{"cells":[{"cell_type":"markdown","metadata":{"id":"i6MKTDtzdF6S"},"source":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"9ZSH7XIUMXQr"},"outputs":[],"source":["!mkdir /content/drive\n"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":17995,"status":"ok","timestamp":1747027873126,"user":{"displayName":"noor alqudah","userId":"09593972035402767777"},"user_tz":-180},"id":"zlMGcLSjNZ-w","outputId":"30c0e493-653b-4a6a-f36e-ea4f78dcf673"},"outputs":[{"output_type":"stream","name":"stdout","text":["Mounted at /content/drive\n"]}],"source":["from google.colab import drive\n","\n","drive.mount('/content/drive')\n"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":2014,"status":"ok","timestamp":1745703806346,"user":{"displayName":"noor alqudah","userId":"09593972035402767777"},"user_tz":-180},"id":"5vY8pv8WLgua","outputId":"3f1555d3-a8aa-4cde-8721-6b7b4c29352c"},"outputs":[{"name":"stdout","output_type":"stream","text":["Collecting imblearn\n"," Downloading imblearn-0.0-py2.py3-none-any.whl.metadata (355 bytes)\n","Collecting imbalanced-learn (from imblearn)\n"," Downloading imbalanced_learn-0.13.0-py3-none-any.whl.metadata (8.8 kB)\n","Requirement already satisfied: numpy<3,>=1.24.3 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn->imblearn) (2.0.2)\n","Requirement already satisfied: scipy<2,>=1.10.1 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn->imblearn) (1.14.1)\n","Requirement already satisfied: scikit-learn<2,>=1.3.2 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn->imblearn) (1.6.1)\n","Collecting sklearn-compat<1,>=0.1 (from imbalanced-learn->imblearn)\n"," Downloading sklearn_compat-0.1.3-py3-none-any.whl.metadata (18 kB)\n","Requirement already satisfied: joblib<2,>=1.1.1 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn->imblearn) (1.4.2)\n","Requirement already satisfied: threadpoolctl<4,>=2.0.0 in /usr/local/lib/python3.11/dist-packages (from imbalanced-learn->imblearn) (3.6.0)\n","Downloading imblearn-0.0-py2.py3-none-any.whl (1.9 kB)\n","Downloading imbalanced_learn-0.13.0-py3-none-any.whl (238 kB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m238.4/238.4 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading sklearn_compat-0.1.3-py3-none-any.whl (18 kB)\n","Installing collected packages: sklearn-compat, imbalanced-learn, imblearn\n","Successfully installed imbalanced-learn-0.13.0 imblearn-0.0 sklearn-compat-0.1.3\n"]}],"source":["!pip install imblearn\n"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":140133,"status":"ok","timestamp":1745996917033,"user":{"displayName":"noor alqudah","userId":"09593972035402767777"},"user_tz":-180},"id":"5kmqF7_AlRz5","outputId":"cb4ca7fb-87ea-4452-c6ed-7340e8d48f47"},"outputs":[{"name":"stdout","output_type":"stream","text":["Collecting torch==2.0.1\n"," Downloading torch-2.0.1-cp311-cp311-manylinux1_x86_64.whl.metadata (24 kB)\n","Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from torch==2.0.1) (3.18.0)\n","Requirement already satisfied: typing-extensions in /usr/local/lib/python3.11/dist-packages (from torch==2.0.1) (4.13.2)\n","Requirement already satisfied: sympy in /usr/local/lib/python3.11/dist-packages (from torch==2.0.1) (1.13.1)\n","Requirement already satisfied: networkx in /usr/local/lib/python3.11/dist-packages (from torch==2.0.1) (3.4.2)\n","Requirement already satisfied: jinja2 in /usr/local/lib/python3.11/dist-packages (from torch==2.0.1) (3.1.6)\n","Collecting nvidia-cuda-nvrtc-cu11==11.7.99 (from torch==2.0.1)\n"," Downloading nvidia_cuda_nvrtc_cu11-11.7.99-2-py3-none-manylinux1_x86_64.whl.metadata (1.5 kB)\n","Collecting nvidia-cuda-runtime-cu11==11.7.99 (from torch==2.0.1)\n"," Downloading nvidia_cuda_runtime_cu11-11.7.99-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n","Collecting nvidia-cuda-cupti-cu11==11.7.101 (from torch==2.0.1)\n"," Downloading nvidia_cuda_cupti_cu11-11.7.101-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n","Collecting nvidia-cudnn-cu11==8.5.0.96 (from torch==2.0.1)\n"," Downloading nvidia_cudnn_cu11-8.5.0.96-2-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n","Collecting nvidia-cublas-cu11==11.10.3.66 (from torch==2.0.1)\n"," Downloading nvidia_cublas_cu11-11.10.3.66-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n","Collecting nvidia-cufft-cu11==10.9.0.58 (from torch==2.0.1)\n"," Downloading nvidia_cufft_cu11-10.9.0.58-py3-none-manylinux2014_x86_64.whl.metadata (1.5 kB)\n","Collecting nvidia-curand-cu11==10.2.10.91 (from torch==2.0.1)\n"," Downloading nvidia_curand_cu11-10.2.10.91-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n","Collecting nvidia-cusolver-cu11==11.4.0.1 (from torch==2.0.1)\n"," Downloading nvidia_cusolver_cu11-11.4.0.1-2-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n","Collecting nvidia-cusparse-cu11==11.7.4.91 (from torch==2.0.1)\n"," Downloading nvidia_cusparse_cu11-11.7.4.91-py3-none-manylinux1_x86_64.whl.metadata (1.6 kB)\n","Collecting nvidia-nccl-cu11==2.14.3 (from torch==2.0.1)\n"," Downloading nvidia_nccl_cu11-2.14.3-py3-none-manylinux1_x86_64.whl.metadata (1.8 kB)\n","Collecting nvidia-nvtx-cu11==11.7.91 (from torch==2.0.1)\n"," Downloading nvidia_nvtx_cu11-11.7.91-py3-none-manylinux1_x86_64.whl.metadata (1.7 kB)\n","Collecting triton==2.0.0 (from torch==2.0.1)\n"," Downloading triton-2.0.0-1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.0 kB)\n","Requirement already satisfied: setuptools in /usr/local/lib/python3.11/dist-packages (from nvidia-cublas-cu11==11.10.3.66->torch==2.0.1) (75.2.0)\n","Collecting wheel (from nvidia-cublas-cu11==11.10.3.66->torch==2.0.1)\n"," Downloading wheel-0.45.1-py3-none-any.whl.metadata (2.3 kB)\n","Collecting cmake (from triton==2.0.0->torch==2.0.1)\n"," Downloading cmake-4.0.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.3 kB)\n","Collecting lit (from triton==2.0.0->torch==2.0.1)\n"," Downloading lit-18.1.8-py3-none-any.whl.metadata (2.5 kB)\n","Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.11/dist-packages (from jinja2->torch==2.0.1) (3.0.2)\n","Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from sympy->torch==2.0.1) (1.3.0)\n","Downloading torch-2.0.1-cp311-cp311-manylinux1_x86_64.whl (619.9 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m619.9/619.9 MB\u001b[0m \u001b[31m1.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading nvidia_cublas_cu11-11.10.3.66-py3-none-manylinux1_x86_64.whl (317.1 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m317.1/317.1 MB\u001b[0m \u001b[31m3.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading nvidia_cuda_cupti_cu11-11.7.101-py3-none-manylinux1_x86_64.whl (11.8 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m11.8/11.8 MB\u001b[0m \u001b[31m129.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading nvidia_cuda_nvrtc_cu11-11.7.99-2-py3-none-manylinux1_x86_64.whl (21.0 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m21.0/21.0 MB\u001b[0m \u001b[31m105.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading nvidia_cuda_runtime_cu11-11.7.99-py3-none-manylinux1_x86_64.whl (849 kB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m849.3/849.3 kB\u001b[0m \u001b[31m54.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading nvidia_cudnn_cu11-8.5.0.96-2-py3-none-manylinux1_x86_64.whl (557.1 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m557.1/557.1 MB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading nvidia_cufft_cu11-10.9.0.58-py3-none-manylinux2014_x86_64.whl (168.4 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m168.4/168.4 MB\u001b[0m \u001b[31m782.0 kB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading nvidia_curand_cu11-10.2.10.91-py3-none-manylinux1_x86_64.whl (54.6 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m54.6/54.6 MB\u001b[0m \u001b[31m24.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading nvidia_cusolver_cu11-11.4.0.1-2-py3-none-manylinux1_x86_64.whl (102.6 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m102.6/102.6 MB\u001b[0m \u001b[31m11.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading nvidia_cusparse_cu11-11.7.4.91-py3-none-manylinux1_x86_64.whl (173.2 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m173.2/173.2 MB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading nvidia_nccl_cu11-2.14.3-py3-none-manylinux1_x86_64.whl (177.1 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m177.1/177.1 MB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading nvidia_nvtx_cu11-11.7.91-py3-none-manylinux1_x86_64.whl (98 kB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m98.6/98.6 kB\u001b[0m \u001b[31m9.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading triton-2.0.0-1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (63.3 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m63.3/63.3 MB\u001b[0m \u001b[31m19.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading cmake-4.0.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (27.9 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m27.9/27.9 MB\u001b[0m \u001b[31m63.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading lit-18.1.8-py3-none-any.whl (96 kB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m96.4/96.4 kB\u001b[0m \u001b[31m8.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading wheel-0.45.1-py3-none-any.whl (72 kB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m72.5/72.5 kB\u001b[0m \u001b[31m7.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hInstalling collected packages: lit, wheel, nvidia-nccl-cu11, nvidia-cufft-cu11, nvidia-cuda-nvrtc-cu11, cmake, nvidia-nvtx-cu11, nvidia-cusparse-cu11, nvidia-curand-cu11, nvidia-cuda-runtime-cu11, nvidia-cuda-cupti-cu11, nvidia-cublas-cu11, nvidia-cusolver-cu11, nvidia-cudnn-cu11, triton, torch\n"," Attempting uninstall: torch\n"," Found existing installation: torch 2.6.0+cpu\n"," Uninstalling torch-2.6.0+cpu:\n"," Successfully uninstalled torch-2.6.0+cpu\n","\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n","torchvision 0.21.0+cpu requires torch==2.6.0, but you have torch 2.0.1 which is incompatible.\n","torchaudio 2.6.0+cpu requires torch==2.6.0, but you have torch 2.0.1 which is incompatible.\u001b[0m\u001b[31m\n","\u001b[0mSuccessfully installed cmake-4.0.0 lit-18.1.8 nvidia-cublas-cu11-11.10.3.66 nvidia-cuda-cupti-cu11-11.7.101 nvidia-cuda-nvrtc-cu11-11.7.99 nvidia-cuda-runtime-cu11-11.7.99 nvidia-cudnn-cu11-8.5.0.96 nvidia-cufft-cu11-10.9.0.58 nvidia-curand-cu11-10.2.10.91 nvidia-cusolver-cu11-11.4.0.1 nvidia-cusparse-cu11-11.7.4.91 nvidia-nccl-cu11-2.14.3 nvidia-nvtx-cu11-11.7.91 torch-2.0.1 triton-2.0.0 wheel-0.45.1\n","Requirement already satisfied: transformers==4.31.0 in /usr/local/lib/python3.11/dist-packages (4.31.0)\n","Requirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from transformers==4.31.0) (3.18.0)\n","Requirement already satisfied: huggingface-hub<1.0,>=0.14.1 in /usr/local/lib/python3.11/dist-packages (from transformers==4.31.0) (0.30.2)\n","Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.11/dist-packages (from transformers==4.31.0) (2.0.2)\n","Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from transformers==4.31.0) (25.0)\n","Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from transformers==4.31.0) (6.0.2)\n","Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.11/dist-packages (from transformers==4.31.0) (2024.11.6)\n","Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-packages (from transformers==4.31.0) (2.32.3)\n","Requirement already satisfied: tokenizers!=0.11.3,<0.14,>=0.11.1 in /usr/local/lib/python3.11/dist-packages (from transformers==4.31.0) (0.13.3)\n","Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.11/dist-packages (from transformers==4.31.0) (0.5.3)\n","Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.11/dist-packages (from transformers==4.31.0) (4.67.1)\n","Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers==4.31.0) (2025.3.2)\n","Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers==4.31.0) (4.13.2)\n","Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests->transformers==4.31.0) (3.4.1)\n","Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests->transformers==4.31.0) (3.10)\n","Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests->transformers==4.31.0) (2.4.0)\n","Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests->transformers==4.31.0) (2025.1.31)\n"]}],"source":["# ✅ تثبيت نسخة مستقرة من torch و transformers\n","!pip install --upgrade torch==2.0.1\n","!pip install --upgrade transformers==4.31.0\n","\n"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":12187,"status":"ok","timestamp":1745686506012,"user":{"displayName":"noor alqudah","userId":"09593972035402767777"},"user_tz":-180},"id":"FYNJai734jLO","outputId":"368658db-2f87-4a56-b6bd-01d471ed11fd"},"outputs":[{"name":"stdout","output_type":"stream","text":["Collecting transformers==4.31.0\n"," Downloading transformers-4.31.0-py3-none-any.whl.metadata (116 kB)\n","\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/116.9 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m116.9/116.9 kB\u001b[0m \u001b[31m3.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.11/dist-packages (from transformers==4.31.0) (3.18.0)\n","Requirement already satisfied: huggingface-hub<1.0,>=0.14.1 in /usr/local/lib/python3.11/dist-packages (from transformers==4.31.0) (0.30.2)\n","Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.11/dist-packages (from transformers==4.31.0) (2.0.2)\n","Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from transformers==4.31.0) (25.0)\n","Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.11/dist-packages (from transformers==4.31.0) (6.0.2)\n","Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.11/dist-packages (from transformers==4.31.0) (2024.11.6)\n","Requirement already satisfied: requests in /usr/local/lib/python3.11/dist-packages (from transformers==4.31.0) (2.32.3)\n","Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers==4.31.0)\n"," Downloading tokenizers-0.13.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.7 kB)\n","Requirement already satisfied: safetensors>=0.3.1 in /usr/local/lib/python3.11/dist-packages (from transformers==4.31.0) (0.5.3)\n","Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.11/dist-packages (from transformers==4.31.0) (4.67.1)\n","Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers==4.31.0) (2025.3.2)\n","Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.11/dist-packages (from huggingface-hub<1.0,>=0.14.1->transformers==4.31.0) (4.13.2)\n","Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests->transformers==4.31.0) (3.4.1)\n","Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests->transformers==4.31.0) (3.10)\n","Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests->transformers==4.31.0) (2.3.0)\n","Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests->transformers==4.31.0) (2025.1.31)\n","Downloading transformers-4.31.0-py3-none-any.whl (7.4 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.4/7.4 MB\u001b[0m \u001b[31m79.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading tokenizers-0.13.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m152.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hInstalling collected packages: tokenizers, transformers\n"," Attempting uninstall: tokenizers\n"," Found existing installation: tokenizers 0.21.1\n"," Uninstalling tokenizers-0.21.1:\n"," Successfully uninstalled tokenizers-0.21.1\n"," Attempting uninstall: transformers\n"," Found existing installation: transformers 4.51.3\n"," Uninstalling transformers-4.51.3:\n"," Successfully uninstalled transformers-4.51.3\n","Successfully installed tokenizers-0.13.3 transformers-4.31.0\n"]}],"source":["!pip install --upgrade transformers==4.31.0\n"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"CXdvQ9JIhc2I"},"outputs":[],"source":["# بدي ابدأ بال\n","#EMBEDDING من البدايه\n","#واعمل ARABERT FRO DEEP AGAIN"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"nX4R2i-h1MPO","outputId":"e1a0df6e-290a-4511-f4e6-7cdb2c6956e9"},"outputs":[{"name":"stdout","output_type":"stream","text":["\u001b[33mWARNING: Ignoring invalid distribution ~riton (/usr/local/lib/python3.11/dist-packages)\u001b[0m\u001b[33m\n","\u001b[0m\u001b[33mWARNING: Ignoring invalid distribution ~riton (/usr/local/lib/python3.11/dist-packages)\u001b[0m\u001b[33m\n","\u001b[0mRequirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (2.0.2)\n","Collecting numpy\n"," Downloading numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (62 kB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.0/62.0 kB\u001b[0m \u001b[31m1.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hDownloading numpy-2.2.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (16.4 MB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m16.4/16.4 MB\u001b[0m \u001b[31m43.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25h\u001b[33mWARNING: Ignoring invalid distribution ~riton (/usr/local/lib/python3.11/dist-packages)\u001b[0m\u001b[33m\n","\u001b[0m"]}],"source":["!pip install numpy --upgrade\n","!pip install torch --force-reinstall\n"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"XOolRfjT2HoJ"},"outputs":[],"source":["import numpy\n"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":350,"referenced_widgets":["5806da7a25e04b4eb984fe21f5a67560","495a44147f2c403486e7467964019d30","9177dcb1420a4110bef9aa72fb686514","95433b1db0224152aa816d141ed42dca","fd4323b621ce424ea09094c8dd4d257e","a68f0590ce774ff8a9ed4b1f68bd781d","1be52cf050834eefaea6c024e1d7caa2","fd5366b287a44835b9a8780317fc415d","7cb3c2edbfb24e5b831e36cb761883d1","9e58752eb880403fb8646453e8b446ec","361c3015b4b04a988ed7a7d0cc999a74","88868f346e4a4161a526c748e7385888","c930b36d4e2147dd93b6785e173c70ad","a130a49a1e1f43d7bd93cdbd2a2d2b1c","bc8c436c81324aeba27d9b2ccf7e8b4d","8c34ca1bc5ed48dca6fec81c49664e2e","cb185d27c9554471b04a2878c69a3b53","aef48f723df3436589b9e40cbacac024","be7d0fd22a9e40578d8abf1df134116e","3aa0d27ec6fd4d56b4271e0f1820fe03","e07ad77683e844579efbdd5ab9fc26a6","0cb0b53f9b5244eda49ecc3b20b6ccea","59d9ae437fc5471fb33c9042a71c5723","44f21c8b53a34b0bbb6818698b516696","36b93cb23b6046dfaa533de14f2dc496","4eceebe404f64dd4a4dbb40eac8853c3","fa1541378a1c4afa81c47a19c7c1e769","5e5f248a1bfa4354982203887f769796","336cf126ce174c99a1f6733409b79ca6","c5f0be2838414679a137bc42f684634a","812603c20b034ffcac97cbf591c646a5","e0c1b44a9f3e40de87c39a5a7ac4838b","ef4d05eba61b4660aab0ab24f5da69a8","392944106e51430b8d73ffe3d5c928c2","a58ffdcc2fe2462894c9d16cb81896bb","9b903bf3096142459e7ab80ca3a82318","de2a6d6f5e0349569449a9cff18d5ab7","857e726214184f92a6d7883aa05b6809","cfcf62ab084f49eb8a66e3add4e5306c","dee6856c979d4466b5682d26893f0493","4b3bac8afbac4b34bddb8a4005eb3d5d","1acc9b939d7446ae9e83f0bfdfe72790","e659e19897294c5bb1f9d68943c0f113","2c3daf038947449e897e5a75118e3bd0","e95ca740d95347c28a2e9ff42cb84e3b","28f29bcac77444948c73673bd32dfd3a","7104503498d640e98f043306c63cbef7","dc54d9fd8609451785d4da6e1924b40d","7bf6f19bb18249f386ec1ff97cba922d","5fffa93c9c6642088533dcecd6aaa9d7","a0b0026441a24b29aa222b8fb1b5642e","9a584b60308649f88d7b90352af727ad","515d3ac5843a4ad1827ba488798e2335","b05ddb25974e487a86faf1bc5e55c2a7","95f0a998533e46cdab2d0c2a16f0c1a8","ca8ef99c78a44da1ac33cfbe1eb0a638","916902fa32e94371b5038a89a599f090","62dd457dd842402a9477b1c61a35c7da","134dc0d8099449c3a34cdd37bc1743ba","c8b5fd8d2f784cae81c97a1749e37a40","79bc1d671b8a4ff9a4c3910e0b7d3416","73852b884c2243ca835208bb39d97db8","8169318f4410432c9bdbc35331b99d5b","6e7d861d5845411eafb36ebe024e59f6","66f8eafa9aee446d8f8fc899da318c66","eaecd7e0a2f046119e39f03c382c50d4"]},"executionInfo":{"elapsed":33064,"status":"ok","timestamp":1745611591494,"user":{"displayName":"noor alqudah","userId":"09593972035402767777"},"user_tz":-180},"id":"Z3-YDzE-hz6b","outputId":"05b2b53c-8f46-4af5-9c42-e4bea76c44b1"},"outputs":[{"name":"stderr","output_type":"stream","text":["/usr/local/lib/python3.11/dist-packages/huggingface_hub/utils/_auth.py:94: UserWarning: \n","The secret `HF_TOKEN` does not exist in your Colab secrets.\n","To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n","You will be able to reuse this secret in all of your notebooks.\n","Please note that authentication is recommended but still optional to access public models or datasets.\n"," warnings.warn(\n"]},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"5806da7a25e04b4eb984fe21f5a67560","version_major":2,"version_minor":0},"text/plain":["tokenizer_config.json: 0%| | 0.00/611 [00:00= min_samples}\n"," mask = np.isin(y, list(valid_classes))\n"," return X[mask], y[mask]\n","\n","# ✅ دالة لتطبيق SMOTE كامل\n","def full_smote(X, y):\n"," print(\"🔍 تطبيق SMOTE كامل على جميع التصنيفات...\")\n"," smote = SMOTE(random_state=42, k_neighbors=1)\n"," X_resampled, y_resampled = smote.fit_resample(X, y)\n"," print(f\"✅ شكل البيانات بعد SMOTE: {X_resampled.shape}\")\n"," return X_resampled, y_resampled\n","\n","# ✅ دالة عامة للتقسيم والحفظ\n","def split_and_save(X, y, name):\n"," path = f\"/content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/train_test_data_{name}-deep-new.pkl\"\n"," if os.path.exists(path):\n"," print(f\"📁 الملف موجود مسبقًا: {path} ✅ سيتم تخطيه\")\n"," return\n"," X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)\n"," with open(path, \"wb\") as f:\n"," pickle.dump((X_train, X_test, y_train, y_test), f)\n"," print(f\"✅ تم حفظ الملف: {path}\")\n"," print(f\" 📌 X_train shape: {X_train.shape}\")\n"," print(f\" 📌 y_train shape: {y_train.shape}\")\n"," print(f\" 📌 X_test shape: {X_test.shape}\")\n"," print(f\" 📌 y_test shape: {y_test.shape}\")\n","\n","# ✅ معالجة Sub Category\n","path_sub = \"/content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/train_test_data_sub-deep-new.pkl\"\n","if not os.path.exists(path_sub):\n"," print(\"🚀 البدء بمعالجة Sub Category\")\n"," X_sub, y_sub = remove_low_classes(X_full, y_sub)\n"," X_sub_bal, y_sub_bal = full_smote(X_sub, y_sub)\n"," split_and_save(X_sub_bal, y_sub_bal, \"sub\")\n","else:\n"," print(\"✅ ملف Sub Category موجود مسبقاً ✅ سيتم تخطيه.\")\n","\n","# ✅ معالجة Main Category\n","path_main = \"/content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/train_test_data_main-deep-new.pkl\"\n","if not os.path.exists(path_main):\n"," print(\"🚀 البدء بمعالجة Main Category\")\n"," X_main, y_main = remove_low_classes(X_full, y_main)\n"," X_main_bal, y_main_bal = full_smote(X_main, y_main)\n"," split_and_save(X_main_bal, y_main_bal, \"main\")\n","else:\n"," print(\"✅ ملف Main Category موجود مسبقاً ✅ سيتم تخطيه.\")\n","\n","# ✅ معالجة Real/Fake\n","path_rf = \"/content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/train_test_data_rf-deep-new.pkl\"\n","if not os.path.exists(path_rf):\n"," print(\"🚀 البدء بمعالجة Fake/Real Category\")\n"," X_rf, y_rf = remove_low_classes(X_full, y_rf)\n"," X_rf_bal, y_rf_bal = full_smote(X_rf, y_rf)\n"," split_and_save(X_rf_bal, y_rf_bal, \"rf\")\n","else:\n"," print(\"✅ ملف Fake/Real موجود مسبقاً ✅ سيتم تخطيه.\")\n"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"executionInfo":{"elapsed":214629,"status":"ok","timestamp":1745870880580,"user":{"displayName":"noor alqudah","userId":"09593972035402767777"},"user_tz":-180},"id":"Wq-ue_F257OC","outputId":"e080ccac-1444-444e-b4b3-7d2908102187"},"outputs":[{"name":"stdout","output_type":"stream","text":["Requirement already satisfied: tensorflow in /usr/local/lib/python3.11/dist-packages (2.18.0)\n","Requirement already satisfied: absl-py>=1.0.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (1.4.0)\n","Requirement already satisfied: astunparse>=1.6.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (1.6.3)\n","Requirement already satisfied: flatbuffers>=24.3.25 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (25.2.10)\n","Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (0.6.0)\n","Requirement already satisfied: google-pasta>=0.1.1 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (0.2.0)\n","Requirement already satisfied: libclang>=13.0.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (18.1.1)\n","Requirement already satisfied: opt-einsum>=2.3.2 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (3.4.0)\n","Requirement already satisfied: packaging in /usr/local/lib/python3.11/dist-packages (from tensorflow) (24.2)\n","Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<6.0.0dev,>=3.20.3 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (5.29.4)\n","Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (2.32.3)\n","Requirement already satisfied: setuptools in /usr/local/lib/python3.11/dist-packages (from tensorflow) (75.2.0)\n","Requirement already satisfied: six>=1.12.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (1.17.0)\n","Requirement already satisfied: termcolor>=1.1.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (3.0.1)\n","Requirement already satisfied: typing-extensions>=3.6.6 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (4.13.2)\n","Requirement already satisfied: wrapt>=1.11.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (1.17.2)\n","Requirement already satisfied: grpcio<2.0,>=1.24.3 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (1.71.0)\n","Requirement already satisfied: tensorboard<2.19,>=2.18 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (2.18.0)\n","Requirement already satisfied: keras>=3.5.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (3.8.0)\n","Requirement already satisfied: numpy<2.1.0,>=1.26.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (2.0.2)\n","Requirement already satisfied: h5py>=3.11.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (3.13.0)\n","Requirement already satisfied: ml-dtypes<0.5.0,>=0.4.0 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (0.4.1)\n","Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /usr/local/lib/python3.11/dist-packages (from tensorflow) (0.37.1)\n","Requirement already satisfied: wheel<1.0,>=0.23.0 in /usr/local/lib/python3.11/dist-packages (from astunparse>=1.6.0->tensorflow) (0.45.1)\n","Requirement already satisfied: rich in /usr/local/lib/python3.11/dist-packages (from keras>=3.5.0->tensorflow) (13.9.4)\n","Requirement already satisfied: namex in /usr/local/lib/python3.11/dist-packages (from keras>=3.5.0->tensorflow) (0.0.9)\n","Requirement already satisfied: optree in /usr/local/lib/python3.11/dist-packages (from keras>=3.5.0->tensorflow) (0.15.0)\n","Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.21.0->tensorflow) (3.4.1)\n","Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.21.0->tensorflow) (3.10)\n","Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.21.0->tensorflow) (2.3.0)\n","Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.11/dist-packages (from requests<3,>=2.21.0->tensorflow) (2025.1.31)\n","Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.11/dist-packages (from tensorboard<2.19,>=2.18->tensorflow) (3.8)\n","Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /usr/local/lib/python3.11/dist-packages (from tensorboard<2.19,>=2.18->tensorflow) (0.7.2)\n","Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from tensorboard<2.19,>=2.18->tensorflow) (3.1.3)\n","Requirement already satisfied: MarkupSafe>=2.1.1 in /usr/local/lib/python3.11/dist-packages (from werkzeug>=1.0.1->tensorboard<2.19,>=2.18->tensorflow) (3.0.2)\n","Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.11/dist-packages (from rich->keras>=3.5.0->tensorflow) (3.0.0)\n","Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /usr/local/lib/python3.11/dist-packages (from rich->keras>=3.5.0->tensorflow) (2.18.0)\n","Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.11/dist-packages (from markdown-it-py>=2.2.0->rich->keras>=3.5.0->tensorflow) (0.1.2)\n","✅ تحميل MAIN من: /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/train_test_data_main-deep-new.pkl\n","✅ تحميل SUB من: /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/train_test_data_sub-deep-new.pkl\n","✅ تحميل RF من: /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/train_test_data_rf-deep-new.pkl\n","✅ تم العثور على نموذج محفوظ: /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/cnn+bilstm_model_basic.h5 سيتم تحميله بدون إعادة تدريب.\n"]},{"name":"stderr","output_type":"stream","text":["WARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n"]},{"name":"stdout","output_type":"stream","text":["\u001b[1m553/553\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m83s\u001b[0m 148ms/step\n","\n","📊 Main Category Report:\n"," precision recall f1-score support\n","\n"," 0 0.93 0.98 0.96 831\n"," 1 0.96 1.00 0.98 780\n"," 2 0.64 0.59 0.62 813\n"," 3 0.84 0.91 0.87 774\n"," 4 0.50 0.45 0.47 819\n"," 5 0.44 0.34 0.38 800\n"," 6 0.62 0.72 0.67 837\n"," 7 0.33 0.35 0.34 818\n"," 8 0.91 0.94 0.93 781\n"," 9 0.84 0.87 0.85 822\n"," 10 0.57 0.62 0.59 780\n"," 11 0.52 0.53 0.53 806\n"," 12 0.38 0.37 0.38 763\n"," 13 0.55 0.53 0.54 815\n"," 14 0.43 0.49 0.46 801\n"," 15 0.74 0.74 0.74 814\n"," 16 0.41 0.28 0.33 806\n"," 17 0.88 0.96 0.91 785\n"," 18 0.96 0.99 0.98 798\n"," 19 0.94 0.90 0.92 807\n"," 20 0.75 0.76 0.76 825\n"," 21 0.91 0.89 0.90 817\n","\n"," accuracy 0.69 17692\n"," macro avg 0.68 0.69 0.69 17692\n","weighted avg 0.68 0.69 0.69 17692\n","\n","\n","📊 Sub Category Report:\n"," precision recall f1-score support\n","\n"," 0 0.02 0.02 0.02 264\n"," 1 0.00 0.00 0.00 234\n"," 2 0.02 0.01 0.01 220\n"," 3 0.02 0.01 0.02 242\n"," 4 0.00 0.00 0.00 233\n"," 5 0.01 0.03 0.02 224\n"," 6 0.02 0.00 0.01 207\n"," 7 0.00 0.00 0.00 246\n"," 8 0.01 0.01 0.01 252\n"," 9 0.02 0.01 0.02 236\n"," 10 0.01 0.01 0.01 246\n"," 11 0.00 0.00 0.00 253\n"," 12 0.00 0.00 0.00 260\n"," 13 0.05 0.02 0.03 258\n"," 14 0.03 0.00 0.01 217\n"," 15 0.02 0.05 0.03 222\n"," 16 0.00 0.00 0.00 234\n"," 17 0.00 0.00 0.00 213\n"," 18 0.00 0.00 0.00 240\n"," 19 0.02 0.03 0.03 222\n"," 20 0.00 0.00 0.00 225\n"," 21 0.01 0.01 0.01 242\n"," 22 0.06 0.00 0.01 218\n"," 23 0.01 0.01 0.01 250\n"," 24 0.02 0.04 0.03 222\n"," 25 0.01 0.00 0.01 246\n"," 26 0.01 0.01 0.01 233\n"," 27 0.02 0.02 0.02 256\n"," 28 0.03 0.02 0.02 250\n"," 29 0.03 0.01 0.01 250\n"," 30 0.02 0.02 0.02 238\n"," 31 0.02 0.03 0.02 223\n"," 32 0.01 0.00 0.01 250\n"," 33 0.01 0.02 0.01 244\n"," 34 0.02 0.04 0.03 239\n"," 35 0.02 0.03 0.03 240\n"," 36 0.01 0.03 0.02 252\n"," 37 0.01 0.03 0.01 225\n"," 38 0.01 0.01 0.01 234\n"," 39 0.01 0.01 0.01 250\n"," 40 0.00 0.00 0.00 221\n"," 41 0.01 0.01 0.01 250\n"," 42 0.01 0.01 0.01 250\n"," 43 0.02 0.05 0.02 234\n"," 44 0.02 0.04 0.02 229\n"," 45 0.01 0.00 0.01 217\n"," 46 0.02 0.01 0.01 246\n"," 47 0.00 0.00 0.00 253\n"," 48 0.00 0.00 0.00 235\n"," 49 0.01 0.02 0.01 236\n"," 50 0.02 0.02 0.02 239\n"," 51 0.01 0.00 0.01 237\n"," 52 0.02 0.00 0.01 256\n"," 53 0.01 0.04 0.02 237\n"," 54 0.00 0.00 0.00 250\n"," 55 0.01 0.00 0.01 224\n"," 56 0.02 0.02 0.02 259\n"," 57 0.00 0.00 0.00 242\n"," 58 0.00 0.00 0.00 220\n"," 59 0.00 0.00 0.00 218\n"," 60 0.01 0.01 0.01 238\n"," 61 0.00 0.00 0.00 212\n"," 62 0.02 0.04 0.03 245\n"," 63 0.00 0.00 0.00 234\n"," 64 0.02 0.04 0.02 211\n"," 65 0.00 0.00 0.00 224\n"," 66 0.02 0.01 0.01 263\n"," 67 0.02 0.03 0.02 213\n"," 68 0.00 0.00 0.00 218\n"," 69 0.01 0.00 0.01 249\n"," 70 0.01 0.01 0.01 233\n"," 71 0.01 0.01 0.01 209\n"," 72 0.03 0.02 0.02 218\n"," 73 0.01 0.00 0.01 232\n"," 74 0.02 0.02 0.02 230\n","\n"," accuracy 0.01 17692\n"," macro avg 0.01 0.01 0.01 17692\n","weighted avg 0.01 0.01 0.01 17692\n","\n","\n","📊 Fake/Real Report:\n"," precision recall f1-score support\n","\n"," 0 0.50 0.69 0.58 8846\n"," 1 0.51 0.31 0.39 8846\n","\n"," accuracy 0.50 17692\n"," macro avg 0.50 0.50 0.48 17692\n","weighted avg 0.50 0.50 0.48 17692\n","\n","✅ تم حفظ الصورة: /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/cnn+bilstm_main-basic.png\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAuYAAAJOCAYAAAD71sLQAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAdhhJREFUeJzt3XtcFPX+x/H3AstyE0hF0MxrllqWZaEcTU1NEjNLrTTzkl08ppVRdn50TE2rrU5pN8uu2sW07GSWmnnP8p5FpRXHzLQy0FJARZaL8/uD2FxhDZAZBnw9fcxDmPnOfL4zOzN897Pf/Y7DMAxDAAAAAKpUQFVXAAAAAAANcwAAAMAWaJgDAAAANkDDHAAAALABGuYAAACADdAwBwAAAGyAhjkAAABgAzTMAQAAABugYQ4AAADYAA1zwGLZ2dm688471bRpUzmdTjkcDqWmppoas0mTJmrSpImpMWqySZMmyeFwaPXq1VVdlSqzevVqORwOTZo0qaqrAgA1Fg1z1HhbtmzRTTfdpBYtWig8PFyhoaFq3ry5hgwZomXLlllen3vvvVdPP/20zj33XP3f//2fJk6cqLi4OMvrUZWaNGkih8Mhh8OhrVu3llqmsLBQp59+urfcTz/9VOF4s2bNksPh0KxZsyq8Dbux+hhaacWKFbr++uvVpEkThYaGKjw8XK1atdLIkSO1cePGk9o2b1IB2FlQVVcAMMvRo0d1zz33aNq0aQoKClK3bt105ZVXyul06scff9SiRYv05ptvavLkybr//vstq9fChQt11lln6cMPP7Qs5ooVKyyLVVYBAUV5gVdffVVTp04tsfyjjz7Snj17FBQUpIKCAqur52PMmDEaOHCgGjVqVKX1OJ6VxzA+Pl7fffed6tate1LbOZEjR45oxIgRmjt3rsLCwtSjRw+dddZZkqT//e9/mj17tl588UW9/vrrGjJkiGn1AICqQsMcNdb48eM1bdo0tW3bVu+++66aN2/us/zIkSN69tln9ccff1harz179qhz586Wxjx+3+3A6XSqc+fOevPNN/Xoo4/K6XT6LH/11VcVFRWl888/X2vWrKmiWhapW7euqQ3SirLyGIaFhally5YntY2/c9NNN2nu3Lm67LLL9MYbbyg2NtZneWZmptxutzIzM02tBwBUGQOogbZv324EBgYaderUMdLT009YNjc31+f3ffv2GXfeeafRpEkTIzg42IiJiTGuueYa45tvvimx7rBhwwxJxo8//mg89dRTxtlnn20EBwcbjRo1MiZNmmQUFhaWKHv81KVLF8MwDGPixImGJGPVqlUl4sycOdOQZMycOdNn/sqVK43LL7/cqF+/vhEcHGzUq1fP6NSpk/HCCy/4lGvcuLHRuHHjEts9dOiQMWHCBOPss882XC6XcdpppxlJSUnGZ599VqLssfWbPXu2cf755xshISFGXFyccccddxg5OTl+jnBJjRs3NlwulzFnzhxDkvHf//7XZ/nevXsNp9Np/POf/zQSExMNScbOnTu9yz0ej/H0008bPXv2NBo2bOh9na6++mrjiy++8NmWv+N+7O2vS5cuhiTjyJEjxr///W+jWbNmRlBQkDFx4sQS+15s5MiRhiTD7XaX2L/iZY888kiZj0l5WXkMDcMwVq1aZUjyHpNj69G4cWPj4MGDxh133OE9F9u0aWPMmzevzPuzcuVKQ5Jx1llnGYcPHz5h2WOv2c8//9wYPXq0cc455xiRkZFGSEiIce655xput9vIy8vzltu5c6ff8+D4ffrkk0+MK664wqhTp44RHBxsnHnmmca///3vUuuVn59vPPzww0azZs0Ml8tlNG/e3Hj44YeNHTt2GJKMYcOGlVjnm2++Ma655hojJibGCA4ONpo0aWLceeedxu+//16ibPHxPXDggDF69GijYcOGRmBgoDFz5kyjY8eORmBgoLFnz55Sj9OQIUMMSca6detOeDwB2AcZc9RIs2bNUmFhoUaOHFki63Y8l8vl/Xnfvn1KSEjQjh071LVrVw0cOFA7d+7Uu+++q0WLFunjjz9Wp06dSmxj3Lhx+uSTT3TFFVcoMTFR77//viZNmqS8vDw99NBDkqSrrrpKTZo00QMPPKDGjRtr+PDhklTh/q6LFi1Snz59FB0drb59+6p+/frat2+fvvrqK73xxhu69dZbT7h+bm6uunXrpk2bNunCCy/U2LFjlZGRobffflsff/yx5syZo2uuuabEes8++6yWLFmivn37qlu3blqyZImefvpp/f7775o9e3a59uHqq6/WaaedppkzZ6pfv37e+W+88Yby8/M1YsSIUrsZ7d+/X2PHjtUll1yipKQknXbaafrxxx/1wQcf6KOPPtKaNWt08cUXSyo67pmZmVqwYIH69u2rtm3b+q1P//799dVXX+nyyy9XdHS0mjZt6rfstGnTtGbNGk2YMEHdu3f3xps/f75eeOEFdevWTePGjSvX8agIK47h38nPz1fPnj114MAB9e/fXzk5OZo7d66uvfZaLVmyRD179vzbbbzyyiuSpHvuuUdhYWEnLHvsNfvSSy/pww8/VOfOnZWUlKScnBytXr1aKSkp2rx5s/773/9KkqKjozVx4kQ9+eSTkqSxY8d6t9G1a1fvz88//7xGjx6t6Oho9enTR/Xq1dPnn3+uhx56SKtWrdKqVasUHBzsLT9ixAi98cYbatasmUaPHi2Px6Np06Zp/fr1pdb9s88+U2JiovLy8jRgwAA1adJE69ev11NPPaWFCxdqw4YNJT6d8Xg86tatmw4dOqQrr7xSQUFBio2N1ciRI7V27VrNnDlT9913n886mZmZevfdd3XOOecoISHhhMcTgI1U9TsDwAxdu3Y1JBnLly8v13o33nijIclISUnxmb9o0SJDknHmmWeWmgVv2rSpT9Zq3759RnR0tFGrVi3D4/H4bEvHZMmPVd6Meb9+/QxJRmpqaonyx2feSsuYP/DAA4YkY/DgwcbRo0e987/44gsjODjYiI6ONrKzs0vULyoqyvj++++983NycoyzzjrLCAgIMH799dcSdSlNcbbXMAxjzJgxRlBQkPHbb795l59zzjlGmzZtDMMwSs325ubmGr/88kuJ7W7dutWIiIgwevTo4TPf3ycOxYoz5m3btjX++OOPEsv9vTapqaneLOnBgweNn3/+2ahdu7ZRp06dMh+LirL6GJ4oYy7J6Nu3r8+5vnz5ckOSkZiYWKb9adKkiSHJ+OGHH8pUvtiuXbuMgoICn3lHjx41RowYYUgq8emPv0+PDMMwtm3bZgQFBRnnn39+iWvI7XYbkozHH3/cO694H9u2beuTTd+zZ48RGxtbImNeWFhoNG/e3JBkLFmyxGf748aNMyQZI0aMKFHf4uN4/KdSR44cMWrXrm00a9bM5xo2DMN49tlnDUnGk08+Weq+ArAnRmVBjZSeni5JatiwYZnXycvL05w5c1SnTh2NHz/eZ1lSUpIuu+wy/fDDD1q7dm2Jde+//37Vr1/f+3vdunXVt29fHTx4UGlpaRXci7IJDQ0tMa9OnTp/u95rr70mp9OpRx55RA6Hwzv/ggsu0LBhw5SZman333+/xHp33nmnzj77bJ/4gwYN0tGjR7Vly5Zy13/EiBEqKCjQa6+9JknauHGjtm3bphEjRvhdx+Vy6fTTTy8x/5xzztGll16qNWvWKD8/v9x1eeCBB1S7du0ylz///PP16KOPaseOHRo1apSGDBmi/fv369VXX1WDBg3KHb+i7HAMp02b5pNJ7t69uxo3bqzNmzeXaf2KXLOS1KhRIwUGBvrMczgcGj16tCRp+fLlZd7WCy+8oIKCAj3zzDMlrqF7771XMTExmjNnjnfem2++KUmaMGGCT5a/fv36uvPOO0tsf+3atdqxY4d69eqlxMREn2UTJkxQ7dq19dZbbykvL6/Euo899liJaz0kJETDhg3Tjz/+qJUrV/ose+WVV+RyufiSLFDN0DAH/vT9998rNzdX8fHxpX6Ufumll0pSqWOOt2vXrsS84gaGWV9UGzhwoCSpQ4cOGjNmjObPn6/ff/+9TOtmZ2frxx9/1JlnnllqQ8jKfb3gggvUtm1bzZw5U1LRFxaDg4N1ww03nHC91NRUXX/99WrUqJGCg4O9QwJ++OGHysvLK/OxOFZ8fHy517njjjvUq1cvvfnmm1q9erVGjRqlK6+8skzrZmZmatKkSSWm8qrqY+iv20/Dhg1N/6JmXl6epk6dqvj4eEVGRiogIEAOh8N7nu7Zs6fM29qwYYMk6eOPPy7xmkyePFlOp1Pff/+9t/xXX30lSaV2b+vYsWOJeV9++aUk364zxSIiInTRRRcpNze3xJv5kJAQtWnTptQ6F3dZe+mll7zztmzZoi+//FL9+/cv1xtNAFWPPuaokeLi4vT999/r119/9cnunkh2drYk+e2TXpwRLy53rMjIyBLzgoKKLq/CwsIyxS+va665Ru+//76mTp2qGTNmaPr06XI4HLr00kv1xBNPnLAvtd32dcSIEbrjjju0fPlyzZ07V3369DnhKCjr1q1Tt27dJEk9e/ZUixYtFBERIYfDoffff19fffWVPB5Puevxd99HKI3D4dBVV12ljz76SJJ0++23l3ndzMxMPfDAAyXmV6RxXpXHMCoqqtT5QUFBOnr0aJm2ERcXp59++km//vqrmjVrVqZ1JGnAgAH68MMPddZZZ+m6665TvXr15HQ6lZmZqaeeeqpc58H+/fslyfu9kL+TnZ2tgICAUo9zaedSRa+7evXq+XyqdayWLVuqS5cuev/99/XHH3+oTp06evnllyVJt9xyS5n2A4B90DBHjdSxY0etXr1aK1as8DY+/k5xgzMjI6PU5cUftZfWMK0MxWNSlzbedFZWVqnr9O3b19tlZu3atXrvvff0yiuv6PLLL9f333+v6OjoUter6n093uDBgzVu3DgNHz5c2dnZuummm05Y/qGHHpLH49Gnn35aIlu5YcMGbyazvPw1fk5k586dGjdunGrXrq0DBw7o5ptv1po1a0p0ryhNkyZNZBhGRapagl2OYUV17NhRP/30k1asWFHmhvnmzZv14YcfKjExUYsWLfI55hs2bNBTTz1VrjoUn+/Z2dmqVatWmcofPXpUv//+u2JiYnyWlXZtVfS6+7vz8p///Kc++eQTvf766xo5cqTmzJmjFi1alJqZB2BvdGVBjTR8+HAFBgbqxRdf1L59+05Ytjij1rJlS4WEhGjz5s3KyckpUa74cewnykSfjNNOO02S9Ouvv5ZYVvwRuD+1atXS5ZdfrhdffFHDhw9XRkbGCZ+QGBkZqWbNmumHH34oNZ7Z+3q82rVr66qrrtKvv/6q008/vUT/2+Pt2LFDtWvXLtGgzMnJ0RdffFGifHGDrbI/vSgoKNDgwYN18OBBvf3220pOTta6detKzYKbzexjaLbiNxJPPPGEjhw5csKyxdfsjh07JEm9e/cu8Ubo008/LXXdwMBAv+dB+/btJf3VpeXvnH/++ZJU6vdO1q1bV2LeBRdcIOmv6+tYhw8f1ueff67Q0NAyf8pXrF+/foqJidHLL7+sefPmKSsrSzfffHO5tgHAHmiYo0Y688wzde+99+r3339Xr169tHPnzhJlcnNzNXXqVG+3geDgYA0aNEi///673G63T9klS5bo448/1plnnllq39HKUDw03euvv+7z8f/69etLHYZwzZo1pTYw9u7dK6moX+qJDBs2TPn5+UpJSfHJ2n799deaNWuWoqKidNVVV1VkVyrkkUce0fz58/X+++97Pz3wp3Hjxjpw4IC2bdvmnVdYWKh77rmn1Ddixf1sf/7550qt8wMPPKD169fr7rvvVo8ePfTwww/rwgsv1MMPP+y3YWgmM4+h2S699FINGjRIaWlp6tevn/c8PlZ2drbuu+8+vfjii5KK9kEqGoLwWNu2bStxDRerXbu2fv/9d+Xm5pZYdttttykoKEi33367du/eXWJ5Zmamz5vkwYMHS5ImT57s82YiPT291Gx9x44d1bx5c3300UclvpT64IMP6o8//tCgQYN8vkRbFsHBwRo+fLi+/fZb3XfffXI6nd7hWAFUL3RlQY314IMPKjc3V9OmTdPZZ5+tbt266dxzz5XT6dTOnTu1fPly/fHHH3rwwQe96zz66KP65JNP9OCDD2rdunVq3769fvrpJ82bN09hYWGaOXPm3zZ4KqpDhw7q2LGjVq5cqYSEBHXu3Fm7du3SggUL1KdPH82fP9+n/B133KE9e/aoU6dOatKkiRwOhz777DNt2rRJHTp0KPULace69957tWjRIr3xxhv67rvv1L17d+3du1dvv/22CgoK9NJLL5Xp4/zK0qRJkzKP6X777bdr6dKl6tSpk6699lqFhIRo9erV+vXXX9W1a9cSGcmEhASFhobqySef1IEDB7zdDo4ffac81qxZ422IF/dJDg4O1ltvvaV27drphhtu0FdffeW3O5EZzDyGVnjllVdkGIbmzp2rpk2bqmfPnjrrrLNkGIa2b9+uFStW6ODBg3rjjTckFX1ZNz4+Xu+8845+++03dejQQbt379YHH3yg3r1769133y0Ro1u3bvr888/Vq1cvXXLJJQoODlbnzp3VuXNnnXvuuXruuec0atQonX322UpKSlLz5s118OBB/fjjj/rkk080fPhwzZgxQ5LUo0cPXX/99XrrrbfUpk0bXXXVVfJ4PHrnnXfUvn17ffjhhz73i4CAAM2aNUuJiYlKSkrSNddco8aNG2v9+vVavXq1mjdvrkceeaRCx27kyJF6/PHHtWfPHvXv31/16tWr0HYAVLGqHa0RMN/mzZuNESNGGGeeeaYRGhpquFwuo0mTJsb1119vLFu2rET5ffv2GXfccYfRuHFjw+l0GnXr1jUGDBhwwid/Hjs+dDF/Y1/LzzjmhlE0/vjQoUON2rVrG6GhoUaHDh2Mjz/+uNRxuOfOnWtce+21RvPmzY2wsDAjKirKOP/8841HH33UOHjwoM92T/Tkz/vvv98466yzvGOX9+rVy/j000/LvD+G8ffjhB/v2DG4/05pY3AbhmG8++67xoUXXmiEhYUZdevWNa699lpjx44dfl+TRYsWGRdffLERGhrq98mf/hy/7/v37zfOOOMMIzw83EhLSytR/qWXXjIkGQMGDCjTPlaE1cfw7578WZq/O67+LFu2zBg0aJDRuHFjIyQkxAgJCTFatGhh3HzzzcbGjRt9yu7du9cYMWKE0aBBAyMkJMRo06aNMX36dOPHH38s9cmbBw8eNG655Rajfv36RmBgYKn7tGnTJmPgwIFGgwYNvPeACy+80Pi///s/47vvvvMpm5+fb0yZMsVo2rSpERwcbDRr1sx4+OGHjY0bNxqSjDvvvLPE/n399dfGgAEDjLp16xpOp9No3Lixceeddxr79u0rUfZEx/d4nTp1KnWMdADVh8MwKumbRwAAQJL08ssv65ZbbvFm4M2Wm5urhg0bKiIiQj/++KNpn+wBMBdXLgAAFZSenl5iZJ1ff/1VDz74oAIDA3XFFVdYUo+ZM2fqjz/+0MiRI2mUA9UYfcwBAKigRx55RIsWLdIll1yievXqaffu3Vq4cKEOHjyoSZMm6YwzzjA9/r59+/TCCy+oXr16uu2220yNB8BcdGUBAKCClixZoqlTp+qrr77SgQMHFBISovPOO0+33Xabrr/+etPjOxwOOZ1OnX/++XrmmWfUoUMH02MCMA8NcwAAAMAG6IgGAAAA2AANcwAAAMAGaJgDAAAANsCoLAAAALBM6AVjTI9x5MtnTY9hhhrdMDf7hS9+0XMLTA0jSQr585XKyTf3u7phTocka/fJ7Fg1LY6Vsdgn+8exMhb7ZP84VsZin+wf59hYqB54uQAAAGAdBz2p/eHIAAAAADZAxhwAAADWcTiquga2RcYcAAAAsAEa5gAAALCOI8D8qRwKCwt1//33q2nTpgoNDVXz5s01ZcoUGcZfA24YhqEJEyaofv36Cg0NVY8ePbR9+3af7ezfv1+DBw9WZGSkoqOjddNNN+nQoUPlqovtG+b/+te/dMkll2jIkCHKz8+v6uoAAACgBnn00Uf1/PPP69lnn9V3332nRx99VI899pieeeYZb5nHHntMTz/9tGbMmKGNGzcqPDxciYmJys3N9ZYZPHiwtm3bpmXLlmnhwoVas2aNbr311nLVxdYN86+++kq//vqrPv30U7Vs2VLvvvtuVVcJAAAAJ8PhMH8qh3Xr1qlv377q3bu3mjRpogEDBqhnz57atGmTpKJs+ZNPPqnx48erb9++Ou+88/T6669rz549ev/99yVJ3333nZYsWaKXX35Z7du3V6dOnfTMM89o7ty52rNnT5nrYuuG+bp169SzZ09J0uWXX661a9dWcY0AAABgdx6PR9nZ2T6Tx+Mptew//vEPrVixQv/73/8kFSWGP/vsM/Xq1UuStHPnTqWnp6tHjx7edaKiotS+fXutX79ekrR+/XpFR0froosu8pbp0aOHAgICtHHjxjLX29YN8wMHDigyMlJS0QHYv39/FdcIAAAAJ8WCPuZut1tRUVE+k9vtLrU6//d//6eBAweqZcuWcjqduuCCCzR27FgNHjxYkpSeni5Jio2N9VkvNjbWuyw9PV316tXzWR4UFKTatWt7y5SFrYdLjI6OVnZ2tiQpKytLtWvXLrWcx+Mp8S7I5XKZXj8AAADYT0pKipKTk33m+WsbvvPOO5o9e7beeustnXPOOUpNTdXYsWPVoEEDDRs2zIrqetk6Y/6Pf/xDy5cvlyR9/PHH6tixY6nlyvOuCAAAAFXIgj7mLpdLkZGRPpO/hvm4ceO8WfM2bdpoyJAhuuuuu7xtybi4OElSRkaGz3oZGRneZXFxcdq7d6/P8oKCAu3fv99bpixs3TBv27atYmNjdckll2jbtm3q379/qeVSUlKUlZXlM6WkpFhcWwAAAFQ3OTk5CgjwbRIHBgbq6NGjkqSmTZsqLi5OK1as8C7Pzs7Wxo0blZCQIElKSEhQZmamtmzZ4i2zcuVKHT16VO3bty9zXWzdlUWS/vOf//xtGZfLRdcVAACA6qCc44ybrU+fPnrooYfUqFEjnXPOOfryyy81depUjRgxQpLkcDg0duxYPfjgg2rRooWaNm2q+++/Xw0aNNBVV10lSWrVqpUuv/xy3XLLLZoxY4by8/M1ZswYDRw4UA0aNChzXWzfMAcAAADM8swzz+j+++/Xbbfdpr1796pBgwYaOXKkJkyY4C1z77336vDhw7r11luVmZmpTp06acmSJQoJCfGWmT17tsaMGaPu3bsrICBA/fv319NPP12uujiMYx9rVMOEXjDG1O0f+fJZSVJugalhJEkhf76Fysk39+UKcxaN/WnlPpkdq6bFsTIW+2T/OFbGYp/sH8fKWOyT/eMcG8tOQhP+z/QYR9Y/YnoMM9jrswQAAADgFGXD91EAAACosWzWx9xOODIAAACADZAxBwAAgHUcjqqugW2RMQcAAABsoEaPygIAAAB7Ce10v+kxjnw2xfQYZiBjDgAAANhAje5jbtU4pFa+86uJY6vWlH3i2FWPWDUtjpWx2Cf7x7EyFvtk/zjHxrIV+pj7RcYcAAAAsAE7vo8CAABATcU45n5xZAAAAAAbIGMOAAAA65Ax94sjAwAAANiA7RvmWVlZio+PV0REhLZu3VrV1QEAAMDJCHCYP1VTtm+Yh4WFadGiRRowYEBVVwUAAAAwje37mDudTsXExFR1NQAAAFAZ6GPuF0cGAAAAsAHbZ8zLwuPxyOPx+MxzuVxSoKuKagQAAIBS8eRPv2pExtztdisqKspncrvdVV0tAAAAoMyqRcY8KSlJqampSktL08iRIzV8+HCf5SkpKUpOTvaZ53K5ZFhYRwAAAJQBfcz9qhYN88WLF59wucvlKuq6cpzcArNqBAAAAFSuatEwBwAAQA1BH3O/+CwBAAAAsAEy5gAAALAOfcz94sgAAAAANkDGHAAAANahj7lfZMwBAAAAGyBjDgAAAOvQx9wvh2EYPIcHAAAAlgi9fKrpMY4sSf77QjZExhwAAADWoY+5XzW6YZ515Kip248KLfooxoonjIb8+Upd+eJmU+N8cOvFkqTDeeZ/kBIeXHRh/nHY3ANYJ7zo4B3ymLtPEa6i/TnoMfe8k6RarqJzz6pz3Ow4x8bKMfncC/vzvLPqfMjJN/9aCnNau09W3h/MjlUcx+z7ePE9PDvX/GspMsSav03F+2Tl38Aj+ebGCXUW/W/2fbz4Hm7lsbMVurL4xZEBAAAAbMCO76MAAABQU9GVxS8y5gAAAIANkDEHAACAdehj7hdHBgAAALAB2zfMN23apISEBHXu3FmDBg1Sfr7JX8kGAACAeRwB5k/VlO1rfsYZZ2jlypVas2aNmjRpogULFlR1lQAAAIBKZ/s+5vXr1/f+HBwcrIAA27+XAAAAgD+MyuKX7RvmxXbt2qWlS5dq/PjxJZZ5PB55PB6feS6XS5LTotoBAAAAJ6dapJ+zs7M1ZMgQzZo1S05nyca22+1WVFSUz+R2u6ugpgAAADgh+pj7ZfuMeUFBgQYOHKiJEyfq7LPPLrVMSkqKkpOTfea5XC5Z8ORjAAAAoFLY/i3FnDlztHHjRk2ZMkVdu3bV22+/XaKMy+VSZGSkz1TUlQUAAAC24nCYP1VTts+YDxkyREOGDKnqagAAAACmsn3DHAAAADVINe4DbjaODAAAAGADZMwBAABgnWrcB9xsZMwBAAAAGyBjDgAAAMs4yJj7RcYcAAAAsAEa5gAAALCMw+EwfSqPJk2alLqN0aNHS5Jyc3M1evRo1alTRxEREerfv78yMjJ8trF792717t1bYWFhqlevnsaNG6eCgoLyHxvDMIxyrwUAAABUQPiAmabHOPzujWUuu2/fPhUWFnp/37p1qy677DKtWrVKXbt21ahRo7Ro0SLNmjVLUVFRGjNmjAICArR27VpJUmFhodq2bau4uDj95z//0W+//aahQ4fqlltu0cMPP1yuetMwBwAAgGXCr7GgYT6v7A3z440dO1YLFy7U9u3blZ2drZiYGL311lsaMGCAJOn7779Xq1attH79enXo0EEfffSRrrjiCu3Zs0exsbGSpBkzZuhf//qX9u3bp+Dg4DLHrtFf/swt/ycI5RISZE2cY2MdzjP3fVR4cNHHP2H9XzU1jiTl/HeEJOtepxyTj13Yn8fuSL6pYSRJoc6i/606duxT+Vm1P1LN3qeach+vydcS54N94xwbC2WTl5enN998U8nJyXI4HNqyZYvy8/PVo0cPb5mWLVuqUaNG3ob5+vXr1aZNG2+jXJISExM1atQobdu2TRdccEGZ4/NyAQAAwDJWjMri8Xjk8Xh85rlcLrlcrhOu9/777yszM1PDhw+XJKWnpys4OFjR0dE+5WJjY5Wenu4tc2yjvHh58bLy4MufAAAAqFHcbreioqJ8Jrfb/bfrvfLKK+rVq5caNGhgQS1LImMOAAAAy1iRMU9JSVFycrLPvL/Llu/atUvLly/Xe++9550XFxenvLw8ZWZm+mTNMzIyFBcX5y2zadMmn20Vj9pSXKasyJgDAACgRnG5XIqMjPSZ/q5hPnPmTNWrV0+9e/f2zmvXrp2cTqdWrFjhnZeWlqbdu3crISFBkpSQkKBvvvlGe/fu9ZZZtmyZIiMj1bp163LVm4w5AAAALGPHJ38ePXpUM2fO1LBhwxQU9FfzOCoqSjfddJOSk5NVu3ZtRUZG6vbbb1dCQoI6dOggSerZs6dat26tIUOG6LHHHlN6errGjx+v0aNH/+2bgePZvmGekZGhq6++Wk6nU4GBgZo9e7bq169f1dUCAABADbF8+XLt3r1bI0aMKLFs2rRpCggIUP/+/eXxeJSYmKjnnnvOuzwwMFALFy7UqFGjlJCQoPDwcA0bNkyTJ08udz1sP455YWGhHA6HAgICNGvWLP3yyy8aP358mdaticMdMVxi+TFcYsXV5CHeauLQgjVxn2rKfbwmX0ucD/aNc2wsO4ka9IbpMbLmDDE9hhls+HL5CgwM9P588OBBnXPOOVVYGwAAAMActm+YS1JqaqpGjhypzMxMLV26tMRyf2NVKrB8/XoAAABgMvt1MbeNajEqS9u2bbVx40ZNmTKl1DEoKzpWJQAAAGAXts+Y5+XlKTg4WFLRN2PDwsJKlPE3VqWtO88DAACcguw4Kotd2L5hnpqaqnvuuUeBgYEKCQnRq6+W/FKiv0esWvGlCgAAAKAy2L5hHh8frzVr1lR1NQAAAFAJyJj7Vy36mAMAAAA1ne0z5gAAAKg5yJj7R8YcAAAAsAEy5gAAALAMGXP/yJgDAAAANkDGHAAAANYhYe4XGXMAAADABhyGYfCATAAAAFii7vC5psf4fdZA02OYgYw5AAAAYAM1uo/5kXxztx/qLPo/J9/8Dx3CnEUdsvYdLDA1TkytolPicJ75+xQeXLRPEz7ebmqcyYktJEmHPObuU4SraH8yjxSaGkeSokMDJUkHPUdNjVPLVfTe3cpzPNfcU1whf971rDp2B3PNjSNJtUKKYh3IMffcOy3sz/POwn0y+9yz+rzbd8jkQJJiIoqCWbVPZsc5NpZV58NvWXmmxqkfFSxJyjpi/rUUFWq/HCyjsvhnv1cLAAAAOAXV6Iw5AAAA7IWMuX9kzAEAAAAbIGMOAAAA65Aw94uMOQAAAGAD1aJhPmfOHMXExFR1NQAAAHCSHA6H6VN1ZfuuLIWFhZo3b57OOOOMqq4KAAAATlJ1bjibzfYZ8zlz5uiaa65RQIDtqwoAAABUmK1bu4WFhXrnnXd03XXXnbCcx+NRdna2z+TxeCyqJQAAAMqKriz+2bph/uabb+raa6/922y52+1WVFSUz+R2uy2qJQAAAHDybN0w//bbb/X666/r8ssv1/bt23XHHXeUWi4lJUVZWVk+U0pKisW1BQAAwN8hY+6frb/8+eijj3p/vuiii/T000+XWs7lcsnlcpWYfyTftKoBAAAAlcrWDfNjff7551VdBQAAAJys6pvQNp2tu7IAAAAAp4pqkzEHAABA9Ved+4CbjYw5AAAAYANkzAEAAGAZMub+kTEHAAAAbICMOQAAACxDxtw/MuYAAACADTgMwzCquhIAAAA4NZwxZoHpMX5+tq/pMcxAxhwAAACwgRrdxzy3wNzthwRZE+fYWAc9R02NU8tV9F7tYK65cSSpVkhRrKwj5saKCi2K895Xv5kap9/59SVZe+wysvNNjRMb6ZRk7TmebfLxi/zz2GUeKTQ1TnRooCRp30HzD15MraKDt/+wuftUO7xon8y+D0l/3Yt27/eYGqdRbZck684HK+8POfnmfiAe5nRYEufYWFb9Xbfq2B0x9xYuSQp1mh+jvOhj7h8ZcwAAAMAGanTGHAAAAPZCxtw/MuYAAACADZAxBwAAgGXImPtHxhwAAACwAds3zH/66SfFxMSoa9eu6tq1q/bt21fVVQIAAEAFORwO06fqqlp0ZenSpYvefffdqq4GAAAAYBrbZ8wlae3atbrkkkt03333iQeVAgAAVGMOC6ZqyvYN8/r16+uHH37QmjVrtHfvXr333nslyng8HmVnZ/tMHo+5D6UAAAAAKpPtG+Yul0vh4eFyOBzq16+fvvrqqxJl3G63oqKifCa3210FtQUAAMCJ0MfcP9v3MT948KBq1aolSfr000/VqlWrEmVSUlKUnJzsM8/lcolOLwAAAKgubN8w/+yzzzR+/HiFhYWpadOmmjJlSokyLpdLLperxPzcAitqCAAAgLKqzhlts9m+K0uvXr20ZcsWffrpp3r99dcVFGT79xIAAACoRn799VfdcMMNqlOnjkJDQ9WmTRt9/vnn3uWGYWjChAmqX7++QkND1aNHD23fvt1nG/v379fgwYMVGRmp6Oho3XTTTTp06FC56mH7hjkAAABqDofD/Kk8Dhw4oI4dO8rpdOqjjz7St99+qyeeeEKnnXaat8xjjz2mp59+WjNmzNDGjRsVHh6uxMRE5ebmessMHjxY27Zt07Jly7Rw4UKtWbNGt956a7nqQvoZAAAAp6xHH31UZ5xxhmbOnOmd17RpU+/PhmHoySef1Pjx49W3b19J0uuvv67Y2Fi9//77GjhwoL777jstWbJEmzdv1kUXXSRJeuaZZ5SUlKTHH39cDRo0KFNdyJgDAADAMlaMylKeobQ/+OADXXTRRbrmmmtUr149XXDBBXrppZe8y3fu3Kn09HT16NHDOy8qKkrt27fX+vXrJUnr169XdHS0t1EuST169FBAQIA2btxY5mNDwxwAAAA1SnmG0v7xxx/1/PPPq0WLFvr44481atQo3XHHHXrttdckSenp6ZKk2NhYn/ViY2O9y9LT01WvXj2f5UFBQapdu7a3TFnQlQUAAACWsWJQFn9DaZfm6NGjuuiii/Twww9Lki644AJt3bpVM2bM0LBhw0yv67HImAMAAKBGcblcioyM9Jn8Nczr16+v1q1b+8xr1aqVdu/eLUmKi4uTJGVkZPiUycjI8C6Li4vT3r17fZYXFBRo//793jJlUaMz5iEW7Z1VcSSplsua91K1Qqx7zxYVak2sfufXtySOlccuNtJpSRwrz/FIi45fdGigJXFiall38GqHW7NPVt2HJKlR7dL/kFY2q84HK+8PYU5rxoq2Ko5k3b3Iqn0KteYWbjt2G8e8Y8eOSktL85n3v//9T40bN5ZU9EXQuLg4rVixQm3btpUkZWdna+PGjRo1apQkKSEhQZmZmdqyZYvatWsnSVq5cqWOHj2q9u3bl7kuNbphDgAAAJzIXXfdpX/84x96+OGHde2112rTpk168cUX9eKLL0oqeiMxduxYPfjgg2rRooWaNm2q+++/Xw0aNNBVV10lqSjDfvnll+uWW27RjBkzlJ+frzFjxmjgwIFlHpFFquENc7Of/Fn8zt2KJ4wWx8rJM0yNExZc9C42J9/cONJfGYmDnqOmxinO7h3JNzWMN/Nx5j0fmRtI0g+P95Ik/XKg9G+YV5aGpxVlK608x626bg+bfC2F/3ktHfKYfy1FuIpiWXXszL6WpL+uJ7OPn9XHzuzzTvrr3LPq70VNvD+Y/Tew+O+fldeSndgsYa6LL75Y8+fPV0pKiiZPnqymTZvqySef1ODBg71l7r33Xh0+fFi33nqrMjMz1alTJy1ZskQhISHeMrNnz9aYMWPUvXt3BQQEqH///nr66afLVZca3TAHAAAA/s4VV1yhK664wu9yh8OhyZMna/LkyX7L1K5dW2+99dZJ1YOGOQAAACwTEGCzlLmNMCoLAAAAYANkzAEAAGAZu/UxtxMy5gAAAIAN2L5hvnr1anXv3l2XXnqp5s+fX9XVAQAAwElwOBymT9WVrbuyHDlyRE888YQ++ugjBQcHV3V1AAAAANPYOmO+fv16hYaGqk+fPrr66quVnp5e1VUCAADASXA4zJ+qK1s3zDMyMvTDDz/oww8/1C233KJJkyZVdZUAAAAAU9i6YR4dHa2OHTsqODhY3bt317Zt20ot5/F4lJ2d7TN5POY+EREAAADlRx9z/2zdML/44ov13XffyTAMpaamqlmzZqWWc7vdioqK8pncbrfFtQUAAAAqztZf/qxbt66uvvpqdenSRQ6HQ6+++mqp5VJSUpScnOwzz+VyybCikgAAACiz6pzRNputG+aSNHr0aI0ePfqEZVwul1wuV4n5uQVm1QoAAACoXLZvmAMAAKDmIGHun637mAMAAACnCjLmAAAAsAx9zP2jYQ4AAADL0C73j64sAAAAgA2QMQcAAIBl6MriHxlzAAAAwAYchmHwHB4AAABY4qIHV5ke4/Pxl5oewwxkzAEAAAAbqNF9zM1+8mdIkDVxjo11JN/cOKFOa+IcGysn39wPbcKcRX3ZMo8UmhonOjRQkrQ944ipcSSpRWyoJGnOl7+aGmfQBadLsvZ8yM49amqcyJCifMT+w+aeD7XDi84Hs8876a9zz6pz/JDH/A9aI1xF1+0Pe829ns6sV3QtWXXemR3n2Fg5eSbfW4OLXiMr/wZa9Xfd7HO8+Py28tjZCX3M/SNjDgAAANiADd9HAQAAoKYiYe4fGXMAAADABsiYAwAAwDL0MfePjDkAAABgA7ZvmK9fv15du3ZV165dddZZZ+muu+6q6ioBAACgghwO86fqyvZdWRISErR69WpJ0vDhw3XVVVdVaX0AAAAAM9g+Y14sLy9PmzZt0iWXXFLVVQEAAEAFORwO06fqqto0zJcvX67u3bsrIKDaVBkAAAAoM9t3ZSk2b9483XjjjaUu83g88ng8PvNcLpcU6LKiagAAACijapzQNl21SD/n5+dr8+bN6tSpU6nL3W63oqKifCa3221xLQEAAICKqxYZ8+XLl6tbt25+u7GkpKQoOTnZZ57L5ZJhReUAAABQZtW5D7jZqkXDvFevXurVq5ff5S6Xq6jrynFyC8ysFQAAAFB5qkXDHAAAADUDCXP/qkUfcwAAAKCmI2MOAAAAy9DH3D8y5gAAAIANkDEHAACAZciY+0fGHAAAALABMuYAAACwDAlz/xyGYfAcHgAAAFiiy7S1psf45K6OpscwAxlzAAAAWIY+5v7V6Ia52U/+DAmyJs6xsXLyzf2AI8xZdLEcyTc1jCQp1ClLYhXHsep8qInHLjTpKXMDSTqy+M6i/2vY+WDl/aGmHDvJuuNX0+JYGYt9sn+cY2OheuDlAgAAgGVImPvHqCwAAACADZAxBwAAgGXoY+4fGXMAAADABsiYAwAAwDIkzP2zdcb86NGjGj58uC655BJ16tRJ33//fVVXCQAAADCFrRvmqamp8ng8+vTTT+V2uzV16tSqrhIAAABOQoDDYfpUHpMmTZLD4fCZWrZs6V2em5ur0aNHq06dOoqIiFD//v2VkZHhs43du3erd+/eCgsLU7169TRu3DgVFJR/PExbd2Vp2LChDMOQYRg6cOCA6tatW9VVAgAAQA1zzjnnaPny5d7fg4L+aiLfddddWrRokebNm6eoqCiNGTNG/fr109q1RU8wLSwsVO/evRUXF6d169bpt99+09ChQ+V0OvXwww+Xqx62bpjXrVtXTqdTLVu2VG5urvcAAAAAoHqyYx/zoKAgxcXFlZiflZWlV155RW+99Za6desmSZo5c6ZatWqlDRs2qEOHDlq6dKm+/fZbLV++XLGxsWrbtq2mTJmif/3rX5o0aZKCg4PLXA9bd2VZunSpgoKClJaWpv/+97+6++67Sy3n8XiUnZ3tM3k8HotrCwAAADsob9tw+/btatCggZo1a6bBgwdr9+7dkqQtW7YoPz9fPXr08JZt2bKlGjVqpPXr10uS1q9frzZt2ig2NtZbJjExUdnZ2dq2bVu56m3rhrlhGKpTp46koux5VlZWqeXcbreioqJ8JrfbbWVVAQAAUAbH9+c2YypP27B9+/aaNWuWlixZoueff147d+7UJZdcooMHDyo9PV3BwcGKjo72WSc2Nlbp6emSpPT0dJ9GefHy4mXlYeuuLJdddplmzZqlLl26yOPx+P3yZ0pKipKTk33muVwuGVZUEgAAALbir21Yml69enl/Pu+889S+fXs1btxY77zzjkJDQ02t5/Fs3TAPCgrS22+//bflXC5XqQc7t/xfhgUAAICJAizoY+6vbVgW0dHROuuss/TDDz/osssuU15enjIzM32y5hkZGd4+6XFxcdq0aZPPNopHbSmt3/qJ2LorCwAAAGClQ4cOaceOHapfv77atWsnp9OpFStWeJenpaVp9+7dSkhIkCQlJCTom2++0d69e71lli1bpsjISLVu3bpcsW2dMQcAAEDN4rDZsCz33HOP+vTpo8aNG2vPnj2aOHGiAgMDNWjQIEVFRemmm25ScnKyateurcjISN1+++1KSEhQhw4dJEk9e/ZU69atNWTIED322GNKT0/X+PHjNXr06HJn7WmYAwAA4JT1yy+/aNCgQfrjjz8UExOjTp06acOGDYqJiZEkTZs2TQEBAerfv788Ho8SExP13HPPedcPDAzUwoULNWrUKCUkJCg8PFzDhg3T5MmTy10XGuYAAACwjM0S5po7d+4Jl4eEhGj69OmaPn263zKNGzfW4sWLT7ou9DEHAAAAbICMOQAAACzjkM1S5jZCxhwAAACwgRqdMQ+xaO+siiNJYU5r3mWGOi0JY2ksq16nmnjsjiy+05pAqnnng5X3h5p27KyMVdPiWBmLfbJ/HLuxYhzz6oqMOQAAAGADNfq9mtlP/ix+p2vFE0atilWT9+lg7lFT49QKKXqfa+Wxy8k3TI1T/AmNlfsUevXLpsY5Mv9mSdaddzl55r5GkhQWXPQ6Hck3N05xRv6wBfsU/uc+1ZTrtvh8MPs1kv56nfh7UfE4Vl1LVh47O7HbOOZ2QsYcAAAAsAEbvo8CAABATUXC3D8a5gAAALBMAC1zv+jKAgAAANgAGXMAAABYhoS5f7bOmBcWFuqGG27QpZdeqhEjRqigwIKvLwMAAABVwNYN8/nz56tp06ZatWqVWrZsqffee6+qqwQAAICT4HA4TJ+qK1s3zHfs2KG2bdtKki688EKtWbOmaisEAAAAmMTWDfPWrVtr5cqVkqTly5frwIEDpZbzeDzKzs72mTwej5VVBQAAQBk4HOZP1ZWtG+ZXXHGFQkJC1K1bNx0+fFhxcXGllnO73YqKivKZ3G63xbUFAAAAKs7Wo7I4HA498cQTkqRJkyapW7dupZZLSUlRcnKyzzyXyyXzHxoNAACA8mAcc/9s3TBPT0/XoEGDFBAQoO7du6tz586llnO5XHK5XCXm5zKICwAAAKoJWzfM4+LitGrVqqquBgAAACoJ+XL/bN3HHAAAADhV2DpjDgAAgJqlOo8zbjYy5gAAAIANkDEHAACAZQJImPtFxhwAAACwATLmAAAAsAx9zP0jYw4AAADYgMMwDB6QCQAAAEsMmf2V6THeGHy+6THMUKauLJMnTy73hh0Oh+6///5yrwcAAACcisqUMQ8IKH+PF4fDocLCwgpVqrLkFpi7/ZA/39bk5Jv/oUOYs6g/Vk6eubHCgoviHPKYv08RrqJYh03ep/A/9+mg56ipcWq5AiyJc2ys3w+Ze5LXjSg6yc2+lqS/rierrtu+L31uapwFt1wkyfxrVvrrurXqHM88Yv69PTo0UJJ19wer7q37D5t/7GqHFx07s/82Ff9dOpJvahhJUqiz6H+r7g9m71Px/lh57Oxk6Ftfmx7j9evPMz2GGcqUMT961PyGBgAAAHAqY1QWAAAAWIZxzP1jVBYAAADABiqcMf/666/1zDPP6IsvvlBWVlaJ7i4Oh0M7duw46QoCAACg5mAcc/8qlDFfvXq14uPjtXDhQjVo0EA//vijmjVrpgYNGmjXrl2KiIhQ586dK7uuAAAAQI1VoYb5hAkT1KxZM6WlpWnmzJmSpPvuu0+fffaZ1q1bp19++UXXXnttubeblZWl+Ph4RUREaOvWrZKkefPm6R//+Ie6d++uX375pSLVBQAAgE04LJiqqwo1zL/44gvddNNNioyMVGBg0bBMxUMjtm/fXiNHjqzQGOZhYWFatGiRBgwYIEkqKCjQ1KlTtXr1ak2ePFlTpkypSHUBAAAA26tQwzwoKEi1atWSJEVHR8vpdGrv3r3e5c2aNdO3335b7u06nU7FxMR4f9++fbtatWql4OBgdezYUV9/bf64lwAAADBPgMNh+lRdVahhfuaZZ2r79u2Sijrwt2zZUvPnz/cuX7RokeLi4k66cgcOHFBkZKT3d38PLPJ4PMrOzvaZPB7PSccHAAAArFKhhnlSUpLmzJmjgoKiR3AlJyfrvffeU4sWLdSiRQt98MEHGjly5ElXLjo6WtnZ2d7fi7vNHM/tdisqKspncrvdJx0fAAAAlcvhMH+qrio0XOL999+vO++809tQHjZsmAIDA/Xf//5XgYGB+ve//63hw4efdOVatGih7777Tnl5efr888913nmlP141JSVFycnJPvNcLpfMfxA2AAAAUDkq1DB3Op2qU6eOz7wbbrhBN9xww0lXKCkpSampqUpLS9PIkSM1duxYde3aVSEhIXrttddKXcflcsnlcpWYn1tw0tUBAABAJWIcc/8q/IAhsyxevLjEvOuuu64KagIAAABYp0IN827duv1tGYfDoRUrVlRk8wAAAKihSJj7V6GG+dGjR0t8DFFYWKhdu3bp559/1plnnqnTTz+9UioIAAAAnAoq1DBfvXq132ULFy7UrbfeqqlTp1a0TgAAAKihqvM442ar0HCJJ3LFFVfohhtu0NixYyt70wAAAECNVekNc0lq3ry5Nm/ebMamAQAAUI0xjrl/ld4wLygo0DvvvKO6detW9qYBAACAGqtCfcxHjBhR6vzMzExt2LBB6enp9DEHAABACYxj7p/DMIxyPyCzSZMmJQ6qw+HQaaedpubNm+vmm29Wz549K62SAAAAqBlGz//O9BjTr25legwzVKgry08//aSdO3f6TD/++KO2bNmid955h0Y5AAAAShVgwXQyHnnkETkcDp+BTHJzczV69GjVqVNHERER6t+/vzIyMnzW2717t3r37q2wsDDVq1dP48aNU0FB+R5DX6GuLK+//ro6d+6sJk2alLr8p59+0po1azR06NCKbL7S5JbvWJRbSJA1cY6NlZNf7g84yiXMWfRJiJX7dNBz1NQ4tVxFl+iBnEJT45wWFihJys41d38kKTKkaJ/2Hsw3NU69Wk5J1p4PhzzmnuMRrqJz/Ii5h06hRYdON7+91dxAkl6+7lxJUtYRc8+9qNCi887s10j663X6LSvP1Dj1o4IlSQdNvm5r/XnN5uSZf+zCgq25j1fF30Cr9inziLl/L6JDi/5emH0fkv66F6FsNm/erBdeeEHnnXeez/y77rpLixYt0rx58xQVFaUxY8aoX79+Wrt2raSi5/n07t1bcXFxWrdunX777TcNHTpUTqdTDz/8cJnjV+hNxY033qh169b5Xb5x40bdeOONFdk0AAAAajCHw2H6VBGHDh3S4MGD9dJLL+m0007zzs/KytIrr7yiqVOnqlu3bmrXrp1mzpypdevWacOGDZKkpUuX6ttvv9Wbb76ptm3bqlevXpoyZYqmT5+uvLyyJxgq1DD/u27phw8fVlBQhZLxAAAAgOVGjx6t3r17q0ePHj7zt2zZovz8fJ/5LVu2VKNGjbR+/XpJ0vr169WmTRvFxsZ6yyQmJio7O1vbtm0rcx3K3Hr++uuvlZqa6v39008/LbXfTGZmpmbMmKGzzjqrzJUAAADAqSHAgkFZPB6PPB6PzzyXyyWXy1Vq+blz5+qLL74o9Tk86enpCg4OVnR0tM/82NhYpaene8sc2ygvXl68rKzK3DCfP3++HnjgAUlFH0G88MILeuGFF0otGx0drddff73MlQAAAAAqi9vt9rZbi02cOFGTJk0qUfbnn3/WnXfeqWXLlikkJMSiGpauzA3zW2+9VVdccYUMw1B8fLwmT56sXr16+ZRxOBwKDw9X8+bN6coCAACAEqzImKekpCg5Odlnnr9s+ZYtW7R3715deOGF3nmFhYVas2aNnn32WX388cfKy8tTZmamT9Y8IyNDcXFxkqS4uDht2rTJZ7vFo7YUlymLMree69evr/r160uSVq1apdatWysmJqbMgcoiKytLl112mb799ltt2LBB5557roYOHaqPPvpIEydO1JgxYyo1HgAAAGqeE3VbOV737t31zTff+My78cYb1bJlS/3rX//SGWecIafTqRUrVqh///6SpLS0NO3evVsJCQmSpISEBD300EPau3ev6tWrJ0latmyZIiMj1bp16zLXu0Jp7TZt2uiXX37x2zD/5ptv1LBhQ59vtJZFWFiYFi1apHHjxnnnPfLII+rWrZsOHTpUkaoCAADARuz25M9atWrp3HPP9ZkXHh6uOnXqeOffdNNNSk5OVu3atRUZGanbb79dCQkJ6tChgySpZ8+eat26tYYMGaLHHntM6enpGj9+vEaPHl3mNwhSBRvmd911l9LS0rxDxBxv5MiRatWqlV555ZVybdfpdJZo7Ddo0KAiVQQAAAAqxbRp0xQQEKD+/fvL4/EoMTFRzz33nHd5YGCgFi5cqFGjRikhIUHh4eEaNmyYJk+eXK44FWqYr1y5UqNGjfK7vE+fPpoxY0ZFNl0h/r55q8Cyv0MBAACA+azoY36yVq9e7fN7SEiIpk+frunTp/tdp3Hjxlq8ePFJxa3QOOb79u1T3bp1/S6vU6eO9u7dW+FKlZfb7VZUVJTP5Ha7LYsPAACAsnE4zJ+qqwplzOvXr68vv/zS7/ItW7ZU+hdDT8TfN2/Nf/AxAAAAUDkq1DC/6qqrNH36dPXq1UtXXnmlz7IFCxZo5syZJ+zqciJJSUlKTU1VWlqaRo4cqbS0NH3wwQcqLCzUjh07NG3atBLr+PvmbW7J5x8BAACgCgVU55S2ySrUMJ80aZKWL1+uq6++Wueff773G6tbt25VamqqWrduXWJQ97IqrW8O3VIAAABQ01Woj3lUVJQ2bNig8ePHKz8/X++++67effdd5efna8KECdq0aZMMg44kAAAA8BVgwVRdVbju4eHheuCBB/TNN98oJydHOTk52rx5s8455xxdf/313ocRAQAAAPh7FerKcizDMLRixQrNnj1b8+fP18GDB1W3bl1df/31lVE/AAAA1CB0Mfevwg3zLVu2aPbs2Zo7d67S09PlcDg0cOBAjRkzRh06dLDdU50AAAAAOytXw/zHH3/U7NmzNXv2bG3fvl2nn366Bg8erPj4eF133XXq37+/EhISzKorAAAAqjlGZfGvzA3zhIQEbdq0SXXr1tWAAQP08ssvq1OnTpKkHTt2mFZBAAAA4FRQ5ob5xo0b1bRpU02dOlW9e/dWUNBJd08HAADAKYaEuX9lbl0/++yzeuutt3T11Verdu3a6t+/vwYOHKiuXbuaWL2TE2LRewer4khSmNOas9nKfarlsmZgo9PCAi2JExli3UBN9Wo5LYlj5fkQ4bLmHA+15tDp5evOtSaQpKhQa849q14jSaofFWxJnFoWXbdhwdYdu5r4N9CqWNGh1vy9sOo+hOqjzKf4bbfdpttuu007d+7U7Nmz9dZbb+mll15SXFycLr30UjkcDr7wCQAAgBMKoLnol8M4iScBFY/M8vbbb+u3335TbGys+vTpoyuvvFI9evRQSEhIZda13I7km7v94ne6uQXmxpH+yhJkHik0NU5xluBwnvkPiAr/M3N00HPU1DjFGfmDuSbH+TPjlmPBsSvOuu0/bO75UDu86Hyw8hzPyTf3+BV/6pRt8vlQ/MnJgRxzXyPpr0+D3v7yV1PjXHfB6ZKkXw54TI0jSQ1Pc0mSfsvKMzVOcUY+64i550Pxpxlm38Olv+7jVt3zrLw/mB2rOE5NbD/YyaSl282P0bOF6THMcFKf3bVr105Tp07Vzz//rKVLlyoxMVFvv/22rrzyStWtW7ey6ggAAIAaIsDhMH2qriqlU11AQIB69OihWbNmKSMjQ3PmzFH37t0rY9MAAADAKaHSP+AICQnRddddp+uuu66yNw0AAIBqrhontE1n3fARAAAAAPyyVcM8KytL8fHxioiI0NatW3Xw4EF169ZNnTt3Vrdu3bRr166qriIAAABOQoDD/Km6slXDPCwsTIsWLdKAAQMkSU6nU2+++abWrFmjf/3rX/rPf/5TxTUEAAAAzGGrQXScTqdiYmK8v4eEhKhBgwaSpODgYAUE2Op9BAAAAMrJoWqc0jaZrRrm/uTl5WnSpEl6+eWXq7oqAAAAgCmqRcP81ltv1W233aYWLUofLN7j8cjj8X3ghcvlkgJcVlQPAAAAZVSd+4CbzfZ9Qx544AE1a9bshMMvut1uRUVF+Uxut9vCWgIAAAAnx3YZ86SkJKWmpiotLU1JSUmaMmWKOnXqpJUrVyohIaHUBndKSoqSk5N95rlcLpn7MGIAAACUFxlz/2zXMF+8eLHP7/fff//fruNyuYq6rhznSH6lVQsAAAAwle0a5gAAAKi5HDz60y/b9zEHAAAATgVkzAEAAGAZ+pj7R8YcAAAAsAEy5gAAALAMXcz9I2MOAAAA2AAZcwAAAFgmgJS5Xw7DMIyqrgQAAABODU9+utP0GGMvaWp6DDOQMQcAAIBlGJXFvxrdMM8tMHf7IUHWxDk21uE8cz/gCA8uulpy8s3/ICXMWRTLqn06kFNoapzTwgIlWXvsDnnMjRXhKopj5TmeY/L5EGbx+XAw96ipcSSpVkjR14V2/p5rapymdUMkSTe/vdXUOJL08nXnSqp59wez4xwby6pjZ+X9wewneoc6rY1j5bFD9cDLBQAAAMvQxdw/RmUBAAAAbICMOQAAACwTIFLm/pAxBwAAAGyAjDkAAAAsQx9z/2yTMc/KylJ8fLwiIiK0dWvRN/779++vLl26qH379lqzZk0V1xAAAAAwj20y5mFhYVq0aJHGjRvnnTdnzhwFBwfrp59+0s0336zly5dXYQ0BAABwshjH3D/bZMydTqdiYmJ85gUHB0uSDh48qHPPPbcqqgUAAABYwjYZc386d+6s//3vf3r99deruioAAAA4SQF0MvfL9g3zNWvWaPfu3erbt6969uxZahmPxyOPx+Mzz+VySYEuK6oIAAAAnDTbdGU5nmEYys8veiZuRESEIiIi/JZ1u92Kiorymdxut1VVBQAAQBk5HOZP1ZWtMuZJSUlKTU1VWlqahg0bprlz50qSCgsL9fDDD/tdLyUlRcnJyT7zXC6XDFNrCwAAAFQeWzXMFy9e7PP7P//5zzKt53K5irquHCe3oFKqBQAAgEpCH3P/bNuVBQAAADiV2CpjDgAAgJqNhLl/ZMwBAABwynr++ed13nnnKTIyUpGRkUpISNBHH33kXZ6bm6vRo0erTp06ioiIUP/+/ZWRkeGzjd27d6t3794KCwtTvXr1NG7cOBUUlL9PNQ1zAAAAWCbAgqk8GjZsqEceeURbtmzR559/rm7duqlv377atm2bJOmuu+7Shx9+qHnz5umTTz7Rnj171K9fP+/6hYWF6t27t/Ly8rRu3Tq99tprmjVrliZMmFDuY0NXFgAAAJyy+vTp4/P7Qw89pOeff14bNmxQw4YN9corr+itt95St27dJEkzZ85Uq1attGHDBnXo0EFLly7Vt99+q+XLlys2NlZt27bVlClT9K9//UuTJk3yPsm+LMiYAwAAwDIOh8P0yePxKDs722c6/mGUpSksLNTcuXN1+PBhJSQkaMuWLcrPz1ePHj28ZVq2bKlGjRpp/fr1kqT169erTZs2io2N9ZZJTExUdna2N+teVjTMAQAAYBmHBVN5Hz75zTffKCIiQi6XS//85z81f/58tW7dWunp6QoODlZ0dLRP+djYWKWnp0uS0tPTfRrlxcuLl5VHje7KEmLR3lkVR5LCg635KnOY07qvTFu1T6eFBVoSx8pjF+GyJpaV53hYDTsfaoVYl/9oWjfEkjgvX3euJXGkmnd/sCqOZN2xs/L+EOqsWXGsPHanGn8Pn/Tn7LPPVmpqqrKysvTuu+9q2LBh+uSTT8yuZgmcEgAAALCMFQ8Y8vfwSX+Cg4N15plnSpLatWunzZs366mnntJ1112nvLw8ZWZm+mTNMzIyFBcXJ0mKi4vTpk2bfLZXPGpLcZmyqtENc7Of/Fn8TteKJ4wWxzrkMUyNU5yBtXKfcvLN3afiDHZ27lFT40T+mRk9kFNoahzpr6zbj/tyTY3TLKYoA1sTz/HDeebGKc5W/n7I/INXN6Lo4O07aG6smFpFccw+dtJfx+/uD9NMjfNEn7MlSVlHzL0/RIUW3R9yLDh2xZ861cS/gVbt05F8c+MUZ+StPHYon6NHj8rj8ahdu3ZyOp1asWKF+vfvL0lKS0vT7t27lZCQIElKSEjQQw89pL1796pevXqSpGXLlikyMlKtW7cuV1xeLgAAAFjGbs8XSklJUa9evdSoUSMdPHhQb731llavXq2PP/5YUVFRuummm5ScnKzatWsrMjJSt99+uxISEtShQwdJUs+ePdW6dWsNGTJEjz32mNLT0zV+/HiNHj26XFl7iYY5AAAATmF79+7V0KFD9dtvvykqKkrnnXeePv74Y1122WWSpGnTpikgIED9+/eXx+NRYmKinnvuOe/6gYGBWrhwoUaNGqWEhASFh4dr2LBhmjx5crnrQsMcAAAAlrGgi3m5vPLKKydcHhISounTp2v69Ol+yzRu3FiLFy8+6bowXCIAAABgA2TMAQAAYBmH3VLmNmKrjHlWVpbi4+MVERGhrVu3eufv2rVLLpfLZx4AAABQk9iqYR4WFqZFixZpwIABPvMfe+wxdezYsYpqBQAAgMoSYMFUXdmq7k6nUzExMT7zdu7cKYfDoUaNGlVRrQAAAADz2aphXppHH31U99xzT1VXAwAAAJXA4XCYPlVXtv7y544dOyRJTZo0OWE5j8cjj8fjM8/lckmB5RvUHQAAAKgqts6Yf/XVV9q2bZsuv/xyLVu2TP/85z+Vm1vyEeRut1tRUVE+k9vtroIaAwAA4EQcFkzVle0y5klJSUpNTVVaWppGjhypTz/9VJI0fPhw3XPPPQoJCSmxTkpKipKTk33muVwuGZbUGAAAADh5tmuY+3tq0qxZs/yu43K5irquHCe3oLJqBQAAgMpQnfuAm83WXVkAAACAU4XtMuYAAACoucgK+8exAQAAAGyAjDkAAAAsQx9z/8iYAwAAADZAxhwAAACWIV/uHxlzAAAAwAYchmHwHB4AAABYYsE36abH6NsmzvQYZiBjDgAAANhAje5jbvaTP0OCrIlzbKwj+ebGCXUW/W/lPln1Oh3MPWpqnFohRe9zrTx2hzzmfuAV4SrqCVgTz4ecPHOPXVhw0bHLPFJoahxJig4NtCRWcRyzryXpr+vpj8PmnhB1wotOiDPv+cjUOD883kuS+fdwybr7OH8DK64qjp2dBNDL3C8y5gAAAIAN2PB9FAAAAGoqhjH3j4w5AAAAYANkzAEAAGAZB33M/SJjDgAAANiArRrmWVlZio+PV0REhLZu3SpJatGihbp27aquXbtq2bJlVVxDAAAAnAyHw/ypurJVV5awsDAtWrRI48aN886LiorS6tWrq65SAAAAgAVslTF3Op2KiYnxmXfo0CF16dJF119/vfbv319FNQMAAEBlCJDD9Km6slXDvDRr167VJ598ossvv1wTJ06s6uoAAAAAprBVV5bS1KlTR5I0YMAAvfzyy6WW8Xg88ng8PvNcLpcU6DK9fgAAACi76twH3Gy2zpjn5eV5G9yffvqpzjzzzFLLud1uRUVF+Uxut9vKqgIAAAAnxXYZ86SkJKWmpiotLU1XXXWV3nnnHYWHh8vlcunVV18tdZ2UlBQlJyf7zHO5XDKsqDAAAADKjIy5f7ZrmC9evNjn93/9619/u47L5SrqunKc3IJKqxYAAABgKts1zAEAAFBz8eRP/2zdxxwAAAA4VZAxBwAAgGUCSJj7RcYcAAAAsAEy5gAAALAMfcz9I2MOAAAA2AAZcwAAAFiGccz9cxiGwXN4AAAAYIlVaX+YHuPSs+uYHsMMZMwBAABgGfqY+1ejG+ZmP/kzJMiaOMfGOpBTaGqc08ICJUmHPOZ/kBLhKrowM7LzTY0TG+mUZN2xMzvOsbF+y8ozNU79qGBJUk6++edDmNNhSaziOD/9nmtqnCZ1QyRJmUfMPx+iQ60594rPu/2Hzd+n2uHW3IuK70M5eSafd8FFcazMFFq1TzXx/mDVeWdl+wHVAy8XAAAALMM45v4xKgsAAABgA2TMAQAAYBn6mPtHxhwAAACwATLmAAAAsAzjmPtnm4x5VlaW4uPjFRERoa1bt0qSfvnlF1155ZW69NJLNXHixCquIQAAAE6Ww4KpurJNxjwsLEyLFi3SuHHjvPPGjRun559/XqeffnoV1gwAAAAwn20y5k6nUzExMd7f8/Pz9dNPP+nuu+9Wt27dtG7duiqsHQAAACpDgMNh+lQebrdbF198sWrVqqV69erpqquuUlpamk+Z3NxcjR49WnXq1FFERIT69++vjIwMnzK7d+9W7969FRYWpnr16mncuHEqKCjfYPW2yZgf7/fff1dqaqrefvttBQcHq0+fPtq8eXOpZT0ejzwej888l8slBbqsqCoAAACqqU8++USjR4/WxRdfrIKCAt13333q2bOnvv32W4WHh0uS7rrrLi1atEjz5s1TVFSUxowZo379+mnt2rWSpMLCQvXu3VtxcXFat26dfvvtNw0dOlROp1MPP/xwmetim4z58aKjo3XmmWeqUaNGiouLk9Pp9Puuw+12Kyoqymdyu90W1xgAAAB/x259zJcsWaLhw4frnHPO0fnnn69Zs2Zp9+7d2rJli6Si70G+8sormjp1qrp166Z27dpp5syZWrdunTZs2CBJWrp0qb799lu9+eabatu2rXr16qUpU6Zo+vTpyssr+1O6bdswDw0NVZ06dZSZmanDhw/L4/EoKKj0BH9KSoqysrJ8ppSUFItrDAAAgOouKytLklS7dm1J0pYtW5Sfn68ePXp4y7Rs2VKNGjXS+vXrJUnr169XmzZtFBsb6y2TmJio7Oxsbdu2rcyxbdWVJSkpSampqUpLS9PIkSP18MMPq0+fPsrLy9MDDzzgdz2Xy1XUdeU4ueXr1gMAAACzWTBsir9uzqW1F4919OhRjR07Vh07dtS5554rSUpPT1dwcLCio6N9ysbGxio9Pd1b5thGefHy4mVlZauG+eLFi0vM+/TTT6ugJgAAAKiu3G53iaTuxIkTNWnSpBOuN3r0aG3dulWfffaZibXzz1YNcwAAANRsDgtS5ikpKUpOTvaZ93fZ8jFjxmjhwoVas2aNGjZs6J0fFxenvLw8ZWZm+mTNMzIyFBcX5y2zadMmn+0Vj9pSXKYsbNvHHAAAAKgIl8ulyMhIn8lfw9wwDI0ZM0bz58/XypUr1bRpU5/l7dq1k9Pp1IoVK7zz0tLStHv3biUkJEiSEhIS9M0332jv3r3eMsuWLVNkZKRat25d5nqTMQcAAIBlyjnMuOlGjx6tt956SwsWLFCtWrW8fcKjoqIUGhqqqKgo3XTTTUpOTlbt2rUVGRmp22+/XQkJCerQoYMkqWfPnmrdurWGDBmixx57TOnp6Ro/frxGjx79t5n6Y9EwBwAAwCnr+eeflyR17drVZ/7MmTM1fPhwSdK0adMUEBCg/v37y+PxKDExUc8995y3bGBgoBYuXKhRo0YpISFB4eHhGjZsmCZPnlyuutAwBwAAgGVsljCXYRh/WyYkJETTp0/X9OnT/ZZp3LhxqQOZlAd9zAEAAAAbIGMOAAAA69gtZW4jDqMs+XsAAACgEmzemWV6jIubRpkewwxkzAEAAGAZK8Yxr65qdMM8t8Dc7YcEWRPHyljsk/3jWBmrJu/TkXxz44Q6i/638thZtU85+eZ/0BrmLPrDXVNep6q4lkJ7/sfUOEeWjpNUM+8PNSXOsbFQPfByAQAAwDJ2G8fcThiVBQAAALABMuYAAACwDAlz/8iYAwAAADZAxhwAAADWIWXul20a5llZWbrsssv07bffasOGDWrevLl69eolScrJyVF+fr6+/PLLKq4lAAAAYA7bNMzDwsK0aNEijRtXNPxSaGioVq9eLUmaNWuWdu3aVYW1AwAAQGVgHHP/bNPH3Ol0KiYmptRl8+bN07XXXmtxjQAAAADr2CZj7k9mZqbS09PVqlUrv2U8Ho88Ho/PPJfLJQW6zK4eAAAAyoFxzP2zTcbcnwULFqhv374nLON2uxUVFeUzud1ui2oIAAAAnDzbZ8znzZunxx9//IRlUlJSlJyc7DPP5XLJ/IdGAwAAoDxImPtnq4Z5UlKSUlNTlZaWppEjR+rqq69Wenq6WrZsecL1XC5XUdeV4+QWmFVTAAAAoHLZqmG+ePHiEvM+//zzKqgJAAAATEHK3C/b9zEHAAAATgW2ypgDAACgZmMcc//ImAMAAAA2QMYcAAAAlmEcc//ImAMAAAA2QMYcAAAAliFh7h8ZcwAAAMAGHIZh8IBMAAAAWGLrr4dMj3Hu6RGmxzADGXMAAADABmp0H/PcAnO3HxJkTRwrY7FP9o9jZSz2yf5xrIzFPp18nCP55saRpFBn0f9W7VNo+3HmBpJ0ZON/JNW888HKa8lOGMfcPzLmAAAAgA3Y8H0UAAAAairGMfePjDkAAABgA2TMAQAAYBkS5v6RMQcAAABswDYN86ysLMXHxysiIkJbt26VJE2fPl3x8fGKj4/Xf//73yquIQAAAE6aw4KpmrJNV5awsDAtWrRI48b9NezSc889p6+++kp5eXm65JJL1L9//yqsIQAAAGAe2zTMnU6nYmJifOY1a9ZMR44cUU5OjqKjo6umYgAAAKg0jGPun20a5qXp3bu3WrVqpcLCQr3yyit+y3k8Hnk8Hp95LpdLCnSZXUUAAACgUtimj/nxsrOz9fzzz2v79u36/vvvdf/998swjFLLut1uRUVF+Uxut9viGgMAAODvOBzmT9WVbTPmAQEBCg0NVUhIiJxOp/Ly8mQYhhylHO2UlBQlJyf7zHO5XCq9GQ8AAADYj60a5klJSUpNTVVaWppGjhypfv36KSEhQUePHtXo0aMVEFB6gt/lchV1XTlOboHZNQYAAEB5VOOEtuls1TBfvHhxiXn33ntvFdQEAAAAsJatGuYAAACo4UiZ+0XDHAAAAJZhuET/bDsqCwAAAHAqIWMOAAAAy1Tn4QzNRsYcAAAAsAEy5gAAALAMCXP/yJgDAAAANuAw/D3nHgAAAKhkO/YdMT1G85hQ02OYgYw5AAAAYAM1uo95boG52w/58+gdyTc3jiSFOov+t2qfzI5zbKzMI4WmxokODZRk/utk1WskWfc6VcX5YNU+5eSb+2FhmLOoF2VNPHaHPOZ/0Brhsub41eRrqSbe80L7vmBqnCMLRkqqmeeDnTCOuX9kzAEAAHBKW7Nmjfr06aMGDRrI4XDo/fff91luGIYmTJig+vXrKzQ0VD169ND27dt9yuzfv1+DBw9WZGSkoqOjddNNN+nQoUPlqgcNcwAAAFjG4TB/Kq/Dhw/r/PPP1/Tp00td/thjj+npp5/WjBkztHHjRoWHhysxMVG5ubneMoMHD9a2bdu0bNkyLVy4UGvWrNGtt95arnrY8AMOAAAAwDq9evVSr169Sl1mGIaefPJJjR8/Xn379pUkvf7664qNjdX777+vgQMH6rvvvtOSJUu0efNmXXTRRZKkZ555RklJSXr88cfVoEGDMtWDjDkAAAAs47Bg8ng8ys7O9pk8Hk+F6rtz506lp6erR48e3nlRUVFq37691q9fL0lav369oqOjvY1ySerRo4cCAgK0cePGMseyVcM8KytL8fHxioiI0NatWyVJTzzxhDp27KjExET99ttvVVxDAAAA2J3b7VZUVJTP5Ha7K7St9PR0SVJsbKzP/NjYWO+y9PR01atXz2d5UFCQateu7S1TFrbqyhIWFqZFixZp3Lhxkop2ctGiRfrss8+0efNmTZkyRc8991wV1xIAAAAVZsGgLCkpKUpOTvaZ53K5zA98kmyVMXc6nYqJifH+vmvXLp1zzjlyOBy68MIL9emnn1Zh7QAAAFAduFwuRUZG+kwVbZjHxcVJkjIyMnzmZ2RkeJfFxcVp7969PssLCgq0f/9+b5mysFXD/HjNmzfX559/Lo/Ho+XLl2v//v1VXSUAAACcBIcF/ypT06ZNFRcXpxUrVnjnZWdna+PGjUpISJAkJSQkKDMzU1u2bPGWWblypY4ePar27duXOZaturIcr27duho1apR69uyptm3bqmXLlqWW83g8JTr0u1wuKdD+H1kAAACgah06dEg//PCD9/edO3cqNTVVtWvXVqNGjTR27Fg9+OCDatGihZo2bar7779fDRo00FVXXSVJatWqlS6//HLdcsstmjFjhvLz8zVmzBgNHDiwzCOySDbPmEvS0KFD9cknn+jqq69W165dSy1TmR38AQAAYB47jmP++eef64ILLtAFF1wgSUpOTtYFF1ygCRMmSJLuvfde3X777br11lt18cUX69ChQ1qyZIlCQkK825g9e7Zatmyp7t27KykpSZ06ddKLL75YvmNjGIb5z1Yuh6SkJKWmpqpx48YaOXKklixZor1796px48aaPn26wsLCSqzjL2NumJwxt+qxx5J1jz6uiscEZx4pNDVOdGigpJr5eOqaeD5YtU85+ebe+sKc1jxSXrL+2B3ymP9nI8JlzfGryddSTbznhfZ9wdQ4RxaMlFQzzwc72b2/YsMWlkej2tWz14TtXq7Fixf7/D58+PC/XcflcpXaod+KEx4AAABlZ8GgLNWW7buyAAAAAKcC22XMAQAAUHNVpA/4qYKMOQAAAGADZMwBAABgIVLm/pAxBwAAAGyAjDkAAAAsQx9z/8iYAwAAADZguwcMAQAAoObak5lneowG0cGmxzADGXMAAADABmp0H/Oa+Ehdsx+FbdVjsKW/9mnfQXODxdQqCmTV46kP55n/IVR4cNHrlGNyrLDgmvtYeavOhwM5heYGknRaWKAkKSff5PPBWXPPB6vimH3NStZdt1XxN9Cq6/aMMQtMjfPzs30lmX/NSn9dt3ZCH3P/yJgDAAAANlCjM+YAAACwFwfjmPtFxhwAAACwATLmAAAAsA4Jc7/ImAMAAAA2YJuG+aZNm5SQkKDOnTtr0KBBys/P17x58/SPf/xD3bt31y+//FLVVQQAAMBJclgwVVe2aZifccYZWrlypdasWaMmTZpowYIFmjp1qlavXq3JkydrypQpVV1FAAAAwDS2aZjXr19foaGhkqTg4GClpaWpVatWCg4OVseOHfX1119XcQ0BAABwshwO86fqyjYN82K7du3S0qVL1alTJ0VGRnrnFxaa/5AOAAAAoKrYalSW7OxsDRkyRLNmzVJhYaGys7O9ywIDA/2u5/F45PF4fOa5XC4p0GVaXQEAAFB+jGPun20y5gUFBRo4cKAmTpyos88+Wy1atNB3332nvLw8rVu3Tuedd57fdd1ut6Kionwmt9ttYe0BAACAk+MwDMOo6kpI0htvvKGxY8eqTZs2kqRRo0ZJkp566imFhITotdde0xlnnFHquv4y5obJGfOQPz9vyC0wNYxPrEMec1+uCFfRu1gr92nfQXODxdQqCnQk39QwCnUW/X84z/xLKjy46HXKMTlWWLD154PZsYrjWHU+HMgxvxveaWFFnyjm5Jt8Pjhr7vlgVRyzr1nJuuu2Kv4GWnXdnjFmgalxfn62ryTzr1npr+vWTvYdMv+kiYmwVaeQMrNNrYcMGaIhQ4aUmH/dddf97boul6uo68pxrLhZAAAAAJXBNg1zAAAA1Hz2y+Hbh236mAMAAACnMjLmAAAAsEx1HmfcbGTMAQAAABsgYw4AAADLMI65f2TMAQAAABsgYw4AAADL0MfcP9s8YAgAAAA1n5UPXqtu6MoCAAAA2ECN7srC44jLr/hxxFbu0yGPuR/aRLj+fHy9RY8rt/IRyzXxHLfs0eicD+Vm1X1Isu5eZPV5x7Gzdyzv/SHP5PtDcNE1G9rnOVPjSNKRD28zPUZ50ZXFPzLmAAAAgA3U6Iw5AAAA7IXhEv0jYw4AAADYABlzAAAAWIY+5v6RMQcAAABswDYN802bNikhIUGdO3fWoEGDlJ+fr6FDhyomJkbPPvtsVVcPAAAAlcBhwVRd2aYryxlnnKGVK1cqNDRUKSkpWrBggR555BF169ZNhw4dqurqAQAAAKayTcO8fv363p+Dg4MVEBCgBg0aVGGNAAAAUOmqc0rbZLbpylJs165dWrp0qfr06VPVVQEAAAAsY5uMuSRlZ2dryJAhmjVrlpxOZ5nX83g88ng8PvNcLpcU6KrsKgIAAOAkMI65f7bJmBcUFGjgwIGaOHGizj777HKt63a7FRUV5TO53W6TagoAAABUPttkzOfMmaONGzdqypQpmjJlikaNGqXU1FR98MEHKiws1I4dOzRt2rRS101JSVFycrLPPJfLJcOKigMAAKDMGMfcP4dhGDW2/ZpbYO72Q4KsiXNsrCP55sYJ/bMHkZX7dMhj7ikY4Sq6A+TkmxsnzGlNnGNj1cRz3Kp94nwoP6vuQ5J19yKrzzuOnb1jee8PeSbfH4KLrtnQPs+ZGkeSjnx4m+kxyuuwycdXksKDq2fr3zYZcwAAANR81bPJbA3b9DEHAAAATmVkzAEAAGAdUuZ+kTEHAAAAbICGOQAAACzjsOBfRUyfPl1NmjRRSEiI2rdvr02bNlXynv89GuYAAAA4pb399ttKTk7WxIkT9cUXX+j8889XYmKi9u7da2k9aJgDAADAMg6H+VN5TZ06VbfccotuvPFGtW7dWjNmzFBYWJheffXVyj8AJ1CjxzEHAACAvVgx9r2j0COPx+Mzz+VyyeVylSibl5ensLAwvfvuu7rqqqu884cNG6bMzEwtWLDA7Op6kTH/k8fj0aRJk0q8iNU5Vk2LY2Us9sn+cayMxT7ZP46Vsdgn+8exMlZN3CezhQSZP7ndbkVFRflMbre71Pr8/vvvKiwsVGxsrM/82NhYpaenW3FIvMiY/yk7O1tRUVHKyspSZGRkjYhV0+JYGYt9sn8cK2OxT/aPY2Us9sn+cayMVRP3qSbweMqeMd+zZ49OP/10rVu3TgkJCd759957rz755BNt3LjR9PoWYxxzAAAA1Cj+GuGlqVu3rgIDA5WRkeEzPyMjQ3FxcWZUzy+6sgAAAOCUFRwcrHbt2mnFihXeeUePHtWKFSt8MuhWIGMOAACAU1pycrKGDRumiy66SPHx8XryySd1+PBh3XjjjZbWg4b5n1wulyZOnFjmjz2qQ6yaFsfKWOyT/eNYGYt9sn8cK2OxT/aPY2WsmrhPp6LrrrtO+/bt04QJE5Senq62bdtqyZIlJb4Qaja+/AkAAADYAH3MAQAAABugYQ4AAADYAA1zAAAAwAZomAMAAAA2cMo2zAsLC/X222/rjjvu0A033KA77rhDb7/9tgoKCiyrw+uvv16p2yssLNR7772n999/X4WFhd758+bNq9Q4UtGg+w8//LAWLFign3/+WaNGjdI999xTYnB+M4wdO7bSt/nHH394f54/f74mTZqkN998U0ePHq30WAsWLJAk7d27V6NGjVKXLl104403aufOnZUa5+6779ann35aqdsszf/+9z+NHDlS48eP1549ezRw4EAlJSVpw4YNlR7r6NGjevfdd3XHHXdoyJAhGjdunD777LNKj4PqKy8vr6qrUKnMuAcBsK9TtmE+YsQI7dixQ8OHD9cDDzyg4cOH68cffzRlvMpvv/22xLRt2za98MILlRpn6NCh+vzzz5WamqrOnTvrhx9+kCQ9//zzlRpHkgYPHqzTTz9dP//8s3r27Knu3burZ8+eGjFiRKXGqVevnndM0YsvvlgXX3yxZs2apfj4+EqNc80110iS/v3vf+ujjz5S+/bt9e2331b6/kjS008/LUkaNWqUrrzySi1btkz//Oc/Kz3WwoUL9eqrr+qcc87RnXfeaVoD9uabb9aQIUMUHx+vjh076t5779Vzzz2n5OTkSo9166236qefflLfvn3VsGFD5eXlacWKFXrkkUcqPdaePXv0z3/+U//4xz/UoUMHdezYUaNGjdKvv/5a6bFKc/fdd1fq9n7++WfdfvvtGjt2rHbs2OGd/+9//7tS40jSZ599pssuu0zJyclavny5LrzwQnXp0kVr166t1Dil3Vd79Oih7777rlLjSPI+eCQzM1N33HGHunbtqptvvrnSz4cHHnhAkrR+/XrFx8frkksu0cUXX6zFixdXapx27dppypQpSktLq9Ttlua9997TRRddpMsuu0xLlizRRRddpPPPP18vvfRSpcbJyMjQ6NGjdd555+mMM87QZZddpoceeki5ubmVGqeq7w1S5d8fYCPGKeqSSy4p1/yTUatWLePGG280hg8f7jOdfvrplRqnS5cu3p9/+ukno3PnzsbKlSuNSy+9tFLjHB+rffv23p+7detWqXHeeusto1+/fsbcuXO98y6//PJKjWEYhvcYde7c2Wf+8b9Xhu7duxv5+flGYmKikZ+fb1qsrl27GoZhGHl5ecbixYuNG2+80WjTpo1x5513VmqcY6+Zs88+2/vzsedIZTn+/OrevbthGIbRo0ePSo/Vo0cPY+3atT7z1q5d641ZWaZPn15ievbZZ41WrVpVapzu3bsbS5cuNVatWmV06dLFmDdvnmEYhin3hw4dOhi7du0yvv76a6N+/frGzz//bPzxxx+Vfo67XC6je/fuPvfX008/3bjxxhsrNY5h/HWcBg8ebLzxxhtGTk6OsWTJEqNnz56VGqf4HO/evbuRnp5uGIZhHDp0yOjQoUOlxomPjzdmzZpl9O7d27jooouMKVOmGGlpaZUao1j79u2NnJwcIz093WjQoIGRnZ1t5Ofn+/ztqAyXX365sXnzZqOgoMD46KOPjLFjxxqrV682RowYUalxrLo3GIZ19wfYxyn7gKF//OMfGjp0qHr27KnIyEhlZ2dr+fLl6tChQ6XHatWqlf7zn/+oTp06PvN79+5dqXHy8vLk8XjkcrnUuHFjLVy4UAMHDtQ333xTqXEkKT8/3/vzsZn/yu4KNGjQIF133XWaM2eOrrrqKl177bUyTBh6f+vWrbr22mu1fft2HTlyRKGhoZKkw4cPV3qs+++/X/369VNUVJQ32/Ldd99p4MCBlR5LkpxOp3r16qVevXqpoKBAy5cvr9TtN2/eXIMHD5ZhGIqPj9dNN92kOnXqKC4urlLjSFKDBg00ceJEtW3bVitXrtQFF1wgST5dtypLTk6O2rdv7zPv4osv1pEjRyo1zqRJk/T444+XOK8DAwMrNU5BQYEuu+wySdLSpUs1cuRIff/995Uao5jL5VKjRo0kSS1atFDDhg0lSQEBlfshbVpamv7zn//I4XBo3LhxatSokXr16qVXX321UuMc69dff9UNN9wgSUpMTJTb7a7U7UdEROi3335TTEyM935aWFgop9NZqXHCw8M1bNgwDRs2TFlZWVqwYIHuvvtuZWRkaNOmTZUayzAMhYSEqLCwUAEBAXK5XAoKCpLD4ajUOAcPHtRFF10kSerWrZseffRRTZs2TZMnT67UOFbdGyTr7g+wj1O2Yf7II4/o66+/1rp16/Tzzz8rOjpad911l84///xKj7Vs2TKFh4eXmL9o0aJKjfPUU08pMzPT+5SqWrVq6YMPPtCcOXMqNY5U1A/bMAw5HA7vMcvPz9fjjz9e6bECAgI0ePBgDRo0SG+++abatm1b6TE2b97s/TkoqOiyOHTokB588MFKj9WlSxe1b99e69evV0ZGhqKjozVhwoQSb9xOVmkNhqCgIF1++eWVGufVV19VamqqGjZsqLp162rp0qUyDMPbCKxMr732mubPn6/t27crMTFRV1xxhSSZco6PHTtWl1xyiVq3bq3IyEhlZWXp+++/r/TvOPTq1Us9e/Ys8UamsrsYBAYGKj09XXFxcQoODtbMmTP1wAMPmNLFqW7duiooKFBQUJA++eQTSZX/pl2SGjdurGeffVY//fST3G63HA6HcnJyKj2OJP3yyy+6+OKLdejQIR04cECnnXaa8vLydOjQoUqN89xzz+nuu+/Wrl271KJFC7Vo0UJ16tTRY489Vqlxjm3oRUVFaejQoRo6dKiys7MrNY5U1M2yTZs2at68ucaPH6/4+HiFhYWpf//+lRqnX79+6tGjh8455xx9/vnnGjVqlKSiLpGVaezYsercubNatWpl6r1Bsu7+APvgyZ8A4EdhYaG2b9+uAwcOKDo6Wi1atNBbb72loUOHmh779ddfr9Q4hw4dktPpLPEo7wcffFDjx4+vtDgn8uKLL+rWW281bfs//vijvvrqKx08eNCS1yg/P1/Tpk3TvffeW+nbLigo0O+//67o6GiFhIRU+vmQm5urkJCQEvMrO05pDh48qICAAP33v/+t9FgZGRnatWuXmjdv7k12VPY+FRYW6v3331daWpouueQS1a1bVy1atND8+fO931eqLAUFBfrggw8UEBCgPn36eDPl8+bNq/RYsAca5gBQim+//bbU+bfcckulfomxtDiGYejWW281PY5U+fvjL5ZV+2RGHCtj1bTzzl8sqfru0+DBg9WkSRM5nU4tW7ZMr732ms4880x169ZNK1eurLQ4xbEaN26s4OBg02PBHk7ZriwAcCIdOnTQgAEDSvTt3LVrF3FsEot9sn8cK2NZFefXX3/V7NmzJUk33nijhg0bpokTJ1ZqDH+xhg4dqkmTJpkSCzZhzXdMAaB6iY+PN37//fcS85OSkohjk1jsk/3jWBnLqjgJCQlGbm6u9/fs7GwjKSnJqFu3bqXGsToW7IGuLABQiuzsbIWHh5s++kFNi2NlLPbJ/nGsjGVVnM2bN6tRo0begRakon7nc+bM8Y7YUx1jwR5omAMAAAA2cMo++RMAAACwExrmAAAAgA3QMAcAAABsgIY5AAAAYAM0zAGgEjRp0kTDhw/3/r569Wo5HA6tXr26yup0vOPrCACwFxrmAGqEWbNmyeFweKeQkBCdddZZGjNmjDIyMqq6emW2ePFiHiACAKconvwJoEaZPHmymjZtqtzcXH322Wd6/vnntXjxYm3dulVhYWGW1aNz5846cuSIgoODy7Xe4sWLNX36dBrnAHAKomEOoEbp1auXLrroIknSzTffrDp16mjq1KlasGCBBg0aVKL84cOHFR4eXun1CAgIUEhISKVvFwBQc9GVBUCN1q1bN0nSzp07NXz4cEVERGjHjh1KSkpSrVq1NHjwYEnS0aNH9eSTT+qcc85RSEiIYmNjNXLkSB04cMBne4Zh6MEHH1TDhg0VFhamSy+9VNu2bSsR118f840bNyopKUmnnXaawsPDdd555+mpp56SJA0fPlzTp0+XJJ9uOcUqu44AAHshYw6gRtuxY4ckqU6dOpKkgoICJSYmqlOnTnr88ce93VtGjhypWbNm6cYbb9Qdd9yhnTt36tlnn9WXX36ptWvXyul0SpImTJigBx98UElJSUpKStIXX3yhnj17Ki8v72/rsmzZMl1xxRWqX7++7rzzTsXFxem7777TwoULdeedd2rkyJHas2ePli1bpjfeeKPE+lbUEQBQhQwAqAFmzpxpSDKWL19u7Nu3z/j555+NuXPnGnXq1DFCQ0ONX375xRg2bJghyfi///s/n3U//fRTQ5Ixe/Zsn/lLlizxmb93714jODjY6N27t3H06FFvufvuu8+QZAwbNsw7b9WqVYYkY9WqVYZhGEZBQYHRtGlTo3HjxsaBAwd84hy7rdGjRxul3ZrNqCMAwF7oygKgRunRo4diYmJ0xhlnaODAgYqIiND8+fN1+umne8uMGjXKZ5158+YpKipKl112mX7//Xfv1K5dO0VERGjVqlWSpOXLlysvL0+33367TxeTsWPH/m29vvzyS+3cuVNjx45VdHS0z7Jjt+WPFXUEAFQturIAqFGmT5+us846S0FBQYqNjdXZZ5+tgIC/chBBQUFq2LChzzrbt29XVlaW6tWrV+o29+7dK0natWuXJKlFixY+y2NiYnTaaaedsF7FXWrOPffc8u2QhXUEAFQtGuYAapT4+HjvqCylcblcPg11qehLlfXq1dPs2bNLXScmJqZS61gR1aGOAICTQ8McwCmvefPmWr58uTp27KjQ0FC/5Ro3biypKHvdrFkz7/x9+/aVGBmltBiStHXrVvXo0cNvOX/dWqyoIwCgatHHHMAp79prr1VhYaGmTJlSYllBQYEyMzMlFfVfdzqdeuaZZ2QYhrfMk08++bcxLrzwQjVt2lRPPvmkd3vFjt1W8Zjqx5exoo4AgKpFxhzAKa9Lly4aOXKk3G63UlNT1bNnTzmdTm3fvl3z5s3TU089pQEDBigmJkb33HOP3G63rrjiCiUlJenLL7/URx99pLp1654wRkBAgJ5//nn16dNHbdu21Y033qj69evr+++/17Zt2/Txxx9Lktq1aydJuuOOO5SYmKjAwEANHDjQkjoCAKoWDXMAkDRjxgy1a9dOL7zwgu677z4FBQWpSZMmuuGGG9SxY0dvuQcffFAhISGaMWOGVq1apfbt22vp0qXq3bv338ZITEzUqlWr9MADD+iJJ57Q0aNH1bx5c91yyy3eMv369dPtt9+uuXPn6s0335RhGBo4cKBldQQAVB2HcexnnQAAAACqBH3MAQAAABugYQ4AAADYAA1zAAAAwAZomAMAAAA2QMMcAAAAsAEa5gAAAIAN0DAHAAAAbICGOQAAAGADNMwBAAAAG6BhDgAAANgADXMAAADABmiYAwAAADZAwxwAAACwgf8HH4RViGs97BUAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["✅ تم حفظ الصورة: /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/cnn+bilstm_sub_basic.png\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAACIoAAAiNCAYAAADhrk3+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xm8VWW9P/DPhgMbCD04oKLmXOpNfw4Vak6AmlOmJWaTqVl5u5l1SS1uedWmo9ybmo23UqksM8mhwlS8MjiTFSSl3MApcaQYHOAguH9/2AFP5whYrrXP2fv9fr32K8/aaz/P91nPs0a+PatSq9VqAQAAAAAAAACg4fWpdwAAAAAAAAAAAJRDoggAAAAAAAAAQJOQKAIAAAAAAAAA0CQkigAAAAAAAAAANAmJIgAAAAAAAAAATUKiCAAAAAAAAABAk5AoAgAAAAAAAADQJCSKAAAAAAAAAAA0CYkiAAAAAAAAAABNQqIIAABAyRYvXpxPfOIT2XrrrdOvX79UKpXMmDGj0Dq32mqrbLXVVoXW0cjOPvvsVCqVTJkypd6hlGb8+PGpVCoZP358vUMBAAAA4FUkUQQAAGh4v/nNb3LSSSflda97XV7zmtdk4MCB2XbbbXPcccdl0qRJpcdzxhln5KKLLspOO+2Uz3zmMznrrLOyySablB5HPW211VapVCqpVCqZNWtWt+usWLEim2222cr1HnzwwX+4vkZMeqjVarnssssyatSobLDBBunfv3823njj7Lbbbvm3f/u3TJ06td4hdvHcc8/lq1/9akaOHJmhQ4emX79+WX/99bPPPvvk3HPPzVNPPfUPlz1lypRUKpWcffbZr17AAAAAAA2opd4BAAAAFOWFF17IaaedlgsuuCAtLS0ZNWpU3v72t6dfv365//77M3HixFx22WX5/Oc/nzPPPLO0uH75y1/m9a9/fX7xi1+UVuf//u//llbX2urT58X/78Ill1yS888/v8v3v/rVr/Loo4+mpaUly5cvLzu8Tk455ZS8+93vzhZbbFHXOF7qgx/8YMaPH5/11lsvb3vb27LZZptlyZIlmTlzZi6++OIsXrw4+++/f73DXGnmzJk58sgj89BDD2XLLbfM29/+9my88cZZvHhx7rzzzowdOzZtbW159NFH85rXvKbe4QIAAAA0LIkiAABAw/rc5z6XCy64ILvuumsmTJiQbbfdttP3S5Ysyde//vX85S9/KTWuRx99NPvtt1+pdf5923uCfv36Zb/99stll12W8847L/369ev0/SWXXJLW1tbssssumTZtWp2ifNGGG26YDTfcsK4xvNQtt9yS8ePHZ9ddd83UqVOz7rrrdvp+4cKF+eMf/1in6Lp65JFH8ta3vjXz58/PV77ylXziE59I3759O63zu9/9Lqecckqef/75OkUJAAAA0By8egYAAGhIc+bMybhx47LBBhvk+uuv7zZRYuDAgTn99NNzzjnndFo+f/78fPKTn8zWW2+darWajTbaKO9617u6fUXKCSeckEqlkgceeCAXXXRRdthhh1Sr1Wy55ZY555xz8sILL3RZt1arZerUqStfqTJixIgkydlnn51KpZIpU6Z0qeflXp0yefLkHHroodl0001TrVaz8cYbZ9999813vvOdTutttdVW2WqrrbqU++yzz+ass87KDjvskAEDBmT99dfP4Ycfnttuu63Lui+N78c//nF23XXXDBw4MMOGDcsnPvGJLFmypMtv1uSDH/xgnnrqqS6zqzz11FP55S9/mfe85z0ZOHBgl98tW7YsX/va13LwwQfnta997cp+euc735nf/e53ndY94YQTcuKJJyZJTjzxxJXbvVKprFxnxIgRqVQqWbp0aT73uc9l2223Tb9+/Va+xqS7vvnXf/3XVCqVnHvuuV3i6/juvPPOe8XbZG3ccccdSZLjjz++S5JIkgwZMiRvectbOi3raGN3Osbmy73e59prr83w4cMzaNCgDB06NB/84AfzxBNPrHW8n/3sZ/Pkk0/mP/7jPzJmzJguSSJJsttuu3VJernkkkty5JFHZquttlo5Pg8++OBMnjy502/PPvvsjBw5MklyzjnndOrjl7Zp2bJlOf/887P77rvnNa95TdZZZ53su++++fnPf95t3A8++GCOPfbYrL/++hk8eHD233//TJs2bbX76qWXXpo99tgjgwcPzuDBg7PHHnt0+8qjl74q5/bbb89b3/rWDBkyJJVKJX/605/Sp0+fHHbYYd3G9fTTT2fw4MHZYYcduv0eAAAAYHXMKAIAADSk8ePHZ8WKFTn55JOz8cYbr3bdarW68r+feuqp7LXXXpk7d25GjBiRd7/73XnggQcyYcKETJw4MTfccEP22WefLmWcfvrpmTp1at72trfl4IMPzjXXXJOzzz47y5Yty5e+9KUkyVFHHZWtttoq55xzTrbccsuccMIJSdJtAsfamDhxYo444ogMGTIkRx55ZIYNG5annnoqM2fOzA9/+MN85CMfWe3vly5dmlGjRmX69OnZfffd88lPfjJPPPFErrjiitxwww25/PLLc8wxx3T53de//vVcf/31OfLIIzNq1Khcf/31ueiiizJ//vz86Ec/ekVteMc73pH11lsvl156ad75zneuXP7DH/4wzz//fD74wQ92+1qgv/71r/nkJz+ZfffdN4cddljWW2+93H///fn5z3+eX/3qV5k2bVre/OY3J3lxuy9cuDDXXnttjjzyyOy6664vG8/RRx+dmTNn5pBDDsmQIUOy9dZbv+y6F1xwQaZNm5b//M//zAEHHLCyvquvvjr/8z//k1GjRuX0009/RdtjbW2wwQZJkv/7v/8rpPyX+tnPfpYbbrgho0ePzoEHHpg777wzl156aW655ZZMnz4966233mp//9xzz+UnP/lJBg4cmNNOO22167a0dH5M8bGPfSy77LJLDjzwwAwdOjTz5s3LNddckwMPPDBXXXVVjjzyyCQvJsE8+OCD+f73v5/9999/ZfJV8mLSTJK0t7fnkEMOyZQpU7LrrrvmpJNOyvPPP5+JEyfmyCOPzNe+9rWccsopK383b968vOUtb8ljjz2WQw45JLvttltmz56dgw46KKNGjeo2/lNPPTVf+9rXstlmm+Wkk05auf1OPPHE/O53v8tXv/rVLr+5/fbb8+UvfzkjR47MRz7ykTz88MN53etel5EjR+aGG27In//857z2ta/t9Jsf//jHefbZZ/OhD31otdsTAAAAoFs1AACABjRixIhaktpNN930in534okn1pLUxo4d22n5xIkTa0lq2223XW3FihUrlx9//PG1JLWtt9669uijj65c/tRTT9WGDBlSW2eddWrt7e2dykpS23///bvUfdZZZ9WS1CZPntzlu0svvbSWpHbppZeuXPbOd76zlqQ2Y8aMLuvPnz+/099bbrllbcstt+y07Jxzzqklqb3vfe+rvfDCCyuX//a3v63179+/NmTIkNrixYu7xNfa2lq77777Vi5/7rnnaq9//etrffr0qc2bN69LLN3Zcssta9VqtVar1WqnnHJKraWlpfbYY4+t/P4Nb3hDbeedd67VarXawQcfXEtSe+CBB1Z+v3Tp0tojjzzSpdxZs2bVBg8eXDvwwAM7Le9u+73U/vvvX0tS23XXXWt/+ctfunz/cn0zY8aMWrVarW277ba1p59+uvbnP/+5tv7669c22GCDtd4W/4g///nPtXXXXbdWqVRq733ve2tXXnll7cEHH1ztbzra2J2OcfzSbdyxzZLUrr/++k7rf+Yzn6klqZ1yyilrjHXKlCm1JLV99tlnzQ37O/fff3+XZY8++mht0003rb3uda/rtHzy5Mm1JLWzzjqr27L+4z/+o5akduaZZ3Ya74sXL6696U1vqvXv379Tn73//e+vJal96Utf6lTOxRdfvHK7vHQ8TJ06tZaktuOOO9YWLly4cvlf//rX2utf//paktq0adO6xJukdskll3SJ94orrqglqZ199tldvuuI98knn+y2rQAAAACr49UzAABAQ3r88ceTJJtvvvla/2bZsmW5/PLLs8EGG+Rzn/tcp+8OO+ywHHTQQZkzZ063r2U588wzM2zYsJV/b7jhhjnyyCPz9NNPZ/bs2f9gK9ZOd69m6ZhxYnW+//3vp1+/fjn33HM7vZJkt912y/HHH5+FCxfmmmuu6fK7T3ziE9l+++071f+e97wnL7zwQn7zm9+84vg/+MEPZvny5fn+97+fJLnrrrvyhz/8IR/84Adf9jfVajWbbbZZl+VveMMbMnLkyEybNi3PP//8K47lnHPOyfrrr7/W6++yyy4577zzMnfu3Hz0ox/Ncccdl7/+9a+55JJLsummm77i+tfW5ptvnp/97Gd57Wtfmx//+Mc55phjstVWW2WjjTbKsccem5tvvvlVq+vAAw/MwQcf3GnZZz/72QwZMiQ/+MEPOr1eqTv/yL7YobsZXYYNG5ajjz46f/rTn/LQQw+tVTkvvPBCvvWtb2Xbbbdd+WqaDuuss07+8z//M8uWLctVV12V5MXZR6688spstNFG+dSnPtWprBNPPLHT+O/QMX7PPvvstLa2rly+3nrr5ayzzkqSbl9Bs/vuu698NdJLveMd78jGG2+cSy+9tNM2/v3vf5+77747Rx55ZIYOHbpW7QcAAAB4Ka+eAQAA+Jv77rsvS5cuzciRIzNo0KAu348cOTKTJk3KjBkzsu+++3b67o1vfGOX9Tv+YXzhwoWFxPvud787V111Vfbcc8+8973vzQEHHJB99903G2644Rp/u3jx4tx///3Zcccdu/0H/JEjR+a73/1uZsyYkeOOO67Td692W3fbbbfsuuuuufTSS/PpT386l1xySfr375/3v//9q/3djBkzMm7cuNx66615/PHHuySGzJ8/v1PyztoYPnz4K47/1FNPzQ033JDLLrssSfLRj340b3/729fqtwsXLsyFF17YZfnZZ5+9xt8eeOCBmTt3bqZMmZJp06blN7/5TW699db89Kc/zU9/+tOMHTs2X/7yl19JU7r192M9SQYPHpxdd901U6ZMyf3335/tttvun66nO/fff3/a2tpy8803Z968eWlvb+/0/aOPPpott9xyjeXMnj07CxYsyKabbppzzjmny/dPPfVUkhePAR3rt7e3501velOnV1MlSaVSyVve8pYuCWC/+93vkqTTa286jBw5MsmLY/bvdbyy6O/169cvJ554Ys4999zceOONOeSQQ5Ik3/3ud5MkH/7wh1+uuQAAAACrJVEEAABoSJtssknuu+++zJs3r9v/9393Fi9enCTZeOONu/2+I+mgY72XWnfddbssa2l58ZZrxYoVa1X/K3XMMcfkmmuuyfnnn59vf/vb+cY3vpFKpZKRI0fmK1/5SnbdddeX/W1Pa+sHP/jBnHrqqbnpppvyk5/8JEccccRqE15uv/32jBo1Kkny1re+Na973esyePDgVCqVXHPNNZk5c2aXpIK18XLbY3UqlUqOOuqo/OpXv0qSfPzjH1/r3y5cuLDbxIW1SRRJXtzuBx54YA488MAkyfLlyzN+/Ph89KMfTVtbW0aPHp3dd999rePpzsttk47lixYtWu3vN9lkkyTJvHnzXlG9c+bMyfDhw7N48eKMHDkyRxxxRNZdd9306dMnU6ZMydSpU9e6j//6178mSf7whz/kD3/4w8uu9+yzzyZZNe432mijbtfrbpssXrw4ffr06XaWj4033jiVSqXb/Wl1Y+4jH/lIzjvvvHzve9/LIYcckqVLl+ZHP/pRtt5665V9DgAAAPBKSRQBAAAa0t57750pU6bkf//3f1cmFKxJRwLEE0880e33Ha/Q6C5R4tXQp8+Lbwddvnx5l+9e7h/jjzzyyJWvuLntttty1VVX5eKLL84hhxyS++67L0OGDOn2d/Vu69973/vel9NPPz0nnHBCFi9enJNOOmm163/pS19Ke3t7brnlluyzzz6dvrvzzjszc+bMfyiOl76SZG098MADOf3007P++utnwYIF+dCHPpRp06alb9++a/ztVlttlVqt9o+E2q2WlpZ86EMfyi233JIf/OAHmTx58spEkZeOr47Eng6rS/Z4uTHSsfylr1npzpvf/Ob0798/d999dxYvXrzWY+qCCy7IggUL8sMf/rDL7DL/+q//mqlTp65VOcmqcXz00UdnwoQJa73+k08+2e333W2TddddNy+88EKeeuqpLgkmTz75ZGq1WrdtX92Y23rrrfPWt741P//5z/Pkk09m0qRJWbBgQT71qU/9Q2MVAAAAIEn61DsAAACAIpxwwgnp27dvvvOd76x8rcTL6ZiVYIcddsiAAQPy61//Os8991yX9aZMmZIkq52p45+x3nrrJel+5oWO11q8nHXWWSeHHHJIvvOd7+SEE07IE088kbvuuutl11933XWzzTbbZM6cOd3WV3Rb/97666+fo446KvPmzctmm22Wgw8+eLXrz507N+uvv36XJJHnnnsuv/3tb7us35G08WrP7rJ8+fK8733vy9NPP50rrrgiY8aMye23397tLCFlGjx4cJdlLze+XnjhhdUm1txyyy1dlj3zzDOZMWPGynG0OoMGDcq73/3uLFmyJF/5yldWu+7y5cvzwgsvJHmxj5MXk6Feqlar5bbbbuvy29X18Y477ph11103d999d5dXFHVn++23T7VazW9+85sus5bUarXccccdXX6z2267JVm177zUP7M/nXzyyXn++efz/e9/P9/73vfSt2/fnHjiia+4HAAAAIAOEkUAAICGtN122+WMM87I/Pnzc+ihh+aBBx7oss7SpUtz/vnnr3zNR//+/fOe97wn8+fPT1tbW6d1r7/++txwww3ZbrvtsvfeexcS85vf/OYkyQ9+8IOV/1ieJHfccUd+9KMfdVl/2rRp3f6jeMcsCAMGDFhtfccff3yef/75jB07ttOsFr///e8zfvz4tLa25qijjvpHmvIPOffcc3P11VfnmmuuWTn7xcvZcssts2DBgk6vEVmxYkVOO+20bhOD1l9//STJn//851c15nPOOSd33HFHPvWpT+XAAw/Ml7/85ey+++758pe/3G2Cxavl+uuvz7XXXtvt7DNz5szJlVdemSSdEmk6xtf48eM7rX/++ed3u390uOmmm3LDDTd0WvalL30pCxcuzAc+8IE19lXH+kOHDs2XvvSlXHTRRZ3Gd4ff//73GTFixMrXs2y55ZZJkltvvbXTeueee25mzZrV5fer6+OWlpZ89KMfzUMPPZTTTjut22SRWbNmrdx3qtVqRo8enSeeeCIXXnhhp/V+8IMf5L777uvy++OPPz7Ji2Pipa+YWbRo0crEoY51Xokjjjgim266aS644IJMnTo1hx9+eDbddNNXXA4AAABAB6+eAQAAGtYXv/jFLF26NBdccEG23377jBo1KjvttFP69euXBx54IDfddFP+8pe/5Itf/OLK35x33nmZOnVqvvjFL+b222/PHnvskQcffDBXXnllBg0alEsvvXSt/mH8H7Hnnntm7733zs0335y99tor++23Xx566KFce+21OeKII3L11Vd3Wv/UU0/No48+mn322SdbbbVVKpVKbr311kyfPj177rlnl9k2/t4ZZ5yRiRMn5oc//GHuvffeHHDAAXnyySdzxRVXZPny5fnud7+bddZZp5C2dmerrbbKVltttVbrfvzjH8+NN96YffbZJ+9617syYMCATJkyJfPmzcuIESO6zOqw1157ZeDAgbnwwguzYMGCDB06NEnyuc997h+Od9q0aSsTQ770pS8leTHZ6Mc//nHe+MY35v3vf39mzpz5sq//+Wfcd999+fd///dsuOGG2W+//bLtttumVqtlzpw5ue6667Js2bJ89KMfzR577LHyNyeeeGLGjRuXs88+OzNmzMi2226bu+++O7Nmzcr+++//sq9yedvb3pYjjjgio0ePzlZbbZU777wzkydPzrbbbpvPf/7zaxXv5ptvnhtvvDFHHXVUPvGJT+SCCy7IAQcckI033jiLFy/O9OnT8+tf/zrrrrtu+vXrl+TF18tceumlOfroo/Oud70rG2ywQe6888789re/zeGHH56JEyd2qmOHHXbIpptump/85CepVqvZfPPNU6lU8vGPfzytra0555xz8tvf/jYXXXRRJk6cmP322y8bbbRR5s2bl3vuuSczZ87MHXfcsfK1MW1tbbnpppvymc98JlOnTs1uu+2W2bNn55e//GUOOeSQXH/99Z2OBfvtt18+/vGP52tf+1p22mmnHH300anVavnZz36WRx55JKeeemr222+/V9TPyYtJLieddFK+8IUvJEk+/OEPv+IyAAAAAF7KjCIAAEDD6tOnT84///z8+te/znHHHZe5c+fmm9/8Zi644ILcddddOfjggzNp0qR89rOfXfmboUOH5q677sqpp56auXPn5r//+78zadKkHHXUUbnrrrvWmHzxz7r22mvzgQ98IHPmzMk3vvGN/PnPf84vfvGLvP3tb++y7tixYzNy5Mj8/ve/z//8z//k4osvTnt7e84777xMmjRp5as4Xs6AAQNy880358wzz8zixYtzwQUX5Oqrr87++++fKVOm5Jhjjimqmf+0t73tbZkwYUK22WabXHbZZfnxj3+cHXbYIdOnT185E8VLrb/++pkwYUJe//rX57vf/W7OPPPMnHnmmf9w/QsWLMj73//+DBw4MJdffnn69++/8rvtt98+F154YR5++OHC/lH/fe97X7773e9mxIgR+cMf/pBvf/vb+epXv5q77rorb33rWzNhwoR885vf7PSbjTfeOJMnT84BBxyQG2+8Md/97nczZMiQ3HnnnatN0Dn66KNz5ZVXZs6cObnwwgvz+9//PieccEJuvfXWla+zWRu77rpr/vjHP+bCCy/MlltumWuvvTbjxo3LZZddlr59++aLX/xi5s6dm9e85jVJXnyVy4033pjdd989V111VS655JIMGTIkt912W970pjd1Kb9v37656qqrsueee+byyy/Pf/7nf+bMM8/MggULkrw4S8ivfvWr/M///E822WST/OxnP8uFF16YadOmZdiwYfnWt76VnXfeeWV5r33ta3PHHXfkmGOOye23354LL7wwTz75ZG688cZst912SV58hdNLXXTRRbnkkkuyySab5Dvf+U6++93vZtiwYbnkkkvy1a9+da231d/rmIlks802y6GHHvoPlwMAAACQJJXaS+cXBgAAAGC19tlnn9xxxx1ZtGhRBg8eXHh9EyZMyDHHHJMzzzxzrWdxAQAAAHg5ZhQBAAAA6MZjjz3WZdlll12W2267LQceeGApSSK1Wi1f+cpX0tLS4rUzAAAAwKuipd4BAAAAAPREO+20U3bbbbf8y7/8S/r27ZsZM2ZkypQpWWeddfLf//3fhdZ9zz335Je//GVuv/323HnnnTn55JPz2te+ttA6AQAAgObg1TMAAAAA3fjsZz+bX/ziF3n44Yfz7LPPZujQoRk5cmTOPPPM7LDDDoXWPX78+Jx44olpbW3N29/+9nzzm98sZQYTAAAAoPFJFAEAAAAAAAAAaBJ96h0AAAAAAAAAAADlkCgCAAAAAAAAANAkWuodAAAAAAAAAAA0u4G7nVLvEFiDJb/7er1DeFU0dKLI9PsXFVb28G1akyQLnltRWB3rDepbaB0d5c95ckkh5SfJdhsNTJLMW7issDo2G9I/STJu8tzC6jhj5LZJkqXLC6siA/62N5bRjkYYU2XUUUZ/9+ZtVeZ2KmO/uOeRZwqrY+fNBycp55xRdH+XcTwvY78ooy/K2Dc+dMWsQsr/3rE7JSlnvyhjO5XRjjL2jTLGbVHbqszj4KR75xdWx0E7bpiknONUGe0YfelvCyl/wom7Jynn/H3x9IcLq+Ok4VskSQa/a3xhdTzz0xOSlHOcmjDzsULKH73LsCTlHM8bZf8+Y+LswuoYd/j2SYrv7zLOe41ybm2UfaOo/iizL8qoo4z9u4wxVXR/N8p9Rm++Pk+Kv0Yvc98r45qwjDFV1Pk7Kfearegx1SjPpsroizL+jazoc0YZ/d0oz6YAXimvngEAAAAAAAAAaBISRQAAAAAAAAAAmoREEQAAAAAAAACAJiFRBAAAAAAAAACgSUgUAQAAAAAAAABoEhJFAAAAAAAAAACahEQRAAAAAAAAAIAm0VLvAAAAAAAAAACg6VXM80A5jDQAAAAAAAAAgCbRKxJFPv3pT2fffffNcccdl+eff77e4QAAAAAAAAAA9Eo9PlFk5syZmTdvXm655ZbssMMOmTBhQr1DAgAAAAAAAADolXp8osjtt9+et771rUmSQw45JLfddluXddrb27N48eJOn/b29rJDBQAAAAAAAADo0Xp8osiCBQuy7rrrJklaW1vz17/+tcs6bW1taW1t7fRpa2srO1QAAAAAAAAAgB6tpd4BrMmQIUOyePHiJMmiRYuy/vrrd1ln7NixGTNmTKdl1Wo1M+ctLSVGAAAAAAAAAIDeoMfPKPKWt7wlN910U5LkhhtuyN57791lnWq1mnXXXbfTp1qtlh0qAAAAAAAAAECP1uNnFNl1112z8cYbZ999980WW2yR0047rd4hAQAAAAAAAMCrq1KpdwQ0iR6fKJIk//Vf/1XvEAAAAAAAAAAAer0e/+oZAAAAAAAAAABeHRJFAAAAAAAAAACahEQRAAAAAAAAAIAmIVEEAAAAAAAAAKBJSBQBAAAAAAAAAGgSEkUAAAAAAAAAAJpES70DAAAAAAAAAICmVzHPA+Uw0gAAAAAAAAAAmkSlVqvV6h0EAAAAAAAAADSzgW/693qHwBosufuCeofwqjCjCAAAAAAAAABAk2ipdwBFmvPkksLK3m6jgUmSpcsLqyID/tY7C55bUUj56w3qm6R3tyFZ1Y57HnmmsDp23nxwknK21YSZjxVWx+hdhiUpblt1bKcy+nvewmWF1bHZkP5JymlHGWOqqG1V5nYqY79olHPG9PsXFVL+8G1akzTOvldGHWWMqaKP52Xse43S3xdPf7iwOk4avkWS3j1uO8ZsUceoZNVxatK98wur46AdN0xSznVnGe04Y+LsQsofd/j2L/7v5LmFlJ8kZ4zctrQ6Bu52SmF1LPnd15OUc34t+hqhjGNUGceQMs7fZZwzGqG/3Y+tWcf+XcZ5qehnU43S343ybKqoOsrcL3rzdnppHWWMqaLvAcrYTmVcE5bRjqKuz5NV1+i9+Rxe5vOWRnm+Xca2KvrZc6M8iyyjLwBeKTOKAAAAAAAAAAA0CYkiAAAAAAAAAABNQqIIAAAAAAAAAECTaKl3AAAAAAAAAADQ9CqVekdAkzCjCAAAAAAAAABAk5AoAgAAAAAAAADQJCSKAAAAAAAAAAA0CYkiAAAAAAAAAABNQqIIAAAAAAAAAECT6PGJIosWLcrw4cMzePDgzJo1q97hAAAAAAAAAAD0Wj0+UWTQoEGZOHFiRo8eXe9QAAAAAAAAAAB6tZZ6B7Am/fr1y9ChQ1e7Tnt7e9rb2zstq1arRYYFAAAAAAAAAK+eSo+f54EG0RAjra2tLa2trZ0+bW1t9Q4LAAAAAAAAAKBH6fEziqyNsWPHZsyYMZ2WVavV/HnRC3WKCAAAAAAAAACg52mIRJFqtfoyr5pZUnosAAAAAAAAAAA9Va949cxhhx2WG2+8MR/+8Iczfvz4eocDAAAAAAAAANAr9YoZRa677rp6hwAAAAAAAAAA0Ov1ihlFAAAAAAAAAAD450kUAQAAAAAAAABoEhJFAAAAAAAAAACaREu9AwAAAAAAAACAplep1DsCmoQZRQAAAAAAAAAAmoREEQAAAAAAAACAJiFRBAAAAAAAAACgSUgUAQAAAAAAAABoEpVarVardxAAAAAAAAAA0MwG7nF6vUNgDZbc9V/1DuFVYUYRAAAAAAAAAIAm0VLvAIo058klhZW93UYDkyTzFi4rrI7NhvQvtI6O8svYTkuXF1ZFBvxtFN/zyDOF1bHz5oOTlNPfk+6dX1gdB+24YZLi+ryjvxulLxY8t6KwOtYb1DdJ797/Ova9MrbTxdMfLqyOk4ZvkaSc41QZdRS9f5cxZssYU2XUUUZ/F9WOjjaMmzy3kPKT5IyR2yYppy/KOLeWsa3KaEfRY6o3tyEpd/8uY0wVVUeZ+/f0+xcVVsfwbVqTJHueO7WwOu78zP5JytlWE2Y+Vkj5o3cZlqRx7vnKaMcZE2cXVse4w7dPUty2KvN+rFGuz8uoo4xjYdHPphrlHr9RjlON8ByhN9+PJeVe6xS9f3tutGYdY6qMdvTm5zplHmt787/7vLQOzyLXro5G6W+AV6qhE0UAAAAAAAAAoFeoeCEI5TDSAAAAAAAAAACahEQRAAAAAAAAAIAmIVEEAAAAAAAAAKBJSBQBAAAAAAAAAGgSEkUAAAAAAAAAAJqERBEAAAAAAAAAgCYhUQQAAAAAAAAAoEm01DsAAAAAAAAAAGh6lUq9I6BJ9PgZRaZPn5699tor++23X97znvfk+eefr3dIAAAAAAAAAAC9Uo9PFHnta1+bm2++OdOmTctWW22Va6+9tt4hAQAAAAAAAAD0Sj3+1TPDhg1b+d/9+/dPnz5dc1va29vT3t7eaVm1Wi08NgAAAAAAAACA3qTHzyjS4aGHHsqNN96YI444ost3bW1taW1t7fRpa2urQ5QAAAAAAAAAAD1Xj59RJEkWL16c4447LuPHj0+/fv26fD927NiMGTOm07JqtZo/L3qhrBABAAAAAAAAAHq8Hp8osnz58rz73e/OWWedle23377bdarV6su8amZJscEBAAAAAAAAAPQiPf7VM5dffnnuuuuufOELX8iIESNyxRVX1DskAAAAAAAAAIBeqcfPKHLcccfluOOOq3cYAAAAAAAAAFCcSo+f54EGYaQBAAAAAAAAADQJiSIAAAAAAAAAAE1CoggAAAAAAAAAQJOQKAIAAAAAAAAA0CQkigAAAAAAAAAANAmJIgAAAAAAAAAATUKiCAAAAAAAAABAk2ipdwAAAAAAAAAA0PQqlXpHQJOo1Gq1Wr2DAAAAAAAAAIBmNnDvz9Y7BNZgyW1fqncIrwqvngEAAAAAAAAAaBIN/eqZSffOL6zsg3bcMEmy4LkVhdWx3qC+SZI5Ty4ppPztNhpYaPkvrWPp8sKqyIC/jeIJMx8rrI7RuwxLUk47yhhTF09/uJDyTxq+RZJk3sJlhZSfJJsN6Z8kmX7/osLqGL5Na5LG6e+i2tHRhjKOIWUczxvlWFj0OeOeR54ppPwk2XnzwUnK6YsyjiGNcI1QxnZqlP27jG1VRjuKOod3nL/LaEMZ14SNcq1T9DVhGW0oo7+L2k7Jqm1Vxvm16P4u4zqnUc4Z4ybPLayOM0Zum6S4MdUxnsq4zlHH2tfRm59/FX1dm5R7P1bG/l1GO4p+jlDGtVSjPNMp4xqhqGu2Mp+vlXHdWca43fPcqYXVcedn9k/SGM+myjhn9OZntkm5x6mi+7tRzhlltAPglTKjCAAAAAAAAABAk5AoAgAAAAAAAADQJCSKAAAAAAAAAAA0CYkiAAAAAAAAAABNQqIIAAAAAAAAAECTaKl3AAAAAAAAAADQ9CrmeaAcRhoAAAAAAAAAQJOQKAIAAAAAAAAA0CQkigAAAAAAAAAANImWegewJk888UTe8Y53pF+/funbt29+9KMfZdiwYfUOCwAAAAAAAACg1+nxM4psuOGGufXWWzN16tR84AMfyMUXX1zvkAAAAAAAAAAAeqUenyjSt2/f9OnzYphPP/103vCGN3RZp729PYsXL+70aW9vLztUAAAAAAAAAIC0tbXlzW9+c9ZZZ51stNFGOeqoozJ79uxO6yxdujQf+9jHssEGG2Tw4ME5+uij88QTT6y23Fqtlv/8z//MsGHDMnDgwBx44IH505/+9Ipi6/GJIkkyY8aM7LHHHvn617+e3Xffvcv3bW1taW1t7fRpa2urQ6QAAAAAAAAAQLObOnVqPvaxj+XOO+/MpEmT8vzzz+etb31rnn322ZXr/Pu//3t+8Ytf5Morr8zUqVPz6KOP5p3vfOdqyx03blwuuuiifPvb385dd92V17zmNTn44IOzdOnStY6t5R9uVYl23XXX3HXXXfnpT3+atra2fPvb3+70/dixYzNmzJhOy6rVaqbd/3SZYQIAAAAAAADAP6ZSqXcErEF7e3uXt5tUq9VUq9Uu615//fWd/h4/fnw22mij/OY3v8l+++2XRYsW5eKLL86Pf/zjjBo1Kkly6aWXZscdd8ydd96ZPffcs0uZtVotF154YT73uc/lyCOPTJL84Ac/yMYbb5xrrrkm7373u9eqHT1+RpFly5at/O/W1tYMGjSoyzrVajXrrrtup093HQEAAAAAAAAA8I/4Z952smjRoiTJ+uuvnyT5zW9+k+effz4HHnjgynV22GGHbLHFFrnjjju6LeOBBx7I448/3uk3ra2t2WOPPV72N93p8TOKzJgxI6eddlr69u2bAQMG5JJLLql3SAAAAAAAAABAk3m5t52syQsvvJBPfvKT2XvvvbPTTjslSR5//PH0798/Q4YM6bTuxhtvnMcff7zbcjqWb7zxxmv9m+70+ESR4cOHZ9q0afUOAwAAAAAAAABoYi/3mpk1+djHPpZZs2bl1ltvLSCqV67Hv3oGAAAAAAAAAKA3OuWUU/LLX/4ykydPzuabb75y+SabbJJly5Zl4cKFndZ/4oknsskmm3RbVsfyJ554Yq1/0x2JIgAAAAAAAAAAr6JarZZTTjklV199dW6++eZsvfXWnb5/4xvfmH79+uV///d/Vy6bPXt2Hn744ey1117dlrn11ltnk0026fSbxYsX56677nrZ33RHoggAAAAAAAAAwKvoYx/7WC677LL8+Mc/zjrrrJPHH388jz/+eJYsWZIkaW1tzUknnZQxY8Zk8uTJ+c1vfpMTTzwxe+21V/bcc8+V5eywww65+uqrkySVSiWf/OQn88UvfjE///nPc8899+QDH/hANt100xx11FFrHVvLq9pSAAAAAAAAAIAm961vfStJMmLEiE7LL7300pxwwglJkgsuuCB9+vTJ0Ucfnfb29hx88MH55je/2Wn92bNnZ9GiRSv/PuOMM/Lss8/mIx/5SBYuXJh99tkn119/fQYMGLDWsUkUAQAAAAAAAIB6q3ghSCOp1WprXGfAgAH5xje+kW984xtrXU6lUsnnP//5fP7zn/+HYzPSAAAAAAAAAACahEQRAAAAAAAAAIAmIVEEAAAAAAAAAKBJVGpr82IcAAAAAAAAAKAwA/c7u94hsAZLpp1d7xBeFWYUAQAAAAAAAABoEi31DqBIc55cUljZ2200MElyzyPPFFbHzpsPTpLMW7iskPI3G9I/SbJ0eSHFJ0kG/G2ElVHHh66YVVgd3zt2pyTJgudWFFbHeoP6Jkkunv5wYXWcNHyLJMXtGx37RRn7XqPUUcaYKqqOjvLL2L/L6IuijrXJquNtGeeMovfv6fcvKqT8JBm+TWuSxumLMvaNotrR0YYJMx8rpPwkGb3LsCSNcwwpY0yVcc4oqj8arS/KaMeke+cXVsdBO25YaB0d5TfK8XzLU39RWB0PXXREknLOr0X3d6Mcz8uoo4zz67jJcwsp/4yR2yYp55zUKPcAjbJvNMKzqTL6u4z9uxGeI5QxZo2pNSt6TBU9nl5aRxnXzmW044yJswurY9zh2ycpZ98oekyVce3cm7dTsmpbNcK/X/XmZyFJ8c/wklV9AfBKmVEEAAAAAAAAAKBJNPSMIgAAAAAAAADQK1TM80A5jDQAAAAAAAAAgCYhUQQAAAAAAAAAoElIFAEAAAAAAAAAaBISRQAAAAAAAAAAmoREEQAAAAAAAACAJiFRBAAAAAAAAACgSUgUAQAAAAAAAABoEr0iUeTyyy/P0KFD6x0GAAAAAAAAAECv1lLvANZkxYoVufLKK/Pa17623qEAAAAAAAAAQDH6VOodAU2ix88ocvnll+eYY45Jnz4vH2p7e3sWL17c6dPe3l5ilAAAAAAAAAAAPV+PThRZsWJFfvrTn+bYY49d7XptbW1pbW3t9GlrayspSgAAAAAAAACA3qFHv3rmsssuy7ve9a7VziaSJGPHjs2YMWM6LatWq/nzoheKDA8AAAAAAAAAoFfp0TOK/PGPf8wPfvCDHHLIIfnTn/6UU089tdv1qtVq1l133U6farVacrQAAAAAAAAAAD1bj55R5Lzzzlv5329605ty0UUX1TEaAAAAAAAAAIDerUfPKPJSd999d71DAAAAAAAAAADo1XpNoggAAAAAAAAAAP+cHv3qGQAAAAAAAABoChXzPFAOIw0AAAAAAAAAoElIFAEAAAAAAAAAaBISRQAAAAAAAAAAmoREEQAAAAAAAACAJiFRBAAAAAAAAACgSUgUAQAAAAAAAABoEhJFAAAAAAAAAACaRKVWq9XqHQQAAAAAAAAANLOBB3y53iGwBkv+9z/qHcKrwowiAAAAAAAAAABNoqXeARTpnkeeKazsnTcfnCRZ8NyKwupYb1DfJMm8hcsKKX+zIf2TJHOeXFJI+Umy3UYDkyRLlxdWRQb8bRRPund+YXUctOOGScppx4SZjxVWx+hdhiUpbtx2jNkyttP0+xcVVsfwbVqTlLN/l7Gtiqqj6PJfWsfF0x8urI6Thm+RpLhjbbLqeFvGmCrq3Ndx3itjO5Uxpso497lGWL2O7VTGmCqjHWVcdzbCOaOM/i7jGqGMOs6YOLuwOsYdvv2L/zt5biHlnzFy2ySN098Hff3OwuqYdMqeSco5hhTd341y/i6jjjLu+Yq+Jiyjv3vztVRS7rVtGWOqqONtmfffZRxrR1/628LqmHDi7kl697OKMvfvRjlO9eZ7mTKfnzfK/VgZz79687gt8zlCoxxDytg3iu7vRrkHKKMOgFfKjCIAAAAAAAAAAE1CoggAAAAAAAAAQJOQKAIAAAAAAAAA0CQkigAAAAAAAAAANAmJIgAAAAAAAAAATaKl3gEAAAAAAAAAQNOrmOeBchhpAAAAAAAAAABNQqIIAAAAAAAAAECT6PGJIg8++GCGDh2aESNGZMSIEXnqqafqHRIAAAAAAAAAQK/UUu8A1sb++++fCRMm1DsMAAAAAAAAAIBercfPKJIkt912W/bdd9/8x3/8R2q1Wr3DAQAAAAAAAADolXp8osiwYcMyZ86cTJs2LU8++WSuuuqqLuu0t7dn8eLFnT7t7e11iBYAAAAAAAAAoOfq8Yki1Wo1r3nNa1KpVPLOd74zM2fO7LJOW1tbWltbO33a2trqEC0AAAAAAAAAQM/VUu8A1uTpp5/OOuuskyS55ZZbsuOOO3ZZZ+zYsRkzZkynZdVqNf/31POlxAgAAAAAAAAA/5RKpd4R0CR6/Iwit956a974xjdm3333zbx58/Le9763yzrVajXrrrtup0+1Wq1DtAAAAAAAAAAAPVePn1Hk0EMPzaGHHlrvMAAAAAAAAAAAer0eP6MIAAAAAAAAAACvDokiAAAAAAAAAABNQqIIAAAAAAAAAECTkCgCAAAAAAAAANAkJIoAAAAAAAAAADQJiSIAAAAAAAAAAE2ipd4BAAAAAAAAAEDTq5jngXIYaQAAAAAAAAAATUKiCAAAAAAAAABAk6jUarVavYMAAAAAAAAAgGY28K3/Ve8QWIMlN55e7xBeFWYUAQAAAAAAAABoEi31DqBI8xYuK6zszYb0T5IseG5FYXWsN6hvkmTp8mLKH/C33i9jOxXVhmRVOybdO7+wOg7accMk5fT3nCeXFFbHdhsNTFJcOzraUMaYapRx2wjHkDK20z2PPFNYHTtvPjhJ7+6LpPht1bGdevMxKlnVF2WMqTL6u6hjYcdxcPr9iwopP0mGb9OapHfvF8mq/nZeWr0yrxEapb/L2P8unv5wIeWfNHyLJL27Dcmqdux57tTC6rjzM/snKef8WlR/dPRFo9wrlVFHGeN2wszHCil/9C7DkpSznXrzeS9ZNW7LqKOM423R152Ncj82+tLfFlbHhBN3T1JOO4p+jlDGcbBRjiFlbKui7wE8F16zjm31oStmFVbH947dKUnvfuZS5v1Yo1wj9OY6ynyOUMZ2KqMdAK+UGUUAAAAAAAAAAJqERBEAAAAAAAAAgCbR0K+eAQAAAAAAAIBeoVKpdwQ0CTOKAAAAAAAAAAA0CYkiAAAAAAAAAABNQqIIAAAAAAAAAECTkCgCAAAAAAAAANAkJIoAAAAAAAAAADSJXpEoMmXKlBxwwAEZOXJkrr766nqHAwAAAAAAAADQK7XUO4A1WbJkSb7yla/kV7/6Vfr371/vcAAAAAAAAAAAeq0enyhyxx13ZODAgTniiCMyaNCgfOtb38omm2xS77AAAAAAAAAA4NVT6RUvBKEB9PiR9sQTT2TOnDn5xS9+kQ9/+MM5++yzu6zT3t6exYsXd/q0t7eXHywAAAAAAAAAQA/W4xNFhgwZkr333jv9+/fPAQcckD/84Q9d1mlra0tra2unT1tbWx2iBQAAAAAAAADouXp8osib3/zm3HvvvanVapkxY0a22WabLuuMHTs2ixYt6vQZO3ZsHaIFAAAAAAAAAOi5WuodwJpsuOGGecc73pH9998/lUoll1xySZd1qtVqqtVq1x8vWVZChAAAAAAAAAAAvUOPTxRJko997GP52Mc+Vu8wAAAAAAAAAAB6tR7/6hkAAAAAAAAAAF4dEkUAAAAAAAAAAJpEr3j1DAAAAAAAAAA0tEql3hHQJMwoAgAAAAAAAADQJCSKAAAAAAAAAAA0CYkiAAAAAAAAAABNQqIIAAAAAAAAAECTkCgCAAAAAAAAANAkJIoAAAAAAAAAADSJSq1Wq9U7CAAAAAAAAABoZgMPvaDeIbAGS3717/UO4VXRUu8AAAAAAAAAAKDpVbwQhHI0dKLI9PsXFVb28G1akyQLnltRWB3rDeqbJFm6vJjyB/yt94sq/6V1zFu4rLA6NhvSP0lyzyPPFFbHzpsPTlJOO8oYUxNmPlZI+aN3GZaknO0058klhdWx3UYDk5TTjjL2v6KPIWWM2YunP1xYHScN3yJJOWOqjP4u6tzXcd4r49xaxr7XKPt3UeO2Y8yeMXF2IeUnybjDt09Szr5XxjVCGcfC3jxuyzxnNMqYKup6LVl1zVbUPt6xf5cxZnf63KTC6pj1xYOSJOMmzy2sjjNGbpuknPNr0dcIjXIc7M33Y8mq/fugr99ZSPmTTtkzSePc8/XmZzrJqvPrpHvnF1bHQTtumKS4bVXm+buMcVvG9XNvfo5X5jO8Rtm/y3geUvT+3SjHwTLa0SjjtuhjSG8+7yWr+qJR/v2q6GdTjbKdyjieA7xSUpIAAAAAAAAAAJqERBEAAAAAAAAAgCYhUQQAAAAAAAAAoElIFAEAAAAAAAAAaBISRQAAAAAAAAAAmoREEQAAAAAAAACAJiFRBAAAAAAAAACgSbTUOwAAAAAAAAAAaHqVSr0joEn0+BlF7rjjjowYMSIjRozI61//+vz7v/97vUMCAAAAAAAAAOiVevyMInvttVemTJmSJDnhhBNy1FFH1TUeAAAAAAAAAIDeqsfPKNJh2bJlmT59evbdd996hwIAAAAAAAAA0Cv1+BlFOtx000054IAD0qdP19yW9vb2tLe3d1pWrVbLCg0AAAAAAAAAoFfoNTOKXHnllTnmmGO6/a6trS2tra2dPm1tbSVHCAAAAAAAAADQs/WKRJHnn38+v/71r7PPPvt0+/3YsWOzaNGiTp+xY8eWHCUAAAAAAAAAQM/WK149c9NNN2XUqFHdvnYmefE1M92/amZpsYEBAAAAAAAAAPQivSJR5NBDD82hhx5a7zAAAAAAAAAAoBiVXvFCEBqAkQYAAAAAAAAA0CQkigAAAAAAAAAANAmJIgAAAAAAAAAATUKiCAAAAAAAAABAk5AoAgAAAAAAAADQJCSKAAAAAAAAAAA0CYkiAAAAAAAAAABNoqXeAQAAAAAAAABA06uY54FyGGkAAAAAAAAAAE2iUqvVavUOAgAAAAAAAACa2cAjvlnvEFiDJb/4t3qH8KowowgAAAAAAAAAQJNoqXcARVrw3IrCyl5vUN9eX0dH+fMWLiuk/CTZbEj/JMnS5YVVkQF/G8XjJs8trI4zRm6bpJx2TLp3fmF1HLTjhkmSOU8uKaT87TYamKSc/aKoNiTltqOMOooatx1jtow2jL70t4XVMeHE3ZM0zrHwnkeeKaT8nTcfnKSc7VTGmJp+/6LC6hi+TWuSxujvi6c/XEj5SXLS8C2SlDOmyujvRhlTRV93FjVmk1XjtoxrhDLG7YeumFVYHd87dqckxV0/d1w7l7Gdzpg4u7A6xh2+/Yv/W8J9Rm8+TpV5jJow87HC6hi9y7DS6ijj/FrUMaTj+NGbz0lJY9yPJeU+Ryj6urOM83cZfbHT5yYVVsesLx6UpJx2FHUO7zh/l3GsLWM7lVFHGftGI1wjlHEcbJTn2735+VeZ14S9+ViblPuMrejnCI1yjVBGHQCvlBlFAAAAAAAAAACahEQRAAAAAAAAAIAmIVEEAAAAAAAAAKBJeHMVAAAAAAAAANRbpVLvCGgSZhQBAAAAAAAAAGgSEkUAAAAAAAAAAJqERBEAAAAAAAAAgCYhUQQAAAAAAAAAoEn0+ESRF154ISeccEL23Xff7LPPPrnvvvvqHRIAAAAAAAAAQK/U4xNFZsyYkfb29txyyy1pa2vL+eefX++QAAAAAAAAAAB6pR6fKLL55punVqulVqtlwYIF2XDDDesdEgAAAAAAAABAr9RS7wDWZMMNN0y/fv2yww47ZOnSpbntttu6rNPe3p729vZOy6rVanpB8wAAAAAAAAAAStPjZxS58cYb09LSktmzZ+dnP/tZPvWpT3VZp62tLa2trZ0+bW1tdYgWAAAAAAAAAP4BlT4+Pf3TIHr8lBu1Wi0bbLBBkhdnF1m0aFGXdcaOHZsxY8Z0WlatVvPcilJCBAAAAAAAAADoFXp8oshBBx2U8ePHZ//99097e3vOP//8LutUq9W/vWqms+dkigAAAAAAAAAArNTjE0VaWlpyxRVX1DsMAAAAAAAAAIBer3FeogMAAAAAAAAAwGpJFAEAAAAAAAAAaBISRQAAAAAAAAAAmoREEQAAAAAAAACAJtFS7wAAAAAAAAAAoOlVKvWOgCZhRhEAAAAAAAAAgCYhUQQAAAAAAAAAoElIFAEAAAAAAAAAaBISRQAAAAAAAAAAmkSlVqvV6h0EAAAAAAAAADSzgUd9p94hsAZLrvlIvUN4VZhRBAAAAAAAAACgSbTUO4AiTb9/UWFlD9+mNUmy4LkVhdWx3qC+SZJ5C5cVUv5mQ/onKacNS5cXVkUG/G0U3/PIM4XVsfPmg5M0TjuK6vOO/p7z5JJCyk+S7TYamKSccdso+0bR/V1GG0Zf+tvC6phw4u5JGucYUvQ5o4w29ObtlJS7rYru74unP1xI+Uly0vAtkpRzrC1j/26U686izxmT7p1fSPlJctCOGyZpnHE7YeZjhdUxepdhSYrrj46+KGPfO2Pi7MLqGHf49kkaZ0wV1Y6ONpRxD1BGHWVcI5QxpsZNnltI+WeM3DZJ777OSVb1RaPcA5RxHVLUeanjnNQo999lnL/L2DeKviYsY98rYzuVUUdvvs9otH2vjONUo1xPFVVHR/ll3FeWsX+X0Re9+XlIIzwLeWkdZfQFwCvV0IkiAAAAAAAAANArVLwQhHIYaQAAAAAAAAAATUKiCAAAAAAAAABAk5AoAgAAAAAAAADQJCSKAAAAAAAAAAA0CYkiAAAAAAAAAABNQqIIAAAAAAAAAECTkCgCAAAAAAAAANAkWuodwJqsWLEixx9/fObNm5ett9463/nOd9LS0uPDBgAAAAAAAIC1V6nUOwKaRI+fUeTqq6/O1ltvncmTJ2eHHXbIVVddVe+QAAAAAAAAAAB6pR6fKDJ37tzsuuuuSZLdd98906ZNq29AAAAAAAAAAAC9VI9PFPmXf/mX3HzzzUmSm266KQsWLOiyTnt7exYvXtzp097eXnaoAAAAAAAAAAA9Wo9PFHnb296WAQMGZNSoUXn22WezySabdFmnra0tra2tnT5tbW11iBYAAAAAAAAAoOdqqXcAa1KpVPKVr3wlSXL22Wdn1KhRXdYZO3ZsxowZ02lZtVrNzHlLS4kRAAAAAAAAAKA36PGJIo8//nje8573pE+fPjnggAOy3377dVmnWq2mWq1282uJIgAAAAAAAAAAHXp8osgmm2ySyZMn1zsMAAAAAAAAAIBer8cnigAAAAAAAABAo6tUKvUOgSbRp94BAAAAAAAAAABQDokiAAAAAAAAAABNQqIIAAAAAAAAAECTkCgCAAAAAAAAANAkJIoAAAAAAAAAADQJiSIAAAAAAAAAAE1CoggAAAAAAAAAQJOQKAIAAAAAAAAA0CQqtVqtVu8gAAAAAAAAAKCZvWb0pfUOgTV4dsKJ9Q7hVWFGEQAAAAAAAACAJtFS7wCKNOne+YWVfdCOGyZJFjy3orA61hvUN0lyzyPPFFL+zpsPTlJOG5YuL6yKDPjbKC6jv8tox5wnlxRWx3YbDUxS/JgqqvyX1lHGdmqUfWPewmWFlL/ZkP5JymnDwMO+WlgdS677RJJy2lFGHUXv32Xse0WN2aTccVtGHUUdpzqOUWWcW8vo7zLqaJR9o6h2dLShjDE1/f5FhdUxfJvWJL37eJ6sOqZPmPlYIeWP3mVYknLaUEYdH7piVmF1fO/YnZKUs28U3d9lHKMunv5wYXWcNHyLJOWMqTMmzi6sjnGHb19oHR3lu1daszKvO3vzNVujXZ+Pmzy3sDrOGLltksa4zyjj2rk3b6dk1bYq6vydFH/NVuZzhDK2UxnnjEa5lymqjo7yy7iWKmP/bpTnIUX3dxnX52X0dxnHQoBXyowiAAAAAAAAAABNQqIIAAAAAAAAAECTkCgCAAAAAAAAANAkJIoAAAAAAAAAADQJiSIAAAAAAAAAAE2ipd4BAAAAAAAAAEDTq9Q7AJqFGUUAAAAAAAAAAJqERBEAAAAAAAAAgCbRoxJFFi1alOHDh2fw4MGZNWtWkuTKK6/MW97ylhxwwAF55JFH6hwhAAAAAAAAAEDv1aMSRQYNGpSJEydm9OjRSZLly5fn/PPPz5QpU/L5z38+X/jCF+ocIQAAAAAAAABA79WjEkX69euXoUOHrvz7T3/6U3bcccf0798/e++9d37/+9/XMToAAAAAAAAAgN6tpd4BrM6CBQuy7rrrrvx7xYoV3a7X3t6e9vb2Tsuq1WqhsQEAAAAAAAAA9DY9akaRvzdkyJAsXrx45d99+/btdr22tra0trZ2+rS1tZUVJgAAAAAAAABAr9CjZxR53etel3vvvTfLli3L3Xffnf/3//5ft+uNHTs2Y8aM6bSsWq1m2v1PlxEmAAAAAAAAAPxTKpVKvUOgSfS4RJHDDjssM2bMyOzZs3PyySfnk5/8ZEaMGJEBAwbk+9//fre/qVarL/OqGYkiAAAAAAAAAAAdelyiyHXXXddl2bHHHluHSAAAAAAAAAAAGkufegcAAAAAAAAAAEA5JIoAAAAAAAAAADQJiSIAAAAAAAAAAE1CoggAAAAAAAAAQJOQKAIAAAAAAAAA0CRa6h0AAAAAAAAAADS7SqVS7xBoEmYUAQAAAAAAAABoEhJFAAAAAAAAAACahEQRAAAAAAAAAIAmUanVarV6BwEAAAAAAAAAzWydY79f7xBYg6evOL7eIbwqzCgCAAAAAAAAANAkWuodQJEunv5wYWWfNHyLJMmC51YUVsd6g/oWWkdH+fMWLiuk/CTZbEj/JMn0+xcVVsfwbVqTJJPunV9YHQftuGGSZOnywqrIgL/tjWW0Y86TSwopf7uNBhZa/kvrKGNMldHfZRxDimpHRxvK2E5l9HcZ47aMbVX0/t0o+57+Xr2ONoy+9LeFlJ8kE07cPUk5x8Ey+nvc5LmF1XHGyG2TNMY5o4y+KOMe4J5Hnimsjp03H5yknONtUXV0lN8ofbHnuVMLq+POz+yfJJkw87HC6hi9y7Akxfd3GceoMvq7jPuxMuo4Y+LsQsofd/j2Scp5jtCbz3tJufdLZZxfi9r/Ova9Rrk+b5RnU0U/i+zNbUiKf2b70jrKuJ4q+r6yUfa9Mvq7jHvwMs7hRd9XlrFflLGdyjj39eZrtjKPtb15OyWr2gHwSplRBAAAAAAAAACgSTT0jCIAAAAAAAAA0BtUKpV6h0CTMKMIAAAAAAAAAECTkCgCAAAAAAAAANAkJIoAAAAAAAAAADQJiSIAAAAAAAAAAE1CoggAAAAAAAAAQJOQKAIAAAAAAAAA0CR6VKLIokWLMnz48AwePDizZs1KknzgAx/I0KFD8/Wvf73O0QEAAAAAAAAA9G4t9Q7gpQYNGpSJEyfm9NNPX7ns3HPPzahRo/LMM8/UMTIAAAAAAAAAgN6vRyWK9OvXL0OHDu20bNNNN61TNAAAAAAAAABQjkqlUu8QaBI9KlHkH9Xe3p729vZOy6rVap2iAQAAAAAAAADomfrUO4BXQ1tbW1pbWzt92tra6h0WAAAAAAAAAECP0hAziowdOzZjxozptKxareaymU/UKSIAAAAAAAAAgJ6nxyWKHHbYYZkxY0Zmz56dk08+ObNnz87Pf/7zrFixInPnzs0FF1zQ5TfVatWrZgAAAAAAAAAA1qDHJYpcd911XZZ5jQwAAAAAAAAAwD+vT70DAAAAAAAAAACgHBJFAAAAAAAAAACaRI979QwAAAAAAAAANJ1KvQOgWZhRBAAAAAAAAACgSUgUAQAAAAAAAABoEhJFAAAAAAAAAACahEQRAAAAAAAAAIAmIVEEAAAAAAAAAKBJSBQBAAAAAAAAAGgSlVqtVqt3EAAAAAAAAADQzFrf+8N6h8AaLPrxcfUO4VXRUu8AAAAAAAAAAKDZVSqVeodAk2joRJE5Ty4prOztNhqYJFnw3IrC6lhvUN8kydLlxZQ/4G+9P/3+RcVUkGT4Nq1JyumLMtpRRn9Pund+YXUctOOGSYrrj46+KKO/5y1cVlgdmw3pX1odRe3fyap9vKh2lNmGex55prA6dt58cJLG6e8JMx8rpPzRuwxLUs4xqoy+cM5YvY6+uHj6w4WUnyQnDd8iSe8+DiarxlRR+16yav/rzefXju1Uxpgqoy8aZUwV1R8dfVHGsbaMMTXwsK8WVseS6z6RpJxtVfQ1QqMcz8s41o6bPLewOs4YuW2S4q8RevOzkGTVmGqUdvTm5zpl3uOX0RejL/1tYXVMOHH3JOW0o+hnkWUcaxvlvNSbr2072lDGsbaM50a9+R4/KfccXvSY6s37RVLueamM/i7qOqTjGqSMvujN+0Wyqh0Ar1SfegcAAAAAAAAAAEA5JIoAAAAAAAAAADQJiSIAAAAAAAAAAE1CoggAAAAAAAAAQJOQKAIAAAAAAAAA0CQkigAAAAAAAAAANImWegcAAAAAAAAAAM2uUqnUOwSahBlFAAAAAAAAAACaRI9KFFm0aFGGDx+ewYMHZ9asWXn66aczatSo7Lfffhk1alQeeuiheocIAAAAAAAAALBG06ZNyxFHHJFNN900lUol11xzTafvK5VKt5//+q//etkyzz777C7r77DDDq8orh6VKDJo0KBMnDgxo0ePTpL069cvl112WaZNm5ZPf/rTq90YAAAAAAAAAAA9xbPPPptddtkl3/jGN7r9/rHHHuv0ueSSS1KpVHL00Uevttw3vOENnX536623vqK4Wl7R2gXr169fhg4duvLvAQMGZNNNN02S9O/fP3369Ki8FgAAAAAAAACAbh166KE59NBDX/b7TTbZpNPf1157bUaOHJltttlmteW2tLR0+e0r0aMSRV7OsmXLcvbZZ+d73/tet9+3t7envb2907JqtVpGaAAAAAAAAABAE3i53IRXIz/hiSeeyMSJE/P9739/jev+6U9/yqabbpoBAwZkr732SltbW7bYYou1rqtXTNHxkY98JP/2b/+W173udd1+39bWltbW1k6ftra2kqMEAAAAAAAAABpVkbkJ3//+97POOuvkne9852rX22OPPTJ+/Phcf/31+da3vpUHHngg++67b55++um1rqvHzyhyzjnnZJtttsmxxx77suuMHTs2Y8aM6bSsWq3mz4teKDo8AAAAAAAAAKAJvFxuwqvhkksuyfve974MGDBgteu99FU2/+///b/sscce2XLLLfPTn/40J5100lrV1eMSRQ477LDMmDEjs2fPzmGHHZYvfOEL2WeffXLzzTevnDLl7738VC5Lig8YAAAAAAAAAGh4r9ZrZv7eLbfcktmzZ+eKK654xb8dMmRIXv/612fOnDlr/Zselyhy3XXXdfr7zDPPrFMkAAAAAAAAAFCOSqVS7xCok4svvjhvfOMbs8suu7zi3z7zzDOZO3dujjvuuLX+TZ9XXAsAAAAAAAAAAKv1zDPPZMaMGZkxY0aS5IEHHsiMGTPy8MMPr1xn8eLFufLKK/OhD32o2zIOOOCAfP3rX1/592mnnZapU6fmwQcfzO233553vOMd6du3b97znvesdVw9bkYRAAAAAAAAAIDe7u67787IkSNX/j1mzJgkyfHHH5/x48cnSX7yk5+kVqu9bKLH3LlzM3/+/JV/P/LII3nPe96Tv/zlLxk6dGj22Wef3HnnnRk6dOhaxyVRBAAAAAAAAADgVTZixIjUarXVrvORj3wkH/nIR172+wcffLDT3z/5yU/+6bi8egYAAAAAAAAAoElIFAEAAAAAAAAAaBISRQAAAAAAAAAAmoREEQAAAAAAAACAJtFS7wAAAAAAAAAAoNlVKpV6h0CTMKMIAAAAAAAAAECTqNRqtVq9gwAAAAAAAACAZrbBBy6vdwiswV9+8J56h/CqMKMIAAAAAAAAAECTaKl3AEWat3BZYWVvNqR/kmTBcysKq2O9QX2TJHOeXFJI+dttNDBJMune+YWUnyQH7bhhknK2UxntWLq8sCoy4G974z2PPFNYHTtvPjhJce3oaEMZ+15v3k7Jqm1Vxr4x/f5FhZQ/fJvWJOX0d6PUUcaYunj6w4WUf9LwLZKUs+8Vdd5Lyj339eZzRkdfTJj5WCHlJ8noXYYl6d3XUsmqMVXGMaSMdhTVHx19UcYxpIz9u4z+Lur8naw6h4+bPLeQ8s8YuW2SctpQ1HkvWXXu2+lzkwqrY9YXD0rSu7dVx3Yq47xXxnYq41hbxvn1oK/fWUj5k07ZM0k5x/NGuT4v41qnN59fO86tZex7jXKc6s3jtszr8zK2Uxl1nDFxdmF1jDt8+yTFP3u2761Zme3ozc/YGu05YW++x0/Ke/bcKM/wyti/AV4pM4oAAAAAAAAAADQJiSIAAAAAAAAAAE1CoggAAAAAAAAAQJNoqXcAAAAAAAAAAND0KvUOgGZhRhEAAAAAAAAAgCYhUQQAAAAAAAAAoElIFAEAAAAAAAAAaBISRQAAAAAAAAAAmkSPShRZtGhRhg8fnsGDB2fWrFlJkqOPPjr7779/9thjj0ybNq3OEQIAAAAAAAAA9F4t9Q7gpQYNGpSJEyfm9NNPX7ns8ssvT//+/fPggw/mQx/6UG666aY6RggAAAAAAAAA0Hv1qBlF+vXrl6FDh3Za1r9//yTJ008/nZ122qkeYQEAAAAAAAAANIQeNaPIy9lvv/3yf//3f/nBD37Q7fft7e1pb2/vtKxarSaplBAdAAAAAAAAAPxzKhX/vk05etSMIi9n2rRpmT59ej796U93+31bW1taW1s7fdra2kqOEgAAAAAAAACgZ+vRM4rUarUsX748/fr1y+DBgzN48OBu1xs7dmzGjBnTaVm1Ws38JWVECQAAAAAAAADQO/S4RJHDDjssM2bMyOzZs3P88cfnJz/5SZJkxYoV+fKXv9ztb6rV6t9eNfN3liwrMlQAAAAAAAAAgF6lxyWKXHfddZ3+/td//dc6RQIAAAAAAAAA0Fj61DsAAAAAAAAAAADKIVEEAAAAAAAAAKBJSBQBAAAAAAAAAGgSLfUOAAAAAAAAAACaXaVSqXcINAkzigAAAAAAAAAANAmJIgAAAAAAAAAATUKiCAAAAAAAAABAk5AoAgAAAAAAAADQJCSKAAAAAAAAAAA0iUqtVqvVOwgAAAAAAAAAaGZDT7yi3iGwBk9demy9Q3hVmFEEAAAAAAAAAKBJtNQ7gCLd88gzhZW98+aDkyRLlxdWRQb8rXcWPLeikPLXG9Q3STnbqag2JKvaMWHmY4XVMXqXYUnKacecJ5cUVsd2Gw1MksxbuKyQ8jcb0j9JOW0ooy/KqKMRjiFlbKczJs4urI5xh2+fpJxxW0Z/F71/N8o5o6jtlKzaVo3Q35PunV9I+Uly0I4bJund571k1bZyzli9Mq87y6ijjHE7/f5FhdUxfJvWJMmHrphVSPnfO3anJOXse2X0RVHbKVm1rcpox8XTHy6k/JOGb5GknGNUo+x7ZZxfD/r6nYWUP+mUPZM0zrVUo9RR1P6drNrHi77ubJR7/DKOIY1wn9Eo26mMOnrz884y971GeaZTxvOv3vzMpdGePffm43lSfH909EUZ9/i9eTslq7YVwCvV0IkiAAAAAAAAANAbVCqVeodAk/DqGQAAAAAAAACAJiFRBAAAAAAAAACgSUgUAQAAAAAAAABoEhJFAAAAAAAAAACahEQRAAAAAAAAAIAmIVEEAAAAAAAAAKBJSBQBAAAAAAAAAGgSPSpRZNGiRRk+fHgGDx6cWbNmrVz+0EMPpVqtdloGAAAAAAAAAA2j4tPjPw2iRyWKDBo0KBMnTszo0aM7LR83blz23nvvOkUFAAAAAAAAANAYelSiSL9+/TJ06NBOyx544IFUKpVsscUWdYoKAAAAAAAAAKAx9KhEke6cd955Oe2001a7Tnt7exYvXtzp097eXlKEAAAAAAAAAAC9Q49OFJk7d26SZKuttlrtem1tbWltbe30aWtrKyFCAAAAAAAAAIDeo6XeAazOzJkz84c//CGHHHJI7rnnnsyZMyc33XRTBgwY0Gm9sWPHZsyYMZ2WVavV/N9Tz5cZLgAAAAAAAABAj9bjEkUOO+ywzJgxI7Nnz87JJ5+cW265JUlywgkn5LTTTuuSJJK8mBRSrVa7KU2iCAAAAAAAAABAhx6XKHLdddd1u3z8+PHlBgIAAAAAAAAA0GB6XKIIAAAAAAAAADSbSqVS7xBoEn3qHQAAAAAAAAAAAOWQKAIAAAAAAAAA0CQkigAAAAAAAAAANAmJIgAAAAAAAAAATUKiCAAAAAAAAABAk5AoAgAAAAAAAADQJCSKAAAAAAAAAAA0iZZ6BwAAAAAAAAAAza5SqdQ7BJpEpVar1eodBAAAAAAAAAA0s00+PKHeIbAGj393dL1DeFV49QwAAAAAAAAAQJNo6FfPTL9/UWFlD9+mNUkyb+GywurYbEj/JMnS5cWUP+Bvvb/guRXFVJBkvUF9S6tjwszHCqtj9C7DkhTXF8mq/ihj3M55ckkh5W+30cAkjbOdymhHb66jzDacMXF2YXWMO3z7JL37eJ6s2lZFHQs7joNFHT+Sco8h9zzyTGF17Lz54CTltKPo4/m4yXMLKT9Jzhi5bZJyxlQZdZRxHVLG9VTR54yLpz9cTAVJThq+RZLG2b8n3Tu/sDoO2nHDQuvoKL9R9otGaUdR1zplXueUcQ9QxjGkjGvboq8JG+VYW0Y7yti/y2hH0dedjXKfUcb5uzc/xyv6nJSsOi/15u300jp683VI0fcYSfHPQpJyr9fKOIaUcbwt+rrTc+G1r6OMcdsI/9bQKNcIAK+UGUUAAAAAAAAAAJqERBEAAAAAAAAAgCYhUQQAAAAAAAAAoElIFAEAAAAAAAAAaBIt9Q4AAAAAAAAAAJpdpVKpdwg0CTOKAAAAAAAAAAA0CYkiAAAAAAAAAABNQqIIAAAAAAAAAECT6FGJIosWLcrw4cMzePDgzJo1K0nyute9LiNGjMiIESMyadKkOkcIAAAAAAAAANB7tdQ7gJcaNGhQJk6cmNNPP33lstbW1kyZMqV+QQEAAAAAAAAANIgeNaNIv379MnTo0E7Lnnnmmey///5573vfm7/+9a91igwAAAAAAAAAoPfrUYki3bntttsyderUHHLIITnrrLO6Xae9vT2LFy/u9Glvby85UgAAAAAAAACAnq3HJ4pssMEGSZLRo0dn5syZ3a7T1taW1tbWTp+2trYywwQAAAAAAAAA6PFa6h3A6ixbtiy1Wi3VajW33HJLtttuu27XGzt2bMaMGdNpWbVazcx5S8sIEwAAAAAAAAD+KZVKpd4h0CR6XKLIYYcdlhkzZmT27Nk56qij8tOf/jSvec1rUq1Wc8kll3T7m2q1mmq12s03EkUAAAAAAAAAADr0uESR6667rtPfn/70p+sUCQAAAAAAAABAY+lT7wAAAAAAAAAAACiHRBEAAAAAAAAAgCYhUQQAAAAAAAAAoElIFAEAAAAAAAAAaBISRQAAAAAAAAAAmkRLvQMAAAAAAAAAgKZXqXcANAszigAAAAAAAAAANAmJIgAAAAAAAAAATUKiCAAAAAAAAABAk6jUarVavYMAAAAAAAAAgGa26b9eVe8QWINHv/3OeofwqjCjCAAAAAAAAABAk2ipdwBFmn7/osLKHr5Na5Jk6fLCqsiAv/XOvIXLCil/syH9k/TuNiSr2jHp3vmF1XHQjhsmSRY8t6KwOtYb1DdJcs8jzxRWx86bD05S3L7RsV+U0d9l9EUZ7Shj/5vz5JJCyt9uo4FJyumLRjmeN0J/l3GsLaoNyap22L9Xr2M7XTz94ULKT5KThm+RpHHOrWWM2958nOoov4y+KGP/LqO/yzjeNsI1YRnHqUY5Fk6Y+Vgh5Y/eZViSctpQRl+Use+VUccZE2cXUv64w7dPUk5/l3Hea5T7ynGT5xZWxxkjt01S3Dm80a6lyjhONcI1YW9uw0vrKOPatqjzd1L8ObzM42AZ26mMMbXlqb8orI6HLjoiSe8+v5Z5j98o1whlPFNthH+/apRnUwCvlBlFAAAAAAAAAACaREPPKAIAAAAAAAAAvUGlUql3CDQJM4oAAAAAAAAAADQJiSIAAAAAAAAAAE1CoggAAAAAAAAAQJOQKAIAAAAAAAAA0CQkigAAAAAAAAAANAmJIgAAAAAAAAAATaJHJYosWrQow4cPz+DBgzNr1qwkySOPPJK3v/3tGTlyZM4666w6RwgAAAAAAAAA0Hu11DuAlxo0aFAmTpyY008/feWy008/Pd/61rey2Wab1TEyAAAAAAAAAChOpVKpdwg0iR41o0i/fv0ydOjQlX8///zzefDBB/OpT30qo0aNyu23317H6AAAAAAAAAAAerceNaPI35s/f35mzJiRK664Iv37988RRxyRX//6113Wa29vT3t7e6dl1Wq1rDABAAAAAAAAAHqFHjWjyN8bMmRItttuu2yxxRbZZJNN0q9fvyxfvrzLem1tbWltbe30aWtrq0PEAAAAAAAAAAA9V4+eUWTgwIHZYIMNsnDhwvTr1y/t7e1paeka8tixYzNmzJhOy6rVambOW1pWqAAAAAAAAAAAPV6PSxQ57LDDMmPGjMyePTsnn3xyvvzlL+eII47IsmXLcs4553T7m2q1+jKvmpEoAgAAAAAAAADQocclilx33XVdlt1yyy11iAQAAAAAAAAAoLH0qXcAAAAAAAAAAACUo8fNKAIAAAAAAAAAzaZSqdQ7BJqEGUUAAAAAAAAAAJqERBEAAAAAAAAAgCYhUQQAAAAAAAAAoElIFAEAAAAAAAAAaBISRQAAAAAAAAAAmoREEQAAAAAAAACAJiFRBAAAAAAAAACgSVRqtVqt3kEAAAAAAAAAQDN77ceurXcIrMGfv3FkvUN4VbTUOwAAAAAAAAAAaHqVegdAs2joRJF5C5cVVvZmQ/onSRY8t6KwOtYb1DdJMufJJYWUv91GA5OU04alywurIgP+Noovnv5wYXWcNHyLJL27v5NVfV7UvtGxX5Sx7+nvNSurvxtl/y6jHWXUMf3+RYWUP3yb1iTJpHvnF1J+khy044ZJyjmGNEp/F71/3/PIM4WUnyQ7bz44STnH2jLGVG8+nifFn8PLHFONUkcZ/V1UOzraUNQ5KVl1XirjGuGMibMLq2Pc4dsnKecYUtQ5vOP83Sj3lWW0Y9zkuYXVccbIbV/834LGbceYLWM7Ncr9WBntmDDzscLqGL3LsCTF32c0yv5dxrmvN2+rMve9MrZTGe3ozcepMs/fZVyfN8rzr0a4r2yU65De/NwoWdUfRV2HdFyDOGesWUc7AF6pPvUOAAAAAAAAAACAckgUAQAAAAAAAABoEhJFAAAAAAAAAACahEQRAAAAAAAAAIAmIVEEAAAAAAAAAKBJSBQBAAAAAAAAAGgSLfUOAAAAAAAAAACaXaVSqXcINAkzigAAAAAAAAAANIkeNaPIokWLctBBB+WPf/xj7rzzzmy77bY59NBDkyTPPfdcnn/++fzud7+rc5QAAAAAAAAAAL1Tj0oUGTRoUCZOnJjTTz89STJw4MBMmTIlSTJ+/Pg89NBDdYwOAAAAAAAAAKB361GvnunXr1+GDh3a7XdXXnll3vWud5UcEQAAAAAAAABA4+hRM4q8nIULF+bxxx/Pjjvu2O337e3taW9v77SsWq0mqZQQHQAAAAAAAABA79CjZhR5Oddee22OPPLIl/2+ra0tra2tnT5tbW0lRggAAAAAAAAA0PP1ihlFrrzyyvz3f//3y34/duzYjBkzptOyarWa+UuKjgwAAAAAAAAAoPfocYkihx12WGbMmJHZs2fn5JNPzjve8Y48/vjj2WGHHV72N9Vq9W+vmvk7S5YVGCkAAAAAAAAAvDoqlUq9Q6BJ9LhEkeuuu67LsrvvvrsOkQAAAAAAAAAANJY+9Q4AAAAAAAAAAIBySBQBAAAAAAAAAGgSEkUAAAAAAAAAAJqERBEAAAAAAAAAgCYhUQQAAAAAAAAAoElIFAEAAAAAAAAAaBIt9Q4AAAAAAAAAAJpdpVKpdwg0CTOKAAAAAAAAAAA0CYkiAAAAAAAAAABNolKr1Wr1DgIAAAAAAAAAmtlWn/hlvUNgDR786tvqHcKrwowiAAAAAAAAAABNoqXeARRp3OS5hZV9xshtkyT3PPJMYXXsvPngJMmcJ5cUUv52Gw1MkixdXkjxSZIBfxth8xYuK6yOzYb0T5JMund+YXUctOOGScrZVtPvX1RYHcO3aU1SXH909EUZ/V1GHWX094LnVhRWx3qD+hZaR0f5ZWynMybOLqyOcYdvn6ScdvTmMdXR3735GJWs2r/L2PfK6O+Lpz9cSPknDd8iSTnXUo1yzijjOqSMcVv0dWdvbkNS7vVzGcfbosZtx5gtow1FHQeTVcfCLU/9RWF1PHTREUnK2VZF3bt23Lc2yn5RxnGqjGvbRrjnK6MvtGPNOtpR9DGkjOdrZfTFh66YVVgd3zt2pyTlXOsUfV/ZKNdrjTKmGuG5UaOMqUa5ryz6OqSM7dQozyp68/OQMvuiNz+jf2kdAK+UGUUAAAAAAAAAAJqERBEAAAAAAAAAgCYhUQQAAAAAAAAAoEm01DsAAAAAAAAAAGh2lUql3iHQJMwoAgAAAAAAAADQJCSKAAAAAAAAAAA0CYkiAAAAAAAAAABNQqIIAAAAAAAAAECT6FGJIosWLcrw4cMzePDgzJo1K0nyjW98I8OHD8/w4cPzs5/9rM4RAgAAAAAAAAD0Xi31DuClBg0alIkTJ+b0009fueyb3/xmZs6cmWXLlmXffffN0UcfXccIAQAAAAAAAAB6rx6VKNKvX78MHTq007JtttkmS5YsyXPPPZchQ4bUJzAAAAAAAAAAgAbQoxJFunP44Ydnxx13zIoVK3LxxRd3u057e3va29s7LatWq2WEBwAAAAAAAAD/vEq9A6BZ9Kl3AKuzePHifOtb38qf/vSn3HfffTnzzDNTq9W6rNfW9v/Zu/swu8ryXvzfPZPMTmLqgI7IEEEI2IhIQWwHgjYEBAEtttRcJbQdLEWlWHr0pPmlTquNGNvxxFNOX6DS1mC0ByNKVSxYm0CAyKkkpXQwHJEDQUPBEKSSNwMzJMzvD5jAlIS8mLX27L0+n+vaF8maWc99r/Ws51kvuVm7P52dnaM+/f39DcgYAAAAAAAAAGDsGtOFIm1tbZk4cWImTJiQl73sZRkaGtppoUhfX182btw46tPX19eAjAEAAAAAAAAAxq4x99Uz73jHOzIwMJD77rsvF198cX71V38106dPzzPPPJPf/d3fTVvbi2tb6vW6r5oBAAAAAAAAANiNMVco8o1vfONFy+bNm9eATAAAAAAAAAAAWsuY/uoZAAAAAAAAAAD2H4UiAAAAAAAAAAAVoVAEAAAAAAAAAKAixjU6AQAAAAAAAACoulqt1ugUqAhvFAEAAAAAAAAAqAiFIgAAAAAAAAAAFaFQBAAAAAAAAACgIhSKAAAAAAAAAABUhEIRAAAAAAAAAICKqA0PDw83OgkAAAAAAAAAqLKpc77R6BTYjQcvf0ejU9gvvFEEAAAAAAAAAKAixjU6gSI9sXV7YW0fOKm9tBiPbBgqpP0pB3QkKWcbntpWWIhMeO4oXvXgxsJi9EztTFLOdiy79/HCYpxxdFeS4vq8FcZF8vzYKCNGGcdUUTGKbv+FMR547MnCYhx10MTSYpQxNlY/vKWQ9o99zeQkzT1HJc/vp1Y5ZxS1HSPbMO/G+wppP0kWvnNaEueMvYnRzNe2I+2XMYe0ynxexjFVVH+M9MV1d68rpP0kmXVcd5Jk4S1rCosx79QjkySLVj1UWIyLeg5LUs55qaixUea4KGMOKaMvyhgbRcUYab9VniMUde2cPH/9XMZ2zPrsXYXFuO7CE5IUf41Qxvm7jL4o45zRCs8RWuV+rIy5sIxzRtHju1X6oowY7732nsJifOa8NyZp7v4Y2U+tMte2yrOKou8zWuV5SxnXnbSOWq3W6BSoCG8UAQAAAAAAAACoCIUiAAAAAAAAAAAVoVAEAAAAAAAAAKAiFIoAAAAAAAAAAFSEQhEAAAAAAAAAgIpQKAIAAAAAAAAAUBEKRQAAAAAAAAAAKmJcoxMAAAAAAAAAgKqr1RqdAVXhjSIAAAAAAAAAABUxpgpFNm7cmJ6enkyePDn33HNPkuTP/uzP8pa3vCVnnnlm1q1b1+AMAQAAAAAAAACa15gqFJk0aVJuvPHGzJo1K0ny6KOP5sYbb8ztt9+eBQsWZMGCBQ3OEAAAAAAAAACgeY1rdAIvNH78+LzqVa/a8fe1a9fmmGOOSa1WywknnJCLLrpop+sNDg5mcHBw1LJ6vZ4xtnkAAAAAAAAAAA01pt4o8l8deeSRufPOOzM4OJibbropP/7xj3f6e/39/ens7Bz16e/vLzlbAAAAAAAAAICxbUy/cqOrqyuXXHJJ3v72t+f444/P61//+p3+Xl9fX+bMmTNqWb1ez9btZWQJAAAAAAAAANAcxnShSJJccMEFueCCC3Lrrbemq6trp79Tr9ef