Title ===== Semantic Enhanced Clothing Recommendation System (ATSRS) Description =========== This project implements the Ant Trust-based Semantic-enhanced Recommendation System (ATSRS), a dynamic recommendation framework that integrates semantic item representation, trust networks, and Ant Colony Optimization (ACO) to improve personalized clothing recommendations. Dataset Information =================== - **Dataset**: Amazon Fashion (men's/women's shoes, bottoms, shirts) - **Source**: https://registry.opendata.aws/amazon-reviews/ - **Size**: 45,184 users, 166,270 items, 358,003 entries - **Sparsity**: 99.9952% - Preprocessing: - Removed users with <5 interactions - Normalized ratings (min-max scaling) - Random split: 75% train, 25% test Code Information ================ Structure: src/ data/ # Loaders, preprocessing models/ # Recommendation models (semantic, trust, ACO) utils/ # Metrics, configs, logging scripts/ # Data prep, evaluation scripts configs/ # YAML config files Usage Instructions ================== 1. Install requirements: pip install -r requirements.txt 2. Prepare dataset: python scripts/prepare_data.py --raw_dir data/raw --out_dir data/processed 3. Run main pipeline: python src/main.py --config configs/default.yaml 4. Evaluate results: python scripts/eval.py --preds runs//preds.csv --truth data/processed/test.csv Requirements ============ - Python >= 3.8 - numpy, pandas, scikit-learn - networkx, owlready2 - pyyaml, tqdm, matplotlib Methodology =========== Offline Phase: - Semantic item representation using OWL ontology - K-Medoids clustering for semantic grouping - Implicit Trust Graph construction from user-item interactions Online Phase: - Contextual trust-based neighbor selection using ACO - Top-N recommendations ranked by semantic similarity & trust - Dynamic pheromone update based on user feedback Citations ========= If you use this work, please cite: Luyao He, Huazhi Xiang, Pietro Alex Marra, Chunjia Wang. "A Semantic Enhanced Clothing Design System based on implicit trust graphs and Ontology web language", 2025.