First RL pramenters

stage1_parameters=f"""
run_type = "staged_learning"
device = "cuda:0"
tb_logdir = "tb_stage1"
json_out_config = "_stage1.json"

[parameters]

prior_file = "{prior_filename}"
agent_file = "{agent_filename}"
summary_csv_prefix = "stage1"

batch_size = 100

use_checkpoint = false

[learning_strategy]

type = "dap"
sigma = 128
rate = 0.0001

[[stage]]

max_score = 1.0
max_steps = 300

chkpt_file = "{stage1_checkpoint}"

scoring_function.type = "custom_product"

[stage.scoring]
type = "geometric_mean"

[[stage.scoring.component]]
[stage.scoring.component.custom_alerts]

[[stage.scoring.component.custom_alerts.endpoint]]
name = "Alerts"

params.smarts = [
"[*;r8]",
"[*;r9]",
"[*;r10]",
"[*;r11]",
"[*;r12]",
"[*;r13]",
"[*;r14]",
"[*;r15]",
"[*;r16]",
"[*;r17]",
"[#8][#8]",
"[#6;+]",
"[#16][#16]",
"[#7;!n][S;!$(S(=O)=O)]",
"[#7;!n][#7;!n]",
"C#C",
"C(=[O,S])[O,S]",
"[#7;!n][C;!$(C(=[O,N])[N,O])][#16;!s]",
"[#7;!n][C;!$(C(=[O,N])[N,O])][#7;!n]",
"[#7;!n][C;!$(C(=[O,N])[N,O])][#8;!o]",
"[#8;!o][C;!$(C(=[O,N])[N,O])][#16;!s]",
"[#8;!o][C;!$(C(=[O,N])[N,O])][#8;!o]",
"[#16;!s][C;!$(C(=[O,N])[N,O])][#16;!s]"
]

[[stage.scoring.component]]
[stage.scoring.component.QED]

[[stage.scoring.component.QED.endpoint]]
name = "QED"
weight = 0.6

[[stage.scoring.component]]
[stage.scoring.component.NumAtomStereoCenters]

[[stage.scoring.component.NumAtomStereoCenters.endpoint]]
name = "Stereo"
weight = 0.4

transform.type = "left_step"
transform.low = 0
"""

Transfer learning parameter
TL_parameters = f"""
run_type = "transfer_learning"
device = "cuda:0"
tb_logdir = "tb_TL"

[parameters]

num_epochs = 50
save_every_n_epochs = 2
batch_size = 100
sample_batch_size = 10000

input_model_file = "{stage1_checkpoint}"
output_model_file = "TL_reinvent.model"
smiles_file = "{TL_train_filename}"
validation_smiles_file = "{TL_validation_filename}"
standardize_smiles = true
randomize_smiles = true
randomize_all_smiles = false
internal_diversity = true
"""

Stage 2 RL parameter

TL_model_filename = os.path.join(wd, "TL_reinvent.model.30.chkpt")

stage2_parameters = re.sub("stage1", f"stage2", stage1_parameters)
stage2_parameters = re.sub("agent_file.*\n", f'agent_file = "{TL_model_filename}"\n', stage2_parameters)
stage2_parameters = re.sub("max_steps.*\n", f'max_steps = 1000\n', stage2_parameters)

pred_model_parameters = f"""
[[stage.scoring.component]]
[stage.scoring.component.ChemProp]

[[stage.scoring.component.ChemProp.endpoint]]
name = "ChemProp"
weight = 0.6

params.checkpoint_dir = "{chemprop_path}"
params.rdkit_2d_normalized = true

transform.type = "sigmoid"
transform.high = 10
transform.low = 4
transform.k = 0.4
"""

df_parameters = """
[diversity_filter]

type = "IdenticalMurckoScaffold"
bucket_size = 10
minscore = 0.7
"""

inception_parameters = """
[inception]

smiles_file = "" # no seed SMILES
memory_size = 50
sample_size = 10
"""

full_stage2_parameters = stage2_parameters + pred_model_parameters + df_parameters + inception_parameters
stage2_config_filename = "stage2.toml"