+6qZ0baqFAEAAAAAAAAA2GHMFYq84x3vyMDAQO67775cfPHF+eY3v5nHHnssr33ta3PllVc2Oj0AAAAAAAAAgKY15gpFvvGNb4z6+2/91m81JhEAAAAAAAAAKEmtVmt0ClREW6MTAAAAAAAAAACgHApFAAAAAAAAAAAqQqEIAAAAAAAAAEBFKBQBAAAAAAAAAKgIhSIAAAAAAAAAABWhUAQAAAAAAAAAoCIUigAAAAAAAAAAVMS4RicAAAAAAAAAAFVXqzU6A6qiNjw8PNzoJAAAAAAAAACgyn523jcbnQK78f8WntXoFPYLXz0DAAAAAAAAAFARLf3VMw889mRhbR910MQkySMbhgqLMeWAjiTJE1u3F9L+gZPaC23/hTHK6IuFt6wpLMa8U49MUs6+KuOYWv3wlkLaP/Y1kwtt/4UxVj24sbAYPVM7kzT3+E6KP6bK3IYyjqkytuOpbYWFyITnzuhFj+8yxl4Z+6lVtqOo8+vIuXXRqocKaT9JLuo5LElzj4vk+bHRKueMoq87y7gmLGN8t8q1bVH7qsz9VEZ/n3HFHYXFWHbpSUma+55spC9a5ZqwjPl83o33FRZj4TunJUlO+uRthbR/x4dPSdLc56QXxihjnmrma8Kk+Pm21e6/33vtPYXF+Mx5b0zS3OOvzGdfrTKHXHf3usJizDquO0lx89TIHNUq93y2Y/eK7vOR9pt5Hiw7Riv8W0Or9EUZ4xtgb3mjCAAAAAAAAABARSgUAQAAAAAAAACoCIUiAAAAAAAAAAAVoVAEAAAAAAAAAKAixjU6AQAAAAAAAACoulqt1ugUqAhvFAEAAAAAAAAAqAiFIgAAAAAAAAAAFaFQBAAAAAAAAACgIhSKAAAAAAAAAABUxJgpFFm1alWmT5+eGTNm5Pzzz8/TTz+dL3/5yzn55JPztre9LQ8//HCjUwQAAAAAAAAAaGpjplDk0EMPzfLly7NixYocfvjhuf7663P55Zfn1ltvzcc//vEsWLCg0SkCAAAAAAAAADS1MVMo0t3dnYkTJyZJOjo6ct999+Xoo49OR0dH3vKWt+Q73/nOLtcdHBzMpk2bRn0GBwfLSh0AAAAAAAAAoCmMmUKREWvXrs3SpUvz1re+NS9/+ct3LN++ffsu1+nv709nZ+eoT39/fxnpAgAAAAAAAMBPrVbzGeufVjGu0Qm80KZNm9Lb25vFixdn+/bt2bRp046ftbe373K9vr6+zJkzZ9Syer2e/9j4TGG5AgAAAAAAAAA0mzFTKLJt27bMnj078+fPz7Rp0/L000/n3nvvzdDQUO6888783M/93C7XrdfrqdfrO/nJk8UlDAAAAAAAAADQZMZMociSJUuycuXKLFiwIAsWLMgll1ySD33oQ5k5c2YmTJiQz33uc41OEQAAAAAAAACgqY2ZQpHe3t709va+aPl5553XgGwAAAAAAAAAAFpPW6MTAAAAAAAAAACgHApFAAAAAAAAAAAqQqEIAAAAAAAAAEBFjGt0AgAAAAAAAABQdW1ttUanQEV4owgAAAAAAAAAQEUoFAEAAAAAAAAAqAiFIgAAAAAAAAAAFaFQBAAAAAAAAACgImrDw8PDjU4CAAAAAAAAAKrsDX+4tNEpsBvf/dO3NzqF/cIbRQAAAAAAAAAAKmJcoxMo0qoHNxbWds/UziTJE1u3FxbjwEnthcYYaf+RDUOFtJ8kUw7oSFLOflp27+OFxTjj6K4kyVPbCguRCc+NxjK244HHniyk/aMOmpgkWf3wlkLaT5JjXzM5Sesct2UcU0XtqzL3UxnHVBkxyuhv4/uljRy3ZcRo5nPGyPli0aqHCmk/SS7qOSxJc4+L5PmxUUaMMo7bosZ4mXNtGX1Rxrlv3o33FRZj4TunFRpjpP0yrmvLiHHQb3+psBiPXf1rScoZG0WfM8oYF60yvhfesqawGPNOPbLQGCPtt8q9UqtsRxlzSNHPplqlL8q4fi5jXxX9HKFVnum0yrmvqLFR5lx73d3rCosx67juJK1zD1DG+Cv62VSr/DtAq1zrtMJzhDLGRRn/Xgmwt7xRBAAAAAAAAACgIlr6jSIAAAAAAAAA0AxqtUZnQFV4owgAAAAAAAAAQEUoFAEAAAAAAAAAqAiFIgAAAAAAAAAAFaFQBAAAAAAAAACgIhSKAAAAAAAAAABUhEIRAAAAAAAAAID9bMWKFTnnnHNyyCGHpFar5Wtf+9qon//Wb/1WarXaqM9ZZ52123avvPLKHH744ZkwYUJOPPHErFq1aq/yUigCAAAAAAAAALCf/eQnP8lxxx2XK6+8cpe/c9ZZZ2XdunU7PkuWLHnJNq+99trMmTMn8+fPz1133ZXjjjsuZ555Zh577LE9zmvMFIqsWrUq06dPz4wZM3L++efn6aefzgUXXJBXvepVueKKKxqdHgAAAAAAAAAU5r++WcJn7H0GBwezadOmUZ/BwcFd9unZZ5+dT3ziEzn33HN3+Tv1ej0HH3zwjs+BBx74ksfJ5Zdfnve973258MIL84Y3vCFXXXVVJk2alKuvvnqPj7UxUyhy6KGHZvny5VmxYkUOP/zwXH/99fnkJz+ZT33qU41ODQAAAAAAAACouP7+/nR2do769Pf3/1Rt3nrrrTnooIMybdq0XHLJJfnP//zPXf7u0NBQ/u3f/i2nn376jmVtbW05/fTT8+1vf3uPY477qTLej7q7u3f8uaOjI21tbTnkkEP2aN3BwcEXVenU6/X9mh8AAAAAAAAAUF19fX2ZM2fOqGU/TW3CWWedlV/91V/NEUcckTVr1uQP//APc/bZZ+fb3/522tvbX/T7jz/+eLZv355Xv/rVo5a/+tWvzve+9709jjtm3igyYu3atVm6dGnOOeecPV6niKodAAAAAAAAAIAR9Xo9L3/5y0d9fppCkdmzZ+dd73pXjj322PzKr/xKbrjhhvzrv/5rbr311v2X9E6MqUKRTZs2pbe3N4sXL8748eP3eL2+vr5s3Lhx1Kevr6/ATAEAAAAAAAAA9p+pU6emq6srDzzwwE5/3tXVlfb29qxfv37U8vXr1+fggw/e4zhjplBk27ZtmT17dubPn59p06bt1br7u2oHAAAAAAAAAKBMDz/8cP7zP/8z3d3dO/15R0dH3vzmN+fmm2/eseyZZ57JzTffnOnTp+9xnHE/dab7yZIlS7Jy5cosWLAgCxYsyCWXXJKBgYF8/etfz/bt27NmzZr8r//1vxqdJgAAAAAAAADAbm3ZsmXU20G+//3vZ2BgIK94xSvyile8Ipdddlne/e535+CDD86aNWsyb968HHXUUTnzzDN3rPO2t70t5557bi699NIkyZw5c/Ke97wnP//zP5+enp78+Z//eX7yk5/kwgsv3OO8xkyhSG9vb3p7e0ctO++889Lf39+gjAAAAAAAAAAA9s2dd96ZU089dcff58yZkyR5z3vek09/+tP5zne+k8997nPZsGFDDjnkkLz97W/PggULRn2Dypo1a/L444/v+Pt5552XH/3oR/njP/7jPProozn++OPzzW9+M69+9av3OK8xUygCAAAAAAAAAFVVqzU6A/a3mTNnZnh4eJc//+d//ufdtvGDH/zgRcsuvfTSHW8Y2Rdt+7wmAAAAAAAAAABNRaEIAAAAAAAAAEBFKBQBAAAAAAAAAKgIhSIAAAAAAAAAABWhUAQAAAAAAAAAoCIUigAAAAAAAAAAVIRCEQAAAAAAAACAiqgNDw8PNzoJAAAAAAAAAKiyn/vjmxqdArvxnY+f3ugU9gtvFAEAAAAAAAAAqIhxjU6gSI9sGCqs7SkHdCRJnti6vbAYB05qT5I88NiThbR/1EETkyRPbSuk+STJhOeOsDL64rq71xUWY9Zx3UnK2VfL7n28sBhnHN2VpPhjqoxxUUaMMo7bZp6nRvZTGeNi9cNbCotx7GsmJynnmGrm+XbkeCqjLxxTuzdyTK16cGMh7fdM7UxS3Pkief6cUcY82Cr9XcbYKPqcUdQxmzx/3JZxLdUqx23Rc0gZ/V3GPcBr/9s/FhZj7V+ek6Sc/n7vtfcU0v5nzntjknLmqDL6u4zxXcY8VfT4LqO/y7gOKSNGq1zbFrUdI9vQzNc5yfPXOrM+e1dhMa678IQkrfEssoxrhFZ5blTGvmqF8d0q93zN3N9J8efwMueQMvZTq4yNoq5tR65rW+UaoYwYAHvLG0UAAAAAAAAAACpCoQgAAAAAAAAAQEUoFAEAAAAAAAAAqAiFIgAAAAAAAAAAFaFQBAAAAAAAAACgIhSKAAAAAAAAAABUxLhGJwAAAAAAAAAAVVer1RqdAhXhjSIAAAAAAAAAABWhUAQAAAAAAAAAoCLGTKHIqlWrMn369MyYMSPnn39+Nm/enNNOOy0zZszIaaedlrVr1zY6RQAAAAAAAACApjZmCkUOPfTQLF++PCtWrMjhhx+e66+/Pv/7f//vrFixIn/wB3+QT33qU41OEQAAAAAAAACgqY1rdAIjuru7d/y5o6MjkyZNyiGHHLLj721tu65pGRwczODg4Khl9Xo9Sa2QXAEAAAAAAAAAmtGYeaPIiLVr12bp0qU555xzkiRDQ0P52Mc+lt/7vd/b5Tr9/f3p7Owc9env7y8rZQAAAAAAAACApjBm3iiSJJs2bUpvb28WL16c8ePHJ0ne//735wMf+EBe97rX7XK9vr6+zJkzZ9Syer2ex58sNF0AAAAAAAAAgKYyZgpFtm3bltmzZ2f+/PmZNm1akuSyyy7L1KlTc955573kuvV6/bmvmvkvnhwqIlUAAAAAAAAA2K9qtUZnQFWMma+eWbJkSVauXJkFCxZk5syZ+dznPpcFCxZk+fLlmTlzZvr6+hqdIgAAAAAAAABAUxszbxTp7e1Nb2/vqGXvec97GpQNAAAAAAAAAEDrGTNvFAEAAAAAAAAAoFgKRQAAAAAAAAAAKkKhCAAAAAAAAABARSgUAQAAAAAAAACoCIUiAAAAAAAAAAAVMa7RCQAAAAAAAABA1dVqtUanQEV4owgAAAAAAAAAQEUoFAEAAAAAAAAAqIja8PDwcKOTAAAAAAAAAIAqe9NlyxudArvx7/NPa3QK+4U3igAAAAAAAAAAVMS4RidQpNUPbyms7WNfMzlJ8tS2wkJkwnO988BjTxbS/lEHTUySPLJhqJD2k2TKAR1Jkie2bi8sxoGT2pMky+59vLAYZxzdlaScfbXqwY2FxeiZ2pmkuLExMi7K2E9FjYvk+bFRxvhuhTmkjG0oY3yXMU+Vsa+K2o6RbShjfJexn8qYa8s4pooe362yn8rYjuvuXldYjFnHdScp59xX9DFVxnxeRl+0yrVO0deEZYzvhbesKSzGvFOPTJIc9NtfKizGY1f/WpJy+vu9195TSPufOe+NSVrnmrCM5whnXHFHYTGWXXpSkmTejfcV0v7Cd05L4tp5T5S5HWWMjaJijLTfKv39xo8sKyzGPZ84I0lz76uR/dQqz2zLuCZctOqhwmJc1HNYkuL7u1X6ooztKOPathXmkDL6u4wYrTIXFvXMpcznRs38DC95/p4PYG95owgAAAAAAAAAQEUoFAEAAAAAAAAAqIiW/uoZAAAAAAAAAGgGtVqjM6AqvFEEAAAAAAAAAKAiFIoAAAAAAAAAAFSEQhEAAAAAAAAAgIpQKAIAAAAAAAAAUBEKRQAAAAAAAAAAKkKhCAAAAAAAAABARYyZQpFVq1Zl+vTpmTFjRs4///w8/fTTefe7351TTjklJ554YlasWNHoFAEAAAAAAAAAmtq4Ricw4tBDD83y5cszceLE9PX15frrr8+SJUvS0dGRH/zgB3nve9+bm266qdFpAgAAAAAAAMB+V6vVGp0CFTFmCkW6u7t3/LmjoyNtbW3p6OhIkmzevDlvfOMbd7nu4OBgBgcHRy2r1+vFJAoAAAAAAAAA0KTGzFfPjFi7dm2WLl2ac845J0kyY8aMnHHGGXnHO96xy3X6+/vT2dk56tPf319WygAAAAAAAAAATWHMvFEkSTZt2pTe3t4sXrw448ePT5KsWLEiDz30UH75l385b3/723e6Xl9fX+bMmTNqWb1ez//70dOF5wwAAAAAAAAA0CzGTKHItm3bMnv27MyfPz/Tpk3L8PBwtm3blvHjx2fy5MmZPHnyLtet1+u7+KoZhSIAAAAAAAAAACPGTKHIkiVLsnLlyixYsCALFizIhRdemM9+9rNJku3bt+dP//RPG5whAAAAAAAAAEBzGzOFIr29vent7R217D3veU+DsgEAAAAAAAAAaD1tjU4AAAAAAAAAAIByKBQBAAAAAAAAAKiIMfPVMwAAAAAAAABQVbVaozOgKrxRBAAAAAAAAACgIhSKAAAAAAAAAABUhEIRAAAAAAAAAICKUCgCAAAAAAAAAFARCkUAAAAAAAAAACqiNjw8PNzoJAAAAAAAAACgyn7+E7c0OgV2486PnNroFPYLbxQBAAAAAAAAAKiIcY1OoEjX3b2usLZnHdedJHlkw1BhMaYc0JEkeWLr9kLaP3BSe5Jk1YMbC2k/SXqmdiYpbhuS1tuOBx57srAYRx00MUlxx+3IMbv64S2FtJ8kx75mcpLW6e8y5pCijqmR4+mpbYU0nySZ8NxZatm9jxcW44yju5KUc9yWMb6L7u8ytqFVxl4ZY6Poa4SFt6wppP0kmXfqkUnKmc+N7z2PUdRxO3LMljEumvncmjzfF2Wc+4q6Xxq5Vypj7JWxn8qYC5t5X43sp2Y+7yXPn/vKiLFo1UOFxbio57AkyXuvvaeQ9j9z3huTlLOfyjimWuXatozrqaKfIzTz87Xk+b4oauwlz4+/Zp5vR/ZTGefvVnmG18zzVJnzeRnXUq3y/KuM7Sj6vrJVzhnNfI+fFH891QrPQpJyj1taR61Wa3QKVIQ3igAAAAAAAAAAVIRCEQAAAAAAAACAilAoAgAAAAAAAABQEQpFAAAAAAAAAAAqQqEIAAAAAAAAAEBFKBQBAAAAAAAAAKgIhSIAAAAAAAAAABUxrtEJAAAAAAAAAEDV1WqNzoCq8EYRAAAAAAAAAICKGDOFIqtWrcr06dMzY8aMnH/++Xn66aeTJGvXrk29Xs8999zT4AwBAAAAAAAAAJrbmCkUOfTQQ7N8+fKsWLEihx9+eK6//vokycKFC/OWt7ylwdkBAAAAAAAAADS/cY1OYER3d/eOP3d0dKStrS3f//73U6vVcthhh73kuoODgxkcHBy1rF6vF5InAAAAAAAAAECzGjNvFBmxdu3aLF26NOecc07+x//4H5k7d+5u1+nv709nZ+eoT39/fwnZAgAAAAAAAAA0jzHzRpEk2bRpU3p7e7N48eI89NBDSZLDDz98t+v19fVlzpw5o5bV6/X84/d+XESaAAAAAAAAAABNacwUimzbti2zZ8/O/PnzM23atHzlK1/J//2//zdnnXVWVq9enQceeCA33XRTJkyY8KJ16/W6r5oBAAAAAAAAANiNMfPVM0uWLMnKlSuzYMGCzJw5M08//XS+9a1v5Zvf/GbOOOOMXHXVVTstEgEAAAAAAACAZler1XzG+KdVjJk3ivT29qa3t3enP1u8eHG5yQAAAAAAAAAAtKAx80YRAAAAAAAAAACKpVAEAAAAAAAAAKAiFIoAAAAAAAAAAFSEQhEAAAAAAAAAgIpQKAIAAAAAAAAAUBEKRQAAAAAAAAAAKmJcoxMAAAAAAAAAgKqr1RqdAVXhjSIAAAAAAAAAABVRGx4eHm50EgAAAAAAAABQZSd98rZGp8Bu3PHhUxqdwn7hjSIAAAAAAAAAABUxrtEJFGn1w1sKa/vY10xOkjyxdXthMQ6c1J4keWpbMe1PeK73H9kwVEyAJFMO6EhS3DYkz2/HolUPFRbjop7DkpTT3w889mRhMY46aGKSZNWDGwtpv2dqZ5Jy9lOrjO9m3lcj+6mM8b3wljWFxZh36pFJWqe/i4ox0v6yex8vpP0kOePoriTlnJfKmGvLGBtFXyO0ytgro7/LGBtlHFNFzyFl9HcZc0gZ21HGMVX0NcJ1d68rpP0kmXVcd5Jy5qlWuc8oqj9G+qKMOaqo+5jk+XuZMrZj8q8tLizGli/9VpLijtuRY7aMc2sZMZr5mU5S7tgo+phqlWdTRf7fnyP/12IrXBOW8Uynme/HXhijjOupoq8JyxjfZVyvtcrzr1aYQ1rlmrCZnxO+MEbR/9bQKs/wyjj3AewtbxQBAAAAAAAAAKgIhSIAAAAAAAAAABWhUAQAAAAAAAAAoCIUigAAAAAAAAAAVMS4RicAAAAAAAAAAFVXq9UanQIV4Y0iAAAAAAAAAAAVoVAEAAAAAAAAAKAiFIoAAAAAAAAAAFSEQhEAAAAAAAAAgIoYM4Uiq1atyvTp0zNjxoycf/75efrpp/O6170uM2fOzMyZM7Ns2bJGpwgAAAAAAAAA0NTGNTqBEYceemiWL1+eiRMnpq+vL9dff306Oztz6623Njo1AAAAAAAAAICWMGYKRbq7u3f8uaOjI21tbdmyZUtOOeWUTJkyJVdccUVe8YpX7HTdwcHBDA4OjlpWr9cLzRcAAAAAAAAAoNmMma+eGbF27dosXbo055xzTv7P//k/ue2223LWWWdl/vz5u1ynv78/nZ2doz79/f0lZg0AAAAAAAAA+65W8xnrn1YxpgpFNm3alN7e3ixevDjjx4/PK1/5yiTJrFmzcvfdd+9yvb6+vmzcuHHUp6+vr6y0AQAAAAAAAACawpj56plt27Zl9uzZmT9/fqZNm5ahoaEMDw+nXq/nW9/6Vo466qhdrluv13fxVTNPF5cwAAAAAAAAAECTGTOFIkuWLMnKlSuzYMGCLFiwIJdcckkWLlyYl73sZanX67n66qsbnSIAAAAAAAAAQFMbM4Uivb296e3tHbXsvPPOa1A2AAAAAAAAAACtp63RCQAAAAAAAAAAUA6FIgAAAAAAAAAAFaFQBAAAAAAAAACgIsY1OgEAAAAAAAAAqLpardboFKgIbxQBAAAAAAAAAKgIhSIAAAAAAAAAABWhUAQAAAAAAAAAoCIUigAAAAAAAAAAVERteHh4uNFJAAAAAAAAAECVveVT32p0CuzG//n/frHRKewX3igCAAAAAAAAAFAR4xqdQJGuu3tdYW3POq47SfLUtsJCZMJzvfPAY08W0v5RB01MkjyyYaiQ9pNkygEdScrZT/p790b6fNm9jxfS/hlHdyUpZz89sXV7YTEOnNSepJyx0czbUeY2rH54S2Exjn3N5CTlbEcZMVY9uLGQ9numdiZpnf3UKuO76P4u45zUKufWovoiKXf8FdUfZV6vFXWdk5R7rbNo1UOFxbio57AkxV8TlnH+LmPsvffaewqL8Znz3pikuffVyH4q49xaRowy5pAyxvesz95VSPvXXXhCknLOrWX0dxljr4xzRivMIa1y3dkqz6aKuu4s+j4mab171zLOS0X3d6tcO5dxXipjO8whL21kDiljP7VKjKL//aqMa4RWiQGwt1q6UAQAAAAAAAAAmkGt1ugMqApfPQMAAAAAAAAAUBEKRQAAAAAAAAAAKkKhCAAAAAAAAABARSgUAQAAAAAAAACoCIUiAAAAAAAAAAAVoVAEAAAAAAAAAKAiFIoAAAAAAAAAAFSEQhEAAAAAAAAAgIoY1+gERqxatSof/OAHM378+EyZMiWf//zns379+nzgAx/I5s2bM2PGjFx22WWNThMAAAAAAAAA9rtardboFKiIMVMocuihh2b58uWZOHFi+vr6cv311+cf/uEf8ulPfzpTpkxpdHoAAAAAAAAAAE1vzHz1THd3dyZOnJgk6ejoyPbt2/ODH/wgv//7v5/TTjst//Iv/7LLdQcHB7Np06ZRn8HBwbJSBwAAAAAAAABoCmOmUGTE2rVrs3Tp0px88skZGBjIwoUL84UvfCEf/OAHd7lOf39/Ojs7R336+/tLzBoAAAAAAAAAYOwbM189kySbNm1Kb29vFi9enK6urhx11FE57LDDkiTjx4/Ptm3bMm7ci1Pu6+vLnDlzRi2r1+v5x+/9uJS8AQAAAAAAAACawZgpFNm2bVtmz56d+fPnZ9q0aUmSV77yldmwYUPGjx+fwcHBnRaJJM8WhdTr9TLTBQAAAAAAAABoOmPmq2eWLFmSlStXZsGCBZk5c2auvfba/Omf/mnOOeecnHbaabnssssanSIAAAAAAAAAQFMbM28U6e3tTW9v74uWf+tb32pANgAAAAAAAAAArWfMFIoAAAAAAAAAQFXVarVGp0BFjJmvngEAAAAAAAAAoFgKRQAAAAAAAAAAKkKhCAAAAAAAAABARSgUAQAAAAAAAACoCIUiAAAAAAAAAAAVoVAEAAAAAAAAAKAiFIoAAAAAAAAAAFREbXh4eLjRSQAAAAAAAABAlZ3yv/5Po1NgN277729pdAr7hTeKAAAAAAAAAABUxLhGJ1CkVQ9uLKztnqmdSZIntm4vLMaBk9oLjTHS/uqHtxTSfpIc+5rJScrZT/p7z2MU1edl9vdT2woLkQnPzYy246WVecwuWvVQYTEu6jksSevMhY9sGCqk/SkHdCRJHnjsyULaT5KjDpqYpJxxsezexwuLccbRXUnK2Y6i+mOkL+bdeF8h7SfJwndOS1LOMVXG+C7jOqSM7SjquC36mE3K7e9WOfctvGVNIe3PO/XIJMl1d68rpP0kmXVc97P//exdhcW47sITkiQnffK2wmLc8eFTkpRz3BZ9D9DM17VJ8ddSyfPXU++99p7CYnzmvDcmKW5sjIyLVunvVtmOZj6/jswhZWxDGX3xxo8sKyzGPZ84I0lzH7dlXueUsZ/KOGeUcY1Q9H1lGfupVZ4Lt8ozl6LPGWX0dzM/00nKPfcV1R8jfVHGHNLM11LJ82MDYG95owgAAAAAAAAAQEUoFAEAAAAAAAAAqAiFIgAAAAAAAAAAFaFQBAAAAAAAAACgIhSKAAAAAAAAAABUxLhGJwAAAAAAAAAAVVer1RqdAhXhjSIAAAAAAAAAABWhUAQAAAAAAAAAoCIUigAAAAAAAAAAVMS4RicwYtWqVfngBz+Y8ePHZ8qUKfnbv/3bnHPOOUmSrVu35umnn86///u/NzhLAAAAAAAAAIDmNWYKRQ499NAsX748EydOTF9fX/75n/85t956a5Jk8eLFWbt2bWMTBAAAAAAAAABocmOmUKS7u3vHnzs6OtLW9vy34nz5y1/O//yf/3OX6w4ODmZwcHDUsnq9vv+TBAAAAAAAAABoYm27/5VyrV27NkuXLt3xtTMbNmzIo48+mqOPPnqX6/T396ezs3PUp7+/v6yUAQAAAAAAAACawph5o0iSbNq0Kb29vVm8eHHGjx+fJLn++uvzy7/8yy+5Xl9fX+bMmTNqWb1ez92PPFVYrgAAAAAAAACwv9Rqjc6AqhgzhSLbtm3L7NmzM3/+/EybNm3H8t197UzybFHIzr9qRqEIAAAAAAAAAMCIMfPVM0uWLMnKlSuzYMGCzJw5M9dee202btyYRx99NK9//esbnR4AAAAAAAAAQNMbM28U6e3tTW9v74uW33nnnQ3IBgAAAAAAAACg9YyZN4oAAAAAAAAAAFAshSIAAAAAAAAAABWhUAQAAAAAAAAAoCIUigAAAAAAAAAAVIRCEQAAAAAAAACAihjX6AQAAAAAAAAAoOpqtVqjU6AivFEEAAAAAAAAAKAiFIoAAAAAAAAAAFREbXh4eLjRSQAAAAAAAABAlZ32l99udArsxvL/Nr3RKewX3igCAAAAAAAAAFAR4xqdQJGW3ft4YW2fcXRXkuSpbYWFyITneueRDUOFtD/lgI4kyRNbtxfSfpIcOKk9STn7adGqhwqLcVHPYUmSBx57srAYRx00MUmy6sGNhcXomdqZpDWOqaK2IXl+O5p5fCfFb8fINpTR32WM71aZC4uap0bmqDLmwTJiNPPYS8rr7zKupcoYe6sf3lJYjGNfMzlJOefvMraj6HNGGcfUwlvWFBZj3qlHJilnnipjO4o6bkeO2evuXldI+0ky67juJMkZV9xRWIxll55UWowyzktFzSFFzx/J83NIGcdUGfNUGfN5UftqZD+V0d9i7HmMZn7+Vea9cRnXnWWcv5v5WcVIX5Rx7dzM92PJ89eEJ33ytsJi3PHhU5J4brQ7I8+NyjimyphDyuiPop9VlDGHeE64e0U/Y2u1Z/RlxADYW94oAgAAAAAAAABQEQpFAAAAAAAAAAAqoqW/egYAAAAAAAAAmkGt1ugMqApvFAEAAAAAAAAAqAiFIgAAAAAAAAAAFaFQBAAAAAAAAACgIhSKAAAAAAAAAABUhEIRAAAAAAAAAICKUCgCAAAAAAAAAFARY6ZQZNWqVZk+fXpmzJiR888/P08//XSuvPLK9PT0pKenJ//wD//Q6BQBAAAAAAAAAJrauEYnMOLQQw/N8uXLM3HixPT19eX666/PX//1X+fuu+/O0NBQfvEXfzHvfve7G50mAAAAAAAAAOx3bbVao1OgIsZMoUh3d/eOP3d0dKStrS1Tp07Nk08+ma1bt+aAAw7Y5bqDg4MZHBwctaxerxeVKgAAAAAAAABAUxozXz0zYu3atVm6dGnOOeecvPOd78zRRx+d448/Pr//+7+/y3X6+/vT2dk56tPf319i1gAAAAAAAAAAY9+YeaNIkmzatCm9vb1ZvHhxnnzyyXz605/O/fffn6GhoZx22mk5++yzU9vJ63b6+voyZ86cUcvq9XpWPLi5rNQBAAAAAAAAAMa8MVMosm3btsyePTvz58/PtGnTsmXLlkycODETJkzI+PHjMzQ0lOHh4Z0WitTr9V181YxCEQAAAAAAAACAEWPmq2eWLFmSlStXZsGCBZk5c2ZuvPHG/Oqv/mqmT5+ek08+Ob/7u7+btrYxky4AAAAAAAAAQNMZM28U6e3tTW9v74uWz5s3rwHZAAAAAAAAAAC0Hq/oAAAAAAAAAACoiDHzRhEAAAAAAAAAqKpardEZUBXeKAIAAAAAAAAAUBEKRQAAAAAAAAAAKkKhCAAAAAAAAABARSgUAQAAAAAAAACoCIUiAAAAAAAAAAAVoVAEAAAAAAAAAKAiasPDw8ONTgIAAAAAAAAAquztV97R6BTYjaW/e1KjU9gvxjU6AQAAAAAAAACoulqt1ugUqIiWLhRZ/fCWwto+9jWTkyRPbN1eWIwDJ7UXGmOk/ae2FdJ8kmTCc0fYA489WViMow6amKSc/n5kw1BhMaYc0JGknGOqqO0Y2YZW6YtVD24sLEbP1M4k5WxHUWN8ZHyXMYeU0RdljL1mnm9H5tpmPu+9MEYzj73k+f4uar4dmWtdS+15jFY5ZxR9jVDGflq06qHCYlzUc1iScq5t3/iRZYXFuOcTZyRJFt6yppD25516ZJJyjtl5N95XWIyF75yWJDnjiuL+T55llz77f6Asu/fxwmKccXRXkuLGxsi4aJW5toxzXxnbUdQcMjJ/NPM5qewYrXK/VNQ8NTJHtcr9WBnzeTNfP4+0X8a1VBn9XUZflHGtU/RzozLm2jKu11plPm+FZ1Nl3PO1yhxSRoyi+7uMvigjRhlzIcDeamt0AgAAAAAAAAAAlEOhCAAAAAAAAABARSgUAQAAAAAAAACoCIUiAAAAAAAAAAAVoVAEAAAAAAAAAKAiFIoAAAAAAAAAAFSEQhEAAAAAAAAAgIoY1+gEAAAAAAAAAKDq2mqNzoCq8EYRAAAAAAAAAICKGDOFIqtWrcr06dMzY8aMnH/++Xn66afzZ3/2Z3nLW96SM888M+vWrWt0igAAAAAAAAAATW3MFIoceuihWb58eVasWJHDDz881157bW688cbcfvvtWbBgQRYsWNDoFAEAAAAAAAAAmtq4Ricworu7e8efOzo68sgjj+SYY45JrVbLCSeckIsuumiX6w4ODmZwcHDUsnq9XliuAAAAAAAAAADNaMy8UWTE2rVrs3Tp0vz2b/927rzzzgwODuamm27Kj3/8412u09/fn87OzlGf/v7+ErMGAAAAAAAAABj7xswbRZJk06ZN6e3tzeLFi/OqV70ql1xySd7+9rfn+OOPz+tf//pdrtfX15c5c+aMWlav1/P/fvR00SkDAAAAAAAAADSNMVMosm3btsyePTvz58/PtGnTkiQXXHBBLrjggtx6663p6ura5br1en0XXzWjUAQAAAAAAAAAYMSYKRRZsmRJVq5cmQULFmTBggW55JJL8tWvfjWPPfZYXvva1+bKK69sdIoAAAAAAAAAUIhardboFKiIMVMo0tvbm97e3lHLzjvvvAZlAwAAAAAAAADQetoanQAAAAAAAAAAAOVQKAIAAAAAAAAAUBEKRQAAAAAAAAAAKkKhCAAAAAAAAABARSgUAQAAAAAAAACoCIUiAAAAAAAAAAAVMa7RCQAAAAAAAABA1dVqjc6AqvBGEQAAAAAAAACAiqgNDw8PNzoJAAAAAAAAAKiyd/7NqkanwG7ceHFPo1PYL7xRBAAAAAAAAACgIsY1OoEiPfDYk4W1fdRBE5MkT2zdXliMAye1FxpjpP2nthXSfJJkwnNHWBn7adGqhwqLcVHPYUnK2VfL7n28sBhnHN2VpLixUea4WPXgxsJi9EztTNI6Y6MV5pAy+ruMvihjXxU9vh/ZMFRI+0ky5YCOJM09LsqOUXR/L7xlTSHtJ8m8U49MUs4xVcY1YRnzVDNf25Z5/m7m/ZQ8v6+uu3tdYTFmHdedpLj+GOmLMq7Pz7jijsJiLLv0pCTJe6+9p7AYnznvjUnKmQuLOqZGjqcyxkWrnDPKOL8WNf5Gxp5rqd0b6e8y7gGa+XnIyDaUsZ/KiHHSJ28rLMYdHz4lSXPfu7bCs5AXxlj98JbCYhz7mslJmvvatsxnIWXMg2Vch5SxHa0wh7TKc+FWubYt+rqzjLm2mZ/ZJs/3BcDe8kYRAAAAAAAAAICKUCgCAAAAAAAAAFARCkUAAAAAAAAAACpiXKMTAAAAAAAAAICqq6XW6BSoCG8UAQAAAAAAAACoCIUiAAAAAAAAAAD72YoVK3LOOefkkEMOSa1Wy9e+9rUdP3v66afzB3/wBzn22GPzspe9LIccckguuOCC/PCHP3zJNj/2sY+lVquN+rz+9a/fq7wUigAAAAAAAAAA7Gc/+clPctxxx+XKK6980c+2bt2au+66Kx/96Edz11135Stf+Uruu+++vOtd79ptu8ccc0zWrVu343P77bfvVV7j9uq3AQAAAAAAAAAqaHBwMIODg6OW1ev11Ov1nf7+2WefnbPPPnunP+vs7MyyZctGLbviiivS09OThx56KIcddtgu8xg3blwOPvjgvcz+ed4oAgAAAAAAAACwG/39/ens7Bz16e/v32/tb9y4MbVaLQcccMBL/t7999+fQw45JFOnTs1v/MZv5KGHHtqrOGOmUGT9+vU5+eSTc8opp+S0007b8XqUk08+OW9961uzevXqRqcIAAAAAAAAAFRUX19fNm7cOOrT19e3X9p+6qmn8gd/8Ac5//zz8/KXv3yXv3fiiSdm8eLF+eY3v5lPf/rT+f73v59f/MVfzObNm/c41pj56pmurq7cfvvtaWtry+LFi7No0aIsW7YsN954YzZv3pzf+Z3fyTe+8Y1GpwkAAAAAAAAAVNBLfc3MT+Ppp5/Or/3ar2V4eDif/vSnX/J3X/hVNj/3cz+XE088Ma997WvzpS99KRdddNEexRszhSLt7e07/rx58+YceeSRWb58eQ488MAceOCB+fGPf7zLdXf1PUAAAAAAAAAAAGPVSJHI2rVrs3z58pd8m8jOHHDAAfnZn/3ZPPDAA3u8zpj56pkkGRgYyIknnpgrrrgiJ5988qgdMG7cuAwNDe10vaK/BwgAAAAAAAAAitRW8xnrn/1tpEjk/vvvz0033ZRXvvKVe93Gli1bsmbNmnR3d+/xOmPmjSJJcvzxx2flypX50pe+lD/5kz/Jpk2bdvxs27Zt6ejo2Ol6fX19mTNnzqhl9Xo9/7HxmULzBQAAAAAAAADYmS1btox608f3v//9DAwM5BWveEW6u7sza9as3HXXXbnhhhuyffv2PProo0mSV7ziFTvqI972trfl3HPPzaWXXpokmTt3bs4555y89rWvzQ9/+MPMnz8/7e3tOf/88/c4rzFTKDI0NLRjQzs7OzN58uRs27YtGzZsyObNm/OKV7xil+vu+nuAniwoWwAAAAAAAACAXbvzzjtz6qmn7vj7yAsw3vOe9+RjH/tYvv71ryd59qUaL3TLLbdk5syZSZI1a9bk8ccf3/Gzhx9+OOeff37+8z//M6961avy1re+NXfccUde9apX7XFeY6ZQZGBgIHPnzk17e3smTJiQq6++Ovfff3/e8Y53pFar5a//+q8bnSIAAAAAAAAAwB6ZOXNmhoeHd/nzl/rZiB/84Aej/v7FL37xp01r7BSK9PT0ZMWKFaOWdXd351/+5V8alBEAAAAAAAAAQGtpa3QCAAAAAAAAAACUQ6EIAAAAAAAAAEBFKBQBAAAAAAAAAKiIcY1OAAAAAAAAAACqrlarNToFKsIbRQAAAAAAAAAAKkKhCAAAAAAAAABARSgUAQAAAAAAAACoCIUiAAAAAAAAAAAVURseHh5udBIAAAAAAAAAUGW//Hd3NjoFduP69/18o1PYL7xRBAAAAAAAAACgIsY1OoEiLbv38cLaPuPoriTJIxuGCosx5YCOJMnqh7cU0v6xr5mcpJxteGpbYSEy4bmj+Lq71xUWY9Zx3UnK2Y5VD24sLEbP1M4kyRNbtxfS/oGT2pOUc0y1ynFbVF8kz/dH0f3dKuOijO0oI0ZRY2NkXJRxzJpDdm+kv1vhGqGMGGVcEz7w2JOFxTjqoIlJmnv8jfRFGfN5q/R3Gde2Rfd3GX2xaNVDhcW4qOewJMm8G+8rLMbCd05LUtx8njw/pxfVHyN90SrXzmX0xazP3lVYjOsuPCFJ8f3dzPcxL4zRKvcAzTzfjsy1ZZxbW+W6sxXuK8uYa8vo7zLmqTKOqVZ4TljGMVVGf3v+tWft6+/dK7O/i7p3Lfq+NWmNZ3jJ88ctwN5q6UIRAAAAAAAAAGgGtVqjM6AqfPUMAAAAAAAAAEBFKBQBAAAAAAAAAKgIhSIAAAAAAAAAABWhUAQAAAAAAAAAoCIUigAAAAAAAAAAVIRCEQAAAAAAAACAilAoAgAAAAAAAABQEeManQAAAAAAAAAAVF1brdboFKiIMfNGkfXr1+fkk0/OKaecktNOOy3r1q3Lhz/84RxyyCGZO3duo9MDAAAAAAAAAGh6Y+aNIl1dXbn99tvT1taWxYsXZ9GiRfnQhz6UM888MzfeeGOj0wMAAAAAAAAAaHpjplCkvb19x583b96cY445JgcffHC+973v7XbdwcHBDA4OjlpWr9f3e44AAAAAAAAAAM1szHz1TJIMDAzkxBNPzBVXXJETTjhhj9fr7+9PZ2fnqE9/f3+BmQIAAAAAAAAANJ8xVShy/PHHZ+XKlVmwYMFeFXr09fVl48aNoz59fX0FZgoAAAAAAAAA0HzGzFfPDA0NpaOjI0nS2dmZSZMm7fG69Xp9F181s3k/ZQcAAAAAAAAA0PzGTKHIwMBA5s6dm/b29kyYMCFXX311/uIv/iKf//zn8/jjj+eRRx7JkiVLGp0mAAAAAAAAAEDTGjOFIj09PVmxYsWoZR/84AfzwQ9+sEEZAQAAAAAAAEA5arVGZ0BVtDU6AQAAAAAAAAAAyqFQBAAAAAAAAACgIhSKAAAAAAAAAABUhEIRAAAAAAAAAICKUCgCAAAAAAAAAFARCkUAAAAAAAAAACpCoQgAAAAAAAAAQEUoFAEAAAAAAAAAqIja8PDwcKOTAAAAAAAAAIAqm/XZuxqdArtx3YUnNDqF/cIbRQAAAAAAAAAAKmJcoxMo0qoHNxbWds/UziTJE1u3FxbjwEntSZJHNgwV0v6UAzqSJKsf3lJI+0ly7GsmJyluG5Lnt2PRqocKi3FRz2FJkqe2FRYiE54bjQtvWVNYjHmnHpkkeeCxJwtp/6iDJhba/gtjlHFMldHfZWxH0XNIGfupjPFdxlxYxr4q6tw3ct5rlf1UxjzVzNsxsg3L7n28kPaT5Iyju5I09zz4whhlXHeWcdwWdW1b9HVtUu61bRn3AGX093V3ryuk/VnHdScppy/KuHYu8v/kGfk/UJp5X43spzLGRVHHbPL8cVvGfH7SJ28rLMYdHz4lSfH93Srn7zKu18oYG2Uct0XNU2WeW8vo73k33ldYjIXvnJakuY/bMq9zWuWZThnXCEXfV5YxvlvlWUUZ9+Bl9EfRc0gZ571mnmuTcu/BW6G/W2WeAthb3igCAAAAAAAAAFARCkUAAAAAAAAAACpCoQgAAAAAAAAAQEUoFAEAAAAAAAAAqAiFIgAAAAAAAAAAFTGu0QkAAAAAAAAAQNXVao3OgKrwRhEAAAAAAAAAgIpQKAIAAAAAAAAAUBEKRQAAAAAAAAAAKmJcoxMYsX79+px77rkZP3582tvbc8011+T9739/nnjiiSTJX/3VX+VNb3pTg7MEAAAAAAAAAGheY6ZQpKurK7fffnva2tqyePHiLFq0KH/xF3+RqVOn5r777svv//7v54Ybbmh0mgAAAAAAAAAATWvMFIq0t7fv+PPmzZtzzDHHZOrUqUmSjo6OtLXt+ltyBgcHMzg4OGpZvV4vJlEAAAAAAAAAgCa16+qLBhgYGMiJJ56YK664IieccMKO5XPnzs3cuXN3uV5/f386OztHffr7+8tIGQAAAAAAAACgaYyZN4okyfHHH5+VK1fmS1/6Uvr7+3PVVVdl/vz5OemkkzJjxoxdrtfX15c5c+aMWlav13P3I08VnTIAAAAAAAAA/NTaarVGp0BFjJlCkaGhoXR0dCRJOjs7M2nSpCxevDgPP/xwFi1a9JLr1uv1XXzVjEIRAAAAAAAAAIARY6ZQZGBgIHPnzk17e3smTJiQz3zmMzniiCPyC7/wC5k5c2aOOOKIfPazn210mgAAAAAAAAAATWvMFIr09PRkxYoVo5YNDQ01KBsAAAAAAAAAgNbT1ugEAAAAAAAAAAAoh0IRAAAAAAAAAICKUCgCAAAAAAAAAFARCkUAAAAAAAAAACpiXKMTAAAAAAAAAICqqzU6ASrDG0UAAAAAAAAAACpCoQgAAAAAAAAAQEUoFAEAAAAAAAAAqIja8PDwcKOTAAAAAAAAAIAqm/25f290CuzGF9/zpkansF94owgAAAAAAAAAQEWMa3QCRXpkw1BhbU85oKO0GE9s3V5I+wdOai+0/RfGWP3wlsJiHPuayUmShbesKSzGvFOPTJI8ta2wEJnw3Ghc9eDGwmL0TO1Mksy78b5C2l/4zmlJytmG6+5eV1iMWcd1JylnfJdxTBUVo+j2Xxhj0aqHCotxUc9hScqZp8rYVw889mQh7R910MRC239hjDL2U6v0d1HzVJnXOc08LpJyx0YZMYq+7lx27+OFtJ8kZxzdVVqMMsZGM19PjVxLlXG9VsZ+euNHlhUW455PnJGknHuZovbVyH4q476yjHnQ+H5pI2OvjPN3qxxTZWxHGcdUK8whZRy3RT1vSZ5/5lLGvir6mrBV7itb5ZlqUTFG2i9jP5Vx3VnGdpQxhzTz2ChzXLTKs4pm/veMVrtGKOM+A2BveaMIAAAAAAAAAEBFtPQbRQAAAAAAAACgGdRqtUanQEV4owgAAAAAAAAAQEUoFAEAAAAAAAAAqAiFIgAAAAAAAAAAFaFQBAAAAAAAAACgIhSKAAAAAAAAAABUhEIRAAAAAAAAAICKUCgCAAAAAAAAAFARY6ZQZP369Tn55JNzyimn5LTTTsu6dety6aWX5pRTTskv/MIv5Lrrrmt0igAAAAAAAAAATW1coxMY0dXVldtvvz1tbW1ZvHhxFi1alMsvvzwdHR3ZvHlzfvEXfzGzZs1qdJoAAAAAAAAAsN+11RqdAVUxZgpF2tvbd/x58+bNOeaYY9LR0ZEk2bp1a97whjc0KjUAAAAAAAAAgJYwZgpFkmRgYCAXX3xxNmzYkKVLlyZJZs+enVtuuSULFy7c5XqDg4MZHBwctaxerydRcgUAAAAAAAAAMKKt0Qm80PHHH5+VK1dmwYIF6e/vT5J88YtfzPe+9738yZ/8SZ555pmdrtff35/Ozs5Rn5H1AQAAAAAAAAB41ph5o8jQ0NCOr5rp7OzMpEmTMjg4mHq9nkmTJuVnfuZn0ta287qWvr6+zJkzZ9Syer2ex58sPG0AAAAAAAAAgKYxZgpFBgYGMnfu3LS3t2fChAm5+uqrc95552XDhg0ZGhrKH/3RH+1y3Xq9/txXzfwXTw4VmDEAAAAAAAAAQHMZM4UiPT09WbFixahlX/va1xqTDAAAAAAAAABAC9r5d7kAAAAAAAAAANByxswbRQAAAAAAAACgqmq1WqNToCK8UQQAAAAAAAAAoCIUigAAAAAAAAAAVIRCEQAAAAAAAACAilAoAgAAAAAAAABQEQpFAAAAAAAAAAAqQqEIAAAAAAAAAEBFKBQBAAAAAAAAAKiI2vDw8HCjkwAAAAAAAACAKuu95u5Gp8Bu/P1vHNfoFPYLbxQBAAAAAAAAAKiIcY1OoEirH95SWNvHvmZykuSpbYWFyITneqeoGCPtP7JhqJgASaYc0JEkeWLr9sJiHDipPUmy8JY1hcWYd+qRScrZjjL6o6ixMTIuWmU/lbEdzRyjzG1YtOqhwmJc1HNYknKOqTLOGUX39wOPPVlI+0ly1EETk5Szn1plO5bd+3gh7Z9xdFeSZNWDGwtpP0l6pnaWFqOMOaSM684yjtuiYhTd/gtjlHFMlXHOmHfjfYXFWPjOaYXGGGm/ma9rk+fHXhn3GWXsq6K2o9XulZq5L5Ln+6MV5vMyrqVa5R6gqGvC5PnrwqKPqVbpizKuQ1rhWWQZx2wzP295YYxZn72rsBjXXXhCkuLHdxnH7HV3ryssxqzjupN4vr0nRraj6Dmkme+NXxijjHNfGdtR9L81tMo9QBn3rgB7yxtFAAAAAAAAAAAqQqEIAAAAAAAAAEBFKBQBAAAAAAAAAKgIhSIAAAAAAAAAABWhUAQAAAAAAAAAoCLGNToBAAAAAAAAAKi6Wq3W6BSoCG8UAQAAAAAAAACoCIUiAAAAAAAAAAAVMWYKRdavX5+TTz45p5xySk477bSsW7cuSbJly5a86lWvyg033NDgDAEAAAAAAAAAmtuYKRTp6urK7bffnttuuy0XXHBBFi1alCT5y7/8y7z5zW9ucHYAAAAAAAAAAM1vXKMTGNHe3r7jz5s3b84xxxyTTZs2ZfXq1TnppJMamBkAAAAAAAAAQGsYM4UiSTIwMJCLL744GzZsyNKlS/MXf/EXufTSS7Ns2bKXXG9wcDCDg4OjltXr9SJTBQAAAAAAAABoOmPmq2eS5Pjjj8/KlSuzYMGCfOxjH8vdd9+dt7zlLbtdr7+/P52dnaM+/f39JWQMAAAAAAAAANA8xswbRYaGhtLR0ZEk6ezszA9+8IM8+eSTOeuss/LAAw/kH//xH3Psscfmta997YvW7evry5w5c0Ytq9fr+X8/erqU3AEAAAAAAAAAmsGYKRQZGBjI3Llz097engkTJuQLX/hCuru7kyQf+9jH8vM///M7LRJJni0K2flXzSgUAQAAAAAAAGDsa6s1OgOqYswUivT09GTFihU7/dnHPvaxcpMBAAAAAAAAAGhBbY1OAAAAAAAAAACAcigUAQAAAAAAAACoCIUiAAAAAAAAAAAVoVAEAAAAAAAAAKAiFIoAAAAAAAAAAFSEQhEAAAAAAAAAgIoY1+gEAAAAAAAAAKDqarVao1OgIrxRBAAAAAAAAACgIhSKAAAAAAAAAABURG14eHi40UkAAAAAAAAAQJVd+MXVjU6B3fjs7GMbncJ+4Y0iAAAAAAAAAAAVMa7RCRTpqW3FtT1hXHkxVj+8pZD2j33N5CTJA489WUj7SXLUQROTlLOf5t14X2ExFr5zWpLkkQ1DhcWYckBHknL6o6gYI+2XsZ+KGhfJ82Pjia3bC4tx4KT2JOXsq6K2Y2Qbyhjf1929rrAYs47rTlJOXzTzvhrZT2WMvTL2UxnjuxWuEcoYe2UcU2XEKOP8XcZ2FDUXjsyDrXItVcYcsuzexwuLccbRXUmSRaseKqT9i3oOK7T9F8YoYz+d9MnbCotxx4dPSVLOcbvqwY2FtN8ztTNJOee9Mvq7jL4oY2wUfU1YxnzezPdKSbn3fM08Nsp8blRGjDLGdzPfL7XCs5Ck3Hu+Mo6pou8ry9hPrXIPUMZ1ZzPPtyPtt8p1SKvEKPoaoVWu18p4pgOwt7xRBAAAAAAAAACgIhSKAAAAAAAAAABUREt/9QwAAAAAAAAANINaoxOgMrxRBAAAAAAAAACgIhSKAAAAAAAAAABUhEIRAAAAAAAAAICKUCgCAAAAAAAAAFARCkUAAAAAAAAAACpiXKMTGLF+/fqce+65GT9+fNrb23PNNdfk/PPPz/bt29Pe3p6LLroovb29jU4TAAAAAAAAAKBpjZlCka6urtx+++1pa2vL4sWLs2jRoiTJP/3TP2Xy5MkNzg4AAAAAAAAAoPmNmUKR9vb2HX/evHlzjjnmmCxfvjzveMc7csABB+Sv/uqv8trXvraBGQIAAAAAAABAMdpqtUanQEWMmUKRJBkYGMjFF1+cDRs2ZOnSpfnyl7+cV77ylbntttvye7/3e/n617++0/UGBwczODg4alm9Xk/a62WkDQAAAAAAAADQFNoancALHX/88Vm5cmUWLFiQ/v7+vPKVr0ySnHLKKfnhD3+4y/X6+/vT2dk56tPf319W2gAAAAAAAAAATWHMvFFkaGgoHR0dSZLOzs5MmjQpmzZtystf/vJ897vfzYEHHrjLdfv6+jJnzpxRy+r1eoYLzRgAAAAAAAAAoLmMmUKRgYGBzJ07N+3t7ZkwYUKuvvrqnHbaaZk4cWKS5Morr9zluvV6/dmvmvkvntpWWLoAAAAAAAAAAE1nzBSK9PT0ZMWKFaOW3XnnnQ3KBgAAAAAAAACg9bQ1OgEAAAAAAAAAAMqhUAQAAAAAAAAAoCLGzFfPAAAAAAAAAEBV1WqNzoCq8EYRAAAAAAAAAICKUCgCAAAAAAAAAFARCkUAAAAAAAAAACpCoQgAAAAAAAAAQEUoFAEAAAAAAAAAqAiFIgAAAAAAAAAAFVEbHh4ebnQSAAAAAAAAAFBl7/vSPY1Ogd34u197Y6NT2C+8UQQAAAAAAAAAoCLGNTqBIj2xdXthbR84qb20GE9tK6b9Cc/1flHtvzBGGftp0aqHCotxUc9hScrZjmX3Pl5YjDOO7kpS3HaMbMMDjz1ZSPtJctRBE5OU0xdlbEcZ4++RDUOFtD/lgI4k5fTFwlvWFBZj3qlHJiln7DXzfDvSF6sf3lJI+0ly7GsmJynumE2eP27fe21xVdmfOe/ZauIy+ruo/hjpi1Y5t656cGNhMXqmdiYp55xRxtgoeg5plXNGGf1dxvgrKsZI+2WcW8vYTyd98rbCYtzx4VOSlDO+iz5nlHHeK2M+L6Mv5t14X2ExFr5zWpLix3erPG9plRhlzIVF31eWMYeUEaNV7iuLfhbZKtfOZfTFrM/eVViM6y48IUnx47uM/i7jGqGM/m6Ve/Ci7ytb5ZqwVZ5vF32f0Sr/1lDGMUXrqNVqjU6BivBGEQAAAAAAAACAilAoAgAAAAAAAABQEQpFAAAAAAAAAAAqQqEIAAAAAAAAAEBFKBQBAAAAAAAAAKgIhSIAAAAAAAAAABWhUAQAAAAAAAAAoCLGNToBAAAAAAAAAKi6Wq3RGVAVY6ZQZP369Tn33HMzfvz4tLe355prrsnEiRNzySWXZP369Xnd616Xv/mbv2l0mgAAAAAAAAAATWvMFIp0dXXl9ttvT1tbWxYvXpxFixblRz/6UebNm5c3velNjU4PAAAAAAAAAKDptTU6gRHt7e1pa3s2nc2bN+eYY47Jv//7v+ev//qvM3PmzHzta19rbIIAAAAAAAAAAE1uzLxRJEkGBgZy8cUXZ8OGDVm6dGlWrlyZP/uzP8vRRx+dGTNm5KyzzsqECRNetN7g4GAGBwdHLavX6xljmwcAAAAAAAAA0FBj5o0iSXL88cdn5cqVWbBgQfr7+3PooYfmF37hFzJ58uRMmzYtjzzyyE7X6+/vT2dn56hPf39/ydkDAAAAAAAAAIxtY+aVG0NDQ+no6EiSdHZ2ZtKkSTnuuOPywAMP5IgjjsiaNWvS3d2903X7+voyZ86cUcvq9Xq2bi88bQAAAAAAAACApjFmCkUGBgYyd+7ctLe3Z8KECbn66quzadOmvO9978uTTz6Z973vfZk0adJO163X68991cxoW1WKAAAAAAAAAADsMGYKRXp6erJixYpRy7q7u3PLLbc0KCMAAAAAAAAAKEdbrdboFKiItkYnAAAAAAAAAABAORSKAAAAAAAAAABUxB599czHP/7xvW64Vqvlox/96F6vBwAAAAAAAABAMfaoUORjH/vYXjesUAQAAAAAAAAAYGzZo0KRZ555pug8AAAAAAAAAAAoWFujEwAAAAAAAAAAoBwKRQAAAAAAAAAAKmKPvnpmZ77zne/kr/7qr3LXXXdl48aNL/p6mlqtljVr1vzUCQIAAAAAAABAq6vVGp0BVbFPbxS59dZb09PTkxtuuCGHHHJIHnzwwUydOjWHHHJI1q5dm8mTJ2fGjBn7O1cAAAAAAAAAAH4KteHh4eG9XWnGjBl5/PHHc8cdd2RoaCgHHXRQbrrpppx22mlZuXJlzj777FxzzTU5++yzi8gZAAAAAAAAAFrKB77y3UanwG789a++odEp7Bf79EaRu+66KxdddFFe/vKXp729PUmyffv2JMmJJ56Yiy++OB/96Ef3X5YAAAAAAAAAAPzUxu3TSuPG5Wd+5meSJAcccEDGjx+fxx57bMfPp06dmu9+t/HVTsvufbywts84uitJ8sTW7YXFOHBSe6ExRtpf/fCWQtpPkmNfM7m0GNfdva6wGLOO606SPLWtsBCZ8NxofOCxJwuLcdRBE5Mkqx7cWEj7PVM7kySPbBgqpP0kmXJAR5Jyjqky+qKMY6qo/hjpizLmwXk33ldYjIXvnJakuefzF8YoamyMjIsytqGMcVHGHFLGdhQ9n5dxLdUq59YyYpQx/oo+Z7TK2Gvm8Z08P8aLun4euXYuYxvKmKfKuM8oY18tWvVQIe1f1HNYkua+rk2en6fK2I6Ft6wpLMa8U49MUtzYGBkXZfRFGTFa5Z6vjDmk6GuEVhnfrXLvWtS+KvP6vIz+buZ7/KT4+/yi7zGScufzMvr7jR9ZVliMez5xRpLmHhtlHlNl9HcZx20Z90tFP4tslWuEMo4pgL21T28UOeqoo3L//fcnSWq1Wl7/+tfnq1/96o6f33jjjTn44IP3T4YAAAAAAAAAAOwX+1Qo8o53vCNLlizJtm3PltnNmTMnX/nKV/K6170ur3vd6/L1r389F1988X5NFAAAAAAAAACAn84+ffXMRz/60Xzwgx9Me/uzrzN6z3vek/b29vzDP/xD2tvb80d/9Ef5rd/6rf2ZJwAAAAAAAAAAP6V9KhQZP358XvnKV45a9pu/+Zv5zd/8zf2SFAAAAAAAAABUSa1Wa3QKVMQ+ffUMAAAAAAAAAADNZ5/eKHLaaaft9ndqtVpuvvnmfWkeAAAAAAAAAIAC7FOhyDPPPPOi195s3749a9euzX/8x3/kqKOOypQpU/ZLggAAAAAAAAAA7B/7VChy66237vJnN9xwQ97//vfn8ssv39ecAAAAAAAAAAAowD4ViryUX/qlX8pv/uZv5kMf+lBuu+22PV5v/fr1OffcczN+/Pi0t7fnmmuuye/8zu9k48aNeeaZZ7J69eo88cQT+ztdAAAAAAAAAIDK2O+FIkly5JFH5oorrtirdbq6unL77benra0tixcvzqJFi3L99dcnefYNJp/73OeKSBUAAAAAAAAAoDL2e6HItm3b8qUvfSldXV17tV57e/uOP2/evDnHHHPMjr9/+ctfzq/92q/ttxwBAAAAAAAAAKponwpFfvu3f3unyzds2JA77rgjjz76aC6//PK9bndgYCAXX3xxNmzYkKVLlyZJnnnmmdxyyy358z//812uNzg4mMHBwVHL6vX6XscHAAAAAAAAAGhl+1Qosnz58tRqtVHLarVaDjzwwLz1rW/Ne9/73rz97W/f63aPP/74rFy5Ml/60pfS39+fq666Kt/61rdy0kknZfz48btcr7+/P5dddtmoZfPnz89bzrt0r3MAAAAAAAAAgLK1NToBKmOfCkV+8IMf7Oc0kqGhoXR0dCRJOjs7M2nSpCR79rUzfX19mTNnzqhl9Xo9Kx7cvN/zBAAAAAAAAABoVvtUKPL5z38+M2bMyOGHH77Tn//gBz/IihUrcsEFF+xxmwMDA5k7d27a29szYcKEXH311XnmmWdy6623vuTXziTPFoXs/KtmFIoAAAAAAAAAAIzYp0KRCy+8MH//93+/y0KRlStX5sILL9yrQpGenp6sWLHiRcvvueeefUkRAAAAAAAAAID/Yp++5mh4ePglf/6Tn/wk48btUw0KAAAAAAAAAAAF2eNqju985zsZGBjY8fdvfetb2bZt24t+b8OGDbnqqqvysz/7s/slQQAAAAAAAAAA9o89LhT56le/mssuuyxJUqvV8jd/8zf5m7/5m53+7gEHHJDPf/7z+ydDAAAAAAAAAAD2iz0uFHn/+9+fX/qlX8rw8HB6enry8Y9/PGefffao36nVannZy16WI4880lfPAAAAAAAAAACMMXtczdHd3Z3u7u4kyS233JI3vOENedWrXlVYYgAAAAAAAABQFbVardEpUBFt+7LSsccem3Xr1u3y56tXr84TTzyxz0kBAAAAAAAAALD/7VOhyH//7/8973//+3f584svvjhz587d56QAAAAAAAAAANj/9qlQZPny5XnXu961y5+fc845uemmm/Y5KQAAAAAAAAAA9r99KhT50Y9+lK6url3+/JWvfGUee+yxfU4KAAAAAAAAAID9rzY8PDy8tysdccQROeuss/LpT396pz+/+OKL80//9E956KGHfuoEAQAAAAAAAKDV/bevfa/RKbAbf/krr290CvvFPr1R5Fd+5VeyaNGifP3rX3/Rz66//vp89rOfzbnnnvtTJwcAAAAAAAAAwP6zT28U2bhxY9761rfmu9/9bo477ri88Y1vTJLcc889GRgYyBve8IbcfvvtOeCAA/Z3vntl0ari3mhyUc9hSZIntm4vLMaBk9qTJKse3FhI+z1TO5OUsw1PbSssRCaMe/a/1929rrAYs47rTlLOvlr98JbCYhz7msmFxhhpv4z99MBjTxYW46iDJiZJHtkwVFiMKQd0JClnbBS1r8rcT7M+e1dhMa678IQkrdPfy+59vJD2zzi6q9D2XxijjL4oYzvK6O+i5/MyrqXKmM9bJUYZx1RRMUbaL+OYKuNaqox5qqh7gOT5+4Ci+qPMvijjmHrvtfcUFuMz5z17L13GMVV0f5cxR5Wxn8o4bhfesqawGPNOPTJJ8deEZdzzldHfrfI8pJn7o8y+KCNGGfeuzXxMlTm+W+W8ZHy/tDKfp5ZxTJVxD9DMz23LvP9ulfNSM8+FI3NIq5wzypinaB3eKDL2tcobRcbty0qdnZ254447snDhwnzlK1/JddddlyQ58sgj88d//MeZN29eBgcH92uiAAAAAAAAANCq2mqNzoCq2KevnkmSl73sZbnsssuyevXqbN26NVu3bs2//uu/5phjjsmv//qvp7u7e3/mCQAAAAAAAADAT2mf3ijyQsPDw7n55ptzzTXX5Ktf/Wo2b96crq6u/Pqv//r+yA8AAAAAAAAAgP1knwtF/u3f/i3XXHNNvvjFL+bRRx9NrVbL7Nmzc+mll+akk05Krea9OAAAAAAAAAAAY8leFYo8+OCDueaaa3LNNdfk/vvvz5QpU/Ibv/Eb6enpyXnnnZd3v/vdmT59elG5AgAAAAAAAADwU9jjQpHp06dn1apV6erqyqxZs/KZz3wmb33rW5Mka9asKSxBAAAAAAAAAAD2jz0uFFm5cmWOOOKIXH755XnnO9+ZceP2+VtrAAAAAAAAAABogLY9/cUrrrgi3d3dOffcc3PwwQfn4osvzi233JLh4eEi8wMAAAAAAAAAYD/Z49eCfOADH8gHPvCBfP/7388111yTL3zhC/m7v/u7HHzwwTn11FNTq9VSq9X2OZH169fn3HPPzfjx49Pe3p5rrrkm//Iv/5JPfvKTaWtrS29vby699NJ9bh8AAAAAAAAAxqq2ff/ndtgre/xGkRFHHHFEPvKRj+S73/1u/vVf/zWzZ8/OrbfemuHh4XzgAx/I+9///txwww156qmn9qrdrq6u3H777bnttttywQUXZNGiRfnkJz+Zm2++Od/+9rfzt3/7t3nmmWf2Nl0AAAAAAAAAAJ6z14UiL/TmN785l19+ef7jP/4jS5cuzZlnnplrr70273rXu9LV1bVXbbW3t6et7dl0Nm/enGOOOSbTpk3Lpk2b8tRTT2XixIk7fg4AAAAAAAAAwN7b46+eeSltbW05/fTTc/rpp+eqq67K9ddfny984Qt73c7AwEAuvvjibNiwIUuXLs24cePS09OT9vb2fOQjH9nleoODgxkcHBy1rF6v73V8AAAAAAAAAIBWtt9f0TFhwoScd955uf766/d63eOPPz4rV67MggUL0t/fnw9/+MNZvXp1Hnjggfz93/99nnjiiZ2u19/fn87OzlGf/v7+n3ZTAAAAAAAAAABayn55o8j+MDQ0lI6OjiRJZ2dnJk2alI6OjvzMz/xMOjo6Mm7cuDz11FM7Xbevry9z5swZtaxer+d/372+8LwBAAAAAAAAAJrFmCkUGRgYyNy5c9Pe3p4JEybk6quvzpve9Ka89a1vTXt7e84444x0d3fvdN16ve6rZgAAAAAAAAAAdmPMFIr09PRkxYoVo5b19vamt7e3QRkBAAAAAAAAALSWtkYnAAAAAAAAAABAOcbMG0UAAAAAAAAAoKpqtVqjU6AivFEEAAAAAAAAAKAiFIoAAAAAAAAAAFSEQhEAAAAAAAAAgIpQKAIAAAAAAAAAUBEKRQAAAAAAAAAAKkKhCAAAAAAAAABARSgUAQAAAAAAAACoiNrw8PBwo5MAAAAAAAAAgCr7/264r9EpsBuf+qVpjU5hv/BGEQAAAAAAAACAihjX6ASKtOrBjYW13TO1M0nyyIahwmJMOaCj0BhFt//CGA889mRhMY46aGJpMZ7Yur2wGAdOak9STn8UtR0j29Aq+6mZ+yJ5fl89ta2Y9ic8dwYpqv0Xxrju7nWFxZh1XHeS1unv1Q9vKaT9Y18zOUnrjL0yzhlljI2irxHKuJYq6phNyj1ul937eGExzji6K0k5/VH0OaNVjqky5vNFqx4qLMZFPYclSd577T2FtP+Z896YpJy+WHjLmsJizDv1yCTJxHf8RWExnvzGB5M097mvzPNeq8whsz57V2ExrrvwhGf/W9D188i1cxn7qYxjqlWeVZRxv9QKc0gZMebdWNz//bnwnc/+X4tlbEfRz41aZQ5plWvCovu7jL4444o7Coux7NKTkpSzHWXcV5ZxXmqFf89o5me2SfHPjZLn91XR151l9EWrxADYW94oAgAAAAAAAABQEQpFAAAAAAAAAAAqQqEIAAAAAAAAAMB+tmLFipxzzjk55JBDUqvV8rWvfW3Uz4eHh/PHf/zH6e7uzsSJE3P66afn/vvv3227V155ZQ4//PBMmDAhJ554YlatWrVXeSkUAQAAAAAAAADYz37yk5/kuOOOy5VXXrnTny9cuDB/+Zd/mauuuiorV67My172spx55pl56qmndtnmtddemzlz5mT+/Pm56667ctxxx+XMM8/MY489tsd5KRQBAAAAAAAAANjPzj777HziE5/Iueee+6KfDQ8P58///M/zkY98JL/8y7+cn/u5n8vnP//5/PCHP3zRm0de6PLLL8/73ve+XHjhhXnDG96Qq666KpMmTcrVV1+9x3kpFAEAAAAAAACABqvVfMb6Z3BwMJs2bRr1GRwc3Kf+/v73v59HH300p59++o5lnZ2dOfHEE/Ptb397p+sMDQ3l3/7t30at09bWltNPP32X6+yMQhEAAAAAAAAAgN3o7+9PZ2fnqE9/f/8+tfXoo48mSV796lePWv7qV796x8/+q8cffzzbt2/fq3V2Ztxe5goAAAAAAAAAUDl9fX2ZM2fOqGX1er1B2ey7MfNGkfXr1+fkk0/OKaecktNOOy3r1q3LkiVLctJJJ2XmzJn57ne/2+gUAQAAAAAAAICKqtfrefnLXz7qs6+FIgcffHCSZ2slXmj9+vU7fvZfdXV1pb29fa/W2ZkxUyjS1dWV22+/PbfddlsuuOCC/O3f/m0+9alP5Vvf+lauueaa/OEf/mGjUwQAAAAAAAAA+KkdccQROfjgg3PzzTfvWLZp06asXLky06dP3+k6HR0defOb3zxqnWeeeSY333zzLtfZmTFTKNLe3p62tmfT2bx5c17/+tdnypQpGT9+fKZMmZLvfe97Dc4QAAAAAAAAAGDPbNmyJQMDAxkYGEiSfP/738/AwEAeeuih1Gq1fOhDH8onPvGJfP3rX8/q1atzwQUX5JBDDsmv/Mqv7GjjbW97W6644oodf58zZ07+7u/+Lp/73Ody77335pJLLslPfvKTXHjhhXuc17j9tYH7w8DAQC6++P9n7+/D7SrrO/H/vcMhOwkPJ1RCDU9KwGIqCFWMAsYEnFQil7UiJNWZobVQv9NCtb9oYw9lBjXf6Za01KmD2n5HkDq5mpqk1LYXrW1oiUlAJqZiCoXaBBqQXGBgJE9D2CHH8/sDTsIphMg0694P6/Xqta6es0/W+nzWutd9rwc+3vv/ybZt2/I3f/M3abVa2b59ex599NFs2rQpzz77bA4//PAXrddut9Nut8d81ovfAwQAAAAAAAAA9If169fnggsu2Pf7ggULkiQ///M/n1tuuSULFy7M//k//ycf/vCHs23btrz97W/P17/+9UyYMGHfOg8++GCefPLJfb/Pnz8/TzzxRP7Lf/kvefzxx3P22Wfn61//en78x3/8R86rqwpFzj777Pyv//W/smzZsrRarXzmM5/Je9/73rzmNa/JW9/61pcsEkmSVquVT33qU2M+u+666/Luy/9/JdIGAAAAAAAAABhj9uzZGRkZOeDfG41GPv3pT+fTn/70Af/N5s2bX/TZ1Vdfnauvvvr/Oq+uKRTZs2dPxo8fnyQZHBzMpEmTctFFF+Wiiy7KP//zP+d3f/d3D7ju0NDQvsqbUc1mMxu2PFNpzgAAAAAAAABwKIxrNDqdAjXRNYUi3/nOd/Lxj388hx12WCZMmJCbb745v/Zrv5Z/+Id/yI/92I/l93//9w+4brPZPMBXzSgUAQAAAAAAAAAY1TWFIjNmzMjq1avHfPbf/tt/60wyAAAAAAAAAAB9aFynEwAAAAAAAAAAoAyFIgAAAAAAAAAANaFQBAAAAAAAAACgJhSKAAAAAAAAAADUhEIRAAAAAAAAAICaGOh0AgAAAAAAAABQd2Z5oBTnGgAAAAAAAABATSgUAQAAAAAAAACoCYUiAAAAAAAAAAA10RgZGRnpdBIAAAAAAAAAUGfX/OU/dzoFDuK33v0TnU7hkDCjCAAAAAAAAABATQx0OoEqLb7jwcq2vfCCU5Mkz+ytLEQmPN86VcWoevsvjLFl257KYpwweXyS/mnvdQ9tryzGjGmDSZJNW3dXsv3TjptY6fZfGKPEOSXGj7b9Ev3i0i9/u7IYKz70piRlztunnh6uLMYxkw5LUn3/LtHeJY5Tib5X4lhV3d4lrkn3PrqrshhnnnhkkjL9u8SxKtE3qr7vLNHevXwvlew/p0ocq6rOqZJjbYm2OO4Xl1UWY+vN85L09jk1ej718nUvKfucUeLZtaqxsB+uSUnZ5+9efgZIqn+WKbkPJfp3iet3P7yL7JfnsRL9u8Q1o+r3RiWO08oHnqwsxpzpxyYpc96WeP/Vy32j397p9Mu9Tj/8t4Z+aQuAV8qMIgAAAAAAAAAANaFQBAAAAAAAAACgJvr6q2cAAAAAAAAAoBc0Gp3OgLowowgAAAAAAAAAQE0oFAEAAAAAAAAAqAmFIgAAAAAAAAAANaFQBAAAAAAAAACgJhSKAAAAAAAAAADURNcViixdujRTpkxJkixfvjznnXde3vnOd+bRRx/tcGYAAAAAAAAAAL2tqwpFhoeHs3z58px00knZu3dvfvd3fzerVq3Kpz/96SxatKjT6QEAAAAAAAAA9LSuKhRZunRpLrvssowbNy4bN27M9OnTM378+Jx//vn5h3/4h06nBwAAAAAAAACVGNdoWLp86RddUygyPDycZcuWZf78+UmSp556KkcfffSYvx9Iu93Ojh07xiztdrvynAEAAAAAAAAAeknXFIosWbIk8+bNy7hxz6U0efLk7NixY9/fDzvssAOu22q1Mjg4OGZptVqV5wwAAAAAAAAA0EsGOp3AqPvvvz/33HNPlixZko0bN+a///f/ngceeCB79uzJ+vXr88Y3vvGA6w4NDWXBggVjPms2m/m9ux6tOm0AAAAAAAAAgJ7RNYUi119//b6fzznnnHzxi1/MV7/61cyePTsTJkzIH/7hHx5w3WazmWazWSJNAAAAAAAAAICe1TWFIi+0fv36JMn8+fMzf/78DmcDAAAAAAAAANAfxnU6AQAAAAAAAAAAylAoAgAAAAAAAABQE1351TMAAAAAAAAAUCeNRqczoC7MKAIAAAAAAAAAUBMKRQAAAAAAAAAAakKhCAAAAAAAAABATSgUAQAAAAAAAACoCYUiAAAAAAAAAAA1oVAEAAAAAAAAAKAmGiMjIyOdTgIAAAAAAAAA6uy//PXGTqfAQXz6Xa/rdAqHxECnEwAAAAAAAACAuhvX6HQG1EVfF4ps2rq7sm2fdtzEJMlTTw9XFuOYSYdVGmN0+1u27alk+0lywuTxScocp5UPPFlZjDnTj01SZj9KnLdVxRjd/r2P7qpk+0ly5olHFotRor1L9L+q2/uZvZVsPkky4fmrVIn+XaItShyrqvrGaL8oMUb18nFK9h+rXt6Pku1dIsaKDY9VFuPSs6Ym6Z8xpKoYJftev8Qocd6ue2h7JdufMW0wSZnr9+I7HqwsxsILTn0u1o13VxZj5dVvS1LmnFp423cr2f7ii09PUmaM6pf7kEu//O3KYqz40JuSJMf94rJKtr/15nlJ+uc9Qon29h7hR9t+vzzjVzXWJmXH26rfRfbLeF5iLCxxP1V1/y7R3v1yXfKu4uWN7kMv94uk/96pVt3e/fKcUSIGwCs1rtMJAAAAAAAAAABQhkIRAAAAAAAAAICaUCgCAAAAAAAAAFATCkUAAAAAAAAAAGpCoQgAAAAAAAAAQE0oFAEAAAAAAAAAqImBTicAAAAAAAAAAHU3rtHodArUhBlFAAAAAAAAAABqousKRZYuXZopU6YkSS6//PJMmTIlN954Y4ezAgAAAAAAAADofV311TPDw8NZvnx5TjrppCTJZz7zmVx44YXZtWtXhzMDAAAAAAAAAOh9XTWjyNKlS3PZZZdl3Ljn0jr++OM7nBEAAAAAAAAAQP/omkKR4eHhLFu2LPPnz3/F67bb7ezYsWPM0m63K8gSAAAAAAAAAKB3dU2hyJIlSzJv3rx9s4m8Eq1WK4ODg2OWVqtVQZYAAAAAAAAAAL2rawpF7r///nzlK1/JRRddlI0bN+YjH/nIj7zu0NBQtm/fPmYZGhqqMFsAAAAAAAAAgN4z0OkERl1//fX7fj7nnHPyuc99LkNDQ/nzP//zDA8P58EHH8xnP/vZl1y32Wym2Wy+xF92V5QtAAAAAAAAAEDv6ZpCkRdav359kue+UsZXyAAAAAAAAADQ7xqNTmdAXXTNV88AAAAAAAAAAFAthSIAAAAAAAAAADWhUAQAAAAAAAAAoCYUigAAAAAAAAAA1IRCEQAAAAAAAACAmlAoAgAAAAAAAABQEwpFAAAAAAAAAABqYqDTCQAAAAAAAABA3Y1rdDoD6sKMIgAAAAAAAAAANdEYGRkZ6XQSAAAAAAAAAFBn//VvN3U6BQ7iN995WqdTOCTMKAIAAAAAAAAAUBMDnU6gSis2PFbZti89a2qS5KmnhyuLccykw5IkW7btqWT7J0weX+n2Xxhj09bdlcU47biJSZKVDzxZWYw5049Nkjyzt7IQmfB8b1z30PbKYsyYNpikumM1epxK7EOJvlciRolzqqoYo9svcZycUz96jKrbu8Q1o0R7l4hRon/f++iuSrZ/5olHJumf41TivC1x31liP/phDOmX8fymdY9UFuOKGScnqa6Pj/bvqsaoZP84deVX76ssxpfmn5EkmTjzv1QWY/eaTycp87xUVYzR7ZcYz0v0ixLjVInz9m2f+UYl27/7N2Yl6Z/xvMR5W2I/SrwPqWo/Sl5b+6Ut+uE9QonrXr/07xLPGVXfE5Y4TovveLCyGAsvODVJmf1YeNt3K4ux+OLTk/R23yj5nrCXj1NS9lhV/ZzRL/edJZ6PAV4pM4oAAAAAAAAAANSEQhEAAAAAAAAAgJpQKAIAAAAAAAAAUBMDnU4AAAAAAAAAAOqukUanU6AmzCgCAAAAAAAAAFATCkUAAAAAAAAAAGpCoQgAAAAAAAAAQE0oFAEAAAAAAAAAqImuKxRZunRppkyZkp07d+bCCy/MO97xjlx44YV5+OGHO50aAAAAAAAAAEBP66pCkeHh4SxfvjwnnXRSDj/88CxZsiSrV6/OJz7xifz2b/92p9MDAAAAAAAAAOhpXVUosnTp0lx22WUZN25cJkyYkOOPPz5JMn78+Iwb11WpAgAAAAAAAAD0nIFOJzBqeHg4y5Yty9e+9rXccMMN+z7fs2dPPvnJT+ZLX/rSAddtt9tpt9tjPms2m5XlCgAAAAAAAACH0rhGpzOgLrpmmo4lS5Zk3rx5L5o55MMf/nB+5Vd+Ja973esOuG6r1crg4OCYpdVqVZ0yAAAAAAAAAEBP6ZoZRe6///7cc889WbJkSTZu3JiPfOQjedWrXpVp06Zl/vz5L7vu0NBQFixYMOazZrOZv/inH1SZMgAAAAAAAABAT+maQpHrr79+38/nnHNOfv3Xfz2nnHJK3v72t+fv/u7vcu655x5wlpBms+mrZgAAAAAAAAAADqJrCkVeaP369UmSvXv3djgTAAAAAAAAAID+Ma7TCQAAAAAAAAAAUIZCEQAAAAAAAACAmlAoAgAAAAAAAABQEwOdTgAAAAAAAAAA6m5co9MZUBdmFAEAAAAAAAAAqAmFIgAAAAAAAAAANaFQBAAAAAAAAACgJhSKAAAAAAAAAADUhEIRAAAAAAAAAICaaIyMjIx0OgkAAAAAAAAAqLPFdzzY6RQ4iIUXnNrpFA4JM4oAAAAAAAAAANTEQKcTqNK6h7ZXtu0Z0waTJE89PVxZjGMmHZYkuffRXZVs/8wTj0zSP8dp4W3frSzG4otPT1JmP0q0R9XnVInj9MzeykJkwvMjo/14eSX34aZ1j1QW44oZJydJNm3dXVmM046bmKTMsdqybU8l2z9h8vgkZcaoqvYhKbsfJdq76vG8qu2/MEYv94tk/znVL8eq6mtGL9/nJPvbosQ1Y+UDT1YWY870Y5NUP4b0y3Eq8ZxRom9c+dX7Ktn+l+afkaR/xtoSzwBVtUWyvz364ZmvxDlVYj9KxFix4bHKYlx61tQk1Y1TJe+dS1yXSrRFL5+3o9svcf3ul3Gql59dR/tevzzzldiPEmNIL19fjSE/upL3OlXfI/RL/y7xLAPwSvV1oQgAAAAAAAAA9IJGo9HpFKgJXz0DAAAAAAAAAFATCkUAAAAAAAAAAGpCoQgAAAAAAAAAQE0oFAEAAAAAAAAAqAmFIgAAAAAAAAAANaFQBAAAAAAAAACgJhSKAAAAAAAAAADURNcViixdujRTpkxJkrz//e/PrFmz8ta3vjWrV6/ucGYAAAAAAAAAUI1xDUu3L/1ioNMJvNDw8HCWL1+ek046KclzRSPjx4/P5s2bc+WVV+b222/vcIYAAAAAAAAAAL2rq2YUWbp0aS677LKMG/dcWuPHj0+S7Ny5M2eccUYnUwMAAAAAAAAA6HldUygyPDycZcuWZf78+WM+f8c73pE5c+bk3e9+9wHXbbfb2bFjx5il3W5XnTIAAAAAAAAAQE/pmkKRJUuWZN68eftmExm1evXqrFu3Lp/4xCcOuG6r1crg4OCYpdVqVZ0yAAAAAAAAAEBP6ZpCkfvvvz9f+cpXctFFF2Xjxo351V/91Tz77LNJkiOPPDJHHnnkAdcdGhrK9u3bxyxDQ0OlUgcAAAAAAAAA6AkDnU5g1PXXX7/v53POOSe//du/nTlz5iR57mtpfuu3fuuA6zabzTSbzZf4yzOHOk0AAAAAAAAAgJ7VNYUiL7R+/fokyapVqzqbCAAAAAAAAABAH+nKQhEAAAAAAAAAqJNGo9MZUBfjOp0AAAAAAAAAAABlKBQBAAAAAAAAAKgJhSIAAAAAAAAAADWhUAQAAAAAAAAAoCYUigAAAAAAAAAA1IRCEQAAAAAAAACAmlAoAgAAAAAAAABQEwOdTgAAAAAAAAAA6m5co9HpFKiJxsjIyEinkwAAAAAAAACAOvtva/6l0ylwEL8285ROp3BI+OoZAAAAAAAAAICa6Ouvntm0dXdl2z7tuIlJki3b9lQW44TJ45NUtx+j+/DU08OVbD9Jjpl0WLEYKzY8VlmMS8+amqTMftz76K7KYpx54pFJknUPba9k+zOmDSYp0y+e2VtZiEx4fmTsl75RVXuMtkWJfeiX8bzEeVvVGDI6fpQYo3q5XyRl2/umdY9Usv0rZpycJFn5wJOVbD9J5kw/NkmZtigRo6pra7L/+lpiLKyq/432vRLnVInjVCJGiXOqqvvn0XvnEvfnJdpi4W3frSzG4otPT1JmP6rqf6N9r8R1r1/GkMV3PFhZjIUXnPrc/6/ovB09Z/vlWalfYvTyPVvJ58oS94Ql+ncvn7cl332VuC6ViFHinKq6f5c4Tr38rJSUff9Voj2qPqd6+d45KXv/3MvvXEq2dy//d75k/34AvFJmFAEAAAAAAAAAqAmFIgAAAAAAAAAANaFQBAAAAAAAAACgJhSKAAAAAAAAAADUhEIRAAAAAAAAAICaGOh0AgAAAAAAAABQd+Manc6AujCjCAAAAAAAAABATSgUAQAAAAAAAACoia4rFFm6dGmmTJmy7/eHH344zWYz9913XwezAgAAAAAAAADofV1VKDI8PJzly5fnpJNO2vfZ4sWLc/7553cwKwAAAAAAAACA/tBVhSJLly7NZZddlnHjnkvrX/7lX9JoNHLyySd3ODMAAAAAAAAAgN7XNYUiw8PDWbZsWebPn7/vs+uvvz4f//jHD7puu93Ojh07xiztdrvKdAEAAAAAAAAAek7XFIosWbIk8+bN2zebyIMPPpgkee1rX3vQdVutVgYHB8csrVarynQBAAAAAAAAAHrOQKcTGHX//ffnnnvuyZIlS7Jx48a8733vy+DgYC666KLce++92bRpU26//fZMmDDhResODQ1lwYIFYz5rNpv53vYflkofAAAAAAAAAP6vNRqdzoC66JpCkeuvv37fz+ecc07Wr1+/7/df+IVfyMc//vGXLBJJnisKaTabL/GX3Yc6TQAAAAAAAACAntU1hSIv9MIikSS55ZZbOpMIAAAAAAAAAEAfGdfpBAAAAAAAAAAAKEOhCAAAAAAAAABATSgUAQAAAAAAAACoCYUiAAAAAAAAAAA1oVAEAAAAAAAAAKAmBjqdAAAAAAAAAADU3bg0Op0CNWFGEQAAAAAAAACAmlAoAgAAAAAAAABQEwpFAAAAAAAAAABqojEyMjLS6SQAAAAAAAAAoM4+f+fmTqfAQVx1/ms7ncIhYUYRAAAAAAAAAICaGOh0AlVa99D2yrY9Y9pgkuSZvZWFyITnW+epp4cr2f4xkw5LkmzZtqeS7SfJCZPHJ0k2bd1dWYzTjpuYJLn30V2VxTjzxCOTlGnvEudtVW0+2t5VnbPJ/vO2xDlVom+UOFZVjyEl+sVN6x6pLMYVM05OUqYtShyrqsbC0XGwX/pFibYoEaPq8bxEe5eIsWLDY5XFuPSsqUnKXL/74ZpR4n5t8R0PVhZj4QWnJumf87bqa0aJ+7WVDzxZWYw5049NUmY/SowhVe3H6D6UuO6VaO8S/bvEflz51fsq2f6X5p+RpLevSS+MUaJ/90vf8Jzx8kbPqar6XrK///XDc0aJe0Ln1MFVfU6VfDYu8QzQL++/evl9yOj2++X63S/jVD/8t4YSMUpc+wBeKTOKAAAAAAAAAADURF/PKAIAAAAAAAAAvaDR6HQG1IUZRQAAAAAAAAAAakKhCAAAAAAAAABATSgUAQAAAAAAAACoCYUiAAAAAAAAAAA1oVAEAAAAAAAAAKAmFIoAAAAAAAAAANRE1xWKLF26NFOmTEmSvO51r8vs2bMze/bsrFy5ssOZAQAAAAAAAAD0toFOJ/BCw8PDWb58eU466aQkyeDgYFatWtXZpAAAAAAAAACgYuManc6AuuiqGUWWLl2ayy67LOPGPZfWrl27MmvWrHzwgx/MD37wgw5nBwAAAAAAAADQ27qmUGR4eDjLli3L/Pnz931255135hvf+EYuuuiiXHfddQdct91uZ8eOHWOWdrtdIm0AAAAAAAAAgJ7RNYUiS5Ysybx58/bNJpIkr3rVq5Ikl156aTZs2HDAdVutVgYHB8csrVar8pwBAAAAAAAAAHpJ1xSK3H///fnKV76Siy66KBs3bsyv/Mqv7JsVZM2aNTnttNMOuO7Q0FC2b98+ZhkaGiqVOgAAAAAAAABATxjodAKjrr/++n0/n3POObnuuuty3nnn5Ygjjkiz2czNN998wHWbzWaazeZL/OWZCjIFAAAAAAAAAOhNXVMo8kLr169Pkvz93/99hzMBAAAAAAAAAOgfXfPVMwAAAAAAAAAAVEuhCAAAAAAAAABATXTlV88AAAAAAAAAQJ2MazQ6nQI1YUYRAAAAAAAAAICaUCgCAAAAAAAAAFATCkUAAAAAAAAAAGpCoQgAAAAAAAAAQE0oFAEAAAAAAAAAqAmFIgAAAAAAAAAANdEYGRkZ6XQSAAAAAAAAAFBn/9/dD3c6BQ7iw297TadTOCQGOp0AAAAAAAAAANRdo9HpDKiLvi4UeWZvddue8PyRe+rp4cpiHDPpsCTJlm17Ktn+CZPHJymzD5u27q4sxmnHTUySrNjwWGUxLj1rapLq2iLZ3x7rHtpeWYwZ0waTVH9Oleh7JdqiRAxjyMsb3YcS/bvEeVsiRlXj7ehYW2I8L9H3SuyH9v7RYvTLfchN6x6pLMYVM05O0tvXpdG2uPfRXZVsP0nOPPHIJMnKB56sLMac6ccmKdMWJY5VVfedo/ecJfbhbZ/5RmUx7v6NWUnK9O8S41RV7THaFiXG8xLPSiVizLnx7spirLz6bUmShbd9t5LtL7749CS9/RyT9N89YS9fX0evrf1yTpXo3738zqXku68S51S/XPuqfq4scc4uvuPBymIsvODUJGXau8SzTC/3jZLHqV+e+Uq0d9XPGSXaopevrcn+/QB4pcZ1OgEAAAAAAAAAAMpQKAIAAAAAAAAAUBMKRQAAAAAAAAAAakKhCAAAAAAAAABATSgUAQAAAAAAAACoCYUiAAAAAAAAAAA1MdDpBAAAAAAAAACg7sY1Gp1OgZowowgAAAAAAAAAQE10XaHI0qVLM2XKlCTJo48+mp/5mZ/JBRdckOuuu67DmQEAAAAAAAAA9Lau+uqZ4eHhLF++PCeddFKS5Nd//dfzxS9+MSeccEKHMwMAAAAAAAAA6H1dNaPI0qVLc9lll2XcuHF59tlns3nz5nzsYx/LhRdemLvuuqvT6QEAAAAAAAAA9LSumVFkeHg4y5Yty9e+9rXccMMNefLJJ/Od73wnX/3qVzN+/Pi85z3vybe+9a2XXLfdbqfdbo/5rNlsJoc1S6QOAAAAAAAAANATumZGkSVLlmTevHkZN+65lCZPnpzTTjstJ598cl796lfn8MMPz969e19y3VarlcHBwTFLq9UqmT4AAAAAAAAAQNfrmhlF7r///txzzz1ZsmRJNm7cmE984hN51atelW3btuXwww9Pu93OwMBLpzs0NJQFCxaM+azZbGakROIAAAAAAAAAAD2iawpFrr/++n0/n3POOfnc5z6Xu+66K+95z3uyZ8+efOpTnzrgus1m87mvmvlXnnnpCUgAAAAAAAAAoKs0Gp3OgLromkKRF1q/fn2S5LzzzsuaNWs6nA0AAAAAAAAAQH8Y1+kEAAAAAAAAAAAoQ6EIAAAAAAAAAEBNKBQBAAAAAAAAAKgJhSIAAAAAAAAAADWhUAQAAAAAAAAAoCYUigAAAAAAAAAA1MRApxMAAAAAAAAAgLozywOlONcAAAAAAAAAAGpCoQgAAAAAAAAAQE00RkZGRjqdBAAAAAAAAADU2S3feqTTKXAQv/CWkzudwiFhRhEAAAAAAAAAgJoY6HQCVdq0dXdl2z7tuIlJki3b9lQW44TJ45Mkz+ytZvsTnm/9p54eriZAkmMmHZakun1I9u/HTeuqq7C7YsZzlWEl9mPFhscqi3HpWVOTVNc3RvtFiXOql/teUrb/VRWjZP++9MvfrizGig+9KUmZa0aJY3Xvo7sq2f6ZJx6ZpMxxKtEv1j20vbIYM6YNJinT3lWNhaPj4MoHnqxk+0kyZ/qxScqM5yX2o8R5W1X/Tvb38arvO0u0RYkYJfp3if1YfMeDlWx/4QWnJilzzpa4d37NR/6ishgPf+49Scocq6rvETwrHdzovc6VX72vshhfmn9GpTFGt98vz0r9sh8lxpCq7zv7pb1L9O9+eM7o5fvaRP/+UZXs3wtv+25lMRZffHqSMvtR4j6kl2OMbr/Efwfo5Xe2L4xRor2rukcveX/eL+87AV4pM4oAAAAAAAAAANSEQhEAAAAAAAAAgJpQKAIAAAAAAAAAUBMDnU4AAAAAAAAAAOqu0Wh0OgVqwowiAAAAAAAAAAA1oVAEAAAAAAAAAKAmFIoAAAAAAAAAANSEQhEAAAAAAAAAgJpQKAIAAAAAAAAAUBNdVyiydOnSTJkyJbt3787s2bMze/bszJgxIz/1Uz/V6dQAAAAAAAAAAHraQKcTeKHh4eEsX748J510UiZOnJhVq1YlSW655ZY8/PDDnU0OAAAAAAAAAKDHddWMIkuXLs1ll12WcePGprV8+fLMmzfvgOu12+3s2LFjzNJut6tOFwAAAAAAAAAOiYal65d+0TWFIsPDw1m2bFnmz58/5vNt27bl8ccfz/Tp0w+4bqvVyuDg4Jil1WpVnTIAAAAAAAAAQE/pmq+eWbJkSebNm/ei2UT+7M/+LO9973tfdt2hoaEsWLBgzGfNZjPf2/7DQ54nAAAAAAAAAECv6poZRe6///585StfyUUXXZSNGzfmIx/5SJKDf+1M8lxRyNFHHz1maTabJdIGAAAAAAAAAOgZXTOjyPXXX7/v53POOSef+9znsn379jz++ON5/etf38HMAAAAAAAAAAD6Q9fMKPJC69evT5IMDg7u+xkAAAAAAAAAgH+briwUAQAAAAAAAADg0FMoAgAAAAAAAABQEwOdTgAAAAAAAAAA6m5co9HpFKgJM4oAAAAAAAAAANSEQhEAAAAAAAAAgJpQKAIAAAAAAAAAUBMKRQAAAAAAAAAAakKhCAAAAAAAAABATTRGRkZGOp0EAAAAAAAAANTZkr9/tNMpcBD/4c0ndjqFQ8KMIgAAAAAAAAAANTHQ6QSqtGnr7sq2fdpxE5Mkz+ytLEQmPN869z66q5Ltn3nikUmSLdv2VLL9JDlh8vgkyVNPD1cW45hJhyVJ1j20vbIYM6YNJinT3iX2o6o2L9neJc7bEu1dIkZV7THaFr08Dib7x8Jebotkf3tUde0bve65ZhxcyWtG1eP54jserGT7SbLwglOTlDlOJe4JS4xTvXx9HT2nSrRFiRglxsIVGx6rLMalZ01Nkiy87buVbH/xxacnSW5a90gl20+SK2acXCzGnBvvrizGyqvflqTMeVvVsRo9Tv0ynpcYa6vqe8n+/lfVNXz0+l3iOPXL/Xm/vEeoKkbJe+cSMfrl/rnq9wj90vdK7MfKB56sLMac6ccmqb5/l7h37pe+d+VX76ssxpfmn5Gkt+/ZRu/XSjwr9ct9Zy8/u462RYnj1C9tQf9odDoBasOMIgAAAAAAAAAANaFQBAAAAAAAAADgEHrta1+bRqPxouWqq656yX9/yy23vOjfTpgwoZLc+vqrZwAAAAAAAAAASvvWt76V4eH9X3F13333Zc6cObnssssOuM7RRx+d7353/9fWNhrVfCGRQhEAAAAAAAAAgINot9tpt9tjPms2m2k2my/6t1OmTBnz+2c+85mceuqpmTVr1gG332g08upXv/rQJPsyfPUMAAAAAAAAAMBBtFqtDA4OjllardZB19uzZ0+WLFmSX/zFX3zZWUJ27dqV17zmNTnppJPy3ve+N//4j/94KNPfx4wiAAAAAAAAAAAHMTQ0lAULFoz57KVmE/nXvva1r2Xbtm35hV/4hQP+m9NPPz0333xz3vjGN2b79u35nd/5nZx33nn5x3/8x5x44on/1tTHUCgCAAAAAAAAAHAQB/qamYO56aabMnfu3Bx//PEH/Dfnnntuzj333H2/n3feeZk+fXr+4A/+IIsWLfq/yvdAFIoAAAAAAAAAAFTg4Ycfzu23355bb731Fa13+OGH56d+6qeyadOmQ56TQhEAAAAAAAAA6LBGo9MZUIUvf/nLOe6443LxxRe/ovWGh4dz77335t3vfvchz2ncId/iv9HSpUszZcqUJMnnP//5zJgxIzNmzMif/MmfdDgzAAAAAAAAAIAfzQ9/+MN8+ctfzs///M9nYGDsPB6XX355hoaG9v3+6U9/On/zN3+Thx56KN/+9rfzH/7Df8jDDz+cK6+88pDn1VUzigwPD2f58uU56aSTkiRf+MIXsmHDhuzZsyczZ87M+9///g5nCAAAAAAAAABwcLfffnseeeSR/OIv/uKL/vbII49k3Lj9c3s89dRT+aVf+qU8/vjjOeaYY/LmN785d911V37yJ3/ykOfVVYUiS5cuzWWXXZYbbrghSTJt2rTs3r07Tz/9dCZPnnzA9drtdtrt9pjPms1mlakCAAAAAAAAABzQT//0T2dkZOQl/7Zq1aoxv3/2s5/NZz/72QJZddFXzwwPD2fZsmWZP3/+vs8uvvjiTJ8+PWeffXY+9rGPHXDdVquVwcHBMUur1SqRNgAAAAAAAABAz+iaGUWWLFmSefPm7ZtaZceOHfniF7+YjRs3Zs+ePbnwwgszd+7cNBqNF607NDSUBQsWjPms2Wzme9t/WCR3AAAAAAAAAIBe0DWFIvfff3/uueeeLFmyJBs3bsyv/dqvZeLEiZkwYUIOP/zw7NmzJyMjIy9ZKNJsNg/wVTO7q08cAAAAAAAAAKBHdE2hyPXXX7/v53POOSc333xzFi9enHPPPTc//OEPc9VVV+2bbQQAAAAAAAAAgFeuawpFXmj9+vVJkoULF2bhwoUdzgYAAAAAAAAAqvVS364BVTBFBwAAAAAAAABATSgUAQAAAAAAAACoCYUiAAAAAAAAAAA1oVAEAAAAAAAAAKAmFIoAAAAAAAAAANSEQhEAAAAAAAAAgJpQKAIAAAAAAAAAUBMDnU4AAAAAAAAAAOrOLA+U0hgZGRnpdBIAAAAAAAAAUGdfvWdLp1PgIOb/1AmdTuGQUJQEAAAAAAAAAFATff3VM/c+uquybZ954pFJkk1bd1cW47TjJiZJtmzbU8n2T5g8vtLtvzDGM3srC5EJz5/FKx94srIYc6Yfm6TMserlGCX34amnhyuLccykw4rFKNE3qooxuv0S7V1iPO+X9q7qWI0ep365ZvTLGHLlV++rZPtfmn9GkjJ9r8Q5VeJ+rUSMXj5vR7df4n6tRIwSbbFiw2OVxbj0rKlJqjtWJduixHGac+PdlcVYefXbkpQ5p9Y9tL2S7c+YNpikzPV78R0PVhZj4QWnJikznpfYj4W3fbeS7S+++PQkZc7ZXn7fkpS9ty1xz1b1c0a/PI/dtO6RymJcMePkJP3xHqGqa1Ky/7pU4pwqMYZUNZ4n+8f0fujfVT0bJ/ufj/tlPC+xH1Vdw0ev3/1ynEr0DfcIL6/kO7wSMQBeKTOKAAAAAAAAAADUhEIRAAAAAAAAAICaUCgCAAAAAAAAAFATCkUAAAAAAAAAAGpioNMJAAAAAAAAAEDdNRqNTqdATZhRBAAAAAAAAACgJhSKAAAAAAAAAADUhEIRAAAAAAAAAICaUCgCAAAAAAAAAFATXVcosnTp0kyZMiVJcsMNN+T888/Pu971rjz22GMdzgwAAAAAAAAAoLd1VaHI8PBwli9fnpNOOimPP/54brvttqxduzaLFi3KokWLOp0eAAAAAAAAAEBP66pCkaVLl+ayyy7LuHHj8vDDD+cNb3hDGo1G3vSmN2XNmjUHXK/dbmfHjh1jlna7XTBzAAAAAAAAAIDu1zWFIsPDw1m2bFnmz5+fJDn11FOzfv36tNvt3H777fnBD35wwHVbrVYGBwfHLK1Wq1TqAAAAAAAAAPBv0rB0/dIvBjqdwKglS5Zk3rx5GTfuudqVY489Nr/8y7+cn/7pn87ZZ5+d17/+9Qdcd2hoKAsWLBjzWbPZzD8/8WylOQMAAAAAAAAA9JKuKRS5//77c88992TJkiXZuHFjPvKRj+Rzn/tcLr/88qxatSrHHnvsAddtNptpNpsv8ReFIgAAAAAAAAAAo7qmUOT666/f9/M555yTz33uc/m5n/u5bN26Na95zWvy+c9/voPZAQAAAAAAAAD0vq4pFHmh9evXJ0n++I//uMOZAAAAAAAAAAD0j3GdTgAAAAAAAAAAgDIUigAAAAAAAAAA1IRCEQAAAAAAAACAmlAoAgAAAAAAAABQEwOdTgAAAAAAAAAA6q7RaHQ6BWrCjCIAAAAAAAAAADWhUAQAAAAAAAAAoCYUigAAAAAAAAAA1ERjZGRkpNNJAAAAAAAAAECdrdjwWKdT4CAuPWtqp1M4JMwoAgAAAAAAAABQEwOdTqBK9z66q7Jtn3nikUmSTVt3VxbjtOMmJkme2VvN9ic83/ol9qFEjIW3fbeyGIsvPj1JdW2R7G+PdQ9tryzGjGmDSZIt2/ZUsv0TJo9PUuY4lejfVR2nZP+xeurp4cpiHDPpsCT90d4rH3iyshhzph+bpMx+9HLfKNkvSvTvEmNtL/eN0X5R4vpdYhzsl2tGiRhV33eWGM9LnLcl2uKmdY9UFuOKGScnqX4MKXGcqvxf2Yz+r0Pm3Hh3ZTFWXv22JGWuS1WdU6PnU4nrXolnvhLnVImxsOr+XeL63S8xevmeMNnf5lU/Z/TL89gZ166sLMZ9/++cJGXO26rup0q+JyzR3iXaosQ9Qj/07xLHqV+eXXv5+lr1GJWUfVfRLzGqfvfcL9eMEv0b4JUyowgAAAAAAAAAQE309YwiAAAAAAAAANALzPJAKc41AAAAAAAAAICaUCgCAAAAAAAAAFATCkUAAAAAAAAAAGpCoQgAAAAAAAAAQE0oFAEAAAAAAAAAqAmFIgAAAAAAAAAANaFQBAAAAAAAAACgJgY6ncCozZs35y1veUve8IY3JEmWL1+eVatW5bOf/WwmTpyYP/zDP8yJJ57Y4SwBAAAAAAAA4NBrNBqdToGa6JpCkSSZNWtWVqxYkSTZu3dvfvd3fzff+MY38q1vfSuLFi3KH/zBH3Q4QwAAAAAAAACA3tVVXz1z5513ZubMmbnmmmuycePGTJ8+PePHj8/555+ff/iHfzjgeu12Ozt27BiztNvtgpkDAAAAAAAAAHS/rikUmTp1ajZt2pTVq1dn69atufXWW3P00Ufv+/vw8PAB1221WhkcHByztFqtEmkDAAAAAAAAAPSMrikUaTabOeKII9JoNHLJJZdkw4YN2bFjx76/H3bYYQdcd2hoKNu3bx+zDA0NlUgbAAAAAAAAAKBndE2hyM6dO/f9vGbNmlx88cV54IEHsmfPntx111154xvfeMB1m81mjj766DFLs9kskTYAAAAAAAAAQM8Y6HQCo9auXZtrr702kyZNyimnnJJFixZlwoQJmT17diZMmJA//MM/7HSKAAAAAAAAAAA9rWsKRebOnZu5c+eO+Wz+/PmZP39+hzICAAAAAAAAAOgvXVMoAgAAAAAAAAB11eh0AtTGuE4nAAAAAAAAAABAGQpFAAAAAAAAAABqQqEIAAAAAAAAAEBNKBQBAAAAAAAAAKgJhSIAAAAAAAAAADWhUAQAAAAAAAAAoCYUigAAAAAAAAAA1ERjZGRkpNNJAAAAAAAAAECd/dm9j3c6BQ7ivWe+utMpHBJmFAEAAAAAAAAAqImBTidQpWf2VrftCQPlYjz19HAl2z9m0mGVbv+FMUocp7d95huVxbj7N2YlKXOsVmx4rLIYl541NUl17VGyX6x7aHtlMWZMG0zSP2PIvY/uqmT7Z554ZJIy+zDnxrsri7Hy6rcl6Z+xcOUDT1ay/TnTj01SZozasm1PZTFOmDw+SXX9IinbN6ru31WdT8n+c2rT1t2VxTjtuIlJypxTJWKUGKeqvu8s0d4l7hFKtHeJY1X1NaPEPiy+48HKYiy84NQkyZVfva+yGF+af0aS/mjvEmNUieNUYj8u/fK3K4ux4kNvSlL9PUK/3DuXuCcscaxK7Ec/nFMlxpB+Oaeqfm9Uoi16+Z1tUvY9YT+8e75p3SOVxbhixslJyjwDlNiPfniu7Jf2LjFO9fK1b/S61y/vW0rcIwC8UmYUAQAAAAAAAACoCYUiAAAAAAAAAAA1oVAEAAAAAAAAAKAmFIoAAAAAAAAAANSEQhEAAAAAAAAAgJpQKAIAAAAAAAAAUBMDnU4AAAAAAAAAAOpuXBqdToGaMKMIAAAAAAAAAEBNKBQBAAAAAAAAAKiJrikU2bx5c6ZMmZLZs2dn9uzZeeKJJ3L55ZdnypQpufHGGzudHgAAAAAAAABAzxvodAIvNGvWrKxYsWLf75/5zGdy4YUXZteuXR3MCgAAAAAAAACgP3TNjCJJcuedd2bmzJm55pprMjIykuOPP/5HWq/dbmfHjh1jlna7XXG2AAAAAAAAAAC9pWsKRaZOnZpNmzZl9erV2bp1a2699dYfed1Wq5XBwcExS6vVqjBbAAAAAAAAAIDe0zWFIs1mM0cccUQajUYuueSSbNiw4Uded2hoKNu3bx+zDA0NVZgtAAAAAAAAAEDvGeh0AqN27tyZo446KkmyZs2aTJ8+/Udet9lsptlsvujzZ/YesvQAAAAAAAAAoDKNRqczoC66plBk7dq1ufbaazNp0qSccsopWbRoUYaGhvLnf/7nGR4ezoMPPpjPfvaznU4TAAAAAAAAAKBndU2hyNy5czN37twxn7VarbRarQ5lBAAAAAAAAADQX8Z1OgEAAAAAAAAAAMpQKAIAAAAAAAAAUBMKRQAAAAAAAAAAakKhCAAAAAAAAABATSgUAQAAAAAAAACoiYFOJwAAAAAAAAAAdddIo9MpUBNmFAEAAAAAAAAAqAmFIgAAAAAAAAAANdEYGRkZ6XQSAAAAAAAAAFBnt923tdMpcBAXn3Fcp1M4JMwoAgAAAAAAAABQEwOdTqBKm7burmzbpx03MUny1NPDlcU4ZtJhSZIt2/ZUsv0TJo9Pkjyzt5LNJ0kmPH+GlThOi+94sLIYCy84NUmZY7XygScrizFn+rFJknsf3VXJ9s888cgkZdq7RP8uEaOX+99oW/RLv+iXa0bV/XvdQ9sr2X6SzJg2mKR/zqleHgtHz9kSx6mq+5xk/71OifN2xYbHKotx6VlTk5Q5VlVfM6oao5L941SJGCXaosR1qar759F755vWPVLJ9pPkihkn91WMEuPUlV+9r5Ltf2n+GUnKXPdKHKcSY8jC275bWYzFF59eaYzR7ffyNSnZf0718judZP+x6uXr6+j2++V5rMQ9YYnnparbu8Q528vvW5L+GKdKjuf98q6iqvu1ZP89Wy9fw0s+V5Zo7xIxSlxfq+p/o32vxDnbL++mAF4pM4oAAAAAAAAAANSEQhEAAAAAAAAAgJro66+eAQAAAAAAAIBe0Gh0OgPqwowiAAAAAAAAAAA1oVAEAAAAAAAAAKAmFIoAAAAAAAAAANSEQhEAAAAAAAAAgJpQKAIAAAAAAAAAUBMKRQAAAAAAAAAAaqJrCkU2b96cKVOmZPbs2Zk9e3a+973v5cILL8w73vGOXHjhhXn44Yc7nSIAAAAAAAAAQE8b6HQCLzRr1qysWLEiSfLMM89kyZIlOf744/PXf/3X+e3f/u3ceOONHc4QAAAAAAAAAKB3dVWhyJ133pmZM2dm5syZ+a//9b/m+OOPT5KMHz8+48YdePKTdruddrs95rNms1lprgAAAAAAAABwqIxLo9MpUBNd89UzU6dOzaZNm7J69eps3bo1t956a5Jkz549+eQnP5lf/dVfPeC6rVYrg4ODY5ZWq1UqdQAAAAAAAACAntA1hSLNZjNHHHFEGo1GLrnkkmzYsCFJ8uEPfzi/8iu/kte97nUHXHdoaCjbt28fswwNDZVKHQAAAAAAAACgJ3TNV8/s3LkzRx11VJJkzZo1mT59ej71qU9l2rRpmT9//suu22w2D/BVM7sryBQAAAAAAAAAoDd1zYwia9euzZvf/ObMnDkzW7ZsyQUXXJBFixbl7/7u7zJ79mwzhAAAAAAAAAAA/Bt1zYwic+fOzdy5c8d8tnfv3g5lAwAAAAAAAADQf7pmRhEAAAAAAAAAAKqlUAQAAAAAAAAAoCa65qtnAAAAAAAAAKCuGo1OZ0BdmFEEAAAAAAAAAKAmFIoAAAAAAAAAANSEQhEAAAAAAAAAgJpQKAIAAAAAAAAAUBMKRQAAAAAAAAAAaqIxMjIy0ukkAAAAAAAAAKDO/vr+JzqdAgfxrp+c0ukUDgkzigAAAAAAAAAA1MRApxOo0r2P7qps22eeeGSS5KmnhyuLccykw5Ikz+ytZvsTnm/9dQ9tryZAkhnTBpNUtw/J/v1YeNt3K4ux+OLTk5TZjxLn7coHnqxk+3OmH5ukzHHql7YosR9VjVNVj1HJ/n248qv3VRbjS/PPSNLb43my/1ht2banku2fMHl8kv7pF5u27q4sxmnHTUzS2/sxug9VXS+SsteMEu3dL32j6mtGieNU1TiY7B8LS1wzSvS/qu8JS+zDpV/+dmUxVnzoTc/FuvHuymKsvPptScqMU/3wDFDiOJXo34vveLCyGAsvODVJctO6RyrZ/hUzTk7SP2Ntv9wTVtXeSfVt3m/PGSX6t3vCl1eyvUvsR4n3IVX37xLjeYnjVOKcWrHhscpiXHrW1CT98W6qX/57Rom+UeKerR/GkH5pb/pHo9HpDKgLM4oAAAAAAAAAANSEQhEAAAAAAAAAgJpQKAIAAAAAAAAAUBMKRQAAAAAAAAAAakKhCAAAAAAAAABATSgUAQAAAAAAAACoCYUiAAAAAAAAAAA1MdDpBAAAAAAAAACg7hppdDoFasKMIgAAAAAAAAAANdE1hSKbN2/OlClTMnv27MyePTtPPPFE3v/+92fWrFl561vfmtWrV3c6RQAAAAAAAACAntZVXz0za9asrFixYt/vS5cuzfjx47N58+ZceeWVuf322zuYHQAAAAAAAABAb+uaGUWS5M4778zMmTNzzTXXZGRkJOPHj0+S7Ny5M2ecccYB12u329mxY8eYpd1ul0obAAAAAAAAAKAndE2hyNSpU7Np06asXr06W7duza233pokecc73pE5c+bk3e9+9wHXbbVaGRwcHLO0Wq1SqQMAAAAAAAAA9ISuKRRpNps54ogj0mg0cskll2TDhg1JktWrV2fdunX5xCc+ccB1h4aGsn379jHL0NBQqdQBAAAAAAAAAHrCQKcTGLVz584cddRRSZI1a9bk9a9/fZ599tkcfvjhOfLII3PkkUcecN1ms5lms/kSf3m2omwBAAAAAAAAAHpP1xSKrF27Ntdee20mTZqUU045Jb/5m7+ZOXPmJEmGh4fzW7/1Wx3OEAAAAAAAAACqMa7R6Qyoi64pFJk7d27mzp075rNVq1Z1JhkAAAAAAAAAgD40rtMJAAAAAAAAAABQhkIRAAAAAAAAAICaUCgCAAAAAAAAAFATCkUAAAAAAAAAAGpCoQgAAAAAAAAAQE0oFAEAAAAAAAAAqAmFIgAAAAAAAAAANTHQ6QQAAAAAAAAAoO4aaXQ6BWqiMTIyMtLpJAAAAAAAAACgzv7un/53p1PgIC58/as6ncIh4atnAAAAAAAAAABqoq+/emblA09Wtu05049Nkjz19HBlMY6ZdFilMUa3v2Xbnkq2nyQnTB5fLMbC275bWYzFF5+eJHlmb2UhMuH53ljiWG3auruS7Z923MQkZfahRN+r6jgl+49ViXOq6jGkxD6UGM/7pb2rOlYlj1O/XJdKjFPrHtpeyfZnTBtM0j9t0cvX1mR/3+jlcWp0jKrqnE32n7clrhm9PJ4n+/ej6mvGvY/uqmT7SXLmiUcmKXOc5tx4d2UxVl79tuf+f4H9uGndI5Vs/4oZJyfpn35R4pqxYsNjlcW49KypSapv7355HiuxHyX6RlXtnexv86rvO0scpxIx+uXdVD/cE3rmO7jRY1XVPdvo/VqJc7bEtbVf9qPEeVtV/xvteyWeM3r5OCX7j1WJMeTSL3+7ku2v+NCbkngX+UpiALxSZhQBAAAAAAAAAKgJhSIAAAAAAAAAADWhUAQAAAAAAAAAoCYUigAAAAAAAAAA1MRApxMAAAAAAAAAgLprNDqdAXVhRhEAAAAAAAAAgJpQKAIAAAAAAAAAUBMKRQAAAAAAAAAAakKhCAAAAAAAAABATXRNocjmzZszZcqUzJ49O7Nnz84TTzyRJHn44YfTbDZz3333dThDAAAAAAAAAIDeNtDpBF5o1qxZWbFixZjPFi9enPPPP79DGQEAAAAAAAAA9I+umVEkSe68887MnDkz11xzTUZGRvIv//IvaTQaOfnkk192vXa7nR07doxZ2u12oawBAAAAAAAAAHpD1xSKTJ06NZs2bcrq1auzdevW3Hrrrbn++uvz8Y9//KDrtlqtDA4OjllarVaBrAEAAAAAAADg367h/7r+//pF13z1TLPZTLPZTJJccsklWbp0aY444oi89rWvPei6Q0NDWbBgwYu2t/qhnVWkCgAAAAAAAADQk7qmUGTnzp056qijkiRr1qzJnDlz8j/+x//IRRddlHvvvTebNm3K7bffngkTJrxo3RcWmfyrrVacNQAAAAAAAABA7+iar55Zu3Zt3vzmN2fmzJnZsmVLPvjBD2bNmjX5+te/njlz5uT3f//3X7JIBAAAAAAAAACAH03XzCgyd+7czJ079yX/dsstt5RNBgAAAAAAAACgD3XNjCIAAAAAAAAAAFRLoQgAAAAAAAAAQE0oFAEAAAAAAAAAqImBTicAAAAAAAAAAHU3rtHpDKgLM4oAAAAAAAAAANSEQhEAAAAAAAAAgJpQKAIAAAAAAAAAUBMKRQAAAAAAAAAAaqIxMjIy0ukkAAAAAAAAAKDOVv/zDzqdAgfxjp/4sU6ncEiYUQQAAAAAAAAAoCYGOp1AlTZt3V3Ztk87bmKSZMu2PZXFOGHy+EpjjG7/qaeHK9l+khwz6bAkZY7TTeseqSzGFTNOTpI8s7eyEJnwfG+89/1T8YMAAHPoSURBVNFdlcU488QjkyTrHtpeyfZnTBtMUuacqmofkv37UaK9S8TohzGkRHuX6Hsl2ruq9hhtixLt3S/XpRLtXdW9zuh9zsoHnqxk+0kyZ/qxSXq7XyT7z6kSx6rEvW3VY0iJvlfimlFiP0pcl6qKMbr9Esdp8R0PVhZj4QWnJkku/fK3K4ux4kNvSlKmvau+ZpQYz1dseKyyGJeeNTVJsvC271YWY/HFpydJrvzqfZXF+NL8M5JUd10qeU3q5etesv/aV6JvlBgLqx5DSrR3ibYoMYb08v3zaL/Qvw+u6nc6SfXvdUoep355p1Pi/XaJvlH1NaOX+0XSf+/Y3CO8vNH+XeK9EcAr1deFIgAAAAAAAADQCxppdDoFasJXzwAAAAAAAAAA1IRCEQAAAAAAAACAmlAoAgAAAAAAAABQEwpFAAAAAAAAAABqQqEIAAAAAAAAAEBNKBQBAAAAAAAAAKgJhSIAAAAAAAAAADWhUAQAAAAAAAAAoCYGOp3AqM2bN+ctb3lL3vCGNyRJli9fnvPOOy8nnHBCkuQ3f/M3M2fOnE6mCAAAAAAAAACVaDQ6nQF10TWFIkkya9asrFixYt/vg4ODWbVqVecSAgAAAAAAAADoI1311TN33nlnZs6cmWuuuSYjIyPZtWtXZs2alQ9+8IP5wQ9+cMD12u12duzYMWZpt9sFMwcAAAAAAAAA6H5dUygyderUbNq0KatXr87WrVtz66235s4778w3vvGNXHTRRbnuuusOuG6r1crg4OCYpdVqFcweAAAAAAAAAKD7dU2hSLPZzBFHHJFGo5FLLrkkGzZsyKte9aokyaWXXpoNGzYccN2hoaFs3759zDI0NFQqdQAAAAAAAACAnjDQ6QRG7dy5M0cddVSSZM2aNZk+fXra7XaazWbWrFmT00477YDrNpvNNJvNl/jL7oqyBQAAAAAAAADoPV1TKLJ27dpce+21mTRpUk455ZT82q/9Ws4777wcccQRaTabufnmmzudIgAAAAAAAABAT+uaQpG5c+dm7ty5Yz77+7//+w5lAwAAAAAAAADQf7qmUAQAAAAAAAAA6qrR6QSojXGdTgAAAAAAAAAAgDIUigAAAAAAAAAA1IRCEQAAAAAAAACAmlAoAgAAAAAAAABQEwpFAAAAAAAAAABqQqEIAAAAAAAAAEBNKBQBAAAAAAAAAKiJxsjIyEinkwAAAAAAAACAOvvmpm2dToGDOPe0yZ1O4ZAwowgAAAAAAAAAQE0MdDqBKt376K7Ktn3miUcWi/HU08OVbP+YSYclKbMPz+ytLEQmPH8Wr3toe2UxZkwbTFJmP1ZseKyyGJeeNTVJdW0+2t6btu6uZPtJctpxE5MkW7btqSzGCZPHJynT3lX176T6Pl6yf1/51fsqi/Gl+Wck0d4H0w/XvWT/cSoxTpU4p6oaC0fHwZUPPFnJ9pNkzvRjk5RpC+fUwVU9TpW87yxx3pa4DymxHzete6SS7V8x4+RKt//CGCXunUvch5R4lqnqnBo9n0qMtSWOU4kYl37525XFWPGhNyXpj/bulxglrt8lxtuq7zv75T1CietSPzxnlLgnLNHeJcaQEteMqvpfyeeYxXc8WFmMhRecmqTMOVXiPqSX36mOtne/PPP1y7uKqt9F9ktblNgPgFfKjCIAAAAAAAAAADWhUAQAAAAAAAAAoCYUigAAAAAAAAAA1IRCEQAAAAAAAACAmlAoAgAAAAAAAABQEwOdTgAAAAAAAAAA6q7R6QSoDTOKAAAAAAAAAADUhEIRAAAAAAAAAICaUCgCAAAAAAAAAFATXVMosnnz5kyZMiWzZ8/O7Nmz88QTT+TRRx/Nz/zMz+SCCy7Idddd1+kUAQAAAAAAAAB62kCnE3ihWbNmZcWKFft+/8AHPpAvfvGLOeGEEzqYFQAAAAAAAABAf+iaGUWS5M4778zMmTNzzTXX5Nlnn83mzZvzsY99LBdeeGHuuuuuA67XbrezY8eOMUu73S6YOQAAAAAAAABA9+uaQpGpU6dm06ZNWb16dbZu3Zply5blO9/5ThYvXpw/+qM/ykc/+tEDrttqtTI4ODhmabVaBbMHAAAAAAAAAOh+XfPVM81mM81mM0lyySWX5I477shpp52Wk08+OUly+OGHZ+/evRkYeHHKQ0NDWbBgwYu2989PPFt94gAAAAAAAAAAPaJrCkV27tyZo446KkmyZs2anHnmmfnWt76Vbdu25fDDD0+73X7JIpFkbJHJWApFAAAAAAAAAOgBjU4nQF10TaHI2rVrc+2112bSpEk55ZRTsmjRopx22ml5z3vekz179uRTn/pUp1MEAAAAAAAAAOhpXVMoMnfu3MydO3fMZ+edd17WrFnToYwAAAAAAAAAAPrLuE4nAAAAAAAAAABAGQpFAAAAAAAAAABqQqEIAAAAAAAAAEBNKBQBAAAAAAAAAKgJhSIAAAAAAAAAADUx0OkEAAAAAAAAAKDuGml0OgVqwowiAAAAAAAAAAA1oVAEAAAAAAAAAKAmGiMjIyOdTgIAAAAAAAAA6ux/Pbi90ylwEG89dbDTKRwSZhQBAAAAAAAAAKiJgU4nUKWnnh6ubNvHTDosSbJp6+7KYpx23MRKY1S9/RfGKNEWC2/7bmUxFl98epIy+1Eixr2P7qpk+2eeeGSSMvuwZdueymKcMHl8kjL78czeykJkwvMjfFUxqt7+C2P0S/8ucayq2o+qx49k/xhS4rpUYgwp0d5V3yOs2PBYJdtPkkvPmpqkTFuUiLHygScrizFn+rFJevu8HT1nS4wh/XK/dtO6RyqLccWMk5NUf09YYjyfc+PdlcVYefXbkiRnXLuyshj3/b9zkpQ5pxbf8WAl2194walJylz3SowhJWKUuL5W3b97+b426Y/nsRfGKHHNqPo5o1+u32/7zDcqi3H3b8xK0h/vjUqMtf0yTvXyM1nJZ+MSz2Pebx9c1e9tR8+pEs8Z/TKGlHiPsO6hamY+mDHtuf+1fon+3S/PGUB3+uQnP5lPfepTYz47/fTT80//9E8HXGf58uX5z//5P2fz5s153etel+uvvz7vfve7D3luZhQBAAAAAAAAADjE3vCGN+Sxxx7bt6xdu/aA//auu+7KBz7wgVxxxRW555578rM/+7P52Z/92dx3332HPK++nlEEAAAAAAAAAOBQaLfbabfbYz5rNptpNpsv+e8HBgby6le/+kfa9u/93u/loosuyq//+q8nSRYtWpSVK1fmxhtvzO///u//2xL/V8woAgAAAAAAAAAd1mhYun1ptVoZHBwcs7RarQO26caNG3P88cdn2rRp+ff//t/nkUcO/PWh3/zmN/Pv/t2/G/PZu971rnzzm988ZOfYKDOKAAAAAAAAAAAcxNDQUBYsWDDmswPNJvLWt741t9xyS04//fQ89thj+dSnPpWZM2fmvvvuy1FHHfWif//444/nx3/8x8d89uM//uN5/PHHD90OPE+hCAAAAAAAAADAQbzc18z8a3Pnzt338xvf+Ma89a1vzWte85osW7YsV1xxRVUp/kh89QwAAAAAAAAAQIUmT56cn/iJn8imTZte8u+vfvWr8/3vf3/MZ9///vfz6le/+pDnolAEAAAAAAAAAKBCu3btyoMPPpipU6e+5N/PPffc/O3f/u2Yz1auXJlzzz33kOeiUAQAAAAAAAAA4BD6+Mc/nm984xvZvHlz7rrrrrzvfe/LYYcdlg984ANJkssvvzxDQ0P7/v1HP/rRfP3rX88NN9yQf/qnf8onP/nJrF+/PldfffUhz23gkG8RAAAAAAAAAKDGHn300XzgAx/I//7f/ztTpkzJ29/+9tx9992ZMmVKkuSRRx7JuHH75/Y477zz8kd/9Ee59tprc8011+R1r3tdvva1r+WMM8445Ll1TaHI5s2b85a3vCVveMMbkiT/83/+z/zH//gfkyRPP/10nn322dxzzz2dTBEAAAAAAAAA4KD++I//+GX/vmrVqhd9dtlll+Wyyy6rKKP9uqZQJElmzZqVFStW7Pt99MDccsstefjhhzuUFQAAAAAAAABUq9HpBKiNcQf/J+XceeedmTlzZq655pqMjIzs+3z58uWZN2/eAddrt9vZsWPHmKXdbpdIGQAAAAAAAACgZ3RNocjUqVOzadOmrF69Olu3bs2tt96aJNm2bVsef/zxTJ8+/YDrtlqtDA4OjllarVap1AEAAAAAAAAAekLXFIo0m80cccQRaTQaueSSS7Jhw4YkyZ/92Z/lve9978uuOzQ0lO3bt49ZhoaGSqQNAAAAAAAAANAzBjqdwKidO3fmqKOOSpKsWbNm3wwiy5cvz+/8zu+87LrNZjPNZvNFnz/99PChTxQAAAAAAAAAoEd1zYwia9euzZvf/ObMnDkzW7ZsyQc/+MFs3749jz/+eF7/+td3Oj0AAAAAAAAAgJ7XNTOKzJ07N3Pnzh3z2eDgYNavX9+hjAAAAAAAAAAA+kvXzCgCAAAAAAAAAEC1umZGEQAAAAAAAACorUanE6AuzCgCAAAAAAAAAFATCkUAAAAAAAAAAGpCoQgAAAAAAAAAQE0oFAEAAAAAAAAAqAmFIgAAAAAAAAAANaFQBAAAAAAAAACgJhojIyMjnU4CAAAAAAAAAOrsW/+yvdMpcBBvOWWw0ykcEmYUAQAAAAAAAACoiYFOJ1ClLdv2VLbtEyaPT5I8s7eyEJnwfOs89fRwJds/ZtJhScrsQ4m2WPdQdRV2M6Y9VxlWVVskZduj6nOqxHG699FdlcU488Qjk5Rpi35o7xL7sPiOByuLsfCCU5Mkm7burizGacdNTNIf7V1iPO+XGCXau6rzdvScLTHWlrhmlOjfJfajRIyq+sZovyjRFiXuCUv075vWPVJZjCtmnJwkWfnAk5Vsf870Y5OUae8S9wgT3/17lcXY/ZcfTVLmulTVsRo9Tv3yDFDivD1y3i2Vxdi17BeSVDcWjo6D/XK/5vp9cKPHqqr+V/KesMRxWnjbdyuLsfji05P09nu8qs+npP/e6ZS4J6y6vXv52Tgp+07HGPLy+m0MKXHe9sM9Qr+M5yXOW/pHI41Op0BNmFEEAAAAAAAAAKAmFIoAAAAAAAAAANSEQhEAAAAAAAAAgJpQKAIAAAAAAAAAUBMKRQAAAAAAAAAAakKhCAAAAAAAAABATSgUAQAAAAAAAACoiYFOJwAAAAAAAAAAdddodDoD6sKMIgAAAAAAAAAANdE1hSKbN2/OlClTMnv27MyePTtPPPFEPv/5z2fGjBmZMWNG/uRP/qTTKQIAAAAAAAAA9LSu+uqZWbNmZcWKFft+/8IXvpANGzZkz549mTlzZt7//vd3MDsAAAAAAAAAgN7WNTOKJMmdd96ZmTNn5pprrsnIyEimTZuW3bt3Z+fOnZk8efIB12u329mxY8eYpd1ul0scAAAAAAAAAKAHdE2hyNSpU7Np06asXr06W7duza233pqLL74406dPz9lnn52PfexjB1y31WplcHBwzNJqtQpmDwAAAAAAAADQ/brmq2eazWaazWaS5JJLLsntt9+ev/3bv83GjRuzZ8+eXHjhhZk7d24ajcaL1h0aGsqCBQtetL0ndxdJHQAAAAAAAACgJ3TNjCI7d+7c9/OaNWty9tlnZ+LEiZkwYUKOOOKI7NmzJyMjIy+5brPZzNFHHz1mGS06AQAAAAAAAADgOV0zo8jatWtz7bXXZtKkSTnllFOyaNGiPP744zn33HPzwx/+MFdddVXGjeuauhYAAAAAAAAAOGRe/N0aUI2uKRSZO3du5s6dO+azhQsXZuHChR3KCAAAAAAAAACgv5iiAwAAAAAAAACgJhSKAAAAAAAAAADUhEIRAAAAAAAAAICaUCgCAAAAAAAAAFATCkUAAAAAAAAAAGpCoQgAAAAAAAAAQE0MdDoBAAAAAAAAAKi9RqcToC7MKAIAAAAAAAAAUBONkZGRkU4nAQAAAAAAAAB19u2Hd3Q6BQ7iTa85utMpHBJmFAEAAAAAAAAAqImBTidQpU1bd1e27dOOm5gkeerp4cpiHDPpsCTV7cfoPjyzt5LNJ0kmPH+Gbdm2p7IYJ0wen6RMe5c4VisfeLKyGHOmH1tpjNHtl+gX9z66q7IYZ554ZJIy7V0iRlXtMdoWJfahX/p3Lx+r0ePUL23hHuHlje5DibG2xHHq5bZI+qP/jfa9FRseqyZAkkvPmpokWffQ9spizJg2WCzGpV/+dmUxVnzoTUmqvycs0d4Lb/tuZTEWX3x6kuSmdY9UFuOKGScnKfO8VNV5O3rOlrh+l+h7Jdpi8R0PVhZj4QWnJqm+f5c4Tt4jHFzJ9whVtcdoW/TLfWeJa0aJ/aj6nrBE/+7l45RU/04nqf55qeTzWIl7whLt3S/70Q/nVL+8J+yHe4ReHgdfGKPEvQ7AK2VGEQAAAAAAAACAmlAoAgAAAAAAAABQEwpFAAAAAAAAAABqYqDTCQAAAAAAAABA3TXS6HQK1IQZRQAAAAAAAAAAakKhCAAAAAAAAABATSgUAQAAAAAAAACoCYUiAAAAAAAAAAA1oVAEAAAAAAAAAKAmuqZQZPPmzZkyZUpmz56d2bNn54knnsgNN9yQ888/P+9617vy2GOPdTpFAAAAAAAAAICe1jWFIkkya9asrFq1KqtWrcrw8HBuu+22rF27NosWLcqiRYs6nR4AAAAAAAAAQE8b6HQCL3TnnXdm5syZmTlzZt773vfmDW94QxqNRt70pjfliiuuOOB67XY77XZ7zGfNZrPqdAEAAAAAAAAAekrXzCgyderUbNq0KatXr87WrVuzefPmrF+/Pu12O7fffnt+8IMfHHDdVquVwcHBMUur1SqYPQAAAAAAAAD832s0LN2+9IuumVGk2WzumwXkkksuyd13351f/uVfzk//9E/n7LPPzutf//oDrjs0NJQFCxa8aHvf2/7DSnMGAAAAAAAAAOglXVMosnPnzhx11FFJkjVr1mT69Om5/PLLc/nll2fVqlU59thjD7juC4tMxtpdUbYAAAAAAAAAAL2nawpF1q5dm2uvvTaTJk3KKaeckkWLFuXnfu7nsnXr1rzmNa/J5z//+U6nCAAAAAAAAADQ07qmUGTu3LmZO3fumM/++I//uEPZAAAAAAAAAAD0n3GdTgAAAAAAAAAAgDIUigAAAAAAAAAA1IRCEQAAAAAAAACAmhjodAIAAAAAAAAAUHeNTidAbZhRBAAAAAAAAACgJhSKAAAAAAAAAADUhEIRAAAAAAAAAICaUCgCAAAAAAAAAFATjZGRkZFOJwEAAAAAAAAAdbbhkZ2dToGDOOvkozqdwiFhRhEAAAAAAAAAgJoY6HQCVdqybU9l2z5h8vhiMdY9tL2S7c+YNljp9l8Y46mnhyuLccykw5KUaYtn9lYWIhOe742btu6uLMZpx01MUt2xGj1O/dLe9uPlje5DiX5x07pHKotxxYyTk5TZj14eQ0bHjxJjVInjVOLaV2I/7n10VyXbP/PEI5OU6XslxtoSMapqi2R/e/Ry/xs9Z1c+8GQ1AZLMmX5skmTFhscqi3HpWVOTlGnvhbd9t7IYiy8+PUn17V3iOC2+48HKYiy84NQkyaVf/nZlMVZ86E1JytwTVn2PUGKsLTGGlGiLXj5vR8/ZfnlWKjFOlThWvfy8NHrN6Jd3OnNuvLuyGCuvfluSMvtR9XuEfmnvEvvRy9e+km1RYjwvsR8lnmV6uT1G26KX+0XSH/07qf6/kZW8X+vla2uy//oK8Er1daEIAAAAAAAAAPSERqcToC589QwAAAAAAAAAQE0oFAEAAAAAAAAAqAmFIgAAAAAAAAAANaFQBAAAAAAAAACgJhSKAAAAAAAAAADUhEIRAAAAAAAAAICaUCgCAAAAAAAAAFATA51OAAAAAAAAAADqrpFGp1OgJrpqRpFVq1blne98Zy644IL86Z/+adauXZvzzjsvb3/723Pvvfd2Oj0AAAAAAAAAgJ7WNTOK7N69OzfccEP+6q/+KuPHj0+SzJo1K7fddlt27tyZ//Sf/lP+8i//ssNZAgAAAAAAAAD0rq4pFPnmN7+ZiRMn5j3veU8mTZqUL3zhCznssMNyzDHH5JhjjskPfvCDA67bbrfTbrfHfNZsNhNT8wAAAAAAAAAA7NM1Xz3z/e9/P5s2bcpf/MVf5Jd+6Zdy3XXX5eijj97394GBgezZs+cl1221WhkcHByztFqtUqkDAAAAAAAAAPSErikUmTx5cs4///yMHz8+73znO3PPPfdkx44d+/6+d+/efV9J868NDQ1l+/btY5ahoaFSqQMAAAAAAAAA9ISuKRR5y1vekgceeCAjIyP5zne+k5/8yZ/M3r17s23btnzve9/Lj/3Yjx1w3WazmaOPPnrM8txXzwAAAAAAAAAAMGqg0wmMOvbYY/O+970vs2bNSqPRyM0335wtW7bk3e9+dxqNRr7whS90OkUAAAAAAAAAgJ7WNYUiSXLVVVflqquu2vf7qaeemrvuuquDGQEAAAAAAAAA9I+uKhQBAAAAAAAAgDpqNDqdAXUxrtMJAAAAAAAAAABQhkIRAAAAAAAAAICaUCgCAAAAAAAAAFATCkUAAAAAAAAAAGpCoQgAAAAAAAAAQE0oFAEAAAAAAAAAqAmFIgAAAAAAAAAANdEYGRkZ6XQSAAAAAAAAAFBn9z26q9MpcBBnnHhkp1M4JMwoAgAAAAAAAABQEwOdTqBKKx94srJtz5l+bJLkqaeHK4txzKTDKo0xuv1n9lay+STJhOfPsBIxVmx4rLIYl541NUmyaevuymKcdtzEJMmWbXsqi3HC5PFJqtuP0X0ocZzurbCi8sznKwH7pW/0wxhSon+X6HslrhlVHauSx6nEGFIiRom+UVV7jLbFTeseqWT7SXLFjJOTlDmnSsRw39nZ7b8wRr/cE5bYj6rO29Fztl/63pwb764sxsqr35akzL1t1c8AJfp3ib5XYj8W3/FgZTEWXnBqkurOKc9KP7qS1751D22vLMaMaYNJqmuPfmtvz64vr9/eRZZoi16+ty35bFxiHOyXe4QS+1H1u4oSfa9fxpAS989V9b/RvtfL172k7D0hwCtlRhEAAAAAAAAAgJpQKAIAAAAAAAAAUBMKRQAAAAAAAAAAakKhCAAAAAAAAABATSgUAQAAAAAAAACoiYFOJwAAAAAAAAAAtdfodALUhRlFAAAAAAAAAABqQqEIAAAAAAAAAEBNKBQBAAAAAAAAAKiJrioUWbVqVd75znfmggsuyJ/+6Z/mN37jN3L88cfn4x//eKdTAwAAAAAAAADoeQOdTmDU7t27c8MNN+Sv/uqvMn78+CTJueeem3e961257bbbOpwdAAAAAAAAAEDv65oZRb75zW9m4sSJec973pP3ve99efzxx/PqV786jUbjoOu22+3s2LFjzNJutwtkDQAAAAAAAADQO7qmUOT73/9+Nm3alL/4i7/IL/3SL+WTn/zkj7xuq9XK4ODgmKXValWXLAAAAAAAAABAD+qar56ZPHlyzj///IwfPz7vfOc7X1Ghx9DQUBYsWDDms2azmdUP7TzUaQIAAAAAAADAIdfIwb9tAw6FrplR5C1veUseeOCBjIyM5Dvf+U6mTZv2I6/bbDZz9NFHj1mazWaF2QIAAAAAAAAA9J6umVHk2GOPzfve977MmjUrjUYjN998c37v934vX/nKV/Lkk09my5YtWbp0aafTBAAAAAAAAADoWV1TKJIkV111Va666qp9v3/0ox/NRz/60Q5mBAAAAAAAAADQP7rmq2cAAAAAAAAAAKiWQhEAAAAAAAAAgJpQKAIAAAAAAAAAUBMKRQAAAAAAAAAAamKg0wkAAAAAAAAAQN01Gp3OgLowowgAAAAA///27j1Oj7K8H/9nk7CbhEOChJNB0ADSIIgKCQmBnBaEEKmEgkBVDAVEGwWMSI1YCQJdi1LFiodvBfEsBQULgpUosR4CwV8FE4hIOB9MkJYkhITdHOb3B+7CShCoz8yz+zzv9+v1vMhOdu7rumfmnrnnycUMAAAA0CQUigAAAAAAAAAANAmFIgAAAAAAAAAATUKhCAAAAAAAAABAk2gpiqKodxIAAAAAAAAA0MzufPSpeqfAi9jzlZvXO4Wa8EQRAAAAAAAAAIAmMajeCZTpkRVdpbU9cnhrkmTRw6tLi7H3TlskKa8f3X2oYjs9vb60EBn8x6O4in3RKP0o+5ha+tjaUtpPkt22G5IkuXThg6XFOGnszkkaZ2yUFaPs9p8bo4r9XcVxW8W2WnjvylLaHztqWJLkxiWPl9J+khwyekSS5Ik1G0qLsfXQgUka55pR9v6uYuz15/Pgc2NUcc2o4jzVCHOEKmKUNfaSZ8dfFcdU2eeQKs61VeyLvT56Y2kxFp9/SJJqtlVZ1/Du63cVx2yjxDj5isWlxfjysXslSS686Z5S2j9ryq5J3Cv1tRhX3f770mIcvc+OScqbo3fPz6u4B6hiX5z1g7tKi3Hh9D2SVLOtyt7fjXL/XcW5sIpjqux7gCqO2SqurVX0o6zrd/LsNbwRziFV3AM0yndT/fkevMp7/Cr2dxX9AHi5PFEEAAAAAAAAAKBJNPQTRQAAAAAAAACgP2ipdwI0DU8UAQAAAAAAAABoEgpFAAAAAAAAAACahEIRAAAAAAAAAIAmoVAEAAAAAAAAAKBJKBQBAAAAAAAAAGgSCkUAAAAAAAAAAJpEnyoUmT9/ftrb2zNlypRcffXVOeKII3LggQfmwAMPzK9//et6pwcAAAAAAAAA0K8NqncC3dauXZuLLrooN9xwQ1pbW5Mk++yzT0aNGpW77rorH/zgB3PdddfVOUsAAAAAAAAAKEFLvROgWfSZJ4osWLAgQ4YMyRFHHJEZM2Zk2bJlGTVqVJKktbU1Awb0mVQBAAAAAAAAAPqlPlN9sXz58ixdujTXXnttTjnllMydO7fn784888yceeaZL7huZ2dnVq1a1evT2dlZQdYAAAAAAAAAAP1HnykUGT58eCZMmJDW1ta0t7fnjjvuSJKcc845GTduXCZOnPiC63Z0dGTYsGG9Ph0dHVWlDgAAAAAAAADQL/SZQpExY8ZkyZIlKYoit912W0aNGpXLL788Dz/8cD70oQ/92XXnzJmTlStX9vrMmTOnoswBAAAAAAAAAPqHQfVOoNuIESMyY8aMTJo0KS0tLbnssssyevTojBkzJpMnT85rXvOafOUrX9nkum1tbWlra3v+X6ztKjlrAAAAAAAAAID+o88UiiTJrFmzMmvWrJ6fu7oUegAAAAAAAAAA1EqfefUMAAAAAAAAAADl6lNPFAEAAAAAAACAZtSSlnqnQJPwRBEAAAAAAAAAgCahUAQAAAAAAAAAoEkoFAEAAAAAAAAAaBIKRQAAAAAAAAAAmoRCEQAAAAAAAACAJqFQBAAAAAAAAACgSSgUAQAAAAAAAABoEi1FURT1TgIAAAAAAAAAmtldy9bUOwVexB47DK13CjXhiSIAAAAAAAAAAE1iUL0TKNONSx4vre1DRo9Ikjyyoqu0GCOHtyZJFj28upT2995piyTV9OGJNRtKi7H10IFJqtnfVfTjqtt/X1qMo/fZMUl5+7zK/d2fx17y7Pjrz9uqezs9vb6U5pMkg/94lTrkczeXFuPG941LUk0/+vO5sPs8uPSxtaW0nyS7bTckSTXbqYrxXcUxVfYcYeG9K0tpP0nGjhqWpJr9XUU/qjimqrj2lXXcdh+zVZxDGuU8ddYP7iotxoXT90hS/jmkin1RxT3AuE/8tLQYN394UpJqziFl3Wd032P053lO8uz+rmJfXHjTPaXFOGvKrknKnxP25/uYpNp7mSpi9Of74yrnzlXEqOLa15/vXRvtfqyKc+GlCx8sLcZJY3dO0hjfGzXK2Kvie+Eqjtuy7yv78/fnybNjo1Huj8s+h1SxLxplfwO8XJ4oAgAAAAAAAADQJBSKAAAAAAAAAAA0CYUiAAAAAAAAAABNQqEIAAAAAAAAAECTUCgCAAAAAAAAANAkBtU7AQAAAAAAAABodi31ToCm4YkiAAAAAAAAAABNQqEIAAAAAAAAAECT6FOFIvPnz097e3umTJmSq6++Ou973/syadKkjBkzJldddVW90wMAAAAAAAAA6NcG1TuBbmvXrs1FF12UG264Ia2trUmS6dOnp7W1NU8++WQOOuigHH300XXOEgAAAAAAAACg/+ozTxRZsGBBhgwZkiOOOCIzZszIsmXLegpG1qxZkz333LPOGQIAAAAAAAAA9G99plBk+fLlWbp0aa699tqccsopmTt3bpLkuOOOy+tf//oceuihL7huZ2dnVq1a1evT2dlZUeYAAAAAAAAAAP1DnykUGT58eCZMmJDW1ta0t7fnjjvuSJJ85zvfyW9/+9tccMEF2bhx4ybX7ejoyLBhw3p9Ojo6qkwfAAAAAAAAAKDP6zOFImPGjMmSJUtSFEVuu+22jBo1quepIEOHDs2WW26ZAQM2ne6cOXOycuXKXp85c+ZUmT4AAAAAAAAAQJ83qN4JdBsxYkRmzJiRSZMmpaWlJZdddlmOPfbYrFixIl1dXTn77LNfcN22tra0tbVt4m+eLC9hAAAAAAAAAKiVlnonQLPoM4UiSTJr1qzMmjWr5+drrrmmfskAAAAAAAAAADSYPvPqGQAAAAAAAAAAyqVQBAAAAAAAAACgSSgUAQAAAAAAAABoEgpFAAAAAAAAAACahEIRAAAAAAAAAIAmoVAEAAAAAAAAAKBJDKp3AgAAAAAAAADQ7FrSUu8UaBKeKAIAAAAAAAAA0CQUigAAAAAAAAAANImWoiiKeicBAAAAAAAAAM3s7uVr650CL2L37YfUO4Wa8EQRAAAAAAAAAIAmMajeCZRp0cOrS2t77522SJI8vb60EBn8x73zxJoNpbS/9dCBSarpQxUxLl34YGkxThq7c5LkkRVdpcUYObw1SbL0sfIqBXfb7pkKt7L60d2HKvZ3FfuiUWKUtT+qHN/9eTsl5Z/Pk2fP6WWdQ7rPH1VcW6vYTo1yTDXC/m6Uc22jxCj7mtGf5zlJtfO1vT56Y2kxFp9/SJJk4b0rS2l/7KhhSao5h1x40z2lxThryq5JkpOvWFxajC8fu1eSao7bG5c8Xkr7h4wekaSa616jzEOqOKbK3t9VbKcqYjTK9yFVjI2yrxlVXFur2BdVjO/+PDaqvMdvlPNUFXOdRviesIrvhRtlfzfCOaRR5oSNcu9a9ndT/fm7kKTaOSHAy+WJIgAAAAAAAAAATUKhCAAAAAAAAABAk/BAIgAAAAAAAACos5aWemdAs/BEEQAAAAAAAACAJqFQBAAAAAAAAACgSSgUAQAAAAAAAABoEgpFAAAAAAAAAACahEIRAAAAAAAAAIAm0acKRebPn5/29vZMmTIlV199dZJk9erV2XbbbXPdddfVOTsAAAAAAAAAgP5tUL0T6LZ27dpcdNFFueGGG9La2tqz/LOf/Wz23XffOmYGAAAAAAAAANAY+kyhyIIFCzJkyJAcccQRGTp0aL7whS9k6NChWbRoUcaNG1fv9AAAAAAAAACgNC31ToCm0WcKRZYvX56lS5fm5ptvzrx58zJ37tyMHDky73vf+3LjjTf+2XU7OzvT2dnZa1lbW1uZ6QIAAAAAAAAA9DsD6p1At+HDh2fChAlpbW1Ne3t7brnlltx+++2ZMGHCi67b0dGRYcOG9fp0dHRUkDUAAAAAAAAAQP/RZ54oMmbMmFx00UUpiiK33XZbdthhhzz88MM57LDDsnTp0lx77bXZe++9s8suuzxv3Tlz5mT27Nm9lrW1teV3f1hXVfoAAAAAAAAAAH1enykUGTFiRGbMmJFJkyalpaUll112WXbdddckydy5c7PffvttskgkeaYoZNOvmlEoAgAAAAAAAADQrc8UiiTJrFmzMmvWrOctnzt3bvXJAAAAAAAAAAA0mAH1TgAAAAAAAAAAgGooFAEAAAAAAAAAaBIKRQAAAAAAAAAAmsSgeicAAAAAAAAAAE2vpd4J0Cw8UQQAAAAAAAAAoEkoFAEAAAAAAAAAaBIKRQAAAAAAAAAAmoRCEQAAAAAAAACAJqFQBAAAAAAAAACgSbQURVHUOwkAAAAAAAAAaGb3/GFtvVPgRey67ZB6p1ATnigCAAAAAAAAANAkBtU7gTI9sqKrtLZHDm9Nkix6eHVpMfbeaYskydPry2l/8B/3/tLHyqtM2227ZyqqnlizobQYWw8dmCS56vbflxbj6H12TFJNP25c8nhpMQ4ZPaLUGN3tV7GdqhjfC+9dWVqMsaOGJammH2WfQ8pq/7kxTr5icWkxvnzsXkmqOW6r2FZlHbfdx2wV14wqtlN/HntJ+f3o7kMV16Qq5lJVxGiUa19ZY7x7fFfRhyqO2yr6UcXctqyx0T0uqujDpQsfLC3GSWN3TpLsctq1pcV44LNHJGmMa0YV58Eq5udVXDOqOG7Lmj9XOXdulGtrFeO7ihhl7Y9G2xdVXPsaYX83yn1lf77HT5699pW9vxvle+FG2d+NMO9slHNIFWOjirlt2d9F9udjNqn2uKVxtKSl3inQJDxRBAAAAAAAAACgSSgUAQAAAAAAAABoEgpFAAAAAAAAAACahEIRAAAAAAAAAIAmoVAEAAAAAAAAAKBJKBQBAAAAAAAAAGgSCkUAAAAAAAAAAJrEoHonAAAAAAAAAADNrqWl3hnQLPrUE0Xmz5+f9vb2TJkyJVdffXUmT56cgw46KJMnT87Xv/71eqcHAAAAAAAAANCv9ZkniqxduzYXXXRRbrjhhrS2tiZJLr744txwww3ZYost6pwdAAAAAAAAAED/12eeKLJgwYIMGTIkRxxxRGbMmJFly5ZlwIABOfzww/PXf/3XeeCBB+qdIgAAAAAAAABAv9ZnniiyfPnyLF26NDfffHPmzZuXuXPn5sorr8w222yTn/70p3n/+9+f//iP/9jkup2dnens7Oy1rK2tLYmXOAEAAAAAAAAAdOszTxQZPnx4JkyYkNbW1rS3t+eOO+7INttskySZNGlSHn300Rdct6OjI8OGDev16ejoqCp1AAAAAAAAAIB+oc8UiowZMyZLlixJURS57bbbMmrUqKxatSpJcuedd2brrbd+wXXnzJmTlStX9vrMmTOnqtQBAAAAAAAAAPqFPvPqmREjRmTGjBmZNGlSWlpactlll2Xq1KkZMmRIkuSSSy55wXXb2tr++KqZP7G2q6x0AQAAAAAAAAD6nT5TKJIks2bNyqxZs3p+/tWvflXHbAAAAAAAAACgGi31ToCm0WdePQMAAAAAAAAAQLkUigAAAAAAAAAANAmFIgAAAAAAAAAATUKhCAAAAAAAAABAk1AoAgAAAAAAAADQJBSKAAAAAAAAAAA0CYUiAAAAAAAAAABNYlC9EwAAAAAAAACAptdS7wRoFp4oAgAAAAAAAABQQx0dHRkzZky23HLLbLfddjnyyCNz1113/dl1Lr/88rS0tPT6DB48uOa5tRRFUdS8VQAAAAAAAADgJbv/f56udwq8iFdv89KLNg477LAcd9xxGTNmTNavX5+PfOQjWbx4ce68885svvnmm1zn8ssvz+mnn96roKSlpSXbb7/9X5z7c3n1DAAAAAAAAABADf3whz/s9fPll1+e7bbbLv/f//f/ZeLEiS+4XktLS3bYYYdSc2voQpFFD68ure29d9oiSfLEmg2lxdh66MAkydPry2l/8B/3fn/uQ/JsP06+YnFpMb587F5JqunHjUseLy3GIaNHJEkeWdFVSvsjh7eW2v5zY1x40z2lxThryq5JGmdslH0OqaIPC+9dWVqMsaOGJWmca8bSx9aW0v5u2w1JUs12quIc0p/Ptcmz/ShrbHSPi6tu/30p7SfJ0fvsmKS8Yzap9rit4piq4hxS9hyhimOqijlCFcdtFf24dOGDpbR/0tidk1Szv8/6wZ9/VOdf4sLpezzz3wr2RRVznbKvGVVc96o4n1cxvo/+yn+XFuOqE9/0zH9LGn/dY68/X5OSZ4+pKvpRRYwqziFl9aO7D1WM7yruXRvlu4qy97dzyIvr7kd/Pqaq3BdVnAcb5Xvh/jz+qvzuuVG+F+7P37lUef2u4piqYl8A1ens7ExnZ2evZW1tbWlra3vRdVeufGbe8opXvOLP/t7q1auzyy67ZOPGjXnTm96Uf/qnf8rrXve6/3vSmzCgpq0BAAAAAAAAADSgjo6ODBs2rNeno6PjRdfbuHFjzjjjjEyYMCF77bXXC/7eHnvskcsuuyzf//73841vfCMbN27MAQcckIcffriW3WjsJ4oAAAAAAAAAANTCnDlzMnv27F7LXsrTRGbNmpXFixfn5z//+Z/9vfHjx2f8+PE9Px9wwAEZPXp0vvSlL+W88877vyW9CQpFAAAAAAAAAABexEt9zcxzve9978t1112X//qv/8pOO+30stbdbLPN8sY3vjFLly59Weu9GK+eAQAAAAAAAACooaIo8r73vS9XX311fvKTn+Q1r3nNy25jw4YNWbRoUXbcccea5uaJIgAAAAAAAABQZy1pqXcK1NCsWbPyrW99K9///vez5ZZbZtmyZUmSYcOGZciQIUmSE044ISNHjkxHR0eS5OMf/3jGjRuX3XbbLStWrMgnP/nJPPDAAzn55JNrmptCEQAAAAAAAACAGvrCF76QJJk8eXKv5V/5ylcyc+bMJMmDDz6YAQOefRHME088kVNOOSXLli3L1ltvnX333Te//OUvs+eee9Y0N4UiAAAAAAAAAAA1VBTFi/7O/Pnze/386U9/Op/+9KdLyuhZA178VwAAAAAAAAAAaAR9qlBk/vz5aW9vz5QpU3L11VdnxYoVOf744zN16tSceuqp9U4PAAAAAAAAAKBf6zOvnlm7dm0uuuii3HDDDWltbU2SnH766TnrrLPyxje+sc7ZAQAAAAAAAAD0f32mUGTBggUZMmRIjjjiiAwdOjRf+MIX8utf/zpr1qzJ3XffnTPOOCNHHnlkvdMEAAAAAAAAAOi3+kyhyPLly7N06dLcfPPNmTdvXubOnZtbbrklF110UUaPHp2JEyfmsMMOy+DBg5+3bmdnZzo7O3sta2trqyp1AAAAAAAAAIB+YUC9E+g2fPjwTJgwIa2trWlvb88dd9yRV73qVRkzZky22GKL7LHHHnnkkUc2uW5HR0eGDRvW69PR0VFxDwAAAAAAAADg/6alxaevfxpFnykUGTNmTJYsWZKiKHLbbbdl1KhR2WeffbJ06dJs2LAh99xzT3bcccdNrjtnzpysXLmy12fOnDkV9wAAAAAAAAAAoG/rM6+eGTFiRGbMmJFJkyalpaUll112WdavX59TTjkla9euzSmnnJKhQ4duct22trYXeNXMunKTBgAAAAAAAADoR/pMoUiSzJo1K7Nmzeq17KabbqpTNgAAAAAAAAAAjaXPvHoGAAAAAAAAAIByKRQBAAAAAAAAAGgSCkUAAAAAAAAAAJqEQhEAAAAAAAAAgCYxqN4JAAAAAAAAAECza6l3AjQNTxQBAAAAAAAAAGgSCkUAAAAAAAAAAJqEQhEAAAAAAAAAgCahUAQAAAAAAAAAoEm0FEVR1DsJAAAAAAAAAGhmD/1vZ71T4EW86hVt9U6hJjxRBAAAAAAAAACgSQyqdwJlemRFV2ltjxzemiRZ+tja0mLstt2QJMnCe1eW0v7YUcOSVLOdqoix6OHVpcXYe6ctkiRPry8tRAb/cTSe9YO7Sotx4fQ9kpS3rbq3U6OMvSr6UcUx9cSaDaW0v/XQgaW2/9wYVYzvKvpRxf4uK0Z3+2Vdk5Jnr0tV7O8qziGNML6r2N9VjL0q9velCx8sLcZJY3dOUs11qexjqorxXcW+qOK4vXHJ46XFOGT0iCTljY3ucVFFH6oYFxfedE9pMc6asmuSas5TZe2P7n1RxbioIkYVx1QV11ffI7y0GP15fv7cGFWcb8ueIzTK/r7q9t+XFuPofXZM4j7jxXSfp/rzdkqe3VaN8D1ho3xvVMUx1Sj3MmWd07vP51Vc9xpljtCfr6+N0Iek2u9UAV6uhi4UAQAAAAAAAID+oKWl3hnQLLx6BgAAAAAAAACgSSgUAQAAAAAAAABoEgpFAAAAAAAAAACahEIRAAAAAAAAAIAmoVAEAAAAAAAAAKBJKBQBAAAAAAAAAGgSCkUAAAAAAAAAAJrEoHon8Fzz58/Peeedl40bN+a0007L5ZdfnpUrV2bjxo1ZtGhRnnjiiXqnCAAAAAAAAAAlaKl3AjSJPlMosnbt2lx00UW54YYb0tramiSZMWNGkmcKSL761a/WMz0AAAAAAAAAgH6vz7x6ZsGCBRkyZEiOOOKIzJgxI8uWLev5uyuvvDJve9vb6pgdAAAAAAAAAED/12cKRZYvX56lS5fm2muvzSmnnJK5c+cmSTZu3JibbropBx988Auu29nZmVWrVvX6dHZ2VpQ5AAAAAAAAAED/0GcKRYYPH54JEyaktbU17e3tueOOO5IkP/vZzzJu3LhsttlmL7huR0dHhg0b1uvT0dFRVeoAAAAAAAAAAP1CnykUGTNmTJYsWZKiKHLbbbdl1KhRSV7aa2fmzJmTlStX9vrMmTOnirQBAAAAAAAAAPqNQfVOoNuIESMyY8aMTJo0KS0tLbnsssuycePGzJ8/P5/5zGf+7LptbW1pa2t7/l+s7SonWQAAAAAAAACAfqjPFIokyaxZszJr1qxeyxYvXlynbAAAAAAAAAAAGkufefUMAAAAAAAAAADl6lNPFAEAAAAAAACAZtTSUu8MaBaeKAIAAAAAAAAA0CQUigAAAAAAAAAANAmFIgAAAAAAAAAATUKhCAAAAAAAAABAk1AoAgAAAAAAAADQJBSKAAAAAAAAAAA0CYUiAAAAAAAAAABNoqUoiqLeSQAAAAAAAABAM3t0RVe9U+BFvHJ4a71TqAlPFAEAAAAAAAAAaBKD6p1AmZY+tra0tnfbbkiS5On1pYXI4D/unbJidLf/SImVaSP/WFFVRYwLb7qntBhnTdk1SfLEmg2lxdh66MAk1WyrRQ+vLqX9vXfaIkk1fTC+X3qMsvZH976oog9n/eCu0mJcOH2PJI2zv8s6T3Wfo6o4D1YRo6zzYPLsubCK/X3jksdLaf+Q0SNKbf+5MRrlmtEoY6PseWcVY69R9sXCe1eWFmPsqGFJyhsb3eOiinPIVbf/vrQYR++z4zP//cp/lxbjqhPflKSasVH2NaM/z2uTaue2Vdy7lr2/G+V+rFGOqSrOhWVfM/rzvVLy7PX70oUPlhbjpLE7J2mMOWGjzNequH5XEaMRvjeqYt5ZRT9OvmJxaTG+fOxeSarpRyPcZ/Tn7ZRUu63Knnc2yr/JVHGPD/ByeaIIAAAAAAAAAECTUCgCAAAAAAAAANAkFIoAAAAAAAAAADQJhSIAAAAAAAAAAE1CoQgAAAAAAAAAQJMYVO8EAAAAAAAAAKDZtbTUOwOahSeKAAAAAAAAAAA0CYUiAAAAAAAAAABNok8VisyfPz/t7e2ZMmVKrr766nz3u9/NmDFjsv/+++dzn/tcvdMDAAAAAAAAAOjXBtU7gW5r167NRRddlBtuuCGtra1JkjFjxuTHP/5xtthii7zhDW/I3//932fAgD5V2wIAAAAAAAAA0G/0maqLBQsWZMiQITniiCMyY8aMLFu2LHvssUdWrVqVp59+OkOGDFEkAgAAAAAAAADwF+gzTxRZvnx5li5dmptvvjnz5s3L3Llzc+yxx2bs2LEZOHBgPvrRj77gup2dnens7Oy1rK2treyUAQAAAAAAAAD6lT7ziI7hw4dnwoQJaW1tTXt7e+644458+MMfzqJFi7J06dJ8/etfzxNPPLHJdTs6OjJs2LBen46Ojop7AAAAAAAAAADQt/WZJ4qMGTMmF110UYqiyG233ZZRo0Zl9erV2XLLLdPa2ppBgwbl6aef3uS6c+bMyezZs3sta2try0MrN1aROgAAAAAAAAD8RVrSUu8UaBJ9plBkxIgRmTFjRiZNmpSWlpZcdtll+eUvf5kDDzwwAwcOzCGHHJIdd9xxk+u2tbW9wKtm1pabNAAAAAAAAABAP9JnCkWSZNasWZk1a1bPz7vuumve+c531jEjAAAAAAAAAIDGMaDeCQAAAAAAAAAAUA2FIgAAAAAAAAAATUKhCAAAAAAAAABAk1AoAgAAAAAAAADQJBSKAAAAAAAAAAA0iUH1TgAAAAAAAAAAml5LvROgWXiiCAAAAAAAAABAk1AoAgAAAAAAAADQJBSKAAAAAAAAAAA0iZaiKIp6JwEAAAAAAAAAzWzZqnX1ToEXscNWm9U7hZrwRBEAAAAAAAAAgCYxqN4JlGnRw6tLa3vvnbZIkjyxZkNpMbYeOrDUGGW3/9wYSx9bW1qM3bYbkiQ5+YrFpcX48rF7JUmeXl9aiAz+42isYltddfvvS2n/6H12TJI8sqKrlPaTZOTw1iTVjO8q9kUVx1RZMbrbr+IcUtYxm1R73Pbnc0j3Mdso46KKc0h/7kd3H6oYe1UcU1WM7yq2VX+e23afzxfeu7KU9pNk7KhhSZIblzxeWoxDRo9I0r/na8mzx1TZc8IqjtlDPndzaTFufN+4JMmFN91TWoyzpuyapJqxUfYcoYrrXhXju4rjtop717LnCP35PqbqGI1yv1T2MVXFfK2KfVHFdak/j43u9htlf1cRo4prX1n7o8rvQqrYTo3yHXoV/ShrblvlPV+jnEOqmNs2wjmkUcY3wMvliSIAAAAAAAAAAE1CoQgAAAAAAAAAQJNo6FfPAAAAAAAAAEB/0FLvBGganigCAAAAAAAAANAkFIoAAAAAAAAAADQJhSIAAAAAAAAAAE1CoQgAAAAAAAAAQJNQKAIAAAAAAAAA0CT6VKHI/Pnz097enilTpuTqq6/Ot7/97YwbNy6TJ0/OnXfeWe/0AAAAAAAAAAD6tUH1TqDb2rVrc9FFF+WGG25Ia2trNmzYkDFjxuSWW27JY489llmzZuWaa66pd5oAAAAAAAAAAP1WnykUWbBgQYYMGZIjjjgiQ4cOzWc+85mMHDkym222WUaOHJnf/va39U4RAAAAAAAAAErR0lLvDGgWfaZQZPny5Vm6dGluvvnmzJs3LxdccEEeeuihrFy5Mg8//HCWLl2adevWZbPNNnveup2dnens7Oy1rK2trarUAQAAAAAAAAD6hQH1TqDb8OHDM2HChLS2tqa9vT1LlizJJz7xibz1rW/NhRdemP3333+TRSJJ0tHRkWHDhvX6dHR0VNwDAAAAAAAAAIC+rc8UiowZMyZLlixJURS57bbbMmrUqBx22GGZP39+zj777Oy9994vuO6cOXOycuXKXp85c+ZUmD0AAAAAAAAAQN/XZ149M2LEiMyYMSOTJk1KS0tLLrvsspxxxhn5zW9+k1e84hX54he/+ILrtrW1vcCrZtaVlzAAAAAAAAAAQD/TZwpFkmTWrFmZNWtWz8+f+cxn6pcMAAAAAAAAAECD6TOvngEAAAAAAAAAoFwKRQAAAAAAAAAAmkSfevUMAAAAAAAAADSjlrTUOwWahCeKAAAAAAAAAAA0CYUiAAAAAAAAAABNQqEIAAAAAAAAAECTUCgCAAAAAAAAANAkFIoAAAAAAAAAADQJhSIAAAAAAAAAAE2ipSiKot5JAAAAAAAAAEAz+8OT6+udAi9i2y0H1TuFmmiMXgAAAAAAAABAf9ZS7wRoFg1dKPLIiq7S2h45vDVJ8nSJRV2D/7h3nlizoZT2tx46sNT2q45x6cIHS4tx0tidk/Tv/Z08u60WPby6lPb33mmLJNX0Yelja0uLsdt2Q5I0zjmkrBhVHrNHf+W/S4tx1YlvStI458Kyxkb3uGiUc21Z58Hk2XNhFf0oe39XsZ2qGBc3Lnm8tBiHjB6RJLnq9t+XFuPofXZMUs21r+x5ZxXbqYrzVH+eryXPjr+y9kf3vqhiLlXFHGHcJ35aWoybPzwpSTXju6xzYfd5sIr9XcW4qGJfLLx3ZWkxxo4alqT88e3e+MVVOSesYq5T9vcIjXKP3yjHVNnfIzTK9y2Nci9T9n1lFfuiivsM32+/uKrOIf15XCTl338nzx5TVZxv/fvVS4tRxb4AeLkG1DsBAAAAAAAAAACqoVAEAAAAAAAAAKBJKBQBAAAAAAAAAGgSCkUAAAAAAAAAAJqEQhEAAAAAAAAAgCahUAQAAAAAAAAAoEkoFAEAAAAAAAAAaBKD6p0AAAAAAAAAADS7lnonQNPoM08UWbBgQSZPnpzJkyfnta99bT7wgQ/k5z//eQ444IAceOCBWbRoUb1TBAAAAAAAAADo1/rME0XGjx+f+fPnJ0lmzpyZI488MmeffXZ+8IMf5Mknn8x73vOeXH/99fVNEgAAAAAAAACgH+szTxTp1tXVlYULF2a//fbLwIEDs/XWW2fnnXfO//7v/9Y7NQAAAAAAAACAfq3PPFGk27x589Le3p6VK1dmq6226lk+aNCgdHV1pbW19XnrdHZ2prOzs9eytra2eIsTAAAAAAAAAMCz+twTRa688socc8wxGT58eFatWtWzfP369ZssEkmSjo6ODBs2rNeno6OjqpQBAAAAAAAAAPqFPvVEkXXr1uXWW2/NpZdemgEDBmT9+vVZsWJFnnzyybziFa94wfXmzJmT2bNn91rW1taWx9eWnTEAAAAAAAAAQP/RpwpF5s2bl6lTp2bAgGcedHL++efn8MMPT0tLSz7/+c+/4HptbW1/fNXMn1jbVVaqAAAAAAAAAAD9Tp8qFJk2bVqmTZvW8/PEiRPzy1/+so4ZAQAAAAAAAED5WlrqnQHNYkC9EwAAAAAAAAAAoBoKRQAAAAAAAAAAmoRCEQAAAAAAAACAJqFQBAAAAAAAAACgSSgUAQAAAAAAAABoEgpFAAAAAAAAAACahEIRAAAAAAAAAIAmMajeCQAAAAAAAABAs2tJS71ToEl4oggAAAAAAAAAQJNoKYqiqHcSAAAAAAAAANDM/vepDfVOgRfxis0H1juFmvBEEQAAAAAAAACAJjGo3gmUaelja0tre7fthiRJnl5fWogM/uPeeWJNOZVjWw99ptqpiu1UVh+SZ/tx4U33lBbjrCm7Jqlmfy96eHVpMfbeaYskycJ7V5bS/thRw5JUs50aZXz3521V5XYq65hNnj1uH1nRVVqMkcNb+32M7vYbZexVcV2qoh9l7+8qxl4V2+nGJY+XFuOQ0SOSVLOt+vOcrcp5Z6NcMy5d+GBpMU4au3OS8ueE/XlemzzbjypiVLGtyjqmuo+nKq6tVZxDqoixy2nXlhbjgc8ekaT8ewBzqRfXfT6vYltVMdcpe97ZKMdUFdfv/vxdRZVjr1HuK6s4psq+B2iUOUIV/WiUe/Cyrxn9+bqXVPs9YSPs70bZF1Xc8wG8XJ4oAgAAAAAAAADQJBSKAAAAAAAAAAA0CYUiAAAAAAAAAABNYlC9EwAAAAAAAACAZtfSUu8MaBaeKAIAAAAAAAAA0CQUigAAAAAAAAAANAmFIgAAAAAAAAAATUKhCAAAAAAAAABAkxhU7wS6LViwIHPmzEmSPProo5k+fXra2tryta99LX/7t3+bT33qU3XOEAAAAAAAAACgf+szhSLjx4/P/PnzkyQzZ87MkUcemT322COHHnpofvCDH9Q3OQAAAAAAAACABtDnXj3T1dWVhQsX5qCDDsoOO+yQlpaWeqcEAAAAAAAAANAQ+swTRbrNmzcv7e3tGTDgpdewdHZ2prOzs9eytra2WqcGAAAAAAAAANCv9bknilx55ZU55phjXtY6HR0dGTZsWK9PR0dHSRkCAAAAAAAAAPRPfeqJIuvWrcutt96aSy+99GWtN2fOnMyePbvXsra2tjy0cmMt0wMAAAAAAAAA6Nf6VKHIvHnzMnXq1J7Xzlx88cX52te+lscffzyPPPJIvv3tb29yvba2thd41czaErMFAAAAAAAAAOhf+lShyLRp0zJt2rSen08//fScfvrpdcwIAAAAAAAAAKBxDKh3AgAAAAAAAAAAVEOhCAAAAAAAAABAk1AoAgAAAAAAAADQJBSKAAAAAAAAAAA0iUH1TgAAAAAAAAAAml1LS70zoFl4oggAAAAAAAAAQJNQKAIAAAAAAAAA0CQUigAAAAAAAAAANAmFIgAAAAAAAAAATaKlKIqi3kkAAAAAAAAAQDNbsXZDvVPgRQwfMrDeKdSEJ4oAAAAAAAAAADSJQfVOoEyLHl5dWtt777RFkuSJNeVVdW099JlqpKfXl9P+4D/u/aWPrS0nQJLdthuSJHlkRVdpMUYOb02SXLrwwdJinDR25yTV7O+F964sLcbYUcOSlNeP7j5UsZ2qOG6r6Ed/3lZVbqcqzudVnKfKOp8nz57Ty+pHdx8a5dpaxf7uz2Oje19cdfvvS2k/SY7eZ8ckjbO/q7guVXEOKXve2SjnkCpiXHjTPaXFOGvKrqXG6G6/iv1dxXYa94mflhbj5g9PSlLNears/d0o5/Mqjtujv/LfpcW46sQ3JSnvvrL7nrI/X5OeG6M/f6eTPNuPG5c8XlqMQ0aPSFL+fUajHFNn/eCu0mJcOH2PJP17bFR5j98ox1R//v6ryrlzoxxTVdyD9+fjtvuYrWI7VTHvbJTvphrhu8hG+U4H4OVy+gAAAAAAAACAOmtJS71ToEl49QwAAAAAAAAAQJNQKAIAAAAAAAAA0CQUigAAAAAAAAAANAmFIgAAAAAAAAAATUKhCAAAAAAAAABAk1AoAgAAAAAAAADQJBSKAAAAAAAAAAA0iUH1TqDbggULMmfOnCTJo48+munTp2fp0qV54oknkiT/+q//mje+8Y31TBEAAAAAAAAAStHSUu8MaBZ9plBk/PjxmT9/fpJk5syZOfLII/OqV70qo0aNyl133ZUPfvCDue666+qbJAAAAAAAAABAP9bnXj3T1dWVhQsX5qCDDsqoUaOSJK2trRkwoM+lCgAAAAAAAADQr/SZJ4p0mzdvXtrb23sVhpx55pk588wzX3Cdzs7OdHZ29lrW1tZWWo4AAAAAAAAAAP1Rn3tMx5VXXpljjjmm5+dzzjkn48aNy8SJE19wnY6OjgwbNqzXp6Ojo4p0AQAAAAAAAAD6jT71RJF169bl1ltvzaWXXpokufzyy/Pwww/3/PxC5syZk9mzZ/da1tbWlt/9YV1puQIAAAAAAAAA9Dd9qlBk3rx5mTp1agYMGJANGzbk3e9+d8aMGZPJkyfnNa95Tb7yla9scr22trYXeNWMQhEAAAAAAAAAgG59qlBk2rRpmTZtWpJk4MCB6erqqnNGAAAAAAAAAACNo08VigAAAAAAAABAM2qpdwI0jQH1TgAAAAAAAAAAgGooFAEAAAAAAAAAaBIKRQAAAAAAAAAAmoRCEQAAAAAAAACAJqFQBAAAAAAAAACgSSgUAQAAAAAAAABoEgpFAAAAAAAAAACaxKB6JwAAAAAAAAAATa+l3gnQLFqKoijqnQQAAAAAAAAANLMnOzfWOwVexJZtjfHSlsboBQAAAAAAAAAAL6qhXz2z6OHVpbW9905bJEmeXl9aiAz+4955ZEVXKe2PHN6apJo+PLFmQ2kxth46MEk1+7usfZE8uz8uXfhgaTFOGrtzkvKPqaWPrS2l/STZbbshSarZ341yTJU1/rrHXhXj++QrFpcW48vH7pWkmn1Rxfm2rPHXPfYaZTvduOTx0mIcMnpEkv59fe0ee41yPq/iuF1478rSYowdNSxJNcdUWTG627/q9t+XEyDJ0fvsmKRx9kUV176yzoXd58FGOYdUMT+v4rgtqx/dfahiTtif75WSau+Xyh7fVezv/nyvlDzbjyquGVWcQ8qK0d1+oxxTZ/3grtJiXDh9jySNMSdslPuxRhnfZX9PWMXYq+KYquI81Sj9aIRjqj9/h5c8Oyfsz8dt9zFbxT1fFdupiv0N8HJ5oggAAAAAAAAAQJNQKAIAAAAAAAAA0CQUigAAAAAAAAAANAmFIgAAAAAAAAAATUKhCAAAAAAAAABAkxhU7wQAAAAAAAAAoNm1pKXeKdAkPFEEAAAAAAAAAKBJKBQBAAAAAAAAAGgSfebVMwsWLMicOXOSJI8++mimT5+edevWZdGiRVmzZk3+4R/+IUcffXSdswQAAAAAAAAA6L/6TKHI+PHjM3/+/CTJzJkzc+SRR2b8+PFpbW3Nk08+mYMOOkihCAAAAAAAAADAX6DPvXqmq6srCxcuzEEHHZTW1tYkyZo1a7LnnnvWOTMAAAAAAAAAgP6tzxWKzJs3L+3t7Rkw4JnUjjvuuLz+9a/PoYce+oLrdHZ2ZtWqVb0+nZ2dVaUMAAAAAAAAANAv9LlCkSuvvDLHHHNMz8/f+c538tvf/jYXXHBBNm7cuMl1Ojo6MmzYsF6fjo6OqlIGAAAAAAAAAOgXBtU7gedat25dbr311lx66aVJnnlSSFtbW4YOHZott9yy5ykjf2rOnDmZPXt2r2VtbW353R/WlZ4zAAAAAAAAAPylWlrqnQHNok8VisybNy9Tp07tKQg59thjs2LFinR1deXss89+wfXa2trS1ta2ib9RKAIAAAAAAAAA0K1PFYpMmzYt06ZN6/n5mmuuqV8yAAAAAAAAAAANZtPvcgEAAAAAAAAAoOEoFAEAAAAAAAAAaBIKRQAAAAAAAAAAmoRCEQAAAAAAAACAJqFQBAAAAAAAAACgSQyqdwIAAAAAAAAA0Oxa6p0ATcMTRQAAAAAAAAAAmoRCEQAAAAAAAACAJqFQBAAAAAAAAACgSbQURVHUOwkAAAAAAAAAaGZruvzTfV83tLWl3inUhCeKAAAAAAAAAAA0iUH1TqBMix5eXVrbe++0RZJk6WNrS4ux23ZDkiRPrNlQSvtbDx2YJHl6fSnNJ0kG//EIK6sPybP9uHThg6XFOGnszkmq2VZVHLdl9aO7D4+s6ConQJKRw1uTJDcueby0GIeMHpGkmuO2P4+/Kvtw1e2/Ly3G0fvsmKRx9ndZ58Lu82CjbKeF964sLcbYUcOSVLOtypqHdM9B+vM8J3l2O1Vxba3i2lfF/ih7jmB/v7ju/V3Fta+sbVXlvdLJVywuLcaXj90rSXLI524uLcaN7xuXpJrrUtnXjCqu31UcU40yvssaG93joorzeRUxqtjf/fkeIHn2PqDsa0aj3Gc0yr1r2d8j9OfvvpJq57ZVXPvKniNUsZ2qmBNWcUxV0Y9GOIc0yvfCjfI9Qln96O5DFdupiv1dxT0fwMvliSIAAAAAAAAAAE2ioZ8oAgAAAAAAAAD9Qku9E6BZeKIIAAAAAAAAAECTUCgCAAAAAAAAANAkFIoAAAAAAAAAADQJhSIAAAAAAAAAAE1CoQgAAAAAAAAAQJNQKAIAAAAAAAAA0CT6TKHIggULMnny5EyePDmvfe1r84EPfCBJsnr16my77ba57rrr6pwhAAAAAAAAAED/NqjeCXQbP3585s+fnySZOXNmjjzyyCTJZz/72ey77771SwwAAAAAAAAAoEH0mUKRbl1dXVm4cGEuu+yyrFq1KosWLcq4cePqnRYAAAAAAAAAlKYlLfVOgSbRZ149023evHlpb2/PgAEDcvHFF+d973vfi67T2dmZVatW9fp0dnZWkC0AAAAAAAAAQP/R5wpFrrzyyhxzzDFZuXJlbr/99kyYMOFF1+no6MiwYcN6fTo6OirIFgAAAAAAAACg/+hTr55Zt25dbr311lx66aW59dZb8/DDD+ewww7L0qVLc+2112bvvffOLrvs8rz15syZk9mzZ/da1tbWlt/9YV1VqQMAAAAAAAAA9Hl9qlBk3rx5mTp1agYMGJD9998/N998c5Jk7ty52W+//TZZJJI8UxTS1ta2ib9RKAIAAAAAAAAA0K1PFYpMmzYt06ZNe97yuXPnVp8MAAAAAAAAAECDGVDvBAAAAAAAAAAAqIZCEQAAAAAAAACAJtGnXj0DAAAAAAAAAM2opaXeGdAsPFEEAAAAAAAAAKBJKBQBAAAAAAAAAGgSCkUAAAAAAAAAAJqEQhEAAAAAAAAAgBJccsklefWrX53Bgwdn//33z8KFC//s71955ZX5q7/6qwwePDh77713rr/++prnpFAEAAAAAAAAAKDGrrjiisyePTvnnHNO/vu//zv77LNPDj300Dz22GOb/P1f/vKXOf7443PSSSfl17/+dY488sgceeSRWbx4cU3zUigCAAAAAAAAAFBj//Iv/5JTTjklJ554Yvbcc8988YtfzNChQ3PZZZdt8vcvvvjiHHbYYfnQhz6U0aNH57zzzsub3vSmfO5zn6tpXi1FURQ1bREAAAAAAAAAeFmeXl/vDHgxLRs609nZ2WtZW1tb2tranve7XV1dGTp0aK666qoceeSRPcvf9a53ZcWKFfn+97//vHV23nnnzJ49O2eccUbPsnPOOSfXXHNNbr/99pr1wxNFknR2dmbu3LnP26FiNGaMRuiDGH0rRiP0QYy+074YfStGI/RBjL4VoxH6IEbfaV+MvhWjEfogRt9pX4zmi9EIfRCj77QvRt+K0Qh9EKPvtC9G88VohD6I0Xfap38YPMinr386OjoybNiwXp+Ojo5N7s/HH388GzZsyPbbb99r+fbbb59ly5Ztcp1ly5a9rN//v/JEkSSrVq3KsGHDsnLlymy11VZiNHiMRuiDGH0rRiP0QYy+074YfStGI/RBjL4VoxH6IEbfaV+MvhWjEfogRt9pX4zmi9EIfRCj77QvRt+K0Qh9EKPvtC9G88VohD6I0XfaB2qjs/OlP1Hk0UcfzciRI/PLX/4y48eP71l+1lln5ac//WluueWW563T2tqar371qzn++ON7ln3+85/Pueeem+XLl9esH4Nq1hIAAAAAAAAAQIN6oaKQTRkxYkQGDhz4vAKP5cuXZ4cddtjkOjvssMPL+v3/K6+eAQAAAAAAAACoodbW1uy777758Y9/3LNs48aN+fGPf9zrCSPPNX78+F6/nyQ33njjC/7+/5UnigAAAAAAAAAA1Njs2bPzrne9K/vtt1/Gjh2bz3zmM3nqqady4oknJklOOOGEjBw5Mh0dHUmS008/PZMmTcpFF12U6dOn5zvf+U5+9atf5f/9v/9X07wUiuSZx8Occ845L/kRMWL07xiN0Acx+laMRuiDGH2nfTH6VoxG6IMYfStGI/RBjL7Tvhh9K0Yj9EGMvtO+GM0XoxH6IEbfaV+MvhWjEfogRt9pX4zmi9EIfRCj77QP1Mexxx6bP/zhD/nYxz6WZcuW5Q1veEN++MMfZvvtt0+SPPjggxkw4NkXwRxwwAH51re+lY9+9KP5yEc+kt133z3XXHNN9tprr5rm1VIURVHTFgEAAAAAAAAA6JMGvPivAAAAAAAAAADQCBSKAAAAAAAAAAA0CYUiAAAAAAAAAABNQqEIAAAAAAAAAECTUCgCAAAAAAAAANAkmrJQZMOGDbniiity2mmn5R3veEdOO+20XHHFFVm/fn0l8b/2ta/VpJ0NGzbke9/7Xq655pps2LChZ/mVV15Zk/aTZPny5fmnf/qnfP/7389DDz2U9773vTnzzDOzfPnymsXYlDPOOKOm7f3P//xPz5+vvvrqzJ07N9/4xjeycePGmrT//e9/P0ny2GOP5b3vfW8mTZqUE088Mffdd19N2k+SD37wg/nZz35Ws/Y25Xe/+11OPfXUfPSjH82jjz6a4447LocffnhuvvnmmsXYuHFjrrrqqpx22ml55zvfmQ996EP5+c9/XrP26fu6urrqncJfrFbnDmg0xje1UtW8nJfuoYceqncKf5Gurq7cd999efrpp+udyl9k5cqVpd6LPfe+kubh+g2Ny/imVszP+x7z876jzDl6FfNz47tv6u9jHOgfmrJQ5O/+7u9yzz33ZObMmTn33HMzc+bM3HvvvTnxxBNrGufOO+983ueOO+7Il770pZq0f8IJJ+RXv/pVbrvttkycODFLly5NknzhC1+oSftJ8va3vz0jR47MQw89lDe/+c1pb2/Pm9/85vzd3/1dzWJst9122W+//TJ27NiMGTMmY8aMyeWXX56xY8fWLMYxxxyTJDn77LNzww03ZP/998+dd95Zs3589rOfTZK8973vzV//9V/nxhtvzHve856abqfrrrsul112WV73utfl9NNPL6W44uSTT8473/nOjB07NhMmTMhZZ52Vz3/+85k9e3bNYrz73e/O/fffn7e+9a3Zaaed0tXVlR//+Mf5xCc+UbMYjz76aN7znvfkgAMOyLhx4zJhwoS8973vzSOPPFKzGC/kgx/8YM3aeuihh/L+978/Z5xxRu65556e5WeffXZN2v/5z3+eQw45JLNnz868efPypje9KZMmTcovfvGLmrSfPP88eMcdd+Tggw/OkiVLahbjxz/+cZJkxYoVOe200zJ58uScfPLJNd3f5557bpJkwYIFGTt2bA466KCMGTMm119/fc1i7LvvvjnvvPNy11131azN5/re976X/fbbL4ccckh++MMfZr/99ss+++yTf/u3f6tZjOXLl2fWrFl5/etfn1e96lU55JBDcsEFF9T0pr8RxnfZYzsxvl+Ossd32WM7aZzxfccdd2T69Ok54IADMnXq1IwfPz5vectbsmjRoprFeCFvf/vba9bW7bffniOOOCJHHnlkr/naSSedVJP2v/vd7+aNb3xj3vGOd+TrX/969thjj4wZMybXXHNNTdpPkuuvv77X5wc/+EGOOuqoml73vvnNbyZJHnzwwbz1rW/NmDFjcuihh2bx4sU1i/He9743yTNF3ePHj8/ZZ5+dyZMn57LLLqtZjG222SYnnXRS/vM//7OUL3EvueSS7LPPPhk/fnz+7d/+LW95y1ty/PHHZ+7cuTWL8dvf/jYzZszI6NGjM2TIkBx00EH5+7//+/zv//5vzWK4fr80rt8vnev3S2N+/tI1whg3vl+6Rhjj5ucvXdnz86T8Obr5+UtX9vw8KX+OXsX83Ph+6RrlHhxgk4omdNBBB72s5f9XW265ZXHiiScWM2fO7PUZOXJkTdqfNGlSz5/vv//+YuLEicVPfvKTYsqUKTVp/09j7L///j1/njp1as1ifOtb3yqOOuqo4jvf+U7PssMOO6xm7RdF0bNNJk6c2Gv5n/78f9Xe3l6sW7euOPTQQ4t169bVvP2iKIrJkycXRVEUXV1dxfXXX1+ceOKJxd57712cfvrpNYvx3DGwxx579Pz5ucfBX+pPj5329vaiKIri4IMPrlmMgw8+uPjFL37Ra9kvfvGLnli1cMkllzzv87nPfa4YPXp0zWK0t7cXP/rRj4qbbrqpmDRpUnHllVcWRVHUbIyPGzeueOCBB4rf/OY3xY477lg89NBDxf/8z//U9Lhta2sr2tvbe50LR44cWZx44ok1i9G9Pd7+9rcXX//614s1a9YUP/zhD4s3v/nNNYvRfdy2t7cXy5YtK4qiKFavXl2MGzeuZjHGjh1bXH755cX06dOL/fbbrzjvvPOKu+66q2bt77///sWaNWuKZcuWFa985SuLVatWFevWret1bv9LHXbYYcWtt95arF+/vrjhhhuKM844o5g/f37xd3/3dzWL0Qjju+yxXRTG98tR9vgue2wXReOM74MOOqh48MEHey178MEHiwMPPLBmMT70oQ8973PmmWcWr371q2sW46CDDip+97vfFffdd1/xN3/zN8VFF11UFMWzc7m/1NixY4vVq1cXy5YtK3bYYYdixYoVxdNPP11MmDChJu0XRVFsu+22xbRp04pzzz23mDt3bjF37txit912K84999yaxege329961uLn/70p0VRFMUdd9xR0/NU97VhypQpxerVq4uiKIr169cX48ePr1mMiRMnFvPnzy9mzZpV7LnnnsVJJ51U/Od//mexYcOGmrTffS566qmnip133rno6uoqiqIoDjjggJq0XxTPbJ9HHnmkKIqiWLx4cTFz5szid7/7XXHMMcfULIbr90vj+v3SuX6/NObnL10jjHHj+6VrhDFufv7SlT0/L4ry5+jm5y9d2fPzoih/jl7F/Nz4fuka5R4cYFMG1btQpR4OOOCAnHDCCXnzm9+crbbaKqtWrcq8efMybty4msYZPXp0PvnJT2abbbbptXz69Ok1ab+rqyudnZ1pa2vLLrvskuuuuy7HHXdcTas+161b1/Pn5z4JpZaPIzv++ONz7LHH5tvf/naOPPLIvO1tb0tRFDVrP0kWL16ct73tbbn77ruzdu3aDBkyJEny1FNP1aT9f/zHf8xRRx2VYcOG9fwfNEuWLMlxxx1Xk/afa7PNNsu0adMybdq0rF+/PvPmzatZ27vuumve/va3pyiKjB07NieddFK22Wab7LDDDjWL8cpXvjLnnHNO3vCGN+QnP/lJ3vjGNyap7WP01qxZk/3337/XsjFjxmTt2rU1izF37tx86lOfet6xOnDgwJrFWL9+fQ455JAkyY9+9KOceuqp+e1vf1uz9tva2rLzzjsnSXbffffstNNOSZIBA2r3sKm77rorn/zkJ9PS0pIPfehD2XnnnTNt2rSa/p8C3R555JG84x3vSJIceuih6ejoqFnbW2yxRX7/+99n22237Tn/bdiwIZtttlnNYmy++eZ517velXe9611ZuXJlvv/97+eDH/xgli9fnoULF/7F7RdFkcGDB2fDhg0ZMGBA2traMmjQoLS0tNQg+2c8+eST2W+//ZIkU6dOzT//8z/n05/+dD7+8Y/XLEYjjO+yx3ZifL8cZY/vssd20jjje8OGDRk2bFivZVtttVVNHzf+zW9+M9/61reet/ymm26qWYyiKLL77rsnSa666qrMnTs3J598cs3mz0OGDMnmm2+ezTffPJMnT+7ZZrW8Jt133325+OKLs3jx4rz//e/P+PHjc/PNN+djH/tYzWJs2LAha9asyRNPPJGJEycmSfbcc8+atZ888+TC22+/PbvttlvuuuuuvOlNb8r999+fwYMH1yzGwIEDM2nSpEyaNClFUeRnP/tZrrzyypx55pn5zW9+8xe3v2HDhjz11FNZsWJF1q9fn6eeeiqbb755Te/H1q5d2zPf33nnnfPAAw9k99137/X6zr+U6/dL80LX71reYzTy9Xv9+vWu33/C/PylW7duXb8f4408vvvb/XdS/hhv5Pl5URT9an6elD9Hv++++/LZz342ixYtMj9/EWXPz5Py5+jPnZ+/6lWvyv3331/z+Xkj33+fcsop/Wp8J8m9996bf/3Xf+01xm+55ZaajnGATWnKQpFPfOIT+c1vfpNf/vKXeeihhzJ8+PB84AMfyD777FPTODfeeGM233zz5y3/wQ9+UJP2L7744qxYsSLbb799kmTLLbfMf/zHf+Tb3/52TdpPkquvvjpFUaSlpaVn+6xbty6f+tSnahYjeeYfrt7+9rfn+OOPzze+8Y284Q1vqGn7t956a8+fBw165rBfvXp1zj///Jq0P2nSpOy///5ZsGBBli9fnuHDh+djH/vY84qE/hKbuukeNGhQDjvssJrFuOyyy3Lbbbdlp512yogRI/KjH/0oRVH0fFlSC1/96ldz9dVX5+67786hhx6at7zlLUlS0+P2jDPOyEEHHZQ999wzW221VVauXJnf/va3OeOMM2oWY9q0aXnzm9/8vCKaWj62dODAgVm2bFl22GGHtLa25itf+UrOPffcmr12aMSIEVm/fn0GDRqUn/70p0lq/07KXXbZJZ/73Ody//33p6OjIy0tLVmzZk1NYzz88MMZM2ZMVq9enSeeeCJbb711urq6snr16prF+PznP58PfvCDPf9wsvvuu2ebbbbJhRdeWLMYz/3Sc9iwYTnhhBNywgknZNWqVTVp/4QTTsjee++dXXfdNR/96EczduzYDB06NH/zN39Tk/aT5KijjsrBBx+c173udfnVr37V80jR7bbbrmYxzjjjjEycODGjR4/ut+O77LGdNNb4Hjt2bL8e32WP7aSa8T1jxozSx/eFF16Yv/7rv86gQYOy5ZZb5sknn8z69etr+nq6E044IaNHj35e3ieccELNYmy99da5//778+pXvzrJM/+49dWvfjVf//rXa9L+3nvv3TO+u+dPXV1dGT58eE3aT575x5OPfOQjefLJJ3PxxRfn05/+dFauXFmz9pNn5v9vectbstlmm/WM7yeffLKm55EvfOELOeecc3LXXXflgAMOyM4775x99tknX/ziF2sWY6uttur5c0tLSyZOnJiJEyfWrPD9H/7hHzJ16tTsscce+dKXvpQDDzwwbW1t+cAHPlCT9pPktNNOy9ixY3teOdo95l7/+tfXLMYLzc9PP/30msWox/X74x//eH72s5/VpP3kha/ftfwfKf70+p2k5tfvhx56qG7z83/+53+uSfv1vH4fddRRNYtRxfX7T8f3qlWrsmTJkn41vpNnvl/p72O8yvn5k08+Wcn4fu1rX5vddtutpuM7qc8Y33///TNkyJCajfEq7r+fOz/vHt/r16+v6b5ohPl5Uv4cffPNN8+cOXNKn59Pnz49gwYNqmR+PmHChLzqVa/qd/PzJPnwhz+cKVOm5K/+6q/ypS99KQcddFBaW1tr9vr2008/PWPGjMnIkSPz8MMPlzI//9PxvXLlymzYsKEhxvfll1+er33tazWLUcU9+BZbbNFrjP/Lv/xLVqxYUbP2AV5QVY8uAajS+vXriyVLlhS//OUvizvvvLNYt25d8dWvfrX0uLWM8eSTTxZPP/3085afd955NYuxKV/60pdKa/uee+4pvve975W+L7q6uop//ud/rnm769atK37/+98Xa9euLYqitvu7u80/Vda2WrVqVbF69eqat79s2bLilltuKR5//PGeZbWMsX79+uKqq64qLrjgguK//uu/esb3v//7v9csxrp164rvfve7xdVXX12sX7++Z3mtYjz55JPFN7/5zee1X8vt9EJ9+NrXvlazGOvXr+8Vo3t813pfXHXVVb360dXVVVxxxRU1i9F9TP37v/978dBDD/WMxVru7zKPp6J4/nbqHt+1jvGNb3yjuPDCC3uN71rGWLZsWXH++ecX3/nOd4oHHnigePe7313Mnj2755HjtfD73/++uOCCC4prrrmmePDBB4v3vOc9xQc/+MFKYjz66KOltl/LPixbtqwnxgMPPFCceOKJxdSpU2u+nc4///zS+9Ed44EHHqh0f9cqxqa2Uxnj4txzzy3+/d//vbTtVBTPzs8XLFhQ3HnnncXf//3f17T9TanlazpXr15ddHZ2Pq/9hx9+uGYxNuW00057Xtxauueee4p99tmntPa7zZo1q3jsscdq3u5z5+e13N+bug+rZfubsmrVquKkk06qebvLli0rFi5cWPzP//xPURS178fjjz/eM74vuOCC4m1ve1vxta99raaP+H/u3ON73/tecc455xRf//rXaxrjoYce6hlrz43x0EMP1SzGpvrxta99rXjqqadq3v53v/vd4p3vfGfNt9Mf/vCHnj8/dzvVcnx392PdunXFN7/5zeJDH/pQKfu7W1nH1J/uj9mzZ9c0xuOPP95z/33FFVeU0odrrrmmKIpn5grvfve7izFjxhTvete7invvvbfmMZYvX1685z3vKSZOnFjMnDlTjBdp/41vfGNx+OGH17QPV199dVEUz1w3yt5O3TEOOuigfrcvnhvjuf2o5di45pprig0bNvTcF5exnWbPnl3813/9V7FmzZri0UcfLdasWVOztv80Rpk+8IEPbDJGLc+FVfTjT2OsXLmyuOWWW0qNCVAURdFSFDV+xwdAnd15552bXH7KKafkF7/4RWkxiqLIu9/97lJjJLXrR7360Cgxkv51TDVCH5Lk7W9/e1796ldns802y4033pivfvWr2W233TJ16tT85Cc/qVmMXXbZJa2traXEKLv9RotRxf4uM4bt9NIdfPDBPf8n5yWXXJLzzjsvW221VS6++OKaPZGvEWIcfPDBeec735knn3yy1D5UEaO/74vuGGVuq0bZTtttt1123nnnDBgwoOf/5ly6dGl23333mj3if1Mx7r777rz2ta+tSYyy269HjOSZuVoj9KM7Rq2OqXr14Xe/+12/29/dc4Gzzz47jz32WI466qj87Gc/y6OPPprLL7+8X8b4wx/+kBkzZvS7flTZh49+9KN57LHH+n2M/rytquhDe3t7fvzjH+dv/uZvcsopp2Tq1Kn59a9/nQ9/+MM1e3XEc2OcfPLJaW9vF+NF2m+UfdEo/eiv+3uPPfbIhAkTsnDhwrS3t+eYY47JgQceWJO2nxvjgAMOyMKFC3PwwQeLUecYAJtUfW0KQLm23HLL4sQTTyxmzpzZ6zNy5EgxKmxfjL4VoxH6UBRFMWnSpJ4/33///cWkSZOKn/zkJ8WUKVNKizFx4sSaxii7/XrF6I/7oooYjdCHesTYf//9e/48derUhohRxjFVRvt/LkZ/2k5/LkZ/OqYaZV9861vfKo466qjiO9/5Ts+yww47rGbtVxGjEfogRt9pv5FidJ8rJk6c2Gv5n/4sRvkxGqEPYvSd9ouiKNrb24t169YVhx56aLFu3Tox6hijEfogRt9pvyiKYvLkyUVRPPPU1uuvv7448cQTi7322qumTx7bVIy9995bjDrFANiUQfUuVAGotdGjR+eTn/xkttlmm17Lp0+fLkaF7YvRt2I0Qh+SZ94B2tnZmba2tuyyyy659tprc9xxx2XRokWlxbjuuutqGqPs9usVoz/uiypiNEIfqoqxbt26nj9/6Utf6vnz+vXrGyLGhg0b+kX7fy5Gf9pOfy5GfzqmGmVfHH/88Tn22GPz7W9/O0ceeWTe9ra31fQ98VXEaIQ+iNF32m+kGIsXL87b3va23H333Vm7dm2GDBmSJHnqqafEqDhGI/RBjL7TfpL84z/+Y4466qgMGzYs48aNy4QJE7JkyZIcd9xxYlQcoxH6IEbfaf+5Nttss0ybNi3Tpk3L+vXrM2/ePDEaPAbAc3n1DNBwVq1alc033zwDBw4Uo47ti9G3YjRCH5Lk1ltvzc4775ztt9++Z9mGDRvy7W9/O+94xzv6RYxG6IMYfaf9Rorx2GOPZdttt01LS0vPsnXr1uW2227LmDFjxKiofTH6VoxG6MOf2rhxY77xjW/kzjvvzCc+8Ymat19FjEbogxh9p/3+HuOBBx7o+fMrX/nKbLbZZlm9enV+/vOf57DDDhOjwhiN0Acx+k773Z5++uksWLAgy5cvz/DhwzNmzJjn/c8hYlQToxH6IEbfaf/mm2/OuHHjataeGH0/BsCmKBQBAAAAAAAAAGgSA+qdAAAAAAAAAAAA1VAoAgAAAAAAAADQJBSKAAAAAAAAAAA0CYUiAAAAAAAAAABNQqEIAAAAvEyvfvWrM3PmzJ6f58+fn5aWlsyfP79uOf2pP80RAAAAABKFIgAAAPRDl19+eVpaWno+gwcPzmtf+9q8733vy/Lly+ud3kt2/fXXZ+7cufVOAwAAAIAmMqjeCQAAAMD/1cc//vG85jWvydNPP52f//zn+cIXvpDrr78+ixcvztChQyvLY+LEiVm7dm1aW1tf1nrXX399LrnkEsUiAAAAAFRGoQgAAAD91rRp07LffvslSU4++eRss802+Zd/+Zd8//vfz/HHH/+833/qqaey+eab1zyPAQMGZPDgwTVvFwAAAABqzatnAAAAaBhTp05Nktx3332ZOXNmtthii9xzzz05/PDDs+WWW+btb397kmTjxo35zGc+k9e97nUZPHhwtt9++5x66ql54oknerVXFEXOP//87LTTThk6dGimTJmSO+6443lx58+fn5aWlsyfP7/X8ltuuSWHH354tt5662y++eZ5/etfn4svvjhJMnPmzFxyySVJ0us1Ot1qnSMAAAAAJJ4oAgAAQAO55557kiTbbLNNkmT9+vU59NBDc+CBB+ZTn/pUz+toTj311Fx++eU58cQTc9ppp+W+++7L5z73ufz617/OL37xi2y22WZJko997GM5//zzc/jhh+fwww/Pf//3f+fNb35zurq6XjSXG2+8MW95y1uy44475vTTT88OO+yQJUuW5Lrrrsvpp5+eU089NY8++mhuvPHGfP3rX3/e+lXkCAAAAEDzUSgCAABAv7Vy5co8/vjjefrpp/OLX/wiH//4xzNkyJC85S1vyYIFC9LZ2ZljjjkmHR0dPev8/Oc/z5e//OV885vfzN/+7d/2LJ8yZUoOO+ywXHnllfnbv/3b/OEPf8iFF16Y6dOn59prr+152sfZZ5+df/qnf/qzeW3YsCGnnnpqdtxxx9x2220ZPnx4z98VRZEkGT9+fF772tfmxhtvzDve8Y5e61eRIwAAAADNyatnAAAA6LcOPvjgbLvttnnVq16V4447LltssUWuvvrqjBw5sud33vve9/Za58orr8ywYcNyyCGH5PHHH+/57Lvvvtliiy1y0003JUnmzZuXrq6uvP/97+/1SpgzzjjjRfP69a9/nfvuuy9nnHFGryKRJL3aeiFV5AgAAABAc/JEEQAAAPqtSy65JK997WszaNCgbL/99tljjz0yYMCz/0/EoEGDstNOO/Va5+67787KlSuz3XbbbbLNxx57LEnywAMPJEl23333Xn+/7bbbZuutt/6zeXW/AmevvfZ6eR2qMEcAAAAAmpNCEQAAAPqtsWPHZr/99nvBv29ra+tVOJIkGzduzHbbbZdvfvObm1xn2223rWmO/xf9IUcAAAAA+ieFIgAAADSVXXfdNfPmzcuECRMyZMiQF/y9XXbZJckzT/cYNWpUz/I//OEPeeKJJ140RpIsXrw4Bx988Av+3gu9hqaKHAEAAABoTgNe/FcAAACgcbztbW/Lhg0bct555z3v79avX58VK1YkSQ4++OBsttlm+dd//dcURdHzO5/5zGdeNMab3vSmvOY1r8lnPvOZnva6PbetzTffPEme9ztV5AgAAABAc/JEEQAAAJrKpEmTcuqpp6ajoyO33XZb3vzmN2ezzTbL3XffnSuvvDIXX3xxjj766Gy77bY588wz09HRkbe85S05/PDD8+tf/zo33HBDRowY8WdjDBgwIF/4whdyxBFH5A1veENOPPHE7Ljjjvntb3+bO+64I//5n/+ZJNl3332TJKeddloOPfTQDBw4MMcdd1wlOQIAAADQnBSKAAAA0HS++MUvZt99982XvvSlfOQjH8mgQYPy6le/Ou94xzsyYcKEnt87//zzM3jw4Hzxi1/MTTfdlP333z8/+tGPMn369BeNceihh+amm27Kueeem4suuigbN27MrrvumlNOOaXnd4466qi8//3vz3e+85184xvfSFEUOe644yrLEQAAAIDm01I899m0AAAAAAAAAAA0rAH1TgAAAAAAAAAAgGooFAEAAAAAAAAAaBIKRQAAAAAAAAAAmoRCEQAAAAAAAACAJqFQBAAAAAAAAACgSSgUAQAAAAAAAABoEgpFAAAAAAAAAACahEIRAAAAAAAAAIAmoVAEAAAAAAAAAKBJKBQBAAAAAAAAAGgSCkUAAAAAAAAAAJqEQhEAAAAAAAAAgCbx/wOCJ/srORsTIQAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["✅ تم حفظ الصورة: /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/cnn+bilstm_rf_basic.png\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAu4AAAJOCAYAAADoAYIkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYMxJREFUeJzt3XlcVGX///H3sAooqIiAqYi75G6lmJlbkqJpWmZprrmllZpL3Le5ZVGWW5lLmmKlmS2WSUq4Z+KShmt6u+CWAloqbqDA+f3hj/k6ggqjDAy+nvfjPG4513XOuc4MTBdvPnONyTAMQwAAAADyNYe8HgAAAACAu2PiDgAAANgBJu4AAACAHWDiDgAAANgBJu4AAACAHWDiDgAAANgBJu4AAACAHWDiDgAAANgBJu4AAACAHWDiDtwiKSlJb7zxhgIDA+Xs7CyTyaTY2NhcvWa5cuVUrly5XL1GQTZ27FiZTCatW7cur4eSq3r06CGTyaSjR4/m9VDyFD8vAB5UTNyR57Zv367evXurUqVK8vDwkJubmypUqKCXX35Z0dHRNh/PiBEj9PHHH6t69ep66623NGbMGPn5+dl8HHmpXLlyMplMMplM2rNnT5Z90tLS9NBDD5n73ctkMiIiQiaTSREREVafI7+5+THMavvxxx/zeohZSkxMlKOjo4YNGybp/56bmzc3NzdVrlxZr732muLj4/N4xNmXm681TZo0kclkuk8jBYCsOeX1APDgSk9P17BhwzRlyhQ5OTmpWbNmeuaZZ+Ts7KwjR44oMjJSX331lcaPH6+3337bZuNavny5KleurJ9//tlm11y9erXNrpVdDg43fq+fN2+eJk+enKl9xYoVOnXqlJycnJSammrr4VkYNGiQOnfurLJly+bpOG7l6OioUaNGZdlWtWpVG48me37++Welp6erffv2FvubN2+uRo0aSZL++ecfrV69WtOnT9ePP/6oHTt2yMfHJw9Gmz359bUGAHKKiTvyzKhRozRlyhTVrl1b3333nSpUqGDRfvXqVU2fPl3//POPTcd16tQpNW7c2KbXvPXe8wNnZ2c1btxYX331lT744AM5OztbtM+bN09eXl6qVauWNmzYkEejvKFEiRIqUaJEno4hK05OTho7dmxeDyNHfvrpJ/n4+Khhw4YW+1u0aKG33nrL/HV6erratm2rX375RdOnT9e4ceNsPdRsy6+vNQCQYwaQBw4ePGg4Ojoa3t7eRnx8/B37JicnW3x95swZ44033jDKlStnuLi4GD4+Psbzzz9v7N69O9Ox3bt3NyQZR44cMaZNm2ZUqVLFcHFxMcqWLWuMHTvWSEtLy9T31u3JJ580DMMwxowZY0gy1q5dm+k68+fPNyQZ8+fPt9i/Zs0a4+mnnzb8/f0NFxcXo2TJkkajRo2M2bNnW/QLCAgwAgICMp330qVLxujRo40qVaoYrq6uRrFixYzWrVsbGzduzNT35vEtXLjQqFWrllGoUCHDz8/PeP31140rV67c5hHOLCAgwHB1dTW+/vprQ5Lx/fffW7QnJiYazs7ORv/+/Y2QkBBDkhEXF2duT0lJMT7++GOjZcuWRunSpc3P07PPPmvs2LHD4ly3e9xvfnl68sknDUnG1atXjf/+979G+fLlDScnJ2PMmDGZ7j1Dv379DElGeHh4pvvLaHv//fez/ZjkVMZjeCd///23MXr0aKN+/fqGj4+P4eLiYgQEBBgDBgwwEhISMvXPeKxufqwNwzDWrl1reHl5GWXKlDH++usv8/6dO3caL7zwguHn52c4OzsbZcuWNQYNGmScPXs2y/FcvnzZcHNzM3r27Gnel/G9ndXjuGTJEkOSERoamqktISHBGDx4sFGhQgXDxcXF8Pb2Njp06JDlz+maNWuMnj17GpUrVzY8PDwMDw8Po169epl+TjLc7uclK9a+1hw4cMAYPny4UadOHaN48eKGq6urUalSJWPkyJHGxYsXLY673fdv9+7dLfrl9PmYNWuWERQUZLi6uhqlS5c2hg8fbly9etXidelmR48eNXr16mWUKlXKcHZ2Nh566CGjV69exrFjxzL1vdPPVJcuXQxJxpYtW7Ic19tvv21IMhYtWnTHxxPA/UfijjwRERGhtLQ09evXT76+vnfs6+rqav73mTNnFBwcrMOHD6tJkybq3Lmz4uLi9N133ykyMlJRUVHmP+ffbPjw4Vq/fr3atGmjkJAQ/fjjjxo7dqyuXbumd999V5LUvn17lStXTuPGjVNAQIB69OghSVa/CS4yMlJt27ZV0aJF1a5dO/n7++vMmTPauXOnvvzyS/Xt2/eOxycnJ6tZs2baunWr6tatq8GDByshIUHffPONoqKi9PXXX+v555/PdNz06dO1cuVKtWvXTs2aNdPKlSv18ccf6+zZs1q4cGGO7uHZZ59VsWLFNH/+fHXo0MG8/8svv9T169fVq1evLEsL/v33Xw0ePFhPPPGEWrdurWLFiunIkSNatmyZVqxYoQ0bNujRRx+VdONxP3/+vH766Se1a9dOtWvXvu14OnbsqJ07d+rpp59W0aJFFRgYeNu+U6ZM0YYNGzR69Gg1b97cfL2lS5dq9uzZatasmYYPH56jx+N+27BhgyZNmqTmzZurfv36cnZ21p9//qmZM2cqKipKO3bskJeX1x3P8f3336tLly6qUKGCoqKiVLp0aUnSsmXL1KlTJzk4OKhdu3YqU6aM9u3bp+nTpysqKkpbtmxRsWLFLM4VFRWlq1evql27djm6Dycny/+UZPx8njx5Ui1btlT79u2VmJio77//XlFRUVq9erXq169v7v/BBx/o0KFDatCggZ599lmdP39eK1euVL9+/XTgwAFNmjQpR+O5mbWvNT/88IM+//xzNW3aVE2aNFF6ero2b96sDz74QOvXr9eGDRvMf4UaM2aMIiIidOzYMY0ZM8Z8jpu/l3P6fIwePVrvvPOOfH191adPHzk7O2vJkiXav39/lmP/3//+p0aNGunMmTNq27atHn74Ye3Zs0fz5s3Tzz//rI0bN6py5cqZjsvqZ6p58+ZauHCh5s6dq8cee8yif1pamubPny9vb2+L1wQANpLXvzngwdSkSRNDkrFq1aocHdezZ09DkhEWFmaxPzIy0pBkVKxYMcsUPTAw0Dh16pR5/5kzZ4yiRYsaRYoUMVJSUizOpdukWTlN3Dt06GBIMmJjYzP1vzVhyypBHDdunCHJ6NKli5Genm7ev2PHDsPFxcUoWrSokZSUlGl8Xl5exv79+837r1y5YlSuXNlwcHAw/v7770xjycrNafGgQYMMJycn4/Tp0+b2hx9+2KhRo4ZhGEaWiXtycrJx8uTJTOfds2ePUbhwYaNFixYW+2/3F4sMGelg7dq1jX/++SdT++2em9jYWMPV1dWoUKGCcfHiRePEiRNG8eLFDW9v72w/FtYKCAgwHB0djTFjxmTavv76a8MwbqTSt6a3hmEYCxYsMCQZEyZMsNh/a+I+c+ZMw8HBwWjYsKHx77//mvudPXvW8PT0NB566CHj6NGjFufI+CvKoEGDMl23e/fuhru7u8VfZ26XuKelpRmtWrUyJBkffvihRVvDhg0NR0dHY+XKlRb7Dxw4YBQpUsT8vZPhyJEjmcZy/fp146mnnjIcHR0zJcY5Sdytfa05efJkptcGw/i/n8uvvvrKYn/G92hWcvp8HDhwwHB0dDQeeughi7+8JCUlGUFBQVm+RjVt2tSQlOmvFJ9++qkhyWjWrFmW473dz1RQUJBRpEgR49KlSxb7ly9fbkgyBg8enOW9AshdTNyRJ6pWrWpIsphg3k1KSopRqFAhw9vb27h8+XKm9qeeesqQZGzYsMG8L2OiM2/evEz9M9p27dplsf9+T9wPHDhw13vLaiJSvnx5w9nZ2Thx4kSm/n369DEkGV988UWm8Y0ePfq2Y1+2bNldx5IxnoyJ+44dOyzKSjZv3mxIMqZMmWIYRtYT9ztp27at4eLiYly7ds28L7sT959++inL9js9N1OnTjUkGV27djVP4m53nvspICDgtiUU7dq1u+Ox6enphqenp9GkSROL/TdP3MeOHWtIMtq0aZOpDGry5MmZvj9uVrduXaNEiRIW+1JTUw1vb+9MY8t4bpo3b27+xeO1114zqlWrZkgyGjZsaDG5y/h+6dWrV5bXHjp0qCEpy5KZW33//feGJCMiIsJif04m7ta81tzJP//8Y0gyevToYbH/ThP3nD4fGc/t5MmTM/VdtGhRpteoY8eOGZKMoKAgi1/yDePGL1gZj8Hx48czjfd2PwvTpk0zJBlz58612N++fXtDkrF3794sjwOQuyiVgd3Yv3+/kpOT1bRpU7m7u2dqb9q0qaKjoxUbG6snnnjCoq1evXqZ+meUFJw/fz5Xxtu5c2f98MMPatCggV566SU1b95cTzzxRLbeRJmUlKQjR46oWrVq5nHerGnTppozZ45iY2P18ssvW7Td73utU6eOateurfnz52vkyJGaN2+eXFxc1LVr1zseFxsbq4kTJ2rjxo2Kj4/X9evXLdrPnj0rf3//HI3l1j/bZ8frr7+uqKgoffXVV5KkAQMG6JlnnsnWsefPn9fUqVMz7c/uG05dXV2VnJx8xz4//PCDZs+erR07dujcuXNKS0szt506dSrLYwYPHqyffvpJPXr00Jw5czKVqmzevFmStGXLFh0+fDjT8cnJyTp79qzOnj1r/n78/fff9c8//9y2TGb16tWZVj96/PHHtXr1aosSk4xrJyQkZPk4ZZR67N+/X9WrV5ckXbx4UR999JF+/PFHHT58WJcvX7Y45naPQ24yDEPz589XRESE9uzZowsXLig9Pd2qMeX0+di5c6ckZVn29/jjj2fal/E5E08++WSmJSkdHBzUuHFj7d+/X7GxsSpTpoxF++1+prp166a33npLc+bMUe/evSXdeE6XL1+uhg0bKigo6C53DSA3MHFHnvDz89P+/fv1999/q0qVKtk6JikpSZJuW6eaMQnM6HczT0/PTPsyJjs3T5Tup+eff14//vijJk+erFmzZunTTz+VyWRS06ZNNWnSpDvWcue3e+3Vq5def/11rVq1SosXL1bbtm3v+AvIpk2b1KxZM0lSy5YtValSJRUuXNi8fvnOnTuVkpKS43HcrUY5KyaTSe3bt9eKFSskSa+99lq2jz1//nyWq6Xcr5ViJk2apGHDhsnHx0ctW7ZU6dKl5ebmJkmaOnXqbR+jjFV82rZtm2nSLt14j4Ekffrpp3e8/uXLl83P448//ihHR0e1adMmy77h4eF66623lJ6erqNHj2rs2LH68ssv1adPH33xxReZrh0ZGanIyMg7XluSrl27piZNmmjHjh2qU6eOXn75ZXl7e8vJyUlHjx7VggULrPpeyWDNa4104xe+6dOnq0yZMnrmmWfk7+9v/gVl3LhxORpTTp+PjJ/rkiVLZuqT1c/Avbxe3O6YokWLqlOnTlqwYIH27Nmj6tWrKyIiQqmpqerTp88d7wNA7mHijjzx+OOPa926dVq9erV5gnc3GRPShISELNszPggmq4nr/ZCxrnlWa5ZfuHAhy2PatWundu3a6eLFi/r999/Nb3h7+umntX//fhUtWjTL4/L6Xm/VpUsXDR8+XD169FBSUpI5gbudd999VykpKfrtt98ypYabN282J4o5Zc0H3MTFxWn48OEqXry4zp07p1deeUUbNmyQo6PjXY8tV66cDMOwZqh3lZqaqnfeeUf+/v6KjY21mKQZhqGJEyfe9tilS5eqZ8+e6ty5sxYvXpzpTYIZ3xe7d+82p9p389NPP6lhw4Z3XY/dwcFB5cuX14IFC3Ts2DF9+eWX6tChg3nd94xrf/LJJxo0aFC2rrtjxw717t1bc+fOtWhbvHixFixYkK3x3441rzWJiYn69NNPVbNmTcXExFj8hS8+Pj7HS1/m9PnI6J+YmKiAgACLtqxeE+7l9eJOP1P9+/fXggULNGfOHE2bNk2ff/65PD091alTp7veA4DcwSenIk/06NFDjo6O+uyzz3TmzJk79s1ItqpWrapChQpp27ZtunLlSqZ+GR93f6ck+15krPjw999/Z2r7888/73hskSJF9PTTT+uzzz5Tjx49lJCQoC1btty2v6enp8qXL69Dhw5leb3cvtdbFS9eXO3bt9fff/+thx56SCEhIXfsf/jwYRUvXjzTpP3KlSvasWNHpv4Zk+j7/deP1NRUdenSRRcvXtQ333yjoUOHatOmTflizfGzZ8/qwoULCg4OzpSs/vHHH7p69eptjw0ICNC6detUpkwZvfDCC/r+++8t2jNWbImJicnWWPbs2aMjR47kaDUZk8mkadOmyWQyKSwszFxGktNrZ5SOZHXt3377LdvjuR1rXmuOHDkiwzDUokWLTGV5txvTnb6Hc/qY1KpVS9KN8qVbbdq0KdO+jNeBDRs2ZPpF0zAM819ocvp60aBBA9WsWVNfffWVfv31Vx08eFBdunTJslQRgG0wcUeeqFixokaMGKGzZ8+qVatWiouLy9QnOTlZkydPNpcluLi46MUXX9TZs2cVHh5u0XflypWKiopSxYoVs6wBvR8ylhP84osvLGpdY2JislxmccOGDVn+RzwxMVGSVKhQoTter3v37rp+/brCwsIs/mO8a9cuRUREyMvLK9OnW+am999/X0uXLtWPP/5o/uvD7QQEBOjcuXPau3eveV9aWpqGDRuW5eSpePHikqQTJ07c1zGPGzdOMTExevPNN9WiRQu99957qlu3rt577737Mim8FyVLlpSbm5t27Nhh8YvouXPnslXOU7ZsWa1bt04BAQHq3LmzvvvuO3Nbz549VaRIEf33v/+1eA4yXLlyxVx3Ld1IvaWsJ893Urt2bbVv31779+83/ww89thjql+/vr7++mt98803mY5JT0/X+vXrzV9nJMobN2606Ld+/XrNmTMnR+PJijWvNRlj2rRpk8XP+smTJxUWFpblde70PZzT56Nz585ycHDQpEmTdPbsWfP+y5cvm5evvVnZsmXVtGlT7d27V/PmzbNo++yzz/TXX3+pWbNmmerbs6Nfv376999/1bNnT0miTAbIY5TKIM9MmDBBycnJmjJliqpUqaJmzZqpevXqcnZ2VlxcnFatWqV//vlHEyZMMB+TsYbyhAkTtGnTJtWvX19Hjx7Vt99+K3d3d82fP/+uk0prNWjQQI8//rjWrFmj4OBgNW7cWMeOHdNPP/2ktm3baunSpRb9X3/9dZ06dUqNGjVSuXLlZDKZtHHjRm3dulUNGjTI8o1nNxsxYoQiIyP15Zdf6q+//lLz5s2VmJiob775RqmpqZozZ46KFCmSK/ealXLlymV7TfvXXntNv/76qxo1aqROnTqpUKFCWrdunf7++281adLE/BeDDMHBwXJzc9PUqVN17tw5c7nGqFGjrB7vhg0bzBP1jMmOi4uLFi1apHr16qlr167auXPnbcuVcpuDg4NeffVVTZo0SbVq1VLbtm2VlJSkFStWKCAgQKVKlbrrOcqUKaN169apadOmevHFF2UYhp5//nn5+PiY1/mvVauWnn76aVWtWlUpKSk6evSo1q9fr4YNG2rlypWSbtS3BwUFqWLFijm+jzFjxujHH3/U+PHj9eKLL8rJyUlff/21mjZtqs6dO2vq1KmqW7eu3NzcdPz4ccXExOjMmTPmN+22bdtW5cqV08SJE8211AcOHNDy5cv17LPPWvxCYq2cvtb4+/urY8eO+v777/XII4+oefPm5jdmNm/ePMs3mDZr1kzfffedOnbsqFatWqlQoULm5zWnz0eVKlX01ltv6b333lONGjXUqVMnOTk56YcfflCNGjW0Z8+eTK9zM2fOVKNGjdSnTx/9/PPPCgoK0t69e7Vs2TL5+Pho5syZVj12Xbt21YgRI3Tq1CnVq1dPderUseo8AO6TvFvQBrhh27ZtRq9evYyKFSsabm5uhqurq1GuXDnjpZdeMqKjozP1P3PmjPH6668bAQEBhrOzs1GiRAnjueeeu+Mnp2a1VOHtlhDUbZaDNIwb6zF369bNKF68uOHm5mY0aNDAiIqKynI5w8WLFxudOnUyKlSoYLi7uxteXl5GrVq1jA8++CDT2t13+uTUt99+26hcubJ57fZWrVoZv/32W7bvxzDuvtzirbLzqZ8Zbrcc5HfffWfUrVvXcHd3N0qUKGF06tTJOHz48G2fk8jISOPRRx813NzcbvvJqbdz673/+++/RpkyZQwPD48sl+OcM2eOIcl47rnnsnWP1sjOY3jt2jXj3XffNSpVqmS4uroaZcuWNd58803j4sWLWX5P3O6xO3nypFGpUiXDycnJ+Oabb8z79+/fb/Tu3dsICAgwXFxcjGLFihk1atQwXn/9dWPr1q3mY00mk/Gf//wnyzHe6ZNTM3Ts2NGQZHz++efmff/++68xatQoo3r16oabm5tRuHBho1KlSsZLL71k/PDDDxbHHzlyxOjYsaPh4+NjuLu7G48++qixePFiY+3atYYk8yfkZsjJcpA3y8lrzcWLF40333zTKFeunPlTU9955x3j2rVrWb5GXL9+3RgxYoRRtmxZw8nJKctPTs3O83GzGTNmGNWqVTNcXFyM0qVLG8OGDTNOnDhx2yVFjx49avTs2dPw9/c3nJycDH9/f6Nnz56Z1o43jLv/TN2sa9euhiRj1qxZ2eoPIPeYDCOX3nkFAMj3Zs6cqVdffVVbtmyxarlN2NaqVav01FNPacSIEfrggw9scs0aNWooLi5Op06dstkb4gFkjRp3AHiA/fTTT/L39ze/hwP5w5kzZzK9R+b8+fPmGntbvb9lxYoV2rNnj7p06cKkHcgHSNwBAMhnpk6dqo8++kjNmjVTqVKldPr0aa1cuVKJiYnq0aOH5s+fn6vXnzlzpk6cOKG5c+fq4sWL2rdvnwIDA3P1mgDujjenAgCQzzRs2FD16tXTqlWr9O+//8rR0VHVqlXT22+/rVdffTXXr//BBx/o5MmTqlKliubNm8ekHcgnSNwBAAAAO0CNOwAAAGAHmLgDAAAAdoCJOwAAAGAHeHMqAAAAbMatzqBcv8bVP6fn+jXyQoGcuNviGwIAbifjPxjJqXk8EAAPtEIFcpb3YOMpBQAAgO2YqNS2Fo8cAAAAYAdI3AEAAGA7JlNej8BukbgDAAAAdoDEHQAAALZDjbvVeOQAAAAAO0DiDgAAANuhxt1qJO4AAACAHSBxBwAAgO1Q4241HjkAAADADpC4AwAAwHaocbcaiTsAAABgB0jcAQAAYDvUuFuNRw4AAAAPtL///ltdu3aVt7e33NzcVKNGDf3xxx/mdsMwNHr0aPn7+8vNzU0tWrTQwYMHLc7x77//qkuXLvL09FTRokXVu3dvXbp0yaLPrl279MQTT6hQoUIqU6aMJk6cmKNxMnEHAACA7ZhMub/lwLlz5/T444/L2dlZK1as0L59+zRp0iQVK1bM3GfixIn6+OOPNWvWLG3ZskUeHh4KCQlRcnKyuU+XLl20d+9eRUdHa/ny5dqwYYP69u1rbk9KSlLLli0VEBCg7du368MPP9TYsWP12WefZf+hMwzDyNHd2QG3OoPyeggAHmBX/5wuSUpOzeOBAHigFcqnBdFuwW/l+jWuxryf7b5vvfWWfv/9d/32229ZthuGoVKlSunNN9/UsGHDJEkXLlyQr6+vIiIi1LlzZ/31118KCgrStm3b9Mgjj0iSVq5cqdatW+vkyZMqVaqUZs6cqf/+97+Kj4+Xi4uL+do//vij9u/fn62xkrgDAADAdkwOub/lwLJly/TII4/o+eefV8mSJVWnTh3NmTPH3B4XF6f4+Hi1aNHCvM/Ly0v169dXTEyMJCkmJkZFixY1T9olqUWLFnJwcNCWLVvMfRo3bmyetEtSSEiIDhw4oHPnzmVrrEzcAQAAUKCkpKQoKSnJYktJScmy75EjRzRz5kxVqlRJUVFRGjBggF5//XUtWLBAkhQfHy9J8vX1tTjO19fX3BYfH6+SJUtatDs5Oal48eIWfbI6x83XuBsm7gAAALAdG9S4h4eHy8vLy2ILDw/Pcjjp6emqW7eu3nvvPdWpU0d9+/ZVnz59NGvWLBs/MHfHxB0AAAAFSlhYmC5cuGCxhYWFZdnX399fQUFBFvuqVaum48ePS5L8/PwkSQkJCRZ9EhISzG1+fn5KTEy0aE9NTdW///5r0Serc9x8jbth4g4AAADbsUGNu6urqzw9PS02V1fXLIfz+OOP68CBAxb7/ve//ykgIECSFBgYKD8/P61evdrcnpSUpC1btig4OFiSFBwcrPPnz2v79u3mPmvWrFF6errq169v7rNhwwZdv37d3Cc6OlpVqlSxWMHmTpi4AwAA4IE1ZMgQbd68We+9954OHTqkRYsW6bPPPtPAgQMlSSaTSYMHD9aECRO0bNky7d69W926dVOpUqXUvn17STcS+qefflp9+vTR1q1b9fvvv2vQoEHq3LmzSpUqJUl66aWX5OLiot69e2vv3r365ptvNG3aNA0dOjTbY82nCwUBAACgQMrhOuu57dFHH9XSpUsVFham8ePHKzAwUFOnTlWXLl3MfUaMGKHLly+rb9++On/+vBo1aqSVK1eqUKFC5j4LFy7UoEGD1Lx5czk4OKhjx476+OOPze1eXl769ddfNXDgQNWrV08lSpTQ6NGjLdZ6vxvWcQeA+4x13AHkB/l2HfcnRuf6Na7+Nj7Xr5EX8ulTCgAAgAIph+us4//wyAEAAAB2gMQdAAAAtkPibjUeOQAAAMAOkLgDAADAdhzy16oy9oTEHQAAALADJO4AAACwHWrcrcYjBwAAANgBEncAAADYTj775FR7QuIOAAAA2AESdwAAANgONe5W45EDAAAA7ACJOwAAAGyHGnerkbgDAAAAdoDEHQAAALZDjbvVeOQAAAAAO0DiDgAAANuhxt1qJO4AAACAHSBxBwAAgO1Q4241HjkAAADADpC4AwAAwHaocbcaiTsAAABgB0jcAQAAYDvUuFuNRw4AAACwAyTuAAAAsB1q3K1G4g4AAADYARJ3AAAA2A417lbjkQMAAADsAIk7AAAAbIfE3Wo8cgAAAIAdIHEHAACA7bCqjNWYuAMAAMB2KJWxGo8cAAAAYAdI3AEAAGA7lMpYjcQdAAAAsAMk7gAAALAdatytxiMHAAAA2AESdwAAANgONe5WI3EHAAAA7ACJOwAAAGzGROJuNRJ3AAAAwA6QuAMAAMBmSNytR+IOAAAA2AESdwAAANgOgbvVSNwBAAAAO0DiDgAAAJuhxt16JO4AAACAHSBxBwAAgM2QuFuPxB0AAACwAyTuAAAAsBkSd+uRuAMAAAB2gMQdAAAANkPibj0SdwAAAMAOkLgDAADAdgjcrUbiDgAAANgBEncAAADYDDXu1iNxBwAAAOwAiTsAAABshsTdeiTuAAAAgB0gcQcAAIDNkLhbj8QdAAAAsAMk7gAAALAZEnfrkbgDAAAAdoCJOwAAAGzHZIMtB8aOHSuTyWSxVa1a1dzepEmTTO39+/e3OMfx48cVGhoqd3d3lSxZUsOHD1dqaqpFn3Xr1qlu3bpydXVVxYoVFRERkbOBilIZAAAAPOAefvhhrVq1yvy1k5PlFLlPnz4aP368+Wt3d3fzv9PS0hQaGio/Pz9t2rRJp0+fVrdu3eTs7Kz33ntPkhQXF6fQ0FD1799fCxcu1OrVq/XKK6/I399fISEh2R4nE3cAAADYTH6scXdycpKfn99t293d3W/b/uuvv2rfvn1atWqVfH19Vbt2bb3zzjsaOXKkxo4dKxcXF82aNUuBgYGaNGmSJKlatWrauHGjpkyZkqOJO6UyAAAAeKAdPHhQpUqVUvny5dWlSxcdP37con3hwoUqUaKEqlevrrCwMF25csXcFhMToxo1asjX19e8LyQkRElJSdq7d6+5T4sWLSzOGRISopiYmByNk8QdAAAANmOLxD0lJUUpKSkW+1xdXeXq6pqpb/369RUREaEqVaro9OnTGjdunJ544gnt2bNHRYoU0UsvvaSAgACVKlVKu3bt0siRI3XgwAH98MMPkqT4+HiLSbsk89fx8fF37JOUlKSrV6/Kzc0tW/fFxB0AAAAFSnh4uMaNG2exb8yYMRo7dmymvq1atTL/u2bNmqpfv74CAgK0ZMkS9e7dW3379jW316hRQ/7+/mrevLkOHz6sChUq5No9ZIWJOwAAAGzGFol7WFiYhg4darEvq7Q9K0WLFlXlypV16NChLNvr168vSTp06JAqVKggPz8/bd261aJPQkKCJJnr4v38/Mz7bu7j6emZ7bRdosYdAAAABYyrq6s8PT0ttuxO3C9duqTDhw/L398/y/bY2FhJMrcHBwdr9+7dSkxMNPeJjo6Wp6engoKCzH1Wr15tcZ7o6GgFBwfn6L6YuAMAAMB28tk67sOGDdP69et19OhRbdq0Sc8++6wcHR314osv6vDhw3rnnXe0fft2HT16VMuWLVO3bt3UuHFj1axZU5LUsmVLBQUF6eWXX9bOnTsVFRWlUaNGaeDAgeZfFvr3768jR45oxIgR2r9/v2bMmKElS5ZoyJAhORorpTIAAAB4YJ08eVIvvvii/vnnH/n4+KhRo0bavHmzfHx8lJycrFWrVmnq1Km6fPmyypQpo44dO2rUqFHm4x0dHbV8+XINGDBAwcHB8vDwUPfu3S3WfQ8MDFRkZKSGDBmiadOmqXTp0po7d26OloKUJJNhGMZ9u/N8wq3OoLweAoAH2NU/p0uSklPv0hEAclGhfBrP+r7yba5fI2Hu87l+jbxAqQwAAABgB/Lp72IAAAAoiPLjJ6faCxJ3AAAAwA6QuAMAAMBmSNytR+IOAAAA2AESdwAAANgMibv1SNwBAAAAO0DiDgAAANshcLcaiTsAAABgB0jcAQAAYDPUuFuPxB0AAACwAyTuAAAAsBkSd+uRuAMAAAB2gMQdAAAANkPibj0SdwAAAMAOkLgDAADAdgjcrUbiDgAAANgBEncAAADYDDXu1iNxBwAAAOwAiTsAAABshsTdevly4v7pp5/qww8/VHx8vGrVqqVPPvlEjz32WF4PC3aklI+XJrzRTi0ff1juhZx1+MRZ9Rv7lXbsOy5Jatesll55rpHqVCsr76Ieqv9CuHb972+Lc3zy385qVr+K/H28dOlqijbvjNOoaT/pf0cTJEnFvTw0/93uqlH5IRX3cteZfy9p+bpdGj39Z128nGzzewaQv3w+Z7ZWR/+quLgjci1USLVr19HgocNULrC8JOnvv0+qdcvmWR774eSpahnSSpL0/nsTFPvnDh06+D+VL19BS374yaLv0bgjemfcGB05cliXLl6UT8mSat26jfq9OkjOzs65e5MAbCrfTdy/+eYbDR06VLNmzVL9+vU1depUhYSE6MCBAypZsmReDw92oGgRN62JGKr12w6q/aAZOnPukiqW9dG5pCvmPu5uLtoUe1jfR+/QzNFdsjzPn3+d0OIV23Ti9DkV93LXf/uHavmMgaraZozS0w2lp6dr+fpdGjdjuc6eu6jyZXw09a1O+sTLQz3+E2GjuwWQX/2xbateeLGLHq5RQ2mpafpk2mT179NbPyyLlLu7u/z8/LV63UaLY7779hstmP+5GjVqbLG//bMdtXv3Th08cCDTdZycnNW2XXtVq/awingW0f/279e4sW8r3TD0+uChuXqPgDVI3K2X7ybukydPVp8+fdSzZ09J0qxZsxQZGal58+bprbfeyuPRwR682fMpnYw/p35jvzLvO3bqH4s+X0dukySV9S9+2/PM++F387+Pn/5X4z79WduW/EcBpbwVd/Kszl+8qjnfbrypzzl99u1vGtKtxf26FQB2bOZnn1t8Pf7d99X0iWD9tW+v6j3yqBwdHVXCx8eiz5rVq9Ty6VZy9/Aw73vrP6MkSec+/TfLiXvpMmVUukwZ89elSj2kbdu2asf2P+7n7QDIB/LVm1OvXbum7du3q0WL/5v4ODg4qEWLFoqJicnDkcGehD5ZQzv2HdfCib10bHW4Yr4eqZ7PNrync7oXclG3Zxoo7uRZnYw/l2Uffx8vtWtWW79tP3hP1wJQMF26eFGS5OnllWX7vr17dGD/X3q2w3P3dJ3jx45p08bf9Mgjj97TeYDcYjKZcn0rqPJV4n727FmlpaXJ19fXYr+vr6/279+fR6OCvQl8qIT6PP+EPv5qjSZ+/qvqPRygSSOe07XUNC38eUuOztX3+Sf07uD2KuzuqgNx8QodMF3XU9Ms+iwI76E2T9aUu5uLlq/frQHjF93P2wFQAKSnp2viB++pdp26qlSpcpZ9ln7/ncqXr6DadepadY1uXTrrr317de3aNXV8/gW9+tob9zJkIPcU3Hl1rstXiXtOpaSkKCkpyWJLSUnJ62Ehjzk4mBS7/4TGTP9ZOw+c1Lwfftf8pZvU57lGOT7X4hXb1ODF99Wi9xQdPH5GX33QS64ulr/vjvjoewW/9IGeGzxb5UuX0AdvdrhftwKggHhvwjgdPnhQEz+akmV7cnKyVvyyXO07Wp+2T/xoihZ/u1TvT5yk3zas04L5n9/9IAB2JV9N3EuUKCFHR0clJCRY7E9ISJCfn1+m/uHh4fLy8rLYwsPDbTVc5FPxZ5P015F4i3374+JVxq9Yjs+VdClZh4+f0e87DuulYXNVJdBX7ZrVsuiT8M9F/e9ogiLX79ZrE75Wv06N5VfC857uAUDB8d6E8dqwfp3mzF8g3yz+WyZJ0b+u1NWryWr7THurr+Pn768KFSuqVWgbvTHkTc2aMV1paWl3PxCwMUplrJevJu4uLi6qV6+eVq9ebd6Xnp6u1atXKzg4OFP/sLAwXbhwwWILCwuz5ZCRD8XEHlHlAMsViCqVLanjp/+9p/OaTCaZZJKL8+0rzEwON14s7tQHwIPBMAy9N2G81qyO1px5C1S6dJnb9v3xh+/VpGkzFS9++zfM5+ja6YZSU1OVnp5+X84HIH/Id7OLoUOHqnv37nrkkUf02GOPaerUqbp8+bJ5lZmbubq6ytXVNQ9Gifzsk6/WaG3Emxreq6W+j96hRx8up14dH9egd7429ynm6a4yfsXkX/LGm8Qql7vxvoqEf5KU8M9FlXvIW8+F1NPqmL909twlPeRbVG/2bKmrKdcVtXGvJCmkUZBKFvfU9r3HdOlKioIq+Ou9Ie216c/D9/xLAgD7994747Til+Wa+skMebh76OyZM5KkwkWKqFChQuZ+x48d0/Y/tunTmZ9leZ7jx47pypUrOnv2jJJTkrX/r78kSRUqVJCzi4sily+Tk5OTKlWqIhcXF+3du1vTpk5Sy6dbsY478qWCnIjntnw3cX/hhRd05swZjR49WvHx8apdu7ZWrlyZ6Q2rwO1s33dcL7w5R+Nfe0b/6dtKR//+R8M//F6LV/zf0mihT9bQnPEvm7/+8oNekqQJs37Ru7N/Ucq1VD1ep4IGvdRExTzdlfjPRW3ccUhNe0zSmXOXJElXk6+rV4eGmjisg1ydnXQy4bx+WhOrj+ZF2/aGAeRLS765ERb07vGyxf7xE8LV7tn/ey/Mj0u/l6+vn4Ifz/p9OOPGjNIf27aav37hufaSpF9+Xa2HHiotR0cnzf98ro4djZNhSP6lSunFl7qqa7ce9/eGAOQ5k2EYRl4P4n5zqzMor4cA4AF29c/pkqTk1DweCIAHWqF8F8/eUHHYily/xqGPWuX6NfJCvqpxBwAAAJC1fPq7GAAAAAoiatytR+IOAAAA2AESdwAAANgMgbv1SNwBAAAAO0DiDgAAAJuhxt16JO4AAACAHSBxBwAAgM0QuFuPxB0AAACwAyTuAAAAsBkHByJ3a5G4AwAAAHaAxB0AAAA2Q4279UjcAQAAADtA4g4AAACbYR1365G4AwAAAHaAxB0AAAA2Q+BuPRJ3AAAAwA6QuAMAAMBmqHG3Hok7AAAAYAdI3AEAAGAzJO7WI3EHAAAA7ACJOwAAAGyGwN16JO4AAACAHSBxBwAAgM1Q4249EncAAADADpC4AwAAwGYI3K1H4g4AAADYARJ3AAAA2Aw17tYjcQcAAADsAIk7AAAAbIbA3Xok7gAAAIAdIHEHAACAzVDjbj0SdwAAADywxo4dK5PJZLFVrVrV3J6cnKyBAwfK29tbhQsXVseOHZWQkGBxjuPHjys0NFTu7u4qWbKkhg8frtTUVIs+69atU926deXq6qqKFSsqIiIix2Nl4g4AAACbMZlyf8uphx9+WKdPnzZvGzduNLcNGTJEP//8s7799lutX79ep06dUocOHcztaWlpCg0N1bVr17Rp0yYtWLBAERERGj16tLlPXFycQkND1bRpU8XGxmrw4MF65ZVXFBUVlaNxUioDAACAB5qTk5P8/Pwy7b9w4YI+//xzLVq0SM2aNZMkzZ8/X9WqVdPmzZvVoEED/frrr9q3b59WrVolX19f1a5dW++8845GjhypsWPHysXFRbNmzVJgYKAmTZokSapWrZo2btyoKVOmKCQkJNvjJHEHAACAzdxalpIbW0pKipKSkiy2lJSU247p4MGDKlWqlMqXL68uXbro+PHjkqTt27fr+vXratGihblv1apVVbZsWcXExEiSYmJiVKNGDfn6+pr7hISEKCkpSXv37jX3ufkcGX0yzpFdTNwBAABQoISHh8vLy8tiCw8Pz7Jv/fr1FRERoZUrV2rmzJmKi4vTE088oYsXLyo+Pl4uLi4qWrSoxTG+vr6Kj4+XJMXHx1tM2jPaM9ru1CcpKUlXr17N9n1RKgMAAACbscWiMmFhYRo6dKjFPldX1yz7tmrVyvzvmjVrqn79+goICNCSJUvk5uaWq+PMKRJ3AAAAFCiurq7y9PS02G43cb9V0aJFVblyZR06dEh+fn66du2azp8/b9EnISHBXBPv5+eXaZWZjK/v1sfT0zNHvxwwcQcAAIDN2KLG/V5cunRJhw8flr+/v+rVqydnZ2etXr3a3H7gwAEdP35cwcHBkqTg4GDt3r1biYmJ5j7R0dHy9PRUUFCQuc/N58jok3GO7GLiDgAAgAfWsGHDtH79eh09elSbNm3Ss88+K0dHR7344ovy8vJS7969NXToUK1du1bbt29Xz549FRwcrAYNGkiSWrZsqaCgIL388svauXOnoqKiNGrUKA0cONCc8vfv319HjhzRiBEjtH//fs2YMUNLlizRkCFDcjRWatwBAABgM/ntg1NPnjypF198Uf/88498fHzUqFEjbd68WT4+PpKkKVOmyMHBQR07dlRKSopCQkI0Y8YM8/GOjo5avny5BgwYoODgYHl4eKh79+4aP368uU9gYKAiIyM1ZMgQTZs2TaVLl9bcuXNztBSkJJkMwzDuz23nH251BuX1EAA8wK7+OV2SlJx6l44AkIsK5dN4tuHEDbl+jU0jGuf6NfJCPn1KAQAAUBDdaw36g4wadwAAAMAOkLgDAADAZgjcrUfiDgAAANgBEncAAADYDDXu1iNxBwAAAOwAiTsAAABshsTdeiTuAAAAgB0gcQcAAIDNELhbj8QdAAAAsAMk7gAAALAZatytR+IOAAAA2AESdwAAANgMgbv1SNwBAAAAO0DiDgAAAJuhxt16JO4AAACAHSBxBwAAgM0QuFuPiTsAAABsxoGZu9UolQEAAADsAIk7AAAAbIbA3Xok7gAAAIAdIHEHAACAzbAcpPVI3AEAAAA7QOIOAAAAm3EgcLcaiTsAAABgB0jcAQAAYDPUuFuPxB0AAACwAyTuAAAAsBkCd+uRuAMAAAB2gMQdAAAANmMSkbu1SNwBAAAAO0DiDgAAAJthHXfrkbgDAAAAdoDEHQAAADbDOu7WI3EHAAAA7ACJOwAAAGyGwN16JO4AAACAHSBxBwAAgM04ELlbjcQdAAAAsAMk7gAAALAZAnfrkbgDAAAAdoDEHQAAADbDOu7WI3EHAAAA7ACJOwAAAGyGwN16JO4AAACAHSBxBwAAgM2wjrv1SNwBAAAAO0DiDgAAAJshb7ceiTsAAABgB0jcAQAAYDOs4249EncAAADADpC4AwAAwGYcCNytRuIOAAAA2AESdwAAANgMNe7WI3EHAAAA7ACJOwAAAGyGwN162Zq4jx8/PscnNplMevvtt3N8HAAAAIDMsjVxHzt2bI5PzMQdAAAAt6LG3XrZmrinp6fn9jgAAAAA3AE17gAAALAZ1nG3HqvKAAAAAHbA6sR9165d+uSTT7Rjxw5duHAhUzmNyWTS4cOH73mAAAAAKDiocbeeVYn7unXr9Nhjj2n58uUqVaqUjhw5ovLly6tUqVI6duyYChcurMaNG9/vsQIAAAAPLKsm7qNHj1b58uV14MABzZ8/X5L0n//8Rxs3btSmTZt08uRJderU6b4OFAAAAPbPZIPNWu+//75MJpMGDx5s3tekSROZTCaLrX///hbHHT9+XKGhoXJ3d1fJkiU1fPhwpaamWvRZt26d6tatK1dXV1WsWFERERE5Hp9VE/cdO3aod+/e8vT0lKOjoyQpLS1NklS/fn3169ePpSABAABgN7Zt26bZs2erZs2amdr69Omj06dPm7eJEyea29LS0hQaGqpr165p06ZNWrBggSIiIjR69Ghzn7i4OIWGhqpp06aKjY3V4MGD9corrygqKipHY7Rq4u7k5KQiRYpIkooWLSpnZ2clJiaa28uXL699+/ZZc2oAAAAUYA4mU65vOXXp0iV16dJFc+bMUbFixTK1u7u7y8/Pz7x5enqa23799Vft27dPX331lWrXrq1WrVrpnXfe0aeffqpr165JkmbNmqXAwEBNmjRJ1apV06BBg/Tcc89pypQpOXvscnxnkipWrKiDBw9KuvEGg6pVq2rp0qXm9sjISPn5+VlzagAAAOCepKSkKCkpyWJLSUm5bf+BAwcqNDRULVq0yLJ94cKFKlGihKpXr66wsDBduXLF3BYTE6MaNWrI19fXvC8kJERJSUnau3evuc+t5w4JCVFMTEyO7suqiXvr1q319ddfm2t3hg4dqh9++EGVKlVSpUqVtGzZMvXr18+aUwMAAKAAM5lyfwsPD5eXl5fFFh4enuV4Fi9erB07dty2/aWXXtJXX32ltWvXKiwsTF9++aW6du1qbo+Pj7eYtEsyfx0fH3/HPklJSbp69Wq2HzurloN8++239cYbb5jr27t37y5HR0d9//33cnR01H//+1/16NHDmlMDAAAA9yQsLExDhw612Ofq6pqp34kTJ/TGG28oOjpahQoVyvJcffv2Nf+7Ro0a8vf3V/PmzXX48GFVqFDh/g78LqyauDs7O8vb29tiX9euXS1++wAAAABuZYt13F1dXbOcqN9q+/btSkxMVN26dc370tLStGHDBk2fPl0pKSnmoDpD/fr1JUmHDh1ShQoV5Ofnp61bt1r0SUhIkCRz6bifn5953819PD095ebmlu374pNTAQAA8EBq3ry5du/erdjYWPP2yCOPqEuXLoqNjc00aZek2NhYSZK/v78kKTg4WLt377ZYqCU6Olqenp4KCgoy91m9erXFeaKjoxUcHJyj8VqVuDdr1uyufUwmU6YBAgAA4MGWnz44tUiRIqpevbrFPg8PD3l7e6t69eo6fPiwFi1apNatW8vb21u7du3SkCFD1LhxY/OykS1btlRQUJBefvllTZw4UfHx8Ro1apQGDhxoTv379++v6dOna8SIEerVq5fWrFmjJUuWKDIyMkfjtSpxT09Pl2EYFltqaqoOHz6sdevW6eTJk0pPT7fm1AAAAEC+4OLiolWrVqlly5aqWrWq3nzzTXXs2FE///yzuY+jo6OWL18uR0dHBQcHq2vXrurWrZvGjx9v7hMYGKjIyEhFR0erVq1amjRpkubOnauQkJAcjcdkGIZx3+5O0vLly9W3b19FRkaqTp069/PU2eZWZ1CeXBcAJOnqn9MlScmpd+kIALmokFV1FblvwPe5/1k/MzsG5fo18sJ9r3Fv06aNunbtavFRsQAAAADuTa68ObVChQratm1bbpwaAAAAdswW67gXVPd94p6amqolS5aoRIkS9/vUAAAAwAPLquqnXr16Zbn//Pnz2rx5s+Lj4zV58uR7GhgAAAAKHlus415QWTVxX7NmTaYH3WQyqVixYmrUqJFeeeUVtWzZ8r4M0BoZbwwDgLyUX98YBgCwT1b9Z+Xo0aP3eRgAAAB4EPDpn9azauL+xRdfqHHjxipXrlyW7UePHtWGDRvUrVu3exmb1dweHZon1wUASbq67Uap4OVr93W1XQDIEQ8XSlIKGqt+6enZs6c2bdp02/YtW7aoZ8+eVg8KAAAABZPJZMr1raCyauJ+t89sunz5spycKO4EAAAA7pdsz6537dql2NhY89e//fabUlMzfyzg+fPnNWvWLFWuXPm+DBAAAAAFh0PBDcRzXbYn7kuXLtW4ceMk3fgTx+zZszV79uws+xYtWlRffPHF/RkhAAAAgOxP3Pv27as2bdrIMAw99thjGj9+vFq1amXRx2QyycPDQxUqVKBUBgAAAJmQuFsv27Nrf39/+fv7S5LWrl2roKAg+fj45NrAAAAAUPAU5DeP5jar3pxao0YNnT59+rbtu3fv1rlz56weFAAAAABLVtWzDBkyRAcOHNDmzZuzbO/Xr5+qVaumzz///J4GBwAAgIKFUhnrWZW4r1mzRs8888xt29u2batVq1ZZPSgAAAAAlqxK3M+cOaMSJUrctt3b21uJiYlWDwoAAAAFEyXu1rMqcff399eff/552/bt27fzxlUAAADgPrJq4t6+fXt9/vnnWrZsWaa2n376SfPnz9ezzz57z4MDAABAweJgMuX6VlBZVSozduxYrVq1Ss8++6xq1aql6tWrS5L27Nmj2NhYBQUFmT+sCQAAAMC9sypx9/Ly0ubNmzVq1Chdv35d3333nb777jtdv35do0eP1tatW2UYxv0eKwAAAOycgw22gsrqe/Pw8NC4ceO0e/duXblyRVeuXNG2bdv08MMP66WXXjJ/WBMAAACAe2dVqczNDMPQ6tWrtXDhQi1dulQXL15UiRIl9NJLL92P8QEAAKAAKcAl6LnO6on79u3btXDhQi1evFjx8fEymUzq3LmzBg0apAYNGvBxtgAAAMB9lKOJ+5EjR7Rw4UItXLhQBw8e1EMPPaQuXbroscce0wsvvKCOHTsqODg4t8YKAAAAO1eQV33JbdmeuAcHB2vr1q0qUaKEnnvuOc2dO1eNGjWSJB0+fDjXBggAAAAgBxP3LVu2KDAwUJMnT1ZoaKicnO65PB4AAAAPGAJ362V7VZnp06fL399fzz77rPz8/NSvXz+tXbuWZR8BAAAAG8h2bP7qq6/q1VdfVVxcnBYuXKhFixZpzpw58vPzU9OmTWUymXhDKgAAAO7Igemi1XK8jntgYKBGjRqlffv2adu2bercubPWrVsnwzD06quvqm/fvlq+fLmSk5NzY7wAAADAA+mePlyqXr16mjx5sk6cOKFff/1VISEh+uabb/TMM8+oRIkS92uMAAAAKCAcTKZc3wqq+/KpsA4ODmrRooUiIiKUkJCgr7/+Ws2bN78fpwYAAACg+/DJqbcqVKiQXnjhBb3wwgv3+9QAAACwcwU4EM919yVxBwAAAJC7WIwdAAAANsOqMtYjcQcAAADsAIk7AAAAbMYkIndrkbgDAAAAdoDEHQAAADZDjbv1SNwBAAAAO0DiDgAAAJshcbceiTsAAABgB0jcAQAAYDMmPjrVaiTuAAAAgB0gcQcAAIDNUONuPRJ3AAAAwA6QuAMAAMBmKHG3Hok7AAAAYAdI3AEAAGAzDkTuViNxBwAAAOwAiTsAAABshlVlrEfiDgAAANgBEncAAADYDCXu1iNxBwAAAOwAiTsAAABsxkFE7tYicQcAAADsAIk7AAAAbIYad+uRuAMAAAB2gMQdAAAANsM67tYjcQcAAADsAIk7AAAAbMaBInerkbgDAAAAdoCJOwAAAGzGZMr9zVrvv/++TCaTBg8ebN6XnJysgQMHytvbW4ULF1bHjh2VkJBgcdzx48cVGhoqd3d3lSxZUsOHD1dqaqpFn3Xr1qlu3bpydXVVxYoVFRERkePxMXEHAADAA2/btm2aPXu2atasabF/yJAh+vnnn/Xtt99q/fr1OnXqlDp06GBuT0tLU2hoqK5du6ZNmzZpwYIFioiI0OjRo8194uLiFBoaqqZNmyo2NlaDBw/WK6+8oqioqByN0WQYhnFvt5n/uD06NK+HAOABdnXbZEnS5WsF7uUVgB3xcMmfteSfbz2e69fo/VjZHPW/dOmS6tatqxkzZmjChAmqXbu2pk6dqgsXLsjHx0eLFi3Sc889J0nav3+/qlWrppiYGDVo0EArVqxQmzZtdOrUKfn6+kqSZs2apZEjR+rMmTNycXHRyJEjFRkZqT179piv2blzZ50/f14rV67M9jhJ3AEAAPBAGzhwoEJDQ9WiRQuL/du3b9f169ct9letWlVly5ZVTEyMJCkmJkY1atQwT9olKSQkRElJSdq7d6+5z63nDgkJMZ8ju1hVBgAAADZji0VlUlJSlJKSYrHP1dVVrq6umfouXrxYO3bs0LZt2zK1xcfHy8XFRUWLFrXY7+vrq/j4eHOfmyftGe0ZbXfqk5SUpKtXr8rNzS1b90XiDgAAgAIlPDxcXl5eFlt4eHimfidOnNAbb7yhhQsXqlChQnkw0pxh4g4AAACbcbDBFhYWpgsXLlhsYWFhmcayfft2JSYmqm7dunJycpKTk5PWr1+vjz/+WE5OTvL19dW1a9d0/vx5i+MSEhLk5+cnSfLz88u0ykzG13fr4+npme20PeOxAwAAAAoMV1dXeXp6WmxZlck0b95cu3fvVmxsrHl75JFH1KVLF/O/nZ2dtXr1avMxBw4c0PHjxxUcHCxJCg4O1u7du5WYmGjuEx0dLU9PTwUFBZn73HyOjD4Z58guatwBAABgM6Z89MmpRYoUUfXq1S32eXh4yNvb27y/d+/eGjp0qIoXLy5PT0+99tprCg4OVoMGDSRJLVu2VFBQkF5++WVNnDhR8fHxGjVqlAYOHGj+ZaF///6aPn26RowYoV69emnNmjVasmSJIiMjczReJu4AAADAbUyZMkUODg7q2LGjUlJSFBISohkzZpjbHR0dtXz5cg0YMEDBwcHy8PBQ9+7dNX78eHOfwMBARUZGasiQIZo2bZpKly6tuXPnKiQkJEdjYR13ALjPWMcdQH6QX9dx/+KPE7l+jW6PlMn1a+QFatwBAAAAO0CpDAAAAGzGIR/VuNsbEncAAADADpC4AwAAwGbI261H4g4AAADYARJ3AAAA2Awl7tZj4g4AAACbyU8fwGRvKJUBAAAA7ACJOwAAAGyG1Nh6PHYAAACAHSBxBwAAgM1Q4249EncAAADADpC4AwAAwGbI261H4g4AAADYARJ3AAAA2Aw17tYjcQcAAADsAIk7AAAAbIbU2Ho8dgAAAIAdIHEHAACAzVDjbj0SdwAAAMAOkLgDAADAZsjbrUfiDgAAANgBEncAAADYDCXu1iNxBwAAAOwAiTsAAABsxoEqd6uRuAMAAAB2gMQdAAAANkONu/VI3AEAAAA7QOIOAAAAmzFR4241EncAAADADpC4AwAAwGaocbceiTsAAABgB0jcAQAAYDOs4249EncAAADADpC4AwAAwGaocbceiTsAAABgB0jcAQAAYDMk7tYjcQcAAADsAIk7AAAAbIZPTrUeiTsAAABgB0jcAQAAYDMOBO5WI3EHAAAA7ACJOwAAAGyGGnfrkbgDAAAAdoDEHQAAADbDOu7WI3EHAAAA7ACJOwAAAGyGGnfrkbgDAAAAdoDEHQAAADbDOu7WI3EHAAAA7ACJOwAAAGyGGnfrkbgDAAAAdiBfJe4bNmzQhx9+qO3bt+v06dNaunSp2rdvn9fDgh0q5eOlCa+1UcvgqnIv5KLDJ8+q3/ivteOvk+Y+b/d7Wj3bN1DRwm6K2RWn19//TodPnJUkPVG3gn6dPTDLczfqPkXb953Qf/uEaFTfkEztl6+mqETjsNy5MQB2Y97c2VqzKlpH447ItVAh1apVR68PeVPlAstLkk79fVJtnm6R5bEffDRVT4U8bf562Y8/6KsvInT82FF5FC6sFk89rbBRo83tv65coXlzZ+v4saMqWqy4Xnixi7r37J27NwhYiXXcrZevJu6XL19WrVq11KtXL3Xo0CGvhwM7VbSIm9bMfU3rtx9S+zfm6Mz5S6pYpoTOJV0193mzWzO9+sIT6jN2kY6e+lej+7fSz5/0U51OHyjlWqo27zqqck+PsTjv6P6t1PTRStq+74QkaepXazX3h00WfX6ZMUDb9x3P/ZsEkO9t/2ObOnV+SQ9Xr6G0tDRNnzZFr/Z7Rd//uFxu7u7y9fPXr2t/szjmh2+X6IuIz/X4E0+Y9321YL6+/GK+Bg8druo1a+nqlas6fepvc/vvv23QqLDhGhE2Sg2CH1dc3GG9M/Ztubq6qvNLXW12vwByX76auLdq1UqtWrXK62HAzr3ZvZlOJpxXv/GLzfuOnfrXos/AFxvrg3nRWr5hryTplTGLdCxqnJ55srq+jY7V9dQ0Jfxz0dzfydFBbRo/rJlLNpr3Xb56TZevXjN/XaNSKQWV99Pr4d/m1q0BsCOfzppr8fW4CeFq/mRD7du3V/UeeVSOjo4qUcLHos/aNav0VEgrubt7SJKSLlzQjOnTNOWTmarfINjcr3KVKuZ/R/78k5o0ba7nOnWWJJUuU0a9evfVgnlz9cKLXWQi3kQ+w3ek9ahxR4ET+sTD2vHXCS0M76ZjUeMU89VQ9WzfwNxe7qHi8i/hqTVb/2fel3Q5Wdv2Hlf9muWyPGebxtXl7eWhL3/eetvr9mxXX/87lqjfY+Pu270AKDguXroRBnh5eWXZvm/vHh3Y/5fad+ho3rc5ZpPS09N1JjFBHZ5praebP6mRbw5WfPxpc59r16/JxdXV4lyuhQopISHeIpkHYP+YuKPACXzIW306NtShE2f1zGufac73mzTpzWfVJfQRSZKft6ckKfGmRD3ja1/vIlmes3u7+orefEB/J17Ist3VxUkvPF1PC37ach/vBEBBkZ6ero8+eE+169RVxUqVs+zz09LvFVi+gmrVrmve9/fJE0pPNzRvzmwNGxmmiZOn6cKFC3q1Ty9dv37jL37BDRtpzepobdkco/T0dB07GqcvF8yXJJ05cyb3bw7IIQeTKde3gipflcrkVEpKilJSUiz2ud6SOuDB4+Bg0o6/TmjMjF8kSTv/97ceLu+vPh0aamHkHzk+30MlvfRUgyrqGvbFbfu0a1JDRTxc9VXkNqvHDaDgev/d8Tp86KDmLViUZXtycrJW/LJcffoNsNifbqQrNfW6hof9V8ENG0mSwidO0lNNG2nb1i1q+PgT6vBcJ508cUKDB/VXamqqPDwK68WuL2v2jOlycCCfAwoSu/6JDg8Pl5eXl8UWHh6e18NCHos/m6S/jiRY7Nt/NEFl/IrdaP8nSZJU8pZ0vaR3EYu69gwvt31M/1y4rOUb9tz2mj3a19eK3/Yp8d9L9zp8AAXM+++O12/r1+mzz7+Qr59fln1WRUcp+Wqy2rRtb7E/owa+fPmK5n3FihdX0aLFFH/6RrmMyWTSG0OHaeOWHYqMWqPodb+pevWakqTSpcvkwh0B98Zkg62gsuuJe1hYmC5cuGCxhYWxDN+DLmbnUVUOKGmxr1JZHx2Pv/EG1aN//6vTZ5PU9NFK5vYiHq569OGy2rLraKbzdWv7mBb98odS09KzvF5AqeJ6sl5FRSyjTAbA/zEMQ++/O15r16zS7M8j9FDp0rft+9MP3+nJpk1VrHhxi/2169womzl69P/eO3PhwnmdP39O/qVKWfR1dHRUSV9fOTu7aOWKSNWsVTvT+QDYt3xVKnPp0iUdOnTI/HVcXJxiY2NVvHhxlS1bNlN/V1dXSmOQySdfr9faz1/X8B7N9f2qnXr04bLq9WwDDXrv/1Z7+fTrDRrZ6ykdOnFWR//+V2P6P63TZ5O0bL1lqt7k0UoKfMhb83+8/aS8+zOPKf7sRUVt+ivX7gmA/Xn/3fFa8ctyTZn2qdw9PHT27I1688KFi6hQoULmfsePH9OO7X/o4xmfZTpHQLlANWnaXB998J5GjRknD4/C+mTaZJULLK9HHq0vSTp37pxWR0ep3iOP6dq1FC378Qet+nWl5sz/0jY3CuRUQY7Ec5nJMAwjrweRYd26dWratGmm/d27d1dERES2z+P26ND7OCrYo1aNgjR+YKgqlimho6f+1ceL1mv+j5st+rzd72n1evbGBzBt2hmnNz74XoeOW76RK+KdrirrX0zNXvkky+uYTCb97+dRWhj5h8bOXJFr9wP7cnXbZEnS5Wv55uUVeaBujapZ7h/7znt6pv3/fVbJJ9Mma8Xyn7U8anWWNemXLl3SpInhWrMqWg4OJtV95DENf+s/8vPzl3Rj4j54UH8dOnhQhgzVrFlbA18frBo1a+XOjcFueLjkzxny5sPnc/0aDSoUzfVr5IV8NXG/X5i4A8hLTNwB5Af5deK+5XDWK7TdT/UrZL3sqr2z6xp3AAAA4F7MnDlTNWvWlKenpzw9PRUcHKwVK/7vr+hNmjSRyWSy2Pr3729xjuPHjys0NFTu7u4qWbKkhg8frtTUVIs+69atU926deXq6qqKFSvmqJokQ76qcQcAAEDBlt+WWS9durTef/99VapUSYZhaMGCBWrXrp3+/PNPPfzww5KkPn36aPz48eZj3N3dzf9OS0tTaGio/Pz8tGnTJp0+fVrdunWTs7Oz3nvvPUk33rcZGhqq/v37a+HChVq9erVeeeUV+fv7KyQkJNtjpVQGAO4zSmUA5Af5tVRm65HcL5V5rPy9lcoUL15cH374oXr37q0mTZqodu3amjp1apZ9V6xYoTZt2ujUqVPy9fWVJM2aNUsjR47UmTNn5OLiopEjRyoyMlJ79vzfIhidO3fW+fPntXLlymyPi1IZAAAA2Ex+Xsc9LS1Nixcv1uXLlxUcHGzev3DhQpUoUULVq1dXWFiYrly5Ym6LiYlRjRo1zJN2SQoJCVFSUpL27t1r7tOiRQuLa4WEhCgmJiZH46NUBgAAAAVKSkqKUlJSLPbdaRnx3bt3Kzg4WMnJySpcuLCWLl2qoKAgSdJLL72kgIAAlSpVSrt27dLIkSN14MAB/fDDD5Kk+Ph4i0m7JPPX8fHxd+yTlJSkq1evys3NLVv3xcQdAAAAtmODCp7w8HCNGzfOYt+YMWM0duzYLPtXqVJFsbGxunDhgr777jt1795d69evV1BQkPr27WvuV6NGDfn7+6t58+Y6fPiwKlSokJu3kQkTdwAAABQoYWFhGjrU8j2Pd/rQThcXF1WsWFGSVK9ePW3btk3Tpk3T7NmzM/WtX//Gh58dOnRIFSpUkJ+fn7Zu3WrRJyEhQZLk5+dn/v+MfTf38fT0zHbaLlHjDgAAABsy2eB/rq6u5uUdM7Y7TdxvlZ6enqnUJkNsbKwkyd//xoegBQcHa/fu3UpMTDT3iY6Olqenp7ncJjg4WKtXr7Y4T3R0tEUdfXaQuAMAAOCBFRYWplatWqls2bK6ePGiFi1apHXr1ikqKkqHDx/WokWL1Lp1a3l7e2vXrl0aMmSIGjdurJo1a0qSWrZsqaCgIL388suaOHGi4uPjNWrUKA0cOND8y0L//v01ffp0jRgxQr169dKaNWu0ZMkSRUZG5misTNwBAABgM/ltHffExER169ZNp0+flpeXl2rWrKmoqCg99dRTOnHihFatWqWpU6fq8uXLKlOmjDp27KhRo0aZj3d0dNTy5cs1YMAABQcHy8PDQ927d7dY9z0wMFCRkZEaMmSIpk2bptKlS2vu3Lk5WsNdYh13ALjvWMcdQH6QX9dx33E0KdevUbecZ65fIy9Q4w4AAADYAUplAAAAYDv58w8BdoHEHQAAALADJO4AAACwGRORu9VI3AEAAAA7QOIOAAAAm8lvy0HaExJ3AAAAwA6QuAMAAMBmCNytR+IOAAAA2AESdwAAANgOkbvVSNwBAAAAO0DiDgAAAJthHXfrkbgDAAAAdoDEHQAAADbDOu7WI3EHAAAA7ACJOwAAAGyGwN16JO4AAACAHSBxBwAAgO0QuVuNxB0AAACwAyTuAAAAsBnWcbceiTsAAABgB0jcAQAAYDOs4249EncAAADADpC4AwAAwGYI3K1H4g4AAADYARJ3AAAA2A6Ru9VI3AEAAAA7QOIOAAAAm2Edd+uRuAMAAAB2gMQdAAAANsM67tYjcQcAAADsAIk7AAAAbIbA3Xok7gAAAIAdIHEHAACA7RC5W43EHQAAALADJO4AAACwGdZxtx6JOwAAAGAHSNwBAABgM6zjbj0SdwAAAMAOkLgDAADAZgjcrUfiDgAAANgBEncAAADYDpG71UjcAQAAADtA4g4AAACbYR1365G4AwAAAHaAxB0AAAA2wzru1iNxBwAAAOwAiTsAAABshsDdeiTuAAAAgB0gcQcAAIDtELlbjcQdAAAAsAMk7gAAALAZ1nG3Hok7AAAAYAdI3AEAAGAzrONuPRJ3AAAAwA6QuAMAAMBmCNytR+IOAAAA2AESdwAAANgMNe7WI3EHAAAA7ACJOwAAAGyIyN1aJO4AAACAHSBxBwAAgM1Q4249EncAAADADjBxBwAAgM2YbLDlxMyZM1WzZk15enrK09NTwcHBWrFihbk9OTlZAwcOlLe3twoXLqyOHTsqISHB4hzHjx9XaGio3N3dVbJkSQ0fPlypqakWfdatW6e6devK1dVVFStWVERERA5HysQdAAAAD7DSpUvr/fff1/bt2/XHH3+oWbNmateunfbu3StJGjJkiH7++Wd9++23Wr9+vU6dOqUOHTqYj09LS1NoaKiuXbumTZs2acGCBYqIiNDo0aPNfeLi4hQaGqqmTZsqNjZWgwcP1iuvvKKoqKgcjdVkGIZxf247/3B7dGheDwHAA+zqtsmSpMvXCtzLKwA74uGSP4vJT1+4luvX8Pdyuafjixcvrg8//FDPPfecfHx8tGjRIj333HOSpP3796tatWqKiYlRgwYNtGLFCrVp00anTp2Sr6+vJGnWrFkaOXKkzpw5IxcXF40cOVKRkZHas2eP+RqdO3fW+fPntXLlymyPi8QdAAAANmOywf+slZaWpsWLF+vy5csKDg7W9u3bdf36dbVo0cLcp2rVqipbtqxiYmIkSTExMapRo4Z50i5JISEhSkpKMqf2MTExFufI6JNxjuxiVRkAAAAUKCkpKUpJSbHY5+rqKldX1yz77969W8HBwUpOTlbhwoW1dOlSBQUFKTY2Vi4uLipatKhFf19fX8XHx0uS4uPjLSbtGe0ZbXfqk5SUpKtXr8rNzS1b90XiDgAAANuxwbtTw8PD5eXlZbGFh4ffdkhVqlRRbGystmzZogEDBqh79+7at29fLtz8vSFxBwAAQIESFhamoUMt3/N4u7RdklxcXFSxYkVJUr169bRt2zZNmzZNL7zwgq5du6bz589bpO4JCQny8/OTJPn5+Wnr1q0W58tYdebmPreuRJOQkCBPT89sp+0SiTsAAABsyBbLQbq6upqXd8zY7jRxv1V6erpSUlJUr149OTs7a/Xq1ea2AwcO6Pjx4woODpYkBQcHa/fu3UpMTDT3iY6Olqenp4KCgsx9bj5HRp+Mc2QXiTsAAAAeWGFhYWrVqpXKli2rixcvatGiRVq3bp2ioqLk5eWl3r17a+jQoSpevLg8PT312muvKTg4WA0aNJAktWzZUkFBQXr55Zc1ceJExcfHa9SoURo4cKD5l4X+/ftr+vTpGjFihHr16qU1a9ZoyZIlioyMzNFYmbgDAADAZkz5bJXKxMREdevWTadPn5aXl5dq1qypqKgoPfXUU5KkKVOmyMHBQR07dlRKSopCQkI0Y8YM8/GOjo5avny5BgwYoODgYHl4eKh79+4aP368uU9gYKAiIyM1ZMgQTZs2TaVLl9bcuXMVEhKSo7GyjjsA3Ges4w4gP8iv67gnXrye69coWcQ516+RF0jcAQAAYDP3ss76g443pwIAAAB2gMQdAAAAtkPgbjUSdwAAAMAOkLgDAADAZgjcrUfiDgAAANgBEncAAADYTH5bx92ekLgDAAAAdoDEHQAAADbDOu7WI3EHAAAA7ACJOwAAAGyGGnfrkbgDAAAAdoCJOwAAAGAHmLgDAAAAdoAadwAAANgMNe7WI3EHAAAA7ACJOwAAAGyGddytR+IOAAAA2AESdwAAANgMNe7WI3EHAAAA7ACJOwAAAGyGwN16JO4AAACAHSBxBwAAgO0QuVuNxB0AAACwAyTuAAAAsBnWcbceiTsAAABgB0jcAQAAYDOs4249EncAAADADpC4AwAAwGYI3K1H4g4AAADYARJ3AAAA2A6Ru9VI3AEAAAA7QOIOAAAAm2Edd+uRuAMAAAB2gMQdAAAANsM67tYzGYZh5PUgAAAA8GBITs39axQqoNE0pTLALVJSUjR27FilpKTk9VAAPMB4LUJBVcgp97eCisQduEVSUpK8vLx04cIFeXp65vVwADygeC0CcCsSdwAAAMAOMHEHAAAA7AATdwAAAMAOMHEHbuHq6qoxY8bI1dU1r4cC4AHGaxGAW/HmVAAAAMAOkLgDAAAAdoCJOwAAAGAHmLgDAAAAdoCJOwAAAGAHCvCHwgLZc/bsWc2bN08xMTGKj4+XJPn5+alhw4bq0aOHfHx88niEAAAAJO54wG3btk2VK1fWxx9/LC8vLzVu3FiNGzeWl5eXPv74Y1WtWlV//PFHXg8TwAPuxIkT6tWrV14PA0AeYzlIPNAaNGigWrVqadasWTKZTBZthmGof//+2rVrl2JiYvJohAAg7dy5U3Xr1lVaWlpeDwVAHqJUBg+0nTt3KiIiItOkXZJMJpOGDBmiOnXq5MHIADxIli1bdsf2I0eO2GgkAPIzJu54oPn5+Wnr1q2qWrVqlu1bt26Vr6+vjUcF4EHTvn17mUwm3emP4FkFDAAeLEzc8UAbNmyY+vbtq+3bt6t58+bmSXpCQoJWr16tOXPm6KOPPsrjUQIo6Pz9/TVjxgy1a9cuy/bY2FjVq1fPxqMCkN8wcccDbeDAgSpRooSmTJmiGTNmmOtHHR0dVa9ePUVERKhTp055PEoABV29evW0ffv2207c75bGA3gw8OZU4P+7fv26zp49K0kqUaKEnJ2d83hEAB4Uv/32my5fvqynn346y/bLly/rjz/+0JNPPmnjkQHIT5i4AwAAAHaAddwBAAAAO8DEHQAAALADTNwBAAAAO8DEHQAAALADTNwB4B6VK1dOPXr0MH+9bt06mUwmrVu3Ls/GdKtbxwgAsD9M3AHYvYiICJlMJvNWqFAhVa5cWYMGDVJCQkJeDy/bfvnlF40dOzavhwEAyKf4ACYABcb48eMVGBio5ORkbdy4UTNnztQvv/yiPXv2yN3d3WbjaNy4sa5evSoXF5ccHffLL7/o008/ZfIOAMgSE3cABUarVq30yCOPSJJeeeUVeXt7a/Lkyfrpp5/04osvZup/+fJleXh43PdxODg4qFChQvf9vACABxulMgAKrGbNmkmS4uLi1KNHDxUuXFiHDx9W69atVaRIEXXp0kWSlJ6erqlTp+rhhx9WoUKF5Ovrq379+uncuXMW5zMMQxMmTFDp0qXl7u6upk2bau/evZmue7sa9y1btqh169YqVqyYPDw8VLNmTU2bNk2S1KNHD3366aeSZFH2k+F+jxEAYH9I3AEUWIcPH5YkeXt7S5JSU1MVEhKiRo0a6aOPPjKXz/Tr108RERHq2bOnXn/9dcXFxWn69On6888/9fvvv8vZ2VmSNHr0aE2YMEGtW7dW69attWPHDrVs2VLXrl2761iio6PVpk0b+fv764033pCfn5/++usvLV++XG+88Yb69eunU6dOKTo6Wl9++WWm420xRgBAPmcAgJ2bP3++IclYtWqVcebMGePEiRPG4sWLDW9vb8PNzc04efKk0b17d0OS8dZbb1kc+9tvvxmSjIULF1rsX7lypcX+xMREw8XFxQgNDTXS09PN/f7zn/8Ykozu3bub961du9aQZKxdu9YwDMNITU01AgMDjYCAAOPcuXMW17n5XAMHDjSyelnOjTECAOwPpTIACowWLVrIx8dHZcqUUefOnVW4cGEtXbpUDz30kLnPgAEDLI759ttv5eXlpaeeekpnz541b/Xq1VPhwoW1du1aSdKqVat07do1vfbaaxYlLIMHD77ruP7880/FxcVp8ODBKlq0qEXbzee6HVuMEQCQ/1EqA6DA+PTTT1W5cmU5OTnJ19dXVapUkYPD/+UTTk5OKl26tMUxBw8e1IULF1SyZMksz5mYmChJOnbsmCSpUqVKFu0+Pj4qVqzYHceVUbJTvXr1nN2QDccIAMj/mLgDKDAee+wx86oyWXF1dbWYyEs33vRZsmRJLVy4MMtjfHx87usYrWEPYwQA5D4m7gAeaBUqVNCqVav0+OOPy83N7bb9AgICJN1Iv8uXL2/ef+bMmUwru2R1DUnas2ePWrRocdt+tyubscUYAQD5HzXuAB5onTp1Ulpamt55551MbampqTp//rykG/Xzzs7O+uSTT2QYhrnP1KlT73qNunXrKjAwUFOnTjWfL8PN58pYU/7WPrYYIwAg/yNxB/BAe/LJJ9WvXz+Fh4crNjZWLVu2lLOzsw4ePKhvv/1W06ZN03PPPScfHx8NGzZM4eHhatOmjVq3bq0///xTK1asUIkSJe54DQcHB82cOVNt27ZV7dq11bNnT/n7+2v//v3au3evoqKiJEn16tWTJL3++usKCQmRo6OjOnfubJMxAgDyPybuAB54s2bNUr169TR79mz95z//kZOTk8qVK6euXbvq8ccfN/ebMGGCChUqpFmzZmnt2rWqX7++fv31V4WGht71GiEhIVq7dq3GjRunSZMmKT09XRUqVFCfPn3MfTp06KDXXntNixcv1ldffSXDMNS5c2ebjREAkL+ZjJv/ngoAAAAgX6LGHQAAALADTNwBAAAAO8DEHQAAALADTNwBAAAAO8DEHQAAALADTNwBAAAAO8DEHQAAALADTNwBAAAAO8DEHQAAALADTNwBAAAAO8DEHQAAALADTNwBAAAAO8DEHQAAALAD/w9IE85DDGlrkwAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["⚠️ لا يوجد ملف محفوظ لرسم Accuracy & Loss.\n"]}],"source":["# ✅ استيراد المكتبات\n","!pip install tensorflow\n","\n","import os\n","import pickle\n","import numpy as np\n","import matplotlib.pyplot as plt\n","import seaborn as sns\n","from sklearn.metrics import classification_report, confusion_matrix\n","from sklearn.utils import shuffle\n","from tensorflow.keras.models import Model, load_model\n","from tensorflow.keras.layers import Input, Dense, Dropout, Conv1D, MaxPooling1D, Bidirectional, LSTM, Reshape\n","from tensorflow.keras.optimizers import Adam\n","from tensorflow.keras.callbacks import EarlyStopping\n","\n","# ✅ مسارات الملفات\n","base_path = \"/content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/\"\n","model_save_path = os.path.join(base_path, \"cnn+bilstm_model_basic.h5\")\n","acc_loss_save_path = os.path.join(base_path, \"cnn+bilstm_accuracy_loss_basic.png\")\n","\n","paths = {\n"," \"main\": os.path.join(base_path, \"train_test_data_main-deep-new.pkl\"),\n"," \"sub\": os.path.join(base_path, \"train_test_data_sub-deep-new.pkl\"),\n"," \"rf\": os.path.join(base_path, \"train_test_data_rf-deep-new.pkl\")\n","}\n","\n","# ✅ تحميل البيانات مع فحص وجودها\n","datasets = {}\n","\n","for name, path in paths.items():\n"," if os.path.exists(path):\n"," print(f\"✅ تحميل {name.upper()} من: {path}\")\n"," with open(path, \"rb\") as f:\n"," datasets[name] = pickle.load(f)\n"," else:\n"," print(f\"⚠️ الملف غير موجود: {path} ❌ سيتم تخطي {name.upper()}\")\n","\n","# ✅ التحقق إذا جميع الملفات محملة\n","if not all(k in datasets for k in [\"main\", \"sub\", \"rf\"]):\n"," print(\"⚠️ لم يتم تحميل جميع الملفات المطلوبة. تأكد من وجود جميع الملفات.\")\n","else:\n"," # ✅ تجهيز البيانات\n"," X_train_main, X_test_main, y_train_main, y_test_main = datasets[\"main\"]\n"," X_train_sub, X_test_sub, y_train_sub, y_test_sub = datasets[\"sub\"]\n"," X_train_rf, X_test_rf, y_train_rf, y_test_rf = datasets[\"rf\"]\n","\n"," min_len = min(len(X_train_main), len(y_train_main), len(y_train_sub), len(y_train_rf))\n"," X_train = X_train_main[:min_len]\n"," y_train_main = y_train_main[:min_len]\n"," y_train_sub = y_train_sub[:min_len]\n"," y_train_rf = y_train_rf[:min_len]\n","\n"," min_len_test = min(len(X_test_main), len(y_test_main), len(y_test_sub), len(y_test_rf))\n"," X_test = X_test_main[:min_len_test]\n"," y_test_main = y_test_main[:min_len_test]\n"," y_test_sub = y_test_sub[:min_len_test]\n"," y_test_rf = y_test_rf[:min_len_test]\n","\n"," # ✅ خلط البيانات\n"," X_train, y_train_main, y_train_sub, y_train_rf = shuffle(\n"," X_train, y_train_main, y_train_sub, y_train_rf, random_state=42\n"," )\n","\n"," # ✅ تحقق إذا النموذج محفوظ\n"," if os.path.exists(model_save_path):\n"," print(f\"✅ تم العثور على نموذج محفوظ: {model_save_path} سيتم تحميله بدون إعادة تدريب.\")\n"," model = load_model(model_save_path)\n"," history = None\n"," else:\n"," print(\"🚀 النموذج غير موجود، سيتم بناء وتدريب نموذج جديد.\")\n"," # ✅ بناء النموذج\n"," input_layer = Input(shape=(894,), name=\"input_layer\")\n"," x = Reshape((894, 1))(input_layer)\n"," x = Conv1D(filters=128, kernel_size=3, activation=\"relu\")(x)\n"," x = MaxPooling1D(pool_size=2)(x)\n"," x = Bidirectional(LSTM(64))(x)\n"," x = Dropout(0.3)(x)\n","\n"," main_output = Dense(22, activation=\"softmax\", name=\"main_output\")(x)\n"," sub_output = Dense(75, activation=\"softmax\", name=\"sub_output\")(x)\n"," rf_output = Dense(2, activation=\"softmax\", name=\"rf_output\")(x)\n","\n"," model = Model(inputs=input_layer, outputs=[main_output, sub_output, rf_output])\n"," model.compile(\n"," optimizer=Adam(learning_rate=0.001),\n"," loss={\n"," \"main_output\": \"sparse_categorical_crossentropy\",\n"," \"sub_output\": \"sparse_categorical_crossentropy\",\n"," \"rf_output\": \"sparse_categorical_crossentropy\"\n"," },\n"," metrics={\n"," \"main_output\": \"accuracy\",\n"," \"sub_output\": \"accuracy\",\n"," \"rf_output\": \"accuracy\"\n"," }\n"," )\n","\n"," model.summary()\n","\n"," # ✅ تدريب النموذج\n"," history = model.fit(\n"," X_train,\n"," [y_train_main, y_train_sub, y_train_rf],\n"," validation_data=(X_test, [y_test_main, y_test_sub, y_test_rf]),\n"," epochs=10,\n"," batch_size=64,\n"," callbacks=[EarlyStopping(patience=2, restore_best_weights=True)]\n"," )\n","\n"," # ✅ حفظ النموذج\n"," model.save(model_save_path)\n"," print(f\"✅ تم حفظ النموذج في: {model_save_path}\")\n","\n"," # ✅ التقييم\n"," preds = model.predict(X_test)\n"," preds_main = np.argmax(preds[0], axis=1)\n"," preds_sub = np.argmax(preds[1], axis=1)\n"," preds_rf = np.argmax(preds[2], axis=1)\n","\n"," # ✅ تقارير الأداء\n"," print(\"\\n📊 Main Category Report:\")\n"," print(classification_report(y_test_main, preds_main))\n","\n"," print(\"\\n📊 Sub Category Report:\")\n"," print(classification_report(y_test_sub, preds_sub))\n","\n"," print(\"\\n📊 Fake/Real Report:\")\n"," print(classification_report(y_test_rf, preds_rf))\n","\n"," # ✅ دالة رسم Confusion Matrix\n"," def plot_conf_matrix(y_true, y_pred, title, labels=None, figsize=(8, 6), save_path=None):\n"," cm = confusion_matrix(y_true, y_pred)\n"," if labels is None:\n"," labels = [str(i) for i in range(len(set(y_true)))]\n"," annot = True if cm.shape[0] <= 20 else False\n"," fontsize = 10 if cm.shape[0] <= 20 else 6\n"," figsize = (24, 22) if cm.shape[0] > 30 else figsize\n"," plt.figure(figsize=figsize)\n"," sns.heatmap(cm, annot=annot, fmt=\"d\", cmap=\"Blues\",\n"," xticklabels=labels, yticklabels=labels, linewidths=0.3)\n"," plt.title(f\"Confusion Matrix - {title}\", fontsize=14)\n"," plt.xlabel(\"Predicted\", fontsize=12)\n"," plt.ylabel(\"Actual\", fontsize=12)\n"," plt.xticks(rotation=90, fontsize=fontsize)\n"," plt.yticks(rotation=0, fontsize=fontsize)\n"," plt.tight_layout()\n"," if save_path:\n"," plt.savefig(save_path, dpi=300)\n"," print(f\"✅ تم حفظ الصورة: {save_path}\")\n"," plt.show()\n","\n"," # ✅ رسم Confusion Matrices\n"," plot_conf_matrix(y_test_main, preds_main, \"Main Category\", save_path=os.path.join(base_path, \"cnn+bilstm_main-basic.png\"))\n"," plot_conf_matrix(y_test_sub, preds_sub, \"Sub Category\", save_path=os.path.join(base_path, \"cnn+bilstm_sub_basic.png\"))\n"," plot_conf_matrix(y_test_rf, preds_rf, \"Fake/Real Category\", save_path=os.path.join(base_path, \"cnn+bilstm_rf_basic.png\"))\n","\n"," # ✅ رسم Accuracy & Loss\n"," if history:\n"," plt.figure(figsize=(14, 5))\n","\n"," plt.subplot(1, 2, 1)\n"," plt.plot(history.history['main_output_accuracy'], label='Main Accuracy')\n"," plt.plot(history.history['sub_output_accuracy'], label='Sub Accuracy')\n"," plt.plot(history.history['rf_output_accuracy'], label='Fake/Real Accuracy')\n"," plt.plot(history.history['val_main_output_accuracy'], label='Val Main Accuracy', linestyle='--')\n"," plt.plot(history.history['val_sub_output_accuracy'], label='Val Sub Accuracy', linestyle='--')\n"," plt.plot(history.history['val_rf_output_accuracy'], label='Val Fake/Real Accuracy', linestyle='--')\n"," plt.title(\"Accuracy\")\n"," plt.xlabel(\"Epoch\")\n"," plt.ylabel(\"Accuracy\")\n"," plt.legend()\n","\n"," plt.subplot(1, 2, 2)\n"," plt.plot(history.history['main_output_loss'], label='Main Loss')\n"," plt.plot(history.history['sub_output_loss'], label='Sub Loss')\n"," plt.plot(history.history['rf_output_loss'], label='Fake/Real Loss')\n"," plt.plot(history.history['val_main_output_loss'], label='Val Main Loss', linestyle='--')\n"," plt.plot(history.history['val_sub_output_loss'], label='Val Sub Loss', linestyle='--')\n"," plt.plot(history.history['val_rf_output_loss'], label='Val Fake/Real Loss', linestyle='--')\n"," plt.title(\"Loss\")\n"," plt.xlabel(\"Epoch\")\n"," plt.ylabel(\"Loss\")\n"," plt.legend()\n","\n"," plt.tight_layout()\n"," plt.savefig(acc_loss_save_path, dpi=300)\n"," print(f\"✅ تم حفظ رسم Accuracy & Loss: {acc_loss_save_path}\")\n"," plt.show()\n"," else:\n"," if os.path.exists(acc_loss_save_path):\n"," from PIL import Image\n"," img = Image.open(acc_loss_save_path)\n"," plt.figure(figsize=(14, 5))\n"," plt.imshow(img)\n"," plt.axis('off')\n"," plt.title(\"Accuracy & Loss (Loaded)\")\n"," plt.show()\n"," else:\n"," print(\"⚠️ لا يوجد ملف محفوظ لرسم Accuracy & Loss.\")\n"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"QHsG7EFfjPoB"},"outputs":[],"source":["#نجرب نقسم المودل لاثنين . الاول يعمل مع التصنيفات الفرعيه والرئيسيه والثاني مع ال\n","#rf بس\n"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"executionInfo":{"elapsed":10047,"status":"ok","timestamp":1745690924578,"user":{"displayName":"noor alqudah","userId":"09593972035402767777"},"user_tz":-180},"id":"LjBJ-vPO2AUk","outputId":"4c4f0de7-b444-422b-c60e-5e8f4a559a61"},"outputs":[{"name":"stdout","output_type":"stream","text":["✅ تم العثور على النموذج. سيتم استخدامه بدون تدريب.\n"]},{"name":"stderr","output_type":"stream","text":["WARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n"]},{"name":"stdout","output_type":"stream","text":["\u001b[1m553/553\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 733us/step\n","\n","📊 Fake/Real Report:\n"," precision recall f1-score support\n","\n"," 0 0.90 0.97 0.93 8846\n"," 1 0.97 0.90 0.93 8846\n","\n"," accuracy 0.93 17692\n"," macro avg 0.93 0.93 0.93 17692\n","weighted avg 0.93 0.93 0.93 17692\n","\n","\n","🔄 Summary:\n","✅ Accuracy: 0.9321\n","✅ Precision: 0.9344\n","✅ Recall: 0.9321\n","✅ F1-Score: 0.9320\n","✅ تم حفظ Confusion Matrix: /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/pic/cnn+bilstm_conf_matrix_rf.png\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAu8AAAJOCAYAAAAHw+kaAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWttJREFUeJzt3XlYVGX/x/HPgDIgCIgKSG64pFKWqT1KmqaSqGiZWlmWuGUaVoJ7i1sppam5pGaa+FSWtmgquRCmZpIaRZmpmVpUCq6AKyCc3x/+mMcJLHBkYOj96jrXJefc55zvmci+8+GeG5NhGIYAAAAAlHpOJV0AAAAAgMKheQcAAAAcBM07AAAA4CBo3gEAAAAHQfMOAAAAOAiadwAAAMBB0LwDAAAADoLmHQAAAHAQNO8AAACAg6B5B2Bx8OBBdezYUV5eXjKZTFq9evUNvf6vv/4qk8mkmJiYG3pdR3bPPffonnvuKekybFK7dm117dq1pMsoNhMnTpTJZCrpMgBAEs07UOocOnRITz75pOrUqSNXV1d5enqqVatWmj17ti5evFis9w4PD9eePXs0ZcoUvfPOO2revHmx3s+e+vXrJ5PJJE9PzwJfx4MHD8pkMslkMum1114r8vWPHj2qiRMnKikp6QZUax+1a9e2PPNft0uXLpVobbm5uapataqmTZsm6cqbnKvrc3Nz02233abXX39dubm5JVorANhTuZIuAMD/xMbG6sEHH5TZbFbfvn116623KisrS9u3b9eoUaO0d+9eLVq0qFjuffHiRSUkJOj555/XsGHDiuUetWrV0sWLF1W+fPliuf4/KVeunC5cuKC1a9fqoYcesjr23nvvydXV9bqb1qNHj2rSpEmqXbu2mjRpUujzNm3adF33u1GaNGmiESNG5Nvv4uJSAtX8z65du3Ty5EmFhYVZ9lWvXl3R0dGSpJMnT2r58uWKjIzUiRMnNGXKlJIqFQDsiuYdKCWOHDmi3r17q1atWtq8ebOqVatmORYREaFffvlFsbGxxXb/EydOSJK8vb2L7R4mk0murq7Fdv1/Yjab1apVK73//vv5mvfly5crLCxMH3/8sV1quXDhgipUqFDiTfJNN92kxx57rERrKMhnn32mWrVq6ZZbbrHs8/Lysqp1yJAhatiwoebOnavJkyfL2dm5JEoFALti2gxQSkybNk3nzp3TkiVLrBr3PPXq1dOzzz5r+fry5ct66aWXVLduXZnNZtWuXVvPPfecMjMzrc7Lm4+8fft2/ec//5Grq6vq1Kmj//73v5YxEydOVK1atSRJo0aNkslkUu3atSVdmW6S9+erFTQPOC4uTq1bt5a3t7c8PDzUoEEDPffcc5bj15rzvnnzZt19991yd3eXt7e37r//fu3bt6/A+/3yyy/q16+fvL295eXlpf79++vChQvXfmH/4tFHH9X69euVlpZm2bd7924dPHhQjz76aL7xp0+f1siRI9W4cWN5eHjI09NTnTt31vfff28Zs2XLFt15552SpP79+1umduQ95z333KNbb71ViYmJatOmjSpUqGB5Xf465z08PFyurq75nj80NFSVKlXS0aNHC/2stlq6dKnat28vX19fmc1mBQUFacGCBYU6d9myZSpXrpxGjRpl2bdz50516tRJXl5eqlChgtq2bauvvvqqwPNjY2OtUveCuLq66s4779TZs2d1/Phxq2PvvvuumjVrJjc3N/n4+Kh37976/fffrcZ8+eWXevDBB1WzZk2ZzWbVqFFDkZGRxT49DQBsQfMOlBJr165VnTp1dNdddxVq/KBBgzR+/Hg1bdpUs2bNUtu2bRUdHa3evXvnG/vLL7+oV69euvfeezVjxgxVqlRJ/fr10969eyVJPXr00KxZsyRJjzzyiN555x29/vrrRap/79696tq1qzIzMzV58mTNmDFD99133zWbszyff/65QkNDdfz4cU2cOFFRUVHasWOHWrVqpV9//TXf+Iceekhnz55VdHS0HnroIcXExGjSpEmFrrNHjx4ymUz65JNPLPuWL1+uhg0bqmnTpvnGHz58WKtXr1bXrl01c+ZMjRo1Snv27FHbtm0tjXSjRo00efJkSdLgwYP1zjvv6J133lGbNm0s1zl16pQ6d+6sJk2a6PXXX1e7du0KrG/27NmqWrWqwsPDlZOTI0l68803tWnTJs2dO1cBAQGFftbCyM7O1smTJ622vDdDCxYsUK1atfTcc89pxowZqlGjhp566im98cYbf3vNRYsWqX///ho7dqymT58u6cobtDZt2igjI0MTJkzQ1KlTlZaWpvbt22vXrl1W56ekpOi7775Tly5d/rH+vDeEV//EaMqUKerbt6/q16+vmTNnavjw4YqPj1ebNm2s3rR9+OGHunDhgoYOHaq5c+cqNDRUc+fOVd++fQv56gFACTAAlLj09HRDknH//fcXanxSUpIhyRg0aJDV/pEjRxqSjM2bN1v21apVy5BkbNu2zbLv+PHjhtlsNkaMGGHZd+TIEUOSMX36dKtrhoeHG7Vq1cpXw4QJE4yr/wqZNWuWIck4ceLENevOu8fSpUst+5o0aWL4+voap06dsuz7/vvvDScnJ6Nv37757jdgwACraz7wwANG5cqVr3nPq5/D3d3dMAzD6NWrl9GhQwfDMAwjJyfH8Pf3NyZNmlTga3Dp0iUjJycn33OYzWZj8uTJln27d+/O92x52rZta0gyFi5cWOCxtm3bWu3buHGjIcl4+eWXjcOHDxseHh5G9+7d//EZiyrve+Ov24QJEwzDMIwLFy7kOyc0NNSoU6dOvuuEhYUZhmEYs2fPNkwmk/HSSy9Zjufm5hr169c3QkNDjdzcXMv+CxcuGIGBgca9995rdb0lS5YYbm5uVvdv27at0bBhQ+PEiRPGiRMnjP379xujRo0yJFnubRiG8euvvxrOzs7GlClTrK65Z88eo1y5clb7C3q+6Ohow2QyGb/99ptl31+/1wGgJJG8A6VARkaGJKlixYqFGv/ZZ59JkqKioqz2533w8K9z44OCgnT33Xdbvq5ataoaNGigw4cPX3fNf5WXfH766aeFXv3j2LFjSkpKUr9+/eTj42PZf9ttt+nee++1POfVhgwZYvX13XffrVOnTllew8J49NFHtWXLFqWkpGjz5s1KSUkpcMqMdGWevJPTlb8qc3JydOrUKcuUoG+//bbQ9zSbzerfv3+hxnbs2FFPPvmkJk+erB49esjV1VVvvvlmoe9VFC1atFBcXJzVlpc8u7m5Wcalp6fr5MmTatu2rQ4fPqz09PR815o2bZqeffZZvfrqq3rhhRcs+5OSkizTkk6dOmVJ+M+fP68OHTpo27ZtVt8zn332mdq1a2d1f0nav3+/qlatqqpVq6phw4aaPn267rvvPqtpWJ988olyc3P10EMPWf00wd/fX/Xr19cXX3xhGXv19c+fP6+TJ0/qrrvukmEY+u67767/RQWAYsQHVoFSwNPTU5J09uzZQo3/7bff5OTkpHr16lnt9/f3l7e3t3777Ter/TVr1sx3jUqVKunMmTPXWXF+Dz/8sBYvXqxBgwZp7Nix6tChg3r06KFevXpZmt+CnkOSGjRokO9Yo0aNtHHjRp0/f17u7u6W/X99lkqVKkmSzpw5Y3kd/0mXLl1UsWJFrVixQklJSbrzzjtVr169Aqfp5Obmavbs2Zo/f76OHDlimcoiSZUrVy7U/aQrHwwtyodTX3vtNX366adKSkrS8uXL5evr+4/nnDhxwqo+Dw8PeXh4/O05VapUUUhISIHHvvrqK02YMEEJCQn5PleQnp4uLy8vy9dbt25VbGysxowZYzXPXbqyDKd0ZT7/taSnp6tSpUrKzs5WXFycZVWZq9WuXVtvvfWWcnNzdejQIU2ZMkUnTpyw+hD0wYMHZRiG6tevX+B9rl7pKDk5WePHj9eaNWvy/bdQ0JsTACgNaN6BUsDT01MBAQH68ccfi3ReYX9xzLVW4TAM47rvcXWTKF1JMbdt26YvvvhCsbGx2rBhg1asWKH27dtr06ZNN2wlEFueJY/ZbFaPHj20bNkyHT58WBMnTrzm2KlTp+rFF1/UgAED9NJLL8nHx0dOTk4aPnx4kdYX/2uK/E++++47y4cw9+zZo0ceeeQfz7nzzjut3rhNmDDhb5/t7xw6dEgdOnRQw4YNNXPmTNWoUUMuLi767LPPNGvWrHzPfssttygtLU3vvPOOnnzySQUGBlqO5Y2dPn36NZfRzHuTsX37dmVkZBQ4393d3d3qjUarVq3UtGlTPffcc5ozZ47lXiaTSevXry/weyXvPjk5Obr33nt1+vRpjRkzRg0bNpS7u7v+/PNP9evXj7XjAZRaNO9AKdG1a1ctWrRICQkJCg4O/tuxtWrVUm5urg4ePKhGjRpZ9qempiotLc2ycsyNUKlSJasP+eX5a7ovSU5OTurQoYM6dOigmTNnaurUqXr++ef1xRdfFJju5tV54MCBfMf279+vKlWqWKXuN9Kjjz6qt99+W05OTgV+yDfPRx99pHbt2mnJkiVW+9PS0lSlShXL1zfyN3CeP39e/fv3V1BQkO666y5NmzZNDzzwgGVFm2t57733rFZKqVOnznXXsHbtWmVmZmrNmjVWP+24etrJ1apUqaKPPvpIrVu3VocOHbR9+3bLh2vr1q0r6cqb1Gul/HliY2MVFBRU4ApHf3Xbbbfpscce05tvvqmRI0eqZs2aqlu3rgzDUGBgoG6++eZrnrtnzx79/PPPWrZsmdUHVOPi4v7xvgBQkpjzDpQSo0ePlru7uwYNGqTU1NR8xw8dOqTZs2dLkiWV/OuKMDNnzpSkf1xiryjq1q2r9PR0/fDDD5Z9x44d06pVq6zGnT59Ot+5eSnrX5evzFOtWjU1adJEy5Yts3qD8OOPP2rTpk2FWm3kerVr104vvfSS5s2bJ39//2uOc3Z2zpfqf/jhh/rzzz+t9uW9ySjojU5RjRkzRsnJyVq2bJlmzpyp2rVrKzw8/JqvY55WrVopJCTEstnSvOel1lc/e3p6upYuXXrNc6pXr67PP/9cFy9e1L333qtTp05Jkpo1a6a6devqtdde07lz5/Kdl/c7BqQr892L8v07evRoZWdnW773e/ToIWdnZ02aNCnfvzfDMCw1FfR8hmFY/hsDgNKK5B0oJerWravly5fr4YcfVqNGjax+w+qOHTv04Ycfql+/fpKk22+/XeHh4Vq0aJHS0tLUtm1b7dq1S8uWLVP37t2vuQzh9ejdu7fGjBmjBx54QM8884wuXLigBQsW6Oabb7b6wObkyZO1bds2hYWFqVatWjp+/Ljmz5+v6tWrq3Xr1te8/vTp09W5c2cFBwdr4MCBunjxoubOnSsvL6/rnvJRGE5OTlYfqryWrl27avLkyerfv7/uuusu7dmzR++9916+xrhu3bry9vbWwoULVbFiRbm7u6tFixZW00cKY/PmzZo/f74mTJhgWbpy6dKluueee/Tiiy9q2rRpRbre9erYsaNcXFzUrVs3Pfnkkzp37pzeeust+fr66tixY9c8r169etq0aZPuuecehYaGavPmzfL09NTixYvVuXNn3XLLLerfv79uuukm/fnnn/riiy/k6emptWvX6siRI9q3b1+h15KXrnwYu0uXLlq8eLFefPFF1a1bVy+//LLGjRunX3/9Vd27d1fFihV15MgRrVq1SoMHD9bIkSPVsGFD1a1bVyNHjtSff/4pT09Pffzxxzf0cyAAUCxKaJUbANfw888/G0888YRRu3Ztw8XFxahYsaLRqlUrY+7cucalS5cs47Kzs41JkyYZgYGBRvny5Y0aNWoY48aNsxpjGNbL+F3tr0sUXmupSMMwjE2bNhm33nqr4eLiYjRo0MB499138y2fFx8fb9x///1GQECA4eLiYgQEBBiPPPKI8fPPP+e7x1+XU/z888+NVq1aGW5uboanp6fRrVs346effrIak3e/vy5FuXTpUkOSceTIkWu+poZhvVTktVxrqcgRI0YY1apVM9zc3IxWrVoZCQkJBS7x+OmnnxpBQUFGuXLlrJ6zbdu2xi233FLgPa++TkZGhlGrVi2jadOmRnZ2ttW4yMhIw8nJyUhISPjbZyiKa31v5FmzZo1x2223Ga6urkbt2rWNV1991Xj77bfzvd4FXWfnzp1GxYoVjTZt2liWZPzuu++MHj16GJUrVzbMZrNRq1Yt46GHHjLi4+MNwzCMefPmGV5eXvme3TD+/jXcsmWL1RKXhmEYH3/8sdG6dWvD3d3dcHd3Nxo2bGhEREQYBw4csIz56aefjJCQEMPDw8OoUqWK8cQTTxjff/99vu9RlooEUJqYDKMIn/ICAKCYdOnSRR4eHlq5cmVJlwIApRbTZgAApcI999xj9fsIAAD5kbwDAAAADoLVZgAAAAAHQfMOAAAAOAiadwAAAMBB0LwDAAAADoLmHQAAAHAQZXKpSLc7hpV0CQCgM7vnlXQJACDXUtbt2aNPu/hd2f37l+QdAAAAcBCl7L0YAAAAyjQT2bEtePUAAAAAB0HyDgAAAPsxmUq6AodG8g4AAAA4CJJ3AAAA2A9z3m3CqwcAAAA4CJJ3AAAA2A9z3m1C8g4AAAA4CJJ3AAAA2A9z3m3CqwcAAAA4CJJ3AAAA2A9z3m1C8g4AAAA4CJJ3AAAA2A9z3m3CqwcAAAA4CJJ3AAAA2A9z3m1C8g4AAAA4CJJ3AAAA2A9z3m3CqwcAAAA4CJJ3AAAA2A9z3m1C8g4AAAA4CJJ3AAAA2A9z3m3CqwcAAAA4CJJ3AAAA2A9z3m1C8g4AAAA4CJJ3AAAA2A9z3m3CqwcAAAA4CJJ3AAAA2A/Ju0149QAAAAAHQfMOAAAA+3EyFf9WBDk5OXrxxRcVGBgoNzc31a1bVy+99JIMw7CMMQxD48ePV7Vq1eTm5qaQkBAdPHjQ6jqnT59Wnz595OnpKW9vbw0cOFDnzp2zGvPDDz/o7rvvlqurq2rUqKFp06YV/eUr8hkAAABAGfHqq69qwYIFmjdvnvbt26dXX31V06ZN09y5cy1jpk2bpjlz5mjhwoXauXOn3N3dFRoaqkuXLlnG9OnTR3v37lVcXJzWrVunbdu2afDgwZbjGRkZ6tixo2rVqqXExERNnz5dEydO1KJFi4pUr8m4+m1FGeF2x7CSLgEAdGb3vJIuAQDkWso+4ejWfkqx3+Pi5ucLPbZr167y8/PTkiVLLPt69uwpNzc3vfvuuzIMQwEBARoxYoRGjhwpSUpPT5efn59iYmLUu3dv7du3T0FBQdq9e7eaN28uSdqwYYO6dOmiP/74QwEBAVqwYIGef/55paSkyMXFRZI0duxYrV69Wvv37y90vSTvAAAA+Ne66667FB8fr59//lmS9P3332v79u3q3LmzJOnIkSNKSUlRSEiI5RwvLy+1aNFCCQkJkqSEhAR5e3tbGndJCgkJkZOTk3bu3GkZ06ZNG0vjLkmhoaE6cOCAzpw5U+h6S9l7MQAAAJRpdvgNq5mZmcrMzLTaZzabZTab840dO3asMjIy1LBhQzk7OysnJ0dTpkxRnz59JEkpKSmSJD8/P6vz/Pz8LMdSUlLk6+trdbxcuXLy8fGxGhMYGJjvGnnHKlWqVKhnI3kHAABAmRIdHS0vLy+rLTo6usCxK1eu1Hvvvafly5fr22+/1bJly/Taa69p2bJldq66cEjeAQAAYD92WOd93LhxioqKstpXUOouSaNGjdLYsWPVu3dvSVLjxo3122+/KTo6WuHh4fL395ckpaamqlq1apbzUlNT1aRJE0mSv7+/jh8/bnXdy5cv6/Tp05bz/f39lZqaajUm7+u8MYVB8g4AAIAyxWw2y9PT02q7VvN+4cIFOTlZt8TOzs7Kzc2VJAUGBsrf31/x8fGW4xkZGdq5c6eCg4MlScHBwUpLS1NiYqJlzObNm5Wbm6sWLVpYxmzbtk3Z2dmWMXFxcWrQoEGhp8xINO8AAACwJ5Op+Lci6Natm6ZMmaLY2Fj9+uuvWrVqlWbOnKkHHnjg/8s1afjw4Xr55Ze1Zs0a7dmzR3379lVAQIC6d+8uSWrUqJE6deqkJ554Qrt27dJXX32lYcOGqXfv3goICJAkPfroo3JxcdHAgQO1d+9erVixQrNnz873E4J/wrQZAAAA/GvNnTtXL774op566ikdP35cAQEBevLJJzV+/HjLmNGjR+v8+fMaPHiw0tLS1Lp1a23YsEGurq6WMe+9956GDRumDh06yMnJST179tScOXMsx728vLRp0yZFRESoWbNmqlKlisaPH2+1FnxhsM47ABQT1nkHUBqUunXeO04v9ntc3DSq2O9RUpg2AwAAADiIUvZeDAAAAGWaHdZ5L8tI3gEAAAAHQfIOAAAA+7HDOu9lGa8eAAAA4CBI3gEAAGA/zHm3Cck7AAAA4CBI3gEAAGA/zHm3Ca8eAAAA4CBI3gEAAGA/zHm3Cck7AAAA4CBI3gEAAGA/zHm3Ca8eAAAA4CBI3gEAAGA/JO824dUDAAAAHATJOwAAAOyH1WZsQvMOAAAA+2HajE149QAAAAAHQfIOAAAA+2HajE1I3gEAAAAHQfIOAAAA+2HOu0149QAAAAAHQfIOAAAA+2HOu01I3gEAAAAHQfIOAAAAuzGRvNuE5B0AAABwECTvAAAAsBuSd9uQvAMAAAAOguQdAAAA9kPwbhOSdwAAAMBBkLwDAADAbpjzbhuSdwAAAMBBkLwDAADAbkjebUPyDgAAADgIkncAAADYDcm7bUjeAQAAAAdB8g4AAAC7IXm3Dck7AAAA4CBI3gEAAGA/BO82IXkHAAAAHATJOwAAAOyGOe+2IXkHAAAAHATJOwAAAOyG5N02JO8AAACAgyB5BwAAgN2QvNuG5B0AAABwECTvAAAAsBuSd9uQvAMAAAAOguQdAAAA9kPwbhOSdwAAAMBB0LwDAADAbkwmU7FvRVG7du0CrxERESFJunTpkiIiIlS5cmV5eHioZ8+eSk1NtbpGcnKywsLCVKFCBfn6+mrUqFG6fPmy1ZgtW7aoadOmMpvNqlevnmJiYq7r9aN5BwAAwL/W7t27dezYMcsWFxcnSXrwwQclSZGRkVq7dq0+/PBDbd26VUePHlWPHj0s5+fk5CgsLExZWVnasWOHli1bppiYGI0fP94y5siRIwoLC1O7du2UlJSk4cOHa9CgQdq4cWOR6zUZhmHY+Myljtsdw0q6BADQmd3zSroEAJBrKfuEY9X+K4r9HieWPnzd5w4fPlzr1q3TwYMHlZGRoapVq2r58uXq1auXJGn//v1q1KiREhIS1LJlS61fv15du3bV0aNH5efnJ0lauHChxowZoxMnTsjFxUVjxoxRbGysfvzxR8t9evfurbS0NG3YsKFI9ZG8AwAAAJKysrL07rvvasCAATKZTEpMTFR2drZCQkIsYxo2bKiaNWsqISFBkpSQkKDGjRtbGndJCg0NVUZGhvbu3WsZc/U18sbkXaMoStl7MQAAAJRl9ljnPTMzU5mZmVb7zGazzGbz3563evVqpaWlqV+/fpKklJQUubi4yNvb22qcn5+fUlJSLGOubtzzjucd+7sxGRkZunjxotzc3Ar9bCTvAAAAKFOio6Pl5eVltUVHR//jeUuWLFHnzp0VEBBghyqvD8k7AAAA7McO67yPGzdOUVFRVvv+KXX/7bff9Pnnn+uTTz6x7PP391dWVpbS0tKs0vfU1FT5+/tbxuzatcvqWnmr0Vw95q8r1KSmpsrT07NIqbtE8g4AAIAyxmw2y9PT02r7p+Z96dKl8vX1VVhYmGVfs2bNVL58ecXHx1v2HThwQMnJyQoODpYkBQcHa8+ePTp+/LhlTFxcnDw9PRUUFGQZc/U18sbkXaMoSN4BAABgN/aY815Uubm5Wrp0qcLDw1Wu3P/aYy8vLw0cOFBRUVHy8fGRp6ennn76aQUHB6tly5aSpI4dOyooKEiPP/64pk2bppSUFL3wwguKiIiwvGEYMmSI5s2bp9GjR2vAgAHavHmzVq5cqdjY2CLXSvMOAACAf7XPP/9cycnJGjBgQL5js2bNkpOTk3r27KnMzEyFhoZq/vz5luPOzs5at26dhg4dquDgYLm7uys8PFyTJ0+2jAkMDFRsbKwiIyM1e/ZsVa9eXYsXL1ZoaGiRa2WddwAoJqzzDqA0KG3rvPs/8VGx3yPlrV7Ffo+Swpx3AAAAwEGUsvdiAAAAKMtK45x3R0LyDgAAADgIkncAAADYDcm7bUjeAQAAAAdB8g4AAAD7IXi3Cck7AAAA4CBI3gEAAGA3zHm3Dck7AAAA4CBI3gEAAGA3JO+2IXkHAAAAHATJOwAAAOyG5N02JO8AAACAgyB5BwAAgP0QvNuE5B0AAABwECTvAAAAsBvmvNuG5B0AAABwECTvAAAAsBuSd9vQvKNMcnIy6YUhXfRIlzvlV9lTx06k6521O/XKWxssYxZNekyP39fS6rxNX/2k+4fNt9rXqfUtem5wZ91aP0CXsi5re+JBPRT1liTpsW4t9NbkxwusoWb7sTpx5twNfjIAjmzJW28qPm6Tjhw5LLOrq5o0uUPDo0aqdmAdSdKff/6hLh07FHju9Jmvq2NoZ0nSzq8T9Mbc2Tr48wG5uVVQt/u76+lnI1WuHP9bB8o6/itHmTSi3716otfdemL8O/rp0DE1u6Wm3pz4mDLOXdT897daxm38aq+enPCu5evMrMtW1+neoYneePERTZi3Vlt2/axy5Zx0S91qluMfbfpWcTt+sjpn0aTH5WouT+MOIJ9vdu/Sw4/00S2NGyvnco7mzp6pIU8M1CdrYlWhQgX5+1dT/JbtVud89OEKLVu6RK1bt5EkHdi/XxFDntCgwUP08tRXdfx4ql6ePEG5ubkaMWpMSTwWUCQk77aheUeZ1PL2Olq39Qdt2L5XkpR87LQe6tRczW+pZTUuK+uyUk+dLfAazs5Oem1UTz33+motW51g2b//cIrlz5cys3UpM9vydZVKHrrnPzdryKT3buTjACgjFixaYvX15CmvqN3dwdr30141a36nnJ2dVaVqVasxm+M/V8dOnVXB3V2StHHDZ7r55gYa8tQwSVLNWrU0PGqURo8YriFPRcjd3cM+DwNcJ5p32/CBVZRJX39/WO3+00D1avpKkhrffJOCm9TRpq+sU/K7m9fXb/HR+n7Vi5r93MPy8XK3HLujYQ3d5FdJubmGEt4fo8Obpmj1vKEKuip5/6s+Xf+jC5eytOrzpGJ5LgBly7mzV8IDTy+vAo//tPdHHdi/Tw/06GXZl5WVJRez2Wqcq6urMjMz9dPevcVXLIBSoUST95MnT+rtt99WQkKCUlKupJn+/v6666671K9fP1X9S/oAFNZrS+Pk6eGq71e9oJwcQ87OJk14Y50+WP+NZUzcjn36dPP3+vXPU6pTvYomPd1Nn84bqrbhM5SbayiwehVJ0gtDumjMjE/029FTevbxDtr41rO6rftkncm4kO++4d2DtWL9N1ZpPAAUJDc3V9NenaomdzRV/fo3Fzhm1ccfqU6dumpyR1PLvrtatdZ77yzT+th16tips06ePKk3F7whSTp54oRdagdsQvBukxJL3nfv3q2bb75Zc+bMkZeXl9q0aaM2bdrIy8tLc+bMUcOGDfXNN9/843UyMzOVkZFhtRm5OXZ4ApRmvTo2Ve/Od6rfc8sU/OirGjT+HQ1/vIP6dGthGfPhxkTFbt2jvb8c1dotP6jHMwvV/NbaatO8viTJ6f9/rPfq4o1aHZ+k7/b9rsET3pUhQz3uvSPfPVvcFqhGdapZTbEBgGuZ+vIkHTp4UNNem1Xg8UuXLmn9Z+vUvWcvq/13tWqtyBGj9fLkCbrzjsa6LyxUre9uK0kyOfEDdaCsK7Hk/emnn9aDDz6ohQsX5pv7ZBiGhgwZoqeffloJCX/fCEVHR2vSpElW+5z97lT5av+54TXDcUwd3l2vLY3ThxsTJUl7fzmqmtV8NKr/vXpv7c4Cz/n1z1M6ceas6taoqi27ftaxk+mSpP2Hj1nGZGVf1q9/nFINf5985/d7IFhJ+3/Xd/t+L4YnAlCWTH15srZt3aK3l70rP3//AsfEbdqgixcvqdt93fMd69uvvx4P76cTJ47L09NLR//8U3Nen6Hq1asXc+WA7ZjzbpsSe4v+/fffKzIyssB/gSaTSZGRkUpKSvrH64wbN07p6elWWzm/ZsVQMRyJm6uLco1cq305uYac/iaVusnXW5W93JVyMkOS9N2+33UpM1v1a/tZxpQr56SaAT5KPnba6lx3Nxf1vLcpqTuAv2UYhqa+PFmb4+P01tvLVL16jWuOXf3Jx7qnXXv5+OQPC6Qr/6/09fWTq6ur1n+2Tv7+1dQo6JbiKh1AKVFiybu/v7927dqlhg0bFnh8165d8vPzK/DY1cxms8x/+eCOycn5htQIx/XZtj0aMzBUvx87o58OHVOThtX1zGPt9N/VX0u60mw//2QXrY5PUsrJDNWpUUVTnu2uQ7+fVNyOfZKks+cvafFH2/XikC76I+WMko+dVmR4iCTpk7hvre7XK7SZyjk76f3Y3fZ9UAAOZepLk7T+s3V6fe58uVdwt8xR96hYUa6urpZxyb/9psRvduuNBYsKvE7M24vVqvXdMjk5KT5uk95e/Jamz3xdzs78/w+lH8m7bUqseR85cqQGDx6sxMREdejQwdKop6amKj4+Xm+99ZZee+21kioPDi7q1Q814amumv3cw6payUPHTqRryUdfaeqi9ZKupPC31r9Jfbq1kHdFNx07ka7PE/Zr8vx1ysr+31rv415fpcs5uVrycl+5mctr94+/qfPgOUo7e9Hqfv26B+vTzd8r/Zz1fgC42soV70uSBvaz/uVuk1+O1v0P9LB8vXrVx/Lz81dwq9YFXmf7l9u0eNFCZWVl6eYGDTV73huWee8AyjaTYRhGSd18xYoVmjVrlhITE5WTc+VDps7OzmrWrJmioqL00EMPXdd13e4YdiPLBIDrcmb3vJIuAQDkWsp+q0+9keuL/R6/vNa52O9RUkr0X+fDDz+shx9+WNnZ2Tp58qQkqUqVKipfvnxJlgUAAACUSqXivVj58uVVrdq1f/ENAAAAygbmvNuGBWEBAAAAB1EqkncAAAD8OxC824bkHQAAAHAQJO8AAACwG+a824bkHQAAAHAQJO8AAACwG4J325C8AwAAAA6C5B0AAAB24+RE9G4LkncAAADAQZC8AwAAwG6Y824bkncAAADAQZC8AwAAwG5Y5902JO8AAACAgyB5BwAAgN0QvNuG5B0AAABwECTvAAAAsBvmvNuG5B0AAABwECTvAAAAsBuSd9uQvAMAAAAOguYdAAAAdmMyFf9WVH/++acee+wxVa5cWW5ubmrcuLG++eYby3HDMDR+/HhVq1ZNbm5uCgkJ0cGDB62ucfr0afXp00eenp7y9vbWwIEDde7cOasxP/zwg+6++265urqqRo0amjZtWpFrpXkHAADAv9aZM2fUqlUrlS9fXuvXr9dPP/2kGTNmqFKlSpYx06ZN05w5c7Rw4ULt3LlT7u7uCg0N1aVLlyxj+vTpo7179youLk7r1q3Ttm3bNHjwYMvxjIwMdezYUbVq1VJiYqKmT5+uiRMnatGiRUWq12QYhmH7Y5cubncMK+kSAEBnds8r6RIAQK6l7BOOd0zaXOz3+G5C+0KPHTt2rL766it9+eWXBR43DEMBAQEaMWKERo4cKUlKT0+Xn5+fYmJi1Lt3b+3bt09BQUHavXu3mjdvLknasGGDunTpoj/++EMBAQFasGCBnn/+eaWkpMjFxcVy79WrV2v//v2FrpfkHQAAAP9aa9asUfPmzfXggw/K19dXd9xxh9566y3L8SNHjiglJUUhISGWfV5eXmrRooUSEhIkSQkJCfL29rY07pIUEhIiJycn7dy50zKmTZs2lsZdkkJDQ3XgwAGdOXOm0PXSvAMAAMBu7DHnPTMzUxkZGVZbZmZmgfUcPnxYCxYsUP369bVx40YNHTpUzzzzjJYtWyZJSklJkST5+flZnefn52c5lpKSIl9fX6vj5cqVk4+Pj9WYgq5x9T0Kg+YdAAAAZUp0dLS8vLystujo6ALH5ubmqmnTppo6daruuOMODR48WE888YQWLlxo56oLh+YdAAAAdmMymYp9GzdunNLT0622cePGFVhPtWrVFBQUZLWvUaNGSk5OliT5+/tLklJTU63GpKamWo75+/vr+PHjVscvX76s06dPW40p6BpX36MwaN4BAABQppjNZnl6elptZrO5wLGtWrXSgQMHrPb9/PPPqlWrliQpMDBQ/v7+io+PtxzPyMjQzp07FRwcLEkKDg5WWlqaEhMTLWM2b96s3NxctWjRwjJm27Ztys7OtoyJi4tTgwYNrFa2+Sc07wAAALCb0rbOe2RkpL7++mtNnTpVv/zyi5YvX65FixYpIiLi/+s1afjw4Xr55Ze1Zs0a7dmzR3379lVAQIC6d+8u6UpS36lTJz3xxBPatWuXvvrqKw0bNky9e/dWQECAJOnRRx+Vi4uLBg4cqL1792rFihWaPXu2oqKiilRvKVs8CAAAALCfO++8U6tWrdK4ceM0efJkBQYG6vXXX1efPn0sY0aPHq3z589r8ODBSktLU+vWrbVhwwa5urpaxrz33nsaNmyYOnToICcnJ/Xs2VNz5syxHPfy8tKmTZsUERGhZs2aqUqVKho/frzVWvCFwTrvAFBMWOcdQGlQ2tZ5v3PKlmK/x+7n7yn2e5QUps0AAAAADqKUvRcDAABAWVbUOemwRvIOAAAAOAiSdwAAANiNiejdJiTvAAAAgIMgeQcAAIDdELzbhuQdAAAAcBAk7wAAALAb5rzbhuQdAAAAcBAk7wAAALAbgnfbkLwDAAAADoLkHQAAAHbDnHfbkLwDAAAADoLkHQAAAHZD8G4bkncAAADAQZC8AwAAwG6Y824bkncAAADAQZC8AwAAwG5I3m1D8g4AAAA4CJJ3AAAA2A3Bu21I3gEAAAAHQfIOAAAAu2HOu21I3gEAAAAHQfIOAAAAuyF4tw3JOwAAAOAgSN4BAABgN8x5tw3NOwAAAOyG3t02TJsBAAAAHATJOwAAAOzGiejdJiTvAAAAgIMgeQcAAIDdELzbhuQdAAAAcBAk7wAAALAbloq0Dck7AAAA4CBI3gEAAGA3TgTvNiF5BwAAABwEyTsAAADshjnvtiF5BwAAABwEyTsAAADshuDdNiTvAAAAgIMgeQcAAIDdmET0bguSdwAAAMBBkLwDAADAbljn3TYk7wAAAICDIHkHAACA3bDOu21I3gEAAAAHQfIOAAAAuyF4tw3JOwAAAOAgSN4BAABgN05E7zYheQcAAAAcBM07AAAA7MZkKv6tKCZOnCiTyWS1NWzY0HL80qVLioiIUOXKleXh4aGePXsqNTXV6hrJyckKCwtThQoV5Ovrq1GjRuny5ctWY7Zs2aKmTZvKbDarXr16iomJua7Xj+YdAAAA/2q33HKLjh07Ztm2b99uORYZGam1a9fqww8/1NatW3X06FH16NHDcjwnJ0dhYWHKysrSjh07tGzZMsXExGj8+PGWMUeOHFFYWJjatWunpKQkDR8+XIMGDdLGjRuLXCtz3gEAAGA3pXGd93Llysnf3z/f/vT0dC1ZskTLly9X+/btJUlLly5Vo0aN9PXXX6tly5batGmTfvrpJ33++efy8/NTkyZN9NJLL2nMmDGaOHGiXFxctHDhQgUGBmrGjBmSpEaNGmn79u2aNWuWQkNDi1QryTsAAADKlMzMTGVkZFhtmZmZ1xx/8OBBBQQEqE6dOurTp4+Sk5MlSYmJicrOzlZISIhlbMOGDVWzZk0lJCRIkhISEtS4cWP5+flZxoSGhiojI0N79+61jLn6Gnlj8q5RFDTvAAAAsBt7zHmPjo6Wl5eX1RYdHV1gPS1atFBMTIw2bNigBQsW6MiRI7r77rt19uxZpaSkyMXFRd7e3lbn+Pn5KSUlRZKUkpJi1bjnHc879ndjMjIydPHixSK9fkybAQAAQJkybtw4RUVFWe0zm80Fju3cubPlz7fddptatGihWrVqaeXKlXJzcyvWOq8HyTsAAADsxslkKvbNbDbL09PTartW8/5X3t7euvnmm/XLL7/I399fWVlZSktLsxqTmppqmSPv7++fb/WZvK//aYynp2eR3yDQvAMAAAD/79y5czp06JCqVaumZs2aqXz58oqPj7ccP3DggJKTkxUcHCxJCg4O1p49e3T8+HHLmLi4OHl6eiooKMgy5upr5I3Ju0ZR0LwDAADAbkx22Ipi5MiR2rp1q3799Vft2LFDDzzwgJydnfXII4/Iy8tLAwcOVFRUlL744gslJiaqf//+Cg4OVsuWLSVJHTt2VFBQkB5//HF9//332rhxo1544QVFRERY0v4hQ4bo8OHDGj16tPbv36/58+dr5cqVioyMLPLrx5x3AAAA/Gv98ccfeuSRR3Tq1ClVrVpVrVu31tdff62qVatKkmbNmiUnJyf17NlTmZmZCg0N1fz58y3nOzs7a926dRo6dKiCg4Pl7u6u8PBwTZ482TImMDBQsbGxioyM1OzZs1W9enUtXry4yMtESpLJMAzD9scuXdzuGFbSJQCAzuyeV9IlAIBcS1lU+8h/k4r9Hu/3bVLs9ygpTJsBAAAAHEQpey8GAACAssyp9P2CVYdC8g4AAAA4CJJ3AAAA2I3JRPRuC5J3AAAAwEGQvAMAAMBuCN5tQ/IOAAAAOAiSdwAAANgNc95tQ/IOAAAAOIhCJe9r1qwp9AXvu+++6y4GAAAAZRvrvNumUM179+7dC3Uxk8mknJwcW+oBAAAAcA2Fat5zc3OLuw4AAAD8CzDn3TbMeQcAAAAcxHWtNnP+/Hlt3bpVycnJysrKsjr2zDPP3JDCAAAAUPaQu9umyM37d999py5duujChQs6f/68fHx8dPLkSVWoUEG+vr407wAAAEAxKfK0mcjISHXr1k1nzpyRm5ubvv76a/32229q1qyZXnvtteKoEQAAAGWEk8lU7FtZVuTmPSkpSSNGjJCTk5OcnZ2VmZmpGjVqaNq0aXruueeKo0YAAAAAuo7mvXz58nJyunKar6+vkpOTJUleXl76/fffb2x1AAAAKFNMpuLfyrIiz3m/4447tHv3btWvX19t27bV+PHjdfLkSb3zzju69dZbi6NGAAAAALqO5H3q1KmqVq2aJGnKlCmqVKmShg4dqhMnTmjRokU3vEAAAACUHSaTqdi3sqzIyXvz5s0tf/b19dWGDRtuaEEAAAAACnZd67wDAAAA16OMB+PFrsjNe2Bg4N/+OOLw4cM2FQQAAACgYEVu3ocPH271dXZ2tr777jtt2LBBo0aNulF1AQAAoAwq6+uwF7ciN+/PPvtsgfvfeOMNffPNNzYXBAAAAKBgRV5t5lo6d+6sjz/++EZdDgAAAGUQ67zb5oY17x999JF8fHxu1OUAAAAA/MV1/ZKmqz+wahiGUlJSdOLECc2fP/+GFgcAAICypayvw17city833///VYvupOTk6pWrap77rlHDRs2vKHFAQAAAPgfk2EYRkkXcaOlZmSXdAkAoNo9Z5Z0CQCgi3FjSroEK0+v2lfs95j7QKNiv0dJKfKcd2dnZx0/fjzf/lOnTsnZ2fmGFAUAAICyyWQyFftWlhW5eb9WUJ+ZmSkXFxebCwIAAABQsELPeZ8zZ46kK++WFi9eLA8PD8uxnJwcbdu2jTnvAAAA+FtOZTsYL3aFbt5nzZol6UryvnDhQqspMi4uLqpdu7YWLlx44ysEAAAAIKkIzfuRI0ckSe3atdMnn3yiSpUqFVtRAAAAKJtI3m1T5KUiv/jii+KoAwAAAMA/KPIHVnv27KlXX3013/5p06bpwQcfvCFFAQAAoGxitRnbFLl537Ztm7p06ZJvf+fOnbVt27YbUhQAAACA/Io8bebcuXMFLglZvnx5ZWRk3JCiAAAAUDYx5902RU7eGzdurBUrVuTb/8EHHygoKOiGFAUAAAAgvyIn7y+++KJ69OihQ4cOqX379pKk+Ph4LV++XB999NENLxAAAABlRxmfkl7sity8d+vWTatXr9bUqVP10Ucfyc3NTbfffrs2b94sHx+f4qgRAAAAgK6jeZeksLAwhYWFSZIyMjL0/vvva+TIkUpMTFROTs4NLRAAAABlhxPRu02KPOc9z7Zt2xQeHq6AgADNmDFD7du319dff30jawMAAABwlSIl7ykpKYqJidGSJUuUkZGhhx56SJmZmVq9ejUfVgUAAMA/uu7kGJKK8Pp169ZNDRo00A8//KDXX39dR48e1dy5c4uzNgAAAABXKXTyvn79ej3zzDMaOnSo6tevX5w1AQAAoIxiyrttCp28b9++XWfPnlWzZs3UokULzZs3TydPnizO2gAAAABcpdDNe8uWLfXWW2/p2LFjevLJJ/XBBx8oICBAubm5iouL09mzZ4uzTgAAAJQBTiZTsW9lWZE/M+Du7q4BAwZo+/bt2rNnj0aMGKFXXnlFvr6+uu+++4qjRgAAAACy8QO/DRo00LRp0/THH3/o/fffv1E1AQAAoIwymYp/s8Urr7wik8mk4cOHW/ZdunRJERERqly5sjw8PNSzZ0+lpqZanZecnKywsDBVqFBBvr6+GjVqlC5fvmw1ZsuWLWratKnMZrPq1aunmJiYItd3Q1brcXZ2Vvfu3bVmzZobcTkAAADA7nbv3q0333xTt912m9X+yMhIrV27Vh9++KG2bt2qo0ePqkePHpbjOTk5CgsLU1ZWlnbs2KFly5YpJiZG48ePt4w5cuSIwsLC1K5dOyUlJWn48OEaNGiQNm7cWKQaWWoTAAAAduNkKv7tepw7d059+vTRW2+9pUqVKln2p6ena8mSJZo5c6bat2+vZs2aaenSpdqxY4flF5Ru2rRJP/30k9599101adJEnTt31ksvvaQ33nhDWVlZkqSFCxcqMDBQM2bMUKNGjTRs2DD16tVLs2bNKtrrd32PBwAAAJROmZmZysjIsNoyMzP/9pyIiAiFhYUpJCTEan9iYqKys7Ot9jds2FA1a9ZUQkKCJCkhIUGNGzeWn5+fZUxoaKgyMjK0d+9ey5i/Xjs0NNRyjcKieQcAAIDd2GO1mejoaHl5eVlt0dHR16zpgw8+0LffflvgmJSUFLm4uMjb29tqv5+fn1JSUixjrm7c847nHfu7MRkZGbp48WKhX79C/5ImAAAAwBGMGzdOUVFRVvvMZnOBY3///Xc9++yziouLk6urqz3KswnJOwAAAOzGHqvNmM1meXp6Wm3Xat4TExN1/PhxNW3aVOXKlVO5cuW0detWzZkzR+XKlZOfn5+ysrKUlpZmdV5qaqr8/f0lSf7+/vlWn8n7+p/GeHp6ys3NrdCvH807AAAA/rU6dOigPXv2KCkpybI1b95cffr0sfy5fPnyio+Pt5xz4MABJScnKzg4WJIUHBysPXv26Pjx45YxcXFx8vT0VFBQkGXM1dfIG5N3jcJi2gwAAADs5npXgykuFStW1K233mq1z93dXZUrV7bsHzhwoKKiouTj4yNPT089/fTTCg4OVsuWLSVJHTt2VFBQkB5//HFNmzZNKSkpeuGFFxQREWFJ/IcMGaJ58+Zp9OjRGjBggDZv3qyVK1cqNja2SPXSvAMAAAB/Y9asWXJyclLPnj2VmZmp0NBQzZ8/33Lc2dlZ69at09ChQxUcHCx3d3eFh4dr8uTJljGBgYGKjY1VZGSkZs+ererVq2vx4sUKDQ0tUi0mwzCMG/ZkpURqRnZJlwAAqt1zZkmXAAC6GDempEuwMjX+ULHf47kOdYv9HiWFOe8AAACAg2DaDAAAAOymtM15dzQk7wAAAICDIHkHAACA3ZC824bkHQAAAHAQJO8AAACwG5OJ6N0WJO8AAACAgyB5BwAAgN0w5902JO8AAACAgyB5BwAAgN0w5d02JO8AAACAgyB5BwAAgN04Eb3bhOQdAAAAcBAk7wAAALAbVpuxDck7AAAA4CBI3gEAAGA3THm3Dck7AAAA4CBI3gEAAGA3TiJ6twXJOwAAAOAgSN4BAABgN8x5tw3JOwAAAOAgSN4BAABgN6zzbhuSdwAAAMBBkLwDAADAbpyY9G4TkncAAADAQZC8AwAAwG4I3m1D8g4AAAA4CJJ3AAAA2A1z3m1D8g4AAAA4CJJ3AAAA2A3Bu21I3gEAAAAHQfIOAAAAuyE5tg2vHwAAAOAgSN4BAABgNyYmvduE5B0AAABwECTvAAAAsBtyd9vQvAMAAMBu+CVNtmHaDAAAAOAgSN4BAABgN+TutiF5BwAAABwEyTsAAADshinvtiF5BwAAABwEyTsAAADshl/SZBuSdwAAAMBBkLwDAADAbkiObcPrBwAAADgIkncAAADYDXPebUPyDgAAADgIkncAAADYDbm7bUjeAQAAAAdB8w4AAAC7MZlMxb4VxYIFC3TbbbfJ09NTnp6eCg4O1vr16y3HL126pIiICFWuXFkeHh7q2bOnUlNTra6RnJyssLAwVahQQb6+vho1apQuX75sNWbLli1q2rSpzGaz6tWrp5iYmOt6/WjeAQAA8K9VvXp1vfLKK0pMTNQ333yj9u3b6/7779fevXslSZGRkVq7dq0+/PBDbd26VUePHlWPHj0s5+fk5CgsLExZWVnasWOHli1bppiYGI0fP94y5siRIwoLC1O7du2UlJSk4cOHa9CgQdq4cWOR6zUZhmHY/tilS2pGdkmXAACq3XNmSZcAALoYN6akS7DyyffHiv0ePW6vZtP5Pj4+mj59unr16qWqVatq+fLl6tWrlyRp//79atSokRISEtSyZUutX79eXbt21dGjR+Xn5ydJWrhwocaMGaMTJ07IxcVFY8aMUWxsrH788UfLPXr37q20tDRt2LChSLWRvAMAAKBMyczMVEZGhtWWmZn5j+fl5OTogw8+0Pnz5xUcHKzExERlZ2crJCTEMqZhw4aqWbOmEhISJEkJCQlq3LixpXGXpNDQUGVkZFjS+4SEBKtr5I3Ju0ZR0LwDAADAbuwx5z06OlpeXl5WW3R09DVr2rNnjzw8PGQ2mzVkyBCtWrVKQUFBSklJkYuLi7y9va3G+/n5KSUlRZKUkpJi1bjnHc879ndjMjIydPHixSK9fiwVCQAAgDJl3LhxioqKstpnNpuvOb5BgwZKSkpSenq6PvroI4WHh2vr1q3FXeZ1oXkHAACA3dhjnXez2fy3zfpfubi4qF69epKkZs2aaffu3Zo9e7YefvhhZWVlKS0tzSp9T01Nlb+/vyTJ399fu3btsrpe3mo0V4/56wo1qamp8vT0lJubW5GejWkzAAAAwFVyc3OVmZmpZs2aqXz58oqPj7ccO3DggJKTkxUcHCxJCg4O1p49e3T8+HHLmLi4OHl6eiooKMgy5upr5I3Ju0ZRkLwDAADAboq4DHuxGzdunDp37qyaNWvq7NmzWr58ubZs2aKNGzfKy8tLAwcOVFRUlHx8fOTp6amnn35awcHBatmypSSpY8eOCgoK0uOPP65p06YpJSVFL7zwgiIiIizp/5AhQzRv3jyNHj1aAwYM0ObNm7Vy5UrFxsYWuV6adwAAAPxrHT9+XH379tWxY8fk5eWl2267TRs3btS9994rSZo1a5acnJzUs2dPZWZmKjQ0VPPnz7ec7+zsrHXr1mno0KEKDg6Wu7u7wsPDNXnyZMuYwMBAxcbGKjIyUrNnz1b16tW1ePFihYaGFrle1nkHgGLCOu8ASoPSts772j2p/zzIRt0a+/3zIAfFnHcAAADAQTBtBgAAAHZT2ua8OxqSdwAAAMBBkLwDAADAbkx2Wem97CJ5BwAAABwEyTsAAADshjnvtiF5BwAAABwEyTsAAADsxok57zYheQcAAAAcBMk7AAAA7IY577YheQcAAAAcBMk7AAAA7Ibk3TYk7wAAAICDIHkHAACA3fAbVm1D8g4AAAA4CJJ3AAAA2I0TwbtNSN4BAAAAB0HyDgAAALthzrttSN4BAAAAB0HyDgAAALthnXfbkLwDAAAADoLkHQAAAHbDnHfbkLwDAAAADoLkHQAAAHbDOu+2IXkHAAAAHATJOwAAAOyGOe+2IXkHAAAAHATJO/41Lpw/r8UL5+rLLfE6c+a06t/cUM+MGKtGtzTW5cvZemvBXH391Zc69ucfcvfwUPP/tNSTwyJVpaqv5Rpjo4bpl5/3K+3MaXlU9FTz/7TUkKejrMYAQJ797wxRLX+vfPsXrvlWkXPjFFjNW68MbqfgW6vLXN5Zcd8cUdS8OB1PuyBJqunnqXF9WumeJjXl5+OuY6fO6f34n/Tq8h3KvpwrSapf3Udzn+2ohrWqyMvdrGOnzmnF5p805Z2vdDkn167PCxQG67zbhuYd/xqvvjxeRw79oucnRatKVV9tWr9WURFP6L8rP5VbhQo6uP8nhQ98UvXqN9DZsxmaM+MVjRsxTG/9d6XlGk2b/0eP939ClatU1YnjqZo/+zW9OCZSC95+rwSfDEBp1XrYMjk7/e+H3EG1q+izab31ydb9quBaXuteeUh7Dh9X51HvS5Im9LtbH7/UU22eeUeGITWoUVlOTiYNm71Rh/48o1sCq+qNyE5ydy2vcYu+kCRlX87Re5/vVdLBFKWfy1Tjur56I7KTnJxMmvD2thJ5bgDFx2QYhlHSRdxoqRnZJV0CSpnMS5fU6Z4WmvraHAW3bmvZP+jxh9TirtZ6Yugz+c7Zt3ePnuz3iD5cGyc//2oFXnf71i/0/KhnFL/jW5UrV77Y6odjqt1zZkmXgFJm+tAO6tyirm7tt0gdmtXWp1MeVLUes3X2QpYkybOCi46tGq6uY1foi+9+K/AakQ/+R090u0NBfd+85n1efbK9mjXwV0jU8mJ5DjiWi3FjSroEK18dPFPs92hVv1Kx36OkMOcd/wo5OTnKycmRi4vZar/ZbNaepG8LPOf8uXMymUzy8KhY4PGM9HTFbVinW29rQuMO4B+VL+ek3h2CtGzjD5Ikc3lnGZIys3MsYy5l5yjXMHTXrdWveR1Pd7NOn714zeN1Arx1752B+vKH329Y7QBKj1LdvP/+++8aMGBASZeBMqCCu7tuaXy7li1ZqJMnjisnJ0ebPlurvXu+16mTJ/ONz8zM1MJ5s9ShYxe5e3hYHVswd6Y63n2nuoa00vHUFE19ba69HgOAA7vvrpvl7eGqdzf9KEnate+ozl/K1pRB98jNXE4VXMvrlcHtVM7ZSf4+HgVeo06At4Z2b6Yl677Pd+yL1x/TmdgR2rvsSX215w9NXvZlsT4PcL2cTKZi38qyUt28nz59WsuWLfvbMZmZmcrIyLDaMjMz7VQhHMkLk6NlGFKPLu0V0qqpPlrxnjp07CzTX35bxOXL2ZowboQMw9CIsS/mu84jj/fXknc/1Ix5i+Tk5KQpE8epDM4+A3CDhXe+TRt3HdaxU+ckSSfTL6rPS6vVpWVdnVwTpdTVw+XlYda3P6cot4C/UwIqe2jN1If0ybb9Wro+f/P++JRPFTw0RuFT16hzi7qKfPA/xf5MAOyvRD+wumbNmr89fvjw4X+8RnR0tCZNmmS1b8TYFzRq3HibakPZc1P1mpq7KEYXL17Q+fPnVaVKVU0YN0IBN/3vx9N5jXtqylG9Pv/tfKm7JHl7V5K3dyXVqFVbtWrXUa+uIdq753vdelsTOz4NAEdS09dT7e+opd6TVlntj0/8VbeEL1JlTzddzslV+vlMHVkRoV+3pFmNq1bZQxtee0Rf//SnImZtKPAef5w4K0nan3xKTk4mvTG8k17/aLdycwkXULqU7Vy8+JVo8969e3eZTKa/TS1N//Cjj3HjxikqKspqX1pmqf6BAkqYm1sFublV0NmMdO3+eoeGPH3l+yevcf8jOVmzF74tL2/vf7xW3vdudnZWcZYMwME9HtpYx9MuaP3OQwUeP5VxZQ572yY15evtrnUJv1iOBfx/4/7dwRQNfu0zFeYHfU4mk8qXc5KTyaRc0bwDZUmJNu/VqlXT/Pnzdf/99xd4PCkpSc2aNfvba5jNZpnN1h9CvMhqMyjAroSvZBiGatSqrT//SNaC2TNUs3agutzXXZcvZ+vFMVH6ef9PenXWG8rJybXMhff08lL58uX1048/aN9PP+q225uqoqen/vzjdy1ZOFc3Va+hWxo3KdmHA1BqmUxS39DGei/uR+X8JQV/PLSxDiSf0om0C2oRFKDXngrR3E926+AfpyVdadw3znhEyakZGvfmF6rqVcFybuqZ85Kk3u2DlH05Vz/+ekKZWZfV7OZqemlgW320ZT/rvKN0Inq3SYk2782aNVNiYuI1m/d/SuWBojh37qwWvfG6ThxPVUVPL7Vtf6+eeOoZlStXXseO/qmvtl1ZM3lAn15W581e+LbuaPYfmV1dte2Lz7V00Ru6dPGifKpUVYvgVuo74Em5uLiUxCMBcADtm9ZWTT8vLdvwQ75jN1f30eQBbeRT0U2/paZr2vIEzfl49//ObVZb9W7yUb2bfHTogwirc93ufVWSdDknV1EPt1D96pVkMpmUnJqhBZ9+q7lXXQdA2VGi67x/+eWXOn/+vDp16lTg8fPnz+ubb75R27ZtCzx+LazzDqA0YJ13AKVBaVvnfeeh9GK/R4u6+X+zcVlRosn73Xff/bfH3d3di9y4AwAAAGVViTbvAAAA+Hcp48uwFzuWZQEAAAAcBMk7AAAA7Ibg3TY07wAAALAfunebMG0GAAAAcBAk7wAAALAbE9G7TUjeAQAAAAdB8g4AAAC7YalI25C8AwAAAA6C5B0AAAB2Q/BuG5J3AAAA/GtFR0frzjvvVMWKFeXr66vu3bvrwIEDVmMuXbqkiIgIVa5cWR4eHurZs6dSU1OtxiQnJyssLEwVKlSQr6+vRo0apcuXL1uN2bJli5o2bSqz2ax69eopJiamyPXSvAMAAMB+THbYimDr1q2KiIjQ119/rbi4OGVnZ6tjx446f/68ZUxkZKTWrl2rDz/8UFu3btXRo0fVo0cPy/GcnByFhYUpKytLO3bs0LJlyxQTE6Px48dbxhw5ckRhYWFq166dkpKSNHz4cA0aNEgbN24sUr0mwzCMoj1i6ZeakV3SJQCAavecWdIlAIAuxo0p6RKsfPtbRrHfo2ktz+s+98SJE/L19dXWrVvVpk0bpaenq2rVqlq+fLl69eolSdq/f78aNWqkhIQEtWzZUuvXr1fXrl119OhR+fn5SZIWLlyoMWPG6MSJE3JxcdGYMWMUGxurH3/80XKv3r17Ky0tTRs2bCh0fSTvAAAAsBuTHf6xRXp6uiTJx8dHkpSYmKjs7GyFhIRYxjRs2FA1a9ZUQkKCJCkhIUGNGze2NO6SFBoaqoyMDO3du9cy5upr5I3Ju0Zh8YFVAAAAlCmZmZnKzMy02mc2m2U2m//2vNzcXA0fPlytWrXSrbfeKklKSUmRi4uLvL29rcb6+fkpJSXFMubqxj3veN6xvxuTkZGhixcvys3NrVDPRvIOAAAAuzGZin+Ljo6Wl5eX1RYdHf2PtUVEROjHH3/UBx98YIdX4vqQvAMAAKBMGTdunKKioqz2/VPqPmzYMK1bt07btm1T9erVLfv9/f2VlZWltLQ0q/Q9NTVV/v7+ljG7du2yul7eajRXj/nrCjWpqany9PQsdOoukbwDAADAjuyx2IzZbJanp6fVdq3m3TAMDRs2TKtWrdLmzZsVGBhodbxZs2YqX7684uPjLfsOHDig5ORkBQcHS5KCg4O1Z88eHT9+3DImLi5Onp6eCgoKsoy5+hp5Y/KuUVgk7wAAAPjXioiI0PLly/Xpp5+qYsWKljnqXl5ecnNzk5eXlwYOHKioqCj5+PjI09NTTz/9tIKDg9WyZUtJUseOHRUUFKTHH39c06ZNU0pKil544QVFRERY3jQMGTJE8+bN0+jRozVgwABt3rxZK1euVGxsbJHqZalIACgmLBUJoDQobUtFfv/72WK/x+01KhZ6rMlU8Oo0S5cuVb9+/SRd+SVNI0aM0Pvvv6/MzEyFhoZq/vz5likxkvTbb79p6NCh2rJli9zd3RUeHq5XXnlF5cr9LyvfsmWLIiMj9dNPP6l69ep68cUXLfcodL007wBQPGjeAZQGNO9lC9NmAAAAYDe2rsP+b8cHVgEAAAAHQfIOAAAAu7nGFHMUEsk7AAAA4CBI3gEAAGA3BO+2IXkHAAAAHATJOwAAAOyH6N0mJO8AAACAgyB5BwAAgN2wzrttSN4BAAAAB0HyDgAAALthnXfbkLwDAAAADoLkHQAAAHZD8G4bkncAAADAQZC8AwAAwH6I3m1C8g4AAAA4CJJ3AAAA2A3rvNuG5B0AAABwECTvAAAAsBvWebcNyTsAAADgIEjeAQAAYDcE77YheQcAAAAcBMk7AAAA7Ifo3SYk7wAAAICDIHkHAACA3bDOu21I3gEAAAAHQfIOAAAAu2Gdd9uQvAMAAAAOguQdAAAAdkPwbhuSdwAAAMBBkLwDAADAfojebULyDgAAADgIkncAAADYDeu824bkHQAAAHAQJO8AAACwG9Z5tw3JOwAAAOAgSN4BAABgNwTvtiF5BwAAABwEyTsAAADsh+jdJiTvAAAAgIMgeQcAAIDdsM67bUjeAQAAAAdB8g4AAAC7YZ1325C8AwAAAA6C5B0AAAB2Q/BuG5J3AAAAwEGQvAMAAMBumPNuG5p3AAAA2BHduy2YNgMAAAA4CJJ3AAAA2A3TZmxD8g4AAIB/rW3btqlbt24KCAiQyWTS6tWrrY4bhqHx48erWrVqcnNzU0hIiA4ePGg15vTp0+rTp488PT3l7e2tgQMH6ty5c1ZjfvjhB919991ydXVVjRo1NG3atOuql+YdAAAAdmOyw1YU58+f1+2336433nijwOPTpk3TnDlztHDhQu3cuVPu7u4KDQ3VpUuXLGP69OmjvXv3Ki4uTuvWrdO2bds0ePBgy/GMjAx17NhRtWrVUmJioqZPn66JEydq0aJFRaxWMhmGYRT5rFIuNSO7pEsAANXuObOkSwAAXYwbU9IlWDmallXs9wjwdrmu80wmk1atWqXu3btLupK6BwQEaMSIERo5cqQkKT09XX5+foqJiVHv3r21b98+BQUFaffu3WrevLkkacOGDerSpYv++OMPBQQEaMGCBXr++eeVkpIiF5crtY0dO1arV6/W/v37i1QjyTsAAADsxmQq/u1GOXLkiFJSUhQSEmLZ5+XlpRYtWighIUGSlJCQIG9vb0vjLkkhISFycnLSzp07LWPatGljadwlKTQ0VAcOHNCZM2eKVBMfWAUAAECZkpmZqczMTKt9ZrNZZrO5SNdJSUmRJPn5+Vnt9/PzsxxLSUmRr6+v1fFy5crJx8fHakxgYGC+a+Qdq1SpUqFrInkHAACA3Zjs8E90dLS8vLystujo6JJ+9BuC5B0AAABlyrhx4xQVFWW1r6ipuyT5+/tLklJTU1WtWjXL/tTUVDVp0sQy5vjx41bnXb58WadPn7ac7+/vr9TUVKsxeV/njSkskncAAADYjx2WmzGbzfL09LTarqd5DwwMlL+/v+Lj4y37MjIytHPnTgUHB0uSgoODlZaWpsTERMuYzZs3Kzc3Vy1atLCM2bZtm7Kz/7eoSlxcnBo0aFCkKTMSzTsAAAD+xc6dO6ekpCQlJSVJuvIh1aSkJCUnJ8tkMmn48OF6+eWXtWbNGu3Zs0d9+/ZVQECAZUWaRo0aqVOnTnriiSe0a9cuffXVVxo2bJh69+6tgIAASdKjjz4qFxcXDRw4UHv37tWKFSs0e/bsfD8dKAymzQAAAMBuStsvWP3mm2/Url07y9d5DXV4eLhiYmI0evRonT9/XoMHD1ZaWppat26tDRs2yNXV1XLOe++9p2HDhqlDhw5ycnJSz549NWfOHMtxLy8vbdq0SREREWrWrJmqVKmi8ePHW60FX1is8w4AxYR13gGUBqVtnXd79Gl+nuWL/R4lheQdAAAAdnMj12H/N2LOOwAAAOAgSN4BAABgN6ZSN+vdsZC8AwAAAA6C5B0AAAD2Q/BuE5J3AAAAwEGQvAMAAMBuCN5tQ/IOAAAAOAiSdwAAANgN67zbhuQdAAAAcBAk7wAAALAb1nm3Dck7AAAA4CBI3gEAAGA3zHm3Dck7AAAA4CBo3gEAAAAHQfMOAAAAOAjmvAMAAMBumPNuG5J3AAAAwEGQvAMAAMBuWOfdNiTvAAAAgIMgeQcAAIDdMOfdNiTvAAAAgIMgeQcAAIDdELzbhuQdAAAAcBAk7wAAALAfonebkLwDAAAADoLkHQAAAHbDOu+2IXkHAAAAHATJOwAAAOyGdd5tQ/IOAAAAOAiSdwAAANgNwbttSN4BAAAAB0HyDgAAAPshercJyTsAAADgIEjeAQAAYDes824bkncAAADAQZC8AwAAwG5Y5902JO8AAACAgzAZhmGUdBFAaZOZmano6GiNGzdOZrO5pMsB8C/E30MACkLzDhQgIyNDXl5eSk9Pl6enZ0mXA+BfiL+HABSEaTMAAACAg6B5BwAAABwEzTsAAADgIGjegQKYzWZNmDCBD4kBKDH8PQSgIHxgFQAAAHAQJO8AAACAg6B5BwAAABwEzTsAAADgIGjegb944403VLt2bbm6uqpFixbatWtXSZcE4F9k27Zt6tatmwICAmQymbR69eqSLglAKULzDlxlxYoVioqK0oQJE/Ttt9/q9ttvV2hoqI4fP17SpQH4lzh//rxuv/12vfHGGyVdCoBSiNVmgKu0aNFCd955p+bNmydJys3NVY0aNfT0009r7NixJVwdgH8bk8mkVatWqXv37iVdCoBSguQd+H9ZWVlKTExUSEiIZZ+Tk5NCQkKUkJBQgpUBAABcQfMO/L+TJ08qJydHfn5+Vvv9/PyUkpJSQlUBAAD8D807AAAA4CBo3oH/V6VKFTk7Oys1NdVqf2pqqvz9/UuoKgAAgP+heQf+n4uLi5o1a6b4+HjLvtzcXMXHxys4OLgEKwMAALiiXEkXAJQmUVFRCg8PV/PmzfWf//xHr7/+us6fP6/+/fuXdGkA/iXOnTunX375xfL1kSNHlJSUJB8fH9WsWbMEKwNQGrBUJPAX8+bN0/Tp05WSkqImTZpozpw5atGiRUmXBeBfYsuWLWrXrl2+/eHh4YqJibF/QQBKFZp3AAAAwEEw5x0AAABwEDTvAAAAgIOgeQcAAAAcBM07AAAA4CBo3gEAAAAHQfMOAAAAOAiadwAAAMBB0LwDAAAADoLmHQBugH79+ql79+6Wr++55x4NHz7c7nVs2bJFJpNJaWlpdr83AKD40bwDKNP69esnk8kkk8kkFxcX1atXT5MnT9bly5eL9b6ffPKJXnrppUKNpeEGABRWuZIuAACKW6dOnbR06VJlZmbqs88+U0REhMqXL69x48ZZjcvKypKLi8sNuaePj88NuQ4AAFcjeQdQ5pnNZvn7+6tWrVoaOnSoQkJCtGbNGstUlylTpiggIEANGjSQJP3+++966KGH5O3tLR8fH91///369ddfLdfLyclRVFSUvL29VblyZY0ePVqGYVjd86/TZjIzMzVmzBjVqFFDZrNZ9erV05IlS/Trr7+qXbt2kqRKlSrJZDKpX79+kqTc3FxFR0crMDBQbm5uuv322/XRRx9Z3eezzz7TzTffLDc3N7Vr186qTgBA2UPzDuBfx83NTVlZWZKk+Ph4HThwQHFxcVq3bp2ys7MVGhqqihUr6ssvv9RXX30lDw8PderUyXLOjBkzFBMTo7ffflvbt2/X6dOntWrVqr+9Z9++ffX+++9rzpw52rdvn9588015eHioRo0a+vjjjyVJBw4c0LFjxzR79mxJUnR0tP773/9q4cKF2rt3ryIjI/XYY49p69atkq68yejRo4e6deumpKQkDRo0SGPHji2ulw0AUAowbQbAv4ZhGIqPj9fGjRv19NNP68SJE3J3d9fixYst02Xeffdd5ebmavHixTKZTJKkpUuXytvbW1u2bFHHjh31+uuva9y4cerRo4ckaeHChdq4ceM17/vzzz9r5cqViouLU0hIiCSpTp06luN5U2x8fX3l7e0t6UpSP3XqVH3++ecKDg62nLN9+3a9+eabatu2rRYsWKC6detqxowZkqQGDRpoz549evXVV2/gqwYAKE1o3gGUeevWrZOHh4eys7OVm5urRx99VBMnTlRERIQaN25sNc/9+++/1y+//KKKFStaXePSpUs6dOiQ0tPTdezYMbVo0cJyrFy5cmrevHm+qTN5kpKS5OzsrLZt2xa65l9++UUXLlzQvffea7U/KytLd9xxhyRp3759VnVIsjT6AICyieYdQJnXrl07LViwQC4uLgoICFC5cv/7q8/d3d1q7Llz59SsWTO99957+a5TtWrV67q/m5tbkc85d+6cJCk2NlY33XST1TGz2XxddQAAHB/NO4Ayz93dXfXq1SvU2KZNm2rFihXy9fWVp6dngWOqVaumnTt3qk2bNpKky5cvKzExUU2bNi1wfOPGjZWbm6utW7daps1cLS/5z8nJsewLCgqS2WxWcnLyNRP7Ro0aac2aNVb7vv76639+SACAw+IDqwBwlT59+qhKlSq6//779eWXX+rIkSPasmWLnnnmGf3xxx+SpGeffVavvPKKVq9erf379+upp5762zXaa9eurfDwcA0YMECrV6+2XHPlypWSpFq1aslkMmndunU6ceKEzp07p4oVK2rkyJGKjIzUsmXLdOjQIX377beaO3euli1bJkkaMmSIDh48qFGjRunAgQNavny5YmJiivslAgCUIJp3ALhKhQoVtG3bNtWsWVM9evRQo0aNNHDgQF26dMmSxI8YMUKPP/64wsPDFRwcrIoVK+qBBx742+suWLBAvXr10lNPPaWGDRvqiSee0Pnz5yVJN910kyZNmqSxY8fKz89Pw4YNkyS99NJLevHFFxUdHa1GjRqpU6dOio2NVWBgoCSpZs2a+vjjj7V69WrdfvvtWrhwoaZOnVqMrw4AoKSZjGt9wgoAAABAqULyDgAAADgImncAAADAQdC8AwAAAA6C5h0AAABwEDTvAAAAgIOgeQcAAAAcBM07AAAA4CBo3gEAAAAHQfMOAAAAOAiadwAAAMBB0LwDAAAADoLmHQAAAHAQ/wcIZ5+VJHLCmgAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["✅ عرض رسم Accuracy & Loss من الملف: /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/pic/cnn+bilstm_acc_loss_rf.png\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAC7gAAASwCAYAAABrDgf9AAEAAElEQVR4AezdBZwVVf/H8Z90NwgIgoSEhSIGkoJd2N36KHZ3t+Jj519UMB59rAfsQkDEDrAA6W6kG/Y/39EZZ+bG3rt77+7d3c95vdY7cebMmfe9e1nP/OZ3tshzilEQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEChmgXLFfH5OjwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIICAK0CAOx8EBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZwQIMA9J94GOoEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBAgDufAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGcECDAPSfeBjqBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQIA7nwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBnBAgwD0n3gY6gQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIECAO58BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZwQIMA9J94GOoEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBAgDufAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGcECDAPSfeBjqBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQIA7nwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBnBAgwD0n3gY6gQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIECAO58BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZwQIMA9J94GOoEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBAgDufAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGcECDAPSfeBjqBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQIA7nwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBnBAgwD0n3gY6gQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIECAO58BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZwQIMA9J94GOoEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBAgDufAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGcECDAPSfeBjqBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQIA7nwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBnBAgwD0n3gY6gQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIECAO58BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZwQIMA9J94GOoEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBAgDufAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGcECDAPSfeBjqBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQIA7nwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBnBAgwD0n3gY6gQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIECAO58BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZwQIMA9J94GOoEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBAgDufAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGcECDAPSfeBjqBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQIA7nwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBnBAgwD0n3gY6gQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIECAO58BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZwQIMA9J94GOoEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBAgDufAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGcECDAPSfeBjqBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQIA7nwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBnBAgwD0n3gY6gQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIECAO58BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZwQIMA9J94GOoEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBAgDufAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGcECDAPSfeBjqBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggQIA7nwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBnBAgwD0n3gY6gQACCCCAAAIIIIAAAqVR4Prrr7ctttjC/3nyySdL42WmdE3Tpk3zHTyTQYMGpXQslRAoCgF9Hr3Ppveqz21+ZbfddvOPq1Spko0bNy6/Q9iPAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJBEgAD3JDjsQgABBBBAAAEEEEAAAQQKKjBx4kS7//77/cPbtWtnZ599tr/OAgIIlA6Be++917+QDRs22EUXXeSvs4AAAggggAACCCCAAAIIIIAAAgggULoEFi5caHXr1vUTHrRo0cLWrl1bui4yjas57bTTfAsljWjZsmUaR1MVgewL6DPpJTTRqz6z+ZX33nsvdMxJJ52U3yHsRwABBBBAAIEsCBDgngVUmkQAAQQQQAABBDIhkJeXZ9tss01oAEUDL+XLl7fZs2dn4hS0gQACWRS48MILbf369f4Z7rnnHqtQoYK/nmjhlltuifm9Dw6+FmT5oYceSnQ6thexwPfffx96fxs0aGCbNm2K6UU677Oyhjds2NBat25te++9t11++eX26quv2qpVq2LaZUPmBXr37m0HHHCA3/Cnn35qb775pr/OAgIIIIAAAggggAACCCCAAAIIIIBA6RG46qqrbOnSpf4F3XnnnValShV/nQUEECj5AgcddJD16NHDv5CXX37ZvvjiC3+dBQQQQAABBBAoGgEC3IvGmbMggAACCCCAAAJpCwwbNsymTZsWc9zmzZtt0KBBMdvZgAACuSPw8ccf20cffeR3aKeddrJ+/fr56yyUXYGhQ4eGLv7ggw92H1wKbUxzRVnDFy1aZFOmTLHhw4fbAw88YMcff7w1adLEzjnnHFuwYEGaLVI9XYGbbropdMg111xjGzduDG1jBQEEEEAAAQQQQAABBBBAAAEESqaAxumjyQh69epVMi+GXhdK4KuvvrLBgwf7bXTq1MlOPPFEfz3ZQvQzVNj1OnXqJDsd+4pYQOO8wfc0XtKZdJLblCtXzmrWrGnNmjWzHXfc0U444QQbMGCAjR07toivrOye7r777gtd/AUXXBA3WU2oEisIIIAAAgggkFEBAtwzykljCCCAAAIIIIBA5gSeffbZhI0999xzpgzvFAQQyE2B66+/PtSxa6+9NrTOStkViAa4H3bYYVnDWLFihf3f//2fbbfddvb2229n7Tw0bLbHHntY8Mb2pEmTTP9WUxBAAAEEEEAAAQQQQAABBBBAAAEESo/AFVdcEbo3o6QHCmqmlG0BzaSppFXBUtiEN7oHuHLlSndG519++cVeeeUV0+wBeqiic+fO9sYbbwRPx3IWBHbffXfbb7/9/Jb1cMGLL77or7OAAAIIIIAAAtkXqJD9U3AGBBBAAAEEEEAAgXQFlixZYv/73/8SHqYsvSNGjLDevXsnrMMOBBAoHgH97n7//ff+yVu3bm1HH320v16QhebNm1u9evUKcqh7TMOGDQt8LAdmTkDf3boZ4RVNXbzvvvt6q0lfK1asaB07doxbZ926dfbnn3/a/Pnz4+5XdvejjjrK3nnnndCAfNzKbCywwNVXX+3+2+w1cPvtt9upp55qlStX9jbxigACCCCAAAIIIIAAAggggAACCCBQQgXeffdd+/LLL/3ea6yusEHMfmMslGgBzea6du1a/xqUcb1ly5b+eqYXfvzxR/eew+GHH24vvPCC1ahRI9OnoL2/BZS8KDhb76233upm069UqRJGCCCAAAIIIFAEAgS4FwEyp0AAAQQQQAABBNIVePnll00Bi8GiLCDBrO3K8E6Ae1CIZQRyQ+Dee+8NdeTcc881TSdamHLbbbfZaaedVpgmODYHBKLZ2/v27WvVq1dPqWdNmza1MWPGJK27cOFCd7D93//+d0zdDRs22HHHHWeTJ08u1MMSSTtQxncqm0+rVq1MDzKozJo1y/7zn//Y6aefXsZluHwEEEAAAQQQQAABBBBAAAEEEECgZAvo3swNN9wQugglOyhM9vZkCS1CJ0qwUrNmzQR72FzUAkOGDAmdMp1ZOxMlt9FnbtmyZbZgwQJbs2ZNqH1vRcl2FOT+3nvvGQHXnkpmX3v27GnK5P7NN9+4DU+bNs0GDhxo5513XmZPRGsIIIAAAgggEFeAAPe4LGxEAAEEEEAAAQSKV0DB68HStm1bU8aHN99809/81ltvuYNbtWvX9rexgAACxSswevRof6BTPdGgMoHpxfue5NLZowHumc7wpEz9J510khvIfskll9jjjz8euvylS5faXXfdZffff39oOyuZEdANzTPPPNOuv/56v8EHH3yQAHdfgwUEEEAAAQQQQAABBBBAAAEEEECgZAp8+OGHNnbsWL/z9evXt2OPPdZfL8hCKgktCtIuxxStwKZNm9wA8+BZ0wlwzy+5zcaNG+3nn3+2wYMH21NPPWXr168Pnso+/fRTu+OOO0ztULIj0L9//9B9HyWYyURio+z0llYRQAABBBAoXQKFSyNYuiy4GgQQQAABBBBAICcEfvjhh9BAqTp1yimn2KmnnhrqnzI2KDMsBQEEckfgoYceCnVGA9kNGjQIbWOlbAosXrzYvvjiC//ildX/kEMO8dczuVChQgV79NFHrU+fPjHNaoaQ4GwgMRXYUCgBZWsPztjwyy+/2GeffVaoNjkYAQQQQAABBBBAAAEEEEAAAQQQQKB4BR544IFQB3S/pnLlyqFtrJRNgVGjRtmSJUv8i1dG9s6dO/vrhV3QWO8uu+xiDz/8sH377bfWqFGjmCb1+Zw/f37MdjZkRuCYY46xYLIxzeCp7PkUBBBAAAEEEMi+AAHu2TfmDAgggAACCCCAQFoC0eztygh78skn2wEHHBAzcBWtm9aJqIwAAhkVUADz22+/HWrz6KOPDq2zUnYF3n33XVM2H6/sscceMd/p3r5MvOrfjptvvjmmqXnz5rkZf2J2sCEjAk2aNLG99tor1Nbzzz8fWmcFAQQQQAABBBBAAAEEEEAAAQQQQKDkCPz6669uluxgjzWLHwUBCQwZMiQEceihh4bWM7my00472euvvx7T5KpVq0yzPlOyI1C1alU7/vjjQ43rgQMKAggggAACCGRfoEL2T8EZEEAAAQQQQAABBFIViJeVvUePHtaiRQu3iRNOOMGCGaK9bO8a1Mp0UYbf3377zSZOnGgK3F20aJEpYLJWrVqmDBQdOnSwVq1audsyce5ly5bZd99952aZ0PlWrFhh1atXt3r16tm2225rHTt2dM+diXPlShurV692M27IWBk+NNWkskD07t3btttuu3y7qc/LH3/8YePHj3ffn+XLl5uyedStW9fNGt6pUydr2bJlvu0UpoICdseMGWPTpk1z+6DrUB/0OdG59TnZeuutC3OKEnPsq6++GpoeVIOeBx54YInov6Y1nTRpkvtZUgC0Pksq+v3Tzw477GDt2rUrEdeSSif1/abM2pMnT7aFCxe633H6vmnYsKH7ue3SpYv7OU6lrVTrDB06NFQ1nWlqQwemsdK1a1f3d9F7P71Df//9dyvMvxvF4bdgwQL386n3bOnSpaabNjVr1nQ/n1tttZXttttuVqNGDe8Si/X1qKOOMmVu8oqy+axcuTJn+uf1i1cEEEAAAQQQQAABBBBAAAEEEEAAgfwFoskLdK9CPxQEJFDU4766Z7j33nvHzBr58ccfW//+/XlTsiSgZEZPPfWU37rGfzVW3bp1a38bCwgggAACCCCQeQEC3DNvSosIIIAAAggggECBBd58801ToHewaKpLr2g5GOCu7cri/sgjj3hVCv36+eef25NPPukOjimgMFnZcsstrW/fvqbA+/3339/KlUtvgiBd6+OPP+4OACpYP5jdOHre8uXLm4JODz74YDvttNNMAY2JyqBBg+z0008P7Z46daobuBramMKKgvqDRRmRb7nlluCmmGXtv/XWW0PbFRDqla+++soGDBhg77//vq1bt87b7L/qHPEC3NXGl19+6WYJHzFihP34449uULx/YJyFZs2a2ZFHHmmXXXZZRgPNlan8ueeeM/Uj+pmNdkMB7vvuu6+dcsop1r179+huu+mmm+z2228PbR8+fLj16tUrtC2dFX129SCGAre90q9fv6xOG6kA92DRgwoKms7VogcTlF1G1t98803cz2Kw7wr+1u/flVde6T64ENxXVMv6rOnzPGzYsNApt99+e/f3Se95svL999+735ca7E82ZasCp/fZZx+7+uqr3cDpZG2msm/t2rWmcwZLUQS463tTD5r8/PPPwVO7D6OENqS4UpR+eshJ3zNy0/fMjBkzkvZS17rzzjvbOeec437XVKpUKWn9bO485JBD7OKLL/ZPoWB83eg68cQT/W0sIIAAAggggAACCCCAAAIIIIAAAukKaKzz22+/tVmzZpnGPzXmUL9+fXeWQI0nt23bNt0mk9bXeL2SsyhRhJJEKImCtlWrVs1PhLPNNtu4AZ7p3hsInljj3lOmTHHHsLzkG0oGowQiSmigMW6NcSkRjpKrFGXR9f7nP/8JnVLJDUpKKUlJIzJhqsQYXiIlfWZ1/6VBgwbu74juL2n2xUwWjbsq+Y9XlMCoMPc1vHbye9WMz5999lmompKaFLYUtV9JSrzTs2dPN0GOPldeeeGFF2LuBXr7eEUAAQQQQACBDAk4/7NAQQABBBBAAAEEEMgRAWfgS1HQ/o8zUJznDBqHerfjjjv6+1XXya6c5wRPhuoUZMUJds2Lnj/Yl/yWnYC+lE/rDE7n3XHHHXl16tQJXUt+5/D2O4GMeU5AbsLzORlVYtp1AtwT1k+2wzun9+oEnyer7u5THa++96odzmBd3vnnn5/nBM3H7Pfq6TXeOZwAzzwneDfpccE2osvOwH/eDTfckOcMyOfb/2QVnGDoPCeItMD9uPDCC2Oad27I5Kl/wT4fe+yxMfXS2XDXXXeF2lPbH330UTpNpFXXyVyfp89l8Bruu+++tNrwKsf7/Ogznakybty4POdmUKivwX7nt6zP71lnnZX2945+B6Ntp3Nd06dPz3MC2WPacB6yyXMC35PyODcZ8o444oiYY6P9ibeu4/7888+k7ee30wnUDp27ffv2+R0Sqq9+OTN55HtMvApOFveYtvT9m04paj/nIYq8KlWqxPQ73vsTb5tz0zPPeVgrnUt062by3w69X8G+OVPYpt0fDkAAAQQQQAABBBBAAAEEEEAAgdwQiDeu5QQ7FlnnPvnkk7xDDz00zwn2Do03BMcetOzMuJrnJDrJmzt3bqH65iQ5yDvzzDPznGDdpOfzzu/M5pmnMboHH3wwb+bMmSmfe8KECXkXXXRRnpNIJ6Xz6H6Jk0Al784778zTsUVRPv3005i+OQ8ZFOjUnpf3WtDxvmQn1/2kl156Kc9JNpPnJJ6J6bt3bu9VY9q77rpr3jPPPJPnBIMnazrhPicxU+g8Bbmu119/PWY80HloIu/+++9PeF5vhzNTbt6///3vvD333DNmjN67Tu/VeRAk75577slzZlv0Di/Uq5PoKHTtxx13XNL2MjX2/9Zbb4XOq+vTvcKClKL2++mnn/Lk4GSiz6tcuXLMdXjvlffqJN7JcxJa5TkB/AW5PPeY6FitPrMFKfq98vql1zZt2hSkGY5BAAEEEEAAgTQEyjn/6FIQQAABBBBAAAEEckBAU9mNHDky1BNlnFYm4WAJZnTXdiew1s3CHKyT7vJ///tfc4Ig3Sy56R7r1Vf2llSK+qts706wtSkbREGKsqY4g24FObTYjlGfldlFGeudv9fT7ocy0Ds3B9I+zjtAGW+coFZT1mgtF6Ro9gBl7HcGIAtyuHtMvM+JsvHrsx4szgBt0gzbwbrR5c2bN9v//d//hTY7A41uRu7QxgyuKMu03uNgKYpMLcHzpbqsLEh//PFHqtVj6unzO3DgQNNUqPHez5gDMrBBsxXsscce9uuvv4Za00wNmgnBuYkW2h5c+frrr90s7PpMFaToOJ170qRJBTncPaaop6kNdjTe92z035Vg/ehycfgpE5my3he0KItZnz597MUXXyxoE4U+TjM4BIu+I/TdREEAAQQQQAABBBBAAAEEEEAAAQRSFVBW8/32288d19RMd05QbtJDVf+BBx4wjYVqxsx0xyKU7Vqz4+22227uzLH5zdzpdUZjhE4guF166aXuGLi3PdGrxhdvvPFG22GHHdzZFpPNtBhsQ/cERo0aZddff707Nhncl63l9957L9S0xiF32WWX0LZcWbnqqqvcTOUnnXSSKbN0fjMiqt8a09asjWeffbabiV++RV2cIHY75phjQuOBTvILe+211+zyyy9P2h2NU7du3dqtp5lzo2P00YN/++03u+aaa9xj3njjjejutNej477R+xxpN5jiAZrZIFoKMlZflH7jx4+3du3aubNwagZkzSYdb4bj6HUpY7qTmMSd9Vif01SOibaRqfXomK/uGRTmXkum+kU7CCCAAAIIlGaBop2/qTRLcm0IIIAAAggggEAhBZ577rmYwOdoMLtOceKJJ5oGKoMDdc8++6w5Ga8L1IOnn37azj333LjHKvB43333dQeanSwJVrFiRXMyGbvThWrQUwOG6QQhakB8r732Mg1kRYvadjJsmIKCdd66deu6U6xq8MrJLm8KstQAfUktN910k+kmhFecbBqmaSQ1LWajRo1szZo17tSyH3zwgTkZsr1qCV8bN25snTt3tg4dOrjTs2pgXVPDalpaTTuqaWM//PBDdznYyLvvvmvXXXedOdnFg5vzXdYxd999d9x6umGiz4kGJ/U50Q0KfU40sKfPiYJV8wuqv+CCCyw4oLxhwwb3JorOm26RYXBaUB2vGzOpuKZ7Lq9+9OEUfZ532mknb3dOv+p3TZ9DfZZ0M0CfJQ2Q6zO5aNEi06C/gnOjN0T0vmpAWQ/IZLPoJpK+3/TZDhYNguv3KllxZj5wf8+i31OaMtnJ9uQ+2KNplJ3ZJPzfQb2Xw4YNC33HOhmh7MADD3Q/z8mC6eP1RTcS33nnndAuPWhSFEXvYbzAfL3PqZRc8NPvrW526kefUX3H6D1wskvZihUr3H8XNO2wM7uE6XvDK1rW59PJ+u/eNPG2F9WrfqcGDRrkn27x4sXu93JJ+V7wO84CAggggAACCCCAAAIIIIAAAggUi8APP/xgBx10UIGSgGgcTeNmP//8sznZvM3JkpzvNTizj7rn07hYtovuexRnYoJ0rk9jzcHSrVs3d1wquC1XljOVNEL3m04++eSsX5bucTkzvtqTTz4ZOleDBg3ceym6X5SoaOyvf//+7j2ERHWSbddDFQqq1xizHrYoSFFCIiVm8UqlSpXcsWhvPZuvhU1qUhx+mUq8o+81Z1aLpElvsmUfDXDXefQd4cyYm61T0i4CCCCAAAJlXoAA9zL/EQAAAQQQQAABBHJBQAN5wUA49alp06Zutuxo/5zpOt2sLcpa7BUNOiv41Jly0tuU0qsC1J0pQGPqOlOZ2l133eUO8CULClZwoQKmlZU8v6KgZw2KRoPb1b4z3andcsstbmB7snbGjh1rL7/8ckx27mTH5Mq+e++91+2KgjIVtH311Vdb9erVY7qnGw/RYFyvkt6XM844ww455BDbcccdvc0JX/W5evXVV+2KK64wDR56RRlRjj76aDeo2duW7FWB5/GC2zt16mS6LgW3JysK7Pzf//5njz76aMJqzpS+bgCrAvO94kyL6mZTUTByOuWpp54KVdcNHGX6zmZRgG2wKNhfA9q5WvSAxGmnnWaHH364OVPQWn7G+v3VQO0ll1xiEydO9C9LWXT0WdLsBNkoTzzxhPsdFXygRw8PKLOMMx1o0lPqM+9MCRvz+6TPgr5vEn1f6vdTM2qcf/759tFHH/nn0HXru8qZLtfflsqCvmf10IlX9B2+++67e6tZfVVgvW5OBou+g5SFK79SnH76POp7RTc79aqbWvkVPYxx22232WOPPeY/LKZsPvqcBL9X8msnU/vjBbLreyLe9kydk3YQQAABBBBAAAEEEEAAAQQQQKB0CIwbN856OYlg4mVsb9u2rTump6QjSgKgMRwFNsfL8K5xXY01R5MvxFPS+G+84PbmzZu74zMdO3Y0jWsps7YyqStbtBIraMZFjX9Fk1PEO4e2DR48OG5wu5IaKFu9khzo3kjVqlXdhBS6B6HZTZWEQ+dRYpWiKhrTi97P0FhqSSi5njRCnxclNYlmyNfnW+PQyRJ0KKGIMqUH75F574k+O5rZceedd3bHFPV51azCmpVW7QaTuGjMW/djNPaoYPl0SzR7u35n002Oku45vfoK8o6WZGbBurnil+uJd4Jm3nKLFi3cBCxKzOUVJYm5+OKLvVVeEUAAAQQQQCDTAs4fbRQEEEAAAQQQQACBYhZwgsTznL/zQj9OlvaEvXIyJofq6lgnYDNh/Xg7nMC/PCfAM6YdJ9A4zxkkjndI0m3OIHPS/U4WjphzOYHHea+88krS4+LtdDLB5zlB0/F2uduc6QpjzpVf/xI1Fn1fbr755kRV/e2qEz1O607QZp4TEOzXS2fBuWGQ5ww8pnOIX3f69Okx7/Xxxx/v70+24Azi59WsWTPmepzsJnnOzZFkh8bd52RWj7tdG53A9Jjz6HcjnaL25Rz0dx6sSKeJtOs6AcR5TjB76JxOYHXa7XgHxPv86DOdqeLcPMhzMrQUqDnnZkCec3MgdK1OJp2U2tLvYPB90XKi69Jn3XkwI6Z+7dq185wbbSmdz5khIXS8E9id5zwgk9KxqqQ+OMHwoTbU52+++SblNlTxyiuvDLXhZBVP6fiolTN4ntJxXiXn5l9e+/btQ+dWm04meq9K0tfi9HMyECXtW7KdzsNiMdfsPKiQ7BB/Xyb/7dC/U9H38F//+pd/LhYQQAABBBBAAAEEEEAAAQQQQKDkCMQb19I4ejaKxlydB+RjxhWcGUHznKznCU+pcTsnoUXMcRqfeOihhxIepx3OLIB5zoyOoWOd2ULznFln85zEE0mP1U712ZkBMk9jzj169Eha3wnMD51HY3bObKMpjTU7s4TmffHFF3kaY3GCeZOeJxM74923cR4aKHDT0bGidMf78juxk106z0kW4Y6BOgG4+VV396uek0U9zwmID70vzqyIKR2vSk6SitCx+V3XnDlz8nbZZZfQMbJxZv/Nc5JY5HteJyg95thmzZq59170GUlUNCbuJNWJ+axrbN+ZMSHRYQm39+3bN9QPJxFUwrrejkyM/WvcervttgudW35OMivvNElfi8tv+PDheU7inbxrrrnGHWNP5btF1+o8BJHnPPgQc71OIpqk1xncqc9k8PdPn9mCluj77sxIXdCmOA4BBBBAAAEEUhCwFOpQBQEEEEAAAQQQQCDLAk4W5dDgigZanMwnCc+qAec6deqEjtEAjQZ7Ui1PP/106Hid05lGL8/JCpNqEynXUwBwvGD6//u//0u5jXQqZjJIMTjopWUNQOZX4g1S6tjLL788v0Oztj86GF+hQoW8VIJIr7322pjPSffu3VO6sZHuxeizpwDmoLkzDW9azTjZt0PHq60vv/wyrTbSrfzHH3/EnNPJ0J9uM379eJ8fJ1OSe2NLN7fS+VGQcqaLkw075nqdDEr5nibejcB4Ae76fnMywsecQ98hyb4Xgx1wslbFHK8bZekWfXd16NAh1Ja+r9Mp+l4NfqZTfWgjeIyW87sxFOyTM8Vunm5oRdvQwx/ff/99sGrc5Vzyi9vBfDZGPz/OLAP5HPHX7kz+26EWo/9OO1mcUuoHlRBAAAEEEEAAAQQQQAABBBBAILcE4o1rZSvA/c4774wZ01FwuzO7aUoo8cZHlWhm1qxZCY+Pjh1rTElJBApSlFwjUdHYXnS8Kt3EPV7byc7j1Snsq/oW7a+T0b3AzUbbSme8L5WTpjLen6idwiSNSCfAXWPL8e4VafxO48L5FY31RxPcKAFLOtc+ZsyYPCfTeui9TXccXedzZhr129ADAsl+x7zrijf2H2+M3Ksf71VB+tHPktY1pptfKU6/4kq8IxP9rgXNChPgfumll4baUrt6aIOCAAIIIIAAAtkRKOf8Y0tBAAEEEEAAAQQQKEYBTXPpDCCHeuBkrzAnA0NoW3BF0ypq+sZgcbJ026effhrclHTZCfaM2a/pQatXrx6zvbAbXn311dDUj2pP0406mYwL23SJOd7Jgm7OgHix9dcZoHWn2vQ64GQyMScTtbca91VT4DpZR0L7nGwm7hSyziByaHsmVvTZc7IMhZrStKH6bKdSnAws9uyzz4aq7rjjjuYMcIe2ZXrFyRof06STtSNmW2E2zJw505ybWGn//P7774U5bdxjnew9pu+oYHEyJwVXC7zsZOixvffe2zR9crDofF9//XXS78Vg/XvvvTe4apqy+bLLLgttS2XFuUlhzk3BUFV9Jp0ZMELbEq1oOmnnAQh/tz7jmiI308UJxDcnqN39N8B5kMaczO3mZMSJOc0dd9xhnTt3jtke3ZArftF+pbp+yimnhKqOHj06tF5UK07mqNCp4n1XhCqwggACCCCAAAIIIIAAAggggAACZVpA45uPPfZYjIETfGwa50ylOAHytv/++4eqaiwrOs4brDBlypTgqlWtWtVOPPHE0LZUV5zM7wmrRs+jigW9R5DsPAk7kOaO4Lied6gTKOstFvrVCYq1Tp06Fejn7bffjjm/kzwmZluqG5yAX3OSRoSqDxw4MLRe2BVnZk7r1q1bzL0iZwZMc2YtNt33yq9ofNNJ9ORXa9q0qb3//vuWzrU7CWTsiSee8NvQgsZ8Nf6eanGyipt+X72iMddM3xPw2g6+OjOU2vnnnx/c5C4feuih1qVLl5jt0Q3F6affWSfxUrRLKa3XrVvXXnjhhVDdr776yrJx/yN0kjgr8b4D4n1XxDmUTQgggAACCCBQAIFyBTiGQxBAAAEEEEAAAQQyKKBBmeBAmJrWYGJ+JRrAp/rR4N5EbTjZlm3y5Mmh3U5Wbttjjz1C2zK1Em+w9aqrrspU8yWiHT2Q4EzzWmx9VUC6M21r6PwKGE5WRo4cacuXLw9V0XXEG8ALVSrEigZnnWwnfgsarHYy/fvryRb+97//uUG+wTr9+/cPrmZl2cnMEtOuM9VmzLbStMGZEjR0Ofl9lkKVE6xoEFjfQRqYDhYni799/vnn1qRJk+DmhMvOlMgxDw3pwQlnuuOExyTbceCBB4Z2q/1Ur3fo0KGhY/VgTyo3akIH/b2iBz30uxHvx8nCZfrM7bPPPvbAAw/Yn3/+GWpC1z5gwABzZmQIbY+3kkt+8fqXyrbo51M3C2fMmJHKoRmtE/3MxvuuyOgJaQwBBBBAAAEEEEAAAQQQQAABBEq0wJtvvmlz584NXYPGpg455JDQtvxWFCQfHQvTGGv0PoTXzooVK7xF91XBwgUNRA01FFmJnke769evH6mVO6vRZAVOJv0Cj+3Fuyq9HwVJaqJjlixZEq/JQm2L3nPKZNIIPaShJDzLli3z+6jPqALNlYwpeE/ArxBZcGYAcIPZg5vvuusuc2ZRDG5KafmEE06w6BjikCFDUjpWlaLjvocddljKx6Za0cmB6t6fURKV5557znr06GEnnXSSKdlJsDgZ8c2ZsTm4Ke5yLvnF7WA+G7OZeCefU4d2R5OaaGf0uyJ0ACsIIIAAAgggUCiBgj0eV6hTcjACCCCAAAIIIIBAUCAalK6Mwccff3ywStzlrl27ugNwEydO9PdrAE4DmxpoTVZGjBgRs/vkk0+O2ZaJDRqEU6B0sCiThbI0l6XSu3fvjF+uBiS/++47+/nnn90s5wpG102CRNmlJ02aFOpDfgGfRfk58TqmQeV9993XPvroI2+T++CGst/rdyNZefLJJ0O7lTVfA77ZLtGHAHS+bMyEkM3r0AMvCtrWZ0nLuib96LOk3+FoiX52ouvR+vmtKwN8v379bPHixaGqekDh0UcfjbkhF6oUWdHMBNHfgb322itSK/VVfZ/qpl7w5stPP/1kzjTU+TYSvSmSjRsdyTqhwHed05n61jp27Jisqr8vl/y8Tun91GdEN+/0vbdw4UL386lZJjZt2uRV81+jN3m0Q59R3ewpyhLNJKaZM5yplt0saEXZD86FAAIIIIAAAggggAACCCCAAAIlQ+CTTz6J6eh5550Xsy2/DUp0okQLymztFY27/fjjj7b77rt7m/zXaJC5ZgrUWLJmRcxkiZ5HbWvMJxszHmai39FkBWUtqYmXNKKwY2o33XST3X777aG3ROPnytqu5Capluisnxr/j850nGpbCqhXwH3w/pruh2gcNb+isccPP/wwVK0w476nn3666acgRdnoNQadymczV/wKcp3eMbp/pO8xr+iexr/+9S9vtUheo0lNdFLNwEtBAAEEEEAAgewIEOCeHVdaRQABBBBAAAEEUhL48ssvbfz48aG6mj60YcOGoW2JVpRR48Ybb/R3KwhQUxReeOGF/rZ4C9EMyapTmADQeOfwtilYVsGIwaLg/LJWdtlll4xcst5jBfw+//zzhZ5+cenSpUn7FP2cKAt8trL8BztywQUXhALcdUPlrbfeSjpYrSwm0YB8BbcXRdb81atXB7vvLmsa30wWvd/KQp7Jouz4esDmmWeecR+UKEzb+X2WkrWtGxmatSIYlK4bDPfcc48VZKaHeJmFdCOwUqVKybqRdF/0PV60aFHS+tqpbFvffvutX08ZiQ4++GB/vSgWFNSua081uF19yhU/9UU3UvU50M2X4AMG2pduKcxnNN1zefXjfQ+sWrWKAHcPiFcEEEAAAQQQQAABBBBAAAEEEAgJRMdlFASs+wUFKcccc0wowF1tqP14Ae7RbUp4cdxxx5lmzGzevHlBTh/3mC5dupjGmDUu6ZWzzz7b3nnnHdtuu+28TTnzGk1sUtKSmhR30ggFgp911ln24osvht5TBWO/++671rlz59D2/FaiiZR0z6Wgs2XqXNtss03olEpqkkr57LPP3OQbXt1WrVrZDjvs4K0Wyeu2227r3gc855xz8k0M5HUoV/y8/ui1uBPvBPuS6nI0qYmOizc7RartUQ8BBBBAAAEEkgsQ4J7ch70IIIAAAggggEBWBaLZ23UyBXqmWpR1XdkvghmW1WZ+Ae4KGA4WTTfaoUOH4KaMLUfPpYaLerAvYxdTiIYaNWpUiKP/OlQ3IPT50KBfJkp+AaPR965ly5amrCjZLpp2V4PLU6dO9U+l7OzJsrE89dRTfl1vQdm/i6LEyyAdnQK4KPqRzjn0QMCJJ55oqQ7a59d2fp+lRMcPHDjQ9KBP8DtMNyUGDx5suglXkBLNrKQ2dL2ZLNFM8/Ha1o254HV1794939k14rXjbdMMBvEC1ZUVXP6zZ88OnU/H6f3V7BGa5veKK67wmkr6mit+t912m2mK4eCDD0k7ns/Ogn5G82k26e54U3nr/aIggAACCCCAAAIIIIAAAggggAACUQE9FP/HH3+ENu+8885pzWwYPFjB5NESzHwc3NepUyfTuYJjhT/88IMpiFZjdPrRjKzxHuYPtpPfsmZKPPTQQ92M015djQErC7UyYGtmW83uWatWLW93sb5Gk14U9vqjF9OiRQubNm1adHOh13MhaYSSTRx++OExSWk0vqmZBXTt6RSNwStbd7BoNlJ9dgtaNBtysGj8cMOGDfkGjA8dOjR4mPvZDW3I8ooSuRxxxBFu1vf8Zr31upJLfrmSeMezSfc13veAvr8pCCCAAAIIIJAdAQLcs+NKqwgggAACCCCAQL4CK1eutNdeey1Ur27dunbIIYeEtiVb0SBgr169bPjw4X61sWPHmgafk2W/iA7c1a5d25QxORslei6dQ9dZ1kphB+X1Hiv7c3RQvTCOGqxNVqLvXVG9b8rio+D0YPZuZRdRkHK8BzFk8sILL4QuRTMSFNWDFPEGNNeuXRvqTy6t/Prrr+4NqejMCoXpY36fpURtR7NSqd6rr75aqJsCqQSfJ+pPqtvXrFmTb9VM3+ho2rSpjRkzJuF59W/KRx99ZAMGDLBvvvnGr6cg+yuvvNKUWSaVKa1zwe/888+3J554wr+GTCwU9DNamHPH+5zEy/BTmHNwLAIIIIAAAggggAACCCCAAAIIlA4BjckEkyXoquKNhaZ6te3bt4/Jlp5sVkKNxeheQzDZgMY4Ne6qHwXVKmheM3wq43uPHj1syy23TLU7fr3777/fPv/8cwuOPSv4VjN46keJQxRsv+eee7rn03nSDYb2T1bIhWhik1xPaqLLzYWkEcpmrVl8o0lHlIhD73GdOnXSfmf0+xEdc//zzz9NP5ks+lwm+1zrd/Ttt98OnVIPZxSmaJYEPfwRLQqaVhKiaHZwZcbXrJfqh8aDmzVrFj00Zj1X/HIl8U4MUBobSGqSBhZVEUAAAQQQyIBAuQy0QRMIIIAAAggggAACBRD473//awpIDBZlqNZAcTolXsb3eJnhg21Gp9asUaNGcHdGl6PnUuPZPF9GO5/BxuINeqXavAZp9dmIBrcrEFwZbe6++2778MMP7bfffjPdpNDnSoPvGmwN/vTs2TPVU7r1ou9dUb5vZ555ZkxGoHhZ2tVRBUQrI0ywFFX2dp0z3tS08QJbg/0rrmUF+SrjUrzg9m7dutktt9ziTg+rB2UWLFjgDp4r43Twc6TleN87BbmmeL8X119/vc2dO7cgzbnHZPqmRkE6ot/BYcOGhQ4t7I2OUGNxVvT7eeSRR9pXX31ll19+eUyNSy65xL799tuY7dENxe330ksvxQ1u100efS8899xzNmrUKDe7lfqq37Xo5zM4+0P0+opyPd73QLzvi6LsE+dCAAEEEEAAAQQQQAABBBBAAIHcFIg3JlOQQGDv6jR2HE26Egwq9+p5rwpcf/fdd61BgwbeptCrgmqVrOLf//63O77YuHFjd7ZBzTA7YcKEUN1kK61bt7ZPP/3UncEzXj2Na3///ff26KOP2imnnGKaVVSzfWq8K1EG+njtZGJbNLFJNMA6E+fIZBtKGnHzzTeHHlIobPsFSRqhz1k0uF0PRygYu6Cf6aJIyiGreON5QUN9NufMmeNvql+/vmlcvTBFDyUosUn0Z+LEie7Mnbrvc80117gJTILn+f33361Pnz4pBfnngp8S7+geVXCmiOD1FGS5IJ/PgpwneEy8zwhJTYJCLCOAAAIIIJBZAQLcM+tJawgggAACCCCAQMoC8YLQFcCrTOrp/Jx22mkx53zllVdislkEK0UHtqOB9sG6hV2OnkvtZfN8he1vLh5/1113xQQk77rrrjZ+/Hh3UFiDm/vtt597Q0EDqgqg1A2MaIk38BatE1yPvndF+b4pmFVT0gaLMgVFg/y1/8knnwxWc2/CHHXUUaFt2Vxp1KhRTPPJbhbFVC7CDf/3f/8Xc3NBN5W+++47N2hYN0AOOugg23HHHa1hw4buwyjxMhOl+1lKdIl33nmnOwVxcL8G7Lt3727Tp08Pbk55OXrjSQfqhko0CLow64MGDUraHz1wEsx2JU/diCuKon8/lAnr5JNPDp1Og/16MEE3I5OV4vRTH4MzN3j91HfcrFmzbODAge7Uu7pppMxduiFWpUoVr5r/mqnPp99gARei3wP6Xov3+1TA5jkMAQQQQAABBBBAAAEEEEAAAQRKkUA0S7MurbAPykePj3eOIGHfvn3dYPVrr702YaB7sL7G3G6//XY307zGY1NNOqAM7Qp2vffee03Zq/Mr06ZNswceeMCdtVZ9VCBwUZSoX66MOcW79lxKGhEvqYkCwwszY2O8B0DiOWR725AhQ0Kn0Fh6Nsf7NNbbsWNHN8mRkpdEs7X/8ccfFu8eYaiTzkpx+2ncN5cS70R90lmP9z0Q/a5Ipz3qIoAAAggggEBygdiol+T12YsAAggggAACCCCQAQEN/CrLbraKslm/+eabCZtXEHSwLFu2zA3+DG7L1HL0XGq3uAfTUr224sj+EK9vylAeLBr0V5abtm3bBjfnuxwNtszvgOh7V9Tv2wUXXBDqoj7XengjWDQwrp9gOf30061y5crBTVldjjdFroJxc7FE/WrWrOl+lvTARDol3c9Sorb1cMDw4cPdaY2DdSZPnuwGuWuAPt0SL8tUpvqbal+GDh0aqprt7O2hk/29ohtG0c+mHop58MEH41X3txWn38iRI2Oy91944YXuDZx4gfd+pyMLRf1+R07vr0a/B6Lvh1+RBQQQQAABBBBAAAEEEEAAAQQQKPMCGqeLllWrVkU3pbUePT7eOaIN6gF9JVzRDItK4nDFFVfYbrvtlnTmWSWS0P2ITp06uQlZom3GW1fGYyU6UJILjQndcMMN1qNHj5hZPaPHatbE3Xff3QYPHhzdlfH1aGKTXBlzil5oriWN2GqrrdxgdgVne0WfEc0wqYQnBSnxxgY1621hkpjEO1YzBiQr0XHffv36Jaue0X3bbbedvffeezEPvrz99tum5EDJSnH75VrinWRW+e2L9z0Q/a7Irw32I4AAAggggEDqAgS4p25FTQQQQAABBBBAIGMC8bK3Z6zxvxtKdg5NHxosGzduNE1nmI0SPZfO8fPPP2fjVH6bFStW9Je9hYIEqxfVtI1eH+O96mGIaJDkRRddZLVr145XPeE2XX+0nYSV/94Rfe+UKSe/LD/5tZnOfmXy6dq1a+gQzXIQLNF1DZqfc845wSpZX46XmTtd66x30jmBMvBHH6zxpvlN9/xTpkxJ95CE9evWresG2ffq1StUZ+bMme5NrV9++SW0Pb+VLbfcMqZKQbPBxzSUwgZ9n+pGQ7AUR4B7jRo17OGHHw52w12+++67Ld4gvFexOP0++eQTrxvuq7IfXX/99aFtqaxk8vOZyvni1dm8ebPNmzcvtCved0WoAisIIIAAAggggAACCCCAAAIIIFBmBTRGFi1K+FHQorGJ5cuXhw5X8HqqRVm4NWvogAED7JtvvnHbGjVqlJuIQON48bJ063xHHnmkpZO0QuO5CmxXJngFuqsNzTapjO0HHnhg3IB3zVB45pln2ueff57q5RSoXjRZgYL+5ZprJReTRvTv3999CCGa3VwPMmi2xnRLcSbl8PqqpCyafdQrmlly33339VaL5FUzhWp8N1r0sEj09z1Yp7j9ci3xTtAm3eV4936i3xXptkl9BBBAAAEEEEgsUC7xLvYggAACCCCAAAIIZENAgcYvvvhiqOlKlSrZTjvtVKif6OD0iBEjLFGQ35577hk6v1ZGjx4dsy0TG1q1amXRgMkvv/wyE00nbKNWrVox+5IN7sVU/nvDpEmTEu0qsu0K8o2W7t27Rzflu/7TTz/Z2rVr860XrBD9nGjwPhogHayfjeXzzz8/1GwwY7tmHogOjGpAuXXr1qFjsr2i373o1KATJkzI9mnTbn/OnDkxN2AK8lmaP39+wu+WtDv19wEKxv7ggw/cm1bBNnQu3TDTTa1UizI4RUu2b3YFz6dzBWc70Gejc+fOwSpFtqzA+m7duoXOp9+b++67L7QtuFKcftHvO81SEf33I9jXRMtF/T0Vrx/690MPOwSL/p2nIIAAAggggAACCCCAAAIIIIAAAvEEFIAazHitOkp+UtCi8cloMHa8INdU29eMmRpnUnCyZmTUg/333nuv1alTJ9SEssbfeOONoW3prChwXrNNXnrppW4SiQULFpiSnDRt2jTUzKZNm+zKK68Mbcv0iu5tBIvu7Wi8MtdKriaNOPnkk+21116Lyf6vz41mb1UG9VRLw4YNY34/ijKpifo5ZMiQUHf79u0bk009VCFLK7LbZZddQq3rc3n//feHtgVXitMvVxPvBH3SWZ49e3ZMdRKbxJCwAQEEEEAAgYwJEOCeMUoaQgABBBBAAAEEUhN45513TIOywXL44YfbmDFjCvVzxx13BJt0Bwefe+650DZvRQGj0RINuo/uL8x6z549Q4cr0FZTiWarRAfVdZ5Ewf7J+qDMJ8VdFi1aFNOF6MMMMRXibPjvf/8bZ2vyTUX9OYnXm6OOOiomwPXJJ590q2oa2tWrV4cOU2aY4ihdunQJnTbdrOOhg7O0kqnPkm5KZKMo441uEug9DxZlG+/Tp0/KGZl69+4dk0Hq3XfftYLM4hDsR6rL0WlqDz300FQPzUq96L8NOsljjz1mCxcujHu+4vSLfkYL8l2n9zl6synuhWZ549ixY2POEP2eiKnABgQQQAABBBBAAAEEEEAAAQQQKLMC1apVs3bt2oWuX/cMFMhdkBIvYUQmkzDUr1/flDX666+/tpo1a4a6qLG4devWhbYVdEWJMTRj548//mjNmzcPNfPtt99aNGFCqEIhV5QtO1pyMbFJ1CCXkkYcccQR9vbbb8dk4n/88cftjDPOSPnzrbHjaPIIzRRQlA8cRMd9i2PWTn0e9SBMvAQmDz74oEXHV73Pb3H65XLiHc8nndfx48eHquvhn/bt24e2sYIAAggggAACmRMgwD1zlrSEAAIIIIAAAgikJPDss8/G1DvppJNitqW74ZhjjrGKFSuGDlMAcDRLiyp06NAhZrD8iy++yFp2bgXwR4umNs1Wid4I0Hk02J1O0Y2DeO9VOm1kom716tVjmkk0SBlT8e8Nmso20cMOiY7Rdj2YEJ0aV8HNRZkZRbMb/Otf/wp189VXXzVd09NPPx3arkzZBx98cGhbUa3sscceoVMpKDveVJWhSkW8konPkoKHH3300az1XN9hen9PO+200DlWrFhh+++/v3300Ueh7fFWNIND9OEMvRfZfIgn2I/ojY5+/foFdxf5sn6P995779B5lUlLmZLileL0i35G0/2u0/X85z//MU0XXdwlGuCuG08EuBf3u8L5EUAAAQQQQAABBBBAAAEEEMhtga5du4Y6qMzHH374YWhbqiuvv/56TNVo+zEVCrBBY/Fnnnlm6EglJZk8eXJoW2FXNMvf5ZdfHtNMNhONxBvLyeb5Yi4uxQ3RMbRcSxqx3377uZ/j6IMQgwYNsuOPPz7lxCT77LNPjMhbb70Vsy0bG2QcnJm4XLlydsghh2TjVCm1qYQw0TFwfV/EC3z3Giwuv+jnU/0pyGc0W4l3PJ9UX6PjvnrwInpvNtW2qIcAAggggAAC+QsQ4J6/ETUQQAABBBBAAIGMCWjqumiApqYGVOBmYYsyphx44IGhZhTUGT2fV+Hqq6/2Fv1XBZUq8DHT5eijj7bodJ7q1zPPPJPpU7ntNWrUyBTsHCwa/Eon240yiEydOjXYRLEsN2nSJOa8H3/8ccy2ZBs0ZaUCwtMtyhp04YUXhg5bv369aWrReA9OhCpmcOXcc88NZeTWDZKzzjrLfv/999BZFAhfvnz50LaiWtl3331jTjVq1KiYbcW5IROfpVtvvdUmTpyY1cvQe6gHMvS5DZY1a9aYsqGnkp37hhtuCB7qLl9xxRUFmskhpqEkG5RVK/gASO3atWNuNCQ5PGu79L5Fi2ZCSJThqLj8op9RZWGaNm1atOsJ13U9ep9zoUR//5UhrTDTgOfCNdEHBBBAAAEEEEAAAQQQQAABBBDIroACgaPlqaeeim7Kd13j2tHAeI1L7LLLLvkeW5AK8bIXL1u2rCBNJT2mqM7jdWK77bYzZZAPlmhwa3BfcS2XhKQRPXr0cGf1jQY260EMJUhau3ZtvnzxMqbff//9tnHjxnyPLWwFzcwcvL+khDd66KI4y2233RZzet3Xis4g7VUqLr/o51P9iRf07vUz3mu2E+/EO2e8bfqcasw6WHbffffgKssIIIAAAgggkGEBAtwzDEpzCCCAAAIIIIBAMgFlpAgOgqnuscceGwreTXZ8fvviZYJPlIVcdaNB5xqYOeiggwoUDJ0sCFEBq9dff31M9xU8/d///jdme34bli9fbsqQnawccMABod0zZsywhx56KLQt0cqwYcPc6VUT7S/K7TvvvHPMIPrDDz+ccnZwDXK+/PLLBe7yxRdfbHXq1Akdr8BNZVYpyDSzweDfUKNJVpo2beoOcgervPnmm8FV93dIQe/FVTp16mTqZ7AMHz48uFrsy3rwY9tttw31Q5+NVG/KPP/883b33XeHjs/WirJdK1P8NddcEzqFHrDQAzP5faaVtTyakebPP/90HyYaN25cqM1UVzR4rVkDHnjggYSHRLO363soF7K3dOvWLcZDD4okej+Ly6979+4xtvEexoqp5GxYvHixO4NDujdH4rVV2G16GEPTcwdL9AG04D6WEUAAAQQQQAABBBBAAAEEEEAAAQko0DeaAODdd9+1Dz74IC0gjbtHg37POeecrI1TxZtNT4l9Ml2K6jxev3VfQ5mygyWa1CC4r7iWo5+ZXE0aoYz4I0aMsMaNG4eo3nvvPTd5kzKQJyt77bVXTDKRKVOmxM3sn6ydguyLjvvGCxYvSLuFOUZjqdHPp8Z877nnnrjNFpdf9POpzqWbxKkoEu/ERYts/Oqrr2K+W+M9mBQ5jFUEEEAAAQQQKIQAAe6FwONQBBBAAAEEEEAgHYG8vDw3K3H0mHhB6dE6qa5rSkRlDA6Wt99+O242BAVdKri8cuXKweo2cuRI23XXXU2ZM9TnZEXZ3tWGsm+cfvrpyaraGWecYUceeWSojgKkFSitwXVlt8+v/Prrr27A69Zbb20///xz0urxgp0VKKkA1UTXpQDWe++91xSUqr5VqVIl6TmKYqfep379+oVOpUBdDVwmM5gzZ46dcMIJdvPNN/vH1qpVy19OdUEZVQYPHmwKOA4WZcTfc8897dNPPw1ujrus/upBC03VGOxP3MoJNkazeUeraUA53kBptF4216OD2qnYZLM/8do+5phjQpuV+UQzSOjGQqKi7P960EFTDXuZ+wvyWUrUfrLtCsC+8847Q1V0c+6UU06x//u//wttj67ogaLoQwfKPr/bbru5gd2pZJHSd4Wmnr300kutZcuWptkEdNMkUYlml49+JhIdVxTb42X00fehvivileLw02cxOlWxvmv0fZ5sdhHdENH30ffff+9eSlF9PuO5aZtudOphjGDJpc9CsF8sI4AAAggggAACCCCAAAIIIIBA7ghoLDg6o6Z6p7Gw6GyWiXp90003mQKGg0Xj3Oedd15wU2j5wQcftE8++SS0LdUVJaPROFKwKGFKixYtgpvcZdVT4pJoEqCYinE2aBzziSeeCO0pV66cbb/99qFtmV6JJi1Q8Hii8bRMnzvV9kpS0ogddtjBPv/8c2vevHno8pQsRrOk5jcT7R133BFzr+KRRx5x7zskuu8TOlGcFd130u+Y7mPEK0pmEf39yJWxvnhjvpr1Id7DILq24vArSYl34r3/wW3RpEb6bt17772DVVhGAAEEEEAAgQwLVMhwezSHAAIIIIAAAgggkEBAAaTRwMi2bdtaJqevU7C6shsPHDjQ74UGfl988UU3QNPf+PeCAtkfe+wx+9e//hUK+p48ebIpELZZs2am7AMadNQUphUqVHAHGDXF6Y8//mijR482ZYRQUcbf/Mpzzz1nyp4cHIzXoKMCVZUdumvXrta7d283KLVu3bpuQKOy8SqQW9lwo1P/JTufglg1yBjMrKGBcwWoappGZcNp06aNVapUyRYuXGg//PCDvf/++6HpG5XxXfWLu9x4443ugwR6L70iC2V3V0CoBtD0XinwVwOX+qwpuDqYYV0PGOh91QMM6ZZDDz3UzcCvwc9g+emnn9ys0Poca/C5Xbt2psw8ek81EK0+6nOirBZe39XnghQ9RKHP4S+//BL38P79+8fdXpQb9bDKk08+6Z9SvycyKug1+w1lcEGB2vqd1/vjlXnz5rm/dzLW77sCufVAg7brvVOGqGD2HD1csdVWW9kLL7zgNZHV1+uuu84NelaQvXeTQoH2ejBG/brsssvinl/B7fr979WrVyg4WseoTQXOK7O5vnf0cIS+c3SzQja6SaXPrr4XlBk8laJZIsaMGeNX1XdL9AaYv7MYFjRtrh7eCWb80kM9d911l/uZiHapqP10fr0H+oxGb8zoARk9PKB/3zSVturpfdK/qcpiFvxeUGYtzXKR30NX0evN5Hp0hglNZ52tKcAz2W/aQgABBBBAAAEEEEAAAQQQQACB4he4/PLLTQ/8B8eZNEauMS7NeKgZYeMVjZVcccUVbqKR6H4ldYkmggjW0Zixxtg0hqGkKUcccYS1b98+WCXu8m+//eaOwURn7dS9hXizGuqaNG6j8ccTTzzRPU8qYyZqX+P03333Xagfffv2jckGHqqQgRUlFdLYs5f4Q01q7F0B0blSvKQRK1as8Lukz5ASSci7evXq/vbggpJGKLGMkoKoKGmEHljIdtH9hC+++MJN4jNp0iT/dBqL1r2Ojz76yL3P4O8ILCgLuZLo3HLLLYGt5o4nKnBe44rxAv5DlZ0Vjfn+73//c++7aEZfjTsnmrlTTt59MLWj+yD6yYWisW2N6cvMKxrjVuIYBf5HS3H4qQ/6TgjeX9L9In1uX3nlFfe7LdpPres7Te+1vve8+wJF9RmN1x9tiyY10iyyVatWTVSd7QgggAACCCCQAQEC3DOASBMIIIAAAggggEAqAgrQi5ZMZm/32labwQB3bde5FTQYrygzrgY6FQyoga9gmTVrVtwB8WCddJY1+KSBSwUpatAwWDSgpYH0ggRgB9sJLitThQa9oxlVFAwZDIgMHuMtX3nllW4AbS4EuG+77bbuIF60LxpUV1C+fpIVDQoru01hpkq8/fbbTdncdZMkOJiv82oA3BsET9aPwu47//zz4z5wIJ9cyJKhwWQ9NBEclFegay4FuOs9fPnll00PLUQzJekGgH6SFWVE0uwOib5Pkh1bmH3KXFWjRg03k3fw86cbfgpYV2aqeEUP8ejhGM0eEX1ARhnBNfAfHPyP10aq24IP0+gY3XQs7kzi0b5rKtdggLv2698LzW4RzZqkfUXpp/Op3HDDDe5DOtHPom466Ts9WdGDGfquk31xFX0+o5n8c+mGZ3G5cF4EEEAAAQQQQAABBBBAAAEESpuAZpLr1KlToS9Lgd4ai/aKkib85z//cWchDCadUJKW4447zg3s1YyfGofUuP78+fPtm2++Mc3kGgxw9to76KCD4maF9/YHXxWwfv3117s/CkLXuKZm5dxyyy1NWdmVAEcB0Br/1Ax2SoDjBZ567dSvX980BpWsTJs2zU0+oQQUSjyhIHdZKghf55GBrl31NLuiErp4CVS8dpXs59///re3mrVX9U8JP4IZvDXmm0vjPSUxaYRm6dVnSAHCyqDuFSWMUTIlBRIneihDY8Hjx4+3V1991TvMfdXnRElcdL9A44N6YEPj4fqsKFhaGdqVfElJTZSIKTo+HmossBId943OuBuoWiyL+n2LjnErqZTGfJWoJlqK2k/nL4mJd6Juus+oew3BkkvfA8F+sYwAAggggECpEnD+h4OCAAIIIIAAAgggkGUBZ+Asz5mqLs/5QzL042TUzviZneC6PGdwMHQendcZeEl6LmdQL8/JZhxzXLTPidadDAxJ2w/udAaj85wMG3nOAHyBzidL9TeV4mT4zXMG+1M+jzN4nucMjPtNR6/XyRjh70u0oDrR4xLVTWe7E7iZp/5F20627mRuz3OyNLuncQaGQ8dqPd3iDOTnOZnUQ+0kO39031VXXZXuKf36zk2NPOcGR8y5ncwqfp3iXrj//vtD/WvVqlWefifTKfE+P84MB+k0kW/dt956K88Jvg71NfpeRdcPPvjgPH2XqZx66qmhY50ph93tyf7jZLQPHaP2072u//73v3lO9qeYdpybgMlOnbds2bI8JxtR3O/h6HUmW+/SpUue80BJ3HM5D1mE+uXMFBG3Xqobo/1IxTiVtvU+Rtt2suEnPbQo/IIdcG445cXrZ7TfwXV9NzgPX7jNFPSzps9jsE0tq610inMzKdSGcwMtz7nRnE4T1EUAAQQQQAABBBBAAAEEEEAAgRwTiDfWEB1DKOi6M2th3Kt1ErfkNWrUKDTOkO45nEzseU5Sm7jtBzc6M6EW6jxevzQ+4ySwCTYdWta1enUL86rxFidDeajtbK44M+SG+q37E87DBGmfMnrNmRrvU0fWr1+f5wR3h/oZPV+idSdpRN7TTz/tjoNF66QyfluQsWIPz5mdIM9JshHTb42rJxuXc4LT85yHMfLU92ifC7ruPETidct/1XmcWWtD53AeuvD3p7uQrbF/ZybRUB9l4Mw8kLB7ReUX7MB7772X58y+GdPPVN4vJ/FO3pIlSwp0X0J90O9a8Dz6zKZbnEzyoTacB0v8e2/ptkV9BBBAAAEEEEhdoJzzjzgFAQQQQAABBBBAIMsCyrjiBBmHzrLnnnuaM0gX2paJFWWwVdaXaImXQT5YR1lSlDHjww8/tMMPP9xq164d3B13WRl/zz77bDfruhN4GrdOvI3K9OIM5JkzQGk33nij7bjjjqZ+JyvK2qKsGw8++KDNnj3bzeqSrL63b5tttrGff/7Z7rrrLjcbjLc9+qr2Nb2rMoRoOtZcLJoK9ccff3T7GW+KV6/PuhZNnaoMyHrflaEkU0XTvo4dO9bNjqIpJKtVq5Zv08qYctFFF7l913S4BS2aSjU6Na6mfzzttNMK2mTGj/NmRPAadh6wiJm20ttXnK/6HdfvhRPYnHQKzXLlyrm/d8pS884775hzk6o4u+1OZaqpY52bSKF+DBgwwM4777yYjFFeJWVS11SmyvqkDOHKPqVry6/o86UMTZrSVdl9vv32WzvggANiDlP2n2jGcWXJz8USL4PWc88959ok6m+2/aLn1b8/yjqm2Qb070Oy4tzodbOcTZgwwY466qhkVYtkn7IjBYtmVVEfKQgggAACCCCAAAIIIIAAAggggEA6AppZ76uvvjKNx6ZbNI6qMSDNxBgdR4vXVuPGjeNtTmubkzzHzeiuDNqJisZI8rsPkOhYb7tmmPzss8/cWWK9bdl+1ZhTgwYN/NPoXo+yuOdS0f0Cjac5SSPS6pbGe52HBexf//pXWsdlqrIy/mu23+7du4ea1Li6tmnML17R2O4dd9zhzm6rWQYKUzQWqXF9zSAaLZqlQLMneEWzGey+++7eas683nbbbTF90b2hGTNmxGzXhqLyC57cCcJ3v5PSnfVUn2ndu9RMBcVZdJ83WHRfKpP33oJts4wAAggggAAC/whsoVj4f1ZZQgABBBBAAAEEEEDgLwFNz6ipGhUQ6mTRcKdv1GCNpj3V9KQdOnQwTSOZqTJv3jw3AHrBggXu+ZyMI+6AogaO27Vr554vlWDq/PqjoF4FaOuaVq9e7Qbyq309cBBvADO/9opr/6pVq9zpWTXQ62SucG8MaLrNtm3bmpNlusiuZd26deZkE7JZs2a5A71Opmc3YFqDwnqAo2PHjpaJGyRy/uOPP9zPQtBcg4hOFpngpmJf1gMSehDDK0ceeaS98cYb3mrOveo91DTGulmwePFiczLOu4HsrVu3dj9L+lyVxqKgdE0lre8cXbemV9Z3jL7jNPWwvhf0GXayyuR7+QrEViCzVzp37uy27a2XxtdM+uXnoxsxuqGrKbf1PunGrKYo1jTDqTwglV/7mdqv/unBL2/KbN2w/eWXX9x+ZuoctIMAAggggAACCCCAAAIIIIAAAkUvoDFyJVLJRnGymttDDz2UtGlnVk03eYMCuzUunKhoLMvJxm7OLJppj8lOnz7dnAzLNnz4cHccRklm8itKDnHQQQeZkw055cBqjZ/oPLoWJxO2mwQnv/MoeFuB/hp/U5KaVMbr8msz3f1K2BMMIu7atasb0J9OO9HgfierdNKkE+m07dVV+M8rr7xiSjSjeyGJih420Pt2xRVX+MkZ4n3ONfaeX4IZ7R88eLB/qoJcl+7VKCnLxx9/7LejBfVT2/ILYn/33Xfd+wQjRoxw75eEGomzot8VJTbZb7/9TIHX+izHK/JxZvz1dykQ/plnnvHX011wZjZ2Hz4JHpeKcbB+omX97ushh2BRgqpoQo7gfm85W35e+8FXfdcoocwLL7xgzgwTwV3+sgLw9bDMpZdeasFEMgX9rOmeps7rFX32Bw0a5K3m+/rrr7+aM7OxX0/fQc4M3abPOgUBBBBAAAEEsitAgHt2fWkdAQQQQAABBBBAAAEEMiRw+eWX2wMPPBBq7euvv865jClz5861Nm3auA9QqLMa7Jw4cWLWboKFQFgpFoGjjz469BDD7bff7maKL5bOcNJiE7jppptM771XlN1LmdIoCCCAAAIIIIAAAggggAACCCCAQCYElBRGiSpmzpzpJhtRsLsyYDds2NCU2VwzaWaqaIxz0qRJbgC2EqzoXAo6VXIIJaVR4gHNtqnZWgtTlHhCY6dK5KKkNCtXrnSb03mUeEOJdnSu4s6UrCQZCmYNztSrxAZyz9VSUpJGZNJPAf56XxR8rM+Wl9BFnydlq1dSF32mtJxKUUIh/R54RbOcppsl3zu2JLxm2i/ZNZekxDt6EOmRRx7xL0f3AzTzAQUBBBBAAAEEsi9AgHv2jTkDAggggAACCCCAAAIIFFJAN1CaNWtmS5cu9VvK5SzZV199td13331+X/v3729PPPGEv85C6RHQQLxu6nk333Rlyo4UzOhSeq6WK0kkoPdfs5oos72KHmxRZh/d6KUggAACCCCAAAIIIIAAAggggAACCJR8AWWTDmbbP+OMM+zZZ58t+RfGFcQV+O2330IPMFSvXt19CEOzS1LKjoDuSWncd8WKFe5F60GfMWPGMP5fdj4CXCkCCCCAQDELlCvm83N6BBBAAAEEEEAAAQQQQCBfAQWHB4PbdYCyZuRqUYB7MAuMphlV1iNK6RPQdMrB4HZNV01we+l7n/O7oqeeesoPblfdU045heD2/NDYjwACCCCAAAIIIIAAAggggAACCJQggeuuu85q1Kjh9/ill16yWbNm+esslC6BoUOHhi5ov/32M4LbQyRlYuXxxx/3g9t1wccddxzj/2XineciEUAAAQRyRYAA91x5J+gHAggggAACCCCAAAIIxBXQTYI777wztG+rrbayY489NrQtl1Y0fe7tt9/ud0lT1956663+OgulRyB6o+Owww4rPRfHlaQksHz5crvnnnv8urVq1bK77rrLX2cBAQQQQAABBBBAAAEEEEAAAQQQQKDkCzRs2NAuu+wy/0LWr19v999/v7/OQukSYNy3dL2fBbma1atX28MPP+wfWrFiRe7z+BosIIAAAgggUDQCBLgXjTNnQQABBBBAAAEEEEAAgQIIfPrpp9a3b19btmxZ6OibbrrJKlWqFNqWayv9+/e3nXfe2e+WpqudMGGCv85C6RBQ5u68vDz/58EHHywdF8ZVpCxw77332uLFi/36epilcePG/joLCCCAAAIIIIAAAggggAACCCCAAAKlQ0Azd2699db+xWhscPr06f46C6VDQLOxfvfdd/7FlC9f3g466CB/nYWyIaCx/oULF/oXe+mll1qbNm38dRYQQAABBBBAIPsCWzg34vOyfxrOgAACCCCAAAIIIIAAAggkF/j+++/trLPOcisp+82MGTNs1apVMQfttNNOproVKlSI2ZdrG8aOHWv/+9///G517drV9t13X3+dBQQQKPkCAwYM8L+r9ODNVVddVSK+n0q+PFeAAAIIIIAAAggggAACCCCAAAIIFL3AW2+9ZUceeaR/4hNPPNFeeuklf50FBBAo+QKLFi2y1q1bm2bvVNGswuPHj7caNWqU/IvjChBAAAEEEChBAgS4l6A3i64igAACCCCAAAIIIFCaBUaMGGG9e/dOeonVq1e3r776ynbYYYek9diJAAIIIIAAAggggAACCCCAAAIIIIAAAggggEA2BB5++GH7888/3abLlSvnJjyoUqVKNk5FmwggUAwC3377rb3//vv+mXXvqmfPnv46CwgggAACCCBQNAIEuBeNM2dBAAEEEEAAAQQQQACBfATyC3Bv1KiRvfbaawwi5uPIbgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoCQLVCjJnafvCCCAAAIIIIAAAgggUHoFypcvb3Xq1LGOHTvawQcfbGeffbbVrVu39F4wV4YAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBgZHDnQ4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQEwLlcqIXdAIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgzAsQ4F7mPwIAIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACuSFAgHtuvA/0AgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKPMCBLiX+Y8AAAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQG4IEOCeG+8DvUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBMq8AAHuZf4jAAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJAbAgS458b7QC8QQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEyL0CAe5n/CACAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjkhgAB7rnxPtALBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgzAsQ4F7mPwIAIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACuSFAgHtuvA/0AgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKPMCBLiX+Y8AAAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQG4IVMiNbtALBBDIlsDSpUtt5MiRfvPNmze3ypUr++ssIIAAAggggAACCCCAAAIIIIAAAgggUJYE1q1bZzNnzvQvuWfPnlanTh1/nQUEEMgtAca4c+v9oDcIIIAAAggggAACCCCAAAIIIIAAAsUrUFbGuAlwL97PGWdHIOsCCm7v169f1s/DCRBAAAEEEEAAAQQQQAABBBBAAAEEECiJAkOGDLHDDjusJHadPiNQJgQY4y4TbzMXiQACCCCAAAIIIIAAAggggAACCCBQQIHSOsZdroAeHIYAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQEYFCHDPKCeNIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCBRUoEJBD+Q4BBAoGQLNmzcPdVTTUbRp0ya0jRUEEEAAAQQQQAABBBBAAAEEEEAAAQTKisCkSZOsX79+/uVGx8/8HSwggEBOCER/Rxnjzom3hU4ggAACCCCAAAIIIIAAAggggAACCBSTQFkZ4ybAvZg+YJwWgaISqFy5cuhUCm7fbrvtQttYQQABBBBAAAEEEEAAAQQQQAABBBBAoKwKRMfPyqoD141ArgpEf0cZ487Vd4p+IYAAAggggAACCCCAAAIIIIAAAggUh0B0/Kw4+pCNc5bLRqO0iQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAugIEuKcrRn0EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBrAgQ4J4VVhpFAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSFeAAPd0xaiPAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkBUBAtyzwkqjCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAukKEOCerhj1EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBLIiQIB7VlhpFAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBdAQLc0xWjPgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBWBAhwzworjSKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgikK0CAe7pi1EcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIikCFrLRKowgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAjglMnjzZvv32W5s1a5atX7/e6tata+3bt7euXbtalSpVcqy3dAcBBBBAAAEEEEAAAQQQQAABBBBAAAEEECibAgS4l833natGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKDMCAwZMsRuv/12+/HHH+Nec40aNey0006zm2++2Ro0aBC3TlFuXL16te24446mgPxgOfXUU23QoEHBTQmXR4wYYb179064P78dLVq0sGnTpuVXjf0IIIAAAggggAACCCCAAAIIIIAAAggggEDGBcplvEUaRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRyQGDdunV20kkn2eGHH54wuF3dXLlypT322GPWsWNH+/zzz4u95zfccENMcHuxd4oOIIAAAggggAACCCCAAAIIIIAAAggggAACRSRAgHsRQXMaBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKDqBzZs327HHHmsvv/xy6KTly5e3bbbZxjp16mS1a9cO7Vu4cKEdcMAB9tVXX4W2F+XKt99+aw8//HBRnpJzIYAAAggggAACCCCAAAIIIIAAAggggAACOSVQIad6Q2cQQKDUCOTl5ZluIOmVggACCCCAQEkX2GKLLaxcuXKmVwoCCCCAAAIIIIAAAggggEDJEBgwYIANHTo01Nlzzz3XbrzxRmvatKm7XWOYqnPJJZfYjBkz3G2rV6+2Y445xn799deYAPhQY1lYWb9+vZ155pnu2Kqar169uq1atSojZzr55JPtlFNOSbmtqlWrplyXiggggAACCCCAAAIIIIAAAiVTgPiekvm+0WsEEMgtAWJKsvN+EOCeHVdaRaDMCWzatMm90bJixQr3VesUBBBAAAEESptApUqVrGbNmu5PlSpVCHgvbW8w14MAAggggAACCCCAAAKlRmDx4sV25513hq7n7rvvtmuuuSa0TQ8zH3744bbbbrtZt27dbNq0ae7+WbNm2QMPPGC33nprqH62V+666y43sF7n2WqrrdwM9OpHJkqrVq2sb9++mWiKNhBAAAEEEEAAAQQQQAABBEqoAPE9JfSNo9sIIFAiBDRzpBJWKK5Er1qnFFygXMEP5UgEEEDATH/46mbPH3/8YbNnz7bly5e727BBAAEEEECgNAook56CJBTwMHnyZFNWPwoCCCCAAAIIIIAAAggggEDuCdx3332mZBxe6dGjh1199dXeasyrgskHDhwY2v7ggw+6/w8Y2pjFld9++80UhO+Vxx57zL0Z5q3zigACCCCAAAIIIIAAAggggEBBBYjvKagcxyGAAAKpC+i7VvGTiqNUPKXiKrWNUjABAtwL5sZRCCDgCGzYsMGmT58eulEEDAIIIIAAAmVFQP8Oavp6gtzLyjvOdSKAAAIIIIAAAggggEBJEdi8ebM9//zzoe7ecsst+c7C1adPH+vevbt/nALkX3vtNX89mwvq85lnnml6sFpFWeX79evnLvMfBBBAAAEEEEAAAQQQQAABBAojQHxPYfQ4FgEEECi4gMYXFV+p72FK+gIEuKdvxhEIIOAIrFu3zs1eq1cKAggggAACZVUgLy+PIPey+uZz3QgggAACCCCAAAIIIJCzAl9++aUtXLjQ71+rVq2sV69e/nqyBQWZB8uQIUOCq1lbfuihh+ybb75x269Vq5YpezsFAQQQQAABBBBAAAEEEEAAgcIKEN9TWEGORwABBAonwPdwwf0qFPxQjkQAgbIsMH/+fNu4cWOIYIsttrBq1aq50+ZWrVrVypcvn29WpFADrCCAAAIIIJCjAgpk1xO1K1eudKeTCj5dq31z5syx1q1b8+9ejr5/dAsBBBBAAAEEEEAAAQTKlsB7770XuuB99tkn5f9fU91gGTFihK1atcqqV68e3JzR5SlTptiNN97ot3n33Xdb06ZN/XUWEEAAAQQQQAABBBBAAAEEECioAPE9BZXjOAQQQCB1AcWNbNq0ydasWWPK2r569WrTNq8ozlLfx1tvvbW3idcUBAhwTwGJKgggEBZQUJ9u6gRLpUqVrHnz5qZXCgIIIIAAAqVRoGLFiu6DXA0bNrTZs2e7/1PiXaf+bdRTt1WqVPE28YoAAggggAACCCCAAAIIIFBMAmPGjAmduWvXrqH1ZCsKLG/ZsqU7e6XqrV+/3n7//Xfr0qVLssMKte/ss892b3qpkT333NP69+9fqPY4GAEEEEAAAQQQQAABBBBAAAEJEN/D5wABBBAoOgHFlChmpG7duu6Y4syZM91XrweKt9T3supRUhMol1o1aiGAAAL/CCxbtuyfFWepXLly1qJFC4LbQyqsIIAAAgiUVgHNWLLVVlvF/E/H8uXLS+slc10IIIAAAggggAACCCCAQIkSGDduXKi/HTt2DK3ntxKtH20vv+PT2T9w4ED77LPP3EN0c+uZZ55JOdt8Oufx6ipzlDLGf/311zZ69GjTtf3555/ebl4RQAABBBBAAAEEEEAAAQRKkQDxPaXozeRSEECgRAkoSbDiKRVXGSzR7+XgPpZjBcJ6sfvZggACCMQIRL9oa9WqZRUqMCFEDBQbEEAAAQRKrYCC3PXvX7BomikKAggggAACCCCAAAIIIIBA8QpoGuAZM2aEOqGZJ9Mp0foTJkxI5/CU686dO9euvPJKv/5VV11l2223nb+e6YXBgwdbgwYNrHXr1m6m+G7dupmC+evVq2cdOnSw888/33777bdMn5b2EEAAAQQQQAABBBBAAAEEikmA+J5igue0CCCAgCOgeMpoXEn0exmo5AIEuCf3YS8CCEQElOFH0/IGS/SLOLiPZQQQQAABBEqrQI0aNUKXpn8f9e8kBQEEEEAAAQQQQAABBBBAoPgEFi1aFPp/M2VFb9SoUVod0qxdwbJgwYLgasaWzzvvPFu6dKnbXtu2be2GG27IWNvxGpo2bZotWbIk3i4bP368PfHEE7bDDjvY0UcfnbBe3IPZiAACCCCAAAIIIIAAAgggkHMCxPfk3FtChxBAoAwKROMqN2zYEBq7LIMkaV0yKZfT4qIyAghs3rw5BkE3iSgIIIAAAgiUNYF4s5fo38ny5cuXNQquFwEEEEAAAQQQQAABBBDIGYGVK1eG+lKtWjXTLFzplOrVq4eqR9sM7SzgymuvvWZDhgzxj3766aetSpUq/npxLSgA4o033rBvv/3WPvjgAzfDeyb7oocFFi5cmFaTkyZNSqs+lRFAAAEEEEAAAQQQQAABBMyI7+FTgAACCBS/QDSuUmNv+kl3vLL4r6R4ekCAe/G4c1YESqyAvmCjpVw5JoOImrCOAAIIIFD6BeL9+xfv38nSL8EVIoAAAggggAACCCCAAAK5IxANRi9I0HjVqlVDFxRtM7SzACuLFy+2Cy+80D/y9NNPt969e/vrmV7Ydttt7eCDD7aePXvadttt52a01zX++eef9scff9gnn3xiCrCfN2+ef+oZM2bYgQceaN98841tueWW/vbCLihL/K233lrYZjgeAQQQQAABBBBAAAEEEEAgH4F49y3j3d/Mpxl2I4AAAggUQiDe964eQIq3vRCnKbWHEuBeat9aLgwBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgbIlsHbt2tAFV6pUKbSeykrlypVD1dasWRNaL+zKJZdcYspkrtKoUSO7//77C9tk3ONbtmxpw4cPt169esXd37BhQ9PPXnvtZddcc42pXwp098r06dPtvPPOszfffNPbxCsCCCCAAAIIIIAAAggggAACCCCAAAIIIFAkAqRdLhJmToIAAggggAACCCCAAAIIIIAAAggggAACCCCAAALZFohmbF+/fn3ap1y3bl3omGiboZ1prnzwwQf20ksv+Uc9+OCDVq9ePX89kwsKcE8U3B49j67xqaeecoPcg/veeust+/7774ObWEYAAQQQQAABBBBAAAEEEEAAAQQQQAABBLIuQAb3rBNzAgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECgKgRo1aoROE83oHtqZYCWasT3aZoLD8t28YsUKO/fcc/16+++/v51wwgn+ei4sDBgwwN59912bNGmS3x0F5O+6667+emEWlBH+6KOPTqsJ9aVfv35pHUNlBBBAAAEEEEAAAQQQQAABBBBAAAEEECjZAgS4l+z3j94jgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDA3wLRYPTVq1dbXl6ebbHFFikbrVq1KlQ32mZoZxor11xzjc2YMcM9olq1avbkk0+mcXTRVK1QoYJddNFF7o93xo8//thbLPRro0aNTD8UBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgmUC5ZDvZhwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiUFIEGDRqEgtk3bNhgCxYsSKv7s2fPDtXPRED21KlTQwHtt956q7Vs2TJ0nlxZ6dOnT6grEydOdB8SCG1kBQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyKIAAe5ZxKVpBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQKDqBqlWr2tZbbx06oZc1PbQxyUq0fvv27ZPUTm3XsmXLQkHiV155pRuIr8zyyX4UCB8sgwcPDtWvU6dOcHdGlps3bx5qZ+PGjfbnn3+GtrGCAAIIIIAAAggggAACCCCAAAIIIIAAAghkU4AA92zq0jYCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggUqUA0IP33339P6/zjxo0L1Y+2F9pZClcqVqwYc1XKhE9BAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSKSoAA96KS5jwIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQdYFOnTqFzvHll1+G1pOtzJ0716ZNm+ZXUbB3x44d/fWysDBv3rzQZSrDfP369UPbWMm8wLLVG+znWUsz3zAtIoAAAggggAACCCCAAAIIIIAAAgggUAIFKpTAPtNlBBBAAAEEclZgxIgR1rt3b79/N998s91yyy3+OgsIIIAAAggggAACCCCAAAIIFLfAps15tmLtBlu+ZqMt12tweY3Wne3u6wan3l/Lp+zZ0g7asUlxd53zI5CSwMEHH2z33nuvX/fTTz+1vLw8U6B2fuXjjz8OVdE4T40aNULbCrLSpk0b++STT9I+9IUXXrAXX3zRP27fffe1K6+80l+Pl23d31nAhS+++CJ0ZJMmTaxCBW4nhVAytDJ54UobNm6+87PAvp/+p21Zs7KNvmbvlD6rGeoCzSCAAAIIIIAAAggggAACCCBQZgWI8Smzbz0XXkIEGJEsIW8U3UQAAQQQQAABBBBAAAEEEEAAAQQQQAABBCSwcdPmvwLPYwLTA0HrToC6G5weU2ejrVy3MW3IHts2TPsYDkCguAS6du1qDRo0sEWLFrldmDJlikVvWCbq27PPPhvaddhhh4XWC7qiIPm+ffumfXi8YPOCtJPOiaMGffr0Sedw6qYg8NucZXbBf36yqYtWhWrPWbbWxs1dYR2b1gptZwUBBBBAAAEEEEAAAQQQQAABBBBAAIGyJkCAe1l7x7leBBBAIIsCmr55m222yeIZ/mqarOhZJ07pBB9++KEdcMABobq9evWy4cOHh7axggACCCCAAAIIIIAAAggUl8D6jZvtrR9n2Wvfz7Rf5yw3ZS6vUG4Lq1i+nFUo/9drRWe9grde7q/tWtf2YL3gcRWcepUqOMf9Xd+t93c7XnsV/27fPU8+7a53Atb9bOqRzOnBbOpendXrNxU5qbK8UxAoKQLlnN+50047ze6//36/y7feeqtp3CJZFvdhw4bZqFGj/GNq1qxpxxxzjL9eFhZeeukl92GA4LX269cvuMpyBgSa1a1mM5esjtuSMroT4B6Xho0IIIAAAggggAACCCCAAAIZFCDGJ4OYOdJUy5Ytbfr06X5vFL+j8TAKAiVVgAD3kvrO0W8EEEAAAQSKWWDQoEExPRg5cqT7x3KLFi1i9rEBAQQQQAABBBBAAAEEECgqgXUbNzlB7bPsqRGTbfbSNaHTKsh9nRP4TklPQMH1FARKksDVV19tTz31lK1cudLttsYs7r33XrvmmmviXsbs2bPtrLPOCu27+OKL3UzwoY2RlWjAfK7cOHz11VetUqVKdvjhhycN6g9eziuvvBJj0KlTJ7eNYD2WCy9Qu2pF69Kynn01ZXFMY5+OX2AX9mkbs50NCCCAAAIIIIAAAggggAACCCCAAAIIlCWBcmXpYrlWBBBAAAEEEMiMwLJly2zo0KExjeXl5dngwYNjtrMBAQQQQAABBBBAAAEEECgKgbUbNtnzo6daz/tG2I1Dfo0Jbi+KPpTWc5DBvbS+s6X3uho0aGDXXXdd6AKvvfZaO++882zOnDn+9s2bN9uQIUOsa9eupsxlXmnatKldfvnl3mqJex0/frwdeeSRtu2229r1119vX331la1atSrmOtavX2+fffaZHXbYYXbCCSfYunXr/DpVqlSxJ598MuUAef9AFlIS6NOhUdx6Y2cutQUr1sbdx0YEEEAAAQQQQAABBBBAAAEEEEAAAQTKigAZ3MvKO811IoAAAkUg0LhxY/vkk09SOtPHH39sAwYM8OvuuOOO9u9//9tfT7bQqlWrZLuLdZ+m9lGQd2kvygK2dm38G20vvPCC3XTTTaWdgOtDAAEEEEAAAQQQQACBHBJYvX6jvfz1DHv68ym2aOU/wZk51MUS35XlazaU+GvgAsqegLK4f/nll/buu+/6F6+A7f/7v/8zzT5Xu3Ztmzp1qi1dutTfr4WqVavaa6+9ZnXq1AltL4krkyZNsrvuusv9KVeunDVr1sy9Ll2jEhgoqD/eGE/FihXt5Zdftj322KMkXnaJ6HOfDlvaHe+Ni9vXEeMX2jFdmsfdx0YEEEAAAQQQQAABBBBAAAEEMiFAjI9ZWYnxycTnhTYQKA4BAtyLQ51zIoAAAqVUQFmd+vbtm9LVzZo1K1Svbt26KR8bOpCVYhEYNGiQf15Nxa0sZ6NHj3a3TZ482UaNGmXdu3f367CAAAIIIIAAAggggAACCGRDYOW6jfbiV9PtmVFTbMmq9dk4RZlps0blClarivNTtaLzWtFq+st/bWvTqEaZseBCS4+AArpff/11O/30000P63tl06ZNNmXKFG819Fq/fn174403bK+99gptLw0rylY/Y8YM9yfZ9Sjr+3/+8x/r3LlzsmrsK6TANg2qW6uG1W3KwtjM+p+Om0+AeyF9ORwBBBBAAAEEEEAAAQQQQCC5ADE+yX3YiwACxS9AgHvxvwf0AAEEEEAAgRIl8Mcff9jXX3/t91k3fJUR7ZBDDvG3DR48mAB3X4MFBBBAAAEEEEAAAQQQyLTA8rUbbPDoafbsaCfz8moyi8vXDUh3AtMVoP7PsoLW/9oWDF6vVfXv7e6+Cqbg9grly2X6baI9BHJCQDdrX3nlFTvqqKPsjjvusDFjxsTtV/Xq1e3UU0+1m2++2Ro1ahS3TknaeMwxx9j69ettxIgR7jWvWbMmafcrVKhge+65p/Xv39+1UgZ3SvYF+jpZ3P9vYezDFqMmLrK1GzZZlYrls98JzoAAAggggAACCCCAAAIIIIAAAggggEAOChDgnoNvCl1CAAEEEEAglwWC2dvVz5NOOsn2339/a9CggS1atMjturKjPfLII1atWrVcvhT6hgACCCCAAAIIIIAAAiVMYJkTzP6cE9SunxVrN6bc+4rlt7Cjd21u+23X2DZvzrMNmzbbRu91U56zvNnW61XbndcNzrpete5vD9T39qudDX8f7x4XaNfdHlh329N5Nv51bu88eXlmzsRYfweiV7CalRWQHgxMj647df4OTPeC1xWgXr6c0wgFAQQSChx55JGmn0mTJtk333xjs2fPdgPA69SpYx06dHAztisYPt2Sp1/iLJZbbrnF9JNu6dixo911113uYcpYP2HCBDdrvWZVXL58uXvtNWrUMM2quM0221iXLl2satWq6Z6G+oUU2Lt9I/u/z2MD3Nc4we1fTVlsvduV/IctCknE4QgggAACCCCAAAIIIIAAAggggAACZVSAAPcy+sZz2QgggEBpE9BNyR9++MHmzJljixcvNt2cPPzww61p06YJL3Xp0qX266+/ujf4/vzzT/+mprJ06aZeixYtEh5bVDsWLFhgo0aNsqlTp9qGDRvcIHLdoNxjjz2sfPmiz+CkqaxffPFF//IrVapkygimLF/HHnusPf744+4+3Sj93//+ZyeeeKJft6ALulH8888/2/jx423hwoW2bNkyN3C+cePG7g3oHXbYocAWusH7/fff2+TJk93g/BUrVphu7m611VYmZ93g3kKRJiWk6Fp0o37u3Lm2du1a9zN8wgknJO29Plu//fabOz25bPVe1qtXzz1WnzN5ZKooc5yCCKZPn+6+l6tXr7aaNWu659p+++2tdevWmToV7SCAAAIIIIAAAgiUMoElq9bbs19MscFfTreV61IPbK9UoZwd36W5ndOztTWtk5uBm5ucwHn9X0c5AtRL2aeWy8lVgTZt2ph+ylLRGJLGOfRDyS2BXVvUtdrOzBvL1sTORjJs3HwC3HPr7aI3CCCAAAIIIIAAAggggAACGRIgxidDkMXcjGZK/P33302xTYpRUbxV8+bNrVu3boVOpLBkyRL78ccf3RgYxbJs3LjRjRVS8k0la9huu+3cxA3pEihe5aeffjIvCYRigjSzY5MmTaxVq1ZuuwVJgpFuP6ifmgAB7qk5UQsBBBBAoJgFgkHGPXv2dKdXVpfee+89e+CBB9x1BV8Hi4KU+/XrF9zk/pHy6quv2scff2xjx461ZFm29IfLxRdfbGeffXbKf3iNGDHCevfu7Z9T01ony7LVsmVLN9hXByigftq0ae6xf/zxh11zzTU2dOhQJ7tg+LpUoX79+nbdddfZhRdeaEU5ZfSwYcPcP/LcTjr/OfDAA/0/GJXJ3Qtw135lei9MgPuMGTPcTGMKlNcfw4mKMo2pH+ecc4517949UbXQdgV0K4uZPj/6QzhRURD9YYcd5k7PvdNOO8WtluizGbdyZONpp51mgwcP9rcq2FyfiXhFnqeffrq/6/nnnzcdrynG77//ftO6jg+W2rVrWzTAXf9Toet+66237LPPPrN58+YFDwkt6wZ4nz597Nprr7VevXqF9qWz8tVXX9ndd99t+vwoqD1R0bVryvhzzz03FOz+9ddfu9Oke8fts88+7u+wt57qq2YV0O+0V6666iq79957vVVeEUAAAQQQQAABBHJQYOGKdTZw1BR78evptnr9ppR7WKViOTtx9xZ2To9W1qhW+hmZUz5RBiqSeT0DiDSBAAIIlFCBCuXLWa92DW3omDkxV/DZuAWWd5jzEFQJSr4QcxFsQAABBBBAAAEEEEAAAQQQKJMCwf+XJcan+GJ8svHhU+JIxVkoRkVJSOMVBYjvv//+dvvtt5uSHaZTFFei9vUaL17Ka0ufsXbt2rkxPeeff74bWO/ti76qnYEDB7oxTUqwmawo0Wfnzp3dmSDPO++8lOPFkrXJvoILEOBecDuORAABBBAoRgEFpl900UX22GOPpdwL1VVAeKplypQpbjDs008/7QaaF1V2rzfeeMNOOeUUN3A5UV+Vpf7yyy93A5RVv6ieHlSQdbAoqN0ryvatDNzKhq6i4Gk98disWTOvSkqvem9vu+02NwBdGb/zK8q+//LLL7s/yR5YUDvKgq8AZ72nyf4Q9s6p4G/V/fDDD/2HD7x9ufCqJ0sV3K8nYlMtelJWsx2kUpThXg+D6Ef/Q/DQQw+5Gd5TOVZ19D82Csp/8803UzpED3goWP+7777zH2LRgfps7bjjjm4mf61/+umn7vuR6GEA1YlXnnnmGX+z/mdHD69QEEAAAQQQQAABBHJTYP7ytfb0yCn2n2+n29oNsQ/9Jup1tUrl7eQ9W9jZ3VtZgxqVE1VjOwIIIIAAAjkj0KfDlnED3OcsW2vj5q6wjk1r5Uxf6QgCCCCAAAIIIIAAAggggAACBREgxqd4YnwK8l4lO2bkyJF2zDHHJE1SqeOVeHHIkCH2zjvv2NVXX2133nlnsmbdfel+RlR//Pjx7o/iuc4666y451BM0SGHHGKjR4+Ouz+6UXFKSuKoHyXELKpYsWg/WP9LgAB3PgkIIIAAAiVSQNnLg8HtVatWdTOga9oYTWUULyu1/oCKlpo1a1rTpk1Nma41nc3ChQtt5syZoWoKHlZmcGV813Q62SzKrH3ccceZAotVlJ1dU+vUqVPH/QPRy/Du9UH1lYVamamzXZYvX27Kpu4VmR188MHeqvuqjO0KTldRAPkLL7zgZpp3N6TwHwWgK+O4gvajRU9JaiojZa9ftWqV+z4vXbo0Wi3hujK1H3roofb555/H1NHnR20rG7yuU5+BlStXxtTLpQ3q57777mvK9u8VfT41c8G6dev8mQG8fd5rvN8D/Q7Uq1fPatSo4doqe340s72y8yv7+nPPPec1lfRVDzfoiVxly48W/d6pn7Vq1XLPo0D9eP0KHqes7no6VkX/o/Lss8+6T/sG6yRbVhb4X3/91a+ijPT8j4jPwQICCCCAAAIIIJAzAnOWrnEC2yfbK9/NtPUbUw9sr1G5gp3atYWd2a2V1ateKWeuh44ggAACCCCQn0DPtg1Ns3ls2pwXU3XYuPkEuMeosAEBBBBAAAEEEEAAAQQQQKCkCRDj89c7VpQxPpn+jKjvRx11VExshxJyKjlhtWrV3FgbxV15RbFPd911lxvDpRiPZOWmm24KxYF5dRXLongexfUoVmjRokU2d+5cb3fSV8WWKEg9GtyuhIhNmjSxxo0bu3FZSt6obPTpxCAlPTE7MyZQLmMt0RACCCCAAAJFJKCA8/vuu889W9u2be3111+3JUuW2Lhx4+z77793/5D55Zdf3IzP0S5VrlzZfZpQgdcKqlWQsJ7o++abb9ys1grs1R9DTz75pBv47h2vgPlsZ3tWQPHJJ5/sBrcr67kCiZWpfcKECW7/pk6d6gYzH3TQQV633FcFHscLIg5VysDKa6+9Fsoqrz9c5RkswYzu2j548ODg7nyXFawfDW7v1KmTmwFc7/GkSZNcCwUq6ynLiRMnulnFu3Tpkm/byiQeDW7XVFjKzq625KwgaH2+9F7oHHqKtEOHDvm2XRwV9D8BXnD7scce6z6AMX/+fPvxxx/dz4Ou6ZVXXonbta233tqdAUBTOula9VCIfmf0BKqmY9KxeqCjf//+Vr58eb8NTTEVfMjB3xFZ0BOtRx55ZMznsl+/fjZq1Ci3ff2+6vdOv3/6nwVlbb/++utNfYtX9PCEAvC9or54D4J425K9BrO3q162f5+T9YV9CCCAAAIIIIAAArECM5estuv+94v1HDDcBn81PeXg9lpVKtjFfdra6Kv3tiv3a09weywtWxBAAAEEclygdrWK1qVl3bi9/HT8grjb2YgAAggggAACCCCAAAIIIIBASREgxqd4Ynwy+flQkkjFAwUTFyo5peIwFNCu+I8ffvjBTdz55ZdfWrdu3UKnV/zTU089FdoWXFHMyr333hvcZOecc44bv6O4qTFjxvjxLApEV/zQu+++a0qUqOSciYrijxSj4hUlTR0wYIAbV6Zzqs+KE1LMleJkFDOmOKcjjjjCKlQgd7jnVpyvvAvFqc+5ESiDAhs3bba5ztSqlOwKNKldxSqUL73PMHlP+ymr+vvvvx8KevVkt99+e2/Rfz3ggAPslFNOyTcLu/4I0x9BChreZ5993D9o1Mjbb7/t/vHUsWNHv81MLnhPAu6yyy5u0HXDhg1jmldA/9ChQ93M6QrMVlGm9IEDB9qDDz4YUz+TG6LB6tFgdp1L/dttt93s22+/dU+tAGwFTe+55575duWjjz5yg9WDFS+66CL3usqVi/95Vgbuiy++2P1RsHai8vTTT4cCs/U0ph6SuOKKK+IeovNtt9127s+1115rI0aMiFuvODcqmF3loYcecq8/2hdl/9dnPlr08EbXrl1DgevROvLZcccd7YknnrDDDz/cna5JWeFV7rnnHndb9Jjg+s033+x/BrRd2fcHDRpkxx9/fLCav6z/Mdh1113dHx2r/4GIFmV71/FeoLr+Z0O//5pKKr+iAPr//ve/fjX9jut/SCgIIIAAAggggAACxS8wffEqe3z4JHvrx9m2MU7m2kQ9rOMEA57VbRs7pWtLq1WlYqJqbEcAAQQQQKBECPTtsKV9PWVJTF/HzlxqC1ess4Y1w0kmYiqyAQEEEEAAAQQQQAABBBDIsADxPRkGTdBcaY/v0WUT41M8MT4JPnIF2nzeeeeFspsro7oCx1u0aBHTnuKDRo4caaeddpq9+OKL/v7LL7/cDj300FCyUW+n4qA2bNjgrZqyud96663+enShbt26puSg+lHAuoLT4xUlTA2Wd955x3r37h3cFFrWdSmuTD8K6td5KMUrQIB78fpzdgTKnICC27vfN7zMXXdRX/Coq3pb83rVivq0RXo+/RGhjOLBjM75dUABy+kUnUMZsNu3b+8GketYBel62ePTaSvVugrifeuttyxecLvXhjJqK5jdC3DX9g8++CCrAe6TJ0+2L774wuuCO/2Psp/HKwp89wLctV+B8akEuEf/OD3hhBPs4YcfjneKuNv69OkTd/vGjRvdKY+COxW0nii4PVhPywr2TvYHbrR+Ua4fd9xxcYPbk/VBD4akU/SQx5VXXml33HGHe5jeWz1hnehBDz0p++ijj4ZO8dhjjyUMbg9VdFYUmJ+oj3pC1wtw13FaTiXAXb/HmqrKK5opITr7gLePVwQQQAABBBBAAIGiEZi8cKUb2D50zBzblEZge/3qlezsHq3spD1aWI3KDG0WzbvFWRBAAAEEsi3Qxwlwv+O9cXFPM9zJ4n5Ml+Zx97ERAQQQQAABBBBAAAEEEMiWAPE92ZINt1sW4nt0xcT4FG2MT/hTVri1CRMm2Hvvvec3ooSRyoweL7jdq6Q6ytquzOu//PKLu3n16tWmhIy33367V81/VfLMYFFAfapFcWOJYseC7Sr2K53YHwW7U4pfIH461OLvFz1AAAEEEEAgqcD5559vjRs3TlonEzu9jOReW5pKJ5tFmeOT/RHonVt/eCnDtlcmTpxoK1eu9FYz/qrA/mBR8LkCv+MVBV0Hp+pR5uzgNEXxjlHQtDK9e6VmzZr2+OOPe6uFetUDA5pGyCutWrWyW265xVst0a/x/vDPxgVFs/Un+z3QbALBYHIFq5999tkZ6Vbnzp3dLO9eY8rgrkzu+ZVgULzqZqo/+Z2X/QgggAACCCCAAAKxAn/MX2EXvfKT7fPASDdre6rB7cpce8NBHWzU1b3t3J6tCW6PpWULAggggEAJFtimQXVr5fzEK5+Omx9vM9sQQAABBBBAAAEEEEAAAQQQKDECxPgUbYxPJj8Yzz77rOXl5flNHn/88bbbbrv564kWFDek7OrBotiNYFvevjVr1niL7qsSI2aiBNvNVJuZ6BdtpC5AgHvqVtREAAEEEMghAf3BVFRlm2228U/1008/+cvZWDj22GNTbrZTp05+3c2bN6cU6OsfkMaC/rgMThukQ6MBz8HmlH1+33339TctXbrUNJ1QsvLxxx+Hdmu6nzp16oS2FXQl2nb//v3dLOEFbS9XjuvSpYu1adOmSLoT/B3QCZP9HkS9L7roooz2UVncvbJp0yZ7/vnnvdW4r2PHjrXvv//e39e1a9eE2ef9SiwggAACCCCAAAI5LLB2wyb7+Ld59uiwiW4G9P9+N8OGOYFvY2YutVl/rjbtz8Uybu5yO+/lH2y/hz63t8fOsVSTtjeuVcVuOaSjKZPRWd1bWbVKZG3PxfeXPiGAAAIIFF6gT4dGcRsZNXFRzv77HrfDbEQAAQQQQAABBBBAAAEEEEAgIkCMj1lRxfhE6Au9OnLkyFAbZ5xxRmg92co+++xjzZo186vMnz/fglnVvR1Nmzb1Ft3Xl156KbRe0JVgu7///nvSWJeCnoPjsivAHaHs+tI6AggggEAWBJTdu0OHDoVqWX80vfbaa/b111/bzz//bAsWLLDly5fnm2lcU+boCb+qVasW6vzxDtbTgjvttFO8XXG3NWoUvum1bNmyuPUKu3H48OE2ffp0vxlljt9+++399XgLJ554oim7tleUAT5Z8P6oUaO8qu7rgQceGFovzEo22y5Mvwp7bCpPxOZ3DmXOHzJkiDst1Pjx400PI6xYscI2btyY9NBFixbF3a/j9DvlFU07tf/++3urGXnV//hefvnl7u+rGtTTwtdff33CGQXI3p4RdhpBAAEEEEAAgRwQWLluo7309XQbOGqqLVq5LmmPalauYA2cjOcNalRyfvT610/9v9cb1vxne3WnbjbLr7OX2SNOMP7Hv89P6zRb1alq/Xu1tqN3bWaVK5RP61gqI4AAAgggUBIF+nTY0p5x/p2PljXOw2tfT1lsvdqFxwKj9VhHAAEEEEAAAQQQQAABBBBAIBcFiPH5610pqhifTH4G1q1b58aTeG0qrqlbt27ear6vihnp3bt3KKmmYkratWsXOlaB8Lfccou/TTEhiuO64IILrHHjxv72dBfU7ogRI9zDlEBR8St33nmnnXDCCVatWrV0m6N+MQhk9w5WMVwQp0QAAQQQKP0CLVq0SBjMmt/VKzD3qquushdeeMH0x0tBioKAsxHgXq9ePStfPvXAjerVw9MWB6fWKch1JTpGwenBkix7u1evX79+VqNGDVu5cqW76ZNPPrG5c+dakyZNvCqh18mTJ4fWd91119B6YVamTJniHy6zwj4c4TdWzAvRrOrpdEdB//ofAT3cUZCi34F4Zd68ebZq1Sp/l/6nRJ+DTBa9hyeffLI9/vjjbrPTpk0zfb6CswZ459PvxMsvv+ytWq1ateyYY47x11lAAAEEEEAAAQRKgsDS1evt+dHTbNCX02zZmg0pdXmFEwyvn6mL/vnbLNGBVSuWd4Lh/wl4jwbFu+tusHxlq1WlQsr/L/bTjD/t0c8m2WfjFyQ6ddztzetVtfN7tbEjdmlmlSow+WRcJDYigAACCJRKgV1b1LXaVSvG/fd+2LgFBLiXynedi0IAAQQQQAABBBBAAAEESr8AMT5/vcdFFeOTyU+UYkDWr1/vN9m+fXurVKmSv57KghJ9vvjii37VGTNm+MveQteuXU3B6Ir9UFFyRQWi33333aZ9ffr0se7du5sSQeqBiVTLueeea4888ogpCaqKgubPPvtsu/jii61v375u8P1ee+3lZtdX8D4l9wQIcM+994QeIYAAAgjkI6Ag1YIUBVH36tXLZs2aVZDD/WP0hGI2SpUqVQrVbF5eXqGOj3ewAtTfeustf5eertSTjPkVPel4+OGH+3+k6mEC/cGqhwvilSVLlvibt9hiC2vQoIG/XpgFZeUPZiNXu2q/NJSC/h48/fTT1r9/fyvM5yXR70DwfZRx9AnkTLmfc845foC72hw4cGDcAPc33njDzUrvnVczC/AUrqfBKwIIIIAAAgjkusCCFWvtWSeLq7K2r1pfsIdzU7lGZYWduWSN+5Nf/Urly5mXBd4PhP87+F3rDZ1M8Rs25zlZ5qfYqInxZ/1JdI5tGlS383u3scM6NbWKznkoCCCAAAIIlDWBCs6/f73aNbShY+bEXPqwcfPttsO2KzXjWjEXyAYEEEAAAQQQQAABBBBAAIFSK1DQ2AZifIr/I/Hnn3+GOlGQWJ7oMdE2vRP85z//sUMOOcSU4d0rmzdvti+++ML90bYKFSqYEmYefPDBpviPli1belXjvirR6LvvvmuHHnqom5TTq7R69Wp7++233R9tU+JGBdAfccQRdtRRR1mdOnW8qrwWswAB7sX8BnB6BMqaQJPaVWzUVb3L2mUX+fXKuTSXgjw1pycKDzzwwJjg9rZt21rPnj3d6W+22mor0xOTys4eDIIeMGCAffzxx6WZNOG1vf7666GM3Ntuu62NGzfO/Ul40N87WrVqFaoyePDghAHuK1as8OsqAFmB9JkowXbVXqaziWeijwVtoyC/B8OHD48Jbtf/AGgKqd1339305LSC0vWwReXKlUNd09Oy+ZWi8t5hhx3cp3S//PJLt0tDhw61hQsXWsOGDUNdfOaZZ0LrehKXggACCCCAAAII5LrArD9X29Mjp9h/v59p6zduzqnurt+02eYuW+