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Supplementary Material: Interpretability of SGCL-DPI via Integrated 
Gradients 
 
Understanding the reasoning behind predictions made by deep learning models in drug–
protein interaction (DPI) tasks is vital, particularly in biomedical domains where 
interpretability fosters trust, accountability, and scientific insight. In this study, we 
employed Integrated Gradients (IG), a gradient-based attribution method, to analyze the 
internal mechanisms of SGCL-DPI, a model that combines structural graph learning with 
guidance from a Random Forest (RF) teacher. The model processes molecular and 
protein graph structures and fuses their embeddings with coarse-grained predictions from 
an RF model, allowing it to leverage both fine-grained and global information during 
prediction. 
 
To assess the interpretability of SGCL-DPI, we visualized atom-level IG attributions on 
two representative molecules: one corresponding to a true positive (TP) prediction and 
the other to a false positive (FP) prediction. In these visualizations, red tones indicate 
atoms that positively contribute to the predicted interaction probability, while blue tones 
denote suppressive or negative contributions. Gray or neutral tones highlight atoms that 
had minimal influence on the decision. 
 
The true positive sample (Supplementary Figure S2) reveals a clear concentration of high 
attribution scores around biologically meaningful substructures. Notably, strong 
attributions are observed on functional moieties such as a phosphate group, substituted 
aromatic rings, and polyhydroxy chains. These patterns suggest that SGCL-DPI has 
learned to focus on chemically significant regions known to facilitate molecular binding. 
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The attribution map is both sharp and localized, reinforcing the conclusion that the 
model’s confident prediction was grounded in relevant chemical features. 
 
In contrast, the false positive sample (Supplementary Figure S1) demonstrates a more 
diffuse and ambiguous attribution pattern. While some atoms are weakly highlighted, the 
lack of dominant red regions indicates that no specific substructure drove the model’s 
high-confidence prediction. Instead, the attention appears scattered across non-specific 
hydroxyl chains and other motifs that, while common in active compounds, are insufficient 
to determine true binding. This behavior points to a tendency for overgeneralization or 
reliance on dataset artifacts, which may warrant further regularization or interpretability-
aware training strategies. 
 
Collectively, these interpretability analyses underscore the value of incorporating 
attribution methods like Integrated Gradients into model validation pipelines. In the case 
of SGCL-DPI, IG not only corroborates that the model attends to biochemically 
meaningful features in correct predictions but also provides insight into failure cases 
where diffuse or noisy attribution may underlie incorrect outputs. Such transparency is 
critical for building confidence in model predictions and guiding future improvements in 
data curation, model design, and deployment for real-world biomedical applications. Ask 
ChatGPT 

 
Supplementary Figure S1: Integrated Gradients on False Positive Sample. This figure visualizes atom-level attributions on a 
false positive prediction. The model confidently predicted a binding interaction, but the ground-truth label indicates no 
binding. The attributions are widely dispersed with several moderately contributing atoms but no sharply dominant 
substructure. This diDuse attribution suggests the model may have overgeneralized from substructural motifs (e.g., hydroxyl 
chains) that are common in active molecules but not specific enough to indicate true interaction. 

 



 
Supplementary Figure S2: Integrated Gradients on True Positive Sample. This figure presents attributions for a true positive 
prediction where the model correctly identified a drug–protein interaction. A strong concentration of red and orange 
attributions is evident around functional groups such as the phosphate moiety and substituted aromatic ring. These 
substructures are known to enhance molecular binding in biochemical literature, indicating that the model has likely 
learned meaningful chemical semantics. Blue regions denote suppressive or uninformative atomic contributions. 

 

Implementation Details for Integrated Gradients-Based Interpretability 
To enable post hoc interpretability of the SGCL-DPI model, we integrated a gradient-
based attribution method, Integrated Gradients (IG), to analyze the contribution of input 
substructures to final binding predictions. The following subsections describe the 
technical modifications and pipeline components introduced for this purpose. 

Model Wrapping and Attribution Interface 

We implemented a lightweight wrapper class FusionWrapper, encapsulating the model’s 
fusion layer. This design enables compatibility with the Captum interpretability library, 
which requires a callable function mapping inputs (i.e., embeddings) to scalar predictions. 
The wrapper receives the GNN-derived drug and protein embeddings alongside the RF-
based auxiliary prediction and returns the final fused score. This abstraction isolates the 
interpretability target while maintaining the original SGCL-DPI fusion behavior. 

https://captum.ai/


Extraction of Embeddings and Attention 

A function run_ig_on_sample() was implemented to extract node-level representations 
from the GNN modules and aggregate them using the model's built-in attention 
mechanisms. Specifically: 

• The drug_encoder and protein_encoder modules were executed on their 
respective graph structures. 

• Attention weights were obtained via the learned attention heads and applied to the 
node embeddings to produce sample-specific graph-level embeddings. 

• These aggregated embeddings, along with the RF prediction vector, were 
reshaped and marked with requires_grad_() to support gradient tracking. 

These embeddings were then passed through Captum’s IntegratedGradients class, 
where gradients are computed along a linear interpolation path between a baseline (e.g., 
zero vector) and the actual inputs. 

Sample Selection for Case Analysis 

To isolate meaningful case studies, we developed select_tp_fp_samples() to 
automatically extract one true positive (TP) and one false positive (FP) example. This 
function iteratively scans the dataset and returns two samples that: 

• Are predicted with high confidence (based on a sigmoid threshold), 

• Match the ground-truth label for TP, or diverge from it in the case of FP. 

This automated sampling ensured that the visualizations reflected realistic and 
diagnostically relevant scenarios, while avoiding user bias or cherry-picking. 

Molecule Visualization with Attribution 

We introduced a new function visualize_molecule_with_ig() that converts SMILES strings 
to molecular graphs using RDKit and overlays atom-level IG scores. Key steps include: 

• Aligning IG attribution values to the number of atoms in the molecule. 

• Normalizing scores to the [0, 1] range. 

• Mapping IG values to a diverging colormap (coolwarm), where: 

o Red represents atoms that positively contribute to the prediction, 

o Blue denotes atoms that suppress the prediction, 

o Gray indicates neutral or uninformative atoms. 



The visualization was rendered using RDKit's MolDraw2DCairo engine and exported as 
high-resolution PNGs. Importantly, the color scale is automatically inferred from IG values 
without any manual annotation of TP/FP class, ensuring the visual outcome is attribution-
driven rather than label-informed. 

Robustness and Alignment 

To ensure stability and accuracy, safeguards were implemented: 

• Invalid SMILES strings or mismatched input dimensions between IG scores and 
atom counts are filtered. 

• Per-atom attribution arrays are truncated or padded as necessary to align with 
molecular structure lengths. 

• The embedding extraction and IG processes are wrapped in a no_grad() context 
except for the immediate attribution computation, reducing memory overhead and 
improving inference speed. 

 


