README for BTSCM: A Bimodal Time Series Classification Model ============================================================== 📘 Project Title: Parametric Art Creation Platform Design Based on Visual Delivery and Multimedia Data Fusion 🔬 Summary: This project introduces the BTSCM (Bimodal Time Series Classification Model), a multimodal deep learning framework combining I3D-based video feature extraction and MFCC-based audio feature processing. It is designed to support video classification and intelligent content tagging on art creation platforms. ============================================================== 📁 Project Structure: - `train_btscm.py`: Main training script for the BTSCM network - `evaluate.py`: Script for testing on various datasets - `model/`: Contains FCN, LSTM, and DQN modules - `data/`: Includes preprocessed audio-visual features and segment definitions - `configs/`: YAML configuration files for hyperparameters and environment control ============================================================== 🖥 Computing Infrastructure: - OS: Ubuntu 20.04 LTS - CPU: Intel Xeon Silver 4214R (24 cores) - GPU: NVIDIA Tesla V100 (32GB HBM2) - RAM: 128 GB - Framework: Python 3.8, PyTorch 1.13, CUDA 11.6 🔧 Key Dependencies: - numpy - pandas - torch >= 1.13 - torchaudio - librosa - scikit-learn - matplotlib To install: conda create -n btscm_env python=3.8 conda activate btscm_env pip install -r requirements.txt ============================================================== 📊 Datasets Used: - UCF101 - Kinetics-400 - Sports-1M - ActivityNet - Self-established art video dataset (not public) Data format: - Video input: MP4 or AVI, 25 FPS - Audio input: 16kHz mono WAV - Labels: action class, video-level annotations ============================================================== 🔍 Data Preprocessing Steps: 1. Videos are resized to 224x224 and segmented into 64-frame clips. 2. Audio is downsampled to 16kHz, converted to MFCCs (40 filters). 3. Z-score normalization is applied across all features. 4. Audio and video streams are time-aligned based on timestamps. ============================================================== 🚀 Training: To train the model on UCF101: python train_btscm.py --dataset UCF101 --config configs/btscm_ucf.yaml To evaluate: python evaluate.py --model checkpoints/btscm_final.pth --dataset UCF101 ==============================================================