Confidentiality Proof

In this section, we will prove the confidentiality of the scheme under adaptive chosen message attacks in the random oracle model. We use the challenge-response mode for the proof. Let the challenger be denoted as C, the adversary as A, and the number of queries to the random oracle as q.

Initialization. The challenger C initializes the public parameters and master secret key as described in the initialization phase.

Random Oracle Queries. The adversary A adaptively queries the random oracle O_H . The challenger responds to these queries as follows:

- For each query H(m), if m is already in the query table, return the stored value. Otherwise, randomly select a value from \mathbb{G}_1 and return it, storing the result in the query table.
- For each query to the vector value, if the vector is already in the query table, return the stored value. Otherwise, randomly select a value and return it, storing the result in the query table.
- For each query to the session key, if the session key is already in the query table, return the stored value. Otherwise, randomly select a value and return it, storing the result in the query table.

Signature Queries. The adversary \mathcal{A} can request signatures on chosen messages. The challenger responds by generating the signatures as described in the signature phase.

Output Phase. The adversary \mathcal{A} outputs a guess for the ID associated with the message. The challenger \mathcal{C} checks if the guess is correct. If it is, the adversary wins the game.

The probability of the adversary A winning the game is analyzed as follows:

- Let A be the event that A wins the game.
- Let B be the event that the A's query is orthogonal to the challenge.

The probability of the adversary winning the game is given by:

$$Pr(A) = Pr(A|B) \cdot Pr(B) + Pr(A|\bar{B}) \cdot Pr(\bar{B}) \tag{1}$$

Since Pr(B) is negligible, and $Pr(A|\bar{B})$ is also negligible, we can conclude that Pr(A) is negligible. Thus, the scheme is confidential under adaptive chosen message attacks in the random oracle model.

Coalition-resistance Proof

Phase 1: Initialization and User Registration

• Challenger's Operations:

- Generates public parameters params and master private key $msk = \frac{s}{s}$
- For each user identity ID_i requested by the adversary, generates private key $usk_{ID_i} = (x_i, R_i)$, where $x_i = r_i + s \cdot H_0(ID_i, R_i)$ and $R_i = h^{r_i}$.

• Collusion Resistance Analysis:

– Even if the adversary obtains multiple users' private keys $\{usk_{ID_i}\}$, they cannot recover s through linear combinations due to the independence of r_i and the secrecy of s (relies on the hardness of the discrete logarithm problem).

Phase 2: Combiner Permission Application

• Challenger's Operations:

- Generates session keys $b_{ID} = B \mod q_{ID}$ for legitimate combiners and distributes them via CRT.

• Collusion Resistance Analysis:

- If the adversary controls t' combiners with $\{b_{ID_j}, q_{ID_j}\}_{j=1}^{t'}$ and t' < t (threshold), B cannot be recovered (CRT requires at least t pairwise coprime q_{ID}).
- If the adversary forges q_{ID} or b_{ID} , the verification in Phase 5 detects $B' \neq B$ and terminates the protocol.

Phase 3: Signature Generation and Distribution

• Challenger's Operations:

– Generates signatures $\sigma_k = \widehat{\sigma}_k^x \cdot H_3(v_k, ID)^{B \mod Q}$ for data data.

• Collusion Resistance Analysis:

- To forge a signature, the adversary must compromise both x and B:
 - * x is protected by user private keys and bound to s.
 - * B is distributed via CRT; partial knowledge of b_{ID} is insufficient for recovery (relies on CRT security).

Phase 4: Verification and Combination

- Challenger's Operations:
 - Verifies $e(\varsigma_k, h) = e(\widehat{\sigma}_k, R \cdot mpk^{H_0(ID,R)})$ during validation.
- Collusion Resistance Analysis:
 - If colluders tamper with σ_k or \tilde{v}_d , the bilinear pairing check fails (relies on collision resistance of hash functions and properties of bilinear maps).

Assume an adversary A can break collusion resistance with non-negligible probability ϵ . We construct an algorithm C' to solve the CDH problem:

- 1. C' simulates the scheme using A's queries and embeds a CDH instance into public parameters.
- 2. When A forges a signature, C' extracts the CDH solution from the bilinear map result.
- 3. By the CDH assumption, ϵ is negligible, leading to a contradiction. Hence, collusion resistance holds.

The scheme achieves collusion resistance through:

- Master Key Protection: Distributed generation and verification of s and B, preventing single-point leakage.
- Session Key Distribution: Threshold mechanism based on CRT, requiring colluders to exceed the security threshold.
- Cryptographic Primitives: Bilinear map verification and collision-resistant hash functions ensure tamper detection.
- **Dynamic Binding**: Signatures are bound to file identifiers τ , preventing replay attacks.

Thus, under the challenge-response model, the scheme resists collusion attacks.