v+ZKpjbRrVsAv3bmMH79jUypcrHQ+jZsqGdhBAAAEEyp7A3u0bxQ1wn+P8+ztu7grr2LRgiT/KniRXjAACCCCAAAIIIIAAAoUVIL6nsIKpHV/a43ukUJDYBmJ8Uvv8ZLuWkmIGSzQLfXBfouXoMdG4Eu84BcJ//vnnboLDBx54wCZNmuTt8l+V4FIB8Pq56aab3ASd999/v2255ZZ+neiCAuJ//fVXu+eee+zZZ5+1aOJG1dd1fvDBB+7PZZddZvq5/vrrC/TZjZ6f9cIJEOBeOD+ORgCBNAWUhaZ5vWppHkV1BAov8NRTT9kff/zhN6Q/bgYNGmT777+/vy3Rgv7AKatFQenBMn78eHdaoOC2VJd///13++6776xLly4xh2gKIe8pTT0pqacwMxHkHp2aKPrHd0xHSvmGyy+/PJS5/aCDDjL9bjRr1izplSfK2B49qCi9lcXdC3DX/9zqs3rFFVf4XZowYYKNGjXKX+/cubPtvPPO/joLCCCAAAIIIIBArglMXrjSnhwx2Yb8NNs2OlnQS3tp37imXeAEth+wfRMC20v7m831IYAAAgikLNBr20buv4ub4vwtoCzuBLinTElFBBBAAAEEEEAAAQQQKKQA8T2FBOTwQgkQ41MovowdHE0iuWrVqrTbjh4TjSsJNqiHIfr37+/+fP/99zZs2DAbMWKEGxuyfPnyYFU3ruill16yTz/91K3Trl270P7gijK533fffXbHHXe4dZUccuTIkaZzbNiwIVjVFIB/6623uu0qGaqSdFKKTyAz6VGLr/+cGQEEEEAAgZQEXn311VC9//3vfykFt+ugeE/vhRorpStTp051n47M5OVFA+a9tvXHpFfy8vJs0aJF3mqhXjXVlTKUe0Xtqv1cKQrmL6qiBzx++ukn/3Tbb7+9vfXWW/kGt+uAVH8Hgu+jjluwYIFeslKOOeYYq1u3rt/2wIED/WUtRNfJ3h7iYQUBBBBAAAEEckjgtznL7PyXf7S+D4y0N36YlXJwe9WK5W07J4tr41pVrGL5kpP5XH1+6qTO9v5F3cnankOfQ7qCAAIIIJAbArWrVbQuLf8Z7wj2atj47I2zBM/DMgIIIIAAAggggAACCCCAAALFLUCMT3G/A3+dPxiToS2LFy9Ou2PR+J9om4kaVOb1q6++2s2qroSZP/74o91111220047hQ6ZN2+eHXXUUW7Ae2hHnJVKlSrZvvvua3fffbcbNL9s2TL77LPP3GSKTZs2DR0xevToUJLF0E5WikyAAPcio+ZECCCAAALFJaBs4Moc7pVOnTrZnnvu6a3m+/rbb7/lW6c0VlAweqaDwV955RVTtu1oadu2bWiTnpLMVGnTpo3flJ4MHTdunL+eiYUqVar4zaxZs8ZfTmVh4cKFqVTLSB1N0RQsZ511lumP91RKqr8DjRs3tuATvMqinq2s+XI/9dRT/e7rXJquSsXL6O7t1JRXJ5xwgrfKKwIIIIAAAgggkBMCP0z/084Y9J0d9MgX9t4vc52/vVPrVs0qFeyC3m1s9DV723tOkPjX1/WxP+44wMbctI99ellPe/Vfe9hjJ+xstxzS0a13XJfm1rdDI9upeR3bqk5Vq1yheIYDd2pW2549dVd798Jutv/2jZ0Zm0pOUH5q7wy1EEAAAQQQyIxA3w7xp9UeO2upLVyxLjMnoRUEEEAAAQQQQAABBBBAAAEEclSAGJ/ceWOaNGkSiisZP3583JifZD0eO3ZsaHeLFi1C66mslCtXznbeeWe79tprbcyYMfbmm29a1apV/UN//fVX++ijj/z1VBfURu/evW3AgAE2bdo0u/7660OHKrFiNHN8qAIrWRf4J6Vp1k/FCRBAAAEEECgeAT1BuHHjRv/kyaal8Sv9vaCs17Nnz45uLvXrCmx/4YUXQtepaX969uwZ2pbKSt++fd1pg1RXmcDfeecdO/LII0OHdu/e3T788EN/2/vvv28HHnigv16YBbWtP7K9orY7duzorRb6VVni165d67Yzf/78lNvT/5TpCdOiKtG+pfN7oCdWUynKlq+HRz755BO3uq5R76uels1GOeecc+yhhx7ym37mmWesR48eNnToUAs+PHDcccdZsmmu/AZYQAABBBBAAAEEsiygv7O/nLzYHvtskn01Jb1MJ/WqV7Izu21jJ+/ZwmpVqRjq6RZbbGF1qlVyf9o0qhHaF11RH1at32SLnAC5RSv/+lm4cn1ofZHWtc+po7qFKZ1b1LWL+rS1Hm0bmPpJQQABBBBAAIHkAnu3b2R3vBeboEEPww13srgf4zy8RkEAAQQQQAABBBBAAAEEEECgtAoQ45M776ySJiqw/JtvvnE7pWSDX3zxhe29994pdVL3IxRrFCx77LFHcLVAy0cccYRdfvnldscdd/jHq18HHHCAv57uQsWKFd32Ro4c6V6jjt+wYYN77fvss0+6zVE/QwIEuGcIkmYQQAABBHJXQH8wBUu8DOLB/cHlJ554IrhaZpaVCXvq1Kn+9WoqHgWKF6Qcf/zxfoC7jh80aFBMgPv+++8fehLyxRdfdP9wrFOnTkFOGTpGbSvw2StPPvmkXXzxxaY/TjNR9HTpggUL3KZmzJjhBvHXq1cv36Y/+OCDIn3Ss6C/B+vWrbPnnnsu3+vxKsjbC3DXtkceeSRrAe7t27d3H7rQ/2CovPHGG+759BRtsJx99tnBVZYRQAABBBBAAIEiF9DfYp+OW2CPDZ9kY2cuTev8jWtVsX/1aGXH77a1Va1UPq1j41VWkHmNyhXcn5YNqserEtq2RsHwfwfCBwPf/9q23hb+vW+xExS/bM0G99hKTpb4Li3r2vm92tieresT2B4SZQUBBBBAAIHkAq0a1rBWzr/RUxatiqn46bj5BLjHqLABAQQQQAABBBBAAAEEEECgNAkUNLZBBmU1xieb778SYXoB7jqPYn5SDXBX7MjMmTP97ikj/LbbbuuvF2Zhr732Ch2+aNGi0HpBV9SuguW9kql2vfZ4TU+geOYkTq+P1EYAAQQQQKBQAvXr1zdllvbK119/Hcro7m2Pvmpam7L6x+/gwYNDHMcee6xpyp+CFD05qac6vaKM3l5AuLdtl112sW7dunmrbuD3+eef768XZuGwww6zli1b+k1MmTLFbrnlFn+9sAvqu1f0P1qvv/66t5rwVU953nzzzQn3Z2NH48aNQ80G/yAP7Yis3HjjjRbN/h6pElo944wzQtnSR40aFXrAIFQ5Ayvnnnuu34oy6esJ3WCA/Q477GC77767X4cFBBBAAAEEEECgKAU2bc6zt8fOsQMeHmVnv/B9WsHtW9erZncfsYONvKqXneFkbs9EcHtBrl3nbe70Zeet69o+Hbd0A+0vdDKy33rY9vb4ibvYa+fsaZ9d3svG3ryv/XHHAfbtdX3s91v3s5fP2sO6tiFre0HMOQYBBBBAAIE+HRrFRfhi0iJbu6Fws6vEbZiNCCCAAAIIIIAAAggggAACCOSIADE+OfJG/N2NM888M5TE5uWXX7Yffvgh305u2rTJrrrqqlC9s846K7RemJVo4HndunUL05x/bLba9U/AQloCBYtUS+sUVEYAAQQQQKB4BcqXLx8KcJ07d679+9//TtqpSZMmmQKjFYhc1srq1avdTNjB6z7uuOOCq2kt64/I/fbbzz9m48aN9tJLL/nr3oICvpVN0iv/+c9/7JJLLrHo07ne/ujrsGHDopvcdb3/N9xwQ2jf3Xffne9nwDtA5x8+fLi3GvN64IEHhrbddttttnDhwtC24Iqu/1//+ldKf/AHjyvscteuXUNNPPXUU6bPebLy9NNP2/3335+sSsw+Zd1XhvxgueCCC+zVV18Nbkq4rN85BcWnWvQARcOGDf3qDzzwQOgzQ/Z2n4YFBBBAAAEEEChCgfUbN9tr3820vg+MtIte+cnGz1uR8tm33bKGPXxcJydovKcbTF65QuGztqd88kJWVOb2Rk7G+QrlGXIsJCWHI4AAAgiUcYE+HbaMK7DamVnl6ymL4+5jIwIIIIAAAggggAACCCCAAAKlQYAYn9x6F5Vx/eCDD/Y7tXnzZjvyyCNt1qxZ/rboguJsFMw+duxYf1f16tUtmMDQ3+EsKAHmO++8E4r1CO6PLq9bt84eeeSR0ObOnTuH1pcvX24nnnii/fTTT6HtyVamTZsWipdSItBOnTolO4R9WRbgblOWgWkeAQQQQCA3BE455ZRQR6699lq74oorYjKJ60k8Bb/vuuuuNmPGDDfgul27dqFjS/vKG2+8YStW/BOA07p1a9ttt90KddnRAPlohng13rdvX7vssstC53n44YdNf4S+9dZbtmpV7LTMCtBWHb1fOj5R0ROlRx11lL9bf0zr/de0SR9//LHpj99g0R/kv/32m911113WoUMHO/3004O7Q8sKcN9qq638bXPmzDFN0TRixIjQH98KbFdmcWWq15RNKttss437WhT/adOmje25557+qfQe9+jRw804r74Fi/4nQ1n79T8XspJBOuWmm26yPfbYwz9k/fr1dvzxx7v/kzN69GjTk7rBovPrCV89iKDPm7LGp1o0O0Ci96dKlSp20kknpdoU9RBAAAEEEEAAgUILKKPqoNFTrdeA4XbVmz/b1EWxf8MmOsmOzWrb0yd3tg8v7mGHddqKIPFEUGxHAAEEEECgDAh0blHXalWpEPdKh41bEHc7GxFAAAEEEEAAAQQQQAABBBAoLQLE+GTmnVQcxqefflqgn2APnnjiCVOyQ69Mnz7ddt55Z3vuuediYnm+/vpr69Wrlx8X4x2j5IpNmzb1VkOviiM59NBD3RgaxfIo3kYB6tGihIkffvih7bXXXvbdd9/5uxs3bhwKwtcOxf0oseYuu+xiXbp0sXvvvdd+/PFHU/xKtOhczz77rBtTs2zZMn/3IYccYmqbUnwC8UfHiq8/nBkBBBBAAIGsCCgA9sknn7QxY8a47StoV4HsDz74oLVt29b9Q2zx4sU2derUUPCtAuFnz55tEyZMyEq/crHRaPC5Ap0LW5QNv1q1aqbs8Co///yz+5Sk/uANlnvuucdmzpxpr732mr9ZT1Pq6U8FMrdo0cLq1avn/oGsp0GXLl3q18tvQX+MKrP6yJEj/arKzK4f9a158+bu50CB33q4YeXKlX49nTdRqVChghtkHwygHzdunPXu3dsaNWpkW2+9tRtAryc9gw8OXHPNNabZBPSZK6qi/2HQ/0h4MxPo/Mccc4zVqFHD/T3Q06dynT9/vt8lPUWrKab0R3+qpWLFiu5TrcrcrwcFvKIHFfRTs2ZN11uv+p8D2axdu9arZq1atfKXU1lQRvwBAwaEHijQcXpPMjUNVSr9oA4CCCCAAAIIpCewfO0GGz1xkY2atMjmLl1j1StXsFYNqltL52cb56dVgxpWu1rF9BotptornGt56esZ9uwXU2zRytjB0WTd2m2benZB7zbWvW2D0IxGyY5hHwIIIIAAAgiUboGKzmwovdo1srfHzom50GHj5ttth23H3w0xMmxAAAEEEEAAAQQQQAABBBAoLQLE+GTmnVSweEGL4qq80qxZM3vppZfc2B0vgaQSiCrZ5AUXXOAGpletWtWN91mwYIF3mP96xhlnJMze7ldyFhQ4r1gu/WyxxRZussn69eub2lYQ+pQpU0KxJTpWGf8HDhzo1gm2FVz+/vvvTT+K01Hska5HsSQ6VrFiilmJJmps2LChPfroo8FmWC4GAQLciwGdUyKAAAIIFL2AAm6HDh3qZvmeOHGi3wE9sZcoeF3ZxO+4446E2aH9RkrRggK7FfAdLMq8XdiiIGlNWRQMXFcgfTTAXcHir776qmmKIz096QVi6/x6ijL43qXbp1q1arnZ2jW1kYLdg3+MK/A+0ecglfMoAP+2224zZS4PFv3hHu+Pd/1PhLLDJ8o8Hmwjk8tdu3a1Z555xs4+++yQrYL5403LpD/oFZAefZ9S6ZOy2uspWz1Z/fbbb4cOUaD/77//HtpWmBVlfVcGf2XIDxZdJwUBBBBAAAEEckdAf3+Nn7fCRkxY6PwssB+m/2kbN/8zQBqvp/WqV3KD3RXwHvxpWb+6Va1UPt4hRbrtz1Xr7XknY/ugL6fZ8rXhWXHy60ivdg3tfCewvUvLevlVZT8CCCCAAAIIlEGBPh3iB7jPWbbW/ZuqQ5NaZVCFS0YAAQQQQAABBBBAAAEEECgLAsT45N67fNBBB9lHH33kJlEMxsGsWbMmYfyHAsivuuoqNz4m3SvSPSUlaNRPoqKYlueff97Ut1SLYo8UKJ+stG/f3o0xU6JMSvEKlCve03N2BBBAAAEEik5AmbQ1RY2eHqxSpUrCE++xxx7uH2XeE4EJK5bCHS+88EIo8Hu77baz7bffPiNXGg2U11RAwQB27yR6CvP22283ZUE/7bTTQtMceXWCr1tuuaWdddZZ9u233wY3x13Wk5gK8Na0Q0cccYQp8D5ZUeb2iy++2J3iKFk97bvxxhvtnXfeMZklKjvttJO9//77brZxXWdxlFNPPdU+//xz69GjR8LT6/dDT9Aq+3ovJ+N7QUvt2rXdP/r10MS+++7rPgmbrK127drZDTfcYPocplvU32BRW8muMViXZQQQQAABBBDInoAym3/461y75s2fbc+7P7MDHh5l93443r6ZuiTf4Hb1aokTQK5A+Dd+mGUDPppg5738o9tGh5s+tK53D7MTB35t1//vFxs4aop9Nn6+TV20yjZs2py9C/q75QXL19qd7/1ue937mT3y2aSUg9v1J+AB2ze2dy/sZoNO343g9qy/U5wAAQQQQACBkivQa9tGVr5c/PEjZXGnIIAAAggggAACCCCAAAIIIFCaBYjxyb13t2fPnjZp0iS77rrrrGnTpgk7qJiTfv36uYkWlfwxv6JYm8cee8wNVK9Tp05+1d1zX3nllfbHH3/YYYcdFre+2lGix1tuucX22msvq1y5ctx6wY077rijPfLII/bzzz+7iTmD+1guHoEtnCcdkqfKKp5+cVYEEMiQgIITg8Gpv/76a9Lgy/xOu3HjxpgMym3btjVlXaYgUJIElLF61KhR7h9ey5Ytc6eq0ZN3Cm7XH8mU3BHQNEAKXp88ebItXLjQlG29Ro0a7lRECibXk5MFDRbX1ElfffWVO82R2taTmjVr1nQ/A/ruVGbwghQF56vPempV35tNmjSx3XbbzTp27FiQ5rJ2jKZZUpb1uXPnmiz0B74Cw5XpvVq1ahk/76pVq9zz6QlbTVel91aZ9bfZZhvT/yhoGqiCFmXP14MRXhkwYIAVZrotr51kr/ybmEyHfQgggAACZVVAw0x/zF9pw50M7crS/v20/LO0Z9qqghMI1rxetVDG91ZOBviWzk/jWlWsXIJAsVT6MXPJanv688n22vezbP3G1APpFZx22E5N7bzera1No5qpnIo6CCCQRYFMj5dlsas0jQACjkBZ/p099umv3AcDox+ETs3r2JDz94puZh0BBBBAAAEEEEAAAQQQ8AW4l+lTsFAKBIjxyc03ccyYMe64jWJjFHPSsGFDU+xVt27dChxz4t5ncgLXJ06caDNmzLDly5e7sSWK5WncuLEbW7Lttts693rSy+2t/v3+++9unJhiZPSZUqyRYlZatmxpnTp1cuOQMi2dre/isjJeRkRqpj+RtIcAAgggUCIEFCB9wAEHlIi+lvVOasqiPffc0/3JtIWe0CxMhvJE/enQoYPpJ9eL/kjXT1EVZcxXJvdMFwXKa9opryhTvzLVUxBAAAEEEECgaARWrttooyctcgPaR0xYaHOXrS2aEyc4y8bNeW4md2Vzj5YqFctZy/rVrVXD6n8HwNdwXhUMX8PqVquY8MHJSQtW2hMjJtnQMXNsk9N+qqVS+XJ21K7N7NwerW3r+pl/gDDVflAPAQQQQAABBEqmQN8OW8YNcB87a6ktXOHcOK6Zf/axknnl9BoBBBBAAAEEEEAAAQQQQACBfwSI8fnHIpeWFBSun0wWBZ0rMaN+MlkUH7Tzzju7P5lsl7ayK0CAe3Z9aR0BBBBAAAEEEEAgywLvv/++KSu8Vw4//HD3yWBvnVcEEEAAAQQQyKyAsmdMdAK+laF9+PiF9v30JbZhU+pB35ntTXqtrd2w2cbPW+H+RI+sXbWiG/TuZXvfxsn4XscJen/l2xn2wa/zLJ05EKtWLG8n7r61ndW9lTWuXSV6KtYRQAABBBBAAIGUBPp0aGR3vj8upq7+LtGMOcfs2jxmHxsQQAABBBBAAAEEEEAAAQQQQAABBBAoDQIEuJeGd5FrQAABBBBAAAEEyrDAfffdF7r6888/P7TOCgIIIIAAAggUXmCVl6X9j4U20snSPnvpmsI3+ncLW9aqbHu1aWDrNm62qQtXudnX12zYlLH2U21o2ZoNNmbmUvcn1WOi9WpWqWCndW1pp++1jdWrXim6m3UEEEAAAQQQQCAtgVYNa5gevpsSZ2aaYePmE+CeliaVEUAAAQQQQAABBBBAAAEEEEAAAQRKkgAB7iXp3UrS18mTJ9u3337rZi9dv3691a1b19q3b29du3a1KlWKL1PYnDlz7KuvvrJ58+bZ0qVLrXp1ZwrwbbZx+9WwYcMkV5S7uzZu3GjffPON/frrr7Z48WIrX768NWnSxDp37mzbbbdd7nacniGAAAIIIFAKBQYNGmRffPGFf2W77rqrde/e3V9nAQEEEEAAAQQKJqAs7ZPcLO0LbcQfC+zbqZnL0l6+3BbWuUVd69WuofVu18jaN65pmnLSKzr3/OXrnECulTZt0Won4H2lG/SuwK4Zi1fbxs25ly2+vhPMfka3bezkPVtYrSoVvUvhFQEEEEAAAQQQKLSAsrhPGTU1pp1RExfZWuehwCrOzDEUBBBAAAEEEEAAAQQQQAABBBBAAAEESpsAAe4l/B0dMmSI3X777fbjjz/GvZIaNWrYaaedZjfffLM1aNAgbp1Mb9y8ebO9+uqrpmyqY8eOjdu8blzvs88+dtNNN9lee+0Vt06ijQpkO/300xPtznd7z549bcSIEfnWi1ZYuXKl3XPPPfbkk0/akiVLorvd9Xbt2tnVV1/tmgdvzsetzEYEEEAAAQQQSEtg7ty59ttvv7nHLFiwwD799FN74YUXQm3cdtttoXVWEEAAAQQQQCB1AWVp/3LyYhsxYYHzk9ks7Y1qVvYD2vdq2yBpELj+f7px7SruT9fW4f5v3LTZZv25xqYudjK9/53tfaoT+K6fTGaVD5818VoTp5//6tHKjuuytVWtRHBZYin2IIAAAggggEBBBfZuv6U9EyfAffX6Tfb1lMXO31iNCto0xyGAAAIIIIAAAggggAACCCCAAAIIIJCzAgS45+xbk7xj69atszPPPNNefvnlpBUVlP3YY4/Zf//7X3vjjTesR48eSesXdqeCzY444ggbPXp00qaUje3jjz+2Tz75xK644go3cLxcuXJJjynOnb/88osddthhNnVqbJaUYL8mTJhgZ5xxhust89q1awd3s4wAAggggAAChRD46KOPkj7kdtRRR9kBBxxQiDNwKAIIIIAAAmVLQP9vPtkJEvcC2pWlfb0TQJ6J4mZp37qu9fw7S3uHJuEs7QU9R4Xy5axlg+ruT+924VaUwXS6k+FdGd+V7T0YAL941fpw5UKutahfzfr3bG2H77KVVa5AYHshOTkcAQQQQAABBJII7NqyrvNwYAVbvnZjTK1h4xYQ4B6jwgYEEEAAAQQQQAABBBBAAAEEEEAAgdIgQIB7CXwXlSH92GOPtaFDh4Z6X758edt6663doGoFYi9btszfv3DhQjfgS5lO99xzT397JhfmzZtne+yxh02fPj3UrDKvtWrVyurVq2eLFi0KBYnrZvqAAQNs+fLl9tRTT4WOy5UVBa3vvffebt+DfVJ2fF3XmjVrbNq0abZhwwZ/twLwFGD32WefWZUqVfztLCCAAAIIIIBAdgR23313e/bZZ7PTOK0igAACCCBQigRWr99oXzlZ2of/naVd2dAzVRoqS/u2Dd0gq25OlvbaVStmqumU2qlSsby1a1zT/YkesGzNBpv2d6Z3N/jdXV7pBsGvcrKfplq23bKGnd+7jR20QxNTsD0FAQQQQAABBBDItkBF528OZWl/e+ycmFN9Nn6B3ebcZ2FG2RgaNiCAAAIIIIAAAggggAACCCCAAAIIlHABAtxL4BuogPBocPu5555rN954ozVt2tS9IgXBq84ll1xiM2bMcLetXr3ajjnmGPv1118znll848aNbtvB4HYF3F966aV22WWXWZMmTXzpmTNnuhnbn3zySVOAu8rTTz9tCkw7/fTT/XqpLlx55ZW27777plrd6tatm3JdXdfRRx8dCm5XoP6DDz5oxx9/vFWs+NfN+iVLltgDDzxgd999t8le5auvvrKrrrrKHnnkkZTPR0UEEEAAAQQQSE1AN25r1apl22+/vR133HF2zjnn+P8up9YCtRBAAAEEECjdAvr/7UUr19uUhSvdLO16HT9vhWUyS3u5Lcw6t6jrBlz1dALbOzapZeW0MQeLgu13al7H/Ql2T04LV64LZXtXALyC4ZUN3sto38k5tn+v1rZPhy1z9hqD18UyAggggAACCJQugT4d4ge4z166xv0br4PzdxgFAQQQQAABBBBAAAEEEEAAAQQQQACB0iRAgHsJezcXL15sd955Z6jXCqq+5pprQtvKlStnhx9+uO22227WrVs3N8O4KsyaNcsNxL711ltD9Qu78uKLL9qoUaP8ZnT+V1991Y466ih/m7fQvHlze/zxx22XXXaxs846y9ts1157rRskX716dX9bKgsdO3a0vn37plI17TrPPfec/fLLL/5xCo7XdeqcwaKg9zvuuMPdfuKJJ/q7FMR/4YUXWtu2bf1tLCCAAAIIIIBAwQROO+000w8FAQQQQAABBP4RWLthkxuIrQB2BWZPXuAEtDuvWl+xduM/FTO01KCGk6W9nbK0N7TubRpa7WpFm6U9Q5fhN6OH5hrVrOL+7N6qvr9dC5s259m85WutYvm/6oR2soIAAggggAACCBShQK9tG1l550FC/X0SLcPGzTcC3KMqrCOAAAIIIIAAAggggAACCCCAAAIIlHQBAtxL2Dt433332YoVK/xe9+jRw66++mp/Pbqw1VZb2cCBA0MB4Mo+ftFFF1n9+uEbt9Fj01m/5557QtUV1B0vuD1Y6cwzz7TPP//cXnjhBXfz/Pnz7aGHHrLrr78+WK3YltevX+8GrQc7cP/998cEtwf3n3DCCfbBBx/YSy+95G5WBvhbbrnFXn755WA1lhFAAAEEEEAAAQQQQAABBBBIWcDNMr5inZuJfbIC2Rc6AeyL/nqd9edqixPnlHLb+VVUQvadt65rvd2g9kY5naU9v2tJd7+CyLaqUzXdw6iPAAIIIIAAAghkXEAPFe7qzJzzzdQlMW1/Om6BXbA3SXZiYNiAAAIIIIAAAggggAACCCCAAAIIIFCiBQhwL0Fv3+bNm+35558P9VjB08o2lqz06dPHunfv7mdYV4D8a6+9Zv379092WMr7xo8fb3/88Ydfv0KFCnbVVVf568kWFMyu7O+6Wa/yzDPP5EyA+0cffWQzZ870u9+yZUs7/fTT/fVEC15Au3dNr7/+uj3xxBNWu3btRIewHQEEEEAAAQQQQAABBBBAAAFTNvapbvb1vzKwuxnZnYD2qU5A+4p1mc/Gnoi8QY1K1mPbhk5QeyPr3raB1alWKVFVtiOAAAIIIIAAAggUkUDfDlvGDXAfO2upLXQehmxYs3IR9YTTIIAAAggggAACCCCAAAIIIIAAAgggkH0BAtyzb5yxM3z55Ze2cOFCv71WrVpZr169/PVkC8qWPmrUKL/KkCFDMhbgPnLkSL9dLey6667WtGnT0LZEK9tuu63pZ8KECW6V6dOn2w8//GCdO3dOdEiRbR86dGjoXApuz+9hAh3QunVr69mzp40YMcI9fsOGDfb+++/b8ccf767zHwQQQAABBBBAAAEEEEAAgbIroIeh5y9f52RhX2mTnWD2yQucTOxuUPtKm710jfMAeNHbKEt7p+Z1rJcT0K6g9u2a1rJy2khBAAEEEEAAAQQQyBmBPh0a2Z3vj4vpj/5+HD5hgR2za/OYfWxAAAEEEEAAAQQQQAABBBBAAAEEEECgpAoQ4F6C3rn33nsv1Nt99tknpYBrHaS6waLg61WrVln16tWDmwu0PGPGjNBxO+20U2g9vxXV9wLcVfftt9/OiQD3qPe+++6b36X4++XtBbhr47vvvkuAu6/DAgIIIIAAAggggAACCCBQ+gXWrP8rG/tkJ5B9ipOBfcqiv1+d9VXOvuIu9atXsp5Olvae7Rpaj7YNra6zTkEAAQQQQAABBBDIXYFWDWvYNg2quzP+RHs5bNx8AtyjKKwjgAACCCCAAAIIIIAAAggggAACCJRoAQLcS9DbN2bMmFBvu3btGlpPtqKM6i1btrRp06a51davX2+///67denSJdlhKe1bvHhxqF69evVC6/mt1K9fP1Tlp59+Cq0Xx8r8+fNt3rx5/qkrV65su+yyi7+e38Jee+0VqhJ970I7WUEAAQQQQAABBBBAAAEEECjxAgtXrHMzZw4fv8B+nrXMzcaeKxdVu2pFa9WwurVqUMPablnD9mxV33bYqjZZ2nPlDaIfCCCAAAIIIIBAigJ92jeygV9Mjak9auIiW7thk1WpWD5mHxsQQAABBBBAAAEEEEAAAQQQQAABBBAoiQIEuJegd23cuPDUkx07dkyr96rvBbjrQLWXiQD3cuXKhfqxaVN6meg2bNgQOj56naGdCVZ0zilTptjChQvdrPYKmm/SpInVrFkzwRHJN0f70KZNG6tUKfVsdtH3ZtKkSbZx40arUIFfueTy7EUAAQQQQAABBBBAAAEESoZAXl6e/TZnuX3mBLQPc37GzlxarB0vX24La1Gv2l+B7E52z1ZOds/Wjf56redkZ99iiy2KtX+cHAEEEEAAAQQQQKDwAn06bBk3wH21M0PQN1OXuDP0FP4stIAAAggggAACCCCAAAIIIIAAAggggEDxCxBtW/zvQUo9WLNmjc2YMSNUt3nz5qH1/Fai9SdMmJDfISntj2ZsX7BgQUrHeZWi9adOnWrr1q0zZU1Ppdx111120UUX2YoVK0LVFXi/ww472D777GMXXHCBtWjRIrQ/2UrUJmqX7Fjta9iwoVWpUsXWrl3rVlXGfF1X27Zt8zuU/QgggAACCCCAAAIIIIAAAjkqsMYJHPpy8iI3oP2zcQts3vK//p+vKLtbt5qysdew1srI/ncgu163doLbK1UIP4BelP3iXAgggAACCCCAAALZF9i1ZV2rVaWCLV+7MeZkw8bNJ8A9RoUNCCCAAAIIIIAAAggggAACCCCAAAIlVYAA9xLyzi1atMiUHc4rFStWtEaNGnmrKb1utdVWoXrRwPLQzjRWWrVqFar93XffhdbzW/nhhx9CVZSNXdcb7W+oUmBl4sSJgbV/Fjdv3mxjx451fx566CE766yz7IEHHrCqVav+UynBUtSmWbNmCWom3ty0aVM3q7xXQ20S4O5p8IoAAggggAACCCCAAAIIlAyBOUvXuFnalal99KRFtm7j5qx3vIKysddXNnYnA7sTyN66gRPQ3sgJaHde6zrZ2CkIIIAAAggggAACZVOgYvly1rNdI3tn7JwYgGHOA5i3HprHzD0xMmxAAAEEEEAAAQQQQAABBBBAAAEEECiJAgS4l5B3beXKlaGeVqtWLe1ByurVq4faiLYZ2pnGSvfu3UO1f/vtN/v1119t++23D22Pt/L555/b7NmzY3Zlqm9ewxs3brSnnnrKRo8ebR999JE1adLE2xX3NXr+qF3cgyIbo8dE24xUT2lVQfILFy5Mqa5XadKkSd4irwgggAACCCCAAAIIIIAAAvkIbN6cZ2NmLTVlaB/mBLWPm7s8nyMKvru+E6yuAHYFrnsB7Fpv7mRjV/ASBQEEEEAAAQQQQACBqEDfDvED3Gc7D2aOn7fCOjSpFT2EdQQQQAABBBBAAAEEEEAAAQQQQAABBEqcAAHuJeQtiwZHV6lSJe2eRzOXR9tMu8G/D1BW8o4dO9rvv//uN3HttdfaO++846/HW1CG9euvvz7eLkulb506dbKDDz7Yunbt6p6/QYMGVqlSJVuyZIn98ssvbiD7M888Y8uWLfPPoe2HHHKIjRw50qIB6H4lZyF6/lzxfuKJJ+zWW28NdpVlBBBAAAEEEEAAAQQQQACBQgqsWLvBvpi4yA1oH+4EtS9etb6QLf5zeMXyW1jL+k4QuwLZlZG9gZORvZET0O4EtdeuVvGfiiwhgAACCCCAAAIIIJCCQK9tG1l5Z8afTc6DmdEybNx8AtyjKKwjgAACCCCAAAIIIIAAAggggAACCJRIAQLcS8jbtnbt2lBPFcidbqlcuXLokDVr1oTWC7Ny+eWX25lnnuk38e6779o111xj99xzj78tuKDg9vPPP9+++OKL4GZ/OVnfdtllF/vhhx9Mr/HKlltuafrp27evXXfddXbGGWfYkCFD/Ko69qabbrJ///vf/rboQq57R/vLOgIIIIAAAggggAACCCCAQHoC0xevsmFOlvbPnID2b6Yutg2bYgOE0mvxr9oKZO/TvpHt0aq+tXYC2pvVrWoVyMZeEEqOQQABBBBAAAEEEIgjoIckd21R1/kbdknMXs1AdMHebWO2swEBBBBAAAEEEEAAAQQQQAABBBBAAIGSJkCAewl5x6IZxNevTz+b3Lp160JXG20ztDPNlVNPPdUGDx5sn3/+uX/kvffea6NHj7ZLL73UunXrZnXr1rVFixa5dQYMGOAGqatynTp1bOnSpf5xWqhRo0ZoPbiy4447BleTLuucb775ph199NH21ltv+XWVCf2yyy6zrbbayt8WXIja5Jp3sK8sI4AAAggggAACCCCAAAII5C+wcdNm+2H6n26WdmW2nLxwVf4HpVCjgpM9c/dW9Wzv9ls6P41sGydDOwUBBBBAAAEEEEAAgWwK9O2wZdwA9zEzl9qileusQY1wwqNs9oW2EUAAAQQQQAABBBBAAAEEEEAAAQQQyIYAAe7ZUM1Cm9GA72iG8VROGc2KHm0zlTYS1Slfvry98sor1qNHD5s8ebJfTRnaE2VpV6UKFSq4gfGHHXaYf4wWFPSeqVKuXDkbOHCgffbZZ34gvfxef/11u+SSS+KeJmqTK97nnXeeG6wft9MJNk6aNMn69euXYC+bEUAAAQQQQAABBBBAAIHSK7B09Xob+cdCN1P7iAkLbPnajRm52HrVK1mvdg2dTO1bWvdtG1itKhUz0i6NIIAAAggggAACCCCQisDeHRrZne+Pi6ma50xKpBmKjtm1ecw+NiCAAAIIIIAAAggggAACCCCAAAIIIFCSBAhwLyHvVjTgevXq1ZbnjFRuscUWKV/BqlXh7HTRNlNuKEHFpk2b2jfffGPHH3+8ffLJJwlq/bO5YcOGNmjQINtll13+2fj3UiYD3NWkMrmfccYZ9sADD/jn+vjjj1MOcI/a+Y0kWYgekwnvRo0amX4oCCCAAAIIIIAAAggggAACsQL6/+RJC1a6Wdo/G7fAvp++xDY7QT6ZKO0b17Q+TiCRMrV3al7HyjuZ2ykIIIAAAggggAACCBSHQOuGNdyZg6YuCt/3UV80WxEB7sXxrnBOBBBAAAEEEEAAAQQQQAABBBBAAIFMChDgnknNLLbVoEEDN5hdN+tVNmzYYAsWLLAtt9wy5bPOnj07VDcbgdL169c3BY5/9NFH9uSTT7pZ01esWBE6rwLhTzrpJLvsssvc/v/222+h/Woj0wHuOkGfPn1CAe4TJkwInTe4ErWZNWtWcHdKy3PmzAnVi7YZ2skKAggggAACCCCAAAIIIIBAgQTWbdxk305d4mZpV7bKGUtWF6id6EGVKpSzrq3rO1naG1lv56dZ3WrRKqwjgAACCCCAAAIIIFBsAvo7deAXU2POP2riItPfyJUrlI/ZxwYEEEAAAQQQQAABBBBAAAEEEEAAAQRKigAB7iXknapataptvfXWNn36dL/HM2bMSCvAXfWDpX379sHVjC7vt99+pp+NGze6fV64cKHbfrNmzUwB7uXKlfPP9/vvv/vLWth1111D65laad48PCWn16d47bdr1y60OWoX2hlnRQ8frF271t9TqVIla9Wqlb/OAgIIIIAAAggggAACCCCAQPoCeuh78ar1Nn3xaps4f4WNmLDQRk1caKvWb0q/sThHNKpZ2c/Svleb+latEsMmcZjYhAACCCCAAAIIIJADAn06bBk3wH2187fx11OWWM9tG+ZAL+kCAggggAACCCCAAAIIIIAAAggggAACBRPgTm3B3IrlKAWkBwPcFRjepUuXlPsybty4UN1sBrh7J6pQoYK1bt3a/fG2RV9/+eWX0KZsBbhXrFgxdB5lwU9UojaTJ0+29evXmwLVUylRaxnIgoIAAggggAACCCCAAAIIIJBcYMOmzTb7zzU23cnErmzsMxavcgPatTzT+clUMLvXix2b1ba9neyXfZ0AoY5NajkPZG/h7eIVAQQQQAABBBBAAIGcFdi1ZV2rWaWCrVi7MaaPw8bNJ8A9RoUNCCCAAAIIIIAAAggggAACCCCAAAIlSYCI2xL0bnXq1Mk++ugjv8dffvmlnXrqqf56soW5c+fatGnT/CoK9u7YsaO/XpwL7733Xuj0BxxwQGg9Uyvz5s0LNdWwYeLsJY0bNzb9eMesW7fOfvjhB9tzzz1DbSRaGT16dGiX3jsKAggggAACCCCAAAIIIIDAXwLL1mxwg9WVid0NYl+yyn3V+pyla2xzXvakqlUqb93aNHAztfdu18ga1aqSvZPRMgIIIIAAAggggAACWRKoWL6c9XL+nn1n7JyYMwwbt8BuPTTPttiChzdjcNiAAAIIIIAAAggggAACCCCAAAIIIFAiBAhwLxFv01+dPPjgg+3ee+/1e/zpp5+apmdPZYDy448/9o/TQu/eva1GjRqhbcWxMnHiRPvxxx/9U3fo0MH22msvfz2TC1988UWouebNm4fWoysHHXSQPfvss/7mTz75JOUAd9UNlkMOOSS4yjICCCCAAAIIIIAAAgggUKoFNjsR6vOWr/078/o/wevKwK7M7EtXJ55RKxswW9Wp6ga093GytO++TT2rUrF8Nk5DmwgggAACCCCAAAIIFKlA3w7xA9xnOw+NTpi/wto3rlWk/eFkCCCAAAIIIIAAAggggAACCCCAAAIIZEqAAPdMSRZBO127drUGDRrYokWL3LNNmTLFRowY4Qar53f6YKC26h522GH5HVIk+2+44YbQec4666zQeqZWNm7caIMHDw4116dPn9B6dOXQQw8NBbg///zzduONN+b7QMHkyZNt5MiRfnPKln/ggQf66ywggEDJFBg0aJCdfvrpfuf1nXDaaf/P3n2AR1G0cQD/k16BhCR0CARC772DdEFFULAi2MVPBHtXPgtWUD97AyuKIIgo0qT3XkMndEhoISQh/Zt3zzuu7LX0S/7zPOftzszOzv7uiHfJO++OMu1zgwIUoAAFKEABCpQ1gbSMbBy7oALWVdb1I+dSDBnZVfC6ZGQ/fj4NGdk5xUbipRJVtq4VhmtUwE/vhpURWznE6Xe5YpssT0wBClCAAhSgAAUoQIE8CvSIjYS3+vCbrXMLJMnizgD3PMLyMApQgAIUoAAFKEABClCAAhSgAAUoQIFiF2CAe7G/BK5PwMvLSwumfPfdd00HTZgwAT179nT4h/rFixdjxYoVpmNCQ0MxfPhw035xbcyaNQvTp083nT4mJgZjxowx7RfkxptvvokDBw5YDOksyL9///6oUaMGjh8/rh0XHx8PCWi9++67Lcax3nnllVe0zPrG+mHDhqFChQrGXT5TgAIUoAAFKEABClCAAhTwGIErmdnYdfKSClpXWdjPpans6/JsCGJPSE4vUdcRGuADCfDprYLae8RGITzYr0TNj5OhAAUoQAEKUIACFKBAQQtUDPJDm9phWH/4vM3Qi+LO4OFe9WzqWUEBClCAAhSgAAUoQAEKUIACFCjNAkxgWZpfXV5bWRPwKmsX7OnX+/TTTyMkJMR0GZIp/K233jLtW2+cOHEC1lnRH330US0TvHVf8/1y5cppQfPGZ8kU76zs27fPIrDbUX8Jbr/11lstunz66acICAiwqLPekT7//POPdbXD/UmTJuGll16y6CPZ2du0aWNRZ73j7++P559/3qL6iSeewO7duy3qzHd++ukn/PDDD6Yqb29vyCIEFgqUJYHXXnvN4udHu3btCuzyZ86caTF2VFQUMjMzC2z8kj5Qx44dLa5ffkab3zGipM+f86MABShAAQpQwHMELqRkYOJfcWjz6kIM+3Q1xv+yDZMX7cNvm09g45ELKAnB7UF+3mhctTzu7VoHP93XAZtf7IuPbmuNG1vVYHC757zVOFMKUIACFKAABShAgXwK9FELPPXK1mMXcfZyyVqUqjdP1lGAAhSgAAUoQAEKUIACFKAABShAAQpQQE+AAe56KiW4LiIiAs8995zFDJ999lkt8/nJkydN9Tk5OZg9ezY6d+4MyTxuLNWqVcPjjz9u3C3QZ5lXw4YN8frrr2PHjh3Izs62GF/2lyxZgptuuglDhw5FevrVX6yOHz8effv2teivt7Nu3Tr07t0bLVu2xBtvvIHNmzdbjGM8JjU1FX/88Qd69OihXW9ubq6xCZUqVYIEvbtS7rnnHjRp0sTU9cKFC+jWrRu+++47ZGVlmerPnz+PF198EXfeeaepTjYeeOABxMbGWtRxhwKlXWDkyJFaELbxOjdu3Ii4uDjjbr6ev/32W4vjb7vtNvj6+lrUldadPXv2QH4GWhdrE+t27lOAAhSgAAUoQAF3BC6nZ+HDxfvR/e0l+Hz5IaRkWH6vc2esgugbFeqPtioj5dDW1TG+Tywmj2iBmQ91xobn+2DXhP7469FueGFwY3SOiYCvN3/FURDmHIMCFKAABShAAQpQwLMEejeqrDth+bPIkj0Jum2spAAFKEABClCAAhSgAAUoQAEKMIFl3t8DkiXemDhYnnv27Jn3wXgkBShgV8DHbgsbSqyAZHFfvXo15s6da5qjZDb/4osvULt2bVSoUAGHDx/GxYsXTe2yERgYiOnTp6NixYoW9QW5I1ncX3jhBe0RFBSkzad8+fKQwHDJJp+SkmJzOskw/+6779rUO6rYtm0b5CEZ1n18fFCzZk3tuv38/LRzSVC/Xlbn0NBQLfA9JibG0fCmNgmc/fXXX9G1a1dIELsUeb7rrrvw8MMPQ8ZJS0vTvK3P1759e7evy3RiblDAgwVq1aqFXr16WdxtQRaFTJw4MV9XlZiYiL///ttiDPm3WFaKvUD2GTNm4KOPPoL8zGWhAAUoQAEKUIACeRW4kpmNH9cdxSdLDuCcyt5eVMVPBaXXCA9E7fAg1JJHpWDtuXalINQMC0KgytLOQgEKUIACFKAABShAAQrYF4iJDEGdiGAcPmv795fFcQm4uW1N+wezhQIUoAAFKEABClCAAhSgAAXKrIAksHzppZdgTBxrTGDZqFGjfJtYx7iUpQSW+cbjABSggEmAAe4mCs/Z8PLy0oKuR48ejZ9//tk0ccmQfujQIdO++YZkLZcgyC5duphXF+q2ZFF3lLVZAu4l4PXRRx/N1zwkk7oE9DsrHTp0wI8//qgFpTvra94u/9P+559/cMMNN+DIkSOmpsuXL2tB9qYKs40+ffpor5FcIwsFyqKABJ7Lvxtj+eGHH7S7O8jPr7yWn376yWLhSvPmzdGqVau8DudRx8ldOb7//nvdOScnJ2PmzJk2d5DQ7cxKClCAAhSgAAUoYCWQlZ2DmZuP44NF+3Ey6YpVa8HshgX5mgWvSzB7MGqqYHYJYq9cPgDeXuUK5kQchQIUoAAFKEABClCAAmVU4JqGUfh6pe3fSVbsT0R6Vjb8fbhwtIy+NXjZFKAABShAAQpQgAIUoAAF7AowgaVdGjZQgAIlRCDvkYYl5ALK6jQCAgIwbdo0LWi9ZcuWdhmCg4MxZswY7N69u9BvhTFq1CgMHjwYISEhducjDeHh4Rg7diwk27u7we0PPfQQxo0bh9atW0Oyqzsr4jRgwAAta/uaNWvcDm43jt+iRQvs2LEDzz77LMLCwozVNs/169fHl19+iQULFhRqpnybE7OCAiVMYNiwYRY/C44fP24R8J6X6UoWePNSlrK3L1y4ULsLhvH65a4S5kVufcRCAQpQgAIUoAAF3BHIycnF3O0n0W/ycjw9c0e+gtslQL2mysLepV4l3Nq+Fp4e0BCf3N4acx/piu2v9MOWl/rh9/90xf9ubYUn+zfE8HY10SmmEqpVDGRwuzsvGvtSgAIUoAAFKEABClDAjkDvRlG6LSkZ2Vh7yHB3Wt0OrKQABShAAQpQgAIUoAAFKECBMi1gHXsjCSwlCWN+SllOYJkfNx5LAQrYCjCDu62JR9VIEKk8Dhw4gHXr1mkBkBkZGVpwtWQel4ztEuTtbjHeesSd4yS4XR6SSV6Cwffu3YuTJ08iJSVFC0avXLkymjZtqmVc9vbOW7YQycIuDylynZIhXrK3y3kki3FmZibKly+vBaHHxsZq5/Lz83PnMuz2DQ0NxRtvvIEJEyZo1jt37sS5c+cg11K1alUt6L5Zs2Z2j2cDBcqSgCyuufnmmzFlyhTTZcvth+TuBnkpu3btwubNm02H+vj44I477jDtl/YN61s3vfLKK3j66aexadMm7dKXLFmCo0ePQlbXslCAAhSgAAUoQAFHAvJdb+m+RLw7fy92nbzkqKtFW6CvN6IjglUmdpWBvZI8B2kPycIugeq+3lw/bwHGHQpQgAIUoAAFKEABChShQLvocIQG+CD5SpbNWRfHnUGP2EibelZQgAIUoAAFKEABClCAAhSgAAUk7vDhhx/G5cuXNQxjAsu8xvfIIGU5gSXfURSgQMEKMMC9YD2LbbR69epBHiWhSMC3ZJV3lFm+IOYpgeuSWV0eRVkkc7xkT7bOoFyUc+C5KOAJArLK0zzAfdasWdoHYmd3edC7NusAb7kzQ1SUflYiveM9uS4pKQmzZ882XUL16tXRq1cvLcDfGOAugWryBeGFF14w9eMGBShAAQpQgAIUsBbYEH8eb/+9BxviL1g32d0vr4JkHugRg9FdohHkx18h2IViAwUoQAEKUIACFKAABYpRQBac9mwQhT+2nbSZxeK4BEy4PhflypWzaWMFBShAAQpQgAIUoAAFKEABCpRtASawLNuvP6+eAiVdgH+dLumvEOdHAQpQwEMFunfvjjp16mh3WZBLkLs5zJgxA6NGjXLriuSuED/++KPFMc7GSEhIgNxl4eDBg7h48SKysrIQHh6OKlWqaHeBkGdPKdOnT0daWpppurfeeiu8vLwgz0888YR21wxpLMgAdzFbs2YNTp06hbNnz2q3n6pYsSJiYmK0RUX5WVxw5swZ7S4Y8hrJ2HItMrbcdUMWRsm2pxS5i8fatWu1u4gkJiZCFm/I4gu5FntFVj3LHQn27Nmj3QVEXtsKFSogIiJCuxOIo2PtjemoXjL7b9y4ETI/ma8sDpN/Cw0aNNC85csqCwUoQAEKlH6BnSeS8O6CvVi6N9Hli5WM7Xd3jcb93WJQIcjX5ePYkQIUoAAFKEABClCAAhQoHoE+jfQD3E9cTMPeM8loWKV88UyMZ6UABShAAQpQgAIUoAAFKECBEi3ABJYl+uXh5ChQpgUY4F6mX35ePAUoQIHCE5CMQCNHjsSECRNMJ5EgbGfB6abO/24sWrRICyA21ktw7nXXXWfc1Z4lg/nKlSshweALFy7E3r17Ldqtd5o1a4bHH38ct99+O3x8Svb/CqdOnWox/TvuuEPbr1y5MuSWUPPnz9f29+/fj1WrVqFLly4W/V3dycnJwS+//IIPP/wQGzZsMAXOWx8vr2urVq00u9GjRyMsLMy6i81+RkYGvvrqK3z++efYsWMH5PXSK3IHkI4dO2rvkdtuuw1BQUE23V555RWL99SSJUvQs2dPm356FfHx8dqiC2ObfEmz9jW2yXN0dDSOHDmiVdWuXRtyvBQJ/p84cSL+/vtvZGZmanXG/0yePNkmwH3fvn2YNm2a1l+CzWXBhb0iiy8eeughPPLIIy7Z6o0jQfTyOsq1yfvCXvH394csRLnnnnswdOhQyB1KjEUC9Y3vLamT91bnzp2NzS49i02NGjUgixmkBAQEaP+WXXnPuHQCdqIABShAAacChxIvY9LCfZi7/ZTTvsYOvt7lcHuH2hjTKwZRoQHGaj5TgAIUoAAFKEABClCAAiVcoEdsJLy9yiE7x/Z3b5LFnQHuJfwF5PQoQAEKUIACFKAABShAAQoUkwATWBYTvBunlUSVErdx8uRJLZmkJGCU5JQSv5PfRIoSL7R7925s375dS56YnJysJU+Uc9SsWRP16tXTkihKAkt3iiR83LZtmzb2hQsXtOSegYGBKF++vBaP07BhQ218d8Zk37InULKj+sre68ErpgAFKFCqBCSA+L///a8poHnp0qWQjNK1atVy+TolKN68SOZyyUJtXp588km899575lUOtyXIWgLtJeh65syZ2oc+hwcUU6MEJ69evdp09qZNm2oZ1I0VEuxuHoT87bff5inAXbKJDx8+XAs+N45t71mC0zdv3qw9Ll26BAk4d1QkGFxeM2OguKO+kq1fPpDLQxYeyGtU0srbb7+NZ555xvSedja/uXPn2izIcHTM6dOn8fLLL+OLL77ArFmz0K5dO0fdbdp+//133HvvvdoXGptGq4r09HRtQYgsCrFeKPDAAw9YvLfk34q7Ae5z5swxBbfLqW+66aY8B+1bTZ27FKAABSjgROCkytD44eL9+HXTcd3gFr3DVRwMbmxVA+P61EfNcNtFZnrHsI4CFKAABShAAQpQgAIUKDkCFYP80KZ2GNYfPm8zqUVxZ/Bwr3o29aygAAUoQAEKUIACFKAABShAAQowgWXJfQ8sX75cSwIpz/aSKUoA+pgxY/Dwww/bxFM5ujKJ+XnzzTe15ImnTjlOliVB6bIQQuKURowY4WhYHDhwQIsV++2335CSkuKwb7Vq1dC/f3/cf//9WkJMh53ZWCYF3FtWUSaJeNEUoAAFKJBXgTp16mgfcIzHS3D0999/b9x1+iyrAiXI17xI0Lx1uXLlinWVFkjbqFEjdOjQAS1btkTVqlVt+kjW92uuuUZbJWjTWAIqJGDdvEjGefMyZMgQiyznksFeVkC6UySwuVOnTrrB7ZGRkWjevDnatm2LunXrwt3VmD///DN69eqlG9wur4esJG3durVbCx7cubaC7isZ6J9++mlTcLsstJCVsBKEXr16dciXPuui996UFalyXJs2bTRb+XdibXvixAktM31cXJz1kHb3J02apGViP3v2rEUfmZesqpXzyb8F+YLgrMhdEsz7yXtLvty4U7788kuL7vfdd5/FPncoQAEKUKDgBc5dTserc3ej57tL8fOGYy4Htw9oUgXzx3XHe8NbMLi94F8WjkgBClCAAhSgAAUoQIEiE+jTKEr3XFuPXcRZ9X2BhQIUoAAFKEABClCAAhSgAAUooCcgsTjmMQ/GBJZ6fe3VuZrAUgKlP/roI+zdu9feUKZ6YwJLiT0x3j3e1FiKNzIyMjBy5Ej06NED//zzj93gdiGQgPLHHnsMkjRTEly6UiSzusRUTZw4Ec6C22U8iReRBI+PP/64w+ElJkzmIc/OgttlIMlIP2XKFO394HBgNpZZAQa4l9mXnhdOAQpQoGgErAPSrT/QOprFr7/+ahGw3bhxY7sZrUNDQzF69GjMmDFD+wB0/vx57TY3a9euxZYtW7S648ePa6sPK1asaDrtrl27tIzcpooSsiG3ADJfDCBfJKwD3OV2QBLkbixJSUmYPXu2cdfpc3x8PIYNGwa5lZGx+Pv7ax9IxUW+HMiH2g0bNuDgwYOQ8RcsWKCtnJRzOypyjLz2kiXcWGRF56uvvorDhw9rr4dkgt+0aZMWAC+vl8z9tttuc2tFqXHswn6W+Y0fP147jQTnf/3111qWdPnCtX79esh7S4z69OljMxVvb28MGjQIEiAvWfkvX76sfVHbuHGjZnvo0CHtNfjhhx8sbh2VmpqqecjCEGdF7OSLhLxvjKVy5cr48MMPNWu5c4KcT/4tSPD8mTNn8NNPP+H666+3Ca6X4yWD/j333GMcSvviIf1dLZKxXzLDG0uDBg0sFrsY6/lMAQpQgAIFI3DpSiYmLdyH7m8vwdcrDyMj6+r/DxydoVv9CPz+cBd8dmcb1K8c6qgr2yhAAQpQgAIUoAAFKEABDxDo3aiy7izl10tL9iTotrGSAhSgAAUoQAEKUIACFKAABSjABJYl5z0gcTYSY2IeM2ScncSrSJJKSaro6+trrNaeJR6la9euWlyIRYPVjsSL9O7dW4slMW+SOJGYmBgtLksSPco5AgICzLs43JYYEes4ITkgKCgIEu/VsWNHLRFmdHS0bpyKw8HZWGYFGOBeZl96XjgFKECBohG4+eabERwcbDrZvn37IEHnrhTrDObWwfLGMSSwXQKMv/nmGy1gWy9bu/SVLNuSgXvr1q2QD+fGIpmmJYC5JBXJrC5BycYiK1glC7d1kdv/mJepU6ea7zrclmDyCxcumPpIxm4JTH/33Xe1D5emhn83JKi9b9++WqC2BDCbB9eb95UP28OHD4esKDUW+bC6c+dOvPDCC5APq9YlLCwMN9xwA3788UdIwLdklS9JRe4mINnxZQWrBObffffdkEUV5kXeU7IS1bxI1nQJfJeVrHJLJbk1lHW2dukvY8kCBllQcO2115qGkPfq33//bdrX25AvH/JvwLx069ZNW5n7yCOPoEqVKuZN2nZUVBRuvfVW/P7775As8TIv6yIZ1yU431isM7Ib6/We5d+iebD9vffeq9eNdRSgAAUokE+BK5nZ+GL5QS2w/cPF+5GSke3SiK1qVcRP93XA9/d0QIuaFV06hp0oQAEKUIACFKAABShAgZIvUDciGNGVgnQnujiOAe66MKykAAUoQAEKUIACFKAABShAAU3AOiaHCSyL543x3HPPYdGiRRYnl/gciSeRjOcS1yPJGE+fPo23334bgYGBpr7nzp2DxGlJ4kV75b///S+kn7HUrVsX06ZN0xIzSjZ4SfIoDzmHjCMJMidNmoTOnTtbZPk3Hm98HjduHMwTOErWfbkTgGR/lzHWrFmjxdtIUkwZd/Xq1VoMkZyfhQL2BHzsNbCeAhSgQJEIXDhSeKcpXx3wduHHXNIJICercOYRojLm+Lqwmi35DJB1JX9zCKudv+ML6WgJih46dKjFykL5ECwr8xwVyS6+YsUKUxcJtL3zzjtN++YbEkTsTqlduzYkWNeYbVsCl3/++WeMGTPGnWEKta91oLp1ILvx5BJwLsHKxlsxyYdcydAtwfyOimRilw+PxiKZ2yWQulmzZsYqh8/h4eGQh16RhQny+hlLpUqVtA/f9hYeGPsZn53N3divqJ9l9ev06dN1A8btzcV8IYW9Pub1svpVVuHKB3jJmC9Fbsc0cOBA824W2x988IFFFv769etj3rx5FgtLLA6w2pFVt3pFFlTIeSU4X4oE9sujdevWet1NddnZ2dpiE2OFn5+ftkrXuM9nClCAAhTIv0Bmdg6mbzwGCWo/cynd5QEbVgnFE/0aoHejKIe/gHJ5QHakAAUoQAEKUIACFKAABUqUgNwFUrK4y52drMuK/YlIz8qGv8/VhAbWfbhPAQpQgAIUoAAFKEABClDArgDjeww0pTi+RwKjJYleSkqKdq3GBJbO4nukszsJLN944w2UL1/e4Gnnv8YElrfccgskUFqCoqVIrM/LL79sN17FznAeUy3B65MnT7aY70svvYQJEyZY1MmOxOw8+eSTuOaaa7SHBJJLkSSMknzy/fff1/at/zNjxgxTVWRkpBY7JHFHekVitSShpTzGjx+vJVDU67d7927Iw1jkNZP4Jb0EkNJHgvIl8aU85NoksJ6FAnoCLkR+6h3GOgpQgAIFJPBB8wIaSGeYR7cDrgR9fzMASDqqM0ABVN2lAkPrdHM+0Iy7gSMrnfdz1OMVQzCsoy7F1TZq1CiLAHcJJpcPUhL4aq9IELz5yj4J5HY1QNremOb1crsdGe/UqVNatawMLCkB7pIt/LfffjNNV4LP5YuEXpFbBMkH+g8//FBrlqzZEiD9zDPP6HU31Vl/kH3qqadcDm43DWJnw3psWTFakK+dndMWevWIESNsMrQXxknlS4gElsu/Eyny3rRXJEv+p59+atH82WefuRzcbnGgzs6DDz5oCnCXZvmyaH0+68NkoYTcUcFYJDO/fClioQAFKECB/Avk5OTij+0nMWnhPhw5l+rygLVVBsfH+sbiuubV1C+Syrl8HDtSgAIUoAAFKEABClCAAp4nIAta9QLc5Y5P6w6dR/dY/p7G815VzpgCFKAABShAAQpQgAIlQIDxPYYXoRTH9zCBZfH/O5PgdvNYqcGDB+sGt5vPVJKCfvHFF1rskLH+q6++0o6rUKGCsUp7vnjxoimBplQMGzZMS6pp0cnBTqNGjXRbZTGEeXnggQfsBreb95NtCYK3l5jRui/3y56AV9m7ZF4xBShAAQoUtYCszJOs6cZy4cIF/PHHH8Zd3WcJ0jYvEiRf0CU6Oto05JYtW0zbxb3x66+/IjX1atCafGC1/tBpPkfr7O7WK2PN+8p2ZmamdhsgY70EyRdUcL8ENsfFxRmHhmRvv/322037nrxx6623Ftn0zTO/S0b+xMRE3XPLbaHkC4ixNG3aVFuZa9zP77ME2teqVcs0zE8//WTx3jQ1mG3IFyXzct9995nvcpsCFKAABfIgIL/IWrT7DK79cAUe/Xmry8Htlcv74/Ubm2LRYz1wQ8vqDG7Pgz0PoQAFKEABClCAAhSggKcJtIsOR2iAfn6rxXFnPO1yOF8KUIACFKAABShAAQpQgAIUKEIB69gcScwnifcclaJKYGmcg6MkgcY+nvgssR8zZ840TV3u0vbee++Z9h1tSMJG80z7koVf4jusS1pamkWVr6+vxX5edwpr3LzOh8eVHgEGuJee15JXQgEKUKDECsiHrjvvvNNifvIB116RD6Pmt5+pWLEiJAu0KyU+Ph6SMVwynsvKQckcLRnQZQ7WjzVr1piGPHv2rGm7uDemTp1qMQVnAeLt2rWzWM24Z88erFu3zmIM852NGzfC/MNlq1atUKVKFfMued5esWKFxbFyKyTxLw2lffv2+boM+TLy9ddfY/To0WjdurWW1T44ONjmfSnv04kTJ1qcy97709pbAtILsshKWfMAdbml1S+//GL3FKdPn7bI+C6B+n369LHbnw0UoAAFKOBcYM3Bcxj26Wrc+91G7Dmd7PwA1aNikC+eu7Yhlj3ZC7d3qA1fb371dwmOnShAAQpQgAIUoAAFKFAKBOTzfw87WdoXxSVYZIIrBZfLS6AABShAAQpQgAIUoAAFKECBAhRgAssCxHRzKIlhMl9M0LVrV4tYIGfD3X333RZdli9fbrEvOxEREfDz8zPVz507F0lJSab9vG5Uq1bN4tAff/zRYp87FMirAP/KnVc5HkcBClCAAm4JWK/ynDdvnt2s1NYZyGWlYUBAgMPzHTlyBEOGDEHdunXx9NNPY8aMGZBAbwkMNv8AaG8Q8yzY9voURf2hQ4ewcuVK06nCwsIwaNAg0769DesgeGtD8+MOHjxovou2bdta7OdnpzDHzs+88nus3IpLPujnpcjK2KeeekpbRHDvvfdCFjDIHQMkGNw8U7+jse29P4vC+5577oFk+TeWL7/80rhp8zxlyhRkZWWZ6uVYCdhnoQAFKEAB9wW2H7+IO79eh1u/XIvNRy+6NECQnzfGXlMPy5/qhfu7xyDA19ul49iJAhSgAAUoQAEKUIACFChdAn0aVda9oBMX07D3jGsLZ3UHYCUFKEABClCAAhSgAAUoQAEKlGoB+fs+E1gWz0tsnchSEkq6U3r37m3Rfe3atRb7siMZ23v06GGqP3z4MGRRw/z585GTk2Oqd3ejQ4cOKF++vOmw3377DcOHD8eOHTtMddygQF4EGOCeFzUeQwEKUIACbgvExMRAVhcaS2ZmJqZNm2bcNT2np6dj+vTppn3ZuOuuuyz2rXfWr1+PFi1a4Pfff89zBiJXguCtz1sY+xKYnpubaxpaMtGbr540NVht3HHHHRY1cpsosdQr58+ft6iOioqy2M/PTmGOnZ955fdY8w/i7owlCyw6deqEd955x+7r4cp4xfFaGudVtWpVXH/99cZdyKrh3bt3m/aNG/K+lQz1xuLt7a1lqzfu85kCFKAABVwTOJCQjAe/34TrP1qFFftdu8OMn8rQeHeXOlpg+2P9GqB8QMHcTtC1GbMXBShAAQpQgAIUoAAFKFDSBHo2iIS3l37SgcUqizsLBShAAQpQgAIUoAAFKEABClDAngATWNqTKdx6SexpXpo3b26+63RbEoKGhoaa+h07dswi/sjY8OKLL8LL62rYsCRoHDBgACQLu7z2krRx7969xu4uPUvSUklGal5+/fVXyDU0btwY48aNw6xZs7REkOZ9uE0BZwJX03E668l2ClCAAhSgQD4FJFDdPDu5BHOPHTvWYlQJUjfPVh0bG6sFCFt0Mts5d+4crr32Wptb5siHpG7duqFevXrah7DAwEAtC7x5NunHH38c27dvNxuteDclQPi7776zmER0dDQWLVpkUWdvp06dOpDVlVIuXLiAOXPmQALkrUtysmWWJslOXlClMMcuqDnmZRxZxZqXIv7WK1Jr1qyprYCVD/E1atSA+Mv70/wLhLwPvv/+e6enLCrvBx98ELLC1lgki/vkyZONu9rzkiVLYJ5RXu48YH0bKosDuEMBClCAAhYCx86n4v1F+zFry3HkXF3rZtHHekcCVm5uUwOP9K6P6hUDrZu5TwEKUIACFKAABShAAQqUUYGKQX5oUzsM6w+ftxFYHHcGD/eqZ1PPCgpQgAIUoAAFKEABClCAAhSggAgYE1ga43uMCSyt43vymsCyX79+NjE+7siXlASW7szZlb4S52NeIiIizHdd2q5UqRKMcSTZ2dnatnVCR4ml+uqrryBxIOaWZ86cgcRxyUNKlSpVIFnhR4wYoQXAO4ubefbZZyFB+l988YXFXOPi4iCPDz74QKtv0KAB+vfvj9tuuw2S+Z2FAo4EGODuSIdtFKBA4Qs8WojBxeWruzb/u/8GcrJc6+turxD9W8HaDHPTN0DWFZvq0lYht5+RD7xpaWnapW3evBm7du1CkyZNTJdqHeDtLHv766+/DglyN5b69evjhx9+QPv27Y1Vdp+DgoLsthVHw7JlyxAfH29x6ueee85i350dWVWpF+BuvmJTxrt8+bI7wzrsW5hjOzxxCWyUBQZLly41zUxsPv30U9x6660WweymDmYbixcvNtuzv1lU3n369NG+xBoD2CX4/s0334S/v79pchL0bl7uu+8+811uU4ACFCizAjkqWv1CagYSL6cj4VI6EpPVw7itnhOTr2h1R1WAe2a2i5HtSnNQ86p4rG8sYiILbqFamX2ReOEUoAAFKEABClCAAhQohQK9G0bpBrhvOXYRZ9V3kYiQq7/XKYWXz0uiAAUoQAEKUIACFKAABQpagPE9BtEyEt/DBJYF/Q/I+XjWsTvBwcHOD7LqYX2MBLtbB7jLIaNHj9aSjU6YMEFLdmge6G4c8vTp0/jxxx+1hyTnfOONN7R4F2O79bMkHP38888xdOhQvPbaaxYJUM37SnZ4eXz44Yfo0qUL3n//fbRt29a8C7cpYBJggLuJghsUoECxCITVLpbTWpy0gouB8BYHFfBOqIuB8AV82qIeTj403Xjjjfjpp59Mp5aVf2+//ba2L6sB58+fb2qTjNYjR4407ett/PLLL6ZqueXN33//Dbntjivl/HnbDEauHFdYfSQgvSCLWMoHTllVaV7Cw8PNd5GQkGCxn5+dwhxb5mWegd/deaamprp7SL76//zzzxbHywd5CW53pbj63ixsb+Ncxf3+++833VJKFpVIRnfj9ci+3E7KWCQz/cCBA427fKYABShQKgXSMrK1wPSEfwPUJWhdgte1IHbjtmo7ezkD2a6mZHdBqmeDSDzRrwGaVq/gQm92oQAFKEABClCAAhSgAAXKqkDvRpUxcd4em8tXN5HEkj0JuLltTZs2VlCAAhSgAAUoQAEKUIACFLArwPgeA00Zie9hAku7/xIKrSEkxDKpVUpKitvnsj7GOmmi+YANGzbEtGnTIJnjFyxYoCVwXL58uZZtPVd+eWBWJFmnZFxfv349Jk+ebNZiuynZ2eVx+PBhi3FPnjxp03nVqlVakLskMtVL4GlzACvKnAAD3MvcS84LpgAFKFC8AqNGjbIIcJfVfpIJWoLZJfA9K+tqNv1rrrkGEihrrxw9ehTmH4AGDBjgcnC7ZJGXD1MlpchKzBkzZhTodOR2Q/Ih8IknnrAYV7Lcm5eNGzea7+ZruzDHlonJIgbzYrwbgHmdve3ExER7TYVSv3btWtO4chso+QLoapE7G7hS9LzdOY8r5zD2kRW8L774oukWVZKx3RjgLhnd5fZjxnL33XfD29vbuMtnClCAAh4jIIHo51NUtnUJVDcLXDcPWj+rtaXjcvrVzyxFcYHtosPwZP+GaF/HcqFaUZyb56AABShAAQpQgAIUoAAFPE8gJjIY0ZWCEH/ONunD4jgGuHveK8oZU4ACFKAABShAAQpQgAIUKDoBJrAsOmvjmcLCwoyb2rMkGnS3mB8jMRuOAtyNY8t5R4wYoT2k7uzZs1i2bBnmzJmjxTGZJ5OUbOudOnVyKf6lTp06eOCBB7SHjHvo0CEsXrxYS6YoAfU5OTlSrcWgSPLTDh06oFatWlod/0MBo4CXcYPPFKAABShAgaIQ6N27t0XQugSoL1q0SDv1d999ZzEFCYZ3VCTju3lp0KCB+a7D7RUrViAzM9Nhn6JsnDlzJsxXUvbs2ROyItLdh1yXeZEM+daldevWCAoKMlVv2bJFy/RuqsjHRrdu3SyO/ueffywCny0a87Bjfesk6/eAoyE3bNjgqLnA28znVq9ePZcDvi9duoRNmza5NB9r73nz5rl0XF46RUZGareSMh67dOlSHDhwQNv96quvjNXaYhUJcGehAAUoUBIFzqrM6vN2nMLUVYfxzvw9ePLXbRg1ZT0GfbgC7V5fhPrP/6U9X6v2R03ZgCdnbMfbf+/F1NXx+HP7Kaw/fB6HzqYUaXB746rlMWV0O0x/oBOD20vim4pzogAFKEABClCAAhSgQAkVkDvySRZ3vbJifyLSs7L1mlhHAQpQgAIUoAAFKEABClCAAhTQBKxjdiSBpTEouSwnsCyst0ft2rUtht62bZvFvrMdCSBPTk42dZNgcfndgLslIiICw4YNg8QbHTlyBNdee63FEO+9957Fvqs7devWxX333QeJa5Frk31juXLlCj7++GPjLp8pYBJggLuJghsUoAAFKFAUApKp/c4777Q4lXwo2rFjB7Zu3WqqN64GNVXobFjfEicjI0Onl37VJ598ot9QTLVTp061OPMtt9xise/qTpcuXVCzZk1T9507d9oES/v6+kIWGhiLZM0vKI9q1aqhWbNmxqEhq0PlS05BFesP9BKc72r55ZdfXO1aIP3M35/uvDe/+eYbyId3V0q7du0QHh5u6iqvtywqKKwiq2uNRa5PAtvXrFkD84zz/fr1g/XrZDyGzxSgAAWKS+DkxTSM/2WrFrz+0I+b8cofu/HxkoP4ddNxLN2biF0nL2lZ21UC9xJT6kQE43+3tsLcR7qiV4OoPP0CqsRcDCdCAQpQgAIUoAAFKEABChSLQO9GUbrnTcnIxrpD53XbWEkBClCAAhSgAAUoQAEKUIACFBABJrAs2vdBx44dLU7obuyHdX/r8SwGd3FHgt1lMUNwcLDpiI0bN+Y70WXTpk3xxRdfmMaUjZUrV1rsc4cCIsAAd74PKEABClCgyAWsV3nOnj0b//vf/yzmcfPNN1tkGbdo/HenSpUqFtWuftj566+/8Pvvv1scW5w7suJRbu9jLBKAftNNNxl33XqW1Zdy6yDzopfF/dFHHzXvgrfffltbZGBRmccd67GfeuopnDp1Ko+jWR4m2efNy6xZsyAB+s7Kb7/9BvmQXZTF/P0pAeAXL150evoTJ05gwoQJTvsZO8h7ZcyYMcZd7fnBBx+0uBuARWM+d+TOAg0bNjSNIgszrBdHyIpbFgpQgAIlReByepaWqb3Xu0sxa8sJdWeUkjIz+/OoViEAbw5thoXju+O6FtXUnTHK2e/MFgpQgAIUoAAFKEABClCAAg4E2kWHIzTAR7fH4jjLu2PqdmIlBShAAQpQgAIUoAAFKEABCpRZASawLNqXXgLS/fz8TCeVGKgDBw6Y9p1tSDJF89KjRw/z3TxvV6hQARKQbiySxf/8+fwvmpcEnubl7Nmz5rvcpoAmwAB3vhEoQAEKUKDIBWJjY2G+UjA1NRVffvmlxTzuuusui329HbmdTvXq1U1NGzZsgLMs3evXr8cdd9xhOqYkbEgAunm27z59+qBSpUp5ntqtt95qcey0adOQmZlpUScrbbt162aqS09Px4ABA1wOcpcPq+YZ900DqQ3J0B8TE2Oqkizuck3Hjx831TnakCDvvXv36naRoPFWrVqZ2o4dO6YF55sqdDbkfXHvvffqtBRuVefOnU0nkAzuzz77rGlfbyMxMRGDBw92KRDe/PixY8daZHHfv3+/dosoVwLqZRyxdvW1kf7mWdzPnDmDH374Qaq1UrlyZVx33XXGXT5TgAIUKDaBrOwc/LjuCHq+s0TL1J6elVNsczE/sdwFsFKwHxpWCUW3+hEY2ro6HuwRgxcHN8aHKlv77w93wcqnr8Et7WvBx5tf183tuE0BClCAAhSgAAUoQAEKuC/gq75X9IiN1D1wUVyCxe8kdTuxkgIUoAAFKEABClCAAhSgAAXKtAATWBbdy1+xYkWLZJgSR/TEE0+4NIEZM2ZgzZo1pr4hISGwjh0yNeZhwzr4PCwsLA+jWB5SGGNanoF7pUGAfzEvDa8ir4ECFKCABwpYfwg2vwQJjjYPvjZvs94eOXKkRZXsT5w4EZcuXbKolwDeF154Ad27d8eFCxcQEBCA6Ohoiz7FsSMfSL/77juLU+f3Q6ZkOZdFBMYiHwrnzp1r3DU9S2ByeHi4af/kyZNo3749nnzySezZs8dUb9xISUnBwoULcf/996N27dqQzPt6RVaUykIDf39/U/Pu3bu1FZ2vv/46JGO9dZFgbMmqf9ttt6Fu3boWH7yt+1pnCJfXVYLH5XU1L3I9L7/8MmRVqrSZB92b9yusbev35meffQZZuGF9/cnJyfj666/RvHlz06KBRo0auTytyMhISCZ1yd5vLMuXL4eM8dFHH0GC0K1LQkICZOHD9ddfj8aNG7u16leuQf796BX5dy1Z5VkoQAEKFJeA/H91yd4EDPxgBZ6ftRNnL2cUyVQCfb1Ru1IQ2tYOw8CmVTCyU2080S8Wbw1rhm9GtcXcR7pi3XO9se+1gdj0Yl/8Pa47vr+nAyYNb4lnBjbEPV3r4HqVrb1FzYrM2F4krxhPQgEKUIACFKAABShAgbIj0KdRZd2LPXExDfvOXNZtYyUFKEABClCAAhSgAAUoQAEKUEAEmMCyaN8H48ePV38rvBrSK3E0r732msNJSHJK66SPsl++fHmb4/755x8888wzkHgaV8usWbNw8OBBU3eJMbGOGfnggw/w8ccfQxKculreeecdi65t2rSx2OcOBUTAhwwUoAAFKECB4hAYMWIExo0bhytXrtic3jow2KaDWYWsVvz+++9NGaglU/Zzzz2Hl156CQ0aNEBwcDAkM3Z8fLxFRqIPP/wQP/74o1ZvNlyRb8othcw/CMqHwCFDhuR7Hrfccgv++9//msaRAOgbb7zRtC8bkgH/t99+085nzPYtr8e7776rPaKiolC1alXtFkiShV0M5VZDrhT54CmB+/JaSnZ4KUlJSdoiAwlIl8z7ku1bgrLl9ZFM7OZZ7B2dQwLcJeP/li1btG5y3JtvvqnNWb5cyUpUGfPw4cOmYSTzuwSR9+zZ01RX2Bv9+vXTMqn/9ddfplOJiTwkiF8C08Vd5invW2ORIP/69etjwoQJxiqnz5I1fdKkSXjsscdMjqdPn8YjjzwCyfAur7WcLzs7Wwt4d+fLivXJZSXu8OHDbRZmyGtp/aXJ+ljuU4ACFChMgbhTl/D6n3FYeaBgbl+nfqypbOv+iAr1R+S/D/PtyBDVVj5Aawv287ZYaFSY18mxKUABClCAAhSgAAUoQAEKuCPQs0EkvNT3m5xc26MWxZ1BA3WHKRYKUIACFKAABShAAQpQgAIUoIA9AUl0t3btWt1mdxNYSsJKY5F4kkOHDuHhhx+2CMaWBJaSQFBiVyTeROJoJOZDYlZKapGki4sWLcrT9CR+RB5S2rZtCwlyf++990xjvfjii1qyxFdeeUVLLGlskHNKHIwkfjQPLJfXxF5QvCQLfeutt7T4kj59+mDYsGFaAlKJUTFPqijnkDgeic2ReBzzYp2UUtok7kWC3J9//nnccMMNWhxSx44dtZgj82NlWwLyZUxJnGksEtR/9913G3f5TAGTAAPcTRTcoAAFKECBohSQW+vIhxrzDyxyfvnA5E6Au2QgnzNnDgYOHGiRqTorKwu7du2yuST5UCQfguUDlwS4F3eRwHPzMmjQIISG5v+PStYB7vPmzdOCviXI2bxIdvNVq1ZptzmKi4szb4Jk+ZZHXosEQVerVk277ZF8ATEvJ06cgDzyUnx8fLTAfPmwbb44QF5zyRRvXSS4W4LMZbFDURd5j/Xv3x/r16+3OLV8SZOHdZHXbcqUKXjjjTesm5zuy4IRuVZ5b58/f97UXxYASNZ468zxpg552HjggQdsAtxl8UC9evXyMBoPoQAFKJA/gTOXrmDSgn2YvkkWS7k2lgSqR1cKNgWuGwPY5dkYxB4e5Acfby/XBmQvClCAAhSgAAUoQAEKUIACJVSgovpu07Z2ONbHX/19kXGqi1WA+8O9+PscowefKUABClCAAhSgAAUoQAEKUMBWgAksbU2sa7Zv346+fftaV7u0LwHqErxuLK+//jq2bdtmETA/c+ZMyENicOSRnJysxZxkZmYaD9OeK1WqhOnTpzuNj5HjJI5IHlIkTkkSYEoslyS+lKSJeokTu3btqiVa1A7S+Y8kvjQmfpRmiVGS5JoyviTclEUKxgSc5oc/9dRTYAZ3cxFuGwX413qjBJ8pQAEKUKDIBWSVp3WRgOvo6Gjraof7rVq1wqZNm3DHHXfA29tbt68EzsuHSVlVKqsdS0KRFZS//vqrxVQkwLkgSqNGjdCiRQvTUPLh1F5Av9w+aMeOHdrKTrG0XpVpGkRtiG/nzp21Wws9/vjj5k262/Lhdv/+/drqUsmo76j4+flBgtYlI/+tt97qqKv2Hlm3bh3GjBkDf39/3b6BgYHaB2v54N+kSRPdPoVdKR/+ly9fDllRW6FCBbunk/n99NNPmDZtmpYx325HJw1Dhw7VvsTI+WrXru2wtwT8X3/99Zg9e7a2ItdhZ6tGeQ9Yv556q3StDuMuBShAgQIVSM3IwvuL9qHnO0vxy0bXgtsrBfvhtSFNsfqZazD9wU74+PbWeOX6JlpAx/C2NdGrQRSaVKuggtwDGNxeoK8WB6MABShAAQpQgAIUoAAFilOgd6Mo3dNvOXYRZy8b7r6o24GVFKAABShAAQpQgAIUoAAFKFDmBYwJLK0h8prAsnLlyhZDGRNYSuJAyQQuSfykSAJLuZN9WYtFkBiYP//8U4uBsoBSOxJ0vnHjRuzduxfWwe2ShX3lypVo3bq19WFO9yVgft++fVryRhlfL7hd4kskIN5eXJbeSRITE7XkpBKrJZnbrYPbZayXXnoJ5pn99cZhXdkVKKd+IBh+IpRdA145BUq1gGSwbtq0qekad+7cma9AT/lQIcGq5kX+BykZlVkoUBIEJHO1BBRLtmr5ACZBvHXq1NGCsmVVIItzgTNnzmDNmjVaRvxz585p/77DwsIg/9Zbtmyprdh0Pop+D3ldNmzYoGWGl9slyQdzycIvwdIydl6yrKekwgcEiQABAABJREFUpGDZsmXaFx35MBwUFISGDRuie/fueRpPf+b5r5XVqOIqmfLl2iWgX1bWtmvXDrGxsfk/gc4Ici5ZKSxfGow2skJWfJo3b253cYDOUBZV8m9LVu+KvRRZBSwZ+e0tNrA4uBTt8P+JpejF5KV4lEB2Ti5mbj6O9xbsxZlLrgVi+Pl44d6udfBQzxiEBvh61PVyshSgAAUoQAEKFLxAQf++rOBnyBEpQAFzAf6bNdfI2/aBhMvoM2mZ7sHv3twCN7WpodvGSgpQgAIUoAAFKEABClDAcwX4t0zPfe1K4sz//vtvDBw40GJqcpf3JUuWWNS5siOxBc8884yWADA7O9vmEAmcl+SIkslc4imkyLkkLsRYHIW8Tp06FaNHjzZ2xZQpU6CXgNPUIQ8b1ufIwxCmQ6wzuJsa1IZc83//+18tDkr+TeuVmJgYLTnkf/7zH6cJFSUoXsb8448/8M8//2jB544sJQD9mmuuwdixYzF48GC902t1ly5d0oLf586dq41/7Ngxu32lISQkBEOGDIFkbm/WrJnDvp7eWFg/i8vK78sY4O7p/wI4fwo4ESjoH2aF9UPXyWWwmQIUoAAFSpDAF198gQceeMA0o3HjxmHy5Mmm/bKywf8nlpVXmtdZkgRWHTiL1/6MQ9ypSy5Pa0jLanhyQENUrxjo8jHsSAEKUIACFKBA6RYo6N+XlW4tXh0Fil+A/2bz/xrIH6t7vbsU8edSbQYb2LQKPr2jjU09KyhAAQpQgAIUoAAFKEABzxbg3zI9+/UrC7NnAkvXX2VJaCjZ2SWzuiSqlOSRkglfEklKQsm8lqSkJC3I/eDBg1rixNTUVC2xoWTtz08STFnEsGfPHi1RpSSATE9P15JVSvLEJk2aaEHtZSWBYmH9LC4rvy9jyuW8/uvmcRSgAAUoQAEKUKCMCnz++ecWV37//fdb7HOHAhSgQEELHEhIxht/7cE/exJcHrp9dDieH9QILWpWdPkYdqQABShAAQpQgAIUoAAFKFAaBST73TUNK+ObVYdtLm/5vkSkZ2XD38fbpo0VFKAABShAAQpQgAIUoAAFKECBwhIIDw/XsngX1vilaVwJOHeUQT2v11qhQgV07txZe+R1DL3jqlevDnmwUCC/Agxwz68gj6cABShAAQpQgAJlSGDRokXYvHmz6YrldlSNGjUy7XODAhSgQEEKnL2cjvcX7cO09ceQnZPr0tDRlYLwzMBG6N+kMiSIg4UCFKAABShAAQpQgAIUoAAFgD6NonQD3FMysrHu0Hl0j40kEwUoQAEKUIACFKAABShAAQpQgAIUoAAFSowAA9xLzEvBiVCAAhSgAAUoQIGSLZCSkoJx48ZZTPKxxx6z2OcOBShAgYIQuJKZja9XHsanSw/icnqWS0NWDPLF2Gvq446OteHn4+XSMexEAQpQgAIUoAAFKEABClCgrAi0qxOO0AAfJF+x/Y61OO4MA9zLyhuB10kBClCAAhSgAAUoQAEKUIACFKAABTxEgAHuHvJCcZoUoAAFKEABClCgqAVWrVqFtLQ0pKenY9++ffj4449x8OBB0zQ6dOiAQYMGmfa5QQEKUCC/AjkqS/ucbSfxzvy9OHExzaXhfL3LYVTnaPynV31UUEHuLBSgAAUoQAEbgbMHgP0LgMunAb9QIErdgahyY6BiNODFRVE2XqygAAUoQIFSKeDr7YUeKkv73O2nbK5v8Z4EvHJ9Lu+CZSPDCgpQgAIUoAAFKEABClCAAhSgAAUoQIHiEmCAe3HJ87wUoAAFKEABClCghAvcfvvtOHLkiO4sfX198dlnn+m2sZICFKBAXgTWHz6P1//cjW3Hk1w+fFCzqnh6QEPUqhTk8jHsSAEKUIACZUAgNxc4uRnY8ycQNxc4u1f/on2DVbB7Q/VQwe6VmxieZTskUr8/aylAgVIhIAu3169fj+PHjyMjIwNhYWFo2LAhOnfujICAgFJxjc4u4ty5c5BF7WIhd2sLDg5GTEwMunTpgkqVKjk7nO0eLNC7UZRugPvxC2nYd+YyGlRRC8FYKEABClCAAhSgAAUoQAEKUIACFKAABShQAgQY4F4CXgROgQIUoAAFKEABCniSgAS3f/PNN2jZsqUnTZtzpQAFSqjA4bMpeHNeHObvOuPyDFvVqogXBjVCm9rhLh/DjhSgAAUoUMoFsjOB+JWGoHYJbE8+6fyCM1OAE5sMD/PewSrA3TzoXYLfq7c278FtClDAAwVmz56NV199FZs3qwUwOiUkJASjRo3Cyy+/jIiICJ0eRVuVmpqK5s2bW9xJTWZw1113YerUqXmazLZt2/DSSy9h7ty5yMnJsRnD29tbu1ObOMm5WUqfQM/YKHiVA9TNs2zKorgzDHC3UWEFBShAAQpQgAIUoAAFKEABClCAAhSgQHEJMMC9uOR5XgpQgAIUoAAFKOBBAn5+fqhWrRp69eqF8ePHo1mzZh40e06VAhQoiQIXUzPwweL9+H7NEWTpRVfoTLpGWKCWsX1w86ooV05FZbBQgAIUoAAFREAytn/SETh3oGA8UhKBw8sMDxkxPAYYqx8QWzAn5CgUoEBhCqSnp+Oee+7Bjz/+6PA0ly9fxkcffYRffvkFM2bMQPfu3R32L+zGF154wSa4PT/n/OCDD/DEE08gKyvL7jDZ2dmYM2cO/vrrL0yaNAmPPPKI3b5s8EyBsGA/tFULhdfHn7e5gMUqwP3hXvVs6llBAQpQgAIUoAAFKEABClCAAhSgAAUoQIHiEGCAe3Go85wUoAAFKEABClDAAwTi4+M9YJacIgUo4GkC6VnZWlD7hyq4/dIV+8E15tcVGuCD/6hAi7s6RyPA19u8idsUoAAFKEABqFVPQK0CDHC3Nq3c2LpGf/9yAnBqmyH7e/lqhnnp92QtBShQRAKSpXzEiBH4/fffLc4omcpr1aqFChUq4PDhw0hKSjK1JyYmYuDAgVi0aBE6depkqi/KjfXr10MC0guqSLD6448/bjNc1apVtcXsJ0+exKlTp0ztEgQ/duxYtX4oV3s2NXCjVAj0bhSlG+C+5dhFnLucjkoh/qXiOnkRFKAABShAAQpQgAIUoAAFKEABClCAAp4t4OXZ0+fsKUABClCAAhSgAAUoQAEKUMATBCQ45q8dp9B30nK89mecS8Ht3l7lcFen2lj2ZC880COGwe2e8EJzjhSgAAWKS6Dh4MI7c1QT18Y+vBz48SZgsgqIf6s28M1A4E8VULrha+DIGuDK1QBa1wZkLwpQIL8C77zzjk1w+4MPPoijR4/i0KFD2LJlC86fP4/ffvtNC3g3ni81NRXDhw+3CHw3thX2c0ZGhpZxXoLzpQQHB+frlKtXr8ZTTz1lMUbPnj2xadMmSGD7xo0btecNGzagR48eFv0kKF6C7VlKl4AEuOsVuSHKkr3qLiYsFKAABShAAQpQgAIUoAAFKEABClCAAhQoAQLM4F4CXgROgQIUoAAFKEABClCAAhSgQGkW2HL0Al5XQe0bj1xw+TL7NKqMZ69tiJjIEJePYUcKUIACFCglAhJhd2YnEDcXCKoEdLjf+YXV7Qn4BgGZqfb7VmkOpCcDF+JVH3UOV4urGdzP7Lo6ogSzH11teFytBcrXAGS8KPWorALn5TkiFvDxM+/FbQpQoAAEzp07h9dff91ipIkTJ+KZZ56xqPPy8sKNN96I9u3bo2vXrjDezez48eOQzOcTJkyw6F/YO2+88QZ27lQ/A1WpXr26loFe5pHX8uSTTyI7O9t0+HXXXYcZM2bAz8/y507btm2xYMECDB06FH/++afWXzK5y/HLli0zHc8NzxeQ71i1KwXhyLlUm4tZHHcGN7VR/69ioQAFKEABClCAAhSgAAUoQAEKUIACFKBAMQswwL2YXwCengIUoAAFKEABClCAAhSgQGkVOHY+FW/9vQdzt59y+RKbVi+P569tjE4xKqCRhQIUoAAFyo5Ajgq+PLoW2KOC2uVx8ajh2sNjgPb3AeXKObbwDQTq9VZB8X9c7eflC9TpDjQcZHiEVjG0ZaQACXvUY5cKpN999Tn17NVjzbckCN2VkqDGclYuHQfksX/B1Z5ePirIvQFQvw/Q+AagWmvn13v1aG5RgAJ2BN5++20kJyebWrt3746nn37atG+9IcHkX331Ffr0Uf8W/y2TJ0/G2LFjUalSJWNVoT7v2rULEoRvLB999BG2bt1q3HX7ed68eZAM7sYi1/H111/bBLcb2yXo/ZtvvkHjxo0hCwSkLF++HAsXLkTfvn2N3fjs4QLl1P9TezesjG9WHba5kuX7EpGelQ1/H2+bNlZQgAIUoAAFKEABClCAAhSgAAUoQAEKUKAoBdRfT1goQAEKUIACFKAABShAAQpQgAIFJ5CUlolPlhzAlFXxyMjOcWngKuUD8GT/BrixVXV4eTkJYnRpRHaiAAUoQIESL5CZBhxaasjUvm8ekGoIprSY9/mDQOJelem8oUW17k7D64CDS1SguArCbDjY8BxQwbarXzBQo43hYd56OfFqsLsx+F2yvYfXNe9lf1uC5fNScrIM55VzrvoAqFDTEOguwe7V20L9jzEvo/IYCpRpgZycHEyZMsXC4JVXXlFrZRx/zuzduze6deuGFStWaMdKgPz06dPx0EMPWYxVGDsy53vuuQcZGRna8JJVfsiQIfkKcJeAffPy8MMPIzIy0rzKZjsqKgpjxozBq6++amqTcRjgbuIoFRt9GkXpBrinZGRj/eHz6Fbf8fukVCDwIihAAQpQgAIUoAAFKEABClCAAhSgAAVKtAAD3Ev0y8PJUYACFKAABShAAQpQgAIUKPkCubm5OH4hDVuOXcTmIxfw+9YTuJCa6dLEg/y8MaZnDO7pWheBapuFAhSgAAVKuUDaBWCfyl6+5w/gwGIgM9X5BUtGd1cC3CUgXB6+Ac7H1OsRooL5QnoCddXDWNT/45xmj5e+Vy4BSUeNR+XvOekYsOYjwyO0mrqm64HmI1Swe+v8jcujKVCGBCRreWKiWrTyb6lbty569uxp3HX4LEHmxgB36Th79uwiCXB///33sW7dOm1u5cuXh2Rvz09JT0/H/PnzLYa4++67Lfbt7Ug/8wB3yQQvgfeS4Z2ldAi0qxOOUH8fJKerRVZWZXFcAgPcrUy4SwEKUIACFKAABShAAQpQgAIUoAAFKFD0AgxwL3pznpECFKAABShAAQpQgAIUoIBHC6SoIIjtx5NUQPsFbDl6UXucvZzu1jVJkvYR7WphfN/6iArNYyCiW2dkZwpQgAIUKDaBpBPA3r9UpnYV1H5kFSAZy90pe/4Euj/h/Ii8BrY7GtlJtmfTocmngPLVgUvqWguyJJ8E1n0GSNZ5BrgXpCzHKuUCf/6pfm6YFck+7ix7u7G7dabypUuXIiUlBcHB6t9hIZVDhw7hxRdfNI0+ceJEVKumFrjkoxjnbRyiQYMGqF27tnHX4XN0dDTq16+P/fv3a/0kk/2yZcuYxd2hmmc1+np7oXuDSPy5Xf3/y6osijuDl69r7PK/GavDuUsBClCAAhSgAAUoQAEKUIACFKAABShAgQIRYIB7gTByEApQgAIUoAAFKEABClCAAqVTICcnF4fOpqggdhXMrjK0S0D73tOXoKrzXHrERuK5axuhQZXQPI/BAylAAQpQoAQLSNbzxL0qS/tc9VBBpic352+ycrwEyVdQAeQltUQ2AB7bDUiG+oQ44Mwu9az2z6iHPKerDO/5KZKZnoUCFHBZYOvWrRZ9O3fubLHvaEcCyyXAOz4+Xusmmct3796Ndu3aOTosX2333XcfUlNTtTE6depUIBnj82MgE+nSpYspwF32ZTzr4H+pZ/FcgT6NonQD3OXuXPvOXOb3Nc99aTlzClCAAhSgAAUoQAEKUIACFKAABShQKgQY4F4qXkZeBAUoQAEKUIACFKAABShAgYIRuJiaga3/BrJLQPtWFdh+6YqbmXbtTKWhCmiXwPbuKsCdhQIUoAAFSqHAuYPA5m8NQe3nDuT/Ast5A9FdgIaDVQbzoPyPVxQjBIYBtVUgrTyMRQL+k47/G/Auge8qAF6C3mURQE6msZf957BooEpz++3mLXIuV7POmx/HbQqUMoG4OPXvzKw0btzYbM/5pvQ3BrhLbxmvsALcv/rqK/zzzz/apHx9ffHll18WSObsgjAwl7Iez7yN254p0DM2CnJnLb3Fy4v3nGGAu2e+rJw1BShAAQpQgAIUoAAFKEABClCAAhQoNQIMcC81LyUvhAJFI6B3K9+cnJyiOTnPQgEKUIACFChBAnr//9P7/2QJmjKnQgEbgazsHOw9k6xlZZfM7FuOXcChxBSbfvmtiAz1x+N9Y3Fz25rwlggKFgpQgAIUKF0CWRnA8neAFe8Budn5uzafQKBeb0NQe2x/ICg8f+OVhKMl4LxiTcNDrslYslVwuywEOLZeRc/OAQ4tVVGGOovKJHu7K0HrMt5HKsN0rU6AHBPTC/DxN56NzxQoMwJpaWk4evSoxfXWrKn+DbpRrPvv3asWpBRCOXXqFJ588knTyE899RSaNGli2s/PhvWcra/J2djW/a3Hc3Y820u+QFiwH9rWDsf6+PM2k10cl4AxPevZ1LOCAhSgAAUoQAEKUIACFPAcAb2/W+r9fdNzrogzpQAFKOB5Ano/d728vDzvQoppxgxwLyZ4npYCniqg9wM2MzMTfn5+nnpJnDcFKEABClAgTwJZWbbBR3r/n8zT4DyIAoUkkJB85Wowu8rMvv14EtIy8xmI6GCuAb5euL9bXTzQIwbB/vz66YCKTRSgAAU8WyBXLXyXAO28BrdL1vMG16qg9kFAXRWU7SnZ2vP7qnn7AlGNDI82dwFpF4C984DdvwMHVTbnbLVwQIoEq7tS4lcAFw4bHtt+AvzLA7EDDMfLogFftXiAhQJlQODs2bPIlbsZ/FskK3pUVJRx16Xn6tWrW/RLSEiw2C+onTFjxuDixYvacPXr18cLL7xQUEPDes41atRwa+yiMnBrUuxc4ALXNIrSDXDfrL4vnrucjkohXChV4OgckAIUoAAFKEABClCAAkUkoPd3S8b3FBE+T0MBClDgXwH5uWteZPGR3gIk8z7cvirACIOrFtyiAAVcEJAfsBLMnpHx7x9Z1TGXLl1CcHCwC0ezCwUoQAEKUKD0CFy+fNniYuT/j/wiYkHCnWIWSM/Kxu6TlwwB7cdUdnYVoHD8Qlqhz6peVAha1ayI1rXD0L9JFYSrrIAsFKAABShQygV8A4AhnwBf9XU9yL2CyqbccLAhqF0yjnvz15SQQP+WtxkeV5KAffOBw8uBaq1dewNJYLx5Sb8E7JhuePiq39tI9ngJlq+vXic//h7HnIrbpUvA+rtaUFCQ29/VrH/XaT1mQYhNnz4ds2fPNg31+eefIyBA/TwtoGI9Z+trcnYa6/7W4zk73l67BN4nJibaa9atP3DggG49K/Mv0EcFuL85b4/NQLJGZMneRNzUxr2FETYDsYICFKAABShAAQpQgAIUKDYBxvcUGz1PTAEKUMAkIHGV5kWScTCuxFzE8Tb/cuTYh60UoICOQIUKFSz+CCE/iCMjI+Hjwx8pOlysogAFKECBUigg2QCtv4iEhoaWwivlJXmKgLwnT1xMu5qd/dgF7DpxCRnZKqNuIZYKgb5oVauiCmgP055bqMB2qWOhAAUoQIEyKFC9DdB1PLDiXfsXH9UEaPRvUHuV5lC/xbXft6y3BFQAmg83PFyxyM5SWfTn2u+ZmQLs+s3w8A0yBLlrwe4q6N0/xP5xbKGABwpYB2LnJWg8MNDyjgfWY+aX5dy5c3jkkUdMw4wePRq9evUy7RfEhvWc3XUoLINPPvkEEyZMKIhL5BgFIBATGYLalYJw5FyqzWiL484wwN1GhRUUoAAFKEABClCAAhTwLAHG93jW68XZUoACpUsgKyvLJq5Efi6zuC7AaFTXrdiTAhT4V8D6A3BOTg6OHDmCmjVratndCUUBClCAAhQozQJaIPGJE7C+lVT58uVL82Xz2kqgwN7TyfhnT4KWmX2LytCemJxeqLP09iqHhlVCLQLa60QEc4V5oapzcApQgAIeJtDjKWDvPCBh178TVwHskp294SD1uBYIr+thF+RB0z26Gkg969qEM1UQo2R7l4ePyhZdr48hs7tkeJfAehYKeLjAlStXLK5A7rblbvH397c4JC0tzWI/vzvjxo2DZDKXEhUVhXfffTe/Q9ocn1+HwjawmTArikVAMob1blgZ36w6bHP+5fsSkZGVAz8fL5s2VlCAAhSgAAUoQAEKUIACniHA+B7PeJ04SwpQoPQJZGRk4NixY5C4SvPCAHdzDefbDHB3bsQeFKCAlYDcKkNuUZuSorJ//Vvkh/KhQ4cgt/wNCQnRnr29vRnwZATiMwUoQAEKeLSAfOmQ1bWSAU8yt1sHt8v/G63/+O/RF8zJl2iBhOQreGXOLvy143ShzjMy1F9lZq+I1rVVdnb13KxGBQT58StkoaJzcApQgAKeLuCjAkKHfAL8NBzoMg5odjMQEunpV+UZ89/zZ97mmaUCgffMNTy8VRBwzDWGYPcGA4HAsLyNyaMoUMwC1pnK5feW7pb0dMvFo9Zjujueef958+bhhx9+MFVNnjwZ4eHhpv2C2pA5p6ammoZz16EwDUyT4kaJEOjdKEo3wD0lIxvrDp9Dt/r8f3mJeKE4CQpQgAIUoAAFKEABCuRBgPE9eUDjIRSgAAXyICCJErOzs7Xfx0lcifxeTurMi8Rbys9lFtcFGJ3guhV7UoACZgKVK1fG0aNHtWA/Y7X8UJagd/PAd2MbnylAAQpQgAKlVUCynVWrVo2LukrrC1yCrks+a03feAyv/xmHS1eyCnRmft5eaFK9vApkV8HstSpqj+oVA/m+LlBlDkYBClDAQwWy1f9zTm0DarRx7QKqtQQe3Q74qszgLEUn0Pe/huD0XbNVFn0V7H4lyf1zZ6sg4H1/Gx5e6tfGdXsagt0bXcdgd/c1eUQxCkjyDfNincncvM3etnXGdusx7R3nrD45ORkPPvigqduAAQNw2223mfYLckPmbB7g7q5DYRmMGTMGN998s1uXeuDAAQwZMsStY9jZdYF20eEI9fdBcrrt98zFcQkMcHedkj0pQAEKUIACFKAABShQIgUY31MiXxZOigIUKGMCEtguP49Z3BNggLt7XuxNAQr8KyBZaqOjo7VbaVhn8yESBShAAQpQoKwISHB7rVq1tDuXlJVr5nUWj8CRcyl49rcdWH3wXIFMoEZYoApiN2Rml4D2xtXKw9/Hu0DG5iAUoAAFKFCKBBL3AbMfAk7vAB5cAUQ2cO3iGNzumlNB9pLs+bH9DY8sFah+eDmwe7YhM3vaBffPlKOCHA8sMjzC6gB1urk/Bo+gQDEJWAejG7Mlyfc3V4t1Ag/rMV0dx7rfM888oyUNkXq5E+ann35q3aXA9mXOCQkJpvGsr8nUYGfDun9BGURFRUEeLCVHwM/HC90bROLP7adsJrUo7gxevq4xFz/byLCCAhSgAAUoQAEKUIACniPA+B7Pea04UwpQoHQKyM/hmjVrMnt7Hl5eBrjnAY2HUIACBgFZWVS7dm2cOnUKkn2IhQIUoAAFKFCWBOT/g5K5XYISWChQWAJZ2TnareInLdyHK5k5eTpNoK83WtSsYApob6kC2qNCmVU3T5g8iAIUoEBZEcjJBtZ+Aix+FchON1y1BLrfvQDw5q8TS/zbwMcPqN/H8Bg8GYhfqYLdfwfi/gBSz7o3/aAIoHZn945hbwoUs0BERIQWjGu8BXBmZqYW6O1OhqQTJ05YXEVBBGQfPnzYIqB9woQJWgIRixMV4I7M+dChQ6YRjx8/btp2ZaMwDFw5L/sUj0CfRlG6Ae7HL6Rhf8JlxFYOLZ6J8awUoAAFKEABClCAAhSgQIEIML6nQBg5CAUoQAG3BUJDQ1G1alV4e3u7fSwPAHyIQAEKUCA/AvLDt0aNGsjOzoZk9bl8+bL2kH0WClCAAhSgQGkT8PPzg3wBKV9eZbtWq2zdyQBY2ix4PYUvsPvkJTw9czt2nEhy62QxkcGGYHYVyN6qZpgKRAiBj7eXW2OwMwUoQIEyL5CtslfvmQscXKwoVMbfmF5Ag0HqN2kqcLi0l7MHgN/HAMfWWV7piU3A6g+Bbo9Z1nOvZAt4+xrev/IeHvQecGT1v8Huc4DLZ5zPvdF1gBd/8e4cij1KkkBgYKB2p60jR46YpnX06FG3bgEs/c1Lw4YNzXfztJ2UlARj0L0M8OSTT2oPdwf79ttvIQ9jqVChAi5evGjcNT03aNAAa9euNe1bX5Opwc6Gdf+CMLBzKlaXAIGesVHwKgfk5NpORrK4M8Dd1oU1FKAABShAAQpQgAIU8DQBxvd42ivG+VKAAp4oID9r5U6I8ggODmZgez5fRAa45xOQh1OAAgYB+eEswX7ykCJ/rMnJybH4o42hJ/9LAQpQgAIU8DwBCWT38vJiQLvnvXQeOeMrmdn43z/78fmyQ8jSiy6wuioJYB/YtKoKaq+IljUromJQGQi+tDLgLgUoQIECE7iSBGz+Hlj3GZB07Oqwm1UgYUhloPVdQJtRQIXqV9tKy5b6Do/1nwOLJgBZafpXtXQiEDsAqNxYv521JVtAAtXrdDM8Br5lWMQgmd13q2D35JP6c298g349aylQwgUkGNs8wH337t1o166dy7OOi4uz6OuJwd3WcxYDd0ppMHDnest637BgP7SpHYYN8RdsKBbHJWBMz3o29aygAAUoQAEKUIACFKAABTxTgPE9nvm6cdYUoEDJFmBMSeG8PgxwLxxXjkqBMi8gP7TlQzELBShAAQpQgAIUoIDrAusPn8czKmv7obMpTg/yU1nZH+1TH/d3rwtfZmh36sUOFKAABRwKXDiigtpVcPfm74CMZP2uku16+dvACpUFu+G1QLv7VKBwd5XgvZx+f0+qPXdQZW3/D3BUZfd2VLIzgL+fBu76w1EvtnmCgAS71+5sePRXCxdObDRkdpeAd+PijsBwILqrJ1wN50gBG4GWLVti/vz5pvrVq1fjrrvUIiUXyqlTpxAfH2/qKbdxb9y4sWnfUzbEwLyIgTtl1apVFt2tx7No5E7BCKikMdj7F5CdCTQZUjBjujFK70aVdQPcNx+9gHOX01EpxN+N0diVAhSgAAUoQAEKUIACFPAUAcb3eMorxXlSgAIUKHsCDHAve685r5gCFKAABShAAQpQgAIUKGECyVcy8ea8Pfhx3VGXZtYuOgwThzZHvagQl/qzEwUoQAEK2BE4tgFY8xEQpzJY56oM5q6U3GzVXwV4yyMiFmh7D9DyViCggitHl6w+krV9w1cqa/vLQGaq87nF9Aau/9B5P/bwLAF1pyLUbG949HsNOLnZEOzurQIZvX0961o4Wwr8KzB48GC89dZbJo9FixZpd5qUP9o7KwsWLLDo0qtXL+2WwhaVedipV68eFi5c6PaR3333Hb7//nvTcf369cOTTz5p2pcAfL3Ss2dP7TbIKSkpWvO+ffu0rPa1a9fW625RJwH++/fvN9WFhoZCxmMpJAEJbN+v3ndL3gBObQVCq6o7pvQHfAML6YT6w/ZpFKV9L7Vulekt3ZuIYW1qWDdxnwIUoAAFKEABClCAAhSgAAUoQAEKUIAChSbAAPdCo+XAFKAABShAAQpQgAIUoAAFnAss2n0GL8zeidOXrjjtHOLvg6cHNsTt7WvBy8t5cI7TAdmBAhSgQFkUyM4C9sxVge0fA8fX50/g7D5DRvPFE4BbfgJieuVvvKI8+kK8IWt7/ArnZ/ULBfq/DrQeWToy1ju/4rLbQ4J/q7cxPMquAq+8FAh07twZEREROHv2rHY1hw4dwtKlSyHB6s7K119/bdHlhhtusNjP605ISAj69Onj9uErV660OKZq1aoujRMQEAAJhp81a5bp+G+++QYTJqj/Zzkp0s+8DBgwAH5+fuZV3C4IAYkcP7BYRY+rwPYTm66OmHwK2DQV6PjQ1boi2IqJDEHtSkE4ci7V5myL95xhgLuNCisoQAEKUIACFKAABShAAQpQgAIUoAAFClNApedhoQAFKEABClCAAhSgAAUoQIGiFjirbvH+n582497vNroU3N67YRQWjO+OOzvWZnB7Ub9YPB8FKFA6BDLTVFD7J8D/WgG/3pX/4HZzFQlQq9bSvKbkbhuztn/SGXAluL1OD2DMaqCNMpPgZxYKUIACHiDgpe5MMGrUKIuZSmB3rvy8dlAWL16MFSuuLvyRzOXDhw93cETJbrrnnnssJvjxxx8jMTHRos56JyEhAZ98ov5/aVasxzFr4mZ+BFLUAoxfbrcMbjeOt2ISkJFq3CuSZ7nDwTXqe6deWb7vLDKycvSaWEcBClCAAhSgAAUoQAEKUIACFKAABShAgUIRYIB7obByUApQgAIUoAAFKEABClCAAvoCElQzc9Nx9Jm0DHO3q8x8TkqlYD98eGsrfHVXW1SrWLS3qHcyNTZTgAIU8DABFZy9UgWLXTzq+ry9/QDfIOf9m90EBIY571fcPeTavx8C/Pk4kJnieDa+wcAg5TXyd6BiLcd92UoBClCgBAo8/fTTkKzpxrJs2TK89dZbxl2b5xMnTuDee++1qH/00Ue1TPAWlVY7EhRs/pBM8SWlDBo0CB07djRN59y5c5Bg9czMTFOd+UZGRobWLv2MpVu3bujfv79xl88FKRASCbS9W3/ElARgo+XdBPQ7Fmxtn0aVdQe8nJ6FdYevvi90O7GSAhSgAAUoQAEKUIACFKAABShAAQpQgAIFKMAA9wLE5FAUoAAFKEABClCAAhSgAAUcCRw7n4qR36zH479uw8VU/aAS8+OHtq6ORY/1wPUtqmlBM+Zt3KYABShAATcFfAOAdve5dlBgOND9KWDcTuCxOGDAm0ClevaPbWcZEGm/YzG1SMbiTVMBydp+eJnzSUR3M2Rtb6cy/zJru3Mv9qAABUqkQEREBJ577jmLuT377LMYM2YMTp48aarPUXe2mD17Njp37oz4+HhTfbVq1fD442pBkIeXd955R90B6uqfgv744w/069cPmzdvtriyTZs2afVz58411Xt7e+Ptt9827XOjEAS6jAN87CxkXvm+yuLuZEFaAU+pXXQ4Qv19dEddHKeC7lkoQAEKUIACFKAABShAAQpQgAIUoAAFKFBEAld/q1lEJ+RpKEABClCAAhSgAAUoQAEKlDWB7JxcfL3yMPpNXo4V+9Vt6J2U6ipT+7d3t8ek4S0RpjK4s1CAAhSgQAEJSMC2t7/9wSJigcHvq6D23cA1zwOhKotpYEWg40PAfzYCd84GGg5WQd9mv1Kr0Q6o1hIuld0qG/qaT4C0iy51L5BOSceBH4YBfzyqguSSHQ8p2eoHvqOyts8BwqId92UrBShAAQ8QkCzugwern9tm5dNPP0WtWrUQExOD1q1bo1KlSrjxxhtx9OhRU6/AwEBMnz4dFStWNNV56kbXrl0xceJEi+lLlvk2bdqgevXqaNtW3SlKBfPLs2S5Ny8S3G6eAd68jdsFJCCfNeTziV5JVd8d13+p11JodX4+XujeQGWW1ykLd59Bjvpuy0IBClCAAhSgAAUoQAEKUIACFKAABShAgaIQ0E/DUBRn5jkoQAEKUIACFKAABShAAQqUAYG9p5Px9Mzt2HrsotOrlSS5ozpH44l+DRBsJ2ue00HYgQIUoEBZFJAM5a5kGg+OAFrcAmz+1lKpTg+g03+Aen2g0txathn3ZPyYXoaHBI1LRvRNahxXs8LLHJepLLhndgKL/ws0v9lwbNXmxjMU7LOcb+uPwN/PAumXnI9dqzMw5GMgvK7zvuxBAQpQwEMEJHP5r7/+itGjR+Pnn382zTo7OxuHDh0y7ZtvSMD7jBkz0KVLF/Nqj95+6qmnINnYJeBfrt1YJJO9eTZ7Y730fffddzFu3DhjFZ8LU0CyuG/8BshMtT3Lqg8MAfD+obZthVTTu2EU/tx+ymb0ExfT8OeOU7hO3WGMhQIUoAAFKEABClCAAhSgAAUoQAEKUIAChS1g5y92hX1ajk8BClCAAhSgAAUoQAEKUKB0C6RnZWPSwn0Y/L8VLgW3x1YOwcyHOuPl65owuL10vzV4dRSgQEEKXDwGLHgB+FQFIWZnuTZyxzGGfl6+Ktj9NuDBlcBdc4DYfvaD261HrlBDZXhX5x2/C2g61LpVf//YekNwu7Rmpakg+++Az7sBX/UFtk9Xden6x+W1dtX7wO8POw9u9wkEBrypVlj9yeD2vFrzOApQoEQLBAQEYNq0aVrQesuWLe3ONTg4GGPGjMHu3bvRs2dPu/08teHxxx/Hxo0bMWjQILWWS/9PQ1IvGe83bdrE4PaifKFDIoH29+ufMe08sO5z/bZCqu3VIAreXuV0R39/0T7IHcpYKEABClCAAhSgAAUoQAEKUIACFKAABShQ2ALlclUp7JNwfApQoPgEdu3ahaZNm5omsHPnTjRp0sS0zw0KUIACFKAABShAgYIX2HTkvMravgMHEi47HdzXuxwe7lUPY3rWg9wOnoUCFKAABVwQOLEZWPMxsGsWkPtvJtqbVObTpsNcOFh12fKDIVt7aBXX+hdEr5n3Ajt+tT9SUATQeiTQdjRQsZb9fq62XE4EPukApJ6zf0RN1X7DJ0BEPft92EKBUijA35eVwhfVjUs6cOAA1q1bhxMnTiAjIwMVK1ZEo0aNtIztEgxfFsrZs2excuVKLYt9SkoKJLg/JiZGM4iIUP8/KmGlTPybTVH/v/6gOZBx2VY/oCIwbjsQUMG2rZBqHv5ps24WdzndpOEtMLS1WuzHQgEKUIACFKAABShAAQpQgAIUoAAFKFAsAmXi92VK1qdYdHlSClCAAhSgAAUoQAEKUIACpVDgcnoW3vl7D75bewSuLCVuVasi3hrWHLGVQ0uhBi+JAhSgQAEL5KhA9r3zDIHtR1fbDr76I6DJUKCcfsZRiwNa3WGxW+g7Emy+a7bj06SeBVZOAiTzeuwAoN09QN1rXM8qbz26ZIMd9B7w6yjrFsDbH+j9IiDZ7L28bdtZQwEKUKAUC9SrVw/yKMtFgtiHDBlSlglK3rUHVwI6PACsUP/vti5XLhqyuPd4yrql0PbH9a6Pv3ac0v1e+/6i/biuRTX4enOBdqG9AByYAhSgAAUoQAEKUIACFKAABShAAQpQAPztE98EFKAABShAAQpQgAIUoAAFCkBgyd4E9J+8HN+ucR7cHuTnjVeua4wZD3ZmcHsB2HMIClCglAukq0ym674A/tcG+OV2QC+4XQhObgaOrSuZGFu+A3IyXZtbbo4K5P8L+GEY8JG6ZgncT7vg2rHWvZrcaAj6N6+v3hZ4cCXQ+REGt5u7cJsCFKAABShQ3AKd/gP4herPQvs8cFG/rRBq66tF2ENaVtcd+ej5VMzcdFy3jZUUoAAFKEABClCAAhSgAAUoQAEKUIACFCgoAQa4F5Qkx6EABShAAQpQgAIUoAAFyqTA+ZQMjPt5C0ZP2YATF9OcGvSIjcSC8d0xqksdeHu5kGXY6YjsQAEKUKCUCiSdABa+DExuDMx7Erhw2PmFrlHB4CWxtLgV6PE0EFLZvdmdPwQseB54rxHwuwp6O7nVveOl97XvAsEqm7u3H9BnAnD3fCAy1v1xeAQFKEABClCAAoUrEBQOdFJ3V9Er6UnA2k/0Wgqt7lGVxd3ed9YPF+9HelZ2oZ2bA1OAAhSgAAUoQAEKUIACFKAABShAAQpQgAHufA9QgAIUoAAFKEABClCAAhTIg0Bubi5+33oCfSYtw+ytJ52OEBbki8kjWmDq6HaoERbktD87UIACFCizAie3ADPvAz5oDqx6H7iiArpcLUdWq/6XXO1ddP3KVwN6PQeM3wXcNAWo3cW9c2epBVRbvge+6AF81QfY9jOQecW1MYIrAcO+Bh5YDnQdpwLdfVw7jr0oQAEKUIACFCh6gY4qwN2/gv5516gA99Tz+m2FUBsdEYybWtfQHflk0hX8suGYbhsrKUABClCAAhSgAAUoQAEKUIACFKAABShQEAIMcC8IRY5BAQpQgAIUoAAFKEABCpQpAcnUfvfUDXj0562QDO7OyvUtqmHRYz1wY6saKFeOWdudebGdAhQoZAEJjEo+A6ScBdIuAOnJKlhaBVBnqZ9nOTmFfHI7w8t59/wFTBmkgrh7Ajumq7lk2emsUx0eAwx6Dxi3Awgor9OhhFR5+wJNhwKj1bU+tAZody/gF+Le5I5vAGY9YFgAcOGIa8fWVYHxUSoLPAsFKEABClCAAiVbILCiyuL+sP4cM9RntiK+W80jvevB11v/O+xH/xzAlUxmcdd/sVhLAQpQgAIUoAAFKEABClCAAhSgAAUokF8BpmzKryCPpwAFKEABClCAAhSgAAXKjEBOTi5+WHcEb83bg5QM53/Ir1YhAK/d2BTXNKxcZox4oRSggAsC2ZmGgHItqFwFlksm7sxUFWAuz7KvHhbb9voY66W/egx+H6ja3PkE5j1tCCC321MFMXmpXxlpD2/1LI9/98sZt+08t70baHWH3ZFNDbvnAPvnG8aVMQ8tAc4fMjW7vBHdzRAEVr+/GsvD8jhUbmwIyu/9MrD9F2DDV0DiHpcvHblqUYC7wfGuj86eFKAABShAAQoUl0DHB4G1Klv7lYu2M1j3OdBRBcDLHVqKoMjdx25pVwvfr7VdVJeQnI4fVP293eoWwUx4CgpQgAIUoAAFKEABClCAAhSgAAUoQIGyJsAA97L2ivN6KUABClCAAhSgAAUoQIE8CRxISMbTM3dg0xGV7diFMrJTbTw1oCFC/Pm1ywUudqFA2RH4oAVwIb5wrjf1nGvjOs2Mnquyp6sgfHm4WxoOcu2Ik5uBLT+41te6lwTbNx2mgrvGANVaWrd63r5knG9/nyGb+5FVwPovVTb7uc4z2KckAn89Adw8xfOumTOmAAUoQAEKUMC+QEAFoPMjwD+v2vbJuAys/hDoO8G2rZBqHu5VD79sPIaMLLW4zqp8svQgbm1fC8H83mslw10KUIACFKAABShAAQpQgAIUoAAFKECB/Ap4WGqr/F4uj6cABShAAQpQgAIUoAAFKOCegPwR/8PF+3HtBytdCm6PiQzGjAc74b83NGVwu3vU7E0BzxTIVcHgkpHd1eLt52pP9/tJ1ndXSq7zO1C4MoxuHwk+d6Xk5GEOEuzVdTwwbgcw9IvSEdxublVOZc6P7goM/1Zd406g57NAaFXzHrbbu34Dds2yrWcNBShAAQpQgAKeLdDhASAwXP8a1qvPQZfVQrciKlXUncnu7Fhb92znUzIwdXW8bhsrKUABClCAAhSgAAUoQAEKUIACFKAABSiQHwEGuOdHj8dSgAIUoAAFKEABClCAAqVWIFcFra4+eBbXf7QSkxbuQ0a2bbY684v38SqHR66phz/HdkPbaDuBCOYHcJsCFPBsAQlq3zED+PIaYNnbrl+LT4Drfd3tmZnq2hF5CS53bWSgnLdrPd2ZQ1gd4Np3gfG7gT6vAOWruXYOT+5VXgW293zGEMx/swp4j+5m/2r+fLxIg9zsT4QtFKAABShAAQoUmIB/KNBlrP5w8plv1fv6bYVU+1DPGAT66n/O+2L5IVy64saCz0KaI4elAAUoQAEKUIACFKAABShAAQpQgAIUKF0CLqbVKl0XzauhAAUoQAEKUIACFKAABShgT+DY+VTM3Hwcv20+gaNq25XSokYFvDmsORpVLe9Kd/ahAAU8WSDtIrD5O2Dd58Cl44YruRBvyCzuF+T8ynwDnffJa49MFzO452Tl9QzOj3M5g7sLc6jdBej0MBA7APDSD6hyPiEP7+HtCzQZYngk7AE2fg1snQZkJF+9sOAoIO0CEBJ5tY5bFKAABShAAQp4vkC7+4DVHwGpZ22vZYP6TNBZBcCHVrZtK4SaiBB/3NU5Gp8tO2gzelJaJr5ecRjj+8batLGCAhSgAAUoQAEKUIACFKAABShAAQpQgAJ5FWCAe17leBwFKEABClCAAhSgAAUoUGoELqdn4a8dpzBz03GsO3ze5esK8PXCE/0aYHSXOvBWGdxZKECBUiwgQexrPwO2fK+Ciy9bXmia+rmx/Weg7d2W9Xp7hRngnpWmd0bbOneyp9se7bjG1UB0e0H2kgG+6VCg4xigemvH5yprrVENVSb7d4DeLwH7FwBnDwDVWgIx1wASCM9CAQpQgAIUoEDpEvAPUYsoxwELXrC9Lvnct/pDoP/rtm2FVPNA97r4Ye0RyPdn6/LNysMYpQLgw4L9rJu4TwEKUIACFKAABShAAQpQgAIUoAAFKECBPAkwwD1PbDyIAhSgAAUoQAEKUIACFPB0gZycXKw5dE4Lap+38zTSMrPduqSu9SLwxo3NUKuSCxmb3RqZnSlAgRIjkJsLHFsPrFGZM/fMBXJz7E9tzSdA61Eq07iX/T7S4uMkg7sEePuqnyu+Aeqh+kp/bVvV+fxbZ1Fv1qd6W8fnNrZer4Kh0i8DEmQuj1z180+C3rV947O0qW2t7d9+Wh+zdovj/u1fs73xLI6fq7dRc0i+Or5kfq/SDGh2M1ChhuNjy3qrf6haBDCsrCvw+ilAAQpQgAJlQ6DtPcAq9dktJeHq9cpnwnb3Al0evVpXBFsSvH531zr4cPF+m7Mlq6D3L1YcwtMD1II8FgpQgAIUoAAFKEABClCAAhSgAAUoQAEKFICA+ushCwUoQAEKUIACFKAABShAgbIjcCjxMmZuPo5Zm0/gZNIVty+8QqAvXhjUCDe1qYFy5Zi13W1AHkABTxDIVsHacXNUYPvHwImNrs34nAr0ObAQiO3vuP81L6hgpLH/Bqv/G8iuBbFLILt6FEUm7vLVHM+xKFpb3Q7Ig4UCFKAABShAAQpQwL6An/q82HU8MP9Z9TnR33DHIMnqHlrF/jGF2HKPCnD/dnU8ktIybc4ydVU8pD0iRM2ThQIUoAAFKEABClCAAhSgAAUoQAEKUIAC+RRggHs+AXk4BShAAQpQgAIUoAAFKFDyBeSP73O3n9SytW8+ejHPEx7UrCpeub4JIkP5B/s8I/JACpRkgStJwObvgXWfAUnH3J/psXXOA9yrNHV/XB5BAQpQgAIUoAAFKFB2BdqOBi6fBjo8CBTzQkVZ8H1/97p4Z/5em9dD7or26dKDeHFwY5s2VlCAAhSgAAUoQAEKUIACFKAABShAAQpQwF0BBri7K8b+FKAABShAAQpQgAIUoIBHCGRl52DFgbNaUPuC3WeQkZWTp3n7eJVDr4ZRuKtTNLrWj8jTGDyIAhQo4QIX4lVQ++eG4PaMZPcmK5k0W4wAOo4Bohq5dyx7U4ACFKAABShAAQpQwJmA3OWn73+d9Sqy9lGdo/H1ysM4n5Jhc84f1h7Bfd3qokqFAJs2VlCAAhSgAAUoQAEKUIACFKAABShAAQpQwB0BBri7o8W+FKAABShAAQpQgAIUoECJF9h3JlkLap+15QQSktPzPN8m1crjpjY1cH2LaqjEW6zn2ZEHUqBECxxbD6z5CIj7A8h1cxFMkFrw0v4+oO09QEhkib5MTo4CFKAABShAAQpQgAIFJRDs74OHesTg9b/ibIZMVwvLP15yAK8O4V2LbHBYQQEKUIACFKAABShAAQpQgAIUoAAFKOCWAAPc3eJiZwpQgAIUoAAFKEABClCgJApcUJnj5mw7iRmbjmPHiaQ8TzFCBbLf2KoahqnA9oZVyud5HB5IAQqUYIHsLGCPCmhf8zFwfIP7E41sCHR6GGg2HPBlZkr3AXkEBShAAQpQgAIUoICnC9zRsTa+XHFId1H5zxuO4oEedVEjLMjTL5PzpwAFKEABClCAAhSgAAUoQAEKUIACFChGAQa4FyM+T00BClCAAhSgAAUoQAEK5F0gMzsHS/YkYObm4/hHPWdm5+ZpMD9vL/RtXFkFtVdH9/qR8FH7LBSggBLIzgTiVwIXjwBevkBEfaBSPSAo3LN5fr1LBbjPdf8aYq4xBLbH9AbKlXP/eB5BAQpQgAIUoAAFKECBUiIQ6OeNh3vVw8tzdtlckXw3/9/iA3jrpuY2baygAAUoQAEKUIACFKAABShAAQpQgAIUoICrAgxwd1WK/ShAAQpQgAIUoAAFKECBEiGw62SSlql9ztaTOKcyt+e1tKxZUcvUfl3zqqgY5JfXYXgcBUqfwLmDwObvgK0/ASkJttcXVEkFuqtgdwl414Le/30Oiwa8fW37l7SaJje6HuDurX42NFeZ2juOASo3KWlXwvlQgAIUoAAFKEABClCg2ARuaV8Tny87iJNJV2zmMEMtRH+oZwyiI4Jt2lhBAQpQgAIUoAAFKEABClCAAhSgAAUoQAFXBBjg7ooS+1CAAhSgAAUoQAEKUIACxSqQmJyO37ee0ALb95xOzvNcqpQPwI2tq2NY6xqoFxWS53F4IAVKnUCmCkqRrOabpqqs7SscX17qOUAex9Za9vNSv2IIqwMMeheo29OyrSTtNb4BWPgScOmE/VlJEH+7ew2PkCj7/dhCAQpQgAIUoAAFKECBkiKQq+5qlpkG+AUVyYz8fbzxSO/6ePa3HTbny87JxQeL92PyiJY2baygAAUoQAEKUIACFKAABShAAQpQgAIUoIArAgxwd0WJfShAAQpQgAIUoAAFKECBIhdIz8rG4rgEzNx0HEv3JUL+QJ6XEuDrhQFNqmjZ2jvHRMDbq1xehuExFCidAgl7VLb2b4Ft04C0C/m7xpws4Nx+wNfFgJpLpwAJJPdRWdKLskiW+Q4PGILcrc8bEQt0elhlbR+hriPQupX7FKAABShAAQpQgAIUKHkCEth+aAmwZKK601IMcONnRTbHm9rUwKdLD+Lo+VSbc85Wi9Qf7hWjFpeH2rSxggIUoAAFKEABClCAAhSgAAUoQAEKUIACzgQY4O5MiO0UoAAFKEABClCAAhSgQJEJ5Ko/zG87nqQFtc/ZdhJJaZl5Pnf76HAV1F4d1zaritAAFdDKQgEKGAQyVPDJrlmGwPZj6wpepVI918b88SYgIU5lfY8GIuqrYBx1nDxLkHkl9RwcAZRzcUFKejKw5Qeg2XB1nAqad1Za3wUsfUtluEwx9KzbUwW2/weI6Q14eTk7mu0UoAAFKEABClCAAhQoGQKHl6vA9jeAo2sM8zmxEej2uOFzdRHM0NfbC4+qLO6P/7rN5mwSdz950X58fFtrmzZWUIACFKAABShAAQpQgAIUoAAFKEABClDAmYCPsw5spwAFKEABClCAAhSgAAUoUNgCJy6mYc7Wk5ix6RgOJv4bcJqHk9YIC8TQ1jUwrHV11K4UnIcReAgFyoDA2X3A72MK50KDVFB6ULjzsXNyVLb3g0BuNnBePcvDugRUMAS6a0HvKuBdgt5lO7yuyvrub+h98Riw/nNgk8pCn35JPS4DPZ60Hsl2P7Ai0O5uIPU80FFZVGlq24c1FKAABShAAQpQgAIUKKkClxOAGerzbPwKyxnmqs/Zy94Ghn1pWV+Ie0NaVcfHSw/gkM53+T+3n8LDPS+hcbXyhTgDDk0BClCAAhSgAAUoQAEKUIACFKAABShQGgUY4F4aX1VeEwUoQAEKUIACFKAABUq4QGJyOtYcOoc1B+VxFvHnVEbpPJYgP28tS/swFdjeoU64Sr7sYsbnPJ6Ph1HA4wWqtQSqtgBO2WZZ1L02n0CV1dwbyFDB486KBKC7Ui4dB7LSHPe8kgRIBkp5mJdyXkDFWkBoNUAy0EuQvLGs/wLoMvZqALyxXu+532t6tayjAAUoQAEKUIACFKBAyRcIDAeST+nPc8evQPcngMgG+u0FXOutvoOP7xOLR6Zt0R158qJ9+HJkW902VlKAAhSgAAUoQAEKUIACFKAABShAAQpQwJ6Aj70G1lOAAhSgAAUoQAEKUIACFCgogQspGVgrAe3/BrXvT7icr6HLqRj2TnUr4aY2NTCgaRUE+fGrTb5AeXDZE2h9F/DnY46vu2pLoI3q1/QmwD9UBdCcVlnX9wOSAf7sgX+31f7Fo2qcXMNYleo5HtPYelYdl9ciWSkvxBse1mOkJAA7ZgCtbrdu4T4FKEABClCAAhSgAAVKj4C3+g7c4xngt3t1rkl9Nl/6JnDzFJ22wqka1KwqPl5yAHtOJ9ucYOHuM9h27CJa1Kxo08YKClCAAhSgAAUoQAEKUIACFKAABShAAQrYE1C/AWOhAAUoQAEKUIACFKAABShQsAKXrmRi/aHzWkD7apWlfc/pS8j9N/41P2eqExGMYa2r40aVrb16RZVVmoUCFLgqkHpeZVlPUdnNa16ts7fV7GZgwQtAptXdE/zLA9Imge2S5d28lK8KyKNOd/NaNYbKxH7+kAp6V0Hr5VVWdVdKfgLcnY2/5mOg5W2ArIRhoQAFKEABClCAAhSgQGkVaDoUWP6O+hy+1/YKd81SWdyfBCo3tm0rhBq5k9r4vrF44PtNuqNPWrgP397dXreNlRSgAAUoQAEKUIACFKAABShAAQpQgAIU0BNggLueCusoQAEKUIACFKAABShAAbcEUjOysCH+AlYfPIu1KqB9x4kk5BRAQLtMIjTAB4ObV1PZ2qujda0wFbPKoFXtxTm2ATi9TQFJwHEPlWE7xK3XjJ1LiUBODhC/Atj8HRA3B2hyIzD0C+cXF6AC2ZuogJitPxj61uxoCGpvPATwC3J+vHkP30AVONPE8DCvd7QtmeALqyTsAg4tBWJ6FdYZOC4FKEABClCAAhSgAAWKX8DLG+j5NDDjbp25qC/ky1QW9+Hqe0IRlX6NK6NZ9Qra7wOsT7lsXyI2xp9H2+hw6ybuU4ACFKAABShAAQpQgAIUoAAFKEABClBAV4AB7rosnld58OBBrF+/HsePH0dGRgbCwsLQsGFDdO7cGQEBAcV2QSdPnsSaNWtw+vRpXLx4EcHBwahTp442r8jIyAKZ14kTJ7Bjxw7Ex8dr5/D29tauPzo6Gh06dEBoaGiBnIeDUIACFKAABShAAQpcFbiSmY3NRy6YMrTL7cazCiqiXZ1GJX9Dt/qRKqi9BvqqP5IH+Ko/3LMYBK4kqdvQPwDsm3dVxEcFGDe81pB5O6Y34ON3tY1bpVMg+YwKTv/RENh+4fDVa9z9OzDwLSAw7Gqdva12KhAmoALQeiQQ1dBer8Kp7/8G0O4+QALdz+5TjwNXt+U9ntci191WXVdU47yOwOMoQAEKUIACFKAABSjgOQKNbwQi3wES42znLN8NTu8AqjSzbSuEGlmM/li/WIyeskF39PcW7MO0+9XCWhYKUIACFKAABShAAQpQgAIUoAAFKEABCrggwAB3F5BKcpfZs2fj1VdfxebNm3WnGRISglGjRuHll19GRESEbp+CrsxRGQR//vlnvP3229i2bZvu8PKLzr59++Kll15Cly5ddPvYq0xJScHcuXMxb948LF68WAvqt9dXgt179OiBRx99FNdff729bnbr85sd9PDhw5BAexYKUIACFKAABSjg6QIZWTnYdvwi1qjs7JKlffPRi5C6gi4Nq4TixlbVMUQ9KpcvvoWaBX1dBTbeuYPAtFsMAcHmg2alATtnGh4BFYHGNxiC3Wt3VqsFuDjAnMqjt3OygYP/AJumqgUOfwM5WbaXk3UF2D4d6KAWQTgr1dsA8iiO4uNvCKq3DqzPVZkmU87+G+yugt+1AHj1fFY9LsQDucpAr4THAJ3GAC1uVRnog/V6sI4CFKAABShAAQpQgAKlT8DLC+j1LDB9pP61LX0TuEUtjC2i0jM2Ut15raL2OwPrU645pH6fcOAsOtcrmr9VWZ+f+xSgAAUoQAEKUIACFKAABShAAQpQgAKeJcAAd896vUyzTU9Pxz333IMff3T8i8nLly/jo48+wi+//IIZM2age/fupjEKYyMhIQFDhw7FqlWrHA6fq4IWFixYgIULF+KJJ57Am2++CS/5RayTMnHiRLz++uuQIHdXSnZ2Nv755x/tMWDAAEyZMgVVqlRx5VD2oQAFKEABClCAAmVaICs7BztPXtKC2SWofWP8BaSprO0FXaIrBaFTTIR6VELHuuGICg0o6FOUnvEOLTMELVy56PiapH3zt4ZHaFWg6TAV7H4TULUloBaasnigQNJxYMsPhkfSMecXsEm9/u3v98zXW96jIZGGhyzQMC9ZGYYgd2PW9/OH1DV6A7EDgPr91GIO598pzYfjNgUoQAEKUIACFKAABUqFQMPrgMrNgDM7bC9nz1zg5FagWkvbtkKokaRBT/RrgNu+Wqc7+nsL92nf//ObXEh3cFZSgAIUoAAFKEABClCAAhSgAAUoQAEKlCoBn1J1NWXkYiRD+ogRI/D7779bXLFkK69VqxYqVKgAyRyelJRkak9MTMTAgQOxaNEidOrUyVRfkBunT59Gx44dceTIEYth5ReVdevWRXh4OM6ePavNzdhBAt3feecdXLp0CZ999pmx2u7zpk2bdIPb5RwSuF65cmUVs1MOx44d085lPtDff/+Nrl27YsWKFahaVQX6sFCAAhSgAAUoQAEKmARycnKx+9QlrJWMaiqgff3h87icrpMd2nRE3jaqVwzU/pjdqW4l7bma2mdxQWDD18C8p/Qzdjs6PPkUsOYjw0MyXDe72RDsHlHf0VFsKwkC2ZkqS/t8w0KFA4tU5vIc12eVsAs4sRmo0cb1Yzyhp48fEBlreGCQJ8yYc6QABShAAQpQgAIUoEDhC8hCz57PAL/crn8uyeJ+28/6bYVQKxnaZQH72kPnbUbfdOQClu1LRM8GUTZtrKAABShAAQpQgAIUoAAFKEABClCAAhSggLkAA9zNNTxkWwLCrYPbH3zwQbz44ouoVq2adhUSBC99xo0bh6NHj2p1qampGD58OHbu3KkFwRfk5WZlZWljmwe3S8D9+PHj8dhjj1kElEvwuWRs//TTTyEB7lI+//xzdOjQAaNHj3Z5WoGBgbj55ptxww03oEePHqhUqZLpWBlXguFfffVVzJkzx1R/8OBBrf/atWtdyhhvOlBtNG/eHO+99555ldNtZot3SsQOFKAABShAAQoUk4B8XtqfcFm7PbjcJnydCmi/mKoCagu4RIX6o7PKzi4Z2jvVjUDN8EBtQWIBn6b0DpetFhnMfxZY/0X+r/H8QWCZCmyQR+u7gOs/zP+YHKHgBSQr+ebvga0/ApfP5G388jWAlIS8HcujKEABClCAAhSgAAUoQAHPE2ioFoBWaQ6c3m47933z1ALYTUD1olsA+7jK4n7zZ2ts56JqJqks7j1iI/m7AV0dVlKAAhSgAAUoQAEKUIACFKAABShAAQoYBRjgbpTwkOdz587h9ddft5jtxIkT8cwzz1jUeamMHTfeeCPat2+vZS2Pj4/X2o8fP45JkyZhwoQJFv3zu/P9999rmdGN48j5f/75Z9x0003GKtNzzZo18fHHH6N169a49957TfXPPvusFiQfHBxsqtPbiIyM1K73nnvusRuoL1nc27ZtqwX5i9cLL7xgGmrDhg349ttv3Qqml4PDwsLQp08f0zjcoAAFKEABClCAAp4mkKQC2P/aeQqrDpzVMrWfvZxR4JcQHuynAtkroaMKaJfA9roRwfyjdV6V0y4Av6oFoIeW5HUE+8dVVYEPLCVHIEv9W4xTC3M3fwscXp63eXmpr/exA4A2o4CYawAv77yNw6MoQAEKUIACFKAABShAAc8TUH8TQa/ngWkj9Oe+ZCJwxwz9tkKobRcdju4qiH25ytZuXbYfT8LC3WfQr0kV6ybuU4ACFKAABShAAQpQgAIUoAAFKEABClDAJKD+As7iSQJvv/02kpOTTVPu3r07nn76adO+9Ub16tXx1VdfWQRmT548GWPHjrXIeG59nLv7kpHdvDzyyCO6we3mfSRAffny5fjuu++06jNnzuD999/H88+rX8LaKQ888ACmTp2KkJAQOz1sq2U8yeY+a9YsU6OYuJMt3nQgNyhAAQpQgAIUoIAHClzJzMY3qw7jkyUHcTk9q0CvoHyADzqogHZjlvbYqFB1pxz1h3WW/AtIgPuprY7HkUDmDg8Cu39XAdJ/AOmXHPeXVgmEbnyj837sUfgCcker3bOBBS8CScfydr6wOioj/0ig5e1AaOW8jcGjKEABClCAAhSgAAUoQAHPF4jtD1RrDZzcbHstBxYCx9YDNdvbthVSzWN9Y3UD3OV0ksW9T6PK/P1BIdlzWApQgAIUoAAFKEABClCAAhSgAAUoUBoEvErDRZSVa8jJycGUKVMsLveVV15xmhGzd+/e6Natm+k4CZCfPn26aT+/G3v27MG+fftMw/j4+OCpp54y7TvakOBzybZuLF9++aVxU/e5b9++bgW3GweR7PDmZe3atbh0yYXgH/ODuE0BClCAAhSgAAU8TCAnJxe/bz2B3u8tw9t/7y2Q4PZgP2/0ahCJ565tiLmPdMWWl/rhy5FtMbpLHTSsUp5/nC7I90h4XWD4d4aAdL1x2z8A3ParytqtghiGfAI8sV/1/x5odD3g7a93hKFOguKDK9lvN285rm5jL9nFWQpe4EI8MHWwytI/yv3gdm8/oOlNwF1qUcMjKnil22MMbi/4V4gjUoACFKAABShAAQpQwLMEjFnc7c16yRv2WgqlvmXNiloQu97ge04na3eY02tjHQUoQAEKUIACFKAABShAAQpQgAIUoAAFRIAZ3D3ofbB69WokJiaaZly3bl307NnTtO9oQ7Klr1ixwtRl9uzZeOihh0z7+dlYtmyZxeFt27ZFtWrVLOrs7cTGxkIee/fu1bocOXJEy7bepk0be4fkqV7mFBgYiLS0NO14WSxw/PhxNG7cOE/j8SAKUIACFKAABShQ0gU2xJ/Ha3N3Y5u69Xd+SoCvF9rWDkenmErao1n1CvD19srPkDzWHYE63YFr3wHmjr96lGRgl7q2d1+tky3fAJWZXQW3y+OKet33/Ans+BU4tBTIzbnat9nNV7cdbaWeB77pB/iHqjFvAOS4Wp1VwD1ff0dsLrf5qbtSndnhcnetY2RDla39LqDFLUBQuHvHsjcFKEABClCAAhSgAAUoUPoF6vUGarQDjm+wvdZDS4Aja4DanWzbCqlGsrgvijujO/pklcV9YNOq8OZd4HR9WEkBClCAAhSgAAUoQAEKUIACFKAABcq6AAPcPegd8OefKkDFrEg2c/Ps52ZNNpvS17wsXboUKSkpCA4ONq/O0/bRo0ctjmvRooXFvrMd6W8McJe+c+bMQUEHuItThQoVTAHucp6kpPwFe8kYLBSgAAUoQAEKUKCkCcSfTcGb8/bg712n8zQ1PxW83qpWRS2YvXNMBFrUrAB/H+88jcWDCkhAAtkT9gDrPwcCKgIjvgck8N1RCagAtLzN8LicAOyapYLdZ6iA6p1Ag2sdHXm1bffvQE4WkHYB2DTV8AitpjKHDzUEu1dVn/slQyBL3gSCI4CezwF/P+34eJ9Ag7kEttdsT3PHWmylAAUoQAEKUIACFKBA2RaQ72i91PeM72/Ud1iqsrjLnaCKqDSuVh6DmlXFnztO2ZzxYGKKdte5oa1r2LSxggIUoAAFKEABClCAAhSgAAUoQAEKUIACDHD3oPfA1q1bLWbbuXNni31HO5JRPTo6GvHx8Vq3jIwM7N69G+3aqUwe+Sznzp2zGCE83L1MgpUqVbI4fsuWLRb7BbGTmZlpkf1exrQ+b0Gch2NQgAIUoAAFKECB4hK4mJqBDxcfwPdr45GZnevyNHxUprTmNSpAgtklS3ub2mEI8GVAu8uARdWxvwpCyM0GOo5RH2Rj3DtrSBTQ4QHDI0V9dvdXmcNdKRIQb12STwJrPjI8KtVXge43GYLd3Z2T9bhldb/dPYaFA4lxtgJVmgNtVFC7ZM6XBQssFKAABShAAQpQgAIUoAAFXBGo20vdfUtlaT+6xrb34eXA4RVq0XQ327ZCqhnXpz7+2nkKuTq/qnh/0X5c16Ia7xRXSPYclgIUoAAFKEABClCAAhSgAAUoQAEKeLIAA9w96NWLi7MMemjcuLFbs5f+xgB3OVDGK4gAdy8vL4t5ZGerwBs3igSfmxfr6zRvy+v26tWrYT4vf39/1KpVK0/DnTp1CidPntQy4IeFhSEiIgJVq1bN01g8iAIUoAAFKEABCuRXID0rG9+vOaKC2/fj0hWVbduFEurvgxHtaqJr/Qi0iw5HsNpnKeEC3uo1GvRe/icZXMm1MZJOqFvXr3Lc99x+YOlEw6NaK0MgdhOV3b08Pxs7hjNr9fYFBr4JfHeDobKctyHrvgS+iykLBShAAQpQgAIUoAAFKEABdwWMWdy/vU7/SPkeF921yO4OVb9yKIa0rI5ZW9T3TKty9HwqZm46jlva5+3vNVbDcZcCFKAABShAAQpQgAIUoAAFKEABClCgFAkwksVDXsy0tDQcPXrUYrY1a9a02He2Y91/7969zg5xqd06Y3tCQoJLxxk7Wfc/fPgw0tPTIUHoBVW++eYbi6GuueYaBAQEWNQ529mxYwfq1q0LmZ91qVKlCnr06IFRo0ZhwIAB1s3cpwAFKEABClCAAgUukKtSn83beRpvztsD+YOwK8VbZWu/vUMtPNq7PiqFFNxnLVfOzT46ApI1r3ITIChcp7GYq3b9piagk17P3rRObgHkMf95Q6CEZB1vfD0QGGbviNJdn3kF8FH/xiSwxFmp2xNopAJPriQBA95S7wn3FjI7G57tFKAABShAAQpQgAIUoEAZFKjTXX036wbEq++d1kUWM0sm97o9rFsKbV9+DzFn20lk59h+z5QF+ze2rg5/H+9COz8HpgAFKEABClCAAhSgAAUoQAEKUIACFPA8AS/Pm3LZnPHZs2fV7Ruv/uLP19cXUVFRbmFUr17dor91YLlFoxs7EvRtXjZs2GC+63R706ZNFn0k07pcb0GV7du348cff7QYTgLR3S3nz5/XDW6XcU6fPo1ffvkFAwcOROvWrSHB8CwUoAAFKEABClCgsAS2HL2Amz9bgzE/bnY5uL1Po8pYML47/ntDUwa3F9YL4+q48rl+3ReGrN2/3gVkZ7p6ZNH1y0wD/ELzcD51bRJA8cdY4J36wC93APsXATnZeRjLAw+R13bXbOCjdsDu312/gBs/B0bOYXC762LsSQEKUIACFKAABShAAQo4E+j5rH4Pbz8gIU6/rZBqoyOCcVPrGrqjn0y6gl82HNNtYyUFKEABClCAAhSgAAUoQAEKUIACFKBA2RVgBncPee0vX75sMdOgoCCVDNCFbIBmRwUHB5vtAdZjWjS6sdOtm8oCYlZ27dqFnTt3omnTpma1+pvLly/HiRMnbBoLam6SCV6C2SVo3lgkAP2mm24y7hb485YtW9ChQwd8++23uPnmmwt0fFmUkJiY6NaYBw4ccKs/O1OAAhSgAAUoUHIFjqlM7W/P34s/VNYzV0uTauXx/KBG6BwT4eoh7FeYAhLMPu8pYOM3hrNI1rx5TwODJxXmWd0fu4eaY+dHgH3zgZ0zDM/ZGe6Nk6OuNe4Pw6NCTaDVnepxB1ChunvjeErvM7sMr6UxQ+KCF4D6/dRCgSDnV+AX7LwPe1CAAhSgAAUoQAEKUIACFHBHILoLUKeHyta+zHCUl6/hO1m3x4GK6jtaEZdHetfDb1uOIzNbLQy2Kh/9cwDD29ZEgK+3VQt3KUABClCAAhSgAAUoQAEKUIACFKAABcqqAAPcPeSVtw74DggIcHvmgYGBFsdYj2nR6MZO/fr10bhxY+zevdt01LPPPos//lDBLA5KTk4Onn/+ed0eBTW3sWPHQgLOjcXHxwdffvklvLxcv3lBREQEBg8ejD59+qB58+aoUaMGQkNDtQUCR48exYoVK7Qxt23bZjwN0tLScMcdd6By5cro3l3dCrSAyieffIIJEyYU0GgchgIUoAAFKEABTxG4dCUTHy85gCmr4pGRlePStKuUD8CT/RvgxlbV1Wcf9xZGunQCdnJfIPU8MH2k7S3iN34NRDUC2t/n/piFeYSv+v7QZIjhkXYR2DMX2KGC3SU4Ite196FpeknHgKVvAMveNAR9j/gB8FbBFaWhyOu6dCKw4StLF7nm1R8CPZ8pDVfJa6AABShAAQpQgAIUoAAFPFGg13PAkVVAy9uAbk8AYbWL7SpqhAVhRLua+GHtUZs5JCSnq/ojuLdbXZs2VlCAAhSgAAUoQAEKUIACFKAABShAAQqUTQHXo3zLpk+JueorV65YzMXPz89i35Udf39/i24ShF1Q5fHHH7cYau7cuXjmGfuBHBLc/vDDD2PlypUWxxl3CmJu//vf//DFF18Yh9SeX3vtNUgGd1fLDz/8oGWYnzJlCm6//XY0a9YMYWFhkED5ihUragHvch1bt27FZ599BnPjjIwM3HbbbbB+7Vw9N/tRgAIUoAAFKECBzOwcfLcmHj3fWYrPlx1yKbg9yM8bj/eNxZInemJYmxoMbi8pb6PEfcCX19gGtxvnJ1ncD/5j3Ct5z4EVDZn+Rs4GHtsDDHgLqN7W/XlKYHym+h5SGoLbc7INQe3/awOsV9879IL+V04GLh5134lHUIACFKAABShAAQpQgAIUKAiBWh2BcTuB6/9XrMHtxkv5T6/68PPR/9Pkp0sPIiU9y9iVzxSgAAUoQAEKUIACFKAABShAAQpQgAJlXED/t0hlHKUkXr51xnYJnna3pKenWxxiPaZFo5s7d911l02m8rfeegvdunXDb7/9hoSEBGRmZuLUqVP45Zdf0L59ey0gXE4jgeLWJSQkxLrKrf1Zs2Zh3LhxFseMGDECTz31lEWdsx0Jand1McEDDzyAn376ySI7/IkTJ/Dxxx87Ow3bKUABClCAAhSggIVAbm4uFu0+g/7vL8dLv+/C+RTnn/0kSfut7Wti6ZM98Ujv+ghUge4sJUTgwCLgqz7AhcP2J5SrgqWPrrXfXpJaQisDHR8E7lsMjFV3S7rmBSCyoeszbHOX631Las94lQHx8x7An2qhb5rK4G6vZF0BFrxor5X1FKAABShAAQpQgAIUoAAFCl+gfNXCP4eLZ6hSIQB3dKit2/uc+t3H1NXxum2spAAFKEABClCAAhSgAAUoQAEKUIACFCh7Aj5l75I984qtA77zkhXcOiu69Zj5kfH29sa0adO0IPeDBw+ahpIM7faytEsnyYT+7bff4oYbbjAdIxt6Qe8WHRzsLF26FLfeeiskS7yx9OvXD9999x3KlVORX4VYhg4dijvvvFO7JuNpvv/+e1hnuDe2ufs8ZswY3HzzzW4dduDAAQwZMsStY9iZAhSgAAUoQIHiE9h5Igmv/xmHNYfOuTyJ7rGReP7aRmhQJdTlY9ixCATUQgWs+wyY/5x+dm/jFLx8gcGTgNYjjTWe8xxeF+j+pOFW92d2ATt+BXbOBJKO6V9DYDjQcLB+myfUJh03BKzv+s212ZZTa8pDogDJ9u7FRSeuobEXBShAAQpQgAIUoAAFKFCaBR7qGYNp648iLVN9T7IqXyw/hDs71Ub5APU9mYUCFKAABShAAQpQgAIUoAAFKEABClCgTAswwN1DXn7rYPTU1FRIZk93ArZTUlIsrtZ6TIvGPOxUq1YN69at04LLFy5c6HSEyMhITJ06Fa1bt7bpm9cA940bN+L666+Hebb6Tp06aVnkXc3EbjMZNyskmF2C9o1l+/btOHPmDCpXVpku81mioqIgDxYKUIACFKAABUqfwKmkNLw7fx9+23Jcfc5z7foaVA7Fc4MaoYcKcGcpYQLZmcBfTwCbpjqemAR8j/gBiO7iuF9Jb5WFpFWaGh69XwbiVwCb1WfiuD+AbLM7ELS8Ta1y9Xftaha9AlSqDzS5EfALcu2YwuqVmQas/h+wQi1EyFLbrpTobsDAt4DKTVzpzT4UoAAFKEABClCAAhSgAAXKhEBkqD/u6hyNz5YdtLnepLRMfL3iMMb3jbVpYwUFKEABClCAAhSgAAUoQAEKUIACFKBA2RJggLuHvN4RERFaMLsEtUvJzMxEQkKCW0HTJ06csLjawgiUrlSpEhYsWID58+fj008/xT///IPk5GSL80og/B133IHHHntMm/+uXbss2mWMvAS4yzgDBgywOF+LFi3w119/ITg42OIchbnTrFkzLQhdXh8p8prt27fPrdeqMOfHsSlAAQpQgAIUKFkCKelZ2h91v1xxCFcyc1yaXESIPx7vF4vhbWvC20sFFnt6Ob3DkOX85DagfDWgXm8gtj9QqxPg7et5V5d6Hpg+0hDk7Wj2kY2A234GwqId9fK8Ni+VtbxuD8NDLLapa5Rg98Q9rmepT1LfXVZ9YMh8//czQLObgTZ3AVVbFK2HfP+SIP0FzwMXj7p27go1gX6vAY1vgPoS59ox7EUBClCAAhSgAAUoQAEKUKAMCTzQvS5+WHsEl9XvRKzLNysPY5QKgA8L9rNu4j4FKEABClCAAhSgAAUoQAEKUIACFKBAGRJggLuHvNiBgYGoVasWjhw5Yprx0aNH3Qqalv7mpWHDhua7Bbrdv39/yCMrK0ubc2JiojZ+jRo1IAHuXhL08m/ZvXu3cVN7btu2rcW+KzsHDx5E3759ce7cOVP32NhYLdg+L8HypkHyuCHXaQxwlyGM15/H4XgYBShAAQpQgAKlUCA7JxfTNx7Dewv24ezldJeuMMDXC/d3q4v7e8QgxL+UfJQ/ux+Yci2QfslgkJikPjzFAWs+AgIqqGD3PsB1HwL+IS4ZFXunBBXEPW0EcCHe8VTqqwD+YV+payzvuJ+ntwaFA53GAB0fAs6oha2RDVy7oi0/GILbpbe8NzZ+bXhUbWkIdG96U+HbnVHfU/5+Gji83LU5+wQAXccDnccWf8Z512bMXhSgAAUoQAEKUIACFKAABYpFQILX7+5aBx8uVr8TsCrJKuj9C5UE4OkBhfc3LKtTcpcCFKAABShAAQpQgAIUoAAFKEABClCgBAr4lMA5cUp2BCQg3TzAXQLD27VrZ6e3bXVcXJxFZWEGuBtP5OPjg5iYGO1hrLN+3rFDZew0K+4GuB87dgy9e/fGqVOnTKPIYoBFixZpmdRNlUW44evra3E2ybjPQgEKUIACFKAABYwCy/Yl4o0/47D3TLKxyuGzJIEe2qoGnugfi6oVAh329ajGzCvAr6OvBrdbT/6KCnY/tkEFCwdbt5TM/f0LgRl3278e46w7/Qfo+1/Ay9tYU/qf5U1cpalr15mTDWz5Xr/vqa3AXPWY/zzQdKjKCD8KqNG2YDOlp10AlkwENqgFCLlqLq6UxkNU1vZXgYq1XOnNPhSgAAUoQAEKUIACFKAABUqWQPwqwyLjOt2KbF73qAD3b1fHIykt0+acU1fFQ9rlDnYsFKAABShAAQpQgAIUoAAFKEABClCAAmVTwKtsXrZnXnXLli0tJr569WqLfUc7EvwdHx9v6iIB2I0bNzbtF+fGn3/+aXH6gQMHWuw72pEs6X369LEI/K9SpQoWL16MmjVrOjq0UNtOnz5tMX5kZKTFPncoQAEKUIACFCibAntPJ2PkN+txl3q4GtzeqW4l/PGfrnhveIvSFdwub4FFL6us3jscvxkaDCjY4GXHZ8tba26uyjj/MfDTcMfB7V6+wA2qX//Xy1Zwu7uqB5cAScccH5WZqoLgVZb3r/sAn3YG1n4GpJ53fIyzVgms3/gN8GFrYP3nrgW3RzUB7poLDP+Wwe3OfNlOAQpQgAIUoAAFKEABCpQ8gaNrgW+vB6aqO6v99SSQk1Nkc6wQ6Iv7u9fVPV9aZjY+XXpQt42VFKAABShAAQpQgAIUoAAFKEABClCAAmVDgAHuHvQ6Dx482GK2kqE8V4JpXCgLFiyw6NWrVy+EhIRY1BXHzv79+7F582bTqRs1aoQuXbqY9h1tXLhwAX379sW+fftM3cLDw7Fw4ULUq1fPVFfUG8ePH7cIuJfzF2ewfVFfP89HAQpQgAIUoICtQELyFTz723YM/GA5lqvs7a6UupHB+GpkW/x0Xwc0rV7BlUM8q8/eecA6FZTsrMSqAHdXysmtwLaf8x/k7Mq5zPtkZQB/jFUZxZ8zZLszbzPfDqqkAqH/AFrdYV7LbT2BzVP1au3XJewG/n4aeK8hMPM+4PAK9Vq49j3JNKj0l6COueOBtPOmarsbARWBa98FHlgOFGGGQ7vzYQMFKEABClCAAhSgAAUoQAF3BORuad/fCHzTX32HWmY4MjEO2D3LnVHy3XdU52iEB/vpjvPD2iM4c+mKbhsrKUABClCAAhSgAAUoQAEKUIACFKAABUq/gE/pv8TSc4WdO3dGREQEzp49q13UoUOHsHTpUkiwurPy9ddfW3S54YYbLPaLa+eFF16wOPW9995rsW9v5/Lly5BM79u3bzd1KV++PObPn4+mTZua6opjw9pagtvr169fHFPhOSlAAQpQgAIUKGaBtIxsfLXiED5bdhApatuVIn/YHdenPm5tXwu+3qV0Peqlk8DsMc45/EKA6K7O+0mPzd+p7NvqM285ZVazAxCr/kgfq+4MFNmg8DLAp5wDpt8JHFnleI5RjYFbVfB9WG3H/dhqEOj1PFC+BrBdmaVdcF0lOx3YMd3wCI8BWo8EWt4OhEQ6H6NcOaDhteq1XOm4r7y/2t4NyByDwh33ZSsFKEABClCAAhSgAAUoQIGSKHDxqLobVl81s1zb2S19E2g8pMjuOhbs74OHesTg9b9UcL1VSc/KwcdLDuC/NxTv33yspsVdClCAAhSgAAUoQAEKUIACFKAABShAgSISUH+dZ/EUAS8vL4waNcpiuhMmTHCaxX3x4sVYsUJlMfy3hIaGYvjw4cbdYnueNWsWpk9XASj/lpiYGIwZM8a4a/f5ypUruP7667Fu3TpTn8DAQMydOxdt27Y11RXHRlxcHN577z2LUw8ZMsRinzsUoAAFKEABCpR+gZycXMzcdBy93l2K9xbucym43c/HCw/0qIulT/bEyE7RpTe4PScb+O1++1my/SsAEtguJUYt5PTxN2w7+q9k394339AjNwc4ugZY9ArwSQfgw5bAvKeBg0sAybZeUCUhDvhSzc9ZcLsE2d+zgMHt7rhHNQIGqqCKx/YAQ79Sixy6uXO0oe/5g+o98DIwqSHwy53AgUVAjnpvOCrt1fsyItZ+j9pdVcZ29b1q0HsMbrevxBYKUIACFKAABShAAQpQoKQLVKwFNB2qP8uz+4CdM/XbCqn2jo61ERnqrzv6tPVHcfxCqm4bKylAAQpQgAIUoAAFKEABClCAAhSgAAVKtwAD3D3s9X366acREvJvwI+a+7Jly/DWW2/ZvYoTJ07AOiv6o48+qmWCt3uQaiinMhiaPyRTvLOyb98+p8H2xjEkuP3WW2817mrPn376KQICAizqrHeysrJw8803Y8kSFaD0b/Hz84OM161bN2NVvp+3bt2KyZMnIzXV9V+cyjEDBgxAcnKy6fwSeP/MM8+Y9rlBAQpQgAIUoEDpF9h27CKu/3glHv91G067eCvt61pUw+LHeuDZgY1QPsC3dCOtmATEX118aXmxKov2iO+Apw4Bd/wGdH7Ustne3pmdwKXj+q0X4oF1n6lbrw8B3q6rMq6PBLb+BKSc1e/vau2qD4CLRxz37qLmf8uPgH+o435s1RfwVd8Nmt8MjJoLPLIZ6DIOCI7S72uvNicLiJsD/DAM+KAFsPojez0Bb/Vvb8Cbtu2STf6mKYZ5VGlq284aClCAAhSgAAUoQAEKUIACnibQQ/3dQu5QpVcki3u2+i5VRCXQzxv/6VVP92yZ2bn46J8Dum2spAAFKEABClCAAhSgAAUoQAEKUIACFCjdAj6l+/JK39VFRETgueee0x7Gq3v22Wdx9OhRvPDCC6hWrZpWnaOyE86ZMwcSzC5txiLtjz/+uHG3QJ9lXjt27MDIkSO1DOuNGzeGt7e36RzZ2dlYvnw5Pv74Y8ycaZkBZPz48ejbt6+pr72N++67T8vUbt4udXKeRYsWmVc73W7SpAmqVq2q2+/ixYt47LHH8Prrr2Po0KG48cYb0a5dO5uFAbkqW+jOnTvx5Zdf4osvvkB6errFeBMnTjS9JhYN3KEABShAAQpQoNQJZGbnaH90/UjdPjtbZXB3pbStHYbnBzVCq1phrnT3/D5H1wJLJ9q/jq7jgbo9De31etvvZ92y92/rGv39jGRg9++GB8oBNdsDsf3VYyAgWcPVIk+Xi2TxlsD60ztsD/H2A677AGh5m20ba/ImUCkG6DsBuOYFYO88YPO3Kiv7YjWWa//WtJMmqe9FiXscn1/edw2uVef4S909IMAQVC8LFfyCHB/HVgpQgAIUoAAFKEABClCAAp4kEBkLNFMLirf/YjtruSPWjulF+p32lvY18fmygziZdMVmPr+qO+Q92CMG0RHBNm2soAAFKEABClCAAhSgAAUoQAEKUIACFCi9AuVUgK4bEQGlF8KTrkyC12+44QabQG8J8q5duzYqVKiAw4cPQ4K0zYtkE1+4cCG6dOliXq27LdnbzYtkTO/Zs6d5lc32TTfdZBG4HhQUpM2nfPnyuHDhAiSbfEpKis1xkmH+888/h5eXnWwhZkdER0fjyJEjZjV535wyZQpGjRqlO8DSpUvRq1cvm7bKlStrQe6hoaG4fPmydk1ybXpFFhK8++67ek1FWrdr1y40bdrUdE4JyJfgfhYKUIACFKAABQpO4GDiZYz/ZSu2H09yadDalYLwzICGGNC0inbXHJcO8vROaeoz02fdgKRj+ldSox0wWgUuSxZtd8uX1wAnNrl7lGV/uUV77ADDI7qrCm72t2zX20s6DnyhPjOmJFxtDYowZG2v1fFqHbcKR+Ciei9t+UE9vlcZ/E+4do57VVB8jbaO+54/BCx+FejzChBW23FftlKAAhSgAAUo4JEC/H2ZR75snHQZFuC/2UJ68c+pQPaP1Hfx3GzbE4TVAf6zIW/f0W1Hc6lm2vqjePa3Hbp9h7aqjkkjWuq2sZICFKAABShAAQpQgAIUoAAFKEABCpQ1gbLy+zKfsvbClobrlUDwX3/9FaNHj8bPP/9suiTJkH7okArG0CmVKlXCjBkzXApu1zk8T1WpqamIi4uze6wE3EuGc8ky7ynlzJkzkIejIgH9n3zyCW6//XZH3dhGAQpQgAIUoEApEJC1ot+tOYKJ8+JwJTPH6RVVCPTFI9fUw52dasPfx9tp/1LTQdbUzhlrP7jdvzww7Ou8/eFcLf5EzQ4qyPwscPFI3skuquze678wPPxCgBgVuC6Z3ev3A0Ii9cetUEMFs/8ETB2kbt+eDlRuCtw6DZBgeZbCF6hYE+j1LNDjKUM2d8nqLtnd9YIzZDZRapFn9TbO5xVeF7h5ivN+7EEBClCAAhSgAAUoQAEKUMCTBeROWc1HANvU91rrcuGwqld/f2p9p3VLoe3f1KYGPl16EEfPp9qcY9bWExjTKwb1okJt2lhBAQpQgAIUoAAFKEABClCAAhSgAAUoUDoFnKfMLp3X7fFXFRAQgGnTpmlB6y1btrR7PcHBwRgzZgx2797tNAO73UFcbJBs6IMHD0ZIiAoIclDCw8MxduxY7Nu3r8QGtzdr1gxvvfUWBgwYAJmvK6Vhw4Z4++23ER8fz+B2V8DYhwIUoAAFKODhAqfVbbNHfrMeL8/Z5TS43de7HO7uUgfLnuyJe7vVLVvB7fI6b5oKxM2x/4pf90HeM2XLXYAGTAQe3QaMWWfIul2rE1AuH191Mi6r+f4B/D4G+PUu+/OWlpoq290NHwENVJD73fMZ3O5Yq3BavdRikdh+hsz5j+0Ger+k3k/Rtudqo15LqztV2XZiDQUoQAEKUIACFKAABShAgTIk0ONJ9T1JfafSK8vfBrIy9FoKpc7X2wuP9q6vO7asm5+8aL9uGyspQAEKUIACFKAABShAAQpQgAIUoAAFSqdAOZV1Uv1aiMXTBQ4cOIB169bhxIkTyMjIQMWKFdGoUSMtY7sEwxdlkUzyO3bswN69e3Hy5EmkpKTA19cXlStXRtOmTdGqVSt4e9v5hWlRTtSNcx05cgT79+/H0aNHceHCBaSlpUFcw8LCULVqVXTo0AGSJb8klrJyO4qSaM85UYACFKBA6RX4Y9tJvDB7J5LSMp1eZP8mlfHswEaIjgh22rdUdkiIA77oqf4ofkX/8lqPBK7/n35bfmpTzqms3guBfX8bsnunX8rbaH3/C3R51Pmx8rWKwdPOnYqqh2T2j18BSFZ3WayAcsATe4HAsKKaAc9DAQpQgAIUoEAJFuDvy0rwi8OpUUBHgP9mdVAKsur3/wBbvtcfcfD7QNvR+m2FUJudk4u+k5fhUGKK7uh/je2GxtXK67axkgIUoAAFKEABClCAAhSgAAUoQAEKlBWBsvL7Mp+y8oKW9uusV68e5FESigSvS1Z5R5nlS8I83ZlD7dq1IQ8WClCAAhSgAAXKtkBSaiZe/H0n5qgAd2elYpAvXh/SDIOaV3XWtfS2Z6apDOjqD+H2gtsjYlX29TcL5/qDKwEtbjE8JOPc0TWGYPe98wC51bqrJXaAaz0Z3O6aU1H1ksz+dXsYHrLY4eRmBrcXlT3PQwEKUIACFKAABShAAQp4lkB3lcV92zQgJ8t23svfBVreBvj427YVQo23VzmM7xOLR6Zt0R198qJ9+HJkW902VlKAAhSgAAUoQAEKUIACFKAABShAAQqULgH1V38WClCAAhSgAAUoQAEKUMCZwMr9Z9H//eUuBbd3j43E/HHdy3Zwu4DOfx5IjNOn9VZ/HL/pG8CvCDLb+/gZAp0HTATGqj+SP7wBkMzstTqrxN4OvhKF1QEkCJ/FswVksUP9vp59DZw9BShAAQpQgAIUoAAFKECBwhIIqw20ukN/9EvH7Wd31z8i37WDmlVFwyqhuuMs3H0G245d1G1jJQUoQAEKUIACFKAABShAAQpQgAIUoEDpEnAQzVG6LpRXQwEKUIACFKAABShAgbwIpGVk45U5u3DH1+tw+tIVh0ME+Hrh1SFN8e3odqhcPsBh31LfuHsOsPFr+5fZ7zWgSjP77YXVIpnWI1XQepdHgbvnAU8eBIZ+CTQdBvhXsDyrZG9nZnZLE+5RgAIUoAAFKEABClCAAhSgQOkT6PYE4OWrf13L3wMyHf8+RP/AvNV6SRb3vvYXm09auC9vA/MoClCAAhSgAAUoQAEKUIACFKAABShAAY8SYIC7R71cnCwFKEABClCAAhSgQFEKbD9+EYP/twJTV8c7PW2LmhXx19huuLNjbRUTrYKoy3qRDHCV6ukrNLgWaH+ffltR1waFA82HG7LJP6WC3e+aC3T6DxAeAzRQAe4sFKAABShAAQpQgAIUoAAFKECB0i5QsSbQ5i79q0w+CWz+Vr+tkGr7Na6MZtWtFqH/e65l+xKxMf58IZ2Zw1KAAhSgAAUoQAEKUIACFKAABShAAQqUFAEGuJeUV4LzoAAFKEABClCAAhQoMQJZ2Tn4cPF+DP1kNQ4mpjicl7dkFusTi5kPdkLdyBCHfctUY9UWwP3LgJZWtzkPrQbc8HHJzIzurbLV1ekG9H8dGLtZbfcoUy8ZL5YCFKAABShAAQpQgAIUoAAFyrBA18cAb399gBWSxT1Nv60QaiVxwGMOsri/t4BZ3AuBnUNSgAIUoAAFKEABClCAAhSgAAUoQIESJcAA9xL1cnAyFKAABShAAQpQgALFLXD4bApu+mwN5JbXWTm5DqdTNzIYs8Z0xqN96sPHmx+tbbD8VcD/EBXMPuxrwC9UNavM9sO+BCRruicUZuL3hFeJc6QABShAAQpQgAIUoAAFKECBghCoUB1oO1p/pMtngPXq+3wRlp4NItG6VkXdM645dA6rD5zVbWMlBShAAQpQgAIUoAAFKEABClCAAhSgQOkQYBRO6XgdeRUUoAAFKEABClCAAvkUyM3NxQ9rj+DaD1Zg67GLTkcb1Tkafz7SDc1rVHTat8x3aHYT8OAK4PoPgeiuZZ6DABSgAAUoQAEKUIACFKAABShAgRIp0HU84BOgP7XFE4Ddc/TbCqFWsrg/3q+B3ZHfU4kJ5Hc5LBSgAAUoQAEKUIACFKAABShAAQpQgAKlU4AB7qXzdeVVUYACFKAABShAAQq4IZBw6QpGT92AF2bvRFpmtsMjK5f3x/f3tMcr1zdBoJ+3w75sNBMIrwO0HmlWwU0KUIACFKAABShAAQpQgAIUoAAFSpRAaBWVxf0e/SnlZAEzVIb3uLn67YVQ2zmmEjrWDdcdedORC1i2L1G3jZUUoAAFKEABClCAAhSgAAUoQAEKUIACni/AAHfPfw15BRSgAAUoQAEKUIAC+RD4a8cp9Ht/OZbudf5H0etaVMP8cd3RrX5kPs7IQylAAQpQgAIUoAAFKEABClCAAhSgQAkV6DpOZXEP1J+cBLn/MRZIT9ZvL+BaZ1ncJzGLewGLczgKUIACFKAABShAAQpQgAIUoAAFKFByBBjgXnJeC86EAhSgAAUoQAEKUKAIBS5dycRjv2zFmB8342JqpsMzlw/wwQe3tMT/bm2FikF+DvuykQIUoAAFKEABClCAAhSgAAUoQAEKeKxASBTQ+yX96fuXB26bDviH6rcXQm276HB0j9VPNLD9eBIW7j5TCGflkBSgAAUoQAEKUIACFKAABShAAQpQgALFLcAA9+J+BXh+ClCAAhSgAAUoQIEiF1h98CwGTF6O37accHrubvUjMH98d9zQsrrTvuxAAQpQgAIUoAAFKEABClCAAhSgAAU8XqDjQ0BnlandvPhXAO6cDdRoa15bJNuP9Y21ex7J4p6Tk2u3nQ0UoAAFKEABClCAAhSgAAUoQAEKUIACninAAHfPfN04awpQgAIUoAAFKECBPAhcyczGq3N347Yv1+Fk0hWHI/j7eOGV6xrj29HtUbWCnVtzOxyhDDRmpAC/jgIS95WBi+UlUoACFKAABShAAQpQgAIUoAAFyohAuXJA3/8Cnf5juGAJbh85SwW3tykWgJY1K6JPo8q6595zOhl/7jil28ZKClCAAhSgAAUoQAEKUIACFKAABShAAc8V8PHcqXPmFKAABShAAQpQgAIUcF1g54kkjP9lK/YnXHZ6ULPqFTB5REvUiwpx2rdMd/j7GWCX+gP3vvnAwLeBVncA8kdwFgpQgAIUoAAFKEABClCAAhSgAAU8W0C+3/d7DfBVi/4bXAtUb12s1yNZ3BfFndGdw2SVxX1g0yrw8WZeL10gVlKAAhSgAAUoQAEKUIACFKAABShAAQ8U4G96PPBF45QpQAEKUIACFKAABVwXyFa3qf54yQHc+Mkqp8Ht3l7lMLZ3ffw2pjOD250R7/wN2PydoVdmKjBHZXWbeQ9wJcnZkWynAAUoQAEKUIACFKAABShAAQpQwBMEJMj9mheKPbhdqBpXK49Bzarqqh06m4LftpzQbWMlBShAAQpQgAIUoAAFKEABClCAAhSggGcKMMDdM183zpoCFKAABShAAQpQwAWBI+dSMPzzNXhn/l5kZuc6PKJORDBmPNgJkhHMlxm/HFrhwhHgj3G2fXbOBD7rBiTE2baxhgIUoAAFKEABClCAAhSgAAUoQAEK5ENgfN/6ULkJdMsHi/YjPStbt42VFKAABShAAQpQgAIUoAAFKEABClCAAp4nwAB3z3vNOGMKUIACFKAABShAAScCubm5mLb+KAZ+sAKbjlxw0hu4o2Mt/Dm2K1rVCnPat8x3yM40ZGpPT9KnyFF/TA6tot/GWgpQgAIUoAAFKEABClCAAhSgAAVKr0BWBnBic6FdX72oUAxpWV13/BMX0/DLhmO6baykAAUoQAEKUIACFKAABShAAQpQgAIU8DwBBrh73mvGGVOAAhSgAAUoQAEKOBBISL6Ce7/diGd/24HUDMeZuyJD/TFldDu8NqQZgvx8HIzKJpPA0onA8Q2mXYuNcurrxbCvgEAuFLBw4Q4FKEABClCAAhSgAAUoQAEKUKC0C0hw+6+jgCkDgYP/FNrVjusTCx87adz/988BpDn5XVChTYwDU4ACFKAABShAAQpQgAIUoAAFKEABChSoAAPcC5STg1GAAhSgAAUoQAEKFKfA3ztPY8D7K7B4T4LTaVzbrAoWjOuOXg2inPZlh38FDi0DVkyyz9HzWaB2J/vtbKEABShAAQpQgAIUoAAFKEABClCg9Alowe13AXv/BLKuANNuBQ4tLZTrrFUpCCPa1dQdOzE5Hd+tiddtYyUFKEABClCAAhSgAAUoQAEKUIACFKCAZwkwwN2zXi/OlgIUoAAFKEABClBARyD5Siae+HUbHvxhE86nqIxhDkpogA8mj2iBj29rjbBgPwc92WQhkHIW+O1+VZVrUW3aqd0V6Pa4aZcbFKAABShAAQpQgAIUoAAFKEABCpQBgax0YPpIFdz+19WLlSD3n25RQe5qoXwhlEeuqQ9/H/0/cX667CDk90QsFKAABShAAQpQgAIUoAAFKEABClCAAp4toP/bH8++Js6eAhSgAAUoQAEKUKAMCaw9dE7L2j5j03GnV905phLmq6ztN7aqgXLlyjntzw7/CuSqoPbZY4DLp/VJAsOAoV8AXt767aylAAUoQAEKUIACFKAABShAAQpQoPQJSOb2X+4E9s2zvbasNBXkPgI4vNy2LZ81VSoE4M6OtXVHuZiaia9XHtZtYyUFKEABClCAAhSgAAUoQAEKUIACFKCA5wgwwN1zXivOlAIUoAAF/s/eXcBJVfV/HP9uBwu7dHc3AiJSAoqIAaKAYgFiYnc9BsbfFjtRQDAAAxRQAZFukFy6u2uB7f3fM7jDzuy9G2yw8Tmv1zxzT9xzz3mPj+Cd3/wuAggggEAKgZj4BP3fpDXq+9V87TpqfWmaRgm0sno9f3UDjRp4kSpEhKQxki5bgfmfSRv+su1yNfb4VAqv6NxPDwIIIIAAAggggAACCCCAAAIIFDwBX3+paFnnfZkg9+/6WEHus5zHnGPPvR1rqkig/Q/th87aoiPpPOHvHC/LaQgggAACCCCAAAIIIIAAAggggAACuSRAgHsuQXMZBBBAAAEEEEAAgewTMFnbr/lotr6cuVkmuXhapWGFYprwQDsNbFddvr5kbU/LyrZv9zJpygu2Xa7GVndJ9a507qcHAQQQQAABBBBAAAEEEEAAAQQKpoCv9TXj1R9IF1hZ3J2KK5O7FeS+dY7TiHNqLxkWpNutez12JSomXp/P3GTXRRsCCCCAAAIIIIAAAggggAACCCCAQD4RIMA9n3xQLBMBBBBAAAEEEEBA2nPstB744V/d+OV8rd8XlSaJiWW/r1NN/TqoreqULZrmWDodBGIs459ulxLj7AeUbSR1ecW+j1YEEEAAAQQQQAABBBBAAAEEECj4AibI/ZoPpWa3OO817pSVyb23tG2u85hz6LmjfQ0VC7ayyNuUEXO3av/xaJsemhBAAAEEEEAAAQQQQAABBBBAAAEE8oMAAe754VNijQgggAACCCCAQCEXiIlP0GfTN+nSd2fo9+W709WoWjJUY++5WE90radAf/7Kmy6Y04A/npQOO2Q8CwiVen0jBQQ7nU07AggggAACCCCAAAIIIIAAAggUBgET5N79IyvI/Wbn3cadlEb1soLc5zmPyWRPeEiA7r6kpu1Z0XGJ+vifjbZ9NCKAAAIIIIAAAggggAACCCCAAAII5H0Bon3y/mfEChFAAAEEEEAAgUItMH3dfnV7f5be/HOtTsUmpGvRt1UVTXqwvVpULZHuWAakIbBirLTsO+cB3d6UStd17qcHAQQQQAABBBBAAAEEEEAAAQQKj0BykHvTm5z3bILcv7OC3LfPdx6TyZ4BbaupVFig7Vk/LNyuHYdP2fbRiAACCCCAAAIIIIAAAggggAACCCCQtwUIcM/bnw+rQwABBBBAAAEECq2A+QLyzm8Xq/+wRdp80PoCNJ1SKixIX/drqdeva6wiQfaPp05nCrqTBQ5vliY8klxL/d7wOumCW1O304IAAggggAACCCCAAAIIIIAAAoVXwNdP6vGx1ORGZ4PYKCuT+/VWkPsC5zGZ6AkN9NegjrVsz4hLSNKHf2+w7aMRAQQQQAABBBBAAAEEEEAAAQQQQCBvCxDgnrc/H1aHAAIIIIAAAggUOoHouAQNmbJel703Q1Mi92Vo/9c0raC/Hm6vS+uXzdB4BqUhEB8r/TRQij1hPyiiinTN+5KPj30/rQgggAACCCCAAAIIIIAAAgggUHgFTJD7tZ9Kjfs4GyQHue9Y5DwmEz03XVRF5cODbc/4eelObTpgBdVTEEAAAQQQQAABBBBAAAEEEEAAAQTylQAB7vnq42KxCCCAAAIIIIBAwRVISkrSn6v2ugLbP7Cya8XEJ6a72bpli+qHO1vro74XqKSVwZ2SDQLTXpF2L7WfyMf6kvr6b6TgcPt+WhFAAAEEEEAAAQQQQAABBBBAAAET5N7zcyvIvbezhflh/SjrCXE7FzuPyWBPcICfHry0tu3oxCS5EinYdtKIAAIIIIAAAggggAACCCCAAAIIIJBnBQhwz7MfDQtDAAEEEEAAAQQKj4DJpHXbNwt1z6gl2nnkdLobLxrsrxevaaCJD7bTxTVLpjueARkU2Pi3NPdD58Gdn5MqX+jcTw8CCCCAAAIIIIAAAggggAACCCBgBFyZ3K0g90a9nD1ijksje1pB7kucx2Swp1eLSqpWMtR29IQVexS527oWBQEEEEAAAQQQQAABBBBAAAEEEEAg3wgQ4J5vPioWigACCCCAAAIIFDyBqJh4vf7HGl3x/kzN2nAwQxvs07KS/nm8owa0rS5/P/46myG0jAyKsR7X/es9ziOrXyK1fcS5nx4EEEAAAQQQQAABBBBAAAEEEEAgpYCfv5XJ/Qup4XUpWz2Pk4Pcd2UtyD3Aukf0SJc6nnOnqL03ZV2KGocIIIAAAggggAACCCCAAAIIIIAAAnldgIigvP4JsT4EEEAAAQQQQKAACiQlJWn8sl269N3p+mLGZsUlWM+LTqc0rhiuXwe10Vu9mqpUWFA6o+nOtEBQmHTNB1JI8dSnhlpZ8q/70sq+xn8+pMahBQEEEEAAAQQQQAABBBBAAAEEHAVMkPt1X1lB7lamdqcSc0z61urftdRpRIbar2lSQXXLFrUdO3XNfi3dfsS2j0YEEEAAAQQQQAABBBBAAAEEEEAAgbwnQIRK3vtMWBECCCCAAAIIIFCgBdbsOa4bvpyvh35cpn3HY9Lda/HQAL1+XWONu6+tLqhiE3yd7gwMyLBAvSule+ZIVdt5nnKt9UjxouU826ghgAACCCCAAAIIIIAAAggggAACGRFwBbkPlRpc6zzaBLmPtPp3L3Mek06Pr6+PHr3cOYv7u5PJ4p4OId0IIIAAAggggAACCCCAAAIIIIBAnhGw0iZQEEAAAQQQQAABBBDIeYFjp+M0ZMp6fTtvqxLTT9gu6ztJ3dK6qh61Hi8dERqY8wvkCmcEwitK/X6TZr0rTX9duuheqc7l6CCAAAIIIIAAAggggAAC+V5g06ZNWrhwoXbu3KnY2FgVL15c9erVU5s2bRQcHJzr+zt+/LjWrl2rbdu2ac+ePTp58qRrDRERESpXrpyaN2+uqlWr5vq6uCACOSJggtyvt4LckxKlNdZ9B7sSFG49WS7CrifDbZc3KKumlcK1fKcVMO9V5mw8pLkbD6pNrVJePVQRQAABBBBAAAEEEEAAAQQQQAABBPKaAAHuee0TYT0IIIAAAggggEABE0i0otl/WrJTb/65VodOxmZody2rFtfgHg3VsIL1xSYl9wV8/aRLnpRqXiqVa5T71+eKCCCAAAIIIIAAAggggEA2CowbN06vvPKKli5dajtrWFiY+vfvrxdffFGlSuVc4OupU6c0fPhwzZw5UwsWLNDWrVtt15OysVq1ahowYIDuv/9+lShRImVXmsdm7urVq6c5Jr3OpKQM/Do9vUnoRyClgF+A1Osb6acBVpD77yl7pPAqUv8JUvGs/ajDx8dHj11eV7d9s9Bz/v9qb1tZ3H+pWVJmHAUBBBBAAAEEEEAAAQQQQAABBBBAIO8K+ObdpbEyBBBAAAEEEEAAgfwusHzHUfX8bK6e/HlFhoLbSxcN0pAbmmrsPRcT3J4XPvxKLST/oLywEtaAAAIIIIAAAggggAACCGRaICYmRrfccot69uzpGNxuJo2KitLHH3+sBg0auILPM32hDJ6we/du3XfffRo9enSGgtvNtCZQ3QTe169fX7/88ksGr8QwBPKwgCvIfZhU7+qzi4ywgtsHTMxycHvyhO1rl1Kr6vY/CPl3+1FNW7s/eSjvCCCAAAIIIIAAAggggAACCCCAAAJ5VIAA9zz6wbAsBBBAAAEEEEAgPwsciorR01ZQ+7WfzpEJck+v+Pv66M721TXtsUvU84JKZNFKD4x+BBBAAAEEEEAAAQQQQACBNAUSExN1ww036LvvvvMY5+fn58ps3qxZM4WHez417MCBA+rWrZvmzZvncU5OVyIiIlwB7BdddJGaNm2qMmXKpLrk/v371bt3b1cG+FSdNCCQ3wSSg9zrXiVFWBnb+0+y3q0g92wqJjv7E13rOs72zuT1Mk8cpCCAAAIIIIAAAggggAACCCCAAAII5F0B/7y7NFaGAAIIIIAAAgggkN8E4hMS9f3C7Xrnr3U6Hh2foeW3q1VKL3VvoFplimZoPIMQQAABBBBAAAEEEEAAAQQQSE/g7bff1vjx4z2G3XPPPXr++edVoUIFV7sJgjdjHn74YW3fvt3VdurUKfXp00erVq1KFQDvMVkWKo0aNXIF0rdv316tWrVS2bJlU822ZcsWDRs2TO+8845Onz7t6jfrvfvuu9W6dWvVq1cv1TlpNVx++eV64okn0hpCHwK5K+AfKPUeLp0+LBUtl+3XvrBaCV1Sp7RmrD+Qau41e45r0qo9urrJmX8XpBpAAwIIIIAAAggggAACCCCAAAIIIIDAeRcgwP28fwQsAAEEEEAAAQQQKBgCC7cc1gvjV2nt3hMZ2lCF8GA9f3UDXdGoHBnbMySWTYMSrB8e+PrJQs+mCZkGAQQQQAABBBBAAAEEEMhbAocOHdJrr73msajXX39dTz/9tEebr6+vevbs6Qoyb9eunbZu3erq37lzp9577z0NHjzYY3xWK+XLl9eGDRtUq1atdKeqXr26Xn75ZV133XXq3Lmzjhw54jonNjZWL774okaPHp3uHCkHmGtfdtllKZs4RuD8C5gg9xwIbk/e2OOX17UNcDf9701ZrysalpO/Hw+7TvbiHQEEEEAAAQQQQAABBBBAAAEEEMhLAty1yUufBmtBAAEEEEAAAQTyocC+49F6+Md/1eeLeRkKbg/099UDnWvp78c6qlvj8gS35/ZnPuUF6Ye+0slDuX1lrocAAggggAACCCCAAAII5IrAW2+9pRMnzv74ukOHDnrqqaccr12xYkUNHTrUo3/IkCEygfLZWYoUKZKh4PaU12zWrJlMcH7KMnHiREVHR6ds4hgBBGwEGlcKVzcrsYJd2XzgpH79d5ddF20IIIAAAggggAACCCCAAAIIIIAAAnlAgAD3PPAhsAQEEEAAAQQQQCA/CsTGJ+rLmZvU+Z3pGrdsd4a2cFn9MprySAc9ZmXQCgm0sohTcldg/WRp/ifS+j+kz9tKW2bm7vW5GgIIIIAAAggggAACCCCQwwKJiYkaNmyYx1VeeumldH9cfemll6p9+/bu80yA/JgxY9z183nQt29fmWzzyeXkyZPavn17cpV3BAqHwGnrKQbf9Zb2r8nUfh/tUsfxIXYf/L1B5v4WBQEEEEAAAQQQQAABBBBAAAEEEEAg7wmcvSOa99bGihBAAAEEEEAAAQTyqMCsDQfU7YOZ+r9Ja3UyNiHdVVYtGapv+rfU0H4XqmrJIumOZ0A2CMSelHYulhZbgR0TH5O+uUIac+vZiU/skUZ0l6a9KiXEn23nCAEEEEAAAQQQQAABBBDIxwJz587VgQMH3DuoUaOGOnbs6K6ndTBw4ECP7nHjxnnUz1elWLFiKl26tMflDx486FGngkCBFjh1WPq2h7TB+uH+iGusIPe1Gd5u7bJF1bNZRdvxO4+c1uhF/FjEFodGBBBAAAEEEEAAAQQQQAABBBBA4DwL+J/n63N5BBBAAAEEEEAAgXwksPPIKb06YY3+XL03Q6sOCfDT/Z1raWC76gq2jik5IJCUJB3bIe1dJe1bbb1Wnjk+vNm6mNWXZrH6Z74tHbC+GL5hVJoj6UQAAQQQQAABBBBAAAEE8oPAxIkTPZbZpUuXdLO3J59gxqYs06dPl8mWXqTI+f+hdnR0dMqlKSIiwqNOBYECK5Ac3L53xZktnrR+wGKC3PtPkErXzdC2H76sjn5bvlvxianvk3w0baN6tajMkwYzJMkgBBBAAAEEEEAAAQQQQAABBBBAIPcECHDPPWuuhAACCCCAAAII5FuB6LgEfTlzsz75Z6NiMvjo5qualNdzV9ZXhYiQfLvvPLfw2FNnHsW9zwSzW6/koPaYY1lbaosBWTufsxFAAAEEEEAAAQQQQACBPCKwbNkyj5W0adPGo55WpUKFCqpWrZq2bt3qGhYbG6vIyEhdeOGFaZ2W433r1q3TsWNn/7svLCxMderUyfHrcgEEzruAK7jdevrcXuvH/CnLyf3S8KutIHfrBy2l0///QhXryYJ9Lqys7xekzta+/0SMRs7fqrs61Ex5BY4RQAABBBBAAAEEEEAAAQQQQAABBM6zAAHu5/kD4PIIIIAAAggggEBeFkiysoP/vWa/Xp4Qqe2HreDqDJTaZcI0uHtDtalVKgOjGZIhgX2R0pjbpMObrKTsiRk6JcOD2j4k1bo0w8MZiAACCCCAAAIIIIAAAgjkZYE1a9Z4LK9BgwYe9fQqZnxygLsZa+Y73wHur776qseyb775Zvn7n9vXOzt27NDevXtlMsKXKFFCZcqUUenSpT3mp4JAnhGY/kbq4PbkxZkg9xH/BbmXqp3c6vj+gPWEwZ+W7FSsTeKGT6dvUt9WVVQ0OMDxfDoQQAABBBBAAAEEEEAAAQQQQAABBHJX4NzugObuGrkaAggggAACCCCAwHkQiIlP0DO/rNQvS3dl6OphQf56+LLa6temmgL8fDN0DoMyKBBWRjq0IYODMzGsYkup0/8ycQJDEUAAAQQQQAABBBBAAIG8K3D69Glt3+6Zobly5cqZWrD3eJM9/XwVE4T+9NNPa9SoUe4lmGD0l19+2V3P6MHkyZNlMtTv2bMn1Skma33Hjh1111136eKLL07VTwMC502gy2DpoPX/wc3T7ZcQtU8a2VO6d64UXMx+zH+t5cNDdGvrqvp69pZU446einO1P3xZnVR9NCCAAAIIIIAAAggggAACCCCAAAIInB8BAtzPjztXRQABBBBAAAEE8rTA0VOxumvkEi3ccjhD67y+eSU91a2uyhQNztD4QjnIyoavE1Ygwd5V0r7/Xke2Snf8Lfn4pE1SpJQUVk6K2pv2uIz2+vhJ9a0sZ9d8IPkHZvQsxiGAAAIIIIAAAggggAACeVrg4MGDMk8iSy4BAQGuDOXJ9Yy8V6xY0WPY/v1WlugcLAsWLNCJEyfcVzBB7eaaixcv1s8//+w6Tu4sV66cJk2alOk9mfPtAtuT5zUZ64cPH+56de7cWcOGDVOVKlWSu3lH4PwJBIRIN/4g/XCDtGWm/TqO7ZDmWPc3Ln3evj9F670da+qHhdt1KjYhReuZw6GztqjfxdVUvAj3SVLh0IAAAggggAACCCCAAAIIIIAAAgicBwEC3M8DOpdEAAEEEEAAAQTyssC2Qyc1YPgibT5wMt1lNqxQTC/3aKgWVUukO7ZQDUiIl/avPhvMvnelFdRu1U/b/GDAfBEbkYHAgbINzy3APaCIVLaB9WoklbNe5r2MVU8ns1mh+rzYLAIIIIAAAggggAACCBQIgaioKI99hIaGWr8nTucHxR5nSEWKWP8NlaJ4z5miK1sO7777bi1fvjzNuYKDg9W/f39X5naTwT0ny7Rp03TBBRfo119/VYcOHbL9UiZ4/8CBA5mad+PGjZkaz+ACJhAYKvUdLX3fR9o6y35z/46UOj4t+QXY9//XWiosSLe3ra6P/0n9z1RUTLw+n7lJz3Srn+YcdCKAAAIIIIAAAggggAACCCCAAAII5I4AAe6548xVEEAAAQQQQACBfCGwZNsR3fntYh0+GZvmeiNCA/RE17q68cIq8vPNXLBAmhPn987ju6WFX0lLhtsHs9vtz2R0z0iAuwlO32Rle0+rmHnKNv4vkL3hmWD24tUlX9+0zqIPAQQQQAABBBBAAAEEECgQAt7B6CYwPLMlJMTKGJ2ieM+ZoitXDgMDA/Xggw/qrrvu0rkEt1eqVEnXXHONTGb2Ro0aqXz58q4g/mPHjmnLli36559/9Pnnn2vz5s3u/Rw+fFg9evTQvHnzVK9ePXd7dhx8+umnGjx4cHZMxRyFScAEud9kgtytTO52Qe5R+6R1k6QGPdJVubNDDX07b6uOR8enGjti7lYNtALgyxTL/L87Uk1GAwIIIIAAAggggAACCCCAAAIIIIBAlgQIcM8SHycjgAACCCCAAAIFR2DSyj16ZPQyxcQnOm7KJL67qVUVPX55XR7ZnFJpz3Jp3ifSqp+lxNRfkKYcmurYZHavd2Wq5lQNJnA9uQRYX+yaLOwmq3s5q91kZTdZ2oPDk0fwjgACCCCAAAIIIIAAAggUOoHo6GiPPZvg8MyWoKAgj1NOnz7tUc/tSmxsrN566y29++67rizuQ4YMUdGiRdNdRnh4uH777TddddVV1m+eU//ouWTJkjKvli1b6tFHH9Urr7zieiUmnrkncPToUd1yyy1atGhRprPgp7s4BiBwLgKBRaQbRknvWRnW406lnmHxsAwFuIeHBOjuS2rq7b/WpZojOi5Rn1jZ3Qf3sO6zUBBAAAEEEEAAAQQQQAABBBBAAAEEzqsAAe7nlZ+LI4AAAggggAAC518gKSlJX87crNf/WJvmYkqFBeqLW1uqRdXiaY4rNJ3mS/8Nf50JbLfLHpZRiH0rMzayenup94gzwewlqltZ2f0ydh6jEEAAAQQQQAABBBBAAIFCIuCdsd0Eh2e2xMTEeJziPadHZzZUli1b5jHLiRMntHfvXi1cuFDfffed/vjjD1d/QkKCvv76a1fA+bRp01zB6R4nelWKFy/uytzu1Wxb9fPz00svvSRzzsMPP+wes2TJEv3yyy+6/vrr3W0cIHBeBUIipEbWP4//jky9jM3/SIe3SOaeSTplQNtqGjZniw5Gpf53xPcLt8tkea9UPDSdWehGAAEEEEAAAQQQQAABBBBAAAEEEMhJgdRpO3LyasyNAAIIIIAAAgggkKcE4hMS9b9xq9INbq9VJky/DmpLcLv59GJPSouGSh+3lH640f7R2Jn5lPeuytjoouWkhtdKpWoR3J4xMUYhgAACCCCAAAIIIIBAIRMICwvz2LF3RnePToeKd8Z27zkdTsu2ZpOdvXbt2rr55ps1adIkTZ482RV4nnyBFStWqF+/fsnVbH1/6KGHdMkll3jMOXKkTSCxx4jMVQYNGqRVq1Zl6jVu3LjMXYTRBVug5QDn/S21EgNkoIQG+mtQR+v+ik2JS0jSh39vsOmhCQEEEEAAAQQQQAABBBBAAAEEEEAgNwX8c/NiXAsBBBBAAAEEEEAg7whExcTr/u+Xavq6A2kuqk3NkvrslhYyj3Au1OX4Hiuw/Stp8TfS6SNZoyhW8Uwm9nLWI6/LNc7aXJyNAAIIIIAAAggggAACCCDgEvAORj916pTMU8t8fHwyLHTypPWj5hTFe84UXbly2KVLF02cOFHt2rVTonmSmFVMfcqUKTJ92V0ee+wxzZgxwz2tyRYfHx8vf//s+TqpTJkyMi8KAucsUKG5dS+libR3Reop/h0ldXxW8g9M3efVctNFVfTVrM3acyzaq0f6eeku3XNJTdUo7fmjmVQDaUAAAQQQQAABBBBAAAEEEEAAAQQQyDEBMrjnGC0TI4AAAggggAACeVdgr/XlXe/P56Ub3H5980oaPqAVwe2LvpbetwLRZ72bueB2vyCpfDOp2S3SFW9I/SZIT1qPy340Urp5jHTpC1ZW9p559x8UVoYAAggggAACCCCAAAII5COBUqVKeQSzx8XFaf/+/Znawa5duzzG54Vg7Isvvli33GL9d2WKMnz48BS17Dvs3Lmzh+GJEye0Z4/1g28KAnlFwPxgpUV/+9WctJI4rJto3+fVGhzgpwcvre3VeqaakJikIVM32PbRiAACCCCAAAIIIIAAAggggAACCCCQOwIEuOeOM1dBAAEEEEAAAQTyjEDk7uO69pM5WrPneJprerRLHb3Tu4kC/fkroytIPTEuTS+PzuLVpG5vWcHsm6W7rcx3134itb5Xqt5eCi3hMZQKAggggAACCCCAAAIIIIBA9giEhISoSpUqHpNt377do55exXt8vXr10jslV/qvu+46j+vMnTvXo55dlSJFiqh48eIe0x04YAUNUxDISwKNe0sBRexXtGS4fbtNa68WlVS1ZKhNj/T78t0y99AoCCCAAAIIIIAAAggggAACCCCAAALnR8D3/FyWqyKAAAIIIIAAAgicD4F/1u23MrfP1d7jqR+/nLyeAD8fDbmhqSuLVWYe4558foF8r9RCqnJx+lszY26wHof9wFLporulIB5lnT4aIxBAAAEEEEAAAQQQQACB7BPwDkiPjLSeoJWJsmbNGo/R3vN5dOZipWbNmh5X27t3r0c9OysBAQEe05lM+BQE8pRAcDGpcS/7JW2eLh3aZN/n1Rrg56tHLqvj1Xq2+t6UdWcrHCGAAAIIIIAAAggggAACCCCAAAII5KoAAe65ys3FEEAAAQQQQACB8yfw3YJtumPEYp2MTXBcRHhIgEYOvEg9L6jkOKbQdlx8n/3WffykRtdLd0yTbv9Tqn+N5Gu1URBAAAEEEEAAAQQQQAABBHJdoFmzZh7XzEym8z179mjr1q3u802gd4MGDdz1vHTgHYSeXWuLj4/XoUOHPKYrXbq0R50KAnlCoEV/52UsHeHc59VzTdMKqlPWPkHB1DX7tXT7Ea8zqCKAAAIIIIAAAggggAACCCCAAAII5IYAAe65ocw1EEAAAQQQQACB8yiQmJik1/9Yo+d+XaUE69ipVC4Rop/vbaPWNUo6DSl47XtXSYc3Z2xfda+Uilc7OzbIyhbW5gHpoeVSr28kk+WdggACCCCAAAIIIIAAAgggcF4Frr76ao/rT506VUlJzv8tnHLw5MmTU1bVqVMnhYXZB756DMyFyrZt2zyuUrZsWY96dlXmz58vE+SeXPz9/VWuXLnkKu8I5B2Bis2l8k3t1/Pvd1J8rH2fV6ufr48e7VLXq/Vs9d3JZHE/q8ERAggggAACCCCAAAIIIIAAAgggkHsCBLjnnjVXQgABBBBAAAEEcl0gOi5BD/zwr76YkXYQd7PKEfp1UFvVKpM3vrjPUajERGnDFOnbHtLnbaUZb2fsciYre+tBUkQV6Yo3pEetx9xf/qpVr5yx8xmFAAIIIIAAAggggAACCCCQ4wJt2rRRqVKl3NfZvHmzpk+f7q6ndfD11197dPfoYf13Yx4pv//+u8dKmjRp4lHProq3wcUXX6zQ0NDsmp55EMhegRYD7Oc7dVBaO8G+z6a1a8OyalIp3KZHmrPxkOZusuajIIAAAggggAACCCCAAAIIIIAAAgjkqgAB7rnKzcUQQAABBBBAAIHcEzgUFaObvpqviSv3pHnRbo3K6ce7WqtUWFCa4/J9Z9xpaclw6dPW0ne9pM3Tz2xp5VjpxN6Mbc98cfrgMivQ/V4pqGjGzmEUAggggAACCCCAAAIIIIBArgn4+vqqf//+HtcbPHhwulnc//77b82aNct9XtGiRdWnTx93/XwerFmzRsOGDfNYQk4E35sfAowcOdLjOtdee61HnQoCeUqgsXV/J9AhWcMSz//PpLVuHx8fPX65cxb3d/5al+6/Q9Kanz4EEEAAAQQQQAABBBBAAAEEEEAAgcwLEOCeeTPOQAABBBBAAAEE8rzApgNR6vnpXC3dfjTNtd7doYY+uam5ggP80hyXrzuj9kv//J80pKH0+0PSQa9HSyfGSQu/zNgW/QMlk8mdggACCCCAAAIIIIAAAgggkGcFnnrqKYWFnQ16nTFjht58803H9e7atUt33HGHR/9DDz3kkQneo/O/igmKTflKK1P8iRMnNGjQIO3cudNuKse2VatWqWvXroqNjXWPqVq1qnr37u2uex9MmTLFFRAfHx/v3eVYnzZtmq677jolJCS4x5QvX1733HOPu84BAnlOwCQfMEHudmXLTOnQJrse27b2tUupVfUStn3m/to/66z7SxQEEEAAAQQQQAABBBBAAAEEEEAAgVwTIMA916i5EAIIIIAAAgggkDsCCzYf0nVWcPv2w6ccL+jrI716bSM9c2V9+ZpKQSz7IqXx950JbJ9hBTKcOuS8y8XfSLEnnfvpQQABBBBAAAEEEEAAAQQQyDcCpUqV0rPPPuux3meeecYVYL579253e2JiosaNG6c2bdpo69at7vYKFSrosccec9ez48AEjn/22WeqUaOGrrnmGn377bfatGmTbVZoE8w+d+5c3XvvvWrevLl27NjhXoIJqP/oo48UEhLibvM+MAH7t99+u6pVq6ZHHnlE//zzj44dO+Y9zBXMvmDBAvXr109dunTRkSNH3GNMJvxPPvlEoaGh7jYOEMiTAuZpeymLj5WYoN7V0i0/S8Wrp+xJ89j8f+uJrmllcV+vxMSkNOegEwEEEEAAAQQQQAABBBBAAAEEEEAg+wT8s28qZkIAAQQQQAABBBA43wLjl+3SE2NXKDYh0XEpRQL99PHNzdWpbhnHMfm2I8n6onHj39K8j6XN/2R8G6etL/GX/yBdeEfGz2EkAggggAACCCCAAAIIIIBAnhUwWdxNkPiECRPcazQB5l9++aVMBvTw8HBt2bJFR48edfebAxM4PmbMGEVERHi0Z1clLi7OtabkdRUtWlTlypVzXS/J+m9aE4hugu3NOO9iAnC/+uorV4C8d59d3QS6v//++66X6a9YsaJKlCihIkWK6Pjx49q+fbuioqJSnWquY87r2bNnqj4aEMhzAhWaSeWt16nDUovbpAtulYqWO6dlXlithC6pU1oz1h9IdX7knuP6Y9VeXdWkfKo+GhBAAAEEEEAAAQQQQAABBBBAAAEEsl/AP/unZEYEEEAAAQQQQACB3BYwX4J/PG2j3p2yPs1Lly0WpG/6X6iGFcLTHJfvOuOipRWjpfmfSgfWZn75lVpZWb2qZf48zkAAAQQQQAABBBBAAAEEEMiTAiYD+dixYzVgwAD9+OOP7jWaTOqbN29211MelCxZUj/99JPatm2bsjlHj0+cOCHzSq/Url1bX3zxhTp16pTeUMd+E/BuXmmV8uXLa8SIEa6M7mmNow+BPCXQ10paEFZW8rWyt2exPH55XdsAdzPte1PWqWvDsvL34wHZWWTmdAQQQAABBBBAAAEEEEAAAQQQQCBdAe7ApEvEAAQQQAABBBBAIG8LxFnZ2p/8aUW6we31yhXVuPvaFqzg9igro9Y/r0tDGkq/P5i54HYf66/CDa6VBk6R7rBetS7L2x80q0MAAQQQQAABBBBAAAEEEMiUQHBwsH744QdX0HqzZs0czzUZzQcNGqTIyEh17NjRcVxWOkzG+BkzZshklm/VqpUCAwPTnS4gIECXXnqpRo0apZUrV2Y4uL1z584aPHiway8mQ3x6xfwYoHnz5vr888+1ceNGgtvTA6M/7wkUq5Atwe1mY40rheuKhvYZ4DcdOKlf/037RyJ5D4cVIYAAAggggAACCCCAAAIIIIAAAvlTgAzu+fNzY9UIIIAAAggggIBL4NjpOA36bonmbDyUpoh5vPLHN12gosEBaY7L8537Vkuzh0jHd1sv6wvFYzulxPjMLTvQ+nK/ufXI6ovutrK2V83cuYxGAAEEEEAAAQQQQAABBBDIdwLXX3+9zMsEby9YsMCVxTw2NlYRERGqX7++K2O7CYbPbDFPU8to8fHxUYcOHVwvc05MTIwroH7Tpk3as2ePO4u7CYQ366pXr54aN26coUB47zVUqVJFL7zwgutl1miuYfa+Y8cOHT16VNHR0TJB/cWLF1flypVdAffFihXznoY6AoVW4NHL6+ivyL2y+7/4B39vUI9mFRXoTw6xQvsPCBtHAAEEEEAAAQQQQAABBBBAAIFcESDAPVeYuQgCCCCAAAIIIJD9AjuPnNLtwxdp/b6oNCe/6aIqerl7w7z1+OQEKyg9au/ZQHVXNvUeae7D1Rl7Slo5Nv1xdiPCK1tB7fdYwe23SsHhdiNoQwABBBBAAAEEEEAAAQQQKMACtWrVknnlhRIUFKQLLrjA9crJ9ZjA+ry075zcK3MjkF0CdcoW1bVWELtdtvadR05r9KLtuvXiatl1OeZBAAEEEEAAAQQQQAABBBBAAAEEELARIMDdBoUmBBBAAAEEEEAgrwus2HlUA0cs1oETMWku9Zlu9XRXhxoyX2jnWomPlU6YDOvJLyvTenLG9eS2qH1SUuLZJZWuJzXIQIC7eeR0ZkvFFtLF90v1u0t+/PU3s3yMRwABBBBAAAEEEEAAAQQQQAABBAqbwMOX1dbvy3crPjH1kxo+mrZRvVpUVkigX2FjYb8IIIAAAggggAACCCCAAAIIIIBArgkQ4ZNr1FwIAQQQQAABBBDIHoEpkfv04A//6nRcguOE5jHJQ/o001VNyjuOOaeOuNMpAtdNAHty8HqK45P7Mz+1CXzPSAkrK5ls7ymD4+3OM2PqXX0msL1yK+ucXAzwt1sPbQgggAACCCCAAAIIIIAAAggggAAC+Uagaski6t2ysn5YuD3VmvdbCSdGzt9qJZWomaqPBgQQQAABBBBAAAEEEEAAAQQQQACB7BEgwD17HJkFAQQQQAABBBDIFYFhc7bo5QmRSkqdPMp9/RJFAvXVbS3UomoJd1u2HOxaIn3VOVumSjVJzHEp2noFF0vV5dFgMrCHlTuTId6j479KYJh0wa3SRXdLJarbjaANAQQQQAABBBBAAAEEEEAAAQQQQACBdAUevLSWfl66U7HxKZ5C+N9Zn03fpL6tqqhocEC68zAAAQQQQAABBBBAAAEEEEAAAQQQQCDzAr6ZP4UzEEAAAQQQQAABBHJbIMF6HPLg31dbr7SD22uUKqJfB7XJ/uB2s+Gi2ZwN3hvxxB7vFvt6sQqp24tVkrq8Ij2yWur2BsHtqYVoQQABBBBAAAEEEEAAAQQQQAABBAqnwIH10p/PSgc3ZGr/5cNDdGvrqrbnHDkVp29mb7XtoxEBBBBAAAEEEEAAAQQQQAABBBBAIOsCZHDPuiEzIIAAAggggAACOSpwKjZeD/24TFMi96V5nVbVSuiLW1uouJXBPUdKWFnJx09KSsiR6XV8l1S6bvpzN+4lVWsnFatovaxg9+LVpDINJF9+u5k+HiMQQAABBBBAAAEEEEAAAQQQQACBQiAQHyNF/iYtGSZtm3Nmwz4+UtfXMrX5ezvW1A8Lt+tUbOr7YUNnbVa/NlUVEZpD9+IytVIGI4AAAggggAACCCCAAAIIIIAAAgVLgAD3gvV5shsEEEAAAQQQKGAC+09E644Ri7Vi57E0d9ajWQW91auJgvytAPScKr7W3EXLyRWInp3X8A+Rwq1g9cTUXxTaXqb1vbbNNCKAAAIIIIAAAggggAACCCCAAAIIIKCFX0n//J90+rAnxrLvpM7PSwHBnu1p1EqFBen2ttX18T8bU406EROvz2ds1tPd6qXqowEBBBBAAAEEEEAAAQQQQAABBBBAIGsCBLhnzY+zEUAAAQQQQACBHBNYv++EBgxbpF1HT6d5jQc619KjXerIx2ShyuliMqabTOsZLUHFzmRZN+e5Xv9lXU/Ovm7agiOszPC5sPaMrplxCCCAAAIIIIAAAggggAACCCCAAAL5V8DfCmD3Dm43uzl9RFpjZXVv0idTe7uzQw19O2+rjkfHpzpv+Nwtur1dNZUpmvGg+VST0IAAAggggAACCCCAAAIIIIAAAgggkEqAAPdUJDQggAACCCCAAALnX2DOxoO6Z9QSnbD54ix5df6+Pvq/no3V58LKyU05/24C0pNLSHEraD05YN0EsHsdFy1vBa9bAe4UBBBAAAEEEEAAAQQQQAABBBBAAAEEckug0XXSX89KMcdTX3HJ8EwHuIeHBOjuS2rq7b/WpZovOi5Rn0zbqME9GqXqowEBBBBAAAEEEEAAAQQQQAABBBBA4NwFCHA/dzvORAABBBBAAAEEckRg7OIdeuaXlYpPTHKcv2iQvz67pYXa1S7lOCZHOi59UTIvE7weGJojl2BSBBBAAAEEEEAAAQQQQAABBBBAAAEEzlkgsMiZIPZFQ1NPsW2OdMAKVC9dN3VfGi3921TTsDlbdDAqNtWo7xdul8nyXqk498pS4dCAAAIIIIAAAggggAACCCCAAAIInKOA7zmex2kIIIAAAggggAAC2SyQlJSkdyev0xM/rUgzuL1iRIh+urdN7ge3m/2WrHnmRXB7Nn/6TIcAAggggAACCCCAAAIIIIAAAgggkG0CLQY4T2WyuGeyFLGSTdzbsZbtWXEJSfrw7w22fTQigAACCCCAAAIIIIAAAggggAACCJybAAHu5+bGWQgggAACCCCAQLYKxMQn6OHRy/SR9UjjtErjiuH6dVAb1S1XNK1h9CGAAAIIIIAAAggggAACCCCAAAIIIFB4Bco1kipdaL//Zd9LcdH2fWm03nxRFZUPD7Yd8fPSXdp8IMq2j0YEEEAAAQQQQAABBBBAAAEEEEAAgcwLEOCeeTPOQAABBBBAAAEEslVg3d4TuumrBRq/bHea815Wv4xG391aZYrZf5GW5skZ6UyIk/auzMhIxiCAAAIIIIAAAggggAACCCCAAAIIIJC3BVr0t19f9FEpcrx9XxqtwQF+eqBzbdsRCYlJGjKVLO62ODQigAACCCCAAAIIIIAAAggggAAC5yBAgPs5oHEKAggggAACCCCQHQL7j0fr6Z9XqNsHM7Vk25E0p+zfppq+uLWlQgP90xyXpc6VY6XP20nf3yDtXJKlqTgZAQQQQAABBBBAAAEEEEAAAQQQQACB8yrQ8DopKNx+CUuG2ben09q7ZSVVLRlqO+r35bu1Zs9x2z4aEUAAAQQQQAABBBBAAAEEEEAAAQQyJ0CAe+a8GI0AAggggAACCGRZ4FRsvD6wMjp1fGe6fly0Q1aCJ8fi4yO9cHUDvdS9ofx8rUpOlcQEada7Z2Zf/6c0tLP07bXStrk5dUXmRQABBBBAAAEEEEAAAQQQQAABBBBAIOcEAq1A9KZWIge7sn2etH+NXU+abQF+vnrksjqOY96dvN6xjw4EEEAAAQQQQAABBBBAAAEEEEAAgYwLEOCecStGIoAAAggggAACWRIwjyoes3iHOlmB7UOmrtepWCuoPI0SHOCrL25podvbVU9jVDZ1rf5VOrTRc7LN/0jDukmzh3i2U0MAAQQQQAABBBBAAAEEEEAAAQQQQCA/CLTo77zKJSOc+9LouaZpBdUpG2Y7Yuqaffp3+xHbPhoRQAABBBBAAAEEEEAAAQQQQAABBDIuQIB7xq0YiQACCCCAAAIInLPA7A0HdfVHs/XkTyu073hMuvOUCgvS6Lsu1uUNy6U7NssDEhPPZm/3nszH+utigx7erdQRQAABBBBAAAEEEEAAAQQQQAABBBDI+wJlG0qVWtmvc/n3Utxp+740Ws1TFh/tUtdxBFncHWnoQAABBBBAAAEEEEAAAQQQQAABBDIsQIB7hqkYiAACCCCAAAIIZF5g/b4T6j9soW75eoHW7DmeoQlaVSuhcfe1UdPKERkan+VB6yZaj2SOtJ+mcW+pRA37PloRQAABBBBAAAEEEEAAAQQQQAABBBDI6wItB9ivMPqYtHqcfV86rV0bllWTSuG2o2ZvPKi5mw7a9tGIAAIIIIAAAggggAACCCCAAAIIIJAxAQLcM+bEKAQQQAABBBBAIFMCB07E6JlfVuqK92dq+roDGTq3aslQfXZzc42+u7UqFQ/N0DlZHpSUJM1822EaH6n9Yw59NCOAAAIIIIAAAggggAACCCCAAAIIIJAPBBr2lILtg9G1ZPg5bcDHx0ePXe6cxf2dv9Ypydx3oyCAAAIIIIAAAggggAACCCCAAAIInJMAAe7nxMZJCCCAAAIIIICAvcDp2AR99PcGdXz7H/2wcLsSM/A9VnhIgJ6/uoGmPHKJujUuL/MFWa6VDVOkPcvtL9egh1Ta+Ys6+5NoRQABBBBAAAEEEEAAAQQQQAABBBBAIA8JBIRITW60X9CO+daTDdfY96XT2qF2KZknMdqVpduP6p91++26aEMAAQQQQAABBBBAAAEEEEAAAQQQyIAAAe4ZQGIIAggggAACCCCQnkCiFcn+05Kd6vTOdL07Zb1OWoHu6ZUAPx/d0a66Zj7RSQOt90D/XP6rmSt7+1vOy+zwuHMfPQgggAACCCCAAAIIIIAAAggggAACCOQXgZYDnFe6eJhzXxo9JknF412dk0O89ec6xSckpjEDXQgggAACCCCAAAIIIIAAAggggAACTgK5HEXltAzaEUAAAQQQQACB/Cswd+NBXf3RbD0+drn2Ho/O0EaualJefz/aUf+zMreHhwZk6JxsH7RlprRzkf20da+UyjW276MVAQQQQAABBBBAAAEEEEAAAQQQQACB/CRQpr5UubX9ilf8KMWesu9Lp7VV9RLqUKe07ai1e09o5Pxttn00IoAAAggggAACCCCAAAIIIIAAAgikLUCAe9o+9CKAAAIIIIAAAo4CG/ef0MDhi3TT0AWK3HPccVzKjuZVIvTzvW30yU3NVaVkaMqu3D+e+bbzNcne7mxDDwIIIIAAAggggAACCCCAAAIIIIBA/hNo0d9+zdHHpMhx9n0ZaH388jqOo96bvF77M5gQw3ESOhBAAAEEEEAAAQQQQAABBBBAAIFCKECAeyH80NkyAggggAACCGRN4GBUjP43bqW6vj9Lf6/dn6HJKpcIcQW1m+D2FlWLZ+icHB20bZ60dZb9JWpeKlVsYd9HKwIIIIAAAggggAACCCCAAAIIIIAAAvlRoOG1UnCE/coXD7Nvz0Brk0oRuqpxeduRJ2Li9X+T1tj20YgAAggggAACCCCAAAIIIIAAAggg4CxAgLuzDT0IIIAAAggggICHQHRcgj75Z6M6vj1do+ZvV0Jikke/XaVYsL/+d1V9TX30El3VpLx8fHzshuV+W5rZ25/I/fVwRQQQQAABBBBAAAEEEEAAAQQQQAABBHJSICBEatrX/go7F0r7Vtv3ZaD1Oev+X2ign+3Icct2a/7mQ7Z9NCKAAAIIIIAAAggggAACCCCAAAII2AsQ4G7vQisCCCCAAAIIIOAWSLQC2X9ZulOd35mut/9apygr81J6JcDPR7e3ra6ZT3bSHe1rKMjf/guu9ObJkf5dS6RNf9tPXa29VPVi+z5aEUAAAQQQQAABBBBAAAEEEEAAAQQQyM8CLfo7r37zdOe+dHoqRITowUtrO456YfwqxSUkOvbTgQACCCCAAAIIIIAAAggggAACCCDgKeDvWaWWXwU2bdqkhQsXaufOnYqNjVXx4sVVr149tWnTRsHBwedtW7t379a8efO0d+9eHT16VEWKFFH16tVd6ypdunS2rmvXrl2ua23btk2nT59WsWLFVKdOHbVr105hYWHZdq34+HgtWLBAq1at0qFDh+Tn56fy5curRYsWatiwYbZdh4kQQAABBPKGwLxNh/TapEit2nU8wwvq1qicnrqinqqVKpLhc3J14Mx3nS/X4XHnPnoQQAABBBBAAAEEEEAAAQQQQAABBBDIzwJl6klVrOQO2+ed2UVIcSur+02SCXwvXSdLOzPJLn5aslMb90elmmf9vigNm7NFd3WomaqPBgQQQAABBBBAAAEEEEAAAQQQQACB1AIEuKc2yVct48aN0yuvvKKlS5fartsEdvfv318vvviiSpUqZTsmuxsTExP1448/6q233tLy5cttp/fx8VGXLl30wgsvqG3btrZjMto4Y8YMvfTSS5o+fbrtKYGBgbrhhhv08ssvq1q1arZjMtIYFRWlN954Q5999pkOHz5se0rdunX11FNPuczNHikIIIAAAvlXwHwR9cYfazV1zb4Mb6JZ5Qj9z3occctqJTJ8Tq4P3LtKWjfR/rKVWknVL7HvoxUBBBBAAAEEEEAAAQQQQAABBBBAAIGCINBigLUL6zucltZ7/e5SQPYkigr099UrPRqp71fzbZXen7pB1zStoPLhIbb9NCKAAAIIIIAAAggggAACCCCAAAIInBXwPXvIUX4SiImJ0S233KKePXs6Breb/Zig7I8//lgNGjTQzJkzc3yL+/fvV4cOHXTzzTc7BrebRSQlJWny5Mlq3769nnzySZmg+MwWM4c5t2PHjo7B7WZOk9F+5MiRatSokX7++efMXsY1fuXKlWrSpIlee+01x+B2M3DdunW6/fbb1a1bNx07duycrsVJCCCAAALnV+BQVIzMI4O7vj8zw8HtlYqH6KO+F+jXQW3ydnC7oZ31jjNwhyes7/asL/coCCCAAAIIIIAAAggggAACCCCAAAIIFFSBJn2k2/+QzHs2BbcnU11cs6R6NKuQXPV4PxWboFcnrPFoo4IAAggggAACCCCAAAIIIIAAAgggYC9AgLu9S55uNcHgJiP5d99957FOPz8/Va9eXc2aNVN4eLhH34EDB1xB1/Pm/ffIRY/e7Kns3btXrVq10pw5czwmNJnMa9asqQsvvNC1vpSdJkj97bff1qBBg1I2Z+j4wQcfdJ2bcrC5VuXKldW8efNUGetPnjzpcvv1119TnpLusQla79y5s7Zs2eIx1mTHN0HvtWvXVkBAgEffX3/95fKOjo72aKeCAAIIIJB3BaLjEvTZ9E3q+PZ0fTtvmxISk9JdbNFgfz17ZT1NffQSV/alPP/0jgPrpNXj7PdVvqlUu4t9H60IIIAAAggggAACCCCAAAIIIIAAAggUFIEcTvDw3JX1FRZk/xDtiSv3aOb6AwVFkn0ggAACCCCAAAIIIIAAAggggAACOSZAgHuO0ebcxCYgfPz48R4XuOeee7R9+3Zt3rxZ//77ryvL+C+//KIqVaq4x506dUp9+vTJkczi8fHxrrm3bdvmvp4JuH/88ce1a9cubdy4UQsXLnStz6zTBLSnDAL84osvNGzYMPe56R2MGTPGlZk+5bjrr7/elUHdzL9kyRKZoP6pU6e6gtCTxyUkJKhfv37aunVrclOa72ZfvXv31sGDB93jSpQooREjRriMly9frvXr18sE9z/33HPy9T37fynzYwKTYZ6CAAIIIJC3BRKtQPbxy3bp0ndn6M0/1+pETHy6C/b39VH/NtU044lOuqtDTQUH+KV7Tp4YMOs9axkOgftkb88THxGLQAABBBBAAAEEEEAAAQQQQAABBBDI3wJligXrkS51HDfx0m+rFROf4NhPBwIIIIAAAggggAACCCCAAAIIIICAdDYaF418IXDo0CG99tprHmt9/fXX9dlnn6lChbOPPDSB1j179tTcuXNVrVo19/idO3fqvfdMcFv2lpEjR2rWrFnuSc31f/zxR1eG9fLly7vbzYHJsP7JJ5/oq6++8mh/5plnZLKsp1diY2P11FNPeQwzAf5jx451ZVNP2XHppZdq5syZatmypbv5xIkTevHFF931tA6++eYbrVy50j2kePHirn3edtttHlnbTdD7q6++KuOQspjPZcOGDSmbOEYAAQQQyEMCCzYfUs9P5+ihH5dp19HTGVpZ14ZlNcXK2P5S94YqUSQwQ+fkiUGHN0srx9ovpUwDqe5V9n20IoAAAggggAACCCCAAAIIIIAAAggggECmBPpdXFX1yhW1PWfzwZMaOmuLbR+NCCCAAAIIIIAAAggggAACCCCAAAJnBAhwz2f/JLz11lsyAdrJpUOHDqmCvZP7zHvFihU1dOjQlE0aMmSITKB8dpY33njDY7oHHnhAvXr18mjzrgwcOFAmUDy57Nu3T++//35y1fH966+/9sjAXrt2bdeeUmaET3lyeHi4K+N6YODZIMTvvvtOa9euTTks1bEJpDdB6ynLO++8owYNrCBAh3LTTTfplltucfeaDPAvvfSSu84BAggggEDeENh8IEp3fbtYN3w5X8t3HsvQoppWCteYuy/WF7e2VPVSRTJ0Tp4aNHuIlbzdITNU+8esnz3y18I89XmxGAQQQAABBBBAAAEEEEAAAQQQQACBfCvg7+erV69t5Lj+j6Zt0I7Dpxz76UAAAQQQQAABBBBAAAEEEEAAAQQKuwCRTPnon4DExEQNGzbMY8UmeNopsDt5oMli3r59++SqK0B+zJgx7npWD0yg+Pr1693T+Pv768knn3TX0zp47rnnPNbvndXd7lzvgH2T+T04ONhuqLvNBKXfcMMN7npCQkIqS3fnfwd//fWXduzY4W42mfAHDBjgrjsdeH8mJrP8sWMZC550mpN2BBBAAIHsETgZY/3wyHoE8OVDZmpy5L4MTVoxIkQf3NhMvw5qq1bVS2TonDw3KClJinX4wqxkLalhzzy3ZBaEAAIIIIAAAggggAACCCCAAAIIIIBAfhZoWa2EerWoZLuF6LhEvTwh0raPRgQQQAABBBBAAAEEEEAAAQQQQAABK1cnCPlHYO7cuTpw4IB7wTVq1FDHjh3d9bQOTLb0lGXcuHEpq1k6njFjhsf5LVu2VIUKFTzanCp16tSReSWXbdu2acmSJcnVVO87d+7U0qVL3e1hYWHq06ePu57WgbfB+PHj0xou734T3J7ejwnMhDVr1tQll1zinjsuLk6TJk1y1zlAAAEEEDg/Asej49Tni3kaPner4hOtgO90StEgfz3drZ7+fuwS9WhW0Upw7pPOGXm428dae6+vpUHzpcbWn5s+Kf4K6Mre7peHF8/SEEAAAQQQQAABBBBAAAEEEEAAAQQQOA8CJmlEFou5v1gs2N92lilWAo5pazOWhMN2AhoRQAABBBBAAAEEEEAAAQQQQACBAiyQIrqpAO+ygGxt4sSJHjvp0qVLhgKuzUlmbMoyffp0nTx5MmXTOR9v377d49ymTZt61NOreI//7bffHE/xNmjbtq2KFCniOD5lhxkbGhrqblq3bp02bNjgrnsfeF/r8ssv9x7iWPf2njBhguNYOhBAAAEEcl4gPiFR9323VKt3H0/3Yn5WIHu/i6tq+hMddc8lNRUcUICCv8vUl67/Srp/sXTBLVKJmlbAe+90TRiAAAIIIIAAAggggAACCCCAAAIIIIBAoRCwnqasjVOlH2+W/nw6y1suFRakJ66o5zjPi9bTJqPjEhz76UAAAQQQQAABBBBAAAEEEEAAAQQKqwAB7vnok1+2bJnHatu0aeNRT6tiMqpXq1bNPSQ2NlaRkZHuelYODh065HF6iRIlPOrpVUqWLOkx5N9///Wop6xkxcDf31+tWrVKOZ2850vu3Ldvn/bu3ZtcVVBQkJo3b+6up3dggulTFqfrpBzDMQIIIIBAzgm8Yj3ud9aGg+leoEuDspr8SAcN7tFIJa0vnwpsKWkFtvf4xMroPk/yCyiw22RjCCCAAAIIIIAAAggggAACCCCAAAIIZEjghJVJfeY70odWEqdR10trrcRF/34nxURl6PS0Bt3UqooaVwy3HbLj8Gl9Nn2TbR+NCCCAAAIIIIAAAggggAACCCCAQGEWIMA9H336a9as8VhtgwYNPOrpVbzHe8+X3vlO/b6+nv8YJSRkLtNEXFycx9Rprcu7z3tPHhPZVLzHe8+XfIp3e61atRQYGJjcne6793U2btyo+Pj4dM9jAAIIIIBA9guMmLtVI+ZtS3Ni8wXTD3e21le3tVTN0mFpji1Qnf4FOIi/QH1QbAYBBBBAAAEEEEAAAQQQQAABBBBAIMcEts2VhljfuU17RTq6/exlYk9Iq385Wz/HI/PEyFeubWQ9ldl+gs9mbNK2QyftO2lFAAEEEEAAAQQQQAABBBBAAAEECqmAZ2RyIUXID9s+ffq0tm9PcVPNWnTlypUztXTv8evWrcvU+U6DvTO279+/32mobbv3+C1btigmJsZ2rPeavfdke1KKRu/x3vMlD/Vu9z4veZzTe+nSpRUcHOzuNhnzzb4oCCCAAAK5KzB93X4N/n2140XLFgvSkBuaavx9bXVxzZKO4+hAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQIqULGFFFTMfnOLh9m3Z7K1WeUI3XhhFduzYuMT9eJvq5WUlGTbTyMCCCCAAAIIIIAAAggggAACCCBQGAUIcM8nn/rBgwc9bmwFBASoTJkymVp9xYoVPcZ7B5Z7dGaiUqNGDY/RixYt8qinV1myZInHEJMB3uzXrhw4cMCjuVKlSh719CoZNfC2yex1zDoqVKjgsRzvOT06qSCAAAIIZLvA+n0n9MD3/yrR4Xuh8JAAV9b2nhdUkq+VRYmCAAIIIIAAAggggAACCCCAAAIIIIAAAoVQwDzlsNlN9hvfvVTas9y+L5OtT3atq+KhAbZnTV93QH+t3mfbRyMCCCCAAAIIIIAAAggggAACCCBQGAX8C+Om8+Oeo6KiPJYdGhpqPcowc8F4RYoU8ZjDe06PzkxU2rdv7zF69erVWrVqlRo1auTRbleZOXOmdu3alarLbm0mi70Jfk9ZvPeUss/u2Hu83XXMed7t3ufZze3d5n2O95ze4zNSN0Hy3kH+6Z23cePG9IbQjwACCBQ4gUNRMbp9+CKdiIm33Zu/FdD+2S3NVaN0mG0/jQgggAACCCCAAAIIIIAAAggggAACCCBQiARaDJDmfWy/4SXDpauH2PdlorV4kUA93a2envp5pe1ZL1tPouxQp5RCA/n61haIRgQQQAABBBBAAAEEEEAAAQQQKFQC3CHJJx+3d3B0cHBwplceEhLicY73nB6dmajUrl1bDRo0UGRkpPusZ555Rr///ru7bneQmJio5557zq4rVYC5GWS33sw6ZNTA+1qZvY5Zb0avZcZmtHz66acaPHhwRoczDgEEECiUAtFxCbpr5BLtPHLacf+vXttIbWqWcuynAwEEEEAAAQQQQAABBBBAAAEEEEAAAQQKkUCpWlI1K6HT1lmpN71irNTlFSko68kyereorNGLdmjp9qOprrP7WLQ+mrZRT11RL1UfDQgggAACCCCAAAIIIIAAAggggEBhE/AtbBvOr/uNjo72WHpgYKBHPSOVoCDrEYspismInl3lscce85hqwoQJevrppz3aUlZMcPt9992n2bNnp2x2H9utzdvADM6sQ0YNvK+V2euYtWX0WmYsBQEEEEAgewSSkpL0zC8rtWTbEccJ7+pQQze2quLYXyA61v0p7V9bILbCJhBAAAEEEEAAAQQQQAABBBBAAAEEEMgVgRb97S8Te0Ja9ZN9XyZbfa0nS77co5GsN9sydNZmbdwfZdtHIwIIIIAAAggggAACCCCAAAIIIFCYBAhwzyeftncG8djY2EyvPCYmxuMc7zk9OjNZ6devnzp06OBx1ptvvqn27dvrl19+0f79+xUXF6c9e/Zo9OjRatWqlT7//HPX+IiICI/zTCUsLHUWDLv1ZtYhowbe18rsdcweMnotM5aCAAIIIJA9Ap9O36Rf/93lONll9csW/AxIsaek8fdJn7aWRt8q7Vnh6EEHAggggAACCCCAAAIIIIAAAggggAACCPwnUP8aKbSkPceS4fbt59DaqGK4bm1d1fbMuIQkvfjbKplEHhQEEEAAAQQQQAABBBBAAAEEEECgMAv4F+bN56e9ewd8e2cYz8hevLOie8+ZkTmcxvj5+emHH35wBblv2rTJPcxkaHfK0m4G+fv7a8SIEerRo4f7HHOQ0aB34+AdjO4xkVclowbeNnnFe9CgQerdu7fXrtKubty4Uddee23ag+hFAAEECoDApJV79PZf6xx3Ur98MX1wYzP5OaVHcjwzn3WYL9tOHTyz6DW/SeZV5wqpwxNSpZb5bDMsFwEEEEAAAQQQQAABBBBAAAEEEEAAgVwS8LeehNzsJmnuR6kvuPtfafcyqUKz1H3n0PLo5XU1ceVeHYzyTE5lppqz8ZAmrNija5pWOIeZOQUBBBBAAAEEEEAAAQQQQAABBBAoGAIEuOeTz9E74PrUqVOu7A0+Pg7PMLTZ18mTJz1avef06DyHSoUKFbRgwQL17dtXU6ZMSXeG0qVLa/jw4WrevHmqsXYB7iEhITKB9AkJCe7xZk92Y90DvA4yauBt432e17S2Ve9zvOe0PSmdxjJlysi8KAgggAACngLLdxzVo2OWeTamqJUuGqSv+7VUkaAC/lefuGjrC7gPU+z8v8P1f0pbZkqPrZWCw1P304IAAggggAACCCCAAAIIIIAAAggggAACUosB9gHuxmbJMCvA/YNsUQoPCdCzV9az7mkut53v1YmR6lSvjMIK+v1M293TiAACCCCAAAIIIIAAAggggAACCEi+IOQPgVKlSillMHtcXJz279+fqcXv2rXLY3xOBEqXLFlSkydP1p9//unKyl60aFGPa5qKCYR/8skntXLlSl155ZU6dOiQxxgzh1PQugmKT1l27tyZsprucUYNvG0yex2zkN27d3usx3tOj04qCCCAAALnLLD76Gnd8e1iRccl2s4R5O+rr25rqQoRIbb9Bapx2XfSiT32W2p5O8Ht9jK0IoAAAggggAACCCCAAAIIIIAAAgggcEagZE2pegd7jZU/STEn7PvOobXnBRXVqnoJ2zP3HY/R+1PW2/bRiAACCCCAAAIIIIAAAggggAACCBQGAQLc88mnbLKXV6lSxWO127dv96inV/EeX69evfROOef+rl27aty4cTp8+LA2btyoefPmuV47duyQeb355psqW7asa/7IyEiP67Rs2dKjnrJSt27dlFV578mj06biPd7JIKvXMT8+iI62suj+VwIDA1WjRo3kKu8IIIAAAtkkcDImXneMWKwDJ1I/yjf5Eu/2aapmlSOSqwX3PSFOmv2+/f78rMcrt3nQvo9WBBBAAAEEEEAAAQQQQAABBBBAAAEEEDgrYLK425XYKMkEuWdTMYmtXunRSH6+PrYzDpu7Vev2Zl9Ave1FaEQAAQQQQAABBBBAAAEEEEAAAQTyqAAB7nn0g7FblncwtndguN05KdvWrFmTsirv+Tw6s6ni7++vmjVrqnXr1q5XpUqV5Ovr+Y+dyeSesqQV4O695pwy8L7Opk2bFBsbm3KZaR57WxsDY0FBAAEEEMg+gcTEJD08epki9xx3nPSxLnV0dZMKjv0FqmPFaOnYdvsttegnFT3zwzL7AbQigAACCCCAAAIIIIAAAggggAACCCCAgEug3tVSaCl7jCXD7NvPsbVuuaK6vW0127MTrPufz49fpaSkJNt+GhFAAAEEEEAAAQQQQAABBBBAAIGCLOAZaVyQd1oA9tasWTOPXcydO9ejnlZlz5492rp1q3tIQECAGjRo4K6fz4OJEyd6XL5bt24e9ZSVrBjEx8dr4cKFKaeT93zJneXKlZN5JZeYmBgtWbIkuZru+5w5czzGOF3HYxAVBBBAAIFMCbz511pNidzneM61zSro/s61HPsLVEdCvDTrXfst+QZIbR+y76MVAQQQQAABBBBAAAEEEEAAAQQQQAABBDwF/AOlC272bEuu7Vku7VqaXMuW94cuq6OyxawnMNqUhVsO69d/d9n00IQAAggggAACCCCAAAIIIIAAAggUbAEC3PPR53v11VbGiBRl6tSpGc7aMHny5BRnSp06dVJYWJhH2/mobNiwQUuXnr0RWL9+fbVt29ZxKVdddZVHnwnyP3nypEebU8UEnZ86dcrdXadOHZmXU/G+1pQpU5yGpmr3HnvNNdekGkMDAggggMC5C4xZtENfzNjsOEGLqsX1xvVNZB7zWyjK6l+lww4ezW6SwisVCgY2iQACCCCAAAIIIIAAAggggAACCCCAQLYINO/nPM2S4c5959ATFuSv/13lnJTq/yat0bHTcecwM6cggAACCCCAAAIIIIAAAggggAAC+VeAAPd89Nm1adNGpUqdfSTi5s2bNX369Azt4Ouvv/YY16NHD4/6+ar873//87j0HXfc4VH3rlSuXFkXXHCBuzkqKkpjxoxx19M6yKxB9+7dPaYbNmxYhn5QsGnTJs2YMcN9rsmWf+WVV7rrHCCAAAIIZE1g3qZDevbXlY6TVCoeoi9ubaHgAD/HMQWqIzHRyt7+jv2WfCyDdo/Y99GKAAIIIIAAAggggAACCCCAAAIIIIAAAvYCJWtK1S+x71v5kxR93L7vHFuvblJe7Wqd/Q4w5TQHo2L13uR1KZs4RgABBBBAAAEEEEAAAQQQQAABBAq8AAHu+egj9vX1Vf/+/T1WPHjw4HSDrv/++2/NmjXLfV7RokXVp08fd/18Hfz6668ewek1a9bUoEGD0l3OwIEDPca88cYbio6O9mjzrqxZs0ajR492N9tZujv/O+jatasqVTqb8Xbr1q0yQe7plZdeesnjM7n++usVHh6e3mn0I4AAAghkQGDLwZO697slik9Msh1tsh190/9ClQqzf6Sv7Un5vXHt79KBtfa7aGL9eV+iun0frQgggAACCCCAAAIIIIAAAggggAACCCDgLNBygH1fnPVk4ZVj7fvOsdU8iXJwj4YK8POxnWHk/G1ateuYbR+NCCCAAAIIIIAAAggggAACCCCAQEEUIMA9n32qTz31lMLCwtyrNpnC33zzTXfd+2DXrl3yzor+0EMPeWSC9z7H1M2NtJSvjGSKX79+vUdgt928yW0muL1v377JVdf7Z599puDgYI82u8qdd96pKlWquLvMdR955BHHax8/fly33XabYmNj3efcdNNNatCggbtudxAUFKTnnnvOo+vxxx9XZGSkR1vKyvfff69Ro0a5m/z8/GR+hEBBAAEEEMi6wLFTcRo4fJGOWu92xdf67uejmy5QnbJF7boLZluSFeg/822HvVkg7R516KMZAQQQQAABBBBAAAEEEEAAAQQQQAABBNIUqHuVVKS0/ZAlVkIkc28uG0vN0mG6s30N2xlNvo/nx69SokPiD9uTaEQAAQQQQAABBBBAAAEEEEAAAQTysQAB7vnswytVqpSeffZZj1U/88wzrsznu3fvdrcnJiZq3LhxatOmjUzm8eRSoUIFPfbYY8nVbH0366pXr55ee+01rVy5UgkJCR7zm/o///yjXr166brrrlNMTIy73wSod+nSxV1P6yAwMFAma3vK8vnnn7uy0m/YsCFls6ZNm6b27dtr8eLF7nbzA4GXX37ZXU/rwGSLb9iwoXvIkSNHXPN9++23io+Pd7cfPnxYzz//vG699VZ3mzm4++67VadOHY82KggggAACmReIS0h0ZW7fbGVwdyovXN1AneqWceoumO3r/5L2rrTfW8OeUmn+DLLHoRUBBBBAAAEEEEAAAQQQQAABBBBAAIF0BPwDpWY32w8y9+R2L7Xvy0Lr/Z1rqWJEiO0M/24/qrFLdtj20YgAAggggAACCCCAAAIIIIAAAggUNAEC3PPhJ2qyuF999dUeKzfZz01W85o1a6p58+YqWbKkevbsqe3bt7vHhYSEaMyYMYqIiHC3ZfeByab+v//9T02aNFGxYsVcWdJbt26tunXrKjw8