Chemprop command parameters
python /home/luzuokun/anaconda3/envs/reinvent4/bin/chemprop_train --data_path BRAF_smiles_pIC50.csv --dataset_type regression --save_dir exp1/ --split_type cv --num_folds 5 --features_generator rdkit_2d_normalized –no_features_scaling

Docking parameters
Autodock vina 1.1.2 was used in DockStream, with the following parameters:
specify the target preparation JSON file as a dictionary and write it out
tp_dict = {
"target_preparation":
{
"header": { # general settings
"logging": { # logging settings (e.g. which file to write to)
"logfile": log_file_target_prep
}
},
"input_path": apo_1UYD_path, # this should be an absolute path
"fixer": { # based on "PDBFixer"; tries to fix common problems with PDB files
"enabled": True,
"standardize": True, # enables standardization of residues
"remove_heterogens": True, # remove hetero-entries
"fix_missing_heavy_atoms": True, # if possible, fix missing heavy atoms
"fix_missing_hydrogens": True, # add hydrogens, which are usually not present in PDB files
"fix_missing_loops": False, # add missing loops; CAUTION: the result is usually not sufficient
"add_water_box": False, # if you want to put the receptor into a box of water molecules
"fixed_pdb_path": fixed_pdb_path # if specified and not "None", the fixed PDB file will be stored here
},
"runs": [# "runs" holds a list of backend runs; at least one is required
{
"backend": "AutoDockVina", # one of the backends supported ("AutoDockVina", "OpenEye", ...)
"output": {
"receptor_path": adv_receptor_path # the generated receptor file will be saved to this location
},
"parameters": {
"pH": 7.4, # sets the protonation states (NOT used in Vina)
"extract_box": { # in order to extract the coordinates of the pocket (see text)
"reference_ligand_path": reference_ligand_path, # path to the reference ligand
"reference_ligand_format": "PDB" # format of the reference ligand
}
}}]}}

with open(target_prep_path, 'w') as f:
json.dump(tp_dict, f, indent=" ")

specify the embedding and docking JSON file as a dictionary and write it out
ed_dict = {
"docking": {
"header": { # general settings
"logging": { # logging settings (e.g. which file to write to)
"logfile": log_file_docking
}
},
"ligand_preparation": { # the ligand preparation part, defines how to build the pool
"embedding_pools": [
{
"pool_id": "RDkit_pool", # here, we only have one pool
"type": "RDkit",
"parameters": {
"removeHs": False,
"coordinate_generation": {
"method": "UFF",
"maximum_iterations": 300
}
},
"input": {
"standardize_smiles": False,
"type": "smi",
"input_path": smiles_path
},
"output": { # the conformers can be written to a file, but "output" is
not required as the ligands are forwarded internally
"conformer_path": ligands_conformers_path,
"format": "sdf"
}
}
]

},
"docking_runs": [
{
"backend": "AutoDockVina",
"run_id": "AutoDockVina",
"input_pools": ["RDkit_pool"],
"parameters": {
"binary_location": vina_binary_location, # absolute path to the folder, where the "vina" binary
can be found
"parallelization": {
"number_cores": 16
},
"seed": 42, # use this "seed" to generate reproducible results; if
varied, slightly different results will be produced
"receptor_pdbqt_path": [adv_receptor_path], # paths to the receptor files
"number_poses": 2, # number of poses to be generated
"search_space": { # search space (cavity definition); see text
"--center_x": 25.9,
"--center_y": 110.95,
"--center_z": 16.6,
"--size_x": 16,
"--size_y": 12,
"--size_z": 15
}
},
"output": {
"poses": { "poses_path": ligands_docked_path },
"scores": { "scores_path": ligands_scores_path }
}}]}}

with open(docking_path, 'w') as f:
json.dump(ed_dict, f, indent=2)

print out path to generated JSON
print(docking_path)

