy7Xb2LRjF2lJ8fRo3QiWToBwETRuD02yg44nSZIkSTHLQl6HRNn6+AEdmpCUEOexc5IkSZJURSzkdUjsvT6+dKM7p9VLkiRJ0ndiIa8qV1hcwrQlm4DS9fGbl8KmRRCXAO2PDjacJEmSJMU4C3lVuZnLt7CzqISMekl0blF/97T61v0hpUGw4SRJkiQpxlnIq8pN/Nq0+lAotHtafc4JAaaSJEmSpNrBQl5Vbo/18SXFsGR89EJHC3lJkiRJ+q4s5FWl8gqKmL1iC1BayK/6FArzILUJtOoZaDZJkiRJqg0s5FWlpizaSDgC2RnpZDVK3T2tPvs4iIsPNJskSZIk1QYW8qpSkxZtBGBQx6bRhrKN7jx2TpIkSZKqhIW8qlTZ+vghHTMgfxOsnhG9kH18gKkkSZIkqfawkFeVWbu1gIW52wmFYGB2BiwZB5EwNDscGmYFHU+SJEmSagULeVWZsmPnjsxqSMO0xN3r451WL0mSJElVxkJeVebr58cTiexeH5/jtHpJkiRJqioW8qoSkUhkz/XxG76CvFUQnwztBgecTpIkSZJqDwt5VYmFudvJ3VZIckIcvds13j2tvt0gSEwNNpwkSZIk1SIW8qoSZaPx/Ts0ISUx3mPnJEmSJOkQsZBXldhjfXxRASydEL2QYyEvSZIkSVXJQl7fWXFJmCmLNwEwOCcDlk+G4p1QvxU0PzzgdJIkSZJUu1jI6zubvXIr2wuLaZSWSNfMBl/brf4ECIWCDSdJkiRJtYyFvL6zsmn1g3KaEh8X2rOQlyRJkiRVKQt5fWcTvr4+fttaWDcXCEG258dLkiRJUlWzkNd3sqOwmJnLNwOl58cv+jB6IbMnpDcNLpgkSZIk1VIW8vpOpi3dRFFJhNaNU2nbJA0WlZ4f77R6SZIkSTokLOT1nUxcEJ1WP6RjBqFIZPeIvMfOSZIkSdIhYSGv72SP9fFrP4P8DZBUD1r3CziZJEmSJNVOFvI6aBu2F/Ll2m1AdMf68t3qOxwDCUkBJpMkSZKk2stCXgdt0qKNAHRt1YCm9ZI9dk6SJEmSqoGFvA5a2fr4wR2bQuF2WD4lesFCXpIkSZIOGQt5HZRIJLLn+vilEyBcBI3bQ9OcYMNJkiRJUi1mIa+DsmxjPqu27CQxPkT/Dk08dk6SJEmSqomFvA5K2Wh877aNSUtK+Nr6eI+dkyRJkqRDyUJeB2Xiwt3nx7N5GWxcCKF46HB0wMkkSZIkqXazkFellYQj5TvWD+6UsXtafZv+kNIwwGSSJEmSVPtZyKvSPl+9la07i6ifnMCRWQ2dVi9JkiRJ1chCXpU2cWF0NP6onKYkEIbF46MX3OhOkiRJkg45C3lV2h7r41dNh8KtkNoYMnsGG0ySJEmS6gALeVVKQVEJ05ZuAmBwx6a718dnHwdx8cEFkyRJkqQ6wkJelTJ92WZ2FYdp0SCZnGb1YGHZ+fGuj5ckSZKk6mAhr0opOz9+cMcMQjs3w+oZ0Quuj5ckSZKkamEhr0rZY338knEQCUOzLtAwK+BkkiRJklQ3WMjrgG3J38WcVVuB6Ii8x85JkiRJUvWzkNcBm7xoI5EIdGpejxb1k2FhWSHvtHpJkiRJqi4W8jpgX18fz4avIG8lxCdDu0EBJ5MkSZKkusNCXgds0qKNQOn6+LJp9e0GQVJagKkkSZIkqW6xkNcBWbk5nyUbdhAfF2JAdpOvHTvntHpJkiRJqk4W8jogkxZGR+N7tG5I/YQwLJ0QvdDRje4kSZIkqTpZyOuATPj6sXPLJ0PxTqjXEpp3DTiZJEmSJNUtFvL6VuFwpPz8+MEdM/acVh8KBZhMkiRJkuoeC3l9q/nrtrFxxy5SE+Pp1bYxLPowesFp9ZIkSZJU7Szk9a3KRuMHZDchaed6WDcHCEH2cYHmkiRJkqS6yEJe32qP9fGLS0fjW/WA9IwAU0mSJElS3WQhr/3aVRxm6uJNQAXr4yVJkiRJ1c5CXvs1a8UWdhaVkFEvic7N02HRB9ELro+XJEmSpEBYyGu/yqbVD8rJIC53LuRvgKR60Lp/wMkkSZIkqW6ykNd+7T52runuafXtj4aEpABTSZIkSVLdZSGvfdpWUMSsFVuA0vXxTquXJEmSpMBZyGufpi7eREk4QvumabROC8PyKdELbnQnSZIkSYGxkNc+TSifVp8BSydAuAgatYMm2QEnkyRJkqS6y0Je+zTx6+fHf31afSgUYCpJkiRJqtss5FWhdXkFLMjdTigEA3OawiLPj5ckSZKkmsBCXhUqG40/IqshjQrXwMaFEIqHDscEnEySJEmS6jYLeVVo4sKNwDd2q2/dD1IaBphKkiRJkmQhr71EIpFvrI8vnVbvsXOSJEmSFDgLee1l0fodrM0rICkhjj5t6sPi8dELORbykiRJkhQ0C3ntpWw0vl/7xqSsmwWFWyG1MWT2DDSXJEmSJMlCXhXY4/z4svXx2cdBXHxwoSRJkiRJgIW8vqG4JMyURdGN7vZYH++xc5IkSZJUI1jIaw+frdrKtsJiGqYm0q1xBFZNj15wfbwkSZIk1QgW8trDxAXRafWDcpoSv3QcRMLQrAs0zAo4mSRJkiQJLOT1DXuuj3davSRJkiTVNBbyKpe/q5iZy7cAMCSnKSz6MHrBafWSJEmSVGNYyKvcJ0s3s6skTFajVNqxCraugPhkaDco6GiSJEmSpFIW8io3sXxafVNCZcfOtRsISWkBppIkSZIkfZ2FvMpNWFDB+fFOq5ckSZKkGsVCXgBs3F7IvDV5AAxqVx+WTohecKM7SZIkSapRLOQFwKRFGwHo0rI+zTbPhKJ8qNcCWnQLOJkkSZIk6etqRCH/+OOP0759e1JSUhgwYADTpk3b571FRUXcd9995OTkkJKSQo8ePRg9evQe99xzzz2EQqE9Prp06XKo30ZMK1sfP+Sbx86FQgGmkiRJkiR9U+CF/Ouvv86IESO4++67mTFjBj169ODUU08lNze3wvvvvPNOnnrqKR599FHmzZvHtddey3nnncfMmTP3uK9bt26sWbOm/GPChAnV8XZiUiQS4eOy9fGdMmCh6+MlSZIkqaYKvJB/5JFHuOaaaxg+fDhdu3blySefJC0tjWeffbbC+0eOHMkdd9zB0KFDyc7O5rrrrmPo0KE8/PDDe9yXkJBAy5Ytyz8yMjKq4+3EpOWb8lm1ZSeJ8SEGZBTBujnRCznHBxtMkiRJkrSXhCC/+a5du5g+fTq33357eVtcXBwnnXQSkydPrvA5hYWFpKSk7NGWmpq614j7ggULyMzMJCUlhYEDB/LAAw/Qtm3bfb5mYWFh+dd5edFN34qKiigqKjqo9xZLxs+Pzn7o2aYRScs+AiDS8kiKkxpCwO+/7M+/LvRDbWUfxjb7L/bZh7HPPoxt9l/ssw9jX6z0YWXyhSKRSOQQZtmv1atXk5WVxaRJkxg4cGB5+2233ca4ceOYOnXqXs+5/PLLmT17NqNGjSInJ4exY8dyzjnnUFJSUl6Mv//++2zfvp3OnTuzZs0a7r33XlatWsXcuXOpX7/+Xq95zz33cO+99+7V/sorr5CWVvvPUH/uqzhmbYxjaJsSbi9+gjabJ/FVi7P4IvOioKNJkiRJUp2Qn5/P5ZdfztatW2nQoMF+7425Qn79+vVcc801vPfee4RCIXJycjjppJN49tln2blzZ4XfZ8uWLbRr145HHnmEH/zgB3tdr2hEvk2bNmzYsOFb/wBjXTgcYcBvP2LLziJe/5++9H9nMKEd6yn+3igi7YYEHY+ioiLGjBnDySefTGJiYtBxdBDsw9hm/8U++zD22Yexzf6LffZh7IuVPszLyyMjI+OACvlAp9ZnZGQQHx/PunXr9mhft24dLVu2rPA5zZo1Y9SoURQUFLBx40YyMzP5xS9+QXZ29j6/T6NGjTjssMNYuHBhhdeTk5NJTk7eqz0xMbFGd3RVmLtqK1t2FlEvOYHeqWsJ7VgPiekktB8MCTXnvdeFvqjt7MPYZv/FPvsw9tmHsc3+i332Yeyr6X1YmWyBbnaXlJREnz59GDt2bHlbOBxm7Nixe4zQVyQlJYWsrCyKi4t56623OOecc/Z57/bt21m0aBGtWrWqsuy1xYTSY+eOym5C4pLS3eo7HA0JSQGmkiRJkiTtS+C71o8YMYKnn36aF154gS+++ILrrruOHTt2MHz4cACuvPLKPTbDmzp1Km+//TaLFy/m448/5rTTTiMcDnPbbbeV3/PTn/6UcePGsXTpUiZNmsR5551HfHw8l112WbW/v5qu7Pz4wR0zYGHZ+fEeOydJkiRJNVWgU+sBLrnkEtavX8+vfvUr1q5dS8+ePRk9ejQtWrQAYPny5cTF7f59Q0FBAXfeeSeLFy+mXr16DB06lJEjR9KoUaPye1auXMlll13Gxo0badasGUOGDGHKlCk0a9asut9ejVZQVMK0JZsAOLpdGoydEr3Q0UJekiRJkmqqwAt5gBtvvJEbb7yxwmsfffTRHl8fe+yxzJs3b7+v99prr1VVtFptxrLNFBaHaV4/mZwdMyFcBI3aQpN97zcgSZIkSQpW4FPrFZyJi6LT6od0zCC0+MNoY86JEAoFmEqSJEmStD8W8nXYhIUbgW+ujz8hwESSJEmSpG9jIV9Hbc0vYs7KLQAc3XwnbFwAoXjIPjbYYJIkSZKk/bKQr6MmL95IOAI5zdJpnjsx2ti6H6Q0DDaYJEmSJGm/LOTrqLJj54Y4rV6SJEmSYoqFfB1VXshnN4Il46KNHjsnSZIkSTWehXwdtGrLThZv2EFcCAalLYeCrZDSCDJ7BR1NkiRJkvQtLOTroLLR+B5tGpG+vHQ0Pvs4iIsPLpQkSZIk6YBYyNdBe6yPX/RBtNFp9ZIkSZIUEyzk65hIJMLE0vPjj2mTCKs+jV5woztJkiRJigkW8nXMV+u2s2F7IamJ8fQsng2RMGR0hoatg44mSZIkSToAFvJ1zITSafX9OzQhccmH0UZH4yVJkiQpZljI1zHl6+Nzmro+XpIkSZJikIV8HVJUEmbK4uj6+OOabYWtKyA+CdoNDjiZJEmSJOlAWcjXIbNWbCF/VwlN0pPI2To12th2ICSlBRtMkiRJknTALOTrkAkLotPqB+U0JW5x6fp4p9VLkiRJUkyxkK9DytbHH9OhASz9ONroRneSJEmSFFMs5OuI7YXFzFqxBYDj0hZDUT7UawEtugcbTJIkSZJUKRbydcS0JRspDkdo1zSN5rkTo405J0AoFGwwSZIkSVKlWMjXERMWRHerH9wxAxaNjTY6rV6SJEmSYo6FfB1Rtj7+hNbA2jnRxuzjgwskSZIkSTooFvJ1QO62Auav20YoBAMjn0UbWx4J9ZoFG0ySJEmSVGkW8nXApIXRafXdMhuQvnJctNFj5yRJkiQpJlnI1wETSqfVD85pAotKz4/PsZCXJEmSpFhkIV/LRSKR8vXxpzbdADtyITEd2gwIOJkkSZIk6WBYyNdyizfsYM3WApIS4jiicEa0scPRkJAUbDBJkiRJ0kGxkK/lykbj+7ZrTOKSD6KNHjsnSZIkSTHLQr6WKyvkj+2QDsunRBtdHy9JkiRJMctCvhYrCUeYtCi6Y/3JaQugZBc0agtNcwJOJkmSJEk6WBbytdicVVvZVlBMg5QE2m8pG40/AUKhYINJkiRJkg6ahXwtVjatflBOBnGLPXZOkiRJkmoDC/labMKCaCF/ctYu2PAVhOKhwzEBp5IkSZIkfRcW8rXUzl0lTF+2GYBj4j6LNrbuC6mNggslSZIkSfrOLORrqU+WbmJXSZjMhilk5E6MNjqtXpIkSZJinoV8LVW2Pv7onEaEFn8UbfT8eEmSJEmKeRbytdSE0kL+jIx1ULAVUhpCVu+AU0mSJEmSvisL+Vpo045dzFuTB0CfohnRxuzjIC4+uFCSJEmSpCphIV8LTV60kUgEurSsT/qKcdFG18dLkiRJUq1gIV8LlU2rP6F9Mqz6NNro+nhJkiRJqhUs5Guhso3uhqbPh0gYMg6DRm0CTiVJkiRJqgoW8rXM8o35LN+UT0JciM47ykbjnVYvSZIkSbWFhXwtM3FRdDS+V5uGJC75MNrotHpJkiRJqjUs5GuZsvXxZ2btgK3LIT4J2g8OOJUkSZIkqapYyNci4XCESaWF/PGJc6ONbQdCUnqAqSRJkiRJVclCvhaZtyaPzflFpCfF03rT5Gij0+olSZIkqVaxkK9FJpWujx/SoT5xSydEGzu60Z0kSZIk1SYW8rXIhIUbATin6Sooyof05tC8W8CpJEmSJElVyUK+ligsLmHakmghf1RkZrQx5wSIs4slSZIkqTaxyqslZizbQkFRmGb1k2m8xmn1kiRJklRbWcjXEhNLd6s/tV2I0NrPoo3ZxweYSJIkSZJ0KFjI1xJl58efVe+raEPLI6FeswATSZIkSZIOBQv5WmDrziI+W7kFgCMKP402euycJEmSJNVKFvK1wJTFGwlHICcjlbTl46ONro+XJEmSpFrJQr4WmFQ6rf78rK2wIxcS06DNgIBTSZIkSZIOBQv5WqBsffxJSXOjDe2PhoTkABNJkiRJkg4VC/kYt2brThat30FcCHLypkUbnVYvSZIkSbWWhXyMm7hwIwD9slJIWDkl2uhGd5IkSZJUa1nIx7iy8+MvzlgGJbugYVto2jHgVJIkSZKkQ8VCPoZFIpHy9fEDmR1tzDkeQqEAU0mSJEmSDiUL+Ri2IHc767cVkpIYR8v1E6ONro+XJEmSpFrNQj6GTVgQHY0/rXUxcRsXQCgOOhwbcCpJkiRJ0qFkIR/DytbHn9dgfrQhqy+kNgoukCRJkiTpkEsIOoAO3u1DuzCkUwZ9Fr8cbXBavSRJkiTVehbyMaxj8/p0zEiDjydEGzx2TpIkSZJqPafWx7pVM6BgK6Q0hMzeQaeRJEmSJB1iFvKxbtEH0c/Zx0G8EywkSZIkqbazkI91i8ZGPzutXpIkSZLqBAv5WLZzC6z8NPrYQl6SJEmS6gQL+Vi2ZDxESqBpJ2jUNug0kiRJkqRqYCEfy8qm1XvsnCRJkiTVGRbysaxxB2jeFXIs5CVJkiSprnCb81g25JboRyQSdBJJkiRJUjVxRL42CIWCTiBJkiRJqiYW8pIkSZIkxRALeUmSJEmSYoiFvCRJkiRJMcRCXpIkSZKkGGIhL0mSJElSDLGQlyRJkiQphtSIQv7xxx+nffv2pKSkMGDAAKZNm7bPe4uKirjvvvvIyckhJSWFHj16MHr06H3e/9vf/pZQKMQtt9xyCJJLkiRJklS9Ai/kX3/9dUaMGMHdd9/NjBkz6NGjB6eeeiq5ubkV3n/nnXfy1FNP8eijjzJv3jyuvfZazjvvPGbOnLnXvZ988glPPfUURx555KF+G5IkSZIkVYvAC/lHHnmEa665huHDh9O1a1eefPJJ0tLSePbZZyu8f+TIkdxxxx0MHTqU7OxsrrvuOoYOHcrDDz+8x33bt29n2LBhPP300zRu3Lg63ookSZIkSYdcQpDffNeuXUyfPp3bb7+9vC0uLo6TTjqJyZMnV/icwsJCUlJS9mhLTU1lwoQJe7TdcMMNnHHGGZx00kn85je/2W+OwsJCCgsLy7/Oy8sDotP4i4qKKvWeVLXK/vzth9hlH8Y2+y/22Yexzz6MbfZf7LMPY1+s9GFl8gVayG/YsIGSkhJatGixR3uLFi348ssvK3zOqaeeyiOPPMIxxxxDTk4OY8eO5e2336akpKT8ntdee40ZM2bwySefHFCOBx54gHvvvXev9v/85z+kpaVV4h3pUBkzZkzQEfQd2Yexzf6LffZh7LMPY5v9F/vsw9hX0/swPz//gO8NtJA/GH/84x+55ppr6NKlC6FQiJycHIYPH14+FX/FihXcfPPNjBkzZq+R+325/fbbGTFiRPnXeXl5tGnThlNOOYUGDRockvehA1NUVMSYMWM4+eSTSUxMDDqODoJ9GNvsv9hnH8Y++zC22X+xzz6MfbHSh2Uzww9EoIV8RkYG8fHxrFu3bo/2devW0bJlywqf06xZM0aNGkVBQQEbN24kMzOTX/ziF2RnZwMwffp0cnNz6d27d/lzSkpKGD9+PI899hiFhYXEx8fv8ZrJyckkJyfv9b0SExNrdEfXJfZF7LMPY5v9F/vsw9hnH8Y2+y/22Yexr6b3YWWyBbrZXVJSEn369GHs2LHlbeFwmLFjxzJw4MD9PjclJYWsrCyKi4t56623OOeccwA48cQTmTNnDrNmzSr/6Nu3L8OGDWPWrFl7FfGSJEmSJMWSwKfWjxgxgquuuoq+ffvSv39//vCHP7Bjxw6GDx8OwJVXXklWVhYPPPAAAFOnTmXVqlX07NmTVatWcc899xAOh7ntttsAqF+/Pt27d9/je6Snp9O0adO92iVJkiRJijWBF/KXXHIJ69ev51e/+hVr166lZ8+ejB49unwDvOXLlxMXt3viQEFBAXfeeSeLFy+mXr16DB06lJEjR9KoUaOA3oEkSZIkSdUn8EIe4MYbb+TGG2+s8NpHH320x9fHHnss8+bNq9Trf/M1JEmSJEmKVTWikK9pIpEIULldA3VoFBUVkZ+fT15eXo3emEL7Zh/GNvsv9tmHsc8+jG32X+yzD2NfrPRhWf1ZVo/uj4V8BbZt2wZAmzZtAk4iSZIkSapLtm3bRsOGDfd7TyhyIOV+HRMOh1m9ejX169cnFAoFHadOy8vLo02bNqxYsYIGDRoEHUcHwT6MbfZf7LMPY599GNvsv9hnH8a+WOnDSCTCtm3byMzM3GOfuIo4Il+BuLg4WrduHXQMfU2DBg1q9F86fTv7MLbZf7HPPox99mFss/9in30Y+2KhD79tJL5MoOfIS5IkSZKkyrGQlyRJkiQphljIq0ZLTk7m7rvvJjk5OegoOkj2YWyz/2KffRj77MPYZv/FPvsw9tXGPnSzO0mSJEmSYogj8pIkSZIkxRALeUmSJEmSYoiFvCRJkiRJMcRCXpIkSZKkGGIhrxrngQceoF+/ftSvX5/mzZtz7rnnMn/+/KBj6Tv47W9/SygU4pZbbgk6iiph1apVfO9736Np06akpqZyxBFH8OmnnwYdSweopKSEu+66iw4dOpCamkpOTg6//vWvcY/bmmn8+PGcddZZZGZmEgqFGDVq1B7XI5EIv/rVr2jVqhWpqamcdNJJLFiwIJiwqtD++rCoqIif//znHHHEEaSnp5OZmcmVV17J6tWrgwusvXzb38Ovu/baawmFQvzhD3+otnz6dgfSh1988QVnn302DRs2JD09nX79+rF8+fLqD/sdWcirxhk3bhw33HADU6ZMYcyYMRQVFXHKKaewY8eOoKPpIHzyySc89dRTHHnkkUFHUSVs3ryZwYMHk5iYyPvvv8+8efN4+OGHady4cdDRdIAefPBBnnjiCR577DG++OILHnzwQR566CEeffTRoKOpAjt27KBHjx48/vjjFV5/6KGH+NOf/sSTTz7J1KlTSU9P59RTT6WgoKCak2pf9teH+fn5zJgxg7vuuosZM2bw9ttvM3/+fM4+++wAkmpfvu3vYZl33nmHKVOmkJmZWU3JdKC+rQ8XLVrEkCFD6NKlCx999BGfffYZd911FykpKdWc9Lvz+DnVeOvXr6d58+aMGzeOY445Jug4qoTt27fTu3dv/vznP/Ob3/yGnj17+pvrGPGLX/yCiRMn8vHHHwcdRQfpzDPPpEWLFvz1r38tb7vgggtITU3lpZdeCjCZvk0oFOKdd97h3HPPBaKj8ZmZmfzkJz/hpz/9KQBbt26lRYsWPP/881x66aUBplVFvtmHFfnkk0/o378/y5Yto23bttUXTgdkX324atUqBgwYwL///W/OOOMMbrnlFmcc1lAV9eGll15KYmIiI0eODC5YFXFEXjXe1q1bAWjSpEnASVRZN9xwA2eccQYnnXRS0FFUSe+++y59+/bloosuonnz5vTq1Yunn3466FiqhEGDBjF27Fi++uorAGbPns2ECRM4/fTTA06mylqyZAlr167d49/Shg0bMmDAACZPnhxgMn0XW7duJRQK0ahRo6Cj6ACFw2GuuOIKfvazn9GtW7eg46iSwuEw//znPznssMM49dRTad68OQMGDNjvEoqazEJeNVo4HOaWW25h8ODBdO/ePeg4qoTXXnuNGTNm8MADDwQdRQdh8eLFPPHEE3Tq1Il///vfXHfdddx000288MILQUfTAfrFL37BpZdeSpcuXUhMTKRXr17ccsstDBs2LOhoqqS1a9cC0KJFiz3aW7RoUX5NsaWgoICf//znXHbZZTRo0CDoODpADz74IAkJCdx0001BR9FByM3NZfv27fz2t7/ltNNO4z//+Q/nnXce559/PuPGjQs6XqUlBB1A2p8bbriBuXPnMmHChKCjqBJWrFjBzTffzJgxY2JyzZGiv0Tr27cv999/PwC9evVi7ty5PPnkk1x11VUBp9OB+Nvf/sbLL7/MK6+8Qrdu3Zg1axa33HILmZmZ9qEUoKKiIi6++GIikQhPPPFE0HF0gKZPn84f//hHZsyYQSgUCjqODkI4HAbgnHPO4dZbbwWgZ8+eTJo0iSeffJJjjz02yHiV5oi8aqwbb7yRf/zjH3z44Ye0bt066DiqhOnTp5Obm0vv3r1JSEggISGBcePG8ac//YmEhARKSkqCjqhv0apVK7p27bpH2+GHHx6Tu7rWVT/72c/KR+WPOOIIrrjiCm699VZnycSgli1bArBu3bo92tetW1d+TbGhrIhftmwZY8aMcTQ+hnz88cfk5ubStm3b8p9tli1bxk9+8hPat28fdDwdgIyMDBISEmrNzzeOyKvGiUQi/PjHP+add97ho48+okOHDkFHUiWdeOKJzJkzZ4+24cOH06VLF37+858THx8fUDIdqMGDB+917ONXX31Fu3btAkqkysrPzycubs/f18fHx5ePSCh2dOjQgZYtWzJ27Fh69uwJQF5eHlOnTuW6664LNpwOWFkRv2DBAj788EOaNm0adCRVwhVXXLHXnj+nnnoqV1xxBcOHDw8olSojKSmJfv361ZqfbyzkVePccMMNvPLKK/z973+nfv365ev/GjZsSGpqasDpdCDq16+/154G6enpNG3a1L0OYsStt97KoEGDuP/++7n44ouZNm0af/nLX/jLX/4SdDQdoLPOOov//d//pW3btnTr1o2ZM2fyyCOP8P3vfz/oaKrA9u3bWbhwYfnXS5YsYdasWTRp0oS2bdtyyy238Jvf/IZOnTrRoUMH7rrrLjIzM/e7K7qq1/76sFWrVlx44YXMmDGDf/zjH5SUlJT/fNOkSROSkpKCiq2v+ba/h9/85UtiYiItW7akc+fO1R1V+/Btffizn/2MSy65hGOOOYbjjz+e0aNH89577/HRRx8FF/pgRaQaBqjw47nnngs6mr6DY489NnLzzTcHHUOV8N5770W6d+8eSU5OjnTp0iXyl7/8JehIqoS8vLzIzTffHGnbtm0kJSUlkp2dHfnlL38ZKSwsDDqaKvDhhx9W+P++q666KhKJRCLhcDhy1113RVq0aBFJTk6OnHjiiZH58+cHG1p72F8fLlmyZJ8/33z44YdBR1epb/t7+E3t2rWL/P73v6/WjNq/A+nDv/71r5GOHTtGUlJSIj169IiMGjUquMDfgefIS5IkSZIUQ9zsTpIkSZKkGGIhL0mSJElSDLGQlyRJkiQphljIS5IkSZIUQyzkJUmSJEmKIRbykiRJkiTFEAt5SZIkSZJiiIW8JEmSJEkxxEJekiQFLhQKMWrUqKBjSJIUEyzkJUmq466++mpCodBeH6eddlrQ0SRJUgUSgg4gSZKCd9ppp/Hcc8/t0ZacnBxQGkmStD+OyEuSJJKTk2nZsuUeH40bNwai096feOIJTj/9dFJTU8nOzubNN9/c4/lz5szhhBNOIDU1laZNm/LDH/6Q7du373HPs88+S7du3UhOTqZVq1bceOONe1zfsGED5513HmlpaXTq1Il333330L5pSZJilIW8JEn6VnfddRcXXHABs2fPZtiwYVx66aV88cUXAOzYsYNTTz2Vxo0b88knn/DGG2/w3//+d49C/YknnuCGG27ghz/8IXPmzOHdd9+lY8eOe3yPe++9l4svvpjPPvuMoUOHMmzYMDZt2lSt71OSpFgQikQikaBDSJKk4Fx99dW89NJLpKSk7NF+xx13cMcddxAKhbj22mt54oknyq8dddRR9O7dmz//+c88/fTT/PznP2fFihWkp6cD8K9//YuzzjqL1atX06JFC7Kyshg+fDi/+c1vKswQCoW48847+fWvfw1EfzlQr1493n//fdfqS5L0Da6RlyRJHH/88XsU6gBNmjQpfzxw4MA9rg0cOJBZs2YB8MUXX9CjR4/yIh5g8ODBhMNh5s+fTygUYvXq1Zx44on7zXDkkUeWP05PT6dBgwbk5uYe7FuSJKnWspCXJEmkp6fvNdW9qqSmph7QfYmJiXt8HQqFCIfDhyKSJEkxzTXykiTpW02ZMmWvrw8//HAADj/8cGbPns2OHTvKr0+cOJG4uDg6d+5M/fr1ad++PWPHjq3WzJIk1VaOyEuSJAoLC1m7du0ebQkJCWRkZADwxhtv0LdvX4YMGcLLL7/MtGnT+Otf/wrAsGHDuPvuu7nqqqu45557WL9+PT/+8Y+54ooraNGiBQD33HMP1157Lc2bN+f0009n27ZtTJw4kR//+MfV+0YlSaoFLOQlSRKjR4+mVatWe7R17tyZL7/8EojuKP/aa69x/fXX06pVK1599VW6du0KQFpaGv/+97+5+eab6devH2lpaVxwwQU88sgj5a911VVXUVBQwO9//3t++tOfkpGRwYUXXlh9b1CSpFrEXeslSdJ+hUIh3nnnHc4999ygo0iSJFwjL0mSJElSTLGQlyRJkiQphrhGXpIk7Zer8CRJqlkckZckSZIkKYZYyEuSJEmSFEMs5CVJkiRJiiEW8pIkSZIkxRALeUmSJEmSYoiFvCRJkiRJMcRCXpIkSZKkGGIhL0mSJElSDPl/r2pbfRB5dJcAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "# Plot Training vs Validation score\n", "epochs = range(1, len(train_accuracies) + 1)\n", "plt.figure(figsize=(12, 6))\n", "plt.plot(epochs, train_accuracies, label='Training Accuracy')\n", "plt.plot(epochs, val_accuracies, label='Validation Accuracy')\n", "plt.xlabel('Epoch')\n", "plt.ylabel('Accuracy')\n", "plt.title('Training vs. Validation Accuracy for DeepGBM')\n", "plt.legend()\n", "plt.grid(True)\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Plot Testing vs. Validation Learning Curve" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/IAAAIjCAYAAACgdyAGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9VUlEQVR4nOzdd1QUZxfA4d+y9K4CIog0QRSxl9hAY8feW2IviTHNGKMpliSmfYlpJiYxiSbG3kuMNfbesFcUkKJgoXd2vj+QjUgRFFjKfc7hHHf23Zm7Mzvj3HmbSlEUBSGEEEIIIYQQQpQJeroOQAghhBBCCCGEEAUnibwQQgghhBBCCFGGSCIvhBBCCCGEEEKUIZLICyGEEEIIIYQQZYgk8kIIIYQQQgghRBkiibwQQgghhBBCCFGGSCIvhBBCCCGEEEKUIZLICyGEEEIIIYQQZYgk8kIIIYQQQgghRBkiibwQQhSDWbNmoVKpdB2GqMCCgoJQqVQsWrRIu6wwv0uVSsWsWbOKNKa2bdvStm3bIl2nKDl37tyhf//+VKlSBZVKxTfffKPrkIQQosKSRF4IUa6oVKoC/e3Zs+eZt5WYmMisWbOKZF3FZeDAgahUKt555x1dhyLy0bNnT0xNTYmLi8uzzLBhwzA0NOTevXslGFnhXbx4kVmzZhEUFKTrUHK1ZcsWVCoVDg4OaDQaXYdTprz55pts27aN6dOns3jxYrp06VKs23v0mq2vr0/lypVp3Lgxr7/+OhcvXizWbT+t2NhY5syZQ5MmTbCyssLIyAhnZ2cGDRrE33//na3snj17cvzfVLlyZZ577jmWLFmSY90uLi6oVCo6dOiQ67YXLFigXc+JEyeK5fsJIUoPfV0HIIQQRWnx4sXZXv/555/s2LEjx/LatWs/87YSExOZPXs2QI5axvfff59p06Y98zaeRWxsLJs2bcLFxYVly5bx2WefSSuBUmrYsGFs2rSJdevWMXz48BzvJyYmsmHDBrp06UKVKlWeejsl8bu8ePEis2fPpm3btri4uGR7b/v27cW67YJYsmQJLi4uBAUF8e+//+aZFImc/v33X3r16sWUKVNKbJsdO3Zk+PDhKIpCTEwMZ86c4Y8//uDHH3/k888/Z/LkySUWy5Ncv36dzp07ExwcTJ8+fRg+fDjm5ubcunWLLVu20L17d/78809efPHFbJ977bXXaNq0KQD37t1jxYoVvPDCC0RHR/PKK69kK2tsbMzu3bu5ffs29vb22d5bsmQJxsbGJCcnF+8XFUKUCpLICyHKlRdeeCHb6yNHjrBjx44cy4ubvr4++vq6vcSuWbOGjIwMfv/9d55//nn27duHn5+fTmPKjaIoJCcnY2JioutQdKZnz55YWFiwdOnSXBP5DRs2kJCQwLBhw55pO7r+XRoaGups2wAJCQls2LCBTz/9lIULF7JkyZJSm8gnJCRgZmam6zCyiYyMxNrausjWl5ycjKGhIXp6eTcQ9fT0zHH9/uyzz+jRowdvvfUWXl5e+Pv7F1lMTys9PZ0+ffpw584d9u7dS6tWrbK9P3PmTLZv305GRkaOz7Zp04b+/ftrX7/88su4ubmxdOnSHIl8q1atOH78OCtWrOD111/XLg8NDWX//v306dOHNWvWFPG3E0KURtK0XghR4Wg0Gr755hu8vb0xNjamatWqTJgwgQcPHmQrd+LECTp37oyNjQ0mJia4uroyevRoILP/sa2tLQCzZ8/WNmfM6lOcW19klUrFpEmTWL9+PXXr1sXIyAhvb2+2bt2aI8Y9e/bQpEkTjI2NcXd35+effy50v/slS5bQsWNH2rVrR+3atXNtqglw+fJlBg4ciK2tLSYmJtSqVYv33nsvW5mwsDDGjBmDg4MDRkZGuLq68vLLL5Oamprn9wVYtGgRKpUqWzNrFxcXunfvzrZt22jSpAkmJib8/PPPACxcuJDnn38eOzs7jIyMqFOnDvPnz8817n/++Qc/Pz8sLCywtLSkadOmLF26FMi8aTYwMCAqKirH58aPH4+1tXWetVZffvklKpWK4ODgHO9Nnz4dQ0ND7W/l2rVr9OvXD3t7e4yNjalevTqDBw8mJiYm13XnxcTEhL59+7Jr1y4iIyNzvL906VIsLCzo2bMn9+/fZ8qUKfj4+GBubo6lpSVdu3blzJkzT9xObscpJSWFN998E1tbW+02QkNDc3w2ODiYiRMnUqtWLUxMTKhSpQoDBgzIdmwXLVrEgAEDAGjXrl2Oriy59ZGPjIxkzJgxVK1aFWNjY+rXr88ff/yRrUxWf/8vv/ySX375BXd3d4yMjGjatCnHjx9/4vfOsm7dOpKSkhgwYACDBw9m7dq1uf4OkpOTmTVrFp6enhgbG1OtWjX69u1LYGCgtoxGo+Hbb7/Fx8cHY2NjbG1t6dKli7ZJc25jFGR5fPyBrONy8eJFhg4dSqVKlWjdujUAZ8+eZeTIkbi5uWFsbIy9vT2jR4/OtYtFfufpjRs3UKlUfP311zk+d+jQIVQqFcuWLct1v2Wdx4qi8MMPP2iPa5YbN24wYMAAKleujKmpKc8991yezciXL1/O+++/j6OjI6ampsTGxua6zfxUqVKF5cuXo6+vz5w5c7K9l5KSwsyZM6lZsyZGRkY4OTkxdepUUlJScqznr7/+onHjxpiYmFC5cmUGDx7MrVu3spVp27YtdevW5eTJk7Rs2VL7f8FPP/2UrdyqVas4f/48H3zwQY4kPkunTp3o2rXrE7+foaEhlSpVyvWhm7GxMX379tVe67IsW7aMSpUq0blz5yeuXwhRPkiNvBCiwpkwYQKLFi1i1KhRvPbaa9y8eZN58+Zx+vRpDh48iIGBAZGRkXTq1AlbW1umTZuGtbU1QUFBrF27FgBbW1vmz5/Pyy+/TJ8+fejbty8A9erVy3fbBw4cYO3atUycOBELCwu+++47+vXrR0hIiLbJ9OnTp+nSpQvVqlVj9uzZZGRk8OGHH2ofHBREeHg4u3fv1iZEQ4YM4euvv2bevHnZakXPnj1LmzZtMDAwYPz48bi4uBAYGMimTZu0N8jh4eE0a9aM6Ohoxo8fj5eXF2FhYaxevZrExMSnqmW9cuUKQ4YMYcKECYwbN45atWoBMH/+fLy9venZsyf6+vps2rSJiRMnotFostVMLVq0iNGjR+Pt7c306dOxtrbm9OnTbN26laFDh/Liiy/y4YcfsmLFCiZNmqT9XGpqKqtXr6Zfv34YGxvnGtvAgQOZOnUqK1eu5O2338723sqVK+nUqROVKlUiNTWVzp07k5KSwquvvoq9vT1hYWFs3ryZ6OhorKysCrVPhg0bxh9//MHKlSuzxXz//n22bdvGkCFDMDEx4cKFC6xfv54BAwbg6urKnTt3+Pnnn/Hz8+PixYs4ODgUartjx47lr7/+YujQobRs2ZJ///2Xbt265Sh3/PhxDh06xODBg6levTpBQUHMnz+ftm3bcvHiRUxNTfH19eW1117ju+++491339V2YcmrK0tSUhJt27bl+vXrTJo0CVdXV1atWsXIkSOJjo7OVuMImQ804uLimDBhAiqVii+++IK+ffty48YNDAwMnvhdlyxZQrt27bC3t2fw4MFMmzaNTZs2aR8+AGRkZNC9e3d27drF4MGDef3114mLi2PHjh2cP38ed3d3AMaMGcOiRYvo2rUrY8eOJT09nf3793PkyBGaNGlS4P3/qAEDBuDh4cEnn3yCoigA7Nixgxs3bjBq1Cjs7e25cOECv/zyCxcuXODIkSPahPpJ56mbmxutWrViyZIlvPnmmzn2i4WFBb169co1Ll9fXxYvXsyLL76obeqe5c6dO7Rs2ZLExERee+01qlSpwh9//EHPnj1ZvXo1ffr0ybaujz76CENDQ6ZMmUJKSspTt9KoUaMGfn5+7N69m9jYWCwtLdFoNPTs2ZMDBw4wfvx4ateuzblz5/j666+5evUq69ev135+zpw5fPDBBwwcOJCxY8cSFRXF999/j6+vL6dPn87W8uDBgwf4+/szcOBAhgwZwsqVK3n55ZcxNDTUPtzdtGkTkLNVWEHExcVx9+5dIPN8X7p0KefPn+e3337LtfzQoUPp1KkTgYGB2t/j0qVL6d+/f4HOAyFEOaEIIUQ59sorryiPXur279+vAMqSJUuyldu6dWu25evWrVMA5fjx43muOyoqSgGUmTNn5nhv5syZyuOXWEAxNDRUrl+/rl125swZBVC+//577bIePXoopqamSlhYmHbZtWvXFH19/RzrzMuXX36pmJiYKLGxsYqiKMrVq1cVQFm3bl22cr6+voqFhYUSHBycbblGo9H+e/jw4Yqenl6u+yKrXG7fV1EUZeHChQqg3Lx5U7vM2dlZAZStW7fmKJ+YmJhjWefOnRU3Nzft6+joaMXCwkJp3ry5kpSUlGfcLVq0UJo3b57t/bVr1yqAsnv37hzbeVSLFi2Uxo0bZ1t27NgxBVD+/PNPRVEU5fTp0wqgrFq1Kt91FVR6erpSrVo1pUWLFtmW//TTTwqgbNu2TVEURUlOTlYyMjKylbl586ZiZGSkfPjhh9mWAcrChQu1yx4/TgEBAQqgTJw4Mdv6hg4dmuO3nduxOXz4cLZ9oiiKsmrVqjz3sZ+fn+Ln56d9/c033yiA8tdff2mXpaamKi1atFDMzc21v9+s71KlShXl/v372rIbNmxQAGXTpk05tvW4O3fuKPr6+sqCBQu0y1q2bKn06tUrW7nff/9dAZS5c+fmWEfW7+vff/9VAOW1117Ls0xu+z/L4/s267gMGTIkR9nc9vuyZcsUQNm3b592WUHO059//lkBlEuXLmnfS01NVWxsbJQRI0bk+Fxucb/yyivZlr3xxhsKoOzfv1+7LC4uTnF1dVVcXFy0v9Xdu3crgOLm5pbrdyro9h71+uuvK4By5swZRVEUZfHixYqenl62WBTlv3Po4MGDiqIoSlBQkKJWq5U5c+ZkK3fu3DlFX18/23I/Pz8FUL766ivtspSUFKVBgwaKnZ2dkpqaqiiKojRs2FCxtrbOEWN8fLwSFRWl/YuJidG+l7VPHv/T09PLEZuiZF47u3XrpqSnpyv29vbKRx99pCiKoly8eFEBlL1792qvufn93yWEKB+kab0QokJZtWoVVlZWdOzYkbt372r/GjdujLm5Obt37wbQ1sZs3ryZtLS0Itt+hw4dtDUokFmDb2lpyY0bN4DM2sCdO3fSu3fvbDWrNWvWLFCTzCxLliyhW7duWFhYAODh4UHjxo2zNa+Piopi3759jB49mho1amT7fFYtn0ajYf369fTo0SPXWsanHTzP1dU11yagj/aTj4mJ4e7du/j5+XHjxg1tc/UdO3YQFxfHtGnTctSqPxrP8OHDOXr0aLbm0EuWLMHJyemJYwUMGjSIkydPZvvsihUrMDIy0tZaZtW4b9u2jcTExIJ+9Typ1WoGDx7M4cOHszVXX7p0KVWrVqV9+/YAGBkZafsUZ2RkcO/ePczNzalVqxanTp0q1Da3bNkCZA629ag33ngjR9lHj01aWhr37t2jZs2aWFtbF3q7j27f3t6eIUOGaJcZGBjw2muvER8fz969e7OVHzRoEJUqVdK+btOmDYD2/MnP8uXL0dPTo1+/ftplQ4YM4Z9//snWrWbNmjXY2Njw6quv5lhH1u9rzZo1qFQqZs6cmWeZp/HSSy/lWPbofk9OTubu3bs899xzANr9XtDzdODAgRgbG2e7Dmzbto27d+8+9TgiW7ZsoVmzZtquAADm5uaMHz+eoKCgHKPLjxgxosjGwzA3NwfQzvawatUqateujZeXV7br+/PPPw+gvb6vXbsWjUbDwIEDs5Wzt7fHw8NDWy6Lvr4+EyZM0L42NDRkwoQJREZGcvLkSSBzcNGseB713nvvYWtrq/0bOnRojjIzZsxgx44d7NixgxUrVjBkyBDee+89vv3221y/t1qtZuDAgdquEFnXtazzQQhRMUgiL4SoUK5du0ZMTAx2dnbZbq5sbW2Jj4/X9k/28/OjX79+zJ49GxsbG3r16sXChQtz7WdZGI8nzACVKlXSJhKRkZEkJSVRs2bNHOVyW5abS5cucfr0aVq1asX169e1f23btmXz5s3aPqlZyU/dunXzXFdUVBSxsbH5lnkarq6uuS4/ePAgHTp0wMzMDGtra2xtbXn33XcBtIl8VnL9pJgGDRqEkZGRNmmJiYlh8+bNDBs27InJ1oABA9DT02PFihVA5oB8q1atomvXrlhaWmq/w+TJk/n111+xsbGhc+fO/PDDD4XuH/+orMHssvq/Zg1gNXjwYNRqNZCZtH399dd4eHhgZGSEjY0Ntra2nD17ttDbDg4ORk9PL9vDJUDb1eFRSUlJzJgxAycnp2zbjY6OfurvHBwcjIeHR47BzrKa4j8+TsHj509WUv/4+Ba5+euvv2jWrBn37t3TnhMNGzYkNTWVVatWacsFBgZSq1atfAcFDAwMxMHBgcqVKz9xu4WR23lx//59Xn/9dapWrYqJiQm2trbacln7vaDnqbW1NT169MjWv3rJkiU4Ojpqk93CCg4OzvX3ktcxzOvcfxrx8fEA2geW165d48KFCzmu7Z6engDa6/u1a9dQFAUPD48cZS9dupRjnAoHB4ccAw9mrTProZuFhYU2nkdNnDhRm6RXrVo11+/h4+NDhw4d6NChAwMHDuSvv/6ie/fuTJs2LddxPiCzef3Fixc5c+YMS5cuZfDgwTIriRAVjPSRF0JUKBqNBjs7uzwHfsvqh65SqVi9ejVHjhxh06ZNbNu2jdGjR/PVV19x5MiRXGteCiIrGXuc8rA/bFH466+/gMw5nx/vCwuZtYmjRo0qsu1B3rWQuY3QDORaIxcYGEj79u3x8vJi7ty5ODk5YWhoyJYtW/j6668LPed3pUqV6N69O0uWLGHGjBmsXr2alJSUAtU8Ojg40KZNG1auXMm7777LkSNHCAkJ4fPPP89W7quvvmLkyJFs2LCB7du389prr/Hpp59y5MgRqlevXqh4ARo3boyXlxfLli3j3XffZdmyZSiKkm20+k8++YQPPviA0aNH89FHH1G5cmX09PR44403inVe9FdffZWFCxfyxhtv0KJFC6ysrFCpVAwePLjE5mN/2vPn2rVr2kHxPDw8cry/ZMkSxo8f/+wBPqKw5wTkfl4MHDiQQ4cO8fbbb9OgQQPMzc3RaDR06dLlqfb78OHDWbVqFYcOHcLHx4eNGzcyceLEfEeOL0pFOTvF+fPnUavV2ocDGo0GHx8f5s6dm2t5JycnbTmVSsU///yT62/qaa7vXl5eBAQEEBYWhqOjo3a5p6enNunPa1yO3LRv357Nmzdz7NixXMesaN68Oe7u7rzxxhvcvHkz15p+IUT5Jom8EKJCcXd3Z+fOnbRq1apAN5TPPfcczz33HHPmzGHp0qUMGzaM5cuXM3bs2GKp/bCzs8PY2Jjr16/neC+3ZY9TFIWlS5fSrl07Jk6cmOP9jz76iCVLljBq1Cjc3NyAzJvhvNja2mJpaZlvGfivZjQ6OjrbIFG5jfyel02bNpGSksLGjRuz1bw+3sw1q/b4/PnzT2ylMHz4cHr16sXx48dZsmQJDRs2xNvbu0DxDBo0iIkTJ3LlyhVWrFiBqakpPXr0yFHOx8cHHx8f3n//fQ4dOkSrVq346aef+Pjjjwu0nccNGzaMDz74gLNnz7J06VI8PDy0c0wDrF69mnbt2uUYCCs6OhobG5tCbcvZ2RmNRqOthc5y5cqVHGVXr17NiBEj+Oqrr7TLkpOTiY6OzlauMOeFs7MzZ8+eRaPRZEskL1++rH2/KCxZsgQDAwMWL16cI3E7cOAA3333HSEhIdSoUQN3d3eOHj1KWlpangOHubu7s23bNu7fv59nrfyj58SjCnNOPHjwgF27djF79mxmzJihXX7t2rVs5Qp6ngJ06dIFW1tblixZQvPmzUlMTMwxr3lhODs75/p7Kepj+LiQkBD27t1LixYttDXy7u7unDlzhvbt2+f7O3R3d0dRFFxdXbVJdn7Cw8NzTAd49epVIHMWDoDu3buzfPlylixZwtSpU5/hm2VKT08HyLWWP8uQIUP4+OOPqV27Ng0aNHjmbQohyhZpWi+EqFAGDhxIRkYGH330UY730tPTtTfdDx48yFHLl3WjlNW83tTUFMh5o/4s1Go1HTp0YP369YSHh2uXX79+nX/++eeJnz948CBBQUGMGjWK/v375/gbNGgQu3fvJjw8HFtbW3x9ffn9998JCQnJtp6s766np0fv3r3ZtGmTdlqt3MplJdf79u3TvpeQkJBjGrEnffdH1wmZTYcXLlyYrVynTp2wsLDg008/zTF12OPHrGvXrtjY2PD555+zd+/eQvUD7tevH2q1mmXLlrFq1Sq6d++e7UY+NjZWe7OdxcfHBz09vWxdMEJCQrRJTUFk1b7PmDGDgICAHHPHq9XqHN9z1apVhIWFFXgbWbLGXfjuu++yLf/mm29ylM1tu99//32OGuasfVSQ88Lf35/bt29ruzBA5nn4/fffY25u/sSxDApqyZIltGnThkGDBuU4J7JmJsjqb9yvXz/u3r3LvHnzcqwn6/v369cPRVGYPXt2nmUsLS2xsbHJdk4A/PjjjwWOO7dzAnIen4Kep5DZ3ztr5PVFixbh4+PzxNk28uPv78+xY8c4fPiwdllCQgK//PILLi4u1KlT56nXnZf79+8zZMgQMjIysk2VOXDgQMLCwliwYEGOzyQlJZGQkABA3759UavVzJ49O8e+VRQlx9R+6enp2ikyIXP2i59//hlbW1saN26s3XadOnX46KOPOHLkSK5xF6bl1ebNmwGoX79+nmXGjh3LzJkzsz1cE0JUHFIjL4SoUPz8/JgwYQKffvopAQEBdOrUCQMDA65du8aqVav49ttv6d+/P3/88Qc//vgjffr0wd3dnbi4OBYsWIClpSX+/v5AZhPROnXqsGLFCjw9PalcuTJ169Z95v7ks2bNYvv27bRq1YqXX36ZjIwM5s2bR926dQkICMj3s0uWLEGtVufaFBOgZ8+evPfeeyxfvpzJkyfz3Xff0bp1axo1asT48eNxdXUlKCiIv//+W7utTz75hO3bt+Pn56ed0ikiIoJVq1Zx4MABrK2t6dSpEzVq1GDMmDG8/fbbqNVqfv/9d2xtbXM8JMhLp06dMDQ0pEePHkyYMIH4+HgWLFiAnZ0dERER2nKWlpZ8/fXXjB07lqZNm2rn3T5z5gyJiYnZHh4YGBgwePBg5s2bh1qtzjao2pPY2dnRrl075s6dS1xcHIMGDcr2/r///sukSZMYMGAAnp6epKena2t8Hx1Qbfjw4ezdu7fAN/Gurq60bNmSDRs2AORI5Lt3786HH37IqFGjaNmyJefOnWPJkiXaFhaF0aBBA4YMGcKPP/5ITEwMLVu2ZNeuXbm2/ujevTuLFy/GysqKOnXqcPjwYXbu3KmdNvHRdarVaj7//HNiYmIwMjLi+eefx87OLsc6x48fz88//8zIkSM5efIkLi4urF69moMHD/LNN99oa1qfxdGjR7XT2+XG0dGRRo0asWTJEt555x2GDx/On3/+yeTJkzl27Bht2rQhISGBnTt3MnHiRHr16kW7du148cUX+e6777h27Zq2mfv+/ftp166ddltjx47ls88+Y+zYsTRp0oR9+/Zpa3ILwtLSEl9fX7744gvS0tJwdHRk+/bt3Lx5M0fZgpynWYYPH853333H7t27c3QXKaxp06axbNkyunbtymuvvUblypX5448/uHnzJmvWrHnmJvtXr17lr7/+QlEUYmNjOXPmDKtWrSI+Pp65c+fSpUsXbdkXX3yRlStX8tJLL7F7925atWpFRkYGly9fZuXKlWzbto0mTZrg7u7Oxx9/zPTp0wkKCqJ3795YWFhw8+ZN1q1bx/jx45kyZYp2vQ4ODnz++ecEBQXh6enJihUrCAgI4JdfftG22jAwMGDdunV07tyZ1q1b07dvX9q0aYOZmRlhYWFs3LiRkJCQXK/N+/fv1z6UvH//Phs3bmTv3r0MHjwYLy+vPPeNs7Mzs2bNeqb9K4Qow0pugHwhhCh5j08/l+WXX35RGjdurJiYmCgWFhaKj4+PMnXqVCU8PFxRFEU5deqUMmTIEKVGjRqKkZGRYmdnp3Tv3l05ceJEtvUcOnRIady4sWJoaJhtSqm8pp/LbSolZ2fnHFM/7dq1S2nYsKFiaGiouLu7K7/++qvy1ltvKcbGxnl+19TUVKVKlSpKmzZt8t0nrq6uSsOGDbWvz58/r/Tp00extrZWjI2NlVq1aikffPBBts8EBwcrw4cPV2xtbRUjIyPFzc1NeeWVV5SUlBRtmZMnTyrNmzdXDA0NlRo1aihz587Nc/q5bt265Rrbxo0blXr16inGxsaKi4uL8vnnn2unA3t0HVllW7ZsqZiYmCiWlpZKs2bNlGXLluVYZ9a0cZ06dcp3v+RmwYIFCqBYWFjkmOruxo0byujRoxV3d3fF2NhYqVy5stKuXTtl586d2cplTV9VGD/88IMCKM2aNcvxXnJysvLWW28p1apVU0xMTJRWrVophw8fzjG1W0Gmn1MURUlKSlJee+01pUqVKoqZmZnSo0cP5datWzmmSHvw4IEyatQoxcbGRjE3N1c6d+6sXL58Odff74IFCxQ3NzdFrVZnm4ru8RgVJXNauKz1GhoaKj4+PjmmbMv6Lv/73/9y7I/H43zcq6++qgBKYGBgnmVmzZqVbRqzxMRE5b333lNcXV0VAwMDxd7eXunfv3+2daSnpyv/+9//FC8vL8XQ0FCxtbVVunbtqpw8eVJbJjExURkzZoxiZWWlWFhYKAMHDlQiIyPznH4uKioqR2yhoaHa89PKykoZMGCAEh4enuv3Lsh5msXb21vR09NTQkND89wvj8vrGhYYGKj0799few1p1qyZsnnz5mxlsqZaK8x0jTw2JZu1tbXSsGFD5fXXX1cuXLiQ62dSU1OVzz//XPH29laMjIyUSpUqKY0bN1Zmz56dbeo3RVGUNWvWKK1bt1bMzMwUMzMzxcvLS3nllVeUK1euaMv4+fkp3t7eyokTJ5QWLVooxsbGirOzszJv3rxctx8dHa18+OGHSsOGDRVzc3PF0NBQcXJyUvr3759jmsTcpp8zNDRUvLy8lDlz5mintsuS37Uzi0w/J0TFoVKUIhxhSQghRLHp3bs3Fy5cyNE/VuTvzJkzNGjQgD///POZ+gILUZ40bNiQypUrs2vXLl2HUqq1bduWu3fvFmj8ASGEKEnSR14IIUqhpKSkbK+vXbvGli1baNu2rW4CKsMWLFiAubk5ffv21XUoQpQKJ06cICAggOHDh+s6FCGEEE9J+sgLIUQp5ObmxsiRI3FzcyM4OJj58+djaGhYJKMhVxSbNm3i4sWL/PLLL0yaNCnHPNBCVDTnz5/n5MmTfPXVV1SrVi3HuA9CCCHKDknkhRCiFOrSpQvLli3j9u3bGBkZ0aJFCz755JNc58AWuXv11Ve5c+cO/v7+uY4uLkRFs3r1aj788ENq1arFsmXLCjWvuRBCiNJF+sgLIYQQQgghhBBliPSRF0IIIYQQQgghyhBJ5IUQQgghhBBCiDJE+sjnQqPREB4ejoWFBSqVStfhCCGEEEIIIYQo5xRFIS4uDgcHB/T08q9zl0Q+F+Hh4Tg5Oek6DCGEEEIIIYQQFcytW7eoXr16vmUkkc+FhYUFkLkDLS0tdRxNxZaWlsb27dvp1KkTBgYGug5HPAU5hmWbHL+yT45h2SfHsGyT41f2yTEs+8rKMYyNjcXJyUmbj+ZHEvlcZDWnt7S0lERex9LS0jA1NcXS0rJUn3Qib3IMyzY5fmWfHMOyT45h2SbHr+yTY1j2lbVjWJDu3TLYnRBCCCGEEEIIUYZIIi+EEEIIIYQQQpQhksgLIYQQQgghhBBliPSRf0qKopCenk5GRoauQynX0tLS0NfXJzk5WfZ1CVKr1ejr68v0i0IIIYQQQpRCksg/hdTUVCIiIkhMTNR1KOWeoijY29tz69YtSSpLmKmpKdWqVcPQ0FDXoQghhBBCCCEeIYl8IWk0Gm7evIlarcbBwQFDQ0NJMIuRRqMhPj4ec3Nz9PSkJ0hJUBSF1NRUoqKiuHnzJh4eHrLvhRBCCCGEKEUkkS+k1NRUNBoNTk5OmJqa6jqcck+j0ZCamoqxsbEkkyXIxMQEAwMDgoODtftfCCGEEEIIUTpIZvSUJKkU5Z38xoUQQgghhCid5E5dCCGEEEIIIYQoQySRF0IIIYQQQgghyhBJ5EWhtG3bljfeeEP72sXFhW+++Sbfz6hUKtavX//M2y6q9QghhBBCCCFEWSaJfAXRo0cPunTpkut7+/fvR6VScfbs2UKv9/jx44wfP/5Zw8tm1qxZNGjQIMfyiIgIunbtWqTbyktSUhKVK1fGxsaGlJSUEtmmEEIIIYQQQhSEJPIVxJgxY9ixYwehoaE53lu4cCFNmjShXr16hV6vra1tiY3eb29vj5GRUYlsa82aNXh7e+Pl5aXzVgCKopCenq7TGIQQQgghhBClhyTyRUBRFBJT00v8T1GUAsfYvXt3bG1tWbRoUbbl8fHxrFq1ijFjxnDv3j2GDBmCo6Mjpqam+Pj4sGzZsnzX+3jT+mvXruHr64uxsTF16tRhx44dOT7zzjvv4OnpiampKW5ubnzwwQekpaUBsGjRImbPns2ZM2dQqVSo1WqWLl0K5Gxaf+7cOZ5//nlMTEyoUqUK48ePJz4+Xvv+yJEj6d27N19++SXVqlWjSpUqvPLKK9pt5ee3337jhRde4IUXXuC3337L8f6FCxfo3r07lpaWWFhY0KZNGwIDA7Xv//7773h7e2NkZES1atWYNGkSAEFBQahUKgICArRlo6OjUalU7NmzB4A9e/agUqn4559/aNy4MUZGRhw4cIDAwEB69epF1apVMTc3p2nTpuzcuTNbXCkpKbzzzjs4OTlhZGREzZo1+e2331AUhZo1a/Lll19mKx8QEIBKpeL69etP3CdCCCGEEEKI0kHmkS8CSWkZ1JmxrcS3e/HDzpgaFuwQ6uvrM3z4cBYtWsR7772HSqUCYNWqVWRkZDBkyBDi4+Np3Lgx77zzDpaWlvz999+8+OKLuLu706xZsyduQ6PR0LdvX6pWrcrRo0eJiYnJ1p8+i4WFBYsWLcLBwYFz584xbtw4LCwsmDp1KoMGDeL8+fNs3bqVnTt3otFotLE+KiEhgc6dO9OiRQuOHz9OZGQkY8eOZdKkSdkeVuzevZtq1aqxe/durl+/zqBBg2jQoAHjxo3L83sEBgZy+PBh1q5di6IovPnmmwQHB+Ps7AxAWFgYvr6+tG3bln///RdLS0sOHjyorTWfP38+kydP5rPPPqNr167ExMRw8ODBJ+6/x02bNo0vv/wSNzc3KlWqxK1bt/D392fOnDkYGRnx559/0qNHD65cuUKNGjUAGD58OIcPH+a7776jfv363Lx5k7t376JSqRg9ejQLFy5kypQp2m0sXLgQX19fatasWej4hBBCCCGEELohiXwFMnr0aP73v/+xd+9e2rZtC2Qmcv369cPKygorK6tsSd6rr77Ktm3bWLlyZYES+Z07d3L58mW2bduGg4MDAJ988kmOfu3vv/++9t8uLi5MmTKF5cuXM3XqVExMTDA3N0dfXx97e3s0Gg2xsbE5trV06VKSk5P5888/MTMzA2DevHn06NGDzz//nKpVqwJQqVIl5s2bh1qtxsvLi27durFr1658E/nff/+drl27UqlSJQA6d+7MwoULmTVrFgA//PADVlZWLF++HAMDAwA8PT21n//444956623eP3117XLmjZt+sT997gPP/yQjh07al9XrlyZ+vXra19/9NFHrFu3jo0bNzJp0iSuXr3KypUr2bFjBx06dADAzc1NW37kyJHMmDGDY8eO0axZM9LS0li6dGmOWnohhBBCCCFE6SaJfBEwMVBz8cPOOtluYXh5edGyZUt+//132rZty/Xr19m/fz8ffvghABkZGXzyySesXLmSsLAwUlNTSUlJKXAf+EuXLuHk5KRN4gFatGiRo9yKFSv47rvvCAwMJD4+nvT0dCwtLQv1XS5dukT9+vW1STxAq1at0Gg0XLlyRZvIe3t7o1b/t5+qVavGuXPn8lxvRkYGf/zxB99++6122QsvvMCUKVOYMWMGenp6BAQE0KZNG20S/6jIyEjCw8Np3759ob5Pbpo0aZLtdXx8PLNmzeLvv/8mIiKC9PR0kpKSCAkJATKbyavVavz8/HJdn4ODA926deP333+nWbNmbNq0iZSUFAYMGPDMsQohhBBPKzw6ici4FOo6WKKvll6fQghREJLIFwGVSlXgJu66NmbMGF599VV++OEHFi5ciLu7uzbx+9///se3337LN998g4+PD2ZmZrzxxhukpqYW2fYPHz7MsGHDmD17Np07d9bWbH/11VdFto1HPZ5sq1QqNBpNnuW3bdtGWFgYgwYNyrY8IyODXbt20bFjR0xMTPL8fH7vAejpZd6gPDq+QV599h99SAEwZcoUduzYwZdffknNmjUxMTGhf//+2uPzpG0DjB07lhdffJGvv/6ahQsXMmjQoBIbrFAIIYR4VGq6hh92X+eH3ddJ1yhYGuvTxsMWv1q2tPW0xc7SWNchCiFEqSWPPSuYgQMHoqenx9KlS/nzzz8ZPXq0tg/6wYMH6dWrFy+88AL169fHzc2Nq1evFnjdtWvX5tatW0RERGiXHTlyJFuZQ4cO4ezszHvvvUeTJk3w8PAgODg4WxlDQ0MyMjKeuK0zZ86QkJCgXXbw4EH09PSoVatWgWN+3G+//cbgwYMJCAjI9jd48GDtoHf16tVj//79uSbgFhYWuLi4sGvXrlzXb2trC5BtHz068F1+Dh48yMiRI+nTpw8+Pj7Y29sTFBSkfd/HxweNRsPevXvzXIe/vz9mZmbMnz+frVu3Mnr06AJtWwghhChK50Jj6DnvAN/uuka6RsHMUE1scjp/n4tg6uqzNPtkF92+28//tl3meNB90jPyfggvhBAVUdmoRhZFxtzcnEGDBjF9+nRiY2MZOXKk9j0PDw9Wr17NoUOHqFSpEnPnzuXOnTvUqVOnQOvu0KEDnp6ejBgxgv/973/Exsby3nvvZSvj4eFBSEgIy5cvp2nTpvz999+sW7cuWxkXFxdu3rxJQEAADg4OuY7OP2zYMGbOnMmIESOYNWsWUVFRvPrqq7z44ovaZvWFFRUVxaZNm9i4cSN169bN9t7w4cPp06cP9+/fZ9KkSXz//fcMHjyY6dOnY2VlxZEjR2jWrBm1atVi1qxZvPTSS9jZ2dG1a1fi4uI4ePAgr776KiYmJjz33HN89tlnuLq6EhkZmW3MgPx4eHiwdu1aevTogUql4oMPPsjWusDFxYURI0YwevRo7WB3wcHBREZGMnDgQADUajUjR45k+vTpeHh45Nr1QQghhCguyWkZfLvrGr/su0GGRqGymSEf9vKma91qnAmNZs+VKPZeieRMaAwXwmO5EB7LD7sDM2vrPTNr6v1q2WJnIbX1QoiKTWrkK6AxY8bw4MEDOnfunK0/+/vvv0+jRo3o3Lkzbdu2xd7ent69exd4vXp6eqxbt46kpCSaNWvG2LFjmTNnTrYyPXv25M0332TSpEk0aNCAQ4cO8cEHH2Qr069fP7p06UK7du2oWrUqa9asybEtU1NTtm3bxv3792natCn9+/enffv2zJs3r3A74xFZA+fl1r+9ffv2mJiY8Ndff1GlShX+/fdf4uPj8fPzo3HjxixYsEDbjH/EiBF88803/Pjjj3h7e9O9e3euXbumXdfvv/9Oeno6jRs35o033uDjjz8uUHxz586lUqVKtGzZkh49etC5c2caNWqUrcz8+fPp378/EydOxMvLi3HjxmVrtQCZxz81NZVRo0YVdhcJIYQQT+1k8AO6fbef+XsCydAo9KjvwI43felezwG1nopGNSoxuaMnGya15sT7HZg7sD496ztgbWqQWVt/NoK3V5+l2ZxddP9+P19uu8IJqa0XQlRQKqUwk5FXELGxsVhZWRETE5NjELbk5GRu3ryJq6srxsbyNLi4ZY1ab2lpqe1fLp7N/v37ad++Pbdu3cq39UJR/dbT0tLYsmUL/v7+uQ4QKEo3OX5lnxzDsq+sH8Ok1Ay+3H6F3w/eRFHA1sKIj3vXpbO3fYE+n6FRCLgVzd4rkey5GsXZ0Jhs71uZGNDaw4Z2tezw87TF1sKoOL7GUyvrx0/IMSwPysoxzC8PfZw0rReigkhJSSEqKopZs2YxYMCAp+6CIIQQQhTUkRv3eGfNWYLvJQLQr1F1PuheG2tTwwKvQ62norFzJRo7V2Jyp1rcjU9h39Uodl+JYt/VKGKS0vj7bAR/n80cf6auoyXtatnRtpYtDZwqodZTFct3ExVDQko6n265xJFLejyoEkKvhk5UMiv471eI4iKJvBAVxLJlyxgzZgwNGjTgzz//1HU4QgghyrGElHQ+33qZPw9nDmhbzcqYT/r40M7L7pnXbWNuRN9G1enbqLq2tn7PlUj2XIniXFgM58NiOR8Wy/f/XsfKxIA2D2vrfUthbb0o3U6FPODNFQEPH0TpMWvzZeb8c4Xnvezo26g67WrZYagvLUaFbkgiL0QFMXLkyGyDGwohhBDF4cC1u7yz5ixh0UkADGnmxHT/2lgaF31z1kdr69/qVIuouKza+kj2X7tLTFIam89GsPlhbb2PoxVta9nStpYdDZyspbZe5Co9Q8P3/15n3u7rZGgUHKyMqW+RQFC6NZdux7Htwh22XbiDtakBPeo50LeRIw2crLUzQQlREiSRF0IIIYQQzyw2OY1P/r7E8uO3AKheyYTP+tajtYdNicVga2FEv8bV6de4OukZGu1I+LuvRHI+LJZzYTGcC4vh+3+vY21qQBuP/0bCtzGX2noBQXcTeGNFAAG3ogHo09CRD/w92f/vDvz9WxB4L4l1p8JYdzqMyLgUFh8JZvGRYNxszOjbyJHeDR2pXslUt19CVAiSyAshhBBCiGey+3Ik09ee43ZsMgAjWjgztYsXZka6u9XUV+vR2LkyjZ0r81anWkTGJbPv6l32XIlk39UoohPT2HQmnE1nwgGoV93qYVIvtfUVkaIorDxxi9mbLpKYmoGFsT5z+vjQs74DaWlp2nJe9pZM97dkahcvDl6/y9pToWy7cIcbdxP4cvtVvtx+leaulenXqDpdfeyxKIaWKEKAJPJCCCGEEOIpRSem8uHmi6w9FQaASxVTPu9Xj+ZuVXQcWU52Fsb0b1yd/g9r6zP71kex52pmbf3Z0BjOhsbw3cPael8PW9rWssXXU2rry7v7CalMW3OW7RfvAPCcW2W+GtgAR2uTPD+j1lPh65n5+4hPSWfr+dusPRXK4Rv3OHrzPkdv3ueDDefp5G1P30aOtKlpg75a+tOLoiOJvBBCCCGEKLRtF27z/vrzRMWloFLBmFauvNWpFiaGal2H9kT6aj2auFSmiUtlpnTOrK3feyWKPVej2P+wtn7jmXA2nglHpYJ6jlb4PRwJv351qa0vT/ZejWLKqjNExaVgoFbxdudajG3thl4hjrG5kb72IVF4dBLrA8JYczKUwKgEbasPG3MjejdwoG+j6tRxyH9aMSEKQhJ5IYQQQghRYPfiU5i58YJ2ADl3WzP+N6A+jWpU0nFkT8/OwpgBTZwY0MSJ9AwNpx8ZCf9CeCxnQmM4ExrDd7uuUcnUAF/Ph7X1HrZUkdr6Mik5LYPP/rnMokNBAHjYmfPN4AZ4O1g903odrE2Y2LYmL/u5cy4shrWnwth4Jpy78Sn8euAmvx64iZe9BX0bOdKrgSNVLY2L4NuIikgSeSGEEEKUWYqiEJuUjpWp9EMtboqisPlsBDM3XuB+QipqPRUTfN14rb0Hxgalvxa+oPTVejR1qUxTl8q83dmLyNhk9lyNYu+VKPZdi+JBYhobAsLZEPCwtr66NW0fJvb1pLa+TLgQHsPrywO4HhkPwMiWLkzr6lWkv2OVSkW96tbUq27Ne91qs/dKFGtPh7LzYiSXb8fxyZbLfPbPZVp72NKvkSOd6tiXidYsovSQRF4Ui1mzZrF+/XoCAgJ0HYoQQohyKvRBIpNXnOFY0H1auldhWHNnOtapKvM6F4PIuGQ+WH+ebRcy+xB72Vvwv/718an+bLWXZYGdpTEDmzgx8GFt/amQ/2rrL0bEcuZWNGduRfPtw9p6P8/M6e18PW2pbGao6/DFIzI0Cr/uv8GX26+QlqFga2HElwPq4+dpW6zbNVDr0aFOVTrUqUpMYhqbz4Wz7lQYJ4IfsO9qFPuuRmFmqKarTzX6NnLkOdcqhWraLyomSeQriCfNazlz5kxmzZr11Otet24dvXv31i6bMmUKr7766lOt72mEhobi5uaGp6cn58+fL7HtCiGE0I2NZ8J5b9054pLTATgUeI9DgfewMTdiUNPqDG5aA6fKMgXUs1IUhXWnw5i96SIxSWno66l4pV1NXmlXs0I+MNFX69HMtTLNXCsztct/tfV7Hs5b/yAxjfUB4ax/pLbet2ZlDOIz96XQnbDoJN5aGcCRG/cB6OxdlU/71ivxhy1WpgYMa+7MsObOBN1NYN3pMNaeDuXW/SRWnwxl9clQHKyM6d3Qkb6NqlPTzrxE4xNlhyTyFURERIT23ytWrGDGjBlcuXJFu8zcvGgvEubm5kW+zvwsWrSIgQMHsm/fPo4ePUrz5s1LbNuPy8jIQKVSoadX8W5whBCiuMWnpDNzwwXWnAoFoGENa971z2y2uvz4Le7Gp/DD7kB+3BNIW09bXnjOmba17KS581OIiEnivXXn+fdyJADeDpb8r399GajrEY/W1qdlaDj9sLZ+95UoLj1SWw/67I05zpTOXrRwL30j+pd3GwLCeH/9eeKS0zE1VDOrhzcDmlR/YkVXcXOxMePNjp680cGDk8EPWHMqjM1nwwmPSebHPZnXsfrVrejbqDo96jtICw+RjWQaRSkhIe+/5OSCl01KenLZQrK3t9f+WVlZoVKpsi1bvnw5tWvXxtjYGC8vL3788UftZ1NTU5k0aRLVqlXD2NgYZ2dnPv30UwBcXFwA6NOnDyqVSvt61qxZNGjQQLuOkSNH0rt3b7788kuqVatGlSpVeOWVV7LNyxkREUG3bt0wMTHB1dWVpUuX4ubmxvz58/P9boqisHDhQl588UWGDh3Kb7/9lqPMwYMHadu2LaamplSqVInOnTvz4MEDADQaDV988QU1a9bEyMiIGjVqMGfOHAD27NmDSqUiOjpau66AgABUKhVBQUFA5kMEa2trNm7cSJ06dTAyMiIkJITjx4/TsWNHbGxssLKyws/Pj1OnTmWLKzo6mgkTJlC1alWMjY2pW7cumzdvJiEhAUtLS1avXp2t/Pr16zEzMyMuLi7ffSKEEOXR6ZAHdPtuP2tOhaKngteer8nKCS1o+nDk8cPTn+fHYY1oVbMKigK7r0Qx5o8TtPn8X77fdY3I2OQnb0SgKAorjofQae4+/r0ciaFaj7c712L9K60kic+HwcPa+qldvPjn9TYcfbc9X/SrRxfvqhioFE6GRDNkwRGGLjjCyeAHug63QohJSuON5ad5fXkAccnpNKxhzT+vt2FgUyedJ/GPUqlUNHGpzKd9fTj+Xgd+GNqIDrXt0NdTcSY0hpkbL9Bszk7G/nGCf85FkJKeoeuQRSkgNfJFKb8aaH9/+Pvv/17b2UFiYu5l/fxgz57/Xru4wN272csUYfOsJUuWMGPGDObNm0fDhg05ffo048aNw8zMjBEjRvDdd9+xceNGVq5cSY0aNbh16xa3bt0C4Pjx49jZ2bFw4UK6dOmCWp33IB27d++mWrVq7N69m+vXrzNo0CAaNGjAuHHjABg+fDh3795lz549GBgYMHnyZCIjI58Y/+7du0lMTKRDhw44OjrSsmVLvv76a8zMzIDMxLt9+/aMHj2ab7/9Fn19fXbv3k1GRuZFcPr06SxYsICvv/6a1q1bExERweXLlwu1DxMTE/n888/59ddfqVKlCnZ2dty4cYMRI0bw/fffoygKX331Ff7+/ly7dg0LCws0Gg1du3YlLi6Ov/76C3d3dy5evIharcbMzIzBgwezcOFC+vfvr91O1msLC4tCxSeEEGVZhkZh/p7rfL3zGhkaBUdrE74e1IBmrpWzlTNQ6+HvUw1/n2rciIpn2bEQVp0MJTwmma92XOWbXdfoVKcqw5o709Jd+qDm5tb9RKavPceB65n3HQ2crPlf/3p4VJX/dwqrqqUxA5s60aeBPcvWh3FN35XlJ0Izu4HMP0S7WrZM7lirQowzoAtHbtzjrZVnCItOQq2n4tXnazKpXc1SP5e7sYGabvWq0a1eNe7Gp7DpTDhrT4VxLiyGnZfusPPSHaxMDOherxp9G1WnUQ3rUvVQQpQcSeQFM2fO5KuvvqJv374AuLq6cvHiRX7++WdGjBhBSEgIHh4etG7dGpVKhbOzs/aztraZg4NYW1tjb2+f73YqVarEvHnzUKvVeHl50a1bN3bt2sW4ceO4fPkyO3fu5Pjx4zRp0gSAX3/9FQ8PjyfG/9tvvzF48GDUajV169bFzc2NVatWMXLkSAC++OILmjRpkq2Vgbe3NwBxcXF8++23zJs3jxEjRgDg7u5O69atC7j3MqWlpfHjjz9Sv3597bLnn38+W5lffvkFa2tr9u7dS/fu3dm5cyfHjh3j0qVLeHp6AuDm5qYtP3bsWFq2bElERATVqlUjMjKSLVu2sHPnzkLFJoTIKTktI3NKqVvRBN9LoH3tqvgW82BH4umERSfx5ooAjt3M7Nfao74DH/eui5VJ/qPUu9ma8163OrzVqRb/nI9gyZEQTgQ/4J/zt/nn/G1cqpgytHkN+jd2kuaqgEajsORoMJ/9c5mE1AyM9PWY0qkWo1u7SreEImBlCDP8azOhbU3m/XudVSdD2X0lit1XoujsXZXJHWtRy14elhSF1HQNc3dc5ed9gSgKOFcx5etBDcrk9Ig25kaMauXKqFauXLsTx9rTYaw/HUZETDJLjoaw5GgILlVM6dOwOn0aOlKjiowLUpFIIl+U4uPzfu/xmur8apof71v9sAl3cUhISCAwMJAxY8Zoa8YB0tPTsbLKfEI8cuRIOnbsSK1atejSpQvdu3enU6dOhd6Wt7d3thr7atWqce7cOQCuXLmCvr4+jRo10r5fs2ZNKlXK/6IbHR3N2rVrOXDggHbZCy+8wG+//aZN5AMCAhgwYECun7906RIpKSm0b9++0N/nUYaGhtSrVy/bsjt37vD++++zZ88eIiMjycjIIDExkZCQEG1c1atX1ybxj2vWrBne3t788ccfTJs2jb/++gtnZ2d8fX2fKVYhKhqNRiEwKp6AW9EE3IrmTGg0lyPiSNf817Lpj8PBdKtXjRnd68icvqXI32cjmL72LLHJ6ZgZqvmwV136NnIsVO2TsYH64U1udS7fjmXp0RDWngoj6F4in2y5zJfbruLvY8+w55xp4lypQtZsBd1N4J01Zzn68GFJM5fKfN6/Hq42ZjqOrPypXsmUz/rV4yU/d77ddY31AWFsu3CH7Rfv0KOeA2908MDNVgY3e1rXI+N4fXkAF8JjARjUxIkZPepgZlT2Ux6Pqha808WLKZ1qceTGPdaeCuOf8xEE3Uvk651X+XrnVZq5VKZPI0f8fao98WGnKPvK/q+6NDErxH94xVW2kOIfPnxYsGBBjgHispLuRo0acfPmTf755x927tzJwIED6dChQ47+209iYJD9gqJSqdBoNM8QPSxdupTk5ORssSuKgkaj4erVq3h6emJiYpLn5/N7D9AOWPfoSLOP9ut/dD2P3/yNGDGCe/fu8e233+Ls7IyRkREtWrQgNTW1QNuGzFr5H374gWnTprFw4UJGjRpVIW8yhSiM2zHJ2oQ9ICSac2ExxKek5yhnY25IAydrLE0MWH86jL/PRrDvShRTOtfiheecpRZShxJS0pm18QKrTmYOaNfAyZpvBzfAucqz/X/oZW/Jh73q8k4XLzadCeevo8GcD4vVjjLuWdWcYc2d6dPIEUvj8n8TnKFRWHjwJl9uv0JymgZTQzXvdPHixeecpdtBMXOxMePrQQ2Y2Nadr3deZcu522w8E87ms+H0a1Sd19p7yKwLhaAoCouPBDPn70ukpGuoZGrAp33r0aVu/q1FyyK1nopWNW1oVdOGj3p7s+3CbdaeCuPA9bscC7rPsaD7zNx4gY51qtKvkSNtPGwxKOXdCcTTkUS+gqtatSoODg7cuHGDYcOG5VnO0tKSQYMGMWjQIPr370+XLl24f/8+lStXxsDAQNvf/GnVqlWL9PR0Tp8+TePGjQG4fv26dkC6vPz222+89dZb2tr3LBMnTuT333/ns88+o169euzatYvZs2fn+LyHhwcmJibs2rWLsWPH5ng/q+tARESEtnVAQEBAgb7TwYMH+fHHH/H39wfg1q1b3H1krIN69eoRGhqqfeCQmxdeeIGpU6fy3XffcfHiRW3zfyFEprjkNM6FxhDwMGk/ExrNndiUHOVMDNT4VLeigZM19atbU9/JCkfr/x7AjW7lynvrzmkHFVp9MpRP+vhI31UdOHMrmteXnyboXiIqFbzStiavd/Ao0htRMyN9BjerweBmNTgbGs2SIyFsOBPG1TvxzNx4gc/+uUzP+g4Me64G9apbF9l2S5PrkfFMXX2GUyHRALR0r8Ln/epJ8ljCPKpa8OOwxlwIj+HrHVfZeSmSVSdDWR8QxqCmTkxq54G9lbQSyk9kXDJvrzrL3qtRAPh62vJl/3rYVYDWVaaG+toWR7djktkQEMaaU6FcvRPP32cj+PtsBDbmhvSo70C/RtXxdrCUCqFyRBJ5wezZs3nttdewsrKiS5cupKSkcOLECR48eMDkyZOZO3cu1apVo2HDhujp6bFq1Srs7e2xtrYGMkeu37VrF61atcLIyOiJzeFz4+XlRYcOHRg/fjzz58/HwMCAt956K9ea7iwBAQGcOnWKJUuW4OXlle29IUOG8OGHH/Lxxx8zffp0fHx8mDhxIi+99BKGhobs3r2bAQMGYGNjwzvvvMPUqVMxNDSkVatWREVFceHCBcaMGUPNmjVxcnJi1qxZzJkzh6tXr/LVV18V6Dt5eHiwePFimjRpQmxsLG+//Xa2Wng/Pz98fX3p168fc+fOpWbNmly+fBmVSkWXLl2AzHEF+vbty9tvv02nTp2oXr16ofetEOVFarqGK7fjCAjNnM4p4FY0gVHxOcb+1FNBLXtLGjhZPUzarfGwM893gKO6jlasndiKpcdC+GLrZc6FxdDrhwMMb+HCW508sagAtbO6lqFR+GlvIF/vuEq6RsHBypivBzWguVvxTtVVr7o19fpb82632qw/HcaSo8FcvRPPihO3WHHiFj6OVgxrXoOeDRwwNSz7t03pGRoW7L/J1zuvkpquwdxIn3f9azOkWekaxbui8Xaw4tcRTTkd8oC5O66y/9pd/joSwsoTobzQ3JmX27pja2Gk6zBLne0XbjNt7TnuJ6RipK/Hu/61Gd7CuUL+lu2tjJng5854XzcuhMey7nQYGwLCuBufysKDQSw8GIRnVXP6NqpO7waO8oCoHCj7/yOJZzZ27FhMTU353//+x9tvv42ZmRk+Pj688cYbAFhYWPDFF19w7do11Go1TZs2ZcuWLdpm51999RWTJ09mwYIFODo6aqdlK6w///yTMWPG4Ovri729PZ9++ikXLlzAyCj3/7h+++036tSpkyOJh8zp8CZNmsSWLVvo2bMn27dv591336VZs2aYmJjQvHlzhgwZAsAHH3yAvr4+M2bMIDw8nGrVqvHSSy8Bmd0Bli1bxssvv0y9evVo2rQpH3/8cZ597h+Pb/z48TRq1AgnJyc++eQTpkyZkq3MmjVrmDJlCkOGDCEhIYGaNWvy2WefZSszZswYli5dyujRowu0H4UoDxRFIfheYmbz+IdJ+4XwWFLTc3bHqV7JhPpO1jR4mLTXdbR8qoRLrafixeec6exdlY83X2LjmXAWHQpiy7kIZvbwxt/HvkLeHJaE8IcD2mX10e5Wrxqf9PbByrTkHqBYmRgwoqULw1s4cyL4AUuOBLPl3G3OhcUwbe055vx9iT6NHBnavAZe9mVzCrbLt2OZuvosZ0NjAPDztOXTvj44WD+5q5coGQ1rVGLxmOYcuXGPuduvcizoPr8fvMmyYyGMbOXCBF83rE1lcMaElHQ+2nyR5cczZ1GqU82SbwY3wFNmV0ClUlHX0Yq6jlZM7+rF/mt3WXMqlO0X73D1Tjyf/XOZz7deppW7DX0bOdLZ275cjCFQEakUpQjnMSsnYmNjsbKyIiYmBkvL7P9ZJycnc/PmTVxdXTE2lidZxSk0NBQnJyfWr19Pjx49tA8OKprFixfz5ptvEh4ejqFhyf3nXVS/9bS0NLZs2YK/v3+OcRJE6VdSx+9efMrDpD2GgFvRnA2NJjox53gUViYGD5N2K+o7ZSbuNubFU0u1/1oUH6w/T9C9zKlC/Txt+ahX3TI3KnBpPwe3nItg+tpzxCSlYWqoZlZPbwY0rl4qHprcT0hl9clbLDkaQvC9/6aMbeJciWHP1aBr3WoYG+Q97WpRedZjmJah4cfdgczbfY20DAVLY31m9PCmXyEHDhRP52mPn6Io7L92l692XOXMrWgALIz0GdPGldGtXSvEOA65OR3ygDdXBGi734z3dWNyR0+M9IvvXCzt19GCiElK459zEaw9HaadBQTA1FBNl7r29GtUnZbuVcrtNaGsHMP88tDHyeMXUWr8+++/xMfH4+PjQ0REBFOnTsXFxYWWLVvqOjSdSExMJCIigs8++4wJEyaUaBIvRHFKSs3gfHiMtnl8wK1oQh8k5ShnqK+Ht4Ml9atb08Ap88+5immJ3WS08bBl6xu+zN8TyPw9gey9GkXHr/fyWnsPxrVxw1C/Yj5cLCoJKel8uOkiK05k1qjVr27FN4MblqqR0iubGTLe152xrd04FHiPJUeD2X7xDieCH3Ai+AGzN11kQOPqDG3uXKriftT5sBjeXn2WSxGZo3h3qF2VOX3qyuwMZYBKpcLX05Y2HjbsuhTJVzuucikilm92XmPRoSDG+7oxsqVLuejyURDpGRp+2B3Id/9eI+Nh95uvBjaghXvxdr8pL6xMDLRjg9y6n8i602GsPRVK0L1E1p4KY+2pMN7192K8r7uuQxUFVDHOfFEmpKWl8e6773Ljxg0sLCxo2bIlixcvLtVPzYrTF198wZw5c/D19WX69Om6DkeIp5KhUbgWGfcwac9M3q/ciSNDk7MxWE0784dJuxUNnCpRy95C58mysYGaNzt60rOBAx+sP8+hwHv8b9sV1p0O4+PedXmumPtvl1dnQ6N5fXkAN+8moFLBy37uvNnRs9SOrKynp6K1hw2tPWy4E5vMyuO3WHYshPCYZBbsv8mC/TdpVbMKw5o707FO1VLxPVLSM/h+13Xm7w0kQ6NQydSAWT296VnfodzWuJVXKpWKDnWq8ryXHf+cv83cHVcIjErgi61X+P3ATV5uW5NhzWuUSOsQXQm+l8AbKwI4/XBwxp71Hfiod12ZYu0pOVU25bX2Hrz6fE1O34rmr8PBrD0dxo97AnnhOecK83CorJOjJEqNzp0707lz52zLNBoNsbGxOopIt2bNmsWsWbN0HYYQBaYoCuExyZy59d9gdOfCYkhMzTmrhZ2FUeYI8g9r2n2qW5XqZqLutuYsGducDQHhfPz3Ra5HxjP4lyP0a1Sdd/29qFJMzfvLG41G4ed9N/hq+xXSNQrVrIyZW8Zq1KpaGvNqew8mtqvJniuRLDkawu4rkRy8fo+D1+9ha2HEoCZODGleA0cd9T0/HfKAqavPci0yc4rZbj7VmN3Lu9i6oYiSoaenolu9anSpa8+GgDC+2XmNkPuJfLT5Igv23WDS8zUZ2MRJ5w9Ai5KiKKw6GcrsjRdISM3Awlifj3vXpVcDR12HVi6oVCoa1ahE/erWnAp5QNC9RJYfu8Xo1q66Dk0UgCTyQgghnkpMUhpntSPIZ/Ztvxufc+o3M0M19apnJe2Zte1lcbRclUpF74aOtKtlx+fbLrP0aAhrToWy6/Idpnf1YkBjJ5l7Ox8RMUlMXnGGwzfuAdC1rj2f9vUpswN3qfVUtK9dlfa1q3LrfiIrjt9i+fFbRMWlMG/3dX7cc512tewY9lwN/DztUJfAbyM5LYO5O67y6/4baBSwMTfko1516epTrdi3LUqOWk9F30bV6VHfgdUnQ/l+1zXCY5J5f/15ftobyOvtPejT0DHfmTrKggcJqUxfe46tF24D0My1MnMH1qd6pbI1TklZoNZTMc7XjffWnefX/Td4sYVzqWhZJPInifxTkjECRXknv3HxqJR0DRduR/9X2x4azY2ohBzl9PVUeFWz0E771sDJGndb8xJJYkqKlakBn/TxoV+j6ry37hyXb8fxzppzrD4Zyse9fahlL6MmP27r+QjeWZM5oJ2JgZpZPeswsEn5me7MqbIpUzrX4rX2Huy8dIclR4M5eP0euy5HsutyJI7WJgxp5sTAJk7FNrf18aD7TF19lpt3M8/LPg0dmdG9DpXMyuaDEvFkBmo9hjSrQd9Gjiw/dot5u68T+iCJt1efZf6eQF7v4EGPeg5l8gHjvqtRTFl1hsi4FAzUKt7qVItxbdzK1f8lpU2/RtX5ekfmQ6GNAeH0ayxTHpd2ksgXUlZ/7cTExGxzggtR3iQmZo7QXFHHKBCZdl2OZO45NVOO7SItI+fDHecqpo8k7VZ4O1iV636aj2rsXInNr7Zm4cEgvt55leNBD+j23X7GtnHjtfY1pY8hkJiaOUXUsmOZA9r5OFrx7eAGuNma6ziy4mGor4e/TzX8fapxIyqepUdDWH0qlLDoJL7cfpVvdl6jk3dVhjV3poVblSJJsBJT0/li6xX+OByEokBVSyM+6eND+9pVi+AbibLASF/NiJYuDGzixOIjQczfE8iNuwm8vjyAH3cH8mZHTzp7Vy0TD86S0zL47J/LLDoUBGSOnfLNoAbUdbTSbWAVgLGBmtGtXfhi6xV+3hdIn4aOZfIhUEUidxmFpFarsba2JjIyEgBT05IbQbki0mg0pKamkpycXGGnnytpiqKQmJhIZGQk1tbWqNUVIykTOYXcS+SNlWdJTlMBCpXNDKn/yLRv9atbU7mC1/bpq/UY5+uGf71qzN54ge0X7/DT3kA2nQnno97ePO9VcZOp82ExvLb8NDeiMge0m+DrzuSOnuWq/25+3GzNeb97HaZ0rsWWcxEsORrCyeAHbDl3my3nbuNqY8bQZjXo37j6U9eaHwq8yztrznLrfuasD4OaOPFut9oyAFgFZWKoZryvO0ObO7PwwE1+2X+DK3fieOmvk/g4WjG5kydtPW1L7X3rxfBY3lhxmqt3Msd2GNHCmWlda2NiKPchJWVYc2d+3B3I1Tvx7L4SKQ8ESzlJ5J+Cvb09gDaZF8VHURSSkpIwMTEptf/xlFfW1tba37qoeBRF4b3150hO01DTUsPPY3xxs7OU8zAPjtYm/DK8CTsu3mHWxguERScxetEJunjbM7NnHapZVZwWXBqNwoL9N/hy+xXSMhTsLY2ZO6g+Ld1tdB2aThgbqOnbqDp9G1XnUkQsS4+GsO50GDfvJjBnyyX+t/0K3XyqMax5DRo7VyrQORaXnMZn/1xmydEQIPP392lfH3w9bYv764gywNxIn1fbezC8hQu/HrjB7wduci4shlELj9PYuRJvdfIsVeejRqPw64EbfLntKqkZGmzMjfjfgHq0q2Wn69AqHCsTA4Y1r8HP+24wf0+gJPKlnCTyT0GlUlGtWjXs7OxIS0vTdTjlWlpaGvv27cPX11eaeJcgAwMDqYmv4DYEhLP/2l0M9fUY5JZOjcrS+qggOtapSquaVfh25zV+PXCTrRdus/9aFG929GRkS5cyP/jUk9yOSeatVQEcvJ45oF1n76p81ree9NN+qHY1Sz7qXZdpXb3YeCacv44EcyE8lnWnw1h3OoxaVS0Y9lwNejd0zHMWh71Xo5i+5izhMckAvPBcDaZ1rY25kdzSieysTA14q1MtRrZ04ed9N/jjUBAngx8wdMFRWrhVYUpnTxo7V9ZpjOHRSby18r9BMDvWqcpnfX1kJhAdGt3alYUHgzgR/IATQfdp4qLb34jIm1z1n4FarZZkp5ip1WrS09MxNjaWRF6IEvIgIZWPNl8EYFJbN+wSLus4orLF1FCf6f616dPIkffWnedk8AM+/vsSa06F8UmfujSsUUnXIRaLbRdu886as0QnZg5oN6NHHQY3LT8D2hUlMyN9hjSrweCmTpwNjWHJ0WA2ngnnyp04Zmy4wKdbLtOrgQPDmjvjUz2zb3BiOkxbd541p8IBqFHZlM/71StTU/cJ3ahibsS7/rUZ29qVH3ZfZ+mxEA7fuEe/+YdpW8uWtzrW0v7OStKmM+G8t+4cscnpmBiomdmjDoPkmqFzVS2NMwdQPH6Ln/YG8qsk8qWWJPJCCCGy+WTLJe4lpOJZ1ZwxrVzYuV0S+afhZW/JqgktWHniFp/+c5lLEbH0nX+IYc1r8HZnr3LTjzlzQLtLLDuW2cy7rqMl3w5uiHs5HdCuKKlUKu2YE+91q8O6U6EsORrCtch4lj+czq5edSva17LltwA1sWnhqFQwqqUrUzp7yoCKolDsLI2Z3asu43zdmPfvdVadDGXPlSj2XImis3dV3uzoiZe9ZbHHEZucxswNF1h3OgyA+k7WfDOoAa42ZsW+bVEw433dWHHiFjsvRXL1ThyeVWU2ltKofLfxE0IIUSiHAu+y6mQoKhV82rdehRmYrLjo6akY3KwGu97yo28jRxQF/joSQvuv9rIhIKzMT/N4PiyGHt8f0CbxE3zdWPtyK0nin4KViQEjW7my/U1fVk5oQa8GDhiq9TgbGsPXu64Tm6bCtYopqya0YEaPOpLEi6dWvZIpn/Wrx67JfvRt6IhKBdsu3KHrt/t5bdlpbkTFF9u2j964R9dv9rPudBh6KnitvQerX2ohSXwp42ZrTuc6meMk/bQ3UMfRiLzIHZoQQgggc9qf99adB9AOvCWKho25EXMHNmDpuOa42ZpxNz6F15cH8OJvx7TzfpclGo3Cgn036PPjQQKjEqhqacSSsc2Z7l9bHv48I5VKRTPXynw7uCGHpz/P9K5e+Dha0sFRw8ZXWkh/VVFkXGzMmDuoAdvf8KWbTzUUBTaeCafD3L1MWXWGW/cTi2xbqekaPt96mcELjhAWnUSNyqaseqklkzt6YlDOxw4pq15q6w7AxoBwwqKTdByNyI2cOUIIIQD4cfd1bt5NwM7CiKldvHQdTrnU0t2Gf15vw1sPp2E7cP0unb/Zxzc7r5KSnqHr8AokMjaZEQuPMWfLJdIyFDrVqcrW131pVbP0jIJdXlQxN2KCnztrX3qOHjU0GBvIuDyi6HlUteCHYY34+7XWdKhth0aB1SdDafflHt5bd46ImGdL4q5HxtN3/kHm7wlEUWBgk+pseb2NPCwu5Ro4WdPCrQrpGoXf9t/UdTgiF5LICyGE4NqdOOY/bD43u6d3niNmi2dnpK/m1fYebH/DlzYeNqSma/hm5zW6frOfg9fv6jq8fO24eIfO3+xj/7W7GBvoMadPXX5+sbGMSi9EOeDtYMWvI5qybmJL2njYkK5RWHI0BL//7eHDTReJiksp1PoURWHx4SC6f7+f82GxWJsa8NMLjfiif32ZZaGMyKqVX3YshAcJqTqORjxOEnkhhKjgNBqF6WvPkZah0KF2VbrUtdd1SBWCi40Zf45uxryhDbG1MOLG3QSG/XqU15efLvQNc3FLSs3g/fXnGPfnCR4kplGnmiWbX23NsObOMsK0EOVMwxqVWDymOSvGP0czl8qkpmv4/eBNfL/YzWf/XC5QQhcVl8LoRcf5YMMFktM0tPGwYdsbvnSpW60EvoEoKr4eNtSpZklSWgZ/Hg7WdTjiMZLICyFEBbfseAgngh9gZqjmw17ekpiVIJVKRfd6Dux6y48RLZxRqWBDQDjPf7WHv44Eo9HofjC8i+Gx9Jh3gL+OZA5oN66NK+teaUlNOxnFWIjyrLlbFVZMeI7FY5pR38mapLQMftobSJsvdvP1jqvEJqfl+rkdF+/Q5Zt97L4ShaG+HjN71OGPUc2oamlcwt9APCuVSqWtlf/jcBBJqWWjC1hFIYm8EEJUYJGxyXz2T+b0cm91qoWDtYmOI6qYLI0NmN2rLhteaUVdR0viktN5f/15+s4/xMXwWJ3EpNEo/Lr/Br1/OMj1yHjsLIxYPKYZ73Wrg5G+9NUWoiJQqVS08bBl/cSW/DaiCbWrWRKfks63u67R5vPd/LjnOomp6UDmVJTT12a23LmXkIqXvQWbX23NqFau6OnJA+Kyyr+uPU6VTbifkMrKE7d0HY54hCTyQghRgc3edJG45HTqVbdiREsXXYdT4dWrbs2GV1ozs0cdzI30CbgVTY95B/h480USUtJLLI7IuGRGLjrOx39fIjVDQ4faVdn6hi9tPGxLLAYhROmhUqloX7sqf7/amh+HNaKmnTkxSWl8sfUKvl/s5tud1+j2XeZUlCpV5jzkGya1kvnHywF9tR7j27gB8Mu+G6RlaHQckcgiibwQQlRQuy7d4e9zEaj1VHza1we11JiUCmo9FaNaubJzsh/dfKqRoVH49cBNOszdy7YLt4t97vldl+7Q9Zv97LsahZG+Hh/3rsuC4Y2pLAPaCVHh6emp8PepxrY3fPl6UH2cq5hyNz6Vr3de5ebdBKpZGbNkTHPe9a8tLXfKkQFNnKhiZkhYdBJ/n43QdTjiIUnkhRCiAkpISWfGhgsAjG3tireDlY4jEo+ztzLmh2GNWDiyKU6VTYiISWbC4pOM+/MEoQ+Kbn7nLMlpGczYcJ4xf2Q2i639cEC7F56TAe2EENmp9VT0aVidnZP9+LyfD55Vzenb0JGtr/vSUqaiLHeMDdSMauUCwE97A4v9gbIoGJn7QQghKqC5O64SFp1E9UomvN7BQ9fhiHy087Jju5sf83Zf45d9N9h5KZKD1+/xegcPxrR2xUD97M/kL0XE8vry01y9Ew/AmNauTO1SS2rUhBD5MlDrMahpDQY1raHrUEQxe/E5F+bvCeTy7Tj2XI2iXS07XYdU4UmNvBBCVDDnQmNYePAmAB/3roupoTzTLe1MDNW83dmLLa+1oZlrZZLSMvjsn8t0/+4AJ4LuP/V6FUXh9wM36fXDQa7eicfG3Ig/Rjfjg+4yoJ0QQoj/WJkaMLR55gOb+XsCdRyNAEnkhRCiQknP0DBt7Vk0CvSs70BbeaJepnhUtWDF+Of4ckB9KpkacOVOHP1/Osy0NWcLNLfzo6LiUhi58Dgfbr5IarqG9l52bHujDX6eMqCdEEKInMa0dsNAreLYzfucCnmg63AqPEnkhRCiAll4MIgL4bFYmRjwQfc6ug5HPAWVSkX/xtX59622DGriBMDy47doP3cvq0+GFqjv4u7LkXT9dh97Hw5o92Evb34d0YQq5kbFHb4QQogyyt7KmN4NHAH4SWrldU4SeSGEqCBu3U9k7o6rALzr74WthSRtZVklM0M+71+PVS+1wLOqOfcTUpmy6gyDfznC9ci4XD+TnJbBrI0XGLXoOHfjM+d53vRqa4a3cJEB7YQQQjzRBL/Mqei2X7yT5/81omToPJH/4YcfcHFxwdjYmObNm3Ps2LE8y6alpfHhhx/i7u6OsbEx9evXZ+vWrdnKZGRk8MEHH+Dq6oqJiQnu7u589NFHMrqiEKJCUxSFDzacJyktg+aulRn4sCZXlH1NXSqz+dU2vNPFC2MDPY7evE/Xb/fz5bYrJKdlaMtdvRNHr3kHWXQoCIBRrVxY/4rM8yyEEKLgatpZ0KlOVQB+3ntDx9FUbDpN5FesWMHkyZOZOXMmp06don79+nTu3JnIyMhcy7///vv8/PPPfP/991y8eJGXXnqJPn36cPr0aW2Zzz//nPnz5zNv3jwuXbrE559/zhdffMH3339fUl9LiAK7dieOfVejdB2GqAA2n41gz5UoDNV6fNLXR2pfyxlDfT1ebuvOjjf9eN7LjrQMhXm7r9Pp633su3aXfREq+vx0lCt34rAxN2ThqKbM7OGNsYEMaCeEEKJwXmrrDsD6gDAiYpJ0HE3FpdNEfu7cuYwbN45Ro0ZRp04dfvrpJ0xNTfn9999zLb948WLeffdd/P39cXNz4+WXX8bf35+vvvpKW+bQoUP06tWLbt264eLiQv/+/enUqVO+Nf1C6EJahoYXfjvK8N+PcSjwrq7DEeVYTGIaszddBOCVdjVxtzXXcUSiuDhVNuW3EU346YVG2FsaE3I/kTF/nmJNkJrUdA3tatnyz+u+Mm2QEEKIp9aoRiWauVYmLSNz5hOhGzqbcyg1NZWTJ08yffp07TI9PT06dOjA4cOHc/1MSkoKxsbG2ZaZmJhw4MAB7euWLVvyyy+/cPXqVTw9PTlz5gwHDhxg7ty5ecaSkpJCSkqK9nVsbCyQ2ZQ/LS3tqb6fKBpZ+788HoddlyO5E5v5u/t5TyBNa1jpOKLiUZ6PYVnxyZYL3I1Pwc3GjDGtahTqWMjxK5va17Kh+Wst+e7fQP44HIweClM7ezKyZWZfeDmeZYuch2WbHL+yT45hTuNaO3Ps5n2WHg1hQhsXrEwMdB1SvsrKMSxMfCpFR53Hw8PDcXR05NChQ7Ro0UK7fOrUqezdu5ejR4/m+MzQoUM5c+YM69evx93dnV27dtGrVy8yMjK0ibhGo+Hdd9/liy++QK1Wk5GRwZw5c7I9MHjcrFmzmD17do7lS5cuxdTUtAi+rRA5/X5FjzP3/2sU8079dBzk5yaKWGAsfHch85nta97puFvqOCBR4u4mg1oFlWRsQyGEEEVEUeDzs2oiElV0c8qgU3UZj6woJCYmMnToUGJiYrC0zP+mTWc18k/j22+/Zdy4cXh5eaFSqXB3d2fUqFHZmuKvXLmSJUuWsHTpUry9vQkICOCNN97AwcGBESNG5Lre6dOnM3nyZO3r2NhYnJyc6NSp0xN3oCheaWlp7Nixg44dO2JgULqf9BVGdGIaU47tARS87C24fDuOq3o1GOtfV9ehFbnyegzLgpR0Dd/+cBhIYFATR17t5V3odcjxK/vkGJZ9cgzLNjl+ZZ8cw9ylV49gyupzHL5vzGejfEv1uCtl5RhmtQwvCJ0l8jY2NqjVau7cuZNt+Z07d7C3t8/1M7a2tqxfv57k5GTu3buHg4MD06ZNw83NTVvm7bffZtq0aQwePBgAHx8fgoOD+fTTT/NM5I2MjDAyyllVYWBgUKoPdEVS3o7F1kvhpGVkJvGf9atH7x8OsvlsBO90qY29lfGTV1AGlbdjWBb8uPcaN+4mYGNuxLv+3s+0/+X4lX1yDMs+OYZlmxy/sk+OYXa9G1bn653XCYtOYv2Z27zYwkXXIT1RaT+GhYlNZ4PdGRoa0rhxY3bt2qVdptFo2LVrV7am9rkxNjbG0dGR9PR01qxZQ69evbTvJSYmoqeX/Wup1Wo0Gk3RfgEhnsGak6EA9G9cnQZO1toBQxYekgFDRNG4HhnPD7uvAzCzRx2sTEvvf1pCCCGEKHv01XqM982sUP1l/w3SMyTfKkk6HbV+8uTJLFiwgD/++INLly7x8ssvk5CQwKhRowAYPnx4tr7tR48eZe3atdy4cYP9+/fTpUsXNBoNU6dO1Zbp0aMHc+bM4e+//yYoKIh169Yxd+5c+vTpU+LfT4jcBEbFE3ArGrWeil4NHAEY3ybzIrj0SAhxyaV7EA5R+mk0Cu+uO0dqRuYo5d3rVdN1SEIIIYQohwY2caKymSG37iex5fxtXYdToei0j/ygQYOIiopixowZ3L59mwYNGrB161aqVq0KQEhISLba9eTkZN5//31u3LiBubk5/v7+LF68GGtra22Z77//ng8++ICJEycSGRmJg4MDEyZMYMaMGSX99YTIVVZtvJ+nLbYWmV06nveyw93WjMCoBJYfu8U4X7f8ViFEvladvMWxm/cxMVDzYa+6Mme8EEIIIYqFiaGaES1c+HrnVX7aE0iPetXkvqOE6Hywu0mTJjFp0qRc39uzZ0+2135+fly8eDHf9VlYWPDNN9/wzTffFFGEQhSdDI3CutNhAPRrVF27XE9PxXhfN95Zc47fD95kZCsXDNQ6bTAjyqiouBQ+2XIZgLc6eeJUWaZCEEIIIUTxGd7CmZ/2BnIxIpZ91+7i52mr65AqBMkUhChBhwPvERGTjKWxPu1r22V7r3dDR2wtjIiISWbTmXAdRSjKuo82XyQmKY26jpaMbOmi63CEEEIIUc5VMjNkSLMaAPy0J1DH0VQcksgLUYLWnMpsVt+jvkOOKTqM9NXaxOuXfTdQFJmPUxTOniuRbDwTjp4KPu1TD31p1SGEEEKIEjC2jSv6eioO37hHwK1oXYdTIchdnhAlJD4lna0PBwHp17h6rmVeaO6MqaGay7fj2H/tbkmGJ8q4xNR03l9/HoBRrVzxqW6l44iEEEIIUVE4WJvQs4EDILXyJUUSeSFKyJZzESSlZeBmY0ZDJ+tcy1iZGjCoqROQWSsvREF9u/MaoQ+ScLQ2YXJHT12HI4QQQogK5iU/dwC2XbxNYFS8jqMp/ySRF6KEZI1W369x9XxH8xzT2hW1nooD1+9yPiympMITZdiF8Bh+PXATgI96e2NmpPNxTIUQQghRwXhWtaBDbTsUBRZIhVSxk0ReiBJw634iR2/eR6WCPg0d8y1bvZIp3Xwy5/1esF8ugiJ/GRqF6WvPkaFR6OZTjee9quo6JCGEEEJUUFm18mtPhXEnNlnH0ZRvksgLUQLWnsqccq6lexUcrE2eWH78w3nkN5+NICw6qVhjE2XbH4eCOBsag4WxPjN71NF1OEIIIYSowJq4VKaJcyVSMzT8/rC1oCgeksgLUcwURWHt6YfN6hvlPsjd4+o6WtHSvQoZGkUugiJPYdFJfLn9CgDTunphZ2ms44iEEEIIUdG93DazVn7J0RBiktJ0HE35JYm8EMXsRPADgu8lYmaopktd+wJ/LqtWfvkxuQiKnBRFYeaG8ySmZtDEuRJDmtbQdUhCCCGEELSrZYdnVXPiU9JZcjRY1+GUW5LIC1HMsga56+pTDVPDgg9C5udpi5e9BQmpGXIRFDlsPX+bnZciMVCr+LSvD3p6eQ+gKIQQQghRUvT0VEzwzayV//1AEMlpGTqOqHySRF6IYpSclsHfZyOAgjerz6JSqRjXJrNWftHBIFLS5SIoMsUmpzFz4wUAXvZzx6OqhY4jEkIIIYT4T88GDjhYGXM3PoU1p0J1HU65JIm8EMVo24XbxKWk42htQnPXyoX+fI/6DthbGhMZl8KGgPBiiFCURV9svUxkXApuNmZMbFdT1+EIIYQQQmRjoNZj7MMKqQX7bpChUXQcUfkjibwQxWjNw9Hq+zVyfKqmz4b6eoxq5QJkXgQ1chGs8E4G3+evIyEAzOnjg7GBWscRCSGEEELkNLiZE9amBgTdS2Tr+du6DqfckUReiGJyJzaZA9eiAOhTyGb1jxrSvAbmRvpci4xnz9XIogpPlEGp6Rqmrz0HwIDG1WnhXkXHEQkhhBBC5M7UUJ/hLVwAmL/3OooiFVJFSRJ5IYrJutNhaBRo7FwJVxuzp16PpbEBQ5tnjkj+894bRRWeKIN+2RfI1TvxVDEz5F3/2roORwghhBAiXyNbumBsoMf5sFgOXr+n63DKFUnkhSgGiqJoR6sv7CB3uRnVygV9PRVHb97nzK3oZ16fKHtu3k3gu3+vA/BB9zpUMjPUcURCCCGEEPmrbGbI4IdT5P60N1DH0ZQvksgLUQzOhcVwLTIeQ309utWr9szrq2ZlQs/6DgD8sl9q5SsaRVF4d+05UtM1tPGwoVcDB12HJIQQQghRIGNau6LWU3Hg+l3OhcboOpxyQxJ5IYpBVm18pzpVsTIxKJJ1jvPNHPnzn3MRhNxLLJJ1irJhzakwDt+4h7GBHnN6+6BSyZzxQgghhCgbnCqb0uNhxZbUyhcdSeSFKGKp6Ro2nsmcKq5f42dvVp+ldjVLfD1t0Sjw2wGpla8o7sWnMOfviwC80cGTGlVMdRyREEIIIUThvNTWHYB/zkcQdDdBx9GUD5LIC1HE/r0cyYPENGwtjGhT06ZI1z3hYa38yhOhPEhILdJ1i9Jpzt+XeJCYhpe9BWNau+o6HCGEEEKIQvOyt6RdrcwKKekmWjQkkReiiK05ldmsvk9DR/TVRXuKtXSvgreDJUlpGfx1JLhI1y1KnwPX7rL2dBgqFXzWrx4GRfx7EkIIIYQoKS/5ZdbKrz4ZSmRcso6jKfvkrlCIInQvPoXdlzPnei+K0eofp1KpGP+wVv6Pw0Ekp2UU+TZE6ZCclsF76zPnjB/RwoUGTta6DUgIIYQQ4hk0c61MoxrWpKZrWHgwSNfhlHmSyAtRhDaeCSddo1DX0ZJa9hbFsg1/n2o4WptwNz6VtafCimUbQve+23WN4HuJVLMyZkrnWroORwghhBDimahUKm2t/F9HgolLTtNxRGWbJPJCFKGsZvXFURufxUCtx+iHfaV/3X8DjUYptm0J3bh8O5Zf9mX2H5vd0xtzI30dRySEEEII8ew61K5KTTtz4pLTWXo0RNfhlGmSyAtRRK7cjuN8WCz6eirtnO/FZXBTJyyN9blxN4Gdl+4U67ZEycrQKExbc450jUIXb3s6edvrOiQhhBBCiCKhp/dfN9HfDtwkJV26iT4tSeSFKCJrH9bGt/Oyo4q5UbFuy8xInxeecwbQ1tyK8mHJ0WACbkVjbqTPrJ7eug5HCCGEEKJI9W7giL2lMZFxKayTbqJPTRJ5IYpAeoaGdaczL0TF2az+USNbumCo1uNE8ANOBj8okW2K4nU7Jpkvtl4BYGqXWthbGes4IiGEEEKIomWor8fYNpndRH/Zd4MM6Sb6VCSRF6IIHLh+l8i4FCqZGvC8l12JbNPO0pjeDTOb8P+yL7BEtimK18yN54lPSadhDWuGNXfWdThCCCGEEMVicLMa2m6i2y/c1nU4ZZIk8kIUgTUPmwX1rO+AoX7JnVZZfYy2X7zDjaj4EtuuKHrbLtxm24U76Oup+LSvD2o9la5DEkIIIYQoFuZG+gxv4QLAT3sDURSplS8sSeSFeEaxyWnaJ4n9GpdMs/osNe0saO9lh6JkDhgiyqa45DRmbrgAZD6c8bK31HFEQgghhBDFa2QrF4z09TgTGsPhG/d0HU6ZI4m8EM/o77MRpKRr8LAzx8fRqsS3P+5hrfzqk6HcjU8p8e2LZ/fV9qvcjk3GuYopr7X30HU4QgghhBDFzsbciIFNnAD4aa8M3lxYksgL8YzWnHw4d3zj6qhUJd8curlrZepXtyIlXcOfh4NLfPvi2ZwOecAfh4MAmNPbB2MDtW4DEkIIIYQoIePauKGngn1XozgfFqPrcMoUSeSFeAZBdxM4EfwAPRX0aeiokxhUKhXjfd0BWHw4iKRUmY+zrEjL0DB97TkUBfo2dKS1h42uQxJCCCGEKDE1qpjSvV7m4M0/y5TKhSKJvBDPIGvu+NYetlS11N1UYV3q2lOjsikPEtNYffKWzuIQhfPr/ptcvh1HJVMD3utWW9fhCCGEEEKUuAl+md1E/z4bTsi9RB1HU3ZIIi/EU9JoFO1o9f0a6aY2PotaT6Wdj/PXAzdlPs4yIPheAt/uugrAe93qUMXcSMcRCSGEEEKUPG8HK3w9bdEo8Mt+mVK5oCSRF+IpHb15n7DoJCyM9Onsba/rcOjfuDrWpgYE30tkm8zHWaopisL768+TnKahpXsVnT8IEkIIIYTQpZce1sqvOiGDNxeUJPJCPKU1D5vVd6tXrVQMUGZqqM/w55yBzD5GMh9n6bUhIJz91+5iqK/HnD4+OhkkUQghhBCitGjhVoX6TtakpGtYdDBI1+GUCZLIC/EUElPT+edcBFDyc8fnZ3jLh/Nx3orm2M37ug5H5OJBQiofbr4IwOvtPXC1MdNxREIIIYQQuqVSqXj5Ya38n4eDiE9J13FEpZ8k8kI8ha3nb5OQmoFzFVOaOFfSdThaNuZG2gcLC/bLyJ+l0SdbLnE/IRXPquaMa+Om63CEEEIIIUqFjnXscbMxIzY5nWVHQ3QdTqknibwQTyGrWX3fhrqZOz4/Y1u7olLBzkuRXI+M03U44hGHAu+y6mQoKhV82rcehvpyCRZCCCGEgMzBm7NGsP/twE1S0zU6jqh0k7tIIQopPDqJQ4H3AOhbCgcpc7M1p2PtqgAs2HdTx9GILMlpGby37jwAw5rXoHEpaskhhBBCCFEa9G7oSFVLI27HJrM+IEzX4ZRqksgLUUjrToehKNDctTJOlU11HU6usp5mrjsdRmRsso6jEQA/7L7OzbsJ2FkYMbWLl67DEUIIIYQodYz01YxulTml8s97A9HIlMp5kkReiEJQFIU1JzOb1ZemQe4e19i5Mo2dK5GaoWHRoSBdh1PhXb0Tx097M+dFnd3TG0tjAx1HJIQQQghROg1tXgMLY30CoxLYcemOrsMptSSRF6IQTt+K5sbdBIwN9PD3qabrcPI13jezVv6vI8EkyMifOqPRKExfe460DIUOtavSpa69rkMSQgghhCi1LIwNePHhlMo/7Q2UKZXzIIm8EIWQVRvfxdsecyN9HUeTvw61q+L6cOTPFcdv6TqcCmvZ8RBOBj/AzFDNh728S93giEIIIYQQpc2oVq4Y6utxOkSmVM6LJPJCFFByWgabzoQDpbtZfRa1noqxbTL7GP124CbpGTLyZ0mLjE3ms38uAzClcy0crE10HJEQQgghROlna2FE/4f32/Mfdk8U2UkiL0QB7boUSWxyOvaWxrR0t9F1OAXSr1F1qpgZEhadxN/nInQdToUze9NF4pLTqV/diuEtXHQdjhBCCCFEmTG+jRt6KthzJYpLEbG6DqfUkUReiALKmju+TyNH1Hplo3m0sYGaES1dAFiw/4b0MSpBuy7d4e9zEaj1VHzS16fM/GaEEEIIIUoDFxszuj4ck+pnqZXPQRJ5IQogKi6FvVejgMxa7rLkxeecMTbQ43xYLIcD7+k6nAohISWdGRsuADC2tSveDlY6jkgIIYQQoux52c8dgE1nI7h1P1HH0ZQuksgLUQAbAsLI0CjUd7Kmpp25rsMplEpmhgxs4gTAz/tu6DiaimHujquERSdRvZIJr3fw0HU4QgghhBBlUl1HK1rXtCFDo/DrfrmPfZQk8kIUwOqHo9X3b+So40ieztjWmX2M9l6N4vJt6WNUnM6FxrDw4E0APu5dF1PD0j27gRBCCCFEafZy28xa+RUnbnEvPkXH0ZQeksgL8QQXwmO4fDsOQ7UePeo76Dqcp1Kjiild62b2MfpFauWLTXqGhmlrz6JRoGd9B9rWstN1SEIIIYQQZVpL9yr4OFqRnKbhj8PBug6n1JBEXognWHMyDID2te2wNjXUcTRPb7yvGwAbA8KJiEnScTTl08KDQVwIj8XKxIAPutfRdThCCCGEEGWeSqXipYd95f84FERCSrqOIyodJJEXIh9pGRo2BGQm8mVtkLvH1XeyprlrZdI1CosOBuk6nHLn1v1E5u64CsC7/l7YWhjpOCIhhBBCiPKhS117XKqYEpOUxvLjt3QdTqkgibwQ+dh3NYp7CalUMTPEr5atrsN5Zlm18kuPhhCXnKbjaMoPRVH4YMN5ktIyaO5aWTu4oBBCCCGEeHZqPRXjfTNr5X/bf4O0DI2OI9I9SeSFyEfW3PG9GjhioC77p0u7WnbUtDMnLiWdZcdCdB1OubH5bAR7rkRhqNbjk74+qFQyZ7wQQgghRFHq28gRG3MjwmOS2RgQrutwdK7sZyZCFJPoxFR2XowEoF/jsjla/eP09FSMb5NZK//7gSBS0+Vp5rOKSUxj9qbMOeNfaVcTd9uyNT2hEEIIIURZYGygZnRrFwB+2huIRqPoNiAdk0ReiDxsOhtBaoYGL3sLvB2sdB1OkenV0AE7CyNuxyaz+aw8zXxWn229xN34VNxtzXiprZuuwxFCCCGEKLdeeM4ZCyN9rkXG8+/lSF2Ho1OSyAuRhzVZc8c3LtuD3D3OSF/NyFYuQOZUdIpSsZ9mPovFR4JZdixzwJVP+9bDSF+t44iEEEIIIcovS2MDhj5XA8isla/IJJEXIheBUfEE3IpGraeiV4Py0az+UcOaOWNqqOby7Tj2Xbur63DKpMVHgvlg/XkAJrZ1p5lrZR1HJIQQQghR/o1p5YqhWo8TwQ84HnRf1+HojCTyQuQiqzbez9O2XE4jZmVqwOCmmU8zf9lXsZ9mPo2/Hknix/u68XbnWjqOSAghhBCiYrCzNKZvo8yKtp/2VNz7WEnkhXhMhkZh3enyMXd8fka3dkGtp+Lg9XucD4vRdThlxl9Hgnn/YRI/ro0r07t6ySj1QgghhBAlaLyvGyoV7LocyZXbcboORyckkRfiMYcD7xERk4ylsT7ta9vpOpxiU72SKd3rVQNgwf4bOo6mbHg8iX/Xv7Yk8UIIIYQQJczN1pwu3vYA/FxBW5dKIi/EY7Lmju9R3wFjg/I9eNm4h1PRbT4bQeiDRB1HU7otOSpJvBBCCCFEafGSnzsAGwPCCYtO0nE0JU8SeSEeEZ+SztbztwHoV85Gq89NXUcrWtWsQoZG4fcDQboOp9RacjSY99ZlJvFjW0sSL4QQQgiha/WdrGnhVoV0jcKvFbB1qSTyQjxiy7kIktIycLMxo6GTta7DKRHjfTOfZi4/HkJMYpqOoyl9lh4NyZbEv9dNknghhBBCiNLg5bYP72OP3eJBQqqOoylZksgL8Yis0er7Na5eYZI1Xw8bvOwtSEzNYMmxYF2HU6osPRrCu+vOATBGknghhBBCiFKljYcN3g6WJKVl8OfhinUfK4m8EA/dup/I0Zv3UamgT8PyN3d8XlQqFeN9M/vKLzwYREp6ho4jKh0eT+LflyReCCGEEKJUUalUTHjYV37RoZskpqbrOKKSI4m8EA+tPZU55VxL9yo4WJvoOJqS1b2eA/aWxkTFpbDhdLiuw9E5SeKFEEIIIcoG/7r21KhsyoPENFYev6XrcEqMJPJCAIqisPb0w2b15Xju+LwY6usxurULAL/sv4FGo+g2IB1aduy/JH50K0nihRBCCCFKM321HuMeti5dsP8maRkaHUdUMiSRFwI4EfyA4HuJmBmq6VLXXtfh6MSQZjWwMNLnemQ8e65G6jocnVh2LITpa/9L4j/oLkm8EEIIIURpN6BxdWzMDQmLTmLz2YrRulQSeSH4b5C7rj7VMDXU13E0umFhbMDQ5jUA+HlvxZvCY/kjSfyoVi6SxAshhBBClBHGBmpGtnQBMu9jFaX8ty6VRF5UeMlpGfx9NgKomM3qHzWqlSv6eiqO3rzPmVvRug6nxCw/FsK0R5L4Gd3rSBIvhBBCCFGGvPicC2aGai7fjmPPlShdh1PsJJEXFd62C7eJS0nH0dqE5q6VdR2OTtlbGdOzgQMAv+yrGLXyksQLIYQQQpR9Vqb/tS6dvzdQx9EUP0nkRYW35uFo9f0aOaKnJwlc1lR0/5yPIOReoo6jKV4rjksSL4QQQghRXoxp7YaBWsWxm/c5GfxA1+EUK0nkRYV2JzaZA9cym970reDN6rN42Vvi52mLRoHfDpTfWvkVx0N4Z01mEj+ypSTxQgghhBBlnb2VMb0bOALwUzmvlZdEXlRo606HoVGgsXMlXGzMdB1OqTHhYa38yhOhPEhI1XE0RW/l8VvamviRLV2Y2UOSeCGEEEKI8mCCnxsqFey4eIfrkXG6DqfYSCIvKixFUbSj1Vf0Qe4e18K9Ct4OliSlZbD4SLCuwylSK4/f4p21Z1EUSeKFEEIIIcqbmnYWdKxdFYCfyvFMTJLIiwrrXFgM1yLjMdTXo1u9aroOp1RRqVTavvJ/HAoiOS1DxxEVDUnihRBCCCHKv5faugOwISCMiJgkHUdTPCrmhNkFlZAAanXO5Wo1GBtnL5cXPT0wMXm6somJkNcciCoVmJo+XdmkJNBo8o7DzOzpyiYnQ0Y+CV9hypqaZsYN6KWlZe43A4MnliUlBdLT816viUnmfgbWH7mJSWoyXT3tsdKkwuNNyB8pS2oqpKXlvV5j4/9+K4Upm5aWWT4vRkagr1/4sunpmfsiL4aG/+3PPMp2c7PkO1MIjk1kzalQhjV3zjxmycl5r9fAIHPd8F/ZtDTUyck5j+GjZTWazN9aQdb7pLL6+pn7AjLPicTMAfvWnAxl1obzGCvwwnM1ePd5Z1SpqbmWzVVhzvvydI3I7fiVsmvEE8/7p7xGPPFcLivXiKxjmJ7+xPNeqwDXiFzLPs01oiBlS+Aa8cxli/Maoa9f8LJyH5GplF0jVE+6lymH9xG5li2r14i87mVKyzWiNN9H5KYErhGN7EzwdTDheNAD/txxgckdamY/hqXsGqEtm9/xe5wicoiJiVEAJSbz55rzz98/+wdMTXMvB4ri55e9rI1N3mWbNMle1tk577J16mQvW6dO3mWdnbOXbdIk77I2NtnL+vnlXdbUNHtZf/+8yz7+U+vfP/+y8fGKoihKamqqEtyuXf5lIyP/W+/EifmXvXlTURRFSUnLUBa1fEIM58//t96ZM/Mve+zYf2W/+CL/srt3/1d23rz8y27e/F/ZhQvzL7ty5X9lV67Mv+zChf+V3bw537Lvd3xJafu/3UpGhiYz9vzW+8UX/6332LH8y86c+V/Z8+fzLztlyn9lb97Mv+zEif+VjYzMv+yIEf+VjY/Pv2z//tl/w/mVlWtE5l8JXCMURck8jvmVfYprhKIomb+7/MqWsWtE2tKl/5UtwmuEMm/ef2XlGvGf/MoW8hqRmpqqrF+/XklNTZVrRJYydI1ITU1VLg0alH/ZUnCNKK77CLlGPPyT+4jMP7lG/PeXy31EDCiAEhMTozyJNK0XFdK/lyNJTs/n6Z/QMtbX4+bdBHZcuqPrUIQQQgghhBCASlEURddBlDaxsbFYWVkREx6OpaVlzgLS3CX3ssXQJC4tLY2tGzbQpUMHDIqwaf24P0+w51wo41s48XZnr3zLAqW72WxuZYuwSdyXu28w70AIjZ0rsWZ880I3iUtLS2Pbtm107tw5+zEsgSZxK4+HMGv5cRQFhjZ34v1uj/WJlyZxuZd95LzP9fiVomsEULqaxOVFh9cI7THs2RODrN+PNJvN/PeTzvtSco1I09dny5Yt+Pv7Y5Df70HuI/5Tiq4RaWlp/LNhA13zu5cpx/cR5eEakee9TCm5RpTm+4hcleA1YtOZcKauPkslMwOm1E6ih//DY1iKrhGPlo2NjcXKwYGYmJjc89BHSB/5/JiZZf9B5FeuMOssqEdPiKIs++gJXJRlH73gFGFZjYFB5n7L6z+/RxkZ/XdBzcO9+BR2X44kXW1Az5aeBTsmhob//QdQlGUNDAr2vQpbVl8/e5/KZyg73NeDXw6HcjL4ASdDY2jsXLlg61WrM/dtWhoZxsb5H0M9vYKfGwUsu+rELd5Zew7FwJjhLZx5v6d3/gPbqVTFdy6X5WvEk45fKbhGFOS8f6qyxXXel/Q1IusYPnqeF+E1Ipus876oyxbDNQIo3Hmvy2vEozeCpe0aUZRly/E1QinMvUw5u4/IpqxeIwpyLyP3Ef8pRdeIrs3d+Xz/LUIfJHEozoQeuR3DUnCN0JbN70HFY0pF0/offvgBFxcXjI2Nad68OceOHcuzbFpaGh9++CHu7u4YGxtTv359tm7dmq2Mi4sLKpUqx98rr7xS3F9FlAGbzoSTrlGo62hJLXsLXYdT6tlZGtOnoSMAv+wrG1N4rDpxi6lrMkenf/E5Z2Y/KYkXQgghhBDljr5aj3FtMmdi+jdcj/SM8tO1VueJ/IoVK5g8eTIzZ87k1KlT1K9fn86dOxMZGZlr+ffff5+ff/6Z77//nosXL/LSSy/Rp08fTp8+rS1z/PhxIiIitH87duwAYMCAASXynUTptuZUGCBzxxfGOF9XALZfvMONqHgdR5O/1SdDsyXxH/aSJF4IIYQQoqIa2MSJKmaGVDdTiE3Op1l8GaPzRH7u3LmMGzeOUaNGUadOHX766SdMTU35/fffcy2/ePFi3n33Xfz9/XFzc+Pll1/G39+fr776SlvG1tYWe3t77d/mzZtxd3fHz8+vpL6WKKWu3onjXFgM+noqetZ30HU4ZUZNOws61LZDUeDXAzd1HU6eVp8M5e3VZySJF0IIIYQQAJgYqtnxRmvG1NJQ2ayATd3LAJ32kU9NTeXkyZNMnz5du0xPT48OHTpw+PDhXD+TkpKC8WP9I0xMTDhw4ECe2/jrr7+YPHlynjf0KSkppDwySEdsbCyQ2Yw/Lb8BCkSxy9r/RXUcVh4PAaCtpw2WRnpyfAthVMsa7LwUyeqTobzW1pUq5gXrH1TUxzAva0+HMW3dhcyB7ZpV5wN/T9LzG4xEFEhJHT9RfOQYln1yDMs2OX5lnxzDss9YnTlQX2k/hoWJT6ej1oeHh+Po6MihQ4do0aKFdvnUqVPZu3cvR48ezfGZoUOHcubMGdavX4+7uzu7du2iV69eZGRkZEvGs6xcuZKhQ4cSEhKCg0PuNbCzZs1i9uzZOZYvXboU08IM7CBKtQwFZp1UE5umYrRnBvWryIQNhaEo8PV5NcHxKjo7avCvUXr6GB2LVLE0UA8FFa2qahjgqkEq4oUQQgghRFmSmJjI0KFDy+eo9d9++y3jxo3Dy8sLlUqFu7s7o0aNyrMp/m+//UbXrl3zTOIBpk+fzuTJk7WvY2NjcXJyolOnTk/cgaJ4paWlsWPHDjp27Jj3lC0FtO/aXWKPnKKSqQFvDemAob7Oe5aUOXrOt3ltxVmO3jfif6N9MTFUP/EzRXkMc7PudDhLj5xHIbMmfma32ujpSRZfVIr7+IniJ8ew7JNjWLbJ8Sv75BiWfWXlGGa1DC8InSbyNjY2qNVq7ty5k235nTt3sLe3z/Uztra2rF+/nuTkZO7du4eDgwPTpk3Dzc0tR9ng4GB27tzJ2rVr843DyMgIo1ymETAwMCjVB7oiKYpjsf7MbQB61nfAzKSA00aIbLrVr85XO68TfC+R9WdvM7yFS4E/Wxzn05qTobyz7jyKAi88V4MPe9aVJL6YyPWw7JNjWPbJMSzb5PiVfXIMy77SfgwLE5tOqyQNDQ1p3Lgxu3bt0i7TaDTs2rUrW1P73BgbG+Po6Eh6ejpr1qyhV69eOcosXLgQOzs7unXrVuSxi7IlNjmN7RcyE/l+jWW0+qel1lMxtnXmCPa/7r9JhkZ33RPWngplysOB7YY1lyReCCGEEEJUHDpvWzx58mQWLFjAH3/8waVLl3j55ZdJSEhg1KhRAAwfPjzbYHhHjx5l7dq13Lhxg/3799OlSxc0Gg1Tp07Ntl6NRsPChQsZMWIE+vplrgeBKGJ/n40gJV2Dh505Po5Wug6nTOvf2IlKpgaE3E9k6/nbOolh7alQ3lr1XxL/US9J4oUQQgghRMWh8wx30KBBREVFMWPGDG7fvk2DBg3YunUrVatWBSAkJAQ9vf+eNyQnJ/P+++9z48YNzM3N8ff3Z/HixVhbW2db786dOwkJCWH06NEl+XVEKbXmZCiQWRsv05E9GxNDNS+2cOG7Xdf4ZV8g/j72JbpPH03ih0oSL4QQQgghKiCdJ/IAkyZNYtKkSbm+t2fPnmyv/fz8uHjx4hPX2alTJ3Q4IL8oRYLuJnAi+AF6Kv7f3p1HR1keehz/zSSTlWA2CEkKIQnIJhIQiBAqt5VFcQHEBaVK014sFBREq0JB0HpBPdddC+JV6sEi1AWqbaWlUcAQDEhCxAYRCEpkCUuEbCUZZub+kaXGhJAJk7x5Z76fczjHvHkn+Q0PtPzyvM/zaOLAeKPjeIWpwxL0yuYDyvv2jLYfLFZqUlSbfN91ufVL/OOUeAAAAPggwx+tB1rbeznVs/EjenZSTMcgg9N4h6gOgbq5Zq+BFVsK2uR7rsv9VnP/RIkHAAAAKPLwak6nS+/mHJYkTRrEbLwn/fePk2SxSBlfHte+otJW/V7rcr/V/TUl/vahlHgAAAD4Noo8vFr2wWIdPv1vhQX6a2y/xo80RMskRodqTN/qvSxe/aT1ZuVrS7yzpsT/zwRKPAAAAHwbRR5e7d2ax+qvuzxWQTY/g9N4n7uvSpYkrc89ouMlZz3+9dfnHv5eie9KiQcAAABEkYcXq6g6pw93H5XE2fGt5YqECA1OiFCVw6k/ZH3t0a+9Pvew5v5p1/dKfH9KPAAAACCKPLzYhi+OqbzKoYSoEA1OiDA6jte6+6okSdKbn36jsspzHvmaf95FiQcAAADOhyIPr1X7WP1NAzk7vjWN6hOjpOhQlZw9p7U7Ci/66/1512Hdt7a6xE8eQokHAAAAfogiD6905PS/lXXglCTpJnarb1VWq0X//ePqWfnXMw/K7nC2+Gv9sMQvmUiJBwAAAH6IIg+vtC73sFwuKTUxUl0jQ4yO4/VuGhSv6A4BOnz63/pbzb4E7qLEAwAAAM1DkYfXcblcendn9WP1bHLXNoJsfpo6rLskacWWArlcLrde//0Sf9tgSjwAAADQFIo8vE5u4WkVnCxXsM1P4/rHGh3HZ/zsygQF2/z0ryMldcsamuOHJX7pTZR4AAAAoCkUeXid2tn4ay7rog6B/gan8R0RoQG6dXD1ExCvbClo1mvezztCiQcAAADcRJGHVzlrd+iDvCOSpEmDeKy+rf33j5NktUhbvjqhPUdLmrz3/bwjmrMmV06XdOvgH1HiAQAAgGaiyMOrZOw5rpKz59SlY5CGJUcZHcfndI0M0bU1yxle/eT8s/I/LPFP3HQ5JR4AAABoJoo8vErt2fETB8XLj2JoiF9dVX0U3fu7jujomX83+PwH3yvxt1xBiQcAAADcRZGH1zhRWqnNX52QxGP1Rrr8R+FKTYzUOadLK7d+Xe9zH+Qd0ezvlfgnJ1HiAQAAAHdR5OE1/rzrsBxOlwZ0DVePzh2MjuPTfjWyelZ+dfYhlZ61S5L+uvuY5tRsbEeJBwAAAFqOLb3hNd6p2a3+5kHxBifBf13aWT07d9C+42Va+9lhHTtp0ZvZu+VwuijxAAAAwEViRh5e4V9HzujLY6UK8LPqhgFxRsfxeVarRdNq1sov21ygVfuscjhdupkSDwAAAFw0ijy8wns5hyVJV/fprPCQAIPTQJLGp8Spc1igSs6ek1MW3TQwjhIPAAAAeABFHqZndzj1513VRZ5N7tqPQH8//fq/kiVJqZ2cWjKhHycJAAAAAB7AGnmY3pavTuhkWZWiQgM0slcno+Pge6YO766re0dr5ycfUeIBAAAAD2FGHqZXe3b8+JR42fz4I92eWCwWdekYJAsdHgAAAPAYWg9M7XRFlf6Zf1ySNOkKdqsHAAAA4P3cLvLdu3fXY489pkOHDrVGHsAtH3x+VFUOp3p3CVO/uEuMjgMAAAAArc7tIj9nzhy99957SkpK0ujRo7VmzRpVVla2Rjbggt6tPTv+Cja5AwAAAOAbWlTkd+3ape3bt6tPnz665557FBsbq1mzZiknJ6c1MgKNOnCiTLsKT8vPatH4FB6rBwAAAOAbWrxGftCgQXrhhRd05MgRLVq0SP/3f/+nIUOGKCUlRa+//rpcLpcncwIN1M7Gj7y0kzqFBRqcBgAAAADaRouPn7Pb7Vq3bp1WrlypjRs36sorr9Qvf/lLffvtt5o/f77++c9/avXq1Z7MCtRxOF1al8vZ8QAAAAB8j9tFPicnRytXrtRbb70lq9Wqu+66S88++6x69+5dd8/EiRM1ZMgQjwYFvm/bgVM6euasOgb56+o+nY2OAwAAAABtxu0iP2TIEI0ePVrLli3ThAkTZLPZGtyTmJioyZMneyQg0Jjas+NvGBCnIJufwWkAAAAAoO24XeQLCgqUkJDQ5D2hoaFauXJli0MBTSmrPKcNXxyTJE1it3oAAAAAPsbtze6OHz+u7OzsBtezs7P12WefeSQU0JS/7T6qf9sdSooO1cCu4UbHAQAAAIA25XaRnzlzpgoLCxtcP3z4sGbOnOmRUEBTanern3TFj2SxWAxOAwAAAABty+0in5+fr0GDBjW4PnDgQOXn53skFHA+hcUVyj5YLItFmjiQs+MBAAAA+B63i3xgYKCKiooaXD969Kj8/Vt8mh3QLO/lVB85Nzw5SnHhwQanAQAAAIC253aRHzNmjObNm6czZ87UXTt9+rTmz5+v0aNHezQc8H0ul0vv5dY8Vs/Z8QAAAAB8lNtT6P/7v/+rq666SgkJCRo4cKAkadeuXYqJidGqVas8HhCo9dk33+mbUxUKDfDTNZd1MToOAAAAABjC7SIfHx+vzz//XH/84x+Vl5en4OBgpaen6/bbb2/0THnAU2o3ubu2f6xCAljGAQAAAMA3tagNhYaG6u677/Z0FuC8ztod+uvnRyXxWD0AAAAA39biac38/HwdOnRIVVVV9a7feOONFx0K+KGNe46rtPKc4sODlZoYaXQcAAAAADCM20W+oKBAEydO1O7du2WxWORyuSSp7jxvh8Ph2YSApHW5RyRJkwbFy2rl7HgAAAAAvsvtXetnz56txMREHT9+XCEhIfrXv/6lLVu2aPDgwdq0aVMrRISvO1MlbT1wSpJ0E4/VAwAAAPBxbs/Ib9u2TR999JGio6NltVpltVo1YsQILV26VPfee69yc3NbIyd82GcnLHK6pMEJEeoeHWp0HAAAAAAwlNsz8g6HQ2FhYZKk6OhoHTlS/chzQkKC9u7d69l08Hkul0vbT1T/MWU2HgAAAABaMCN/2WWXKS8vT4mJiUpNTdVTTz2lgIAArVixQklJSa2RET7siyMlOvZviwL8rbru8lij4wAAAACA4dwu8gsWLFB5ebkk6bHHHtP111+vH//4x4qKitLatWs9HhC+rXaTu9G9O+uSYJvBaQAAAADAeG4X+bFjx9b9d48ePfTll1+quLhYERERdTvXA55Qdc6pv+w+JkmaOJDZeAAAAACQ3Fwjb7fb5e/vry+++KLe9cjISEo8PC7rwEl9V2FXR5tLaclRRscBAAAAgHbBrSJvs9nUrVs3zopHm9i6/6QkqU+4S/5+bu/LCAAAAABeye129Nvf/lbz589XcXFxa+QB6mTurz47vle4y+AkAAAAANB+uL1G/qWXXtL+/fsVFxenhIQEhYbWP9c7JyfHY+Hgu06VVWrP0RJJUs+OFHkAAAAAqOV2kZ8wYUIrxADq21ZQPRt/aecO6hhw2tgwAAAAANCOuF3kFy1a1Bo5gHpq18cPT46UdNrQLAAAAADQnrCDGNqlrTXr44exWz0AAAAA1ON2kbdarfLz8zvvL+BiFRZX6FBxhfysFg3tHmF0HAAAAABoV9x+tH7dunX1Prbb7crNzdUbb7yhRx991GPB4LtqH6tP6RquDoFu/xEFAAAAAK/mdksaP358g2s333yz+vXrp7Vr1+qXv/ylR4LBd209UP1YfRqP1QMAAABAAx5bI3/llVcqIyPDU18OPsrpdCmrZkY+rUe0wWkAAAAAoP3xSJH/97//rRdeeEHx8fGe+HLwYXuLSnWqvErBNj8N7Mb6eAAAAAD4IbcfrY+IiJDFYqn72OVyqbS0VCEhIXrzzTc9Gg6+p3Z9/JDESAX4W2W3OwxOBAAAAADti9tF/tlnn61X5K1Wqzp16qTU1FRFRDCDiotTW+RH9GB9PAAAAAA0xu0i//Of/7wVYgCS3eHU9oPFkqThyayPBwAAAIDGuL1GfuXKlXr77bcbXH/77bf1xhtveCQUfFNe4WmVVzkUEWJT39iORscBAAAAgHbJ7SK/dOlSRUc3nC3t3LmzlixZ4pFQ8E2ZNY/VD0+OltVqucDdAAAAAOCb3C7yhw4dUmJiYoPrCQkJOnTokEdCwTdl7a8+P3446+MBAAAA4LzcLvKdO3fW559/3uB6Xl6eoqIoYGiZ8spzyi38TpI0gvPjAQAAAOC83C7yt99+u+699159/PHHcjgccjgc+uijjzR79mxNnjy5NTLCB2z/ulh2h0vx4cHqFhlidBwAAAAAaLfc3rX+d7/7nb7++mtdffXV8vevfrnT6dRdd93FGnm0WFbN+vi0HlH1jjcEAAAAANTndpEPCAjQ2rVr9fjjj2vXrl0KDg5W//79lZCQ0Br54CMya9bHp/FYPQAAAAA0ye0iX6tnz57q2bOnJ7PAR50qq9SeoyWSOD8eAAAAAC7E7TXykyZN0pNPPtng+lNPPaVbbrnFI6HgW7YVVM/G94oJU6ewQIPTAAAAAED75naR37Jli8aNG9fg+rXXXqstW7Z4JBR8y9a69fHMxgMAAADAhbhd5MvKyhQQENDgus1mU0lJiUdCwbdsrVsfz/GFAAAAAHAhbhf5/v37a+3atQ2ur1mzRn379vVIKPiOwuIKHSqukJ/VotQkijwAAAAAXIjbm90tXLhQN910kw4cOKCf/vSnkqSMjAytXr1a77zzjscDwrvVPlaf0jVcHQJbvPciAAAAAPgMt5vTDTfcoPXr12vJkiV65513FBwcrAEDBuijjz5SZGRka2SEF9t6oOax+mRm4wEAAACgOVo0BXrdddfpuuuukySVlJTorbfe0gMPPKCdO3fK4XB4NCC8l9PpUhYb3QEAAACAW9xeI19ry5Ytmjp1quLi4vT000/rpz/9qT799FNPZoOX21tUqlPlVQq2+Wlgtwij4wAAAACAKbg1I3/s2DH94Q9/0GuvvaaSkhLdeuutqqys1Pr169noDm6rXR8/JDFSAf4t/pkSAAAAAPiUZrenG264Qb169dLnn3+u5557TkeOHNGLL77Ymtng5WqL/AiOnQMAAACAZmv2jPyHH36oe++9VzNmzFDPnj1bMxN8gN3h1PaDxZKk4cmsjwcAAACA5mr2jHxmZqZKS0t1xRVXKDU1VS+99JJOnjzZmtngxfIKT6u8yqGIEJv6xnY0Og4AAAAAmEazi/yVV16pV199VUePHtWvfvUrrVmzRnFxcXI6ndq4caNKS0tbFODll19W9+7dFRQUpNTUVG3fvv2899rtdj322GNKTk5WUFCQBgwYoA0bNjS47/Dhw/rZz36mqKgoBQcHq3///vrss89alA+tI7PmsfrhydGyWi0GpwEAAAAA83B7h7HQ0FD94he/UGZmpnbv3q37779fTzzxhDp37qwbb7zRra+1du1azZ07V4sWLVJOTo4GDBigsWPH6vjx443ev2DBAr3yyit68cUXlZ+fr+nTp2vixInKzc2tu+e7775TWlqabDabPvzwQ+Xn5+vpp59WRAS7orcnWfurz48fzvp4AAAAAHDLRW0V3qtXLz311FP69ttv9dZbb7n9+meeeUbTpk1Tenq6+vbtq+XLlyskJESvv/56o/evWrVK8+fP17hx45SUlKQZM2Zo3Lhxevrpp+vuefLJJ9W1a1etXLlSQ4cOVWJiosaMGaPk5OQWv094VnnlOeUWfidJGsH58QAAAADgFreOnzsfPz8/TZgwQRMmTGj2a6qqqrRz507Nmzev7prVatWoUaO0bdu2Rl9TWVmpoKCgeteCg4OVmZlZ9/H777+vsWPH6pZbbtHmzZsVHx+vX//615o2bdp5s1RWVqqysrLu45KSEknVj/Lb7fZmvyc0z7b9J2R3uBQfHqTYMFuTv8e1n2MczIsxNDfGz/wYQ/NjDM2N8TM/xtD8zDKG7uSzuFwuVytmOa8jR44oPj5eWVlZGjZsWN31Bx98UJs3b1Z2dnaD19xxxx3Ky8vT+vXrlZycrIyMDI0fP14Oh6OuiNcW/blz5+qWW27Rjh07NHv2bC1fvlxTp05tNMvixYv16KOPNri+evVqhYSEeOLt4nvWf23Vx0etSu3k1B09nEbHAQAAAADDVVRU6I477tCZM2fUsWPTG4J7ZEa+rTz//POaNm2aevfuLYvFouTkZKWnp9d7FN/pdGrw4MFasmSJJGngwIH64osvmizy8+bN09y5c+s+LikpUdeuXTVmzJgL/gbCfctf3iapVLf91wCNuzy2yXvtdrs2btyo0aNHy2aztU1AeBRjaG6Mn/kxhubHGJob42d+jKH5mWUMa58Mbw7Dinx0dLT8/PxUVFRU73pRUZG6dOnS6Gs6deqk9evX6+zZszp16pTi4uL08MMPKykpqe6e2NhY9e3bt97r+vTpo3ffffe8WQIDAxUYGNjgus1ma9cDbUanyiq151j1CQc/vjSm2b+/jIX5MYbmxviZH2NofoyhuTF+5scYml97H0N3sl3UZncXIyAgQFdccYUyMjLqrjmdTmVkZNR71L4xQUFBio+P17lz5/Tuu+9q/PjxdZ9LS0vT3r17693/1VdfKSEhwbNvAC2yraB6t/peMWHqFNbwhycAAAAAgKYZ+mj93LlzNXXqVA0ePFhDhw7Vc889p/LycqWnp0uS7rrrLsXHx2vp0qWSpOzsbB0+fFgpKSk6fPiwFi9eLKfTqQcffLDua953330aPny4lixZoltvvVXbt2/XihUrtGLFCkPeI+rbWnN+fBq71QMAAABAixha5G+77TadOHFCjzzyiI4dO6aUlBRt2LBBMTExkqRDhw7Jav3PQwNnz57VggULVFBQoA4dOmjcuHFatWqVwsPD6+4ZMmSI1q1bp3nz5umxxx5TYmKinnvuOU2ZMqWt3x4asbXm/Pg0zo8HAAAAgBYxfLO7WbNmadasWY1+btOmTfU+HjlypPLz8y/4Na+//npdf/31nogHDyosrtCh4gr5WS1KTaLIAwAAAEBLGLZGHr6n9rH6lK7h6hBo+M+QAAAAAMCUKPJoM1sP1DxWn8xsPAAAAAC0FEUebcLpdCmLje4AAAAA4KJR5NEm9haV6lR5lYJtfhrYLcLoOAAAAABgWhR5tIna9fFDEiMV4M8fOwAAAABoKRoV2kRWzfr4ERw7BwAAAAAXhSKPVmd3OJVdUF3khyezPh4AAAAALgZFHq0ur/C0yqscigixqW9sR6PjAAAAAICpUeTR6jJr1scPT46W1WoxOA0AAAAAmBtFHq0ua3/NY/WsjwcAAACAi0aRR6sqrzyn3MLvJEkjOD8eAAAAAC4aRR6tavvXxbI7XIoPD1a3yBCj4wAAAACA6VHk0aqyatbHp/WIksXC+ngAAAAAuFgUebSqrTXr49N4rB4AAAAAPIIij1ZzqqxS+UdLJHF+PAAAAAB4CkUerWZbQfVsfK+YMHUKCzQ4DQAAAAB4B4o8Wg2P1QMAAACA51Hk0Wq2fm+jOwAAAACAZ1Dk0SoKiyt0qLhCflaLhiZGGh0HAAAAALwGRR6tonY2PqVruMKCbAanAQAAAADvQZFHq9h6oGZ9fDKP1QMAAACAJ1Hk4XFOp0tZdevj2egOAAAAADyJIg+P21tUqlPlVQq2+Wlgtwij4wAAAACAV6HIw+Nq18cPSYxUgD9/xAAAAADAk2hZ8LismvXxIzh2DgAAAAA8jiIPj7I7nMouqC7yw5NZHw8AAAAAnkaRh0flFZ5WeZVDESE29Y3taHQcAAAAAPA6FHl41Nb9/5mNt1otBqcBAAAAAO9DkYdH1W50N5z18QAAAADQKijy8JjyynPKLfxOkpTG+ngAAAAAaBUUeXjM9q+LZXe4FB8erISoEKPjAAAAAIBXosjDY7JqHqtP6xEli4X18QAAAADQGijy8Jjaje7SevBYPQAAAAC0Foo8POJUWaXyj5ZI4vx4AAAAAGhNFHl4xLaC6tn4XjFh6hQWaHAaAAAAAPBeFHl4BI/VAwAAAEDboMjDI7Z+b6M7AAAAAEDrocjjohUWV+hQcYX8rBYNTYw0Og4AAAAAeDWKPC5a1oHq2fiUruEKC7IZnAYAAAAAvBtFHhcts3Z9fDKP1QMAAABAa6PI46I4nS5l1a2PZ6M7AAAAAGhtFHlclL1FpTpVXqVgm58GdoswOg4AAAAAeD2KPC5K7W71QxIjFeDPHycAAAAAaG00L1yUrAPV6+NHcOwcAAAAALQJijxazO5wKrugusgPT2Z9PAAAAAC0BYo8Wiyv8LTKqxyKCLGpb2xHo+MAAAAAgE+gyKPFtu7/z2y81WoxOA0AAAAA+AaKPFqsdqO74ayPBwAAAIA2Q5FHi1RUnVNu4XeSpDTWxwMAAABAm6HIo0W2HyyW3eFSfHiwEqJCjI4DAAAAAD6DIo8WqX2sPq1HlCwW1scDAAAAQFuhyKNFaje6S+vBY/UAAAAA0JYo8nDbqbJK5R8tkcT58QAAAADQ1ijycNu2gurZ+F4xYeoUFmhwGgAAAADwLRR5uI3H6gEAAADAOBR5uO37G90BAAAAANoWRR5uKSyu0KHiCvlZLRqaGGl0HAAAAADwORR5uCXrQPVsfErXcIUF2QxOAwAAAAC+hyIPt2TWro9P5rF6AAAAADACRR7N5nK5tK1mRn44G90BAAAAgCEo8mi2vUWlOllWpWCbnwZ2Czc6DgAAAAD4JIo8mi1zX/Vs/JDESAX6+xmcBgAAAAB8E0UezZZ1oHp9/AiOnQMAAAAAw1Dk0Sx2h1PZBdVFfngy6+MBAAAAwCgUeTRLXuFplVc5FBFiU9/YjkbHAQAAAACfRZFHs2zd/5/ZeKvVYnAaAAAAAPBdFHk0y9b9tcfOsT4eAAAAAIxEkccFVVSdU27hd5KkNNbHAwAAAIChKPK4oO0Hi2V3uBQfHqyEqBCj4wAAAACAT6PI44JqH6tP6xEli4X18QAAAABgJIo8Lqh2o7u0HjxWDwAAAABGo8ijScXlVco/WiKJ8+MBAAAAoD2gyKNJWQeqH6vvFROmTmGBBqcBAAAAAFDk0SQeqwcAAACA9oUijyZ9f6M7AAAAAIDxKPI4r8LiCh0qrpCf1aKhiZFGxwEAAAAAiCKPJtSuj0/pGq6wIJvBaQAAAAAAEkUeTcisXR+fzGP1AAAAANBeUOTRKJfLpW01M/LD2egOAAAAANoNijwatbeoVCfLqhRs89PAbuFGxwEAAAAA1KDIo1GZ+6pn44ckRirQ38/gNAAAAACAWhR5NCrrQPX6+BEcOwcAAAAA7QpFHg3YHU5lF1QX+eHJrI8HAAAAgPaEIo8G8gpPq7zKoYgQm/rGdjQ6DgAAAADge9pFkX/55ZfVvXt3BQUFKTU1Vdu3bz/vvXa7XY899piSk5MVFBSkAQMGaMOGDfXuWbx4sSwWS71fvXv3bu234TW27v/PbLzVajE4DQAAAADg+wwv8mvXrtXcuXO1aNEi5eTkaMCAARo7dqyOHz/e6P0LFizQK6+8ohdffFH5+fmaPn26Jk6cqNzc3Hr39evXT0ePHq37lZmZ2RZvxyts3V977Bzr4wEAAACgvTG8yD/zzDOaNm2a0tPT1bdvXy1fvlwhISF6/fXXG71/1apVmj9/vsaNG6ekpCTNmDFD48aN09NPP13vPn9/f3Xp0qXuV3Q0a72bo6LqnHILv5MkpbE+HgAAAADaHX8jv3lVVZV27typefPm1V2zWq0aNWqUtm3b1uhrKisrFRQUVO9acHBwgxn3ffv2KS4uTkFBQRo2bJiWLl2qbt26nfdrVlZW1n1cUlIiqfoxfrvd3qL3Zlbb9p+U3eFSfHiQ4jraDH//td/f6BxoOcbQ3Bg/82MMzY8xNDfGz/wYQ/Mzyxi6k8/icrlcrZilSUeOHFF8fLyysrI0bNiwuusPPvigNm/erOzs7AavueOOO5SXl6f169crOTlZGRkZGj9+vBwOR10Z//DDD1VWVqZevXrp6NGjevTRR3X48GF98cUXCgsLa/A1Fy9erEcffbTB9dWrVyskJMSD77j9W/+1VR8ftSq1k1N39HAaHQcAAAAAfEJFRYXuuOMOnTlzRh07Nr3puKEz8i3x/PPPa9q0aerdu7csFouSk5OVnp5e71H8a6+9tu6/L7/8cqWmpiohIUF/+tOf9Mtf/rLB15w3b57mzp1b93FJSYm6du2qMWPGXPA30Nssf3mbpFLdOnKAxg2INTqO7Ha7Nm7cqNGjR8tmsxkdBy3AGJob42d+jKH5MYbmxviZH2NofmYZw9onw5vD0CIfHR0tPz8/FRUV1bteVFSkLl26NPqaTp06af369Tp79qxOnTqluLg4Pfzww0pKSjrv9wkPD9ell16q/fv3N/r5wMBABQYGNrhus9na9UB7WnF5lfYcK5UkXdUrpl29d18bC2/EGJob42d+jKH5MYbmxviZH2Nofu19DN3JZuhmdwEBAbriiiuUkZFRd83pdCojI6Peo/aNCQoKUnx8vM6dO6d3331X48ePP++9ZWVlOnDggGJjjZ9hbs+yDlTvVt8rJkydwhr+YAMAAAAAYDzDd62fO3euXn31Vb3xxhvas2ePZsyYofLycqWnp0uS7rrrrnqb4WVnZ+u9995TQUGBPvnkE11zzTVyOp168MEH6+554IEHtHnzZn399dfKysrSxIkT5efnp9tvv73N35+Z1J4fn9aD3eoBAAAAoL0yfI38bbfdphMnTuiRRx7RsWPHlJKSog0bNigmJkaSdOjQIVmt//l5w9mzZ7VgwQIVFBSoQ4cOGjdunFatWqXw8PC6e7799lvdfvvtOnXqlDp16qQRI0bo008/VadOndr67ZlK7fnxaZwfDwAAAADtluFFXpJmzZqlWbNmNfq5TZs21ft45MiRys/Pb/LrrVmzxlPRfEZhcYUOFVfIz2rR0MRIo+MAAAAAAM7D8Efr0T7Uro9P6RqusKD2uwEEAAAAAPg6ijwkSZm16+OTeaweAAAAANozijzkcrm0rWZGfjgb3QEAAABAu0aRh/YWlepkWZWCbX4a2C3c6DgAAAAAgCZQ5KHMfdWz8UMSIxXo72dwGgAAAABAUyjyUNYB1scDAAAAgFlQ5H2c3eFUdkFNkWd9PAAAAAC0exR5H5dXeFrlVQ5FhNjUN7aj0XEAAAAAABdAkfdxW2uOnRueHC2r1WJwGgAAAADAhVDkfdzW/bXHzrE+HgAAAADMgCLvwyqqzim38DtJUloy6+MBAAAAwAwo8j5s+8Fi2R0uxYcHKyEqxOg4AAAAAIBmoMj7sNrH6tN6RMliYX08AAAAAJgBRd6H1W50x7FzAAAAAGAeFHkfVVxepfyjJZKqd6wHAAAAAJgDRd5HZR2ofqy+V0yYOoUFGpwGAAAAANBcFHkfxWP1AAAAAGBOFHkfVTsjn8b58QAAAABgKhR5H1RYXKFvTlXIz2rR0MRIo+MAAAAAANxAkfdBtbPxKV3DFRZkMzgNAAAAAMAdFHkflFm7Pj6Zx+oBAAAAwGwo8j7G5XJpW82M/HA2ugMAAAAA06HI+5i9RaU6WValYJufBnYLNzoOAAAAAMBNFHkfk7mvejZ+SGKkAv39DE4DAAAAAHAXRd7HZB1gfTwAAAAAmBlF3ofYHU5lF9QUedbHAwAAAIApUeR9SF7haZVXORQRYlPf2I5GxwEAAAAAtABF3odsrTl2bnhytKxWi8FpAAAAAAAtQZH3IVvrjp1jfTwAAAAAmBVF3kdUVJ1T7qHvJElpyayPBwAAAACzosj7iO0Hi2V3uBQfHqyEqBCj4wAAAAAAWogi7yO27q9+rD6tR5QsFtbHAwAAAIBZUeR9RO1Gdxw7BwAAAADmRpH3AcXlVco/WiKpesd6AAAAAIB5UeR9QFbNbvW9YsLUKSzQ4DQAAAAAgItBkfcBdefHc+wcAAAAAJgeRd4H1M7Ij2B9PAAAAACYHkXeyxUWV+ibUxXys1o0NDHS6DgAAAAAgItEkfdytbPxKV3DFRZkMzgNAAAAAOBiUeS9XN2xc8msjwcAAAAAb0CR92Iul6tuRn446+MBAAAAwCtQ5L3Y3qJSnSyrUrDNTwO7hRsdBwAAAADgARR5L5a5r3o2fkhipAL9/QxOAwAAAADwBIq8F8s6wPp4AAAAAPA2FHkvZXc4lV1QU+RZHw8AAAAAXoMi76XyCk+rvMqhiBCb+sZ2NDoOAAAAAMBDKPJeqvbYueHJ0bJaLQanAQAAAAB4CkXeS22tO3aO9fEAAAAA4E0o8l6oouqccg99J0lKS2Z9PAAAAAB4E4q8F9p+sFh2h0vx4cFKiAoxOg4AAAAAwIMo8l6o7ti5HlGyWFgfDwAAAADehCLvhTL3Va+P59g5AAAAAPA+FHkvU1xepfyjJZKqd6wHAAAAAHgXiryXyarZrb5XTJg6hQUanAYAAAAA4GkUeS9Td348x84BAAAAgFeiyHuZ2hn5EayPBwAAAACvRJH3IoXFFfrmVIX8rBYNTYw0Og4AAAAAoBVQ5L1I7Wx8StdwhQXZDE4DAAAAAGgNFHkvUrs+Pi2Z9fEAAAAA4K0o8l7C5XLVzcgPZ308AAAAAHgtiryX2FtUqpNlVQq2+Wlgt3Cj4wAAAAAAWglF3kvUPlY/JDFSgf5+BqcBAAAAALQWiryX2Lq/+rF61scDAAAAgHejyHsBu8Op7IKaje5YHw8AAAAAXo0i7wXyCk+rvMqhiBCb+sZ2NDoOAAAAAKAVUeS9QO36+GHJUbJaLQanAQAAAAC0Joq8F9hac+wcj9UDAAAAgPejyJtcRdU55R76TpKUlkyRBwAAAABvR5E3ue0Hi2V3uBQfHqyEqBCj4wAAAAAAWhlF3uSyDtTuVh8li4X18QAAAADg7SjyJpe5j/XxAAAAAOBLKPImVlxepfyjJZKk4ayPBwAAAACfQJE3sW01j9X3iglTp7BAg9MAAAAAANoCRd7EMvdXP1Y/vEeUwUkAAAAAAG2FIm9iCVEh6t0lTCNYHw8AAAAAPsPf6ABouekjkzV9ZLLRMQAAAAAAbYgZeQAAAAAATIQiDwAAAACAiVDkAQAAAAAwEYo8AAAAAAAmQpEHAAAAAMBEKPIAAAAAAJgIRR4AAAAAABOhyAMAAAAAYCLtosi//PLL6t69u4KCgpSamqrt27ef91673a7HHntMycnJCgoK0oABA7Rhw4bz3v/EE0/IYrFozpw5rZAcAAAAAIC2ZXiRX7t2rebOnatFixYpJydHAwYM0NixY3X8+PFG71+wYIFeeeUVvfjii8rPz9f06dM1ceJE5ebmNrh3x44deuWVV3T55Ze39tsAAAAAAKBNGF7kn3nmGU2bNk3p6enq27evli9frpCQEL3++uuN3r9q1SrNnz9f48aNU1JSkmbMmKFx48bp6aefrndfWVmZpkyZoldffVURERFt8VYAAAAAAGh1/kZ+86qqKu3cuVPz5s2ru2a1WjVq1Cht27at0ddUVlYqKCio3rXg4GBlZmbWuzZz5kxdd911GjVqlB5//PEmc1RWVqqysrLu45KSEknVj/Hb7Xa33hM8q/b3n3EwL8bQ3Bg/82MMzY8xNDfGz/wYQ/Mzyxi6k8/QIn/y5Ek5HA7FxMTUux4TE6Mvv/yy0deMHTtWzzzzjK666iolJycrIyND7733nhwOR909a9asUU5Ojnbs2NGsHEuXLtWjjz7a4Po//vEPhYSEuPGO0Fo2btxodARcJMbQ3Bg/82MMzY8xNDfGz/wYQ/Nr72NYUVHR7HsNLfIt8fzzz2vatGnq3bu3LBaLkpOTlZ6eXvcofmFhoWbPnq2NGzc2mLk/n3nz5mnu3Ll1H5eUlKhr164aM2aMOnbs2CrvA81jt9u1ceNGjR49Wjabzeg4aAHG0NwYP/NjDM2PMTQ3xs/8GEPzM8sY1j4Z3hyGFvno6Gj5+fmpqKio3vWioiJ16dKl0dd06tRJ69ev19mzZ3Xq1CnFxcXp4YcfVlJSkiRp586dOn78uAYNGlT3GofDoS1btuill15SZWWl/Pz86n3NwMBABQYGNvheNputXQ+0L2EszI8xNDfGz/wYQ/NjDM2N8TM/xtD82vsYupPN0M3uAgICdMUVVygjI6PumtPpVEZGhoYNG9bka4OCghQfH69z587p3Xff1fjx4yVJV199tXbv3q1du3bV/Ro8eLCmTJmiXbt2NSjxAAAAAACYieGP1s+dO1dTp07V4MGDNXToUD333HMqLy9Xenq6JOmuu+5SfHy8li5dKknKzs7W4cOHlZKSosOHD2vx4sVyOp168MEHJUlhYWG67LLL6n2P0NBQRUVFNbgOAAAAAIDZGF7kb7vtNp04cUKPPPKIjh07ppSUFG3YsKFuA7xDhw7Jav3PgwNnz57VggULVFBQoA4dOmjcuHFatWqVwsPDDXoHAAAAAAC0HcOLvCTNmjVLs2bNavRzmzZtqvfxyJEjlZ+f79bX/+HXuBCXyyXJvc0G0DrsdrsqKipUUlLSrtez4PwYQ3Nj/MyPMTQ/xtDcGD/zYwzNzyxjWNs/a/toU9pFkW9vSktLJUldu3Y1OAkAAAAAwJeUlpbqkksuafIei6s5dd/HOJ1OHTlyRGFhYbJYLEbH8Wm1RwEWFhZyFKBJMYbmxviZH2NofoyhuTF+5scYmp9ZxtDlcqm0tFRxcXH1lpc3hhn5RlitVv3oRz8yOga+p2PHju36Lx0ujDE0N8bP/BhD82MMzY3xMz/G0PzMMIYXmomvZejxcwAAAAAAwD0UeQAAAAAATIQij3YtMDBQixYtUmBgoNFR0EKMobkxfubHGJofY2hujJ/5MYbm541jyGZ3AAAAAACYCDPyAAAAAACYCEUeAAAAAAATocgDAAAAAGAiFHkAAAAAAEyEIo92Z+nSpRoyZIjCwsLUuXNnTZgwQXv37jU6Fi7CE088IYvFojlz5hgdBW44fPiwfvaznykqKkrBwcHq37+/PvvsM6NjoZkcDocWLlyoxMREBQcHKzk5Wb/73e/EHrft05YtW3TDDTcoLi5OFotF69evr/d5l8ulRx55RLGxsQoODtaoUaO0b98+Y8KiUU2Nod1u10MPPaT+/fsrNDRUcXFxuuuuu3TkyBHjAqOBC/09/L7p06fLYrHoueeea7N8uLDmjOGePXt044036pJLLlFoaKiGDBmiQ4cOtX3Yi0SRR7uzefNmzZw5U59++qk2btwou92uMWPGqLy83OhoaIEdO3bolVde0eWXX250FLjhu+++U1pammw2mz788EPl5+fr6aefVkREhNHR0ExPPvmkli1bppdeekl79uzRk08+qaeeekovvvii0dHQiPLycg0YMEAvv/xyo59/6qmn9MILL2j58uXKzs5WaGioxo4dq7Nnz7ZxUpxPU2NYUVGhnJwcLVy4UDk5OXrvvfe0d+9e3XjjjQYkxflc6O9hrXXr1unTTz9VXFxcGyVDc11oDA8cOKARI0aod+/e2rRpkz7//HMtXLhQQUFBbZz04nH8HNq9EydOqHPnztq8ebOuuuoqo+PADWVlZRo0aJB+//vf6/HHH1dKSgo/uTaJhx9+WFu3btUnn3xidBS00PXXX6+YmBi99tprddcmTZqk4OBgvfnmmwYmw4VYLBatW7dOEyZMkFQ9Gx8XF6f7779fDzzwgCTpzJkziomJ0R/+8AdNnjzZwLRozA/HsDE7duzQ0KFD9c0336hbt25tFw7Ncr4xPHz4sFJTU/X3v/9d1113nebMmcMTh+1UY2M4efJk2Ww2rVq1yrhgHsKMPNq9M2fOSJIiIyMNTgJ3zZw5U9ddd51GjRpldBS46f3339fgwYN1yy23qHPnzho4cKBeffVVo2PBDcOHD1dGRoa++uorSVJeXp4yMzN17bXXGpwM7jp48KCOHTtW739LL7nkEqWmpmrbtm0GJsPFOHPmjCwWi8LDw42OgmZyOp2688479Zvf/Eb9+vUzOg7c5HQ69de//lWXXnqpxo4dq86dOys1NbXJJRTtGUUe7ZrT6dScOXOUlpamyy67zOg4cMOaNWuUk5OjpUuXGh0FLVBQUKBly5apZ8+e+vvf/64ZM2bo3nvv1RtvvGF0NDTTww8/rMmTJ6t3796y2WwaOHCg5syZoylTphgdDW46duyYJCkmJqbe9ZiYmLrPwVzOnj2rhx56SLfffrs6duxodBw005NPPil/f3/de++9RkdBCxw/flxlZWV64okndM011+gf//iHJk6cqJtuukmbN282Op7b/I0OADRl5syZ+uKLL5SZmWl0FLihsLBQs2fP1saNG0255gjVP0QbPHiwlixZIkkaOHCgvvjiCy1fvlxTp041OB2a409/+pP++Mc/avXq1erXr5927dqlOXPmKC4ujjEEDGS323XrrbfK5XJp2bJlRsdBM+3cuVPPP/+8cnJyZLFYjI6DFnA6nZKk8ePH67777pMkpaSkKCsrS8uXL9fIkSONjOc2ZuTRbs2aNUt/+ctf9PHHH+tHP/qR0XHghp07d+r48eMaNGiQ/P395e/vr82bN+uFF16Qv7+/HA6H0RFxAbGxserbt2+9a3369DHlrq6+6je/+U3drHz//v1155136r777uMpGRPq0qWLJKmoqKje9aKiorrPwRxqS/w333yjjRs3MhtvIp988omOHz+ubt261f3b5ptvvtH999+v7t27Gx0PzRAdHS1/f3+v+fcNM/Jod1wul+655x6tW7dOmzZtUmJiotGR4Karr75au3fvrnctPT1dvXv31kMPPSQ/Pz+DkqG50tLSGhz7+NVXXykhIcGgRHBXRUWFrNb6P6/38/Orm5GAeSQmJqpLly7KyMhQSkqKJKmkpETZ2dmaMWOGseHQbLUlft++ffr4448VFRVldCS44c4772yw58/YsWN15513Kj093aBUcEdAQICGDBniNf++ocij3Zk5c6ZWr16tP//5zwoLC6tb/3fJJZcoODjY4HRojrCwsAZ7GoSGhioqKoq9Dkzivvvu0/Dhw7VkyRLdeuut2r59u1asWKEVK1YYHQ3NdMMNN+h//ud/1K1bN/Xr10+5ubl65pln9Itf/MLoaGhEWVmZ9u/fX/fxwYMHtWvXLkVGRqpbt26aM2eOHn/8cfXs2VOJiYlauHCh4uLimtwVHW2rqTGMjY3VzTffrJycHP3lL3+Rw+Go+/dNZGSkAgICjIqN77nQ38Mf/vDFZrOpS5cu6tWrV1tHxXlcaAx/85vf6LbbbtNVV12ln/zkJ9qwYYM++OADbdq0ybjQLeUC2hlJjf5auXKl0dFwEUaOHOmaPXu20THghg8++MB12WWXuQIDA129e/d2rVixwuhIcENJSYlr9uzZrm7durmCgoJcSUlJrt/+9reuyspKo6OhER9//HGj/983depUl8vlcjmdTtfChQtdMTExrsDAQNfVV1/t2rt3r7GhUU9TY3jw4MHz/vvm448/Njo6alzo7+EPJSQkuJ599tk2zYimNWcMX3vtNVePHj1cQUFBrgEDBrjWr19vXOCLwDnyAAAAAACYCJvdAQAAAABgIhR5AAAAAABMhCIPAAAAAICJUOQBAAAAADARijwAAAAAACZCkQcAAAAAwEQo8gAAAAAAmAhFHgAAAAAAE6HIAwAAw1ksFq1fv97oGAAAmAJFHgAAH/fzn/9cFoulwa9rrrnG6GgAAKAR/kYHAAAAxrvmmmu0cuXKetcCAwMNSgMAAJrCjDwAAFBgYKC6dOlS71dERISk6sfely1bpmuvvVbBwcFKSkrSO++8U+/1u3fv1k9/+lMFBwcrKipKd999t8rKyurd8/rrr6tfv34KDAxUbGysZs2aVe/zJ0+e1MSJExUSEqKePXvq/fffb903DQCASVHkAQDABS1cuFCTJk1SXl6epkyZosmTJ2vPnj2SpPLyco0dO1YRERHasWOH3n77bf3zn/+sV9SXLVummTNn6u6779bu3bv1/vvvq0ePHvW+x6OPPqpbb71Vn3/+ucaNG6cpU6aouLi4Td8nAABmYHG5XC6jQwAAAOP8/Oc/15tvvqmgoKB61+fPn6/58+fLYrFo+vTpWrZsWd3nrrzySg0aNEi///3v9eqrr+qhhx5SYWGhQkNDJUl/+9vfdMMNN+jIkSOKiYlRfHy80tPT9fjjjzeawWKxaMGCBfrd734nqfqHAx06dNCHH37IWn0AAH6ANfIAAEA/+clP6hV1SYqMjKz772HDhtX73LBhw7Rr1y5J0p49ezRgwIC6Ei9JaWlpcjqd2rt3rywWi44cOaKrr766yQyXX3553X+HhoaqY8eOOn78eEvfEgAAXosiDwAAFBoa2uBRd08JDg5u1n02m63exxaLRU6nszUiAQBgaqyRBwAAF/Tpp582+LhPnz6SpD59+igvL0/l5eV1n9+6dausVqt69eqlsLAwde/eXRkZGW2aGQAAb8WMPAAAUGVlpY4dO1bvmr+/v6KjoyVJb7/9tgYPHqwRI0boj3/8o7Zv367XXntNkjRlyhQtWrRIU6dO1eLFi3XixAndc889uvPOOxUTEyNJWrx4saZPn67OnTvr2muvVWlpqbZu3ap77rmnbd8oAABegCIPAAC0YcMGxcbG1rvWq1cvffnll5Kqd5Rfs2aNfv3rXys2NlZvvfWW+vbtK0kKCQnR3//+d82ePVtDhgxRSEiIJk2apGeeeabua02dOlVnz57Vs88+qwceeEDR0dG6+eab2+4NAgDgRdi1HgAANMlisWjdunWaMGGC0VEAAIBYIw8AAAAAgKlQ5AEAAAAAMBHWyAMAgCaxCg8AgPaFGXkAAAAAAEyEIg8AAAAAgIlQ5AEAAAAAMBGKPAAAAAAAJkKRBwAAAADARCjyAAAAAACYCEUeAAAAAAATocgDAAAAAGAi/w/Bd2IAxuIFCAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot Test Accuracy as a horizontal line\n", "plt.figure(figsize=(12, 6))\n", "plt.plot(epochs, val_accuracies, label='Validation Accuracy')\n", "plt.axhline(y=test_accuracy, color='r', linestyle='--', label='Testing Accuracy')\n", "plt.xlabel('Epoch')\n", "plt.ylabel('Accuracy')\n", "plt.title('Testing Accuracy vs. Validation Accuracy for DeepGBM')\n", "plt.legend()\n", "plt.grid(True)\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Save the Models" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['./deep_learning_models/deepgbm_nn_model.pkl']" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Save LightGBM model\n", "lgb_model_path = './deepgbm_lgb_model.txt'\n", "booster.save_model(lgb_model_path)\n", "\n", "# Save Neural Network model\n", "nn_model_path = './deepgbm_nn_model.pkl'\n", "joblib.dump(nn_model, nn_model_path)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Load the Models for Future Predictions" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Loaded Model Test Accuracy: 0.9706779199564389\n" ] } ], "source": [ "nn_model_path = './deepgbm_nn_model.pkl'\n", "lgb_model_path = './deepgbm_lgb_model.txt'\n", "\n", "# Load LightGBM model\n", "loaded_booster = lgb.Booster(model_file=lgb_model_path)\n", "\n", "# Transform new data with the loaded LightGBM model\n", "new_X_gbdt = loaded_booster.predict(X_test, pred_leaf=True)\n", "\n", "# Load Neural Network model\n", "loaded_nn_model = joblib.load(nn_model_path)\n", "\n", "# Make predictions with the loaded NN model\n", "new_predictions = loaded_nn_model.predict(new_X_gbdt)\n", "\n", "# Evaluate to confirm predictions are consistent\n", "print(f'Loaded Model Test Accuracy: {accuracy_score(y_test, new_predictions)}')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Confusion Matrix" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy: 97.07%\n", "Confusion