XJ07d9bPP//scVmTYf6dd97xaEuvYrK/33vvvR7DfvrpJ9d1qlatqpYtW6p06dK69NJLtWLFCvc4X19fDRs2TNWrV3e3pXUQEBCgsWPHqkSJEu5hJpi9X79+Kl68uJo1a+a6Zrly5fTqq69amTMS3eNatWqV6X25T+YAAQQQQMAtkGRlQnph/GrN3XTI3eZ9cGvrqurXppp3c8Gup5m93dp6h8cL9v7ZHQIIIIAAAggggAACCCCAAAIIIIAAAjkt0KKf8xUWW1ncs7mEBvrreSuRh1N544+1OnLy7BOLncbRjgACCCCAAAIIIIAAAggggAACCOR3AQLc8+EnaIK0TdD1jTfe6LF6kyF98+bN+vfff3X06FGPPhPwPmnSJLVt29ajPScrp06d0po1a7RgwQKZwPeTJz2z7pqA+/fff19fffWVzJ4yWz7++GOZzO8piwmCNEH9S5Ys0cGDB1N2KTQ0VD/88IMrg7xHRzqV+vXruzLBm8D5lCUqKkrLly937S0uLi5lly677DL99ddfMnukIIAAAghkTeCbOVv1w8LtjpO0r11KL17TQD4+Po5jCmTH5unSrsX2W6tn/RCu7NknkNgPohUBBBBAAAEEEEAAAQQQQAABBBBAAAEE0hQoUUOq0Sn1EP9gyc/K8J4DpWvDsupYt7TtzEdOxemtv9bZ9tGIAAIIIIAAAggggAACCCCAAAIIFCSBzEcVF6Td5+O9BAcHu4K1TdZyk0XcqRQpUkSDBg1SZGSkOnbs6DQsW9r79+/vyiwfFhaW5nwmG/qDDz7oCgx/6KGH0hybVqcJin/vvfdcweft27d3HBoYGKibb75Zq1atUp8+fRzHpdXRtGlTrVy5Us8884wrc7vT2Nq1a7sC9idPnpyjmfKdrk87AgggUNAE/l6zT69OjHTcVq0yYfr4puby9yuEf6WZ+baji9o/5txHDwIIIIAAAggggAACCCCAAAIIIIAAAghkXKDlgLNjS9eTrnhTenSNdPV7Z9uz8cgk8hjcvaEC/e3vef64aLuW7TiajVdkKgQQQAABBBBAAAEEEEAAAQQQQCDvCfhYGa+T8t6yWFFmBTZu3OjKlL5r1y7Fxsa6gqtN5nGTsd0Ew+dmMZnkTTD4unXrtHv3blfm9oCAAJUtW1aNGjXSBRdcID8/v2xf0s6dOzV37lxXBvfo6GgVLVpUJuC8Xbt2KlasWLZdz2RrN1npTcD8oUOHXHspX768mjdvrsaNG2fbdbJrotWrV7vck+cz627YkKy+yR68I4BA3hVYs+e4en02VydjE2wXWTw0QOPva6cqJUNt+wt049Y50vAr7bdY6zLplp/t+2hFAAEEEEAAAQQQQAABBBAQ98v4hwCB/CXA/2fz1+dVIFebYD3F94+npMa9pSqtZT1KMle2OWTKen3w9wbbazWqWMx1b9TPN3fWYrsIGhFAAAEEEEAAAQQQQAABBBBA4LwIFJb7Zf7nRZeLZrtArVq1ZF55oZjgdZNVPq3M8jmxzkqVKp1zhvbMrMcE65ugefOiIIAAAgjkjMD+E9G6Y8Rix+D2QCtj+5e3tSycwe2GPK3s7R2ezJkPhVkRQAABBBBAAAEEEEAAAQQQQAABBBAojAJ+ATmWrT0tzns71tSv/+7S9sOnUg1bteu4vl+4Xbe2rpqqjwYEEEAAAQQQQAABBBBAAAEEEECgIAjYP9uuIOyMPSCAAAIIIIBAvhSIjkvQXd8u0a6jpx3X//p1jXVhtRKO/QW6Y+diafM/9lus1t7KInWRfR+tCCCAAAIIIIAAAggggAACCCCAAAIIIJBvBIID/DS4u/MTed/+c60ORsXkm/2wUAQQQAABBBBAAAEEEEAAAQQQQCAzAgS4Z0aLsQgggAACCCCQowJJSUl64qcVWrbjqON1BlmZi65vUcmxv8B3zHzHeYuXkL3dGYceBBBAAAEEEEAAAQQQQAABBBBAAAEE8pdAp3pldHmDsraLPh4drzf+WGvbRyMCCCCAAAIIIIAAAggggAACCCCQ3wUIcM/vnyDrRwABBBBAoAAJfPD3Bv2+fLfjjq5oWE6PX17Xsb/Ad+xZIa3/w36bla3M7SaDOwUBBBBAAAEEEEAAAQQQQAABBBBAAAEECozAC9c0UHCA/Ve6Py3ZqcVbDxeYvbIRBBBAAAEEEEAAAQQQQAABBBBAIFnA/m5Ici/vCCCAAAIIIIBALgmMX7ZL70/d4Hi1xhXD9d4NTeXr6+M4psB3+AdJdbrZb7ODlb3dpxDb2KvQigACCCCAAAIIIIAAAggggAACCCCAQL4WqFQ8VA90ru24h/+NW6X4hETHfjoQQAABBBBAAAEEEEAAAQQQQACB/ChAgHt+/NRYMwIIIIAAAgVMYOn2I3riJys7uUMpVyxYQ/u1VGigv8OIQtJc2spef9OP0t2zpAY9rE3/F9BevplU69JCgsA2EUAAAQQQQAABBBBAAAEEEEAAAQQQKFwCd7Svrhqlithueu3eExoxb5ttH40IIIAAAggggAACCCCAAAIIIIBAfhUgwD2/fnKsGwEEEEAAgQIisPPIKd317WLFxttnGQoJ8HMFt5e1gtwp/wmUbyL1+VYaNF9q3Ee65Cmyt/MPBwIIIIAAAggggAACCCCAAAIIIIAAAudT4OiOHLt6kL+fXu7RyHH+IVPWa//xaMd+OhBAAAEEEEAAAQQQQAABBBBAAIH8JkCAe377xFgvAggggAACBUjgRHScBg5frINRsba78rESlL9/YzM1qhhu21/oG8vUk67/Sqp3ZaGnAAABBBBAAAEEEEAAAQQQQAABBBBAAIFcF4g5IS3+Rvqig/TxhdLpozm2hHa1S+mqJuVt54+Kiddrk9bY9tGIAAIIIIAAAggggAACCCCAAAII5EcBAtzz46fGmhFAAAEEECgAAgmJSXrwh3+1bp/1JZBDebJrPXVtWM6hl2YEEEAAAQQQQAABBBBAAAEEEEAAAQQQQOA8COz+V/r9IeldKwHFhEekPcul+NPSijE5upjnr2qg0EA/22uMX7ZbczcdtO2jEQEEEEAAAQQQQAABBBBAAAEEEMhvAgUywP2ZZ57Rli1b8ttnwXoRQAABBBAoVAKvTVyjf9YdcNxzrxaVdM8lNRz76UAAAQQQQAABBBBAAAEEEEAAAQQQQAABBHJdICFe+v5GaclwKTbK8/JLhklJSZ5t2VgrFx6shy+r7TjjC+NXKzY+0bGfDgQQQAABBBBAAAEEEEAAAQQQQCC/CBTIAPc333xTtWvX1mWXXaYxY8YoLi4uv3werBMBBBBAAIFCIfDdgm36Zo7zj9FaVS+h/+vZWD4+PoXCg00igAACCCCAAAIIIIAAAggggAACCCCAQD4R8POXmt9qv9j9kdLORfZ92dQ6oG111SkbZjvbxv1Rad53tT2JRgQQQAABBBBAAAEEEEAAAQQQQCAPChTIAHfjnGRlR/jnn3/Ut29fVaxYUY8//rjWrl2bBz8CloQAAggggEDhEpi94aBMJiGnUrVkqD6/pYUC/QvsX1Octk47AggggAACCCCAAAIIIIAAAggggAACCOQHgea3Wat0SM6x2MrinoMlwM9XL/do5HiFD6Zu0O6jpx376UAAAQQQQAABBBBAAAEEEEAAAQTyg0CBjxwzge4HDx7UkCFD1LBhQ7Vv314jR45UdHR0fvh8WCMCCCCAAAIFSsBkELr3uyVKSLR/TG/RYH993e9ClSgSmDP7TrQez7vpH2nm29LSb6Uj23LmOsyKAAIIIIAAAggggAACCCCAAAIIIIAAAgVXIKKKVOsy+/2t/kU6fcS+L5taW9coqZ4XVLSd7XRcgl6daGWSpyCAAAIIIIAAAggggAACCCCAAAL5WKBABri///77rmB2E9xuio/PmQwKpj537lz1799f5cuX1wMPPKDly5fn44+PpSOAAAIIIJB/BI6cjNXAEYt0IjredtF+vj767OYWqlXG/vG6tidlptEEt4+/Txp5rTTtVem3B6QPmkgfXyj9+awV+D5NistDP4CLOmCt8UHp0KbM7JKxCCCAAAIIIIAAAggggAACCCCAAAIIIJAbAi0H2F8l3rrHuGKMfV82tj5zZT0VDfK3nXHSyr2aud66v0hBAAEEEEAAAQQQQAABBBBAAAEE8qlAgQxwf/DBB7VixQrNmzdPAwYMUGhoqExwe8pA92PHjunTTz9V8+bN1apVKw0dOlQnT57Mpx8jy0YAAQQQQCBvC8TGJ+ruUUu07dApx4UO7t5Q7WqXcuzPcsfCL6Xl36ee5uB6af4nVuB7T+mt6tJ3faSFX0mHt6Qem5stZk1LR1gB+C2ln++Q9q/JzatzLQQQQAABBBBAAAEEEEAAAQQQQAABBBBIS6B2V6loefsRi4fJ+nLSvi+bWssUDdZjl9dxnO3F31YrJj7BsZ8OBBBAAAEEEEAAAQQQQAABBBBAIC8LFMgA92Twiy66SF9//bX27Nmjzz//XC1atHAFupv+lMHuixcv1t133+3K6m7eFy1alDwF7wgggAACCCCQRQHzI7Pnfl2phVsOO840oG013dK6qmN/ljtMFvSpL6U/TZwVgL/hL2nS49KHzaSPWkh/PC1tnJq72d1PWVYmyN6UpERp5Vjp09bS6FukvSvPtPO/CCCAAAIIIIAAAggggAACCCCAAAIIIHD+BPz8pQtutb/+AStZxY4F9n3Z2GruqTYoX8x2xi0HT+rLGZtt+2hEAAEEEEAAAQQQQAABBBBAAAEE8rpAgQ5wT8YPCwvTXXfdpYULF2rZsmUaNGiQwsPDPYLdTfBdVFSUK5N769at1axZM1eGd5PpnYIAAggggAAC5y7wxczNGrtkp+MEneqW1v+uauDYny0dR7dLASGZn+rQRmnBZ9Ko66U3q1nvvaz6F5IJmM/JYq4RG5X6Cmt+lzZPT91OCwIIIIAAAggggAACCCCAAAIIIIAAAgjkvkDz26ysWg5ft5p7fDlc/P189cq1jRyv8vE/G7XjsJXUg4IAAggggAACCCCAAAIIIIAAAgjkMwGHOy75bBeZWG6TJk308ccfa/fu3RoxYoTat2/vEehupjLB7itWrNADDzygChUqqH///po9e3YmrsJQBBBAAAEEEDACf63eqzf/XOuIUbdsUX3Y9wL5+fo4jsmWjpqdpPsWSPWvOffp4k9bmdynWBndn7Qyuze3MrxfYGV6t443WG1xVl92lejjZ4Lq7eYLKSG1GGDXQxsCCCCAAAIIIIAAAggggAACCCCAAAII5LZARGWpVhf7q67+5exTGu1HZEtri6rF1adlJdu5YuITNfj31bZ9NCKAAAIIIIAAAggggAACCCCAAAJ5WaDQBbgnfxjBwcG69dZbNWPGDK1du1aPPfaYSpUq5RHsbgLdT58+rZEjR+qSSy5RgwYNNGTIEB06dCh5Gt4RQAABBBBAwEFg1a5jevjHZdafrfYDSoUFami/lioaHGA/ILtbw8pIfUZKPbMpc9Jh6/G+C625vrOyuo/onn2rXTRUij5mP9/Fg6SgMPs+WhFAAAEEEEAAAQQQQAABBBBAAAEEEEAg9wVappGQwiTLWDspx9f01BX1FB5if5916pr9mhq5L8fXwAUQQAABBBBAAAEEEEAAAQQQQACB7BQotAHuKRHr1Kmjt99+Wzt37tTo0aPVpcuZTAs+Pj4yLxPobl4mEP7xxx9XpUqVdPPNN2vOnDkpp+EYAQQQQAABBP4T2Hc8WneMWKzTcQm2JoH+vvri1paqXCLUtj/HGq0/19X0RunxDWcyoXf/WGrYUwoOz9ola1yStfOTz449Kc2z1mRXgqw1trrLroc2BBBAAAEEEEAAAQQQQAABBBBAAAEEEDhfAiaDe/Fq9ldPSpR+ul3atcS+P5taS4YF6ckr6jrONnjCakU73Kt1PIkOBBBAAAEEEEAAAQQQQAABBBBA4DwKEOCeAj8gIEC9e/d2Bbk/8sgjHtncUwa7x8TE6Mcff1SHDh3UunVrTZ48OcUsHCKAAAIIIFC4BU7HJriC2/daQe5O5e1eTWQenXveisnmfs37UvNbpd7DpSesbOy3/yW1f1wq3zTzy3J6DLH3TCaA3SmlvRm7ZLh0yuFJMRfdnfVAfO/1UEcAAQQQQAABBBBAAAEEEEAAAQQQQACBrAn4+Vv3Gj+QfPzs54k/LX1/g3Rkq31/NrXeeGEVNa1kn8hjx+HT+vSfjdl0JaZBAAEEEEAAAQQQQAABBBBAAAEEcl6AAPcUxrNnz1a/fv1UsWJFDRkyxJW9Pbk7OYu7qZtgd1NM28KFC9WtWzfdeOONioqKcrXzPwgggAACCBRmgVcnRmrlrmOOBA9dWls9mlV07D8vHeZLqCqtpUufl+6eKT22Xrr2c6nR9VZQeUTaSzL9FVukPSa5d/x90vtNpAmPnHk0cUyKvzvEWT8ImPNh8kjP98AwqfW9nm3UEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBvCNToKF39nvNaTh6QRvWyklscdh6TxR4/Xx+9cm0j63tM+4k+n7FZWw5aCTgoCCCAAAIIIIAAAggggAACCCCAQD4QsKK5Cnc5dOiQRowYoaFDh2rdunUuDBO4booJZDfH5r1Lly66/fbbFRkZqWHDhmnnzp0eY8aOHasdO3Zo5syZ8vNzyNDgOoP/QQABBBBAoOAKrN59TN8v3O64wWuaVtDDl9V27M8zHUXLSs36nnklJpx5hPCGKdJG67X7X89l1uwkmQD59EpCvLRpmhRtBf8v/ubMyy/QCqy/WKptPcbYtEfttZ/lwoFSaAn7PloRQAABBBBAAAEEEEAAAQQQQAABBBBA4PwLtOgvHd0hzXrHfi2HNkg/3iTdOk4KCLYfk8XWJpUidFOrKvpuQep7tLEJiXrxt9UaMeBCdzKvLF6O0xFAAAEEEEAAAQQQQAABBBBAAIEcE/DNsZnz+MRTp051ZV2vVKmSnnjiCa1du9YVzJ5y2aVKldKTTz6pDRs26K+//tINN9ygwYMHa+vWrRo/frzatm3rDoA3gfDz58/Xl19+mXIKjhFAAAEEECg0AubPwpd/j7T+bLTfcrPKEXq7V5P89+WJr/XDtcqtpM7PSXdNlx63HuXb8wupcW8pxAo6r2UFp2ek7Fp8Jog95diEWGnLDGny/6SZb6fsOXvsb33ZdfH9Z+scIYAAAggggAACCCCAAAIIIIAAAggggEDeFOhs3edrcoPz2rbPk8bdKyUmOo/JYs8TXeuqRBErsYZNmbn+gP5c5ZBkw2Y8TQgggAACCCCAAAIIIIAAAggggMD5EihUAe579uzR//3f/6lmzZrq2rWrTNb1mJgYd5C6+RBMcN4ll1yiH374wZWl/Y033lCNGjU8Ph9fX19dc801mjVrlr755huZusnyboo5j4IAAggggEBhFPhr9V4t2GL/iN3y4cH68rYWCg7I4aecHN2eo4/5dX2uYaWlpjdK1w+Vnth4JtA9Ix+4yQB/LsVkfgorcy5ncg4CCCCAAAIIIIAAAggggAACCCCAAAII5KaA+b6w+8dStfbOV139i/T3S879WeyJCA3U093qOc7y8oRIHTsV59hPBwIIIIAAAggggAACCCCAAAIIIJAXBAp8gLsJWJ84caKuvfZaVa1aVc8//7y2bNniCmRP+QFERETo4Ycf1po1a/TPP/+4srUHBASkHGJ73L9/f916662u+cy1Vq1aZTuORgQQQAABBAqyQEx8gl6btMZxi4O7N1SZolYm8pwsiQnSTwOlTy6S1k7MySudndtkd/e3z4Z0dtB/RxvPIcDdz5q7zYOppqIBAQQQQAABBBBAAAEEEEAAAQQQQAABBPKogLlfeMMoqbRzkLl2LJLiY3JsA72aV1KLqsVt599zLFq3j1ikU7Hxtv00IoAAAggggAACCCCAAAIIIIAAAnlBoMAGuG/fvl0vvviiK6i9e/fu+v333xUff+ZGTXK2dROQ3qZNG40YMUK7d+/We++9p7p162b6c+nSpYv7nOPHj7uPOUAAAQQQQKCwCAybs1U7Dp+23W6bmiXVpUFZ275sbZz3ibRzoXRyv/TjTdLPd+Z8NveMbuD0EWnvOfwIrtnNUnjFjF6FcQgggAACCCCAAAIIIIAAAggggAACCCCQFwRCIqSbx1pPZrS5L9roeunWX63EGUE5tlJfXx+90qORrDfbsmTbEd07aqli4xNt+2lEAAEEEEAAAQQQQAABBBBAAAEEzrdAgQxwv+KKK1SjRg29+uqr2rlzpztbuwlsN0HtRYsW1X333acVK1Zo9uzZrgzsQUHnfhOpTJky7s/RzE9BAAEEEECgMAkcOBGjj6dttN2y+QLl+asbKPnHZbaDsqPxwHpp2queM60cI33a2srmPsmz/XzUQqxsSU9YRtd/LTXtKxUpnf4qfP2ldg+nP44RCCCAAAIIIIAAAggggAACCCCAAAIIIJD3BCKqSDdZ9ygDipxdW9uHpeuGWm05/LRL64oNKhTTbRdXO3ttr6MZ6w/osbHLlZDId5teNFQRQAABBBBAAAEEEEAAAQQQQCAPCFiRUwWvTJ482R1IlxzUbgLPW7Zsqbvvvlt9+/ZVaGhowds4O0IAAQQQQOA8CLw3ZZ2iYs48JcX78je2qqL65Yt5N2dvPTFBGj9ISrB5pG/UPmnhF1LdbrL+cpC9183sbKElpMa9zrwSrcxIe1dIG6dIG6aeyTyf5JUtqev/ScWrZfYqjEcAAQQQQAABBBBAAAEEEEAAAQQQQACBvCJQoZnUZ8SZJ05e8YZ04cBcXdnjXetq5oYD2nzgpO11f1++WxEhAXq5R0P3d6u2A2lEAAEEEEAAAQQQQAABBBBAAAEEclmgQAa4JxuaoPawsDBXQLsJbG/evHlyV7a+N2zYUMOGDcvWOZkMAQQQQACB/CCwevcx/bhoh+1Siwb569EudWz7srVx3sdWgPgi+ykDi0rdPzr/we3eq/O1HqJjvtwyrw5PSKePSJv+kXYtkeKjpYY9paptvc+ijgACCCCAAAIIIIAAAggggAACCCCAAAL5TaB2F+nBZVJ4xVxfeZh1j/bb21up12fztPe4dd/Rpoycv03FQwP06OV1bXppQgABBBBAAAEEEEAAAQQQQAABBM6PQIENcG/cuLHuuece3XzzzSpa1Apuy8FSrlw59evXLwevwNQIIIAAAgjkPQHzQ7JXJkTKerMtD1xaS6XCgmz7sq3xwDpp2mvO03V9VTKPAs7rJaS41Oi6M6+8vlbWhwACCCCAAAIIIIAAAggggAACCCCAAAKZEzgPwe3JC6xUPFQjB7ZS7y/m6eipuORmj/cPp21URGigbm9X3aOdCgIIIIAAAggggAACCCCAAAIIIHC+BApkgPu8efN00UUXnS9TrosAAggggEChEPhr9T7N33zYdq9VS4aqX5tqtn3Z1pgQL427V0qIsZ+yZmepOT9As8ehFQEEEEAAAQQQQAABBBBAAAEEEEAAAQQKi0DtskU1fEAr3fTVfJ2KTbDd9stWMpPwkABd36KSbT+NCCCAAAIIIIAAAggggAACCCCAQG4K+ObmxXLrWgS355Y010EAAQQQKKwCMfEJ+r9Jaxy3/+yV9RXk7+fYny0d8z6Sdi2xnyrQenrLNR9KPj72/bQigAACCCCAAAIIIIAAAggggAACCCCAAAJ5UeCUfVKRrC61WeUIfXVbSwX6OX89/OTPKzQ1cl9WL8X5CCCAAAIIIIAAAggggAACCCCAQJYFnO9gZHlqJkAAAQQQQACBgiowfM5WbT98ynZ7bWqW1OUNytr2ZVvj/rXSP//nPF3X16SIys799CCAAAIIIIAAAggggAACCCCAAAIIIIAAAnlNYMdC6eOW0qKvc2RlbWuV0od9m8nXIS9IQmKS7vt+qRZsPpQj12dSBBBAAAEEEEAAAQQQQAABBBBAIKMC/hkdyDgEEEAAAQQQQMAIHDgRo4+mbbTFMF+MPH91AytxusM3JLZnZbIxIV4ad6+UEGt/Ys1Lpea32ffRigACCCCAAAIIIIAAAggggAAChVZg06ZNWrhwoXbu3KnY2FgVL15c9erVU5s2bRQcHJzrLsePH9fatWu1bds27dmzRydPnnStISIiQuXKlVPz5s1VtWrVbF3XiRMnNGfOHK1fv17m+iEhIa5rGIMKFSpk67WYDAEEMikQ+Zv0y51SfLQ06XGpWEWp7hWZnCT94Vc0Kq//69lYT/+y0nZwTHyi7hixWD/c1VqNKobbjqERAQQQQAABBBBAAAEEEEAAAQQQyGmBAhngvnnzZt1xxx1uu1deeUVt27Z11zN6MHv2bL3wwguu4SZQb8SIEapUqVJGT2ccAggggAACBVLgvSnrFRVjBZnblBsurKL65YvZ9GRj09wPpd1L7ScMsq7d3erPyQB7+yvTigACCCCAAAIIIIAAAggggAACeVRg3LhxMt8TLF1qfz8hLCxM/fv314svvqhSpUrl2C5OnTql4cOHa+bMmVqwYIG2bt2a7rWqVaumAQMG6P7771eJEiXSHe80YMuWLa7vO8aMGeMK7vceZ74DueSSSzR48GB16NDBu5s6AgjktMD8z6Q/n7GuknTmSkmJ0k8DpAGTpAoXZPvVb2xVRUdPx+mNP6wnZdqUE9b9337fLNTYey5WjdJhNiNoQgABBBBAAAEEEEAAAQQQQAABBHJWwDdnpz8/s3/++eeaPn26ZsyYIXPTtnXr1ue0EHOeyehi5jHzDR069Jzm4SQEEEAAAQQKikDk7uMavWi77XbCgvz12OV1bPuyrXH/Gmn6687Tdf0/KZwfozkD0YMAAggggAACCCCAAAIIIIBA4RGIiYnRLbfcop49ezoGtxuNqKgoffzxx2rQoIEr+DynhHbv3q377rtPo0ePzlBwu1mHCYI3gff169fXL7/8ck5LM0HtjRo10qhRo2yD282kSUlJru9BOnbsqKefftpVP6eLcRICCGReYPL/rOD2p63z/gtuT54h7pT0/Q3SkW3JLdn6fs8lNXX3JTUc5zx0Mla3fr1Qe46ddhxDBwIIIIAAAggggAACCCCAAAIIIJBTAgUywP2nn35ye916663y8/Nz1zNz4O/vL3O+ubFrXuYmMAUBBBBAAIHCKmD+LHx5wmolen3PkuzxQOdaKhUWlFzN/veEeGncvVJCrP3ctbpIF9xi30crAggggAACCCCAAAIIIIAAAggUKoHExETdcMMN+u677zz2bb4vqF69upo1a6bw8HCPvgMHDqhbt26aN2+eR3tOVyIiIlwB7BdddJGaNm2qMmXKpLrk/v371bt3b1cG+FSdaTSMHTtWffv2lcken7KULl1azZs3dz211mRvTy7m/s+bb76pRx99NLmJdwQQyGmBEs5B5oraJ33XWzp9JEdW8fQV9XRDy8qOc+86elq3WUHuR6xgdwoCCCCAAAIIIIAAAggggAACCCCQmwIFLsB98+bNHplPrr322ix5Xnfdde7z161bJ5NhhYIAAggggEBhFJgcuU/zNx+23XqVEqHq37aabV+2Nc79QNr9r/10QdYX0tdY/Sm+kLUfSCsCCCCAAAIIIIAAAggggAACCBQGgbffflvjx4/32Oo999yj7du3y3yP8O+//+rw4cOurOhVqlRxjzOB4H369NGxY8fcbdl9YLKpP/HEE/rtt9+0d+9eHTlyRJGRkZo/f76WLVumffv2udb4/PPPKyQkxH15E7R/9913a+3ate62tA7ME2oHDBggc15yMQH006ZNkwmYX7JkiXbs2KE1a9Yo5XchZuz7779/zhnjk6/FOwIIZFCg5e1Su0ecBx9cJ/1oJfaIj3Eec4495gcur/VspCsalnOcYcP+KPUfvkhRMVYCEgoCCCCAAAIIIIAAAggggAACCCCQSwIFLsB91apVbrrg4GBXFhZ3wzkcmJu9Zp7ksmLFiuRD3hFAAAEEECg0AjHxCfq/SWsc9/vslfUV5H9uT0xxnDRlx75IafobKVs8j6/4Pym8omcbNQQQQAABBBBAAAEEEEAAAQQQKJQChw4d0muvveax99dff12fffaZKlSo4G739fVVz549NXfuXFWrVs3dvnPnTr333nvuenYdlC9fXhs2bNDKlSv11ltv6ZprrlHZsmVtpzdZ5l9++WXX2ooXL+4eExsbqxdffNFdT+vABMifPHnSPeTCCy/UzJkz1alTJ3ebOahbt67Mk3Hvuusuj/Ynn3xS8fEEtHqgUEEgpwQ6vyA16uU8+7bZ1tMtB8n6xYrzmHPs8ffz1Qd9m6ltrZKOMyzfcVR3j1wsc5+YggACCCCAAAIIIIAAAggggAACCOSGQIELcN+2bZvLzWQcqFq1qswN6qwU87jSlDe2t2zZkpXpOBcBBBBAAIF8KTBi7lZtO3TKdu0X1yiprg3tv4y1PSGzjQlx1pc390oJDo/BrX251OzmzM7KeAQQQAABBBBAAAEEEEAAAQQQKKACJnj8xIkT7t116NBBTz31lLvufVCxYkUNHTrUo3nIkCEygfLZWYoUKaJatWplaspmzZrJBOenLBMnTlR0dHTKplTHq1ev1ujRo93tgYGBGjFihIoVK+ZuS3lgvlP54IMPVLt2bXezyQA/bNgwd50DBBDIQQHzfea1n0pV2zlfZNVP0rRXnPuz0GOSl3xxa0s1rWQ9KdOhzNl4SA//uEwJiUkOI2hGAAEEEEAAAQQQQAABBBBAAAEEsk8ga9Hf2beObJsp5U3r8HDnmzCZuWDKeY4fP56ZUxmLAAIIIIBAvhc4GBWjj/7eaLsP67tPPX91A5kvQXOszHlf2rPMfvog68/6az6QtQD7floRQAABBBBAAAEEEEAAAQQQQKBQCSRa2Y29g7JfeumldO9dXHrppWrfvr3bynzXMGbMGHf9fB707dvXI5mPycq+ffv2NJf0zTffWImez2Z6vvHGG1W/fv00zzFPs3366ac9xngH/nt0UkEAgewV8A+SbhwllarrPO/s96TFw5z7s9ATFuSvYQNaqVaZMMdZ/li1V8/9ulJJSQS5OyLRgQACCCCAAAIIIIAAAggggAAC2SJQ4ALcQ0ND3TDZFYyeMmjeZHSnIIAAAgggUJgE3p28Xidi4m23fOOFldWggn3mL9sTMtu4b7U0/U3ns66wMpgVq+DcTw8CCCCAAAIIIIAAAggggAACCBQqgblz5+rAgQPuPdeoUUMdO3Z019M6GDhwoEf3uHHjPOrnq2KyrpcuXdrj8gcPHvSoe1d+++03jybvvXl0pqjccMMNMpnmk8uiRYu0e/fu5CrvCCCQ0wIhxaWbx0pFyjhfaeJj0vrJzv1Z6ClRJFAjB7ZSxYgQx1l+XLRDb/65zrGfDgQQQAABBBBAAAEEEEAAAQQQQCA7BApcgHvyTV6TOWDXrl1ZziBgMpzs2LHDbV2qVCn3MQcIIIAAAggUdIHI3cc1epF9RjCT0efRLmlkE8oqjskC9PvDUmKc/Uy1u0rNbrLvoxUBBBBAAAEEEEAAAQQQQAABBAqlwMSJEz323aVLl3SztyefYMamLNOnT5fJlp4XSnR0tMcyIiIiPOopK+vWrdPGjWefxmcC1tu0aZNyiOOx91jzXYu3qePJdCCAQPYIFK8q3TRaCgi1ny8pQRrbX9q9zL4/i63lw0NcQe4lrWB3p/L5jE36wnpREEAAAQQQQAABBBBAAAEEEEAAgZwSKHAB7lWrWjd9/ism8/q8efOSq+f0Pn/+fKXM4F6pUqVzmoeTEEAAAQQQyG8C5gvMVyZEKtHhabP3d66l0kWDcm5bPj7S1UOkck1SXyM4XLrmA1nfUKfuowUBBBBAAAEEEEAAAQQQQAABBAqtwLJlyzz2ntHAbnNShQoVVK1aNff5sbGxioyMdNfP14EJWD927Jj78mFhYapTp4677n3gbdCqVSv5+/t7D3Ost23b1qPPez6PTioIIJAzAhWbS72GWfc/Hb7KjbN+fPN9H+mofXKSrC6qRukwjbi9lUySE6fy+h9rHZOjOJ1DOwIIIIAAAggggAACCCCAAAIIIJBRAYe7Ihk9Pe+Nu+iiixQaGurOyPLee+9laZEpzw8MDJT3jd0sTc7JCCCAAAII5GGBKZH7NG/zIdsVVikRqgFtq9n2ZWtjuUbSndOkTs9JvgFnp77iTalY+bN1jhBAAAEEEEAAAQQQQAABBBBAAAFLYM2aNR4ODRo08KinV/Ee7z1feufnRP+rr77qMe3NN9+cZsC695q99+QxmU3Fe7z3fDan0IQAAjkhUPcK6cp3nGeO2id911s6fdR5TBZ6GlUM19B+LRXo7/x18jO/rNSfq/Zk4SqcigACCCCAAAIIIIAAAggggAACCNgLON+RsB+f51sDAgLUuXNnmayz5vXrr79qzJgx57Tu0aNH65dffnEFy/tYGWI7duyokJCQc5qLkxBAAAEEEMhPAjHxCXptkucXwinX/+yV9RXk75eyKeeO/azA9kuelO6abmVzbyzVsb7YaXpjzl2PmRFAAAEEEEAAAQQQQAABBBBAIF8KnD59Wtu3e2Yzrly5cqb24j3eZE8/XyU6OloPP/ywRo0a5V5C6dKl9fLLL7vrdgfea/bek905Kdu8x3vPl3IsxwggkMMCFw6U2j7kfJEDa6XRt0jxMc5jstDTukZJfXJTc/n52j9J0zz988EflmnOxoNZuAqnIoAAAggggAACCCCAAAIIIIAAAqkFnJ8rl3psvml55plnNGHCBFdgugly79evn6KionT77bdneA9ff/217r//fvccJsDdzEtBAAEEEECgMAh8O3ebth06ZbvV1jVKqGvDsrZ9Odroyub+jxQbZT2a1/4LlRy9PpMjgAACCCCAAAIIIIAAAggggECeFjh48KAr8U3yIk1CnDJlyiRXM/ResWJFj3H79+/3qGd3ZcGCBTpx4oR7WhPUbq65ePFi/fzzz67j5M5y5cpp0qRJ6e7Je82VKlVKniJD794GBw4cyNB5DEIAgRwSuPQl6egOafUv9hfYOksaf7903Zc5ct+0S4Oyeuv6Jnps7HLb68cmJOqubxfr+ztbq2nlCNsxNCKAAAIIIIAAAggggAACCCCAAAKZFSiQAe4XX3yxrrvuOnf29ZiYGN15550aOXKkHnzwQXXt2lWhoaGprE6dOqU///xTH374oWbNmuW6EW4C282re/fu6tChQ6pzaEAAAQQQQKCgCRyMitGHf2+w3ZaJK3/+6gauPxttB+R0o8nmHlI8p6/C/AgggAACCCCAAAIIIIAAAgggkA8FTKKblMV8D2Du72emFClSxGO495wendlQufvuu7V8uX3QaPL0wcHB6t+/vytzu8ngnl7xXrP3ntI733t8XFyczPcsQUFB6Z2abr8Jvs9swPzGjRvTnZcBCBRoAV/rgdzXfiad2Cttn2u/1ZXW06wjqkiXPm/fn8XW61tU0tHTcXplQqTtTCdjE9R/2EKNvedi1SpT1HYMjQgggAACCCCAAAIIIIAAAggggEBmBApkgLsBGD58uNauXavIyEjXDWyTyX3mzJmul691I6hu3bquLCdhYWGu7O7mpqp5zGZiYqLLz4w3N77Ne6NGjfTtt99mxpWxCCCAAAII5FuB96as14mYeNv139CyshpWCLftoxEBBBBAAAEEEEAAAQQQQAABBBA4nwLegd0mMDyzJSQkxOMU7zk9OnOhEhgY6Ercc9dddykjwe1mSd5rzqyDt0HynNkR4P7pp59q8ODBuVuTvlsAAQAASURBVCDHJRAoYAIB1r/PbvxO+vpy6ZB9chLNescKcq8steifI5sf2K66jpyM1cf/2P/o5MipON369UL9dG8bVYzw/HdpjiyISRFAAAEEEEAAAQQQQAABBBBAoEALWD/5L5jFBK7/9ddfuvDCC92Z2M1OTcB6QkKCK/B9xowZmjhxosy7CYQ37abflOTg9tatW7uyuhctSrYBFwz/gwACCCBQoAXW7DmuHxdut91jWJC/Hru8rm0fjQgggAACCCCAAAIIIIAAAggggMD5FoiOjvZYggkOz2zxDuI+ffp0ZqfI1vGxsbF66623XEl77rjjDp04cSLd+bPq4G1gLni+HdLdNAMQKAwCoSWkW36SiqTxJIfDW3JU4rHL6+jmi6xM8Q5lz7Fo3Tp0gcxTQikIIIAAAggggAACCCCAAAIIIIBAVgQKbIC7QalYsaJmz56tp556SuZRpCmD170fS2rqyW1mnAmQ/9///ufK+F6hQoWsGHMuAggggAAC+ULA/Pn36sRIJZ75rVeqNd/XqZZKF836o6hTTUwDAggggAACCCCAAAIIIIAAAgggkA0C3pnKTXB4ZktMjGdQpvecmZ0vvfHLli1zfXdh7suY1/Hjx7V+/XqNGjVK3bp1c59uEvR8/fXXateunQ4dOuRutzvwXnNmHbwNzDW857S7Lm0IIJALAsWrSTeNlgJCvS7mI3V7W+qSs09IMN+lvtyjka5uUt7r+mermw+eVP9hC3UiOu5sI0cIIIAAAggggAACCCCAAAIIIIBAJgX8Mzk+3w0PCAjQ66+/rieffFJDhw7V5MmTNX/+fJ08eTLVXkxQ+8UXX6wrrrhCt99+u8LDw1ONoQEBBBBAAIGCKjB1zX7N2Wj/BWnlEiEa0LZazmw93vqy+bf7pTYPSOUa58w1mBUBBBBAAAEEEEAAAQQQQAABBAq8gLnHn7J4ZzJP2ed07J2p3HtOp/Oyq908Tda8ateurZtvvllTpkzRDTfcoCNHjrgusWLFCvXr108TJkxwvKT3mjPr4G1gLuQ9p+PF0+kYNGiQevfunc4oz+6NGzfq2muv9WykhkBhFqjYQrr+a2n0zdajqxMl/xCpl1Wvd1WuqPj5+ui9Ps10PDpeM9cfsL3mql3HdceIxRpxeysFB/jZjqERAQQQQAABBBBAAAEEEEAAAQQQSEugwAe4J2++ePHieuKJJ1wvk+lk7969Onz4sOtxnuZmcYkSJVSuXDn5+XGTJdmMdwQQQACBwiMQG5+o16zs7U7luSvr59wXEbPelVZYWYdW/Sx1eEJq/5jkF+C0FNoRQAABBBBAAAEEEEAAAQQQQAABWwHvIOxTp065sqInP73V9iSvRu/kON5zeg3P8WqXLl00ceJEV+b2xEQrkNUqpm4C302fXfFes/ee7M5J2eY93t/fP9syuJcpU0bmRUEAgSwK1LvSytj+ljT9DSuj+xipkhX0nosl0N9Xn9/SXLcMXaCl24/aXnnBlsO6//t/XeP8/Qr0Q8Vt908jAggggAACCCCAAAIIIIAAAghkTaBQ3k0wQewVK1ZU48aN1aZNG9e7qRPcnrV/mDgbAQQQQCD/CoyYu1VbD52y3cBF1Uuoa8Nytn1ZbtyzQpr1zplpEuOtL2Rel77qJO1dmeWpmQABBBBAAAEEEEAAAQQQQAABBAqXQKlSpZQymD0uLk779+/PFMKuXbs8xueFYGzz5NlbbrnFY13Dhw/3qKeseK95586dKbvTPfY2KF26dLrnMAABBM6DQKs7pfsX5Xpwe/JOQwP99U3/C1W3bNHkplTvU9fs01M/r1RiYlKqPhoQQAABBBBAAAEEEEAAAQQQQACBtAQKZYB7WiD0IYAAAgggUNgEDkXF6MO/N9hu28dHev7qBh5fDtsOPJfG+Fhp3L2SCWxPWUxw+5cdpdW/pmzlGAEEEEAAAQQQQAABBBBAAAEEEEhTICQkRFWqVPEYs337do96ehXv8fXq1UvvlFzpv+666zyuM3fuXI96ykrdunVTVuW9J49Om4r3+LxiYLNUmhBAILTEeTWICA3UyIGtVLlEiOM6fl66U69NWuN6oobjIDoQQAABBBBAAAEEEEAAAQQQQAABLwEC3L1AqCKAAAIIIFDYBN6bsl4nYryCzP9D6NOishpVDM8ZEpO5fd8q+7mDrKw/VdrY99GKAAIIIIAAAggggAACCCCAAAIIOAh4B2NHRkY6jLRvXrNmjUeH93wenblYqVmzpsfV9u7d61FPWfFec0ExSLlHjhFAIO8IlCkWrFEDL1KpsCDHRX09e4s+nb7JsZ8OBBBAAAEEEEAAAQQQQAABBBBAwFuAAHdvEeoIIIAAAggUIoG1e4/rh4XbbXdcJNBPj3WtY9uX5cY9y6VZ7zpP0+1tqWhZ5356EEAAAQQQQAABBBBAAAEEEEAAARuBZs2aebSmlencY6BV2bNnj7Zu3epuDggIUIMGDdz1vHRg1uZUvA0WLVqk+Hj75AZ2c8yZM8ej2Xs+j04qCCCQfwSO786xtVYtWcSVyb1osL/jNd7+a51Gzd/m2E8HAggggAACCCCAAAIIIIAAAgggkFKAAPeUGhwjgAACCCBQiASSkpL0yoRIJSbZb/q+zrVUpmiwfWdWWuNjpXGDpESHL1brXS017pWVK3AuAggggAACCCCAAAIIIIAAAggUUoGrr7buK6QoU6dOlbkHkpEyefJkj2GdOnVSWFiYR9v5qmzb5hkUWrasc2IAk8E9Zcb3kydPKqOB/mbsvHnz3Nv08fGRt6m7kwMEEMg/Agu/kj5oJm2cmmNrrl++mIb1v1DBAc5fPz8/fpV+X55zgfY5tjkmRgABBBBAAAEEEEAAAQQQQACBXBdw/hl9ri8lZy+4du1a1w3cf//9VwcPHtTRo0cVExOTqYuaG7l///13ps5hMAIIIIAAAnlV4O81+zVn4yHb5VUuEaLb21a37cty40wrO/u+VfbThJSQrh4iWX/mUhBAAAEEEEAAAQQQQAABBBBAAIHMCrRp00alSpVyfQ9gzt28ebOmT58uE6yeXvn66689hvTo0cOjfj4rv//+u8flmzRp4lH3rnTv3l1Dhlj3WP4rZm8dOnRIrjq+jx49WlFRUe7+li1bqkKFCu46BwggkM8EEhOlqS9Icz86s/Ax/aQBf0jl0/53yLnusmW1Evrslha6c8RixdtkVjG/N3p0zDIVCwnQJXVKn+tlOA8BBBBAAAEEEEAAAQQQQAABBAqBQIEPcB8/frzeeOMNLVy4MEsfp8nwYgLcKQgggAACCBQEgdj4RL02aY3jVp7tVt/KtOPn2H/OHbv/lWa963z6lVbwe1gZ5356EEAAAQQQQAABBBBAAAEEEEAAgTQEfH191b9/f73zzjvuUYMHD1bHjh3TvMdvktvMmjXLfU7RokXVp08fd/18HqxZs0bDhg3zWEJ6wfe333673n//fXf2+h9//FFPP/206tev7zFPykp0dLTr+5SUbQMHDkxZ5RgBBPKTQFy09STNe6TVv55ddaz1A5ZR10k3fi9VbnW2PRuPOtUto3f7NNXDo5dZ/w5KPXFcQpLuGblEo+64SC2qFk89gBYEEEAAAQQQQAABBBBAAAEEEEDAEnB+Rlw+50lISNAdd9yh6667zhXcnvIRpOY4+WW3zeS+lOfYjaMNAQQQQACB/Crw7byt2nLwpO3yW1UvoSsalbPty1JjvPXklHGDpKQE+2nqXyM1ut6+j1YEEEAAAQQQQAABBBBAAAEEEEAggwJPPfWUwsLC3KNnzJihN9980133Pti1a5fr+4SU7Q899JArE3zKNu9jkxQn5ctkincqJ06c0KBBg7Rz506nIbbtq1atUteuXRUbG+vur1q1qnr37u2u2x00atTII0DfnN+vXz8dP37cbrjrO5OHH35YGzZscPfXqFFDJlCeggAC+VDA3Isdea1ncHvyNk4ekIZfJS2zgtxzqPRoVlGDuzd0nP10XIJuH75I6/aecBxDBwIIIIAAAggggAACCCCAAAIIFG6BAhvgbm7EfvPNN+7sJOZjTg5cT3nDObkt5btdf+H+x4TdI4AAAggUJIFDUTH64O+zX1am3Jv1vaxeuLpBmhnNUo7P1PGMt6T9kfanhJSQrnpP1oXt+2lFAAEEEEAAAQQQQAABBBBAAIE8LRAVFSWTBX306NGaPHmy9u/ff97WW6pUKT377LMe13/mmWdcAea7d+92tycmJmrcuHFq06aNtm7d6m6vUKGCHnvsMXc9Ow5MUp7PPvtMJmj8mmuu0bfffqtNmzZ5fIeRfB0TjD537lzde++9at68uXbs2JHc5bpn89FHHykkJMTd5nTw6quvKjQ01N29aNEidejQQd6B+OvXr1evXr30xRdfuMeaA/N03ICAAI82KgggkE8E/IOkii2cF5sQayUjuVea/LyU6JCQxPnsDPXcdnE1PXJZHcexx07H6davF2j7oVOOY+hAAAEEEEAAAQQQQAABBBBAAIHCK+BfELdusrF88skn7uC8wMBAPfHEE7rllltUrVo1BQcHu/umTp2qdu3a6fDhw1q9erWmTZvmCozft2+fa0yDBg303XffqWnTpgWRij0hgAACCBRCgSFT1+tEdLztznu3qKRGFcNt+7LUuGupNHuI8xRXWY8NDyvj3E8PAggggAACCCCAAAIIIIAAAgjkikBMTIxMRvPkUq5cOY8g6eT25Pfo6Gg9/vjjGjp0qOLi4pKb5evrq+7du+vDDz9UxYoV3e25dWCyuJsg8QkTJrgvaQLMv/zyS5kM6OHh4dqyZYuOHj3q7jcHJnB8zJgxioiI8GjProoxMmtKXlfRokVljM31TCKeY8eOuYLtU1omX9sk5/nqq69cAfLJbWm916pVS19//bVuuukmdyD98uXL1alTJ5UuXVpVqlRx/RDBZJU3105ZHnjggXSzxKcczzECCORBgS6vSEe3S2t+c17c3A+lA+uk64dKwcWcx51jz4OX1tKRU7EaPner7Qz7T8To1m8WaOw9F6tM0WDbMTQigAACCCCAAAIIIIAAAggggEDhFPAtiNt+/fXXXdsyN2T9/Pz0+++/6+WXX1adOnVkgt29i2kzN5AvvfRSvfbaa9q2bZvrhrwZt2bNGldGk1mzZnmfRh0BBBBAAIF8J2Ae+fr9AutLDZtSJNBPj19e16Yni03mcbjjBlmPUnHIBFS/u9TwuixehNMRQAABBBBAAAEEEEAAAQQQQCA7BEzymNq1a7te9evX15EjRxynjY+PV5cuXVyZyU3W8ZRPSjUZy0129JYtW7oylTtOkkMdJsB+7NixuvHGGz2uYNa1efNm/fvvv6mC20uWLKlJkyapbdu2HufkZOXEiRPasGGDTHb1xYsXu47tgtvNZ2Iy5A8cODBTyzH7N0l8vDO+HzhwQEuWLHFlh/cObjc/WPjggw8ydR0GI4BAHhSw/j2o676UqrVPe3Eb/pK+7iId3pz2uHPoNT/MMU8M7XmB8w+dtlkZ3G/7eqFMRncKAggggAACCCCAAAIIIIAAAgggkCxQ4ALcT5486brJa26YmNddd92lyy67LHm/GXo3Ae9vvfWWPv30U9cNeXODuWfPnjJZ3SkIIIAAAgjkVwHzZeUrEyKV6JmQy72dQZ1qqUyxHMiSM+NNKwvQGvd1PA5CS0pXvSfrD22PZioIIIAAAggggAACCCCAAAIIIHB+BH7++Wd3oLrJwJ5W9nWTMGbOnDmuhZr78SmLqZt7Eea+eo8ePWQCy3O7mKe5/vDDD/rpp5/UrFkzx8sXKVJEgwYNUmRkpDp27Og4LisdJmO8efqsySzfqlUr22Q83vMHBAS4EvOMGjVKK1eudGVe9x6TkXrfvn21atUqVyZ3M6dT6dChg6ZPn663337b/RRcp7G0I4BAPhEICJFu+UW64Na0F3xgrfRVZ2nLzLTHnUOvr6+P3urVRJfWc36C51orMcvA4Yt0Ojb3/6w4hy1xCgIIIIAAAggggAACCCCAAAII5IKAfy5cI1cvMX/+fPeNcnMD/Z577jnn6999992aNm2aK8uLyVLz/PPPux5fes4TciICCCCAAALnUeDvNfs1e+NB2xVUKh6ige2q2/ZlqXHXUmn2+85TXPWuFFbauZ8eBBBAAAEEEEAAAQQQQAABBBDINYGYmBhXVu/kYHUTmO5Ujh07pvfee88VCJ2cAbxdu3au7OcHDx50BZUfP37cFeRunpT6xRdfuILInebLyfbrr79e5rVx40YtWLBAu3btksk4HxERIZOl3mRsN8HwmS3J+87IecbUBJCblynG2gTUb9q0SXv27JFJtGOKCYQ366pXr54aN26coUB414np/E+NGjVcmdw/++wzzZ4925Up3lzT7LtKlSoug7R+zJDO9HQjgEBeFvC3nm7d/SOpbEPpr2etJ20m2q/2tPXEjpE9pW5vSRcOtB9zjq0Bfr765ObmrkztC7cetp1l8bYj+t+4VXq3T1PbfhoRQAABBBBAAAEEEEAAAQQQQKBwCRS4APdt27a5P0FzI7hRo0buut2BuYmcVnnuuedcAe7mRrV5jOeHH354Tje607oGfQgggAACCOSIQPRxyc/KymVl6YmNT9RrkxyyqFsXf/bK+goO8MveZcRbf8aOG2R9YeKQdafBtVJD6wsTCgIIIIAAAggggAACCCCAAAII5AmB1atXuwK/zWJMQHanTp0c12WyopsAaTPOvMy99Jdfftk93tTbtGnjyuBu7q9/9dVX5y3APXlRtWrVknnlhRIUFKQLLrjA9crN9RQrVkxXXnllbl6SayGAQF4QsP49rdb3SqVqS2Nvt35lc8x+VYnx0sRHpf2R0hVvnLm/bD8y063m/vPQ/i11wxfztWaPde/apvy8dKduuLCyWlUvYdNLEwIIIIAAAggggAACCCCAAAIIFCaBAhfgfvjwmV/9mxvqJuuIXfH393dneY+OjrYb4m5r0qSJypYt67oJb8bOnTtXnTt3dvdzgAACCCCAQJ4V+O1+KXK89SVEkOL9iuqr6EAdCyyiY0nWS2ffI4qXUrc468/PNcWlkAgp2LzCzxwHhplvtM9ti9OtL0AOOATVh5aSTPZ2CgIIIIAAAggggAACCCCAAAII5BmBzZs3u9disoinldH7l19+cY01wetm3Isvvug+1xxUq1ZNr7zyiu68805X+4oVK1yZysuXL+8xjgoCCCCAQC4K1LpMuvNv6fsbpMObnC+8aKh0cL3Ue4QUmn3B5sWCA/Tt7a3U+/O52nrolO31X/xttSY80E5+vud4X9p2VhoRQAABBBBAAAEEEEAAAQQQQCC/CRS4APf4eCuzwH+lSJEiyYce70WLFtWRI0dcWWX279/v0WdXqVSpkivA3fStW7eOAHc7JNoQQAABBPKewOmjZ9aUEKNQ61XL12GJ5gnYvzn0+Vp/VTDB7imD3s1x89ukmp0cTrKady2R5rzv3G+C24tYQe4UBBBAAAEEEEAAAQQQQAABBBDIMwJ79uxxrcUkkKlQoYLjusx9+FmzZrnusZtBN910k/z8Uj8Zrk+fPrrnnnvcCWeWLVsmAtwdWelAAAEEckfAZHE3Qe5j+0ubpztfc8tMaeilUt8fpdJ1ncdlsqd00SCNHHiRellB7vuOp37Stsnu/v2Cbbr14mqZnJnhCCCAAAIIIIAAAggggAACCCBQkAScQt3y7R7Dw60gvP9KVFRU8qHHu8k8k1y2bduWfOj4npiY6O47evSo+5gDBBBAAAEE8rRA9NGsL888kvbUoTPZfHYvlTZNk1b/Ih3b6Tx3nPV0lF+tx90mnf3z02Nww55Sw2s9mqgggAACCCCAAAIIIIAAAggggMD5Fzh58qR7ESZRjFMxgerm/rvJ3m7KlVdeaTvUzGEyuSeXrVu3Jh/yjgACCCBwPgVCiks3/yy1ujvtVRzebAW5XyZtmJL2uEz2Vi4RqiE3NHM8653J63X4ZKxjPx0IIIAAAggggAACCCCAAAIIIFDwBQpcgHuVKlVcn5q5sX748GHbT7BevXru9gULFriP7Q4SEhK0YcMGdyaaoKAgu2G0IYAAAgggkPMCsdaXzNvmZvw6yRncM35GxkeGRDiPPbJFij5m3x9qZW2/8h37PloRQAABBBBAAAEEEEAAAQQQQOC8CiQHrJtFxMXFOa5lzpw57r6AgAC1bt3aXfc+KFmypLvp+PHj7mMOEEAAAQTOs4Cfv3Wv9i3p6vcl8yRPpxJj/bv7+z7S3I+tpCZnftjkNDQz7W1qltJVjcvbnnLsdJzembzOto9GBBBAAAEEEEAAAQQQQAABBBAoHAIFLsC9YcOG7k9u9+7driwy7ob/Dpo1a+Y6MjfrZ8+eLTPOqfz6668emWh4fKqTFO0IIIAAAjkqEG19iTDqeunbHtLGqRm6VJJTkHmGzk5nUHCE84Ay9aX75ktN+6Yec/V7UhEryJ2CAAIIIIAAAggggAACCCCAAAJ5TqBYsWKuNZl753v37nVc3z///OPq8/HxUcuWLZVWYhiTRCa5pAygT27jHQEEEEDgPAu0HCDdNl4KKeG8EPO0zsnPSSvHOo85h55nr6qv4AD7r6t/WLhdq3Y5JFI5h2txCgIIIIAAAggggAACCCCAAAII5C8B+zsG+WsPHqs1jzstV66cu23x4sXu4+SDa6+91nVobr7Hx8fr3nvvdb0n9ye/b968WQ899JA7e7tpb9u2bXI37wgggAACCOSOwOkj0shrpe3zpATrsaw/3ixtmZX2tROtLxxyMsA9rQzuZmXmEbc9P5f6/iiF/ffnciMrQL+BFaBPQQABBBBAAAEEEEAAAQQQQACBPClQqVIl97r27NmjAwcOuOvJB6dPn9bUqVPd980vueSS5C7b9yNHrPsa/5WwsLDkQ94RQAABBPKSQLV20p3TpNJW8hKnUr2D1LCnU+85tVeMCNGgjrVszzXJ4l/6bbWVNN46oCCAAAIIIIAAAggggAACCCCAQKETSON5c/nXonPnzvr+++9dG5g0aZI6duzosZkLL7xQjRs31qpVq1ztEyZMUIsWLXTHHXeobt26io2NdWV2//zzz3XixAnXjRMTDN+hQwdVqVLFYy4qCCCAAAII5KjAyYNngtv3rjx7mfho65GwN1hZdcZJlVudbU9xFJuQqLtDP9TxIwcV7nNSxXTK9R6uk673y2sEqXJInBUEf1Q6bb2S3+NOppgljcO0MrinPK1uN2uNF0n//J/U8ZmUPRwjgAACCCCAAAIIIIAAAggggEAeE7jgggtcKzL3w01A4ahRo/TII494rNLcez916pR7XKdOnTz6U1bi4uK0c+dOdzA8T0hNqcMxAgggkMcESlSXBk6WfrlLWv+H5+KKW329R0h+AZ7t2VC7q0MNjV2yQzsOn0412+JtRzRu2S71vODsD7BSDaIBAQQQQAABBBBAAAEEEEAAAQQKpECBDHC/7rrr3AHuY8eO1Ztvvum+gZ78KX788cfuwHdzo37lypV6+OGHk7td76bd3Mg3JSAgwDWPq8L/IIAAAgggkBsCJ/ZK3/aQDqxNfTUTiD7Kyoje7zepwgWp+kcu2KF/Dpe02q2XV4KbC6sV1+0DLpb1h1yq8xRvZYiPOe4Z9G6C35MD4JPfQ0ukPtepxYy96h2nXtoRQAABBBBAAAEEEEAAAQQQQCCPCJgEL02aNHHdLzf3x1988UVXchiT/MWU5cuX67nnnnPdNzf9JUqUcN9nt9uCSTJjEsqYYu6116pln6XX7lzaEEAAAQTOg0BwMenG76Rpr0izh5xZQJDVdtNoKTP3hDOx9OAAPz1/VQPdNXKJ7VmvT1qrLg3KKSyoQH6tbbtnGhFAAAEEEEAAAQQQQAABBBBAQCqQdwKuuuoqNW/eXDExMa7PeO7cuWrbtq3H592+fXt9+umnGjRokDuI3dyQTy7mZntylhoT3P7ll1+qVSv7LLnJ5/COAAIIIIBAtgkc3WEFt3eXDm92njKwiPULLOvlVQ6fjNUHU9d7tZ6pmpj2F65u6P6zL9Ug/0DrbwelpCLWi4IAAggggAACCCCAAAIIIIAAAoVOwNwzv+eee1z3DqKiomQytNerV8+VBCYyMlIJCQnup54OHDhQ/v7OXzNMmTLF7RcUFKQGDRq46xwggAACCORRAV8/6bKXpNL1pQkPS72+sY7r5uhiuzQoqw51Smvm+gOprrP/RIw++nuDnrnSWg8FAQQQQAABBBBAAAEEEEAAAQQKjYBvQdypuVG+ePFiV5YZk5ndO7g9ec933323pk6dqqZNm7puyCe3m3cT7G5eF198saZPn67bbrstZTfHCCCAAAII5JzA4S3SsCvTDm4PrywNmGR9sVAn1Tret4Lbj0fHp2o3Ddc3r6TGlcJt+2hEAAEEEEAAAQQQQAABBBBAAAEE7rzzTrVp08YdxG7uk69Zs0YrVqxQfPzZ+w3ly5fX008/nSbYTz/95Oo3yWRatmzpCpJP8wQ6EUAAAQTyjkDTG6SHVki1u+T4msyfEy9e00ABfjZPHbWu/s2cLdp0ICrH18EFEEAAAQQQQAABBBBAAAEEEEAg7wg4p1bJO2vM0ZWY7DNLly7Vhg0bNH/+fO3bt891475cuXKum/g1a9bM0eszOQIIIIAAAh4CBzdII6zM7Sd2ezR7VIpXl/r9LkVYQe5eZf2+E/puwXav1jPV0EA/PdE1ZzPt2F6YRgQQQAABBBBAAAEEEEAAAQQQyDcCJshwwoQJ6t69u2bPnu1ed/ITT03Ae9myZTV+/HhFRES4+70Pli1b5kpEY84zpUuXnA+Q9F4DdQQQQACBLAqElc7cBPHW07X9gzJ3zn+ja5YO0+1tq+uLmamfahqXkKTBv0dqxIALnZ9Oek5X5SQEEEAAAQQQQAABBBBAAAEEEMirAoU+wD35g6ldu7bMi4IAAggggMB5E9i3Wvq2h3Qy9WNY3WsqZQWo3zZeKlbe3ZR8YL5gfmWC9ajwxKTkJo/3+zrVUtliwR5tVBBAAAEEEEAAAQQQQAABBBBAAAFvARO4PnPmTI0dO1YmC/v69et1+vRpVahQwRWofs8996h48eLep3nU33nnHVfd3K8wpUcP654HBQEEEECg4ApsniGNGyT1GSFVanlO+7y/cy398u8uHThhBcp7lZnrD2jqmv3q0qCsVw9VBBBAAAEEEEAAAQQQQAABBBAoiAIEuBfET5U9IYAAAgjkP4Hdy6SR10qnjzivvWxj6dZfJYesOf+s269ZGw7anl8xIkQD21W37aMRAQQQQAABBBBAAAEEEEAAAQQQsBPo3bu3zOtcymeffaZPPvnEfWp4eLj7mAMEEEAAgQImcGiTNOY2KfqoNOxK61dNH0tN+mR6k0WDA/RMt3p6dMxy23NNgpf2tUspOMDPtp9GBBBAAAEEEEAAAQQQQAABBBAoOAK+BWcrZ3byww8/qESJEu7XX3/9VdC2yH4QQAABBAqawI6F0ojuaQe3V2gu9fvNMbg9LiFRr05Y4yjzzJX1uOnvqEMHAggggAACCCCAAAIIIIAAAghkt0DRokVlgtqTX9k9P/MhgAACCOQRgehj0g99zwS3myUlWNnXf7lTmvqSlJiY6UX2vKCiWlQtbnve9sOn9NXMzbZ9NCKAAAIIIIAAAggggAACCCCAQMESKHAB7tu2bdPRo0ddr/j4eF122WUF6xNjNwgggAACBUtg62zp22ulGOtLAKdSubV02zgptITTCI2ct02bD5607W9pfRlwVePytn00IoAAAggggAACCCCAAAIIIIAAAggggAACCCBwTgKJCdLPd0gH16U+ffYQafTN1r3vE6n70mjx8fHR4O4NZb3Zlk+mb9Suo6dt+2hEAAEEEEAAAQQQQAABBBBAAIGCI1DgAtyDg4Ndn465+VG1alX5+fGIuoLzjys7QQABBAqYwMa/pVG9pDj7wHTXbqt3kG75WQp2foz3kZOxen/qekecF65pYH0Z4PBtgONZdCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkIbAoq+lDZOdB6ybJH19uXRkq/MYm55GFcPVt1UVmx4rUXxcov5vovPTTG1PohEBBBBAAAEEEEAAAQQQQAABBPKdgH++W3E6Cy5f/myG2qCgoHRG040AAggggMB5Elj3hzTmNutxrbHOC6jVRbphpBQQ4jzG6hliBbcfj463HXN980pqUinCto9GBBBAAAEEEEAAAQQQQAABBBBAILsE/vrrL82ePVsHDx5U8eLF1aJFC1199dXiPn12CTMPAgggkAcFWvST9iyTln3nvLj9kdKXnax73aOkam2dx3n1PH55XU1csUfHTsd59UgTV+7RzZsOqk3NUqn6aEAAAQQQQAABBBBAAAEEEEAAgYIhUOAC3GvVquX6ZJKSkrRr166C8SmxCwQQQACBgiWw+tczj21NtA9Kd2223tVSr28k/7R/rLV+3wl9t2C7rU9ooJ+evKKubR+NCCCAAAIIIIAAAggggAACCCCAgJ2Aua9ugtWTS9euXVWxYsXkaqr3DRs2qFevXlq1alWqPpOQZujQobriiitS9dGAAAIIIFAABMz96x6fSGXqS5OftzaUZL+p04elb7tLV70rtehvP8artUSRQD12eR29MH61V8+Z6uDfIjXxwXby9ytwDyy33S+NCCCAAAIIIIAAAggggAACCBQ2gQL3X/wmK0z16tVdn+P+/fttb6oXtg+Z/SKAAAII5CGB5T9KP90upRXc3uh6qffwdIPbzY+5XpkQqYRE+y8NBnWsqbLFgvPQ5lkKAggggAACCCCAAAIIIIAAAgjkdYGPP/5Yd955p+v1+OOPu7KxO63Z3IO/5JJLXPfhzX0K80ou5nj37t3q3r27JkyYkNzMOwIIIIBAQRPw8ZHaPCDdNEYKKua8O3NP/PeHpD+esp5smkbylxQz3NSqiuqVK5qi5ezhOiv5y8j52842cIQAAggggAACCCCAAAIIIIAAAgVKoMAFuJtPp3///u4P6fXXX3cfc4AAAggggMB5FTiwTvr1HiuJTaLzMprdLF33leQX4Dzmv57p6w5o1oaDtuMqRoTojvY1bPtoRAABBBBAAAEEEEAAAQQQQAABBJwExo8f7w5U79u3r0JDQ52GygTA792719XvYwIcrZIy0N20xcfHu+7ZHz5sZe+lIIAAAggUXIE6l0sDp0jFzyQic9zogs+l73pJp484DknuMNnZB3dvmFxN9f7elP9n7y7grCj3P45/2YYFlu7u7u4QUEIwwEJAxb6K1xYVUbFR/3ptVNJGQEEUREEQkO5SuruW2uQ/z8FzOGd3Zrv387xee888Oc+8lysvZn7nN3/r6JmIeO00IIAAAggggAACCCCAAAIIIIBA9hfIkQHujz32mGrXru26kf7111/LZJyhIIAAAgggkOkCxWtK3V5w3kazO6Srrb+z/Pydx/zbcyEqRi/+tNFx3JNX1VJIYOLrOC5ABwIIIIAAAggggAACCCCAAAII5DqBkydPasuWLXIHq/fu3dvRYNeuXfryyy9dY01Qe0hIiJ555hn9/PPPmjhxopo3b+4JlD9x4oTeeOMNx7XoQAABBBDIIQIlakl3/i5V7pDwBW2fK43pKh39J+FxVm/LKkV1dcMytuPCL0TrjV+sxDIUBBBAAAEEEEAAAQQQQAABBBDIcQI5MsDd3Eg3N9Fr1KjhuoE+bNgwDRw4UNu3b89xv0AuCAEEEEAgmwm0fVDqNDz+plv/R+r1phXcnvhfzeah8eOT12r7kbPx17FamlYsrN4NStv20YgAAggggAACCCCAAAIIIIAAAgg4CWzYsMEnA3ubNm2chuqLL75QbGysa7wJiDf1F154QT169NAtt9yiBQsWqGnTpq755l7GpEmTHNeiAwEEEEAgBwnkKyINnCI1H5rwRR3fdinIfetvCY+zeof3rK18QfYJXb5dsUdr9pxMdA0GIIAAAggggAACCCCAAAIIIIBA9hIIyF7bTdpuJ0yY4Bp4//336+WXX9ahQ4f01VdfuX5M1pgWLVqocuXKKliwoAIDA5O26L+jBg0alKzxDEYAAQQQQCCeQMfHpejz0p9vX+rq8JjU+WlZKc/iDbVreH/uVv24Zr9dl6ttRO86nkxrjoPoQAABBBBAAAEEEEAAAQQQQAABBOII7Nixw9NSunRphYWFeepxD2bMmOFqMsHtDRs2VL9+/XyGBAUF6cUXX1TPnj1d7fv379fff//tSkzjM5AKAggggEDOE/C3nr+ahC4lakszrfvhF2PsrzHilPTF9VKPl61U7fc43iMvFRai/3SpptdtsrVb36HScz9u0JR721j5Y5J2j91+M7QigAACCCCAAAIIIIAAAggggEBWEsiRAe5DhgzxCewzN9hNhhhTli5dqmXLlqX4d5BVA9y3bdvmura9e/cqMjJShQsXVq1atWQy7JiM9plVzCttjbd5MGKOTUYf81CkXLlyrlfUlipVKrO2xnkRQACBzBMwgexdn5OiLkihxaQOjyZ5L7+sP6DRs/92HH9tk7JqWL6QYz8dCCCAAAIIIIAAAggggAACCCCAgJPA0aNHXV3mnnqxYtY9C4dy5swZLV++3HMf/oYbbrAdecUVV7juT1+4YN0DscratWsJcLeVohEBBBDIoQImi3vR6tK3VgKxCyftL/JirPTLk9LqL63Xkw6RalpfjCoY/w2ld7SrrG+X7dHOY+firbPayuD+/cq96t+sfLw+GhBAAAEEEEAAAQQQQAABBBBAIHsKBGTPbSdt1yao3dyIN8X96Z7pDnh31xP6dAfIx10joTkZ1Tdt2jRXFpyVK1fanjJ//vwyAf/PPfdcgg8kbCenonHKlCl67733NG/ePM+XC+yWa9y4se655x7dfvvtCghI/I+jWa9z5852S6Wobe7cuerUqZPjXNP3xx9/OPYn1jF27FiXf2Lj6EcAgVwoYP5+uvIVx4w0diLr953Sf79ZY9flaitZMNj1qlbHAXQggAACCCCAAAIIIIAAAggggAACCQicO3c5aDA0NNRxpEkkEx0d7eo3982vvPJK27Hmnm+VKlW0ceNGV//Bgwdtx9GIAAIIIJCDBap0lO78XfrqJunoFucLPbhW+ulhKcwKUrcJcA8O8NeIPnV0+7jltmu89stm9ahXSgVDkvf2btvFaEQAAQQQQAABBBBAAAEEEEAAgUwX8Mv0HaTTBtwB7ObT7ic5p3WvlZw56T02IiJCAwcO1DXXXCOn4HazB5NJxwSa16lTR/Pnz0/vbenYsWPq1auXrrvuOpng8cTsVq1apbvvvlutWrXS1q1b031/cU9gXpNLQQABBDJNwAS5J7EcPn1Bd05YrvNR9q9yDQn006eDmqtY/uAkrsgwBBBAAAEEEEAAAQQQQAABBBBAwFfAOwnJ+fPnfTu9agsWLPDUChYsqIYNG3rqcQ9Mv7uEh4e7D/lEAAEEEMhNAkWrSkN/lap3T/iq81iPriu0chzTpVZJdalVwrb/6JlIvTPnH9s+GhFAAAEEEEAAAQQQQAABBBBAIPsJJJ4yO/tdk0zW7JxcYmNjZV75+sMPP/hcpr+/vypUqKCwsDDt2LFDp06d8vQfOXJEV111lebMmaPWrVt72tPy4PTp0+revbttwH3x4sVVvnx5Vyb9ffv2KW6mnhUrVrgys5sHI5UqVUrLbTmuVaJECbVo0cKxnw4EEEAg2QIxVuaybVYmmhqJ3KRP5sIXrKD2uyau0IFTFxxnvtm/keqXC3PspwMBBBBAAAEEEEAAAQQQQAABBBBITMDcWzbFJC7Zs2eP4/DffvvN1Weyt7dp08ZxnOnwDpQ397ApCCCAAAK5VCDE+jvmpq+lOc9Ji/5nj1CqgRRy+YtRdoNG9K6jP/85otf9/qeNsRW1JLa21l+srBj5a/yinbqxeXlVL1nAbiptCCCAAAIIIIAAAggggAACCCCQjQRyZID74MGDs9GvIPlbfeONN+IFt99zzz169tlnVaZMGdeCJgjeBMA/9NBD2r17t6vNvF52wIABWr9+vSsIPvlnTnjG8OHD4wW3X3311Ro5cqQaN27sM3nTpk166aWX9MUXX3ja9+7dq7vuukuzZ8/2tMU9MJmAfv3VyvCQgnLnnXdq586dnpm33HKLvDMSeToSOEjuuevWrZvAanQhgECOEoiOlL6/Q9r0o9TrTan50DS5PPNA+Ynv12r1npOO6z10RXX1alDasZ8OBBBAAAEEEEAAAQQQQAABBBBAICkC1apV8ww7fvy4tmzZopo1a3razMGhQ4e0aNEiVzITU+/UqZP5cCzmrZ/u4p3N3d3GJwIIIIBALhLws77o1H2UVKKONH2YFGPdV/culdp512yPKxUL1ePN/NRvzSL181/kGnPmYohWxNZwBbt/MfmAnrt7oPIE8LZTW0AaEUAAAQQQQAABBBBAAAEEEMgmAjkywD2b2Kdom+ZhgAkM9y6vvPKKnnzySe8m+fn56ZprrnFlKG/Xrp0nsNsEkb/11lt6/vnnfcantnL48GF99NFHPsvce++9+uCDD3za3JXatWtr0qRJrocjI0aMcDe7gtcXL17smGW+cOHCuuKKKzzjk3rw999/ewzcc4YMGeI+TPJnSs6d5MUZiAAC2Vcgysqs/p315aq/f7l0DT89IgXklRrfkupr+mDeNv2wer/jOr2twPZhXas79tOBAAIIIIAAAggggAACCCCAAAIIJFWgSZMmrnvL5gv3prz77rt6//33faa/9957MglWTDEZ3Lt27erT710JDw+XeaOnGWeKeQMpBQEEEEAAATW6WSpSVZp2r3R822WQim0vHydwdGvpvdKaywPy57mgjv5rXT868o1iXhku/wotJRMwb9Ys21QKDLk8gSMEEEAAAQQQQAABBBBAAAEEEMjyAn5Zfods0Efg9ddfl3ko4C4dOnTQE0884a7G+yxbtqw+/fRTn/a3335b3llzfDpTWJkxY4ZiYmI8s4sXL67Ro0d76k4HTz/9tEywu3eZPn26dzVNjseNG+ezjsko36BBA582KggggECKBCLPSl/dcDm43b3Ij/+R1k1211L0+cv6A3pj1hbHuQ3KhWl0/4aeh8SOA+lAAAEEEEAAAQQQQAABBBBAAAEEkiBgEox06dJFJsDd/JikJi+88IKOHDmikydPygS3v/baa557ESbjuwmKdyorV670rGXGVK/Ol/SdrGhHAAEEcp2ACUC/f6l083dSmwcuBaFXbJ0khuB9fyU4zj/GSkqz4w9p7kvSuJ7Sq9YXrMZan79b9e3zpMhzCc6nEwEEEEAAAQQQQAABBBBAAAEEMl+ADO6Z/ztI8g5MVpyxY8f6jB85cqTnYYJPh1fFZNBp3769FixY4Go1AfLffvutTIb1tCrmVbXepUePHsqXL593k+2xO9P8pk2bPP1bt271HKfFgXGbOHGiz1Ipyd7uswAVBBBAwAhEWF84+mKAtHtRfI+LViazKXdZmdytrDC1e8fvT6Rl/b5T+u83Xilo4owvWTBYYwY1U0igf5weqggggAACCCCAAAIIIIAAAggggEDKBUxClTlz5rjuO5sgd/M2UO83grqzu5us7A8//HCCJzKJUdylUKFCBLi7MfhEAAEEELgk4G89qq7R/dJPUk3MW0Z2Lkzq6EvjYiKkXdYc8zPfavILtALqrS9omezulayf8lawfXCB5K3JaAQQQAABBBBAAAEEEEAAAQQQSFcBv3RdncXTVGDRokWuTDnuRatUqaJOnTq5qwl+3nHHHT7906ZN86mntnL8+HGfJcqXL+9TT6gS97W0JhNQWpbffvtNe/daryr8twQGBurmm292V/lEAAEEUiZw/qQ0oZ99cLt7xaBQKbSYu5bkz8PhF3TnhOU6HxVjOyck0M8V3F6yIK9UtQWiEQEEEEAAAQQQQAABBBBAAAEEUixgEqbcf//9rszrJojdFHdGd/PpbmvVqpWGDh2a4HkmT57sGm/mtG1rBRBSEEAAAQQQSK3AiR1S+P7UrRIbJe1ZIv35ljTpOivDe0VpTBdp9rPSvpWpW5vZCCCAAAIIIIAAAggggAACCCCQJgIEuKcJY8Ys8tNPP/mcqFu3bp6HCT4dNhUz1rvMmzdPZ8+e9W5K1XFYWJjP/PPnz/vUE6rEHVusWPKDQRNaf9y4cT7dvXv3Vlqfw+cEVBBAIOcLnD0mje9j3ehe7nytIYWkQT9IFVo5j7HpuWAFtd81YYUOnLJeoepQRvdvqAblCjn00owAAggggAACCCCAAAIIIIAAAgikTuB///ufnn76aQUEBLiC271XM0Hu5n7zjz/+KH9/5zfLmeztu3bt8sy/6qqrvJfhGAEEEEAAgZQJBFpvkO40XKrcwXqDat6UrRF31kUr2cy+FdKidy8Fvsftp44AAggggAACCCCAAAIIIIAAAhkuEJDhZ8yAE+7evTvdzhI323i6nchm4dWrV/u0tmnTxqeeUKVMmTKqVKmSdu7c6RoWGRmpjRs3qnnz5glNS3Jfo0aNfMYuW7bMp55QZenSpT7dLVq08KmnpnL69GlNnTrVZ4khQ4b41KkggAACyRIIP2Rlbu8rHdnkPC2f9UWdQdOkUvWdx9j0mAfET36/Vqv3nLTpvdT00BXV1btBGcd+OhBAAAEEEEAAAQQQQAABBBBAAIG0EHjxxRd177336ocfftDff/8tk6jE3Gc2we2tW7dO9BS//PKLGjZs6Bl39dVXe445QAABBBBAIMUCBUpZAe5PWNOtn+hIhW9fonFffaGG0evV1O9vheaJSPHSrokVeeNI6gCZjQACCCCAAAIIIIAAAggggEDaCOTIAHcTyO1+TWraMF1axawZHR2dlksma61Nm3yDKevUqZOs+Wa8O8DdTDTrpVWAu8mKHhoa6skKv3DhQi1evDjRBx1bt27V999/77mOkJAQ3XzzzZ56ag++/fZb14MX9zolSpRQz5493dUUfZ46dcqVeejkyZPKnz+/ihYtqnLlyiWYrShFJ2ISAghkPYFT+6zgduth7LGtznvLb91cH/yjVLym8xiHng/mbdO01c6vVu3VoLSGda3uMJtmBBBAAAEEEEAAAQQQQAABBBBAIG0FTEC7CXJPSXnvvfdSMo05CCCAAAIIJF0gIEgFarRX0SsratDUdQpQtOrl2amWfpvUwm+zmls/BfOcT/p6IdYbq0vWTfp4RiKAAAIIIIAAAggggAACCCCAQLoJ+KXbyllgYZMJN61/MuuyTHacuJnpy5cvn6ztxB2/ZcuWZM1PaHChQoU0fPhwnyHXXXedEsrkbgLsTbC5ySbvLqNGjZIJQk+rMm7cOJ+lBg4c6Hqtrk9jMiqNGzdWkSJFXJmHOnbsqKZNm7oy45vrv/LKKzVmzBhFRKQyM0Qy9sNQBBDIQIETO6WxVyUc3B5m/Xf5tpkpCm7/Zf1BvTHL+b/LDcqFafT1DdPlC1wZqMipEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBIU4EbmpdXvbIFrfD2AK2+WE0fx/TRHVGPqVHEGPWKeEl/VX9EqtlLCimU8HkrtJH8/BMeQy8CCCCAAAIIIIAAAggggAACCGSIQI7M4J4aubiZ302AfFYoR48edQXru/cSGBiY7EDwsmXLuqe7Pg8fPuxTT23lySef1IYNG/Tll1+6ljpw4IArg3uvXr3UvXt3VaxY0RWYuW/fPv3++++aMmWKoqKiPKc18x95xLrBlEbFZIc3meS9y5AhQ7yryT5evXq17ZwzZ85o1qxZrp8RI0bo3XffVf/+/W3H0ogAAtlQ4KiVsd1kbj9tZXB3KoUrX8rcXqiC0wjH9g37T+m/36x27C9ZMFif3NpMeYO4se6IRAcCCCCAAAIIIIAAAggggAACCCCAAAIIIIBArhTw98uj56+uq+s+XOxz/bHy04aLlTX07+r6/dHHVSI0SDq8UdplPT/c+af1uUg6d/TynEptLx9zhAACCCCAAAIIIIAAAggggAACmSqQIwPcBw8enGzUc+fO6ciRI1q5cqVOnz7tmm+C3atUqaL27dsne720nmACqL1Lvnz5kp3FNzQ01HsJxV3TpzMFFT8/P02aNElt2rTR888/7/KMiYnRjz/+6PpxWrJt27au8V27dnUakqL28ePH+8xr0qSJ6tev79OWHpWDBw9qwIABevTRR/XGG2+k6SnMlxLMn9PkFBPoT0EAgVQIHN4sje8jnU3gS0HFakiDfpAKlkn2iQ6HX9Cd45frfFSM7dyQQD+NGdRMpcJCbPtpRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgtws0rVhE1zYuqymr4ieqORMRrdd+3qI3BzSUStW79NPyblnZxaQj1ptVd/0b7F6lU25n5PoRQAABBBBAAAEEEEAAAQQQyDICOTLAfezYsSkGNhnbZ86cqZEjR2rFihXasWOHbrjhBr300kspXjMtJsYNRg8JSX6gY968eX22EndNn84UVsyXAu6//3717dtX9957r2bMmJHgSia43WRt79y5c4Ljkttpfo8TJkzwmZbS7O3Gulu3brrqqqvUqFEjVatWTYUKFVJERIRMwPnixYv11Vdfuf7ceGf8Hz16tIoWLSqTmT6tygcffOD6MkBarcc6CCCQiEBSgttLWjfDb50m5S+eyGLxuy9YQe13TVih/acuxO/8t2V0/4ZqUK6QYz8dCCCAAAIIIIAAAggggAACCCCAQEYJ/PPPP/rrr7+0e/dunThxQuHh4SpQoIAKFy7seoNnq1atXPdPM2o/nAcBBBBAAAFvgSevqqXZGw/JBLTHLd+v3KubW1ZQ04qFL3dZzzVVotaln+ZDL7cndnTBSpYWUjCxUfQjgAACCCCAAAIIIIAAAggggEAqBHJkgHsqPFxZ0Xv16qUePXrozjvvlMkC/uqrr8pkIjefmVUuXPANfgwKsl6hl8wSHBzsM+P8+fM+9bSonD17Vs8++6w++ugjJWX9hQsXyvzUqlVL5osJ5gFIWpS5c+e6HrK41zJeN998s7ua5M+HH35YJgjfBKrHLYGBgcqfP78ry/8tt9yiP//8UzfeeKP27bucGWL48OGuwPiGDa2MEBQEEMheAkkJbi/dyApunyrlK5LsazNfiHny+7Vaveek49xhXaurd4PkZ4V3XJAOBBBAAAEEEEAAAQQQQAABBBBAIJkC5o2VH374ocaMGaNDhw4lOrt06dKue+t33323SpUqleh4BiCAAAIIIJBWAiUKhujBrtX08szNtkuO/HGDfri/rfz8rMD2lJZtv0vf3yn1fkuq0zelqzAPAQQQQAABBBBAAAEEEEAAAQQSEfBLpD/XdgcEBOjTTz9Vy5YtrbfTXdQbb7yh2bNnZ5pH3IztkZGRyd6LyTjuXeKu6d2XkuP9+/erWbNmevvttz3B7TVr1pTJOr5582aZjPHnzp3Ttm3bNG7cODVt2tRzGtPfvn17TZs2zdOWmgOzvnfp3bu3bZC69xi746uvvjrJ89q1a6d58+apWLFinqXMn51nnnnGU+cAAQSyiUBSgtvLt5QG/5ii4Haj8MG8bZq2er8jSK/6pWUC3CkIIIAAAggggAACCCCAAAIIIIBAZgl88sknql69ukaNGiUT6G7ud7p/vPfkbjOf5j7xCy+8oBo1ariC4r3HcYwAAggggEB6CwxpU1lViofanmbdvlP6dvke275EG2NjpLkvSxOvlc4dlX74j3RsW6LTGIAAAggggAACCCCAAAIIIIAAAikTIMA9ATd/f3/XjXj3kKeeesp9mOGfJlO4d4mb0d27z+k4bkb1uGs6zUtKu9lP9+7dXYHs7vFDhw7V2rVrde+998oEuoeGhipv3ryujOeDBw/WsmXL9PTTT7uHKzo6WjfddJM2bdrkaUvJgQmknzJlis/UIUOG+NTTq1KtWjXXlyG81585c6aOHz/u3ZTi4/vuu0/r169P1k9afWkgxZtmIgLZTSApwe2V2ksDrf/OhISl6OpmbTioN2ZtcZxbv2yYRvdvmLosMo6r04EAAggggAACCCCAAAIIIIAAAggkLmDecGru7Zq3dprA9Tx58rh+3DO9g9rdbe4xps/cp73nnnt01113ubv5RAABBBBAIN0FggL89Fyfuo7ned26N3/qXJRjv23HmcNWYPs10h+vWd0XLw2JOC19N1iK8n0Lt+18GhFAAAEEEEAAAQQQQAABBBBAINkCAcmekcsmdOnSRQUKFFB4eLhWr17tCuCuVatWhivEDUY3mdDdDxWSuhnzIMK7xF3Tuy+5x6+99po2bNjgmWbcPv74Yys40/k7FOZhh8n8s3v3bk2cONE11wTKP/LIIzJB4Skt3333neuhi3t+yZIlddVVV7mr6f45aNAgPf744zpy5IjrXLGxsZozZ44GDBiQ6nOXKFFC5oeCAALpJBBp/XdyYj/prHWz2qlU7iDd9I0UlM9pRILtG/af0n+/We04pkSBYI0Z1Ex5g/wdx9CBAAIIIIAAAggggAACCCCAAAIIpKeAeSvlZ5995jqFuY/rDmYvV66cOnfurIYNG7reZGmSmpj7zkePHtWaNWtcb7jcs2ePJxDezDPrmHu0L774YnpumbURQAABBBDwCHSsUVzd6pTUrxsPedrcB8fPRurtOX9r5NXOQfDusa7PiDPSJ52k0/t8ml2Vg+ukX56U+vxf/D5aEEAAAQQQQAABBBBAAAEEEEAgVQLO0cepWjbnTDZZ3CtVquS5oKVLl3qOM/KgWLFinocC5rxRUVE6fDiBAEybze3b53vjJa0CpWNiYvTee+/5nNEEricU3O49+KWXXvIZ+8svv8g8BElpGTdunM/UW265RQEBGfddDnPdnTp18tnDli1bfOpUEEAgiwoEhUrdXpDyOPz1mMrg9sPhF3Tn+OU6F2m9ytSmBFuZZUxwe6mwEJtemhBAAAEEEEAAAQQQQAABBBBAAIH0FzCJTExCE+9s7PXr15e5b7tr1y6NHz9eDz/8sEyij+uuu871aeqm3fSbcWa8O0GL+YybICX9r4IzIIAAAgjkdoFne9WRyeZuVyb+tUubD56264rfFmy9ZbuJlandqawYK6391qmXdgQQQAABBBBAAAEEEEAAAQQQSKGA/b/qU7hYTp0WHBzsubQDBw54jjPyIG/evKpQoYLPKU3m8+SUuOPTKhP92rVrXRl63HsxwfitWrVyVxP9LF++vCvjj3ugeeDx559/uqvJ+tyxY4cWLFjgM2fIkCE+9YyomGvyLu5s7t5tHCOAQBYVaGC9beGaj+MHuacyuP1CVIzunrhC+09dcLzw0f0bqmH5Qo79dCCAAAIIIIAAAggggAACCCCAAALpLfDss8/KJDVxFxPIvnLlSnXv3t0nCYu7P+6nGWfGDx482BPkbtZ77rnn4g6ljgACCCCAQLoJVCiaT/d0qGK7fkzsRY38cYPr7ynbAXEbOzwqVekct/VyffpD0hGSXV0G4QgBBBBAAAEEEEAAAQQQQACB1AsQ4J4EQ+/A8IzMBB53a3ED0jdu3Bh3SIL1TZs2+fTHXc+nMxkVE1TuXUzGe5PdJzmlcuXKPsPjZpv36UygYrIEmQB5d2natKkrW5C7nlGfgYGBPqcyGfcpCCCQjQTiBrmnMrjd/HfpqSnrtGr3SUeEYV2rq0/DMo79dCCAAAIIIIAAAggggAACCCCAAALpLXDhwgVXBnb3/d127drJvDHTvOk0OcW85XLs2LFq3769636tuTfy888/y6xPQQABBBBAIKME7u1UTWUc3pj61/bj+mldEhOb+Vl/D147RipQ2n7rUWelbwdJkdYnBQEEEEAAAQQQQAABBBBAAAEE0kSAAPdEGP/44w8dPnzYM6pEiRKe44w+aNSokc8pFy1a5FNPqGIyz+/cudMzxARg16lTx1NPzUFERITP9JR8CSBuQLh3hiCfxROomIckEyZM8BmRGdnbzQYOHjzos4/ixYv71KkggEA2EHAHuZusLDd9IwXlS/GmP/xjm6au2uc4v1f90jIB7hQEEEAAAQQQQAABBBBAAAEEEEAgMwXMmzVNELo7icjrr7+equ289tprnvlm3ZS+udOzCAcIIIAAAggkQyBvkL+e7uX8PPSlnzbpXGR00lbMbz3ru36s9fZXhy99HdkszXhY1l+iSVuPUQgggAACCCCAAAIIIIAAAgggkKAAAe4J8Bw7dkz33XefTzbyFi1aJDAjfbt69+7tc4I5c+Z4HjT4dNhUZs+e7dPauXNn5c+f36ctpZWiRYv6TN2/f79PPSmVuBnbUxIQPn/+fHlnkw8KCtLNN9+clNOn+Zi4D2rKly+f5udgQQQQyAABE+R+69RUBbfP2nBQr/+yxXGz9cuGaXT/hvLzS96bLxwXpAMBBBBAAAEEEEAAAQQQQAABBBBIocCePXs8M8092pYtW3rqKTlo1aqVvJPGeK+fkvWYgwACCCCAQHIFetYvpdZVfJ9lutc4cOqCPpi7zV1N/LNia+mK55zHrf1aWjXRuZ8eBBBAAAEEEEAAAQQQQAABBBBIsgAB7jZUJ0+e1JgxY2Qypm/ebH3b3irmlax169ZVzZo1bWZkTFObNm1UrFgxz8m2b9+uefPmeeoJHXz22Wc+3X379vWpp6ZSqVIln+m7d+/Wtm1JvxkUHh6uZcuW+axRtWpVn3pSKuZVud6lT58+KlKkiHdThhybrP9xr79r164Zcm5OggAC6SBg/fc/pWXj/tP67zerHaeXKBCsMYOayWSRoSCAAAIIIIAAAggggAACCCCAAAKZLeB+m6m5H55WSTu81zly5EhmXyLnRwABBBDIZQLm77Tn+9aVv0OSmU/mb9euY2eTrtL6AanGVc7jZz5mvep5nXM/PQgggAACCCCAAAIIIIAAAgggkCSBgCSNymaDunTpkqIdnz9/XocOHZIJ0DavYDU/5qaH+/PVV19N0bppNcnPz09DhgzR6NGjPUs+//zz6tSpk0+WeU/nvwe//fabFixY4GkuUKCABgywshKnUalRo4bKlSunvXv3elY0e/zwww899YQO3nrrLUVERHiG5MuXTyazT3LK2bNnNXnyZJ8pxiqji9nHgw8+6HPa+vXrq0qVKj5tVBBAIBMFzhyWQq1XiVr/fU/PciQ8QkPHL7Nebxpje5rgAD9XcHupsBDbfhoRQAABBBBAAAEEEEAAAQQQQACBjBYICbl8n+LcuXNpcnpz391dgoOD3Yd8IoAAAgggkGECNUoW0KDWFTV24c5454yMidWLMzbq08HN4/XZNljPa9XvA+njjtKp3fGHRF+Qvh0s3TVPCikYv58WBBBAAAEEEEAAAQQQQAABBBBIkkCODHA3Wc1NYHpKiglmdxd3cLupm0Dynj17ursy7fOJJ57QRx99pDNnzrj2YLKFv/baa3ryySdt97Rv3z4NHTrUp2/YsGE+meB9Ov+txPWbO3euK5DebqxpGzhwoLy/APDxxx+rdevWGjRokNMUV/v06dM1atQonzE33nijkvug4/vvv/eYmMVKlSqlK6+80mfd5FaMk/EuU6ZMkqYePXpUN9xwg9auXesz3vzZoSCAQBYROLxZGt9bamL9t6nLs+kW5H4hKkZ3T1yu/dbrTZ3K6P4N1bB8Iadu2hFAAAEEEEAAAQQQQAABBBBAAIEMFyhRooTrnOY++c6dO2WC3E1CkpQWM3/Hjh2e6e71PQ0cIIAAAgggkEECD11RQz+u3q9jZyPjnXHOpsOau+WwOte89PdgvAFxG/IVkfqPkz7vIcVGxe2Vjltvuv7RyvRuxqTwmXX8RWlBAAEEEEAAAQQQQAABBBBAIHcJWF8xp3gLmMBud3C3uYlftmxZV2bwZ555xntYph0XK1ZMw4cP9zn/U089pfvuu0/79+/3tMfGxmratGlq06aN60GEu8MEaz/yyCPuapp9Pv744ypSxLqZ828xdoMHD9Ztt92mDRs2uJs9n1u3btUDDzygfv36KTo62tNuHpaMGDHCU0/qwbhx43yG3nLLLQoISN33N959911X5vVrrrlGX3zxhY+j98n27NmjN954QyZT+++//+7d5bo+M5+CAAJZQMAd3H7WehX2gjel31+U9YqONN+Y+e/f8CnrtHL3Sce1H+xaXX0aJu3LM46L0IEAAggggAACCCCAAAIIIIAAAgiksUCdOnVcK5p75BcuXNA333yTqjOY+d4Z3OvWrZuq9ZiMAAIIIIBASgXC8gbqiStrOU5/cfpGRUbHOvbH6yjXVOrxUrxmT8PGadKyTz1VDhBAAAEEEEAAAQQQQAABBBBAIHkCeaxAvLSP7kveHtJ8tJ95NVwKinn9asGCBVWxYkU1adLElbHdZG339/dPwWrpN8UEr/ft21czZszwOYnZp9l7WFiYKyvOyZMnffrz5s2rX3/9VW3btvVpt6u4g/zdfYllcDfj5s+fr+7duysiIsI9zfNpMvOUK1fO9eUBE4h/4MABT5/7wPzepkyZ4ro2d1tSPnft2qXKlStbcaqX/yivW7dO9erVS8p0xzFxDcxA8+ejdOnSLuOoqCgdOnTI54sF3ou1b99es2bNknHPzGK+YOBtsX79evEgKTN/I5w7UwS8g9u9N9De+sJPGmdy/2DeVr3+yxbvs/gc96xfSu/d1ER+fil704jPYlQQQAABBBBAAAEEEEAAAQQQQCDZAtwvS5jM3Mc192/N/VaTcGXlypWue7sJz4rfa94u2rhxYx07dsy1lkkmY5KFUBBIrgD/n02uGOMRQMBJIDb2oq75YKHW7D1lO+TJq2rpno5VbftsG82zye+GSCaY3a74BUp3zJLKNrXrpQ0BBBBAAAEEEEAAAQQQQACBFAnklvtlKYsETxFpxk0yAeAp+TGvSz148KCWLFmiDz/8UH369Mlywe1G0QSCf/fdd7rxxht9UGNiYrR9+3atWrVKcYPbixYtqpkzZyYpuN1n0WRUOnTooDlz5riC7ONOO3z4sOtByIoVK2yD20uWLKnp06cnO7jdnGfChAk+we1Nmzb1CeiOu5fU1E+fPq0tW7Zo6dKlLmfvrPnudc3vx2S0/+233zI9uN29Jz4RyNUCTsHtBiWNM7nP3nBQb8xyDm6vV7ag3uzfiOD2XP0HkotHAAEEEEAAAQQQQAABBBBAIGsLDBkyxHW/1SQAOXr0qNq1aydzXzc5xdyjNglAzHwTKG/WMutSEEAAAQQQyEwBk3hm5NXObxP532//6NDpC0nfovX3m67+n1Skiv2c2Cjp2yHS+RP2/bQigAACCCCAAAIIIIAAAggggICjQI4McHe82hzUYbLNf/XVV5o8ebIaNWrkeGWhoaG67777tHHjRnXq1MlxXFp1mIcdJnv622+/rVq1nF/z5z5fpUqVNGrUKJlvlJhs+SkpJsDdu6TVg5JPPvnE9SWC8uXLey/veFyqVCkNGzbMFQD/2muvKTDQyspAQQCBzBVIKLjdvbO9y6UY6yZzKsvG/af10DerrYe29guVKBCsMYOaKW+Qv/0AWhFAAAEEEEAAAQQQQAABBBBAAIEsIPDkk0+qePHirp2YwPTdu3erVatWGjx4sObNm6fo6GjbXZp202/uz7Zo0UI7d+50BbabweYNn2ZdCgIIIIAAApkt0LhCYfVvWs52G2cjY/TKzE22fY6NIQWlAdazSv9g+yGndktT75XjwwP7WbQigAACCCCAAAIIIIAAAgggkOsF8ljZUxxC8XK9TbYC2Lp1qyvzvHnta2RkpAoVKqTatWu7MrabYPjMKiYj/rJly2QynZus8uaPW1hYmEzG9mbNmqlChQqZtbVknde8RnfTpk3atWuXjhw5orNnz7qy+xcuXNj1ml7zqt0qVaoka82MGpxbXkeRUZ6cJxsJJCW4vXJH6aavpaB8qbqwI+ER6vf+Qu07ed52neAAP317d2s1LF/Itp9GBBBAAAEEEEAAAQQQQAABBBDIOAHulyVu/ccff+iqq65SRESEa7A7C7upmMQeJrlJsWLFZBKsmHul5v7p5s2bXfemzRj3ePNp7k/PmjXLldHd9FEQSK4A/59NrhjjEUAgMQFzT7/L6HkKj7D/0tZ397RW80pFElvGt3/FeGn6g75t3rVuL0ptE+j3HssxAggggAACCCCAAAIIIIAAAgkI5Jb7ZQEJGNCVjQSqVasm85PVislq3qdPn6y2rWTvp2jRoq5X8ZoM9RQEEMgGAhkY3H4hKkZ3T1zuGNxutN7o35Dg9mzwx4YtIoAAAggggAACCCCAAAIIIIDAJYGOHTvqu+++06233upKXGIyuZtiAtZNgpW1a9d6srO7210DrP8xY82PGWsSsUyaNIngdjcOnwgggAACWUKguPXG1Ye61dCLMzba7ue5HzZo+gPt5O936e8/20FxG5sMknYtktZaSXXsypyRUvkWUoVWdr20IYAAAggggAACCCCAAAIIIIBAHAG/OHWqCCCAAAIIZG+Bw9brQ8f3ls4ecb6ONMrcbh7UDp+yTit3n3Q814NdqunqhmUc++lAAAEEEEAAAQQQQAABBBBAAAEEsqJAr169XIHs5tMUcx/EFHcAu6vy7/94t7nHmcQn69atU8+ePb2HcowAAggggECWEBjUuqKql8hvu5eNB07rq6W7bfscG82XwXq/JRWvZT/EP1A6tde+j1YEEEAAAQQQQAABBBBAAAEEEIgnQIB7PBIaEEAAAQSyrYAruN16a0QGBLcbo4/+2K4pq/Y5cvWsX0oPXVHDsZ8OBBBAAAEEEEAAAQQQQAABBBBAICsLlCtXTtOnT9emTZv02GOPqUWLFgoMDHQFu5tAdu8f096yZUs9/vjj2rx5s3744QeVLVs2K18ee0MAAQQQyMUCgf5+Gnl1XUeB0bO36MTZSMd+246gUGnABCkwn293karS0DlS/et926khgAACCCCAAAIIIIAAAggggICjQIBjTzbuMK9H7devn+cKxo4dK/NK1eSWefPm6fbbb3dNMxlofv75Z9WoQaBich0ZjwACCGSIQAYHt/+68ZBen7XZ8dLqlS2oN/s3kl9yXmHquBodCCCAAAIIIIAAAggggAACCCCAQOYJmPvir732mmsDkZGROnjwoE6cOKEzZ84of/78Kly4sEqXLu0Kfs+8XXJmBBBAAAEEkifQtloxXVWvlH5efzDexJPnovTmr1s0ql/9eH0JNhSvaWVy/z9p6l2XhtW9RurzrhRSMMFpdCKAAAIIIIAAAggggAACCCCAgK9Ajszg/uGHH2rnzp2un3z58qUouN0wderUScHBwZ61Pv74Y189aggggAACWUMgg4PbN1mvJx329SorS5n95ZcoEKwxg5opb5C//QBaEUAAAQQQQAABBBBAAAEEEEAAgWwqEBQUpAoVKqhhw4Zq27at69PUTQb3uOW3336Tv7+/6ycgIEfm24l7ydQRQAABBLKZwNO9aisk0P6R+ZdLdmvD/lPJv6KGN0gt7pZ6jpauH0twe/IFmYEAAggggAACCCCAAAIIIICA7P+1ns1hzKtPTTFZ1wcOHJiqqxk0aJBrvnnV6tSpU1O1FpMRQAABBNJBIIOD24+ER2jo+OU6FxljezHBAX76xApuLx2W17afRgQQQAABBBBAAAEEEEAAAQQQQCA3CZh76+6f3HTdXCsCCCCAQPYQKFc4n+7tWM12s7FWkpuRP25w/T1mOyChxp6vW0Hud5oH1gmNog8BBBBAAAEEEEAAAQQQQAABBBwEclyA+6ZNm1yvR3Vfb9++fd2HKfr0nr9r1y7t2LEjReswCQEEEEAgHQQyOLg9IjpG90xaoX0nzztezOvXN1Cj8oUc++lAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBrCNwd8cqKlfYPmnNsp0n9OOa/Vlns+wEAQQQQAABBBBAAAEEEEAAgVwikOMC3Ddu3Oj51eXPn1+1a9f21FNyYOabddxl/fr17kM+EUAAAQQyUyCDg9tNprGnpqzTil0nHK/6wS7V1LdRWcd+OhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBrCYQE+uvZ3nUcN/XyzE06dT7KsZ8OBBBAAAEEEEAAAQQQQAABBBBIe4EcF+C+b98+l1Ie63Vv5cuXT7WYWadChQqedXbv3u055gABBBBAIJMEMji43Vzlx/O3a8rKS3/H2F31VfVK6aErath10YYAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJZWKB7nZJqX72Y7Q4PnY7QfV+sUFRMrG0/jQgggAACCCCAAAIIIIAAAgggkPYCOS7A/cyZMx6lggULeo5Tc1CgQAHP9PDwcM8xBwgggAACmSCQCcHtv248pNd+2ex4sXXLFNSbAxrKzy+P4xg6EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIGsKmKRnz/WpqwCH+/wLtx7Ts9PWy7ztNU1L5Dlp5uPSyT1puiyLIYAAAggggAACCCCAAAIIIJDdBXJcgLt3MPqJEyfS5Pdz8uRJzzpBQUGeYw4QQAABBDJB4PxJydzwdSqVO0o3fS0F5XMakaz2LQfDNezrVdZNa/tpxQsE69PBzZQvKMB+AK0IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQ5QWqlciv29pWctzn18v26BPrba9pVo7+I316hbT0Y2nybVJ0ZJotzUIIIIAAAggggAACCCCAAAIIZHeBHBfgXqzYpVfHmW/P79mzR1FRUan6HUVGRrrWcS9SvHhx9yGfCCCAAAKZIVCxtTTweykwNP7Z0zi4PTb2oh79bo3ORcbEP5fVEhzgpzGDmql0WF7bfhoRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAg+wg8dEUNVS1u8/zh30t41Xrb6y/rD6T+gtZbzzk+6SQd3nBprb3LpDkjU78uKyCAAAIIIIAAAggggAACCCCQQwRyXIB71apVPb+a8+fP648//vDUU3Jg5p87dzlTcMWKFVOyDHMQQAABBNJSwC7IPY2D2812v1uxR+v2nXLc+evXN1Cj8oUc++lAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB7CMQGhygz4c0V5FQ+7d6m7e9PvTNaq3dezJlFxUdIf30iJWx/XbrbbVnfNf4631p03TfNmoIIIAAAggggAACCCCAAAII5FKBHBfg3qxZM4WFhSlPnjyuX+krr7ySql/tq6++6pkfGhqq1q2tzMEUBBBAAIHMF/AOck+H4PbTF6L0xqwtjtf5QJdq6tuorGM/HQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJD9BCoWDdUntzZVkL/9o/QLUbG6Y/xy7Tt5PvkXl8dfOrTRed60+6Tj25376UEAAQQQQAABBBBAAAEEEEAglwjY/6s8G1+8n5+fevbsqYvW1+fNz7x58/T222+n6IreeustzZ071xUsbwLme/ToocDAwBStxSQEEEAAgXQQMEHut/8s3fS1FJQvTU/wv9/+0dEzkbZrdq5ZXP+1XlNKQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZwn0KxSEb3Rv4HjhR0Jj9Ad45Yp3EqWk6ziHyBd/5mUr5j9tIjT0reDpagL9v3ZqfXs0ey0W/aKAAIIIIAAAggggAACCCCQxQRyXIC78X366adlAt1NULoJcn/sscc0YsQIxcTEJInfjHv22Wf1+OOPe9Ywa5k2CgIIIIBAFhMo3TDNg9u3HTmjsQt32l6oydjy/NX1rL9nLr0pxHYQjQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJCtBcxbXBNKdrP5YLge+GqVomNik3edBctI131qzXF4znBwrTTrqeStmZVGH98hfXOr9H4L6fzJrLQz9oIAAggggAACCCCAAAIIIJCNBHJkgHudOnV01113uYLbTWB6bGysXnrpJdWqVcuVzX3z5s22vyLTbrK2m3Evv/yya54ZaNa444471KCB87f0bRekEQEEEEAgWwqMmrFR0bEXbfc+tH1lVSiattnibU9EIwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCGSqwINdq+maxmUd9zBvyxG9aD1TSHap2lnq9KTztOWfS2u/c+7PqJ6Tu6V5r0nj+8h6eJ7wWS+ckmY/cymwfdOP0rlj0vw3Ep5DLwIIIIAAAggggAACCCCAAAIOAtY70HJmeffdd7VhwwYtWLDAk4V927ZtevTRR10/oaGhKlasmPLnz68zZ87o6NGjOnv2rAvDZH03xZ0BvlOnTnr//fddbfwPAggggEA6CxzeJC0dI131umRe1ZnBZe7mw5pr3ZC2KyULBuv+ztXsumhDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBHCZgnhe/el197T1xTst2nrC9uvGLd6lysVANaVvZtt+xscNj0u7F0vZ59kOmD5PMW2yL17DvT6/WqAvS5hnSqkn/7u3Ss3PtWihVbm9/1pUTpTnPXQpq9x6x5GOp+R1SkSrerRwjgAACCCCAAAIIIIAAAgggkKhAxkcOJrqltBkQEBCg6dOna8iQIZo2bZorWN2s7A5eN0Ht5seumBsVppix119/vT777DOZ9SgIIIAAAuksYILbTRaQs1aA+fnj0rXWKzozMMg9Mjo2wUwrT15VS6HB/H2Qzn8KWB4BBBBAAAEEEEAAAQQQQAABBNJRYP78+em4uu/Sa9as8W2ghgACCCCAQDYUCA7w18e3NtM1HyzUrmPnbK/gBSuLu3n7a5daJW37bRv9/C89B/monXTmYPwhUVZytm8HSXf+LgVlwJtlD1h/b5ug9rXfShdOxt+P6XMKcD+1J35wu1khNkr6dYR0gzWXggACCCCAAAIIIIAAAggggEAyBHJ0lF7BggU1ZcoUffzxx3rllVe0e7f1CjWruAPY7ZxMULv5qVSpkp555hndfvvtdsNoQwABBBBIawHv4Haz9oapl86QgUHu4xft1Paj1g1jm9K4QiH1bVjWpocmBBBAAAEEEEAAAQQQQAABBBBAIPsImDeWJnSPPK2vxJzLnXgmrddmPQQQQAABBDJKoEhokD4f0lzXvL9Qpy9ExzttrJXk/IEvV+m7e9qoTpmC8fodG/IXl67//FLyn4sx8YcdsRIDzXxU6vdB/L60aDl3XFo32QpsnyAdXJfwiht/kHpab98NCYs/rs2D0orx9oH6m6ZLO/+UKlmB/BQEEEAAAQQQQAABBBBAAAEEkijgl8Rx2XrY3XffrW3btumbb77RHXfcoerVq8vf3991U90d0G7qNWvW1J133qnvv/9eW7duJbg9W//W2TwCCGQrgUgrqPyrGy9lbvfeuAlynzJUiol/s9h7WFocHwmP0Lu//eO41Mg+deXnl8exnw4EEEAAAQQQQAABBBBAAAEEEEAgOwm4742n92d2MmGvCCCAAAIIJCRQtXh+fXRrUwU4PCs4GxmjO8Yv06HTFxJaJn5fpbZS12fjt7tbVn9xKbO6u57az1grkH7rb9J3t0lv1pR+fizx4HZzzujz0vop9mcPzm9dwwj7PtM6a7iVzT3WuZ8eBBBAAAEEEEAAAQQQQAABBOII5OgM7t7XagLY+/fv7/pxt4eHh8v8FChQwPXjbucTAQQQQCCDBZZ/Lp3YaX9SE+ReqoHU/mH7/jRqfWPWZoVH2AfS929aTg3LF0qjM7EMAggggAACCCCAAAIIIIAAAgggkPkCGZnFPfOvlh0ggAACCCCQNgJtqhbTy9fW1+OT19oueODUBQ0dv1zf3N1K+YKS8Si+zTBp12Lpn1m26+qnR6TSjaznJfXs+5PSap7DrP7y0s+pPUmZEX/Mmq+lZlZgvF1peJO09GPpwJr4vaZtrTW30c3x+2hBAAEEEEAAAQQQQAABBBBAwEYgGf+qtpmdzZsIbM/mv0C2jwACOUPg4sVLr610upoqnaSW9zj1pkn72r0n9d2KvbZr5Q8O0GNXWhlMKAgggAACCCCAAAIIIIAAAggggEAOEKhQoYIIbs8Bv0guAQEEEEAg0wQGNCuvnUfP6oN522z3sG7fKT309Wp9OLCp/B2yvceb6Ge9eP2aj6SPO0h2wefRF6RvB0l3zZNCCsab7tgQZWVd3zTDygA/Qdox33FYoh0l6kpNbpXqD3Aeaq6hx8vSuF72Y357QarTVwoKte+nFQEEEEAAAQQQQAABBBBAAAEvgVwd4O7lwCECCCCAQGYJ7LYykhz7x/7slTtKN35l3ezMZ9+fBq3mNdzPT98oE2dvVx7oUk0lCoTYddGGAAIIIIAAAggggAACCCCAAAIIZDuBnTt3Zrs9s2EEEEAAAQSymsCj3Wtq17Fz+mndAdutzd54SK/9slnDe9a27bdtzFdE6j9O+vxKKTYq/pDjVkD99GHS9Z/L+rZa/H53i3ngsX+VFdQ+SVo3WYo45e5J3mdwmBXQfv2lwHaTPT6hc7pXrtROqtVb2mwF1cct4ZbVwnekzsPj9lBHAAEEEEAAAQQQQAABBBBAIJ6A9TVqCgIIIIAAApkosGK8/cnzWH9FmWwl6Rjcbk7845r9WrHrhO0eKhcL1W1tK9v20YgAAggggAACCCCAAAIIIIAAAggggAACCCCAAAK5U8DPysz+5oCGalS+kCPAJ/O368slux37bTvKNZO6j7LtcjVumCIt+9S53/R8N0Qa01la/lnKgttN8qFrrXM8ukXq/ZZUpnHSgtvdu+r2guQX6K75fi5818pQv8+3jRoCCCCAAAIIIIAAAggggAACNgJW9CAFAQQQQACBTBI4f1LaOM3+5NV7SAXL2PelUeu5yGi9MnOz42rP9KqtoAD+qnQEogMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgVwqEBLorzGDmqlsobyOAs/+sF4L/jni2G/b0fJuqfbVtl2uxllWBvR9K537TZB8ckvBclLHJ6Rha6TBP0oN+kuBzteV4PJFq0rmGuxK9HnptxfsemhDAAEEEEAAAQQQQAABBBBAwEcgR0bt/fnnn/L39/f8zJ071+eik1r5/fffPWsEBARoxYoVSZ3KOAQQQACBpAis+06KvmA/sulg+/Y0bP1g7jYdPG1//o41iqtLrRJpeDaWQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZwkULxAsD4f0lwFggNsLysm9qLum7RS/xwKt+23bcyTR+r7nlS4sm23YiKtLO3WM5TzJ+z7G9xgZVC334/PBP8gqd510q1TpYfWSp2twPnClXyGpLjS4TEpbxH76Wu/tgL0ee5uj0MrAggggAACCCCAAAIIIICAWyBHBrh//PHHunjxouunefPm6ty5s/t6k/XZpUsXNW7c2LVObGysxowZk6z5DEYAAQQQSEDA+u+0Voy3H1CgtFStm31fGrXuOX5OnyzYbrtagPVq0Wd711EecxOZggACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgg4CNQsVUDv3dJE/tazBbsSHhGt28Yt09EzEXbd9m0hYdIA6xmKf7B9/8nd0qL/2fflt5L31LjSvs+0lmogXfWG9MgW6frPpapdrIB4f+fxKenJW+hSwLzT3FlPy3oI79RLOwIIIIAAAggggAACCCCAAALKcQHuJhB95syZrqBEE5h4yy23pOrXPGjQINd8s9aPP/6YqrWYjAACCCDgJbB/pXRonVeD12Ej67/d/knILuI1JbmHL/20SZHRsbbTBreppGol8tv20YgAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIeAuYt8KOvLqud5PP8d4T53XnhOW6EBXj055gpXRDKxD9Nfshrf8jdXrKvs+0Nh7o2xdSSGpxt3T3fOmeBVLLu6R8RXzHpHWt6W1SsZr2q+5eLG38wb6PVgQQQAABBBBAAAEEEEAAAQQsgRwX4L5u3TqdOHHClXXd/IZ79eqVql+0e77JCH/o0CFt2WJ9k52CAAIIIJB6Aafs7WblJremfv0EVli09ah+2XDQdkTR0CA92LW6bR+NCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggICdwK2tKuqOdpXtulxtq3af1KPfrVFsbDIylzcdItUfcHnNYCuz+w1fSD1eshIFBV5uj3tk3pJboMyl7OwmS7vJ1t7zdckEzWdUMYmMuo9yPtuvI6SoC8799CCAAAIIIIAAAggggAACCORqgRwX4L5p0ybPL7RQoUKqUqWKp56Sg6pVq8qs4y4bNmxwH/KJAAIIIJBSgYgz0vrv7WdX6SwVrmTflwat0TGxen76RseVHu1RU2F5E7gp7DiTDgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMjNAsN71tYVtUs6EsxYe0Bvz/nbsT9eh/WWcfV+28qEXsMKTm9kZWD/Q6rdO96weA0muPyB5dKtU6V610mBIfGGZEhDdSvQvmoX+1Od3CUt/di+j1YEEEAAAQQQQAABBBBAAIFcL5DjAtwPHryUkTeP9Y/9smXLpskvuFy5cp519u3b5znmAAEEEEAghQIbpkiRVpC7XWk62K41zdq+XLpbWw6F265Xt0xBDWhW3raPRgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgIQF/vzx658ZGMs8bnMr/ft+qySv2OnXHbw/OLw20nqvcPksqUjl+v1NLUKhTT8a1mwD97i9JeRzCEuaPls4cybj9cCYEEEAAAQQQQAABBBBAAIFsI+DwL8lss/94Gz137pynLTQ0bf7R7r3OmTMOAZmes3KAAAIIIJCowIrx9kPyFZVq9rTvS4PWE2cj9eZs58woI6+uK3PzmYIAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIpEQgNDhAnw1urpIFgx2nPzVlrf7afsyxP15HISs5T2ZlYY+3mWQ2lKwjNXFIbhRxWpr3cjIXZDgCCCCAAAIIIIAAAggggEBuEMhxAe5hYWGe39uxY8m4KeCZFf/g+PHjnsZ8+fJ5jjlAAAEEEEiBwKEN0j7rtZh2peFNUoDzDV+7KclpM6/9PHU+ynZKn4Zl1LxSEds+GhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBpAqUCgtxBbnnC/K3nRIVc1F3T1yh7UdySXK1zk9LwQ5Z7VeMkw5vsnWiEQEEEEAAAQQQQAABBBBAIPcK5LgA9+LFi7t+mxcvXtSePXt0/vz5VP12TUb4Xbt2KY95fZpV3OunalEmI4AAArlZwCl7uzFxyuCRBl6bD57WpL922a4UEuinp66qZdtHIwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQXIF6ZcP07o2NrefM9jNNQp47xi+Xeftsji/5rWf47R+xv8yLsdKckfZ9tCKAAAIIIIAAAggggAACCORagYCcduW1al0OUIyMjNTs2bPVt2/fFF/mrFmzZNYxxQS5V61aNcVrMREBBBDI9QJR1peO1n5tz1ChjfUtohr2falsNV96ev7HjYq9aL/QfZ2qqUyhvPadtCKAAAIIIIAAAggggAACCCCAAAII5BiBbdu2aenSpdq7d6/r3n/hwoVlniu0adNGISEhGX6dUVFR2rJlizZs2KBDhw4pPDxc+fPnV9GiRdWgQQPVq1dPfn45LldRhjtzQgQQQCCzBK6oU1LP9KqjF2dstN3CjqNndfekFZp4RwsFB9hne7edmB0bW94jLf9MOrnbd/e1+0hXPO/bRg0BBBBAAAEEEEAAAQQQQCDXC+S4AHdzw7dEiRI6cuSITEDjiy++mKoA91GjRrkC281ahQoVUosWLXL9HxoAEEAAgRQLbJouXThlP73pYPv2NGidteGgFm8/ZrtSWSuw/a4OVWz7aEQAAQQQQAABBBBAAAEEEEAAAQQQyBkC06ZNcz0vWLlype0FmaDyIUOG6LnnnlOxYsVsx6RV444dOzR58mT9+uuv+vPPPxN8E21YWJgGDhyoYcOGqXr16snawrhx43Tbbbcla4734I4dO2revHneTRwjgAACCKRA4Pa2lbTj6BnrLbNxArv/XWvpjuN6aso6vdm/oeet4ik4TdafEmh9kazbC9J3Qy7ttXRDqcfLUqV2WX/v7BABBBBAAAEEEEAAAQQQQCDDBfwy/IwZcMJ+/fq5gtvNqVatWqWHH344RWc188x8U0z2drOu+aQggAACCKRQYMV4+4nBYVLtq+37Utl6ISpGo37a5LjK071qKyQwh2dFcbx6OhBAAAEEEEAAAQQQQAABBBBAAIGcLRAREeEKEL/mmmvkFNxuBM6cOaP33ntPderU0fz589MFxeylVatWqlKlih5//HFXgPv589YbDxMop06d0vvvv+/K5D569GjPs48EptCFAAIIIJDFBMzz5ZF96qpDjeKOO5uycp/en7vVsT/HdNTpJ9W9Rur3oXTnPILbc8wvlgtBAAEEEEAAAQQQQAABBNJeIEcGuD/99NMKCgryZF5/5513NGjQIJ0+fTpJgmbcrbfeKjPP3HAw2dsDAwP1zDPPJGk+gxBAAAEEbAROH5B2L7bpsJoaDJCC8tn3pbL10wXbtfeE/YPCVlWK6Kp6pVJ5BqYjgAACCCCAAAIIIIAAAggggAACCGRFgdjYWN1www364osvfLbn7++vypUrq1GjRjIZ0r2LeTvsVVddpcWLHe5jeQ9O5nFUVJSWLFliOyskJMS1p+bNm7uC7M0zDu8SGRmpxx57TP/5z3+8mzlGAAEEEMgmAgH+fnr/5saqWbKA445Hz/5b09fsd+zPER0mmVz/cVKjmyW/HBmqkCN+TVwEAggggAACCCCAAAIIIJAVBAKywibSeg/ly5fXU089peeff94ToG5uYP/444+uQPeePXuqWbNmPq8ZPXr0qJYvX66ZM2dq4sSJrmB4E9huiglyf+KJJ1w3l9N6r6yHAAII5BqBgqWlh9ZZr9aYZP1MlE7tuXzpTQdfPk7DowOnzlsZT7bZruhn3UN9zsqYwps5bHloRAABBBBAAAEEEEAAAQQQQAABBLK9wBtvvKEffvjB5zruuecePfvssypTpoyr3QTBmzEPPfSQdu/e7Wo7d+6cBgwYoPXr18cLgPdZLJUVE2Q/ePBgdevWTSaw3STacReT2f377793Jd7ZtWuXu1kffPCBateunaJAdxMg3717d89aiR0ULlw4sSH0I4AAAggkQ6BASKA+G9JM/d5fqKNnIm1nPvLdGpUplFdNK/LfYFsgGhFAAAEEEEAAAQQQQAABBHKNQB4riPtSFHcOvOT+/fu7bgC7s7CbS/QOZDTH+fLlk7lZ7c3gPnbPMxlevvrqqxwoxCXlBoENGza4Xl/rvlbzUKZu3bruKp8IZI5AbIy0fa60Yrz1/udD0h2z02UfD329StNW22c7Gdiqgkb1q58u52VRBBBAAAEEEEAAAQQQQAABBBDIugLcL8u6v5u03NmxY8dcSWvCw8M9y77yyit68sknPXXvg3379qldu3bauXOnp3nEiBGuRDqehlQenDlzRgUKFFDbtm1l1jaB7d7PLOyWP3HihHr06KFly5Z5ugsVKqRt27apSJEinja7g3Hjxum2227zdI0dO1ZDhgzx1LPLAf+fzS6/KfaJAAJJFVi1+4Ru/OQvRUTH2k4pGhqkafe3Vfki+Wz7aUQAAQQQQAABBBBAAAEEEMjdArnlflmOfu+XCUofNmyYK3jd3CR23yg2Aezmx2RmMTeUzae7zfyxd48zx4888ogmTbKyDVMQQAABBNJOwM9fqnaFdIOVyX3IzLRb12ulFbuOOwa3FwwJ0MPdanqN5hABBBBAAAEEEEAAAQQQQAABBBBAICcJvP766/IObu/QoYPrTa1O11i2bFl9+umnPt1vv/22TKB8WpWgoCDNmDFDf/75pyuTuvezCKdzmCzq06ZNU2hoqGfIyZMnXcl9PA0cIIAAAghkK4HGFQrr7RsaOe752NlI3TZumU6dj3IcQwcCCCCAAAIIIIAAAggggAACOV0gRwe4BwQEyNyA/vnnn9WyZct4QezuoHf3p/lluwPdTaaW2bNny7zC1N/fCsSkIIAAAgikj4B/QJqvGxt7USN/3Oi47sPdaqiIlQGFggACCCCAAAIIIIAAAggggAACCCCQ8wRMUhuTrdy7jBw50ie5jXef+7hr165q3769u+oKkP/222899dQemAD3Xr16JXuZMmXKaPDgwT7zZs2a5VOnggACCCCQvQR61i+tx690TsSz9fAZ3f/FSkXF2Gd5z15Xy24RQAABBBBAAAEEEEAAAQQQSL5Ajg5wd3OY13cuWrRIS5Ys0YsvvujKjFKlShWZ13ia4HXzaepXXnmlXnrpJa1YsULz58+XuZlNQQABBBDIfgKTV+zVun2nbDdeo2R+DWxV0baPRgQQQAABBBBAAAEEEEAAAQQQQACB7C9gngccOXLEcyHm/n+nTp089YQO7rjjDp9ukz09KxTvwHuzn927d2eFbbEHBBBAAIFUCNzbsaoGNCvnuMKfW49qxA/rXQnaHAfl5I59K2S9ij0nXyHXhgACCCCAAAIIIIAAAgggkIBA2qfNTeBkmd3VvHlzmZ+UlpiYGLK5pxSPeQgggEAGCZy+EKXXZ212PNuI3nUV4J8rvt/laEAHAggggAACCCCAAAIIIIAAAgggkJMFfvrpJ5/L69atW6LZ290TzFjvMm/ePJ09e1ahoaHezRl+XLhwYZ9znjpln9zBZxAVBBBAAIEsLWDeMj6qX33tOX5ei7cfs93rV0v3qHKxUN3Voaptf45sPL5DmjNS2jhN6vuB1PiWHHmZXBQCCCCAAAIIIIAAAggggEDCAkT4Jezj6l2zZo0efvhhlSvn/A36JCzDEAQQQACBDBD432//6OiZSNszda9TUu2qF7PtoxEBBBBAAAEEEEAAAQQQQAABBBBAIGcIrF692udC2rRp41NPqFKmTBlVqlTJMyQyMlIbN2701DPrYN++fT6nLlq0qE+dCgIIIIBA9hQICvDTRwObqkpx5y9SvfLzZv2y/mD2vMDk7PqC9eWt2c9K77e4FNxu5v72ghR5NjmrMBYBBBBAAAEEEEAAAQQQQCCHCBDg7vCLPHr0qP7v//5PjRs3VpMmTfTOO+/o8OHDDqNpRgABBBDICgLbjpzR2IU7bbcSZGVtf6ZXHds+GhFAAAEEEEAAAQQQQAABBBBAAAEEco7Apk2bfC6mTp3k3ROKOz7uej6LZ1BlwYIFPmeqUaOGTz2pFfOm2n/++UeLFi3S4sWL9ffffys8PDyp0xmHAAIIIJAOAmH5AvX54OYqbH3alYsXpYe+WaV1e3Pw2zu2/ia920Ra9K4UE3mZ4YwV2L/wnct1jhBAAAEEEEAAAQQQQAABBHKNAAHuXr/q6OhoTZ06VX379lXZsmX1yCOPyGRvv2jdNTA/FAQQQACBrC0wasZGRcfa//d6aPvKqlA0X9a+AHaHAAIIIIAAAggggAACCCCAAAIIIJAqgfPnz2v37t0+a5QvX96nnlgl7vgtW7YkNiVd+0+fPq3Jkyf7nKNnz54+9aRUXn75ZRUuXFgmOL5t27Yyme1r1qypQoUKqVGjRnrssce0a9eupCzFGAQQQACBNBaoVCxUnwxqJpOsx65ciIrVHeOXaf/J83bd2b+tcCXJZHC3KwutoPdTvm8ysRtGGwIIIIAAAggggAACCCCAQM4SsP8Xcs66xkSvZsWKFXrwwQdVunRpXX/99ZoxY4aioqJcQe158uSR+aEggAACCCRTINzKqjGhn7T+eyk6IpmTkz987ubDmrvliO3EkgWDdX/narZ9NCKAAAIIIIAAAggggAACCCCAAAII5BwB83ZW74Q1gYGBKlGiRLIu0CTA8S6Z/XbXUaNG6cyZM54tFStWTL179/bUk3pgMrfbZWuPjY11JfsZPXq0qlWrpnvvvVfmiwIUBBBAAIGMFWheqYhev76B40kPh0fo9nHLdCYi2nFMtu0oWlVqebf99qOtv5N+e96+j1YEEEAAAQQQQAABBBBAAIEcKxCQY68skQs7dOiQJk6cqPHjx2vjxo2u0e6b3u6gdnfm9nz58rluFt90002JrEo3AggggIBHYNUkafvcSz95i0iNbpaaDJKK1/QMSauDyOhYvWhlb3cqT15VS6HBufavPCcW2hFAAAEEEEAAAQQQQAABBBBAAIEcJ+AdCG4uztzfT24Sm9DQUB+XuGv6dKZzZdGiRXrrrbd8zvLMM8+4rsunMY0q5k23H330kRYuXKhZs2a5EgOl0dKuZcyXBY4csU9S4XSerVu3OnXRjgACCOQ4gX6Ny2rH0bN657d/bK9t88FwPfDlSo2xsr0HOGR7t52YHRo7PCat/lI6fzz+btd+cykAvmzT+H20IIAAAggggAACCCCAAAII5EiBXBXtFxkZqR9++EHjxo3Tr7/+qpiYGJ9MLuYmtzuoPSgoSD169NCNN96ovn37ptvN4hz5p4qLQgABBKysT1o54bKDuRm5+L1LPw2tLwtd89HlvjQ4Gr9op7ZbN3ztSuMKhdS3oW/WLbtxtCGAAAIIIIAAAggggAACCCCAAAIIZH+BuMHoISEhyb6ovHnz+syJu6ZPZzpWTDC4eUZhnmW4S/PmzfWf//zHXU3SZ6NGjVxJfNq0aaM6derIZIA3z0COHz+udevWuQLZx4wZo1OnTnnWM+19+vTRH3/8obgB/55BKTj44IMP9PzzZOFNAR1TEEAgFwk8dEV17Tx2Vj+s3m971eZttqN+2qSRV9e17c+2jXkLSZ2HSzMftb+EX6y+23+R9c01+35aEUAAAQQQQAABBBBAAAEEcpRArghwX7JkiStT+zfffKOTJ0+6foHe2dpNg7vetWtXmUzt1157rQoVKuQay/8ggAACCCRTYOd86eQu+0klatu3p7D1iPVKzncdMpmYJUf2qSs/P252ppCXaQgggAACCCCAAAIIIIAAAggggEC2Erhw4YLPfk0gd3JLcHCwz5Tz58/71DOiEhERoWuuuUZ79uzxnK5AgQL68ssv5e/v72lL6KBJkyZasWKFzKddKVmypMzPFVdcoeHDh+v222/XtGnTPEPN3BEjRujNN9/0tHGAAAIIIJD+AiYp22vXNdC+E+e1fNcJ2xOOsxL/VCqaT0PaVrbtz7aNTW+Tlo6Rjm6Jfwl7/pI2TpPqXhO/jxYEEEAAAQQQQAABBBBAAIEcJ+CX467o3wvav3+/Xn31VdWuXVsmK8nHH3+sEydOeALZ3a8kdQe2ux1MZndzE5fgdrcInwgggEAKBFaMt5/kZ32vymRwT8MyetYWhUdE267Yv2k5NSxfyLaPRgQQQAABBBBAAAEEEEAAAQQQQACBnCcQN2O7ebNrcosJLvcucdf07kuP41jr7YgDBw7UokWLPMuboPYvvvhC1apV87QldtCgQQPH4Pa4cwsXLqzvv//elfzHu89kXN+3b593E8cIIIAAAhkgEBLor49vbaoKRfI5nu2FGRv16YLtio296Dgm23X4W8+RerzkvO1fn5OifL/M5jyYHgQQQAABBBBAAAEEEEAAgewskKMyuJvMLFOnTtW4ceP0+++/W/+Yj/UJaDdB7Sag3fzkz5/flf2kSpUqvA4zO/8JZu8IIJD1BM4ekzbPsN9XzZ5S/hL2fSloXbf3lL5dcTmLlfcS+YMD9NiVNb2bOEYAAQQQQAABBBBAAAEEEEAAAQQQyOEC5t6/d4mb0d27z+k4bsb2uGs6zUur9vvuu0+TJ0/2LGeebYwZM0Z9+vTxtKXHgZ+fnz799FPX8xX323CN33fffaeHHnooTU5prq1///7JWmvr1q3q169fsuYwGAEEEMgJAkXzB+vzIc117QcLdfpC/EQ/Jq591E+bNHvjIb3Zv6HKJxAMn608qneTqnaVtv0Wf9vm7cFLPpLaPRS/jxYEEEAAAQQQQAABBBBAAIEcJZAjAtwXLlyo8ePHu26ynj592vULcmdm9w5qDwgIUPfu3XXLLbe4bobmzZtXv/1m8w/jHPUr5mIQQACBDBZY85UU45AZq+ngNNuM+e/8yOkbrC8t2S/5QJdqKlEgxL6TVgQQQAABBBBAAAEEEEAAAQQQQACBHCkQNxj93LlzrqQ37re6JuWiz5496zMs7po+nWlceeqpp1xvpPVe9s0339Rtt93m3ZRuxyaTu3nL7VtvveU5x+zZs9MswL1EiRIyPxQEEEAAgaQJVCuRXx8NbKpBny9VtEOm9qU7juvK/5uvZ3rX0Y3Nyys5f+clbReZMKr7KOmjudLF2Pgnnz9aanSLlVCpePw+WhBAAAEEEEAAAQQQQAABBHKMgF92vZI9e/Zo1KhRqlGjhjp06KDPPvtMp06dct2oNtfk/oe7CYBs0aKF3n33Xe3fv18zZszQTTfdJBPcTkEAAQQQSGMBE22+crz9omEVpCpd7PtS0Prjmv1aseuE7cxKRfNpSNtKtn00IoAAAggggAACCCCAAAIIIIAAAgjkXIFixYp5ng+Yq4yKitLhw4eTdcH79u3zGZ9RAdmvvvqqzI93GTFihP773/96N6X7cdeuVtZcr7JlyxavGocIIIAAAhkt0KZaMb10Tb0ET3s2MkZPTVmn28Yt06HTFxIcmy06S9aRmg6x32pkuDTvZfs+WhFAAAEEEEAAAQQQQAABBHKMQLbM4G5urv7xxx+uYHbvTO3e2dqrVq3qytQ+cOBAVatWLcf8wrgQBBBAIEsL7FkiHf3bfotNbpWs1xynRTkXGa1XZm52XOpZK0tJcIC/Yz8dCCCAAAIIIIAAAggggAACCCCAAAI5U8Akt6lQoYJ27drlucDdu3erZMmSnnpiB2a8d6lVq5Z3NV2O33//fZns7d5l2LBhev75572bMuS4fPnyPuc5cuSIT50KAggggEDGC9zQvIL2HD+v9+ZuTfDk87YcUfe35+uFvnV1dcMyPl/6SnBiVuzsNFxaN1mKOB1/dyvGSc3vlEwgPAUBBBBAAAEEEEAAAQQQQCBHCqRNpGEG08ydO1exsbE+rxU1ge5FixbV/fffr8WLF+uff/7RyJEjCW7P4N8Np0MAgVwusMIhe3se668b87rINCofztumgw4ZSDrWKK4utXjNcRpRswwCCCCAAAIIIIAAAggggAACCCCQ7QTiBqRv3LgxWdewadMmn/Fx1/PpTIPKhAkT9MADD/isdPvtt+vtt9/2acuoSmBgoM+pTBZ8CgIIIIBA5gs80r2GXrm2vvIFJZzg59T5KA37erXu+2Kljp2JyPyNp3QH+YtL7R+xn30xVpr9tKyAAft+WhFAAAEEEEAAAQQQQAABBLK9QLYMcDfqJlu7u7Rr104zZszQgQMH9L///U8tW7Z0d/GJAAIIIJBRAudPShum2p+tWjcprKx9XzJb9xw/p4/nb7edFeCXRyZ7u/ffEbYDaUQAAQQQQAABBBBAAAEEEEAAAQQQyLECjRo18rm2RYsW+dQTqpjnDDt37vQMMcHedeqkX3bY77//XiaY3f22WnPiAQMGaMyYMZl2j+vgwYOe6zcHxYtbAYYUBBBAAIFMFzDPPm5qUUG/DOugFpWKJLqfn9cfVI//m69fNx5KdGyWHdDqXqlQRfvtbftd2jrHvo9WBBBAAAEEEEAAAQQQQACBbC+QbQPcjbz5R7y56WtuTr/22msaO3asTp06le1/KVwAAgggkC0F1n0nRZ+333rTwfbtKWh9eeYmRUZbmTlsyuA2lVStRH6bHpoQQAABBBBAAAEEEEAAAQQQQAABBHKLQO/evX0udc6cOT4B5D6dcSqzZ8/2aencubPy50+f+00///yzbr75ZsXExHjO2atXL02aNEl+fpn3+ObPP//07McclC9f3qdOBQEEEEAgcwUqFM2nr+9qpWd61VZQQMJ/Xxw9E6k7JyzXo9+t0ekL2fCNHAHBUrcXnMFnWVncY7LhdTlfET0IIIAAAggggAACCCCAAAL/CiT8L94szOTOZmKC3GNjY2VuuN59990qVaqUrrvuOk2dOlW8NjML/wLZGgII5CwB8wrIlePtryl/Kal6D/u+ZLYu2nZUJuOIXSkaGqQHu1a366INAQQQQAABBBBAAAEEEEAAAQQQQCAXCbRp00bFihXzXPH27ds1b948Tz2hg88++8ynu2/fvj71tKr88ccfrmcZkZGRniVNMP3kyZNlssZnVomOjtb48b73+bp27ZpZ2+G8CCCAAAIOAn7WG22Htq+imQ+2U4NyYQ6jLjdPXrFXV749Xwu3Hr3cmF2O6lh/F1dobb/bo1ukFePs+2hFAAEEEEAAAQQQQAABBBDI1gLZMsDdZDUxr+gMDg72ybpigt4jIiI0bdo0XX/99SpZsqQr6H3+/PnZ+pfE5hFAAIEsL3BgtXRwnf02G98i+QfY9yWjNTomVs//uNFxxqM9aiosb+Y9/HPcGB0IIIAAAggggAACCCCAAAIIIIAAAhkqYLKfDxkyxOeczz//vM/zBJ/Ofyu//fabFixY4OkqUKCA61mEpyGNDpYvX64+ffro/PnLb0Ns1aqVfvzxR4WEhKTRWVK2zKuvvqqtW7f6TE6vIH+fk1BBAAEEEEiRQLUSBfT9vW30cLcaCrCC3hMq+09d0C2fLtGIH9brXGR0QkOzVp+V8E49XnLe09yXpfMnnPvpQQABBBBAAAEEEEAAAQQQyJYC2TLAvUePHvr666918OBBffjhhzI3fr0zupvfhKmfPHlSn376qUzWk0qVKunpp5/Wxo3OwZHZ8jfIphFAAIGsILDCN6uTz5YaD/SpprTy1dLd2nIo3HZ63TIFNaAZr0q2xaERAQQQQAABBBBAAAEEEEAAAQQQyIUCTzzxhPLnz++5cpMx/bXXXvPU4x7s27dPQ4cO9WkeNmyYTyZ4n85/K+Yts94/iWWK37Bhg6688kqFh1++z9WoUSOZxD7e+7U7V3LazLOT33//PTlT9NZbb2nEiBE+c66++mo1bdrUp40KAggggEDWEgj093O94Xba/W1Vo+Tlv/ucdjlh8S71fGeBVuw67jQk67WXtf4uanCj/b7OW9cxf7R9H60IIIAAAggggAACCCCAAALZViD1KXUz8dILFizoytB+9913659//tHYsWM1adIk7d2717Urc1PZFBPsvnv3bpnMI+anQYMGuvXWW3XTTTe5+vkfBBBAAIFUCESckdZNtl+gckepSBX7vmS0njwXqTd//dtxxsir68o/kcwkjpPpQAABBBBAAAEEEEAAAQQQQAABBBDIcQLFihXT8OHDXT/ui3vqqadczwqeeeYZlSlTxtUcGxvrypxugtnNcwR3Mf2PPPKIu5omnwcOHFD37t117Ngxz3qhoaF6/PHHZbK6J7dcccUVjlOWLFmi++67Tw0bNnRloTdB9XXr1nW9Gdd70rlz52Qy148ePVpx34ZbtGhRV9C793iOEUAAAQSyrkC9smGa/kA7vWU9T/lk/nbrGbnzXnceO6f+Hy3WXR2q6r/dqis4wN95cFbp6Wp9CWvjD1L05TegeLa2fKzU4TEpbyFPEwcIIIAAAggggAACCCCAAALZWyBbB7h701evXl0vv/yyXnrpJdfNWBPsPm3aNM8rPk2wuzvL+5o1a7R27VqZDC41atTwXoZjBBBAAIHkCmyYKkWG289qOti+PZmtb1s3Y0+ei7Kd1adhGTWvVMS2j0YEEEAAAQQQQAABBBBAAAEEEEAAgdwrYJ4BLFq0SDNmzPAgmMzmn3zyiSpWrKiwsDDt2LHD9TZYzwDrIG/evPr2229VqFAh7+ZUH2/ZskX79+/3Wefs2bO6+eabfdqSWnE/80hovHkeYn7MG24DAgJUvnx513UHBQXpxIkT2rlzp6Ki4t93K1CggKZPn66qVasmtDx9CCCAAAJZTMAEqj91VW11q11Sj3y3RrusQHanEmsFwH/0xzbN3XxYbw5oKBMgn6VLWFmp7YPSH3HeyFKrt9TtBYLbs/Qvj80hgAACCCCAAAIIIIAAAskX8Ev+lKw9wwSym6wlX3zxhQ4ePOi6Ud2uXTtPcLv7VaHmxm9MTIw2b97sen2o+6r+/PNP9yGfCCCAAAJJEVg53n5UXivo3NxUTGXZcjBck5bstl0lJNDPulFby7aPRgQQQAABBBBAAAEEEEAAAQQQQACB3C3g5+en7777TjfeeKMPhHk2sH37dq1atSpecLvJWj5z5ky1bdvWZ05OqERHR7sC+levXq2lS5e63oxrF9zesmVLl03r1q1zwmVzDQgggECuFGhmJQb6eVh73dqqYqLXv+VQuPq9v1Dv/vaPomNiEx2fqQPaDpPyl7q0hVL1pcHTpRu/kIryhaxM/b1wcgQQQAABBBBAAAEEEEAgHQRyXIC7t5HJMDJ06FDXazW3bt3qylBSoUIFn2B393h3hveOHTu6Mpg89thjKXolqHs9PhFAAIFcIXBoo7R3mf2lNrIyTwUE2/clsdV8Gen56RsUY9KI2JT7OlVTmUJ5bXpoQgABBBBAAAEEEEAAAQQQQAABBBBAQAoJCdFXX32lyZMnq1GjRo4koaGhuu+++7Rx40Z16tTJcVx26bj33nv10EMPqUmTJgoMDEx028bpyiuvdGVtX7x4MZnbExVjAAIIIJD1BfIFBejFfvU08Y4WKh0WkuCGo63nMG9Zb9O97sNF2nrY4a29Ca6QQZ1BodJVVgb3vu9Ld/0hVe6QQSfmNAgggAACCCCAAAIIIIAAAhktkMcKHrSPGszonWTg+ebOnauxY8dq6tSpMq//NMUEuJvi5nDXzes3TXYX81OnTh3XGP4HgewksGHDBtWrV8+z5fXr16tu3bqeOgcIpErg5yelJR/aL3H/Uql4Tfu+JLb+sv6g7pm0wnZ0WSuw/bdHOiok0N+2n0YEEEAAAQQQQAABBBBAAAEEEEDAToD7ZXYquafNJMNZsmSJ9u3bp8jISBUqVEi1a9d2ZWw3Qd45sZjr3LRpkyt7+/79+xUeHi6Tub1gwYIqXLiwatSoocaNGysoKChLXj7/n82SvxY2hQAC2Uzg1PkovTB9o75fuTfRnQcH+OmxHjV1e9vK8vO79Aw90UkMQAABBBBAAAEEEEAAAQQQyDCB3HK/LCDDRLPQiTp37izzY4Lbv/32W02YMMGV5d0Et7sD292B7uZm90svveT6MUHCa9asyUJXwlYQQACBTBSIuiCt/dp+A+VbpTq4/UJUjF6aaWWIdyhP96pNcLuDDc0IIIAAAggggAACCCCAAAIIIIAAAvYC1apVk/nJTcUErjds2ND1k5uum2tFAAEEELgsEJY3UG8OaKjudUvq6anrdPRM5OXOOEcR0bEa9dMmzd54SG/2b6jyRfLFGUEVAQQQQAABBBBAAAEEEEAAgfQX8Ev/U2TdM5hXjt52220yGd23bdumESNGqFKlSj5Z3E3Auwl2Nz8m8zUFAQQQQOBfgcNW8HlsrD1H08H27clo/XTBdu05ft52RqsqRXRVvVK2fTQigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjEF+hRt5RmPdQhSc9Ylu44riv/b76+Wrrb8/w8/oq0IIAAAggggAACCCCAAAIIIJA+Ark6wN2b1AS2jxw50hXoPm/ePA0ZMkT58+fnH+veSBwjgAAC3gJlm0iPbJb6fSRVaH25JzhMqtPvcj0FRwdPXdD7c7fZzjRvw3yuT13PGzdsB9GIAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQT6Bo/mB9cEsTvXNjIxUMSfiF72cjY/TUlHW6bdwyHTp9Id5aNCCAAAIIIIAAAggggAACCCCQXgIEuNvIdujQQZ9//rkOHjyocePGqUuXLgRS2jjRhAACCCjIei1lo5uk23+R7l8mtf6P1PIuudpTwfPqz5t0PirGdoWbW1ZQ7dIFbftoRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSFjAvMW8b6Oymv3fjupYo3jCg63eeVuOqPvb8/XD6n0kiEtUiwEIIIAAAggggAACCCCAAAJpIUCAewKKefPm1aBBgzRnzhzt2LFDL7zwQgKj6UIAAQRyuUDxGlKPl6Quz6QKYsWu45q2er/tGiaTyMPdatr20YgAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJB0gVJhIRp3W3O9fE195QvyT3DiqfNRGvb1at3/5UodOxOR4Ngs0bl7iXRwXZbYCptAAAEEEEAAAQQQQAABBBBIvgAB7kk0q1Chgp5++ukkjmYYAggggEBKBGJjL+r56Rsdpz7crYaKhAY59tOBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQdAGTzd28PfeXYR3UonKRRCfOXHdQPf5vvn7deCjRsZky4MQu6bsh0ufdpZ8elZVyPlO2wUkRQAABBBBAAAEEEEAAAQRSJ0CAe+r8mI0AAgggkIYCk1fs1dq9p2xXrFEyvwa2qmjbRyMCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDKBSoUzaev72ylZ3rVVlBAwmEER89E6s4Jy/Xod2t0+kJUyk+aljMvnJbmjJTeay5tmHpp5T1/SRunpeVZWAsBBBBAAAEEEEAAAQQQQCCDBBL+l2kGbYLTIIAAAgggEG7dAH191mZHiBG96yrAn7+2HIHoQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRSIeDnl0dD21fRzAfbqUG5sERXMomLrnx7vhZuPZro2HQdcPqA9L8m0p9vSzERvqf6dYQUdcG3jRoCCCCAAAIIIIAAAggggECWFyBSMMv/itggAgggkDsE/vf7VpmMH3ale52Sale9mF0XbQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAmkoUK1EAX1/bxs93K2GAqyg94TK/lMXdMunSzTih/U6Fxmd0ND06ytYWirVwH79k7ulJR/Z99GKAAIIIIAAAggggAACCCCQZQUIcM+yvxo2hgACCOQegd3Hzmnswh22FxxkZW1/plcd2z4aEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE0l4g0Ho+82DX6pp2f1vVKJk/0RNMWLxLPd9ZoBW7jic6Nl0GdB8l5XEIf5g/WjpzJF1Oy6IIIIAAAggggAACCCCAAALpI+DwL7z0ORmrIoAAAghkY4HYWOnixXS5gHGLdioqxn7toe0rq0LRfOlyXhZFAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBwFqhXNkzTH2inuztWUZ6Ek7lrp5XQqP9Hi/Xe7/9Yj5Tsn/s4nymVPSWtZElNh9gvEhkuzX3Jvo9WBBBAAAEEEEAAAQQQQACBLClAgHuW/LWwKQQQQCALCmydI/2vifTn21aWi8NptsGzEdH6bvke2/VKFgzW/Z2r2fbRiAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkP4CwQH+euqq2vru7taqmEhSolgrrn307L/19px/0n9jcc/QabgUXDBu66X6yvHSoY32fbQigAACCCCAAAIIIIAAAghkOQEC3LPcr4QNIYAAAllUwNz4O75dmjNSequ29M1A6R8r6D02JlUbnrpqn8KtIHe78tAVNRQaHGDXRRsCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAGCjSrVEQ/D2uvW1tVTPSs7/72j/5n/WRoyV9cav+I/SkvWm8qnv10ur2t2P6ktCKAAAIIIIAAAggggAACCKRUgAD3lMoxDwEEEMhNAuGHpC0/X77iWCsgfdN06YvrpJ+fuNyezCPzesoJi3faziqcL1DXNC5r20cjAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAxgvkCwrQi/3qaeIdLVQ6LCTBDbz569/66I9tCY5J886W90iFHALwt/0urf4yzU/JgggggAACCCCAAAIIIIAAAmkvQIB72puyIgIIIJDzBFZ/YWW0cMjUXqdviq938fZj+vvQGdv5NzSvoJBAf9s+GhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBDJPoH314vrloQ66rkm5BDfx6s+b9dmfOxIck6adgVbQfbfnnZf84T7p+zul8yecx9CDAAIIIIAAAggggAACCCCQ6QIEuGf6r4ANIIAAAllcINZ6ZePKCfabLFJFqtTOvi8JrRMW7bId5ZdHuqVlBds+GhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBDJfICxvoN4c0FBv39BQ5tmOU3lxxkbHN/o6zUlVe51+UoXWzkus+1Z6v5X092znMfQggAACCCCAAAIIIIAAAghkqgAB7pnKz8kRQACBbCCwc4F0wiGzRpNBUp4E7lgmcHn7Tp7X7I0HbUd0rV1S5Yvks+2jEQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIOsIXNO4nEb3b5jgI6MRP2zQV0t3Z8ymzbOrHi8lfK4z1jOqL/tLP9wvXTiV8Fh6EUAAAQQQQAABBBBAAAEEMlyAAPcMJ+eECCCAQDYTWDnefsN+AVKjW+z7ktD6xV+7FHvRfuCQNpXsO2hFAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIcgLXNimn165tkOC+hk9dp++W70lwTJp1lm0qtXkg8eVWTZI+aCNtm5v4WEYggAACCCCAAAIIIIAAAghkmAAB7hlGzYkQQACBbChw7ri0abr9xmteJeUvYd+XSOuFqBh9vcz+BmbV4qFqU7VoIivQjQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkJUEBjQvr5evqe+4pYtW4qPHv1+rqav2Oo5J044rXpDaP2K9jTiRsIjT1n4m9pNmPCxFnEnTLbAYAggggAACCCCAAAIIIIBAygQS+ZdcyhZlFgIIIIBADhFY87UUE2l/MU2G2LcnofWntQd0/Kz9uoOt7O15zKsjKQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAtlK4OaWFfT81XUd92yC3B/5do1mrN3vOCbNOvyscIiuI6TbZ0tFqyW+7PLPpI/aSvtWJj6WEQgggAACCCCAAAIIIIAAAukqQIB7uvKyOAIIIJCNBcwdxpXj7S8grLxUtbN9XyKtF611xy/eaTsqf3CAzCssKQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAtlTwCQzeqZXbcfNx1qPoIZ9vVq/rD/oOCZNO8o3l+5eILW631o2kSRLZ45IeQun6elZDAEEEEAAAQQQQAABBBBAIPkCBLgn34wZCCCAQO4Q2LNUOrLZ/lobD5T8/O37Emldveek1u49ZTvq+qblZILcKQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAtlXYGj7KnriylqOFxBjRbk/8NVKzdl4yHFMmnYE5ZOufFka8pNUuJLz0t1flIpUdu6nBwEEEEAAAQQQQAABBBBAIEMECHDPEGZOggACCGRDAafs7XmsvzpMgHsKy4TFuxxn3tq6omMfHQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAtlH4N5OVfVwtxqOG46Kuaj7vlipeVsOO45J845KbaV7FkrNh8Zfukpnqdnt8dtpQQABBBBAAAEEEEAAAQQQyHABAtwznJwTIoAAAtlA4IKVYX39FPuNVrtCCitn35dI65HwCM1Yu992VPvqxVS1eH7bPhoRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSyn8CDXavrgS7VHDceGROruyau0J//HHUck+YdwdbzqF5vSrdOkwr++8wruKDU9z0pT540Px0LIoAAAggggAACCCCAAAIIJF8gIPlTmJEVBbZt26alS5dq7969ioyMVOHChVWrVi21adNGISEhmbblkydPatmyZdqxY4fMcWxsrMLCwlSuXDk1b95cpUqVyrS9pebEGzZs0IoVK3TgwAHFxMSoaNGiqlevnlq2bKmAAP5vlRpb5mYRgXWTpejz9ptpMti+PQmtXy/dLZONw64Mbl3Jrpk2BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBbCxgsrib50Mf/bHN9ioio2M1dMIyjR3SQq2rFrUdky6NVa2M7fctkmYNlyq0TnGCp3TZG4sigAACCCCAAAIIIIAAArlcgEjcbP4HYNq0aXrxxRe1cuVK2yvJnz+/hgwZoueee07FihWzHZMejVOmTNF7772nefPm6eJF+2BWc97GjRvrnnvu0e23357kwPCdO3eqcuXKqdp2QntyWtjMGTt2rF577TX9/ffftsNMoPu9996rJ598UqGhobZjaEQgWwisHG+/zfwlpRo97PsSaY2yMnBMWrLLdlT5InnVuVYJ2z4aEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEsq9AHisr+hNX1rSC3GP12Z87bC/kQlSs7hi/TONvb6HmlYrYjkmXxpAwK3P7+8lbeu8KKdBKMleybvLmMRoBBBBAAAEEEEAAAQQQQCDJAn5JHsnALCUQERGhgQMH6pprrnEMbjcbPnPmjCvQvE6dOpo/f366X8OxY8fUq1cvXXfddZo7d26Cwe1mM6tWrdLdd9+tVq1aaevWrem+v5SewGSf79Gjh+644w7H4Haztrn+UaNGqUGDBjJZ3ikIZEuB/aulA2vst97oZsk/0L4vkdbZGw7p0OkI21G3tqoof788tn00IoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIZG8BE+T+TK/aGtS6ouOFnIuM0W1jl2nl7hOOYzK9I+KM9P3t0iedpAVvSjHRmb4lNoAAAggggAACCCCAAAII5EQBAtyz4W81NjZWN9xwg7744guf3fv7+7symzdq1EhhYdY3zb3KkSNHdNVVV2nx4sVerWl7ePr0aXXv3l0zZ86Mt3Dx4sXVpEkTNW3aVKVKlYrXv2LFCnXu3FkmO3tWK+fPn3cFt//6668+WwsKClKNGjVUv379eNnat2/f7rqerBy073MxVBDwFnDK3m7GNBnkPTJZx+MX77QdHxLopwHNytv20YgAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJAzBEyQ+8g+dXVTiwqOF3QmIlqDP1+qtXtPOo7J1I45z0kndlqB7ZHSby9In1tvPj5i//bvTN0nJ0cAAQQQQAABBBBAAAEEsrlAQDbff67c/htvvKEffvjB59rvuecePfvssypTpoyr3QTBmzEPPfSQdu/e7Wo7d+6cBgwYoPXr18cLgPdZLIWV4cOHx8smf/XVV2vkyJFq3Lixz6qbNm3SSy+95BOkv3fvXt11112aPXu2z9jEKiao/rHHHktsWIr7H374YS1dutQz38/PT08//bT++9//qnDhwq72yMhIffnllzJjT5y4lFHAfKnAeC9btkzmywcUBLKFQORZae139lut3EEqUsW+L5HWTQdOa+mO47aj+jUqq0L5gmz7aEQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMg5An7WG31f6ldPUTGxmrxir+2FhV+I1q2fLdWXd7ZU3TK+id1sJ2RU4/Z50rJPfc+2b7n0cXup6wip5b2S9SyZggACCCCAAAIIIIAAAgggkHoBAtxTb5ihKxw7dswVGO590ldeeUVPPvmkd5P172Y/XXPNNWrRooXatWvnyYxugsjfeustPf/88z7jU1s5fPiwPvroI59l7r33Xn3wwQc+be5K7dq1NWnSJNWsWVMjRlj/2P+3mCzpJst869at3U2JfpYuXVpXXHFFouNSMmDz5s0aM2aMz1Sz75tuusmnzWRzHzJkiJo3b+7yPnnypKt/1apVmjBhgm677Taf8VQQyLICG6ZJkeH222sy2L49Ca0THLK3m6m3JvAqyiQszRAEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFsJGCC3F+7roGirSD3aav32+781PkoDfx0ib6+q7VqlipgOyZDGy+cln74j/0poy9Is4ZLm2ZI/d5PccIo+8VpRQABBBBAAAEEEEAAAQRypwBfH85mv/fXX39d4eGXg087dOigJ554wvEqypYtq08/9f0W+dtvvy0TKJ+WZcaMGYqJifEsWbx4cY0ePdpTdzowmdBNsLt3mT59unc1U4+fe+45n+u69dZb4wW3e2+wbt268a7bfJkgKirKexjHCGRdgZXj7feW13pbQe0+9n2JtJ46F6Wpq/bZjmpeqXDWyrxhu0saEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE0lLA3wpyH92/oXo3KO247AnrGdMtn/6lrYcvPx93HJzeHWu+kk7tSfgsuxdJH7aVlloJ1Kw3rlMQQAABBBBAAAEEEEAAAQRSLkCAe8rtMnxmrPWP4LFjx/qcd+TIkcqTJ49PW9xK165d1b59e0+zCZD/9ttvPfW0ONiyZYvPMj169FC+fPl82uwq7kzz3n1bt271rmba8YkTJzRlyhTP+Y2z8U6smGztFStW9AzbtWuX5syZ46lzgECWFTi8SdqzxH57DW+SAoLt+xJp/Xb5Hl2Isr+JN7hNpURm040AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJATBQL8/fT2DY10Zd1Sjpd39EykbhqzRNuPnHEckyEdLe6S+lpvLw8umPDpos5JMx+VJvaTTiYSEJ/wSvQigAACCCCAAAIIIIAAArlagAD3bPTrX7RokY4cOeLZcZUqVdSpUydPPaGDO+64w6d72rRpPvXUVo4fP+6zRPny5X3qCVUqVKjg033y5EmfemZVfvrpJ0VHR3tOb6yNeWLFBO2bIHfvktbe3mtzjECaCZy1/vtStJr9ck0G27cn0hoTe1ET/9plO6pEgWD1SOCGpe0kGhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBHKMQKAV5P7uTY11Re0Sjtd0JDxCN1tB7ruOnXUck+4dVjI0Nb5Fum+xVLVL4qfb8Yf0QWtp5QTp4sXExzMCAQQQQAABBBBAAAEEEEDAR4AAdx+OrF0xAdfepVu3bolmb3ePN2O9y7x583T2bNrdAAgLC/NeXufPn/epJ1SJO7ZYsWIJDc+wvrje3bt3T/K543rPmDEjyXMZiECmCVTuIP1nuTRkptTgBitje8ilrZRvKZWolaJt/fH3Ye0+bmWqsCm3tKwoc9OSggACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkHsFggL89P4tTdSxRnFHhIOnL7iC3Pc4PHdynJjWHWHlpIFTpN5vS4GhCa8eGS79+ID05QDp9IGEx9KLAAIIIIAAAggggAACCCDgI0BkoQ9H1q6sXr3aZ4Nt2rTxqSdUKVOmjCpVquQZEhkZqY0bN3rqqT1o1KiRzxLLli3zqSdUWbp0qU93ixYtfOqZVUmNd9OmTRUcHOzZ+v79+32y73s6OEAgqwmY7BOV2krXfiI9slm66g2p3cMp3uW4RfbZ2wP98+imlkl/00OKN8BEBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBLC8QHOCvj29tqnbVnJOh7Tt5Xjd/+pf2W5+ZWszztGa3W9ncF0kV2yW+lX9mW9ncrYRSa74hm3viWoxAAAEEEEAAAQQQQAABBFwCBLhnoz8ImzZt8tltnTp1fOqJVeKOj7teYvMT6u/du7dCQy9/Q33hwoVavHhxQlNcfVu3btX333/vGRcSEqKbb77ZU0/OwZ49e2QC6xcsWKANGzakKqA8KipKZm/eJa6fd1/cYxPcXrVqVZ/mtPT2WZgKAuklkLew1PIuqeaVKTrD9iNnNP/vI7Zze9YvrRIF/s0QbzuCRgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgdwkEBLorzGDmqlVlSKOl73nuBXkPuYvHbIyumd6KVxJGjxduvI1683IeRPezoVT0lTruds3A6UzhxMeSy8CCCCAAAIIIIAAAggggIAIcM8mfwjOnz+v3bt3++y2fPnkZT+OO37Lli0+66WmUqhQIQ0fPtxnieuuu84VcO7T6FUxAd89e/aUySbvLqNGjVKJEiXc1SR9zp49WyZDfYUKFWSyv3fo0EH16tVzrVO5cmXddtttSQq29z7Z9u3bFR0d7WnKmzevihVzzhbgGeh1kJ7eXqfhEIEsKzDxL/vs7WbDg1pXyrL7ZmMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKZI5A3yF+fDW6u5pWsREwOZeexc7rJCnI/Eh7hMCIDm/2skItW90j3/CmVa5H4iTfPsLK5t5I2TE18LCMQQAABBBBAAAEEEEAAgVwsQIB7NvnlHz16VBcvXvTsNjAwMNmB4GXLlvXMNweHD6ftN8OffPJJn+zrBw4cUOvWrdW3b1+9//77mjFjhn766Sd98sknuvHGG9WwYUP9888/nj2Z+Y888oinntQDcx7zY1d27typcePGqU2bNuratWu8LwnYzTFtcW3i2jnN826POyfumt5jOUYgpwmcjYjW5OV7bS+rftkwNalQyLaPRgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgdwtEBocoLG3tVDjBJ4nbT9yVrd8+peOnckCQe7m11WsmnT7L1K3FyT/4IR/geeOSd8NkSbfLp07nvBYehFAAAEEEEAAAQQQQACBXCoQkEuvO9td9pkzZ3z2nC9fPuXJk8enLbFKaGioz5C4a/p0pqDiZ307fdKkSa5g8ueff15HjhxRTEyMfvzxR9eP05Jt27aVGW8C0NOz/P7772rcuLGmTp3qyvKe0Lni2sS1S2iuuy/unLhruscl59MEyRvX5JStW7cmZzhjEUgTgSmr9incCnK3K4NaV0z2f7/s1qENAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgZwrkt4Lcx1lB7rd+tkRr956yvci/D52xgtyX6Ks7W6lwaJDtmAxt9POX2g6TqveQpllZ3fevSvj067+XTu+/FBif8Eh6EUAAAQQQQAABBBBAAIFcJ0CAezb5lccNjg4JCUn2zvPmzeszJ+6aPp0prJig+/vvv9+Vtf3ee+91ZW1PaCkT3G6ytnfu3DmhYbZ95cqVU58+fdSlSxfVq1dPpUuXlgkqP3XqlHbs2KG5c+fqo48+0vbt2z3zjx8/7trb4sWLVatWLU973IO4NlnF+4MPPnB9GSDufqkjkJUEzNsmJizaabulwvkC1adhGds+GhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBwC4TlDdSE21vo5jFLtPHAaXezz+fmg+G69fMl+uKOVgqznkNliVLCeg59xxzpz7elP16TYqMctmUltOv6nEMfzQgggAACCCCAAAIIIIBA7hbwy92Xn32u/sKFCz6bDQpK/jfQg4N9X4V2/vx5nzXTonL27Fk9/PDDqlGjRqLB7eZ8Cxcu1LXXXqu6devqr7/+StIWwsLCXBnhd+3aJRPwff3117uC1U17QECAihYtqmbNmumxxx7T33//reeee04mu7y7nDx5UgMHDpQJwnUq2cXbaf+0I5CZAou3HdM/h33fOuHez40tKigk0MpeQUEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgEYFC+YI0aWhL1SxZwHHk+n2nNcgKcj99wSmQ3HFq+nX4W7kGOz4m3TVXKlnP/jyt75cqtrbv8241gfK/PCWt/lI6sFaKjvTu5RgBBBBAAAEEEEAAAQQQyJECl6N+c+Tl5ZyLiptBPDIy+f9ojYiI8AGJu6ZPZwoq+/fvdwWWv/3223IHz9esWdMVhL5582aZrOjnzp3Ttm3bNG7cODVt2tRzFtPfvn17TZs2zdPmdFC4cGFX5nbvoHWnsf7+/ho5cqTeeustnyErVqzQlClTfNq8K3FtsqK39345RiBFAhes1zlGnk3R1IQmjV+807bbz0pCcUvLCrZ9NCKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBgJ1AkNEhf3NlS1Urkt+t2ta3Ze0q3jV2mMxHRjmMypaNUfelOK8i9gxXsnscrCVSxGlKXZ5K2pXWTpb8+kKbdK33cXnq5tPRhW2nK3dKi/0nb50lnjyVtLUYhgAACCCCAAAIIIIAAAtlEwPraMCU7COTP7/uP9bgZxpNyDe6gc/fYuGu621PyafbTvXt3mUB1dxk6dKjef/99xc02X6VKFZmfQYMG6dlnn9VLL73kmhIdHa2bbrpJK1euVO3atd3LpMnnsGHDNHXqVP3xxx+e9SZOnKjrrrvOU/c+iGuTVbzvu+8+9e/f33uriR5v3bpV/fr1S3QcA3KhwF8fSovfl+pfLzUZLJVplGqEvSfO6deNh2zXuaJ2SZUrnM+2j0YEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEnASK5Q/Wl1Ym9xs++Us7jp61HbZi1wndPm6Zxt3WXPmCslAoRID1dnYTzF7zKmnqvdKxf6R+H0mBeW2vw6cxOkI6cvkZvKsvNlo6tP7Sj5XQ3VMKlJZMQL3JGF/K/DSQilSR/LwC6z2DOUAAAQQQQAABBBBAAAEEsrZAFvpXXdaGyuzdxQ24NpnQL168qDx5rJTISSxnz/r+Qz/umklcxnbYa6+9pg0bNnj6unTpoo8//lgJZVk3ex81apR2794tE2xuigkkf+SRRzRz5kzPWml1YNb1DnD//fffZYLqAwLi/98grk1cu6TsKe6cuGsmZY24Y0qUKCHzQ0Eg1QKxMdKqSVLEaWn555d+Sje0At0HWQHv/aWQsBSd4osluxV70X7qkDaV7DtoRQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCARgRIFQ/Sllcn9ho//0u7j52xHL91xXEPHL9fnQ5orJDCLBXaXbSrdPV/a+adUzjpOSjmyRTIB7Ukp4Qck8/PP7MujA6wg+pJ1/g16t4LfXQHwdaXgApfHcIQAAggggAACCCCAAAIIZEEBvyy4J7ZkI1CsWDGfYPaoqCgdPnzYZqRz0759+3w60ypQOiYmRu+9957P2iZwPaHgdu/BJoO799hffvlFe/bs8R6SJscm6N77CwHh4eE6cMD6B75NiWsT185mSrymuHPirhlvAg0IZKTAtrnSqTj/PzuwRvrpESvw/YsU7eRCVIy+Xrrbdq55ZWTrqkVt+2hEAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAICkCpcPy6qu7WllvDbYCtx3Kom3HdOeE5TLPrrJcCQyRql+R9G2ZTO2pKdHnpX0rpJXjpZmPSp/3kF4pJ73TSPpmoHT+ZGpWZy4CCCCAAAIIIIAAAgggkG4CBLinG23aLpw3b15VqFDBZ1GT+Tw5Je74WrVqJWe649i1a9fq6NGjnn4TjN+qVStPPbGD8uXLq2FDK3P0v8Vkpv/zzz/d1TT7DA0NVeHChX3WO3LkiE/dXalSpYpPZvfz58/Laax7TtzP9PKOex7qCKRIYOU4+2n+1isSG95o35dI6/Q1+3XiXJTtqMGtK/p8wcR2EI0IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIJCJQtpAV5H5nK5UOs4LFHcqCf47qvi9WKjI61mFENmk+mMoAd6fLPLFD2vpb0jK5R5yRzljP1SPPynrNvNOKtCOAAAIIIIAAAggggAACaSoQkKarsVi6CpiA9F27dnnOsXHjRjVv3txTT+xg06ZNPkPSKsB9xw7rH79epVKlSskOZK1cubJWrVrlWSVu9nNPRyoPAgMDfVYwmfDtihlXtWpVbdlivfLt32K8O3bs6K4m+BkREaHt27f7jEkrb59FqSCQEoEz1tsftvxsP7P21VK+IvZ9CbSaL6aMX7zTdkSB4ABd28TKBEFBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIA0EyhfJ5wpyH/DxYh0Oj7Bd8ffNh/WfL1fq/VuaKNA/m+b+q2AllrtwUjq4TjqyWYqJtL3WFDWWqCP5+Sc+dbX19uefH/93XB4pMJ8UFGr9mM/8l449babd+nHVTZ97rHVsNyavlaAuBc8mE980IxBAAAEEEEAAAQQQQCC7CxDgno1+g40aNdKsWbM8O160aJEGDx7sqSd0cODAAe3cudMzxARw16lj/YM1DYoJ5vYuAQHJ/2MVN/A8JibtXxcXHR2tY8eOeW9VxYsX96l7V4y3d4C78U5qgPuKFSvk7VK6dGmVKFHCe3mOEcg8gdVfSrHR9udvMsi+PZHWVXtOav2+07ajrmtaTqFWkDsFAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgbQSqFQsVF9amdxv/OQvHT3j+8zafY7ZGw/poa9X650bGykgOwa517GSU5kfU2Ks5G1H/7aC3ddLh6yAdxP0bo7PHb3Un9z/LVU/aTNM5nZPuShFWXXz493s6U/mQa3e0o1fJD5p30pp5fhLAfUhYVLFNtZPW1mZ9xKfywgEEEAAAQQQQAABBBDIlgLZ9GvK2dI61Zvu3dv6x51XmTNnjvUGMOsfkEkos2fP9hnVuXNn5c+f36ctpZWiRYv6TN2/f79PPSmVuBnbEwo8T8p6dmP++usvmSB3dzGB+KVKlXJX433G9f7111/jjXFqiDu2T58+TkNpRyBjBcx/M1ZOsD9n4cpSpfb2fYm0jl+003HEoNYVHfvoQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCClAtVK5LeC3FuqSGiQ4xI/rTugh79do5jYpD1bd1woszv8A6WSdaWGN0jdR0mDfpAe2yo9skW65Xup63NSveukYjWtwO8khIKUqpe0K/IJcE/alCSPMhngk1KO/iOtGCctfk+a+5I0rpc07T4rqVdMUmYzBgEEEEAAAQQQQAABBLKhQEA23HOu3XKbNm1UrFgxHT161GWwfft2zZs3TyZYPbHy2Wef+Qzp27evTz01lUqVKvlM3717t7Zt26aqVav6tDtVwsPDtWzZMp/upM71mZRIJa5B69atlS9fPsdZPXv2lAmCdwfFG2tjXqVKFcc5psN86WDcuHE+Y9LS22dhKggkV2Dnn9LxbfazTPZ2vyTc7Ioz+3D4Bc20bgzalQ41iqtK8STemLJbgDYEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEhCoUbKAJt3RUjd/+pdOnouyHfnjmv0K8Mujl66pr7xB/rZjsmWjyWBewErqZn6qX3H5EiLPSUc2XcrwbjK9H1p/6Tgy/PKYkvUvHyd0lK4B7s7P6322ZDLGxy1rrLdWF60qdXg0bg91BBBAAAEEEEAAAQQQyAECyY9kzAEXnV0vwc8KPB0yZIjP9p9//vlEs7j/9ttvWrBggWdegQIFNGDAAE89tQc1atRQuXLlfJYZPXq0Tz2hyltvvaWIiMuvjDNB561atUpoSrL7THD6xIkTfeb169fPpx63UqRIEXmPMYHrI0eOjDssXv3zzz/Xzp07Pe0VK1bUFVd43Uzw9HCAQAYLmOzti9+3P6lfgNToFvu+RFq/XrpHUTH2GS8Gk709ET26EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEUitQp0xBV5B7wRDrmZdDmbJqnzq8MVcTF+9UZHSsw6gc0hxkBY6XbSo1HSz1sp7d3/6L9NQeadga6YZJUscnL2WDT8rl2gWXJ2VeUsYEhSZllOQUZD/vFWn/qqStwSgEEEAAAQQQQAABBBDIVgIEuGerX5f0xBNPKH/+y9mQ//jjD7322muOV7Fv3z4NHTrUp3/YsGGuTPA+jXEqeaxvenv/mADxhMrAgQN9uj/++GNNmDDBp82uMn36dI0aNcqn68Ybb1RwcLBPm7vy66+/auzYsZ6s6u72hD5///13XXvttYqJufx6stKlS+uee+5JaJqrz3yBwHyxwF1MkPxXX33lrsb73Lhxox599FGf9meffVZBQc6vxPMZTAWB9BRY/rn098/2Z6hxpZXZoaR9XwKtUTGx+mLJLtsRFYrkU6eaJWz7aEQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgLQXqlQ3TRCuTe4HgAMdlj4RH6NkfNqjrW/M0ZeVexcTaJ3FyXCA7d5hs74UrSbX7SJ2fkoIvxx0keFlOweUJTkpiZ2BSA9zP2S8YGy19f6cVAO/Qbz+LVgQQQAABBBBAAAEEEMgGApcjd7PBZtmiXIHpw4cP96F46qmndN9992n//v2e9tjYWE2bNk1t2rTxySZepkwZPfLII55xaXXw+OOPy2Q8dxeT7Xzw4MG67bbbtGHDBnez53Pr1q164IEHXBnSo6Otf3T+W0z29hEjRrir8T5NwP7tt9+uSpUq6b///a/mzp2rU6dOxRtngtmXLFni2kO3bt104sQJzxgTsP7+++/LnCuxUqdOnXhfEDDB/GaP3mtGRUVp3LhxateunU6ePOlZtkGDBq49eBo4QCCzBMyrB3+xblQ5lSZW9oYUlFkbDurQ6ctvYPBe4tZWFeVvveqRggACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBGCDQsX0jjbm+u0CD/BE+35/h5PfztGl35f/P1y/qDib41PcHFcnrnla9K9/0lDf1NGvSjdKOVEO7aT6U+70g9XraC5Z+R2j4ktbjr0huj6/STqnWTKrSRSjeUilazEm2VsQLqw6Q8cX4vSc7gHu6sfOwf6VfnGAPnifQggAACCCCAAAIIIIBAVhbIYwUiX8zKG2Rv8QVM8Hrfvn01Y8YMn05/f39VrFhRYWFh2rFjh0+gtRmYN29emQzobdu29ZlnVzHZ272LCSTv1KmTd1O84/nz56t79+6KiIgf7FqiRAmVK1fOlRXeBOIfOHAg3nwTeD5lyhTXtcXr/LfBBJGboPm4pWzZsq4A+9DQUJ0+fVq7d+/WmTNn4g5znf+dd95xBdfH63RoOHfunDp27Kjly5f7jDBZ2StXruzKNr99+/Z45ytWrJgWLlyoGjVq+MzL6Ir5gkG9evU8p12/fr3q1q3rqXOQCwQirBs+n3SSjm21v9gS1p+HexZIfnFuKNmP9mkd8NFiLd153KfNVEIC/fTXU11VKF9QvD4aEEAAAQQQQAABBBBAAAEEEEAAgcwU4H5ZZupzbgSSL8D/Z5NvxgwEEEAAAWnJ9mMaMnaZzkddfst3Qi4NyoXpsR411a5aMdcz5YTG0pcKAROeEhNpZVw/e+nHZJHPWzjxBdd8I021AugTKrd8L1W/IqER9CGAAAIIIIAAAgggkCMEcsv9MjK4Z8M/riYQ/LvvvtONN97os3uTtdwEWq9atSpecHvRokU1c+bMJAW3+yyajEqHDh00Z84cV5B93GmHDx/WypUrtWLFCtvg9pIlS2r69OkJBrfHXdO7bjK7r1u3Tn/99Zc2btwYL9jcjC1durRmzZqVrOB2M89kejfzunTpYqqeEhkZqS1btmjt2rXxzmcyzP/++++ZHtzu2SwHuVfA3CSa8bBzcLt/sHTNRykKbt+4/7RtcLvBvqZxWYLbc++fOq4cAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMhUgZZVimrsbc1VJDRpyZjW7j2lWz9bqpvG/KUVu05k6t5z9MlNor0A6/lkviJSofJJC243IA1vkJ47KdW91pnnh/uks8ec++lBAAEEEEAAAQQQQACBbCXgl612y2Y9AiEhIfrqq680efJkNWrUyNMe98BkNL/vvvtcQd+JZWCPOzcl9Xbt2rkCzd9++23VqlUr0SVMIPioUaNkvlHSs2fPRMebIPPnn39e5loKFCiQ6HjzZYAmTZroo48+0tatW9Wtm/UqtBSUIkWKuLLff/LJJ6pWzXqFmkMx44YPH+4yqF+/vsMomhHIQIFVk6R13zqf8MqXrW9/NHDuT6BnwuKdjr23tqrk2EcHAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAukt0MoKcp/zcEfd2b6yggKSFhrx1/bjuu7DRRo6fpk2HTid3ltk/eQI5LGC43u/JRUsaz/rzCEr8dcwySQAoyCAAAIIIIAAAggggEC2F8hz0SrZ/iq4AFfw9pIlS2QymZvM4oUKFVLt2rVdGdtNMHxmlYMHD2rZsmXav3+/K6u8+eMWFhYmk7G9WbNmqlChQoq3Ztbatm2b69r37NnjWv/ChQsyQf2FCxdW+fLl1aJFCxUsWDDF53CaaLLFm4z0Bw4ckMmcbzLk16tXTy1btlRgYKDTtExpzy2vo8gU3Kx+0sObpE86S9Hn7Xdap5/Uf5ys9yza9yfQevJcpFq98psuRMXGG9WiUhF9e0/reO00IIAAAggggAACCCCAAAIIIIAAAllBgPtlWeG3wB4QSLoA/59NuhUjEUAAAQScBQ6cOq///b5V3yzbo5jYpIVImEdofRqU0X+71VDlYqHOi9OTsQLb50kT+jqfs+8HUuNbnPvpQQABBBBAAAEEEEAgmwvklvtlAdn898T2/xUwWcUTyiyeWVClSpVSnz590uX0eaw7Cpl13SY7Oxna0+XXyqJpJRB5VvpuiHNwe+FK0tXvpii43Wzx2+V7bIPbTd/gNpXMBwUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBLCFQOiyvXr6mvu5qX0X/N+dv/bBmf6KJvk2qwB+tcT+tO6ABzcrpwa7VZdahZLJAlU5Sq/ulv96338jPT0iV2krmeSgFAQQQQAABBBBAAAEEsq1A0t7DlW0vj40jgAACuVRg5uPSkc32F+9nvWXg+rFSSJh9fyKtJqvFxL922Y4qWTBY3euWtO2jEQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHMFKhkZWL/vxsb6+dh7dWtTtKeaZlnY18t3aOOb8zTqBkbdexMRGZeAuc2Al1HSCXq2FtEhktT7pZiY+z7aUUAAQQQQAABBBBAAIFsIUCAe7b4NbFJBBBAIBkCa76WVk9yntB9lFS2iXN/Ij3zthzWnuPnbUfd0rKiAv35q8UWh0YEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEsIVCrVEGNGdRMU+5ro9ZViiZpT5HRsfr0zx3q8PpcvfXr3zp9ISpJ8xiUDgKBIdK1n0j+QfaL7/lL+vNt+z5aEUAAAQQQQAABBBBAIFsIEIWYLX5NbBIBBBBIosAJK7P6jIedB9fqLbW0MhakooxbtNN2dqB/Ht3UooJtH40IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIZDWBJhUK66u7WumLoS3VsHyhJG3vbGSM3v3tH1eg+8d/bNN5q07JBIFS9aUuzzifeN4r0v5Vzv30IIAAAggggAACCCCAQJYWIMA9S/962BwCCCCQTIGw8lKnJ6Q8/vEnhlnB533fs/ryxO9LYsu2I2e04J+jtqN71S+t4gWCbftoRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCrCrStVkzTrGzun9zaVDVK5k/SNk+ei9IrP29WxzfmauJfu2QyvFMyWKD1f6SK7exPGhstTblLijxn308rAggggAACCCCAAAIIZGkBAtyz9K+HzSGAAALJFPCz/rPedph0+y9SwXKXJ/sFSNd/LuUtfLktBUcTF1sZ4h3KoDaVHHpoRgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBrC+SxkkR1r1tKPw/roLdvaKgKRfIlacOHwyP07LT1uuKtPzR11V7FxF5M0jwGpYGAn5X065oPpeCC9osd/Vua85x9H60IIIAAAggggAACCCCQpQUIcM/Svx42hwACCKRQoHwL6Z4FUs2elxboat24Kd88hYtdmnYmIlqTV+y1XaNBuTA1TuJrG20XoBEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBLCDg75dH1zQupzkPd9SofvVUIolvMN59/Jz++80aXfXOfM3acFAXLxLoniG/zkLWW6x7vel8qqWfSFvnOPfTgwACCCCAAAIIIIAAAllSgAD3LPlrYVMIIIBAGgjkKyLd+KU0YKJkXs+XyjJ15V6ZIHe7Mqh1JZmsFhQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEcoJAUICfBraqqD8e66zhPWupUL7AJF3W34fO6O6JK9Tv/YX685+jSZrDoFQK1O8v1b3WeZFp90vnjjv304MAAggggAACCCCAAAJZToAA9yz3K2FDCCCAQBoKmKDzOldLfqn7z73JMDF+8S7bjRUJDVLvBqVt+2hEAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIDsL5A3y110dqmr+4531YNfqCrXqSSlr9p7SwM+W6OYxf2nl7hNJmcKYlAqYZ6K935IKlLFf4Zz1RYNdC+37aEUAAQQQQAABBBBAAIEsKZC6iMcseUlsCgEEEEAgrQUWbTumrYfP2C57Y/PyCglM2o082wVoRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCCLCxQMCdTD3Wq4At2Htqssk+E9KcU8Z7v2g0UaOn65Nh88nZQpjEmJQN7C0jUfxp9ZrIY0dI5Uu0/8PloQQAABBBBAAAEEEEAgywok7V9cWXb7bAwBBBBAICMExi/aaXsaPysZwi3WqxkpCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCOQGgaL5g/VM7zr647FOuqlFBfmbB2ZJKHM2HdJV7yzQsK9XaefRs0mYwZBkC1TpJLW67/K0FndJd/0hlWl8uY0jBBBAAAEEEEAAAQQQyBYCBLhni18Tm0QAAQTiCERHxGlIv+reE+dkbrjZlW51Sqpsobx2XbQhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkGMFSofl1SvX1tdvD3dU30ZllCcJce4XL0o/rN6vrm/9oaemrNPBUxdyrE+mXVjX56QqnaWB30s935CC8mXaVjgxAggggAACCCCAAAIIpFyAAPeU2zETAQQQyByB6Ehp7FXS7GelmKh038Okv3Yr1rrZZlcGt6lk10wbAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAArlCoFKxUL1zY2PNfLC9rqhdIknXHGM9fPtq6W51eGOuXvppo05fSP9nfknaWE4YFBgiDZomVbsiJ1wN14AAAggggAACCCCAQK4VIMA91/7quXAEEMi2AnOsrAP7VkiL3r0U6H5yd7pdyoWoGH2zzH796iXyq3WVoul2bhZGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAILsI1C5dUJ8Obq7v722jVlWKJGnbkdGxGrNgh/r8709tPRyepDkMQgABBBBAAAEEEEAAAQRyg4BfbrhIrhEBBBDIMQKbZ0p/fXD5cvYukz5qJ22acbktDY9+XLNfJ87ZZ4wYZGVvz5OUdy2m4X5YCgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGsLNC0YmF9dWcrTbqjpRqWC0vSVncdO6dr3l+keVsOJ2k8gxBAAAEEEEAAAQQQQACBnC5AgHtO/w1zfQggkHMETKb2affGv54Lp6RvbpGWfRa/LxUtFy9e1PhFO21XKBAcoGsbl7XtoxEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB3CxgkkS1q15M0+5vq49vbSrzZuTESnhEtG4ft0yf/7lD5jkdBQEEEEAAAQQQQAABBBDIzQIEuOfm3z7XjgAC2UcgxsqiPvl26cJJ+z2HFpdq9bbvS2Hryt0ntWH/advZ1zcrp1AryJ2CAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAL2AibQvUfdUvrloQ56a0BDlS+S137gv62xVlz7CzM2avjUdYqMjk1wLJ1pIBAdKR35Ow0WYgkEEEAAAQQQQAABBBBIawEC3NNalPUQQACB9BD4/UVp7zKHlfNI146RCpR06E9Zs1P2drPara0qpmxRZiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQywT8/fLo2ibl9NvDnfRiv3oqUSA4QYGvlu7RrZ8t0YmzVgA2JX0EjmyRPrtCGt9HOnc8fc7BqggggAACCCCAAAIIIJBiAQLcU0zHRAQQQCCDBP6eLS18x/lk7R+RqnZ27k9Bz+HTFzRz3QHbmR1rFFeV4om/RtF2Mo0IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII5FKBoAA/VyKp3x/tpCtql0hQYcmO4+r3wUJtPRye4Dg6kylw0UqTv+QT6eMO0oE10pmD0vRhkmmnIIAAAggggAACCCCAQJYRIMA9y/wq2AgCCCBgI3BqnzT1bpuOf5sqtJE6PeXcn8IekxUi2rwD0aYMblPRppUmBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBIikD+4AB9fGsz3d2xSoLDdx07p2veX6R5Ww4nOI7OJAqcthJ8TbpO+vkxKfrC5UmbfpTWfHW5zhECCCCAAAIIIIAAAghkugAB7pn+K2ADCCCAgINATLT0/VDpvMMr8fIWka7/TPIPcFggZc2R0bH6Ysku28kViuRTpxoJZ5OwnUgjAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgh4BPz98uipq2prdP+GCvJ3Dt0Ij4jW7eOW6bM/d1hJxu0TVHkW5SBhgaUfS9t+sx8z83HpxE77PloRQAABBBBAAAEEEEAgwwWc/5WU4VvhhAgggAACPgLzXpF2L/Jp8qlca706r2AZn6a0qMzacFCHwyNslxrUuqL8rJttFAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSL3A9U3L6cs7W6poaJDjYubFyy/O2KjhU9fJJKuipFCg4xNS8dr2kyPDpSl3S7Ex9v20IoAAAggggAACCCCAQIYKEOCeodycDAEEEEiiwLbfpQVvOg9uO0yq3s25PxU94xfttJ2dN9Bf/ZuWt+2jEQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEUibQrFIRTbu/rWqVKpDgAl8t3aNbP1uiE2cjExxHp4NAYF7pujGSX6D9gD1/SQv/z76PVgQQQAABBBBAAAEEEMhQAQLcM5SbkyGAAAJJEAg/aGUHuMsa6PCKwXItpC7PJmGh5A9Zv++Ulu86YTuxX+OyCsvncLPHdgaNCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQFIHyRfJp8r1tdEXtEgkOX7LjuPq+v1D/HLIyjlOSL1CqvvWs9RnneXNflvavdu6nBwEEEEAAAQQQQAABBDJEgAD3DGHmJAgggEASBcwr76bcKZ09Yj8hpJB0/eeSf/oEmk9cvMv+vFbroNYVHfvoQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB1AnkDw7Qx7c2090dqyS40O7j53TtB4s0d8vhBMfR6SDQ5gGpYlv7ztjoS8nIos7b99OKAAIIIIAAAggggAACGSJAgHuGMHMSBBBAIIkC80dLO+Y7D+73oVSovHN/KnrMqwynrd5nu0KLykVUu3RB2z4aEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgbQT8/fLoqatqa3T/hgrydw7pCI+I1h3/z959wFdRpX0c/6cnJCGBhN5C701AqQEEURERVLD3irrqqquLa+9t9V3XXtbeEBTsIkoHqSK9E0In9JCQnvfMjQm5YW4Juem/8/nMZk6ZM+d8LysJeeaZ9xfp3TlblJvr4s3QvllS1ZvFP0Aa/YYU4uL3n/vWSb88XPX2zY4QQAABBBBAAAEEEKhEAq5/GqpEm2CpCCCAQJUQ2DJbmvmM6630vkVqN9x1fwl7JizepvSsHNtZru4bZ9tOIwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII+F7gwh6N9ekNpykmPNjl5Dkmrv3x71Zr/FcrlOHi93wuL67uHdFNpeHPu1ZY+Ka08VfX/fQggAACCCCAAAIIIIBAqQoQ4F6qvEyOAAIIeClwNEmadL2Uax9groanSEMf9XKy4g/LNv/69dHvW20vrF8zVGd0qGfbRyMCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJSOQM+42pp8az+1qx/p9gafL9qmK95doAPmjc2UYgh0uUjqMMr1BZNNArLUA6776UEAAQQQQAABBBBAAIFSEyDAvdRomRgBBBDwUiDHBLV/faN0dLf9BSFR0pj3pEDX2RnsL/S+9be1e7X94DHbCy47ramC3Lz+0PYiGhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoMQCTWrX0MRxfTW0vfuEVAu2HNCoV+dqw57kEt+z2kzg5yeNeEmKbGC/Zev3t9/eYZKU5dr304oAAggggAACCCCAAAKlJkCAe6nRMjECCCDgpcDc/5M2/eZ68Hn/lWrFue73Qc+H8xNsZwk2ge2XmAB3CgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlI9AREig3ryih24a2MLtAhIPpOr81+Zp+rq9bsfRWUigRm1p1OuFGoqcrvlG+vOzIo1UEUAAAQQQQAABBBBAoLQFCHAvbWHmRwABBNwJZGdKK79yPaLXDea1eOe57vdBz8a9RzV7wz7bmc7p0kCxESG2fTQigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDZCAT4+2n82e31wpiuspJUuSrJ6Vm67v1FenfOFpN4nMzjrpyc2lsOlk4b59TkVPnhXulgglMTFQQQQAABBBBAAAEEEChdAdc/9ZTufZkdAQQQQMASCAiSrpsqdb/iRI/6XaRhT5zY7uOWj1xkb7duc2WfZj6+G9MhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggMDJClzYo7E+veE0xYQHu5wix8S1P/7dao3/aoUysnJcjqOjkMDQh6U67Qo1FDrNSJa+vlnKyS7UyCkCCCCAAAIIIIAAAgiUpgAB7qWpy9wIIICANwLBNaTzXpHOf1sKCs+7IjhCGvO+qYd6M8NJj0lOy9TEJdttr+/aOErdm9ay7aMRAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTKR6BnXG1Nua2f2tWPdLuAzxdt0xXvLtCBlAy34+g0AkFheb+v9TcJyuxK4nxp7n/semhDAAEEEEAAAQQQQACBUhAgwL0UUJkSAQQQOCmBLmOlm2ZJ9TpL55p/HIlpeVLTFOeir//YoZQM+0wDV/aJK85UjEUAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgTISaFyrhiaO66uh7eu5veOCLQc06tW52rDHZCGnuBdoYN6wffq/XI+Z/pS060/X/fQggAACCCCAAAIIIICAzwQIcPcZJRMhgAACPhCIbSXdOF3qfKEPJnM/RW5urj6Yl2A7qLZ5peE5XRrY9tGIAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALlLxAREqg3r+ihmwa2cLuYxAOpOv+1eZq+bq/bcXQagb63S8362VPkZEqTbpAyj9n304oAAggggAACCCCAAAI+EyDA3WeUTIQAAgj4SCDAxWvvfDR9/jRzN+7XpqSU/KrT10tObaLQoACnNioIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFCxBAL8/TT+7PZ6YUxXBQe4DgFJTs/Sde8v0juzN8tKhEVxIeBvfkc6+g0ppKb9gH3rpLXf2/fRigACCCCAAAIIIIAAAj4TCPTZTEyEAAIIIFCpBD6Yn2C7XvNvYLrstGa2fTQigAACCCCAAAIIIIAAAggggAACCCBQmQU2bdqkhQsXavv27crIyFCtWrXUrl079e3bV6GhoWW+tczMTK1bt06rVq3Snj17lJycrIiICMXExKhLly7q1KmT/P1dB6qdzIJ37Nih+fPna+vWrTp27Jhq1qypNm3aqH///o57n8ycXIMAAggggAAC5S9wYY/Gah5bQzd+uET7UzJsF5Rj4tqf+H6NNu49qsfO66TgQN9+n2F708rYGN1UGv689PVNzquvESOd+7LUfoRzOzUEEEAAAQQQQAABBBDwuQAB7j4nZUIEEECg4gtsM68h/HXNHtuFDutQXw2jw2z7aEQAAQQQQAABBBBAAAEEEEAAAQQQQKAyCkyePFmPP/64li5dart8K6j86quv1sMPP6zY2FjbMb5q3LJliyZOnKhffvlFc+bMcQSZu5o7KipKl19+ue644w61bt3a1TCv2mfOnKlHHnlEM2bMsB0fHBysiy66SI899pji4uJsx9CIAAIIIIAAAhVboEez2ppyWz9d/8Fird2d7HKxny/api37UvT65T1UOzzY5bhq3dHlImndj9LqyXkMrYdJI1+RIutVaxY2jwACCCCAAAIIIIBAWQnwOG5ZSXMfBBCo3gK7lkt7VlUYg48XbJWVocGuXNU3zq6ZNgQQQAABBBBAAAEEEEAAAQQQQAABBCqdQHp6uiNAfPTo0S6D261NHT16VK+88oo6dOigWbNmlco+rbX07t1bLVq00L333usIcLcyqLsrhw8f1quvvurI5P7CCy8oN9fFP+q5mcS6xrrfoEGDXAa3W5dbGe0/+ugjx70mTZrkZka6EEAAAQQQQKAiCzSuVUMTx/XV0PbuA7EXbDmgUa/O1YY9rgPhK/I+S31tfua11yNekmq3lM55Ubp0AsHtpY7ODRBAAAEEEEAAAQQQOC5AgPtxC84QQACB0hFIOyxNuEJ6+3RpyQcyv4Uqnft4OWtaZra+MFkZ7EqbehHq3aK2XRdtCCCAAAIIIIAAAggggAACCCCAAAIIVCqBnJwcR0byTz75xGndAQEBat68ubp16yYrQ3rhkpSUpLPPPlvz588v3OyT88zMTC1YsMB2rtDQUMeaevXq5Qiyt7KpFy5W8Pk//vEP3XbbbYWbvTq//fbb9fzzzzuN9TMBW02aNNEpp5xyQsb6lJQUh9vXX3/tdA0VBBBAAAEEEKg8AhEhgXrzih66eaAJznZTEs1bn89/bZ6mr9vrZlQ17qphfm96q/n+rdd1khXwTkEAAQQQQAABBBBAAIEyEyDAvcyouRECCFRLASuY/ZvbpYMJUlaa9K05/+oGKT253Di+WbZTh1Izbe9/ZZ84828z/OOMLQ6NCCCAAAIIIIAAAggggAACCCCAAAKVSsAK6p4yZYrTmm+++WYlJiZq8+bN+uOPP3TgwAF99dVXatq0acG41NRUjR07Vlb29NIsVpD9I488orlz5+rIkSOONS1cuFCrVq3SoUOHHNnUmzVr5rSE1157zZFp3qnRTWXChAknjL/gggu0bt06h8OSJUtkBfVPmzZNXbp0KZgpOztbV111lRISEgraOEEAAQQQQACByiUQ4O+nf57dTv8e01XBAa5DQ5LTs3Td+4v0zuzNJ/W2mMqlchKrDQg6iYu4BAEEEEAAAQQQQAABBEoq4PqnmJLOzPUIIIAAAtLi/0mrJztLrPhSenOgtGu5c3sZ1KzXEb8/L8H2TpGhgRrdvZFtH40IIIAAAggggAACCCCAAAIIIIAAAghUJoH9+/frySefdFry008/rddff10NGzYsaPf399fo0aM1b948xcXFFbRv375dL774YkHdlyf9+vXTzz//rE2bNunhhx9W3759FRTkHDgVFhamyy+/3BGEb2V1L1wefPBBR2B+4Ta7cyvr+3333efUZQX4f/nll2rdurVT+5AhQzRr1iz17NmzoD05OdmxvoIGThBAAAEEEECgUgpc0KOxPrvxNMWEO78hpvBmckzOrie+X6N/TlqhjKycwl2cI4AAAggggAACCCCAAALlIkCAe7mwc1MEEKgWAlYA+0/j7bd6YJO04A37vlJsXbL1oFbvOmJ7hzE9mijcvK6QggACCCCAAAIIIIAAAggggAACCCCAQGUXeO6552QFaOeX+Pj4E4K98/usr40aNdI777xTuEkvvfSSrEB5X5Xg4GB99913mjNnjoYNG+bVmxRr1aqlyZMnKzw8vGAZVnb3SZMmFdRdnbz77rtOGditoHZrT67e4BgVFaUPPvhA1jrzyyeffKK1a9fmV/mKAAIIIIAAApVUoEez2ppyWz+1qx/pdgdfLN6my99doAMpGW7H0YkAAggggAACCCCAAAIIlLYAAe6lLcz8CCBQPQXSzS/Pvrxayk6333/tltLZz9r3lWKrq+zt1i2v6OP8uuNSXAZTI4AAAggggAACCCCAAAIIIIAAAgggUGoCOTk5eu+995zmf+SRR1wGducPtLKYDxgwIL/qCJCfMGFCQb2kJ1bg+DnnnFPsaayM81dddZXTdVYGeE+laMD++PHjFRoa6vayDh066KKLLioYk52dfYJlQScnCCCAAAIIIFCpBBrXqqFJ4/pqaPt6bte9cMsBjXp1rjbsOf6woNsL6MwTMG/SVorvHo6EFQEEEEAAAQQQQACB6i5AgHt1/xPA/hFAoHQEvr9bsrK025WAEGnM+1KI+wwJdpeWpG3bgVT9sGKX7RSD2tZR89jjWaBsB9GIAAIIIIAAAggggAACCCCAAAIIIIBAJRCYN2+ekpKSClbaokULDRo0qKDu7uS6665z6rayp1eEUjjw3lpPYmKi22Vt375dS5cuLRgTERGhsWPHFtTdnRQ1mDJlirvh9CGAAAIIIIBAJRKw3ub81hU9dPNAk4zLTUk0v1cc/do8TV+7180ougoEUvZJn18mvXe2lHmsoJkTBBBAAAEEEEAAAQQQOHmBwJO/lCsRQAABBGwFEhdIy7+w7XI0nvWU1KCL6/5S6nl79mblmMQBduWqPnF2zbQhgAACCCCAAAIIIIAAAggggAACCCBQ6QS+//57pzWfccYZHrO3519gjS1cZsyYoZSUFIWHl29yiFq1ahVelg4fPuxUL1opatCvXz+v92CNrVGjhlJTUx3Trlu3Ths2bFDr1q2L3oY6AggggAACCFRCAX9/P/3z7HZqXTdC479aoYzsHNtdHE3P0jXvL9L53RvpPjO+Xk33b4KxnaQ6NK6fKk251WRv/+thgMnjpFbme8qQCCnYHFbSM+trsPl+Mv88MLg6yLBHBBBAAAEEEEAAAQRKJECAe4n4uBgBBBCwEVj6oU3jX00dRkk9nbNAuR7su559R9P1xaJtthO2MJnbB7apY9tHIwIIIIAAAggggAACCCCAAAIIIIAAApVNYNmyZU5L7tu3r1PdXaVhw4aKi4tTQkKCY1hGRoZWr16tXr16ubus1Pt27NjhdI+YmBinetFKSQwCAwN16qmnygruzy/WfAS452vwFQEEEEAAgaohcEGPxoqLraGbPlqifUczXG7qqz926KdVu3Xr4Fa6rn9zhQYFuBxbrToyzMOAUx+QFr/rvO1VX0vW4a4EmAB3R/D7X0Hwhc8dQfAmGL7LRVLjnu5myevLMQ8o+Pt7HscIBBBAAAEEEEAAAQQqmQAB7pXsA2O5CCBQwQWsV86tdvHK3lpx0siXZdJFlfkmPpiXoPQs++wLNw1sYf7No+zXVOYI3BABBBBAAAEEEEAAAQQQQAABBBBAoFoIrFmzxmmfHTp0cKp7qljj8wPcrbHWfOUd4D579mynZbdp08apXrTiC4PCAe5F5yt6P+oIIIAAAgggUDkFejSrrcm39tP1HyzW2t3JLjeRmpGt539e50io9a9z2mtYh3pevyHH5aSVveO3x08Mbvd2T9nmgYJjB/IOV9c0MsHt3gS4WxnjV31VKGDeZIx3ZI83QfL5GeRDo8wbxrtKbYdLoTVd3ZF2BBBAAAEEEEAAAQQqlAAB7hXq42AxCCBQ6QXW/yRluPjHn2FPmH8wMP94UMbFen3gh/O32t61Xs0QjTKvFaQggAACCCCAAAIIIIAAAggggAACCCBQFQSOHTumxMREp600adLEqe6pUnT8unXrPF1Sqv1HjhzRxIkTne4xfLgJTnJTiq656J7cXOroKjq+6HyerqcfAQQQQAABBCqPQONaNTRpXF/d8fkyTVuzx+3CEw+kOjK+928Vq4fO7aA29UwwdXUt8f/Iy9SevKt0BKwgdW9KxlHJm4B5a67AMKn9CKnrxVKLwSbze4A3d2AMAggggAACCCCAAALlIsB7isqFnZsigECVFVj+pf3WwmpJrc+07yvl1s8XJurwsUzbu1ivEQwJ5B8ubHFoRAABBBBAAAEEEEAAAQQQQAABBBCodAL79u1Tbm5uwbqDgoJUt27dgro3J40aOSeE2Lt3rzeXldqYJ554QkePmsClv0psbKxGjDCBSW5KUlKSU2/jxo2d6p4qFc3A03rpRwABBBBAAIGSCYSHBOqtK3ro5oEtvZpozsZ9Ovs/s/XwlJU6lGqykVfHUqO2NOq10tu5lX3dm2IFuHtbsszbyFeY32d/fIH0Ygdp6gPSnlXeXs04BBBAAAEEEEAAAQTKVCCwTO/GzRBAAIGqLJBqXiO3Yar9DjuMMk/EB9v3lWJrRlaO3pm9xfYOkaGBuuTUprZ9NCKAAAIIIIAAAggggAACCCCAAAIIIFAZBQoHglvrr1Gjhvz8/Iq1lfDwcKfxRed06izlyrx58/Tiiy863eWBBx5w7MupsVDFymKfnZ1dqEUquienTptK0fG+MrAeFigafG9ze6emjRs3OtWpIIAAAggggEDpCPj7++mfZ7dT35YxevTbVdqUlOL2Rtk5ufrAvEX6mz936q5hbXVJryYKDKhmORZbni4NGi/NeNqt1Ul1epvBPb0YAe6FF3J0tzTvv3lH/c4mq/ulUucLpYjiPRxaeErOEUAAAQQQQAABBBDwpQAB7r7UZC4EEKjeAqsnSzmZ9gZdxtq3l3LrlGU7tPtImu1druzTTJGhQbZ9NCKAAAIIIIAAAggggAACCCCAAAIIIFAZBYoGYoeGhhZ7G2FhYU7XFJ3TqbMUK1Yw+MUXX+wUrN6rVy/ddtttbu9qt97iOpSWwWuvvaZHH33U7frpRAABBBBAAIHyFYhvU0c/3RmvD03w+v9NW6/ktCy3CzqYmqkHJ6/UJ79v1UPndjAB8rFux1e5zkH/lOq0lVZ9LR3aJlkZ1a2g8wzzgEBGspSbc3JbLo0M7q5WsnuFtNsE6lsZ3VsNNcHuF0tth0tBxf9e2tUtaK+iAkd2SUlrzZ9582c9x/y3okFXKaZlFd0s20IAAQQQQACBshYILOsbcj8EEECgygosN69zsytRJkt6k952PaXalmOyJrwxc5PtPYID/XV13+a2fTQigAACCCCAAAIIIIAAAggggAACCCBQWQXS0tKclh4cXPy3KoaEhDjNYWVEL+uSnp6u0aNHa9u2bQW3joyM1KeffqqAgICCNruTogbWmOI6VAQDu73RhgACCCCAAAJlIxBkMrFf17+5RnVrqBemrtfnixKVm+v+3mt3J+vStxfo7E71df/w9mpSu4b7C6pSb8fRknUULRZapvle0hH0bgKAHUHv+QHwpl4QCG+1Wf3mqzXGag+rXXQ2+/rJZnC3my3XvAVow895R0iUNPI/9vuyu5a2ii1g/Vl0/Nmy/tzlH4cLnee3HZHSzNHUxDd0M1n9PZW130k/3OM8qtOF0hmPSlGNndupIYAAAggggAACxRQILOZ4hiOAAAII2AkcSpQS59n15L3Kzd/fvq8UW6et2ePy1YFjezZWnUjnX9SV4lKYGgEEEEAAAQQQQAABBBBAAAEEEEAAgTIRKJqpPCMjo9j3tYLLC5eicxbuK43znJwcXX755Zo37/i/N1pB7Z988olatWrl8ZZ267Uc7NpdTVbeBq7WRTsCCCCAAAIIlK1ATESInj6/sy7v3VSPfrNaCxMOeFzAjyt369e1e3VTfAuNG9RSNYKrcViKn5950tAE+ltHRF2Pdic1YMz70rGDJnjZClA+WihI3tStgHkrWDlhtnR0T/GmTzfBzzGev/cs3qSM9qnAjiUmRmHBX0Hq5nNOt478QPVCX60/A8V9m4CVjd2bAPeQyBO3tHKitPZ7qd/t5rjD/PkPP3EMLQgggAACCCCAgBcC1fgnCS90GIIAAgh4K7DCRfZ26/ouY72dxWfjcs0T2K+7yN7ub/4d5cYBLX12LyZCAAEEEEAAAQQQQAABBBBAAAEEEECgoghEREQ4LcUum7nTAJtK0YztRee0ucSnTbfccosmTjRBIX8VPxMY9fbbb+vcc8/Nb3L71W69lkNxAtxLy8Da25gxY9yuv2jnxo0bNWrUqKLN1BFAAAEEEECgDAU6NozSFzf11vcrdump79do52Hnt+YUXUpGVo7++9tGfbl4u8YPb6eRXRvK+p6GUgoCTXp5njTbBCtvmSH9+bm05jspy4s3FNXrJNXv7HluRpSfwMbfpOlPlM79rWB5b4pdgLt1nfVnbOaz0tIPpaGPmKSAJmaiHJICerMFxiCAAAIIIIBAxRUgwL3ifjasDAEEKouA9Tqv5RPsV2v90F+3vX1fKbYu3HJAfyQesr3D8M4N1DTGZAmgIIAAAggggAACCCCAAAIIIIAAAgggUMUEigZ3p6amykoGUZyAqpSUFCeVonM6dfq4Mn78eL355ptOs/773//WNddc49TmrhIWFiYr43t2dnbBMGtP0dHRBXVPJ6VlULduXVkHBQEEEEAAAQQqn4D1/dSILg01pF09vTlrk94wybbSMnPcbmT3kTTd8fkyfTh/qx45t6M6N45yO57OUhIIMKFBrYbmHVY27zXfSMs+k7bOcX3Drhe77ivcY94+pFzzfWdAUOFWzstCwFVwuS/ubf058aZ4WkPyLunrm6QF5mecs56Rmp7mzayMQQABBBBAAAEEHAL+OCCAAAIIlFBg9wopaa39JNaTyOVQXGVvt5Zy80Cyt5fDR8ItEUAAAQQQQAABBBBAAAEEEEAAAQTKQCA2NtYpmD0zM1N79+4t1p137NjhNL6sArKfeeYZWUfh8tBDD+nvf/974SavzuvUqeM0bvv27U51T5XyMvC0LvoRQAABBBBAoPwFwoIDdOfQNvr17kEm4L2BVwtasvWgRr46R/dO/FNJyeleXcOgUhIIrSl1v1y65nvpjuXS4Aek2kV+f+xnQom8/T33lpnSi+2ln8ZLu/40we4mORyl+AKW2y7zefzysHRkp3fXewou924W+1HpyfbtRVtDzJ8nb8rOpdL/hkkTr5MObfPmCsYggAACCCCAAAIy35VSEEAAAQRKJLDCRfZ2+Zkf/C8s0dQnc/GaXUc0Y12S7aUDWseqUyMyI9ji0IgAAggggAACCCCAAAIIIIAAAgggUOkFrOzlTZs2ddpHYmKiU91Tpej4du3aebqkxP2vvvqqrOzthcsdd9yhRx99tHCT1+dt27Z1Glt0T06dNpWi48vCwGYZNCGAAAIIIIBABRZoFB2mVy49RRNu6qMODTwHuVrxuxMWb9fgF2boLZMBPiMrpwLvrposrVYzaeA/pL8tka6bJvU0wceh0VLLIVJkPe8Q/vxcSjG/m/79NenNeOn1vtLc/5gg7V3eXV/dRyWtk6Y/Jb3Sy/gNMHb/J62a7J2K9bBCaRWvA9wji7eClRPNXntKvz0ppR8t3rWMRgABBBBAAIFqJ0CAe7X7yNkwAgj4VCDHvG5txST7KZubH0BrNrTvK8XWN83rAF2VcYNauuqiHQEEEEAAAQQQQAABBBBAAAEEEEAAgSohUDQYe/Xq1cXa15o1a5zGF53PqdMHlQ8//FB/+9vfnGa69tpr9dJLLzm1FadSdM0V3aA4e2MsAggggAACCFQsgVOb19a3f+uvp8/vrNrhwR4XdzQ9S0/9sFZn/t8s/bZ2j8fxDCgDAT+TuK2JCbAe8aJ0z3rpXBOg7k2xApTXfOM8cq/53vuXh6SXOkgfjZaWT5AyUpzHVPfagc3SrBfMwwD9pFdPlWY+K+3fcFxlpYv4g+Mj8s5KnMHdfO4hUSamobFUp73U2KzFeriho/nc2p5V9G729dotpIcOSg/ul875txRW235c4dasNLP/5/IC3Zd9JuXkFO7lHAEEEEAAAQQQKBAILDjjBAEEEECg+ALbFkjJO+2v8/a1bfZXn1TrtgOp+na5/dPwXRtHqU+LmJOal4sQQAABBBBAAAEEEEAAAQQQQAABBBCoLALdunXTzz//XLDcefPm6aqrriqouzvZtWuXEhISCoYEBQWpQwcTnFNKZdKkSbKC2XOtlKZ/lbFjx+rtt9+WnxVodJLFMihcLANvS1ZWlhYuXOg0vOh8Tp1UEEAAAQQQQKDaCwT4++mSU5tqeOcGevnXDfpgXoKyco5/f2MHtGVfiq59f7EGta2jB87poFZ1I+yG0VbWAoEhUlQj7+665lspM9V+bK4JWt70W94RbD7bDudJXS+WmvWX/KthLs7D201m9q+llV9JO5fam+W37lgsHUyQasXlt9h/rREr1TU/q1iB7o6jpv25len9hH5zTVB4yT8L62cWx88t5jPtdb3U6UITvP68tOANE7ieZb/u/NZkE9cw+WZp4ZvSWc9ITXvn9/AVAQQQQAABBBBwCATigAACCCBQAoGmffJe17ZiQt4Po6n78iYLMD/4dxhZgolP7tJ3Zm9Wtot/LLp5YMsS/VLs5FbEVQgggAACCCCAAAIIIIAAAggggAACCJStwIgRI/Tss88W3HTatGmOAHJvAsanTp1acJ11MnjwYEVERDi1+ary448/6tJLL1V2dnbBlOecc44+/vhjE/NTsqAfa57CxQpwT0lJUXi4CWLxUObOnavU1OOBSm3atJF1UBBAAAEEEEAAAU8CUWFBenBEBxPs3kSPfbdGs9YnebpEM9Ylac6GWbq6b5z+NqS1rDkolUTgz0+9W2jGUWnZJ3lHVBOpy1gT7H6JFNvau+sr66ije01Q+2RzfCUlzi/eLqxg+P5/d39N/U7SLcWc1/2MJe8Ni5bOfFLqcY3J5P+gtO4Hz3Pu/EP635kmc/z50hmPStFNPV/DCAQQQAABBBCoFgIl+xfSakHEJhFAAAE3AvmvaxtunkK+e6102UTJytze6QIpNMrNhb7v2n80XV8s3mY7cYvYcA3rWN+2j0YEEEAAAQQQQAABBBBAAAEEEEAAAQSqkkDfvn0VGxtbsKXNmzdrxowZBXV3J++++65T93nnnedU91Vl5syZuuCCC5SRkVEwpRVMP3HiRFlZ40tamjRpou7duxdMc/ToUU2YYJJ0eFHKysCLpTAEAQQQQAABBCqpQKu6kfrgml5696qeioup4XEXVrb3d+Zs0ekvzNBnCxNdJvTyOBEDyk4g7bC0wwQmF7ccNr/Pnv1v6ZWe0tunS7+/IW01QdrJe2SeSi3ubBVvfOoBacn70gcmGd6/20o//qP4we3WrlZOqnh7K86KYltJl3wmXfF1XpZ5b661HgR4pZf02xNS+lFvrmAMAggggAACCFRxAQLcq/gHzPYQQKAMBQLML55anyFd8LY0+vUyvHHeraxX/aVl5tje98b4FrJeDUhBAAEEEEAAAQQQQAABBBBAAAEEEECgqgtY2c+vvvpqp20++uijjizuTo1FKr/++qtmz55d0BoZGamxY00yCx+XxYsX69xzz9WxY8cKZu7du7e++eYbhYaGFrSV9OS6665zmuKZZ55RWlqaU1vRypo1a/TFF18UNNtZFnRyggACCCCAAAIIuBGw3p4zpH09Tf37QN0/vJ0iQgLdjM7r2p+SofFfrdDIV+ZoUYIJFKZUXAEr2ZuVAG70m1KLQWadJ/G76B1LpJ/uk947ywSDt5GeaiS93l/64nJpz6qKu/eiK7OC/ZeZYO5PxkgvtJa+vUPaMtME7Nv/7r7o5U51PxPG1Txe6nW9lHMS1ztNVgEqLc1DDDeZn7HOeVGqEeN5QVnm55VZJrnggrKPt/C8OEYggAACCCCAQFkLEOBe1uLcDwEEECgFgZT0LH0wf6vtzHUjQzT6FPOPARQEEEAAAQQQQAABBBBAAAEEEEAAAQSqicB9992niIiIgt1aGdOfffbZgnrRkx07duj6600QSaFyxx13OGWCL9RVcGoFbhU+PGWKX7Vqlc466ywlJycXzNGtWzf9+OOPTust6CzByQ033KCmTZsWzLB+/Xr9/e9/dxnof+TIEV155ZVOWeUvvfRSdejQoWAOThBAAAEEEEAAgeIKBAf668b4lvrtnoEa27Ox+d7J8wyrdh7RmDfm62+f/aGdh44/FOj5SkaUqUCI+X6768XSlVOkv5uA9KGPSLFtT34JmSkmsH2FtOZbE9yd7d08Vub37Ezvxvp61Lofpc8vk543Qe2Tb5Y2TDXrzjq5uzTtI51tArvvWitdZfbf42rJPLhbJUqAebil13XS35ZKfW4z+wpyv62I+tJp49yPoRcBBBBAAAEEqoWA50dkqwUDm0QAAQQqt4D1qr7Dx+x/cL+uf3OFBAZU7g2yegQQQAABBBBAAAEEEEAAAQQQQAABBIohEBsbq/vvv99x5F82fvx4JSYm6oEHHlDDhg0dzTkmK6KVOd0KZrf68ovVf/fdd+dXffJ1165dGjZsmPbv318wX3h4uO69915ZWd2LW4YOHer2kuDgYFlZ260g9fzyxhtvaN++fXrqqafUurUJxPmr/Pbbb47g9+XLl+c3OQLuH3vssYI6JwgggAACCCCAQEkE6kaG6rkLu+ry3s30yDertDTxkMfpvv1zp35ZvVvjBrbSTQNbKDSI33l6RCuvAVGNpP5/l/rdKe1alpfRfOVEKfX4977FWlrt5t4Nt7K/H9wqRZsHO2u3MIe5zvHVnNcy57XipKBQ7+Yq7qi130trvyvuVcfHN+wudbpA6jhaimp8vL2qnoVFS2c+KfW8Vpr6oLTO+NmVoQ9L1sMTFAQQQAABBBCo9gIEuFf7PwIAIIBAZRfIyMrRu3O22G4jMjRQl552PEuT7SAaEUAAAQQQQAABBBBAAAEEEEAAAQQQqIICVhb3efPm6bvvjgedvP7663rrrbfUrFkzRUVFacuWLTp06JDT7sPCwjRhwgRFR0c7tZe0sm7dOu3cudNpmpSUFKcAdKdOD5Xc3FwPI6RLLrlEs2fPlrXv/DJx4kRNmjRJTZo0UZ06dbR161ZH0Ht+v/XV32SLfO+999S8uQkKoiCAAAIIIIAAAj4U6NI4WpPG9dWUZTv19I9rtOdIutvZ0zJz9NK09ZqweJvuH95ewzvXd7xBx+1FdJafgJWi3wrcto5hT0gbp0l/fiat/8lkWs/wbl3hdUyAc6TnsdlZ0qFEKTfbBLmb35dbx6ail5n11DTB947A9+bOwe9Wmzf3KTplfr3T+dIfH+XXvPtar1NeQLt1rRWIXx1LTEvzg8qn0uYZ0k/jpb2rjytYf266XHy8zhkCCCCAAAIIVGsBAtyr9cfP5hFAoCoITFm2Q7sOp9lu5QqTASEyNMi2j0YEEEAAAQQQQAABBBBAAAEEEEAAAQSqsoAVpP3ll1/qmmuu0eeff16w1ezsbG3evLmgXvgkJiZGVgB4v379CjdX6vNXXnlFoaGheumllwr2YQXHWxnrC2etz++sUaOGI7j9wgsvzG/iKwIIIIAAAggg4FMBPxMEPap7I53RoZ5en7FJb83eLCupl7uy49Ax3frpUp3avLYePreDOjaMcjecvoogEBgstRued6QekFZ9nRfsvn2R+9V5G/h9eJuUY4Lc3ZZc6cj2vCNh9okjw+v+Ffxugs2t+1pZ3x0Z4M3XGrVPHF+4JS7ejIk1Wer3FW498Tym1V+Z2s+X6rY7sb+6trQYJN1kPpM/PpR+eyIv2/9Zz1hP21ZtEfMWMcfDGHtWSRkpUoOuUr0OVXvP7A4BBBBAAIGTFAg8yeu4DAEEEECgAgjk5OTqzVmbbVcSHOiva/qZH7wpCCCAAAIIIIAAAggggAACCCCAAAIIVFMBK7D7s88+kxWs/cQTT2jZsmW2EuHh4brqqqv08MMPq25dE+RShYoV6P/iiy/q3HPPdezPyuhuV4KDgzVmzBg9/vjjZG63A6INAQQQQAABBHwuEB4SqHvObKuLejXRk9+v0U+rdnu8x8ItB3TOy3PUs1ktndetocno3kAxESEer2NAOQtYweK9rss79m2UlpsHUDf+Ku035+lHnBfnbYD7AfvfkztP5qGWsleyjm0Ljg+0Mr7fvux43dVZgAm56jhKWvTOiSOim5q+8/MC2+t3lnntwIljaJEsw57X5jmt+1Fq2ts7lZxsafI4qcfVUrO+3l1THqPSkyUrkH3PSmm3Oayve0zG+kwT2F64dL1UGv68eaNAROFWzhFAAAEEEKj2AuY7BQoCCCCAQGUV+HXtXm3ce9R2+WN6NFadSP4xxxaHRgQQQAABBBBAAAEEEEAAAQQQQACBaiVwwQUXyDo2btyoBQsWaMeOHcrIyFB0dLTat2/vyNhuBcMXt1iZ0L0tgwYNUnHGezuvt+MGDx4s69i+fbvmzZvnyN6elpamyMhItW7dWv3791fNmjW9nY5xCCCAAAIIIICAzwSa1K6hN67ooXkb9+nRb1dr3R4TFOqhLN56UNbxiBnfv1WsRnZtqGEd6/F2aw9uFaI7tpV0+gN5h/X9tJXd3QpWzz/qd/Jumb4IcLe705EdUtKavMzadv2F26wg9vwA98gGJqh9dF6wdqMeBLUXdvJ0Hholdb3Y06jj/Us/NA9JfJF3dBglnfGoyb4fd7y/rM+srOyHtv4VwG4C2nevyDs/mODdSv78VNqxWBrzAdncvRNjFAIIIIBANREgwL2afNBsEwEEfCRg/YA942mpxSCpiXl6uBxfj2X9Muz1GRttN+bvJ90Y38K2j0YEEEAAAQQQQAABBBBAAAEEEEAAAQSqq0CrVq1kHdW5NG7cWGPHjq3OBOwdAQQQQAABBCqoQF8TqP797f312cJE/fuX9TqUmulxpdnmjdcz1yc5jpCv/TWkfV0T7N5Ig9rWUWhQgMfrGVDOAlZm8/CYvKNJr+Itxtvg4eLNmjd65STvAtyb9pH63i61OctkHzfn5Rg/cDLbrJTXpB2Wfnvi+NJXT5as7O99bpEG3G2yoEce7yuNswyTfd3Kwr5nhTmsYPaVeV8zkkt2t33rJStw/+xnSjbqhlnAAAEAAElEQVQPVyOAAAIIIFCFBAhwr0IfJltBAIEyELBeGTXz2bwjqonU+UKpy0VS3fZlcHPnWyxKOKiliYecG/+qnW1exdcsJty2j0YEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgIgoEBvjrij5xOtdkZH/JBLl/vCBRVhC7NyU9K0c/rNjtOCJDAnVWp/oa2a2h+rSIkTUvpYoJDP6X1O0y6eCW49nfHVngTf3wNinXZNU+2bLya2noo56zsFsB7cMeP9m7cN3JCMx6wWT93+d8ZXa6NOcl6Y9PpCEP5v258A9wHuOL2nd/lxa/Z2bK9cVsznM06JqXid65lRoCCCCAAALVWoAA92r98bN5BBAotsDyCccvsX4otn5Iso76XaTrp0mBIcf7S/nMVfZ267bjBrYs5bszPQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFA6AtE1gvXoeZ106WnN9Nh3qzR34/5i3Sg5PUtfLtnuOGIjQjSiSwNH0PwpTaPlZ2UNp1R+geAaUr0OeUfR3WRlSIcS8wLfiwbAH9wq5Xh4O8Bhc+32xeat7sXMKl90HdR9K7B/k/T7667nTNkrffM3aeHb0llPS3H9XY8t3JNrAta9+e9CeB1zlRnr6xISJY35oEzjTXy9BeZDAAEEEECgNAQIcC8NVeZEAIGqKZCTLa2YaL+3UPMDRxkGt6/dfUTT1yXZrmVA61h1amTWQ0EAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQqsUDb+pH6+LrTNHX1Hv33tw1aueNIsXez72i63p+X4Dia1A7TuV0a6rxujWTNTamiAoHBUmyrvKPoFq3f+x/eXiT4fctfWeDN16xjeVes+poA96J25V1f+73nhxOsNe5eLr1/jtR+pMmK/phUu3neyq1A9iM7pT0r847df33teL40eLzn3dXr5HnMyYwY9erxNZ7M9VyDAAIIIIBAFRUIrKL7YlsIIICA7wW2zpWSzQ87dqXLRXatpdb25szNLucme7tLGjoQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKCSCVgZ18/sWN9xbNybrG+W7dSUP3dq6/7UYu9k24Fjem3GJsfRtl6kRnZrqJFdG6pJbZMNnFI9BPwDpFrN8g4Ndt6zFQCdvMsEUWdJEfWc+6iVv0C/26WG3aWfTTD67hWe17PmG2n9T1KHUXmfqxXYfuzgidft+vPENruWeh3tWj23hdQ0bxow11oB8tbX+p2lmg2lH/4hRTc1gfjnep6DEQgggAACCFRDAQLcq+GHzpYRQOAkBZZPsL8wIMT8QDTSvq8UWrcdSNU35h9s7EqXxlHq0zLGros2BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoFILtKobqbuGtdXfz2ij5dsPa4oJdv9u+U7tTU4v9r7W7UnW8z+vcxynNI12BLqfY7K714k0v/+lVE8B8zCFI/C4eu6+cuy6+QDpxpnSsk+kX0129pQk9+vOzpBWuIj1yL/SCnz3ptRqLgVHSBlHXY+2xtS3AtlNELsjmN2cR5sHKqw/W0XLRR+bhymyi7ZSRwABBBBAAIG/BAhw548CAggg4I1AZpq0eor9yDZnSqFR9n2l0PrunC3KzjFPjtuUmwe2ND8X2fxgZDOWJgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAyCli/E+3aJNpx/Ouc9lqwZb8js/sPK3bpSFpWsbe0NPGQrOOx71arX6tYnWuyup/Vqb5qhgYVey4uQACBUhawsvCfcmVeZvY5L0rzX5WsQPaTLYe35WV2D6vlfgZ/f6luB2n7Qiko/HgAuyMzuxXUbvpCIt3PUbjXiu0IKEbo3pIPTGxKTanj6MKzcI4AAggggECVFSjG35JV1oCNIYAAAp4FNvwspR+xH9flIvv2UmjdfzRdny9KtJ25eWy447V8tp00IoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlVQIMDfT31bxjqOR8/rqFnr9zneiP3L6t1Ky8wp1o6tPGOzN+xzHA9MXqnBbevovG6NdHq7ugoNMkG1FAQQqDgCVrD30EdMsPtV0i8PSWu+Ofm17VklxfX3fP05L+RlcbcytVsB72VVdiyVfrgnL5B/6zxp2BNSIG+bKCt+7oMAAgggUD4CBLiXjzt3RQCByiawfIL9iq3M7a3PsO8rhdYP5m91+Y8wN8a3kPWPNxQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgOgqEBAbojA71HEdKepamrdmjKct2mqD3JGW5eEu2K6eMrBz9vGqP44gICdSwjvU00mR2tzK8BwWUYWCrqwXSjgACeQK1TbD5RR9JCXOkn8ZLu5cXX2b3Su8C3Bt0Lf7cJb3i2CHpy6uPZ6lf+JbJIr9IGvO+VCtOFAQQQAABBKqqAAHuVfWTZV8IIOA7gWMHpQ1T7efrMKrMnoq1/gHmg3kJtuuoGxmi809pZNtHIwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFDdBMJNULqVfd06DqZk6MeVu02w+w4tTDig3NziaRw1v6v9aukOx1E7PFjndG6gkd0aqkfTWiaJM0nIiqfJaARKScDKwH7jDGnZp9Kvj0kpe13fqGZjqX4nqZ51dJSa9nY9tjx7rP9YTblVOrTVeRU7/5DeiJdGvSa1H+HcRw0BBBBAAIEqIkCAexX5INkGAgiUosDqKcefhC16my4XFW0ptfrni7bp8LFM2/mv7d9cVjYCCgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIICAs0AtE5R+6WlNHceuw8f03Z+79M2fO7Vix2HngV7UDphg+Y9+3+o4GkWHaUTXBjqvayO1bxApPz+C3b0gZAgCpSfgb+ImTrlC6jhKWvCGtO4nmf9jSnXamkD2zn8FtZuA9rBapbcGX878uwlgX/ud/Yzp5r9fX1wm9blNGvqIFBBkP45WBBBAAAEEKqkAAe6V9INj2QggUIYCy7+0v5n1RG/TPvZ9Pm61Xn/37uzNtrNGhgbqMvOPMRQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAfcCDaLCdEN8C8exOemoI9D9m2U7tXlfivsLbXp3HDqmN2dudhyt6kbo0lPzguhDg0hOZsNFEwJlJxASKcX/I+8ou7v6/k5Z6SZA31/KzXE99/xXpG0LpAvfk6KbuB5HDwIIIIAAApVMwPwNSEEAAQQQcClwaJu0dY59d+cLZd43Z9/n41Yre8DOw2m2s17eu5kiQ3kS1xaHRgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCFQIs6EbpzaBv9evdAffe3/rrRBL7XrxnqYrT75o17j+qx71ar/7PT9Y5JXpaakeX+AnoRQAABTwID7pKunCKF13U/cvsi6c0B0vqf3Y+jFwEEEEAAgUokUDaRmZUIhKUigAACTgIrJzpVnSpdxjpVS6uSk5NrnvjfZDt9cKC/rukXZ9tHIwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIICAZwE/Pz91ahSl+4e317x/nq4vbuytS81btKNrFD/R2L6j6Xri+zUaYALdrd/zpqQT6O75E2AEAgi4FGgeL91sEjPGmQB2d+XYQelTE8fyy8NSNv/dcUdFHwIIIIBA5RAgwL1yfE6sEgEEyktg+Zf2d67XSarX0b7Px62/rt2rDeZpf7tyYY/Gqht5chkE7OajDQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKjOAv7+fjqtRYyeGt1ZC+8fqv9d3VOjujVUjeCAYrHsT8nQ0z+u1YDnpuu1GRt1lED3YvkxGAEECglE1svL5B5/r2n0K9Rhczr3/6QPRkhHdtp00oQAAggggEDlESDAvfJ8VqwUAQTKWmD3SmnvKvu7dh5j314KrW+4yN5u/l1FNw5oUQp3ZEoEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAeuN2qe3q6f/u7i7Fj8wVP+9pLuGtq+noAAPAaaF6A6YQPfnflqn/s/+plenb1RyWmahXk4RQAABLwX8zUM2p/9LunySVCPW/UWJ86U3+ksbf3U/jl4EEEAAAQQqsAAB7hX4w2FpCCBQzgIrJrhYgPnHis4XuujzbfOihANastW8RsqmnN25geJiw216aEIAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8KVAjeBAndu1od65qqcW/+sMPXtBZ/VtGSM/L2PdD6Vm6vmfrUD36Xr51w06QqC7Lz8e5kKg+gi0GiLdPFtq2tf9nlP3Sx9fIP32pJST7X4svQgggAACCFRAAQLcK+CHwpIQQKACCOTkSCsm2i8kzjzlGtXYvs/Hra/P2ORyxnEDW7rsowMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoHQEomoE6aJeTfXpDb01/59DdMOA5goN8i4E5/CxTL34y3r1e+Y3vWS+WnUKAgggUCyBmg2lq76V+v/dw2W50qznpA/Pk5L3eBhLNwIIIIAAAhVLwLvvrivWmlkNAgggUPoCW+dKR3bY36fzGPt2H7eu3X1Ev63daztr/1ax6tQoyraPRgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBshGoHxWqf53TQXPuO103xbdQWFCAVzdOTsvSf0wm9/4m0P3Fqet0KDXDq+sYhAACCDgEAgKloY9Il34phdVyj5IwW3rDJHPcMsv9OHoRQAABBBCoQAIEuFegD4OlIIBABRJYMcF+MQHBUgfzZGsZlDdnbnZ5l3GDyN7uEocOBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoIwFYiNCNH54exPoPljW73PDg70MdE/P0su/bVT/Z6fr+Z/X6mAKge5l/NFxOwQqt0CbYdJNJoC98anu95FiEixamdxnPi/l5LgfSy8CCCCAAAIVQIAA9wrwIbAEBBCoYAKZadKqKfaLanOmefI12r7Ph63bD6bqmz932s7Y2WRu79syxraPRgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB8hOIMYHu953VzpHR/dbBLRURYrIse1GOmkD3V6dvMoHuv+mZH9dq/9F0L65iCAIIIGAEoptI1/wg9bnNPUeuCWxf9LZ07KD7cfQigAACCCBQAQS8+y66AiyUJSCAAAJlJrBhqpR+2P52ncfat/u49Z3ZW5Sdk2s7q/W0v5+fn20fjQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC5S9QKzxY/ziznW4Y0EL/m7NF781NULIJYvdUUjKy9cbMTfpwfoKu6N1MN8S3kJUdnoIAAgi4FQgIks58UmrWV5o8TkqziXvxM7lwL/yfFE5SRbeW7jqzzFs29m+Q9qw2x0pzrJIObJZCIqRul0k9r5Wsz4KCAAIIIFBiAQLcS0xYMSbYtGmTFi5cqO3btysjI0O1atVSu3bt1LdvX4WGhpbbIg8dOqRFixZpy5Ytss5zzCtuoqKi1LhxY/Xq1Uv169cv8dqseVesWKH169fr4MGDyszMdOzfmvu0005TgwYNSnwPJqhmAk1OlYY+Kq34Mu+b0fzth0RJrYfl10rt6wHzyrnPFyXazt88Nlxndiz5/29sJ6cRAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCnAtE1gnXXsLa6zgS6vzd3iyPY/Uia50D3VBPo/uaszfrABLpffloz3TiwhepGll/8h09RmAwBBEpPoN050k2zpC+vkXYudb7P4H9Jcf2d26jZC+SapJRH9x4PYrcC2a2A9qR1Uk6m/TW7/pQWvyeNeDHvQQP7UbQigAACCHgpQIC7l1AVddjkyZP1+OOPa+nSIt+Q/LXgiIgIXX311Xr44YcVGxtbZtv46quv9Morr2jGjBnKtf7Cd1G6d++um2++Wddee60CA73742gFyVvzfvvtt5o2bZpWrjTfPLgpHTp00K233upwqFGjhpuRJ3YNGjRIM2fOPLHDy5b33nvPcV8vhzOsoghEmgDy/nfmHdY3qMsn5AW7txoiBZX+Pxh8MC9BaZk5thrW0/0B/n62fTQigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFRMgaiwIN05tI2u7d9c75ts7u+arO6Hj7kIkiy0Bet3x++YsR/9vlWXmUD3m61A95ql/3vrQkvgFAEEKptArTjp2p+kqQ9KC9/MW32roSYO5q7KtpOyX+/i/0mrJudlZk/dV/z7J62R3jtb6nqpdMZjUkSd4s9R1a/ISjcPX/whBYdL9TpJfsRBVfWPnP0hcLIC/id7IdeVr0B6erouv/xyjR492mVwu7XCo0ePOgLNrSDvWbPM03mlXPbv369zzjlHF1xwgaZPn+42uN1ayh9//KGbbrpJvXv31saNGz2u7ueff3Zkfx8yZIj+7//+z2NwuzXh6tWrHQHu3bp1c2ST93gTBiBQWKBeR/MN56PSneZBimFPFu4plfPUjCzHE/h2k9eJDNH5pzSy66INAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKASCNQMDdLtQ1przn2D9Y8z2yq6RpBXq07PytH/TAb4/s9N1yPfrNLuw2leXccgBBCopgKBIdLw56QxH0h12kmj35L8CRX0+Kdhn4lf2zJTOpng9sKT//mp9EoPadG7JuN7duGe6nueflSa8az0XAvpf2dKb/SXXj1NSphTfU3YOQIIuBXgby23PBWz08pgftFFF+mTTz5xWmBAQICaN28uK5A7KirKqS8pKUlnn3225s+f79Tuy8qRI0c0bNgw/fDDDydMW6dOHZ1yyinq0aOH6tevf0L/kiVLNHjwYCUkJJzQV7hhw4YN2rVrV+GmgvPatWvLCuTv1auXmjZtWtCef2JdO3DgwDIJ9M+/J1+rkID1TX5ozVLf0OcLt+lQqv1T+tf2a67QoIBSXwM3QAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAoXYFIE+h+6+BWJtD9dN13VjvVDg/26oYZJtD9ffNW8HgT6P7g5JXaeeiYV9cxCAEEqqlAx1HSuHlSeEz1ArCCqbctkha/J31/j7Rionf7txJh+qqkHTb3vkt694y8jOW+mrcyzmMF+b810AS4PyVlmM8mv+xbJ71/jvTtnZLlRUEAAQQKCQQWOue0kgg8//zzmjJlitNqb775Zj344INq2LCho90KgrfG3HnnnUpMTHS0paamauzYsY6s50UD4J0mO8nK/ffff0I2+ZEjR+qRRx5R9+7dnWZds2aNnnzySacg/e3bt+vGG2/U1KlTnca6qviZ15MMHTpUF198sQYNGqQWLVo4DbX2/fLLLzsyvWdn5z0Jd+zYMZ177rmy7p9v5XSRh8ovv/ziYYRzd8eOPvymx3lqalVQIDPbvFpu9mbbnUWGBOqy3ic+uGE7mEYEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgUohEGF+FzxuUEtd2aeZPlmwVW/N2qx9RzM8rj3D/H75o9+36vNFiRrbs4ljjsa1ani8jgEIIFANBfyLkUzxiEk8OuFKqdd1UkQ9KShMCgy1/xrg3RsoSlXcxMjp4BZpz6q/jpV5X622wiXtkNT5wsIt9ue+DHDPv8OOJdLbp0v9/y4NeSi/tXp9tf4Mdr1Y+u0J+30vMQ8irP9ZGvGi1PZs+zG0IoBAtRMgwL2SfeT79+93BIYXXvbTTz+tf/7zn4WbzBtl/DV69Gideuqp6t+/f0FmdCuI/MUXX9Sjjz7qNL6klb179+qNN95wmmbcuHF67bXXnNryK+3bt9fHH3+stm3b6qGHjv/FbQWQW1nm+/Tpkz/0hK/BwcG66aabdNdddykuLu6E/vwGK4v7Cy+84Mhcf8455yg9Pd3RZWWaHz9+vD744IP8oV5/tQLqKQiUlsA3y3Zqp4vXyF3Wu5msV9VREEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSqnkC4CXS/Mb6lrugd5wh0f2OmFeieF+fgbreZ2blmfKImLN6mC3s01i2DWqlJbQLd3ZnRhwACLgSys6RJJrB9+8K8w8WwgmY/E7R8QgC8CYYPDDPtRb4OHi/Viiu41OXJruVSjlnHCfOaOTNTTfD6audA9r2mbrV7KlYAvDelTjvJz1/KNYHz7oq/CbuMbStZAfFZ5k0aa751NzpvvsgG7sdU9d7et0gL35GO7rbfafJO6bOLpU4XSGc9ax6wqGM/jlYEEKg2AgS4V7KP+rnnnlNycnLBquPj43XfffcV1IueNGrUSO+8844j03l+30svvaTbb79dMTEx+U0l/vrdd98pP0u6NVmdOnUcweWeJv7Xv/6lzz77zJFRPX/st99+6zLAvW/fvlq/fr2aNWuWP9zj1yFDhshyu+OOOwrGfvHFF3r11VcVERFR0MYJAuUpkJOTqzdnbbJdQnCAv67tF2fbRyMCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQNURCAsO0PUDWuiy05rps4WJemPmJu1NTve4QSvQ/bOF2/Tl4u06/5RGum1wazWNIdDdIxwDEEDguMD0J6Wtc4/XPZ3lZksZR/MOT2P73uZpRF7/5HEmgH2ld2OLM2rfehOIbv5bGhji/iorMD+mtbRv3fFxVmB63Q55wez1OuV9jW1j5go+PmbzTOn7u6X9G463FT5r0E3qeW3hlup3HhwuWQ86fHs8hs8WYeUkadN0E+T+jNRlrHngwM92GI0IIFD1BczjRpTKIpBjXqny3nvvOS33kUceMf8Nd/8fcSvAe8CAAQXXWQHyEyZMKKj74mTdukJ/qZsJzzzzTNWo4fkHpfxM84XXsHHjxsJVp/NTTjmlWMHt+Rdb2eSjoqLyq45s7jNmzCioc4JAeQv8tnav1u8x3/TblAvMU/Z1a5pvoCkIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAtVCwAp0v7Z/c826d7AeHdlR9b38nXGWSa42wQS5D/73DN3z5Z9K2JdSLbzYJAIIlFBgwy/SnBdLOImby62s7t6UTJMNvTSKlRXeCnL3ppx2kwl+e1q68hvpH5ulu9dKV3wlDXtc6nqRVN8EuRcObrfmbDFQGmceDjj9QdNXNMbHxPaNMLb+Ad7cvWqP6Xa5d/s7dkD6+kbpkzHSoW3eXcMoBBCocgIEuFeij3TevHlKSkoqWHGLFi00aNCggrq7k+uuu86pe/LkyU71klYOHDB/qRQqTZo0KVRzf9q0aVOnAYcOHXKq+6ISFBSk3r17O02VmJjoVKeCQHkKWE/d2xXr+ZUb41vYddGGAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFDFBUKDAnRV3zjN+McgPX5eRzWIKho4aQ+QbQLdJy7ZrtP/PUN3fbFM2w+m2g+kFQEEEDi8XfrqhtJ1sDKje1Oy0rwZdXJj9qzy7rpeJs6uzy15QevhMd5dY42yssPH3yPdukBqc9bx66zM7Y16HK9XpbO0I9JvT0jrfvJuVwGB0iVfmIcEOkshx5PVurx4o3nw4rXe0sK3JZMcmIIAAtVLwL96bbdy7/b777932sAZZ5zhMXt7/gXW2MLFyl6ekpJSuKlE54Wzo1sTHTt2zOv5io6NjY31+triDKxVq5bT8MOHDzvVqVRjAesboFVfm1cm+e7/E8XRXJRwQIu3HrS9ZHinBmoeG27bRyMCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQPUQsALdr+iTF+j+5OhOahTtXTZkE+eur/7YoaEvztTLv25QWmZ29QBjlwgg4L2AlTU9vK73409mZHllcA+OkBqfKvW4RqrV/GRWXvxrasVJl5og7os/kxqeIg150Ps5sk2m+cpQsjKkBW9KL3eTZj0vTX1A8nbtbU3w/81zpLtWS6eNM7v1c7/jjKPSD/dI7w83Wfg3uB9LLwIIVCmBwCq1myq+mWXLljntsG/fvk51d5WGDRsqLi5OCQkJjmEZGRlavXq1evXq5e4yr/u6devmNHbRokVOdXeVhQsXOnWfeqr5pqIUyo4dO5xmjYkpxhN2TldSqXICifOkL6+WgkwgefsRUuex5inMQZL11GAZlDdm2Gdvt25988CWZbACboEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUBkEQgIDdNlpzTSmRxN9tXS7Xpm+0WRn95yEMC0zRy/+st6R1f3hcztoSPt6lWG7rBEBBMpCILa1dMNv0uwXpLU/SKn7JCvo3TpknpLxRQny7qEcnXQGdxMkXbuFVK+jOTr99dWcRzeT/MspB3A7E5Dd9mwTv+0hgDvf10rM+dYgqevFJoP830xG+OD8norzNdf8eVj1lfTr49LBLcfXtX+D9MeHkpWt3tsSEiGd/YzU6XzpG7PfpLXur0ycL73eTxp4r9TvDhPXFeR+PL0IIFDpBcomerPSM1WMDaxZs8ZpIR06dHCqe6pY4/MD3K2x1ny+CnAfMWKEwsPDC7LCz507V/Pnz1efPn3cLmvjxo2aNGlSwZjQ0FBdeumlBXVfnVjZ6pcuXeo0XZs2bZzq3laszO9bt27VoUOHFBERIStQvnHjxgoICPB2CsZVNIHlE/JWlGm+UVz+Rd4RXkfqZv4snvFYqa523e5k/bp2r+09+rWKUefGUbZ9NCKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIVF+B4EB/XXxqU13Qo7G+XrrDEeieeCDVI4g15roPFuv0dnX10IgOiuON4h7NGIBAtRCwgo2HPpJ35G/YCmbOzsgLdLcCz62Ad6++mrFZZmxmoa+Bofmzuv5q3c8RVO96iKMnNNo5iN0KaK/bTgoO93BhOXR7G9xuLW3mcyZD+XoTPG5ilf78XDrn31Lz+HJYtItbbpkl/fKQtPMP+wEznpG6XFT8z6HJqdJNZu7ZL5rD7Dkn035+qzU7XfrNBNevmiyd91+TIb+767H0IIBApRcgwL2SfITHjh1TYmKi02qbNGniVPdUKTp+3bp1ni7xuj86Olr333+//vWvfxVcc8EFF2jKlCkug+itAPvzzjtPVjb5/PLEE0+obt26+VWffZ0wYUJB8L01ac2aNdWvn3miq5ile/fuWr58uXJycpyutALdrfmsPV955ZUKCQlx6qdSgQWyzDc+qyefuMCUJGn/phPbfdzy5kzX9xg3sJWP78Z0CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJVSSAowF9jezXR6FMaacqynXrltw1K2O850P03k4htzoZ9ujG+hW4Z3FI1ggkhqkp/LtgLAj4RsIKzA00MlHWURbHu96CJ13EVSJ9r4rWsjOw1G3qfFb0s1u2Le+xdK81/5fhMVqD7B+dKncdKw56QIusd7yvrsz2rpGmPSBumur/z0T1mD6/mZVh3P/LEXuvP2ODxUofzTDb326QdS04cU7hlzwrp7SFSXzN2kLnO2zcEFJ6DcwQQqPAC/hV+hSzQIbBv3z7lWk+p/VWCgoKKHQjeqFGj/MsdX/fu3etUL2nln//8p1P29V27djkyuFtB7K+++qq+++47ff/993rrrbd08cUXq2vXrtqwYUPBba3r77777oK6r05SU1P12GOPOU132WWXyTIsblm2bNkJwe3WHEePHtXPP/+sG2+8UXFxcfryyy+LOzXjy0vA+uYr7bD93buYbxJLsWw/mKpv/txpe4dOjcxDGCaDOwUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAFPAlag+4Umm/u0uwbqpYu6qoUXmdkzsnMcmd+H/numflixyykuxdP96EcAAQRKRSDAxHOF1pQi6kq1TDB7nbYmS3c3qWlvqVlfKcrEvxUnK3qpLNLHk1oxgd+bmLmcrBMnXjFBeqWntOAt0599Yn9pthzeLk2+RXq9n+fg9vx1/PGxybJus4/8fk9f63WQrvtFOvMp82BFmPvRucZj7n+kFcTpuYeiF4HKKxBYeZdevVZuBVAXLjVq1DB/V5un1opRwsPDnUYXndOp8yQq/v7++vjjj9W3b189+uijSkpKUnZ2tr755hvH4WpKK/O5NX7IEPNUVSmUe+65RwkJCQUzWw4PPPBAQd3XJ7t379bYsWNl3ff555/36fTWQwmWa3HKxo0bizO8+o1dbr4RtCshUVLrM+16fNb2zuwtyso5/uBK4Ymt7O3F/f944es5RwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCofgKBJtB9dPfGGtm1kT5bmKjnf16nw8cy3ULsPJymWz5Z6kjC9ujIjmpVN9LteDoRQAABBHwoYMUubZ3jesL0I9KP/5CWmeDxc16SGvdwPdYXPccOSXNeNEH1b0pZad7NaAWjW9nU+94uBZQwJNU/QOpzq9R2uPStmW/LLNdraHyq1O0y1/30IIBApRYo4X9NKvXeK9Xiiwajh4aGFnv9YWHOTzUVnbPYE9pcYAXk3nrrrbKyto8bN86Rtd1mWEGTFdxuZW0fPHhwQZsvTz777DO9/vrrTlM+/fTTatiwoVObu4plfcYZZ+jss89Wt27d1KpVK0VHRys9PV1WwPn8+fNl3eeHH35wepr5hRdeUExMjKzM9L4qr732muNhAF/NV+3nsb4hW/+TPUOHkeb1NcX//5n9ZCe2HkzJ0BeLtp3YYVriYmrorE71bftoRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwJNAgL+fLu/dTMM7N9ALU9c5gt2tJMHuytyN+3XW/83WNf3idPuQ1ooMNZmUKQgggAACpSxg/uNsJeJMP+z+Prv+lN4xCWR7XiMNeUgKq+V+fHF7M9OkRW9Ls16Q0g55d7Wfv9T9CmnQeKlmA++u8XZU7ebSld9IVlb4n/91ok9AsDTyv5IVEE9BAIEqKWD+C0OpDAJpaeYvkEIlONj8B7qYJSQkxOmKY8eOOdV9UUlJSdFdd92lNm3aeAxut+43d+5cnX/++erYsaN+//13XyyhYI6FCxfquuuuK6hbJ8OHD9dtt5mnxbws1l62b9/uyEBvBez36dNHderUUVBQkCIiItSiRQtddtlljr3OmjVLjRo1cpr5/vvv159/mm8uKBVTYI35Jig7w35tXcbat/uo9YP5CTqWaf/qoBvjW8r6xwYKAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACJRGoHR6sp0Z31je39le3JtEep7LeQv62eRv5kH/P1OQ/djgl+vN4MQMQQAABBIov0PVi6W+Lpa6XeHGtCYZf/D/pvz1NRvdPZf4j7cU1Hobk5Eh/fiG90kua+oD3we1WhvVx802Q+cu+D27PX7JJtqtTTAD9bQul9ufmt+Z9jb9XqtvOuY0aAghUKQEC3CvJx1k0Y3tGhougXDf7sTKOFy5F5yzcdzLnO3fuVM+ePfXSSy8pP3i+bdu2srKOr127VlbG+NTUVG3atEnvv/++evToUXAbq3/AgAGaPHlyQVtJTjZu3Khzzz23YB3WXO3atdNHH30kK8u8t2XkyJGOLOzejO/fv79mzJih2NjYguG55puIBx4wf/FTKqaA9Yofu1LTPKjQrL9dj0/aUjOy9P68BNu5YiNCdP4pzg9K2A6kEQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAS8FOjeO0lfj+ur5C7soxgS9eyp7k9N15xfLNPbN+Vq984in4fQjgAACCJREIKKuNPoN6ervpTpeBG2n7pMmj5PeM0Hme1af/J03/iq9FS99faN0ONG7eRqbQPhrfpIu+azsAswj60sXmUzuYz+Uwo1V3Y5Svzu8Wy+jqpeA9cDGoW3SpunSvg3Va+9VcLeBVXBPVXJLVrbwwqVoRvfCfa7O84PO8/uLzpnffjJfrfUMGzbMEcief/3111+vV199VUWzzVtZz63jyiuv1IMPPqgnn3zScUlWVpYuueQSLV26VO3bt8+fpthfrUB7ay179+4tuLZJkyaaOnWqateuXdBWGietWrXS888/r2uuuaZg+h9++EEHDhzwyb1vueUWjRkzpmBub06sYP9Ro0Z5M7R6jTm8Q0qYY7/nTheY19f42/f5oPWLRdt0KDXTdqZr+8cpNCjAto9GBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEETlbA37xJfEzPJhrWsb5e+mW9PjRvHjcJ292WRQkHNeK/s3VF72a664y2iqoR5HY8nQgggAACJRCIMwk5b5ot/f6aNPNZKTPV/WSJ86Q3B0i9b5EG3ieFOMcYurx415/SLw9Jm2e4HHJCR0wracjDeZnUi5Fg9oR5StLQ4TypuQnIT9kvBQZ7N1OGMUw146ObeDeeURVfwHpzQeoBaf/GIscm6YA5stLy9hD/D+n0Byr+flihSwEC3F3SVKyOosHoViZ0Kzt4cbKRp6SkOG2q6JxOncWsPPvss1q1alXBVaeffrrefPNNEyPsOkjYWvsTTzyhxMRER2Z162IrUP7uu++WFRR+MsUKJLeC27ds2VJweZ06dfTLL7/ICnIvi2IF7t97771KSkpy3C7HPBU0bdo0jR07tsS3r1u3rqyD4gOBlRPNJOYvO7vSpeSfld20Vltmdo7eMa9zsyuRIYG63PyjAAUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHSEogKC9IjIzvqol5N9PA3q7RwiwkSc1OsIPgP5m/Vt8t36b6z2mpMjyYmHsTPzRV0IYAAAgictIAVuN3/TslK0PnTP6W137mfKidLmveytHKSdNYzngPQ049K74+Q0o+4nze/18qYPsis45QrpYAK8JBTWC3JOrwtM56SFr8nDX1E6nldqSY99XZJjDtJASuZ7S8P5wW1px3yPAkZ3D0bVfARrqOPK/jCq9vyYmNjnYLZMzMznTKUe+OxY8cOp2G+CpTOzs7WK6+84jS3FbjuLri98GArg3vhsT/99JO2bdtWeIhX58nJyTrrrLOcAu2joqL0888/q23btl7N4YtB1l4GDRrkNNW6deuc6lQqgMDyL+0XUbeDVK+TfZ8PWr/9c6d2HDpmO9OlvZuqZmgF+EbQdnU0IoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUJYH2DWrqixt76z8Xd1O9miEet3YgJUP3TVqh0a/P05/bDnkczwAEEEAAgRIIWBnHL/5EunSCyT7uRcLMIyY2cMIV0qdjTRbrLa5vbGV573u76/78nqBwE9g+Xrr9D6mXCQyvCMHt+Wvz9uuOJdL8V6UME9T/wz0msH+4lLTe26sZVxYC2ZlS8h7v7uRnwp13LDZZlA95N37/Ju/GMarCChDgXmE/GueFhYWFqWnTpk6NVubz4pSi49u1a1ecy12OXb58ufbt21fQbwXj9+7du6Du6cTKrN61a9eCYVZm+jlzzNM2xSjHjh3TiBEjtGjRooKratSooe+//17du3cvaCurk6LZ4vOzuZfV/bmPB4E9q6U9K+wHdR4j8zSJfV8JW3PMY+1vzLT/izM4wF/X9WtewjtwOQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAt4L+Jnfj5/XrZF+vXuQbopvoUAvMrNbwe2jXpur8V8tlxX0TkEAAQQQKEWBNmdKt/wuxf/DBJkHe77RhqnSayZ2b+ZzUpaL/0b3uUWKqG8/l1+ACWi/XrpjWV7mdisgvjIWa+9T/ibl5hxffeJ86Y1+0qwXJCuwmlI2AjnmMzhsHsDYPFNa9K55M8H90ifmQYyXT5GeqGceyjDxet6UmFbejDo+5oCJ07PuTam0AoGVduXVcOFWQPrWrVsLdr569Wr16tWroO7pZM2aNU5DfBXgvmWL8xNfcXFxTtnmnW7qotK8eXP98Yd52uuvUjTbfH673deMjAxdcMEFmjVrVkF3SEiIJk+erH79zF9I5VCCgoKc7mpl3KdUIIEVE1wvpvOFrvtK2DN93V6t33PUdpYLejRS3Zqhtn00IoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUJoCESGBGj+8vcb0bKJHvlmlORuPJzq0u6/JXajPFm7TDyt2655hbXTpac0U4EVwvN1ctCGAAAIIeBAIriGd/oDU5SLp+7ulLSZQ2F3JSpNWTpL63Wk/Kjg8L3j9uyL97UdKQx6WYosZSGx/l/Jtnfsfae+qE9eQbQLff3tcWjVZOu+/UsPuJ46h5eQEUg9I+zf+dZjgcse5+WoFmmemup7TyrRufWPhKSlteB0ppKaUfsT1XIV7rHsm75KiGhVu5bwSCfhXorVW+6V269bNyWDevHlOdXeVXbt2KSEhoWCIFYDdoUOHgnpJTtLT050uDwws/nMTRQPCs7OzneZ0VbHGXXrppfrxxx8Lhlj3//zzz3XGGWcUtJX1ye7du51uWaeO+Y8rpWIIWE9lrZhov5Zm5oGI6Kb2fT5odZW93fq7+YYBLXxwB6ZAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDg5AVa1Y3QR9edqjcuP0WNosM8TnT4WKYenLJK5/53jhYnmMA2CgIIIIBA6QnEtpaunCJd+D/XGdjz737Oi1JgcH7txK/drzCB7G3y2pv2la6bJl30UdUIbrcCpmc9d+KeC7fsWSG9PUT65SETfH2scA/n3goc2Jzn985Q6dk46bnm0rsmZnPyOGn2C9LqyZLl7C643bpXhkkYe3SPdea+WEF2MS3djyncG15XStlbuIXzSiZQ/EjkSrbBqrTcESNG6Nlnny3Y0rRp08yDK7leZUufOnVqwXXWyeDBgxUREeHUdrKVmJgYp0t37tzpVPemUjRjuzcB4dber732Wk2aNKngFv7+/nrvvfc0atSogrbyOJkzZ47TbZs0aeJUp1KOAtarZg5vs19A5zH27T5otX6QX5Rw0HamszvVV4s6vvn/o+0NaEQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMBLAT8TQHZWpwYa2KauXp+xUW/M2qyMrBy3V6/edUQXvjFf53dvpH+e3Y43mLvVohMBBBAogYAV5NvpAqmVCSSe/pS08E2T/brIf6O7XiLFmUSf7kqACR0d/nxecHebszxnz3Y3V0XrqxUnDX00L1O7u+Dq3GzJyvS+5lvp3Jel5gMq2k4q5nqyM/PcZpqHCLLTfbNGK9t7ZH3Pc8W0knb+cXxccGRe0LvVXnC0zGsLjTo+jrNKKWD+K0WpLAJ9+/ZVbGys9u3b51jy5s2bNWPGDEewuqc9vPvuu05DzjvvPKd6SSpxcXFOlycmJmrTpk1q2dL8h8KLkpycrEWLFjmN9Oba2267TR9++KHTda+99pouv/xyp7ayrsycOdOx/8L3HTJkSOEq5+UpsGKC/d39g6QOvvv/RdGbuMrebo27eaB3/18pOid1BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEESksgLDhAdw1rqwt6NNZj367Wr2s9Z0H96o8dmrp6j+4c2lpX9Y1TUIB/aS2PeRFAAIHqLRBaUzr7GanbpdL3d0nb/4q/s4J6z3jcO5sWg7wbV9lG+QdIfW6R2g2Xvr1D2jzD/Q6sTOQfjJB6XG3sHpMIjHbtZQWXT/lbXmZ216OK32MFuMf193yd9ec9bsDxYPYIk6XdeuiDUiUF+C6yEn2sVnbyq6++2mnFjz76qCOLu1Njkcqvv/6q2bNnF7RGRkZq7NixBfWSnrRp00aNGzd2muaFF15wqrurvPjii0pPP/4kT40aNdS7d293l2j8+PGygtkLF+ueN910U+GmMj9PSUnR7bff7nTfzp07q0WLFk5tVMpJICtDWjXZ/uZtzpRq1LbvK2Hr+j3JmrZmr+0s/VrFqEvjaNs+GhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEChvgWYx4Xr36l5696qeahZTw+NyjqZn6Ynv12j4f2Zr3sZ9HsczAAEEEECgBAINukjXTjUZyE0m8tBoacjDUkSdEkxYhS61MrlfMVk671XvgtaXvC+9epq07scqhOCjrWQek355SHp7iO+D260lWgHu3pSWp5sHEa7Ke0NBZD2C270xq8RjCHCvZB/efffdp4iIiIJVW9nCn3322YJ60ZMdO3bo+uuvd2q+4447HJngnRqLVKzXTRU+rEzx7krRrOlvvvnmCdnV7a7/9ttv9cQTTzh1XXzxxQoJCXFqK1yx9vvMM+bps0Ll4Ycf1t13312opeSnltPOnTu9nsjKrD9y5EgtX77c6RrrIQRKBRHY+IuUdsh+MZ3H2Lf7oJXs7T5AZAoEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgXIVGNK+nn6+M173DGuj0CDPIUcb9h7Vpe8s0K2fLtXOQyYwjoIAAgggUDoCJnGuI/v47Sa7tpWFnHJcwMru3f1y6daFUvuRx9tdnSXvkj67WPr0IilpvatR1a995zJprnmIIje7ZHsPNw9fNO2T95kMfUS66GPplt+lwQ+UbF6urpICfrmmVMmdVeFNPf3007r//vuddjhu3Dg98MADatiwoaM9JydH33zzjawg7cTExIKxVv+qVasUHR1d0GZ3YgW3Fy7Tp0/XoEGDCjc5nR88eFCtWrXSgQMHnNqtjPP33HOPOnbs6NS+ceNG/ec//3FkYbfWml+s7O2rV69Ws2bN8pucvn7wwQcnZLHv37+/rAD34hbLokOHDi4vswysQPuzzz5bF154ofr166e4uLgTxm/btk2ff/65rEz0u3fvduofNWqUvv76a6e2sq5Yn3enTp0Kbrty5coTPo+Czqp+MuFKafWUE3cZUlO6Z4MUFHpiXwlbdpgf0gc+N11ZOSf+p7Zjw5r67m/9HQ+TlPA2XI4AAggggAACCCCAAAIIIIAAAggg4KUA/17mJRTDEKggAvx/toJ8ECwDAQQQQAABBBAoImD9LvzJ71frhxXOcRJFhhVUw4ICdNvprXT9gOYKCQwoaOcEAQQQQACBMhVY/Y30wz3S0T2eb+tn/r7qea00aLwUHuN5fFUf8e0dkpXl3lMJNgmcY1qao1Whw9RrmyMs2tPV9HshUF3+vSzQCwuGVDABK4v7vHnz9N133xWs7PXXX9dbb73lCAyPiorSli1bdOjQoYJ+6yQsLEwTJkzwGNzudJGXlVq1ajkCuYcNG6b09PSCq95//31ZR926ddW4cWNHIK+VFX3XLvOkU5Hib54k+/TTT10Gt1vDrUD7omXOnDk644wzijZ7rF911VWOtbkbaO1l8uTJjsMaV7NmTTVo0ECWcWZmpvbs2eMyy/uAAQMc+3E3P31lKJB22Lw+5if7G3YYWSrB7dbN3pm92Ta43eobN6glwe0WBAUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoFIJNIoO02uX9dDsDUl65JtV2pSU4nb9xzKz9fzP6/Tl4m16eGRHDW5b1+14OhFAAAEEECgVAStOrPkAaarJGP7Hx+5vYWUrX/S2tHyCFH+PdNpNUmCI+2uqcu8Zj0nrf5asLPeFS2iUNMD4NDolL6A9op5MUFzhEZwjcFIC/id1FReVq4AVCP7ll1/q4osvdlpHdna2Nm/erD/++OOE4PaYmBj98MMPjizkThf5sBIfH69p06bZBqjv3btXS5cu1ZIlS2yD2+vVq6dvv/1W5513ng9X5Pupjhw5onXr1mnhwoUOZytYv2ixPp97771Xv/76q+OhgqL91MtJYM23Uvbxhy+cVtF5rFPVV5WDKRn6fOE22+maxdTQ2Z0a2PbRiAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQGUQGNC6jn68I173D2+n8OAAj0tO2J+qa95bpOs/WKxEc05BAAEEEECgzAXCaknnvSpdMVmKbub59ukmseovD0qv9JK2L/Y8vqqOsALZz3nReXftz5VuXSj1u12K6y9F1ie43VmIWgkECHAvAV55XhoaGqrPPvtMEydOVLdu3VwuJTw8XLfccotWr16tQYMGuRznq47+/ftrxYoVeumll9SuXTuP08bFxemJJ56Q9cqE4cOHexxflgOsjPjWQwRNmjTx6rb169fXHXfc4QiAf/bZZxUUFOTVdQwqI4Eo8zm2Hmb+Ai3yA3WkCTK3/nIthfLB/ARZT6HblRvjWyjAnyfV7GxoQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCoPALBgf66Mb6lfrtnkEZ1a+jVwqet2aOhL83UE9+t1uako15dwyAEEEAAAQR8KtBysHTLfKn3rSamzItQ2pQkqWYjny6h0k3WzsR4dhwthdeVxn4oXWSy4FtB7RQESkHAL9eUUpiXKctYYOPGjVqwYIF27NihjIwMRUdHq3379o6M7VYwfHmV3bt3a9GiRbIynR86dEjWH7eoqChZGdt79uyppk2bltfSinXf/fv3a82aNdq6dauSkpKUkpKigIAA1apVS7GxserevbtatGhRrDnLarD18ECnTp0Kbrdy5Up17NixoF7tTo6abzRWfS2tmGCeqFsk9blNOvNJnzOkZmSp3zO/6WBq5glzx0aEaM59gxUaVCTY/oSRNCCAAAIIIIAAAggggAACCCCAAAII+FqAfy/ztSjzIVC6Avx/tnR9mR0BBBBAAAEEECgNgQWb9+vhb1Zp7e5kr6c/tXltXXJqE8eb0PldutdsDEQAAQQQ8JXA9iXSj/dKOxa7nnHQ/dKg+1z3V9aeQ4lm5SZRa7R3iYCVsl/yNw8EWJnwKeUiUF3+vSywXHS5qc8FWrVqJeuoaMXKan7uuedWtGUVez0xMTGystNbB6WSC0TUkU67Me/Yv0kKLJ0HQCYs2mYb3G7pXdMvjuD2Sv7HiOUjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCNgLnNYiRt/9rb8+/n2r/v3LeiWnZdkPLNS6cMsBWccj36zW6O6NdLEJdm9Xv2ahEZwigAACCCBQigKNe0jXT5NWTpKmPSId3uZ8s0jzhpK+tzm3VfZaTo606G2z30elJr2kKyabOHcT6O6phMd4GkE/Aj4RMI9RUBBAAIFqKhDTUopq5PPNZ2bn6O3ZW2znjQgJ1OW9m9n20YgAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBVEAgM8NfV/Zpr+j2DNLZnY6+3dPhYpt6fl6Cz/m+2Rr06V18sSlRKuucAea9vwEAEEEAAAQRcCVjB3Z0vlG5bJA15WAqOPD5yyIOmHn68XtnPktZJ752Vl7U+M0XaPENa9mll3xXrr2ICBLhXsQ+U7SCAQPkL/Lpmr3YcOma7kMtOa6qosCDbPhoRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCoSgKxESF67sKu+vqWvurcKKpYW1u27ZDum7RCpz31q8Z/tULLtx9Sbm5useZgMAIIIIAAAsUWCAqTBtwl3f6H1PNaqeEpUpeLvZvG+ntq+2LvxpbHqKwMaeZz0hv9pW0LnFfw83gpeY9zGzUEylGAAPdyxOfWCCBQNQV+W2v/F32weUL92v7Nq+am2RUCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIuBLo3raXJt/bT0+d3Vq0axUsKd9RkcP9sYaJGvjJX57w8Rx/NT9CRtEwXd6IZAQQQQAABHwlE1JFGvCRdN1Xy9zLUduM06Z0h0kfnS3tW+2ghPppmxxLprUHS9CelbBPoXrSkHTYZ3f9RtJU6AuUm4OX/68ptfdwYAQQQqFQC1tPis9bvs13zuV0bql7NUNs+GhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKjKAgH+frrk1Kaac9/pesYEundtEl3s7a7edUQPTlmlU5+cprsn/KnFCQfI6l5sRS5AAAEEECiWQICXD2ZlZ0lTH8ibetOvJkt6P+nbO6Sje4t1O58PzkiVfv6XCbwfKu1d5X761VOkTdPdj6EXgTISCCyj+3AbBBBAoFoIbNx7VLuPpNnu9YwOdW3baUQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKC6CISHBOpiE+huHat3HtHnixL19R87lJxmAgO9LGmZOZq0dLvjaF03Qhf1aqILTmmsWuHBXs7AMAQQQAABBHwssPQDKWnt8Ulzc6Ql70srJkoD7pJ63yIFhR3vL4uzzTNNkP3t0sEEz3cLCpeGPCQ1j/c8lhEIlIEAGdzLAJlbIIBA9RGYuT7JdrPWk+h9Wsba9tGIAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAdRTo0LCmHjuvkxb9a6heHNtVp8bVLjbDBpOI7onv1+i0p37V3z77Q/M27lNOTm6x5+ECBBBAAAEETlog7Yg0/Sn7yzOOSr8+Jr3SS1r+pcxfUvbjfNl67JA05Tbpw5HeBbe3PF26Zb4Jwr9Z8g/w5UqYC4GTFiCD+0nTcSECCFRogawMKcW83iWqcZkuc9aGfbb362ZerRYV5uXramxnoBEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGqKRAaFKDzTQZ267DenP6Fyeo+aekOHUgxv/v3smRk5+jbP3c6jmYxNRxZ3S/s0Vh1I0O9nIFhCCCAAAIInKTAnBelVPu4sYIZD2+TvrpeWvC6dKYJhm/au6DLpydrvpW+v0c6utvztKHR0lnPSF0vlvz8PI9nBAJlKOBfhvfiVggggEDZCWz8RXqpk/T+CPOqF/P6F+uptFIuaZnZWrB5v+1d4lvXsW2nEQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSOC7SqG6F/ndNB88efrlcu7a7+rWKPd3p5tnV/qp77aZ36Pv2bbvposaav26tssrp7qccwBBBAAIFiC7Q/1wSs9/Hush1LpP+dKU24Ujqw2btrvBmVvCdvzi8u9y64veNo6bZFUrdLCG73xpcxZS5ABvcyJ+eGCCBQJgLLJ5jbmFeOJczOO34wT6W1Md8YdDffGLQZVipLWLjlgNKzcmznjm9T/B+4bSeiEQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgWogEBIYoBFdGjqORBOw/sXiRH25eLv2Jqd7vfssE9T+86o9jqNRdJjG9GyssT2bqKE5pyCAAAIIIOAzgUY9pGt+lNZ8I/3ykHQwwfPUq6dIa3+QTrtJiv+HFBbt+Rq7EbkmRm7ZJ9LP/5LSDtmNcG6LbCCd82+p3TnO7dQQqGACZHCvYB8Iy0EAAR8IpB2W1plvGAqXbPPaMuv1K9Y3BqVUZm9Isp05ukaQujSOtu2jEQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTcCzSNqaF/nNlO8/55ut66oodOb1dX/n7urynau+PQMf3ftA3q/+xvuua9hSbofbcys+2T2BW9ljoCCCCAAAIeBfzMX0wdzpNuXSgNe0IKifJ4iXIypfmvSC93lxa8JWWbenHKgS3SR6OkKbd6F9x+ylXSLb8T3F4cY8aWm0Bgud2ZGyOAAAKlJWAFsme7eGK7y5jSuqtmrd9nO3c/87q0gOL+ZG07E40IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghUX4HAAH8N61jfcew0AetWRvcJi7fJCl73tpik7pq+Lslx1IkM0ZgejXVxr6aygugpCCCAAAIIlFggMETq+zep66XSzGelRe9Iudnupz12QPrRZHFfaILchz0utTlLsgLmXZUcM9+CN6TfTCB9ZqqrUcfbazWXRr4sNY8/3sYZAhVcgAzuFfwDYnkIIHASAssn2F9kvV4lboB9Xwlbdx9O07o9ybazxLeOtW2nEQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQROTqBhdJjuGNpas+4drPev6aWzTOB7YDGTzyUlp+u1GZsU//x0XfbO7/r2z51Kz/IQhHhyy+UqBBBAAIHqJhAeIw1/zmR0XyC1He7d7vdvkD67WPpwpLRruetrUpLM01pPew5u9zMhwn1vl8bNI7jdtSY9FVSADO4V9INhWQggcJICR3ZJW2bZX9zpAsk/wL6vhK2zNphvGlyU+DZ1XPTQjAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIlEbDeqD6obV3HsTc5TZOW7NAXixKVsN+LjLaFbjx3435ZR+3wYF1osrpfP6C56kaGFhrBKQIIIIAAAichENtauuSzvJi2n++Xdq/wPIkV//amybbe7TJp6MNSRF3nayLrS2c8Kn1/l3N74Vq9TiZr+3+lRqcUbuUcgUoj4F9pVspCEUAAAW8EVk40o8z7xOxKl7F2rT5pm7XePsC9dd0INYgK88k9mAQBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEXAtYAenjBrXUb3cP0qc3nKaRXRsqOKB44VEHUjL01qzNGvjcDD3/81odPpbp+ob0IIAAAggg4K1AcxOwfuNM6bzXTMC6CVD3WEwM3KqvpJws+5E9rpGa9TuxLyBYOv0Bc68ZBLefqENLJRIo3ndwlWhjLBUBBKqpwPIJ9huv006q38W+r4St2Tm5mrNxn+0sZG+3ZaERAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBUhPwN1nd+7aM1cuXdNeC+4fowREdZCWoK045lpmtV6dvUvxz0/XmzE1KM3UKAggggAACJRLwD5C6m6zsty+VBv5TCqrhfrp+d0g1G9qP8Tfhv+e+LAWEHO9v0lu6ea4U/w/THnS8nTMEKqEAAe6V8ENjyQgg4EJg71rzCpfl9p2dx0h+fvZ9JWxdueOwDqXaP7FNgHsJcbkcAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBEgjUCg/Wdf2ba+rf4zVpXB9d2KOxQoO8D5myMrg//eNaDXp+hj5bmKis7JwSrIZLEUAAAQQQMALB4dLg8dLflkjdTMC7bOLaIhtIff/mniu2lTTIBMoHm4e4hr8gXfOjVKeN+2voRaCSCHj/3Vol2RDLRACBaiywwkX2dovECnAvpTJrfZLtzMGB/jo1rrZtH40IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUHYCfiYpXo9mtfXCmK5a+K+henxUJ3VsWNPrBew+kqbxX63QGS/N0nfLdyrHvO2dggACCCCAQIkErOzso16TbpwhxQ1wnur0B/MC4Z1bT6xZQfC3LpBOvUGysrpTEKgiAvxpriIfJNtAoNoL5JofHFd8ac9gvXqlVjP7Ph+0ztpgH+B+WvPaCgs2r5WhIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggECFEagZGqQrejfT97cP0Le39delpzVVREigV+vbsi9Ft336h0a+OkczTUK8XCtegYIAAggggEBJBBp2k676Vrr4M6l2S6l+F6nrJd7NGBAkRTX2biyjEKhEAt59Z1aJNsRSEUCgmgpsM0+hHUq033yXsfbtPmg9kpappYmHbGeKb13Htp1GBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKgYAp0bR6lz48761/D2+nzRNr06faMOpGR4XNzKHUd01f8WqneL2rr3rHY6pWktj9cwAAEEEEAAAZcC5k0jajdcan2GlLybbOwuoeioLgJkcK8unzT7RKCqCyz/wn6H/uY5no6j7ft80Dp/035lu3jtWHwbAtx9QMwUCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlLpAuMngfl3/5pp172DdObS1wr18Y/vvmw/o/Nfm6YYPF2v9nuRSXyc3QAABBBCo4gJWRvboJlV8k2wPAc8CBLh7NmIEAghUdIEs8+T0qq/tV9nKPNFWo7Z9nw9aZ5nXjdmVejVD1KZehF0XbQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQQQUiTKD7nUPbOALdrYD34ADvwqt+Wb1HZ/7fLN094U9tO5BaQXfHshBAAAEEEEAAgcoh4N13YJVjL6wSAQSqq8CmX6VjB+1332WsfbsPWnNzczVrg32A+4DWdeRnvTaGggACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKVTiAmIkQPjuig6f8YpDE9GsvfixAAE0agSUu36/R/z9Aj36zSvqPplW7fLBgBBBBAAAEEEKgIAgS4V4RPgTUggEDJBJZ/YX99cKTU9mz7Ph+0JuxPNU9dH7OdKb5NHdt2GhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECg8gg0ig7T82O6aurf43VWx/peLTwzO1fvz0tQ/HPT9eIv65WclunVdQxCAAEEEEAAAQQQyBMgwJ0/CQggULkF0o5I636030P7c6WgMPs+H7TOWm+fvd1K3D6gVawP7sAUCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFARBFrVjdQbV/TQ17f0VZ8WMV4tKTUjWy//usER6P7O7M1Ky8z26joGIYAAAggggAAC1V2AAPfq/ieA/SNQ2QXWfidlpdnvostY+3Yftc7eYB/g3qVRlGqFB/voLkyDAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAhVFoHvTWvr0htP00XWnqrOJD/CmHEzN1BPfr9HpL8zQhEXblJWd481ljEEAAQQQQAABBKqtAAHu1fajZ+MIVBGB5V/YbyTCvBasebx9nw9aM7JyNH/TftuZ4tvUsW2nEQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQqv4CfebX7gNZ19M1t/fTaZaeoRWy4V5vaeThN905arjP/b5Z+XLFLubm5Xl3HIAQQQAABBBBAoLoJEOBe3T5x9otAVRJI3i1tmWW/o04XSP4B9n0+aF2y9aBSzKvE7Ir1QywFAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBKq2gBXoPrxzA039e7yevaCzGkSFerXhTUkpGvfJUo16da7mbtzn1TUMQgABBBBAAAEEqpMAAe7V6dNmrwhUNYGVk6RcF6/t6jK2VHc7a0OS7fwRIYHq3jTato9GBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKh6AoEB/rqoV1NNv2eQ/jW8vaJrBHm1yT+3H9Zl7ywwx+/6c9shr65hEAIIIIAAAgggUB0ECHCvDp8ye0SgqgpkZ0qh0SfuLraN1KDrie0+bJntIsC9b8sYBZkfXCkIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUL0EQoMCdEN8C826d7BuP72VagR79+b5uRv36zyTzX3cx0u0ce/R6oXGbhFAAAEEEEAAARsBojBtUGhCAIFKItD/Tume9dLFn0odzpMCQvIW3tlkbzevASutsu9oulbuOGI7fXybOrbtNCKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA9RCoGRqku4a11cx/DNbVfeNMojzvYhh+XLlbw16aqXsn/qkdh45VDyx2iQACCCCAAAII2AgE2rTRhAACCFQegUAT1N7unLwj7bC0+hupxaBSXf+cDftczj+QAHeXNnQggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBQnQTqRIbokZEddV3/5npp2np9/ccO5ea6F8gx/RMWb9fkZTt1Ze9mumVwK9UOD3Z/Eb0IIIAAAggggEAVEyCDexX7QNkOAtVaIDRKOuUKKbpJqTLMWp9kO39cTA01qV3Dto9GBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKieAlYswYtju+mnO+I1tH09rxAysnL0zpwtin9uuv4zbYOOpmd5dR2DEEAAAQQQQACBqiBAgHtV+BTZAwIIlJlAjnlUepaLDO7xZG8vs8+BGyGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIFDZBNrWj9Q7V/XUpHF9dWrz2l4t3wpst7K/DzSB7v8zAe/bDqQq20rzTkEAAQQQQAABBKqwQGAV3htbQwABBHwusHZ3svYdTbedN751Hdt2GhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgXyBHs1q6Ysbe2umeYP8cz+t0+pdR/K7XH7dn5Khx75b7TiCA/zVzLxlvnlsuJrXCVcL62tshKMeGxEsPz8/l/PQgQACCCCAAAIIVAYBAtwrw6fEGhFAoMIIzNqQZLuWoAA/9WkZY9tHIwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggUFjACkIf1LaurGR6363YpRenrlPC/tTCQ1yeZ2TnaMPeo46j6KDIkEBH0Lsj+N0R+G4FwEcoLraGIkODig6njgACCCCAAAIIVEgBAtwr5MfCohBAoKIKzDJPT9uVU5rWUrj5IZGCAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgh4K+Dv76eRXRvq7E71NWHxNv1n2gbtTbZ/s7w3cyanZ2n59sOOo+j4OpEhjizveRnfrazvJvjdZIBvUruGQgIDig6njgACCCCAAAIIlJsA0ZjlRs+NEUCgsgmkZmRpccJB22XHt6lj204jAggggAACCCCAAAIIIIAAAggggAACCFQcgU2bNmnhwoXavn27MjIyVKtWLbVr1059+/ZVaGhoxVkoK0EAAQQQQAABBBBAAIFqJxAU4K/LTmum87s31gfzE/Ta9I06kpblU4ckEzhvHQu3HHCa18TYq3GtGo6A9/yg9/wM8A2jwmQF4VMQQAABBBBAAIGyFCDAvSy1uRcCCFRqgd8375f1mi+7MpAAdzsW2hBAAAEEEEAAAQQQQAABBBBAAAEEEKgQApMnT9bjjz+upUuX2q4nIiJCV199tR5++GHFxsbajvF1Y25urtauXesIuLeC7hcsWKDly5crMzOz4FZXXXWV3n///YJ6cU5mzJihwYMHF+cSp7HNmjVTQkKCUxsVBBBAAAEEEEAAAQQQKH2BsOAA3TywpS7p1VRvztqk/83dorRM+1gFX60mJ1dKPJDqOGYWebN9SKC/4mLysr03N9neHQHwJvO79bV2eLD8/Ah+99XnwDwIIIAAAgggcFyAAPfjFpwhgAACbgVmrd9n2x9jfmDr0KCmbR+NCCCAAAIIIIAAAggggAACCCCAAAIIIFB+Aunp6bruuuv0ySefuF3E0aNH9corr+iLL77QxIkTFR8f73Z8STrfe+89x3oWL16sw4cPl2QqrkUAAQQQQAABBBBAAIEqLBBVI0j3ntVOV/eNM4Hum/XTyt3acehYme84PStH6/YkO46iN68ZGqjmdSLUwgS7D25XV2d2rKeQwICiw6gjgAACCCCAAALFFiDAvdhkXIAAAtVVYNaGJNutD2gdy+u4bGVoRAABBBBAAAEEEEAAAQQQQAABBBBAoPwEcnJydNFFF2nKlClOiwgICFDTpk0VFRWlLVu2OAWZJyUl6eyzz9a0adPUp08fp+t8VbHW8+uvv/pqOuZBAAEEEEAAAQQQQACBKi5Qt2aoHhzRwXEcTc9Swr4UbSl0bDbnm5OOKjktq8wljph7/rntkOP4+o8dalU3Qs9e0Fk9mtUu87VwQwQQQAABBBCoWgIEuFetz5PdIIBAKQlsP5hqfiBMsZ19QOs6tu00IoAAAggggAACCCCAAAIIIIAAAggggED5CTz//PMnBLfffPPNevDBB9WwYUPHwqwgeCvg/M4771RiYqKjLTU1VWPHjtXKlSsdQfBluYPw8HClpNj/O2RJ13HFFVfoyiuv9HqasLAwr8cyEAEEEEAAAQQQQAABBMpGICIkUJ0aRTmOwnfMzc3VgZQMR+C7FfDuCIA3MQ6Or/tTlGGysJdF2bj3qC58Y76u7N1M/zDZ5631UhBAAAEEEEAAgZMR4LuIk1HjGgQQqHYCs9bvc7nnAW1iXfbRgQACCCCAAAIIIIAAAggggAACCCCAAAJlL7B//349+eSTTjd++umn9c9//tOpzd/fX6NHj9app56q/v37KyEhwdG/fft2vfjii3r00UedxvuyUr9+ffXq1ctxb+urdbz88sulds8WLVpo6NChvtwCcyGAAAIIIIAAAggggEAFEfDz81NMRIjj6BnnnD09OydXuw4fK8j6biX3swLfN+87qu0Hj8nExvu0WPN9MH+rpq3ZqydGd9LgtnV9Oj+TIYAAAggggED1ECDAvXp8zuwSAQRKKDBrfZLtDO0b1FTdyFDbPhoRQAABBBBAAAEEEEAAAQQQQAABBBBAoHwEnnvuOSUnJxfcPD4+Xvfdd19BvehJo0aN9M477zgFgL/00ku6/fbbFRMTU3R4ieoPPfSQ/vvf/6pJkyYlmoeLEUAAAQQQQAABBBBAAAFvBAL8/dS4Vg3HUfQN9elZ2Urcb95oXyTru1XfdzTdm+ldjtlx6JiueW+RRnVrqIfO7aja4cEux9KBAAIIIIAAAggUFSDAvagIdQQQQKCIQFZ2juZuss/gHk/29iJaVBFAAAEEEEAAAQQQQAABBBBAAAEEEChfgZycHL333ntOi3jkkUdkZTR0V4YMGaIBAwZo9uzZjmFWgPyECRM0btw4d5cVu++UU04p9jVcgAACCCCAAAIIIIAAAgiUhkBIYIBa14t0HEXnP5KWqYS/At/zs75bmd+t42h6VtHhLuuTl+3UrA379PC5HTSya0OPP5u5nIgOBBBAAAEEEKhWAgS4V6uPm80igMDJCPy5/ZCS0+x/OBvYus7JTMk1CCCAAAIIIIAAAggggAACCCCAAAIIIFBKAvPmzVNS0vE3MrZo0UKDBg3y6m7XXXddQYC7dcHkyZN9HuDu1UIYhAACCCCAAAIIIIAAAgiUs0DN0CB1aRztOAovJTc3V0kmu/uWpLxg91kbkvTDit2Fh5xwfiAlQ3d8vkyT/9ihJ0Z3VqPosBPG0IAAAggggAACCBQW8C9c4RwBBBBA4ESBmevts7eHBQWoR1ytEy+gBQEEEEAAAQQQQAABBBBAAAEEEEAAAQTKTeD77793uvcZZ5zhdYZAa2zhMmPGDKWkpBRu4hwBBBBAAAEEEEAAAQQQqNYC1tux6kaG6rQWMbr41KZ67bIe+t/VPdUgKtSjy/R1SRr24kx9OD9BOTm5HsczAAEEEEAAAQSqrwAB7tX3s2fnCCDgpcCs9cezPRW+pHeL2rJe10VBAAEEEEAAAQQQQAABBBBAAAEEEEAAgYojsGzZMqfF9O3b16nurtKwYUPFxcUVDMnIyNDq1asL6pwggAACCCCAAAIIIIAAAgicKHB6u3qa+vd4Xdmn2YmdRVpSMrL10JRVGvvmfG3ce7RIL1UEEEAAAQQQQCBPgAB3/iQggAACbgQOpWZo+fZDtiPi29SxbacRAQQQQAABBBBAAAEEEEAAAQQQQAABBMpPYM2aNU4379Chg1PdU6Xo+KLzebq+Ivfn5uZq8+bN+v333zV37lxZezt48GBFXjJrQwABBBBAAAEEEEAAgUoiEBkapMfO66SJN/dRyzrhHle9eOtBDf/PbP331w3KyMrxOJ4BCCCAAAIIIFC9BAhwr16fN7tFAIFiCszduF+u3opFgHsxMRmOAAIIIIAAAggggAACCCCAAAIIIIBAKQscO3ZMiYmJTndp0qSJU91Tpej4devWebqkUvR/8MEHio2NVcuWLdWnTx/1799fVjB/7dq11b59e916661atWpVpdgLi0QAAQQQQAABBBBAAIGKK9Azrra+v32A/nZ6KwX6+7ldaEZ2jv79y3qNfGWOlm075HYsnQgggAACCCBQvQQIcK9enze7RQCBYgrMWp9ke0Wj6DC1iPX8xLHtxTQigAACCCCAAAIIIIAAAggggAACCCCAQKkI7Nu3T1aW8vwSFBSkunXr5le9+tqoUSOncXv37nWqV9ZKQkKCDhw4YLv8tWvX6rXXXlPnzp01ZswYl+NsL6YRAQQQQAABBBBAAAEEECgiEBoUoLuHtdW3f+uvro2jivSeWF27O1nnvzZXj3+3WqkZWScOoAUBBBBAAAEEqp1AYLXbMRtGAAEEvBSwfhE2a4N9gHt8m1j5+bl/0tjL2zAMAQQQQAABBBBAAAEEEEAAAQQQQAABBHwkcPToUaeZatSoUex/xwsPd05sUXROpxtUsYr1b6ITJ07UwoUL9eOPPzoyvPtyi9bDAklJ9v/m6uo+GzdudNVFOwIIIIAAAggggAACCFRwgfYNauqrW/rpvblb9MLUdUrLzHG54hzzrPK7c7Zo6urdenp0F/VvHetyLB0IIIAAAgggUPUFCHCv+p8xO0QAgZMU2Lj3qHYdTrO9Or51Hdt2GhFAAAEEEEAAAQQQQAABBBBAAAEEEECg/ASKBqOHhoYWezFhYWFO1xSd06mzElTatGmjESNGaODAgerYsaMjo721x4MHD2r9+vX65Zdf9Oabb2r37t0Fu0lMTNTw4cO1YMEC1atXr6C9pCdWlvhHH320pNNwPQIIIIAAAggggAACCFQigQB/P10/oIWGdaiv+79eoTkb97ld/bYDx3T5uwt0YY/GeuCc9oquEex2PJ0IIIAAAgggUDUF/KvmttgVAgggUHKBmevtMwlZP3z1bcWTwiUXZgYEEEAAAQQQQAABBBBAAAEEEEAAAQR8K5CW5pywIji4+IEQISEhTos6duyYU72yVOLi4jR9+nStW7dO//73vzVy5Ei1bNlSkZGRCgwMVJ06ddSvXz898sgj2rJli2666SanrW3dulW33HKLUxsVBBBAAAEEEEAAAQQQQOBkBZrG1NBH152q5y7sopqhnnOyTlyyXUNfnKXvl++S9bYpCgIIIIAAAghULwEC3KvX581uEUCgGAKzN9g/NdytSbSiwoKKMRNDEUAAAQQQQAABBBBAAAEEEEAAAQQQQKAsBIpmbM/IyCj2bdPT052uKTqnU2cFrlgB7oMGDfJqhdYe33jjDd15551O47/66istXrzYqY0KAggggAACCCCAAAIIIHCyAn5+fhrbs4mm3T1QwzvX9zjNvqPpuvXTpbrxoyXafdj5gWaPFzMAAQQQQAABBCq1gOfH4Sr19lg8AgggcHICaZnZWrBlv+3F8a3r2LbTiAACCCCAAAIIIIAAAggggAACCCCAAALlKxAREeG0gKIZ3Z06XVSKZmwvOqeLy6pE8/PPP6/vvvtOGzduLNjPxx9/rJ49exbUS3JiZYQfM2ZMsaaw1jJq1KhiXcNgBBBAAAEEEEAAAQQQqNgCdSND9dplPfTzqt16cPJK7U12ftC46Op/Wb1Hv2/ar/HD2+viXk3k7+9XdAh1BBBAAAEEEKhiAgS4V7EPlO0ggIBvBBYlHFBaZo7tZAPaxNq204gAAggggAACCCCAAAIIIIAAAggggAAC5StQNBg9NTXV8Sp7K0ugtyUlJcVpaNE5nTqrWCUwMFC3336748jf2tSpU/NPS/y1bt26sg4KAggggAACCCCAAAIIIGAJnNmxvnq3iNEzP67VZwsT3aIkp2fp/q9XaMqyHXrmgi5qHhvudjydCCCAAAIIIFC5Bfwr9/JZPQIIIFA6ArPWJ9lOHBUWpK6No237aEQAAQQQQAABBBBAAAEEEEAAAQQQQACB8hWIjY1V4WD2zMxM7d27t1iL2rFjh9P46haQPWTIEKf9b9iwwfGQgFMjFQQQQAABBBBAAAEEEEDARwJWHMbT53fWZzf0VlxMDY+zLthyQGf93yy9PmOTMrPtExd6nIQBCCCAAAIIIFDhBQhwr/AfEQtEAIHyEJi1fp/tbfu3ilUAr7qytaERAQQQQAABBBBAAAEEEEAAAQQQQACB8hYICwtT06ZNnZaRmOg+C6DTYFMpOr5du3ZFh1TpepMmTZz2l5WVpYMHDzq1UUEAAQQQQAABBBBAAAEEfC3Qp2WMfrozXjcPbOkxLiM9K0fP/rRWo16dq5U7Dvt6KcyHAAIIIIAAAhVAgAD3CvAhsAQEEKhYAnuOpGndnmTbRcW3ibVtpxEBBBBAAAEEEEAAAQQQQAABBBBAAAEEKoZA0YD01atXF2tha9ascRpfdD6nzipYCQoKOmFXViZ8CgIIIIAAAggggAACCCBQ2gKhQQH659ntNOXWfurYsKbH263aeUTnmSD3Z35cq7TMbI/jGYAAAggggAAClUeAAPfK81mxUgQQKCOBWeuTXN5pQOs6LvvoQAABBBBAAAEEEEAAAQQQQAABBBBAAIHyF+jWrZvTIubNm+dUd1fZtWuXEhISCoZYwd4dOnQoqFeHk927dztt08/PTzExMU5tVBBAAAEEEEAAAQQQQACB0hTo1ChKk02Q+31ntVNIoPvwtuycXL0xc5PO+r9Zmr9pf2kui7kRQAABBBBAoAwF3H8HUIYL4VYIIIBARRGYtWGf7VJa1Y1Qw+gw2z4aEUAAAQQQQAABBBBAAAEEEEAAAQQQQKBiCIwYMcJpIdOmTVNubq5Tm6vK1KlTnboGDx6siIgIp7aqXpkzZ47TFhs0aKDAwECnNioIIIAAAggggAACCCCAQGkLBAX4a9yglvrpznid1ry2x9sl7E/VJW//rvFfLdfhY7yFyiMYAxBAAAEEEKjgAgS4V/APiOUhgEDZClhP9s7ZYJ/BPZ7s7WX7YXA3BBBAAAEEEEAAAQQQQAABBBBAAAEETkKgb9++io2NLbhy8+bNmjFjRkHd3cm7777r1H3eeec51atDpajBkCFDqsO22SMCCCCAAAIIIIAAAghUUIHmseH67Ibeemp0Z0WGeH749rOF23TGizP18yrnt1NV0O2xLAQQQAABBBBwIUCAuwsYmhFAoHoKrNxxWAdT7Z/kjW9z/Jdi1VOHXSOAAAIIIIAAAggggAACCCCAAAIIIFDxBfz9/XX11Vc7LfTRRx/1mMX9119/1ezZswuui4yM1NixYwvq1eHk448/PuFhgFGjRlWHrbNHBBBAAAEEEEAAAQQQqMAC/v5+uvS0pvrlroE6o0M9jyvdm5yumz5aols+WaK9yWkexzMAAQQQQAABBCqeAAHuFe8zYUUIIFCOArNdZG8PDvQ3r7yKKceVcWsEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8FbgvvvuU0RERMHwmTNn6tlnny2oFz3ZsWOHrr/+eqfmO+64wykTvFPnXxU/Pz8VPrzNFG83ly/bPv/8c3311Vceg/oL3/Ozzz47waBbt24aPXp04WGcI4AAAggggAACCCCAAALlJlA/KlRvXdFDr112imIjgj2u44cVu00291l68vvV+n75Lm0/mFqsn5M83oABCCCAAAIIIFBqAp7f21Jqt2ZiBBBAoOIJzFq/z3ZRpzWvrbDgANs+GhFAAAEEEEAAAQQQQAABBBBAAAEEEECgYgnExsbq/vvvdxz5Kxs/frwSExP1wAMPqGHDho7mnJwcffPNN7KC2a2+/GL133333flVn35NS0vTnDlzbOfcvHmzU/uuXbs0bdo0p7b8SseOHdWgQYP8qtPXtWvXyspa36pVK0cW+hEjRqhLly4KDw93GpeRkeFYy3/+8x+HQ+HO0NBQvf76644A/sLtnCOAAAIIIIAAAggggAAC5SlgPWQ8vHMD9W0Zoye+X6OJS7a7Xc7hY5l6e/YWM8Y65AiM79o4Wl2b/HU0jlJ0Dc/B8o6L+R8EEEAAAQQQKDMBAtzLjJobIYBARRdITsvU0sSDtssc0DrWtp1GBBBAAAEEEEAAAQQQQAABBBBAAAEEEKiYAlYW93nz5um7774rWKAVsP3WW2+pWbNmioqK0pYtW3To0KGCfuskLCxMEyZMUHR0tFO7ryq7d5sMgmec4dV0U6dOlXXYlffee09XX321XVdB28aNG/XUU085Dn9/fzVu3NixL2uPhw8fVkJCgqyA+6IlKChIn3zyiXr37l20izoCCCCAAAIIIIAAAgggUCEErKD0F8Z01ahujTT+6+XaduCYV+vadzRDv67d6zjyL4iLqaFu+QHv5muHBjUVGkQSxHwfviKAAAIIIFAeAgS4l4c690QAgQopMG/TfmXl5NquLb5NHdt2GhFAAAEEEEAAAQQQQAABBBBAAAEEEECgYgpYAd1ffvmlrrnmGn3++ecFi8zOzlbRTOn5nTExMZo4caL69euX31RlvlrZ6q0s9YUz1dttrk2bNvr000/Vo0cPu27aEEAAAQQQQAABBBBAAIEKJdDfJCz8+c54vTh1vf43d4tchH24XXPC/lRZx+RlOx3jAv391N4EuXdtEiUr23v3ptFqERshf9NOQQABBBBAAIGyESDAvWycuQsCCFQCgdkbkmxXWa9miNrWi7TtoxEBBBBAAAEEEEAAAQQQQAABBBBAAAEEKq5AaGioPvvsM1144YV64okntGzZMtvFhoeH66qrrtLDDz+sunXr2o6pTI1jx45VRkaGZsyY4djzsWPuMxkGBgaqT58+GjdunMPKyuBOQQABBBBAAAEEEEAAAQQqi0CN4EA9MKKDRnRtqH9OWq61u5NLtHQrOeKKHYcdx8dKdMwVERKoLo1NwLuV6d0EvVsZ3+tHhZboPlyMAAIIIIAAAq4FCHB3bUMPAghUM4FZ6/fZ7nhA6zry8+MpXFscGhFAAAEEEEAAAQQQQAABBBBAAAEEEKgEAhdccIGsY+PGjVqwYIF27NjhCACPjo5W+/btHRnbrWD44pbcXPs3QrqbJy4uTidznbs5i/Z16NBBTz31lKPZyli/bt06R9b67du368iRI469R0REqFatWmrevLl69eqlsLCwotNQRwABBBBAAAEEEEAAAQQqlYAVdP7Nbf315sxN+u9vG5WRneOz9R9Nz9K8TfsdR/6kVsJER7C7yfDezQS9dzYB8JGhPDCc78NXBBBAAAEESiJAgHtJ9LgWAQSqjEDCvhQlHki13c8A8zorCgIIIIAAAggggAACCCCAAAIIIIAAAghUfoFWrVrJOqpTCQgIkBXwbh0UBBBAAAEEEEAAAQQQQKCqCwQH+utvQ1rrktOa6ocVu7Qs8ZCWbT+kzUkpPt/6niPpmrp6j+OwJrdyJ7asE/FXhve8bO/t6teUtSYKAggggAACCBRPgAD34nkxGgEEqqjArA1JtjuzfviwMrhTEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCqHQGxEiK7sE2eOvPUePpapFdsP608T7L5sW96RlJzu081YL/nauPeo45i0dLtjbiu4vWPDmn8FvUerq8kyHxdTwwTDm4AUCgIIIIAAAgi4FCDA3SUNHQggUJ0EZq23D3Dv3ChKtcODqxMFe0UAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBKqUQFRYkPq3jnUc1sZyTTT6rsNp+tMKdjdB79ZXKwA+JSPbp/vOyMrRHyaLvHXkF2stXRpH6ZSmtdQrrra6N41WeAhhfPk+fEUAAQQQQMAS4G9G/hwggEC1F7B+mJi/ab+tQzzZ221daEQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCqrgJVBvWF0mOM4u3MDxzayc3Id2dcLB72v3Z0sq92XxcomP3vDPsdhzRvg76cODWqqZ1xewHvPZrVUt2aoL2/JXAgggAACCFQ6AQLcK91HxoIRQMDXAksTD7p8Aje+TR1f3475EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBCqYgBVo3rZ+pOMY26uJY3XHTEb31bsOa9k268jL9J54INWnK7cC6FfsOOw43pub4Ji7WUwN9WxW22R4r2UC32urZZ1wWUH5FAQQQAABBKqLAAHu1eWTZp8IIOBSYNb6JNu+CPP6J+s1UBQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB6icQFhygHibQ3Dryy4GUDP25PS/Y3cr2/uf2w7LafFm27k+VdUxaut0xba0aQY5A9/yA904NoxQc6O/LWzIXAggggAACFUqAAPcK9XGwGAQQKA+BWRvsA9z7tIxRUAA/DJTHZ8I9EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBiihQOzxYg9vWdRzW+nJzc7X94DFHhvf8LO9WRvb0rByfLf9gaqZ+Wb3HcViThpjg9m5Nok2G99om8L2WTmlWSzVDg3x2PyZCAAEEEECgvAUIcC/vT4D7I4BAuQrsO5qulTuO2K4hvk0d23YaEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCwBPz8/NSkdg3HcW7Xhg6UzOwcrd+TrD+3HTbHIUfw+/q9ySYY3jdmVvD8gi0HHEfeGqS29SILAt6twPeG0WG+uRmzIIAAAgggUA4CBLiXAzq3RACBiiMwd+M+l4sZ2JoAd5c4dCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgjYCgQF+KtjwyjHcelpTR1jjqZnmSSMhx3B7ku3HtRicxxIybC9vriNVuD82t3JjuOj37c6Lm9kAtyt7O49TbB7L/O1Td1I+fv7FXdqxiOAAAIIIFAuAgS4lws7N0UAgYoiMHN9ku1S4mJqqKk5KAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIlFQgIiRQvVvEOA5rrlwTlb55X4oWJxzQogQT8G6+JuxPLeltCq7fceiYdiw7pinLdjraaoYGqkez/ID32urSOEqhQQEF4zlBAAEEEECgIgkQ4F6RPg3WggACZSpg/aAwe4N9BvcBZG8v08+CmyGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAtVJwM/PTy3rRDiOi3rlZXnfm5ymJSbY3RHwvvWAVu08ouwck57dB+VIWpamr0tyHNZ0wSbLfGcT5G5lee/VrLYj+L1WeLAP7sQUCCCAAAIIlFyAAPeSGzIDAghUUoE1u5KVlJxuu/r4NnVs22lEAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKA0BOpGhurszg0chzV/SnqWlm07ZALeD5gM7we1NPGgUjOyfXLrjOwcLdl60HG8qc2OOVvXjXAEurdvUFPt6keao6aiagT55H5MggACCCCAQHEECHAvjhZjEUCgSgnM2pBku59Afz/1aRlj20cjAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJlIRAeEqh+rWIdh3W/LBOUbiV0dAS8mwzvC7cc1L6j9skdT2Z9G/YelXUULg2iQtXWBLtbR3sT8G59tTLPBwf6Fx7GOQIIIIAAAj4VIMDdp5xMhgAClUlgtosA9x7NainC/IBAQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgoggEBvirc+Mox3Ft/+bKzc1V4oFUE/B+0GR4P+AIfN+UlOLT5e46nCbrmLHueCJJK3mkFeReEPjewAqAr6mGJhjez8/Pp/dnMgQQQACB6ilABGf1/NzZNQLVXiA1I0uLzFOsdiW+TR27ZtoQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEKgwAlYwebOYcMdxYY/GjnXtNxndl2w1Ae/msDK9r9h+WFk5uT5dszXfuj3JjkN/Hp86MjRQ7f7K9t7OBLxb523MUTM06PggzhBAAAEEEPBCgAB3L5AYggACVU9gweYDyjCvbbIr8a0JcLdzoQ0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgYgvERIRoWMf6jsNa6bGMbP25/dBfGd4PaqkJfE9OzyqVTSSnmYSTJpu8dRQujaLDjge+N8gLfG8eG64gk5GeggACCCCAgJ0AAe52KrQhgECVF5i5/vhrkwpvNiY8WB0b1izcxDkCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAApVSICw4QL1bxDgOawPZVvb13ckmw/uBvGD0LQe0+0haqe5tx6Fjso5f1+4tuE+wCW5vWTfCEfheOOt7vZohsjLTUxBAAAEEqrcAAe7V+/Nn9whUW4FZG+wD3Pu3jpW/P98kV9s/GGwcAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCowgIBJi6mg0n+aB1X9olTbm6uI/h8scm6vjTxoNaa4HcrAP7wscxSVcjIztGaXUccR+EbRdcIUtt6kXmB7ybbe9v6kY56eAihjoWdOEcAAQSqugD/1a/qnzD7QwCBEwS2H0zV5qSUE9qthvjWdWzbaUQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoKoJWNnSG9eq4ThGdW/k2J4V9G5ldc8Pdl9rAtGt801JR5WZnVuqBIdSM7XAZJW3jsKlae0a6hVXWyO6NJCVwDLIZICnIIAAAghUXQEC3KvuZ8vOEEDAhcDsDftc9EgDzDfAFAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEqquAFfTeICrMcQxuW7eAIdNkXbeSSq7dfcSR5T0/AH7HoWMFY0rrJPFAqqxj0tLtsrK8n92pvs7t0lCntYiRlZWeggACCCBQtQQIcK9anye7QQABLwRmrU+yHdXOvNKobs1Q2z4aEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCozgJW1vS2Jr7GOgqXw8cytX5P8l8Z3022913JjgD45PSswsN8dm5lef9s4TbHUScyROd0bqBzuzbUKU2jZQXnUxBAAAEEKr8AAe6V/zN07GDTpk1auHChtm/froyMDNWqVUvt2rVT3759FRpafgG7hw4d0qJFi7RlyxZZ5zk5OYqKilLjxo3Vq1cv1a9f32efQHJysubOnav169fryJEjCgsLU7NmzRwGDRs29Nl9rIlWrVqlJUuWaNeuXcrOzlZMTIw6deqk0047TYGB/N/Kp9g+nizLPEk6Z6N9BveBber4+G5MhwACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA1RaICgtSr7jajiN/p7m5udp5OM0Eu5uA9915Ae9W5ncrA3xWTm7+sBJ/TUpO1/vzEhzH/7d3H3ByVfXiwH/pCQmkBwiEhNBCR5oQIHSUJjwbYgPFgqgP3x9ExYKIPqQo6rOhUuyAiIiA0iH0Kj0QQiAhCZBCAimk579ncIa5k9nd2d3ZNvu9fJa559xzT/nem5nZs785s9GgfnHEjnXB7nUru287cj3B7i3WVQEBAgTaT0AkbvvZV6Xlq6++Os4666x45JFHytY3YMCAOP744+OMM86IYcOGlS3TGplXXXVV/PSnP43bb7890puV+rZ3vOMdceKJJ8YnP/nJZgeGp+D5b33rW3HFFVfkgvtL20qfytt3333jzDPPjAkTJpQerjidxnHJJZfEOeeckwuiL3diCnT/3Oc+F1/96lejf//+5YrIa2eBx2YsiIVLy386dIIA93a+OponQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoBYEUs5UCztPPgVuvXxjSspWrckHuKdi9EPhet+L7K28sLZRp7s7MBW/GhXdMzf2MHda/Lth9ZLynLuB98xHZFeebW7/zCBAgQKDtBLrVBe3WH33cdv3QUhMFli1bFieccEL88Y9/rOjM4cOHx5VXXtmiAO9KGpo3b158/OMfj+uvv76S4oUyu+yyS1x22WWx+eabF/Iq2UlB7Z/4xCdiyZIljRZPb5pOO+20OPvss5v86by0+vwHP/jBuOmmmxptJxUYO3ZsXHPNNbHttttWVL41C6XV5tPq8vntySef7BD9yvenrR8vuGly/PiW59Zqtl+vHvHoGQdHn5491jomgwABAgQIECBAgAABAgQIECBAoHYEzJfVzrU0kq4h4N9s17jORkmAAAECBAgQIECAAIEFS5bHs3Urvaeg97cC39/IpRcvX9VinHEbrBtH1gW7p5XdNxm6TovrUwEBAgTaU6CrzJdZwb0977Jmtr169eo45phj4u9//3umhh49esQmm2wSAwcOjLSq+euvv144PmfOnDj00EPj5ptvjj333LOQX82dN954Iw455JCyq8mnAPtRo0blAstnzpwZr7zySqbphx9+OPbff/+48847Y8yYMZlj9SX+8pe/xLHHHhvJo3jLtzV79uxIbeU/w5Ee0+rr6cMBF1xwQfEpDe6/+eab8a53vSseeOCBTLnevXvn+tqnT5+YOnVqLF68uHA8pdN47rnnniYH7RcqsdMqAhOfm1O23j3GDhHcXlZGJgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIHWFRi0Tu9459ihuZ98S6tXr4m0KvtTs16PG596NW58+tVYtGxl/nDFj28FzT8b593wbOw4alBdoPuGcURdsPsGA/tWXIeCBAgQINC2At3btjmtVUPgvPPOWyu4/cQTT4zp06fnAq3//e9/x2uvvRZXXXVVLuA932Za5TytQl4c+J4/Vo3H008/fa3g9ve85z25vBRsnoLYH3rooXj55Zfj6aefjo985COZZmfMmBGf+cxnMnn1JZ5//vncyu3Fwe077rhj3HrrrZFv66WXXopJkybFe9/73kw1P/rRj3I2mcwGEv/v//2/THB79+7d45vf/GYuSP/ZZ5+Nxx9/POd9ySWXxODBgws1pQ8VJO9Vq1r+KcJCpXZaJPD6khXx2EsLytaxzxbDy+bLJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECg7QW6d+8Wo4asE+/ebsP44TE7xUPfOCh++dGd4/DtN6xbyLJ5oY8pdui7102KPb9/S3zwwnvj9/dNi3mLlrX94LRIgAABAg0KNO9ZvsEqHWxNgXnz5sX3vve9TBNnn312/OIXv4iRI0cW8lMQ9n/913/lVhAvXhE9BZH/8Ic/LJSr1k4KKv/lL3+Zqe5zn/tcLhD/He94RyY/Jbbeeuv4wx/+EN/5zncyx2666aa49957M3nlEinAvHjF9N122y0mTpyYWzW9uPxWW20VV1555VqB86eddlqsXNn4p/meeeaZ+PWvf11cZaHfxcHsaTX3448/PrcC/aBBgwrl04cNfve73xXSdtpX4K4pc6Pug51ltwlbCnAvCyOTAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQAcQ6NurRy7Y/Wcf2Tke/ubB8eMP7RQHbT0ievXo1uTeramLIXrghdfim1c/Gbv/7y3xsYvujyseeilef3NFk+tyAgECBAhUX0CAe/VNW7XGc889NxYuXFhoY8KECfGVr3ylkC7d2WijjeI3v/lNJvuCCy6IFChfze3aa6/NrFQ+fPjwOP/88xtt4utf/3ou2L244D/+8Y/i5Fr7Tz31VFx++eWF/BRc/tvf/jbWW2+9Ql7xTrdu3eLHP/5xbLHFFoXstAJ8WnG9se2MM87IjOtjH/tYHHvssfWetu2226417jPPPDNWrPDGp160NjwwcfKcsq1tNKhfbDa8f9ljMgkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ6FgCA/r0jKN2qouNO263eOjrB8e579sh9tliWNQt+t7kbVXdipl3Pjc3Trvy8djtuzfHp377UPz90ZmxeFnjC6g2uTEnECBAgEBFAj0rKqVQhxBYvXr1WkHZ3/72tyMFcDe0HXjggbHPPvvkVhdP5VKA/BVXXBFphfVqbc8++2ymqne9612xzjrrZPLKJfIrzU+aNKlweMqUKYX9cjsXX3xxJIv89qEPfWitIPn8sfxj375946tf/WqccMIJ+axc4P+nP/3pQrp0Z/78+XHVVVcVspNz8m5s+8QnPhFnnXVWTJs2LVc0Pd58881x6KGHNnaq460osKbuY5d3Plc+wH3ClsMa/XfUil1TNQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECzRQYuE6v+OBuo3I/cxYui38++XL847FZ8eCL85tc4/JVq+PmSa/mfvrVrRh/YN0K8UfuODL23XJ4pBXk23tLwfjzlyyPeYvSz7KYu/g/j3X7KW9uyl/81n5a2X77jQbGR/cYHbuOGdLeXdc+AQIEmiQgwL1JXO1b+J577ok5c94O0B07dmzst99+FXUqBXbfeeedhbJXX311VQPcX3vttULdaWfUqFGZdEOJTTbZJHN4wYIFmXRp4pprrslkFQetZw6UJI455pj47//+71i8eHHuyIMPPhizZs2KkSNHlpR8K3ndddfFypVvfwovWSfzxrYUtJ+C3IuD4ZO3APfG5Fr3+PNzFsWs15eWbWTCFsPL5sskQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDzCAxft098fM8xuZ9ZC96M6x6vC3Z/fFY8PuP1Jg/izRWr4tq689PPunUrxh+y7QZ1we4bxl6bD4tePbo3ub5yJ6RFO5csX/VWcHpdYPrcugD9eYWg9RSs/lYA+1vB68vitbrg9rpTKt6en7M4rn50Vm51+y8dtEXsMlqge8V4ChIg0K4CAtzblb9pjaeA6+Lt4IMPrnjV6VS2eLv99ttzgd79+/cvzm72/sCBAzPnvvnmm5l0Q4nSssOGDau3eFopvniF99T/8ePH11u++EC+7E033ZTLTm8Okml9q7iXeh9yyCHF1TW4n7yLA9yvvfbaBss72PoCd0yeW7aR9LVE4zer/54re5JMAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQ6tMDIQf3i0xPG5n5enLu4LlB9Vt3K7i/Hs68ubHK/Fy5bGX99ZEbuZ3DdivGHbr9hHLnDyNh90yHRIwUgFW0r61aBT4Hocxe+vZr63LTCekmwen619aUrVhed3Tq7dz43N9LPPlsMiy8dtGVdoPvg1mlIrQQIEKiSgAD3KkG2RTWPPvpopplKA7vTSWmV8jFjxsSLL76Yq2P58uXx9NNPx2677ZZLt/R/O+20U6aKtDp6pdsDDzyQKbr77rtn0sWJUoNUtmfPym/jvfbaK/IB7qne0voaaqsp3rvsskv06dMnli1blqsyrRSfVt8fPtxK4cXGbbk/cfLb335Q3O5OowZF+poiGwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECtSkwZlj/+MIBW+R+nn1lYS7Y/ZrHZsW0eUuaPOD5S1bEn+6fnvsZUbdi/Ds2GRQL6vLyAezpeEfdBLp31CujXwQIlApU53sySmuVbhWBSZMmZerdZpttMunGEqXlS+tr7PyGjh9xxBFRvBr83XffHffee29Dp+SOpdXY//rXvxbK9e3bNz784Q8X0qU7pX0uHVNp+dJ0afnS+vLlV6xYkVkpPuWXnpsvW+4xBbdvttlmmUP1tZUpJNEqAkvrvi7o/hfmla17wpY+dFAWRiYBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBGhTYaoN145RDtorbT90vrvnCXvHpfTaNDQf2bdZIZy9cFjc89WpdbNJrMWX2oujIwe3FA0yB7u/7xT3x8YsfiEemzy8+ZJ8AAQIdQkCAe4e4DI134s0334zp06dnCo4aNSqTbixRWv7ZZ59t7JSKjw8aNChOP/30TPn3ve990dBK7ing+7DDDou0mnx+++53vxsjRozIJ9d6LO1z6ZjWOqEko7R8aX354lOnTo2VK1fmk9GvX78YNmxYIV3JTqVtVVKXMi0TeOjF+VHfV/kIcG+ZrbMJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIdEaBbt26xQ4bD4qvH75N3P2VA+IvJ+4ZH99zdAwb0LszDqdZfZ44eU689+f3xHF1ge7/FujeLEMnESDQOgI9W6datVZbYO7cubFmzZpCtb169WowELxQsGhno402KkpFzJ49O5NuaeKrX/1qPPXUU/GnP/0pV9XLL78ce+65Zxx++OFxyCGHxOjRoyO9KZg5c2bceuutcdVVV0VaKT2/pfNPOeWUfLLsY2mfN95447Ll6sssNZgzZ07ZoqXtlJ5X9qSSzNJzSussKS7ZigITnyt/ndfr2zN22GhgK7asagIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEOrpA9+7dYrcxQ3I/3zpim7hv6mvxj8dmxT+ffDneWPr2QqkdbRyD1ukVQ/v3jqED+uQC84f271O33zsG9esV1z/xSjzw4msVdfmOukD39LPfVsPjSwdtGTuNGlTReQoRIECgtQQEuLeWbJXrXbRoUabGddZZJxcsnslsJNG/f/9MidI6MwebkejevXv84Q9/iPHjx8eZZ54ZKXh81apVcc011+R+6qtyr732ypU/8MAD6ytSyC/tc+mYCgXr2SktnwLsly1bFn369Mmc0dJ2UmWlbZXWmWmwwkQKkq8vKL++KqZMmVLfoS6Tnz5pWG7be4th0bOHL7IoZyOPAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQFcUSPFEKa4o/Zx19HZxZ93iminY/canX40ly1e1Kknvnt1jeF2wegpSzweup/238946NqyuzOB1ekcqX9923Pgxce/z8+KCmyfHgy/Or69YJv/2Z+dE+tm/LtD9ZIHuGRsJAgTaVkCAe9t6N7u10uDovn37Nrmufv36Zc4prTNzsJmJtEL75z//+TjqqKPic5/7XFx77bUN1pSC29Oq7fvvv3+D5fIHS/vcVIdSg1RvqrOxAPemtpPqLW2rtO+pTFO3n//857kPAzT1vK5c/tU3lsYzrywsSzBhi+Fl82USIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEAgBZAfuPX6uZ8364Lbb31mdi7Y/dZnZ8fylasbBaoLp8sFor8VrP6fldYLK67ng9VTMPtb+wP69Gzywrf1dSLF8o3ffFjsudnQuCcFut80OR6aVlmg+211Qe7p54BxI+LkA7eIHa3oXh+zfAIEWklAgHsrwVa72qVLl2aq7N27dyZdSaI0iPvNN9+s5LQmlVm8eHF885vfjF/+8pdRSf133313pJ9x48bFJZdcEnvssUeD7bXUodQgNVauny1tJ9Vb2la5dlI5W+sK3Pnc3HobmLClAPd6cRwgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKAg0K93jzh8hw1zPwuXroib6lZ0f3zG63Wruq+sW3G9T6RV1YflVl7/zwrsdftD6lZZTyvCt+eWAt33qgt0H18X6H73lLdWdH+4wkD3FNCfflKg+5cO2iJ22HhQew5F2wQIdCEBAe6d5GKXriC+fPnyJvd82bJlmXNK68wcbEZi1qxZceCBB8YzzzxTOHurrbaKk08+OQ444IDYeOONo3v37vHyyy/HnXfeGf/3f/8XDz/8cK5sOmefffaJv/zlL3H00UcXzi/dKe1zUx1KDVL9pXWWy2tqO6mO0rbKtZPK2VpXYOLkOWUb2HzEgBg5KPutBmULyiRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECRwLp9e8V7d94491OU3aF3U6D73lsMqwt2Hxp3TZmbW9H9kekLKupzPtD9wFyg+5ax/cYDKzpPIQIECDRXQIB7c+Xa+LwBAwZkWixdYTxzsJ5E6QripXXWc1pF2ak/hxxySCa4/VOf+lT87Gc/i9LV5seOHRvp5+Mf/3hutffvfe97uTZWrlwZxx57bDzyyCOx9dZbl223tM9NdSg1SI2U1lkur6ntpDpK2yrXTirXlO2kk06KD3zgA005JaZMmdLghwaaVFknK7x69Zrcm7Fy3d6n7s2ajQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAl1JIAW677PF8Ni7blX3O5+rC3S/eXL8u8JA91vqVnNPPwdtnVZ03zK220ige1e6d4yVQFsKCHBvS+0WtFUaHL1kyZJYs2ZNpBebSrfFixdnipbWmTnYxMQ555wTTz31VOGstGL7hRdemFuxvZBZspP6/t3vfjemT58ev//973NHUyD5KaecEtdff31J6beSpX0uHVPZk4oyS8v37Nmz7AruLW0nNVnaVmmdRd2qeHfEiBGRfmyVCTw56/V4bXH5bzuYsOXwyipRigABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAjUmkOL3UgxVWih0Ygp0v2lyPPrSgopGefOk2ZF+Dtp6/bpA9y0EulekphABAk0R6N6Uwsq2n8CwYcMywewrVqyI2bNnN6lDM2fOzJSvVqD0qlWr4qc//Wmm7hS43r17ZbdXWsG9uOy//vWveOmllzL15ROlfZ4xY0b+UEWPpQbDh5cPci5tp/S8ShorPae0zkrqUKZlAhMnzylbQe+e3WOPTYeWPSaTAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECXUUgBbrvWxfo/reTxseln9gtdho1qOKh3zzp1Tji/+6KT//uoXhy5usVn6cgAQIEGhOoLAK5sVocb3WBfv36xSabbJJpJ6183pSttPy4ceOacnq9ZR9//PGYO3du4XgKxt9jjz0K6cZ2Ro0aFTvuuGOhWFqZ/q677iqki3e22mqr4mRu9fdMRiOJSg3Gjh0baXX3/Pbmm2/GnDnlg6XzZUofK22r9Dzp6gmkTxaW23YfMyT69e5R7pA8AgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIdDmBFOi+31YjcoHul9QFuu/YhED3m55+K9D9M3WB7k/NEuje5W4eAybQCgIC3FsBtbWqLA1If/rpp5vU1KRJkzLlS+vLHGxC4oUXXsiUHjNmTGa1+czBehKbbrpp5kjp6uf5g6V9bi2DXr16xWabbZZvNvfYlLaWLVsWU6dOzZxf2vfMQYmqCyxcuiIemTa/bL0TthxWNl8mAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEurJACnTfvy7Q/eq6Fd0vOb4u0H3jgRVz3FgX6H74T+6Kz/7+oXh61hsVn6cgAQIESgUEuJeKdOD0TjvtlOndPffck0k3lHj55ZfjxRdfLBRJAdzbbLNNId2SnRTMXbwVr3xenN/QfupP8bZq1ariZGG/1ODBBx+MlStXFo43tnP33XdnipTWV3yw9FhTvB9++OEodtlwww1jxIgRxdXbb2WBe5+fFytXrynbyj5bDC+bL5MAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEIrfI7f7j6gLdP79XXHz8rrFDEwLdb3jq1TjsJ3fGib9/uMMFuq9ZsybeqFs8dfq8JfHYSwvi9mdnx9X/nhmX3P1C/On+6bkV6FMZGwEC7SvQs32b13pTBI444og455xzCqfcfPPNkZ5I0yemGttuvPHGTJH9998/BgwYkMlrbmLo0KGZU2fNmpVJV5IoXbF9+PDyAchpFfS0svrzzz+fq3bx4sWRAs8nTJjQaDOp7L333lsol9ySaX1bOnb55ZcXDt90003xta99rZBuaCeVLd6OPPLI4qT9NhCY+Nycsq2MWLdPjNtg3bLHZBIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDA2wIpzu6AcevnVnW/rS4Y/Ec3PxePz3j97QIN7P3rqVci/bx72w3i5IO2iK03XK+B0k0/tGLV6liwZEXdz/KYX/c4v+4xs784n/fWYyqTjte3cGq+B7uMHhynHLJljN9sWD7LIwECbSwgwL2NwVvS3Pjx42PYsGExd+7cXDVTp06N22+/PVKwemPbRRddlCly1FFHZdItSYwZMyZz+vTp03MB6CkQvZJt4cKFkVZiL94aOvc973lPXHDBBYXiaWyVBLinYPVFixYVztt1111j5MiRhXTpzmGHHRZpNfr8CvHJOpmPHTu2tGgmnT50cOmll2byqumdqViiXoGJk9/6d1JaIK3eXsmHQkrPkyZAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBXFSgOdL/1mbcC3Z+Y2bRA90O3eyvQfdwG2UD3FHP35opV8driFKCeDUafXwhSfyuIvTiAfeHSla1yOR6eNj8+/Ov7Y6/Nh9YFum8VO28yuFXaUSkBAvULCHCv36bDHenevXscf/zxcf755xf6duaZZ8Z+++3XYMDuLbfcEnfeeWfhnHXXXTc++MEPFtIt3dlyyy1j4403jhkzZhSqSn38xS9+UUg3tPPDH/4wli1bViiyzjrrxB577FFIl+588pOfjB/96Ee51evTscsuuyy++tWvxtZbb11atJBeunRpfP/73y+k084JJ5yQSZcmhgwZEkcffXRceeWVuUPpRfTb3/52/O53vystmklffPHF8eKLLxbyRo8eHQcddFAhbaf1BabNWxzTX1tStqEJWw4rmy+TAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBBoWSIHuB269ft2q7iPilkl1ge63TI4nZ77R8En/OfrPJ1+J9LPn2KGxpu6/4mD25StXV1RHWxa6e8q8uHvKPbmx/r+Dt4ztNhrYls1ri0CXFujepUffCQf/la98JQYMGFDo+R133BHnnHNOIV26M3PmzPjUpz6VyT755JNzK8FnMksS6UWo+CetXt7Q9tGPfjRz+MILL2w0EDyd8I9//CO++93vZs790Ic+FH369MnkFSe22267TID+8uXL47jjjos33ij/IpkC07/0pS/Fc889V6gmrcKeAuUb29IHCNIHC/Lb73//+/jzn/+cT671+PTTT8epp56ayf/mN78ZvXv3zuRJtK7AxMlzyjZQd1tHWsHdRoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLNF0jxhQdts3784wt7x68/vmtsOzK7KntDNd87dV7cN/W1eOaVhfHqG8uiIwa3F/c/rVh/xP/dFSf98eGYMnth8SH7BAi0ksDbkbut1IBqqyswbNiwOP300zOVfu1rX4uTTjopZs2aVchfvXp1XH311TF+/PjMauIjR46MU045pVCuWjunnXZapBXP81sKKk9B55/4xCfiqaeeymcXHqdMmRJf/OIXcyukr1y5spCfVm//1re+VUjXt5OC4lPZ/Pbggw/GhAkTojQQf/LkyfH+978/UsB98ZZWc+/Vq1dxVtn9bbbZZq0PCKRg/tTH+fPnF85ZsWJFXHrppbH33nvHggULCvk77LBDzqGQYadNBO6YPLdsO9uNHBhD+vuwQVkcmQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGiiQAp0P7gu0P3aL+4dv/rYLrHNhpUHujexqXYvfv0Tr8QhF0yM/3f5ozF93pJ2748OEKhlgW51gchranmAtTi2FLx+1FFHxbXXXpsZXo8ePWL06NExcODAeOGFFzKB1qlgv3794qabboq99torc165RHrRKd5uu+222G+//Yqz1tqfOHFiHHLIIbFs2bK1jo0YMSI23njj3KrwKRD/5ZdfXqtMWin9qquuyo1trYNlMi677LL48Ic/HKW38PDhw2OTTTaJ2bNnx4wZM9Y6ngLrf/KTn5SpsXzWkiVLYt99942HHnooUyCtyr7pppvmVpufOnVqLFq0KHM8fRjh7rvvji233DKT39aJ9AGDtOp9fnvyySdj2223zSdr7jF9mu8d37kxFi9ftdbYPr//ZvHld41bK18GAQIECBAgQIAAAQIECBAgQIBA1xHoavNlXefKGmmtCvg3W6tX1rgIECBAgAABAgQIECBAoFYFUjzfjU+/Gj+6+bmY9PIbHX6YPbp3i0H9esU6fXrES6+9WXF/e9ad94FdR8V/H7h5bDiwX8XnKUigpQJdZb6sZ0uhnN/2AikQ/C9/+UtudfQU5J3fVq1aFSnQutw2dOjQuPLKKysKbi93fiV5aQX1m2++OdIK59OmTcuckoLN00992/rrrx8XX3xxHHbYYfUVWSv/Qx/6UC54/YQTTog333z7hWXOnDmRfsptp556apx77rnlDtWbl1aKv+GGG+IDH/hA3HrrrYVyy5cvj2effbaQLt4ZM2ZMXHPNNe0e3F7cp66y/8j0+WWD29P4J2wxvKswGCcBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTaXCAtrvuubTeIg7de/z+B7pPjmVcWtkk/+vXqEYPX6RWD1ukdg/v/57EuPbgunctL+/3rjqXj/ym3bp+e0b0uWD1tD7zwWpx/47O5x8Y6vHL1mvjzA9Pjr4/MiI+8c5M4ab/NY/i6fRo7zXECBCoUEOBeIVRHK9a3b9/485//HO9///vju9/9bjz66KNlu9i/f/847rjj4owzzoi0inprb3vvvXc88cQTcdFFF8WFF14YzzzzTINNpkDwT33qU3HiiSdGCsJv6nbsscfGO9/5zvjmN7+ZC/pfsWJF2SpS8P13vvOd3ErsZQs0kjlkyJDc6vdpXClAfsqUKWXPSOXSWL72ta/FgAEDypaR2boCdz5X/sMNA+reiOw8enDrNq52AgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEMgFjb97uw3ikG1SoPsruRXdKw10r4uRj4F1q6q/FZiefcwHphcHqQ+pC1ofVBew3rcuwL0l2+6bDonLP7NH3D1lXpxXF+j+2EsLGq1u+crVccndL8ZlD7wUx+81Jj47YWwumL7RExUgQKBBgW51XwexpsESDnYKgRRwff/998fMmTMjrSw+aNCg2HrrrXMrtqdg+PbaXnnllXjwwQdj1qxZsWDBgtyK6wMHDoy0Yvuuu+4am2yySdW69sYbb8Rdd90Vzz33XCxcuDDSuFP9e+21V2y00UZVaydVlIL4H3nkkXj55ZcjrZyfgvO32267XLB9r169qtpWSyvrKl9HkXc68v/uiidmvp5PFh4Prnuj9OuP71pI2yFAgAABAgQIECBAgAABAgQIEOiaAl1tvqxrXmWjriUB/2Zr6WoaCwECBAgQIECAAAECBAh0ZYHVdSueT6xbvPSRafNjzqLluRXUiwPY315xvXcuuL3Hf1ZVby+zFFp7y6TZuRXdKw3MT31NK8J/ap+x8cm9x8S6fTtWLGF7WWq3ugJdZb7MCu7VvW/arbbNN9880k9H2zbYYIM48sgj26Rb6623Xhx22GFt0tb2228f6cfWsQTmLVoWT85aO7g99XLCFsM6Vmf1hgABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAl1EoHtdwPp+W43I/XSGIXerW0b+oLpFVQ8YNyKuf/Ll+OFNk2PqnMWNdn3hspVxwc2T49J7XogT990sPr7nmOjXu2UryzfaqAIEalCgew2OyZAIEOiiAndNmVv3LQHlBz9hy+HlD8glQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJlBFJg/hE7jIwbvzQhzv/AjrHx4H5lSq2dNX/Jijj7n8/EhPNui9/e82IsW7lq7UJyCBCoV0CAe700DhAg0NkE7pg8p2yXRw9dJ0YP7V/2mEwCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINCQQM8e3eP9u2wct56yX3z36O1i/fX6NFS8cGzOwmVxxjVPxQHn3xGXPzg9VqxaXThmhwCB+gUEuNdv4wgBAp1IYE3d0u13Pje3bI8nbGH19rIwMgkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgYoHePbvHR/cYHXd8ef/4xuFbx9D+vSs6d+aCN+Mrf30iDv7hHXH1v2fGqtVrKjpPIQJdVUCAe1e98sZNoMYEnnllYaRPu5XbJmwpwL2cizwCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaLpA31494lP7jI2Jp+0fX37XVrFe354VVfLivCXxpcsfjUN/PDH+9eTLkRZ2tREgsLaAAPe1TeQQINAJBSZOnlO21z27d4s9xg4pe0wmAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBorkD/Pj3j8/tvHnd+5YD44gGbR//ePSqqavKri+LEPzwS7/np3XHbs7MFulekplBXEhDg3pWutrESqGGBic+VD3DfefTgWLdvrxoeuaERIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQHsKDOzXK045ZKvciu6fmTA2+vSsLDz3iZmvxycueTA+8Mt7497n57XnELRNoEMJVPYvqEN1WWcIECCQFViyfGU8+ML8bOZ/UvtuObxsvkwCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFBNgaED+sTph22dC3T/+J6jo1ePbhVV/9C0+XHsr++Lj/7m/nhkevlYuIoqUohAjQgIcK+RC2kYBLqywP0vvBbLV60uSzBhCwHuZWFkEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECrCKy/Xt/4zlHbxa2n7Bcf3HXj6F5ZnHvcNWVuvPfn98QJlz4YT816vVX6plICnUFAgHtnuEr6SIBAgwITJ88pe3xI/96x7cj1yh6TSYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEWlNg1JB14tz37xg3/7994z07joxuFQa63/LM7Dj8J3fF5//4SEyZvag1u6huAh1SoGeH7JVOESBAoAkC9QW47735sOhe6UffmtCeogQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoFKBscMHxE+OfUectP9m8cMbJ8eNT79a0anXPfFy/PPJl+Ow7TeM0UPXid49ekSfXt2jT8/00yN65x7fSr+1/9bx3j26R99cueIyb+33EFNXkb1C7SsgwL19/bVOgEALBWYueDOen7O4bC0TthxeNl8mAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoa4FxG6wXv/r4rvHYSwviBzdNjvoWdy3u1+o1Edc+/nJxVov2e9YFuKcA+dKA+LcC5+uC4OuC4/NB9L3rgujfCqYvCaivC55P5fr17hHDBvSJ9dfrGxvU/Qwb0Dt61uXbCLRUQIB7SwWdT4BAuwrcOXlOve1P2GJYvcccIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC7SGw46hB8btP7h4PvPBanH/js7nHturHyrqI+ZXLV8Xiup+IFVVttlu3+E/Ae59cwPuIuqD39det+1nvrSD4FAif9gev0zu6W0m+qva1VpkA91q7osZDoIsJTHyufID7uA3WjfTiaCNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAh1RYPdNh8Tln9kj7poyty7QfXJuZfeO2M9K+7SmbrX5OQuX5X6enPlGvaf16tEtRpQEvo9IQfB1eRsMfCsIPsX/rdunZ3RLUfO2LicgwL3LXXIDJlA7AitXrY67nptbdkATthxeNl8mAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDoKAIpgHufLYbH3psPi5snzY4f1K3o/swrCztK91qlHytWrYmZC97M/TTUQL9ePXIB7yPWza8An39MQfBvrwzft66crbYEBLjX1vU0GgJdSuCxGa/HG0tXlh3zhLoXfBsBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEOgMAinQ/eBt1o8Dx42I6554OS64aXJMnbu4M3S91fr45opV8UKdQfppaBvYr1ddwPtbwe9pZfgNBr69n/LHbbBe9OstCL4hw452TIB7R7si+kOAQMUCEyfPKVu2b6/useuYwWWPySRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAh1VoHv3bnHkjiPj0O02iBueejXufG5OzFm4LJatXF33syqW5x7Tft1PXQD48lXp8a102u+K2+tvroj0M/nVRWWHf80X9oodNh5U9pjMjikgwL1jXhe9IkCgAoH0wl1u22Ps0PCVI+Vk5BEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAZxDo2aN7HL7DhrmfSvu7evWatwLeS4Ph6wLg3wqEX/WfQPm69H/KpED5wn5RoHwKnn/7WAqgf/vcfHD9wqUrc8H3HT2wfv31+lZKqFwHERDg3kEuhG4QINA0gdeXrIhHX1pQ9qQJWwwvmy+TAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjUqkBa/b1v9x7/WSC2V5sMc82aNbGgLp7vlTeWxqt1P7PfWJZ7fCu9LGYvfCs/rUJfF3/f5lsdSQzt37vN29VgywQEuLfMz9kECLSTwN3Pz633xW7ClsPaqVeaJUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECXUegW7duMbgugDz9bL3hevUOfOWq1TFv8fJc8Pur/wmCTwHxb/28FRSf9ufXBctXcxu+bp9Iq+HbOpeAAPfOdb30lgCB/wg8PG1+WYuRA/vGZsMHlD0mkwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGh7gRRkvv56fXM/DbW+bOWq3Crwb638vixeeb0uCL5uFfjileHT/qJlKxuqpnAstWnrfAIC3DvfNdNjAgTqBL5x+NZxzG6jYuLkOXFH3c8DL7wWy1aujglbDo/0iTAbAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0LkE+vTsEaOGrJP7aajnKcB9dm4F+LdXf8+tDJ8Lhl8ar/zn2Ih1Bbg35NhRjwlw76hXRr8IEGhQIAWxb7n+urmfT+0zNpauWJULch86oHeD5zlIgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIdG6BAX16xoDhA2Js3U9925o1a3IL59Z3XH7HFRDg3nGvjZ4RINAEgb69euRWb2/CKYoSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECNSqQFtJNsYW2zifQvfN1WY8JECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoBYFBLjX4lU1JgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECHRCAQHunfCi6TIBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgRqUUCAey1eVWMiQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAJxQQ4N4JL5ouEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoBYFBLjX4lU1JgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECHRCAQHunfCi6TIBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgRqUUCAey1eVWMiQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAJxQQ4N4JL5ouEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoBYFBLjX4lU1JgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECHRCAQHunfCi6TIBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgRqUUCAey1eVWMiQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAJxQQ4N4JL5ouEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoBYFBLjX4lU1JgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECHRCgZ6dsM+6TIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBossDzzz8fDzzwQMyYMSOWL18egwcPjnHjxsX48eOjb9++Ta6vM54wb968uPvuuyNZLF68OPr37x+bbbZZ7LXXXjF06NDOOCR9JkCAAAECBAgQIECAAAECBAgQIECgxgQEuNfYBTUcAgQIECBAgAABAgQIECBAgAABAgQIECBAICtw9dVXx1lnnRWPPPJI9sB/UgMGDIjjjz8+zjjjjBg2bFjZMtXOXLNmTTzzzDO5gPsUdH///ffH448/HitWrCg0ddxxx8Wll15aSLdk57HHHotvfetbce2118bq1avXqqpHjx5x+OGH55x22GGHtY7LIECAAAECBAgQIECAAAECBAgQIECAQFsJCHBvK2ntECBAgAABAgQIECBAgAABAgQIECBAgAABAm0qsGzZsjjhhBPij3/8Y4PtLlq0KH7605/G5ZdfHldeeWVMmDChwfItOXjJJZfk+vPQQw/F66+/3pKqKj73xz/+cZx66qmxcuXKes9ZtWpVXHPNNXH99dfHD3/4w/jiF79Yb1kHCBAgQIAAAQIECBAgQIAAAQIECBAg0JoC3VuzcnUTIECAAAECBAgQIECAAAECBAgQIECAAAECBNpDIK1Sfswxx6wV3J5WKt90001jp512ioEDB2a6NmfOnDj00EPj3nvvzeRXM/H3v/89brnlljYLbk/B6l/60pfWCm7fcMMNY5dddon0WLylIPj//u//jp/85CfF2fYJECBAgAABAgQIECBAgAABAgQIECDQZgIC3NuMWkMECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAWwmcd955kYLJi7cTTzwxpk+fHlOnTo1///vf8dprr8VVV10Vm2yySaHYkiVL4oMf/GCbBaAXGq7b6d+/f3Gyxfv33HNPnHbaaZl69ttvv3j44Ydj1qxZkVaRT48PPvhg7Lvvvplyp5xySjzwwAOZPAkCBAgQIECAAAECBAgQIECAAAECBAi0hYAA97ZQ1gYBAgQIECBAgAABAgQIECBAgAABAgQIECDQZgLz5s2L733ve5n2zj777PjFL34RI0eOLOR37949/uu//itSIPiYMWMK+TNmzIi08nlrbhtssEEceeSRcdZZZ8W//vWvSH0+9dRTq9rkl7/85Vi1alWhztTeDTfcEDvvvHMhL+3suuuuceONN8bhhx9eyE8ruafzbQQIECBAgAABAgQIECBAgAABAgQIEGhrAQHubS2uPQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBVBc4999xYuHBhoY0JEybEV77ylUK6dGejjTaK3/zmN5nsCy64IBd0nsmsQuJb3/pWbhX5l19+Oa655pr4xje+Ee9617tiyJAhVaj97Sr++c9/5gL38zlDhw6Niy66KHr37p3Pyjym/IsvvjhSufw2ceLEuOmmm/JJjwQIECBAgAABAgQIECBAgAABAgQIEGgTAQHubcKsEQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKAtBFavXh2XXHJJpqlvf/vb0a1bt0xeaeLAAw+MffbZp5CdAuSvuOKKQrpaO2n19FGjRlWrunrrKQ3Y//znPx/Dhw+vt3w6MGLEiDjppJMyZUrryRyUIECAAAECBAgQIECAAAECBAgQIECAQCsICHBvBVRVEiBAgAABAgQIECBAgAABAgQIECBAgAABAu0jcM8998ScOXMKjY8dOzb222+/QrqhnRNOOCFz+Oqrr86kO0ti2bJlccMNN2S6+8lPfjKTri9RWi6tBL98+fL6issnQIAAAQIECBAgQIAAAQIECBAgQIBA1QUEuFedVIUECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAewlcd911maYPPvjgRldvz5+QyhZvt99+eyxevLg4q1Psl/Z7q622itGjR1fU9zFjxsQWW2xRKJtWsr/jjjsKaTsECBAgQIAAAQIECBAgQIAAAQIECBBobQEB7q0trH4CBAgQIECAAAECBAgQIECAAAECBAgQIECgzQQeffTRTFvjx4/PpBtKjBw5MlKAd35LK5c//fTT+WSneWyJQRrkXnvtlRlraX2ZgxIECBAgQIAAAQIECBAgQIAAAQIECBCosoAA9yqDqo4AAQIECBAgQIAAAQIECBAgQIAAAQIECBBoP4FJkyZlGt9mm20y6cYSpeVL62vs/I5wvLTPpWNqrI+l5Uvra+x8xwkQIECAAAECBAgQIECAAAECBAgQINASAQHuLdFzLgECBAgQIECAAAECBAgQIECAAAECBAgQINBhBN58882YPn16pj+jRo3KpBtLlJZ/9tlnGzulwx0v7XPpmBrrcGn50voaO99xAgQIECBAgAABAgQIECBAgAABAgQItERAgHtL9JxLgAABAgQIECBAgAABAgQIECBAgAABAgQIdBiBuXPnxpo1awr96dWrV4wYMaKQrmRno402yhSbPXt2Jt0ZEqV93njjjZvU7VowaNKAFSZAgAABAgQIECBAgAABAgQIECBAoEMJ9OxQvdEZAgQIECBAgAABAgQIECBAgAABAgQIECBAgEAzBRYtWpQ5c5111olu3bpl8hpL9O/fP1OktM7MwQ6aKO1z6Zga63Zp+dL6Gju/vuMp8H7OnDn1HS6bP2XKlLL5MgkQIECAAAECBAgQIECAAAECBAgQqF0BAe61e22NjAABAgQIECBAgAABAgQIECBAgAABAgQIdCmB0kDsvn37Nnn8/fr1y5xTWmfmYAdNlPa5qQ6tZfDzn/88zjzzzA6qplsECBAgQIAAAQIECBAgQIAAAQIECHQUge4dpSP6QYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoicDSpUszp/fu3TuTriTRp0+fTLE333wzk+4MiZY61IJBZ7hO+kiAAAECBAgQIECAAAECBAgQIECAQHkBAe7lXeQSIECAAAECBAgQIECAAAECBAgQIECAAAECnUygdKXy5cuXN3kEy5Yty5xTWmfmYAdNlPa5qQ61YNBBL41uESBAgAABAgQIECBAgAABAgQIECBQgUDPCsooQoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDo8AIDBgzI9LF0JfPMwXoSpSu2l9ZZz2kdKjv1ecmSJYU+NdWhtQxOOumk+MAHPlDoVyU7U6ZMiaOPPrqSosoQIECAAAECBAgQIECAAAECBAgQIFAjAgLca+RCGgYBAgQIECBAgAABAgQIECBAgAABAgQIEOjqAqXB6CnIe82aNdGtW7eKaRYvXpwpW1pn5mAHTaQ+z549u9C70jEVDtSzU1q+WgYjRoyI9GMjQIAAAQIECBAgQIAAAQIECBAgQIBAQwIC3BvScYxADQiUfpVsWu3GRoAAAQIECBAgQIAAAQIECBAgQKCrCpTOj5XOn3VVl1oZ97Bhw3LB7CmoPW0rVqzIBXqvv/76FQ9x5syZmbKdMSA79Xnq1KmFccyYMaOwX8lORzIo/Tda+m+4kvEoQ4AAAQIECBAgQIAAAQIECBAgQKBWBErnx0rnz2plnALca+VKGgeBegReeumlzBFf5ZrhkCBAgAABAgQIECBAgAABAgQIEOjiAmn+bOedd+7iCrUz/H79+sUmm2wS06ZNKwxq+vTp0ZQA91S+eBs3blxxslPsb7XVVnHfffcV+lo6psKBenZKy7engTnuei6SbAIECBAgQIAAAQIECBAgQIAAAQJ1ArU6x93d1SVAgAABAgQIECBAgAABAgQIECBAgAABAgQI1IpAaTD2008/3aShTZo0KVO+tL7MwQ6aKO1zVzTooJdGtwgQIECAAAECBAgQIECAAAECBAgQqEBAgHsFSIoQIECAAAECBAgQIECAAAECBAgQIECAAAECnUNgp512ynT0nnvuyaQbSrz88svx4osvFor06tUrttlmm0K6s+y0xCCN8e67784MtbS+zEEJAgQIECBAgAABAgQIECBAgAABAgQIVFmgZ5XrUx0BAh1MYN99942rr7660KtRo0ZFnz59CunOvjNlypQ4+uijC8NIY918880LaTsEal3Av4Fav8LG15CA+78hHce6goB/A13hKhtjfQLu//pk5HcFAfd/V7jKxtiQQDX+DSxbtiz3la35dtL8ma22BI444og455xzCoO6+eabY82aNdGtW7dCXn07N954Y+bQ/vvvHwMGDMjkdYbEfvvtF/3794/Fixfnujt58uSYNm1ajB49utHupwD/5557rlBu3XXXjVRfe23muNtLXrsEWl+gGq/rrd9LLRBoHQH3f+u4qrXzCPg30HmulZ5WX8D9X31TNXYuAf8GOtf10tvqClTr/u8qc9wC3Kt7/6mNQIcTGDRoUBx11FEdrl+t1aEU3L7tttu2VvXqJdDhBfwb6PCXSAdbUcD934q4qu4UAv4NdIrLpJOtJOD+byVY1XYKAfd/p7hMOtmKAs39N7Dzzju3Yq9U3d4C48ePj2HDhsXcuXNzXZk6dWrcfvvtkYLVG9suuuiiTJHOOrfat2/fOOSQQ+Jvf/tbYTwXX3xxnHnmmYV0fTupXPH27ne/O3r37l2c1ab75rjblFtjBNpVoLmv6+3aaY0TqJKA+79KkKrptAL+DXTaS6fjVRBw/1cBURWdWsC/gU59+XS+hQItuf+7whx39xb6Op0AAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0GEEunfvHscff3ymPymwO63i3tB2yy23xJ133lkoklYu/+AHP1hId7adE044IdPln/3sZzFnzpxMXmli9uzZ8fOf/zyTXVpP5qAEAQIECBAgQIAAAQIECBAgQIAAAQIEWkFAgHsroKqSAAECBAgQIECAAAECBAgQIECAAAECBAgQaD+Br3zlKzFgwIBCB+64444455xzCunSnZkzZ8anPvWpTPbJJ5+cWwk+k1mS6NatWxT/pJXiO8p2+OGHxx577FHozrx58yIFq69YsaKQV7yzfPny3PFULr/ts88+8a53vSuf9EiAAAECBAgQIECAAAECBAgQIECAAIE2EejZJq1ohAABAgQIECBAgAABAgQIECBAgAABAgQIECDQRgLDhg2L008/PfeTb/JrX/taTJ8+Pb7xjW/EyJEjc9mrV6+Oa665JlIwezqW39LxU045JZ+s6uPSpUvjrrvuKlvn1KlTM/kvv/xy3HzzzZm8fGLbbbeNDTfcMJ8s+3jeeefFvvvuG2mcafvHP/4RhxxySPzgBz+I4q8xfvjhh3PjTR8EyG89evSIc889N5/0SIAAAQIECBAgQIAAAQIECBAgQIAAgTYTEODeZtQaIkCAAAECBAgQIECAAAECBAgQIECAAAECBNpKIK3ifs8998S1115baPIXv/hF/OpXv4rRo0fHwIED44UXXogFCxYUjqedfv36xRVXXBGDBg3K5Fcr8corr8TBBx9cUXU33nhjpJ9y2yWXXBLHH398uUOFvL333jvOPvvsSBb5La0yv8suu+SC/FOA/KxZsyIF0pduKbi9eAX40uPSBAgQIECAAAECBAgQIECAAAECBAgQaC0BAe6tJateAgQIECBAgAABAgQIECBAgAABAgQIECBAoN0EunfvHn/5y1/iE5/4RFx22WWFfqxatSpKV0rPHxw6dGhceeWVsddee+WzOv3jaaedFmk19hTknsae31Jge/op3VLZ888/P770pS+VHpImQIAAAQIECBAgQIAAAQIECBAgQIBAmwh0b5NWNEKAAAECBAgQIECAAAECBAgQIECAAAECBAgQaGOBvn37xp///Odc0PpOO+1Ub+v9+/ePk046KZ5++unYb7/96i3XWQ+ccsop8dBDD8Xhhx8eKfC/3JbyjzjiiHj44YcFt5cDkkeAAAECBAgQIECAAAECBAgQIECAQJsJWMG9zag1RIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLSHwPve975IP1OmTIn7778/Zs6cGcuXL49BgwbF1ltvnVuxPQXDN3Vbs2ZNU0+JMWPGRHPOa3JDJSekAP9rr7025s6dG3fddVduFfvFixdHCu7fbLPNcgbDhg0rOUuSAAECBAgQIECAAAECBAgQIECAAAECbS8gwL3tzbVIgAABAgQIECBAgAABAgQIECBAgAABAgQItIPA5ptvHumnK28piP3oo4/uygTGToAAAQIECBAgQIAAAQIECBAgQIBABxco/z2UHbzTukeAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECtScgwL32rqkRESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoFMKCHDvlJdNpwkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFB7Aj1rb0hGRIBAVxIYPnx4nHHGGYUhp7SNQFcS8G+gK11tYy0VcP+Xikh3NQH/BrraFTfeYgH3f7GG/a4m4P7valfceEsF/BsoFZEmQKCzC3he6+xXUP9bIuD+b4meczu7gPu/s19B/W+pgH8DLRV0fmcWcP935qun79UQ8G+gGorq6KwC7v+mXblua+q2pp2iNAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqL5A9+pXqUYCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINB0AQHuTTdzBgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAi0goAA91ZAVSUBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINF1AgHvTzZxBgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAq0gIMC9FVBVSYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJNFxDg3nQzZxAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAKwgIcG8FVFUSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQNMFBLg33cwZBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINAKAgLcWwFVlQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQdAEB7k03cwYBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQItIKAAPdWQFUlAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDRdQIB7082cQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKtICDAvRVQVUmAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECTRfo2fRTnEGAAIGOI/D888/HAw88EDNmzIjly5fH4MGDY9y4cTF+/Pjo27dvx+monhAgQIBAuwosXbo07rnnnnjmmWdi/vz50bt379h4443jne98Z4wdO7Zd+6ZxAgQIdDWBNWvWxIsvvhhPPPFE7n38ggULok+fPrn38ltssUXstttuVX8vv3Dhwrj77rtj8uTJ8cYbb0S/fv1i9OjRud8bRo4c2dUugfG2o0B73P/tOFxNE1hLIM3dpPfk6XVg5syZkZ6fV6xYEeutt14MHTo0dthhh9h6662jR48ea53bnIyVK1fG/fffH08++WTMmzcvV++GG24Yu+yyS2y77bbNqdI5BAgQqKqA+e2qcqqMAAECNS1gjrumL6/BESDQiQTaY37P/HYnukFqvKvtcf/XOKnhdTIB89ttf8EEuLe9uRYJEKiCwNVXXx1nnXVWPPLII2VrGzBgQBx//PFxxhlnxLBhw8qWkUmAAAEC7SeQglnSB5RSsEl6fOihh3LBLfkepaDDFPTS0m3OnDlx5plnxqWXXhqLFy8uW10KbvnmN78ZRx11VNnjMgkQIECg5QLpw0XpPfy//vWvuPXWW2Pu3Ln1VtqrV684/PDD40tf+lLsu+++9Zar5MALL7wQ3/rWt+KKK67IfSC29Jxu3brl2kivFRMmTCg9LE2gKgJtdf+n906bbrppi/qc/kBhI1BtgSuvvDJuvvnm3AeNUnB7CjpvaBs4cGAce+yxcfLJJ+cWMWiobH3HFi1aFN///vfjF7/4Rbz22mtli2211Vbxla98JTd/lF4PbAQIEGhLAfPbbamtLQIECLSOgDnu1nFVKwECBDqiQFvN75WO3fx2qYh0ewi01f1vfrs9rq42KxEwv12JUuuV6Vb3hyt/uWo9XzUTIFBlgWXLlsUJJ5wQf/zjHyuqefjw4ZFeaASrVMSlUAcV+Pa3v50L0G1u94477rhccG9zz3cegWoJpJVzf/CDH+SC2mfNmtVgtdUIcL/99tvjAx/4QINBlMWd+PjHPx6//vWvc6u7F+fbJ9AaAq35B7CWBmilCdMxY8a0xrDV2UUFPv/5z8dvfvObsgHmjZGk5+b/+7//y63s21jZ0uMpqP0Tn/hELFmypPTQWun07+a0006Ls88+O1r6b2itymV0aYG2vP/9AaBL32odevDpm5PSe5+mbukDT6effnpu8YKmPDenbwhJH15N72kq2d71rnfF5ZdfHimw3kaAAIHWFjC/3drC6u+IAua3O+JV0afmCpjjbq6c82pNwPx2rV1R42lIoC3n94r7YX67WMN+ewm05f1vfru9rrJ2GxMwv92YUOset4J76/qqnQCBKgqsXr06jjnmmPj73/+eqTV9bfUmm2yS+0Nk+uPl66+/XjieVu499NBDcyuF7bnnnoV8OwQIECDQ9gIPPvhg/O1vf2uThu+666447LDD4s0338y0N2jQoNzKpumT5i+99FKsWrWqcPx3v/tdpJUe0wejmhJAU6jADoFGBJryB7BGqnKYQKcSSN/Wkb6yr3RL7+M33HDDWH/99WPFihUxbdq0zHv5VD49N6fVfm+55ZZI39JU6faXv/wlt/pv+h2ieEsfgB01alTMnj07F2yZ/8x/ejznnHMiBRxdcMEFxafYJ9Aigfa4/1vUYScTaCOBvn37FuZy0nN1+maP6dOnR/55OXUjvTakb9hI79svuuiiinr27LPPxgEHHLDWh1zTa8jYsWNzvx+kP5aluvPbDTfckJs7St8wkvplI0CAQGsJmN9uLVn1EiBAoO0EzHG3nbWWOp6A+e2Od030qG0E2mN+z/x221xbrTQu0B73f+O9UoJA+wuY3267a9C97ZrSEgECBFomcN55560V3H7iiSfm/gA6derU+Pe//5372umrrroq90fSfGtpxcYPfvCDawXL5I97JECAAIH2F2hK0GJjvU3B6+kDUcXB7WlF+PT136+99lo88sgjudUcU2DLZz/72Ux16TVEYGOGRKKKAvk/gDX2DQZVbFJVBDqcQPqg0UknnRTXXXdd5D9s9NBDD8Vjjz0W8+bNi9tuuy322WefTL8feOCBOP744zN5DSWef/753MrtxcHtO+64Y6TAxRTY/vDDD+eCJSdNmhTvfe97M1X96Ec/ivRaYCPQGgJtcf8X9/uQQw6Jm266qUk/xefbJ1BNgZEjR8anP/3p+P3vfx9TpkyJxYsXRwpGT8/x6XUgvTdPrwO/+tWvIq2IU7xdfPHFcckllxRnld1fuXLlWt/gNGTIkPjtb3+b+z0gvdZMnjw5Xnnllfj6178e3bu/PTV+77335r7Jo2zFMgkQIFAlAfPbVYJUDQECBDqogDnuDnphdKtqAua3q0apok4s0Bbze+a3O/ENUuNdb4v7v5jQ/Haxhv32FjC/3X5XoFvdqjhr2q95LRMgQKAygfRHzk033TQWLlxYOOHss8+Or371q4V08U76WrS999479wfSfP63vvWt3Mpf+bRHAp1FoPQrXM8///xIQVqVbumN1jbbbFNpceUItJpAChr8n//5n1h33XVjl112id122y1233333GP6Bo7999+/0HYKSE9BLs3ZTj/99EivEfktvX6kFd3Tv4Vy2//+7//mAlzyxwYOHJgLgB88eHA+yyOBqgjk/w2Uqyz9ASx9g0B+a8m/geJvINhhhx3iBz/4Qb7aih7Teyirl1ZEpVCFArvuumsuaPEb3/hGfPjDH45+/fo1eGb6do0UBJ+CHIu3FKBe/FpRfKx4P7Xx5z//uZCVXm9uvvnmWG+99Qp5+Z00JZI+NFvc1mabbZZbNb5nT196l3fy2HyBtrz/03un9L4nvx133HFx6aWX5pMeCbSbwOOPPx7bb799xd+SlD4AddBBB+U+mJrvdPrGjxkzZmSC0vPH8o/pubz4A6zp/Xz6PaC+34f/9Kc/xUc+8pH86ZGe959++unYYostCnl2CBAgUC0B89vVklRPZxQwv90Zr5o+1yeQn98zx12fkPxaFsjf/+XGaH67nIq8WhFoy/m9ZGZ+u1bunNoYR1ve/+a3a+OeqcVRmN9u56uaAtxtBAgQ6OgCp512WvowTuFnwoQJa+pWZGyw23VBLIXy6dy6yaY1dV953eA5DhLoiAJnnHFG5l6uW9m0I3ZTnwg0KlC3UuOap556ak1d4OJaZdN9Xfw8Xxfcu1aZSjLqVuZdUzeRmqkrvR40tKXXk/S6Utx+XZB8Q6c4RqBZAnXfDpC7z9J7kv3222/Nl7/85TV1XzO5pm7CZk21/g2kjhXfy/vuu2+z+uokAtUUuPbaa9csW7asSVXWrcK7pm7iNHM/103sN1rHk08+uaZuRd7Ceb17915TF6zY4Hl13/ixpi6YsXBO+jdUFyTZ4DkOEqhUoC3v/7oPDGbu47oA90q7qRyBDieQnrvrPrSXuacnTpxYbz/T68yoUaMy5S+66KJ6y+cPfPSjH82cU8lrTf5cjwQIEGiKgPntpmgpW2sC5rdr7Yp27fGY4+7a17+rj978dle/A7ru+Ntyfs/8dte9zzrqyNvy/je/3VHvAv1qjoD57eaolT/n7e9hrfsLro0AAQIdUaAu8HCtr6JOK34Ur05art8HHnhg7LPPPoVDafX3K664opC2Q4AAAQJtK5BWxE2rJ9YFHrZaw5dddllmFey6wPVIrwcNben1pO4PbZkiF198cdS9fc7kSRBoqcCRRx4ZdR/yiAULFkRdQHuce+658f73vz/Sau02ArUscPjhh0ddoHmThtijR4+oCwLKnHPDDTdk0uUS6fk7/f6Q3z70oQ/F1ltvnU+WfUzfWFD6zVC/+c1vypaVSaCpAm15/ze1b8oT6MgC6bk7fetT8TZp0qTiZGY/vUa89NJLhbwxY8bEJz7xiUK6vp3S+aW6Dx/G66+/Xl9x+QQIEGiWgPntZrE5iQABAh1SwBx3h7wsOtVGAua32whaMx1OoC3n98xvd7jL3+U71Jb3f5fHBlBTAua3q3c5Wy+6qHp9VBMBAl1c4J577ok5c+YUFMaOHRt1q54W0g3tnHDCCZnDV199dSYtQYAAAQK1JfD3v/89M6DS14HMwaLE/vvvH5tuumkh55VXXon77ruvkLZDoBoCbfEHsGr0Ux0EOopA8YdVU5/mzZsXS5YsabB711xzTeZ4pa8DxxxzTPTv379w7oMPPhizZs0qpO0QaGuB5tz/bd1H7RFobYH03ql4q/tWvuJkZr/094AU3N7YwgipgtRG3TfeFOpasWJFXH/99YW0HQIECFRDwPx2NRTVQYAAga4jUPrettK5DXPcXeceaa+Rmt9uL3ntdlaB5szvmd/urFdbv0sFmnP/l9YhTaCzC5jfrs4VFOBeHUe1ECDQigLXXXddpvaDDz64oj9SppNS2eLt9ttvj8WLFxdn2SdAgACBGhFYtGhRTJw4MTOaQw45JJOuL5GCXw466KDM4bqvXMukJQgQIECgbQUGDx68VoMNrar77LPPRt1XhRfOSQHr48ePL6Qb2iktm77Fo/T3kIbOd4xAtQWaev9Xu331EegIAkuXLs10Y9CgQZl0caL0ObvS3wNSHaVzR34PKJa1T4BANQRKn6PMb1dDVR0ECBCoTQFz3LV5XY2KAIGuKdDU+T3z213zPqnVUTf1/q9VB+Pq2gLmt6tz/QW4V8dRLQQItKLAo48+mqm90iCVdNLIkSMjfS11flu+fHk8/fTT+aRHAgQIEKghgaeeeirSiov5La3IvsEGG+STjT7utddemTKlrz+ZgxIECBAg0OoCM2fOXKuNoUOHrpWXzyh93t59992jZ8+e+cONPnodaJRIgTYUaOr934Zd0xSBNhFIHzRK36ZRvO2yyy7FycL+q6++GukbmPJbnz59Yuedd84nG330/N8okQIECLRQoPR9qvntFoI6nQABAjUsYI67hi+uoREg0OUEmjq/V/p7g/ntLnfL1NSAm3r/19TgDYZAnYD57erdBgLcq2epJgIEWklg0qRJmZq32WabTLqxRGn50voaO99xAgQIEOgcAqXP76XP/42NorR8aX2Nne84AQIECFRX4M4778xUOHr06Ojdu3cmrzhR+rxd+rxeXLbcfmn50vrKnSOPQGsJNPX+b6gfL730Ui5QONWZgiXmzJnTUHHHCHQIgYsvvjhmzZpV6Mu4ceMi/WG33Fb6fL355ps3+HpRWkfp83/6NpCVK1eWFpMmQIBAswVKn6dKn3caq7i0fGl9jZ3vOAECBAh0HoHS5/jS14DGRlJavrS+xs53nAABAgSqJ9DU+b3S5+zS5/TGelZavrS+xs53nEA1BZp6/zfUtvnthnQc66gC5rerd2UqX8qsem2qiQABAhULvPnmmzF9+vRM+VGjRmXSjSVKy6evdrIR6OwCy5Yti6lTp8a8efOiV69ekVYzTd9YsM4663T2oek/gWYLlD6/lz7/N1Zxaflp06ZF+tqovn37Nnaq4wQ6vMDLL7+cCxJbvHhxpK8FHDZsWGy44YYdvt862LUF0uRP8XbYYYcVJ9far/brQGl9azUog0ArCjT1/i/XlRtvvDH3O0J6DSjd0jed7bfffvGZz3wm9txzz9LD0gTaVeC3v/1tnHTSSYU+dO/ePX76059Gt27dCnnFO6XP16Xv64vLltsfPnx47j1//itj07f/vfDCC7HFFluUKy6PAAECTRIwv90kLoW7kID57S50sQ21SQItfW9b+l7YHHeT+BXuwALmtzvwxdG1egWaOr9X7deA0vrq7agDBFpBoKn3f7kumN8upyKvMwiY367uVRLgXl1PtREgUGWBuXPn5r62I19tCuQdMWJEPlnR40YbbZQpN3v27ExagkBnE/j85z+fC27P//E93/+ePXtG+sr2Qw89NBcMkP5IbyPQlQRKn9833njjJg1//fXXj/TvKL9a4+rVq3MfIil9HWlSpQoTaGeBJ554IsaOHZsL0irtygYbbBD77rtvHH/88fHud7+79LA0gXYVuP7662PixImZPqR7taGtpa8Dpc/3VrluSNux1hRozv1frj/lAtvz5V588cW49NJLcz8HHHBAXHLJJbHJJpvkD3sk0KoCkydPzixmsGLFipg/f348+eST8fe//z2efvrpQvvpmzt+9atfxYEHHljIK91p6fN/qi99YDx9iDy/pToFuOc1PBIg0BIB89st0XNurQqY367VK2tc1RBo6Xtbc9zVuArq6EgC5rc70tXQl6YINGd+r6WvAea3m3KFlG1Ngebc/+X6Y367nIq8jiBgfrttr4IA97b11hoBAk0UWLRoUeaMtDp1fSt2ZQoWJfr371+UiiitM3NQgkAnECj+Y39xd1NQ7v3335/7Oeecc+LUU0+NM844I3r06FFczD6BmhUofX4vff5vbODp9aVfv36xcOHCQtHSOgsH7BDoJAKvvfZapJ9y2yuvvBKXX3557ucd73hHpE+Tb7/99uWKyiPQpgLpnv3sZz+bafPoo4+O3XffPZNXmih9zm7q60Bp+RRwmVYV7NOnT2lT0gRaTaC5939LOnTrrbdGeh3429/+FhMmTGhJVc4lUJHAz3/+8/jxj3/cYNn03jx9AO/ss8+OHXfcscGyLX3+T5WXvgaU1tlgBxwkQIBAAwKlzyfmtxvAcqjLCJjf7jKX2kCbIVD6ulH6PrWxKs1xNybkeGcTML/d2a6Y/iaB5s7vtfQ1oPQ1w/y2+7E9BJp7/7ekr+a3W6Ln3OYImN9ujlrzz+ne/FOdSYAAgdYXKH0T37dv3yY3moIVi7fSOouP2SdQKwLp64/POuusOOigg3yoo1YuqnE0KlD6/O41o1EyBQgUBP7973/HO9/5zvjLX/5SyLNDoD0E0rdnfPSjH40ZM2YUmh84cGD85Cc/KaTr22np60Dp7w2pndI662tbPoFqCLTk/i9uP32Lzec+97ncc/qkSZNiwYIFkf6glVaQffDBB+Pcc8/NfbtH8TnpDw9HHXVUPPPMM8XZ9gm0m8AHPvCB+PrXv95ocHvqYOlztd8D2u2yaZgAgTICnqPKoMgiUIGA+e0KkBSpSQGvGzV5WQ2qDQTMb7cBsiYqEmjJ/F5LXwPMb1d0iRRqRYGW3P/F3TK/Xaxhv7MKmN+u3pUT4F49SzURINAKAkuXLs3Umr6auqlb6YqLaWLURqCzCaRVN8aPHx/f+9734qabbsoFfS1ZsiTSv5GZM2fGP/7xj9xKp6V/yL/99tvjQx/6UKxataqzDVl/CTRZwGtGk8mcUMMCw4YNi+OPPz7+8Ic/xOOPP55bMSQFN86fPz8ee+yx+OlPf7pWwFh6j5QCiydOnFjDMobW0QW+/OUvxz//+c9MNy+88MIYNWpUJq9coqWvA6W/N6Q2/O5QTlpeawm05P5PfUofBrnmmmti2rRpkVYQef/73x/jxo3L5ffs2TOGDh0au+66a6R20ldopm976t797anBFAifXgfWrFnTWkNUL4GKBa644orYe++9c98qMGXKlAbPa+nzf6q89DXA83+D5A4SINAEAc9RTcBStKYFzG/X9OU1uCoKeN2oIqaqOrWA+e1Offm6dOdbMr/X0teA0rmNdCHMb3Tp27HNB9+S+z911vx2m18yDbaigPnt6uG+/Ves6tWpJgIECFRNoDRYd/ny5U2ue9myZZlzSuvMHJQg0AEFDjnkkNxKinfffXecfvrpuVXZN9poo0ifwk6/qI4cOTKOOOKI+OUvfxnPPfdc7LXXXplRXHfddbkAl0ymBIEaFCh9fveaUYMX2ZAqEkhB7enDT5dcckl85CMfie233z4GDx4cKbhx0KBBscMOO8TnP//5ePTRR3OvHcWTnunfzYc//OHcB6gqakwhAlUUSKu0//CHP8zUeNppp8UxxxyTyasv0dLXgdLfG1I7pXXW17Z8Ai0VaOn9n9pPz/VHHnlkJmi9vn716NEjvv3tb6/1b+7hhx+Oq666qr7T5BOoisCPfvSj3Acp0ocp0k/68PZLL70U1157bZxwwgm533XzDd15552x2267xUMPPZTPWuux9Lna7wFrEckgQKAdBTxHtSO+pjuMgPntDnMpdKQTCHjd6AQXSRdbXcD8dqsTa6CVBFo6v9fS1wDz2610YVVbkUBL7//UiPntiqgV6gAC5rfb9iIIcG9bb60RINBEgQEDBmTOKP3UauZgPYnST6WW1lnPabIJdBiBtHL7lltuWVF/0tc13XzzzbHnnntmyn/3u9/NBQ1kMiUI1JhA6fO714wau8CGU7FACmqv9FtvPvvZz8af/vSnTDBkCo7/2c9+VnF7ChKohkC6D7/0pS9lqkrfQvD9738/k9dQoqWvA6W/N6S2SutsqH3HCDRXoBr3f3PbPvnkk2PffffNnP773/8+k5Yg0NoC6cPb6XfZww8/PH7zm9/kvn1mp512KjSbvl3g6KOPjvRYbit9rvZ7QDkleQQItJeA56j2ktduRxIwv92Rroa+dHQBrxsd/QrpX1sImN9uC2VtVFugGvN7LX0NML9d7auqvkoFqnH/V9pWaTnz26Ui0u0hYH67ddUFuLeur9oJEGihQOmb+LSqV1O/Ln3x4sWZXpTWmTkoQaAGBNKnu3/3u9/lVurND2f27Nlx44035pMeCdSkQOnze+nzf2ODTq8vpZM/pXU2VofjBDqjwHvf+9742Mc+lum64MYMh0QrC6QVe4877rjM+/x0X6Ygx/Q19pVupc/ZTX0dKC2fvvWgdNWcSvuiHIFKBap1/1faXrlyp5xySib71ltvjZUrV2byJAi0pcDmm28eN910U4waNarQbPoA3nnnnVdIF++09Pk/1VX6GlBaZ3F79gkQINAUgdLnE/PbTdFTtqsKmN/uqlfeuJNA6etG6fvUxpTMcTcm5HgtCpjfrsWr2rnGVK35vZa+BpS+Zpjf7lz3UWftbbXu/5aM3/x2S/Sc2xoC5rerqyrAvbqeaiNAoMoCw4YNywS1rFixIlKgblO29EfQ4m3EiBHFSfsEalIgvWF6z3vekxmbAPcMh0QNCpQ+v8+YMaNJo3z11VczwVzdu3eP9DpkI9AVBEonfx5//PFI/yZsBFpb4LbbbosPfOADmeffgw8+OP785z9Hjx49mtR8S18HSn9vGD58eJPaV5hAUwWqef83te3i8gcccEDm9+6FCxfGyy+/XFzEPoE2F0jvw88888xMu5deemkmnU+09Pk/1TNr1qx8dbnH0jozByUIECDQBAHz203AUpRAkYD57SIMu11KoPR9qDnuLnX5DbYFAua3W4Dn1BYJVHN+r6WvAea3W3QpndwMgWre/81ovnCK+e0ChZ0OJGB+u3oXQ4B79SzVRIBAKwikr/HYZJNNMjVPnz49k24sUVp+3LhxjZ3iOIGaEDjwwAMz43j22WczaQkCtSaw1VZbZYZU+vyfOVgmUVp+9OjRVu4t4ySrNgW23377KJ48Tas9TZ48uTYHa1QdRuD+++/PfSBv6dKlhT6lr67/29/+Fr179y7kVbpT7dcBvzdUKq9ccwSqff83pw/5c/r37x+DBw/OJ3OPc+bMyaQlCLSHwH/9139lPnyRgtCnTZu2Vlda+vyfFlIofi1Kr0Fjx45dqx0ZBAgQaI6A+e3mqDmHwFsC5rfdCV1RoKXvbc1xd8W7xpiTgPlt90F7CFR7fq/arwHmt9vjrug6bVb7/m+JnPntlug5tzUFzG9XR1eAe3Uc1UKAQCsKlL7xfvrpp5vU2qRJkzLlS+vLHJQgUEMCxV/nnoYlSKWGLq6hlBUofX73elGWSSaBegU23njjzDGvGxkOiSoLpG8JOPTQQ2PRokWFmt/xjnfE9ddfH2kysjmb14HmqDmnPQRa4/5v6Th69eqVqSJ9e5qNQHsLDBo0KIYMGZLpxiuvvJJJp0Tp8//zzz8fy5cvX6tcfRml80abbbZZpK/xthEgQKBaAqXPU+YrqiWrnloXML9d61fY+MoJeM0opyKPQGUC5rcrc1KqOgKtMb/nNaA610YtrS/QGvd/S3ttfrulgs5vDQHz29VRFeBeHUe1ECDQigI77bRTpvZ77rknk24okb5W/cUXXywUSW9qttlmm0LaDoFaFvAmvpavrrGVE9h2222j+L5Pz//pdaDS7e67784ULX39yRyUIFCDAsX/ftLwBDfW4EXuIENK3ypz8MEHx/z58ws92nrrreOGG26IgQMHFvKaulP6vP3ggw/GypUrK67G60DFVAq2QKC17v8WdCn372TevHmZKoYPH55JSxDoKAKl71dSvzbYYIPcT76Py5Yti4cffjifbPTR83+jRAoQINBCgdL3qea3Wwjq9C4jUPq6b56iy1z6Lj1Qc9xd+vIbfAsFvG60ENDpFQu01vxe6e8N5rcrviQKtqFAa93/LRlC+juQ+e2WCDq3LQVK36+kts1vN3wFBLg37OMoAQIdQOCII47I9OLmm2+ONWvWZPLqS9x4442ZQ/vvv38MGDAgkydBoFYFSle2E6RSq1fauPIC6667bkyYMCGfzD3edNNNmXR9ifS6kl5fircjjzyyOGmfQM0LeN2o+UvcIQY4bdq0OOigg2L27NmF/my66aaRnq9b+l4lrXCTVt3Nb4sXL45Kg4dS2XvvvTd/anTr1i1Kfw8pHLRDoJkCrXn/N7NLudPuu+++zIdB0srVaULVRqC9BRYuXBivvfZaphvrr79+Jp1PHH744fnd3GOlvwekwqVl/R6QoZQgQKAKAqXvK81vVwFVFV1CwDxFl7jMBlkiYI67BESSQBMEvG40AUvRZgu05vye+e1mXxYntpFAa97/LRmC+e2W6Dm3NQXMb1dHV4B7dRzVQoBAKwqMHz8+hg0bVmhh6tSpcfvttxfSDe1cdNFFmcNHHXVUJi1BoJYF7rrrrszwSr/SNXNQgkCNCLznPe/JjKT0dSBzsChx2223xQsvvFDISYEz73znOwtpOwRqXWDGjBmRJqaKN68bxRr2qyGQvlXjwAMPjHS/5beNNtoobrnllkiP1dia+zpw+eWXx6JFiwpd2HXXXWPkyJGFtB0CLRVoi/u/uX0sfb+05557xjrrrNPc6pxHoGoC1113XWaBg/RBqA033LBs/aXP/5dccknm3LIn1WU+//zzcccddxQOpxV0DjvssELaDgECBKohYH67Gorq6IoC5re74lU35iRQ+t629He2+pTMcdcnI78rCJjf7gpXuf3H2Bbze819DTC/3f73R633oC3u/+Yalr5XMr/dXEnnVVvA/HZ1RAW4V8dRLQQItKJA9+7d4/jjj8+0cOaZZzb6h8oUKHPnnXcWzkurHnzwgx8spO0QqGWBBQsWxF//+tfMEFNAmY1ArQt86EMfiv79+xeGOXHixLj11lsL6XI7afX29LpSvH3iE5+I9PpjI9BVBEonf1Jw+xZbbNFVhm+cbSCQVuA9+OCDc4GE+eZSoGJaNTet4F6t7ZOf/GRu9fV8fZdddllMmjQpnyz7uHTp0vj+97+fOXbCCSdk0hIEWiLQVvd/c/qYPjz++9//PnPq0UcfnUlLEGgPgTfffDPOOOOMTNNpBeT63qO/613vio033rhQ/sUXX4wU5N7Y9u1vfzszv/S+970vBg4c2NhpjhMgQKBJAua3m8SlMIGcgPltN0JXFjDH3ZWvvrE3V8D8dnPlnFepQFvN75nfrvSKKNeWAm11/zdnTOa3m6PmnLYQML9dPWVRO9WzVBMBAq0o8JWvfCUGDBhQaCGtrnXOOecU0qU7M2fOjE996lOZ7JNPPjmzEnzmoASBGhM49dRTI/0RIL/17t07Dj300HzSI4GaFRgxYkR84QtfyIwvvR7MmjUrk1ecOPvssyMFwue3FNDy5S9/OZ/0SKDmBVLw7w9+8IPMOAU3ZjgkWiiQvoLv3e9+dzz11FOFmgYNGhQ33nhjbL311oW8auxst912mQ+1Ll++PI477rh44403ylafPuT0pS99KZ577rnC8bFjx0b6Q4KNQDUE2ur+Tx8WScG8K1eurLjb6UOA733ve2PVqlWFc9Lq2CeeeGIhbYdASwVOO+20ePDBB5tUTfqjWVqxbPLkyYXzevToEf/zP/9TSJfu9OnTJ77+9a9nstPvxU8//XQmrzjxpz/9Kf7whz8UslIbpR98LRy0Q4AAgRYKmN9uIaDTu5yA+e0ud8kNuEjAHHcRhl0CFQiY364ASZEWCbTV/F7qpPntFl0qJ7eCQFvd/+a3W+HiqbIqAua3q8LYokq61f0xd02LanAyAQIE2kggBSCefvrpmdY+97nPxTe+8Y0YOXJkLn/16tVxzTXXRApmnz59eqFsOp4CalIgjY1AZxJIq4mm1U532WWXirqdAlrSH8x++MMfZsr/93//d/z4xz/O5EkQaA+Bu+++O9KnVUu3xx57LNIfrvLb+uuvnwk2yeenx/Scvs022xRnZfZTQMy2224br7zySiF/9OjR8ZOf/CSOPPLIwsq+6Ssrv/vd78aFF15YKJd2zj33XAHuGRGJthBIKwzsv//+habSPZtWHm3K9uijj0b6KuLPfvazsc4661R0ajrnqKOOyrxv6tevX0yZMqXw/qqiihQi0IBAurfTPV68fec734n0NZFN3dJ7osGDBzd4Wrp/d9xxx1iyZEmhXEr/6Ec/iv3226+QlwInv/a1r8VVV11VyEs7V1xxRXzgAx/I5EkQaK5AW93/l156aaRvoNloo41y928KDt55553XWok6BbM/9NBD8fOf/zz3Xiv9Dp3f0uqyV155ZfzXf/1XPssjgRYL7LTTTpHe6+++++5xzDHHxAEHHJB7r96rV69M3WmK+tlnn42//OUvufftc+fOzRxPvyucd955mbzSxIoVK+Id73hH5gNVQ4YMiQsuuCA+/OEPR8+ePXOnpN8XUt7//u//RvG/gZNOOil+9rOflVYrTYAAgaoJmN+uGqWKOpGA+e1OdLF0tWIBc9wVUynYhQTMb3ehi90Fh9pW83t5WvPbeQmPHUGgre5/89sd4WrrQzkB89vlVNo2T4B723prjQCBFgikPzqmAKxrr702U0taYSsFgaUVd1944YXMqtWpYArSSp/222uvvTLnSRDoDAIpCCt9Y8H48eNzq5EeeOCBMW7cuMIf5vNjeP311+P666/PBeamYMXibbPNNov7778/hg4dWpxtn0C7CIwZMyamTZvWorbTSrzpl9yGtrQi+7ve9a5YunRpplj6oNOmm26ae61IH4QqXrE0FUyvM3/7298KQfCZkyUIVEGgNf8Alv8jQnq+TyvypgDF3Xbbba1vsEkBZE8++WT8+te/jl/96lexbNmyzMhSEHD6sKCNQLUEunXrVq2qch/iKA5Sr6/iyy67LBfMWPqZ/uHDh8cmm2wSs2fPjvRBp9LjX/ziF3OBlfXVK59AUwXa6v7P/wGgtH8p4D0F+Pbv3z/3TQbp/c+iRYtKi+Xe+6QPxKZ/AzYC1RTI/wGguM70DWPp3kzvzdN+WgnqpZdeyj0Wl8vvp/f/F198caQPYTS2pZX79t5770hB7MVb+lbA9Ltx+rBtmjtKwfDFWwrAT++l0hySjQABAq0lYH67tWTV25EFzG935Kujb80VMMfdXDnn1YKA+e1auIrG0FSBtprfK+6X+e1iDfvtKdBW97/57fa8ytpuSMD8dkM6bXPsrWVr2qYtrRAgQKBFAukPmWklr7QqXXpDn99ScOLUqVPzycxjCvBKK9AJbs+wSHRCgXvuuSfST9rSV69vvPHGuQ91pA94zJs3L7fKb/HKc/khbrDBBvHPf/5TcHsexGOXEZgwYUJcd911uRVMi4NbFixYEP/+97/LOqRVHVPgTDV/US/bkMwuLfCRj3ykog95vPrqq7lv8CiH1diHPNLrQgpeTz9pS9+IMGzYsFh33XVzQY0zZ86M+fPnl6s6TjnlFMHtZWVkdjaBD33oQ7ng9RNOOCHzzSFz5syJ9FNuS6sDp2/xsBGoJYH0nJ9+Gto23HDD+O1vf1vv605D5zpGoDkCy5cvzwWZN3bueuutF2nV1xNPPLHi9+hbb7113HrrrbkPrhZ/sDZ9sCOtJF9uO+igg3LzTYLby+nII0CgmgLmt6upqa7OJmB+u7NdMf3tCALmuDvCVdCHUgHz26Ui0gRaR8D8duu4qrXzCZjf7nzXrCv02Px2217lxpe9adv+aI0AAQINCvTt2zf+/Oc/54LW06ek6tvS6nTpq6WffvrpqGSFx/rqkU+gIwqklXaff/75eOSRR+LBBx/MfcCjXHD7YYcdlvsD/hZbbNERh6FPBFpd4IADDsi9Dnzuc5+LddZZp9723vGOd8Rf//rX+OMf/5j7AEm9BR0g0EkFUrD8U089Fffdd19u5fZywe0pgOwPf/hDnH/++Z10lLpNYG2BY489NnfPpw8w9erVa+0C/8lJfzBOq/aed955FQdQ1luZAwTaSSC97znzzDNzv/+mDzQ1tqUAu5133jl++ctfRvra44MPPrixUxwn0CyBNIdzzjnnRAoiT+83GtvSh0132GGH3HNyujfTe/mmfgB1xx13jCeeeCK+9rWvxeDBg+ttMv2unD4QeOONN+ZWk6+3oAMECBCoooD57SpiqqrTCpjf7rSXTsfbQcAcdzuga7LDCZjf7nCXRIfaSMD8dhtBa6ZDCJjf7hCXQSfKCJjfLoPSxlnd6r6Oe00bt6k5AgQIVE0g/bHz/vvvz61Ilz4hlb7eOq3WlVZsT38ssBHo7AI33XRTXHXVVXHnnXfGM888E+kbCxra0teuH3roofGFL3whUrCWjQCBtwTefPPN3LcgTJo0KdIq7r17946NNtoo3vnOd8bmm2+OiUCbCbTmVxinldsvuuiiuO222+KBBx6I4m8vqG+A48aNi09+8pPxqU99qsEAsPrOl0+gswi88cYbcdddd8Vzzz0XCxcuzP2usMkmm+R+b0ivBzYCtSSQpvrSB2LT78svvfRS7r3P0qVLI30QPAX7jho1KnbfffeKgo1rycVY2l8gfTA7PQ+ne3P69OmRnptXrFiR+5aZgQMHRnqflD54UUkgfKWjSfWneaMnn3wy9+1n6VvQ0rcWpHa23377SqtRjgABAq0mYH671WhV3EEEzG93kAuhGzUhYI67Ji5jpx+E+e1OfwkNoJMKmN/upBdOt5slYH67WWxOagMB89ttgFymCQHuZVBkESBAgACBjiiwZMmS3GrUL774Yrz88suRvmI9vYFKH+xIgSrbbLNN7g/06Q/2NgIECBAgMG3atFwQWQogS6u2pz+CpQ8ApteMFNiVPuAxdOhQUAQIECBAgAABAgQIECBAgACBVhcwv93qxBogQIBATQmY366py2kwBAgQIECAAIFmCQhwbxabkwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECg2gLdq12h+ggQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQHMEBLg3R805BAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFB1AQHuVSdVIQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0R0CAe3PUnEOAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECVRcQ4F51UhUSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQHMEBLg3R805BAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFB1AQHuVSdVIQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0R0CAe3PUnEOAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECVRcQ4F51UhUSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQHMEBLg3R805BAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFB1AQHuVSdVIQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0R0CAe3PUnEOAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECVRcQ4F51UhUSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQHMEBLg3R805BAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFB1AQHuVSdVIQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0R0CAe3PUnEOAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECVRcQ4F51UhUSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQHMEBLg3R805BAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFB1AQHuVSdVIQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0R0CAe3PUnEOAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECVRcQ4F51UhUSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQHMEBLg3R805BAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFB1AQHuVSdVIQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0R0CAe3PUnEOAAAECBAgQIECAAIEaFbj99tujW7duhZ9vf/vbNTpSwyJAgAABAgQIECBAgAABAgQIECBAgACBWhIwv11LV9NYCBAgQIAAga4uIMC9q98Bxk+AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEOIiDAvYNcCN0gQIAAAQIECBAg0JUFxowZU1gxvHj18ObsX3311V2Z0tgJECBAgAABAgQIECBAgAABAgQIECBAoA0FzG+3IbamCBAgQIAAAQIEuoyAAPcuc6kNlAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAh1bQIB7x74+ekeAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEuI9Czy4zUQAkQIECAAAECBAgQ6DQC559/fuy4447N6m9zz2tWY04iQIAAAQIECBAgQIAAAQIECBAgQIAAAQJFAua3izDsEiBAgAABAgQIEGimgAD3ZsI5jQABAgQIECBAgACB1hPYZZddYr/99mu9BtRMgAABAgQIECBAgAABAgQIECBAgAABAgRaQcD8diugqpIAAQIECBAgQKDLCXTvciM2YAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDokAIC3DvkZdEpAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIdD2Bnl1vyEZMgAABAgQIECBAgACBtQWmTJkS999/f8ycOTN3cKONNoqdd945tt5667ULNyNn+vTp8cADD8Srr74ar7/+egwZMiQ22GCD2GuvvWL48OHNqLH8Kan+NI7Zs2fH3Llzo3v37jFo0KDYcsstY6eddsrtlz+z8tzHHnssHnrooVwbffr0yY1j/PjxMWbMmMorUZIAAQIECBAgQIAAAQIECBAgQIAAAQIEqiJgfrtyRvPblVspSYAAAQIECBBoTwEB7u2pr20CBAgQIECAAAECBNpMIAVfT5s2Ldfe6NGj48UXX8zt33777fG1r30t7rvvvrJ92XHHHeN73/teHH744WWPN5S5evXquPTSS+OCCy6IJ598smzRFIC+++67x+mnnx5HHnlk2TKNZS5fvjx+85vfxIUXXhhPPPFErFmzpuwpPXr0iD322COOP/74+PCHPxzrrLNO2XL1Zf75z3+OM888M5599tmyRd75znfG+eefH3vvvXfZ4zIJECBAgAABAgQIECBAgAABAgQIECBAoOkC5rcjzG83/b5xBgECBAgQIECgMwt078yd13cCBAgQIECAAAECBAi0ROC8886LAw44oN7g9lR3Ws3liCOOiBNPPLHewPFyfUgrwe+2225xwgkn1Bvcns5LQfApuP4973lPHHbYYbFw4cJy1dWbd++99+ZWZ//85z8fjz/+eIN9XLVqVdx9993x6U9/Oq644op66yw9kALoP/rRj+aC4usLbk/npJXj99tvv1xQf2kd0gQIECBAgAABAgQIECBAgAABAgQIECBQPQHz25VZmt+uzEkpAgQIECBAgEBHE7CCe0e7IvpDgAABAgQIECBAgECbCPz+97+P0047rdBWnz59Iq2C079//3jppZdizpw5hWNpJ62OnlZGT4+NbS+88EIu0Hv69OmZomm19tTGkCFDcvXnV5TPF/rnP/8Z+++/f9x0000xePDgfHa9j5dddlluNfZly5atVWbDDTeMDTbYILp16xZz586N0r6sdUIDGccdd1yktvJb6tuoUaOiZ8+eMXXq1FiwYEH+UKQg+k996lOx7bbb5gL8CwfsECBAgAABAgQIECBAgAABAgQIECBAgEBVBMxvV85ofrtyKyUJECBAgAABAh1JwAruHelq6AsBAgQIECBAgAABAm0i8Prrr8cXv/jFXFvrrrtu/PjHP47Zs2fHM888Ew8//HBuP610vueee2b686tf/Souv/zyTF5pYuXKlXHsscdmAspTIPhXv/rVXOD8888/Hw8++GC8+OKLMWXKlFwweHEdqf3Pfe5zxVll91MdaWK+OLh9vfXWi7POOitSgP2sWbPikUceyY0nBdK/9tprcfXVV+dWYe/du3fZOstlpj+U5IPb3/3ud0daMX7evHm5le1TX1Pw/N/+9rcYOXJk4fQU5P6FL3yhkLZDgAABAgQIECBAgAABAgQIECBAgAABAtURML9tfrs6d5JaCBAgQIAAAQIdW6Bb3QqEazp2F/WOAAECBAgQIECAAIFaF0irmhevZn7++efHjjvu2ORhjxgxInbYYYey55W2kQqllcgnTpwY2223XdlzUqD2McccE3/9618Lx9dff/1cYPqAAQMKecU7P/jBD+LUU08tZKVg8r///e+RgsPr237961/HZz7zmczhFDR+9NFHZ/LyiRTUPm7cuFyQfD5vm222iX/961+5ldXzefU9zpw5MxYtWhRbbbXVWkVuv/323CrypQe++c1vxne+853S7EJ68uTJ8Y53vCOWLFlSyHv00UebdR0LFdghQIAAAQIECBAgQIAAAQIECBAgQIBABxconXs2vx25RVHMb3fwG1f3CBAgQIAAAQIdXECAeS3d5AAAGCpJREFUewe/QLpHgAABAgQIECBAoCsIlP4BoLljPuqoo3KrlJc7v1wbV155Zbzvfe8rV7yQt3Tp0th6660zweQXXnjhWgHp6YQUEL/pppvmVmrPV5D+mHHKKafkk/U+plXbf/nLXxaO77333nHnnXcW0sU7aSX5z372s4WsoUOHxhNPPBEbbrhhIa+5O+UC3BtyLW4nrVJ/zjnnFLLOPvvs3Mr1hQw7BAgQIECAAAECBAgQIECAAAECBAgQqDGBcnPPzRliQ/Ow5dowv722svnttU3kECBAgAABAgQ6q0D3ztpx/SZAgAABAgQIECBAgEBLBHbbbbdGg9tT/X379l1r5fKLL764bNM33HBDJrh99OjRcfLJJ5ctW5r5ve99L9ZZZ51C9l133RWTJk0qpIt3fvSjHxUn49xzz61KcHum0qLE//7v/xal6t9Nq90Xb4888khx0j4BAgQIECBAgAABAgQIECBAgAABAgQIVEHA/HbliOa3K7dSkgABAgQIECDQkQQEuHekq6EvBAgQIECAAAECBAi0mcDHP/7xittKq7wPGDCgUP6hhx6KxYsXF9L5nTvuuCO/m3tMbfTs2TOTV19iyJAhUfqVrRMnTlyr+IwZMzKB72n19o985CNrlatWxvbbbx/bbLNNRdVtt912mfG+9NJLFZ2nEAECBAgQIECAAAECBAgQIECAAAECBAhULmB+uzIr89uVOSlFgAABAgQIEOiIAgLcO+JV0ScCBAgQIECAAAECXVzgtttuizVr1jT55+qrr65Ybr/99qu4bFpZPa2Ik99WrVoVDz/8cD5ZeLz//vsL+2nngAMOyKQbSxx44IGZIvfdd18mnRJ33nlnJi+10adPn0xeNRO77rprxdX16tUrBg0aVCj/+uuvF/btECBAgAABAgQIECBAgAABAgQIECBAoCsImN9+6yqb3+4Kd7sxEiBAgAABAgRaT0CAe+vZqpkAAQIECBAgQIAAgQ4q0KNHjxg3blyTepdWJy/eXnjhheJkbn/atGmZvB122CGTbiyx4447ZopMnz49k06J559/PpPXlAD0zIkVJkaMGFFhybeK9e/fv1D+zTffLOzbIUCAAAECBAgQIECAAAECBAgQIECAAIGWC5jfrtzQ/HblVkoSIECAAAECBDqagAD3jnZF9IcAAQIECBAgQIAAgVYXGDhwYPTs2bNJ7QwdOjRTfsGCBZl0SsyfP7+Q17179xgyZEghXcnOsGHDMsWK68sfeO211/K7ucemTtBnTq4g0bdv3wpKlS+SVuG3ESBAgAABAgQIECBAgAABAgQIECBAgED1BMxvV25pfrtyKyUJECBAgAABAh1NQIB7R7si+kOAAAECBAgQIECAQKsLrLPOOk1uo3hl8nTyokWL1qqjOK8abSxcuHCtNkrzBgwYsFYZGQQIECBAgAABAgQIECBAgAABAgQIECBQmwLVmHsunsvOKxXnVaON0rns1E5pnvntvL5HAgQIECBAgACBUgEB7qUi0gQIECBAgAABAgQI1LzAkiVLmjzGxYsXZ84pN/FenFeNNtZdd91MmylRmlf8R4e1CssgQIAAAQIECBAgQIAAAQIECBAgQIAAgZoSqMbcc/Fcdh6nOK8abZTOZad2SvPMb+f1PRIgQIAAAQIECJQKCHAvFZEmQIAAAQIECBAgQKDmBV5//fVYsWJFk8Y5b968TPlBgwZl0ikxePDgQt7q1atj/vz5hXQlO3Pnzs0UK64vf2DIkCH53dzj7NmzM2kJAgQIECBAgAABAgQIECBAgAABAgQIEKhdAfPbtXttjYwAAQIECBAgQOBtAQHub1vYI0CAAAECBAgQIECgiwisWrUqnnnmmSaN9oknnsiU33TTTTPplBg9enQm77HHHsukG0uUli+tL52/xRZbZKp56KGHMmkJAgQIECBAgAABAgQIECBAgAABAgQIEKhdAfPbtXttjYwAAQIECBAgQOBtAQHub1vYI0CAAAECBAgQIECgCwnccccdFY82fR1rcSB5jx49Ypdddlnr/D322COTd+utt2bSjSVKy5fWl87fZ599MtWkc5YtW5bJkyBAgAABAgQIECBAgAABAgQIECBAgACB2hUwv12719bICBAgQIAAAQIE3hIQ4O5OIECAAAECBAgQIECgSwr87ne/q3jcf/3rX2PRokWF8im4vX///oV0fmfffffN7+Ye//CHP8TKlSszefUl5s+fH3/7298yhydMmJBJp8TIkSNj++23L+TPmzcv/vjHPxbSdggQIECAAAECBAgQIECAAAECBAgQIECgtgXMb9f29TU6AgQIECBAgACBCAHu7gICBAgQIECAAAECBLqkwIMPPhgpcL2xbenSpXHGGWdkin3yk5/MpPOJQw45JDbZZJN8Ml544YX46U9/Wkg3tPPNb34z0krx+S2t1D5u3Lh8MvN48sknZ9KnnXZavPzyy5k8CQIECBAgQIAAAQIECBAgQIAAAQIECBCoTQHz27V5XY2KAAECBAgQIEDgbQEB7m9b2CNAgAABAgQIECBAoIsJfPrTn44nn3yy3lGvXr06Pvaxj+UC1fOFRowYER/+8Ifzycxjjx49ojT4/Ktf/WrccsstmXKliYsvvjh+/vOfZ7JPOeWUTLo4kfq02WabFbLSKu4HHXRQzJgxo5DX0M7MmTPj2WefbaiIYwQIECBAgAABAgQIECBAgAABAgQIECDQgQXMb3fgi6NrBAgQIECAAAECLRbo2eIaVECAAAECBAgQIECAAIEqCzz88MOxcuXKZtWaAtB32GGHBs8dNGhQpOD1+fPnx/jx4+N73/teHHfccbHeeusVzrv33nvj1FNPjXvuuaeQl3Z+9KMfxbrrrpvJK06kAPcrrrgi7r///lz2smXL4tBDD40vf/nL8YUvfCE23HDDQvGpU6fGOeecE7/+9a9jzZo1hfxjjjkmjjrqqEK6dKd3795x+eWXx1577RWp/rQ9/fTTsd122+Xa+ehHPxqjR4/OnLZgwYK44447cuellesvvPDC2GqrrTJlJAgQIECAAAECBAgQIECAAAECBAgQIECgZQLmt81vt+wOcjYBAgQIECBAgEAS6FYXRPF2FAUTAgQIECBAgAABAgQItIPAmDFjYtq0aVVpOQWGX3311WvVVdxGCv4+66yz4uMf/3ihXJ8+fWLs2LGxzjrrxEsvvRSzZ88uHMvvnHDCCfGb3/wmn6z3MQWu77///jF9+vRMme7du8emm24aQ4YMiTlz5sSLL76YOZ4SO++8c9x8880xePDgtY6VZqRA+jSGfJB78fGNNtoo1l9//ejWrVuurTSm4l//Lrnkkjj++OOLT8nt33777bm+5w+cccYZ8e1vfzufbPSx1LncGButRAECBAgQIECAAAECBAgQIECAAAECBAh0EoHiOdGWdtn89luC5rdbeic5nwABAgQIECDQ+QWs4N75r6ERECBAgAABAgQIECDQDIGPfexj8eqrr8Zpp52WC/xOQeKTJk2qt6YU3P6rX/2q3uPFB1Kg/N13351bhf2RRx4pHEqrxj///PO5n0Jm0U5a6T2tzN7QCvFFxeODH/xgjBw5Mo499tiYMWNG8aGYOXNm7ieTKUGAAAECBAgQIECAAAECBAgQIECAAAECnV7A/Hanv4QGQIAAAQIECBAg0IhA90aOO0yAAAECBAgQIECAAIGaFTj11FPjtttui913373eMW6//fZxzTXX5FZuTyuwV7ptvPHG8eCDD+bO23bbbes9La2w/s53vjP+/ve/x/XXX19xcHu+wr333juee+65+MEPfhBbbbVVPrvsY+/eveOggw6K3//+97mg+LKFZBIgQIAAAQIECBAgQIAAAQIECBAgQIBAhxcwv93hL5EOEiBAgAABAgQItECgW91X1K9pwflOJUCAAAECBAgQIECAQKcQKP6a2NGjR8eLL76Y6feUKVPivvvuy616noLON9xww9h5552joeD0TAWNJKZPnx73339/btX4N954IwYPHpxrY/z48TFixIhGzq788LRp03KB9bNnz4758+dHnz59YsiQIbng95122in69+9feWVKEiBAgAABAgQIECBAgAABAgQIECBAgEC7C5jf3irMb7f7bagDBAgQIECAAIE2FRDg3qbcGiNAgAABAgQIECBAoL0EGvsDQHv1S7sECBAgQIAAAQIECBAgQIAAAQIECBAgQKAhAfPbDek4RoAAAQIECBAgUIsC3WtxUMZEgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAp1PQIB757tmekyAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGaFBDgXpOX1aAIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQ+QQEuHe+a6bHBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqEkBAe41eVkNigABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAp1PQIB757tmekyAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGaFBDgXpOX1aAIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQ+QS6ranbOl+39ZgAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEak3ACu61dkWNhwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAp1UQIB7J71wuk2AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFaExDgXmtX1HgIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQSQUEuHfSC6fbBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqDUBAe61dkWNhwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAp1UQIB7J71wuk2AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFaExDgXmtX1HgIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQSQUEuHfSC6fbBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqDUBAe61dkWNhwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAp1UQIB7J71wuk2AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFaExDgXmtX1HgIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQSQUEuHfSC6fbBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqDUBAe61dkWNhwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAp1UQIB7J71wuk2AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFaExDgXmtX1HgIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQSQUEuHfSC6fbBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqDUBAe61dkWNhwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAp1UQIB7J71wuk2AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFaExDgXmtX1HgIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQSQUEuHfSC6fbBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqDUBAe61dkWNhwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAp1UQIB7J71wuk2AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFaExDgXmtX1HgIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQSQUEuHfSC6fbBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqDUBAe61dkWNhwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAp1UQIB7J71wuk2AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFaExDgXmtX1HgIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQSQUEuHfSC6fbBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqDUBAe61dkWNhwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAp1UQIB7J71wuk2AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFaExDgXmtX1HgIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQSQUEuHfSC6fbBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqDUBAe61dkWNhwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAp1UQIB7J71wuk2AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFaExDgXmtX1HgIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQSQUEuHfSC6fbBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqDUBAe61dkWNhwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAp1UQIB7J71wuk2AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFaExDgXmtX1HgIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQSQUEuHfSC6fbBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqDUBAe61dkWNhwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAp1UQIB7J71wuk2AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFaExDgXmtX1HgIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQSQUEuHfSC6fbBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqDWB/w89L8mEdfrP4wAAAABJRU5ErkJggg==\n","text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["## seperated model for rf catagory only\n","\n","import os\n","import pickle\n","import numpy as np\n","import matplotlib.pyplot as plt\n","import seaborn as sns\n","from sklearn.utils import shuffle\n","from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, precision_score, recall_score, f1_score\n","from tensorflow.keras.models import Model, load_model\n","from tensorflow.keras.layers import Input, Dense, Dropout\n","from tensorflow.keras.optimizers import Adam\n","from tensorflow.keras.callbacks import EarlyStopping\n","\n","# ✅ المسارات\n","model_path = \"/content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/cnn+bilstm_rf.h5\"\n","acc_loss_plot = \"/content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/pic/cnn+bilstm_acc_loss_rf.png\"\n","conf_matrix_plot = \"/content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/pic/cnn+bilstm_conf_matrix_rf.png\"\n","\n","# ✅ تحميل البيانات\n","with open(\"/content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv//DEEP L files/train_test_data_rf-deep-new.pkl\", \"rb\") as f:\n"," X_train_rf, X_test_rf, y_train_rf, y_test_rf = pickle.load(f)\n","\n","X_train_rf, y_train_rf = shuffle(X_train_rf, y_train_rf, random_state=42)\n","\n","# ✅ دالة رسم Confusion Matrix\n","def plot_conf_matrix(y_true, y_pred, title, save_path=None):\n"," cm = confusion_matrix(y_true, y_pred)\n"," labels = [str(i) for i in range(len(np.unique(y_true)))]\n"," plt.figure(figsize=(8, 6))\n"," sns.heatmap(cm, annot=True, fmt=\"d\", cmap=\"Blues\",\n"," xticklabels=labels, yticklabels=labels)\n"," plt.title(f\"Confusion Matrix - {title}\")\n"," plt.xlabel(\"Predicted\")\n"," plt.ylabel(\"Actual\")\n"," plt.tight_layout()\n"," if save_path:\n"," plt.savefig(save_path, dpi=300)\n"," print(f\"✅ تم حفظ Confusion Matrix: {save_path}\")\n"," plt.show()\n","\n","# ✅ تحميل النموذج إذا موجود\n","if os.path.exists(model_path):\n"," print(\"✅ تم العثور على النموذج. سيتم استخدامه بدون تدريب.\")\n"," model_rf = load_model(model_path)\n"," history_rf = None\n","else:\n"," print(\"❌ النموذج غير موجود. سيتم تدريبه الآن...\")\n","\n"," # ✅ بناء وتدريب النموذج\n"," input_layer = Input(shape=(894,), name=\"input_layer\")\n"," x = Dense(256, activation='relu')(input_layer)\n"," x = Dropout(0.3)(x)\n"," x = Dense(128, activation='relu')(x)\n"," x = Dropout(0.3)(x)\n"," output_layer = Dense(2, activation='softmax', name=\"rf_output\")(x)\n","\n"," model_rf = Model(inputs=input_layer, outputs=output_layer)\n","\n"," model_rf.compile(\n"," optimizer=Adam(learning_rate=0.001),\n"," loss=\"sparse_categorical_crossentropy\",\n"," metrics=[\"accuracy\"]\n"," )\n","\n"," model_rf.summary()\n","\n"," history_rf = model_rf.fit(\n"," X_train_rf,\n"," y_train_rf,\n"," validation_data=(X_test_rf, y_test_rf),\n"," epochs=30,\n"," batch_size=64,\n"," callbacks=[EarlyStopping(patience=3, restore_best_weights=True)]\n"," )\n","\n"," model_rf.save(model_path)\n"," print(f\"✅ تم حفظ النموذج: {model_path}\")\n","\n"," # ✅ رسم Accuracy & Loss\n"," plt.figure(figsize=(10, 4))\n"," plt.subplot(1, 2, 1)\n"," plt.plot(history_rf.history['accuracy'], label='Train Accuracy')\n"," plt.plot(history_rf.history['val_accuracy'], label='Val Accuracy', linestyle='--')\n"," plt.title(\"Accuracy (Fake/Real)\")\n"," plt.xlabel(\"Epoch\")\n"," plt.ylabel(\"Accuracy\")\n"," plt.legend()\n","\n"," plt.subplot(1, 2, 2)\n"," plt.plot(history_rf.history['loss'], label='Train Loss')\n"," plt.plot(history_rf.history['val_loss'], label='Val Loss', linestyle='--')\n"," plt.title(\"Loss (Fake/Real)\")\n"," plt.xlabel(\"Epoch\")\n"," plt.ylabel(\"Loss\")\n"," plt.legend()\n","\n"," plt.tight_layout()\n"," plt.savefig(acc_loss_plot, dpi=300)\n"," print(f\"✅ تم حفظ رسم Accuracy & Loss: {acc_loss_plot}\")\n"," plt.show()\n","\n","# ✅ التنبؤ والتقييم\n","preds_rf = model_rf.predict(X_test_rf)\n","preds_rf = np.argmax(preds_rf, axis=1)\n","\n","print(\"\\n📊 Fake/Real Report:\")\n","print(classification_report(y_test_rf, preds_rf))\n","\n","accuracy = accuracy_score(y_test_rf, preds_rf)\n","precision = precision_score(y_test_rf, preds_rf, average='macro', zero_division=0)\n","recall = recall_score(y_test_rf, preds_rf, average='macro', zero_division=0)\n","f1 = f1_score(y_test_rf, preds_rf, average='macro', zero_division=0)\n","\n","print(f\"\\n🔄 Summary:\")\n","print(f\"✅ Accuracy: {accuracy:.4f}\")\n","print(f\"✅ Precision: {precision:.4f}\")\n","print(f\"✅ Recall: {recall:.4f}\")\n","print(f\"✅ F1-Score: {f1:.4f}\")\n","\n","# ✅ Confusion Matrix\n","plot_conf_matrix(y_test_rf, preds_rf, \"Fake/Real\", save_path=conf_matrix_plot)\n","\n","# ✅ عرض رسم Accuracy & Loss إذا موجود\n","if os.path.exists(acc_loss_plot):\n"," from PIL import Image\n"," print(f\"✅ عرض رسم Accuracy & Loss من الملف: {acc_loss_plot}\")\n"," display(Image.open(acc_loss_plot))\n"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"executionInfo":{"elapsed":104580,"status":"ok","timestamp":1745693001755,"user":{"displayName":"noor alqudah","userId":"09593972035402767777"},"user_tz":-180},"id":"AiYlaKUd1lpU","outputId":"03a17f4f-a270-4238-a28d-f30449554fcd"},"outputs":[{"name":"stderr","output_type":"stream","text":["WARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n"]},{"name":"stdout","output_type":"stream","text":["✅ تم العثور على النموذج. سيتم استخدامه بدون تدريب.