Unlinkability Proof

Game Definition

- 1. **Setup**: The challenger generates params and msk, and registers two users U_0 and U_1 with private keys usk_{ID_0} and usk_{ID_1} .
- 2. Challenge Phase: The challenger randomly selects $b \in \{0,1\}$, uses usk_{ID_b} to generate a signature σ^* , and sends σ^* to the adversary.
- 3. Adversary Queries: The adversary can request signatures for other messages or users (excluding U_0 and U_1) and perform verifications.
- 4. **Guess**: The adversary outputs a guess b'. The scheme is unlinkable if:

$$\left|\Pr[b'=b] - \frac{1}{2}\right| \le \mathsf{negl}(\lambda).$$

Key Observations

- Private Key Randomness: Each user's $usk_{ID} = (x, R)$ includes a unique random r in $R = h^r$. Since r is fresh per user, $x = r + s \cdot H_0(ID, R)$ is statistically independent across users.
- Signature Randomization: Signatures $\sigma_k = \widehat{\sigma}_k^x \cdot H_3(v_k, ID)^B \mod Q$ depend on both x (user-specific) and $B \mod Q$ (session-specific). The term $H_3(v_k, ID)^B \mod Q$ introduces session randomness, preventing linkage across different signatures.
- Session Key Obfuscation: The CRT-based distribution of $b_{ID} = B \mod q_{ID}$ ensures that partial knowledge of $\{b_{ID_j}\}$ does not reveal B unless t combiners collude. This threshold mechanism hides user-specific contributions.

Formal Reduction

Assume an adversary \mathcal{A} can win the unlinkability game with non-negligible advantage ϵ . We construct a solver \mathcal{S} for the CDH problem:

- 1. S embeds a CDH instance (g, h, g^a, h^b) into the public parameters and simulates user keys using a, b.
- 2. When \mathcal{A} requests a signature, \mathcal{S} programs the hash oracles to align with the CDH challenge.
- 3. If \mathcal{A} successfully links signatures, \mathcal{S} extracts $e(g,h)^{ab}$ from the bilinear pairing results, solving CDH.
- 4. By the CDH assumption, ϵ must be negligible, contradicting \mathcal{A} 's advantage. Hence, unlinkability holds.

Critical Analysis

- Leakage Prevention: No phase reveals s, B, or deterministic relationships between users' operations. The use of fresh randomness (r, B) in key generation and signing ensures unlinkability.
- Verification Anonymity: The verification equation $e(\varsigma_k, h) = e(\widehat{\sigma}_k, R \cdot mpk^{H_0(ID,R)})$ depends only on public values (R, mpk) and session-specific terms, avoiding user identity exposure.
- Threshold Security: The requirement of t combiners to recover B ensures that fewer colluders cannot compromise session anonymity.

The scheme achieves unlinkability through:

- Randomized private key generation and session-specific parameters.
- Threshold-based session key distribution via CRT.
- Cryptographic primitives (bilinear maps, collision-resistant hashes) that prevent leakage of user-specific information.
- ullet Dynamic binding of signatures to session-specific terms (e.g., $B \mod Q$) rather than user identities.

Under the challenge-response model, the adversary cannot distinguish signatures from different users beyond random guessing, proving the scheme's unlinkability.

Traceability Proof

Game Definition

- 1. **Setup**: The challenger generates params, msk, and registers a set of users \mathcal{U} . Each user U_i receives $usk_{ID_i} = (x_i, R_i)$.
- 2. Adversary Queries: The adversary can:
 - Request user private keys for any $ID_j \in \mathcal{U}$.
 - Request signatures on messages with specified ID_i .
 - Corrupt combiners to obtain their session keys $\{b_{ID_i}\}$.
- 3. Challenge: The adversary outputs a forged signature σ^* on a message m^* , claiming it cannot be traced to any registered user.
- 4. **Tracing**: The challenger uses the tracing algorithm to extract an identity ID^* from σ^* . The scheme is traceable if:

$$\Pr[ID^* \in \mathcal{U} \land Verify(m^*, \sigma^*) = 1] \ge 1 - \mathsf{negl}(\lambda).$$

Key Mechanisms for Traceability

- Identity Binding in Private Keys: Each user's $usk_{ID} = (x, R)$ is bound to ID via $x = r + s \cdot H_0(ID, R)$. The term $H_0(ID, R)$ ensures that x uniquely encodes ID, and any valid signature must use a valid x linked to a registered identity.
- Signature Structure: Signatures $\sigma_k = \widehat{\sigma}_k^x \cdot H_3(v_k, ID)^{B \mod Q}$ explicitly include ID in H_3 . During verification, the challenger can check the consistency of ID with the public parameters and traced keys.
- Session Key Recovery via CRT: The threshold-based recovery of B requires at least t honest combiners. If a forged signature uses an invalid B, the tracing algorithm can identify corrupt combiners by analyzing inconsistencies in B'.

Formal Reduction

Assume an adversary A can forge an untraceable signature with non-negligible probability ϵ . We construct a solver S for the DLP in G_1 :

- 1. S simulates the scheme and embeds a DLP instance $h = g^a$ into the public parameters.
- 2. When \mathcal{A} requests a signature for ID_j , \mathcal{S} programs $H_0(ID_j, R_j)$ to align with the DLP challenge.

3. If \mathcal{A} outputs a forged σ^* , \mathcal{S} extracts x^* from $\widehat{\sigma}_k$ via:

$$e(\widehat{\sigma}_k, h) = e(g^{x^*}, h) \implies x^* = \log_q \widehat{\sigma}_k.$$

Since $x^* = r + s \cdot H_0(ID^*, R^*)$, S solves a from $h = g^a$ using the extracted x^* .

4. By the DLP assumption, ϵ must be negligible, contradicting \mathcal{A} 's success. Hence, traceability holds.

Critical Analysis

- Non-Frameability: Even if the adversary corrupts users, they cannot forge signatures for honest users because x_i depends on s (unknown to the adversary).
- Threshold Security: The CRT-based recovery of B ensures that corrupting fewer than t combiners does not compromise B, preventing fake session keys from being accepted.
- **Public Verifiability**: The verification equation $e(\varsigma_k, h) = e(\widehat{\sigma}_k, R \cdot mpk^{H_0(ID,R)})$ ensures that only valid *ID*-bound signatures pass verification.

The scheme achieves traceability through:

- Cryptographic binding of user identities to private keys via $H_0(ID, R)$.
- Explicit inclusion of ID in signature components and hash functions.
- Threshold mechanisms for session key recovery, limiting collusion impact.

Under the challenge-response model, any forged signature can be traced to a registered user with overwhelming probability, proving the scheme's traceability.