Matrix:\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAKyCAYAAADIG729AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVQVTR/A8S8NSkg+2BiUia1gd3cXdtdjd4Ct2K3YndjdYmFgYoAiKlgoCkpz3z94vHoFFH1BjN/nnD3HnZ2dnR03mDuzM2oKhUKBEEIIIYQQQgghUpx6WmdACCGEEEIIIYT4U0mlWwghhBBCCCGESCVS6RZCCCGEEEIIIVKJVLqFEEIIIYQQQohUIpVuIYQQQgghhBAilUilWwghhBBCCCGESCVS6RZCCCGEEEIIIVKJVLqFEEIIIYQQQohUIpVuIYQQQgghhBAilUilWwghhBAihdy/f5+qVatiZGSEmpoaHh4eKZq+v78/ampqrFy5MkXT/Z2VL1+e8uXLp3U2hBAiSVLpFkIIIcQfxc/Pj65du5IzZ050dXUxNDTEycmJ2bNnEx4enqrHdnZ25saNG0yYMIE1a9ZQtGjRVD3ez9SuXTvU1NQwNDRMtBzv37+PmpoaampqTJ8+/bvTDwwMZOzYsXh7e6dAboUQ4tehmdYZEEIIIYRIKXv37qVJkybo6OjQtm1b8uXLR1RUFGfOnGHQoEHcunWLJUuWpMqxw8PDOXfuHCNGjKBXr16pcozs2bMTHh6OlpZWqqT/LZqamnz48IHdu3fTtGlTlW3r1q1DV1eXiIiIH0o7MDCQcePGYWVlhYODQ7L3O3To0A8dTwghfhapdAshhBDij/Dw4UOaN29O9uzZOXbsGBkzZlRu69mzJ76+vuzduzfVjv/y5UsAMmTIkGrHUFNTQ1dXN9XS/xYdHR2cnJzYsGFDgkr3+vXrqVWrFtu2bfspefnw4QPp0qVDW1v7pxxPCCF+lHQvF0IIIcQfYerUqYSFheHu7q5S4f4od+7c9O3bV7keExODq6sruXLlQkdHBysrK4YPH05kZKTKflZWVtSuXZszZ85QvHhxdHV1yZkzJ6tXr1bGGTt2LNmzZwdg0KBBqKmpYWVlBcR3y/7478+NHTsWNTU1lbDDhw9TunRpMmTIgL6+Pra2tgwfPly5Palvuo8dO0aZMmVInz49GTJkoF69evj4+CR6PF9fX9q1a0eGDBkwMjKiffv2fPjwIemC/ULLli3Zv38/ISEhyjAvLy/u379Py5YtE8R//fo1AwcOJH/+/Ojr62NoaEiNGjW4du2aMs6JEycoVqwYAO3bt1d2U/94nuXLlydfvnxcvnyZsmXLki5dOmW5fPlNt7OzM7q6ugnOv1q1ahgbGxMYGJjscxVCiJQglW4hhBBC/BF2795Nzpw5cXR0TFb8Tp06MXr0aAoXLszMmTMpV64ckyZNonnz5gni+vr60rhxY6pUqYKbmxvGxsa0a9eOW7duAdCwYUNmzpwJQIsWLVizZg2zZs36rvzfunWL2rVrExkZiYuLC25ubtStWxdPT8+v7nfkyBGqVavGixcvGDt2LP379+fs2bM4OTnh7++fIH7Tpk0JDQ1l0qRJNG3alJUrVzJu3Lhk57Nhw4aoqamxfft2Zdj69euxs7OjcOHCCeI/ePAADw8PateuzYwZMxg0aBA3btygXLlyygqwvb09Li4uAHTp0oU1a9awZs0aypYtq0wnODiYGjVq4ODgwKxZs6hQoUKi+Zs9ezbm5uY4OzsTGxsLwOLFizl06BBz584lU6ZMyT5XIYRIEQohhBBCiN/c27dvFYCiXr16yYrv7e2tABSdOnVSCR84cKACUBw7dkwZlj17dgWgOHXqlDLsxYsXCh0dHcWAAQOUYQ8fPlQAimnTpqmk6ezsrMiePXuCPIwZM0bx+Z9iM2fOVACKly9fJpnvj8dYsWKFMszBwUFhYWGhCA4OVoZdu3ZNoa6urmjbtm2C43Xo0EElzQYNGihMTU2TPObn55E+fXqFQqFQNG7cWFGpUiWFQqFQxMbGKiwtLRXjxo1LtAwiIiIUsbGxCc5DR0dH4eLiogzz8vJKcG4flStXTgEoFi1alOi2cuXKqYQdPHhQASjGjx+vePDggUJfX19Rv379b56jEEKkBmnpFkIIIcRv7927dwAYGBgkK/6+ffsA6N+/v0r4gAEDABJ8+50nTx7KlCmjXDc3N8fW1pYHDx78cJ6/9PFb8J07dxIXF5esfYKCgvD29qZdu3aYmJgowwsUKECVKlWU5/m5bt26qayXKVOG4OBgZRkmR8uWLTlx4gTPnj3j2LFjPHv2LNGu5RD/Hbi6evyfnLGxsQQHByu7zl+5ciXZx9TR0aF9+/bJilu1alW6du2Ki4sLDRs2RFdXl8WLFyf7WEIIkZKk0i2EEEKI356hoSEAoaGhyYr/6NEj1NXVyZ07t0q4paUlGTJk4NGjRyrh2bJlS5CGsbExb968+cEcJ9SsWTOcnJzo1KkT//zzD82bN2fz5s1frYB/zKetrW2Cbfb29rx69Yr379+rhH95LsbGxgDfdS41a9bEwMCATZs2sW7dOooVK5agLD+Ki4tj5syZWFtbo6Ojg5mZGebm5ly/fp23b98m+5iZM2f+rkHTpk+fjomJCd7e3syZMwcLC4tk7yuEEClJKt1CCCGE+O0ZGhqSKVMmbt68+V37fTmQWVI0NDQSDVcoFD98jI/fG3+kp6fHqVOnOHLkCG3atOH69es0a9aMKlWqJIj7//h/zuUjHR0dGjZsyKpVq9ixY0eSrdwAEydOpH///pQtW5a1a9dy8OBBDh8+TN68eZPdog/x5fM9rl69yosXLwC4cePGd+0rhBApSSrdQgghhPgj1K5dGz8/P86dO/fNuNmzZycuLo779++rhD9//pyQkBDlSOQpwdjYWGWk74++bE0HUFdXp1KlSsyYMYPbt28zYcIEjh07xvHjxxNN+2M+7969m2DbnTt3MDMzI3369P/fCSShZcuWXL16ldDQ0EQHn/to69atVKhQAXd3d5o3b07VqlWpXLlygjJJ7g8gyfH+/Xvat29Pnjx56NKlC1OnTsXLyyvF0hdCiO8hlW4hhBBC/BEGDx5M+vTp6dSpE8+fP0+w3c/Pj9mzZwPx3aOBBCOMz5gxA4BatWqlWL5y5crF27dvuX79ujIsKCiIHTt2qMR7/fp1gn0dHBwAEkxj9lHGjBlxcHBg1apVKpXYmzdvcujQIeV5poYKFSrg6urKvHnzsLS0TDKehoZGglb0LVu28PTpU5Wwjz8OJPYDxfcaMmQIAQEBrFq1ihkzZmBlZYWzs3OS5SiEEKlJM60zIIQQQgiREnLlysX69etp1qwZ9vb2tG3blnz58hEVFcXZs2fZsmUL7dq1A6BgwYI4OzuzZMkSQkJCKFeuHBcvXmTVqlXUr18/yemofkTz5s0ZMmQIDRo0oE+fPnz48IGFCxdiY2OjMpCYi4sLp06dolatWmTPnp0XL16wYMECsmTJQunSpZNMf9q0adSoUYNSpUrRsWNHwsPDmTt3LkZGRowdOzbFzuNL6urqjBw58pvxateujYuLC+3bt8fR0ZEbN26wbt06cubMqRIvV65cZMiQgUWLFmFgYED69OkpUaIEOXLk+K58HTt2jAULFjBmzBjlFGYrVqygfPnyjBo1iqlTp35XekII8f+Slm4hhBBC/DHq1q3L9evXady4MTt37qRnz54MHToUf39/3NzcmDNnjjLusmXLGDduHF5eXvTr149jx44xbNgwNm7cmKJ5MjU1ZceOHaRLl47BgwezatUqJk2aRJ06dRLkPVu2bCxfvpyePXsyf/58ypYty7FjxzAyMkoy/cqVK3PgwAFMTU0ZPXo006dPp2TJknh6en53hTU1DB8+nAEDBnDw4EH69u3LlStX2Lt3L1mzZlWJp6WlxapVq9DQ0KBbt260aNGCkydPftexQkND6dChA4UKFWLEiBHK8DJlytC3b1/c3Nw4f/58ipyXEEIkl5rie0bNEEIIIYQQQgghRLJJS7cQQgghhBBCCJFKpNIthBBCCCGEEEKkEql0CyGEEEIIIYQQqUQq3UIIIYQQQgghRCqRSrcQQgghhBBCCJFKpNIthBBCCCGEEEKkEql0CyGEEEIIIYQQqUQzrTMghPh7eQeEpnUWfjl2mQzSOgtCCCGEECKZdJNRo5aWbiGEEEIIIYQQIpVIpVsIIYQQQgghhEglUukWQgghhBBCCCFSiVS6hRBCCCGEEEKIVCIDqQkh/jgeG1eywX0eNRq0oF2PAQBERUWyZtEszp44RHR0FAWLlqRjn6FkMDZV7tesStEEafUZPgGnCtWU69FRUWxbu5TTR/cT8iYYYxMzGrXuRIXq9VL/xH6Cy5e8WLncHZ/bN3n58iUz58ynYqXKaZ0tIYQQQojfllS6hRB/FN+7tziydzvZclqrhK9eOIMrF87w76jJpEuvz/J5U3EbOwjX2ctV4nUfOAaHYqWU6+n0VUcTnzV+KCFvXtN1wCgsM2Ul5PUr4uLiUu+EfrLw8A/Y2tpSv2Ej+vftldbZEUIIIYT47UmlWwjxx4gI/8C8SaPo8u8IdqxzV4Z/eB/GsQM76TNsPPkKFQPiK9f9Ozbm3u0b2OTJr4ybXt+ADCZmiabv7XWW29evMHf1TvQNjQCwsMyUimf085UuU47SZcqldTaEEEIIIf4Y8k23EOKP4T53CoVKOFGgcAmV8Af3fIiNiSH/Z+GZs1lhZmHJfZ/rCdLo1KgSw3u15fiBnSgUCuW2S+dOkdMmD7s2r6Zb8xr0a9eQNYtnERUZkbonJoQQQgghflvS0i2E+CN4Hj/Iw/t3mDh/dYJtIW+C0dTSIv0XXcWNjE0IeR2sXG/q3I28DkXR0dXl+qXzuM+ZQkR4ODUaNAfgRdBT7t70Rltbm4FjpxH6NgT3uVMIffeWHoPGpO4JCiGEEEKI35JUuoUQv71XL56xaoEbI6bMR1tb54fTadS6k/LfOXLbERkRwe4ta5SVbkVcHKip0XvYeNKl1wegTVQUM12H0KnPELR1dP+/ExFCCCGEEH8c6V4uhPjtPbx/h7chrxnavTUtqpWgRbUS3L5+hQMeG2lRrQRGGUyIiY7mfVioyn5v37wmg4lpEqlCbvt8BL98TnRUFAAZTM0wMTNXVrgBMmfLgUKhIPjli9Q5OSGEEEII8VuTSrf4K6ipqeHh4ZHW2aB8+fL069fvu/b5GXkfO3YsDg4OqXqM1JSvUDGmLdnIlEXrlEtOmzyUrlidKYvWkcs2Dxqamty8elG5T+Bjf169eIa1fYEk0/X3vUt6A0O0tLUBsM1bkDfBL4kI/6CME/T0EWrq6piaW6TeCQohhBBCiN+WdC8Xv7Vnz54xadIk9u7dy5MnTzAyMiJ37ty0bt0aZ2dn0qVL91Py0a5dO0JCQr5ZOd6+fTtaWlrflXZQUBDGxsb/R+5UqampsWPHDurXr68MGzhwIL17906xY/xseunSky1HbpUwXV1d9A0zKMMrVq/H6kUzSW9gRLp06Vkxfxo2eQooRy6/fO4UIW9eY22fD21tHa5fuYDHxhXUbtxGmWbpitXZvs6dBdPG0dS5K+/ehrBuyRwqVKv7x3Qt//D+PQEBAcr1p0+ecMfHByMjIzJm+rNGahdCCCGE+Bmk0i1+Ww8ePMDJyYkMGTIwceJE8ufPj46ODjdu3GDJkiVkzpyZunXrpnU2VZiYmHz3PpaWlqmQE1X6+vro6+t/O+JvrG33/qipqTPDZTAx0VEUKFKKTn2GKLdraGpyaNdmVi+agUKhwDJTVtp0/ZdKNRso4+jqpWPE5PmsmD+VYT3bYGCYgZJlK9O8ffe0OKVUcevWTTq1b6tcnz51EgB16zXAdeLktMqWEEIIIcRvS03x+Xw4QvxGqlevzq1bt7hz5w7p06dPsF2hUKCmpgbEt+4uXbqUvXv3cvDgQTJnzoybm5tKpfzkyZMMGjSIa9euYWJigrOzM+PHj0dTM/63qa1btzJu3Dh8fX1Jly4dhQoVYufOnUybNo1x48apHPv48eOUL18+QZ7Kly+Pg4MDs2bNAsDKyoouXbrg6+vLli1bMDY2ZuTIkXTp0kW5z5ct048fP2bAgAEcOnQIdXV1ypQpw+zZs7GyslLus3z5ctzc3PD19cXExIRGjRoxb948rKysePTokTJe9uzZ8ff3Z+zYsXh4eODt7Q1AXFwc48ePZ8mSJbx8+RJ7e3smT55M9erVAfD39ydHjhxs27aNuXPncuHCBaytrVm0aBGlSpVK3n8g4B0Q+u1Ifxm7TAbfjiSEEEIIIX4JusloxpZvusVvKTg4mEOHDtGzZ89EK9yAssL90bhx42jatCnXr1+nZs2atGrVitevXwPw9OlTatasSbFixbh27RoLFy7E3d2d8ePHA/FdvFu0aEGHDh3w8fHhxIkTNGzYEIVCwcCBA2natCnVq1cnKCiIoKAgHB0dk30ubm5uFC1alKtXr9KjRw+6d+/O3bt3E40bHR1NtWrVMDAw4PTp03h6eqKvr0/16tWJ+m+wr4ULF9KzZ0+6dOnCjRs32LVrF7lzx3ex9vLyAmDFihUEBQUp1780e/Zs3NzcmD59OtevX6datWrUrVuX+/fvq8QbMWIEAwcOxNvbGxsbG1q0aEFMTEyyz10IIYQQQog/nVS6xW/J19cXhUKBra2tSriZmZmyq/SQIUNUtrVr144WLVqQO3duJk6cSFhYGBcvxg+stWDBArJmzcq8efOws7Ojfv36jBs3Djc3N+Li4ggKCiImJoaGDRtiZWVF/vz56dGjh/JYenp66OjoYGlpiaWlJdr/DbyVHDVr1qRHjx7kzp2bIUOGYGZmxvHjxxONu2nTJuLi4li2bBn58+fH3t6eFStWEBAQwIkTJwAYP348AwYMoG/fvtjY2FCsWDHl4G3m5uYAZMiQAUtLS+X6l6ZPn86QIUNo3rw5tra2TJkyRaWF/qOBAwdSq1YtbGxsGDduHI8ePcLX1zfZ5y6EEEIIIcSfTird4o9y8eJFvL29yZs3L5GRkSrbChT4NEp1+vTpMTQ05MWL+GmefHx8KFWqlErruJOTE2FhYTx58oSCBQtSqVIl8ufPT5MmTVi6dClv3rxJkTx/ni81NTUsLS2V+frStWvX8PX1xcDAQFnhNzExISIiAj8/P168eEFgYCCVKlX64fy8e/eOwMBAnJycVMKdnJzw8fFJMu8ZM2YESDLvkZGRvHv3TmWJ+uL/SAghhBBCiD+NVLrFbyl37tyoqakl6IadM2dOcufOjZ6eXoJ9vhw1XE1Njbi4uGQdT0NDg8OHD7N//37y5MnD3LlzsbW15eHDhz9+Ej+Qr7CwMIoUKYK3t7fKcu/ePVq2bJnoeaemz/P+8QeLpPI+adIkjIyMVJblC9x+Sj6FEEIIIYRIK1LpFr8lU1NTqlSpwrx583j//v3/nZ69vT3nzp3j83EFPT09MTAwIEuWLEB8pdLJyYlx48Zx9epVtLW12bFjBwDa2trExsb+3/n4lsKFC3P//n0sLCzInTu3ymJkZISBgQFWVlYcPXo0yTS0tLS+mldDQ0MyZcqEp6enSrinpyd58uT54bwPGzaMt2/fqiwdegxIEC/0XQidm1ThxbPAHz7Wr+zJowd0b1GTiPDw/yudkJA3lC9TiqdPn6RQzn6ezZs20LtHt7TOhhBCCCHETyGVbvHbWrBgATExMRQtWpRNmzbh4+PD3bt3Wbt2LXfu3EFDQyPZafXo0YPHjx/Tu3dv7ty5w86dOxkzZgz9+/dHXV2dCxcuMHHiRC5dukRAQADbt29XjuoN8aOQX79+nbt37/Lq1Suio6NT5ZxbtWqFmZkZ9erV4/Tp0zx8+JATJ07Qp08fnjyJr3yNHTsWNzc35syZw/3797ly5Qpz585VpvGxUv7s2bMku8gPGjSIKVOmsGnTJu7evcvQoUPx9vamb9++P5x3HR0dDA0NVRZtHZ0E8XasX07RUuWwsIyfE/rGlYuM6tsB57pl6dK0GuuWziE2VnWwtnMnDzO4a0va1HaiZ6va7Nq8+pv5eXD/DuOH9KB9/fJ0bFiJJTMnEBH+QSWO791buA7qTvv65enQoAIThvbC3++ecvuLZ4GM6d+ZtnVKM6Z/5wQ/FEwZ2Y8Lp1V/AMmSPSfW9vnYu23dN/P4NUsXL6JChUpkzhz/o1BQYCC9unehRJGClC9TihnTp3xzULu3ISEMGzwAx+KFKV2yKGNGDefDZz9ieV28QN9e3alUrjQlijrQtGE99u7ZpZLGubOe1KlZDcfihRk+dBDR/w3oBxAaGkqdmtUIDHyqsk+DBo3w8bnFlcuX/q8yEEIIIYT4HUilW/y2cuXKxdWrV6lcuTLDhg2jYMGCFC1alLlz5zJw4EBcXV2TnVbmzJnZt28fFy9epGDBgnTr1o2OHTsycuRIIL7199SpU9SsWRMbGxtGjhyJm5sbNWrUAKBz587Y2tpStGhRzM3NE7QSp5R06dJx6tQpsmXLRsOGDbG3t6djx45ERERgaGgIgLOzM7NmzWLBggXkzZuX2rVrq4w67ubmxuHDh8maNSuFChVK9Dh9+vShf//+DBgwgPz583PgwAF27dqFtbV1qpzXR5ERERzbv5MK1esB4O93j8kj+1KwaCmmLFxHvxETuXTuFOuXzVPuc/WiJ3MnjaRK7YZMX7qJjn2Gsm/beg54bEryOK9fvWT8kB5YZsrKhLkrGTZpDo/9/VgwbawyTkT4ByYN64OphSUT5q5k3Mxl6KVLx8RhvZWV2TWLZ2Jias6UhesxNjFj7ZJZyv3PnjiEmpoaJcok/L6+fLW6HN69NcGPB8kVHh6Ox/atNGjUGIDY2Fh69ehKdHQ0q9ZuZPzEyezy2MGCeXO+ms6wIQPx8/Vl0bIVzJm/iCuXLuEydrRy+zXvq1jb2OI2aw5bt++iXoOGjBw2hJMn4gf6i4uLY9jgATRp2pzV6zdx+9ZNtm7ZrNx/9szpNGnanEyZMqscV0tbm5q1arN+7bd/HBFCCCGE+N3JPN1C/MIiIyPR1dXl8OHDVK5cOa2zk+K+nKf7/KkjuM+dwtIthwHY4D6f61cuMGn+p8rZ5XOnmDl+GEu3HEIvXXrmTBxBTEwM/UdPUcbZ77GR3ZvXMH/dngRTxwEc2budzSsXsWjTAdTV4397DHjoy6AuzZm9cgeWmbPid/c2w3u1Zf66PZhZWCYap3/HJrTt9i8OxRy5etGTtUtm47ZsM+/DQhnesy2jpi1U7vu5mOho2tUrx5Dxs8hfuLjKtuTM03344AEmjB/HidPnADhz+iS9e3TjyPHTmJqZAfFduGfPmM6J0+fQSmQ0/Qd+fjSoW5P1m7aSN19+ADxPn6Jn9y4cOnYSC4t/Ej12r+5dMDE1xWX8JIKDg6lY1pGLV66jo6PDTLdphH/4wPBRY/C+eoUpk8azdsOWRHudXL7kRddO7Tlz/hK6urrfPGchhBBCiF+RzNMtxG/s3bt3bNiwAXV1dezs7NI6Oz/FnRve5LS2V65HR0clmH5NS0eH6KhIHtz3STKOtrYuwS+f8/J5UKLHiY6OQlNLS1nhjt8nvqv7nZveAGTKmh0DQyOOH9hJTHQ0UZHxrfCZs+XA3DJ+pPbsOa25ceUicXFxXL98nmw54udDX7tkNlXrNUm0wg2gqaVF9lw23Ll5NblFo+LKlUvkyZNXuX7N2xtraxtlhRvA0ak0YWFh+PolPoXbtWtXMTA0VFa4AUqUckRdXZ0b168neezQ0FCMjDIAYGJigrm5Oec8zxAeHs7VK5extrUlOjqaCS5jGTXGJcnPPPLkzUdsbCw3rl/7jjMXQgghhPj9SKVbiF/UmDFjGDJkCFOmTFEO5vane/kiCGPTTxXHgkVLcff2dTyPHSAuNpbXr16wbe0yAEKCXynjXPQ8rqz8Bj55xJ6ta+PjvH6V6HHyORQj5PUrdm1eTUx0NGGh71jvHv/d+5v/9tFLl57R0xdz+uh+Wtd2om3dsly7dJZhE+egoRH/k2abrv0IfOxPr9Z1ePb0MW269uP29Sv4+92jXOVazHQdSu829Vg6ayIxX3znb2xqzsvnz36onIICAzG3sFCuB796hcln5QZg+t968KuXiaYR/OoVJiYmKmGampoYGhkluc/BA/u4dfMG9Ro0BOIHF5zqNoslixbQsF4t7Ozsqd+gEcuXLaFY8RJo6+jg3Ko5dWtVY8O6tSpp6enpoa9vQFDgnzlgnhBCCCHER8loDBdCpIWZM2cyc+bMtM7GTxUVGYmW1qfB1QoWLUnrzn1YOnsS86aMQUtbi4atOnHnxlXU/mulrlSzAc8DnzBl1L/ExsSglz49NRo0Z+vqJaipJf67YlarXPQYPI7Vi2aywX0+6hrq1KjfHCNjU9T/644eFRnB4hmu2OYtSJ/hE4iLjWPP1jVMHtmXSfNWo62ji4mZBUPGz1KmGx0VxYRhveg5aBzb17ujly4dM1dsY9Kw3hzeu40a9Zsr42rr6BAVGfFD5RQREYmFdsJB6FLTxQvnGT1yOGPGjSd37k/f9hcuUpT1m7cp1/39H7Jn1042bd1Be+fWtGrdFqcyZWlUvzZFihbFxvZTrw0dXR0iIv6/UdyFEEIIIX51UukWQvwyDIwy8D7snUpY7catqdWoFW+CX6FvYMCLZ0FscJ+HRcb4wbnU1NRo1bkPLTr0JORNMIZGxty4ehGAfzJmTnCMj0pXrE7pitUJeROMrq4eoMaebeuwyBjfq+DMsQO8fBaE6+wVym7ofYZNoEPDCnidPYlThWoJ0tyxYQUFi5Qkp409i2eOp3m77mhqalK8dAVuenupVLrfh777av6+xtg4A+/efSonUzMzbt5Q7RIe/F9PAFMz80TTMDUz4/Xr1yphMTExvHv7NsE+l7wu0qdndwYNHkadevW/mjfXsaMZMGgIcQoFd3xuU6VadfT09ChatBiXLnmpVLrfvX2LsbHJV1ITQgghhPj9SfdyIcQvI0duW548epggXE1NDRMzc7R1dDl7/CCm5v+QM7fqd+7qGhqYmFmgqaWF5/GD2OQpgGEG428eM4OxKbp66Th38hDa2toUKFICgMjICNTU1VQGYlNTVwPUSGz8ySePHuJ57ABNnbsD8SN7x/w3OnlMbAxxcXEq8R/7+2GV2/ab+UuMnX0eHnz2rXZBBwfu379HcHCwMuz82bPo6+uTK1fuRNMoWLAQoe/ecfvWTWXYxQvniYuLI3+BAsowr4sX6NW9K/36D6Rx02Zfzdf2bVswMspA+YqViPtvLviPI73HxMQowwAeBwQQGRmJnf2Pz/0uhBBCCPE7kEq3EOKXUbBoKZ488iMs9FMr7q7Nqwl46Mtjfz+2rV2Gx6aVtO85CPX/Buh69zaEw7u38jTAH3/fu6ycP53zp47i3L2/Mg3fOzf5t0MjXr96oQw74LGJB/fvEPjkEQd3bmb5vKm06NCL9Prxo4cXKFyS96GhuM+dwpNHD3ns78fCaePQ0NAgb8GiKvlWKBQsnTWBtt37o6unB4Bt3oIc2+fBk0cPOXV4L7Z5Cyrjv3gWyOtXL8hfuMQPlZOjU2n8/Hx59/YtAKUcS5MzV25GDB3M3Tt38DxzmnlzZ9GsRSvlIHM3rl+nXu3qPH/+HICcuXLhVLoM48aM4sb161y9cplJE1ypXqOWcuTyixfO06tHV1q2bkPlKlV59fIlr16+5G1ISII8BQcHs3TxQoaO+G+aPSMjcubMxbo1q7jmfZUL58/hUKiwMv6Vy5fIkjUrWbNl+6EyEEIIIYT4XUj3ciHELyNbjtzksLbj3MnDVKndCABvr7PsWL+c6Ohosue0ZtA4NwoVd1LZ7+ThvaxZMhtQYG1fgDHTF5PbLp9ye2RkBIGPHylbXQF8795iy+olRER8IFNWKzr3HU7ZKrWU2zNns2Kw6wy2rlnKqL7tUVNXJ0cuW4ZNnKsy2BvET0FmZGxCkZJllGFN2nRhzqSRjOzTjoJFS1GtblPlNs/jBylQpCTm/2T8oXKytrHFzj4PBw/up0nT5mhoaDB3wSImuIylbatm6OnpUadeA3r06qPcJyIiHP+HD4mJ+TSg26Qp05k0wZUuHZ1RV1enUpWqDB02Url9904PIsLDcV+6GPeli5XhRYsVx33lGpU8TZ00gbbOHVSmGnOZMJlRI4awfu0anNt3JF/+Ty3o+/ftpWGjpgghhBBC/Olknm4hRJr5cp5ugCsXzrB2yWymL92kMqXXnyImOpq+7RrQe9h47PI5JNienHm6AU6dPMHM6VPZtnPPb1dOvr736dzBmV17D2JgkLzzFUIIIYT4FSVnnm5p6RZC/FIKlyhN0NMAXr96keQ817+zVy+eUb9F+0Qr3N+jbLnyBDzy58Xz51hm/LEW87Ty6uVLxk+cIhVuIYQQQvwVpKVbCJFmEmvp/tslt6VbCCGEEEKkveS0dP9efRKFEEIIIYQQQojfiFS6hRBCCCGEEEKIVCKVbiGEEEIIIYQQIpXIN91CiDQTEfPtOH8b42K90joLv5w3XvPSOgu/pDh5fSegrqaW1lkQQgjxl5FvuoUQQgghhBBCiDQklW4hhBBCCCGEECKVSKVbCCGEEEIIIYRIJVLpFkIIIYQQQgghUkkyPvsWQgjxq3MqnIt/21amcJ5sZDQ3oum/S9h94rpyu4WJAeP71qNyKXuM9PU4c8WX/lO34BfwEoBsGU24u88l0bRbDXJn+5GrAGS1NGb28GaUK2pDWHgk63ZfYNTcXcTGxiXYr1TBnBxa1pdbfkGUbD45Fc7659i8cT2bN20g8OlTAHLltqZr9x6ULlMujXOWei5f8mL1Cndu377Fq5cvmTF7HhUqVVZu//DhPXNmunH82FHehoSQKXMWWrRqQ5NmzZVxIiMjmTFtCgf37yUqKppSTk4MHzkGUzOztDglIdKE+9LFHD18iIcPH6Cjq4uDQyH69R+IVY6cyjgd27XhktdFlf0aN23GqDGJP5P/RAvnz2XRAtVBM61y5GDnngNplKO09ze+e/5kUukWQog/QHo9HW7ce8rqnefYNKNLgu2bZ3YhOiaWJv0W8+59BH1aV2Tfot4UajieDxFRPHn+BqvKw1T26dDIiX/bVuag5y0A1NXV2D6nO8+D31GhnRuW5kYsc21DdEwsY+btVtnXSF+PZa5tOH7xHhamBql34j+BxT+W9P13INmyZ0ehULB7pwd9e/Vk07Yd5M5tndbZSxXh4eHY2NpRr0EjBvTrnWC729TJeF24wIRJU8mUOTPnznoyabwL5hYWlK9QEYDpUyZx5tRJps6Yjb6+PpMnujKgX29Wrt3ws09HiDRzyesizVq0Im/+/MTGxDJ39gy6de7I9l17SZcunTJeo8ZN6dGrj3JdV08vLbKbpnLltmbJshXKdQ1NjTTMTdr7G989fzKpdAshxB/gkOdtDnneTnRb7mwWlCiQg8KNxuPz4BkAfSZuwv/IRJrWKMLKHeeIi1PwPDhUZb+6FQqy7fAV3odHAVC5lD32OS2p1W0uL16Hcv3eU1wW7GV8n3qMX7SP6JhY5b5zRzZn04FLxMYqqFOhQCqd9c/xsRL5Ue++/7J54wauX/P+Y//wKV2mLKXLlE1y+zVvb2rXq0/R4iUAaNSkGdu2bOLWjeuUr1CR0NBQPLZvY+LUaRQvURKAca6TaFi3JteveVOgoMPPOA0h0tzCJe4q6y4TJlOhTCl8bt+iSNFiynBdXV3MzM1/dvZ+KZoaGn99GXzub3z3/Mnkm24hhPjD6WjH/74aEfVpYnSFQkFUVAyODrkS3aeQfVYc7LKyyuOcMqxEgRzc9A3kxetPlfPDZ30wMtAjT66MyrA2dUuSI7MpExbvT+lTSXOxsbHs37eX8PAPFCxYKK2zk2YKOjhw8vgxXjx/jkKhwOvieR75+1PS0QkAn9u3iImJpmRJR+U+OXLmxDJjJq5f806jXAuR9sJC45+fhkZGKuH79u6mnFMJGtarzeyZboSHh6dF9tLUo4BHVC5fmprVKjFs8ACCAgPTOku/DHn3/P6kpVsIIf5wd/2fERD0Gtfedek1fgPvw6Po07oCWSyNsTQzSnQf5/ql8HkQxPlrD5Vh/5ga8uKL1vAXr9/FbzMzhLuQK5s5rn3qUrnDrES/8/5d3b93lzYtmxMVFUm6dOmYOWc+uXLnTutspZkhw0fhOnYU1SqVQ1NTEzU1NUaNdVW23AW/eomWlhYGhoYq+5mamhL86lVaZFmINBcXF8fUKRNxKFQYa2sbZXiNmrXJmCkTFhYW3Lt3l1kzpuPv/5CZs+d9JbU/S/4CBXCdMAkrqxy8fPmSxQvn075tK7bt3E369Pppnb00I++eP4dUuoUQ4g8XExNH8wFLWTimFUGnphETE8uxC3c5cOYWamoJ4+vqaNGsRlEmL/2+AWzU1dVYNbEd4xftwzfgRQrl/tdgZZWDzds8CAsL5fChg4waPgT3lWv/2j9+Nq5bw43r15g1bwEZM2bmymUvJk+I/6a7ZCnHbycgxF9o4vhx+N2/z8o161XCGzdtpvy3tY0tZmbmdOnYjscBAWTNlu1nZzNNfD44mI2tHfkLFKRGlQocPLCfho2apGHO0pa8e/4cUukWQoi/wFWfx5RsPhlDfV20tTR59SaMU6sHcvl2QIK4DSo7kE5Xm3V7VEfTfR78jqL5squEWZjEt2Q+f/UOg3S6FMmbnYK2WZg5JP6PJHV1NdTV1Qn1mk3tHvM56XUvlc4wdWlpa5Mte/y558mbj1s3b7Bu7WpGj/17Rhf+KCIigrmzZzFj9lzKlCsPgI2tLXfv3GHNyuWULOWIqZk50dHRhL57p9LaHRwcLKOXi7/SxPEunDp5guWr1vKPpeVX4+YvUBCAgIBHf02l+0uGhoZkz27F44CE76i/ibx7/hxS6RZC/JB27doREhKCh4dHWmdFfId3YRFAfDfwwnmyMW7BngRx2tV3ZO/JG7x6E6YSfuH6Q4Z0rIa5sT4v/9tWqaQdb0PD8XnwjOiYWIo0nqCyT5emZShfzIaWg9zxfxqcSmf188XFxREdFZXW2UgTMTExxMREo6auOiyMhoY6cXHxnxTY58mLpqYWFy6co3KVagD4P3zAs6BAGURN/FUUCgWTJrhy7Ohh3FeuIUuWrN/c5+4dHwDM/+JBxT68f8/jx4+pVffvLYPE/M3vnt+dDKQmRApq164dampqTJ6sOiexh4cHaon1401hVlZWzJo1SyVs5cqVZMiQIdWPLdJWej1tCthkpoBNZgCsMptSwCYzWS2NAWhYuRBlilhjldmU2uXzs3dhL3afuM7R83dU0smZ1YzShXOxYsfZBMc4cs4HnwfPcB/vTH6bzFQuZc+YnrVZvPkUUdExKBQKbvsFqSwvX4cRERXDbb8gPkT8nn8ozJ7pxuVLXjx9+oT79+4ye6Ybl7wuUrN2nbTOWqr58OE9d+/4KP/4f/r0CXfv+BAUFIi+vj5FihZjlts0Ll28wNMnT9jlsZ09u3ZSoVIVAAwMDKjfsBFuU6fgdfE8t2/dZMzI4RQo6CCVbvFXmeg6jn17djF5qhvp06Xn1cuXvHr5koiI+B9AHwcEsHjhfG7fusnTp084cewoI4cPoUjRYtjY2qVx7n8et2lTuOR1kadPn+B99Qr/9u2FhoY6NWrWTuuspZm/8d3zJ5OWbiFSmK6uLlOmTKFr164YGxundXbEX6JwnuwcWtZXuT51YCMA1uw6T5cxa7E0N2TKgIZYmBrw7NU71u25wKQlCb/Zdq5XiqfPQzhy7k6CbXFxChr1Xcjs4c05sXIA7yMiWbf7Ii4L96beif0CXr8OZuSwIbx8+QJ9AwNsbGxZuMSdUv+N1P0nun3zJp07OCvX3abG/5BYp159XCZMZvL0GcydNYPhQwfx7u1bMmbKRM8+/WjSrLlyn4FDhqGurs7Afn2Jio7C0bE0w0aN/unnIkRa2rwpfl76ju3aqIS7jJ9EvQYN0dLS4sL5c6xbs5rw8A9YWmakcuWqdO7WIy2ym2aeP3/G0EH9CQkJwdjEhEKFi7Bm/WZMTEzSOmtp5m989/zJ1BQKhSKtMyHEn6Jdu3YEBwfj6+tLnTp1mDp1KhDf0t2gQQM+v922bdvG6NGj8fX1JWPGjPTu3ZsBAwYkmbafnx/9+/fn/PnzvH//Hnt7eyZNmkTlypUBKF++PCdPnlTZ5/jx41SoUEElbMyYMYwdO5Y1a9Ywe/Zs7t69S/r06alYsSKzZs3CwsJCGffWrVsMGTKEU6dOoVAocHBwYOXKleTKlStB93IvLy9q1qzJwIEDGTJkSLLKKyLm23H+NsbFeqV1Fn45b7z+nhF8v0ecvL4TUP8JPYqEEEKIz+kmoxlbupcLkcI0NDSYOHEic+fO5cmTJ4nGuXz5Mk2bNqV58+bcuHGDsWPHMmrUKFauXJlkumFhYdSsWZOjR49y9epVqlevTp06dQj4b5CR7du3kyVLFlxcXAgKCiIoKAhHR0dmzZqFoaGhMmzgwIEAREdH4+rqyrVr1/Dw8MDf35927dopj/f06VPKli2Ljo4Ox44d4/Lly3To0IGYmIQ15WPHjlGlShUmTJiQ7Aq3EEIIIYQQfwPpXi5EKmjQoAEODg6MGTMGd3f3BNtnzJhBpUqVGDVqFAA2Njbcvn2badOmqVR8P1ewYEEKFiyoXHd1dWXHjh3s2rWLXr16YWJigoaGBgYGBlh+NjKqkZERampqKmEAHTp0UP47Z86czJkzh2LFihEWFoa+vj7z58/HyMiIjRs3oqWlpcznl3bs2EHbtm1ZtmwZzZo1S7BdCCGEEEKIv5m0dAuRSqZMmcKqVavw8fFJsM3HxwcnJ9VvcpycnLh//z6xsbGJphcWFsbAgQOxt7cnQ4YM6Ovr4+Pjo2zp/l6XL1+mTp06ZMuWDQMDA8qVi58j82N63t7elClTRlnhTsyFCxdo0qQJa9as+WaFOzIyknfv3qkskZGRP5R3IYQQQgghfhdS6RYilZQtW5Zq1aoxbNiwFElv4MCB7Nixg4kTJ3L69Gm8vb3Jnz8/UT8wdcT79++pVq0ahoaGrFu3Di8vL3bs2AGgTE9PT++b6eTKlQs7OzuWL19OdHT0V+NOmjQJIyMjlWXalEnfnXchhBBCCCF+J1LpFiIVTZ48md27d3Pu3DmVcHt7ezw9PVXCPD09sbGxQUNDI9G0PD09adeuHQ0aNCB//vxYWlri7++vEkdbWztBS3liYXfu3CE4OJjJkydTpkwZ7OzsePHihUqcAgUKcPr06a9Wps3MzDh27Bi+vr40bdr0q3GHDRvG27dvVZZBQ1LmB4k/nYlReh4dnUS2jH/mKK5VHO05v3Ho/z2tXkjIG8qXKcXTp4mPpfAr27xpA717dEvxdENC3lCxrCOBv2GZeJ45TbNG9ZVzfwvxs/3OzxTP06do2rBeit8/v3OZpOZzVspEfItUuoVIRfnz56dVq1bMmTNHJXzAgAEcPXoUV1dX7t27x6pVq5g3b55ykLPEWFtbs337dry9vbl27RotW7ZM8DK1srLi1KlTPH36lFevXinDwsLCOHr0KK9eveLDhw9ky5YNbW1t5s6dy4MHD9i1axeurq4qafXq1Yt3797RvHlzLl26xP3791mzZg13795ViWdhYcGxY8e4c+cOLVq0SHSgNQAdHR0MDQ1VFh0dnWSX5d9sSKdq7DlxnYCg1wCUL27D8ZX9eXFmOg8PT2R8n3poaKg+ziuXsufkqgG8ODOdgGOT2DC90zcr7Q52WdizsBdBp6by5PgU5o1sQXo9beX2/DaZWTWpHff3u/L63AyubhtJzxblVdIoaJuFcxuG8NLTja2zumJsmE65TUNDHc91gymaN7vKPofP+hATE0vzmkV/pHiUli5eRIUKlcicOQsAQYGB9OrehRJFClK+TClmTJ+S5PX50duQEIYNHoBj8cKULlmUMaOG8+H9e+V2r4sX6NurO5XKlaZEUQeaNqzH3j27VNI4d9aTOjWr4Vi8MMOHDiL6s94ooaGh1KlZjcDApyr7NGjQCB+fW1y5fOn/KoMvLVuyiPIVKpHpY5kEBdK7e1dKFXWgYllHZk6f+s0y8bl9i26dOlCmVDHKO5XAdewoPnx4rxLnW+ne8blN88YNcCxWmL49u/H2bYhyW0xMDC2bNuTmjesqaTqVLoOmpib79uz+P0tBiB+TEs+UpYsX0rZVc0oUKUjpkgmfcSEhb+jepSOVy5emqEM+qlYqx8TxLoSFhSnj+Pjcpmmj+pQsWojePbrxNiREuS0mJobmTRpy4/oX90+ZsmhqaiZ4Pv2/fsZz1v/hAzq2a0OFso4UK5SfmtUqMW/2TJUf9n+l56y8e0RySKVbiFTm4uKSoHJcuHBhNm/ezMaNG8mXLx+jR4/GxcUlyUHUIH7wNWNjYxwdHalTpw7VqlWjcOHCCY7l7+9Prly5MDc3B8DR0ZFu3brRrFkzzM3NmTp1Kubm5qxcuZItW7aQJ08eJk+ezPTp01XSMjU15dixY4SFhVGuXDmKFCnC0qVLE/3G29LSkmPHjnHjxg1atWqV5Hfp4vvp6WrhXK8Uqzzie0vkt8mMx9zuHDp7m5ItJtNm6HJqlcvP+D71lPtkz2TKlpldOOF1jxLNJ1O3x3xMM6Rno1vnJI+T0dyIvYt64/f4JWXbTKdez/nkyWXJUpdPc8sWss/Ky9ehtB+5isKNJzDF/SAuvevSrVlZZZwFo1ty0usepVpMwchAj8Edqym39WtTkfPXHnDp1qMEx1+z60KCCvz3CA8Px2P7Vho0agxAbGwsvXp0JTo6mlVrNzJ+4mR2eexgwbw5X01n2JCB+Pn6smjZCubMX8SVS5dwGftpbulr3lextrHFbdYctm7fRb0GDRk5bAgnTxwHIC4ujmGDB9CkaXNWr9/E7Vs32bpls3L/2TOn06RpczJlyqxyXC1tbWrWqs36tat/uAy+FB4ezs7t26jfMH7O9tjYWPr8VyYr127AZcJkdu3cwcKvlMmLF8/p1qkDWbNlY836TcxftAw/X19Gj/jUSyU56bqMGUmxEiXYsGUboWFhuC9ZrNy2ZtUKCjoUJl/+AgmOX7d+AzasW5MSxSHEd0mpZ0p0dDRVqlanSbMWiW5XV1OnQsVKzJ63kF37DuI6YTIXzp9l/LgxyjjjRo+keImSbNy6nbCwUJYt/XT/rF65HIdChclfILH7pyEb1qbc/fOznrOamlrUqVefRUuWs3PvAQYPGc62bVtYOH8u8Os9Z+XdI5JFIYQQaSQ8WpYvF12HnipLi4FLFc+D3ynXpyw7oLh0018lTsM+CxUfwiMVZo79lftERcUo9Ar1UokTGxur0C/aO8ExdB16Knq4rFc8e/VWZZ8ijScoFAqFIk+dMYnuo+vQU7Fw40nF8Qt3lOvvP0QqCtR3Ueg69FT0nrBBse/UDYWuQ0+FXa3Rinv+z5V5/HKxrj5SoVAoFPa1Ex4rOeW2a89+RYmSJZXrh4+dUNjZ2SmeBL1Uhq1au15RuHBhxbv3kYmmceuOr8LGxkZx6ep1ZdiRYycVtra2ikdPnyV57I6dOisGDRmqCI9WKJ48e6WwsbFRhIRFKMKjFYqJk6cqRo0eqwiPVijOXbysqN+ggSIsIibRdM6cu6jImzev4k1oeLLO+X1U3FcXjz37FCVKllSuHzwaXyYBgS+UYSvXxJdJyPuIRNNYvW6DomTJUorQiBhlmPdNH4WNjY3Cx/dhstMtUKCA4uYdX8X7qDjFitXrFB06dla8j4pT3PV7pKhcpYrixZt3iR7f99EThY2NjeKOr/83z/d9VFya37+y/DlLSjxTPl82bt6mKFKkSLKOvWzFKkWZsmWV6wUKFFDcvusbf8w16xQdO3VWhEcrFPcfBCgqV6mqeBUSmmg6Dx49VdjY2Cju+T36ZcrkR5+zLuMnKpo1b6EIj/65z9lfuUzS6t0jS8IlOaSlWwghfmFOhXJx1efTCPU62ppERKp+Ox8eGY2erjaF7LMBcOX2Y+IUcbStVxJ1dTUM9XVpWas4xy7cJSYm8e/7dLQ1iY6ORaFQfJZufNc0R4dcSebPSF+XN+8+KNdv3H9KpZJ2aGioU6G4LTfvBwIwd0RzRszyIOxD4iPWP372hmev3uFUKOljfc2VK5fIkyevcv2atzfW1jaYmpkpwxydShMWFoavn2+iaVy7dhUDQ0Py5suvDCtRyhF1dfUEXTc/FxoaipFRBgBMTEwwNzfnnOcZwsPDuXrlMta2tkRHRzPBZSyjxrgkOW5Dnrz5iI2N5cb1a99x5km7evky9p+VyfVr3uROokz8fBMvk6ioKLS0tFBX//Tngo6uLgDeVy4nO11rW1vOn/MkJiaGixfOYf3f9IMTXMbQr/8g0qfXT/T4GTNmwtTUjKtXpOuj+LlS4pnyI168eM6xI4cpUrSYMszG1o5z584SExPDhfPnsbaxBcDVZQz/DvjK/ZMp/v5Jqa7DafWcDXj0iLNnTlP0vzL5lZ6z8u4RySWVbiGE+IVly2hC0Mu3yvXDZ30oWTAnTasXQV1djUzmRgzvUgOAjOaGADwKDKZ2j/mM61WHtxdm8fz0dDL/k4HWg5cneZwTF+/yj6kh/7athJamBhkM9JRd1i3NjRLdp2TBHDSuWgT3bZ8GBew+bh0NKjtwe/dYoqJjmbb8EC1qFSM8IorLtx6xa35Pbu4cw5getROkF/Ty7Q8PFhcUGIi5hYVyPfjVK0xMzVTimP63HvzqZaJpBL96hYmJ6vE1NTUxNDJKcp+DB/Zx6+YN6jVoCICamhpT3WaxZNECGtarhZ2dPfUbNGL5siUUK14CbR0dnFs1p26tamxYt1YlLT09PfT1DQgKDPy+k09CUFAg5uafl8lLTE1NVeKY/Lf+cQyILxUvUZLg4FesWu5OdHQU796+Zc5MNwBevnyZ7HTHjBvPkcMHqVOjKlpaWnTo3JU9u3aiq6dH3nz56dGlI3VrVGX+nFkJ8mBuYZFiZSJEcqXEM+V7DBnYnxJFClKlQlnSp0/PWJcJym1jXMZz5NBBalevgpaWFh07d2X3Lg/0dHXJmy8/3Tp3pHb1KsybPTNBuuYWFgQFpdAz5Sc/Z9u2ak6xQvmpU7MqhYoUpUfvvsAv9pyVd49IJs20zoAQQoik6epoExH5qdJ99Pwdhs/yYM7w5ri7tiUyOobJSw9QunBu4uLiW6n/MTVgwaiWrNt9gc0HLqOfXofR3WuzfnpHanWbl+hxfB48o/PoNUwe0BCX3nWJjYtjwYaTPHv1DkUio9/myZWRzTO7MGHJPo6ev6OSTtVOs5XrJkbpGdWtFlU6zmLGkCacv/aA5gOWcmbdILxu+rPv1E1l3IjIKNLpavMjIiIisdD+uQPzXbxwntEjhzNm3Hhy57ZWhhcuUpT1m7cp1/39H7Jn1042bd1Be+fWtGrdFqcyZWlUvzZFihbFxtZOGVdHV4eIiPAUyV9kRAQ6Fv9fmeTKbY3LhEm4TZ3C3NkzUFdXp0WrNpiamqm0ficnHfeVn/7QCwl5w6IFc3FfuZYpE8dT0KEQbrPm0qp5E/IVKEC58hWVcXV0dIiIiPi/zkOI7/WznymDhgyjW4+ePPL3Z/asGUyfMokRo8cCkDu3NctXqd4/C+fPZcWqdUye6IpDoULMmD2XVs0ak69AQcpX+HT/6OroEB6eMs+Un10mU6fP5P3799y7e4cZblNZtcKd9h3jxyb5VZ6z8u4RySUt3UII8QsLDglTGQEcYM7aY1iWHYRNzdFkqTCU3Sfiu589fBLfqti1WVnehYUzYvZOrt19gucVPzqMWEXFEnYUz2+V5LE2HbhEjirDyVVtJJnLD2H8on2YG+vz8EmwSjy7nJbsW9yb5dvOMmXZwa/mf8qAhsxbf5ynL0IoU9Sa7Ueu8iEiigOnb1G2qLVKXGPD9Lx6E5ZESl9nbJyBd+/eKddNzcx4Hazaehv837qpmXmiaZiamfH69WuVsJiYGN69fZtgn0teF+nTszuDBg+jTr36X82b69jRDBg0hDiFgjs+t6lSrTqmpqYULVqMS5e8VOK+e/sWY+OUmRoug7Ex7959+sHG1Myc4GDV/8vX/62bmam2zHyuRq06HDl5hoNHT3LC8zzdevTizZvXZMmS9YfTdZs6mZat2/KPpSWXvC5SuVp19NKlo0zZclzyuqgSN75MjJN51kKkjJR4pnwPM3NzcuTMRfmKlRg1ZhybN23g5csXicadPmUyrdo4x98/Fy9SpWp10qVLR5lyCe+ft+/eJmhF/VE/+zlrmTEjuXLnpkat2vT9dwCLFsxLcqDWtHrOyrtHJJdUuoUQ4hd27c4T7HJaJrot6OVbIiKjaVq9KI+DXnP1zmMA0ulqK1u9P4r9r7VaXf3bc2G/eB3K+/AoGlcrTERUtEpLtn1OSw4s6cO63RcYO//rUzmVL26DXY5/WLjxFAAa6upoacZ/U6alqYHG598Ja2uSM6sZ3ncffzN/ibGzz8ODz76XK+jgwP3791Qqg+fPnkVfX59cuXInmkbBgoUIffeO27c+tb5fvHCeuLg4lZGBvS5eoFf3rvTrP5DGTZt9NV/bt23ByCgD5StWIu6/PxY/Th0TExOjDAN4HBBAZGQkdvZ5vuPMk2ZnZ88DPz/leoGCDvjev6esEAOcP+eJvr4+OZMok8+ZmpmRLl16Dh7Yj7aODiVLOf5QuhfOn+Phgwc0b9kagLi4WGKiPy+TTz0rIiMjefz4MbYpVCZCJFdKPFN+1MexNaI+m/Lpowvnz/HggR8tPr9/Pj5TolWfKZGRkTwOeJxyz5Sf+Jz9kiJOEf98SKTnVZo+Z+XdI5JJKt1CCPELO3zOhzw5M5LBQE8Z9m/bSuTNnQn7nJYM7Vydge2rMGDqVmVFe//pWxTJm41hXaqTK5s5DnZZWDy2NY8Cg/G+8wSAonmz4719JJk++167W7OyONhlIXc2C7o2LcvMIU0ZPXcXb8Piu5zlyZWRA0v7cvTcHeasPcY/pgb8Y2qAmXHCQXx0tDWZOaQpPV03KP+APHftAV2bliW/TWbqV3LgnPcDZfzi+XMQGRXDhesPf6icHJ1K4+fny7u38S27pRxLkzNXbkYMHczdO3fwPHOaeXNn0axFK7S147uw37h+nXq1q/P8+XMAcubKhVPpMowbM4ob169z9cplJk1wpXqNWlhY/APE/yHUq0dXWrZuQ+UqVXn18iWvXr5UmTf3o+DgYJYuXsjQESMBMDQyImfOXKxbs4pr3le5cP4cDoU+Tft35fIlsmTNStZs2X6oDL5Uyqk0D1TKxImcuXIxclh8mZz1PM38ubNp2rylskxu3rhOgzo1ePFfmQBsXL8Wn9u3eOT/kE0b1jFloiu9+/6LgaFhstP9KDIykikTXBk11kXZPb1gocJs3riOu3fucPTwIZUyuXHNG21tLQoUdEiRMhEiuVLimQLx3/ze8fEhKCiQ2NhY7vj4cMfHRzkH8+lTJ/HYsY379+/x9OkTTp08wfhxY3AoVFg57/NHkZGRTJrgwuixrsr7x6FQYTZtiL9/jhw5hMNnU4leT+H752c9Z/fu2cXBA/t44OfHk8ePOXhgH7NnuVG1eo0E05am9XNW3j0iueSbbiGE+IXd8g3E+85jGlUtrBywrKpTHgZ3qoaOliY37j2lyb9LOOR5W7nPSa97tBu+in+dK9PfuQofIqK4cP0hdXsuUI58rqerjW0OSzQ1P41mWjRfdkZ2q4V+Om3u+j+n14QNbNj7qQtag8qFsDAxoGXt4rSsXVwZ/igwGLtan+aUBRjRtSYHztzi+r2nyrABU7ewamI7Di/rx8b9Xuw46q3c1rR6ETbuv0R4hOrI7MllbWOLnX0eDh7cT5OmzdHQ0GDugkVMcBlL21bN0NPTo069BvTo1Ue5T0REOP4PHxIT8+mYk6ZMZ9IEV7p0dEZdXZ1KVaoydNhI5fbdOz2ICA/Hfeli3D+bK7doseK4r1SdD3fqpAm0de6g/KMJwGXCZEaNGML6tWtwbt9RZW7q/fv20rBR0x86/6+VyaGD+2n8X5nMnr+Iia7jaNe6Obp6etSpW5/un5dJeMIyuXnjBovmz+XDhw9Y5cjJiNHjqF3307zwyUn3o8UL5lG6bDls7eyVYYOHjWD44IF0ateaGrXqUKlKVeW2A/v3UqNWHfT09BKkJURqSqlnyoJ5c9i1c4dyvVnj+gAsW7GaYsVLoKOjw/atW5g+ZRJRUVH8Y5mRSpWr0KFTlwR5WrRgHmXKlsfO/tP9M2TYSIYOHkAH51bUrFWHylWqKbft37eXmrVT7v75Wc9ZDQ1NVrgv45H/QxSK+FHYW7RsTeu27RLk6Vd5zsq7R3yLmuLz+WGEEOIniohJ6xz8eoyL9UoQVr10Xib+W58ijSfyJz6yTTOk59qO0Ti1msqjwOAE2994JT7425dOnTzBzOlT2bZzz3cN8vUr8PW9T+cOzuzaexADA4Nk7ROXjGvh9MkTzHSbxlaP3b9dmbx584YGtauzbtM2MmfJ8u0dAHW1b38+IURy/c7PlDdvXlOvVg3Wb96qHH8hJfzOZfIjz9nkkDIRusloxpaWbiGE+MUdOHOL3NnMyWxhxJPnIWmdnRSXPZMp/SZtSrTC/T3KlitPwCN/Xjx/jmXGjCmUu5/j1cuXjJ84JcX/6ClTrjwBAY9+yzIJfPqEYSPHJLvCLURK+52fKYFPnzJ81JgUrXDD710mqfWclTIRySEt3UKINCMt3Qkl1tL9t0tuS/ffJjkt3X8baekWQgjxsyWnpfv36gMhhBBCCCGEEEL8RqTSLYQQQgghhBBCpBKpdAshhBBCCCGEEKlEvukWQqQZ+aZbJEdsnLymEqOhLt8vCyGEEGlNvukWQgghhBBCCCHSkFS6hRBCCCGEEEKIVCKVbiGEEEIIIYQQIpVIpVsIIYQQQgghhEglyfjsWwghxJ9o88b1bN60gcCnTwHIlduart17ULpMOQA6tmvDJa+LKvs0btqMUWNcfnpeU8uWTRvYsmkDQYHxZZAzV266dOuJU5myvH0bwqL5czl/zpNnQUEYG5tQvmIluvfqi4GBQYK0QkLe0LxRfV68eM5Jz4sYGBr+7NNJNV+7Vp4+fULNqpUS3W/ajFlUrVbjZ2ZViF/O5UterFzujs/tm7x8+ZKZc+ZTsVJlAKKjo5k3ZxZnTp/iyZPHGOjrU6KUI33/HYCFxT9pnHOR1p4/f86sGdPwPH2aiIhwsmbLjsv4ieTNlz+ts5ZmvnY//cqk0i2EEH8pi38s6fvvQLJlz45CoWD3Tg/69urJpm07yJ3bGoBGjZvSo1cf5T66enppld1UYfHPP/TpN+BTGezy4N8+PdmwZTsKhYKXL1/Qb8BgcubKTVBgIBNdx/Dy5QumzZiTIC2X0SOxtrHlxYvnaXAmqetr10qOHDk5euKMSvytWzaxaoU7pUuXTaMcC/HrCA//gK2tLfUbNqJ/314q2yIiIrjjc5su3bpja2vHu3fvmDJpAn17dWfD5u1plGPxK3j39i3tWregaPESzF+0FGMTYwIePcLQ0Cits5amvnY//cqk0i2EEH+p8hUqqqz37vsvmzdu4Po1b2WlW1dXFzNz87TI3k9RrrxqGfTq8y9bN23kxvVr1G/YmOkz5yq3Zc2ajZ69/2XksEHExMSgqfnpFbpl0wZCQ9/RuVtPPM+c+mn5/1m+da18eY0cO3qEqtVrkC59+p+ZTSF+SaXLlFP2IPqSgYEBi5etUAkbNmIUrZo3ISgwkIyZMv2MLIpf0HL3pfxjaYnrhEnKsCxZsqZhjn4NX7uffmXyTbcQQghiY2PZv28v4eEfKFiwkDJ8397dlHMqQcN6tZk9043w8PA0zGXqio2N5eD++DIoUNAh0ThhYaGk19dXqXA/8PNl6aIFuEycgvpfMHd2UtfKR7dv3eTuHR8aNGycBrkT4vcXFhaGmpraH/WJivh+J48fI2/efAz8tw/ly5SiaaP6bNuyOa2zJX6QtHQLIcRf7P69u7Rp2ZyoqEjSpUvHzDnzyZU7NwA1atYmY6ZMWFhYcO/eXWbNmI6//0Nmzp6XxrlOWffv3aVd6xZERUWily4dbrPmkTNX7gTx3rx5w9LFC2nYuKkyLCoqimGDB9C3/yAyZszE0yePf2bWf6qvXSuf27FtKzlz5sKhUOE0yKUQv7fIyEhmzZhOjZq10NfXT+vsiDT05MljNm/aQBvn9nTs0o1bN24wZdJ4tLS0qFu/QVpnT3wnqXQLIcRfzMoqB5u3eRAWFsrhQwcZNXwI7ivXkit3bho3baaMZ21ji5mZOV06tuNxQABZs2VLw1ynLKscOdiwdQdhoaEcPXyQ0SOHsmzFGpWKd1hYGH17diVnzlx07f7pG7K5s9zIkTMXterUTYus/1Rfu1Y+ioiIYP++PXTu1iMNcyrE7yk6OppB/fuiUCgYMXpcWmdHpLG4OAV58+WjT7/+ANjb58HX9z5bNm+USvdvSLqXCyHEX0xLW5ts2bOTJ28++v47ABtbO9atXZ1o3PwFCgIQEPDoZ2Yx1WlpaZMtW3wZ9O43ABsbO9Z/Vgbv34fRq1sn0qVLj9vseWhpaSm3eV28wJFDByjmkJdiDnnp1qk9ABXLlmLh/ISDrf3OknOtHD50gPDwCOrUrZ82mRTiNxUdHc2gAf0ICgxk8bLl0sotMDc3J2euXCphOXPmJCgoMI1yJP4fUukW/5cTJ06gpqZGSEhImhz/w4cPNGrUCENDwzTNx//jyzJcuXIlGTJkSNM8JcXKyopZs2Yp19XU1PDw8ADA398fNTU1vL290yRvImXExcURHRWV6La7d3yA+D8E/mRxik9lEBYWRo8uHdHS0mLm3AXo6OioxJ02cw4bt3qwYcsONmzZwaixrgAsW7mWZs1b/fS8/0yJXSse27dRvkJFTExM0ihXQvx+Pla4Ax49YrH7SjJkME7rLIlfgEOhwvg/fKgS9sjfn0yZMqdRjsT/Qyrd4pvOnTuHhoYGtWrVSrDN0dGRoKAgjIzSZvqCVatWcfr0ac6ePUtQUBBv3rz5vyt+aV15bNasGffu3UuTY3+UVMXfy8uLLl26/PwMiVQxe6Ybly958fTpE+7fu8vsmW5c8rpIzdp1eBwQwOKF87l96yZPnz7hxLGjjBw+hCJFi2Fja5fWWU8xc2fFl0Hgf2Uwd5Ybl70uUqNWnfgKd9eOhIeHM9plAu/fh/Hq1UtevXpJbGwsED+ieW5rG+WSOUsWAHLmzIWJqWlanlqK+tq18lHAo0dcvuRFw0YygJoQn/vw/j13fHy44xP/w+XTJ0+44+NDUGAg0dHRDPy3D7dv3WTSlOnExcby6uVLXr18meQPoOLv0LqtMzeuX2PZkkUEPHrEvj272bp1M81atEzrrKWpr91PvzL5plt8k7u7O71798bd3Z3AwEAyfTZ9hba2NpaWlknuGxsbi5qaGurqyf99R6FQEBsbqzI6cFL8/Pywt7cnX758QHyF+Xenp6eH3i86F/Kf3sL5t3n9OpiRw4bw8uUL9A0MsLGxZeESd0o5OvEsKIgL58+xbs1qwsM/YGmZkcqVq/5x3+q+fv2a0SOG8OrlS/QNDLC2tmX+omWUdHTiktcFbl6/BkC9mlVV9ttz4AiZMmdJiyynia9dKx957NjGP/9YUsqpdBrmVIhfz61bN+nUvq1yffrU+Cmg6tZrQLeevThx/BgATRvVU9lv2YrVFCte4udlVPxS8uUvwIzZ85gzawaLF84nc5YsDB4ynFq1//wxRL7ma/eT68TJaZWtb1JTKBSKtM6E+HWFhYWRMWNGLl26xJgxYyhQoADDhw9Xbj9x4gQVKlTgzZs3ZMiQgZUrV9KvXz9Wr17N0KFDuXfvHr6+vmTMmJHRo0ezfv16Xrx4QdasWRk2bBgdO3ZUprFv3z5GjhzJjRs3OHToEFmzZqV///6cP3+e9+/fY29vz6RJk6hcuTIA5cuX5+TJk8q8lCtXTmX9Y9iJEycSnNebN2/o1asXhw4dIiwsjCxZsjB8+HDat2+Pmppaoml4eXkxfPhwrl69SnR0NA4ODsycOZPChT+N0KumpsbSpUvZu3cvBw8eJHPmzLi5uVG37qcH5L59++jXrx+PHz+mZMmSODs70759+wRl+LG7+dixY/Hw8GDAgAGMGjWKN2/eUKNGDZYuXYqBgQEAoaGhdOvWDQ8PDwwNDRk8eDA7d+7EwcFBpTv4565du0a/fv24dOkSampqWFtbs3jxYsLCwqhQoYJK3DFjxjB27FisrKzo168f/fr1U57vjh07qF+/Pv7+/uTIkYOrV6/i4OCQ6DG/FBGTrGjiLxcbJ6+pxGj8BdOTCSGEEL863WQ0Y0v3cvFVmzdvxs7ODltbW1q3bs3y5cv51u80Hz58YMqUKSxbtoxbt25hYWFB27Zt2bBhA3PmzMHHx4fFixcnGCRk6NChTJ48GR8fHwoUKEBYWBg1a9bk6NGjXL16lerVq1OnTh0CAgIA2L59O507d6ZUqVIEBQWxfft2Ll68CMCRI0eUYYkZNWoUt2/fZv/+/fj4+LBw4ULMzMwAkkwjNDQUZ2dnzpw5w/nz57G2tqZmzZqEhoaqpD1u3DiaNm3K9evXqVmzJq1ateL169cAPH78mIYNG1KnTh28vb3p1KkTQ4cO/eb/g5+fHx4eHuzZs4c9e/Zw8uRJJk/+9Gte//798fT0ZNeuXRw+fJjTp09z5cqVr6bZqlUrsmTJgpeXF5cvX2bo0KFoaWnh6OjIrFmzMDQ0JCgoiKCgIAYOHPjNPAohhBBCCCESku7l4qvc3d1p3bo1ANWrV+ft27ecPHmS8uXLJ7lPdHQ0CxYsoGDB+JGO7927x+bNmzl8+LCylTpnzpwJ9nNxcaFKlSrKdRMTE2UaAK6uruzYsYNdu3bRq1cvTExMSJcunUoX93fv3gFgamr61W7vAQEBFCpUiKJFiwLxA4R99LEL9ZdpVKxYUSWNJUuWkCFDBk6ePEnt2rWV4e3ataNFixYATJw4kTlz5nDx4kWqV6/OwoULyZUrF25ubgDY2tpy48YNpkyZkmReIX7AopUrVypbttu0acPRo0eZMGECoaGhrFq1ivXr11OpUiUAVqxYofIZQFJlMGjQIOzs4r/Ptba2Vm4zMjJCTU3tq2UohBBCCCGE+DZp6RZJunv3LhcvXlRWIDU1NWnWrBnu7u5f3U9bW5sCBQoo1729vdHQ0KBcuXJf3e9jBfijsLAwBg4ciL29PRkyZEBfXx8fHx9lS/f/o3v37mzcuBEHBwcGDx7M2bNnv7nP8+fP6dy5M9bW1hgZGWFoaEhYWFiC/Hx+7unTp8fQ0JAXL14A4OPjQ4kSqt9nlSpV6pvHtrKyUla4ATJmzKhM88GDB0RHR1O8eHHldiMjI2xtbb+aZv/+/enUqROVK1dm8uTJ+Pn5fTMf/4/IyEjevXunskRGRqbqMYUQQgghhEhrUukWSXJ3dycmJoZMmTKhqamJpqYmCxcuZNu2bbx9+zbJ/fT09FS+i07uoGDp06dXWR84cCA7duxg4sSJnD59Gm9vb/Lnz09UCozmWaNGDR49esS///5LYGAglSpV+mYXamdnZ7y9vZk9ezZnz57F29sbU1PTBPn5fA5fiP/uOS4u7v/Kb2qkOXbsWG7dukWtWrU4duwYefLkYceOHf9Xml8zadIkjIyMVJZpUyal2vGEEEIIIYT4FUilWyQqJiaG1atX4+bmhre3t3K5du0amTJlYsOGDclOK3/+/MTFxSUY5OxbPD09adeuHQ0aNCB//vxYWlp+c3RybW1tAOV0Pl9jbm6Os7Mza9euZdasWSxZsuSraXh6etKnTx9q1qxJ3rx50dHR4dWrV991Tvb29spvxj86f/78d6XxpZw5c6KlpYWXl5cy7O3bt8madszGxoZ///2XQ4cO0bBhQ1asWAHEl0FyyvB7DBs2jLdv36osg4YMS9Fj/E1CQt5Qvkwpnj59ktZZ+W6ep0/RtGG9//uHo5CQN1Qq50jgb1gGyTFnphtTJrr+X2n8zteJn68vVSqW5cOHD2mdFfGXkvtHJMfvfJ2k1Pv4S79zmWzetIHePbqleLpS6RaJ2rNnD2/evKFjx47ky5dPZWnUqNE3u5h/zsrKCmdnZzp06ICHhwcPHz7kxIkTbN68+av7WVtbs337dmVlv2XLlt98KFhYWKCnp8eBAwd4/vx5ki3yo0ePZufOnfj6+nLr1i327NmDvb39V9OwtrZmzZo1+Pj4cOHCBVq1avXdU3t169aN+/fvM2jQIO7evcv69etZuXLld6XxJQMDA5ydnRk0aBDHjx/n1q1bdOzYEXV19QQjsX8UHh5Or169OHHiBI8ePcLT0xMvLy9lGVhZWREWFsbRo0d59epViry0dXR0MDQ0VFl0dHT+73T/VksXL6JChUpk/m/aqps3rtO5gzOlSxaldKlidOvckbt37iQrLYVCQY+unSiY15ZjR48ow0NC3tC9S0cqly9NUYd8VK1UjonjXQgLC1PG8fG5TdNG9SlZtBC9e3Tj7X+j7kP8j3fNmzTkxvXrKsdzKlMWTU1N9u7Z9X+UALgvWUT5CpXIlDkLuzy2Uzi/XaLL6+Bg5T779uymWaN6OBZzoGqFMowdNZyQkDdfPU5QUCB9enTFsZgDlco5MtNtKjExn4beHzNiaKLHbVz/01gP+/bspkbl8pRzLI7bVNUeHoFPn1C/djWVcgVo064De3Z58OTx4x8uo5S4Th4HBNCvT0/Kly6JY/HCDOrfl+DPfnB8+vQJY0YNp0bVihQvXIBa1SuzYN4clTmGnz59Qvu2rShR1IH2bVsl+EOsV4+uHDl0UCUsV+7cFCjgwJpVK374/IX4f3x+/9y9c4chA/tTtVI5ihcuQP06NVi3ZtU30/D3f0jfXt0p51QCx+KFcW7dgosXVH9sv3D+HG1bNadUsUJULOvETLdpKs8YuX9+bV8+ZydPHE/zJg0p6pCPpg3rfWNvVUm9jwEK5rVNsOzft1e5PS3fx1/6skyCAgPp1b0LJYoUpHyZUsyYPkXlGv9Sct4rnwt49IhSxQpRuqTqp6rnznpSp2Y1HIsXZvjQQSr7h4aGUqdmNQIDn6rs06BBI3x8bnHl8qUfPf1ESaVbJMrd3Z3KlStjZGSUYFujRo24dOkS17+4cb9m4cKFNG7cmB49emBnZ0fnzp15//79V/eZMWMGxsbGODo6UqdOHapVq6YyPVdiNDU1mTNnDosXLyZTpkzUq5f4w05bW5thw4ZRoEABypYti4aGBhs3bvxqGu7u7rx584bChQvTpk0b+vTpg4WFRbLLACBbtmxs27YNDw8PChYsyKJFi5g4ceJ3pZGYGTNmUKpUKWrXrk3lypVxcnLC3t4eXV3dRONraGgQHBxM27ZtsbGxoWnTptSoUYNx48YB4OjoSLdu3WjWrBnm5uZMnTr1/86jSDnh4eF4bN9Kg0aNAfjw/j09unbGMmMm1m7YzMo160mfPj3du3QkOjr6m+mtXb0q0R9o1NXUqVCxErPnLWTXvoO4TpjMhfNnGT9ujDLOuNEjKV6iJBu3bicsLJRlSxcrt61euRyHQoXJ/9k4Bx/Vrd+QDWvX/MjpA/FlsHPHNuo1aARA1eo1OXT8tMpSyqk0RYoWw8TUFADvq1cYPWII9Rs2YsuOPUxxm8WtmzdwHTs6yePExsbSt0dXoqOjWbFmAy7jJ7N75w4Wzp+jjDNw6AiV4+4/fAIjIyMqV60GxE9R6Dp2JP0GDmbBEnf27d3NqZPHlftPGu9C734DEszoYGxsTCnH0mzZnPyeRV+W0f97nXz48IFuXTrET4e4fBWr1m4gOjqa3j27KX8E9X/wgLg4BaPGuLB9514GDR7Gls0bmTN7pjIdt6lTsLD4h83bPDAzN2fGtE/PlAP796GupqYsr8/Va9CQLZs2fPWPMyFSw5f3z+3bNzExNWHi5Gls37mXTl26MWfWDDasW/vVdHr36EZsbCxLl69iw5bt2Nra0btnN169fAnA3Tt36NmtM45Opdm01YOpbjM5eeIYs2e6KdOQ++fX9eV18lH9Bo2oVqPmd6eX1Pv4I5fxkzh64oxyqVipsnJbWr2Pv/RlmcTGxtLrv/foqrUbGT9xMrs8drBg3pwk00jOe+Wj6Ohohg7qT+EiqhXuuLg4hg0eQJOmzVm9fhO3b91k65ZPDX6zZ06nSdPmZMqUWWU/LW1tataqzfq1q/+fYkhIIYT444SFhSmMjIwUy5YtS+usfFV4tCw/suzas19RomRJ5fqlq9cVNjY2iocBgcqw67fuKGxsbBR3ff2/mtbV67cVpcuUUTwOfKGwsbFR7D1w+Kvxl61YpShTtqxyvUCBAorbd30V4dEKxao16xQdO3VWhEcrFPcfBCgqV6mqeBUSmmg6Dx49VdjY2Cju+T365vmGRcYlWDx271OUKFky0W1hkXGKx0GvFHny5FVs3LpDGbZg8VJFxYqVVOItW75KUbp0mSTTOXjkhMLOzk7x6OkLZdjKNesVhQsXVrwJi0h0n937DilsbW0V9x4+VoRFxinOX/JWlCrlqNzes3dfxfxFSxVhkXGKrTt2KTp36Zbk8Tdu2a4oU6Zsott+xnVy9MRphZ2dneLlm0//jy9ev1PY2toqjp/yTPLYCxcvVVSoWFG5Xr16DcWRYycV4dEKxeFjJxTVa9RUhEcrFM+D3yoqV66ikqfPl3fvIxX58uVTnDh9Ns3vO1n+ruXL+yexZdTosYpWrdskuT3wRbDCxsZG4XneSxn2KiRUYWNjo7x/pkxzUzRo0FBlv/2Hjiry58+vfH7K/fPrLl+7TmbMmqOoU6dustP61vv4W+/on/E+/pEyOXws/j36JOilMmzV2vj36Lv3kclO98v3ysdl4uSpin8HDFRs3LxNUaRIEWX4k2evFDY2NoqQsAhlvFGjxyrCoxWKcxcvK+o3aKAIi4hJ9Fhnzl1U5M2bV/EmNDxZeUsOaekW4g9w9epVNmzYgJ+fH1euXKFVq1YASbb0i9/blSuXyJMnr3LdKkcOMmTIwI7tW4mOiiIiIoId27aSM2cuMmXOnGQ64eHhDBs8gOEjR2P231R5X/PixXOOHTlMkaLFlGE2tnacO3eWmJgYLpw/j7VN/Kj5ri5j+HfAINKn1080rYyZMmFqavbD3beuXrmMvX3eJLfv2e2Brp4ulat8av0pULAQz54948ypkygUCoJfveLI4YM4lSmbZDrXr3mT29oGUzMzZVgpx9KEhYXh5+ub6D4eO7ZSomQp5a/n2bJlJyIinDs+t3n7NoTbN29gbWPDu7dvWTBvDkNGjEry+HnzFeD582c/9N16SlwnUVFRqKmpKce6gPhPRdTV1bl65XKSxw4LDVXpKWVja8f58+eIi4vjnKcnNv9dJzOnT6VZi5ZYZsyYaDpa2trY2tmneDc/Ib7ly/snMaFhoRgZZUhye4YMxljlyMHunR58+PCBmJgYtm7ehImpqTLtqKgotL/41EpXV5fIyEhu37oFyP3zK0vOdZIcyX0fTxw/jnJOJWjZrDE7tm9FoVAot6XV+/hLX5bJNW9vrL94jzo6xb9Hff0Sf48m5sv3CsR/mnH40AGGjxyTIL6JiQnm5uac8zxDeHg4V69cxtrWlujoaCa4jGXUGBc0NDQSPVaevPmIjY3lxvVryc7ft0ilW4g/xPTp0ylYsCCVK1fm/fv3nD59GrPPHnDizxEUGIj5Z582pE+vz7KVa9i7exfFixSkVLFCeHqeZv7ipWhqaiaZzrQpkyhYqBAVKlZOMg7AkIH9KVGkIFUqlCV9+vSMdZmg3DbGZTxHDh2kdvUqaGlp0bFzV3bv8kBPV5e8+fLTrXNHalevwrxEuoSZW1gQFBT4AyWQsAy+5LF9GzVq1lb5xMKhUGEmTJ7G0EH/UqJwfqpUKI2+gQFDRyTdvfzVq5fK7ukffVwPTmQgxZcvnnP2zGnqN2yiDDM0MmLchMmMHj6ENi2aUqtuPRydyjDTbSrNWrTi6ZMntGjSgCYN6nDk0AGV9D6eY1Dg95dTSlwnBQo6oKenxyy3aYSHh/Phwwfcpk0hNjaWl/91j/1SwKNHbFi/lsZNmivD+g8awsOHD6hRpSKPAh7Rf9AQLl/y4u4dH+rUrc+g/n2pWa0SruNGJ/hmz9zCgsAfOH8h/h/fesZ4X73CoQP7adSkaZJx1NTUWLJsJXfu3MaxeGGKFy7AmlUrWLB4GYb/VR4cnUpzzfsq+/fuITY2lufPn7N44XwAZRd0uX9+Xd+6TpIrOe/jHr36MM1tFouWraBylapMdB3H+nWfuoWn1fv4S1+WSfCrV5iYqv49avrfevCrxN8jX0rsvRIS8obRI4bhOmFygs+zIP7+m+o2iyWLFtCwXi3s7Oyp36ARy5ctoVjxEmjr6ODcqjl1a1VL8JmInp4e+voGP/TuTUrSf40JIX4bhQoV4vLlpFudxJ8lIiISC22dz9YjGDtqBA6FCjN5mhtxcXGsWrGcXt27sn7T1kS/7T9x7CheF86zaeu3p4kbNGQY3Xr05JG/P7NnzWD6lEmMGD0WgNy5rVm+6tPLKiTkDQvnz2XFqnVMnuiKQ6FCzJg9l1bNGpOvQEHKV6iojKuro0N4ePiPlUFkBObaiQ/Ed837Kg8f+OE6cYpK+AM/X6ZNmUDnbj0p5ViaV69eMMttGhNdxzLmsx8S/h+7d3lgYGBAhUqVVMIrVqpCxUpVlOuXvS5y/95dBg8bSb1aVZk0xQ1TMzPatmxK4SKfvkP/ONhgRETEd+clJa4TExMTps2YzQTXsaxftwZ1dXWq16yFfZ68qKsn/O7w+fPn9OjaiSrVqqtURv755x/mLfj0fWFUVBTdu3Rk/MTJLFm8kHTp07NzzwF6dO3Eli2baNmqjTKuro4OERE/dp0I8aO+vH8+d//+Pfr17kHX7j1xdCqdZBoKhYKJ48dhYmLKitXr0NXVZfvWLfTp2Y31m7Zibm6Bo1Np/h0wmPEuYxgxbDBa2tp06dqDK5cvoaYe3zYm98+v62vXSXIl933ctXtP5b/t7fMQHh7OqhXutGrdFki79/GXUqJMPpfUe2XcmFHUqFVbpffdlwoXKcr6zduU6/7+D9mzayebtu6gvXNrWrVui1OZsjSqX5siRYtiY2unjKujm7L3jrR0CyHEb8bYOAPv3r1Tru/bu5vAwKe4TJhEvvwFKFDQgclTp/P06ROOHzuaaBoXL5zn8eMASpcqRuECeShcIA8AA/r1pmO7NipxzczNyZEzF+UrVmLUmHFs3rSBly9fJJru9CmTadXGmX8sLbl08SJVqlYnXbp0lClXjkteqtPlvX33FhMTkx8rgwzGhL5LfHYCj+1bsbWzJ0/efCrhy5ctwcGhMM7tO2Jja4ujUxmGjRzDzh3bkjwfMzNzldHPAeW66Rc9SRQKBTt3bKdm7XpoaWmTlKioKCZNcGHE6HE8DgggNjaWIsWKY5UjJ9myW3HjxqfubO/+mz3B2MQ4yfSSkhLXCcS3xO09cITjp89y4sx5Jk6exovnz8mSJatKvBcvntOpfVsKFirE6LFfn+ps2ZJFlHJ0Ik/efFzyukjlKtXQ0tKiUuWqXPpiWsW3b99ibPxj14kQP+rL++cjP19funRsR6MmzejSrcdX07h44TynTp5gyvSZFCpcBPs8eRkxeiy6Orrs8vBQxmvbrj1nzl/iwJHjnDxzngoV43+0y5IlS6Lpyv3z60jqOvke3/M+/lz+AgV5/uwZUUmM6P2z3sdf+rJMTM3MeB2s2jMs+L91U7Ovf9r2tfeK14XzrF65XFlmY0ePIDQ0lMIF8rBj+9ZE03MdO5oBg4YQp1Bwx+c2VapVx9TUlKJFi3HpkpdK3HcpfO9IS7cQQvxm7OzzsHf3p+k9IiIiUFdTnSJOTV0dNdRQJDHNXodOXWjQuIlKWOP6dRg4ZBjlyldI8tgfvx9L7CV/4fw5Hjzww2VC/JRYcXGxylFzY6JVR8+NjIzkccBj7OzzfO1Uk2Rrb8++PbsThH/48J7DB/fTq2//BNsiIsLR0FB97an/15LEZ9/Ffa5AQQfcly7idXCwsvX5/DlP9PX1yZkrt0rcy5cu8jjgEfUbNvpq3pctXoijU2ns8+Tljs9tYmNildtiYmKIi/30f+brex9NTS1y5rL+apqJSYnr5HMf//i4cP4cr18Hq7SSPH8e/4dRnjx5cRk/6VO5JuKBnx/79+5h0zYPAOJiY4mJiR89PSYmmri4WJX4vr73Ex2ZWYjU9OX9A/HXYucOztStW5/eff/9ZhofWw7VvxiNWk1dDYVC9Z5TU1PDwuIfAPbv24OlZUbsE/lWWO6fX0ti18n3+tH38d07PhgaGqmMufHRz3wff+nLMino4MCyJYsIDg7G9ON79OxZ9PX1yfXFe/Rz33qvrF63idjPrvcTx46ywn0pq9Zt5J//7qXPbd+2BSOjDJSvWEn5g7ayTGJiiIv9lNbjgAAiIyNTrExAWrqFEOK34+hUGj8/X+VLo1QpR969e8tE13E88PPD1/c+o0cOQ1NTg2IlSgDxL696tasr5+g0MzfH2tpGZQHImDGTsgXz9KmTeOzYxv3793j69AmnTp5g/LgxOBQqrJx786PIyEgmTXBh9FhX5YvRoVBhNm1Yx907dzhy5BAOn035d/2aN9raWhQo6PBDZVDKsTQPPiuDjw4d2E9sbCy1atdNsE/ZchU4fvQwWzZt4Mnjx3hfvcK0yRPIl78A5v+9oI8dPUzDOjWU+5R0dCJnzlyMHD6Ye3fvcNbzNAvmzaZJ85YJ/tDx2L6NfAUKkvu/skzMAz9fDh3cR/eefQCwypETdXU1PLZv5fSpE/g/fEDefPmV8a9euUShIkWSnP7va1LiOgHw2LGN69e8eRwQwJ7dOxnUvx+t27bDKkdO5T6d2rUhY8aM9B80hDevX/Pq5Uvl96ifUygUuIwdxcAhw0iXLh0Qf51s27qFB35+7N61E4dCn66Tp0+f8OL5c0qWcvzu8xfi//Hl/XP//j06tW9LKUcn2ji3V17jr1+/Vu5z4/p16tWuzvPnz4H4yoahoSEjhw/l7p07+Ps/ZMb0KTx98pQyZcsr91u5fBn3793F1/c+ixfOZ/mypQwZPjLBIE9y//x6vrxOIP774zs+Prx69ZKIyAju+Phwx8dH+b39j7yPTxw/xvatW7h//x4Bjx6xeeN6li1dTItWrRPk6We/j79VJqUcS5MzV25GDB3M3Tt38DxzmnlzZ9GsRSvle/TLeyc575WcuXKplJmFxT+oq6tjbW2jHDPho+DgYJYuXsjQESOB+LFWcubMxbo1q7jmfZUL58+p3DtXLl8iS9asZM2WLUXKBKSlWwghfjvWNrbY2efh4MH9NGnanBw5czFn/iIWLZhH21bNUFNTx87engWLl2FuHj+YSUxMNP4PH37X90k6Ojps37qF6VMmERUVxT+WGalUuQodOnVJEHfRgnmUKVseO3t7ZdiQYSMZOngAHZxbUbNWHZWRxPfv20vN2nXQ09P7v8rg0MH9NG76aWAVj+1bqVipCgaGhgn2qVu/IR/ev2fThnXMnD4FfQMDihUvSd9/ByrjhIWG4u//ULmuoaHBrPmLmOQ6jnatm6Orp0eduvWVleaPQkNDOXbkEAOHDE8yzwqFgvHjRtN/0FD0/vuDWVdXl7HjJzF5givRUVEMGT4Ki38+/UJ/aP8+uvbo9f0FRMpdJ/4PHzJn5gzevn1LpsyZ6dSlG22c2ym3nz/rSUDAIwICHlG1oupI8Ndu3VVZ37plE6amZiqtN9169mbY4AG0btEEp9JlaNailXLbgX17KeXolGAeVSFS25f3z5FDB3nz+jV7d+9SacXLlCkz+w8fA+J70/g/fKhseTY2NmHB4mXMnT2Lzh2ciYmJJldua2bPm4+t3advR8+cPsWyJYuIiorCxtaO2fPmU7pMuQR5kvvn1/PldQIwbsxIle7bzRrXB2DfoaNkzpzlh97HWpqabNywjmlTJqJQQLZs2Rg4eCiNGiccyO9nv4+/9GWZaGhoMHfBIia4jKVtq2bo6elRp14DevT69B798t75nvdKckydNIG2zh2UvUkAXCZMZtSIIaxfuwbn9h3Jl//THOb79+2lYaOkB0n8EWoKRRJ96oQQIpVFxHw7jkjcqZMnmDl9Ktt27vlqV95f0Zs3r6lXqwbrN29N8F1wYmLjEn9NnT51gllu09iyY/dvVwbJ4Xn6FDOmT2HTtp2Jji6ukchAZl/6na+T6Kgo6tSsxqSp0ylUuEhaZ0f8heT+EcnxO18n3/s+Tq7fuUw+fkaya+9BDAwMkrWPbjKasaWlWwghfkNly5Un4JE/L54/T3KO1l9V4NOnDB815v9+wZcpW56AR4948eI5lpa/VxkkR3j4B8a6TvzqtG/f8jtfJ0FBQXTs0lUqDCLNyP0jkuN3vk5S6n38pd+5TF69fMn4iVOSXeFOLmnpFkKkGWnpFsmRVEv33y45Ld1CCCGESF3Jaen+vdr7hRBCCCGEEEKI34hUuoUQQgghhBBCiFQilW4hhBBCCCGEECKVyEBqQgghfmny7XLinr+NTOss/HL+MdJJ6ywIIYQQCUhLtxBCCCGEEEIIkUqk0i2EEEIIIYQQQqQSqXQLIYQQQgghhBCpRCrdQgghhBBCCCFEKpGB1IQQ4i92+ZIXK5e743P7Ji9fvmTmnPlUrFRZuX3U8KHs2rlDZR9Hp9IsXOL+s7MqUsmG1cvwPHGUxwEP0dbWIU9+Bzr16EfW7DkAePfuLWuWLeDyxbO8ePYMI2NjHMtUpF2XnqTXN1CmU9WxQIK0h42bQoUqNZTru7ZtZOfWDTwPCsTC0pIWzp2pUqNu6p+kEL+Qbz13hRB/Hql0CyHEXyw8/AO2trbUb9iI/n17JRrHqXQZXMZPUq5ra2v/rOyJn+DG1UvUbdQcG/u8xMbGsmLRHIb168bS9TvQ00tH8MsXBL96QedeA8hulYvnzwKZM208wa9eMHriDJW0Bo5wpWhJJ+W6/meV8t3bN7F84Wz6DR2DrX0+7ty+wawp49A3MKRU6fI/63SFSHPJee4KIf4sUukWQoi/WOky5ShdptxX42hra2Nmbv6TciR+tokzF6msDxzpStNa5bl/5zYFChUlRy5rRk+cqdyeKUtW2nftzZRxw4iNiUFD89OfEun1DTAxNUv0OEcP7KFm/caUr1wdgIyZs3DP5xab166QSrf4qyTnuSuE+LPIN91CCCG+6pLXRcqXKUXdWtUY7zKGkJA3aZ0lkYrevw8DwMDQKOk4YaGkS6+vUuEGmOc2kcY1ytK7Y0sO7NmBQqFQbouKjkJbW3UebW0dHe7evkFMTHQKnoEQQgjxa5GWbiGEEElyLF2GSpWrkDlLFh4/fszcWTPo0bUza9ZvQkNDI62zJ1JYXFwci2ZNJW+BQuTIZZ1onLchb1i3Ygk16zZSCW/buSeFihRHR0eXyxfPMXf6BMI/fKBB01YAFC3hyIHd23EsWxFrW3vu37nNgd3biYmJ4W1ICKZm0ptCCCHEn0kq3UIIIZJUo2Yt5b+tbWyxsbGlVvXKXPK6SImSpdIwZyI1zHObgP8DX2YsWpno9vfvwxg5sCfZcuSkTafuKttat++q/HduW3siIsLZsn6lstLdqn1X3gQH07dzaxQoMDY2pUqNumxetwJ1del4J4QQ4s8lbzkhhBDJliVrVoyNjQkIeJTWWREpbJ7bRM57nmLqvGWYW1gm2P7h/XtG/NuddOnSM3bSLDQ1tb6anl2e/Lx68ZyoqCgAdHR0GTDChd3HL7Bm237W7jjIPxkzkS5deowyGKfKOQkhhBC/gl++0n3ixAnU1NQICQlJk+N/+PCBRo0aYWho+H/n48tzWblyJRkyZEiRfAKMHTsWBweHFEsPoHz58vTr1y9F00zMj5Rzal8bP/L/o1Ao6NKlCyYmJqipqeHt7Z0qeUtp/v7+v1V+Rdp5/uwZISEhmEtX4D+GQqFgnttEPE8eY9rcZWTMlCVBnPfvwxjWryuaWlqMmzoHbR2dRFJS5Xf/DgYGhglGu9fU1MLcwhINDQ1OHDlACaey0tIthBDij/ZLdC8/d+4cpUuXpnr16uzdu1dlm6OjI0FBQRgZJT2gS2patWoVp0+f5uzZs5iZmfHmzRuMjY25evXq/13BbdasGTVr1kyZjKaS7du3o6X19daMlPBlOafV//fnfuT/58CBA6xcuZITJ06QM2dOzMwSH8U3LbVr146QkBA8PDyUYVmzZiUoKOiXzK9IXR/evycgIEC5/vTJE+74+GBkZISRkRGLFs6jcpVqmJqZ8eTxY2a6TSNrtuw4li6ThrkWKWnu9AkcP7yfcVNmo5cuPa+DXwGQXl8fHR1dZYU7MiKCIWMm8eH9ez68fw+AUQZjNDQ0OHfmBCGvg7HLWwBtHR2uXDzHhtXLaNLSWXmcJwH+3Ll9E/u8+QkNfce2DWvwf+DLoFHj0+S8hUgrX3vuZsyUKQ1zJoRILb9Epdvd3Z3evXvj7u5OYGAgmT574Ghra2NpmbCb20exsbGoqal916/kCoWC2NhYNDW/ffp+fn7Y29uTL18+IL5FMKXo6emhp6eXYumlBhMTk59ynC/L+VfwI/8/fn5+ZMyYEUdHxx8+7vdcnylFQ0Pjq/eZ+HPdunWTTu3bKtenT42fj7tuvQaMGD2We3fvsWunB6HvQrGwsKCUoxM9e/eVubr/IHt2bAZgYM8OKuEDR7hStVY9fO/6cOfWDQDaNa2lEmf1tv1YZsyMpqYmu7ZtYtGcaSgUCjJlyUbXPoNUBluLi4tj24bVPAnwR0NTk4KFizFr8WosM2ZO5TMU4tfyteeu68TJaZUtIUQqSvP+XGFhYWzatInu3btTq1YtVq5cqbI9qS7Zu3btIk+ePOjo6BAQEEBkZCRDhgwha9as6OjokDt3btzd3VXS2L9/P0WKFEFHR4czZ87g5+dHvXr1+Oeff9DX16dYsWIcOXJEeezy5cvj5ubGqVOnUFNTo3z58uTIkQOAQoUKKcOSsm/fPmxsbNDT06NChQoJKuxfdl++du0aFSpUwMDAAENDQ4oUKcKlS5dU4np4eGBtbY2uri7VqlXj8ePHSR7fy8uLKlWqKFuOy5Urx5UrV5TbO3ToQO3atVX2iY6OxsLCQll2X3Yvt7KyYuLEiXTo0AEDAwOyZcvGkiVLVNI4e/YsDg4O6OrqUrRoUTw8PL7adTmxcgZYs2YNRYsWxcDAAEtLS1q2bMmLFy+SPN9Hjx5Rp04djI2NSZ8+PXnz5mXfvn3K7Tdv3qRGjRro6+vzzz//0KZNG169epVkel/+/3zsvr9mzRqsrKwwMjKiefPmhIaGAvEtyL179yYgIAA1NTWsrKwAiIyMpE+fPlhYWKCrq0vp0qXx8vJSppvU9Vm+fHl69+5Nv379MDY25p9//mHp0qW8f/+e9u3bY2BgQO7cudm/f78yrdjYWDp27EiOHDnQ09PD1taW2bNnq5zDqlWr2LlzJ2pqaqipqXHixIlEu5efPHmS4sWLo6OjQ8aMGRk6dCgxMTEq/299+vRh8ODBmJiYYGlpydixY5MsT/FrKla8BNdu3U2wuE6cjK6uLouWunPi9DkuX7vJ/sPHGD3OFVPpEfFHOXT2eqJL1Vr1AChYuFiScT5WmIuVLM3CVZvZeeQ8u45eYNGqLdSu30TlB/FsVjlZuGozu49fxOPwWcZNmU3W7DnS5JyFSEtfe+4KIf5MaV7p3rx5M3Z2dtja2tK6dWuWL1+uMq9nYj58+MCUKVNYtmwZt27dwsLCgrZt27JhwwbmzJmDj48PixcvRl9fX2W/oUOHMnnyZHx8fChQoABhYWHUrFmTo0ePcvXqVapXr06dOnWUXX62b99O586dKVWqFEFBQWzfvp2LFy8CcOTIEWVYYh4/fkzDhg2pU6cO3t7edOrUiaFDh371vFq1akWWLFnw8vLi8uXLDB06VKVr94cPH5gwYQKrV6/G09OTkJAQmjdvnmR6oaGhODs7c+bMGc6fP4+1tTU1a9ZUVhI7derEgQMHCAoKUu6zZ88ePnz4QLNmzZJM183NjaJFi3L16lV69OhB9+7duXv3LgDv3r2jTp065M+fnytXruDq6sqQIUO+et6JlTPE/wDg6urKtWvX8PDwwN/fn3bt2iWZTs+ePYmMjOTUqVPcuHGDKVOmKK+BkJAQKlasSKFChbh06RIHDhzg+fPnNG3a9Kt5+5Kfnx8eHh7s2bOHPXv2cPLkSSZPjn9Jzp49GxcXF7JkyUJQUJCyYj148GC2bdvGqlWruHLlCrlz56ZatWq8fv1aJe0vr0+I73ZvZmbGxYsX6d27N927d6dJkyY4Ojpy5coVqlatSps2bfjw4QMQ35KUJUsWtmzZwu3btxk9ejTDhw9n8+b/WrIGDqRp06ZUr16doKAggoKCEm2Vf/r0KTVr1qRYsWJcu3aNhQsX4u7uzvjxqt1AV61aRfr06blw4QJTp07FxcWFw4cPf1eZCiGEEEII8SdL8+7l7u7utG7dGoDq1avz9u1bTp48+dUW5OjoaBYsWEDBggUBuHfvHps3b+bw4cNUrlwZgJw5cybYz8XFhSpVqijXTUxMlGkAuLq6smPHDnbt2kWvXr0wMTEhXbp0Kl3c3717B4CpqelXu+MuXLiQXLly4ebmBoCtra2yIpiUgIAABg0ahJ2dHQDW1qpzpEZHRzNv3jxKlCgBxFd47O3tuXjxIsWLF0+QXsWKFVXWlyxZQoYMGTh58iS1a9fG0dERW1tb1qxZw+DBgwFYsWIFTZo0SfCDxedq1qxJjx49ABgyZAgzZ87k+PHj2Nrasn79etTU1Fi6dCm6urrkyZOHp0+f0rlz5yTTS6ycIb4l/qOcOXMyZ84cihUrRlhYWKL5CwgIoFGjRuTPn1+5z0fz5s2jUKFCTJw4URm2fPlysmbNyr1797CxsUkyf5+Li4tj5cqVGBgYANCmTRuOHj3KhAkTMDIywsDAQKWr9vv371m4cCErV66kRo0aACxdupTDhw/j7u7OoEGDlGl/eX0CFCxYkJEjRwIwbNgwJk+ejJmZmbI8R48ezcKFC7l+/TolS5ZES0uLcePGKffPkSMH586dY/PmzTRt2hR9fX309PSIjIz86vW7YMECsmbNyrx581BTU8POzo7AwECGDBnC6NGjla1XBQoUYMyYMUD89Tpv3jyOHj2a4DyEEEIIIYT4W6VpS/fdu3e5ePEiLVq0AEBTU5NmzZopuzYnRVtbW9kSCODt7Y2GhgblypX76n5FixZVWQ8LC2PgwIHY29uTIUMG9PX18fHxURnc4kf5+PgoK8cflSr19Tlt+/fvT6dOnahcuTKTJ0/Gz89PZbumpibFihVTrtvZ2ZEhQwZ8fHwSTe/58+d07twZa2trjIyMMDQ0JCwsTOX8OnXqxIoVK5Tx9+/fr1LZTcznZa+mpoalpaWy2/fdu3cpUKAAurq6yjiJ/SCQHJcvX6ZOnTpky5YNAwMD5f9vUv8/ffr0Yfz48Tg5OTFmzBiuX7+u3Hbt2jWOHz+Ovr6+cvn448aX5fw1VlZWygo3QMaMGb/a5d3Pz4/o6GicnJyUYVpaWhQvXjzB/9uX1yeolrWGhgampqbKHxUA/vnnHwCVPMyfP58iRYpgbm6Ovr4+S5Ys+e5r2sfHh1KlSqGmpqYMc3JyIiwsjCdPniSaP/h6eURGRvLu3TuVJTIy8rvyJYQQQgghxO8mTSvd7u7uxMTEkClTJjQ1NdHU1GThwoVs27aNt2/fJrmfnp6eSmUguYNdpU+fXmV94MCB7Nixg4kTJ3L69Gm8vb3Jnz+/ck7Rn23s2LHcunWLWrVqcezYMfLkycOOHTt+OD1nZ2e8vb2ZPXs2Z8+exdvbG1NTU5Xza9u2LQ8ePODcuXOsXbuWHDlyUKbM10cl/nI0czU1NeLi4n44n4l5//491apVw9DQkHXr1uHl5aUsi6T+fzp16sSDBw9o06YNN27coGjRosydOxeI/4HlY1f/z5f79+9TtmzZZOcrNc/9y+szqeN9HvbxPviYh40bNzJw4EA6duzIoUOH8Pb2pn379ql2TX9PeUyaNEk5IvbHZdqUSamSLyGEEEIIIX4VaVbpjomJYfXq1bi5ualUgq5du0amTJnYsGFDstPKnz8/cXFxnDx58rvy4OnpSbt27WjQoAH58+fH0tLym6OTfxyxNzY29qvxPnb7/tz58+e/mScbGxv+/fdfDh06RMOGDZWt0BBfZh8HVoP4VuWQkBDs7e0TTcvT05M+ffpQs2ZN8ubNi46OToKBw0xNTalfvz4rVqxg5cqVtG/f/pt5/JqP3eg/b8H8fNCw5Lpz5w7BwcFMnjyZMmXKYGdn99UW5Y+yZs1Kt27d2L59OwMGDGDp0qUAFC5cmFu3bmFlZUXu3LlVlsQquyklV65caGtr4+npqQyLjo7Gy8uLPHnypPjxPD09cXR0pEePHhQqVIjcuXMnaMnX1tZO1vV77tw5lfEVPD09MTAwIEuWhHP4JsewYcN4+/atyjJoyLAfSktASMgbypcpxdOnT74d+Rfj5+tLlYpllWMRiJTz7m0ITWqW41nQ07TOSqrYs2Mzowb1SutsiL/E7/yc3bxpA717dEvrbAgh/pNmle49e/bw5s0bOnbsSL58+VSWRo0afbOL+eesrKxwdnamQ4cOeHh48PDhQ06cOKEcPCop1tbWbN++XVnZb9my5TdbLS0sLNDT01MOxJVUi3y3bt24f/8+gwYN4u7du6xfvz7ByOyfCw8Pp1evXpw4cYJHjx7h6emJl5eXSoVaS0uL3r17c+HCBS5fvky7du0oWbJkkt23ra2tWbNmDT4+Ply4cIFWrVol2iugU6dOrFq1Ch8fH5ydnRNJKfk+lmGXLl3w8fHh4MGDTJ8+HUCld8K3ZMuWDW1tbebOncuDBw/YtWsXrq6uX92nX79+HDx4kIcPH3LlyhWOHz+uLL+ePXvy+vVrWrRogZeXF35+fhw8eJD27dt/swL6/0ifPj3du3dn0KBBHDhwgNu3b9O5c2c+fPhAx44dU/x41tbWXLp0iYMHD3Lv3j1GjRqV4EcPKysrrl+/zt27d3n16n/s3XVYFE8DwPEvICmClB1YhAGIKCJ2YaFgd3e9/CxssRW7u7uxu8VEBYNQEEQBFVBElL57/0BPTkARUYz5PM89D7s7Mzs3t7fL3FQEiYmJadIZOHAgz549Y8iQIfj6+nLw4EEmTZrEsGHDvmt5vtRUVVXR0tKSe6mqqmYpLQHWrFpJnTr1KFw45UeQsNBQBg/oi3Ulc2rXsGH+3Nlys81n5NLFC3Rq34YqlmZUt6mM05CBacIcPLCf1o72VK5Ygdo1bJgx9fO8ASEhz+nRtRPWVhb06NopzT+ngwf248ypk3L7SpUujZmZBVs2bUDIXts3rqFajTqyWcXvelzHqW8XWtSvSrtmdVi7bAHJX1wXF8+epH+3NtjXqUJnRzt2b/v25zJx1BA6OTakaW0r2tvXZfbksUSGy/8w+sT/EcMGdKNpbSs6OjRg99b1csdv37xGj3b2ONS3YfbksXL3ovcx7+jRzp6XYaFyceyaOeLv58t9z9vfVS6CkBXZcZ99GxXFmFHDqVbFkupVrZg0YaxsnfsvBT99ik3lilSvKj/c7NpVd+yb2FGtiiVjR48kMVXvtXfv3mHfxI7QUPkf2hwdW+Hj85A7tz0QBCHn5Vile926ddSvXx9tbe00x1q1aoWHh4fcmNxvWbFiBa1bt2bgwIGYmJjQp08f3mdwU/tk/vz56OjoUK1aNezt7bGzs8PS0vKrcXLlysXixYtZtWoVhQoVokWLFumGK1asGPv27cPNzQ1zc3NWrlwpN4nXl5SUlIiMjKRr164YGRnRtm1bGjduLDcploaGBs7OznTs2BFbW1s0NTXZtWtXhmmuW7eON2/eYGlpSZcuXWTLVn2pfv36FCxYEDs7O7k10rNCS0uLw4cP4+npiYWFBePGjWPixIkAcuO8v8XAwICNGzeyZ88eypYty6xZs2SV94wkJyczaNAgTE1NadSoEUZGRixfvhyAQoUK4e7uTnJyMg0bNqRChQo4OTmRN2/eLFciM2vWrFm0atWKLl26YGlpib+/PydPnkRHRyfbz9WvXz9atmxJu3btsLa2JjIyUjbp3Sd9+vTB2NgYKysrDAwM5FrhPylcuDDHjh3j5s2bmJub079/f3r16iWb1E3IWbGxsbjt34tjq9ZAyrU/eGA/EhMT2bR1J9NmzOKQ2wGWL1381XTOnDrJuNGjaOHYkt37D7Jpyw4aN5VfRnDzxg0sWbyAnr36sv/gUVav3UA12+qy4/NcZ5MvX35273ND38CA+XNcZcdOHD+GooIC9RvapTl3C8eW7Nm1I1M/DAiZExcXy4kjB2hk7whAwGM/xg8fhFVVW5Zv3M24qXO4duUC61YslMW5ee0ys1zG0MyhDau37mfIiHHs37WVg3u/3tvM3LIK46fOYf2OQ0yYMZ+wkGdMHTdcdvz9+xjGOPUjX/5CLFu/kz6DhrFl3UqOuu0FUobEzHIZTVOHNixcvYVHvg85dnCvLP66FQtp6tCG/AXln0nKysrUadgYtz3bf7S4BOGrsus+O8Z5BAH+/qxcu4HFy1Zyx8ODKS4T04RLTExk9MhhWFaSr3BLJBLGjBpOm7bt2bx9F94PH7B3z+dGpUUL5tKmbXsKFZJf715ZRYUmTZuxfevmrBaBIAjZSEH6rfW5hN/Cxo0bcXJykq1Xnp1iYmIoXLgwGzZsoGXLltme/rZt2+jRowdv377N9Ph74d8QJ+pbWXL65AmmT5vMhcvXALhy+SJDBvbnzPnLsjW0d+/awaL5c7lw+RrKH4fFpJaUlETjhnUZMGgILVu1Sfc80W/f0qBuTRYvW4l11fQngnS0b8KIUaOxrVGTK5cvMm+OKwcOHSU6OppO7VqzZv0mChQsmCZeYkIC1awrsXTF6gzTFr7u5Vv5iQgvnTvFkrnT2XMsZajV+pWLuHPzOkvXf65AX7tygenjR7L76AU0cudm5iRnkpKSmDB9niyM257t7N62gW0HTmW6h9K1y+dxGe3E0Yse5MqlzOH9u9i4agk7j5yXzf2wbvlC3C+dY/3OQ7x5HUm7ZnU4cv4WKqqqrF22gNjYDwwZMY6H9z1ZvmAWi9dsQ0lJKc257t31YIxTP/afckdVVf7H3PzaoveMkD2y4z77JCAAx+ZN2L5rL+XKp0yC6n75EoMG9OXUuYvky5dfFnbBvDmEh7/C2tqGObNncOV6Sgt1ZGQkdWtW4+ade6iqqrJg3hxiP3xg7IRJeN69w+yZ09i6Y0+635XbHrfo17sHV657fFfDhyAI30ctE+uB5fg63ULOkUgkvHr1iqlTp5I3b16aN2+eLelu3ryZK1euEBgYiJubG87OzrRt21ZUuAUhm9y540HZsuVk216enpQpYyT7RxCgmm11YmJi8A/wTzcNH29vXr18iaKiIm1bOVCvVnUG9uvN48ePZGGuXXNPuU+8fImDfWMa1K3JyGH/40VYmCyMkbEJ169fQyKRcM3dHSMjYwAWzHWlXYeO6Va4IaUVxtjEVHR9zEYPvO5QxuTzXBGJCYmoqMpXBFRV1UhIiOexn3dKmMQEVFRUvwijSsSrl7x8Id+1OyPR0W85d+oYZStYkCtXSgXb54EX5S0qyU22WMm6Gs+Dg3gXHU1eHV109Q24ffMqcXGxPPC6Q4nSRiQlJbJkzjT+N2piupUIACPTciQnJ+P78H6m8icIWZEd91kvr7vk0dKSVbgBrG2qoaioyP1UvTlvXL/G6VMnGDt+Upo0dHV1MTAw4Jr7FWJjY7l75zZljI1JTExk+hQXJkyakuF3pWy58iQnJ3P/ntf3vn1BELKZqHT/w4KDg8mfPz/bt29n/fr15MqVPcu2v3jxgs6dO2Nqasp///1HmzZtWL16dbakLQhCyrhCg1RDRSIjItDV05cLo/dxOzIiPN00nj9/BsDKZUvp228AS5avREtLm97du/D2Y4+a58+eI5FIWbtmJSOdxzJvwWLevn1Lvz49ZGMKh410JjDwCY0b1OVp8FOGjXTmtsct/Hx9sG/uwMhh/6OJXT2mTp4oNw4RwCBfPkJDM1exE77t5Ysw9PQ/XxeVrKvhfd+L86eOkZycTET4S7auXwnA64/XRaUqtly5eIa7HteRSCQ8Dw5i747NH8NEpD1JKmuXLcC+bhVaN6rBqxdhTJ69SHbsdWQkOrp6cuE/bb95HYGCggLjp85h24bV9OnkSCkjExo1c2DnlvWYW1ZGRUUFp35d6dnePk1XdzU1dXLn1sz0jwKCkBXZcZ+NjIhAV1dXbl+uXLnQ0taWxYmKesPEcWOYOn0WmpqaadJQUFDAdd5CVq9cTssWTTExMcXBsRXr166mchVrVFRV6dapPc2b2rFj21a5uOrq6mhq5iFM3GcFIcdlTy1L+Om6d+9O9+7dszVNQ0NDfsboglGjRjFq1KhsT1cQhBRxcfHkU/mxbrTSj5NG9u7bXzbmesr0mTSsW5NTp07Qpm17pFIJSUmJOI8ZLxvHPWvOfOrVsuXmzRvYVq9B/vz5Wbp8lSzdhIQEBvTtxbQZs1i9agUauXNz8MgJBvbrzZ49u+jYqYssrJqqKnFxsT/0PoTPEuLjZStsAFhZV6P3oGEsmjON2VPHoaysTKfu/XjgdQeFj3NZNGnRirCQZ0wYMYSk5CRya+TGoW0ntqxbgYLi17uWt+nUnUb2jrx8EcbW9StxnTKOqXOXZrpLenlzS7mu78+Dgzhz/DArNu5m+MDuOLTtROWq1enbuSUVLCpRsrSRLKyKqhrxcXHfUzyC8F2y4z6bGZMnTaBx02ZUsqqcYRjLSlZs371Pth0UFMiRQwfZtfcAPbp1plPnrtjWqEkrh2ZUsrLCyNhEFlZVTdxnBeF3IFq6BUEQ/jA6OnmJjo6Wbevp6/M6Ur5VMvLjtp6+Qbpp6Buk7C9ZqpRsn4qKCoWLFJV1H/8UplSp0rIwurq65NXRketintra1SuxqWZL2XLl8bh1k/oN7FBWVqZe/YZ4fLGM4tu3b9HR0U03HeH7aeXNS8y7aLl9rTt05cApd7btP8ne45eoVrMOAAULpczGrKCgQO9B/3Hw7HW27j/BziPnMS5bXi5MRrTz6lCkmCGVqtgwdspsbl67jM+DlC6zunp6vHkdKRf+07aOrn6atAAWuU6l35DhSKQS/B/5UrNuQ3R09TCraMW9u/LDEN5Fv0U7b/ZPRikIn2THfVZPX5/Xr1/L7UtKSiL67VtZnFs3rrN543oszcpiaVYWl4njePfuHZZmZTmwf296yTLVZSLDRzojkUrx9fGmgV0j9PT0sLKqjIeH/Iol0eI+Kwi/BVHpFgRB+MOYmJblSaoxhOYWFjx+/IjIyM+VnOtXr6KpqSlXYU6tbLnyqKioEBQUKNuXmJhIaGgIBT/OGG1RMWU1h9Rh3kZFEfXmDQXTWengSUAAx48eYdCQ/wEgSU4mKSllGaikpEQkEvnl+fz9H2OSallE4ceUNjLhadCTNPsVFBTQM8iHqqoa508fxyB/AUoby5e7kpIS+gb5UVZW5sLp45Qtb07e7/hHXSpJ6TWVmJgyhMC0vDkPPG/LPn+AO7euUaSYIXm0tNLEP354P3m0tLCpUQdJckovjE9LmyUlJcldO6HPn5GQEE9pI3HtCD9Pdtxnzc0r8i46Gu+HD2T7bt5IGcpRwcwMgM3bdrFrn5vsNXDwUHLnzs2ufW7Uq9cgTZr79+1BWzsvtevWQ/JxydOk1N+VVMugPgsOJj4+HhPTsmnSEQTh1xKVbkEQhD9MNdvqBAT4E/32LQA21apTslRpxo0ehZ+vL+5XLrN0yULadegk6258/949WjRrxMuXLwHQ1NSkTdv2rFi2hKvuVwgKfML0qS4ANLRrBIChYQnq1K3H7JnT8bx7h8ePHzF+7GgMS5SkchVruTxJpVKmuExghPMYNDQ0gJRK+769e3gSEMDhQwdllXhIWd/71cuXVLWp9lPL6l9iZV2Np08CeJeqdW73tg0EBjwi6Ik/WzesYteWdQx0Gi2beOlt1BuOHNhNcFAgAY98Wb5gFpfOnaa/0+chQr7e9+nZvjkR4SnXjs/Dexzcu4OAR768DAvlrscNZkxyplDhopiWNwegbsMm5FJWZv6MSQQ98efCmRMc2L2NVu27psn3m9eRbN+4mkH/jQEgj5YWxQxLsn/XVrzve+F5+wblKlSUhX/gdYeChYpQqEjR7C9EQfgoO+6zJUuVwrZ6DSZPmsD9e/e4e+c2M6dPpVHjprKZy0uWKkWZMkayV758+VFUVKRMGSO0vlhWNzIykjWrVjB6XMrynVra2pQsWYptWzbh5XmXG9evyd1n79z2oEjRohQtVuynl5cgCF8nxnQLgiD8YcoYGWNiWpaTJ4/Tpm17lJSUWLJ8JdOnuNC1UzvU1dWxb+HIwMFDZXHi4mIJCgyUa3n8b8QolHLlYtyYUcTHxVHBzJw16zfJ/aM3baYrc2bPYPDAfigqKFKpcmVWrForNys1wN49u9DT06dW7Tqyff0HDWHMqOF07tAG2+o1aNehk+zYiWNHsalmm2ZtWSHrSpQyorSxCRfPnaSZQ8oycLeuXWHHprUkJiRQsowRLrMXUcWmhly808cOsXrpPKRSKWXLmzNn2TpMyn6ebTk+Lo7nwUGy1jQ1NTWuXDjD5rXLiYuLRVdPn8pVbenYfY6s8pFbMw8zF65i6bzpDOrZHm3tvHTu0Z+mDq3T5HvFwtm07tANPYPPk1aNGD+VOVPH47ZnO206dpd1eQc4f/o4jZu3yr6CE4R0ZNd9dubsucycPpW+vbqhqKhIvQYNGT1mfJby5DpzOl279ZRbamzK9FlMGOfM9q1b6NajF+UrmMmOHT92lJat2mbpXIIgZC+xTrcgCDlGrNOddZcuXmDBXFf2HTyCouKf1WkpMSEB+yZ2zHSdS0XLSjmdnT/Wl+t0A9xwv8SaZfNZvXX/H3ddZEbQE39GDenNhl2Hya2ZJ81xsU63kJ3+5Pusv/9j+vTsxqGjJ8mTJ+13RRCE7JOZdbpFS7cgCMIfqGat2gQ/DeLVy5cZroX9uwoLC6NX336iwv0TWNvWJOT5UyLCX5Evf4Gczk62ex0ZwagJ09OtcAtCdvuT77MR4eFMmzFbVLgF4TchWroFQcgxoqVbELIuvZbuf51o6RYEQRB+tcy0dP9ZfWUEQRAEQRAEQRAE4Q8iKt2CIAiCIAiCIAiC8JOISrcgCIIgCIIgCIIg/CRiTLcgCDlGjOlOSyIRt+QvKSoq5HQWfkvi6Z3Wu7jEbwf6x2ipK387kCAIgpBlYky3IAiCIAiCIAiCIOQgUekWBEEQBEEQBEEQhJ9EVLoFQRAEQRAEQRAE4ScRlW5BEARBEARBEARB+EkyMexbEARB+BusW7uKc2dOExT4BFU1NczNK/K//4ZjWKKkLMyzZ8EsmOvK3bu3SUxIoJptDZzHjEdPX18WZu3qlVy+dIFHfr7kUlbm8tVbOfF2fpkVy5awcvlSuX2GJUpw8MiJHMrRz3fb4xabNqzDx/sB4eHhzF+0jLr16gOQmJjIsiULuXL5Es+fPyOPpibWVasx9L/h5MuXP01aCQkJdO7Qhkd+vuzc64aJiemvfjvfzfOOBzu2bMDPx5vIiHCmz11Ezdr10g07d8ZkDu7fw5BhzrTt2EW2v419Q16EhcqF7TfYic7de8u2b1xzZ/2qZQQ+8UdFRRWLipUY9N9IChYq/HPemJAjbnvcYuP6z9+nBYs/f58g5R5z4vhRXrx4gbKyMmXLlmPw//7DzMw8B3Mt5LTGDeoSGhqSZn+79h0ZO2FSDuQo5/3Jz2NR6RYEQfhH3PG4Rbv2HSlXvgJJycksXbSAAf16s9/tCOoaGsR++MDAvr0wMjZh9dqNACxfupj/DRnA5m27UFRM6RyVmJhAg4aNMDO3wO3Avhx8R79OqdJlWL12g2xbKZdSDubm54uN/YCRsTEOjq0Y5jRY7lhcXBw+3t706TcAY2MToqOjcZ01HafBA9i+e3+atBbMc8UgXz4e+fn+quz/sLjYWEqXMaZpc0fGjXTKMNyl82d4+OAe+gb50j3eq/9g7B1ay7Y1cmvI/g4Nec7Y4UNo26krE6fNIiYmhiXzXRk30on12/Zk23sRcl5s7AeMjY1xaNmKYf8bnOZ48eKGjBk3kSJFihIXH8fWzRsZ0Kcnh4+fRldXNwdyLPwOtu3aiyQ5Wbbt7/+Yfr170MCuUQ7mKuf9qc9jUekWBEH4RyxbuVZue/K0mdSrVQ1v74dUsqqMp+cdQkND2LHnAJqamgBMmT6LWrZVuHnjOlVtqgEwYNBQAA65pa1g/a1yKSmhb2CQ09n4ZarXqEX1GrXSPZYnTx5WpfqHB2D02Al07tCGsLBQChYsJNt/5fJFrl91Z+7CJbhfvvRT85ydqtrWoKptja+GCX/1koVzZjJvySpGOQ1MN4yGRm65XiKp+fl4k5wsoc+AobIftDp07s6Y4UNISkokVy6x1Nff4mvfJ4AmzezltkeMGsOBfXt5/MgP66o2Pzt7wm/qyx9c1q9dTdGixbCqXCWHcvR7+FOfx2JMtyAIwj8qJuYdANra2kBKN2AFBQVUVFRkYVRVVVFUVMTz7u0cyePv4mnwU+rXrk4Tu3qMGTWcsNDQb0f6h8TExKCgoECePFqyfZEREUxxmcC0ma6oqanlYO6yn0QiYdrEMXTo0p0SpUpnGG7bprU0rWdLz46t2b55PUlJSbJjxqZlUVRU4NihAyQnJxMT846Txw5jVaWqqHD/wxITEti3Zxd58uTByNg4p7Mj/CYSExI4euQQDi1boaCgkNPZyVF/6vNYtHQLgiD8gyQSCXNnz8CioiWlyxgBUMHMAnV1dRYtmMvgof+BVMqihfNITk4mIjw8h3OccyqYmTF1+kwMDUsQHh7OqhXL6NG1E/sOHiZ3bs2czl6Oi4+PZ9GCuTRq0lTWQ0IqlTJx/GjatG1PufIVCAl5nsO5zF7bNq1DSUmJ1u07ZximVbtOGJuYkkdbmwdenqxatojIiAiGDBsFQKHCRZi3dDWTxgxn7swpJCcnU97MHNdFK37V2xB+IxcvnMd5xDDi4mLRNzBg5Zr16OiIruVCinPnzvDu3TuaOzjmdFZy1J/8PBaVbkEQhH/QzOlT8Pd/zIZN22X7dHV1cZ23kBlTJ7Nj2xYUFRVp1LgppqZlUVD8dztGpe4WamRsQgUzcxo3qMPJE8dp2apNDuYs5yUmJjJq+P+QSqWMmzBZtn/Hti28f/+enr375WDufg4/n4fs3bmVdVv3fLXFqX3nbrK/S5cxRllZmTkzptBvsBMqKipERkTgOt2FRk1bUN+uCR8+vGfdyqVMcB7GgmVr/vnWrH9N5SrW7N7nRlTUG/bt3c3I4U5s3bEHPT29nM6a8Bs4sG8fttVrpjtZ5b/kT34ei0q3IAjCP2bW9ClcvniBdRu3kr9AAbljNtWqc/j4ad68eUMuJSXyaGlRv3Z17IoUzaHc/n60tLQoXtyQZ8HBOZ2VHJVS4XYiLDSU1es3yVq5AW7evM49L0+qWFaQi9OpXSsaN7Vn2ozZvzq72cbr7h3evH5N62YNZPuSk5NZtnAOe3ZsYc/hU+nGK1vejOTkJF6EhlDMsAQH9uxAU1OTgf8bLgszYeosWjWtj/eDe5SrIGau/pdoaGhQrHhxihUvjpm5BfaNG+K2fy+9+vx9P1wJ3yc0NIQb168yf9GSnM7Kb+dPeh6LSrcgZEL37t2JiorCzc0tR/MRFBREiRIluHv3LhYWFr/8/FKplH79+rF3717evHmTY/kQskYqlTJ7xlTOnTvDmvWbKVykSIZhdXR0ALh54zqvX0dSq3adX5XN396H9+959uwZTZv/eRO5ZJdPFe7g4KesWb+ZvHl15I47jxnP4CFOsu1Xr14xsF8vZs9dQIU/vDJp18QeqypV5fYNH9IPuyb2NLF3yDDe40e+KCoqovNxcqS4uDgUFOR7kCgqpczCK5FIsjfTwh9HIpWQkJCQ09kQfgMHD+xHV1ePGjVr53RWfjt/0vNYVLqF39rvUtldtGgRUqk0R/MAULRoUcLCwtDPYDbcn+3EiRNs3LiRCxcuULJkSfT19VFQUODAgQM4ODjkSJ6EzJs5fQrHjx1hwaJl5M6dm4iIlHHampp5ZBNdHTywjxIlS6Gjq8s9T0/mzJ5Opy7d5NbyDgsLJfrtW8LCwpAkJ+Pn6wNA0WLF0NDI/evf2E82b85satWuQ8FChQh/9YoVy5agpKRI4ybNcjprP82HD+8JTtVyEBLyHF9fH7S1tdHXN2DksKH4eHuzeNkqJJJk2bWkra2NsrKK3AzmAOoaKUtlFSlaLE3vit/Rhw8fCHn2+f2HhYTw2M8XLW1t8hcoiHbevHLhc+XKha6ePsUMSwDw4J4n3g/uY2lVGQ2N3Dy478WS+a40bNyMPFopExfaVK/J7u2b2bBmhax7+epliyhQsBBGxr//WuZC5n14/8X36flzfH1Svk/aefOydvVKatepi76BAVFv3rBzxzZevXz5zy8NJaT8AHfwwH7sWziQK5eotv3Jz2Px6QlCJnya3TmnKSkpUeAr/7BKpVKSk5O/+8acmJiIsvK3Z8sNCAigYMGCVKtW7bvSF34Pe3btAKBPz65y+ydPnUFzh5ZASm+KJYsW8PbtWwoVLkSvPv3p3LW7XPgVSxdz+JCbbLt9m5SJXdas34RVZeuf9wZyyMuXLxg9chhRUVHo6OpS0bISW7bv/qvXz3344IHcdTLPdSYA9i0c6T9wMBfOnwOgXesWcvHWrN9M5Sp//jXg5/2Aof17yraXLnAFoFGzFoxzmf7N+MoqKpw9dZwNq5eTkJhAwUKFaduxC+06fR7nXamyNROnzWb75g3s2LweVTV1ylcwZ+6Slaj+ZbO9/+sePnxA7x6fv09zP36fmrdwZPykyQQGPuHQwQNEvXlD3rx5KVe+Ahs2b6N06TI5lWXhN3H92lXCwkJxaNkqp7PyW/iTn8cK0t+h+U4QMpC6pdvQ0BAnJyecnJxkxy0sLHBwcMDFxQUABQUFVq5cyeHDhzl37hzFixdn/fr1GBgY0Lt3b27duoW5uTlbtmyhVKlSALi4uODm5saAAQOYNm0akZGRNGvWjDVr1sgq21+2uNeuXRszMzPU1NRYu3YtKioq9O/fX5YPAF9fX3r37o2HhwclS5Zk8eLFNGjQ4KutwidOnGDatGk8ePAAJSUlbGxsWLRokSyvX3Yvv3DhAnXq1OHYsWOMHz+e+/fvc+rUKWrWrMncuXNZvXo1z549I3/+/PTr149x48bJ0ti5cyfLly/nxo0brFy5Ent7ewYPHsylS5d48+YNpUqVYuzYsXTo0EFWBps2bZLltXjx4gA8ffpUbl9QUFCmP9+4pG+H+ddIJOKW/CVFRTGhVHrE0zutd3GJOZ2F346Wulh+TBAE4WdSy0Rb1787Ha3w15o6dSpdu3bF09MTExMTOnbsSL9+/RgzZgweHh5IpVIGDx4sF8ff35/du3dz+PBhTpw4wd27dxk4cOBXz7Np0yZy587NjRs3cHV1ZcqUKZw+fRpImVTHwcEBDQ0Nbty4werVqxk3btw38/7+/XuGDRuGh4cHZ8+eRVFREUdHx2+O7xs9ejSzZs3Cx8cHMzMzxowZw6xZs5gwYQLe3t5s376d/Pnzp4nzv//9Dx8fH+zs7IiLi6NSpUocPXqUBw8e0LdvX7p06cLNmzeBlC72U6ZMoUiRIoSFhXHr1i1u3boFwIYNG2T7BEEQBEEQBEH4THQvF/46PXr0oG3btgA4OztjY2PDhAkTsLOzA+B///sfPXr0kIsTFxfH5s2bKVy4MABLliyhadOmzJs3L8Pu3GZmZkyaNAmAMmXKsHTpUs6ePUuDBg04ffo0AQEBXLhwQRZ/+vTpNGjQIN20PmnVSr770KdWem9vb8qXL59hvClTpsjSfvfuHYsWLWLp0qV065bSlbFUqVJUr15dLo6TkxMtW7aU2zdixAjZ30OGDOHkyZPs3r2bKlWqoK2tTZ48edLt4p43b96vdnsXBEEQBEEQhH9Vpirdhw4dynSCzZs3z3JmBCE7mJmZyf7+1LpboUIFuX1xcXFER0ejpaUFQLFixWQVbgAbGxskEgl+fn5frXSnVrBgQV69egWAn58fRYsWlYtbpUqVb+b98ePHTJw4kRs3bhARESFr4Q4ODv5qpdvKykr2t4+PD/Hx8dSrV++r50odB1Ja52fMmMHu3bsJCQkhISGB+Ph4ND5OgPSj4uPjiY+Pl9snVVJFVVU1W9IXBEEQBEEQhN9RpirdmZ2VWEFBgeTk5B/JjyBkSFFRMc0M4omJacfvpZ4QTEFBIcN9P7oky5cTjykoKPxwmvb29hQvXpw1a9ZQqFAhJBIJ5cuX/+ayIblzf54xWl1dPVPnSh0HYM6cOSxatIiFCxdSoUIFcufOjZOTU7YtWTJz5kwmT54st2/chEmMn+iSLekLgiAIgiAIwu8oU2O6JRJJpl6iwi38TAYGBoSFhcm2o6OjCQwMzJa0g4ODCQ0NlW1fv34dRUVFjI2Ns5SesbExz5494+XLl7J93xrvHBkZiZ+fH+PHj6devXqYmpry5s2b7z53mTJlUFdX5+zZs98Vz93dnRYtWtC5c2fMzc0pWbIkjx49+mY8ZWXlTH33x4wZw9u3b+VeI53HfFce/1VRUW+oW6saoSHPczorP8We3Tv53+D+P5xOVNQbatewIeQPLCf3y5do27JFtq/PHBX1hjo1/9AyuXKJtq1+vEzeRkVh36AmYaEh2ZSz34vb3l04/zcop7PxV/qT7ykB/v40qFuTDx8+5HRW/np/8nWye9cOhgz88efvl/7kMvlZz2MxkZrwx6hbty5btmzh8uXL3L9/n27duqGkpJQtaaupqdGtWze8vLy4fPkyQ4cOpW3btlkep9ygQQNKlSpFt27duHfvHu7u7owfPx743NL+JR0dHfT09Fi9ejX+/v6cO3eOYcOGZem9ODs7M2rUKDZv3kxAQADXr19n3bp1X41XpkwZTp8+zdWrV/Hx8aFfv35yPxpkxNDQkLNnz/LixYuv/kigqqqKlpaW3Et0Lc+clDVc61GocBEAZs+cRse2LaliWYF2rR3ShA8NeU7FCiZpXve8PDM8h5+fL6NHDaNR/dpUtTKnZfMmbN+6OU24XTu20bJ5E6pameNg30hu6TCA61fdadHMjupVKzF+zCgSEz/3lHj37h0tmtkR+kXlx8GxJT4+3ty57ZH5QknHmlUrqVOnHoU/llNYaCiDB/TFupI5tWvYMH/ubJKSMp4yPyTkOZMmjKVxw7pUsTSjaaP6LF+6mMQventIpVI2bViHfRM7rCzKU79ODdasWiE77uPjTdtWDlS1qsiQgf15GxUlO5aUlET7Ni25f++eXJq2NWqSK1cujh7J/HCuzPh07XwqE4CDbvtp42hPFcsK1Klpw4xpk7+SAvTq3gWL8sZyr2mTJ8qO+/n6MnrkMOzq1cK6khmO9o3ZtmWTXBq+Pt60a+2ATeWKDB3Un7dvo2THkpKS6NC2Jffvf1Em1VPK5NgPlsnm9aupXqsOBQsV5thhN2pYlU/39eZ1pCxOQkICq5ctonWzBtS1qUgb+4YcPbj/m+c6dtiNbu0dqVfNEvsGNZk/e5rs2F2Pm4wZNoQWdrVpUL0yPTq24tTxI3Lxb12/SoeWTbGrZc3UCaPlenPFxLyjQ8umvAgLlYvTtEVLHvn64HX3dlaLSMjAj95TPrl08QKd2rehiqUZ1W0q4zREfqLWB/fv0adnN6pXtaK6TWX69+mFn6+v7HhIyHN6dO2EtZUFPbp2SlORGTywH2dOnZTbV6p0aczMLNiyaUNW376QSdlxnQwd1B+7erWpXLEC9WpVZ+zokbx69fl/sBXLlmBezjjNy9rKQhbm2lV37JvYUa2KJWNHj5R7dr179w77Jmmfv46OrfDxefjDz98viedxWlmaSO39+/dcvHiR4ODgNF1Phw4dmi0ZEwRI6WXxac3pMWPGEBgYSLNmzdDW1mbq1KnZ1tJdunRpWrZsSZMmTXj9+jXNmjVj+fLlWU5PSUkJNzc3evfuTeXKlSlZsiRz5szB3t4etQzWX1VUVGTnzp0MHTqU8uXLY2xszOLFi6ldu/Z3n3/ChAnkypWLiRMnEhoaSsGCBenf/+u/ZI4fP54nT55gZ2eHhoYGffv2xcHBgbdv33413rx58xg2bBhr1qyhcOHC37VkmPBtsbGxHDywj2Ur18rtb+HYivv37/H4kV+GcVeu2UCp0qVl29raeTMM6+P9EF1dPabNdKVAgYJ4ed5l2pSJKCoq0r5jZyDlF/Eli+YzwWUq5cpV4MGDe0x1mYCWlha1atdFIpEwZvQIevbqSzXb6owc9j/27dkti7944Txat2lPoUKF5c6trKxC4ybN2LFtC5aVrNLkLTNiY2Nx27+XFatTflxKTk5m8MB+6Ovrs2nrTiIiXjF+jDO5cikz1Cn9H7OCnjxBIpEyYdIUihUrjv/jR0x2mUBsbCzDRzrLws2eOZ1rV68wfMQoShsZEf2x58YnkyeOp4p1VVznLWDyxPGsXbNKFn/zxvVYVLSkwhdzQgA0d2jJjq1bsG/ukKUyyKhMlq/6/IPblk0b2LxpPf8NH0WFCubExn5I809Yelq2bsvAwZ+f72pqn4ex+Hg/QEdXl+mz5ny8du4wdfJElJSUZJ/95Ekfy2TuAiZPGs+61asY9rFMtmxaj4WFJRUqpF8m27dtoVkWyyQuLpajB/czb+kqAOo1aIS1jfykkjMmjyMhPh4dXT3Zvkmjh/P6dSSjJ0yhcNFiREaEf7PVY+fWTezatomB/xtO2fIViI2N5UWqHlT373lSqowRHbv1RFdPj6uXLzJ90lhya2piW6M2EomEyeOd6dy9N9Y2tkxw/o9D+/fQql1HAFYuWUCLlm0pULCQ3HmVlZWp36gJe3duw7xipSyVk5BWdtxTAM6cOsnkSRMY4vQfVayrkpyUjL//515kH96/Z2C/PtSqU5dxEyaRlJzMiqVLGNC3FyfPXkBZWZl5rrPJly8/LlOns3TxQubPcWXewsUAnDh+DEUFBeo3tEtz7haOLZkyaTy9+vST/S8lZK/suk4qV6lK77790Tcw4NXLl8yf68qI//7H5m07AejWvSdt2raXi9OnV3fKl0+Zs0gikTBm1HB69u5HterVGfHfUPbu2U2HTin34EUL5tKmbTrPXxUVmjRtxvatm7P8/P0ZZfK3PY8BkH6nO3fuSAsUKCDV0tKSKikpSQ0MDKQKCgrS3LlzS0uUKPG9yQnCV9nZ2UkHDRr0U88xadIkqbm5+U89h1QqlV65ckUKSP39/X/6uf4UsYni9eXrfbxE7uV2+JjUumrVNPvfx0uk8xYskjazb55m/+MnwVIjIyPpHa+H6cbL7Gv8BBdpp85dZNut27SVTpsxSy7MlGkzpG3btZe+j5dIn4WGS42MjKSvo2Ol7+Ml0hkzXaXjJ7hI38dLpO43PKQtHByl0R8S0z3XJfcb0nLlykkj335Icywz5XboyHGpddWqsu3T5y5ITUxMpM/DwmX7Nm3dLrW0tJRGv4/P9OexYtUaaZ26dWXbD339pWXLlpX6PArIMI6ZmZnU288/5Zxbtkl79e4jjU2USh8/CZbWb9BQGhH1Lt14T56GSI2MjKSPAp5mKm8fEr7+OvixTD5tvwiPkpqZmUnPX7r6zbipXx06dpa6TJn2XXHGT0y5dj5tm5mZSR/6+ks/JEilGzdvk/bs1Uf6IUEqfRSQUibhb96lm07AxzLx83+aqfO+jE6Qe+3cf0Raxbpqmv2fXr5PX0jLli0r3bRjr2zfoRPnpJaWlaSPn4VnGO/Ll//zcGmFCmbSo2cuZTrOy+gEadcevaROw0el5CUoTGpkZCQNDn8nfRmdIHWZNkvqPG6i9GV0gvTM5RtS+xYO0tA3semmc/LCVWm5cuWkwa+i0xzL6Xvan/rKjnvKu9hEafUaNaTbdu7O8Dwed+9JjYyMpIHBobJ99x76frzug6SxiVJpo0aNpWfOXZTlo1HjJtLYRKn0ZeRbaf36DeTipn5Fv4+Xli9fXnrh8tUcL8+/9fWznj3HT56RGhsbS6M/pP8d9rzvIzUyMpK6X78ljU2USp+/iJAaGRlJo2LipLGJUumMWa7SCRNdpLGJUum1m7elDo6O0pi4pHTTunLtprRcuXLSN+9if+sy+Z2fx5nx3d3L//vvP+zt7Xnz5g3q6upcv36dp0+fUqlSJebOnZt9vwYI/7Q3b95w5MgRLly4QP369XM6O1ly4MABTp8+TVBQEGfOnKFv377Y2tpSqlSpnM6a8Ae5e+c2pqblshTXachA6taqRo+uHblw/tx3x4+JeYeWtrZsOzEhARUV+SEBaqpqPLh/n8TERHR0ddE3MODaVXdiY2O5c8eDMkZGJCYmMmPqZMZPnJzhkJCy5cqTnJzMg/te351PgDt3PChb9nM5eXl6UqaMEXr6+rJ91WyrExMTg3+Af6bTjXn3Du1UZXDxwjkKFynCxYsXaNywLo0b1MVl4ji5LmtGxiZcu3aVpKQkbly/ThmjlLkhpk6ZxH/DR5I7t2a65ypYqBB6evrZ1s3vzm35Mrl2zR2JRMKrly9xtG9Mw3o1GTn8f7xINVdGRo4fPUzt6ta0cmjG4gXziI2N/Wr4lHLLK9s2Mjbh+scyuXnjOkYfy2TalEk4DftKmRT8WCZ3slYm9zxvY2xaNsPjJ48eQk1NnTr1Gsr2Xbl0HuOy5di+eT2OjevSoWVTli2cQ3xcXIbp3LpxDalUQsSrl3RubU/LJvWYOHo4L198vWzfx8TIvmN5dXTR0zfg1vWrxMXFcs/zNqVKG5GUlMi8WVMZOXZSht8fk7LlSE5OxvvBvXSPC98vO+4pPt7evHr5EkVFRdq2cqBereoM7Nebx48/t3QblihB3rx5ObB/L4kJCcTFxXFg315KlixFoY+rqhgZm3D9+jUkEgnX3N1l358Fc11p16EjBQoWTPf8yioqGJuYZnvXYeGzn/HseRsVxdGjhzG3qJhm0t5P9u/bQ3FDQ1nrtK6uLgYGBlxzv0JsbCx379ymjLExiYmJTJ/iwoRJU775/L1/L2vP3y+J53H6vrvS7enpyfDhw1FUVERJSYn4+HiKFi2Kq6srY8eOzbaMCf+2nj170r9/f4YPH06LFi1yOjtZ8u7dOwYNGoSJiQndu3encuXKHDx4MKezJfxhwkJDMciX77viqGvkZtgIZ1znLWTJslVYVKzEsP8N+q6Kt6fnHU6dPE6r1m1l+2xsq+O2fy/eDx8glUp5+PA+B/bvJSkpkaioNygoKOA6dyFrVi2ntWMzTEzK0sKxFRvWraFyFWtUVVXp3qUDDvaN2Ll9q3ye1dXR1MwjN6Hh9/iynCIjItDV05cLo/dxOzIiPFNpBj99yo7tW2nd5nOXvufPnxEWGsrpkyeYPtOVKdNn4v3wIcP/+9z1etKUaZw5dZJmjRqgrKxMrz79OHzIDXU1NcqVr0D/Pr1o1qgBSxctSHNOg3z5CAvLWhl8KSwsFAODz2US8vw5EomUdWtXMnL0WObOX0z027f079tDbuz9lxo3bcb0WXNYs34zPXv35ciRg4wbPTLD8J53U66dlqmunYmTp3Hm9EnsGzcgl7IyPfv048ghN9TUU8pkQN9e2DduwNLFGZRJFq+LF2Fh6OsbZHj8yMH91G/UBNVUw35CQ55z3/MOTwIeM33OIoYOc+bC2dPMSzU++0uhIc+RSCRs2bCWIcNHM3X2fKKj3zJsUN90V9kAOHf6BL7eD2hi7wikzPcxZdY8Nq1bSde2DpQxNqVpC0e2blyHpVUVVFRUGdCzMx1bNmPfru1yaampqZNbU5MX36jkC5mXHfeU58+fAbBy2VL69hvAkuUr0dLSpnf3LrKKQe7cmqzduIWjhw9RpZI5NpUr4u5+mWWr1si6hA8b6Uxg4BMaN6jL0+CnDBvpzG2PW/j5+mDf3IGRw/5HE7t6TJ08Mc2YV4N8+bJ8XxW+LTufPQvmzcHayoKatta8CAtj0dL0hznGx8dz7MhhHFu2lu1TUFDAdd5CVq9cTssWTTExMcXBsRXr166mchVrVFRV6dapPc2b2rFjW/rP36zeZ78knsfp++4BHsrKyigqptTV8+XLR3BwMKampmhra/Ps2bNsy5jwbztw4MAvO5eLiwsuLi7Znm7Xrl3p2rVrtqcr/Fvi4+NQVfm+Ced0dHTo0q2HbLtc+QqEh79i88Z11K5T95vx/R8/4r+hg+jbfxA21T6Pf+3TbyCRERF069weqVSKrp4e9s0d2LhhLYoKKc+FipaV2LZzryzO06BAjhw+yM49++nVvQsdOnWhevWatG5pj2WlyhilWiFAVU2VuK+0Jn5NXFw8+b6znL7m5cuXDOzXmwZ2jWjV5nPlUSqRkpCQwLSZszE0LAHA5KnTad+mJUGBTzAsUZLSpcuwftPnf2qiot6wYtkSNmzaxqwZU7GoWJH5i5bQqV1rypuZy30maqqq32xFzqz4uHhU8n0uE4lEQlJSIqNGj6eabcrnOtN1PvVr23Lr5g2q2dZIN53WbdrJ/i5jZIyBgQF9e3XnWXAwRYsVkwubcu0MpN+AQbJzAJQuXYZ1G78ok+VLWL9xG7NnTMXcoiLzFy6hU/vWVDAzp1btz2WiqqpKXFzWyiQ+Pg4V1fR/tHpwz5OngU+YMGWm3H6pRAIKCkycNhtNzTwADE4YyQTnYQx3Hi9XQf8kpWyT+N/I0VSpagvApOmuONjV5o7HTaxtbOXC3/G4yczJExg1zoUSpT7Pu2BmYcmazbtk28FPgzh59BDrtu1lcJ9utOnQmarVqtO1nSPmlpUoXSbV90dVLcvlJKSVHfcU6cd5AHr37S8bcz1l+kwa1q3JqVMnaNO2PXFxcbhMGIdFRUtmzZmHRCJh04b1DB7Qj+279qKmpkb+/PlZunyVLN2EhAQG9O3FtBmzWL1qBRq5c3PwyAkG9uvNnj276Nipiyys2g98f4Rvy85nT/eevXBs1Zqw0FBWLl/K+DHOLFm+Ks0EvOfOnObDh/c0b+Eot9+ykhXbd++TbQcFBXLk0EF27T1Aj26d6dS5K7Y1atLKoRmVrKwwMjaRhU15/mbPdSKex+n77pbuihUrypY+qlWrFhMnTmTbtm04OTlRvnz5bMuYIAiCAHnz6hAd/fXJ7DKjQgUzngUHfzNcQIA//Xr3oFXrtvTpN0DumJqaGi5TZ3D15l2OnjjL8VPnKVi4MLlz50ZHVzfd9KZNmcSwEc5IJFJ8fbxp0LARunp6VKpUmdseN+XCRr99i46OTpben45OXqKjo2Xbevr6vI6MkAsT+XFb7ystnwCvXr2kd4+umFesyESXqXLH9A0MyJUrl+wBD1CiZMqQkbAMumnPnT2LTl26kb9AATxu3qRBw0ZoaGhQo1YtPG7Jl8Hb6LfoZlCW3yvvF2Wib5DyvkulquTp6uqSN69OhnlPT4UK5gA8e/ZUbn9AgD99e3WnZet29Ok3ML2oMnNdZ9Gp88cyuXWTBnaNUNfQoHrNtGWScl1krUzy5tXhXaoySO2I2z7KGJlg/MXwDT19AwwM8skq3ADFS5REKpXKzSb8ZRwAwxKfhw/p6OiinTdvmi7md2/fYvR/gxgybBSNmn29J9fcGZMZ5DQSqUTCYz8f6tRviI6uHhaWVnh+0e0xOvotefNmz7UjZM895dN3rmSqYWUqKioULlJUNqzj2NHDhIaGMGX6TMpXMMPM3IJZrnMJCXnO+XPpL/25dvVKbKrZUrZceTxu3aR+AzuUlZWpV78hHje/uKf8wPdH+LbsfPbo6OhiaFgCm2q2uM5dwOVLF9NddWT/vj3UqFVbrrt2eqa6TGT4SGck0o/PX7tG6OnpYWVVGQ8P+WVsf+Q+m/Z9iOdxer670j1jxgwKfhw7Mn36dHR0dBgwYADh4eGsXr062zImCIIggImpKU+eBPxwOn5+vrJ/ADMS4P+Yvj27Yd/CgcFD/8swnLKyMvkLFEBJSYmTx49So2ZtWQ+o1A7s34uWtja169RF8nEt909LhCQlJcnNBv3sWTDx8fGYfGX87deYmJblSaqxYeYWFjx+/IjIyM/LQF2/ehVNTU25SueXXr58Sa/uXSlbthxTps1M874sKlqSlJQk9wPG048z9hcsJD+rNMCN69d48iSADh9n8ZZIkj+XQWKSrFwgpcvgs+BnWS6DL5mYyJdJxYqWQErrxydv30YRFfWGggXT5j0jvr4+AHLdtv39H9OnR1fsWzgw5H8ZXzuQUiaBTwJkM5tLJMkkJX6+LpK/LJNnWS+TMsYmBAWm/f58+PCBc2dO0rRFyzTHKphXJCI8XG5942dPn6KoqEi+fPnTPU8F84pASsv0J9Fv3/I2KkpuvO1dj5s4Ow2k/5BhNG/Z5qt5P+K2Dy0tbarXqoNE8vXvT8jzYBLi4zEyMUk3LeH7Zcc9pWy58qioqMh95xITEwkNDZF95+Li4lBUUJRrzVRQVEQBBVlLeWpPAgI4fvQIg4b8DwBJcjJJSSlDGJKSEmXXyif+/o8xMTX93rcvZFJ2PXu+9On7/eUqUc+fP+PWzRtyXcvTs3/fHrS181K7br30n7+p7rPPgn/s+fsl8TxO33dXuq2srKhTpw6Q0r38xIkTREdHc/v2bczNzbMtY4IgCALYVKvOkwB/olMtgREc/BQ/Xx8iIiKIj4/Dz9cHP18f2bjcQwcPcPzYEQKfPCHwyRPWrVnJwQP7aN+hkyyNc2dP42jfWLbt//gRfXp1w6aaLZ27diciIpyIiHBev34tC/M0KJCjhw/x9GkQD+7fw3nkMAL8H6dbyXodGcna1StwHpOyPr2WtjYlSpZi+9ZNeHne5eaNa1h8rAQC3L3tQZEiRSlatFiatDKjmm11AlKVk0216pQsVZpxo0fh5+uL+5XLLF2ykHYdOqGiogLA/Xv3aNGskWw9+pcvX9K7excKFizIsJHOvHn9mojwcCLCP485q2pTDdOy5Zg0YSw+Pt54P3zA1MkTqVrNVu7Xdkh5aM+cPoWJLlNl/yxYVLRk145t+Pn6cubMKSwsP5fBPS9PVFSUMTO3yFIZpFcmqa+d4oYlqF23Hq6zpuN59w7+jx8xYexoDEuUpHIVa1kZONg3kq2Z/Sw4mNUrl+H98AEhIc+5cP4sE8Y6U8mqsqxrov/jR/Tp2RWbarZ06dYj3WsndZnMmj6FCanKxLyiJbt2ppTJ2dOn5K6LHy2TKja2BAYE8O6L3iLnTh0nOTmZhk2apYlTv1FTtPNqM3PyeAKfBOB5x4Pli+fRpLmjrGv5pfNn6NTKXhanWHFDqteqy+K5s7jvdZcn/o+Z7jKWYoYlsLSqAqR0KR/lNIhW7TtRq24DIiMiiIyIkPtuf/LmdSSb16/GaVTKXDl5tLQpXqIke7Zv4cE9T27fuk6FVGXidfcOhQoXoXCRrH1/hLSy456iqalJm7btWbFsCVfdrxAU+ITpU10AaGjXKCVdm2pER79lxtTJPAkIwN//MRPHjyFXLiUqW1vL5UkqlTLFZQIjnMegoaEBpNxT9u3dw5OAAA4fOij3/QkJec6rly+palPtp5bVvyw7rpN797zYsW0rvj4+hIaGcOP6NUaPHEbRosUwt6godz63/fvQNzCgeo2aGeYpMjKSNatWMHrc5+dvyZKl2LYl5fl747r88/fObQ+KFC2aZrhQTpbJ3/Y8hiyu0y0IgiD8GmWMjDExLcupk8dp/XGNzimTxnM7Vdew9m1SxnUdPXGGQoWLALBm1QrCwkLJpaSEYYmSzJoznwYNG8nixLx7J9f6cub0Sd68fs3RI4c4euSQbH/BQoU4djJlArZkiYQtmzfwNCiQXLlyYVXZmo1bdsjOmZrr7Ol06dpDrmVwyrSZTBw3mh3bttC1ey/KfVxfFODE8aM4tvp6y19myunkyeO0adseJSUllixfyfQpLnTt1A51dXXsWzjKrTUdFxdLUGCgrJXo+lV3goOfEhz8lIZ15f+h8XqYsh66oqIii5etYNb0afTs2gl1dQ1sa9RkRKp1Qz9ZuXwpNWrWlmtlch4zntGjhtOzWyeaNLWnfoPPa+seP3aUJs3sUVdXT5PWj5RJ6mtn2gxX5s6ewZBB/VBUUKSSVWWWr1wrmyE3KSmRoMBA4j6OY1NWVubG9Wts27KZ2NgP5C9QkHoNGsp1Hz99KqNrpzDHT8lP3rfqU5mYyJfJmFHD6dW9E42/KJMTx4/SpGnWy6RUaSOMTEw5d/okLVp9Hgt49NB+atWpT548WmniaGhoMH/ZGha6zqBPl3Zo59WmTv1G9BkwRBYmJiaG4KeBcvHGT57BkvmzGeU0CEVFBSwsrZi7eCW5cqWU7fEjB4mLi2XrhrVs3bBWFs/C0oolqzfKpbVo7izadeqGfqqJ8MZOms4Ml7Hs3bWNDl16YFru8/fnzMlj2Dt+veVL+D7ZcU8B+G/EKJRy5WLcmFHEx8VRwcycNes3yWatL1GyFIuXrWTl8qV07dQOBQVFTExNWb5qrdxEiAB79+xCT0+fWrXryPb1HzSEMaOG07lDG2yr16Bdqh9XTxw7ik012zRrMwvZJzuuE3U1Nc6eOcWKZUuIjf2AvoEBttVr4NpvoKxSCimt34cOHqCFQ8sMZyIHcJ05na7deso/f6fPYsI4Z7Zv3UK3Hr0oX+Hz2tTHjx2lZar74+9QJn/b8xhAQSqVSr8nQokSJdIM6E/tyZMnP5wpQRD+DXFJOZ2D349EkvaWfPnSBRbMm8PeA4fT7cb9pwvwf0zfXt1xO3KCPHnypDmuqJjxMye1SxcvsGCuK/sOHvnjyunNm9e0aNqY7bv3UqRI0UzFyczT+9LFCyyc58petz+zTByaNWb7rr0UzmSZvItLO1P41SsXWb5oHpt3uf1xZZAZgQH+/G9AT7bvPyo3Dv0TLfX0lxwSvu1PvqckJiRg38SOma5zqWhZKaez81f7k68Tf//H9OnZjUNHT6b7/M2qP7lMsvI8VstEM/Z3t3Q7OTnJbScmJnL37l1OnDjByJEZLyEiCIIgZE2NmrUJfvqUV69eUqBA+uux/snCw8OZOmPWDz/wa9aqTfDTIF69fJnhurW/q9CQEMZOmJTpB3xm1axVm+DgP7hMxk/KdIU7I9Wq1+J5cDDhr16S/y/8/kRGhDNu8sx0K9zCj/mT7ylhYWH06ttPVLh/gT/5OokID2fajNnZWuGGP7tMftbz+LtbujOybNkyPDw82LBhQ3YkJwjCP0C0dKeVXkv3vy6zLd3/mux5ev9d0mvp/teJlm5BEISfKzMt3dlW6X7y5AkWFhZyU8QLgiB8jah0pyUq3WmJSnf6RKU7LVHpTktUugVBEH6uzFS6s62T/d69e7N1LTNBEARBEARBEARB+NN995juihUryk2kJpVKefHiBeHh4SxfvjxbMycIgiAIgiAIgiAIf7LvrnS3aNFCrtKtqKiIgYEBtWvXxsTEJFszJwiC8K8RXamFzPrKQiL/LNGVOq2Q17E5nYXfTmHd7FsGSBAEITOybUy3IAjC9xJjugVBEH4uUelOS1S6BUHITj9lTLeSkhKvXr1Ksz8yMvKrC7ULgiAIgiAIgiAIwr/muyvdGTWMx8fHo6Ki8sMZEgRBEARBEARBEIS/RabHdC9evBgABQUF1q5di6ampuxYcnIyly5dEmO6BUEQBEEQBEEQBCGVTI/pLlGiBABPnz6lSJEicl3JVVRUMDQ0ZMqUKVhbW/+cnAqC8NcRY7oFQRB+ruwa071ryzquXjrL86dBqKiqYlrenJ4DnChSzBCAl2Eh9GjbNN24Y6a4UqNOQwCa1LBIc9x50ixq1W8EwOuIcNYsm8djX2/CQp7RvHUH+g0dlS3v4RMxplsQhOyUmTHdmW7pDgwMBKBOnTrs378fHR2dLGdMEARBEARB+HM88LxNM8d2GJmWIzk5mU2rljBu2ABWbdmPmro6+vkKsNXtjFycE4f2sW/HJqysq8vt/2/MZCpZ28q2NTXzyP5OTExAO68OHbr14cDurT/3TQmCIPwi371k2Pnz539GPgRBEARBEITf1NR5y+W2h42dQofmdXns500Fi0ooKSmhq6cvF+bq5XPUqNsQdQ0Nuf25NfOkCftJ/oKF6f8/ZwBOHXXLvjcgCIKQg757IrVWrVoxe/bsNPtdXV1p06ZNtmRKEARBEARB+H29fx8DQB4t7XSPP/bz5sljPxo2dUhzbMWCmbRvVhunvp04ddQtw0l6BUEQ/hbf3dJ96dIlXFxc0uxv3Lgx8+bNy448CYIgCIIgCL8piUTCqsVzKFvBAsOSpdMNc+rIAYoWL0nZChZy+zv3Goi5ZWXU1NS5c+say+bPIDb2Ay1ad/wFORcEQcgZ313pjomJSXdpMGVlZaKjo7MlU4IgCIIgCMLvafn8mTwN9Gfuso3pHo+Pj+PCmeN06NY3zbGO3T/vK2VkQlxsLPt2bBKVbkEQ/mrf3b28QoUK7Nq1K83+nTt3UrZs2WzJlCAIgiAIgvD7Wb5gJjevXWLWorXo58ufbpgr588QHxdHPbtm30zPuGx5Il69JDEhIbuzKgiC8Nv47kr3hAkTmDp1Kt26dWPTpk1s2rSJrl27Mm3aNCZMmPAz8ij8wQwNDVm4cGFOZyNTLly4gIKCAlFRUT/1PL9jmQQFBaGgoICnp2dOZ0UQBEH4DUmlUpYvmMm1S+eYuXA1BQoVzjDsqaMHsLatjbaO7jfTfeLvh2YeLZTT6UUpCILwt/juSre9vT1ubm74+/szcOBAhg8fTkhICOfOnaN06fTH9fwrFBQUvvpKbyy8ICgoKODm5vbLzte9e3ccHBzk9hUtWpSwsDDKly//y/IhCIIg/DmWz5/B+VNHGTVxJuoauXkdGcHryAji4+PkwoU+D+aB1x3s7B3TpHHD/SInDu8n6Ik/oc+DOXpgN7u2rKN5q/Zy4QIe+xLw2JfY2FjeRr0h4LEvwYEBP/X9CYIg/EzfPaYboGnTpjRt2hSA6OhoduzYwYgRI7h9+zbJycnZmsE/SVhYmOzvXbt2MXHiRPz8/GT7NDU1ZX9LpVKSk5PJlStLH8E/IyEhId05BIS0EhMTUVZWzlJcJSUlChQokM05EgRBEP4WR932AOA8tLfc/v/GTKZBkxay7VNH3dA3yI9lZZs0aSjlysWRA7tYs2QuUqQUKlyUPoNH0Mi+pVy4IT0/V8L9/by5cPo4+QoUZOOe49n5lgRBEH6Z727p/uTSpUt069aNQoUKMW/ePOrWrcv169ezM29/nAIFCshe2traKCgoyLZ9fX3JkycPx48fp1KlSqiqqnLlyhUCAgJo0aIF+fPnR1NTk8qVK3PmzBm5dA0NDZkxYwY9e/YkT548FCtWjNWrV8uOJyQkMHjwYAoWLIiamhrFixdn5syZsuMKCgqsWLGCxo0bo66uTsmSJdm7d6/cOe7fv0/dunVRV1dHT0+Pvn37EhMTIzv+qXV07ty5FCxYED09PQYNGkRiYqIszKtXr7C3t0ddXZ0SJUqwbdu2NGUUFRVF7969MTAwQEtLi7p16+Ll5SU77uLigoWFBWvXrqVEiRKoqallWN7u7u7Url0bDQ0NdHR0sLOz482bNwDEx8czdOhQ8uXLh5qaGtWrV+fWrVty8Y8dO4aRkRHq6urUqVOHoKCgNOe4cuUKNWrUQF1dnaJFizJ06FDev3+fYZ4y83mmZmhoCICjoyMKCgqybYCDBw9iaWmJmpoaJUuWZPLkySQlJcmOf/pcmzdvTu7cuZk+fTrJycn06tWLEiVKoK6ujrGxMYsWLZIr302bNnHw4EFZD4wLFy6k27384sWLVKlSBVVVVQoWLMjo0aPlzl+7dm2GDh3KqFGj0NXVpUCBAqI3hyAIwl/q2GXPdF+pK9wA3fsNZdO+Eygqpv0X08ralqXrd7Hv1FX2n7rG0g27adKidZqw6Z1HVLgFQfiTfVel+8WLF8yaNYsyZcrQpk0btLS0iI+Px83NjVmzZlG5cuWflc+/xujRo5k1axY+Pj6YmZkRExNDkyZNOHv2LHfv3qVRo0bY29sTHBwsF2/evHlYWVlx9+5dBg4cyIABA2St6IsXL+bQoUPs3r0bPz8/tm3bJld5g5Sx+K1atcLLy4tOnTrRvn17fHx8AHj//j12dnbo6Ohw69Yt9uzZw5kzZxg8eLBcGufPnycgIIDz58+zadMmNm7cyMaNG2XHu3fvzrNnzzh//jx79+5l+fLlvHr1Si6NNm3a8OrVK44fP87t27extLSkXr16vH79WhbG39+fffv2sX///gzHGHt6elKvXj3Kli3LtWvXuHLlCvb29rKeFqNGjWLfvn1s2rSJO3fuULp0aezs7GTnefbsGS1btsTe3h5PT0969+7N6NGj5c4REBBAo0aNaNWqFffu3WPXrl1cuXIlTbmkltnP85NPPwRs2LCBsLAw2fbly5fp2rUr//vf//D29mbVqlVs3LiR6dOny8V3cXHB0dGR+/fv07NnTyQSCUWKFGHPnj14e3szceJExo4dy+7duwEYMWIEbdu2pVGjRoSFhREWFka1atXS5CskJIQmTZpQuXJlvLy8WLFiBevWrWPatGly4TZt2kTu3Lm5ceMGrq6uTJkyhdOnT2dYPoIgCIIgCILwr1GQSqXSzAS0t7fn0qVLNG3alE6dOtGoUSOUlJRQVlbGy8tLzFz+hY0bN+Lk5CSblOvChQvUqVMHNzc3WrRo8dW45cuXp3///rLKnaGhITVq1GDLli1AStf0AgUKMHnyZPr378/QoUN5+PAhZ86cQUFBIU16CgoK9O/fnxUrVsj2Va1aFUtLS5YvX86aNWtwdnbm2bNn5M6dG0hpBba3tyc0NJT8+fPTvXt3Lly4QEBAAEpKSgC0bdsWRUVFdu7cyaNHjzA2NubmzZuyH198fX0xNTVlwYIFODk5ceXKFZo2bcqrV69QVVWV5aV06dKMGjWKvn374uLiwowZMwgJCcHAwCDDMurYsSPBwcFcuXIlzbH379+jo6PDxo0b6dgxZQmSxMREDA0NcXJyYuTIkYwdO5aDBw/y8OFDWbzRo0cze/Zs3rx5Q968eenduzdKSkqsWrVKFubKlSvUqlWL9+/ff7UVPrX0Pk8nJyecnJxkn8+BAwfkxlnXr1+fevXqMWbMGNm+rVu3MmrUKEJDQ2XxnJycWLBgwVfPP3jwYF68eCHr3dC9e3eioqLkxpEHBQVRokQJ7t69i4WFBePGjWPfvn34+PjIrqnly5fj7OzM27dvUVRUpHbt2iQnJ3P58mVZOlWqVKFu3brMmjUrU2UTl/TtMIIgCELWhbyOzeks/HYK66rndBYEQfiLqGVitHCmBxQfP36coUOHMmDAAMqUKfMj+fqnWVlZyW3HxMTg4uLC0aNHCQsLIykpidjY2DQto2ZmZrK/P3Vb/9SK3L17dxo0aICxsTGNGjWiWbNmNGzYUC6+jY1Nmu1Prcg+Pj6Ym5vLKtwAtra2SCQS/Pz8yJ8/ZUmQcuXKySrcAAULFuT+/fuyNHLlykWlSpVkx01MTMibN69s28vLi5iYGPT09OTyEhsbS0DA5wlSihcv/tUKN6S0dLdp0ybdYwEBASQmJmJrayvbp6ysTJUqVWSt+z4+PlhbW6cpk9S8vLy4d++eXDd5qVSKRCIhMDAQU1PTNOfO7Of5LV5eXri7u8u1bCcnJxMXF8eHDx/Q0NAA0l5PAMuWLWP9+vUEBwcTGxtLQkICFhYW33V+Hx8fbGxs5H7EsbW1JSYmhufPn1OsWDFA/rqElGviy94Nn8THxxMfHy+3T6qkKvcDjCAIgiAIgiD8bTJd6b5y5Qrr1q2jUqVKmJqa0qVLF9q3b//tiIKc1BVbSOnue/r0aebOnUvp0qVRV1endevWJHyxXuWXE2QpKCggkUgAsLS0JDAwkOPHj3PmzBnatm1L/fr104zb/lFfy0NmxMTEULBgQS5cuJDmWOrK+ZdllB519Z//K3VMTAz9+vVj6NChaY59qnR+KbOfZ2bOPXnyZFq2bJnmWOoW9i/LaufOnYwYMYJ58+ZhY2NDnjx5mDNnDjdu3Piu82fW91wTM2fOZPLkyXL7xk2YxPiJLj8lb4IgCIIgCILwO8j0mO6qVauyZs0awsLC6NevHzt37qRQoUJIJBJOnz7Nu3fvfmY+/1ru7u50794dR0dHKlSoQIECBdKd0OtbtLS0aNeuHWvWrGHXrl3s27dPbpz0l5PcXb9+XdZSa2pqipeXl9wEYe7u7igqKmJsbJyp85uYmJCUlMTt27dl+/z8/OTWvLa0tOTFixfkypWL0qVLy7309fW/6/2amZlx9uzZdI+VKlUKFRUV3N3dZfsSExO5deuWbBiEqakpN2/elIv3ZRlZWlri7e2dJq+lS5fOcEb1rHyeysrKaWb9t7S0xM/PL91zpzc5TerzV6tWjYEDB1KxYkVKly4t14sAQEVF5ZurDJiamnLt2jVSjz5xd3cnT548FClS5KtxMzJmzBjevn0r9xrpPObbEQVBEIQfEv02ig72dXgZFpLTWckx//XrwpULGU9sKgiC8DN99+zluXPnpmfPnly5coX79+8zfPhwZs2aRb58+WjevPnPyONfrUyZMrIJw7y8vOjYseN3tR4DzJ8/nx07duDr68ujR4/Ys2cPBQoUkGs93rNnD+vXr+fRo0dMmjSJmzdvysYYd+rUCTU1Nbp168aDBw84f/48Q4YMoUuXLrKu5d/yqWt7v379uHHjBrdv36Z3795yLdL169fHxsYGBwcHTp06RVBQEFevXmXcuHF4eHh813seM2YMt27dYuDAgdy7dw9fX19WrFhBREQEuXPnZsCAAYwcOZITJ07g7e1Nnz59+PDhA7169QKgf//+PH78mJEjR+Ln58f27dvlJoUDcHZ25urVqwwePBhPT08eP37MwYMHvzqRWlY+T0NDQ86ePcuLFy9ks69PnDiRzZs3M3nyZB4+fIiPjw87d+5k/PjxX02rTJkyeHh4cPLkSR49esSECRPSzNpuaGjIvXv38PPzIyIiQm4G+k8GDhzIs2fPGDJkCL6+vhw8eJBJkyYxbNiwr1b6v0ZVVRUtLS25l+haLgiC8PPt3LyWqtVrk79gYQBWLpzN0F4daF63MoN7tE03TqD/I0YO6kGLelXo2sqOPds2pAlz+fwp+nZyoEW9Kgzo1ppb1y6nk5K8e3dvMaRne5rXrUyv9vacPnYwTZjD+3fSvU1jWtSrglPfzvh535c7vnrJXNo2qUnXVnacP3U0TZ5cnNP2UGvftQ8bVy367v+xBEEQskOWlwyDlIqWq6srz58/Z8eOHdmVp3/K/Pnz0dHRoVq1atjb22NnZ4elpeV3pZEnTx5cXV2xsrKicuXKBAUFcezYMbnK0eTJk9m5cydmZmZs3ryZHTt2yFp9NTQ0OHnyJK9fv6Zy5cq0bt2aevXqsXTp0u/Kx4YNGyhUqBC1atWiZcuW9O3bl3z58smOKygocOzYMWrWrEmPHj0wMjKiffv2PH36NNOV+0+MjIw4deoUXl5eVKlSBRsbGw4ePChb93zWrFm0atWKLl26YGlpib+/PydPnkRHRwdI6R6+b98+3NzcMDc3Z+XKlcyYMUPuHGZmZly8eJFHjx5Ro0YNKlasyMSJEylUqFCG+crK5zlv3jxOnz5N0aJFqVixIgB2dnYcOXKEU6dOUblyZapWrcqCBQsoXrz4V9Pq168fLVu2pF27dlhbWxMZGcnAgQPlwvTp0wdjY2OsrKwwMDCQ6xHwSeHChTl27Bg3b97E3Nyc/v3706tXr29W+gVBEITfS1xcLKeOumHXzFFuf4OmLahZ1y7dOB/exzB++ADy5S/I4rXb6TXgP7ZvWMXxQ5+HrXnf92T25DE0bOrAknU7salRh6lj/yPoiX+GeXkRGsKkUUMws6zM0vW7cGjTiUWuU7h946oszMWzJ1mzdB4du/djydodlCxtxIThA4l6k9J774b7RS6eOc60+SvoOcCJRbOn8DYq5Qfr9zHv2LR6KQOHpe1FZVXVltgPH/C4nnYCVkEQhJ8t07OXC3+u9GbHFoTfgZi9XBAE4efate8Qy+bPYMfh82mObV2/guuXz7N0w265/UcP7GbTmqVsO3hWNnfHhpWLuHb5PKu3uQEwc9Io4mJjmey6RBbvv35dKFnGmCEj0v+Bdv2Khdy6dpkVm/fJ9s2a5Mz7mHdMnbccAKe+nTEyLcfA/1IqzhKJhG6t7LBv1YG2nXuyZ9sGAh75MnrybAA6Nq+Ly+zFGJmWZ8mcqRQpZohjuy7pnn/BzEkkJSWxcMH8zBSdIAhCpmRm9vIfaukWBEEQBEEQfl8P7t2htPH3Levq8/Ae5c0t5SbLtKxSjefBQbx7Fw2A74N7VLSSXwWkUhUbfB/c+2q6Fl/Esaxig8/DlDiJiYn4P/LBotLnMIqKilhYWeP7MUzJ0sY89vPm3btoHvt5Ex8fT8EixXh47y7+j3xo3rpjhuc3Mi3Pw3t3MlkKgiAI2SfTs5cLgiAIgiAIf5ZXL8LQ0//6MpxfevM6ggIfx39/oqOjm3IsMoI8ebR48zqCvLryS4Dm1dXjzeuIjNONjCCvjnwcHV09PryPIT4+jph30UiSk9H5Ml0dPZ49DQKgknU16jRsglOfTqioqjJ83FTU1NRZOm86w8ZO4ZjbHg7t24GWdl6GjppA8RKlZeno6RsQ8eolEokky/OTCIIgZIWodP8DxAgCQRAEQfg3JcTHo5zBiht/qs49B9C55wDZ9rYNK6lYyZpcSrnYuXkNyzfu4cbVS8ybNoHF6z7POaSiqopEIiEhIUFu+U1BEISfTfzMJwiCIAiC8JfSypuXmI9dwjNLR1efN68j5fa9+TiRmY6evixM1Bdhol5HoqOb8RKgOnr6RL35It3XkWjk1kRVVQ0tbR0UlZTSnDvqTSS6eumn++xpIOdPHaVL70Hc8/SgnLkl2jq61Kxrh/8jHz58+Lwc6rvoaNTU1UWFWxCEX05UugVBEARBEP5SpcqY8CzoyXfFMS1nxgOvOyQlfV5S8u6taxQpZkiePFoAmJQ3w/P2Tbl4dz2uY1Le7KvpphfHtFxKHGVlZUobmeKVKoxEIsHz9k1MyqVNVyqVsmTONPoMHoG6hgaS5GSSk1Jm6PyUd0lysiz800B/SpUxyVQZCIIgZCdR6RYEQRAEQfhLWVapxtPAJ7IJ0ABCnwcT8NiXN68jiY+PJ+CxLwGPfUlMTKmo1m7QGGVlZRbOmszTQH8unj3Jwb3bcWzXWZZGi9YduX3jKvt3bubZ00C2rl/BY19v7Fu2l4XZsHIxc6d9nsm8SYs2vAh9zrrlC3j2NJAjB3Zx+fxpHNp+TtexXRdOHNnPmeOHCA56wrJ504mPjaVBkxZp3tvJw/vRzquDtW0tAMpWsMDrzi18H97DbfdWihmWRPPjjwQAD73uULGyTTaUqiAIwvcRS4YJgpBjxJJhgiAIP1fI61ic+namYVMHmrRoDYDzkF7c97ydJuyG3UfJ/3ECtUD/RyxfMJNHvg/R0s5L81YdaNOph1z4y+dPsXnNMl6+CKVwkWL0HOBEZZsasuPzp0/g5YtQZi9ZJ9t37+4tVi+ZS3DQE/QN8tOhW580FerD+3ayd8cm3ryOoGRpY/r/zxmTchXkwrx5Hcl//Tozb8Um9PTzyfZv37CKg3u3k1dHl2Fjp2BcNiVeRPhLerZtyvpdRzE3McxCSQqCIKQvM0uGiUq3IAg5RlS6BUEQfq6Q17HcvHqJdcsXsmLz3n921u71KxYS8y6aoaMmUlhXPaezIwjCXyQzlW4xe7kgCIIgCMJfrEq1moQ+DyYy/BUG+QvkdHZyRF4dXRzbdcnpbAiC8I8SLd2CIOQY0dItCILwc4W8js3pLPx2REu3IAjZKTMt3f9mHyNBEARBEARBEARB+AVEpVsQBEEQBEEQBEEQfhJR6RYEQRAEQRAEQRCEn0SM6RYEIceIMd2CIAjCr/YuVjx8vpRHXcytLAhZJcZ0C4IgCIIgCIIgCEIOEpVuQRAEQRAEQRAEQfhJRKVbEARBEARBEARBEH4SMYBDEAThH7VuzSrOnj5FYOATVNXUsLCoiNOwERiWKCkLExEezvx5rly/epX3H95jaFiCPn37U7+hXQ7m/Ne67XGLjevX4eP9gPDwcBYsXkbdevVzOlu/1LfK4MzpU+zZvROfhw95+zaKXXvdMDE1zcEcC7+DzNxj/nSedzzYvmU9fj7eREaEM2PuYmrWric7vm7VMs6eOs6rly/IpayMsWlZ+g78H+XKmwEQFhrCxrUrueNxg8jICPT182HXpBlde/ZFWVkFgPj4eObOnIyfjzdPg55QrXotZs5bkiPvVxCErBEt3YIgCP8oj1s3adehE1t27GbVmg0kJSXRv08vPnz4IAszbqwzQYGBLFq6gn0HDlOvfgNGDnfCx8c7B3P+a8XGfsDY2Jgx4yfldFZyzLfKIDb2AxUrWuI0bMQvzpnwO8vMPeZPFxsbS+kyxgxzHp/u8aLFi/PfqHFs2nmA5Wu3ULBgYYYN6sObN68BeBr0BKlUwsixk9iy6yBDh43Cbd9uVi1bJEtDIklGVVWN1u07UalK1V/yvgRByF5i9nJBEHKMmL389/L69Wvq1LBh/aatVLKqDEBVq4qMmzgJ++YOsnA1q1njNGwELVu3yaGc5hzzcsb/ZEt3al8rg5CQ5zRpWE+0dAvpSu8ekxN+1uzl1a3KpWnp/tL7mBjsaluzcPk6rDKoQG/fvJ4D+3ax5+DJNMemu4wl5t27bG/pFrOXC0LWidnLBUEQhEyLefcOAC1tbdk+84oVOXniOG+jopBIJBw/dpT4hHisKlfJqWwKgvCHSu8e8y9JTEzg4IE9aGrmobSRcYbhYmLeoaX1b5aRIPytxM9agiAIAhKJBNfZM7CoaEmZMkay/XPmLWTU8P+oaWtNrly5UFNTY8GipRQrXjwHcysIwp8mo3vMv8D98gVcxo4gLi4OPX0DFixbQ968OumGff7sKft2bWeQkxiqIQh/E1HpFgRBEJgxbTIBjx+zcct2uf3Llizi3btoVq/bSN68Opw/d4ZRw53YsHkbZb7SUiMIgpBaRveYf4GlVRU2bN9HVFQUhw/sZeKY4azeuAMdXT25cOGvXjJ8SD/q1LejueO/N3xHEP5monu5IAjCP27GtClcuniBNRs2kb9AAdn+Z8HB7Ny+lcnTZmBd1QZjExP6DxxM2XLl2bljWw7mWBCEP0lG95h/hbq6BkWKFqd8BXPGTJyKkpISRw7ulwsTEf6KIf17UN6sIqPGueRMRgVB+GlES7cgCMI/SiqVMnP6VM6dPc26jVsoUqSo3PG4uFgAFBXkf59VVFRCKhFzcAqC8HXfusf8qyQSKQkJCbLt8FcvGdK/B8YmZRk7aRqKiqJNTBD+NuJbLXyX2rVr4+TklNPZ+CNt3LiRvHnzyrZdXFywsLCQC+Pi4kL+/PlRUFDAzc2N7t274+Dg8NPz9ul8wr9lxtTJHDtyiFmu88itkZuI8HAiwsOJi4sDwLBESYoVK87UyRO5f+8ez4KD2bRxPdevuVPnH5q9+8P79/j6+ODr4wNAyPPn+Pr4EBYamsM5+3W+VQZvo6Lw9fHhSUAAAEFBgfj6+BARHp5jeRZy3rfuMX+DDx/e89jPh8d+Kd+NsJDnPPbz4cWLUGJjP7Bq2UIe3PfiRVgovj4PmTF5PBHhL6lT3w74WOHu1538BQoy2GkkUW9eExkRTmSE/Hcn8Ik/j/18iH77lpiYd3LnFATh9yeWDPtLKSgofPX4pEmTcHFx+e50X79+jbKyMnny5MlizuTVrl0bCwsLFi5cmC3p/c42btyIk5MTUVFRAMTExBAfH4+eXsqYLh8fH8qWLcuBAweoWrUqOjo6xMXFIZVK5SrrP8LFxQU3Nzc8PT3l9r948QIdHR1UVVWz5TyZJZYMy1nm5dIfkz1l2kxaOLYE4OnTIBbNn8fdu7f58OEDxYoWo2uPnnJLiP3tbt28Qe8eXdPsb97CkakzZuVAjn69b5XBwQP7mTh+TJrj/QcOZsCgIb8ii8JvKDP3mJyQnUuG3fG4ydD+PdLsb9ysBSPGTGLy+FF4P7jH26g3aGnnxbRsebr16odpuQoAHDt8gBmT01/j+4rHQ9nfre0b8CIs7Q99qcP8CLFkmCBkXWaWDBOV7r/UixcvZH/v2rWLiRMn4ufnJ9unqamJpqYmkNL9Kzk5mVy5fv0NN7sq3QkJCaioqGRPpn6SLyvdXzpy5Aj29vZIJJJv/miSVRlVunOKqHQLgiAIv9rPWqf7TyYq3YKQdWKd7n9YgQIFZC9tbW0UFBRk276+vuTJk4fjx49TqVIlVFVVuXLlCgEBAbRo0YL8+fOjqalJ5cqVOXPmjFy6X3Yvj4+PZ8SIERQuXJjcuXNjbW3NhQsX5OK4u7tTu3ZtNDQ00NHRwc7Ojjdv3tC9e3cuXrzIokWLUFBQQEFBgaCgIAAuXrxIlSpVUFVVpWDBgowePZqkpCS5fAwePBgnJyf09fWxs7OjZ8+eNGvWTO7ciYmJ5MuXj3Xr1qVbTp+6fB85cgRjY2M0NDRo3bo1Hz58YNOmTRgaGqKjo8PQoUNJTk6WxXvz5g1du3ZFR0cHDQ0NGjduzOPHj9OkXaxYMTQ0NHB0dCQyMlLueOru5S4uLtjb2wOgqKgoq3R/2b1cIpHg6upK6dKlUVVVpVixYkyfPl123NnZGSMjIzQ0NChZsiQTJkwgMTFRlp/Jkyfj5eUlK++NGzcCabuX379/n7p166Kuro6enh59+/YlJiZGdvxTvubOnUvBggXR09Nj0KBBsnMJgiAIgiAIgpBC/Kz1Dxs9ejRz586lZMmS6Ojo8OzZM5o0acL06dNRVVVl8+bN2Nvb4+fnR7FixdJNY/DgwXh7e7Nz504KFSrEgQMHaNSoEffv36dMmTJ4enpSr149evbsyaJFi8iVKxfnz58nOTmZRYsW8ejRI8qXL8+UKVMAMDAwICQkhCZNmtC9e3c2b96Mr68vffr0QU1NTa5L/KZNmxgwYADu7u4AREZGUrNmTcLCwihYsCCQ0nr84cMH2rVrl2E5fPjwgcWLF7Nz507evXtHy5YtcXR0JG/evBw7downT57QqlUrbG1tZel0796dx48fc+jQIbS0tHB2dqZJkyZ4e3ujrKzMjRs36NWrFzNnzsTBwYETJ04wadKkDPMwYsQIDA0N6dGjB2FhYRmGGzNmDGvWrGHBggVUr16dsLAwfH19Zcfz5MnDxo0bKVSoEPfv36dPnz7kyZOHUaNG0a5dOx48eMCJEydkP6Zoa2unOcf79++xs7PDxsaGW7du8erVK3r37s3gwYNllXSA8+fPU7BgQc6fP4+/vz/t2rXDwsKCPn36ZJh/QRAEQRAEQfjXiEr3P2zKlCk0aNBAtq2rq4u5ublse+rUqRw4cIBDhw4xePDgNPGDg4PZsGEDwcHBFCpUCEipPJ44cYINGzYwY8YMXF1dsbKyYvny5bJ45cqVk/2toqKChoYGBVItIbJ8+XKKFi3K0qVLUVBQwMTEhNDQUJydnZk4caJsVs8yZcrg6uoqlydjY2O2bNnCqFGjANiwYQNt2rSRdaVPT2JiIitWrKBUqVIAtG7dmi1btvDy5Us0NTUpW7YsderU4fz587Rr105W2XZ3d6datWoAbNu2jaJFi+Lm5kabNm1YtGgRjRo1kuXDyMiIq1evcuLEiXTzoKmpKRu3XSCD5VTevXvHokWLWLp0Kd26dQOgVKlSVK9eXRZm/PjP48IMDQ0ZMWIEO3fuZNSoUairq6OpqUmuXLkyPAfA9u3biYuLY/PmzeTOnRuApUuXYm9vz+zZs8mfPz8AOjo6LF26FCUlJUxMTGjatClnz54VlW5BEARBEARBSEV0L/+HWVlZyW3HxMQwYsQITE1NyZs3L5qamvj4+BAcHJxu/Pv375OcnIyRkZFsjLimpiYXL14k4OMMtp9aur+Hj48PNjY2cuOabW1tiYmJ4fnz57J9lSpVShO3d+/ebNiwAYCXL19y/Phxevbs+dXzaWhoyCrcAPnz58fQ0FCuop4/f35evXoly1+uXLmwtraWHdfT08PY2BifjzP7+vj4yB0HsLGx+eZ7/xofHx/i4+O/Wp67du3C1taWAgUKoKmpyfjx4zP8/L52HnNzc1mFG1LKXyKRyM0LUK5cOZSUlGTbBQsWlJVReuLj44mOjpZ7xcfHf1feBEEQBEEQBOFPIyrd/7DUlSpIaaU+cOAAM2bM4PLly3h6elKhQgW5tSRTi4mJQUlJidu3b+Pp6Sl7+fj4sGjRIgDU1dV/Wf4BunbtypMnT7h27Rpbt26lRIkS1KhR46vpKCsry20rKCiku08ikfx4pn/At8ry2rVrdOrUiSZNmnDkyBHu3r3LuHHjMvz8ftT3ltHMmTPR1taWe82ZPfOn5E0QBEEQBEEQfhei0i3IuLu70717dxwdHalQoQIFChSQTWyWnooVK5KcnMyrV68oXbq03OtT92UzMzPOnj2bYRoqKipyE5QBmJqacu3aNVJPrO/u7k6ePHkoUqTIV9+Dnp4eDg4ObNiwgY0bN9KjR9plPH6UqakpSUlJ3LhxQ7YvMjISPz8/ypYtKwuT+jjA9evXf+i8ZcqUQV1dPcPyvHr1KsWLF2fcuHFYWVlRpkwZnj59KhcmvfL+kqmpKV5eXrx//162z93dHUVFRYyN01/+JTPGjBnD27dv5V4jndMuMSRkTlTUG2rXsCEk5Pm3A/9mdu/awZCB/bM9XVEmaf3JZRLg70+DujX58OFDTmflr/cnXyfuly/RtmWLH/5h/G1UFM0a1CAsNCSbcvZ7uX71Mt07tszxBgRB+FeJSrcgU6ZMGfbv34+npydeXl507NjxqzdnIyMjOnXqRNeuXdm/fz+BgYHcvHmTmTNncvToUSClonXr1i0GDhzIvXv38PX1ZcWKFURERAAp445v3LhBUFAQERERSCQSBg4cyLNnzxgyZAi+vr4cPHiQSZMmMWzYMNl47q/p3bs3mzZtwsfHRzb2OTuVKVOGFi1a0KdPH65cuYKXlxedO3emcOHCtGjRAoChQ4dy4sQJ5s6dy+PHj1m6dGmG47kzS01NDWdnZ0aNGsXmzZsJCAjg+vXrspnZy5QpQ3BwMDt37iQgIIDFixdz4MABuTQMDQ0JDAzE09OTiIiIdLt3d+rUCTU1Nbp168aDBw84f/48Q4YMoUuXLrLx3FmhqqqKlpaW3OtXrwv+N1mzaiV16tSjcOEi+Pn64jxiGA3r1aKKpRkO9o3ZtmXTN9N4GxXFmFHDqVbFkupVrZg0YSwfUv3YEhLyHPNyxmle97w8ZWGuXXXHvokd1apYMnb0SBJT9ax49+4d9k3sCP3in1hHx1b4+Dzkzm2PHy+IVFKXCUBYaCiDB/TFupI5tWvYMH/ubLlVENLzrTJZsWxJumVibWUhC/O3lUlQUCD/GzyAWrbWVKtiSbfOHbh5Q/5HxFkzptG+TUusLMrTtmWLNGmEhDynR9dOWFtZ0KNrpzSVu8ED+3Hm1Em5faVKl8bMzIItmzZk5a0L3yE7rpM1q1bQtVN7rCuZU72qVbph0vvuHD92VHbcx8ebtq0cqGpVkSED+/M21RKbSUlJtG/Tkvv37smlaVujJrly5eLokUNZfPcpNq9fRY1adShYqDAAHjev079nJxrUrExzu5osXzwvTRlIpVK2b9lA+5ZNqGNjgUPjOmxat+qr5/Hz9cZpYG8a1a5Kk3rVmD19Eh8+fL7HPH7ky6SxI2jZtB51bS3p1Nqe3Tu2yKXxyNeHHh1b0aCGFaP+G0j02yjZsaSkJHp2boP3A/lyqlqtBrly5eLU8SNZKR5BEH6QqHQLMvPnz0dHR4dq1aphb2+PnZ0dlpaWX42zYcMGunbtyvDhwzE2NsbBwYFbt27JZjs3MjLi1KlTeHl5UaVKFWxsbDh48KBsTfARI0agpKRE2bJlMTAwIDg4mMKFC3Ps2DFu3ryJubk5/fv3p1evXnKThH1N/fr1KViwIHZ2drIJ3rLbhg0bqFSpEs2aNcPGxgapVMqxY8dkXa6rVq3KmjVrWLRoEebm5pw6dSrT+f+aCRMmMHz4cCZOnIipqSnt2rWTjaNu3rw5//33H4MHD8bCwoKrV68yYcIEufitWrWiUaNG1KlTBwMDA3bs2JHmHBoaGpw8eZLXr19TuXJlWrduTb169Vi6dOkP51/IHrGxsbjt34tjq9YAeHs/QFdPlxmz5rD/4FF69+3P4oXz2bFt61fTGeM8ggB/f1au3cDiZSu54+HBFJeJacKtXreRsxeuyF6mZVMmQ5RIJIwZNZw2bduzefsuvB8+YO+e3bJ4ixbMpU3b9hT6+E/sJ8oqKjRp2oztWzf/aFHIfFkmycnJDB7Yj8TERDZt3cm0GbM45HaA5UsXfzWdb5VJt+495cri7IUrlCxVmoYNGwF/Z5kMGdif5ORk1qzfxI49+zE2NmHIoP5EhIfLhXNwbIVd4ybppjHPdTb58uVn9z439A0MmD/n8ySYJ44fQ1FBgfoN7dLEa+HYkj27dnyzwidkXXZdJ4mJiTRo2Ig27Tp8NdyUaTPlvj9169WXHZs8cTxVrKuyc+9+YmLesXbN5wrs5o3rsahoSQUzszRpNndoyY6tW9Lsz6y4uFiOHNxP0xatgJSK78j/9cfaxpYN2/YyecY83C9dYOXSBXLxFs2dyRG3fQz+3wi27T3CrPlLKVuuQobniQh/hdPAXhQpWozVG3cwb/EqggL8meEyThbGz8cbHV09JkyZxZZdB+nasy+rli5k365tsjCzpk3EsrI167bu5X1MDJs3rJEd27l1I2bmFSlbPm05NW7mwN5dX38uCILwk0gF4TtUrVpVOm7cuJzOxle9e/dOqqWlJd23b19OZ0X4hthE8crK69CR41LrqlW/GmbCRBdpp85dMjz+0NdfamRkJPW4e0+278y5i1JjY2Pp05AX0thEqdQ/6JnUyMhIeveed7ppPH8RITUyMpJGxcRJYxOl0hmzXKUTJrpIYxOl0ms3b0sdHB2lMXFJ6ca9cu2mtFy5ctI372J/SpmcPndBamJiIn0eFi7bt2nrdqmlpaU0+n18lsvky5fnfR+pkZGR1P36rb+yTEJfRcq9v9hEqTQi6p3UyMhIev6Se5rw8xcultrbN0+zv1GjxtIz5y7K8tGocRNpbKJU+jLyrbR+/QbSwODQdM8f/T5eWr58eemFy1ezpUzE6+dcJ6lfO3fvk1aqVCndY0ZGRtKjJ05nGNfMzEzq7eefcs4t26S9eveRxiZKpY+fBEvrN2gojYh6l268J09DpEZGRtJHAU8z9Z5fRSfKvXbtPyKtYl1Vtj115hxpcwdHuTD7j5ySlq9QQRoUFiV9FZ0ovenlKzU1LSv1uPcoTXoZvdZs3Ca1rmojfREVL9t37c5DqZGRkfTOQ/8M4zmPmyht37GzbLtCBTPprXt+0lfRidJV67dIu/XoLX0VnSi96/1EWrd+A1kev3zde/Q05Z7uHZDmWE5fh+IlXn/yKzNES7eQKfHx8Xh4ePDw4UO5Jb9+JxKJhFevXjF16lTy5s1L8+bNczpLgvBT3LnjQdmyX/8evot5h7Z23gyPe3ndJY+WFuXKf26VsbaphqKiYprum/8bPIDaNWzo1rkDF859nlNAV1cXAwMDrrlfITY2lrt3blPG2JjExESmT3FhwqQpcjPcp1a2XHmSk5O5f8/r2284E74sEy9PT8qUMUJPX1+2r5ptdWJiYvAP8E83je8pk0/279tDcUNDLCuldKf928okb14dDEuU4PBBNz58+EBSUhJ7d+9CV0/vm9dgakbGJly/fg2JRMI1d3eMjFLmh1gw15V2HTpSoGDBdOMpq6hgbGKa7d3uhc+y4zr5HjOmTaaWrTUd27XmwP69cvO3GBmbcO3a1ZR5U65fp8zH62TqlEn8N3wkuXOnv/xnwUKF0NPTz/J14uV5B2PTsrLthIQEVFTkhz+pqqqREB+Pr89DANwvXaBQ4SK4X7lIm+YNaW3fgFlTJ8p19f5SYkIiysrKckPlPg2zuud5J8N472Ni0NLSlm2XNjLm1vVrJCUlcfvmdUqVMQJg7swpDBw6HI10JpoFKFCgELp6enjdvZ3huQRB+DlEpVvIlOPHj1O3bl2aN29O69atczo76QoODiZ//vxs376d9evXy7qwC8LfJiw0FIN8+TI87nn3DqdOHKdVm7YZhomMiEBXV1duX65cudDS1iYyIqXbsIaGBsNHjmbOgkUsXb6KipaVcBo6SFbxVlBQwHXeQlavXE7LFk0xMTHFwbEV69eupnIVa1RUVenWqT3Nm9ql6eqesm58HsJCQ7NaDHK+LJPIiAh09fTlwuh93P70/r6UmTJJLT4+nmNHDuPY8vM98W8rEwUFBVav3YivrzfVqlhSxdKMLZs2sHzVWrS0tdONk55hI50JDHxC4wZ1eRr8lGEjnbntcQs/Xx/smzswctj/aGJXj6mTJ8qNgQcwyJeP0GwqEyGt7LhOMmvg4KHMmbeQlWs3UL9BQ2ZMncz2bZ+7hU+aMo0zp07SrFEDlJWV6dWnH4cPuaGupka58hXo36cXzRo1YOmiBWnSNsiXj7CwrF0nL8NC0df/XAbWNrY8uOfJ6RNHSU5OJvzVSzauXQF8LoPQkOe8fBHK+TMnGT95JmMnTcfP5yHjnf/L8DyWla2JjIhg++b1JCYmEB39lpVLFnxMNyLdOPe97nL21Amat2wj2+c8fgoXzp2inUMjcikr06V7H04cPYSamhqmZcszbHAf2jk0YvXyRWnS09fPx4uwsO8vJEEQfoiolQiZ4uDgQHR0dE5n46sMDQ3lfjEXhL9VXFw8+VTSn4Tu8eNHOA0ZSL8Bg6hmW/2HzqOjo0vX7p9XAChfwYzw8Fds3LCO2nVT1ou3rGTF9t37ZGGCggI5cuggu/YeoEe3znTq3BXbGjVp5dCMSlZWGBmbyMKqqqkSFxf7Q3n85Gtl8rOcO3OaDx/e07yFo9z+v6lMpFIpM6ZNRldXjw2bt6Gmpsb+vXsYOqg/23ftxcAg4x9/UsufPz9Ll38en5uQkMCAvr2YNmMWq1etQCN3bg4eOcHAfr3Zs2cXHTt1kYVVU82+MhHS+pXfnX4DBsn+NjUtS2xsLJs2rKNT564AlC5dhvWbPv8YFRX1hhXLlrBh0zZmzZiKRcWKzF+0hE7tWlPezJzaderKwqqpqhIbm7XrJD4+DhVVFdl2laq2DBw6nLkzpzBt0hiUlVXo1rsfXndvy1qpJVIJCQkJjJ88k2LFDQEYPXEqvTq3ITgokGKGJdKcp2Sp0oybPJ2lC1xZtWwhioqKtG7fGV09PRQUFNKEf+L/mDHDh9CjzwCqVLWVS2fp6s+TZb6NimLd6mUsW72JBXNmUN6sItPnLKJP13aULW9G9Zp1ZGFVxfdJEHKEaOkWBEH4w+jo5E33R7AAf3/69upOqzbt6Nt/4FfT0NPX5/Xr13L7kpKSiH77Fj19gwzjVahgzrPg4AyPT3WZyPCRzkikUnx9vGlg1wg9PT2srCrj4XFLLmz027fo6OhmkNL3+bJM9PT1eR0p33IU+XE7o/f3vWWyf98eatSqLdcNNz1/cpncvHGdSxcvMHvuAipaVsK0bDnGTXRBTVWNQ25uWc7b2tUrsalmS9ly5fG4dZP6DexQVlamXv2GeNy8KRf2bTaWiZBWdlwnWVXBzJyXL16Q8EXvhk/mzp5Fpy7dyF+gAB43b9KgYSM0NDSoUasWHre+uE6i36bpqZJZ2nl1ePfFPbV95+6cuHCdfUfOcPTMFWrUSqngF/o4w7u+vgFKSrlkFW4AQ8OSALx8kXFLcsNGzTh08hIHjp3j6Fl3evYdSNSbNxQqUlQuXOATf/43sBf2jm3o3vvrywkuWTCbth26kC9/Ae7evkmd+g1RV9fApnot7t7+4h4THU1e8X0ShF9OVLoFQRD+MCamZXnyxdhKf//H9O7ZlebNHRjyv4y7N35ibl6Rd9HReD98INt388Z1JBJJurMDf+Ln64O+Qfr/eO/ftwdt7bzUrlsPycf14D/NOp2UlCTbB/AsOJj4+HhMUo2j/BFflom5hQWPHz8iMjJStu/61atoampSqlTpdNP4njJ5/vwZt27ekOtanp4/vUw+tRwqftEKp6CogFSatfV+nwQEcPzoEQYN+R8AkuRkkpISAUhKSkQiSZYL7+//GBNT0yydS/i27LhOssrP1wctLW1UVFTSHLtx/RpPngTQoWNnACSS5M/fnUT57058fDzPgp9l+btTxtiUoMCANPsVFBTQN8iHqpoaZ04eI1/+AhiZpJyjgnlFkpOTCHn++UfI4OAgAPIX/PbKKbp6+mho5ObsqROoqKhS2dpGduxJgD9D+/ekcdPm9Bv0v6+m43HzOk8Dn9CqbUcAJMmSVPcY+e9TfHw8Ic+DMTIW3ydB+NVEpVsQBOEPU822OgEB/kS/fQukdCnv3aMrNtVs6dKtBxHh4USEh8u12t6/d48WzRrx8uVLAEqWKoVt9RpMnjSB+/fucffObWZOn0qjxk3Jly9lPfZDbgc4fvQIgU8CCHwSwNrVK3E7sI8OnTqnyVNkZCRrVq1g9LiUpfG0tLUpWbIU27ZswsvzLjeuX8Oi4uclCO/c9qBI0aIU/bi8YHaXiU216ildOUePws/XF/crl1m6ZCHtOnSS/YOflTL5xG3/PvQNDKheo2aGefobysTcwgItLS3Gjx2Nn68vQUGBzJ87m5DnIdSoWVt2ruCnT/H18SEiIpy4+Dh8fXzw9fFJMz5bKpUyxWUCI5zHoKGhAYBFRUv27d3Dk4AADh86KFcmISHPefXyJVVtqmVLmQhpZcd1Ailjw319fAgLCyU5OVl2DXxa5/7C+XPs37uHx48fEfz0Kbt3bmftmlXp3k/i4+OZOX0KE12myrpzW1S0ZNeObfj5+nLmzCksUi1pes/LExUVZczMLbJUBtY2tgQGBBAd/Va2b/vm9QT4P+JJgD8b165g68a1OI0cK5sI0aqKDUYmZZk5ZQKPfH3w9XnInBmTqWxdTdb67f3gHh1bNSP81edy2rdrG36+3gQ/DWLf7u0scJ1Ov8FO5MmjBaR0KR/avwdVrKvRrlM3IiPCiYwI580b+V44n8ppget0Ro1zkZVTBfOK7N+zg8ePfLl47gwVzD+X08P7XiirqFDezDxL5SQIQtaJMd2CIAh/mDJGxpiYluXkyeO0adueM6dO8ub1a44ePsTRw4dk4QoVKszx+bEudwAA52FJREFU0+eAlHVogwIDZS2KADNnz2Xm9Kn07dUNRUVF6jVoyOgx8uvJr165nNCwUHIpKWFYoiSucxfQwK5Rmjy5zpxO12495SqnU6bPYsI4Z7Zv3UK3Hr0oX+Fza/HxY0dp2Srjid5+tEyUlJRYsnwl06e40LVTO9TV1bFv4cjAwUNlcbJaJhKJhEMHD9DCoWWGM5HD31EmOjq6LF+1liWLFtKnZzeSkhIpVboMi5Yuw9jk81j0yZPGy3X3bdfaAYBjp85S+GN3XIC9e3ahp6dPrdqfx5j2HzSEMaOG07lDG2yr16Bdh06yYyeOHcWmmm2adc2F7JNd353lSxdz6OAB2fana2Dths1UrmKNcq5c7NyxjTmzZyCVQrFixRgxajStWqe95lcuX0qNmrXlejg4jxnP6FHD6dmtE02a2lO/wed13Y8fO0qTZvaoq6tnqQxKlTbCyMSUc6dP4vDxO3j96mU2r19NQmICpcsYM3PeUmxsa8jiKCoq4rpgGQtcpzOob1fU1dWpWq0Gg51GpiqnOIKfBsqtM+/98AHrVi8j9sMHihmWYOTYSTRq+nm1lfNnTxH15jUnjx/m5PHDsv0FChZi7+HTcvnesGY5NtVrUiZVy7XTyDFMHjeKwX260aBxU2rXbSA7dubkMRo2aoaaWtbKSRCErFOQipmnBEHIIXFJ3w4jpO/SxQssmOvKvoNH5Jaf+RP4+z+mT89uHDp6kjx58mRbuqJM0vqTyyQxIQH7JnbMdJ1LRctKOZ2dv9qffJ28efOaFk0bs333Xop8MS46I+9i0z58rl65yPJFc9m86+AfVwaZERX1ho6tmrJ2827ZuPTU8qiLdjhByCq1THx9xDdMEAThD1SzVm2Cnwbx6uXLDNc4/l1FhIczbcbsbK1cgiiT9PzJZRIWFkavvv1EhfsX+JOvk9CQEMZOmJTpCndGqlWvxfPgp4S/ekn+An9WGWTGi9AQhjtPSLfCLQjCzydaugVByDGipVsQBEH41dJr6f7XiZZuQci6zLR0/339ZwRBEARBEARBEAThNyEq3YIgCIIgCIIgCILwk4hKtyAIgiAIgiAIgiD8JGIAhyAIgiAIgvDPEOOX0wp5HZvTWfgtFdYVy6sJ2UO0dAuCIAiCIAiCIAjCTyIq3YIgCIIgCIIgCILwk4hKtyAIgiAIgiAIgiD8JGJQiyAIwj/stsctNq5fh4/3A8LDw1mweBl169VPN+zUyRPZu3sXI53H0Llr91+bUSFHfes6OXP6FHt278Tn4UPevo1i1143TExNczDHgiDkhF1b1nH10lmePw1CRVUV0/Lm9BzgRJFihgC8DAuhR9um6cYdM8WVGnUaAtCkhkWa486TZlGrfiPZdmJCAts3ruLcqWO8eR2Brp4+Hbv3o2FTh+x+W4Lww0SlWxAE4R8WG/sBY2NjHFq2Ytj/BmcY7uyZ09z38sIgX75fmDvhd/Gt6yQ29gMVK1piZ9eYyZPG50AOBUH4HTzwvE0zx3YYmZYjOTmZTauWMG7YAFZt2Y+aujr6+Qqw1e2MXJwTh/axb8cmrKyry+3/b8xkKlnbyrY1NfPIHZ85aRRvXkfiNHoShQoX5XVkBBKJ5Oe9OUH4AaLSLQiC8A+rXqMW1WvU+mqYly9fMmvGVFasXseQAf1+Uc6E38m3rhP75g4AhIQ8/0U5EgThdzR13nK57WFjp9CheV0e+3lTwaISSkpK6Orpy4W5evkcNeo2RF1DQ25/bs08acJ+4nHDnfueHqzfdZQ8WtoA5C9YOBvfiSBkLzGmWxAEQciQRCJh3OiRdO/Ri9Kly+R0dgRBEIQ/yPv3MQCyivGXHvt58+SxX7pdwlcsmEn7ZrVx6tuJU0fdkEqlsmM3rlygjHE59m7fSBfHBvTu0Jy1y+YTHx/3U96HIPwo0dItCIIgZGjDujUo5cpFx85dczorgiAIwh9EIpGwavEcylawwLBk6XTDnDpygKLFS1K2goXc/s69BmJuWRk1NXXu3LrGsvkziI39QIvWHQF4ERrCw/t3UVZRYfz0+US/jWLZ/BlEv41i2NgpP/utCcJ3E5VuQRAEIV3eDx+wbctmdu7dj4KCQk5nRxAEQfiDLJ8/k6eB/sxdtjHd4/HxcVw4c5wO3fqmOdax++d9pYxMiIuNZd+OTbJKt0QqQQEFRk2cQe6PY737DB7BjAkjGDR8LKqqatn/hgThB4ju5YIgCEK67tz24PXrSBrVr4OlWVkszcoSGhrCvDmzadygbk5nTxAEQfhNLV8wk5vXLjFr0Vr08+VPN8yV82eIj4ujnl2zb6ZnXLY8Ea9ekpiQAICunj56BvlkFW6AosVLIJVKiXj1MnvehCBkI9HSLQiCIKSrWfMWWNtUk9s3oG8vmtm3wMGxZQ7lShAEQfhdSaVSViycxbVL55i1eC0FCmU8udmpowewtq2Nto7uN9N94u+HZh4tlFVUAChbwYIr588Q++GDbAK2kGdPUVRUzLCSLwg5SbR0C8J3MDQ0ZOHChTmahwsXLqCgoEBUVFSOnP/Dhw+0atUKLS2tHM2HkD0+vH+Pr48Pvj4+AIQ8f46vjw9hoaHkzatDmTJGci/lXMro6+tjWKJkDudc+JW+dp0AvI2KwtfHhycBAQAEBQXi6+NDRHh4juVZEIRfb/n8GZw/dZRRE2eirpGb15ERvI6MSDPBWejzYB543cHO3jFNGjfcL3Li8H6CnvgT+jyYowd2s2vLOpq3ai8LU7t+E/Joa7Ng5kSCAwO473mbdcsX0KBJC9G1XPgtKUhTTwUo/BW6d+/Opk2bmDlzJqNHj5btd3Nzw9HREfGRZ114eDi5c+dG44tlLX6lhIQEXr9+Tf78+XNknO2KFSuYNGkS586dQ19fn9jYWEqWLMndu3exsLD4rrTikn5OHoXMu3XzBr17pJ0krXkLR6bOmJVmf+MGdenUpSudu3b/BbkTfhffuk4OHtjPxPFj0hzvP3AwAwYN+RVZFAThB4S8js2WdJrUsEh3/39jJtOgSQvZ9sZVizl/6hgb9hxDUVG+DdDjhjsbVy0m7PkzpEgpVLgoTRza0si+pVzYZ08DWbFwFj73vcijrU2NOg3p2mdQtla6C+uqZ1tawt9LLRN9x0Wl+y/UvXt3du3ahZqaGk+ePEFHRwfIuUq3VCol+f/s3XVYFFsfwPEvIKXYgq1YICghYgB2YWE3drfXlmuCAbbXxECxu/vagR2AAQYIqCgqJtIw7x/o6rqgXF910D2f59lHd+bM7G8PZ3fnzKmkJDJlEqMZfoWkpCQ0NDRUfsS+5r/8jUaMGMHly5c5deoUACEhIRQrVkxUugVBEAThN/WjKt1/GlHpFtIjPZVu0b38D1WnTh3y5cuHu7v7V9Nt376dMmXKoKuri7GxMbNnz1bab2xszLRp0+jevTtZs2alSJEiLFu27Kvn/Nj9+eDBg5QvXx5dXV3Onj1LcnIy7u7uFCtWDH19faysrNi2bZviuFevXuHs7IyhoSH6+vqUKlWKVatWASkVOw0NDTZt2oS9vT16enqULVtWUfH76NSpU1SsWBFdXV3y58/PmDFjSEz8VLOrUaMGgwcPZtSoUeTKlYt8+fIxadIkxX5Jkpg0aRJFihRBV1eXAgUKMHjwYKX8+Ni9vEOHDrRt21bp9RMSEsiTJw9r1qwB+OZ7Ts3atWuxtbUla9as5MuXjw4dOvDs2TOV/P3Yrdvb25scOXKwZ88ezM3N0dXVJSwsjLi4OEaPHk3hwoXR1dWlZMmSeHl5ffVvFBQURNOmTcmbNy8GBgZUqFCBo0ePKuXf7NmzOX36NBoaGtSoUYNixYoBUK5cOcU2QRAEQRAEQRBSiEr3H0pLS4tp06axYMECHj16lGqaq1ev0qZNG9q1a8eNGzeYNGkS48ePx9vbWynd7NmzsbW15fr16/Tv359+/fpx586db8YwZswYPDw8CAgIwNLSEnd3d9asWYOnpye3bt1i6NChdOzYUVFxHj9+PLdv3+bgwYMEBASwZMkS8uTJo3TOkSNHMnz4cK5fv46dnR1OTk5ERkYC8PjxYxo2bEiFChXw8/NjyZIleHl5MWXKFKVzrF69mixZsnDx4kVmzJiBm5sbR44cAVJuQsydO5elS5dy7949du3ahYWFRarvz9nZmb179xIVFaXYdvjwYaKjo2nePGWM0rfec2oSEhKYPHkyfn5+7Nq1i5CQELp27frVvI6Ojmb69OmsWLGCW7duYWRkROfOndm4cSPz588nICCApUuXYmBg8NW/UVRUFA0bNuTYsWNcv36d+vXr4+TkRFhYGAA7duygV69e2NnZ8eTJE3bs2MGlS5cAOHr0qGKbIAiCIAiCIAgpRH/fP1jz5s2xtrZm4sSJihbOz82ZM4fatWszfvx4AExMTLh9+zYzZ85UquQ1bNiQ/v37AzB69Gjmzp3LiRMnMDU1/erru7m5UbduXQDi4uKYNm0aR48exc7ODoDixYtz9uxZli5dSvXq1QkLC6NcuXLY2toCKa3KXxo4cCAtW7YEUsYWHzp0CC8vL0aNGsXixYspXLgwCxcuRENDg9KlSxMeHs7o0aOZMGGCoru1paUlEydOBKBUqVIsXLiQY8eOUbduXcLCwsiXLx916tRBW1ubIkWKULFixVTfn6OjI1myZGHnzp106tQJgA0bNtCkSROyZs2arvecmu7duyv+X7x4cebPn0+FChWIiopSqTR/lJCQwOLFi7GysgLg7t27bNmyhSNHjlCnTh3Fub72NwLIlSuX4hwAkydPZufOnezZs4eBAweSK1cuMmfOjI6ODvny5QPg7du3AOTOnVuxTRAEQRAEQRCEFKKl+w83ffp0Vq9eTcCHGWc/FxAQgIODg9I2BwcH7t27R1JSkmKbpaWl4v8aGhrky5dP0d25QYMGGBgYYGBgQJkyZZTO9bHyDHD//n2io6OpW7euIr2BgQFr1qwh6MNst/369WPTpk1YW1szatQozp07pxLzx8orQKZMmbC1tVW8t4CAAOzs7JQmF3NwcCAqKkqptf/z9wOQP39+xftp3bq1YmKwXr16sXPnTqXu6Z/LlCkTbdq0Yf369QC8f/+e3bt34+zsnO73nJqrV6/i5OREkSJFyJo1q6Jy/rG1OTU6OjpK78vX1xctLa00K/Yfff43AoiKimLEiBGYmZmRI0cODAwMCAgI+Oprp1dcXBxv375VesTFxf3f5xUEQRAEQRCEjEy0dP/hqlWrhqOjIy4uLt/sopwWbW1tpecaGhokJycDsGLFCmJiYlJNlyVLFsX/P3bB3r9/PwULKq/ZqKurC6RU4ENDQzlw4ABHjhyhdu3aDBgwgFmzZn1X3N/zfgoXLsydO3c4evQoR44coX///sycOZNTp06pHAcpXcyrV6/Os2fPOHLkCPr6+tSvXz/d7/lL79+/x9HREUdHR9avX4+hoSFhYWE4OjoSHx+f5nvS19dXutmgr5++iT8+/xtByiRpR44cYdasWZQsWRJ9fX1atWr11ddOL3d3d1xdXZW2jR0/kXETJv3f5xYEQRAEQRCEjEq0dKsBDw8P9u7dy/nz55W2m5mZ4ePjo7TNx8cHExMTtLS00nXuggULUrJkSUqWLEnRokXTTPf5BF8f0398FC5cWJHO0NCQLl26sG7dOubNm6cyaduFCxcU/09MTOTq1auYmZkp3s/58+eVZmf38fEha9asFCpUKF3vB1IqrE5OTsyfP5+TJ09y/vx5bty4kWpae3t7ChcuzObNm1m/fj2tW7dWVM7T+54/FxgYSGRkJB4eHlStWpXSpUsrTaKWXhYWFiQnJ3917HhqfHx86Nq1K82bN8fCwoJ8+fIREhLy1WN0dHQAlHpHpMbFxYU3b94oPUaOVl1iSEif169fUaOqHY8fpz5nQ0a2ZfNGBvXvK3cYakGUE0EQvtfbN69p71STiCeP5Q7lp7hy0YeB3dooGl4E4WcSlW41YGFhgbOzM/Pnz1faPnz4cI4dO8bkyZO5e/cuq1evZuHChYwYMeKHx5A1a1ZGjBjB0KFDWb16NUFBQVy7do0FCxawevVqACZMmMDu3bu5f/8+t27dYt++fYoK9UeLFi1i586dBAYGMmDAAF69eqUYA92/f38ePnzIoEGDCAwMZPfu3UycOJFhw4ale/ksb29vvLy8uHnzJsHBwaxbtw59ff2v3lDo0KEDnp6eHDlyRNG1PL3v+UtFihRBR0eHBQsWEBwczJ49e5g8eXK6Yv+csbExXbp0oXv37uzatYsHDx5w8uRJtmzZ8tXjSpUqxY4dO/D19cXPz48OHTp888fIyMgIfX19Dh06REREBG/evEk1na6uLtmyZVN6pNXiL3zb8qWe1KxZm4IFU24oPQkPZ2C/3lQqb0WNqnbMmTU9zaERHzWoWwurMqZKD6/lyje67t4JpGunDlQoZ0G92tVZ5bVcaf/5cz44NXTEvqINf48ZScJnvSLevXuHU0NHwsOVL9iaN29JQMAtrl298v9kgZAOP6KcfBQfH0+bFk2xKmNK4BdDlkQ5EYQ/z6Y1K6hcpQZ586f01vO9cpHh/TrTsp49zk1rs3LJPJK++P44ffwwA7u1oXmdynRp1YBtG7zT8TrLGd6vM83rVKZ1gyqppnkW8YSJIwfSvE5l2jvVxGvRHKXXDrobyMDubWlRz45Jowfz7u2na5GkxEQG92jPndvKDSi2lRzQypSJE/8eSG+WCMJ3E5VuNeHm5qZSebKxsWHLli1s2rSJsmXLMmHCBNzc3L67G/q3TJ48mfHjx+Pu7o6ZmRn169dn//79iiWndHR0cHFxwdLSkmrVqqGlpcWmTZuUzuHh4YGHhwdWVlacPXuWPXv2KGY4L1iwIAcOHODSpUtYWVnRt29fevTowbhx49IdY44cOVi+fDkODg5YWlpy9OhR9u7dS+7cudM8xtnZmdu3b1OwYEGVMfLfes9fMjQ0xNvbm61bt2Jubo6Hh8d3d69fsmQJrVq1on///pQuXZpevXrx/v37rx4zZ84ccubMib29PU5OTjg6OmJjY/PVYzJlysT8+fNZunQpBQoUoGnTpt8Vr5B+MTEx7NqxjeYtWwEpvQwG9u9DQkICq9dtYso0D/bs2snihfO/cSboP3Awx06eVTzaO3dU7IuKiqJvrx7kL1CAjVt3MHT4KDwXL2Tbls1AypJ4LqOG07pNO9Zs2MztWzfZtvXTjZ1/5s6idZt2FCigPLxCW0eHho0as2Hdmh+RHUIafmQ5AZg7ewaGRkYq20U5EYQ/T2xsDP/u34Vj45TVWILv32HCqIGUr+jAgpWbGDNpOhd9TrFq6afvj8sXzjLTbSwNmrZm8ZptDBjmwq4t69m7fVNaLwNAYkICVWrUpWGz1qnuT0pKYuKoQSQkJjBriTfDxk7myMG9rPVarEjzz3RXrGwqMn/FJt6/j2Lz2k8TCO/YvBZzC2tMzVVXo6nToAl7tm/4T3kjCN9DQ/q8L64gZFAhISEUK1aM69evY21tLXc4wg8Sm74GNuELRw4fYuoUV06eSRkycvbMKQb178vRE2fI/eEm1JbNG/lnzixOnjmP9ochAF9qULcWzp0607Fz11T3b9m0gQX/zOP4qbOKc8ybM4sTx4+ye98hIiMjqVXNnkvX/NHV1WXu7JnEREfz9/iJ+F6/xnT3KazbuDXV4SpXr1ymT89unL1wBT09vR+QK8KXflQ5+XjsrBkezJ67gBZNG7F52y5Kf+iJJMqJIPz+Hr+MUXp+9sQRFs2Zxsa9JwDwXjqf61cu8M/yTxXUiz6ncJ8wig17j5M5cxamu44hKTGRvyd/aizYs20j2zZ6s3rbIaW5Z1Jz5MBuli2YydaDZ5W2X75wFtfRg1m78wg5c6U0guzftZVVnv+wce8JtLW1aV6nMvO9NlK4aDH279zCpXOncZ25kCfhjxg/vD/zvTaSOXMWldd8FvGErq0a4LVpL/kLqg79K5grfXPkCOpNLx2zpImWbkEQhN/MtWtXMDf/tFqAn68vpUqZKCpSAPYOVYiKiuJ+0P2vnmvliuVUs69Em5bN8F65QqmrsZ+fL+VtbZUqY/YOVQh58IC3b96QK1cuDA0NOe9zlpiYGK5fu0opU1MSEhKY6jaJ8RPd0pwfwrxMWZKSkrjh7/eduSB8y48qJ5EvXuA6cTxT3Wegp69a8RXlRBD+PDf9r1HS1FzxPCEhAR0d5SFhOrq6xMfHcf/ObUUa7VTSvHgWwbOn4d8dS+BNf4yLl1RUuAHKV7Qn+n0UYQ9SVoMpVtKE65cvkJSYiO/VSxiXMAFg4awpdO/3V6oVbgCjvPnJmSs3N/2ufXd8gpAeotItCILwm3kSHq7UzTfyxQty5c6jlCb3h+eRL56neZ72zp2YPmsOK1atplWbtqxYvpS5s2cq9r/4ynlfvHiBhoYGM2bPY5nnYlo0bUTp0mY0a96SlSuWUaFiJXR0deni3I4mjRzZuH6d0nn09fUxMMjKk/DvvxATvu5HlBNJkhg/dgyt27SjTFnVrpkgyokg/ImePX1C7jyGiuflK9oRcNOPk0cPkpSUxIvnEWzwTpkD5GXkC0Wac6eP4XvlIsnJyTwKC2Xn5rVKab7Hq5cvyJFTeZhfjly5Us77MuW8Q0ZP4OzJo3Rv50Qm7Uy07dSdY4f2oaurh4lZGcYN60ePdk6sXr5Q5fy5chvyLOLJd8cnCOkhlgwTfgvGxsaIkRCCkCI2Ng4jnf9/ErrOXbsp/m9iWhptbW2muE5kyNDhilnpv8WmvC0btmxXPA8JecC+PbvZvG0n3bp0xLljZxyqVqNls8aUt7XFxLS0Iq2uni6xsTGpnVb4AX5EOdmwfi3v37+nR68+/9d5RDkRhN9LfFycUu8Vm4r2dO83lIWzpjJryji0tbVp36U3t/yuoaGR0oZX36klTx4/YtLowSQmJZI5cxaatu7A+pWeijQ/S9FiJZmx8NM47rdvXrN+5RJmLFyJ57zpmFlYMW7qHIb0cqa0uQWVHKor0uro6hIXG/tT4xME0dItCILwm8mZMwdv375VPM+dJ49KK0Lkh+eft1R8i4WlFYmJiYR/WF4qz1fOmydPHpXjASZPmsDwkaNJliQCA25T17E+uXPnxta2AleuXFZK+/bNG3LmzJXu+IT/5keUk8sXL+Dv50uFchbYWJrj1KAeAB3atmScy2hAlBNB+BNly5GDqHdvlba1aNeJrQfPsHrbQTbtO0nlKjUAyP9hEkQNDQ269/uL7f+ew3vrAdbvPoaJWVmlNN8jZ648vH4VqbTt9cuXAOTKlfp3zPKFs2jaxpk8Rnnxv36FqjXqoqevT0W7KvhfV14RIerdW7LnyPnd8QlCeohKtyAIwm+mtJk5wZ+NwbWytubevbtERn66KLlw7hwGBgaUKFEy3ee9ExiApqYmuT6Mm7OysubqlSskJCR8Ou/5cxgXK0a27NlVjt+xfSvZs+egRq3aJH9Yt/3jGPHExETFNoCHYWHExcVR2sxc5TzCj/Ejyslol3Fs2bGbzdt3sXn7LhYuSelOOmPWXAYNGZpyXlFOBOGPU6JUaR6GBKts19DQIHceI3R19Th19BCGRvkoYaK8vKuWlhZ5DPOira3NqaOHMCtrSfb/48ZZ6bKWhATf5/Wrl4pt16+cJ3MWA4oYF1dJ73vlIg9DH+DUoh2QsoJCYtKH75ikRJKTP33HxMfF8eTxQ0qUKq1yHkH4kUSlWxAE4Tdj71CFoKD7vP2wJrqdfRWKlyjJ2DGjuBMYiM/ZMyxcMI+27Z0V3cRv+PvTtHF9IiIiAPDzvc66Nd7cCQzk0cOH7N+3h5nT3WnUuImiotSgkRPa2tpMmjCW+/fvcejgAdavW0Onzt1UYoqMjGT50iWMGZuyRF+27NkpXrwE69euxs/3OhcvnMe63Kfl565dvUKhwoUpXKTIT80rdfYjykn+AgUoVcpE8ShqbAxAocJFyJsvHyDKiSD8iWwq2hP6IJh3n7V2b9vgzYOge4Q+uM8G72VsXb+SPkNGKSZCfPP6Fft3beVh6AOC7gXi+c90zp44Qu9BIxXnuHP7Br2dm/HieYRi27OIJwTdC+R5xFOSk5IJuhdI0L1AYqKjU2KpYEdh4+LMmjyW4Pt3uHrxHGuWL6Jx8zYqqy7Ex8WxZJ4Hg0aOR1MzpZpjbmHFvh2bCb5/B59TxzC3sFakD7ztj7a2DqXLWv7wPBSEz4kx3YIgCL+ZUiamlDYz5/Dhg7Ru0w4tLS0WLPZkqtskOju3RV9fH6emzek/cLDimNjYGEIePCAxMaU1UkdHh0MHD+C5eCHx8fEULFiITp270qnLp4pS1qxZ8VzuxbQpbrRv3YIcOXPSp29/WrVpqxLTDPepdO7SHSOjvIptblM9GD92NBvWraVLtx6Utfh0UXPwwH5atGzzE3JH+OhHlJP0EOVEEP48xUqUooRJac4c/5eGTVsBcOWiD5vXriAhPoFiJU0Y7z6PCpWrKB137NBevBbPQZIkzMpY4TF/hdL62HFxsTwKCyHps5Uy1q1YzNFDexXPB3VPaaH2mL8cy3IV0NLSYtL0+SyaPZXhfbugq6dPnQZOdOrRXyXu9auWUsGuqlLLdd8ho5nh5sKogT2oWbcBDtXrKPadOnqIGvUaoqcnlgYTfi6xTrcgCLIR63R/v9OnTjJ31gy2796nuJv/u7h//x69undhz/7DZM2aVe5w/miinAiCkB5frtMNcOncabwWz2PJmm2/3fdHerx5/Yrezs34Z/kG8qUx5lys0y2kR3rW6RYt3YIgCL+hatVrEBYawrOICPLlzy93OP/Ji+fPmTJtuqhI/QKinAiC8L0q2lcj/FEYkc+fYZg3n9zh/HART8PpP+zvNCvcgvAjiZZuQRBkI1q6BUEQBEF+qbV0C6KlW0if9LR0/3l9RQRBEARBEARBEAQhgxCVbkEQBEEQBEEQBEH4SUSlWxAEQRAEQRAEQRB+EjGmWxAE2Ygx3YIgCIIgZFQx8Ulyh5Dh6OtoyR1ChiPGdAuCIAiCIAiCIAiCjESlWxAEQRAEQRAEQRB+ElHpFgRBEARBEARBEISfJB090AVBEAR10aBuLcLDH6tsb9uuA3+PnyhDRILcvJYv5diRf3nwIBhdPT2srcvx17ARGBcrrkgTFxfH7BkeHDp4gPj4eOwdqjB2/ERy58kjY+SCkPF5LV/G/Hmzce7YmVEuY+UOR/iF3r9/z7LF8zl1/CivXr3ExNSMoaNcMC9jAcCJY0fYuW0zgQG3ePvmDWs2bcfE1ExxfHj4Y1o0qpvquafOmEPtuvV/yfsQ0kdUugVBEASF9Zu3kZz0aeKY+/fv0adnN+o6ih9vdXXl8iXatnemjIUFSYlJLPhnDn179WDHnv1kzpwZgJnTp3Hm1ClmzplH1qxZcZ86mWFDBrJ6/SaZoxeEjOvmDX+2bd2EiYmp3KEIMpjmNp7g+/eYOGU6eQwNOXRgL4P69mDj9r0YGeUlNiYGK2sbatetj/vkCSrH582bj/1HTilt27V9K+vXrMTOoeqvehtCOolKtyAIgqCQK1cupecrVyyjcOEi2FaoKFNEgtyWLPNSeu421YOaVe0IuH2L8rYVePfuHTu3b8djxiwqVbZLSTNlGs2cGuLv54ullbUMUQtCxhb9/j0uo0cy0XUKy5cukTsc4ReLjY3l5LEjzJi7kHLlbQHo1XcgZ0+fZMfWTfQdMIQGjZsApNr7DEBLS4vceQyVtp06cZTadeuTOXOWn/sGhP9MjOkWBEEQUpUQH8/+fXto1qIlGhoacocjZBBR794BkC17dgBu37pJYmIClezsFWmKFS9B/vwF8PP1lSNEQcjwpk1xo1q16lT+7HMjqI+kpCSSkpLQ0dFR2q6rq4ff9Wvfdc7A27e4eycQp2Ytf0SIwg8mKt2CIAhCqo4fP8q7d+9o0qy53KEIGURycjIzpk/DupwNpUqZABD54gXa2tpky5ZNKW2u3Ll58eK5HGEKQoZ28MB+AgJuM3jocLlDEWSSJUsWLCytWbnck+fPnpGUlMTB/Xu46e9L5Hd+b+7ZtR3jYsWxtC73g6MVfgRR6RYEQRBStXP7dhyqVMPIKK/coQgZxLQprgTdu8eMWXPlDkUQfktPnzxhhsdU3KfPRFdXV+5wBBlNnOIBkoSTYw2qVbJm68b11K3fEA3N/149i42N5d+D+0UrdwYmxnQLgiAIKsLDH3Pxwjnm/LNA7lCEDGLaFDdOnzrJytXryJsvn2J77jx5SEhI4O3bt0qt3S8jI8nzxXhDQVB3t2/f4mVkJO1at1BsS0pK4uqVy2zauJ7L12+gpaUlY4TCr1KocBGWeK0hJiaa91HvyWNoyNjRwyhYsNB/PteJo/8SGxtDw8ZNf0Kkwo8gKt2CIAiCit07d5ArV26qVqshdyiCzCRJwn3qZI4fO4KX91oKFSqstN+8TFkyZdLm0oXz1KnnCEDIg2CePAnHytpahogFIeOqVLky23btVdo2cawLxsWL061HL1HhVkP6+pnR18/M27dvuHjOh4F//fdhB3t2badq9Vrk/GIyVCHjEN3Lhd/OyZMn0dDQ4PXr17K8fnR0NC1btiRbtmyyxvG9fHx8sLCwQFtbm2bNmsmen0LGk5yczO6dO3Bq2oxMmcS9WXU3bbIrB/btwWPGbLJkzsKL58958fw5sbGxAGTNmpXmLVsya4YHly5e4Patm0wY9zdW1uXEzOWC8IUsWQwoVcpE6aGfOTM5sudQzJMgqIcL585y3ucM4Y8fcfHCOQb06krRYsVo3CRlHpU3b15z904AIUH3AQgNCeHunQCVMd8Pw0LxvXaFJs1F1/KMTFxNCRnS+fPnqVKlCvXr12f//v1K++zt7Xny5AnZP8yc+6utXr2aM2fOcO7cOfLkycOrV6/ImTMn169fx/o3aNUZNmwY1tbWHDx4EAMDAzJnzixrfgoZz4Xz53jyJJxmLcQPuABbNm8EoEfXTkrb3aa407R5ShfZkaP/RlNDk+F/DSY+IR57hyqMHTfxl8cqCILwu4iKeseSBfN4FvGUbNmzU7N2PfoOGEImbW0Azpw6wZSJYxXpx49JaQHv0ac/vfoOVGzft3sHRnnzUsnO4de+AeE/0ZAkSZI7CEH4Us+ePTEwMMDLy4s7d+5QoECBdB+blJSEhoYGmv9hIgpJkkhKSkpXq96IESO4fPkyp06dAiAkJIRixYr9NpXuPHnyMHPmTLp16yZ3KMQmyh2BIAiCIAhC6mLik+QOIcPR1xFDIL6kl45mbNG9XMhwoqKi2Lx5M/369aNRo0Z4e3sr7f+yO7S3tzc5cuRgz549mJubo6urS1hYGHFxcYwePZrChQujq6tLyZIl8fLyUjrHwYMHKV++PLq6upw9e5agoCCaNm1K3rx5MTAwoEKFChw9elTx2jVq1GD27NmcPn0aDQ0NatSoQbFixQAoV66cYltqXr16hbOzM4aGhujr61OqVClWrVoFpFTcNTQ02LRpE/b29ujp6VG2bFlFxf6jU6dOUbFiRXR1dcmfPz9jxowhMfFTzTUuLo7BgwdjZGSEnp4eVapU4fLly0qvERkZSffu3dHQ0MDb2zvN/Dx8+DBmZmYYGBhQv359njx5onidxMREBg8eTI4cOcidOzejR4+mS5cuNGvW7D/9rQVBEARBEAThTycq3UKGs2XLFkqXLo2pqSkdO3Zk5cqVfKtDRnR0NNOnT2fFihXcunULIyMjOnfuzMaNG5k/fz4BAQEsXboUAwMDpePGjBmDh4cHAQEBWFpaEhUVRcOGDTl27BjXr1+nfv36ODk5ERYWBsCOHTvo1asXdnZ2PHnyhB07dnDp0iUAjh49qtiWmvHjx3P79m0OHjxIQEAAS5YsIU+ePEppRo4cyfDhw7l+/Tp2dnY4OTkRGRkJwOPHj2nYsCEVKlTAz8+PJUuW4OXlxZQpUxTHjxo1iu3bt7N69WquXbtGyZIlcXR05OXLlxQuXJgnT56QLVs25s2bx5MnT2jbtm2a+Tlr1izWrl3L6dOnCQsLY8SIEYr906dPZ/369axatQofHx/evn3Lrl27vvo3EgRBEARBEAR1JMZ0CxmOl5cXHTt2BKB+/fq8efOGU6dOpdmCDJCQkMDixYuxsrIC4O7du2zZsoUjR45Qp04dAIoXL65ynJubG3Xr1lU8z5Url+IcAJMnT2bnzp3s2bOHgQMHkitXLjJnzoyOjg75PiyZ8/btWwBy586t2JaasLAwypUrh62tLQDGxsYqaQYOHEjLlinjaJcsWcKhQ4fw8vJi1KhRLF68mMKFC7Nw4UI0NDQoXbo04eHhjB49mgkTJhATE8OSJUvw9vamQYMGACxfvpwjR47g5eXFyJEjyZcvHxoaGmTPnv2rsSYkJODp6UmJEiUUcbm5uSn2L1iwABcXF5o3T5nsY+HChRw4cCDN8wmCIAiCIAiCuhIt3UKGcufOHS5dukT79u0ByJQpE23btlV0C0+Ljo4OlpaWiue+vr5oaWlRvXr1rx73sQL8UVRUFCNGjMDMzIwcOXJgYGBAQECAoqX7/9GvXz82bdqEtbU1o0aN4ty5cypp7OzsFP/PlCkTtra2BAQEABAQEICdnR0aGhqKNA4ODkRFRfHo0SOCgoJISEjAweHTRBra2tpUrFhRcY70ypw5s6LCDZA/f36ePXsGwJs3b4iIiKBixYqK/VpaWpQvX/6r54yLi+Pt27dKj7i4uP8UlyAIgiAIgiD8bkSlW8hQvLy8SExMpECBAmTKlIlMmTKxZMkStm/fzps3b9I8Tl9fX6kyqq+vn67Xy5Ili9LzESNGsHPnTqZNm8aZM2fw9fXFwsKC+Pj473tDn2nQoAGhoaEMHTqU8PBwateurdRlOyPR/jBz5kcaGhrf7OL/Le7u7mTPnl3pMXO6+/91TkEQBEEQBEHI6ESlW8gwEhMTWbNmDbNnz8bX11fx8PPzo0CBAmzcuDHd57KwsCA5OVllIrJv8fHxoWvXrjRv3hwLCwvy5ctHSEjIV4/R0dEBUmZN/xZDQ0O6dOnCunXrmDdvHsuWLVPaf+HCBcX/ExMTuXr1KmZmZgCYmZlx/vx5pcqvj48PWbNmpVChQpQoUQIdHR18fHwU+xMSErh8+TLm5ubfjC29smfPTt68eRUTtEHKe7927dpXj3NxceHNmzdKj5GjXX5YXOrm9etX1Khqx+PHj+QO5T/bsnkjg/r3lTsMtfA7l5Og+/epW6sa0dHRcociqKnf+fMjvmd/njevX9OgVhXCwx/LHcpPsWPrJoYP6S93GH8cUekWMox9+/bx6tUrevToQdmyZZUeLVu2/GYX888ZGxvTpUsXunfvzq5du3jw4AEnT55ky5YtXz2uVKlS7NixQ1HZ79ChA8nJyV89xsjICH19fQ4dOkRERESaLfITJkxg9+7d3L9/n1u3brFv3z5FhfqjRYsWsXPnTgIDAxkwYACvXr2ie/fuAPTv35+HDx8yaNAgAgMD2b17NxMnTmTYsGFoamqSJUsW+vXrx8iRIzl06BC3b9+mV69eREdH06NHj3TnXXoMGjQId3d3du/ezZ07dxgyZAivXr1S6m3wJV1dXbJly6b00NXV/aFxqZPlSz2pWbM2BQsWAuBJeDgD+/WmUnkralS1Y86s6Uoz23/p8qWLWJUxTfVx84a/Svqw0FDsKpSjSmXlIRnnz/ng1NAR+4o2/D1mJAmf9Qp59+4dTg0dVS5MmjdvSUDALa5dvfL/ZIGQDp+XkzuBgYweMYx6tatT0caSZk4NWL92dTrOsYTOzu2oVN5K5e//kce0KbRr3QJb67K0adFUZf/jx4/o1tmZSrbWdOvsrFKJGdi/D0f/Pay0rUTJklhaWrN29ar/8I4F4cf5f79nPxcfH0+bFk2xKmNK4GdDvi5fusiQgf2oXb0KlWytadOiKfv37VE6VnzPZiyrViylao1aFChQEIDLF8/Tq0sHajnY0rBOVRb+M1ulXEiSxPo1K2ndtAFVK1rhVK8Gq1Z4pvkaV69conI581Qft2/dACA05AH9e3WlQe2qVKtkTYvG9fBc9A+JCQmK81y8cI7WTRtQq0oFJo0bTULCp7IT9e4drZs24MkXZcepWQvuBtzG95ooOz+SqHQLGYaXlxd16tQhe/bsKvtatmzJlStX8PdXrQykZcmSJbRq1Yr+/ftTunRpevXqxfv37796zJw5c8iZMyf29vY4OTnh6OiIjY3NV4/JlCkT8+fPZ+nSpRQoUICmTVUvOCGlRdzFxQVLS0uqVauGlpYWmzZtUkrj4eGBh4cHVlZWnD17lj179ihmOC9YsCAHDhzg0qVLWFlZ0bdvX3r06MG4ceOUjm/ZsiWdOnXCxsaG+/fvc/jwYXLmzJmeLEu30aNH0759ezp37oydnR0GBgY4Ojqip6f3Q19HSF1MTAy7dmyjectWQEpPg4H9+5CQkMDqdZuYMs2DPbt2snjh/DTPYW1djmMnzyo9WrRsTcFChShT1kIpbUJCAmNGDsOmvHKFKzk5GZdRw2ndph1rNmzm9q2bbNv66cbWP3Nn0bpNO8WFyUfaOjo0bNSYDevW/L9ZIXzFl+Xk9u2b5Mqdi2keM9mxez89e/dl/rw5bFy/7qvnSUhIoG69+rRu2/6r6Zo1b4ljg4ap7ps9YzpGRnnZsn0XeQwNmTNzhmLfoYMH0NTQoE49R5XjmjZvwdbNG9NdsRGEH+VHfM9+bu7sGRgaGals9/O9TikTU2bPm8+2HXto2rwF41xGc+rkCUB8z2Y0sTEx7N29nSbNUia9vXcnkGGD+lLZvgqrN25niscczpw6weL5c5SOmzNjGnt2bmfQ0JFs3rmfmfMWYV7WMrWXAMDSypr9R04pPZo0b0WBgoUwMy8LpFx/NmzchPmLl7N5537+GjGG3Tu2sdxzIZBSdia6jKR5q7asWL2BgNu32LV9q+I1Fs2fQ/NWbcn/ZdnR1qFeg0Zs2fj13wbhv9GQ/t+BmoIg/N9CQkIoVqwY169fx9raWu5w/rPk5GTMzMxo06YNkydPTvdxseI6+rscOXyIqVNcOXnmPABnz5xiUP++HD1xhtwfbtJs2byRf+bM4uSZ82h/GALxNQkJCdStVY32HTrSp98ApX1zZ8/k+fNnVKpkx8zp0zh7IeXud2RkJLWq2XPpmj+6urrMnT2TmOho/h4/Ed/r15juPoV1G7eipaWl8npXr1ymT89unL1wRdys+Um+LCepmTbZleDgIFas+vaF+e6dO5T+/qlZsmgBJ44dZcuO3Urbmzs1ZMSoMThUrcbZM6eYPXMGO/fs5+3btzi3bcXylavJlz+/yvkS4uOxr1SehUuWUamyncp+QfhZfuT37Nkzp5g1w4PZcxfQomkjNm/bRekverp9bmC/3uTKnRu3Ke7ie1ZmMfHKQwePHznMTPfJHDx+FoAlC+Zy6cJ5Vq3/dCPkzKkTjBs9jAPHzpIlSxYeBAfRsW1zNmzdTVHjYt8VR2JCAk6ONWndzpnuvfulmW7erOkE3L7B0pXrePkykoa1q3LqwnV0dXVZ+M9sYqKjGekyHn/f68yZMQ2vtZtSLTvXr15hcL8eHDl9UaXs6Ouopld3eulYD0y0dAuC8J+FhoayfPly7t69y40bN+jXrx8PHjygQ4cOcoemFq5du4K5eRnFcz9fX0qVMlFcCALYO1QhKiqK+0H303XOUyeO8+b1a5o1b6m0/eKF8xz59xB/j5uockyuXLkwNDTkvM9ZYmJiuH7tKqVMTUlISGCq2yTGT3RL9cccwLxMWZKSkrjh75eu+IT/7stykpp3Ue/Inj3HT4/FxLQ0Fy6cJzk5mfM+PpiYmAIwd9YM2rbvkGqFG1Ja60xLm4kussIv96O+ZyNfvMB14nimus9ATz99Fd937z59LsX3bMbie/0qpmaf5smJj49HR1f5houuri5xcXEEBtwC4OzpkxQsWIizp0/SvFFdmjWsw1TX8bx58zrdr3v61AnevHlN46bN00zzMCyUC+fOUK58BQBy5sxFnjyGXDzvQ2xMDH7XrlKylAmJCQnMmObGmHGT0iw7ZuZlSEpK4tbN9PcwFb5OVLoFQfjPNDU18fb2pkKFCjg4OHDjxg2OHj2qMkZd+DmehIcrdVOMfPGCXLnzKKXJ/eF55Ivn6Trnzh3bsHeoQt7P1m9//foVE8a6MHmqBwYGBirHaGhoMGP2PJZ5LqZF00aULm1Gs+YtWbliGRUqVkJHV5cuzu1o0shRpQuzvr4+BgZZeRIenu73Lfw3X5aTL/lev8a/hw7SsnWbnx7LsJGjefAgmAZ1axEaFsqwkaO5euUydwIDcGrSjJHDhtDQsTaTXScojVcFMDQyIlyUE+EX+xHfs5IkMX7sGFq3aacybCcthw8d4NbNGzRt3gIQ37MZzdMn4RgafioXle2rcMPPl38P7icpKYlnzyJYuWwJAJHPU8pF+KOHPH0SzvGjh5k42Z3xbtO4E3CLv0cOTffr7t21nUp2Dhjlzaeyr1eXDlSrZE3rpg2wtilP736DgJSyM2XGHFYt96R9qyaYlDbDqWkL1qxaQfkKFdHR1aFXV2faNGvI1k3rlc6pp6+PgYEBT0XZ+WHS0RguCMLPZmxs/H8vyfUrFS5cWGmWdOHXio2Nw0jnx01CF/H0Ked8zjJz9jyl7a4Tx9OgUWPK21ZI81ib8rZs2LJd8Twk5AH79uxm87addOvSEeeOnXGoWo2WzRpT3tYWE9PSirS6errExsb8sPchKPtaObl37y5/DepPn34DsHeo8tNjyZs3LwsXL1U8j4+Pp1/vHkyZ5sGypUvInCULu/cdon+fnmzdupkOzp0UafV0RTkRfr0f8T27Yf1a3r9/T49efdKV/tLFC0wY9zcTXadQsmQpxXbxPZtxxMXFofPZJLCV7BwY+NcIpk9zxXX8GLS1dejeqy++16+ioZnStpksScTHxzNxsgdFihoD8PfEKXTt0IrQkAff7HL+LOIpF8/7MGX6nFT3T5k+m+j377l39w4L5s1i/ZpVdOqaMoGudbnySl3fw0JDOLBvN2s2badvj860bd8JuypVcW7VFGsbW0p96IUEoKurR2xs7Hflk6BKtHQLgiD8ZnLmzMHbt28Vz3PnycPLyBdKaSI/PM+dx/Cb59u1czvZc+Sges1aStsvX7zAGu+V2FiaY2NpzqQJY3n37h02lubs3LEt1XNNnjSB4SNHkyxJBAbcpq5jfXLnzo2tbQWuXLmslPbtmzfkzJkrXe9Z+O++LCcfBd2/T+8eXWnZui29+8qzLMyKZZ7Y2TtgXqYsVy5fok5dR7S1taldpx5XLl1SSvtGlBNBBj/ie/byxQv4+/lSoZwFNpbmODWoB0CHti0Z5zJaKe2Vy5cYPKAfI0e54NS02VdjE9+z8smeIwfvvvhe7dCpK0dPX2TXgWMcOuFD1Ropv6UFC6XMep8nTx60MmVSVLgBjIsVB+Dp0yfffM19u3eSPXsOqlWvmer+vPnyU6xESeo1aET/wUNZsXRRmsvYekyZxOBho5CSJe4GBlC7riO5cuWmXHlbrl/9ouy8ffPDJ+JVZ6KlWxAE4TdT2syc/Xs/LSljZW3NimWeREZGkjt3bgAunDuHgYEBJUqU/Oq5JEli964dODVphra2ttK+Nes3k5T86Yf75PFjrPJazur1m8hrlFflXDu2byV79hzUqFWbtx+Wzvs463RiYiLJn10EPAwLIy4ujtJmP24NeUHZl+UE4P79e/Tq3oUmTZoxaEj6uzb+SMFBQRzcv4/N23cBkJyURGJiyhI3iYkJJCcrXyzev38v1ZnNBeFn+hHfs6NdxjFg8F+K58+fPaNf7x7MmDUXC0srxfbLly4yqH9f/ho2glZt2n41LvE9Ky/T0mYc2r9XZbuGhoZiOMKRQwfImy8fpqVT8t3S2oakxEQePQyjUOEiADwMDQEgf/4CX309SZLYt2cnDRo3IdMXv9Gppk+WSExMREpOhi/Ga+/ZuZ1s2bJTrUYt3r5Npex8tkTuo4cpZcektBg2+KOIlm5BEITfjL1DFYKC7isuuOzsq1C8REnGjhnFncBAfM6eYeGCebRt74zOhxl1b/j707RxfSIiIpTOdeniBR4/ekSLD8vifK54iRKUKmWieBgZ5UVTU5NSpUzI9sXSfpGRkSxfuoQxY1OWsMuWPTvFi5dg/drV+Ple5+KF81iX+7T83rWrVyhUuDCFixT5oXkjfPJlObl37y49u3XGzt6BTl268eL5c148f87Lly8Vx6RWTp6EhxMYEMCTJ+EkJSURGBBAYEAA0Z8twRgWGkpgQAAvXjwnNi5WkebL8dmSJOE2aTwjRruQOXNmAKzL2bB921aCg4LYu2e3Ujl5/PgRzyIiqGxn/1PySBDS8iO+Z/MXKKD0HVrU2BiAQoWLKObPuHTxAgP796FDx07UqVtP8bl88/q1Skzie1Z+leyqEBwcpKi0Aqxb7cX9e3cJDrrHymVLWLNqOcNG/a2YpKxCJTtMzcyZOmkcdwJvE3j7Fh5TJ1Gxsr2i9fvWTX/aNm/Es2fKv9FXLl0g/PEjmjRX/Y0+dGAvR/89yIPgIB4/esjRfw+yZMFc6tSrr1JBf/kyklUrPBk+eiwA2bJlx7hYcTZtWMMNP1+uXLqApXU5RXrf61cpWKiw4iaB8P8TLd2CIAi/mVImppQ2M+fw4YO0btMOLS0tFiz2ZKrbJDo7t0VfXx+nps3pP3Cw4pjY2BhCHjxQtCh+tHP7Nqyty1GseIn/K6YZ7lPp3KU7Rp+1gLtN9WD82NFsWLeWLt16UNbi05qkBw/sp0XLnz+Blzr7spwc/fcwr16+ZP/ePUoteAUKFOTgkeNA6uVk8cL57Nm9U/G8batmAKxYtYYKFSsB4DpxHFcuX1JJc+DfYxQsWEixfdvWzeTOnYfqNT51k+w7YBAuo4bTsX1rHKpUpW17Z8W+Qwf2Y2fvoLIGsSD8bD/ye/Zr9u7eRWxMDF7Ll+K1/NO8B7YVKuLlvVYprfielV/JUiaYljbj2L+HaN4qpVfCeZ+zeK9YRkJCPCVNTJkxdyH2VaopjtHU1GTWvMXMnj6Vfj06o6evj51DVQYPG6VIExsbS2jIA0XL80d7d+3Awqqcojv657S0MrHW24uHoSFIkkS+/AVo1bYD7Tp2UUk7d4Y7HTp1VZoccLzbNNwm/M2Wjetw7twd8zKfJvs7cugATVOp6AvfT6zTLQiCbMQ63d/v9KmTzJ01g+2796Gp+Xt1WvrYxXnP/sNkzZpV7nD+aL9zOUmIj8epoSPuM2ZRzqa83OEIauh3/vyI79kf48t1ugF8zpxiwdyZbNi257crF+kRHHSPAb27s3XXAQxSKTtinW5V6VmnW7R0C4Ig/IaqVa9BWGgIzyIi0lzjOKN68fw5U6ZNFxeCv8DvXE6ePHlCj959RIVbkM3v/PkR37M/j0PV6jwMC+X5swjy5vu9ykV6vHj+nImT3VOtcAvfT7R0C4IgG9HSLQiCIAhCRpVaS7e6Ey3dqtLT0v3n9YkQBEEQBEEQBEEQhAxCVLoFQRAEQRAEQRAE4ScRlW5BEARBEARBEARB+EnERGqCIAgZSLKYZkOFpoaG3CEIgiAIakiMX1YlLlO+j2jpFgRBEARBEARBEISfRFS6BUEQBEEQBEEQBOEnEZVuQRAEQRAEQRAEQfhJRKVbEARBTVy9cpkhA/pSt2ZVypUtzYljR1XSBAcFMWRgP6pWtsWuQjmc27biyZNwxf64uDjcp7hRw6ES9hVsGP7XICJfvPiVb+OXu3rlMoP696VOjSpYlTHleCr59qfbsmkDrZo7YV/RBvuKNnTq0JazZ06ppJMkif59eqptPgmqxOdHWVJSEgvnz6NBvVpUtLGkUf06LF2yCEnNB8p6LV9KhzYtsatQjhpV7fhrUH9CHgTLHVaG4rV8GVZlTJnhPlXuUH6aq1cuM3hAX+rWrIJ1WdXvC0mSWLzwH+rUqEKl8pb06dmV0NAQxf7Lly5iXdY01cfNG/6/+N0oE5VuQRAENRETE4OJaWlcxk5Idf/DsDC6d+5AsWLFWb5qDVu276ZX3/7o6ugq0sya7s7pkyeYMecfVniv4fnzZwz/a9CveguyiImJxtTUFJdxE+UORTZGefMxZOgINm7dwYYt26lYqTJDBg7g/v17SunWrVmNhpj4TviM+PwoW+W1nK2bN+IydgI79x7gr6Ej8F65gg3r18odmqyuXL5E2/bOrN24haXLV5GYmEjfXj2Ijo6WO7QM4eYNf7Zt3YSJiancofxUMTHRmJia4jI29e8L75XL2bB+LWMnTGLthi3o6+vTv08P4uLiALAuV46jJ88qPZq3bE3BQoUoU9biV74VFWL2ckEQBDVRpWo1qlStlub+hfPnUaVqdf4aPlKxrXCRIor/v3v3jl07tjNtxkwqVqoMgOtkd1o0aYi/ny+WVtY/LXY5ValanSpVq8sdhqxq1Kyl9HzQkKFs2bQRfz9fSpYsBUBgQABrVq9k4+bt1K5RRY4whQxIfH6U+fpep0at2lSrXgOAggULcfDAftlb4eS2ZJmX0nO3qR7UrGpHwO1blLetIFNUGUP0+/e4jB7JRNcpLF+6RO5wfqqvfV9IksT6tWvo1bsfNWvVAWDytBnUrm7PiWNHqd+wEdraOuTJY6g4JiEhgZMnjtG+Q0fZbwiLlm5BEASB5ORkzp4+SRFjY/r37kGtavZ0at9GqQt6wO1bJCYmULmyvWJbseLFyZe/AP5+vjJELcghKSmJgwf2ExMTjZVVOSClF4XLqOH8PW4CeQwNv3EGQVBf1tbluHThAiEhDwC4ExjI9etXv3pDVB1FvXsHQLbs2WWORH7TprhRrVp1KtvZfzvxH+zxo0e8ePGcSp/lQ9asWbGwtMLP73qqx5w6eZw3r1/TtFnLXxVmmkRLtyAIgsDLl5FER0ezyms5AwYNYciwEficPcPwvwaxbOVqbCtUJPLFc7S1tcmaLZvSsblz5/7jx3ULcO/uHTp1aEd8fByZM2dm7vxFlChZEoCZ092xKldO0fogCELquvfsTVRUFM0aN0BLS4ukpCQGDRlKo8ZN5A4tw0hOTmbG9GlYl7OhVCkTucOR1cED+wkIuM2GzdvkDkV2L148B1KuOT6X6yvXIDt3bMPOoQp58+X76fF9i6h0C4IgCCQnJwMp3Yg7du4KgGlpM/x8r7NtyyZsK1SUMTohIzA2LsaW7buIinrHkX8PM/7v0Xh5r+NhWCiXL15g87adcocoCBne4UMHObB/L+4zZlOyZEkCAwOY6eGOoaERTZo1lzu8DGHaFFeC7t3De+0GuUOR1dMnT5jhMZWly1eiq6v77QMEJRFPn3Le5ywzZs+TOxRAVLoFQRAEIGfOnGTKlIniJUoqbS9evATXr10FIHceQxISEnj39q1Sa3dkZCS58+T5pfEKv562jg5FihYFwLxMWW7dvMH6dWvQ09Xl4cMwqtgpj7sc/tcgbMrb4uWt3hNECcLn5s6eQfcevWnQsBEApUxMeRIejteKpaLSTUpX6tOnTrJy9boM0Topp9u3b/EyMpJ2rVsotiUlJXH1ymU2bVzP5es30NLSkjHCX+vjWO3IyEgMDY0U219GRmJiWlol/e5d28meIwfVa9RS2ScHUekWBAFvb2/++usvXr9+LXcogky0tXUwL1OW0AcPlLaHhoSQv0ABAMzMy5ApkzYXL56nTl1HAEIeBPP0SfgfO4makLbk5GQS4uPpP2AQzVu1VtrXqpkTI0a7UL1GTZmiE4SMKTYmFk1N5QmdtLS0SE5W7yXDJEnCfepkjh87gpf3WgoVKix3SLKrVLky23btVdo2cawLxsWL061HL7WqcAMULFSIPHkMuXThPKVLmwEQFRXFDX8/Wrdpr5RWkiR279qBk1MztLW15QhXhah0C7+lrl27snr1avr06YOnp6fSvgEDBrB48WK6dOmCt7e3PAH+ApMmTcLV1RVI+cHOkSMH5ubmtGjRgn79+omuSIKK6Oj3PAwLUzx//PgRdwIDyJY9O/nzF6BLtx6MHjEMG1tbbCtW4tzZM5w+dYLlq9YAKROWNGvRktkzppM9e3ayZDFg+rQpWFpZ/9GV7uj37wn7PN8ePSIwIIDs2bMrbkj86f6ZO5sqVauRL39+ot+/58D+fVy5fIkly7zIY2iY6uRp+fMXEBfOgvj8fKF6jZosX+ZJvvwFKFGyJIEBAaxdvYqmzeWf6ElO0ya7cvDAPuYtWEyWzFl48Txl/K5B1qzo6enJHJ08smQxUBnTrp85Mzmy5/hjx7pHR3/xffH4EYGBH74v8hfAuVNnli9bQpGiRSlYsBCLFv6DoZERNWsrzydy6eIFHj96RPOWrX71W0iTqHQLv63ChQuzadMm5s6di76+PgCxsbFs2LCBIp8tc/QnK1OmDEePHiU5OZnIyEhOnjzJlClTWLt2LSdPniRr1qxyhyhkILdv3qRX9y6K57NneADg1LQZblM9qFWnLmMnTGLlimXMcJ9KUeNizJw7n3I25RXHjBjtgqamJiP+GkJ8Qjz29lVwGZ/6ut9/ilu3btKzW2fF81kz3AFo0rQ5k6d5yBXWL/XyZSTjXEbz/PkzDLJmxcTElCXLvLCzd5A7NCGDE58fZWPGjmPR/H+YNtmVly8jMTQyolXrtvTpN0Du0GS1ZfNGAHp07aS03W2KO02bt0jtEOEPdOvmTXp1//R9MfvD94VT0+ZMnupB1+69iImJYfKkCbx795ZyNuVZ7LlCpaFp545tWFmXo1jxEr80/q/RkCRJvfuzCL+lrl278vr1a4KCghgzZgzOzs4AbNiwgenTp1OsWDFy5MihaOlOTk5m+vTpLFu2jKdPn2JiYsL48eNp1SrlDtirV68YOHAg//77L1FRURQqVIi///6bbt26ER8fz7Bhw9i+fTuvXr0ib9689O3bFxcXFwDmzJnDqlWrCA4OJleuXDg5OTFjxgwMDAwU8S5fvhw3NzciIyNxdHSkatWquLm5KXXn3r17N66urty+fZsCBQrQpUsXxo4dS6ZMqd8bmzRpErt27cLX11dpe2BgIFZWVowcOZIpU6YAEBcXx9ixY9m4cSOvX7+mbNmyTJ8+nRo1agCq3cuDgoIYNmwYFy5c4P3795iZmeHu7k6dOil3Et3c3NiyZQs3b95Uem1ra2ucnJyYPHlyuv6OsYnpSqZWksVXsgpNmdfWFARBEAQhhbhMUaWfjh7sYp1u4bfWvXt3Vq1apXi+cuVKunXrppLO3d2dNWvW4Onpya1btxg6dCgdO3bk1KlTAIwfP57bt29z8OBBAgICWLJkCXk+TAw1f/589uzZw5YtW7hz5w7r16/H2NhYcW5NTU3mz5/PrVu3WL16NcePH2fUqFGK/T4+PvTt25chQ4bg6+tL3bp1mTp1qlJ8Z86coXPnzgwZMoTbt2+zdOlSvL29VdKlR+nSpWnQoAE7duxQbBs4cCDnz59n06ZN+Pv707p1a+rXr8+9e/dSPUdUVBQNGzbk2LFjXL9+nfr16+Pk5KTo8tO9e3cCAgK4fPmy4pjr16/j7++fav4LgiAIgiAIgroSLd3Cb+ljS/fy5cspXLgwd+7cAVIqnA8fPqRnz56Klu64uDhy5crF0aNHsbOzU5yjZ8+eREdHs2HDBpo0aUKePHlYuXKlymsNHjyYW7ducfToUTTS0eK2bds2+vbty4sPawa2a9eOqKgo9u3bp0jTsWNH9u3bp2hZrlOnDrVr11a0ngOsW7eOUaNGER4enurrpNXSDTBmzBjmz59PdHQ0YWFhFC9enLCwMAp8Nn6uTp06VKxYkWnTpqVrIrWyZcvSt29fBg4cCEDDhg0xNjZm8eLFiny6ceMGJ06c+GYefSRaulWJlm5VoqVbEARBEDIGcZmiKj0t3WJMt/BbMzQ0pFGjRnh7eyNJEo0aNVK0UH90//59oqOjqVu3rtL2+Ph4ypUrB0C/fv1o2bIl165do169ejRr1gx7e3sgpYJft25dTE1NqV+/Po0bN6ZevXqK8xw9ehR3d3cCAwN5+/YtiYmJxMbGEh0dTebMmblz5w7NmysvA1KxYkWlSrifnx8+Pj5KLdtJSUlK5/kvJElS3CC4ceMGSUlJmJgoT7oRFxdH7ty5Uz0+KiqKSZMmsX//fp48eUJiYiIxMTFKk1v06tWL7t27M2fOHDQ1NdmwYQNz585NM6a4uDji4uKU49TSFRO+CYIgCIIgCH80UekWfnvdu3dXtL4uWrRIZX9UVBQA+/fvp2DBgkr7Plb4GjRoQGhoKAcOHODIkSPUrl2bAQMGMGvWLGxsbHjw4AEHDx7k6NGjtGnThjp16rBt2zZCQkJo3Lgx/fr1Y+rUqeTKlYuzZ8/So0cP4uPj011ZjoqKwtXVlRYtVCcL+Z5ZOwMCAihWrJji3FpaWly9elVleYnPx51/bsSIERw5coRZs2ZRsmRJ9PX1adWqFfHx8Yo0Tk5O6OrqsnPnTnR0dEhISFCMkU+Nu7u7Yrb1j8aOn8i4CZP+8/sTBEEQBEEQhN+FqHQLv7369esTHx+PhoYGjo6OKvvNzc3R1dUlLCyM6tWrp3keQ0NDunTpQpcuXahatSojR45k1qxZAGTLlo22bdvStm1bWrVqRf369Xn58iVXr14lOTmZ2bNno6mZMkXCli1blM5ramqqNPYZUHluY2PDnTt3KFmy5HflwecCAwM5dOiQoqt6uXLlSEpK4tmzZ1StWjVd5/Dx8aFr166KFvqoqChCQkKU0mTKlIkuXbqwatUqdHR0aNeunWIW+dS4uLgwbNgwpW2SlmjlFgRBEARBEP5sYiI14benpaVFQEAAt2/fVmnJhZS1hUeMGMHQoUNZvXo1QUFBXLt2jQULFrB69WoAJkyYwO7du7l//z63bt1i3759mJmZASmzk2/cuJHAwEDu3r3L1q1byZcvHzly5KBkyZIkJCSwYMECgoODWbt2rcq64YMGDeLAgQPMmTOHe/fusXTpUg4ePKg0PnzChAmsWbMGV1dXbt26RUBAAJs2bWLcuHFffe+JiYk8ffqU8PBwbty4wYIFC6hevTrW1taMHDkSABMTE5ydnencuTM7duzgwYMHXLp0CXd3d/bv35/qeUuVKsWOHTvw9fXFz8+PDh06kJycrJKuZ8+eHD9+nEOHDtG9e/evxqqrq0u2bNmUHqJrefq8fv2KWtXsCX/8SO5QforRI4axxlt1PoX/6vXrV9Soasfj3zCftmzeyKD+ff/v8/zOeZAe8+bMwn1q+lZHEP6b37ns/KjPz5dEnqj6nfPE58xp2rRomur1zP/jd86ToPv3qVurGtHR0f/XeV6/fkXNar9nHqTH6BFD/+/rFFHpFv4IHytxaZk8eTLjx4/H3d0dMzMz6tevz/79+xVdsHV0dHBxccHS0pJq1aqhpaXFpk2bgJRK+4wZM7C1taVChQqEhIRw4MABNDU1sbKyYs6cOUyfPp2yZcuyfv163N3dlV7bwcEBT09P5syZg5WVFYcOHWLo0KFK3cYdHR3Zt28f//77LxUqVKBy5crMnTuXokWLfvV937p1i/z581OkSBFq1KjBli1bcHFx4cyZM0pdx1etWkXnzp0ZPnw4pqamNGvWjMuXL6e5nvmcOXPImTMn9vb2ODk54ejoiI2NjUq6UqVKYW9vT+nSpalUqdJXYxW+34plntSoWZsCBQsBUK5saZXHoQPKN1CuXLpI+9YtqFjOgiYN6rFn147UTp2qsLBQHCraUNWugtL2nl07pfrag/r1UaRZs8qLWtXsqVXNXuUH6oa/Hx3atCAxUXkGvV59+uK1bCnv3r1Ld4ypWb7Uk5o1a1PwQz49CQ9nYL/eVCpvRY2qdsyZNV3ltb80eEBfHGvXoEI5C2pXr8LfY0by7FmEYv/lSxcZMrAftatXoZKtNW1aNGX/vj1K5zh/zgenho7YV7Th7zEjSfhsWMa7d+9wauhIePhjpWOaN29JQMAtrl298kPzwGPaFNq1boGtdVnatGia6jF37wTStVMHKpSzoF7t6qzyWv7V19i9cwdWZUxTfURGRgJw7eoVuji3o5p9JSraWNK0cX3WrvZWOs/+fXuoV7s6VewqMHO68vfm48ePcGroqBge9FGXbt3Zu3snjx4+/C/ZIqSD+Pyo+jxP7gQGMnrEMOrVrk5FG0uaOTVg/drV3zxHg7q1VD4nXsuXKfb/znkC31dOAE6fOolzu9ZUtLGkil0F/hrUX7Hv9etX9Ovdgzo1qmBrXZZ6taszbYqb0vdBQMBt2rRsRmXbcgzq35c3n00Em5iYSLvWLbjh76/0mg5Vq5EpUyaV/P1/fc/37ufevH6N+9TJNGnkSEUbSxxr18Bj2pRUfxN379xBq+ZOVChnQY2qdkyb/GnY3uPHj+jW2ZlKttZ06+ysUgEe2L8PR/89rLStRMmSWFpas3b1Kv4fH69TChYsxOvXr+jfpwd1a1ahQrmyONaujvtU5b/f9WtX6NKxHdUdKlGpvCXNnOqzdo33V19jyaIFWJc1VXlUrmCtSLN71w6V/RVtLJTOs3qVFzWr2VGzml2q1yntU71O6ceKZZ7/33WKJAjCL9ezZ0+pSpUqcofxf0tOTpZKlCghzZ49+7uOj0kQjy8f7+OTlR4v3ryXbGxspPOXrym2mZiYSBu3bJNCwyMUj5fvYhT77waHSZZWVpLb1GnSjYB7kpf3GsnMzEw6cuKUyvm/fLx+Hyc1a95C6tajp2RTvrzSvvDnL5Ve0//2HcnMzEzauGWb9D4+Wbp+I0CytLSUTpw5Jx0/7SNZWFhIvjcDpPfxydKb6HjJqUlT6dJVv1Rft1nzFtLK1WtT3ZeefHv5NlqysbGRLl65LsUkSFJUbKLUsFFjqXOXrtJ1/9vSkeMnpUqVKknTZ87+6nmWrVglXbxyXQoKfSSdv3RVat2mrdS6TVvF/gWLlkgzZ8+Vzl+6Kt0NCpVWrPSWSpcuLR06cjzl7xeXJFWqVElaunyldCPgruRYv7600nut4vix4ydIS5evTPW1p7p7SAMGDvrusvNlHsQkSNJE18nSqtXrpGEjRkpOTk1Ujnn+6p1kZ2cv/TVsuHQj4K60Y/c+ydLSUlq7flOar/PqXYz0MPyZ0qNrt+5SB+eOijTX/G9JO3btlW4E3JXuhzyUtu7YJVlaWSnOG/4sUrKwsJB27tkvXb7mJ1WqXFmRhzEJktS9R09p74HDqb7+gIGDpKnuHrJ/Vv+kh/j8fDtPNmzeKk1ymyydOXdRuhccllKmLS2V4kvtUaNGTWne/IVKn5fIN+//iDz53nKyd/8hyda2grR63QYp4F6wdDPgnrRr737F/ogXr6XVa9dLV677S0Ghj6STZ85J9RwdpSF/DVOkadqsuTR5qrsUcC9Yate+gzRl2qfvhEVLlkoTXSen+tqrVq+Tmjdv8dPyJCbh29+7Xz78b9+R+vUfKB3895h0NyhUOnnmnFSnbj2p/wDlv93S5SslhypVpO0790h3g0Ilv5sB0sHDRxX7+/UfKA0eMlQKvP9AGjh4iNLxO/fsl3r17pPq6x8+ekJycHCQ3sUkpOs9R8crPyLfpOTBhcvXpeh4SXr6/LXkvWa9dPmav3Q/5JF04nTK32/wX8MUx1zzuyVt37VX8r99V7r34KG0dXvKb8Sa9ZtUzv/x8eJ1lBQW/kzpUb9BQ2n4yNGKNBu3bJdsbGyU0jwMf67Y7/vhOuXkmXPSidPnJAsLC8nvZqAUHS9Jb6MTFNcpqb1+ynXKulT3pYeodAvCLzBz5kzJ19dXunfvnjR//nxJW1tbWr58udxh/V+ePXsmzZ8/X8qSJYv08uXL7zrHj/rR+5MeX1Y4d+07IFWqXFlpm4mJibTv4L9pVpynecyQGjRspLRt4OC/pK7dun+z0j3NY4Y0dNgIaeOWbSqV7i8fy7xWSeXKlZNevI6S3scnSzv37Jdatmqt2N+iZStp194D0vv4ZGn+oiXSRNfJaZ5rzj8LpLbt2n93pXvPvoNSpcqVFc+PHD8plS5dWnr05Lli2+p1GyQbGxvp7fu4dP89Dh4+Kpmamkpvo+PTTNOjZy9p5OgxUkyCJD16+kIyMTGRXkfFSjEJkjTNY4Y0fsIkKSZBks5fuio1a95ciopNTPU8Z89fksqUKSO9ehfzXWXnyzz4/DFn3vxUL/5Wr10v2dpWUMoT9+kzpXqOjul+3ccRkZK5eRlpy/adX03Xt/8AaejwEVJMgiRduuon2dnZK/YNHDxEWrJ0uRSTIEk7du2Vevfpm+Z5tmzbKVWtVk32z+qf9BCfn2/nSWqP8RMmSc4dO301TY0aNaXlXqv+02v/LnnyPeXkXUyCVKVqVWn9pi3/6bVXrFqt9Lm3tLSUbt+5n/Kaa9dLPXr2kmISJOlecJhUp2496cXrd6meJzj0sWRiYiLdDQr96eUkre/d9Dx27zsglSlTRlERjnjxWlFZTOuY+vUbSEePn1L8beo3aJhybOQbqU6dutKDsPBUj3v7Pk4qW7bsV8/9+ePLCufuD3mQVmU5Ol6SVqxcLVWtWu2rafr2GyANHTbiq2k+f1z3D5BMTEyks+cvK1e6y5dP85iP1ykfn3+8TomOl6QFizylia6T0zx27ofrlO+tdIvu5YLwC1y6dIm6detiYWGBp6cn8+fPp2fPnnKH9X8xMjLCzc2NZcuWkTNnTrnD+WNdv3oVM/MyKtvdp7pRs0plOrZrza4d25E+WzjTz8+XSpXtlNLbOzjg7+f71de6dPECR/49xJhxE9IV264d23Bs0BD9D7P0lyxlQmhICE+ehBMe/pjQ0BBKlCzFw7Aw9uzawYDBQ9I8V1kLS27e8FeaIf+/uHbtCuaf5ZOfry+lSpmQ+7MlBO0dqhAVFcX9oPvpOueb16/Zv38vVtbl0NZOexHOd+/ekT17DgBy5cqFoaEh533OEhMTw/VrVyllakpCQgJT3SYxfqJbqnNPAJiXKUtSUhI3/P3SFd+XvsyD9PDz86W8rS3aOjqKbfYOVQh58IC3b96k6xx79+xCX1+PuvXqp5kmIOA2ftevY2tbEYCiRYsSGxtDQMBt3rx+za2bNyhlYsrbN29YtOAfXMamXQbLWlgQ8fTpHzt2UA7i86MqPZ+nd1GfYv+alSuWU82+Em1aNsN75Ypvdr/+XfLke8pJwO3bPIuIQFNTkzYtm1G7ehX69+nJvXt303zdZ88iOH70COVtPw15MjEtzfnz50hMTOTihQuUMjEFYLLbRIYOH0mWLKmvzpK/QAFy587zw7rdf8/3bnpEvYvCwMCATJlS5rw+f96H5ORknkVE0MypAXVrVWPksCE8ffJEcYyJaWkuXDhPcnIy5318MPmQJ3NnzaBt+w7ky58/1dfS1tHBtLTZd+fJtatfz4NnzyI49sXf70uBAbfx871O+Q+/Eemxc8dWihobY1PeVml7THQ0DerWxLF2df4a1I/79+8p9pUqZapynVKypAkPw8LYvWsHAwf/lebr/b/XKaLSLQi/wJYtW3j27BkxMTHcunWLvn1//OQmv5okSTx//pwOHTrIHcof7cmTcAwNjZS29Rs4mBmz5rFk+Upq162H+xRXNq5fq9gf+eI5ub5Ygz1X7jxERUURGxub6uu8fv2KiWNdcJ3inuZScp+7ecOf+/fu0bxla8W24iVKMHDIUPr16k7/3j0YNGQYxUuUYIrbRP4aNpJzPmdp1cyJdq2ac/WK8gz+hoZGJCQk8OLF82++dmqehIdjaPQpnyJfvCBX7jxKaXJ/eB75jdeYO3smlWytqeZQiadPnvDPwsVppj186AC3bt6gafOU5f40NDSYMXseyzwX06JpI0qXNqNZ85asXLGMChUroaOrSxfndjRp5MjG9euUzqWvr4+BQVaehIf/p/f+0Zd5kB4vvpJPL168SNc5dm3fRoOGjVNd3rBurWrYWpelQ5uWtG3fgRatUspLtuzZmTxtOuNcRuPcrjVOTZrhUKUqs2dNp12HlLGIbVo2o0XTxhw5fEjpnIZGeRXvV/gxxOdH1bc+T77Xr/HvoYO0bN3mq+dp79yJ6bPmsGLValq1acuK5UuZO3tmmul/pzz5nnLy6FHKfAyeixbSu08/Fiz2JFu27PTs2klpXDakTLJZqbwVdWtWI0uWLExym6rYN9FtCkf/PUzj+nXR1tamR68+KTcA9fQoU9aCvr160Lh+XRb+M1clBkMjI548+TXl5Hu8evWSZZ6Ladm6rWLbo4ePSE6WWLHck5Gj/2b23Pm8efOGPr26Kcb4Dxs5mgcPgmlQtxahYaEMGzmaq1cucycwAKcmzRg5bAgNHWsz2XWC0rwAkJIn4d/725PKdQrAmJHDqGxrRb1a1TAwyMLEz/5+H9WrXY0K5crSoa3yb8S3xMXFcWDfXpq1UF6q1ti4GJPcpjF3wWKmeswkOVmia8d2RDx9CqRcpwwaMpS+vbrRr3d3BiuuUyYorlNaNmtM21bNfvh1ilgyTBAEIQOLi41F10h5lvfefT9NOFPazJyYmBjWrFpJh46dv/t1Jk+cQP1Gjb96J/pzu3Zso1QpE8paWCptb922Ha3btlM837N7J1kyZ8HSyppmTg1Yt2krzyKeMmbkMPYfPobOhxZWXb2U9xgbk/pNgW+JjY3DSOfHzIbftXsPmrdsxZPwcDwXL2Scy2gWLF6qtOIApPQMmDDubya6TqFkyVKK7TblbdmwZbvieUjIA/bt2c3mbTvp1qUjzh0741C1Gi2bNaa8rS0mpqUVaXX1dImNjfmuuH9kHqSXn+91goODmOoxI9X9q9asJyY6Gn8/P/6ZO5siRYrSoFFjAGrXqUvtOnUVaa9cvsS9O3cY8/d4nBrUxWPmHPLkyYNzu9bY2FYg94cbSR9XPfjefBJUic+Pqq/lyb17d/lrUH/69BuAvUOVr56nc9duiv+bmJZGW1ubKa4TGTJ0uOL776PfOU/SS/owc3jP3n2pUy9lmVe3qe7Uq1WNf/89ROs2n34/Ro52oW//AYSGhPDPvDnMmu7O2AmTAChZshQrV3+6yfD69SuWLFrAqtXr8Zg2Gety5ZjzzwKc27airKUVNWrWUqTV09UlJibj5MnnoqKiGNivD8VLlKBv/4GK7ZKUTGJiAqNdxinKnMfMOdSu7sClSxdxqFKVvHnzsnDxUsUx8fHx9OvdgynTPFi2dAmZs2Rh975D9O/Tk61bN9PBuZMirZ7u95eTuNg4dIxU82DEaBf69BtAaGgI8+fNYdYMd8aOn6SUZtXq9URHR+Pv78f8ubMpXKQoDRo2/uZrHj92hOjo9zRp0lxpu5V1Oaysyyk9b9GkIdu2bmLAoL8AaN22Pa3btlek2bN7J5kzZ8HKypqmTvVZv2nbh+uUoew/fPyz65SUG8vfe50iWroFQRAysBw5c/L27de7+VpYWBIR8VTR5Sl3HkNefphF+qOXkS8wMDBItTUS4NKlC6z1XomtVRlsrcrgOmEcUe/eYWtVhl07tiuljYmO5vDBAyp3mL/06tUrli1ZxOi/x3Hjhj9FixpTtKgxFSpWJjExkdCQB4q0H7sy58yV66vnTEvOnDl4+/at4nnuPHl4GancUhv54XnuPIbfOFcujI2LYWfvwIxZczlz+pRK1/wrly8xeEA/Ro5ywalps6+eb/KkCQwfOZpkSSIw4DZ1HeuTO3dubG0rcOWLO+lv37whZ84fkwfpkecr+ZQnT57UDlGyY/tWTEubYV6mbKr7CxUqTCkTU1q2bkPHzl1YsnhBquni4+OZOtmV8ZPceBgWSmJSErYVKmJcrDhFixordY9VlJXvzCdBlfj8pPY+Uv88Bd2/T+8eXWnZuq3SDdD0srC0IjExUWUJyN8xT76nnOQxTNlevEQJxTYdHR0KFiqs1FX6Y9pixUtQo1Ztxk90ZcvmjTx//izV886a7oFzpy7kzZePK5cuUbdefTJnzkzV6tW5cvmSUto3b9+Q6zt/a770Pd+7aXn/Por+fXqSJUsW5s5fpDQs42O+lShRUrEtV65c5MiZUyXfPlqxzBM7ewfMy5TlyuVL1KnriLa2NrXr1OPKpS/y5P8oJznSyIM8eT78/Wqm/P22pvL3K/jxN6JVym+EZxq/EV/auX0rVavVUBrakBptbW1Mzcx4GBaW6v5Xr16ydMlCxvw9nhs3/NJ5nfJ9QypFpVsQBCEDK13ajOCgoK+muRMYSLZs2RV3Y62srLl08bxSmgvnz2FpZZ3mOVav28SmbTsVj34DBpMlSxY2bdtJrdp1lNIe+fcQ8fHxNHRy+mpcs6e7Ky6CkpOSlMYxJiUlKa2Vev/ePfLmzffd8wOUNjMn+LMxhFbW1ty7d1exhBXAhXPnMDAwULpo+ZaPMX4+huvypYsM7NeHv4aNoFWbtmkdCqRUSrNnz0GNWrVJTkoCUORDYmKiYhvAw7Aw4uLiKG1mnu74PvdlHqSHlZU1V69cISEhQbHtwvlzGBcrRrbs2b96bPT79/x76CDNv3Hz5aPk5GQS4hNS3bfMczEOVapiZl6GpORkkhI/5UtiYqJyWbl/j0yZtCnxWUug8P8Rnx9VqX2e7t+/R8/unWnSpBmDhgz9rvPeCQxAU1OTXLk+DQH6XfPke8qJeZmy6OjoEPJZZSYhIYHw8Mfkz18gzdf+OG9JauNpL144T3BwEO07dAQgOfnT701ignKexMXF8TDs4U8tJ98jKiqKvr16oK2tzT8Llyh69HxkXS5l2dbP8+3N69e8fvWK/AVU8y04KIiD+/cxYFDKXCopv8Ep37+JiQkkJycppb9//x6lzcy+K/bSpb+dB8nJaf/9PqVJJj6N34jPPX70kMuXLqbrtycpKYn79+4qblp8adZ0dzp26vrhOiVZ6TolMSmJJKXrlLsfrlO+7+aEqHQLgiBkYHYOVQgOuq+4w3rq5HF2bNvK/Xt3CQsLZcumjXitWEq7Ds6KY1q1acejR4+YN3smD4KD2bJpA0cOH8K5cxdFmk0b1tGnR1fF8+IlSlCylIniYZTXCA1NTUqWMlGpfO3asZ0ateqQI0faFeQL53wIDQ2hbfuUuMqUtSDkQTBnz5xm+9bNaGlqUtS4mCL99WtXqGzv8N35ZO9QhaDP8snOvgrFS5Rk7JhR3AkMxOfsGRYumEfb9s6KmxM3/P1p2rg+EREp6wj7+/uxcf06AgMCCA9/zMUL5xkzchiFCxdRdFe7dPECA/v3oUPHTtSpW48Xz5/z4vlzlbGIAJGRkSxfuoQxY8cBKeOYixcvwfq1q/Hzvc7FC+cVF1KQMhlNocKFKVykyA/JA4Cw0FACAwJ48eI5sXGxBAYEEBgQoBjP16CRE9ra2kyaMJb79+9x6OAB1q9bQ6fOn7rEHjt6hKaNVSdJO3ToAElJSTRyaqKyb9OG9Zw8cZzQ0BBCQ0PYsX0ra7xX0qix6o2aoPv3OXzoIP0HDgagWLHiaGpqsGP7Vk6fOsmDB8GUKftpndVrV69gU758mr02hP9OfH6+nSf37t2lZ7fO2Nk70KlLN0XsL1++VBzzZZ74+V5n3Rpv7gQG8ujhQ/bv28PM6e40atxE8b36O+fJ95QTAwMDWrdpx5JFCzjnc5aQB8FMnTwJgHqOKd8zZ06fYtfO7dy7d5fHjx9x+tRJprhOxLqcjWIt7I/i4uJwn+rGhEmT0dRMqdZYl7Nh88b13AkM5OjRf7G2+ZQn/n6+6Ohof/Um9P+TJ/Dt792IiAiaNq6vWEc8pcLdnZiYaCa5TeV9VJSiHCR9uGFgbFyMmrVqM919Kr7Xr3Hv3l3G/T0G42LFqVCxklJMkiThNmk8I0a7kPnDRKfW5WzYvm0rwUFB7N2zW6mcPH78iGcREVS2s//uPPj8OuXj3+/+Z3+/qW7Kf79NG9dz6uSn34idqfxGbNqwjt49uqi83q6d28ljaIhD1Woq+5YuWcg5n7M8eviQgNu3GDtmJE/Cw5Xmn/nofJrXKafY9uE6xfiz65Rr165i939cp4gx3YIgCBlYKRNTSpuZ8+/hg7Rq045MmbTZsmkDs2e4I0lQuEgRho8cTYtWnybzKVioEAsWeTJrhgcb1q0hb958THCdjL1DVUWa169e8fBh6t2tvibkQTDXr11lyTKvNNPExsbiMW0y02fNVVwE5c2Xj1Eu45g07m+0dXRwm+qhqDTFxcVx4vgxFnku/8/xfPQxnw4fPkjrNu3Q0tJiwWJPprpNorNzW/T19XFq2lxRsUuJM4aQBw8Ud//19fQ4dvRflixaQExMdMqPepWqzOjTX3EBuXf3LmJjYvBavhSv5Z/GztlWqIiX91qlmGa4T6Vzl+4YfZj4C8Btqgfjx45mw7q1dOnWQ2lM/MED+2nR8uuTMv2XPABwnThOqWtl21bNADjw7zEKFixE1qxZ8VzuxbQpbrRv3YIcOXPSp29/pda2qHfvCHnwgC/t2rGd2nXqki1bNpV9yVIy8+fN4fHjR2TS0qJQ4SIfWvHaKaVTXByOGqO4ONTT08NtqgfuU9yIj4/HZewE8ub9lIeHDu6nb/9B351Pgirx+fl2nhz99zCvXr5k/9497N+7R5GuQIGCHDxyPNU80dHR4dDBA3guXkh8fDwFCxaiU+eudOry6abW75wn31NOAIaOGIVWpkyMdRlFXGwsFpZWLF+5WnEjQldXlx3btjJrujvx8fHkzZef2nXq0r1nb5WYPBcvpGq1GkqttKNdxjFm1HC6d3GmYSMn6tR1VMqTho2d0NfX/yl5At/+3k1MTCDkwQPFGOqA27cUQ2gaN6irdP6PxwBMcZ/BzOnTGNi/D5oampSvUIElS1eorA6wbetmcufOQ/UaNRXb+g4YhMuo4XRs3xqHKlUVFU2AQwf2Y2fvQIECBf+vPPh4naKn9+HvN8OdhM/+ft16fPr7ScmqvxFDhir/Rrx69YqHDx8qvVZycjJ7du2kSdMWqc7a//btWyZPGs+LF8/Jli07ZuZlWL1uk0rPi5TrFDemz5qndJ0y2mU8E8f9jY6ODm5Tp39xnXKUxZ4rviuPADSkz9eZEQRB+IViv75qilpKTuUr+cypk8ydPZNtu/Yqfhz+JFs2beTEsSMsWb4y1f2aX0zAlJbTp04yd9YMtu/e99vl0/379+jVvQt79h8ma9as332e3zkP0uPsmVPMnjGdrTv3KJbSEX6M37ns/KjPz5dEnqj6nfPk1auXNG3UgA1btlGoUOEfdt7fOU8S4uNxauiI+4xZlLMpn65jUqs5nj51knmzZ7Bt1++XB+mxZdMGjh87imca1yn6aa+KqCB+sQRBEDK4qtVrEBYWyrOIiDTX2fydZcqUidF/j/u/z1Oteg3CQkN+y3x68fw5U6ZN/78vjn/nPEiPmOgYXKe6iwr3T/A7l50f9fn5ksgTVb9znoQ/fszf4yf+0Ao3/N558uTJE3r07pPuCndaqlWvQVjY75kH6ZEpkzZj/s/rFNHSLQiCbERLt6rUWrrVXXpbugVBEARB+LnEZYqq9LR0/3nt/4IgCIIgCIIgCIKQQYhKtyAIgiAIgiAIgiD8JKLSLQiCIAiCIAiCIAg/iRjTLQiC2ouLi8Pd3R0XFxd0dXXlDidDEHmiSuSJKpEnqkSepE7kiyqRJ6pEnqgSeaLqd8wTUekWBEHtvX37luzZs/PmzZtU1xxWRyJPVIk8USXyRJXIk9SJfFEl8kSVyBNVIk9U/Y55IrqXC4IgCIIgCIIgCMJPIirdgiAIgiAIgiAIgvCTiEq3IAiCIAiCIAiCIPwkotItCILa09XVZeLEib/NZBy/gsgTVSJPVIk8USXyJHUiX1SJPFEl8kSVyBNVv2OeiInUBEEQBEEQBEEQBOEnES3dgiAIgiAIgiAIgvCTiEq3IAiCIAiCIAiCIPwkotItCIIgCIIgCIIgCD+JqHQLgiAIXyWm/hAEQRAEQfh+meQOQBAEQQ7Jycncv3+fZ8+ekZycrLSvWrVqMkUln5kzZzJy5EiV7UlJSXTs2JGNGzfKENWv5+/vn+60lpaWPzGSjOvYsWMcO3Ys1c/OypUrZYpKPsWLF+fy5cvkzp1bafvr16+xsbEhODhYpsjkJ8qK8C21atVix44d5MiRQ2n727dvadasGcePH5cnMCFDmThxIt27d6do0aJyh/LdRKVbEAS1c+HCBTp06EBoaKhKK66GhgZJSUkyRSafmTNnkitXLnr06KHYlpSURLt27bh586aMkf1a1tbWaGhopNm6/3GfupYTV1dX3NzcsLW1JX/+/GhoaMgdkuxCQkJSLQtxcXE8fvxYhogyBlFWVCUlJeHt7Z3mjQh1rGCePHmS+Ph4le2xsbGcOXNGhojk17x581Q/LxoaGujp6VGyZEk6dOiAqampDNHJY/fu3UydOpXq1avTo0cPWrZs+VstFwai0i0Ighrq27cvtra27N+/X1wMfrB//37q1atH9uzZadWqFYmJibRp04bAwEBOnDghd3i/zIMHD+QOIUPz9PTE29ubTp06yR2K7Pbs2aP4/+HDh8mePbvieVJSEseOHcPY2FiGyDIGUVZUDRkyBG9vbxo1akTZsmXV+rfn815Ft2/f5unTp4rnSUlJHDp0iIIFC8oRmuyyZ8/Orl27yJEjB+XLlwfg2rVrvH79mnr16rF582amT5/OsWPHcHBwkDnaX8PX15fr16+zatUqhgwZwoABA2jXrh3du3enQoUKcoeXLmKdbkEQ1E6WLFnw8/OjZMmScoeSoRw/fpxmzZqxbt06vLy8uH//PsePHydv3rxyhyZkELlz5+bSpUuUKFFC7lBkp6mZ9rQ42traGBsbM3v2bBo3bvwLo8o4RFlRlSdPHtasWUPDhg3lDkV2mpqaipsOqVVF9PX1WbBgAd27d//VocluzJgxvH37loULFyq+Z5KTkxkyZAhZs2Zl6tSp9O3bl1u3bnH27FmZo/31EhIS2Lt3L6tWreLw4cOULl2aHj160LVrV6WbnxmNqHQLgqB2atWqxahRo6hfv77coWQ4u3btonXr1piZmXH8+HHy5Mkjd0i/1Oetl9/SpEmTnxhJxjR69GgMDAwYP3683KHIyt/fnzJlyqClpUWxYsW4fPmy2n1WvkWUFVUFChTg5MmTmJiYyB2KrN6+fcvLly+BlDkRLl26hKGhoWK/jo4ORkZGaGlpyRWirAwNDfHx8VEpJ3fv3sXe3p4XL15w48YNqlatyuvXr+UJUkbx8fHs3LmTlStXcvz4cezt7QkPDyciIoLly5fTtm1buUNMleheLgiC2hk0aBDDhw/n6dOnWFhYoK2trbRfXSbIatGiRarbDQ0NyZEjB71791Zs27Fjx68KS1bNmjVLVzp1HdMdGxvLsmXLOHr0KJaWliqfnTlz5sgU2a9Vrlw5nj59iqGhIRoaGmrdTTgtoqyoGj58OP/88w8LFy5U6zKTM2dOnjx5gpGREdWrV6dkyZIqE6mps8TERAIDA1Uq3YGBgYrfHT09PbUrQ1evXmXVqlVs3LgRXV1dOnfuzKJFixS9FhcsWMDgwYNFpVsQBCGjaNmyJYBStzV1nCArrW5Yjo6OvziSjOPLiY0EZf7+/lhbWwOoTLCnTheAOXLkIDg4GENDQ0JDQ0W5SYUoK6rOnj3LiRMnOHjwIGXKlFG5EaEuNzcNDAyIjIzEyMiI06dPk5CQIHdIGUqnTp3o0aMHf//9t2K88uXLl5k2bRqdO3cG4NSpU5QpU0bOMH8pCwsLAgMDqVevHl5eXjg5Oan0hGjfvj1DhgyRKcJvE93LBUFQO6GhoV/d/zsvSSEIws/Xu3dv1qxZQ/78+QkLC6NQoUJpdoVV5yXDBGXdunX76v5Vq1b9okjk1bJlS3x8fDAzM+PUqVPY29ujo6OTalp1nNE9KSkJDw8PFi5cSEREBAB58+Zl0KBBjB49Gi0tLcLCwtDU1KRQoUIyR/trTJ48me7du//Wk+uJSrcgCILAgwcPSExMpFSpUkrb7927p5gUSh3Mnz+f3r17o6enx/z587+advDgwb8oqozp0aNHAGpz0felQ4cOcf/+fQYPHoybmxtZs2ZNNV1Gbnn5VdS9rAjKYmJiWL16NUFBQcyePZtevXqROXPmVNPOnTv3F0eXsbx9+xaAbNmyyRyJ8P8SlW5BENRSUFAQ8+bNIyAgAABzc3OGDBmitjPtVq9ene7du9OlSxel7evWrWPFihWcPHlSnsB+sWLFinHlyhVy585NsWLF0kynoaGhli2YycnJTJkyhdmzZxMVFQVA1qxZGT58OGPHjv3qjN5/qm7dujF//vw0K93qSpSVtD1//pw7d+4AYGpqqjSJmLqpWbMmO3fuFGO6hW969OgRe/bsISwsTGVt999hjghR6RYEQe0cPnyYJk2aYG1trVjj0sfHBz8/P/bu3UvdunVljvDXy5YtG9euXVNZRu3+/fvY2tqq5QypgioXFxe8vLxwdXVVfHbOnj3LpEmT6NWrF1OnTpU5QiGjEGVF1fv37xk0aBBr1qxRzAOgpaVF586dWbBgQZqtvYJ6iYiIYMSIERw7doxnz56pLKmmLvPOfO7YsWM0adKE4sWLExgYSNmyZQkJCUGSJGxsbH6LYQii0i0IgtopV64cjo6OeHh4KG0fM2YM//77L9euXZMpMvlkz56dkydPUq5cOaXtV69epUaNGrx7906myOTj5ubGiBEjVC6EY2JimDlzJhMmTJApMvkUKFAAT09PleXSdu/eTf/+/Xn8+LFMkcnrypUrbNmyJdUWGHWZHOtLoqyo6tOnD0ePHmXhwoVKNyIGDx5M3bp1WbJkicwRyuN3b8H80Ro0aEBYWBgDBw4kf/78KhMPNm3aVKbI5FOxYkUaNGiAq6srWbNmxc/PDyMjI5ydnalfvz79+vWTO8RvEpVuQRDUjp6eHjdu3FAZv3z37l0sLS2JjY2VKTL5ODk5oa+vz8aNGxUTQiUlJdG2bVvev3/PwYMHZY7w19PS0lIsa/O5j7PuqmNrg56eHv7+/ipL2dy5cwdra2tiYmJkikw+mzZtonPnzjg6OvLvv/9Sr1497t69S0REBM2bN1ebybG+JMqKqjx58rBt2zZq1KihtP3EiRO0adOG58+fyxOYjP6EFswfLWvWrJw5c0Yx+7+Qkie+vr6UKFGCnDlzcvbsWcqUKYOfnx9NmzYlJCRE7hC/SX0H1AiCoLYMDQ3x9fVV2e7r66tSwVIX06dP5/jx45iamtKtWze6deuGqakpp0+fZubMmXKHJ4uPS8h9yc/Pj1y5cskQkfysrKxYuHChyvaFCxdiZWUlQ0TymzZtGnPnzmXv3r3o6Ojwzz//EBgYSJs2bShSpIjc4clGlBVV0dHR5M2bV2W7kZER0dHRMkQkPxcXF0aMGMGNGzfQ09Nj+/btPHz4kOrVq9O6dWu5w5NF4cKFVbqUq7ssWbIoekHkz5+foKAgxb4XL17IFdZ/ItbpFgRB7fTq1YvevXsTHByMvb09kDKme/r06QwbNkzm6ORhbm6Ov78/CxcuxM/PD319fTp37szAgQPVroKZM2dONDQ00NDQwMTERKninZSURFRUFH379pUxQvnMmDGDRo0acfToUezs7AA4f/48Dx8+5MCBAzJHJ4+goCAaNWoEgI6ODu/fv0dDQ4OhQ4dSq1YtXF1dZY5QHqKsqLKzs2PixImsWbMGPT09IGW4iqurqyKP1E1AQAAbN24EIFOmTMTExGBgYICbmxtNmzb9LboN/2jz5s1jzJgxLF26VG1WDvmWypUrc/bsWczMzGjYsCHDhw/nxo0b7Nixg8qVK8sdXrqI7uWCIKgdSZKYN28es2fPJjw8HEgZfzhy5EgGDx6cauumoD5Wr16NJEl0796defPmkT17dsU+HR0djI2N1fYCGSA8PJxFixYRGBgIgJmZGf3796dAgQIyRyaPQoUKcfDgQSwsLLC0tMTFxYX27dtz/vx56tevz5s3b+QOUTairCi7efMmjo6OxMXFKVr7/fz80NPT4/Dhw5QpU0bmCH+9fPnyceLECczMzDA3N8fDw4MmTZrg5+eHg4ODYuZ7dZIzZ06io6NJTEwkc+bMaGtrK+1/+fKlTJHJJzg4mKioKCwtLXn//j3Dhw/n3LlzlCpVijlz5lC0aFG5Q/wmUekWBEGtfZwgTCz3kyI6OjrVyWwsLS1likg+p06dwsHBgUyZRKcwIW0dOnTA1taWYcOGMXnyZBYsWEDTpk05cuQINjY2ajuRmpC66Oho1q9fr3QjwtnZGX19fZkjk0ezZs1o1KgRvXr1YsSIEezevZuuXbuyY8cOcubMydGjR+UO8ZdbvXr1V/d/ubSn8HsQlW5BEASB58+f061btzQnTFPHScOuXbuGtrY2FhYWQMqsy6tWrcLc3JxJkyaho6Mjc4S/hr+/P2XLlkVTUxN/f/+vplXHmzMvX74kNjaWAgUKkJyczIwZMxQtMOPGjSNnzpxyh/jLiLIi/Fd/QgumIKSHqHQLgqAWbGxsOHbsGDlz5qRcuXJf7UKujkuGOTs7Exoayrx586hRowY7d+4kIiKCKVOmMHv2bMWYVXVSoUIFxowZQ8uWLQkODsbc3JwWLVpw+fJlGjVqxLx58+QO8ZfQ1NTk6dOnGBkZoampiYaGRqqT/GhoaKjdzZnExEQ2bNiAo6NjqhNkqRtRVlTt2bOHBg0aoK2tzZ49e76a9svl1f50SUlJ+Pj4YGlpSY4cOeQOR1Zv374lW7Zsiv9/zcd0f7qP86ukx+/Q5V70mRMEQS00bdoUXV1dxf/FuG1lx48fZ/fu3dja2qKpqUnRokWpW7cu2bJlw93dXS0r3Xfv3lUs2bJ161aqV6/Ohg0b8PHxoV27dmpT6X7w4AGGhoaK/wufZMqUib59+xIQECB3KBmCKCuqmjVrprgR0axZszTTqdONiI+0tLSoV68eAQEBal/pzpkzp2KJyhw5cqR6jfJxRQ11KSd/2m+sqHQLgqAWJk6cqPj/pEmT5Askg3r//r1iubScOXPy/PlzTExMsLCwUMuWf0i5wElOTgbg6NGjNG7cGEhZzuV3WaLkR/i8e2doaCj29vYq49wTExM5d+6cWnYFrVixIr6+vmr53r8kyoqqj98hX/5fSFG2bFmCg4MpVqyY3KHI6vjx44qVQk6cOCFzNBnDnzZ2XVS6BUFQO8WLF+fy5cvkzp1bafvr16+xsbEhODhYpsjkY2pqyp07dzA2NsbKykqxVImnpyf58+eXOzxZ2NraMmXKFOrUqcOpU6dYsmQJkNKCp65diWvWrKlojfncmzdvqFmzptq0wHyuf//+DBs2jIcPH1K+fHmyZMmitF9dxy6LsqJqzZo1tG3bVtHr6qP4+Hg2bdpE586dZYpMPlOmTGHEiBFMnjw51c+PunSl/ueffyhXrhzZsmUjNDQ01XKi7oKCgli1ahVBQUH8888/GBkZcfDgQYoUKfJbzPwvxnQLgqB2Ph93+LmIiAgKFy6sMnO3Oli3bh2JiYl07dqVq1evUr9+fV6+fImOjg7e3t60bdtW7hB/OX9/f5ydnQkLC2PYsGGK3hKDBg0iMjKSDRs2yBzhr6epqUlERISiC/FHd+/exdbW9ptjEf9EmpqaKts+jmVWp66gXxJlRZWWllaqNyIiIyMxMjJSy7Ly+efn8y7V6vb50dHRITQ0lPz586dZTtTZqVOnaNCgAQ4ODpw+fZqAgACKFy+Oh4cHV65cYdu2bXKH+E2ipVsQBLXx+SQ2hw8fVlp/OSkpiWPHjqltF7eOHTsq/l++fHlCQ0MJDAykSJEi5MmTR8bI5GNpacmNGzdUts+cORMtLS0ZIpJPixYtgJSL4q5duyq1wCQlJeHv74+9vb1c4clKjF1WJspK2j5WJL/06NEjpd8jdSK6UqcoXbo0Li4u1KxZE0mS2LJlS5qt/OrYI2LMmDFMmTKFYcOGKS3xWqtWLRYuXChjZOknKt2CIKiNj5PYaGhoqIwV0tbWxtjYmNmzZ8sQmfzc3NwYMWIEmTNnBiBz5szY2NgQExODm5sbEyZMkDnCjENPT0/uEH65jxUCSZLImjWr0prCOjo6VK5cmV69eskVnqzUZWxyeomyourjihkaGhrUrl1baZx7UlISDx48oH79+jJGKJ/q1avLHUKG4OnpybBhw9i/fz8aGhqMGzcu1Rs0GhoaalnpvnHjRqq9y4yMjH6bOVZE93JBENROsWLFuHz5stq24KZGdHsU0sPV1ZURI0aojLtUZ+7u7uTNm5fu3bsrbV+5ciXPnz9n9OjRMkUmL1FWPnF1dVX8O3z4cAwMDBT7dHR0MDY2pmXLlujo6MgVomxWrVqFgYEBrVu3Vtq+detWoqOj/7jJtNIjrSFw6qxQoUJs2bIFe3t7smbNip+fH8WLF2fnzp2MGDGCoKAguUP8JlHpFgRBENIcf3n8+HHatm3L8+fPZYpMEDI2Y2NjNmzYoNJl+uLFi7Rr1050PxcUVq9eTdu2bdWyt0xaTExMWLp0KTVr1lTafurUKXr37s2dO3dkikw+oaGhFClSRCxt+pkRI0Zw8eJFtm7diomJCdeuXSMiIoLOnTvTuXNnpRVqMipR6RYEQe0MHjyYkiVLMnjwYKXtCxcu5P79+3/c2pBfkzNnTjQ0NHjz5g3ZsmVT+pFPSkoiKiqKvn37smjRIhmjFDKSbdu2sWXLFsLCwlQmHVTH5eX09PQICAhQmQ8iODgYc3NzYmNjZYpMfqKsCN+ip6dHYGAgxsbGSttDQkIwMzMjJiZGnsBk9vr1a7y8vAgICADA3NycHj16qO3Y//j4eAYMGIC3tzdJSUlkypSJpKQkOnTogLe3928xz4rqlJuCIAh/uO3bt+Pg4KCy3d7e/reYAfNHmjdvHnPmzEGSJFxdXZk7d67i4enpydmzZ0WFW1CYP38+3bp1I2/evFy/fp2KFSuSO3dugoODadCggdzhyaJw4cL4+PiobPfx8aFAgQIyRJQxiLKiKikpiVmzZlGxYkXy5ctHrly5lB7qyMjICH9/f5Xtfn5+Kst6qosrV65QokQJ5s6dy8uXL3n58iVz586lRIkSanuzSkdHh+XLlxMUFMS+fftYt24dgYGBrF279reocIOYSE0QBDUUGRmZ6t3ibNmy/TYTcvwoH8fLFStWDAcHB6UJftTdsGHDUt2uoaGBnp4eJUuWpGnTpmp1sbx48WKWLVtG+/bt8fb2ZtSoURQvXpwJEybw8uVLucOTRa9evfjrr79ISEigVq1aABw7doxRo0YxfPhwmaOTjygrqlxdXVmxYgXDhw9n3LhxjB07lpCQEHbt2qW2k1W2b9+ewYMHkzVrVqpVqwakdC0fMmQI7dq1kzk6eQwdOpQmTZqwfPlyxW9yYmIiPXv25K+//uL06dMyRyifIkWKUKRIEbnD+D6SIAiCmilTpoy0YMECle3z58+XzMzMZIhIfpqamlJERITK9hcvXkiampoyRCS/GjVqSNmyZZOyZMki2djYSDY2NpKBgYGUPXt2qVKlSlKOHDmknDlzSrdu3ZI71F9GX19fCgkJkSRJkgwNDSVfX19JkiTp7t27Uq5cueQMTTbJycnSqFGjJD09PUlTU1PS1NSUMmfOLLm6usodmqxEWVFVvHhxad++fZIkSZKBgYF0//59SZIk6Z9//pHat28vZ2iyiYuLk9q0aSNpaGhI2trakra2tqSlpSV169ZNiouLkzs8Wejp6UkBAQEq22/duiXp6+vLEJG8oqKipPHjx0tlypSRsmTJIhkYGEgWFhaSq6ur9P79e7nDSzfRpCEIgtoZNmwYAwcO5Pnz50otU7Nnz1ar8dyfk9KY3iMuLk4tZ9QFFK3Yq1atUqyX+ubNG3r27EmVKlXo1asXHTp0YOjQoRw+fFjmaH+NfPny8fLlS4oWLUqRIkW4cOECVlZWPHjwIM0y9CdLSkrCx8eHMWPGMH78eAICAtDX16dUqVJK61OrI1FWVD19+hQLCwsADAwMePPmDQCNGzdm/PjxcoYmC0mSePr0Kd7e3kyZMgVfX1/09fWxsLBQ66X4smXLRlhYGKVLl1ba/vDhQ6U1qtVBfHw81atX5+bNmzRo0AAnJyckSSIgIICpU6dy8OBBTp8+jba2ttyhfpOodAuCoHa6d+9OXFwcU6dOZfLkyUDKDMRLlixRu/Uv58+fD6R0mV6xYoXSUjZJSUmcPn1a5YdfXcycOZMjR44oKtyQsgbxpEmTqFevHkOGDGHChAnUq1dPxih/rVq1arFnzx7KlStHt27dGDp0KNu2bePKlSu0aNFC7vB+OS0tLerVq6eYSK1ChQpyh5RhiLKiqlChQjx58oQiRYpQokQJ/v33X2xsbLh8+bJa3qSRJImSJUty69YtSpUqRalSpeQOKUNo27YtPXr0YNasWYpVEXx8fBg5ciTt27eXObpfa8mSJTx69Ag/Pz9MTU2V9gUGBlKjRg08PT0ZNGiQTBGmn5i9XBAEtfb8+XP09fWVKpvq5OOMy6GhoRQqVEhpQpKP68e6ublRqVIluUKUjYGBAfv27aNGjRpK20+ePImTkxPv3r0jODgYa2tr3r59K0+Qv1hycjLJycmKcYabNm3i3LlzlCpVij59+qhlrwhbW1umT59O7dq15Q4lQxFlRdWYMWPIli0bf//9N5s3b6Zjx44YGxsTFhbG0KFD8fDwkDvEX65MmTJ4eXlRuXJluUPJMOLj4xk5ciSenp4kJiYCoK2tTb9+/fDw8FCrGzTVq1enTZs2DBgwINX9CxYsYNu2bZw6deoXR/bfiUq3IAhqKTExkZMnTxIUFESHDh3ImjUr4eHhZMuWTS0r4DVr1mTHjh3kzJlT7lAyDGdnZ86fP8/s2bMVLZiXL19mxIgR2Nvbs3btWjZt2sSsWbO4cuWKzNEKcjl06BAuLi5MnjyZ8uXLkyVLFqX9n/eUUBeJiYlMmzaN7t27U6hQIbnDybAuXLiguBHh5OQkdziy2Lt3LzNmzGDJkiWULVtW7nAylOjoaIKCggAoUaIEmTNnljmiX8/Q0JCTJ09SpkyZVPffvHmTmjVr8vz5818c2X8nKt2CIKid0NBQ6tevT1hYGHFxcdy9e5fixYszZMgQ4uLi8PT0lDtEIQOIiopi6NChrFmzRtHakClTJrp06cLcuXPJkiULvr6+AFhbW8sX6C8WGxuLv78/z549Izk5WWlfkyZNZIpKPpqan1Zf/Xyde0mS0NDQICkpSY6wZGdgYMDNmzdV1l8WhM/lzJmT6OhoEhMT0dHRQV9fX2m/us50/9GjR48A1Pbmlba2Ng8fPiRfvnyp7n/y5AlFixYlPj7+F0f234kx3YIgqJ0hQ4Zga2ursg5o8+bN6dWrl4yRyevRo0fs2bOHsLAwlR+wOXPmyBSVfAwMDFi+fDlz584lODgYgOLFiyv1hFCnyjaktOp27tw51aX11LWCeeLECblDyJBq167NqVOnRKX7M+7u7uTNm5fu3bsrbV+5ciXPnz9n9OjRMkUmH3WdvPRrkpOTmTJlCrNnzyYqKgqArFmzMnz4cMaOHat0o+9Pl5yc/NV1uDU1NX+b3x3R0i0IgtrJnTs3586dw9TUlKxZs+Ln50fx4sUJCQnB3Nyc6OhouUP85Y4dO0aTJk0oXrw4gYGBlC1blpCQECRJwsbGhuPHj8sdopABlCpVinr16jFhwgTy5s0rdzhCBubp6YmrqyvOzs6pdrtXx14RxsbGbNiwQTE51kcXL16kXbt2PHjwQKbIhIzExcUFLy8vXF1dcXBwAODs2bNMmjSJXr16MXXqVJkj/HU0NTUpW7asYm6ILyUmJnLr1q3fouItKt2CIKidnDlz4uPjg7m5uVKl++zZs7Rs2ZKIiAi5Q/zlKlasSIMGDXB1dVXkiZGREc7OztSvX59+/frJHeIv9/79ezw8PDh27FiqXak/tn6rk2zZsnH9+nVKlCghdyiy8vf3p2zZsmhqauLv7//VtJaWlr8oqozla61x6torQk9PTzHT/eeCg4MxNzcnNjZWpsh+rbdv3yrmOvjWJJTqOCdCgQIF8PT0VLkxtXv3bvr378/jx49liuzXc3V1TVe6iRMn/uRI/n+ie7kgCGqnXr16zJs3j2XLlgEpF4BRUVFMnDiRhg0byhydPAICAti4cSOQMm45JiYGAwMD3NzcaNq0qVpWunv27MmpU6fo1KkT+fPnVxqvq65atWrFyZMn1b7SbW1tzdOnTzEyMsLa2hoNDY1U155W18oloHKTSoDChQvj4+OjUun28fGhQIECMkX16+XMmZMnT55gZGREjhw5Uv1uVec5EV6+fJnqUp2lS5dWuzHuv0NlOr1EpVsQBLUze/ZsHB0dFS0LHTp04N69e+TJk0dR8VQ3WbJkUYzjzp8/P0FBQYrZQlMbv6sODh48yP79+xXd+wRYuHAhrVu35syZM1hYWKCtra20f/DgwTJF9ms9ePAAQ0NDxf+Fr4uNjUVPT0/uMGTXq1cv/vrrLxISEqhVqxaQMrRn1KhRDB8+XObofp3jx4+TK1cuQMyJkBorKysWLlzI/PnzlbYvXLgQKysrmaIS/l+ie7kgCGopMTGRTZs24e/vT1RUFDY2Njg7O6vMnKoumjVrRqNGjejVqxcjRoxg9+7ddO3aVbGM2NGjR+UO8ZcrVqwYBw4cwMzMTO5QMgwvLy/69u2Lnp4euXPnVmqh0tDQUMsu90LqkpKSmDZtGp6enkRERChWiRg/fjzGxsb06NFD7hB/OUmSGDNmDPPnz1fc5NTT02P06NFMmDBB5uiEjOLUqVM0atSIIkWKYGdnB8D58+d5+PAhBw4coGrVqjJHKHwPUekWBEEQCA4OJioqCktLS96/f8/w4cMV68fOmTOHokWLyh3iL7du3Tp2797N6tWr1XJ91NTky5ePwYMHM2bMGLWaQTc9bt++nerM/+o4YRiAm5sbq1evxs3NjV69enHz5k2KFy/O5s2bmTdvHufPn5c7RNlERUUREBCAvr4+pUqVQldXV+6QZBcdHZ3q50dd50QIDw9n0aJFBAYGAmBmZkb//v3VahjCn0ZUugVBUAt79uyhQYMGaGtrs2fPnq+mNTAwoHTp0uLHTc2VK1eOoKAgJEnC2NhYpSv1tWvXZIpMPrly5eLy5ctqP6b7c8HBwTRv3pwbN24oje3+2AtAHcekApQsWZKlS5dSu3ZtpQkrAwMDsbOz49WrV3KHKGQAz58/p1u3bhw8eDDV/er6+RH+PGJMtyAIaqFZs2aKiY+aNWv2zfRaWlrMmDGDoUOH/vzghAwpPeVE3XTp0oXNmzfz999/yx1KhjFkyBCKFSvGsWPHKFasGJcuXSIyMpLhw4cza9YsucOTzePHjylZsqTK9uTkZBISEmSISB4tWrTA29ubbNmy0aJFi6+m3bFjxy+KKuP466+/eP36NRcvXqRGjRrs3LmTiIgIxTrV6urVq1d4eXkREBAAgLm5Od26dVOMhVdnv+scEaLSLQiCWvh8Jt1vzaobHx/Phg0bcHFxEZVuNfYnzZr6oyQlJTFjxgwOHz6MpaWlSuv/nDlzZIpMPufPn+f48ePkyZMHTU1NNDU1qVKlCu7u7gwePJjr16/LHaIszM3N+V979x0V1bW+D/wZUKQXy0QsoAgiCChILDHGHhEDtms0FuyJWPAi1q/RCCqWG9FriVhQURMr9iAWNCjYG6JSlCKQYEUkFNvA7w9+znUCKrlXZg+e57NW1hr3OcoTlg7znr33u0+fPl1qa8ru3bvh7OwsKJX6mZiYKFc9GBsb8xSEvzhx4gT2798PV1dXaGlpwdLSEl27doWxsTEWLFiAHj16iI6odqdOnYKHhwdMTEzg6uoKAFi+fDkCAgJw8OBBfPHFF4ITql9RURHmz59fqXtEsOgmIvoLHR0d9O3b973n7xJJTVxcnLJgunHjhso1qRYTCoUCRkZGAICaNWvijz/+gK2tLSwtLZGYmCg4nTizZ8/G0KFD8fvvv6OoqAh79uxBYmIiNm/ejEOHDomOpza9e/dWzspt2rRJbBgNlJ+fD7lcDqDkKLGHDx+icePGcHR0lOQWHgAYN24c+vfvj9WrV0NbWxtAyfvM2LFjMW7cOMTFxQlOqH7z5s1DaGgoFi9ejNGjRyvHHRwcsGzZskpRdHNPNxFJ0u3bt3Hy5Ek8ePCg1Mw3u8hKV/Xq1ZGUlISaNWvCzMzsnYWk1M5LVSgUiImJgaOjI8zMzETH0Rjt2rWDn58fevXqhYEDB+LJkyf4/vvvsXbtWly+fLnUwwkpOX36NAICAhAbG6s8JWL27Nn48ssvRUdTG21tbdy7dw+1atWCtra28nxqKvHpp59i3rx56NatGzw9PWFqaooFCxZg+fLl2L17N5KTk0VHVDs9PT1cu3YNtra2KuOJiYlo3rw5CgsLBSUT52PoEcGZbiKSnHXr1sHb2xs1a9ZE7dq1Sx17JPWi+6+NoKRk6dKlylnLZcuWiQ2jYbS1tfHll18iPj6eRfcbvv/+e+Tn5wMo6dj91VdfoV27dqhRowZ27NghOJ1Y7dq1w7Fjx0THEKpWrVo4d+4cPDw8UFxcLMn31XeZOHEisrKyAJRs6XFzc8PPP/8MHR0dya4McHFxQXx8fKmiOz4+XrLndH8MPSI4001EkmNpaYmxY8di2rRpoqNolM2bN+Nf//oXbt++DQBo3LgxpkyZgiFDhghORprC1dUVixYtQufOnUVH0WjZ2dnvXSnxsbOyssLFixdRo0YNlfGcnBy4uLhI5kz3OXPmICAgoFx/F9ipu+TosISEBFhYWKBmzZqi4wixY8cOTJ06FRMmTEDr1q0BAOfOncOqVauwcOFC2NnZKe+VypFqLVq0gK+vLwYPHqwy0x0QEIBjx47h9OnToiO+F4tuIpIcY2NjXLt2DVZWVqKjaIygoCDMmjUL48ePR9u2bQEA0dHRWLVqFebNmyeZhnK5ubnlvtfY2LgCk2imiIgIzJgxA3PnzkWLFi1gYGCgcl2K3xMqm5aWlvLEiDfdv38fFhYWeP78uaBk6peQkIA7d+7A09MTGzduhKmpaZn39ezZU73BSCNpaWm98/rrowllMplkHtTs378fQ4cOxYwZMxAQEAB/f3+VHhFdu3YVHfG9WHQTkeSMHDkSn376KcaMGSM6isZo2LAh/P394eXlpTIeGhqKOXPmIDU1VVAy9dLS0ir37KRUPuy86c0Pg29+n6T2AZDe7sCBAwBKjtwLDQ2FiYmJ8ppCoUBkZCSOHTsmySZz/v7+mDJlCvT19UVHIQ129+7dct/719MBPmaVvUcEi24ikpwFCxYgKCgIPXr0gKOjY6ljj3x8fAQlE0dXVxc3btwotWfq9u3bcHR0xLNnzwQlU6+oqCjl67S0NEyfPh3Dhg1DmzZtAJQcDxUaGooFCxZg6NChomIK8+b3pyzt27dXUxLSVK8fzLyejXtT1apV0aBBAyxZsgRfffWViHhEREKw6CYiyWnYsOFbr8lkMsnsNXyTg4MDBg4ciP/7v/9TGZ83bx527NghySNKOnfujFGjRuGbb75RGf/ll1+wdu1a/Pbbb2KCEVUCDRs2xMWLFyW7L/c1FxcXREZGwszMDM7Ozu9cSSPVI7JIVWhoKGrWrKk8o3zq1KlYu3Yt7O3tsW3bNknNbn9M2L2ciCRHKkul/w5/f3/0798fp06dUu7pjomJQWRkJHbu3Ck4nRhnz55FcHBwqXFXV1eMGjVKQCLNkJOTg5CQEMTHxwMAmjZtihEjRqgsIybi+2yJnj17olq1agBKltwTvU9gYCBWr14NoOTn0MqVK7Fs2TIcOnQIvr6+2LNnj+CE6ve2xpQymQy6urqwtrbGsGHDMHz4cAHpyocz3UREBAC4fPkyli5dqiym7Ozs4OfnB2dnZ8HJxLC1tUXPnj2xePFilfGpU6di//79ktyTeunSJXTr1g16enpo2bIlAODixYsoLCzE0aNH4eLiIjih+r3ew/xXb34YfNfqmo/J8uXLy32vFLfxUNlOnz6NNWvWIDk5Gbt370bdunWxZcsWNGzYEJ9//rnoeGqnr6+v7OA+bdo0ZGVlYfPmzbh58yY6dOiAhw8fio6odkuXLsX8+fPRvXt35c+eCxcuICIiAr6+vkhNTcWWLVuwYsUKjB49WnDasrHoJiJJmDRpEubOnQsDAwNMmjTpnfcGBQWpKRVpsvDwcPTt2xfW1tZo1aoVgJIf8rdv30ZYWBjc3d0FJ1S/du3awdraGuvWrUOVKiWL5V69eoVRo0YhJSUFp06dEpxQ/V433/vrx6k3Owx//vnn2Ldv30d/vnl5Hy5IdRsPlRYWFoYhQ4Zg0KBB2LJlC27dugUrKyusXLkS4eHhCA8PFx1R7eRyOY4cOQJnZ2c4Oztj0qRJGDJkCJKTk9GsWTPk5eWJjqh2ffv2RdeuXUs1wF2zZg2OHj2KsLAwrFixAmvXrtXY7XAsuolIEjp27Ii9e/fC1NQUHTt2fOt9MpkMJ06cUGMy0mSZmZn46aefkJCQAKBk9n/MmDGoX7++4GRi6Onp4erVq2jSpInK+K1bt+Dq6oqCggJBycSJjIzEzJkzMX/+fJUZmFmzZuH777+HiYkJvvvuO7Rq1QohISGC05K6/Z3z2rOzsys4jeZxdnaGr68vvLy8VM5fvnr1Krp374579+6Jjqh2gwYNQkJCApydnbFt2zakp6ejRo0aOHDgAP7v//4PN27cEB1R7QwNDXHt2rVSzV7v3LmD5s2bIy8vD8nJyXByckJ+fr6glO/GPd1EJAknT54s87XUleeILJlMhlevXqkpkWapV68eAgMDRcfQGMbGxkhPTy9VdGdkZMDIyEhQKrEmTpyItWvX4rPPPlOOde7cGbq6uvj2229x8+ZNLFu2DCNGjBCYkkRZtmyZ8vXjx48xb948dOvWTeVEhCNHjmDWrFmCEoqVmJiIL774otS4iYkJcnJy1B9IA6xatQrff/89MjIyEBYWhho1agAo2QL218aeUlG9enUcPHgQvr6+KuMHDx5E9erVAQD5+fka/XOIRTcRkYTt3bv3rdfOnj2L5cuXo6ioSI2JNEtOTg4uXLiABw8elPo+/PVMcyno378/Ro4ciR9//FFZZMbExGDKlCmS/TCYnJwMY2PjUuPGxsbKJdQ2NjZ49OiRuqMJl5mZiQMHDiA9PR0vXrxQuSaVbTxvHi3Yt29fBAQEYPz48coxHx8frFy5EsePHy9VUEhB7dq1cefOHTRo0EBlPDo6GlZWVmJCCWZqaoqVK1eWGvf39xeQRjPMmjUL3t7eOHnypEo/kfDwcGXD02PHjmn0sZVcXk5ERCoSExMxffp0HDx4EIMGDUJAQIAkjyh5/f+fl5cHY2NjlRUBMplMkktBX7x4gSlTpiA4OFi5+qFq1arw9vbGwoULlV2apeTzzz+HkZERNm/ejFq1agEAHj58CC8vL+Tn5+PUqVM4fvw4xo0bJ6nme5GRkfD09ISVlRUSEhLg4OCAtLQ0FBcXw8XFRZLbeMqzRFZqFixYgK1bt2LDhg3o2rUrwsPDcffuXfj6+mLWrFmYMGGC6IikIWJiYrBy5Url+6itrS0mTJigsspIk7HoJiIiAMAff/yBH374AaGhoejWrRsWLFgABwcH0bGEady4Mdzd3REYGAh9fX3RcYS5fv06HBwcoKWlpRwrKChAcnIyAKBRo0aS/v4kJiaiZ8+eSE1NVe71z8jIgJWVFfbv34/GjRtj3759+PPPPzFkyBDBadWnZcuW6N69O/z9/ZV7deVyOQYNGgQ3Nzd4e3uLjqh2lpaW8PHxgZ+fn8r4kiVLsHz5cty9e1dQMnGKi4sRGBiIBQsWKHtCVKtWDZMnT8bcuXMFpyP6cFh0ExFJ3NOnTxEYGIgVK1agefPmWLRoEdq1ayc6lnAGBgaIi4uT7BLH17S1tZGVlQW5XA4rKytcvHhRuceQShQVFeHo0aNISkoCUDID07VrV5UHFVJjZGSEa9euoVGjRjAzM0N0dDSaNm2K2NhY9OzZE2lpaaIjqt2mTZswatQodO/eXXkiwvnz5xEREYF169Zh2LBhYgMK9OLFC9y5cwd5eXmwt7eHoaGh6EikoZ49e1Zqu0pZW3w0Dfd0E5HknDp1Cp999pnyyKPXXr16hTNnzpTZ1OVjtXjxYixatAi1a9fGtm3b0LNnT9GRNEa3bt1w6dIlyRfdpqamSE1NhVwuR1pamqT3+L+NlpYW3Nzc4ObmJjqKxjAwMFB+MDY3N0dycjKaNm0KAJLc3w4Aw4YNg52dHZYvX449e/YAKDkRITo6WlmES83WrVvRp08f6Ovrw97eXnQc0lAFBQWYOnUqdu7cicePH5e6rlAoBKT6ezjTTUSS8+bM3ZseP34MuVxeKd68PxQtLS3o6emhS5cu0NbWfut9rz8gSklISAgCAgIwfPhwODo6omrVqirXPT09BSVTr2+//RabN2+Gubk50tPTUa9evbf+XZHq2cuRkZGIjIwss+Hehg0bBKUSq1evXujRowdGjx6NyZMnY//+/Rg2bBj27NkDMzMzHD9+XHRE0gC1atVCYWEhPD09MXjwYHTr1u2dP4ukoFOnTtizZw9MTU1VxnNzc9GrVy9J9kMYN24cTp48iblz52LIkCFYtWoVfv/9d6xZswYLFy7EoEGDREd8LxbdRCQ5WlpauH//vrLp0WtJSUlwdXVFbm6uoGTqN2zYsHKdIbtx40Y1pNEs71oaLJPJJPVwJiIiAnfu3IGPjw8CAgLeeizLxIkT1ZxMPH9/fwQEBMDV1RXm5ual/j2964SAj1lKSgry8vKU5+b6+fnhzJkzsLGxQVBQkCSbMwIlM3L79u1DfHw8AKBp06bw9PSUbKH56tUrREREYNu2bdi/fz/09fXRr18/DBo0qNI0yPrQtLS0cO/evVITAw8ePEDdunXx8uVLQcnEsbCwwObNm9GhQwcYGxvjypUrsLa2xpYtW7Bt2zaEh4eLjvheLLqJSDL69OkDANi/fz/c3NxUOi0rFApcv34dtra2iIiIEBWRSKMNHz4cy5cv1+izUNXN3NwcixcvllSTNPrv3LlzBz169EBmZiZsbW0BlDTiq1+/Pn799Vc0atRIcEKxCgoKsHfvXvzyyy84fvw46tWrp2zYKAXXr18HADRv3hwnTpxQnj8NlHxGiYiIwJo1ayTZD8HQ0BC3bt2ChYUF6tWrhz179qBly5ZITU2Fo6Njpej8zz3dRCQZJiYmAEq6pRoZGUFPT095TUdHB61bt8bo0aNFxSPSeFJc8fA+L168kOyMHP09Pj4+sLKywtmzZ5UF1ePHjzF48GD4+Pjg119/FZxQLH19fXTr1g1PnjzB3bt3lasBpKJ58+aQyWSQyWTo1KlTqet6enpYsWKFgGTiWVlZITU1FRYWFmjSpAl27tyJli1b4uDBg6WW4WsqznQTkeT4+/tj8uTJMDAwEB2FNFx+fj6ioqKQnp5eqluqj4+PoFTi5OfnY+HChW/dvyzFPd3Tpk2DoaEhZs2aJToKaTgDAwOcO3cOjo6OKuOxsbFo27ZtpZitqwivZ7h//vlnREZGon79+vjmm28waNAgNGnSRHQ8tcjNzUV2djaAkgLzwoULKlvgdHR0IJfLJbsNYenSpdDW1oaPjw+OHz8ODw8PFBcX4+XLlwgKCqoUW5s4001EkjN16lS8+bzx7t272Lt3L+zt7fHll18KTEaa5OrVq3B3d0dBQQHy8/NRvXp1PHr0CPr6+pDL5ZIsukeNGoWoqCgMGTKkzP3LUvTs2TOsXbsWx48fh5OTU6mGe0FBQYKSkaapVq0a/vzzz1LjeXl50NHREZBIvAEDBuDQoUPQ19fH119/jVmzZqFNmzaiY6mdmZmZssFr+/btYW1tXWlmcNXB19dX+bpLly5ISEjA5cuXYW1tDScnJ4HJyo9FNxFJTs+ePdGnTx+MGTMGOTk5aNmyJXR0dPDo0SMEBQXB29tbdETSAL6+vvDw8EBwcDBMTExw7tw5VK1aFYMHD64UT9UrwuHDh/Hrr7+ibdu2oqNojOvXr6N58+YAgBs3bqhc40MJetNXX32Fb7/9FiEhIWjZsiWAknO6x4wZI5nTEP5KW1sbO3fulHzXckNDQ+UJKqdOnZJks7S/w9LSEiYmJpXqwQSXlxOR5NSsWRNRUVFo2rQp1q9fjxUrVuDq1asICwvD7NmzJbePjMpmamqK8+fPw9bWFqampjh79izs7Oxw/vx5DB06FAkJCaIjql3Dhg0RHh4OOzs70VGoknjx4gVSU1PRqFEjVKki7bmenJwcDB06FAcPHlSuiHj16hU8PT2xadMmZd8Rkp6+ffsiJiYGdnZ2iIqKwmefffbW1Q9SPDJs0aJFaNCgAfr37w8A+PrrrxEWFobatWsjPDwczZo1E5zw/aT97kdEklRQUKDsvnz06FH06dMHWlpaaN26Ne7evSs4HWmKqlWrKo8Nk8vlSE9Ph52dHUxMTJCRkSE4nRhz587F7NmzERoaCn19fdFxSIMVFBRgwoQJCA0NBVByJKOVlRUmTJiAunXrYvr06YITqp+pqSn279+P27dvKx/a2dnZwdraWnAy9Vq+fDm+/fZb6OrqYvny5e+8VyrbeLZu3YrQ0FAkJycrJwX4HvsfwcHB+PnnnwEAx44dw7Fjx3D48GHs3LkTU6ZMwdGjRwUnfD/OdBOR5Dg5OWHUqFHo3bs3HBwcEBERgTZt2uDy5cvo0aMH7t27JzoiaYAvv/wSw4YNw8CBAzF69Ghcv34dPj4+2LJlC548eYLz58+Ljqh2zs7OSE5ORnFxMRo0aFBq//KVK1cEJVOvPn36YNOmTTA2NlYeRfg2e/bsUVMqzTJx4kTExMRg2bJlcHNzw/Xr12FlZYX9+/djzpw5uHr1quiIJEjDhg1x6dIl1KhRAw0bNnzrfTKZTJLNGTt27Ii9e/dWqqXTFU1PTw9JSUmoX78+Jk6ciGfPnmHNmjVISkpCq1at8OTJE9ER34sz3UQkObNnz8bAgQPh6+uLTp06KZu2HD16FM7OzoLTkaYIDAxUNj2aP38+vLy84O3tDRsbG4SEhAhOJ0avXr1ER9AIJiYmyv3aXBJctn379mHHjh1o3bq1yt72pk2bSurs5TcVFxdj9+7dOHnyZJnd/6XygCY1NbXM11Ti5MmToiNoHDMzM2RkZKB+/fqIiIjAvHnzAJT8m1IoFILTlQ9nuolIku7du4esrCw0a9ZMuYT4woULMDY2lswRJUREFUVfXx83btyAlZUVjIyMEBsbCysrK8TGxuKLL77A06dPRUdUu4kTJ2LNmjXo2LEjPvnkk1KN9jZu3CgomeZQKBSIi4uDpaUlzMzMRMcRJjMzEwcOHCjzuEopnogwfvx4HDp0CDY2Nrh69SrS0tJgaGiI7du3Y/HixZVilRVnuolIkmrXro3atWsjMzMTAFCvXj1lN1kiAOjUqRP27NlTaolfbm4uevXqJclmNvR2Dx48QGJiIgDA1tYWcrlccCKxXF1d8euvv2LChAkA/tPJff369ZI8EgoAtmzZgj179sDd3V10FI3xz3/+E46Ojhg5ciQUCgW++OILnD17Fvr6+jh06BA6dOggOqLaRUZGwtPTE1ZWVkhISICDgwPS0tJQXFwMFxcX0fGEWLp0KRo0aICMjAwsXrwYhoaGAICsrCyMHTtWcLry4Uw3EUlOUVER5s2bhyVLliAvLw8AYGRkBD8/P8ycOVM5803SpqWlhXv37pUqnh48eIC6detK5kiX6tWrIykpCTVr1oSZmdk7j8HKzs5WYzLNkJubi3HjxmH79u3KZY7a2tro378/Vq1aJdnl59HR0ejevTsGDx6MTZs24bvvvsOtW7dw5swZREVFoUWLFqIjql3Dhg1x+PBhrqZ6Q7169bBv3z64urpi3759GDduHE6ePIktW7bgxIkTiImJER1R7Vq2bInu3bvD399fuUpELpdj0KBBcHNz47GmlRRnuolIcmbOnImQkBAsXLhQed5wdHQ05syZg2fPnmH+/PmCE5JI169fV76+deuWSmM9hUKBiIgI1K1bV0Q0IZYuXars9r9s2TKxYTTQ6NGjcfXqVRw6dEg5g3v27FlMnDgR3333HbZv3y44oRiff/45rl27hoULF8LR0RFHjx6Fi4sLzp49C0dHR9HxhJgzZw78/f2xYcMG6OnpiY6jER49eoTatWsDAMLDw9GvXz80btwYI0aMwL///W/B6cSIj4/Htm3bAABVqlRBYWEhDA0NERAQgJ49e0qy6A4NDUXNmjXRo0cPAMDUqVOxdu1a2NvbY9u2bbC0tBSc8P04001EklOnTh0EBwfD09NTZXz//v0YO3Ysfv/9d0HJSBNoaWkpZ3PL+hGpp6eHFStWYMSIEeqORhrIwMAAR44cweeff64yfvr0abi5uSE/P19QMtI0hYWF6N27N2JiYiTd/f9NlpaWWLduHTp37oyGDRti9erV6NGjB27evInPP/+8UnSl/tBq166NkydPws7ODvb29li4cCE8PT0RGxuLtm3bKlfoSYmtrS1Wr16NTp064ezZs+jSpQuWLl2KQ4cOoUqVKpWiCSFnuolIcrKzs8tc3tekSRNJLo8lVampqSguLoaVlRUuXLiAWrVqKa/p6OhALpdDW1tbYELSJDVq1ChzCbmJiYnkGkHl5uaW+15jY+MKTKKZhg4disuXL2Pw4MFlNlKTouHDh+Prr7+Gubk5ZDIZunTpAgA4f/68ZJfht27dGtHR0bCzs4O7uzv8/PwQFxeHPXv2oHXr1qLjCZGRkaE8z37fvn3o27cvvv32W7Rt27bS7Ptn0U1EktOsWTOsXLkSy5cvVxlfuXIlmjVrJigVaYrXy9T+epwPUVm+//57TJo0CVu2bFEuk7137x6mTJmCWbNmCU6nXqampuUuJCvLMT8f0q+//lrmqggpmzNnDhwcHJCRkYF+/fqhWrVqAEr6IkyfPl1wOjGCgoKUs9n+/v7Iy8vDjh07YGNjI8nO5QBgaGiIx48fw8LCAkePHsWkSZMAALq6uigsLBScrny4vJyIJCcqKgo9evSAhYWFyh7MjIwMhIeHo127doITkib4GPaQUcVzdnbGnTt38Pz5c1hYWAAA0tPTUa1aNdjY2Kjc+7EvH46KilK+TktLw/Tp0zFs2DCV99nQ0FAsWLAAQ4cOFRVTmCZNmmDnzp1wcnISHYU0lEKhQExMDJycnEqdnCFlgwYNQkJCApydnbFt2zakp6ejRo0aOHDgAP7v//4PN27cEB3xvVh0E5Ek/fHHH1i1ahUSEhIAAHZ2dhg7dizq1KkjOBlpir/uIevcuTOWLVtWqfaQUcXz9/cv970//PBDBSbRLJ07d8aoUaPwzTffqIz/8ssvWLt2LX777TcxwQT69ddfsWLFCgQHB6NBgwai42iMyMhIREZG4sGDB6VWGG3YsEFQKnF0dXURHx+Phg0bio6iMXJycvD9998jIyMD3t7ecHNzA1Dynqqjo4OZM2cKTvh+LLqJiIjKoK+vj4SEBFhYWGDatGnIysrC5s2bcfPmTXTo0AEPHz4UHVGYO3fuIDk5GV988QX09PRQXFzM/amkQl9fH7GxsaVm+5OSktC8eXMUFBQISiaOmZkZCgoK8OrVK+jr65dqpCbFniL+/v4ICAiAq6urcl/3m/bu3SsomTiurq5YtGgROnfuLDoKfUDc001EkpSTk4MLFy6U+WTdy8tLUCrSJB/DHrIP7fHjx+jfvz9OnDgBmUyG27dvw8rKCiNHjoSZmRmWLFkiOqJQeXl5pd5PpNgwDADq16+PdevWYfHixSrj69evR/369QWlEotH7pUWHByMTZs2YciQIaKjaIx58+Zh8uTJmDt3Llq0aAEDAwOV61J9Tzl9+jTWrFmDlJQU7Nq1C3Xr1sWWLVvQsGHDStEngUU3EUnOwYMHMWjQIOTl5cHY2FjlybpMJmPRTQCArl27YtSoUXB2dkZSUhLc3d0BADdv3pTs0lBfX19UqVIF6enpsLOzU473798fkyZNkmTRnZqaivHjx+O3337Ds2fPlOOvZ/+l2DAMKDnfvW/fvjh8+DBatWoFALhw4QJu376NsLAwwenEkOI+9vd58eIFPvvsM9ExNMrrnzWenp4qn0+k/J4SFhaGIUOGYNCgQbhy5QqeP38OAHj69CkCAwMRHh4uOOH7cXk5EUlO48aN4e7ujsDAQOjr64uOQxrqY9hD9qHVrl0bR44cQbNmzWBkZITY2FhYWVkhJSUFTk5Okjw/tm3btiguLsbEiRPLPAaqffv2gpKJl5mZiZ9++kmld8aYMWMkO9NNpU2bNg2GhoaS6/T/Lm82JCyLFN9TnJ2d4evrCy8vL5WfPVevXkX37t1x79490RHfi0U3EUmOgYEB4uLiYGVlJToKUaViZGSEK1euwMbGRuWDz6VLl9CtWzc8fvxYdES1MzQ0xOXLl2Frays6ClGlM3HiRGzevBlOTk5wcnIqtc9dqkdkkSp9fX3cunULDRo0KPXA197eXmWVkabi8nIikpxu3brh0qVLLLqJ/qZ27dph8+bNmDt3LoCS7RhFRUVYvHgxOnbsKDidGJ9++ikyMjJYdJchJycHISEhiI+PBwA0bdoUI0aMgImJieBkpCmuX7+O5s2bA0CpY5+k2pxx48aNMDQ0RL9+/VTGd+3ahYKCAkluU6hduzbu3LlTamtXdHR0pfksx5luIpKEAwcOKF8/fPgQAQEBGD58OBwdHUs9Wff09FR3PKJK4caNG+jcuTNcXFxw4sQJeHp64ubNm8jOzkZMTAwaNWokOqLaJScnY8yYMRg8eDAcHBxKvZ9I9Uzm16sf9PT00LJlSwDAxYsXUVhYiKNHj8LFxUVwQiLN1LhxY6xZs6bUg8yoqCh8++23SExMFJRMnAULFmDr1q3YsGEDunbtivDwcNy9exe+vr6YNWsWJkyYIDrie7HoJiJJ0NLSKtd9Um1SQlReT58+xcqVKxEbG4u8vDy4uLhg3LhxMDc3Fx1NiHPnzmHgwIFIS0tTjslkMkk3PQJKVkVYW1tj3bp1qFKlZGHlq1evMGrUKKSkpODUqVOCE6rfxo0b0b9/f/YSeYvMzEwAQL169QQnEUtXVxcJCQmlZnXT0tJgZ2cnydMziouLERgYiAULFiiPG6xWrZqyy3tlwKKbiIiI6L9kb28POzs7TJ06tcxGapaWloKSiaWnp4erV6+iSZMmKuO3bt2Cq6urJM/p/uSTT1BYWIh+/fph5MiR7NoNoKioCPPmzcOSJUuUjRiNjIzg5+eHmTNnlvuB+cfEwsICK1euLLXqbv/+/Rg3bpzy4YQUvXjxAnfu3EFeXh7s7e1haGgoOlK5Se9vMhERUTl06tQJOTk5pcZzc3PRqVMn9QfSABEREYiOjlb+etWqVWjevDkGDhyIJ0+eCEwmzt27d7Fo0SK0atUKDRo0gKWlpcp/UmVsbIz09PRS4xkZGTAyMhKQSLzff/8doaGhePToETp06IAmTZpg0aJFlaLzckWZOXMmVq5ciYULF+Lq1au4evUqAgMDsWLFCsl2NP/mm2/g4+ODkydPQqFQQKFQ4MSJE5g4cSIGDBggOp5QOjo6sLe3R8uWLStVwQ1wppuIJKSwsBCRkZH46quvAAAzZsxQnvUIANra2pg7dy50dXVFRSQNoqWlhXv37kEul6uMP3jwAHXr1sXLly8FJRPH0dERixYtgru7O+Li4uDq6go/Pz+cPHkSTZo0wcaNG0VHVDsPDw8MGzYMffv2FR1Fo/j4+GDv3r348ccflTO6MTExmDJlCvr27Ytly5aJDSjY/fv3sXXrVoSGhiIhIQFubm4YOXIkPDw8JDW7W6dOHQQHB5c5qzt27Fj8/vvvgpKJ8+LFCwwZMgS7du1Sbs0oKiqCl5cXgoODoaOjIzih+owYMaJc923YsKGCk/zv2L2ciCQjNDQUv/76q7LoXrlyJZo2bQo9PT0AQEJCAurUqQNfX1+RMUmw69evK1/funVLZRZKoVAgIiICdevWFRFNuNTUVNjb2wMAwsLC4OHhgcDAQFy5cgXu7u6C04nh4eEBX19fxMXFsTHjG3788UfIZDJ4eXnh1atXAICqVavC29sbCxcuFJxOvE8++QSff/45kpKSkJSUhLi4OAwdOhRmZmbYuHEjOnToIDqiWmRnZ5faggAATZo0QXZ2toBEYhUXF+PevXvYtGkT5s2bh2vXrkFPTw+Ojo6SXDmzadMmWFpawtnZGZV9npgz3UQkGe3atcPUqVPh4eEBACpnPQLA1q1bsWrVKpw9e1ZkTBJMS0tLuS+3rB+Renp6WLFiRbmfwH9MqlevjujoaNjb2+Pzzz+Hl5cXvv32W6SlpcHe3l6S+3TfNSsp5UZqrxUUFCA5ORkA0KhRI8k3Ebt//z62bNmCjRs3IiUlBb169cLIkSPRpUsX5OfnIyAgANu3b8fdu3dFR1WLVq1aoVWrVli+fLnK+IQJE3Dx4kWcO3dOUDIxioqKoKuri5s3b8LGxkZ0HOHGjRuHbdu2wdLSEsOHD8fgwYNRvXp10bH+Kyy6iUgyzM3NcfbsWWVH0Fq1auHixYvKXyclJeHTTz/F06dPxYUkoXJzc5WzK1ZWVrhw4QJq1aqlvK6jowO5XA5tbW1REYXy9PTEixcv0LZtW8ydOxepqamoW7cujh49ivHjxyMpKUl0RNIQT58+hUKhKPUBOTs7G1WqVIGxsbGgZOJ4eHjgyJEjaNy4MUaNGgUvL69S358HDx6gdu3aKCoqEpRSvaKiotCjRw9YWFigTZs2AICzZ88iIyMD4eHhaNeuneCE6te0aVOEhISgdevWoqNohOfPn2PPnj3YsGEDzpw5gx49emDkyJH48ssvK9VZ7tLZNEJEkpeTk6Oyh/vhw4cqR3IUFRWpXCfpMTMzg76+Pho0aID27dvD2tpapSmWubm5ZAtuoGRLRpUqVbB7926sXr1aucz+8OHDcHNzE5yONMmAAQOwffv2UuM7d+6UbDMouVyOqKgo3LhxA//85z/LnLGrVasWUlNTBaQTo3379khKSkLv3r2Rk5ODnJwc9OnTB4mJiZIsuAFg4cKFmDJlCm7cuCE6ikaoVq0avvnmGxw7dgy3bt1C06ZNMXbsWDRo0EDZ8b4y4J5uIpKMevXq4caNG7C1tS3z+vXr1yV/PqjUGRoa4vHjx5DL5Th16pQkm6W9i4WFBQ4dOlRqfOnSpQLSaIaAgIB3Xp89e7aakmiW8+fPIygoqNR4hw4dMHPmTAGJxHr58iXS0tJQs2bNd94nk8kkt3e3Tp06mD9/vugYGsPLywsFBQVo1qwZdHR0lH1nXpPiXvfXXm//Ki4urnRbd1h0E5FkuLu7Y/bs2ejRo0epDuWFhYXw9/dHjx49BKUjTdClSxd07NgRdnZ2KC4uRu/evd/aKfbEiRNqTidGbm5uue+V4pLhvXv3qvz65cuXSE1NRZUqVdCoUSPJFt3Pnz9XNlB708uXL1FYWCggkVhVq1ZVadJI//HkyROEhIQgPj4eAGBvb4/hw4dX2r27/yupd/b/qzeXl0dHR+Orr77CypUr4ebmVqk6/XNPNxFJxv3799G8eXPo6Ohg/PjxaNy4MQAgMTERK1euxKtXr3D16lV88skngpOSKIWFhQgNDUVycjKWLFmC0aNHv7Xxk1Rmd99sLPc2xcXFbBr2htzcXAwbNgy9e/fGkCFDRMcRomPHjnBwcMCKFStUxseNG4fr16/j9OnTgpKJ4+vri2rVqrF7+xtOnToFDw8PmJiYwNXVFQBw+fJl5OTk4ODBg/jiiy8EJySRxo4di+3bt6N+/foYMWIEBg0a9N7VIpqKRTcRSUpqaiq8vb1x7NgxZWdqmUyGrl274qefflJ2Mifq2LEj9u7dC1NTU9FRhIqKiir3ve3bt6/AJJVLXFwcPDw8kJaWJjqKEDExMejSpQs+/fRTdO7cGQAQGRmJixcv4ujRo5LcrzthwgRs3rwZNjY2aNGiBQwMDFSul7Uc/2Pn6OiINm3aYPXq1cp+GQqFAmPHjsWZM2cQFxcnOKF65ObmKlcKvW91kZRWFGlpacHCwgLOzs7vfPi7Z88eNab677DoJiJJys7Oxp07dwAA1tbWkl3GRkQVIzo6Gh4eHnjy5InoKMJcu3YN//rXv5RnDTs5OWHGjBmSPQqpY8eOb70mk8kks2XlTXp6erh27VqpXiuJiYlo3ry5ZLYiaGtrIysrC3K5/K2ri6S4omjYsGHl6lC+ceNGNaT533BPNxFJUvXq1dGyZUvRMUjDZWZm4sCBA0hPT8eLFy9UrklxVuq1goKCMr8nTk5OghKJ89fzhYuLi5GVlYUtW7age/fuglJphubNm+Pnn38WHUNjnDx5UnQEjePi4oL4+PhSRXd8fDyaNWsmKJX6nThxQvnwn39P/mPTpk2iI3wwnOkmIiIqQ2RkJDw9PWFlZYWEhAQ4ODggLS0NxcXFcHFxkeSs1MOHDzF8+HAcPny4zOtSmoF5rWHDhiq/1tLSQq1atdCpUyfMmDEDRkZGgpKRJsvMzAQAyZ+YsWPHDkydOhUTJkxQnkt97tw5rFq1CgsXLoSdnZ3yXik+1PurGzduwMHBQXQM+i+w6CYiIipDy5Yt0b17d/j7+8PIyAixsbGQy+UYNGgQ3Nzc4O3tLTqi2g0aNAh3797FsmXL0KFDB+zduxf379/HvHnzsGTJEnb/J3qHoqIi5b+V1+cLGxkZwc/PDzNnzqxUnZg/lPf9P78+Hkpqy6rf9Oeff2Lbtm1Yv349Ll++LNnvQ2XH5eVERERliI+Px7Zt2wAAVapUQWFhIQwNDREQEICePXtKsug+ceIE9u/fD1dXV2hpacHS0hJdu3aFsbExFixYIKmiu0+fPu+9p0qVKqhduza6du0KDw8PNaQiTTZz5kyEhIRg4cKFaNu2LYCSvf9z5szBs2fPJHlWdWpqqugIGuvUqVMICQlBWFgY6tSpgz59+mDVqlWiY9F/iUU3ERFRGQwMDJR7ls3NzZGcnIymTZsCAB49eiQymjD5+fmQy+UAADMzMzx8+BCNGzeGo6Mjrly5IjidepmYmLz3nqKiIty+fRvr16/H5MmTERAQoIZkpKlCQ0Oxfv16eHp6KsecnJxQt25djB07VpJFt6WlpegIGuXevXvYtGkTQkJCkJubi6+//hrPnz/Hvn37YG9vLzoe/Q9YdBMREZWhdevWiI6Ohp2dHdzd3eHn54e4uDjs2bNHufdQamxtbZGYmIgGDRqgWbNmWLNmDRo0aIDg4GCYm5uLjqdWf6db7qFDhzB27FjJFN0vX75UdqXm/tP/yM7ORpMmTUqNN2nSBNnZ2QISiRcaGoqaNWsqV8lMnToVa9euhb29PbZt2yapotzDwwOnTp1Cjx49sGzZMri5uUFbWxvBwcGio9EHIL3NI0REROUQFBSEVq1aAQD8/f3RuXNn7NixAw0aNEBISIjgdGJMnDgRWVlZAIAffvgBhw8fhoWFBZYvX47AwEDB6TTX559/DldXV9Ex1KZq1aqwsLDg3tO/aNasGVauXFlqfOXKlZLq1P2mwMBA6OnpAQDOnj2LlStXYvHixahZsyZ8fX0Fp1Ovw4cPY+TIkfD390ePHj2U55bTx4GN1IiIiP5CoVAgJiYGTk5OMDU1FR1HqNzcXBgbG5d5raCgAAkJCbCwsEDNmjXVnIw0WUhICPbs2YMtW7Yoj0KSuqioKPTo0QMWFhZo06YNgJJCMyMjA+Hh4WjXrp3ghOqnr6+vfA+ZNm0asrKysHnzZty8eRMdOnTAw4cPRUdUm3PnziEkJAQ7duyAnZ0dhgwZggEDBsDc3ByxsbFcXl7JcaabiIjoL7S1tfHll1/iyZMnoqMIZ2ZmhgcPHgAAOnXqhJycHOU1fX19uLi4sOCmUlauXIlTp06hTp06sLW1hYuLi8p/UtS+fXskJSWhd+/eyMnJQU5ODvr06YPExERJFtwAYGhoiMePHwMAjh49iq5duwIAdHV1UVhYKDKa2rVu3Rrr1q1DVlYWvvvuO2zfvh116tRBUVERjh07hj///FN0RPofcE83ERFRGRwcHJCSklLqHGapef2hWC6X47fffsPLly9FR6JKoFevXqIjaJz09HTUr1+/zIZp6enpsLCwEJBKrK5du2LUqFFwdnZGUlIS3N3dAQA3b95EgwYNxIYTxMDAACNGjMCIESOQmJio7Hg/ffp0dO3aFQcOHBAdkf4LXF5ORERUhoiICMyYMQNz585FixYtYGBgoHL9bUuuPzZ9+/ZFTEwM7OzsEBUVhc8++ww6Ojpl3nvixAk1pyOqPLS1tZGVlaU8AeC11w+1pLgHPicnB99//z0yMjLg7e0NNzc3ACU9I3R0dDBz5kzBCTWDQqHAwYMHsWHDBhbdlRSLbiIiojJoaf1nB5ZMJlO+Li4uhkwmk8wH5MLCQoSGhiI5ORlLlizB6NGjoa+vX+a9S5cuVXM60mQ5OTnYvXs3kpOTMWXKFFSvXh1XrlzBJ598grp164qOp3ZaWlq4f/8+atWqpTJ+9+5d2NvbIz8/X1AyIqpoXF5ORERUhpMnT4qOoBH09PQwZswYAMClS5ewaNEiyTeXo/e7fv06unTpAhMTE6SlpWH06NGoXr069uzZg/T0dGzevFl0RLWZNGkSgJKHd7NmzVJ5aKVQKHD+/Hk0b95cUDrxTp8+jTVr1iAlJQW7du1C3bp1sWXLFjRs2BCff/656HhEHwSLbiIiojK0b99edASNwwcRVF6TJk3CsGHDsHjxYhgZGSnH3d3dMXDgQIHJ1O/q1asASlbJxMXFqWzP0NHRQbNmzTB58mRR8YQKCwvDkCFDMGjQIFy5cgXPnz8HADx9+hSBgYEIDw8XnJDow+DyciIiojJs3LgRhoaG6Nevn8r4rl27UFBQgKFDhwpKRqT5TExMcOXKFTRq1AhGRkaIjY2FlZUV7t69C1tbWzx79kx0RLUbPnw4/v3vf0umH0R5ODs7w9fXF15eXip/T65evYru3bvj3r17oiMSfRA8MoyIiKgMCxYsKPMoLLlcjsDAQAGJiCqPatWqITc3t9R4UlJSqT3NUrFs2TK8evWq1Hh2dnaZ3yspSExMxBdffFFq3MTEROV4QqLKjkU3ERFRGdLT08s8LszS0hLp6ekCEhFVHp6enggICFAeMSeTyZCeno5p06ahb9++gtOJMWDAAGzfvr3U+M6dOzFgwAABicSrXbs27ty5U2o8OjoaVlZWAhIRVQwW3URERGWQy+W4fv16qfHY2FjUqFFDQCKiymPJkiXIy8uDXC5HYWEh2rdvD2traxgZGZV5TrUUnD9/Hh07diw13qFDB5w/f15AIvFGjx6NiRMn4vz585DJZPjjjz/w888/Y/LkyfD29hYdj+iDYSM1IiKiMnzzzTfw8fGBkZGRcvljVFQUJk6cKNlZqbIeQgAls5i6urqwsLBAtWrV1JyKNJGJiQmOHTuG6OhoXL9+HXl5eXBxcUGXLl1ERxPm+fPnZS4vf/nyJQoLCwUkEm/69OkoKipC586dUVBQgC+++ALVqlXD5MmTMWHCBNHxiD4YNlIjIiIqw4sXLzBkyBDs2rULVaqUPKMuKiqCl5cXgoODVToQS4WWlpbKmeV/VbVqVfTv3x9r1qyBrq6uGpMRab6OHTvCwcEBK1asUBkfN24crl+/jtOnTwtKJoZCoUBMTAycnJygr6+PO3fuIC8vD/b29jA0NBQdj+iDYtFNRET0F8XFxcjIyECtWrWQmZmJa9euQU9PD46OjrC0tBQdT5j9+/dj2rRpmDJlClq2bAkAuHDhApYsWYIffvgBr169wvTp09G/f3/8+OOPgtOSui1fvrzc9/r4+FRgEs0UExODLl264NNPP0Xnzp0BAJGRkbh48SKOHj2Kdu3aCU6ofrq6uoiPjy+zfwbRx4RFNxER0V8UFRVBV1cXN2/ehI2Njeg4GqNly5aYO3cuunXrpjJ+5MgRzJo1CxcuXMC+ffvg5+eH5ORkQSlJlL8WTg8fPkRBQQFMTU0BADk5OdDX14dcLkdKSoqAhOJdu3YNixcvRmxsLPT09ODk5IQZM2ZI9n3G1dUVixYtUj6EIPpYcU83ERHRX2hpacHGxgaPHz+W7IfhssTFxZU5029paYm4uDgAQPPmzZGVlaXuaKQBUlNTla9/+eUX/PTTTwgJCYGtrS2AkuOhRo8eje+++05UROGaN2+OX375RXQMjTFv3jxMnjwZc+fORYsWLWBgYKBynWea08eCM91ERERlOHjwIBYvXozVq1fDwcFBdByN4OzsjGbNmmHt2rXKPe0vX77E6NGjERsbi6tXryImJgaDBw9WKcBIeho1aoTdu3fD2dlZZfzy5cv4xz/+Idm/H8nJydi4cSNSUlKwbNkyyOVyHD58GBYWFmjatKnoeGqnpfWfg5Te7BdRXFwMmUwGhUIhIhbRB8eZbiIiojJ4eXmhoKAAzZo1g46ODvT09FSuZ2dnC0omzqpVq+Dp6Yl69erByckJQMnst0KhwKFDhwAAKSkpGDt2rMiYpAGysrLK7NStUChw//59AYnEi4qKQvfu3dG2bVucOnUK8+bNg1wuR2xsLEJCQrB7927REdXu5MmToiMQqQVnuomIiMoQGhr6zutDhw5VUxLN8ueff+Lnn39GUlISAMDW1hYDBw6EkZGR4GSkSTw8PPD7779j/fr1cHFxAVAyy/3tt9+ibt26OHDggOCE6temTRv069cPkyZNgpGREWJjY2FlZYULFy6gT58+yMzMFB2RiCoIi24iIiIi+qAePnyIoUOHIiIiAlWrVgUAvHr1Ct26dcOmTZsgl8sFJ1Q/Q0NDxMXFoWHDhipFd1paGpo0aYJnz56JjiiUo6MjwsPDUb9+fdFRiD44Li8nIiL6/3Jzc5WNe3Jzc995r1Qb/Ny+fRsnT57EgwcPUFRUpHJt9uzZglKRpqlVqxbCw8ORlJSEhIQEAECTJk3QuHFjwcnEMTU1RVZWVqku71evXkXdunUFpdIcaWlpePnypegYRBWCRTcREdH/Z2ZmhqysLMjlcpiamqo09nlNyg1+1q1bB29vb9SsWRO1a9dW+f7IZDIW3VRK48aNJV1ov2nAgAGYNm0adu3aBZlMhqKiIsTExGDy5Mnw8vISHY+IKhCLbiIiov/vxIkTqF69OgA2+CnLvHnzMH/+fEybNk10FNJwCoUCmzZtQmRkZJmrIk6cOCEomTiBgYEYN24c6tevD4VCAXt7eygUCgwcOBDff/+96HjCtWvXrlTDSqKPBfd0ExER/U03btyQ5DFixsbGuHbtGqysrERHIQ03fvx4bNq0CT169IC5uXmpVSNLly4VlEy89PR03LhxA3l5eXB2doaNjY3oSERUwVh0ExERlcOff/6Jbdu2Yf369bh8+bIkl5ePHDkSn376KcaMGSM6Cmm4mjVrYvPmzXB3dxcdhTQc+0SQFHB5ORER0TucOnUKISEhCAsLQ506ddCnTx+sWrVKdCwhrK2tMWvWLJw7dw6Ojo7KrtSv+fj4CEpGmkZHRwfW1taiYwg3adIkzJ07FwYGBpg0adI77zU0NETTpk3xj3/8A9ra2mpKKBb7RJBUcKabiIjoL+7du4dNmzYhJCQEubm5+PrrrxEcHIzY2FjY29uLjifMX7suv0kmkyElJUWNaUiTLVmyBCkpKVi5cmWZDQmlomPHjti7dy9MTU3RsWPHd977/Plz3Lx5E7169UJoaKiaEoplaWmJsWPHsk8EffRYdBMREb3Bw8MDp06dQo8ePTBo0CC4ublBW1sbVatWlXzRTVRevXv3xsmTJ1G9enU0bdq01KqIPXv2CEqm2S5duoTOnTvj6dOnoqOoBftEkFRweTkREdEbDh8+DB8fH3h7e7PBEdF/ydTUFL179xYdo9JxcnLC5s2bRcdQm379+uHo0aPsE0EfPRbdREREb4iOjkZISAhatGgBOzs7DBkyBAMGDBAdS5i/syc1KChITalI023cuFF0BI2UmZmJAwcOID09HS9evFC5FhQUBB0dHfTs2VNQOvVjnwiSCi4vJyIiKkN+fj527NiBDRs24MKFC1AoFAgKCsKIESNgZGQkOp7alHdPqkwmk+TZy/RuDx8+RGJiIgDA1tYWtWrVEpxInMjISHh6esLKygoJCQlwcHBAWloaiouL4eLiIsl/P+wTQVLBopuIiOg9EhMTERISgi1btiAnJwddu3bFgQMHRMci0lj5+fmYMGECNm/erDwGSltbG15eXlixYgX09fUFJ1S/li1bonv37vD394eRkRFiY2Mhl8uVvSO8vb1FRySiCqIlOgAREZGms7W1xeLFi5GZmYlt27aJjiPMxo0bUVhYKDoGVQKTJk1CVFQUDh48iJycHOTk5GD//v2IioqCn5+f6HhCxMfHw8vLCwBQpUoVFBYWwtDQEAEBAVi0aJHgdOIVFxeDc4H0sWLRTUREVE7a2tro1auXZGe5p0+fjk8++QQjR47EmTNnRMchDRYWFoaQkBB0794dxsbGMDY2hru7O9atW4fdu3eLjieEgYGBch+3ubk5kpOTldcePXokKpZwmzdvhqOjI/T09KCnpwcnJyds2bJFdCyiD4pFNxEREZXL77//jtDQUDx69AgdOnRAkyZNsGjRIty7d090NNIwBQUF+OSTT0qNy+VyFBQUCEgkXuvWrREdHQ0AcHd3h5+fH+bPn48RI0agdevWgtOJERQUBG9vb7i7u2Pnzp3YuXMn3NzcMGbMGCxdulR0PKIPhnu6iYiI6G+7f/8+tm7ditDQUCQkJMDNzQ0jR46Eh4cHtLT4TF/qOnfujBo1amDz5s3Q1dUFABQWFmLo0KHIzs7G8ePHBSdUv5SUFOTl5cHJyQn5+fnw8/PDmTNnYGNjg6CgIFhaWoqOqHYNGzaEv7+/ctn9a6GhoZgzZw5SU1MFJSP6sFh0ExER0X/l/Pnz2LBhA0JDQ2Fubo4nT57AzMwMGzduRIcOHUTHI4Fu3LiBbt264fnz52jWrBkAIDY2Frq6ujhy5AiaNm0qOKF6KRQKxMTEwMnJCaampqLjaAxdXV3cuHED1tbWKuO3b9+Go6Mjnj17JigZ0YfFR9FERERUbvfv38ePP/6Ipk2bokOHDsjNzcWhQ4eQmpqK33//HV9//TWGDh0qOiYJ5uDggNu3b2PBggVo3rw5mjdvjoULF+L27duSK7iBkn4QX375JZ48eSI6ikaxtrbGzp07S43v2LEDNjY2AhIRVQzOdBMREVG5eHh44MiRI2jcuDFGjRoFLy8vVK9eXeWeBw8eoHbt2spjooiohKurKxYtWoTOnTuLjqIxwsLC0L9/f3Tp0gVt27YFAMTExCAyMhI7d+5E7969BSck+jCqiA5ARERElYNcLkdUVBTatGnz1ntq1arFfZgEoOR8+xUrViA+Ph4AYGdnh/Hjx6NJkyaCk4kxb948TJ48GXPnzkWLFi1gYGCgct3Y2FhQMnH69u2L8+fPY+nSpdi3bx+Akr8nFy5cgLOzs9hwRB8QZ7qJiIiI6IMKCwvDgAED4OrqqnxIc+7cOVy8eBHbt29H3759BSdUn4CAAPj5+cHIyEg5JpPJlK+Li4shk8mgUChExCMiNWDRTUREROWWn5+PqKgopKenK88cfs3Hx0dQKtI0jRo1wqBBgxAQEKAy/sMPP2Dr1q0qZ1R/7LS1tZGVlaWc8X+b9u3bqykREakbi24iIiIql6tXr8Ld3R0FBQXIz89H9erV8ejRI+jr60MulyMlJUV0RNIQ+vr6uH79epldqZs1ayaps7q1tLRw7949yOVy0VE0hpaWlspsf1lkMhlevXqlpkREFYt7uomIiKhcfH194eHhgeDgYJiYmODcuXOoWrUqBg8ejIkTJ4qORxqkQ4cOOH36dKmiOzo6Gu3atROUSpz3FZhSs3fv3rdeO3v2LJYvX85mjPRR4Uw3ERERlYupqSnOnz8PW1tbmJqa4uzZs7Czs8P58+cxdOhQJCQkiI5IGiI4OBizZ8/G119/jdatWwMo2dO9a9cu+Pv7o06dOsp7PT09RcVUCy0tLZiYmLy38M7OzlZTIs2UmJiI6dOn4+DBg8qtCZaWlqJjEX0QnOkmIiKicqlatSq0tLQAlHQyT09Ph52dHUxMTJCRkSE4HWmSsWPHAgB++ukn/PTTT2VeAyCZBmL+/v4wMTERHUMj/fHHH/jhhx8QGhqKbt264dq1a3BwcBAdi+iDYtFNRERE5eLs7IyLFy/CxsYG7du3x+zZs/Ho0SNs2bKFH5JJBZcGqxowYAD3dP/F06dPERgYiBUrVqB58+aIjIyU5NYDkgYt0QGIiIiocggMDIS5uTkAYP78+TAzM4O3tzcePnyItWvXCk5Hmi4nJ0d0BCG4n7u0xYsXw8rKCocOHcK2bdtw5swZFtz0UeOebiIiIiL6oBYtWoQGDRqgf//+AIB+/fohLCwM5ubmCA8PR7NmzQQnVB92Ly9NS0sLenp66NKlC7S1td963549e9SYiqjicHk5EREREX1QwcHB+PnnnwEAx44dw/HjxxEREYGdO3diypQpOHr0qOCE6sOl9qV5eXlxBQBJCme6iYiI6K2cnZ3L/eH4ypUrFZyGKgs9PT0kJSWhfv36mDhxIp49e4Y1a9YgKSkJrVq1wpMnT0RHJCJSG850ExER0Vv16tVLdASqhMzMzJCRkYH69esjIiIC8+bNAwAUFxdLols5EdGbWHQTERHRW/3www+iI1Al1KdPHwwcOBA2NjZ4/PgxunfvDgC4evUqrK2tBacjIlIvFt1ERET0t1y6dAnx8fEAAHt7e7Ro0UJwItI0S5cuRYMGDZCRkYHFixfD0NAQAJCVlaVyTjcRkRRwTzcRERGVS2ZmJr755hvExMTA1NQUQMkxUJ999hm2b9+OevXqiQ1IRESkgVh0ExERUbm4ubkhJycHoaGhsLW1BQAkJiZi+PDhMDY2RkREhOCEpElu376NkydP4sGDB6U6eM+ePVtQKiIi9WPRTUREROWip6eHM2fOwNnZWWX88uXLaNeuHQoKCgQlI02zbt06eHt7o2bNmqhdu7ZKB3yZTMZO90QkKdzTTUREROVSv359vHz5stS4QqFAnTp1BCQiTTVv3jzMnz8f06ZNEx2FiEg4LdEBiIiIqHL417/+hQkTJuDSpUvKsUuXLmHixIn48ccfBSYjTfPkyRP069dPdAwiIo3A5eVERERULmZmZigoKMCrV69QpUrJYrnXrw0MDFTuzc7OFhGRNMTIkSPx6aefYsyYMaKjEBEJx+XlREREVC7Lli0THYEqCWtra8yaNQvnzp2Do6MjqlatqnLdx8dHUDIiIvXjTDcRERERfVANGzZ86zWZTIaUlBQ1piEiEotFNxEREZXLlStXULVqVTg6OgIA9u/fj40bN8Le3h5z5syBjo6O4IRERESah43UiIiIqFy+++47JCUlAQBSUlLQv39/6OvrY9euXZg6dargdERERJqJM91ERERULiYmJrhy5QoaNWqERYsW4cSJEzhy5AhiYmIwYMAAZGRkiI5IGiQzMxMHDhxAeno6Xrx4oXItKChIUCoiIvVjIzUiIiIql+LiYhQVFQEAjh8/jq+++gpAyfndjx49EhmNNExkZCQ8PT1hZWWFhIQEODg4IC0tDcXFxXBxcREdj4hIrbi8nIiIiMrF1dUV8+bNw5YtWxAVFYUePXoAAFJTU/HJJ58ITkeaZMaMGZg8eTLi4uKgq6uLsLAwZGRkoH379jy/m4gkh0U3ERERlcuyZctw5coVjB8/HjNnzoS1tTUAYPfu3fjss88EpyNNEh8fDy8vLwBAlSpVUFhYCENDQwQEBGDRokWC0xERqReXlxMREVG5ODk5IS4urtT4v/71L2hrawtIRJrKwMBAuY/b3NwcycnJaNq0KQBwKwIRSQ6LbiIiIvqf6Orqio5AGqZ169aIjo6GnZ0d3N3d4efnh7i4OOzZswetW7cWHY+ISK3YvZyIiIjeqnr16khKSkLNmjVhZmYGmUz21nuzs7PVmIw0WUpKCvLy8uDk5IT8/Hz4+fnhzJkzsLGxQVBQECwtLUVHJCJSG850ExER0VstXboURkZGAEr2dBO9j0KhQGZmJpycnACULDUPDg4WnIqISBzOdBMRERHRB6Wrq4v4+Hg0bNhQdBQiIuE4001ERERvlZubW+57jY2NKzAJVSYODg5ISUlh0U1EBM50ExER0TtoaWm9cx/3mxQKRQWnocoiIiICM2bMwNy5c9GiRQsYGBioXOcDGiKSEhbdRERE9FZRUVHK12lpaZg+fTqGDRuGNm3aAADOnj2L0NBQLFiwAEOHDhUVkzREQEAA/Pz8lH0AAKg8tCkuLoZMJuMDGiKSFBbdREREVC6dO3fGqFGj8M0336iM//LLL1i7di1+++03McFIY2hrayMrKwvx8fHvvK99+/ZqSkREJB6LbiIiIioXfX19xMbGwsbGRmU8KSkJzZs3R0FBgaBkpCm0tLRw7949yOVy0VGIiDSGlugAREREVDnUr18f69atKzW+fv161K9fX0Ai0kTl7QFARCQVnOkmIiKicgkPD0ffvn1hbW2NVq1aAQAuXLiA27dvIywsDO7u7oITkmhaWlowMTF5b+GdnZ2tpkREROKx6CYiIqJyy8zMxOrVq5V7du3s7DBmzBjOdBOAkqJ72bJlMDExeed9bLpHRFLCopuIiIiIPgju6SYiKo17uomIiIjog+B+biKi0lh0ExEREdEHwQWURESlcXk5ERERERERUQXhTDcRERERERFRBWHRTUREROXSqVMn5OTklBrPzc1Fp06d1B+IiIioEuDyciIiIiqXt3WmfvDgAerWrYuXL18KSkZERKS5qogOQERERJrt+vXryte3bt3CvXv3lL9WKBSIiIhA3bp1RUQjIiLSeJzpJiIionfS0tJSHgVV1scGPT09rFixAiNGjFB3NCIiIo3HopuIiIjeKjc3F9nZ2QAAKysrXLhwAbVq1VJe19HRgVwuh7a2tqiIREREGo3Ly4mIiOitzMzMkJWVBblcjvbt28Pa2hqmpqaiYxEREVUa7F5OREREb2VoaIjHjx8DAE6dOsVmaURERH8TZ7qJiIjorbp06YKOHTvCzs4OxcXF6N27N3R0dMq898SJE2pOR0REpPlYdBMREdFbbd26FaGhoUhOTkZUVBSaNm0KfX190bGIiIgqDTZSIyIionLp2LEj9u7dyz3dREREfwOLbiIiIiIiIqIKwuXlREREVG6ZmZk4cOAA0tPT8eLFC5VrQUFBglIRERFpLhbdREREVC6RkZHw9PSElZUVEhIS4ODggLS0NBQXF8PFxUV0PCIiIo3EI8OIiIioXGbMmIHJkycjLi4Ourq6CAsLQ0ZGBtq3b49+/fqJjkdERKSRuKebiIiIysXIyAjXrl1Do0aNYGZmhujoaDRt2hSxsbHo2bMn0tLSREckIiLSOJzpJiIionIxMDBQ7uM2NzdHcnKy8tqjR49ExSIiItJo3NNNRERE5dK6dWtER0fDzs4O7u7u8PPzQ1xcHPbs2YPWrVuLjkdERKSRuLyciIiIyiUlJQV5eXlwcnJCfn4+/Pz8cObMGdjY2CAoKAiWlpaiIxIREWkcFt1ERET0XgqFAjExMXBycoKpqanoOERERJUGi24iIiIqF11dXcTHx6Nhw4aioxAREVUabKRGRERE5eLg4ICUlBTRMYiIiCoVznQTERFRuURERGDGjBmYO3cuWrRoAQMDA5XrxsbGgpIRERFpLhbdREREVC5aWv9ZICeTyZSvi4uLIZPJoFAoRMQiIiLSaDwyjIiIiMrl5MmToiMQERFVOpzpJiIiIiIiIqogbKRGRERE5bJx40bs2rWr1PiuXbsQGhoqIBEREZHmY9FNRERE5bJgwQLUrFmz1LhcLkdgYKCARERERJqPRTcRERGVS3p6eplndFtaWiI9PV1AIiIiIs3HopuIiIjKRS6X4/r166XGY2NjUaNGDQGJiIiINB+LbiIiIiqXb775Bj4+Pjh58iQUCgUUCgVOnDiBiRMnYsCAAaLjERERaSR2LyciIqJyefHiBYYMGYJdu3ahSpWSU0eLiorg5eWF4OBg6OjoCE5IRESkeVh0ExER0XsVFxcjIyMDtWrVQmZmJq5duwY9PT04OjrC0tJSdDwiIiKNxaKbiIiI3quoqAi6urq4efMmbGxsRMchIiKqNLinm4iIiN5LS0sLNjY2ePz4segoRERElQqLbiIiIiqXhQsXYsqUKbhx44boKERERJUGl5cTERFRuZiZmaGgoACvXr2Cjo4O9PT0VK5nZ2cLSkZERKS5qogOQERERJXDsmXLREcgIiKqdDjTTURERERERFRBONNNREREb5WbmwtjY2Pl63d5fR8RERH9B2e6iYiI6K20tbWRlZUFuVwOLS0tyGSyUvcUFxdDJpNBoVAISEhERKTZONNNREREb3XixAlUr14dAHDy5EnBaYiIiCofznQTERHR/+zGjRtwcHAQHYOIiEjj8JxuIiIi+q/8+eefWLt2LVq2bIlmzZqJjkNERKSRWHQTERHR33Lq1CkMHToU5ubm+PHHH9GpUyecO3dOdCwiIiKNxD3dRERE9F737t3Dpk2bEBISgtzcXHz99dd4/vw59u3bB3t7e9HxiIiINBZnuomIiOidPDw8YGtri+vXr2PZsmX4448/sGLFCtGxiIiIKgXOdBMREdE7HT58GD4+PvD29oaNjY3oOERERJUKZ7qJiIjonaKjo/Hnn3+iRYsWaNWqFVauXIlHjx6JjkVERFQp8MgwIiIiKpf8/Hzs2LEDGzZswIULF6BQKBAUFIQRI0bAyMhIdDwiIiKNxKKbiIiI/rbExESEhIRgy5YtyMnJQdeuXXHgwAHRsYiIiDQOi24iIiL6rykUChw8eBAbNmxg0U1ERFQGFt1EREREREREFYSN1IiIiIiIiIgqCItuIiIiIiIiogrCopuIiIiIiIiogrDoJiIiIiIiIqogLLqJiIiIPgLDhg1Dr169lL/u0KED/vnPf6o9x2+//QaZTIacnBy1f20iIk3EopuIiIioAg0bNgwymQwymQw6OjqwtrZGQEAAXr16VaFfd8+ePZg7d2657mWhTERUcaqIDkBERET0sXNzc8PGjRvx/PlzhIeHY9y4cahatSpmzJihct+LFy+go6PzQb5m9erVP8ifQ0RE/xvOdBMRERFVsGrVqqF27dqwtLSEt7c3unTpggMHDiiXhM+fPx916tSBra0tACAjIwNff/01TE1NUb16dfTs2RNpaWnKP0+hUGDSpEkwNTVFjRo1MHXqVBQXF6t8zb8uL3/+/DmmTZuG+vXro1q1arC2tkZISAjS0tLQsWNHAICZmRlkMhmGDRsGACgqKsKCBQvQsGFD6OnpoVmzZti9e7fK1wkPD0fjxo2hp6eHjh07quQkIiIW3URERERqp6enhxcvXgAAIiMjkZiYiGPHjuHQoUN4+fIlunXrBiMjI5w+fRoxMTEwNDSEm5ub8vcsWbIEmzZtwoYNGxAdHY3s7Gzs3bv3nV/Ty8sL27Ztw/LlyxEfH481a9bA0NAQ9evXR1hYGAAgMTERWVlZ+Pe//w0AWLBgATZv3ozg4GDcvHkTvr6+GDx4MKKiogCUPBzo06cPPDw8cO3aNYwaNQrTp0+vqG8bEVGlxOXlRERERGpSXFyMyMhIHDlyBBMmTMDDhw9hYGCA9evXK5eVb926FUVFRVi/fj1kMhkAYOPGjTA1NcVvv/2GL7/8EsuWLcOMGTPQp08fAEBwcDCOHDny1q+blJSEnTt34tixY+jSpQsAwMrKSnn99VJ0uVwOU1NTACUz44GBgTh+/DjatGmj/D3R0dFYs2YN2rdvj9WrV6NRo0ZYsmQJAMDW1hZxcXFYtGjRB/yuERFVbiy6iYiIiCrYoUOHYGhoiJcvX6KoqAgDBw7EnDlzMG7cODg6Oqrs446NjcWdO3dgZGSk8mc8e/YMycnJePr0KbKystCqVSvltSpVqsDV1bXUEvPXrl27Bm1tbbRv377cme/cuYOCggJ07dpVZfzFixdwdnYGAMTHx6vkAKAs0ImIqASLbiIiIqIK1rFjR6xevRo6OjqoU6cOqlT5z0cwAwMDlXvz8vLQokUL/Pzzz6X+nFq1av1XX19PT+9v/568vDwAwK+//oq6deuqXKtWrdp/lYOISIpYdBMRERFVMAMDA1hbW5frXhcXF+zYsQNyuRzGxsZl3mNubo7z58/jiy++AAC8evUKly9fhouLS5n3Ozo6oqioCFFRUcrl5W96PdOuUCiUY/b29qhWrRrS09PfOkNuZ2eHAwcOqIydO3fu/f+TREQSwkZqRERERBpk0KBBqFmzJnr27InTp08jNTUVv/32G3x8fJCZmQkAmDhxIhYuXIh9+/YhISEBY8eOfecZ2w0aNMDQoUMxYsQI7Nu3T/ln7ty5EwBgaWkJmUyGQ4cO4eHDh8jLy4ORkREmT54MX19fhIaGIjk5GVeuXMGKFSsQGhoKABgzZgxu376NKVOmIDExEb/88gs2bdpU0d8iIqJKhUU3ERERkQbR19fHqVOnYGFhgT59+sDOzg4jR47Es2fPlDPffn5+GDJkCIYOHYo2bdrAyMgIvXv3fuefu3r1avzjH//A2LFj0aRJE4wePRr5+fkAgLp168Lf3x/Tp0/HJ598gvHjxwMA5s6di1mzZmHBggWws7ODm5sbfv31VzRs2BAAYGFhgbCwMOzbtw/NmjVDcHAwAgMDK/C7Q0RU+ciK39Zxg4iIiIiIiIj+J5zpJiIiIiIiIqogLLqJiIiIiIiIKgiLbiIiIiIiIqIKwqKbiIiIiIiIqIKw6CYiIiIiIiKqICy6iYiIiIiIiCoIi24iIiIiIiKiCsKim4iIiIiIiKiCsOgmIiIiIiIiqiAsuomIiIiIiIgqCItuIiIiIiIiogrCopuIiIiIiIiogvw/qXSBqd4zAmUAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Classification Report:\n", " precision recall f1-score support\n", "\n", " 0 1.00 1.00 1.00 4057\n", " 1 0.97 0.99 0.98 19920\n", " 2 0.97 0.78 0.87 415\n", " 3 0.84 0.99 0.91 2275\n", " 4 1.00 0.77 0.87 1903\n", " 5 1.00 1.00 1.00 2751\n", " 6 0.95 0.97 0.96 1363\n", " 7 1.00 0.99 0.99 2781\n", " 8 0.98 0.97 0.97 948\n", " 9 0.95 0.34 0.50 317\n", "\n", " accuracy 0.97 36730\n", " macro avg 0.97 0.88 0.91 36730\n", "weighted avg 0.97 0.97 0.97 36730\n", "\n" ] } ], "source": [ "class_labels = ['Ghost injection', 'No attack', 'Aircraft standing still',\n", " 'Aircraft displaying false information', 'Jumping aircraft',\n", " 'Transponder code alteration', 'Trajectory modification',\n", " 'Non-responsive aircraft', 'Aircraft spoofing', 'Message Delay']\n", "\n", "# Calculate accuracy\n", "accuracy = accuracy_score(y_test, new_predictions)\n", "print(f'Accuracy: {accuracy * 100:.2f}%')\n", "\n", "# Confusion Matrix\n", "cm = confusion_matrix(y_test, new_predictions)\n", "print('Confusion Matrix:')\n", "\n", "# Calculate percentage for each cell in the confusion matrix\n", "cm_percent = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] * 100\n", "\n", "# Combine the count and percentage into a single annotation, skipping zero values\n", "annot = np.empty_like(cm).astype(str)\n", "nrows, ncols = cm.shape\n", "for i in range(nrows):\n", " for j in range(ncols):\n", " # Display both count and percentage only if count is greater than 0\n", " if cm[i, j] > 0:\n", " annot[i, j] = f'{cm[i, j]}\\n({cm_percent[i, j]:.2f}%)'\n", " else:\n", " annot[i, j] = '' # Leave the cell empty if the count is zero\n", "\n", "# Plot the confusion matrix with counts and percentages, skipping zero values\n", "plt.figure(figsize=(10, 7)) # Adjust figure size if necessary\n", "sns.heatmap(cm, annot=annot, fmt='', cmap='Blues', xticklabels=class_labels, yticklabels=class_labels, cbar=False)\n", "\n", "# Add labels and title\n", "plt.title('Confusion Matrix')\n", "plt.xlabel('Predicted')\n", "plt.ylabel('Actual')\n", "\n", "# Display the plot\n", "plt.tight_layout()\n", "plt.show()\n", "\n", "# Classification Report\n", "report = classification_report(y_test, new_predictions)\n", "print('Classification Report:')\n", "print(report)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# NODE" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch [1/10], Loss: 1.1116, Train Accuracy: 0.7202, Val Accuracy: 0.8930\n", "Epoch [2/10], Loss: 0.4723, Train Accuracy: 0.9023, Val Accuracy: 0.9137\n", "Epoch [3/10], Loss: 0.3761, Train Accuracy: 0.9223, Val Accuracy: 0.9341\n", "Epoch [4/10], Loss: 0.3270, Train Accuracy: 0.9334, Val Accuracy: 0.9388\n", "Epoch [5/10], Loss: 0.2914, Train Accuracy: 0.9394, Val Accuracy: 0.8840\n", "Epoch [6/10], Loss: 0.2744, Train Accuracy: 0.9429, Val Accuracy: 0.9435\n", "Epoch [7/10], Loss: 0.2595, Train Accuracy: 0.9464, Val Accuracy: 0.9264\n", "Epoch [8/10], Loss: 0.2479, Train Accuracy: 0.9484, Val Accuracy: 0.9530\n", "Epoch [9/10], Loss: 0.2319, Train Accuracy: 0.9503, Val Accuracy: 0.9535\n", "Epoch [10/10], Loss: 0.2284, Train Accuracy: 0.9527, Val Accuracy: 0.9510\n" ] } ], "source": [ "import torch\n", "import torch.nn as nn\n", "import torch.optim as optim\n", "from torch.utils.data import DataLoader, TensorDataset, random_split\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "from sklearn.preprocessing import StandardScaler, LabelEncoder\n", "import torch.nn.functional as F\n", "\n", "# Load data with categorical handling and scaling\n", "def load_data(file_path, target_column, categorical_columns):\n", " df = pd.read_csv(file_path)\n", " \n", " # One-hot encode categorical columns\n", " df = pd.get_dummies(df, columns=categorical_columns, drop_first=True)\n", " \n", " # Separate features and target\n", " X = df.drop(target_column, axis=1)\n", " y = df[target_column]\n", " \n", " # Encode the target if it's categorical\n", " label_encoder = LabelEncoder()\n", " y = label_encoder.fit_transform(y)\n", " \n", " # Scale the features\n", " scaler = StandardScaler()\n", " X = scaler.fit_transform(X)\n", " \n", " return torch.tensor(X, dtype=torch.float32), torch.tensor(y, dtype=torch.long)\n", "\n", "# Load your dataset\n", "file_path = 'preprocessed_data.csv' # Update this path\n", "target_column = 'attackType_mapped' # Update with your target column name\n", "categorical_columns = ['callsign'] # Update with actual categorical columns\n", "\n", "X, y = load_data(file_path, target_column, categorical_columns)\n", "\n", "# Create a TensorDataset\n", "dataset = TensorDataset(X, y)\n", "\n", "# Split the dataset into training and validation sets\n", "train_size = int(0.8 * len(dataset))\n", "val_size = len(dataset) - train_size\n", "train_dataset, val_dataset = random_split(dataset, [train_size, val_size])\n", "\n", "# Create DataLoaders\n", "batch_size = 64\n", "train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)\n", "val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)\n", "\n", "\n", "class NODELayer(nn.Module):\n", " def __init__(self, input_dim, num_trees, depth, tree_dim):\n", " super(NODELayer, self).