\n","\u001b[1m1287/1287\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m101s\u001b[0m 78ms/step\n","\n","🔄 Summary:\n","✅ Accuracy: 0.7778\n","✅ Precision: 0.7819\n","✅ Recall: 0.7778\n","✅ F1-Score: 0.7791\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABmkAAAVtCAYAAAAYnqrIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAtLVJREFUeJzs3Xl4VeW9Pu7PSkICZQigMrUKOOOsaDkOgIpHRYsDVYtDBUWxHocqTod6qjhGwTpPta1DKw7VWo+t1aNVLA44oRRnQXGqgAMiFSECWb8/+iNfd5NgomxeTO77utZ1uddae61nD9mG/eR9V5bneR4AAAAAAACsVCWpAwAAAAAAALREShoAAAAAAIAElDQAAAAAAAAJKGkAAAAAAAASUNIAAAAAAAAkoKQBAAAAAABIQEkDAAAAAACQgJIGAAAAAAAgASUNAAAAAABAAkoaAKDFmj59euy6665RWVkZWZbF3XffvUKP/9Zbb0WWZXHjjTeu0ON+m+24446x4447po5RFDfeeGNkWRZvvfVW6ih8Q015LZft++yzzxY/2CrOZx4AADSdkgYASOqNN96Io446KtZee+1o3bp1dOjQIbbffvu47LLLYuHChUU99/Dhw+OFF16I8847L373u9/F1ltvXdTzrUwjRoyILMuiQ4cO9T6P06dPjyzLIsuyuOiii5p8/Pfffz/Gjh0bU6dOXQFpV45evXpFlmWxyy671Lv9V7/6Ve1zsip94b5o0aK45JJLol+/flFZWRmtW7eO9ddfP4499th4/fXXm3y8J554IsaOHRvz5s1b8WGbsauvvrro5cOpp54aWZbFj370o3q3L++1O//881d40dyQW265JS699NKVci4AAGjulDQAQDL33ntvbLrppvH73/8+hgwZEldccUVUVVXFWmutFaecckr89Kc/Ldq5Fy5cGJMnT46RI0fGscceG4ccckh873vfW6Hn6NmzZyxcuDB+/OMfr9DjNlZZWVl8/vnn8ac//anOtgkTJkTr1q2/9rHff//9OOuss5pc0jzwwAPxwAMPfO3zflOtW7eOiRMnxuzZs+ts+6bPyY9//ONYuHBh9OzZ85tELPDRRx/FDjvsEKNHj44uXbrE2WefHVdddVXss88+cc8998Qmm2zS5GM+8cQTcdZZZylplqO+17LYJU2e53HrrbdGr1694k9/+lP885//rLPP8l67VaGkSf2ZBwAA30ZKGgAgiZkzZ8awYcOiZ8+e8fLLL8dll10WRx55ZBxzzDFx6623xssvvxwbb7xx0c7/4YcfRkREx44di3aOLMuidevWUVpaWrRzLE9FRUUMGjQobr311jrbbrnllthzzz1XWpbPP/88IiLKy8ujvLx8pZ33322//fbRrl27uP322wvWv/fee/Hoo49+o+ektLQ0WrduHVmWfdOYtUaMGBHPP/983HnnnfGnP/0pfvrTn8bIkSNj3LhxMX369Dj++ONX2LlWNUuWLIkvvvgiybmL8Vp+lUceeSTee++9uP7662PJkiVx1113rbRzryipP/MAAODbSEkDACQxbty4+Oyzz+I3v/lNdO/evc72ddddt2AkzZIlS+Kcc86JddZZJyoqKqJXr17xs5/9LKqrqwvu16tXr/jBD34Qjz32WHz/+9+P1q1bx9prrx2//e1va/cZO3Zs7V/In3LKKZFlWfTq1Ssi/vWl+LL//rKxY8fW+cL2wQcfjB122CE6duwY7dq1iw022CB+9rOf1W5v6PoMDz/8cPTv3z/atm0bHTt2jL333jteeeWVes83Y8aMGDFiRHTs2DEqKyvjsMMOqy08GuOggw6K++67r+Av75955pmYPn16HHTQQXX2nzt3bpx88smx6aabRrt27aJDhw4xePDg+Pvf/167zyOPPBLbbLNNREQcdthhtVOELXucO+64Y2yyySYxZcqUGDBgQHznO9+pfV7+/Zo0w4cPj9atW9d5/Lvttlt06tQp3n///UY/1sZo3bp1DB06NG655ZaC9bfeemt06tQpdttttzr3mTZtWowYMaJ2Sr5u3brF4YcfHh9//HHBfvVdx6Qx78eGPPXUU3HvvffGyJEj44c//GGd7RUVFQVT1TUm59ixY+OUU06JiIjevXvXvnZfznzzzTdH3759o02bNtG5c+cYNmxYvPvuu3XOf9VVV8Xaa68dbdq0ie9///vx6KOP1nvNoQ8++CBGjhwZXbt2jdatW8fmm28eN910U8E+y35WLrroorj00ktrf86ffvrpaNu2bb2j6t57770oLS2NqqqqBp/DrbbaKoYOHVqwbtNNN40sy2LatGm1626//fbIsqz2ffjvr2WvXr3ipZdeir/97W+1z9m/P87q6uoYPXp0rLHGGtG2bdvYd999a8vgxpgwYUJstNFGsdNOO8Uuu+wSEyZMKNi+vNcuy7JYsGBB3HTTTbXrR4wYUXvff/zjH3H44YdH165do6KiIjbeeOO4/vrrC47/yCOPRJZl8fvf/z7OO++8+N73vhetW7eOQYMGxYwZM2r323HHHePee++Nt99+u/Zcyz4zV4XPPAAA+LYpSx0AAGiZ/vSnP8Xaa68d2223XaP2P+KII+Kmm26K/fbbL0466aR46qmnoqqqKl555ZX44x//WLDvjBkzYr/99ouRI0fG8OHD4/rrr48RI0ZE3759Y+ONN46hQ4dGx44d48QTT4wDDzww9thjj2jXrl2T8r/00kvxgx/8IDbbbLM4++yzo6KiImbMmBGPP/74cu/317/+NQYPHhxrr712jB07NhYuXBhXXHFFbL/99vHcc8/VKYgOOOCA6N27d1RVVcVzzz0Xv/71r6NLly5x4YUXNirn0KFD4yc/+Uncddddcfjhh0fEv0bRbLjhhrHVVlvV2f/NN9+Mu+++O/bff//o3bt3zJkzJ375y1/GwIED4+WXX44ePXpEnz594uyzz44zzjgjRo0aFf3794+IKHgtP/744xg8eHAMGzYsDjnkkOjatWu9+S677LJ4+OGHY/jw4TF58uQoLS2NX/7yl/HAAw/E7373u+jRo0ejHmdTHHTQQbHrrrvGG2+8Eeuss07tc7LffvtFq1at6uz/4IMPxptvvhmHHXZYdOvWLV566aW47rrr4qWXXoonn3zyK0dbfNX7sSH33HNPRESjp45qTM6hQ4fG66+/Hrfeemtccsklsfrqq0dExBprrBEREeedd178/Oc/jwMOOCCOOOKI+PDDD+OKK66IAQMGxPPPP1878uyaa66JY489Nvr37x8nnnhivPXWW7HPPvtEp06dCqYNXLhwYey4444xY8aMOPbYY6N3795xxx13xIgRI2LevHl1ypcbbrghFi1aFKNGjYqKiopYa621Yt99943bb789Lr744oIRGrfeemvkeR4HH3xwg89J//79C0aSzZ07N1566aUoKSmJRx99NDbbbLOIiHj00UdjjTXWiD59+tR7nEsvvTSOO+64aNeuXZx++ukREXXe08cdd1x06tQpzjzzzHjrrbfi0ksvjWOPPbbOqK36VFdXxx/+8Ic46aSTIiLiwAMPjMMOOyxmz54d3bp1i4hY7mv3u9/9Lo444oj4/ve/H6NGjYqIqH1vz5kzJ/7jP/4jsiyLY489NtZYY4247777YuTIkTF//vw44YQTCrJccMEFUVJSEieffHJ8+umnMW7cuDj44IPjqaeeioiI008/PT799NN477334pJLLomIWO7n58r+zAMAgG+dHABgJfv000/ziMj33nvvRu0/derUPCLyI444omD9ySefnEdE/vDDD9eu69mzZx4R+aRJk2rXffDBB3lFRUV+0kkn1a6bOXNmHhH5+PHjC445fPjwvGfPnnUynHnmmfmXf3W65JJL8ojIP/zwwwZzLzvHDTfcULtuiy22yLt06ZJ//PHHtev+/ve/5yUlJfmhhx5a53yHH354wTH33XfffLXVVmvwnF9+HG3bts3zPM/322+/fNCgQXme5/nSpUvzbt265WeddVa9z8GiRYvypUuX1nkcFRUV+dlnn1277plnnqnz2JYZOHBgHhH5tddeW++2gQMHFqz7v//7vzwi8nPPPTd/880383bt2uX77LPPVz7GpurZs2e+55575kuWLMm7deuWn3POOXme5/nLL7+cR0T+t7/9Lb/hhhvyiMifeeaZ2vt9/vnndY5166231nmfLbvvzJkzC87ZmPdjffbdd988IvJPPvmkUY+vsTnHjx9fJ2ee5/lbb72Vl5aW5uedd17B+hdeeCEvKyurXV9dXZ2vttpq+TbbbJMvXry4dr8bb7wxj4iC1/fSSy/NIyK/+eaba9d98cUX+bbbbpu3a9cunz9/fp7n/+9npUOHDvkHH3xQcP5l74/77ruvYP1mm21W57307+644448IvKXX345z/M8v+eee/KKiop8r732yn/0ox8VHGvfffetvV3fa7nxxhvXe75l++6yyy55TU1N7foTTzwxLy0tzefNm7fcjHme53feeWceEfn06dPzPM/z+fPn561bt84vueSSgv0aeu3yPM/btm2bDx8+vM76kSNH5t27d88/+uijgvXDhg3LKysra983EydOzCMi79OnT15dXV2732WXXZZHRP7CCy/Urttzzz3r/ZxM+ZkHAADfVqY7AwBWuvnz50dERPv27Ru1/1/+8peIiBg9enTB+mV/dX7vvfcWrN9oo41qR3dE/OsvzTfYYIN48803v3bmf7dsRMH//u//Rk1NTaPuM2vWrJg6dWqMGDEiOnfuXLt+s802i//8z/+sfZxf9pOf/KTgdv/+/ePjjz+ufQ4b46CDDopHHnkkZs+eHQ8//HDMnj273qnOIv41hVZJyb9+RVy6dGl8/PHHtVO5Pffcc40+Z0VFRRx22GGN2nfXXXeNo446Ks4+++wYOnRotG7dOn75y182+lxNVVpaGgcccEDtCIsJEybEmmuuWfCe+bI2bdrU/veiRYvio48+iv/4j/+IiGjUc/J1349N/Tn5pjnvuuuuqKmpiQMOOCA++uij2qVbt26x3nrrxcSJEyMi4tlnn42PP/44jjzyyCgr+38D8w8++ODo1KlTwTH/8pe/RLdu3eLAAw+sXdeqVas4/vjj47PPPou//e1vBfv/8Ic/rB3Vs8wuu+wSPXr0KJj+68UXX4xp06bFIYccstzHtOx5nzRpUkT8a8TMNttsE//5n/8Zjz76aEREzJs3L1588cUGX//GGjVqVMGoqv79+8fSpUvj7bff/sr7TpgwIbbeeutYd911I+Jfr/mee+5ZZ8qzpsrzPP7whz/EkCFDIs/zgtd1t912i08//bTOe+Owww4ruG7Usufl63x+pvrMAwCAbxMlDQCw0nXo0CEiIv75z382av+33347SkpKar/AXKZbt27RsWPHOl+CrrXWWnWO0alTp/jkk0++ZuK6fvSjH8X2228fRxxxRHTt2jWGDRsWv//975db2CzLucEGG9TZ1qdPn/joo49iwYIFBev//bEs+xK8KY9ljz32iPbt28ftt98eEyZMiG222abOc7lMTU1NXHLJJbHeeutFRUVFrL766rHGGmvEtGnT4tNPP230Ob/73e8WfNH7VS666KLo3LlzTJ06NS6//PLo0qXLV97nww8/jNmzZ9cun332WaPPd9BBB8XLL78cf//73+OWW26JYcOGNTht2dy5c+OnP/1pdO3aNdq0aRNrrLFG9O7dOyKiUc/J130/NvXn5JvmnD59euR5Huutt16sscYaBcsrr7wSH3zwQUT8v/fxv7+HysrK6kxd9fbbb8d6661XW/wts2xasX//2V2W98tKSkri4IMPjrvvvrv22iQTJkyI1q1bx/7777/cx9S1a9dYb731aguZRx99NPr37x8DBgyI999/P9588814/PHHo6am5huXNF/3Z3XevHnxl7/8JQYOHBgzZsyoXbbffvt49tln4/XXX//amT788MOYN29eXHfddXVe02Ul6rLX9Zs+jvqk+swDAIBvE9ekAQBWug4dOkSPHj3ixRdfbNL9vuraH8t8+boVX5bn+dc+x9KlSwtut2nTJiZNmhQTJ06Me++9N+6///64/fbbY+edd44HHnigwQxN9U0eyzIVFRUxdOjQuOmmm+LNN9+MsWPHNrjv+eefHz//+c/j8MMPj3POOSc6d+4cJSUlccIJJzR6xFBE4aiOxnj++edrvyx+4YUXCkZeNGSbbbYp+JL/zDPPXO5j+7J+/frFOuusEyeccELMnDmzwZFFEf+6RsYTTzwRp5xySmyxxRbRrl27qKmpid13371Rz8nXfQ033HDDiPjX89GYAuGb5qypqYksy+K+++6rN3NTr9v0dTT0vjn00ENj/Pjxcffdd8eBBx4Yt9xyS/zgBz+IysrKrzzmDjvsEA899FAsXLgwpkyZEmeccUZssskm0bFjx3j00UfjlVdeiXbt2sWWW275jbJ/3df5jjvuiOrq6vjFL34Rv/jFL+psnzBhQpx11llfK9Oy1/2QQw6J4cOH17vPsuvyLLMiPnO+idTnBwCAlU1JAwAk8YMf/CCuu+66mDx5cmy77bbL3bdnz55RU1MT06dPL7iw95w5c2LevHnRs2fPFZarU6dOMW/evDrr65uyqKSkJAYNGhSDBg2Kiy++OM4///w4/fTTY+LEibHLLrvU+zgiIl577bU621599dVYffXVo23btt/8QdTjoIMOiuuvvz5KSkpi2LBhDe535513xk477RS/+c1vCtbPmzev9kLlEY0vzBpjwYIFcdhhh8VGG20U2223XYwbNy723Xff2GabbZZ7vwkTJsTChQtrb6+99tpNOu+BBx4Y5557bvTp0ye22GKLevf55JNP4qGHHoqzzjorzjjjjNr106dPb9K5vo4hQ4ZEVVVV3HzzzV9Z0jQlZ0Ov3TrrrBN5nkfv3r1j/fXXb/Bcy97HM2bMiJ122ql2/ZIlS+Ktt94q+NK/Z8+eMW3atKipqSkYTfPqq68WHOurbLLJJrHlllvGhAkT4nvf+1688847ccUVVzTqvv37948bbrghbrvttli6dGlst912UVJSEjvssENtSbPddtt9ZbG6It/zXzZhwoTYZJNN4swzz6yz7Ze//GXccssttSXN8jLUt22NNdaI9u3bx9KlS+v9TPq6GvtcpPzMAwCAbwvTnQEASZx66qnRtm3bOOKII2LOnDl1tr/xxhtx2WWXRcS/puuKiLj00ksL9rn44osjImLPPfdcYbnWWWed+PTTT2PatGm162bNmhV//OMfC/abO3dunfsu+6K/urq63mN37949tthii7jpppsKiqAXX3wxHnjggdrHWQw77bRTnHPOOXHllVdGt27dGtyvtLS0zl+s33HHHfGPf/yjYN2yL1brK7Sa6rTTTot33nknbrrpprj44oujV69eMXz48Aafx2W233772GWXXWqXppY0RxxxRJx55pn1jl5YZtkX9//+nPz7e7EYtt1229h9993j17/+ddx99911tn/xxRdx8sknR0TTcjb02g0dOjRKS0vjrLPOqnOcPM/j448/joiIrbfeOlZbbbX41a9+FUuWLKndZ8KECXWmpNpjjz1i9uzZcfvtt9euW7JkSVxxxRXRrl27GDhw4HKegUI//vGP44EHHohLL700VltttRg8eHCj7res4Lrwwgtjs802qx19079//3jooYfi2WefbdRIpbZt266Q9/uXvfvuuzFp0qQ44IADYr/99quzHHbYYTFjxox46qmnajNE1P9zV1++0tLS+OEPfxh/+MMf6h25+OGHH36t3G3btm3UFHopP/MAAODbwkgaACCJddZZJ2655Zb40Y9+FH369IlDDz00Ntlkk/jiiy/iiSeeiDvuuCNGjBgRERGbb755DB8+PK677rqYN29eDBw4MJ5++um46aabYp999in4a/5vatiwYXHaaafFvvvuG8cff3x8/vnncc0118T6669fcIHts88+OyZNmhR77rln9OzZMz744IO4+uqr43vf+17ssMMODR5//PjxMXjw4Nh2221j5MiRsXDhwrjiiiuisrKy0VN1fR0lJSXxP//zP1+53w9+8IM4++yz47DDDovtttsuXnjhhZgwYUKdAmSdddaJjh07xrXXXhvt27ePtm3bRr9+/eq9psjyPPzww3H11VfHmWeeGVtttVVERNxwww2x4447xs9//vMYN25ck47XFD179vzK57xDhw4xYMCAGDduXCxevDi++93vxgMPPBAzZ84sWq4v++1vfxu77rprDB06NIYMGRKDBg2Ktm3bxvTp0+O2226LWbNmxUUXXdSknH379o2IiNNPPz2GDRsWrVq1iiFDhsQ666wT5557bowZMybeeuut2GeffaJ9+/Yxc+bM+OMf/xijRo2Kk08+OcrLy2Ps2LFx3HHHxc477xwHHHBAvPXWW3HjjTfGOuusUzDKYtSoUfHLX/4yRowYEVOmTIlevXrFnXfeGY8//nhceuml0b59+0Y/FwcddFCceuqp8cc//jGOPvroaNWqVaPut+6660a3bt3itddei+OOO652/YABA+K0006LiGhUSdO3b9+45ppr4txzz4111103unTpEjvvvHOj89fnlltuiTzPY6+99qp3+x577BFlZWUxYcKE6NevX4OvXdu2baNv377x17/+NS6++OLo0aNH9O7dO/r16xcXXHBBTJw4Mfr16xdHHnlkbLTRRjF37tx47rnn4q9//Wu9hXNjnovbb789Ro8eHdtss020a9cuhgwZUu++qT7zAADgWyMHAEjo9ddfz4888si8V69eeXl5ed6+fft8++23z6+44op80aJFtfstXrw4P+uss/LevXvnrVq1ytdcc818zJgxBfvkeZ737Nkz33PPPeucZ+DAgfnAgQNrb8+cOTOPiHz8+PF19n3ggQfyTTbZJC8vL8832GCD/Oabb87PPPPM/Mu/Oj300EP53nvvnffo0SMvLy/Pe/TokR944IH566+/XuccN9xwQ8Hx//rXv+bbb7993qZNm7xDhw75kCFD8pdffrlgn2Xn+/DDDwvW33DDDXlE5DNnzmzwOc3zPB8+fHjetm3b5e5T33OwaNGi/KSTTsq7d++et2nTJt9+++3zyZMn13n+8jzP//d//zffaKON8rKysoLHOXDgwHzjjTeu95xfPs78+fPznj175ltttVW+ePHigv1OPPHEvKSkJJ88efJyH0NTNPTe+LJlz+8zzzxTu+69997L991337xjx455ZWVlvv/+++fvv/9+HhH5mWeeWee+X35tGvt+XJ7PP/88v+iii/Jtttkmb9euXV5eXp6vt956+XHHHZfPmDGjyTnzPM/POeec/Lvf/W5eUlJSJ/Mf/vCHfIcddsjbtm2bt23bNt9www3zY445Jn/ttdcKjnH55ZfnPXv2zCsqKvLvf//7+eOPP5737ds333333Qv2mzNnTn7YYYflq6++el5eXp5vuummdX4mlvfz+GV77LFHHhH5E0880ajnbpn9998/j4j89ttvr133xRdf5N/5znfy8vLyfOHChQX71/dazp49O99zzz3z9u3b5xFR+/rV957J8zyfOHFiHhH5xIkTG8y16aab5muttdZys++44455ly5dan9GGnrtXn311XzAgAF5mzZt8ojIhw8fXnuMOXPm5Mccc0y+5ppr5q1atcq7deuWDxo0KL/uuuvq5L3jjjsKzl/f59hnn32WH3TQQXnHjh3ziMh79uzZ4L55vnI+8wAA4Nsqy3NXYAQAAL6ZmpqaWGONNWLo0KHxq1/9qijn2HfffeOFF16IGTNmFOX4AAAAK5tr0gAAAE2yaNGiOtet+e1vfxtz586NHXfcsSjnnDVrVtx7773x4x//uCjHBwAASMFIGgAAoEkeeeSROPHEE2P//feP1VZbLZ577rn4zW9+E3369IkpU6ZEeXn5CjvXzJkz4/HHH49f//rX8cwzz8Qbb7wR3bp1W2HHBwAASKksdQAAAODbpVevXrHmmmvG5ZdfHnPnzo3OnTvHoYceGhdccMEKLWgiIv72t7/FYYcdFmuttVbcdNNNChoAAKBZMZIGAAAAAAAgAdekAQAAAAAASEBJAwAAAAAAkECzvCZNmy2PTR0hmU+euTJ1BAAAAACgBWrdLL9tTq8lf9+9zMLnm+/33kbSAAAAAAAAJKCkAQAAAAAASEBJAwAAAAAAkICSBgAAAAAAIAGXcgIAAAAAgFVVZqxFc+bVBQAAAAAASEBJAwAAAAAAkICSBgAAAAAAIAElDQAAAAAAQAJKGgAAAAAAgATKUgcAAAAAAAAakGWpE1BERtIAAAAAAAAkoKQBAAAAAABIQEkDAAAAAACQgJIGAAAAAAAggbLUAQAAAAAAgAZkxlo0Z15dAAAAAACABJQ0AAAAAAAACShpAAAAAAAAElDSAAAAAAAAJFCWOgAAAAAAANCALEudgCIykgYAAAAAACABJQ0AAAAAAEACShoAAAAAAIAElDQAAAAAAAAJlKUOAAAAAAAANCAz1qI58+oCAAAAAAAkkHQkzUcffRTXX399TJ48OWbPnh0REd26dYvtttsuRowYEWussUbKeAAAAAAAAEWTbCTNM888E+uvv35cfvnlUVlZGQMGDIgBAwZEZWVlXH755bHhhhvGs88++5XHqa6ujvnz5xcsec3SlfAIAAAAAAAAvr5kI2mOO+642H///ePaa6+NLMsKtuV5Hj/5yU/iuOOOi8mTJy/3OFVVVXHWWWcVrCvtuk206v79FZ4ZAAAAAABgRcnyPM9TnLhNmzbx/PPPx4Ybbljv9ldffTW23HLLWLhw4XKPU11dHdXV1QXruvQ/LbKS0hWW9dvkk2euTB0BAAAAAGiBWie9uEbz1abfKakjJLfwqfGpIxRNsh+bbt26xdNPP91gSfP0009H165dv/I4FRUVUVFRUbCupRY0AAAAAADAt0eykubkk0+OUaNGxZQpU2LQoEG1hcycOXPioYceil/96ldx0UUXpYoHAAAAAABQVMlKmmOOOSZWX331uOSSS+Lqq6+OpUuXRkREaWlp9O3bN2688cY44IADUsUDAAAAAAAoqqSzBP7oRz+KH/3oR7F48eL46KOPIiJi9dVXj1atWqWMBQAAAAAAUHSrxKWcWrVqFd27d08dAwAAAAAAVi1ZSeoEFJFXFwAAAAAAIAElDQAAAAAAQAJKGgAAAAAAgASUNAAAAAAAAAmUpQ4AAAAAAAA0IMtSJ6CIjKQBAAAAAABIQEkDAAAAAACQgJIGAAAAAAAgASUNAAAAAABAAmWpAwAAAAAAAA3IjLVozry6AAAAAAAACShpAAAAAAAAElDSAAAAAAAAJKCkAQAAAAAASKAsdQAAAAAAAKABWZY6AUVkJA0AAAAAAEACShoAAAAAAIAElDQAAAAAAAAJKGkAAAAAAAASKEsdAAAAAAAAaEBmrEVz5tUFAAAAAABIQEkDAAAAAACQgJIGAAAAAAAggWZ5TZpPnrkydYRkOm1zbOoIybTk1x0AAAAAgG+fZlnSAAAAAABAs5BlqRNQRKY7AwAAAAAASEBJAwAAAAAAkICSBgAAAAAAIAElDQAAAAAAQAJKGgAAAAAAgATKUgcAAAAAAAAakBlr0Zx5dQEAAAAAABJQ0gAAAAAAACSgpAEAAAAAAEhASQMAAAAAAJBAWeoAAAAAAABAAzJjLZozry4AAAAAAEACShoAAAAAAIAElDQAAAAAAAAJKGkAAAAAAAASKEsdAAAAAAAAaEBJljoBRWQkDQAAAAAAQAJKGgAAAAAAgASUNAAAAAAAAAkoaQAAAAAAgGZh0qRJMWTIkOjRo0dkWRZ33313wfYsy+pdxo8fX7tPr1696my/4IILCo4zbdq06N+/f7Ru3TrWXHPNGDdu3NfKW/a17gUAAAAAABRfZqxFUyxYsCA233zzOPzww2Po0KF1ts+aNavg9n333RcjR46MH/7whwXrzz777DjyyCNrb7dv3772v+fPnx+77rpr7LLLLnHttdfGCy+8EIcffnh07NgxRo0a1aS8ShoAAAAAAKBZGDx4cAwePLjB7d26dSu4/b//+7+x0047xdprr12wvn379nX2XWbChAnxxRdfxPXXXx/l5eWx8cYbx9SpU+Piiy9uckmjggMAAAAAAFZZ1dXVMX/+/IKlurr6Gx93zpw5ce+998bIkSPrbLvgggtitdVWiy233DLGjx8fS5Ysqd02efLkGDBgQJSXl9eu22233eK1116LTz75pEkZlDQAAAAAAMAqq6qqKiorKwuWqqqqb3zcm266Kdq3b19nWrTjjz8+brvttpg4cWIcddRRcf7558epp55au3327NnRtWvXgvssuz179uwmZTDdGQAAAAAAsMoaM2ZMjB49umBdRUXFNz7u9ddfHwcffHC0bt26YP2Xz7XZZptFeXl5HHXUUVFVVbVCzvtlShoAAAAAAFhVZVnqBMlVVFSs8HLk0Ucfjddeey1uv/32r9y3X79+sWTJknjrrbdigw02iG7dusWcOXMK9ll2u6Hr2DTkWz/dWbHmogMAAAAAAJqn3/zmN9G3b9/YfPPNv3LfqVOnRklJSXTp0iUiIrbddtuYNGlSLF68uHafBx98MDbYYIPo1KlTk3Ks0iXNu+++G4cffvhy96lvLrrxF37zuegAAAAAAIBvl88++yymTp0aU6dOjYiImTNnxtSpU+Odd96p3Wf+/Plxxx13xBFHHFHn/pMnT45LL700/v73v8ebb74ZEyZMiBNPPDEOOeSQ2gLmoIMOivLy8hg5cmS89NJLcfvtt8dll11WZ0q2xsjyPM+/3kMtvr///e+x1VZbxdKlSxvcp7q6us7Imbx0xQ99+rbotM2xqSMk88kzV6aOAAAAAAAtVmsX1yiKNoPOTx0huYUP/azR+z7yyCOx00471Vk/fPjwuPHGGyMi4rrrrosTTjghZs2aFZWVlQX7Pffcc/Ff//Vf8eqrr0Z1dXX07t07fvzjH8fo0aMLeodp06bFMcccE88880ysvvrqcdxxx8Vpp53W5MeWtKS55557lrv9zTffjJNOOmm5JU19Fi35Jqm+3ZQ0AAAAAEAKSpriUNI0raT5tkn6Y7PPPvtElmWxvJ4oc1EkAAAAAABaqmyVvmoJ31DSV7d79+5x1113RU1NTb3Lc889lzIeAAAAAABA0SQtafr27RtTpkxpcPtXjbIBAAAAAAD4tko63dkpp5wSCxYsaHD7uuuuGxMnTlyJiQAAAAAAAFaOpCVN//79l7u9bdu2MXDgwJWUBgAAAAAAYOVJWtIAAAAAAADLkWWpE1BESa9JAwAAAAAA0FIpaQAAAAAAABJQ0gAAAAAAACSgpAEAAAAAAEigLHUAAAAAAACgAZmxFs2ZVxcAAAAAACABJQ0AAAAAAEACShoAAAAAAIAElDQAAAAAAAAJlKUOAAAAAAAANCDLUiegiIykAQAAAAAASEBJAwAAAAAAkICSBgAAAAAAIAElDQAAAAAAQAJlqQMAAAAAAAANyIy1aM68ugAAAAAAAAkoaQAAAAAAABJQ0gAAAAAAACSgpAEAAAAAAEhASQMAAAAAAJBAWeoAAAAAAABAA7IsdQKKSEnTzHzyzJWpIySz0al/SR0hmZfH7ZE6QhL/XLgkdYRkWrdquQMhW5W13Mee56kTpJNHy3zwJX4Rb5FqWvAPe/XimtQRkmndqjR1hCSW1rTc93tZacv9jF+8pOX+rLfk32WhJWnBv84BX4PfDgAAAAAAABJQ0gAAAAAAACSgpAEAAAAAAEjANWkAAAAAAGBVlRlr0Zx5dQEAAAAAABJQ0gAAAAAAACSgpAEAAAAAAEhASQMAAAAAAJBAWeoAAAAAAABAA7IsdQKKyEgaAAAAAACABJQ0AAAAAAAACShpAAAAAAAAElDSAAAAAAAAJFCWOgAAAAAAANCAzFiL5syrCwAAAAAAkICSBgAAAAAAIAElDQAAAAAAQAJKGgAAAAAAgATKUgcAAAAAAAAakBlr0Zx5dQEAAAAAABJQ0gAAAAAAACSgpAEAAAAAAEhASQMAAAAAAJBAWeoAAAAAAABAA7IsdQKKyEgaAAAAAACABJQ0AAAAAAAACShpAAAAAAAAElDSAAAAAAAAJFCWOsDChQtjypQp0blz59hoo40Kti1atCh+//vfx6GHHtrg/aurq6O6urpgXV5aERUVFUXJCwAAAAAAK01mrEVzlvTVff3116NPnz4xYMCA2HTTTWPgwIExa9as2u2ffvppHHbYYcs9RlVVVVRWVhYs4y+sKnZ0AAAAAACAbyRpSXPaaafFJptsEh988EG89tpr0b59+9h+++3jnXfeafQxxowZE59++mnBcsppY4qYGgAAAAAA4JtLOt3ZE088EX/9619j9dVXj9VXXz3+9Kc/xX/9139F//79Y+LEidG2bduvPEZFRd2pzRYtKVZiAAAAAACAFSPpSJqFCxdGWdn/64myLItrrrkmhgwZEgMHDozXX389YToAAAAAAIDiSTqSZsMNN4xnn302+vTpU7D+yiuvjIiIvfbaK0UsAAAAAABYNWRZ6gQUUdKRNPvuu2/ceuut9W678sor48ADD4w8z1dyKgAAAAAAgOJLWtKMGTMm/vKXvzS4/eqrr46ampqVmAgAAAAAAGDlSFrSAAAAAAAAtFRKGgAAAAAAgATKUgcAAAAAAAAakBlr0Zx5dQEAAAAAABJQ0gAAAAAAACSgpAEAAAAAAEhASQMAAAAAAJBAWeoAAAAAAABAA7IsdQKKyEgaAAAAAACABJQ0AAAAAAAACShpAAAAAAAAElDSAAAAAAAAJFCWOgAAAAAAAFC/LMtSR6CIjKQBAAAAAABIQEkDAAAAAACQgJIGAAAAAAAgASUNAAAAAABAAkoaAAAAAACABMpSBwAAAAAAAOqXZVnqCBSRkTQAAAAAAAAJKGkAAAAAAAASUNIAAAAAAAAk4Jo0NBsvj9sjdYRkOg34WeoISXwy6fzUEZJZWpOnjpBM3nIferTkKWizaMEPnhanpAX/sLcpL00dgZWsrLTlvt9bsrJSfy8KNG8t+Nc54GtQ0gAAAAAAwKpK8des+fMVAAAAAACABJQ0AAAAAAAACShpAAAAAAAAElDSAAAAAAAAJFCWOgAAAAAAAFC/LMtSR6CIjKQBAAAAAABIQEkDAAAAAACQgJIGAAAAAAAgASUNAAAAAABAAmWpAwAAAAAAAPXLsix1BIrISBoAAAAAAIAElDQAAAAAAAAJKGkAAAAAAAASUNIAAAAAAAAkUJY6AAAAAAAAUL8sy1JHoIiMpAEAAAAAAEhASQMAAAAAAJCAkgYAAAAAACABJQ0AAAAAAEACZakDAAAAAAAA9cuyLHUEishIGgAAAAAAgASUNAAAAAAAAAkoaQAAAAAAABJQ0gAAAAAAACRQljoAAAAAAADQgCx1AIrJSBoAAAAAAIAElDQAAAAAAAAJJJ/u7JVXXoknn3wytt1229hwww3j1Vdfjcsuuyyqq6vjkEMOiZ133nm596+uro7q6uqCdXlpRVRUVBQzNgAAAAAAwDeSdCTN/fffH1tssUWcfPLJseWWW8b9998fAwYMiBkzZsTbb78du+66azz88MPLPUZVVVVUVlYWLOMvrFpJjwAAAAAAAODryfI8z1OdfLvttoudd945zj333Ljtttviv/7rv+Loo4+O8847LyIixowZE1OmTIkHHnigwWMYSQMRnQb8LHWEJD6ZdH7qCMksrUn20Z1cSdZyr5bXgh86ANCMpPsWIj2/zwHNXevk8zY1Tx0Pvjl1hOTmTTgkdYSiSTqS5qWXXooRI0ZERMQBBxwQ//znP2O//far3X7wwQfHtGnTlnuMioqK6NChQ8GioAEAAAAAAFZ1SUuaiIjs//8zkpKSkmjdunVUVlbWbmvfvn18+umnqaIBAAAAAAAUTdKSplevXjF9+vTa25MnT4611lqr9vY777wT3bt3TxENAAAAAACgqJLOEnj00UfH0qVLa29vsskmBdvvu+++2HnnnVd2LAAAAAAAgKJLWtL85Cc/We72889vuRcFBwAAAACAZZcMoXlKfk0aAAAAAACAlkhJAwAAAAAAkICSBgAAAAAAIAElDQAAAAAAQAJlqQMAAAAAAAD1y7IsdQSKyEgaAAAAAACABJQ0AAAAAAAACShpAAAAAAAAElDSAAAAAAAAJKCkAQAAAAAASKAsdQAAAAAAAKB+WZaljkARGUkDAAAAAACQgJIGAAAAAAAgASUNAAAAAABAAkoaAAAAAACABMpSBwAAAAAAABqQpQ5AMRlJAwAAAAAAkICSBgAAAAAAIAElDQAAAAAAQAJKGgAAAAAAgATKUgcAAAAAAADql2VZ6ggUkZE0AAAAAAAACRhJQ7Ox8IulqSMkM/dv56eOkMTA8X9LHSGZB0/snzpCMllp6gTpZOEvZ6AlWLy0JnWEZJYszVNHSKairIX+/VwL/l9bSQv+i9jPFi1JHSGZ9m18DUPL8cWSlvs7TVlJy/2Mb9H/c4evqYX+SwAAAAAAACAtJQ0AAAAAAEACxtkCAAAAAMAqKmvB06S2BEbSAAAAAAAAJKCkAQAAAAAASEBJAwAAAAAAkICSBgAAAAAAIIGy1AEAAAAAAID6ZVmWOgJFZCQNAAAAAABAAkoaAAAAAACABJQ0AAAAAAAACShpAAAAAAAAEihLHQAAAAAAAGhAljoAxWQkDQAAAAAAQAJKGgAAAAAAgASUNAAAAAAAAAkoaQAAAAAAABJQ0gAAAAAAwCoqy7IWvzTFpEmTYsiQIdGjR4/Isizuvvvugu0jRoyoc/zdd9+9YJ+5c+fGwQcfHB06dIiOHTvGyJEj47PPPivYZ9q0adG/f/9o3bp1rLnmmjFu3Liv9foqaQAAAAAAgGZhwYIFsfnmm8dVV13V4D677757zJo1q3a59dZbC7YffPDB8dJLL8WDDz4Yf/7zn2PSpEkxatSo2u3z58+PXXfdNXr27BlTpkyJ8ePHx9ixY+O6665rct6yJt8DAAAAAABgFTR48OAYPHjwcvepqKiIbt261bvtlVdeifvvvz+eeeaZ2HrrrSMi4oorrog99tgjLrrooujRo0dMmDAhvvjii7j++uujvLw8Nt5445g6dWpcfPHFBWVOYxhJAwAAAAAArLKqq6tj/vz5BUt1dfXXPt4jjzwSXbp0iQ022CCOPvro+Pjjj2u3TZ48OTp27Fhb0ERE7LLLLlFSUhJPPfVU7T4DBgyI8vLy2n122223eO211+KTTz5pUhYlDQAAAAAAsMqqqqqKysrKgqWqquprHWv33XeP3/72t/HQQw/FhRdeGH/7299i8ODBsXTp0oiImD17dnTp0qXgPmVlZdG5c+eYPXt27T5du3Yt2GfZ7WX7NJbpzgAAAAAAYBWVZVnqCMmNGTMmRo8eXbCuoqLiax1r2LBhtf+96aabxmabbRbrrLNOPPLIIzFo0KBvlPPrMJIGAAAAAABYZVVUVESHDh0Klq9b0vy7tddeO1ZfffWYMWNGRER069YtPvjgg4J9lixZEnPnzq29jk23bt1izpw5Bfssu93QtW4aoqQBAAAAAABapPfeey8+/vjj6N69e0REbLvttjFv3ryYMmVK7T4PP/xw1NTURL9+/Wr3mTRpUixevLh2nwcffDA22GCD6NSpU5POr6QBAAAAAACahc8++yymTp0aU6dOjYiImTNnxtSpU+Odd96Jzz77LE455ZR48skn46233oqHHnoo9t5771h33XVjt912i4iIPn36xO677x5HHnlkPP300/H444/HscceG8OGDYsePXpERMRBBx0U5eXlMXLkyHjppZfi9ttvj8suu6zOlGyNoaQBAAAAAACahWeffTa23HLL2HLLLSMiYvTo0bHlllvGGWecEaWlpTFt2rTYa6+9Yv3114+RI0dG375949FHHy2YPm3ChAmx4YYbxqBBg2KPPfaIHXbYIa677rra7ZWVlfHAAw/EzJkzo2/fvnHSSSfFGWecEaNGjWpy3rJv/pBXrDzPXQgJAAAAAAAifF/eRDvuuGPked7g9v/7v//7ymN07tw5brnlluXus9lmm8Wjjz7a5Hz/bpUbSVNRURGvvPJKo/evrq6O+fPnFyzV1dVFTAgAAAAAAPDNJRtJ09DcbEuXLo0LLrggVltttYiIuPjii5d7nKqqqjjrrLMK1p3+8zPjf84Yu0JyAgAAAAAAFEOykubSSy+NzTffPDp27FiwPs/zeOWVV6Jt27aNGsY1ZsyYOoVPXlrRwN4AAAAAAACrhmQlzfnnnx/XXXdd/OIXv4idd965dn2rVq3ixhtvjI022qhRx6moqCi4oE9ExKIlKzQqAAAAAADACpespPnv//7vGDRoUBxyyCExZMiQqKqqilatWqWKAwAAAAAAq5zGzDjFt1dJypNvs802MWXKlPjwww9j6623jhdffNEbDgAAAAAAaBGSjaRZpl27dnHTTTfFbbfdFrvsskssXbo0dSQAAAAAAICiS17SLDNs2LDYYYcdYsqUKdGzZ8/UcQAAAAAAAIpqlSlpIiK+973vxfe+973UMQAAAAAAAIpulSppAAAAAACAL3EZ92atJHUAAAAAAACAlkhJAwAAAAAAkICSBgAAAAAAIAElDQAAAAAAQAJKGgAAAAAAgATKUgcAAAAAAADql2VZ6ggUkZE0AAAAAAAACShpAAAAAAAAElDSAAAAAAAAJKCkAQAAAAAASKAsdQAAAAAAAKB+WZaljkARGUkDAAAAAACQgJIGAAAAAAAgASUNAAAAAABAAkoaAAAAAACABMpSBwAAAAAAAOqXZVnqCBSRkTQAAAAAAAAJKGkAAAAAAAASUNIAAAAAAAAkoKQBAAAAAABIoCx1AAAAAAAAoAFZ6gAUk5KGZqNVacsdGJbneeoISfz1xP6pIyTz07tfSh0hmSuHbpI6QjKff7E0dYRkvlNRmjpCEjU1LfPzPSJa9D9CPq9uuT/rFa1a8O9zqQMk8s+FS1JHSKZtC/1/W0REaUkL/pCnxWmh/1yPiIjyspb7/3WApvBpCQAAAAAAkICSBgAAAAAAIAElDQAAAAAAQAKuSQMAAAAAAKuoLHM9t+bMSBoAAAAAAIAElDQAAAAAAAAJKGkAAAAAAAASUNIAAAAAAAAkUJY6AAAAAAAAUL8sy1JHoIiMpAEAAAAAAEhASQMAAAAAAJCAkgYAAAAAACABJQ0AAAAAAEACZakDAAAAAAAA9cuyLHUEishIGgAAAAAAgASUNAAAAAAAAAkoaQAAAAAAABJQ0gAAAAAAACRQljoAAAAAAABQvyzLUkegiIykAQAAAAAASEBJAwAAAAAAkICSBgAAAAAAIAElDQAAAAAAQAJlqQMAAAAAAAANyFIHoJiMpAEAAAAAAEhASQMAAAAAAJCAkgYAAAAAACCBb/01aaqrq6O6urpgXV5aERUVFYkSAQAAAAAAfLVVaiTNggUL4oYbbojTTz89rrzyyvj444+/8j5VVVVRWVlZsIy/sGolpAUAAAAAgOLKsqzFL81Z0pE0G220UTz22GPRuXPnePfdd2PAgAHxySefxPrrrx9vvPFGnHPOOfHkk09G7969GzzGmDFjYvTo0QXr8lKjaAAAAAAAgFVb0pE0r776aixZsiQi/lW29OjRI95+++14+umn4+23347NNtssTj/99OUeo6KiIjp06FCwmOoMAAAAAABY1a0y051Nnjw5xo4dG5WVlRER0a5duzjrrLPiscceS5wMAAAAAABgxUte0iybT27RokXRvXv3gm3f/e5348MPP0wRCwAAAAAAoKiSXpMmImLQoEFRVlYW8+fPj9deey022WST2m1vv/12rLbaagnTAQAAAAAAFEfSkubMM88suN2uXbuC23/605+if//+KzMSAAAAAACsMpbNRkXztEqVNP9u/PjxKykJAAAAAADAypX8mjQAAAAAAAAtkZIGAAAAAAAgASUNAAAAAABAAkmvSQMAAAAAADQsy1InoJiMpAEAAAAAAEhASQMAAAAAAJCAkgYAAAAAACABJQ0AAAAAAEACZakDAAAAAAAA9cuyLHUEishIGgAAAAAAgASUNAAAAAAAAAkoaQAAAAAAABJQ0gAAAAAAACRQljoAAAAAAABQvyxLnYBiMpIGAAAAAAAgASUNAAAAAABAAkoaAAAAAACABJQ0AAAAAAAACZSlDgAAAAAAANQvy7LUESgiI2kAAAAAAAASUNIAAAAAAAAkoKQBAAAAAABIwDVpaDZKWnDlWNJC56XMUwdI6LJ9N04dIZk+J/85dYRknjpn99QRkvlORWnqCEmUlLTMz/eWrl3rlvsregv9lSYiWu7vc21atczP94iIVqUt9x8wWYv+TZ6WpoV+vAPQBC33X4AAAAAAALCKU/g2by33T3cAAAAAAAASUtIAAAAAAAAkoKQBAAAAAABIQEkDAAAAAACQQFnqAAAAAAAAQP1KSrLUESgiI2kAAAAAAAASUNIAAAAAAAAkoKQBAAAAAABIQEkDAAAAAACQQFnqAAAAAAAAQP2yLHUCislIGgAAAAAAgASUNAAAAAAAAAkoaQAAAAAAABJQ0gAAAAAAACRQljoAAAAAAABQvyzLUkegiIykAQAAAAAASEBJAwAAAAAAkICSBgAAAAAAIAElDQAAAAAAQAJlqQMAAAAAAAD1y7LUCSgmI2kAAAAAAAASUNIAAAAAAAAkoKQBAAAAAABIQEkDAAAAAACQQFnqAAAAAAAAQP2yLEsdgSIykgYAAAAAACABJQ0AAAAAAEACSUua5557LmbOnFl7+3e/+11sv/32seaaa8YOO+wQt91221ceo7q6OubPn1+wVFdXFzM2AAAAAADAN5a0pDnssMPijTfeiIiIX//613HUUUfF1ltvHaeffnpss802ceSRR8b111+/3GNUVVVFZWVlwTL+wqqVER8AAAAAAOBrK0t58unTp8d6660XERFXX311XHbZZXHkkUfWbt9mm23ivPPOi8MPP7zBY4wZMyZGjx5dsC4vrShOYAAAAAAAgBUkaUnzne98Jz766KPo2bNn/OMf/4jvf//7Bdv79etXMB1afSoqKqKiorCUWbRkhUcFAAAAAICVLsuy1BEooqTTnQ0ePDiuueaaiIgYOHBg3HnnnQXbf//738e6666bIhoAAAAAAEBRJR1Jc+GFF8b2228fAwcOjK233jp+8YtfxCOPPBJ9+vSJ1157LZ588sn44x//mDIiAAAAAABAUSQdSdOjR494/vnnY9ttt437778/8jyPp59+Oh544IH43ve+F48//njsscceKSMCAAAAAAAURdKRNBERHTt2jAsuuCAuuOCC1FEAAAAAAABWmuQlDQAAAAAAUL8sS52AYko63RkAAAAAAEBLpaQBAAAAAABIQEkDAAAAAACQgJIGAAAAAAAggbLUAQAAAAAAgPplWZY6AkVkJA0AAAAAAEACShoAAAAAAIAElDQAAAAAAAAJKGkAAAAAAAASKEsdAAAAAAAAqF+WpU5AMRlJAwAAAAAAkICSBgAAAAAAIAElDQAAAAAAQAJKGgAAAAAAgATKUgcAAAAAAADql2VZ6ggUkZE0AAAAAAAACShpAAAAAAAAElDSAAAAAAAAJKCkAQAAAAAASKAsdQAAAAAAAKB+WZY6AcVkJA0AAAAAAEACRtIA31ot+Y8IFn6xNHWEZKZesEfqCMnc/Pw7qSMkc2S/3qkjsJItWZqnjpDM4qU1qSMk05L/QrC8tGX+/dzbH32eOkIyvdb4TuoIyXzegn+X7fidVqkjAACrmJb5LwEAAAAAAIDElDQAAAAAAAAJmO4MAAAAAABWUVlLnhe4BTCSBgAAAAAAIAElDQAAAAAAQAJKGgAAAAAAgASUNAAAAAAAAAmUpQ4AAAAAAADUL8tSJ6CYjKQBAAAAAABIQEkDAAAAAACQgJIGAAAAAAAgASUNAAAAAABAAmWpAwAAAAAAAPXLsix1BIrISBoAAAAAAIAElDQAAAAAAECzMGnSpBgyZEj06NEjsiyLu+++u3bb4sWL47TTTotNN9002rZtGz169IhDDz003n///YJj9OrVK7IsK1guuOCCgn2mTZsW/fv3j9atW8eaa64Z48aN+1p5lTQAAAAAAECzsGDBgth8883jqquuqrPt888/j+eeey5+/vOfx3PPPRd33XVXvPbaa7HXXnvV2ffss8+OWbNm1S7HHXdc7bb58+fHrrvuGj179owpU6bE+PHjY+zYsXHdddc1Oa9r0gAAAAAAAKus6urqqK6uLlhXUVERFRUVdfYdPHhwDB48uN7jVFZWxoMPPliw7sorr4zvf//78c4778Raa61Vu759+/bRrVu3eo8zYcKE+OKLL+L666+P8vLy2HjjjWPq1Klx8cUXx6hRo5r02IykAQAAAACAVVSWWaqqqqKysrJgqaqqWiHP76effhpZlkXHjh0L1l9wwQWx2mqrxZZbbhnjx4+PJUuW1G6bPHlyDBgwIMrLy2vX7bbbbvHaa6/FJ5980qTzG0kDAAAAAACsssaMGROjR48uWFffKJqmWrRoUZx22mlx4IEHRocOHWrXH3/88bHVVltF586d44knnogxY8bErFmz4uKLL46IiNmzZ0fv3r0LjtW1a9fabZ06dWp0BiUNAAAAAACwympoarNvYvHixXHAAQdEnudxzTXXFGz7ciG02WabRXl5eRx11FFRVVW1wnOY7gwAAAAAAGgxlhU0b7/9djz44IMFo2jq069fv1iyZEm89dZbERHRrVu3mDNnTsE+y243dB2bhihpAAAAAACAFmFZQTN9+vT461//GqutttpX3mfq1KlRUlISXbp0iYiIbbfdNiZNmhSLFy+u3efBBx+MDTbYoElTnUWY7gwAAAAAAGgmPvvss5gxY0bt7ZkzZ8bUqVOjc+fO0b1799hvv/3iueeeiz//+c+xdOnSmD17dkREdO7cOcrLy2Py5Mnx1FNPxU477RTt27ePyZMnx4knnhiHHHJIbQFz0EEHxVlnnRUjR46M0047LV588cW47LLL4pJLLmlyXiUNAAAAAACsorIsSx3hW+XZZ5+NnXbaqfb2suvLDB8+PMaOHRv33HNPRERsscUWBfebOHFi7LjjjlFRURG33XZbjB07Nqqrq6N3795x4oknFlynprKyMh544IE45phjom/fvrH66qvHGWecEaNGjWpyXiUNAAAAAADQLOy4446R53mD25e3LSJiq622iieffPIrz7PZZpvFo48+2uR8/841aQAAAAAAABJQ0gAAAAAAACSgpAEAAAAAAEgg6TVpjjvuuDjggAOif//+X/sY1dXVUV1dXbAuL62IioqKbxoPAAAAAACSyrLUCSimpCNprrrqqthxxx1j/fXXjwsvvDBmz57d5GNUVVVFZWVlwTL+wqoipAUAAAAAAFhxkk939sADD8Qee+wRF110Uay11lqx9957x5///Oeoqalp1P3HjBkTn376acFyymljipwaAAAAAADgm0le0my66aZx6aWXxvvvvx8333xzVFdXxz777BNrrrlmnH766TFjxozl3r+ioiI6dOhQsJjqDAAAAAAAWNUlL2mWadWqVRxwwAFx//33x5tvvhlHHnlkTJgwITbYYIPU0QAAAAAAAFa4Vaak+bK11lorxo4dGzNnzoz7778/dRwAAAAAAEgiy7IWvzRnSUuanj17RmlpaYPbsyyL//zP/1yJiQAAAAAAAFaOspQnnzlzZsrTAwAAAAAAJLNKTncGAAAAAADQ3ClpAAAAAAAAEkg63RkAAAAAANCwLEudgGIykgYAAAAAACABJQ0AAAAAAEACShoAAAAAAIAElDQAAAAAAAAJlKUOAAAAAAAA1C/LstQRKCIjaQAAAAAAABJQ0gAAAAAAACSgpAEAAAAAAEhASQMAAAAAAJBAWeoAAAAAAABA/bIsSx2BIjKSBgAAAAAAIAElDQAAAAAAQAJKGgAAAAAAgASUNAAAAAAAAAmUpQ4AAAAAAADUL8tSJ6CYjKQBAAAAAABIQEkDAAAAAACQgJIGAAAAAAAgASUNAAAAAABAAmWpAwAAAAAAAPXLsix1BIpISUOzkYUPq5ampKTlvuYd2rRKHYEEjuzXO3WEZDr1+2nqCEl88tRlqSMkU1bacj/jy0pLU0eAlWb97u1SRyCB8jKTegAALOM3IwAAAAAAgASUNAAAAAAAAAkoaQAAAAAAABJwTRoAAAAAAFhFZS33kp0tgpE0AAAAAAAACShpAAAAAAAAElDSAAAAAAAAJKCkAQAAAAAASKAsdQAAAAAAAKB+WZaljkARGUkDAAAAAACQgJIGAAAAAAAgASUNAAAAAABAAkoaAAAAAACABMpSBwAAAAAAAOqXZakTUExG0gAAAAAAACSgpAEAAAAAAEhASQMAAAAAAJCAkgYAAAAAACABJQ0AAAAAAEACZakDAAAAAAAA9SvJstQRKCIjaQAAAAAAABJQ0gAAAAAAACSgpAEAAAAAAEhASQMAAAAAAJBAWeoAAAAAAABA/bIsdQKKyUgaAAAAAACABJQ0AAAAAAAACXzrpzurrq6O6urqgnV5aUVUVFQkSgQAAAAAAPDVko+kufLKK+PQQw+N2267LSIifve738VGG20UG264YfzsZz+LJUuWLPf+VVVVUVlZWbCMv7BqZUQHAAAAAAD42pKOpDn33HNj3Lhxseuuu8aJJ54Yb7/9dowfPz5OPPHEKCkpiUsuuSRatWoVZ511VoPHGDNmTIwePbpgXV5qFA0AAAAAAN9+WZaljkARJS1pbrzxxrjxxhtj6NCh8fe//z369u0bN910Uxx88MEREbHhhhvGqaeeutySpqKi7tRmi5Y/+AYAAAAAACC5pNOdvf/++7H11ltHRMTmm28eJSUlscUWW9Ru32qrreL9999PlA4AAAAAAKB4kpY03bp1i5dffjkiIqZPnx5Lly6tvR0R8dJLL0WXLl1SxQMAAAAAACiapNOdHXzwwXHooYfG3nvvHQ899FCceuqpcfLJJ8fHH38cWZbFeeedF/vtt1/KiAAAAAAAAEWRtKQ566yzok2bNjF58uQ48sgj47//+79j8803j1NPPTU+//zzGDJkSJxzzjkpIwIAAAAAQDIlWeoEFFOW53meOsSKtmhJ6gSk0PzeyY2X+aAGmrlO/X6aOkISnzx1WeoIAAAAjdY66ZCA5mvwNU+ljpDcfUf3Sx2haJJekwYAAAAAAKClUtIAAAAAAAAkoKQBAAAAAABIwCyBAAAAAACwispckLpZM5IGAAAAAAAgASUNAAAAAABAAkoaAAAAAACABJQ0AAAAAAAACZSlDgAAAAAAANQvy1InoJiMpAEAAAAAAEhASQMAAAAAAJCAkgYAAAAAACABJQ0AAAAAAEACZakDAAAAAAAA9csiSx2BIjKSBgAAAAAAIAElDQAAAAAAQAJKGgAAAAAAgASUNAAAAAAAAAmUpQ4AAAAAAADUryRLnYBiMpIGAAAAAAAgASUNAAAAAABAAkoaAAAAAACABFyThmYjMzcjLUhNnqeOkEyJH/YW6ZOnLksdIYlOO5yWOkIynzx2YeoIyfiMBwAAaDmUNAAAAAAAsIrK/DFTs2a6MwAAAAAAgASUNAAAAAAAAAkoaQAAAAAAABJQ0gAAAAAAACRQljoAAAAAAABQvyxLnYBiMpIGAAAAAAAgASUNAAAAAABAAkoaAAAAAACABJQ0AAAAAAAACShpAAAAAAAAEihLHQAAAAAAAKhfSZaljkARGUkDAAAAAACQgJIGAAAAAAAgASUNAAAAAABAAkoaAAAAAACABMpSBwAAAAAAAOqXZakTUExG0gAAAAAAACSgpAEAAAAAAEhASQMAAAAAAJCAkgYAAAAAACCBstQBAAAAAACA+mVZljoCRWQkDQAAAAAAQAJKGgAAAAAAgASUNAAAAAAAAAkoaQAAAAAAABIoSx0AAAAAAACoX5alTkAxJS1pZs2aFddcc0089thjMWvWrCgpKYm111479tlnnxgxYkSUlpamjAcAAAAAAFA0yaY7e/bZZ6NPnz7xl7/8JRYvXhzTp0+Pvn37Rtu2bePkk0+OAQMGxD//+c+vPE51dXXMnz+/YKmurl4JjwAAAAAAAODrS1bSnHDCCXHiiSfGs88+G48++mjceOON8frrr8dtt90Wb775Znz++efxP//zP195nKqqqqisrCxYxl9YtRIeAQAAAAAAwNeX5Xmepzjxd77znXjxxRdj7bXXjoiImpqaaN26dbz77rvRtWvXePDBB2PEiBHxj3/8Y7nHqa6urjNyJi+tiIqKiqJlB0itJs1H9yqhxESstCCddjgtdYRkPnnswtQRkvEZDwDAt1VrV0Aviv1vfC51hOTuGLFV6ghFk+zHpkuXLjFr1qzakmbOnDmxZMmS6NChQ0RErLfeejF37tyvPE5FRd1CZtGSFZ8XAAAAAABWNn/M1Lwlm+5sn332iZ/85Cdx//33x8SJE+Pggw+OgQMHRps2bSIi4rXXXovvfve7qeIBAAAAAAAUVbKRNOeee27MmjUrhgwZEkuXLo1tt902br755trtWZZFVZVrywAAAAAAAM1TspKmXbt2cfvtt8eiRYtiyZIl0a5du4Ltu+66a6JkAAAAAAAAxZf8Uk6tW7dOHQEAAAAAAGClS17SAAAAAAAA9ctSB6CoSlIHAAAAAAAAaImUNAAAAAAAAAkoaQAAAAAAABJQ0gAAAAAAACRQljoAAAAAAABQvyzLUkegiIykAQAAAAAASEBJAwAAAAAAkICSBgAAAAAAIAElDQAAAAAAQAJlqQMAAAAAAAD1K8lSJ6CYjKQBAAAAAABIQEkDAAAAAACQgJIGAAAAAAAgASUNAAAAAABAAmWpAwAAAAAAAPXLsix1BIrISBoAAAAAAIAElDQAAAAAAAAJKGkAAAAAAAASUNIAAAAAAAAkUJY6AAAAAAAAUL8sS52AYjKSBgAAAAAAIAEjaYBvrTxPnSCdmprUCdLJWvCfF1QvWZo6QjKtW5WmjpDEJ49dmDpCMusc98fUEZJ544p9U0dIZmlNC/6fOy1OS/6L2AWLWu7vNO3b+BoGWoKW/H0F0HQt+KsuAAAAAACAdJQ0AAAAAAAACRhnCwAAAAAAq6isJc+T2gIYSQMAAAAAAJCAkgYAAAAAACABJQ0AAAAAAEACShoAAAAAAIAElDQAAAAAAAAJlKUOAAAAAAAA1K8kS52AYjKSBgAAAAAAIAElDQAAAAAA0CxMmjQphgwZEj169Igsy+Luu+8u2J7neZxxxhnRvXv3aNOmTeyyyy4xffr0gn3mzp0bBx98cHTo0CE6duwYI0eOjM8++6xgn2nTpkX//v2jdevWseaaa8a4ceO+Vl4lDQAAAAAA0CwsWLAgNt9887jqqqvq3T5u3Li4/PLL49prr42nnnoq2rZtG7vttlssWrSodp+DDz44XnrppXjwwQfjz3/+c0yaNClGjRpVu33+/Pmx6667Rs+ePWPKlCkxfvz4GDt2bFx33XVNzuuaNAAAAAAAQLMwePDgGDx4cL3b8jyPSy+9NP7nf/4n9t5774iI+O1vfxtdu3aNu+++O4YNGxavvPJK3H///fHMM8/E1ltvHRERV1xxReyxxx5x0UUXRY8ePWLChAnxxRdfxPXXXx/l5eWx8cYbx9SpU+Piiy8uKHMaw0gaAAAAAABYRWVZ1uKX6urqmD9/fsFSXV3d5Ody5syZMXv27Nhll11q11VWVka/fv1i8uTJERExefLk6NixY21BExGxyy67RElJSTz11FO1+wwYMCDKy8tr99ltt93itddei08++aRJmZQ0AAAAAADAKquqqioqKysLlqqqqiYfZ/bs2RER0bVr14L1Xbt2rd02e/bs6NKlS8H2srKy6Ny5c8E+9R3jy+doLNOdAQAAAAAAq6wxY8bE6NGjC9ZVVFQkSrNiKWkAAAAAAIBVVkVFxQopZbp16xYREXPmzInu3bvXrp8zZ05sscUWtft88MEHBfdbsmRJzJ07t/b+3bp1izlz5hTss+z2sn0ay3RnAAAAAABAs9e7d+/o1q1bPPTQQ7Xr5s+fH0899VRsu+22ERGx7bbbxrx582LKlCm1+zz88MNRU1MT/fr1q91n0qRJsXjx4tp9Hnzwwdhggw2iU6dOTcqkpAEAAAAAgFVUZmmSzz77LKZOnRpTp06NiIiZM2fG1KlT45133oksy+KEE06Ic889N+6555544YUX4tBDD40ePXrEPvvsExERffr0id133z2OPPLIePrpp+Pxxx+PY489NoYNGxY9evSIiIiDDjooysvLY+TIkfHSSy/F7bffHpdddlmdKdkaw3RnAAAAAABAs/Dss8/GTjvtVHt7WXEyfPjwuPHGG+PUU0+NBQsWxKhRo2LevHmxww47xP333x+tW7euvc+ECRPi2GOPjUGDBkVJSUn88Ic/jMsvv7x2e2VlZTzwwANxzDHHRN++fWP11VePM844I0aNGtXkvFme5/k3eLyrpEVLUicAVobm9+nVeEtrWu6DLy1p6t9PNB/VS5amjpBM61alqSOwkq1z3B9TR0jmjSv2TR0hmZb8/zdanqzl/koTCxa13N9p2rfxt7LQErTk7yvatEqdoHk6/LYXUkdI7vphm6aOUDSmOwMAAAAAAEhASQMAAAAAAJCAcbYAAAAAALCKKmnJ86S2AEbSAAAAAAAAJJB8JM0XX3wRd999d0yePDlmz54dERHdunWL7bbbLvbee+8oLy9PnBAAAAAAAGDFSzqSZsaMGdGnT58YPnx4PP/881FTUxM1NTXx/PPPx6GHHhobb7xxzJgxI2VEAAAAAACAokg6kuboo4+OTTfdNJ5//vno0KFDwbb58+fHoYceGsccc0z83//9X6KEAAAAAAAAxZG0pHn88cfj6aefrlPQRER06NAhzjnnnOjXr99yj1FdXR3V1dUF6/LSiqioqFihWQEAAAAAYGXLstQJKKak05117Ngx3nrrrQa3v/XWW9GxY8flHqOqqioqKysLlvEXVq3YoAAAAAAAACtY0pE0RxxxRBx66KHx85//PAYNGhRdu3aNiIg5c+bEQw89FOeee24cd9xxyz3GmDFjYvTo0QXr8lKjaAAAAAAAgFVb0pLm7LPPjrZt28b48ePjpJNOiuz/H7eV53l069YtTjvttDj11FOXe4yKirpTmy1aUrTIAAAAAAAAK0TSkiYi4rTTTovTTjstZs6cGbNnz46IiG7dukXv3r0TJwMAAAAAACie5CXNMr17965TzLz77rtx5plnxvXXX58oFQAAAAAApLNsBiqap5LUAZZn7ty5cdNNN6WOAQAAAAAAsMIlHUlzzz33LHf7m2++uZKSAAAAAAAArFxJS5p99tknsiyLPM8b3MdQLgAAAAAAoDlKOt1Z9+7d46677oqampp6l+eeey5lPAAAAAAAgKJJWtL07ds3pkyZ0uD2rxplAwAAAAAAzVmWWZqzpNOdnXLKKbFgwYIGt6+77roxceLElZgIAAAAAABg5WhUSXPPPfc0+oB77bVXo/ft37//cre3bds2Bg4c2OjjAQAAAAAAfFs0qqTZZ599GnWwLMti6dKl3yQPAAAAAABAi9CokqampqbYOQAAAAAAAFqUpNekAQAAAAAAGlaSZakjUERfq6RZsGBB/O1vf4t33nknvvjii4Jtxx9//AoJBgAAAAAA0Jw1uaR5/vnnY4899ojPP/88FixYEJ07d46PPvoovvOd70SXLl2UNAAAAAAAAI1Q0tQ7nHjiiTFkyJD45JNPok2bNvHkk0/G22+/HX379o2LLrqoGBkBAAAAAACanSaXNFOnTo2TTjopSkpKorS0NKqrq2PNNdeMcePGxc9+9rNiZAQAAAAAAGh2mjzdWatWraKk5F/dTpcuXeKdd96JPn36RGVlZbz77rsrPCAAAAAAALRUWZY6AcXU5JJmyy23jGeeeSbWW2+9GDhwYJxxxhnx0Ucfxe9+97vYZJNNipERAAAAAACg2WnydGfnn39+dO/ePSIizjvvvOjUqVMcffTR8eGHH8Z11123wgMCAAAAAAA0R00eSbP11lvX/neXLl3i/vvvX6GBAAAAAAAAWoImj6QBAAAAAADgm2vySJrevXtHtpwrFb355pvfKBAAAAAAAPAvy/s+nm+/Jpc0J5xwQsHtxYsXx/PPPx/3339/nHLKKSsqFwAAAAAAQLPW5JLmpz/9ab3rr7rqqnj22We/cSAAAAAAAICWYIVdk2bw4MHxhz/8YUUdDgAAAAAAoFlbYSXNnXfeGZ07d15RhwMAAAAAAGjWmjzd2ZZbbllwoaI8z2P27Nnx4YcfxtVXX71CwwEAAAAAADRXTS5p9t5774KSpqSkJNZYY43YcccdY8MNN1yh4aApamry1BGSKSnJvnqnZmhJTU3qCMks/GJp6gjJtCkvTR0hmbzlfsy1WC35NX/jin1TR0hmv988kzpCMjcfulXqCMmUl66wSQ6+VT5duDh1hGTaVTT5n+PNRkv+fQ5akqUt+Hua0hb6PQ3F0zJ/U2w5mvxb4dixY4sQAwAAAAAAoGVpcglXWloaH3zwQZ31H3/8cZSW+msYAAAAAACAxmhySZM3MO9GdXV1lJeXf+NAAAAAAAAALUGjpzu7/PLLIyIiy7L49a9/He3atavdtnTp0pg0aZJr0gAAAAAAADRSo0uaSy65JCL+NZLm2muvLZjarLy8PHr16hXXXnvtik8IAAAAAAAtVJZlqSNQRI0uaWbOnBkRETvttFPcdddd0alTp6KFAgAAAAAAaO4aXdIsM3HixGLkAAAAAAAAaFFKmnqHH/7wh3HhhRfWWT9u3LjYf//9V0goAAAAAACA5q7JJc2kSZNijz32qLN+8ODBMWnSpBUSCgAAAAAAoLlr8nRnn332WZSXl9dZ36pVq5g/f/4KCQUAAAAAAESUZKkTUExNHkmz6aabxu23315n/W233RYbbbTRCgkFAAAAAADQ3DV5JM3Pf/7zGDp0aLzxxhux8847R0TEQw89FLfcckvceeedKzwgAAAAAABAc9TkkmbIkCFx9913x/nnnx933nlntGnTJjbffPN4+OGHo3PnzsXICAAAAAAA0Ow0uaSJiNhzzz1jzz33jIiI+fPnx6233honn3xyTJkyJZYuXbpCAwIAAAAAADRHX6ukiYiYNGlS/OY3v4k//OEP0aNHjxg6dGhcddVVKzIbAAAAAAC0aCVZ6gQUU5NKmtmzZ8eNN94Yv/nNb2L+/PlxwAEHRHV1ddx9992x0UYbFSsjAAAAAABAs1PS2B2HDBkSG2ywQUybNi0uvfTSeP/99+OKK64oZjYAAAAAAIBmq9Ejae677744/vjj4+ijj4711luvmJkAAAAAAACavUaPpHnsscfin//8Z/Tt2zf69esXV155ZXz00UfFzAYAAAAAANBsNbqk+Y//+I/41a9+FbNmzYqjjjoqbrvttujRo0fU1NTEgw8+GP/85z+LmRMAAAAAAFqcLMta/NKcNbqkWaZt27Zx+OGHx2OPPRYvvPBCnHTSSXHBBRdEly5dYq+99ipGRgAAAAAAgGanySXNl22wwQYxbty4eO+99+LWW29dUZkAAAAAAACavW9U0ixTWloa++yzT9xzzz0r4nAAAAAAAADN3gopaQAAAAAAAGiaVbqkmTNnTpx99tmpYwAAAAAAQBIlmaU5W6VLmtmzZ8dZZ52VOgYAAAAAAMAKV5by5NOmTVvu9tdee20lJQEAAAAAAFi5kpY0W2yxRWRZFnme19m2bH2WLX8sU3V1dVRXVxesy0sroqKiYoVmBQAAAAAAWJGSTnfWuXPn+NWvfhUzZ86ss7z55pvx5z//+SuPUVVVFZWVlQXL+AurVkJ6AAAAAACAry/pSJq+ffvG+++/Hz179qx3+7x58+odZfNlY8aMidGjRxesy0uNogEAAAAA4NvvKyab4lsuaUnzk5/8JBYsWNDg9rXWWituuOGG5R6joqLu1GaLlqyQeAAAAAAAAEWTtKTZd999l7u9U6dOMXz48JWUBgAAAAAAYOVJek2ar/Luu+/G4YcfnjoGAAAAAADACrdKlzRz586Nm266KXUMAAAAAACAFS7pdGf33HPPcre/+eabKykJAAAAAACsekqyLHUEiihpSbPPPvtElmWR53mD+2TegAAAAAAAQDOUdLqz7t27x1133RU1NTX1Ls8991zKeAAAAAAAAEWTtKTp27dvTJkypcHtXzXKBgAAAAAA4Nsq6XRnp5xySixYsKDB7euuu25MnDhxJSYCAAAAAABYOZKWNP3791/u9rZt28bAgQNXUhoAAAAAAFi1JJ0Oi6Lz+gIAAAD8f+3de5xVdb0//veaGWaAkYuAMIMKKpSAoiamkSKaBl6OiZqZmaKYnRRLpENGXjA9OWJfu5gdyTLTTLNOaGQdDQwp8xrE8XpQwUTlZl5AQIbLrN8f5+ecJoeBcvb+4N7Pp4/1eDBr7dnz+rj37FmzX/P5LACABJQ0AAAAAAAACShpAAAAAAAAElDSAAAAAAAAJFCVOgAAAAAAANC6LEudgEIykwYAAAAAACABJQ0AAAAAAEACShoAAAAAAIAElDQAAAAAAAAJVKUOAAAAAAAAtK4iy1JHoIDMpAEAAAAAAEhASQMAAAAAAJCAkgYAAAAAACABJQ0AAAAAAEACShoAAAAAAIAEqlIHAAAAAAAAWpdlqRNQSGbSAAAAAAAAJKCkAQAAAAAASMByZ5SMDZvy1BGSqako0zmP5fuQR1VF+Xbs5Tz2iKbUAaBoNpbxz/WbP71v6gjJfPeB51NHSOaMYf1SR0hiY1P5fq+v21i+P9drqsr3fK5cn/IV1ukpS+X8sOdl+r0O/HPK98wIAAAAAAAgITNpAAAAAABgG1Wui+iUCzNpAAAAAAAAElDSAAAAAAAAJKCkAQAAAAAASEBJAwAAAAAAkEBV6gAAAAAAAEDrKrIsdQQKyEwaAAAAAACABJQ0AAAAAAAACShpAAAAAAAAElDSAAAAAAAAJFCVOgAAAAAAANC6LEudgEIykwYAAAAAACABJQ0AAAAAAEACShoAAAAAAIAElDQAAAAAAAAJVKUOAAAAAAAAtK4iS52AQjKTBgAAAAAAIAElDQAAAAAAQAJKGgAAAAAAgASUNAAAAAAAAAlUpQ4AAAAAAAC0LossdQQKyEwaAAAAAACABJQ0AAAAAAAACWwTJc1LL70Uq1evfsf+DRs2xO9///sEiQAAAAAAAAoraUmzdOnS2H///aN///7RvXv3OO2001qUNa+99loceuihCRMCAAAAAAAURtKS5stf/nJUVFTEww8/HHfffXc89dRTceihh8brr7/efJs8zxMmBAAAAACAdCoyWymrSvnFZ82aFXfccUfst99+ERHxxz/+MU488cT4yEc+Evfee29ERGRZ249AY2NjNDY2ttiXV9ZETU1NYUIDAAAAAAC0g6QzaVauXBnbb79988c1NTUxffr02GWXXeLQQw+NFStWbPE+Ghoaolu3bi22r09tKGRsAAAAAACAdy1pSbPbbrvFY4891mJfVVVV/PznP4/ddtst/uVf/mWL9zF58uRYuXJli23SBZMLFRkAAAAAAKBdJC1pjjzyyLj++uvfsf/tomafffbZ4jVpampqomvXri02S50BAAAAAADbuqTXpPna174Wa9eubfVYVVVV/OIXv4iXX365yKkAAAAAAGDbUNH2Zdt5j0s6k6aqqiq6du262eNLly6Nr371q0VMBAAAAAAAUBxJS5otee211+Kmm25KHQMAAAAAAKDdJV3ubMaMGW0eX7RoUZGSAAAAAAAAFFfSkmbMmDGRZVnkeb7Z22SZBfcAAAAAAIDSk3S5s/r6+pg+fXo0NTW1us2bNy9lPAAAAAAASCrLsrLfSlnSkmbYsGExd+7czR7f0iwbAAAAAACA96qky51NmjQp1qxZs9njAwcOjNmzZxcxEQAAAAAAQHEkLWlGjBjR5vHa2toYOXJkkdIAAAAAAAAUT9LlzgAAAAAAAMpV0pk0AAAAAADA5lVkqRNQSGbSAAAAAAAAJKCkAQAAAAAASEBJAwAAAAAAkICSBgAAAAAAIAElDQAAAAAAQAJVqQMAAAAAAACty7LUCSgkM2kAAAAAAAASUNIAAAAAAAAkoKQBAAAAAABIQEkDAAAAAACQQFXqAAAAAAAAQOsqsix1BArITBoAAAAAAIAElDQAAAAAAAAJKGkAAAAAAAASUNIAAAAAAAAkUJU6AAAAAAAA0LqKLHUCCklJQ8morjIxrNxUlvNPqHIeehmPvaKcB1+myvkhL+exd+xQvuc0nxy6Y+oIyZx0wyOpIyRxz+cPTB0hmQ2b8tQRktmwqSl1hGQ6VHobptzk5fut7vcXgK1Uvr8BAgAAAAAAJKSkAQAAAAAASEBJAwAAAAAAkIDFUAEAAAAAYBvlEk+lzUwaAAAAAACABJQ0AAAAAAAACShpAAAAAACAkrDLLrtElmXv2MaPHx8REYcccsg7jn3uc59rcR+LFy+Oo48+Ojp37hy9e/eOSZMmxcaNGwuS1zVpAAAAAACAkvDoo4/Gpk2bmj9+4okn4qMf/WiceOKJzfvOOuusuOyyy5o/7ty5c/O/N23aFEcffXTU1dXFAw88EEuXLo3TTjstOnToEFdccUW751XSAAAAAADANqoistQR3lN22GGHFh9feeWVMWDAgBg5cmTzvs6dO0ddXV2rn//b3/42nnrqqZg1a1b06dMn9tlnn7j88svjggsuiEsvvTSqq6vbNa/lzgAAAAAAgG1WY2NjrFq1qsXW2Ni4xc9bv3593HLLLTFu3LjIsv8ru37yk59Er169Ys8994zJkyfH2rVrm489+OCDMXTo0OjTp0/zvtGjR8eqVaviySefbN+BhZIGAAAAAADYhjU0NES3bt1abA0NDVv8vDvvvDPeeOONOP3005v3fepTn4pbbrklZs+eHZMnT44f//jH8elPf7r5+LJly1oUNBHR/PGyZcvaZ0B/w3JnAAAAAADANmvy5MkxceLEFvtqamq2+Hk33HBDHHnkkdG3b9/mfZ/97Geb/z106NCor6+Pww47LBYuXBgDBgxov9BbSUkDAAAAAABss2pqaraqlPlbL7zwQsyaNSumT5/e5u0OOOCAiIh47rnnYsCAAVFXVxePPPJIi9ssX748ImKz17F5Nyx3BgAAAAAA26gss/0zbrzxxujdu3ccffTRbd5u/vz5ERFRX18fERHDhw+Pxx9/PFasWNF8m5kzZ0bXrl1jyJAh/1yYNphJAwAAAAAAlIympqa48cYbY+zYsVFV9X81yMKFC+PWW2+No446Knr27BmPPfZYnH/++XHwwQfHXnvtFRERo0aNiiFDhsSpp54aV111VSxbtiwuuuiiGD9+/D88m2drKGkAAAAAAICSMWvWrFi8eHGMGzeuxf7q6uqYNWtWfOtb34o1a9bEzjvvHCeccEJcdNFFzbeprKyMu+66K84+++wYPnx41NbWxtixY+Oyyy4rSFYlDQAAAAAAUDJGjRoVeZ6/Y//OO+8cc+bM2eLn9+/fP37zm98UIto7uCYNAAAAAABAAmbSAAAAAADANqoiS52AQjKTBgAAAAAAIAElDQAAAAAAQAJKGgAAAAAAgASUNAAAAAAAAAlUpQ4AAAAAAAC0riLLUkeggMykAQAAAAAASCD5TJpXX301Hnvssdh7772jR48e8de//jVuuOGGaGxsjBNPPDEGDx6cOiIAAAAAAEC7S1rSPPLIIzFq1KhYtWpVdO/ePWbOnBknnnhiVFVVRVNTU1x55ZVx//33x7777psyJgAAAAAAQLtLutzZhRdeGCeeeGKsXLkyvvKVr8SYMWPisMMOi2eeeSaee+65+OQnPxmXX355yogAAAAAAAAFkbSkmTt3bkycODG6dOkS5513XixZsiTOOuus5uPnnntuPProo23eR2NjY6xatarF1tjYWOjoAAAAAABQcFlmK2VJS5r169dHp06dIiKiQ4cO0blz5+jVq1fz8V69esWrr77a5n00NDREt27dWmxfn9pQ0NwAAAAAAADvVtJr0uy8886xaNGi2GWXXSIi4qc//WnU19c3H1+6dGmL0qY1kydPjokTJ7bYl1fWtHtWAAAAAACA9pS0pPnkJz8ZK1asaP746KOPbnF8xowZsf/++7d5HzU1NVFT07KUWbex/TICAAAAAAAUQtKSZsqUKW0ev/DCC6OysrJIaQAAAAAAAIon6TVptuTVV1+Ns88+O3UMAAAAAABIoiLLyn4rZdt0SfPaa6/FTTfdlDoGAAAAAABAu0u63NmMGTPaPL5o0aIiJQEAAAAAACiupCXNmDFjIsuyyPN8s7fJSnwqEwAAAAAAUJ6SLndWX18f06dPj6ampla3efPmpYwHAAAAAABQMElLmmHDhsXcuXM3e3xLs2wAAAAAAKCUZZmtlCVd7mzSpEmxZs2azR4fOHBgzJ49u4iJAAAAAAAAiiNpSTNixIg2j9fW1sbIkSOLlAYAAAAAAKB4ki53BgAAAAAAUK6UNAAAAAAAAAkoaQAAAAAAABJIek0aAAAAAABg88y0KG0eXwAAAAAAgASUNAAAAAAAAAkoaQAAAAAAABJQ0gAAAAAAACRQlToAAAAAAADQuizLUkeggMykAQAAAAAASEBJAwAAAAAAkICSBgAAAAAAIAElDQAAAAAAQAJVqQMAAAAAAACty1IHoKDMpAEAAAAAAEhASQMAAAAAAJCAkgYAAAAAACAB16ShZOR5njpCMllWpitTlumwIyLeatyUOkIyFTXl+8CvXLshdYRkemxXnTpCEmX8o62cX+JjTRm/xm/XsXx/PbnnCwemjpDEv/7ssdQRkrnmuD1TR0imY4fK1BGSKddf3cpZOT/mZX0uW8aPO/CPK9/fggAAAAAAYBtXofkraZY7AwAAAAAASEBJAwAAAAAAkICSBgAAAAAAIAElDQAAAAAAQAJVqQMAAAAAAACty1IHoKDMpAEAAAAAAEhASQMAAAAAAJCAkgYAAAAAACABJQ0AAAAAAEACVakDAAAAAAAArcuy1AkoJDNpAAAAAAAAElDSAAAAAAAAJKCkAQAAAAAASEBJAwAAAAAAkEBV6gAAAAAAAEDrsixLHYECMpMGAAAAAAAgASUNAAAAAABAAkoaAAAAAACABJQ0AAAAAAAACVSlDgAAAAAAALTOTIvS5vEFAAAAAABIQEkDAAAAAACQgJIGAAAAAAAgASUNAAAAAABAAttkSbPbbrvFs88+mzoGAAAAAAAklWVZ2W+lrCrlF7/mmmta3b948eK48cYbo66uLiIivvCFLxQzFgAAAAAAQMElLWkmTJgQO+64Y1RVtYzR1NQUN998c3To0CGyLFPSAAAAAAAAJSdpSfPZz342Hn744bj11ltj8ODBzfs7dOgQv/3tb2PIkCFbvI/GxsZobGxssS+vrImampp2zwsAAAAAANBekl6TZtq0aXHJJZfE6NGj49prr/2n7qOhoSG6devWYvv61IZ2TgoAAAAAANC+kpY0ERHHHXdcPPjgg3HHHXfEkUceGcuWLfuHPn/y5MmxcuXKFtukCyYXKC0AAAAAABRPZitpyUuaiIgdd9wxZs2aFQcffHB84AMfiDzPt/pza2pqomvXri02S50BAAAAAADbuqTXpPlbWZbF5MmTY9SoUXH//fdHfX196kgAAAAAAAAFs03MpPlbw4YNi/POOy+23377ePHFF2PcuHGpIwEAAAAAALS7ba6k+VuvvfZa3HTTTaljAAAAAAAAtLuky53NmDGjzeOLFi0qUhIAAAAAAIDiSlrSjBkzJrIsizzPN3ubLMuKmAgAAAAAALYd3iMvbUmXO6uvr4/p06dHU1NTq9u8efNSxgMAAAAAACiYpCXNsGHDYu7cuZs9vqVZNgAAAAAAAO9VSZc7mzRpUqxZs2azxwcOHBizZ88uYiIAAAAAAIDiSFrSjBgxos3jtbW1MXLkyCKlAQAAAAAAKJ6kJQ0AAAAAALB5Sa9ZQsF5fAEAAAAAABJQ0gAAAAAAACSgpAEAAAAAAEhASQMAAAAAAJBAVeoAAAAAAABA67IsSx2BAjKTBgAAAAAAIAElDQAAAAAAQAJKGgAAAAAAgASUNAAAAAAAAAlUpQ4AAAAAAAC0LksdgIIykwYAAAAAACABJQ0AAAAAAEACShoAAAAAAIAElDQAAAAAAAAJVKUOAAAAAAAAtC7LUiegkMykAQAAAAAASEBJAwAAAAAAkIDlzigZFRXm/ZWbijKe69mpujJ1hGQqy/h7vXvnDqkjUGRl/DIXeeoACVVVlvEDH+U89vL07TF7po6QzD5f/k3qCMk89f/+JXUEoAjK+VwW4B9hJg0AAAAAAEACZtIAAAAAAMA2qsKM85JmJg0AAAAAAEACShoAAAAAAIAElDQAAAAAAAAJKGkAAAAAAAASqEodAAAAAAAAaF2WpU5AIZlJAwAAAAAAkICSBgAAAAAAIAElDQAAAAAAQAJKGgAAAAAAgASqUgcAAAAAAABal0WWOgIFZCYNAAAAAABAAkoaAAAAAACABJQ0AAAAAAAACShpAAAAAAAAEqhKHQAAAAAAAGhdlqVOQCGZSQMAAAAAAJCAkgYAAAAAACABJQ0AAAAAAEACShoAAAAAAIAEqlIHAAAAAAAAWlcRWeoIFJCZNAAAAAAAAAkoaQAAAAAAABLYppY7y/M87rvvvnjuueeivr4+Ro8eHR06dEgdCwAAAAAAoN0lLWmOOuqouO2226Jbt27x2muvxVFHHRWPPPJI9OrVK1599dV4//vfH7///e9jhx12SBkTAAAAAACg3SVd7uzuu++OxsbGiIi46KKL4s0334yFCxfGihUr4oUXXoja2tq45JJLUkYEAAAAAIBkssxWyraZ5c5+97vfxVVXXRW77rprRETstNNOMXXq1DjrrLPa/LzGxsbmoudteWVN1NTUFCwrAAAAAADAu5V0Jk1ERPb/12Cvv/56DBgwoMWxgQMHxpIlS9r8/IaGhujWrVuL7etTGwqWFwAAAAAAoD0kn0lz+umnR01NTWzYsCGef/752GOPPZqPLVu2LLp3797m50+ePDkmTpzYYl9eaRYNAAAAAACwbUta0owdO7b538cee2ysXbu2xfFf/OIXsc8++7R5HzU171zabN3GdosIAAAAAABQEElLmhtvvLHN41OmTInKysoipQEAAAAAACie5Nekactrr70W55xzTuoYAAAAAACQRJbZStk2X9LcdNNNqWMAAAAAAAC0u6TLnc2YMaPN44sWLSpSEgAAAAAAgOJKWtKMGTMmsiyLPM83e5us1OcyAQAAAAAAZSnpcmf19fUxffr0aGpqanWbN29eyngAAAAAAAAFk7SkGTZsWMydO3ezx7c0ywYAAAAAAEpZ5r/UD0FBJV3ubNKkSbFmzZrNHh84cGDMnj27iIkAAAAAAACKI2lJM2LEiDaP19bWxsiRI4uUBgAAAAAAoHiSLncGAAAAAABQrpQ0AAAAAAAACSRd7gwAAAAAANi8iix1AgrJTBoAAAAAAIAElDQAAAAAAAAJKGkAAAAAAAASUNIAAAAAAAAkUJU6AAAAAAAA0LosstQRKCAzaQAAAAAAABJQ0gAAAAAAACSgpAEAAAAAAEhASQMAAAAAAJBAVeoAAAAAAABA67IsdQIKyUwaAAAAAACABJQ0AAAAAAAACShpAAAAAAAAElDSAAAAAAAAJFCVOgAAAAAAANC6LLLUESggJQ0lo6kpTx0hmYqK8nyhXr1uY+oIyZTvsz2iskyf7xER6zY0pY6QTOeaytQRKLING8v3la6qsnxf59ZvLN/XuXIde02H8l3c4cmv/0vqCMmcdsu81BGS+clpw1JHoMjy8j2liax8T2nK+nEH/nHle0YMAAAAAACQkJIGAAAAAAAgASUNAAAAAABAAkoaAAAAAADYRlVktn/EpZdeGlmWtdgGDRrUfHzdunUxfvz46NmzZ2y33XZxwgknxPLly1vcx+LFi+Poo4+Ozp07R+/evWPSpEmxcWNhro9dVZB7BQAAAAAASGCPPfaIWbNmNX9cVfV/Vcj5558fv/71r+PnP/95dOvWLc4999w4/vjj449//GNERGzatCmOPvroqKuriwceeCCWLl0ap512WnTo0CGuuOKKds+qpAEAAAAAALZZjY2N0djY2GJfTU1N1NTUtHr7qqqqqKure8f+lStXxg033BC33nprfOQjH4mIiBtvvDEGDx4cDz30UHzoQx+K3/72t/HUU0/FrFmzok+fPrHPPvvE5ZdfHhdccEFceumlUV1d3a5js9wZAAAAAACwzWpoaIhu3bq12BoaGjZ7+2effTb69u0bu+22W5xyyimxePHiiIiYO3dubNiwIQ4//PDm2w4aNCj69esXDz74YEREPPjggzF06NDo06dP821Gjx4dq1atiieffLLdx2YmDQAAAAAAsM2aPHlyTJw4scW+zc2iOeCAA+JHP/pR7L777rF06dL46le/GiNGjIgnnngili1bFtXV1dG9e/cWn9OnT59YtmxZREQsW7asRUHz9vG3j7U3JQ0AAAAAAGyjsshSR0iuraXN/t6RRx7Z/O+99torDjjggOjfv3/87Gc/i06dOhUq4j/NcmcAAAAAAEBJ6t69e7z//e+P5557Lurq6mL9+vXxxhtvtLjN8uXLm69hU1dXF8uXL3/H8bePtTclDQAAAAAAUJJWr14dCxcujPr6+hg2bFh06NAh7r333ubjCxYsiMWLF8fw4cMjImL48OHx+OOPx4oVK5pvM3PmzOjatWsMGTKk3fNZ7gwAAAAAACgJ//Zv/xbHHHNM9O/fP5YsWRJTpkyJysrKOPnkk6Nbt25x5plnxsSJE6NHjx7RtWvX+PznPx/Dhw+PD33oQxERMWrUqBgyZEiceuqpcdVVV8WyZcvioosuivHjx2/1kmv/CCUNAAAAAABQEl566aU4+eST49VXX40ddtghDjrooHjooYdihx12iIiIb37zm1FRUREnnHBCNDY2xujRo+M//uM/mj+/srIy7rrrrjj77LNj+PDhUVtbG2PHjo3LLrusIHmzPM/zgtxzQus2pk5ACk1NJfdU3moVFeV58bDVZfzNXr7P9ojamsrUEZJZt74pdYRkOpfx416uGjeU7/O9oowXJF6/sXwf98oyPZ/rUFm+T/jS+0186439ybzUEZL5yWnDUkegyMr5ez0rzx9tEVHej3unDqkTlKb7n309dYTkDnrf9qkjFEz5nhEDAAAAAAAkpKQBAAAAAABIQEkDAAAAAACQgJIGAAAAAAAggarUAQAAAAAAgNZlqQNQUGbSAAAAAAAAJKCkAQAAAAAASEBJAwAAAAAAkICSBgAAAAAAIAElDQAAAAAAQAJVKb/4Sy+9FB07doxevXpFRMQf/vCHmDZtWixevDj69+8f48ePj+HDh6eMCAAAAAAAyVRkWeoIFFDSmTQnnHBCPPTQQxER8ctf/jIOOeSQWL16dRx44IGxdu3aGDlyZNx1110pIwIAAAAAABRE0pk0Tz75ZOyxxx4REdHQ0BBXXHFFXHDBBc3Hr7322rjkkkviX/7lX1JFBAAAAAAAKIikM2mqqqrizTffjIiI559/Po488sgWx4888shYsGBBimgAAAAAAAAFlbSkGTlyZNx2220REfGBD3wg7rvvvhbHZ8+eHTvuuGOb99HY2BirVq1qsTU2NhYqMgAAAAAAQLtIutzZlVdeGSNGjIglS5bEQQcdFBdeeGE8+uijMXjw4FiwYEHcfvvtMW3atDbvo6GhIb761a+22HfhxVPioksuLWByAAAAAAAovCx1AAoqy/M8Txlg4cKFcdFFF8Wvf/3rWL16dUT87zJoH/zgB2PSpEkxZsyYNj+/sbHxHTNn8sqaqKmpKVRktlFNTUmfyklVVJTnS/XqdRtTR0imfJ/tEbU1lakjJLNufVPqCMl0LuPHvVw1bijf53tF0rnuaa3fWL6Pe2WZns91qCzfJ3za38TTGvuTeakjJPOT04aljkCRlfP3elaeP9oiorwf904dUicoTQ8990bqCMl9aGD31BEKJulMmoiIAQMGxG233RZ5nseKFSuiqakpevXqFR06bN13dE3NOwuZMn7fFgAAAAAAeI/YZv5sKcuy6NOnT9TX1zcXNC+++GKMGzcucTIAAAAAAID2t82UNK157bXX4qabbkodAwAAAAAAoN0lXe5sxowZbR5ftGhRkZIAAAAAAMA2qIyv8VQOkpY0Y8aMiSzLIm/jalpZOV9lDAAAAAAAKFlJlzurr6+P6dOnR1NTU6vbvHnzUsYDAAAAAAAomKQlzbBhw2Lu3LmbPb6lWTYAAAAAAADvVUmXO5s0aVKsWbNms8cHDhwYs2fPLmIiAAAAAACA4kha0owYMaLN47W1tTFy5MgipQEAAAAAgG1LFq7bXsqSLncGAAAAAABQrpQ0AAAAAAAACShpAAAAAAAAElDSAAAAAAAAJFCVOgAAAAAAANC6LEudgEIykwYAAAAAACABJQ0AAAAAAEACShoAAAAAAIAElDQAAAAAAAAJVKUOAAAAAAAAtC5LHYCCMpMGAAAAAAAgASUNAAAAAABAAkoaAAAAAACABJQ0AAAAAAAACVSlDgAAAAAAAGxGljoAhWQmDQAAAAAAQAJKGgAAAAAAgASUNAAAAAAAAAlkeZ7nqUO0t3UbUycAKKzSe+Xeepl1WAFKVlNT+f6Ay8r0B1yZDrvslfP3es/DpqSOkMTrsy9LHQEoko6ugF4Qjz6/MnWE5D64a7fUEQrGtw0AAAAAAGyjsvCXLaXMcmcAAAAAAAAJKGkAAAAAAAASUNIAAAAAAAAkoKQBAAAAAABIoCp1AAAAAAAAoHVZljoBhWQmDQAAAAAAQAJKGgAAAAAAgASUNAAAAAAAAAkoaQAAAAAAABKoSh0AAAAAAABoXZY6AAVlJg0AAAAAAEACShoAAAAAAIAElDQAAAAAAAAJKGkAAAAAAAASqEodAAAAAAAA2IwsdQAKyUwaAAAAAACABJQ0AAAAAAAACShpAAAAAAAAElDSAAAAAAAAJKCkAQAAAAAASKAqdQAAAAAAAKB1WWSpI1BAZtIAAAAAAAAkoKQBAAAAAABIQEkDAAAAAACQQNKS5uqrr44XXnghZQQAAAAAAIAkkpY0kyZNigEDBsRHP/rRuP3222P9+vUp4wAAAAAAwDYly2ylLPlyZz/4wQ+itrY2Tj311Ojbt29MmDAhnnjiidSxAAAAAAAACip5SXPUUUfFnXfeGS+99FJ86UtfinvuuSf23nvv2H///eP73/9+vPnmm21+fmNjY6xatarF1tjYWKT0AAAAAAAA/5zkJc3bevfuHV/60pfi6aefjvvuuy+GDBkS559/ftTX17f5eQ0NDdGtW7cW29enNhQpNQAAAAAAwD8ny/M8T/XFKysrY+nSpdG7d+9Wj69atSpuv/32OOusszZ7H42Nje+YOZNX1kRNTU27ZgXYlqR75U6v1NchBShnTU3l+wMuK9MfcGU67LJXzt/rPQ+bkjpCEq/Pvix1BKBIOlalTlCa5i9ue7WpcrBPvy6pIxRM0m+bLfVDXbt2bbOgiYioqXlnIbNu47uOBgAAAAAAyfm7ltKWtKRpampK+eUBAAAAAACS2WauSdOaF198McaNG5c6BgAAAAAAQLvbpkua1157LW666abUMQAAAAAAANpd0uXOZsyY0ebxRYsWFSkJAAAAAABAcSUtacaMGRNZlkWe55u9TZa5LBIAAAAAAGXKW+QlLelyZ/X19TF9+vRoampqdZs3b17KeAAAAAAAAAWTtKQZNmxYzJ07d7PHtzTLBgAAAAAA4L0q6XJnkyZNijVr1mz2+MCBA2P27NlFTAQAAAAAAFAcSUuaESNGtHm8trY2Ro4cWaQ0AAAAAAAAxZO0pAEAAAAAADYviyx1BAoo6TVpAAAAAAAAypWSBgAAAAAAIAElDQAAAAAAQAJKGgAAAAAAgASqUgcAAAAAAABal2WpE1BIZtIAAAAAAAAkoKQBAAAAAABIQEkDAAAAAACQgJIGAAAAAAAggarUAQAAAAAAgNZlqQNQUGbSAAAAAAAAJKCkAQAAAAAASEBJAwAAAAAAkICSBgAAAAAAIIGq1AEAAAAAAIDNyFIHoJDMpAEAAAAAAEhASQMAAAAAAJBAlud5njpEe1u3MXUCAAAAACIitv/guakjJPP6o9emjgBF1dHFNQriiZdXp46Q3J47bpc6QsGYSQMAAAAAAJCAbhMAAAAAALZRWWSpI1BAZtIAAAAAAAAkoKQBAAAAAABIQEkDAAAAAACQgJIGAAAAAAAggarUAQAAAAAAgNZlWeoEFJKZNAAAAAAAAAkoaQAAAAAAABJQ0gAAAAAAACSgpAEAAAAAAEhASQMAAAAAAJBAVeoAAAAAAABA67LUASgoM2kAAAAAAAASUNIAAAAAAAAkoKQBAAAAAABIQEkDAAAAAACQQFXqAAAAAAAAwGZkqQNQSGbSAAAAAAAAJKCkAQAAAAAASEBJAwAAAAAAkICSBgAAAAAAIIGq1AEAAAAAAIDWZZGljkABmUkDAAAAAACQQPKS5q677opLLrkk/vjHP0ZExO9+97s46qij4ogjjojrr78+cToAAAAAAIDCSFrSfO9734vjjjsufvOb38RRRx0Vt9xyS4wZMyZ23HHH2GWXXWLChAnx7W9/O2VEAAAAAACAgkh6TZprrrkm/uM//iPOOuusmD17dhx11FFx9dVXxznnnBMRER/60IfiqquuivPOOy9lTAAAAAAAgHaXtKR5/vnnY/To0RERceihh8amTZvi4IMPbj5+yCGHxPjx49u8j8bGxmhsbGyxL6+siZqamvYPDAAAAAAARZRlqRNQSEmXO+vZs2e88MILERGxZMmS2LhxYyxevLj5+AsvvBA9evRo8z4aGhqiW7duLbavT20oaG4AAAAAAIB3K+lMmmOPPTbOPPPMGDt2bMyYMSNOO+20+OIXvxgVFRWRZVlMmjQpRo0a1eZ9TJ48OSZOnNhiX15pFg0AAAAAALBtS1rSTJ06NdavXx8//elP48Mf/nB85zvfiWuuuSaOPfbY2LBhQ4wcOTIaGtqeFVNT886lzdZtLGRqAAAAAACAdy/L8zxPHeLvrVu3LjZs2BBdunT55z5fSQMAAACwTdj+g+emjpDM649emzoCFFXHpFMCSteCZWtTR0hu97rOqSMUTNJr0mxOx44do0uXLvHiiy/GuHHjUscBAAAAAIAkMltJ2yZLmre99tprcdNNN6WOAQAAAAAA0O6STkCbMWNGm8cXLVpUpCQAAAAAAADFlbSkGTNmTGRZFm1dFifLSn0yEwAAAAAAUI6SLndWX18f06dPj6ampla3efPmpYwHAAAAAABQMElLmmHDhsXcuXM3e3xLs2wAAAAAAKCkZbZSlnS5s0mTJsWaNWs2e3zgwIExe/bsIiYCAAAAAAAojqQlzYgRI9o8XltbGyNHjixSGgAAAAAAgOJJutwZAAAAAABAuVLSAAAAAAAAJJB0uTMAAAAAAGDzsshSR6CAzKQBAAAAAABIQEkDAAAAAACQgJIGAAAAAAAgASUNAAAAAABAAlWpAwAAAAAAAK3LstQJKCQzaQAAAAAAABJQ0gAAAAAAACSgpAEAAAAAAEhASQMAAAAAAJBAVeoAAAAAAABA67LUASgoM2kAAAAAAAASUNIAAAAAAAAkoKQBAAAAAABIQEkDAAAAAACQQFXqAAAAAAAAwGZkqQNQSFme53nqEO1t3cbUCYBiKL1Xr62X+eEMAMB7lPN4ysn2B05KHSGZ1//49dQRSKCjKQEFsfCVt1JHSG7ADp22+rYNDQ0xffr0+J//+Z/o1KlTfPjDH46pU6fG7rvv3nybQw45JObMmdPi8/71X/81pk2b1vzx4sWL4+yzz47Zs2fHdtttF2PHjo2GhoaoqmrfJ7pvGwAAAAAAoCTMmTMnxo8fHx/84Adj48aN8ZWvfCVGjRoVTz31VNTW1jbf7qyzzorLLrus+ePOnTs3/3vTpk1x9NFHR11dXTzwwAOxdOnSOO2006JDhw5xxRVXtGteJQ0AAAAAALDNamxsjMbGxhb7ampqoqam5h23vfvuu1t8/KMf/Sh69+4dc+fOjYMPPrh5f+fOnaOurq7Vr/fb3/42nnrqqZg1a1b06dMn9tlnn7j88svjggsuiEsvvTSqq6vbYVT/q6Ld7gkAAAAAAKCdNTQ0RLdu3VpsDQ0NW/W5K1eujIiIHj16tNj/k5/8JHr16hV77rlnTJ48OdauXdt87MEHH4yhQ4dGnz59mveNHj06Vq1aFU8++WQ7jOj/mEkDAAAAAADbqCxc1Gzy5MkxceLEFvtam0Xz95qammLChAlx4IEHxp577tm8/1Of+lT0798/+vbtG4899lhccMEFsWDBgpg+fXpERCxbtqxFQRMRzR8vW7bs3Q6nBSUNAAAAAACwzdrc0mZbMn78+HjiiSfi/vvvb7H/s5/9bPO/hw4dGvX19XHYYYfFwoULY8CAAe867z/CcmcAAAAAAEBJOffcc+Ouu+6K2bNnx0477dTmbQ844ICIiHjuueciIqKuri6WL1/e4jZvf7y569j8s5Q0AAAAAABAScjzPM4999y444474ne/+13suuuuW/yc+fPnR0REfX19REQMHz48Hn/88VixYkXzbWbOnBldu3aNIUOGtGtey50BAAAAAAAlYfz48XHrrbfGL3/5y+jSpUvzNWS6desWnTp1ioULF8att94aRx11VPTs2TMee+yxOP/88+Pggw+OvfbaKyIiRo0aFUOGDIlTTz01rrrqqli2bFlcdNFFMX78+H9q2bW2ZHme5+16j9uAdRtTJwCKofRevbZe5npxAAC8RzmPp5xsf+Ck1BGSef2PX08dgQQ6mhJQEIteWZc6QnK77dBxq2+bbeYH7o033hinn356vPjii/HpT386nnjiiVizZk3svPPOcdxxx8VFF10UXbt2bb79Cy+8EGeffXbcd999UVtbG2PHjo0rr7wyqqra94mupAHes0rv1Wvr+eUOAID3KufxlBMlDeVGSVMYz/9VSbNrr60vad5rXJMGAAAAAAAgASUNAAAAAABAAkoaAAAAAACABJQ0AAAAAAAACbiUEwAAAAAAbKOy1AEoKDNpAAAAAAAAElDSAAAAAAAAJKCkAQAAAAAASEBJAwAAAAAAkEBV6gAAAAAAAMBmZKkDUEhm0gAAAAAAACSgpAEAAAAAAEhASQMAAAAAAJCAkgYAAAAAACCBqtQB3nrrrbjtttvi/vvvj6VLl0ZFRUXstttuMWbMmDjssMNSxwMAAAAAgGSyyFJHoICSzqR57rnnYvDgwTF58uSYNWtW3HPPPZFlWTz66KMxevTo+MQnPhEbN25MGREAAAAAAKAgkpY0X/jCF+KII46IZcuWxeLFi6OhoSGamprioYceiqeffjoeffTR+Pd///eUEQEAAAAAAAoiy/M8T/XFa2trY/78+fG+970vIiLWr18f2223XSxdujR69uwZv/zlL2PChAnx/PPPb/Y+Ghsbo7GxscW+vLImampqCpodSC/dq1d6mVmuAAC8RzmPp5xsf+Ck1BGSef2PX08dgQQ6Jr+4Rml64dXGLd+oxPXvWbrv9yedSdO9e/d48803mz9eu3ZtbNy4MaqrqyMiYq+99oqlS5e2eR8NDQ3RrVu3FtvXpzYUNDcAAAAAAMC7lbTb/OhHPxoTJ06MadOmRU1NTUyePDn22Wef6NKlS0RELF68OHr37t3mfUyePDkmTpzYYl9eWbqtGgAAAAAA5cNMzNKWtKS56qqr4thjj40hQ4ZElmWx8847xx133NF8/JVXXolJk9qeFlpT886lzdZtLEhcAAAAAACAdpO0pOndu3c8+OCD8eyzz0ZjY2MMGjQoqqr+L9LHP/7xhOkAAAAAAAAKJ+k1ad72vve9L/bcc88WBU1ExIsvvhjjxo1LlAoAAAAAAKBwtomSZnNee+21uOmmm1LHAAAAAAAAaHdJlzubMWNGm8cXLVpUpCQAAAAAALDtyVIHoKCSljRjxoyJLMsiz/PN3ibLPAUBAAAAAIDSk3S5s/r6+pg+fXo0NTW1us2bNy9lPAAAAAAAgIJJWtIMGzYs5s6du9njW5plAwAAAAAA8F6VdLmzSZMmxZo1azZ7fODAgTF79uwiJgIAAAAAACiOpCXNiBEj2jxeW1sbI0eOLFIaAAAAAADYtrhse2lLutwZAAAAAABAuVLSAAAAAAAAJKCkAQAAAAAASEBJAwAAAAAAkEBV6gAAAAAAAMDmZKkDUEBm0gAAAAAAACSgpAEAAAAAAEhASQMAAAAAAJCAkgYAAAAAACCBqtQBAAAAAACA1mVZ6gQUkpk0AAAAAAAACShpAAAAAAAAElDSAAAAAAAAJKCkAQAAAAAASKAqdQAAAAAAAKB1WeoAFJSZNAAAAAAAAAkoaQAAAAAAABJQ0gAAAAAAACSQ5Xmepw7R3tZtTJ2AFJqaSu6pvNUqKspzZcq1jZtSR0imU3Vl6gjJZOX5dAfKSOOGptQRkulQWb4v8uV6Pkd5Kr13Ibaec1nKSa9P/Sh1hGT+euvpqSMk09EV0AtiyRvrU0dIrm/36tQRCsZMGgAAAAAAgAR0mwAAAAAAsI0yE7O0mUkDAAAAAACQgJIGAAAAAAAgASUNAAAAAABAAkoaAAAAAACABKpSBwAAAAAAAFqXRZY6AgVkJg0AAAAAAEACShoAAAAAAIAElDQAAAAAAAAJKGkAAAAAAAASqEodAAAAAAAA2IwsdQAKyUwaAAAAAACABJQ0AAAAAAAACShpAAAAAAAAElDSAAAAAAAAJFCVOgAAAAAAANC6LHUACspMGgAAAAAAgASUNAAAAAAAAAkoaQAAAAAAABJQ0gAAAAAAACRQlToAAAAAAADQuixLnYBCMpMGAAAAAAAgASUNAAAAAABAAtvEcmePPPJIPPjgg7Fs2bKIiKirq4vhw4fH/vvvnzgZAAAAAABAYSQtaVasWBEnnHBC/PGPf4x+/fpFnz59IiJi+fLlcf7558eBBx4Yv/jFL6J3794pYwIAAAAAALS7pMudnXPOObFp06Z4+umn4y9/+Us8/PDD8fDDD8df/vKXePrpp6OpqSnGjx+fMiIAAAAAACST+S/1Q1BQSWfS3HPPPfH73/8+dt9993cc23333eOaa66JQw45pPjBAAAAAAAACixpSVNTUxOrVq3a7PE333wzampq2ryPxsbGaGxsbLEvr6zZ4ucBAAAAAACklHS5s5NOOinGjh0bd9xxR4uyZtWqVXHHHXfEGWecESeffHKb99HQ0BDdunVrsX19akOhowMAAAAAALwrWZ7neaov3tjYGBMmTIgf/vCHsXHjxqiuro6IiPXr10dVVVWceeaZ8c1vfrPNWTFm0vC2pqZkT+XkKipKe13GzVnbuCl1hGQ6VVemjpBMVp5Pd6CMNG5oSh0hmQ6V5fsiX67nc5SndO9CpOdclnLS61M/Sh0hmb/eenrqCMl0TLpuU+l65c2NqSMkt0OX0n1yJS1p3rZq1aqYO3duLFu2LCIi6urqYtiwYdG1a9d/6v7Wec6WJSVN+VHSlCe/2AKlTklTnsr1fI7ylP5diHScy1JOlDTlSUlTGK+s9ob3DtuV7pNrmxhZ165d49BDD00dAwAAAAAAoGiSXpMmIuKtt96K+++/P5566ql3HFu3bl3cfPPNCVIBAAAAAAAUVtKS5plnnonBgwfHwQcfHEOHDo2RI0fGkiVLmo+vXLkyzjjjjIQJAQAAAAAACiNpSXPBBRfEnnvuGStWrIgFCxZEly5d4qCDDorFixenjAUAAAAAAFBwSa9J88ADD8SsWbOiV69e0atXr/jVr34V55xzTowYMSJmz54dtbW1KeMBAAAAAEBSWeoAFFTSmTRvvfVWVFX9X0+UZVlcd911ccwxx8TIkSPjmWeeSZgOAAAAAACgcJLOpBk0aFD86U9/isGDB7fYf+2110ZExMc+9rEUsQAAAAAAAAou6Uya4447Lm677bZWj1177bVx8sknR57nRU4FAAAAAABQeFlegi3Iuo2pE5BCU1PJPZW3WkVFea5MubZxU+oIyXSqrkwdIZmsPJ/uQBlp3NCUOkIyHSrL90W+XM/nKE+l9y7E1nMuSznp9akfpY6QzF9vPT11hGQ6Jl23qXT9dbU3vHttV7pPrtIdGQAAAAAAvMcp+Utb0uXOAAAAAAAAypWSBgAAAAAAIAElDQAAAAAAQAJKGgAAAAAAgASqUgcAAAAAAABal0WWOgIFZCYNAAAAAABAAkoaAAAAAACABJQ0AAAAAAAACShpAAAAAAAAEqhKHQAAAAAAAGhdlqVOQCGZSQMAAAAAAJCAkgYAAAAAACABJQ0AAAAAAEACShoAAAAAAIAElDQAAAAAAAAJKGkAAAAAAAASyPI8z1OHaG/rNqZOABRDU1PJvXxttYqKLHUEgIIqvTPUrZeV8Ut8OT/u5crzvTzlUb6DryjnJz2Uke0PvSR1hGTe+sNlqSOUpNfXbkodIbntO1emjlAwZtIAAAAAAAAkoKQBAAAAAABIQEkDAAAAAACQQFXqAAAAAAAAQOtc0qy0mUkDAAAAAACQgJIGAAAAAAAgASUNAAAAAABAAkoaAAAAAACABKpSBwAAAAAAAFqXRZY6AgVkJg0AAAAAAEACShoAAAAAAIAElDQAAAAAAAAJKGkAAAAAAAASqEodAAAAAAAAaF2WpU5AIZlJAwAAAAAAkICSBgAAAAAAIAElDQAAAAAAQAJKGgAAAAAAgASqUgcAAAAAAABal6UOQEGZSQMAAAAAAJCAkgYAAAAAACABJQ0AAAAAAEACShoAAAAAAIAEqlIHAAAAAAAANiNLHYBC2qZn0rz++utx8803p44BAAAAAADQ7rbpkmbx4sVxxhlnpI4BAAAAAADQ7pIud7Zq1ao2j7/55ptFSgIAAAAAAFBcSUua7t27R5ZtfkG9PM/bPA4AAAAAAPBelbSk6dKlS1x44YVxwAEHtHr82WefjX/9139t8z4aGxujsbGxxb68siZqamraLScAAAAAAKSQhYkMpSxpSbPvvvtGRMTIkSNbPd69e/fI87zN+2hoaIivfvWrLfZdePGUuOiSS9slIwAAAAAAQCEkLWk+9alPxVtvvbXZ43V1dTFlypQ272Py5MkxceLEFvvySrNoAAAAAACAbVuWb2mqynvQuo2pEwDF0NRUci9fW62iwjRXoLSV3hnq1ivnSzKW8+Nerjzfy1Me5Tv4inJ+0kMZ2f7QS1JHSOatP1yWOkJJWt1Yvj8737ZdTen+DK1IHQAAAAAAAKAcJS9p3nrrrbj//vvjqaeeesexdevWxc0335wgFQAAAAAApJdltlKWtKR55plnYvDgwXHwwQfH0KFDY+TIkbF06dLm4ytXrowzzjgjYUIAAAAAAIDCSFrSXHDBBbHnnnvGihUrYsGCBdGlS5c48MADY/HixSljAQAAAAAAFFzSkuaBBx6IhoaG6NWrVwwcODB+9atfxejRo2PEiBGxaNGilNEAAAAAAAAKKmlJ89Zbb0VVVVXzx1mWxXXXXRfHHHNMjBw5Mp555pmE6QAAAAAAAAqnass3KZxBgwbFn/70pxg8eHCL/ddee21ERHzsYx9LEQsAAAAAALYJWeoAFFTSmTTHHXdc3Hbbba0eu/baa+Pkk0+OPM+LnAoAAAAAAKDwsrwEW5B1G1MnAIqhqankXr62WkWFv6EASlvpnaFuvayMX+LL+XEvV57v5SmP8h18RTk/6aGMbH/oJakjJPPWHy5LHaEkrV1fvj8739a5unR/hiadSQMAAAAAAFCulDQAAAAAAAAJVKUOAAAAAAAAbEbprvRFmEkDAAAAAACQhJIGAAAAAAAgASUNAAAAAABAAkoaAAAAAACABJQ0AAAAAAAACVSlDgAAAAAAALQuiyx1BArITBoAAAAAAIAElDQAAAAAAAAJKGkAAAAAAAASUNIAAAAAAAAkUJU6AAAAAAAA0LosS52AQjKTBgAAAAAAKCnf/e53Y5dddomOHTvGAQccEI888kjqSK1S0gAAAAAAACXj9ttvj4kTJ8aUKVNi3rx5sffee8fo0aNjxYoVqaO9g5IGAAAAAAAoGd/4xjfirLPOijPOOCOGDBkS06ZNi86dO8cPf/jD1NHeQUkDAAAAAABssxobG2PVqlUttsbGxlZvu379+pg7d24cfvjhzfsqKiri8MMPjwcffLBYkbdeTrtat25dPmXKlHzdunWpoxRVuY47z43d2I29XJTruPPc2I3d2MtFuY47z43d2I29XJTruPPc2I29vMZeruPO8/IeO6VvypQpeUS02KZMmdLqbV9++eU8IvIHHnigxf5Jkybl+++/fxHS/mOyPM/zpC1RiVm1alV069YtVq5cGV27dk0dp2jKddwRxm7sxl4uynXcEcZu7MZeLsp13BHGbuzGXi7KddwRxm7s5TX2ch13RHmPndLX2Nj4jpkzNTU1UVNT847bLlmyJHbcccd44IEHYvjw4c37v/SlL8WcOXPi4YcfLnjef0RV6gAAAAAAAACbs7lCpjW9evWKysrKWL58eYv9y5cvj7q6ukLEe1dckwYAAAAAACgJ1dXVMWzYsLj33nub9zU1NcW9997bYmbNtsJMGgAAAAAAoGRMnDgxxo4dG/vtt1/sv//+8a1vfSvWrFkTZ5xxRupo76CkaWc1NTUxZcqUrZ56VSrKddwRxm7sxl4uynXcEcZu7MZeLsp13BHGbuzGXi7KddwRxm7s5TX2ch13RHmPHf7eSSedFK+88kpccsklsWzZsthnn33i7rvvjj59+qSO9g5Znud56hAAAAAAAADlxjVpAAAAAAAAElDSAAAAAAAAJKCkAQAAAAAASEBJAwAAAAAAkICSph1997vfjV122SU6duwYBxxwQDzyyCOpIxXF73//+zjmmGOib9++kWVZ3HnnnakjFUVDQ0N88IMfjC5dukTv3r1jzJgxsWDBgtSxiuK6666LvfbaK7p27Rpdu3aN4cOHx3/913+ljlV0V155ZWRZFhMmTEgdpeAuvfTSyLKsxTZo0KDUsYrm5Zdfjk9/+tPRs2fP6NSpUwwdOjT+9Kc/pY5VcLvssss7Hvcsy2L8+PGpoxXcpk2b4uKLL45dd901OnXqFAMGDIjLL7888jxPHa3g3nzzzZgwYUL0798/OnXqFB/+8Ifj0UcfTR2r3W3p/CXP87jkkkuivr4+OnXqFIcffng8++yzacK2sy2Nffr06TFq1Kjo2bNnZFkW8+fPT5KzENoa+4YNG+KCCy6IoUOHRm1tbfTt2zdOO+20WLJkSbrA7WhLj/ull14agwYNitra2th+++3j8MMPj4cffjhN2Hb0j/yu8rnPfS6yLItvfetbRctXSFsa++mnn/6On/FHHHFEmrDtbGse96effjo+9rGPRbdu3aK2tjY++MEPxuLFi4sftp1taeytndtlWRZf//rX0wRuR1sa++rVq+Pcc8+NnXbaKTp16hRDhgyJadOmpQnbjrY07uXLl8fpp58effv2jc6dO8cRRxxRMuc0W/O+zLp162L8+PHRs2fP2G677eKEE06I5cuXJ0rcPrZm3Ndff30ccsgh0bVr18iyLN544400YYGtoqRpJ7fffntMnDgxpkyZEvPmzYu99947Ro8eHStWrEgdreDWrFkTe++9d3z3u99NHaWo5syZE+PHj4+HHnooZs6cGRs2bIhRo0bFmjVrUkcruJ122imuvPLKmDt3bvzpT3+Kj3zkI3HsscfGk08+mTpa0Tz66KPxve99L/baa6/UUYpmjz32iKVLlzZv999/f+pIRfH666/HgQceGB06dIj/+q//iqeeeiquvvrq2H777VNHK7hHH320xWM+c+bMiIg48cQTEycrvKlTp8Z1110X1157bTz99NMxderUuOqqq+I73/lO6mgF95nPfCZmzpwZP/7xj+Pxxx+PUaNGxeGHHx4vv/xy6mjtakvnL1dddVVcc801MW3atHj44YejtrY2Ro8eHevWrSty0va3pbGvWbMmDjrooJg6dWqRkxVeW2Nfu3ZtzJs3Ly6++OKYN29eTJ8+PRYsWBAf+9jHEiRtf1t63N///vfHtddeG48//njcf//9scsuu8SoUaPilVdeKXLS9rW1v6vccccd8dBDD0Xfvn2LlKzwtmbsRxxxRIuf9bfddlsRExbOlsa+cOHCOOigg2LQoEFx3333xWOPPRYXX3xxdOzYschJ29+Wxv63j/fSpUvjhz/8YWRZFieccEKRk7a/LY194sSJcffdd8ctt9wSTz/9dEyYMCHOPffcmDFjRpGTtq+2xp3neYwZMyYWLVoUv/zlL+PPf/5z9O/fPw4//PCSeO9ia96XOf/88+NXv/pV/PznP485c+bEkiVL4vjjj0+Y+t3bmnGvXbs2jjjiiPjKV76SMCmw1XLaxf7775+PHz+++eNNmzblffv2zRsaGhKmKr6IyO+4447UMZJYsWJFHhH5nDlzUkdJYvvtt89/8IMfpI5RFG+++Wb+vve9L585c2Y+cuTI/LzzzksdqeCmTJmS77333qljJHHBBRfkBx10UOoY24TzzjsvHzBgQN7U1JQ6SsEdffTR+bhx41rsO/744/NTTjklUaLiWLt2bV5ZWZnfddddLfbvu++++YUXXpgoVeH9/flLU1NTXldXl3/9619v3vfGG2/kNTU1+W233ZYgYeG0de72/PPP5xGR//nPfy5qpmLZmvPWRx55JI+I/IUXXihOqCLZmrGvXLkyj4h81qxZxQlVBJsb90svvZTvuOOO+RNPPJH3798//+Y3v1n0bIXW2tjHjh2bH3vssUnyFFNrYz/ppJPyT3/602kCFdHWfK8fe+yx+Uc+8pHiBCqi1sa+xx575JdddlmLfaV2jvP3416wYEEeEfkTTzzRvG/Tpk35DjvskH//+99PkLCw/v59mTfeeCPv0KFD/vOf/7z5Nk8//XQeEfmDDz6YKma7a+v9qNmzZ+cRkb/++uvFDwZsNTNp2sH69etj7ty5cfjhhzfvq6ioiMMPPzwefPDBhMkoppUrV0ZERI8ePRInKa5NmzbFT3/601izZk0MHz48dZyiGD9+fBx99NEtvufLwbPPPht9+/aN3XbbLU455ZSSWA5ia8yYMSP222+/OPHEE6N3797xgQ98IL7//e+njlV069evj1tuuSXGjRsXWZaljlNwH/7wh+Pee++NZ555JiIi/vu//zvuv//+OPLIIxMnK6yNGzfGpk2b3vGXxJ06dSqb2XMREc8//3wsW7asxet8t27d4oADDnBuV2ZWrlwZWZZF9+7dU0cpqvXr18f1118f3bp1i7333jt1nIJqamqKU089NSZNmhR77LFH6jhFd99990Xv3r1j9913j7PPPjteffXV1JEKrqmpKX7961/H+9///hg9enT07t07DjjggLJZtvtvLV++PH7961/HmWeemTpKUXz4wx+OGTNmxMsvvxx5nsfs2bPjmWeeiVGjRqWOVjCNjY0RES3O7SoqKqKmpqYkz+3+/n2ZuXPnxoYNG1qc0w0aNCj69etXUud05fp+FJQSJU07+Otf/xqbNm2KPn36tNjfp0+fWLZsWaJUFFNTU1NMmDAhDjzwwNhzzz1TxymKxx9/PLbbbruoqamJz33uc3HHHXfEkCFDUscquJ/+9Kcxb968aGhoSB2lqA444ID40Y9+FHfffXdcd9118fzzz8eIESPizTffTB2t4BYtWhTXXXddvO9974t77rknzj777PjCF74QN910U+poRXXnnXfGG2+8EaeffnrqKEXx5S9/OT75yU/GoEGDokOHDvGBD3wgJkyYEKecckrqaAXVpUuXGD58eFx++eWxZMmS2LRpU9xyyy3x4IMPxtKlS1PHK5q3z9+c25W3devWxQUXXBAnn3xydO3aNXWcorjrrrtiu+22i44dO8Y3v/nNmDlzZvTq1St1rIKaOnVqVFVVxRe+8IXUUYruiCOOiJtvvjnuvffemDp1asyZMyeOPPLI2LRpU+poBbVixYpYvXp1XHnllXHEEUfEb3/72zjuuOPi+OOPjzlz5qSOV1Q33XRTdOnS5T2/9NPW+s53vhNDhgyJnXbaKaqrq+OII46I7373u3HwwQenjlYwbxcSkydPjtdffz3Wr18fU6dOjZdeeqnkzu1ae19m2bJlUV1d/Y4/tiilc7pyfD8KSlFV6gBQCsaPHx9PPPFESf4lyubsvvvuMX/+/Fi5cmX853/+Z4wdOzbmzJlT0kXNiy++GOedd17MnDmzJNar/kf87eyBvfbaKw444IDo379//OxnPyv5v7xramqK/fbbL6644oqIiPjABz4QTzzxREybNi3Gjh2bOF3x3HDDDXHkkUeW1Fr9bfnZz34WP/nJT+LWW2+NPfbYI+bPnx8TJkyIvn37lvzj/uMf/zjGjRsXO+64Y1RWVsa+++4bJ598csydOzd1NCiaDRs2xCc+8YnI8zyuu+661HGK5tBDD4358+fHX//61/j+978fn/jEJ+Lhhx+O3r17p45WEHPnzo1vf/vbMW/evLKYJfr3PvnJTzb/e+jQobHXXnvFgAED4r777ovDDjssYbLCampqioiIY489Ns4///yIiNhnn33igQceiGnTpsXIkSNTxiuqH/7wh3HKKaeUze823/nOd+Khhx6KGTNmRP/+/eP3v/99jB8/Pvr27VuyqyR06NAhpk+fHmeeeWb06NEjKisr4/DDD48jjzwy8jxPHa9dleP7MhHlO24oNWbStINevXpFZWVlLF++vMX+5cuXR11dXaJUFMu5554bd911V8yePTt22mmn1HGKprq6OgYOHBjDhg2LhoaG2HvvvePb3/526lgFNXfu3FixYkXsu+++UVVVFVVVVTFnzpy45pproqqqquT/6vBvde/ePd7//vfHc889lzpKwdXX17+jfBw8eHDZLPcWEfHCCy/ErFmz4jOf+UzqKEUzadKk5tk0Q4cOjVNPPTXOP//8sphFN2DAgJgzZ06sXr06XnzxxXjkkUdiw4YNsdtuu6WOVjRvn785tytPbxc0L7zwQsycObNsZtFERNTW1sbAgQPjQx/6UNxwww1RVVUVN9xwQ+pYBfOHP/whVqxYEf369Ws+t3vhhRfii1/8Yuyyyy6p4xXdbrvtFr169Sr587tevXpFVVVV2Z/f/eEPf4gFCxaUzfndW2+9FV/5ylfiG9/4RhxzzDGx1157xbnnnhsnnXRS/L//9/9SxyuoYcOGxfz58+ONN96IpUuXxt133x2vvvpqSZ3bbe59mbq6uli/fn288cYbLW5fKud05fp+FJQiJU07qK6ujmHDhsW9997bvK+pqSnuvffesrlGRznK8zzOPffcuOOOO+J3v/td7LrrrqkjJdXU1NS83m2pOuyww+Lxxx+P+fPnN2/77bdfnHLKKTF//vyorKxMHbFoVq9eHQsXLoz6+vrUUQruwAMPjAULFrTY98wzz0T//v0TJSq+G2+8MXr37h1HH3106ihFs3bt2qioaHmaVFlZ2fzXt+WgtrY26uvr4/XXX4977rknjj322NSRimbXXXeNurq6Fud2q1atiocffti5XYl7u6B59tlnY9asWdGzZ8/UkZIq9fO7U089NR577LEW53Z9+/aNSZMmxT333JM6XtG99NJL8eqrr5b8+V11dXV88IMfLPvzuxtuuCGGDRtW8tedetuGDRtiw4YNZX1+161bt9hhhx3i2WefjT/96U8lcW63pfdlhg0bFh06dGhxTrdgwYJYvHjxe/qczvtRUHosd9ZOJk6cGGPHjo399tsv9t9///jWt74Va9asiTPOOCN1tIJbvXp1i7+2ev7552P+/PnRo0eP6NevX8JkhTV+/Pi49dZb45e//GV06dKleT3Tbt26RadOnRKnK6zJkyfHkUceGf369Ys333wzbr311rjvvvtK/pfZLl26vGON19ra2ujZs2fJr/36b//2b3HMMcdE//79Y8mSJTFlypSorKyMk08+OXW0gjv//PPjwx/+cFxxxRXxiU98Ih555JG4/vrr4/rrr08drSiamprixhtvjLFjx0ZVVfmcNhxzzDHxta99Lfr16xd77LFH/PnPf45vfOMbMW7cuNTRCu6ee+6JPM9j9913j+eeey4mTZoUgwYNKrlzmi2dv0yYMCH+/d//Pd73vvfFrrvuGhdffHH07ds3xowZky50O9nS2F977bVYvHhxLFmyJCKi+Y3Murq69/xfnbY19vr6+vj4xz8e8+bNi7vuuis2bdrUfH7Xo0ePqK6uThW7XbQ19p49e8bXvva1+NjHPhb19fXx17/+Nb773e/Gyy+/HCeeeGLC1O/elp7vf1/EdejQIerq6mL33XcvdtR219bYe/ToEV/96lfjhBNOiLq6uli4cGF86UtfioEDB8bo0aMTpm4fW3rcJ02aFCeddFIcfPDBceihh8bdd98dv/rVr+K+++5LF7qdbM3v56tWrYqf//zncfXVV6eKWRBbGvvIkSNj0qRJ0alTp+jfv3/MmTMnbr755vjGN76RMPW7t6Vx//znP48ddtgh+vXrF48//nicd955MWbMmBg1alTC1O1jS+/LdOvWLc4888yYOHFi9OjRI7p27Rqf//znY/jw4fGhD30ocfp/3ta8H7Vs2bJYtmxZ83Pj8ccfjy5dukS/fv2iR48eybIDm5HTbr7zne/k/fr1y6urq/P9998/f+ihh1JHKorZs2fnEfGObezYsamjFVRrY46I/MYbb0wdreDGjRuX9+/fP6+urs532GGH/LDDDst/+9vfpo6VxMiRI/PzzjsvdYyCO+mkk/L6+vq8uro633HHHfOTTjopf+6551LHKppf/epX+Z577pnX1NTkgwYNyq+//vrUkYrmnnvuySMiX7BgQeooRbVq1ar8vPPOy/v165d37Ngx32233fILL7wwb2xsTB2t4G6//fZ8t912y6urq/O6urp8/Pjx+RtvvJE6Vrvb0vlLU1NTfvHFF+d9+vTJa2pq8sMOO6xkvg+2NPYbb7yx1eNTpkxJmrs9tDX2559/frPnd7Nnz04d/V1ra+xvvfVWftxxx+V9+/bNq6ur8/r6+vxjH/tY/sgjj6SO/a79o7+r9O/fP//mN79Z1IyF0tbY165dm48aNSrfYYcd8g4dOuT9+/fPzzrrrHzZsmWpY7eLrXncb7jhhnzgwIF5x44d87333ju/88470wVuR1sz9u9973t5p06dSu7n+5bGvnTp0vz000/P+/btm3fs2DHffffd86uvvjpvampKG/xd2tK4v/3tb+c77bRT3qFDh7xfv375RRddVDLntFvzvsxbb72Vn3POOfn222+fd+7cOT/uuOPypUuXpgvdDrZm3FOmTCnb96zgvSjL8xK7UhgAAAAAAMB7gGvSAAAAAAAAJKCkAQAAAAAASEBJAwAAAAAAkICSBgAAAAAAIAElDQAAAAAAQAJKGgAAAAAAgASUNAAAAAAAAAkoaQAAAAAAABJQ0gAAQCKnn356jBkzpvnjQw45JCZMmFD0HPfdd19kWRZvvPFG0b82AABAOVPSAADA3zn99NMjy7LIsiyqq6tj4MCBcdlll8XGjRsL+nWnT58el19++VbdVrECAADw3leVOgAAAGyLjjjiiLjxxhujsbExfvOb38T48eOjQ4cOMXny5Ba3W79+fVRXV7fL1+zRo0e73A8AAADvDWbSAABAK2pqaqKuri769+8fZ599dhx++OExY8aM5iXKvva1r0Xfvn1j9913j4iIF198MT7xiU9E9+7do0ePHnHsscfGX/7yl+b727RpU0ycODG6d+8ePXv2jC996UuR53mLr/n3y501NjbGBRdcEDvvvHPU1NTEwIED44Ybboi//OUvceihh0ZExPbbbx9ZlsXpp58eERFNTU3R0NAQu+66a3Tq1Cn23nvv+M///M8WX+c3v/lNvP/9749OnTrFoYce2iInAAAAxaOkAQCArdCpU6dYv359RETce++9sWDBgpg5c2bcddddsWHDhhg9enR06dIl/vCHP8Qf//jH2G677eKII45o/pyrr746fvSjH8UPf/jDuP/+++O1116LO+64o82vedppp8Vtt90W11xzTTz99NPxve99L7bbbrvYeeed4xe/+EVERCxYsCCWLl0a3/72tyMioqGhIW6++eaYNm1aPPnkk3H++efHpz/96ZgzZ05E/G+ZdPzxx8cxxxwT8+fPj8985jPx5S9/uVD/2wAAAGiD5c4AAKANeZ7HvffeG/fcc098/vOfj1deeSVqa2vjBz/4QfMyZ7fccks0NTXFD37wg8iyLCIibrzxxujevXvcd999MWrUqPjWt74VkydPjuOPPz4iIqZNmxb33HPPZr/uM888Ez/72c9i5syZcfjhh0dExG677dZ8/O2l0Xr37h3du3ePiP+deXPFFVfErFmzYvjw4c2fc//998f3vve9GDlyZFx33XUxYMCAuPrqqyMiYvfdd4/HH388pk6d2o7/1wAAANgaShoAAGjFXXfdFdttt11s2LAhmpqa4lOf+lRceumlMX78+Bg6dGiL69D893//dzz33HPRpUuXFvexbt26WLhwYaxcuTKWLl0aBxxwQPOxqqqq2G+//d6x5Nnb5s+fH5WVlTFy5Mitzvzcc8/F2rVr46Mf/WiL/evXr48PfOADERHx9NNPt8gREc2FDgAAAMWlpAEAgFYceuihcd1110V1dXX07ds3qqr+79S5tra2xW1Xr14dw4YNi5/85CfvuJ8ddtjhn/r6nTp1+oc/Z/Xq1RER8etf/zp23HHHFsdqamr+qRwAAAAUjpIGAABaUVtbGwMHDtyq2+67775x++23R+/evaNr166t3qa+vj4efvjhOPjggyMiYuPGjTF37tzYd999W7390KFDo6mpKebMmdO83Nnfensmz6ZNm5r3DRkyJGpqamLx4sWbnYEzePDgmDFjRot9Dz300JYHCQAAQLurSB0AAADe60455ZTo1atXHHvssfGHP/whnn/++bjvvvviC1/4Qrz00ksREXHeeefFlVdeGXfeeWf8z//8T5xzzjnxxhtvbPY+d9lllxg7dmyMGzcu7rzzzub7/NnPfhYREf37948sy+Kuu+6KV155JVavXh1dunSJf/u3f4vzzz8/brrppli4cGHMmzcvvvOd78RNN90UERGf+9zn4tlnn41JkybFggUL4tZbb40f/ehHhf5fBAAAQCuUNAAA8C517tw5fv/730e/fv3i+OOPj8GDB8eZZ54Z69ata55Z88UvfjFOPfXUGDt2bAwfPjy6dOkSxx13XJv3e91118XHP/7xOOecc2LQoEFx1llnxZo1ayIiYscdd4yvfvWr8eUvfzn69OkT5557bkREXH755XHxxRdHQ0NDDB48OI444oj49a9/HbvuumtERPTr1y9+8YtfxJ133hl77713TJs2La644ooC/t8BAABgc7J8c1cqBQAAAAAAoGDMpAEAAAAAAEhASQMAAAAAAJCAkgYAAAAAACABJQ0AAAAAAEACShoAAAAAAIAElDQAAAAAAAAJKGkAAAAAAAASUNIAAAAAAAAkoKQBAAAAAABIQEkDAAAAAACQgJIGAAAAAAAggf8PjQ/yPdzb3/gAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["✅ عرض رسم Accuracy & Loss من الملف: /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/pic/cnn+bilstm_acc_loss_main_attention.png\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAEGgAAAXcCAYAAABgiQ+uAAEAAElEQVR4AezdB3gURRvA8TchhBJK6L0q1QKoIFXgo4iIAqIgWMCCFAsqClYEBQFR7IAK0gQRFLAhCEgQadKRIkiX3msgIYEv7+qtu3t3ubvkElL+8zz33c7s7Ozs7/bCfe7MOyGXE5KQEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQS8CoR63cMOBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAFDgAAN3AgIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIICADwECNPgAYjcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBAgAbuAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCHAAEafACxGwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECBAA/cAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg4EOAAA0+gNiNAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIEKCBewABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwIUCABh9A7EYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQI0MA9gAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCPgQIECDDyB2I4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgRo4B5AAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEfAgQoMEHELsRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABAjRwDyCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAI+BAjQ4AOI3QgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAABGrgHEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAR8CBGjwAcRuBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgAAN3AMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIICADwECNPgAYjcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBAgAbuAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCHAAEafACxGwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECBAA/cAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg4EOAAA0+gNiNAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIEKCBewABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwIUCABh9A7EYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQI0MA9gAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCPgQIECDDyB2I4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgRo4B5AAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEfAgQoMEHELsRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABAjRwDyCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAI+BAjQ4AOI3QgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAABGrgHEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAR8CBGjwAcRuBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAgAAN3AMIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIICADwECNPgAYjcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBAgAbuAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCHAAEafACxGwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEECBAA/cAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg4EOAAA0+gNiNAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIEKCBewABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwIUCABh9A7EYAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQI0MA9gAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCPgQIECDDyB2I4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgRo4B5AAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEfAgQoMEHELsRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABAjRwDyCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAI+BAjQ4AOI3QgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAABGrgHEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAR8CBGjwAcRuBBBAAAEEEEAAAQQQQAABBBBAAIGkC7z88ssSEhJivkaOHJn0xjjSp0BUVJRp7XLXsrScDh06JLlz5zb7ffXVV0tMTExa7jJ9QwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFMKkCAhkz6wXPZCCCAAAIIIIAAAggggAACCCCAQEoL/PXXX/L222+bp6lUqZJ07drVzLOBgAoUKVJEnn32WRNj+/btMmzYMDPPBgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA0gWOHDki+fLlM4PmlylTRi5cuJD0BjnSp0CjRo1Mb11cQfNpPT3//PO2Po8ePTqtd5n+IYAAAggggAACCCCAAAJXTIAADVeMnhMjgAACCCCAAAIIIIAAAgj4Erh8+bKUK1fO9vBPH1pmyZJF9u3b5+tw9iOAwBUWePLJJyU2NtbsxZAhQyQsLMzMs4GAS+C5556TwoULu7IyePBg2bNnj5lnAwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgaQJ9+vSRkydPmgcPGjRIsmfPbubZQEAFXnrpJYmMjDQxNH/ixAkzzwYCCCCAAAIIIIAAAggggMB/AgRo+M+CLQQQQAABBBBAAAEEEEAAgTQmMH/+fNm1a5dbry5duiTjxo1zK6cAAQTSjsDPP/8sc+bMMTtUrVo1adOmjZlnAwGrQO7cueWZZ54xi6Kjo6Vfv35mng0EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEPBfQMda6AIY1lejRo38b4CaGUZg6dKlMn78ePN6qlevLvfdd5+ZZwMBl0C+fPnkxRdfdGXlyJEjPLc3NdhAAAEEEEAAAQQQQAABBOwCBGiwe5BDAAEEEEAAAQQQQAABBBBIQwJjxozx2pvPP/9cLl++7HU/OxBA4MoKvPzyy7YOWB/i23aQQeBfgZ49e0revHlNjy+++EI2b95s5tlAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAhM4LnnnrONr9FA+Rq4g4SAJ4HHH39c8ufPb+4aNWqUbNu2zcyzgQACCCCAAAIIIIAAAggg8I8AARq4ExBAAAEEEEAAAQQQQAABBNKkwPHjx2XGjBle+7Zjxw6Jioryup8dCCBw5QT0u7ty5UqzA1dddZXcc889Zp4NBDwJ5MmTR7p3727uio+Pl9dee83Ms4EAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg4L/ADz/8IEuWLDEPqFq1qrRp08bMs4GAUyAiIkKeeuopszguLk40qAcJAQQQQAABBBBAAAEEEEDALkCABrsHOQQQQAABBBBAAAEEEEAAgTQiMGnSJImJibH1xhnBf8yYMbb9ZBBAIG0IDB061NYRnXQfGsp/hrKhpFCmUaNGxuonly9fNt+1LL2kbt262VZr+eabb2T79u3ppfv0EwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEgTAvrM+JVXXrH1pW/fvrbnsbadZBD4V+DJJ5+UnDlzmh5fffWVbNiwwcyzgQACCCCAAAIIIIAAAgggIMLIeO4CBBBAAAEEEEAAAQQQQACBNCngDL5QoUIFueuuu2x9nT59upw6dcpWRgYBBK6swOLFi2X58uVmJ8LDw6VLly5mng0EEhMoV66cNG3a1Kxy6dIlee+998w8GwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACvgVmz54t69atMysWKFBAOnToYObZSFmBqKgoc1EFDZah+fSS8ufPL+3btze7q8/thw0bZubZQAABBBBAAAEEEEAAAQQQIEAD9wACCCCAAAIIIIAAAggggEAaFFi1apXtIbF28cEHH5TOnTvbenv+/HmZPHmyrYwMAghcWQHnZPrWrVtLwYIFr2ynOHu6EnjkkUds/R07dqycPn3aVkYGAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMC7wPDhw207dcxNtmzZbGVkEPAm0LVrV9uuKVOmyIEDB2xlZBBAAAEEEEAAAQQQQACBzCwQmpkvnmtHAAEEEEAAAQQQQAABBBBImwJjxoyxdSwkJEQeeOABue2226Rw4cK2fc66tp1kEEAgVQWOHTsm3333ne2c99xzjy1PBgFfAq1atZIcOXKY1c6dOyfTpk0z82wggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCHgX2LBhg8ybN89WwRko37aTDAIOgbp160qVKlXM0tjYWBk5cqSZZwMBBBBAAAEEEEAAAQQQyOwCYZkdgOtHAAEEEEAAAQQQQAABBBBIWwLnz5+XyZMn2zp1yy23SJkyZYyyTp06yXvvvWfuX7Vqlaxbt06qVatmlgVr4/Lly7Jx40b566+/RCeeHz16VDRYRJ48eaRUqVLGg8jy5csbZcE456lTp2TFihVy6NAh43xnzpyRiIgIyZ8/v1SsWFGqVq1qnDsY50orbURHR8vvv/9uGB8/flzi4uIkb9680rhxY7nmmmt8dlPvl61bt8qff/5pfD6nT5+WsLAwyZcvnxQsWFCqV68uZcuW9dlOcirEx8fL2rVrZdeuXUYf9Dq0D3qf6Ln1gXXp0qWTc4p0c6yumKAP5V1JJ9m3bNnSlQ36u343V69eLXv37pULFy4Y5updp04d47vjzwn1e65/Q/R1+PBh0c+zSJEixvetVq1aQft+a19OnDhh3Kvab90+e/as5MyZ0/iO6zn1fPp9T8tJv3PLli0zrkOvQT/jQoUKybXXXmv8Hda/kclN+nevRYsWMmPGDLOpCRMmCAOGTA42EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAa8CY8eOte3T8Sb6IiEQiMDdd98tb7zxhnnI+PHjZcCAAUEdR2E2zgYCCCCAAAIIIIAAAgggkM4ECNCQzj4wuosAAggggAACCCCAAAIIZHSBb775RjRQgTV17tzZzOq2NUCD7hgzZox88MEHZp3kbvz6669G1PdffvnFmLCdWHs6qbpp06aigSN0QnFoaGhi1d326bV+/PHH8u2334oGm9DJ4d5SlixZpGbNmqKry3fp0kVKlCjhraqMGzdOHnroIdv+nTt3JilYgXPC9WuvvSb9+/e3te3M6H59KGtNOhHelZYuXSrDhg2TWbNmSUxMjKvYfNdzeArQoG0sWbJEvvvuO4mKijIm52tQh8RSyZIlpV27dvLss88GNVCC9uHzzz83+uG8Z5390QANzZs3lwcffFAaNGjg3C39+vWzPdTWCgsWLJBGjRq51fW3QIMNaCARa8CENm3a2Ca9+9uWv/U0QIM1aaANnWwfaNLAFrt37zYP0++93tOa9DsyevRo4++ABubwlHLlymXc/3ofegt4oAFQ3n33Xfn0009l3759npoxAjU8//zz0qtXLyPohsdKiRRq0IiffvpJZs+ebdwnGkwksaTfNR0Uo9/dbt26iV5HoEm/F+puTf7cS76+s9u3b5eBAwfK1KlTRQOreEr697Bnz57Su3fvJH3u1jbvuOMO2726aNEiIxCHfp9JCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQPgT0ebUu2qBB9/UZ9rlz56RAgQJSuHBhY0xAhQoVgnoh+jxZA+b/8ccfcuTIEdFFHrRMA+e7FuMoV66cXHXVVQGP77B2VMcu7NixQ9avXy8HDx40zqNjFzTAvT7n1eea+txbF+PQBR5SM+n1OhdG0Yn2KZX0+fHy5ctly5YtxkIFer1FixY1FiioVKmS36fVhVP0Xtm2bZvo83z9vIoVKyYNGzY0FujwuyEfFdVHPzsdb6BjBVz3iC4Eoq/KlSvLddddl6z7w0cXgrJb73MdZ6TXoONu9HtVvHhxqV+/vnEdwTiJM0DDnj17jLEPzjEJwTgXbSCAAAIIIIAAAggggAAC6U0gdf/ffnrTob8IIIAAAggggAACCCCAAAKpLqDBFqxJH5JbHxRXr15drr/+euMht6vepEmTjMn+2bJlcxUl6X3dunXy9NNPGw8T/W3g0KFDoufXl04o1kn7/iR94DtkyBB5++235eTJk/4cYgwa0JXr9aUBDDRQQa1atfw6Nq1UunjxojzzzDMyYsQIsQZs8Kd/CxculAceeED+/vtvf6qbdXSgx/vvv28EwnjhhReMwBGBBtIwG0vY0AnwGuxhzZo11uJEt/UhtQYV0NeTTz7pFlBEJ+MPHjxYrMEmRo0alawADfpdsgZn0A726NEj0X4mZ+eJEydEA29YU3ICTFjbcW3v379f7rrrLmNwh6vM0/vZs2flww8/NCb4//jjj8bfDGs9/e507NhR9HNJLOn3+7nnnpNp06YZQRYiIyMTq27bp/ecBt7QwRz+Jv1ObNy40TjnoEGDjPtFr/dKJw0iow4acCKxpF76t0lXY/n5558lOYOpnAM61EYDujz22GOJdYF9CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCQBgTmzZtnPLPVhTH0+a23VL58edGFBjRwvk7qT2rSieojR46Ur7/+2m1REE9t6uR/HW9x++23G2NS/A0Ur0H59fnpV199Jfp81FfSMS833nijseCHjn3RgA0pnXRMgwaNsCZdCCTQ5GthEA3IoEH+1dzbs+QbbrjBWKyiZcuWXk+vwfrffPNNmTt3rsdFTXQxE1045Z133vG40IfXhi079HObPn26sVDG4sWLjUAhlt1um3nz5pVmzZoZz8lvvvlmt/3+FOh4CR3n4koaaEI/G18psUVULl26JOPHj5fhw4fLhg0bPDalXnpu/Wxq167tsY6/hTo+SxcksY6t0OAfzuf5/rZHPQQQQAABBBBAAAEEEEAgIwmEZqSL4VoQQAABBBBAAAEEEEAAAQTSt4Cu0G59OKlXow/ic+fObbuwzp072/LHjx+XmTNn2soCzejD87p16/r1MNRb2/5OxNb+tmjRQl555RW/gzM4z6kBHrytYu+sm1by2mcdcKCDFQINzqDXsHPnzoCDM1ivXYMf6APo1q1b2wIhWOv42n7vvfeMB/+BBGdwtunpPilRooRxr1vr6uAAfwZ0WI9xbetD+U8//dSVNd6vvvpqYwCBrTCIGZ2Qr5+xNQUzQIMGZ9DvqK684W/S4BzNmze33TfaTx28YR1A4Ks9Pad+Z60BNHwdo/eIp8/a13Gu/RrwQr8vGsjlSqaXXnpJnnjiCa8Dajz1bdeuXcaqHLpSR1KTriajL2v66aefrFm2EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgjQns2LFDbr31VuPZtC5wkVhwBu261tfJ5vo8+4033hB91h1IiomJEV0QQYMt6CIGp06d8utwfZarQSR0gQnroiHeDtYxDq+++qpcd911xoIM/j7L13EdGoDg5ZdflltuucVb80Et10UMrEmDUWighGAmXZSjWrVq8sUXXyT6LHn16tVGEAxdLMU5TkQXnOjZs6fhMnv2bLfxBq7+6jiEOXPmiC7oMnHiRFexX+/Hjh0zrr1SpUry4osvGgsNnDt3zuexeh9p4AkNcKDjlvxdeMVnw8mooM/f69evLw8//LDX4AzavHrNnz9f6tSpY9x3yTilcagzGIMurEBCAAEEEEAAAQQQQAABBBAQCQMBAQQQQAABBBBAAAEEEEAAgbQi8Pnnn7s9kHUGY9C+3nfffdKnTx/bw1l90N6hQ4ckXconn3wi3bt393isTpzXCd76kL1QoUKSNWtW0YnTOkhg5cqVsnTp0kQfNjsb1Ye49erVkz///NO5y2hbH5DqpHY9b758+Yyo/UeOHJG1a9fKsmXLjPO6HZhOCvr16yc6AMOV8ufPL7fddpvUrFlTChcuLOfPnxedUK+TsJ0rAriOsb7r6hm60kSVKlWMidw6qEBXn9CH6YcPH5Y//vhD9CG+blvTDz/8IDrp/K233rIW+9zWYwYPHuyxng4W0ftEH+rrfaIDC/Q+0VUY9D75/ffffU7u10nw+oDflS5evGgMINHzBprUUCfJW5MOSvHH1XpMINvO4Cr6XdEBGcFIaqGDHnbv3m00p9fRoEEDY1BPqVKlJFu2bMa9o5+3DjSwJh0Y06NHD9HPffPmzcbgGr3XNOXIkcP43HQgjN5POlBBA8Xo57Bx40ZrM0ZgCB0YpH97kpL03lAPvV+LFStmBJ4JDw+XM2fOGMEiNKCDBo9w9U3PofeRfv7690dXbkntpH8brfe83tuu76xu6yoo27ZtkxkzZrh56fdO7zl1T2rSvw3W+9h5jyW1XY5DAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHgC6xatcp4rulv8AJrD/Q5v44pWL9+vTHpX58B+0o6wV+fozqfEfs6Lin7dexKoMEBknKeYBzjDHyvk/qzZMkSjKaNNt58882AJ/6///77xngOPVaTfnY6BsDZV2Onl//RBRW6dOkiOjZEF+bwJ+nz+OQswKHn+Pbbb40AIL/88ouULFnSn9MGvY6OUdJxDYEukqDeOr5CFzNJatIADePHjzcP18U11q1bF7TxIGbDbCCAAAIIIIAAAggggAAC6UyAAA3p7AOjuwgggAACCCCAAAIIIIBARhXQidHjxo2zXV7x4sWNle5thQmZIkWKGCsuWKOy6wP3PXv2SOnSpZ3VE81rgIWnnnrKrU758uVFH1S2b98+0Unt+jBXJyB//PHHbm04C3Sy9QMPPOAWnEEfhj7yyCPSv39/IzCD8zhrXh9yTpo0ST799FNrcbrYHjp0qNFPffCvk8779u0rERERbn3XQRc68dtT0s9FVwO444475Prrr/dUxVam99WUKVPkueeek4MHD5r73n77bbnnnnuM4BBmYSIbOmHfOlHdVVVXaNDr0uAMiSVdlUEnsX/44YdeqzVs2NCYiK+BJVzps88+kxdeeEFCQ0NdRX69jxo1ylZPB6889NBDtrJgZ1asWGFrUgMSaACCYKRvvvlGdOUTTTVq1BB10eAczqSfs66c0a5dOyNQh2u/rhCiq5L06tXLCIig5ffee6+xEosGS3AmvQf1837llVdsu/RvwpNPPmkEdrDt8JDR77UGXFF3DWrgz0ANXT3mnXfeMf726IAUTfp3Q9vQ4BQaUCI1k65iokmDbbz++uui+ezZsxtl1v/RfXpv6+oy1hVt1F0Dy+iqIklJGtBi2rRp5qEa9EQDQmhAFBICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCKQdAQ2W3yhhMQp95ulMFSpUkLZt2xrP+XRyvT6710UOdIEHZ319Nq/jBb7//ntnM255fabrKTiDBvnXZ/hVq1Y1xpfoM87o6Gg5ffq08bxxw4YNxmIcGhTCn6ST0z0FZ9Cg9rfeeqvxnF/Ht+jzXA3Ir+NIdu7caQS51zEp+pwztZIG0ncuGHLTTTcF7fQzZ860BWfQ8TutWrWSG264QQoWLGhcu45rmTp1qjgDdQwZMsQIylCrVi15/PHHbcEZKleubLSj90pkZKQcP35cfvvtN2NxBddYAb0IfR6tCzTovZY3b96ArytXrlzGOBFdWEHPpW3kzp3bCBihn9OmTZtkwYIFxuIP1sb/+usvY9EYXVQgLCx1p+Do/aRjDlzBGXQsQt26dY3xVDpGSq9JF35ZvHixMS7FOd5G3XWMzc0332y9JL+3dWEFZ4qKiiJAgxOFPAIIIIAAAggggAACCGQ6gdT9f4eZjpcLRgABBBBAAAEEEEAAAQQQ8FdAV77XKOvWdP/993udmK6rE1gDNOhD2LFjx8prr71mbSLRbZ0ArZO0XROhXZV1orw+VNaHvr6SPqjt2LGj8bKu9O7pOF2N3jmIQCfOa2AK7Yc/SScs60snjuvqAOkpabAEDTTw5ZdfGsEREuu7p0ngOuleP3d92Oxv0mAQ9913nzRo0MB4aRAPTTrp/d1335XJkyf7bEofZGtQCGfS4B0TJkwQf1buKFCggDz66KPGSyfae0s6CKF79+7mbr2ndMUIXfXD36TtW78bepz2VfuQUunixYvGSibW9q+99lprNlnbrgEXuiKETvrXAQbekg6A0QAOnTp1slW5++67RQejaHr++eflrbfesu23ZvQ+ffnll0X9R48ebe46deqUMaDB2bZZwbLx3nvvBTwgRK9L/4bVq1fPGGDh+o7rPagDfh577DHLGVJ+Uwdu6P2t5k2aNPF6Qv1OaqAbHTylbtakfkkN0HDddddZmzK2NRAIARrcWChAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA4IoJ6PNcHTfhDLaQP39+ef/990XHfnhKOiH+2WefdVvMQxfJ0OM0AL+3pM8ydWEGa8qZM6d89NFHxrgCX4sgaJ9//fVXY5yJa+K7tS3r9sCBA61Z0XEIGhxCn5H6Gi+g4yQ0qL2OLfAUTMLWcBAyzoUVtEl/Fr/w99S6wIQmNeifsAiJLqLgaXyHmulCBNOnTzeb1nEar776qnTr1s18Dq9BLnRBFF1gw5l07ISeQ8dLbN261dx94MABGTFihLz44otmWWIbOvZH70EdM6CBDXSBAl9pyZIlxv23cuVKs6qW6TgAvebUTHqtrqALGmRB8xoQw5l0vImOcdCxNatXrzZ36z2o4xB0XFZSki7OoZ+xqw/ahqf7LCltcwwCCCCAAAIIIIAAAgggkJ4FQtNz5+k7AggggAACCCCAAAIIIIBAxhEYM2aM28U8+OCDbmWugjvvvNMtgIIGaNAHuv4mDYzgmrDvOqZixYrGZGR/gjO4jnG9ly1b1rXp9q4T2PUBvTPpqvP+BmewHqurSuhghvSWnnnmGY8P1v25Dg2GEUhwBmubumqAPqS2pmnTpolOuPeVNJCDrkhgTRrwQQNN+BpsYT3GtV2mTBnXptu7DgpwrvIwcuRIt3qJFXz66afGqhHWOrqCREomfcjvDHSS2HUmpS8aYGLKlCmJBmdwtauDf3Q1FGtyBWfQACy6QoQ/acCAAW5BYjRghj/J+Tn6c4yrTtOmTeXpp592ZY13a6AI244UzgwbNizR4AzW02vgixIlSliLZM6cObZ8IBlP95B14E0gbVEXAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRSRuCdd96RdevW2RrX8QwLFizwGpxBK+fLl88IkPDSSy/ZjtVM3759JbHACRrswBkQQscEaFAAX8EZtH191t+sWTNjUYfEngFv3LhRtm3bpoeYSYMM6LNRf8YLaCADDdCvC3qsX7/ebCOlNqwBBVznCPbiCuqr4y10YRFPwRn0vDqmRZ/vO889d+5cI0CD1ilWrJgsXrw40TEkGrxfF6hwWut4H39S8eLFjcVidGyOjhXwJziDtquBHBYtWiQtWrSwneaDDz5I9cVUXIERWrVqJVFRUR6DM7g6qeOW1LhIkSKuIuNdy5zjo2wVEsnoPVylShVbDQI02DjIIIAAAggggAACCCCAQCYVIEBDJv3guWwEEEAAAQQQQAABBBBAIC0J6MRpXQHBmjTa+zXXXGMtsm3rQ94OHTrYynbv3i3z5s2zlSWWeeutt9x2jx8/XiIiItzKk1ugD56dDztvvfVW6dq1a3KbTjfHa4AFXd3gSqXbbrtNChYsaJ4+Li5Oli9fbuY9beiADl2twZrCw8Nl4sSJfg3qsB7nz7bee126dLFV1cEgem/7kzQQiDPYia6GUadOHX8OT3IdDdDgTM6J+s79geY1uIcO0PA36aoQntKbb77p92engzV04IU1WVeasJYHe9sZoGbNmjUSHR0d7NMk2l758uVFV9nwN+lgFuff5b1794orOIa/7bjqlSxZ0rVpvnu618ydbCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQKoK6DPqjz76yO2cOoFen1X7kwYNGuQ2ET4mJsbtWb21rR07dlizkiNHDrnvvvtsZf5mcubM6bWq8zxaManjPBI7j9cOBLjDU8B7T4HxA2zWVv2FF16Qtm3b2so8ZfT5cb9+/Wy7dNGVo0ePGmU67qJChQq2/Z4yV111lRF4w7pPr3P79u3WIo/bOr5D742kJB2XpGOIrJ/b33//LT///HNSmkvWMRp44YsvvvAaEMPauAZHee2116xFxiIfGqQhqcl5D+n3Ij4+PqnNcRwCCCCAAAIIIIAAAgggkCEECNCQIT5GLgIBBBBAAAEEEEAAAQQQSN8CEyZMEH1ob02dO3e2Zj1uOycwayXn5HSPByYU6ioHzoe1DRo0kNq1a3s7JFnl3333ndvxffr0cSvLyAU6cTtXrlxX7BJ1FQd9cG9Ny5Yts2bdthcuXCinT5+2let1OB8+2yokM6MT4kNCQsxWLl26JJ9++qmZT2xjxowZcujQIVuVHj162PIpkdFJ+M5UtGhRZ1Gy8o888khAx9eoUcOtfuXKld0CLrhVchQ42/E0oMVxSFCyzoEoGlDE02onQTmZl0Yefvhhv4NZuJqoVauWa9N837Jli7kdyEaBAgXcVjDRAS8kBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBIGwLffPONHDhwwNaZli1byh133GEr85XRIA9ZsmSxVdPn5M6xJK4KZ86ccW0a73nz5pWwsDBbWTAyzvNom/ocM60mZ8B7nayvgQaClSIjI+Wll17yu7lWrVpJtmzZ3Oo3a9ZMmjRp4lbureDuu+9225UaiysULlzYLXjIb7/95taXlC7QgAt6j/ub7r33Xrfv06pVq/w93K2ec3EFHb/gaZyI24EUIIAAAggggAACCCCAAAIZWCD4/xUiA2NxaQgggAACCCCAAAIIIIAAAikj4AyqoFH0O3bs6PNkurK9TmL+66+/zLozZ86U48ePiz5kTixFRUW57X7ggQfcyoJRoCsA6ER/aypRooT873//sxZl+O3GjRsH/Ro3bNggK1askPXr18vu3buNYAo6QEJX0/CUtm3bZives2ePLe/MpOZ94jq33tPNmzeXOXPmuIqMwCP9+/d3m6xuVvh3Y+TIkbai3Llzy/33328rS4mMM4iFniMiIiJop1KTQAM+eAqioUFYAk26EoU16UCDs2fPBhxsRFePWLp0qaxdu1b++OMPY5CS3qv60jb9Sb7uV3/aCKROw4YNA6lu1HUGQdHCU6dOBdyO6wBdjcR6vKcBUK66vCOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQOoKzJ071+2EPXv2dCvzVaDPGW+99VaZNWuWWfXYsWOik/Bvvvlms8y14QySoAsZ6HiAq6++2lUlKO/O82ijOkE/kOACQemIn404J80H+pzd12l0QYtAxgLkyJFDKlWqZIzpsLYdjAUakrpQgLUf/mw7F1fwtRCIP20GUke9O3XqFMghki9fPmM81Z9//mkelxyvYsWKme24NnRxBU/jMlz7eUcAAQQQQAABBBBAAAEEMroAARoy+ifM9SGAAAIIIIAAAggggAACaVxgyZIlYn0gqN1t0aKFFCpUyK+eP/jgg/Lqq6+adXVi/qRJk+TJJ580yzxt6ERpZ6pXr56zKCj57du3y5EjR2xtaXCJzJZuuOGGoFyyfsYffvihjB07VjZt2pSsNk+ePJno8c77JDQ0VGrXrp3oMcHY+cQTT9gCNOhgkunTp4sOdvCWNm/eLM6AEhqcIVeuXN4OCVp5dHS0W1s60CJYKSmDaDQ4hTMFqx0NGOCv68GDB2XIkCEyZcoU0c8xOcnX/Zqctj0d6xxo4qmOs8zTqh3WAAvO+r7yeh9Zjz937pyvQ9iPAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKpJLB48WLbmXQyuY75SEpq3769LUCDtqHtewrQ4CzThTPuvfdemTFjhpQqVSopp/d4TM2aNUXHCVy6dMnc37VrV/n+++/lmmuuMcvSyoZzcYVAgin4cw233HKLP9VsdXQSvy66YU2BLq6gi7ToGABrQP+kPj/ft2+f6Fgl7dPWrVuN59Hqdv78edH7yJn0mb81pfbCCjpGJTw83NoFv7Y16Il1PJb1ubtfDVgq6cIKzmT9LJz7yCOAAAIIIIAAAggggAACmUGAAA2Z4VPmGhFAAAEEEEAAAQQQQACBNCwwZswYt9517tzZrcxbwQMPPCD9+vWzPSTVNn0FaHBOlA4LC5MqVap4O02yyp3n0sauu+66ZLWZHg8uXLhwsrutgy/0/tCgF8FIvh5AOz+7smXLGg/9g3HuxNpo2bKllCtXTnbu3GlWGzlyZKIBGkaNGmXWdW306NHDtZmi7/Hx8W7tZ8mSxa0sqQW6ukOgKWvWrG6HBKudixcvurXtqeDTTz+V559/XpyDYDzV9afM1/3qTxuB1NFBLoEmT+7+enk6l/5ttqa4uDhrlm0EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEELhCAhpcXSe4W1ONGjUkqc+KNRiCM61evdpZZOSrV68ueq41a9aY+1etWiUVK1YUDfSgr//973+S3IUF9JnpnXfeKTNnzjTPo8/xq1WrJq1bt5aOHTtK8+bNJU+ePOb+K7nhXFwhudfvvJZgLIqgfSpevLizaZ95Z4CGQJ+ff/311zJixAhZuHChLeCGzxM7KiQ1MISjGb+zSVlYQRt3Lq4QqJe1g57uIxZXsAqxjQACCCCAAAIIIIAAAplRIDQzXjTXjAACCCCAAAIIIIAAAgggkDYEzp49K1OnTrV1RidQ33HHHbayxDIaab9Ro0a2KuvWrRN98J5YOn78uG23PpgMCQmxlQUr4zyXtpuUieLB6s+Vaie5AxIWLFhgDGwIVnAGdfA1cdz52aXW56YrcDiDK+gggc2bN3v8+HSQxYQJE2z76tWrl2qBQDw9jL9w4YKtP8nJeJr0n5T2gtWOP+d+6623pFu3bkELzqDn9HW/+tOvQOqkppe3fukqJdbkaWUO6362EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgdQSOHTtmW0xDz5qchTEqV64s+qzcmo4ePWrN2rZ1sn22bNlsZfqcWp+dt2rVSiIjI6V+/fry3HPPybRp08S5QIPtwEQyb7/9tjiD2+siBtOnT5d77rnH2KfBJZ566imZOHGi7N69O5HWUnaXc3GFpAbL8NbLpIyZcD53Tkob2h9nO/4+P9+/f780adLE+Kx03MmlS5e8XZ5f5ckJdODXCRyVnPeeY7fXbFK9PDXoXFhB67C4gicpyhBAAAEEEEAAAQQQQCAzCdj/C0ZmunKuFQEEEEAAAQQQQAABBBBA4IoLfPXVV6JBGqypQ4cOEh4ebi3yud25c2e3OmPGjHErsxY4V7TPlSuXdXdQt53n0sZT8nxB7XwQG/P0wNbf5k+cOCF6bzhXe9DBGboaxeDBg2X27NmyceNG0QEael/pwIPLly/bXg0bNvT3lEY952eXmp/bI4884raax6hRozz2f8qUKeJcpcEZ4MHjgUEqjIiIcGvJObHerUIGLvjtt9+kb9++bleoTp06dTJW5YiKipJt27aJ3tt6X+sgEOf96tZAJixw3kee7rVMyMIlI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIHDFBfRZpzNpUISkJn3+71z4wbmogrXt2rVryw8//CAFCxa0FpvbsbGxsnjxYnnnnXekffv2UrRoUalatar069dPtmzZYtbztXHVVVfJvHnzpFy5ch6r6tiElStXyocffigPPviglC1b1qjbu3dvWb16tcdjUqrQubhCMBdW0D47J/0n5TqC0Ya/5923b5/oOJFffvnF30N81kvtwASp6eXt4p3P7bUeiyt406IcAQQQQAABBBBAAAEEMosAARoyyyfNdSKAAAIIIIAAAggggAACaVDAUxAFnYAeEhIS0KtLly5uV/fll19KYg+anQ/1nYEi3BpMRoHzXNpUSp4vGV1Ns4e++eabcuTIEVv/brrpJvnzzz9lzpw58sILL8itt95qDKYoUKCA6CRu58oaerCnh8a2Rh0Z52eXmp+broLQsWNHW490pQ9nkAqtMHLkSFs9HYBy991328pSMlO4cGG35hMbKONWOYMVPPPMM25XpH+n9u7dK5MmTRINnqGDQHQgjw5Q0kEy+nfPmgK9V63HZpTtmJgYt/vd072WUa6X60AAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgPQmcOXPGrbvJDbjuPN7TOawnbdq0qRFs4cUXX/QaqMFaf/PmzfLGG29IlSpVjGfqO3futO72ul2jRg3ZsGGDDB06VEqVKuW1nmvHrl27ZPjw4XLjjTeK9nHt2rWuXSn67vTL7M+d9Tm9LpzgTNWrVxe9Z2bMmGEE0Th48KDoAh4a1MO5sMJrr73mPDzT5T3dR857LdOhcMEIIIAAAggggAACCCCQ6QUI0JDpbwEAEEAAAQQQQAABBBBAAIErI6APvZcuXZpiJz958qR88803XtvXSfzWdOrUKeMhq7UsWNvOc2m7nlaSCNb5gtnOxYsXg9lcktuaMmWK7Vgd8KArVFSoUMFW7isTaNAA52eX2p/bE088Ybskva81+Ig16Uoc+rKmhx56SLJly2YtStHtMmXKuLWvwQgyY9LBHc7P44477pCxY8cawRj8NQn0XvW33fRUz9M95OleS0/XRF8RQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyCgCuXPndruUc+fOuZUFUuA83tM5nO3p4ge66MOBAwdk9uzZ8txzz0mtWrUkPDzcWdXM6yR8HVOiE/V1UQh/Us6cOaVPnz6ye/duWbhwobzyyityyy23GAH5Ezt+/vz5cvPNN8v48eMTqxaUfc6A95n5ufOPP/5ojCuxwqqPft5r1qwx7pk2bdqIBt8oUqSI6L2WNWtWa3Vj21NwArdKGbzA033kvNcyOAGXhwACCCCAAAIIIIAAAgi4CRCgwY2EAgQQQAABBBBAAAEEEEAAgdQQGDNmTIqfJrFzFC1a1Hb+uLg42bRpk60sWBnnubTd9evXB6t5j+14emiclGALx44d89h+ahZqMA/nRO2nnnpK8ubNG1A39Pqd7fhqwPnZ6SoXvlbo8NVmIPt1IEDdunVth4waNSrRfEhIiHTr1s1WJ6Uz5cqVcztFoNZuDaTTgrlz57r1vF+/fm5lvgp27Njhq0qG379v3z63a/R0r7lVogABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBFJcIF++fG7n0EUHkpouXbokp0+fth2uwRf8TWFhYXLrrbfKsGHDZPny5UZbixYtksGDB0ujRo1E9zuTnq9du3aydetW5y6veX0mr4EZ3njjDSNQg7axYsUKGT58uLRs2dJjwIbY2Fh55JFH5Ndff/XabjB2OAPea9AKdc2Mybn4RZYsWeT777+X5s2bB8ThKThBQA1kgMqexn8477UMcJlcAgIIIIAAAggggAACCCAQkEBoQLWpjAACCCCAAAIIIIAAAggggEAQBHSi/MSJE20t6coF1apVS9bL+WA+KipKvE1yrlOnju38mlm8eLFbWTAKypcvb0Tbt7a1ZMkSazbo23ny5HFr0zmQwa2Ch4Jt27Z5KE3dor///tvthA0aNHAr81WgKyBcuHDBVzXbfud9ogMXli5daquT0pnHH3/cdoqVK1eKvjSdOnVKnIMKdDDBVVddZTsmpTP63StZsqTtNFu2bLHlM0vGeb9mz55dbrrppoAvP7Xvs4A7mAoH/Pnnn25n0X8nSAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggcOUFChYsKBqswJp0AYakJn3G7AwmoOdIasqWLZvUr19fXnjhBVmwYIEcPHhQhg4dKpGRkbYmz507J6+++qqtLJCMBn7QZ8LPPPOM/Pjjj3L48GHRhReKFy9uayY+Pl6ef/55W1mwMzo+xZp0fM6hQ4esRZlm27m4QosWLaRWrVoBX7+3cUcBN5SOD3AurqBjRDyNS0rHl0jXEUAAAQQQQAABBBBAAIGABQjQEDAZByCAAAIIIIAAAggggAACCCRXQCPS6wNpa2rbtq2sXbs2Wa+BAwdam5TLly/L559/bitzZXR1BGdyBo1w7k9OvmHDhrbD9+/fL/Pnz7eVBTPjHFCgbSflofHChQuD2a0ktXX06FG345zBONwqeCj46quvPJQmXpTa94mn3tx9991uAT5GjhxpVB0/frxER0fbDuvRo4ctn1qZmjVr2k71xx9/2PKZJeO8X5Nyr6rV1KlTMwuZ1+tct26dbV9oaKjccMMNtjIyCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCBwZQRy5swplSpVsp1cx31oIIKkpBUrVrgdduONN7qVJbWgQIEC0qdPH1m2bJnkzp3b1swPP/wgMTExtrKkZnLlyiXdunWT1atXS6lSpWzN/P777+IM+m+rkMzM9ddf79ZCZlxcQT9L57ikpCwEoveyfmaZPTkXV2Bhhcx+R3D9CCCAAAIIIIAAAgggoAIEaOA+QAABBBBAAAEEEEAAAQQQSHWBMWPGuJ3z/vvvdysLtKB9+/aSNWtW22E6gd25woJWqFKlittAgd9++01SatV6DUDhTMOGDXMWBS3vHAShDQf60FgfNHv6rILWST8bioiIcKvpnATvVsFRcPLkSa/BOhxVbVkNrJEvXz5bmU6c3717t60sJTPh4eHy2GOP2U4xZcoU0Wv65JNPbOUlS5aUVq1a2cpSK1O7dm3bqY4fPy579+61lWWGjPN+PXHihMe/QYlZaGCUVatWJVYlU+xzBmi45pprRAczkRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIG0I1K1b19aRs2fPyuzZs21l/mamTZvmVtXZvluFJBToeIpHHnnEdqQujLB9+3ZbWXIzRYoUkd69e7s1k5KLHTgXVtCTp+T53C4ujRQcO3bMrSdJWVxh1qxZovd0Zk46PufAgQM2Ak/3ma0CGQQQQAABBBBAAAEEEEAgEwgQoCETfMhcIgIIIIAAAggggAACCCCQlgT27dsnc+bMsXWpUKFC0qJFC1tZUjK62kHLli1th+oEcef5XBX69u3r2jTfu3TpIufOnTPzwdq45557pHz58rbmtF+fffaZrSxYmcKFC4tO1rcmDSwQyEoVH3/8sezcudPaxBXZLlasmNt5f/75Z7eyxAqeeOIJI6BBYnU87dMVP5588knbrtjYWHnggQcCnnRvayTATPfu3SUsLMw8SgeHPProo7Jp0yazTDc0kEOWLFlsZamVad68udupFi1a5FaW0Quc9+v58+clEAf9bJ0BOTK6mafru3DhgqxcudK269Zbb7XlySCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwJUV8PQMb9SoUQF3SscmOAM7FCxYUG644YaA2/LngMqVK7tVO3XqlFtZcgtS6zyufnoKeu8MjO+qm5HfnQsr6LUGuhCIHjN8+HB9y9Rp7dq1btd/8803u5VRgAACCCCAAAIIIIAAAghkNgECNGS2T5zrRQABBBBAAAEEEEAAAQSusMC4cePcggR06NDBNvk8OV28//773Q4fM2aMW5kWaF1n0IStW7fK7bffnqTJ/Lt27fJ4Hi3USfMvv/yy236d/P/VV1+5lfsqOH36tBw/fjzRarfddptt/549e+S9996zlXnLzJ8/X/r06eNtd6qW16hRQ3LlymU75/vvvy8afMOf9Prrr8ukSZP8qeqxTq9evSQyMtK2Tyfcd+zYUWJiYmzl/mR2797tTzVbneLFi0vbtm1tZd98840trwEcNGjDlUrVq1cX7ac1LViwwJrNFNsNGjRwu0797l+8eNGt3FmgwRw0mIv+HcrsacmSJW7fL2cAnsxuxPUjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggcKUF9Dm2M4j9Dz/8ID/99FNAXdOxE3FxcbZjunXrJlmzZrWVBStz4MABt6Z0cZFgp9Q6j6vfOjalSZMmrqzxHsiCArYD03Emb968ogtyWFOgC4GMHj1aoqKirE1kym3n/aNjU5z3WKaE4aIRQAABBBBAAAEEEEAg0wsQoCHT3wIAIIAAAggggAACCCCAAAKpJ3D58mX5/PPP3U7oKaiCWyU/C+644w7RB63W9N1333mMhK8P8jU4QrZs2azVZeHChXLTTTfJtGnTRPucWDp37pzRxi233CIPPfRQYlXl4Ycflnbt2tnq6AR/neivAwv27dtn2+cps2HDBnnhhRekdOnSsn79ek9VzDJPk/X79u0rn3zyidfr0lXrhw4dKhrcQfuWPXt2s70rtaGfU5s2bWynP3HihPHANzGD/fv3S6dOneS1114zj82TJ4+57e9G/vz5Zfz48RISEmI7ZOrUqVKnTh2ZN2+erdxTRvurgUKqVatm64+nut7KnnjiCW+7jPLWrVu7DXxJ9IAU2Kl9sCZ/bKz1M8J2rVq1pEyZMrZLWbx4sdx1110e/w65Kq5YsUL078isWbOMoqTcq662MsK7894pUKCA1K9fPyNcGteAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQIYR0Of5GlzBmR588EHZtGmTs9hjvl+/fvLjjz/a9ulYhZ49e9rKrJl3331X5s6day3ye1sXxNDFRaxJF21wPufV/VpPF0+Ij4+3VvdrW4P4jxgxwlY3NDRUrr32WltZsDPOwPe6QICOn8hsyfl8WYMtuJ7H+7KYPXu2PPXUU76qZYr9zoU56tat6zYuK1NAcJEIIIAAAggggAACCCCAgEMgzJEniwACCCCAAAIIIIAAAggggECKCejDzh07dtjar1Chgtx88822suRkNNiCrkCvkexdSR96T5w4UZ555hlXkfmugRg++ugjeeyxx2xBC7Zv3y7t27eXkiVLyq233irXXXedFCxYUDQS/MmTJ2Xnzp2yevVq0YnX0dHRRnsNGzY02/W2oQEqNm/ebBuIoEEgPv30Uxk7dqzog8zGjRtL8eLFJV++fKIBII4ePWoEY1i2bJnog3N/k04U1wnz3377rXmIDhro3r27fPzxx6IrWVx99dUSHh4uR44ckVWrVhkPow8fPmzWf++994z6ZsEV2nj11VeNQBj6WbqSWtSoUUNatGgh//vf/4zPSlfU0BUo9F7TCd4aZMKVNECGfq4agCPQdOedd8rLL78sAwcOtB26Zs0aadasmeh93Lx5c6lUqZLoqhr6mep9on3U+2Tp0qXi6rv2OSlJJ+/rffjHH394PLxHjx4ey1OzUIOtjBw50jylfk/UKKnXbDaUjjZ0RRINCqL3mzXpKjFly5Y1grTUrl3b+Hty9uxZ2bNnj7F6zO+//277G6R/l3TQUmZN06dPt136vffem2Kr49hORAYBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBAIS6N27t+gCB2vXrjWP03EOjRo1kg8//FA6dOhglls39Jn6c889Zyx2YC3XbV1YQsdNeEv63P/ZZ5+Va665xli4QQPmV65c2Vt1s3zjxo3G4hu7d+82y3RDx4dosAln0mt6//33jWe99913nxGY/4YbbnBWc8tr+zo2QwP1W1PTpk2laNGi1qKgb+vCJjp+4NKlS2bbOn4isz1/1s/0559/Ng10Q+9FHZtz991328pdmfPnz8uwYcNk0KBBEhsbaxTr4goa1CMzpjNnzsjy5cttl+5cuMO2kwwCCCCAAAIIIIAAAgggkIkECNCQiT5sLhUBBBBAAAEEEEAAAQQQuNICY8aMceuCTugOdtI2rQEatH09t6cADbrv0Ucfldy5cxsP4fVhqzXt3bvX42AAa51AtvXB7W+//WYEkZg/f77tUJ3Ar4MIkhJAwNaQJTNq1Cjjgb9zNQSd5O9tor/r8Oeff166deuWJgI0VKxY0Ri4oQMYrEkHFOgKB75WOdAADroyhQbbSGp64403JH/+/MYAEetABm3vr7/+Ml5Jbdvf4x5//HGPn4f66DVe6aQBRjTox7Zt28yu6GoimSlAg174Qw89ZKzW8uWXX5oOuqEBVyZMmGC8bDscGQ0G8sADD2S6ATIuhg0bNsiWLVtcWeM9sw0Wsl08GQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSCILBy5UqpXr16slvSQAU6nsCVdFGIyZMniy4ioUHqXUkXitBA7P3795c2bdoYz5J1bMahQ4eMSd/fffed6ARwZ7r99tvlySefdBZ7zGvABX2+qi8NmK/PpqtVqyZFihSRyMhIYxEOnVyvz7AXLVpkLMKhCy5YU4ECBWTAgAHWIrftXbt2GZP2deJ+sWLFRIM0qKUGkdDzqIFeu9ZbsmSJsaiEaxEHV2O64Mg777zjyqbYu/avSZMmxjNr10n0uX1me+aq1zt48GBjIQ+Xg35GuuiLfn4ayELHN2hgDl3IRBc10YUXjh075qpuBABp1aqVETDELMxEG+rhClShl60LVuj3n4QAAggggAACCCCAAAIIICBCgAbuAgQQQAABBBBAAAEEEEAAgVQR0JUP9IGvM6VEgIZbbrlFSpcubaxM7zqfPpTXqO4333yzq8j2rlHyK1SoIL169TICKNh2+pnRB/z+pHz58sns2bONh/f68N3TgANf7WTPnl002IOvpCsvaECI5s2b2ybNJ3acDhzQh9S62kRaShosQgMjPP3007YHwL76+PDDDxvBGXSwQ3KTBvm47rrrDBtfAS68ncvf+8TT8fp9eeGFF0S/T9akgStCQkKsRVdsW/uiq5y4kgYp0OAWaaV/rn6l9LuuupEzZ86AArzo91pX43jiiSdSuntpun0dvGVNOohKB3OREEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAg6QIaUH7dunVJb+DfIxs1auTWRpUqVWTBggWiwRV0srs1/fnnnzJkyBBrkdftu+66SyZNmpSk58saHEFfM2bM8Nq+c4cGV5g+fbro2Ap/04EDB+THH380Xv4eo+MVJk6cKNdee62/hySrngYnmDt3rtnGzz//bASQyJUrl1mW0Tc08MK0adOkfv36Eh0dbbvc1atXi74SSyVKlDACNowbNy6xahl6n3Ocl449Ss6YlwyNxcUhgAACCCCAAAIIIIBAphMIzXRXzAUjgAACCCCAAAIIIIAAAghcEQGdcHvhwgXbuevUqSPly5e3lQUjoxPBPUVsHzNmTKLNa4R8XTFBgye0bdtW8ubNm2h93VmqVCnp2rWrLFy4UL766iuf9V0VwsLC5LXXXpOdO3fKq6++Ktdff73PAQYaOEEHOrz77ruyb98+I6K/q73E3suVKyfr16+XN99801jJwVtdbV8DVaxZsybNBWdw9blHjx7GQ3Ltpz5M95b0WnS1g19//dWYIB+M4AyuczVt2tQYtDJlyhRp0aKFMQnftc/be8WKFeWpp54y+j506FBv1XyWR0RESOXKlW31cuTIIV26dLGVXcnMo48+KrrqiSvt2LFD5s2b58pmmne950aPHm0MyqlXr16i161/azQAiQaSyezBGeLi4kSDW1hTWgsWY+0b2wgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg8I/ATTfdJEuXLhV9ph5o0mfhAwYMMCbUa2B7XymQgAre2tKJ+4sXLxZdBMRbKly4sM+xHN6OdZVrUIZffvlF7rnnHldRir/ffffdUrBgQfM8Ol7HOdne3JmBN3QxgDlz5iQ6VsbT5deuXVuWLVsmZcuW9bQ7U5SdOnVKZs2aZbtWXbCDhAACCCCAAAIIIIAAAggg8I9AyOWEBAYCCCCAAAIIIIAAAggggAACCLgLxMfHy6pVq4wVFo4ePSonTpwQnXStk8/1IayuAFG6dGn3A5NYcvDgQWMCv64moeeLjY0VXb1AH5pXqlTJOF/OnDmT2Pp/h2mwBl0VQ8+hqwTo5HBtXwNmpKfVEnR1jyVLlogGADh+/LgxKCJ//vxSoUIFqVmzZqpdS0xMjKxYsUL27t0rR44cEX1IrUET1FUDkFStWjWg1Tb++6Tct7Zu3Wp8VtY9GpzBOaHduv9KbOuEeg0k4krt2rWTr7/+2pXNlO+HDh0yBvfs379fTp48afwt0ZUl9O+IDgrRoC0kMVaz0VVxXElXJdFANokFZHHV5R0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBP4R2LVrl+hiDimRevXqJe+9916iTc+dO1c+/PBDIzCBPtv3lvSZeuvWraVPnz4BP1ffvXu3ETB/wYIFRmAIXejCV9Jn+bfffrt07txZWrVq5au6sV+f9f7444/GtegYBX1+6Svp800NVHH//fcbC2VkyZLF1yFB36+Lhrz++utmu3Xr1jWeWZsFPjbGjRsnDz30kK2WXnugQQt0TMP48ePNdsqUKWOMwzEL/NzQ8+pn7kr6GWof/Uk6luPtt9+WTz/91Hhe7+0YDTLy5JNPGp9baOg/a6H279/fCB5iPcafKTi6AIsu9uJKDRs2lKioKFfW67suSmNN+jlqHwJNyXX/6KOPDAvXeXUszpYtW5IdsMTVHu8IIIAAAggggAACCCCAQHoXIEBDev8E6T8CCCCAAAIIIIAAAggggAACCGQagd69e8vw4cNt16urNtx88822siudOXDggFx99dVGABDtiw42+euvv1JsANCVvl7OHzwBXZ1m0aJFZoM66OPxxx8382wggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggED6EdCFKZYvXy5///23seCBBmsoUKCAFCpUSK699lqpWLFi0C5Gn1Nv27bNmPyvizzouXSSvS7CoQtjXHPNNVK5cuVkB88/duyY8fxbF5PQhTHOnj1rXIOeRxeV0CD9ei5dAORKJl0cRIMhXLhwwezGH3/8YbibBZlsQxdqWblypWzcuNH47OLi4oz7Q4OZaHCGokWLZjIR75dbrVo10QVgXOnjjz+Wnj17urK8I4AAAggggAACCCCAAAKZXoAADZn+FgAAAQQQQAABBBBAAAEEEEAAAQTSg4AOHilZsqRtNYcbb7zRGDyQFvvft29feeutt8yu9ejRQ0aMGGHm2UDAKbB48WKpX7++WawroOgKHOHh4WYZGwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC/gk888wz8t5775mVH374YRkzZoyZZwMBTwK//PKLNGnSxNylY1U0+MmVDjpidogNBBBAAAEEEEAAAQQQQCANCISmgT7QBQQQQAABBBBAAAEEEEAAAQQQQAABHwIa3ODkyZO2Wr169bLl01JGAzRERkaaXRo7dqzoiiUkBLwJDB482LZrwIABBGewiZBBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE/Bd46aWXJFeuXOYBX3zxhezdu9fMs4GAJwHns/t+/foRnMETFGUIIIAAAggggAACCCCQqQUI0JCpP34uHgEEEEAAAQQQQAABBBBAAAEE0oOADpAYNGiQraslSpSQDh062MrSUiZ//vzyxhtvmF26cOGC6IR7EgKeBBYvXiw//vijuat27drywAMPmHk2EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQCEyhUqJA8++yz5kGxsbHy9ttvm3k2EHAKrFy5UubNm2cWV6hQQR566CEzzwYCCCCAAAIIIIAAAggggMA/AiGXExIYCCCAAAIIIIAAAggggAACCCCAAAJpU0AffD/xxBOyZcsWWwc/+eQTeeyxx2xlaS0THx8vNWvWlDVr1hhdCwsLkw0bNkilSpXSWlfpzxUWqFevnixZssToRWhoqPz+++9y4403XuFecXoEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfQtER0dLlSpVZM+ePcaFZMuWzRh/UKZMmfR9YfQ+RQSaNWtmC9Awa9Ysue2221LkXDSKAAIIIIAAAggggAACCKRnAQI0pOdPj74jgAACCCCAAAIIIIAAAggggECGEtCVCB599FHjmnTlCh0gce7cObdrrFatmmhdDXiQ1tO6detkxowZZjfr1q0rzZs3N/NsIHD48GEZMWKECVGuXDnp3LmzmWcDAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCDpAtOnT5d27dqZDdx3333yxRdfmHk2EFCBuXPn2sZztG7dWmbOnAkOAggggAACCCCAAAIIIICABwECNHhAoQgBBBBAAAEEEEAAAQQQQAABBBC4EgJRUVHSuHHjRE8dEREhS5culeuuuy7ReuxEAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRU4P3335cTJ04YGKGhodKnTx/Jnj07OAiYAlOnTpVNmzaZ+YceekjKlClj5tlAAAEEEEAAAQQQQAABBBD4T4AADf9ZsIUAAggggAACCCCAAAIIIIAAAghcUQFfARoKFy4s+kC8YcOGV7SfnBwBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgcwoEJYZL5prRgABBBBAAAEEEEAAAQQQQAABBNKDQJYsWSQyMlKqVq0qrVq1kq5du0q+fPnSQ9fpIwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACGU4g5HJCynBXxQUhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACQRQIDWJbNIUAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghkSAECNGTIj5WLQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBYAoQoCGYmrSFAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIZUoAADRnyY+WiEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgmAIEaAimJm0hgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggECGFCBAQ4b8WLkoBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIpkBYMBujLQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHUFbh8+bLs2rVL/vjjD9m7d6+cPHlSsmXLJvny5ZMKFSpIzZo1JXv27KnbqSt8tn379snSpUtl9+7dcv78ecmTJ49UrFhR6tevL7ly5brCveP0CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALpVYAADen1k6PfCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJBpBU6cOCEzZ86U2bNnyy+//CJHjx71apE1a1a5/fbb5emnn5aGDRt6rRfMHWXLljWCIyS1zQULFkijRo0CPnzhwoXSv39/iYqK8nhseHi4dOjQQV5//XXRPpIQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIRCAkYRWFy4EcQF0EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBKyfw+OOPy+jRoyU2NjbgTjz44IPy4YcfSp48eQI+NpADUjtAgw5/6du3rwwbNsyvbkZERMj48eOlXbt2ftWnEgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAioQCgMCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA+hFYvny5x+AMWbJkkZIlS8qNN94o119/veTNm9ftoiZMmCDNmjWTs2fPuu1LzwVPPfWUW3CGkJAQKVWqlNxwww1SsGBB2+WdO3dOOnToIDNmzLCVk0EAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCAxgbDEdrIPAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIO0KREZGSqdOneT222+XBg0aSO7cuc3OxsfHy6JFi6Rfv37Gu2vH77//Ll26dJGvv/7aVZSi70WKFJEvvvgioHNUq1bN7/pTp06Vjz76yFa/Xbt2MnjwYKlQoYJZPn/+fHn22Wdl/fr1Rpn6dO7cWWrUqCFly5Y167GBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIICAN4GQywnJ207KEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBNKWwE033STHjh2TV155xQjOkCNHjkQ7qIEIevbsKZ9++qmt3i+//CKNGze2lQUrowEPdu/ebTRXpkwZ2bVrV7CatrUTGxsrlSpVsrXfvXt3GTFihISEhNjqaubUqVPStGlTWblypbnvwQcflPHjx5t5NhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEPAmQIAGbzKUZ1qBkydPysKFC83rL1WqlGTLls3Ms4EAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghkJIGYmBj5+++/zUtq2LChREZGmnk20p7Ajz/+KM2aNZPw8HC/O6dBGmrXrm0LTNCpUyeZNGmS320EUjG1AjSMHDnSCD7h6luFChVk/fr1kj17dleR2/umTZukRo0aosEdNGXJkkU2bNgglStXdqubGgWMU0gNZc6BAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJpSSA9j1UIS0uQ9AWBtCCgwRnatGmTFrpCHxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFUF5g5c6a0bt061c/LCf0XuP322/2v/G9NDULQp08fad++vXnsnDlzzO30ujF69Ghb11988cVEgzNo5apVq0qHDh1k4sSJxrEavGLs2LEydOhQW1uplWGcQmpJcx4EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEirAulprEJoWkWkXwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALBE2jQoIGtsWPHjkl0dLStLD1l9u7dK6tXrza7nCtXLlsACnOHh41HHnnEVvrtt9/a8mQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwJBDmqZCy9Cewfft2+f3330UHH8TGxkq+fPmkcuXKUrduXZ8rQ6Tk1Z48eVJWrFghO3fuFN2+dOmS5M2bV0qWLCk1a9aUokWLpuTpaRsBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE/hXQsQTOdOrUKcmZM6ezOF3kf/zxR1s/69WrJxEREbYybxmtq9ftClCxZcsW+euvv6RChQreDqEcAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABIUBDOr8JZs6cKW+88YZtRQjrJenqEF26dJHXXntNChYsaN2VotvTp0+Xjz76SKKiouTy5ctez1WjRg3p3r27PPzwwxIWljZux1KlStn6q8ZXX321rYwMAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkFEEtm3bJm3atDEvx/nM1NzBRroX2Ldvn9s1FChQwK0svRSsXbvW1lVdxMLfpGMUatWqZYxrcB2j7V2JAA3O7xzjFFyfCO8IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJBRBdLzWIW0MSM+o94ZKXhdMTEx8sgjj8ikSZMSPcvZs2eNQAlfffWVfP3113LLLbckWj+5O48dOyYPPvigzJo1y6+m1qxZI926dZNPP/1UpkyZkiYCIWTLls3Wdw3OcM0119jKyCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIZVcD5zDSjXmdmvK5FixbZLrtMmTISHh5uK0vJzNGjR2Xv3r1y+vRpyZMnj2hwiJIlS0pISEiSTrt582bbcVWrVrXlfWW0vi484UrO9lzlKf3u/M4xTiGlxWkfAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTSmoDzuWla65+1PwRosGqkk+1Lly5Jhw4d5Ntvv7X1OEuWLFK6dGnJmzev7Ny5U06dOmXuP3LkiNx2220yb948qVOnjlkezA0dQNG8eXNZvXq1W7OFChUSXfFBB1XoihwHDx601Vm1apU0btxYdDBI2bJlbfvIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDyBT7//HNbIy1btrTlUypz+PBh0WAIngIg5M+fXxo0aCCdOnWSdu3aiY598Ddt2bLFVlXHJQSSnPWd7QXSFnURQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBDKHQGjmuMyMdZXDhg1zC87QvXt32bNnj+zYsUPWrFkjx48fl+nTpxsBG1xXHx0dLe3bt7cFbnDtC8b7Sy+95Bac4c477zTKdLCFBmFYuXKlHDhwQDZt2iT33Xef7bS6SsZjjz1mKyODAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAskXmDVrlvz666+2hrp06WLLp1Tm/PnzHoMz6Pl0fIMuUKELVVSqVEkWLlzodzd0sQprKlmypDXrc7tEiRK2Ojq2gYQAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBiAmGJ7WRf2hM4duyYDBo0yNaxwYMHywsvvGArCw0NlbZt20qtWrWkfv36smvXLmO/BkEYPny4DBgwwFY/uRkdpDBq1ChbMz169JARI0bYylyZKlWqyBdffGEMrujXr5+rWObOnStLly6VOnXqmGVsIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDSBTQIQrdu3WwNtGnTxhhTYCu8wpnt27dLkyZN5J133pFevXol2hsN+hAfH2+rExERYcv7yjjrnz171tchPvfr+Aln4AhfB23bts1XFfYjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCKQRAQI0pJEPwt9uvPXWW3LmzBmz+i233CJ9+/Y1884NXe1h9OjR0rRpU3PXu+++K0899ZQUKFDALEvuxg8//GAb+FCoUCF5++23fTb78ssvy5dffmlbKeP7778nQINPOSoggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDgW+DSpUty//33iy7o4Ep58+aVDz74wJVNsfc8efJIixYt5NZbb5Vq1apJuXLlRMuio6Nl//79smTJEhk7dqz89ttvZh806MIzzzwjRYoUkXvvvdcsd254CqaQPXt2Z7VE8zly5LDt99SmrYIfGV3IItiLZvhxWqoggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCKSSQGgqnYfTBEFAB03owARr6t+/v4SEhFiL3LZ1dYkGDRqY5RrgYerUqWY+GBtbtmyxNaODK3LmzGkr85QJDQ2Vtm3b2naxMoSNgwwCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJJFnj++eflp59+sh3/ySefSKlSpWxlwc4MGzZM9u3bJ1999ZU8/PDDcuONN0r+/PklLCzMCNJQuXJlo3zRokUyffp0iYyMNLtw+fJleeSRR+TgwYNmmXPjwoULziIJDw93K0usIFu2bLbd58+ft+XJIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg4BQgQINTJA3ndeWII0eOmD0sX768NGrUyMwntqEDF6xp5syZ1myyt48fP25rI5CBHKVLl7Yde/LkSVueDAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggELvDBBx/I8OHDbQf26dNHOnToYCtLicw999wjuXLl8qtpXdhBg0jkyJHDrB8dHS2DBg0y886N7NmzO4skNjbWrSyxgpiYGNtuT23aKpBBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMj0AmGZXiAdAfz444+23jZr1kxCQkJsZd4yWteaoqKi5Ny5cxIREWEtTvJ23rx5bccGsqqEs27BggVtbZFBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgcAEJk+eLE8//bTtoC5dusiQIUNsZWklU7t2bdHgEQMGDDC7pNfw/vvvS2io+/ojnoI/XLhwQQIJsuAcr+CpTbMzfm707NlTNDhFIGnbtm3Spk2bQA6hLgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDAFRIgQMMVgk/KadeuXWs7rG7durZ8YpnixYtL2bJlZdeuXUY1XTVi06ZNUrNmzcQO83tf9erVbXVXrFhhyyeW+f333227a9WqZcuTQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAH/BX744Qfp3LmzXL582TzorrvuktGjR/u9EIR5YCpu9OrVSwYOHCjx8fHGWY8fPy4rV64UT+MIcuTIIVmyZDHr6gG6UEVkZKRxrD//o/WtKRgBGgoXLiz6IiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIZEwB9yUGMuZ1Zoir2rx5s+06qlatasv7yjjrO9vzdXxi+1u1aiURERFmlcWLF8vSpUvNvLcNXQXim2++MXfrShadOnUy82wggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAgP8CCxYskHvuuUfi4uLMg5o1ayZffvmlEdDALEyDG/ny5ZMbbrjB1rMtW7bY8tZMoUKFrFnZu3evLe8rs2/fPlsVAivYOMgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCHgQIECDB5S0WHT+/HnZs2ePrWulSpWy5X1lnPUTG8Tgqy3nfl2B4qWXXrIVt2vXTlasWGErs2Y0QETLli0lNjbWLNaVMBjwYHKwgQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAgN8Cy5cvlzvvvFMuXLhgHlO3bl2ZMWOGhIeHm2VpecM5tuHIkSNeu1upUiXbPue4CttODxln/cqVK3uoRRECCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAL/CYT9t8lWWhY4evSoXL582exi1qxZAw5kUKJECfN43Th8+LAtn9zMCy+8IBs3bpTJkycbTR04cEDq1Kkjt99+uzRv3lzKlCkjISEhoitQ/PLLLzJ9+nS5ePGieVo9vnfv3maeDQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwT2D9+vVy2223ydmzZ80DatSoIbNmzZKIiAizLK1v6HgIa7KOK7CW67YGVFi4cKFZvGnTJnPbnw1dWMKaCNBg1WAbAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQMCTAAEaPKmkwTLrAArtXs6cOY1gB4F01TngwtlmIG15qhsaGipffPGF6OobAwYMEF3FIj4+Xr777jvj5ekYLatXr55Rv0mTJt6qJLlcg1AktpqGp4a3bdvmqZgyBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE0qTAli1bpFmzZnLixAmzf1WqVJE5c+ZI3rx5zbL0sHHw4EFbNwsVKmTLWzPVq1e3ZmXJkiW2fGKZuLg4+f33321VnO3ZdpJBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgQYAADenkNnAGU8iePXvAPc+RI4ftGGebtp1JzISEhMjjjz8urVu3lh49esgPP/yQaEsanKF3797SuHHjROsldeeIESOM4A9JPZ7jEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSMsCu3fvlqZNm4ouYOBK5cqVk7lz50piwQ1cddPSe0xMjKxYscLWpVKlStny1sztt99uzRoBGs6dOyfOBSxslf7NLF68WKKjo81dFStWFH2REEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSEwgNLGd7Es7AhcuXLB1Jjw83Jb3J5MtWzZbtfPnz9vywcjoQIdnn33WGLTgKziDnk8HPNx1111yzTXXyLJly4LRBdpAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgUwgcOHBAmjRpInv37jWvt0SJEjJ//nzR9/SWpkyZYguaoOMcdOEHb0mDN9SoUcPcrQtVTJ061cwntjFmzBjbbl2IgoQAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggIAvgTBfFdifNgSyZ89u60hsbKwt709GV5qwJmeb1n1J2d6/f78x8OPPP/80D69UqZL06tVL/ve//0nJkiUlNDRUdIDIokWL5MMPP5RVq1YZdfWYBg0ayLRp06RNmzbm8Zll4/Lly3Lp0iXRdxICCCCAAALpXSAkJMT4N1/fSQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJAyAsePH5dmzZrJ9u3bzRMUKlRI5s6dK+XKlTPL0svGwYMH5eWXX7Z1t3nz5pIzZ05bmTPzyCOPyBNPPGEWDxkyRDp27CiJjYnYvHmzfPXVV+YxOpahS5cuZp4NBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSF8CzM9LX58XvUUAgbQrwLww/z4bAjT453TFa+XKlcvWhwsXLtjy/mTOnz9vq+Zs07YzwIz2RwdGWIMzPProo/Lxxx9LeHi4rbXy5cuLvh588EF59dVXZdCgQcb+uLg4Y5DE6tWrpUqVKrZjkprp2bOn3HPPPQEdvm3bthQPEqE/+NTszJkzxispATcCuigqI4AAAgggcAUEsmTJIhEREZI7d27jXfMkBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSL6APmtu0aKFbNy40WwsMjJSfv7556A9b3c1vGvXLreADzt37pSyZcu6qtjeddGGUaNGydNPPy358uWz7fOW0XPoYg779u0zq+jAn/79+5t5bxtdu3aVt956S/bs2WNU2bp1qzzzzDMyYsQI8RRM+vTp08Z4Betz+k6dOknVqlW9nYJyBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSGMCzM9LYx8I3UEAgQwnoHPDdU6YvjQ4vqdnrxnuogO4IAI0BIB1Jas6gylER0eL/ogI5IY+d+6c7RKcbdp2BpgZOnSobeDH//73P/nkk0+M1bO9NaV9HzhwoDFIYuLEiUY1DVrQu3dvmTVrlrfDAiovXLiw6CstJf3s9u/fLxcvXkxL3aIvCCCAAAIIBF0gPj5edJCjvjTpD/JixYoJgRqCTk2DCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAplM4M4775QVK1bYrvrZZ5+Vo0ePyrx582zlvjI33nij34EUfLWl+2NiYuT111+X4cOHi/azXbt2Urt2bSlevLjb4bqAwrhx4+Sjjz6SU6dO2fb36tVLbrjhBluZp4wODBoyZIhokAVX0gARavHmm29KhQoVXMXyyy+/GMEb1q9fb5bp2AntLwkBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTShwDz89LH50QvEUAgfQtowPtjx44Zr6xZsxrPe3PmzJm+LyqIvSdAQxAxU7KpggULGsEYNCiDJp3cf/jwYSlSpIjfp7WuNKEHBStwgU6+1MES1qSBF0JDQ61FXrcHDRokkyZNkkuXLhl1Zs+eLX///beUKlXK6zHpdYf++NNVO1yfY3q9DvqNAAIIIIBAUgR0NS/9ca7/xusPcxICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggkTSAqKsrtwH79+rmV+VOwYMECadSokT9VA6pz9uxZmTx5svHSAwsUKGCMU8iTJ4+cP39eDhw4IEeOHPHY5j333CPvvPOOx32eCjt27CiLFi2SkSNHmru//vpr+eabb4znEoUKFZLdu3cbQRvMCgkbOq5h7NixUq5cOWsx2wgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIJBGBZifl0Y/GLqFAAIZWkDntOvc6NKlSwtBGv75qP2bQZ+hb4v0cXE5cuQwblxrb/VmDiQ561euXDmQw73W1ZUldOUJV9JgErr6hb9JJ2lWq1bNrK7BC3777Tczn1E2+PGXUT5JrgMBBBBAIDkCumrWrl27jNWzktMOxyKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggED6EtDVVTZv3izLly8XHWfgKThDtmzZjMAMX331ld+LQrgUdGGJZ555xpU13nX8gY6VWLVqlW1cg+7UgUNffvml3H333bZjyCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDaFGB+Xtr8XOgVAghkDgHXs1f9W0wSCQMh/QhoQAVd0cGVNm3aJDVr1nRlfb7rQAdrClaAhp07d1qblbJly0pISIitzFdGV6NYs2aNWW3fvn3mdkbY0D88+/fvF323Jl09XFcHyZUrl7GSeKBu1rbYRgABBBBAIK0I6L938fHxxupXZ86cEf3hbf03MC4uTg4dOuQWfCqt9J9+IIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQNIFihQpIu+//74sWLBAli5dajwT8NVamTJl5IEHHpAePXpI8eLFfVX3uD80NFSGDx8ud9xxh7z22muyaNEij/XCw8PlnnvukTfeeEN0rAIJAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE0r4A8/PS/mdEDxFAIGMI6N/bixcvytmzZ+X06dPGtuvKXH+Lr7rqqoDnkbvayCjvBGhIR59k9erVZc6cOWaPlyxZIp07dzbziW0cOHDAWK3aVUcDA1StWtWVTda7roRtTWFhgd9W2h9r0kmdGSlduHDB9kdIry137txSokSJTP9HKCN9zlwLAggggMB/Avpve/bs2SVfvnwSGxsrf//9t/HuqnHu3Dnj30bnbwDXft4RQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEDAu4A1MLL3WsHZo4s0BHK+HDlyyFNPPWW8tAc6XmHLli2yZ88eOXr0qBHYWYMk6DOEwoULGwtTJDUog6crbNy4sehr7969ouMq9Lz6zF6f0VeoUEHq169vLKTg6VjKEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIG0KMD8vbX4u9AoBBDKmgM73ypkzpxQqVEj27dsnuoCvK2nwBp1XrvPGMnMKfCZ9Zta6wtfeqlUrGTp0qNmLefPmGYMgQkJCzDJvGz///LNtlw5GyJUrl60sqZkCBQrYDt2/f78t709Gv6DWpF/ajJSsf3z0uvSPE8EZMtInzLUggAACCCQmoIMsdeWr7du3y6VLl8yqp06dkoIFC5p5NhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCDjCRQrVkz0ldqpZMmS0r59+9Q+LedDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBFBBgfl4KoNIkAggg4ENA56/rXGidE6aBGVzp9OnTmT5AQ6gLg/e0L1C3bl3bJMYdO3ZIVFSUXx0fM2aMrV7r1q1t+eRkdLUMa9LVJ/TL5m/SH0crVqywVb/qqqts+fSecf4AzJMnj/gTWCO9Xzf9RwABBBBAwCUQFhbmthqVBmggIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKJCTA/LzEd9iGAAAIpJ6BzoXVOtDU5/yZb92WWbQI0pKNPOjQ0VLp06WLr8YABA+Ty5cu2Mmdm/vz5smjRIrM4d+7cQV0lomLFiqIrT1jT22+/bc0muj18+HCJiYkx6+TMmVNq165t5tP7hn4+sbGxtsvIlSuXLU8GAQQQQACBzCDg/DGukdN8/Y7JDC5cIwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCHgWYH6eZxdKEUAAgdQScM6J1jnTmX1OGAEaUuvuC9J5+vbtK9YbeeHChTJ06FCvre/bt08effRR2/5evXpJwYIFbWXOjEY0sb6ioqKcVWz5+++/35b/5JNPZMKECbYyT5nvv/9eBg4caNt17733SrZs2Wxl6Tlz6dIlt+5nzZrVrYwCBBBAAAEEMrqA898//SGe2X+MZ/TPnOtDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCA5AszPS44exyKAAALJFwgLC3NrxNPfZrdKGbiAAA3p7MPVwAovvfSSrdcvvvii9OzZU/bv32+W6409c+ZMqVu3ruzatcssL168uPTu3dvMB2ujT58+kj9/frM5nWzZuXNneeihh2Tjxo1muWtj27Zt8uSTT0qbNm0kLi7OVSw5c+aUfv36mfmMsOFp4qkGvyAhgAACCCCQ2QRCQ91/emb2H+OZ7R7gehFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCESA+XmBaFEXAQQQCL6Apzlhnv42B//MabdF95AVabev9Oxfgb59+8qSJUvkhx9+ME1Gjhwpn376qZQpU0by5s0rO3fulJMnT5r7dSNHjhwydepUiYyMtJUHI5MvXz6ZMWOGNG/eXGJiYswmx40bJ/oqXLiwlCxZUjQwgQaSOHDggFnHtaFf0MmTJxvX4CrjHQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIG0IOC+jHFa6BV9SFRAAxlMmzZN7r33Xlu9+Ph42bFjh6xZs8YtOEOBAgVk1qxZUq9ePdsxwczccsstMm/ePI8BFg4fPiyrV6+WVatWeQzOUKRIEfn++++ldevWwewSbSGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQFAECNASFMfUbyZ49u3z55Zfy9ddfS/Xq1b12ICIiQnr27CmbNm2SRo0aea0XrB3169eXP/74Q959912pXLmyz2bLli0rAwcOlI0bN0rLli191qcCAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAldCIOxKnJRzBk+gXbt2oq9t27bJ8uXLZd++fRIbGyuRkZFSpUoVqVevnmgwh0DT5cuXAz3ErJ87d255+umnjdfBgwdlxYoVsn//fjl58qRou3nz5pUiRYrITTfdJKVLlzaPYwMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBtCpAgIa0+skE2K+rr75a9JXWUtGiReWOO+5Ia92iPwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggEJBAaUG0qI4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAplQgAANmfBD55IRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCAwAQI0BOZFbQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQyIQCBGjIhB86l4wAAgikJYGoqCgJCQkxX/37909L3aMvCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIpEkB5uelyY+FTmVwAQI0ZPAPmMtDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHkCxCgIfmGtIAAAggkWWDXrl0SEhKS4q/+/fsnuY8cGDyB2bNnu33WjRs3Dt4JaAkBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDIJALMz8t4H3TZsmVtc/CioqIy3kVyRelegAAN6f4j5AIQQAABBNKLwLhx49y6unDhQtm9e7dbOQUIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACaUuAAA1p6/OgNwgggAACGVTg1KlT8u2337pd3eXLl2X8+PFu5RQggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIpC2BsLTVHXqDAAIIZC6BokWLyty5c/266J9//lmGDRtm1r3++uvlnXfeMfOJbZQvXz6x3Vd0X6NGjUSDFGT0NGXKFLlw4YLHy5wwYYL069fP4z4KEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTcBZifJ5JZ5ue5f/qUIHDlBAjQcOXsOTMCCCAg2bNnl6ZNm/olsXfvXlu9fPny+X2s7UAyV0Rg3Lhx5nlDQkKkbt26snjxYqNs+/btsmjRImnQoIFZhw0EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAe8CzM/zbsMeBBBIOYHQlGualhFAAAEEEEBABbZu3SrLli0zMerVqycvvPCCmdeN8ePH2/JkEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBNKWAAEa0tbnQW8QQAABBDKgwLhx42xXdf/990uLFi2kYMGCZvm0adMkOjrazLOBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkLYEwtJWd+gNAggggEBqCezbt09WrVol+/fvl2PHjklkZKS0bdtWihcv7rULJ0+elA0bNsiWLVvkxIkTEhsbaxxXuHBhqVmzppQpU8brsam14/Dhw7Jo0SLZuXOnXLx40QiCULVqValdu7ZkyZIltbphnufSpUsyceJEMx8eHi7t27eXsLAw6dChg3z88cfGvtOnT8uMGTPkvvvuM+smdePy5cuyfv16+fPPP+XIkSNy6tQpyZkzpxQtWlSqVKki1113XZIt4uPjZeXKlbJ9+3Y5evSonDlzRnLlyiUlSpQQddb2Q0JCktr1VD9Or2Xbtm1y4MABuXDhgnEPd+rUKdF+6L21ceNG2bNnj2Grn2X+/PmNY/U+U49gJf2OLV++XHbv3m18lhrEI3fu3Ma5rr32WrnqqquCdSraQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABPwWYn+cnVBqvtnbtWtm0aZPovESdX6ZzJUuVKiX169eXHDlyJKv3x48fl9WrVxvz13SOX1xcnDHPTxd+LleunFxzzTWSL1++gM+hc83WrFkje/fuFZ2XqPP5IiIipFixYlK+fHmj3ezZswfcLgf4L0CABv+tqIkAAgikKwHrJPmGDRtKVFSU0f8ff/xRhg8fbuQ1eIA16ST7Nm3aWIuMf6inTJkiP//8s6xbt0508r+3pP949+rVS7p27er3jw/tV+PGjc0mX3vtNenfv7+Zd26ULVvWmKyu5RoQYteuXUaVrVu3ygsvvCDffvutOK9LKxQoUEBeeuklefLJJyVr1qzGManxP/Pnzzd+6LjO1bJlS/NH0/33328GaND948aNS1aABg0Y8OabbxqBHvQHobekP9q0H926dZMGDRp4q2Yr14AE2rbeP/pj0FvSIBCtW7eWHj16SLVq1TxW83ZveqzsKOzSpYuMHz/eLNVgCXpPeErq+dBDD5m7xo4dK3r8+fPn5e233xbN6/HWlDdvXnEGaNAf1nrd06dPl19++UUOHjxoPcS2rUFAmjRpIi+++KI0atTIti+QzNKlS2Xw4MGi948GZfCW9Nrvvvtu6d69uy1Yw7Jly6ROnTrmYc2aNTO+w2aBnxsffPCB8Z12Ve/Tp48MHTrUleUdAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgQwp4G0OFPPzUnd+XkrcXLposc6R0vllugC2p6QBDlq0aCFvvPGG6EK7gSSdE6bt67unuY6utvQeq1SpkjEf7/HHHzcCQ7j2Od+1ndGjRxvzEXVx58SSLjJ94403Srt27aRnz55+z/VMrE322QVC7VlyCCCAAAIZVUADK2hwglatWhmTzBP7h91l8NFHH8kNN9wgb731lmgkqMSCM+gxO3bsMCZz33TTTUZUJ1c7Kf3+9ddfS/Xq1Y3ABN6u69ixY9K7d29p27atEckqpfvkal+DBFiTBmVwpdq1a9sm1evkf41aFWjSz2XAgAFSoUIF+eSTT4xoXYm1ceLECZk0aZLccsstiVUz9l28eNH4EXb99dfL5MmTEw3OoAdo8ALtgwZpSItJo4Pp/dmvXz+34Aze+qvRzjQIgl5/YsEZ9Pj4+HgjEIIGHXniiSeMqGbe2vVUrj/u9Vx169aV77//PtHgDHq8BijRYBOPPPKIrTm9t/Qzc6V58+aZwUxcZf68f/bZZ2Y1/cGvwVdICCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCGQ2AebnXZn5ecG+zxYuXChXX321DBo0yGtwBj2nLvo7c+ZMY97iyy+/7Fc3XPdI06ZNZe7cuYkGZ9AGtf6ff/5pBHOYM2eO13PofECdC6gLNvsKzqCNxMbGii4g/Nxzz8m+ffu8tsuOpAsQoCHpdhyJAAIIpCuBl156STTggivlyJFDKleubERCKlq0qKvY9q4/Ipwpd+7cRlSmWrVqGcEbSpUq5awimzZtkgYNGvgMFOB2YBIKNOLYvffeK+fPnzeOzpo1q1SsWFG0f2XLlnVrUev36dPHrTwlCk6fPm0EjXC1nTdvXiNAhiuv7/fdd5+Z1eASEyZMMPP+bGgAhfbt20v//v2NH07WYzTS1VVXXWVYXHPNNRIZGWnd7XP71KlToj8GR44c6fZjUO8fdb755pulSpUqkitXLp/tXekK+nk0b97cuD9dfSlcuLDUqFFDqlatKhEREa5i27un70Hx4sWNyGcaCOG6664T/Wyd6eOPP5bHHnvMWew1r8E56tSpI998841bHf3e6fdV72uNiqYR2Hyl7t27m1X0x/qYMWPMvD8by5Ytkw0bNphVGzVqZPyfD7OADQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQyiQDz8/75oFNzfl6wby3te4sWLdzmPepcLZ27pYtdFypUyHZaXdD3zTffdFtg11bp34wuKmydw+mqkz9/fqlWrZq45qIVK1bMtcvnu84L08WUFy9ebKuri/HqHDfts87x0/lxgc4ftDVIJiABAjQExEVlBBBAIH0KaMCEt956y+h8hQoVZNq0aXL8+HHZvHmzrFy5Ug4cOCB//PGHXH/99W4XmC1bNiMAgAYO2L17t+gkd43KtHz5clm1apXs2bNHjh49akzi13/QXengwYPStWtXVzZF3jWAwAMPPCD6I6dkyZLy+eefy7Fjx2TLli1G/3bu3Clbt26V22+/3XZ+nTi/ceNGW1lKZKZOnWoGjtD27777blFPa7r//vutWRk/frwt7yujwSa+/vprW7Xq1asbk/z1M962bZthoRPtNVLWX3/9Je+9957UrFnTdoynzEMPPSS//vqrbVfDhg1l9uzZRlvqrJP49f7Sz0LPoZHDNGBDWkz6Q1jvB00dOnSQdevWyaFDh2T16tXG/aA+X375pceuly5dWnr37i3z5883rlUjh+l3RiOJadQxPVbb69Gjh2TJksVsY+zYsbYgHeYOx4ZGJWvXrp3bfdmmTRtZtGiR0b5+X/V7p9+/M2fOyIoVK0Sjr2nfPCUN/mENnKF90e+Kv+mzzz6zVU3p77PtZGQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAE/BS5duiwxcfHGy89DqIYAAgggkIkELlyMl11Hz8nS7cckPuHfDBICCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggkBQB5uddmfl5SfmsvB3z999/i87lsy7mW6BAAdE5VEeOHDHmWup8ycOHD8uSJUukfv36tqZ07uKoUaNsZdaMzjcbOnSotUi6detmzL3TOY9r164156Lt37/fmN/5ww8/iC7S62nxYFdDOndQ55e5ki5SPGzYMGNOqJ5T+6xz/HS+pM5x0/meOkfxrrvukrCwMNdhvAdZANkgg9IcAsEUiIu/JAdOXQhmk7TlRaBY3uwSliXjxqzRHwiaGjRoILNmzbJN2naRXHvtta5N8/22226TBx98UAoXLmyWedrQHyL6Q0AnvTdr1sz4R13rfffdd8YPCI2+lBLp5MmTRrMa5UmDBjijU+lODUjx7bffSqtWrYw6Wnbp0iUZPXq0vPvuu5pNseQMtuAMxqAn1v7VqlVLfv/9d6MfGkBAJ/3XqVPHZ7/mzJljBFuwVnzqqaeM6woN9Xw/X3311dKrVy/jpcEGvKVPPvnEFlhAI2ppkI/nnnvO4yF6vmuuucZ4vfjiixIVFeWx3pUs1GAMmjRAhRo4U9asWUXveWcaOXKk1K1b1xZ4wVlHfTTAyYgRI6Rt27Zyxx13SExMjFFtyJAhRpnzGGv+tddeM+8BLQ8PD5dx48ZJx44drdXMbf1xfNNNNxkvPVZ/RDtTnjx5jONdgRb0B7d+/7VvvpIGgPjqq6/Mavod1x/lJAQQQAABBBBAAAEEEEAAAQQQQAABBBDIuAI6aVUDHVyMv5zwuiRx/77rtqvMKE+o5yrTZ1mubWNfwjGxxrH/HpPw3+Mvxl2WuIT3f8r/O/af+gn7tb24hPOZ7f5zrLYdm9Ce2zn+rX9R207Y75pse2e14vJBxxoZ9wPiyhBAAAEE/BI4mDDG4pWZf8j+kxfk4OkLcvxcrHncshebSNGEsQEkBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgcwjwPy81PusmZ8nwvy81LvfknKmnj17ims+oh5fqlQpI/BBmTJl3JrTuX0LFy6ULl26yMSJE839ugDwnXfeKdaFrl07dQ7jxYsXXVnp16+fDBgwwMw7N/Lly2csTK2LU2vABQ2u4CnpYt3W9P3330vjxo2tRbZtvS6dE6ovDUqh5yEFX4AADcE3pUUEgiagwRkavLUgaO3RkHeBRX0aS6n8Ob1XyAB79B/SqVOnegzO4O3ydMJ9IEnP8eWXX0rlypWNIAh6rE4y14n9KZV0Evr06dM9BmdwnTNLlixG0AIN4uBKP/30U4oGaNi+fbv89ttvrtMZP9gaNmxo5q0bGrjBFaBByzWwgz8BGpw/0Dp16iTvv/++telEt5s0aeJxf1xcnLz55pu2fRp0wVtwBlvFhIwGK0jsR56zfmrm7733Xo/BGRLrgwY2CSRpkJLnn39eBg4caBymn61GyfMWqOT48ePy4Ycf2k7x0UcfeQ3OYKuYkNHAEt76qFHWXAEa9Djd9idAg36Pz507Z57qgQcekGzZspl5NhBAAAEEEEAAAQQQQAABBBBAAAEEEEAgfQhowIWjZ2Pl2NmYhPeE15lYOXru3/eE/DHL9vHoWLl8OX1cl6deahAIEgIIIIAAAtnCQmXe5sMeIQ6cOk+ABo8yFCKAAAIIIIAAAggggAACCCCAAAIIIIAAAhlXgPl5qffZMj/PszXz8zy7pHbpli1b5McffzRPq4sVf/311+IpOIOrktb5/PPPZe3atfLHH38YxdHR0aKLAb/xxhuuaua7LtxsTRoQwt+UK1cur/M+re3qvM1A5u1psAZSyggQoCFlXGkVAQQQSHMCjz/+uBQtWjTF+1WhQgWpVauWLFu2zDjXkiVLUvSc3bt3T/SHkOvk+uPj+uuvl/Xr1xtFf/31l5w9e9brDxfXcUl918AU1qTBEzRwgaekQQOeffZZ0cAImr766it57733JHt276u36KT/pUuXms3lzp1bPv74YzOfnA0NeLFnzx6zifLly0v//v3NfHre8PTjNyWuR4NuuAI0aPv6PfAWoGH06NG2YAgabKFr165B6daNN94oN910k6xcudJob9asWbJv3z4pUaJEou1bgzpoxWD1J9GTshMBBBBAAAEEEEAAAQQQQAABBBBAAAEEfApcToigcC42IejCmX8DLiQEXzACL2iwBcf2kYSyMxf++e/OPhvOABVi49JxdIkM4M8lIIAAAmlFIDJnVtEgDTFx7oF7DiYskkFCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBJIqwPy81J2fl9TPydNxY8aMSVi04r9xBR07djTmQHqqay0LCwuTYcOGSYsWLcxinXf1+uuvu80VPH/+vFlHN3RR3mAka7vBajMY/crsbRCgIbPfAVw/AghkGgH90ZBaqVy5cmaAhjVr1qToaTt06OB3+9WrVzcDNFxKWElLJ6pXqlTJ7+P9rag/1iZOnGirrhP2vaVChQpJ8+bNRSfPazp58qR8++23kti1/fzzz7bmHnzwQYmMjLSVJTXjbLtHjx5B+0GY1D4F47iaNWvK1VdfHYymfLah3wFrSux74PR+6qmnrIcme7tbt25mgIb4+HgZO3asvPLKK17bXbdunVlfK9WtW9drcAmvjbADAQQQQAABBBBAAAEEEEAAAQQQQAABBPwWuHTpspw6f9EItKBBFY4mBFo4ZrwnbJ9J2D4XI0c0+EJCUAbdvnDRfcKp3yfLwBXjEv67PwkBBBBAAAENml88MofsPHrODWM/ARrcTChAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB/wWYnyeSWvPz/P9U/Ku5cOFCW8WHH37Ylk8s06xZMylZsqTs3bvXqHbo0CHZunWr27zE4sWL25r54osvJBjzxLRdPZ+mTZs2ic5Tq1Gjhu1cZFJfgAANqW/OGRFAAIFUF8idO7dUqVIlWefVHw5Tp041Ai+sX79eDh8+LKdPn5YLFxJfZSQ6Olo0SlOOHDmSdX5PB2vEp2rVqnna5bGscOHCtvJTp07Z8sHKLFiwQHbv3m02d/3118u1115r5j1t3HfffWaABt0/bty4RAM0LFq0yNZMy5YtbfnkZFKy7eT0K7nH1qpVK7lNyO+//y4zZ86UtWvXyp9//mkE0zhz5ozExSW+Ct3Ro0c9nluPW7ZsmbkvNDTUFlHN3JGMDf0/f7179za+r9qMRnx7+eWX3aK0uU6hUdysqWvXrtYs2wgggAACCCCAAAIIIIAAAggggAACCCDgh0B8QtCFo64gC/8GV9D8sXP/BFrQQAzHtDzh/XhCWVxCfVLyBC7GE6AheYIcjQACCGQcgaJ5snsM0HDwlH3VooxzxVwJAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIpLQA8/P+EU6t+XnB/DxjYmKMuWCuNnVOYv369V1Zn+8636tx48a2BZ11Pphz4WgN5NC/f3+zPZ3PpXMwn3jiCSlatKhZHuiGthsVFWUcpov3tmjRQgYNGiSdOnWSnDlzBtoc9YMkQICGIEHSDAIIIJCWBcqUKeN1MravfuvE8j59+siECRNE/wFPSjp58mSKBGjInz+/ZMmSxe8uRURE2Opq4IiUSBpcwZruv/9+a9bjdps2bSRXrlxy9uxZY//cuXPlwIEDUqxYMY/1t2/fbiu/6aabbPnkZHbs2GEermbJDe5hNnaFN8qVK5fkHmjQCv0xrMFJkpL0O+ApHTx4UM6d+2/1Hv1hrvdBMJN+hg888IB8/PHHRrO7du0Svb+aN2/udhr9TkyaNMksz5Mnj7Rv397Ms4EAAggggAACCCCAAAIIIIAAAggggAAC/whcvnxZTp2/KHuOR8vfx88b77q990S0sb3vxHmCLqTyzXIxniAXqUzO6RBAAIE0K1AsMrvHvu0/lfjiAx4PohABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSBBgft4/t0Fqzc8L5k2n87diY2PNJitXrizh4eFm3p8NXWR64sSJZtU9e/aY266NunXrigZT0HlbmnRhXw2kMHjwYNF9TZo0kQYNGoguQqwBP/xN3bt3lw8++EB0AW5NGvRBF+Tt1auXNG3a1AgeUa9ePalevbpo8AlS6ggQoCF1nDkLAgggcEUFdJJ1UpIGAWjUqJHs3bs3KYebx2iUqZRI2bN7Hljj77l0AG2wkwZYmD59utmsRsjSaFS+kkaratu2rflDTYNh6I82DY7hKR0/ftwsDgkJkYIFC5r55GycPn3a+PHnakPb1fYzQkrq9+CTTz6RHj16SHLuF2/fAevnqMbOKHLBcu/WrZsZoEHbHD16tMcADV9//bVYg0ncd999RFIL1odAOwgggAACCCCAAAIIIIAAAggggAAC6U4gJi4+IeDC+YQADBqE4Z/AC65gDH8nBGI4cyEu3V1TMDucNUuIhCX8N3B9z5olVML+fddtc19Ywnbof/vDPdVLKDPKtZ6tvqe2/20r4bzhYa7z/1Mvbw4GGQTz86UtBBBAID0LFMvr+TnyQQI0pOePlb4jgAACCCCAAAIIIIAAAggggAACCCCAAAIIIHBFBZI6L4n5eVf0YzNOfuLECVsnkjIPz3mMs03XCSZPnix33HGHLFu2zFUkly5dkt9++814aWFYWJjoYs2tWrUSnbtVtmxZs66nDV3k+ocffpA777zTWBDaVSc6Olq+++4746VlumiwBoC466675O6775bIyEhXVd5TQIAADSmASpMIBEtABw0s6tM4WM3RTiIC3gZoJHJIutqVlMhHGhWqZcuWbsEZKlSoIA0bNpRKlSpJiRIlRKNe5ciRwzaJf9iwYfLzzz+nK6NgdXbatGly7tw5s7mKFSvK5s2bjZdZ6GWjfPnytj3jx4/3GqDhzJkzZl0N7qCBIIKRrO1qe/rDLKOkpHwPFixY4BacQX8E169fX26++WYj+p0GVdBgIdmyZbNRacQzXym1vK+77joj0tqSJUuMLn377bdy5MgRKVSokK2Ln332mS2v0dRICCCAAAIIIIAAAggggAACCCCAAAIIZFQBDcp65EyM7HEGX9CADAkBGA6evpAQuDXjXH2WhAAIBSLCpWCubFIwd8JLt/U9V3hC+T9lebKHGcEWXEEW/nm3Bl9wBUgIsT0XyDhKXAkCCCCAQEYQKJo3h8fLIECDRxYKEUAAAQQQQAABBBBAAAEEEEAAAQQQQACBDC3A/LzU+3iZn+duzfw8d5MrUaILMluTzocMNDmPcc4Jc7WngRx+/fVXY3Hd4cOHy7Zt21y7zPe4uDgjgIMGcejXr5+xOPTbb78tRYoUMes4NzSgw4YNG2TIkCEyZswYcS4arPX1On/66Sfj9eyzz4q+Xn75ZUnKnDrn+cm7CxCgwd2EEgTSjEBYwopBpfLnTDP9oSOZS2DUqFGydetW86L1H/hx48ZJixYtzDJvG/qPfGZNGlTBmv7880/xZ6K+9RjX9qZNm2TFihVSs2ZNV5H5njt3bnFF2tJoVxpJKxhBGrRda3L+ALXuywzbvXv3ThiA/d8I7Ntvv130u1GyZMlELz8mJibR/a6dqendrVs3cQVo0P+Dp/fqc8895+qKbNmyRRYtWmTmb7zxRqlRo4aZZwMBBBBAAAEEEEAAAQQQQAABBBBAAIH0KHA2Jk7+1oALZhAGDb5w3gjKoGUxcZfS42WZfc6eNdQIuFAgIehCoYRACxp8ocC/70YgBg3G8G8+b46sCf8dOcQ8lg0EEEAAAQQyqkDxhMUwPCUNvhR/6bJo0CISAggggAACCCCAAAIIIIAAAggggAACCCCAQOYQYH5e5vic0+pVMj8vbXwyzgWMrYsz+9tD5zHOOWHWdjQgQo8ePYzXypUrZf78+RIVFWXM6zp9+rS1qjEn8IsvvpB58+YZdXRRbW8pf/788tZbb8nAgQONurow8cKFC0XPcfHiRdthGkBiwIABRru6ELcuEE0KrgABGoLrSWsIIIBAhhGYMmWK7VpmzJghderUsZV5y3iKwOStbkYq37lzpxHhKpjXpJPoPQVo0B9UrgANGkDg6NGjUrhw4WSfOk+ePBIWFiYaiUuTtqvth4SkjUFKGowitZIGKFmzZo15umuvvVamT58u4eHhZpm3DX+/A/o5WtPhw4et2aBut2/fXp5++mnzvhk9erQtQIPmralr167WLNsIIIAAAggggAACCCCAAAIIIIAAAgikSYG4+Ety4NSF/wIwnIhOCL7wTwCGvQkBGI6di02T/U6sU7mzhyUEW9DACvZgC67AC4VyuwIxZJOI8Cxp5r/fJnZN7EMAAQQQQCA1BYp6CdCgwRmOno2RInk8B3BIzT5yLgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMj4AszPSxufcb58+WwdOXbsmC3vT0bn2FmTs03rPuv2TTfdJPrq27evEYxh3bp1Mnv2bPnqq69Et13p4MGDcvfddxtlvhZx1rltzZs3N156/Pnz52XZsmUya9YsmTx5suzfv9/VrCxevNiYPzZixAizjI3gCBCgITiOtIIAAghkKIFLly7JihUrzGuqXr2638EZ9KCNGzeax2amDQ2moMEMgpm+/PJLGT58uFtQgAoVKsj27dvNU2mkq5YtW5r55GxcffXV8ueffxpNaHSvzZs3S9WqVZPTpO3Y7Nmzy4ULF4wy/QEYSDpy5Egg1ZNVV3+YWtOjjz7q9jlY91u3/f0OFC1aVDQK29mzZ43Dt2zZYmw7I7NZ207qtrp37txZ3nvvPfNcv/76q9xyyy0SGxsrev+6UkREhHTq1MmV5R0BBBBAAAEEEEAAAQQQQAABBBBAAIFUF9AJlNGxcQmveDkbEyenz1+UfSf/Cbzwd0Lghb//DcKwP6EsLqFuWk4a/7ZARHjCKyHogiu4gmVbgzG4gi/oe7awLGn5cugbAggggAACaV6geN4cXvuovx0I0OCVhx0IIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQJAHm5wUJMgjNFCtWzJgTpvOnNOm8Od32ZxFf1+mtwRS0rEyZMq5dfr9r4IUaNWoYrxdffNFYSPj+++83AixoIxs2bJA5c+bIbbfd5nebWjFHjhzSuHFj4/Xmm2/KgAEDZNCgQWYbuqjvkCFDRBd2JgVPgAANwbOkJQQQQCDDCGgUqLi4OPN6KlWqZG772ti6davs27fPV7UMt18DM0yYMMF2XVFRUdKwYUNbmT+Zpk2byvz5842qx48fl++//17atWtnO7RBgwZGtCxXoUa4ClaABm3bFaBB29e2gxmgQX/MuQI0HDp0yHUJPt/1/5isXr3aZ71gVXD2LZDvwS+//OJXN8LCwozgJ3PnzjXq6zVqFDSNeJYSqVu3bmaABm3/s88+MwI0fPvtt2INfnHvvfdK7ty5U6ILtIkAAggggAACCCCAAAIIIIAAAgggkAEF4uIvybmEQAoaUOFcjP1dgytokIVzrncNupBQ55zl3dO+CxcvpRup8LBQKZUvh5TKn1NK//sqmS9nQj6HFM6dXfInBGfIEpoQpYGEAAIIIIAAAqkiEJkza0LAo1CJiXP/PXHw1D+B5FOlI5wEAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEMq0A8/PSzkevgRg0MMLy5cuNTmlwht9++03+97//+dVJnTeo8wStqXbt2tZskrbvuusu6d27twwcONA8XvsVaIAG8+CEjaxZsxrtLVy40LhG3Xfx4kXj2ps1a2atynYyBQjQkExADkcAAQQyooD+aLAmV3Qoa5m37REjRnjblaHLf/31V9m5c6d5jcWLFxcNdJCU1LFjRzNAgx4/btw4twANLVq0kJdfftlsfuLEicaPp8jISLMsqRvatk7cd6WRI0dKr169jB9orrLkvGuEsMOHDxtN7NmzRzQIRf78+X02+dNPP8np06d91gtWhaR+D2JiYuTzzz/3uxvq7QrQoAd98MEHKRagoXLlykbQEP2Rrenrr782zqeR0Kypa9eu1izbCCCAAAIIIIAAAggggAACCCCAAAIZSED/u5cGTThzQYMpJLw0sILrPdAACwnHaluxHiY/ZiAy41KK5sluBFxwBWEolRCAoXSBfwIyFMqVTUIJwJDRPnKuBwEEEEAgHQuEhIRIsbzZZdexaLerOECABjcTChBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCD4Akmdl6Q9yazz84L/KfzXoi7C7ArQoKU6X8/fAA067+vvv/82GytWrJhUrFjRzCdno169erbDjx49assnNaPtarAHVwpWu672eBchQAN3AQIIIICAm0CBAgUkLCxM4uLijH3Lli0ztrUssbR27dpM+wNw/PjxNpoOHTokDMgNtZX5m9HoVz179hRXYIzZs2cbAQ0KFy5sNnHDDTdI/fr1zR9KGrjg8ccfl