__init__()\n", " self.num_trees = num_trees\n", " self.depth = depth\n", " \n", " self.weights = nn.Parameter(torch.randn(num_trees, input_dim)) # Shape: (num_trees, input_dim)\n", " self.thresholds = nn.Parameter(torch.randn(num_trees, depth)) # Shape: (num_trees, depth)\n", " self.tree_dim = tree_dim \n", "\n", " def forward(self, x):\n", " outputs = torch.zeros(x.size(0), self.num_trees, self.tree_dim).to(x.device)\n", " \n", " for i in range(self.num_trees):\n", " weight = self.weights[i].unsqueeze(0) # Shape: (1, input_dim)\n", " thresholds = self.thresholds[i] # Shape: (depth)\n", " \n", " for d in range(self.depth):\n", " left_indices = (x @ weight.T < thresholds[d]).squeeze() # Condition for left split\n", "\n", " # Ensure left_indices is a 1D tensor for proper indexing\n", " if left_indices.dim() == 0:\n", " left_indices = left_indices.unsqueeze(0)\n", " \n", " right_indices = ~left_indices\n", " \n", " # Update outputs for left and right children\n", " outputs[left_indices, i] = F.relu(x[left_indices] @ weight.T) # Left child\n", " outputs[right_indices, i] = F.relu(x[right_indices] @ weight.T) # Right child\n", " \n", " return outputs.view(x.size(0), -1) # Flatten the output\n", "\n", " \n", "class NODEModel(nn.Module):\n", " def __init__(self, input_dim, num_layers, num_trees, depth, tree_dim, output_dim):\n", " super(NODEModel, self).__init__()\n", " self.layers = nn.ModuleList(\n", " [NODELayer(input_dim, num_trees, depth, tree_dim) for _ in range(num_layers)]\n", " )\n", " \n", " self.intermediate_fc = nn.Linear(tree_dim * num_trees, 128) # Adjust based on output size\n", " self.fc = nn.Linear(128, output_dim) # Transform 128 to 10 for classification\n", "\n", " def forward(self, x):\n", " for layer in self.layers:\n", " x = layer(x)\n", " x = self.intermediate_fc(x)\n", " return self.fc(x)\n", "\n", "# Update input_dim based on actual feature count\n", "input_dim = X.shape[1]\n", "num_layers = 1\n", "num_trees = 15\n", "depth = 3\n", "tree_dim = 4\n", "output_dim = 10\n", "\n", "model = NODEModel(input_dim, num_layers, num_trees, depth, tree_dim, output_dim)\n", "\n", "# Set device (CPU or GPU)\n", "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", "model.to(device)\n", "\n", "# Define loss function and optimizer\n", "criterion = nn.CrossEntropyLoss()\n", "optimizer = optim.Adam(model.parameters(), lr=0.001)\n", "\n", "# Initialize lists to store scores\n", "train_accuracies = []\n", "val_accuracies = []\n", "num_epochs = 10 # Set the number of epochs\n", "\n", "\n", "# Training loop\n", "for epoch in range(num_epochs):\n", " model.train() # Set the model to training mode\n", " total_loss = 0\n", " correct = 0\n", "\n", " for batch_X, batch_y in train_loader:\n", " batch_X, batch_y = batch_X.to(device), batch_y.to(device)\n", "\n", " optimizer.zero_grad() # Zero the gradients\n", " outputs = model(batch_X) # Forward pass\n", " loss = criterion(outputs, batch_y) # Calculate loss\n", " loss.backward() # Backward pass\n", " optimizer.step() # Update weights\n", "\n", " total_loss += loss.item() # Accumulate loss\n", " _, predicted = torch.max(outputs.data, 1)\n", " correct += (predicted == batch_y).sum().item() # Count correct predictions\n", "\n", " average_loss = total_loss / len(train_loader)\n", " train_accuracy = correct / len(train_loader.dataset)\n", " train_accuracies.append(train_accuracy)\n", "\n", " # Validation\n", " model.eval() # Set the model to evaluation mode\n", " val_correct = 0\n", " with torch.no_grad():\n", " for batch_X, batch_y in val_loader:\n", " batch_X, batch_y = batch_X.to(device), batch_y.to(device)\n", " val_outputs = model(batch_X)\n", " _, val_predicted = torch.max(val_outputs.data, 1)\n", " val_correct += (val_predicted == batch_y).sum().item() # Count correct predictions\n", "\n", " val_accuracy = val_correct / len(val_loader.dataset)\n", " val_accuracies.append(val_accuracy)\n", "\n", " print(f\"Epoch [{epoch + 1}/{num_epochs}], Loss: {average_loss:.4f}, Train Accuracy: {train_accuracy:.4f}, Val Accuracy: {val_accuracy:.4f}\")\n", "\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAHWCAYAAACbsXOkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACVP0lEQVR4nOzdd3xUVfrH8c/MpHdKQgiG0DvSq1IsSFEELDSp1vUnu7qsqyIqoqvoWhbb6q5LR6RYECwIIqgUQaogvUMIHdLrzP39cZNJQgIkkGRmku/79bovZs7ce+eZmQvMM+ec51gMwzAQERERERGRa2J1dQAiIiIiIiLlgZIrERERERGREqDkSkREREREpAQouRIRERERESkBSq5ERERERERKgJIrERERERGREqDkSkREREREpAQouRIRERERESkBSq5ERERERERKgJIrERE3MGrUKGrVqnVVx7744otYLJaSDaicKuy9qlWrFqNGjbrisdOnT8disXDo0KESi+fQoUNYLBamT59eYucUERHXUXIlInIZFoulSNvKlStdHWq5curUKby8vBg2bNgl90lMTMTf35+77rqrDCO7OnPmzGHy5MmuDuOSBg4ciMVi4emnn3Z1KCIiHs3L1QGIiLizWbNm5bs/c+ZMli1bVqC9cePG1/Q8H3/8MQ6H46qOfe6553jmmWeu6fndTUREBD169OCrr74iJSWFgICAAvt88cUXpKWlXTYBK4rdu3djtZbub41z5sxh+/btPPHEE/naY2JiSE1Nxdvbu1Sf/3ISEhJYvHgxtWrV4tNPP+W1115TT6iIyFVSciUichkXf3H/9ddfWbZs2RW/0F8qIbiUa/ly7eXlhZdX+fvn/L777mPJkiUsWrSIwYMHF3h8zpw5hIaGcvvtt1/T8/j6+l7T8dfCYrHg5+fnsucH+Pzzz7Hb7UydOpWbb76Zn3/+mW7durk0psIYhkFaWhr+/v6uDkVE5JI0LFBE5Bp1796dZs2asXHjRrp27UpAQADPPvssAF999RW33347UVFR+Pr6UrduXV5++WXsdnu+c1w85ypnLs6bb77Jf//7X+rWrYuvry/t2rXjt99+y3dsYfOILBYLY8aMYeHChTRr1gxfX1+aNm3KkiVLCsS/cuVK2rZti5+fH3Xr1uU///lPkeZxjRkzhqCgIFJSUgo8NmTIECIjI52vc8OGDfTs2ZOqVavi7+9P7dq1uf/++y97/gEDBhAYGMicOXMKPHbq1CmWL1/OPffcg6+vL7/88gv33nsvNWvWxNfXl+joaP7617+Smpp62eeAwudc/fHHH9x88834+/tz3XXX8Y9//KPQnsWifL7du3fnm2++4fDhw85hpDmf9aXmXP3444906dKFwMBAwsLC6NevHzt37sy3T85ntG/fPkaNGkVYWBihoaGMHj260M/kUj755BN69OjBTTfdROPGjfnkk08K3W/Xrl0MHDiQ8PBw/P39adiwIePHj8+3T2xsLA888IDz/ahduzaPPvooGRkZ+WK+WGHz2WrVqsUdd9zB999/T9u2bfH39+c///kPANOmTePmm28mIiICX19fmjRpwocfflho3N999x3dunUjODiYkJAQ2rVr57ymJkyYgLe3N6dPny5w3MMPP0xYWBhpaWlXfhNFRLKVv586RURc4OzZs/Tu3ZvBgwczbNgwqlWrBphfGoOCghg7dixBQUH8+OOPvPDCCyQkJPDGG29c8bxz5swhMTGRRx55BIvFwj//+U/uuusuDhw4cMXerlWrVvHFF1/wf//3fwQHB/Puu+9y9913c+TIEapUqQLA5s2b6dWrF9WrV2fixInY7XZeeuklwsPDrxjboEGD+OCDD/jmm2+49957ne0pKSksXryYUaNGYbPZOHXqFLfddhvh4eE888wzhIWFcejQIb744ovLnj8wMJB+/frx2Wefce7cOSpXrux8bN68edjtdu677z4AFixYQEpKCo8++ihVqlRh/fr1vPfeexw7dowFCxZc8bXkdeLECW666SaysrJ45plnCAwM5L///W+hPSZF+XzHjx9PfHw8x44d41//+hcAQUFBl3z+H374gd69e1OnTh1efPFFUlNTee+997jhhhvYtGlTgcInAwcOpHbt2kyaNIlNmzbxv//9j4iICF5//fUrvtbjx4+zYsUKZsyYAZhJ8b/+9S/ef/99fHx8nPv9/vvvdOnSBW9vbx5++GFq1arF/v37Wbx4Ma+88orzXO3bt+fChQs8/PDDNGrUiNjYWD777DNSUlLyna+odu/ezZAhQ3jkkUd46KGHaNiwIQAffvghTZs25c4778TLy4vFixfzf//3fzgcDh577DHn8dOnT+f++++nadOmjBs3jrCwMDZv3sySJUsYOnQow4cP56WXXmLevHmMGTPGeVxGRgafffYZd999t8t7FkXEwxgiIlJkjz32mHHxP53dunUzAOOjjz4qsH9KSkqBtkceecQICAgw0tLSnG0jR440YmJinPcPHjxoAEaVKlWMc+fOOdu/+uorAzAWL17sbJswYUKBmADDx8fH2Ldvn7Nt69atBmC89957zra+ffsaAQEBRmxsrLNt7969hpeXV4FzXszhcBg1atQw7r777nzt8+fPNwDj559/NgzDML788ksDMH777bfLnq8w33zzjQEY//nPf/K1d+zY0ahRo4Zht9sNwyj8fZ40aZJhsViMw4cPO9sKe69iYmKMkSNHOu8/8cQTBmCsW7fO2Xbq1CkjNDTUAIyDBw8624v6+d5+++35Pt8cOZ/ztGnTnG0tW7Y0IiIijLNnzzrbtm7dalitVmPEiBEFXsv999+f75wDBgwwqlSpUuC5CvPmm28a/v7+RkJCgmEYhrFnzx4DML788st8+3Xt2tUIDg7O914ahnkN5BgxYoRhtVoL/Zxz9ivs/TcMw5g2bVqB9zYmJsYAjCVLlhTYv7D3vWfPnkadOnWc9y9cuGAEBwcbHTp0MFJTUy8Zd6dOnYwOHTrke/yLL74wAGPFihUFnkdE5HI0LFBEpAT4+voyevToAu15ezsSExM5c+YMXbp0ISUlhV27dl3xvIMGDaJSpUrO+126dAHgwIEDVzz21ltvpW7dus77119/PSEhIc5j7XY7P/zwA/379ycqKsq5X7169ejdu/cVz2+xWLj33nv59ttvSUpKcrbPmzePGjVqcOONNwIQFhYGwNdff01mZuYVz5tXTo9X3qGBBw8e5Ndff2XIkCHOQhR53+fk5GTOnDlD586dMQyDzZs3F+s5v/32Wzp27Ej79u2dbeHh4c5esryu9fO9WFxcHFu2bGHUqFH5euquv/56evTowbffflvgmD/96U/57nfp0oWzZ8+SkJBwxef75JNPuP322wkODgagfv36tGnTJt/QwNOnT/Pzzz9z//33U7NmzXzH5wzxczgcLFy4kL59+9K2bdsCz3O1BTJq165Nz549C7Tnfd/j4+M5c+YM3bp148CBA8THxwOwbNkyEhMTeeaZZwr0PuWNZ8SIEaxbt479+/c72z755BOio6Pdcu6ZiLg3JVciIiWgRo0ahQ57+uOPPxgwYAChoaGEhIQQHh7uLIaR8yXwci7+MpuTaJ0/f77Yx+Ycn3PsqVOnSE1NpV69egX2K6ytMIMGDSI1NZVFixYBkJSUxLfffsu9997r/ALbrVs37r77biZOnEjVqlXp168f06ZNIz09/Yrn9/LyYtCgQfzyyy/ExsYCOBOtvMnOkSNHnAlJUFAQ4eHhzi/GRXmf8zp8+DD169cv0J4zJC2va/18C3vuSz1X48aNOXPmDMnJyfnar/Ya2blzJ5s3b+aGG25g3759zq179+58/fXXzuQsJxlv1qzZJc91+vRpEhISLrvP1ahdu3ah7atXr+bWW291zkkLDw93znPMed9zkqUrxTRo0CB8fX2dCWV8fDxff/019913n6omikixKbkSESkBhc3HuXDhAt26dWPr1q289NJLLF68mGXLljnnwhSl9LrNZiu03TCMUj22qDp27EitWrWYP38+AIsXLyY1NZVBgwY597FYLHz22WesXbuWMWPGEBsby/3330+bNm3y9XhdyrBhw3A4HHz66acAfPrppzRp0oSWLVsCZg9cjx49+Oabb3j66adZuHAhy5YtcxaJuNoS91dSEp9vSbjaz3n27NkA/PWvf6V+/frO7a233iItLY3PP/+8xGO9VLJycYGXHIX9vdq/fz+33HILZ86c4e233+abb75h2bJl/PWvfwWK/75XqlSJO+64w5lcffbZZ6Snp19ziX8RqZhU0EJEpJSsXLmSs2fP8sUXX9C1a1dn+8GDB10YVa6IiAj8/PzYt29fgccKa7uUgQMH8s4775CQkMC8efOoVasWHTt2LLBfx44d6dixI6+88gpz5szhvvvuY+7cuTz44IOXPX+HDh2oW7cuc+bMoUePHvzxxx/OIgoA27ZtY8+ePcyYMYMRI0Y425ctW1bk15BXTEwMe/fuLdC+e/fufPeL8/kWtQckJiam0OcCs1pf1apVCQwMLNK5LscwDObMmcNNN93E//3f/xV4/OWXX+aTTz5h9OjR1KlTB4Dt27df8nzh4eGEhIRcdh/I7VW7cOGCc7go5PbYFcXixYtJT09n0aJF+XrtVqxYkW+/nCGx27dvv2JP7IgRI+jXrx+//fYbn3zyCa1ataJp06ZFjklEJId6rkRESklOj0LeHoSMjAz+/e9/uyqkfGw2G7feeisLFy7k+PHjzvZ9+/bx3XffFfk8gwYNIj09nRkzZrBkyRIGDhyY7/Hz588X6EXJ6XUqytBAMIcAbt68mQkTJmCxWBg6dGi+1wH532fDMHjnnXeK/Bry6tOnD7/++ivr1693tp0+fbpAifLifL6BgYFFGiZYvXp1WrZsyYwZM7hw4YKzffv27SxdupQ+ffoU9+UUavXq1Rw6dIjRo0dzzz33FNgGDRrEihUrOH78OOHh4XTt2pWpU6dy5MiRfOfJee1Wq5X+/fuzePFiNmzYUOD5cvbLSXh+/vln52PJycnOaoVFUdj7Hh8fz7Rp0/Ltd9tttxEcHMykSZMKlFO/+Hrs3bs3VatW5fXXX+enn35Sr5WIXDX1XImIlJLOnTtTqVIlRo4cyV/+8hcsFguzZs0q0WF51+rFF19k6dKl3HDDDTz66KPY7Xbef/99mjVrxpYtW4p0jtatW1OvXj3Gjx9Penp6viGBADNmzODf//43AwYMoG7duiQmJvLxxx8TEhJS5GRh2LBhvPTSS3z11VfccMMN+cqRN2rUiLp16/Lkk08SGxtLSEgIn3/+eZHmpRXmqaeeYtasWfTq1YvHH3/cWYo9JiaG33//3blfcT7fNm3aMG/ePMaOHUu7du0ICgqib9++hT7/G2+8Qe/evenUqRMPPPCAsxR7aGgoL7744lW9pot98skn2Gy2Sy7AfOeddzJ+/Hjmzp3L2LFjeffdd7nxxhtp3bo1Dz/8MLVr1+bQoUN88803zuvk1VdfZenSpXTr1o2HH36Yxo0bExcXx4IFC1i1ahVhYWHcdttt1KxZkwceeIC///3v2Gw2pk6dSnh4eIHE7VJuu+02fHx86Nu3L4888ghJSUl8/PHHREREEBcX59wvJCSEf/3rXzz44IO0a9eOoUOHUqlSJbZu3UpKSkq+hM7b25vBgwfz/vvvY7PZGDJkyNW/uSJSsZV9gUIREc91qVLsTZs2LXT/1atXGx07djT8/f2NqKgo46mnnjK+//77AmWeL1WK/Y033ihwTsCYMGGC8/6lSrE/9thjBY69uOy4YRjG8uXLjVatWhk+Pj5G3bp1jf/973/G3/72N8PPz+8S70JB48ePNwCjXr16BR7btGmTMWTIEKNmzZqGr6+vERERYdxxxx3Ghg0binx+wzCMdu3aGYDx73//u8BjO3bsMG699VYjKCjIqFq1qvHQQw85S8/nLXNelFLshmEYv//+u9GtWzfDz8/PqFGjhvHyyy8bU6ZMKVAuvKifb1JSkjF06FAjLCzMAJyfdWGl2A3DMH744QfjhhtuMPz9/Y2QkBCjb9++xo4dO/Ltk/NaTp8+na+9sLLmeWVkZBhVqlQxunTpUujjOWrXrm20atXKeX/79u3GgAEDjLCwMMPPz89o2LCh8fzzz+c75vDhw8aIESOM8PBww9fX16hTp47x2GOPGenp6c59Nm7caHTo0MHw8fExatasabz99tuXLMV+++23FxrbokWLjOuvv97w8/MzatWqZbz++uvG1KlTC33dixYtMjp37ux8L9u3b298+umnBc65fv16AzBuu+22y74vIiKXYzEMN/oJVURE3EL//v35448/Cp17JFIebd26lZYtWzJz5kyGDx/u6nBExENpzpWISAWXmpqa7/7evXv59ttv6d69u2sCEnGBjz/+mKCgIO666y5XhyIiHkxzrkREKrg6deowatQo6tSpw+HDh/nwww/x8fHhqaeecnVoIqVu8eLF7Nixg//+97+MGTOmRKoxikjFpWGBIiIV3OjRo1mxYgUnTpzA19eXTp068eqrr9K6dWtXhyZS6mrVqsXJkyfp2bMns2bNIjg42NUhiYgHU3IlIiIiIiJSAjTnSkREREREpAQouRIRERERESkBKmhRCIfDwfHjxwkODsZisbg6HBERERERcRHDMEhMTCQqKgqr9fJ9U0quCnH8+HGio6NdHYaIiIiIiLiJo0ePct111112HyVXhcipFHT06FFCQkJcHI1crczMTJYuXcptt92Gt7e3q8ORck7Xm5Q1XXNSlnS9SVlzp2suISGB6OjoIlUTVXJViJyhgCEhIUquPFhmZiYBAQGEhIS4/C+llH+63qSs6ZqTsqTrTcqaO15zRZkupIIWIiIiIiIiJUDJlYiIiIiISAlQciUiIiIiIlIClFyJiIiIiIiUACVXIiIiIiIiJUDJlYiIiIiISAlQciUiIiIiIlIClFyJiIiIiIiUACVXIiIiIiIiJcDL1QGIiIiIiJRLDjscXgNJJyGoGsR0BqvN1VFJKVJyJSIiIiKX5rBjObyKGufWYjkcAnW6KkEoih2LYMnTkHA8ty0kCnq9Dk3udF1cHsDuMFh38Bwbz1iocvAcnepFYLNaXB1WkSi5EhEREZHCZScIXgnHaQtw+EMlCEWxYxHMHwEY+dsT4sz2gTP1/l3Cku1xTFy8g7j4NMDGzL0bqB7qx4S+TejVrLqrw7sizbkSERERkYJyEoS8PS+QmyDsWOSauNydw272WF2cWEFu25JnzP0knyXb43h09qbsxCrXifg0Hp29iSXb41wUWdGp50pERERE8rtigmCB756CGm2ymxxg2M0/HY7c+w77pR8zHBc9bmTfv/gxRyH7XvR4oY8ZhT/P5R67ZIx547tEDDn30y4UTEgvfv8SYuGLhyC8EfgEZm9B2Vsg+Oa5nfNYOR+KaXcYTFy8AwOw4qC9dRcRXOAUYax3NMLAysTFO+jRJNKthwgquRIRERGR/A6vuXKCkBgH/2pSZiGVO9s/L97+Xv6XTrzyJWWBeR6/VMIWBN4BYC39QWwOh0Fqpp3kjCxS0rP/zLCbW3oWyRl2UjKy2Hk8gbj4NHpa1zPBeyZRlnPOcxw3KjMxcwTfx7dn/cFzdKpbpdTjvlpKrkREREQkv8QTRdzRYvaoWGzZf1rN2xbLRfet2fctF93PuW0tZN9LnMt521rIvld6nsIesxYeR5Fez8Vx2ODULljx8pXfuib9wS8UMpKzt6TsLft+evZ9I3v4YFaquaWcudpPtSDvwHxJmcM7ELt3EFk2fzJtAaRb/Um3+pNm8SfV4k8KfiQZfiQ5fEk0fIm3m9uFLG/OZflyIcNGcqaDlIwsktPNpCklo+jDH3ta1/Oh9+QC7ZGc40PvyTya+QSnEluW3OsvBS5Prj744APeeOMNTpw4QYsWLXjvvfdo3759oftmZmYyadIkZsyYQWxsLA0bNuT111+nV69ezn1efPFFJk6cmO+4hg0bsmvXrlJ9HSIiIiLlwqFVsOpfRdt35GKo3aV04/E0DXuT+uvH+KacoLDRaw4D0gMi8b9n6pWH+hkGZKUXSLyM9EQyUhLJSE0gMyWRrLRE7GmJ2NOSMNLN/SyZyVgzk7FlJuOVlYKXPQVfRwo+jlSsOcM9M5PNLfkUYBZjsALegP9VvHSHYSEZP1LwJcnwJwVfUnz8nLczrAFk2PzJtAVi9wrA4RWAPbs3LSHTxqjTU7Fg5rJ5WS3m+zbBexaHAx+7isjKjkuTq3nz5jF27Fg++ugjOnTowOTJk+nZsye7d+8mIiKiwP7PPfccs2fP5uOPP6ZRo0Z8//33DBgwgDVr1tCqVSvnfk2bNuWHH35w3vfycnkOKSIiIuLejqyDFf+Agz8XYWeLWTUwpnOph+Vp7FiZmDmCV/knDoN8CZYjO6d5Pn0YvXadJi3LkW+oXHL6RX9eNJQub7theANVsrfiMPAjg0DSCLSkEUgaAaQRZDH/DLSkEWJNJ8wrg1BrOiG2DIKt5uOBpONPGgFGKn5GKj6OVHwdKXjbUwGwWgyCSSWYVKpZLhT+9I7sLbOQxy4zlcpqgSjOUs22CyiYJ7gLl2Ydb7/9Ng899BCjR48G4KOPPuKbb75h6tSpPPPMMwX2nzVrFuPHj6dPnz4APProo/zwww+89dZbzJ4927mfl5cXkZGRRY4jPT2d9PR05/2EhATA7CnLzCzskxdPkPPZ6TOUsqDrTcqarjkpKZbYTVh/fg3rgR8BMKzeOFoNx4hohu27v2Fg5Csv7cD8Dmzv8QqG3QF2hyvCvmoOh0Falp20TAdpmdl/ZtlJz/7z4va0TAfpmXZSMx2kZ12hPdPOhdRMziS15Lz1CXPuELlzh05QhYmZw/k+vTWfzdxYIq8nwMeWZ/MiMO9939z7/t42An298u0f6JN7P+cxf28bPl7Fm4uVaTggMyXP8MZkLHlu5/SkkZ5k9pRlJGPJOwQyIxlLQiyWhGNXfC4j4XiZ/7tXnOdzWXKVkZHBxo0bGTdunLPNarVy6623snbt2kKPSU9Px8/PL1+bv78/q1atyte2d+9eoqKi8PPzo1OnTkyaNImaNWteMpZJkyYVGEoIsHTpUgICAorzssQNLVu2zNUhSAWi603Kmq45uVqhKYdoGPcl1RM2A+DAypEqXdgT2Y9UR1W2/mEhNuPxAsUFTmQXF6jxm40WB7695jgcBmQ5IDN7y8hzO9Nhueh+3sctZNoLO6bw43L2sxtlU2nue0d7lqW3LVD1zpGdqlb2Najsa+BjBV9b9pZ928dmOG/ntPvYjHz7+NrA2wpWS9aVg8nK3lJzm9Kzt3OFH1GCfLK3SvmbbZhjD7PHH1bx28mNCZOueLZftx/i7OFrv+6KIyUlpcj7WgzDKKzGZqk7fvw4NWrUYM2aNXTq1MnZ/tRTT/HTTz+xbt26AscMHTqUrVu3snDhQurWrcvy5cvp168fdrvd2fP03XffkZSURMOGDYmLi2PixInExsayfft2goODC42lsJ6r6Ohozpw5Q0hISAm/cikrmZmZLFu2jB49euDt7e3qcKSc0/UmZU3XXPHZHQYbDp/nVGI6EcG+tI2p5NYlnUvNqR3Yfv4n1t1fA2BYrBjNB2K/8W9QqTaGYZCW6eDWyas4lZheaFlsB1bC/L0Z26MeGVkOsxcnb69PVm7vT/pleolSMx1kZLmu58vbZsHP24aflxVfbxv+3lb8vG34elmd7X7etuzN6mz397bh623Fz6tg+77TSUz8+spz/Wff35YOtSuXwav0EA47Xu+3gsQ4LIUsAWBkD0XNemxTmZelT0hIoGrVqsTHx18xN/CoyUjvvPMODz30EI0aNcJisVC3bl1Gjx7N1KlTnfv07t3befv666+nQ4cOxMTEMH/+fB544IFCz+vr64uvr2+Bdm9vb/2HVQ7oc5SypOtNypquuaJZsj2OiYt35FuctHqoHxP6NqFXs+oujKzoDMMgw+4gLcNBaqad1Ew7aTl/ZtjztDkKabMTnHiA7nFTaJm4EisGDiz87NuN6V6D2Lc3krQdR0jLPEhqph27I/fLrQMrvzoKlly/kJrJC4t2luhr9LZZ8POy4ZudzPjnSWzMpKfw9rwJkJnwXPxYntteVvx9zHOVRnLduX4E//3lECfi0wpdJcwCRIb60aleRMVM7i/JG3q/bi5QjYX8a6xZzOlYvV7D29ev0KNLNbJi/BvrsuSqatWq2Gw2Tp48ma/95MmTl5wvFR4ezsKFC0lLS+Ps2bNERUXxzDPPUKdOnUs+T1hYGA0aNGDfvn0lGr+IiIh4hiXb43h09qYCX3RPxKfx6OxNfDis9TUlWIZhkJ7lIDXjooQn005qhsN5P7ctTwKUfb/AcTlJUoY93/FXM94oxnKCv3h9QX/ramwW8wTf2NszOese9qZdl71X6qVPcBnNokKIqRqIn5cNf59LJTb5kx5/H2t2klQw6fGylf66S6XNZrUwoW8THp29qZAUwTShbxMlVoVpcicMnGkuYJ13nbWQKOj1mvm4m3NZcuXj40ObNm1Yvnw5/fv3B8DhcLB8+XLGjBlz2WP9/PyoUaMGmZmZfP755wwcOPCS+yYlJbF//36GDx9ekuGLiIiIB7A7DF5cvKPQHoSctqc/30ZcfJozQcqf5OS25UuSMvL3EpU1m9VCgLfZw+PvY/bk+OdJZvy9bURxit7nZtHm/BKsmDEeqtqd7Q0eI61KE57IPtYvz7H+3jb8fWxsi43nwRkbrhjH+NubuPWCrq7Sq1l1PhzWukBvaaSH9Za6RJM7odHtZB34mS2/fE/LLj3xqtO1zIcCXi2XDgscO3YsI0eOpG3btrRv357JkyeTnJzsrB44YsQIatSowaRJ5uS2devWERsbS8uWLYmNjeXFF1/E4XDw1FNPOc/55JNP0rdvX2JiYjh+/DgTJkzAZrMxZMgQl7xGERGREuewYzm8ihrn1mI5HAIe9MXjWqRl2klIzSQ+NZMLqZnEp2T/mbOlZDhv57SfSUwnIe3yE/7jUzOZuHhHicSYM4cnJ0nx87Lh52PO5SnYlrufb/ZQtQJJUr42q/M478v18MQfg5/fhM2zwJH92uvfBjc9S62oVtQqwuuoGuRL9VC/Kw5ta685Q5fUq1l1ejSJZP3Bc5xKTCMi2Hy/1GNVBFYbRsyNxP6RQIuYGz3q3zeXJleDBg3i9OnTvPDCC5w4cYKWLVuyZMkSqlWrBsCRI0ewWnP/8UhLS+O5557jwIEDBAUF0adPH2bNmkVYWJhzn2PHjjFkyBDOnj1LeHg4N954I7/++ivh4eFl/fJERERK3o5FGEuexivhOG0BDn+IERKFpdfrHjFkJsvuICEtiwvZidCF1MzchCklN1G6kGK2X0jNTZjSMkuv8EHL6DDqhgc5e4H8LurJyTvPJ7ctT4+PjxsMa0s8Ab+8BRungz3DbKtzE9z0LES3L9apNLStZNisFvXsVTAuqxbozhISEggNDS1SRRBxX5mZmXz77bf06dNHk72l1Ol6kzKxYxHG/BGXWHfIgmXgzDJJsBwOg8T0LDP5yZsQ5SRCFyVJ8Xl6l5LSi1A2+jKsFgjx9ybU35swf+/c2wHmn2a7DyHZbYfPJvP059uueN5PH+rouV+Ck07D6snw2/8gK3sIWsyNZlJV64ZrOnV5KAQinsmd/l8tTm7gUdUCRUREKiyHndTFf8fXMLi4s8AKOAyDtMV/x7/R7UUaQmMYBqmZdmfyk/Pnxb1F+dtzbzuu8afZIF+v3GQoT2IUelGSlPfxEH9vgn29sBajt6RdrcpM/mFv+RzelnIOVr8D6/9rLuAKEN0BbhoPtbuC5dp7lXKGtq3dd4qlv6zjti4dVOVO5DKUXImIiHgA+6HV+KeeyB2TdRGrBfxTT7Dhp685HNImX2+RmSRlFGjLtF9bhuTnbc2XBOVPjPLfz02kfAjx8yqz4XPlcnhb6gVY+z78+iFkJJltUa3NpKreLSWSVOVls1roULsyZ3cadNCcIZHLUnIlIiLiYnkLNVxqq3pwDY8V4Vxzl63iM0fR/3v3tlmcvUJhFydBBdpyb4f4e+Pn7RmTzMtN5ba0BFj3Eax5H9LjzbbI5mZS1aBXiSdVIlJ8Sq5ERMQl7A6j3FTRMgyDtEzHZZOjhEvcjk/NJD3ryoUaOlptPOZz5Vhe9ZnKIP8dbA/tzpGqXQkIDs3Tc+RTIEkK8LFhqQBfyj26clt6kjn0b827kHrebItoAt3HQaM7wOr5a0OJlBdKrkRErlUFLYt9LdxxkrxhGKRk2K+YGBVsMws7ZNivrZJd3kINeXuHQvzM28mJ4aT/8Rq+lsILQhgG2LHiY8miXeoq2qWugtO+UO9WaNIPGvYCv9BritHTeVzltowU2DAFVk2GlDNmW9UG0P0ZaDJASZWIG1JyJSJyLXYsgovKYpsryXtGWWxXWLI9jkdnbypQXOBEfBqPzt7Eh8NaX3WCZRgGSelZV0yM4lOznI/lfTzrGqs02KyWfImR87afV4G5R/n2CfAmyOcyhRoMA8eXj2C1ZGEY5ryhvLvmhP2c9994ZfQd2HYtgj8Wwrn9sPsbc7P5mGW5m/aHhr3Bv9I1vVYpRZlpsGmGWVY96aTZVqm2mVQ1v1c/3oi4MSVXIiJXa8cimD8CLk4TEuLM9jIqi+1J7A6DiYt3FFq1zcAsMDBx8Q7a165C8kVJ0qV6lPINt0vLwn6NCVLeOUgFkiG/QhKjPIUbAktriN2KV7D+Pg+Hxcb7mX25x+tnojjnfPgEVXgpczj9730AW43qUKMl3Pw8nPwDdnwFOxbCmT2w93tzs3pBne7QpD80uh0CPLBSXnmUlWEu/PvLW5AQa7aF1oRuT0GLwWDTMg8i7k7JlYjI1XDYYcnTFEisAGeasOQZ84urfmUGICk9iyXb4vINBbyYAcTFp9H65WXX9Fw+XtZCe4pyepEKJE555iD5e7vZHKSN0+HnNwCw9n2HBj63cu+ibUQnbSWCC5wijKNBLXj+3ub5e/wsFohsZm43j4dTO7MTra/g1A7Y94O5LX7cLNvdtL85fyewqkteZoVmz4Stn8JPb0D8EbMtOAq6PgmthoNXESbbiYhbUHIlIlIUDgekXTCH6CSdgkO/QMLxyxxgmL88H14DtbuUVZQuk5Hl4GRCGscvpHI8PpXjF8zbcfHZbRdSSUgr3uKxOWW+CxtGl7cH6eLkKNSDqthd0d5l8PVY83a3p6H1cHpB9rpDLVj6yzoGFnXdoYjG5tb9GTi9JzfROrkNDqwwt6//CrVuNOdoNb4TgiJK/SVWaA47/D4ffnodzh8024KqQZe/QeuR4O3n2vhEpNiUXIlIxeVwmJW3kk+ZCVPSqdzbyadzE6nk0+bmKF5yAOTOl/BghmFwJimDuPjU7EQpN3GKzU6cTielYxRhNF6At5WUzCsXfph5fzu6NqjgX+yPb4H5I8GwQ4uhZmW4bNe87lB4A+j2d3M7u98cNrjjK4jbCgd/NrdvnoSYG7ITrb4Q4iHlyj2BwwF/fAErX4Oze822gKpw41+h3QPg7e/a+ETkqim5EpHyJSdhSjqZnSidvnTydDUJk38lCIwwiwOc3Hbl/YOqXd3rKENJ6VnO3qXjF9KIi08l9kIqcRfSOB5vJlEZRSgV7uNlJSrUj6gwf6qH+lMjzI/qYf5EhfkTFWre9ve2cePrP3IiPq3QAZUWzLWHbqgXXuKv06NcOAJzBkJmsjk3qu87pbeGUZW6Zk9Jl7/BuYO5PVrHN8HhVeb23VNQs2Nuj1ZojdKJpbxzOGDXYlgxCU7vNNv8K8ENj0O7h8A3yLXxicg1U3IlIrkcdnMYW9JJMymI6ewe84UcDkg9lyc5Ol1I8nQy+/Zp85f+4vCvZL7ewHBzGFRghPmn83a4+XhA1dy5Dw47TG5mFq8oNE0AQmqY76ELXWq4Xt6ep8QiDNezWCAi2Dc7UfInKsyP6qHZiVOYmVBVCfQp0lylCX2b8OjsTVjI/85Z8jzuEWsPlZbU8zD7HvOartYMBs4quzk3lWvDjU+Y2/nDsHOx2at17Dc4stbcljwD17U3E60md0JYzbKJzZMZBuz+Dla+Cieyf5TxDYXOY6DDn8AvxLXxiUiJUXIlIqbskuL55hGVZknxvAlT0snsYXiXSp6uJmGqnJ0cZSdMl0qe8iZMxWG1me/N/BEYWLDkSRNyqt5RpR65KUPJczgMziZnZCdKqcReSCPuoiSqqMP1Qv29qR7qR40wf6pnJ0tR2clT9VA/IkP98LaVzJo6vZpV58NhrQuscxXp4nWu3EJWOswdBmd2mwUNhs533RfvSjHml//OYyD+mJlo/bEQjv4Kx9ab29LxUKNNdqLVDyrVck2s7sowYN9yWPGK2RMI4BMMHR+FTo+Bf5hLwxORkqfkSkRKrqS4M2HKM1ep0OTpFCSfucaEqdplkqfwsilZ3ORONnd6h6i1E6nGWWdzPMGEkoTl4E/w/Tjo9dpVDelKTMt09i7FXcjb+2T2OsVdSCvSwrWFDdeLCvOnelj20L1QfwJ9y/a/g17NqtOjSSTrD57jVGIaEcF+tL+auUPlicMBC//PHIbnGwLDPnOf4Xeh15kJQcdHzR9gdn5tDh08vBpiN5rbshegesvcRKtKXVdH7TqGAQd/ghWvwtF1Zpt3AHR4BDr/RaXvRcoxJVciFV1RSop/95T5i3TK2UsUfcgemnctCVPeHqXCkqeySpiKYcn2OB5dURUL79DeustZFvs3RyP6W1fxls9HsO4j8AmCW57Pd2zOcL3Y7F6naxmuVy3YL09vU94kyuyFKupwvbJms1roVLeKq8NwHz++BNs/M9egGjQLqjV1dUSFC4mCDg+bW+JJcw7Rjq/g0CqI22JuyydCtebQtJ+5llbV+i4OugwdWm32VB1ebd738oN2D8INT5hDjEWkXFNyJVLRHV5z5ZLiiXHwn2KUE/evnJ0chRcyfylP8hRY1e0SpqLKuxiugZVfHU3yPf65oyvh1iyecfwPfnmTHw8k8VnAQOfQveIM18uXNIVlD93LnvdULaTkhuuJC/02BVb9y7x95/tmEQtPEFzNTBzaPWj+yLIru0fr4M9mwZeT2+DHf0BEEzPJatIPIhq5OurScXS9mVQdWGnet/lAm9HQZSwER7o0NBEpO0quRCq6s/uKtp9PEIRG50mYLpE8eXDCVBzrD5677GK4AB+l3IxhS2ac96fcHPsRP2Wm8q29p/NxHy9rdqJ0Ua+TC4friQvsXgLfPmnevmk8tBzi2niuVlA4tB1tbslnYfc3ZqJ1YKW5aPGpHWZBh6oNzQWLm/Qzky437FUtlthN5vC/fdkLX1u9ofVws/pi6HWujU1Eypz+1xapiBwOOLgSNs00J6kXxZC5FWIx3Ms5lZjGliMX2HL0Aj/sLNr6Vd+HDaKFrxd9zs1iovcM7u3UAKPlcKLC/KjspsP1pAzFboTPRoPhgFbDoevfXR1RyQisAq1HmFvKObNS3o6vYP+PZrGOn143tyr1sudo9YfI5p6VaJ3YZiZVu78171ts0HKo+RlWinFtbCLiMkquRCqS+GOwZQ5snmWuo5PD6g2OzEscZDHnWLi4pHhZS8nIYtuxeLYeM5OpLUcucPwKPVWFmXTX9XSq0x2+D4FfP6DZhucgJhKuu6fkgxbPcv4QzBkEmSlQ9xa441+elVwUVUBlaHWfuaVegD1LzERr33Kz5/yXt8ytUm0z0Wra3yyM4a7vxamdsHKS+RoALFZoPhC6PVWxi3iICKDkSqT8s2eavxpvmgn7l5u/kIO5xsr1A83hK+cPZ1cLhEJXHur1mnusd1VK7A6DvacS2XrUTKQ2H7nAnpOJOC6aE2WxQIOIYFpGh3F9dCj/WraHs0kZl10Mt33tyuaBPV8xF4TdOB2+fMSsHNaoTxm8OnFLKefMtayST5s9NgNnVIjhtPiHQYvB5paWAHu+N9fR2vcDnD8IqyebW1jN3B6tGm3cI9E6sxdWvgbbP8dZ7KfZXdDtGQhv4OroRMRNKLkSKa/O7DUTqq2fml/gcsTcaA7VaXInePubbdVbmOXWC13n6rXSWefKhU7Ep7Hl6Hk2H73A1qMX2HYsnuSMglUOI0P8aBkdRovoMFpGh9H8ulCC8syBqhLoU/TFcC0WuP1tyEiBbfNhwUhzDaO6N5Xa6xQ3lZkGc4fC2b3mPMahC8A32NVRlT2/ELj+XnNLT4K9S81Ea89Ss2d9zXvmFnJdbnn369qBtYwLuJw7AD+9Ab/Pzf1xqnFf6P4sVGty+WNFpMJRciVSnmQkm0NVNs2EI2tz2wMjsoflDL/0sJUmd0Kj283qgUknzYIVMZ09vscqKT2L37OH9uX0TJ1MSC+wX6CPjeuvy02kWkaHERnqd9lzF3sxXKsN+n9oDgPb9bX5BXv4l1CzY4m8VvEADgcs/JP599M3FO5bACEVeNHkHL5BZi9Qs7vMf8f2/WAuWLzne0g4Br9+YG7BUea/VU36QXSH0v336cIR+PkN2PxJ7hITDXrDTePMH6RERAqh5ErE0xmGua7Mppmw7TNITzDbLVaof5vZS1X/tqINObLaPLpoRZbdwe6TiWw9Gs+Wo+fZcvQCe08lFSh5brNaaFDNHN7XKrtnql5E0FUtYJuzGO7afadY+ss6buvSgU71Ii59LpsX3DMVPh1iDtP85F4YuQiiWl3FKxaP88ML8MeX5jzHwbMhorGrI3I/PoG5PVWZqebcrB0LzaqKicfNtePWfWT+ANQ4O9EqyR+CEo7Dz2+a/6bmzEWtdyvc9Kw5RFFE5DKUXIl4qtTz8PsC8wvAyW257ZVqmT1ULYeaw/rKKcMwiL2Qmi+R2hYbT1qmo8C+NcL8s4f3hdIyuhLNaoQQ4FNy//zZrBY61K7M2Z0GHWpXvnKS5uULg2bDJ/eYC43OGgCjvtUQo/Ju3X/NYW5g9mDW7uraeDyBtz80vsPcMtPgwAqzR2v3d2YP+28fm1tguDlUr0k/c+iz7RJ/vx32S/fOJ56EVW/Dhmlgz+7drt3NLI9fs0OZvFwR8XxKrkQ8icMBh1fBplnm8L+cLwA2X/OLResRUKtL2c9JKAMJaZn87kyk4tly9AJnkgoO7wv29aJFnkSqRXQoEcGXH97nEj4BMHQezOxnluOe1R9Gf6dqY+XVrm/gu6fM27e8YM4zkuLx9oOGvc0tKx0O/GT+O7jra3Ne6Yap5uZf2UzGmvQ3E9icXvsdiwqfV3rTc3B6J6z/H2Slmu01O8PN46HWjWX+MkXEsym5EvEEiSdgyydmUnX+YG57RFNoMxKa32uWOy4nMu0OdsUl5kmkzrP/dHKB/bysFhpVD86eI1WJltGh1KkahPUqhve5hG8w3PcZzOgLJ7fDjDvh/u/MSmlSfhzbAJ89ABjQZjTcONbVEXk+L19ocJu5Zf0LDv1sJlo7v4bUc2aP/qaZ4BcGje6A4Eiz3PvFtT0TjsNX/5d7/7p2Zk9Vne7uUaFQRDyOkisRd2XPgn3LzC8Ie77PnVDtEwzN7zZ7qaJae/wXAMMwOHoulS3HLmQv0HueP44nkJ5VcHhfdGX/7CQqjJbRoTSNCsXP27MLbhBQ2SxqMa2PWT1uZj+zBys40tWRSUk4dwDmDDR7ROr3hD5vevzfWbfj5WPOiap3q1mR89Cq7ERrMaScgS2zr3wOqzcMnAUNe+nzEZFrouRKxN2c3Q+bZ5uL/SadyG2P7mgmVE37mxO+PdSFlAy2Hotny5ELbD1mVvA7m5xRYL9Qf2+zct91obSsGUaL68KoEuTrgojLQFAEjPgKpvUyv4zP7A+jvoHAKq6OTK5F8llzLauUs+aiuPdMvfRcICkZNm9zeYO6N5mJ7JE18OuHsPvbyx/nyDQrFiqxEpFrpH/lRdxBZpr5K+umGXDol9z2gCrQYoiZVIU3dF18Vyk9y87OuES2HDlvJlRHL3DwTMHhfd42C02iQvMlUrWrBmKpSF90QmvAiEUwrbc5/2P2ABi5GPxCXR2ZXI3MVPh0MJzbbw7zHDrf/PIuZcfmZc65Sjp15eQKzCIXIiLXSMmViCud2GYO+/t9PqRdyG60QL1bzISqQW9zyEsZsTsM1h88x6nENCKC/WhflMp32QzD4NDZFOdaUpuPXmDn8QQy7AWH99WqEuBcS6pFdBhNokLw9fLw4X0loXLt3AQrbqtZpn34lx7dU1khOezwxUNwbL055+e+zyC4mqujqriCivjeF3U/EZHLUHIlUtbS4mH752ZSdXxzbntoNLQaBi3vg7DoMg9ryfa4AovhVr/UYrjAueQMtmYnUTkL9ManZhbYr1KAtzOJahlt9kpVCiy7hNHjhDcwE6oZd8DRdeZ6WEPnm5XSxDMsfc7sibb5wJBPPbLXuVyJ6WxWBUyIo0BBCwAs5uMxncs6MhEph5RciZQFw4Ajv5oJ1R9f5pb7tXpDo9vNXqo63UtuEcxiWrI9jkdnbyrwteNEfBqPzt7EO4NbUqNSAFvyJFJHzqUUOI+Pl5VmUSHORKpVdCWiK/tXrOF9JaH69XDf52Z59oM/wYKR5rpYRVkIWlxr7b/h13+btwd8pC/s7sBqg16vw/wRgIX8CVb2v029XnPZv78iUr4ouRIpTUmnYeunZlJ1dm9ue9WGZkLVYjAEVnVdfJhDAScu3lHo77k5bX+Zu6XQY+uGB9IiOoxW2aXQG0YG4+NV/tbYconodjBkrrnQ8J4l5jCzu6foC6A72/EVfP+sebvHS9DsbtfGI7ma3AkDZxa+zlWv18zHRURKgJIrkZLmsMP+H83iFLu/A0eW2e4dAM3ugtYjzbVU3KQ3Z/3Bc/mGAl5KiJ8X7WtXdg7xu/66MEL91ZNSqmp3MXusPh1i9nh6B8Cd75fLRaI93pF18MXDgAHtHoLOf3F1RHKxJneaIwUOrzGLVwRVM3sW9YOFiJQgJVciJeX8YXOh382zISE2t71GW2g9HJreBX4hrouvEAlpmXy5+ViR9n25XzP6tapRyhFJAfV7wD1TYMEo8/ryCYTe/3Sb5FyAM/vMyoBZadCwD/R+XZ+Pu7LazB8tRERKiZIrkWuRlQ67vjGH/R1YiXMgnX8luH6wmVRVa+rKCAtwOAx+PXiWBRuO8e22uEIX6y1MRIgKKrhMk37Q/0P48hFY/1+zB+vWF/UF3h0knYZP7obUc1CjjYZuiohUcEquRK7GqZ2waZY5nyr1XG57ne7mXKqGt7tddbfYC6l8vvEYCzYe5ei5VGd7/YhATiSkk5iWVehxFiAy1CzLLi7UYjBkJMM3Y2H1ZHPNpK5/d3VUFVtGMnw6CM4fgkq1YMg88AlwdVQiIuJCSq5Eiio9Cf74wuylOvZbbntwFLS6zyyhXrm26+IrRHqWnWU7TjLvt6Os2ncGI7tjLdjXi74toxjYNpoW14Xy/R8neHT2JqDQOlpM6NukyOtdSSlq9wBkppilvn/8B/gEQcdHXR1VxeSww+cPQuxGs6f6vs8hKNzVUYmIiIspuRK5HMOAYxtg80zY/gVkJJntVi9o0MssTlHvFrcbBvTH8XgWbDjGwi2xXEjJXXuqU50qDGx3Hb2aVsffJzfmXs2q8+Gw1gXWuYq8zDpX4iKd/2z2mKycBEueMYcIthnp6qgqFsOA756G3d+Czdes6li1nqujEhERN6DkSqQwyWfh93lmL9XpnbntVepBq+HQYggEV3NdfIW4kJLBV1uOM3/DUf44nuBsrx7qx71truOeNtHUrHLpIUu9mlWnR5NI1h88x6nENCKCzaGA6rFyQ92eNhP9Ne/B4sfNIhfN73F1VBXHmvfgt48BC9z9MdTs6OqIRETETSi5EsnhcJgLtm6aCbu+BnuG2e7lD037m3OpanZyqyICdofB6n1nmL/hKEv/OEmG3SxO4WOz0qNpNQa1jeaGelWLnCDZrBY61a1SmiFLSbBYoMfLZg/WhqlmCXBvf7PMtJSu7Z/DsufN2z1fNYuNiIiIZFNyJRIfm11CfRZcOJLbXr2FmVA1uwf8w1wWXmGOnkthwcZjfL7xGLEXcotTNK4ewqC219GvZQ0qBfq4MEIpdRYL9HkLMlLg97lmqfYhc81hqlI6Dq+BL/9k3u7wKHT6P9fGIyIibkfJlZRPDjuWw6uocW4tlsMhUKdr/nlR9kxzgd/Ns2DfD2BklyP3DYXrB5ol1Ku3cE3sl5CWaWfJ9hPM33CUNfvPOttD/b3p3zKKe9tG06xGqAsjlDJntUK/D8wiFzsXwdz7YPgX5sKoUrJO7zYXc7ZnQOO+0PMVV0ckIiJuSMmVlD87FsGSp/FKOE5bgMMfQkgU9HodIhqbw/62fgrJp3OPqdXFnEvV5E5zeJWbMAyD34/FM3/DURZtPe4sl26xwI31qjKwbTQ9mlTDz9u9CmpIGbJ5mWsrzR0K+5bBJwNh5FfmmktSMhJPwif3QNoFuK493PWx2xWxERER96DkSsqXHYtg/gjyFxQHEo7D/OH524KqQcuhZlJVpW6ZhVgUZ5PSWbjlOAs2HGXXiURn+3WV/Lm3TTR3t6nBdZW0no5k8/KBQbPgk3vh0C8w6y4Y9Q1ENnN1ZJ4vPQnmDDSHDFeuYw69dKMfYERExL0ouZLyw2GHJU9TILG6WP1e0GYE1L8NbN5lElpRZNkd/LLXLE7xw86TZNrN1+HrZaV3s0gGto2mY50qWFW9Twrj7Q9DPoVZA8x12Gb1h9FLVCL8Wtiz4LP7IW4LBFSB+z6DQBV8ERGRS1NyJeXH4TVmD9WVdB4DtbuUfjxFdOhMMvM3HOXzTcc4mZDubG9xXSj3to2mb4soQv3dJwkUN+YbDPctgBl94cQ2mHknjP4OKsW4OjLPYxjw7ZOw93uzYujQ+W7Xwy0iIu5HyZV4PsOA2I3moqpFkXSydOMpgpSMLL7dZhanWH/wnLO9UoA3A1pdx8B219EoMsSFEYrH8q8EwxfCtD5wZnd2grUEQrQQdLGs+hdsnIa5ltX/4Lq2ro5IREQ8gJIr8VypF+D3+bBxOpz6o+jHBblm8V/DMNh05AILNhxl8dbjJGfYAbBaoFuDcAa2jeaWxtXw8bK6JD4pRwKrwoiFMK03nD8EM/vB6G/Ndrmy3xfA8onm7d7/hMZ3uDYeERHxGEquxLMYBhxdZyZUf3wJWWlmu5efuZjnvuWQcpbC511ZzKqBZVym+lRiGl9uimX+hqPsP53sbK9VJYB720Zzd+vriAz1K9OYpAIIiYIRi8wE68xucw7WyK/dbs02t3PwZ1j4qHm70xjo8LBr4xEREY+i5Eo8Q8o52DoXNs2A07ty2yOaQptRcP295nAoZ7VAC/kTrOwiEL1eK5MSypl2Byt3n2b+hqP8uOsUdocZi7+3jT7NqzOw7XW0r10Zi0XFKaQUVYqBEV+ZCdaJbWY58eELwTfI1ZG5p1M7Ye4wcGRCk/7Q42VXRyQiIh5GyZW4L8OAw6vNXqodi8CeXezBOwCa3QVtRptr+eRNUJrcCQNnmlUD8xa3CIkyE6smd5ZqyPtOJbJgwzE+3xTLmaTc4hSta4YxsG00t19fnWA/FaeQMlS1vplQTb/drCL46WCz6IXKieeXEAez74H0eKjZCQb8x1ykWUREpBiUXIn7ST5jLvK7cTqc3ZfbHtncTKia3wt+lyn20OROaHQ7WQd+Zssv39OyS0+86nQttR6rxLRMvvk9jvkbjrLpyAVne9UgH+5ufR33tr2OehHBpfLcIkUS2QyGfWEWtzj0i9m7O+gTc30sgfREmHMvJByDKvVh8Bzw1lBdEREpPiVX4h4cDjj0M2ycATsXm8NyAHyCoPk90HokRLXK30t1OVYbRsyNxP6RQIuYG0s8sTIMg98OnWfeb0f5dlscqZlmcQqb1cJNDSMY2PY6bmoUgbdNv3yLm7iujVlOfPbdsHcpfPEQ3D0FbBX8vwF7JswfaQ6bDAyHYZ9BQGVXRyUiIh6qgv+vKi6XdAq2fGImVecP5rZHtYY2I6HZ3ebaPW7iRHwan286xoINRzl0NsXZXjc8kIFtoxnQugYRwfrFW9xUrRtg8GyYMxh2LDSH2Pb7oOIOfzMM+PqvsH+5+V4MnQ+Vark6KhER8WBKrqTsORxwYIU57G/3t+DIMtt9Q+D6gWYvVfXrXRpiXhlZDpbvPMn8DUf5ac9psmtTEOhjo2+LKO5tG03rmmEqTiGeod6tcO80s7dm6xzwCYA+bxa9V7g8+flN2DwLLFa4ZxrUaO3qiERExMMpuZKykxAHW2bDpplw4Uhu+3XtzIp/TQeAT6DLwrvYrhMJzP/tGAu3xHIuOcPZ3r52ZQa2jaZP80gCfPRXSDxQ474w4CP44mH47X9mr02PlypWgrXlU1jxD/N2nzehYS/XxiMiIuWCvhlK6XLYzbWnNk6HPUvAMOcm4RcK1w82h/5Va+rSEPOKT81k8dbjzN9wlN+PxTvbq4X4ZheniKZ2VfdJAEWu2vUDITMFFj8Oa941h992e8rVUZWNAyth0Rjz9g1PQLsHXBmNiIiUI0qupHTEH4PNs2HTLLMCV46ancxeqib93KYUtMNh8OuBs8zfcJTvtp8gPcsBgLfNwq2NqzGwbTRd6lfFS8UppLxpMwoyUuD7cbDiFbMHq/MYV0dVuk7+AfOGm8ORm90Dt0xwdUQiIlKOKLmSkmPPMquQbZph/mmYSQr+laDFUGg9AiIalU0oDoN1B8+x8YyFKgfP0aleBDZr/iFPsRdS+WzDMRZsPMqx86nO9obVghnYLpr+LaOoEuRbJvGKuEyn/4OMZHOI3NLx5tDctqNdHVXpiI/NXssqAWJuhP7/rrjFPEREpFQouZJrd+GI2UO1eRYkxuW21+pi/jLe6I4yXTNmyfY4Ji7eQVx8GmBj5t4NVA/1Y0LfJnRvGMHSHSdZsOEoq/adwcguThHs68WdLaMY1C6a5jVCVZxCKpauT0JGEqyebFbP8w6AFoNcHVXJSkuAOQMh8ThUbWhWTfTSjyciIlKylFzJ1bFnmnOoNk4351SRnaUEVIGW95kV/6rWK/OwlmyP49HZm3KicYqLT+NPszcR4GMjJcPubO9ctwoD20bTs2kk/j6ls8iwiNuzWODWF80erN8+hoWPmsN2m9zp6shKRlYGzB8OJ7dDUDVzLSv/Sq6OSkREyiElV1I85w6a1f62fAJJJ3Pb63Q3E6pGt7vs12C7w2Di4h0FEqu8UjLsVA/x5d52Nbm3zXVEVw4os/hE3JrFAr3/aRa52PIJfHY/DJkL9W91dWTXxjDMoh0HVoJ3oLmWVVhNV0clIiLllJIrubKsDNj9jdlLdWBlbntgBLS6z5xLVbmOq6JzWn/wXPZQwMt7c2BLbqhXtQwiEvEwVivc+Z6ZYP3xJcy7D4Z9DrVudHVkV2/lJHM9L4sNBs6AqJaujkhERMoxl8/k/eCDD6hVqxZ+fn506NCB9evXX3LfzMxMXnrpJerWrYufnx8tWrRgyZIl13ROuYyz+2Hp8/B2Y1gwKjuxskDdW2DgLBi7wxxK5AaJFcCpxCsnVgBnktJLORIRD2a1wYD/QoNekJUGcwbBsQ2ujurqbJoFP71u3r7jbajfw7XxiIhIuefS5GrevHmMHTuWCRMmsGnTJlq0aEHPnj05depUofs/99xz/Oc//+G9995jx44d/OlPf2LAgAFs3rz5qs8pF8lKh22fwfQ74L3W5vo3KWcgKBK6/h0e3wrDvzDnYti8XR1tPhHBRSuaUdT9RCosLx+4dwbU7moWuph9F5zY5uqoimffD+ZwQIAuT5rFdUREREqZxTCMy01RKVUdOnSgXbt2vP/++wA4HA6io6P585//zDPPPFNg/6ioKMaPH89jjz3mbLv77rvx9/dn9uzZV3VOgPT0dNLTc3szEhISiI6O5syZM4SEhJTY63VrZ/Zg3TwT67b5WFLPAWBYrBh1b8HRagRGvR5gde9RpHaHQfe3fuZEQuE9UxYgMtSXFWO7FijLLnKtMjMzWbZsGT169MDb271+eLhqGUnYPh2I9dh6jICqZA1fDFXruzqqKzuxDa9Zd2DJSMbRfCD2vh+Yc8rKmXJ5zYnb0vUmZc2drrmEhASqVq1KfHz8FXMDl31bzsjIYOPGjYwbN87ZZrVaufXWW1m7dm2hx6Snp+Pnl7/Xwd/fn1WrVl31OQEmTZrExIkTC7QvXbqUgIDyW/DA6sgg6sJvxJxZSdXk3c72VO/KHK7SjcNVupLmUwX2GbBvqQsjLbo+kRamJlgxU6m8DAygd7UUvl/ynQsik4pi2bJlrg6hRHlVGs0NZ08RlnKIrKl9WFV/PCm+Ea4O65L8M87QdfdLeGclczqoCWutvTC+K99/58vbNSfuTdeblDV3uOZSUlKKvK/LkqszZ85gt9upVq1avvZq1aqxa9euQo/p2bMnb7/9Nl27dqVu3bosX76cL774ArvdftXnBBg3bhxjx4513s/pubrtttvKZ8/VqZ1Yt8zCum0elrR4AAyLDaP+bThajcCrzs3Utdqo6+Iwr0YfYMmbP3P8osIW1UP9GN+7ET2bViv8QJFr5E6/sJW4lJsxZt2J/5nd3Hr8PbKGfw0h1V0dVUFp8XjNvB1L1gWM8MaEjfia3n7l8N/wbOX6mhO3o+tNypo7XXMJCQlF3te9x3ld5J133uGhhx6iUaNGWCwW6taty+jRo5k6deo1ndfX1xdf34Llw729vV3+YZaYjOzqXxunw7E8BT5Ca0LrEVha3YclJMr1FU6u0fELqRyPT8MC/HtoC9b+tonbunSgU70IDQWUMlGu/t3IERoJIxfB1F5Yzh/E+9O7YdS3EBTu6shyZaXD56Pg9C4Iro5l2Gd4B1dxdVRlolxec+K2dL1JWXOHa644z++y5Kpq1arYbDZOnjyZr/3kyZNERkYWekx4eDgLFy4kLS2Ns2fPEhUVxTPPPEOdOnWu+pzl3oltZkL1+3xIz866rV7QsA+0GQl1bjbLL5cTP+05DUCrmmHc2rgaGQcNOtSurMRK5FoF5yRYveHMHpg1AEYtdo/FeA0DvhoDh34Bn2C4bwGEXufqqEREpAJy2bdqHx8f2rRpw/Lly51tDoeD5cuX06lTp8se6+fnR40aNcjKyuLzzz+nX79+13zOciU9CTbOgP/eBB/dCL/9z0ysKtWCWybAX3fAoFlQ79ZylVgBrNxtVoXs3tB954SIeKywmmaCFRgBJ7fB7HsgPdHVUcGPL8O2+eYPRwNnQGRzV0ckIiIVlEuHBY4dO5aRI0fStm1b2rdvz+TJk0lOTmb06NEAjBgxgho1ajBp0iQA1q1bR2xsLC1btiQ2NpYXX3wRh8PBU089VeRzlmvHN5tJ1bYFZvlkAKs3NL7DLENcq2u5S6byyshysGrvGQBuUnIlUjqq1IURC2H67RC7AeYMNnuKfFxU/GfDNPjlLfN233eh3i2uiUNERAQXJ1eDBg3i9OnTvPDCC5w4cYKWLVuyZMkSZ0GKI0eOYM2TDKSlpfHcc89x4MABgoKC6NOnD7NmzSIsLKzI5/QoDjscXgNJJyGoGsR0Nhf4zCstAbZ/Zg79i9ua2165rplQtRwKgVXLMmqX2XD4HMkZdqoG+dA0KgS7PcvVIYmUT9WawrAvYMadcHgVzB8Og+eAV8G5q6Vqz1L45m/m7e7joNV9Zfv8IiIiF3F5QYsxY8YwZsyYQh9buXJlvvvdunVjx44d13ROj7FjESx5GhKO57aFREGv16FxX4jdaCZU2z+HzOzykDYfaNLPTKpibiiX67pczk+7zflWXRuEY7VayC4iKSKloUZrs8dq1gBzwd7PH4B7poOtjP5bOb4ZFowCww4th0G3p8vmeUVERC7D5cmVFGLHIpg/ArhofeeEOPMX4tBoiD+a2161oZlQtRgMAZXLMlK3siJ7vpWGBIqUkZhOMGQOzBkEOxfDV/8H/T8q/eHH5w/DJwMhMxnq3AR9J1e4H5NERMQ9KblyNw672WN1cWIFuW3xR8HmC83ugtYjoWbHCv/FIvZCKntOJmG1QJf6FWMYpIhbqHsz3DsD5g2D3+eBdwDc8a/S+zcp9Tx8cg8kn4JqzWHgTLCpLLSIiLiH8lvdwFMdXpN/KOClDJwOAz4yfzmu4IkV5FYJbFWzEmEBPi6ORqSCadQH7vovYIGN02Dpc2Z59JKWlQ5z7zNLwYfUgPvmQzleJFhERDyPkit3k3TyyvuAuSiwOK3Mnm91U0M3WtRUpCJpfg/c+Z55e+37sPK1kj2/wwELH4XDq8E3xJzvFRJVss8hIiJyjZRcuZugIlY1LOp+FUB6lp01+8wS7FrfSsSFWg83i+4A/PQarH6n5M69/EWzgI/VGwbNNisWioiIuBklV+4mpnP2r7GXGupnMYfDxHQuy6jc2oZD57NLsPvSpLqGCIm4VMc/wS0vmLeXvQDrP772c67/ODdR6/c+1Ol27ecUEREpBUqu3I3VlvvLb4EEK/t+r9cKrndVgeXMt+re0CzBLiIu1uVv5gbw7ZOwZc7Vn2vXt/Bd9kLxNz9nVkUVERFxU0qu3FGTO80KWCHV87eHRJntTe50TVxuKme+VXfNtxJxHzc/Dx3+ZN7+6jH4Y2HxzxG7ET67HwwHtB4BXZ4s0RBFRERKmkqxu6smd0Kj283qgUknzTlWMZ3VY3WRY+dT2HsqCZvVQpd6Sq5E3IbFAj0nQUYybJ5lLjLs7Q8Nehbt+HMHzfWzslKh3q1weymWdxcRESkhSq7cmdUGtbu4Ogq3ltNr1bpmGKEBWutGxK1YrdD3HchMMYtRzBsOwz6D2l0vf1zKuey1rE5D5PVw73Sw6b8rERFxfxoWKB4td76VqgSKuCWrDQb8Bxr2AXs6zBkMR9dfev/MVPh0CJzdB6HRZsl13+Cyi1dEROQaKLkSj5WeZWfN/rOA5luJuDWbN9wzDercBJnJMPseiNsKDjsc/AW2fWb+mZUJXz4CR38Fv1C47zMIjnR19CIiIkWmcRbisX47eJ6UDDsRwSrBLuL2vP1g8Ccw+244sham9QHvAEg+lbuPTxBkJIHNBwbPgYhGrotXRETkKqjnSjzWiuwhgd0ahGPRRHcR9+cTCEPnQaXaZhKVN7ECsw2g3YNQ68ayj09EROQaKbkSj5Uz3+qmRppvJeIxfILMCoCXs+Mrc8igiIiIh1FyJR7p6LkU9p9Oxma1cEO9qq4OR0SK6vAaSDxx+X0SYs39REREPIySK/FIOb1WbWpWItRfJdhFPEbSyZLdT0RExI0ouRKPlLO+VfdGqhIo4lGCqpXsfiIiIm5EyZV4nLTMPCXYG2i+lYhHiekMIVHApYrQWCCkhrmfiIiIh1FyJR5n/cFzpGbaqRbiS+PqWlxUxKNYbdDr9ew7FydY2fd7vWbuJyIi4mGUXInHcQ4JbBChEuwinqjJnTBwJoRUz98eEmW2N7nTNXGJiIhcIy0iLB4np5hF94aabyXisZrcCY1uN6sCJp0051jFdFaPlYiIeDQlV+JRjpxN4cCZZLysFm6orxLsIh7NaoPaXVwdhYiISInRsEDxKCv3ZJdgj6lEiJ9KsIuIiIiI+1ByJR5lxa6cIYGqEigiIiIi7kXJlXiMtEw7aw+YJdhv0vpWIiIiIuJmlFyJx1h38BxpmQ4iQ/xoWE0l2EVERETEvSi5Eo+ROyQwXCXYRURERMTtKLkSj/HTnuz1rTTfSkRERETckJIr8QiHziRzMKcEe70qrg5HRERERKQAJVfiEXIWDm5XqzLBKsEuIiIiIm5IyZV4hJXOIYGqEigiIiIi7knJlbi9tEw7a/ebJdg130pERERE3JWSK3F7aw+cJT3LQVSoHw2qBbk6HBERERGRQim5Erf3025zSGC3hhEqwS4iIiIibkvJlbi9Fbtz17cSEREREXFXSq7ErR08k8zhsyl42yzcUK+qq8MREREREbkkJVfi1vKWYA/y9XJxNCIiIiIil6bkStzait0qwS4iIiIinkHJlbit1Aw7vx4wS7DfpBLsIiIiIuLmlFyJ2/r1wFkyshzUCPOnXoRKsIuIiIiIe1NyJW4rb5VAlWAXEREREXen5ErckmEYrHTOt9KQQBERERFxf0quxC0dOJPMkXMp+NisdK5bxdXhiIiIiIhckZIrcUs5vVbta1cmUCXYRURERMQDKLkSt7Qyz3wrERERERFPoORK3E5KRhbrDpwDlFyJiIiIiOdQciVuZ+3+s2TYHVxXyZ+64SrBLiIiIiKeQcmVuJ3cKoEqwS4iIiIinkPJlbgVwzBy17dqoBLsIiIiIuI5lFyJW9l/Oplj51PNEuz1VIJdRERERDyHkitxKzlVAjvUqUyAj0qwi4iIiIjnUHIlbiV3vpWGBIqIiIiIZ1FyJW4jOT2L9QdVgl1EREREPJOSK3Eba7JLsEdX9qdO1UBXhyMiIiIiUixKrsRt5My3uqlhhEqwi4iIiIjHUXIlbsEwjHzrW4mIiIiIeBolV+IW9p1KIvZCKj5eVjrVqerqcEREREREik3JlbiFnF6rjnWq4O9jc3E0IiIiIiLFV+zkqlatWrz00kscOXKkNOKRCmrlHnO+VfcGGhIoIiIiIp6p2MnVE088wRdffEGdOnXo0aMHc+fOJT09vTRikwoiSSXYRURERKQcuKrkasuWLaxfv57GjRvz5z//merVqzNmzBg2bdpUGjFKObdm3xky7QYxVQKorRLsIiIiIuKhrnrOVevWrXn33Xc5fvw4EyZM4H//+x/t2rWjZcuWTJ06FcMwSjJOKcdW5FQJbBCuEuwiIiIi4rG8rvbAzMxMvvzyS6ZNm8ayZcvo2LEjDzzwAMeOHePZZ5/lhx9+YM6cOSUZq5RDhmHwU/b6Vt0bRbg4GhERERGRq1fsnqtNmzblGwrYtGlTtm/fzqpVqxg9ejTPP/88P/zwA19++WWRzvfBBx9Qq1Yt/Pz86NChA+vXr7/s/pMnT6Zhw4b4+/sTHR3NX//6V9LS0pyPv/jii1gslnxbo0aNivsypYzsPZXE8fg0fL2sdKpTxdXhiIiIiIhctWL3XLVr144ePXrw4Ycf0r9/f7y9vQvsU7t2bQYPHnzFc82bN4+xY8fy0Ucf0aFDByZPnkzPnj3ZvXs3EREFezHmzJnDM888w9SpU+ncuTN79uxh1KhRWCwW3n77bed+TZs25Ycffsh9kV5X3UEnpWzFLrPXqmOdKvh5qwS7iIiIiHiuYmcdBw4cICYm5rL7BAYGMm3atCue6+233+ahhx5i9OjRAHz00Ud88803TJ06lWeeeabA/mvWrOGGG25g6NChgFkWfsiQIaxbty7ffl5eXkRGRhb1JYkL5axvdZOqBIqIiIiIhyt2cnXq1ClOnDhBhw4d8rWvW7cOm81G27Zti3SejIwMNm7cyLhx45xtVquVW2+9lbVr1xZ6TOfOnZk9ezbr16+nffv2HDhwgG+//Zbhw4fn22/v3r1ERUXh5+dHp06dmDRpEjVr1rxkLOnp6fnKySckJADmvLLMzMwivR4pvsS0LDYcNkuw31i3com/1znn02coZUHXm5Q1XXNSlnS9SVlzp2uuODEUO7l67LHHeOqppwokV7Gxsbz++usFepEu5cyZM9jtdqpVq5avvVq1auzatavQY4YOHcqZM2e48cYbMQyDrKws/vSnP/Hss8869+nQoQPTp0+nYcOGxMXFMXHiRLp06cL27dsJDg4u9LyTJk1i4sSJBdqXLl1KQEBAkV6PFN/WsxYy7Taq+hn8sW4lf5TS8yxbtqyUzixSkK43KWu65qQs6XqTsuYO11xKSkqR9y12crVjxw5at25doL1Vq1bs2LGjuKcrlpUrV/Lqq6/y73//mw4dOrBv3z4ef/xxXn75ZZ5//nkAevfu7dz/+uuvp0OHDsTExDB//nweeOCBQs87btw4xo4d67yfkJBAdHQ0t912GyEhIaX6miqyNV/9AcTSp2UMffqUfNGRzMxMli1bRo8ePQqdGyhSknS9SVnTNSdlSdeblDV3uuZyRrUVRbGTK19fX06ePEmdOnXytcfFxRWrcETVqlWx2WycPHkyX/vJkycvOV/q+eefZ/jw4Tz44IMANG/enOTkZB5++GHGjx+P1Vqw+GFYWBgNGjRg3759l31Nvr6+Bdq9vb1d/mGWV4Zh8PPeswDc3Lhaqb7P+hylLOl6k7Kma07Kkq43KWvucM0V5/mLXYr9tttuY9y4ccTHxzvbLly4wLPPPkuPHj2KfB4fHx/atGnD8uXLnW0Oh4Ply5fTqVOnQo9JSUkpkEDZbGaFuUstWpyUlMT+/fupXr16kWOT0rf7ZCJx2SXYO6oEu4iIiIiUA8XuuXrzzTfp2rUrMTExtGrVCoAtW7ZQrVo1Zs2aVaxzjR07lpEjR9K2bVvat2/P5MmTSU5OdlYPHDFiBDVq1GDSpEkA9O3bl7fffptWrVo5hwU+//zz9O3b15lkPfnkk/Tt25eYmBiOHz/OhAkTsNlsDBkypLgvVUpRTpXAznVVgl1EREREyodiJ1c1atTg999/55NPPmHr1q34+/szevRohgwZUuwuu0GDBnH69GleeOEFTpw4QcuWLVmyZImzyMWRI0fy9VQ999xzWCwWnnvuOWJjYwkPD6dv37688sorzn2OHTvGkCFDOHv2LOHh4dx44438+uuvhIer1Lc7yVnfqnvDguuZiYiIiIh4oqtaXTcwMJCHH364RAIYM2YMY8aMKfSxlStX5rvv5eXFhAkTmDBhwiXPN3fu3BKJS0pPYlomGw+fB+AmJVciIiIiUk5cVXIFZtXAI0eOkJGRka/9zjvvvOagpHxbve8MWQ6DOlUDqVlFpe5FREREpHwodnJ14MABBgwYwLZt27BYLM5CEhaLBQC73V6yEUq5s2KXOd+qW0MN1RQRERGR8qPY1QIff/xxateuzalTpwgICOCPP/7g559/pm3btgWG8YlczDAMftpjJlcaEigiIiIi5Umxe67Wrl3Ljz/+SNWqVbFarVitVm688UYmTZrEX/7yFzZv3lwacUo5setEIicS0vD3ttG+dmVXhyMiIiIiUmKK3XNlt9sJDg4GzIWAjx8/DkBMTAy7d+8u2eik3Fmx26wS2Ekl2EVERESknCl2z1WzZs3YunUrtWvXpkOHDvzzn//Ex8eH//73v9SpU6c0YpRyJGd9q5s030pEREREypliJ1fPPfccycnJALz00kvccccddOnShSpVqjBv3rwSD1DKj4Q8Jdi1vpWIiIiIlDfFTq569uzpvF2vXj127drFuXPnqFSpkrNioEhhVu09g91hUCc8kOjKKsEuIiIiIuVLseZcZWZm4uXlxfbt2/O1V65cWYmVXNHK7PlWqhIoIiIiIuVRsZIrb29vatasqbWspNgMw3DOt+qu+VYiIiIiUg4Vu1rg+PHjefbZZzl37lxpxCPl1I64BE4lpqsEu4iIiIiUW8Wec/X++++zb98+oqKiiImJITAwMN/jmzZtKrHgpPzI6bW6oV4VfL1Ugl1EREREyp9iJ1f9+/cvhTCkvMuZb9VN861EREREpJwqdnI1YcKE0ohDyrH41Ew2HbkAQPcGmm8lIiIiIuVTsedciRRXTgn2ehFBKsEuIiIiIuVWsXuurFbrZcuuq5KgXGxF9pBA9VqJiIiISHlW7OTqyy+/zHc/MzOTzZs3M2PGDCZOnFhigUn54HAY/LTHLGZxUyPNtxIRERGR8qvYyVW/fv0KtN1zzz00bdqUefPm8cADD5RIYFI+7IhL4HRiOgE+NtrWquTqcERERERESk2Jzbnq2LEjy5cvL6nTSTmRUyWwc92qKsEuIiIiIuVaiSRXqampvPvuu9SoUaMkTiflSM76Vjc10nwrERERESnfij0ssFKlSvkKWhiGQWJiIgEBAcyePbtEgxPPdiElg01HzgPQXetbiYiIiEg5V+zk6l//+le+5MpqtRIeHk6HDh2oVElzaiTXL3vP4DCgQbUgaoT5uzocEREREZFSVezkatSoUaUQhpRHOUMC1WslIiIiIhVBsedcTZs2jQULFhRoX7BgATNmzCiRoMTzmSXYtb6ViIiIiFQcxU6uJk2aRNWqVQu0R0RE8Oqrr5ZIUOL5/jiewJmkDAJ9bLStVdnV4YiIiIiIlLpiJ1dHjhyhdu3aBdpjYmI4cuRIiQQlni+nBPsN9ari41ViFf9FRERERNxWsb/1RkRE8Pvvvxdo37p1K1WqVCmRoMTzrchOrjTfSkREREQqimInV0OGDOEvf/kLK1aswG63Y7fb+fHHH3n88ccZPHhwacQoHuZ8cgZbjl4AoHtDzbcSERERkYqh2NUCX375ZQ4dOsQtt9yCl5d5uMPhYMSIEZpzJQD8vPc0DgMaVgsmSiXYRURERKSCKHZy5ePjw7x58/jHP/7Bli1b8Pf3p3nz5sTExJRGfOKBfnKWYFevlYiIiIhUHMVOrnLUr1+f+vXrl2QsUg6YJdi1vpWIiIiIVDzFnnN199138/rrrxdo/+c//8m9995bIkGJ59oWG8/Z5AyCfL1oW6uSq8MRERERESkzxU6ufv75Z/r06VOgvXfv3vz8888lEpR4rpXZQwJvrFcVb5tKsIuIiIhIxVHsb79JSUn4+PgUaPf29iYhIaFEghLPtXJPTgl2zbcSERERkYql2MlV8+bNmTdvXoH2uXPn0qRJkxIJSjzTuTwl2LspuRIRERGRCqbYBS2ef/557rrrLvbv38/NN98MwPLly5kzZw6fffZZiQconuOXvacxDGgUGUz1UJVgFxEREZGKpdjJVd++fVm4cCGvvvoqn332Gf7+/rRo0YIff/yRypUrl0aM4iFW7laVQBERERGpuK6qFPvtt9/O7bffDkBCQgKffvopTz75JBs3bsRut5dogOIZ8pdg15BAEREREal4rrqc288//8zIkSOJiorirbfe4uabb+bXX38tydjEg/weG8+55AyCfb1oE6MS7CIiIiJS8RSr5+rEiRNMnz6dKVOmkJCQwMCBA0lPT2fhwoUqZlHBrdhlVgm8sb5KsIuIiIhIxVTkb8F9+/alYcOG/P7770yePJnjx4/z3nvvlWZs4kFWakigiIiIiFRwRe65+u677/jLX/7Co48+Sv369UszJvEwZ5PS+f3YBUDFLERERESk4ipyz9WqVatITEykTZs2dOjQgffff58zZ86UZmziIX7OLsHeuHoI1UL8XB2OiIiIiIhLFDm56tixIx9//DFxcXE88sgjzJ07l6ioKBwOB8uWLSMxMbE04xQ3llOC/SYNCRQRERGRCqzYlQcCAwO5//77WbVqFdu2beNvf/sbr732GhEREdx5552lEaO4MbvD4Oc9Wt9KREREROSayro1bNiQf/7znxw7doxPP/20pGISD7L12AXOp2QS7OdF65phrg5HRERERMRlSqRmts1mo3///ixatKgkTiceJGdIYNf64XipBLuIiIiIVGD6NizX5Kfd5vpW3TTfSkREREQqOCVXctXOJKWz9Vg8AN0bKLkSERERkYpNyZVctZxCFk2jQohQCXYRERERqeCUXMlVW7E7p0qgeq1ERERERJRcyVWxOwx+2asS7CIiIiIiOZRcyVXZcvQCF1IyCfHzolV0mKvDERERERFxOSVXclVWZlcJ7NJAJdhFREREREDJlVylnPWtbtKQQBERERERQMmVXIXTielsizVLsHdTCXYREREREUDJlVyFn7JLsDerEUJ4sK+LoxERERERcQ9KrqTYcuZbaUigiIiIiEguJVdSLFl2h3PxYK1vJSIiIiKSS8mVFMuWoxdISMsi1N+bltGVXB2OiIiIiIjbUHIlxZJTJbBrg3BsVouLoxERERERcR9KrqRYVmTPt+quKoEiIiIiIvkouZIiO5WYxh/HEwCz50pERERERHIpuZIi+yl7SOD114WqBLuIiIiIyEVcnlx98MEH1KpVCz8/Pzp06MD69esvu//kyZNp2LAh/v7+REdH89e//pW0tLRrOqcUTc58Kw0JFBEREREpyKXJ1bx58xg7diwTJkxg06ZNtGjRgp49e3Lq1KlC958zZw7PPPMMEyZMYOfOnUyZMoV58+bx7LPPXvU5pWiy7A5+2ZudXDXS+lYiIiIiIhdzaXL19ttv89BDDzF69GiaNGnCRx99REBAAFOnTi10/zVr1nDDDTcwdOhQatWqxW233caQIUPy9UwV95xSNJuzS7BXCvCmxXVhrg5HRERERMTteLnqiTMyMti4cSPjxo1ztlmtVm699VbWrl1b6DGdO3dm9uzZrF+/nvbt23PgwAG+/fZbhg8fftXnBEhPTyc9Pd15PyHBLNqQmZlJZmbmNb3O8mL5jhMA3FC3Cg57Fg67iwMqgpzPTp+hlAVdb1LWdM1JWdL1JmXNna654sTgsuTqzJkz2O12qlWrlq+9WrVq7Nq1q9Bjhg4dypkzZ7jxxhsxDIOsrCz+9Kc/OYcFXs05ASZNmsTEiRMLtC9dupSAgIDivrRyafFWG2AhLDWWb7895upwimXZsmWuDkEqEF1vUtZ0zUlZ0vUmZc0drrmUlJQi7+uy5OpqrFy5kldffZV///vfdOjQgX379vH444/z8ssv8/zzz1/1eceNG8fYsWOd9xMSEoiOjua2224jJCSkJEL3aCcT0ohd+zMWC4y55xaqBPq4OqQiyczMZNmyZfTo0QNvb29XhyPlnK43KWu65qQs6XqTsuZO11zOqLaicFlyVbVqVWw2GydPnszXfvLkSSIjIws95vnnn2f48OE8+OCDADRv3pzk5GQefvhhxo8ff1XnBPD19cXXt2BpcW9vb5d/mO5gzQFzSOD1NUKJDAt0cTTFp89RypKuNylruuakLOl6k7LmDtdccZ7fZQUtfHx8aNOmDcuXL3e2ORwOli9fTqdOnQo9JiUlBas1f8g2mw0AwzCu6pxyZSv3mJUWuzdUlUARERERkUtx6bDAsWPHMnLkSNq2bUv79u2ZPHkyycnJjB49GoARI0ZQo0YNJk2aBEDfvn15++23adWqlXNY4PPPP0/fvn2dSdaVzinFk2l38MueMwB0b6j1rURERERELsWlydWgQYM4ffo0L7zwAidOnKBly5YsWbLEWZDiyJEj+XqqnnvuOSwWC8899xyxsbGEh4fTt29fXnnllSKfU4pn0+HzJKZnUTnQh+tVgl1ERERE5JJcXtBizJgxjBkzptDHVq5cme++l5cXEyZMYMKECVd9TimelXvMhYO71q+KzWpxcTQiIiIiIu7LpYsIi/tbsUvzrUREREREikLJlVzSifg0dp1IxGKBrg0030pERERE5HKUXMkl/ZRdJbDFdWFU9pC1rUREREREXEXJlVzSil3mfCtVCRQRERERuTIlV1KoTLuDVfvMEuw3ab6ViIiIiMgVKbmSQm04dJ6k9CyqBPrQvEaoq8MREREREXF7Sq6kUCuz51t1bRCOVSXYRURERESuSMmVFOqn3ZpvJSIiIiJSHEqupIDjF1LZdSIRqwW61ldyJSIiIiJSFEqupICf9pi9Vi2jw6ikEuwiIiIiIkWi5EoKWLnbnG/VXVUCRURERESKTMmV5JOR5WDVXrMEu+ZbiYiIiIgUnZIryWfD4XMkZ9ipGuRDsyiVYBcRERERKSolV5JPTpVAlWAXERERESkeJVeSzwrNtxIRERERuSpKrsQp9kIqe04mZZdgr+rqcEREREREPIqSK3HKqRLYqmYlwgJUgl1EREREpDiUXInTyuz5Vt0bqEqgiIiIiEhxKbkSANKz7KzZZ5Zgv6mR5luJiIiIiBSXkisBYMOh89kl2H1pUj3E1eGIiIiIiHgcJVcC5M636t5QJdhFRERERK6GkisB8sy3aqj5ViIiIiIiV0PJlXDsfAp7T5kl2LvUU3IlIiIiInI1lFyJs9eqTUwlQgO8XRyNiIiIiIhnUnIleeZbqUqgiIiIiMjVUnJVwaVn2Vmz/ywA3bS+lYiIiIjIVVNyVcH9dvA8KRl2IoJ9aRqlEuwiIiIiIldLyVUFtyJ7SGC3BuFYLCrBLiIiIiJytZRcVXCabyUiIiIiUjKUXFVgR8+lsP90MjarhRvrV3V1OCIiIiIiHk3JVQWW02vVpmYlQv1Vgl1ERERE5FoouarActa36t5IVQJFRERERK6VkqsKKi0ztwR79waabyUiIiIicq2UXFVQ6w+eIzXTTrUQXxpXD3Z1OCIiIiIiHk/JVQXlHBLYIEIl2EVERERESoCSqwoqtwS75luJiIiIiJQEJVcV0JGzKRw4k4yX1cINKsEuIiIiIlIilFxVQCv3ZJdgj6lEiJ9KsIuIiIiIlAQlVxXQil05QwJVJVBEREREpKQouapg0jLtrD2QXYJd861EREREREqMkqsKZt3Bc6RlOogM8aNRpEqwi4iIiIiUFCVXFUzukMBwlWAXERERESlBSq4qmJ/2ZK9vpflWIiIiIiIlSslVBXLoTDIHc0qw16vi6nBERERERMoVJVcVSM7CwW1rVSJYJdhFREREREqUkqsKZGX2kMCbNCRQRERERKTEKbmqINIy7azdn1OCXcmViIiIiEhJU3JVQaw9cJb0LAfVQ/1oUC3I1eGIiIiIiJQ7Sq4qiJ9251YJVAl2EREREZGSp+SqglixO3d9KxERERERKXlKriqAg2eSOXw2BW+bhRvqVXV1OCIiIiIi5ZKSqwogpwR7u1qVCfL1cnE0IiIiIiLlk5KrCmCFc76VhgSKiIiIiJQWJVflXGqGnV8PmCXYtb6ViIiIiEjpUXJVzv164CwZWQ5qhPlTL0Il2EVERERESouSq3Iup0pgt4bhKsEuIiIiIlKKlFyVY4ZhsDJ7vpWGBIqIiIiIlC4lV+XYgTPJHDmXgo/NSue6VVwdjoiIiIhIuabkqhzL6bVqV7sSgSrBLiIiIiJSqpRclWM561tpSKCIiIiISOlTclVOpWRkse7AOUDrW4mIiIiIlAUlV+XU2v1nybCbJdjrhqsEu4iIiIhIaVNyVU45qwQ2Ugl2EREREZGyoOSqHDIMw7m+VfcGmm8lIiIiIlIW3CK5+uCDD6hVqxZ+fn506NCB9evXX3Lf7t27Y7FYCmy33367c59Ro0YVeLxXr15l8VLcwv7TyRw7n2qWYK+nEuwiIiIiImXB5fW5582bx9ixY/noo4/o0KEDkydPpmfPnuzevZuIiIK9Ll988QUZGRnO+2fPnqVFixbce++9+fbr1asX06ZNc9739fUtvRfhZnKqBHaoU5kAH5d/xCIiIiIiFYLLe67efvttHnroIUaPHk2TJk346KOPCAgIYOrUqYXuX7lyZSIjI53bsmXLCAgIKJBc+fr65tuvUqVKZfFy3ELOfKtuDVQlUERERESkrLi0WyMjI4ONGzcybtw4Z5vVauXWW29l7dq1RTrHlClTGDx4MIGBgfnaV65cSUREBJUqVeLmm2/mH//4B1WqFD5ELj09nfT0dOf9hIQEADIzM8nMzCzuy3Kp5PQs1h08C0CXupU9Lv6SlPPaK/J7IGVH15uUNV1zUpZ0vUlZc6drrjgxuDS5OnPmDHa7nWrVquVrr1atGrt27bri8evXr2f79u1MmTIlX3uvXr246667qF27Nvv37+fZZ5+ld+/erF27FpvNVuA8kyZNYuLEiQXaly5dSkBAQDFflWttO2ch026jiq/BzvU/sUuFAlm2bJmrQ5AKRNeblDVdc1KWdL1JWXOHay4lJaXI+3r0hJwpU6bQvHlz2rdvn6998ODBztvNmzfn+uuvp27duqxcuZJbbrmlwHnGjRvH2LFjnfcTEhKIjo7mtttuIyQkpPReQCn4ddEO4Bi9WtTk9tsbuzocl8rMzGTZsmX06NEDb29vV4cj5ZyuNylruuakLOl6k7LmTtdczqi2onBpclW1alVsNhsnT57M137y5EkiIyMve2xycjJz587lpZdeuuLz1KlTh6pVq7Jv375CkytfX99CC154e3u7/MMsDsMw+HmvOSTwlibVPCr20uRpn6N4Nl1vUtZ0zUlZ0vUmZc0drrniPL9LC1r4+PjQpk0bli9f7mxzOBwsX76cTp06XfbYBQsWkJ6ezrBhw674PMeOHePs2bNUr179mmN2Z/tOJRF7IRUfLyud6lR1dTgiIiIiIhWKy6sFjh07lo8//pgZM2awc+dOHn30UZKTkxk9ejQAI0aMyFfwIseUKVPo379/gSIVSUlJ/P3vf+fXX3/l0KFDLF++nH79+lGvXj169uxZJq/JVXKqBHaoXRl/n4Jzy0REREREpPS4fM7VoEGDOH36NC+88AInTpygZcuWLFmyxFnk4siRI1it+XPA3bt3s2rVKpYuXVrgfDabjd9//50ZM2Zw4cIFoqKiuO2223j55ZfL/VpXK/eY61vd1LDg+mAiIiIiIlK6XJ5cAYwZM4YxY8YU+tjKlSsLtDVs2BDDMArd39/fn++//74kw/MISelZrD94DoDuDbW+lYiIiIhIWXP5sEApGWv2nSHTbhBTJYDaVQOvfICIiIiIiJQot+i5kmu3Inu+VfcG4VgsWtxKRERESpbFYiE9PR273e7qUKQCyMzMxMvLi7S0tFK/5ry9vQtdC/dqKLkqBwzD4Kfd5nyr7ppvJSIiIiXIMAxOnjxJ9erVOXLkiH7ElTJhGAaRkZEcPXq0TK65sLAwIiMjr/m5lFyVA3tPJXE8Pg1fLysd61S58gEiIiIiRXTixAkSEhKIjIykcuXKJfYLv8jlOBwOkpKSCAoKKlDcriQZhkFKSgqnTpkdFde6dJOSq3JgxS7zYuhYp4pKsIuIiEiJsdvtXLhwgfDwcLy9vfH39y/VL7oiORwOBxkZGfj5+ZX6Nefv7w/AqVOniIiIuKYfEPS3oxzIWd9KVQJFRESkJGVmZgIQEBDg4khESlfONZ5zzV8tJVceLjEtkw2HzRLsWt9KRERESoPmWUl5V1LXuJIrD7d631ky7Qa1qgRQSyXYRURERERcRsmVh/tpj6oEioiIiPuzOwzW7j/LV1tiWbv/LHaH4eqQiq1WrVpMnjy5yPuvXLkSi8XChQsXSi0mcS8qaOHBDMPQfCsRERFxe0u2xzFx8Q7i4tOcbdVD/ZjQtwm9ml1bdbbCXGmI14QJE3jxxReLfd7ffvuNwMCijxTq3LkzcXFxhIaGFvu5rlajRo04ePAghw8fJjIyssyeV0zqufJgu08mEqcS7CIiIuLGlmyP49HZm/IlVgAn4tN4dPYmlmyPK/HnjIuLc26TJ08mJCQkX9uTTz7p3NcwDLKysop03vDw8GIV9/Dx8SmRtZOKatWqVaSmpnLPPfcwY8aMMnnOy7nW4hCeSMmVB8vptepctwp+3irBLiIiIqXPMAxSMrKKtCWmZTJh0R8UNgAwp+3FRTtITMss0vkMo2hDCSMjI51baGgoFovFeX/Xrl0EBwfz3Xff0aZNG3x9fVm1ahX79++nX79+VKtWjaCgINq1a8cPP/yQ77wXDwu0WCz873//Y8CAAQQEBFC/fn0WLVrkfPziYYHTp08nLCyM77//nsaNGxMUFESvXr2Ii8tNMLOysvjLX/5CWFgYVapU4emnn2bkyJH079//iq97ypQpDB06lOHDhzN16tQCjx87dowhQ4ZQuXJlAgMDadu2LevWrXM+vnjxYtq1a4efnx9Vq1ZlwIAB+V7rwoUL850vLCyM6dOnA3Do0CEsFgvz5s2jW7du+Pn58cknn3D27FmGDBlCjRo1CAgIoHnz5nz66af5zuNwOPjnP/9JvXr18PX1pWbNmrz66qsA3HrrrYwZMybf/qdPn8bHx4fly5df8T0paxoW6MFy1rfSfCsREREpK6mZdpq88H2JnMsATiSk0fzFpUXaf8dLPQnwKZmvr8888wxvvvkmderUoVKlShw9epQ+ffrwyiuv4Ovry8yZM+nbty+7d++mZs2alzzPxIkT+ec//8kbb7zBe++9x3333cfhw4epXLlyofunpKTw5ptvMmvWLKxWK8OGDePJJ5/kk08+AeD111/nk08+Ydq0aTRu3Jh33nmHhQsXctNNN1329SQmJrJgwQLWrVtHo0aNiI+P55dffqFLly4AJCUl0a1bN2rUqMGiRYuIjIxk06ZNOBwOAL755hsGDBjA+PHjmTlzJhkZGXz77bdX9b6+9dZbtGrVCj8/P9LS0mjTpg1PP/00ISEhfPPNNwwfPpy6devSvn17AMaNG8fHH3/Mv/71L2688Ubi4uLYsWMHAPfffz9/+ctfeOutt/D19QVg9uzZ1KhRg5tvvrnY8ZU2JVceKjEtk42HzwOabyUiIiJSXC+99BI9evRw3q9cuTItWrRw3n/55Zf58ssvWbRoUYGek7xGjRrFkCFDAHj11Vd59913Wb9+Pb169Sp0/8zMTD766CPq1q0LwJgxY3jppZecj7/33nuMGzfO2Wv0/vvvFynJmTt3LvXr16dp06YADB48mClTpjiTqzlz5nD69Gl+++03Z+JXr1495/GvvPIKgwcPZuLEic62vO9HUT3xxBPcdddd+dryDsP885//zPfff8/8+fNp3749iYmJvPPOO7z//vuMHDkSgLp169K5c2cSEhK46667+Mtf/sJXX33FwIEDAbMHcNSoUW65RICSKw+1et8ZshwGdaoGElNFJdhFRESkbPh729jxUs8i7bv+4DlGTfvtivtNH92O9rUL7+m5+LlLStu2bfPdT0pK4sUXX+Sbb74hLi6OrKwsUlNTOXLkyGXPc/311ztvBwYGEhISwqlTpy65f0BAgDOxAqhevbpz//j4eE6ePOns0QGw2Wy0adPG2cN0KVOnTmXYsGHO+8OGDaNbt2689957BAcHs2XLFlq1anXJHrUtW7bw0EMPXfY5iuLi99Vut/Pqq68yf/58YmNjycjIID093Tl3befOnaSnp3PLLbcUej4/Pz/nMMeBAweyadMmtm/fnm/4pTtRcuWhVuwy51t1U6+ViIiIlCGLxVLkoXld6odTPdSPE/Fphc67sgCRoX50qR+OzVq2vRAXV/178sknWbZsGW+++Sb16tXD39+fe+65h4yMjMuex9vbO999i8Vy2USosP2LOpfsUnbs2MGvv/7K+vXrefrpp53tdruduXPn8tBDD+Hv73/Zc1zp8cLiLKxgxcXv6xtvvME777zD5MmTad68OYGBgTzxxBPO9/VKzwvw4IMP0rJlS44dO8a0adO4+eabiYmJueJxrqCCFh7IMAx+2pNTgl3zrURERMQ92awWJvRtApiJVF459yf0bVLmiVVhVq9ezahRoxgwYADNmzcnMjKSQ4cOlWkMoaGhVKtWjd9+y+3ts9vtbNq06bLHTZkyha5du7J161a2bNni3MaOHcuUKVMAs4dty5YtnDt3rtBzXH/99ZctEBEeHp6v8MbevXtJSUm54mtavXo1/fr1Y9iwYbRo0YI6deqwZ88e5+P169fH39//ss/dvHlz2rZty8cff8ycOXO4//77r/i8rqLkygPtOpHIiYQ0/LytdChCF7qIiIiIq/RqVp0Ph7UmMtQvX3tkqB8fDmtdKutcXY369evzxRdfsGXLFrZu3crQoUOvOBSvNPz5z39m0qRJfPXVV+zevZvHH3+c8+fPX3J+UWZmJrNmzWLIkCE0a9Ys3/bggw+ybt06/vjjD4YMGUJkZCT9+/dn9erVHDhwgM8//5y1a9cC5tpfn376KRMmTGDnzp1s27aN119/3fk8N998M++//z6bN29mw4YN/OlPfyrQC1eY+vXrs2zZMtasWcPOnTt55JFHOHnypPNxPz8/nn76aZ566ilmzpzJ/v37+fXXX51JYY4HH3yQ1157DcMw8lUxdDdKrjzQit3muNzOdauqBLuIiIi4vV7NqrPq6Zv59KGOvDO4JZ8+1JFVT9/sNokVwNtvv02lSpXo3Lkzffv2pWfPnrRu3brM43j66acZMmQII0aMoFOnTgQFBdGzZ0/8/PwK3X/RokWcPXu20ISjcePGNG7cmClTpuDj48PSpUuJiIigT58+NG/enNdeew2bzfwu2b17dxYsWMCiRYto2bIlN998M+vXr3ee66233iI6OpouXbowdOhQnnzyySKt+fXcc8/RunVrevbsSffu3Z0JXl7PP/88f/vb33jhhRdo3LgxgwYN4vTp0/n2GTJkCF5eXgwZMuSS74U7sBjXOsizHEpISCA0NJT4+HhCQkJcHU4BA/+zlvUHz/FSv6aM6FTL1eG4rczMTL799lv69OlTpF9WRK6Frjcpa7rmpCykpaVx8OBBYmJiyMjIICQkBKtVv82XJYfDQePGjRk4cCAvv/yyq8MpMw6Hg4SEBOc1d+jQIerWrctvv/1WKklvzrVeu3btAslbcXIDFbTwMAl5S7A30HwrERERkfLk8OHDLF26lG7dupGens7777/PwYMHGTp0qKtDc4nMzEzOnz/Pc889R8eOHV3Sm1gc+unBw6zaewa7w6BOeCA1q1y5K1ZEREREPIfVamX69Om0a9eOG264gW3btvHDDz/QuHFjV4fmEqtXr6Z69er89ttvfPTRR64O54rUc+VhVmbPt7pJVQJFREREyp3o6GhWr17t6jDcRvfu3a+5VH1ZUs+VBzEMg5W7c0qwa30rERERERF3ouTKg+yIS+BUYjr+3rYirWIuIiIiIiJlR8mVB8nptbqhXhV8vVSCXURERETEnSi58iA58626ab6ViIiIiIjbUXLlIeJTM9l05AIA3RtovpWIiIiIiLtRcuUhckqw14sIIrqySrCLiIiIiLgbJVceYkX2kED1WomIiIhHctjh4C+w7TPzT4fd1RFdUffu3XniiSec92vVqsXkyZMve4zFYmHhwoXX/NwldR4pW1rnygM4HAY/7ckpwa75ViIiIuJhdiyCJU9DwvHctpAo6PU6NLmzxJ+ub9++ZGZmsmTJkgKP/fLLL3Tt2pWtW7dy/fXXF+u8v/32G4GBgSUVJgAvvvgiCxcuZMuWLfna4+LiqFSpUok+16WkpqZSo0YNrFYrsbGx+Pr6lsnzlkfqufIAO+ISOJ2YToCPjXa1y+YvmYiIiEiJ2LEI5o/In1gBJMSZ7TsWlfhTPvDAAyxbtoxjx44VeGzatGm0bdu22IkVQHh4OAEBZTM9IzIyssySnM8//5ymTZvSqFEjl/eWGYZBVlaWS2O4Fkqu3JjdYbB2/1k+XLkPgE51VIJdREREXMwwICO5aFtaAnz3FGAUdiLzjyVPm/sV5XxGYecp6I477iA8PJzp06fna09KSmLBggU88MADnD17liFDhlCjRg0CAgJo3rw5n3766WXPe/GwwL1799K1a1f8/Pxo0qQJy5YtK3DM008/TYMGDQgICKBOnTo8//zzZGZmAjB9+nQmTpzI1q1bsVgsWCwWZ8wXDwvctm0bN998M/7+/lSpUoWHH36YpKQk5+OjRo2if//+vPnmm1SvXp0qVarw2GOPOZ/rcqZMmcKwYcMYNmwYU6ZMKfD4H3/8wR133EFISAjBwcF06dKF/fv3Ox+fOnUqTZs2xdfXl+rVqzNmzBgADh06hMViydcrd+HCBSwWCytXrgRg5cqVWCwWvvvuO9q0aYOvry+rVq1i//79DB06lOrVqxMUFES7du344Ycf8sWVnp7O008/TXR0NL6+vtSrV48pU6ZgGAb16tXjzTffzLf/li1bsFgs7Nu374rvydXSsEA3tWR7HBMX7yAuPs3Z9tuhcyzZHkevZtVdGJmIiIhUaJkp8GpUCZ3MMHu0Xosu2u7PHgefKw/L8/LyYsSIEUyfPp3x48djsVgAWLBgAXa7nSFDhpCUlESbNm14+umnCQkJ4ZtvvmH48OHUrVuX9u3bX/E5HA4Hd911F9WqVWPdunXEx8fnm5+VIzg4mOnTpxMVFcW2bdt46KGHCA4O5qmnnmLQoEFs376dJUuWOBOH0NDQAudITk6mZ8+edOrUid9++41Tp07x4IMPMmbMmHwJ5IoVK6hevTorVqxg3759DBo0iJYtW/LQQw9d8nXs37+ftWvX8sUXX2AYBn/96185fPgwMTExAMTGxtK1a1e6d+/Ojz/+SEhICKtXr3b2Ln344YeMHTuW1157jd69exMfH8/q1auv+P5d7JlnnuHNN9+kTp06VKpUicOHD9OjRw9ee+01/P39mTlzJn379mX37t3UrFkTgBEjRrB27VreffddWrRowcGDBzlz5gwWi4X777+fadOm8eSTTzqfY9q0aXTt2pV69eoVO76iUnLlhpZsj+PR2ZsK/MaTkJbFo7M38eGw1kqwRERERC7j/vvv54033uCnn36ie/fugPnl+u677yY0NJTQ0NB8X7z//Oc/8/333zN//vwiJVc//PADu3bt4vvvvycqykw2X331VXr37p1vv+eee855u1atWjz55JPMnTuXp556Cn9/f4KCgvDy8iIyMvKSzzVnzhzS0tKYOXOmc87X+++/T9++fXn99depVq0aAJUqVeL999/HZrPRqFEjbr/9dpYvX37Z5Grq1Kn07t3bOb+rZ8+eTJs2jRdffBGADz74gNDQUObOnYu3tzcADRo0cB7/j3/8g7/97W88/vjjzrZ27dpd8f272EsvvUSPHj2c98PCwqhduzYhISFYrVZefvllvvzySxYtWsSYMWPYs2cP8+fPZ9myZdx6660A1KlTx3n8qFGjeOGFF1i/fj3t27cnMzOTOXPmFOjNKmlKrtyM3WEwcfGOQjvPc0xcvIMeTSKxWS1lFpeIiIgIAN4BZg9SURxeA5/cc+X97vsMYjoX7bmLqFGjRnTu3JmpU6fSvXt39u3bxy+//MJLL70EgN1u59VXX2X+/PnExsaSkZFBenp6kedU7dy5k+joaGdiBdCpU6cC+82bN493332X/fv3k5SURFZWFiEhIUV+HTnP1aJFi3zFNG644QYcDge7d+92JldNmzbFZsudQlK9enW2bdt2yfPa7XZmzJjBO++842wbNmwYTz75JC+88AJWq5UtW7bQpUsXZ2KV16lTpzh+/Di33HJLsV5PYdq2bZvvflJSEs8//zw//PADcXFxZGVlkZqaypEjRwBziJ/NZqNbt26Fni8qKorbb7+dqVOn0r59exYvXkx6ejr33nvvNcd6OZpz5WbWHzyXbyjgxQwgLj6N9QfPlV1QIiIiIjksFnNoXlG2ujebVQG51A/CFgipYe5XlPNZivfD8gMPPMDnn39OYmIi06ZNo27dus4v42+88QbvvPMOTz/9NCtWrGDLli307NmTjIyMa3t/8li7di333Xcfffr04euvv2bz5s2MHz++RJ8jr4sTIIvFgsPhuOT+33//PbGxsQwaNAgvLy+8vLwYPHgwhw8fZvny5QD4+/tf8vjLPQZgtZqphpFnrtyl5oBdXIXx73//O19//TX/+Mc/+OWXX9iyZQvNmzd3vndXem6ABx98kLlz55Kamsq0adMYNGhQqRckUXLlZk4lXjqxupr9RERERFzGajPLrQMFE6zs+71eM/crBQMHDsRqtTJnzhxmzpzJ/fff75x/tXr1avr168ewYcNo0aIFderUYc+ePUU+d+PGjTl69ChxcXHOtl9//TXfPmvWrCEmJobx48fTtm1b6tevz+HDh/Pt4+Pjg91++TW/GjduzNatW0lOTna2rV69GqvVSsOGDYsc88WmTJnC4MGD2bJlS75t8ODBzsIW119/Pb/88kuhSVFwcDC1atVyJmIXCw8312fN+x5dXHL+UtasWcPQoUMZMGAAzZs3JzIykkOHDjkfb968OQ6Hg59++umS5+jTpw+BgYF8+OGHLFmyhPvvv79Iz30tlFy5mYhgvxLdT0RERMSlmtwJA2dCyEXzxUOizPZSWOcqR1BQEIMGDWLcuHHExcUxatQo52P169dn2bJlrFmzhp07d/LII49w8uTJIp/71ltvpUGDBowcOZKtW7fyyy+/MH78+Hz71K9fnyNHjjB37lz279/Pu+++y5dffplvn1q1anHw4EG2bNnCmTNnSE9PL/Bc9913H35+fowcOZLt27ezYsUK/vznPzN8+HDnkMDiOn36NIsXL2bkyJE0a9Ys3zZixAgWLlzIuXPnGDNmDAkJCQwePJgNGzawd+9eZs2axe7duwFzna633nqLd999l71797Jp0ybee+89wOxd6tixI6+99ho7d+7kp59+yjcH7XLq1avH4sWL2bJlC1u3bmXo0KH5euFq1arFyJEjuf/++1m4cCEHDx5k5cqVzJ8/37mPzWZj1KhRjBs3jvr16xc6bLOkKblyM+1rV6Z6qN/lOs+pHupH+9qVyzIsERERkavX5E54YjuM/BrunmL++cS2Uk2scjzwwAOcP3+enj175psf9dxzz9G6dWt69uxJ9+7diYyMpH///kU+r9Vq5csvvyQ1NZX27dvz4IMP8sorr+Tb58477+Svf/0rY8aMoWXLlqxZs4bnn38+3z533303vXr14qabbiI8PLzQcvABAQF8//33nDt3jnbt2nHPPfdwyy238P777xfvzcgjpzhGYfOlbrnlFvz9/Zk9ezZVqlThxx9/JCkpiW7dutGmTRs+/vhj5xDEkSNHMnnyZP7973/TtGlT7rjjDvbu3es819SpU8nKyqJNmzY88cQT/OMf/yhSfG+99RZhYWHceOON9O3bl549e9K6det8+3z44Yfcc8//t3f/MVXVfxzHX0dQuNIVFeUC+SMy8wf+JFwh5lL8Klg2Guls5MCazkQTzZa6UJu/0pU5KzGcP9b8tWzDnNOaWflrqZRhOkltUVGm2DLvFUKJe79/OO92J6nl4R44PB/b3bjnILyA9533tXPO5zytyZMnq3v37powYULA0T3p+t//2rVrGj9+/L/9Ff0nhs93hzcMaELcbrciIyN1+fLlf33BoRlurBYoBd4V4kbhYrXAO1NTU6Ndu3Zp5MiRdV6ECZiJeUOwMXMIhurqapWVlalz5866du2af+U2oL55vV653e67nrkDBw4oNTVV5eXltzzKd2PW4+PjFR4eeIbYv+kGvDoaoLResSp4NlExkYF/2JjIcIoVAAAAcBtXr17VL7/8ovnz52v06NH/+fTJf4ul2BuotF6x+l/PGB0t+0MVnmpFO6+fCsjy6wAAAMCtbdmyRc8//7z69eun999/P2jfl3LVgIU0M5TcJcrqGAAAAECjkpOTE7CASbBwWiAAAAAAmIByBQAAgFti/TPYnVkzTrkCAABAnW6sRFlVVWVxEqB+3Zjxu119lWuuAAAAUKeQkBC1bt1aFy9elNPpVPPmzRUSEmJ1LDQBXq9X165dU3V1db0u/+/z+VRVVaWKigq1bt36ruebcgUAAIB/FBMTo9raWv3222/yeDwyDFYuRv3z+Xz666+/5HA4gjJzrVu3VkxMzF1/HcoVAAAA/pFhGHK5XDp27JiGDh2q0FDePqL+1dTUaP/+/Ro8eHC93yjdzCOyvDoAAABwWz6fT2FhYfX+RheQrp+S+vfffys8PLxRzRwLWgAAAACACShXAAAAAGACyhUAAAAAmIBrrupw4yZibrfb4iS4GzU1NaqqqpLb7W5U5+qicWLeEGzMHIKJeUOwNaSZu9EJ7uRGw5SrOng8HklSx44dLU4CAAAAoCHweDyKjIy85ecYvjupYE2M1+vVuXPn5HQ6uZdDI+Z2u9WxY0eVl5erVatWVseBzTFvCDZmDsHEvCHYGtLM+Xw+eTwexcXF3faGxhy5qkOzZs3UoUMHq2PAJK1atbL8RYmmg3lDsDFzCCbmDcHWUGbudkesbmBBCwAAAAAwAeUKAAAAAExAuYJthYWFad68eQoLC7M6CpoA5g3BxswhmJg3BFtjnTkWtAAAAAAAE3DkCgAAAABMQLkCAAAAABNQrgAAAADABJQrAAAAADAB5Qq2smTJEg0YMEBOp1PR0dHKyMjQ6dOnrY6FJuL111+XYRjKy8uzOgps7Ndff9Wzzz6rqKgoORwO9e7dW1999ZXVsWBTtbW1ys/PV3x8vBwOh7p06aIFCxaI9dBglv3792vUqFGKi4uTYRjavn17wH6fz6e5c+cqNjZWDodDw4YN09mzZ60JewcoV7CVffv2KTc3V4cPH9aePXtUU1Oj4cOHq7Ky0uposLni4mK999576tOnj9VRYGOXLl1SSkqKmjdvrt27d+vUqVN688031aZNG6ujwaaWLl2qgoICvfPOOyotLdXSpUu1bNkyvf3221ZHg01UVlaqb9++evfdd+vcv2zZMq1cuVKrV6/WkSNHFBERoREjRqi6ujrISe8MS7HD1i5evKjo6Gjt27dPgwcPtjoObOrKlStKTEzUqlWrtHDhQvXr108rVqywOhZsaNasWTp06JAOHDhgdRQ0EU888YRcLpfWrl3r35aZmSmHw6GNGzdamAx2ZBiGioqKlJGRIen6Uau4uDi99NJLmjlzpiTp8uXLcrlc2rBhg8aOHWth2rpx5Aq2dvnyZUlS27ZtLU4CO8vNzdXjjz+uYcOGWR0FNrdjxw4lJSVp9OjRio6OVv/+/bVmzRqrY8HGBg4cqL179+rMmTOSpOPHj+vgwYNKT0+3OBmagrKyMp0/fz7g/9fIyEg9/PDD+vLLLy1M9s9CrQ4A1Bev16u8vDylpKSoV69eVseBTW3dulXHjh1TcXGx1VHQBPzwww8qKCjQjBkzNGfOHBUXF+vFF19UixYtlJ2dbXU82NCsWbPkdrvVvXt3hYSEqLa2VosWLVJWVpbV0dAEnD9/XpLkcrkCtrtcLv++hoZyBdvKzc3VyZMndfDgQaujwKbKy8s1bdo07dmzR+Hh4VbHQRPg9XqVlJSkxYsXS5L69++vkydPavXq1ZQr1IsPPvhAmzZt0ubNm5WQkKCSkhLl5eUpLi6OmQPqwGmBsKUpU6Zo586d+vzzz9WhQwer48Cmvv76a1VUVCgxMVGhoaEKDQ3Vvn37tHLlSoWGhqq2ttbqiLCZ2NhY9ezZM2Bbjx499PPPP1uUCHb38ssva9asWRo7dqx69+6tcePGafr06VqyZInV0dAExMTESJIuXLgQsP3ChQv+fQ0N5Qq24vP5NGXKFBUVFemzzz5TfHy81ZFgY6mpqTpx4oRKSkr8j6SkJGVlZamkpEQhISFWR4TNpKSk3HR7iTNnzqhz584WJYLdVVVVqVmzwLeLISEh8nq9FiVCUxIfH6+YmBjt3bvXv83tduvIkSNKTk62MNk/47RA2Epubq42b96sjz76SE6n038+bmRkpBwOh8XpYDdOp/Om6/kiIiIUFRXFdX6oF9OnT9fAgQO1ePFijRkzRkePHlVhYaEKCwutjgabGjVqlBYtWqROnTopISFB33zzjZYvX67nnnvO6miwiStXruj777/3Py8rK1NJSYnatm2rTp06KS8vTwsXLlTXrl0VHx+v/Px8xcXF+VcUbGhYih22YhhGndvXr1+vnJyc4IZBk/TYY4+xFDvq1c6dOzV79mydPXtW8fHxmjFjhiZMmGB1LNiUx+NRfn6+ioqKVFFRobi4OD3zzDOaO3euWrRoYXU82MAXX3yhIUOG3LQ9OztbGzZskM/n07x581RYWKg///xTgwYN0qpVq/Tggw9akPb2KFcAAAAAYAKuuQIAAAAAE1CuAAAAAMAElCsAAAAAMAHlCgAAAABMQLkCAAAAABNQrgAAAADABJQrAAAAADAB5QoAAAAATEC5AgDgLhmGoe3bt1sdAwBgMcoVAKBRy8nJkWEYNz3S0tKsjgYAaGJCrQ4AAMDdSktL0/r16wO2hYWFWZQGANBUceQKANDohYWFKSYmJuDRpk0bSddP2SsoKFB6erocDofuv/9+ffjhhwH//sSJExo6dKgcDoeioqI0ceJEXblyJeBz1q1bp4SEBIWFhSk2NlZTpkwJ2P/777/rqaeeUsuWLdW1a1ft2LHDv+/SpUvKyspS+/bt5XA41LVr15vKIACg8aNcAQBsLz8/X5mZmTp+/LiysrI0duxYlZaWSpIqKys1YsQItWnTRsXFxdq2bZs+/fTTgPJUUFCg3NxcTZw4USdOnNCOHTv0wAMPBHyP1157TWPGjNG3336rkSNHKisrS3/88Yf/+586dUq7d+9WaWmpCgoK1K5du+D9AgAAQWH4fD6f1SEAAPivcnJytHHjRoWHhwdsnzNnjubMmSPDMDRp0iQVFBT49z3yyCNKTEzUqlWrtGbNGr3yyisqLy9XRESEJGnXrl0aNWqUzp07J5fLpXvvvVfjx4/XwoUL68xgGIZeffVVLViwQNL1wnbPPfdo9+7dSktL05NPPql27dpp3bp19fRbAAA0BFxzBQBo9IYMGRJQniSpbdu2/o+Tk5MD9iUnJ6ukpESSVFpaqr59+/qLlSSlpKTI6/Xq9OnTMgxD586dU2pq6i0z9OnTx/9xRESEWrVqpYqKCknSCy+8oMzMTB07dkzDhw9XRkaGBg4c+J9+VgBAw0W5AgA0ehERETedpmcWh8NxR5/XvHnzgOeGYcjr9UqS0tPT9dNPP2nXrl3as2ePUlNTlZubqzfeeMP0vAAA63DNFQDA9g4fPnzT8x49ekiSevTooePHj6uystK//9ChQ2rWrJm6desmp9Op++67T3v37r2rDO3bt1d2drY2btyoFStWqLCw8K6+HgCg4eHIFQCg0bt69arOnz8fsC00NNS/aMS2bduUlJSkQYMGadOmTTp69KjWrl0rScrKytK8efOUnZ2t+fPn6+LFi5o6darGjRsnl8slSZo/f74mTZqk6Ohopaeny+Px6NChQ5o6deod5Zs7d64eeughJSQk6OrVq9q5c6e/3AEA7INyBQBo9D7++GPFxsYGbOvWrZu+++47SddX8tu6dasmT56s2NhYbdmyRT179pQktWzZUp988ommTZumAQMGqGXLlsrMzNTy5cv9Xys7O1vV1dV66623NHPmTLVr105PP/30Hedr0aKFZs+erR9//FEOh0OPPvqotm7dasJPDgBoSFgtEABga4ZhqKioSBkZGVZHAQDYHNdcAQAAAIAJKFcAAAAAYAKuuQIA2BpnvwMAgoUjVwAAAABgAsoVAAAAAJiAcgUAAAAAJqBcAQAAAIAJKFcAAAAAYALKFQAAAACYgHIFAAAAACagXAEAAACACf4P8h1qMiMZguIAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot training vs validation accuracy\n", "plt.figure(figsize=(10, 5))\n", "plt.plot(range(1, num_epochs + 1), train_accuracies, label='Training Accuracy', marker='o')\n", "plt.plot(range(1, num_epochs + 1), val_accuracies, label='Validation Accuracy', marker='o')\n", "plt.xlabel('Epochs')\n", "plt.ylabel('Accuracy')\n", "plt.title('Training vs Validation Accuracy')\n", "plt.legend()\n", "plt.grid()\n", "plt.show()\n", "\n", "# Save the model\n", "torch.save(model.state_dict(), 'node_better_model.pth')\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# Split the dataset into training, validation, and test sets\n", "train_size = int(0.7 * len(dataset))\n", "val_size = int(0.15 * len(dataset))\n", "test_size = len(dataset) - train_size - val_size\n", "train_dataset, val_dataset, test_dataset = random_split(dataset, [train_size, val_size, test_size])\n", "\n", "# Create DataLoaders\n", "train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)\n", "val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)\n", "test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# Initialize list to store test accuracy\n", "test_accuracies = []\n", "\n", "# Test accuracy calculation (after the training loop)\n", "model.eval() # Set the model to evaluation mode\n", "test_correct = 0\n", "\n", "with torch.no_grad():\n", " for batch_X, batch_y in test_loader:\n", " batch_X, batch_y = batch_X.to(device), batch_y.to(device)\n", " test_outputs = model(batch_X)\n", " _, test_predicted = torch.max(test_outputs.data, 1)\n", " test_correct += (test_predicted == batch_y).sum().item() # Count correct predictions\n", "\n", "test_accuracy = test_correct / len(test_loader.dataset)\n", "test_accuracies = [test_accuracy] * num_epochs # Repeat test accuracy for each epoch\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAHWCAYAAACbsXOkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACnrklEQVR4nOzdd3hTZfsH8G+Spkn33qy2QKGMIqsWlIIyq4i4WL5oURQUF/r6AqKM91VcIIqK6E9AWSKCKIpIrZbVQtmrrLZAoXTvlTZNzu+PNIHSFtqS5iTp93NdXDQnT865kzw9zZ3zPPcjEQRBABEREREREd0RqdgBEBERERERWQMmV0REREREREbA5IqIiIiIiMgImFwREREREREZAZMrIiIiIiIiI2ByRUREREREZARMroiIiIiIiIyAyRUREREREZERMLkiIiIiIiIyAiZXRERkES5dugSJRILVq1cbts2fPx8SiaRRj5dIJJg/f75RYxo8eDAGDx5s1H0SEZHlYnJFRNSCJBJJo/7FxcXd8bHKy8sxf/58o+zrTj300EOwt7dHSUlJg20mTZoEW1tb5OXlmTCypktKSsL8+fNx6dIlsUOp1/bt2yGRSODv7w+tVit2OERErZqN2AEQEVmzNWvW1Lr9/fffIyYmps72rl273vGxysvLsWDBAgAQ/WrKpEmTsG3bNvz888+YPHlynfvLy8vxyy+/YOTIkfDw8Gj2cebOnYtZs2bdSai3lZSUhAULFmDw4MHo0KFDrft27tzZosdujHXr1qFDhw64dOkS/v77bwwdOlTskIiIWi0mV0RELejJJ5+sdXv//v2IiYmps93aPPTQQ3BycsL69evrTa5++eUXlJWVYdKkSXd0HBsbG9jYiPenzNbWVrRjA0BZWRl++eUXLFq0CKtWrcK6devMNrkqKyuDg4OD2GEQEbUoDgskIhKZVqvF0qVL0a1bNyiVSvj4+OD5559HQUFBrXaHDh3CiBEj4OnpCTs7OwQGBmLKlCkAdPORvLy8AAALFiwwDDdsaI7RoUOHIJFI8N1339W5788//4REIsFvv/0GACgpKcGrr76KDh06QKFQwNvbG8OGDcORI0cafE52dnZ45JFHEBsbi+zs7Dr3r1+/Hk5OTnjooYeQn5+PN954Az169ICjoyOcnZ0xatQoHD9+/LavXX1zriorK/Haa6/By8vLcIyrV6/Weezly5fxwgsvICQkBHZ2dvDw8MDjjz9ea/jf6tWr8fjjjwMAhgwZUmcYZ31zrrKzs/HMM8/Ax8cHSqUSYWFhdV5n/fyxjz/+GF9//TWCg4OhUCjQr18/HDx48LbPW+/nn39GRUUFHn/8cYwfPx5btmyBSqWq006lUmH+/Pno3LkzlEol/Pz88MgjjyAlJcXQRqvV4tNPP0WPHj2gVCrh5eWFkSNH4tChQ7VivnHOm97NfU3/viQlJWHixIlwc3PDPffcAwA4ceIEnn76aQQFBUGpVMLX1xdTpkypd3hoeno6nnnmGfj7+0OhUCAwMBDTp09HVVUVUlNTIZFI8Mknn9R5XHx8PCQSCTZs2NDo15KIyBh45YqISGTPP/88Vq9ejejoaLz88su4ePEiPv/8cxw9ehT79u2DXC5HdnY2hg8fDi8vL8yaNQuurq64dOkStmzZAgDw8vLC8uXLMX36dIwdOxaPPPIIAKBnz571HrNv374ICgrCjz/+iKeeeqrWfRs3boSbmxtGjBgBAJg2bRp++uknzJgxA6GhocjLy8PevXtx5swZ9O7du8HnNWnSJHz33Xf48ccfMWPGDMP2/Px8/Pnnn5gwYQLs7Oxw+vRpbN26FY8//jgCAwORlZWFFStWIDIyEklJSfD392/S6/nss89i7dq1mDhxIgYMGIC///4bDzzwQJ12Bw8eRHx8PMaPH482bdrg0qVLWL58OQYPHoykpCTY29tj0KBBePnll/HZZ59hzpw5huGbDQ3jrKiowODBg5GcnIwZM2YgMDAQmzZtwtNPP43CwkK88sortdqvX78eJSUleP755yGRSPDhhx/ikUceQWpqKuRy+W2f67p16zBkyBD4+vpi/PjxmDVrFrZt22ZICAFAo9HgwQcfRGxsLMaPH49XXnkFJSUliImJwalTpxAcHAwAeOaZZ7B69WqMGjUKzz77LKqrq7Fnzx7s378fffv2bfTrf6PHH38cnTp1wnvvvQdBEAAAMTExSE1NRXR0NHx9fXH69Gl8/fXXOH36NPbv329Ilq9du4b+/fujsLAQzz33HLp06YL09HT89NNPKC8vR1BQEAYOHIh169bhtddeq/O6ODk5YcyYMc2Km4io2QQiIjKZF198Ubjx1Ltnzx4BgLBu3bpa7Xbs2FFr+88//ywAEA4ePNjgvnNycgQAwrx58xoVy+zZswW5XC7k5+cbtlVWVgqurq7ClClTDNtcXFyEF198sVH7vFF1dbXg5+cnRERE1Nr+1VdfCQCEP//8UxAEQVCpVIJGo6nV5uLFi4JCoRAWLlxYaxsAYdWqVYZt8+bNq/V6Hjt2TAAgvPDCC7X2N3HixDqvTXl5eZ2YExISBADC999/b9i2adMmAYDwzz//1GkfGRkpREZGGm4vXbpUACCsXbvWsK2qqkqIiIgQHB0dheLi4lrPxcPDo9br/8svvwgAhG3bttU51s2ysrIEGxsb4ZtvvjFsGzBggDBmzJha7VauXCkAEJYsWVJnH1qtVhAEQfj7778FAMLLL7/cYJv6Xn+9m19b/fsyYcKEOm3re903bNggABB2795t2DZ58mRBKpXW2+f1Ma1YsUIAIJw5c8ZwX1VVleDp6Sk89dRTdR5HRNTSOCyQiEhEmzZtgouLC4YNG4bc3FzDvz59+sDR0RH//PMPAMDV1RUA8Ntvv0GtVhvl2OPGjYNarTZc/QJ0BRoKCwsxbtw4wzZXV1ccOHAA165da9L+ZTIZxo8fj4SEhFpD7davXw8fHx/cf//9AACFQgGpVPfnSKPRIC8vD46OjggJCbnl0MP6bN++HQDw8ssv19r+6quv1mlrZ2dn+FmtViMvLw8dO3aEq6trk4974/F9fX0xYcIEwza5XI6XX34ZpaWl2LVrV63248aNg5ubm+H2vffeCwBITU297bF++OEHSKVSPProo4ZtEyZMwB9//FFrSOnmzZvh6emJl156qc4+9FeJNm/eDIlEgnnz5jXYpjmmTZtWZ9uNr7tKpUJubi7uvvtuADC87lqtFlu3bsXo0aPrvWqmj+mJJ56AUqnEunXrDPf9+eefyM3Ntfp5jURknphcERGJ6MKFCygqKoK3tze8vLxq/SstLTXMV4qMjMSjjz6KBQsWwNPTE2PGjMGqVatQWVnZ7GOHhYWhS5cu2Lhxo2Hbxo0b4enpifvuu8+w7cMPP8SpU6fQtm1b9O/fH/Pnz2/Uh38AhoIV69evBwBcvXoVe/bswfjx4yGTyQDoPkh/8skn6NSpExQKBTw9PeHl5YUTJ06gqKioSc/p8uXLkEqlhqFueiEhIXXaVlRU4J133kHbtm1rHbewsLDJx73x+J06dTIki3r6YYSXL1+utb1du3a1busTrZvn29Vn7dq16N+/P/Ly8pCcnIzk5GTcddddqKqqwqZNmwztUlJSEBIScsvCHykpKfD394e7u/ttj9sUgYGBdbbl5+fjlVdegY+PD+zs7ODl5WVop3/dc3JyUFxcjO7du99y/66urhg9erShfwG6IYEBAQG1+jARkalwzhURkYi0Wi28vb1rffN+I32RColEgp9++gn79+/Htm3b8Oeff2LKlClYvHgx9u/fD0dHx2Ydf9y4cXj33XeRm5sLJycn/Prrr5gwYUKtD+JPPPEE7r33Xvz888/YuXMnPvroI3zwwQfYsmULRo0adcv99+nTB126dMGGDRswZ84cbNiwAYIg1KoS+N577+Htt9/GlClT8N///hfu7u6QSqV49dVXW3TdppdeegmrVq3Cq6++ioiICLi4uEAikWD8+PEmWy9Kn2DeTKiZn9SQCxcuGApfdOrUqc7969atw3PPPXfnAd6goStYGo2mwcfceJVK74knnkB8fDz+/e9/o1evXnB0dIRWq8XIkSOb9bpPnjwZmzZtQnx8PHr06IFff/0VL7zwQp0El4jIFJhcERGJKDg4GH/99RcGDhxY7wfRm9199924++678e6772L9+vWYNGkSfvjhBzz77LPNGr41btw4LFiwAJs3b4aPjw+Ki4sxfvz4Ou38/Pzwwgsv4IUXXkB2djZ69+6Nd99997bJFaC7evX222/jxIkTWL9+PTp16oR+/foZ7v/pp58wZMgQfPvtt7UeV1hYCE9PzyY9n/bt20Or1Rqu1uidO3euTtuffvoJTz31FBYvXmzYplKpUFhYWKtdU17X9u3b48SJE9BqtbU+3J89e9ZwvzGsW7cOcrkca9asqZOg7d27F5999hnS0tLQrl07BAcH48CBA1Cr1Q0WyQgODsaff/6J/Pz8Bq9e6a+q3fz63Hw17lYKCgoQGxuLBQsW4J133jFsv3DhQq12Xl5ecHZ2xqlTp267z5EjR8LLywvr1q1DeHg4ysvL8a9//avRMRERGRO/1iEiEtETTzwBjUaD//73v3Xuq66uNnyQLSgoqHM1o1evXgBgGBpob28PoO6H31vp2rUrevTogY0bN2Ljxo3w8/PDoEGDDPdrNJo6Q+S8vb3h7+/f6CGJ+qtU77zzDo4dO1ZnbSuZTFbnuW3atAnp6emNfh56+mTvs88+q7V96dKlddrWd9xly5bVuRKjX5upMa9rVFQUMjMzaw21rK6uxrJly+Do6IjIyMjGPI3bWrduHe69916MGzcOjz32WK1///73vwHAUIb80UcfRW5uLj7//PM6+9E//0cffRSCIBgWoa6vjbOzMzw9PbF79+5a93/55ZeNjlufCN78ut/8/kilUjz88MPYtm2boRR8fTEBurXOJkyYgB9//BGrV69Gjx49GqySSUTU0njliohIRJGRkXj++eexaNEiHDt2DMOHD4dcLseFCxewadMmfPrpp3jsscfw3Xff4csvv8TYsWMRHByMkpISfPPNN3B2dkZUVBQA3RCs0NBQbNy4EZ07d4a7uzu6d+9+23kr48aNwzvvvAOlUolnnnmm1hWXkpIStGnTBo899hjCwsLg6OiIv/76CwcPHqx1xedWAgMDMWDAAPzyyy8AUCe5evDBB7Fw4UJER0djwIABOHnyJNatW4egoKCmvJQAdAnnhAkT8OWXX6KoqAgDBgxAbGwskpOT67R98MEHsWbNGri4uCA0NBQJCQn466+/4OHhUWefMpkMH3zwAYqKiqBQKHDffffB29u7zj6fe+45rFixAk8//TQOHz6MDh064KeffsK+ffuwdOlSODk5Nfk53ezAgQOGUu/1CQgIQO/evbFu3Tr85z//weTJk/H9999j5syZSExMxL333ouysjL89ddfeOGFFzBmzBgMGTIE//rXv/DZZ5/hwoULhiF6e/bswZAhQwzHevbZZ/H+++/j2WefRd++fbF7926cP3++0bE7Oztj0KBB+PDDD6FWqxEQEICdO3fi4sWLddq+99572LlzJyIjI/Hcc8+ha9euyMjIwKZNm7B3715DkRdANzTws88+wz///IMPPvigaS8oEZExiVWmkIioNbq5FLve119/LfTp00ews7MTnJychB49eghvvvmmcO3aNUEQBOHIkSPChAkThHbt2gkKhULw9vYWHnzwQeHQoUO19hMfHy/06dNHsLW1bXRZ9gsXLggABADC3r17a91XWVkp/Pvf/xbCwsIEJycnwcHBQQgLCxO+/PLLJj3vL774QgAg9O/fv859KpVKeP311wU/Pz/Bzs5OGDhwoJCQkFCnzHljSrELgiBUVFQIL7/8suDh4SE4ODgIo0ePFq5cuVLn9SgoKBCio6MFT09PwdHRURgxYoRw9uxZoX379nXKeH/zzTdCUFCQIJPJapVlvzlGQdCVSNfv19bWVujRo0ed8uX65/LRRx/VeT1u97699NJLAgAhJSWlwTbz588XAAjHjx8XBEFX/vytt94SAgMDBblcLvj6+gqPPfZYrX1UV1cLH330kdClSxfB1tZW8PLyEkaNGiUcPnzY0Ka8vFx45plnBBcXF8HJyUl44oknhOzs7AZLsefk5NSJ7erVq8LYsWMFV1dXwcXFRXj88ceFa9eu1fu8L1++LEyePFnw8vISFAqFEBQUJLz44otCZWVlnf1269ZNkEqlwtWrVxt8XYiIWppEEG4za5aIiIjIzN11111wd3dHbGys2KEQUSvGOVdERERk0Q4dOoRjx45h8uTJYodCRK0cr1wRERGRRTp16hQOHz6MxYsXIzc3F6mpqVAqlWKHRUStGK9cERERkUX66aefEB0dDbVajQ0bNjCxIiLR8coVERERERGREfDKFRERERERkREwuSIiIiIiIjICLiJcD61Wi2vXrsHJyQkSiUTscIiIiIiISCSCIKCkpAT+/v6QSm99bYrJVT2uXbuGtm3bih0GERERERGZiStXrqBNmza3bMPkqh5OTk4AdC+gs7OzyNFQc6nVauzcuRPDhw+HXC4XOxyycuxvZGrsc2RK7G9kaubU54qLi9G2bVtDjnArTK7qoR8K6OzszOTKgqnVatjb28PZ2Vn0X0qyfuxvZGrsc2RK7G9kaubY5xozXYgFLYiIiIiIiIyAyRUREREREZERMLkiIiIiIiIyAiZXRERERERERsDkioiIiIiIyAiYXBERERERERkBkysiIiIiIiIjYHJFRERERERkBEyuiIiIiIiIjMBG7ACIiIiIiKyRRisg8WI+sktU8HZSon+gO2RSidhhUQtickVEREREZGQ7TmVgwbYkZBSpDNv8XJSYNzoUI7v7iRgZtSQOCyQiIiIiMqIdpzIwfe2RWokVAGQWqTB97RHsOJUhUmTU0phcEREREVGDNFoBBy7m43CuBAcu5kOjFcQOyaxptAIWbEtCfa+SftuCbUl8Ha0UhwUSERERUb1qD22T4fsLh6xqaJsgCKjWClCpNais1jb4f2U921VqLSqrb/5fi2uFFXWuWNU6JoCMIhUSL+YjItjDdE+WTILJFRERERHVoR/advP1Ff3QtuVP9jZagtUSSU7jHquBWBeQpq09jB4BLujo7Vjrn4eDLSQSFr2wVEyuiIiIiKiWxgxtm7XlJArKq6DWCBad5NzI1kYKpY0USrkMCrkUSptb/6+oZ3t6YTm+3XvptscqqlBjb3Iu9ibn1truZi83JFrBXo7o5OOEjt6O8HdRMumyAEyuiIiIiKiWxIv5txzaBgCF5WrM3nKqRY6vsJFC0cwkRymXXX/szf/fYh+2MimkRiiTrtEK2H4yE5lFqnqTUwkAb2cFPp/YGxdzypCcU4rk7FJcyC7B1YIKFJSrcfBSAQ5eKqj1OHtbmS7Z8nZEcE3y1cnbEe3c7WEjYxkFc8HkioiIiIhqyS65dWKl183fGe097GslObdMbkyY5IhFJpVg3uhQTF97BBKgVoKlf1YLHuqGfh3c0a+De63HVlRpkJqrS7Zu/HcxtwzlVRqcTC/CyfSiWo+xlUnRwdO+5mqX7ipXRy9HBHk5QCmXtehzpbqYXJmjfxYBUhkQ+Wbd+3Z9CGg1wJDZpo/LEvC1ax6+bs3D1635+No1D1+35uHr1mTeTkq8avMTNIIUyzSP1Ln/JdkWyCRahD/wMYsy1GNkzmrs7F2OySmDa10B9HVR4vvgOHTKOQGgbp+zs5Whm78Luvm71Nqu1mhxOa8cydmlSMkpxYWsEiTnlCIluwwVag3OZ5XifFYpgEzDYyQSoJ27PTp6OdaZ1+WklLfQM79DVvC7yuTKHEllwD/v6n6+sXPt+lC3fchb4sRlCW587Qa8dn07X7tbY59rHva35mOfax72ueZhf2uy/oHuOKmwxXOaHwCgVoL1kmwLXpf/hK9l49E/0L2hXbRuUhk6JX2GfYMdcaDts8guUcHbSYnwK/8HadxnTe5zcpnUkBjdSKsVcK2oAheyS5GSrR9eqPu/qEKNy3nluJxXjtiz2bUe5+OsQKeaq1zBNVe6OvmYQTENKzjHMbkyR/oTv75zRbwI7P0E2P0RMOjfuttVZbr7JDJArrz+WP32+kikgNyumW3LgXpHDgOABLC1b15bdQUgaBuOw9ahaW1veO2kVRWQabpCGvcesG9J7deu1n5VgKBpeL9ye93XPwBQXQloq43T1sYOkNaMka6uArRqI7VV6k5OTWkb+abu26B/3gU0VcA9r9Xtc5pqQFZzytCode0aIlPc0LYa0FTeoq0tIJM3va1WA1TfYtiKVA7Y2DajrRaormhc23vf0L0ODfW3ga9cf5wgAOryW+zXBrBRNK5tk37vzfQcEfGi4bWr0+eGvHX9d9nY5whD29v83pvrOeKG161On9O/bi1xjgCa+HtvZueI+vrbvs+AXe/rXrd7X791f2/uOeK2bZvwe2/ic4QMgPfwmfjsVxVel/8EOarxheZhPCf7Da/Lf8IS9WPo8fCbkFU3EIelfo4wtL3Dc0RNn5PGvYeIwQAG/0eXIMS9V/ez3I2aeI6QSqVo42aPNk42GBLoAMAHgK76Ym5ZFVKyS3ExpxTn8qpxIbccF7JKUVBShuJiFQ4XF+Fwcu1dutjJ0c7LDcG+Lrr5XR626OiphJ+zsv6hmsY+R9x4jtNoAIRCuudjYPf7tf82mDGJIAhmUJvFvBQXF8PFxQVFRUVwdnYWLxB9ln4rnYYDkzZdv/2uX8Mn3Pb3ANG/X7/9YRBQnld/W/+7gOfirt/+pAdQlFZ/W68uwIsHrt/+IhzIOVt/W5d2wGsnr9/+ejBw7Wj9be09gDdTr99e9QBweW/9beX2wFs3rHb+WW8gP6X+tgAw/4bxyj9OBpJ+abjtnGvXT6I/TweOr2+47b9TAAdP3c+/vw4c/L+G275yAnBrr/t551wgflnDbV/YD3h31f38zyLdB4KGTP0bCOij+3nfp0DMOw23feo3IPBe3c+J3wDb32i47cQfgc4jdD8fXQf88kLDbR9fDXQbq/v59M/ApqcbbjvmS+CuSbqfz/8JrH+i4bZRHwP9p+p+vrgH+O7BhtsOW3g9uUk/DHxzX8NtI2ddH2aQfQb48u6G2w54CRj+P93PBZeBT3s23Lbfs8ADi3U/l+UCHwU33DZsIjB2ue7nqjLgPf+G24aOAZ74/vrt+S4Nt7W0c4TCBZh9w35a6hyx7nHgws762wKWd47o/xwQ9ZHuZ54jdD/f7hwBXP+wxnPE9du3OEdoBQmkEgFfy8aj3dj5GLl9oPV+jjDmOQLQJf6aKsC3B5B5suF2JvgcoYr5H5T7Pmqw6UOV/8UJQdcXn5Ntwxz5hgbbav61DbLgQbobxjxHdBsLnP4ZGokNZEK16IlVU3IDXrkyZ5Fv6r7FvdW3AFQ/j+BbJ1dEZJ6Ut/gQSA3rO0XsCCyPpIF5HdQgqUSAVirHM299BZlUAmwXOyILoU+sZLaAz22SKxNQ2ty6yMXrwzvjsDoQF7JL4XlFAdziYvHkVYnIdhfQyccRj1Zn4X4jxajpOgaSM79BplVDK5VDuPffsJTSHLxyVQ+zu3Kl/6Uc9G/dUIYbmeuQH7Ev5//9HrD7g+vfeNz82pnrkB+jtL2DIT+7PtAl9PX1OXMe8lMfUwwL1LetGc5Wp7+Z8ZCf+tuKcI7QDwW8sc/dN/d6W3Md8nMjMc4RN/e5wXN0w47qa1tnv61wWKDezf1N/214S58jGmxrnucIQRAwZfUh7L+Yh+GhPvi0TVzt/qZ/3az5c4SxzhE397nI/9QeMn4zM/wcoVZXIi2/Aqk5pUjNLUNqTimSc0pxMacMhWoZtNDt1wbVkEMXr0QCtHG1R5CXAzp6OSLQywGBvu7o6OsKZ6X8lueImKRMXNr2AaZqNqJSsIFCUn39aqmRFq1uKl65sgY3TtyLfLN2onWrb9pu/GW/nSa1tb99m+a0vfHEa6y2uz7UJVaDZuG3klA86JQE2e73G37tbvyjcjs2CgCKFmhrC8BW3LY3z3e5VZ+Tya9/gLkdmc31D1HGbCuVNb4PN6mttGltE77Qfei4XX+TSBq/36a0BcykbTPOEbs+vH2fa4lzBNC033tzO0fUvG61+lzce7p+E/lmy50jmvR7b4bniIb6G6C73VLniJb4vW/hc8SOkxn452IZFDb2WOgdV7e/1Vcc5Lb7taDPEYBxzhEN9TmpTeNeOzP5HCG3sUVwgBOCA7xr3VVfMQ19QY2iCjXOF2hxvqAEOF9S63E+zgpDufiOPk6Gaoaejrb483Qmkja9h5nyn7BY/RiWaR7RFVDBD1iyoRqY8D/REqzGYnJljm5OrIC6RS44lKF+N7x22gGvAdu3Q3vvG5DJGqgURTrsc83D/tZ87HPNwz7XPOxvjaZSa/C/388AAFYG/gOX/SvY35qjFfQ5qVSiK6bhZo8hIdcTL0EQkFtaVZNslej+r1koOau40vBvX3Lt+XrOShtM0WyqlVgB1ytVvi7/CV//bANNaM2wVDPF5MocaTX1T9zT39be4jJ1a3fja6e+4ZI3X7tbY59rHva35mOfax72ueZhf2u0FbtSkV5YAX8XJfq3dwE6sr81SyvucxKJBF5OCng5KeqsgVZUoUZKTt1Fkq8UlKNYVQ3YaGolVnr627LqKiRezDfrtdU456oeZjPniu6IWq3G9u3bERUVBbncTBfLI6vB/kamxj5HxpZeWIH7F8dBpdZi2YS7MDrsekVC9jdqSSq1Bt/uvYiP/jx327afju+FMb0CTBDVdU3JDaQmiumWvvjiC3To0AFKpRLh4eFITExssK1arcbChQsRHBwMpVKJsLAw7Nixo1ab+fPnQyKR1PrXpUuXln4aRERERBZr0fYzUKm16B/ojgd7mve8FrIuSrkMvdu5Naqtt1MT5sOJQPTkauPGjZg5cybmzZuHI0eOICwsDCNGjEB2dna97efOnYsVK1Zg2bJlSEpKwrRp0zB27FgcPVp7jYNu3bohIyPD8G/v3gbWNSAiIiJq5fan5uG3ExmQSoD5o7tBIjHfOS1knfoHusPPRYmGep4EgJ+LEv0D3U0ZVpOJnlwtWbIEU6dORXR0NEJDQ/HVV1/B3t4eK1eurLf9mjVrMGfOHERFRSEoKAjTp09HVFQUFi9eXKudjY0NfH19Df88PT1N8XSIiIiILIpGK2DBtiQAwIT+7RDqzykRZHoyqQTzRocCQJ0ES3973uhQsy5mAYhc0KKqqgqHDx/G7NmzDdukUimGDh2KhISEeh9TWVkJpbL25UA7O7s6V6YuXLgAf39/KJVKREREYNGiRWjXrl2D+6ysvL5uRnFxMQDdEET1jRM4yaLo3zu+h2QK7G9kauxzZCzrE6/gTEYxXOxs8PKQoHr7FPsbmcL9IZ5YNj4M/9t+FpnF1z+b+7oo8NaoLrg/xFOUPtiUY4pa0OLatWsICAhAfHw8IiIiDNvffPNN7Nq1CwcOHKjzmIkTJ+L48ePYunUrgoODERsbizFjxkCj0RgSpD/++AOlpaUICQlBRkYGFixYgPT0dJw6dQpOTk519jl//nwsWLCgzvb169fD3r4Jay0QERERWZAyNfC/YzKUV0vwaAcNBvmxzhmJTysAKcUSFKsBZzkQ7CxAzAtW5eXlmDhxonUuIvzpp59i6tSp6NKlCyQSCYKDgxEdHV1rGOGoUaMMP/fs2RPh4eFo3749fvzxRzzzzDN19jl79mzMnDnTcLu4uBht27bF8OHDWS3QgqnVasTExGDYsGGsbEQtjv2NTI19joxh4W9nUF59BZ29HfG/p++Gjaz+GSPsb2Rq5tTn9KPaGkPU5MrT0xMymQxZWVm1tmdlZcHX17fex3h5eWHr1q1QqVTIy8uDv78/Zs2ahaCgoAaP4+rqis6dOyM5Obne+xUKBRSKuitgy+Vy0d9MunN8H8mU2N/I1NjnqLnOZhZj/cGrAID5D3WDnbLuZ6Gbsb+RqZlDn2vK8UUtaGFra4s+ffogNjbWsE2r1SI2NrbWMMH6KJVKBAQEoLq6Gps3b8aYMWMabFtaWoqUlBT4+bGsKBEREZEgCFjwaxI0WgGjuvtiQEcW/iIyBtGrBc6cORPffPMNvvvuO5w5cwbTp09HWVkZoqOjAQCTJ0+uVfDiwIED2LJlC1JTU7Fnzx6MHDkSWq0Wb755fQXsN954A7t27cKlS5cQHx+PsWPHQiaTYcKECSZ/fkRERETmZsepTCSk5kFhI8WcqK5ih0NkNUSfczVu3Djk5OTgnXfeQWZmJnr16oUdO3bAx8cHAJCWlgap9HoOqFKpMHfuXKSmpsLR0RFRUVFYs2YNXF1dDW2uXr2KCRMmIC8vD15eXrjnnnuwf/9+eHl5mfrpEREREZkVlVqD//1+BgDwfGQw2rqzeBeRsYieXAHAjBkzMGPGjHrvi4uLq3U7MjISSUlJt9zfDz/8YKzQiIiIiKzKil2pSC+sgL+LEtMjg8UOh8iqiD4skIiIiIhMI72wAst36Qp8zY7qCjtbmcgREVkXJldERERErcSi7WegUmvRP9AdD/ZkoS8iY2NyRURERNQK7E/Nw28nMiCVAPNHd4NEIuKqrERWiskVERERkZWr1mgx/9fTAIAJ/dsh1N9Z5IiIrBOTKyIiIiIrt+HgFZzNLIGLnRyvDw8ROxwiq8XkioiIiMiKFZZXYfHOcwCAmcM6w93BVuSIiKwXkysiIiIiK/ZJzHkUlqsR4uOESeHtxA6HyKoxuSIiIiKyUmczi7Fm/2UAwLyHQmEj40c/opbE3zAiIiIiKyQIAhb8mgStAIzq7osBwZ5ih0Rk9ZhcEREREVmhHacykZCaB4WNFHOiuoodDlGrwOSKiIiIyMqo1Br87/czAIDnI4PR1t1e5IiIWgcmV0RERERWZsWuVKQXVsDfRYnpkcFih0PUajC5IiIiIrIi6YUVWL4rGQAw54GusLOViRwRUevB5IqIiIjIiry3/QxUai3CA93xQA8/scMhalWYXBERERFZif2pefj9RAakEmDe6G6QSCRih0TUqjC5IiIiIrIC1Rot5v96GgAwMbwdQv2dRY6IqPVhckVERERkBTYcvIKzmSVwsZPj9WEhYodD1CoxuSIiIiKycIXlVVi88xwAYOawznBzsBU5IqLWickVERERkYX7JOY8CsvVCPFxwqTwdmKHQ9RqMbkiIiIismBnM4uxZv9lAMC8h0JhI+PHOyKx8LePiIjIwmi0Ag5czMfhXAkOXMyHRiuIHRKJRBAELPg1CVoBGNXdFwOCPcUOiahVsxE7ACIiImq8HacysGBbEjKKVABk+P7CIfi5KDFvdChGdueaRq3NH6cykZCaB4WNFHOiuoodDlGrxytXREREFmLHqQxMX3ukJrG6LrNIhelrj2DHqQyRIiMxqNQavPv7GQDA85HBaOtuL3JERMTkioiIyAJotAIWbEtCfQMA9dsWbEviEMFWZMWuVKQXVsDfRYnpkcFih0NEYHJFRERkERIv5te5YnUjAUBGkQqJF/NNFxSJJr2wAst3JQMA5jzQFXa2MpEjIiKAyRUREZFFyC5pOLFqTjuybO9tPwOVWovwQHc80INz7YjMBZMrIiIiC+DtpDRqO7Jc+1Pz8PuJDEglwLzR3SCRSMQOiYhqMLkiIiKyAP0D3eHnosStPkb7uSjRP9DdZDGR6VVrtJj/62kAwMTwdgj1dxY5IiK6EZMrIiIiCyCTSjBvdGi9BS30Xr2/E2RSXsWwZhsOXsHZzBK42Mnx+rAQscMhopswuSIiIrIQI7v7YcrADnW26xOq1QmXUaxSmzgqMpXC8ios3nkOAPD68M5wc7AVOSIiuhmTKyIiIgtSVqkBAIzq5oPJnTRYO6Uv/notEp6OCpzJKMZz3x+CSq0ROUpqCUtizqOwXI0uvk6Y2L+d2OEQUT2YXBEREVmQfSm5AIBHevujj6eA8EB3BHo54Lsp/eCosMH+1Hy8tvEY17uyMmczi7F2/2UAwDujQ2Ej40c4InPE30wiIiILkZZXjqsFFbCRStCvvVut+7r5u+DryX1gK5Pij1OZmP/raQgCEyxrIAgCFvyaBK0ARPXwxYBgT7FDIqIGMLkiIiKyEPE1V616tXWFg8Kmzv0Dgj3xybhekEiANfsvY9nfyaYOkVrAH6cykZCaB4WNFHOiuoodDhHdApMrIiIiC7EvJQ8AMKBjw1cuHujphwUPdQOgm6OzITHNJLFRy1CpNXj39zMAgOcjg9HGzV7kiIjoVphcERERWQBBEJBQc+VqQLDHLdtOjuiAl+7rCAB46+eT+PN0ZovHRy1jxa5UpBdWwN9FiemRwWKHQ0S3weSKiIjIApzLKkFuaRWUcinuaud62/Yzh3XG+H5toRWAlzccReLF/JYPkowqvbACy3fphnbOeaAr7GxlIkdERLfD5IqIiMgC7EvWDQns18EdCpvbf8iWSCT438PdMbSrDyqrtXj2u4M4l1nS0mGSEb23/QxUai3CA93xQA8/scMhokZgckVERGQB4pN1QwIH3mK+1c1sZFJ8PvEu9G3vhmJVNSavPICrBeUtFSIZUUJKHn4/kQGpBJg3uhskEonYIRFRI5hFcvXFF1+gQ4cOUCqVCA8PR2JiYoNt1Wo1Fi5ciODgYCiVSoSFhWHHjh0Ntn///fchkUjw6quvtkDkRERELa9ao8WBmmF9A5tYhlspl+H/nuqLzj6OyCquxOSViSgoq2qJMMlIqjVaLNh2GgAwMbwdQv2dRY6IiBpL9ORq48aNmDlzJubNm4cjR44gLCwMI0aMQHZ2dr3t586dixUrVmDZsmVISkrCtGnTMHbsWBw9erRO24MHD2LFihXo2bNnSz8NIiKiFnMivQilldVwsZM364O2q70tvpvSH/4uSqTmlCF69UGUV1W3QKRkDBsOXsHZzBK42Mnx+rAQscMhoiYQPblasmQJpk6diujoaISGhuKrr76Cvb09Vq5cWW/7NWvWYM6cOYiKikJQUBCmT5+OqKgoLF68uFa70tJSTJo0Cd988w3c3Nzq3RcREZEl0A8JjAjygEzavOFhfi52+P6Z/nC1l+PYlUK8uO4I1BqtMcMkIygsr8LinecAAK8P7ww3B1uRIyKipqi7AqEJVVVV4fDhw5g9e7Zhm1QqxdChQ5GQkFDvYyorK6FUKmtts7Ozw969e2tte/HFF/HAAw9g6NCh+N///nfLOCorK1FZWWm4XVxcDEA3BFGtVjfpOZH50L93fA/JFNjfqCXtvZADAAgPdK3T15rS59q7KfH1pLswefUh/HMuB2/+dBwfjOV8HnPy8Z9nUViuRoiPIx6/y89szik8x5GpmVOfa0oMoiZXubm50Gg08PHxqbXdx8cHZ8+erfcxI0aMwJIlSzBo0CAEBwcjNjYWW7ZsgUajMbT54YcfcOTIERw8eLBRcSxatAgLFiyos33nzp2wt+difZYuJiZG7BCoFWF/I2Or0gCHLskASKC+egrb807Vur85fe5fwRJ8e1aKn49eQ3HWVTzUnlewzMG1MmDdCd17PcyjCDv/bHhOuVh4jiNTM4c+V17e+EJAoiZXzfHpp59i6tSp6NKlCyQSCYKDgxEdHW0YRnjlyhW88soriImJqXOFqyGzZ8/GzJkzDbeLi4vRtm1bDB8+HM7OnERqqdRqNWJiYjBs2DDI5XKxwyErptEK2J+Sg78TDuO+iD64O9ir2UO3iG62LyUP1YmH4eOkwNOPDDNcZbqTc1wUgKAj6Zj982nEXpMiPKwroge0b4HoqbEEQcC/Vh2CgAKM7OaDV8aHiR1SLfybSqZmTn1OP6qtMURNrjw9PSGTyZCVlVVre1ZWFnx9fet9jJeXF7Zu3QqVSoW8vDz4+/tj1qxZCAoKAgAcPnwY2dnZ6N27t+ExGo0Gu3fvxueff47KykrIZLXXB1EoFFAoFHWOJZfLRX8z6c7xfaSWtONUBhZsS0JGkQqADN9fOAY/FyXmjQ7FyO5cl4bu3IFLhQB0JdhtbevOv2nuOW5CeAfkl1fjoz/P4b0/zsHHxQ5jegXcabjUTNtPZuDAxQIobKSY+2Co2f7d4t9UMjVz6HNNOb6oBS1sbW3Rp08fxMbGGrZptVrExsYiIiLilo9VKpUICAhAdXU1Nm/ejDFjxgAA7r//fpw8eRLHjh0z/Ovbty8mTZqEY8eO1UmsiIiaa8epDExfe6Qmsbous0iF6WuPYMepDJEiI2sSn6JbPHhAE9a3aqwXBgfj6QEdAABvbDqOPTVzu8i0Kqo0ePf3MwCAaZHBaOPGKQlElkr0YYEzZ87EU089hb59+6J///5YunQpysrKEB0dDQCYPHkyAgICsGjRIgDAgQMHkJ6ejl69eiE9PR3z58+HVqvFm2++CQBwcnJC9+7dax3DwcEBHh4edbYTETWXRitgwbYkCPXcJwCQAFiwLQnDQn05RJCarahCjZNXCwEAA4I9jL5/iUSCdx4MRW5pJX47kYFpaw7jh+ci0KONi9GPRQ1bsTsF6YUV8HdRYlpksNjhENEdED25GjduHHJycvDOO+8gMzMTvXr1wo4dOwxFLtLS0iCVXr/AplKpMHfuXKSmpsLR0RFRUVFYs2YNXF1dRXoGRNQaJV7Mr3PF6kYCgIwiFRIv5iOiBT4UU+twIDUPWgEI9HSAv6tdixxDKpVg8RNhKCivwr7kPDy9KhE/TR+AQE+HFjke1ZZeWIGvdqUAAOY80BV2thxhQ2TJRE+uAGDGjBmYMWNGvffFxcXVuh0ZGYmkpKQm7f/mfRAR3YlilbrRQ/6ySxpOwIhuxzAksIUTdIWNDF892Qfjv96P09eKMXnlAWyePgDeTo0rDEXN9972M1CptQgPdMcDPThPk8jSmUVyRURk7q7klyP2TBb+OpON/al5qNbWNyCwLn44pTuxr2bx4IEtMN/qZk5KOVZH98djX8Xjcl45nl55EBufvxtOShYvaCkJKXn4/UQGpBJg/kNcb4zIGjC5IiKqh1Yr4GR6Ef46k4WYpCyczSypdX+Qpz2yiitRVqWp9/ESAL4uSvQPdDdBtGSNsotVuJBdCokEiAgyzdBSLycFvp/SH48uj0dSRjGeX3MYq6L7QWHDoWrGVq3RYsG20wCAieHt0NWPS78QWQMmV0RENVRqDRJS8rAzKQuxZ7KQXVJpuE8qAfp2cMewrj64v6s3grwcDdUCAdRb2GLe6FAWs6Bm0w8JDPVzhptD3RLsLaW9hwNWR/fHuBUJiE/Jw8yNx/HZhLvYl41sw8ErOJtZAhc7OV4fFiJ2OERkJEyuiKhVyyutxN9ns/HXmSzsPp+LCvX1K1EOtjJEhnhhaFcfDAnxrvMBd2R3Pyx/svcN61zpOCps8PHjPbnOFd2R+BTTDQm8WfcAF6z4V19Er07E7ycz4Oloy2FrRlRYXoXFO88BAF4f3tmkyTMRtSwmV0TUqgiCgJScMvx1Jgt/JWXhcFoBhBsuO/m5KDG0qw+Ghvrg7iD32w6HGtndD8NCfZGQnI0vfktEQrYUwV4OTKzojgiCgH3Jpilm0ZB7OnliyRO98PIPR/FdwmV4Oyvx4pCOosRibZbEnEdhuRpdfJ0wsX87scMhIiNickVEVq9ao8XhywW6hOpMNi7mltW6v5u/M4Z29cGwUB9083du8rfzMqkE4YHuSGmjRUK2FCfSi5BfVgV3fhtNzZSWX470wgrYSCXo10G8eXujw/yRW1qJBduS8NGf5+DpaItx/ZgM3IkzGcVYu/8yAOCd0aGwkUlv8wgisiRMrojIKpVWVmPP+RzEnMnCP2ezUVCuNtwnl0kQEeyJYV29cX9XH6OtH+SqAEJ8HHEuqxR7LuRgTK8Ao+yXWh/9Vau72rnCQSHun+rogYHIKanEl3EpmL3lJDwcFBga6iNqTJZKEAQs2HYaWgGI6uGLAcGmH/JJRC2LyRURWY2Mogr8dSYbfyVlISElD1UareE+V3s57gvxxtBQH9zbybPFyksP6uSJc1ml2HWOyRU1376a+Vbm8uH73yNCkFNSiU2Hr+LF9Uewfmo4+rRnJcym+uNUJvan5kNhI8WcqK5ih0NELYDJFRFZLEEQcPpacc1wvyycSi+udX8HD3sMC/XB0K4+6NPezSTDbyI7e+KbvZew63wOtFoBUlZYoybSagUk1FQKFKOYRX0kEgkWPdID+WVViD2bjSmrD2HTtAh09nESOzSLUVGlwbu/nwEATIsMRhs3e5EjIqKWwOSKiCxKZbUG+1Pz8VeSLqG6sUqfRAL0budmmD8V7OVg8upmd7V1hYOtDHllVTh9rRg92riY9Phk+c5llSC/rAp2chl6tXUVOxwDG5kUn0/sjUn/tx9H0grx1MpEbJ4+wGjDaq3dit0pSC+sgL+LEtMig8UOh4haCJMrIjJ7BWVV+Oecrlz6rnM5tRbutZPLcG8nTwwN9cF9Xbzh6agQMVLA1kaKgR09sTMpC3HnsplcUZPtS9YNCewf6A5bG/MqdmBnK8O3T/XD4ysSkJxdiskrE/HTtAi42rN4y61cLSjH8rgUAMBbD4TCzpaLMhNZKyZXRGSWLuXqyqXHJGXh0OUCaLTX66V7Oylwf1cfDAv1xoBgTyjl5vVBZXCIty65Op+Dl+7vJHY4ZGHiDUMCxSnBfjtuDrb4fkp/PPJlPJKzS/HMd4ew9plwJgy3sGj7WVRWaxEe6I6oHr5ih0NELYjJFRGZBY1WwLErBYhJ0l2hSs4urXV/F18nw/ypHgEuZj2XKTLECwBwNK0AReVquNi3TPEMsj5qjRYHUvXrW5nHfKv6+Lva4ftn+uOx5fE4fLkAM9YfwYp/9WFZ8XokpOTh95MZkErAhZiJWgEmV0QkmvKqauy5kIu/krLw99ls5JVVGe6zkUoQHuSuW9C3qw/aulvO5O8AVzt08nbEhexS7EnOwYM9/cUOiSzEiauFKKvSwNVejlA/Z7HDuaXOPk5Y+XQ/TPq/A4g9m405P5/EB4/2ZPJwg2qNFgu2nQYATApvj65m/p4S0Z1jckVEJpVdrNKVSz+Thb3Juaiqvl4u3UlpgyE15dIjO3vBxc5yr/gMDvHChexSxJ1jckWNp1/fKiLIw6yvzur17eCOzyf2xvNrDuHHQ1fh5aTAv0d0ETsss7EhMQ1nM0vgYifHzGGdxQ6HiEyAyRURtShBEHAuqwR/JWUh5kw2jl8prHV/Gzc7DAv1wbCuPugX6A65lQwriuzsjW/2XMSu8zkQBIHf5lOj6ItZDDCTEuyNMSzUB++N7YFZW07ii39S4OWowNMDA8UOS3SF5VVYHHMeAPD68M5wc2DRD6LWgMkVERmdWqNF4sV8xNSUS79aUFHr/l5tXQ3zpzr7OFpl4tEv0A12chlySiqRlFGMbv6sGki3VlGlwdG0QgDAwGDzLGbRkPH92yGnpBKLY85jwW9J8HRStPortktizqOwXI0uvk6Y2L+d2OEQkYkwuSIioyiqUCPuXDb+OpONuHPZKFFVG+5T2Eh15dK76sqlezsrRYzUNBQ2MgwI9kDs2WzEncthckW3dehyPqo0Wvi5KBHo6SB2OE02476OyCmtxPcJl/HaxmNws7c1m0WQTe1MRjHW7r8MAJg3uhsLfRC1IkyuiMhAoxWQeDEf2SUqeDsp0T/QHbJbzPu4kl9uuDqVeDEf1TeUS/dwsMX9Xb0xtKsP7u3k1SrLNA8O8ULs2WzsOp+DF4d0FDscMnP6+VYDgj0t8mquRCLBvNHdkFtaie0nM/H8msP44bm70T2gdX2xIAgCFmw7Da0ARPXwRYSFXYUkojvD5IqIAAA7TmVgwbYkZBSpDNv8XJSYNzoUI7v7AQC0WgEn0ovwV01CdTazpNY+Onk7YmjNcL9ebV1vmZi1BpGdvQGcxuHLBShWqeGstNwCHdTy4lNq5ltZ8IdxmVSCT8b1QkHZQSSk5uHpVQexeXoE2ntY3pW45tp+MhP7U/OhsJFiTlRXscMhIhNjckVE2HEqA9PXHoFw0/bMIhWmrz2C6YODUVBehb/OZCOnpNJwv0wqQb8OboZy6R0scChTS2rnYY8gTwek5pYhPjnXkKQS3ayoXI2T6UUAYPFD6RQ2MqyY3AfjVuzHmYxiTF6ZiJ+mDYCXk0Ls0FpcRZUG720/AwCYFhmMNm6Ws4QEERkHkyuiVk6jFbBgW1KdxAqAYduXcSmGbY4KG0SGeGFYVx8MDvGCqz0rYN1KZIgXUnPLEHcuh8kVNSghNQ+CAAR5OcDXxfLnJDor5fguuh8e/Soel/PKEb06ET88FwFHhXV/7FixOwXphRXwd1FiWmSw2OEQkQg4w5KolUu8mF9rKGBDhof6YM0z/XHk7WH4YmJvPHxXABOrRhgc4g0AiDunK8lOVB/9kMCBwZZ91epG3s5KfD8lHB4OtjiVXoxpaw7XWtfO2lwtKMfymi+i3nogtFXOMyUiJldErV52ye0TKwB4oKcf7u3kBVsbnjaaIjzQHQobKTKLVTifVSp2OGSm4lN0xSwGdrTc+Vb1CfR0wKrofrC3lWFvci5e33QcWq11fsmwaPtZVFZrER7ojqgevmKHQ0Qi4ackolbO26lxQ5Aa245qU8plhmphceeyRY6GzFFWsQrJ2aWQSIC7g6wruQKAnm1c8dWTfWAjlWDb8Wv47+9JVncVNyElD7+fzIBUAsx/qJtFVnskIuNgckXUyvUPdIenY8PD+yTQVQ3sH+huuqCsTGRnLwC6oYFEN9MPCezm72y1Q20HdfbC4ifCAACr9l3CV7tSRY7IeKo1WizYdhoAMCm8Pbr6OYscERGJickVUStXXlUNaQPfsuq3zhsd2urLqt8J/byrQ5fzUVpZfZvW1Nro17eypvlW9RnTKwBzH9CVJv9gx1lsOnRF5IiMY0NiGs5mlsDFTo6ZwzqLHQ4RiYzJFVErJggCZm0+ieySSrjZy+F9U6lkXxcllj/Zm1Xu7lCgpwPae9hDrREQn5wrdjhkRgThep8YYOEl2Bvj2XuD8HxkEABg1paT+PtslsgR3ZmCsiosjjkPAHhjeGe4OVjnlUciajzrrolKRLe0Ov4Sfj+ZAblMgm+f7oewNq5IvJiP7BIVvJ10QwF5xco4Ijt74fuEy4g7n4Ph3TjZnXQu5ZXjWpEKcpluzbjWYNbILsgpqcSWI+l4Yd0RrJ96N3q3s8znviTmPArL1eji64QJ/duJHQ4RmQFeuSJqpY6kFeDd33WLXc6J6ore7dwgk0oQEeyBMb0CEBHswcTKiAaH6OZd7WJJdrqBfr7VXe3cYG/bOr7vlEgk+ODRnhgc4gWVWospqw8iObtE7LCa7ExGMdYduAwAmDe6G2xk/EhFREyuiFql/LIqzFh3BNVaAQ/08MPTAzqIHZLVuzvIA7Y2UqQXViAlhyXZSSe+lcy3uplcJsWXk3qjV1tXFJarMfnbRGQUVYgdVqMJgoAF205DKwAP9PAzVAQlImJyRdTKaLUCXt14DNeKVAj0dMD7j/Zg2WATsLe1QXhNxUVWDSRA97toWDzYyta3agx7WxusfLofgrwccK1IhadWJqKoXC12WI2y/WQm9qfmQ2EjxeyoLmKHQ0RmhMkVUSvzxT/J2H0+Bwob3TfHTkq52CG1GvqS7LvOM7ki4ExmMQrK1bC3laFnG1exwxGFu4Mtvp/SHz7OCpzPKsWz3x+ESq0RO6xbqqjS4L3tuiHV0yKD0cbNXuSIiMicMLkiakX2JediyV+6ylb/e7g712MxMX1J9gOp+SivYkn21k4/JLB/oDtsbVrvn+M2bvb4bkp/OCltcPBSAV7acBTVGq3YYTVoxe4UpBdWIMDVDtMig8UOh4jMTOs9mxO1MplFKrzyw1EIAvBE3zZ4vG9bsUNqdYK9HBDgaocqjRb7U/PEDodEtk8/JLCVzbeqTxdfZ/zf5L6wtZEiJikLb/9yyiwLv1wtKMfyuBQAukJAdrYykSMiInPD5IqoFVBrtHhpwxHkllahi68TFo7pLnZIrZJEIjFUDeS8q9atqlqLxIv5AIABrXC+VX3CgzywbMJdkEqADYlX8EnN+lHmZNH2s6is1iI80B1RPbikAhHVxeSKqBX4+M9zOHipAI4KGyx/sg+Ucn7bKhb9vKs4lmRv1U5cLUR5lQbuDrbo6svhuXojuvnifw/3AAB89ncy1iRcEjegG8Sn5OL3kxmQSoD5D3VjISAiqheTKyIrt/N0JlbsTgUAfPRYTwR6OogcUes2oKMn5DIJ0vLLcSmvXOxwSCT7auZbRQR5QMr15GqZGN4Orw7tBAB459fT2H4yQ+SIgGqNFgu3JQEAJoW353xVImoQkysiK5aWV47XNx0HADxzTyBG9fATOSJyVNigXwd9SfZskaMhsejnW3FIYP1eub8TJoW3gyAAr/5wDAkp4s5R3JCYhrOZJXCxk2PmsM6ixkJE5o3JFZGVUqk1mL7uMEpU1ejdzhWzRnEtFnPBkuytW3lVNY6mFQAABrCYRb0kEgkWjumOkd18UaXR4rnvDyHpWrEosRSUVeHjnbr5X28M7ww3B1tR4iAiy2AWydUXX3yBDh06QKlUIjw8HImJiQ22VavVWLhwIYKDg6FUKhEWFoYdO3bUarN8+XL07NkTzs7OcHZ2RkREBP7444+WfhpEZmXhb0k4fa0Y7g62+Hxib8hlZvHrTrhekj0hJc/s1/Qh4zt4qQBqjQB/FyU6eHCNpIbIpBIsHd8L/QPdUVJZjadWJeJKvumH0i6JOY+iCjW6+DphQv92Jj8+EVkW0T9tbdy4ETNnzsS8efNw5MgRhIWFYcSIEcjOrn+4zNy5c7FixQosW7YMSUlJmDZtGsaOHYujR48a2rRp0wbvv/8+Dh8+jEOHDuG+++7DmDFjcPr0aVM9LSJRbTlyFesPpEEiAZaO6wV/VzuxQ6IbdPZxhJ+LEpXVLMneGsUn64cEerIowm0o5TJ8M7kvuvg6IaekEpNXJiKvtNJkxz+TUYx1By4DAOaN7gYbfklFRLch+lliyZIlmDp1KqKjoxEaGoqvvvoK9vb2WLlyZb3t16xZgzlz5iAqKgpBQUGYPn06oqKisHjxYkOb0aNHIyoqCp06dULnzp3x7rvvwtHREfv37zfV0yISzfmsErz18ykAwMv3dcKgmiFoZD4kEgmHBrZihvWtON+qUVzs5PhuSn8EuNrhYm4ZolcfRFllyy/CLQgC5v96GloBeKCHHyKC+X4R0e3ZiHnwqqoqHD58GLNnzzZsk0qlGDp0KBISEup9TGVlJZRKZa1tdnZ22Lt3b73tNRoNNm3ahLKyMkRERDS4z8rK69+EFRfrxnWr1Wqo1eomPScyH/r3rjW9h6WV1Zi25hAq1BoMCHbH9EEdWtXzF1NT+9s9we744eAVxJ3NxpyRnCDfWhSWq3G6Zu5Qv3Yud/T72ZrOce52Mqyc3Bvj/y8RJ64W4fk1h7Bi0l2wtWm574j/OJWJAxfzobCR4t/DO7aK1/lWWlN/I/NgTn2uKTFIBBEXWrl27RoCAgIQHx9fK/F58803sWvXLhw4cKDOYyZOnIjjx49j69atCA4ORmxsLMaMGQONRlMrQTp58iQiIiKgUqng6OiI9evXIyoqqt445s+fjwULFtTZvn79etjbczw8WQZBAL6/IMWRPClcbAW82VMDR7nYUVFDKqqBOYdk0AoSvH1XNTyVt38MWb7jeRKsPC+Dj52AOb04366pLpcAnyfJUKWVoI+nFk921KIlKtlXaYD3jslQUCXByDYajGrLNemIWrPy8nJMnDgRRUVFcHa+9VIMol65ao5PP/0UU6dORZcuXSCRSBAcHIzo6Og6wwhDQkJw7NgxFBUV4aeffsJTTz2FXbt2ITQ0tM4+Z8+ejZkzZxpuFxcXo23bthg+fPhtX0AyX2q1GjExMRg2bBjkcuvPMtYdSMOR/Wchk0qwYnI/9GnvJnZIrUpz+tvmnIM4eKkAsoDuiArnRPnWIHHbGQBXMKxnO0RFdb2jfbW2c5xetwu5eH7tURzOlSKscyBmjwox+jE++zsZBVWp8HdR4sPogbCz5cLrrbW/kXjMqc/pR7U1hqjJlaenJ2QyGbKysmptz8rKgq+vb72P8fLywtatW6FSqZCXlwd/f3/MmjULQUFBtdrZ2tqiY8eOAIA+ffrg4MGD+PTTT7FixYo6+1QoFFAoFHW2y+Vy0d9MunOt4X08fqUQ7/5xDgAwe1QX3N3RW+SIWq+m9LchXbxx8FIB9iTn4+l7gls4MjIHCRfzAQD3dPI22nmpNZzjbnR/qB8+fEyDmT8ex8r4y/B1tcNzg4z3+3O1oBxf77kEAHjrgVA4O/Cy8o1aW38j8ZlDn2vK8UUtaGFra4s+ffogNjbWsE2r1SI2NrbB+VF6SqUSAQEBqK6uxubNmzFmzJhbttdqtbWGDRJZi8LyKryw7gjUGgEjuvngmXsCxQ6JGklf1CKeJdlbhcwiFVJzyiCVABFBLI5wJx7p3QZzonRr9723/Sy2HLlqtH0v2n4WldVa3B3kjqge9X/RS0TUENGHBc6cORNPPfUU+vbti/79+2Pp0qUoKytDdHQ0AGDy5MkICAjAokWLAAAHDhxAeno6evXqhfT0dMyfPx9arRZvvvmmYZ+zZ8/GqFGj0K5dO5SUlGD9+vWIi4vDn3/+KcpzJGopWq2AmT8eR3phBdp72OPDx8JY2tmChPo5w9tJgeySShy6VIB7OnFBWWu2r6YEe/cAF7jY85v/O/XcoGDklFTimz0X8eZPJ+DmYIshIXd21T4+JRe/n8yAVKIrvc7zKRE1lejJ1bhx45CTk4N33nkHmZmZ6NWrF3bs2AEfHx8AQFpaGqTS6xfYVCoV5s6di9TUVDg6OiIqKgpr1qyBq6uroU12djYmT56MjIwMuLi4oGfPnvjzzz8xbNgwUz89ohb11e4U/H02G7Y2Unw5qTdc7PiBzZLoS7JvOnwVceeymVxZufgU3ZpmA4L5PhvL7FFdkVNSia3HruGFtUewfmo47mrXvPmm1RotFm5LAgBMCm+Prn6cc01ETSd6cgUAM2bMwIwZM+q9Ly4urtbtyMhIJCUl3XJ/3377rbFCIzJbCSl5+PhP3TyrhQ91Qzd/F5EjouaIDNElV7vO52Cu2MFQixEEAfFc38ropFIJPnwsDPnlauw+n4Mpqw/ip+kDEOzl2OR9bUhMw9nMErjayzFzGJdHIKLmEX0RYSJquuxiFV7acBRaAXi0dxuM69dW7JCome7t6AWpBLiQXYr0wgqxw6EWcjG3DBlFKtjKpOjb3l3scKyKrY0Uyyf1RlgbFxSUqzH520RkFauatI+Csip8vPM8AOD1YZ3h5mDbEqESUSvA5IrIwlRrtHhpw1HkllYixMcJ/3u4O+cFWDAXezl61wxjijuXLXI01FL21QwJvKudK8t6twAHhQ1WPt0PgZ4OSC+swFMrE1FU0fhFP5fEnEdRhRpdfJ0woT+XRSCi5mNyRWRhlsScx4GL+XCwleHLJ3vzg5oV0FcN3HUuR+RIqKXEJ+uHBHK+VUvxcFTg+yn94eWkwNnMEkz9/lCjqnAmXSvGugOXAeiKWNjI+NGIiJqPZxAiCxJ7JgtfxqUAAD54rGez5hWQ+RlcU+FsX3Iuqqq1IkdDxqbVCkhI1V254nyrltXW3R7fRfeHk8IGiRfz8eoPx6DRCg22FwQBC7adhlYAHujhh4hgvj9EdGeYXBFZiCv55Zj543EAwNMDOuDBnv4iR0TG0s3fGZ6Otiir0uDQ5XyxwyEjS8ooRmG5Gg62MvRs4yp2OFYv1N8ZX0/uC1uZFDtOZ+LtX05BEOpPsLafzMSBi/lQ2Egxu2bdLCKiO8HkisgCVFZr8OL6IyiqUCOsrSvmRHUVOyQyIqlUgkGdaoYGnufQQGujrxIYHuQBOYecmUREsAc+Hd8LEgmw/kAaPo29UKdNRZUG7/6uqz48fXAw2rjZmzpMIrJCPMsTWYD//XYGJ64WwdVeji8m3gVbG/7qWpvIEM67slb7kvXrW3HImSmN6uGHhWO6AwCW/nUB6w5chkYrICElD78cS8fcrSdxrUiFAFc7PD8oWORoichamMU6V0TUsF+OpWPNft1k60/G9eK3q1bq3k5ekEiAs5klyCiqgJ+LndghkRFUVWuReFE31JPFLEzvX3e3R05JJT6LvYC5P5/CR3+eQ2F57SqCUT18WRiIiIyGX38TmbHk7BLM3nISADBjSEcMqSl8QNbH3cEWYTXzcXZzaKDVOHalEBVqDdwdbBHi4yR2OK3Sa0M74Z6OnhCAOokVAPzfnovYcSrD9IERkVVickVkpsqrqjF97RGUV2kQEeSB14Z1FjskamGDa4YGxnFooNXYV1OCPSLYA1Ip16MTg1YAkrNLb9lmwbakW1YVJCJqLCZXRGZIEAS89fMpXMguhbeTAp9O6AUZP5hZPf16V3sv5EKtYUl2a6AvZjEwmEMCxZJ4MR+ZxaoG7xcAZBSpDMM3iYjuBJMrIjO0IfEKfj6aDplUgmUT7oK3k1LskMgEerZxhZu9HCWV1TiaVih2OHSHym54H7m+lXiySxpOrJrTjojoVphcEZmZU+lFmP/raQDAv0eEIDyIH8paC5lUgkGd9UMDs0WOhu7UwUv5qNYKCHC1Qzt3FqIRS2O/nOKXWERkDEyuiMxIUbka09cdRpVGi6FdffDcvUFih0Qmph8ayPWuLF98iq4E+8COHpBIOKxXLP0D3eHnokRD74AEgJ+LEv0D3U0ZFhFZKSZXRGZCEAS88dNxXMmvQBs3Oyx+PIwT4Fsh/ZWr09eKOUzJwumLWQzgfCtRyaQSzBsdCgB1Eiz97XmjQzmvlYiMgskVkZn4Zk8qYpKyYCuTYvmkPnCxl4sdEonA01GBHgEuALigsCUrKKtCUkYxAC4ebA5GdvfD8id7w9el9tA/Xxcllj/ZGyO7+4kUGRFZGy4iTGQGEi/m44Md5wAA74wORY82LiJHRGIaHOKFk+lF2HU+B4/3bSt2ONQMCal5EASgk7cjvJ05l8ccjOzuh2Ghvki8mI/sEhW8nXRDAXnFioiMickVkchySioxY/0RaLQCHu7lj0nh7cQOiUQ2OMQLy/5Oxp4LuajWaGEj4yADS6MfEjiwI4cEmhOZVIIIXkkkohbEv9hEItJoBbzyw1Fkl1Sio7cj3h3bgxPfCWFtXOGstEFRhRrHrxaJHQ41Q0JNMQsOCSQial2YXBGJaOlf5xGfkgd7Wxm+erI3HBS8mEyAjUyKe/VVA1mS3eJkFFUgNbcMUgm4lAIRUSvD5IpIJP+cy8ayv5MBAIse6YGO3k4iR0TmZLB+vSuWZLc4+5J1V616tHGFix0L0xARtSZNTq46dOiAhQsXIi0trSXiIWoV0gsr8NrGYwCAJ+9uhzG9AsQNiMyOfr2rE1eLkFtaKXI01BTxhhLsvGpFRNTaNDm5evXVV7FlyxYEBQVh2LBh+OGHH1BZyT/8RI1VVa3Fi+uOoLBcjZ5tXPD2g6Fih0RmyNtZiVA/ZwDAngu8emUpBEHAvpSaYhZc34qIqNVpVnJ17NgxJCYmomvXrnjppZfg5+eHGTNm4MiRIy0RI5FVeW/7GRy7UghnpQ2+mNgbChuZ2CGRmYoMqRkayPWuLEZKThmyiithayNF3w5uYodDREQm1uw5V71798Znn32Ga9euYd68efi///s/9OvXD7169cLKlSshCIIx4ySyCr+fyMDq+EsAgCVP9EJbd3txAyKzpp93tft8DjRanlMtQXzNVas+7dyglPOLEyKi1qbZyZVarcaPP/6Ihx56CK+//jr69u2L//u//8Ojjz6KOXPmYNKkScaMk8jipeaU4j+bTwAApkUGY2ioj8gRkbnr3d4NTgobFJSrcTKdJdktQXxNMYuBHTnfioioNWpy3ecjR45g1apV2LBhA6RSKSZPnoxPPvkEXbp0MbQZO3Ys+vXrZ9RAiSxZRZUGL6w7gtLKavQPdMcbwzuLHRJZALlMioEdPbHjdCbizmWjV1tXsUOiW9BoBSSk1qxvxcWDiYhapSZfuerXrx8uXLiA5cuXIz09HR9//HGtxAoAAgMDMX78eKMFSWTp3v7lFM5mlsDTUYHPJ9wFGxlXQaDGGVwz72oXS7KbvaRrxSiqUMNRYYOeAS5ih0NERCJo8pWr1NRUtG/f/pZtHBwcsGrVqmYHRWRNfjx4BT8dvgqpBPhsQi94OyvFDoksiL6oxbErhSgoq4Kbg63IEVFD9FUCwwPd+QUKEVEr1eSzf3Z2Ng4cOFBn+4EDB3Do0CGjBEVkLZKuFePtX04BAF4fHoIBLM1MTeTnYocQHycIArCnZv0kMk/79OtbcUggEVGr1eTk6sUXX8SVK1fqbE9PT8eLL75olKCIrEGxSo0X1h1GZbUWQ0K8MD0yWOyQyEINNpRkzxY5EmpIZbUGBy/lA2AxCyKi1qzJyVVSUhJ69+5dZ/tdd92FpKQkowRFZOkEQcCbm07gUl45AlztsOSJXpBKJWKHRRZKPzRw9/kcaFmS3SwdTSuESq2Fp6MtQnycxA6HiIhE0uTkSqFQICsrq872jIwM2Ng0eQoXkVX6du9F7DidCblMgi8m9eY8Gbojfdu7w8FWhtzSKiRlFIsdDtUjPkVXJTAi2BMSCb9IISJqrZqcXA0fPhyzZ89GUdH1NVcKCwsxZ84cDBs2zKjBEVmiw5fz8f4fZwEAcx8IZflsumO2NlLDPB4ODTRP8TXzrQYGc0ggEVFr1uTk6uOPP8aVK1fQvn17DBkyBEOGDEFgYCAyMzOxePHiloiRyGLklVbixXVHUa0V8GBPP0yOuHVlTaLGiuysn3fFkuzmpqyyGseuFAIABrKYBRFRq9bkcXwBAQE4ceIE1q1bh+PHj8POzg7R0dGYMGEC5HJ5S8RIZBE0WgGvbjyGzGIVgrwc8P6jPTk8iIxGX9TiSFoBisrVcLHn+dZcJF7MR7VWQBs3O7R1txc7HCIiElGzJkk5ODjgueeeM3YsRBZt2d8XsOdCLpRyKZZP6gNHBecgkvG0cbNHR29HJGeXYm9yLh7o6Sd2SFRjn2FIIK9aERG1ds3+9JeUlIS0tDRUVVXV2v7QQw/dcVBElmbPhRx8GnsBAPDe2B4I8WW1MDK+yM5eSM4uRdy5bCZXZmRfTTGLASzBTkTU6jU5uUpNTcXYsWNx8uRJSCQSCIKuLLB++JNGozFuhERmLqOoAq/8cAyCAEzo3xaP9G4jdkhkpQaHeOHbvRex63wOBEHgsFMzkF9WhTM1FRy5SDgRETW5oMUrr7yCwMBAZGdnw97eHqdPn8bu3bvRt29fxMXFNSuIL774Ah06dIBSqUR4eDgSExMbbKtWq7Fw4UIEBwdDqVQiLCwMO3bsqNVm0aJF6NevH5ycnODt7Y2HH34Y586da1ZsRLei1mgxY/1R5JdVoZu/M+aN7iZ2SGTF+nVwh51chuySSpzJKBE7HAKQUHPVKsTHCV5OCpGjISIisTU5uUpISMDChQvh6ekJqVQKqVSKe+65B4sWLcLLL7/c5AA2btyImTNnYt68eThy5AjCwsIwYsQIZGfXX2547ty5WLFiBZYtW4akpCRMmzYNY8eOxdGjRw1tdu3ahRdffBH79+9HTEwM1Go1hg8fjrKysibHR3QrH/xxFocvF8BJaYMvJ/WGUi4TOySyYkq5DBE1pb53nWfVQHOwL0U334pDAomICGhGcqXRaODkpJtP4unpiWvXrgEA2rdv36yrQ0uWLMHUqVMRHR2N0NBQfPXVV7C3t8fKlSvrbb9mzRrMmTMHUVFRCAoKwvTp0xEVFVWrDPyOHTvw9NNPo1u3bggLC8Pq1auRlpaGw4cPNzk+oobsOJWB/9t7EQDw8eNhaO/hIHJE1BroqwZyvSvzoF/fikMCiYgIaMacq+7du+P48eMIDAxEeHg4PvzwQ9ja2uLrr79GUFBQk/ZVVVWFw4cPY/bs2YZtUqkUQ4cORUJCQr2PqayshFKprLXNzs4Oe/fubfA4+gWP3d3dG9xnZWWl4XZxsW78vFqthlqtbtyTIbOjf+9a4j28nFeONzadAAA8M7A97uvswb7SyrVkf7vRgCA3AMDhywXIL6mAk5JVKcVyrbACl/LKIZUAfdo6mfwcYKo+RwSwv5HpmVOfa0oMTf6rPHfuXMPwuoULF+LBBx/EvffeCw8PD2zcuLFJ+8rNzYVGo4GPj0+t7T4+Pjh79my9jxkxYgSWLFmCQYMGITg4GLGxsdiyZUuDhTS0Wi1effVVDBw4EN27d6+3zaJFi7BgwYI623fu3Al7e65ZYuliYmKMur8qDbD0lAyllRIEOgnoVp2C7dtTjHoMslzG7m/18VLKkKMCPt8UgzAPocWPR/Xbny0BIENbBwF7/m75970hpuhzRHrsb2Rq5tDnysvLG922ycnViBEjDD937NgRZ8+eRX5+Ptzc3ExSuerTTz/F1KlT0aVLF0gkEgQHByM6OrrBYYQvvvgiTp06dcsrW7Nnz8bMmTMNt4uLi9G2bVsMHz4czs7ORn8OZBpqtRoxMTEYNmyYURe4fmvraaSXp8PdQY7vp0XA11l5+weR1Wup/lafw8JZfL8/DWXO7RAVxSIqYonddBJABqJ6ByFqWCeTH9+UfY6I/Y1MzZz6nH5UW2M0KblSq9Wws7PDsWPHal0Fami43e14enpCJpMhKyur1vasrCz4+vrW+xgvLy9s3boVKpUKeXl58Pf3x6xZs+odkjhjxgz89ttv2L17N9q0abg8tkKhgEJRt8qTXC4X/c2kO2fM9/Gnw1fx4+F0SCTAZ+N7o60H17Oi2kxx3hjS1Qff70/D7gt5sLGxYUl2EQiCgP0X8wEA93b2FvVvBf9WkSmxv5GpmUOfa8rxm1TQQi6Xo127dkZby8rW1hZ9+vRBbGysYZtWq0VsbCwiIiJu+VilUomAgABUV1dj8+bNGDNmjOE+QRAwY8YM/Pzzz/j7778RGBholHipdTubWYy5W08CAF4b2hn3dOIEdhJHRJAHFDZSZBSpcCG7VOxwWqWUnFJkl1RCYSNF7/ZuYodDRERmosnVAt966y3MmTMH+fn5Rglg5syZ+Oabb/Ddd9/hzJkzmD59OsrKyhAdHQ0AmDx5cq2CFwcOHMCWLVuQmpqKPXv2YOTIkdBqtXjzzTcNbV588UWsXbsW69evh5OTEzIzM5GZmYmKigqjxEytT4lKjRfWHoFKrcWgzl6YMaSj2CFRK6aUy3B3kK70N6sGimNfsm59q74d3LgEAxERGTR5ztXnn3+O5ORk+Pv7o3379nBwqF1++siRI03a37hx45CTk4N33nkHmZmZ6NWrF3bs2GEocpGWlgap9HoOqFKpMHfuXKSmpsLR0RFRUVFYs2YNXF1dDW2WL18OABg8eHCtY61atQpPP/10k+IjEgQBs7acRGpuGfxclFg6rhekUg7DInFFdvbCrvM52HU+B88NChY7nFZnH0uwExFRPZqcXD388MNGD2LGjBmYMWNGvffFxcXVuh0ZGYmkpKRb7k8QWD2LjOe7+Ev4/UQGbKQSfD6xN9wdbMUOiQiDQ7yw8Dfg4MUClFVWw0HBkuymotEK2J+qu3I1IJiLBxMR0XVN/ms8b968loiDyCwdTSvAu9vPAADmRHVFH86tIDMR6OmAdu72SMsvR3xKHoaF+tz+QWQUp9KLUKyqhpPCBj0CXMQOh4iIzEiT51wRtRYFZVV4cd0RqDUCRnX3RfTADmKHRGQgkUgQ2dkLALDrPOddmdK+FN2QwPAgD9jI+GeUiIiua/JfBalUCplM1uA/Imug1Qp47cdjuFakQqCnAz58rCfLXZPZGRyiS67izuVwOLQJJaTohgQO7MghgUREVFuThwX+/PPPtW6r1WocPXoU3333HRYsWGC0wIjE9GVcMuLO5UBhI8WXk3rDSck1Pcj8RAR7wFYmxdWCCqTklKGjt6PYIVm9ymoNDl7SVcsd2JHFLIiIqLYmJ1c3riel99hjj6Fbt27YuHEjnnnmGaMERiSW+ORcLIk5DwD478Pd0dXPWeSIiOpnb2uD/oHu2Juci13nc5hcmcCRy4VQqbXwdFSgE19vIiK6idEGi9999921FgMmskRZxSq8/MNRaAXg8T5t8ETftmKHRHRL14cGct6VKcSn6Euwe3CoMBER1WGU5KqiogKfffYZAgICjLE7IlFUa7R4af1R5JZWoYuvExaO6S52SES3pS9qceBiPiqqNCJHY/3061txvhUREdWnycMC3dzcan1bJwgCSkpKYG9vj7Vr1xo1OCJT+mjnOSReyoejwgbLn+wDO1sWaCHz19HbEQGudkgvrMD+1DwM6eItdkhWq0SlxvGrRQC4eDAREdWvycnVJ598Uiu5kkql8PLyQnh4ONzcuAYQWaaYpCys2JUKAPjwsZ4I9HQQOSKixpFIJIgM8cL6A2mIO5fN5KoFHbyUD41WQDt3e7R1txc7HCIiMkNNTq6efvrpFgiDSDxpeeV4/cdjAIApAwMR1cNP3ICImiiysy652nU+R+xQrNq+ZJZgJyKiW2vynKtVq1Zh06ZNdbZv2rQJ3333nVGCIjIVlVqDF9YfRrGqGne1c8WsUV3EDomoyQZ29IRcJsGlvHJcyi0TOxyrpZ9vxSGBRETUkCYnV4sWLYKnZ90/LN7e3njvvfeMEhSRqfz3tyScSi+Gm70cX0zsDVsboxXQJDIZR4UN+rZ3B8CqgS0lt7QSZzNLAOjWFyMiIqpPkz9JpqWlITAwsM729u3bIy0tzShBEZnC1qPpWHcgDRIJsHT8XfB3tRM7JKJmi6wpyc6hgS0jIUU3JLCLrxM8HRUiR0NEROaqycmVt7c3Tpw4UWf78ePH4eHBb/PIMlzIKsHsLScBAC/d18lQzprIUunXu0pIzYNKzZLsxnZ9fSsOCSQiooY1ObmaMGECXn75Zfzzzz/QaDTQaDT4+++/8corr2D8+PEtESORUZVVVmP6uiOoUGtwT0dPvHJ/J7FDIrpjIT5O8HVWQqXW4sDFfLHDsTosZkFERI3R5OTqv//9L8LDw3H//ffDzs4OdnZ2GD58OO677z7OuSKzJwgCZm85ieTsUvg4K7B0fC/IpJLbP5DIzEkkEsMV2F3nODTQmK7klyMtvxwyqQT9A93FDoeIiMxYk5MrW1tbbNy4EefOncO6deuwZcsWpKSkYOXKlbC1tW2JGImMZu2BNPx6/BpkUgk+n9ibcyfIquiHBsadZ1ELY9LPtwpr4wInpVzkaIiIyJw1eZ0rvU6dOqFTJw6nIstx4moh/rstCQAwa2QX9OvAb6DJugzo6AmZVILUnDJcyS/nQrdGsq9mvtXAjpxvRUREt9bkK1ePPvooPvjggzrbP/zwQzz++ONGCYrI2IrK1Xhh3RFUabQYHuqDZ++tW/GSyNK52MnRp50bACCOVQONQhAExNdcuWIJdiIiup0mJ1e7d+9GVFRUne2jRo3C7t27jRIUkTFptQJm/ngMVwsq0M7dHh89HgaJhPOsyDoZSrJzvSujuJBdipySSihspOhdk7gSERE1pMnJVWlpab1zq+RyOYqLi40SFNGd0mgFHLiYj8O5Erz9axJiz2bD1kaKLyf1hosd50yQ9dIXtYhPyUNlNUuy36l9ybohgf06uEMpl4kcDRERmbsmJ1c9evTAxo0b62z/4YcfEBoaapSgiO7EjlMZuOeDv/HkykP4/oIMPx5OBwA83qcNuge4iBwdUcvq5u8MLycFyqs0OHSpQOxwLJ6+BPsAlmAnIqJGaHJBi7fffhuPPPIIUlJScN999wEAYmNjsX79evz0009GD5CoKXacysD0tUcg1HPf+gNpuLeTJ0Z29zN5XESmIpFIMKiTFzYfuYq4c9kswnAHqjVaHEitWd+KiwcTEVEjNPnK1ejRo7F161YkJyfjhRdewOuvv4709HT8/fff6NixY0vESNQoGq2ABduS6k2s9BZsS4JGe6sWRJZPX5J9F4ta3JFT14pRUlkNZ6UNr3oTEVGjNDm5AoAHHngA+/btQ1lZGVJTU/HEE0/gjTfeQFhYmLHjI2q0xIv5yChSNXi/ACCjSIXEi/mmC4pIBPd28oRUApzPKsW1wgqxw7FY+vlWdwd5cLFxIiJqlGYlV4CuauBTTz0Ff39/LF68GPfddx/2799vzNiImiS7pOHEqjntiCyVq70terV1BQDEnePVq+aKr1nfagBLsBMRUSM1ac5VZmYmVq9ejW+//RbFxcV44oknUFlZia1bt7KYBYnO20lp1HZElmxwiDeOpBVi1/lsTAxvJ3Y4Fkelvl4QhPPWiIiosRp95Wr06NEICQnBiRMnsHTpUly7dg3Lli1rydiImqR3O1fYyhoeuiMB4OeiRP9Ad9MFRSQS/byrfcl5qKrWihyN5TlyuQCV1Vp4OynQ0dtR7HCIiMhCNPrK1R9//IGXX34Z06dPR6dOnVoyJqJm+fyfZFRp6i9WoU+55o0O5dwJahW6+7vAw8EWeWVVOJJWgLuDOLStKeJTakqwB3tw0XEiImq0Rl+52rt3L0pKStCnTx+Eh4fj888/R25ubkvGRtRou8/n4PN/kgEAUwZ2gJ9L7aF/vi5KLH+yN8uwU6shlUowqGZBYc67arp9+vlWHBJIRERN0Ojk6u6778Y333yDjIwMPP/88/jhhx/g7+8PrVaLmJgYlJSUtGScRA3KKlbhtY3HIAjAxPB2eGd0N+z9z31YO6UvJnfSYO2Uvtj7n/uYWFGrox8aGHcuW+RILEuJSo0TV4sAsJgFERE1TZOrBTo4OGDKlCnYu3cvTp48iddffx3vv/8+vL298dBDD7VEjEQNqtZo8fKGo8grq0JXP2e886CusIpMKkF4oDv6eAoID3TnUEBqle7t5AWJBDibWYKsYlbJbKwDqfnQaAW097BHGzd7scMhIiIL0uxS7AAQEhKCDz/8EFevXsWGDRuMFRNRo30aewEHLubDwVaGLybeBaVcJnZIRGbD3cEWPdu4AgB2cWhgoxmGBAZzSCARETXNHSVXejKZDA8//DB+/fVXY+yOqFFunGf13iM9EOTFil5EN4vUz7s6z6GBjRWfrCtmMbAjhwQSEVHTGCW5IjK1m+dZjekVIHZIRGZJP+9qz4VcVGtYkv12ckoqcS5LN4c4ghUWiYioiZhckcVpaJ4VEdUV1sYVrvZylKiqcfRKodjhmL2EVN1Vq65+zvBwVIgcDRERWRomV2RxPuM8K6JGk0kluLcTqwY2Vnyybr7VQFYJJCKiZmByRRZlz4UcLOM8K6ImGVwz72rXeRa1uB19MYuBXN+KiIiagckVWYysYhVe/YHzrIiaSr+Y8Kn0YmSXsCR7Q67kl+NKfgVspBL0C3QXOxwiIrJATK7IInCeFVHzeTkp0D3AGQCw53yuyNGYr301QwLD2rrCUWEjcjRERGSJRE+uvvjiC3To0AFKpRLh4eFITExssK1arcbChQsRHBwMpVKJsLAw7Nixo1ab3bt3Y/To0fD394dEIsHWrVtb+BmQKXCeFdGdGdzZGwAQx6GBDdqXUlOCnfOtiIiomURNrjZu3IiZM2di3rx5OHLkCMLCwjBixAhkZ9c/6Xru3LlYsWIFli1bhqSkJEybNg1jx47F0aNHDW3KysoQFhaGL774wlRPg1oY51kR3blIQ0n2HGi0gsjRmB9BEJCgXzyY862IiKiZRB33sGTJEkydOhXR0dEAgK+++gq///47Vq5ciVmzZtVpv2bNGrz11luIiooCAEyfPh1//fUXFi9ejLVr1wIARo0ahVGjRjUpjsrKSlRWVhpuFxcXA9BdKVOr1c16bmQcWcUqvPLDUQgCMK5vG0R18270e6Jvx/eQTMHc+1t3Xwc4K21QWK7G4Uu5uKutq9ghmZXzWSXILa2CUi5Fdz9Hs30fb2TufY6sC/sbmZo59bmmxCBaclVVVYXDhw9j9uzZhm1SqRRDhw5FQkJCvY+prKyEUqmstc3Ozg579+69o1gWLVqEBQsW1Nm+c+dO2Nvb39G+qfk0AvBlkgz5ZRL42wvoK72E7dsvNXk/MTExxg+OqAHm3N+CHKQ4ppLi2+37EdWWCwrfKC5DAkCGDvbViN2547btzYk59zmyPuxvZGrm0OfKy8sb3Va05Co3NxcajQY+Pj61tvv4+ODs2bP1PmbEiBFYsmQJBg0ahODgYMTGxmLLli3QaDR3FMvs2bMxc+ZMw+3i4mK0bdsWw4cPh7Oz8x3tm5pvaWwykotT4WArw6pn70aQl0OTHq9WqxETE4Nhw4ZBLpe3UJREOpbQ38p80nFs62lkCK6Iirpb7HDMyi9rjwLIwejwEETdGyh2OI1iCX2OrAf7G5maOfU5/ai2xrCockiffvoppk6dii5dukAikSA4OBjR0dFYuXLlHe1XoVBAoVDU2S6Xy0V/M1urPRdy8OWuVAC6eVYh/q7N3hffRzIlc+5v94f6AltP4+S1YhRXauHhWPe81xpVa7Q4eKkAAHBvZ2+zff8aYs59jqwP+xuZmjn0uaYcX7SCFp6enpDJZMjKyqq1PSsrC76+vvU+xsvLC1u3bkVZWRkuX76Ms2fPwtHREUFBQaYImUzkxvWsJvTnelZExuLjrERXP2cIArDnAkuy651IL0JJZTWclTbo5u8idjhERGTBREuubG1t0adPH8TGxhq2abVaxMbGIiIi4paPVSqVCAgIQHV1NTZv3owxY8a0dLhkIjeuZ9XF1wnzRnM9KyJjiqxZUDjuXP1VWVuj+Jr1rSKCPSCTSkSOhoiILJmopdhnzpyJb775Bt999x3OnDmD6dOno6yszFA9cPLkybUKXhw4cABbtmxBamoq9uzZg5EjR0Kr1eLNN980tCktLcWxY8dw7NgxAMDFixdx7NgxpKWlmfS5UfPUWs9qUm+uZ0VkZINrSrLvvpALLUuyAwDi9etbsQQ7ERHdIVHnXI0bNw45OTl45513kJmZiV69emHHjh2GIhdpaWmQSq/nfyqVCnPnzkVqaiocHR0RFRWFNWvWwNXV1dDm0KFDGDJkiOG2vlDFU089hdWrV5vkeVHz3LyeVTDXsyIyuj7t3eCosEF+WRVOphchrJWXZFepNTh0WTffakAwkysiIrozohe0mDFjBmbMmFHvfXFxcbVuR0ZGIikp6Zb7Gzx4MASB38ZammzOsyIyCblMioEdPfDn6SzsOp/T6pOrw5cLUFWthY+zAsFNrEhKRER0M1GHBRIBgEYr4OUfOM+KyFQGh3gD4LwrANhXM99qQLAnJBLOtyIiojvD5IpE92nsBexP5TwrIlPRF7U4dqUQheVVIkcjrn01860GBHuIHAkREVkDJlckqr0XcrHs7wsAOM+KyFT8Xe3Q2ccR2lZekr2oQo2TVwsBsJgFEREZB5MrEk12sQqvbjzKeVZEIrg+NDBH5EjEcyA1D1oBCPR0gL+rndjhEBGRFWByRaLQz7PKLeU8KyIx6IcG7jqf02pLssdzSCARERkZkysShX6elT3nWRGJom8HN9jbypBbWomkjGKxwxFFfIpuSCSHBBIRkbEwuSKTqzXPaiznWRGJQWEjM6zrtOt86xsamF2iwvmsUgBARBCvXBERkXEwuSKTqj3Pqi0evovzrIjEEhlSMzSwFc67SqgZEhjq5ww3B1uRoyEiImvB5IpMpu48q25ih0TUqg2umXd1OK0ARRVqkaMxLf36VgM78qoVEREZD5MrMhnOsyIyL23d7RHs5QCNVjAkG62BIAjYl1xTzILzrYiIyIiYXJFJcJ4VkXmK7Kwryd6ahgZeya9AemEFbKQS9O/gLnY4RERkRZhcUYvjPCsi8zU45HpJdkFoHSXZ99VUCbyrnSscFDYiR0NERNaEyRW1KM6zIjJv/QPdoZRLkVmswtnMErHDMQn9EEh9tUQiIiJjYXJFLYrzrIjMm1IuM5Qibw0l2bVawVApkOtbERGRsTG5ohbDeVZElmFwiG7eVdy5bJEjaXnnskqQV1YFO7kMvdq6ih0OERFZGSZX1CKyS1R4deMxzrMisgCRNSXZD10qQInKukuy64cE9gt0h60N/wQSEZFx8S8LGZ1GK+CVDceQW1rJeVZEFqCDpwM6eNijWisgvmbInLXSP7+BwVzfioiIjI/JFRndZ7EXkJCax3lWRBbk+tBA6513pdZocSCV862IiKjlMLkio9qXnIvPOM+KyOLohwbutuKS7CeuFqGsSgNXezlC/ZzFDoeIiKwQkysymuwSFV75QTfPanw/zrMisiR3B3nA1kaK9MIKJGeXih1Oi4ivmW8VEeQBqVQicjRERGSNmFyRUdw8z2r+Q5xnRWRJ7GxlCA90B2C9QwP1iwcP4JBAIiJqIUyuyChunGf1+UTOsyKyRPp5V9a43lVFlQZHLhcCAAawmAUREbUQJld0x26eZ9XRm/OsiCzR4BDdvKvEi/koq6wWORrjOnQ5H1UaLXydlQjydBA7HCIislJMruiOcJ4VkfUI8nRAGzc7VGm0SLCykuz7knXPZ0BHD0gknG9FREQtg8kVNRvnWRFZF4lEYrh6ZW1DAxNq5lsNDOZ8KyIiajlMrqjZOM+KyPoM7lyz3tX5bKspyV5UocbJ9CIAXN+KiIhaFpMrahbOsyKyThHBHrCVSXElvwKpuWVih2MU+1PzoBWAIC8H+LooxQ6HiIisGJMrajLOsyKyXg4KG/QLdAMA7LKSkuz69a1YJZCIiFoakytqEs6zIrJ+14cGWkdyta+mOAfnWxERUUtjckVNwnlWRNYvsqaoxYHUPKjUGpGjuTNZxSokZ5dCItENeSQiImpJTK6o0eI5z4qoVejk7Qh/FyUqq7VISLXskuz6kvLd/J3ham8rcjRERGTtmFxRo2SXqPAy51kRtQoSicRw9crS513tS2YJdiIiMh0mV3RbGq2AV3/gPCui1iSyZt6VJa93JQgC4lP0iwczuSIiopbH5Ipua9nfFxCfwnlWRK3JwI4esJFKcDG3DJfzLLMk++W8cqQXVkAuk6BfBzexwyEiolaAyRXdUnxyLj6N1c2zendsd86zImolnJRy9GmvS0jiLHRo4L4U3ZDAu9q6wd7WRuRoiIioNWByRQ26cZ7VuL5tMfauNmKHREQmNDjEsocGxifrhwSySiAREZkGkyuq143zrEJ8OM+KqDUaXFPUIj4l1+JKsmu1AuJrrlwN5HwrIiIyESZXVK8b51l9Mak37Gw5z4qoteni6wQfZwVUai0OXsoXO5wmOZtZgoJyNextZQhr4yp2OERE1EowuaI6OM+KiICakuyddVevLG3elf6qVf9Ad9ja8E8dERGZhln8xfniiy/QoUMHKJVKhIeHIzExscG2arUaCxcuRHBwMJRKJcLCwrBjx4472iddx3lWRHQjfUn2uHPZIkfSNFzfioiIxCB6crVx40bMnDkT8+bNw5EjRxAWFoYRI0YgO7v+P+Rz587FihUrsGzZMiQlJWHatGkYO3Ysjh492ux9kg7nWRHRze7p5AmZVIKUnDJcyS8XO5xGUWu0SLyoG8bIYhZERGRKoidXS5YswdSpUxEdHY3Q0FB89dVXsLe3x8qVK+ttv2bNGsyZMwdRUVEICgrC9OnTERUVhcWLFzd7n6TDeVZEdDMXOzl6t3MFYDlVA49fKURZlQZu9nJ09XUWOxwiImpFRF34o6qqCocPH8bs2bMN26RSKYYOHYqEhIR6H1NZWQmlUllrm52dHfbu3XtH+6ysrDTcLi4uBqAbgqhWq5v35CxMQmqeYZ7VwtFd0d5NYfHPXR+/pT8PsgzW3N/uCfbAwUsF+OdsFsb18Rc7nNvafV43SiE80B0aTTU0llXosNGsuc+R+WF/I1Mzpz7XlBhETa5yc3Oh0Wjg4+NTa7uPjw/Onj1b72NGjBiBJUuWYNCgQQgODkZsbCy2bNkCTc1fz+bsc9GiRViwYEGd7Tt37oS9vX1znppFKa4CPjwhgyBIcLe3FvJrx7D92jGxwzKamJgYsUOgVsQa+5usFABssOd8Nn79bTvMvT7E76dkACRwKr+G7dvTxQ6nxVljnyPzxf5GpmYOfa68vPHD4i1uyfpPP/0UU6dORZcuXSCRSBAcHIzo6Og7GvI3e/ZszJw503C7uLgYbdu2xfDhw+HsbN1DSjRaAdHfHUaJOh+dvR3x9fPhVjMcUK1WIyYmBsOGDYNcLhc7HLJy1tzftFoBqy/uQm5pFbxCwxERZL7zmCqqNHgj8W8AAp4bMwgdPBzEDqnFWHOfI/PD/kamZk59Tj+qrTFETa48PT0hk8mQlZVVa3tWVhZ8fX3rfYyXlxe2bt0KlUqFvLw8+Pv7Y9asWQgKCmr2PhUKBRQKRZ3tcrlc9DezpX351wUkpObD3laGL5/sA2cH5e0fZGFaw/tI5sNa+9ugzl7YciQde1MKMCik/nOpOUi4WAi1RoC/ixIdfVwgkUjEDqnFWWufI/PE/kamZg59rinHF3Vwh62tLfr06YPY2FjDNq1Wi9jYWERERNzysUqlEgEBAaiursbmzZsxZsyYO95naxOfnIulsecBcD0rIrq1wSG6kuy7zHy9q30161sN6OjZKhIrIiIyL6IPC5w5cyaeeuop9O3bF/3798fSpUtRVlaG6OhoAMDkyZMREBCARYsWAQAOHDiA9PR09OrVC+np6Zg/fz60Wi3efPPNRu+Taq9n9UTfNlzPiohu6d6OnpBKgHNZJbhWWAF/VzuxQ6pXfHIeAGBAsPkOXSQiIuslenI1btw45OTk4J133kFmZiZ69eqFHTt2GApSpKWlQSq9foFNpVJh7ty5SE1NhaOjI6KiorBmzRq4uro2ep+tnUYr4LWNuvWsOvs4YsFD3cUOiYjMnJuDLcLauuJoWiF2n8/B+P7txA6pjsLyKpy6VgQAGNiRiwcTEZHpiZ5cAcCMGTMwY8aMeu+Li4urdTsyMhJJSUl3tM/W7vO/k7EvOQ92chm+5HpWRNRIgzt742haIeLOmWdytT81D4IABHs5wMfZ+uaPEhGR+TPzgrpkbDfOs/rfw93R0dtJ5IiIyFJEhngBAPYl50Kt0YocTV3xKbohgbxqRUREYmFy1YrcPM/q0T6cZ0VEjdczwAXuDrYoqazGkcsFYodTx77kmmIWwUyuiIhIHEyuWgnOsyKiOyWVSjCoky5xiTtvXlUDM4tUSMkpg1QCs16Hi4iIrBuTq1aC86yIyBj0QwPjzKwke3xNCfbuAS5wsecaPEREJA4mV60A51kRkbEM6uQFiQQ4k1GMrGKV2OEY7KspwR7BEuxERCQiJldWjvOsiMiYPBwV6BngAgDYZSZDAwVBMFy5Gsj5VkREJCImV1aM86yIqCVEdtYNDdxlJkMDL+aWIaNIBVuZFP06uIsdDhERtWJMrqwY51kRUUuIDPEGAOy5kINqMyjJri/Bflc7V57niIhIVEyurBTnWRFRS+nV1hUudnIUq6px7Eqh2OFcHxLI9a2IiEhkTK6sUE5JJV7ZyHlWRNQyZFIJ7q0pyS72vCutVkCCYfFgFrMgIiJxMbmyMvp5VjklnGdFRC1ncM3QQLFLsidlFKOgXA0HWxl6tnEVNRYiIiImV1bmi3+SsTc5l/OsiKhFDeqsu3J1Mr0IOSWVosWhHxLYP9Adchn/pBERkbj4l8iKxKfkYulfnGdFRC3P20mJbv7OAHSFLcSiX9+K862IiMgcMLmyEjkllXjlh2PQCsDjfTjPioha3uAQXUl2sYYGVlVrkXgxHwAwgOtbERGRGWByZQVunme1cAznWRFRy4vsrJt3tftCDjRaweTHP361EBVqDdwdbNHFl1fqiYhIfEyurMCN86y+mMh5VkRkGr3bucJJaYPCcjVOXC00+fH3JevmW0UEe0AqlZj8+ERERDdjcmXhbp5n1cmH394SkWnYyKSGkuxiDA2M18+34pBAIiIyE0yuLBjnWRGR2CI76+ZdmXq9q/Kqahy9UgAAGBDM9a2IiMg8MLmyUJxnRUTmQD/v6vjVQuSXVZnsuIkX86HWCAhwtUN7D3uTHZeIiOhWmFxZKM6zIiJz4OuiRBdfJwiCaUuyx6fohgQOCPaARML5VkREZB6YXFkgzrMiInMSWVOSfZcJ513pFw/m+lZERGROmFxZGM6zIiJzM7hmaOCu8znQmqAke2F5FU5fKwbA+VZERGRemFxZEM6zIiJz1Ke9GxxsZcgrq8Kpa0UtfryElDwIAtDJ2xHezsoWPx4REVFj2YgdADVMoxWQeDEf2SUqeDspceBiHudZEZHZsbWRYmBHT+xMysKuczno2ca1RY+3j0MCiYjITDG5MlM7TmVgwbYkZBSp6tzHeVZEZG4Gh3hjZ1IW4s7n4KX7O7XosfTrW0VwSCAREZkZJldmaMepDExfewQNzVxwUPCKFRGZF31Ri6NpBSgsr4KrvW2LHCejqAKpuWWQSoC7g5hcERGReeGcKzOj0QpYsC2pwcRKAmDBtiRoTDBpnIiosQJc7dDJ2xFaAdibnNtix9lXc9WqR4ALXOzkLXYcIiKi5mByZWYSL+bXOxRQTwCQUaRC4sV80wVFRNQIg2uuXsW1YEl2fQn2AZxvRUREZojJlZnJLmk4sWpOOyIiU4m8oSS7IBj/6rogCIb5VgODmVwREZH5YXJlZrydGldWuLHtiIhMpV+gG+zkMuSUVCIpo9jo+0/NLUNmsQq2NlL07eBm9P0TERHdKSZXZqZ/oDv8XJSQNHC/BICfixL9A91NGRYR0W0pbGSGRX1bYmhgfM1crj7t3KCUs7APERGZHyZXZkYmlWDe6FAAqJNg6W/PGx0KmbSh9IuISDz6eVe7zhs/udIXsxjAEuxERGSmmFyZoZHd/bD8yd7wdak99M/XRYnlT/bGyO5+IkVGRHRr+nlXhy8XoFilNtp+NVoBCak1yRWLWRARkZniOldmamR3PwwL9UXixXxkl6jg7aQbCsgrVkRkztp52CPI0wGpuWXYdyEXo3oY58ugpGvFKKpQw1Fhg7A2LkbZJxERkbExuTJjMqkEERz+QkQWJjLEC6m5Zdh1PsdoyZW+BHt4oDtsZBx0QURE5ol/oYiIyKgGh+iGBsadM15J9n0pHBJIRETmj8kVEREZVXigOxQ2UmQWq3Auq+SO91dVrcXBmoXTB3bk1XwiIjJfHBZ4BzQaDdRq403YJuNSq9WwsbGBSqWCRqMROxyLIpfLIZOx1DU1j1IuQ0SwB+LO5WDXuRx08XW+o/0dTStAhVoDDwdbdPZ2MlKURERExsfkqhkEQUBmZiYKCwvFDoVuQRAE+Pr64sqVK5BIWAikqVxdXeHr68vXjpolsrMX4s7lIO5cDp6PDL6jfemHBEYEe0DKoj5ERGTGRE+uvvjiC3z00UfIzMxEWFgYli1bhv79+zfYfunSpVi+fDnS0tLg6emJxx57DIsWLYJSqStbXlJSgrfffhs///wzsrOzcdddd+HTTz9Fv379jBazPrHy9vaGvb09P3yaKa1Wi9LSUjg6OkIq5QjYxhIEAeXl5cjOzgYA+Pmx9D813eAQbyzYloRDl/NRWlkNR0Xz/9zoFw8eyPlWRERk5kRNrjZu3IiZM2fiq6++Qnh4OJYuXYoRI0bg3Llz8Pb2rtN+/fr1mDVrFlauXIkBAwbg/PnzePrppyGRSLBkyRIAwLPPPotTp05hzZo18Pf3x9q1azF06FAkJSUhICDgjmPWaDSGxMrDg2P/zZlWq0VVVRWUSiWTqyays7MDAGRnZ8Pb25tDBKnJAj0d0N7DHpfzyhGfnIvh3XybtZ+yymocu1IIABgYzOSKiIjMm6ifOJcsWYKpU6ciOjoaoaGh+Oqrr2Bvb4+VK1fW2z4+Ph4DBw7ExIkT0aFDBwwfPhwTJkxAYmIiAKCiogKbN2/Ghx9+iEGDBqFjx46YP38+OnbsiOXLlxslZv0cK3t7e6Psj8hc6fs45xVSc0V29gIAxJ3PafY+Ei/lo1oroI2bHdp58LxLRETmTbQrV1VVVTh8+DBmz55t2CaVSjF06FAkJCTU+5gBAwZg7dq1SExMRP/+/ZGamort27fjX//6FwCguroaGo3GMERQz87ODnv37m0wlsrKSlRWVhpuFxcXA9B9qLz5g6VarYYgCBAEAVqttmlPmkxKXwKa71Xz6Pu5Wq3mlatG0J8rmIxed0+wO75PuIxd57JRVVXVrCHUe8/rhqdGBLnztb0J+xyZEvsbmZo59bmmxCBacpWbmwuNRgMfH59a2318fHD27Nl6HzNx4kTk5ubinnvugSAIqK6uxrRp0zBnzhwAgJOTEyIiIvDf//4XXbt2hY+PDzZs2ICEhAR07NixwVgWLVqEBQsW1Nm+c+fOOleobGxs4Ovri9LSUlRVVTX1aZMISkruvBR0a1RVVYWKigrs3r0b1dXVYodjMWJiYsQOwWxUagAbiQzphSqs2vwHfJtx4WnHcRkACeyK07B9+2Wjx2gN2OfIlNjfyNTMoc+Vl5c3uq3oBS2aIi4uDu+99x6+/PJLhIeHIzk5Ga+88gr++9//4u233wYArFmzBlOmTEFAQABkMhl69+6NCRMm4PDhww3ud/bs2Zg5c6bhdnFxMdq2bYvhw4fD2bl2CWGVSoUrV67A0dGxzhWyptJoBRy8lI/skkp4OynQr4M7ZGZeCeu+++5DWFgYPvnkEwBAUFAQXnnlFbzyyisNPkYmk2Hz5s14+OGH7+jYTd2PIAgoKSmBk5MTi440g0qlgp2dHQYNGnTHfb01UKvViImJwbBhwyCXy8UOx2z8kndYV+3PLxRRAzs06bH5ZVVIT4gDAEwbex+8nBTGD9CCsc+RKbG/kamZU5/Tj2prDNGSK09PT8hkMmRlZdXanpWVBV/f+ic+v/322/jXv/6FZ599FgDQo0cPlJWV4bnnnsNbb70FqVSK4OBg7Nq1C2VlZSguLoafnx/GjRuHoKCgBmNRKBRQKOr+0ZbL5XXeTI1GA4lEAqlUekdFEnacysCCbUnIKFIZtvm5KDFvdChGdjd+dbbRo0dDrVZjx44dde7bs2cPBg0ahOPHj6Nnz5633Zf++QPAwYMH4eDgcNvXoimv1/z587F161YcO3as1vaMjAy4ubk1ej/6oYA3xttYFRUVCAgIgFQqRXp6er39w9pJpVJIJJJ6fw+oYXy9ahvSxRv7UvKwNyUfzw/u1KTHHkrTVQns7OMIf3fHlgjPKrDPkSmxv5GpmUOfa8rxRStoYWtriz59+iA2NtawTavVIjY2FhEREfU+pry8vM6HZP1cEP38Gj0HBwf4+fmhoKAAf/75J8aMGWPkZ9B8O05lYPraI7USKwDILFJh+toj2HEqw+jHfOaZZxATE4OrV6/WuW/VqlXo27dvoxKrm3l5eZmsuIevr6/JkpzNmzejW7du6NKlC7Zu3WqSYzZEPwSWyBINDtFVfj2Qmo/yqqb1430puuRqAKsEEhGRhRC1WuDMmTPxzTff4LvvvsOZM2cwffp0lJWVITo6GgAwefLkWgUvRo8ejeXLl+OHH37AxYsXERMTg7fffhujR482JFl//vknduzYYbh/yJAh6NKli2GfLUEQBJRXVTfqX4lKjXm/noZQ335q/p//axJKVOrb7uvmhPJWHnzwQXh5eWH16tW1tpeWlmLTpk145plnkJeXhwkTJiAgIAD29vbo0aMHNmzYcMv9dujQAUuXLjXcvnDhgmEYWWhoaL3jZP/zn/+gc+fOsLe3R1BQEN5++23DRMHVq1djwYIFOH78OCQSCSQSiSFmiURSK9E5efIk7rvvPtjZ2cHDwwPPPfccSktLDfdHR0dj0qRJWLx4Mfz8/ODh4YEXX3yxUZMSv/32Wzz55JN48skn8e2339a5//Tp03jwwQfh7OwMJycn3HvvvUhJSTHcv3LlSnTr1g0KhQJ+fn6YMWMGAODSpUuQSCS1rsoVFhZCIpEgLi4OgG74q0QiwR9//IE+ffpAoVBg7969SElJwZgxY+Dj4wNHR0f069cPf/31V624Kisr8Z///Adt27aFQqFAx44d8e2330IQBHTs2BEff/xxrfbHjh2DRCJBcnLybV8TouYI9nJAgKsdqjRa7E/Na9JjE2oWD+b6VkREZClEnXM1btw45OTk4J133kFmZiZ69eqFHTt2GIpcpKWl1bpSNXfuXEgkEsydOxfp6enw8vLC6NGj8e677xraFBUVYfbs2bh69Src3d3x6KOP4t13323Ry4kVag1C3/nTKPsSAGQWq9Bj/s7btk1aOAL2to17C21sbDB58mSsXr0ab731lmEO0qZNm6DRaDBhwgSUlpaiT58++M9//gNnZ2f8/vvv+Ne//oXg4OBbLuysp9Vq8cgjj8DHxwcHDhxAUVERXn311TrtnJycsHr1avj7++PkyZOYOnUqnJyc8Oabb2LcuHE4deoUduzYYUgcXFxc6uyjrKwMI0aMQEREBA4ePIjs7Gw8++yzmDFjRq0Ecs+ePWjbti3++ecfJCcnY9y4cejVqxemTp3a4PNISUlBQkICtmzZAkEQ8Nprr+Hy5cto3749ACA9PR2DBg3C4MGD8ffff8PZ2Rn79u0zXF1avnw5Zs6ciffffx+jRo1CUVER9u3bd9vX72azZs3Cxx9/jKCgILi5ueHKlSuIiorCu+++C4VCge+//x6jR4/GuXPn0K5dOwC6LyQSEhLw2WefISwsDBcvXkRubi4kEgmmTJmCVatW4Y033jAcY9WqVYZlC4hagkQiweAQL6w7kIa4czm4r4vP7R8E4FphBS7mlkEqAcKD3Fs4SiIiIuMQvaDFjBkzDN/q30z/Tb6ejY0N5s2bh3nz5jW4vyeeeAJPPPGEMUO0GlOmTMFHH32EXbt2/X979x5XVZX/f/x1AIEjwvGKQJmg4f0uWGGmiQXeGh1NmS8m5KUaxVKz1LynWTlphialI1ijRtqEY17yZ2pqqGklpiOpGSqTGjaagApy+/3BcOrIxduRI4f38/E4D9l7r7P3h+PyIR/WWp9Fly5dgMIfrvv164fJZMJkMln84D1q1Cg2bdrEqlWrbii5+uKLL/jhhx/YtGkTPj4+AMyePZvu3btbtJs8ebL5a19fX8aNG0d8fDwvv/wyRqORatWqmasylmblypVkZWXx4Ycf4ubmBsDChQvp3bs3b775pjlBr169OgsWLKBKlSo0adKEnj17smXLljKTq9jYWLp3706NGjUACAkJIS4ujunTpwPw7rvvYjKZiI+PNyftjRo1Mr9/1qxZvPjiixZFPgIDA6/7+V3r1Vdf5bHHHjMf16xZk9atW5uPZ86cSUJCAmvXriUqKoqjR4+yatUqNm/eTLdu3QAs1hpGRkYydepU81YGOTk5rFy5stholoi1dW70e3JVUFBwQwVmEn8snBLY6t7qeLhqfYeIiFQMNk+u7IGxiiOHXw25obZ7U84TGbfvuu2WPR1IB7+yf1trrHJzew81adKEoKAgYmNj6dKlCz/++CM7d+7k1VdfBQqLdcyePZtVq1bx888/c/XqVbKzs294TVVycjL16tUzJ1ZAievnPv74Y6Kjozl+/DiZmZnk5uYWq8p4I89q3bq1ObEC6NixI/n5+Rw5csScXDVp0sRijyZvb28OHjxY6n3z8vL44IMPeOedd8znBg0axLhx45g6dSoODg4kJSXRqVOnEkdD09LSOH36NMHBwTf1/ZQkICDA4jgzM5Pp06ezfv16zpw5Q25uLleuXOHUqVNA4RQ/R0dHOnfuXOL9fHx86NmzJ7GxsXTo0IHPPvuM7OxsnnzyyduOVaQsQffXpoqjgVPnL3Piv5fxq+123ffsMk8JrHWnwxMREbEam665shcGg4Gqzk439OrkXwdvkyul/d7WQGHVwE7+da57r1spLz506FD++c9/kpGRQVxcHA0bNjT/MP63v/2Nd955h/Hjx7Nt2zaSkpIICQmx6n5eu3fvJjw8nB49erBu3Tr279/PpEmT7tieYdcmQAaDocwNhTdt2sTPP//MwIEDcXJywsnJibCwME6ePGkuvmI0Gkt9f1nXAPM01z+ulyttDdgfE0eAcePGkZCQwOzZs9m5cydJSUm0bNnS/Nld79kAw4YNIz4+nitXrhAXF8fAgQPLrSCJVF7VXJwI9C38ZdGXR9Ku276goMA8cqViFiIiUpEouSpnjg4GpvVuBlAswSo6nta72R3b72rAgAE4ODiwcuVKPvzwQ4YMGWJO0hITE/nTn/7EoEGDaN26NQ0aNODo0aM3fO+mTZuSmprKmTO/Vzvcs2ePRZtdu3ZRv359Jk2aREBAAP7+/pw8abkxqLOzM3l5edd91oEDB7h06ZL5XGJiIg4ODjRu3PiGY77W0qVLCQsLIykpyeIVFhZmLmzRqlUrdu7cWWJS5O7ujq+vr0UVzD+qU6cOgMVndG3J+dIkJiYSGRlJ3759admyJV5eXpw4ccJ8vWXLluTn57N9+/ZS79GjRw/c3NyIiYnh888/Z8iQITf0bJHb1blRYd//8si567Y9fi6TtIxsnJ0caF+/xp0OTURExGqUXNlAaAtvYga1w8tkuTGrl8mVmEHt7sg+V0WqVavGwIEDmThxImfOnCEyMtJ8zd/fn82bN7Nr1y6Sk5N59tlni+1DVpZu3brRqFEjIiIiOHDgADt37mTSpEkWbfz9/Tl16hTx8fEcP36c6OhoEhISLNr4+vqSkpJCUlISv/76K9nZ2cWeFR4ejqurKxERERw6dIht27YxatQonnrqKfOUwJt17tw5PvvsMyIiImjRooXFa/DgwaxZs4bz588TFRVFeno6YWFhfPPNNxw7dox//OMfHDlyBCjcp2vu3LlER0dz7NgxvvvuOxYsWAAUji49+OCDvPHGGyQnJ7N9+3aLNWhl8ff359NPPyUpKYkDBw7wf//3fxajcL6+vkRERDBkyBDWrFlDSkoKX375JatWrTK3cXR0JDIykokTJ+Lv71/qtgci1lZUkn3PT/8lK6fsX54k/lg4JTCgfg1cb3L6s4iIiC0pubKR0BbefDW+Kx8Nf5B3wtrw0fAH+Wp81zuaWBUZOnQoFy5cICQkxGJ91OTJk2nXrh0hISF06dIFLy8v+vTpc8P3dXBwICEhgStXrtChQweGDRtmUckR4IknnmDMmDFERUXRpk0bdu3axZQpUyza9OvXj9DQUB599FHq1KlTYjn4qlWrsmnTJs6fP09gYCD9+/cnODiYhQsX3tyH8QdFxTFKWi8VHByM0Whk+fLl1KpVi61bt5KZmUnnzp1p3749S5YsMU9BjIiIYP78+SxatIjmzZvTq1cvjh07Zr5XbGwsubm5tG/fntGjRzNr1qwbim/evHnUqFGDoKAgevfuTUhICO3atbNoExMTQ//+/RkxYgRNmjRh+PDhFqN7UPj3f/Xq1Tu6PYHItRrVrYa3yZXs3OuXZN/1v/2tVIJdREQqGkPBzWyWVEmkp6djMpm4ePFisUILWVlZpKSk4Ofnh6urayl3kLtBfn4+6enpeHh4FNt8ujLbuXMnwcHBpKamljnKp75+c3JyctiwYQM9evSw+U7yd6sJ//ye+H2pRAb5Mv2J5iW2ycsvoO2r/4/0rFwSRgTR9j5NCyyN+pyUJ/U3KW93U58rKze4ln7iFKkksrOz+c9//sP06dN58sknb3n6pMit6tK4cN3VjqOlr7v69+mLpGfl4u7iRMt7iu9xJyIicjdTciVSSXz00UfUr1+f3377jTlz5tg6HKmEgu6vjZODgZ9+vcSp/14usU3ReqsHGtTCyVH/RYmISMWi/7lEKonIyEjy8vL49ttvueeee2wdjlRCHq5VaPe/6n/bj5Zckr1ovVVQQ+1vJSIiFY+SKxERKTdFUwNLKsmenZvHvhPnARWzEBGRiknJlYiIlJui/a52HS9ekn3/qd/IysmndjUXGtWtZovwREREbouSKxERKTfNvD3wdHfhSk4e35y4YHFt14+/Twks2txcRESkIlFyJSIi5cZgMJhHr748YrnuKvF4YTGLjvdrvZWIiFRMSq5ERKRcdS5ad/WHkuyZ2bkcSP0NgKCGWm8lIiIVk5IrEREpV53ur4ODAX5My+Q/FwpLsu9N+S+5+QXUq2mkXs2qNo5QRETk1ii5EhGRcmWqWoV29xWVZC8cvSra36qjRq1ERKQCU3JlC9teh+2lbOK6fU7hdSszGAxlvqZPn35b916zZs0Nt3/22WdxdHRk9erVt/xMEanYfl93VZRc/a+YhUqwi4hIBabkyhYcHGHba8UTrO1zCs87OFr9kWfOnDG/5s+fj4eHh8W5cePGWf2ZJbl8+TLx8fG8/PLLxMbGlsszy3L16lVbhyBSKXVp7AkUVgj8JT2LH85mANo8WEREKjYlV9Z09VLpr5ys39t1fhkeeakwkdo6q/D61lmFx4+8BEGjrn/fm+Tl5WV+mUwmDAaDxbn4+HiaNm2Kq6srTZo0YdGiRb8//upVoqKi8Pb2xtXVlfr16/P664Wja76+vgD07dsXg8FgPi7N6tWradasGRMmTGDHjh2kpqZaXM/Ozmb8+PHUq1cPFxcX7r//fpYuXWq+/u9//5tevXrh4eGBu7s7nTp14vjx4wB06dKF0aNHW9wvPDycp59+2nzs6+vLzJkzGTx4MB4eHjzzzDMAjB8/nkaNGlG1alUaNGjAlClTyMnJsbjXZ599RmBgIK6urtSuXZu+ffsC8Oqrr9KiRYti32ubNm2YMmVKmZ+HSGXV3MeD2tWcuXQ1j0kJBwGoV8NIjarONo5MRETk1jnZOgC7Mtun9Gv+j0P4H6bB7X638M8dfyt8FdnxNzi5G55e//u5+S3h8n8t7zf94u3H+z8rVqxg6tSpLFy4kLZt27J//36GDx+Om5sbERERREdHs3btWlatWsV9991HamqqOSnat28fnp6exMXFERoaiqNj2aNuS5cuZdCgQZhMJrp3786yZcssEpDBgweze/duoqOjad26NSkpKfz6a+F0oZ9//plHHnmELl26sHXrVjw8PEhMTCQ3N/emvt+33nqLqVOnMm3aNPM5d3d3li1bho+PDwcPHmT48OG4u7vz8ssvA7B+/Xr69u3LpEmT+PDDD7l69SobNmwAYMiQIcyYMYN9+/YRGBgIwP79+/n+++/59NNPbyo2kcrCwcFAwzrV+DXzPF8kF5ZkT71whYff3Mq03s0IbeFt4whFRERunpIrYdq0acydO5c///nPAPj5+XH48GHef/99IiIiOHXqFP7+/jz88MMYDAbq169vfm+dOoXrJqpXr46Xl1eZzzl27Bh79uwxJxyDBg1i7NixTJ48GYPBwNGjR1m1ahWbN2+mW7duADRo0MD8/nfffReTyUR8fDxVqlQBoFGjRjf9/Xbt2pUXX3zR4tzkyZPNX/v6+jJu3Djz9EWA1157jbCwMGbMmGFu17p1awDuvfdeQkJCiIuLMydXcXFxdO7c2SJ+Efnd54fO8HXK+WLnz17M4q/LvyNmUDslWCIiUuEoubKmV06Xfs1wzYjOSz/CV28XjlQ5OkPe1cIpgQ+PAcM1szVHH7R+rP9z6dIljh8/ztChQxk+fLj5fG5uLiaTCYDIyEgee+wxGjduTGhoKL169eLxxx+/6WfFxsYSEhJC7dqFC9Z79OjB0KFD2bp1K8HBwSQlJeHo6Ejnzp1LfH9SUhKdOnUyJ1a3KiAgoNi5jz/+mOjoaI4fP05mZia5ubl4eHhYPPuPn8+1hg8fzpAhQ5g3bx4ODg6sXLmSt99++7biFLFXefkFzPjscInXCgADMOOzwzzWzAtHB0O5xiYiInI7lFxZk7Pbjbfd/W5hYvXopMI1WEXFLBydC49v9b43KTMzE4AlS5bwwAMPWFwrmuLXrl07UlJS2LhxI1988QUDBgygW7dufPLJJzf8nLy8PD744APOnj2Lk5OTxfnY2FiCg4MxGo1l3uN61x0cHCgoKLA4d+26KQA3N8vPc/fu3YSHhzNjxgxCQkLMo2Nz58694Wf37t0bFxcXEhIScHZ2Jicnh/79+5f5HpHKam/Kec5czCr1egFw5mIWe1PO85AKXIiISAWi5MoWihKposQKfv9z22uWx3dY3bp18fHx4aeffiI8PLzUdh4eHgwcOJCBAwfSv39/QkNDOX/+PDVr1qRKlSrk5eWV+ZwNGzaQkZHB/v37LdZlHTp0iKeffprffvuNli1bkp+fz/bt283TAv+oVatWfPDBB+Tk5JQ4elWnTh3OnDljPs7LyyM5ORlv77KnFu3atYv69eszadIk87mTJ08We/aWLVssimP8kZOTExEREcTFxeHs7ExYWNh1EzKRyioto/TE6lbaiYiI3C2UXNlCfp5lYlWk6Di/7ETF2mbMmMHzzz+PyWQiNDSU7OxsvvnmGy5cuMDYsWOZN28e3t7etG3bFgcHB1avXo2XlxfVq1cHCtcobdmyhY4dO+Li4kKNGjWKPWPp0qX07NnTvE6pSLNmzRgzZgwrVqxg5MiRREREMGTIEHNBi5MnT5KWlsaAAQOIiopiwYIFhIWFMXHiREwmE3v27KFDhw40btyYrl27MnbsWNavX0/Dhg2ZO3cuFy9ev/CHv78/p06dIj4+nsDAQNavX09CQoJFm2nTphEcHEzDhg0JCwsjNzeXDRs2MH78eHObYcOG0bRpUwASExNv9q9BpNLwdHe1ajsREZG7hUqx28KjE0sfmer8cuH1cjRs2DD+/ve/ExcXR8uWLencuTPLli3Dz88PKKykN2fOHAICAggMDOTEiRNs2LABB4fC7jN37lw2b95MvXr1aNu2bbH7//LLL6xfv55+/foVu+bg4EDfvn3N5dZjYmLo378/I0aMoEmTJgwfPpxLlwpLz9eqVYutW7eSmZlJ586dad++PUuWLDGPYg0ZMoSIiAgGDx5sLibRqVOn637/TzzxBGPGjCEqKoo2bdqwa9euYiXUu3TpwurVq1m7di1t2rSha9eu7N2716KNv78/QUFBNGnSpNgUSxH5XQe/mnibXCltNZUB8Da50sGvZnmGJSIictsMBdcuUhHS09MxmUxcvHjRoqgBQFZWFikpKfj5+eHqqt+q3s3y8/NJT0/Hw8PDnAjeSQUFBfj7+zNixAjGjh17x593p6mv35ycnBw2bNhAjx49brvoSmXw+aEz/HX5d0DhGqsiRQmXqgVen/qclCf1Nylvd1OfKys3uJZGrkSs4Ny5cyxcuJCzZ8+Wui5LRH4X2sKbmEHt8DJZJu5eJlclViIiUmFpzZWIFXh6elK7dm0WL15c4pozESkutIU3jzXzYm/KedIysvB0L5wKqPLrIiJSUSm5ErECza4VuTWODgaVWxcREbuhaYEiIiIiIiJWoOTqFmmkQuyd+riIiIjIzVFydZOKqpVcvnzZxpGI3FlFfdzWFXpEREREKgqtubpJjo6OVK9enbS0NACqVq2KwaDF13ej/Px8rl69SlZWVrmUYrcXBQUFXL58mbS0NKpXr46jo6OtQxIRERGpEJRc3QIvLy8Ac4Ild6eCggKuXLmC0WhUAnwLqlevbu7rIiIiInJ9Sq5ugcFgwNvbG09PT3JycmwdjpQiJyeHHTt28Mgjj2hq202qUqWKRqxEREREbpKSq9vg6OioH0DvYo6OjuTm5uLq6qrkSkRERETuOC1EERERERERsQIlVyIiIiIiIlag5EpERERERMQKtOaqBEWbp6anp9s4ErkdOTk5XL58mfT0dK25kjtO/U3Km/qclCf1Nylvd1OfK8oJinKEsii5KkFGRgYA9erVs3EkIiIiIiJyN8jIyMBkMpXZxlBwIylYJZOfn8/p06dxd3fX/kgVWHp6OvXq1SM1NRUPDw9bhyN2Tv1Nypv6nJQn9Tcpb3dTnysoKCAjIwMfHx8cHMpeVaWRqxI4ODhw77332joMsRIPDw+b/6OUykP9Tcqb+pyUJ/U3KW93S5+73ohVERW0EBERERERsQIlVyIiIiIiIlag5ErslouLC9OmTcPFxcXWoUgloP4m5U19TsqT+puUt4ra51TQQkRERERExAo0ciUiIiIiImIFSq5ERERERESsQMmViIiIiIiIFSi5EhERERERsQIlV2JXXn/9dQIDA3F3d8fT05M+ffpw5MgRW4cllcgbb7yBwWBg9OjRtg5F7NTPP//MoEGDqFWrFkajkZYtW/LNN9/YOiyxU3l5eUyZMgU/Pz+MRiMNGzZk5syZqB6aWMuOHTvo3bs3Pj4+GAwG1qxZY3G9oKCAqVOn4u3tjdFopFu3bhw7dsw2wd4AJVdiV7Zv387IkSPZs2cPmzdvJicnh8cff5xLly7ZOjSpBPbt28f7779Pq1atbB2K2KkLFy7QsWNHqlSpwsaNGzl8+DBz586lRo0atg5N7NSbb75JTEwMCxcuJDk5mTfffJM5c+awYMECW4cmduLSpUu0bt2ad999t8Trc+bMITo6mvfee4+vv/4aNzc3QkJCyMrKKudIb4xKsYtdO3fuHJ6enmzfvp1HHnnE1uGIHcvMzKRdu3YsWrSIWbNm0aZNG+bPn2/rsMTOTJgwgcTERHbu3GnrUKSS6NWrF3Xr1mXp0qXmc/369cNoNLJ8+XIbRib2yGAwkJCQQJ8+fYDCUSsfHx9efPFFxo0bB8DFixepW7cuy5YtIywszIbRlkwjV2LXLl68CEDNmjVtHInYu5EjR9KzZ0+6detm61DEjq1du5aAgACefPJJPD09adu2LUuWLLF1WGLHgoKC2LJlC0ePHgXgwIEDfPXVV3Tv3t3GkUllkJKSwtmzZy3+bzWZTDzwwAPs3r3bhpGVzsnWAYjcKfn5+YwePZqOHTvSokULW4cjdiw+Pp7vvvuOffv22ToUsXM//fQTMTExjB07lldeeYV9+/bx/PPP4+zsTEREhK3DEzs0YcIE0tPTadKkCY6OjuTl5fHaa68RHh5u69CkEjh79iwAdevWtThft25d87W7jZIrsVsjR47k0KFDfPXVV7YORexYamoqL7zwAps3b8bV1dXW4Yidy8/PJyAggNmzZwPQtm1bDh06xHvvvafkSu6IVatWsWLFClauXEnz5s1JSkpi9OjR+Pj4qM+JlEDTAsUuRUVFsW7dOrZt28a9995r63DEjn377bekpaXRrl07nJyccHJyYvv27URHR+Pk5EReXp6tQxQ74u3tTbNmzSzONW3alFOnTtkoIrF3L730EhMmTCAsLIyWLVvy1FNPMWbMGF5//XVbhyaVgJeXFwC//PKLxflffvnFfO1uo+RK7EpBQQFRUVEkJCSwdetW/Pz8bB2S2Lng4GAOHjxIUlKS+RUQEEB4eDhJSUk4OjraOkSxIx07diy2vcTRo0epX7++jSISe3f58mUcHCx/XHR0dCQ/P99GEUll4ufnh5eXF1u2bDGfS09P5+uvv+ahhx6yYWSl07RAsSsjR45k5cqV/Otf/8Ld3d08H9dkMmE0Gm0cndgjd3f3Ymv63NzcqFWrltb6idWNGTOGoKAgZs+ezYABA9i7dy+LFy9m8eLFtg5N7FTv3r157bXXuO+++2jevDn79+9n3rx5DBkyxNahiZ3IzMzkxx9/NB+npKSQlJREzZo1ue+++xg9ejSzZs3C398fPz8/pkyZgo+Pj7mi4N1GpdjFrhgMhhLPx8XFERkZWb7BSKXVpUsXlWKXO2bdunVMnDiRY8eO4efnx9ixYxk+fLitwxI7lZGRwZQpU0hISCAtLQ0fHx/+8pe/MHXqVJydnW0dntiBL7/8kkcffbTY+YiICJYtW0ZBQQHTpk1j8eLF/Pbbbzz88MMsWrSIRo0a2SDa61NyJSIiIiIiYgVacyUiIiIiImIFSq5ERERERESsQMmViIiIiIiIFSi5EhERERERsQIlVyIiIiIiIlag5EpERERERMQKlFyJiIiIiIhYgZIrERERERERK1ByJSIicpsMBgNr1qyxdRgiImJjSq5ERKRCi4yMxGAwFHuFhobaOjQREalknGwdgIiIyO0KDQ0lLi7O4pyLi4uNohERkcpKI1ciIlLhubi44OXlZfGqUaMGUDhlLyYmhu7du2M0GmnQoAGffPKJxfsPHjxI165dMRqN1KpVi2eeeYbMzEyLNrGxsTRv3hwXFxe8vb2JioqyuP7rr7/St29fqlatir+/P2vXrjVfu3DhAuHh4dSpUwej0Yi/v3+xZFBERCo+JVciImL3pkyZQr9+/Thw4ADh4eGEhYWRnJwMwKVLlwgJCaFGjRrs27eP1atX88UXX1gkTzExMYwcOZJnnnmGgwcPsnbtWu6//36LZ8yYMYMBAwbw/fff06NHD8LDwzl//rz5+YcPH2bjxo0kJycTExND7dq1y+8DEBGRcmEoKCgosHUQIiIityoyMpLly5fj6upqcf6VV17hlVdewWAw8NxzzxETE2O+9uCDD9KuXTsWLVrEkiVLGD9+PKmpqbi5uQGwYcMGevfuzenTp6lbty733HMPTz/9NLNmzSoxBoPBwOTJk5k5cyZQmLBVq1aNjRs3EhoayhNPPEHt2rWJjY29Q5+CiIjcDbTmSkREKrxHH33UInkCqFmzpvnrhx56yOLaQw89RFJSEgDJycm0bt3anFgBdOzYkfz8fI4cOYLBYOD06dMEBweXGUOrVq3MX7u5ueHh4UFaWhoAf/3rX+nXrx/fffcdjz/+OH369CEoKOiWvlcREbl7KbkSEZEKz83Nrdg0PWsxGo031K5KlSoWxwaDgfz8fAC6d+/OyZMn2bBhA5s3byY4OJiRI0fy1ltvWT1eERGxHa25EhERu7dnz55ix02bNgWgadOmHDhwgEuXLpmvJyYm4uDgQOPGjXF3d8fX15ctW7bcVgx16tQhIiKC5cuXM3/+fBYvXnxb9xMRkbuPRq5ERKTCy87O5uzZsxbnnJyczEUjVq9eTUBAAA8//DArVqxg7969LF26FIDw8HCmTZtGREQE06dP59y5c4waNYqnnnqKunXrAjB9+nSee+45PD096d69OxkZGSQmJjJq1Kgbim/q1Km0b9+e5s2bk52dzbp168zJnYiI2A8lVyIiUuF9/vnneHt7W5xr3LgxP/zwA1BYyS8+Pp4RI0bg7e3NRx99RLNmzQCoWrUqmzZt4oUXXiAwMJCqVavSr18/5s2bZ75XREQEWVlZvP3224wbN47atWvTv3//G47P2dmZiRMncuLECYxGI506dSI+Pt4K37mIiNxNVC1QRETsmsFgICEhgT59+tg6FBERsXNacyUiIiIiImIFSq5ERERERESsQGuuRETErmn2u4iIlBeNXImIiIiIiFiBkisRERERERErUHIlIiIiIiJiBUquRERERERErEDJlYiIiIiIiBUouRIREREREbECJVciIiIiIiJWoORKRERERETECv4/HURfCJ8tcW0AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot test vs validation accuracy\n", "plt.figure(figsize=(10, 5))\n", "plt.plot(range(1, num_epochs + 1), val_accuracies, label='Validation Accuracy', marker='o')\n", "plt.plot(range(1, num_epochs + 1), test_accuracies, label='Test Accuracy', linestyle='--', marker='x')\n", "plt.xlabel('Epochs')\n", "plt.ylabel('Accuracy')\n", "plt.title('Test vs Validation Accuracy')\n", "plt.legend()\n", "plt.grid()\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Model Loading and Prediction code" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_4954/3963825606.py:12: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.\n", " model.load_state_dict(torch.load(path))\n" ] } ], "source": [ "import torch\n", "import torch.nn as nn\n", "import pandas as pd\n", "from sklearn.preprocessing import StandardScaler, LabelEncoder\n", "import torch.nn.functional as F\n", "from torch.utils.data import DataLoader, TensorDataset, random_split\n", "\n", "\n", "# Load the model for future predictions\n", "def load_model(model_class, input_dim, num_layers, num_trees, depth, tree_dim, output_dim, path):\n", " model = model_class(input_dim, num_layers, num_trees, depth, tree_dim, output_dim)\n", " model.load_state_dict(torch.load(path))\n", " model.eval() # Set to evaluation mode\n", " return model\n", "\n", "# Prepare input data for prediction\n", "def prepare_input_data(new_data, scaler, categorical_columns):\n", " # One-hot encode categorical columns\n", " new_data = pd.get_dummies(new_data, columns=categorical_columns, drop_first=True)\n", " \n", " # Scale the features using the same scaler\n", " new_data = scaler.transform(new_data) # Use the same scaler used during training\n", "\n", " # Convert to tensor\n", " return torch.tensor(new_data, dtype=torch.float32)\n", "\n", "# Load your model\n", "class NODELayer(nn.Module):\n", " def __init__(self, input_dim, num_trees, depth, tree_dim):\n", " super(NODELayer, self).__init__()\n", " self.num_trees = num_trees\n", " self.depth = depth\n", " \n", " self.weights = nn.Parameter(torch.randn(num_trees, input_dim)) # Shape: (num_trees, input_dim)\n", " self.thresholds = nn.Parameter(torch.randn(num_trees, depth)) # Shape: (num_trees, depth)\n", " self.tree_dim = tree_dim \n", "\n", " def forward(self, x):\n", " outputs = torch.zeros(x.size(0), self.num_trees, self.tree_dim).to(x.device)\n", " \n", " for i in range(self.num_trees):\n", " weight = self.weights[i].unsqueeze(0) # Shape: (1, input_dim)\n", " thresholds = self.thresholds[i] # Shape: (depth)\n", " \n", " for d in range(self.depth):\n", " left_indices = (x @ weight.T < thresholds[d]).squeeze() # Condition for left split\n", "\n", " # Ensure left_indices is a 1D tensor for proper indexing\n", " if left_indices.dim() == 0:\n", " left_indices = left_indices.unsqueeze(0)\n", " \n", " right_indices = ~left_indices\n", " \n", " # Update outputs for left and right children\n", " outputs[left_indices, i] = F.relu(x[left_indices] @ weight.T) # Left child\n", " outputs[right_indices, i] = F.relu(x[right_indices] @ weight.T) # Right child\n", " \n", " return outputs.view(x.size(0), -1) # Flatten the output\n", "\n", "\n", "class NODEModel(nn.Module):\n", " def __init__(self, input_dim, num_layers, num_trees, depth, tree_dim, output_dim):\n", " super(NODEModel, self).__init__()\n", " self.layers = nn.ModuleList(\n", " [NODELayer(input_dim, num_trees, depth, tree_dim) for _ in range(num_layers)]\n", " )\n", " \n", " self.intermediate_fc = nn.Linear(tree_dim * num_trees, 128) # Adjust based on output size\n", " self.fc = nn.Linear(128, output_dim) # Transform 128 to 10 for classification\n", "\n", " def forward(self, x):\n", " for layer in self.layers:\n", " x = layer(x)\n", " x = self.intermediate_fc(x)\n", " return self.fc(x)\n", "\n", "# Parameters\n", "input_dim = 579 # Update based on your preprocessed feature count\n", "num_layers = 1\n", "num_trees = 15\n", "depth = 3\n", "tree_dim = 4\n", "output_dim = 10\n", "\n", "# Load the model\n", "loaded_model = load_model(NODEModel, input_dim, num_layers, num_trees, depth, tree_dim, output_dim, 'node_better_model.pth')\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "# Load data with categorical handling and scaling\n", "def load_data(file_path, target_column, categorical_columns):\n", " df = pd.read_csv(file_path)\n", " \n", " # One-hot encode categorical columns\n", " df = pd.get_dummies(df, columns=categorical_columns, drop_first=True)\n", " \n", " # Separate features and target\n", " X = df.drop(target_column, axis=1)\n", " y = df[target_column]\n", " \n", " # Encode the target if it's categorical\n", " label_encoder = LabelEncoder()\n", " y = label_encoder.fit_transform(y)\n", " \n", " # Scale the features\n", " scaler = StandardScaler()\n", " X = scaler.fit_transform(X)\n", " \n", " return torch.tensor(X, dtype=torch.float32), torch.tensor(y, dtype=torch.long)\n", "\n", "# Load your dataset\n", "file_path = 'preprocessed_data.csv' # Update this path\n", "target_column = 'attackType_mapped' # Update with your target column name\n", "categorical_columns = ['callsign'] # Update with actual categorical columns\n", "batch_size = 64\n", "\n", "X, y = load_data(file_path, target_column, categorical_columns)\n", "\n", "# Create a TensorDataset\n", "dataset = TensorDataset(X, y)\n", "\n", "# Split the dataset into training, validation, and test sets\n", "train_size = int(0.7 * len(dataset))\n", "val_size = int(0.15 * len(dataset))\n", "test_size = len(dataset) - train_size - val_size\n", "train_dataset, val_dataset, test_dataset = random_split(dataset, [train_size, val_size, test_size])\n", "\n", "# Create DataLoaders\n", "train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)\n", "val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False)\n", "test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "# Switch the model to evaluation mode and generate predictions\n", "\n", "loaded_model.eval()\n", "y_pred = []\n", "y_test = []\n", "\n", "with torch.no_grad():\n", " for batch_X, batch_y in test_loader:\n", " batch_X, batch_y = batch_X, batch_y\n", " outputs = loaded_model(batch_X)\n", " _, predicted = torch.max(outputs, 1)\n", " y_pred.extend(predicted.cpu().numpy())\n", " y_test.extend(batch_y.cpu().numpy())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Confusion Matrix" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy: 95.17%\n", "Confusion Matrix:\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAKyCAYAAADIG729AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVQU3RvA8S+NBYhiBxaIQdgiKnZ362t3dzcGFnYrKnaL3b52YWCCCooFr4qKgjTs7w90dWFR9Eepz+ecOYeduXPnmYc7u3t3Zu5oKBQKBUIIIYQQQgghhEh0mikdgBBCCCGEEEII8aeSTrcQQgghhBBCCJFEpNMthBBCCCGEEEIkEel0CyGEEEIIIYQQSUQ63UIIIYQQQgghRBKRTrcQQgghhBBCCJFEpNMthBBCCCGEEEIkEel0CyGEEEIIIYQQSUQ63UIIIYQQQgghRBKRTrcQQgghRCJ59OgRNWvWxNDQEA0NDVxdXRO1fh8fHzQ0NFi3bl2i1vs7s7e3x97ePqXDEEKIeEmnWwghhBB/FG9vb3r27En+/PnR19fHwMCAChUqsGDBAkJCQpJ02x07duTOnTtMmzaNDRs2UKpUqSTdXnLq1KkTGhoaGBgYqM3jo0eP0NDQQENDgzlz5vx0/b6+vkyaNAl3d/dEiFYIIVIP7ZQOQAghhBAisRw8eJAWLVqgp6dHhw4dKFasGOHh4Zw/f57hw4dz7949Vq5cmSTbDgkJ4dKlS4wdO5Z+/folyTby5s1LSEgIOjo6SVL/j2hraxMcHMz+/ftp2bKlyrJNmzahr69PaGjoL9Xt6+vL5MmTMTU1xdraOsHrHTt27Je2J4QQyUU63UIIIYT4Izx58oTWrVuTN29eTp06Rfbs2ZXL+vbti5eXFwcPHkyy7b958wYAIyOjJNuGhoYG+vr6SVb/j+jp6VGhQgW2bNkSp9O9efNm6tWrx65du5IlluDgYNKmTYuurm6ybE8IIX6VXF4uhBBCiD/CrFmzCAoKwtnZWaXD/UXBggUZOHCg8nVkZCRTpkyhQIEC6OnpYWpqypgxYwgLC1NZz9TUlPr163P+/HnKlCmDvr4++fPnZ/369coykyZNIm/evAAMHz4cDQ0NTE1NgZjLsr/8/a1JkyahoaGhMu/48ePY2dlhZGRE+vTpMTc3Z8yYMcrl8d3TferUKSpWrEi6dOkwMjKiUaNGeHh4qN2el5cXnTp1wsjICENDQzp37kxwcHD8iY2lbdu2HD58mICAAOU8Nzc3Hj16RNu2beOUf/fuHcOGDaN48eKkT58eAwMD6tSpw61bt5RlTp8+TenSpQHo3Lmz8jL1L/tpb29PsWLFuH79OpUqVSJt2rTKvMS+p7tjx47o6+vH2f9atWqRMWNGfH19E7yvQgiRGKTTLYQQQog/wv79+8mfPz+2trYJKt+tWzcmTJhAiRIlmDdvHpUrV8bR0ZHWrVvHKevl5UXz5s2pUaMGTk5OZMyYkU6dOnHv3j0AmjZtyrx58wBo06YNGzZsYP78+T8V/71796hfvz5hYWE4ODjg5OREw4YNuXDhwnfXO3HiBLVq1eL169dMmjSJIUOGcPHiRSpUqICPj0+c8i1btiQwMBBHR0datmzJunXrmDx5coLjbNq0KRoaGuzevVs5b/PmzRQuXJgSJUrEKf/48WNcXV2pX78+c+fOZfjw4dy5c4fKlSsrO8AWFhY4ODgA0KNHDzZs2MCGDRuoVKmSsp63b99Sp04drK2tmT9/PlWqVFEb34IFCzAxMaFjx45ERUUBsGLFCo4dO8aiRYvIkSNHgvdVCCEShUIIIYQQ4jf34cMHBaBo1KhRgsq7u7srAEW3bt1U5g8bNkwBKE6dOqWclzdvXgWgOHv2rHLe69evFXp6eoqhQ4cq5z158kQBKGbPnq1SZ8eOHRV58+aNE8PEiRMV334VmzdvngJQvHnzJt64v2xj7dq1ynnW1taKLFmyKN6+faucd+vWLYWmpqaiQ4cOcbbXpUsXlTqbNGmiyJQpU7zb/HY/0qVLp1AoFIrmzZsrqlWrplAoFIqoqChFtmzZFJMnT1abg9DQUEVUVFSc/dDT01M4ODgo57m5ucXZty8qV66sABTLly9Xu6xy5coq844ePaoAFFOnTlU8fvxYkT59ekXjxo1/uI9CCJEU5Ey3EEIIIX57Hz9+BCBDhgwJKn/o0CEAhgwZojJ/6NChAHHu/S5SpAgVK1ZUvjYxMcHc3JzHjx//csyxfbkXfO/evURHRydoHT8/P9zd3enUqRPGxsbK+ZaWltSoUUO5n9/q1auXyuuKFSvy9u1bZQ4Tom3btpw+fZr//vuPU6dO8d9//6m9tBxi7gPX1Iz5yhkVFcXbt2+Vl87fuHEjwdvU09Ojc+fOCSpbs2ZNevbsiYODA02bNkVfX58VK1YkeFtCCJGYpNMthBBCiN+egYEBAIGBgQkq//TpUzQ1NSlYsKDK/GzZsmFkZMTTp09V5ufJkydOHRkzZuT9+/e/GHFcrVq1okKFCnTr1o2sWbPSunVrtm/f/t0O+Jc4zc3N4yyzsLDA39+fT58+qcyPvS8ZM2YE+Kl9qVu3LhkyZGDbtm1s2rSJ0qVLx8nlF9HR0cybN49ChQqhp6dH5syZMTEx4fbt23z48CHB28yZM+dPDZo2Z84cjI2NcXd3Z+HChWTJkiXB6wohRGKSTrcQQgghfnsGBgbkyJGDu3fv/tR6sQcyi4+Wlpba+QqF4pe38eV+4y/SpEnD2bNnOXHiBO3bt+f27du0atWKGjVqxCn7//h/9uULPT09mjZtiouLC3v27In3LDfA9OnTGTJkCJUqVWLjxo0cPXqU48ePU7Ro0QSf0YeY/PyMmzdv8vr1awDu3LnzU+sKIURikk63EEIIIf4I9evXx9vbm0uXLv2wbN68eYmOjubRo0cq81+9ekVAQIByJPLEkDFjRpWRvr+IfTYdQFNTk2rVqjF37lzu37/PtGnTOHXqFP/++6/aur/E+eDBgzjLPD09yZw5M+nSpfv/diAebdu25ebNmwQGBqodfO6LnTt3UqVKFZydnWndujU1a9akevXqcXKS0B9AEuLTp0907tyZIkWK0KNHD2bNmoWbm1ui1S+EED9DOt1CCCGE+COMGDGCdOnS0a1bN169ehVnube3NwsWLABiLo8G4owwPnfuXADq1auXaHEVKFCADx8+cPv2beU8Pz8/9uzZo1Lu3bt3cda1trYGiPMYsy+yZ8+OtbU1Li4uKp3Yu3fvcuzYMeV+JoUqVaowZcoUFi9eTLZs2eItp6WlFecs+o4dO3j58qXKvC8/Dqj7geJnjRw5kmfPnuHi4sLcuXMxNTWlY8eO8eZRCCGSknZKByCEEEIIkRgKFCjA5s2badWqFRYWFnTo0IFixYoRHh7OxYsX2bFjB506dQLAysqKjh07snLlSgICAqhcuTJXr17FxcWFxo0bx/s4ql/RunVrRo4cSZMmTRgwYADBwcEsW7YMMzMzlYHEHBwcOHv2LPXq1SNv3ry8fv2apUuXkitXLuzs7OKtf/bs2dSpU4fy5cvTtWtXQkJCWLRoEYaGhkyaNCnR9iM2TU1Nxo0b98Ny9evXx8HBgc6dO2Nra8udO3fYtGkT+fPnVylXoEABjIyMWL58ORkyZCBdunSULVuWfPny/VRcp06dYunSpUycOFH5CLO1a9dib2/P+PHjmTVr1k/VJ4QQ/y850y2EEEKIP0bDhg25ffs2zZs3Z+/evfTt25dRo0bh4+ODk5MTCxcuVJZdvXo1kydPxs3NjUGDBnHq1ClGjx7N1q1bEzWmTJkysWfPHtKmTcuIESNwcXHB0dGRBg0axIk9T548rFmzhr59+7JkyRIqVarEqVOnMDQ0jLf+6tWrc+TIETJlysSECROYM2cO5cqV48KFCz/dYU0KY8aMYejQoRw9epSBAwdy48YNDh48SO7cuVXK6ejo4OLigpaWFr169aJNmzacOXPmp7YVGBhIly5dsLGxYezYscr5FStWZODAgTg5OXH58uVE2S8hhEgoDcXPjJohhBBCCCGEEEKIBJMz3UIIIYQQQgghRBKRTrcQQgghhBBCCJFEpNMthBBCCCGEEEIkEel0CyGEEEIIIYQQSUQ63UIIIYQQQgghRBKRTrcQQgghhBBCCJFEpNMthBBCCCGEEEIkEe2UDkAI8fe6+TQwpUNIdSxyZkjpEIQQQgghRALpJ6BHLWe6hRBCCCGEEEKIJCKdbiGEEEIIIYQQIolIp1sIIYQQQgghhEgi0ukWQgghhBBCCCGSiAykJoT47R3bv5MTB3by5pUfALny5qdpu27YlKkAQHh4GBtXzOfi6WNERIRjVaocXfqPwihjpjh1BX4MYGSvtrzzf43z7n9Jl/7rwGYR4eHs2rSK8ycPE/D+LUbGmWnWrhtVajdKnh0VQgghhBC/HQ2FQqFI6SCEEH+nxBq9/Pqls2hqaZItZx4UCgVnjx9g/44NzFi6idymBVi90JGbV87Te9gk0qZLz9ols9DQ0MBh/po4dc2ZOJTIyAjc3S7G6XTPnjiED+/f0apTb7LmyE3AO38UimjMi1onyn6AjF4uhBBCCPE7Scjo5XKmWwjx2ytZvpLK69ad+3L8wC4eedwhk0lW/j2yl/6jplLMpjQAvYZOZGi35jzyuEMhi+LK9Y7t38mnT4E0a9cdd7eLKnW6u13E4/YNFrrsJb2BIQBZsuVI4j0TQgghhBC/O+l0CyH+KNFRUVw+e4Kw0BDMiljy+KEHUZGRFC9RVlkmZx5TMmfJxsP7t5Wd7hdPH7N70yqmLnThld+LOPVev3SW/GZF2LdjPedOHEJPPw0ly1eiVcde6OrpJ9v+CSGEEEKI34t0uoUQf4RnT7wYP7AzEeHh6KdJw9CJs8mVNz8+3g/R1tFRuUwcwDCjMQHv3wIx92ovdBxLu24DyZwlm9pO9+v/XvLgrjs6uroMnTibwI8BOC+aSdDHD/QeNjFZ9lEIIYQQQvx+ZPRyIcQfIUeuvMxctpmpC9dRo35zls6exIunjxO07pY1i8mZ25SK1evGWyY6Oho0NOg/aioFCxfDpowdHXoO5uzxA4SHhSbWbgghhBBCiD+MnOkWQvwRtHV0yJYzNwD5zSzwfnifw3u2UL5yTSIjIvgUFKhytvvD+3fK0cvvuV/jmY8XV2rHXIKuIGZ8ye7Nq9OkbRdadOhJRuPMGGc2IW269Mo6cubJh0Kh4K3/a7LnzJNcuyqEEEIIIX4jcqZb/BU0NDRwdXVN6TCwt7dn0KBBP7VOcsQ+adIkrK2tk3QbyU0RHU1ERAT5zSzQ0tbm7s2rymW+z33wf/0fZkUsARg8YRazlm1m5rJNzFy2iZ6DxwEwae4qajZoAYBZUSvev31DaEiwsh6/F0/R0NQkU+YsybhnQgghhBDidyKdbvFb+++//xg4cCAFCxZEX1+frFmzUqFCBZYtW0ZwcPCPK0gknTp1onHjxj8st3v3bqZMmfJTdfv5+VGnTp1fjCwudZ34YcOGcfLkyUTbRnLb4rwYj9s3eP2fL8+eeLHFeTH3b1/Hrmpt0qZLT5XajdiwYh733K/x+KEHy5wcKFTEUjmIWrYcucidr6ByMvk8KnnOPPkwzGgMgF3V2qTPYMSyOZN58fQxHrdvsHHVQqrUaigDqQkhhBBCiHjJ5eXit/X48WMqVKiAkZER06dPp3jx4ujp6XHnzh1WrlxJzpw5adiwYUqHqcLY2Pin18mWLVsSRKIqffr0pE+f/scFU6kPAe9YMnsiAe/8SZs2PXnyF2L09EVYliwHQIdeQ9DU0GTulBFEhodjWao8XfuP/Klt6KdJy9gZS1i3ZBZj+rUnfQYjyleuTqtOvZNil4QQQgghxB9CQ6FQKFI6CCF+Re3atbl37x6enp6kS5cuznKFQoGGhgYQc3Z31apVHDx4kKNHj5IzZ06cnJxUOuVnzpxh+PDh3Lp1C2NjYzp27MjUqVPR1o75bWrnzp1MnjwZLy8v0qZNi42NDXv37mX27NlMnjxZZdv//vsv9vb2cWKyt7fH2tqa+fPnA2BqakqPHj3w8vJix44dZMyYkXHjxtGjRw/lOhoaGuzZs0d5Jv358+cMHTqUY8eOoampScWKFVmwYAGmpqbKddasWYOTkxNeXl4YGxvTrFkzFi9ejKmpKU+fPlWWy5s3Lz4+PkyaNAlXV1fc3d2BmEHDpk6dysqVK3nz5g0WFhbMmDGD2rVrA+Dj40O+fPnYtWsXixYt4sqVKxQqVIjly5dTvnz5hP0DgZtPAxNc9m9hkTPDjwsJIYQQQohUQT8Bp7Hl8nLxW3r79i3Hjh2jb9++ajvcgLLD/cXkyZNp2bIlt2/fpm7durRr1453794B8PLlS+rWrUvp0qW5desWy5Ytw9nZmalTpwIxl3i3adOGLl264OHhwenTp2natCkKhYJhw4bRsmVLateujZ+fH35+ftja2iZ4X5ycnChVqhQ3b96kT58+9O7dmwcPHqgtGxERQa1atciQIQPnzp3jwoULpE+fntq1axMeHg7AsmXL6Nu3Lz169ODOnTvs27ePggULAuDm5gbA2rVr8fPzU76ObcGCBTg5OTFnzhxu375NrVq1aNiwIY8ePVIpN3bsWIYNG4a7uztmZma0adOGyMjIBO+7EEIIIYQQfzrpdIvfkpeXFwqFAnNzc5X5mTNnVl4qPXKk6uXDnTp1ok2bNhQsWJDp06cTFBTE1asxg2stXbqU3Llzs3jxYgoXLkzjxo2ZPHkyTk5OREdH4+fnR2RkJE2bNsXU1JTixYvTp08f5bbSpEmDnp4e2bJlI1u2bOjq6iZ4X+rWrUufPn0oWLAgI0eOJHPmzPz7779qy27bto3o6GhWr15N8eLFsbCwYO3atTx79ozTp08DMHXqVIYOHcrAgQMxMzOjdOnSysHbTExMADAyMiJbtmzK17HNmTOHkSNH0rp1a8zNzZk5c6bKGfovhg0bRr169TAzM2Py5Mk8ffoULy+vBO+7EEIIIYQQfzrpdIs/ytWrV3F3d6do0aKEhYWpLLO0tFT+nS5dOgwMDHj9+jUAHh4elC9fXuXseIUKFQgKCuLFixdYWVlRrVo1ihcvTosWLVi1ahXv379PlJi/jUtDQ4Ns2bIp44rt1q1beHl5kSFDBmWH39jYmNDQULy9vXn9+jW+vr5Uq1btl+P5+PEjvr6+VKhQQWV+hQoV8PDwiDf27NmzA8Qbe1hYGB8/flSZwmP9j4QQQgghhPjTSKdb/JYKFiyIhoZGnMuw8+fPT8GCBUmTJk2cdXR0dFRea2hoEB0dnaDtaWlpcfz4cQ4fPkyRIkVYtGgR5ubmPHny5Nd34hfiCgoKomTJkri7u6tMDx8+pG3btmr3Oyl9G/uXHyzii93R0RFDQ0OVac1Sp2SJUwghhBBCiJQinW7xW8qUKRM1atRg8eLFfPr06f+uz8LCgkuXLvHtuIIXLlwgQ4YM5MqVC4jpVFaoUIHJkydz8+ZNdHV12bNnDwC6urpERUX933H8SIkSJXj06BFZsmShYMGCKpOhoSEZMmTA1NT0u4//0tHR+W6sBgYG5MiRgwsXLqjMv3DhAkWKFPnl2EePHs2HDx9Upi59hhL4MYAeLWrw+j/fX677dzduQCeunPt9H9kmhBBCCCHiJ51u8dtaunQpkZGRlCpVim3btuHh4cGDBw/YuHEjnp6eaGlpJbiuPn368Pz5c/r374+npyd79+5l4sSJDBkyBE1NTa5cucL06dO5du0az549Y/fu3cpRvSFmFPLbt2/z4MED/P39iYiISJJ9bteuHZkzZ6ZRo0acO3eOJ0+ecPr0aQYMGMCLFy8AmDRpEk5OTixcuJBHjx5x48YNFi1apKzjS6f8v//+i/cS+eHDhzNz5ky2bdvGgwcPGDVqFO7u7gwcOPCXY9fT08PAwEBl0tXTY8/mNZSyrUyWz8/GXrdkNqP7/MM/9cozsldbtXU9ffyIiUO60b6eLX3a1mPfdpc4ZS6fPcGQLs1oX8+W4T1acfPq+R/GeO/WNUb1acc/9cozsFNjTh/bH6fM0X3b6de+Ae3r2TK2f0e8PO+qLF+/fC5dm1WlT9t6nD95OE5Ms8YPjlNnk7Zd2eK8OMFXXgghhBBCiN+HdLrFb6tAgQLcvHmT6tWrM3r0aKysrChVqhSLFi1i2LBhTJkyJcF15cyZk0OHDnH16lWsrKzo1asXXbt2Zdy4cUDM2d+zZ89St25dzMzMGDduHE5OTtSpUweA7t27Y25uTqlSpTAxMYlzljixpE2blrNnz5InTx6aNm2KhYUFXbt2JTQ0FAMDAwA6duzI/PnzWbp0KUWLFqV+/foqo447OTlx/PhxcufOjY2NjdrtDBgwgCFDhjB06FCKFy/OkSNH2LdvH4UKFUrU/QkLDeXfI3upUruRynz72g0pX7mG2nWCPwUxfXQ/TLJkZ/qSDfzTfQA7N6zkxMHdyjIP7t1i4fSxVKndiBnLNlHK1p45k4bx/En8g7y99nvJrHGDKGpVipnLNlOnSRtWzp3KrWuXlGUunj7GhhXzaP5PdxyXbiRvfjMcx/Tnw/uYUfCvXzrLhX+PMsZxMe2692fFvKl8/BCgjHvr2qV0UfN8cJvStoSEBOPudjHBuRNCCCGEEL8HeU63EKlYWFgY+vr6HD9+nOrVq6d0OIlu2YY9rFk0k5U7jsdZtmP9Cq5dPMPM5ZtV5h/bv5Nt65ayYutRtD/fU77ZeRHXLpxm7ppdAMyfNpqw0BBGTpmvXG/cgE6YFjCj28AxamPZtHohN6+cZ86q7cp5C6aNJvhTEKOnx1wpMLZ/RwqYF6FLv5iOc3R0NH3b1aN2o1Y0at2JfdtdePLIk4FjHQHo2bImI6bMo4B5UVbNn0aO3KbUa9ZO7faXO00mMjKSJQvnq10uhBBCCCFSH3lOtxC/sY8fP7JlyxY0NTUpXLhwSoeTJDzvupOvkMVPrfPI4zYWxWyUHW4Aq5Ll8X3xlKDAjzFl7t+muE0ZlfWsSpXnoced+Ou9f4fiJcrGXef+bQAiIyJ48siT4jZfy2hqalLcpgwPPWLK5M1vxuNHHgQFfuTxQw/Cw8PImiM3nnfdeeL1gDqNW8e7/QLmRfG8656wJAghhBBCiN9GAvrlQoiUMHHiRDZv3szMmTOVg7n9afxf+ZExU+afWifg3Vvl/d9fGGY0BuDD+7ekz2BAwPu3ynnKMkbGfHj3Nv5637/F0CjWOhmNCQn+RHhYKEFBgURHR8WtN6MxL5/7ADGddLuqdRjbvwO6unr0HjYJff00OC90pPewSRw7sJOje7eRwcCI7oPGktu0gLKejJlMePvmFdHR0Whqyu+hQgghhBB/Cul0C5FKzZs3j3nz5qV0GEkqPDwMXV29lA4jUbXo0JMWHXoqX+/csJJiNmXQ0tZmz+Y1zF6xlRtXzrF01kQcl25UltPV1UMRHU14eDj6+vopEboQQgghhEgCcjpFCJFiMhgYERT08afWMTLOpBy47Isvrw0zZoopk1FNmYB3GBpnir/ejJn4EBC33jRp06Grp4+BgRGamlpqt20UT70vn/lw/uRhWnXqzf1b17EoboOBUUbKVarBEy9PQoK/Pu4uKPAjevpppMMthBBCCPGHkU63ECLFmBY05+XTJz+1TiELSzzu3iQyMlI57/aNK+TIlZf0GWJGcC9UxJK7N91U1rt94wpmFsXjr7dIce7evBp3nSKWAGjr6JCvUGHuun8tEx0dzV13N8wsLOPUp1AoWL1gOu17DkY/TVqio6OI+hxzVFSkcv0vnvt4Y1rQPEE5EEIIIYQQvw/pdAshUoxVqfK8eOqtHAAN4L+Xz/HxfsCH928JDw/Fx/sBPt4PiPz87HO7qrXR1tZhxVwHnvt4c/H0MY7s2ULdb0YFr9O4NbeuXeTAzo28fObDjvUrePzwPrUatlSW2eK8mCWzJihf16jXjNd+L9m0agEvn/lwbN8OLp85Qd2mX58VXq9ZO04dcuXMsQO8fPYE54WOhIWGULlWgzj7duqwKxkMjShZvhIA5kWtuOvuxiOPOxzavZlcefOTLn0GZXnPuzexLFEuEbIqhBBCCCFSE3lkmBAixdx8GsjY/h2pUqsh1es3A2DysB543L4Rp+zC9fuUA6g9ffyINYtn8vjBfTIYGlGrUUsateqkUv7y2RNsW7eUN6/8yJYjN+26D8CmjJ1y+dLZk3jzypeJc1Yq5927dY0Ny+fy4tkTjDNnoWm7btjXVO1QH9m7jQM7NhDw/i1585vRqc9wClkUUykT8P4t4wZ0wmH+GowzmSjn79q4isN7tmJglJE+wydRsHDMeu/8X9O/Q0MWuuzFzrrgL2RSCCGEEEKkhIQ8Mkw63UKIFHPzaSA3rpxn06oFzF657a8dtXvT6oV8Cgykx+CxWOTM8OMVhBBCCCFEqpCQTreMXi6ESFElytrx38tnvPN/TeYs2VI6nBRhaGRMvW8ujxdCCCGEEH8OOdMthEgxN58GpnQIqY6c6RZCCCGE+H0k5Ez333ktpxBCCCGEEEIIkQyk0y2EEEIIIYQQQiQR6XQLIYQQQgghhBBJRO7pFkKkmNDIlI4g9clYul9Kh5DqvHdbnNIhpErR8vEdl6QkDk1NjZQOQQgh/mhyT7cQQgghhBBCCJGCpNMthBBCCCGEEEIkEel0CyGEEEIIIYQQSUQ63UIIIYQQQgghRBKRTrcQQvwBKpQowM75PXl8bBohNxfTwN4y3rILx7Ym5OZi+rW1V5nveXAyITcXq0zDOtdQW0f+3Jl5fX4OfmdnqcxvVNWK85tG4Hd2Fv4Xnbi8dRRt6pX+v/cvuWzfupnmTRpgW6YEtmVK0L5tK86fOxOnnEKhoE/PblgVNefUyRMpEGnSun7NjYF9e1GjSkVsihXm32/2MSIiggVz59CiSQPKl7ahRpWKjBs9ktevX6nU4XH/Hr26daFi+dLYVyjLlEnjCQ7+lNy7kmiuX3NjYL9e1KhaEZviqjkBeOvvz4Sxo6hRtSLlS1vTt1c3nj71USmza8c2unVuj125ktgUL0zgx4/JuAfJL6HH09/EedVKrIqaM8txmnKe/5s3jBk1nKqVKlC2lDWtmjfhxLGjKRhl8nNetYK2LZtRvrQN9hXLM6h/H3yePE7psJLNj/b/5csXWBU1VzsdO3o4BSNPWtevudG/Ty+q29vF+3n72NubAX17UaFsScqWsqZty2b4+fqmQLTfJ51uIYT4A6RLo8edhy8Z5Ljtu+UaVrGkTHFTfF8HqF0+eekBTKuPVk5Lt8T9gqytrcl6x85cuOkdZ9m7D8HMWn0E+45OlG7pyIa9l1k56R+ql7f4pf1KblmyZmPg4GFs2bGbzdt3UaZsOQb264uX1yOVchvXu6Ch8eeOCh0SEoKZeWFGj50QZ1loaCge9+/TvWcftmzfhdP8RTz1ecKgfn2UZV6/fkWvbl3InScPGzZvY8ny1Xh7eTFh7Ojk3I1EFRISgpmZ+pwoFAoGD+zLixcvmL9wKVu27yZ79hz06t6FkOBgZbnQ0FBsK1SkS7eeyRl6ikno8fS3uHvnNjt3bMXMzFxl/tgxI/F58oQFi5exa89+qlWvwfChg/DwuJ9CkSa/a25XadWmHRu2bGfFqrVERkbSq3tXgr85fv5kP9r/bNmyc/L0eZWpd9/+pE2bFju7SikcfdIJCQnG3Nyc0eMmql3+/NkzOrVvS758+Vm9bgM7d++jR68+6OrpJXOkP5aAAc6FEEKkdscu3OfYhe9/QcthYsjckS1o0GcJexb1Vlsm6FMor94GfreeSX0a8ODJK/69+oByVvlUlp27rvplesmW07RrUBZbm/ycuOSRgD1JWfZVqqq87j9wMNu3buH2LXcKFiwEgKeHB+td1rBl2y6q2dulRJhJzq5iJewqqv8ilyFDBpavXqMyb9SY8fzTpgV+fr5kz56Dc2dOo62tzehxE9DUjPl9f+yESbRs2ohnz56SJ0/eJN+HxPa9nDx76sOd27fYuWc/BT63kzHjJ1G9ih2HDx+kabMWALRr3xGAa25XkifoFJaQ4+lvEfzpE6NHDmfi5KmsWrFMZdmtmzcZO2EixS1jrlDq0asPG9e74HHvHhYWRVIi3GS3bKWzymuHaTOoUrE8HvfvUbLU73O11K/60f5raWmR2cREpcypkyeoWbsOadOlS85Qk5VdxcrYVawc7/JFC+dhV6kSg4eNUM7LnSdPcoT20+RMtxBC/AU0NDRwntqBeS4n8Xj8X7zlhnauyYt/Z3Jpy0gGd6iGlpbqx0Tl0mY0rWHDoBnbE7Rd+zJmmJlm4fz1uGfFU7uoqCgOHzpISEgwVlY2QMzZztEjhjJm3IQ4X4D+ZoFBgWhoaJAhgwEA4eHh6OjoKDvcAHr6+gC437ieIjEmpfDwcACVsyuampro6uj+kfv7K9QdT3+T6VMdqFSpMuXK28ZZZmVjw9Ejh/kQEEB0dDSHDx0kLDyMUqXLpECkqUNQYMyPvwaGhikcScr40f7fv3eXB54eNGnaPDnDSlWio6M5d+Y0efOa0qt7V+wrlqdd6xap9pYvOdMthBB/gaGdaxAZFc2SLafjLbN0yxluejzn/cdPlLPKj0P/hmQzMWSk024AjA3TsWryP3Qe50Lgp9B46zFIr4/30Wno6WgTFR3NQMdtnLrimdi7lGQePXxA+7atCQ8PI23atMxbuIQCBQsCMHumI1Y2NlSpWj2Fo0w9wsLCWDhvDrXr1iN9+vQAlClbjrmzZ+Kyxpm27dsTEhzCwnlOALx58yYlw00Spvnyky17DhbNn8u4CZNJkzYNG9e78OrVf/j7/3n7+zO+dzz9LQ4fOoiHx302b9updvlsp/mMGDqYShXKoq2tjb6+PvMWLCZP3t/vipDEEB0dzayZ07G2KUGhQmYpHU6yS8j+79m1k/z5C2BtUyKZo0s93r19S3BwMGucV9Gv/yAGDRnGhfPnGDKwH6vXrk91P1pJp1sIIf5wNha56dvGHtu2M79bbuHGU8q/7z7yJTwiksVj2zB+4T7CIyJZOr4N245c48KN75+1DvwURtnWjqRPo0eVsubMHNqUJy/exrn0PLUyNc3H9l2uBAUFcvzYUcaPGYnzuo08f/YUtyuX2bZzT0qHmGpEREQwYuggFIqYy6m/KFCwEA7THHGaNZNFC+aiqalJm3btyZQps8rZ7z+Fjo4OTvMWMnniOCrblUVLS4uy5cpTwa4SCoUipcNLUfEdT39Lx/s/Pz9mzZjGilVr0IvnPtMlixYQGPiRlc7rMDLKyL+nTjBi6CDWrt9EoVj3f/8Npk+djPejR6zbsDmlQ0kRP9r/0NBQDh86QPdefdQu/1tEK6IBqFKlGu07dgKgsIUFt9xvsGPbVul0CyGESF4VbAqQxTg9Dw85KOdpa2sxY0hT+rWrQuF66gcocbvjg46OFnlzGPPo6WsqlzGjXuXiDGpfDYi5ZF1LS5NAtwX0nbqF9XsvAzGDSj1+7g/A7YcvMc+XjeFdav42nW4dXV3lGaYiRYtx7+4dNm1cj76eHs+fP8OuvOr9hUMH9adEyVI4r9uQEuGmmIiICEYOHYyfry8r16xTnuX+ok69BtSp14C3/v6kSZsGDTTYuH4duXLlTqGIk1aRosXYttOVwMBAIiIiMDY2pn3blhQpUiylQ0tR8R1PEyY5/GDNP8P9+/d49/YtrVs0Vc6Liori+jU3tm7ZxN4DR9i6eSO79h5Q3uduXrgwN65fY+uWTYyf+Hfk6YvpUx04e+Y0a1w2kjVbtpQOJ9klZP+PHztCSEgoDRo2Tt7gUpmMRhnR1tYmf4ECKvPz5S+QKm/rkU63EOKXdOrUiYCAAFxdXVM6FPEDmw+6cerKA5V5+5f2ZfPBq8qOsjpW5rmIiormzbuYe8vsOzqh9c1Zyvr2lgztVJ0qnebGOxo6gKaGBnq6v+/HTXR0NBHh4fTp258mzVuoLGveuAHDRo6msn2VFIouZXzpcD979pSVa1wwMsoYb9lMmTMD4Lp7F7p6emrvaf2TZMiQAYCnT324f+8uffoNSOGIUpcvx9Pfomy5cux03a8yb+LY0Zjmz0/nrt0JDQ0BQFND9QoQTU0tFNF/z1USCoUCx2lTOHXyOM7rNvyxP87F52f233X3LuyrVMXY2DgZI0x9dHR1KVqsOD4+T1TmP33qQ/YcOVMoqvj9vt+ChEiFOnXqhIuLC46OjowaNUo539XVlSZNmiT5ZYampqYMGjSIQYMGKeetW7eOQYMGERAQkKTbFikrXRpdCuT+OrCXac5MWJrl5P3HYJ7/9553H1SfjxwRGcUr/488evoagLKW+ShdLC9nrj0i8FMo5SzzMXNYM7YcciMgMOZL4YMnqs9hLlEkD9EKBfe9/ZTzhnWpyY17z3j84g16utrUtitK23plGOC4Nal2PVEtmOeEXcVKZMueneBPnzh08ADX3K6ybKUzmU1M1A6elj17jj/uC2Jw8CeeP3umfP3y5QseeHpgYGhI5swmDB8yEM/791mwZDnR0VHK+5YNDQ3R0dEFYOvmjVhZ25A2bVouX7rIfKfZ9B80hAwGBimyT/+v7+Uke/YcHD96hIzGGcmWLQePHj1k9sxp2FetRnnbryPc+/u/4a2/P88+1/Po0UPSpUtHtuzZMTQ0Su5dSnLfO57+FunSpY9zX26atGkxMjSiUCEzIiIiyJMnL1MmT2DIsJEYGRlx6tQJLl+6wKKlK1Io6uQ3fcpkDh86wPxFS0mXNh3+n8d+SJ8hA/qfB2H8kyV0/589fcr1a24sWbYypUJNVsGfPinfLwFevniBp4cHhoaGZM+Rg46duzJi6GBKlixN6TJluXD+HGdP/8vqtetTMGr1pNMtRCLT19dn5syZ9OzZk4wZ4z/7I0RiKlEkL8dWD1S+njWsGQAb9l2mx8SNP1w/LDyCFrVKMrZXXfR0tPHxfcuiTf+ycMOpH677rXT6uiwY05KcWYwICYvgoc8ruoxzYeexGz+3Qynk3bu3jBs9kjdvXpM+QwbMzMxZttKZ8rYVUjq0ZHX/7l26d+mofO00awYADRo1pleffpz5N6ZdtG7eWGW9VWtcKFWmLAB379xh+ZJFBAcHY5ovP2MnTKZ+w0bJswNJ4P69WDmZ/TknDRvjMG0Gb/xf4zR7Bm/fviWziQn1GzSiRy/VR/Pt3L6VFcuWKF937fQPAJOnTKdh46b8aeR4+jEdHR0WL1/JgrlODOjXi+DgYPLkzsOU6TOoWCn+RyX9abZv2wJA107tVeY7THWkUZM/79iILaH777pnF1mzZqN8hT/zcZWx3bt3l26dOyhfz5nlCEDDRk2YMn0G1arXYNzESaxZtZKZjlMxNc2H0/yFlChZKqVCjpeG4m8f4UOIRNSpUyfevn2Ll5cXDRo0YNasWYD6M927du1iwoQJeHl5kT17dvr378/QoUPjrdvb25shQ4Zw+fJlPn36hIWFBY6OjlSvHjOKsr29PWfOnFFZ599//6VKFdXLXidOnMikSZPYsGEDCxYs4MGDB6RLl46qVasyf/58smTJoix77949Ro4cydmzZ1EoFFhbW7Nu3ToKFCgQ5/JyNzc36taty7Bhwxg5cmSC8hUamaBif5WMpfuldAipznu3xSkdQqoULR/fcUlK4tDU1EjpEIQQ4o+mn4DT2H/eEKJCpDAtLS2mT5/OokWLePHihdoy169fp2XLlrRu3Zo7d+4wadIkxo8fz7p16+KtNygoiLp163Ly5Elu3rxJ7dq1adCggfKym927d5MrVy4cHBzw8/PDz88PW1tb5s+fj4GBgXLesGHDgJh7MqdMmcKtW7dwdXXFx8eHTp06Kbf38uVLKlWqhJ6eHqdOneL69et06dKFyMi4PeVTp05Ro0YNpk2bluAOtxBCCCGEEH8DubxciCTQpEkTrK2tmThxIs7Oce9dmzt3LtWqVWP8+PEAmJmZcf/+fWbPnq3S8f2WlZUVVlZWytdTpkxhz5497Nu3j379+mFsbIyWlhYZMmQg2zcjXhoaGqKhoaEyD6BLly7Kv/Pnz8/ChQspXbo0QUFBpE+fniVLlmBoaMjWrVvR0dFRxhnbnj176NChA6tXr6ZVq1YJT5IQQgghhBB/ATnTLUQSmTlzJi4uLnh4eMRZ5uHhQYUKqve0VahQgUePHhEVFaW2vqCgIIYNG4aFhQVGRkakT58eDw8PlQEmfsb169dp0KABefLkIUOGDFSuHHPv2Jf63N3dqVixorLDrc6VK1do0aIFGzZs+GGHOywsjI8fP6pMYWFhvxS7EEIIIYQQvwvpdAuRRCpVqkStWrUYPXp0otQ3bNgw9uzZw/Tp0zl37hzu7u4UL16c8F949MqnT5+oVasWBgYGbNq0CTc3N/bs2QOgrC9NmjQ/rKdAgQIULlyYNWvWEBER8d2yjo6OGBoaqkyzZzr+dOxCCCGEEEL8TqTTLUQSmjFjBvv37+fSpUsq8y0sLLhw4YLKvAsXLmBmZoaWlpbaui5cuECnTp1o0qQJxYsXJ1u2bPj4+KiU0dXVjXOmXN08T09P3r59y4wZM6hYsSKFCxfm9evXKmUsLS05d+7cdzvTmTNn5tSpU3h5edGyZcvvlh09ejQfPnxQmYaPTJwfJP50xobpeHrSkTzZ/8xnck4Z0JC5I1v8uOAPBAS8x75ieV6+VD+WQmq2fdsW+vfplej1BgS8p2olW3x/w5x4e3tRq1plQoKDE7XegID3VK38e+bkwvlztGremOjo6ESvW46fuCQncf3OOblw7iwtmzZK9OPnd86Jt5cXNapWIjgJ3mclJ6qk0y1EEipevDjt2rVj4cKFKvOHDh3KyZMnmTJlCg8fPsTFxYXFixcrBzlTp1ChQuzevRt3d3du3bpF27Zt43xwmJqacvbsWV6+fIm/v79yXlBQECdPnsTf3z/mcSR58qCrq8uiRYt4/Pgx+/btY8qUKSp19evXj48fP9K6dWuuXbvGo0eP2LBhAw8ePFAplyVLFk6dOoWnpydt2rRRO9AagJ6eHgYGBiqTnp5egnP5NxvZrRYHTt/mmd87AOzLmPHvuiG8Pj+HJ8enM3VAI7S0vr6dj+1Zl5Cbi+NM/hedvrud3NkysnthL95enMvTk45MH9RYpV6AiiULcXHzSAKuzOPu3on806CsyvLWdUrx6PAUfM/MYuZQ1ce85MluzG3XCWRIp/rM1fnrT9KufhlMc2b66dx8a9WK5VSpUo2cOXMB4OfrS7/ePShb0gr7iuWZO2dmvO0TYp67PHH8GOrUrEqZEpbUq12dpYsXEvHN1SQ+Tx7TtVN7qlSypbRNcerWqsbiBfNUfnC6dPECDerWwrZMCcaMGq6yfmBgIA3q1sLX96XKtps0aYaHxz1uXL/2f+UgttUrl2NfpRo5vuTEz5f+vXtSvpQ1VSvZMm/OrO/mBOCpzxMG9e9DFbty2JUtSef2bXG7ejlOuX2uu2nZpCFlS1hStZItjlMdlMt8X76gS8d/KF/ahi4d/4nT4R3Qpycnjh9VmVegQEGKW1qxYf26X9x79WLnZKbjVNq2bEqZEsVpFesRaOp8+BDAjOlTaNygNuVKWVGnRhVmOk4lMDBQWWaf625sihdWO717+xYAT4/7tG7RBNsyJRjYrxcfPgQo14+MjKRty6bcvXNbZdsV7Cqira3NoYP7//9ExPL/Hj8AHwICGD1iKLZlSmBXrhQTx48h+NMn5XK3q1cY2K831SrbUbaUNS2bNuLggX0qdaSm4ycxcjKgby9qVbOntE1xqlW2Y8yo4bx+/Uq5/G/MyY/aSVhYGOPHjKJZ4waUsCzCoP594tTh4XGfls0aU66UDf379OJDQIByWWRkJK1bNOXO7VjHT8VKaGtrx8nv/ysxcrJqxTI6tGtN2ZJW2JVT/7iru3du071LR+zKlcKufGl6de/KA09P5fKXL1/QuUM7ypaypnOHdnE6vP369OTEsVjvswULYmlpzQaXtb+y69/Zn+TJyYzpU2ndoimlrIvRsmncR1KmppxIp1uIJObg4BCnc1yiRAm2b9/O1q1bKVasGBMmTMDBwSHeQdQgZvC1jBkzYmtrS4MGDahVqxYlSpSIsy0fHx8KFCiAiYkJALa2tvTq1YtWrVphYmLCrFmzMDExYd26dezYsYMiRYowY8YM5syZo1JXpkyZOHXqFEFBQVSuXJmSJUuyatUqtfd4Z8uWjVOnTnHnzh3atWsX733p4uel0dehY6PyuLjGXC1R3Cwnrot6c+zifcq1mUH7UWuoV7k4Uwd8/bCZv/4EptVHq0z3vf3YffxmvNvR1NRg98Le6OpoU6WTE90nbOCfhmWZ0LueskzeHJnYs6gXZ689pGzrGSze/C/LJrSlenkLADIZpWPphLaMnreHBr0X07puaepULKZcf8GYVoxfuJfAT6Eq234b8IkTlzzo0aLiL+cpJCQE1907adKsOQBRUVH069OTiIgIXDZuZer0Gexz3cPSxQvjrcPn8WOioxWMn+jA7r0HGT5iNDu2b2XhgnnKMtraOjRo1JjlK9ew9+ARRowcw65dO1i2ZBEA0dHRjB4xlBYtW7N+8zbu37vLzh3bv+Zg3hxatGxNjhw5Vbato6tL3Xr12bxx/S/nQF1O9u7eReOmzZQ5GfA5J+s2bsFh2gz27d3Dsu/kBGI6DVGRUaxwdmHT9l2YmRdmQN/e+Pu/UZbZ4LKWxQvn07lbd3a6HmD5qrUqz5F1mj2TLFmysHXnHkwymzB3zizlsqOHD6GhqUn1GrXibLtR46bs2Lblh1/OEiokJIS9e3bRuEkz1e00aUbN2nUTVMeb16958+Y1g4eOYMee/Uye6sjFC+eYPHGsskzN2nU5/u85lcm2gh0lS5XGOFPMj0sOE8dRukxZtmzfRWBgEM6rVijX3+CyFiubEhQrbhln+w0bNWHLpg2/svvxSozjB2D0yGF4e3mxfPVaFi5Zzo1r13CYNEG5/Jb7TQqZmeM0fyE7d++jUZOmjBs9kjOn/wVS3/GTGDkpXaYcs+fOZ+/BIzjNX8iL588ZNnigcvnfmJMftZOoqCj09PVo2649ZcuVV1vH5AnjKFO2HFt37iYoKJDV3xw/69etwdqmBMUt1Rw/jZuyZWPiHT+JlZOIiAhq1KxNi1Zt1C4P/vSJPj27ky17DjZu2c66DZtJly4dvXt0Vf7o6zRrJlmyZGX7Llcym5gwd/bX99kjhw+hqaFB9Zpq3mebJP77bHLk5IvGTZpRq4769+/UkhMAFEIIkUJCImSKPelb91WZ2gxbpXj19qPy9czVRxTX7vqolGk6YJkiOCRMkdl2SJz19a37Kkq3nK5QKBSKap3nql2ub91X0bDvEkVkZJQiT9VRynn9pm5RBHwMVmQoNUChb91XMWfNMcXdRy9V1tt+5Jri6Pl7Cn3rvgq7drMUfm8+KJftOHJNMXruboW+dV9Fh1FrFPv+vRXv9ruMc1E893undllC8rbvwGFF2XLllK+PnzqtKFy4sOKF3xvlPJeNmxUlSpRQfPwUluD/x7IVqxRVqlb9bhmHqdMVrVq3UYREKBQv/vNXmJmZKQKCQhUhEQrF9BmzFOMnTFKERCgUl65eVzRu0kQRFBqptp7zl64qihYtqngfGJKg2D6FR393cj1wSFG2XDnl66MnY3LyzPe1ct66DTE5CfgUqraOF6/eKszMzBTnLl1Vznv9/qPCzMxMcfLMecWn8GiF35v3CktLS8WpsxfijaVW7TqKY6fOKOOoXaeu4lN4tOI//wBFteo1FN5PX6pdL+BTqKJYsWLfrVtlCvv+5Lr/c07ULHOat0BRv0HDH9ahtt59hxRFixZVfPgUrnb5cz9/RZEiRRXbdu5RzrO0tFTc9fBSfAqLVqxdv0nRpWt3xaewaMUDr6eK6jVqKF6/+6i2Li+fFwozMzOFp5dPgmJLruPnnqeXwszMTHHt5m3lvBOnzijMzc0VT1/+F++2u3brrhg+clSyHz8p9Z5y+OgJhbm5ueJjcPhfmZOfbSfDho9U9OzVO858S0tLxf0HXjHb3LBJ0bVbd0VIhELx6PEzRfUaNRX+AYFqt//46UuFmZmZ4qH301STk2+nrdt3KUqWLBln/rWbtxVmZmaKJ898lfNu3/NUmJmZKR54+ShCIhSK2rXrKE6cOqOMo3aduoqQCIXi1dsPiurVa6is++308VOYolixYorT5y7+Vjn5dpo7f6GiQYOGceYnV04SQs50CyFEKlbBpgA3Pb6OUK+nq01omOq98yFhEaTR18XGIo/aOjo3seWhzysu3PSOdztlLfNx18uX1+++XiJ7/KIHhhnSUKRA9pgyVvn494rq7QXHL3pQ1jIfAF7PXpNWXwcr81xkNEhLyaJ5ufPIF6MMaZjQuz5DZmwnPtfuPiVXtoy/fN/6jRvXKFKkqPL1LXd3ChUyI1PmzMp5thXsCAoKwsvbK8H1BgUGYmhoGO/yZ0+fcvH8OUqVKg2AsbExJiYmXLpwnpCQEG7euE4hc3MiIiKY5jCJ8RMd4h23oUjRYkRFRXHn9q0Ex/c9N69fx+KbnNy+5U7BeHLi7aU+J0ZGRpjmy8eBfXsJCQ4mMjKSXdu3YWycSZnvy5cuEh0dzetXr2jaoC61qlVmxNBB/Ofnp6zHzNycK5/LXb54gUKfHz84z2k2rdq0JVv27Gq3r6Oji3lhC24m0iWyN29cx8Ki6I8L/qTAoEDSpU+Ptrb6J7Ee2O+Kfhp9lbP5hczMuXzpApGRkVy9ckmZk2lTJjJo8HDSpUuvtq7s2XOQKVPmRMsJJM7xc+vWTTIYGFC0WHHlvLLlbdHU1Ixzme+3AgMDMTQ0AlLX8ZMU7ykfAgI4eHA/VtY2330yyJ+ck19tJ7GZmRfm0qWLREZGcuXyZQqZmQMwxWEig4d+5/jJEXP8JNZl90n12RObab58GBkZsWf3TiLCwwkNDWXPrp3kz1+AHDljrnIwMy/M5cuXiI6O5tKFC5h9zsm8ObO+/z6rG/M++7vlJCFSS05ALi8XQohULU92Y/zefFC+Pn7Rg3JW+WlZuySamhrkMDFkTI86AGQ3MYizvp6uNq3qlFJenh6frJkMeP02UGXe63cfY5ZlNlCWefUubhnDDGnQ19MhIDCE7hM2sHpKB85tGM6mA1c5cckDxyFNWL7tDHlzZuLSlpFc2zGGJtWtVer5so95cvxap9vP1xeTLFmUr9/6+2OcKbNKmUyfX7/95rLo73n29ClbNm+keYvWcZZ1aNea0jbFaVC3JjYlS9Gnf8zlohoaGsxyms/K5Utp2qgehQtb0LhJM9asXknpMmXR1dOjY7vWNKxXiy2bNqrUmSZNGtKnz4Cfr+9P7Xt8/Px8MTH5NidvyJRJ9b75L5c6fxkDIjYNDQ2Wr1qLp8d9KpQtSbmSMfdYL1mxCoPPP0a8ePGc6GgFa1avYNio0cyeu4APHz7Qu0cXIiJi7j0dMmwkPk8eU69mNZ499WHIsJFcv+bGA08P6jdsxIihg6hfuzpTJ09UrvOFiUkW/PwSKSex2klieP/+PatWLKNZ85bxlnHdvYs6deujr/91PIOJk6dy4vhRGtStiY62Dl269eTA/r3o66ehaLHi9OnZlYZ1a7Jk4fw49ZlkSbycQOIcP2/9/TE2Vj1+tbW1MTA0jHedo0cOce/uHRo1iRn/IVUdP4n4njLPaTZlS1lTqUJZ/vPzY8HipfGW/dNz8ivtRJ2JDlM5cewo9WvXQEdHh67de7J/nytp9PUpWqw4vbp3pX7tGiz+5vagLxLz+EmKzx510qVLz+p1Gzi4fx9lSlpRvrQNFy6cY8mKVcof+4YMH8mTJ4+pU6MqT589Zcjwr++zDRo2ZviQgdStVY0pkyeojAsAMTnxTUXtJLGklpwAqP9JVgghRKqgr6dLaNjXTvfJy56Mme/KwjGtcZ7SgbCISGasOoJdiYJERyvirN+oqhUZ0uqzcf+VZIl337+32ffv17MVdiULUrxQTobM3MG9fZPoMHotr/w/cm7DcM5f9+LN+yAAQsJiPuzS6uv+0nZDQ8PIopt4A/O9evWKPj27UaNWbZq1iNuZmjVnHp8+feLhA0/mOs3CZa0znbt2B6BEyVJs3r5LWdbH5wkH9u1l2849dO74D+3+6UCFipVo1rg+JUuVwsy8sLKsnr4eoaEhibIPYaGh6GX5/3KiUChwnOaAcaZMrHHZhJ6+Hnt27WRgv95s3LoDE5MsKKKjiYyMYMSoscr7uB1nOVHD3g63q1ewrVCRLFmzsnDp13suw8PD6dOzGw7THFm1Yhlp06Zjz/7D9OvVnZ3bt9GmXXtlWT19PUJDQuPE9ivCwkLRS8R2EhQUxIC+PcmfvwA9e/dTW+aW+02ePPZm6vSZKvMLFCyE87qvnaSAgPcsX7II53Ubmek4FStrG5zmLaJdmxYUs7Sksn1VZVk9vcTLCST+8ZMQV69cZsK4MUycPJWCBQsp56eW4ycxc9KpS1eaNGuOn68vy5cuZtzokSxaugINDQ2Vcn9TTv5fBQsWYo2L6vGzbMki1rpsYsb0KVjb2DB3wSLatWpOMUsr7Kt8PX709fQICfm9chIaGsqk8WOxtinBjNlOREdH47J2Df1692Tztp3o6+uTNWtWFsd6n+3doytTp89g5YplpE2Xjr0HjtCnZzd27NhG22/eZ/X1/sx2klpyAnKmWwghUrW3AUFkNEirMm/hxlNkqzQcs7oTyFVlFPtPx3Ryn7yIe7ayU2NbDp+7q3LZuDqv3n4kS6YMKvOyGMec4X7l/1FZJqtx3DIfAkPiXPIOoKujzYLRreg3dQsFcpugpaXJ+etePHr6Gq9nryld3FRZ1tggHQD+nzvhPytjRiM+fvyofJ0pc2bevVXNx9vPrzNlNvluXa9fv6Jb5w5Y2dgwYdIUtWWyZc9OgYIFqVOvPgMHD2X50sXxDiA4ZdIEhg4fSbRCgafHfWrUqk2mTJkoVao01665qZT9+OEDGTMmzqPhjDJm5OPHrz/YZMpswtvPI2d/8WUk7cyZVc9CfHH1ymXOnTnNjNlzsS5RAosiRRkzfiJ6evrs3+sas+7nQRvzFyioXM/Y2Bgjo4wql5h/y3nlcsrZ2lKkaDGuu7lRrUZNdHR0qFq9BtfcrqqU/fDhAxmNM/7czsfDyEg1J/+PT5+C6NurG2nTpmPugsXxXi68Z/dOzAtbUKRoMbXLv3CaPYO27TuQNVs2rrldpXrN2qRJm5aKlSrHycnHRMwJJM7xkylzZt69e6cyLzIyko8fPsRZ55rbVQb07c3wEaNp0Kjxd2NLqeMnMd9TMmY0xtQ0H+VtKzBrzjzOnT3D7VvuKmX+lpz8TDv5GXNmzqBd+44xx8/Vq9SoWZu0adNSsXLc4+fDxw9xzrb/qsRsJ99z6OB+fH1f4jDNkWLFLbG0smbGrDm8fPmCf0+dVLvO6pXLKW9bgSJFi8W8p9SohY6ODtWq1+TaVTXvs6monSSVlMoJSKdbCCFStVueLyicP5vaZX5vPhAaFkHL2qV47veOm57PVZbnzZGJyqULse4Hl5YDXLn9hGIFc2CS8et9cNXKFeZDYAgej/+LKXPrCfZlzFXWq1auMFduP1Fb56jutTh+8T7uni/Q0tRE+5vHj2lra6Gl+fV1kYLZCY+I5L63+k7ajxS2KMLjb+4Ns7K25tGjhyqdzMsXL5I+fXoKfNM5jO3Vq1d07dSBIkWK4jDVEU3NH39MKqIVREZGqn326+5dOzA0NMK+ajWiP3fKv4yGGhkZqZwH8PzZM8LCwihsUeTHO5wAhQtb8Nj76338llbWeD16qOxoA1y+dIH06dOrdJi/9eVXfk1N1TNympoaKD7vr7VNzFMUfHy+toMPHwIICHhP9uw54tT52Nubw4cO0rdfzCX5UVFRqjmJlUfvR48wL5xIObGw4PHj+Mc2SKigoCB69+iKjo4O8xctjffxh8HBnzh+9HCc0dJju3L5Ek8eP6Z1m38AiI6OPydhYWE8f/480XICiXP8WFnZEPjxI/fv3VXOu3rlMtHR0SqjSLtdvUK/3j0ZNGQYzVu2+m5cKXr8JNJ7Smxf/pfh31zK+jflJKHt5GdcuXyJx4+9adNWzfEToZqTsLAwnj97nqpykhChoaFoamiqXB2hoamJBl/fi7/12NubwwcP0PfzrU/RUVFERsb8OB4ZGUF0tOqPxF5ejyhsYfHL8X0ruXLys1IyJyCdbiGESNWOX/KgSP7sGGVIo5w3uEM1ihbMgUX+bIzqXpthnWswdNbOOJeXd2xcjv/8P3L0wr049TasYon77nHK1ycueeDx+D+cp3akuFlOqpe3YGLf+qzYfpbwiJgvL6t2nidfrkxMG9gIM9Os9GhRkWY1bFi06d849RfOn43mNUvisPQgAA98XhEdraBj4/LUtiuKuWlWrt97qixfwaYgF254qz1jnhC2Fezw9vbi44eYs5jlbe3IX6AgY0eN4IGnJxfOn2Pxovm0atMOXd2YS9jv3L5No/q1efUq5pm5r169olun9mTPnp0hw0fy/t07/N+8wf/N13vODh7Yx9Ejh3js7c2L5885euQQC+Y7UbN2nThnOt++fcuqFcsYNTYmzwaGhuTPX4BNG1y45X6TK5cvKTusADeuXyNX7tzkzqN+QLyfVb6CHY9VclKB/AUKMG50TE4uXjjHkkULaNm6rTInd+/cpkmDOrz+nBNLKxsMDAwYP2YUDzw9eerzhHlzZvHyxUvsKtkDkNc0H/ZVqzF7xnTcb97A69FDJowZhWm+/JQqo/ocd4VCwdTJExg2YhRp0sZcwWFtU4I9O7fz2NubA/v2Ym39NSe+L1/w+vUrypZX/9ign86JrWpOAJ49e8oDTw/8/f0JCwvlgacHDzw9lPeWv371iiYN6iifmR0UFESfnl0JDQlhosM0Pn0Kwt//Df7+b+Jc7XD0yGGioqKoV79hvDGFhYUxc/oUxk90UP7IY2Vdgu1bNvHggScnjx9Tycmd2+7o6upgaWWdKDmBxDl+8hcoQAW7ikyeOJ47t29z88Z1HKdNoXademTJkhWI6Vz169OTtv+0p3qNmsrj69tnLH+R0sdPYuTk9u1bbNm0EU8PD3x9X3Ll8iVGDR9C7tx5sLK2+StzkpB2AuDt5YWnhwcfPgQQGBiIp4cHnh4ecWIKCwvDcZoDEyZNUR4/1jYl2LZlEw88PTlx4hjW3zxe9fatxD1+EiMnEHMftKeHB35+vkRFRSn398vzy8uXt+Xjxw9MnzKZx97eeHk9YsK40Whra1G6bNz3WYdJ4xk2cjRpv3mf3bVzB4+9vdm/b69KO3n58gWvX72iXHnb3yonEDP2iqeHB/7+bwgNC1WWiX1/dkrnBOSebiGESNXuefni7vmcZjVL4LzrAgA1KxRhRLda6Oloc+fhS1oMXsmxC/dV1tPQ0KB9g3Js2HdF7b3eBunTYJ7v6xn06GgFzQYuY8GY1pxeN5RPoWFs2n8Vh2UHlWWe+r6lSf/lzBrWlL5t7Xn5KoDeDps5cSnuF6El49ow0mk3waExH3yhYRH0mLiR+aNboqujzeCZ2/H9ZoC4FrVKMG3F4V/OUyEzcwpbFOHo0cO0aNkaLS0tFi1dzjSHSXRo14o0adLQoFET+vQboFwnNDQEnydPlL90X754gWfPnvLs2VNqVq2kUv+tezGjtmtpabPWeTVPfZ6gUMSMhNum7T/806FTnJhmOU6jQ8cuKl8kHabNYPzYkWzeuIGOnbuqPIf58KGDNG0W/2Bcv5qTY0cP0/xzThYsWc70KZPp9E9r9NOkoUHDxvT+NichqjnJmDEji5evYsnC+fTs2pHIyEjyFyzIvEVLMC/89b7RKdNnMmemIwP69kJTQ4OSpcqwZPmqOD9E7NqxDeNMmahkX0U5r1effoweOYwObVtia1eRlm3aquSkvG2FOM8gTqycQMzzsq9/c0lu6xZNADh45AQ5cuYiMjICH58nyrP+nh73lKNBN6xbU6X+L+t84bp7J1Wr1SCDQdxBDr9YsWwxdpUqY1746xmVEaPHMmbkMLp1+oc69RpQrcbX7Rw5dJA69RqQJk0addX9ksQ4fgAcZ87BcdoUenTtiKamJtVq1GTU6K8/7u3f60poSAjOq1aoPJe8VOkyOK9TfXZyajl+/p+cpNHX5+SJYyxbsoiQkGAym5hQwa4is3r2UXY2/racwI/bCUC/3j3w9X2pfN2qeWPg63vxF8uXLqZiJXuVM5IjR49j1IihdOnYjrr1Gqg8NeDwoYPUrZ94x09i5WTp4oXs27snzv6uXrue0mXKki9/ARYuWc7ypYvp0K4VGhqaFLawYOmK1SoDZgLs3LGNTJkyU/nb99m+/Rk9Yij/tGlBBbuKtGrTTrnsSBK9zyZ1TgAmTxyncvvAlzKHjp0k5zfvxSmdEwANhUIR99uYEEIkg9DIlI4g9clYOu5gTLXtijJ9cGNKNp/On/iWXbNCEWYMaULplo5ERcW9TO692+IE1XP2zGnmzZnFrr0HEnRZeGri5fWI7l06su/gUTJkyPDjFYDoBLSFc2dOM89pNjtd9/92OYmICKdh3do4zpyjcqbquxJweJw7+zkne36/nLx//54mDWqzaesucubK9eMViHtrQHz+tuMnISQncf3OOXn//h2N6tVh8/ad5MqVO9Hq/Z1zEhEeToO6tXCcNQebEiUTrd6/LSf6CTiNLWe6hRAilTty/h4F85iQM4shL14FpHQ4iS5dGl16TtyotsP9MypVtufZUx9ev3oV77M3Uyv/N2+YOn1mon45BqhY2Z5nz57+ljnx8/Oja/ceCe9wJ1DFSvY8e/qU169fkS3b75UTX98XjB43McEd7p8hx09ckpO4fuec+L58yZjxExO1ww2/d078/Pzo2qNnona4QXKijpzpFkKkGDnTHZe6M91/u4Se6f7bJORM919HUhJHQs90CyGE+DUJOdP9e53vF0IIIYQQQgghfiPS6RZCCCGEEEIIIZKIdLqFEEIIIYQQQogkIvd0CyFSjNzTLRJC7l1WT1ND7tWNTZpKXNJMhBAiack93UIIIYQQQgghRAqSTrcQQgghhBBCCJFEpNMthBBCCCGEEEIkEel0CyGEEEIIIYQQSUQ63UII8ZdatmQRVkXNVaZG9WsrlztMmkC92tUpU8ISe7tyDOzXmyePvVMw4sR3/ZobA/v2okaVitgUK8y/J0/EW3bq5InYFCvMpg0uKvM/fAhgzMhh2JUtScXypZk0fizBwZ+SOvRkdf2aG/379KK6vR1WRc05FStPJ44fo2f3LlSyLYtVUXM8PTxSKNLkU6dmVayLmceZpk+dDEBYWBjTp06mcoWylC9tw9BB/Xnr75/CUSet7Vs307xJA2zLlMC2TAnat23F+XNnlMvDwsKYPmUylWzLUq6UDUMG/vk5iS0qKorFC+dTp2ZVypSwpF7t6qxYtgQZ11jE5rxqBW1bNqN8aRvsK5ZnUP8++Dx5nNJhpbgffR6lVtLpFkKIv1iBgoU4efq8clq3YbNyWZEiRXGY6sie/YdYttIZhUJBr+5diYqKSsGIE1dISAhm5oUZPXbCd8udOnGcO7dvYZIlS5xlY0YOx9vLi2Wr1rBwyXJuXL/GlEnfr+93ExISjLm5OaPHTYx3uY1NCQYNGZbMkaWcTVt3cuL0eeW0fNVaAGrUjPnhas7M6Zw9/S+z587Hed0G3rx5zZBB/VIy5CSXJWs2Bg4expYdu9m8fRdlypZjYL++eHk9AmD2zOmc+ZyTNS6fczLwz85JbGudV7Fj2xZGj53Anv2HGDR4GOvWrGbzpg0pHZpIZa65XaVVm3Zs2LKdFavWEhkZSa/uXQkODk7p0FLUjz6PUqsEDHAuhBDiT6WtpUVmExO1y5q3bKX8O2fOXPQbMIgWTRvh+/IlufPkSa4Qk5RdxUrYVaz03TKvX71ipuNUlq5YTf8+PVWWPfb25uL5c2zcuoOixYoDMHLMOPr37sHgYSPIkiVrksWenOwqVsauYuV4lzdo2BiAly9fJFNEKc/Y2Fjl9ZrVK8mdOw+lSpchMDCQPbt34ThrDmXKlgdg8pTpNGlYl9u33LG0sk6BiJOefZWqKq/7DxzM9q1buH3LnaxZs7Fn1y5mzJpD2XIxOXGYOp3GDf7snMTm7n4T+6rVqFTZHoh5bz186CB379xO2cBEqrNspbPKa4dpM6hSsTwe9+9RslTpFIoq5f3o8yi1kjPdQgjxF3v67CnV7e2oW6sao0cMxc/XV2254OBg9u7ZTc5cuciWLVsyR5lyoqOjGTd6BB07daVAwUJxlt++5U4GAwNlhxugbLnyaGpqcve2fIn+W0REhHPowD4aNWmGhoYGHvfvEhkZQdlytsoy+fIXIHv2HNy65Z5ygSajqKgoDh86SEhIMFZWNty/9zkn5dXkxN095QJNZtbWNly9fBkfnycAPPD05ObN6z/88U+IoMBAAAwMDVM4EvEr5Ey3EEL8pYpbWjJlmiOmpvl48+YNK5YtoXOHduzau5906dIDsG3LJuY5zSEkJBjTfPlYsWotOrq6KRx58lnrvAotLS3a/NNe7fK3/m/inPHU1tbGwNAQ/7/sXtW/2amTJwgMDKRh4yYA+Pv7o6Ojg4GBgUo540yZeOv/JiVCTDaPHj6gfdvWhIeHkTZtWuYtXEKBggV54OkRb078//CcfKtLtx4EBQXRuH4dtLS0iIqKov/AwdSr3zClQxOpWHR0NLNmTsfapgSFCpmldDjiF0inWwgh/lLfXp5lZl6Y4pZW1KlRhaNHDtO0WQsA6tZvSDnbCvi/eYPLWmeGDx2Ey8Yt6OnppVTYyeb+vbts2biBzTt2oaGhkdLhiFTMdfcuKthV+mNuJ/h/mJrmY/suV4KCAjl+7Cjjx4zEed3GlA4r1Th65DCHDu7HcZYTBQsWxNPTg9kzHDExyaL80UaI2KZPnYz3o0cq466I34t0uoUQQgBgYGBA3rymPH/2TDkvQ4YMZMiQgbx5TbG0tMLOtgynThynTr36KRhp8rh54zrv3r2lbo2v96lGRUUxd/ZMNm1w4dCxU2TKbMK7d+9U1ouMjOTjhw9kzpw5uUMWKcDX9yVXLl/Eaf4i5bzMmTMTERHBx48fVc7svnv7lkyZ1Y+h8KfQ0dUlT968ABQpWox7d++waeN6atWuE29OMv/hOfnWPKdZdOnagzp16wFQyMwcP19fnFevkE63UGv6VAfOnjnNGpeNZP2Lbu/608g93eL/cvr0aTQ0NAgICEiR7QcHB9OsWTMMDAxSNI7/R+wcrlu3DiMjoxSNKT6mpqbMnz9f+VpDQwNXV1cAfHx80NDQwP0vujfvTxP86RPPnz+Pd2A1BYBCQXh4eLLGlVLqNWjI9t172bpzj3IyyZKFDp27snTFagAsrawJ/PiR+/fuKtdzu3KZ6OhoillaplToIhnt3bMbY+NMVKxkr5xnUaQY2to6XL1ySTnP58lj/Px8sfpLBgz7Ijo6mojwcIoU/ZyTy2pyYm2dcgEms9CQUDQ1Va+c0dLSIjpaHhkmVCkUCqZPdeDUyeOsWuNCrly5Uzok8X+QM93ihy5duoSdnR21a9fm4MGDKstsbW3x8/PDMIUGdXBxceHcuXNcvHiRzJkz8/79ezJmzMjNmzex/sUPcR8fH/Lly/d/1fH/aNWqFXXr1k327X5r3bp1DBo0KM6PGG5ubqRLly5lghKJzmn2TCrbVyF7jhy8ef2aZUsWoaWlSZ269Xnx/DlHjxyivG0FMmY05tWr/1izeiV6evrYVfr9Rg2NT3DwJ5Uz+y9fvuCBpwcGhoZkz54DI6OMKuW1tbXJnDkzpvnyA5C/QAFs7SoyZdIExk6YRGREJDOmT6FWnbp/1KXGwZ8+8ezbPL14gaeHB4aGhmTPkYMPAQH4+fnx5s1rAOUgUZkzZ473R5w/QXR0NPtcd9OgUWO0tb9+pcqQIQNNmjbDadYMDA0NSZcuPTOmT8XSyuaPHqV7wTwn7CpWIlv27AR/+sShgwe45naVZSudY3LSrBlzZs3AwNCQ9OljcmJl/WfnJLbK9lVYtXI52bLnoEDBgnh6eLDBZS2NmjRL6dBEKjN9ymQOHzrA/EVLSZc2Hf5vYsY+SJ8hA/r6+ikcXcr50edRaiWdbvFDzs7O9O/fH2dnZ3x9fcnxTYPW1dX97kjGUVFRaGhooKmZ8IsqFAoFUVFRKl9g4uPt7Y2FhQXFihUDYjrMv7s0adKQJk2alA5DLZM/+Mvz3+jVq/8YNXwIAQEBZDQ2xqZESTZs3o6xsTGRkRHcuH6NjRtc+PjhI5kyZ6JkyVKs37SFTJkypXToieb+3bt079JR+dpp1gwAGjRqjMO0GQmqY/rM2cyYNoWeXTuhqalJteo1GTFmbJLEm1Lu3btLt84dlK/nzHIEoGGjJkyZPoPT/55iwrjRyuUjhw0GoFeffvTu2z95g01Gly9dxM/Pl8ZqOkzDRo5BQ1OToYMGEB4Rjq2tHWPG/17Plf1Z7969Zdzokbx585r0GTJgZmbOspXOlLetAMDwkWPQ1PgmJxXsGPubPWv3/zVq7DiWLFzA9CmTeffuLSZZstC8RSt69u6b0qGJVGb7ti0AdO2kOpCnw1RHGjVpmhIhpQo/+jxKrTQUCoVczyLiFRQURPbs2bl27RoTJ07E0tKSMWPGKJefPn2aKlWq8P79e4yMjJRnSNevX8+oUaN4+PAhXl5eZM+enQkTJrB582Zev35N7ty5GT16NF27dlXWcejQIcaNG8edO3c4duwYuXPnZsiQIVy+fJlPnz5hYWGBo6Mj1atXB8De3p4zZ84oY6lcubLK6y/zTp8+HWe/3r9/T79+/Th27BhBQUHkypWLMWPG0Llz5zgDJn2pw83NjTFjxnDz5k0iIiKwtrZm3rx5lChRQllWQ0ODVatWcfDgQY4ePUrOnDlxcnKiYcOvo5IeOnSIQYMG8fz5c8qVK0fHjh3p3LlznBx+Ocs8adIkXF1dGTp0KOPHj+f9+/fUqVOHVatWkSFDBgACAwPp1asXrq6uGBgYMGLECPbu3Yu1tbXK5eDfunXrFoMGDeLatWtoaGhQqFAhVqxYQVBQEFWqVFEpO3HiRCZNmoSpqSmDBg1i0KBByv3ds2cPjRs3/qUrBEIjE1RM/OWi5WNKLU0Z3C0OaSpxSTMRQoikpZ+A09hyT7f4ru3bt1O4cGHMzc35559/WLNmDT/6nSY4OJiZM2eyevVq7t27R5YsWejQoQNbtmxh4cKFeHh4sGLFCtKnT6+y3qhRo5gxYwYeHh5YWloSFBRE3bp1OXnyJDdv3qR27do0aNBAeUnJ7t276d69O+XLl8fPz4/du3dz9epVAE6cOKGcp8748eO5f/8+hw8fxsPDg2XLlikHPYqvjsDAQDp27Mj58+e5fPkyhQoVom7dugR+fm7iF5MnT6Zly5bcvn2bunXr0q5dO+VAS8+fP6dp06Y0aNAAd3d3unXrxqhRo374f/D29sbV1ZUDBw5w4MABzpw5w4wZX3/NGzJkCBcuXGDfvn0cP36cc+fOcePGje/W2a5dO3LlyoWbmxvXr19n1KhR6OjoYGtry/z58zEwMMDPzw8/Pz+GDRv2wxiFEEIIIYQQccnl5eK7nJ2d+eeffwCoXbs2Hz584MyZM9jb28e7TkREBEuXLsXKygqAhw8fsn37do4fP648S50/f/446zk4OFCjRg3la2NjY2UdAFOmTGHPnj3s27ePfv36YWxsTNq0aVUucf/48SMAmTJl+u5l78+ePcPGxoZSpUoBMQOEffHlEurYdVStWlWljpUrV2JkZMSZM2eoX//rSM6dOnWiTZs2AEyfPp2FCxdy9epVateuzbJlyyhQoABOTk4AmJubc+fOHWbOnBlvrBBz3+C6deuUZ7bbt2/PyZMnmTZtGoGBgbi4uLB582aqVasGwNq1a1VuA4gvB8OHD6dw4cIAFCpUSLnM0NAQDQ2N7+ZQCCGEEEII8WNyplvE68GDB1y9elXZgdTW1qZVq1Y4Ozt/dz1dXV0svxm1193dHS0tLSpX/v7gS186wF8EBQUxbNgwLCwsMDIyIn369Hh4eKgMnvCrevfuzdatW7G2tmbEiBFcvHjxh+u8evWK7t27U6hQIQwNDTEwMCAoKChOPN/ue7p06TAwMOD165jBhTw8PChbtqxK+fLly/9w26ampsoON0D27NmVdT5+/JiIiAjKlCmjXG5oaIi5ufl36xwyZAjdunWjevXqzJgxA29v7x/G8f8ICwvj48ePKlNYWFiSblMIIYQQQoiUJp1uES9nZ2ciIyPJkSMH2traaGtrs2zZMnbt2sWHDx/iXS9NmjQq90UndFCw2KNiDxs2jD179jB9+nTOnTuHu7s7xYsXT5THFdWpU4enT58yePBgfH19qVat2g8voe7YsSPu7u4sWLCAixcv4u7uTqZMmeLEo6Ojo/JaQ0OD6Ojo/yvepKhz0qRJ3Lt3j3r16nHq1CmKFCnCnj17/q86v8fR0RFDQ0OVafZMxyTbnhBCCCGEEKmBdLqFWpGRkaxfvx4nJyfc3d2V061bt8iRIwdbtmxJcF3FixcnOjo6ziBnP3LhwgU6depEkyZNKF68ONmyZfvh6OS6urpAzKjpP2JiYkLHjh3ZuHEj8+fPZ+XKld+t48KFCwwYMIC6detStGhR9PT08Pf3/6l9srCwUN4z/sXly5d/qo7Y8ufPj46ODm5ubsp5Hz584OHDhz9c18zMjMGDB3Ps2DGaNm3K2rVrgZgcJCSHP2P06NF8+PBBZRo+cvSPVxQEBLzHvmJ5Xr58kdKhJIkL587Ssmmjn/4hKSDgPVUr2eL7h+Zl5LAhrF+35v+q43duO7/aLmILCHhPlUq/Zw4SYuSwwdJOEqGdqPM752X7ti3079MrpcP4K/zO7SSpjp/fOSdJdexIp1uodeDAAd6/f0/Xrl0pVqyYytSsWbMfXmL+LVNTUzp27EiXLl1wdXXlyZMnnD59mu3bt393vUKFCrF7925lZ79t27Y/fFPIkiULadKk4ciRI7x69SreM/ITJkxg7969eHl5ce/ePQ4cOICFhcV36yhUqBAbNmzAw8ODK1eu0K5du59+tFevXr149OgRw4cP58GDB2zevJl169b9VB2xZciQgY4dOzJ8+HD+/fdf7t27R9euXdHU1IwzEvsXISEh9OvXj9OnT/P06VMuXLiAm5ubMgempqYEBQVx8uRJ/P39CQ4O/r9iBNDT08PAwEBl0tPT+7/r/RusWrGcKlWqkTNnLgBmTJ9K6xZNKWVdjJZNG6ldR6FQ4LLWmQZ1a1HKuhjVq1Rk1Ypl392Oj88TBvbrTeUKZbEtU4KO/7Th6pWvPwoFBLynd4+uVLe3o5R1MWpWq8z0qQ4EBQUpy3h43Kdls8aUK2VD/z69+PDNs94jIyNp3aIpd27fVtluhYqV0NbW5uCBfT+Vl9Url2NfpRo5Pufl2zhrVauMTbHCBH4e5yE29xs3KGVVlFbNGid4e8+ePaVCmRJULF863jJHDh3EplhhBg9QffzP+rXOVK1kS9VKtnE6SHdu36Jty6ZERqoO59+9Zy+cV66IM1jjz/i27STk//c94eHhtGzaCKui5nh6eKgsO3rkEC2bNqJsSStqV6/CujWrVZYnZ7uI7Us7yZkzFw88PRk1fAi1qlWmbElLmjSow6YNLirlTx4/Rs9unalSsRwVypagQ7tWXLxw7rvbcLt6hUH9e1Pd3o5ypa1p2axRnLh37dxO5w5tqWhbmoq2penZrRN37qjus8taZ6pUKk+VSuXVtpM2attJb1avXJ5o7QTgyuVLdGjXmvKlbahaqQLznGbH2W5sXTu1x6qouco0ZfIE5fIHnp6MHDaEmtUqU6aEJY3V5D4l24k63+YlIfGrU6dG1Th5cV61Um3ZZ0+fUr60DXblVG+3u3TxAg3q1sK2TAnGjBpOxDdX2AUGBtKgbi18fV+qrNOkSTM8PO5x4/q1X9hz8TNiHz9+vr70692DsiWtsK9YnrlzZv7w+AE4e+Y07Vq3oEwJS+zKl2ZQ/z7KZant8/dHEiMnA/r2olY1e0rbFKdaZTvGjBrO69evlMvdrl5hYL/eVKtsR9lS1rRsGvd9NzUdO9LpFmo5OztTvXp1DA0N4yxr1qwZ165d43asA/d7li1bRvPmzenTpw+FCxeme/fufPr06bvrzJ07l4wZM2Jra0uDBg2oVauWyuO51NHW1mbhwoWsWLGCHDly0KiR+g6Jrq4uo0ePxtLSkkqVKqGlpcXWrVu/W4ezszPv37+nRIkStG/fngEDBpAlS5YE5wAgT5487Nq1C1dXV6ysrFi+fDnTp0//qTrUmTt3LuXLl6d+/fpUr16dChUqYGFhgb6+vtryWlpavH37lg4dOmBmZkbLli2pU6cOkydPBsDW1pZevXrRqlUrTExMmDVr1v8do/g1ISEhuO7eSZNmzVXmN27SjFp16sa73kzHaezetYOhw0bgeuAwCxcvo1hxy3jLA/Tv04uoqChWrXFhy47dmJsXpn/fXvi/eQOApoYmVapWY8HiZew7dJQp02Zw5fJFpk7++pzdyRPGUaZsObbu3E1QUCCrV61QLlu/bg3WNiUobhk3joaNm7Jl44YE5QRi8rJ39y4aN437fOTJE8ZRyCz+MQ0CP35k/JiRlClbLsHbi4iIYPTwodiULBVvGd+XL5jnNCtOmYcPHrBsySJmzJ6L4ywnli5awKOHD4CYL0LTHCYxdvxktLVVxzYtWMiMXLlzc+gXvwzFbjsJ+f99zzynWZioec87f+4MY0YOp3mr1uxyPcCY8RPZuH4dWzZtVJZJrnYRmzIHTWNy4HH/LhmNjZk2Yza7XA/SrUcvFi2Yy9bNX2O9ft2Ncra2LFq6ks3bd1OqdFkG9O2Np8f9eLdzy/0mhczMmTNvITt27aNR46aMHzOSs6f/VZa55naF2nXrsWrNetZv3ErWbNnp3aMLr17FfIl8+MCTZUsWMnP2XGbMmsuSRfNV2slUh4mMHT8p3nbyq1+aY7eTB56e9O3VHdsKdmzb6cosp3mcOX2KBfOcflhXs+YtOXn6vHIaPHSEctn9+3cxzmTM9Bmz2b03JvcL589NFe1Endh5SUj88enTb4BKXtq0+ydOmYiICEYNH0KJWO8f0dHRjB4xlBYtW7N+8zbu37vLzh1fT1osmDeHFi1bkyNHTpX1dHR1qVuvPps3rv+V3RcJFLudREVF0a9PTyIiInDZuJWp02ewz3UPSxcv/G49J44dZeyoETRq0pTtu/fismELdep9HaQ3NX3+/khi5aR0mXLMnjufvQeP4DR/IS+eP2fY4IHK5V/ed53mL2Tn7n00atKUcaNHcubz+26qO3YUQog/TlBQkMLQ0FCxevXqlA7lu0IiZPrRtO/AYUXZcuXULps7f6GiQYOGcebf8/RSFClSROHx0DvB2/F9/VZhZmamuHDZTTnPPyBQYWZmpvj37IV411u91kVRsVIl5WtLS0vF/QdeipAIhcJlwyZF127dFSERCsWjx88U1WvUVPgHBKqt5/HTlwozMzPFQ++ncZZ9Co+OM7keOKQoW65cnPlr129StGnbTvHvuYsKMzMzxX/+AXHK9BswSDHLaZ7Cad4CRf0GDdXWH3uaPmOWYvCQYYot23cqSpQsGWf5x5AIRYuWrRQbt2xXDB0+QtGjV2/lsj37DiqaNW+hfN20WXOF6/5Dik/h0YqFS5YpJk6eEu925y5YpGjVuo3aZf9P24nv/xffdPzUaUWt2rUVdz0eKczMzBQ3b99XLhs4aIiib7/+KuWd161XVKxUSRH8Oc6kaBfqpuBw1Wnv5xzEnv/tNG7CJEW7f9p/t0ztOnUV8xYs+m6Z2FOXrt0Vw0eMind5YEikwsbGRrFtxx5FcLhC2U6+LP/SToLDFYpFS5YrJk6eEm9d8z63E3XLfradzJztpGjSpKlKmcPHTiqKFy8e7/8pJEKhaNvuH8Vkh6k/9f42/nPuk/L941enhBw/seNXN9nbV1Gscl77w+1NnzFLMXjoMMXW7bsUJUuWVM5/8Z+/wszMTBEQFKosN37CJEVIhEJx6ep1ReMmTRRBoZFq6zx/6aqiaNGiiveBIYmWF5m+306OnzqtKFy4sOKF3xvlPJeNmxUlSpRQfPwUpraOwJAIhV3FiopNW7f/1LaT4/M3pXKibjp89ITC3Nxc8TE4PN4yXbt1VwwfOUoREpG8x05CyJluIf4AN2/eZMuWLXh7e3Pjxg3atWsHEO+ZfvH7uHHjGkWKFP2pdc6cPkXOXLk4c+Y0dWpWpU6NqkyaMFblUrPYjIwyYpovH/v3uhIcHExkZCQ7t2/DOFOmeLf/+vUrTp04TslSXy+3NjMvzKVLF4mMjOTK5cvKM85THCYyeOhw0qVLr7au7DlykClT5gRfznXz+nUsYsXl7e3FquVLmeI4E814bq3Yu2cXL188p2fvvmqXq3P1ymWOHzvCqHET4i2zctkSjI0zxbkiAWLORD718cHPzxdf35c8fepDgYKFeP7sGftcd9N3wEA1NcYoVtySu3du/9IAkj9qO+r+f+q89fdn8sTxTHOchX6auFfPhIeHoxvrVhF9PX1e/fef8rK95GoXsd24/uPjJygwEENDo3iXR0dHE/zp03fLqK036Pv1hoaGEBkZqbyirFAh8zjtpGBBM54/e8Ze1930GzAo3roSs52o/X/q6xMWFsb9e/e+W9ehg/upXKEsTRvVZ8E8J0JCQr5bPjBWjlKqnaiTkPfe2PHHZ83qVVSyLUvLZo1Zt2Z1nMtqr1y+xPFjRxgzLu5VJ8bGxpiYmHDpwnlCQkK4eeM6hczNiYiIYJrDJMZPdEBLS0vtdosULUZUVBR3bt/6YYzi18RuJ7fc3SlUyIxMmTMr59lWsCMoKAgvby+1dXjcv8/rV6/Q1NSkZbPGVKtsR5+e3Xj0KP6xeVLy8/dHEiMnsX0ICODgwf1YWdvEGVz4W4HfvJ+ntmNHOt1C/CHmzJmDlZUV1atX59OnT5w7d47M37zBid+Tn6+v2kt6v+fFi+f4+fpy/OgRpjnOwmGaI/fv3WPo4AHxrqOhocHK1evw9LyPbZkSlClhyQaXtSxdsRqDWLeZjBw2hLIlrahRpRLp0qVjksM05bKJDlM5cewo9WvXQEdHh67de7J/nytp9PUpWqw4vbp3pX7tGixeMC9ODCZZsuDn55ugffTz88XE5GtewsPDGT18KIOGDid7dvXPqH/61IeF8+YybcasOJfoxicg4D0Tx45m8lRH0qdX/4Xl5o3ruO7ZxfjJU9Quz1+gAP0GDqZ39y706dGV/gOHkL9AAaY6TGTQkOFcvHCe5o0b0Lp5E65fc1NZ18QkCxEREfj7v0lQvN+Kr+187/8Xm0KhYPzYUbRo2ZqixYqrLWNbwY6TJ45z5fIloqOj8fF5wnqXmPuRv9yakFztIrbY7SQ295s3OHb0ME2bt4y3jMs6Z4KDg6lZq06Ct3v0yCHu3b1DwyZN4y0zf+4cTEyyULa8LRDTTvoPHEyv7p3p3aMLA5TtZIKynTRrXJ9WzRsnaTuxrWDHLfebHD54gKioKF69esWKZUuAr/9PderUrc+0GbNZvXY9Xbv34MD+vYwZNTze8u43b3DsyGGatfia+5RqJ+r86L1XXfzqtGnXnplz5rJ6rQvNW7Zi9aoVzHOarVweEPCeCWNHM2XaDLXvMRoaGsxyms/K5Utp2qgehQtb0LhJM9asXknpMmXR1dOjY7vWNKxXK86l7mnSpCF9+gz4+SZeXoSq2O3krb8/xplUv3tl+vz6bTzH54sXzwFYvmQxPXr2ZtHS5RgYGNKtU/s4P5anhs/fH0mMnHwxz2k2ZUtZU6lCWf7z82PB4qXxlv3yvtvo8/tuajt2EvatQwiRqtnY2HD9+vWUDkMkgdDQMLLo/tyAc4poBeHh4Ux1nImpaT4AJk+ZRusWTfF58hjTfPnjrqNQMH3qZIyNM7F2/Sb09fXZvXMHA/r2YvO2nSodl+EjR9OrT1+e+viwYP5c5sx0ZOyESQAULFiINS5fP7wCAt6zbMki1rpsYsb0KVjb2DB3wSLatWpOMUsr7KtUVZbV19P74ZmxL8JCQ9HL8jUvC+c7kS9/Aeo1aKi2fFRUFGNGDKNX3/7k/ZyThJgycQK169WP92zwp09BjBs9gvGTppAxY8Z462nRqjUtWrVWvt63dw/p0qbD0sqaxg3qsHHrDl6/+o9Rw4dw8OhJ5VMU9PRj9jE0JDTBMX8RX9v53v8vts2bNvDp0ye6du8Z73aatWjJ8+fP6N+nJ5GRkaRLl5527TuwbMkiNDRjfttPrnYRW1hoGLpZ1B8/Xo8eMnhAH3r27ottBTu1ZQ4d3M+KZUuYv3ApxpkyJWibblcvM3H8GCZMmkrBgoXUllmzeiVHDx9i9dr1KgNKtmjVhhat2ihf79u7h7Rp02FlZU2jBrXZtHXn53YymINHT33TTmKuQEiMdmJbwY7BQ0fE3EM+egQ6urr06NmHG9evKf+f6jRv2Ur5dyEzczJnNqFH1048f/aM3HnyqJR99Oghg/rHzX1KtRN1vvfeG1/86nTo1Fn5t5l5YXR0dJg6eSIDBw9FV1eXyRPHU+c77zEAJUqWYvP2XcrXPj5POLBvL9t27qFzx39o908HKlSsRLPG9SlZqhRm5oWVZfX09QgNTby8CFW/8hkdm+LzIMHdevSies1aADhMc6Rm1UocO3aEFi2/fnakhs/fH0mMnHzRqUtXmjRrjp+vL8uXLmbc6JEsWroizkDBV69cZsK4MUycrPq+m5qOHel0CyFEKpYxoxEf4xmBOz6ZTUzQ1tZWdrgB8uUvAICfn5/aTvfVK5c5e+Y05y65Kc+2jJ1QlMuXLrLP1ZWu3Xuo1J/ZxIR8+QtgYGhI5w7t6NG7j9ozinNmzqBd+45kzZaNa1ev0q//INKmTUvFypW55nZV5UP/w8cPGBsbJ2gfjTJm5OPHr08ncLtyBa9HDylldRSI+REBoErF8nTt3pN/OnTi/r27PPD0YOb0mDPS0dHRKBQKSlkVZelKZ7UDq129epkzp0+x4fNI0gqFgujoaEpZFWXcRAcsihTB9+VLBvXrrVzny1MWSlkVZc/+w3E6HO/fv2flsiU4r9vInTu3yZvXVDlFRkby1OeJ8rLAj5+fnpAxgXn5Vnxt52f+f25XLnP7ljulbVTPcrdt1Yy69Row1XEmGhoaDB46nAGDhuDv749xxoxcuXIJgFy5cquNLanaRWxG8eTA29uLHl070bR5K7r37KNmzZiR6B0mjmOW0wLKfT4b/SPX3K4yoG9vho0YTYNGjdWWcVnrzBrnlaxYtVblC15s79+/Y8WyxaxZt4k7d24lsJ3E/8NPfNS1kw6dOtO+YyfevHmNgYEhvi9fsnC+E7ly5YqnlriKW1oBMaP+f3sMeHvF5L5Zi1b06KU+918kVztRJ77j52fiV6e4pRWRkZH4vnyBab78uF25zJl/TylHq//yHlPCsgjjJzkoBwH81pRJExg6fCTRCgWeHvepUas2adKkoVSp0ly75qbSrj5++EDGjImXF6EqdjvJlDkzd2M9leDtW//Py0zU1pHZJGZ+/gIFlPN0dXXJmSs3//n5xSmb0p+/P5IYOflalzEZMxpjapqP/PkLULNaZW7fcsfK2kZZ5sv77vDvvO9+kZLHjnS6hRAiFStsUYSD+39uVGJrmxJERkaqnGF6+vkZ99lzqL/0+ssv3LHvhdbQ1EChiP9RfV86t+ruJb1y+RKPH3vjMM0RgOjoKOW9jJERqvc0hoWF8fzZcwpbFPnR7gFQuLAFBw/sV76eM28hYWFfz/Ldu3uHSePH4uyykdy585AufXp27FHN4/atW3C7epnZcxcoH2sSm8vGrURHf31m/elTp1i3ZhXrNm4hS5as6Onrx6l3yaIFBH/6xPBRY8iWPVucOp1mOiq/CN27e0fl/s6oqCiVRyN6PXpE1qzZvnsWPT4JaTvf+/8BjBw9jr7f3Ev85vVrevfoyqw585Sdqi+0tLTImjUrAIcPHcTK2kbtl7ikbBexFS5cJM6o3l5ej+jRpSMNGjWm/8DBatc7fOgAk8aPYcbsuVSqbJ+gbbldvcKAvr0YOGQYzVu0Ultm7ZpVOK9cztIVzvFerv/FnJmO/NO+k9p2EhkVRZRKO3n4uZ38/BfE+NqJhoYGWbJ8+X8eIFu27HHGUfieB54xj5UzMfn6pdrL6xHdu3SkYcP4c/9FcrYTddTl5Wfij88DTw80NTUxNo65cmL9pm1EqbzHnGSt8ypcNm0l6+f8f2v3rh0YGhphX7Wa8scWZV4iI4mO+lrX82fPCAsLS9S8CFWx24mVtTWrVy7n7du3ZPp8dczlixdJnz49BQoUVFtHkaLF0NXVxcfniXL0+oiICHx9X8Z7uxSk3OfvjyRGTtT58tn47f66Xb1C/z69GDRkmMrVNuqk9LEj93QLIUQqZlvBDm9vL+UHBMQ8y9XTwwN//zeEhoXi6eGBp4eH8vmT5crbYlGkKBPHj8HD4z73791lyuQJlLOtoDz7fef2bRrVr618XJGVtTUGBgaMGzOKB56e+Pg8Ye6cmbx88ZKKlewBOHf2DK57dvHo0UNevnzB2TOnmTp5ItY2JeJ0WsPCwnCc5sCESVPQ/HxJqrVNCbZt2cQDT09OnDiG9TePALx9yx1dXR0srawTlJfyFex4/E1ecufJQ8FCZsrpSzz58xfAOFMmNDU1VZYXLGSGsbExurp6FCxkRpq0aQHYunkjPbt2Um4nf4ECKutkyZoFjc91GRgaoqenF6feDBkykDZdOgoWMkNHR1cl7ssXL/D0qQ+t2sQMdli0WHF8njzm/Lmz7NqxDS1NTZXL32/euEY52woJyklssdtOQv5/sdtF9hw5KFTITDnlNTUFIFfuPGTNFvODwvv379i+bQtPHnvj6eHBTMepHD96hOEjx8SJKanbhbocfNtOvB49pHuXDpS3rUD7jp3x93+Dv/8b3r17p1zn0MH9jB8zkiHDR1Lc0kpZ5tvnYG/dvJEeXTsqX7tdvUz/vj1p06491WvUVK7z4UOAssxa55UsXbSASVOmkyNnTmWZ4OC4j8+8FG87OcPOz+3k2ytZbty4TvlEaicA69as5tHDB3h5PWLFsiWsWb2KkWPGKQcdevXqFY3q11Y+8/f5s2esWLaE+/fu8vLlC06fOsm4MSMpWaq08szRo0cP6db5m9y/eYP/G9Xcf5Hc7SQheUlI/LGPn1vuN9m4fh0PPD158fw5Bw/sY/ZMR+rVb6gcKyN/gQIqx1iWLFnR1NSk0Of3mG+9ffuWVSuWMWrsOAAMDA3Jn78Amza4cMv9JlcuX8La5mtebly/Rq7cueNcbSMST+x2Ut7WjvwFCjJ21AgeeHpy4fw5Fi+aT6s27ZS3g8RuJ+nTp6dFy9YsW7KIixfO4/PkMdOmTAKgZq3aQOr6/E2OnNy+fYstmzbi6eGBr+9Lrly+xKjhQ8idO4/yLPfVK5fp16cnbf/5/L77+ZhUN2hsajh25Ey3EEKkYoXMzClsUYSjRw8r7+uaPHEc19yuKsu0at4YgEPHTpIzZy40NTVZuGQZM6ZNpUuHdqRJk5YKFSsxbPhI5TqhoSH4PHlCZGQEEHMJ19IVq1m0YD7du3QkMjKCAgULsWDxEswLx3xp1tPTY/fOHcyZ6Uh4eDhZs2WnWvUadOn29dLzL5YvXUzFSvYUtrBQzhs5ehyjRgylS8d21K3XgOo1aimXHT50kLr1G5AmTZqfysuxo4dp/s39bv+vgPfvef78WaLV963Q0FBmTJ/CzDnzlF+EsmbLxojR45g0bgw6uro4TJuB/uf7c8PCwvj31EmWLF/1S9uL3XYS8v+L3S4Sav9eV+bOnoUCBVZW1qxet0Ht82CTul3EFrudHD92lPfv3nHwwD6VM+DZc+Tk8LFTAOzasZ3IyEgcpzrgONVBWaZBoyZMmTYDiLlF4Pnz58pl+/a6EhoSwprVK1iz+uuzcUuWKoPzupjn327ftpWIiAiGxRrQsGfvfvTu21/5OqadODBzznyVdjJy9HgmjhuDrq4uDtNmxmonJ1i6fPX/laNv32POnzvL6pXLCQ8Px8y8MAsWL8GuYmXlOpGREfg8eaK831FHR4crly+xacN6QkKCyZYtO9Wr16T7N5dfn/iS+/37VM6C5ciRk8PHT6nElNztJCF5SUj8sY8fXV1djhw+xPKliwkPDydnzly079CJ9h07q93mj8xynEaHjl2UVyAAOEybwfixI9m8cQMdO3elWPGvx93hQwdp2uz7A72J/0/sdqKlpcWipcuZ5jCJDu1akSZNGho0akKffl+Pe3Xvs4OHjUBLW5uxo0cQFhpKcUsrVq1xUf7wkpo+f5MjJ2n09Tl54hjLliwiJCSYzCYmVLCryKyefZQd9f2f33edV63A+Ztnkpcq/fV994vUcOxoKL5cmyCEEMksNPLHZQScPXOaeXNmsWvvAeWX8D/J+/fvaFSvDpu371R7D3B0PB9T586cZp7TbHa67v8j87J96xb+PXmcZavWqF0e32PRvvU7t50ftQt11DWVs2dOM99pFjtdf78cJMT2rZs5dfIEy+NpJwloJn9dO0mo3zkvXy6F33fwKBkyZEjpcP5ov3M7Sarj53fOya8cO/oJOI0tZ7qFECKVq1TZnmdPfXj96hXZsmdP6XASne/Ll4wZP/GnP/ArVrbn2bOnf2xetLW1GTlm3P9Vx+/cdn61XcRWqbI9z579njlICG1tHUZJO0n0Djf83nnxf/OGqdNnSoc7GfzO7SSpjp/fOSdJdezImW4hRIqRM90iIeI70/23S8iZ7r+NNJW4pJkIIUTSSsiZ7t/rfL8QQgghhBBCCPEbkU63EEIIIYQQQgiRRKTTLYQQQgghhBBCJBEZSE0IIUSqJvcuq/f6Y1hKh5DqZDHQS+kQhBBCiDjkTLcQQgghhBBCCJFEpNMthBBCCCGEEEIkEel0CyGEEEIIIYQQSUQ63UIIIYQQQgghRBKRTrcQQvylli1ZhFVRc5WpUf3accopFAr69OyGVVFzTp08kQKRiqR0++Y1xg/rR6sG1ahR3pILZ07FKfPU5zHjh/enUXVbGlQpQ98ubXj9n59y+fwZDnRoXpd6lUvTvE5lJowYwDOfJ2q39/FDAG0aVqdGeUuCAj8m2X4ltzo1qsY5nqyKmjN9yuSUDk2kYs6rVmJV1JxZjtNSOhQhRBKS0cuFEOIvVqBgIVauXqt8raWtFafMxvUuaMgI4n+s0NAQ8hcyp1b9JkwePTjOct8XzxncsyN1GjShY7c+pE2XHp8nXujo6irLFCpchKq16pIlW3YCP35g/epljBrUkw27DqOlpdqmnKZPJF9BM/zfvE7yfUtOm7btJDoqSvnay+sRPbt1pkatuD9kCQFw985tdu7YipmZeUqHIoRIYtLpFkKIv5i2lhaZTUziXe7p4cF6lzVs2baLavZ2yRiZSC5lylekTPmK8S5fu2IRZWwr0r3fEOW8HLlyq5Sp17i58u9s2XPSuWd/erZvzis/X5Wy+3dvIygwkH+69MTt0vlE3IuUZ2xsrPJ6zeqV5M6dh1Kly6RQRCI1C/70idEjhzNx8lRWrViW0uEIIZKYXF4uhBB/safPnlLd3o66taoxesRQ/Hx9lctCQkIYPWIoY8ZN+G7HXPy5oqOjuXLxLLly52XUoF60qFuZ/l3bqr0E/YuQkGCOHnAlW46cmGTNppz/9Ik3G9esYOSEaWhq/tlfPyLCwzl4YB+NmzaTq0SEWtOnOlCpUmXKlbdN6VCEEMngz/7UE0IIEa/ilpZMmebI0hWrGTt+Ei9fvqRzh3Z8+hQEwOyZjljZ2FClavUUjlSklID37wgJDmbbBmdKl62A4/wVVKhcjcmjB3PrxjWVsvt2baVB1bI0rFoOt0vnmblgJTo6OgCEh4czfcJIuvcbQpZs2VNiV5LVqVMnCAwMpGHjJikdikiFDh86iIfHfQYMHprSoQghkolcXi6EEH8pu4qVlX+bmRemuKUVdWpU4eiRwxhnNMbtymW27dyTghGKlBYdHQ1A+YpVaNamPQAFzQpz7447B1y3Y1WilLJstVr1KFGmPO/837BjswtTxw1j/or16OrpsWbZAvKY5qd67fopsh/Jbc+uXVSwq0SWLFlTOhSRyvzn58esGdNYsWoNenp6KR2OECKZSKdbCCEEAAYGBuTNa8rzZ8/weviQ58+fYVe+tEqZoYP6U6JkKZzXbUihKEVyMjTKiJaWNnnzFVCZn8c0P3dv3VSZly59BtKlz0Cu3HmxKGZF05oVOH/mJFVr1uXm9av4eD/i7L/HYworFAA0q1OZth270bF732TZn+Tg6/uSK5cvMnfBopQORaRC9+/f493bt7Ru0VQ5LyoqiuvX3Ni6ZRNuN+/EGXxQCPH7S/WXl58+fRoNDQ0CAgJSZPvBwcE0a9YMAwOD/zuO2Puybt06jIyMEiVOgEmTJmFtbZ1o9QHY29szaNCgRK1TnV/Jc1K3jV/5/ygUCnr06IGxsTEaGhq4u7snSWyJzcfH57eKVySN4E+feP78OZlNTOjSrQc79uxj2y5X5QQwbORoJk+dnrKBimSjo6ODuUVRnj/zUZn/8tlTsn7nMnGFQoFCAREREQBMnD6X5et3sNxlO8tdtjN49CQA5i1bR8NmrZMq/BSxd89ujI0zUbGSfUqHIlKhsuXKsdN1v8p7a9GixahbvwHbdrlKh1uIP1SqONN96dIl7OzsqF27NgcPHlRZZmtri5+fH4aGhikSm4uLC+fOnePixYtkzpyZ9+/fkzFjRm7evPl/d3BbtWpF3bp1EyfQJLJ7927lPXlJKXaeU+r//a1f+f8cOXKEdevWcfr0afLnz0/mzJmTKLpf16lTJwICAnB1dVXOy507N35+fqkyXpF0nGbPpLJ9FbLnyMGb169ZtmQRWlqa1KlbH2NjY7WDp2XPnoNcsUauFr+3kOBgXr54pnz9n+9LvB56YmBgSJZs2WnRrhPTxg/H0roEViXK4Hb5ApcunMFpiTMAfi9fcPrEEUqWtcXIKCNvXr9i6wZndPX0KFM+ZsT72KOdf/wQAEAe03ykz2CQPDuaDKKjo9m7ZzcNGjVGWztVfMUSqUy6dOkpVMhMZV6atGkxMjSKM18I8edIFZ8Izs7O9O/fH2dnZ3x9fcmRI4dyma6uLtmyZYt33aioKDQ0NH5qJFSFQkFUVFSCPhC9vb2xsLCgWLFiQMwZwcSSJk0a0qRJk2j1JYXYj0BJKrHznBr8yv/H29ub7NmzY2v766OR/kz7TCxaWlrfPc7En+nVq/8YNXwIAQEBZDQ2xqZESTZs3p5sx71IHR563mNY367K18sXzgagRt2GjBg/FTv7agwcMZ4t651ZMncmufKaMnH6XIpZlQBAR1eXO7dusHvbRoICP5LROBPFrUuyYOV6MhpnSpF9SimXL13Ez8+Xxk2bpXQoQgghUpEUv7w8KCiIbdu20bt3b+rVq8e6detUlsd3Sfa+ffsoUqQIenp6PHv2jLCwMEaOHEnu3LnR09OjYMGCODs7q9Rx+PBhSpYsiZ6eHufPn8fb25tGjRqRNWtW0qdPT+nSpTlx4oRy2/b29jg5OXH27Fk0NDSwt7cnX758ANjY2CjnxefQoUOYmZmRJk0aqlSpEqfDHvvy5Vu3blGlShUyZMiAgYEBJUuW5Nq1ayplXV1dKVSoEPr6+tSqVYvnz5/Hu303Nzdq1KihPHNcuXJlbty4oVzepUsX6tdXHdQmIiLif+zddVgUWx/A8S8gIYqIgIJ1MSiDEkXALjCwuzuwAxEDFQuxuxW7Fb12FyYGFqCgiAKCrSDNvn9wXVlKVBR5PZ/nWR934sxvz87scOYURYsWleZd2ublenp6zJw5k969e6Ompkbp0qVZvXq1TBqXL1/GzMwMFRUVLC0t8fLyyrLpckb5DLB582YsLS1RU1NDR0eHzp07ExkZmennffbsGQ4ODmhoaFCgQAEqVqzIkSNHpOvv379P48aNKViwIMWKFaNbt268fv060/TSfj9fmu9v3rwZPT091NXV6dixI58+fQJSapCHDh1KSEgIcnJy6OnpARAXF8ewYcMoWrQoKioq1KhRgxs3bkjTzez8rFOnDkOHDmXEiBFoaGhQrFgx1qxZQ3R0NL169UJNTY3y5ctz9OhRaVpJSUn06dOHMmXKkD9/fgwNDVm0aJHMZ9i4cSMHDhxATk4OOTk5zp07l2Hz8vPnz1OtWjWUlZXR1dVl3LhxJCYmynxvw4YNY+zYsRQpUgQdHR2mTJmSaX4Kfx6PuQs4de4SPnfuc/LMBTzmLqBU6dKZbu/7IIB69cVI5v9vTC2qcvLK3XSvsZOmS7exd2jFxt2HOHz+Bqs27camVl3pOi3tosycv5zdR85x9OItth04ictUd0r9U+abx/x/quUGsLGtge+DAPT0Mv/sgpDWOs/NjHWZkNthCILwC+V6oXvXrl0YGRlhaGhI165dWb9+PZL/BljJzOfPn5k9ezZr167lwYMHFC1alO7du7N9+3YWL16Mn58fq1atomDBgjL7jRs3Dnd3d/z8/DAxMSEqKoomTZpw+vRpbt++jb29PQ4ODoSEpDSz27dvH/369cPa2prw8HD27dvH9evXATh16pR0WUaeP39O69atcXBw4M6dO/Tt25dx48Zl+bm6dOlCyZIluXHjBjdv3mTcuHEyTbs/f/7MjBkz2LRpE97e3rx//56OHTPvC/fp0yd69OjBpUuXuHr1Kvr6+jRp0kRaSOzbty/Hjh0jPDxcus+hQ4f4/PkzHTp0yDTdefPmYWlpye3bt3F0dGTQoEEEBAQA8PHjRxwcHKhcuTK3bt1i2rRpODs7Z/m5M8pnSHkAMG3aNHx9ffHy8iI4OJiePXtmms7gwYOJi4vjwoUL3Lt3j9mzZ0vPgffv31OvXj3Mzc3x8fHh2LFjRERE0L59+yxjSysoKAgvLy8OHTrEoUOHOH/+PO7u7gAsWrQINzc3SpYsSXh4uLRgPXbsWPbu3cvGjRu5desW5cuXx87Ojrdv38qknfb8hJRm91paWly/fp2hQ4cyaNAg2rVrh42NDbdu3aJRo0Z069aNz58/AylNG0uWLMnu3bt5+PAhrq6ujB8/nl27dgEwZswY2rdvj729PeHh4YSHh2dYKx8aGkqTJk2oWrUqvr6+rFixgnXr1jF9+nSZ7TZu3EiBAgW4du0aHh4euLm5cfLkye/KU0EQBEEQBEH4f5brzcvXrVtH165dAbC3t+fDhw+cP38+yxrkhIQEli9fjqmpKQCPHj1i165dnDx5kgYNUmphypYtm24/Nzc3GjZsKH1fpEgRaRoA06ZNY//+/Rw8eJAhQ4ZQpEgRVFVVZZq4f/z4EQBNTc0sm+OuWLGCcuXKMW/ePAAMDQ2lBcHMhISE4OTkhJGREQD6+vrpPvfSpUuxsrICUgo8xsbGXL9+nWrVqqVLr169ejLvV69eTeHChTl//jzNmjXDxsYGQ0NDNm/ezNixYwHYsGED7dq1S/fAIrUmTZrg6OgIgLOzMwsWLODs2bMYGhqybds25OTkWLNmDSoqKlSoUIHQ0FD69euXaXoZ5TOk1MR/UbZsWRYvXkzVqlWJiorKML6QkBDatGlD5cqVpft8sXTpUszNzZk58+sAUOvXr6dUqVI8evQIA4Ps9aNKTk7G09MTNTU1ALp168bp06eZMWMG6urqqKmpyTTVjo6OZsWKFXh6etK4cWMA1qxZw8mTJ1m3bh1OTk7StNOenwCmpqZMnDgRABcXF9zd3dHS0pLmp6urKytWrODu3btUr14dRUVFpk6dKt2/TJkyXLlyhV27dtG+fXsKFixI/vz5iYuLy/L8Xb58OaVKlWLp0qXIyclhZGREWFgYzs7OuLq6SrtzmJiYMHnyZCDlfF26dCmnT59O9zkEQRAEQRAE4W+VqzXdAQEBXL9+nU6dOgGQL18+OnToIG3anBklJSVpTSDAnTt3UFBQoHbt2lnsBZaWljLvo6KiGDNmDMbGxhQuXJiCBQvi5+cnren+GX5+ftLC8RfW1tZZ7jNq1Cj69u1LgwYNcHd3JygoSGZ9vnz5qFr16/Q9RkZGFC5cGD8/vwzTi4iIoF+/fujr66Ourk6hQoWIioqS+Xx9+/Zlw4YN0u2PHj0qU9jNSOq8l5OTQ0dHR9rsOyAgABMTE1RUVKTbZPRAIDtu3ryJg4MDpUuXRk1NTfr9Zvb9DBs2jOnTp2Nra8vkyZO5e/eudJ2vry9nz56lYMGC0teXhxtp8zkrenp60gI3gK6ubpZN3oOCgkhISMDW1la6TFFRkWrVqqX73tKenyCb1woKCmhqakofKgAUK5YyB2zqGJYtW0aVKlXQ1tamYMGCrF69+rvPaT8/P6ytrZGTk5Mus7W1JSoqihcvXmQYH2SdH3FxcXz8+FHmFRcX911xCYIgCIIgCEJek6uF7nXr1pGYmEjx4sXJly8f+fLlY8WKFezdu5cPHz5kul/+/PllCgPZHeyqQIECMu/HjBnD/v37mTlzJhcvXuTOnTtUrlyZ+Pj4H/tAP2nKlCk8ePCApk2bcubMGSpUqMD+/ft/OL0ePXpw584dFi1axOXLl7lz5w6ampoyn6979+48efKEK1eusGXLFsqUKUPNmjWzTDftaOZycnIkJyf/cJwZiY6Oxs7OjkKFCrF161Zu3LghzYvMvp++ffvy5MkTunXrxr1797C0tGTJkpR5UqOioqRN/VO/Hj9+TK1atbId16/87GnPz8yOl3rZl+vgSww7duxgzJgx9OnThxMnTnDnzh169er1y87p78mPWbNmoa6uLvOaM3vWL4lLEARBEARBEP4UuVboTkxMZNOmTcybN0+mEOTr60vx4sXZvn17ttOqXLkyycnJnD9//rti8Pb2pmfPnrRq1YrKlSujo6PzzdHJlZSUgJQBq7Lypdl3alevXv1mTAYGBowcOZITJ07QunVraS00pOTZl4HVIKVW+f379xgbG2eYlre3N8OGDaNJkyZUrFgRZWXldAOHaWpq0rJlSzZs2ICnpye9evX6ZoxZ+dKMPnUNZupBw7LL39+fN2/e4O7uTs2aNTEyMsqyRvmLUqVKMXDgQPbt28fo0aNZs2YNABYWFjx48AA9PT3Kly8v88qosJtTypUrh5KSEt7e3tJlCQkJ3LhxgwoVKuT48by9vbGxscHR0RFzc3PKly+friZfSUkpW+fvlStXZMZX8Pb2Rk1NjZIlS/5QbC4uLnz48EHm5eTs8kNpCfD+/Tvq1LQmNPTFtzf+wwQFBtKwXi3pWARCzvn44T3tmtTmZXhobofyS9y4cokB3dv91MPOvHzteF+8QPvWLXL8QbeQsbx8ruzauZ2hjgNzOwxBEP6Ta4XuQ4cO8e7dO/r06UOlSpVkXm3atPlmE/PU9PT06NGjB71798bLy4unT59y7tw56eBRmdHX12ffvn3Swn7nzp2/eSMrWrQo+fPnlw7ElVmN/MCBA3n8+DFOTk4EBASwbdu2dCOzpxYTE8OQIUM4d+4cz549w9vbmxs3bsgUqBUVFRk6dCjXrl3j5s2b9OzZk+rVq2fafFtfX5/Nmzfj5+fHtWvX6NKlS4atAvr27cvGjRvx8/OjR48eWX7+b/mSh/3798fPz4/jx48zd+5cAJnWCd9SunRplJSUWLJkCU+ePOHgwYNMmzYty31GjBjB8ePHefr0Kbdu3eLs2bPS/Bs8eDBv376lU6dO3Lhxg6CgII4fP06vXr2+WQD9GQUKFGDQoEE4OTlx7NgxHj58SL9+/fj8+TN9+vT5dgLfSV9fHx8fH44fP86jR4+YNGlSuoceenp63L17l4CAAF6/fk1CQkK6dBwdHXn+/DlDhw7F39+fAwcOMHnyZEaNGvVd0/OlpqysTKFChWReysrKP5SWAGtWraRu3fqUKFGS9+/fMah/HxrUqYGlWSUa1a/NzOluREVFfSONFXTv0hGrKqbUqJ6+ewPA/Xt36de7BzWqW1LDuioD+/UhwN9fuj409AW9unfBytKMXt27pPvjdIjjAE6dOC6zrFz58piYmLF54waEnLXNcw3WNeuio1sCgFs3rjK8Xzea169O+6Z1WbNsAUmpZiGAlGkKd2/1pGd7B5rUqkJHhwZs9VydUfJSWz1XM7xfN5rVqUbLhrbp1h8/fICG1iYZvt69fQNAYIAfA7u3x6GeFZPGDOFjqvtpUmIijj074P/gnky6Va1rkC9fPk4fP/xD+QOy1w5AeFgYQwb1x6qKKXVqWjN/7myZmRqyEh8fT/vWLTCtaIh/qi5DcXFxTBo/jjYtHbAwqcCIoY7p9vXze0j7Ni2pbmnOUMeBfPhvlhZIecjesV1r7qXqJgVgW7MW+fLl4/Chgz/wyYXv9bPnSmjoCyZPGk/jRvWoZmFCU/sGLF+6mIRMWp+FPHuGdVXzdL/HVy5749DEDptqFowf5ySz/6dPn3BoYkdYmOyDtlat2uDn94BbN30QBCH35Vqhe926dTRo0AB1dfV069q0aYOPj49Mn9xvWbFiBW3btsXR0REjIyP69etHdHR0lvvMnz8fDQ0NbGxscHBwwM7ODgsLiyz3yZcvH4sXL2bVqlUUL16cFi1aZLhd6dKl2bt3L15eXpiamrJy5UqZQbzSUlBQ4M2bN3Tv3h0DAwPat29P48aNZQbFUlVVxdnZmc6dO2Nra0vBggXZuXNnpmmuW7eOd+/eYWFhQbdu3aTTVqXVoEEDdHV1sbOzk5kj/UcUKlSIf//9lzt37mBmZsaECRNwdXUFkOnn/S3a2tp4enqye/duKlSogLu7u7TwnpmkpCQGDx6MsbEx9vb2GBgYsHz5cgCKFy+Ot7c3SUlJNGrUiMqVKzNixAgKFy78w4XI7HJ3d6dNmzZ069YNCwsLAgMDOX78OBoaGjl+rAEDBtC6dWs6dOiAlZUVb968kQ5690W/fv0wNDTE0tISbW1tmVr4L0qUKMGRI0e4fv06pqamDBw4kD59+kgHdRNyV0xMDF779tCqTVsA5OXkqVuvPouWruDgkeNMm+HOtauXmT51cpbpJCQk0LCRPe06dMpw/efoaBwH9ENHtzhbtu/Cc/O2lAdJ/ftIH9bM85hN0aLF2LXXCy1tbebP8ZDuf+zoEeTl5GjQyC5d2i1atWb3zu3ZLtwI3xYbG8PRf/dj79AKgKDHAUwcPRjL6ras8NzFhGlzuHLxHGuXL5TZb/mC2Rw9uI/+Q0exbscB3OYsxqhC5fQHSCUxIYFa9RrRrHXGM0DUqW/HzkNnZF6WVjaYmFtK5+6eP2sKZpbVWOG5k+joKLZvXCPdf/f2TVQ0MceoYvo4GjVpgdfubd+RM1+lvXaSkpIY4jiAhIQENm7ZwfSZ7hz02s/ypYuzld6CeR5oZ3BfTUpKQllFmc5dumFVPePxXKa6TqSaVXV27NlHVNQn1q5ZJV23yXM9ZuYWVE4zbgZA85at2b5lc7biE35cTpwrwU+ekJwsYdJkN/YdOIzTWBd279rB4kUL0m2bkJDAOKdRWFSRLXAnJyfjMnY07dp3ZNO2nTx8cJ89u79WKi1aMJd27TtSvHgJmf0UlZRo0rQZ27Zs+plsEAQhh8hJvjU/l/BH8PT0ZMSIEdL5ynNSVFQUJUqUYMOGDbRu3TrH09+6dSu9evXiw4cP2e5/L/wdYkV564ecPH6MGdOncu7ilUy32bplExs3rOPE6W93uzmwfx9zZs/k0lXZGpEH9+/RuUNbjp86h46uLgCPHwXQtlVz/j1ygtL//EMrhyaMGTsO25q1uHTxPPPmeLD/4GE+fvxIlw5tWbN+o3Tf1BLi47GxqsLSFaszLZQIWYv8KDsQ4YUzJ1gydwa7j6R85+tWLOLWjassW/+1u9aVi+eYPtGJ3UfOoVqgAM+CnzCga1vWbN2b5bzamTl++AArFnrgdTL9w7vU3r97S6fmDRg1fioNGzsA0KxONZZ77qS0Xhn+3beTq94XmDFvGeGhL3AZOYjlG3agmkH3n8iX4XRpZcfG3YcpXrKUzLqihbJuPZP22rl08TxDHQdy6uxFNLW0gJRmuYvmz+XcxSso/telLCOXLp5nroc78xYsoXWLpuzc44VRBt29Jo0fx6dPH1m4ZLnMcqsqpuzYvY8yZcuxa8c2Lpw/x9IVq3nx/DmDBvRlx+69FCiQfqaO8LAw7BvW5dDRk5QqXTrLzyv8uJw8V1LzXL+WXTu3c+T4aZnlC+bN4dWrSKysrGV+j9+8eUO9WjZcv3UXZWVlFsybQ8znz4yfNJk7t28xe9Z0tmzfjYKCQrpj3fS5wYC+vbh01ee7Kj4EQfg+KtmYDyzX5+kWck9ycjKRkZFMmzaNwoUL07x58xxJd9OmTVy6dImnT5/i5eWFs7Mz7du3FwVuQcght275UKFCxUzXR0ZGcObUSapYVs10m+zQK1OGwoULs3/fHhLi44mNjWX/3j2ULVuO4iVSalUMDI24evUKycnJXPH2xsDAEIAFcz3o0KlzhgVuSKmFMTQyFk0fc9A931voG34dKyIhIUE6DskXysoqxMfH8TjgIQBXL51Dt0QJrnpfoFtre7q2smfezMkyTb1zwsmj/6Kskp9adb9OJ1hW34BbN66QlJjIbZ9rlC2XMnXjQo9p9Bs8MsMCN0BRHV00imhyz/fWd8eR9trxvXMHfX0DaSEKwMa2BlFRUQQGBWaazpvXr5k6eRIzZnmgkv/HCjMGhkZcuXKZxMRErl29iv5/1840t8mMHO2UYYEbQLd4cTQ1tcS184vl1LmSVtSnT+laeV67eoWTJ44xfmL61klFihRBW1ubK96XiImJ4fatm+gbGpKQkMAMtylMmuyWYYEboELFSiQlJXHvrm+24xME4dcQhe6/WEhICMWKFWPbtm2sX7+efPlyZtr2ly9f0rVrV4yNjRk5ciTt2rVj9eqs+wcKgpB94WFhGTZpdR4zCqsqpjSsW4sCBQowxW3GTx2nQIGCrPXczOF/D1KtiinWVc3x9r7IslVrpL8Xo5ycefr0CY0b1uNZyDNGOTlz0+cGAf5+ODRvidOo4TSxq8+0qa7p+jFqFy1KWFjYT8UofBX5MhxNra/nhaWVDQ/v+XLmxBGSkpJ4HRnBlg0rAXjz+hUA4aGhRLwM58KZE4x1nYHTpGk89vdj2oRRORrbsX/3U69RY5RT1baNcpnChTMn6d6uKfnyKdKxRx9OHv0XFRUVDI0rMm7EQHq0bcqGVUvSpaeppU3ky+8/d9JeO29ev6aIppbMNpr/vf+SR2lJJBImTRhHu/YdqVgp62b4WZnsNp1TJ47TzL4hioqK9Ok3gH8PepFfRYWKlSozsF8fmtk3ZGkGTZG1ixYlPFxcO79STpwraYU8e8b2bVto266jdNn79+9wneDCtBnuFCyY/kGLnJwcHvMWsnrlclq3aIqRkTEtW7Vh/drVVK1mhZKyMj26dKR5Uzu2b90is2/+/PkpWFCNcPE7Kwi5LmdKWcIv17NnT3r27Jmjaerp6fEreheMHTuWsWPH5ni6giCkiI2No6hS+ma0Ts4uDHQczLPgYBYtnM/c2bOY4DrlJ44Ty5RJEzAzt8B9zjySk5PZuGE9QwYNYNvOPaioqFCsWDGWLv/aFzU+Pp5B/fswfaY7q1etQLVAAQ4cOobjgL7s3r2Tzl26SbdVUVYmNjbmh+MTZMXFxck0cbW0sqHfkFEs8pjObLcJKCkq0qXXAO7duSUdy0IiSSYhPh5n1xmULK0HwOgJU3Ds2ZHnz57+UJPztB7e8yUk+AnOk2XHNdErW575K74Opvfxw3s2rV3O/BUbWDrfnYqVTZk8az5DenfGqEJlrGvWkW6rpKxCbGzsd8eS2bXzPbZt3Ux0dDR9+g34qXTKl9dn/cavhaT379+xYtkSNmzcivvMaZiZmzN/0RK6dGhLJRNT6tStJ91WRVmZmBhx7fxKOXGupBYREYHjgL40tLOnTbuvYyFMnTyJxk2bZdkyyaKKJdt27ZW+Dw5+yqGDB9i5Zz+9enSlS9fu2NasRZuWzahiaYmBoZF0W2UV8TsrCH8CUdMtCIKQx2hoFObjx4/plmtpa1OmbDnq1KvPpMlT2bVzO69efXuqvcwcOfwvYWGhuM2YRaXKJpiYmuHuMZfQ0BecPXM6w33Wrl6JtY0tFSpWwufGdRo0tENRUZH6DRrhk2YaxQ8fPqChUeSH4xNkqasXJuqT7HnRtlN3vE56s3X/cfYcvYB1rboA6BZPGY25iKYWCgr5pAVugNL/lAUgMuJljsR19OA+yukbYWCU9TSJKxfNoXWHrmgX1eHurRvUqteI/PlVsbKpie9t2abUnz5+oHDh7x+MMu21o6mlxds3slNpvvnvvaaWdoZp3Lh2lbu+d6hqXhkLkwo4NG4EQOcObZjo4vzdMX0xd7Y7Xbr1oJiODj7Xr9OwkT2qqqrUrF0bnxtprp2PHyhSRFw7v1JOnCtfREZG0LdXd0zNzXGdIjsTy41rV9nkuR4LkwpYmFRgiusEPn36hIVJBfbv25NhetOmuDLayZlkiQR/v4c0tLNHU1MTS8uq+PjIzljyUfzOCsIfQRS6BUEQ8hgj4wo8+UYfwi+tWOIzmZomO2JjY5GXk5eZ7k9OXh455JBkML3ik6Agjh4+xOChwwFITkoiMTFllPPExASSk2Wn5wsMfJzhwFPCjylvYMSz4CfplsvJyaGlXRRlFRXOnjiKdjEdyhum5HtFE3OSkhIJe/Fcuv2L588AKKaTcX/87xHz+TPnzxyXjqiemVs3rhIS/JQWbVNG0k9KTpaObJ+YmEhyqqkd4+PiCA99TjkDowzTykraa8fUzIzHjx/x5s0b6bKrly9TsGBBypUrn2Eazi4T2bXvADv3erFzrxdLV6R0n/KYu4Chw0d+d0yQ0qf3yZMgOnXuCkByctLXz58g+/nj4uJ4HvIcI+OsH2IIPycnzhVIqeHu07M7FSpUxG36rHQzpmzaulN6Lu3c64XjkGEUKFCAnXu9qF+/Ybr09u3djbp6YerUqy89LzK7Vp6HhBAXFyfOFUH4A4hCtyAIQh5jY1uDoKBA6WBXFy+cx2v/Xh4/fkRo6AsunD/H9KmTMTO3kM4ve+/uXVo0syciIkKaTnhYGP5+foSHh5GUlIS/nx/+fn58/m+6RWtrGz5+/MDMaVN5EhREYOBjXCe6kC+fAlWtrGRikkgkuE2ZxBhnF1RVVQEwM7dg757dPAkK4t+DBzAz/zolY2joCyIjIqhubfNL8+pvYmllw7MnQXxKVTu3a8sGngY+IvhJIFvWr2Ln5nUMHjlOOvCSRdXq6BsaM3eGK4EBfjzyf8jC2W5YVLOW1n77P7hH7w7NeR359dyJfBlO4CN/Il+Gk5ycROAjfwIf+RPz+bNMTOdOHSMpMYkG9k0zjTs+Lo6l82YxYpyrtEBS0cSMg3t3EPQ4gEvnTlHRxFy6vd+DuygqKVGhsul351Haa8fapgZly5VnwrixBPj7433pIkuXLKRDpy7SQejSXju6xYujr28gff2jl5JPJUuVppiOjvRYQYGB+Pv58eHDez59+iS9vtKKi4tj1gw3XKdMk35+M3MLdm7fSoC/P6dOncAs1XSmd33voKSkiImp2Xd/fiH7cuJciYiIoG/Pbujq6jLKyZl3b9/y+tUrXr/62ge8bLlyMudT0aLFkJeXR1/fgEJpBlx78+YNa1atYNyElOk7C6mrU7ZsObZu3ojvndtcu3pF5nf21k0fSpYqJUa5F4Q/gOjTLQiCkMfoGxhiZFyB48eP0q59R5SVldm3ZzdzZ88iPj6eYjq61G/QkN59+0v3iY2NIfjpU2nNM8DypYs5eGC/9H2Hti0BWLthE1WrWVGmbDkWL1vJyuVL6d6lA3Jy8hgZG7N81Vq0tWUHctuzeyeamlrUrlNXumzg4KG4jB1N107tsK1Rkw6dukjXHTtyGGsb23Rzywo/rkx5A/QNjTh/+jjNWrUD4MbVS2zbuJaE+HjK6hsw1WMR1axrSveRl5fHbc4Sls2fxSjHXqio5KeqdQ0GDB0j3SYuLpbnIcEkJn2d489zzTJOHjkofT+oR0of1bnL1mFq8bVv6rF/91OjTn0KqhXKNO7N61ZiZVOT8qlqrgePHMesyeMYNagX9e2aULNuA+m6syeOUq9RU1RUvn9GjLTXjoKCAkuWr2SG2xS6d+lA/vz5cWjRCschw6T7ZHTtZMeQQf0JCwuVvv9yffk+CJDZbuXypdSsVUem1Yezy0TGjR1N7x5daNLUgQYNv851f/TIYZo0cxAzgvxiOXGuXL3sTUjIM0JCntGoXi2Z9NOeB9nhMWsG3Xv0pmjRYtJlbjPcmTTBmW1bNtOjVx8qVf46t/vRI4dp3aZ9RkkJgvCbiXm6BUHINWKe7h934fw5Fsz1YO+BQ+maK/7pEuLjcWhixyyPuZhbVMntcPKstPN0A1zzvsDqpfNZs3VfnjsvsuPD+3f06tCcZRu2S/ulp/atebohb1877969pUXTxmzbtYeSaeYoF3JeXj5XAgMf0693Dw4ePo6amlpuhyMI/9eyM0+3qOkWBEHIg2rVrkPIs2AiIyIynQv7TxUeHk6f/gNEgfsXsLKtRejzZ7x+FUnRYjrf3iGPeRkexjCnCRkWuLMrL187YaGhjJ80WRS4f5O8fK68fvWK6TNniwK3IPwhRE23IAi5RtR0C8KPy6im+2+XnZpuQRAEQchJ2anpzlttZQRBEARBEARBEAQhDxGFbkEQBEEQBEEQBEH4RUShWxAEQRAEQRAEQRB+EdGnWxCEXCP6dKeXLH6S05GXk8vtEIQ84n30903r9TcoXEAxt0MQBEH4vyb6dAuCIAiCIAiCIAhCLhKFbkEQBEEQBEEQBEH4RUShWxAEQRAEQRAEQRB+EVHoFgRBEARBEARBEIRfRBS6BUEQ/hI3fW4wfPBAGtatiXklI86ePiWzfuWyJbRyaIx1VXNq2VRjQN9e3LvrK10fFvqCKZMm0NSuPtWrmOJg35AVSxeTkBD/uz+K8Bvt2rGNtq0csKlmgU01C7p17sCli+dltvG9c5u+vbpjZWmGTTULenXvQmxsbC5F/PN8b/kwbtRgWjepS+1qlbh47rR0XWJiAiuXzKdnp1bY1apK6yZ1mTHZhdevIqXbhIeFMnvaJDq0sKNhzSp0amXP+tVLSUjIeKC3F89DsK9Tjab1rH/5ZxNyV3auJ+HvdNPnBkMdB9KgTg1MKxpyJs09OrVpU10xrWjIlk2evy/AP8T35NOfRBS6BUEQ/hIxMTEYGBrhMsE1w/X/6OnhPH4Su/cdZMOmrRQvXgLH/n14+/YtAE+fPkUiSWai61T2eB1itLMLe3btZMnCBb/zYwi/WdFiOgwfOYbtu/exbddeqllVZ/iQwQQGPgZSCtyOA/pibVODrTt2s23nHjp27oK8fN79EyMmNoby+oaMcJqQbl1sbCyPAh7SvfcA1mzexbTZC3keEsz40UOk24Q8e0qyRMIYF1c27vBiyEhnDu7bxZrlC9Oll5iYgNtEJ0zMqvzKjyT8Ib51PQl/r5iYzxgaGuIycXKW250+dZJ7vr5oFy36myL7s2Q3n/40YsowQRByjZgyLL3fNWWYeSUj5i9aSt36DTLdJioqiprVLVm5dgNW1TOugdu4fh27d23n0LFf96RZTBn256lpXY2RY5xo3aYdXTu1p7q1DUOGjcjtsH7JlGG1q1Viusciatapn+k2fg/vMbBnJ3YdPEkxHd0Mt9m+eT0H9u5ih9cxmeUrl8zn9etIqlStztL5szl85kqOxi+mDPvzpb6eBAHAtKIhCxYvo16ae3RERARdO7Vjxep1DB00gC7dutO1e8/cCfIPkFk+/W5iyjBBEAThhyQkxLNv904KqqlhYGiU6XZRUZ8oVEj9N0Ym5KakpCSOHjlMTMxnTE3NefPmDffu+lJEU5PuXTpSt5YNvXt05dZNn9wO9beKjopCTk6OggXVstymUKFCMstu3bjGudMnGOk08VeHKPyB0l5PgpCV5ORkJoxzomevPpQvr5/b4QjfKRvlckEQBOFvceHcWcY5jSY2NgYtbW1Wrl6PhoZGhtuGhDxjx7YtjBwz9jdHKfxujx8F0K1zR+Lj41BVVWXB4mWUK1+eu753AFi5bCmjnMZiaGTMoQNe9O/Tk70HDvHPP3q5GvfvEBcXx6qlC6jfqAkFChbMcJsXz0PYt2sbg4aPkS778P49s9wmMHGqe6b7Cf+fMrueBCErG9atQSFfPjp37Z7boQg/QBS6BUEQBKmq1azYsXc/79+9Y9+e3YwdM4LN23ZRRFNTZrvIiAiGDOhHg0b2tG7bPpeiFX4XPb0y7NrrRVTUJ06eOM6k8c6s89xCcnIyAG3bd6BlqzYAGBtX4Nq1K3jt28vwkaNzM+xfLjExgSnjRyORSBjlPCnDbV5FRjB2+ADq1G+EQ8u20uVzZk6mgV1TTC0sf1e4wh8is+tJFLyFzDx8cJ+tmzexY88+5ESXqzxJFLoFQRAEqfyqqpQu/Q+lS/+DiakZzZvYsX/fHvr0GyDdJjIygn69u2NiZs6kKW65GK3wuygqKVH6n38AqFCxEg/u32Prlk307tsPgLLlyslsX6ZsOV6Gh/32OH+nxMQEJruMJiI8jAXL12dYW/36VSQjBvWmYmUzxoyfIrPuts91Ll88x86tngBIJBKSk5OpZ23KaJfJNG3e+td/CCFXZHY9uYrfUyETt2768PbtG+wb1JUuS0pKYt6c2WzdvImjJ8/kYnRCdohCtyBkQ8+ePXn//j1eXl65GkdwcDBlypTh9u3bmJmZ/fbjSyQSBgwYwJ49e3j37l2uxSH8PpLkZBLiv04JFhmRUuA2rlCRqdNn5ukRqoUfl/zfeVGiREm0ixYl+OlTmfXPgoOpUbNWLkX3630pcIc+D2HhivWoFy6cbptXkRGMGNQbA+MKjHOdnu5aWbbua0sBAO/zZ9i2eT3L1m5BW/vvHJX4b5Wc5ndWENJq1rwFVtY2MssG9e9DM4cWtGwlHtDlBaLQLfzR/pTC7qJFi/gTBvovVaoU4eHhaGlp5crxjx07hqenJ+fOnaNs2bJoaWkhJyfH/v37admyZa7EJGTf58/RPA8Jkb4PDX1BgL8fhdTVKaxemLWrV1K7bj20tLV5/+4du7ZvIzIygoZ29kBKgbtvr+7oFi/OqDHOvHv3VpqWlpb2b/88wu+xaME8atSshY6uLp+jozly+BA+N66zYvU65OTk6NmrDyuWLcHQ0AhDI2MOHthP8NMnzFuwOLdD/2GfP38m9MXXayU8LJTHj/wpVEgdTS0tXMeN4pH/Q9znLyMpKZk3r18DUEhdHUVFRV5FRjB8UC90dIrjOGwM79+9k6al+d/vt14Z2dYBAX4PkJeTp2w5MUDS/7Osrifh7/Y5OpqQ1PfoFy/w9/NDXV0d3eLFKVxYdnwVxXyKaGlpoVem7O8ONVd9K5/+VKLQLQjZoK7+Z4zOrKCggI6OTqbrJRIJSUlJ5Mv3fZd2QkICiorfnlYmKCgIXV1dbGxsvrmt8Od5eP8+/Xr3kL6f5+EOgEOLlkxwnUrw06f8e3AY79+9Q71wYSpWqsz6jVsp998oqVevePM85BnPQ55hV7+2TNq37/v/vg8i/FZv375hooszr15Fpoxmb2DIitXrsLaxBaBr957ExcUzx2MWHz58wNDQiJVr1lOqdOlcjvzHBfjdZ8Sg3tL3yxZ6AGDftAU9+znifeEsAH26tpXZb+GK9ZhXqYbP9SuEPg8h9HkIbZvJTjV2/vr9Xxy98Cf71vUk/L0ePLhP315fB0mb6zELgOYtWjFtpntuhfXHyav5JObpFv5oqWu69fT0GDFiBCNGjJCuNzMzo2XLlkyZMgUAOTk5Vq5cyb///suZM2f4559/WL9+Pdra2vTt25cbN25gamrK5s2bKfdfH8QpU6bg5eXFoEGDmD59Om/evKFZs2asWbNGWthOW+Nep04dTExMUFFRYe3atSgpKTFw4EBpHAD+/v707dsXHx8fypYty+LFi2nYsGGWtcLHjh1j+vTp3L9/HwUFBaytrVm0aJE01rTNy8+dO0fdunU5cuQIEydO5N69e5w4cYJatWoxd+5cVq9ezfPnzylWrBgDBgxgwoQJ0jR27NjB8uXLuXbtGitXrsTBwYEhQ4Zw4cIF3r17R7ly5Rg/fjydOnWS5sHGjRulsf7zX3+0Z8+eySwLDg7O9vcr5ulO73fN052XiHm6hez6FfN053Vinm5BEIRfS8zTLfyVpk2bRvfu3blz5w5GRkZ07tyZAQMG4OLigo+PDxKJhCFDhsjsExgYyK5du/j33385duwYt2/fxtHRMcvjbNy4kQIFCnDt2jU8PDxwc3Pj5MmTQMrgFi1btkRVVZVr166xevVqJkyY8M3Yo6OjGTVqFD4+Ppw+fRp5eXlatWol0+8vI+PGjcPd3R0/Pz9MTExwcXHB3d2dSZMm8fDhQ7Zt20axYsXS7TN8+HD8/Pyws7MjNjaWKlWqcPjwYe7fv0///v3p1q0b169fB1Ka2Lu5uVGyZEnCw8O5ceMGN27cAGDDhg3SZYIgCIIgCIIgfCWalwv/d3r16kX79ilTGDk7O2Ntbc2kSZOws7MDYPjw4fTq1Utmn9jYWDZt2kSJEiUAWLJkCU2bNmXevHmZNuc2MTFh8uTJAOjr67N06VJOnz5Nw4YNOXnyJEFBQZw7d066/4wZM2jYsGGWsbdp00bm/Zda+ocPH1KpUqVM93Nzc5Om/enTJxYtWsTSpUvp0SOlKXG5cuWoUaOGzD4jRoygdWvZwTfGjPk6h+zQoUM5fvw4u3btolq1aqirq6OmppZhE/fChQtn2exdEARBEARBEP5W2Sp0Hzx4MNsJNm/e/IeDEYScYGJiIv3/l9rdypUryyyLjY3l48ePFCpUCIDSpUtLC9wA1tbWJCcnExAQkGWhOzVdXV0iIyMBCAgIoFSpUjL7VqtW7ZuxP378GFdXV65du8br16+lNdwhISFZFrotLb/O8+rn50dcXBz169fPdPu0+0BK7fzMmTPZtWsXoaGhxMfHExcXh6qq6jfjzo64uDji4uJklkkUlFFWVs6R9AVBEARBEAThT5StQnd2RyWWk5MjKSnpZ+IRhEzJy8unG0E8ISF9/73UA4LJ/dcXNKNl32qy/S1pBx6Tk5P76TQdHBz4559/WLNmDcWLFyc5OZlKlSoR/42pRAoUKCD9f/78+bN1rNT7AMyZM4dFixaxcOFCKleuTIECBRgxYsQ3j51ds2bNYurUqTLLJkyazETXKTmSviAIgiAIgiD8ibLVpzs5OTlbL1HgFn4lbW1twsPDpe8/fvzI0zRzw/6okJAQwsLCpO+vXr2KvLw8hoaGP5SeoaEhz58/JyIiQrrsW/2d37x5Q0BAABMnTqR+/foYGxvzLtU0M9mlr69P/vz5OX369Hft5+3tTYsWLejatSumpqaULVuWR48efXM/RUXFbF37Li4ufPjwQebl5OzyXTEKX71//456tWwIC32R26F8t6CgQOzq1ybm8+fcDuX/3vv376hT05rQPHie7Nq5naGOA386nQ/v39PCrhbhYaE5ENWfJ/hJEG2b1ScmRlxPOS0vXz/eFy/QvnWLn64MEL4tL58nQYGBNKxXi885fD/Oy3mSU/eetMRAakKeUa9ePTZv3szFixe5d+8ePXr0QEFBIUfSVlFRoUePHvj6+nLx4kWGDRtG+/btf7ifcsOGDSlXrhw9evTg7t27eHt7M3HiROBrTXtaGhoaaGpqsnr1agIDAzlz5gyjRo36oc/i7OzM2LFj2bRpE0FBQVy9epV167KeA1RfX5+TJ09y+fJl/Pz8GDBggMxDg8zo6elx+vRpXr58meVDAmVlZQoVKiTzEk3Lf9za1SupU7c+xUuUBODa1Sv06NIR22oWNKhdg0Xz55KYmPXw8NOnuuJg35DqVUypW9OaEUMdefrkSbrtDnrto32r5lhZmFCvlg2zprtJ14WFvqB3j65YVzWnd4+u6R4CDHMcwKmTx2WWlStXnsompmze5PmDn17IrjWrVlK3bn1KlChJgL8/zmNG0ah+bapZmNDSoTFbN2/8ZhqNG9bDtKKhzGvdmtXS9aGhL9KtN61oyF3fO9Jtrlz2xqGJHTbVLBg/zomEVC1oPn36hEMTO8LSFIpbtWqDn98Dbt30+ak82LxhNba16qJbPKULkd/De4x07EPTetY0rW/DmKH9CXwkO+WdRCJhx5YNdGnTlAa25rRpWo/N61dleZznz4IZP2YozRvWoHFdK4b068Ytn+sy2yyaO5N+3dvTwNacPl3apEsjPCyUof17YFerKkP790j3oGDcSEfOnzkps0yvbDkqVDJh17ZN2c4TIXtSXz8A4WFhDBnUH6sqptSpac38ubOz/J0NDX3B5EnjadyoHtUsTGhq34DlSxfLnP9xcXFMGj+ONi0dsDCpwIih6Qdx9fN7SPs2Laluac5Qx4F8eP9eui4xMZGO7Vpz7+5dmX1sa9YiX758HD6U/S6iwo/52fMEwO/hAwb07UWN6pbUsrHCbfIkPkdHy2xz7eoVunfpiHVVc+rVsmXBvDky6YaGvqBX9y5YWZrRq3uXdAXeIY4DOHUizf24fHlMTMzYvHHDz2RBOjmRJx/ev8dl7GhsqllQo7olkyeNl8mTFcuWZHjvsbI0k26Tm/eetH6o0B0dHc2RI0dYuXIlixcvlnkJQk5KTk6Wzjnt4uJC7dq1adasGU2bNqVly5bSqbR+Vvny5WndujVNmjShUaNGmJiYsHz58h9OT0FBAS8vL6KioqhatSp9+/aVjl6uoqKS4T7y8vLs2LGDmzdvUqlSJUaOHMmcOXN+6PiTJk1i9OjRuLq6YmxsTIcOHaT9zTMzceJELCwssLOzo06dOujo6GSra8m8efM4efIkpUqVwtzc/IfiFb5PTEwMB/btpWXrlD/aA/z9GTqoPzY1arJ9z37c587n/NkzLF4wL8t0jCtUZMr0mew7eJjlq9YikUhw7N9HpuXC5o0bWLp4Ib369mOP1yFWrtmAte3XQfnmzZlN0aJF2bFnP9pa2syf6yFdd/zoEeTk5WnQ0C7dsVu0bM3undu/edMVflxMTAxe+/bQqk3KXNIPH96niGYRZrrPYd+Bw/TtP5DFC+ezfeuWb6blOGQYp89dkr46demabpvV6zxltjGuUBFI+R13GTuadu07smnbTh4+uM+e3buk+y1aMJd27TtSvHgJmfQUlZRo0rQZ27b8eGEyNjaGIwf30bR5yqCRnz9/ZuywgRTV0WXFhm0sXb0J1QIFcBo2gMTEr92VFs+bxeED+3AcPobNu/5l5twlGFWsnNlhABg3ajBJSYksWL6ONRt3UU7fEJdRg3nz+rXMdk0cWlG3gX2GaSxfNAetokVZt2UPmlparFg8V7ruzMmjyMnLU7te+gE5GzdryYG9O8X1lIPSXj9JSUkMcRxAQkICG7fsYPpMdw567Wf50sz/9g1+8oTkZAmTJrux78BhnMa6sHvXDhYvWiDdJikpCWUVZTp36YZVdesM05nqOpFqVtXZsWcfUVGfWLvm6wOgTZ7rMTO3oHKacWYAmrdszfYtm380C4RsyInzJDIygv59elGqdGm2bN/F8lVrCAp8zKQJX1sDBvj7M3hgP2xsa7Bzjxce8xZw/twZFqW6z8/zmE3RosXYtdcLLW1t5s/5ej8+dvQI8nJyNGiUwf24Vc7ej3MiTwBcnMcQFBjIyrUbWLxsJbd8fHCb4ipd36Nnb5l7zulzlyhbrjyNGqX8vubmvSdDku9069YtiY6OjqRQoUISBQUFiba2tkROTk5SoEABSZkyZb43OUHIkp2dnWTw4MG/9BiTJ0+WmJqa/tJjSCQSyaVLlySAJDAw8JcfK6+ISRCvtK/o+ORvvrwOHZFYVa8ufe/uMVfSslVrmW2OnDglqVy5siTy3cdspRkdnyy5fc9PYmBgIPEPDJZExydLwl+9k5iYmEjOXPDOdB87+8aSE2fOS6LjkyXHT5+T2DduIomOT5a8fP1eUr9BQ0nQs9AM93sfHSupVKlSlml/eeX2d5JXXwcPHZVYVa+e5TaTXKdIunTtluU2derUlaxZtyHT9YHBzyUGBgaS23cfZrj+xcvXEgMDA8n7qFhJTIJEMtPdQzLJdYokJkEiuXL9pqRlq1aSqNjEDPe9dOW6pGLFipJ3n2Ky9ZnD38fLvLbvPSSpZlVd+v7s5VsSAwMDiW/AM+mySz73JQYGBpIb9wIl4e/jJVdu+0mMjStIrvkGpEsvs5dfcITEwMBAcuzsFemyoNB3EgMDA8m/J86n236mxwJJk6YO6ZY3tLOXeB09Iwl/Hy/Zf+S0pJFdY0n4+3jJo+evJXXrN5CJO/Ur5FW0pFKlSpJDJy6kW5fb52FefaW9fk6eOScxMjKSvAh/JV22ccs2iYWFheRjdFy2012xao2kbr16Ga4b4+QsGTBwULrlJiYmkocBgSnH3LxV0qdvP0lMgkTy+EmIpEHDRpLX7z9lmN6TZ6ESAwMDyaOgZ7men/+vr5w4TzZv3SGpbm0tiY5Lki67+8BfYmBgIAkIDJbEJEgks+fMk7Rq1Vpmv6MnTksqV64s/f7t7RtLTp05L43DvnETSUyCRBLx5oOkQYOGkqchYRke/2N0nKRSpUqScxcv/zF58sA/UGJgYCDxuX1XuuzUmfMSQ0NDybPQlxnuc+e/v2G8r96QxCT83ntPdnx3TffIkSNxcHDg3bt35M+fn6tXr/Ls2TOqVKnC3Llzv52AIGTDu3fvOHToEOfOnaNBgwa5Hc4P2b9/PydPniQ4OJhTp07Rv39/bG1tc6x2Xvh73b55U1qLCBCfEJ+uqb6ysgpxcXH4PXiQrTRjPn/moNc+SpQsiY5uSreKq1cuk5ycTGREBK0dmmBXvzZjR4/gZaqxFQwMDbn233ZXL3ujb2AAwIJ5c+jQqTM6uroZHk9RUQlDI2Nu53DzLeGrW7d8qJDqPMnIp6hPqKsX/mZa69euoZaNFe3btMRz/doMa0SGDxlEnZrW9OjaiXNnvo4pUaRIEbS1tbnifYmYmBhu37qJvqEhCQkJzHCbwqTJbpl2FapQsRJJSUncu+v7zRgzcvfOTQyMKkjfl/6nDOrqhTl8YB8JCQnExcZy5OA+/ilTFh3d4gBcvnie4iVKcuXSeTq0sKNDi0Z4THfl44cPmR5HXb0wpf8pw/EjB4mJ+UxiYiIH9+9Co0gRDFMd/1vK6Rty8/oVkpOT8bl6mbL6KdfTisXzaNW2E0WLZXY9KVLewIi7d25m+1hC1tJeP7537qCvb4CmlpZ0mY1tDaKioggMCsx2ulGfPqGurv5dsRgYGnHlymUSExO5dvUq+gYp481Mc5vMyNFOFChQMMP9dIsXR1NTK8ebyQpf5cR5Ep8Qj6KiIvLyX4tlysoprSJv30q5puPj41FKc59XUUm5zz/87z5vYGjE1aspvx9XvL0x+O88WTDXI+v7sVLK/TinzpOcyBNf39uoFSpExUpfWxhZWdsgLy+frivFF/v27uYfPT0sqqTMzpOb956MfHeh+86dO4wePRp5eXkUFBSIi4ujVKlSeHh4MH78+BwLTPi79e7dm4EDBzJ69GhatGiR2+H8kE+fPjF48GCMjIzo2bMnVatW5cCBA7kdlvB/IDw8DG3totL3NjY18L1zm6NHDpGUlERkRASrV6Z0j3j1+lWWae3asQ2bqhbYVLPA+9IFVqxej6KiEgAvXjwnOVnC+rWrGDPOhTnzF/HhwwcG9e9NQkJKv6hRY5wJfvqEpo3qE/IsmFFjnLnpc4MAfz+aNW/B2NEjaGbfgOlTJ0v3+UJbuyjh4WHpYhJyRnhYGNpFi2a6/s7tW5w4dpQ27dpnmU6nLt2YPXc+azdspG37Dqxds4oF8752fVFVVWW00zjmLFjE0uWrMLeowohhg6UFbzk5OTzmLWT1yuW0btEUIyNjWrZqw/q1q6lazQolZWV6dOlI86Z26Zq658+fn4IF1QgP+7HzJCI8HC0t7a+xFijAwpUbOHnsEI1qVsG+TjWuX/HGY+FKaVem8NDnRLwM49zpE4yfMpNxrtMJ8H+I67iRmR5HTk6OeUvXEBjgR+M6VjSqWYVd2zbhsWgVaoWyX8ByHDaGkOCndGjRiBfPn+E4bAy+t3wIfOSPXZPmTHYZTceW9sybNTXd7B2aWtq8fBmeScrC90p7/bx5/Zoimloy22j+9/7NN35nvwh59ozt27bQtl3H74plstt0Tp04TjP7higqKtKn3wD+PehFfhUVKlaqzMB+fWhm35ClqZqtf6FdVPzO/ko5cZ5Us6rOm9ev8Vy/loT4eD5++CBtNv76v31sbP+7zx9Ouc9HRESwasWylG1epWwzysmZp0+f0LhhPZ6FPGOU09f7sUPzljiNGk4Tu/pMm+oq07cZUs6TsB/8nU0rJ/LkzevXFClSRGZZvnz5KKSunuE+cXFxHDn0L61at5Uuy817T0ayNWVYaqmfxBQtWpSQkBCMjY1RV1fn+fPnORaY8Hfbv3//bzvWlClTmDJlSo6n2717d7p3757j6QpCXGwsykW/PvG2tq3BiNFOzHSbwiQXZxSVlOg3YBC3b/ogL5f1s9XGTR2wsrbh9atXbPJcj/OYEWzYvB1lZWUkyckkJiYwdtwEaT/uWR7zaFinBjeuX8PGtiZFixVj8fKv/Qvj4+NxHNAXtxmzWLNqBaqqBdj/71GGDOzHnl076dSlm3RbZRVlYmNiczZzBKnY2DiKKmU8WOHjx48YMdSRAYMGY5Oqj35GuvfsJf2/gaERioqKTJ86meEjR6OkpISGRhGZbSpVNuHVq0g8N6yjTr36AFhUsWTbrr3SbYKDn3Lo4AF27tlPrx5d6dK1O7Y1a9GmZTOqWFpiYGgk3VZZRZnY2JgfyoO4uFiUlL/+8RcXG4vHdFcqmZgzaboHyUnJ7NzqybiRjqzy3IGyigrJEgnx8fGMnzyTUv/oAeA80Y1+3dsT8uwppf8pk+44EomEhXNmULiIJktWb0RZWYVDB/YyfvQQVnnuQDNVwT8r2kWL4b7g63gi8fHxOA0bgMvkGWxavwpVVVW27PkXp2EDObhvF206dPmaT8oqxP1gPgnpZXX9/IiIiAgcB/SloZ39Nx90pVW+vD7rN34tFLx//44Vy5awYeNW3GdOw8zcnPmLltClQ1sqmZhSp2496bYqysrExIjz4lfJifOkfHl9ps1wZ66HO4sXzkdeXp7OXbuhqaklHXzXxrYGI0ePZbrbZCa4jEVRSYn+Axy5ddMHuf/KZcWKFWNpmvvxoP59mD7TndWrVqBaoAAHDh3DcUBfdu/eSedU92MV5R//nU0rp6+d7Dhz6iSfP0fTvEUrmeW5de/JyHfXdJubm0unPqpduzaurq5s3bqVESNGUKlSpRwLTBAEQchYYQ0NPn6UberarUcvLly5wZGTZzh78Qp16qYUdkqWLJVlWmpqavzzjx5VLKsyd8Einj59ypnTKaMja2mnFBTKlisv3b5IkSIULqwh08Q8tXWrV1LdxoYKFStx88YN6jdshKKiIvUaNMTnhuxIzh8+fECjiMb3fXgh2zQ0CvPx48d0y4MCA+nfpydt2nWg/8D0IyV/S2UTUxITE7Ocrq5yZVOeh4Rkun7aFFdGOzmTLJHg7/eQhnb2aGpqYmlZFR8f2ekVP374gIZGkUxSypp6YQ0+pcqDU8cP8zI8lHGu0zGuUJmKlU2ZNM2D8LBQLl04A4CmlhYKCvmkBW6Af/TKAhCRSU3yrRvXuHLpPJOnz6GyqQUGRhUY5TwJJWVljh3+8RZOWzxXY2llg6FxRe7cukHteg3Jl0+RWnUbcOdWmnz6+IHCP5hPQnpprx9NLS3evpEdFO/Nf++/9VAlMjKCvr26Y2pujuuUaT8d29zZ7nTp1oNiOjr4XL9Ow0b2qKqqUrN27fS/sx8/pKsxFHJOTp0nTZo5cOaCNyfPXOCC9zUGOg7l3bu3lCz19R7evWcvLl314dips5y/dJW69b7c50tmmOba1SuxtrGlQsVK+Ny4ToOGdigqKlK/QSN8rmdwP86h34+cyBNNLS3evn0rsywxMZGPHz5kuM++vbupWbuOTBP2jPyue09GvrvQPXPmTHT/6xMwY8YMNDQ0GDRoEK9evWL16tXf2FsQBEH4WUZGxjwJCkq3XE5OjqJFi6GiosKxo4fR0dHFqEL2+5NKJCn/fGl2ZmZuAaQ8Gf7iw4f3vH//Dt3/+r+m9iQoiKNHDjN4yHAgZcTSL31/ExMT080XG/T48Xf1dxW+j5FxBZ6k6S8XGPiYvr2707x5S4YOz7y5dFYC/P2Ql5enSBHNLLf58tAmrX17d6OuXpg69eqT/N9I+TLnSarR85+HhBAXF4eR8Y+dJ/qGRjx7+vVaiY2NRU5OXmbqRjk5OeTkIDlZAkBlE3OSkhIJffH1ocHzkGAAdHTSn/cAsXEpLTbk5GX/rJKXk//heZKDnwZx6vgR+gwcAkBy2uspSTbdp0GP0TcwSpeO8GPSXj+mZmY8fvyIN2/eSJddvXyZggULUi7Vg8m0IiIi6NOzOxUqVMRt+iyZfrs/4trVKzx5EkSnzikzCCQnpzovEmSvn7i4OJ6HPP/h60f4tpw6T77Q1NJCtUABjh87gpKyMtWtbWXWp77PHz1yCB0dXZkxXr54EhTE0cOHGDw05X6c8vuR0iUlMTGB5OQkme0DAx9jZGyc/Q+ehZzIE1NTcz59/MjDB/ely65fu0pycnK6kfpfvHjOjevXZJqWZ+R33nsy8t1XvqWlJXXr1gVSmpcfO3aMjx8/cvPmTUxNTXMsMEEQBCFj1rY1eBIUKDOw08b163j8KICgwMesXrmcDWvXMNZlgnSQkMiICFo5NOb+vZQBSF48f866Nat4+OA+4eFh3Ll9C6dRw1FWVqZGzdoA/KNXhjr16jPHfSZ3bt8i8PEjXMePQ69MWSyrWcnEJJFImD7VlTFjx5FfVRVIKbTv37OLJ0FBHDp4ADMzC+n2YaEviIyMwMo64ylyhJ9nY1uDoFTnyePHj+jbqzvWNrZ069GL169e8frVK5nahHt379KimT0REREA+N65zZZNngT4+/Pi+XMOHzrInNmzaNqsOYX+GwzqoNd+jh4+xNMnQTx9EsTa1Svx2r83w2nF3rx5w5pVKxg3YSIAhdTVKVu2HFs3b8T3zm2uXb0ifdgDcOumDyVLlaJU6dI/lAdVq9vy9EkQn/5rGWJpZU3Up48s8JhO8NMgngYF4j5tIgoK+bCwrAZAlWrWGBhVYPY0Vx4F+BHg94B57m5YWllLa7/9HtyjWzsHXkWm5FPFyqaoqRVi1tTxBD7y5/mzYFYsnkt42AusbWtJ43nxPITHj/x5++Y1cXFxPH7kz+NH/un6Z0skEubOnMqQEWPJnz/leqpkas4hrz0EPw3i+JGDVDI1k24fHhbK61eRVKkmrqeckvb6sbapQdly5ZkwbiwB/v54X7rI0iUL6dCpC0pKKeNgpL1+IiIi6NuzG7q6uoxycubd27fS6y61oMBA/P38+PDhPZ8+fcLfzw9/P790McXFxTFrhhuuU6ZJC+9m5hbs3L6VAH9/Tp06gZnF1+vnru8dlJQUMUl1rgg5KyfOE4DtW7fg9/ABwcFP2bFtK+4zpjFsxCgKFSok3cZz/VoePwogMPAxq1YsY/3aNTiPn5huMDCJRILblEmMcXZBNdX9eO+e3TwJCuLfgwdkfmdDQ18QGRFBdWubPyZPypYrh22NmkydPIl7d+9y+9ZNZs2Yhn3jphQtWkzmeF779qKlrU2NmrXIzO++92Tku/t0C4IgCLlL38AQI+MKnDh+lLbtUwbk8b50gbVrVpIQH4+BoRELliyTuQElJiYQ/PQpsf/17VNSVuL2rZts27yJjx8/oqmpiYWlJZ5btlNE82sN5rSZs5k7exbDBg9EXk6OKpbVWLZyDYqKijIx7d29kyKamtSqU1e6bKDjEFycx9C9c3tsatSkfafO0nVHjxzG2sY23fyYQs75cp4cP36Udu07curEcd69fcvhfw9y+N+D0u2KFy/B0ZMpTatjY2MIfvpUWiOipKTEsaNHWLl8KfHx8ZQoUZJu3XvSrUcvmWOtXrmcsPAw8ikooFemLB5zF9DQLv1c1B6zZtC9R2+ZP5rcZrgzaYIz27ZspkevPlSq/LUW4+iRw7Ru8339X1MrV94AAyNjzp46TvPW7flHrywz5y1l49oVDO7TFTl5OfQNjPFYtFLaZFFeXp5Z85ayaO5Mhg3oQX6V/FSzqcng4U7SdGNjYwh59lRaS1K4sAYei1aydsViRjr2ITEpEb0y5ZkxdwnlU9U+z5nhyp1bX0cI7ts1pWZmh9dxdFNdC//u300RTU1sataRLuvVz5Fpk5wZ1Lsz1arXoFW7TtJ1p08coaqVjXQEduHnpb1+FBQUWLJ8JTPcptC9Swfy58+PQ4tWOA4ZJt0n7fVz9bI3ISHPCAl5RqN6sgUC3wcB0v8PGdSfsLBQ6fsObVum2wZg5fKl1KxVR6ZG0tllIuPGjqZ3jy40aepAg4Zf52E+euQwTZo5kD9//p/ODyFjOXGeANy/f5cVy5bw+XM0ZcqUZeLkqTg0bylzrEsXL7B29Uri/7vPL1q6TPqQPLU9u3eiqalF7dT348FDcRk7mq6d2mFboyYdOn0dD+JYDt+PcypPZs2ey6wZ0+jfpwfy8vLUb9iIcS4TZY6VnJzMwQP7adGydaYjkcPvv/dkRE4ikUi+Z4cyZcrINMtK68mTJz8dlCAIf4fY9LMO/fWSs/mTfPH8ORbMm8Mer39/urni75aQEE/zJvbMmj1XplYmM/JZ3HOErF04f44Fcz3Ye+BQnjtPAgMf0693Dw4ePo6amlq29nkfnZBu2ZVL51mxZB6e273yXB5kR0JCAl3aNGHStNlUNk1/PRUuoJjBXkJ25OXr5927t7Ro2phtu/Z8c2wP4efk5fMkIT4ehyZ2zPKYi7lFlRxLNy/nyY/ce1SyUY393TXdI0aMkHmfkJDA7du3OXbsGE5OThnvJAiCIOSomrXrEBLyjMiIiEzn3vxThYeH06df/2wVuIWfU6t2HUKeBefJ8+T1q1dMnzk723/0ZMa6Rm1ePA/h9auITOe5zssiXobTtWe/DAvcws/Jy9dPWGgo4ydNFgXu3yAvnyfh4eH06T8gRwvckLfzJKfuPWl9d013ZpYtW4aPjw8bNmzIieQEQfgLiJru9LJb0/03ETXdQnZlVNP9txM13YIgCL9Wdmq6c6zQ/eTJE8zMzDKcnkQQBCEjotCdnih0pycK3UJ2iUJ3eqLQLQiC8Gtlp9CdY43s9+zZI+YBFARBEARBEARBEIRUvrtPt7m5ucxAahKJhJcvX/Lq1SuWL1+eo8EJgiAIgiAIgiAIQl723YXuFi1ayBS65eXl0dbWpk6dOhgZGWWxpyAIgvAtoim1IPw40ZQ6vbB3sbkdwh+nuIZKbocgCMJfJsf6dAuCIHwv0adbEATh1xKF7vREoVsQhJz0S/p0KygoEBkZmW75mzdvspyUXBAEQRAEQRAEQRD+Nt9d6M6sYjwuLg4lJaWfDkgQBEEQBEEQBEEQ/l9ku0/34sWLAZCTk2Pt2rUULFhQui4pKYkLFy6IPt2CIAiCIAiCIAiCkEq2+3SXKVMGgGfPnlGyZEmZpuRKSkro6enh5uaGlZXVr4lUEIT/O6JPd+5at2YVp0+e4OnTJyirqGBmZs6IUWPQK1NWus2eXTs5euQQfg8fEB0dzcUrNyhUqFAuRv373fS5gef6dfg9vM+rV69YsHgZ9eo3yO2wfqvvyYNpU13Zs2snTs4udO3e8/cG+ht96/oJDX1Bk0b1M9x3zvyFNLJr/FvizMk+3ffu3GTPNk8CA/x4++YVk2YuwKZWPen6d2/fsH7FQm5dv0J01CcqmVowaOQ4SpT6B4BPHz+wed1ybl2/wquIl6gX1sC6Vl269x1MgYJq0nQa1zBNd2znKe7UaZAzeZabfbqz87srCELm/sR7cnb6dGe7pvvp06cA1K1bl3379qGhofHDgQmCIAi5z+fGdTp06kLFypVJSkxiyaL5DOzXh30HD6OqqgpAbGwMNrY1sbGtyeKF83I54twRE/MZQ0NDWrZuw6jhQ3I7nFyR3Tw4feok93x90S5a9DdGlzu+df3o6Ohy+twlmX327N7Jxg3rqFGjVi5F/XNiY2IoW96QRk1bMn3CKJl1EokEN5cR5MuXD1f3hRQoUJB9OzYxfsQAVm3Zh0p+Vd68juTt61f0HTyK0mXKEfkyjKVzpvPm9SsmTpf9fRk13o0qVrbS9wVTFcrzsuz87gqCkLm8ek/+7inDzp49+yviEARBEH6zFavXybx3m+FO3ZrW+D18QBXLqgDSmsob16/97vD+GDVq1qZGzdq5HUauyk4eRERE4D5zGitWr2PooAG/KbLc863rR0FBAS1tbZltzpw+RSP7xqgWKPA7Q80xVa1rUNW6RobrQp8/w//BXVZu2ss/ZcsDMGTMRDo3r8e5U8ewd2iNXll9Js6YL92neIlS9Og/FI9p40lKTEQh39c/SwsUVKOIptav/UC5IDu/u4IgZC6v3pO/eyC1Nm3aMHv27HTLPTw8aNeuXY4EJQiCIPx+UZ8+AVBIXT2XIxHymuTkZCaMc6Jnrz6UL6+f2+Hkim9dPw8f3CfA349Wrdv+zrB+m4SEBAAUlZWly+Tl5VFUUuLB3duZ7hcdHYVqgYIyBW6A5fNn0qFpbYb368zxQ/szHcg3rxO/u4Lwd/juQveFCxdo0qRJuuWNGzfmwoULORKUIAiC8HslJyfjMXsmZuYW6Osb5HY4Qh6zYd0aFPLlo3PX7rkdSq7IzvWzf+8eypYth5m5xW+O7vco9Y8eRYvp4rlyMZ8+fiQhIYFdW9bzOjKCt29eZbjPh/fv2O65msYObWSWd+vriIvbHGYsWIlt7QYsmz+Tg3u2/Y6P8VuJ311B+Ht8d/PyqKioDKcGU1RU5OPHjzkSlCAIgvB7zZw+laDHj/Hc/P/3h63waz18cJ+tmzexY88+5OTkcjucXPGt6yc2NpajRw7Rb6Djb47s98mXT5GJM+az0H0K7ZvURF5BAfMqVlhWrwEZ1FJHR0cx2WkIpfXK0rXPQJl1nXt+7Z5Q3sCY2NgY9mzfSIt2XX755/idxO+uIPw9vrumu3LlyuzcuTPd8h07dlChQoUcCUoQBEH4fWZOd+PC+XOs2bCRYjo6uR2OkMfcuunD27dvsG9QFwuTCliYVCAsLJR5c2bTuGG9byeQx2Xn+jl54hgxMbE4NG/5e4P7zfSNKrDMcxd7jl1iq9cpps9fwacP79EpXlJmu8+fo5k02pH8qgWYNHMB+fIpZpmuUYXKvI6MID4+/leG/1uJ311B+Lt8d033pEmTaN26NUFBQdSrl3IzPX36NNu2bWPPnj05HqCQt+np6TFixAhGjBiR26F807lz56hbty7v3r2jcOHCv+w4f2KeBAcHU6ZMGW7fvo2ZmVluhyP8JhKJhFkzpnHm9EnWeW6mZMlSuR2SkAc1a94CK2sbmWWD+vehmUMLWrZqnUtR/Xrfc/147dtLnbr1KFKkyG+MMPd8mf4r9PkzHgc8pFu/wdJ10dFRTBw1CEVFJSbPXoRSqj7gmQl6HEBBtUIZtrTMa8TvriD8nb670O3g4ICXlxczZ85kz5495M+fH1NTU86cOfPX3Ewy861mdZMnT2bKlCm/Jxghz5CTk2P//v20bNnytxyvZ8+evH//Hi8vL+myUqVKER4ejpbW/99IsULmZk6bytEjh1i4ZDkFVAvw+lVKv8uCamqoqKTMY/v61Stev37N85AQAAIfP0JVtQC6urqo/8KHU3+Sz9HRhPz3+QFCX7zA388PdXV1dIsXz8XIfp9v5UHhwrLTiCrmU0RLS+v/eu7h7Fw/ACHPnnHT5wbLVqzOrVBzTMznz4SFfj0PIsJDCXrsj5qaOkV1dLl45gTqhTXQLqZL8JPHrFzkgXXNulSplvJQJjo6igkjBxIXF4uT60w+R0fzOToaAPXCGigoKHD10jnev3uLUcXKKCkpc+vGVXZuXkubTj1y5TPntOyeN4IgZCyv3pO/u9AN0LRpU5o2bQrAx48f2b59O2PGjOHmzZskJSXlaIB5SXh4uPT/O3fuxNXVlYCAAOmyggULSv8vkUhISkoiX74f+gr+GvHx8f8XT7Z/h4SEBBQVs26ilxkFBQV0RPO2v86undsB6NOzm8xyt+mzaPFfDeXuXTtYuXypdF2v7l3SbfP/7sGD+/Tt9XWAsLkeswBo3qIV02a651ZYv5XIg/Syc/0AeO3fS7FiOljbZjzVVl7y2P8BzsP6St+vXjIXgAaNmzN6wjTevnnF6qVzef/2DUU0talv34xOqfpnBwX4EfDwHgB9OjSTSdtz9xGK6ZYgXz5F/t23g9WL5yBBQvESpek/ZAz2zWUHW8ursnveCIKQsbx6P5KT/OAcDBcuXGDdunXs3buX4sWL07p1a9q0aUPVqmKOQQBPT09GjBjB+/fvga9Nl48cOcLEiRO5d+8eJ06coFSpUowaNYqrV68SHR2NsbExs2bNokGDBtK09PT06N+/P4GBgezevRsNDQ0mTpxI//79gZSC6ahRo9i7dy/v3r2jWLFiDBw4EBcXFyClJnX58uUcPHiQc+fOoauri4eHB23bfp225N69ewwfPpwrV66gqqpKmzZtmD9/vvRBwZfa0Ro1ajBv3jzi4+Pp2LEjCxculBb0IiMj6dOnD6dOnUJHR4fp06czYcIEmabU79+/Z8yYMRw4cIC4uDgsLS1ZsGABpqamAEyZMgUvLy+GDBnCjBkzePbsGcnJyRnmsbe3NxMmTOD69esoKytTrVo1duzYgYaGBnFxcTg5ObFjxw4+fvwoPU7q8/PIkSOMGDGC58+fU716dXr06EGvXr1kmpdfunQJFxcXfHx80NLSolWrVsyaNYsCmcyxGhQUlK3v80ue6Onp8ezZM+m6f/75h+DgYAAOHDjA1KlTefjwIcWLF6dHjx5MmDBB+qDmy/d69OhRTp8+jZOTE5MmTaJ///6cOXOGly9fUrp0aRwdHRk+fLg0f6dOnSoT89mzZ9HT00vXvPz8+fM4OTnh6+tLkSJF6NGjB9OnT5cev06dOpiYmKCiosLatWtRUlJi4MCB39WaIzYx25sKgiAIPyDsXWxuh/DHKa4hapQFQcg5KtmoQ/2ugdRevnyJu7s7+vr6tGvXjkKFChEXF4eXlxfu7u6iwJ0N48aNw93dHT8/P0xMTIiKiqJJkyacPn2a27dvY29vj4ODg0yzCYB58+ZhaWnJ7du3cXR0ZNCgQdJa9MWLF3Pw4EF27dpFQEAAW7duRU9PT2b/SZMm0aZNG3x9fenSpQsdO3bEz88PgOjoaOzs7NDQ0ODGjRvs3r2bU6dOMWTIEJk0zp49S1BQEGfPnmXjxo14enri6ekpXd+zZ0+eP3/O2bNn2bNnD8uXLycyMlImjXbt2hEZGcnRo0e5efMmFhYW1K9fn7dv30q3CQwMZO/evezbt487d+5kmI937tyhfv36VKhQgStXrnDp0iUcHBykLS3Gjh3L3r172bhxI7du3aJ8+fLY2dlJj/P8+XNat26Ng4MDd+7coW/fvowbN07mGEFBQdjb29OmTRvu3r3Lzp07uXTpUrp8SS273+cXN27cAGDDhg2Eh4dL31+8eJHu3bszfPhwHj58yKpVq/D09GTGjBky+0+ZMoVWrVpx7949evfuTXJyMiVLlmT37t08fPgQV1dXxo8fz65duwAYM2YM7du3x97envDwcMLDw7Gxke2LCRAaGkqTJk2oWrUqvr6+rFixgnXr1jF9+nSZ7TZu3EiBAgW4du0aHh4euLm5cfLkyUzzRxAEQRAEQRD+Ntmu6XZwcODChQs0bdqULl26YG9vj4KCAoqKivj6+oqRy9PIrKbby8uLFi1aZLlvpUqVGDhwoLRwp6enR82aNdm8eTOQ0jRdR0eHqVOnMnDgQIYNG8aDBw84depUhv3K5eTkGDhwICtWrJAuq169OhYWFixfvpw1a9bg7OzM8+fPpTW4R44cwcHBgbCwMIoVK0bPnj05d+4cQUFBKCgoANC+fXvk5eXZsWMHjx49wtDQkOvXr0sfvvj7+2NsbMyCBQsYMWIEly5domnTpkRGRqKcauCU8uXLM3bsWPr378+UKVOYOXMmoaGhaGtrZ5pHnTt3JiQkhEuXLqVbFx0djYaGBp6ennTu3BlIaXr9pYbZycmJ8ePHc+DAAR48eCDdb9y4ccyePVta0923b18UFBRYtWqVdJtLly5Ru3ZtoqOjs933KqPvM3Xtf0Z9uhs0aED9+vWlrRUAtmzZwtixYwkLC5PuN2LECBYsWJDl8YcMGcLLly+lAx1m1Kc77UBqEyZMYO/evfj5+UnPqeXLl+Ps7MyHDx+Ql5enTp06JCUlcfHiRWk61apVo169eri7Z695j6jpFgRB+LVETXd6oqZbEISclJ2a7mx3KD569CjDhg1j0KBB6Ovr/0xcfzVLS0uZ91FRUUyZMoXDhw8THh5OYmIiMTEx6WpGTUxMpP+Xk5NDR0dHWovcs2dPGjZsiKGhIfb29jRr1oxGjRrJ7G9tbZ3u/ZdaZD8/P0xNTWWaTNva2pKcnExAQADFihUDoGLFitICN4Curi737t2TppEvXz6qVKkiXW9kZCQzCrivry9RUVFoamrKxBITE0NQUJD0/T///JNlgRtSarrbtWuX4bqgoCASEhKwtbWVLlNUVKRatWrS2n0/Pz+srKzS5Ulqvr6+3L17l61bt0qXSSQSkpOTefr0KcbGxumOnd3v81t8fX3x9vaWqdlOSkoiNjaWz58/o6qqCqQ/nwCWLVvG+vXrCQkJISYmhvj4+O8ekdzPzw9ra2uZhzi2trZERUXx4sULSpcuDciel5ByTqRt3fBFXFwccXFxMsskCsoyD2AEQRAEQRAE4f9Ntgvdly5dYt26dVSpUgVjY2O6detGx44df2Vs/5fS9gUeM2YMJ0+eZO7cuZQvX578+fPTtm3bdHNRph0gS05OTtrX2cLCgqdPn3L06FFOnTpF+/btadCgQY5P4ZZVDNkRFRWFrq4u586dS7cudeE8s/7SqeXPnz/bx/1RUVFRDBgwgGHDhqVb96XQmVZ2v8/sHHvq1Km0bp1+UJXUNexp82rHjh2MGTOGefPmYW1tjZqaGnPmzOHatWvfdfzs+p5zYtasWen6k0+YNJmJrlN+SWyCIAiCIAiC8CfIdp/u6tWrs2bNGsLDwxkwYAA7duygePHiJCcnc/LkST59+vQr4/y/5e3tTc+ePWnVqhWVK1dGR0dHOpDW9yhUqBAdOnRgzZo17Ny5k71798r0k7569arM9levXpXW1BobG+Pr60v0f9N2fIlLXl4eQ0PDbB3fyMiIxMREbt68KV0WEBAgbV4PKQ8HXr58Sb58+ShfvrzM63unqjIxMeH06dMZritXrhxKSkp4e3tLlyUkJHDjxg1pNwhjY2OuX78us1/aPLKwsODhw4fpYi1fvnymI6r/yPepqKiYbtR/CwsLAgICMjy2vHzml623tzc2NjY4Ojpibm5O+fLlZVoRACgpKX1zlgFjY2OuXLlC6t4n3t7eqKmpUbJkySz3zYyLiwsfPnyQeTk5u3x7RyFD79+/o05Na0JDX+R2KN/N++IF2rdu8V0P7bIjL+fJrp3bGeo4MMfTFXmSXl7Ok6DAQBrWq8Xnz59/Kp2PH97TsVkdIsJDcyiyP8uzp0F0bdWQ2Jify6e8fK78qt9ZQciOvHzt/Kp7z3cNpAYpNWu9e/fm0qVL3Lt3j9GjR+Pu7k7RokVp3rx5jgf4/05fX186YJivry+dO3f+7h/I+fPns337dvz9/Xn06BG7d+9GR0dHpvZ49+7drF+/nkePHjF58mSuX78u7WPcpUsXVFRU6NGjB/fv3+fs2bMMHTqUbt26SZuWf8uXpu0DBgzg2rVr3Lx5k759+8rUSDdo0ABra2tatmzJiRMnCA4O5vLly0yYMAEfH5/v+swuLi7cuHEDR0dH7t69i7+/PytWrOD169cUKFCAQYMG4eTkxLFjx3j48CH9+vXj8+fP9OnTB4CBAwfy+PFjnJycCAgIYNu2bTKDwgE4Oztz+fJlhgwZwp07d3j8+DEHDhzIciC1H/k+9fT0OH36NC9fvuTdu3cAuLq6smnTJqZOncqDBw/w8/Njx44dTJw4Mcu09PX18fHx4fjx4zx69IhJkyZJB2dLfby7d+8SEBDA69evSUhISJeOo6Mjz58/Z+jQofj7+3PgwAEmT57MqFGjsiz0Z0VZWZlChQrJvETT8h+3ZtVK6tatT4kSKQ9B3GdOp2O71liaVaJ966zHjfgiLi6OmdOmUsvGiuqW5owaPpQ3r1/LbGNa0TDd6+iRw9L1fn4Pad+mJdUtzRnqOJAPqR60JSYm0rFda+7dvSuTpm3NWuTLl4/Dhw7+4KfPWNo8CQ8LY8ig/lhVMaVOTWvmz51NYmLWAwl8eP8el7GjsalmQY3qlkyeNF46jzBAaOiLDPPkru8d6TZXLnvj0MQOm2oWjB/nREKqli6fPn3CoYkdYWGyhZ1Wrdrg5/eAWze/77fwW342T25cv5bh5zWtaMj9e1+/10cB/vTs1pmq5pVpVL82G9atkUnnT86TH7l23Ka40tS+AdUsTKhTozrDhwzi6ZOgdNsd2L+Ptq0cqGpemTo1rZk57Wtrn9DQF/Tq3gUrSzN6de+S7o/TIY4DOHXiuMyycuXLY2JixuaNG773Y8vYsWkN1jXrUky3BAC3fa4xamB3Wje0pnPzeqxbvoCkNOeFRCJhz7aN9O3ogENdS7q2bMD2jWsySl7G9csXGNGvCy3qVaOdfQ3cXEbIrP/WsSPCQ3Ea3IuWDaxwGtwr3YOCyWOHcOncKZll/5Qph1FFE/bt3Pw92ZJOTvymrFm1gu5dOmJVxZQa1dN3CctOun/S76wgZIe4H6f3Y389/8fQ0BAPDw9evHjB9u3bcyqmv8r8+fPR0NDAxsYGBwcH7OzssLCw+K401NTU8PDwwNLSkqpVqxIcHMyRI0dkCkdTp05lx44dmJiYsGnTJrZv3y6t9VVVVeX48eO8ffuWqlWr0rZtW+rXr8/SpUszO2SGNmzYQPHixalduzatW7emf//+FC1aVLpeTk6OI0eOUKtWLXr16oWBgQEdO3bk2bNn2S7cf2FgYMCJEyfw9fWlWrVqWFtbc+DAAel0Vu7u7rRp04Zu3bphYWFBYGAgx48fR0NDA0hpHr537168vLwwNTVl5cqVzJw5U+YYJiYmnD9/nkePHlGzZk3Mzc1xdXWlePHimcb1I9/nvHnzOHnyJKVKlcLc3BwAOzs7Dh06xIkTJ6hatSrVq1dnwYIF/PPPP1mmNWDAAFq3bk2HDh2wsrLizZs3ODo6ymzTr18/DA0NsbS0RFtbW6ZFwBclSpTgyJEjXL9+HVNTUwYOHEifPn2+WegXfo+YmBi89u2hVZu2MstbtmqDXeMm2U5nzuyZnD93ljnzF7J+42ZevYpk1PD0D5Xcps/i9LlL0le9+l+nwJvqOpFqVtXZsWcfUVGfWLvm68CDmzzXY2ZuQeU0ff8BmrdszfYtP/cHcWpp8yQpKYkhjgNISEhg45YdTJ/pzkGv/SxfujjLdFycxxAUGMjKtRtYvGwlt3x8cJvimm671es8ZfLEuEJFAJKTk3EZO5p27TuyadtOHj64z57du6T7LVowl3btO1K8eAmZ9BSVlGjStBnbtmz62ayQyok8MTMzl/mcp89donWbdpQoWZKKlSoDKd1hBvbrg27x4mzfvY+Ro8eycvlS9uza+cfnyRffe+1UqFARt+mz2P/vEVasXodEImFgvz4yrYg2eW5gyeIF9O7Tn30HDrN67QZsUs3VPc9jNkWLFmPXXi+0tLWZP8dDuu7Y0SPIy8nRoJFdumO3aNWa3Tu3f/MP1szExsZw/JAXjZq2AuDJ4wBcnQZTxcqGpRt2Mm6qB9e8z7N+5SKZ/VYums3xQ/voO2Q0a7Z6Mdl9MYYVKmV5rEvnTjFn2gQaNm3BMs9dzF2xkToNGkvXZ+fYa5bOQ1OrKMs27KKIphZrls2Xrjt/+hhycvLUqNOAtBo1acHh/bvTPTzIrpz6TUlISKBhI3vadeiU4frspPun/M4KQnaI+3EmJML/PUCyf//+3A5DENKJSRCvH3kdPHRUYlW9eobr5i9cLHFwaP7NNCLffpRUqFBRcvDQUemyhwGBEgMDA8k1n9vSZQYGBpLDx05mmo6JiYnkYUCgJCZBItm4eaukT99+kpgEieTxkxBJg4aNJK/ff8pwvyfPQiUGBgaSR0HPfkmenDxzTmJkZCR5Ef5Kumzjlm0SCwsLycfouAzTeOCf8vl9bt+VLjt15rzE0NBQ8iz0pSQmQSIJDH4uMTAwkNy++zDDNF68fC0xMDCQvI+KlcQkSCQz3T0kk1ynSGISJJIr129KWrZqJYmKTcxw30tXrksqVqwoefcp5o/Jk7Svj5/jJVbVq0sWLl76NY3NWyWWllVl0pg1e46kkZ3dH58nqV/ZvXYyevne95M5nyNev5eYmJhIzl28nOk+9vaNJafOnJd+N/aNm6Ts++aDpEGDhpKnIWEZfwfRcZJKlSplmXbqV1BkjMzLc+dBSdVqVtL3k6bNljRt3kpmm637jkoqVaosuRf8WhIUGSM5e/2BxNi4guS8j1+69DJ7PQr7JLG2rSFZvn5rpttk59j1G9lLdh48JQmKjJHsOHBS0qCRvSQoMkbiGxQhqVOvgeTqvacZpu0f+lFSsVIlyZ4j59Kty43rZ8euvZIqVaqkW56ddP+U31nxEq/svP7G+3F2/FRNtyAIgvD73brlQ4X/nuT+qIcP7pOYmICV9dd52suULYeubnF8/5vZ4IuZ06dS29aKzh3asn/fHpm+/gaGRly5cpnExESuXb2KvkHKOBDT3CYzcrQTBQoUzPD4usWLo6mplWPNt9Lmie+dO+jrG6CZarwIG9saREVFERgUmGEavr63UStUSFqDC2BlbYO8vHy6ppvDhwyiTk1renTtxLkzX8eXKFKkCNra2lzxvkRMTAy3b91E39CQhIQEZrhNYdJkN5lZIFKrULESSUlJ3Lvr+yNZkE5O5Ela58+e4cP797Rs1eZrur53qGJpiWKqsS5sbGsQ/PQpHz98+KPzJCd8/vyZA/v3UaJkSXR0dAC4csWb5ORkIiMiaOnQmIb1auE0ajgvw8Ol+xkYGnH16hWSk5O54u2NwX/XzoK5HnTo1BkdXd0Mj6eopIShkfEPXzsPfG+hb/h1mteE+Ph045QoK6sQHx9HoP9DAK55n0eneAmueZ+nZ7vG9GjbmIXuU/j08UOmxwl85MebV5HIyckzuFd7Oreoz6TRjgQ/efxdxy5bzoDbPldJTk7m1o0rlClnAMC65Qto1roD2sV0Mjy+oqIiZcsb8sD31nfkzle/4vrJSHbS/VN+ZwUhO8T9OGOi0C0IgpDHhIeFoZ2q68aPePP6NYqKihQqVEhmeRFNTV6/fiV97zhkGHPmLWTl2g00aNiImdOmsm3r1+aKk92mc+rEcZrZN0RRUZE+/Qbw70Ev8quoULFSZQb260Mz+4YsXZR+PnntokUJDw/7qc/xRdo8efP6NUU0ZQdo1Pzv/ZtUny+1N69fU6RIEZll+fLlo5C6unQfVVVVRjuNY86CRSxdvgpziyqMGDZYeqOXk5PDY95CVq9cTusWTTEyMqZlqzasX7uaqtWsUFJWpkeXjjRvasf2rVtkjpU/f34KFlQjPOzPyZO09u/bg41tDYrpfC3ovM4i3devX//RefIzdm7fSnVLc6yrmnPp0gVWrdkgffDw4vkLkpMlrF2zEifn8cxbsJgPHz4woF8vaZ/CUU7OPH36hMYN6/Es5BmjnJy56XODAH8/HJq3xGnUcJrY1WfaVFeZfoiQcu2E/WCeREaEU0Tr67ScFlY2+N335dzJoyQlJfH6VQTbPFOaL799kzLGw8uwF0RGhHPx7EnGTJzB6PFuPA54yIyJozM9TnhYSh/1retX0qlHf6bOXkJBtUI4D+0rLaxn59h9h4ziRchTerZtTNiLZ/QdMop7d24S9DiABvYOzJzkRK92TVgyZ1q6MUo0tbSJjPixfPoV109GspPun/I7KwjZIe7HGcv2lGFC3pW6VkoQhLwvNjaOokq/ZxC6AYMGS/9vbFyBmJgYNm5YR5eu3QEoX16f9Ru/3qzev3/HimVL2LBxK+4zp2Fmbs78RUvo0qEtlUxMqVO3nnRbFWVlYmJiciTO35UnGhpF6N6zl/R9pcomvHoVieeGddSpVx8AiyqWbNu1V7pNcPBTDh08wM49++nVoytdunbHtmYt2rRsRhVLSwwMjaTbKqsoExv7Z+ZJxMuXXPa+xJx5C7973//HPGnSrDnVbWx5/eoVGzesw2n0CDZu2Y6ysjISSTKJiQk4u0yU9uN2nzOf+rVtuX79GrY1alKsWDGWLv/aNzc+Pp5B/fswfaY7q1etQLVAAQ4cOobjgL7s3r2Tzl26SbdVUf7xPImLi0VT6esfxFWq2dDHcSRL5k5nzvQJKCoq0rlHf+773kJOXg6A5GQJCfHxjJk4nZKl9QAYOW4qQ/t05EVIsHRZapLklL89OnTvK+1zPXK8G91aN+LimRM0adkuW8fW0i7GVI+vY8zEx8czcdQgRk+YzvaNq8mvqsqa7QeYONqRIwd206JtZ+m2SsoqxMXG/lA+/c7f2W/5U35nBSE7xP04Y6KmWxAEIY/R0CjMx48ffyoNTS0tEhIS0qXz9s0btFLVgqVV2cSUiJcvM517fu5sd7p060ExHR18rl+nYSN7VFVVqVm7Nj43ZKfp+/DxQ7on2T8qbZ5oamlJa8q+ePPfe81MPp+mlpbMVIuQMjLwxw8fMt0HoHJlU56HhGS6ftoUV0Y7OZMskeDv95CGdvZoampiaVkVHx/Z2QU+fviAhsafkyepee3fi3rhwtRO9Qc9gFYW6WY2HeSfkic/Q01NjX/+0aOKZVXmLVjM06dPOHPqJABa2in5Wa5ceen2RYoUobCGhkwT89TWrl6JtY0tFSpWwufGdRo0tENRUZH6DRrhk2aKyw8/kSeF1DWI+iSbB607dmfPsUts2nuMnYfPU71mXQB0iqeMPFxESwsFhXwyhetSemWAlJrzjBT577svrVdWukxJSQld3RJERrzM9rHT2rl5LRbVrNE3qsDd2z7Y1mlAvnyK2Naqz73bss2ooz5+QL2wxjfzJCM5ff1k5kfSza3fWUHIDnE/zpgodAuCIOQxRsYVePITfQghpb9SvnyKXL96Rbos+OkTwsPDMDUzy3S/AH8/ChVSz3Cu+mtXr/DkSRCdOncFIDk5STrCcmJCIsmpRnaOi4vjechzjIwrpEvnR6TNE1MzMx4/fsSbN2+ky65evkzBggVlCkKpmZqa8+njRx4+uC9ddv1aSl/SjEYG/iLA309ayEpr397dqKsXpk69+tLPL82TRNk8eR4SQlxc3B+VJ19IJBIOeO3DoXlLFBUVZdaZmppx08dHpmnv1SuX0StThkLq6unS+pPyJKdIACQS6cMoM/OUWSuCg59Kt/nw/j3v371DN4MZMJ4EBXH08CEGDx0OQHJSEomJKfmZmJhAcnKSzPaBgY8xMjb+oVjL6RsREvwk3XI5OTk0tYqirKzCuVNH0S6qQ3mDlGNUqGxGUlIiYaHPpduHhjwDoGixjPuelzesgKKSEqHPg6XLEhMTiHgZRlEd2X2yOnZqIcFPOHfyKN37prTASU5Klo5OnpiUmG6KzuCngZQzMEqXTnbk5PWTle9NNzd/ZwUhO8T9OGOi0C0IgpDH2NjWICgokI8fvg5iFPLsGf5+frx+/YrYuFj8/fzw9/OT9gWNiIigRTN76QAkampqtGrThrke7ly/dpWHD+7jOnE8pmbmmJiaAXDu7Bn27dnN48ePCHn2jF07trF2zSo6demaLqa4uDhmzXDDdco06XSFZuYW7Ny+lQB/f06dOoFZqunz7vreQUlJUXqsnM4Ta5salC1XngnjxhLg74/3pYssXbKQDp26SB8Y3Lt7lxbN7ImIiACgbLly2NaoydTJk7h39y63b91k1oxp2DduStGiKdMaHvTaz9HDh3j6JIinT4JYu3olXvv3Zpgnb968Yc2qFYybkDLVXiF1dcqWLcfWzRvxvXOba1evSAtnALdu+lCyVClKlS79x+TJF9evXSX0xQtap5lqC6BxUwcUFRWZ4jqBwMDHHDt6hK1bNtGte6902/5peQLff+28eP6cdWtW8fDBfcLDwrhz+xZjRg5DWVmFGrVqA6CnV4a69eoze9YM7ty+xePHj5g4fhx6ZcpStZqVTEwSiQS3KZMY4+yCqqoqkHLt7N2zmydBQfx78IBMnoSGviAyIoLqqQZB/B5VrGx49jSIT6lqovZs8+Rp0GOePQlkm+cqdm9Zz8ARztJBhswtq1PewJgFsyYT+MiPx/4PWTxnGuZVq0trvwMe3qNf5xa8fpVy7hQoUJAmLdqxed0Kbl6/zIuQYJbOnQFAzbqNsn3s1Pm02MON/kPHoJI/JZ8qVDbj2L97CQl+wulj/1Khspl0+4jwUN68isTMsvoP5VNOXT/hYWH4+/kRHh5GUlKS9Pz6Mt9wdtL9Ird/ZwUhO8T9OGOiT7cgCEIeo29giJFxBY4fP0q79h0BmDp5okyzwg5tWwJw5MRpSpQoSWJiAsFPn8r0T3JyHo+8nDyjRwwjPiEeG9saTJg4WbpeMV8+dmzfypzZM5FIUua3HzN2HG3atk8X08rlS6lZq45M7Zuzy0TGjR1N7x5daNLUgQYNv845fPTIYZo0cyB//vy/JE8UFBRYsnwlM9ym0L1LB/Lnz49Di1Y4Dhkm3Sc2Nobgp0+lNYoAs2bPZdaMafTv0wN5eXnqN2zEOBfZ+elXr1xOWHgY+RQU0CtTFo+5C2hoZ58uJo9ZM+jeo7f0DwQAtxnuTJrgzLYtm+nRqw+VKn99Yn/0yGFat0mft7mdJwD79+7BzMycMmXLpTuOmpoaK9esY+Z0Nzq1a01hDQ0GDHSkbfsO6bb90/IEvv/aUVJW4tZNH7Zs3sjHDx/R1NKkShVLNm3djqampjSd6bM8mDN7JkMcByAvJ0+VqlVZsWptupYCe3bvRFNTi9p16kqXDRw8FJexo+naqR22NWrSoVMX6bpjRw5jbWObbm7Z7CpTTp/yBkZcPHOcJi3bAeBz9RI7Nq0lIT6eMuUNcJ21iKrWX+cUl5eXZ4rHYlYscGfs4N6o5M+PZXVb+g0ZI90mLjaWFyHBMvNi9x08EgUFBeZOm5BSa1ShMu6L1qCWagDHbx37i6MH9lC4iCZWtrWly7r2GcjsKS6M6N8VSytbmrX+es6dO3UMi6rWFNNJ37IgO3Lq+lm+dDEHD+yXvv9yfq3dsImq1ayyle4Xuf07KwjZIe7HGZOTiFG2BEHIJbGJ395GyNiF8+dYMNeDvQcOSWs88op3797Somljtu3aQ8mSpXIs3bycJ4GBj+nXuwcHDx9HTU0tx9IVeZJeXs6ThPh4HJrYMctjLuYWVbK1T9i79AOJXb98gbXLF7By0948lwfZkZCQQN+ODoydPIuKJubp1hfXUMlWOnn5XPlVv7OCkB15+dr5kXuPSjaqsUVNtyAIQh5Uq3YdQp4FExkRkel8vn+qsNBQxk+anON/COblPHn96hXTZ87O0cIliDzJSF7Ok/DwcPr0H5DtAndmqtnUIvRFCG9eRWY6z3Ve9ioinA7d+mRY4P4eeflc+VW/s4KQHXn52vlV9x5R0y0IQq4RNd2CIAi/VkY13X+77NZ0C4IgZEd2arrzVn2/IAiCIAiCIAiCIOQhotAtCIIgCIIgCIIgCL+IKHQLgiAIgiAIgiAIwi8i+nQLgpBrRJ/u9JLFT3I68nJyuR2CIAj/Rz6Jm086atnplCoIQoZEn25BEARBEARBEARByEWi0C0IgiAIgiAIgiAIv4godAuCIAiCIAiCIAjCLyIK3YIgCH+Jmz43GD54IA3r1sS8khFnT5+SWX/65AkG9etNHVsrzCsZEeDvly6Nvj27YV7JSOY1ferk3/URckVSUhJLFy+kcaN6VLMwoal9A1atWMbfPiRKdHQUHrNmYN+gLtUsTOjepSP3793N7bBy1U2fGwx1HEiDOjUwrWjImTTX2N9u3ZrVmFY0xGPWjNwO5Zf5HB3NormzaNO0AfVsLBjYqwt+D+4BkJiQwPLF8+jeviUNbC1pYVeHaa4uvH4VKZPGxnWrGNirC/VtqmBfu3pufAxB+COtW7OKzu3bYF3VnDo1rRkx1JHgp09yO6xsEYVuQRCEv0RMTAwGhka4THDNdL2ZRRWGjRyTZTqt27bj5LmL0teI0U6/Itw/xoZ1a9i9czsuE1zZ/+8RRowcg+f6tWzbujm3Q8tVU1wncuXKZWa4e7Bn/79Y29gyoG8vIiIicju0XBMT8xlDQ0NcJv5/P4j6Effv3WXP7h0YGBjmdii/lPs0V25cu8Kkae5s2rmfqtVtGDGoL68iI4iNjeWRvx89+g5k/dbdzJi7iJDgpziPHCKTRmJCAnUbNKJl2w659CkE4c/kc+M6HTp1YfP2Xaxas4HExEQG9uvD58+fczu0bxJDFQqCIPwlatSsRY2atTJd36x5CwDCQl9kmY6KSn60tLRzNLY/2Z07t6lTrz61atcBoESJkhw9cvivrtWNjY3l9MkTLFyynCqWVQEYNHgo58+dZfeObQwZPjKXI8wdNWrWpkbN2rkdxh/nc3Q0Ls5OTJ46nTWrVuR2OL9MXGws58+cZNa8JZhZWALQZ8BgvC+cY/+eHfR3HM7C5Wtl9hnlPIF+3TvyMjwMHd3iKfsMTCmEHzm4//d+AEH4w61YvU7mvdsMd+rWtMbv4QPpvehPJWq6BUEQhO9y5PC/1K1RnbYtHVi8YB4xMTG5HdIvZWZmzvWrVwkOfgpAgL8/t2/fzPIBxv+7pKREkpKSUFZWllmurKzM7du3cikq4U81c7obtWrVprq1TW6H8kslJSWRlJSEUgbXxd07tzPcJyoqCjk5OdTUCv2OEAXh/0rUp08AFFJXz+VIvk3UdAuCIAjZ1rhpM3SLF0dbuyiPHz1i0YK5PAsOZt6iJbkd2i/Tu29/oqKiaNmsMQoKCiQlJTF0+EiaNmue26HlmgIFCmJqZs7qlcspU7YsmppaHD1yiLu+dyhVunRuhyf8QY4eOYyf30O27dyT26H8cqoFClDJxAzPtSvRK1MWjSKanDp+hAf3fClRKv11ERcXx4rFcs1F1wABAABJREFU82lg14QCBQvmQsSCkHclJyfjMXsmZuYW6Osb5HY43yQK3YIgCEK2tWn3tY+hvoEhWtraDOjTk+chIf+3ha3jx45y5PC/zPKYR/ny5fH392OO+yy0tYvSvGWr3A4v18yY5cHkSeNpWLcWCgoKGBlXwL5JU/wePsjt0IQ/xMvwcDzcZ7Bqzfp0rSL+X01ym8Ust0m0tK+LgoICBkbGNLBrQoDfQ5ntEhMScB03CiQSxrhkPM6GIAiZmzl9KkGPH+O5eVtuh5ItotAtCIIg/LDKlU0AeP782f9toXvBPA969+lP4yZNgZSHDeFhYaxbu+qvLnSXKl2a9Ru38PnzZ6Kjo9DWLorT6BGULFkqt0MT/hAPHz7g7Zs3dGzXWrosKSmJmz432LF9Kzdu30NBQSEXI8x5JUqVZumajcTEfCY6KhotbW1cx42meImS0m0SExKYNG40L8PDWLxyg6jlFoTvNHO6GxfOn2P9xi0U09HJ7XCyRRS6BUEQhB8W4O8PgJZW0VyO5NeJjYlFXl5OZpmCggLJyX/3lGFfqKqqoqqqyscPH7jifYkRo/6/R7MXss+qenX2eP0rs2zyBBf0ypalV59+/3cF7tTy51clf35VPn78wPUr3gwaPgr4WuB+8fwZi1dtQL1w4dwNVBDyEIlEwqwZ0zhz+iTrPDfnqYe8otAtfJc6depgZmbGwoULczuUPMfT05MRI0bw/v17AKZMmYKXlxd37tyRbjNlyhRWrFhBZGQk+/fvx8vLi/fv3+Pl5fVLY5OTk2P//v20bNnylx5HyF2fP0fzPCRE+j409AUB/n4UUldHV7c4Hz6852V4OJGRKXPGBj9NGThMU0sLLS1tnoeEcPTIIWrUrEXhwoV59OgR82bPwsLSEgPD/99pgGrXqcua1SvR0S1OufLl8ffzY/PGDbRo1Sa3Q8tV3pcugkTCP2XK8DwkhAVzPdArU5YWrVp/e+f/U5+jowlJfY29eIG/nx/q6uroFi+ei5HljgIFCqbra5lfVZXC6oXzRB/MH3Ht8iUkSCj9TxlCn4ewbNFcSuuVoalDKxITEpjoPJJH/n7MXriM5KQk3rx+BaQMBKWoqATAy/AwPn38QMTLcJKSk3gc4Aek1KKrqhbItc8mCLlt5rSpHD1yiIVLllNAtQCvX6VcPwXV1FBRUcnl6LImJ5FIxKP6/0NycnJZrp88eTJTpkz57nTfvn2LoqIiampqPxiZrL+pEJ+20B0VFUVcXByampoA+Pn5UaFCBfbv30/16tXR0NAgNjYWiURC4Rx6Ep5RQR/g5cuXaGho/PY+d7GJv/VweULyL/xJ9rl+jX69e6Rb7tCiJW4z3DnotY/JE8enWz9g0GAGDh7Ky/BwJrg4EfT4MTExMRTT0aVe/Qb0HTCIgr+weaT8N37PfrXo6CiWLV7EmdOnePv2DdpFi9K4cVMGDBqMopJSrsaWm44fO8LihfOJePkSdfXC1G/YiKHDR+bY/SEvunH9Gn17dU+3vHmLVkyb6Z4LEf15+vTshqGhEWNdJuRaDJ9+4c3n9IljrFq6kFeRLylUSJ3a9RvS33E4BdXUCA8LpZ1Dowz3W7xqAxaW1QCYMXk8Rw8dyHKbnKamIurhhD+facWMH/C7TZ+Vqw98s3P5iEL3/6mXL19K/79z505cXV0JCAiQLitYsKD0j2SJREJSUhL58v3+H9ycKnTHx8ej9If/8Zu20J3WoUOHcHBwIDk5+ZsPTX5UZoXu3CIK3en9ykJ3XpXbhW5BEP6//MpCd14lCt2C8OOyc/mIebr/T+no6Ehf6urqyMnJSd/7+/ujpqbG0aNHqVKlCsrKyly6dImgoCBatGhBsWLFKFiwIFWrVuXUqVMy6dapU4cRI0ZI38fFxTFmzBhKlChBgQIFsLKy4ty5czL7eHt7U6dOHVRVVdHQ0MDOzo53797Rs2dPzp8/z6JFi5CTk0NOTo7g4GAAzp8/T7Vq1VBWVkZXV5dx48aRmJgoE8eQIUMYMWIEWlpa2NnZ0bt3b5o1ayZz7ISEBIoWLcq6desyzCdPT08KFy7MoUOHMDQ0RFVVlbZt2/L582c2btyInp4eGhoaDBs2jKSkJOl+7969o3v37mhoaKCqqkrjxo15/PhxurRLly6NqqoqrVq14s2bNzLrp0yZgpmZmfT/Dg4OAMjLy0sL3T179pRp8p2cnIyHhwfly5dHWVmZ0qVLM2PGDOl6Z2dnDAwMUFVVpWzZskyaNImEhARpPFOnTsXX11ea356enkBKy4jUTdjv3btHvXr1yJ8/P5qamvTvnzJl0hdf4po7dy66urpoamoyePBg6bEEQRAEQRAEQUghHmv9xcaNG8fcuXMpW7YsGhoaPH/+nCZNmjBjxgyUlZXZtGkTDg4OBAQEUDqTUYmHDBnCw4cP2bFjB8WLF2f//v3Y29tz79499PX1uXPnDvXr16d3794sWrSIfPnycfbsWZKSkli0aBGPHj2iUqVKuLm5AaCtrU1oaChNmjShZ8+ebNq0CX9/f/r164eKiopMk/iNGzcyaNAgvL29AXjz5g21atUiPDwcXV1dIKX2+PPnz3To0CFd7F98/vyZxYsXs2PHDj59+kTr1q1p1aoVhQsX5siRIzx58oQ2bdpga2srTadnz548fvyYgwcPUqhQIZydnWnSpAkPHz5EUVGRa9eu0adPH2bNmkXLli05duwYkydPzjSGMWPGoKenR69evQgPD890OxcXF9asWcOCBQuoUaMG4eHh+P83kBWAmpoanp6eFC9enHv37tGvXz/U1NQYO3YsHTp04P79+xw7dkz6MEVdXT3dMaKjo7Gzs8Pa2pobN24QGRlJ3759GTJkiLSQDnD27Fl0dXU5e/YsgYGBdOjQATMzM/r165dp/IIgCIIgCILwtxGF7r+Ym5sbDRs2lL4vUqQIpqam0vfTpk1j//79HDx4kCFDhqTbPyQkhA0bNhASEkLx/waIGTNmDMeOHWPDhg3MnDkTDw8PLC0tWb58uXS/ihUrSv+vpKSEqqoqOqmG+1++fDmlSpVi6dKlyMnJYWRkRFhYGM7Ozri6uiIvn9JAQ19fHw8PD5mYDA0N2bx5M2PHjgVgw4YNtGvXLsv+pgkJCaxYsYJy5coB0LZtWzZv3kxERAQFCxakQoUK1K1bl7Nnz9KhQwdpYdvb2xsbGxsAtm7dSqlSpfDy8qJdu3YsWrQIe3t7aRwGBgZcvnyZY8eOZRhDwYIFpf22dTKZ+uDTp08sWrSIpUuX0qNHSr/ccuXKUaNGDek2EydOlP5fT0+PMWPGsGPHDsaOHUv+/PkpWLAg+fLly/QYANu2bSM2NpZNmzZRoEDKgC1Lly7FwcGB2bNnU6xYMQA0NDRYunRpyvy8RkY0bdqU06dPi0K3IAiCIAiCIKQimpf/xSwtLWXeR0VFMWbMGIyNjSlcuDAFCxbEz89PZiTW1O7du0dSUhIGBgbSPuIFCxbk/PnzBAUFAUhrur+Hn58f1tbWMv2abW1tiYqK4sWLF9JlVapUSbdv37592bBhAwAREREcPXqU3r17Z3k8VVVVaYEboFixYujp6ckU1IsVKyYd0dnPz498+fJhZWUlXa+pqYmhoSF+fn7SbVKvB7C2tv7mZ8+Kn58fcXFxWebnzp07sbW1RUdHh4IFCzJx4sRMv7+sjmNqaiotcENK/icnJ8uMC1CxYkWZ6V50dXWleZSRuLg4Pn78KPOKi4v7rtgEQRAEQRAEIa8Rhe6/WOpCFaTUUu/fv5+ZM2dy8eJF7ty5Q+XKlYmPj89w/6ioKBQUFLh58yZ37tyRvvz8/Fi0aBEA+fPn/23xA3Tv3p0nT55w5coVtmzZQpkyZahZs2aW6SgqKsq8l5OTy3BZcnLyzwf9E76Vl1euXKFLly40adKEQ4cOcfv2bSZMmJDp9/ezvjePZs2ahbq6usxrzuxZvyQ2QRAEQRAEQfhTiEK3IOXt7U3Pnj1p1aoVlStXRkdHRzqwWUbMzc1JSkoiMjKS8uXLy7y+NF82MTHh9OnTmaahpKQkM0AZgLGxMVeuXCH1wPre3t6oqalRsmTJLD+DpqYmLVu2ZMOGDXh6etLrf+zddVgUzQPA8S8qYSth6888QkkTsAsMVGzFbrG7CwO7CxPsFgNbXwtbsSgFQRQQBUVFGvb3B3p6ciivLwrqfJ5nn4ebnZ2dG3bnbm5mZ3r2TMc7/3f09fVJTEzk+vXr8rCIiAh8fX0xMDCQx/lyP8C1a9f+03krVKhAzpw50yzPK1eu8L///Y9JkyZRpUoVKlSowNOnTxXiKCvvr+nr63Pv3j0+fPggD3N3dydbtmzo/oe1mCdMmMDbt28VtjHjJvxwen+TyMg31K9tQUjw8+9H/g3t3b2LYYMG/Od0IiPfULeWOcG/YTnt2b2TIfb/vQy+9juXifuli7Rv3TLDf/AUZZKaKBN4GxlJ84a1CA0JzqCcZS0BT/ywbVKfmJjozM6K8Bf4nesUfz8/GtWvTXR0xt4rotEtyFWoUIEDBw5w9+5d7t27R+fOnb/5ISaTybCzs6Nbt24cOHCAgIAAbty4gaOjI25ubkBKQ+vmzZvY29tz//59fHx8WLNmDeHh4UDKc8fXr18nMDCQ8PBwkpOTsbe359mzZwwZMgQfHx8OHTrEtGnTGDlypPx57m/p06cPLi4ueHt7y599zkgVKlSgZcuW9O3bl8uXL3Pv3j26dOlC8eLFadmyJQBDhw7lxIkTLFy4kMePH7Ny5co0n+dOLw0NDcaNG8fYsWPZsmUL/v7+XLt2TT4ze4UKFQgKCmLXrl34+/uzfPlyDh48qJBG6dKlCQgI4O7du4SHhysd3m1nZ4eGhgbdu3fn4cOH/PPPPwwZMoSuXbvKn+f+Eerq6uTLl09h+9Xrgv+uNqxbS916DShWPOVHp3lzZtG5fWuqmRrSoU0rpcc88vWlVzc7qpsZYd2gLs6bNnz3PJ4PHtC/dw9qmVeltkU17Pv1xveLifpCgp9jWkkv1Xb/3l15nGtX3GnZzIqa1SszefxYEhI+j7R4//49LZtZEfLVl9pWrVvj7e3Fndu3/kWppLbeaS316jWg+MdyCg0JYfDAflSvbEzdWuYsXjhPYRWEr928cR3jirpKt4cP7gMQHPxc6f4vy+DqFXdsmlphUc2MiePHkBCvWAY2TVOXga1tG7y9Pf9zGXztv5YJQGBgAMMGD6SOZXUsqpnRvUsnblxX/BFRWZkcP+Ym3+/t7UX7Nq2oUcWUIfYDePvF0omJiYl0bNeaB/fvK6RpWas2OXLkwO3o4f9YCooyokzeRkYyYewoLKqZUbNGFaZNmUj0Fz9UQso65u1bt6R6ZWOsG9ZLdQ/+aWUydNAArBrUpaqpIQ3q1GTi+DG8fBmmEMf98iW6dGqPeVVT6taswchhQxS+lGdmmWzZ5EStOvUoWqx4Sl48HzBsQC+s69TAuq45Iwf15fEjH4VjJElix5bNdLRtSr0aJrSyrofLRqdvnifoaSDjRw6mWX1LGteuxsBeXbhzU/FH+ls3rjGgpx2NalWlReParF6+SKH8Q0OCGdSnGw0tqzCoT7dUPxSMHWbP+bOnFMLKlC1PRUMjdm9z+ddlIwj/VkbUKeud1tDNriPVKxtTs0YVpXGuX7tKN7uOmFc1pX5tS5YsWqCQbnDwc3p2s6N6FRN6drNL9SPAYPv+nDl1UiGsXPnyGBmZsNVl84+89TSJRrcgt3jxYgoWLIiFhQU2NjZYWVlhZmb2zWM2b95Mt27dGDVqFLq6urRq1YqbN2/KZzuXyWScOnWKe/fuUa1aNczNzTl06JB8TfDRo0eTPXt2DAwM0NHRISgoiOLFi3Ps2DFu3LiBsbExAwYMoHfv3gqThH1Lw4YNKVq0KFZWVvIJ3jLa5s2bqVy5Ms2bN8fc3BxJkjh27Jh8yHWNGjVYv349y5Ytw9jYmFOnTqU7/98yZcoURo0axdSpU9HX16dDhw7y56hbtGjBiBEjGDx4MCYmJly5coUpU6YoHN+mTRusra2pV68eOjo67Ny5M9U5cuXKxcmTJ3n9+jVVq1albdu2NGjQgJUrV/7n/Av/XkxMDIcO7KdV6zYK4S1t29DYuqnSY6KiorDv15uiRYuxY89+ho8ag9PqlezfuzvN80RHf2DQgD4UKVqUrTt2s3nLdnLlzs2g/n1SLQW3dsNmTp+/JN/0DVImR0xOTmbCuNG0bd8Rl+278PJ8yP69e+THLV+yiLbtO1Ls45faT1RV1WjStDk7t2/9V2XzpZiYGFwP7MO2TVsAkpKSGGzfn4SEBFy27WLWnLkcdj3I6pXL00zDxMSUs+cvK2yt27SjeIkSVKxkqBB33UZnhXgKZTB2FO3ad2TLjt14eT5k3xdlsGzJQtopKwM1NZo2a86ObVt+uAy+lhFlAjDEfgBJSUms3+TCzr0H0NXVY8igAYS/eqUQz2GWo0KZ1G/QUL5vxtTJVKteg137DhAV9Z4N6z83TLY4b8LE1AxDI6NU527RqjU7t/34dfG1jCqTCeNG4+/nx9oNm1m+ai13bt3CYfpU+f7Lly4wcdwY2nboyH7Xo0ycMo1tW5zZuX2bPM6fViZVq9VgweKlHHI7waKly3n+7BmjRwyT73/+/BnDh9hTrXoN9uw/xJp1G4mMfMPIYUPkcTKrTGJjYjjqeoBmrVLq2ejoD4wa0p/CRYqyzmUnqzduJVfu3Iwa3I/EL+rDZQscOeq6n8HDR7N9/1HmLlmJQUXDtE4DwNjh9iQlJrHMaRMbt+2lvEyXscMHERGecj89fuTDmKEDqG5uyeYd+5jhuAj3C+dZu2KJPI2VS+ajXagQm3fuR0tbh1VLF8j3nT11HJVsKtRt0DjVuZva2HJw3+7vNnYE4b/IqDolISGBRo2tadehk9L9vj4+DBrQFwvLmuze58r8RUu4cP4cy5YsksdZNH8ehQoVZs9+V7R1dFi84PMEzCeOHyObigoNG1ulSrulbWv27t6ZsfeKJAj/Qo0aNaRJkyZldja+6f3791K+fPmk/fv3Z3ZWhO+ISRDb19uH+GSFzfXoMal6jRqpwj/EJ0uLliyTmtu0SBW+ect2qUqVqlLkh1h52Jx5C6TGVlZK0/kQnyzduHNPkslkkv/TYHnY3Yfekkwmk7z9AqQP8cnS44AgSSaTSXfueypN41noK0kmk0mv38eknHPufGny1OnSh/hkyf36LallK1vpXUyC0mMvXrkuVaxYUYp4F51qX3rK7fDR41L1GjXkr0+fOy/p6elJz0NfycNctu2QzMzMpHcf4tKV5rvoeKl6jRrS0uUr5WF+gc8kmUwmedz3UnrM8xfhkkwmkyKjYqWYBEmaM3e+NGXqdCkmQZKu3rgttbK1laJiE5Uee/nqDalixYrSm/cxGXItZUSZhLyMkGQymeR+7aY8LDzyvSSTyaR/LrrLw2QymeR24nSaeTEyMpK8fP1Szrl1u9S7T18pJkGSHj8Jkho2aiyFR75XetyTp8GSTCaTHvk/zTJl4unjJ8lkMumWx3152JlzFyRdXV3pafALKSZBkoYNHykNGjxE4biNzlukWrVrS9Efr+k/qUyUbcdPnpF0dXWld9Hx8vMYGBhIH+KSPsc5dVYhzq8qk5fvExS23QePStWq15C/vnjdQ5LJZNKDx0HysKt3PFPqPy8/6eX7BOnGfR9JX99AuvXgUar00toeBb2UZDKZdPriNXlY4IvIlPvnzEXp5fsEaabjAqlFK1uF4w64nZIqGRpKgS8ipZfvE6TGVtbS4ZPnpJfvE6RDJ85Jja2bSC/fJ0j+IRFS/QYNFfL95Rb8+oNUqVIl6djZS6n2ZcS1JDaxxSRkfJ2ya89+qXLlyqnC5y1YJNnatlYIO37qrGRoaCivK6ytm0hnzl2Q58O6SVMpJkGSwiLeSg0bNpICgkKUnvPdhzipUqVK0vlLV9L1ntND9HQL6RIXF8etW7fw9PRUWPIrK0lOTubly5fMnDmTAgUK0KJFi8zOkiD8Zx63b8t7UdPr/r27mFWpgqqqmjzMwtKSwIAA3r19q/SY0mXKUKBAAVwP7CMhIZ7Y2FhcD+ynTNlyqXplhw+2p35tC3p27cz5f87JwwtqaqKto8PVK+7ExMRw5/YtKshkJCQkMGfmDCZPm6Ew4/2XDCpWIikpiYf37/2r9/rJnTu3MPiinO7dvUuFCjK0tLW/KIOaREVF4efvl640L/xzjreRkbSybZNq37DBA6lby5zuXTpx/tzneRY0NTXR0dHhqvtlYmJi8Lhzmwq6uiQkJDDbYTpTpjl8twwe/GAZfC0jyqRAgYKULlOGI4dciY6OJjExkX17dqOppaWQNsCcWTOoY1mdzh3acvDAPoV5OWS6ely9eiVlPoxr16ggS5kfYqbDNEaMGkPu3MqXdSxarBhaWtoZNuw+I8rk3j0P8ubLpzD6obq5BdmyZZMPfY6Pj0ftq8dnNNQ1CHvxQv5owZ9UJl97GxmJm9sRjE1M5SPA9CtWREVFBdeD+0lKSuL9+/e4HTlEdXMLeZzMKpN7HnfQ1TeQvy71vzLkz1+Ao4cOkJAQT1xsLEcP7ad0mbIUKZpSH7pfPE+xEiVwv3SBdjaNadu8EXMdpvLubWSa58lfoACl/leGE0cPEROTcj+57t9DQU0t+fnj4+NRU1O8dtTVNYiPi8PH2xOAcjJdbl2/RnJyMjevuVOuggyA1UsX0rp9JwoXKar0/KqqapSX6XHP4/YPlZMgpMfPqFOUUVrPamgQFxeHl2fKvSLT1ePataskJydz1d0d2cc6ZcnC+XTo1JkiRdO4V9TU0NXTz9BHvkSjW0iX48ePU79+fVq0aEHbtm0zOztKBQUFUbhwYXbs2MGmTZvkQ9gF4XcWGhqCjk6hf3VMRPgrtLS0FMI0tVI+7D7Np/C13LnzsH7zFo4dPUKNyiZYVjPjivslVq5dJ7+XcubKzcgx45i/eCkrVjlhYlaZkUMHyRveKioqzF+0lPVrV9O2VXP09A1oaduGzRvXU7VaddTV1enRpROtmluza8c2hfOnrCOfl5DQkH/1Xj8JDQlBp9DncooID5e/50+0Pr7+NIzzew4e2IeFZU0Kf7Gufa5cuRg1ZjwLlixj5WonTM0qM3zoIHnD+1MZrFu7mtYtm6Gnp08r2zZs2rCOqtWqo6auTne7jrRoZqUw1PjLMggN+bEy+FpGlImKigrrNjjj4+OFRTUzqpkZsdVlM6udNpAvf355PPvBQ1mwaClrN2ymYaPGzJk5gx1fPC4wzWEWZ06dpLl1I1RVVendtz9HDruSU0ODipUMGdC3N82tG7Fy2ZJUedApVIjQH7wuvpYRZRIRHo6mpqZCWI4cOciXP7/8GAvLmpw9c5rrH7/sBQYGsMVlE4B8WP6fVCafLFm0gOpVTKhtWZ0XoaEsW7lavq9EiZKsXb+JFcuWUNXUkJo1qhAWFsaCRUvlcTKrTMJCQ9D+op7NlTs3K9Y5c+rYERpYVKZRrapcv+LOwhVO8vowJPg5YaEh/HPmJJMdHJk4fTa+Pp5MHjsizfOoqKiwdM0GHvn60LhWNRpYmLF7uwuLVjiRL1/K/VTd3JKH9+9y+oQbSUlJvHoZhvP6NcDn8h88fAxBgQG0bd6I50FBDB4+hrt3bvH4kQ/WzVowZdxI2rWwYsGcGQrzagBo6xQiLIOuHUFQ5md8HitjYVmTe3c9OO52lKSkJMLCwnBaswr4XM+OHDOOgIAnNGlUn6dBTxk5Zhy3b93E18cbmxatGDNyGE2tGjBzxlSF+VcgpU4JyaDPYwDRKhHSpVWrVrx79y6zs/FNpUuXVuhZEYQ/QVxsLOqFfv6Ec7GxscyYOhljU1Mc5y8iKTmJLc6bGGo/gG279qKhoUHBggXp2v3zigAVDQ159fIlWzZvpG69+gCYmlVm++598jhPAwM4evgQu/YdoHf3rnTq0pWaNWvT1tYGs8pVkX0xI766hjqxMbE/mP84CqllXDmFvXjBFffLCg0CgIIFNenW43MZVDI04tWrlzhv3kjd+g0AMKtchR179svjBH4sg937DtKzexfsunTDslZt2rRqTuUqVZDp6snjqmuoExsbkyHvISPKRJIk5syagaamFpu3bEdDQ4MD+/YydNAAduzeJ/9BqP/AQfJj9PUNiImJwWXzRuy6dAOgfPkKbHL5/CNDZOQb1qxawWaX7cydMxMTU1MWL1uBXYe2VDIyll9PABrq6sTEZJ0ySY827drz7FkQQ+z7k5iYSO7cebDr2o01q1ag8nFC0D+xTHr06o1tm7aEhoSwdvVKJk8Yx4rVTqioqBD+6hUzpk2hRYtWWDdrTvSHD6xeuZzRI4bitGEzKioqmVYmcXGxqKl9HhkUFxuLo8MUDI1NmT5nAUnJyezaupkxwwayYctu1DU0SE5OJj4+nskOjpT6X2kAxk+ZSe8u7QgKDKBU6TKpziNJEovnzaKgpiarNmxBXV2DI677GDdiEOu37EZbR4dq5pbYDxvFwjkOzJo6AVVVNbr36c89j9vyyWR1ChVm/rLPP2jEx8czcnA/Js2Yg8tGJ3Llzs3O/UcZNaQ/h/bvpW1HO3lcdXV1YmN/rJ4VhPT4VfWshWVNRowayyyHaUyaMBZVNTX69bfnzu1b8nq2cOHCrFz9eW6I+Ph4Bvbrzaw5c1nntIZcuXNz6OgJ7Pv3Ye/e3XS26yqPq6GecZ/HIHq6BUEQsrQCBQvy7p3yIeFp0dLWISIiQiHsdURKD7e2trayQzjudpSQ4GBmzHKkoqEhRsYmOM5fSHDwc4Xh018zNDLiWVBQmvtnzZjGyDHjSE6W8PH2olFjazS1tKhcpSq3b91QiPvu7VsKahZM79tUULBgAYUfBrW0teXv+ZOIj6+1tHW+m57rwf3kL1CAOl98qU+LoaHxN8tg5vSpjBozjmTpYxlYWaOlpUWVKlW5deumQtx3b99SsKBmGin9OxlRJjeuX+PihfPMW7gEU7PK6BtUZNLU6Wioa3DY1TXNcxsaGRP24gXxX/UcfLJw3lzsunancJEi3Lpxg0aNrcmVKxe16tTh1k3F6+Ltu7epepZ/VEaUiZa2Nq9fv1YIS0xM5N3bt/JjVFRUGDFqDFdvenD89D+cu3CZSoYpw9FLlCipNN3fuUw+p6VJ6dJlMLewZP7CJVy6eEE+s/+undvJmycPI0aPRV/fgMpVqjJn7gKuX7ua5iMVv6pM8hcoyPsvyuD0CTdehIYwcfps9CsaUsnQmGmz5xMaHMylCykje7S1dciePYe8wQ1QukxZAMJehCo9z+2b17ly6QIz5izEyMQMXX0DRk+Yirq6OsePusrjdezSgxMXrrHf7QxuZy9Tq25KPfRpBYuvbd20jmo1LNDTr4jHrZvUrd+IHKqq1K7fEI/bX9Wz795SoOCP1bOCkB4Z/Xn8Ld169OTytVucOPMPFy5fo97HH7/TWmJ4w7q1mFtYYlCxErdu3qBhIytUVVVp0LAxt258Vadk4OcxiEa3IAhClqanp88Tf/9/dYyRsQl3bt1SmHX82pUrlC5TRmFI8JdiY2PIli0bKioq8jAVlWyooIIkpb10oK+PD9o6yj80D+7fR778+albrz7JH9eH/zQTaGJiosKShM+CgoiLi0NPz0BpWt+jp2/Aky+eDTM2MeHx40cKPz5cu3KFPHnyUK5c+W+mJUkSh1wPYNOilfxZ02/x9fFOswwO7N9L/vwFqFu/gfIy+BgGX5SB/o+Vwdcyokw+9Rxm++K6AFDJ9r3rwpt8+fIr9B5+cv3aVZ488adT5y4AJCcnfS6TBMUyiYuL41nQsyxVJsbGprx/9w4vz4fysBsfn6/9embt7NmzU7hwYVTV1Dh+zA1jE1OlDcPfvUyU+XR/f/rhJTY2Vt779Em27NkU4n7pV5ZJBV19AgM+17OxsbFkU1FJXR+qfM6robEpSUmJBD/7/INbUFAgAIWLKl855VOvmUq2r++nbKlG6qmoqKCtUwh1DQ3OnDhGocJFkCmpHwMD/Dl9wo0+A1NmgU/6opySEhNJTlIs2wB/P2S6+mkXhiD8Rz+rTkmLiooKhQoVRkNDg+PHjlKkSFGlc+E88ffnuNtRBg1JWVUhOSmJxMSU70mJiQkkJycpxPfze4yefsbdK6LRLQiCkIWZW9bkib+fwgRoQUFP8fXx/rjWeiy+Pt74+njLn91r0qw5qqqqzJg6GX+/x5w8fowd27fSpVsPeRrnzpzG1qaJ/HUNc0vevXuL4ywHnvj74+/3mOmTJ5I9R3aqVKsOwOFDBzl+7CgBT54Q8OQJG9et5dDB/XTs/Hno4ievIyLYsG4N4yamLJWXL39+ypQtx46tLty768GNa1cxMfm8JKHHnVuUKFGSkh+XG/y3LCxr4v9FOZlb1KRsufJMGj8WXx8f3C9fYuWKpXToZCdvCD64f5+Wza0JC1NcS/jG9WsEP39O6zap56847HqQ425HCXjiT8ATfzasW4vrwf10suuSKm5ERATrndYwftLnMihbthzbP5bB9WtXMTH9XAZ3bt+iRMkfL4OfUSbGJibky5ePyRPH4+vjQ2BgAIsXziP4eTC1atcF4Pw/5ziwby+PHz8i6OlT9uzawYb1TkrLJC4uDsfZDkydPlM+VNbE1IzdO7fj6+PDmTOnMPliqcr79+6ipqaKkbFJlimTsuXKYVmzFjOmTeHB/ft43LmN4+yZWDdpRqFChQF48+Y1e3bvJOCJPz7e3sxznMXpkycYM27iH1km9+/fY+f2bfh4exMSEsz1a1cZP2YkJUuWwtjEFIBatevg+fABa1ev5OnTQLy9PJk6aQLFihVP1Vj+1WVS3dySAH9/+aiiqtXNef/+HYvmziQwwJ8n/n44zphM9uw5MKuSUh9WqW6OTM8AR4cpPPLxxsfbkwWzZ1C1uoW899vr4X06t27Oq4/rlVcyNCFv3nzMnjaRx498CHoayKqlCwkNfo55zdry/OzYsgn/x4944u+H8/o1bHPewPAxE1NNwihJEvNnTWfIyHHkzJkLSPkx4MjBfQQG+HPi6GEMP5Y/pKzv/eplGFWqm/9QOQlCemTU53FoSAg+3t6EhoaQlJSEj7c3Pt7eRH/4II/jvGkDjx/54uf3GKc1q9i0YT3jJk5Weq84TJ/C6HETyJUr5V4xMTVj/769PPH358jhQwqfx8HBz3kZFkYNc4sMKxfR6BYEQcjCKsh00dM34NTJ4/Iwh6mT6djWlv17d/M0MJCObW3p2NaWVx/XbM+bNy+r120kJPg5ndu3YfHCefQbYE+bdh3kaURFvScwIED+ukzZsixbuYbHj3zp3qUjvbp14dWrl6xau15hIrf1a9fQuUMbunVuz/l/zjF34WJaKpnde/7c2XTt3lPeCAFwmO3IyePHGDZoAN169qai4efZn08cc8O2bbv/XE4nP5ZT9uzZWbF6LdmzZ6ObXQcmjR+DTYtW2A8eKj8mNjaGwIAA+S/dnxzcvw8TE1PKlC2n9Fzr1q6mY/s2dOnUnn/OnWX+wiVKZzif7zibbt17fVUGczlx3I0h9gPo3rM3lQw/94weP+ZG6zbtf7gMvpYRZVKwoCarnTYQHR1N317d6dy+DR537rBs5Sp09VKeRVfNkYNdO7fTrXMH2rdpxb49uxk9djwD7AenytPa1SupVbuuQu/BuAmT8fHxpld3O+rUqUfDRp/XTD1+zI2mzW3ImTNnlikTAMd5CylTpiz9endn8MB+mJqZMXW6g8K5jhxypVP7tnTv2gl/Pz82OG9Vusb0n1AmOTU0OHvmFP1696BlM2umT51EBV1dNrpsk3+prl7DHMf5i/jn3Fk6tLFlYP8+qKmpsdppPRoaGplaJuUqyJDp6XPu9EkA/lemLPOWrML/8SMG9LBjUJ+uhL96ycKVTvJRLdmyZWP+0lXkL1CAQX27MXbYQEqXKcsMx89rZsfGxhL0NEDe81ygYEEWrXQiJjqaYQN60adre+7fvYPj4pVUkH2e2+Ga+yUG9elGn67tuXL5Io6LV1K7XoNU+T50YC+aWlpYfvwBDKB3/0HExcfRr3snipcsRet2n9c4PnPiGFVrWFAkjZ54QcgIGVXPrl65nA5tW7Fm1Qqio6Pp0LYVHdq2wvOLUUaXL12kZzc7Ordvw6WLF1i2chX1GzRMlad9e3ejpaVNnbr15GEDBg0hPi6OLp3aUapUKTp0+tyBcOKYG+YWlqlWb/kvVCQx85QgCJkkNjGzc5D1JCupki9dOM+SRQvY53pE3uvzJ/H3e0y/Xj1wdTtB3rx5U+3/emhzWi5eOM+ShfPZf+job1dOfn6P6durO4fdTiotgx/1O5fJmzevadmsCTv27EvzOegfIcoktb+tTN4r+fC5cukCq5ctZMueQ79dGaRHQkI8HVs1Zdrs+Rh9Mcrok7waYm5lIeP8znVKQnw8Nk2tcJy/EFOzyuk6Jj23j7jDBEEQsrhadeoSFPSUl2Fhaa4p+Tt79eoVMx3n/ufGZu06dQl6GvhbllP4q1fMmjMvQxvc8HuXSUhwMBOnTMvQxiWIMlFGlAlY1KrD82dPefUyLM11rn9nYS9C6dqrn9IGtyBktN+5TgkNDaV3v/7pbnCnl+jpFgQh04ie7tSU9XT/7dLb0y0IgpAeynq6/3aip1sQflx6bp/fq79fEARBEARBEARBEH4jotEtCIIgCIIgCIIgCD+JaHQLgiAIgiAIgiAIwk8inukWBCHTiMfqBEEQBCHzPX8dk9lZyJJKaGbM0nzCn0080y0IgiAIgiAIgiAImUg0ugVBEARBEARBEAThJxGNbkEQBEEQBEEQBEH4ScSifIIgCH+x27du4rxpI95eD3n16hVLlq+ifoOGACQkJLBy+VIuX7rI8+fPyJsnD9XNLRg2YhSFChXO5JwLgvA7+FYdI/x59mzdyJWLZ3n+NBA1dXX0KxnTc+BwSpQqLY8THxfHhlWLuHj2JAkJ8ZhVs8B+5EQKamqlSu/d20gG92xPxKuX7D52kTx588n3/XPKjf07XAh5HkSu3HmoUsOSXvYjyJe/wC94p4Lw74iebkEQhL9YTEw0urq6TJg8LdW+2NhYfLy96DdgILv3HmDxspUEBgQwbPDATMipIAi/o2/VMcKf58Hd2zSz7cAipy3MWrKWxMREJo8cSGzM54na1q9YyA33i0xwWMDcFRt5Hf6K2ZNGKk1v2dzplClXIVW4130PFs+eQuPmrVi9ZT8TZi7gkfdDls93+GnvTRD+C9HTLQiC8BerWasONWvVUbovb968OG3YrBA2YdIU7Dq2IzQkhKLFiv2KLAqC8Bv7Vh0j/HlmLlqt8HrkRAc6t6iPn68XlUwq8yHqPafcDjJmqiPGlasBMHzCDAZ0scXH8z56FY3kx7od3MOHqPd06tGfW9fcFdL19rxPoSLFaNG2MwBFihXHukVb9u1Q/MwShKxC9HQLgiAI6RYVFYWKigp58+X7fmRBEAThr/bhQxQAefLlB8DP15vExERMqlSXxyn5vzLoFC6K98N78rCgAH92Oq9j5ORZqGRTSZWufkUjwl++4ObVS0iSxJvXEbifP0OVGjV/8jsShB8jeroFQRCEdImLi2Pp4oU0adqMPHnyZHZ2BEEQhCwsOTmZdcsXYGBoQumy5QF48zqcHKqqCs9mAxTU1OTN6wgAEuLjmT9jAr3sR1CocFFehDxPlbaBkSmjp85h3rRxxMfHk5SUSDXLOtiPnPDz35gg/ADR0y0IgiB8V0JCAmNGDkOSJCZNnZHZ2REEQRCyuDWLHXka4Me46fP+1XHOTssp+b8y1LdqlmacoAB/1i1bQKce/Vi2YQcOC1fzMjSElQtn/9dsC8JPIXq6BUEQhG9KSEhgzKjhhIaEsH6zi+jlFgRBEL5pzRJHbly9yLwVm9D+YrWLgpraJCYkEPX+nUJv95vXr+Wzl9+7c4OnT/y4XPdMyk5JAqCTTT06dO1Nl9727Nm2CX1DY9p07gFAmfIyNHLmZOygnnTrMwhNbZ1f80YFIZ1Eo1sQBEFI06cGd9DTp2zYvIUCBQpmdpYEQRCELEqSJNYuncvVi+dwXL6BIsWKK+wvr6tPjhw5uHf7BpZ1U5aOex4UyKuwUPQrGQMwadYi4uLi5Mc89n7I0rnTmb9yE0WLlwQgLi6W7NmzK6SdLVvKAF4J6ae9P0H4UWJ4uSD8C6VLl2bp0qWZmofz58+joqJCZGRkppw/OjqaNm3akC9fvkzNh5Axoj98wMfbGx9vbwCCnz/Hx9ub0JAQEhISGD1iKF6eD3Gct5DkpCTCX70i/NUrEuLjMznngiD8Dr5Vxwh/ntWL5/DPKTfGTHUkZ67cvI4I53VEOHFxsQDkzpOXxs1sWb9yEffu3OSxrxdLHKeiV8lIPnN50eIlKV22vHwr/LHhXvJ/ZShQUBOAaha1uXLhHG4H9xAa8hyv+x44LZuHTL8SWtqFMufNC8I3qEiSJH4O+sP06NEDFxcXHB0dGT9+vDzc1dUVW1tbxL/8x7169YrcuXOTK1euTMtDfHw8r1+/pnDhwqiopJ7R82dbs2YN06ZN49y5c2hraxMTE0PZsmXx8PDAxMTkX6UVm/hz8iik380b1+nTs1uq8BYtbRkwaDBNGzdQetyGzVuoWq260n2CIAiffKuOmTlnbibkSFDm+euY70dKh2a1TJSGD58wg0ZNWwIQHxfHhlWLuHDmBAkJ8ZhVs8B+5EQ0tbSVHnvf4yYThvZl97GLCkPSD+/byfFDewkLDSF3nrwYmVWl58BhaOsUVprOjyihmTPD0hL+XBrpGDsuGt1/oB49erB79240NDR48uQJBQumDAfNrEa3JEkkJSWRI4d4muFXSEpKQkVFRT7MKj3+zf9o9OjR3Lx5kwsXLgAQGBhImTJlRKNbEARBEH5TGdXo/tOIRreQHulpdIvh5X+ohg0bUqRIERwdHb8Zb//+/VSsWBF1dXVKly7NokWLFPaXLl2aOXPm0KtXL/LmzUupUqVYt27dN9P8NPz5+PHjVK5cGXV1dS5fvkxycjKOjo6UKVOGnDlzYmxszL59++THvXnzBjs7O3R0dMiZMycVKlRg8+bNQErDTkVFhV27dmFhYYGGhgaVKlWSN/w+uXDhAtWqVUNdXZ2iRYsyfvx4EhM/t+zq1q3L0KFDGTt2LJqamhQpUoTp06fL90uSxPTp0ylVqhTq6uoUK1aMoUOHKpTHp+HlnTt3pkOHDgrnT0hIQFtbmy1btgB89z0rs3XrVqpUqULevHkpUqQInTt35uXLl6nK99OwbmdnZwoUKMDhw4cxMDBAXV2doKAg4uLiGDduHCVLlkRdXZ3y5cuzcePGb/6P/P39admyJYULFyZPnjxUrVqVM2fOKJTfokWLuHjxIioqKtStW5cyZcoAYGpqKg8TBEEQBEEQBCGFaHT/obJnz86cOXNYsWIFz5+nXt8Q4Pbt27Rv356OHTvy4MEDpk+fzpQpU3B2dlaIt2jRIqpUqYKHhwf29vYMHDgQX1/f7+Zh/PjxzJ07F29vb4yMjHB0dGTLli2sXbsWT09PRowYQZcuXeQN5ylTpuDl5cXx48fx9vZmzZo1aGsrDjUaM2YMo0aNwsPDA3Nzc2xsbIiISFnXMTg4mKZNm1K1alXu3bvHmjVr2LhxI7NmzVJIw8XFhdy5c3P9+nXmz5+Pg4MDp0+fBlJ+hFiyZAlOTk48fvwYV1dXDA0Nlb4/Ozs7jhw5QlRUlDzs5MmTREdHY2trC/Dd96xMQkICM2fO5N69e7i6uhIYGEiPHj2+WdbR0dHMmzePDRs24OnpSaFChejWrRs7d+5k+fLleHt74+TklGrW6a//R1FRUTRt2pSzZ8/i4eGBtbU1NjY2BAUFAXDgwAH69u2Lubk5oaGhHDhwgBs3bgBw5swZeZggCIIgCIIgCCnEeN8/mK2tLSYmJkybNk3ew/mlxYsX06BBA6ZMmQKATCbDy8uLBQsWKDTymjZtir29PQDjxo1jyZIl/PPPP+jq6n7z/A4ODjRq1AiAuLg45syZw5kzZzA3NwegbNmyXL58GScnJ+rUqUNQUBCmpqZUqVIFSOlV/trgwYNp06YNkPJs8YkTJ9i4cSNjx45l9erVlCxZkpUrV6KiooKenh4hISGMGzeOqVOnyodbGxkZMW3aNAAqVKjAypUrOXv2LI0aNSIoKIgiRYrQsGFDVFVVKVWqFNWqVVP6/qysrMidOzcHDx6ka9euAOzYsYMWLVqQN2/edL1nZXr16iX/u2zZsixfvpyqVasSFRWV5lJNCQkJrF69GmPjlJk/Hz16xJ49ezh9+jQNGzaUp/Wt/xGApqamPA2AmTNncvDgQQ4fPszgwYPR1NQkV65cqKmpUaRIEQDevXsHgJaWljxMEARBEARBEIQUoqf7Dzdv3jxcXFzw/jhr6Je8vb2xtLRUCLO0tOTx48ckJSXJw4yMjOR/q6ioUKRIEflw5yZNmpAnTx7y5MlDxYoVFdL61HgG8PPzIzo6mkaNGsnj58mThy1btuDv7w/AwIED2bVrFyYmJowdO5YrV66kyvOnxitAjhw5qFKlivy9eXt7Y25urjC5mKWlJVFRUQq9/V++H4CiRYvK30+7du3kE4P17duXgwcPKgxP/1KOHDlo374927dvB+DDhw8cOnQIOzu7dL9nZW7fvo2NjQ2lSpUib9688sb5p95mZdTU1BTe1927d8mePXuaDftPvvwfAURFRTF69Gj09fUpUKAAefLkwdvb+5vnTq+4uDjevXunsH25JIggCIIgCIIg/IlET/cfrnbt2lhZWTFhwoTvDlFOi6qqqsJrFRUVkpOTAdiwYQMxMTFK4+XOnVv+96ch2G5ubhQvrrhmo7q6OpDSgH/69CnHjh3j9OnTNGjQgEGDBrFw4cIfyvePvJ+SJUvi6+vLmTNnOH36NPb29ixYsIALFy6kOg5ShpjXqVOHly9fcvr0aXLmzIm1tXW63/PXPnz4gJWVFVZWVmzfvh0dHR2CgoKwsrIi/htLNOXMmVPhx4acOdM38ceX/yNImSTt9OnTLFy4kPLly5MzZ07atm37zXOnl6OjIzNmzFAImzRlGpOnTv/PaQuCIAiCIAhCViV6uv8Cc+fO5ciRI1y9elUhXF9fH3d3d4Uwd3d3ZDIZ2bNnT1faxYsXp3z58pQvX57//e9/acb7coKvT/E/bSVLlpTH09HRoXv37mzbto2lS5emmrTt2rVr8r8TExO5ffs2+vr68vdz9epVhdnZ3d3dyZs3LyVKlEjX+4GUBquNjQ3Lly/n/PnzXL16lQcPHiiNa2FhQcmSJdm9ezfbt2+nXbt28sZ5et/zl3x8fIiIiGDu3LnUqlULPT09hUnU0svQ0JDk5ORvPjuujLu7Oz169MDW1hZDQ0OKFClCYGDgN49RU1MDUBgdocyECRN4+/atwjZm3IR/lT/hs8jIN9StZU5wsPI5G7Iy90sXad+6pfzHLkEQMt/vXKfs2b2TIfYDMjsbf5x3byPpbFOPsNDgzM7KT3HMdS8zxg39fkRByACi0f0XMDQ0xM7OjuXLlyuEjxo1irNnzzJz5kwePXqEi4sLK1euZPTo0Rmeh7x58zJ69GhGjBiBi4sL/v7+3LlzhxUrVuDi4gLA1KlTOXToEH5+fnh6enL06FF5g/qTVatWcfDgQXx8fBg0aBBv3ryRPwNtb2/Ps2fPGDJkCD4+Phw6dIhp06YxcuTIdC+f5ezszMaNG3n48CFPnjxh27Zt5MyZ85s/KHTu3Jm1a9dy+vRp+dDy9L7nr5UqVQo1NTVWrFjBkydPOHz4MDNnzkxX3r9UunRpunfvTq9evXB1dSUgIIDz58+zZ8+ebx5XoUIFDhw4wN27d7l37x6dO3f+bsOoUKFC5MyZkxMnThAWFsbbt2+VxlNXVydfvnwKW1o9/sL3rXdaS716DShePOUHpdCQEAYP7Ef1ysbUrWXO4oXz0nw04pMmjepjXFFXYdu4XvGHLvfLl+jSqT3mVU2pW7MGI4cNUfhS7u3tRfs2rahRxZQh9gN4+3FWfUj5Yaxju9Y8uH9fIU3LWrXJkSMHbkcP/8dSEAQho2REnfI2MpIJY0dhUc2MmjWqMG3KRKI/fJDvDw5+nqrOMa6oy/17d+Vxrl5xx6apFRbVzJg4fgwJX4y0ev/+PTZNrQgJUWwE2tq2wdvbkzu3b2VASQif7N6ygRo161K4aMpovbu3rjNqYDfaNrbArmUDNq1ZStJX18SlcycZ3LM9rRvWoEfbJuzf4fzd88wYP4webaxp1aAaXVo2ZOHMSUSEf+5w2L5pDc1qmaTaWjeqIY/jcfMqfTu1oK2VJQtnTiIhIUG+70PUe/p2asHLFyEK523UrBX+j7x5eO/OjxSPIPwrotH9l3BwcEjVeDIzM2PPnj3s2rWLSpUqMXXqVBwcHH54GPr3zJw5kylTpuDo6Ii+vj7W1ta4ubnJl5xSU1NjwoQJGBkZUbt2bbJnz86uXbsU0pg7dy5z587F2NiYy5cvc/jwYfkM58WLF+fYsWPcuHEDY2NjBgwYQO/evZk8eXK681igQAHWr1+PpaUlRkZGnDlzhiNHjqClpZXmMXZ2dnh5eVG8ePFUz8h/7z1/TUdHB2dnZ/bu3YuBgQFz58794eH1a9asoW3bttjb26Onp0ffvn358MWXH2UWL15MwYIFsbCwwMbGBisrK8zMzL55TI4cOVi+fDlOTk4UK1aMli1b/lB+hfSLiYnB9cA+bNu0BVJGGQy2709CQgIu23Yxa85cDrseZPXK5d9JCewHD+Xs+cvyrZNdF/m+58+fMXyIPdWq12DP/kOsWbeRyMg3jBw2RB5nxtTJVKteg137DhAV9Z4N653k+7Y4b8LE1AzDr+ZRAGjRqjU7t239L8UgCEIGyag6ZcK40fj7+bF2w2aWr1rLnVu3cJg+NVW8dRudFeodfYOUOWGSk5OZMHYU7dp3ZMuO3Xh5PmTf3s8/Fi9bspB27TtSrJjiI1uqamo0bdacHdu2/NeiED6KjY3hlJsrjZunrMbyxM+XaWMHU7maJcs37WL89Hlcd7/AZqfP18Sta5dZ4DCJpi3bsWrLPuxHTsB1z3aO7N+V1mkAMDKtwniH+azb7srEWQsJDXnGnCmfO4Bad+zOVtczClup0mWpWTdlItjk5GTmz5hI05btWLTWhce+Xpw4vF9+vPPa5TRt2Y5CRYopnFdVVZU6DZtweN+O/1xegvA9KtKXY3EFIYsKDAykTJkyeHh4YGJiktnZETJI7Lc7TYQ0nD55gtmzZnD+UsojI5cvXWCI/QDO/HMJrY8/Qu3ZvZNlixdy/tJVVD8+AvC1Jo3qY9e1G1269UjzPOPHjuKmxwP5aJHz/5xj+BB7bno8QFVVleqVjdm19wBlypZjz64dXLxwnpVr1vH82TMG9u/Drr37yZ079az7oSEhWDeqx9HjpylZqlQGlIogCD8qI+qUJ/7+2LZoyo7d+6hYKWWpTfdLFxk0sB+nzl2gUKHCBAc/p2njBuze54reVyPZACIiIqhf24Ibd+6jrq7OkkULiImOZuKUadz1uMM8x1ls27lX6SNwt2/dpH+fnly+dgsNDY2MLJ6/wvPXMQqvL/9zmtWL57DjyD8AuDgtx+PWNZau/9xAve5+gblTx7L9yDly5crN/BnjSUxMZOLMz50Fh/ftZP9OZ5z3nVCYe+Zbrl0+z6yJI3A9d4McOVLPp/PEz5chPTswb+UmKhmbEfnmNXYt6nPwzHXU1NXZtGYpsTHR2I+ciNeDuzgtm89ip61Kr5uHd28zaeQA9hy/hLp66uumhGb65sgR/m4a6ZglTfR0C4Ig/Gbu3LmFgcHn1QLu3b1LhQoy+ZdjAAvLmkRFReHn7/fNtDZtWE9ti+q0b9MK500bFIaP6lesiIqKCq4H95OUlMT79+9xO3KI6uYW8rkLZLp6XL16hcTERK5fu0YFWcpSgjMdpjFi1BilDW6AosWKoaWlLYaDCkIWkBF1yr17HuTNl0/e4Aaobm5BtmzZUj1iMmzwQOrWMqd7l06cP3dWHq6pqYmOjg5X3S8TExODx53bVNDVJSEhgdkO05kyzSHNOWcMKlYiKSmJB/fv/UgRCF/xvH+H8roG8tcJCQmoqSk+Eqamrk58fBx+vl5pxlFXVyf8ZViqod1pef/uLedPH0O/krHSBjfAySMHKV7yf1QyThmJl79AQTS1dLhz8yqxsTF43r9DmXIyEhMTWL1oDoPHTE7zuimvZ0ByUhK+Xsrn7hGEjCIa3YIgCL+Z0JAQdAoVkr+OCA9HU0tbIY7Wx9cR4a/STKeTXVfmLVzMhs0utG3fgQ3rnViyaIF8f4kSJVm7fhMrli2hqqkhNWtUISwsjAWLlsrjTHOYxZlTJ2lu3QhVVVV69+3PkcOu5NTQoGIlQwb07U1z60asXLYk1fl1ChUiNDR9X8QEQfh5MqJOiQgPR1NTUyEsR44c5MufX35Mrly5GDVmPAuWLGPlaidMzSozfOggecNbRUWF+YuWsm7talq3bIaenj6tbNuwacM6qlarjpq6Ot3tOtKimRU7t29TOFfOnDnJkycvoSGiTskIL1+EoqmtI39tVs0c74f3OH/mOElJSYS/CmOnc8ocIK8jwuVxrlw8y91b10lOTiY46CkHdm9ViJOWTWuW0rpRDTo2q8OrsBdMcVyqNF58XBznTx+jcbNW8jAVFRXGO8xnl8s67Lu1oVwFPRo1a8nebZsxMquCmpoaowd2p1/nlqmGumto5CRX7jy8fBH6b4tIEP4VsWSY8FsoXbo04kkIQUgRGxtHIbX/Pgldtx495X/LdPVQVVVl1oxpDBsxCjU1NcJfvWLGtCm0aNEK62bNif7wgdUrlzN6xFCcNmxGRUWF8uUrsMnl85ffyMg3rFm1gs0u25k7ZyYmpqYsXrYCuw5tqWRkTN169eVxNdTV5UsOCoKQeTKqTvmeggU1FeqdSoZGvHr1EufNG6lbvwEAZpWrsGPP5+dxAwMDOHr4ELv3HaRn9y7YdemGZa3atGnVnMpVqiDT1ZPHVddQJzZW1CkZIT4uTr46CYBZNQt6DRzBqoWzWTRrMqqqqnTs3g/Pe3fIppLSh2dt04bQ4OfMGDeUxKREcuXKTct2ndm+aS0qKt/u52vTqTtWzWx5GRbCjs1OLJo1menzV6Qakn7l0jlioqNp0KSFQnhFI1OFoe/BQU85d/IIyzfuZtzgXrRo15kqNWpi360NlYzNKFNeJo+rrq5OXGzsD5eVIKSH6OkWBEH4zRQsWIB3797JX2tpa6fqRYj4+Frri56K7zE0MiYxMZGQj7OT79q5nbx58jBi9Fj09Q2oXKUqc+Yu4Pq1q2kO4Vw4by52XbtTuEgRbt24QaPG1uTKlYtadepw6+YNhbhv371N1TMmCMKvlxF1ipa2Nq9fv1YIS0xM5N3bt9+shwwNjXkWFJTm/pnTpzJqzDiSJQkfby8aWVmjpaVFlSpVuXXrpkLcd2/fUrCgqFMyQr4CBYh6/04hzLZjV/Ycv4TzvuPsPHqeGjXrAlDk48R2Kioq9Bo4nH2nrrB57zG2HTqLTL8SAEW/mvzua/kLFKR4qf9hWtWccdPncevaZXw876eKd+rIQapZ1KKgZtoT3AKsWDiT3oNGIUnJ+D/2oWa9RhQoqEklk8o8uHtbIe77d+/IX6DgN9MThP9KNLoFQRB+M3r6Bjz54rlKYxMTHj9+REREhDzs2pUr5MmTh3Llyqc7XV8fb7Jly4bmxy8zsbGxqHy13F627CmvlS0ld/3aVZ488adT5y4f4yTJnxFPTEgk+Yu13OPi4ngW9Aw9fYNU6QiC8GtlRJ1ibGzK+3fv8PJ8KA+7cf0aycnJSlcw+MTXxxttHeWN8gP795I/fwHq1m8grz/kdUqiYp3yLCiIuLg4UadkkLIV9AgKfJIqXEVFBS3tQqira3DhzAl0ChWhnExxUrzs2bOjrVMYVVVVLpw5gV4lI/L/ix9DkqWUz5eEhHiF8Bchwdz3uEnjZrbfPP7k0YPkzZefGjXrkvTxs+rT0mZJiYkkJ3++bkKDnxEfH0c5mZ7StAQho4hGtyAIwm/GwrIm/v5+vPu4Jrq5RU3KlivPpPFj8fXxwf3yJVauWEqHTnby4YEP7t+nZXNrwsLCALh314NtW5zx9fHh+bNnuB09zIJ5jjRr3oJ8+fMDUKt2HTwfPmDt6pU8fRqIt5cnUydNoFix4qm+2MbFxeE424Gp02fKZzo3MTVj987t+Pr4cObMKUy+WH7u/r27qKmpYmRs8rOLSxCE78iIOqVsuXJY1qzFjGlTeHD/Ph53buM4eybWTZpRqFBhAA67HuS421ECnvgT8MSfDevW4npwv8JShZ9ERESw3mkN4yelLPuZL39+ypYtx/atLty768H1a1cxMf1cp9y5fYsSJUuK1RAySOVqFgQFPOH9F73d+3c4E+j/mKcBfux0Xse+7ZvoP2ysfJKyt5FvOOa6l2dPA/B/7IPTsnlc/uc0/YaMkafh6/WA/natCH+Vct34eD7gyP5d+D/24eWLEO7dvsH86eMpWrwk+hWNFfJ0+pgrmlraVK6huDzrlyLfvGb3lvUMGD4OgLx581Hyf2U5tHc73g/vce/2DQwMTeTxH967Q5FiJShavOR/LjNB+BbxTLcgCMJvpoJMFz19A06ePE679h3Jnj07K1avZbbDdLrZdSBnzpzYtLTFfvBQ+TGxsTEEBgSQmJgAgJqaGieOH2Pt6pXEx8dTvHgJunbrQdfun5+3rF7DHMf5i3DetAHnTRvRyKmBsbEJq53Wp1qSZ+3qldSqXVdhGaBxEyYzfuwoenW3o2kzGxo2spLvO37MjabNbciZUyzHIgiZLSPqFADHeQtxnD2Tfr27ky1bNho0asz4CZMVzrVu7WpCQkPIkT07pcuUZf7CJTSysk6Vp/mOs+nWvZe8wQ7gMHsuUyaNY8e2rXTv2ZtKhp970I8fc6N1m/YZWCp/t9LlKlBOpsflc6do0jJl/fZb193ZvXUDCfEJlCkvY4rjUqrUqKlw3NkTR9i4ejGSJKFX0RjH5RvQNfg8o31cXCzPgwLlPc8aGhpcuXiW7ZvWEBsbk9KormZJh+59FJamS05O5szxwzRo0iLNmcgBnJbNx7ZDN7S0P08MOGLiDBbPmcrhfTtp3am7fMg7wMUzJ7Cyaf3fCksQ0kGs0y0IQqYR63T/uIsXzrNk4Xz2Hzoq71n+Xbx585qWzZqwY88+SpQQvQuCkBX8znWKn99j+vbqzmG3k+TNmzezs/Nb+nqdboAbVy6yafVSVm/Z99tdE+nxNMCPicP6sW7HIXLnUX7diHW6hfRIzzrdoqdbEAThN1S7Tl2CngbyMiyMIkWLZnZ2/pWQ4GAmTpkmGtyCkIX8znVK+KtXzJozTzS4M1g1i9qEPA8i4tVLdAoXyezsZLjXEeGMnDQrzQa3IGQk0dMtCEKmET3dgiAIgpD5lPV0C6KnW0if9PR0/3ljRQRBEARBEARBEAQhixCNbkEQBEEQBEEQBEH4SUSjWxAEQRAEQRAEQRB+EvFMtyAImUY80y0IgiAIQlYVE5+U2VnIcnKqpb1k299KPNMtCIIgCIIgCIIgCJlINLoFQRAEQRAEQRAE4ScRjW5BEARBEARBEARB+EnSMQJdEARB+BPt2bWDPbt3EhIcDEC58hXoP9CemrXqANC7R1du3byhcEzb9h2YMs3hl+dVyFqSkpJYs2oFbkcPExEejk6hQrRoaUu/AfaoqKhkdvYyxffuJwE2rl/H8qWLsOvSjbETJmV2djJNk0b1CQkJThXeoWNnJk6Zlgk5EjLDy5dhrFq2iKvul4iLjaVEyVJMnj4b/YqVAKhhaqD0uMHDR9Gle2/5a/dLF9i4bjX+jx+hpqaOaeUqzF+y8pe8h19t43onzp4+RUDAE9Q1NDAxMWX4yNGULlM2s7P2XaLRLQiC8JcqVLgIw0aMptT//ockSRw55MqwwYPYvf8g5ctXAKBN2/bYDx4qP0YjZ87Myq6QhWzeuJ69u3cyc848ypUvj9fDh0ydPIE8efNi16VbZmcvU6TnfvqbPXxwn317dyGT6WZ2VjLd9t37SE76PEGXn99j+vfpSSMr60zMlfArvXv3ln497KhctRpLVjpRsKAmz4KekjdfPnkct9MXFI656n6J2TOmUK9BY3nYuTOnmDtzKgMGD6dKtRokJSbi7//4l72PX+3WzRt06GRHRUNDkhKTWLFsMQP69ubAYTdy5cqV2dn7JtHoFgRB+EvVrVdf4fWQYSPYs2sn9+/dlTcSNDQ00NbRyYzsCVnY3bse1K3fgNp16gJQvHgJjh9z4+GD+5mbsUyUnvvpbxX94QMTxo1h2oxZrHdak9nZyXSampoKrzdtWEfJkqWoUrVaJuVI+NW2bt5I4SJFmDJjjjysWPESCnG0tBU/ey+eP0flqtUoXqIkAImJiSxZ4Mjg4WNoYdtGHq9MufI/MeeZa826jQqvHWbPpV4tc7y9PKlcpWom5Sp9xDPdgiAIAklJSRw/5kZMTDTGxqby8GNuR6hjWZ3WLZuzbMkiYmJiMjGXQlZhYmLKjWvXCAwMAMDXxwcPj9vUrFU7k3OWNaR1P/2t5sxyoHbtOtQwt8jsrGQ5CfHxuB09TKvWbf7aRzP+RpcunEPfoBITxwynSf2adOvYGtcDe9OMHxERjvvli9i0+ty49vXx4tXLMLJlU6Fbx9Y0a1Sb4YP64e/35/Z0fy3q/XsA8uXPn8k5+T7R0y0IgvAXe/zIl66dOxIfH0euXLlYsnwV5cqn/ErepGlzihYrRqFChXj0yJelixcSGBjAkmV/5rNiQvr16tOPqKgoWjVvQvbs2UlKSmLIsBE0a94is7OWqb51P/2tjh9zw9vbix2792V2VrKkc+fO8P79e1q0ss3srAi/UEjwcw7s3UWnLt3p3rsf3p4PWTJ/Dqo5VGnWolWq+MeOHCJ3rlzUrd/ocxrPnwOwYe0qho4aR7Fixdmx1Rn7vt3Z43qM/PkL/KJ3kzmSk5OZP28OJqZmVKggy+zsfJdodAuCIPzFSpcuw579rkRFvef0qZNMmTiOjc7bKFe+PG3bd5DHqyDTRVtbh369e/AsKIiSpUplYq6FzHbyxHGOuR3Bcf4iypcvj4+PNwvmOqKjU+ivbjx86376G70IDWX+3Nk4rd+Eurp6ZmcnSzq4fz+WNWtTqFDhzM6K8AslJyejb1CJgUNGAKCrZ4C/32MO7tuttNF99NABGjdprnAfJUvJAPTo05/6DVOe8548YzYtrOpx7vRJbNt2SJXOn2TOrBn4P36M89YdmZ2VdBHDywVBEP5iqmpqlPrf/zCoWIlhI0Yh09Vj+7YtSuMaGhkDEBT09FdmUciCliyaT6/e/WjStBkVZLrYtGhFl27d2bjBKbOzlqn+zf30N/Dy8uR1RAQd27XGzMgAMyMDbt28wY7tWzEzMiDpi8nE/kYhIcFcv3aF1m3bZnZWhF9MW1uH0mXLKYSVLlOOsBehqeLevXOLp4EBtLRVvE60Pz7z/WU6ampqFCtRghdK0vmTzJnlwMUL51m/2YXCRYpkdnbSRfR0C4IgCHLJyckkxMcr3efr4w2AjphY7a8XGxNLtmyKz59mz56d5GQpk3KUNX3rfvobVK9Rg32uRxTCpk2aQOmyZenZuy/Zs2fPpJxlDYcOHkBTU4tatetmdlaEX8zIxIygpwEKYc+CAilStFiquIddD6CnX5EKunoK4Xr6FVFTUyMoMBAT08oAJCYkEBoSQlEl6fwJJEnCcfZMzp09zUbnrZT4OKnc70D0dAu/nfPnz6OiokJkZGSmnD86Opo2bdqQL1++TM3Hj3J3d8fQ0BBVVVVatWqV6eUpZJ5lSxZx+9ZNgoOf8/iRL8uWLOLWzRs0bW7Ds6AgnNaswsvzIcHBzzl/7iyTJ46jcpWqyL764Bf+PnXq1mP9urVcvHCe4ODnnD1zmq0um6nfoGFmZy3TfOt++lvlzp2HChVkClvOXLkokL/Ab/EM5s+UnJzMoYMHsGnZihw5RB/Y36Zjl248fHAf541OPAt6ysnjR3Hdv5c2HTopxPsQFcW50ycVZif/JHeePNi27cD6tSu5ftWdp4EBzJvjAED9Rla/5H38anNmzuDY0cPMnb+I3LlyE/7qFeGvXhEbG5vZWfsucZcLWdLVq1epWbMm1tbWuLm5KeyzsLAgNDSU/Jk0U6GLiwuXLl3iypUraGtr8+bNGwoWLIiHhwcmJiaZkqd/Y+TIkZiYmHD8+HHy5MlDrly5MrU8hczz+nUEkyeM49Wrl+TJmxeZTJc16zZibmHJi9BQrl+7yvatW4iJiaZIkaI0bNiYvgPsMzvbQhYwftJkVi1fxpyZM3j9OgKdQoVo264D/QcOyuysZZpv3U+C8LVrV68QGhpCq9apG1PCn8+goiHzFi1nzYolbFq3hqLFSzB8zHismyr+SHf65DEkJBpbN1OazpDho8mePTvTJ48nLi6WipWMWLVuE/ny/Znf6fbs3glA7x5dFcIdZjnS0rZ1ZmQp3VQkSRJjwYQsp0+fPuTJk4eNGzfi6+tLsWLpHyaTlJSEiooK2bKlfyCHJEkkJSWl69fm0aNHc/PmTS5cuABAYGAgZcqU+W0a3dra2ixYsICePXtmdlaITczsHAiCIAiCICgXE/93zzugTE61v/uxEGU00tGNLYaXC1lOVFQUu3fvZuDAgTRr1gxnZ2eF/V8Ph3Z2dqZAgQIcPnwYAwMD1NXVCQoKIi4ujnHjxlGyZEnU1dUpX748GzduVEjj+PHjVK5cGXV1dS5fvoy/vz8tW7akcOHC5MmTh6pVq3LmzBn5uevWrcuiRYu4ePEiKioq1K1blzJlygBgamoqD1PmzZs32NnZoaOjQ86cOalQoQKbN28GUhruKioq7Nq1CwsLCzQ0NKhUqZK8Yf/JhQsXqFatGurq6hQtWpTx48eTmPi55RoXF8fQoUMpVKgQGhoa1KxZk5s3byqcIyIigl69eqGiooKzs3Oa5Xny5En09fXJkycP1tbWhIZ+npQjMTGRoUOHUqBAAbS0tBg3bhzdu3enVatW/+p/LQiCIAiCIAh/OtHoFrKcPXv2oKenh66uLl26dGHTpk18b0BGdHQ08+bNY8OGDXh6elKoUCG6devGzp07Wb58Od7e3jg5OZEnTx6F48aPH8/cuXPx9vbGyMiIqKgomjZtytmzZ/Hw8MDa2hobGxuCgoIAOHDgAH379sXc3JzQ0FAOHDjAjRs3ADhz5ow8TJkpU6bg5eXF8ePH8fb2Zs2aNWhrayvEGTNmDKNGjcLDwwNzc3NsbGyIiIgAIDg4mKZNm1K1alXu3bvHmjVr2LhxI7NmzZIfP3bsWPbv34+Liwt37tyhfPnyWFlZ8fr1a0qWLEloaCj58uVj6dKlhIaG0qGD8uUkoqOjWbhwIVu3buXixYsEBQUxevRo+f558+axfft2Nm/ejLu7O+/evcPV1fWb/yNBEARBEARB+BuJZ7qFLGfjxo106dIFAGtra96+fcuFCxfS7EEGSEhIYPXq1Rgbpyxp9OjRI/bs2cPp06dp2DBlYp+yZcumOs7BwYFGjRrJX2tqasrTAJg5cyYHDx7k8OHDDB48GE1NTXLlyoWamhpFPi5R8O7dOwC0tLTkYcoEBQVhampKlSpVAChdunSqOIMHD6ZNm5Tnu9asWcOJEyfYuHEjY8eOZfXq1ZQsWZKVK1eioqKCnp4eISEhjBs3jqlTpxITE8OaNWtwdnamSZMmAKxfv57Tp0+zceNGxowZQ5EiRVBRUSF//vzfzGtCQgJr166lXLly8nw5ODjI969YsYIJEyZga5uyHu/KlSs5duxYmukJgiAIgiAIwt9K9HQLWYqvry83btygU6eU2Rtz5MhBhw4d5MPC06KmpoaRkZH89d27d8mePTt16tT55nGfGsCfREVFMXr0aPT19SlQoAB58uTB29tb3tP9XwwcOJBdu3ZhYmLC2LFjuXLlSqo45ubm8r9z5MhBlSpV8PZOWabJ29sbc3NzVFQ+L9NjaWlJVFQUz58/x9/fn4SEBCwtP0/ao6qqSrVq1eRppFeuXLnkDW6AokWL8vLlSwDevn1LWFgY1apVk+/Pnj07lStX/maacXFxvHv3TmGLi4v7V/kSBEEQBEEQhN+NaHQLWcrGjRtJTEykWLFi5MiRgxw5crBmzRr279/P27dv0zwuZ86cCo3RnDlzput8uXPnVng9evRoDh48yJw5c7h06RJ3797F0NCQ+AxYZ7VJkyY8ffqUESNGEBISQoMGDRSGbGclqqqqCq9VVFS+O8T/exwdHcmfP7/CtmCe439KUxAEQRAEQRCyOtHoFrKMxMREtmzZwqJFi7h79658u3fvHsWKFWPnzp3pTsvQ0JDk5ORUE5F9j7u7Oz169MDW1hZDQ0OKFClCYGDgN49RU1MDUmZN/x4dHR26d+/Otm3bWLp0KevWrVPYf+3aNfnfiYmJ3L59G319fQD09fW5evWqQuPX3d2dvHnzUqJECcqVK4eamhru7u7y/QkJCdy8eRMDA4Pv5i298ufPT+HCheUTtEHKe79z5843j5swYQJv375V2MaMm5Bh+frbREa+oW4tc4KDn2d2Vv4190sXad+6JcnJyZmdlT/e73yd+Pv50ah+baKjozM03d+5TH7mvfM7l8ue3TsZYj8gw9P9nctE1LM/z9vISJrUr0lISHBmZ+WnuOp+ia4dbP/TtfM73zs/qz4RjW4hyzh69Chv3ryhd+/eVKpUSWFr06bNd4eYf6l06dJ0796dXr164erqSkBAAOfPn2fPnj3fPK5ChQocOHBA3tjv3LnzdyudQoUKkTNnTk6cOEFYWFiaPfJTp07l0KFD+Pn54enpydGjR+UN6k9WrVrFwYMH8fHxYdCgQbx584ZevXoBYG9vz7NnzxgyZAg+Pj4cOnSIadOmMXLkSLJly0bu3LkZOHAgY8aM4cSJE3h5edG3b1+io6Pp3bt3ussuPYYMGYKjoyOHDh3C19eXYcOG8ebNG4XRBl9TV1cnX758Cpu6unqG5utvst5pLfXqNaB48RIK4ZGRb2hUvzbGFXXl8w0oc/PGdYwr6irdHj64L48nSRIumzdi09SKKiaVaFivFuud1sj3e3t70b5NK2pUMWWI/QDefpwFH1J+OOrYrjUP7t//8tRY1qpNjhw5cDt6+D+WgvA9X18nc+fMomO71lQxqUT71i3TlUZcXBxzZs6gtkV1alQxZeSwIUSEhyvEuX7tKt3sOmJe1ZT6tS1ZsmiBwsoKwcHP6dnNjupVTOjZzS7VF7HB9v05c+qkQli58uUxMjJhq8vmH3nrafq6TEJDQhg8sB/VKxtTt5Y5ixfOU8j7t8THx9O+dUuMK+ri88VjPHFxcUyZOJ42rWwwMzJg+JDU69tntXsnI8qlSaP6qeqTjevXKY0b9PQp5lVNqVlD8TGvq1fcsWlqhUU1MyaOH0PCFyPN3r9/j01Tq1SNHVvbNnh7e3Ln9q0feetpyogy8fbypH+fntSsUYXaFtVxmDaF6A8fFOIoq4ePH3P7nEYWu1b+dps3OFGrbn2KFSsOwM3rV+nbvTP1LavQtGEtVi5blGplGYepE7Fr1xLLKoaMHTE4Xefx8fZiyIDeNKxVncZ1zXGcOY3o6M/XztHDB6lhaqB0e/06ZRJeXx8vunVsTT2LyowaZs/bt5Hy4xMTE+neuS2eDxWvHXPLWuTIocrJY0d/tIj+870THPycaVMm0qRxfaqZGdHMuiGrVy5XqA/WrFqh9N6pXsVEHicr1Sei0S1kGRs3bqRhw4bkz58/1b42bdpw69Yt7n/1ofIta9asoW3bttjb26Onp0ffvn358NUH3dcWL15MwYIFsbCwwMbGBisrK8zMzL55TI4cOVi+fDlOTk4UK1aMli2Vf5FVU1NjwoQJGBkZUbt2bbJnz86uXbsU4sydO5e5c+dibGzM5cuXOXz4sHyG8+LFi3Ps2DFu3LiBsbExAwYMoHfv3kyePFnh+DZt2tC1a1fMzMzw8/Pj5MmTFCxYMD1Flm7jxo2jU6dOdOvWDXNzc/LkyYOVlRUaGhoZeh5BuZiYGFwP7MO2TdtU+6ZPmYRMpvvdNExMTDl7/rLC1rpNO4qXKEHFSobyePMcZ3Ng/15GjR6L69HjLF+5hkqGn+dPmDF1MtWq12DXvgNERb1nw3on+b4tzpswMTXD8Iv5Fj5p0ao1O7dt/bdvXfgX0rpOWtm2wapJ03Sns2DeHC6c/4cFi5eyyWUrr169ZOSwz18afX18GDSgLxaWNdm9z5X5i5Zw4fw5li1ZJI+zaP48ChUqzJ79rmjr6LB4wXz5vhPHj5FNRYWGja1SnbulbWv27t6Z7kbw93xdJklJSQy2709CQgIu23Yxa85cDrseZPXK5elKb8mi+egUKpQqPCkpCXUNdTrbdaV6DXMlR2ateycjy8V+8FCFeqWTXZdUcRISEhg/ZiRmlRUb3MnJyUwYO4p27TuyZcduvDwfsm/v5x/Lly1ZSLv2HeWNnU9U1dRo2qw5O7Zt+ZG3r1RGlMnLl2H0692TkqVKsW3nHlY7rcff7zFTJqUe5eUwy1Gh3Oo3aCjfl5Wulb9dbEwMRw7tp0WrlElvH/v6MHLIAGpY1MRl535mzV3MpQv/sHr5YvkxyclJqKur065TF6pWV14ffO3Vy5cMHdCLEiVLsXHrLpauWscTfz9mTp0kj9OwcRPcTl9Q2GpY1MS0clU0NbUAmOMwlcpVq+Oycz8f3r/HZePnH8F2bHXGyNiUipVSXzvNWrRiz85tP1RGGXHvBD55QnKyxJRpDhw45MaYsRPYu2cXy5ctkcfp3qNXqu8xZcuVp3FjayBr1ScASIIgZLqAgAAJkDw8PDI7Kz8kKSlJkslk0uTJk//VcTEJYvuR7fDR41L1GjVShbts3S51tusinb90RZLJZFJYxNt0p/kuOl6qXqOGtHT5SnmYp4+fZGBgIHk/8k/zOCMjI8nL109+/t59+koxCZL0+EmQ1LBRYyk88r3S4548DZZkMpn0yP9pppfnn7qldZ3EJEjS4qXLJRubFt9N4+Xrd5KBQUXp8NHj8jAvXz9JJpNJ1295SDEJkjRvwSLJ1ra1wnHHT52VDA0N5f9/a+sm0plzF6SYBEk6fe68ZN2kqRSTIElhEW+lhg0bSQFBIcqvyw9xUqVKlaTzl678lDI5fe68pKenJz0PfSUPc9m2QzIzM5PefYj7Zlqnz52XrKytpYfejyWZTCZ53PdSGm/0mHFS/wEDU4VnpXsno8qlbt160vqNm797vjlz50sjRo2Wdu3ZL1WuXFke/vxFuCSTyaTIqFh5vClTp0sxCZJ09cZtqZWtrRQVm6g0zctXb0gVK1aU3ryPyTJlsnX7LqmGubn0IS5JHnbf00eSyWSSr1+gPEwmk0luJ06nmZesdK38bdvrD4kK2z5XN6l69Rry17PnLpBatmqtEOfQsdOSoaGh9Ozl21THDx81VurTb0Cq8K+3TVt2SNVrmEvh7+PlYTfuekkymUy65+2v9Bj/Zy8lAwMDafvuA/IwQyMj6c7DR9LrD4nS+s3bpB69+kivPyRKD3wDpAYNGynN4+sPiZKXX5Akk8mk+z5PUu37FfeOsm2N03qpXv36ae6/+8Bbkslkkvu1m1JMwq+tT9JD9HQLgvCvPX36lPXr1/Po0SMePHjAwIEDCQgIoHPnzpmdtb/CnTu3MDCoqBDm7+eH05rVzJozj2zZ/n3VfuGfc7yNjKSVbZvPYefPUbxECS5cOE+TxvVp0qg+06dOUhjaKNPV4+rVKyQmJnL92jUqfOxln+kwjRGjxpA7dx6l5ytarBhaWtoZPnxL+EzZdfJveXk+JDExgermFvKwMmXLUbRoMe7dvQukDLFW++pREQ0NDeLi4vDy9ARSrpNr166SnJzMVXd3+WiMJQvn06FTZ4oULar0/Kpqaujq6WfYdfJ1mdy7e5cKFWRofRxRBGBhWZOoqCj8/P3STCciPJwZ06Yw23E+Gjl/bIRPVrp3MqpcADZtWE9ti+q0b9MK500bUo1SuH7tKqdPnWDi5GmpjtXU1ERHR4er7peJiYnB485tKujqkpCQwGyH6UyZ5kD27NmVntegYiWSkpJ4cP/ev3jnacuIMolPiEdVVVWhTlZXT7lePO7cVog7Z9YM6lhWp3OHthw8sE9h/pasdK387e563EZX//M8OSn1n5pCHHV1deLi4vDx9vzh88THK7t2UurZe3eVz6Fz7OghNDRyUq9hY3lYhQq63LiWcu3cunGN8hVkAMybPYPBw0elmlD4kyJFi6GppcVdj9tK939LRtYnX4p6/17paNhPDuzfy/9Kl5aPoMlK9QmI4eWCIPyAbNmy4ezsTNWqVbG0tOTBgwecOXMm1TPqws8RGhKiMKQ1Pj6e8WNGMmL0GIoWK/ZDaR48sA8Ly5oU/mL99ufPnxEaEsLpkyeY7Tgfh9mOeHl6MmrEUHmcaQ6zOHPqJM2tG6Gqqkrvvv05ctiVnBoaVKxkyIC+vWlu3YiVXwwJ+0SnUCFCQ0N+KL/C9319nfyIiPBwVFVVyZcvn0K4ppYW4eGvgJQvT/fuenDc7ShJSUmEhYXhtGYVAOGvUuKMHDOOgIAnNGlUn6dBTxk5Zhy3b93E18cbmxatGDNyGE2tGjBzxlSFZ+4g5ToJCcmY6+TrMokID0dTS1shjtbH1xEf39/XJEliyqTxtGvfUeFRjH8rK907GVEuAJ3sujJv4WI2bHahbfsObFjvxJJFC+T7IyPfMHXSBGbOnkuePKkbiioqKsxftJR1a1fTumUz9PT0aWXbhk0b1lG1WnXU1NXpbteRFs2s2Lldcehrzpw5yZMnL6FZ6FqpVr0GEeHhOG/aQEJ8PO/evpU/dhH+xTH2g4eyYNFS1m7YTMNGjZkzcwY7tn8eFp6VrpW/3YvQEHR0Pl8XNSxq8uDeXU4ddyMpKYmXL8PYtC5l3pOIV2nfK99TpVp1IiLC2eaykYSEeN69e8vq5Uu+me4R1/00btJM4VG/idMc+OfMKdraWKGqqkr3Xv04fvQwGhoa6Fc0ZJh9X9q2sGLtqmWp0tPWKcSLH7h2Mqo++VLQ06fs3LGNtu06Kt0fFxfHsaNHsG39+XGqrFSfAOTIsJQEQfhhpUuX/s9Lcv1KJUuWVJglXfi1YmPjKKT2uWdx2ZJFlClXjuY26ZsY62thL15wxf0yCxYtVQiXkiXi4+OZ5TiP0qXLADBj5mw6tmtNYMATSpcpS/nyFdjk8vnDKjLyDWtWrWCzy3bmzpmJiakpi5etwK5DWyoZGVO3Xn15XA11dWJiYn4oz8L3fX2d/CwWljUZMWossxymMWnCWFTV1OjX3547t2+h8rGXpnDhwqxc/fk51Pj4eAb2682sOXNZ57SGXLlzc+joCez792Hv3t10tusqj6uhrk5sbMZcJxlRJju2b+XDhw/07tv/P6WTle6djLpWuvXoKf9bpquHqqoqs2ZMY9iIUaipqTFj2hSaNGtO5SpV00zDrHIVduzZL38dGBjA0cOH2L3vID27d8GuSzcsa9WmTavmVK5SBZmunjyuukbWulbKl6/AzNlzWTh/LsuXLiZbtmx07tIVLS1thYlH+w8cJP9bX9+AmJgYXDZvxK5LN3k6WeVa+dvFxcUpjOypbm7J4OGjmTdnBjOmjEdVVY1efQdw1+O2vP77EWXLVWCqwxyWLZrHmhVLyZYtG+07dUFTS0tpug/u3SUw4AnTZ81Llc6ajZ+fTX4bGcn6tStZu3ELi+bNxtDYhLmLltHTrj0VKxlRq049eVx1dQ1iY2P/dd4z+rMnLCwM+/59aGRlTZt27ZXGOXfmNNHRH2jR0lYhPKvUJyB6ugVBEH47BQsWUJiZ/Ob1a5w+eQIzIwPMjAzo17sHAHVr1kjXxEeuB/eTv0AB6nzxRQ1AW0eHHDlyyBvckDK0GCA0NFRpWgvnzcWua3cKFynCrRs3aNTYmly5clGrTh1u3byhEPftu7doamqm6z0L/97X18mP0NLWJiEhIVU6ryMi0NbWkb/u1qMnl6/d4sSZf7hw+Rr16jcAoEQJxdn1P9mwbi3mFpYYVKzErZs3aNgopRemQcPG3Lrx1XXy9i0FC2bMdfJ1mWhpa/M6QnEm9oiPr7W+eH9funn9Gvfv3aWqqSFmRgbYNEkZytm5QxsmTxj3w3nLzHsnI8pFGUMjYxITEwn5OFv9zevX2OK8SV5XTZ86iffv32NmZMDBA/uUpjFz+lRGjRlHsiTh4+1FIytrtLS0qFKlKrdu3VSI+y6LXSsATZvbcO6iO6fPXeSi+3UG2A/hzZvXlChZMs1jDI2MCXvxgvivRn18IurZzJO/QAHef1Ufdu7agzMXr+N67Cwn/nGnVt2Uz9LiadR/6WXVpDnHzlzi8Ml/OHn+Cn0GDCLyzRul6R4+uA+Zrh5633mkaNmieXTo3JVChYvgcesGDRpakTNnLixr1eHOLcVr5927tz80EW9G1icvX4bRp2c3jE1NmTp9ZprxDuzfS606dRWGsCuTWfUJiEa3IAjCb0dP34AnXzwHtWjpCvYcOMTu/a7s3u/KNIdZAGzesp0Oney+mZYkSRxyPYBNi1aoqqoq7DMxNSMxMZFnQUHysKcf161XNoz9+rWrPHniT6fOKbMVJycnyZ/nTExIJPmLtezj4uJ4FvQMPf2MW0NeUPT1dfIjDCpWIkcOVW5cuyoPCwx4QmhoCMYmJgpxVVRUKFSoMBoaGhw/dpQiRYqir+QL4BN/f467HWXQkGEAJCclkZiYAEBiYgLJyUkK8f38HqOXQY+ufF0mxiYmPH78iIiICHnYtStXyJMnD+XKlVeaxrgJkxXut5VrUmYDnr9wCUOGjfihfGX2vZMR5aKMr4832bJlk8+kvGX7bnm57d7viv3goeTOnZvd+11p0KBRquMP7N9L/vwFqFu/gbwM5OWSqFguz4KCiIuLy7Byyegy0dLWJlfu3Jw8cQw1dXVqmFumGdfXx5t8+fKjpqaWal9mXyt/O109fQKepK5XVVRU0ClUCA0NDU6fOEbhIkXQ1cuYctfS0iZXrtycOXkcNTV1qtWwUNgfHf2Bs6dPYNOqTRoppLh5/SqBAU9o1zHle0FScrLi/fTFErlxcXEEPwtCpvvv696MunfCwsLo3aMbBgYVcZjlmOZ8Nc+fP+PmjesKQ8uVycz6BESjWxAE4bdjYVkTf38/3n1cE75kqVJUqCCTb5/WxSxTthxaWilfdh/cv0/L5taEhYUppHXj+jWCnz+ntZLlx2qYW6BvUJFpUybi7e2Fl+dDZs6YSg0LS4Xeb0j5gHac7cDU6TPlH4wmpmbs3rkdXx8fzpw5hckXy+/dv3cXNTVVjIxNMqxcBEVfXyeQ8lycj7c34eGviI2LxcfbGx9vb/lz1GFhYbRsbi1f8zdv3rzYtmnDwvlzuXH9Gl6eD5k6eSLGJqYK/zvnTRt4/MgXP7/HOK1ZxaYN6xk3cXKqSWokScJh+hRGj5tArly5gJTrZP++vTzx9+fI4UOYmH6+ToKDn/MyLIwa5opfMjOqTMwtalK2XHkmjR+Lr48P7pcvsXLFUjp0spM3eL6+d4oWK6Zwv/2vdGkASpQspTAngr+fHz7e3rx9G8n79+/lZf21rHDvZES53LvrwbYtzvj6+PD82TPcjh5mwTxHmjVvQb6Pkx+VLVdOoewKFSpMtmzZqFBBJo/zSUREBOud1jB+UsqymPny56ds2XJs3+rCvbseXL92VeFauXP7FiVKlqRkqVJZpkwAdm7fhreXJ4GBAezasZ25s2cydPhI+TwJ5/85x4F9e3n8+BFBT5+yZ9cONqx3UrrUWla4Vv521c1r8uSJP+/efa5Xt7lsxO/xI574P2bTujVs2byekWMnKtR/Af5+PPL15t3bt0RFRfHI15tHvp/rA8+H9+lg24yXLz9fO3t3bcfH24ugp4Hs272DhfNmM3DIcPLmVZxj48zJEyQlJWHdzCbNfMfFxbFw3mzGT5kuv3aMjE3Zt2cnj319+OfsaYxMTOXxHz64h5qaGoZGJv+6jDLi3gkLC6NPj64ULVqUkWPG8eb1a8JfvZLPE/Il1wP70dbRoWat2mnmKbPrExDPdAuCIPx2Ksh00dM34OTJ47Rrr3xSka/FxsYQGBAg71H85OD+fZiYmMqHjX8pW7ZsLF+1hrmzZ9Grm93HIWi1GT0m9RDatatXUqt2XYUeyXETJjN+7Ch6dbejaTMbGjb6vA7z8WNuNG1uQ86cOdP7toV/Sdl1MmPaZIXhpx3atgLg2KmzFC9egsTEBAIDAhSeYxszbiLZVLIxavhQ4hPisbCsyaSvZp6+fOkiG9atJT4+HpmuHstWrqJmrTqp8rRv7260tLSpU/fzc4MDBg1hwthRdOnUDsuatRRGZ5w45oa5hWWqdVQzqkyyZ8/OitVrme0wnW52HciZMyc2LW2xH/x5ssC07p3vGTywHyEhwfLXn8r6nqevQryscO9kRLmoqalx4vgx1q5eSXx8PMWLl6Brtx507d4zjbN+23zH2XTr3otChQrLwxxmz2XKpHHs2LaV7j17U8nw8/rCx4+50bqN8uc9f0RGXSsPH95nzaoVREd/oEyZskyeNgObFq3k+1Vz5GDXzu0smDcHSYJSpUoxeux42rRN/V6ywrXytytfQYaunj5nT53Atm0HAK66X8Z5wzoSEuIpL9Nl/pKVWNRUbACOGDJAYVKybh1TeqWveXgBEBsby9PAAIXZ/r0ePmD92pXEREfzv9JlGT9pOk2at0iVpyOu+6lTv2GqxviXNjqtwrJmbYWe65FjJzJt4lgG9OmGVZPm1Gvwedbz0yfcsGrSHI0fuHYy4t65dsWdoKCnBAU9pXF9xbL8sg5NTk7m8KGDtGzVOs2ZyCHz6xMAFel3mr1JEIQ/Smzi9+MIyl28cJ4lC+ez/9DRH1oiLDO9efOals2asGPPPkqUSPu5RuG/+52vk4T4eGyaWuE4fyGmZpUzLN3fuUx+5r3zO5eLn99j+vbqzmG3k+TNmzfD0v2dy0TUsxkjJj4pVZj7pQusWLKAHfsO/3bXRXpEvnlDe9umOG/fS7HiqZ8fz6mWduP2k9/53vmR+kQjHd3YoqdbEAThN1S7Tl2CngbyMiwszTWOs6qQ4GAmTpkmvgj+Ar/zdRIaGkrvfv0ztMENv3eZ/Mx753cul/BXr5g1Z16GNrjh9y4TUc/+PJa16vAs6CmvXoZRuMjvdV2kR2hIMGMmTFXa4E6v3/ne+Vn1iejpFgQh04iebkEQBEEQsiplPd1/u/T0dP9t0tPT/Xv19wuCIAiCIAiCIAjCb0Q0ugVBEARBEARBEAThJxGNbkEQBEEQBEEQBEH4ScREaoIgCFlIsphmI5VsKiqZnQVBEAThLySeX05NfE35MaKnWxAEQRAEQRAEQRB+EtHoFgRBEARBEARBEISfRDS6BUEQBEEQBEEQBOEnEc90C4Ig/CVu37rJls0b8fLyJPzVKxYvW0m9Bg3l+9euWsHJE8d48eIFqqqq6BtUZPDQ4RgaGcvjNG1cn9CQEIV0hwwfSa8+/X7Z+xAy35pVK1i7eqVCWOkyZTh09EQm5ejX27jeibOnTxEQ8AR1DQ1MTEwZPnI0pcuUBeBtZCSrV63g6pXLvAgNpWBBTeo1aMigIcPImzdvJuf+1xDXSWrfu24E4ZOkpCTWrFqB29HDRISHo1OoEC1a2tJvgD0qf9FcJ2FhYSxbvAD3y5eIjY2hZKn/MWPmHCpWMiQhIYFVK5Zy+dJFnj9/Rt48eahew4KhI0ZRqFDhzM66AtHoFgRB+EvExMQg09WjpW0bRg0fkmr//0qXZtzEKZQoUZK4uFi2bXHBvl9vDh07haampjzewMFDad22nfx17ly5f0n+haylXPkKrNuwWf46e46/a8KhWzdv0KGTHRUNDUlKTGLFssUM6NubA4fdyJUrFy9fveTVy5eMHD2OcuXKExISzCyH6bx6+ZJFS5dndvZ/mb/9Ovna964bQfhk88b17N29k5lz5lGufHm8Hj5k6uQJ5MmbF7su3TI7e7/Eu7dv6dG1E1WrVWfl2vVoFizI06dPyZcvPwCxsbF4e3nRt/9AdHX1ePfuHfPnzmb44IHs2HMgk3OvSDS6BUEQ/hI1a9WmZq3aae5v0sxG4fWoseNxPbCPx498qV7DXB6eO3dutLV1flo+hd9DjuzZ0db5e6+DNes2Krx2mD2XerXM8fbypHKVqlSoIGPxshXy/SVLlWLIsOFMHDeGxMREcuT4O76C/e3Xyde+d90Iwid373pQt34DatepC0Dx4iU4fsyNhw/uZ27GfqHNm9ZTpEgRHGY5ysOKlygp/ztv3rw4ffGjHsD4iVPo0qkdoaEhFC1a7Jfl9XvEM92CIAhCKgkJ8RzYu5s8efMi09VT2Ld5w3rqWlanY1tbXDZtJDExMZNyKWSmp0FPaVi3Jk2tGjBh7KhUjx38baLevwcgX/7834gTRZ48ef6aBjeI6+R70nPdCH8nExNTbly7RmBgAAC+Pj54eNz+5o/nf5oL/5zDoGIlRo8cSr3a5nRo24r9+/Z885ioqChUVFTImzffL8pl+vw9tb4gCILwXRfP/8P4MaOIjY1BW0eHtes2UbBgQfn+TnZd0dc3IF/+Aty768GKZYt5Ff6S0WMnZGKuhV/N0MiImbMdKV26DK9evcJpzSp6drNj/6Ej5M6dJ7Oz98slJyczf94cTEzNqFBBpjTOmzevWbd2NW3adfjFucs84jr5tvRcN8Lfq1effkRFRdGqeROyZ89OUlISQ4aNoFnzFpmdtV/m+fNn7N29ky7detKn7wAePnzAfMdZqKqq0qKlbar4cXFxLFuyEOumzciTJ2vVMaLRLQiCIMhVrVadXfsPEvnmDQf27WXs6OFs3bEHTS0tALp27ymPK9PVRVVVldkO0xg6fBRqamqZlW3hF6tZq478b5muHoZGxjRpVI+TJ47Tuk27bxz5Z5ozawb+jx/jvHWH0v1RUVEMHtifsuXKMcB+8C/OXeYR18m3fe+6Ef5uJ08c55jbERznL6J8+fL4+HizYK4jOjqFaNEqdYPzT5ScLGFQsRJDh48EQE/fAP/Hj9m3Z1eqRndCQgJjRw1DkiQmTZmRGdn9JjG8XBAEQZDLmSsXpUr9DyNjE6bPnE327Dk4eGBfmvENjYxITEwkJPj5L8ylkNXky5eP//2vNM+CgjI7K7/cnFkOXLxwnvWbXShcpEiq/R8+RGHfvw+5c+dmyfJVqKqqZkIus4a/+Tr52veuG0FYsmg+vXr3o0nTZlSQ6WLTohVdunVn4wanzM7aL6Ojo0O5cuUUwsqULUtoqOJjKikN7uGEhoSwdv2mLNfLDaLRLQgC4OzsTIECBTI7G0IWJCUnkxAfn+Z+Xx8fsmXLhqam1i/MlZDVRH/4wLNnz/6qCbMkSWLOLAfOnT3N+k0ulPhicp9PoqKiGNC3N6qqqixbuQZ1dfVMyGnW8TdeJ19Lz3UjCACxMbFky6a4NFj27NlJTpYyKUe/nrGpmfyZ9k+ePg2kaNHi8tefGtxBQU9Zu8GZAgUKfp1MliAa3cJvqUePHqioqDBgwIBU+wYNGoSKigo9evT49Rn7haZPn46KigoqKirkyJEDbW1tateuzdKlS4mLi8vs7AlZUHT0B3x9vPH18QYgOPg5vj7ehIaGEBMdzYqli7l/7y4hIcF4eT5k+uSJvHwZRiMrawDu3fVg+1YXfH18eP7sGceOHmHhfEeaNrcRkwD9ZRYtmMetmzcIDn7OXY87jBg2mOzZs9GkafPMztovM2fmDI4dPczc+YvInSs34a9eEf7qFbGxscCnBncvYmKime4wmw9RUfI4SUlJmZz7X0NcJ6l977oRhE/q1K3H+nVruXjhPMHBzzl75jRbXTZTv0HDzM7aL9Ola3ce3L/HhnVrCQp6yjG3I+zft4cOnToDKQ3uMSOH4uX5kDlzF5KcnER4+CvCw1+RkJB2h0FmUJEk6e/5uUT4Y/To0YNz587x7t07QkNDyZkzJ5CyXl/RokXJly8f9erVw9nZOXMz+hNNnz6dffv2cebMGZKTk4mIiOD8+fPMmjWLEiVKcP78efLmzZuutJydnRk+fDiRkZE/N9NfiRWTXqeS/BOr5Fs3rtO3V/dU4TYtWzFp6gwmjh3Ngwf3iHzzhvwFClCxkiF9+w2koqEhAN5enjjOciAg4AkJ8fEUK16CZjYt6Nq95099njubisr3Iwm/1NjRI7hz6yaRkZEU1NTE1KwyQ4aOoGSpUpmdtV/GuKKu0nCHWY60tG3NzRvX6dNT+Vq6x06dpXjxEj8ze1mCuE5S+951IwiffPgQxarlyzh39gyvX0egU6gQTZo0o//AQahm4hwqv7rlePH8Pyxftpigp4EUL16CLt170qZteyCl86CZVQOlx63ftIWq1ar/kjzmTMdTQ6LRLfyWevToQWRkJP7+/owfPx47OzsAduzYwbx58yhTpgwFChSQN7qTk5OZN28e69at48WLF8hkMqZMmULbtm0BePPmDYMHD+bUqVNERUVRokQJJk6cSM+ePYmPj2fkyJHs37+fN2/eULhwYQYMGMCECSmzNS9evJjNmzfz5MkTNDU1sbGxYf78+QrPk6xfvx4HBwciIiKwsrKiVq1aODg4KDRyDx06xIwZM/Dy8qJYsWJ0796dSZMmpbm0zPTp03F1deXu3bsK4T4+PhgbGzNmzBhmzZoFpMzmOGnSJHbu3ElkZCSVKlVi3rx51K1bF0jd6Pb392fkyJFcu3aNDx8+oK+vj6OjIw0bpvy66uDgwJ49e3j48KHCuU1MTLCxsWHmzJnp+j+KRndqP7PR/bsSjW5BEARByBrE15TU0tPoFsPLhd9ar1692Lx5s/z1pk2b6NmzZ6p4jo6ObNmyhbVr1+Lp6cmIESPo0qULFy5cAGDKlCl4eXlx/PhxvL29WbNmDdra2gAsX76cw4cPs2fPHnx9fdm+fTulS5eWp50tWzaWL1+Op6cnLi4unDt3jrFjx8r3u7u7M2DAAIYNG8bdu3dp1KgRs2fPVsjfpUuX6NatG8OGDcPLywsnJyecnZ1TxUsPPT09mjRpwoEDB+RhgwcP5urVq+zatYv79+/Trl07rK2tefz4sdI0oqKiaNq0KWfPnsXDwwNra2tsbGwI+jj5Ta9evfD29ubmzZvyYzw8PLh//77S8hcEQRAEQRCEv5Xo6RZ+S596utevX0/JkiXx9fUFUhqcz549o0+fPvKe7ri4ODQ1NTlz5gzm5ubyNPr06UN0dDQ7duygRYsWaGtrs2nTplTnGjp0KJ6enpw5cwaVdPS47du3jwEDBhAeHg5Ax44diYqK4ujRo/I4Xbp04ejRo/Ke5YYNG9KgQQN57znAtm3bGDt2LCEhijM0fpJWTzfA+PHjWb58OdHR0QQFBVG2bFmCgoIoVqyYPE7Dhg2pVq0ac+bMSdfw8kqVKjFgwAAGD05Z7qZp06aULl2a1atXy8vpwYMH/PPPP98to09ET3dqoqc7NdHTLQiCIAhZg/iaklp6errFOt3Cb01HR4dmzZrh7OyMJEk0a9ZM3kP9iZ+fH9HR0TRq1EghPD4+HlNTUwAGDhxImzZtuHPnDo0bN6ZVq1ZYWFgAKQ38Ro0aoauri7W1Nc2bN6dx48bydM6cOYOjoyM+Pj68e/eOxMREYmNjiY6OJleuXPj6+mJrq7iWYLVq1RQa4ffu3cPd3V2hZzspKUkhnX9DkiT5DwQPHjwgKSkJmUymECcuLg4tLeUzTkdFRTF9+nTc3NwIDQ0lMTGRmJgYeU83QN++fenVqxeLFy8mW7Zs7NixgyVLlqSZp7i4uFQTvEnZ1f/62XwFQRAEQRCEP5todAu/vV69esl7X1etWpVqf1RUFABubm4UL15cYd+nBl+TJk14+vQpx44d4/Tp0zRo0IBBgwaxcOFCzMzMCAgI4Pjx45w5c4b27dvTsGFD9u3bR2BgIM2bN2fgwIHMnj0bTU1NLl++TO/evYmPj093YzkqKooZM2bQunXqSVQ0NDT+VXkAeHt7U6ZMGXna2bNn5/bt22TPnl0hXlrrGI4ePZrTp0+zcOFCypcvT86cOWnbti3xXywdZWNjg7q6OgcPHkRNTY2EhAT5M/LKODo6MmPGDIWwSVOmMXnq9H/9/gRBEARBEAThdyEa3cJvz9ramvj4eFRUVLCyskq138DAAHV1dYKCgqhTp06a6ejo6NC9e3e6d+9OrVq1GDNmDAsXLgQgX758dOjQgQ4dOtC2bVusra15/fo1t2/fJjk5mUWLFpEtW8oUCXv27FFIV1dXV+HZZyDVazMzM3x9fSlfvvwPlcGXfHx8OHHihHyouqmpKUlJSbx8+ZJatWqlKw13d3d69Ogh76GPiooiMDBQIU6OHDno3r07mzdvRk1NjY4dO8pnkVdmwoQJjBw5UiFMyi56uQVBEARBEIQ/m5hITfjtZc+eHW9vb7y8vFL15ALkzZuX0aNHM2LECFxcXPD39+fOnTusWLECFxcXAKZOncqhQ4fw8/PD09OTo0ePoq+vD6TMTr5z5058fHx49OgRe/fupUiRIhQoUIDy5cuTkJDAihUrePLkCVu3bmXt2rUK5x8yZAjHjh1j8eLFPH78GCcnJ44fP67wfPjUqVPZsmULM2bMwNPTE29vb3bt2sXkyZO/+d4TExN58eIFISEhPHjwgBUrVlCnTh1MTEwYM2YMADKZDDs7O7p168aBAwcICAjgxo0bODo64ubmpjTdChUqcODAAe7evcu9e/fo3LkzycnJqeL16dOHc+fOceLECXr16vXNvKqrq5MvXz6FTQwtT5/IyDfUr21BSPDzzM7KT7F39y6GDRqQ2dn4I0VGvqFuLXOCf8Nrx/3SRdq3bqm07vkvfucy8ffzo1H92kRHR2dour9zmfys6wREuQjp8ztfJ3t272SI/X///I2MfEO92r9nGaTHsiULmTsnfSvzpEU0uoU/wqdGXFpmzpzJlClTcHR0RF9fH2tra9zc3ORDsNXU1JgwYQJGRkbUrl2b7Nmzs2vXLiCl0T5//nyqVKlC1apVCQwM5NixY2TLlg1jY2MWL17MvHnzqFSpEtu3b8fR0VHh3JaWlqxdu5bFixdjbGzMiRMnGDFihMKwcSsrK44ePcqpU6eoWrUqNWrUYMmSJfzvf//75vv29PSkaNGilCpVirp167Jnzx4mTJjApUuXFIaOb968mW7dujFq1Ch0dXVp1aoVN2/epFQaa6UuXryYggULYmFhgY2NDVZWVpiZmaWKV6FCBSwsLNDT06N69V+zFuLfaMO6tdSt14BiH9f1Na2kl2o7cUzxB5T4+HhWLltCk0b1qWZqSNPG9XE9sD9d54uMfINVgzqYVtLj/bt3Cvt279xOa5um1KhsTKvm1hw55Kqw/9oVd1o2s6Jm9cpMHj+WhITPjyS8f/+els2sCAkJVjimVevWeHt7cef2rfQWiZBO653WUq9eA4oXL4Gvjw/jRo+kcYM6VDMzopVNE7ZvdfluGm8jI5kwdhQW1cyoWaMK06ZMJPrDB4U4J08co33rllSvbIx1w3o4b9qgsN/b24v2bVpRo4opQ+wH8PaLSRsTExPp2K41D+7fVzjGslZtcuTIgdvRwz9eAEp8WSYA169dpZtdR8yrmlK/tiVLFi0gMTHtWR7fRkbiOHsmLZpZUc3MCKsGdZk7Zxbv379XiDd3ziw6tmtNFZNKtG/dMlU6wcHP6dnNjupVTOjZzS7Vl9XB9v05c+qkQli58uUxMjJhq8tmMpK4TpT7+loJDQlh8MB+VK9sTN1a5ixeOO+b1wpAYGAAwwYPpI5ldSyqmdG9SyduXL+mNG5k5Bsa1a+NcUVd3n1R92a1chEUfXmdREa+YWC/3jSsW5MqJpVo3KAOc2Y5yB91TMvQQQOwalCXqqaGNKhTk4njx/DyZZh8f3Dwc4wr6qba7t+7K49z9Yo7Nk2tsKhmxsTxY0iIV/z8tWma+vPX1rYN3t6e//nz99P3lE91yPgxI7FqUIfqlY2wVVKH3LxxHZNKuqm28PBX3zzPyRPHaN+mJTWqGNOkUeo65Esed25T2diA9m0U61+3o4exalCHWhZVWThf8Tt7cPBzWjSzSvX/6tajF0cOHeT5s2fpKQ7lJEEQfrk+ffpINWvWzOxs/GfJyclSuXLlpEWLFv3Q8TEJYvt6+xCfrLCFv/0gmZmZSVdv3pGHyWQyaeeefdLTkDD59vp9jMJxffsPkNq0bSedvXBZehwQJF25cVtyv3YrVfrKtn4DBko9e/eRZDKZ9CI8Uh6+ect2ydTUVDpw6Kjk6/9U2u96RDIxMZGOnTojfYhPlt7HJkrVqleX1q7fKN338pWsrKyljc5b5MdPnDxVWrt+o9JzzpozV7IfPETpvsz+n/yu2+t30ZKZmZl0/ZaHFJMgSTt275WmO8yULl25Lj1+EiTtPeAqGRkZSZuct34znZ69eks2Ni2k67fvSu7XbkoNGzaShg0fKd9/+tx5ycDAQHLZtkN6/CRIOnnmH8nS0lIh3ZatbKWZsx0l78dPpI6dOkuz5syV71u1xkmaNmOm0nNvdtkm2dq2/mllcveBt1SxYkVpybIVkq9foHTpynXJytpaIX9fb/e9fKWB9oOl46fOSo/8n0rnL12RGjZqLNkPGqIQb9qMmdJml23SyNFjJBubFqnSGWg/WBo6bITk4xcgDR46TOH4g4fdpL79+is9/6fyfR+TIK6Tn3SdKCuXqNhEqWmz5lK37j0kj/te0ulz56Xq1atL8xYs+mY6DRs1lnr36Svde+gt+fgFSFOmTpeMjI2lZyEvU8XtP2Cg1Otj3RsW8TZLlovYvn2dhIVHSi5bt0u3PO5L/k+fS+cvXZEaW1kp3AvKtnUbNkvXb3lI/k+fS1dv3Jbate8gtWvfQb7fL/CZJJPJpPOXrkjPQl7Kt3fR8VJMgiR9iEuSqlevLjmt3yQ98H4kWVlbK9xbk6ZMlZzWb1J67tmOc6VBg4ek+z1HxytuEW9TyuDaTQ8pOl6SduzaK02bMVO66H5deuQfJO3d/7kO+XTMhcvXJJlMJnk/eiIFhbyUb1GxSanS/7SdOvuxDtm6Q3rkHySdOP25Dvk67ovwt1L9+g2k7j16Sc1tWsjDg8MiJENDQ+ngITfpxu17UvUaNaQTp87J9/fs3Uc64nZS6fntBw+RZs2Zq3RfeohGtyD8AgsWLJDu3r0rPX78WFq+fLmkqqoqrV+/PrOz9Z+8fPlSWr58uZQ7d27p9evXP5RGZn9YZsXt6wan69FjUvUaNRTCZDKZdPT4qTQbzafOXZDMKleWQl69Tlcj+8tt85btUqfOdtI/l66kanS3bddemjVnrkJ8h9lzpPYdOkof4pOlZ6GvJJlMJv8BYM7c+dLkqdOlD/HJkvv1W1LLVrbSu5gEpee9eOW6VLFiRSniXbRodGfQdvjocal6jRrfjDNl6nTJrkvXNPd7+vhJMplMuuVxXx525twFSVdXV3oa/EKKSZCkYcNHpvrCttF5i1Srdm0p+uP/z8jISPLy9ZNiEiTJZet2qXefvlJMgiQ9fhIkNWzUWAqPfK/0/E+eBksymUx65P/0p5TJvAWLUjVKjp86KxkaGqaZJ2XboaPHpIoVKyptCC9eulxpo9vauol05twFKSYhpUFq3aSpFJMgSWERb6WGDRtJAUEhSs/17kOcVKlSJen8pSviOvlJ14mycjl97rykp6cnPQ99JQ9z2bZDMjMzk959iFOaRsjLCEkmk0nu127Kw8Ij30symUz656K7QlyXrdulznZdpPMf694vG91ZqVzE9u3rRNm2YbOLVKt27X+V7vGTZyRdXV15o/pTo9vjvpfS+M9fhEsymUyKjIqVYhIkac7c+dKUqdOlmARJunrjttTK1laKik1UeuzlqzekihUrSm/ex6Qrb183OA99LIO0GsvR8ZI0+WMd8nWj+0X4228e9+U2dPhIyX7wEIWwjZu3SLVq1ZY+xCUrhA8ZOlxasGiJtGjJcoVG9/Xb9yRzcwv568FDhkmr166XouMlab/rEalf/wFpnn/33oNSrVq1f7jRLYaXC8IvcOPGDRo1aoShoSFr165l+fLl9OnTJ7Oz9Z8UKlQIBwcH1q1bR8GCBTM7O38sj9u30TeomCrccbYD9WrWoEvHdrge2I/0xcKZF/45h0HFSjhv2kjj+rVp2cyKxQvmERsb+81z+fv7sX7tamY6zlO6NnZCQjxqXz2Hr6GuwcMHD0hISKCgpibaOjpcveJOTEwMd27fooJMRkJCAnNmzmDytBlK510AMKhYiaSkJB7ev5eeYhHS4c6dWxgouXa+9D7qPfnzF0hz/717HuTNl4+KlQzlYdXNLciWLZt8OGt8vPLrIuzFC/lQRpmuHlevXiExMZHr165RQaYLwEyHaYwYNYbcuZWvpFC0WDG0tLQz7NGDr8tEad41NIiLi8PL0zPd6Ua9jyJPnjzkyJH++Wllunpcu3aV5ORkrrq7I/tYJksWzqdDp84UKVpU6XGqamro6un/tDJR5m+7TiB1udy7e5cKFWRofbEsqYVlTaKiovDz91OaRoECBSldpgxHDrkSHR1NYmIi+/bsRlNLSyFtfz8/nNasZtacefJJWb+UlcpFUPS9++flyzDOnTlN5SpV053m28hI3NyOYGxiiqqq4gLQwwYPpG4tc7p36cT5c2fl4Zqamujo6HDV/TIxMTF43LlNBV1dEhISmO0wnSnTHL77+fvgBz9/79z+fh0S9V55HdKhbSsa1q1J/z498bhz+5tpJMTHo66mWIeoq2sQFvZCYdi868H9PH/+jP4DB6dK43+l/kdsbAw+3l68fRuJp+cDZLq6vHv7ltUrljF+4tQ0z1/J0JCwsBc//Ny6aHQLwi+wZ88eXr58SUxMDJ6engwY8PtPGiVJEq9evaJz586ZnZU/WmhoCDo6hRTCBg4eyvyFS1mzfhMNGjXGcdYMdm7fKt8f/PwZd+/cxv/xIxYvW8nocRM5c/okjrNmfJ28XHx8PBPGjGL4qDEULVpMaRxzi5q47t+Hl+dDJEnC8+EDDu7fR2JiApGRb1BRUWH+oqWsX7uatq2ao6dvQEvbNmzeuJ6q1aqjrq5Ojy6daNXcml07timknTNnTvLkyUtIaMh/KC3hS6EhIegUKpTm/rsedzh14jht2rVPM05EeDiampoKYTly5CBf/vxEfHz2zsKyJmfPnOb6xwZkYGAAW1w2ARD+KiXONIdZnDl1kubWjVBVVaV33/4cOexKTg0NKlYyZEDf3jS3bsTKZUtS5UGnUCFCM+i6+LpMLCxrcu+uB8fdjpKUlERYWBhOa1Yp5P173rx5zbq1q2nTrsO/ysvIMeMICHhCk0b1eRr0lJFjxnH71k18fbyxadGKMSOH0dSqATNnTFV4NhNSyiQk5OeUydf+xusEUpdLRHg4mlraCnG0Pr6OSOM5VBUVFdZtcMbHxwuLamZUMzNiq8tmVjttIF/+/EBK3Tt+zEhGjB5D0WLK696sVC6CorTun3GjR1K9sjGN6tUmd+7cTHeY/d20lixaQPUqJtS2rM6L0FCWrVwt35crVy5GjRnPgiXLWLnaCVOzygwfOkje8P70+btu7Wpat2yGnp4+rWzbsOn/7N13WFRH2wbwe0GQXlSw0wQRBAQkxhp7jz12xW4sEaNYYyxgN7YoRiyoqLH33lBRsDdQA6IUwcSOSBAUWfb7g8+N66KSvLqzeO7fdeV6cc4Rbs972N05M/PMyuX4qtrX0C9aFL26d0Hrlk2x8ff833/v/8fXlPw+p7zt2tUrOHL4INp/989riJWVFX6eFIB5CxZh7oJFKFWqFAb09UXMH+9/2FmjVm2Ehf3zGnI3KRHr3nkNuXs3CYsWzMOMWb/k+xDUzNwcU6fPxs8/jUWPLh3xbau2qFmrDubPnY3O3fJqa3T+ri06tP0WR48cUvm7VtYl8/69//E6ccswIiIt9urlSxS1Vn2yO3DQEOXXlVxckZWVhbWrV6FbD18AQG5uLmQyGabPngtTU1MAQPbocRg9cjjG/zw5373fFy2cB3uHCmjZqvV7swwYNARPnzxBr+5doFAoUKx4cbRq0xZrVq2EjizvGa6Xd1X8vnmb8u/cTUrEvj27sWnbDvTr1RNde/RE7drf4Lt2reBd9StUdHZWnlvUoCheZn14NJ4K7uXLV7DWz3+HgNu34/DjsCH4fvBQ1KxV+3/6OR06dkJKSjKGDfkeOTk5MDY2Qfeevli6ZDFk/z9q5+johFWh/3zQS0t7hqVLFmN16O+YNWMqPL28MP/Xxeje+Tu4eVRBvfoNlOcaFC2KrKys/ynjG+9ek5q1amOE/xhMC5yMCePHQE9fHwO/H4Irly8ps39IRkYGfhj8PRwqVMCgIeqjKh9SsmRJBP22TPnn7OxsDB7YD9NmzMLyZUthZGyM3fsOYcj3/bF162Z0695Tea5B0aJ4+fLzXJO3SfU+AT58XQpKoVBgxrQAFCtWHKvX/g4DAwPs2LYVfkMHYcPmbbCyssavC+bBvkIFfNtKvdjeG9p0XUjV++6T0WPHY9CQobiblIRfF87H3NkzMWHSlA9+r959+6Fdh+9w/6+/EPxbEH4ePxaLf1sGmUwGS8ti8O3dR3mum7sHHj9+hDWrQ1CvQUMAgHdVH2zY8k/B1KT/f//dvG0n+vTqge49fFGrzjfo0PZbVPXxQUXnSspzixr899eUVy9fQd86/9+VO7fjMMJP/TXEzt4BdvYOyj97ennj3r0UrF+7BtNn/ZLv9+rwXSfcS0mG39B/XkO69fBF8G+LoaOjA7lcjvFj/DF46DDY2tm/N2+DRo3RoFFj5Z8vXbyAuLhbGPvTRLRu0Rgz58xHiRIl0KNrR1St+hWKFS8OAModd/7rdeJINxGRFrOwtER6+vMPnuPu7oGHDx8g+/9Hw0pYWcHauqSyww0A9g4VoFAo8PDhg3y/x8Xz53HsyCH4VKkMnyqV8X3/vDf3+nVqYGnQIgB5026nTJuBMxevYv/hMBw8egKly5SFsbExLN8Z5XpjWsBkjBw9Frm5CsTG/IHGTZqhWPHiqOrzFS5fuqBybvrz57AsxqUKn4qlpYVKBeQ34u/cwcB+vdGhY2eVBzj5KV6iBFJTU1XacnJykP78OYqXsAKQN8Iywn80zl68ioNHT+B4eATc3POmGZcrVz7f7zt39ix079kLJUuVwqULF9C4STMYGRmhTt26uHRR9b54nv5cbRT1v8rvmvj27oOIc5dw6NgJhEecQ/3//wBbrly5D36vFy8yMOT7/jA2NsaCRUvUpoH+WyuXB6NGzVpwreyGSxcvoFHjptDT00PDRk1w6cI71+T5c1hafr5rAkj7PgHUr0vxEiWQ+vSJyjlP///Pb/6N77pw/hxOhZ/E7LkL4OVdFS6ulTFh0hQYFDXAnl27AAAXz5/D0cOH4O3hCm8PVwzs1xsAUK92dfz2/6+97xJ5XUjV+35/SlhZwd6hAuo1aIiJkwOwZfNGPH786CPfqxjs7OxRo2YtzJm7AKdPhatUJ3+Xu3sVpCQnv/f41CmT4D96LHIV///+27QZihcvDh+fr3Dp0kWVc9P/h9cUi/e9hsTnvYa0/64zBnz/4dcQAKjs5o6UlPf/e2QyGX4cORpnLlzFgSMnEPbWa0jZcuXx4sUL/HHzBmbNmIqqVVxRtYorlgcvQdytWFSt4ooL58+qfc/s7GzMmBaAiZMDkZJ8FzlyOXy+qgY7ewfY2Nrh+vV/ptynP8/7LPZfrxNHuomItFilSi7Yv2/vB8+5FRsLMzNz6OvrA8h7YnzsyGFkZr6AkZExgLwpVzo6OihZslS+32PugkV49eqfUeabN65jysQJCAldj/LlVbeW09PTQ8lSed/n8KH9qFO3Xr7rEHdu3wYzc3PUq99A+Wb1ZnudnJwclf1jU5KT8erVK1Sq5PrBfysVXCUXV+zfq7pd0J07tzGgby+0bt0Ww4aP+Oj3qFLFC3+np+OPmzfgWtkNQF5HIjc3F+4eHirn6urqomTJvOl3Bw/sRxVPr3w/7J8/dxYJCfEInJ63VUturvyf++K16vZLr169QkpyCiq5fJr7Ir9rAuR9mLO2fpN9H0qVKp1vLYU3MjIyMHhgP+jr6+PXoKXKEZD/KiE+Hgf378Pm7bsAALlyOXJyXgMAcnJeIzdXrnL+nTu30ahJ0//pZ77B+yR/716XKp6eWLk8GE+fPkXx/x/5OnfmDExMTFChgmO+3+PNCPO7NTJkOjIoFHmvf/MWLsbLd157J//8E1av/R3lyqtv6yn6upCq972mvO1NzZXsd5aJfMib98cP/Z1bsTEoYZX/A58d27fC3NwC9Ro0zP/9V/7Pa4ry/fc/3ieVKrmqbU13585tDOzbC63aFOw1BMj7LFPiPQ+w3vb2a8ihA/vhUSXvNSQ3Nxfbdqp+Xtq8aQMuXjiHufMXKbf+e9uKZb+hVu06cHGtjNiYPyDP+ee65OTkQC7/53PKnTu3UaSIHio4OhXo3/MujnQTEWmxGrVqIyH+jvJNM/zkcezYthV3bschOfkutmzaiJCVy9ClW3fl32ne8luYm1tg8s8/IT7+Di5fuoiF8+agTbsOyqnlx48dRbtWzZV/p7yNDRydKir/e/Pm5OBQQTm16m5SIvbv3YO7d5Nw43o0xo4aifjbt/N9Q019+hQrly/F2J9+BpC3jsreoQI2rAtF1LWruHDuLDw9/9n7/eqVSyhXrjzKv2fvePr3ataqjfi37p3bt+PQv48vatSshZ69+uDJ48d48vixygjl9ehotPm2GR4+zNsf1qFCBdSqXQcBkyfienQ0rl65jJnTp6JZ85bKTuqzZ6nYsnkjEhPiERsTg9kzp+Ho4UMYPfYntUyvXr3CzOmBmDRlqvJBjaeXNzZv/B23YmNx7NgReHr/c19ER12Dvr4ePKp4fpZrAgBrVq3E7bhbuHPnNpYtXYJVK1dg7E8/K4sOPXz4EG2+baYsCJaRkYFBA/oiKysTUwKn40VGhvJayt/6IJt89y5iY2Lw5MljvHz1ErExMYiNiVFbn61QKBA4ZSJGjR0PIyMj5TXZvm0rEuLjsXfPbnh6/XNN/vzzHh49fIjqNWp+lmvC+yT/61KjZm04VHDEhHFjcCs2FpERpxG0eCE6d+2ufOD57nWp4ukJMzMz/PzTONyKjUVSUiLmz52NP+/9iTrf1AOQ99rr5FRR+d+b1157hwrKzr02XRdS9e59cvpUOHbt3I7bt+Pw55/3cCr8JKYFTIanl7fy/9t375Po6Chs/H09YmNi8Ndff+L8ubMYN3okype3QRVPLwDAnl07cXD/PiQmxCMxIR4rlwdj187t6Nq9h1qmp0+fYsWypRg34Z/3XweHCvj9/99/z587q/KacuXyJZQr/9/ff2u+8znlzu04DOj71mvIk8d48kT1NWT9ujU4cfwYkpPv4s7tOMyZNR0XL5xD567/fJbZtGE9Bvbrpfzzs2ep2PrmNST2/19DjhzC6HF5ryE6Ojoqn2McnSqiWLHi0NcvCkenijD8/9fXN+Lj7+DwoYMYMtQPQN6Udx0dGXZu34pT4SeRlJigUhzyyuVL8K5aNd8legXBkW4iIi3mVNEZlVxcceTwQXzXqQuKFNHDlk0bMG/OTCgUeR/Y/EePVSlQYmRkjKUrVmH2jGno0fk7mJtboHGzZhg67EflORkZfyMpMfFfZZHLc7EudDXuJiWiSJEi8Kn2Ndas34gy+Tw9njNrOnr26qP8wA0AgdNnYtJP47Dx93Xw7dMPld3/eTM7dGA/2n3X8V/loQ97c+8cPnwQHTt1wbEjh/EsNRX79+5RGZkpU6YsDh49DiBvrVpSYqJylBUAZs6ei5nTp2Jgv17Q0dFBw8ZNMG78zyo/a+/uXZj/yxwooECVKp5YuWad2ggnAAT/FoQ639RDJRcXZdvY8T9j3Bh/9O3VHS1atkKjxv+M4B48sB8tvm0FQ0PDz3JNACDi9CmsXB6M7OxsVHSuhF+DlqB2nbrKv5OT8xpJiYnKdXwxf9xUVvn9tnljle9/4EiY8oN1wOSfVab6dv6urdo5ALBt62YUL14CdevVV7YNGjoM48f4o0fXjqhVu47KB9FDB/ajRs1aKFOm7Ke4JLxPCnhddHV1sfi3YEwPnALf7p1haGiIVm3aYcgPfsq/8+51sbQsht+WrcTiXxdiQN9eyMl5jQqOTvg1aAmcK1V6z09+P224LqTq3fukaNGi2LFtK+bOnons7GyULFUaDRs1Rt/+A5V/5937xNDAAGHHjmDpksXIyspECSsr1KpdB3O+H6J8oAMAy4N/w1/3/0IRXV3Y2TtgztwFaNy0mVqmOTOnw7dX33fef2dh4oSx2LB+HXr16Qc3939+7w4e2I/2Hd5fKLGg1+DN55Sjb15D9u1RGQEvXaYsDh7Jew15/fo15v8yG48ePYSBgSGcKlbEspWr8VW16srznz17hpSUFJWftXfPLsyf+9ZryOp1cHdXfw35GIVCgalTJmLU6HHKzriBgQECp83CzOmBeQUOf5qkHFEH8mb2DRo87F//rDdkirf3mSEi0qCXOR8/R2py83lJPh1+Egvm/YJtu/bmO427sIu/cxsD+/bGrv2HVNahv5Hf9mVUMKfCT2LB3DnYvntfobt3nj1LRZuWzbFhy7b3rvn9LwrzNXmdnY1WLZpi5py58PKu+sm+b2G+Jp/rPgF4XahgCvN98mYpyZ79h/N9/81Pfj3HU+EnsXDeHGzbVfiuQUFEnA7H/F9mY8uOPflWRTcsQEkPjnQTEWm5OnXrITn5Lh49fPjevXsLs8ePH2PqzFkFfsOngvumbj0k300qlPfOX3/+iZ8mTv7kHYbCfE3u37+PfgO//6QdbqBwX5PPdZ8AvC5UMIX5Pnny+DGmzZj9P7//flO3HpKTC+c1KIisrCwETJuZb4e7oDjSTUTCcKRbXX4j3VLHkW4iIiLtwI8p6goy0v3ljf8TERERERERaQl2uomIiIiIiIg+E3a6iYiIiIiIiD4TrukmIsl79eoVZs6cifHjx6No0aKi42gFXhN1vCbqeE3U8Zrkj9dFHa+JOl4Tdbwm6grjNWGnm4gkLz09Hebm5nj+/DnMzMxEx9EKvCbqeE3U8Zqo4zXJH6+LOl4Tdbwm6nhN1BXGa8Lp5URERERERESfCTvdRERERERERJ8JO91EREREREREnwk73UQkeUWLFsXkyZMLTTEOTeA1Ucdroo7XRB2vSf54XdTxmqjjNVHHa6KuMF4TFlIjIiIiIiIi+kw40k1ERERERET0mbDTTURERERERPSZsNNNRERERERE9Jmw001ERB/E0h9ERERE/10R0QGIiETIzc3FnTt38OjRI+Tm5qoc++abbwSlEueXX37B6NGj1drlcjl69OiBjRs3CkiledHR0QU+18PD4zMm0V5hYWEICwvL93dn1apVglKJ4+DggIsXL6J48eIq7WlpafD29kZCQoKgZOLxXqGPadCgAXbs2AELCwuV9vT0dLRt2xbHjx8XE4y0yuTJk9G3b1/Y2tqKjvKfsdNNRJJz7tw5dOvWDXfv3lUbxZXJZJDL5YKSifPLL7+gWLFi6Nevn7JNLpejS5cuuHHjhsBkmuXp6QmZTPbe0f03x6R6nwQEBCAwMBA+Pj4oXbo0ZDKZ6EjCJSUl5XsvvHr1Cn/++aeARNqB94o6uVyONWvWvPdBhBQ7mCdPnkR2drZa+8uXL3H69GkBicRr165dvr8vMpkMBgYGcHR0RLdu3eDs7CwgnRi7d+/G9OnTUbduXfTr1w8dOnQoVNuFAex0E5EEDRo0CD4+Pti/fz8/DP6//fv3o0mTJjA3N8d3332HnJwcdOrUCbGxsThx4oToeBqTmJgoOoJWCw4Oxpo1a9CzZ0/RUYTbs2eP8uvDhw/D3Nxc+We5XI6wsDDY2dkJSKYdeK+oGz58ONasWYOWLVvCzc1N0u89b88q+uOPP/DgwQPln+VyOQ4dOoSyZcuKiCacubk5du3aBQsLC1StWhUAcOXKFaSlpaFJkybYvHkzZs+ejbCwMNSqVUtwWs24du0arl69itWrV2P48OEYOnQounTpgr59++Krr74SHa9AuE83EUmOsbExoqKi4OjoKDqKVjl+/Djatm2L9evXIyQkBHfu3MHx48dRsmRJ0dFISxQvXhwXLlxAhQoVREcRTkfn/WVx9PT0YGdnh3nz5uHbb7/VYCrtwXtFXYkSJbB27Vq0aNFCdBThdHR0lA8d8uuKGBoaYvHixejbt6+mowk3btw4pKenIygoSPk6k5ubi+HDh8PU1BTTp0/HoEGDcPPmTURERAhOq3mvX7/G3r17sXr1ahw+fBiVKlVCv3790Lt3b5WHn9qGnW4ikpwGDRpgzJgxaNasmegoWmfXrl3o2LEjXFxccPz4cZQoUUJ0JI16e/TyY1q3bv0Zk2insWPHwsTEBBMnThQdRajo6GhUrlwZurq6sLe3x8WLFyX3u/IxvFfUlSlTBidPnkTFihVFRxEqPT0dqampAPJqIly4cAFWVlbK4/r6+rC2toaurq6oiEJZWVkhMjJS7T6Ji4tDzZo18eTJE1y/fh116tRBWlqamJACZWdnY+fOnVi1ahWOHz+OmjVr4q+//sLDhw+xYsUKdO7cWXTEfHF6ORFJzrBhw+Dv748HDx7A3d0denp6KselUiCrffv2+bZbWVnBwsICAwcOVLbt2LFDU7GEatu2bYHOk+qa7pcvX2L58uU4duwYPDw81H535s+fLyiZZnl5eeHBgwewsrKCTCaT9DTh9+G9os7f3x+//vorgoKCJH3PWFpa4v79+7C2tkbdunXh6OioVkhNynJychAbG6vW6Y6NjVW+7xgYGEjuHrp8+TJWr16NjRs3omjRovD19cWSJUuUsxYXL14MPz8/drqJiLRFhw4dAEBl2poUC2S9bxpW06ZNNZxEe7xb2IhURUdHw9PTEwDUCuxJ6QOghYUFEhISYGVlhbt37/K+yQfvFXURERE4ceIEDh48iMqVK6s9iJDKw00TExM8ffoU1tbWOHXqFF6/fi06klbp2bMn+vXrh59++km5XvnixYuYMWMGfH19AQDh4eGoXLmyyJga5e7ujtjYWDRp0gQhISFo1aqV2kyIrl27Yvjw4YISfhynlxOR5Ny9e/eDxwvzlhRE9PkNHDgQa9euRenSpZGcnIxy5cq9dyqslLcMI1V9+vT54PHVq1drKIlYHTp0QGRkJFxcXBAeHo6aNWtCX18/33OlWNFdLpdj1qxZCAoKwsOHDwEAJUuWxLBhwzB27Fjo6uoiOTkZOjo6KFeunOC0mjF16lT07du3UBfXY6ebiIiQmJiInJwcODk5qbTfvn1bWRRKChYtWoSBAwfCwMAAixYt+uC5fn5+Gkqlne7duwcAkvnQ965Dhw7hzp078PPzQ2BgIExNTfM9T5tHXjRF6vcKqcrKykJoaCji4+Mxb948DBgwAEZGRvmeu2DBAg2n0y7p6ekAADMzM8FJ6H/FTjcRSVJ8fDwWLlyImJgYAICrqyuGDx8u2Uq7devWRd++fdGrVy+V9vXr12PlypU4efKkmGAaZm9vj0uXLqF48eKwt7d/73kymUySI5i5ubmYNm0a5s2bh4yMDACAqakp/P39MWHChA9W9P5S9enTB4sWLXpvp1uqeK+83+PHj3Hr1i0AgLOzs0oRMampX78+du7cyTXd9FH37t3Dnj17kJycrLa3e2GoEcFONxFJzuHDh9G6dWt4enoq97iMjIxEVFQU9u7di8aNGwtOqHlmZma4cuWK2jZqd+7cgY+PjyQrpJK68ePHIyQkBAEBAcrfnYiICEyZMgUDBgzA9OnTBSckbcF7Rd2LFy8wbNgwrF27VlkHQFdXF76+vli8ePF7R3tJWh4+fIhRo0YhLCwMjx49UttSTSp1Z94WFhaG1q1bw8HBAbGxsXBzc0NSUhIUCgW8vb0LxTIEdrqJSHK8vLzQtGlTzJo1S6V93LhxOHLkCK5cuSIomTjm5uY4efIkvLy8VNovX76MevXq4e+//xaUTJzAwECMGjVK7YNwVlYWfvnlF0yaNElQMnHKlCmD4OBgte3Sdu/ejSFDhuDPP/8UlEysS5cuYcuWLfmOwEilONa7eK+o+/7773Hs2DEEBQWpPIjw8/ND48aNsXTpUsEJxSjsI5ifWvPmzZGcnIwffvgBpUuXVis82KZNG0HJxKlWrRqaN2+OgIAAmJqaIioqCtbW1ujevTuaNWuGwYMHi474Uex0E5HkGBgY4Pr162rrl+Pi4uDh4YGXL18KSiZOq1atYGhoiI0bNyoLQsnlcnTu3BkvXrzAwYMHBSfUPF1dXeW2Nm97U3VXiqMNBgYGiI6OVtvK5tatW/D09ERWVpagZOJs2rQJvr6+aNq0KY4cOYImTZogLi4ODx8+RLt27SRTHOtdvFfUlShRAtu2bUO9evVU2k+cOIFOnTrh8ePHYoIJ9CWMYH5qpqamOH36tLL6P+Vdk2vXrqFChQqwtLREREQEKleujKioKLRp0wZJSUmiI36UdBfUEJFkWVlZ4dq1a2rt165dU+tgScXs2bNx/PhxODs7o0+fPujTpw+cnZ1x6tQp/PLLL6LjCfFmC7l3RUVFoVixYgISiVelShUEBQWptQcFBaFKlSoCEok3Y8YMLFiwAHv37oW+vj5+/fVXxMbGolOnTrCxsREdTxjeK+oyMzNRsmRJtXZra2tkZmYKSCTe+PHjMWrUKFy/fh0GBgbYvn07UlJSULduXXTs2FF0PCHKly+vNqVc6oyNjZWzIEqXLo34+HjlsSdPnoiK9a9wn24ikpwBAwZg4MCBSEhIQM2aNQHkremePXs2Ro4cKTidGK6uroiOjkZQUBCioqJgaGgIX19f/PDDD5LrYFpaWkImk0Emk6FixYoqHW+5XI6MjAwMGjRIYEJx5syZg5YtW+LYsWOoUaMGAODs2bNISUnBgQMHBKcTIz4+Hi1btgQA6Ovr48WLF5DJZBgxYgQaNGiAgIAAwQnF4L2irkaNGpg8eTLWrl0LAwMDAHnLVQICApTXSGpiYmKwceNGAECRIkWQlZUFExMTBAYGok2bNoVi2vCntnDhQowbNw7Lli2TzM4hH1O9enVERETAxcUFLVq0gL+/P65fv44dO3agevXqouMVCKeXE5HkKBQKLFy4EPPmzcNff/0FIG/94ejRo+Hn55fv6CZJR2hoKBQKBfr27YuFCxfC3NxceUxfXx92dnaS/YAMAH/99ReWLFmC2NhYAICLiwuGDBmCMmXKCE4mRrly5XDw4EG4u7vDw8MD48ePR9euXXH27Fk0a9YMz58/Fx1RGN4rqm7cuIGmTZvi1atXytH+qKgoGBgY4PDhw6hcubLghJpXqlQpnDhxAi4uLnB1dcWsWbPQunVrREVFoVatWsrK91JiaWmJzMxM5OTkwMjICHp6eirHU1NTBSUTJyEhARkZGfDw8MCLFy/g7++PM2fOwMnJCfPnz4etra3oiB/FTjcRSdqbAmHc7idPZmZmvsVsPDw8BCUSJzw8HLVq1UKRIpwURu/XrVs3+Pj4YOTIkZg6dSoWL16MNm3a4OjRo/D29pZsITXKX2ZmJn7//XeVBxHdu3eHoaGh4GRitG3bFi1btsSAAQMwatQo7N69G71798aOHTtgaWmJY8eOiY6ocaGhoR88/u7WnlQ4sNNNRER4/Pgx+vTp896CaVIsGnblyhXo6enB3d0dQF7V5dWrV8PV1RVTpkyBvr6+4ISaER0dDTc3N+jo6CA6OvqD50rx4UxqaipevnyJMmXKIDc3F3PmzFGOwPz888+wtLQUHVFjeK/Qv/UljGASFQQ73UQkCd7e3ggLC4OlpSW8vLw+OIVciluGde/eHXfv3sXChQtRr1497Ny5Ew8fPsS0adMwb9485ZpVKfnqq68wbtw4dOjQAQkJCXB1dUX79u1x8eJFtGzZEgsXLhQdUSN0dHTw4MEDWFtbQ0dHBzKZLN8iPzKZTHIPZ3JycrBhwwY0bdo03wJZUsN7Rd2ePXvQvHlz6OnpYc+ePR88993t1b50crkckZGR8PDwgIWFheg4QqWnp8PMzEz59Ye8Oe9L96a+SkEUhin3nDNHRJLQpk0bFC1aVPk1122rOn78OHbv3g0fHx/o6OjA1tYWjRs3hpmZGWbOnCnJTndcXJxyy5atW7eibt262LBhAyIjI9GlSxfJdLoTExNhZWWl/Jr+UaRIEQwaNAgxMTGio2gF3ivq2rZtq3wQ0bZt2/eeJ6UHEW/o6uqiSZMmiImJkXyn29LSUrlFpYWFRb6fUd7sqCGV++RLe49lp5uIJGHy5MnKr6dMmSIuiJZ68eKFcrs0S0tLPH78GBUrVoS7u7skR/6BvA84ubm5AIBjx47h22+/BZC3nUth2aLkU3h7eufdu3dRs2ZNtXXuOTk5OHPmjCSnglarVg3Xrl2T5L/9XbxX1L15DXn3a8rj5uaGhIQE2Nvbi44i1PHjx5U7hZw4cUJwGu3wpa1dZ6ebiCTHwcEBFy9eRPHixVXa09LS4O3tjYSEBEHJxHF2dsatW7dgZ2eHKlWqKLcqCQ4ORunSpUXHE8LHxwfTpk1Do0aNEB4ejqVLlwLIG8GT6lTi+vXrK0dj3vb8+XPUr19fMiMwbxsyZAhGjhyJlJQUVK1aFcbGxirHpbp2mfeKurVr16Jz587KWVdvZGdnY9OmTfD19RWUTJxp06Zh1KhRmDp1ar6/P1KZSv3rr7/Cy8sLZmZmuHv3br73idTFx8dj9erViI+Px6+//gpra2scPHgQNjY2haLyP9d0E5HkvL3u8G0PHz5E+fLl1Sp3S8H69euRk5OD3r174/Lly2jWrBlSU1Ohr6+PNWvWoHPnzqIjalx0dDS6d++O5ORkjBw5UjlbYtiwYXj69Ck2bNggOKHm6ejo4OHDh8opxG/ExcXBx8fno2sRv0Q6OjpqbW/WMktpKui7eK+o09XVzfdBxNOnT2FtbS3Je+Xt35+3p1RL7fdHX18fd+/eRenSpd97n0hZeHg4mjdvjlq1auHUqVOIiYmBg4MDZs2ahUuXLmHbtm2iI34UR7qJSDLeLmJz+PBhlf2X5XI5wsLCJDvFrUePHsqvq1atirt37yI2NhY2NjYoUaKEwGTieHh44Pr162rtv/zyC3R1dQUkEqd9+/YA8j4U9+7dW2UERi6XIzo6GjVr1hQVTyiuXVbFe+X93nQk33Xv3j2V9yMp4VTqPJUqVcL48eNRv359KBQKbNmy5b2j/FKcETFu3DhMmzYNI0eOVNnitUGDBggKChKYrODY6SYiyXhTxEYmk6mtFdLT04OdnR3mzZsnIJl4gYGBGDVqFIyMjAAARkZG8Pb2RlZWFgIDAzFp0iTBCbWHgYGB6Aga96ZDoFAoYGpqqrKnsL6+PqpXr44BAwaIiieUVNYmFxTvFXVvdsyQyWRo2LChyjp3uVyOxMRENGvWTGBCcerWrSs6glYIDg7GyJEjsX//fshkMvz888/5PqCRyWSS7HRfv34939ll1tbWhabGCqeXE5Hk2Nvb4+LFi5Idwc0Ppz1SQQQEBGDUqFFq6y6lbObMmShZsiT69u2r0r5q1So8fvwYY8eOFZRMLN4r/wgICFD+r7+/P0xMTJTH9PX1YWdnhw4dOkBfX19URGFWr14NExMTdOzYUaV969atyMzM/OKKaRXE+5bASVm5cuWwZcsW1KxZE6ampoiKioKDgwN27tyJUaNGIT4+XnTEj2Knm4iI3rv+8vjx4+jcuTMeP34sKBmRdrOzs8OGDRvUpkyfP38eXbp04fRzUgoNDUXnzp0lOVvmfSpWrIhly5ahfv36Ku3h4eEYOHAgbt26JSiZOHfv3oWNjQ23Nn3LqFGjcP78eWzduhUVK1bElStX8PDhQ/j6+sLX11dlhxptxU43EUmOn58fHB0d4efnp9IeFBSEO3fufHF7Q36IpaUlZDIZnj9/DjMzM5U3eblcjoyMDAwaNAhLliwRmJK0ybZt27BlyxYkJyerFR2U4vZyBgYGiImJUasHkZCQAFdXV7x8+VJQMvF4r9DHGBgYIDY2FnZ2dirtSUlJcHFxQVZWlphggqWlpSEkJAQxMTEAAFdXV/Tr10+ya/+zs7MxdOhQrFmzBnK5HEWKFIFcLke3bt2wZs2aQlFnRb3kJhHRF2779u2oVauWWnvNmjULRQXMT2nhwoWYP38+FAoFAgICsGDBAuV/wcHBiIiIYIeblBYtWoQ+ffqgZMmSuHr1KqpVq4bixYsjISEBzZs3Fx1PiPLlyyMyMlKtPTIyEmXKlBGQSDvwXlEnl8sxd+5cVKtWDaVKlUKxYsVU/pMia2trREdHq7VHRUWpbespFZcuXUKFChWwYMECpKamIjU1FQsWLECFChUk+7BKX18fK1asQHx8PPbt24f169cjNjYW69atKxQdboCF1IhIgp4+fZrv02IzM7NCU5DjU3mzXs7e3h61atVSKfAjdSNHjsy3XSaTwcDAAI6OjmjTpo2kPiz/9ttvWL58Obp27Yo1a9ZgzJgxcHBwwKRJk5Camio6nhADBgzAjz/+iNevX6NBgwYAgLCwMIwZMwb+/v6C04nDe0VdQEAAVq5cCX9/f/z888+YMGECkpKSsGvXLskWq+zatSv8/PxgamqKb775BkDe1PLhw4ejS5cugtOJMWLECLRu3RorVqxQvifn5OSgf//++PHHH3Hq1CnBCcWxsbGBjY2N6Bj/jYKISGIqV66sWLx4sVr7okWLFC4uLgISiaejo6N4+PChWvuTJ08UOjo6AhKJV69ePYWZmZnC2NhY4e3trfD29laYmJgozM3NFV9//bXCwsJCYWlpqbh586boqBpjaGioSEpKUigUCoWVlZXi2rVrCoVCoYiLi1MUK1ZMZDRhcnNzFWPGjFEYGBgodHR0FDo6OgojIyNFQECA6GhC8V5R5+DgoNi3b59CoVAoTExMFHfu3FEoFArFr7/+qujatavIaMK8evVK0alTJ4VMJlPo6ekp9PT0FLq6uoo+ffooXr16JTqeEAYGBoqYmBi19ps3byoMDQ0FJBIrIyNDMXHiREXlypUVxsbGChMTE4W7u7siICBA8eLFC9HxCoxDGkQkOSNHjsQPP/yAx48fq4xMzZs3T1Lrud+meE95j1evXkmyoi4A5Sj26tWrlfulPn/+HP3790ft2rUxYMAAdOvWDSNGjMDhw4cFp9WMUqVKITU1Fba2trCxscG5c+dQpUoVJCYmvvce+pLJ5XJERkZi3LhxmDhxImJiYmBoaAgnJyeV/amliPeKugcPHsDd3R0AYGJigufPnwMAvv32W0ycOFFkNCEUCgUePHiANWvWYNq0abh27RoMDQ3h7u4u6a34zMzMkJycjEqVKqm0p6SkqOxRLQXZ2dmoW7cubty4gebNm6NVq1ZQKBSIiYnB9OnTcfDgQZw6dQp6enqio34UO91EJDl9+/bFq1evMH36dEydOhVAXgXipUuXSm7/y0WLFgHImzK9cuVKla1s5HI5Tp06pfbGLxW//PILjh49quxwA3l7EE+ZMgVNmjTB8OHDMWnSJDRp0kRgSs1q0KAB9uzZAy8vL/Tp0wcjRozAtm3bcOnSJbRv3150PI3T1dVFkyZNlIXUvvrqK9GRtAbvFXXlypXD/fv3YWNjgwoVKuDIkSPw9vbGxYsXJfmQRqFQwNHRETdv3oSTkxOcnJxER9IKnTt3Rr9+/TB37lzlrgiRkZEYPXo0unbtKjidZi1duhT37t1DVFQUnJ2dVY7FxsaiXr16CA4OxrBhwwQlLDhWLyciSXv8+DEMDQ1VOptS8qbi8t27d1GuXDmVgiRv9o8NDAzE119/LSqiMCYmJti3bx/q1aun0n7y5Em0atUKf//9NxISEuDp6Yn09HQxITUsNzcXubm5ynWGmzZtwpkzZ+Dk5ITvv/9ekrMifHx8MHv2bDRs2FB0FK3Ce0XduHHjYGZmhp9++gmbN29Gjx49YGdnh+TkZIwYMQKzZs0SHVHjKleujJCQEFSvXl10FK2RnZ2N0aNHIzg4GDk5OQAAPT09DB48GLNmzZLUA5q6deuiU6dOGDp0aL7HFy9ejG3btiE8PFzDyf49drqJSJJycnJw8uRJxMfHo1u3bjA1NcVff/0FMzMzSXbA69evjx07dsDS0lJ0FK3RvXt3nD17FvPmzVOOYF68eBGjRo1CzZo1sW7dOmzatAlz587FpUuXBKclUQ4dOoTx48dj6tSpqFq1KoyNjVWOvz1TQipycnIwY8YM9O3bF+XKlRMdR2udO3dO+SCiVatWouMIsXfvXsyZMwdLly6Fm5ub6DhaJTMzE/Hx8QCAChUqwMjISHAizbOyssLJkydRuXLlfI/fuHED9evXx+PHjzWc7N9jp5uIJOfu3bto1qwZkpOT8erVK8TFxcHBwQHDhw/Hq1evEBwcLDoiaYGMjAyMGDECa9euVY42FClSBL169cKCBQtgbGyMa9euAQA8PT3FBdWwly9fIjo6Go8ePUJubq7KsdatWwtKJY6Ozj+7r769z71CoYBMJoNcLhcRSzgTExPcuHFDbf9lordZWloiMzMTOTk50NfXh6GhocpxqVa6f+PevXsAINmHV3p6ekhJSUGpUqXyPX7//n3Y2toiOztbw8n+Pa7pJiLJGT58OHx8fNT2AW3Xrh0GDBggMJlY9+7dw549e5CcnKz2BjZ//nxBqcQxMTHBihUrsGDBAiQkJAAAHBwcVGZCSKmzDeSN6vr6+ua7tZ5UO5gnTpwQHUErNWzYEOHh4ex0v2XmzJkoWbIk+vbtq9K+atUqPH78GGPHjhWUTBypFi/9kNzcXEybNg3z5s1DRkYGAMDU1BT+/v6YMGGCyoO+L11ubu4H9+HW0dEpNO87HOkmIskpXrw4zpw5A2dnZ5iamiIqKgoODg5ISkqCq6srMjMzRUfUuLCwMLRu3RoODg6IjY2Fm5sbkpKSoFAo4O3tjePHj4uOSFrAyckJTZo0waRJk1CyZEnRcUiLBQcHIyAgAN27d8932r0UZ0XY2dlhw4YNyuJYb5w/fx5dunRBYmKioGSkTcaPH4+QkBAEBASgVq1aAICIiAhMmTIFAwYMwPTp0wUn1BwdHR24ubkpa0O8KycnBzdv3iwUHW92uolIciwtLREZGQlXV1eVTndERAQ6dOiAhw8fio6ocdWqVUPz5s0REBCgvCbW1tbo3r07mjVrhsGDB4uOqHEvXrzArFmzEBYWlu9U6jej31JiZmaGq1evokKFCqKjCBUdHQ03Nzfo6OggOjr6g+d6eHhoKJV2+dBonFRnRRgYGCgr3b8tISEBrq6uePnypaBkmpWenq6sdfCxIpRSrIlQpkwZBAcHqz2Y2r17N4YMGYI///xTUDLNCwgIKNB5kydP/sxJ/necXk5EktOkSRMsXLgQy5cvB5D3ATAjIwOTJ09GixYtBKcTIyYmBhs3bgSQt245KysLJiYmCAwMRJs2bSTZ6e7fvz/Cw8PRs2dPlC5dWmW9rlR99913OHnypOQ73Z6ennjw4AGsra3h6ekJmUyW797TUu1cAlB7SEVA+fLlERkZqdbpjoyMRJkyZQSl0jxLS0vcv38f1tbWsLCwyPe1Vco1EVJTU/PdqrNSpUqSW+NeGDrTBcVONxFJzrx589C0aVPlyEK3bt1w+/ZtlChRQtnxlBpjY2PlOu7SpUsjPj5eWS00v/W7UnDw4EHs379fOb2PgKCgIHTs2BGnT5+Gu7s79PT0VI77+fkJSqZZiYmJsLKyUn5NH/by5UsYGBiIjiHcgAED8OOPP+L169do0KABgLylPWPGjIG/v7/gdJpz/PhxFCtWDABrIuSnSpUqCAoKwqJFi1Tag4KCUKVKFUGp6H/F6eVEJEk5OTnYtGkToqOjkZGRAW9vb3Tv3l2tcqpUtG3bFi1btsSAAQMwatQo7N69G71791ZuI3bs2DHRETXO3t4eBw4cgIuLi+goWiMkJASDBg2CgYEBihcvrjJCJZPJJDnlnvInl8sxY8YMBAcH4+HDh8pdIiZOnAg7Ozv069dPdESNUygUGDduHBYtWqR8yGlgYICxY8di0qRJgtORtggPD0fLli1hY2ODGjVqAADOnj2LlJQUHDhwAHXq1BGckP4LdrqJiAgJCQnIyMiAh4cHXrx4AX9/f+X+sfPnz4etra3oiBq3fv167N69G6GhoZLcHzU/pUqVgp+fH8aNGyepCroF8ccff+Rb+V+KBcMAIDAwEKGhoQgMDMSAAQNw48YNODg4YPPmzVi4cCHOnj0rOqIwGRkZiImJgaGhIZycnFC0aFHRkYTLzMzM9/dHqjUR/vrrLyxZsgSxsbEAABcXFwwZMkRSyxC+NOx0E5Ek7NmzB82bN4eenh727NnzwXNNTExQqVIlvrlJnJeXF+Lj46FQKGBnZ6c2lfrKlSuCkolTrFgxXLx4UfJrut+WkJCAdu3a4fr16ypru9/MApDimlQAcHR0xLJly9CwYUOVgpWxsbGoUaMGnj17JjoiaYHHjx+jT58+OHjwYL7Hpfr7Q18erukmIklo27atsvBR27ZtP3q+rq4u5syZgxEjRnz+cKSVCnKfSE2vXr2wefNm/PTTT6KjaI3hw4fD3t4eYWFhsLe3x4ULF/D06VP4+/tj7ty5ouMJ8+eff8LR0VGtPTc3F69fvxaQSIz27dtjzZo1MDMzQ/v27T947o4dOzSUSnv8+OOPSEtLw/nz51GvXj3s3LkTDx8+VO5TLVXPnj1DSEgIYmJiAACurq7o06ePci28lBXWGhHsdBORJLxdSfdjVXWzs7OxYcMGjB8/np1uCfuSqqZ+KnK5HHPmzMHhw4fh4eGhNvo/f/58QcnEOXv2LI4fP44SJUpAR0cHOjo6qF27NmbOnAk/Pz9cvXpVdEQhXF1dcfr0abWlKdu2bYOXl5egVJpnbm6unPVgZmbGXRDecfz4cezevRs+Pj7Q0dGBra0tGjduDDMzM8ycORMtW7YUHVHjTp06hVatWsHc3Bw+Pj4AgEWLFiEwMBB79+7FN998Izih5uXm5mL69OmFukYEO91ERO/Q19dHhw4dPrr/LpHUXL9+XdlhunHjhsoxqXYm5HI5TE1NAQAlSpTAX3/9BWdnZ9ja2uLWrVuC04kzadIk9OrVC3/++Sdyc3OxY8cO3Lp1C2vXrsW+fftEx9OYdu3aKUfl1qxZIzaMFnrx4gWsra0B5G0l9vjxY1SsWBHu7u6SXMIDAEOHDkXnzp2xdOlS6OrqAsh7nRkyZAiGDh2K69evC06oedOmTUNoaCjmzJmDAQMGKNvd3NywcOHCQtHp5ppuIpKk27dv48SJE3j06JHayDeryEpXsWLFEBcXhxIlSsDS0vKDHUmp7Zcql8sRGRkJd3d3WFpaio6jNerUqQN/f3+0bdsW3bp1w7Nnz/Dzzz9j+fLluHz5strDCSk5ffo0AgMDERUVpdwlYtKkSWjSpInoaBqjq6uLBw8ewMrKCrq6usr9qSnPV199hWnTpqFp06Zo3bo1LCwsMHPmTCxatAjbtm1DfHy86IgaZ2hoiGvXrsHZ2Vml/datW/D09ERWVpagZOJ8CTUiONJNRJKzYsUKDB48GCVKlECpUqXUtj2Seqf73UJQUrJgwQLlqOXChQvFhtEyurq6aNKkCWJiYtjpfsvPP/+MFy9eAMir2P3tt9+iTp06KF68ODZv3iw4nVh16tTB0aNHRccQysrKCufOnUOrVq2gUCgk+br6IcOHD8f9+/cB5C3padasGX7//Xfo6+tLdmaAt7c3YmJi1DrdMTExkt2n+0uoEcGRbiKSHFtbWwwZMgRjx44VHUWrrF27Fr/88gtu374NAKhYsSJGjx6Nnj17Ck5G2sLHxwezZ89Gw4YNRUfRaqmpqR+dKfGlc3BwwMWLF1G8eHGV9rS0NHh7e0tmT/cpU6YgMDCwQPcCK3XnbR0WGxsLGxsblChRQnQcITZv3owxY8Zg2LBhqF69OgDg3LlzWLJkCWbNmgUXFxfluVLZUq1q1aoYMWIEevTooTLSHRgYiKNHj+L06dOiI34UO91EJDlmZma4du0aHBwcREfRGvPnz8fEiRPxww8/oFatWgCAiIgILFmyBNOmTZNMQbn09PQCn2tmZvYZk2inQ4cOYfz48Zg6dSqqVq0KY2NjleNSvCaUPx0dHeWOEW97+PAhbGxs8OrVK0HJNC82NhZ37txB69atsXr1alhYWOR7Xps2bTQbjLSSjo7OB4+/2ZpQJpNJ5kHN7t270atXL4wfPx6BgYEICAhQqRHRuHFj0RE/ip1uIpKcfv364auvvsKgQYNER9Ea9vb2CAgIgK+vr0p7aGgopkyZgsTEREHJNEtHR6fAo5NS+bDztrc/DL59naT2AZDeb8+ePQDyttwLDQ2Fubm58phcLkdYWBiOHj0qySJzAQEBGD16NIyMjERHIS129+7dAp/77u4AX7LCXiOCnW4ikpyZM2di/vz5aNmyJdzd3dW2PfLz8xOUTBwDAwPcuHFDbc3U7du34e7ujpcvXwpKplnh4eHKr5OSkjBu3Dj07t0bNWrUAJC3PVRoaChmzpyJXr16iYopzNvXJz9169bVUBLSVm8ezLwZjXubnp4e7OzsMG/ePHz77bci4hERCcFONxFJjr29/XuPyWQyyaw1fJubmxu6deuGn376SaV92rRp2Lx5syS3KGnYsCH69++Prl27qrRv2LABy5cvx8mTJ8UEIyoE7O3tcfHiRcmuy33D29sbYWFhsLS0hJeX1wdn0kh1iyxSFRoaihIlSij3KB8zZgyWL18OV1dXbNy4UVKj218SVi8nIsmRylTpfyMgIACdO3fGqVOnlGu6IyMjERYWhi1btghOJ8bZs2cRHBys1u7j44P+/fsLSKQd0tLSEBISgpiYGABA5cqV0bdvX5VpxER8nc3Tpk0bFC1aFEDelHuij5kxYwaWLl0KIO99KCgoCAsXLsS+ffswYsQI7NixQ3BCzXtfYUqZTAYDAwM4Ojqid+/e6NOnj4B0BcORbiIiAgBcvnwZCxYsUHamXFxc4O/vDy8vL8HJxHB2dkabNm0wZ84clfYxY8Zg9+7dklyTeunSJTRt2hSGhoaoVq0aAODixYvIysrCkSNH4O3tLTih5r1Zw/yutz8Mfmh2zZdk0aJFBT5Xist4KH+nT5/GsmXLEB8fj23btqFs2bJYt24d7O3tUbt2bdHxNM7IyEhZwX3s2LG4f/8+1q5di5s3b6JevXp4/Pix6Igat2DBAkyfPh3NmzdXvvdcuHABhw4dwogRI5CYmIh169Zh8eLFGDBggOC0+WOnm4gkYeTIkZg6dSqMjY0xcuTID547f/58DaUibXbgwAF06NABjo6O+PrrrwHkvcnfvn0b27dvR4sWLQQn1Lw6derA0dERK1asQJEieZPlcnJy0L9/fyQkJODUqVOCE2rem+J7736cervCcO3atbFr164vfn/zgj5ckOoyHlK3fft29OzZE927d8e6devwxx9/wMHBAUFBQThw4AAOHDggOqLGWVtb4/Dhw/Dy8oKXlxdGjhyJnj17Ij4+HlWqVEFGRoboiBrXoUMHNG7cWK0A7rJly3DkyBFs374dixcvxvLly7V2ORw73UQkCfXr18fOnTthYWGB+vXrv/c8mUyG48ePazAZabN79+7ht99+Q2xsLIC80f9BgwahfPnygpOJYWhoiKtXr6JSpUoq7X/88Qd8fHyQmZkpKJk4YWFhmDBhAqZPn64yAjNx4kT8/PPPMDc3x/fff4+vv/4aISEhgtOSpv2b/dpTU1M/cxrt4+XlhREjRsDX11dl/+WrV6+iefPmePDggeiIGte9e3fExsbCy8sLGzduRHJyMooXL449e/bgp59+wo0bN0RH1DgTExNcu3ZNrdjrnTt34OnpiYyMDMTHx8PDwwMvXrwQlPLDuKabiCThxIkT+X4tdQXZIksmkyEnJ0dDibRLuXLlMGPGDNExtIaZmRmSk5PVOt0pKSkwNTUVlEqs4cOHY/ny5ahZs6ayrWHDhjAwMMDAgQNx8+ZNLFy4EH379hWYkkRZuHCh8uunT59i2rRpaNq0qcqOCIcPH8bEiRMFJRTr1q1b+Oabb9Tazc3NkZaWpvlAWmDJkiX4+eefkZKSgu3bt6N48eIA8paAvVvYUyqKFSuGvXv3YsSIESrte/fuRbFixQAAL1680Or3IXa6iYgkbOfOne89dvbsWSxatAi5ubkaTKRd0tLScOHCBTx69EjtOry7p7kUdO7cGf369cPcuXOVnczIyEiMHj1ash8G4+PjYWZmptZuZmamnELt5OSEJ0+eaDqacPfu3cOePXuQnJyM7OxslWNSWcbz9taCHTp0QGBgIH744Qdlm5+fH4KCgnDs2DG1DoUUlCpVCnfu3IGdnZ1Ke0REBBwcHMSEEszCwgJBQUFq7QEBAQLSaIeJEydi8ODBOHHihEo9kQMHDigLnh49elSrt63k9HIiIlJx69YtjBs3Dnv37kX37t0RGBgoyS1K3vz7MzIyYGZmpjIjQCaTSXIqaHZ2NkaPHo3g4GDl7Ac9PT0MHjwYs2bNUlZplpLatWvD1NQUa9euhZWVFQDg8ePH8PX1xYsXL3Dq1CkcO3YMQ4cOlVTxvbCwMLRu3RoODg6IjY2Fm5sbkpKSoFAo4O3tLcllPAWZIis1M2fOxPr167Fq1So0btwYBw4cwN27dzFixAhMnDgRw4YNEx2RtERkZCSCgoKUr6POzs4YNmyYyiwjbcZONxERAQD++usvTJ48GaGhoWjatClmzpwJNzc30bGEqVixIlq0aIEZM2bAyMhIdBxhoqOj4ebmBh0dHWVbZmYm4uPjAQAVKlSQ9PW5desW2rRpg8TEROVa/5SUFDg4OGD37t2oWLEidu3ahb///hs9e/YUnFZzqlWrhubNmyMgIEC5Vtfa2hrdu3dHs2bNMHjwYNERNc7W1hZ+fn7w9/dXaZ83bx4WLVqEu3fvCkomjkKhwIwZMzBz5kxlTYiiRYti1KhRmDp1quB0RJ8OO91ERBL3/PlzzJgxA4sXL4anpydmz56NOnXqiI4lnLGxMa5fvy7ZKY5v6Orq4v79+7C2toaDgwMuXryoXGNIeXJzc3HkyBHExcUByBuBady4scqDCqkxNTXFtWvXUKFCBVhaWiIiIgKVK1dGVFQU2rRpg6SkJNERNW7NmjXo378/mjdvrtwR4fz58zh06BBWrFiB3r17iw0oUHZ2Nu7cuYOMjAy4urrCxMREdCTSUi9fvlRbrpLfEh9twzXdRCQ5p06dQs2aNZVbHr2Rk5ODM2fO5FvU5Us1Z84czJ49G6VKlcLGjRvRpk0b0ZG0RtOmTXHp0iXJd7otLCyQmJgIa2trJCUlSXqN//vo6OigWbNmaNasmegoWsPY2Fj5wbh06dKIj49H5cqVAUCS69sBoHfv3nBxccGiRYuwY8cOAHk7IkRERCg74VKzfv16tG/fHkZGRnB1dRUdh7RUZmYmxowZgy1btuDp06dqx+VyuYBU/w5HuolIct4euXvb06dPYW1tXShevD8VHR0dGBoaolGjRtDV1X3veW8+IEpJSEgIAgMD0adPH7i7u0NPT0/leOvWrQUl06yBAwdi7dq1KF26NJKTk1GuXLn33itS3Xs5LCwMYWFh+RbcW7VqlaBUYrVt2xYtW7bEgAEDMGrUKOzevRu9e/fGjh07YGlpiWPHjomOSFrAysoKWVlZaN26NXr06IGmTZt+8L1ICho0aIAdO3bAwsJCpT09PR1t27aVZD2EoUOH4sSJE5g6dSp69uyJJUuW4M8//8SyZcswa9YsdO/eXXTEj2Knm4gkR0dHBw8fPlQWPXojLi4OPj4+SE9PF5RM83r37l2gPWRXr16tgTTa5UNTg2UymaQezhw6dAh37tyBn58fAgMD37sty/DhwzWcTLyAgAAEBgbCx8cHpUuXVvt9+tAOAV+yhIQEZGRkKPfN9ff3x5kzZ+Dk5IT58+dLsjgjkDcit2vXLsTExAAAKleujNatW0u2o5mTk4NDhw5h48aN2L17N4yMjNCxY0d079690BTI+tR0dHTw4MEDtYGBR48eoWzZsnj9+rWgZOLY2Nhg7dq1qFevHszMzHDlyhU4Ojpi3bp12LhxIw4cOCA64kex001EktG+fXsAwO7du9GsWTOVSstyuRzR0dFwdnbGoUOHREUk0mp9+vTBokWLtHovVE0rXbo05syZI6kiafTf3LlzBy1btsS9e/fg7OwMIK8QX/ny5bF//35UqFBBcEKxMjMzsXPnTmzYsAHHjh1DuXLllAUbpSA6OhoA4OnpiePHjyv3nwbyPqMcOnQIy5Ytk2Q9BBMTE/zxxx+wsbFBuXLlsGPHDlSrVg2JiYlwd3cvFJX/uaabiCTD3NwcQF61VFNTUxgaGiqP6evro3r16hgwYICoeERaT4ozHj4mOztbsiNy9O/4+fnBwcEBZ8+eVXaonj59ih49esDPzw/79+8XnFAsIyMjNG3aFM+ePcPdu3eVswGkwtPTEzKZDDKZDA0aNFA7bmhoiMWLFwtIJp6DgwMSExNhY2ODSpUqYcuWLahWrRr27t2rNg1fW3Gkm4gkJyAgAKNGjYKxsbHoKKTlXrx4gfDwcCQnJ6tVS/Xz8xOUSpwXL15g1qxZ712/LMU13WPHjoWJiQkmTpwoOgppOWNjY5w7dw7u7u4q7VFRUahVq1ahGK37HN6McP/+++8ICwtD+fLl0bVrV3Tv3h2VKlUSHU8j0tPTkZqaCiCvg3nhwgWVJXD6+vqwtraW7DKEBQsWQFdXF35+fjh27BhatWoFhUKB169fY/78+YViaRNHuolIcsaMGYO3nzfevXsXO3fuhKurK5o0aSIwGWmTq1evokWLFsjMzMSLFy9QrFgxPHnyBEZGRrC2tpZkp7t///4IDw9Hz549812/LEUvX77E8uXLcezYMXh4eKgV3Js/f76gZKRtihYtir///lutPSMjA/r6+gISidelSxfs27cPRkZG6NSpEyZOnIgaNWqIjqVxlpaWygKvdevWhaOjY6EZwdWEESNGKL9u1KgRYmNjcfnyZTg6OsLDw0NgsoJjp5uIJKdNmzZo3749Bg0ahLS0NFSrVg36+vp48uQJ5s+fj8GDB4uOSFpgxIgRaNWqFYKDg2Fubo5z585BT08PPXr0KBRP1T+HgwcPYv/+/ahVq5boKFojOjoanp6eAIAbN26oHONDCXrbt99+i4EDByIkJATVqlUDkLdP96BBgySzG8K7dHV1sWXLFslXLTcxMVHuoHLq1ClJFkv7N2xtbWFubl6oHkxwejkRSU6JEiUQHh6OypUrY+XKlVi8eDGuXr2K7du3Y9KkSZJbR0b5s7CwwPnz5+Hs7AwLCwucPXsWLi4uOH/+PHr16oXY2FjRETXO3t4eBw4cgIuLi+goVEhkZ2cjMTERFSpUQJEi0h7rSUtLQ69evbB3717ljIicnBy0bt0aa9asUdYdIenp0KEDIiMj4eLigvDwcNSsWfO9sx+kuGXY7NmzYWdnh86dOwMAOnXqhO3bt6NUqVI4cOAAqlSpIjjhx0n71Y+IJCkzM1NZffnIkSNo3749dHR0UL16ddy9e1dwOtIWenp6ym3DrK2tkZycDBcXF5ibmyMlJUVwOjGmTp2KSZMmITQ0FEZGRqLjkBbLzMzEsGHDEBoaCiBvS0YHBwcMGzYMZcuWxbhx4wQn1DwLCwvs3r0bt2/fVj60c3FxgaOjo+BkmrVo0SIMHDgQBgYGWLRo0QfPlcoynvXr1yM0NBTx8fHKQQG+xv4jODgYv//+OwDg6NGjOHr0KA4ePIgtW7Zg9OjROHLkiOCEH8eRbiKSHA8PD/Tv3x/t2rWDm5sbDh06hBo1auDy5cto2bIlHjx4IDoiaYEmTZqgd+/e6NatGwYMGIDo6Gj4+flh3bp1ePbsGc6fPy86osZ5eXkhPj4eCoUCdnZ2auuXr1y5IiiZZrVv3x5r1qyBmZmZcivC99mxY4eGUmmX4cOHIzIyEgsXLkSzZs0QHR0NBwcH7N69G1OmTMHVq1dFRyRB7O3tcenSJRQvXhz29vbvPU8mk0myOGP9+vWxc+fOQjV1+nMzNDREXFwcypcvj+HDh+Ply5dYtmwZ4uLi8PXXX+PZs2eiI34UR7qJSHImTZqEbt26YcSIEWjQoIGyaMuRI0fg5eUlOB1pixkzZiiLHk2fPh2+vr4YPHgwnJycEBISIjidGG3bthUdQSuYm5sr12tzSnD+du3ahc2bN6N69eoqa9srV64sqb2X36ZQKLBt2zacOHEi3+r/UnlAk5iYmO/XlOfEiROiI2gdS0tLpKSkoHz58jh06BCmTZsGIO93Si6XC05XMBzpJiJJevDgAe7fv48qVaoopxBfuHABZmZmktmihIjoczEyMsKNGzfg4OAAU1NTREVFwcHBAVFRUfjmm2/w/Plz0RE1bvjw4Vi2bBnq16+PkiVLqhXaW716taBk2kMul+P69euwtbWFpaWl6DjC3Lt3D3v27Ml3u0op7ojwww8/YN++fXBycsLVq1eRlJQEExMTbNq0CXPmzCkUs6w40k1EklSqVCmUKlUK9+7dAwCUK1dOWU2WCAAaNGiAHTt2qE3xS09PR9u2bSVZzIbe79GjR7h16xYAwNnZGdbW1oITieXj44P9+/dj2LBhAP6p5L5y5UpJbgkFAOvWrcOOHTvQokUL0VG0xo8//gh3d3f069cPcrkc33zzDc6ePQsjIyPs27cP9erVEx1R48LCwtC6dWs4ODggNjYWbm5uSEpKgkKhgLe3t+h4QixYsAB2dnZISUnBnDlzYGJiAgC4f/8+hgwZIjhdwXCkm4gkJzc3F9OmTcO8efOQkZEBADA1NYW/vz8mTJigHPkmadPR0cGDBw/UOk+PHj1C2bJlJbOlS7FixRAXF4cSJUrA0tLyg9tgpaamajCZdkhPT8fQoUOxadMm5TRHXV1ddO7cGUuWLJHs9POIiAg0b94cPXr0wJo1a/D999/jjz/+wJkzZxAeHo6qVauKjqhx9vb2OHjwIGdTvaVcuXLYtWsXfHx8sGvXLgwdOhQnTpzAunXrcPz4cURGRoqOqHHVqlVD8+bNERAQoJwlYm1tje7du6NZs2bc1rSQ4kg3EUnOhAkTEBISglmzZin3G46IiMCUKVPw8uVLTJ8+XXBCEik6Olr59R9//KFSWE8ul+PQoUMoW7asiGhCLFiwQFntf+HChWLDaKEBAwbg6tWr2Ldvn3IE9+zZsxg+fDi+//57bNq0SXBCMWrXro1r165h1qxZcHd3x5EjR+Dt7Y2zZ8/C3d1ddDwhpkyZgoCAAKxatQqGhoai42iFJ0+eoFSpUgCAAwcOoGPHjqhYsSL69u2LX3/9VXA6MWJiYrBx40YAQJEiRZCVlQUTExMEBgaiTZs2kux0h4aGokSJEmjZsiUAYMyYMVi+fDlcXV2xceNG2NraCk74cRzpJiLJKVOmDIKDg9G6dWuV9t27d2PIkCH4888/BSUjbaCjo6Mczc3vLdLQ0BCLFy9G3759NR2NtJCxsTEOHz6M2rVrq7SfPn0azZo1w4sXLwQlI22TlZWFdu3aITIyUtLV/99ma2uLFStWoGHDhrC3t8fSpUvRsmVL3Lx5E7Vr1y4UVak/tVKlSuHEiRNwcXGBq6srZs2ahdatWyMqKgq1atVSztCTEmdnZyxduhQNGjTA2bNn0ahRIyxYsAD79u1DkSJFCkURQo50E5HkpKam5ju9r1KlSpKcHkuqEhMToVAo4ODggAsXLsDKykp5TF9fH9bW1tDV1RWYkLRJ8eLF851Cbm5uLrlCUOnp6QU+18zM7DMm0U69evXC5cuX0aNHj3wLqUlRnz590KlTJ5QuXRoymQyNGjUCAJw/f16y0/CrV6+OiIgIuLi4oEWLFvD398f169exY8cOVK9eXXQ8IVJSUpT72e/atQsdOnTAwIEDUatWrUKz7p+dbiKSnCpVqiAoKAiLFi1SaQ8KCkKVKlUEpSJt8Waa2rvb+RDl5+eff8bIkSOxbt065TTZBw8eYPTo0Zg4caLgdJplYWFR4I5kYdnm51Pav39/vrMipGzKlClwc3NDSkoKOnbsiKJFiwLIq4swbtw4wenEmD9/vnI0OyAgABkZGdi8eTOcnJwkWbkcAExMTPD06VPY2NjgyJEjGDlyJADAwMAAWVlZgtMVDKeXE5HkhIeHo2XLlrCxsVFZg5mSkoIDBw6gTp06ghOSNvgS1pDR5+fl5YU7d+7g1atXsLGxAQAkJyejaNGicHJyUjn3S58+HB4ervw6KSkJ48aNQ+/evVVeZ0NDQzFz5kz06tVLVExhKlWqhC1btsDDw0N0FNJScrkckZGR8PDwUNs5Q8q6d++O2NhYeHl5YePGjUhOTkbx4sWxZ88e/PTTT7hx44boiB/FTjcRSdJff/2FJUuWIDY2FgDg4uKCIUOGoEyZMoKTkbZ4dw1Zw4YNsXDhwkK1how+v4CAgAKfO3ny5M+YRLs0bNgQ/fv3R9euXVXaN2zYgOXLl+PkyZNiggm0f/9+LF68GMHBwbCzsxMdR2uEhYUhLCwMjx49UpthtGrVKkGpxDEwMEBMTAzs7e1FR9EaaWlp+Pnnn5GSkoLBgwejWbNmAPJeU/X19TFhwgTBCT+OnW4iIqJ8GBkZITY2FjY2Nhg7dizu37+PtWvX4ubNm6hXrx4eP34sOqIwd+7cQXx8PL755hsYGhpCoVBwfSqpMDIyQlRUlNpof1xcHDw9PZGZmSkomTiWlpbIzMxETk4OjIyM1AqpSbGmSEBAAAIDA+Hj46Nc1/22nTt3Ckomjo+PD2bPno2GDRuKjkKfENd0E5EkpaWl4cKFC/k+Wff19RWUirTJl7CG7FN7+vQpOnfujOPHj0Mmk+H27dtwcHBAv379YGlpiXnz5omOKFRGRoba64kUC4YBQPny5bFixQrMmTNHpX3lypUoX768oFRiccs9dcHBwVizZg169uwpOorWmDZtGkaNGoWpU6eiatWqMDY2Vjku1deU06dPY9myZUhISMDWrVtRtmxZrFu3Dvb29oWiTgI73UQkOXv37kX37t2RkZEBMzMzlSfrMpmMnW4CADRu3Bj9+/eHl5cX4uLi0KJFCwDAzZs3JTs1dMSIEShSpAiSk5Ph4uKibO/cuTNGjhwpyU53YmIifvjhB5w8eRIvX75Utr8Z/ZdiwTAgb3/3Dh064ODBg/j6668BABcuXMDt27exfft2wenEkOI69o/Jzs5GzZo1RcfQKm/ea1q3bq3y+UTKrynbt29Hz5490b17d1y5cgWvXr0CADx//hwzZszAgQMHBCf8OE4vJyLJqVixIlq0aIEZM2bAyMhIdBzSUl/CGrJPrVSpUjh8+DCqVKkCU1NTREVFwcHBAQkJCfDw8JDk/rG1atWCQqHA8OHD890Gqm7duoKSiXfv3j389ttvKrUzBg0aJNmRblI3duxYmJiYSK7S/4e8XZAwP1J8TfHy8sKIESPg6+ur8t5z9epVNG/eHA8ePBAd8aPY6SYiyTE2Nsb169fh4OAgOgpRoWJqaoorV67AyclJ5YPPpUuX0LRpUzx9+lR0RI0zMTHB5cuX4ezsLDoKUaEzfPhwrF27Fh4eHvDw8FBb5y7VLbJIlZGREf744w/Y2dmpPfB1dXVVmWWkrTi9nIgkp2nTprh06RI73UT/Up06dbB27VpMnToVQN5yjNzcXMyZMwf169cXnE6Mr776CikpKex05yMtLQ0hISGIiYkBAFSuXBl9+/aFubm54GSkLaKjo+Hp6QkAats+SbU44+rVq2FiYoKOHTuqtG/duhWZmZmSXKZQqlQp3LlzR21pV0RERKH5LMeRbiKShD179ii/fvz4MQIDA9GnTx+4u7urPVlv3bq1puMRFQo3btxAw4YN4e3tjePHj6N169a4efMmUlNTERkZiQoVKoiOqHHx8fEYNGgQevToATc3N7XXE6nuyfxm9oOhoSGqVasGALh48SKysrJw5MgReHt7C05IpJ0qVqyIZcuWqT3IDA8Px8CBA3Hr1i1BycSZOXMm1q9fj1WrVqFx48Y4cOAA7t69ixEjRmDixIkYNmyY6IgfxU43EUmCjo5Ogc6TapESooJ6/vw5goKCEBUVhYyMDHh7e2Po0KEoXbq06GhCnDt3Dt26dUNSUpKyTSaTSbroEZA3K8LR0RErVqxAkSJ5EytzcnLQv39/JCQk4NSpU4ITat7q1avRuXNn1hJ5j3v37gEAypUrJziJWAYGBoiNjVUb1U1KSoKLi4skd89QKBSYMWMGZs6cqdxusGjRosoq74UBO91ERERE/5GrqytcXFwwZsyYfAup2draCkomlqGhIa5evYpKlSqptP/xxx/w8fGR5D7dJUuWRFZWFjp27Ih+/fqxajeA3NxcTJs2DfPmzVMWYjQ1NYW/vz8mTJhQ4AfmXxIbGxsEBQWpzbrbvXs3hg4dqnw4IUXZ2dm4c+cOMjIy4OrqChMTE9GRCkx6dzIREVEBNGjQAGlpaWrt6enpaNCggeYDaYFDhw4hIiJC+eclS5bA09MT3bp1w7NnzwQmE+fu3buYPXs2vv76a9jZ2cHW1lblP6kyMzNDcnKyWntKSgpMTU0FJBLvzz//RGhoKJ48eYJ69eqhUqVKmD17dqGovPy5TJgwAUFBQZg1axauXr2Kq1evYsaMGVi8eLFkK5p37doVfn5+OHHiBORyOeRyOY4fP47hw4ejS5cuouMJpa+vD1dXV1SrVq1QdbgBjnQTkYRkZWUhLCwM3377LQBg/Pjxyr0eAUBXVxdTp06FgYGBqIikRXR0dPDgwQNYW1urtD969Ahly5bF69evBSUTx93dHbNnz0aLFi1w/fp1+Pj4wN/fHydOnEClSpWwevVq0RE1rlWrVujduzc6dOggOopW8fPzw86dOzF37lzliG5kZCRGjx6NDh06YOHChWIDCvbw4UOsX78eoaGhiI2NRbNmzdCvXz+0atVKUqO7ZcqUQXBwcL6jukOGDMGff/4pKJk42dnZ6NmzJ7Zu3apcmpGbmwtfX18EBwdDX19fcELN6du3b4HOW7Vq1WdO8r9j9XIikozQ0FDs379f2ekOCgpC5cqVYWhoCACIjY1FmTJlMGLECJExSbDo6Gjl13/88YfKKJRcLsehQ4dQtmxZEdGES0xMhKurKwBg+/btaNWqFWbMmIErV66gRYsWgtOJ0apVK4wYMQLXr19nYca3zJ07FzKZDL6+vsjJyQEA6OnpYfDgwZg1a5bgdOKVLFkStWvXRlxcHOLi4nD9+nX06tULlpaWWL16NerVqyc6okakpqaqLUEAgEqVKiE1NVVAIrEUCgUePHiANWvWYNq0abh27RoMDQ3h7u4uyZkza9asga2tLby8vFDYx4k50k1EklGnTh2MGTMGrVq1AgCVvR4BYP369ViyZAnOnj0rMiYJpqOjo1yXm99bpKGhIRYvXlzgJ/BfkmLFiiEiIgKurq6oXbs2fH19MXDgQCQlJcHV1VWS63Q/NCop5UJqb2RmZiI+Ph4AUKFCBckXEXv48CHWrVuH1atXIyEhAW3btkW/fv3QqFEjvHjxAoGBgdi0aRPu3r0rOqpGfP311/j666+xaNEilfZhw4bh4sWLOHfunKBkYuTm5sLAwAA3b96Ek5OT6DjCDR06FBs3boStrS369OmDHj16oFixYqJj/SfsdBORZJQuXRpnz55VVgS1srLCxYsXlX+Oi4vDV199hefPn4sLSUKlp6crR1ccHBxw4cIFWFlZKY/r6+vD2toaurq6oiIK1bp1a2RnZ6NWrVqYOnUqEhMTUbZsWRw5cgQ//PAD4uLiREckLfH8+XPI5XK1D8ipqakoUqQIzMzMBCUTp1WrVjh8+DAqVqyI/v37w9fXV+36PHr0CKVKlUJubq6glJoVHh6Oli1bwsbGBjVq1AAAnD17FikpKThw4ADq1KkjOKHmVa5cGSEhIahevbroKFrh1atX2LFjB1atWoUzZ86gZcuW6NevH5o0aVKo9nKXzqIRIpK8tLQ0lTXcjx8/VtmSIzc3V+U4SY+lpSWMjIxgZ2eHunXrwtHRUaUoVunSpSXb4QbylmQUKVIE27Ztw9KlS5XT7A8ePIhmzZoJTkfapEuXLti0aZNa+5YtWyRbDMra2hrh4eG4ceMGfvzxx3xH7KysrJCYmCggnRh169ZFXFwc2rVrh7S0NKSlpaF9+/a4deuWJDvcADBr1iyMHj0aN27cEB1FKxQtWhRdu3bF0aNH8ccff6By5coYMmQI7OzslBXvCwOu6SYiyShXrhxu3LgBZ2fnfI9HR0dLfn9QqTMxMcHTp09hbW2NU6dOSbJY2ofY2Nhg3759au0LFiwQkEY7BAYGfvD4pEmTNJREu5w/fx7z589Xa69Xrx4mTJggIJFYr1+/RlJSEkqUKPHB82QymeTW7pYpUwbTp08XHUNr+Pr6IjMzE1WqVIG+vr6y7swbUlzr/sab5V8KhaLQLd1hp5uIJKNFixaYNGkSWrZsqVahPCsrCwEBAWjZsqWgdKQNGjVqhPr168PFxQUKhQLt2rV7b6XY48ePazidGOnp6QU+V4pThnfu3Kny59evXyMxMRFFihRBhQoVJNvpfvXqlbKA2ttev36NrKwsAYnE0tPTUynSSP949uwZQkJCEBMTAwBwdXVFnz59Cu3a3f+V1Cv7v+vt6eURERH49ttvERQUhGbNmhWqSv9c001EkvHw4UN4enpCX18fP/zwAypWrAgAuHXrFoKCgpCTk4OrV6+iZMmSgpOSKFlZWQgNDUV8fDzmzZuHAQMGvLfwk1RGd98uLPc+CoWCRcPekp6ejt69e6Ndu3bo2bOn6DhC1K9fH25ubli8eLFK+9ChQxEdHY3Tp08LSibOiBEjULRoUVZvf8upU6fQqlUrmJubw8fHBwBw+fJlpKWlYe/evfjmm28EJySRhgwZgk2bNqF8+fLo27cvunfv/tHZItqKnW4ikpTExEQMHjwYR48eVVamlslkaNy4MX777TdlJXOi+vXrY+fOnbCwsBAdRajw8PACn1u3bt3PmKRwuX79Olq1aoWkpCTRUYSIjIxEo0aN8NVXX6Fhw4YAgLCwMFy8eBFHjhyR5HrdYcOGYe3atXByckLVqlVhbGyscjy/6fhfOnd3d9SoUQNLly5V1suQy+UYMmQIzpw5g+vXrwtOqBnp6enKmUIfm10kpRlFOjo6sLGxgZeX1wcf/u7YsUODqf4bdrqJSJJSU1Nx584dAICjo6Nkp7ER0ecRERGBVq1a4dmzZ6KjCHPt2jX88ssvyr2GPTw8MH78eMluhVS/fv33HpPJZJJZsvI2Q0NDXLt2Ta3Wyq1bt+Dp6SmZpQi6urq4f/8+rK2t3zu7SIozinr37l2gCuWrV6/WQJr/Ddd0E5EkFStWDNWqVRMdg7TcvXv3sGfPHiQnJyM7O1vlmBRHpd7IzMzM95p4eHgISiTOu/sLKxQK3L9/H+vWrUPz5s0FpdIOnp6e+P3330XH0BonTpwQHUHreHt7IyYmRq3THRMTgypVqghKpXnHjx9XPvznffKPNWvWiI7wyXCkm4iIKB9hYWFo3bo1HBwcEBsbCzc3NyQlJUGhUMDb21uSo1KPHz9Gnz59cPDgwXyPS2kE5g17e3uVP+vo6MDKygoNGjTA+PHjYWpqKigZabN79+4BgOR3zNi8eTPGjBmDYcOGKfelPnfuHJYsWYJZs2bBxcVFea4UH+q968aNG3BzcxMdg/4DdrqJiIjyUa1aNTRv3hwBAQEwNTVFVFQUrK2t0b17dzRr1gyDBw8WHVHjunfvjrt372LhwoWoV68edu7ciYcPH2LatGmYN28eq/8TfUBubq7yd+XN/sKmpqbw9/fHhAkTClUl5k/lY//mN9tDSW1a9dv+/vtvbNy4EStXrsTly5clex0KO04vJyIiykdMTAw2btwIAChSpAiysrJgYmKCwMBAtGnTRpKd7uPHj2P37t3w8fGBjo4ObG1t0bhxY5iZmWHmzJmS6nS3b9/+o+cUKVIEpUqVQuPGjdGqVSsNpCJtNmHCBISEhGDWrFmoVasWgLy1/1OmTMHLly8luVd1YmKi6Aha69SpUwgJCcH27dtRpkwZtG/fHkuWLBEdi/4jdrqJiIjyYWxsrFyzXLp0acTHx6Ny5coAgCdPnoiMJsyLFy9gbW0NALC0tMTjx49RsWJFuLu748qVK4LTaZa5uflHz8nNzcXt27excuVKjBo1CoGBgRpIRtoqNDQUK1euROvWrZVtHh4eKFu2LIYMGSLJTretra3oCFrlwYMHWLNmDUJCQpCeno5OnTrh1atX2LVrF1xdXUXHo/8BO91ERET5qF69OiIiIuDi4oIWLVrA398f169fx44dO5RrD6XG2dkZt27dgp2dHapUqYJly5bBzs4OwcHBKF26tOh4GvVvquXu27cPQ4YMkUyn+/Xr18qq1Fx/+o/U1FRUqlRJrb1SpUpITU0VkEi80NBQlChRQjlLZsyYMVi+fDlcXV2xceNGSXXKW7VqhVOnTqFly5ZYuHAhmjVrBl1dXQQHB4uORp+A9BaPEBERFcD8+fPx9ddfAwACAgLQsGFDbN68GXZ2dggJCRGcTozhw4fj/v37AIDJkyfj4MGDsLGxwaJFizBjxgzB6bRX7dq14ePjIzqGxujp6cHGxoZrT99RpUoVBAUFqbUHBQVJqlL322bMmAFDQ0MAwNmzZxEUFIQ5c+agRIkSGDFihOB0mnXw4EH069cPAQEBaNmypXLfcvoysJAaERHRO+RyOSIjI+Hh4QELCwvRcYRKT0+HmZlZvscyMzMRGxsLGxsblChRQsPJSJuFhIRgx44dWLdunXIrJKkLDw9Hy5YtYWNjgxo1agDI62impKTgwIEDqFOnjuCEmmdkZKR8DRk7dizu37+PtWvX4ubNm6hXrx4eP34sOqLGnDt3DiEhIdi8eTNcXFzQs2dPdOnSBaVLl0ZUVBSnlxdyHOkmIiJ6h66uLpo0aYJnz56JjiKcpaUlHj16BABo0KAB0tLSlMeMjIzg7e3NDjepCQoKwqlTp1CmTBk4OzvD29tb5T8pqlu3LuLi4tCuXTukpaUhLS0N7du3x61btyTZ4QYAExMTPH36FABw5MgRNG7cGABgYGCArKwskdE0rnr16lixYgXu37+P77//Hps2bUKZMmWQm5uLo0eP4u+//xYdkf4HXNNNRESUDzc3NyQkJKjtwyw1bz4UW1tb4+TJk3j9+rXoSFQItG3bVnQErZOcnIzy5cvnWzAtOTkZNjY2AlKJ1bhxY/Tv3x9eXl6Ii4tDixYtAAA3b96EnZ2d2HCCGBsbo2/fvujbty9u3bqlrHg/btw4NG7cGHv27BEdkf4DTi8nIiLKx6FDhzB+/HhMnToVVatWhbGxscrx9025/tJ06NABkZGRcHFxQXh4OGrWrAl9ff18zz1+/LiG0xEVHrq6urh//75yB4A33jzUkuIa+LS0NPz8889ISUnB4MGD0axZMwB5NSP09fUxYcIEwQm1g1wux969e7Fq1Sp2ugspdrqJiIjyoaPzzwosmUym/FqhUEAmk0nmA3JWVhZCQ0MRHx+PefPmYcCAATAyMsr33AULFmg4HWmztLQ0bNu2DfHx8Rg9ejSKFSuGK1euoGTJkihbtqzoeBqno6ODhw8fwsrKSqX97t27cHV1xYsXLwQlI6LPjdPLiYiI8nHixAnREbSCoaEhBg0aBAC4dOkSZs+eLfnicvRx0dHRaNSoEczNzZGUlIQBAwagWLFi2LFjB5KTk7F27VrRETVm5MiRAPIe3k2cOFHloZVcLsf58+fh6ekpKJ14p0+fxrJly5CQkICtW7eibNmyWLduHezt7VG7dm3R8Yg+CXa6iYiI8lG3bl3REbQOH0RQQY0cORK9e/fGnDlzYGpqqmxv0aIFunXrJjCZ5l29ehVA3iyZ69evqyzP0NfXR5UqVTBq1ChR8YTavn07evbsie7du+PKlSt49eoVAOD58+eYMWMGDhw4IDgh0afB6eVERET5WL16NUxMTNCxY0eV9q1btyIzMxO9evUSlIxI+5mbm+PKlSuoUKECTE1NERUVBQcHB9y9exfOzs54+fKl6Iga16dPH/z666+SqQdREF5eXhgxYgR8fX1V7pOrV6+iefPmePDggeiIRJ8EtwwjIiLKx8yZM/PdCsva2hozZswQkIio8ChatCjS09PV2uPi4tTWNEvFwoULkZOTo9aempqa77WSglu3buGbb75Razc3N1fZnpCosGOnm4iIKB/Jycn5bhdma2uL5ORkAYmICo/WrVsjMDBQucWcTCZDcnIyxo4diw4dOghOJ0aXLl2wadMmtfYtW7agS5cuAhKJV6pUKdy5c0etPSIiAg4ODgISEX0e7HQTERHlw9raGtHR0WrtUVFRKF68uIBERIXHvHnzkJGRAWtra2RlZaFu3bpwdHSEqalpvvtUS8H58+dRv359tfZ69erh/PnzAhKJN2DAAAwfPhznz5+HTCbDX3/9hd9//x2jRo3C4MGDRccj+mRYSI2IiCgfXbt2hZ+fH0xNTZXTH8PDwzF8+HDJjkrl9xACyBvFNDAwgI2NDYoWLarhVKSNzM3NcfToUURERCA6OhoZGRnw9vZGo0aNREcT5tWrV/lOL3/9+jWysrIEJBJv3LhxyM3NRcOGDZGZmYlvvvkGRYsWxahRozBs2DDR8Yg+GRZSIyIiykd2djZ69uyJrVu3okiRvGfUubm58PX1RXBwsEoFYqnQ0dFR2bP8XXp6eujcuTOWLVsGAwMDDSYj0n7169eHm5sbFi9erNI+dOhQREdH4/Tp04KSiSGXyxEZGQkPDw8YGRnhzp07yMjIgKurK0xMTETHI/qk2OkmIiJ6h0KhQEpKCqysrHDv3j1cu3YNhoaGcHd3h62treh4wuzevRtjx47F6NGjUa1aNQDAhQsXMG/ePEyePBk5OTkYN24cOnfujLlz5wpOS5q2aNGiAp/r5+f3GZNop8jISDRq1AhfffUVGjZsCAAICwvDxYsXceTIEdSpU0dwQs0zMDBATExMvvUziL4k7HQTERG9Izc3FwYGBrh58yacnJxEx9Ea1apVw9SpU9G0aVOV9sOHD2PixIm4cOECdu3aBX9/f8THxwtKSaK823F6/PgxMjMzYWFhAQBIS0uDkZERrK2tkZCQICCheNeuXcOcOXMQFRUFQ0NDeHh4YPz48ZJ9nfHx8cHs2bOVDyGIvlRc001ERPQOHR0dODk54enTp5L9MJyf69ev5zvSb2tri+vXrwMAPD09cf/+fU1HIy2QmJio/HrDhg347bffEBISAmdnZwB520MNGDAA33//vaiIwnl6emLDhg2iY2iNadOmYdSoUZg6dSqqVq0KY2NjlePc05y+FBzpJiIiysfevXsxZ84cLF26FG5ubqLjaAUvLy9UqVIFy5cvV65pf/36NQYMGICoqChcvXoVkZGR6NGjh0oHjKSnQoUK2LZtG7y8vFTaL1++jO+++06y90d8fDxWr16NhIQELFy4ENbW1jh48CBsbGxQuXJl0fE0Tkfnn42U3q4XoVAoIJPJIJfLRcQi+uQ40k1ERJQPX19fZGZmokqVKtDX14ehoaHK8dTUVEHJxFmyZAlat26NcuXKwcPDA0De6LdcLse+ffsAAAkJCRgyZIjImKQF7t+/n2+lbrlcjocPHwpIJF54eDiaN2+OWrVq4dSpU5g2bRqsra0RFRWFkJAQbNu2TXREjTtx4oToCEQawZFuIiKifISGhn7weK9evTSURLv8/fff+P333xEXFwcAcHZ2Rrdu3WBqaio4GWmTVq1a4c8//8TKlSvh7e0NIG+Ue+DAgShbtiz27NkjOKHm1ahRAx07dsTIkSNhamqKqKgoODg44MKFC2jfvj3u3bsnOiIRfSbsdBMRERHRJ/X48WP06tULhw4dgp6eHgAgJycHTZs2xZo1a2BtbS04oeaZmJjg+vXrsLe3V+l0JyUloVKlSnj58qXoiEK5u7vjwIEDKF++vOgoRJ8cp5cTERH9v/T0dGXhnvT09A+eK9UCP7dv38aJEyfw6NEj5ObmqhybNGmSoFSkbaysrHDgwAHExcUhNjYWAFCpUiVUrFhRcDJxLCwscP/+fbUq71evXkXZsmUFpdIeSUlJeP36tegYRJ8FO91ERET/z9LSEvfv34e1tTUsLCxUCvu8IeUCPytWrMDgwYNRokQJlCpVSuX6yGQydrpJTcWKFSXd0X5bly5dMHbsWGzduhUymQy5ubmIjIzEqFGj4OvrKzoeEX1G7HQTERH9v+PHj6NYsWIAWOAnP9OmTcP06dMxduxY0VFIy8nlcqxZswZhYWH5zoo4fvy4oGTizJgxA0OHDkX58uUhl8vh6uoKuVyObt264eeffxYdT7g6deqoFawk+lJwTTcREdG/dOPGDUluI2ZmZoZr167BwcFBdBTScj/88APWrFmDli1bonTp0mqzRhYsWCAomXjJycm4ceMGMjIy4OXlBScnJ9GRiOgzY6ebiIioAP7++29s3LgRK1euxOXLlyU5vbxfv3746quvMGjQINFRSMuVKFECa9euRYsWLURHIS3HOhEkBZxeTkRE9AGnTp1CSEgItm/fjjJlyqB9+/ZYsmSJ6FhCODo6YuLEiTh37hzc3d2VVanf8PPzE5SMtI2+vj4cHR1FxxBu5MiRmDp1KoyNjTFy5MgPnmtiYoLKlSvju+++g66uroYSisU6ESQVHOkmIiJ6x4MHD7BmzRqEhIQgPT0dnTp1QnBwMKKiouDq6io6njDvVl1+m0wmQ0JCggbTkDabN28eEhISEBQUlG9BQqmoX78+du7cCQsLC9SvX/+D57569Qo3b95E27ZtERoaqqGEYtna2mLIkCGsE0FfPHa6iYiI3tKqVSucOnUKLVu2RPfu3dGsWTPo6upCT09P8p1uooJq164dTpw4gWLFiqFy5cpqsyJ27NghKJl2u3TpEho2bIjnz5+LjqIRrBNBUsHp5URERG85ePAg/Pz8MHjwYBY4IvqPLCws0K5dO9ExCh0PDw+sXbtWdAyN6dixI44cOcI6EfTFY6ebiIjoLREREQgJCUHVqlXh4uKCnj17okuXLgP38xQAABpqSURBVKJjCfNv1qTOnz9fQ6lI261evVp0BK1079497NmzB8nJycjOzlY5Nn/+fOjr66NNmzaC0mke60SQVHB6ORERUT5evHiBzZs3Y9WqVbhw4QLkcjnmz5+Pvn37wtTUVHQ8jSnomlSZTCbJvZfpwx4/foxbt24BAJydnWFlZSU4kThhYWFo3bo1HBwcEBsbCzc3NyQlJUGhUMDb21uSvz+sE0FSwU43ERHRR9y6dQshISFYt24d0tLS0LhxY+zZs0d0LCKt9eLFCwwbNgxr165VbgOlq6sLX19fLF68GEZGRoITal61atXQvHlzBAQEwNTUFFFRUbC2tlbWjhg8eLDoiET0meiIDkBERKTtnJ2dMWfOHNy7dw8bN24UHUeY1atXIysrS3QMKgRGjhyJ8PBw7N27F2lpaUhLS8Pu3bsRHh4Of39/0fGEiImJga+vLwCgSJEiyMrKgomJCQIDAzF79mzB6cRTKBTgWCB9qdjpJiIiKiBdXV20bdtWsqPc48aNQ8mSJdGvXz+cOXNGdBzSYtu3b0dISAiaN28OMzMzmJmZoUWLFlixYgW2bdsmOp4QxsbGynXcpUuXRnx8vPLYkydPRMUSbu3atXB3d4ehoSEMDQ3h4eGBdevWiY5F9Emx001EREQF8ueffyI0NBRPnjxBvXr1UKlSJcyePRsPHjwQHY20TGZmJkqWLKnWbm1tjczMTAGJxKtevToiIiIAAC1atIC/vz+mT5+Ovn37onr16oLTiTF//nwMHjwYLVq0wJYtW7BlyxY0a9YMgwYNwoIFC0THI/pkuKabiIiI/rWHDx9i/fr1CA0NRWxsLJo1a4Z+/fqhVatW0NHhM32pa9iwIYoXL461a9fCwMAAAJCVlYVevXohNTUVx44dE5xQ8xISEpCRkQEPDw+8ePEC/v7+OHPmDJycnDB//nzY2tqKjqhx9vb2CAgIUE67fyM0NBRTpkxBYmKioGREnxY73URERPSfnD9/HqtWrUJoaChKly6NZ8+ewdLSEqtXr0a9evVExyOBbty4gaZNm+LVq1eoUqUKACAqKgoGBgY4fPgwKleuLDihZsnlckRGRsLDwwMWFhai42gNAwMD3LhxA46Ojirtt2/fhru7O16+fCkoGdGnxUfRREREVGAPHz7E3LlzUblyZdSrVw/p6enYt28fEhMT8eeff6JTp07o1auX6JgkmJubG27fvo2ZM2fC09MTnp6emDVrFm7fvi25DjeQVw+iSZMmePbsmegoWsXR0RFbtmxRa9+8eTOcnJwEJCL6PDjSTURERAXSqlUrHD58GBUrVkT//v3h6+uLYsWKqZzz6NEjlCpVSrlNFBHl8fHxwezZs9GwYUPRUbTG9u3b0blzZzRq1Ai1atUCAERGRiIsLAxbtmxBu3btBCck+jSKiA5AREREhYO1tTXCw8NRo0aN955jZWXFdZgEIG9/+8WLFyMmJgYA4OLigh9++AGVKlUSnEyMadOmYdSoUZg6dSqqVq0KY2NjleNmZmaCkonToUMHnD9/HgsWLMCuXbsA5N0nFy5cgJeXl9hwRJ8QR7qJiIiI6JPavn07unTpAh8fH+VDmnPnzuHixYvYtGkTOnToIDih5gQGBsLf3x+mpqbKNplMpvxaoVBAJpNBLpeLiEdEGsBONxERERXYixcvEB4ejuTkZOWew2/4+fkJSkXapkKFCujevTsCAwNV2idPnoz169er7FH9pdPV1cX9+/eVI/7vU7duXQ0lIiJNY6ebiIiICuTq1ato0aIFMjMz8eLFCxQrVgxPnjyBkZERrK2tkZCQIDoiaQkjIyNER0fnW5W6SpUqktqrW0dHBw8ePIC1tbXoKFpDR0dHZbQ/PzKZDDk5ORpKRPR5cU03ERERFciIESPQqlUrBAcHw9zcHOfOnYOenh569OiB4cOHi45HWqRevXo4ffq0Wqc7IiICderUEZRKnI91MKVm586d7z129uxZLFq0iMUY6YvCkW4iIiIqEAsLC5w/fx7Ozs6wsLDA2bNn4eLigvPnz6NXr16IjY0VHZG0RHBwMCZNmoROnTqhevXqAPLWdG/duhUBAQEoU6aM8tzWrVuLiqkROjo6MDc3/2jHOzU1VUOJtNOtW7cwbtw47N27V7k0wdbWVnQsok+CI91ERERUIHp6etDR0QGQV8k8OTkZLi4uMDc3R0pKiuB0pE2GDBkCAPjtt9/w22+/5XsMgGQKiAUEBMDc3Fx0DK30119/YfLkyQgNDUXTpk1x7do1uLm5iY5F9Emx001EREQF4uXlhYsXL8LJyQl169bFpEmT8OTJE6xbt44fkkkFpwar6tKlC9d0v+P58+eYMWMGFi9eDE9PT4SFhUly6QFJg47oAERERFQ4zJgxA6VLlwYATJ8+HZaWlhg8eDAeP36M5cuXC05H2i4tLU10BCG4nlvdnDlz4ODggH379mHjxo04c+YMO9z0ReOabiIiIiL6pGbPng07Ozt07twZANCxY0ds374dpUuXxoEDB1ClShXBCTWH1cvV6ejowNDQEI0aNYKuru57z9uxY4cGUxF9PpxeTkRERESfVHBwMH7//XcAwNGjR3Hs2DEcOnQIW7ZswejRo3HkyBHBCTWHU+3V+fr6cgYASQpHuomIiOi9vLy8Cvzh+MqVK585DRUWhoaGiIuLQ/ny5TF8+HC8fPkSy5YtQ1xcHL7++ms8e/ZMdEQiIo3hSDcRERG9V9u2bUVHoELI0tISKSkpKF++PA4dOoRp06YBABQKhSSqlRMRvY2dbiIiInqvyZMni45AhVD79u3RrVs3ODk54enTp2jevDkA4OrVq3B0dBScjohIs9jpJiIion/l0qVLiImJAQC4urqiatWqghORtlmwYAHs7OyQkpKCOXPmwMTEBABw//59lX26iYikgGu6iYiIqEDu3buHrl27IjIyEhYWFgDytoGqWbMmNm3ahHLlyokNSEREpIXY6SYiIqICadasGdLS0hAaGgpnZ2cAwK1bt9CnTx+YmZnh0KFDghOSNrl9+zZOnDiBR48eqVXwnjRpkqBURESax043ERERFYihoSHOnDkDLy8vlfbLly+jTp06yMzMFJSMtM2KFSswePBglChRAqVKlVKpgC+TyVjpnogkhWu6iYiIqEDKly+P169fq7XL5XKUKVNGQCLSVtOmTcP06dMxduxY0VGIiITTER2AiIiICodffvkFw4YNw6VLl5Rtly5dwvDhwzF37lyByUjbPHv2DB07dhQdg4hIK3B6ORERERWIpaUlMjMzkZOTgyJF8ibLvfna2NhY5dzU1FQREUlL9OvXD1999RUGDRokOgoRkXCcXk5EREQFsnDhQtERqJBwdHTExIkTce7cObi7u0NPT0/luJ+fn6BkRESax5FuIiIiIvqk7O3t33tMJpMhISFBg2mIiMRip5uIiIgK5MqVK9DT04O7uzsAYPfu3Vi9ejVcXV0xZcoU6OvrC05IRESkfVhIjYiIiArk+++/R1xcHAAgISEBnTt3hpGREbZu3YoxY8YITkdERKSdONJNREREBWJubo4rV66gQoUKmD17No4fP47Dhw8jMjISXbp0QUpKiuiIpEXu3buHPXv2IDk5GdnZ2SrH5s+fLygVEZHmsZAaERERFYhCoUBubi4A4NixY/j2228B5O3f/eTJE5HRSMuEhYWhdevWcHBwQGxsLNzc3JCUlASFQgFvb2/R8YiINIrTy4mIiKhAfHx8MG3aNKxbtw7h4eFo2bIlACAxMRElS5YUnI60yfjx4zFq1Chcv34dBgYG2L59O1JSUlC3bl3u301EksNONxERERXIwoULceXKFfzwww+YMGECHB0dAQDbtm1DzZo1BacjbRITEwNfX18AQJEiRZCVlQUTExMEBgZi9uzZgtMREWkWp5cTERFRgXh4eOD69etq7b/88gt0dXUFJCJtZWxsrFzHXbp0acTHx6Ny5coAwKUIRCQ57HQTERHR/8TAwEB0BNIy1atXR0REBFxcXNCiRQv4+/vj+vXr2LFjB6pXry46HhGRRrF6OREREb1XsWLFEBcXhxIlSsDS0hIymey956ampmowGWmzhIQEZGRkwMPDAy9evIC/vz/OnDkDJycnzJ8/H7a2tqIjEhFpDEe6iYiI6L0WLFgAU1NTAHlruok+Ri6X4969e/Dw8ACQN9U8ODhYcCoiInE40k1EREREn5SBgQFiYmJgb28vOgoRkXAc6SYiIqL3Sk9PL/C5ZmZmnzEJFSZubm5ISEhgp5uICBzpJiIiog/Q0dH54Drut8nl8s+chgqLQ4cOYfz48Zg6dSqqVq0KY2NjleN8QENEUsJONxEREb1XeHi48uukpCSMGzcOvXv3Ro0aNQAAZ8+eRWhoKGbOnIlevXqJiklaIjAwEP7+/so6AABUHtooFArIZDI+oCEiSWGnm4iIiAqkYcOG6N+/P7p27arSvmHDBixfvhwnT54UE4y0hq6uLu7fv4+YmJgPnle3bl0NJSIiEo+dbiIiIioQIyMjREVFwcnJSaU9Li4Onp6eyMzMFJSMtIWOjg4ePHgAa2tr0VGIiLSGjugAREREVDiUL18eK1asUGtfuXIlypcvLyARaaOC1gAgIpIKjnQTERFRgRw4cAAdOnSAo6Mjvv76awDAhQsXcPv2bWzfvh0tWrQQnJBE09HRgbm5+Uc73qmpqRpKREQkHjvdREREVGD37t3D0qVLlWt2XVxcMGjQII50E4C8TvfChQthbm7+wfNYdI+IpISdbiIiIiL6JLimm4hIHdd0ExEREdEnwfXcRETq2OkmIiIiok+CEyiJiNRxejkRERERERHRZ8KRbiIiIiIiIqLPhJ1uIiIiKpAGDRogLS1NrT09PR0NGjTQfCAiIqJCgNPLiYiIqEDeV5n60aNHKFu2LF6/fi0oGRERkfYqIjoAERERabfo6Gjl13/88QcePHig/LNcLsehQ4dQtmxZEdGIiIi0Hke6iYiI6IN0dHSUW0Hl97HB0NAQixcvRt++fTUdjYiISOux001ERETvlZ6ejtTUVACAg4MDLly4ACsrK+VxfX19WFtbQ1dXV1REIiIircbp5URERPRelpaWuH//PqytrVG3bl04OjrCwsJCdCwiIqJCg9XLiYiI6L1MTEzw9OlTAMCpU6dYLI2IiOhf4kg3ERERvVejRo1Qv359uLi4QKFQoF27dtDX18/33OPHj2s4HRERkfZjp5uIiIjea/369QgNDUV8fDzCw8NRuXJlGBkZiY5FRERUaLCQGhERERVI/fr1sXPnTq7pJiIi+hfY6SYiIiIiIiL6TDi9nIiIiArs3r172LNnD5KTk5Gdna1ybP78+YJSERERaS92uomIiKhAwsLC0Lp1azg4OCA2NhZubm5ISkqCQqGAt7e36HhERERaiVuGERERUYGMHz8eo0aNwvXr12FgYIDt27cjJSUFdevWRceOHUXHIyIi0kpc001EREQFYmpqimvXrqFChQqwtLREREQEKleujKioKLRp0wZJSUmiIxIREWkdjnQTERFRgRgbGyvXcZcuXRrx8fHKY0+ePBEVi4iISKtxTTcREREVSPXq1REREQEXFxe0aNEC/v7+uH79Onbs2IHq1auLjkdERKSVOL2ciIiICiQhIQEZGRnw8PDAixcv4O/vjzNnzsDJyQnz58+Hra2t6IhERERah51uIiIi+ii5XI7IyEh4eHjAwsJCdBwiIqJCg51uIiIiKhADAwPExMTA3t5edBQiIqJCg4XUiIiIqEDc3NyQkJAgOgYREVGhwpFuIiIiKpBDhw5h/PjxmDp1KqpWrQpjY2OV42ZmZoKSERERaS92uomIiKhAdHT+mSAnk8mUXysUCshkMsjlchGxiIiItBq3DCMiIqICOXHihOgIREREhQ5HuomIiIiIiIg+ExZSIyIiogJZvXo1tm7dqta+detWhIaGCkhERESk/djpJiIiogKZOXMmSpQoodZubW2NGTNmCEhERESk/djpJiIiogJJTk7Od49uW1tbJCcnC0hERESk/djpJiIiogKxtrZGdHS0WntUVBSKFy8uIBEREZH2Y6ebiIiICqRr167w8/PDiRMnIJfLIZfLcfz4cQwfPhxdunQRHY+IiEgrsXo5ERERFUh2djZ69uyJrVu3okiRvF1Hc3Nz4evri+DgYOjr6wtOSEREpH3Y6SYiIqKPUigUSElJgZWVFe7du4dr167B0NAQ7u7usLW1FR2PiIhIa7HTTURERB+Vm5sLAwMD3Lx5E05OTqLjEBERFRpc001EREQfpaOjAycnJzx9+lR0FCIiokKFnW4iIiIqkFmzZmH06NG4ceOG6ChERESFBqeXExERUYFYWloiMzMTOTk50NfXh6Ghocrx1NRUQcmIiIi0VxHRAYiIiKhwWLhwoegIREREhQ5HuomIiIiIiIg+E450ExER0Xulp6fDzMxM+fWHvDmPiIiI/sGRbiIiInovXV1d3L9/H9bW1tDR0YFMJlM7R6FQQCaTQS6XC0hIRESk3TjSTURERO91/PhxFCtWDABw4sQJwWmIiIgKH450ExER0f/sxo0bcHNzEx2DiIhI63CfbiIiIvpP/v77byxfvhzVqlVDlSpVRMchIiLSSux0ExER0b9y6tQp9OrVC6VLl8bcuXPRoEEDnDt3TnQsIiIircQ13URERPRRDx48wJo1axASEoL09HR06tQJr169wq5du+Dq6io6HhERkdbiSDcRERF9UKtWreDs7Izo6GgsXLgQf/31FxYvXiw6FhERUaHAkW4iIiL6oIMHD8LPzw+DBw+Gk5OT6DhERESFCke6iYiI6IMiIiLw999/o2rVqvj6668RFBSEJ0+eiI5FRERUKHDLMCIiIiqQFy9eYPPmzVi1ahUuXLgAuVyO+fPno2/fvjA1NRUdj4iISCux001ERET/2q1btxASEoJ169YhLS0NjRs3xp49e0THIiIi0jrsdBMREdF/JpfLsXfvXqxatYqdbiIionyw001ERERERET0mbCQGhEREREREdFnwk43ERERERER0WfCTjcRERERERHRZ8JONxEREREREdFnwk43ERER0Regd+/eaNu2rfLP9erVw48//qjxHCdPnoRMJkNaWprGfzYRkTZip5uIiIjoM+rduzdkMhlkMhn09fXh6OiIwMBA5OTkfNafu2PHDkydOrVA57KjTET0+RQRHYCIiIjoS9esWTOsXr0ar169woEDBzB06FDo6elh/PjxKudlZ2dDX1//k/zMYsWKfZLvQ0RE/xuOdBMRERF9ZkWLFkWpUqVga2uLwYMHo1GjRtizZ49ySvj06dNRpkwZODs7AwBSUlLQqVMnWFhYoFixYmjTpg2SkpKU308ul2PkyJGwsLBA8eLFMWbMGCgUCpWf+e708levXmHs2LEoX748ihYtCkdHR4SEhCApKQn169cHAFhaWkImk6F3794AgNzcXMycORP29vYwNDRElSpVsG3bNpWfc+DAAVSsWBGGhoaoX7++Sk4iImKnm4iIiEjjDA0NkZ2dDQAICwvDrVu3cPToUezbtw+vX79G06ZNYWpqitOnTyMyMhImJiZo1qyZ8u/MmzcPa9aswapVqxAREYHU1FTs3Lnzgz/T19cXGzduxKJFixATE4Nly5bBxMQE5cuXx/bt2wEAt27dwv379/Hrr78CAGbOnIm1a9ciODgYN2/exIgRI9CjRw+Eh4cDyHs40L59e7Rq1QrXrl1D//79MW7cuM912YiICiVOLyciIiLSEIVCgbCwMBw+fBjDhg3D48ePYWxsjJUrVyqnla9fvx65ublYuXIlZDIZAGD16tWwsLDAyZMn0aRJEyxcuBDjx49H+/btAQDBwcE4fPjwe39uXFwctmzZgqNHj6JRo0YAAAcHB+XxN1PRra2tYWFhASBvZHzGjBk4duwYatSoofw7ERERWLZsGerWrYulS5eiQoUKmDdvHgDA2dkZ169fx+zZsz/hVSMiKtzY6SYiIiL6zPbt2wcTExO8fv0aubm56NatG6ZMmYKhQ4fC3d1dZR13VFQU7ty5A1NTU5Xv8fLlS8THx+P58+e4f/8+vv76a+WxIkWKwMfHR22K+RvXrl2Drq4u6tatW+DMd+7cQWZmJho3bqzSnp2dDS8vLwBATEyMSg4Ayg46ERHlYaebiIiI6DOrX78+li5dCn19fZQpUwZFivzzEczY2Fjl3IyMDFStWhW///672vexsrL6Tz/f0NDwX/+djIwMAMD+/ftRtmxZlWNFixb9TzmIiKSInW4iIiKiz8zY2BiOjo4FOtfb2xubN2+GtbU1zMzM8j2ndOnSOH/+PL755hsAQE5ODi5fvgxvb+98z3d3d0dubi7Cw8OV08vf9makXS6XK9tcXV1RtGhRJCcnv3eE3MXFBXv27FFpO3fu3Mf/kUREEsJCakRERERapHv37ihRogTatGmD06dPIzExESdPnoSfnx/u3bsHABg+fDhmzZqFXbt2ITY2FkOGDPngHtt2dnbo1asX+vbti127dim/55YtWwAAtra2kMlk2LdvHx4/foyMjAyYmppi1KhRGDFiBEJDQxEfH48rV65g8eLFCA0NBQAMGjQIt2/fxujRo3Hr1i1s2LABa9as+dyXiIioUGGnm4iIiEiLGBkZ4dSpU7CxsUH79u3h4uKCfv364eXLl8qRb39///9r545NFAiAMIz+V4DxBoJgppGxHZgKprKRiWwBJgbLwm4J2oRgYmnGXgV3yTHBwXsFTDDZx8DkeDymbdtst9vMZrPs9/tf595utxwOh5zP56xWq5xOp7zf7yTJfD5P3/e5XC5pmiZd1yVJhmHI9XrNNE1Zr9fZ7XZ5vV5ZLpdJksVikcfjkefzmc1mk/v9nnEcC7cD8P98fX76uAEAAAD8iUs3AAAAFBHdAAAAUER0AwAAQBHRDQAAAEVENwAAABQR3QAAAFBEdAMAAEAR0Q0AAABFRDcAAAAUEd0AAABQRHQDAABAEdENAAAARb4BpJX7DNP71NMAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Classification Report:\n", " precision recall f1-score support\n", "\n", " 0 1.00 1.00 1.00 3046\n", " 1 0.96 0.97 0.97 14993\n", " 2 0.77 0.44 0.56 315\n", " 3 0.89 0.96 0.92 1699\n", " 4 0.79 0.87 0.83 1410\n", " 5 0.98 0.97 0.97 1991\n", " 6 0.93 0.87 0.90 1060\n", " 7 1.00 0.99 1.00 2061\n", " 8 0.93 0.92 0.92 735\n", " 9 0.73 0.26 0.38 239\n", "\n", " accuracy 0.95 27549\n", " macro avg 0.90 0.83 0.85 27549\n", "weighted avg 0.95 0.95 0.95 27549\n", "\n" ] } ], "source": [ "class_labels = ['Ghost injection', 'No attack', 'Aircraft standing still',\n", " 'Aircraft displaying false information', 'Jumping aircraft',\n", " 'Transponder code alteration', 'Trajectory modification',\n", " 'Non-responsive aircraft', 'Aircraft spoofing', 'Message Delay']\n", "\n", "# Calculate accuracy\n", "accuracy = accuracy_score(y_test, y_pred)\n", "print(f'Accuracy: {accuracy * 100:.2f}%')\n", "\n", "# Confusion Matrix\n", "cm = confusion_matrix(y_test, y_pred)\n", "print('Confusion Matrix:')\n", "\n", "# Calculate percentage for each cell in the confusion matrix\n", "cm_percent = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] * 100\n", "\n", "# Combine the count and percentage into a single annotation, skipping zero values\n", "annot = np.empty_like(cm).astype(str)\n", "nrows, ncols = cm.shape\n", "for i in range(nrows):\n", " for j in range(ncols):\n", " # Display both count and percentage only if count is greater than 0\n", " if cm[i, j] > 0:\n", " annot[i, j] = f'{cm[i, j]}\\n({cm_percent[i, j]:.2f}%)'\n", " else:\n", " annot[i, j] = '' # Leave the cell empty if the count is zero\n", "\n", "# Plot the confusion matrix with counts and percentages, skipping zero values\n", "plt.figure(figsize=(10, 7)) # Adjust figure size if necessary\n", "sns.heatmap(cm, annot=annot, fmt='', cmap='Blues', xticklabels=class_labels, yticklabels=class_labels, cbar=False)\n", "\n", "# Add labels and title\n", "plt.title('Confusion Matrix')\n", "plt.xlabel('Predicted')\n", "plt.ylabel('Actual')\n", "\n", "# Display the plot\n", "plt.tight_layout()\n", "plt.show()\n", "\n", "# Classification Report\n", "report = classification_report(y_test, y_pred)\n", "print('Classification Report:')\n", "print(report)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "# # Use the data for prediction\n", "# file_path = 'preprocessed_data.csv' # Update this path\n", "# target_column = 'attackType_mapped' # Update with your target column name\n", "# categorical_columns = ['callsign'] # Update with actual categorical columns\n", "\n", "# # Load and preprocess data \n", "# def load_data(file_path, target_column, categorical_columns):\n", "# df = pd.read_csv(file_path)\n", " \n", "# # One-hot encode categorical columns\n", "# df = pd.get_dummies(df, columns=categorical_columns, drop_first=True)\n", " \n", "# # Separate features and target\n", "# X = df.drop(target_column, axis=1)\n", " \n", "# # Scale the features using the same scaler used during training\n", "# scaler = StandardScaler() # You might need to load the scaler if saved\n", "# X = scaler.fit_transform(X) # Or use a pre-fitted scaler\n", " \n", "# return torch.tensor(X, dtype=torch.float32)\n", "\n", "# # Prepare data for prediction\n", "# input_data = load_data(file_path, target_column, categorical_columns)\n", "\n", "# # Make predictions\n", "# with torch.no_grad():\n", "# predictions = loaded_model(input_data)\n", "\n", "# # Get predicted class labels\n", "# predicted_classes = torch.argmax(predictions, dim=1)\n", "# predicted_classes = predicted_classes.numpy() # Convert to numpy if needed\n", "\n", "# # Convert predicted indices back to original labels if needed\n", "# label_encoder = LabelEncoder() # Ensure this matches the one used during training\n", "# label_encoder.fit(pd.read_csv(file_path)[target_column]) # Fit it on the original data\n", "# predicted_labels = label_encoder.inverse_transform(predicted_classes)\n", "\n", "# print(\"Predicted Class Labels:\", predicted_labels)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Comparison Table" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " Class TabNet_Precision TabNet_Recall TabNet_F1 DeepGBM_Precision DeepGBM_Recall DeepGBM_F1 NODE_Precision NODE_Recall NODE_F1\n", " 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00\n", " 1 0.91 0.97 0.94 0.97 0.99 0.98 0.96 0.97 0.97\n", " 2 0.82 0.39 0.52 0.97 0.78 0.87 0.77 0.44 0.56\n", " 3 0.84 0.79 0.81 0.84 0.99 0.91 0.89 0.96 0.92\n", " 4 0.84 0.71 0.77 1.00 0.77 0.87 0.79 0.87 0.83\n", " 5 0.91 0.97 0.94 1.00 1.00 1.00 0.98 0.97 0.97\n", " 6 0.80 0.66 0.72 0.95 0.97 0.96 0.93 0.87 0.90\n", " 7 1.00 0.97 0.99 1.00 0.99 0.99 1.00 0.99 1.00\n", " 8 0.87 0.64 0.74 0.98 0.97 0.97 0.93 0.92 0.92\n", " 9 0.96 0.09 0.16 0.95 0.34 0.50 0.73 0.26 0.38\n" ] } ], "source": [ "# import pandas as pd\n", "\n", "# Define the data\n", "data = {\n", " \"Class\": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],\n", " \"TabNet_Precision\": [1.00, 0.91, 0.82, 0.84, 0.84, 0.91, 0.80, 1.00, 0.87, 0.96],\n", " \"TabNet_Recall\": [1.00, 0.97, 0.39, 0.79, 0.71, 0.97, 0.66, 0.97, 0.64, 0.09],\n", " \"TabNet_F1\": [1.00, 0.94, 0.52, 0.81, 0.77, 0.94, 0.72, 0.99, 0.74, 0.16],\n", " \n", " \"DeepGBM_Precision\": [1.00, 0.97, 0.97, 0.84, 1.00, 1.00, 0.95, 1.00, 0.98, 0.95],\n", " \"DeepGBM_Recall\": [1.00, 0.99, 0.78, 0.99, 0.77, 1.00, 0.97, 0.99, 0.97, 0.34],\n", " \"DeepGBM_F1\": [1.00, 0.98, 0.87, 0.91, 0.87, 1.00, 0.96, 0.99, 0.97, 0.50],\n", " \n", " \"NODE_Precision\": [1.00, 0.96, 0.77, 0.89, 0.79, 0.98, 0.93, 1.00, 0.93, 0.73],\n", " \"NODE_Recall\": [1.00, 0.97, 0.44, 0.96, 0.87, 0.97, 0.87, 0.99, 0.92, 0.26],\n", " \"NODE_F1\": [1.00, 0.97, 0.56, 0.92, 0.83, 0.97, 0.90, 1.00, 0.92, 0.38],\n", "}\n", "\n", "# Create DataFrame\n", "df = pd.DataFrame(data)\n", "\n", "# Print DataFrame as a table\n", "print(df.to_string(index=False))\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Training Accuracy Comparison Graph" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAIjCAYAAADvBuGTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACxXklEQVR4nOzdd3hTZRsG8DujbboZnUAppYyydyuzgOyhggiCbEVBcOECRBD0k6EyBAVBQAURRAVF2VuGLVOBsimrdEAL3SNN3u+PmNiQpE3apGna+3dduSAnb855TvImPU/eJRFCCBAREREREVGJSO0dABERERERUXnA5IqIiIiIiMgKmFwRERERERFZAZMrIiIiIiIiK2ByRUREREREZAVMroiIiIiIiKyAyRUREREREZEVMLkiIiIiIiKyAiZXREREREREVsDkiqgck0gk+OCDD+wdRomtXbsWYWFhcHJyQqVKlewaS+fOndG5c+diPXf06NGoVauWVeOh0lWW6qK5JBIJJk2aZO8wiApVq1YtjB492t5hEJUYkysq165du4aXXnoJtWvXhkKhgJeXF9q3b4/FixcjOzvb3uGRGS5evIjRo0cjNDQUK1euxIoVKwzK3LhxAxKJxKzbjRs3Sv8kypjw8HBIJBIsW7bM3qE4FHPqojXYqz5/8803kEgkUCgUiIuLM3i8c+fOaNy4cbH2vX79eixatKhE8X3wwQd65+7m5oaaNWuif//+WLNmDXJzc0u0f1v5888/MXjwYFSvXh3Ozs7w9vZGREQEZs+ejcTERL2ynTt31jtHZ2dnhISE4MUXX8Tt27f1ymrfL4lEgsOHDxscVwiBoKAgSCQS9OvXz6bnWJq05/zZZ58ZPKZ9TU6cOGHw2JEjRzBgwAD4+/vDxcUFtWrVwksvvYRbt24ZlC1OXRs9erTJz6lCobDOyZNDkNs7ACJb+eOPP/DMM8/AxcUFI0eOROPGjZGXl4fDhw/j7bffxvnz5212cVRWZGdnQy537I/5gQMHoFarsXjxYtSpU8doGV9fX6xdu1Zv22effYY7d+5g4cKFBmVLYteuXcV+7sqVK6FWq0t0/JK6cuUKjh8/jlq1auH777/HhAkT7BqPIzGnLlpDadZnY3JzczF37lwsWbLEavtcv349zp07h9dff73E+1q2bBk8PDyQm5uLuLg47Ny5E2PHjsWiRYvw+++/IygoqOQBW8mMGTPw4Ycfonbt2hg9ejRq166NnJwcnDx5Ep999hm+/fZbXLt2Te85NWrUwJw5cwAAeXl5iImJwfLly7Fz505cuHABbm5ueuUVCgXWr1+PDh066G0/ePAg7ty5AxcXF9uepJ188sknmDBhgsHrYcySJUvw2muvoXbt2njllVcQGBiICxcu4Ouvv8bGjRuxbds2tGvXzuB5ltY1FxcXfP311wb7kclkxT9RcjyCqBy6fv268PDwEGFhYeLu3bsGj1+5ckUsWrTIDpHZnkqlEtnZ2fYOw2pmzZolAIh79+5Z9Ly+ffuK4ODgQsuo1WqRlZVVgugcz4wZM4Sfn5/4+eefhUQiEbGxsfYOyaiyWI+LWxcLk5mZaVY5c+qzKQDExIkTiyy3Zs0aAUA0b95cuLi4iLi4OL3HIyMjRaNGjYoVQ0ni15o5c6bJ13/dunVCKpWKiIiIEh3DmjZs2CAAiMGDB4vc3FyDxx8+fChmzpypt83Ua7x06VIBQOzatUu3Tft+DRw4UPj4+AilUqn3nHHjxolWrVqJ4OBg0bdvX+uclA0FBweLUaNGFVlOW0cBiM8++0zvMe1rcvz4cd22w4cPC6lUKjp27Gjwebt69arw9/cXgYGBIiUlRbe9OHVt1KhRwt3d3ZxTpXKO3QKpXJo/fz4yMjKwatUqBAYGGjxep04dvPbaa7r7+fn5+PDDDxEaGqrrLjBt2jSDpv9atWqhX79+OHDgAFq3bg1XV1c0adIEBw4cAAD88ssvaNKkCRQKBVq1aoXTp0/rPX/06NHw8PDA9evX0bNnT7i7u6NatWqYPXs2hBB6ZT/99FO0a9cOVatWhaurK1q1aoWffvrJ4Fy04ym+//57NGrUCC4uLtixY4fusYJjrtLT0/H666+jVq1acHFxgZ+fH7p3745Tp07p7XPTpk1o1aoVXF1d4ePjg+HDhxt0E9KeS1xcHJ566il4eHjA19cXb731FlQqlYl3Rt+XX36pi7latWqYOHEiHj58qPd6z5w5E4DmF/qSjiHTvn87d+7UvX9fffUVAGDNmjXo2rUr/Pz84OLigoYNGxrtNvfomKsDBw5AIpHgxx9/xP/+9z/UqFEDCoUCjz/+OK5evar33EfHXGm7f3366adYsWKFrv61adMGx48fNzj2pk2b0LBhQygUCjRu3BibN2+2eBzX+vXrMWjQIPTr1w/e3t5Yv3690XJRUVHo06cPKleuDHd3dzRt2hSLFy/WK3Px4kUMHjwYvr6+cHV1Rf369fHee++ZPF8tbZebggqrx+Z+FgBg3bp1CA8Ph5ubGypXroxOnTrpWhtHjRoFHx8fKJVKg+f16NED9evXN/m6FVUXi6rLwH/d6k6ePIlOnTrBzc0N06ZNM3nMoljyugDA999/j/r16+u+nw4dOmS03LRp06BSqTB37lyz4li3bp3u+6JKlSp49tln9bqwde7cGX/88Qdu3ryp6yZl7bGHzz33HF544QVERUVh9+7deo9FRUWhV69e8Pb2hpubGyIjI3HkyBGDfcTFxWHs2LG6bmONGjXC6tWr9cpoP+8bN27EtGnTEBAQAHd3dzzxxBMG3fZmzJgBHx8frFq1Cs7OzgbH8/b2Nvv7LCAgAACM9kQYOnQokpOT9c47Ly8PP/30E4YNG2bW/k25efMmXn75ZdSvXx+urq6oWrUqnnnmGYPuqNrueEeOHMHkyZPh6+sLd3d3DBgwAPfu3dMrK4TARx99hBo1asDNzQ1dunTB+fPnLYqrffv26Nq1K+bPn19kF/8PP/wQEokE3377rUErV2hoKObPn4/4+Hjd34KiFFbXiACw5YrKp+rVq4vatWubXX7UqFECgBg0aJD44osvxMiRIwUA8dRTT+mVCw4OFvXr1xeBgYHigw8+EAsXLhTVq1cXHh4eYt26daJmzZpi7ty5Yu7cucLb21vUqVNHqFQqveMoFApRt25dMWLECLF06VLRr18/AUC8//77eseqUaOGePnll8XSpUvFggULRHh4uAAgfv/9d71yAESDBg2Er6+vmDVrlvjiiy/E6dOndY8V/GV02LBhwtnZWUyePFl8/fXXYt68eaJ///5i3bp1ujLaX/7atGkjFi5cKKZMmSJcXV1FrVq1xIMHDwzOpVGjRmLs2LFi2bJl4umnnxYAxJdfflnka679ZbBbt25iyZIlYtKkSUImk4k2bdqIvLw8IYQQmzdvFgMGDBAAxLJly8TatWvF33//XeS+hTD+S3lwcLCoU6eOqFy5spgyZYpYvny52L9/vxBCiDZt2ojRo0eLhQsXiiVLlogePXoIAGLp0qV6+4iMjBSRkZG6+/v37xcARIsWLUSrVq3EwoULxQcffCDc3NxEeHi43nNHjRqlF1NsbKzuuXXq1BHz5s0T8+fPFz4+PqJGjRq610EIIX7//XchkUhE06ZNxYIFC8T7778vKleuLBo3bmx2i8Bff/0lAIg///xTCCHE2LFjRcOGDQ3K7dq1Szg7O4vg4GAxc+ZMsWzZMvHqq6+Kbt266cr8/fffwsvLS1StWlVMnTpVfPXVV+Kdd94RTZo0MXm+Wtr3vqDC6rG5n4UPPvhAABDt2rUTn3zyiVi8eLEYNmyYePfdd4UQQuzevVsAEFu3btV7Xnx8vJDJZGL27NkmX7vC6qI5dVkITd0JCAgQvr6+4pVXXhFfffWV2LJli8ljFmSsPlvyHdG4cWPh4+MjZs+eLebNmyeCg4OFq6urOHv2rK5cwV/9x44dKxQKhV7rlbFWlY8++khIJBIxZMgQ8eWXX4pZs2YJHx8fve+LXbt2iebNmwsfHx+xdu1asXbtWrF582azzrugwloThBDizz//FADEW2+9pdu2d+9e4ezsLNq2bSs+++wzsXDhQtG0aVPh7OwsoqKidOUSEhJEjRo1RFBQkJg9e7ZYtmyZeOKJJwQAsXDhQl057ee9SZMmus/ilClThEKhEPXq1dO1hF+6dEkAEC+88IJF5xgZGSnCwsLEvXv3xL1798Tdu3fF3r17RaNGjUSdOnX0WsAKvl/t2rUTI0aM0D22ZcsWIZVKRVxcXIlarjZt2iSaNWsmZsyYIVasWCGmTZsmKleuLIKDg/VagbSxtGjRQnTt2lUsWbJEvPnmm0Imk4nBgwfr7XP69OkCgOjTp49YunSpGDt2rKhWrZrw8fExu+Vq4sSJ4tChQwatV4+2XGVmZgq5XC46d+5scn85OTnCxcVFtG/fXretOHVN23Klfe8K3lJTU4s8Lyo/mFxRuZOamioAiCeffNKs8mfOnDH6R/Ctt94SAMS+fft024KDgwUAcfToUd22nTt3CgDC1dVV3Lx5U7f9q6++EgB0F+9C/JfEvfLKK7ptarVa9O3bVzg7O+t9kT/aXS0vL080btxYdO3aVW87ACGVSsX58+cNzu3R5Mrb27vQ7kF5eXnCz89PNG7cWK9L1u+//y4AiBkzZhicy6MXpNokozBJSUnC2dlZ9OjRQy/51HZ9Wb16tW5bUX/kTDGVXAEQO3bsMChvrHtgz549DZJ0U8lVgwYN9C58Fi9eLADoXbyaSq6qVq2q1yXl119/NUgCmjRpImrUqCHS09N12w4cOCAAmJ1cTZo0SQQFBQm1Wi2E0Fz0AtAlMUIIkZ+fL0JCQkRwcLBeMi2E0D1PCCE6deokPD099er8o2UsTa5M1WNzPgtXrlwRUqlUDBgwQK9OFYxJpVKJGjVqiCFDhug9vmDBAiGRSMT169cNjm0s7oJ10ZK6HBkZKQCI5cuXF3ocY4zVZ0u+IwCIEydO6LbdvHlTKBQKMWDAAN22ghem165dE3K5XLz66qt68RdMrm7cuCFkMpn43//+p3e8s2fPCrlcrrfd1t0ChRDiwYMHAoDunNRqtahbt67o2bOnXr3MysoSISEhonv37rptzz//vAgMDBT379/X2+ezzz4rvL29da+19vNevXp1kZaWpiv3448/CgBi8eLFQoj/PsOPdj9Xq9UGF94Fu/Np68ijtwYNGhjUz4Lv19KlS4Wnp6cuzmeeeUZ06dJFCCFKlFwZ+148duyYACC+++47g1i6deum91q/8cYbQiaTiYcPHwoh/vu89O3bV6/ctGnTBACLkishhOjSpYsICAjQxflocqX9+/7aa68Vus+mTZuKKlWq6O5bWteE+O9vorFbz549izwvKj/YLZDKnbS0NACAp6enWeW3bdsGAJg8ebLe9jfffBOAZmKMgho2bIi2bdvq7kdERAAAunbtipo1axpsv379usExC06LrO0OlZeXhz179ui2u7q66v7/4MEDpKamomPHjgZd+AAgMjISDRs2LOJMgUqVKiEqKgp37941+viJEyeQlJSEl19+WW92o759+yIsLMzgtQCA8ePH693v2LGj0XMuaM+ePcjLy8Prr78OqfS/r6Fx48bBy8vL6HGsJSQkBD179jTYXvD1Tk1Nxf379xEZGYnr168jNTW1yP2OGTNGr+tPx44dARh//x81ZMgQVK5c2eRz7969i7Nnz2LkyJHw8PDQlYuMjESTJk2K3D+g6fq6ceNGDBkyRNclT9sN8vvvv9eVO336NGJjY/H6668bTDWufd69e/dw6NAhjB07Vq/OFyxTHKbqsTmfhS1btkCtVmPGjBl6dapgTFKpFM899xx+++03pKen6x7//vvv0a5dO4SEhFgcs6V12cXFBWPGjLH4OMZY8h3Rtm1btGrVSne/Zs2aePLJJ7Fz506j3Xhr166NESNGYMWKFYiPjzd6/F9++QVqtRqDBw/G/fv3dbeAgADUrVsX+/fvt8JZmk/72dC+t2fOnMGVK1cwbNgwJCcn6+LLzMzE448/jkOHDkGtVkMIgZ9//hn9+/eHEELvXHr27InU1FSD13TkyJF6f2MGDRqEwMBA3d8T7d+hgp9XQPPd4uvrq3c7c+aMXplatWph9+7d2L17N7Zv345FixYhNTUVvXv3NuhipzV48GBkZ2fj999/R3p6On7//fcSdwkE9OuYUqlEcnIy6tSpg0qVKhmtZy+++KLed0DHjh2hUqlw8+ZNAP99Xl555RW9csWd6OSDDz5AQkICli9fbvRxbV0o6nrA09NT956Z49G6pqVQKHTvXcGbuV1sqXxw7GnEiIzw8vICYPilZ8rNmzchlUoNZv8KCAhApUqVdH8UtB69mPT29gYAg1mDtNsfPHigt10qlaJ27dp62+rVqwcAev3Yf//9d3z00Uc4c+aM3tgvYxev5l4Uzp8/H6NGjUJQUBBatWqFPn36YOTIkbp4tOdqbOxJWFiYwXS/CoXCYLayypUrG5zzo0wdx9nZGbVr1zZ4za3J1Gt15MgRzJw5E8eOHUNWVpbeY6mpqbr305RH64U2WSrqtTDnudrXw9gMdXXq1DF6kfOoXbt24d69ewgPD9cbC9alSxf88MMPmDdvHqRSqW7mssKm3NYmfcWdltsUU++NOZ+Fa9euQSqVFvkjw8iRIzFv3jxs3rwZI0eOxKVLl3Dy5EmTF2dFsbQua6fjtgZLviPq1q1rsK1evXrIysrCvXv3dGN6Cpo+fTrWrl2LuXPnGoy3AzQzTwohjO4bAJycnCw5nRLLyMgA8N+F9JUrVwBoxtqZkpqaCqVSiYcPH2LFihUmZ5BNSkrSu//oOUskEtSpU0f3Ha6NQRuTloeHh26czq5du/DJJ58YHMvd3R3dunXT3e/Vqxc6dOiA1q1bY+7cuUanIPf19UW3bt2wfv16ZGVlQaVSYdCgQSbP21zZ2dmYM2cO1qxZg7i4OL2xwcZ+dDL3u+zR18/X11fvByZzderUCV26dMH8+fMNfugD/nsfiroeSE9PN/sHWcCwrmnJZDK9944qJiZXVO54eXmhWrVqOHfunEXPM/cXd1NTqpraXvCPkbn+/PNPPPHEE+jUqRO+/PJLBAYGwsnJCWvWrDE6AUHBXxcLM3jwYHTs2BGbN2/W/WGfN28efvnlF/Tu3dviOB1xelljr9W1a9fw+OOPIywsDAsWLEBQUBCcnZ2xbds2LFy40Kzp00vy/luz7piibZ0aPHiw0ccPHjyILl26WO14gOnPlKkJT4y9N5Z+ForSsGFDtGrVCuvWrcPIkSOxbt06ODs7m3xdrM3cz2pRrP26GFO7dm0MHz4cK1aswJQpUwweV6vVkEgk2L59u9E6/Girja1pv/O1P0JoP7effPIJmjdvbvQ5Hh4eSE5OBgAMHz7cZCLWtGlTi2IJCwvTi0lLLpfrLr7v3Llj9v5atWoFb29vk5OQAMCwYcMwbtw4JCQkoHfv3lZZ5PqVV17BmjVr8Prrr6Nt27bw9vaGRCLBs88+a/R7sTS+yx41c+ZMdO7cGV999ZXBOdepUwdyuRz//POPyefn5ubi0qVLaN26tdnHfLSuERXE5IrKpX79+mHFihU4duyYXhc+Y4KDg6FWq3HlyhU0aNBAtz0xMREPHz5EcHCwVWNTq9W4fv26rrUKAC5fvgwAuhm0fv75ZygUCuzcuVNvjZI1a9aU+PiBgYF4+eWX8fLLLyMpKQktW7bE//73P/Tu3Vt3rpcuXULXrl31nnfp0iWrvRYFj1OwFS8vLw+xsbGl/svf1q1bkZubi99++03vl9fS7tZkivb1enT2QVPbHpWZmYlff/0VQ4YMMfpr9quvvorvv/8eXbp0QWhoKADNxYOp90H7nhX1A0blypUNZswDYFHLpLmfhdDQUKjVasTExJi8kNYaOXIkJk+ejPj4eKxfvx59+/Yt1q/mgP3qsqXfEdpWnIIuX74MNze3QtfKmj59OtatW4d58+YZPBYaGgohBEJCQvS+z4wpSXdRc2nXBtN2+9XWZS8vr0LfB19fX3h6ekKlUpn9fj36egohcPXqVV0SVr9+fdStWxdbtmzBokWL4O7ubvH5PEqlUhm0hBU0YMAAvPTSS/jrr7+wcePGEh8PAH766SeMGjVKr7UsJyfH6OfaHNrPy5UrV/Q+L/fu3TOrld+YyMhIdO7cGfPmzcOMGTP0HnN3d0eXLl2wb98+3Lx50+jfsB9//BG5ubkWLbT8aF0jKohjrqhceuedd+Du7o4XXngBiYmJBo9fu3ZN182lT58+AIBFixbplVmwYAEAzXgja1u6dKnu/0IILF26FE5OTnj88ccBaH79k0gker/w37hxA1u2bCn2MVUqlUE3Dj8/P1SrVk3Xpah169bw8/PD8uXL9boZbd++HRcuXLDaa9GtWzc4Ozvj888/1/tFc9WqVUhNTbXJa14Y7a+tj3Z5sUYyaw3VqlVD48aN8d133+ldXB08eBBnz54t8vmbN29GZmYmJk6ciEGDBhnc+vXrh59//hm5ublo2bIlQkJCsGjRIoMLKO3r4+vri06dOmH16tW4deuW0TKA5uI2NTVV71fj+Ph4bN682exzN/ez8NRTT0EqlWL27NkGv6g/+qv50KFDIZFI8Nprr+H69esYPny42fE8yl512dLviGPHjul1H719+zZ+/fVX9OjRo9AW6NDQUAwfPhxfffUVEhIS9B4bOHAgZDIZZs2aZfAaCyF0LUKA5iLXnLGLxbV+/Xp8/fXXaNu2re57tFWrVggNDcWnn35qNCnRjl+SyWR4+umn8fPPPxv9wcDYOKfvvvtOr6vZTz/9hPj4eL0eAB988AHu37+PcePGGZ3+35LWnP379yMjIwPNmjUzWcbDwwPLli3DBx98gP79+5u978LIZDKDOJcsWWL2chuP6tatG5ycnLBkyRK9/T7699dS2rFXxrp1Tp8+HUIIjB492mDa9tjYWLzzzjsIDAzESy+9ZNaxjNU1ooLYckXlUmhoKNavX48hQ4agQYMGGDlyJBo3boy8vDwcPXoUmzZtwujRowEAzZo1w6hRo7BixQo8fPgQkZGRiI6OxrfffounnnrK6l2lFAoFduzYgVGjRiEiIgLbt2/HH3/8gWnTpul+Qe7bty8WLFiAXr16YdiwYUhKSsIXX3yBOnXqFNq9oTDp6emoUaMGBg0ahGbNmsHDwwN79uzB8ePHdb9KOjk5Yd68eRgzZgwiIyMxdOhQJCYmYvHixahVqxbeeOMNq7wGvr6+mDp1KmbNmoVevXrhiSeewKVLl/Dll1+iTZs2JbrYLY4ePXrA2dkZ/fv3x0svvYSMjAysXLkSfn5+Jgfzl7aPP/4YTz75JNq3b48xY8bgwYMHWLp0KRo3blzor9mApktg1apV0a5dO6OPP/HEE1i5ciX++OMPDBw4EMuWLUP//v3RvHlzjBkzBoGBgbh48SLOnz+PnTt3AgA+//xzdOjQAS1btsSLL76IkJAQ3LhxA3/88YdugP6zzz6Ld999FwMGDMCrr76KrKwsLFu2DPXq1TNrnBhg/mehTp06eO+99/Dhhx+iY8eOGDhwIFxcXHD8+HFUq1YNc+bM0ZX19fVFr169sGnTJlSqVKlECZC96rKl3xGNGzdGz5498eqrr8LFxQVffvklAGDWrFlFHuu9997D2rVrcenSJTRq1Ei3PTQ0FB999BGmTp2KGzdu4KmnnoKnpydiY2OxefNmvPjii3jrrbcAaBKdjRs3YvLkyWjTpg08PDx0CUDnzp1x8OBBs5ONn376CR4eHsjLy0NcXBx27tyJI0eOoFmzZti0aZOunFQqxddff43evXujUaNGGDNmDKpXr464uDjs378fXl5e2Lp1KwBg7ty52L9/PyIiIjBu3Dg0bNgQKSkpOHXqFPbs2YOUlBS9GKpUqYIOHTpgzJgxSExMxKJFi1CnTh2MGzdOV2bYsGE4d+4c5syZg+joaDz77LMICQlBZmYmzp07hx9++AGenp4GraapqalYt24dAM1ENJcuXcKyZcvg6upqtHtmQYWNLyto9OjR+PbbbxEbG1vommP9+vXD2rVr4e3tjYYNG+LYsWPYs2cPqlatatZxHqVdC3HOnDno168f+vTpg9OnT2P79u3w8fEp1j4BTetVZGQkDh48aPBYp06d8Omnn2Ly5Mlo2rQpRo8erftOW7lyJdRqNbZt22a09drcuqaVn5+ve+8eNWDAAKu0YJIDKL2JCYlK3+XLl8W4ceNErVq1hLOzs/D09BTt27cXS5YsETk5ObpySqVSzJo1S4SEhAgnJycRFBQkpk6dqldGCNNT2qLA1LBa2mm2P/nkE9027ToY165dEz169BBubm7C399fzJw502D66FWrVom6desKFxcXERYWJtasWWNyCmtT06ujwFTsubm54u233xbNmjUTnp6ewt3dXTRr1szomlQbN24ULVq0EC4uLqJKlSriueeeE3fu3NErY2o1emMxmrJ06VIRFhYmnJychL+/v5gwYYLB9N/Wnord1JTEv/32m2jatKlQKBSiVq1aYt68eWL16tUCgIiNjdWVMzUV+6ZNm/T2p33/16xZo9tmair2gnVEq+B7p7VhwwYRFhYmXFxcROPGjcVvv/0mnn76aREWFmbydUhMTBRyuVxvDZxHZWVlCTc3N71phQ8fPiy6d++uqytNmzYVS5Ys0XveuXPnxIABA0SlSpWEQqEQ9evXN1ivbdeuXaJx48bC2dlZ1K9fX6xbt87iemzuZ0EIIVavXq2ru5UrVxaRkZFi9+7dBuW0U2e/+OKLJl+XRxVWF82py8bWiTKXsfps6XfEunXrdOVbtGiht0yEEIbTWBeknWbaWPw///yz6NChg3B3dxfu7u4iLCxMTJw4UVy6dElXJiMjQwwbNkxUqlTJYPmAVq1aiYCAgCJfA+25aW8KhULUqFFD9OvXT6xevdrg+1rr9OnTYuDAgaJq1arCxcVFBAcHi8GDB4u9e/fqlUtMTBQTJ04UQUFBwsnJSQQEBIjHH39crFixQldG+3n/4YcfxNSpU4Wfn59wdXUVffv2NViWQOvAgQNi0KBBIjAwUDg5OQkvLy/RunVrMXPmTBEfH69X9tGp2CUSiahSpYp44oknxMmTJ/XKFvZ+FWTse+/pp58Wrq6uBnX0UQ8ePBBjxowRPj4+wsPDQ/Ts2VNcvHhRBAcH602bbioW7etVsK6pVCoxa9YsERgYKFxdXUXnzp3FuXPnDPZpiqnvCu2xTL0mhw4dEk8++aTw8fERTk5OombNmmLcuHHixo0bBmWLU9cKm4r90b8jVL5JhLDhKEMi0jN69Gj89NNPRbY0EJmrefPm8PX11c1ARub59ddf8dRTT+HQoUO6qe+p9KWnp6NKlSpYtGgRJk6caO9winTgwAF06dIFmzZtsspsfPbi7++PkSNHGp2tkIhKhmOuiIgcgFKpRH5+vt62AwcO4O+//0bnzp3tE5QDW7lyJWrXro0OHTrYO5QK7dChQ6hevbpedzqyrfPnzyM7OxvvvvuuvUMhKpc45oqIyAHExcWhW7duGD58OKpVq4aLFy9i+fLlCAgIMLq+Cxm3YcMG/PPPP/jjjz+wePHiUpnFjkzr27dvqU9gU9E1atTIogVzicgyTK6IiBxA5cqV0apVK3z99de4d+8e3N3d0bdvX8ydO7fYg8sroqFDh8LDwwPPP/88Xn75ZXuHQ0RE5QzHXBEREREREVkBx1wRERERERFZgV2Tq0OHDqF///6oVq0aJBKJWQukHjhwAC1btoSLiwvq1KmDb775xqDMF198gVq1akGhUCAiIgLR0dHWD56IiIiIiKgAu465yszMRLNmzTB27FgMHDiwyPKxsbHo27cvxo8fj++//x579+7FCy+8gMDAQPTs2RMAdIsULl++HBEREVi0aBF69uyJS5cuwc/Pz6y41Go17t69C09PTw52JiIiIiKqwIQQSE9PR7Vq1SCVFtE2ZddVtgoAIDZv3lxomXfeecdgAcMhQ4aInj176u6Hh4frLS6nUqlEtWrVxJw5c8yO5fbt24UuBMcbb7zxxhtvvPHGG2+8Vazb7du3i8wjHGq2wGPHjqFbt25623r27InXX38dAJCXl4eTJ09i6tSpuselUim6deuGY8eOmdxvbm4ucnNzdffFv3N8xMbGwtPT0yqxK5VK7N+/H126dIGTk5NV9kkVB+sPFRfrDpUE6w+VBOsPlURZqj/p6ekICQkxKy9wqOQqISEB/v7+etv8/f2RlpaG7OxsPHjwACqVymiZixcvmtzvnDlzMGvWLIPtx44dg5ubm3WCB+Dm5oaoqCir7Y8qFtYfKi7WHSoJ1h8qCdYfKomyUn+ysrIAwKzhQg6VXNnK1KlTMXnyZN39tLQ0BAUFoUePHvDy8rLKMZRKJXbv3o3u3bvbPfsmx8P6Q8XFukMlwfpDJcH6QyVRluqPJQtvO1RyFRAQgMTERL1tiYmJ8PLygqurK2QyGWQymdEyAQEBJvfr4uICFxcXg+1OTk5WfzNtsU+qOFh/qLhYd6gkWH+oJFh/qCTKQv2x5PgOtc5V27ZtsXfvXr1tu3fvRtu2bQEAzs7OaNWqlV4ZtVqNvXv36soQERERERHZgl2Tq4yMDJw5cwZnzpwBoJlA4syZM7h16xYATXe9kSNH6sqPHz8e169fxzvvvIOLFy/iyy+/xI8//og33nhDV2by5MlYuXIlvv32W1y4cAETJkxAZmYmxowZU6rnRkREREREFYtduwWeOHECXbp00d3XjnsaNWoUvvnmG8THx+sSLQAICQnBH3/8gTfeeAOLFy9GjRo18PXXX+vWuAKAIUOG4N69e5gxYwYSEhLQvHlz7Nixw2CSCyIiIiIiImuya3LVuXNn3bTnxnzzzTdGn3P69OlC9ztp0iRMmjSppOERERERERGZzaHGXBEREREREZVVTK6IiIiIiIisgMkVERERERGRFTC5IiIiIiIisgImV0RERERERFbA5IqIiIiIiMgKmFwRERERERFZgV3XuSKiCu7hbSAr2fTjblWBSkGlFw8RERFRCTC5IipvHCVheXgbWNoKyM81XUbuAkw6WTbiJSIiIioCkyui8sSREpas5MLjBDSPZyXbP1YiIiIiM3DMFVF5YknCQkRERERWxZYrqlhKu8uco3TRAxwrVsDx4iUiIqJyj8kVVRyl3WXOkbro2SPWolrYtPZ9BLQeA4R2BZxcNdsc6bUlIiKiCoPJFTme4rZYlPYYH3uMKRJq88r9uQCo3wuo0QaoElq6sapVwN8bgD0zzSt/dbfm5uwB1O0BNHwS8PTneC0iIiIqc5hckWNhi4VxOWnAme+BI4vNK3/hV80NABSVAJ96NgtNRwjg6h5g90wg6bz5z2vyDHDzGJB2Bzj/i+Ymc7FdnERERETFxOSKHEtxWliEALJSgPtXbB+fNRVsocvPh3fWDSD+b0D+78fWrSqgVgJRK4DT64C8dPP33XQI8PAWcPc0kPMQuBNtvViNyUgAjn0BxB7S3Fd4A82GAVHLit5320nAwJVA3CkgZgsQ8yvw8GbJ4iUiIiKyASZXVD7t+whQZgNpcUDaXUBl5vgeU4rTFTEj0bx9H18FNOgP1GgNuFX573gFWuicAHQGgEsFnieR6ncD9KkPNOir6fJXlMdeBqo1B1RKIPEccH4LcGRR0c+LWg7U76PpTugVaDTWQsmcgYiXgA6TgbxM4OTqolsh3aoCEglQo5Xm1n02cHYT8Mu4oo9HREREVIqYXFH5dHW34TZFJU0rTVG2vQW0GA6E9QPcfSzriqjOBy78pmldiTtpXqynv9PcAM34pxptAM+AopMVbWJVpzvw2ATNhA+pdzQtROYkLAAgcwKqtQAgMS+5+vsHzQ0AvGpoEkKvauYlVnV6AP0+AyrV1Nx3q6J5zSxNWiWS0unGSERERGQhJlekUd6mtY6Y8O+Ff3XNxb9nAJB0AVgRWfRz7xzX3H5/AwhuD1Q3o1UmPxdY+xSQfNXyWOv2AlKuAclXNP+mXDP/uYPXAg2f+O9+paDiJSzmatAfSLmhGTOVdgeIuWP+c7u+919ipVUpyLHqFREREVEhmFxR+Zwkotmzmm5vxdFmnGYMUvzfwI0/NTdzJF/VdNWr1VEzo13lEGDdgKKf12WqJtbsB5rWrjsngKt7zRsH9WiyAtg2Yen4libW3AzNeK07x4Fr+8x/jYiIiIjKMSZXZJ8pw+3BraomSSwqiWz/muY8U2KBC1uBM+uBexeK3n/Ht4HHxmu6EgKapNWc42m76LlWBup009zq9TKvlc1azH1ttLG6eAAhHTW30K6lGytgXryyAvESERERlQImV+RYSjLjn6Vd5qqEAO1fBUI6mZc8NOj3X2JVnOPZkyPFCpiOV5kNbH5JM5tgteaaLqFEREREpYTJFTmO9ERg1/Siy8kLabEo7TE+jjSmyJFiBUzH+9wmYEUX4HYUcGCuZqwXERERUSlgckWOQZkDbHxOs15SpWDgyS8AF0/jZctSCwuVPt/6QP/FwC8vAIfmA0HhQN3u9o6KiIiIKgAmV1T2CQH89opm8gRFJWDEZqBqqL2jsi1Lx0DZU1mMtekzwK1jwIlVmvWwXvqTCTcRERHZHJMrKvsOLwDO/ghIZMDg70o/sbJH8vDImCJlfj6OHDmC9u3bw0ku/y+uspAwlNXxWr3mAHdPaWY13DQaGLMdkDuXbgxERERUoTC5IgDC3gGYdmErsHe25v99PgFql/KsdID9koeCY4qUSqS6xQGBzQAnJ+sexxrK4ngtuQvwzLfAV52AuBPA7veB3vPsHRURERGVY0yuCLh+sOgyEingVsX2sRQU/zfwy4ua/4e/CLR5vnSPX1BZTB6oaJWDgQFfAT8MAaKWAzUfAxqZsfYYERERUTEwuaro0u4Cf36m+f9jLwNNh+g/fv8ysHkCIPKB6weAliNLJ670ROCHoYAyS7OOUs85pXNcKn/q9wI6vAEcXgj8Ognwbwz41LV3VERERFQOSe0dANmREMDvbwC5aUD1VkCPjzRrAxW8NR0MPP6+pvz2KUDyNdvHpcwBNgwD0uKAqnWBQWsAGX8HoBLoMh0I7gDkZQA/jgTysuwdEREREZVDvGKtyM7+BFzeAcicNVObS2XGy7V7BbiyG7h5WDPz2tidgMwK434e3jYyjkkA+z7SjJFx8QKGbQRcK5X8WFSxyeTAoNXAVx2BpBhg0xigyxQAEsOyZWWiECIiInI4TK4qqowkYPvbmv9HvgP4NTBdVioDBiwHlrUH4k4Chz4Bukwr2fEf3gaWtip8Bj5ltibxI7IGT39N99KfxwJXdmhuxshdNBOYMMEiIiIiC7FbYEW17W0g+wEQ0ARo/3rR5SsFAf0WaP5/6BPgVlTJjp+VXHhiBQBqZeEz9BFZypxp/PNzWe+IiIioWJhcVUQxvwExWzTrRj35hfld/JoMApoMBoRa0z0wN92mYRIRERERORImVxVNVgrwx5ua/3d4Q7NukiX6fgp41wQe3gS2v2v9+IiIiIiIHBSTq4pm5zQgMwnwqa8Za2UphTcw8CsAEuDM98D5LdaOkIiIiIjIITG5qkgu7wL+/gGARNMdUO5SvP0Et9O0egHA1tc0a2VZ4uEtYN//indsIiIiIqIyislVRZGTBvz+uub/bScCQW1Ktr/OU4HA5kDOQ2DzeECtLvo52Q+AXdOBJa2Bq7tKdnwiIiIiojKGU7FXFLtnaBblrRwCdHmv5PuTOwNPf62Znj32ILB7umayi0e5VQXcfYHoFcCfnwI5qZrtgS2A+NMlj4OIiIiIqIxgclURXD8InFyj+f+TSwFnN+vsV64AhErz/2NfaG6Pkso1yVV6vOa+X0Og+2zAtz6wtHXh07HLXTTJGZG1uFXV1CvWOyIiIrIBJlflzcPb+mv05GcDv7yo+X+DJ4FKwdY7VlYyoM4vvIw6X5NYeVXXtJg1e1azKDGgWai1sPWE3KpyIVeyrkpBrHdERERkM0yuypOHt4GlrUz/Kn/hV+DKDs3FZWlePIa/qGmtcnLV314piBexVPpY74iIiMhGOKFFeZKVXHh3J0DzeGG/2ttC8+cMEysiIiIionKGyRUREREREZEVMLkiIiIiIiKyAiZXREREREREVsDkioiIiIiIyAqYXFHxadcMKgzXDCIiIiKiCoJTsVPxcc0gIiIiIiIdJlfliVtVQCovfGFfa7ckcc0gIiIiIiIATK7Kl0pBgF9DIOEfIGI80GyoYRm2JBERERER2QSTq/IkMUaTWEnlQMc3AQ8/e0dERERERFRhcEKL8uT0Ws2/9XszsSIiIiIiKmVMrsqL/Fzg7x80/285yr6xEBERERFVQEyuyouLvwPZDwCv6kBoV3tHQ0RERERU4TC5Ki9Ofaf5t/lzgFRm31iIiIiIiCogJlflwYMbwPUDACRAi+F2DoaIiIiIqGJiclUenF6n+bd2Z6BysF1DISIiIiKqqJhcOTq1Cjj9veb/LUfaNxYiIiIiogqMyZWju7oXSL8LuFYBwvraOxoiIiIiogqLyZWjO/Wt5t9mQwG5i31jISIiIiKqwJhcObL0RODyDs3/W46wbyxERERERBUckytH9vcPgDofqBEO+DWwdzRERERERBUakytHJcR/a1txIotyLyohCovTFiMqIcreoRARERGRCUyuHNXNo0DKNcDZA2g0wN7RkA0JIbDkzBLcU9/DkjNLIISwd0hEREREZASTK0elbbVq/DTg4mHfWMimNl/ZjJiUGABATEoMjt49aueIiIiIiMgYub0DoGLIfgjEbNH8v+Uoe0ZCNnLt4TXsurkLu27swtWHV3XbpRIplpxegnbV2kEikdgxQiIiIiJ6lN1brr744gvUqlULCoUCERERiI6ONllWqVRi9uzZCA0NhUKhQLNmzbBjxw69Mh988AEkEoneLSwszNanUbrObgLycwC/RkD1lvaOhsx07O4xPLnlSRy7e8zgMSEELqVcwpLTS/DElifw1K9P4cszX+olVgCgFmqcTz7P1isiIiKiMsiuLVcbN27E5MmTsXz5ckRERGDRokXo2bMnLl26BD8/P4Py06dPx7p167By5UqEhYVh586dGDBgAI4ePYoWLVroyjVq1Ah79uzR3ZfLy1kDXcGJLNh64RCEEFh8ajGup17H4lOL8VjgYwCAmOQY7Lq5C3tu7sGt9Fu68k5SJ7QNbItrqdcQnxkPtVDrHmPrFREREVHZZNesY8GCBRg3bhzGjBkDAFi+fDn++OMPrF69GlOmTDEov3btWrz33nvo06cPAGDChAnYs2cPPvvsM6xbt05XTi6XIyAgoHROorTdPQMk/APIXICmg+0dDZnp6N2jOJ98HgBwPvk83jjwBi4kX8DdzLu6Mi4yF7Sv1h7da3VHZI1I/HPvH4zfM95gXwVbr9pXb19q50BEREREhbNbcpWXl4eTJ09i6tSpum1SqRTdunXDsWOG3aYAIDc3FwqFQm+bq6srDh8+rLftypUrqFatGhQKBdq2bYs5c+agZs2aJmPJzc1Fbm6u7n5aWhoATTdEpVJp8bkZo91PSfcnPfENZADU9ftA5eQJWCk+Ml9UQhTmn5iPd1q/g4iAiELL5qvzcfXhVcw6Oktv+95bewEACpkCHat3xONBj6NDtQ5wc3IDoGnp+vzU55BAAgHD2QElkODzU5+jjW8btl5Roaz13UMVE+sPlQTrD5VEWao/lsQgEXaa1/nu3buoXr06jh49irZt2+q2v/POOzh48CCiogzX8xk2bBj+/vtvbNmyBaGhodi7dy+efPJJqFQqXXK0fft2ZGRkoH79+oiPj8esWbMQFxeHc+fOwdPT02gsH3zwAWbNmmWwff369XBzc7PSGZecTJ2LnmdfhZM6G0fqvIv7no3sHVKFI4TA8ozliFPFobqsOsZ7jNdLbtLV6bidfxu3VbdxO/824lRxUML4B7KzS2d0UnSCs8TZ4LF8kY9P0z5FhsgwGYuHxANveb0FuaScdXslIiIiKkOysrIwbNgwpKamwsvLq9CyDnVVtnjxYowbNw5hYWGQSCQIDQ3FmDFjsHr1al2Z3r176/7ftGlTREREIDg4GD/++COef/55o/udOnUqJk+erLuflpaGoKAg9OjRo8gX0FxKpRK7d+9G9+7d4eTkVKx9SP7ZCPnf2RCVghE++E1AYvf5SCqco3ePIu5AHAAgThWHB7UfAADOJp/F2ftnkZCVYPAcKaRQQ62/TSJFknsSnuz5pMmWp/DMcDzI1ew/Pz8fUX9FIeKxCN0YwiqKKvB387fauVH5ZI3vHqq4WH+oJFh/qCTKUv3R9mozh92SKx8fH8hkMiQmJuptT0xMNDleytfXF1u2bEFOTg6Sk5NRrVo1TJkyBbVr1zZ5nEqVKqFevXq4evWqyTIuLi5wcXEx2O7k5GT1N7NE+/z7ewCApOUIODkbxku2pVKr8Nnpz/S66i04vUCvjFQiRZ1KddDUtyma+jSFSqgw65hhq6haqBGTEoPj946bHDcVVCkIQQgCoPmCuS2/jSZ+Tez+BUOOyRbfZ1RxsP5QSbD+UEmUhfpjyfHtllw5OzujVatW2Lt3L5566ikAgFqtxt69ezFp0qRCn6tQKFC9enUolUr8/PPPGDzY9MQOGRkZuHbtGkaMGGHN8Evf/SvAraOa1qrmz9k7mgpDpVbhVNIp7LqxC9tjtyM1L9WgTFOfpuhSswua+jRFI59GcHdyB6DpQjj0j6GFjpvirH9ERERE5YdduwVOnjwZo0aNQuvWrREeHo5FixYhMzNTN3vgyJEjUb16dcyZMwcAEBUVhbi4ODRv3hxxcXH44IMPoFar8c477+j2+dZbb6F///4IDg7G3bt3MXPmTMhkMgwdOtQu52g12unX6/YAvKrZN5Zy4tjdY5gbPRdTwqegbbX/xv0p1UocTziOPTf3YO+tvUjJSTG5D6lECpVQ4fnGzxskSEq1EgmZCUYTKwAQEEjITIBSrYSzzHDcFRERERE5FrsmV0OGDMG9e/cwY8YMJCQkoHnz5tixYwf8/TXjSG7dugWp9L9xRTk5OZg+fTquX78ODw8P9OnTB2vXrkWlSpV0Ze7cuYOhQ4ciOTkZvr6+6NChA/766y/4+vqW9ukV38PbQFbyf/dVyv+Sq1odNY9XCrJPbOXEo+tOtfJrhb8S/sKem3uw7/Y+pOb+10Ll7eKNhlUa4li84SyWhU2L7ixzxoZ+GwpNzqooqjCxIiIiIion7D6hxaRJk0x2Azxw4IDe/cjISMTExBS6vw0bNlgrNPt4eBtY2grIzzX++K73gH2zgUknmWCVwKPrTnXY0AHZqmzd41UUVdC1Zld0D+6O1v6tMXL7yGJ17wtwD0CAezldc42IiIiI9Ng9uaJHZCWbTqy08nM15ZhcFUtabhqmH5muty1blQ0fhQ+6BXdDj1o90NKvJWRSGQAgT5XH7n1EREREVCQmV1RhKFVK/Hj5Ryw5vQSZykyDx2e3n42ONToabGf3PiIiIiIyB5MrKvfUQo1dN3Zh8anFuJNxx2gZqUSKL858gQ7VOxiduY/d+4iIiIioKEyuqFyLjo/GgpMLdOOrvJy9kJZnuBBcYRNTEBERERGZQ1p0ESLHc+XBFby852U8v+t5nE8+Dze5G15u9jKqe1SHBMbXlNJOTCGE8bFVRERERESFYXJFDu3Y3WN4csuTOHZXM016QmYC3j/yPgZtHYQ/4/6EXCLHs/WfxbaB2/B8k+eRlJVk1sQURERERESWYrdAclgF16paeHIh/rr7F76/+D1yVZrZFrsHd8drLV9DsFew7jmcmIKIiIiIbIXJVVnjVhWQuxQ+HbvcRVOugiu4VtWFlAu4kHIBANDSryUmt56MZr7NDJ7DiSmIiIiIyFaYXJU1lYI0CwRnJZsu41a1wq9xpVKr8NFfH+ltc5Y549NOn6JzUGejM/4REREREdkSk6uyqFJQhU+eChMVH4XZx2YbTKuep8qDs8yZiRURERER2QWTK3IYlx9cxsKTC3E47rDRx6USKZacXoJ21doxwSIiIiKiUsfkisq8hMwELD29FL9d+w0CAlJIoYbaoBzXqiIiIiIie+JU7FRmpeWlYeHJhei3uR9+vfYrBAR6BPdAaKVQrlVFRERERGUOkysqEwquV5WnysN3579Dn1/6YPW51chV5aK1f2us77MeczrOQUpOCteqIiIiIqIyh90Cye4Krlc1+9hsqIUadzPvAgBCvUPxRqs30KlGJ904Kq5VRURERERlEZMrsruC61VpZwD0c/XDxBYT8UToE5BL9asp16oiIiIiorKIyRXZ1cXki3jr4Ft62/xc/bB1wFa4ObnZKSoiIiIiIstxzBXZRXxGPN47/B6e+f0ZZCgz9B5Lyk7C6aTTdoqMiIiIiKh42HJFpSo1NxWrzq3C9zHfI0+dZ7QM16siIiIiIkfElisqFbmqXHx7/lv0+aUP1pxbgzx1HupVrme0bMH1qoiIiIiIHAWTK7IptVBj67WteGLzE/j0xKdIy0tDnUp1sLTrUjhJnbheFRERERGVG0yuyGoKrlWlvf/s789i2uFpuJt5F35ufpjdbjZ+6v8T2lZri4TMBK5XRURERETlBsdckVUUXKtqXvQ8+Ln54Vi8JsnycPLA802ex3MNnoOr3BUAIIOM61URERERUbnC5IqsouBaVddSr+Fa6jXIpXI8W/9ZvNj0RVRWVDZ4DterIiIiIqLyhMkVlZgQAotOLtLb5u3sjfV916OmV037BEVEREREVMo45opKbN+tfbj44KLettS8VNxOv22niIiIiIiISh+TKyqR3PxcvHfkPYPt2rWqONsfEREREVUUTK6o2FRqFV7c/SIylZkGj3GtKiIiIiKqaJhcUbEIIfC/v/6HU0mnTJbhWlVEREREVJEwuaJi+eLMF9h0ZVOhZbhWFRERERFVJJwtkCz2/YXv8dU/XwEAXm3xKtpXb2+yLNeqIiIiIqKKgskVWWTb9W2YGz0XADCx+USMazrOzhEREREREZUN7BZIZjscdxjvHdbMDDgsbBheavqSnSMiIiIiIio7mFyRWc4kncHkA5ORL/LRJ6QP3g1/FxKJxN5hERERERGVGUyuqEhXH1zFxL0TkZ2fjfbV2+Oj9h9BKmHVISIiIiIqiGOuqFB3M+7ipT0vIS0vDU19m2JB5AI4yZzsHRYRUYmp1ALRsSlISs+Bn6cC4SFVIJPatkW+ohzTkfA9sQ2VWiAqNgUn70tQNTYFbev4ldlzZB2wjYpwjsYwuSIDx+4ew9zouZjYfCKWnF6CpKwkhHqH4svHv4Sbk5u9wyMiKrEd5+Ixa2sM4lNzdNsCvRWY2b8hejUO5DErCL4ntqF/jjJ8d+VEmT1H1gHbqAjnaAr7dpEeIQQWn1qM66nX8d7h93Aj7QYC3QOxvPtyeLt42zs8IqIS23EuHhPWndL7ow8ACak5mLDuFHaci+cxKwC+J7bhSOfIOmAbFeEcC8PkivQcvXsU55PPAwByVDnwcPLAiu4rEOAeYOfIiIhKTqUWmLU1BsLIY9pts7bGQKU2VoLHLC/4ntiGI50j64BtVIRzLAqTK9IRQmDJ6SV62/zc/BDsFWyniIiIrCs6NsXg19SCBID41BxEx6bwmOUY3xPbcKRzZB2wjYpwjkVhckU6BVuttK6nXsfRu0ftFBERkXUlpZv+o1+ccjymY+J7YhuOdI6sA7ZREc6xKEyuCIDxVisAkEqkWHJ6CYQov823RFRx+HkqzContdI6fvkqNc7eSTWrrLmxWXNf1jymIzH/9XGxyvFi7qZh1eFYM4/pmO9Jbr4Kx2+Y1xph73NUqQUuxqebVdYen8uq7s5WO2ZpS81WmlXO3nXAlphcEQDjrVYAoBZqnE8+z9YrIioXwkOqwMej6AuXyT+ewcfbLiA1y7wLhUcJIbDrfAJ6LjqEr824qA701kxTbC1talWGm7OsVI/pSFrWrAQXedGXQJ/tuoRTtx4U+zhxD7Mx+ccz6LvkT/xjZpL944lbiHuYXexjlja1WuDXM3F4/LODWPfXrSLL27veHbp8D/2WHMayg9eKLGvtWMNDqsC9iM8lAMz49Rx2xyQ61A/b1+9lYMK6k5jxq+G15KMCvFzK9XcPp2Ink61WWhJIsOT0ErSr1g4SK/2aS0RkD3cfZiMvX230MQk04wHq+XvgcmIGVhy6jo3Hb2Nil1CMbFsLCqf/LooKW7/l1K0HmLPtAo7f0FyUV3ZzQrcG/vjp5B0AMDrQu21oVauu//L53ivIylMVWmZoeE2brTlTlte3EULg/V/PIbeIeiCXSnDi5kMM/PIoejcOwNs966O2r4euXGHnmJqlxJcHrmLN0Ru6+tavaSAiQqroLj5NXTZvPn0Xf5xNwJh2tfBy5zrwdvtvbcmyth7Tkav3MWf7BZyLSwOgaenr0dAf30fdMnmO3Rr626XenYtLxdztF3H46n0AgKdCjsfD/PHrmTiTsbYIqmTVWFcdvo5ME59Lbb1zd5bh+v0sjPvuBNrUqoypfRqgZc3KZp2jrRR2zHvpufh87xWsj74FlVpAKgEeq10VR68l687pUZ4KJyhVasikRSeajojJFUGpVuJuxl2TjwsIJGQmQKlWwlnmuE3VRFSx3UvPxYhVUUjLyUf1SgrkqwUS03J1jwf8uwZLz0YBOHDpHuZuv4hLien4eNtFfHv0Jt7sUQ9PNa+OXTEJRtdveSmyNqKup2D7uQQAgItciuc7hGB851B4KZzweAM/g+d5KuRIz8nHL6fi0LZ2VTzTOqjE57nmSCw+33cVADAsPAj7L93TO6aLXIrcfDVWHrqOrmF+aFzdustslPX1bebuuIgfT9yBVAK82Kk2fj1zVy9WbT1oFlQJC3dfxk8n72D7uQTsiknEsPCaePXxujh5M8XoOU7tHYbEtFws3X9V1z3qsdpVMLV3AzQLqgQA8PV0Mfn6BHq7Ys72C/jregq+OnQdG47fxqQudTCibTAOXEoqM+sxPd8hBH9euY+Dl+8BADxc5BgfWRtjO4TAzVmODnV9DJ7n7iJDZq4K3/91Ex3r+KBHI+vOQmwq1old6uDEjRRsOaO5znGWSTGybTAmdqmDyu7O6NXY3+B53q5OSM1WYtu5BKw5Eosx7UNKHN+mE7fx8baLAICBLarj2PVko/WuXR0fLD9wDasOx+L4jQd6yf3lxPQyUwfe7RWGm8lZWHHomi5h7Brmh3d7haF+gKfR5/l4OCMjJx9XkjLwyg+nsey5lpDLyl8nOolwpDbHUpKWlgZvb2+kpqbCy8vLKvtUKpXYtm0b+vTpAycnp6KfUMo+OvYRNl7eiPqV62N2+9kGj1dRVOF07HZU1usPlV2sOxppOUoMXfEXzt9NQ43Krvh5Qjv4eLgU+guwSi3w86k7WLDrMhLSNBcINSq54k4RXbakEmBQqxp4o3s9BHq76j1m7Bfg+Tsu4qtD1yGTSrB8eCt0b+hf7PP89UwcXttwBgDwZvd6eOXxugbHbFrDG2O+OY7o2BT4eDjjp/HtUMvH3ej+LK0/2vVtHr2w0L6qy4a3tGuCteLQNd0F7vxBTTG4dVCRLQGXEtIxb8dF7LuYBOC/5LQo9f09MaV3GDrX9zXo9VHYMYUQOHDpHuZsv4DLiRkAgCpuzkjJyjM4hi1fV1PvZUFyqQTDHwvGK13roKqH/vg0lVrg2NUk7PozCj06RuCxUF9M/eUsNp28A2e5FN+NDcdjtauWWqwA8FTzanizR30EVXEziPXR9+PL/Vfx2e7LAIDFzzbHk82rFzu+3TGJGL/uJFRqgZc61cbUPg2KrHfxqdm65F4tNN8rxmYvt3cdAIBmNbwxtU8Dg/fT2Dkev5GCkaujkZevxuDWNTDv6aYme0WVpb9fluQGTK6MqGjJVaYyE903dUe6Mh2LuyxG15pd7R0SPaIs1x8q21h3gBylCqNWRyPq32Ri0/h2CDGRTJh6/uojsfhy31VkFNHVzkUuxeaX26NhNfP/dggh8M5P/+guOteODUdEMS46919KwrhvTyBfLTC6XS3M7N/Q5EVLWo4Sz371F2Li0xBUxRU/j28HPy/DAeaW1B+VWqDDvH0mp2GWQPPr/OF3u9qli+CmE7fx9k//AACm9g7DS5GhFj3/2LVkzNkWg3/+7QJnilQCfDywCZ5pFVSi89Qm95/tvITE9FyT5Wzxuhb1XgKAwkmKP17piFA/D5NlHq0/+So1Jnx/CrtjEuHpIscPLz5W4pZTc2J1lkux6aW2utZDcwihWa/pm6M3IJdKsHJUa3Sp72dxfFHXkzHi32TimVY1MH+Q6WTCmEsJ6Zi7/QL2X7pnsoy96oBMIsHCIc3Qv1k1i85p5/kETFh3EmoBvBRZG1N7NzBariz9/bIkNyh/bXFksZ8u/4R0ZTpqedVC56DO9g6HiMhq8lVqvPrDaUTFpsDDRY5vxoRblFgBgMJJhpc718GCIc2LLJubrzZ7tiwtiUSCOQOboFsDf+Tlq/HCtycQc7fwC/hHnbz5ABPWnUS+WuDJ5tUwo5/pxAoAvBRO+HZsOIKruuF2SjZGro4u9uQdWmV5fZvdMYmY8stZAJqugJYmVoBmXNzUPsYvAgtSCyC4inuJL3JlUgkGtw7C/EFNCy1nj/WYACBHqUZSIUmfMXKZFEuGtkB4SBWk5+Zj9Jpo3LifWZJQzYo1L19d5BjER0kkEszo1xBPNq+GfLXAhHUncfKmZZObxNxNwwvfnkBevhrdGvhjzsAmFo9drx/giRc7FV5f7VUHVELA11Nh8Tn1bBSAuQM19fqrg9ex4lDRk4s4EiZXFZxSrcS6C+sAAKMbjYZUwipBROWDEALvbT6HXTGJcJZLsXJk6xL9Sp6tNO/irDjrt8hlUiwd9t9F58jV0biZbN5F5+XEdIz95jhylGpE1vPFJ4OaQWrGhb2vpwvWjo2Ar6cLLiak4/lvjyPbwgvQgrRdJ4tS2uvbRF1PxsT1p6BSCwxqVQNTe4cVe1/mJhPWPMeHZibr1jxmog3fS4WTDF+Pao2GgV64n5GHEaujkGTm8YzGYMNYpVIJPhnUDJH1fJGjVGPsN8dxOdG8KdxvJmdi5OpopOfmIzykCpYOa1Hs8UXlcU2uwW2CMOXfz+LH2y5i04nbxdpPWcQr6QpuR+wOJGQmoKqiKvqF9rN3OEREVjNvxyVsPHEbUgmwZGgLtA0t2fgOW68dpb3obBDohfsZuRixKrrIC8fbKVkYsSoKqdlKtKxZCcuGt4SzGVOMa9Ws6obvxobDUyHHiZsPMHH9KShVRY8nKkgzRigJC3ZdMqt8aa7h82jLwdxitBwUZI/1w8zdV1FT75vr8JX7WLTnsllli3ueRltOLWzxBYCzd1Kx4s/rZpUtbqzOcimWDW+JljUrITVbiRGronA7JavQ5ySl5WDEqmjcz8hFg0AvfD2qtd5so5YyN/aHJWx91kpKz8HWv01PdFZQSer6+MhQvNipNgBgyi9nsTsmsdj7KkuYXFVgQgisOb8GADC84XC4yKyzWCIRkb2tPHQdy/9dx2bOwCboaYWZycJDqiDQWwFTl+YSlHxdHM1FZxsEV3XDrZSsQi8672fkYuTqaCSm5aKevwdWj24DN2fLJwFuEOiF1aPbwEUuxb6LSXj3p3+gNjZy3ohzcakYvioKo9ccx+0H2SZfm4Jm/HoOu84n2HwNH2u2HGiVRh2w9JhakzeewVcHryHHzBbWR8XcTcPI1dEYvioKN5KzCj2eNc7z0ZbTFyxoOb2dkoVXfziN/ksP43wRXWitEaubsxyrR7dBPX8PJKZpPnf3M4y3YqZmKzFydTRupWQhuKobvh3bBl6Kko0XMrcOzPztPMavPYlr9zKKdZzM3Hws3H0ZnT85gD0Xkgota626PrV3GAa1qgGVWmDi+lOIup5cov2VBUyuKrCjd4/iyoMrcJW74pl6z9g7HCKyMpVaICo2BSfvSxAVmwKVmRfMJT3msWvJ+PVMHI5dS7bLMTeduI3/bbsAAHi3VxiGtKlplePIpBLM7N8QAAwucrT3Z/ZvWOKxNn6eCr2LznHfnkBmbr7eOT7MysPoNdGIvZ+J6pVc8d3YCFRyK36LUJtaVbBseEvIpBL8cjoO/9t2Afkqtcn6czslC69tOI1+Sw7jyNVkOMukeKFDCD4Z1BQSmH59tGv4vLj2JJ5ZfsxgDEtx68+jz4t/mG3VlgOt0qoDlh6zeiUF0nNVmLP9Ih7/7CB+OXVHL0Eu7HUtuNDxocv34CSTYEz7WpqJF2x8ngVbTo/feIBJ608hR6kyGeuDzDzM3hqDrp8dwG//tqwMaFEdHz3V2OaxVnJzxndjI1C9kiti72di9JpopOco9V7bg5eT8MI3x3ExIV2XPFqjFdOcOtA+tCqkEmDH+QT0WHgI07ecxb1HurGaqgdKlRpr/7qJyE8OYPG/a+Q1C6qEyd3r2fx1lUgkmGtkzKk9/n5ZC2cLNKKizBb4ws4XEJUQhRENR+CdNu/YOxwqRFmsP1S22WOtobJyTK1xHUMwrU8Dqy9+XlrneSE+DYO/Oob0nHyD6b+dZVLkqdSo6u6MTePb6i1uWxK/nLqDyT/+DQDwdJEjPTdf91igtwJvdq+HCwnpWHvsJvL+7T746PTWhb0+Bdfw0Z5Pr0YBeKdX8dfwMXY8uVSCfLVAcFU3bBrf1qrd9Io6R3t8vro3DMAvp+5gwe7LuscbBHphau8wZOXlG33eWz3q41JiOr55ZKHjt3vWR3BVd6ucp7l/u6JjUzBiVRRy89VwdZIiW/lfXdeuH3bnYTaWHbiG9BxNnexY1wfv9grTjaMsrffk+r0MPLP8GJIz81DP3wNp2UokpOknMQonzayhDQKtcw2pVdQ5Xk5Mx/wdF3WtTm7OMrzYqTbGdayNP6/cM3hugLcCTzYLxO6YJFz/d2KRWlXd8HbPMPRpEgCJRFJqr2uOUoWRq6IRfSMFngo5FHIZ7hVoHbT3Wnmcir2EKkJydT75PJ79/VnIJDJsH7gdgR72X9iRTCtr9YfKNnusNVSWjqm17LmW6N3ENt9tRa1RYy1L9l7RrbVjTHGmFC/KWz+ewU+n4oos16GOD6b0DjM6SUhpreFTVB348MnGGNE2uMhzKY7SqgOWHDNHqcKaIzfw5YGruiTEHI8udGzJMQtjyd+u+Tsu4ssDRc8ap00aO9XztWqsljh7JxXPLD+KnELWO1tuozXdzDnHqOvJ+Hj7Rfx9+yGA/xYrL0xVd2e8+nhdDA2vaTBus7Re19RsJfos/hNxRtYStPdaeZbkBpZ3zqZy4Ztz3wAAeof0ZmJFVI6o1Jq1WYxdbApo/kDN2hqD7g0DrLoeSlk6Jv495uzfY9CjkfWOWZBMKinxBBlFUakF1kffKrTMN0dv4IWOta36uh65VviYB7lUgq9HtkbnMNNr/hT1+gR6u2L+oGZ4vkPtQtfw0b6/M387j5Y1Kxss8jzj1/OFLnD65YGrGBZR02HrgKXHVDjJMKFzKJ5tE4Ql+65g9ZEbhe5PLpXgq+Gt0LWBn8kW3tKq65tPF57QyyTAvKebYmDLGiZnwyyt96RhNS+4uciRk2+4sDNgm+88LXPOMaJ2VWx5uR22nU3A/B0XcDOl8IXPPVzk2PtmpMmuxaX1unq4yE1OqGOrvyW2wDFXFdCd9DvYdXMXAM3060RUfthjraGKcszSZs46M/ZY2yZfLeBihfFLgHlr+ABAYlouwj/ei1Yf7dHdwj/eW+TU6I5eB4qrsrszujcsehKXfLWAm4vc6l1nLWXemkpA9cpuZi0zYGvRsSlIyTSeWAFl4/tHIpGgb9NAfPRUkyLLZuTm40K8eVPM25Kmdcz0Z7osvK7mYHJVAX0X8x3UQo121dqhfpX69g6HiKyoPK6HUlaOWdoqyutq6/fIketASTjSZ8SRYgUcK96ULNNJYEFlIVZHel0Lw26BFczDnIfYcnULAGBM4zH2DYaIrCo1W1nk9LlaR68lo0fDALiWcG2c2PuZWB9106yy9lj7x9oTGZSmsrymkj2O+cO4CDxW+7+uSX9dT8bQlVFW239540ifEUeKFXCseBlr6WPLVQWz4dIGZOdno0GVBogIiLB3OERkBbn5Knz953VEfrLf7IUfNx6/jS6fHsCPx28Xa4rb+xm5mPHrOXRfcBBRsQ+KLO/v5WLVtX+a1vCGs8x09yBbrDdU2srimkr2PWZVSCQS3S08pGqpx+pI7PFeFpcjxQo4VryMtfQxuapAcvJz8MPFHwBoWq3s3ceaiMxjam0StVrg1zNxePyzg/jojwt4mKVEXT8PvNw51OTaJBIAY9oHo3olVySk5eCdn/9B78WHsO9iot6irqaOmZWXj8/3XkHk/P347thN5KsFutT3xfR+DYweU8tJKkVmnvmzlxUmX6XGaxvOIE9lPCm01XpDpa2srqlUVo5pj1gdiSO9Po4UK+BY8TLW0sep2I0or1Ox/3jpR3z414eo7lEdvw/4HXIpe4U6irJQf8g+TK0xMqR1EPZcTMS5uDQAmpahyd3r4emWNSCXSYtcmyRHqcLaYzexdP9VpGYrAQARIVUwrU8DxKdmG66H4qVA1zA/7L6QqFuYsmkNb0zpHYZ2oT4mY/XzdEG2UoX0nHxEhFTBt2PDS7SYqxAC7/z0DzadvAMXuRQTu9TBD9G3SnW9odJW1tZUKmvHtEesjsSer4+lf7sc7b10pHgZa8lwnasSKo/JlUqtQv8t/XE7/TamhE/Bcw2eK/UYqPjsXX/IPopawwfQTF07oXMoxrYPMRg/pVILHLuahF1/RqFHxwi0reNn8ItfapYSXx64ijUFFhItSlAVV7zdMwz9mgQazNxlbD2UC/FpGLriL6Tn5qNHQ398+VxLyGXF6zgxZ9sFfHXoOmRSCZYPb4XuDf3tst5QabPXmkpF1R9bHLM451kR6kBJ2Ov1Kc7fLkd7Lx0pXkeLtbS/fwrDda7IwL7b+3A7/Ta8XbwxoM4Ae4dDREUoah0nAHBzlmHfm5Hw8zI+uFcmlSAipAqSLwhEmPgj6u3mhKl9GmBku1r4bOcl/FLEWjNeCjl2vt4Jbs7G/3wYWw+lcXVvrBjZGqPWRGNXTCLe23wOc59uYnHX5K8OXsNXh64DAOYObILuDf1NHrO8sdeaSkXVH1scszjnWRHqQEk40uvjSLECjhWvo8Va2t8/1sIxVxWAEAJrzq0BAAypPwRuTm52joiIimLOui9ZeSpcu5dpleNVr+SKZ1oHFVkuLScff99OtXj/bUOrYsnQFpBKgI0nbmPejksWPf/HE7cxZ/tFAMC0PmFmxUpERFTamFxVACcTT+Ls/bNwljpjWNgwe4dDRGYoy+sNFfeYPRsFYM5AzYKWyw9ew8p/W6GKsjsmEVN/OQsAeCmytlmLzhIREdkDk6sK4Jvz3wAAnqzzJKq6OkZzMFFFV5bXGyrJMYe0qYl3e4UBAP637QJ+Onmn0PJR15Mxcf0pqNQCz7SqgSn/PpeIiKgsYnJVzl17eA0H7xyEBBKMajTK3uEQkZkaVfOCUymv41Raa4yMj6yNcR1DAADv/vwP9sQkGi13/m4qXvj2BPLy1eje0B9zBlo+TouIiKg0Mbkq57StVo/XfBzBXsH2DYaoHDC1/pM15eWrMXH9KShLeR2n0lpjRCKRYFqfBni6ZQ2o1AIT159C1PVkvdd2y+k7GLkqGum5+QgPqYIlQ1sUe4ZBIiKi0mL3v1RffPEFatWqBYVCgYiICERHR5ssq1QqMXv2bISGhkKhUKBZs2bYsWNHifZZnm27vg1brm4BoFk0mIhKZse5eHSYtw9DV/6F1zacwdCVf6HDvH3YcS7easdQqQUm/3gGf165DzdnGd7pWR+B3vrd8AK8FVg2vKVN1vvo1TgQy4a3RICNjymRSDDv6Sbo1sAPuflqjFodjYiP9+he29c3/o3kzDzUqOSKr0e1LtHaWERERKXFrlOxb9y4EZMnT8by5csRERGBRYsWoWfPnrh06RL8/PwMyk+fPh3r1q3DypUrERYWhp07d2LAgAE4evQoWrRoUax9lldCCMw/MR8A4CZ3QxOfJnaOiMixmVpzKiE1BxPWnbJK4iGEwAe/ncfv/8TDSaZZx6lTPV+8FBlaqmuT9GociO4NA2x+TLlMiqXDWqLf54dx9V4GcjLyDMrceZiNo1fvl7lFLomIiIyxa8vVggULMG7cOIwZMwYNGzbE8uXL4ebmhtWrVxstv3btWkybNg19+vRB7dq1MWHCBPTp0wefffZZsfdZXu29tRfJ2ckAgKz8LBy9e9TOERE5rsLWnNJum7U1psRdBBftuYK1f92ERAIsGNwcner5AvhvbZInm1dH29CqpbrekK2P6SSTIj1XafJxCazz2hIREZUGu7Vc5eXl4eTJk5g6dapum1QqRbdu3XDs2DGjz8nNzYVCod9VxdXVFYcPHy72PrX7zc3N1d1PS0sDoOmGqFSa/qNvCe1+rLW/wggh8MnxT3T3pRIpPj/1Odr4tuFgcAdVmvWHDEUVseaUABCfmoNjV5MQUczJHtb+dQuL914BAMzsG4ZeDX2t8n6X9boTFZuCxLRck49b47Wl4ivr9YfKNtYfKomyVH8sicFuydX9+/ehUqng7++vt93f3x8XL140+pyePXtiwYIF6NSpE0JDQ7F371788ssvUKlUxd4nAMyZMwezZs0y2L5r1y64uVl3wd3du3dbdX/GXFFewd3Mu7r7aqFGTEoMPv/tc9R1qmvz45PtlEb9IUNRSRIARY/52fVnFJIvWN7Ccuq+BN9dkQKQoFcNFSonn8O2becsD7QQZbXunLxv29eWrKOs1h9yDKw/VBJlof5kZWWZXdauY64stXjxYowbNw5hYWGQSCQIDQ3FmDFjStzlb+rUqZg8ebLuflpaGoKCgtCjRw94eXmVNGwAmox39+7d6N69O5ycnKyyT2OEEFi/cz0kmRKIAp2YpBIpjrscx6s9X2XrlQMqrfpD+vJVavxy+i62n7kCoOhfrU5lVsbAbg3RqJr53xt/Xr2P9dGnISAwIiII7/cNs+pntKzXnaqxKfjuyokiy/XoGMGWKzso6/WHyjbWHyqJslR/tL3azGG35MrHxwcymQyJifrrmyQmJiIgIMDoc3x9fbFlyxbk5OQgOTkZ1apVw5QpU1C7du1i7xMAXFxc4OLiYrDdycnJ6m+mLfZZ0JG4I4hJiTHYrm29On7vONpXb2+z45Nt2br+VCQqtTA5YYMQAnsvJGHejou4kpQBAJBJABMzo+ucu5uGp5b9hQEtquPNHvVQo7J+y/ejx3SSSTBx/d9QqgT6N6uGWU82gdRWY5vKaN1pW8cPgd4KJKTmGB3TJoFmpsK2dfxKZawZGVdW6w85BtYfKomyUH8sOb7dkitnZ2e0atUKe/fuxVNPPQUAUKvV2Lt3LyZNmlTocxUKBapXrw6lUomff/4ZgwcPLvE+ywMhBJacXgIJ9FuttCSQYMnpJWhXrR1br6hC23EuHrO2xuiNowr0VmBm/4bw91JgzvaLiI5NAQBUcnPCpC514O/lgld/OAMAep8u7Sfpw6caIzo2Bb/9fRebT8fhj3/iMapdMCZ2qYNKbs5GjymRAEIAner54rNnmtkssSrLtGtrTVh3ChIYf22tvZ4XERGRrdi1W+DkyZMxatQotG7dGuHh4Vi0aBEyMzMxZoxmTaaRI0eievXqmDNnDgAgKioKcXFxaN68OeLi4vDBBx9ArVbjnXfeMXuf5ZlSrURCZoLRxAoABAQSMhOgVCvhLHMu5eiIygZTU6rHp+Zg/LpTuvsucinGdgjB+MhQeLtqfrFykkkNEqSAf5OyXo0DMfyxYIzrWBtztl/A0WvJWPlnLDYev41uDfyx+XScwTHFvxueblkdznK7LztoN9q1tQp7bYmIiByBXZOrIUOG4N69e5gxYwYSEhLQvHlz7NixQzchxa1btyCV/nfBkZOTg+nTp+P69evw8PBAnz59sHbtWlSqVMnsfZZnzjJnbOi3ASk5KZgTNQdn7p3B+Kbj0aVmF12ZKooqTKyowipsSvWCBrWsjsk96qNaJVe97eas/9Skhje+fyECBy/fw9ztF3ExIR2/nI4zeSwJgLnbL6Jf02oVunWmtNbWIiIisiW7T2gxadIkk132Dhw4oHc/MjISMTGG44ks2Wd5F+AegAD3AEglmqS0buW6aFi1oZ2jIioboouYUl3r6VZBBomVlnb9p8JIJBJ0ru+HjnV98cnOS1h+8JrJstqpxqNjU4rcb3lnzmtLRERUllXcfijlXKYyEwDg7uRu50iIyo6k9KITK0vKFUUmlaBBoGepHpOIiIjsh8lVOcXkikifEAK3U8xbp8LPU1F0ITOZuy9rHpOIiIjsw+7dAsk2svI1F5FuTtZdBJnIEZ269QBztl3A8RsPCi2nnfY73IrrKYWHVDFrqnFrHpOIiIjsgy1X5VRGnmZtHg8nDztHQmRbKrXAsWvJ+PVMHI5dS4ZK/V8Kc/1eBiasO4mBXx7F8RsP4CKXomcjf0jw3zTfWraa9ls71XjBY9j6mERERGQfbLkqh5RqJfLUeQDYLZDKN1PrVb3erR7OxaXih+hbyFcLSCXAoFY18Eb3egj0djX6PFtO+82pxomIiCoGi5Or/fv3o0uXLkUXJLvJUv43roTdAqm8Kmy9qnd//kd3v2uYH97tFYb6Af9NLGGPab851TgREVH5Z3Fy1atXL9SoUQNjxozBqFGjEBQUZIu4qAS0k1k4S53hJHWyczRE1mfOelVOMgm+GR2O9nV9jD5uj2m/OdU4ERFR+WbxmKu4uDhMmjQJP/30E2rXro2ePXvixx9/RF5eni3io2LgTIFU3pmzXpVSJSBlqxARERGVIouTKx8fH7zxxhs4c+YMoqKiUK9ePbz88suoVq0aXn31Vfz999+2iJMsoE2u2CWQyqvSXq+KiIiIyBwlmi2wZcuWmDp1KiZNmoSMjAysXr0arVq1QseOHXH+/HlrxUgW0o65YssVlVdcO4qIiIjKomIlV0qlEj/99BP69OmD4OBg7Ny5E0uXLkViYiKuXr2K4OBgPPPMM9aOlcyUmc9ugVS+1Q/whLyQLn8SaGYN5NpRREREVJosntDilVdewQ8//AAhBEaMGIH58+ejcePGusfd3d3x6aefolq1alYNlMzHboFkLyq1sPlseNl5Kry09gTy1cans+DaUURERGQvFidXMTExWLJkCQYOHAgXFxejZXx8fLB///4SB0fFo5vQQs6WKyo9ptacsuY6TkqVGpPWn8LxGw/gqZDjtcfrYtXhWK4dRURERGWCxcnV3r17i96pXI7IyMhiBUQlxzFXVNpMrTmVkJqDCetOYdnwliVOdtRqgXd//gd7LybBRS7FqlFtEB5SBWPah3DtKCIiIioTLE6u5syZA39/f4wdO1Zv++rVq3Hv3j28++67VguOiodTsVNpKmzNKQFNN71ZW2PQvWFAsZMeIQTmbL+AX07FQSaV4MvnWurGU3HtKCIiIiorLJ7Q4quvvkJYWJjB9kaNGmH58uVWCYpKhmOuqDQVteaUABCfmoPo2JRiH2P5wetY+WcsAGD+003xeAP/Yu+LiIiIyFYsTq4SEhIQGGjYvcfX1xfx8fFWCYpKJiuf3QKp9Nh6zamNx29h3o6LAIDpfRvg6VY1irUfIiIiIluzOLkKCgrCkSNHDLYfOXKEMwSWEZzQgkrLxYQ0rDkSa1ZZb1cni/e/41wCpv5yFgAwoXMoXuhY2+J9EBEREZUWi8dcjRs3Dq+//jqUSiW6du0KQDPJxTvvvIM333zT6gGS5dgtkGwtPjUbC3Zdxk+n7kAYnxHdwNub/sbkHvXxTKsakMuK/l3n2LVkvLrhNNQCGNI6CO/0rF/CqImIiIhsy+Lk6u2330ZycjJefvll5OXlAQAUCgXeffddTJ061eoBkuU4WyCVRGFrVaVmK7H84DWsPhyL3Hw1AKBPkwBEhFTFB7+dBwC9iS0k/96v6uGMexl5mPrLWaw6HIt3e4WhWwM/SCQSo8d0c5Zh3HcnkJevRo+G/vjfgMa6skRERERllcXJlUQiwbx58/D+++/jwoULcHV1Rd26dU2ueUWlj7MFUnGZWqtqWp8wJKXnYcm+K3iYpQQAhNeqgil9wtCyZmUAgL+Xi8FztWtOdQnzw/d/3cKSfVdwNSkD4747gfBaVTC1TxgS03IMnieVAGoBPFa7Cj4f2sKsli4iIiIie7M4udLy8PBAmzZtrBkLWUlmPpMrspyptariU3Pwyg9ndPfr+HlgSq8wPF6g5QkAejUORPeGASZbvcZ2CMGg1jWw/MA1rDoci+gbKRjw5VGjsaj/DWJI6yAonGTWPE0iIiIimylWcnXixAn8+OOPuHXrlq5roNYvv/xilcCo+DjmiixV2FpVWlIJ8OFTjTGkdZDJlqSi1pzyUjjhnV5hGNE2GJ/tvISfTsUVGtf8nZfwRPPqXBSYiIiIHILFfW02bNiAdu3a4cKFC9i8eTOUSiXOnz+Pffv2wdvb2xYxkgWEELrkysPJw87RkKMoaq0qQNOaVNvHwypd9AK9XfF0q6Aiy5V0fSwiIiKi0mTxVdLHH3+MhQsXYuvWrXB2dsbixYtx8eJFDB48GDVr1rRFjGSBHFUO1EIz0QC7BZK5bL1WVVk5JhEREZEtWZxcXbt2DX379gUAODs7IzMzExKJBG+88QZWrFhh9QDJMtpWKwBwlbvaMRJyFKnZSuy5kGRWWT9PhdWOa+6+rHlMIiIiIluyOLmqXLky0tPTAQDVq1fHuXPnAAAPHz5EVlaWdaMji2mnYXeTu0Eq4QxrZFpuvgpf/3kdkZ/sx9a/7xZaVgLNrIHhIVWsdvzwkCoI9FbA1GgqWxyTiIiIyJYsvvru1KkTdu/eDQB45pln8Nprr2HcuHEYOnQoHn/8casHSJbhNOykpVILHLuWjF/PxOHYtWSo/p2CT60W+PVMHB7/7CA++uMCHmYpUdfPAy93DoUEMEh2tPdn9m9o1YklZFIJZvZvqHcMWx+TiIiIyJYsni1w6dKlyMnRjIF477334OTkhKNHj+Lpp5/G9OnTrR4gWYbJFQGm16sa0joIey4m4lxcGgDN2lSTu9fD0y1rQC6TomkNb5NrVfVqHGj1OHs1DsSy4S1L9ZhEREREtmJRcpWfn4/ff/8dPXv2BABIpVJMmTLFJoFR8WTl/9stkNOwV1iFrVe1aO8VAICHixwTOodibPsQuDr/t45UUWtV2YI9jklERERkCxYlV3K5HOPHj8eFCxdsFQ+VEFuuKjZz1qtyc5Zh35uR8PMyPlFEUWtV2YI9jklERERkbRaPuQoPD8eZM2dsEApZgy65kjO5qojMWa8qK0+Fa/cyCy1DRERERJazeMzVyy+/jMmTJ+P27dto1aoV3N31L+KbNm1qteDIctrkit0CK6a4h+bN2Mm1o4iIiIisz+Lk6tlnnwUAvPrqq7ptEokEQghIJBKoVCrrRUcW007Fzm6BFYtaLfDb33cxd9tFs8pz7SgiIiIi67M4uYqNjbVFHGQlHHNV8Ry+ch9ztl/A+buaGQClEkBtYtCVBJqZ+Lh2FBEREZH1WZxcBQcH2yIOspLMfHYLLG9UaoGo2BScvC9B1dgUtK3jB5lUgvN3UzF3+0X8eeU+AMDTRY7xnUNRo7IrXt9wBgD0Jrbg2lFEREREtmVxcvXdd98V+vjIkSOLHQyVHCe0KF/016uS4bsrJ+Dr6YLaPu6IvpECIQAnmQTDHwvGK13rooq7MwDARS7l2lFEREREpczi5Oq1117Tu69UKpGVlQVnZ2e4ubkxubIzjrkqP0ytV3UvPRf30nMBAP2bVcPbPeqjZlX9lkquHUVERERU+ixOrh48eGCw7cqVK5gwYQLefvttqwRFxccxV+WDOetV+Xg4Y9GQ5iYTJq4dRURERFS6LF7nypi6deti7ty5Bq1aVPo4FXv5YM56Vfcz8hAdm1JKERERERFRUaySXAGAXC7H3bt3rbU7KqasfHYLLA/MXYeK61URERERlR0Wdwv87bff9O4LIRAfH4+lS5eiffv2VguMiofdAssHc9eh4npVRERERGWHxcnVU089pXdfIpHA19cXXbt2xWeffWatuKiYOFtg+XArJbPQx7leFREREVHZY3FypVarbREHWYFKrUJ2fjYAjrlyZLtjEjFt8zndfQm4XhURERGRI7DamCuyP+14KwDwcPawYyRUXFHXkzFx/Smo1AKDWtXAsudaIsBbv+tfgLcCy4a35HpVRERERGWMxS1XTz/9NMLDw/Huu+/qbZ8/fz6OHz+OTZs2WS04soy2S6BcIoez1NnO0ZClzt9NxQvfnkBevhrdGvhj7sAmkMuk6NEoAMeuJmHXn1Ho0TECbev4scWKiIiIqAyyuOXq0KFD6NOnj8H23r1749ChQ1YJiopHu4Cwm5MbJBJefDuSm8mZGLX6ONJz8xEeUgVLh7WAXKb5eMqkEkSEVEErH4EILgRMREREVGZZnFxlZGTA2dmwVcTJyQlpaWlWCYqKhzMFOqaktByMWBWN+xm5aBDoha9HtYbCSWbvsIiIiIjIQhYnV02aNMHGjRsNtm/YsAENGza0SlBUPJn5TK4cTWq2EiNXR+NWShaCq7rh27Ft4KVwsndYRERERFQMFo+5ev/99zFw4EBcu3YNXbt2BQDs3bsXP/zwA8db2Zm25YozBTqGHKUK4749gYsJ6fD1dMHasRFct4qIiIjIgVmcXPXv3x9btmzBxx9/jJ9++gmurq5o2rQp9uzZg8jISFvESGbSjrniGldlj0otEB2bgqT0HPh5KtCyZiVMWn8K0TdS4KmQ47ux4ahZlUkxERERkSOzOLkCgL59+6Jv377WjoVKiGOuyqYd5+Ixa2sM4lNzdNtcnWTIVqrgIpdi1ag2aBDoZccIiYiIiMgaLE6ujh8/DrVajYiICL3tUVFRkMlkaN26tdWCI8uwW2DZs+NcPCasO6W3CDAAZCtVAICx7UMQHlKl9AMjIiIiIquzeEKLiRMn4vbt2wbb4+LiMHHiRKsERcXDlquyRaUWmLU1xiCxKmjLmTio1IWVICIiIiJHYXFyFRMTg5YtWxpsb9GiBWJiYqwSFBVPVv6/Y66YXJUJ0bEpel0BjYlPzUF0bEopRUREREREtmRxcuXi4oLExESD7fHx8ZDLizWEi6yELVdlS1J64YmVpeWIiIiIqGyzOLnq0aMHpk6ditTUVN22hw8fYtq0aejevbtVgyPL6MZcyTnmqixISss1qxynXyciIiIqHyxuavr000/RqVMnBAcHo0WLFgCAM2fOwN/fH2vXrrV6gGQ+3VTsbLmyq5i7aZi74yIOXb5XaDkJgABvBSe0ICIiIionLE6uqlevjn/++Qfff/89/v77b7i6umLMmDEYOnQonJycbBEjmYndAm3v0fWqwkOqQCaVAADiHmbjs12XsPl0HIQAnGQSdKjjg/2X7kEC6E1sIfn335n9G+qeT0RERESOrViDpNzd3fHiiy/qbbtw4QJWrVqFTz/91CqBkeUy8zkVuy0ZW68q0FuBt3rUx+XEdKw5egN5+WoAQL+mgXi7Z30EV3U3+rwAbwVm9m+IXo0DS/08iIiIiMg2SjQDRWZmJjZs2IBVq1bhr7/+QsOGDZlc2RG7BdqOqfWq4lNz8Oamv3X3H6tdBVN7N0CzoEq6bb0aB6J7wwCTLV5EREREVD4UK7k6cuQIVq1ahR9//BHZ2dl44403sHr1aoSFhVk7PrKArlugnMmVNZmzXpVcKsFXw1uhawM/SCSGSZNMKkHb0Kq2C5KIiIiI7M7s2QKTkpIwf/58hIWFYdCgQahUqRIOHDgAqVSKsWPHMrEqAzjmyjbMWa8qXy3g5iI3mlgRERERUcVgdstVcHAwBg0ahMWLF6N79+6QSi2exZ1sKE+VB6VaCYBjrqyN61URERERkTnMzpCCg4Nx+PBhHDp0CJcvX7ZlTFQM2lYrgC1X1nTnQRZ+OnHHrLJcr4qIiIioYjO75erixYu6sVZt2rRBvXr1MHz4cABgV6gyQJtcKWQKyKUlmqeEAKRmKfHFgav4psAMgKZwvSoiIiIiAixouQKA9u3bY/Xq1YiPj8f48eOxadMmqFQqvPzyy1i5ciXu3St80VSyHW1yxS6B5lGpBY5dS8avZ+Jw7FoyVGrNdBU5ShVWHLqGjvP3YcWh68jLV6Nt7aqY0jsMEvy3PpUW16siIiIiIq1iDZzy8PDAuHHjcPToUZw/fx6tWrXC9OnTUa1aNYv39cUXX6BWrVpQKBSIiIhAdHR0oeUXLVqE+vXrw9XVFUFBQXjjjTeQk/PfWJcPPvgAEolE71YRJtvIyuc07ObacS4eHebtw9CVf+G1DWcwdOVfaD93Hz747Rwe/+wgPt52EWk5+ajv74k1Y9pg/bgIjI8MxbLhLRHgrd/1L8BbgWXDW3K9KiIiIiIq2TpXANCgQQN8+umnmDt3Ln777TeLnrtx40ZMnjwZy5cvR0REBBYtWoSePXvi0qVL8PPzMyi/fv16TJkyBatXr0a7du1w+fJljB49GhKJBAsWLNCVa9SoEfbs2aO7L5eX/25ynCnQPKbWq0pIy8E3R28C0CwMPLl7PQxsWUOvNYrrVRERERFRYayWdcjlcgwcONCi5yxYsADjxo3DmDFjAADLly/HH3/8gdWrV2PKlCkG5Y8ePYr27dtj2LBhAIBatWph6NChiIqKMoglICCgmGfimHTdAuXsFmiKOetVeSrk2DM5Eu4uxj8aXK+KiIiIiEyxW5NOXl4eTp48ialTp+q2SaVSdOvWDceOHTP6nHbt2mHdunWIjo5GeHg4rl+/jm3btmHEiBF65a5cuYJq1apBoVCgbdu2mDNnDmrWrGkyltzcXOTm5urup6WlAQCUSiWUSmVJTlNHux9r7e9RaTmamN3kbjY7hqOLMmO9qvScfJy+mYyIMjY5ha3rD5VfrDtUEqw/VBKsP1QSZan+WBKD3ZKr+/fvQ6VSwd/fX2+7v78/Ll68aPQ5w4YNw/3799GhQwcIIZCfn4/x48dj2rRpujIRERH45ptvUL9+fcTHx2PWrFno2LEjzp07B09PT6P7nTNnDmbNmmWwfdeuXXBzs25L0O7du626P60TuScAAKn3UrFt2zabHMPRnbwvASArstyuP6OQfKGw9i37sVX9ofKPdYdKgvWHSoL1h0qiLNSfrKwss8s61GCkAwcO4OOPP8aXX36JiIgIXL16Fa+99ho+/PBDvP/++wCA3r1768o3bdoUERERCA4Oxo8//ojnn3/e6H6nTp2KyZMn6+6npaUhKCgIPXr0gJeXl1ViVyqV2L17N7p37w4nJyer7LOgu+fuAv8AdWrWQZ+IPlbff3lQNTYF3105UWS5Hh0jymTLlS3rD5VfrDtUEqw/VBKsP1QSZan+aHu1mcNuyZWPjw9kMhkSExP1ticmJpocL/X+++9jxIgReOGFFwAATZo0QWZmJl588UW89957kEoNJz+sVKkS6tWrh6tXr5qMxcXFBS4uLgbbnZycrP5m2mKfAJCtzgYAeLh42L0CllVFTWyiXa+qbR2/MjtJha3qD5V/rDtUEqw/VBKsP1QSZaH+WHJ8i5OrAQMGGF00WCKRQKFQoE6dOhg2bBjq169f6H6cnZ3RqlUr7N27F0899RQAQK1WY+/evZg0aZLR52RlZRkkUDKZppuXEMa7cWVkZODatWsG47LKmywlp2IvzIX4NIz77r9WKwmgN7EF16siIiIiopKyeJ0rb29v7Nu3D6dOndKtI3X69Gns27cP+fn52LhxI5o1a4YjR44Uua/Jkydj5cqV+Pbbb3HhwgVMmDABmZmZutkDR44cqTfhRf/+/bFs2TJs2LABsbGx2L17N95//330799fl2S99dZbOHjwIG7cuIGjR49iwIABkMlkGDp0qKWn6lB0U7HLmVw96lZyFkaujkZ6Tj5aB1fG4mebc70qIiIiIrI6i1uuAgICMGzYMCxdulTXiqRWq/Haa6/B09MTGzZswPjx4/Huu+/i8OHDhe5ryJAhuHfvHmbMmIGEhAQ0b94cO3bs0E1ycevWLb2WqunTp0MikWD69OmIi4uDr68v+vfvj//973+6Mnfu3MHQoUORnJwMX19fdOjQAX/99Rd8fX0tPVWHopuK3YlTsRd0Lz0XI1ZH4V56LsICPLFqVBt4uzmhX9NqXK+KiIiIiKzK4uRq1apVOHLkiF7SI5VK8corr6Bdu3b4+OOPMWnSJHTs2NGs/U2aNMlkN8ADBw7oByuXY+bMmZg5c6bJ/W3YsMGs45Y37BZoKC1HiVGro3EzOQs1Krvi27Hh8HbT9JnlelVEREREZG0WdwvMz883OlX6xYsXoVKpAAAKhcLouCyyHV23QCZXAIAcpQrjvj2BmPg0+Hg4Y93zEfD3UhT9RCIiIiKiYrK45WrEiBF4/vnnMW3aNLRp0wYAcPz4cXz88ccYOXIkAODgwYNo1KiRdSOlQmXmM7nSylep8coPpxEVmwJPFzm+GROOWj58XYiIiIjItixOrhYuXAh/f3/Mnz9fN426v78/3njjDbz77rsAgB49eqBXr17WjZQKxTFXGkIITNt8FrtjEuEsl2LlqNZoXN3b3mERERERUQVgcXIlk8nw3nvv4b333tMtqPXoQrs1a9a0TnRkNt2Yqwo+W+DcHRfx44k7kEqAJUNb4LHaHFdFRERERKWjRIsIP5pUkX0IISrkmCuVWujN+Pf3nQf46uB1AMDcgU3Rs5HxxaiJiIiIiGzB4uQqMTERb731Fvbu3YukpCSDxXu1k1pQ6cnOz4b4d0ncipJc7TgXj1lbYxCfmmPw2JTeYRjcJsgOURERERFRRWZxcjV69GjcunUL77//PgIDAzkrYBmgbbWSQAJXuaudo7G9HefiMWHdKQgTj9eqWrHHnRERERGRfVicXB0+fBh//vknmjdvboNwqDgKdgks78muSi0wa2uMycRKAmDW1hh0bxjARYGJiIiIqFRZvM5VUFCQQVdAsi/tNOwVYabA6NgUo10BtQSA+NQcRMemlF5QREREREQoRnK1aNEiTJkyBTdu3LBBOFQcupkCK8B4q5vJmWaVS0o3nYAREREREdmCxd0ChwwZgqysLISGhsLNzQ1OTk56j6eksMWgtOm6BZbjadhzlCqsPXYTi/ZcNqu8n6fCxhEREREREemzOLlatGiRDcKgknD0adgfnVI9PKSKbryUWi3w699x+HTnZcQ9zAYAyKUS5KuNd02VAAjw1uyDiIiIiKg0WZxcjRo1yhZxUAlokytHHHNlbEr1QG8FZvZvCHcXOeZsu4iYeM1i1QFeCkzuUQ8eznJMXH8KAPQmttBOXzGzf0NOZkFEREREpc6s5CotLU23YHBaWlqhZbmwcOlz1DFXpqZUj0/Nwfh1p3T3PV3kmNAlFGPahcDVWQYAWCZtaZCUBfyblPVqHFga4RMRERER6TEruapcuTLi4+Ph5+eHSpUqGZ3uWwgBiUTCRYTtQDtboCMlV0VNqa41ql0wXnu8Hqq4O+tt79U4EN0bBpjsTkhEREREVNrMSq727duHKlU0Y1j2799v04DIco7YLbCoKdW1ejUKNEistGRSCdqGVrV2aERERERExWJWchUZGWn0/1Q26LoFOtBsgeZOlc4p1YmIiIjIUVg8oQUAPHz4ENHR0UhKSoJardZ7bOTIkVYJjMzniLMFmjtVOqdUJyIiIiJHYXFytXXrVjz33HPIyMiAl5eX3vgriUTC5MoOHDG5Cg+pgkBvhcmugZxSnYiIiIgcjdTSJ7z55psYO3YsMjIy8PDhQzx48EB34wLC9uGIY65kUgkGtKhu9DFOqU5EREREjsji5CouLg6vvvoq3Nwc50K+vMvKd7yp2LPzVPjt77sAAPd/p1fXCvBWYNnwlpxSnYiIiIgcisXdAnv27IkTJ06gdu3atoiHisERuwV+sf8q7jzIRqC3Ajtf74Tzd9M4pToREREROTSLk6u+ffvi7bffRkxMDJo0aQInJye9x5944gmrBUfm0XULlDtGa+LVpAx8degaAE3XPy9XJ06pTkREREQOz+Lkaty4cQCA2bNnGzzGRYTtQzcVuwO0XAkhMOPXc1CqBLrU90XPRgH2DomIiIiIyCosTq4enXqd7CtfnY8clWbGPUdIrn77+y6OXkuGi1yKWU801pttkoiIiIjIkVk8oQWVLdougUDZT67ScpT48PcLAIBJXeqgZlXH6MZIRERERGQOs1quPv/8c7z44otQKBT4/PPPCy376quvWiUwMo+2S6BcKoezzNnO0RTus52XcD8jF7V93PFiJCdEISIiIqLyxazkauHChXjuueegUCiwcOFCk+UkEgmTq1KmbbnycPKwcySFO3snFWv/ugkA+PCpxnCRy4p4BhERERGRYzEruYqNjTX6f7K/zPyyPw27Si0wfctZqAXwRLNqaF/Hx94hERERERFZHcdcOTjdNOxOZXf80vroW/j7Tio8XeSY3reBvcMhIiIiIrIJi2cLBIA7d+7gt99+w61bt5CXl6f32IIFC6wSGJlHNw27vGy2XN1Lz8X8HRcBAG/2qAc/L4WdIyIiIiIisg2Lk6u9e/fiiSeeQO3atXHx4kU0btwYN27cgBACLVu2tEWMVAhty1VZ7RY4Z9sFpOfko1E1L4xoW8ve4RARERER2YzF3QKnTp2Kt956C2fPnoVCocDPP/+M27dvIzIyEs8884wtYqRClOVugX9dT8Yvp+MgkQD/G9AEMinXtCIiIiKi8svi5OrChQsYOXIkAEAulyM7OxseHh6YPXs25s2bZ/UAqXBZ+f92CyxjLVd5+WpM33IOADAsvCaaB1Wyb0BERERERDZmcXLl7u6uG2cVGBiIa9eu6R67f/++9SIjs5TVboGrDsfialIGqro7452eYfYOh4iIiIjI5iwec/XYY4/h8OHDaNCgAfr06YM333wTZ8+exS+//ILHHnvMFjFSIXTdAuX27RaoUgtEx6YgKT0HEgmweM9lAMC0Pg3g7eZk19iIiIiIiEqDxcnVggULkJGRAQCYNWsWMjIysHHjRtStW5czBdpBWWi52nEuHrO2xiA+NUdvex0/DwxsWd1OURERERERlS6LkiuVSoU7d+6gadOmADRdBJcvX26TwMg8uqnY7ZRc7TgXjwnrTkEYeexqUgZ2nk9Ar8aBpR4XEREREVFps2jMlUwmQ48ePfDgwQNbxUMWsmfLlUotMGtrjNHECgAkAGZtjYFKbaoEEREREVH5YfGEFo0bN8b169dtEQsVQ2a+/aZij45NMegKWJAAEJ+ag+jYlNILioiIiIjITixOrj766CO89dZb+P333xEfH4+0tDS9G5Uue3YLTEo3nVgVpxwRERERkSMze8zV7Nmz8eabb6JPnz4AgCeeeAISyX+LwgohIJFIoFKprB8lmaTrFigv3eQqLUeJ/ReTzCrr56mwcTRERERERPZndnI1a9YsjB8/Hvv377dlPGSh0h5zlZevxvdRN/H53it4kKUstKwEQIC3AuEhVUolNiIiIiIiezI7uRJCMylBZGSkzYIhywghdN0CrTXmquB6VX6emsRIJpVArRb442w8Ptl5CbdSNMes7euO7g39seKgZgxewWkrtG2aM/s3hEwqARERERFReWfRVOwFuwGS/eWqcpEv8gFYp+XK2HpVgd4KDGkThH0Xk/DPnVQAgK+nC17vVhdDWgdBLpOiRVAlg+cFeCsws39DTsNORERERBWGRclVvXr1ikywUlI4M1xp0XYJBAA3eclarkytVxWfmoNFe64AANydZXixUyhe6BgCd5f/qk6vxoHo3jDAaIsXEREREVFFYVFyNWvWLHh7e9sqFrKQtkugq9wVMqms2Pspar0qAHBzlmHvm50R4G18cgqZVIK2oVWLHQMRERERkaOzKLl69tln4efnZ6tYyELaNa5K2iWwqPWqACArT4XY+5kmkysiIiIioorO7HWuON6q7LHWTIFcr4qIiIiIqOTMTq60swVS2aFNrko63srcdai4XhURERERkWlmdwtUq9W2jIOKQTvmqqQtV+EhVRDgpUBCmvGWKa5XRURERERUNLNbrqjssVa3QJlUgvZ1jE9GwfWqiIiIiIjMw+TKgem6BZZwAeG7D7Ox/VwCAMDb1UnvsQBvBZYNb8n1qoiIiIiIimDRbIFUtlhrtsAPf49BVp4KrYMr44dxj+HEzQdcr4qIiIiIyEJMrhyYbsyVvPjJ1f5LSdh+LgEyqQQfDWgMJ7mU61URERERERUDuwU6sJKOucpRqjDz1/MAgLHtayEswMtqsRERERERVTRMrhxYScdcfbn/Km6lZCHAS4HXu9WzZmhERERERBUOkysHVpKp2K/fy8Dyg9cBaGYCdHdhD1EiIiIiopJgcuXAijuhhRACM349jzyVGp3r+6JX4wBbhEdEREREVKEwuXJgxR1ztfWfeBy+eh8ucilmPdEIEglnAyQiIiIiKikmVw5M2y3QTW7+mKu0HCU+/D0GADCxSx0EVy3ZNO5ERERERKTB5MqBFaflasGuy7iXnosQH3e8FFnbVqEREREREVU4TK4cmKXJ1bm4VHx37AYA4MMnG8NFLrNVaEREREREFQ6TKwelFmpk5f/bLdCMqdjVaoHpW85BLYD+zaqhQ10fW4dIRERERFShMLlyUNrxVoB5LVc/HL+FM7cfwsNFjul9G9gyNCIiIiKiConJlYPSdgmUSqRQyBSFlr2fkYv5Oy4BAN7sUQ/+XoWXJyIiIiIiy3HlWAelW+NK7m50KnWVWiA6NgVJ6Tn4+eQdpGYr0TDQCyMeCy7tUImIiIiIKgS7t1x98cUXqFWrFhQKBSIiIhAdHV1o+UWLFqF+/fpwdXVFUFAQ3njjDeTk5JRon45I2y3Q3dmwS+COc/HoMG8fhq78C69tOINDV+4DAPo1DYRcZve3nIiIiIioXLLrlfbGjRsxefJkzJw5E6dOnUKzZs3Qs2dPJCUlGS2/fv16TJkyBTNnzsSFCxewatUqbNy4EdOmTSv2Ph2VbqZAuX5yteNcPCasO4X41ByD53yy8xJ2nIsvlfiIiIiIiCoauyZXCxYswLhx4zBmzBg0bNgQy5cvh5ubG1avXm20/NGjR9G+fXsMGzYMtWrVQo8ePTB06FC9lilL9+mojE3DrlILzNoaA1HI82ZtjYFKXVgJIiIiIiIqDruNucrLy8PJkycxdepU3TapVIpu3brh2LFjRp/Trl07rFu3DtHR0QgPD8f169exbds2jBgxotj7BIDc3Fzk5ubq7qelpQEAlEollEplic5TS7sfa+0vLUcTo6vcVbfPqNgUoy1WWgJAfGoOjl1NQkRIFavEQaXD2vWHKg7WHSoJ1h8qCdYfKomyVH8sicFuydX9+/ehUqng7++vt93f3x8XL140+pxhw4bh/v376NChA4QQyM/Px/jx43XdAouzTwCYM2cOZs2aZbB9165dcHMreg0pS+zevdsq+4nO1bTWpSenY9u2bQCAk/clAIpeGHjXn1FIvsDWK0dkrfpDFQ/rDpUE6w+VBOsPlURZqD9ZWVlFF/qXQ80WeODAAXz88cf48ssvERERgatXr+K1117Dhx9+iPfff7/Y+506dSomT56su5+WloagoCD06NEDXl5e1ggdSqUSu3fvRvfu3eHk5FTi/SXFJAFngNo1aqNP2z4AgKqxKfjuyokin9ujYwRbrhyMtesPVRysO1QSrD9UEqw/VBJlqf5oe7WZw27JlY+PD2QyGRITE/W2JyYmIiAgwOhz3n//fYwYMQIvvPACAKBJkybIzMzEiy++iPfee69Y+wQAFxcXuLi4GGx3cnKy+ptprX3mqDXd/zycPXT7a1vHD4HeCpNdAyUAArwVaFvHDzKp4fTtVPbZok5SxcC6QyXB+kMlwfpDJVEW6o8lx7fbhBbOzs5o1aoV9u7dq9umVquxd+9etG3b1uhzsrKyIJXqhyyTabrBCSGKtU9HpZuKvcCEFjKpBFN6hxktr02lZvZvyMSKiIiIiMgG7NotcPLkyRg1ahRat26N8PBwLFq0CJmZmRgzZgwAYOTIkahevTrmzJkDAOjfvz8WLFiAFi1a6LoFvv/+++jfv78uySpqn+WFsdkCASA1WzPgTiaRQCX+G1cV4K3AzP4N0atxYOkFSURERERUgdg1uRoyZAju3buHGTNmICEhAc2bN8eOHTt0E1LcunVLr6Vq+vTpkEgkmD59OuLi4uDr64v+/fvjf//7n9n7LC+0yZWb038TbuSr1Fj553UAwIz+DVDP3wtJ6Tnw81QgPKQKW6yIiIiIiGzI7hNaTJo0CZMmTTL62IEDB/Tuy+VyzJw5EzNnziz2PsuLzHzDlqsd5xNwOyUbVdydMbh1Tbg6Fz1zIBERERERWYddFxGm4nt0zJUQAl8d1LRajXgsmIkVEREREVEpY3LloHRjruSa5OrY9WScjUuFwkmKkW2D7RkaEREREVGFxOTKQT065krbavVMqyBU9TCcVp6IiIiIiGyLyZWDKtgt8GJCGg5evgepBHihY4idIyMiIiIiqpiYXDmoglOxrzikabXq3TgQwVXdC3saERERERHZCJMrB6RUKZGnzgMApGVJ8duZuwCAFzvVtmdYREREREQVGpMrB6RttQKATdFJyFcLPFa7CpoFVbJfUEREREREFRyTKwekXePKWeqMDdGaVquXIkPtGRIRERERUYXH5MoBaVuupFAgM0+F+v6e6FzP185RERERERFVbEyuHJB2psDcPDkAzVgriURiz5CIiIiIiCo8JlcOSNtylZ/vggAvBfo3q2bniIiIiIiIiMmVA8rIywAACLULxnaoBWc530YiIiIiInvjVbkDOnErAQAghwJDw2vaORoiIiIiIgKYXDmk/ZdvAwBqVq4MT4WTnaMhIiIiIiKAyZXDOXXrAW49fAAAaBTgZ+doiIiIiIhIi8mVg1lx8DogzQUAVHXztHM0RERERESkxeTKgVy/l4GdMQmQ/JtcuTu52zkiIiIiIiLSYnLlQL4+HAshgMDKmjWtmFwREREREZUdTK4cxL30XPx08g4AoKaPDACTKyIiIiKisoTJlYP47tgN5OWr0TyoEpydlAAANyc3O0dFRERERERacnsHQKap1ALRsSm4/SALqw/HAgDGR9bGdzezAADucrZcERERERGVFUyuyqgd5+Ixa2sM4lNzdNtkUgnUaiBTmQmA3QKJiIiIiMoSJldl0I5z8Ziw7hTEI9tVaoGJ60+hetM0AEyuiIiIiIjKEo65KmNUaoFZW2MMEquCUnMzAHDMFRERERFRWcLkqoyJjk3R6wr4KAEBIeE6V0REREREZQ2TqzImKd10YgUAkCghkWjatZhcERERERGVHUyuyhg/T0Whj0ukubr/u8pdbR0OERERERGZiclVGRMeUgWB3gpITDyuTa7c5G6QSvj2ERERERGVFbw6L2NkUglm9m8IAAYJlgSARMbxVkREREREZRGTqzKoV+NALBveEgHe+l0EA7wVmNwzGACTKyIiIiKisobrXJVRvRoHonvDAETHpiApPQd+ngqEh1TB4bhDwGUmV0REREREZQ2TqzJMJpWgbWhVvW2ZykwATK6IiIiIiMoadgt0MJn5muSKCwgTEREREZUtTK4cTJYyCwBbroiIiIiIyhomVw5G1y1QzuSKiIiIiKgsYXLlYDjmioiIiIiobGJy5WD+3969x0VVJ3wc/x4Y7ggiCoMXCsMLmtKqadTmlpfA0tdq2qNpG9iaW2GLuT7t6rOKaKXlZmZrVrte2i3TbNXs4m0tbSPNtDQtwnQr3QWkdJWL3Oc8f/AwjxMoKAMzg5/36zWvmN/5cc7vwE9e8+13OTXhijVXAAAAgHshXHkY1lwBAAAA7olw5WFqdgskXAEAAADuhXDlYZgWCAAAALgnwpWHsU8LZLdAAAAAwK0QrjwMuwUCAAAA7olw5WEIVwAAAIB7Ilx5mHOV1dMCWXMFAAAAuBfClQepslWppLJEEiNXAAAAgLshXHmQmlEriXAFAAAAuBvClQepWW9lMSzy9fJ1cWsAAAAAnI9w5UHOf8aVYRgubg0AAACA8xGuPAg7BQIAAADui3DlQQhXAAAAgPsiXHmQcxXVG1oQrgAAAAD3Q7jyIMWVjFwBAAAA7opw5UGYFggAAAC4L8KVB7HvFmgJdHFLAAAAAPwY4cqDsOYKAAAAcF+EKw/CtEAAAADAfRGuPMj5DxEGAAAA4F4IVx7kXCXTAgEAAAB3RbjyIEwLBAAAANwX4cqD2MOVhXAFAAAAuBvClQdhzRUAAADgvghXHoSt2AEAAAD3RbjyIMWVrLkCAAAA3BXhyoOwoQUAAADgvghXHqK8qlyVtkpJrLkCAAAA3JHF1Q1Aw9SMWklSoIVwBQAA4EpVVVWqqKhwdTNarIqKClksFpWWlqqqqqpJr+Xj4yNvb2+nnItw5SGKKookSf7e/rJ48WsDAABwBdM0lZeXpzNnzri6KS2aaZqyWq06ceKEDMNo8uu1bt1aVqu10dfiU7qHqNkpkCmBAAAArlMTrCIiIhQYGNgsH/yvRDabTUVFRQoODpaXV9OtZDJNU+fOnVN+fr4kKSoqqlHnc4twtXTpUi1cuFB5eXmKj4/Xc889p/79+9dZ95ZbbtGuXbtqld9+++165513JEkpKSl6+eWXHY4nJiZqy5Ytzm98M2EzCwAAANeqqqqyB6vw8HBXN6dFs9lsKi8vl7+/f5OGK0kKCAiQJOXn5ysiIqJRUwRdHq7Wrl2radOm6YUXXtCAAQO0ePFiJSYmKjs7WxEREbXqr1+/XuXl5fb3p06dUnx8vO666y6HeklJSVq5cqX9vZ+fX9PdRDMgXAEAALhWzRqrwEBmErU0Nb/TioqKRoUrl+8WuGjRIt1///2aOHGievTooRdeeEGBgYFasWJFnfXbtGkjq9Vqf23fvl2BgYG1wpWfn59DvbCwsOa4nSZT84wrNrMAAABwLaYCtjzO+p26dOSqvLxc+/fv14wZM+xlXl5eGjJkiHbv3t2gcyxfvlzjxo1TUJDjiM7OnTsVERGhsLAwDRo0SI899tgFh2/LyspUVlZmf19QUCCpOrk6axeYmvNc7vkKSwslVYcrdqa58jS2/+DKRd9BY9B/0Bgtsf9UVFTINE3ZbDbZbDZXN6dFM03T/t/m+FnbbDaZplnnyNWl9GGXhqsffvhBVVVVioyMdCiPjIzUV199Ve/37927V4cPH9by5csdypOSknTnnXcqJiZGx44d08yZMzVs2DDt3r27zmG++fPnKyMjo1b5tm3bnD7su3379sv6vn2l+yRJZ78/q3fffdeZTYIHudz+A9B30Bj0HzRGS+o/FotFVqtVRUVFDstULkeVzdSnJwr0Q3G52gb5qk+nEHl7ueeIWO/evfXggw/qwQcfbPZrFxYWNst1ysvLVVJSog8++ECVlZUOx86dO9fg87h8zVVjLF++XL169aq1+cW4cePsX/fq1Uu9e/fWNddco507d2rw4MG1zjNjxgxNmzbN/r6goECdOnXSbbfdppCQEKe0taKiQtu3b9fQoUPl4+Nzyd//70P/lg5JsdGxun3A7U5pEzxHY/sPrlz0HTQG/QeN0RL7T2lpqU6cOKHg4GD5+/tf9nm2HM7T3LezlFdQai+zhvhr9vA4JV1rdUZTHdS3hmj27NlKT0+/4HEvLy/5+/tf9HNx586d9d133ykzM1M33HCDvfyRRx7RwYMH9d577zWord9++62uueYa7du3T9dcc41atWrVLNMwS0tLFRAQoIEDB9b63dbMamsIl4artm3bytvbWydPnnQoP3nypKzWi3es4uJirVmzRnPnzq33Op07d1bbtm119OjROsOVn59fnRte+Pj4OP2PweWes9RW/Y+vlV+rFvMHCpeuKfokrgz0HTQG/QeN0ZL6T1VVlQzDkJeX12XvYLflcK5SV38m80flJwtKlbr6My27p4+Srm3cduA/lpuba/967dq1mj17trKzs+1lDdnuvOa+L8bf318zZsxw2Nm7Jhg19OdVU6/m+xpyXWfw8vKSYRh19tdL6b8u3dDC19dXffv21Y4dO+xlNptNO3bsUEJCwkW/d926dSorK9M999xT73X+9a9/6dSpU43et96V2C0QAADA/ZimqXPllQ16FZZWKH3TF7WClSR72ZxNX6qwtKLec9WsSWqI8zd5Cw0NlWEY9vfFxcWaMGGCIiMjFRwcrOuvv15///vfa52jsLBQd999t4KCgtShQwctXbq0Vp3Jkydrz5499S5h+fOf/6y4uDj5+/ure/fuev755+3HYmJiJEl9+/a1753gSVw+LXDatGlKTk5Wv3791L9/fy1evFjFxcWaOHGiJOnee+9Vhw4dNH/+fIfvW758uUaOHFlrk4qioiJlZGRo9OjRslqtOnbsmB599FHFxsYqMTGx2e7L2Wp2CyRcAQAAuI+Siir1mL3VKecyJeUVlKrXnG311v1ybqICfRv/Ub6oqEi33367Hn/8cfn5+ekvf/mLRowYoezsbEVHR9vrLVy4UDNnzlRGRoa2bt2qtLQ0de3aVUOHDrXXiYmJ0QMPPKAZM2YoKSmpzhGnV199VbNnz9Yf//hH/eQnP9Fnn32m+++/X0FBQUpOTtbevXvVv39/bdu2TdHR0R73PDGXh6uxY8fq+++/1+zZs5WXl6frrrtOW7ZssW9ycfz48Vq/mOzsbH344Yfatq12x/P29tbnn3+ul19+WWfOnFH79u112223ad68eR79rKuakatAH7ZiBwAAgHPEx8crPj7e/n7evHnasGGDNm3apClTptjLb7rpJv3ud7+TJHXt2lWZmZl65plnHMKVJP3+97/XypUr9eqrr+oXv/hFreulp6fr6aef1p133impOpB9+eWXevHFF5WcnKx27dpJksLDwxUZGem0/Q+ai8vDlSRNmTLF4Zd3vp07d9Yq69at2wWHQgMCArR1q3P+74E7OVdRvUtJkIWRKwAAAHcR4OOtL+c2bHbU3m9OK2XlJ/XWWzXxevWPaVPvdZ2hqKhIc+bM0TvvvKPc3FxVVlaqpKREx48fd6j34yU7CQkJWrx4ca3ztWvXTtOnT9fs2bM1duxYh2PFxcU6duyYfvnLX+r++++3l1dWVio0NNQp9+NqbhGuUD/WXAEAALgfwzAaPD3v5i7tFBXqr7yzpXWuuzIkWUP9dXOXds22Lfv06dO1fft2/eEPf1BsbKwCAgI0ZsyYRm01P23aND3//PMOa6mk6iAnSX/60580YMAAh2P17WjoKVy6oQUajmmBAAAAns3by1D6iB6SqoPU+Wrep4/o0azPu8rMzFRKSopGjRqlXr16yWq16ttvv61Vb8+ePbXex8XF1XnO4OBgzZo1S48//rjDc6oiIyPVvn17/fOf/1RsbKzDq2YjC19fX0nVOzN6IsKVh7BPC2TkCgAAwGMlXRulZff0kTXU8VlK1lD/JtmGvT5dunTR+vXrdeDAAR08eFDjx4+XzWarVS8zM1NPPfWUjhw5oqVLl2rdunVKS0u74HknT56s0NBQrV692qE8IyND8+fP15IlS3TkyBEdOnRIK1eu1KJFiyRJERER9mU++fn5Onv2rHNvuIkxLdBDsFsgAABAy5B0bZSG9rBq7zenlV9YqohW/uof06ZZR6xqLFq0SPfdd59uvPFGtW3bVr/97W/rfGjub37zG+3bt08ZGRkKCQnRokWLLroTt4+Pj+bNm6fx48c7lE+aNEmBgYFauHCh/vu//1tBQUHq1auXpk6dKkmyWCxasmSJ5s6dq/T0dN1888117sHgrghXHsA0TUauAAAAWhBvL0MJ1zT/NuMpKSlKSUmxv7/66qv13nvvOdRJTU11eF/XNMEfq6vO3XffrbvvvrtW+fjx42uFrvNNmjRJ9913nwoKCjxut0CmBXqAksoSmf+37DHQwporAAAAwB0RrjxAUUX1zipehpcCLAEubg0AAACAuhCuPIB9p0BLoAyj+efiAgAAAKgf4coD1Ky3Yht2AAAAwH0RrjwADxAGAAAA3B/hygPYw5WFcAUAAAC4K8KVB+AZVwAAAID7I1x5AJ5xBQAAALg/wpUHYM0VAAAA4P4srm4A6mffip3dAgEAADzbmRPSuVMXPh4YLrXu1HztgVMxcuUBGLkCAABoAc6ckP7YV3rpZxd+/bFvdT0nS0lJkWEYMgxDPj4+ioyM1NChQ7VixQrZbDanX68h3n//fQ0fPlzt2rWTv7+/rrnmGo0dO1YffPCBvc7OnTvt7TYMQwEBAerZs6deeuklh3PV3N8DDzxQ6zqpqakyDEMpKSlNfUuEK09wrpI1VwAAAB7v3CmpsuzidSrLLj6y1QhJSUnKzc3Vt99+q82bN+vWW29VWlqahg8frsrKyia55oU8//zzGjx4sMLDw7V27VplZ2drw4YNuvHGG/XII4/Uqp+dna3c3Fx9+eWX+tWvfqUHH3xQO3bscKjTqVMnrVmzRiUlJfay0tJSrV69WtHR0U1+TxLhyiMwcgUAAOCmTFMqL27Yq7Kk/vNJ1fXqO5dpXnJT/fz8ZLVa1aFDB/Xp00czZ87Um2++qc2bN2vVqlWSpDNnzmjSpElq166dQkJCNGjQIB08eNDhPG+++ab69Okjf39/de7cWRkZGQ7hzDAMLVu2TMOGDVNAQIA6d+6sN954w378+PHjmjp1qqZOnaqXX35ZgwYN0lVXXaXevXsrLS1N+/btq9X2iIgIWa1WxcTE6Ne//rViYmL06aefOtTp06ePOnXqpPXr19vL1q9fr+joaP3kJz+55J/X5WDNlQewr7mysOYKAADArVSck55o79xzrkiqv87MHMm38f/jfdCgQYqPj9f69es1adIk3XXXXQoICNDmzZsVGhqqF198UYMHD9aRI0fUpk0b/eMf/9C9996rJUuW6Oabb9axY8c0efJkSVJ6err9vLNmzdKCBQv07LPP6q9//avGjRunQ4cOKS4uTn/7299UUVGhRx99tM42GYYh8wLh0TRNbd26VcePH9eAAQNqHb/vvvu0cuVKTZgwQZK0YsUKTZw4UTt37mzkT6phGLnyAGzFDgAAgKbSvXt3ffvtt/rwww+1d+9erVu3Tv369VOXLl30hz/8Qa1bt7aPPGVkZOh3v/udkpOT1blzZw0dOlTz5s3Tiy++6HDOu+66S5MmTVLXrl01b9489evXT88995wk6ciRIwoJCZHVarXX/9vf/qbg4GD769ChQw7n69ixo4KDg+Xr66s77rhD6enpGjhwYK17ueeee/Thhx/qu+++03fffafMzEzdc889zv6RXRAjVx6AaYEAAABuyiewehSpIfI+b9io1H1bJGvv+q/rJKZpyjAMHTx4UEVFRQoPD3c4XlJSomPHjkmSDh48qMzMTD3++OP241VVVSotLdW5c+cUGFjdroSEBIdzJCQk6MCBA/b3hmE4HE9MTNSBAwf073//W7fccouqqqocjv/jH/9Qq1atVFZWpr1792rKlClq06aNHnzwQYd67dq10x133KFVq1bJNE3dcccdatu27eX9YC4D4coDEK4AAADclGE0fHqeJaDh9Zww5a+hsrKyFBMTo6KiIkVFRdU5ha5169aSpKKiImVkZOjOO++sVcff379B1+vSpYvOnj2rvLw8++hVcHCwYmNjZbHUHU9iYmLsbejZs6c+/vhjPf7447XClVQ9NXDKlCmSpKVLlzaoTc7CtEAPULNbIM+5AgAAgDO99957OnTokEaPHq0+ffooLy9PFotFsbGxDq+a0Z8+ffooOzu71vHY2Fh5ef1/tNizZ4/Ddfbs2aO4uDhJ0pgxY+Tj46Mnn3zystvt7e3tsCvg+ZKSklReXq6KigolJiZe9jUuByNXHoCRKwAAgBYgMFyy+F18O3aLX3W9JlBWVqa8vDxVVVXp5MmT2rJli+bPn6/hw4fr3nvvlZeXlxISEjRy5Eg99dRT6tq1q3JycvTOO+9o1KhR6tevn2bPnq3hw4crOjpaY8aMkZeXlw4ePKjDhw/rscces1+rZt3WT3/6U7366qvau3evli9fLkmKjo7W008/rbS0NJ0+fVopKSmKiYnR6dOn9corr0iqDk/ny8/PV2lpqX1a4F//+leNGTOmzvv09vZWVlZWnedpaoQrN1dpq1RZVfU/wCAL4QoAAMBjte4kTdl/8edYBYZX12sCW7ZsUVRUlCwWi8LCwhQfH68lS5YoOTnZPur07rvv6n/+5380ceJEff/997JarRo4cKAiIyMlVa+NevvttzV37lw9+eST8vHxUffu3TVp0iSHa2VkZGjNmjV66KGHFBUVpddee009evSwH3/44YcVFxenRYsWacyYMSooKFB4eLgSEhK0ZcsW9erVSwUFBfb63bp1kyRZLBZ16tRJv/rVrzRnzpwL3mtISIizfmyXhHDl5mpGrSRGrgAAADxe605NFp4uZtWqVfZnWV1Mq1attGTJEi1ZsuSCdRITE+udbte+fXtt27btonWGDBmiIUOG1HnMZrNJkm655ZYLbst+vvrubePGjfWewxlYc+XmasKVj5ePfLx9XNwaAAAAABdCuHJzrLcCAAAAPAPTAt0c4QoAAACepCHT+FoqRq7c3LkKtmEHAAAAPAHhys0VV/7fyBU7BQIAAABujXDl5pgWCAAAAHgGwpWbI1wBAAAAnoFw5eZq1lwRrgAAAAD3Rrhyc4xcAQAAAJ6BcOXmasIVuwUCAAAA7o1w5ea+K/hOkvRDyQ8ubgkAAACcaXfObv1848+1O2d3k18rJSVFhmFowYIFDuUbN26UYRj291VVVXrmmWfUq1cv+fv7KywsTMOGDVNmZqbD961atUqGYcgwDHl7eyssLEwDBgzQ3Llzdfbs2Tqv/eNXUlJS092wixCu3Jhpmjp86rCk6n98V/ID2QAAAFoS0zT17KfP6p9n/6lnP322WT7n+fv768knn9R//vOfC7Zp3Lhxmjt3rtLS0pSVlaWdO3eqU6dOuuWWW7Rx40aH+iEhIcrNzdW//vUvffTRR5o8ebL+8pe/6LrrrlNOTo5D3aSkJOXm5jq8Xnvttaa6VZexuLoBuLCPcj5SYXmhJCm3OFcf5Xykmzrc5OJWAQAAoIZpmiqpLLnk79uTs0dfnPpCkvTFqS/0/vH3dUP7Gxr8/QGWAIcRp4YYMmSIjh49qvnz5+upp56qdfz111/XG2+8oU2bNmnEiBH28pdeekmnTp3SpEmTNHToUAUFVe8FYBiGrFarJCkqKkpxcXEaMWKEevbsqUcffVSvvPKK/Rx+fn72ui0Z4cpNmaap5z57zv7ekKHnPntON7a/8ZL/IQEAAKBplFSWaMDqAY0+T9rOtEuq//H4jy95Tb63t7eeeOIJjR8/Xr/+9a/VsWNHh+OrV69W165dHYJVjd/85jdav369tm/frpEjR17wGhEREZowYYJWrFihqqoqeXt7X1IbPR3TAt3URzkf2f9vhiSZMvXFqS/0Uc5HLmwVAAAAPNmoUaN03XXXKT09vdaxI0eOKC4urs7vqyk/cuRIvdfo3r27CgsLderUKXvZ22+/reDgYIfXE088cZl34b4YuXJDNaNWXoaXbKbNXu5leDF6BQAA4EYCLAH6ePzHDa5vmqYmbp2o7P9k1/qc1y2sm1YmrmzQ57wAS8BltVeSnnzySQ0aNEjTp0+vs32NVXOO8+/j1ltv1bJlyxzqtWnTptHXcjeEKzf041GrGjbTZh+9Yu0VAACA6xmGcUnT8zL/nams01m1ym2mTVmns3Tg+wNN/jlv4MCBSkxM1IwZM5SSkmIv79q1q7KyardNkr28a9eu9Z4/KytLISEhCg8Pt5cFBQUpNja2cQ33AEwLdDM1o1aG6v4/FjVrr9g5EAAAwLO40+e8BQsW6K233tLu3f+/Dfy4ceP09ddf66233qpV/+mnn1Z4eLiGDh160fPm5+dr9erVGjlypLy8rryowciVm6mwVSivOE+m6v5HZcpUXnGeKmwV8vX2bebWAQAA4HK50+e8Xr16acKECVqyZIm9bNy4cVq3bp2Sk5O1cOFCDR48WAUFBVq6dKk2bdqkdevW2XcKlKrDYl5enkzT1JkzZ7R792498cQTCg0NrfU8rbKyMuXl5TmUWSwWtW3btknvs7kRrtyMr7ev1gxfo9Olpy9Yp41/G4IVAACAh3G3z3lz587V2rVr7e8Nw9Drr7+uxYsX65lnntFDDz0kf39/JSQkaOfOnbrpJsfpigUFBYqKipJhGAoJCVG3bt2UnJystLQ0hYSEONTdsmWLoqKiHMq6deumr776qulu0AUIV27IGmSVNajlPwcAAADgSuOqz3mrVq2qVXb11VerrKzMocxisWj69Ol1bnZxvpSUFIf1WvVdu67rt0RX3kRIAAAAAGgChCsAAAAAcALCFQAAAAA4AeEKAAAAAJyAcAUAAABcAp432vI463dKuAIAAAAawMfHR5J07tw5F7cEzlbzO635HV8utmIHAAAAGsDb21utW7dWfn6+JCkwMFCGYbi4VS2TzWZTeXm5SktL5eXVdONBpmnq3Llzys/PV+vWreXt7d2o8xGuAAAAgAayWqufUVUTsNA0TNNUSUmJAgICmiXAtm7d2v67bQzCFQAAANBAhmEoKipKERERqqiocHVzWqyKigp98MEHGjhwYKOn6tXHx8en0SNWNQhXAAAAwCXy9vZ22gdy1Obt7a3Kykr5+/s3ebhyJja0AAAAAAAnIFwBAAAAgBMQrgAAAADACVhzVYeah4gVFBQ47ZwVFRU6d+6cCgoKPGreKNwD/QeXi76DxqD/oDHoP2gMd+o/NZmgIQ8aJlzVobCwUJLUqVMnF7cEAAAAgDsoLCxUaGjoResYZkMi2BXGZrMpJydHrVq1ctq++gUFBerUqZNOnDihkJAQp5wTVw76Dy4XfQeNQf9BY9B/0Bju1H9M01RhYaHat29f7wONGbmqg5eXlzp27Ngk5w4JCXF5B4Hnov/gctF30Bj0HzQG/QeN4S79p74RqxpsaAEAAAAATkC4AgAAAAAnIFw1Ez8/P6Wnp8vPz8/VTYEHov/gctF30Bj0HzQG/QeN4an9hw0tAAAAAMAJGLkCAAAAACcgXAEAAACAExCuAAAAAMAJCFcAAAAA4ASEq2awdOlSXX311fL399eAAQO0d+9eVzcJbuiDDz7QiBEj1L59exmGoY0bNzocN01Ts2fPVlRUlAICAjRkyBB9/fXXrmks3M78+fN1/fXXq1WrVoqIiNDIkSOVnZ3tUKe0tFSpqakKDw9XcHCwRo8erZMnT7qoxXAny5YtU+/eve0P60xISNDmzZvtx+k7aKgFCxbIMAxNnTrVXkb/wYXMmTNHhmE4vLp3724/7ol9h3DVxNauXatp06YpPT1dn376qeLj45WYmKj8/HxXNw1upri4WPHx8Vq6dGmdx5966iktWbJEL7zwgj7++GMFBQUpMTFRpaWlzdxSuKNdu3YpNTVVe/bs0fbt21VRUaHbbrtNxcXF9jqPPPKI3nrrLa1bt067du1STk6O7rzzThe2Gu6iY8eOWrBggfbv3699+/Zp0KBB+vnPf64vvvhCEn0HDfPJJ5/oxRdfVO/evR3K6T+4mJ49eyo3N9f++vDDD+3HPLLvmGhS/fv3N1NTU+3vq6qqzPbt25vz5893Yavg7iSZGzZssL+32Wym1Wo1Fy5caC87c+aM6efnZ7722msuaCHcXX5+vinJ3LVrl2ma1f3Fx8fHXLdunb1OVlaWKcncvXu3q5oJNxYWFmb++c9/pu+gQQoLC80uXbqY27dvN3/2s5+ZaWlppmnytwcXl56ebsbHx9d5zFP7DiNXTai8vFz79+/XkCFD7GVeXl4aMmSIdu/e7cKWwdN88803ysvLc+hLoaGhGjBgAH0JdTp79qwkqU2bNpKk/fv3q6KiwqEPde/eXdHR0fQhOKiqqtKaNWtUXFyshIQE+g4aJDU1VXfccYdDP5H424P6ff3112rfvr06d+6sCRMm6Pjx45I8t+9YXN2AluyHH35QVVWVIiMjHcojIyP11VdfuahV8ER5eXmSVGdfqjkG1LDZbJo6dapuuukmXXvttZKq+5Cvr69at27tUJc+hBqHDh1SQkKCSktLFRwcrA0bNqhHjx46cOAAfQcXtWbNGn366af65JNPah3jbw8uZsCAAVq1apW6deum3NxcZWRk6Oabb9bhw4c9tu8QrgCghUlNTdXhw4cd5q0D9enWrZsOHDigs2fP6o033lBycrJ27drl6mbBzZ04cUJpaWnavn27/P39Xd0ceJhhw4bZv+7du7cGDBigq666Sq+//roCAgJc2LLLx7TAJtS2bVt5e3vX2tXk5MmTslqtLmoVPFFNf6EvoT5TpkzR22+/rffff18dO3a0l1utVpWXl+vMmTMO9elDqOHr66vY2Fj17dtX8+fPV3x8vJ599ln6Di5q//79ys/PV58+fWSxWGSxWLRr1y4tWbJEFotFkZGR9B80WOvWrdW1a1cdPXrUY//2EK6akK+vr/r27asdO3bYy2w2m3bs2KGEhAQXtgyeJiYmRlar1aEvFRQU6OOPP6YvQVL1Vv1TpkzRhg0b9N577ykmJsbheN++feXj4+PQh7Kzs3X8+HH6EOpks9lUVlZG38FFDR48WIcOHdKBAwfsr379+mnChAn2r+k/aKiioiIdO3ZMUVFRHvu3h2mBTWzatGlKTk5Wv3791L9/fy1evFjFxcWaOHGiq5sGN1NUVKSjR4/a33/zzTc6cOCA2rRpo+joaE2dOlWPPfaYunTpopiYGM2aNUvt27fXyJEjXddouI3U1FStXr1ab775plq1amWfjx4aGqqAgACFhobql7/8paZNm6Y2bdooJCREDz/8sBISEnTDDTe4uPVwtRkzZmjYsGGKjo5WYWGhVq9erZ07d2rr1q30HVxUq1at7Gs7awQFBSk8PNxeTv/BhUyfPl0jRozQVVddpZycHKWnp8vb21t333235/7tcfV2hVeC5557zoyOjjZ9fX3N/v37m3v27HF1k+CG3n//fVNSrVdycrJpmtXbsc+aNcuMjIw0/fz8zMGDB5vZ2dmubTTcRl19R5K5cuVKe52SkhLzoYceMsPCwszAwEBz1KhRZm5urusaDbdx3333mVdddZXp6+trtmvXzhw8eLC5bds2+3H6Di7F+Vuxmyb9Bxc2duxYMyoqyvT19TU7dOhgjh071jx69Kj9uCf2HcM0TdNFuQ4AAAAAWgzWXAEAAACAExCuAAAAAMAJCFcAAAAA4ASEKwAAAABwAsIVAAAAADgB4QoAAAAAnIBwBQAAAABOQLgCAAAAACcgXAEA4GSGYWjjxo2ubgYAoJkRrgAALUpKSooMw6j1SkpKcnXTAAAtnMXVDQAAwNmSkpK0cuVKhzI/Pz8XtQYAcKVg5AoA0OL4+fnJarU6vMLCwiRVT9lbtmyZhg0bpoCAAHXu3FlvvPGGw/cfOnRIgwYNUkBAgMLDwzV58mQVFRU51FmxYoV69uwpPz8/RUVFacqUKQ7Hf/jhB40aNUqBgYHq0qWLNm3a1LQ3DQBwOcIVAOCKM2vWLI0ePVoHDx7UhAkTNG7cOGVlZUmSiouLlZiYqLCwMH3yySdat26d/v73vzuEp2XLlik1NVWTJ0/WoUOHtGnTJsXGxjpcIyMjQ//1X/+lzz//XLfffrsmTJig06dPN+t9AgCal2GapunqRgAA4CwpKSl65ZVX5O/v71A+c+ZMzZw5U4Zh6IEHHtCyZcvsx2644Qb16dNHzz//vP70pz/pt7/9rU6cOKGgoCBJ0rvvvqsRI0YoJydHkZGR6tChgyZOnKjHHnuszjYYhqHf//73mjdvnqTqwBYcHKzNmzez9gsAWjDWXAEAWpxbb73VITxJUps2bexfJyQkOBxLSEjQgQMHJElZWVmKj4+3BytJuummm2Sz2ZSdnS3DMJSTk6PBgwdftA29e/e2fx0UFKSQkBDl5+df7i0BADwA4QoA0OIEBQXVmqbnLAEBAQ2q5+Pj4/DeMAzZbLamaBIAwE2w5goAcMXZs2dPrfdxcXGSpLi4OB08eFDFxcX245mZmfLy8lK3bt3UqlUrXX311dqxY0ezthkA4P4YuQIAtDhlZWXKy8tzKLNYLGrbtq0kad26derXr59++tOf6tVXX9XevXu1fPlySdKECROUnp6u5ORkzZkzR99//70efvhh/eIXv1BkZKQkac6cOXrggQcUERGhYcOGqbCwUJmZmXr44Yeb90YBAG6FcAUAaHG2bNmiqKgoh7Ju3brpq6++klS9k9+aNWv00EMPKSoqSq+99pp69OghSQoMDNTWrVuVlpam66+/XoGBgRo9erQWLVpkP1dycrJKS0v1zDPPaPr06Wrbtq3GjBnTfDcIAHBL7BYIALiiGIahDRs2aOTIka5uCgCghWHNFQAAAAA4AeEKAAAAAJyANVcAgCsKs+EBAE2FkSsAAAAAcALCFQAAAAA4AeEKAAAAAJyAcAUAAAAATkC4AgAAAAAnIFwBAAAAgBMQrgAAAADACQhXAAAAAOAE/wvI9mAMiLemCQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "# Data points for training accuracy\n", "tabnet_training_acc = [\n", " 0.78, 0.80, 0.815, 0.82, 0.835, 0.84, 0.85, 0.855, 0.86, 0.87, 0.875, 0.88,\n", " 0.885, 0.88, 0.89, 0.895, 0.90, 0.895, 0.905, 0.91, 0.905, 0.91, 0.90, 0.91,\n", " 0.92, 0.915, 0.92, 0.91, 0.92, 0.91, 0.915, 0.91, 0.91, 0.92, 0.915, 0.92,\n", " 0.915, 0.91, 0.915, 0.92, 0.91, 0.915, 0.92, 0.91, 0.92, 0.915, 0.91, 0.915,\n", " 0.92, 0.91\n", "]\n", "\n", "deep_gbm_training_accuracy = [\n", " 0.9435, 0.967, 0.981, 0.968, 0.973, 0.984, 0.985, 0.982, 0.985, 0.983, 0.987,\n", " 0.985, 0.983, 0.988, 0.985, 0.973\n", "]\n", "\n", "node_training_accuracy = [\n", " 0.72, 0.90, 0.92, 0.93, 0.935, 0.94, 0.945, 0.948, 0.95, 0.953\n", "]\n", "\n", "# Epochs for each model\n", "epochs_tabnet = list(range(1, len(tabnet_training_acc) + 1))\n", "epochs_deep_gbm = list(range(1, len(deep_gbm_training_accuracy) + 1))\n", "epochs_node = list(range(1, len(node_training_accuracy) + 1))\n", "\n", "# Plotting the training accuracy for each model\n", "plt.figure(figsize=(10, 6))\n", "plt.plot(epochs_tabnet, tabnet_training_acc, label='TabNet', marker='o')\n", "plt.plot(epochs_deep_gbm, deep_gbm_training_accuracy, label='DeepGBM', marker='s')\n", "plt.plot(epochs_node, node_training_accuracy, label='NODE', marker='^')\n", "\n", "# Adding titles and labels\n", "plt.title('Comparison of Training Accuracy for TabNet, DeepGBM, and NODE')\n", "plt.xlabel('Epoch')\n", "plt.ylabel('Training Accuracy')\n", "plt.grid(True)\n", "plt.legend(loc='lower right')\n", "\n", "# Show the plot\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Testing Accuracy Comparison Graph" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAHDCAYAAAA+xjI9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsyElEQVR4nO3deXxM1/8/8Ndk32SVVSIriZ2gvrZICEHsUlJaQVGtllRRtJZYSqxRai9qidpiX0NFUFQVpU3tayR2SSQRyeT8/sgv88mYJGaSmSTG6/l4zIM598y973vnzpl3zpx7rkQIIUBEREREpAV0yjsAIiIiIiJ1YXJLRERERFqDyS0RERERaQ0mt0RERESkNZjcEhEREZHWYHJLRERERFqDyS0RERERaQ0mt0RERESkNZjcEhEREZHWYHJL7wSJRILJkyeXdxiltm7dOvj4+EBfXx+WlpblHU6x+vfvDzc3t/IOg0rhXTrf8kkkEnz55ZflHQZRsdzc3NC/f//yDoOKwOT2HXHjxg189tln8PDwgJGREczNzdG8eXMsWLAAmZmZ5R0eKeG///5D//794enpiRUrVmD58uUKdW7fvg2JRKLU4/bt26WO6cGDB5g8eTIuXLhQ6nVpygcffACJRIIlS5aUdyjvFGXON3Uo63M235o1ayCRSGBkZITExESF5f7+/qhdu3aJ1h0dHY2oqKhSxTd58mS5fTcxMUHVqlXRuXNnrF69GllZWaVav6YcP34cvXr1QpUqVWBgYAALCws0adIEU6ZMwcOHD+Xq+vv7y+2jgYEB3N3dMWTIENy7d0+ubv77JZFIcOLECYXtCiHg4uICiUSCTp06aXQfy1L+Ps+dO1dhWf4x+fPPPxWWnTx5Et27d4e9vT0MDQ3h5uaGzz77DHfv3lWoW5JzrX///kV+To2MjNSz8+VIr7wDoLfbu3cvPvzwQxgaGqJfv36oXbs2Xr9+jRMnTmD06NH4559/NPbFVVFkZmZCT+/dPl3j4uKQm5uLBQsWwMvLq9A6tra2WLdunVzZ3Llzcf/+fcyfP1+hbmk9ePAAERERcHNzQ/369eWWrVixArm5uaXeRmlcu3YNZ8+ehZubGzZs2IDPP/+8XON5lyhzvqlDWZ+zb8rKysLMmTOxcOFCta0zOjoaly9fRnh4eKnXtWTJEpiZmSErKwuJiYk4ePAgBg4ciKioKOzZswcuLi6lD1hNJk6ciKlTp8LDwwP9+/eHh4cHXr16hXPnzmHu3Ln45ZdfcOPGDbnXODs7Y8aMGQCA169f499//8XSpUtx8OBBJCQkwMTERK6+kZERoqOj0aJFC7nyY8eO4f79+zA0NNTsTpaT2bNn4/PPP1c4HoVZuHAhRowYAQ8PD3z11VdwdHREQkICVq5ciU2bNmHfvn1o1qyZwutUPdcMDQ2xcuVKhfXo6uqWfEcrCkEV2s2bN4WZmZnw8fERDx48UFh+7do1ERUVVQ6RaZ5UKhWZmZnlHYbaRERECADi8ePHKr0uODhYuLq6aiSms2fPCgBi9erVGll/aU2cOFHY2dmJbdu2CYlEIm7dulXeIRWqIp6rJT3fipOenq5UvdKcswDEsGHD3lpv9erVAoCoX7++MDQ0FImJiXLLW7VqJWrVqlWiGNTxmZs0aVKRx3/9+vVCR0dHNGnSpFTbUKdff/1VABC9evUSWVlZCstfvHghJk2aJFdW1DFetGiRACAOHTokK8t/v3r06CEqV64ssrOz5V4zePBg0bBhQ+Hq6iqCg4PVs1Ma5OrqKsLCwt5aL/8cBSDmzp0rtyz/mJw9e1ZWduLECaGjoyNatmyp8Hm7fv26sLe3F46OjuLZs2ey8pKca2FhYcLU1FSZXX0ncVhCBTdr1iy8fPkSP//8MxwdHRWWe3l5YcSIEbLnOTk5mDp1Kjw9PWU/ZYwfP17hZwk3Nzd06tQJcXFxaNSoEYyNjVGnTh3ExcUBAGJiYlCnTh0YGRmhYcOGOH/+vNzr+/fvDzMzM9y8eRNBQUEwNTWFk5MTpkyZAiGEXN05c+agWbNmsLGxgbGxMRo2bIitW7cq7Ev+WLsNGzagVq1aMDQ0xIEDB2TLCo65TUtLQ3h4ONzc3GBoaAg7Ozu0bdsWf/31l9w6t2zZgoYNG8LY2BiVK1fGxx9/rPATZv6+JCYmolu3bjAzM4OtrS1GjRoFqVRaxDsjb/HixbKYnZycMGzYMLx48ULueE+aNAlAXu9VaccQZ2VlYdKkSfDy8oKhoSFcXFwwZswYhfc5NjYWLVq0gKWlJczMzODt7Y3x48cDyOvZa9y4MQBgwIABsp+k1qxZIzsuBcfc5v/8PGfOHCxfvlx2jjVu3Bhnz55ViHHLli2oWbMmjIyMULt2bWzfvl3lcbzR0dEICQlBp06dYGFhgejo6ELrnTlzBh07doSVlRVMTU1Rt25dLFiwQK7Of//9h169esHW1hbGxsbw9vbGd999J1teVGz5P/kVVNy5quz5DgDr16/HBx98ABMTE1hZWcHPzw+HDh0CAISFhaFy5crIzs5WeF27du3g7e1d5HF72/n2tvMV+N/P+ufOnYOfnx9MTExk505JqHJcAGDDhg3w9vaWtUHx8fGF1hs/fjykUilmzpypVBzr16+XtQnW1tYIDQ2V+wnd398fe/fuxZ07d2SfCXWPPe/bty8GDRqEM2fOIDY2Vm7ZmTNn0L59e1hYWMDExAStWrXCyZMnFdaRmJiIgQMHyn62rlWrFlatWiVXJy4uDhKJBJs2bcL48ePh4OAAU1NTdOnSRWHYwMSJE1G5cmX8/PPPMDAwUNiehYWF0m2Wg4MDABT6a9tHH32Ep0+fyu3369evsXXrVvTp00ep9Rflzp07+OKLL+Dt7Q1jY2PY2Njgww8/VBgOkz8c4OTJkxg5ciRsbW1hamqK7t274/Hjx3J1hRCYNm0anJ2dYWJigoCAAPzzzz8qxdW8eXO0bt0as2bNeuswwqlTp0IikeCXX35R6OX19PTErFmzkJSUhGXLlim17eLONa1W3tk1Fa9KlSrCw8ND6fphYWECgAgJCRE//fST6NevnwAgunXrJlfP1dVVeHt7C0dHRzF58mQxf/58UaVKFWFmZibWr18vqlatKmbOnClmzpwpLCwshJeXl5BKpXLbMTIyEtWqVROffPKJWLRokejUqZMAICZMmCC3LWdnZ/HFF1+IRYsWiXnz5okPPvhAABB79uyRqwdA1KhRQ9ja2oqIiAjx008/ifPnz8uWFew16NOnjzAwMBAjR44UK1euFJGRkaJz585i/fr1sjr5fxU3btxYzJ8/X4wdO1YYGxsLNzc38fz5c4V9qVWrlhg4cKBYsmSJ6NmzpwAgFi9e/NZjnv9Xc2BgoFi4cKH48ssvha6urmjcuLF4/fq1EEKI7du3i+7duwsAYsmSJWLdunXi4sWLb123EIq9SFKpVLRr106YmJiI8PBwsWzZMvHll18KPT090bVrV1m9y5cvCwMDA9GoUSOxYMECsXTpUjFq1Cjh5+cnhBAiOTlZTJkyRQAQQ4YMEevWrRPr1q0TN27ckB2Xgtu9deuWACAaNGggvLy8RGRkpJg1a5aoXLmycHZ2lu2rEELs2bNHSCQSUbduXTFv3jwxYcIEYWVlJWrXrq10j9jp06cFAHH8+HEhhBADBw4UNWvWVKh36NAhYWBgIFxdXcWkSZPEkiVLxPDhw0VgYKCszsWLF4W5ubmwsbER48aNE8uWLRNjxowRderUkdV5c3/z5b+/BRV3rip7vk+ePFkAEM2aNROzZ88WCxYsEH369BHffvutEEKI2NhYAUDs3r1b7nVJSUlCV1dXTJkypchjV9z5psz5KkRer5yDg4OwtbUVX331lVi2bJnYsWNHkdssqLCeT1Xagdq1a4vKlSuLKVOmiMjISOHq6iqMjY3FpUuXZPUK9noNHDhQGBkZyfXeFtarOG3aNCGRSETv3r3F4sWLRUREhKhcubJcm3Do0CFRv359UblyZdlnYvv27Urtd0HF9aYJIcTx48cFADFq1ChZ2ZEjR4SBgYFo2rSpmDt3rpg/f76oW7euMDAwEGfOnJHVS05OFs7OzsLFxUVMmTJFLFmyRHTp0kUAEPPnz5fVO3r0qAAg6tSpI/ssjh07VhgZGYnq1auLjIwMIYQQV65cEQDEoEGDVNrHVq1aCR8fH/H48WPx+PFj8eDBA3HkyBFRq1Yt4eXlJdcDXPD9atasmfjkk09ky3bs2CF0dHREYmJiqXput2zZIurVqycmTpwoli9fLsaPHy+srKyEq6urXC9ofiwNGjQQrVu3FgsXLhTffPON0NXVFb169ZJb5/fffy8AiI4dO4pFixaJgQMHCicnJ1G5cmWle26HDRsm4uPjFXpv3+y5TU9PF3p6esLf37/I9b169UoYGhqK5s2by8pKcq7l99zmv3cFHykpKW/dr4qOyW0FlpKSIgDIJSzFuXDhQqEN1KhRowQA8dtvv8nKXF1dBQDx+++/y8oOHjwoAAhjY2Nx584dWfmyZcsEAHH06FFZWX4S/dVXX8nKcnNzRXBwsDAwMJD7kOU3oPlev34tateuLVq3bi1XDkDo6OiIf/75R2Hf3kxuLSwsiv3p8vXr18LOzk7Url1b7ufiPXv2CABi4sSJCvvyZrLQoEED0bBhwyK3IYQQjx49EgYGBqJdu3ZyyX/+z3KrVq2Slb2tASrKm4nCunXrhI6Ojizpy7d06VIBQJw8eVIIIcT8+fPfur3ihiUUldza2NjI/SS2c+dOhSSsTp06wtnZWaSlpcnK4uLiBAClk9svv/xSuLi4iNzcXCFEXtIBQJZECiFETk6OcHd3F66urnJ/sAghZK8TQgg/Pz9RqVIlufP6zTqqJrdFnavKnO/Xrl0TOjo6onv37nLnTcGYpFKpcHZ2Fr1795ZbPm/ePCGRSMTNmzcVtl1Y3AXff1XO11atWgkAYunSpcVupzCFJbeqtAMAxJ9//ikru3PnjjAyMhLdu3eXlRVMDG7cuCH09PTE8OHD5eIvmNzevn1b6OrqiunTp8tt79KlS0JPT0+uXNPDEoQQ4vnz5wKAbJ9yc3NFtWrVRFBQkNx5mZGRIdzd3UXbtm1lZZ9++qlwdHQUT548kVtnaGiosLCwkB3r/OS2SpUqIjU1VVZv8+bNAoBYsGCBEOJ/n+E3h7jl5uYqJD4FhxPknyNvPmrUqKFwfhZ8vxYtWiQqVaoki/PDDz8UAQEBQghRquT2zXNMCCFOnTolAIi1a9cqxBIYGCh3rL/++muhq6srXrx4IYT43+clODhYrt748eMFAJWSWyGECAgIEA4ODrI430xu87/DR4wYUew669atK6ytrWXPVT3XhPjf915hj6CgoLfuV0XHYQkVWGpqKgCgUqVKStXft28fAGDkyJFy5d988w2AvAvTCqpZsyaaNm0qe96kSRMAQOvWrVG1alWF8ps3bypss+CUPfk/1b5+/RqHDx+WlRsbG8v+//z5c6SkpKBly5YKQwgAoFWrVqhZs+Zb9hSwtLTEmTNn8ODBg0KX//nnn3j06BG++OILuSs/g4OD4ePjo3AsAGDo0KFyz1u2bFnoPhd0+PBhvH79GuHh4dDR+d/HafDgwTA3Ny90O6W1ZcsW1KhRAz4+Pnjy5Ins0bp1awDA0aNHAUA29dPOnTvVemFY7969YWVlJXvesmVLAP87Px48eIBLly6hX79+MDMzk9Vr1aoV6tSpo9Q2cnJysGnTJvTu3Vs2JKB169aws7PDhg0bZPXOnz+PW7duITw8XGGqq/zXPX78GPHx8Rg4cKDceV2wTkkUda4qc77v2LEDubm5mDhxotx5UzAmHR0d9O3bF7t27UJaWpps+YYNG9CsWTO4u7urHLOq56uhoSEGDBig8nYKo0o70LRpUzRs2FD2vGrVqujatSsOHjxY6FAhDw8PfPLJJ1i+fDmSkpIK3X5MTAxyc3PRq1cvuc+Ng4MDqlWrJvvclJX8z0b+e3vhwgVcu3YNffr0wdOnT2Xxpaeno02bNoiPj0dubi6EENi2bRs6d+4MIYTcvgQFBSElJUXhmPbr10/ueyQkJASOjo6y74z875qCn1cASElJga2trdzjzZlV3NzcEBsbi9jYWOzfvx9RUVFISUlBhw4dFH7iz9erVy9kZmZiz549SEtLw549e0o9JAGQP8eys7Px9OlTeHl5wdLSstDzbMiQIXJtQMuWLSGVSnHnzh0A//u8fPXVV3L1Snqh4eTJk5GcnIylS5cWujz/XHjbd36lSpVk75ky3jzX8hkZGcneu4IPZYf4VGTv9uXnWs7c3ByA4glZlDt37kBHR0fhymgHBwdYWlrKPrD53vyit7CwAACFKyrzy58/fy5XrqOjAw8PD7my6tWrA4DcGKc9e/Zg2rRpuHDhgtyY0MISC2W/sGfNmoWwsDC4uLigYcOG6NixI/r16yeLJ39fCxuX6OPjozAVjZGRkcKV3FZWVgr7/KaitmNgYAAPDw+FY64O165dQ0JCQpFXnj969AhAXhK6cuVKDBo0CGPHjkWbNm3Qo0cPhISEKCRUqnjzvMlPdPOPVf4+F3aFvpeXV6FfMm86dOgQHj9+jA8++ADXr1+XlQcEBGDjxo2IjIyEjo6O7Mrt4qZ8yk+6SzotVFGKOleVOd9v3LgBHR2dt/4h169fP0RGRmL79u3o168frly5gnPnzhX55fg2qp6v+dNBqYMq7UC1atUUyqpXr46MjAw8fvxYNqazoO+//x7r1q3DzJkzFcZbA3mfGyFEoesGAH19fVV2p9RevnwJ4H+JzLVr1wDkjbUuSkpKCrKzs/HixQssX768yFly8tuAfG/us0QigZeXl6ydzo8hP6Z8ZmZmsnGahw4dwuzZsxW2ZWpqisDAQNnz9u3bo0WLFmjUqBFmzpxZ6BRYtra2CAwMRHR0NDIyMiCVShESElLkfisrMzMTM2bMwOrVq5GYmCh3/UdKSopCfWXbsjePn62trdwf+Mry8/NDQEAAZs2apdCZAvzvfXjbd35aWprSnV6A4rmWT1dXV+690yZMbiswc3NzODk54fLlyyq9TtneqKKm+yiqvGBDoazjx4+jS5cu8PPzw+LFi+Ho6Ah9fX2sXr260IuDCv7lXZxevXqhZcuW2L59u6zRjYyMRExMDDp06KBynO/S1Ce5ubmoU6cO5s2bV+jy/D9OjI2NER8fj6NHj2Lv3r04cOAANm3ahNatW+PQoUMl3md1nh9Fye+d7dWrV6HLjx07hoCAALVtDyj6c1PURYWFnauqnu9vU7NmTTRs2BDr169Hv379sH79ehgYGBR5XNRN2c/j26j7uBTGw8MDH3/8MZYvX46xY8cqLM/NzYVEIsH+/fsLPYff7LXUtPx2Pf+PwPxfV2bPnq0wLV8+MzMzPH36FADw8ccfF5kI161bV6VYfHx85GLKp6enJ0t+7t+/r/T6GjZsCAsLiyIvAgSAPn36YPDgwUhOTkaHDh3UcpORr776CqtXr0Z4eDiaNm0KCwsLSCQShIaGFvrrVVm0ZW+aNGkS/P39sWzZMoV99vLygp6eHv7+++8iX5+VlYUrV66gUaNGSm/zzXPtfcDktoLr1KkTli9fjlOnTskNISiMq6srcnNzce3aNdSoUUNW/vDhQ7x48QKurq5qjS03Nxc3b96U9dYCwNWrVwFAdnXxtm3bYGRkhIMHD8rNX7h69epSb9/R0RFffPEFvvjiCzx69Ai+vr6YPn06OnToINvXK1euyH6uz3flyhW1HYuC2ynYi/369WvcunVLI38Ve3p64uLFi2jTps1b/5DR0dFBmzZt0KZNG8ybNw8//PADvvvuOxw9ehSBgYGl+lm+KPnHpGCPa77Cyt6Unp6OnTt3onfv3oX25gwfPhwbNmxAQEAAPD09AeQ13kUd6/z35W1/JFpZWSnMGABApd53Zc93T09P5Obm4t9//y0ykcnXr18/jBw5EklJSYiOjkZwcHCJeo2A8jlfAdXbgfxezIKuXr0KExOTYufK/f7777F+/XpERkYqLPP09IQQAu7u7nJtVmE08bl4U/7cwEFBQbL4gLxOjeLeB1tbW1SqVAlSqVTp9+vN4ymEwPXr12VJsLe3N6pVq4YdO3YgKioKpqamKu/Pm6RSqUJPcEHdu3fHZ599htOnT2PTpk2l3h4AbN26FWFhYXK9xa9evSr0c62M/M/LtWvX5D4vjx8/fuuvekVp1aoV/P39ERkZiYkTJ8otMzU1RUBAAH777TfcuXOn0O+pzZs3IysrS6UbXbx5rr0POOa2ghszZgxMTU0xaNAghbvDAHk/b+b/BNexY0cAULizTn4PX3BwsNrjW7Rokez/QggsWrQI+vr6aNOmDYC8v4wlEolc79ft27exY8eOEm9TKpUq/MRkZ2cHJycn2c+djRo1gp2dHZYuXSr3E+j+/fuRkJCgtmMRGBgIAwMD/Pjjj3J/7f/8889ISUnRyDHv1asXEhMTsWLFCoVlmZmZSE9PBwA8e/ZMYXl+IpV/TPK/xEra+BfGyckJtWvXxtq1a+W+3I4dO4ZLly699fXbt29Heno6hg0bhpCQEIVHp06dsG3bNmRlZcHX1xfu7u6IiopS2If898PW1hZ+fn5YtWqVwt19Cr5nnp6eSElJkes1SUpKwvbt25Xed2XP927dukFHRwdTpkxR6FF6s9foo48+gkQiwYgRI3Dz5k18/PHHSsfzpvI4XwHV24FTp07JDV+5d+8edu7ciXbt2hX7i4Onpyc+/vhjLFu2DMnJyXLLevToAV1dXURERCgcYyGErEcUyPtcFPYztrpER0dj5cqVaNq0qaytbNiwITw9PTFnzpxCk8L88au6urro2bMntm3bVugfbIWNc127dq3cT91bt25FUlKS3K9ckydPxpMnTzB48OBCp59TpTfz6NGjePnyJerVq1dkHTMzMyxZsgSTJ09G586dlV53cXR1dRXiXLhwodJTOr4pMDAQ+vr6WLhwodx61XH3uuTk5EKHlXz//fcQQqB///4K04bdunULY8aMgaOjIz777DOltlXYufY+YM9tBefp6Yno6Gj07t0bNWrUkLtD2e+//44tW7bI7m9dr149hIWFYfny5Xjx4gVatWqFP/74A7/88gu6deum9p9xjYyMcODAAYSFhaFJkybYv38/9u7di/Hjx8t6V4KDgzFv3jy0b98effr0waNHj/DTTz/By8ur2J9eipOWlgZnZ2eEhISgXr16MDMzw+HDh3H27FnZX+z6+vqIjIzEgAED0KpVK3z00Ud4+PAhFixYADc3N3z99ddqOQa2trYYN24cIiIi0L59e3Tp0gVXrlzB4sWL0bhx41IlIkX55JNPsHnzZgwdOhRHjx5F8+bNIZVK8d9//2Hz5s04ePAgGjVqhClTpiA+Ph7BwcFwdXXFo0ePsHjxYjg7O8vuDuTp6QlLS0ssXboUlSpVgqmpKZo0aVKii5UK+uGHH9C1a1c0b94cAwYMwPPnz7Fo0SLUrl272N4cIG9Igo2NTaF34AGALl26YMWKFdi7dy969OiBJUuWoHPnzqhfvz4GDBgAR0dH/Pfff/jnn39w8OBBAMCPP/6IFi1awNfXF0OGDIG7uztu376NvXv3yi6QCQ0Nxbfffovu3btj+PDhyMjIwJIlS1C9enWlxgkDyp/vXl5e+O677zB16lS0bNkSPXr0gKGhIc6ePQsnJyfZHZ+AvHOsffv22LJlCywtLUuVgJbH+Qqo3g7Url0bQUFBGD58OAwNDbF48WIAQERExFu39d1332HdunW4cuUKatWqJSv39PTEtGnTMG7cONy+fRvdunVDpUqVcOvWLWzfvh1DhgzBqFGjAOQlmps2bcLIkSPRuHFjmJmZyRIwf39/HDt2TOlkb+vWrTAzM8Pr169ld406efIk6tWrhy1btsjq6ejoYOXKlejQoQNq1aqFAQMGoEqVKkhMTMTRo0dhbm6O3bt3AwBmzpyJo0ePokmTJhg8eDBq1qyJZ8+e4a+//sLhw4cV/rC1trZGixYtMGDAADx8+BBRUVHw8vLC4MGDZXX69OmDy5cvY8aMGfjjjz8QGhoKd3d3pKen4/Lly9i4cSMqVaqk8KtBSkoK1q9fDyDvQtArV65gyZIlMDY2LnR4SEHFjS8uqH///vjll19w69atYucc7tSpE9atWwcLCwvUrFkTp06dwuHDh2FjY6PUdt6UP9/5jBkz0KlTJ3Ts2BHnz5/H/v37Ubly5RKtE8jrvW3VqhWOHTumsMzPzw9z5szByJEjUbduXfTv31/WpuXfNXLfvn2F/nqj7LmWLycnR/beval79+5q6cEvN2U5NQOV3NWrV8XgwYOFm5ubMDAwEJUqVRLNmzcXCxcuFK9evZLVy87OFhEREcLd3V3o6+sLFxcXMW7cOLk6QhQ93QoKuTtQ/hRQs2fPlpXlz5F348YN2Zyr9vb2YtKkSQpTG/3888+iWrVqwtDQUPj4+IjVq1cXOb1SUdN7ocBUYFlZWWL06NGiXr16olKlSsLU1FTUq1ev0DlpN23aJBo0aCAMDQ2FtbW16Nu3r7h//75cnaLu1FJYjEVZtGiR8PHxEfr6+sLe3l58/vnnClNTqWsqMCHyplGKjIwUtWrVEoaGhsLKyko0bNhQREREyOYoPHLkiOjatatwcnISBgYGwsnJSXz00Ufi6tWrcuvauXOnqFmzptDT05ObFqyoqcAKngf5Cr4/+X799Vfh4+MjDA0NRe3atcWuXbtEz549hY+PT5H7+vDhQ6Gnpyc3B+abMjIyhImJidy0NidOnBBt27aVnQ9169YVCxculHvd5cuXRffu3YWlpaUwMjIS3t7eCnMyHzp0SNSuXVsYGBgIb29vsX79epXPVWXPdyGEWLVqlez8tLKyEq1atRKxsbEK9fKnbhoyZEiRx+VNxZ1vypyv6r7Dl6rtwPr162X1GzRoIDcVoRCF390pX/40R4XFv23bNtGiRQthamoqTE1NhY+Pjxg2bJi4cuWKrM7Lly9Fnz59hKWlpcL0dQ0bNhQODg5vPQb5+5b/MDIyEs7OzqJTp05i1apVCm1yvvPnz4sePXoIGxsbYWhoKFxdXUWvXr3EkSNH5Oo9fPhQDBs2TLi4uAh9fX3h4OAg2rRpI5YvXy6rkz8V2MaNG8W4ceOEnZ2dMDY2FsHBwQrT4uWLi4sTISEhwtHRUejr6wtzc3PRqFEjMWnSJJGUlCRX982pwCQSibC2thZdunQR586dk6tb3PtVUGHfTT179hTGxsYK5+ibnj9/LgYMGCAqV64szMzMRFBQkPjvv/8U7iZWVCz5x6vguSaVSkVERIRwdHQUxsbGwt/fX1y+fFmlO5QV1lbkb6uoYxIfHy+6du0qKleuLPT19UXVqlXF4MGDxe3btxXqluRcK24qMAAV9m6QypIIocGR06S1+vfvj61bt761F46ooPr168PW1vb9ulOOGuzcuRPdunVDfHy8bOo1KntpaWmwtrZGVFQUhg0bVt7hvFVcXBwCAgKwZcsWtcxGUF7s7e3Rr1+/QmdrICoMx9wSkdplZ2cjJydHriwuLg4XL16Ev79/+QT1DluxYgU8PDxkw0mofMTHx6NKlSpyP+eTZv3zzz/IzMzEt99+W96h0DuEY26JSO0SExMRGBiIjz/+GE5OTvjvv/+wdOlSODg4FDq/IxXu119/xd9//429e/diwYIFZXIVPxUtODhYYxfdUeFq1aql0g0LiAAmt0SkAVZWVmjYsCFWrlyJx48fw9TUFMHBwZg5c2aJL+54H3300UcwMzPDp59+ii+++KK8wyEieieU65jb+Ph4zJ49G+fOnZNNudOtWzfZciEEJk2ahBUrVuDFixdo3rw5lixZIne3kGfPnuGrr77C7t27oaOjg549e2LBggVlPiE3EREREZW/ch1zm56ejnr16uGnn34qdPmsWbPw448/YunSpThz5gxMTU0RFBSEV69eyer07dsX//zzD2JjY7Fnzx7Ex8djyJAhZbULRERERFSBVJjZEiQSiVzPrRACTk5O+Oabb2RzD6akpMDe3h5r1qxBaGgoEhISULNmTZw9e1Z2K7oDBw6gY8eOuH//PpycnMprd4iIiIioHFTYMbe3bt1CcnKy3O0FLSws0KRJE5w6dQqhoaE4deoULC0t5e6xHBgYCB0dHZw5cwbdu3cvdN1ZWVlyd63Kzc3Fs2fPYGNjwws2iIiIiCogIQTS0tLg5OQEHZ2iBx9U2OQ2/9aJ9vb2cuX29vayZcnJybCzs5NbrqenB2tra4VbLxY0Y8YMpe50Q0REREQVy7179+Ds7Fzk8gqb3GrSuHHjMHLkSNnzlJQUVK1aFbdu3UKlSpU0vv3s7GwcPXoUAQEB0NfX1/j2iOj9w3aGiDSpPNqYtLQ0uLu7vzVXq7DJrYODAwDg4cOHcHR0lJU/fPgQ9evXl9V59OiR3OtycnLw7Nkz2esLY2hoCENDQ4Vya2trmJubqyH64mVnZ8PExAQ2Njb80iEijWA7Q0SaVB5tTP523jaEtMLeoczd3R0ODg44cuSIrCw1NRVnzpxB06ZNAQBNmzbFixcvcO7cOVmd3377Dbm5uWjSpEmZx0xERERE5atce25fvnyJ69evy57funULFy5cgLW1NapWrYrw8HBMmzYN1apVg7u7OyZMmAAnJyfZjAo1atRA+/btMXjwYCxduhTZ2dn48ssvERoaypkSiIiIiN5D5Zrc/vnnnwgICJA9zx8HGxYWhjVr1mDMmDFIT0/HkCFD8OLFC7Ro0QIHDhyAkZGR7DUbNmzAl19+iTZt2shu4vDjjz+W+b4QERERUfkr1+TW398fxU2zK5FIMGXKFEyZMqXIOtbW1oiOjtZEeERERFSB5ebm4vXr1+UdxnspOzsbenp6ePXqFaRSqVrWqa+vD11d3VKvp8JeUEZERERUlNevX+PWrVvIzc0t71DeS0IIODg44N69e2q9R4ClpSUcHBxKtU4mt0RERPROEUIgKSkJurq6cHFxKXZCf9KM3NxcvHz5EmZmZmo5/kIIZGRkyGbBKjhTlqqY3BIREdE7JScnBxkZGXBycoKJiUl5h/Neyh8SYmRkpLY/LoyNjQEAjx49gp2dXYmHKPBPHSIiInqn5I/xNDAwKOdISN3y/1jJzs4u8TqY3BIREdE7SZ1jPaliUMd7yuSWiIiIiLQGk1siIiKiCs7NzQ1RUVHlHcY7gcktERERvZekUiAuDti4Me9fNU3XWiiJRFLsY/LkyaXehpubGyQSCU6fPi1XHh4eDn9/f6XXc/v2bUgkEly4cKHUMZUHzpZARERE752YGGDECOD+/f+VOTsDCxYAPXqof3tJSUmy/2/atAkTJ07ElStXZGVmZmZq2Y6RkRG+/fZbHDt2TC3rexex55aIiIjeKzExQEiIfGILAImJeeUxMerfpoODg+xhYWEBiUQie56eno6+ffvC3t4eZmZmaNy4MQ4fPqywjrS0NHz00UcwNTVFlSpV8NNPPynUGTJkCE6fPo19+/YVG8/KlStRo0YNGBkZwcfHB4sXL5Ytc3d3BwA0aNAAEolEpV7fioDJLREREb3ThADS05V7pKYCw4fnvaaw9QB5Pbqpqcqtr7D1qOrly5fo2LEjjhw5gvPnz6N9+/bo3Lkz7t69K1dv9uzZqFevHs6fP4+xY8dixIgRiI2Nlavj7u6OoUOHYty4cUXevW3Dhg2YOHEipk+fjoSEBPzwww+YMGECfvnlFwDAH3/8AQA4fPgwkpKSEKOJbF+DOCyBiIiI3mkZGYCaftWHEHk9uhYWytV/+RIwNS3dNuvVq4d69erJnk+dOhXbt2/Hrl278OWXX8rKmzdvjrFjxwIAqlevjpMnT2L+/Plo27at3Pq+//57rF69Ghs2bMAnn3yisL1JkyZh7ty56PH/x1+4u7vj33//xbJlyxAWFgZbW1sAgI2NDRwcHEq3c+WAPbdERERE5ejly5cYNWoUatSoAUtLS5iZmSEhIUGh57Zp06YKzxMSEhTWZ2tri1GjRmHixIl4/fq13LL09HTcuHEDn376KczMzGSPadOm4caNG+rfuXLAnlsiIiJ6p5mY5PWgKiM+HujY8e319u0D/PyU23ZpjRo1CrGxsZgzZw68vLxgbGyMkJAQhcRUFSNHjsTixYvlxtICeYk0AKxYsQJNmjSRW1bS291WNExuiYiI6J0mkSg/NKBdu7xZERITCx8vK5HkLW/XDiirXO/kyZPo378/unfvDiAvAb19+7ZCvTen+Dp9+jRq1KhR6DrNzMwwYcIETJ48GV26dJGV29vbw8nJCTdv3kTfvn0LfW3+bY2lmpwbTYM4LIGIiIjeG7q6edN9AXmJbEH5z6Oiyi6xBYBq1aohJiYGFy5cwMWLF9GnT59CLwY7efIkZs2ahatXr+Knn37Cli1bMGLEiCLXO2TIEFhYWCA6OlquPCIiAjNmzMCPP/6Iq1ev4tKlS1i9ejXmzZsHALCzs4OxsTEOHDiAhw8fIiUlRb07rGFMbomIiOi90qMHsHUrUKWKfLmzc165Jua5Lc68efNgZWWFZs2aoXPnzggKCoKvr69CvW+++QZ//vknGjRogGnTpmHevHkICgoqcr36+vqYOnUqXr16JVc+aNAgrFy5EqtXr0adOnXQqlUrrFmzRjYFmJ6eHn788UcsW7YMTk5O6Nq1q3p3WMMkQqhjEot3W2pqKiwsLJCSkgJzc3ONby87Oxv79u1Dx44doa+vr/HtEdH7h+0MabNXr17h1q1bcHd3h5GRUYnXI5UCx48DSUmAoyPQsmXZ9ti+y3Jzc5Gamgpzc3Po6Kivr7S491bZfI1jbomIiOi9pKsLvGP3JyAlcFgCEREREWkNJrdEREREpDWY3BIRERGR1mByS0RERERag8ktEREREWkNJrdEREREpDWY3BIRERGR1mByS0RERERag8ktEREREWkNJrdERET0fsqVAg/jgNsb8/7NlWp8k/3794dEIoFEIoG+vj7s7e3Rtm1brFq1Crm5uRrffmGOHj2KTp06wdbWFkZGRvD09ETv3r0RHx8vqxMXFyeLWyKRwNTUFE2bNsXy5cvl1pW/f0OHDlXYzrBhwyCRSNC/f3+N7g+TWyIiInr/3IsBdrkBRwKA3/vk/bvLLa9cw9q3b4+kpCTcvn0b+/fvR0BAAEaMGIFOnTohJydH49svaPHixWjTpg1sbGywadMmXLlyBdu3b0ezZs3w9ddfK9S/cuUKkpKScPnyZfTv3x/Dhg3DkSNH5Oq4uLjg119/RWZmpqzs1atXiI6ORtWqVTW+T0xuiYiI6P1yLwY4HgJk3Jcvz0jMK9dwgmtoaAgHBwdUqVIFvr6+GD9+PHbu3In9+/djzZo1AIAXL15g0KBBsLW1hbm5OVq3bo2LFy/KrWfnzp3w9fWFkZERPDw8EBERIZccSyQSLFmyBB06dICxsTE8PDywdetW2fK7d+8iPDwc4eHh+OWXX9C6dWu4urqibt26GDFiBP7880+F2O3s7ODg4AB3d3d89tlncHd3x19//SVXx9fXFy4uLoiJ+d9xjImJQdWqVdGgQQN1HMJiMbklIiKid5sQQE66co/XqcCfwwGIwlaU98+fI/LqKbM+Udh6VNe6dWvUq1dPlhB++OGHePToEfbv349z587B19cXbdq0wbNnzwAAx48fR79+/TBixAj8+++/WLZsGdasWYPp06fLrXfChAno2bMnLl68iL59+yI0NBQJCQkAgG3btiE7OxtjxowpNCaJRFJkvEIIHD58GHfv3kWTJk0Ulg8cOBCrV6+WPV+1ahUGDBig2kEpIb0y2QoRERGRpkgzgM1malqZADLvA1stlKve6yWgZ6qWLfv4+ODvv//GiRMn8Mcff+DRo0cwNDQEAMyZMwc7duzA1q1bMWTIEERERGDs2LEICwsDAHh4eGDq1KkYM2YMJk2aJFvnhx9+iEGDBgEApk6ditjYWCxcuBCLFy/G1atXYW5uDgcHB1n9bdu2ydYJAKdOnUKdOnVkz52dnQEAWVlZyM3NRUREBPz8/BT25eOPP8a4ceNw584dAMDJkyfx66+/Ii4uTi3HqjhMbomIiIgqACEEJBIJLl68iJcvX8LGxkZueWZmJm7cuAEAuHjxIk6ePCnXUyuVSvHq1StkZGTAxMQEANC0aVO5dTRt2hQXLlyQPX+zdzYoKAgXLlxAYmIi/P39IZXKX2R3/PhxVKpUCZmZmYiPj8eYMWNgY2ODzz//XK6era0tgoODsWbNGgghEBwcjMqVK5fswKiIyS0RERG923RN8npQlfEoHojr+PZ6/vsAO8UeyUK3rSYJCQlwd3fHy5cv4ejoWGgvp6WlJQDg5cuXiIiIQI8ePRTqGBkZKbW9atWqISUlBcnJybLeWzMzM3h5eUFPr/AU0d3dHZaWlsjNzYWLiwv+/vtvTJ8+XSG5BfKGJnz55ZcAgJ9++kmpmNSByS0RERG92yQS5YcGOLQDTJzzLh4rdNytJG+5QztAR1edURbrt99+w6VLl/D111/D2dkZycnJ0NPTg5ubW6H1fX19ceXKFXh5eRW73tOnT6Nfv35yz/Mv6goJCcHYsWMRGRmJ+fPnlyhuXV1duVkRCmrfvj1ev34NiUSCoKCgEq2/JJjcEhER0ftDRxdouCBvVgRIIJ/g/v+f6BtGaTSxzcrKQnJyMqRSKR4+fIgDBw5gxowZ6NSpE/r16wcdHR00bdoU3bp1w6xZs1C9enU8ePAAe/fuRffu3dGoUSNMnDgRnTp1QtWqVRESEgIdHR1cvHgRly9fxrRp02Tb2rJlCxo1aoQWLVpgw4YN+OOPP/Dzzz8DAKpWrYq5c+dixIgRePbsGfr37w93d3c8e/YM69evB5CXvBb06NEjvHr1CpmZmTh27BjWr1+PkJCQQvdTV1dXdvHam+vRJCa3RERE9H5x6QG03AqcGyE/HZiJc15i66L4U786HThwAI6OjtDT04OVlRXq1auHH3/8EWFhYdDRyZvIat++ffjuu+8wYMAAPH78GA4ODvDz84O9vT2AvLGxe/bswZQpUxAZGQl9fX34+PjILh7LFxERgV9//RVffPEFHB0dsXHjRtSsWVO2/KuvvkKNGjUwb948hISEIDU1FTY2NmjatCkOHDggdzEZAHh7ewMA9PT0UKVKFdnFbUUxNzdXyzFThUQINc1h8Q5LTU2FhYUFUlJSyuRNyM7Oxr59+9CxY0fo6+trfHtE9P5hO0Pa7NWrV7h16xbc3d2VHl9aqFwp8Pg4kJkEGDsCti3LdCiCpkkkEmzfvh3dunVT+7pzc3ORmpoKc3NzWUKuDsW9t8rma+y5JSIioveTji5g71/eUZCa8SYORERERKQ12HNLREREpIXe15Gn7LklIiIiIq3B5JaIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq3B5JaIiIiItAaTWyIiIiLSGkxuiYiI6L0kzZUi7nYcNl7aiLjbcZDmSjW+zf79+0MikWDmzJly5Tt27IBEIvlfbFIp5s+fjzp16sDIyAhWVlbo0KEDTp48Kfe6NWvWQCKRQCKRQFdXF1ZWVmjSpAmmTJmClJSUQrf95qN9+/aa2+FywOSWiIiI3jsxCTFwW+CGgF8C0CemDwJ+CYDbAjfEJMRofNtGRkaIjIzE8+fPC10uhEBoaCimTJmCESNGICEhAXFxcXBxcYG/vz927NghV9/c3BxJSUm4f/8+fv/9dwwZMgRr165F/fr18eDBA7m67du3R1JSktxj48aNmtrVcsHkloiIiN4rMQkxCNkcgvup9+XKE1MTEbI5ROMJbmBgIBwcHDBjxoxCl2/evBlbt27F2rVrMWjQILi7u6NevXpYvnw5unTpgkGDBiE9PV1WXyKRwMHBAY6OjqhRowY+/fRT/P7773j58iXGjBkjt25DQ0M4ODjIPaysrDS6v2WNyS0RERG904QQSH+drtQj9VUqhu8fDgHFW9Pml43YPwKpr1KVWl9JbnGrq6uLH374AQsXLsT9+/cVlkdHR6N69ero3LmzwrJvvvkGT58+RWxsbLHbsLOzQ9++fbFr1y5IpZofblGR6JV3AERERESlkZGdAbMZZmpZl4DA/bT7sIi0UKr+y3EvYWpgqvJ2unfvjvr162PSpEn4+eef5ZZdvXoVNWrUKPR1+eVXr1596zZ8fHyQlpaGp0+fws7ODgCwZ88emJnJH6vx48dj/PjxKu9DRcXkloiIiKgcREZGonXr1hg1apTCspL0CBe1joIXqgUEBGDJkiVy9aytrUu9rYqEyS0RERG900z0TfBy3Eul6sbfiUfH6I5vrbevzz74ufopte2S8vPzQ1BQEMaNG4f+/fvLyqtXr46EhIRCX5NfXr169beuPyEhAebm5rCxsZGVmZqawsvLq8QxvwuY3BIREdE7TSKRKD00oJ1nOzibOyMxNbHQcbcSSOBs7ox2nu2gq6Or7lAVzJw5E/Xr14e3t7esLDQ0FH369MHu3bsVxt3OnTsXNjY2aNu2bbHrffToEaKjo9GtWzfo6Lxfl1i9X3tLRERE7zVdHV0saL8AQF4iW1D+86j2UWWS2AJAnTp10LdvX/z444+ystDQUHTv3h1hYWH4+eefcfv2bfz999/47LPPsGvXLqxcuRKmpv9L5oUQSE5ORlJSEhISErBq1So0a9YMFhYWCvPpZmVlITk5We7x5MmTMtnXssLkloiIiN4rPWr0wNZeW1HFvIpcubO5M7b22ooeNXqUaTxTpkxBbm6u7LlEIsHmzZsxfvx4zJ8/H97e3mjZsiXu3LmDuLg4dOvWTe71qampcHR0RJUqVdC0aVMsW7YMYWFhOH/+PBwdHeXqHjhwAI6OjnKPFi1alMVulhmJUMeI5XdcamoqLCwskJKSAnNzc41vLzs7G/v27UPHjh2hr6+v8e0R0fuH7Qxps1evXuHWrVtwd3eHkZFRidcjzZXi+N3jSEpLgmMlR7Ss2rLMemzfdbm5uUhNTYW5ublahz0U994qm69xzC0RERG9l3R1dOHv5l/eYZCacVgCEREREWkNJrdEREREpDWY3BIRERGR1mByS0RERO8kXhOvfdTxnjK5JSIioneKrm7ejAavX78u50hI3TIyMgCgVLO8VPjZEtLS0jBhwgRs374djx49QoMGDbBgwQI0btwYAPDy5UuMHTsWO3bswNOnT+Hu7o7hw4dj6NCh5Rw5ERERaYKenh5MTEzw+PFj6Ovrv3d34KoIcnNz8fr1a7x69Uotx18IgYyMDDx69AiWlpayP2BKosInt4MGDcLly5exbt06ODk5Yf369QgMDMS///6LKlWqYOTIkfjtt9+wfv16uLm54dChQ/jiiy/g5OSELl26lHf4REREpGYSiQSOjo64desW7ty5U97hvJeEEMjMzISxsTEkEsnbX6AkS0tLODg4lGodFTq5zczMxLZt27Bz5074+fkBACZPnozdu3djyZIlmDZtGn7//XeEhYXB398fADBkyBAsW7YMf/zxB5NbIiIiLWVgYIBq1apxaEI5yc7ORnx8PPz8/NR2oxh9ff1S9djmq9DJbU5ODqRSqcIdKoyNjXHixAkAQLNmzbBr1y4MHDgQTk5OiIuLw9WrVzF//vwi15uVlYWsrCzZ89TUVAB5b1R2drYG9kRe/jbKYltE9H5iO0PvC3UkQ6S63Nxc5OTkQFdXV23vQW5urtxtiN+kbHtW4W+/26xZMxgYGCA6Ohr29vbYuHEjwsLC4OXlhStXriArKwtDhgzB2rVroaenBx0dHaxYsQL9+vUrcp2TJ09GRESEQnl0dDRMTEw0uTtEREREVAIZGRno06fPW2+/W+GT2xs3bmDgwIGIj4+Hrq4ufH19Ub16dZw7dw4JCQmYM2cOVqxYgTlz5sDV1RXx8fEYN24ctm/fjsDAwELXWVjPrYuLC548eVLswVKX7OxsxMbGom3btrznOxFpBNsZItKk8mhjUlNTUbly5bcmtxV6WAIAeHp64tixY0hPT0dqaiocHR3Ru3dveHh4IDMzE+PHj8f27dsRHBwMAKhbty4uXLiAOXPmFJncGhoawtDQUKFcX1+/TL8Eynp7RPT+YTtDRJpUlm2Mstt5Z+bOMDU1haOjI54/f46DBw+ia9eusjGyb05BoaurW+yYDSIiIiLSThW+5/bgwYMQQsDb2xvXr1/H6NGj4ePjgwEDBkBfXx+tWrXC6NGjYWxsDFdXVxw7dgxr167FvHnzyjt0IiIiIipjFT65TUlJwbhx43D//n1YW1ujZ8+emD59uqxr+tdff8W4cePQt29fPHv2DK6urpg+fTpv4kBERET0HqrwyW2vXr3Qq1evIpc7ODhg9erVZRgREREREVVU78yYWyIiIiKit2FyS0RERERag8ktEREREWkNJrdEREREpDWY3BIRERGR1mByS0RERERag8ktEREREWkNJrdEREREpDWY3BIRERGR1mByS0RERERag8ktEREREWkNJrdEREREpDWY3BIRERGR1mByS0RERERag8ktEREREWkNJrdEREREpDWY3BIRERGR1mByS0RERERag8ktEREREWkNJrdEREREpDWY3BIRERGR1mByS0RERERag8ktEREREWkNJrdEREREpDWY3Ja1XCkkj46hSk48JI+OAbnS8o6IiLQN2xki0qQK3sZIhBCivIMob6mpqbCwsEBKSgrMzc01t6F7McC5EUDG/f+VmTgDDRcALj00t10ien+wnSEiTSrHNkbZfI09t2XlXgxwPET+ZACAjMS88nsx5RMXEWkPtjNEpEnvSBvDnluUQc9trhTY5aZ4MshIAOMqQPA/gI6u+rdPRNovVwrsrQlkJhZRge0MEZWCMm2MiTPQ5ZbG2hhl8zU9jWyd5D0+XkxiCwACyLwPbLUos5CI6H3DdoaINEkAGffych57/3KNhMMSykJmUnlHQERERKR5FSDnYc9tWTB2VK6e/z7Azk+zsRCRdnoUD8R1fHs9tjNEVBLKtjHK5jwaxOS2LNi2zBuHkpEIoLAhzv9/nIpDO46FI6KScWjHdoaINEfZNsa2ZVlHpoDDEsqCjm7eFBkAAMkbC///84ZR/MIhopJjO0NEmvQOtTFMbsuKSw+g5VbApIp8uYlzXjnnnySi0mI7Q0Sa9I60MZwKDGV4EwcAyJUiJ+koLpzej/r/1wF6jgEV4q8cItIibGeISJPKqY3hVGAVlY4uhF0rJOqlo55dK37hEJH6sZ0hIk2q4G0MhyUQERERkdZgcktEREREWkOlYQkvXrzA9u3bcfz4cdy5cwcZGRmwtbVFgwYNEBQUhGbNmmkqTiIiIiKit1Kq5/bBgwcYNGgQHB0dMW3aNGRmZqJ+/fpo06YNnJ2dcfToUbRt2xY1a9bEpk2bNB0zEREREVGhlOq5bdCgAcLCwnDu3DnUrFmz0DqZmZnYsWMHoqKicO/ePYwaNUqtgRIRERERvY1Sye2///4LGxubYusYGxvjo48+wkcffYSnT5+qJTgiIiIiIlUoNSzhbYltaesTEREREalDiWdLSEtLw+jRo9G4cWP4+vriq6++wpMnT9QZGxERERGRSkqc3A4ePBhPnjxBREQEJk2ahJs3b6Jv377qjI2IiIiISCVKTwU2f/58hIeHQyKRAADOnj2Lq1evQlc3764U3t7e+L//+z/NRElEREREpASlk9sbN26gSZMmWLZsGRo0aIC2bdsiODgY3bp1Q3Z2NtatW4egoCBNxkpEREREVCylk9tFixbh9OnTGDhwIAICAjBjxgysX78esbGxkEql+PDDD/Hll19qMlYiIiIiomKpdIey//u//8PZs2cRGRmJpk2bYvbs2di2bZumYiMiIiIiUonKF5Tp6enhu+++w+7duxEVFYWQkBAkJydrIjYiIiIiIpUondxevHgRjRs3RqVKldC8eXPk5ubiyJEjCA4ORrNmzbBkyRJNxklERERE9FZKJ7cDBw5Ey5YtcfbsWXz44YcYOnQoAGDAgAE4c+YMTp48iaZNm2osUCIiIiKit1F6zO3Vq1exadMmeHl5oVq1aoiKipIts7W1xfr163Ho0CFNxEhEREREpBSlk1t/f38MGTIEoaGh+O2339C8eXOFOu3atVNrcEREREREqlB6WMLatWvh6+uLnTt3wsPDg2NsiYiIiKjCUbrn1srKCnPmzNFkLEREREREpaJUz+3du3dVWmliYmKJgiEiIiIiKg2lktvGjRvjs88+w9mzZ4usk5KSghUrVqB27dq8sQMRERERlQulhiX8+++/mD59Otq2bQsjIyM0bNgQTk5OMDIywvPnz/Hvv//in3/+ga+vL2bNmoWOHTtqOm4iIiIiIgVK9dza2Nhg3rx5SEpKwqJFi1CtWjU8efIE165dAwD07dsX586dw6lTp5jYEhEREVG5UfqCMgAwNjZGSEgIQkJCNBUPEREREVGJKT0VGBERERFRRcfkloiIiIi0BpNbIiIiItIaTG6JiIiISGuonNymp6drIg4iIiIiolJTObm1t7fHwIEDceLECU3EoyAtLQ3h4eFwdXWFsbExmjVrpnAziYSEBHTp0gUWFhYwNTVF48aNVb6rGhERERG9+1RObtevX49nz56hdevWqF69OmbOnIkHDx5oIjYAwKBBgxAbG4t169bh0qVLaNeuHQIDA2W3+L1x4wZatGgBHx8fxMXF4e+//8aECRNgZGSksZiIiIiIqGJSObnt1q0bduzYgcTERAwdOhTR0dFwdXVFp06dEBMTg5ycHLUFl5mZiW3btmHWrFnw8/ODl5cXJk+eDC8vLyxZsgQA8N1336Fjx46YNWsWGjRoAE9PT3Tp0gV2dnZqi4OIiIiI3g0q3cShIFtbW4wcORIjR47EwoULMXr0aOzbtw+VK1fG0KFDMXbsWJiYmJQquJycHEilUoVeWGNjY5w4cQK5ubnYu3cvxowZg6CgIJw/fx7u7u4YN24cunXrVuR6s7KykJWVJXuempoKAMjOzkZ2dnapYlZG/jbKYltE9H5iO0NEmlQebYyy25IIIURJNvDw4UP88ssvWLNmDe7cuYPu3bvj008/xf379xEZGQknJyccOnSoJKuW06xZMxgYGCA6Ohr29vbYuHEjwsLC4OXlhWPHjsHR0REmJiaYNm0aAgICcODAAYwfPx5Hjx5Fq1atCl3n5MmTERERoVAeHR1d6oSciIiIiNQvIyMDffr0QUpKCszNzYusp3JyGxMTg9WrV+PgwYOoWbMmBg0ahI8//hiWlpayOjdu3ECNGjXw+vXrEu9AwXUNHDgQ8fHx0NXVha+vL6pXr45z587hyJEjqFKlCj766CNER0fLXtOlSxeYmppi48aNha6zsJ5bFxcXPHnypNiDpS7Z2dmIjY1F27Ztoa+vr/HtEdH7h+0MEWlSebQxqampqFy58luTW5WHJQwYMAChoaE4efIkGjduXGgdJycnfPfdd6quulCenp44duwY0tPTkZqaCkdHR/Tu3RseHh6oXLky9PT0ULNmTbnX1KhRo9jZHAwNDWFoaKhQrq+vX6ZfAmW9PSJ6/7CdISJNKss2RtntqJzcJiUlvfWne2NjY0yaNEnVVRfL1NQUpqameP78OQ4ePIhZs2bBwMAAjRs3xpUrV+TqXr16Fa6urmrdPhERERFVfCont3FxcdDV1UVQUJBc+cGDB5Gbm4sOHTqoLbj89Qoh4O3tjevXr2P06NHw8fHBgAEDAACjR49G79694efnJxtzu3v3bsTFxak1DiIiIiKq+FSeCmzs2LGQSqUK5UIIjB07Vi1BFZSSkoJhw4bBx8cH/fr1Q4sWLXDw4EFZ13T37t2xdOlSzJo1C3Xq1MHKlSuxbds2tGjRQu2xEBEREVHFpnLP7bVr1xTGuAKAj48Prl+/rpagCurVqxd69epVbJ2BAwdi4MCBat82EREREb1bVO65tbCwwM2bNxXKr1+/DlNTU7UERURERERUEiont127dkV4eDhu3LghK7t+/Tq++eYbdOnSRa3BERERERGpQuXkdtasWTA1NYWPjw/c3d3h7u6OGjVqwMbGBnPmzNFEjERERERESlF5zK2FhQV+//13xMbG4uLFizA2NkbdunXh5+enifiIiIiIiJSmcnILABKJBO3atUO7du3UHQ8RERERUYmVKLlNT0/HsWPHcPfuXYVb7A4fPlwtgRERERERqUrl5Pb8+fPo2LEjMjIykJ6eDmtrazx58gQmJiaws7NjcktERERE5UblC8q+/vprdO7cGc+fP4exsTFOnz6NO3fuoGHDhrygjIiIiIjKlcrJ7YULF/DNN99AR0cHurq6yMrKgouLC2bNmoXx48drIkYiIiIiIqWonNzq6+tDRyfvZXZ2drh79y6AvFkU7t27p97oiIiIiIhUoPKY2wYNGuDs2bOoVq0aWrVqhYkTJ+LJkydYt24dateurYkYiYiIiIiUonLP7Q8//ABHR0cAwPTp02FlZYXPP/8cjx8/xvLly9UeIBERERGRslTquRVCwM7OTtZDa2dnhwMHDmgkMCIiIiIiVanUcyuEgJeXF8fWEhEREVGFpFJyq6Ojg2rVquHp06eaioeIiIiIqMRUHnM7c+ZMjB49GpcvX9ZEPEREREREJabybAn9+vVDRkYG6tWrBwMDAxgbG8stf/bsmdqCIyIiIiJShcrJbVRUlAbCICIiIiIqPZWT27CwME3EQURERERUaiont/l3JCtK1apVSxwMEREREVFpqJzcurm5QSKRFLlcKpWWKiBtJ82V4tidY4h/Hg/TO6YI8AiAro5ueYdFRFqE7QwRaVJFb2MkQgihygsuXrwo9zw7Oxvnz5/HvHnzMH36dPTo0UOtAZaF1NRUWFhYICUlBebm5hrbTkxCDEYcGIH7qfdlZc7mzljQfgF61Hj3jhsRVTxsZ4hIk8qzjVE2X1M5uS3K3r17MXv2bMTFxaljdWWqLJLbmIQYhGwOgYD84ZYgrxd8a6+t/OIholJhO0NEmlTebUyZJ7fXr19HvXr1kJ6ero7VlSlNJ7fSXCncFrjJ/ZVTkAQSVKlUBf988U+F6tYnoneHNFeKmotrIjEtsdDlbGeIqDSUaWOczZ1xa8QtjbUxyuZrKo+5TU1NlXsuhEBSUhImT56MatWqqR7pe+D43eNFJrYAICBwP+0+LCItyjAqInqfsJ0hIk0SELiXeg/H7x6Hv5t/ucaicnJraWmpcEGZEAIuLi749ddf1RaYNklKSyrvEIiIiIg0riLkPCont7/99ptccqujowNbW1t4eXlBT0/l1b0XHCs5KlVvX5998HP103A0RKSN4u/Eo2N0x7fWYztDRCWhbBujbM6jSSpno/7+/hoIQ7u1rNoSzubOSExNVBiEDfxvnEo7z3YcC0dEJdLOsx3bGSLSGGXbmJZVW5ZDdPJ0VH3BjBkzsGrVKoXyVatWITIyUi1BaRtdHV0saL8AwP+uKMyX/zyqfRS/cIioxNjOEJEmvUttjMrJ7bJly+Dj46NQXqtWLSxdulQtQWmjHjV6YGuvrahiXkWu3NncmdPzEJFasJ0hIk16V9oYlacCMzIyQkJCAtzd3eXKb968iZo1a+LVq1dqDbAslNVNHIC8qTSO3jyK/Sf2o0OLDhXurh5E9O5jO0NEmlRebYzGpgJzcXHByZMnFZLbkydPwsnJSfVI3zO6Orpo5doK6f+ko5VrK37hEJHasZ0hIk2q6G2Mysnt4MGDER4ejuzsbLRu3RoAcOTIEYwZMwbffPON2gMkIiIiIlKWysnt6NGj8fTpU3zxxRd4/fo1gLyhCt9++y3Gjh2r9gCJiIiIiJSlcnIrkUgQGRmJCRMmICEhAcbGxqhWrRoMDQ01ER8RERERkdJUTm5TUlIglUphbW2Nxo0by8qfPXsGPT09jV+QRURERERUFJWnAgsNDS30NrubN29GaGioWoIiIiIiIioJlZPbM2fOICAgQKHc398fZ86cUUtQREREREQloXJym5WVhZycHIXy7OxsZGZmqiUoIiIiIqKSUDm5/eCDD7B8+XKF8qVLl6Jhw4ZqCYqIiIiIqCRUvqBs2rRpCAwMxMWLF9GmTRsAefPcnj17FocOHVJ7gEREREREylK557Z58+Y4deoUXFxcsHnzZuzevRteXl74+++/0bJlS03ESERERESkFJV7bgGgfv362LBhg1xZbm4u9uzZg06dOqklMCIiIiIiVZUouS3o+vXrWLVqFdasWYPHjx8jOztbHXEREREREalM5WEJAJCZmYm1a9fCz88P3t7e+P333zFx4kTcv39f3fERERERESlNpZ7bs2fPYuXKlfj111/h6emJvn374vfff8fixYtRs2ZNTcVIRERERKQUpZPbunXrIjU1FX369MHvv/+OWrVqAQDGjh2rseCIiIiIiFSh9LCEK1euwM/PDwEBAeylJSIiIqIKSenk9ubNm/D29sbnn38OZ2dnjBo1CufPn4dEItFkfERERERESlM6ua1SpQq+++47XL9+HevWrUNycjKaN2+OnJwcrFmzBlevXtVknEREREREb1Wi2RJat26N9evXIykpCYsWLcJvv/0GHx8f1K1bV93xEREREREprUTJbT4LCwt88cUX+PPPP/HXX3/B399fTWEREREREamuVMltQfXr18ePP/6ortUREREREalMbcktEREREVF5Y3JLRERERFqDyS0RERERaQ0mt0RERESkNZS+/W6+oi4ak0gkMDIygpeXF/z8/KCrq1vq4IiIiIiIVKFycjt//nw8fvwYGRkZsLKyAgA8f/4cJiYmMDMzw6NHj+Dh4YGjR4/CxcVF7QETERERERVF5WEJP/zwAxo3boxr167h6dOnePr0Ka5evYomTZpgwYIFuHv3LhwcHPD1119rIl4iIiIioiKp3HP7/fffY9u2bfD09JSVeXl5Yc6cOejZsydu3ryJWbNmoWfPnmoNlIiIiIjobVTuuU1KSkJOTo5CeU5ODpKTkwEATk5OSEtLK310REREREQqUDm5DQgIwGeffYbz58/Lys6fP4/PP/8crVu3BgBcunQJ7u7u6ouSiIiIiEgJKie3P//8M6ytrdGwYUMYGhrC0NAQjRo1grW1NX7++WcAgJmZGebOnav2YImIiIiIiqPymFsHBwfExsbiv//+w9WrVwEA3t7e8Pb2ltUJCAhQX4REREREREpSObnN5+PjAx8fH3XGQkRERERUKioPS5BKpfj555/Rp08fBAYGonXr1nIPdUtLS0N4eDhcXV1hbGyMZs2a4ezZs4XWHTp0KCQSCaKiotQeBxERERFVfCr33I4YMQJr1qxBcHAwateuDYlEoom4ZAYNGoTLly9j3bp1cHJywvr16xEYGIh///0XVapUkdXbvn07Tp8+DScnJ43GQ0REREQVl8rJ7a+//orNmzejY8eOmohHTmZmJrZt24adO3fCz88PADB58mTs3r0bS5YswbRp0wAAiYmJ+Oqrr3Dw4EEEBwdrPC4iIiIiqphUTm4NDAzg5eWliVgU5OTkQCqVwsjISK7c2NgYJ06cAADk5ubik08+wejRo1GrVi2l1puVlYWsrCzZ89TUVABAdnY2srOz1RR90fK3URbbIqL3E9sZItKk8mhjlN2WysntN998gwULFmDRokUaH5JQqVIlNG3aFFOnTkWNGjVgb2+PjRs34tSpU7IEOzIyEnp6ehg+fLjS650xYwYiIiIUyg8dOgQTExO1xf82sbGxZbYtIno/sZ0hIk0qyzYmIyNDqXoSIYRQZcXdu3fH0aNHYW1tjVq1akFfX19ueUxMjCqre6sbN25g4MCBiI+Ph66uLnx9fVG9enWcO3cO69evR3BwMP766y/ZWFs3NzeEh4cjPDy8yHUW1nPr4uKCJ0+ewNzcXK3xFyY7OxuxsbFo27atwvEjIlIHtjNEpEnl0cakpqaicuXKSElJKTZfU7nn1tLSEt27dy9VcKrw9PTEsWPHkJ6ejtTUVDg6OqJ3797w8PDA8ePH8ejRI1StWlVWXyqV4ptvvkFUVBRu375d6Drzbz7xJn19/TL9Eijr7RHR+4ftDBFpUlm2McpuR+XkdvXq1SoHow6mpqYwNTXF8+fPcfDgQcyaNQs9e/ZEYGCgXL2goCB88sknGDBgQLnESURERETlp8Q3cSgrBw8ehBAC3t7euH79OkaPHg0fHx8MGDAA+vr6sLGxkauvr68PBwcHuTumEREREdH7Qank1tfXF0eOHIGVlRUaNGhQ7IVkf/31l9qCA4CUlBSMGzcO9+/fh7W1NXr27Inp06fzZzYiIiIiUqBUctu1a1fZGNWuXbtqfJaEgnr16oVevXopXb+ocbZEREREpP2USm4nTZok+//kyZM1FQsRERERUanoqPoCDw8PPH36VKH8xYsX8PDwUEtQREREREQloXJye/v2bUilUoXyrKws3L9/Xy1BERERERGVhNKzJezatUv2/4MHD8LCwkL2XCqV4siRI3B3d1dvdEREREREKlA6ue3WrRsAQCKRICwsTG6Zvr4+3NzcMHfuXLUGR0RERESkCqWT29zcXACAu7s7zp49i8qVK2ssKCIiIiKiklD5Jg63bt1SKHvx4gUsLS3VEQ8RERERUYmpfEFZZGQkNm3aJHv+4YcfwtraGlWqVMHFixfVGhwRERERkSpUTm6XLl0KFxcXAEBsbCwOHz6MAwcOoEOHDhg9erTaAyQiIiIiUpbKwxKSk5Nlye2ePXvQq1cvtGvXDm5ubmjSpInaAyQiIiIiUpbKPbdWVla4d+8eAODAgQMIDAwEAAghCp3/loiIiIiorKjcc9ujRw/06dMH1apVw9OnT9GhQwcAwPnz5+Hl5aX2AImIiIiIlKVycjt//ny4ubnh3r17mDVrFszMzAAASUlJ+OKLL9QeIBERERGRslRObvX19TFq1CiF8q+//lotARERERERlZTKY24BYN26dWjRogWcnJxw584dAEBUVBR27typ1uCIiIiIiFShcnK7ZMkSjBw5Eh06dMCLFy9kF5FZWloiKipK3fERERERESlN5eR24cKFWLFiBb777jvo6urKyhs1aoRLly6pNTgiIiIiIlWonNzeunULDRo0UCg3NDREenq6WoIiIiIiIioJlZNbd3d3XLhwQaH8wIEDqFGjhjpiIiIiIiIqEaVnS5gyZQpGjRqFkSNHYtiwYXj16hWEEPjjjz+wceNGzJgxAytXrtRkrERERERExVI6uY2IiMDQoUMxaNAgGBsb4/vvv0dGRgb69OkDJycnLFiwAKGhoZqMlYiIiIioWEont0II2f/79u2Lvn37IiMjAy9fvoSdnZ1GgiMiIiIiUoVKN3GQSCRyz01MTGBiYqLWgIiIiIiISkql5LZ69eoKCe6bnj17VqqAiIiIiIhKSqXkNiIiAhYWFpqKhYiIiIioVFRKbkNDQzm+loiIiIgqLKXnuX3bcAQiIiIiovKmdHJbcLYEIiIiIqKKSOlhCbm5uZqMg4iIiIio1FS+/S4RERERUUXF5JaIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq3B5JaIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq3B5JaIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq3B5JaIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq3B5JaIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq3B5JaIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq3B5JaIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq3B5JaIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq3B5JaIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq1R4ZPbtLQ0hIeHw9XVFcbGxmjWrBnOnj0LAMjOzsa3336LOnXqwNTUFE5OTujXrx8ePHhQzlETERERUXmo8MntoEGDEBsbi3Xr1uHSpUto164dAgMDkZiYiIyMDPz111+YMGEC/vrrL8TExODKlSvo0qVLeYdNREREROVAr7wDKE5mZia2bduGnTt3ws/PDwAwefJk7N69G0uWLMG0adMQGxsr95pFixbhgw8+wN27d1G1atXyCJuIiIiIykmFTm5zcnIglUphZGQkV25sbIwTJ04U+pqUlBRIJBJYWloWud6srCxkZWXJnqempgLIG+aQnZ1d+sDfIn8bZbEtIno/sZ0hIk0qjzZG2W1JhBBCw7GUSrNmzWBgYIDo6GjY29tj48aNCAsLg5eXF65cuSJX99WrV2jevDl8fHywYcOGItc5efJkREREKJRHR0fDxMRE7ftARERERKWTkZGBPn36ICUlBebm5kXWq/DJ7Y0bNzBw4EDEx8dDV1cXvr6+qF69Os6dO4eEhARZvezsbPTs2RP3799HXFxcsTtdWM+ti4sLnjx5Uuzr1CU7OxuxsbFo27Yt9PX1Nb49Inr/sJ0hIk0qjzYmNTUVlStXfmtyW6GHJQCAp6cnjh07hvT0dKSmpsLR0RG9e/eGh4eHrE52djZ69eqFO3fu4LfffntrgmpoaAhDQ0OFcn19/TL9Eijr7RHR+4ftDBFpUlm2Mcpup8LPlpDP1NQUjo6OeP78OQ4ePIiuXbsC+F9ie+3aNRw+fBg2NjblHCkRERERlZcK33N78OBBCCHg7e2N69evY/To0fDx8cGAAQOQnZ2NkJAQ/PXXX9izZw+kUimSk5MBANbW1jAwMCjn6ImIiIioLFX45DYlJQXjxo3D/fv3YW1tjZ49e2L69OnQ19fH7du3sWvXLgBA/fr15V539OhR+Pv7l33ARERERFRuKnxy26tXL/Tq1avQZW5ubqjg18MRERERURl6Z8bcagupFDh2TIL4+Co4dkwCqbS8IyIibcN2hog0qaK3MRV+KrCykJqaCgsLi7dOLVFaMTHAiBHA/fv/K3N2BhYsAHr00Nhmieg9wnaGiDSpPNsYZfM19tyWkZgYICRE/mQAgMTEvPKYmPKJi4i0B9sZItKkd6WNYc8tNN9zK5UCbm6KJ0M+iQSoUgX45x9AV1ftmyei94BUCtSsmfclUxi2M0RUGsq0Mc7OwK1bmmtjlM3XKvwFZdrg+PGiE1sAECJvuYVF2cVERO8XtjNEpElCAPfu5eU85T1ZFYcllIGkpPKOgIiIiEjzKkLOw57bMuDoqFy9ffsAPz/NxkJE2ik+HujY8e312M4QUUko28Yom/NoEsfcouzG3CYm5nXbv6ksxqkQkXZjO0NEmlQR2hjOllCB6OrmTZEB5L35BeU/j4riFw4RlRzbGSLSpHepjWFyW0Z69AC2bs27WrkgZ+e8cs4/SUSlxXaGiDTpXWljOCwBZXcTByCvW//o0Rzs338BHTrUR0CAXoX4K4eItAfbGSLSpPJqYzgVWAWlqwu0aiWQnp6IVq3q8QuHiNSO7QwRaVJFb2M4LIGIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq3B5JaIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq3B5JaIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq3B5JaIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq3B5JaIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq3B5JaIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq3B5JaIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq3B5JaIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq3B5JaIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq3B5JaIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq3B5JaIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq3B5JaIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq3B5JaIiIiItAaTWyIiIiLSGkxuiYiIiEhrMLklIiIiIq3B5JaIiIiItAaTWyIiIiLSGhU+uU1LS0N4eDhcXV1hbGyMZs2a4ezZs7LlQghMnDgRjo6OMDY2RmBgIK5du1aOERMRERFReanwye2gQYMQGxuLdevW4dKlS2jXrh0CAwORmJgIAJg1axZ+/PFHLF26FGfOnIGpqSmCgoLw6tWrco6ciIiIiMpahU5uMzMzsW3bNsyaNQt+fn7w8vLC5MmT4eXlhSVLlkAIgaioKHz//ffo2rUr6tati7Vr1+LBgwfYsWNHeYdPRERERGVMr7wDKE5OTg6kUimMjIzkyo2NjXHixAncunULycnJCAwMlC2zsLBAkyZNcOrUKYSGhha63qysLGRlZcmep6SkAACePXuG7OxsDeyJvOzsbGRkZODp06fQ19fX+PaI6P3DdoaINKk82pi0tDQAeUNSi1Ohk9tKlSqhadOmmDp1KmrUqAF7e3ts3LgRp06dgpeXF5KTkwEA9vb2cq+zt7eXLSvMjBkzEBERoVDu7u6u3h0gIiIiIrVKS0uDhYVFkcsrdHILAOvWrcPAgQNRpUoV6OrqwtfXFx999BHOnTtX4nWOGzcOI0eOlD3Pzc3Fs2fPYGNjA4lEoo6wi5WamgoXFxfcu3cP5ubmGt8eEb1/2M4QkSaVRxsjhEBaWhqcnJyKrVfhk1tPT08cO3YM6enpSE1NhaOjI3r37g0PDw84ODgAAB4+fAhHR0fZax4+fIj69esXuU5DQ0MYGhrKlVlaWmoi/GKZm5vzS4eINIrtDBFpUlm3McX12Oar0BeUFWRqagpHR0c8f/4cBw8eRNeuXeHu7g4HBwccOXJEVi81NRVnzpxB06ZNyzFaIiIiIioPFb7n9uDBgxBCwNvbG9evX8fo0aPh4+ODAQMGQCKRIDw8HNOmTUO1atXg7u6OCRMmwMnJCd26dSvv0ImIiIiojFX45DYlJQXjxo3D/fv3YW1tjZ49e2L69OmyK/PGjBmD9PR0DBkyBC9evECLFi1w4MABhRkWKhJDQ0NMmjRJYWgEEZG6sJ0hIk2qyG2MRLxtPgUiIiIionfEOzPmloiIiIjobZjcEhEREZHWYHJLRERERFqDya2GuLm5ISoqqrzDICIiInqvMLktgkQiKfYxefLkUm/Dzc0NEokEp0+flisPDw+Hv7+/0uu5ffs2JBIJLly4UOqYiEg9+vfvL2sv9PX1YW9vj7Zt22LVqlXIzc0tl5iOHj2KTp06wdbWFkZGRvD09ETv3r0RHx8vqxMXFyfX1hkbG6NWrVpYvny53Lry92/o0KEK2xk2bBgkEgn69++v6V0iIhXlf3ZnzpwpV75jxw65u7RKpVLMnz8fderUgZGREaysrNChQwecPHlS7nVr1qyRtRe6urqwsrJCkyZNMGXKFKSkpBS67Tcf7du3V+s+MrktQlJSkuwRFRUFc3NzubJRo0apZTtGRkb49ttv1bIuIqpY2rdvj6SkJNy+fRv79+9HQEAARowYgU6dOiEnJ6dMY1m8eDHatGkDGxsbbNq0CVeuXMH27dvRrFkzfP311wr1r1y5gqSkJPz777/47LPP8Pnnn8vdMAcAXFxc8OuvvyIzM1NW9urVK0RHR6Nq1aoa3yciKhkjIyNERkbi+fPnhS4XQiA0NBRTpkzBiBEjkJCQgLi4OLi4uMDf3x87duyQq5+fI92/fx+///47hgwZgrVr16J+/fp48OCBXN38drHgY+PGjWrdPya3RXBwcJA9LCwsIJFIZM/T09PRt29f2Nvbw8zMDI0bN8bhw4cV1pGWloaPPvoIpqamqFKlCn766SeFOkOGDMHp06exb9++YuNZuXIlatSoASMjI/j4+GDx4sWyZe7u7gCABg0aQCKRqNTrS0SaY2hoCAcHB1SpUgW+vr4YP348du7cif3792PNmjUAgBcvXmDQoEGwtbWFubk5WrdujYsXL8qtZ+fOnfD19YWRkRE8PDwQEREhlxxLJBIsWbIEHTp0gLGxMTw8PLB161bZ8rt37yI8PBzh4eH45Zdf0Lp1a7i6uqJu3boYMWIE/vzzT4XY7ezs4ODgAHd3dwwfPhzu7u7466+/5Or4+vrCxcUFMTExsrKYmBhUrVoVDRo0UMchJCINCAwMhIODA2bMmFHo8s2bN2Pr1q1Yu3YtBg0aBHd3d9SrVw/Lly9Hly5dMGjQIKSnp8vq5+dIjo6OqFGjBj799FP8/vvvePnyJcaMGSO37vx2seDDyspKrfvH5LYEXr58iY4dO+LIkSM4f/482rdvj86dO+Pu3bty9WbPno169erh/PnzGDt2LEaMGIHY2Fi5Ou7u7hg6dCjGjRtX5E+VGzZswMSJEzF9+nQkJCTghx9+wIQJE/DLL78AAP744w8AwOHDh5GUlCT3RUNEFUvr1q1Rr1492ef0ww8/xKNHj7B//36cO3cOvr6+aNOmDZ49ewYAOH78OPr164cRI0bg33//xbJly7BmzRpMnz5dbr0TJkxAz549cfHiRfTt2xehoaFISEgAAGzbtg3Z2dkKXzL5Cv4U+SYhBA4cOIC7d++iSZMmCssHDhyI1atXy56vWrUKAwYMUO2gEFGZ0tXVxQ8//ICFCxfi/v37Csujo6NRvXp1dO7cWWHZN998g6dPnyrkM2+ys7ND3759sWvXLkilUrXFrgwmtyVQr149fPbZZ6hduzaqVauGqVOnwtPTE7t27ZKr17x5c4wdOxbVq1fHV199hZCQEMyfP19hfd9//z1u3bqFDRs2FLq9SZMmYe7cuejRowfc3d3Ro0cPfP3111i2bBkAwNbWFgBgY2MDBwcHWFtbq3mPiUidfHx8cPv2bZw4cQJ//PEHtmzZgkaNGqFatWqYM2cOLC0tZT2vERERGDt2LMLCwuDh4YG2bdti6tSpss9/vg8//BCDBg1C9erVMXXqVDRq1AgLFy4EAFy9ehXm5uZwcHCQ1d+2bRvMzMxkj0uXLsmtz9nZGWZmZjAwMEBwcDAmTZoEPz8/hX35+OOPceLECdy5cwd37tzByZMn8fHHH6v7kBGRmnXv3h3169fHpEmTFJZdvXoVNWrUKPR1+eVXr1596zZ8fHyQlpaGp0+fysr27Nkj1/aYmZnhhx9+KOFeFK7C3363Inr58iUmT56MvXv3IikpCTk5OcjMzFTouW3atKnC88JmULC1tcWoUaMwceJE9O7dW25Zeno6bty4gU8//RSDBw+Wlefk5MDCwkJ9O0VEZUYIAYlEgosXL+Lly5ewsbGRW56ZmYkbN24AAC5evIiTJ0/K9dRKpVK8evUKGRkZMDExAVB4e1PwItM3e2eDgoJw4cIFJCYmwt/fX6Fn5fjx46hUqRKysrLwxx9/4Msvv4S1tTU+//xzuXq2trYIDg7GmjVrIIRAcHAwKleuXLIDQ0RlKjIyEq1bty70OiJ13MA2fx0F25+AgAAsWbJErp66O+WY3JbAqFGjEBsbizlz5sDLywvGxsYICQnB69evS7zOkSNHYvHixXJjaYG8RBoAVqxYofCToK6ubom3R0TlJyEhAe7u7nj58iUcHR0RFxenUMfS0hJAXhsQERGBHj16KNQxMjJSanvVqlVDSkoKkpOTZb23ZmZm8PLygp5e4V8D7u7ushhq1aqFM2fOYPr06QrJLZA3NOHLL78EgEKvLSCiisnPzw9BQUEYN26c3Owm1atXlw1relN+efXq1d+6/oSEBJibm8v9AW9qagovL6/SBf4WHJZQAidPnkT//v3RvXt31KlTBw4ODrh9+7ZCvTen+Dp9+nSR3fxmZmaYMGECpk+fjrS0NFm5vb09nJyccPPmTXh5eck98i8kMzAwAIAyH9NCRKr77bffcOnSJfTs2RO+vr5ITk6Gnp6ewuc7v/fT19cXV65cUVju5eUFHZ3/NeHFtTchISHQ19dHZGRkiePW1dWVmxWhoPbt2+P169fIzs5GUFBQibdBRGVv5syZ2L17N06dOiUrCw0NxbVr17B7926F+nPnzoWNjQ3atm1b7HofPXqE6OhodOvWTa6tKgvsuS2BatWqISYmBp07d4ZEIsGECRMKvRjs5MmTmDVrFrp164bY2Fhs2bIFe/fuLXK9Q4YMwfz58xEdHS3XSxsREYHhw4fDwsIC7du3R1ZWFv788088f/4cI0eOhJ2dHYyNjXHgwAE4OzvDyMiIQxaIKoCsrCwkJydDKpXi4cOHOHDgAGbMmIFOnTqhX79+0NHRQdOmTdGtWzfMmjUL1atXx4MHD7B37150794djRo1wsSJE9GpUydUrVoVISEh0NHRwcWLF3H58mVMmzZNtq38cbstWrTAhg0b8Mcff+Dnn38GAFStWhVz587FiBEj8OzZM/Tv3x/u7u549uwZ1q9fD0Dxl6BHjx7h1atXsmEJ69atQ0hISKH7qaurK+vN4S9KRO+WOnXqoG/fvvjxxx9lZaGhodiyZQvCwsIwe/ZstGnTBqmpqfjpp5+wa9cubNmyBaamprL6QggkJydDCIEXL17g1KlT+OGHH2BhYaEwn25+u1iQnp6eeoczCXqr1atXCwsLC9nzW7duiYCAAGFsbCxcXFzEokWLRKtWrcSIESNkdVxdXUVERIT48MMPhYmJiXBwcBALFiyQW6+rq6uYP3++XFl0dLQAIFq1aiVXvmHDBlG/fn1hYGAgrKyshJ+fn4iJiZEtX7FihXBxcRE6OjoKryWishcWFiYACABCT09P2NraisDAQLFq1SohlUpl9VJTU8VXX30lnJychL6+vnBxcRF9+/YVd+/eldU5cOCAaNasmTA2Nhbm5ubigw8+EMuXL5ctByB++ukn0bZtW2FoaCjc3NzEpk2bFGKKjY0VHTp0ENbW1kJPT0/Y29uLbt26iQMHDsjqHD16VBZ3fuzu7u5i1KhR4uXLl3L717Vr1yL3v2vXriIsLKyER4+INKWwz+6tW7eEgYGBKJgWZmdni9mzZ4tatWoJAwMDYW5uLoKCgsSJEyfkXrt69WpZeyGRSISFhYX44IMPxJQpU0RKSorCtgu2L/kPb29vte6jRAg1jBgmIqJyI5FIsH37dnTr1q28QyEiKnccc0tEREREWoPJLRERERFpDV5QRkT0juPoMiKi/2HPLRERERFpDSa3RERERKQ1mNwSERERkdZgcktEREREWoPJLRERERFpDSa3RERERKQ1mNwSERERkdZgcktEREREWoPJLRERERFpjf8HKst4SI+1znYAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "# Testing accuracy values\n", "tabnet_testing_accuracy = [91.7]\n", "deepgbm_testing_accuracy = [97.07]\n", "node_testing_accuracy = [95.17]\n", "\n", "# Model names\n", "models = ['TabNet', 'DeepGBM', 'NODE']\n", "\n", "# Plotting the testing accuracy for each model using a line plot\n", "plt.figure(figsize=(8, 5))\n", "\n", "# Plot the accuracies with lines and markers\n", "plt.plot(models, tabnet_testing_accuracy * len(models), label='TabNet', marker='o', linestyle='-', color='blue')\n", "plt.plot(models, deepgbm_testing_accuracy * len(models), label='DeepGBM', marker='o', linestyle='-', color='orange')\n", "plt.plot(models, node_testing_accuracy * len(models), label='NODE', marker='o', linestyle='-', color='green')\n", "\n", "# Adding titles and labels\n", "plt.title('Comparison of Testing Accuracy for TabNet, DeepGBM, and NODE')\n", "plt.ylabel('Testing Accuracy (%)')\n", "plt.ylim(90, 100) # Set limits to focus on the range between 90% and 100%\n", "\n", "# Add legend\n", "plt.legend()\n", "\n", "# Show the plot\n", "plt.grid(True)\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "# tabnet_training_acc = [0.78, 0.80, 0.815, 0.82, 0.835, 0.84, 0.85, 0.855, 0.86, 0.87, 0.875, 0.88, \n", "# 0.885, 0.88, 0.89, 0.895, 0.90, 0.895, 0.905, 0.91, 0.905, 0.91, 0.90, 0.91, \n", "# 0.92, 0.915, 0.92, 0.91, 0.92, 0.91, 0.915, 0.91, 0.91, 0.92, 0.915, 0.92, \n", "# 0.915, 0.91, 0.915, 0.92, 0.91, 0.915, 0.92, 0.91, 0.92, 0.915, 0.91, 0.915, \n", "# 0.92, 0.91]\n", "\n", "# deep_gbm_training_accuracy = [0.9435, 0.967, 0.981, 0.968, 0.973, 0.984, 0.985, 0.982, 0.985, 0.983, 0.987, 0.985, 0.983, 0.988, 0.985, 0.973]\n", "\n", "# node_training_accuracy = [0.72, 0.90, 0.92, 0.93, 0.935, 0.94, 0.945, 0.948, 0.95, 0.953]\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# tabnet_val_acc = [0.78, 0.79, 0.81, 0.82, 0.83, 0.835, 0.845, 0.855, 0.86, 0.865, 0.87, 0.88, \n", "# 0.875, 0.88, 0.885, 0.88, 0.89, 0.885, 0.895, 0.90, 0.895, 0.90, 0.895, 0.90, \n", "# 0.905, 0.91, 0.905, 0.90, 0.91, 0.905, 0.91, 0.905, 0.91, 0.915, 0.91, 0.915, \n", "# 0.905, 0.91, 0.905, 0.91, 0.905, 0.91, 0.91, 0.905, 0.91, 0.905, 0.91, 0.905, \n", "# 0.91, 0.905]\n", "# deep_gbm_validation_accuracy = [0.9432, 0.966, 0.980, 0.967, 0.972, 0.983, 0.983, 0.98, 0.983, 0.983, 0.985, 0.984, 0.981, 0.985, 0.983, 0.970]\n", "# node_validation_accuracy = [0.89, 0.91, 0.928, 0.93, 0.885, 0.94, 0.925, 0.955, 0.955, 0.95]\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.19" } }, "nbformat": 4, "nbformat_minor": 2 }