0mTJpl1krrRunVrKVu2rOzatctoYseOHdK/f38ZNGhQUpu0Had9X7FihVGm/2dj2rRp0q1bN1sdZ0Yjdb322mvO4hTNFy1a1Na+/ii98847bWWeMq+++qocOnTI0y6PZQ8//LDhe+bMGWP/okWLjAAZKRUkoXv37uIK0HDhwgUjsIc1QMR1110nN998s8e+UogAAggggAACCCCAAAIIIIAAAgggkPYE9L+xRScESjh2NlaOnYsx3o+fi5WjCdvHjTItT3idTcgb77ESG+++mnTau7LU7VGubGEJARg04EIOcQVf0Lxul8yXQ7JnzZK6HeJsCCCAAAIIIJAsgWJ5c3gJ0HA+We1yMAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDgjwDz8/xRSr06jzzyiAwbNkxcgTN0Dp4uaHzjjTcm2on4+Hjp06ePrc6jjz5qyycn4wyckC9fvuQ0Zx6bUu2aJ2CDAA3cAwgggAAC7gJZsmQxJmgvXrzY2HngwAF55513pG/fvu6V/y3Ztm2b6MR+nUif2VJ0dLR8/fXXtsu+9957bflAMvpD6tZbb5Xvv//eOEwDZXzxxRfy7LPP2prRgAXNmzc3fxhOnjxZChUqJO+++67oqjC+0vz586VJkyZu1fTzf+WVV8T6Y3Hw4MGSP39+6d27t1t9Z4H+UI2KipLGjRs7dxn5li1byieffGLue/3110WDUmjfPSW9/scee0xWrVrlaXeKldWtW9fW9qhRo4x+XH311bZya0av6+2337YW+dyOjIw0ftAPHDjQrPvEE09I7ty5xZ/7SL9zGkSlQYMG5vGJbbisjxw5YlQbPny4rXpKBYawnYQMAggggAACCCCAAAIIIIAAAggggECiAtGxcf8GXIhNCKoQI0cTAi38E1whIQDDv0EWNG8EYkgIvBATR8CFREETdmYJDZESkQnBFxICMJTWwAv/Bl/QbX1F5szq139X9XUe9iOAAAIIIIBA2hAolje7x44cOHXBYzmFCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAwBZifF0zN5LdVsWJFadWqlTlf79KlS9KuXTtj8eSSJUt6PIHOkdP5devWrTP3R0REiC6e6ynp4sstWrQwzuPP3L6YmBj54IMPbE05A0boos49evSQ5557TmrUqGGr6y2jizZb5zrqItTVq1f3Vp3yJAokvhR6EhvlMAQQQACB9C/w4IMPiitAg17Niy++KDqhWyM+FS5c2LxAjaY0fvx4eeONN+TUqVPGAFb9wbJlyxazTkbf0B8sZ86cMS/zqquuklq1apn5pGzoxHxXgAY9Xo2dARqaNm1qlGnwDFd6//335ddffzUCLGiQB/3RZ00aSOPHH3+UiRMnGgEPXFG/rHV0W6OCzZ492/wxpvX0h5we+8ILL0jDhg0lW7Zs5mH6o3Tz5s3y7bffyoQJE+TChQuiP+Y8JQ3QUKJECdm3b5+xe//+/UZ7I0aMMN5dP0A1MMOCBQvk1VdfleXLlxt1y5UrJzt37vTUbNDLNBBDnTp1ZOnSpUbb+hnfcsstosZt27aVsLD/fkbpD+0333xTpk6datStUqWK4eFvp/r16yfz5s0zAi3oMbGxsdKxY0eZNm2a8RnXrl1b9P+YuZLa6DlnzJhheJcvX94IiuHan9h7eHi4PPTQQ/LWW2+5VcuePbvcf//9buUUIIAAAggggAACCCCAAAIIIIAAAggkT+DCxfh/AytYAywkbCcEXvgn4ELMv8EW/gm6cD6hPilwgQIR4VLy34ALpRMCMZTK90/wBQ3GoJM0w7KEBt4oRyCAAAIIIIBAuhQoFkmAhnT5wdFpBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQykADz84LzYeqivzqXKilJ59+5ks5dW7RokZw8edIo2r17txH0YOjQodKhQwfbPDxdTFcXu9Z5etakC/sWL17cWmRu61xMPUeZMmXk7rvvNgI13HDDDZInTx6zjm7oYr268LIusGxd0Lho0aLGMdbKOmdPF3XW10033WS026xZM7n22mtF54hZkwZz0Llo2q7O83SlO+64Q7RtUnAF/ptZGNx2aQ0BBBBAIJ0L6ATukSNHytq1a40r0Qn6Ggjg3XfflQoVKkhkZKQcO3bMmCwfH//fYGEN5KAT7zNTgAYNnmBN+oMsual169aSM2dOiY6ONppav369rFmzxi3S1ZAhQ+Tvv/82AwNoZa2nEbz0R5b+oMufP7+cO3dO9u7da/6A9Kd/Y8aMMYJyLFy40KyuARP0pX0rVaqUcR9o4II9e/bI2bNnzXp6Xm9JAxtokAP9oelKGtyhcePGRvCP0qVLi0YA0wAP1sAXGhjiwIEDqRagQfumP5obNWpk/PDVvJ6/ffv2kitXLuN7oBHE1PXQoUO620gaFGPSpEmiP6D9TVmzZjWCYWhQjY0bN5qHTZ8+XfSVO3duw1vf9Qey2mgQDFfSAA2BpMcee0yGDRsmzgAd+pnky5cvkKaoiwACCCCAAAIIIIAAAggggAACCGRaAf1vK0fOxMjOo+dk38nzlgALlsAL5xICLyQEYTgX+99/Q820YEG48GxhoaLBFkonvErlSwjA4NrWfMIrVzYefQaBmSYQQAABBBDIEAJF8+bweB0HT/33jM1jBQoRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSAJMD8vOJC66HBSk3XuVMmSJeWLL74w5t3p3DVNuni1LnT8xBNPiC4snCNHDmOu3uHDh91O+fDDD0v37t3dyp0FGvhB52HqSxcy1oWOCxQoYLStQRR27Nhhmxemx+vCvqNHjzbqONtz5VeuXCn60jl2Om9Qr0fngemxOs9T55tZ53nqcYUKFZIPP/zQ1QTvQRRglFIQMWkKAQQQyEgCOmH822+/FY0S9ddff5mXplGXvAVfePbZZ2XgwIGiPx4zS9LABBqwwJo6duxozSZpWyf5t2rVyhZ4QQNB1KhRw9aeBjuYMmWKVKxYUTRal0bQcqXY2FjbZ+cq9/ddo3P9/PPP8vjjj4sGa7D+INXAEd7uA3/a1wASr7/+uvTr189WXX+8evoBqz+k33zzzVS/t+rWrSufffaZdO3a1WarwSg0EIYz6Y9aDajg/Jyc9Tzl9ce2RkrT6HjfffedrYoGqti0aZOtLDmZq666yvhuz50719aMXicJAQQQQAABBBBAAAEEEEAAAQQQQMAucCr6ouw4etYIxLArIRjDjoTXrmPnZOeRcwResFO55bJnDTWCJuQMD5Oc4VkkIiGAgvGu+WwJ+YR3LYtI2JfT+W7s++cYrZcjoU7uhDqhoSFu56EAAQQQQAABBBBwChTLk91ZZOQPnb4g8ZcuSxZ+U3j0oRABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSCJ8D8vOBZBqul22+/XebMmWMs4Gudw3b+/Hmvc7c0AEKfPn2MuW2B9kPn4+niwPrylnQ+2tixY0X75m/SeYMa6CGxVLlyZWN+qC7STAq+AAEagm9KiwgggECGEShdurSsWLFCXnnlFSMC04ULnlcTqV27tgwYMECaN2+eYa7d3wuZMGGCLXDBNddcI9dee62/hydaTwM9TJ061awzefJkGTZsmOiPc2vSSFpvvPGGdOnSxQiQMXPmTDl58qS1im27SJEicscdd8hjjz1mK/eU0WhaGqBAgzToOfQH6Llz5zxVNcrKlCkjbdq08Ssa2KuvvmoEMtCoXRs3bvTYZrVq1WTw4MFy2223edyfGoWdO3eWSpUqSd++feXXX3/1eMrs2bNLp06dDP9ixYp5rONPYd68eY0fvlFRUcZ167v+YPaWtF/33HOPEUDCWx1v5Rq1zRqgQdu65ZZbvFWnHAEEEEAAAQQQQAABBBBAAAEEEMjQAtGxcf8GYIhOeNdgDK73c3IiIUBDZkgaOEEDKUQkBE4w3v8NmpDLkTeCKVjq5XIFXXC8axtMfMwMdw7XiAACCCCAQNoUKBbpOUBDXEJwhqNnY6SIlwAOafNq6BUCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgikVwHm56W9T65hw4aybds2GTJkiIwbN07279/vsZM6X6xFixbGIsXXXXedxzrWwu+//95YtPenn34yFvFNbH6fHle8eHG57777jOAPBQsWtDZlbkdGRhqLDOtC3DoPbOXKlRITE2Pu97Rx/fXXy6OPPmrM73POQ/RUn7KkCYQkRN+4nLRDOQqBjCmgk4Stk6s3bNggOuE6qSkuLs5tBfsKFSqIrnpPQiA9CZw9e1YWLVpk/Pg4deqU5MiRQzR6kgZn0B+KpLQjEB8fL7///rts375djhw5ItHR0ZIrVy4pUaKE8fdMo19pUIekJP0Bt3TpUtm9e7fRtgYPyJ07t3EP6N/Oq666KinNyubNm40+a+Qx/bupQQ5q1aolVatWTVJ7KXXQrl27jB/IBw4cMH7M6o9cDWxQt25dyZkzZ9BPq8EwFi9ebERJO3r0qOhnmydPHilXrpzoj+WSJUsm+Zz9+vUzgm64GtDgH88995wrmyLv/JuYIqw0igACCCCAAAIIIIAAAggggAACfgrExl2SPcc18MI52ZXw2pHw0mAMuxKCMRxMWEk5o6TwLKGSPyJcCuQKN94L5spmvGtZQaMsm7EvMkdW0eAKEQmvHFmzSCirSGeUW4DrQCBJAsF+RpqkTnAQAplYgO9g8D/84+di5YY35npseObj9aR6qUiP+yhEAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQSHsCzEVIe58JPUqaAPPzkuaW0ketXbvWWHxY57Xp3LlChQoZ8ybr16+f5PliOnV/69atxtziPXv2yOnTp415YToPr2jRosa8sIoVKyaM1wkN6PK0f5s2bTLmeOr8Nr2ndJ6gzjcrW7asVK9e3ZhDGFCjflROqb/D6fk5KTPE/bhxqIIAAgggIMYE/9tuuw2KdCCQJUsWqVOnjvEKdnezZcsmjRo1CnazUqVKFeMV9IaD3KD+UNVXaqWIiAhp3rx50E+ngR7Gjh1rthseHi6dO3c282wggAACCCCAAAIIIIAAAggggAAC6VUgPmFF5P0nzxtBGDQQg/W190S0JOxOdyksIXDCPwEXEgIreAi84CorEJEQiCEhAEPuhIALSQ3Qmu5w6DACCCCAAAIIIOBFIF/OrJItLFRiEoJ0OdOBhN+LBGhwqpBHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBlBbQBXiZn5fSyoG3r0EN9BXMpGN3dFFgfQUz6dy+GjVqGK9gtktbgQsQoCFwM45AAAEEEEAAAQTStcCsWbNk79695jW0bdvWiO5mFrCBAAIIIIAAAggggAACCCCAAAIIpGEBjTB/+EyMGXxhV0Ighh3/BmPYcyxaYuPdJ+GlpcvJ4gq4YAZb+DfwgpFPCLKQ8F4wIdCCKyhDnuwEXEhLnx99QQABBBBAAIH0IaCD3orlzS67En4fOtOBUxecReQRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABvwUI0OA3FRURQAABBBBAAIGMIfDWW2/ZLuTx/7N3H+BxFAcbx9879d5tSe69YAOmYzoYQocQSoDQAoQEUkiDVAgJCaQnfKlAQgskEEoghGo6phcb3AvulmxZVu/S3TezpzvdSSfp1Mv953mW252dnZ397dmc5Jt3r7kmZJsNBBBAAAEEEEAAAQQQQAABBBBAYDgIlNc2OsELNoBhY2sIg123S01jy3AYYmAMNkShICOpNVQhXjkmZCE7xQQvmKAFu56T2ha8kJ4YJ7cJaaAggAACCCCAAAIIDKxAficBDcWVBDQMrDy9I4AAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIDC6BQhoGN33l6tDAAEEEEAAAQRCBO6++269/vrrgboDDjhARxxxRGCbFQQQQAABBBBAAAEEEEAAAQQQQGCgBbxeryrqmrSzssEs9dpV1fraum6faLyptEbltU0DPZQe9Z8UF6MpuSmakmeWHLOY9clmmWqWLBPCQBlAgdIN0vb3pfhUKW+WlDVZcscM4AnpetgKeDzS5iXS0vsll3kPnPnHYTtUBoYAAgggMPQChSZAK1zZUV4Xrpo6BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAICIBAhoiYqIRAggggAACCCAw8gSKioq0YsUKZ+C7du3S4sWLde+994ZcyI9//OOQbTYQQAABBBBAAAEEEEAAAQQQQACB3gr4gxf8gQs2gGFXlQlgaB/EYAIZGpvNJOthWOJiXJpkwhcmm2WqCWKwrzaIwa6PSUuQy+UahqMexUPa8rb0+m+ktc+EXmRMgpQ7wxfWkDdb2vcCKWN8aBu2RpdA2WZp2b98wQzlZt2WGBOM8qmbpaQs3zb/RQABBBBAoJ1AfkZiuxrfZrEJBKMggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACvRUgoKG3chyHAAIIIIAAAggMc4Fnn31Wl112WaejPPvss3XSSSd1up8dCCCAAAIIIIAAAggggAACCCCAgBWwwQuVdc3aGRS24F+3AQz+IAb7OlyDF4LvpNsljctKMsELqZqSk+wEMEzJs+spKsxMVGyMO7g564MtYN5v2vCC9JoJZti8JPzZWxqknct9i20xy/yOi4CG8FYjubaxVlr1XxPK8A9p46sdr6SlUfr4YemgKzvuowYBBBBAAAEjUJCZFNahiICGsC5UIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAZAIENETmRCsEEEAAAQQQQGBUCRx88MH629/+NqquiYtBAAEEEEAAAQQQQAABBBBAAIGeCTjBC/XN2lUZGrKw02yXVDWY4AVT3xrK0NDs6Vnnw6D12PQEX/hCborzOtkEMEzNS9GE7GQlxMYMgxEyhBABT4uZjP+EL5ih+KOQXV1uuEygRs70LpsEdv7vm1JippQ32yyzpNwZUlz4iZuBY1gZXAEb0LHtXelDE8qw4jGpobLr8y+9n4CGroXYiwACCES1QEF6Ytjrt59zWzxexdjkLgoCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQQwECGnoIRnMEEEAAAQQQQGAkCrhcLqWnp2vevHn67Gc/q6uuukpxcXEj8VIYMwIIIIAAAggggAACCCCAAAIIRChQWd+k1UVV2lZWq12tgQu7KhvMui+QwU5MG4nBC8GXn5Ucp8mtAQxTTADDFBPAMMVs2zCGlAT+GSzYatiuNzdKHz0oLfmdVLq+58PMmhxZyEJzg/Te3yVvcNiImZRpj/cHNvhfc2dKCak9HwtH9F6gskha9k9p6QPmfbAu8n52fCjtXCmNnRv5MbREAAEEEIgagfyM8AENzSacobS6QWM6CXCIGiAuFAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEeiXAN9N6xcZBCCCAAAIIIIDA8Be49NJLZRcKAggggAACCCCAAAIIIIAAAgiMbgGveeL8jop6rdxR6VuKKrSyqFJb99SNigtPjo9xQhds8IJ/cUIZTAhDVkr8qLjGqLyIxhrp/XukN/8gVW7vPYENVYik2PCHkHAGe5BXKtvoW9Y+HdpLxkQT3DDLt4yZ4wtxsMENiemh7djqvYANzVjzlPTh/dKGF8Lcnwi7Xv6wCWi4IcLGNEMAAQQQiCaBwsykTi/Xfn4moKFTHnYggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAXAgQ0dIHDLgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBgOAk0Nnu0fle1E8DgBDLYMAYTzFBZ3zychhnxWFwuKceELIxJS9TY9ITAa4GZTGfDGKaaJS8tQS7bkDI6BOrKpHfukN76s1S3p+/XZEMUIiklqyNp1damYotkl/XPt9XZtfRxrcENJhjCCXBofU3KCm3HVngBEyijomXSUhPK8PG/zXvAvB96U9xx0qwTpX0/J00/rjc9cAwCCCCAQBQIZCXHKSHWrQbzGbp9Ka6okyZktq9mGwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEOhWgICGbologAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggMvkBFXZNWFVU6AQwrW1/X7apSU4uZ4DwCSm5qvAlX8AUvjDWvY2wAQ7rZNoELzqvZzk1NUFyMewRcDUPss0BVsfTmH6T37pIaq3vW3eQjpMO/Lk08VCpdJ5WsNctq3zL+oMj6KlkTWbvuWlVul+yy4cW2lomZ0vWbZJJE2upYCxWo2S199KD0oQlm2LUidF9PtsbOlxZcKM0/R0rJ7cmRtEUAAQQQiEIBG/JVkJGoTaW1Ha5+R3l9hzoqEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgUgECGiIRIk2CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggMAACXjNE+W3ldXJH8Lgf91ebp7qOwxLTkq8E7AwxgQtjDUhC2NN6IJd94Uu+NZt8EK8eVoxBYGAwKNXShtfDWxGtDLrZBPM8A3zdOsD25oX7CPZpafFBjoMVMmbHVk4Q0uzVF0spY+LrP1AjXco+n3kCumTl3p35qQsE8hwri+YoTf3vndn5SgEEEAAgVEikN9JQENxJQENo+QWcxkIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIDLoAAQ2DTs4JEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIFoFGps9WrerSit3VIYEMlTVm4nbQ1yybfCCE7rgC1mwwQs2gCEvzfdqtwleGOKbNJJPf+iXIwtocMVI8z5jghm+Lo2d239XPPUYyW3+abRkjbR7rdTS2H99582KrK9dK6S/Hikl5/hCJgr2bX01gRNZk0d3aMM+5/csoMFlAl6mL5L2vVCadZIUmxCZMa0QQAABBBBoJ1CQkdSuxrdZVEFAQ1gYKhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoFsBAhq6JaIBAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIINBzgfLaxpAQBhvKsH5XtZo93p531ocj0hJjNS4zSWNs4IIJYBhjQhds2MIYE7zgX89LTVB8rJkQPVSldIO0/gWzLJZ2rZK8HiljnFnGty4T2tbTTX1S1uiezD5U92EgzzvjBBO4ME/auTz8WWLMBPwFn5MWfkXKnhK+TV9qD7hMsostLc1S+WYT1rDat+xqfbXBDc29mKyZN9vXb3f/LVrma1FbKm140bf4j0nMaAtrcIIb9jUOU02oxBD+ufSPrT9e55wm/S9Naqzqurfcmb5Qhn0+K6Xld92WvQgggAACCEQgUJCRGLZVUXld2HoqEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAge4ECGjoToj9CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAXAl6vV9vK6rTCBDCsLDKLeV1lXrcPwaSvidnJmluQrrmF6ZrT+lpoJqW5XK4urmAIdjXWSJte9wUyrHteKtvYcRCV26Stb3estzVxKW2BDU6IwwTpwMul5Ozw7akdegH7Hjz869Ij5j4Fl3gzaf/Az0uHXGMm5I8N3jNw6zHmn0hzpvmW2ae0ncfTYoIbtpjQhjWt4Q1Br03mPdtZyZvV2Z7Qen9AQ2itb6u+Qtr4qm/x749PlfL3lgr3bQtvyJkh2fEPh2K9ij/2ja+78cQnS/M+LX1wb8eWCelm31kmmMEEdIw/gPCVjkLUIIAAAgj0QaDTgIaK+j70yqEIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBDNAsPk2zvRfAu4dgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEBgpAg3NLVq3s9oJYQgOY6hqaB7US4iPcWtmfqovjMEJYsjQ7II0pSfGDeo4enSy0g3Smqd8oQyb35BaGnt0eEhjO1l+t5k8bxd/2f8S/1rXrztXSCl5vmW4BVd0PfLht9dO0F/1hDTxUBOukN/9+OaeKb14sy+QIznHhDJ8yYQzXCElZXV/7GC0cMdI2VN8y6wT287o8UiV24OCG1a3rTdUSnmz29p2tdZVQEO44xqrpS3mz4pd/CU2yYQ2zG8LbLDhDfb8MXH+FgP/av8sL31AWvZPqapI+vpKKb2g+/PaAIZAQINLmnKktMDUzT5VsgEOFAQQQAABBAZAoCDD/L8zTNlZWa8Wj1cxbvP/JAoCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQAwECGnqARVMEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAY/gJer1eNLR7VNbao1ix1TWZpXa9tbG5bd+qbO7TxtW2rd/pwjm9WZX2zM5FrMBUyk+O0V2G6E8YwxwljSNe0vFTFmZCGEVU+elB65ecDM+SYeCk5t/u+zXtDdxwnNdeZCe0JUsY4s4w3y4TWV7OebuvstnmNT+m+z2hs0WzCNT76l7Tk91LpemnhV6UTftK9RIz5p8njbpCqd0n7XTxyJuW7zZ+1TPOesMuMRW3Xad9PNqAgLYJwgpZmqXh527G9XbPv3W3v+BZ/H/b9f9T10pHf8tf0/2tDlbTiPyaY4X4TGPFmaP/2vXD410Prwm1NOEiabvzGm9d9zzeeE8O1og4BBBBAAIF+FcjPSAzbX7MJZyitbtCY9PD7wx5EJQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIGAEYlFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIZCoN4EJFSZwAMnEKGpNRDBBirYMISg8IS2gAQbtuBrZ+vs8fbVt7/teHusfRruSCyTcpKdIIa5rUEMc00wQ76ZNOZyjYIn+9qJ2QMV0GBDFewk+u5K7R5fOINt19Ig7fnEt3R2XFJ2a3CDP8DBhjcEBTqkjjXnjens6NFX31gjvX+P9Mb/mWCCHW3X997fpSO+ISVltdV1tjbvrM72jLx6++cyvTCycdv3mg1XGIjSYgIzUnL7v2ePx4QxvCF9aEIZVj4uNZn7H67Y/YddK/MXVbi9bXV2/+ceadtmDQEEEEAAgUEQKOgkoMGeuqiinoCGQbgHnAIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB0SZAQMNou6NcDwIIIIAAAggggAACCCCAAAIIIIAAAggggAACw0CgtrHZmfBUbCY92YlPReV1KqqsV2C7ok7ltU3DYKRDM4T4WLdm56c5YQxzWsMY7HZaYtzQDKi3Z7WBByVrpEmHdt/DuP2lxEypvrz7tj1tYUMTIimV2yJp1damzlyfXYo/aqsLXnObf2qzE/QzTIBD1hTp+B+bifI5wS1Gx7q9z+/cIb39F59H+6tqrDb775SO+nb7PWz7BfJmStdvMjNBzXupaFnrslQqXe9v0bfXgn0iO/7lW00oyUbJtneWvaWEtNBjy7dIS/8pLXtAKtsUui/cVuk6adt70oQDw+2lDgEEEEAAgSEVyE6Jl/3s3djs6TCOIvMzyT4TMjvUU4EAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgh0JUBAQ1c67EMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEOAjUNNnzBBC60hi/4Qhd82/4Ahoq66A1faA9mJ4XNbQ1h8L9OzU1RbIy7fdPhv+1pkXZ8KK1fLK17Xtr+vm9y93WfSDHdhEu4Y6Rpx0orHu38OgsXSNOPl9LGShXbzWICFexigxUqd0ie5vDH2oCESIrtqz+LHY+dzG6XzUukk38ZWe/NDVJsQmRth7JVVbH05h+k9+6SbAhDV+XtP0uHXi3Fp3TVKrr3JWVJU4/yLX6J+kpp53JfYMOOpb7X3Sb0xNtxEqn/kA6vNihkzNwO1WErVj9pAkc+lj76V+tul5QzzRfWkDdH2vSatPFVs88b9vBOK5f+g4CGTnHYgQACCCAwlAIul0sFGYnaXFrbYRj25xkKAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0FMB820dCgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDgE6iqb5INWdhhluLWEIb221X1nUySB1FTTPCCP4RhTkGaWc/Q2PQE2YlhI7ZU7ZQ2vOALZdjwolRXFnopDWaC+bZ3pUkLQ+vDbU1fFBrQkJxrAhmOM4upn3qMlJoX7ihfnQ2HqDZjcUIbtraFN9jt8Qd0flzwnv4OaAjuO32cCSdIDq4Jv97cKP2s0IRQFEjZU32T43Omm3UzSd5OlM+cZMIb4sMfO1i1e0zgxpLfS0sfkFrMeCMptaXSB/dKh3wpkta08Qskpvv+7AT/+Wk0E0j9oQ1FS32hDbtWdR5QMmZOZIEfNhjE9hNSTBBD6XrfElLfg42YERA20oPLoSkCCCCAwOgTIKBh9N1TrggBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBoRSIHcqTc24EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAYHAGv16tKE6xgwxaKWoMX7BNj/SEMvvV6VTcQvhDJHUmIdWt2vglgKEwPBDLMyk9XasIo+KeXliZp6zu+QIb1i6Xij7onse2CJ5h3doQNY5hwsAlkON4XzFCwr+R2d9Y6tN4dI6WbYAO7TDgodF+kWwMZ0GDDFiIpZZt8E+0rtpqQCbNsfCX0KJe5zswJJqwhKLTBCW8w/WdMlGIG8D1WvFx6/TcmROMxyesJHVdXW3bM8z5jQjaO7qoV+yIVsEEf9j0e/D5vMk/43rXSF9bgD23YucIXoGH/HEVS7PGefvw7vnA/acGFvnuflBXJCGiDAAIIIIDAkAgUZCSFPa/9GYiCAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII9FRgAL/B1dOh0B4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQR6K2CDFbbuqW0NYGgLYQgOZKhtbOlt96PmuLgYl5LiYpQcH2uWGCXZxWzbV7tt6511p42tb23X2iYlIUbjs5I1NTdFsTERBguMBL3yrdKGF3yhDJ+YwICGyp6N2gY0HHdD98ek5UuXP9d9u4FqsegmaeFXfMEINqwh3FKzq3dnz5kW2XF7NnTdzmv+nNoQB7vIuAYXd5yUNdmEN5hz+UMbnNfpJrhiXORhF8F92vUtb0mvmWCGdc+239P1dkyCmaD/Oemwr/rG1XVr9vZFIC5RGmcCEeziLzZMpWS1Ce2I99d0/Vq0rOv9kexNGSPtc560rwlmGDMnkiNogwACCCCAwJAL5GeY/4+GKTasjoIAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgj0VICAhp6K0R4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSEU8Hq9Kq6s18odlb6lyLyaZXNp7RCOqn9P7QtQaAtNcEISAoEJviAFX6iCLzzBH7TgvMa11SW2HhMIXTABDHGjKVShL+xN9WZS/hsmkKE1lMFO8u5LsRO/q02wQaqZvD2ci9uEatgx2mXc/uFHam0qt7eFNzjrJsAiOMyhqbbjsTYoIZJS2k1AQ1d9eMyE/NJ1vqV9u1gz8dBe02VPtd8Tftv8XeLc/9d+7XsvhG8VvjY+TTrwcumQq6W0seHbUDvwAjEmsCN/fuTn2bE08rbBLd3mn5RnnugL45i+yARCmPNSEEAAAQQQGEEChZ0ENOwoN5/7KAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAPBQho6CEYzRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQGCyBphaPNpRUdwhjKK81k7RHUMlJiZd9am2BWXyvSYH1nJQE2WAF3xKrxDi3XC7XCLq6ETRUGzCw2kzeX79Y2vSaFC5koLeXkzlRKt8y/AMaIrm+OBN0kGPCFuwSrthgg7qy0MCGsk3SxEPDte5Yt6cPAQ0de2uraTYTDFsa27Y7W/O0SGufkZ6/MXzQQ2fH2frkHBPK8CUTznCllJTZVUv2DUeBuadLCSZco2ipWUyoSn1F16McO0/a90Jp73OllNyu27IXAQQQQACBYSyQn5EUdnQ7TfCdx+OV283PH2GBqEQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgbACBDSEZaESAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHBFaisb9KqHZVaWWSW1td1O6vVaEIahnPJTY03YQtJIQEMhUHbY9MTTehCzHC+hOgZ24aXpKe/3T/XG2tCDCYfLk1fZJbjfWEG0RKsYa8zOdu3FOzdc8/SAQposCPJ7iRUIniULrcUn9KzcIb08dJhX5UWXGSOTQ7ujfWRJDDtWMkuttigkfLN0o6lvrAGG9hQtlFKzJTGH+ALZijYRyYxx7amIIAAAgggMKIFbFBcuNJswhl2VzdojPmZhYIAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghEKkBAQ6RStEMAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoB8EvGZS7PbyukAIgz+MYVtZXT/03n9d2Dm5uakJJnwhsXVpC2GwgQy2fkx6ghJiCV/oP/Ue9GQnV9eUmAnVm3zL7FO7nzg//bgenCBM05wZvkCGGSaUYdJhUlz4JxGHOZKqYIHTfieVrJX2mKAGG9bgf63YZlqZ+9qXkhNJQIP5w126PrKz5M40wQzXSvPPkWLjIzuGViNDwP4lnzXZt+x15sgYM6NEAAEEEECglwKdBTTY7ooq6glo6KUrhyGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQrQIENETrnee6EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBAZcoLHZo3W7qkLCGFYVVaqyvnnAz93VCey83DFpCcq3QQvmabH5JmyhMNO++oIX8k3dWLPEx7q76oZ9Ay3Q3GiecL+lNYTBPNneH8awp3W9qaZtBF98Xcqf37Ydbi29UBo7T9q5PNzejnXxqdKUo0wogwl2sIudzE3pu0D2VMku7UtTvbnH5t4Ghzbs+cQXplBV1L51+O1w/YZrWWr67aoULpAO/4Zkgz/c7q5asg8BBBBAAAEEEBj2Atkp8c7PNvbns/bFBjTsM6F9LdsIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA5wIENHRuwx4EEEAAgV4K3H333brssssCR99111269NJLA9usIIAAAggggAACCCCAAAIIIIAAAqNRoLy2UStN+MLKHWYxr6uKqrTehDM0tXgH9XLdTvhCogpM4IJ9Umx+ui90IbBtQhhsOENczBBPuq7YLu34UGqqk5IypUSzJGW1rcdEwT9heM17o67MNynfhi/4gxf8QQwV28x7J8L3jz2mu4AG05sTtNBVQIMNcHACGRZJEw6RYuPtUZTBEIhLNMkpc3xL+/M1mjAOJ6xhg3k1iw1YcF7XSzUlba1zprWtd7Vmjw1XJh8hHWGCGaYeI9kkFwoCCCCAAAIIIDAKBFzmc4392WhzaW2HqymqMD+PUBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEeCETBtxt7oEFTBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQS6EfCaSfVb99SZEIaKkDCG7eWDP7FnXGaS5hama25BuuaYxb4WmmCG2KEOXwhn6GmRtr0nrX1GWvec1FVIgD0+Ps0X1hAIb8j0BTg4QQ5B6+mF0kQTJDASyscPS8UfmUCGTb5lj3ltqOifkds+IynTTfDCkt+3tUzM8E3Gn3G8NO1YyXpShp9AfIovgCNcCEd9ZWtYgwldyJ0Z2dhLTdvgMusU6fCvm1COA4NrWUcAAQQQQAABBEaNQH56+ICG4or6UXONXAgCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiMHgEeoDx67iVXMjoFCGgYnfeVq0IAgREicPPNN+uHP/xhYLQHHHCA3n333cB2X1YeeeQRnX322YEu8vLytH37dsXFxQXqRvPKIYccorfffjvkEl9++WUdddRRIXVsIIAAAggggAACCCCAAAIIIIAAAl0J1De1aN3O6kAYw6qiKq0qqlRVQ3NXh/X7vrgYl2aMSXPCGPxBDDaMISN5BPyuxwYz/OdqXyhD3Z7IbRqrJLtUbO36mMIF0hde7rqN3VuxTXrv75IT8JDlC39ov24nwZun6/a4mNCOiI577y5p8+s97j6iA/ZsjKiZJpgwi0mH+RYb1jBufykmNrJjaTU8BRLTJfvnwC6RFI9Hqq8wfwaypZknSgu/Io2dG8mRtEEAAQQQQAABBEasQKEJtwtXighoCMdCHQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIdCHAN+66wGEXAgggMNACF198sW644QbZpy7a8t5772nVqlWaM2dOn099zz33hPRxwQUXRE04w+rVqzuEM1gMa0JAQ8jbgg0EEEAAAQQQQAABBBBAAAEEEAgS2FPT6IQvrNxRaQIZzGJe15dUq8Xj+91NUNMBXc1IipMNX5hbmC5/GMP0MamKj3UP6HkHrHN3jFSyWupJOENPBpOUFVnrPZ9Ir/2667ZuE3iRlNka4mBebd9OiEPQelyiCXvYLpWZQISyTZINRjjzz9IsM9G9u5I9eeACGuxYIimx8dJlT0XSkjajVcBt/i759rrRenVcFwIIIIAAAgggEFYgP8N8jg9TiirqwtRShQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAiNFgAco9/5O3X333brssssCHdh5d/YByRQEEOhegICG7o1ogQACCAyYwMSJE3XMMcfoxRdfDJzj3nvv1S233BLY7s1KSUmJnnnmmZBDL7nkkpDt0bzRPpzCf60PP/yw/vCHPyg5OdlfxSsCCCCAAAIIIIAAAggggAACCEShgMcELmwtq3UCGPxBDPZ1KJ6cOjE72QljcIIYTCCDDWUoNBOHXC7X6LozMz8lFS0dmGuyAQqRlLqy7lt5mqSaEt/Sfeu2FjasIZKSNTmSVj1vE5cixZjgBQoCCCCAAAIIIIAAAgiEFSjoNKChPmx7KhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQGBkCPAA5ZFxnxglAqNNgICG0XZHuR4EEBhxAjY4ITig4R//+Id++tOfym2fYtbL8sADD6ipyXyZvLXsvffeWrBggX9zVL96PB7dd999Ya+xqqpKjzzyiC666KKw+6lEAAEEEEAAAQQQQAABBBBAAIHRJ1Df1KJ1O6u1sqgiEMiwqqhK1Q3Ng3qx8TFuzcpP05yCNCeQYW5hhmab9fTEuEEdR7+drGyTtPY5KXeGNO2Y7rudYQIaXvl59+160yIpK7Kj6soja9ebVtYjkpI1JZJW4dukFUj2eBvykN366t9OyZVJ9Qh/HLUIIIAAAggggAACCCCggoyksAo7K+tlQ/zcbj5PhwWiEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBYS7AA5SH+Q1ieAiMUgECGkbpjeWyEEBg5Ah85jOf0TXXXKPq6mpn0Nu2bXMCGxYtWtTri7j33ntDjrUhENFSnn/+eW3fvj1wuYcffrhef/31wPbdd99NQENAgxUEEEAAAQQQQAABBBBAAAEERpfAnppGrSqqDAQxrNxRqfUl1Woxk20Gs2Qlx2kvE8DghDEUpptAhgxNzUtRnAlpGLGlxYSBbnnThDI8K60zwQy71/ouZe6ZkQU0FC6QUvKkmpKOBImZUkOV5G3puC+SmiRzfCSlriySVr1rs2djZMd1FdAQm+gLX7ABDM7SGsJgwxgyJ0px4SeURXZiWiGAAAIIIIAAAgggEN0CBRnm83aY0tTi1e6aBo1JC78/zCFUIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAwDAT4AHKw+yGMBwEokCAgIYouMlcIgIIDG+BlJQUnXPOObrrrrsCA73nnnvU24CGFStW6IMPPgj0FRsbq8997nOB7dG+Yu2Cy49+9CNdf/31ev/9953ql156SVu2bJFNR6MggAACCCCAAAIIIIAAAggggMDIFLBPN91aVhsSxLDSBDMUVdQP+gVNyU3xBTEUmCCG1jCGsekJcrlcgz6Wfj9h9S4TxvC8WUwow4aXTIhCZcdTbHhRsuENMXEd9wXXuE04xfTjpWUPSLEmaGDKkdLME6QZZrHhA16v1GgCTOvKzVIm1dvX4HVTZ7ed+nbrSdmKqNhjB6qUbYqsZxu2MP5AE8BgXm0Ig932hzGkjpV5bG9k/dAKAQQQQAABBBBAAAEEeiTQWUCD7aTY/CxJQEOPOGmMAAIIIIAAAggggAACCCCAAAIIIIAAAggggMCwEuABysPqdjAYBKJCgICGqLjNXCQCCAx3AZvSFRzQ8Nhjj6m6ulqpqak9Hnr7gIITTzxRY8aM6XE/I/GAiooK/ec//wkMfdy4cTrmmGOcgAp/QIPXfNn/3nvv1Q9+8INAO1YQQAABBBBAAAEEEEAAAQQQQGD4CtQ3tWjdzmqtLKoIBDKsKqpSdUPzoA46Idat2flprSEMvjCGWfnpSk0YRb9m93ikoqUmkOE5aa0JZdjxQffGNrRhy1smcOGI7tsefJU07yxp8uFSnAlpCC420CIhzbdkTgje03/rGabfyWacwcEPNhSiP0r5Zsn6dRewkGzCJK5Y3B9npA8EEEAAAQQQQAABBBDogUB2SrziY9xqbDGf29uVHeX12nt8u0o2EUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAYMQI8ADlEXOrGCgCo0ZgFH1zdNTcEy4EAQSiUODII4/UlClTtHHjRufqa2pq9PDDD+vSSy/tkUZLS4vuv//+kGO662PXrl1avny5NmzYoPLycjU3Nys7O1v5+fk6+OCDndeQDofxxkMPPaS6urrACM8//3zznXi37Ou3vvUtWR9b+jOgwZq9+eabKioq0u7du8338D3KzMzUtGnTtM8++/QpHGPnzp16++23Ze+R7dtei+175syZ2nfffZ31wMUO85XS0lK99dZb2rFjh0pKSpzwERseYq+ls2JDSlasWKHVq1fLHm/vbUZGhnJzc7Xffvt1eWxnfXZVv2XLFr333nvO+Oz54uPjnT8Ls2bNcrztD2sUBBBAAAEEEEAAAQQQQACBgRXYU9OoVUWVgSCGlTsqtb6kWi0e78CeuF3vOWbiztxCXwjD3IJ07WXWJ+ekKNZM5hl1pd4ELHzykglkMKEM65+Xqnf2/BLXmTCHSAIaCvfted/9ecSBl0t2CS4tTb7Ahvry0OCG4BCHurKgNma9sUZKyZWypphlsm/JNusa3Pdp8GWwjgACCCCAAAIIIIAAAl0LuEwoXH5Gorbsqe3QsLii7d+YO+ykAgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBEaEAA9QHhG3iUEiMGoECGgYNbeSC0EAgZEsYL8McvHFF+umm24KXIYNEeguXCHQuHVl8eLFzgR4f70NWjjttNP8m86r1+vV66+/Lhtm8Pzzz2vNmjUh+9tvzJ8/X9/85jd14YUXKjZ2eP9v4+677w4Z/uc+9zlne+zYsVq0aJGefdZMFjBl3bp1WrJkiQ477DBnu6f/sSEMDz74oG677Ta9++67geCH9v3Y+7pgwQLH7rLLLlNWVlb7Jh22Gxsbdeedd+qvf/2rPv74Y9n7Fa7ExMTokEMOcd4jF1xwgZKTkzs0+9GPfhTynnrppZd09NFHd2gXrmLTpk1OaIh/n/0hpb2vf599nTx5sjZv3uxUTZo0SfZ4W2x4xS233KJnnnlGTU1mwkNQ+e1vf9shZGHt2rX65z//6bS3YQk2MKSzYkNEvvSlL+krX/lKRLbh+rEhEPY+2muz74vOSkJCgmyQyuWXX66zzjpLcXFxgaY2aML/3rKV9r21cOHCwP5IVqzN+PHjnTAO2z4xMdH5sxzJeyaS/mmDAAIIIIAAAggggAACCAw3AY8JXNhaVhsSxLDSBDMUVdQP6lDNj+6aYoIX5tgwBhPEYEMZ9jKveWkJsj/Xj8pif9dQut4EMpjfk9hghc1vSp7Qn9l7fN023OGEm3t82LA4IMb8jJ+a51uGxYAYBAIIIIAAAggggAACCAyUQEEnAQ2D/bPoQF0f/SKAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEM0CPEB5+N99+6BkO+/KPgDYPsw4NTXVeTiynX/X1UOAI7kyO99v5cqV+uijj5yH91ZVVTkP77XnmDBhgqZPny77EF/7AOWeFPvA4WXLljl9l5WVOQ8gTkpKUnq6eeiTmU83e/Zsp/+e9Enb0SEwvGfajg5jrgIBBBCISMBOgP/xj38cmJD/8ssva8uWLZo4cWJEx9tGNtQhuJx//vnOB4ngum9/+9v69a9/HVzV5boNCbBBETY04JFHHnE+9HR5wBDttJPr33jjjcDZ582bp3322SewbcMagifR33PPPb0KaFi9erXOPfdcJzwh0HknKzZc4YMPPnCWyspK2cCErooNM7D3zB900FXblpYW5wOp/VBqgzPsPRpu5Re/+IW+853vBN7T3Y3vySef7BAo0tUxxcXFuvHGG3X77bfrscce04EHHthV8w77Hn/8cV1xxRXOB/oOO9tVNDQ0OIEmNtSkfdDFVVddFfLesn9WehrQ8MQTTwTCGeypzz777F6HTrQbOpsIIIAAAggggAACCCCAwKAK2OCFmsZmVdX7lyZnvbK+SZV1TVq/q1o2iGFVUZWqGzoP5RuIQSfEujXbhjC0BjHY19n5aUpJiJJfk298TVr9pC+YoWxj/xEXmN+/zPiU1GLuZ0yUWPafHj0hgAACCCCAAAIIIIDAIArYgIZwhYCGcCrUIYAAAggggAACCCCAAAIIIIAAAggggAACCCAwsgR4gPLwvV+vvvqq8xBi+9rZw3xtgMLVV1+ta665psN8yK6uzM7Zu/XWW52H9xYVFXXV1AlVsEEedp7heeed12Xb9evXO3M9H330UdXU1HTZtrCwUJ/61Kf0hS98wXkgc5eN2TlqBPi25Ki5lVwIAgiMdIEpU6bI/g/+lVdecS7FTu6/77779P3vfz+iS7OpTnaSenCxoQ/tS319xydRZmVlKT8/3/mQYSei79y5U+0/kLz++us69thj9e6778qmPA23YgMXgsuFF14YvKkzzzxTycnJqq2tdeofeugh/f73v+/RtdiJ+WeddZZsWlf7kpeXp4KCAucD4J49e7Rp0ybZ5K1Iy7/+9S8nZMH6ty+2X3t/7A8KNh3MBncM9/LXv/5V119/fWCY8fHxTipYRkaGk3Jmk87al3DvTftesyllaWlpzvWXlpY6ARbBttu3b9fRRx+t9957T3PmzGnfbdjt3/zmN7JhJcH92IbWePz48U4QiQ3B2LVrlzPesJ20Vp522mmyH6T912TfW7/73e+cP09dHRe874477gje1JVXXhmyzQYCCCCAAAIIIIAAAgggMBgCLSZcodoEK9gwBV/AQpMTouBfr2wXulAVaGfDGHzHVJtwBvMrjSEvOSnxmltowhjsYoIY9jKvk3NSFBvTs/TrIb+Q/hzAO3+VVv237z3Gp0pTj5ZmmlCG6cdL6QV975MeEEAAAQQQQAABBBBAAIFBECjITAp7luKKjv+GHrYhlQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIDCsBXiA8vC6PY2Njc7Dde0cye6KDUT4xje+oT//+c+yD8KdPXt2d4do2bJlOvnkkwNzuro7wIY52AcMf/jhh10GNNjx2rld4eb5hTuHnVN21113yV7vIYccEq4JdaNQgICGUXhTuSQEEBi5AvZDoD+gwV7FvffeG3FAw7///W/V1dUFLn7u3Lk68MADA9vBK3ay+9lnn61TTjlFCxcudIIFgvfbdTvp/R//+IeTIOUPJFixYoW+853vOMEG7dsP5badZB/8Qc1Osm8f0JCamuqENDzwwAPOUCsqKvSf//xH559/fkRDt4ELn/nMZ0LCGRISEvTlL39Zn//852W9g0t1dbXefPNNPfzww/KfM3h/8LoNvbD33n4I85f09HQnQMAmck2ePNlf7byWlZXJJobZIADb/3ArNqDi61//ujMsGy5x880365xzznFCFvxj3bhxY9j0sJiYGJ144ok6/fTTnUCQqVOnyu0OnTxjw0jsB+0f//jHWrt2rdOlDd644IIL9MEHHzghC/7zhHu19/2b3/xmyK6xY8c6f9bsOG0YRnCxIQ0vvPCCbIiG/RDevsTGxuryyy/XT37yE2eXTUWz9/yLX/xi+6Zhtzdv3qznn38+sG/WrFlOWEugghUEEEAAAQQQQAABBBBAIAKB5hZPa6hCaMCCP1zBvlY32H1tYQr+UAV/m5rGlgjONLyamF8BaIoJXpjTGsRgAxn2MoEMeWkJ3f58OLyupA+j8SdiWIyuygwTqNDbgIbsab5AhhknSJMWSrEJXZ2JfQgggAACCCCAAAIIIIDAsBQoyEgMO64dFW3/zh62AZUIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAwIgR4gPLwuU023ODUU0/V4sWLOwzKzjcbN26cbGCCnWPW1NQUaLNu3TodfvjhzlyrBQsWBOrbr9gHVB933HGyDwMOLnae16RJk5Sdne1U2zmE9mHJ4R4sHHycf93O8bLz/OzDt4OLfXC0neNn5/zZa7Pz+2y/7R8eHHwM66NbgICG0X1/uToEEBhhAnZy+Fe+8pXAxHU7+fytt96KKDnpnnvuCbla+0EgXLnsssv0s5/9zPkwEG6/v85+yLn++uv12c9+Vsccc4zzYcfuu+OOO3TjjTcGPqT42w/l60svveR8oPGP4cgjj9SECRP8m4FXG3YQHJZw9913RxzQYCf/2w9O/lJYWKhnnnlG8+fP91eFvNpAiOOPP95ZbrnllpDxBTe0H8jOPffckHAGG/Zg+w53DfbYrKwsnXHGGc7yi1/8QjYMYjgVG6Bgy5w5c/Tiiy92CDyw++wPPO3L/vvvrw0bNjgfgtvvC962ASM2gMMGZtjlqaeecnYvXbrUcTvppJOCm4es2w/f9s9AcDniiCOcwIfMzMzg6sD6mDFjnPeJDfOwfybtB+r2xaai2T9XLS2+yUz2z0mkAQ1///vfQz6MX3HFFe27ZxsBBBBAAAEEEEAAAQQQcAQq6pq0bGu5PtxSrmXbyrW5tCYQylDX5Pt5ZHhSeTXNtUP7udcpTXUq96Zoj1kr96a1vqaqUvZnLVeXw0+IdWu2CV+Ya5fWQIbZ+WlKSRilv+ZubpCqd7UuxeZ1p2+9yq7bev+rqf/2BikxvUs/zTi+6/3Be91x0uTDJBvqMNMsOSaggYIAAggggAACCCCAAAIIjHCB/PTwAQ07K+vNv9d5TXB81z+XjvDLZ/gIIIAAAggggAACCCCAAAIIIIAAAggggAACCESFAA9QHh63+Xvf+16HcIYzzzxTN910k/bee+/AIO2Dgv/2t7858xX9D6+2oQt2nqWdK2bn6IUr9sG/weEM9iHBP/3pT3XaaacpJSUl5BA732vNmjV69tlnnYcl22CFzsq1114bEs5g51XauZQ2NMI+mDi42PHaMdq5bcFzFoPbsD56BUbpN1dH7w3jyqJcoGzzwAGkj5NiIvgroWK75GkemHGkjpXiwn8hIuSEVeZL5831IVW92sia1KvDBvIg+4HhrLPO0n333Rc4zb333tttQMOmTZv02muvBY6x/7O/6KKLAtvBK3YSfE+KTYyyk80XLVrkHGY/OPzrX//S1Vdf3ZNuBrStDVoILjaIIVyxgQl2sv2uXWYSgyk2gWv79u1O4la49v665557Tm+++aZ/UwkJCV2GMwQatq7YxC1/6lb7fTZYw94/f8nJyXHGZZPAIik2SGM4lri4OD300ENhwxk6G2+40IbO2tr6xMRE58+K/QBt08xsueuuu9RVQMPvf/97lZeXO23tf2bMmKGnn366wwfvQIN2KzNnzmxX49u0YRr2vE8++aRT8cEHH8gu++23X9j2/kr7Ad8GNPhLfHy8k7Lm3+YVAQQQQAABBBBAAAEEolegucWj1cVVWtoayLB0a5k2lNSMOJCj3Uv1k9i7NMFd0uXYm7wxKleKykxoQ5kJb6hxp8uVkqOE9DylZ49R3thC5eblKybF/P4qOcksaeYHwwyZ2TNd9jvsdtpU7ToTANk+YCFc6IJtF2mx4Q3dBTSk5UsF+0hFy8L3mmZ+F2FDHGwow9SjpARjTEEAAQQQQAABBBBAAAEERpFAYab5eTJMaWrxandNg8akRfB9hTDHU4UAAggggAACCCCAAAIIIIAAAggggAACCCAwggSYn+e7WaN4fh4PUB76P4/vvvuufvvb34YM5IYbbnDCGUIqzYadc/ftb39bxx57rLNUVlY6TexDgH/wgx/od7/7XftDnO2HH344UJ+Xl+fM/bPzBsMVO9fSPlDZLl//+te1atWqcM20cuVKZ/HvtOEMdv6hu5PvKSYlJenQQw91Fhs8sX79ev+hvEaBQASzsaNAgUtEYKQI/L4tGajfh/y1j6RIAgv+fqJUsaXfT+90eImZ2DzliO77fvjz0ubXu2/XXYsf+SZ0d9dssPdfeumlIQENNgzBfpCwE7c7KzbEwWu/4N9abBBBpBP8/cd09Xrcccc5/RUVFTnN3njjjWET0FBVVaVHH300MHwbnmA/SIcrsbGx+uxnP6vbbrvN2e3xeBzr73znO+GaB+raf5C77rrrNH/+/MD+vqy07/sXv/hFv967voytL8eed955mjdvXl+6iOhY+yHcBiPYPye22PdmZ6WxsVF//vOfQ3b/5S9/iTicIeTAMBtf/OIXAwENdrcNNml/vvaHPfPMM9q2bVug+owzzpD9oYCCAAIIIIAAAggggAAC0SdQXFGvD7eUBQIZPt5eobqmlhEPUepN7zacwV5knKtFeapUnquy7ZptHoVd7K8jVrRVB9Zcbuno70lHfTtQ1emKDTvwGM+kLBPqEJpi3ekx/bnD/t7m//Yzv1czPwO2NPZnz76+bEBD7ozu+7XhC4GABpc0/gBfIMPME6R887tHl6mjIIAAAggggAACCCCAAAKjVCA/o/MABvtzOQENo/TGc1kIIIAAAggggAACCCCAAAIIIIAAAggggECwAPPzfBqjeH4eD1AOfsMPzboNZwie63jqqaeGDWcIHp19KPXtt9/uzP3z1995553OcRkZGf4q59U+vNf/AGdb8ZnPfMZ5qHNIoy425syZE3bv2rVrQ+qvuuqqTsMZQhqaDRvi0NmDgdu3ZXt0CMSOjsvgKhBAAIHRI2CTlSZNmqTNmzc7F1VWVqb//ve/zgeFzq7yvvvuC9llQx76u0yePFn+gIYPP/ywv7vvdX///ve/VVtbGzjefmBr/6ErsNOsfO5znwsENNj6e+65R10FNDQ1Nenll1+2TZ1iQx6uvvpq/2afXu3E/ODErZycHF144YV96nO4HHz++ecP2lCmTJkSONf27dtVUlISNuTgnXfekf0A7i82QMKmq/VXsUEREydO1JYtW5wuH3jgAf36179WcnJyp6ewPygElyuvvDJ4k3UEEEAAAQQQQAABBBAYpQJ1jS2yAQzBgQzFlfWj8mqXeydrtzdDua6K/r8+r0eK7/xnrpATLvm99PpvTZVLSjT/WJOcY5Zs32uSffUvpt7Zbt2fmCnVm7FXF5tll1RlX00Ygn+xSfKff8Z3fMgJ223Y4IPmhoEJZ7CnsuOKpMw+WSo1Kd0zTVDD9EVSSm4kR9EGAQQQQAABBBBAAAEEEBgVAjkp8YqPcauxxfw82a4UmYCGvce3q2QTAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEERqQAD1Aeuttm52498sgjgQG4zHfn7PyqSIp9YLB9GPJbb73lNK+pqZGdn/WlL30p5PC6urqQ7bi4uJDt3m4MVL+9HQ/HDW8BAhqG9/1hdAggEIUC9kPHRRddpJtvvjlw9ffee2+nAQ1vvPGG1q83X6xvLZmZmTrjjDP8m12+btq0SQ899JDeffddLV++XLt371ZlZaUaGxu7PM62Gy7l7rvvDhlKdwEHBx54oJNG5U+0Wr16td5++20dfPDBIf34N9577z0Ff7hasGCB8vPz/bv79Praa6+FHG/DAhISEkLqRurGQQcd1Keh+z+Mv/7661q2bJkTDmLfm8FhHJ2dwL4/8/LyOuxu720DFfqz2KQzG7Dwwx/+0OnWjvfBBx/UZZddFvY0xcXFevLJJwP7bNDEokWLAtusIIAAAggggAACCCCAwOgQ8Hi8+mR3jZZuLQ8EMqwurlKLqR8JJSHWrbTEOKUnxprXWE2KLdPBLR9oXsOHenL6TUpJTnL2pyX49tu2tp1v8a0nPnmKtOyBgblcG6YQSaktbW1l3OvLfcueDZEc2X0bG9xgAx66K6ljpMrt3bXq3X47hkhK4QLpnLsiaUkbBBBAAAEEEEAAAQQQQGDUCdh/i8/PSNSWPW0PAPBfZFF56Bf5/PW8IoAAAggggAACCCCAAAIIIIAAAggggAACCCCAwMgT4AHKQ3fP3nzzzZC5iYcffrgzly/SEX3+858PBDTYY1599dUOAQ25ubmKj48PnMfOz/rJT37S5UOfIzl/YWFhSLP7779fZ511VkgdGwj4BQho8EvwigACCAwjAZvSFRzQ8PTTT6ukpCTspPN77rknZOQ2KSoxMTGkrv3G5s2b9bWvfU1PPPGEvN6eTwixk+eHQ/nkk09kJ/D7S1ZWlk45xUz66KbYEIcbb7wx0MoadhbQsGFD6GSNAw44IHBcX1cGsu++jq0vx6empsp+0O1NsclmN910k2677TY1NJgni/aidPb+HAzvyy+/3Bl/c3OzM/I77rij04CGu+66S/52trE91n4pjIIAAggggAACCCCAAAIjW6CsplFLt9kwhnInlGHpljJV1vt+RhjsK0uOjwkEJaS2BiikhwlQCA5V8O/3tY9TvKtF2vqOtO45szwvFa8IXMY+878hTdknsN3pyozjBy6gIZJgBDuw2j2dDq/PO6p3SmNmd99Nav8EPoY9UXVx2GoqEUAAAQQQQAABBBBAAAEEQgU6DWiorA9tyBYCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiMWAEeoDx0t84+SDm42Aca96Qcd9xxIc3feuutkG27ERcXp6OOOkrPP2++02jKxo0bZUM5brnlFh1//PGyD+HtTbHzC9PT050HYNvjH330UZ177rnOw3znz5/fmy45ZhQLENAwim8ul4YAAiNXYNq0abLpUP7wgaamJv3zn//UV7/61ZCLshPYH3rooZC6Sy65JGS7/cY777yjE044QRUVFe13Rbzd2NgYcduBbGiDFYIDJs455xwn/aq7c37uc58LCWj417/+pd/+9rdKSEjocOiePaETOMaMMU+77KcykH330xB71Y39INqbsnv3btkP3R9//HFvDg8c01mww2B4FxQU6PTTT3c+gNsB2dS3lStXau7cuYHx2RX7vv3b3/4WqIuJiek0yCHQiBUEEEAAAQQQQAABBBAYdgKNzR6tLq50ghj8gQwbd9cM+Djz0hK0YEKm9jFLgXnyZ2cBC7ExvftHBlWZwIF1i32hDBtekho6+R2CDW2YcmT31zvN/AOLK8b8MOSRUlt/rq4tlTz9EFyRnNP9+W2LgQ5oiGQU/muPpG37NjHxxm5s0GIc00zgg+3T1o+Z0/4IthFAAAEEEEAAAQQQQAABBMIIFJqfo8OVonICGsK5UIcAAggggAACCCCAAAIIIIAAAggggAACCCCAwEgV4AHKQ3Pn7IOlg8vee+8dvNnt+tSpU5WWlqaqqiqn7datW515WO0fivvDH/5QL7zwgjwe871EUz788EOdeOKJGjt2rPN69NFH69BDD9WsWbOc/ZH8xz40+/rrr9f3v//9QPN///vfssucOXOcOZk2GML2m59vvr9HiWoBAhqi+vZz8QggMJwFbNCCP6DBjtOGEbQPaHj88cdVXl4euIyZM2c6/4MPVLRbKS0t1cknn9whnMF+0DniiCM0ffp0FRYWKikpSfYDRfAHl29+85v66KOP2vU4dJt2gvu9994bMoDJkydr8WIzgSSCMmXKFCcdyzYtKyvTE088IRvw0L74P8z561NTU/2rfX4dyL77PLg+dGBTyHpTrH/7cIYJEyY4CWY24GD8+PGy/vb9GZxkZt8H9913X7enHCzvL37xi4GABjuoO+64wwkACR7gSy+9pA0bNgSqTjnlFOfPXqCCFQQQQAABBBBAAAEEEBh2Avbn0B0V9fpwS5mWbinXh1vLtXx7hRpMSMNAlvhYt+aPy3ACGfadmKkFE7NkJ5ME/8ze5/N7WqTtH/gCGWzoQtHSyLpcZ9KnT7i5+7ZJmdKF/5YKF0jJ2b72xlMN5h9QbFBD3R5fgIINUQhsm/rAdpmv3u5raRcamZTV/fltC3vsQJVqE2gRSbFBCu2LHX9qUNBCWnAIQ+u6rUvMNCEXrvZHs40AAggggAACCCCAAAIIINBDgfyMpLBHFJuf+SkIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAwegR4gPLQ3Es7Ty+45ObmBm9GtJ6TkxMIaGhpaXHW2z9Q2M6FvPPOO2XncQU/jHrnzp3OPEw7F9MWG6Rw3HHH6bzzznOCG7qb9/bd735XNmTi9ttvDxnrqlWrZJff//73Tr0NfvjUpz6lCy64QAcffHBIWzaiQ4CAhui4z1zlaBH42gBOjk8fF5nS55/pn6cbhjtbuC+ph2t39t+l5tH/5Yhzzz3XCWSoq6tzFD744AOtWLFCe+21V0ClfUCBDXXoqvz0pz+VDWnwlxkzZugf//iHDjroIH9Vp6/Jycmd7huKHa+88oo2bdoUcurvfe97Ids92bj77rvDBjTYxK3gUl1dHbzZp/WB7LtPAxuCg21Axssvvxw4s7X585//rPPPPz8kjCHQIGjFpp1FUgbLe9GiRbI/xPkDGGx4xK233qqEhITAMG1oQ3C58sorgzdZRwABBBBAAAEEEEAAgWEgUNPQrI+2VZgghrZAhpKqhgEf2eScZCeEYd8JNowhU7Pz02VDGvq92PCD9ebnKRvIsN6EHdqQhJ6WktUm9XCzlDWp+yOnHxfaxoYNJKb7Fk0J3dfZlg110+3W5QABAABJREFUaKwJCnEwY470d1q9ub7OxtG+PtKAhnmf8YVU2N+BpY7xLbFtPyu275ZtBBBAAAEEEEAAAQQQQACB/hcozEwM22lRpe/f5cPupBIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBg9AgwP893L6Nkfh4PUB78P7rt596lpKT0eBDtj7EP7W0f0GA7veyyy5yHXd90003Ow3aDgxr8Jy0uLtb999/vLPbh0D/72c+c+Wr+/e1f7cOz/vrXv+qss87SzTffHPIA7uC2a9askV1uu+02HXbYYfrd736nAw44ILgJ66NcgICGUX6DubxRJhDJl90H+pIzIgxyGMhx2KcGRkGxHxo+/elP64EHHghcrU1u+sUvfuFs2zSnZ599NrDP7Xbr4osvDmyHW3nwwQcD1YmJiXrmmWc0derUQF1XK3v29GKiRlcd9nGfDVToz2It7Qcum4oVXLKzW5/s2Vq5a9eu4N19Wh/Ivu3A+vI01dra2j5dW08P/te//hVyiP0ga8MZIimRvjcH2ts/Vuv+hS98Qddff71TZUNRHn300cD12O3HHnvM31zjx4/XSSedFNhmBQEEEEAAAQQQQAABBAZfoMXj1Scl1fpwS7kJZDDLljKt3VklUz2gJT0xVvs4QQxZWmBe7Xp2SvzAnNPjkYpN+Oe6532hDNvfk7ymrq9lvenvwCv62ktkx9tQh4RU39LT35N94RVfsEOtCa60YQ02oMJZ/Nvm1V9n9zeGCWhMMr8jsOEK9ndTgZAF83uE8QdGNv4xsyW7UBBAAAEEEEAAAQQQQAABBIZMID89Mey5iyvq5TG/CHC7zc+eFAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHRK9DT7x0NhATz8wZCNWyfPEA5LMuAVqammu/4BZWaGvNQph6W9se0f2hvcHezZ8/WP//5T5WVlem5555zHiD86quvatWqVfLah0IFFfuw6AsuuEDvvPOOfvvb3wbt6bj6qU99SnbZuHFjSL87duzo0HjJkiVOSIN9kPY555zTYT8Vo1OAgIbReV+5KgQQGCUCl156aUhAg01ruvXWW82XQtxOfXNzc+BKjz32WGeid6Ci3cqWLVsU/AHgxBNPjDicoa6uzvkw0a7LIdu0SVoPP/xwv56/paVF9kPQt771rZB+Z8yYEbL93nvvhWz3ZWMg+7bjsiEcwcXex0hLSUlJpE37pd1bb70V6CcnJ0f2B6BIy4oVKyJqGs67J+eJ6CStjWwC2w9/+EP5k9fuuOOOQEDDfffdp4aGhkB3n//85xUTExPYZgUBBBBAAAEEEEAAAQQGVqChuUVri6u1YkeFWSq1cnuZCS74WFM9G+WWVxXeFGUrWXPNUuFKUaXZrjLrHrO3LyXGTPCYnZ+mfVsDGezr1NyUgZ/4Ub5Fevnnkg1SqN7Zl0sIPXbsPGnG8dLEQ0Prh+uW/UfNnvzDZrP5uc0GNtRX+AIhUsZIsQMUnjFczRgXAggggAACCCCAAAIIIDAKBQoyksJeVVOLV6U1jcpLSwi7n0oEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAYeQI8QHnw71lWVlbISe2Dbntago+xc666Cmjw923Pe9555zmLrdu9e7deeeUVPfHEE848xOCHGf/ud7/ToYceGtH8tSlTpuiqq65yFtvvJ598ohdeeMF5mK8NhPDYh2eZYueQ2YdvH3zwwZo4caJTx39GtwABDaP7/nJ1CCAwwgWOO+44J3Rh27ZtzpXYgIXFixfrhBNO0L333htydTbMoauyc2foJIxZs2Z11Txk32uvvaampqaQuqHceOSRRxSchHX00UfrpZde6vGQXn/9dR1xxBGB4+65554OAQ377befkpOT5f8Q9uGHH6q4uFj5+fmB43q7Enxu28eLL77oTNxPSOifL/3YHyKCS/v3QPC+9uvvvvtu+6oB3Q4e2/Tp0yMOLKisrNT7778f0djaez/99NP6xS9+EdGxPW2Ul5ens846S//617+cQ19++WWtX79e9truvPPOQHc2bMUGNFAQQAABBBBAAAEEEEBgYASq6pu00oQw2CAG31Kh9buqleap0BHuj3V0zDJ9zf2RcmMqpW5y0yq9SaqUL7Ch0oY3mOCGbzR9STUKP7HDPpFzwcTMQCDDvHHpSo4fgl/HxprwvqX/6DtwXIo07RhfKMN0E8zQk7CDvp998HuINT+bpxf4lsE/O2dEAAEEEEAAAQQQQAABBBAYIIGCTPNzcielqKKOgIZObKhGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQGCkCvAA5cG9c5MmTQo54bJly/TpT386pK6rDRuAUFVVFWhiww5cLldgO9KV3NxcfeYzn3GWX//617rkkkv01FNPBQ63db158O/UqVOdh2ZfeeWVWr58uc444wwntMF2XF9frz/+8Y/6+c9/HjgPK6NXYAi+ETx6MbkyBBBAoL8F7OTtiy66SLfcckugaxsiUFBQoKVLlwbq/GlegYowK16vN6TWpjJFWv70pz9F2nRQ2t19990h5/nsZz8bsh3pxmGHHaYJEyZo69atziH2Q5Gd7L///vsHuoiLi5MNyvjvf//r1DU3N8t6/PjHPw606e1KYWGh5s+fr48//tjpwqZ73X///f02Yb/9B1obLtFdkIf/Wh588EH/6qC8Br8/e/Le/Pvf/+58eI1kkAceeKCys7O1Z495Aqop9n7bUIxjjz02ksN73Mamo/kDGuz12WAG+6F7xYoVgb5s2Er7+xTYyQoCCCCAAAIIIIAAAgj0SGBXVb0TwuALZKhw1jeX1jp9uOXRPq4NOtEEMhwdu0x7uz6R2xX6c3J3J0t31SlddZJrd6BpY1Ocs54Y59be4zIDgQz7mmCGkCdy3mrSkGPipcQMs2S2vpr1JP9662v7bX/bmD78Gjd1jFS4QNrxoTPWHv0nd6YJZDjBF8ow8VDJhhZQEEAAAQQQQAABBBBAAAEEEBjBAtnJ8YqPcauxxdPhKooq6rX3+A7VVCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggMAIFuAByoN78w455JCQE9q5Wz/60Y9C6rrasO2DS/v+gvdFum7DGh544AGNGzcu8NDo9957r88PWp43b55uv/12LVq0KDAU+0BpSnQI9OGbvdEBxFUigAACQy1gJ9QHBzT85z//UUqKeWplUDnnnHOUnJwcVNNxNT8/P6Qy0v/Z22Soxx9/POTYodzYvHmzXnnllcAQbIDC2WefHdjuyYpNzzrvvPP0q1/9KnCYDcAIDmiwO772ta8FAhrs9i9+8QtZcxuu0Ndi+77iiisC3Vx33XU66aSTnBCOQGUvV/bbb7+QIx977DHZdK/Y2K7/9//oo4/KfsgczGLfnxs3bnROaQMMysvLlZmZ2eUQtm/frptuuqnLNsE77Xvl6quv1s033xyo/uIXvygbXNH+z1SgQR9Wjj76aM2ePVurV692erHBInbMwcWmpVEQQAABBBBAAAEEEECgZwI2AG3rnjoTwOALYbCvy3dUqqSqoUNHh7pX6PyYF3WE+2Nluao77O9LRYMrUTecua8WTMjUrPw0xZnJHWFLsxlXfYVvV01J2CbdVsantgU7+EMc4pKkRT+SMk34Q3fFhixEEtAQmyhNOdIXyjB9kZQ9pbue2Y8AAggggAACCCCAAAIIIIDAiBJwu13Kz0jUlj21HcZdbAIaKAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIDC6BHiA8uDeTxuoEB8fL/8DfO0cxvXr12v69OkRDcQ+zDe4HHXUUcGbvV7PyMiQDVR4++23nT48Ho/zEGD7IO2+FPsA6eCye/fu4E3WR7FAJ98aHsVXzKUhgAACI0xg5syZCk56qq2t1R133BFyFZdccknIdriNiRMnOilP/n3vvvuuHnzwQf9m2Nd33nlHn/vc58LuG6pKG6BgJ+P4i02YysnJ8W/2+PX8888POeaf//ynmpqaQupsUtoRRxwRqGtoaNCJJ56ojz/+OFDX1cqePXu0dOnSsE0uuugiTZs2LbCvtLTUSc3atm1boK6rFTvhf82aNWGb2NCDBQsWBPZt3brVCZcIVIRZse+L4MCIME0GpGrhwoWBfu0H8O9+97uB7XArJSUlOvXUU50gh3D7O6v76le/quzs7MDudevW6eSTT464H2sd6b2xJ7nqqqsC59q5c6f+8Y9/BLbHjh2r0047LbDNCgIIIIAAAggggAACCHQUaDZPs1xdXKlH3t+mH/93pc7765va+6bndOQvX9KX7v9Af3hpvV5aUxI2nMH2Ns21Q6fHvNnv4Qy274TUbF10yCTNG5fReTiDbegPZ7DrvS2N1VKl+Tlx1wpp8xJpzVPS8kekja9G1qMNaOisZE6SDvqCdOHD0vWbzOu/zbYJkyOcoTMx6hFAAAEEEEAAAQQQQAABBEa4gA1oCFd2VNSFq6YOAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEERriAfYBycLEPUP6///u/4CrnYb7R8gDlkAvv5w37wN7ghzHbeYDf+ta3IjrLww8/rDfffDPQNjU1Ve3n/gV29mKlfXhCVlZWL3oJPWQg+gw9A1vDVYCAhuF6ZxgXAgggECTQ/kNg0C5ncn9weEDwvvbrF198cUiV3b7llltUWVkZUm8noP/gBz/QkUceqbKyMiUmJmry5MkhbYZiw34gu/fee0NO3dcPWfvtt59sCIa/2A9FTz75pH8z8Gon1gdP7N+xY4cOOuggffvb39bq1asD7fwrNTU1ev755/WFL3xBkyZNkv3gHq7YRDAblJGQkBDYvXLlSieR66c//ak2b94cqPevlJeX6/HHH9cFF1ygqVOnhnzw9Lfxv155pZlUE1TsfbXhB/a+Bhd7PTfeeKNsqpjdFxwaEdxuoNbbvzf/8pe/yAaPtL/+qqoq/e1vf9Pee+8dCL2YM2dOxMPKy8vT3XffLZfLFTjm1Vdfle3jD3/4g2yIQvuya9cu2eCO008/XXPnznVS29q36WzbXoP98xOu2D/XcXFx4XZRhwACCCCAAAIIIIBAVArUNbbogy1luu+tzfruox/p9D+8rrk3PqsTf/eavvnvZfr7ko16e+MeVdU3R+zzimfviNv2uGFiRmSH1JVH1q43rdY9F9lRhSa8L7k13NBtfg6ZerT0qZ9JX35P+toy6eRfSjOOl+KSIuuPVggggAACCCCAAAIIIIAAAgiMYIGCTgIaiivqR/BVMXQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDoTIAHKHcmMzD1X//61+V2t01ft/Pgbr755i5PZh+O3P6hw3Y7PT29w3EvvviivvOd78jOh4u0PPbYY9qwYUOguZ0j1n7O1+9//3v98Y9/lH3AdqTll780378MKvvvv3/QFqujWSB2NF8c14YAAgiMFoHzzjtP1157rerrO34hpP3E9q6u2aZN3XfffbIBDLY0Njbqe9/7nm644QbNmjVLKSkpKikp0aZNm2TDEPzltttu0/333+/U++uG4vX1118P+SBkPwSdeeaZfR7KZz/7Wf34xz8O9GMn8H/6058ObNuViRMn6tFHH3XOZwMSbLH341e/+pWzjBkzRgUFBbKBC6WlpY6Vx+Nx2nX3H/vBywZP2HvZ0NDgNK+oqHBCMmygwrhx4zR27FgnVMDen61bt4bcn676twENd9xxhz788EOnmb2vt956qzNm+8OFTRKzfW7cuDHQTX5+vhOCcPTRRwfqBnrlhBNO0Mknn6ynnnoqcCprYhcbQmGDFay7Had93/qLDamYMWOGbrrpJn9Vt6+nnXaafvOb3+gb3/hGwLG4uFhf+cpX9NWvftW51/Z8LS0tTmBDTz6stz+5TVI799xzOwSL2ICI9j80tD+WbQQQQAABBBBAAAEERrNAeW2jVuyoNEtF62ulPimplqftR9Gwlx+nZu3vXqvpru36R4sJFOimbPWO1QZPgaa5i7ppKXnc8XKlmZ+96k2IYUNFt+0VaUBDfQR9dX+28C02vCS1NEkx3YS/uWOkRebnpuRsacqRUkJa+P6oRQABBBBAAAEEEEAAAQQQQCAKBAoywgcUFpV3/Pf4KODgEhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiAoB+6DVt956K+y12gfd9uQByvaByf5i54N98sknuuaaa0LCBOz8PfsAWzv3zM4Xs/Pg7JwtO29vuBb70N/Fixf3anh2/pddbDnggANkQxp+/etfB/r64Q9/6Dys90c/+pHzYGP/DntO+zBf++Dh4GAEe086C3WwD6v++c9/7swPW7RokT7zmc8498/OMQt+qK89h52HZ+fW2fl0waX9Q5HtPjtvzYY0fP/739cZZ5zhzCM85JBDnDmDwcfadRsoYfu0D272FxtK8fnPf96/yesoFyCgYZTfYC4PAQRGh0BmZqbzP/Xg/2HbK7MfGHoS0JCdna0nnnhCJ510kjPx3K/T3NysFStW+DcDr/ZDgf0QaD9w2ICGoS42OCG4nHLKKUpL6/ukkvYBDU8//bQTWmAn6QeXo446SkuWLNHZZ5+tVatWBe/Srl27nCWksgcbdhJ/YWGhzj///ECAhv/w7du3yy69KbGxsU6whP2wGZzyZe/5ypUrO3RpgyhsSIIN6xjsYt9jn/rUp/TOO++EnNr+kGKX9sXet7vuuks/+9nP2u/qdtsGnthrte/tPXv2BNrbAIvNmzc7S6CyjytXXXVVh4AGG34xffr0PvbM4QgggAACCCCAAAIIDH8B+xm7uLJeK7bbMIZKLTeBDCvN6/byuogHP04lOirmIx3lXqbD3MuV6qpXs9etJ1oWqlLd/+zyimefzgMasiZL0483yyK5pxwhxbf252kxIQ2VJpnPhCvUlfte61tf/dvpBZFdgz1uoIod49a3pcmHd3+G/S7qvg0tEEAAAQQQQAABBBBAAAEEEIgCgYKMxLBXWVQZ+e8rwnZAJQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCAxbAR6g3P2t+eijj3T88eY7lb0oNmDBhi/4y09/+lMtW7YsJPDhkUcekV3sHDq7VFVVOXPGmprMg6qCSk5Ojh566KFu57fZ4+w8QLvYYucZ2gcw27mY9sHL9qG94R7ce/jhhzsP+g06ZciqffCy/8HDdoedY2gf7mz7tw98tiEb/gdABx943XXXyT7ImRIdAgQ0RMd95ioRQGAUCNiUrvYBDTYwYPLkyT26ugULFuj999/Xd77zHf3zn/9US4uZdNKu2OAHO6HffhA68MAD2+0dmk2bgPXvf/875OR2gn5/lDlz5mifffZxPvTZ/uyHMxsWYCfxty9z587Vxx9/rHvuuUd/+MMfnLQrO+EoXImJidHBBx+sCy+8UBdd1P1EGPvhbt26dfrTn/6k22+/XWvWrAnXrVMXHx+vI488UpdcconOOeecTtvZHfY98vbbb+uGG25wEsVs6lr7kpSUpCuuuEI//vGPnQ+hQ5HGZj/8vvrqq8777rbbbpP9MBuu7LXXXk4SmQ2z6Es566yzdNxxxzlpbPZDsw1m6KzYwArb1qaYRZqI5+9r4cKFmjVrVsj9DJey5m/PKwIIIIAAAggggAACI1WguqFZ63dVa93OKud1ZZEvlGFPTWOPLilBjTrQvcYJZDjahDLMcG/vcHysy+OENTztObjDvvz0RO1VmO4scwsztH+j+ZntiWd87WLNBIzJRziBDJph/hEhe6pNP+zQh9wxUlKWbzEvfSqFC6QLH24Neig3YQ92qeg8+MHuU/ifM8OOY91zkQU0hD2YSgQQQAABBBBAAAEEEEAAAQSiT6CzgIadFQ3my3peud2u6EPhihFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQGOUCdt7SGWec0WF+XrQ9QHmwbnNCQoL+97//6fLLL9c//vGPkNN2FpxgG82YMcN5QPXs2bNDjolkwwY+2KWrcvrppzvzBu28v0hLSUmJ8zDoztrbvr7//e/rpptu6qwJ9aNQwGUmlfbg276jUIBLQqCdwIoVKzRv3rxA7fLly2UnA/e22KfU2wnXwcX+T8I+1Z6CwFAL7Nmzx5kQbyem2w8fdhL6lClTZCeU21QnSvcCO3fu1Jtvvin7Wlpa6vzZzsrKcj4M7rvvvk7YQfe9hG9h78u7776rXbt2qaysTPaDaXZ2tjPZ3/Zt71dPS01NjV555RVt3LjRSepKTk6W/cBqwx56019Pzx9pe5smZl1XrVrlXLsNpLDJaDYwZObMmZF206N29lw26c1+aLYpZtbGJpxZn7333tvx71GHrY3tny2bvmbtbbEpbtu3b+91f63djsgX/p84Im8bg0YAAQQQQAABBDoIVNQ2ad2uKrPYMIZqrS8xiwll2FFR36FtpBUTXTt1tHupCWX4SIe6VyrZ1TFYrn1fD7Ycrb9mfF1znTCGjEAoQ05qQmjTJvP0yxd+YkIZjpUmHSbFJYXuH25bJrVZjeYfCOrKfUEOnQU62CAHjwldnHKktP8lw+0qGA8CCCCAAAIIIIDACBPo738jHWGXz3ARGHIB/gwO7i34eFuFTvvD62FP+u73Fykvrd3vFsK2pBIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBgsASYizBY0qP/PM8884xOOumkkAs9+uij9dJLL4XURbJh5wb19AHK9lx2Xpe/dDW9++6779Zll13mb6q77rpL9gHQ/Vnan6Mvfd9444360Y9+FLYLe832ocL2wb72z3O4Mm3aNF199dX68pe/LDuPrKtiH85s+/zvf/+rF198Ufbf2rqytAEKxx57rL761a/q1FNP7bTryspKPf3003ryySed/rdu3dppW7sjNTVVZ555pq677jrNnz+/y7YjfedA/T08kv+dlICGkf6uZvz9LtDff6AH6i+efr9wOkQAAQQQGBCB22+/XVdddVWg72uvvVa//e1vA9vRtML/E6PpbnOtCCCAAAIIIDDSBewvqktrGn0BDK1hDOttIINZSqq6D0/o7voT1aBDTBCDDWSwwQxT3Du7O6TDfk9agdzfWCW5XB32UYEAAggggAACCCCAAAI9E+jvfyPt2dlpjQAC/Bkc3PeA/d3GgT9dHPak//3y4Zo/PiPsPioRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEhkaAuQhD485ZIxPgAcqROdlW9oG6r7/+unbs2OE8KNk+bHjs2LGyDzKeNWtW5B21a1lRUeGENGzYsMF5cG9tba3zYN3MzMw+PYTZhnCsXr3aeVCyffhyQ0OD80Bg+/Be+1B4G8pgH8gcDWWg/h4eyf9OGhsNN55rRAABBBBAAAEEhkrgr3/9a8ipv/CFL4Rss4EAAggggAACCCCAwFAK2CCGnZUNJnihygljsAEM6826DWMoq23qx6F5Nc21IxDIcLB7tRJcfevfXVUk7Vopjd2rH8dJVwgggAACCCCAAAIIIIAAAgggMNoFclLiFR/jVmOLp8Ol7qioI6ChgwoVCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0JlAdna2zjzzzM52Ux8kYAMTTj311KCa/lnNyMjQwoULnaV/evT1Mm7cONmFgkA4AQIawqlQhwACCCCAAAII9IPA4sWL9cEHHwR6OvbYYzVnzpzANisIIIAAAggggAACCAyWgMfj1fbyOid4ITiMYYMJYqhqaB6wYcx2bdGFMYt1tHuZJrhL+u888WnS1KMkb8eJFP13EnpCAAEEEEAAAQQQQAABBBBAAIHRKOB2uzQ2I0Fb99R1uLziivoOdVQggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACwQIENARrsI4AAggggAACCPSTQE1Nja699tqQ3r7xjW+EbLOBAAIIIIAAAggggEB/CzSbJz9u2VPbGsRQHQhk2LCrRnVNLf1yugQ1KltV2qM0NSi+yz4LXKW6KHZxl20i3jl2vjRjkTTdLBMOlmLiIj6UhggggAACCCCAAAIIIIAAAggggECwQEFGUtiAhiICGoKZWEcAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgTACBDSEQaEKAQQQQAABBBDoqcCSJUtUV1enhoYGrV27Vn/84x+1YcOGQDcHH3ywTjnllMA2KwgggAACCCCAAAII9EWgsdmjTaU1WrezLYRh/a5qfVJSo0YT0hBpccmjTFUr21XlhC44r65KZZkABt+6v74y0CbZ1eB0/9nGH+gtz9wOp0qKi9H0MamaYZa9x06W59Xfy+1p7NCu24rEDGnasb5AhmnHSekF3R5CAwQQQAABBBBAAAEEEEAAAQQQQCASgYKMxLDNiirqwtZTiQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCPgFCGjwS/CKAAIIIIAAAgj0QeDCCy/U5s2bw/YQFxenv/zlL2H3UYkAAggggAACCCCAQFcCDc0t2rDLBDHsqpINYLCBDHZ9U2mtWjzerg519h3vfk8TXCUmXMEELLSGLmSZMIYcmRAG82rDGWJc3fcT7kTj4mu035jM1jCGNE0f6wtlKDRPoHS7XW2HbDlM+uSltu2u1goX+AIZph8vjdtfiuHXl11xsQ8BBBBAAAEEEEAAAQQQQAABBHonkN9pQEN97zrkKAQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiBoBvuEcNbeaC0UAAQQQQACBoRCw4Qx///vfte+++w7F6TknAggggAACCCCAwAgR8Hq92l5ep9VFVVqzs0qri81rcaU+KalRgqdWe7k2mZAFE6xgghamm6CFhz1HqtjELHRXron9j/Z1f9Jds17t/9XJ4+U6yIQvdFdmmLCFzgIakrJNIMNxZjFtph0rpeZ11xv7EUAAAQQQQAABBBBAAAEEEEAAgT4L2IDJcKWooi5cNXUIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAQICAhgAFKwgggAACCCCAQP8IxMfHq7CwUMccc4y+/vWva/78+f3TMb0ggAACCCCAAAIIjAqBiromE77gC2CwQQx2WWuWqobmkOub5dqin8f+T6fFvaF4V0vIvg+8M1Ts6T6gYY83PeS4/txw1e2JrLvpi6Rnv+dr63JL4/b3BTLY+sJ9JXdMZP3QCgEEEEAAAQQQQAABBBBAAAEEEOgngfyMxLA97axokMfjldvtCrufSgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQICABt4DCCCAAAIIIIBAPwhs2rSpH3qhCwQQQAABBBBAAIHRJNDY7NGGkmonjMGGMKwprnTWd1TUd3GZXh3qXqkvxDypY2KWddouW1Wd7gveUaa04M3+Xa/ZHVl/uTOlg78kjT9AmnaslJwd2XG0QgABBBBAAAEEEEAAAQQQQAABBAZIoDAjKWzPjS0e7altVG5qQtj9VCKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIENPAeQAABBBBAAAEEEEAAAQQQQAABBBBAoA8CXq9XNnTBBjCsKrJBDL7FhjM0mycuRlJi1KIT3e/qC7FPah/3J90eku2q7LKNyzzkcWJ2stJixkpdN+2yny531pZ2uTuw0w7mpFsDm6wggAACCCCAAAIIIIAAAggggAACQy2Qn5HY6RCKyusJaOhUhx0IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIEBAA+8BBBBAAAEEEEAAAQQQQAABBBBAAAEEIhSorG9yAhhWmxCG1UWVvjCGnVWqqm+OsIfQZolq0Dkxr+iKmKc0yb0rdGcXW9muKmdvrNulSTnJmjEmTTPGpmr6mFRnfWpeihLjYqTXPpReeLiLntrtikuRknPMki2l5Lau29fgbbvf1KWOaXcwmwgggAACCCCAAAIIIIAAAggggMDIEMhJiVdcjEtNLR3DNYsq6jR/fMbIuBBGiQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACgy5AQMOgk3NCBBBAAAEEEEAAAQQQQAABBBBAAIHhLtDY7NEnu6sDYQxrWgMZdlTU98vQs1SpS2Kf08UxzynbVd3jPs+cmahTPnWkCWdIUXysu/PjMyZIebNbgxZssELrEghfCNpOMiEM8cmd98UeBBBAAAEEEEAAAQQQQAABBBBAYJQIuE3oZX5GorbuqetwRUX99PufDh1TgQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACo0KAgIZRcRu5CAQQQAABBBBAAAEEEEAAAQQQQACB3gh4vV7ZL92vLq40S5UTyGDDGDaUVId9gmJvzhF8zETXTl0R85TOiXlFSa7G4F3dr8eZ8ISUPCdkYfKUGdLYtO6P2fscyS4UBBBAAAEEEEAAAQQQQAABBBBAAIEQgYL0JAIaQkTYQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBSAQIaIhEiTYIIIAAAggggAACCCCAAAIIIIAAAiNeoLHZ4wQxfLStwnm1QQw2lKGqvnnAr22+6xNdFfukTnK/rRiXt2fnK9xPOuxr0pzTJHdMz46lNQIIIIAAAggggAACCCCAAAIIIIBAWIGCzMSw9cUVdWHrqUQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSsAAENvA8QQAABBBBAAAEEEEAAAQQQQAABBEadgNfr1abSWi3bWq6lZlm2rVwrdlTKhjQMXvHqaPcyJ5jhUPfKnp92xgm+YIZJh0kuV8+P5wgEEEAAAQQQQAABBBBAAAEEEEAAgU4F8jPCBzTsqKjv9Bh2IIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgQ08B5AAAEEEEAAAQQQQAABBBBAAAEEEBjxArurG5wwBieQYVuFs15R1zTo1zUuM0mz89M0yyzzslt04nOXy93cgy/1u82v6+afKy38ijR27qCPnxMigAACCCCAAAIIIIAAAggggAAC0SJQkB4+oKGYgIZoeQtwnQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgj0SoCAhl6xcRACCCCAAAIIIIAAAggggAACCCCAwFAJ1DW26OPtvhCGpdvKnTCGbWV1gzqctMTYQBDD7Px0Z32mCWVIT4wLHUfJRdK7d4TWhduKT5MOuFQ6+EtSxrhwLahDAAEEEEAAAQQQQAABBBBAAAEEEOhHgQITtBmu2IAGj8crt9sVbjd1CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQ5QIENET5G4DLH3gBl6vjP9h7vd6BPzFnQAABBBBAYJgJeDyeDiNyu90d6qhAAAEEEEAAAQSCBVrMl+HX7arS0i0miMGEMSzdWqG1O6tk6wejxJov4k8fk6pZJnzBLrOdJV0FGYkK9zN/hzEdeo303t8kb8fPQk7b1HzpEBPKcMBlUmJGh8OpQAABBBBAAAEEEEAAAQQQQCASAftv0Js2bdLHH3+sbdu2qby8XAkJCcrKytKMGTN04IEHKjExMZKuBqRNfX29Vq1apZUrV6qkpEQ1NTXKyMhQTk6O9ttvP82aNWtAzkunCHQlYH+/E640tni0p7ZRuakJ4XZThwACCCCAAAIIIIAAAggggAACCCCAAAIIIDDIAuG+q8f8vEG+CZwOAQSiWiDcnLBwfzdHExIBDdF0t7nWIREIN/G0qalJcXHtnqg5JKPjpAgggAACCAyegP3/X3CxH8Sj/cN4sAfrCCCAAAIIIGAyDMxkkh3mCYXLttogBt+yfHuFahtbBoWn0Hwp3wlhKEh3ghjs+tTcVMXH9iFUKnuKNPcMacVjodeQayaeHPZVaf45Uixf9g/FYQsBBBBAAAEEEEAAAQQQQCASgbKyMv3nP//RM888oxdffFG7d+/u9DD779OnnHKKrr32Wh111FGdtuvPHcuXL9ejjz6qxYsX66233lL7fycIPteYMWN0+eWX68tf/rIKCwuDd3W7/qMf/Ug33XRTt+06a3DJJZfo7rvv7mw39aNYoCAjqdOrKza/oyKgoVMediCAAAIIIIAAAggggAACCCCAAAIIIIAAAoMqwPy8QeXmZAgggEAHgebm5g514f5u7tBoFFcQ0DCKby6XNjwE7MTT+Ph4NTY2BgZUXV2t5OTkwDYrCCCAAAIIRINAZWVlyGXaL4MS0BBCwgYCCCCAAAJRJ1BR16SPtpUHBTJUaHd1w4A7JMa5tVdhhhPCMNuEMMw2gQwzx6YpIynCMMUtb0mr/iudcLPMB5rux7vQBDH4AxomLjTBDF+TZpwgufsQ/ND9WWmBAAIIIIAAAggggAACCCAwigWuueYa3XnnnSH/Dt3V5dpwBBvmYJeLL75Y//d//6f09PSuDun1vu3bt+vEE0+UDWiItOzatUu33HKL/vjHPzpjs2OkIDDQAjkp8YqLcampxdvhVDvK6zRvXEaHeioQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEBl+A+XmDb84ZEUAAgWABOyc6uNg509E+J4yAhuB3BOsIDJBAWlqaSktLA73bCap5eXlR/xdQAIQVBBBAAIFRL2CT0toHNGRk8KW2UX/juUAEEEAAAQSCBBqaW7SqqMoJY1i2tVxLzfLJ7pqgFgOzavMTZo5J074TMrWPs2Q4YQxxMT0MR/B4pDVPSW/cJm192zdYG7Iw9ajuBz5uP+mo70jTF0kTDuy+PS0QQAABBBBAAAEEEEAAAQQQ6Ebg7bffDhvOEBMTo4KCAo0dO1Y2lGHz5s2qqKgI6e3ee+/V6tWr9cILLyg1NTVkX39slJWVdRrOkJKS4owvOzvbGdf69evV0tISOK39t4RLLrlEO3fu1Le//e1APSsIDISA2+3S2PREbSur69B9cWV9hzoqEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIZOgPl5Q2fPmRFAILoFvF5vhzlh9u/kaC8ENET7O4DrHxSB9h8A7Rdh7FNDxo0bR0jDoNwBToIAAgggMJQCjY2N2rp1qzx2UmNQIaAhCINVBBBAAAEERpmAx+PVxtKatjCGbRVataNSjS2hnwcG4rILMxKdIAZ/IIN90mFqQh9+BdZkvoz/0YMmmOH/pNJ1oUO2YQ2RBDTYo475buixbCGAAAIIIIAAAggggAACCCDQTwKZmZm64IILdMopp+iII45Q8JdhbPjBa6+9phtuuMF59Z/ynXfe0aWXXqqHH37YXzVgr/PmzdPFF1+s4447Tvvuu6/c7rbQRBvIcN999+nGG28MeejBddddpzlz5ujUU0/t8bh+9atfaZ999on4uMLCwojb0nD0CRRmJIUNaNhRTkDD6LvbXBECCCCAAAIIIIAAAggggAACCCCAAAIIjGQB5ueN5LvH2BFAYKQK2HAGOxfazokOLunp6cGbUbneh2+nR6UXF41ArwQSExMVFxcX8pdQVVWVNmzYIPsXkX0qSWxsbMgXUXp1Ig5CAAEEEEBgGAjYD9/2C5+1tbWqrq52Xm1dcLFPyLL/b6QggAACCCCAQKtA2WZp/fNmeVEqWS15TZBBbKJZEtqWGP96a/24/aQDr+iesHqXtHNFu/5a+wj0afqOiZdJEey+vzAtSqoatHRruS+QYZvvtbK+OUzL/q1KS4zVPuMzTSBDhvadkGXWMzTGPPWwX0pdmfTe36W3/iLVGMNwZf1iqXi5lD8v3F7qEEAAAQQQQAABBBBAAAEEEBhQgcmTJ+sHP/iBE86QlJQU9lwxMTE6+uij9dJLL+nqq6/W7bffHmj3yCOPOPXHHHNMoK4/V2xghB3fIYcc0mm39t/Lr7nmGp1++uk66qijtHHjxkDba6+9Vp/61Kd6/O8J+++/v3PNgY5YQaALgXwT9hmuFFfUhaumDgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQGCIBJifN0TwnBYBBKJOwD6gt7m52ZkTZgP324cz2PlgCQnmu+dRXghoiPI3AJc/OAIuM8HFPnVjy5YtCp6gav9iKi0tDXkSyOCMiLMggAACCCAwdAL2g/jYsWOHbgCcGQEEEEAAgeEg0NwgbX7DBDKYCf7rnpN2r+35qBprIgto2PS69PBlkfVvQyGCQxucgAhbZ8IbWgMjPGa9qjlGu8131Fc15euWmtO0vXzgv7AeF+PS3IJ0E8ZgAhlMKMO+EzM1JSfFhB32LlSiU5DyrSaU4c/S+3dLTca4u/LG/0ln/bW7VuxHAAEEEEAAAQQQQAABBBBAoF8FbrrpJh1//PGKjzc/s0dQbFDDn/70J33wwQd67733Akfceeed6u+Ahry8PC1ZskQLFy4MnKe7lQkTJujRRx+VDVewX/ixxT7w4OWXX3aus7vj2Y9AbwUKMsMHNBRV1Pe2S45DAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQGAAB5ucNACpdIoAAAj0U8P9dbF+jvRDQEO3vAK5/0ASSk5M1ceLEDiENgzYAToQAAggggMAwELAJafZLljakgYIAAggggEDUCZRtNoEMz5tABhPKsPHVyCb/d4VkAxMiKS2NkbTytWk2Xzy3i8mP6Ky4zY6M1qXMM1PbGxd11jRQn6kq/S3+Vyr1pmu3WfYo3Vkv9WZod9B6mVLVohjnuKm5Ka1hDBnO69zCdCXE+vYFOu7PleLl0hu3ScsfkTzNkfe8/GFp0Y1SemHkx9ASAQQQQAABBBBAAAEEEEAAgT4KnHLKKT3uwYY0XHfddTr33HMDxz777LOB9f5asSHNvQlq3nfffXXiiSfqqaeeCgzFjs8GUVAQGCiBgvTwv2MjoGGgxOkXAQQQQAABBBBAAAEEEEAAAQQQQAABBBDovQDz83pvx5EIIIBAXwVsKIOdI23/LqaYZx+CgAACgyfg/xC4Y8cONTU1Dd6JORMCCCCAAALDQCAtLU0FBQWyXwClIIAAAgggEDUCm5ZIa8ykgnXPSbvX9u9lx0b2hEwncKF/zxzordEb2a+W8lwV2t+9LnBcZyteudSUkKmY1DGKSRsjuXOlijwTGmGWXWY9xbwGFrOdkC71JYHV6/WFZSz5vXks5wudDavz+qlHSwu/KqUVdN6GPQgggAACCCCAAAIIIIAAAggMI4EjjjgiZDSlpaWqra0dNl+iseMLDmjYsmVLyHjZQKC/BfIzksJ2WVxRL6/53RFP/wnLQyUCCCCAAAIIIIAAAggggAACCCCAAAIIIDBkAszPGzJ6TowAAlEsYB/UW1hYOGz+XXk43IrIvkU/HEbKGBAYJQL2Q+C0adPU0NCgyspKVVVVqbGxcZRcHZeBAAIIIIBAm4ANYkhNTXWWlJQUghnaaFhDAAEEEIgmgTf/aAIa/jcwVxwb/ul+HU7WPHA/czYorsPpwlXkmoCGSIpLXsU3lEl2KV3T/SExJqQic6L0lfe7bxvcoqVZWvW4ZIMZipYF7+l+3eWW9vq0L5ihcN/u29MCAQQQQAABBBBAAAEEEEAAgWEkkJWV1WE0FRUVw+aLNO3HZ8dGQWAgBQozw/+OrbHFo9KaRuWmJgzk6ekbAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoBcCzM/rBRqHIIAAAj0UiI+Pl31Yb3p6uhISEgg2b+dHQEM7EDYRGAwB+4SFxMREZxkzZozz1AWPx+O8Dsb5OQcCCCCAAAIDKWD/P+d2u/ngPZDI9I0AAgggMHIEZiwawICGCL8c3lw/YF6N3QQ0uF3SzLFpOi3dBDkMxAMvW0z4hF0iKdW7pNv2kxLSpKodkRwR2iYuWVpwkXTo1VLW5NB9bCGAAAIIIIAAAggggAACCCAwQgS2b9/eYaQ5OTkd6oaqov34htPYhsqE8w6sQH5G+IAGe9biinoCGgaWn94RQAABBBBAAAEEEEAAAQQQQAABBBBAAIFeCzA/r9d0HIgAAgh0KcC8sC55AjsJaAhQsILA0AnYv7DsU8YpCCCAAAIIIIAAAggggAACI0CgbLNUt0cqXND9YKcf332b4Bb58yV7TOZEX/CADVdoNgEE9rWlwbwGLQX7Bh/ZYb2huUUrdlSq+ZMSHSAToCRvhzZ9rWhoF9AwLjNJ+07IdJZ9zOu8celKjje/fnp71cAENNgLSMmL7DJqSqTGKt8S2RG+Vsm50sFXSQdeISVn9+RI2iKAAAIIIIAAAggggAACCCAw7ARee+21kDFNmjRJ9sknw6W0H9/MmTN7NbSGhgZ98sknKi0tVVxcnGzQQ2FhoewTtSgIBAvkpiQoLsalppaOvzsrMgEN88ZlBDdnHQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQGCYCjA/b5jeGIaFAAIIjFIBAhpG6Y3lshBAAAEEEEAAAQQQQAABBBBAoJ8EbCjC5iXSusXS+uel3Wul8QdJV5j17krmBClvtlSyOnzLBPMF72nHSDNMKMP0RVJafvh2EdSWVDXogy1l+mBzmd43y0fbK9TY7DFHHmKWgxWrFsWrWQlqNEuT4l12vcnZdupddr1tiW/djg9TZ9sluZu1J2u+vjhnmvabmKkFE7OUl5YQfqQ1u8PX90etDVCIpNiAhp6U7KnSoV+W9r1AikvqyZG0RQABBBBAAAEEEEAAAQQQQGDYCvz9738PGdvJJ58csj2UGxs2bNArr7wSMoTejO+aa65xwhnq6+tD+oqNjdX++++vk046SVdffbXy8iIMfQzphY3RJuB2uzQ2PVHbyuo6XFpRRce6Do2oQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBqBMgoCHqbjkXjAACCCCAAAIIIIAAAggggAAC3QqUbTKBDCaAYb0JZdj4qtRUG3rI9vek2j1ScnZofbgtG7wQHNCQP9+EMZhAhhknmKCHA6WYnv96psXj1dqdVU4QgxPIYIIZNpe2G2PIWFwmmiHWWWqV6NvT/qGA7bdDjpfyzRfV95+Upf3MMt8scwvSFR/rbteqk80pR0ou09aGJDiLCWzwr9eXd3JQhNUpEU6miDQkYtz+0mFfk2afKrljIhwEzRBAAAEEEEAAAQQQQAABBBAY/gJPPfWUXn3V/J4jqFx66aVBW0O7+t3vfldeb9svKObOnasDDzS/O+lhWblyZdgjmpub9fbbbzvLz3/+c33rW9/SjTfeqJgYfv4PCxZFlQUZnQU0hIZ8RBEJl4oAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAl0I9HwGQBedsQsBBBBAAAEEEEAAAQQQQAABBBAYkQLNDdLmJSaUwQQyrDfBDLvXdn0ZXo+04UVp/tldt7N77UT/im0mkOF4E8ywSErL7/6Ydi0q65u0dEu5L5DBhDF8aNarG5rbteq/zRjz5MC9CtO138QsJ5TBBjMUZib1/gRTjpDsEq40N5qwi9K2wAYbpFBrFn+Ag932r1ebgIfmdk8uTMkN12vHOttHV2XGp3zBDJMWmjAJV1ct2YcAAggggAACCCCAAAIIIIDAiBPYs2ePrrrqqpBxn3nmmTrooINC6oZq46GHHtK///3vkNP/7Gc/Mz+iD8zP6HV1dfrJT36i1157Tf/973+Vmpoacu6+bOzatUslJd38HqLdCdavX9+uhs3BFCjIsL/3KutwyqLydr+H6tCCCgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiEaB2Gi8aK4ZAQQQQAABBBBAAAEEEEAAAQQQUNkmE8jwvAlkWCxtNE+PbKrtGYo9LpKAhkmHSnaJsNgnRW4qrXXCGN7fXKYPzLJ2V5V5gmSEHfSiWWZynPY3YQz7mSAGG8aw9/gMJccP0q+NYuOl9ALfEsnYG2taAxt2+14zJ0VylK9t+5buOGnvc6WFX5HGzGm/l20EEEAAAQQQQAABBBBAAAEERoWAx+PR5z73OW3bti1wPRkZGbrtttsC20O5smbNGl155ZUhQzjrrLN0xhlnhNR1tWGDHA499FCdcsopTujEnDlzlJ2dLbfbrdLSUn3wwQd68skndc8996i+vj7Q1csvv6zPfvazevzxxxUTExOo78vKn/70J91000196YJjB1mgICMx7BmLKtreK2EbUIkAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlEpMEjftI9KWy4aAQQQQAABBBBAAAEEEEAAAQSGk0CT+UL15iW+QAYbzFC6rm+jswENZoKD+aZ/j/uxIQwVdU3abIIYtuzxLVvNq91eu7NKpTWNPe6zJwfMGJPqBDH4Axmm5qYM2BMpezKuiNrGp0h2yZocUfNAo33Ol/L39gU11JdLmeb4yYdHHgwR6IgVBBBAAAEEEEAAAQQQQAABBEaWwLe//W09/fTTIYP+61//qgkTJoTUDcXGnj17dNppp6mysjJw+vHjx+v2228PbHe3csIJJ+iCCy7QzJkzwzYtLCyUXU499VT94Ac/cAIZliwxvyNqLf/73/9kQxW+8hUT4EiJSoHOAhqKKwloiMo3BBeNAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQDcCBDR0A8RuBBBAAAEEEEAAAQQQQAABBBAYwQLlW6S1z/pCGTa+KjXV9t/FpBX4JvunjQ3bZ1OLRzvK6wIBDE4QQ1AgQ1V9c9jj+rsyOT5G+07IDAQy7DchSxnJcf19muHfX+4MyS4UBBBAAAEEEEAAAQQQQAABBKJI4LbbbtNvfvObkCu+7rrrdN5554XUDcVGXV2dTj/9dK1b1xaimZKSokcffVQ5OTkRD2nhwoURt7XhD4sXL9axxx6rN998M3DczTffrMsvv1zJycmBOlaiRyA/IynsxRZV1MsGrbpcrrD7qUQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgegUIKAhOu87V40AAggggAACCCCAAAIIIIBAdAi8+Ufp7b/0z7UmZEjTjpFmHC9NXySl5auirklbtlWEhjDsqXG2d5TXq8Xj7Z9z96CXCdlJ2n9iViCQYdbYNMXGuHvQA00RQAABBBBAAAEEEEAAAQQQQGA0CDzwwAO69tprQy7l0ksv1a233hpSNxQbzc3NOvfcc7VkyZLA6ePj451whgMPPDBQNxAriYmJuvfeezVnzhzZcdiya9cuPffcczrzzDOd7b785+qrr9Y555zToy7Wr1/fL+fu0UlpHBAoyEgMrAevNDZ7tKemUTmpCcHVrCOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQJQLENAQ5W8ALh8BBBBAAAEEEEAAAQQQQACBUS0w3YQp9CGgwZu/t6rGH61N2YdppXumNpc3asuqWm15fb0JYfjICWgYSr94E7wwb1y6E8aw/6Qs7WeCGcakh/9C+VCOk3MjgAACCCCAAAIIIIAAAggggMDgCjz55JO65JJL5PW2hUeeddZZuvPOO+VyuQZ3MO3OZsdkx2bH6C8xMTG6//77dcIJJ/irBvR1+vTpOv30051ACP+J+iugYcyYMbILZeQIFGR2/vu0oop6AhpGzq1kpAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggMigABDYPCzEkQQAABBBBAAAEEEEAAAQQQQGBIBCYfJsWaL1g310d0+obYNK1JOVBvxeynp+vm6uMtSWreZCcytJhlVUR9DGSjXPO0vv0nZQYCGfYqzFBiXMxAnpK+EUAAAQQQQAABBBBAAAEEEEBghAm89NJLOuecc9Tc3BwY+fHHH69//vOfskEIQ12uvvpqPfDAA4Fh2MCI22+/XWeffXagbjBWjjvuuJCAhjVr1gzGaTnHMBTITUlQXIxLTS1tgSb+YdqAhnnjMvybvCKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIioIE3AQIIIIAAAggggAACCCCAAAIIjBwB+9TH4o+lHR9K+1/S/bjjkuSdfIRc65/vtO1yz2S97NlHL7fsow/rZ6ilOniigjnfEBW3eZjlrPz0tkCGidmakJ005E+5HCIOTosAAggggAACCCCAAAIIIIAAAhEIvP322zr99NNVX98WVrlw4UI99thjio+Pj6CHgW1y3XXX6S9/+UvISX7zm9/o85//fEjdYGxMmDAh5DQlJSUh22xEj4Db/CJubHqitpXVdbjo4oqOdR0aUYEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlElQEBDVN1uLhYBBBBAAAEEEEAAAQQQQACBESpQsV36+CFp2YNSySrJZUIUZp8ipeR2uKCK2ia9sWG3Xl23W+9sLNVR5YW6IShzocKbrNc8ezuhDK+07K0SZXXoYzArEmLdmpid7CwTzOuknGTNGJOmfSdmKjWBX90M5r3gXAgggAACCCCAAAIIIIAAAgiMZIGPPvpIJ510kqqrqwOXsWDBAj311FNKSUkJ1A3Vyk9+8hP98pe/DDn9TTfdpGuvvTakbrA24uLiQk7V1NQUss1GdAkUZIQPaNhR0RZ2El0iXC0CCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCHQmwLf8O5OhHgEEEEAAAQQQQAABBBBAAAEEhlagvlJa9YQJZfiXtOl1MxZv23i8LdLyR6SDr1JTi0dLt5brNRPI8Nq6Ei0z656gps2ufXSWa7ITyPBSy75a6p2uFgUlNrT1OmBreWkJgRAGfxjDRBPEYNfzUhNkn9JHQQABBBBAAAEEEEAAAQQQQAABBHorsGbNGh1//PEqKysLdDFnzhw9++yzysjICNQN1crvfvc73XDDDSGn/+Y3v9mhLqTBAG8UFxeHnCEvLy9km43oEsjPSDIX3Pbnx3/1xQQ0+Cl4RQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBVgECGngrIIAAAggggAACCCCAAAIIIIDA8BFoMU8q3PCiL5RhzVNSc+dPqNu95B59d83+enNDqaobmju9hs3efJ3a+LNO9/fHjvhYtyZkJbWFMOSkBNYnZCcpOZ5fwfSHM30ggAACCCCAAAIIIIAAAggggEBHgc2bN2vRokXatWtXYOeUKVP0/PPPaziEDtx55536xje+ERibXfnCF76gX/3qVyF1g73x+us2ELStTJgwoW2DtagTKMxIDHvNO8rrwtZTiQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC0SvA7IDovfdcOQIIIIAAAggggAACCCCAAALDQ8DrlXZ8YEIZHpSWPyLV7o5oXLmVK7Sh5ENVewsjat/XRrmp8ZqQnewEL0wyr/71iTnJGpuWKLfb1ddTcDwCCCCAAAIIIIAAAggggAACCCDQI4GioiIdd9xx2rZtW+C4cePG6YUXXpB9Heryr3/9S1dddZW89vc/reXCCy/Un//8Z//mkLyWl5frkUfM76GCinWkRK9AficBDcWVnQfIRq8WV44AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAdAsQ0BDd95+rRwABBBBAAAEEEEAAAQQQQGDoBMo2SR/92ywmmKF0Xa/GcWbM6/pN87m9Orb9QXExLk3IagtemGSCFwIhDCaQISWBX6O0N2MbAQQQQAABBBBAAAEEEEAAAQSGTmDPnj06/vjjtWHDhsAg8vLy9Pzzz2vKlCmBuqFaefLJJ3XxxRfL4/EEhnDmmWfq7rvvNkGX7kDdUKx861vfkg1p8Jf4+HiddNJJ/k1eo1CgICMp7FUXVdQ7ASMuF+GsYYGoRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCAKBZhZEIU3nUtGAAEEEEAAAQQQQAABBBBAYMgE6sqkFf/xhTJsebPXw/B4XXrTM1crPD2bbJCdEh8IXZhkQhcmmsUJYTBhDPnpiYpx80XrXt8UDkQAAQQQQAABBBBAAAEEEEAAgUETqKqq0oknnqgVK1YEzpmZmannnntOc+bMCdT1x8qmTZs6BD5s3LhRkydP7rT7l19+Weecc46ampoCbU444QQ9+OCDio3tv6+q3HrrrU5Ixf777x84T1crzc3Nuv766/W3v/0tpNkXv/hFFRQUhNSxEV0CBRmJYS+4sdmjPTWNyklNCLufSgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQiD6B/vtX7+iz44oRQAABBBBAAAEEEEAAAQQQQCASgeYGad1zvlCGtc9KLY2RHBW2zRrPeD3WcrgebzlMRcoJ28ZfWWi+VH3kzDwdOi1H08ekOmEMaYlx/t28IoAAAggggAACCCCAAAIIIIAAAiNW4PTTT9e7774bMv5vfOMb2r17txYvXhxS392GDTfIysrqrlnE+5cvXy47vvr6+sAx+fn5uuaaa/Tqq68G6iJZSUpK0mGHHdZp02eeeUbf/e53tXDhQp177rk67rjjNHv27A4hEBUVFXrqqaf0i1/8QkuXLg3pb9q0abrhhhtC6tiIPoHOAhqsRFFFPQEN0feW4IoRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ6FSAgIZOadiBAAIIIIAAAggggAACCCCAAAJ9FvC0SLftJ1Vu63VXO72ZTiDDf0wow0rvJNOPK2xfyfExOnRqjo6YkasjTDDD1NwUuVzh24btgEoEEEAAAQQQQAABBBBAAAEEEEBghAi8/PLLHUba25CBl156SUcffXSH/npb8d5776mqqirk8OLiYp1xxhkhdZFsTJo0SZs2beq26RtvvCG72JKQkKDx48crIyNDMTExKi0tdfrweDwd+rHBEU8//bRycroOAu1wIBWjTiA3NUGxbpeaPd4O12YDGuaNy+hQTwUCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCESnAAEN0XnfuWoEEEAAAQQQQAABBBBAAAEEBkVgS1mDmlP31dQeBjTUeBP0jOdA/aflcC3xzJNH7g7jtdkL880Xo51Ahhl52m9iluJjO7brcCAVCCCAAAIIIIAAAggggAACCCCAAAKjVqChoUEbNmzo9vpOPvlk3XXXXRozZky3bWkw+gXcJpxhbHqitpfXdbjY4oqOdR0aUYEAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAlEjQEBD1NxqLhQBBBBAAAEEEEAAAQQQQACBgReorG/SmxtK9dq6ErPs1ubSWh3hnqf74p/s9uQtXpde98zXYyaU4TnPAapVYodjCjISdaQJYzhiZq4Om5arrJT4Dm2oQAABBBBAAAEEEEAAAQQQQAABBBCIDoHvf//7mjNnjl577TWtXr1aLS0tXV54amqqTjrpJH35y1/WkUce2WVbdkafQGFm+ICGoor66MPgihFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoFMBAho6pWEHAggggAACCCCAAAIIIIAAAgh0KtBknhpXsV3NWVO1bFuFXjdhDDaU4cOt5WrxeEMOe8Ozl3Z5MzXGVR5S799Y7pnshDI80XKoSpTlr3Zek+JidOi0HB0xI9cseZqWlyKXyxXShg0EEEAAAQQQQAABBBBAAAEEEEAg2gS83tDfvwzk9U+ePFk9Od+ll14quwxGOf7442UXW2pra7Vy5Upt2rRJRUVFqq6ulsfjUWZmprKysjR37lzNnz9fMTExgzE0zjECBfIzksyoyzqMnICGDiRUIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIBDVAgQ0RPXt5+IRQAABBBBAAAEEEEAAAQQQ6IGA+UK7tryh6nfuV/zaJ7TLPUYnNd6qqvrmLjtpUYweb1moK2OfCrTb7s0xdYc5wQzrvOMD9TZ7YV5hRiCQYb9JmUqI5UvzASBWEEAAAQQQQAABBBBAAAEEEEAAAQTCCiQnJ+uAAw5wlrANqESgG4GCjMSwLYoqTFgtBQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEGgVIKCBtwICCCCAAAIIIIAAAggggAACCPgE7JMXa0qkiq1m2RZYWvZsMdWbFFu5RcktlUpt9Rqvao1r+ESrNbFbwcdaDtd5MS/p6ZaD9R/PYXrLM0deuZ3j8tMTdeTMXB0+I0+HTctRTmpCt/3RAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ6E+BzgMa6vvzNPSFAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIjXICAhhF+Axk+AggggAACCCCAAAIIIIAAAhELNJkvEjvBC6EBDL5ABlu3XWpp6NBdjKlJ71Drqzgz5nXd2nxBJ3vbqld6J+nAhj+rQfFKiovR0TOydYQJZLDBDNPyUuVyudoas4YAAggggAACCCCAAAIIIIAAAggggAACCAyyQFcBDV4TbsvvMAf5hnA6BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIapAAENw/TGMCwEEEAAAQQQQAABBBBAAAEE+k3g/XukF38i1ZT0W5f+js6MWaJfNH9WHrn9VWFf543LcAIZjpiRq/0nZSkh1sY+UBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgeEhUJCRFHYgjc0eldU2KTslPux+KhFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAILoECGiIrvvN1SKAAAIIIIAAAggggAACCIxUgaZ6qXK7VLHVLNt8S850af7Z3V9RjPni8ACEM9gT57vKdIh7pd7wzAsZx9j0hEAgw+HTc5WTmhCynw0EEEAAAQQQQAABBBBAAAEEEEAAAQQQQGA4CRRkJHY6nB3ldQQ0dKrDDgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSiS4CAhui631wtAggggAACCCCAAAIIIIDAcBTweqXa0rbwhXJ/CIP/1QQy1OzqOPLZp0YW0JAxvuOx/VRT7k1RgfYoMc6tQ6bmOKEMR87I1fQxqXK5XP10FrpBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQGVsCGzMa6XWr2mN/XtivFFfWaNy6jXS2bCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQjQIENETjXeeaEUAAAQQQQAABBBBAAAEEBk+gaqe07AGpsVZqMktjddt6Q6VUucMEM5gAhub6no+pwgQ4dFMqapv0blGCFnXTrie7G7yxetGzQO9nHK+EOSfpM7MK9dNJWSakIaYn3dAWAQQQQAABBBBAAAEEEEAAAQQQQAABBBAYNgIxJpxhbHqitpfXdRhTUUXHug6NqEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgagQIKAhKm4zF4kAAggggAACCCCAAAIIRLGAp8UEItT4Ficgway3D0oIuz/4mNZgBec4G7Rg9uVMl658sXvYml3S4h913643LWywQ7vi9Xq1ZmeVXly9Sy+vLtH7W8rk9jRpTYJLblfHJ7+1Ozyw2eCN03ZvjnaYZbs3z3ktjx+rMRNmaNK8hTpk7hSdZJ4oR0EAAQQQQAABBBBAAAEEEEAAAQQQQAABBEaLQEFGZwENvQjYHS0oXAcCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCIQIENAQwsEGAggggAACCCCAAAIIIIDAqBJY+6z0wLkDc0l15ZH1G5ccWbvetKotdYInapWgN9aX6sU1NpRhl3ZUhH5ZuEWx2qVM5asscJYSb7oJXch1ghf8r9ucbV9dqdJNW5fmjUvXMbPG6JjZY7TP+EzZp8hREEAAAQQQQAABBBBAAAEEEEAAAQQQQACB0ShQkJkkbW77Par/Govb/c7VX88rAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAghEnwABDdF3z7liBBBAAAEEEEAAAQQQQGDkC3i9JjsggqCAOPNl2oEqTbWR9RyfElm7Xra6/q6n9djWFDU2e7rs4QdNn1ed4gOhDA1mPVxJTYjV4dNzTSBDno42wQxj0xPDNaMOAQQQQAABBBBAAAEEEEAAAQQQQAABBBAYdQIFGeF/H7qjom7UXSsXhAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACvRMgoKF3bhyFAAIIIIAAAggggAACCCAwmAIeEz6w4wNp9ZPSKrOccLM068TuRxA3gOEIjREGNMQldz/OHrYoc2Voa0u2E7bw7qYyNXq7D6JY7Nm/07NMy0vRMSaM4djZY3TA5GzFx7o7bcsOBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBgtArkdxJYW1xRP1ovmetCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEeChDQ0EMwmiOAAAIIIIAAAggggAACCAySQEuTtOk1E8rwP99SVdR24tX/jSygIb7/wxECg2iqCax2uRLfw5CImHgpfZyUMV51KeO0oSFTH1Sk6NWdifqkKcuEMuSoXgldnrK7nTaA4dCpOU4ggw1mmJgzgE7dDYb9CCCAAAIIIIAAAggggAACCCCAAAIIIIDAMBEozEwMO5IiE9Dg9XrlcrnC7qcSAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSiR4CAhui511wpAggggAACCCCAAAIIIDD8BRpN6MH6xb5AhrXPSPUV4ce85mmppVmK6ebH2rgBDB7wmPM3N0qxJlChq+KOkcYfZMYaJ9mwBjsm++pfT8lzwhiUMUEtJphh6Z5YvbSmVC+u3qWVqyu76rlH+wozEnXM7DFOKMOh03KUHN+NXY96pzECCCCAAAIIIIAAAggggAACCCCAAAIIIDDyBfIzksJeREOzR2W1TcpO6eb3wWGPphIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBEaTALMxRtPd5FoQQAABBBBAAAEEEEAAgZEoUFMq2TCG1U9KG140oQf13V9FrTlm69vS5MO6bmtDEDorLhOcEByUEG+DE1JbAxTMelxriIKt72zd5e6s99D6K54P3Q7aKqtp1KvrSvTi67v0ytqPVG6+5NsfJcbt0v6TspxAhmNmjdHMsak83a0/YOkDAQQQQAABBBBAAAEEEEAAAQQQQAABBEatgA267awUVdQR0NAZDvUIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIRJEAAQ1RdLO5VAQQQAABBBBAAAEEEEBg2AiUbzWBDP/zhTJsXiJ5PT0fmg106C6gITFTusS0CwliaA1eiDFPOnO5en7ePh7h8Xi1fEeFXl1bopfWlOjDLWUyVf1ScszT246aleeEMhwxI08ZSXH90i+dIIAAAggggAACCCCAAAIIIIAAAggggAAC0SCQk5qgWBN+2xzml7ZF5fXaqzAjGhi4RgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ6EKAgIYucNiFAAIIIIAAAggggAACCCDQTwJek0BQslpaZcISVv9XKlrW947XPCV96mddhyzEmB97pxzR93P1sYddVfV6be1uvbquRK+t2609NY197LHt8L3HZ+iYWWN0zOwx2ntchtzmy8MUBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgZ4LxJjfr45NT9T28roOBxdV1neoowIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBKJPgICG6LvnXDECCCCAAAIIIIAAAgggMHgC296TVj5uQhlMMMOeT/p+3ph4E7hwlDTnVGnmSV2HM/T9bL3uobHZo/c3lzmBDK+sKdHKospe99X+wLSEWB05M09Hz7LLGOWlJbRvwjYCCCCAAAIIIIAAAggggAACCCCAAAIIIIBALwUKMjoJaAgT2tDLU3AYAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiMYAECGkbwzWPoCCCAAAIIIIAAAggggMCwF1j8I2nTa30bZnyaNON4afYp5vUEKTG9b/0N0NFbSmv1yroS2UCGNzfsVk1jS7+dacaYVB07e4wTyHDA5CzFxbj7rW86QgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEGgTyDcBDeFKcUV9uGrqEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgygQIaIiyG87lIoAAAggggAACCCCAAAKDKjD71N4FNKTkSbNONqEM5vipR0mxCYM67EhOVtvYbIIYSvXqWhPKYJZNJqChv0pCrFsLp+UEQhkmZCf3V9f0gwACCCCAAAIIIIAAAggggAACCCCAAAIIINCFQGFmUti9RQQ0hHWhEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFoEyCgIdruONeLAAIIIIAAAggggAACCPSHgKdFcsd039PsU6Rnru++nW2RNdkXyGBDGSYcFFn/kfXcL628Xq9WF1cFAhne21SmxhZPv/RtOxmfleQEMhwza4wONeEMiXER+Pbb2ekIAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAwArkpyeGhSiqqAtbTyUCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCESXAAEN0XW/uVoEEEAAAQQQQAABBBBAoPcCZZul1f8zy5NSfIp04b+77ytzglSwr1S0NHzb/PltoQxj95JcrvDthqi2rKZRr63f7YQyvLauRDsrG/ptJPExbh00JVtHzsx1ghmm5aWayx9e199vF0tHCCCAAAIIIIAAAggggAACCCCAAAIIIIDACBEoyOgsoKFeNsiX3+OOkBvJMBFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAYIAECGgYIlm4RQAABBBBAAAEEEEAAgREvYL5oql0rpVUmkGH1f6Xij9suyR0n1VdIiRltdZ2tzT61LaDB5ZYmHmpCGU7xLVmTOztqSOqbWzxatq1cr6zdbZYSfWTWLUN/lam5KSaQIU9HmeXgqdlKjufH8v6ypR8EEEAAAQQQQAABBBBAAAEEEEAAAQQQQKA/BAoyk8J209DsUVltk7JT4sPupxIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBKJDgJkg0XGfuUoEEEAAAQQQQAABBBBAIHKB3eulD++VVj4hlW0Mf5ynSVr7nLT3OeH3B9fOOU3a9q40xwQ1zDxJSs0L3jvk60UVdXrVhDHYQIbX1+1WZX1zv40pNSFWC6flBEIZJmQn91vfdIQAAggggAACCCCAAAIIIIAAAggggAACCCDQ/wIFGYmddmp/n0xAQ6c87EAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgKgQIaIiK28xFIoAAAggggAACCCCAAALdCLSYUIJ1z0rv3CF98lI3jVt3r/5vZAENY2ZLFz4UWZ+D0Kq+qUXvbtqjV9aU6NV1JVq7s7pfzzpvXLqOnJGno2bmab9JWYqLcfdr/3SGAAIIIIAAAggggAACCCCAAAIIIIAAAgggMHACuakJinW71OzxdjhJcUW99irM6FBPBQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIRI8AAQ3Rc6+5UgQQQAABBBBAAAEEEECgo0D1LumDe6T37pYqt3Xc31XNusVSU70U1/nTxLo6fLD2eb1ebSip0atrS/SKWd7eWKr6Jk+/nT4nJV5HmjCGI2fm6vDpecpLS+i3vukIAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAYHAFYkw4w9j0RG0vr+tw4h0moIGCAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALRLUBAQ3Tff64eAQQQQAABBBBAAAEEolHABBZoy1vSu3dKKx+XPE29U2iqkTYvkaYf17vjB/CoyvomvbG+1AlksMEM4b5I29vT2yen7TcpS0eZUAa7zC1Il9vUURBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRGh0B+RviAhuKKjqENo+OKuQoEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEIhUgICGSKVohwACCCCAAAIIIIAAAgiMdIGGaunjh0www9+knct7fzUF+0izTzPLKdKYOb3vpx+PbPF4tWJHhWwYw6trd+v9LWWydf1Vxmcl6cjWQIaF03KUlhjXX13TDwIIIIAAAggggAACCCCAAAIIIIAAAggggMAwEygwAQ3hSlF5fbhq6hBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIIoECGiIopvNpSKAAAIIIIAAAggggECUCpSsMaEMd0pL/yk1VvUcweWWJh3mC2SwoQyZE3veRz8f4fV6taGkRm9u2K0l60v15ielqqhr6rezJMa5dcjUHB1lQhlsMMPU3BS5XK5+65+OEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBIavQKcBDRUENAzfu8bIEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEBgcAQIaBseZsyCAAAIIIIAAAggggAACQyNQslb640G9O3fBvtIBl5lghtOklJze9dGPR+0orzNhDLtNKEOplphghp2VDf3YuzRrbJoJY8g1oQxjdMDkLCXGxfRr/3SGAAIIIIAAAggggAACCCCAAAIIIIAAAgggMDIECjKSwg60uJKAhrAwVCKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQRQIENETRzeZSEUAAAQQQQAABBBBAIAoF8mZKhftJOz6I7OJjEqR5n5EOvEIav39kxwxQqz01jYEwhjdMMMOm0tp+PVNGUpwOn24DGfJ0hAlm6OwLt/16UjpDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQGPYCBRmJYcdog4S9Xq9cLlfY/VQigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggMDoFyCgYfTfY64QAQQQQAABBBBAAAEEol3Ahi08fnXXCpmTTCjD5dKCi6Tk7K7bDtDe6oZmvbOxVG+sL9WSDaVaVVTZr2dym+/L7jMhU0fOyNNRs/K0z/hMxdhKCgIIIIAAAggggAACCCCAAAIIIIAAAggggAACQQL5nQQ0NDR7VF7bpKyU+KDWrCKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQDQJENAQTXeba0UAAQQQQAABBBBAAIHoFJh3lvTc96W6snbXb8IJZpwgHXSlNO04ye1ut39gNxuaW/TB5nK9sWG3WUq1bGu5mj3efj3p2PSEQCDD4dNzlZnMl2b7FZjOEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBUShQmJnU6VXtqKgjoKFTHXYggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggMPoFCGgY/feYK0QAAQQQQAABBBBAAIHRJrBzhfTu3ySXCVg45dfdX12c+SLpgs9Jb/yfr21StrTfxdIBl0lZk7s/vp9atJjwheXbK7TEBjKsL9W7m/bIPm2sP0t8jFsHTsnSUTPzdKRZZo1NM0zGiYIAAggggAACCCCAAAIIIIAAAggggAACCCCAQIQCuakJinW7woYKF1fUa6/CjAh7ohkCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCIw2AQIaRtsd5XoQQAABBBBAAAEEEIgGgeZGqalWSjRfgIyWyff2mlc94Qtm2PKG7y7HJEhHf09Kyen+rh/weWnL29KBl0tzz5TiErs/po8tvF6v1u2q1pL1JpBhQ6ne+qRUVfXNfew19HDz/VjNH5+pw6blaOG0XB0wOUuJcTGhjdhCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKAHAjHml89j0xO1vbyuw1FFJqCBggACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC0StAQEP03nuuHAEEEEAAAQQQQACBkSfQUCW98GPpg3ulZvMFyPhUKWe6dOG/pdQxI+96IhlxxTbp/bvNco9Usyv0iJYG6cP7pMOvDa0Pt5U9Vbri+XB7+rVu655aE8aw24QylDqhDLurzRj7ucwcm+qEMRw2PVcHTclWRlJcP5+B7hBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSiXSA/o7OAho6hDdFuxfUjgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEE0CBDSMkru9YcMGvfPOO9q2bZsaGxuVlZWl2bNna+HChUpMHPgn444SRi4DAQQQQAABBBBAYDgLbH1XevQKqWxT2ygbq6WdK6SkrLa6rtZq90jJ2V21GB77PB5p4yvSu3dKa56SvGa7s/Le36WFX5HcMZ21GND6kqoGvfmJCWNYb0IZTDDD1j39/8XUCdlJOmxarg6dluMEM+SlJQzoNdE5AggggAACCCCAAAIIIIAAAggggAACCCCAAAI2oCFcKaowAdIUBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCIWgECGkb4rf/Pf/6jn/zkJ/rggw/CXklqaqouvfRS3XjjjcrNzQ3bpj8qJ0+erM2bN/dHV7rkkkt0991390tfdIIAAggggAACCCAwCgQ8LdJrv5ZevtUEFZj19iV7qhQT176243ZDlfSLKSbMwQQ05M40y4zW19b1zEmmnyH+EamuXFr6gPTe36TS9R2vIVxNufkcvn6xNPNT4fb2e11lfZPe/mSP3jBhDG+sL9Wanca1n0tuaoIJYsjRYdN9gQwTspP7+Qx0hwACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA1wKFnQU0lBPQ0LUcexFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAY3QJDPPtodOMO5NU1NDTo8ssv1/3339/laaqrq/WHP/xBDz74oB5++GEdeeSRXbYfDjvj4+OHwzAYAwIIIIAAAggggMBwECgz4QOPXSVtebPz0dighUiKP/Cgbo+09S3fEnxcjPkcasMe2gc35Jj+E9ODW/b/etEy6d07pY/+LTXX9bz/jx4csICG+qYWvb+5TEvW79aSDaX6eFu5PN6eD7GrI9ISY3XIVBvGYEMZcjVjTKpcLldXh7APAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIEBFcjPSArbf3ElAQ1hYahEAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAIEoECGgYgTfa4/HovPPO0+OPPx4y+piYGE2cOFEZGRnauHGjKioqAvtLSkp00kknafHixTr00EMD9cNx5dRTTx2Ow2JMCCCAAAIIIIAAAoMtYMMK/vcNqaGy6zPnzux6v3/v7nX+tfCvLY1SyWrf0r5FWkHH4AZ73rRCye1u3zqy7SbzBc6V5jP9u3dI296N7Jj2rSaaz/YHXiHNOa39nj5tb9xdo6eXF+m1tbv1/pYyNTZ7+tRf+4MTYt06cHK2Fk63oQy5mleYrtiYXjq275xtBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQT6QaAgIzFsL0UVdfJ6vQQNh9WhEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHRL0BAwwi8x7/85S87hDN88Ytf1A9/+EMVFpoJYqbYEAcb4HDttddqy5YtTl1tba3OPfdcLV++3AlxcCr76T/333+/6up6/qTfhx9+WH/9618DoxgzZoxOPvnkwDYrCCCAAAIIIIAAAlEoUG+Cxv73LenjhyK7+IgDGtZG1l+4VlVFkl02vhq6Ny5ZypkuTVoonfTz0H2dbZVtlt6/S/rgXqm2tLNWndfHpUh7n2uCGS6X8ud33q6He9bvqtbTHxfpf2ZZXVzVw6O7bh7jdmmf8Rk6bHquE8iwYGKmEuNiuj6IvQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIDKFAZwEN9U0eldc2KSslfghHx6kRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQGCoBAhoGCr5Xp63tLRUP/3pT0OOvuWWW/Sd73wnpM5tnuL76U9/WgcddJAOP/xwbdq0ydm/bds2/eY3v9FNN90U0r6vG4cddlivurjhhhtCjrvwwgsVG8vbMgSFDQQQQAABBBBAIJoEtrwlPXqlVO4LGevy0nNmmJCCK6TJEX4W3d2HgIbOBtJUKxV/JCVlddairX79C9I7t0trnzV13rb6SNdsEIW93n0+KyVmRHpUl+3W7qzSUyaQwS5rd1Z32banO+cUpOuwaTlaOD1HB03JUWoCn/N7akh7BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgaETKMhI6vTkRRX1BDR0qsMOBBBAAAEEEEAAAQQQQAABBBBAAAEE/p+9+wCzs6rzB/6bmUxLm/TMpBFCKKFDKNIERKRIRzoLcbH91XXdZt1dxbXrqqsoFiwUAUERFFEQ6dI0tAChhCSEJDOkkUmbydT/exMy5M7cOy0zydyZz/s895n3nPN7z3vO582uo/fO9xIgQIAAAQIECPRvAX8hk2PP9+tf/3qsXfvWt9m+/e1vj09+8pNZdzFx4sS46qqr4p3vfGdLzbe//e342Mc+FqNHj27p2xEnL730UjzyyCNpt541a1ZaW4MAAQIECBAgQGCACDQ2RDzw9eT1jSS7oKn9TRcn4QSnfjti77Pbr2s9umJe656ea49JwiI6Omb/Igln+FNHVenjeQURe7w74pAktGLqURF5eenjXWw1NzfHi6lQhmeSUIZnq2Lesp4LZZg6enASxjAmCWUYE2+bNipGDy3u4uqUEyBAgAABAgQIECBAgAABAgQIECBAgACBviMwdlhxFOTnRWNT29Dlyuqa2HPC8L6zWCshQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGC7CQho2G7U236jpqam+PnPf5420ec///nkb7Ta/yOt4447Lo466qh48MEHN12bCni46aab4v/9v/+XNtf2bvziF79Iu+UBBxwQ++67b1qfBgECBAgQIECAwAAQWDU/4pYPRCz+W8eb3emIiDN/FDFicse1rSv+4bcRK16KWPly8jP1Ss5Tr9WvJZVtP1zZ+vJ222N2a3d40+DB74uY+7uO61IVQ8sjZs5KXpdGDJ/QuWuyVKVCGZ6vXBN/nFMVd8ypjPkr1mep7Fr3+OHFm8IYDttl9KZghokjsn+TWNdmVk2AAAECBAgQIECAAAECBAgQIECAAAECBHa8QCqcYXwS0rC0urbNYioz9LUp0kGAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQL8UENCQQ4/14YcfjuXLl7eseNq0aXHMMce0tNs7ueyyy1oCGlJ1t9566w4NaEiFTVx77bVpS541a1ZaW4MAAQIECBAgQKCfCyTBAfH0jRF3/HtE3br2N5uf/FeXYz8TccTHI/IL2q/NNjpsfETqtfNR6RV1GyJWvfJmYMNWwQ0r5kU01KTXZmuN2TXbyFv9O789YnRSlwqIyHZMTdZ28GURe5wSUVCYrarD/lQow7NL1sQdz1YmwQyVsXBlssdtPMpKC+OwaaPjiOmj47BdxsQuY4d0GBa3jbd0OQECBAgQIECAAAECBAgQIECAAAECBAgQ2KEC5WUlGQMaqgQ07NDn4uYECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEdqSAgIYdqd/Fe//hD39Iu+L444/v9B9EpWq3Pu67775Yv359DBkyZOvu7Xb+l7/8JRYvXtxyv8LCwrjwwgtb2k4IECBAgAABAgT6uUDNGxG3/2vEc7d0vNFRu0Sc/ZOIiTM7ru1ORdHgiPJ9Nr+2vj4JFYs1ye+sK1KhDanXS2+FOKyr2royYsxu6e1Mrby8JHzhfRF/+mT6aNGwiP3O3xzMMG5G+lgXWqlQhqcXV28KZEgFM7y2qpPhEu3c48ApI+Jde5XHkdPHxIyK4ZH6tjAHAQIECBAgQIAAAQIECBAgQIAAAQIECBAYKAIVI0ojFq1us92l1dv+v8G3mVQHAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQI5ISCgISce0+ZFPvXUU2mrPfzww9Pa7TUmTJgQU6dOjYULF24qq6uri+effz4OPvjg9i7rtbGrr746be5TTjklxowZk9anQYAAAQIECBAg0E8FFj4UccsHN4cfdLTFAy+JOOErEcVDO6rs+fH8/IgRUza/ph+XPn9tdRLWMG9zYMPK5OewCenj2VqpIIa/XB5RvyFi3J6bQxn2PS/ZXxLS0I2jqak5nlq8Ou54pjL++GxVLFm97R8IPWinkXHyPhVx4t7lMSH1wVMHAQIECBAgQIAAAQIECBAgQIAAAQIECBAYoAIVw0sy7ryqujZjv04CBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBPq/gICGHHrGc+fOTVvtnnsmf9DVhSNVvyWgIXVZar4dEdCwZs2a+O1vf5u28lmzZqW1NQgQIECAAAECBPqpwLLkd9pfnJJsrrn9DZaOjDj1uxF7ntZ+3Y4aLSmLmDRz86sraygdEXHS1yJGT4+YclhEXl5Xrt5UmwpleGLRG3HHnKoklKEyKrfxQ6CpJRw8dVScnAQynLh3RZSXZf6waZcX6gICBAgQIECAAAECBAgQIECAAAECBAgQIJDjAhVZgoy39X+bz3EWyydAgAABAgQIECBAgAABAgQIECBAgAABAgQIECAwoAUENOTI46+pqYlFixalrXby5Mlp7Y4aretffPHFji7plfGbbropNmxIvjH4zWP8+PFx8sknb2n6SYAAAQIECBAg0J8Fxs2I2P+iiKeuy77LnY+OOPOHEcMnZK/J5ZEDL+ny6huTUIbZr6ZCGSo3hTK8vmZjl+fY+oL8JJTh0J1Hx8n7lMcJe5XHuCzfALb1Nc4JECBAgAABAgQIECBAgAABAgQIECBAgMBAE6jIEmpcWV0Tzc3NSQ5z14OYB5qh/RIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDobwICGnLkia5YsWLTG7tblltYWBjjxo3b0uzUz4kTJ6bVLVu2LK29vRpXX3112q0uuuiiGDTIP8U0FA0CBAgQIECAQH8WOOmrEa/+NeKNBem7zC+MOO6/Iw77aER+fvrYAGylQhkeX7BqUyjDn56riuVrtz2U4bBdUqEMFfGuPctj7LDiAahqywQIECBAgAABAgQIECBAgAABAgQIECBAoPMC5VkCGmrrm6K6pj5GDC7q/GQqCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDoFwL+Kj5HHuO6devSVjp48OAup/APGTIkbY7Wc6YN9lLjlVdeiYceeiht9lmzZqW1e7KRCqFYvnx5l6acN29el+oVEyBAgAABAgQIdFGgeFjE2VdF/PRdEc2Nmy8es9vmvor9ujhZ/ypvaGyKx94MZbgzCWVYsa5umzZYkJ8Xh7eEMoyP0UOFMmwTqIsJECBAgAABAgQIECBAgAABAgQIECBAYEAJTCgrzbrfpatrBTRk1TFAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoP8KCGjIkWfbOkyhpKSkyysvLU1/07j1nF2esBsX/OIXv0i76sADD4x99tknra8nGz/4wQ/i8ssv78kpzUWAAAECBAgQINATApMOijjm0xH3fjHioMsi3pX8LBrcEzPn3Bz1SSjDo/NXxh1zKuPO516PVeu3LZRhUBLKcMT0MfHufSri+D3Hx8ghvr0r5/5RWDABAgQIECBAgAABAgQIECBAgAABAgQI9AmBscOKIxWG3NjU3GY9VWtqYs8Jw9v06yBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoH8LCGjIkedbW1ubttKioq7/kVVxcfq35dbU1KTN2duN5ubmuPbaa9NuM2vWrLS2BgECBAgQIECAwAASOOpfI6a8LWLnowbQpjdvta6hKR5+ZUX8cU5V3Pl8VazeUL9NBoUFeXHUrmPjpL3L4117lkfZ4MJtms/FBAgQIECAAAECBAgQIECAAAECBAgQIECAQGwKZxifhDQsrU7/3E7KZunqtn3MCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDo/wICGnLkGZeUlKSttK6u69+qu3HjxrQ5Ws+ZNtgLjXvvvTdeffXVlplTIRMXXnhhS9sJAQIECBAgQIBAjgssfzHimV9FvOO/IvLyOt5MfsGACmdIhTI8NG953JGEMvz5+dejumbbQhmKCvLj7buNiZP3qYjjZoyPslKhDB3/o1NBgAABAgQIECBAgAABAgQIECBAgAABAgS6JlBeVpIxoKEqQ2hD12ZWTYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBALgoIaMiRpzZ06NC0ldbWdj2Fv6amJm2O1nOmDfZC4+qrr06b9ZRTTonRo0en9fV048Mf/nCcc845XZp23rx5ccYZZ3TpGsUECBAgQIAAgQEt0Nwc8fefRdz52YiG5HfOUdMiDrh4QJNs2fzqDXVx/0vL454Xlm16ra1t2DLUrZ9Fg/LjmN3Gxrv3rYh37DEuhpUIZegWpIsIECBAgAABAgQIECBAgAABAgQIECBAgEAnBSrKSpPK1W2qKwU0tDHRQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGAgCAhoyJGn3DpMYcOGDdGc/CFcXme+mfjNPa5fvz5tt63nTBvs4ca6deviN7/5Tdqss2bNSmv3RmPcuHGRejkIECBAgAABAgR6SWD9iojbPhrx0h/fusEdn4iYcljE6F3e6hsgZ6nf0V+oWrspjOHeJJThiUVvRFOSX7EtR0lhfhy7+7g4aZ/NoQxDi/3XuG3xdC0BAgQIECBAgAABAgQIECBAgAABAgQIEOiKQEVZScbyyur0L0rJWKSTAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIF+J+Ave3LkkY4ZM2ZTGEPqD75SR319fSxbtizGjx/f6R0sWbIkrXZ7BhfcfPPNsXVARGrdJ510Utp6NAgQIECAAAECBHJMYN7dEb/9fxHrl6UvvD4JBvvN+yIuuyuioDB9rB+2NtQ1xMPzVsY9Ly6LVChDT3xjVmlhQbxjj3FxchLKcMzuY2OIUIZ++C/HlggQIECAAAECBAgQIECAAAECBAgQIEAgFwTKswQ0VFXX5sLyrZEAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgR4WENDQw6C9NV1paWlMmTIlXn311ZZbLFq0qEsBDan6rY899thj62avnl999dVp81900UUxaJB/fmkoGgQIECBAgACBXBGoTz5w+JfLIx79QfYVL30i4r6vRhz3X9lrcnjktVUb4p4kjCH1emT+yqhraNrm3QwuKojjZoyPk/cuT0IZxkVp0nYQIECAAAECBAgQIECAAAECBAgQIECAAAECO1ZgwojSjAtYWl0TqS9aycvLyziukwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB/ingL+Rz6LmmAhW2Dmh4/vnn4+CDD+70DubOnZtWu70CGhYsWBAPPPBA2r3f+973prU1CBAgQIAAAQIEckTg9ecjfvO+iGXPdbzgZUltUxJckJ/fcW0fr6hvbIq/L3wj7n1xcyjDvGXremTFQ4sHJaEM4+LkfSri6N3GRkmhUIYegTUJAQIECBAgQIAAAQIECBAgQIAAAQIECBDoIYHyspKMM9XWN0V1TX2MGFyUcVwnAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQL9U0BAQw491/333z/uvPPOlhU//PDDcemll7a02zuprKyMhQsXtpQUFhbGnnvu2dLuzZOrr7560zcGbLnHzJkzY++9997S9JMAAQIECBAgQCAXBJJvgIrHfxxx139FNG5sf8WDkg8qvuuLEQcnQQ45/K1RK9ZtjPteXB73vrAsHnh5eaytbWh/350cHZaEMhy/5/g4KQllOGrXMUIZOummjAABAgQIECBAgAABAgQIECBAgAABAgQI7AiBiiwBDam1VFbXCmjYEQ/FPQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjsQAEBDTsQv6u3PuWUU+JrX/tay2V33333puCDvE780dtdd93Vcl3q5Nhjj42hQ4em9fVGozn5Q75rrrkmbepZs2altTUIECBAgAABAgT6uMC6ZRG3/r+IeXd3vNDxSRDX2VdFjJvRcW0fq2hqao7nlq6Je5JAhnteXBbPLF6d/L7dM4ucNLI03rHHuDg2eR2+y+goHlTQMxObhQABAgQIECBAgAABAgQIECBAgAABAgQIEOhVgXHDSqIgPy8ak/cRWh+V1TUxo2J4625tAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgT6sYCAhhx6uIcffniMGTMmVqxYsWnV8+fPj/vuu29T2EJH2/jpT3+aVnL66aentXur8cADD8SCBQtapi8qKooLL7ywpe2EAAECBAgQIECgjwu8dGcSzvDhiA2bfwdtd7WHfTTiuP+OGFTcbllfGly3sSEeenn5plCGe19cHsvXbuyR5aU+qHnQTiM3hTKkghmmjxsanQlW65Gbm4QAAQIECBAgQIAAAQIECBAgQIAAAQIECBDoMYHU/+Y/blhxVFbXtpkzU1+bIh0ECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPQrAQENOfQ48/PzY9asWfHNb36zZdWXX355HHPMMe3+sddf/vKXePDBB1uuGTZsWJx77rkt7d48ufrqq9OmP/XUU2PUqFFpfRoECBAgQIAAAQJ9UKC+JuKu/4r42086XtzQ8ogzr4zY5R0d1/aBivnL170ZyLAsHl+wKuob237jVXeWOXpIURy9+9hNoQxH7To2ykoLuzONawgQIECAAAECBAgQIECAAAECBAgQIECAAIE+JlBRVpI5oGF129CGPrZ0yyFAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoIcFBDT0MGhvT/fJT34yfvjDH8a6des23er++++Pr33ta/GpT30q462XLFkS73vf+9LG/vmf/znGjBmT1te60frbfe+9995NQRCt69prb9iwIX7961+nlaQCJhwECBAgQIAAAQJ9XKDymYjfJL9Drnix44Xu/u6I074XMWR0x7U7qKKuoWlTEMM9LyxLghlej4UrN/TYSvaeODzesfu4OHaPcbHfpBGRn3yLloMAAQIECBAgQIAAAQIECBAgQIAAAQIECBDoXwIVZaXJhla32VRltYCGNig6CBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPRzgUH9fH/9bnupYIXPfOYzm15bNvfpT386Fi1aFP/5n/8ZEyZM2NTd1NQUv/vd7yIVxpAa23Kkxv/t3/5tS7NXf6bCGdauXdtyj/Ly8jjxxBNb2k4IECBAgAABAgT6mEDyO2Q8+oOIv1we0VjX/uIGJR9EPPErETNnReT1vVCCZWtq494XU4EMy+Khl1fE+rrG9vfTydEhRQVx5K5j4h1JIMMxSTDD+OElnbxSGQECBAgQIECAAAECBAgQIECAAAECBAgQIJCrAuVlmd8PqFpTk6tbsm4CBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBLopIKChm3A78rJPfvKT8fDDD8ftt9/esowrr7wyfvzjH8dOO+0UZWVlsWDBgli9enXLeOqktLQ0brrpphgxYkRaf281rr766rSpL7roohg0yD+5NBQNAgQIECBAgEBfEVhTGXHrhyLm39fxiir2izjrqoixu3Vcu50qmpqa4+nFq+PeJJDhniSY4dkla3rszjuPGRLHJmEMqVCGg3ceGcWDCnpsbhMRIECAAAECBAgQIECAAAECBAgQIECAAAECfV+gIktAQ+Xq2r6/eCskQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBHBfy1fI9ybp/J8vPz4+abb473vve9ceONN7bctLGxMebPn9/S3vpk9OjR8etf/zqOOOKIrbt77XzRokVx7733ps0/a9astLYGAQIECBAgQIBAHxFYMS/ip8dH1KzqYEF5EUf8c8Sxn40YVNRBbe8PV9fUx4MvL497klCG+19cHivX1/XITQsL8uLQnUfHsUkgQyqUIRXQ4CBAgAABAgQIECBAgAABAgQIECBAgAABAgQGrkBFWWnGzVdW10Zzc3Pk5SXvoTgIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEBgQAgIacvQxl5SUxA033BDvec974otf/GI89dRTGXcyZMiQuPTSS+Nzn/tcjBs3LmNNb3Rec801m96A3jL3zJkzY++9997S9JMAAQIECBAgQGBbBJIP+kXduiRQYXVEbXXySn5uOn+z3fp833Mj9nlP9juOmhYxfq+IhQ9mrxk2IeKsH0Xs/PbsNdthZFUSwvCHOZXxh2eWxt8WvhGNTYlFDxzjhhXHsbuP2xTKcOSuY2Josf+q1AOspiBAgAABAgQIECBAgAABAgQIECBAgAABAv1CoGJEScZ91NQ3RipQesTgHR9snXGBOgkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ6HEBf3XU46Tbd8Kzzz47Uq958+bFY489FkuWLIm6uroYMWJEzJgxI4444ohIhTl09Uil+2/L8Z//+Z+RejkIECBAgAABAgQ6KfD6cxErXupc6EIqlKGpoZMTJ2XlHQRl5edHnPnDiCuP2Bz20HrmGadFnPp/EYNHtR7ZLu31Gxviz8+/Hrc9tSQefHlFNPRAKEPqi6z2nTQijttjXLwjee1ZMTzy85NOBwECBAgQIECAAAECBAgQIECAAAECBAgQIECglUBFWfbP3lRW1wpoaOWlSYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKA/Cwho6CdPd/r06ZF6OQgQIECAAAECBHawwNrXI175S8SaJUnYQRKksPvJETsd3vGi/nZVxN9/1nFddypqVnd8VdmkJIThOxE3z3qrtnBIxMlfj9j/oohUosF2POoamuKBl5bHbU8vTcIZqqK2vmmb7z6seFC8fbexcWwSyHDM7mNjzNDibZ7TBAQIECBAgAABAgQIECBAgAABAgQIECBAgED/FxibvKeQynnOlCFdlQQ0zEiCoB0ECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECAwMAQENA+M52yUBAgQIECBAgMD2EHju1ojbPhpRt/atuw0Z27mAhpIRb13T02e1qzs3415nRrx8d8RT10VMnBlx1k8iRu/SuWt7oKop+VTj3xau2hTKcMecyli9oX6bZ50+bmi8IwlkOHb3cXHQ1JFRWJC/zXOagAABAgQIECBAgAABAgQIECBAgAABAgQIEBhYAoOS9xfGDy+JyiSMofWxtLqmdZc2AQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQL9WEBAQz9+uLZGgAABAgQIECCwHQUe+1HEHz+Z3LA5/aY1q9Pb2VolZdlGtr2/s2tI3emkr0aM3S3ibR+OKCjc9nt3MENzc3PMrVwbtz21JH739NKMH2zsYIq04aJB+XHYtNGbQhlSwQyTRw1OG9cgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECHRHoLwsc0BDVYbQhu7M7xoCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBHJDQEBDbjwnqyRAgAABAgQIEOirAknAQPzlCxEPfSvzCmtXZ+5v3Vs6onVPz7U7u4bUHYuHRRzxzz137ywzLVq5IQlkWJIEMyyNl5ety1LVue6K5AORxyZhDO/YfVwcPn10DC7yX3M6J6eKAAECBAgQIECAAAECBAgQIECAAAECBAgQ6KzAhLLSeDJWtylfurq2TZ8OAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgT6r4C/XOq/z9bOCBAgQIAAAQIEelugsT7idx+LePr67Heqrc4+tvVIyYitW10/LxwSkQp5KClLXsnPTedv/hw1revz9cIVy9dujD88szRue3ppPLlo9TbdYafRg+P0/SbESftUxB7lwyIvL2+b5nMxAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKA9gfIkMDrTUbWmJlO3PgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE+qmAgIZ++mBtiwABAgQIECBAoJcF6tZH3HRpxLw/t3+jmtXtj28ZLR0ZUZyEK5RuHbCw9fmIzeELqbqtAxg2BTIkdYOKtszUp36ura2Pu557fVMow1/nrYjGpuZur2/M0OI4Zd+KOH3/CbH/5BFCGbot6UICBAgQIECAAAECBAgQIECAAAECBAgQIECgqwIVWQIaKqtruzqVegIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEclhAQEMOPzxLJ0CAAAECBAgQ2EEC61dEXH9uxJLZ7S+goDhi4oHt12wZnXZ0xKcXbWnl9M+NDY1x/4vL47anlsbdc1+PjQ1N3d7P0OJBceLe5ZtCGQ6bNjoGFeR3ey4XEiBAgAABAgQIECBAgAABAgQIECBAgAABAgS6K1BRVprx0srVtdHc3CxYOqOOTgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQL9T0BAQ/97pnZEgAABAgQIECDQmwJvLIy49qyIVa9kv0teEiJw6v9FHHhJ9pp+NtLY1ByPLVgZv0tCGe6YUxlrahu6vcOiJITh2D3GJqEME+Mde4yLksKCbs/lQgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBATwiUl5VknKamvjHW1DRE2eDCjOM6CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDoXwICGvrX87QbAgQIECBAgACB3hSofCbil++JWPd69rsMSr496ZyfR+x+UvaafjKS+jaoZ5esidueWhK/f2ZpvL5mY7d3lpcXcfguo+P0/SbGCXuXR1mpDzF2G9OFBAgQIECAAAECBAgQIECAAAECBAgQIECAQI8LTBiROaAhdaOl1TUCGnpc3IQECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE+qaAgIa++VysigABAgQIECBAoK8JzL8/4saLIurWZl9Z6ciIC2+KmHxI9pp+MLJgxfr43VNL47anl8T85eu3aUf7TiqL0/abEKcmr/HDs3+wcZtu4mICBAgQIECAAAECBAgQIECAAAECBAgQIECAwDYKjB1aHPlJ4HRTc9uJqqprY0bF8LYDeggQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ6HcCAhr63SO1IQIECBAgQIAAgR4XePY3Ebd8MPnEXX32qcsmR1yc1I3dPXtNDo8sW1Mbv3+mMglmWBJPL67epp3sPGZInL7/hE3BDNPGDt2muVxMgAABAgQIECBAgAABAgQIECBAgAABAgQIENgeAoMK8mPcsJKoSt4zaX1UJgENDgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEBoaAgIaB8ZztkgABAgQIECBAoLsCj/4w4k+fSq7O8HVIW+Yct+fmcIbhE7b09Iufa2rr40/PViWhDEvj4VdWZPxGqM5udNyw4jh1vwlxxv4TY++JwyMvL/mKKQcBAgQIECBAgAABAgQIECBAgAABAgQIECBAIIcEKkZkC2ioyaFdWCoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAtsiIKBhW/RcS4AAAQIECBAg0H8FmpNAhrs/H/HX77S/x52OiDj/+ojSEe3X5chobX1j3PvCsrgtCWW458VlUdfQ1O2VDysZFCfvXRGn7z8hDp02OgryhTJ0G9OFBAgQIECAAAECBAgQIECAAAECBAgQIECAwA4XqCgriSczrKKyujZDry4CBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBPqjgICG/vhU7YkAAQIECBAgQGDbBBrrI373TxFP39D+PDNOizjrJxGFJe3X9fHRxqbmeOSVlUkow5L407NVsXZjQ7dXXDQoP945Y1yctt/EOHaPsVE8qKDbc7mQAAECBAgQIECAAAECBAgQIECAAAECBAgQINCXBCrKSjMup7K6JmO/TgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE+p+AgIb+90ztiAABAgQIECBAYFsENq6LuPnSiHl3tz/Lwe+LOOnrEfm5G0Dw2qoNcePfFsXNf18cy9ZubH+/7Yzm50UcMX1MnL7/xDhhr/ExrKSwnWpDBAgQIECAAAECBAgQIECAAAECBAgQIECAAIHcFKgoyxzaXVldm5sbsmoCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBLosIKChy2QuIECAAAECBAgQ6NcCdUlAw/KX2t/iO/4z4qh/j8hLkgly7KhvbIq7n389rn98UTw0b0U0N3d/A/tPHpGEMkyIU/adEGOHFXd/IlcSIECAAAECBAgQIECAAAECBAgQIECAAAECBHJAoDxLQENVEtDQnLzpkpeD7x3lALslEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEOhTAgIa+tTjsBgCBAgQIECAAIEdLjCsPOIfbon46bsialalLyevIOLU/4s48B/S+3Og9erK9XHj316Lm/++OFas29jtFe8ydkicsf/EOC0JZthp9JBuz+NCAgQIECBAgAABAgQIECBAgAABAgQIECBAgECuCVSUlWZc8oa6xlhT0xBlgwszjuskQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKD/CAho6D/P0k4IECBAgAABAgR6SmDMrhEX3hRx9akRDTWbZx2UfODunF9E7H5iT92l1+epa2iKu56vihseXxR/nbey2/crH16yKZDhtP0mxF4Thvv2p25LupAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIZYGKspKsy69cUyOgIauOAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQL9R0BAQ/95lnZCgAABAgQIECDQkwKTD4449+qIGy6IKBm+ObBh8iE9eYdem2v+8nXxq7+9Fr+evThWrq/r1n3KSgvj5H0q4vT9J8QhU0dFfn5et+ZxEQECBAgQIECAAAECBAgQIECAAAECBAgQIECgvwiMG1YcqbdMmprb7qhydW3sUZ68p+QgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBfCwho6NeP1+YIECBAgAABAgS2SWC3EyLO+nFE+b4RY3fbpql6++KNDY3xp2er4obHF8Wj81d163Ylhfnxzhnjk1CGiXH0bmOjaFB+t+ZxEQECBAgQIECAAAECBAgQIECAAAECBAgQIECgPwoMKsiPccNKompNbZvtVVa37WtTpIMAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZwXENCQ84/QBggQIECAAAECBHpVYJ/39Or02zr5vGXr4sYklOE3TyyONzbUd2u6GRXD48JDpyTBDBNieElht+ZwEQECBAgQIECAAAECBAgQIECAAAECBAgQIEBgIAiUl2UOaKiqrhkI27dHAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgNeQEDDgP8nAIAAAQIECBAgMMAEmpsjaqsjSkfk7MZr6xvjj89Wxg2PvxaPL1jVrX0MLiqI0/abEBccMiX2nVQWeXl53ZrHRQQIECBAgAABAgQIECBAgAABAgQIECBAgACBgSQwYURJPPVa2x0vra5t26mHAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIF+JyCgod89UhsiQIAAAQIECBDIKtBYH/G7f4qomhPx3jsiSsqylvbFgZdeX5uEMiyKW55YEtU1yV66cew9cfimUIZUOMOwksJuzOASAgQIECBAgAABAgQIECBAgAABAgQIECBAgMDAFSgfXppx81UCGjK66CRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQ3wQENPS3J2o/BAgQIECAAAECmQU2rou4+dKIeXdvHr/xooiLfh1RWJK5vo/01tQ1xh1zKjcFM/z91Te6taohRQVx+gET44KDp8Q+k3IrlKJbG3YRAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKCXBCaMyPze0tLqml66o2kJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEOhLAgIa+tLTsBYCBAgQIECAAIHeEVi/IuKX50QsfeKt+Rc+GPHbD0S85+cR+QVv9feRsxeq1sQNjy2KW55cEmtrG7q1qv2SMIYLDpkSp+43IYYU+9W/W4guIkCAAAECBAgQIECAAAECBAgQIECAAAECBAhsJVBeljmgoaq6NpqbmyMvL2+raqcECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPQ3AX+l1d+eqP0QIECAAAECBAikC6xaEHHd2RGrXknvT7Wevy3iT5+KOOnrkXxaru34du7ZUNcQtz9TGTc8viieXLS6W3cflgQxnHHAxDj/kMmx14Sybs3hIgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgcwCFVkCGjbUNcaaJHS7rLQw84V6CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDoFwICGvrFY7QJAgQIECBAgACBjAKVTyfhDO+JWL8s4/CmzieujTj0QxGjd8le08sjzy2t3hTKcNuTS2PtxoZu3e2AKSPigkOmxCn7VsTgIr/mdwvRRQQIECBAgAABAgQIECBAgAABAgQIECBAgACBDgQqykqzVlRW1whoyKpjgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgED/EPCXW/3jOdoFAQIECBAgQIBAa4H590XceHFE3drWI2+1S0dGXHjzDglnWJ8EMfz+6aWbghmeXlz91pq6cDasZFCcdcDEOD8JZphRMbwLVyolQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDojsC4YcWRnxfR1Nz26srq2tij3Hs2bWX0ECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEOg/AgIa+s+ztBMCBAgQIECAAIEtAnN+HfHbDyWfjKvf0tP2Z9mUiIt/EzF2t7ZjvdgzJwljuOFvi+K2J5fE+rrGbt3poJ1GxgVJKMPJ+1REaVFBt+ZwEQECBAgQIECAAAECBAgQIECAAAECBAgQIECAQNcFBhXkx7hhJVG1prbNxZWr2/a1KdJBgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBOCwhoyOnHZ/EECBAgQIAAAQJtBB75QcSdn27TndYxfu+Ii5IQh+EVad291VhbWx+/e3pp3PD4onh2yZpu3aastDDOOnDipmCG3cYP69YcLiJAgAABAgQIECBAgAABAgQIECBAgAABAgQIENh2gfKyzAENVdU12z65GQgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ6NMCAhr69OOxOAIECBAgQIAAgU4LNDVF/OXzEX/9v/YvmXpUxPm/jCgpa79uG0ebm5vjmcXVm0IZUuEMG+oauzXjITuPSkIZJsdJe1dESWFBt+ZwEQECBAgQIECAAAECBAgQIECAAAECBAgQIECAQM8JVCQBDU+91na+yuratp16CBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDoVwICGvrV47QZAgQIECBAgEAHAqsWRCyZHVE4OKJiv4jhEyLy8jq4KAeGG+sjbvtoxDM3tr/YPU+POPPHyf5L2q/bhtE1tfVx25NL4vrHX4u5lWu6NdPIwYVx9oGT4vwkmGH6uGHdmsNFBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECvSNQUVaacWIBDRlZdBIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDoVwICGvrV47QZAgQIECBAgEAWgVSAwd2fj3j0yojmxreKho6PmHBA8jrwzZ/J+dCxb43nwtnGdRE3XRLxyl/aX+0hH4g48asR+QXt13VjtLm5OfmWpNVxw+OL4vdPV0ZN/VbGXZjvbdNGxQWHTIkT9iqPksKeX2cXlqKUAAECBAgQIECAAAECBAgQIECAAAECBAgQIEAgi0BFWeYw8MrqmixX6CZAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoL8ICGjoL0/SPggQIECAAAEC2QTWVkXcPCti0SNtK9a9HvHSnza/toyWTY6YcljE2T/Z0tN3f65bHnH9ORFLn2x/jcf9d8SR/xqRl9d+XRdH19bWx61PLY3rH1sUcyvXdPHqzeWjhhTFOTMnxXkHT45pY4d2aw4XESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIbD+BihHZAhpqIxXsndfD70ltv525EwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECHQkIaOhIyDgBAgQIECBAIJcFXn14czhDKoihs0f1axFvlHe2esfVrVoQcd1ZEavmZ19DXkHEad+LOOCi7DVdHEl9qO6ZxdWbQhl+9/TSqKlv7OIMm8uPmD46LjhkShy/5/goHpSs00GAAAECBAgQIECAAAECBAgQIECAAAECBAgQIJATAhVlmQMaNtQ1xprahigrLcyJfVgkAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJdFxDQ0HUzVxAgQIAAAQIE+r5AEiIQj/0w4q7/jGhq6Pp6JxzYuWtWzIt45S8RqfryvSMKSzt33bZWLX0q4pfnRKxfln2mwsER51wdsdu7std0YWRtbX3c9tTSTcEMz1eu6cKVb5WOGVoU5xw0Oc4/eHLsNHrIWwPOCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEckagvCz7e2JV1bUCGnLmSVooAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAga4LCGjoupkrCBAgQIAAAQJ9W2Djuojffyzi2d90f50TDujctfPujvjTJzfX5ie/Wo6bkYQ1JNdueiWhDeP2jBhU1Lm5Olv1yr0Rv7o4oi7ZZ7ajdFTERTdHTDooW0Wn+59ZvHpTKMPvnl4aqW896s5x1K5j4sJDpsRxM8ZH0aD87kzhGgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgT4iMG5YceTnJTnpSWZ662NpdU3sXj6sdbc2AQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQL9RCD5KzoHAQIECBAgQIBAvxFYMW9zeMHyudu2pYlJuEJnjqVPvlXV1BBRNWfz64lrNvcXFEeU750e2jB294j8greu6+rZYz9qP5yhbErEP9wSMWbXrs7cUr9uY0P87qmlcf3jr8azS9a09HflZGzywbxzZk6KC5JghsmjBnflUrUECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJ9WKCwID9S7wW9vmZjm1VWVde26dNBgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgED/ERDQ0H+epZ0QIECAAAECA11g7u0Rt/6/iI0dBApMnBlx2vci1lZFpAIWtrzWLNksWDQ0YvT0zmluHdCQ6YrG5ENpS2Zvfm0ZL0zCCir2Sw9tGDUtCW3I31LR/s+zr4q4+pTN625dOX6fiItujhhe0XqkU+1nl1THLx9blIQzLIn1dY2dumbrorzkm5KO2nVsXHjI5DhuxvhIfTjPQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0P8EKspKMwY0VApo6H8P244IECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIbCUgoGErDKcECBAgQIAAgZwUaEqCBO75n4iHvt3x8me+N+Kkr0UMKo4Yv1fE9OPeumbt65tDD9YvT8ISCt7qz3a2cW3EipeyjWbvr98QseiRza8tVcVlSWBDq9CGEVMiUokHrY/iJEDiwiSE4Wfvilg1/63RqUdFnP/LiJJkri4c6zc2xO+eXhrXJ8EMc5KAhu4cY4YWx7kHTYoLDpkSk0clARQOAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBfi1QUVYST73WdouVq2vaduohQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDfCAho6DeP0kYIECBAgACBASmwfkXEby6LmH9f+9sfVBLx7m9FHHBR9rph4yN2PzH7eOuRyqeTnubWvd1rb0yCERY8sPm1ZYazfxqxz3u2tNJ/Dh0bcfEtET89PiIVKLHnGRFn/Xhz8ER6ZdbWs0kYw/WPL4rbnlwS6+uSkItuHEftOiYuTEIZ3rnn+CgsyO/GDC4hQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIRYHyJKAh01G1pjZTtz4CBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBPqJgICGfvIgbYMAAQIECBAYoAIbVkUs/nv7mx8xJeK86yIq9mu/rqujzUk4w05HRCx9KqJ+fVev7ri+o/WO2jniol9HPPubiHdeHpHfcUDC+o0N8funl8YNSTDD04uTUIhuHGOGFsU5B02OCw6eElNGD+7GDC4hQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIdYEJZaUZt7B0dU3Gfp0ECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPQPAQEN/eM52gUBAgQIECAwUAXG7hZx+vcjbr40s8D0d0ac9ZOIwaMyj29L785HRaReTY0RK15OghqeTF5PbP5ZNSeiYRu+Hah4eMSoXTpe3YT9I1KvDo7nllbH9Y8titueWhrrkpCG7hxHTh8TFxwyJY7fc3wUDeo4DKI793ANAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAbgiUl5VkXGhldW00J0HneXl5Gcd1EiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCQ2wICGnL7+Vk9AQIECBAgQCBirzMilvxTxMPfS9c4+lMRR38yIr+XwwTyCyLG7bH5tf8Fm9fQWB+xbG56aMPrzyVhDp0MR6jYb5vXvaGuIW5/ujJ++fiiePq11ek2nWyNHlIU5xw0Oc4/eHJMHTOkk1cpI0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQ6O8CE0ZkDmjYUNcYa5PA8OElhf2dwP4IECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIDEgBAQ0D8rHbNAECBAgQINDvBI77fBKG8FTEwgcjSsoizvpJxG4n7LhtFiQfOKvYd/Nr5qWb11FfG5EKaVj6xJvBDU9GLH8hormp7TonHNC2r5M9cyvXxPWPLYpbn1yy6cNvnbwsreyI6aPjgkOmxLv2LI+iQb0ccJF2Zw0CBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFcECgvK826zMrVtTG8XEBDViADBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBHJYQEBDDj88SydAgAABAgQItAgUJL/WvednEbd9JOKkr0eM2rllqM+cFCbfIjRp5ubXlkXVrY+ofObNwIY3gxtWzovoYkBDTfJNRL9/Zmnc8PiieHLR6i2zd+nnqCFFcc7MSXF+Esyw85ghXbpWMQECBAgQIECAAAECBAgQIECAAAECBAgQIECAwMASGDesOPLykizy5rb7rqyuid3Lh7Ud0EOAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQM4LCGjI+UdoAwQIECBAgACBNwWGjou46Obc4ihKghB2Omzza8vKa6sj8jv3jUIvVK2J6x9bFL99ckmsrW3YMkOXfh42bXRceOiUeNde46N4UEGXrlVMgAABAgQIECBAgAABAgQIECBAgAABAgQIECAwMAUKC/IjFdLw+pqNbQAqq2vb9OkgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKB/CAho6B/P0S4IECBAgACB/ihQ80bEPV+KOO6/I0qG98cdZt5TSVnm/jd7a+oa4/ZnlsYNjy+KJxatbrc22+CoIUXxnpmT4vyDJ8e0sUOzleknQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkFWgvKxUQENWHQMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE+qeAgIb++VztigABAgQIEMh1gao5Eb+6OOKNhRHrXo8495qIvLxc39U2rf+l19fG9Y8tilueWBxrahu6Ndfbpo2KCw/dKU7Ya3wUDyro1hwuIkCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIJASmFBWEk+/1taiqrqmbaceAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgT6hYCAhn7xGG2CAAECBAgQ6FcCT98Y8fuPRzS8+cGtub+LePh7EUd8rF9tszObqa1vjD88UxnXP74oZr/6RmcuaVMzcnBhvGfmpDj/kCmxy9ihbcZ1ECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEOiOQHkS0JDpqKyuzdStjwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBfiAgoKEfPERbIECAAAECBPqJQENdxJ2fjvjbVW03dPfnkq/g2T9i57e3HeuHPdUb6uO6x16Nn/91YaxYt7FbOzx051Fx4aFT4oS9yqOksKBbc7iIAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQDaBCgEN2Wj0EyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEOi3AgIa+u2jtTECBAgQIEAgpwSql0TcfGnE4r9lXnZzUzL+3ogPPhBRNjFzTT/oXfzGhvjZQwvjxr8tig11jV3e0YjBhXH2gZPigkOmxPRxQ7t8vQsIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIdFagoqw0Y2nl6ppobm6OvLy8jOM6CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIXQEBDbn77KycAAECBAgQ6C8CCx6M+HUSvrB+efs7Gjw6oqG2/ZocHX1uaXX8+IH5cfszldHY1NzlXRwydVRceOiUOHHv8igpLOjy9S4gQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0FWBirKSjJesT4LI125siOElhRnHdRIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkLsCAhpy99lZOQECBAgQIJDrAsm35sTD34u4+/MRzY3t72bPMyJOvyKieFj7dTk0mvrWoIfmrdgUzPDgyyu6vPKy0sI4+8BJSTDD5Jg+rv+4dBnCBQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAjtEoGJEadb7VlXXCmjIqmOAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQO4KCGjI3Wdn5QQIECBAgEAuC2xcG3HrhyPm/q79XeQVRBz/hYjDPhKRl9d+bY6M1jc2xR1zKuNH98+P5yvXdHnVB08dmYQyTImT9q6IksLEx0GAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgBwiMG1a86S28VC5762Pp6prYbbyQ8dYu2gQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgRyXUBAQ64/QesnQIAAAQIEck9g+YsRv7o4YsVL7a99yNiIc34RMfXI9utyZHT9xoa48W+vxc8eWhBLkg+kdeUoTYIYzj1oUlz0tp18kK0rcGoJECBAgAABAgQIECBAgAABAgQIECBAgAABAgR6TaCwID/GDi2OZWs3trlHVXVtmz4dBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjkvoCAhtx/hnZAgAABAgQI5JLAc7+NuO2jEXXr2l/1pEMizr06YviE9utyYHTZ2tq4+uGFcd2ji6K6pr5LKx4ztCguPWxqXJwEM4wcUtSlaxUTIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ6G2BihGlGQMalgpo6G168xMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDYIQICGnYIu5sSIECAAAECA06gsSHi7s9FPHJFx1s/5AMR7/pSxKDcDiR4Zfm6+MkD8+OWJ5ZEXWNTx/veqmLamCHxvqOmxVkHToySwoKtRpwSIECAAAECBAgQIECAAAECBAgQIECAAAECrQWam5tj4cKFMWfOnFi8eHGsXr06iouLY+TIkbHrrrvGwQcfHCUlJa0v2+7thoaGeOyxx+LZZ5+NlStXRkFBQVRUVMTMmTNjr7326tH1LFmyJB555JF49dVXo6amJoYPHx677bZbHHnkkTF06NAevZfJBrZAxfCSeDoDQVV1TYZeXQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI5LqAgIZcf4LWT4AAAQIECPR9gXXLIm5+b8SrD7W/1kGlEaf+X8R+57Vf18dH/75wVfwoCWa4e+7rkXwetEvHgVNGxAeP3iWOnzE+8vPzunStYgIECBAgQIAAAQIECBAgQIAAAQIECBAgMJAE3njjjbj11lvjT3/6U9xzzz2xYsWKrNsvLCyMd7/73fHxj388jj766Kx1vTWwbt26+OpXvxpXXnllrFq1KuNtdt999/jkJz8Zs2bNiry87r9HcP/998fnP//5uO+++zLep6ioKM4777z4whe+EFOnTs1Yo5NAVwQqRmQOP6msru3KNGoJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEMgRAQENOfKgLJMAAQIECBDIUYHXHo+46ZKItZXtb2DkzhHnXRdRvnf7dX10tKmpOf6cBDL8OAlmmP3qG11e5fF7jo8Pvn1aHDR1VJevdQEBAgQIECBAgAABAgQIECBAgAABAgQIEBhoAh/5yEfiqquuirq6uk5tvb6+flOYQyrQ4ZJLLonvfe97MXz48E5du61Fc+bMidNPPz0WLFjQ7lQvvvhi/OM//mP86le/2vQqKytrt771YHOSGp0KePjGN77ReiitnTK79tpr45Zbbomrr746zj777LRxDQJdFagoE9DQVTP1BAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBHJZQEBDLj89aydAgAABAgT6rkDyIcD421URf/p0RFN9++vc7cSIM38UUTqi/bo+OFpb3xi3PLEkrnpwfsxfsb5LKywqyI+zDpwY7ztqWkwfN7RL1yomQIAAAQIECBAgQIAAAQIECBAgQIAAAQIDWeCxxx7LGM5QUFAQFRUVMX78+EiFMrz66qtRXV2dRnXNNdfECy+8EH/5y19i6NDe/d/nU6EL73jHO2LFihVpa0jdd9q0aVFTUxMLFy7ctNYtBXfeeWecdNJJcc8990RJSeY/fN9Su/XPj33sY3HFFVds3RV5eXkxadKkGDt2bCxatChtHevXr4/zzjsvbr755jjzzDPTrtMg0BWB8rLSjOVV1bUZ+3USIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIJDbAvm5vXyrJ0CAAAECBAj0UYHnb4244987CGfIizj2PyPOvyHnwhlWb6iLK+55OY782r3xmd/O6VI4w/CSQfHhY3aJhz55bHz17H2FM/TRf8KWRYAAAQIECBAgQIAAAQIECBAgQIAAAQK5ITBixIj48Ic/HH/4wx/ijTfeiNdeey3+/ve/x9NPPx0rV66Me++9N4466qi0zTz++OMxa9astL6ebjQ0NMQ555yTFoowatSouPrqq2PVqlWb1vfSSy9FVVVVfPazn438/Lc+wvLII4/EJz7xiU4v6aabbmoTznD22WdHKiAiFcwwe/bsWL58edx9992x7777tszb2NgYl1566aaQiJZOJwS6KDChLHOQyLqNDbGmtoMg9y7eSzkBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAjte4K13t3f8WqyAAAECBAgQINB/BGacFjHt2Oz7KR0ZcfGvI47+j0g+cZi9ro+NLH5jQ1z+++fi8K/eE9+866VYsW5jp1eY+nDaf52yZzz86ePiEyfuEeOGZ/6wWqcnVEiAAAECBAgQIECAAAECBAgQIECAAAECBAawwNSpU+Oqq66KpUuXxve///04+eSTY9iwYWkiBQUFccwxx2wKafjABz6QNvab3/xmU39aZw82fvazn8WcOXNaZhw5cmQ8+OCDcckll0RhYWFLfyq04Ytf/GJce+21LX2pkyuvvDJefvnltL5Mjbq6uvjkJz+ZNvShD30obr755th1113T+o877rh44IEH4qCDDmrpX7t2bXzuc59raTsh0FWB8iwBDal5qqpruzqdegIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE+rhA7vw1YB+HtDwCBAgQIECAQJpAfkHE2T+NKJuc1r2pUbFfxAfuj5j+zrZjfbTn2SXV8bEbnoyjv3Ff/PyvC2NDXWOnVzqjYnh857z94/5PHBuXHblzDC0e1OlrFRIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJtBS6//PJ48cUX47LLLovS0tK2Ba16UkENP/jBD9KCCVIlqYCH3jhSoQmp0IWtj29+85ux5557bt2Vdn7hhRfGxRdf3NLX0NAQn//851va2U5++tOfxsKFC1uGU6EM3/72tyMvL6+lb+uTsrKyuPrqq6OoqKil+5e//GW88MILLW0nBLoiMD4JJc/yzy0qBTR0hVItAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZwQENCQE4/JIgkQIECAwAARWFMZsfChiFcfiVj6VMTylyJWvxaxfmVE3YaIpqbcghgyOuLcayIK3vqAXxyQfLDwH++KGLlTn99Lc3NzPPDS8rj4qsfilO89FL97emk0NjV3et1HTh8T1152SNzxsSPjjAMmRmGBXz07jaeQAAECBAgQIECAAAECBAgQIECAAAECBAi0I/Dud787LWCgndKWoVRIwyc+8YmWdurkzjvvTGv3VCM172uvJe/xvHlMnTo13vve925pZv2ZCmTYOljh5ptvjurq6qz1qYHWIROf/vSno6SkpN1rUkER5513XktNY2Nj/PznP29pOyHQFYHUe2BjhxZnvKRydU3Gfp0ECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECOSugK8vzt1nZ+UECBAgQKD/CDRsTD4B+JmIv/8sormDEIZBybdAFaZegyNO/b+IXd/ZscOLf4xYs2TzNVuuTfuZmm/IW/MW9OCvSBMPjDj5mxF3/Hvy8xsRM2d1vN4dXFHf2BS3P7M0fvzAgphbuaZLqynIz4tT9q2I9x81LfaeWNalaxUTIECAAAECBAgQIECAAAECBAgQIECAAAECvStw1FFHpd1g5cqVsWHDhhg8OHnfpQeP2267LW22VDjD1sELaYNbNXbZZZc4+uij47777tvUW19fH3fccUdccMEFW1W9dbp48eJ44oknWjqGDh0a5557bku7vZPLLrssrr322paS1Jq/9rWvtbSdEOiKQEVZSSxbu7HNJZXVtW36dBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkNsCPfjXh7kNYfUECBAgQIDADhJYtyzixosiFj/euQU0JN8yk3rVrOo4zGHLjH9PvvHo5Tu3tDr+mV+4VZhDaZbz5IOKqZCHvc+OmHpE+3POvDRi2tERI6e2X7eDR9dtbIgbH18UP3toQSzt4ofFBhcVxHkHT45/PGLnmDyqZz/EuYNZ3J4AAQIECBAgQIAAAQIECBAgQIAAAQIECPQbgZEjR7bZS3V1dY8HNPzhD39Iu8+73vWutHZ7jeOPP74loCFVd/vtt2cNaGh9nyOOOCKGDElCuTtxpGpTwRSpgIrU8eKLL8bLL78cu+66ayeuVkIgXaCirDSeXlyd3pm0KquT9zUdBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAj0KwEBDf3qcdoMAQIECBDIMYGqORE3XBBR/Vr3Fp4KSOjMUb/5g3WdKd1U01QfsTH5AFXq1dFRvk/HAQ2pOfpwOMOytbXxi78ujOsefTXW1DZ0tOO08TFDi2LW4VPj4rftFCMGF6WNaRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJ9S2DJkiVtFjR69Og2fdvS8frrr0dVVVXLFMXFxXHggQe2tDs6SQUnbH089dRTWzfTzluPHX744Wnj7TUGDRoUhxxySFoYRGo+AQ3tqRnLJlBeVpJxqLKLoegZJ9FJgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECfEhDQ0Kceh8UQIECAAIEBJDD39xG3fCCiq+EJWxMVDt66lf28vhe/maaza8i+uh02Mm/ZuvjJA/Pjt08uibrGpi6tY9qYIfH+t0+LMw+YGCWFBV26VjEBAgQIECBAgAABAgQIECBAgAABAgQIECCwYwQefPDBtBvvtNNOUVTUswHMc+fOTbvH9OnTu3SPPffcM+36efPmRUNDQ6QCFVofre/V+trW9a3bqfr77ruvpbv1fC0DTgh0IDBhROaAhioBDR3IGSZAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCQewJt373OvT1YMQECBAgQIJBLAs3NEQ/+b8Q9/7Ptqy4s7dwcvRrQ0Mk1dG6lvV7VnPj//dU34kf3z4+7577e5fvN3GlkfCAJZjh+xvjIz8/r8vUuIECAAAECBAgQIECAAAECBAgQIECAAAECBHacwM9+9rO0m5988slp7Z5ovPjii2nTTJ48Oa3dUWPs2LFRUlIStbW1m0rr6upiwYIFseuuu7a5dFvv1Xptredrc0MdBLIIlJdlfs+wUkBDFjHdBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBHJXQEBD7j47KydAgAABArknkApKuO2jEc/+umfW3umAhvU9c79MsxQOztTbJ/senb8yvnHnizE7CWjoypGX5DC8Mwlk+GASzHDQ1FFduVQtAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0EcE7rjjjnjggQfSVjNr1qy0dk80li1bljbNpEmT0tqdaUyYMCHmz5/fUpqaM1NAw/Lly1tqUiddvdfEiRPTrm+99rRBDQLtCFSUlWQcXbexIdbW1sewksKM4zoJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEMg9AQENuffMrJgAAQIECOSmwNqqiBsvjFgyu/31V+wfcd61ESVlEalAh/oNb/7c+jzpq0teQ8e1P9eW0ZE7R+QnH3raer6GZL6eODobEtET9+rmHPOWrY2v/vGFuHtu+gciO5quqCA/zp45Md531LTYZezQjsqNEyBAgAABAgQIECBAgAABAgQIECBAgAABAn1UYNWqVfHBD34wbXVnnHFGHHLIIWl9PdFYt25d2jRDhgxJa3em0fqa1nOm5qipqYnGxsa06VpflzaYodG6PtN9MlzWblcq5KF1cES7FySD8+bN66jEeB8XyBbQkFp2ZXWtgIY+/vwsjwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBXBAQ0dEVLLQECBAgQINA9gaVPRtyQhDOsXdr+9XudGXH6DyKKBm+uS4U09MRxya1tZ2lqimioTQ9tqF/fqt0qFGJTwEOrvqHj287dR3qWra2N79z9cvzqb69FY1Nzp1c1vGRQ/MNhO8Wlh0+NccMyf9tPpydTSIAAAQIECBAgQIAAAQIECBAgQIAAAQIECOxQgabkPZGLL744Fi9e3LKOsrKy+O53v9vS7smT1iEHJSVdf6+htLQ0bUmt50wNZurr6r06c5+0hXSi8YMf/CAuv/zyTlQq6U8C44eXRF5eRHOGt+RSAQ27jR/Wn7ZrLwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQGtICAhgH9+G2eAAECBAhsB4HUp5B+//GOwxmO+UzE0Z+ITZ9c2g7Livz8zUEQm8IgRm+PO263e2yoa4ifPLAgfvTAK7GhLv2bo9pbxMQRpfGPR+4c5x08OYYW+zWxPStjBAgQIECAAAECBAgQIECAAAECBAgQIEAgVwT+4z/+I/74xz+mLfdHP/pRTJ48Oa2vpxq1tUlA9lZHUVHRVq3OnRYXF6cV1tQkAdqtjtb3SQ139V6duU+r22oSyChQWJAfY4cWx7K1G9uMV1W3/ffbpkgHAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQI5I+Av73LmUVkoAQIECBDIUYHUV8W852cRP3lHRO3qtpsYlHwD0pk/jNjrjLZjerok0NjUHDf//bX41p9fyvjhr2yTzagYHh86elqcvE9FpD485iBAgAABAgQIECBAgAABAgQIECBAgAABAgT6h8B3v/vd+Na3vpW2mU984hNx3nnnpfX1ZKOkpCRturq6urR2ZxobN6b/kXvrOVNzZOpL3StTf7Z7duY+2a7VT6C1QEVZScb36JauTg8taX2dNgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECuSUgoCG3npfVEiBAgACB3BQYvUvEuddEXHdWRFPDW3sYNiHighsiJuz/Vp+zLgs0NzfHfS8uj6/8cW689Pq6Tl9/5PQx8cEkmCH1My8VpOEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE+o3A9ddfHx//+MfT9jNr1qz46le/mtbX042hQ4emTVlb2/U/Tq+pqUmbo/WcqcFMfal7dSWgoTP3SVtIJxof/vCH45xzzulE5Vsl8+bNizPOOOOtDmc5KVCeBDQ8vbi6zdqrqrv+fwNtJtFBgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECfERDQ0GcehYUQIECAAIF+LjDt6IiTvh7xh3/dvNGJB0Wc/8uIYeX9fOO9u71nl1THl++YGw+/srLTN9pvUll85uQZcei00Z2+RiEBAgQIECBAgAABAgQIECBAgAABAgQIECCQOwK33357XHrppZEKed5ynHXWWXHVVVf1emhz6+CE9evXb1lCp3+2vqb1nKmJSktLo6CgIBobG1vmTV03YsSIlnZHJ525T0dztB4fN25cpF6OgSdQUVaacdNLq9MDRzIW6SRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAIGcEBDTkzKOyUAIECBAg0A8EDr4sYtnciNrkm2NO+15EYUk/2NSO2cKS1TXxzTtfjN8+uaTTC5g8qjT+44Q94pR9KiI/P6/T1ykkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEckfg3nvvjXPOOScaGhpaFn388cfHDTfcsCnQoKWzl05ahxMsXry4y3daunRp2jWt59wyOHbs2KiqqtrSjNS9Jk6c2NLu6GTJkvT3WbLdp6N5jBNICVSUZX7vs6q6FhABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAv1IQEBDP3qYtkKAAAECBHJC4KSvReTlJy8BAd15XtU19fGD++bFz/+6MOoamjo1RVlpYfzTO6bHPxy2UxQPKujUNYoIECBAgAABAgQIECBAgAABAgQIECBAgACB3BN47LHH4rTTTova2rf+IPzwww+P3/72t1FUVLRdNrT77run3WfRokVp7Y4ay5YtS1t/at3Tpk3LeFnqXlsHNKTudeihh2aszdTZem177LFHpjJ9BDolUDGiNGOdgIaMLDoJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI5KyAgIacfXQWToAAAQIE+ohAUxISsH55xLDxnVtQvoCAzkGlV6XCGK579NX43j0vxxsb6tMHs7SKCvJj1hFT4yPHTI+ywYVZqnQTIECAAAECBAgQIECAAAECBAgQIECAAAEC/UHgmWeeiZNOOinWrVvXsp0DDjgg7rjjjhgyZEhLX2+ftA45eOWVV6Kurq7TARFz585NW+Iuu+wSgwZl/nhL6l73339/S/3zzz/fct6Zk9b3ar32zsyhhsAWgYqyki2naT/XbmyItbX1MazE+3VpMBoECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEclQg8zvYOboZyyZAgAABAgS2s8DGtRG3fCBi+QsR7/tLxOBR23kB/f92zc3Nccecqvj6nS/Eqys3dHrDp+03If7jhN1j8qjBnb5GIQECBAgQIECAAAECBAgQIECAAAECBAgQIJCbAi+++GIcf/zx8cYbb7RsYMaMGXHnnXdGWVlZS9/2OCkvL4/Uq6qqatPtNm7cGLNnz47DDjusU7f/61//mla3//77p7W3brQee/jhh7cebve8oaEhHn/88bSa1vOlDWoQ6ECgfHjmgIbUZVXVtQIaOvAzTIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCBXBPJzZaHWSYAAAQIECPQxgTdejfjpCREv3hGxan7EzbMiGuv72CJzezmzX10VZ1/5cHzk+ic6Hc5w6M6j4ncfPSK+e8EBwhly+/FbPQECBAgQIECAAAECBAgQIECAAAECBAgQ6JTAq6++Gu985ztj2bJlLfU777xz/PnPf46xY8e29G3Pk3e/+91pt0utpbNH69pTTz0166Wt75MKaFi/fn3W+q0HUkEQGza8FY692267RerlINBdgfFJQENeXuarlyYBDQ4CBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBPqHgICG/vEc7YIAAQIECGxfgVcfifjJsRHLnnvrvgvuj/jTp95qO+u2wIIV6+ND185OwhkeiScWre7UPLuMHRJXXXJQ3PiBt8W+k0Z06hpFBAgQIECAAAECBAgQIECAAAECBAgQIECAQG4LVFZWxnHHHReLFy9u2cjEiRPjL3/5S6R+7qjjtNNOS7v1z3/+82hubk7ry9R45ZVX4v77k/ec3jwKCwvj5JNP3tJs83Py5MlxwAEHtPSvW7cubrrpppZ2eyc//elP04ZPP/30tLYGga4KFA3KjzFDizNeVlVdk7FfJwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECuScgoCH3npkVEyBAgACBHSvw5HURVyffVLRhZdt1/O2qiMd/0rZfT6cEVq7bGJ+77dk4/lv3x5+eq+rUNakPeX3pzL3jzo+/Pd655/jkW3nyOnWdIgIECBAgQIAAAQIECBAgQIAAAQIECBAgQCC3BVatWhXHH398pEINthxjx46NP//5z7Hzzjtv6dohP0844YSYNGlSy70XLlwYqZCGjo7Pf/7zaUEOZ599dpSVlbV72WWXXZY2/tWvfjVqa2vT+lo35s6dG7/61a9auvPz82PWrFktbScEuiswoawk46WV1e3/m8x4kU4CBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBPqkgICGPvlYLIoAAQIECPRBgabGiDs/G3HbRyKa6rMv8N4vRdRWZx830kagtr4xvn/vvDj6G/fF1Y+8Gg1NHX+DVGlhQXzsuF3jvv84Ji46dKcYVODXujawOggQIECAAAECBAgQIECAAAECBAgQIECAQD8VWLt2bZx44onx3HPPtexwxIgRcdddd8WMGTNa+nriJBWukAqI3vqV6mvvKC4ujs9+Nnlfaavj3//93+P555/fqif99Prrr4/rrkuCwt88CgoK4vLLL9/SzPrz/e9/f0yZMqVl/KWXXop/+Zd/SQt6aBlMTtasWROXXHJJ1NXVtXRfeOGFseeee7a0nRDorkB5toCG1QIaumvqOgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJ9TWBQX1uQ9RAgQIAAAQJ9UCAVuPDr5NuH5v25/cWNnBpxQfJtQyXtf5NR+5MMnNHGJIjht08uif+968Xo7Lfm5OdFnHvQ5PiX43eL8cMzfwPPwBG0UwIECBAgQIAAAQIECBAgQIAAAQIECBAgMDAFTjvttPjb3/6Wtvl//dd/jRUrVsTdd9+d1t9RY+bMmTFy5MiOyro8ftlll8UVV1zREiLxxhtvxFFHHRXf/va3IxWIMGjQ5o+srFq1alPfl7/85bR7fPCDH4zddtstrS9To6ioKL761a9umnPL+A9/+MNNFqk5d9111y3dcc8992wKb3jmmWda+oYOHRpf+MIXWtpOCGyLQEVZacbLK9cIaMgIo5MAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBADgoIaMjBh2bJBAgQIEBguwqsmh9x/fkRK15s/7ZTj0qSA66JGDyq/TqjmwQefHl5fPmOF2Ju5ZpOixy7+9j41EkzYvfyYZ2+RiEBAgQIECBAgAABAgQIECBAgAABAgQIECDQ/wTuu+++Npv67//+7zZ9nem4995745hjjulMaZdqCgsL4+abb44jjzwyUiEMqSP189JLL42PfOQjscsuu0RNTU0sWLAg6uvr0+Y+5JBD4pvf/GZaX3uNCy64IB588MG48sorW8p+/etfx29+85uYPHlyjB07Nl599dVNoQ0tBclJfn5+/PznP4+dd955627nBLotUFGWOWC9cnVNt+d0IQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECfUtAQEPfeh5WQ4AAAQIE+pbAggcibrokouaN9tc1c1bESd+IGFTUfp3RTYEMX/njC/HAS8s7rbHXhOHxmZNnxBHTx3T6GoUECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgR0tMGPGjLjnnnvi9NNP3xSQsGU969ati6effnpLM+3nO9/5zk3BDqWlpWn9HTWuuOKKKCkpiW9/+9stpc3NzbFo0aJNr5bON08GDx68KZzhPe95T+shbQLdFijPEtBQVV3b7TldSIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA3xLI71vLsRoCBAgQIECgzwj8/WcR157ZfjhDXsHmYIZTviOcoYMHl/rQ1X/c/HSc/N0HOx3OMCH5ANe3zt0vfv/RI4UzdOBrmAABAgQIECBAgAABAgQIECBAgAABAgQIEOibAvvtt1/MmTMnPv3pT8fIkSOzLnLXXXeNn/zkJ3HXXXfFiBEjstZlG8jPz49vfetbmwIhjjrqqGxlUVRUFBdddFE8++yzce6552atM0CgOwITRmQOFlm7sSHW1tZ3Z0rXECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQxwQG9bH1WA4BAgQIECCwowUaGyLu/HTE4z9ufyXFZRHn/iJil3e0XzfAR1MftPrR/fPjqofmR219U6c0hhUPig8fOz3ee8TUKClMQjAcBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGtBJqbm7dq9e7p1KlTY1vvN2zYsPjyl78cl19+eTz22GObwhFWrlwZBQUFUVFREQceeGDss88+PbKRY489NlKvxYsXx8MPPxyLFi2K2traSK0hFQJx5JFHxvDhw3vkXiYh0FqgfHhJ666WdirQfVhJYUvbCQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECuSkgoCE3n5tVEyBAgACB3hGoeSPi5lkR8+9rf/7R0yMuuDFizK7t1w3g0frGprjx8UXxnbtfjpXr6zolMSg/Ly5+207xseN2jVFDijp1jSICBAgQIECAAAECBAgQIECAAAECBAgQIECAQK4IFBYWbgpISIUk9PYxadKkOPfcc3v7NuYnkCYwPgloyMuLJNQkrXtTozIJaNh1/LC2A3oIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEMgpAQENOfW4LJYAAQIECPSiwIqXI64/L2LVK+3fZNoxEef8IqJ0ZPt1A3Q09Q1Sdz3/enztTy/E/OXrO61w8j7l8YkT9oipY4Z0+hqFBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAj0HYGiQfkxZmhxLF+7sc2iKqtr2vTpIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEAg9wQENOTeM7NiAgQIECDQ8wLz/hJx83sjNla3P/chH4w44csRBX6FyAT15KI34it3vBCPL1yVaThj38ydRsZnTp4RqZ8OAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgRyW6CirCRLQENtbm/M6gkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ2CTgryv9QyBAgAABAgNZoLk54vEfR/zp0xHNjdkl8pNfGU7+RsRB/5i9ZgCPLFq5Ib5+5wtx+zOVnVaYOnpwfOqkPeKEvcojLy+v09cpJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECg7wqkAhqeWdw2GL+qWkBD331qVkaAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECg8wICGjpvpZIAAQIECPQ/gRfviPjjJ9rfV+nIiHOvidj57e3XDcDRN9bXxRX3zotrHlkY9Y1J2EUnjlFDiuKfj9s1Ljx0ShQW5HfiCiUECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECOSKQEVZacalLhXQkNFFJwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFcExDQkGtPzHoJECBAgEBPCux2UsQep0S8cHvmWcfsHnHhjRGjpmUeH6C9zc3N8ZsnlsQX//B8rN5Q3ymF4kH5cdmRO8eHjtklhpcUduoaRQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI5JZAeVlJxgVXVddk7NdJgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBuCQhoyK3nZbUECBAgQKBnBfLzI876ccRPT4h4fU763NOPj3jPTyNKytL7B3hr4Yr18dlb58Rf563slEReXkJ8wKT4t3ftFhNGZP62nE5NpIgAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgT4vUJEloKFydW2fX7sFEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQsYCAho6NVBAgQIAAgf4tUDQk4oIbIn5ybMT65Zv3ethHI47/QkR+Qf/eexd2V9/YFFc9uCC+c/dLsbGhqVNXHjl9THz65D1irwlCLjoFpogAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAjgtUlGUObV+7sSHW1tbHsJLCHN+h5RMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAY2AICGgb287d7AgQIECCwWWDE5Ijzfhlx3dkRJ3014oCLyWwl8PRrq+NTt8yJuZVrturNfrr7+GGbghmO3m1s5OXlZS80QoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAvxKoKCvJup/X19QKaMiqY4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAbggIaMiN52SVBAgQIECg9wWmHBrx8WciBo/q/XvlyB3WJ99i8793vRS/eHhBNDV3vOjxw4vj347fPc6eOSkK8gUzdCymggABAgQIECBAgAABAgQIECBAgAABAgQIECBAgED/Ehg/PHtAw9LVtTF93LD+tWG7IUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIDDABAQ0DLAHbrsECBAgMMAEGjZGDCru/KaFM7RY3fvCsvjPW5+NJatrWvqynRQV5MeHjtklPnT0tBhc5NerbE76CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPR3gaJB+TFmaHGsWJe8V9vqqKqubdWjSYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBArgn4C8Jce2LWS4AAAQIEOitQ9WzEjRdGnPiViD3e3dmrBnzd8rUb4wu3Px+/f3pppywOnjoyvnLWPr7pplNaiggQIECAAAECBAgQIECAAAECBAgQIECAAAECBAj0f4EJI0oyBjQsre44HL7/69ghAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgdwWENCQ28/P6gkQIECAQGaBl/8ccdOlEfXrI37z/ojL7ooo3ztzrd5NAs3NzXHz7MXxpT/Mjeqa+g5VhhUPik+dvEdccPCUyM/P67BeAQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECA0OgfHhJPBPVbTZbVV3bpk8HAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQK5JSCgIbeel9USIECAAIGOBV65J+LGCyMa6zbXpkIabjg/4v33Rgwd2/H1A7BiwYr18Zlb5sQj81d2avcn7lUel5++V4xPPljlIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwNYCE0aUbt1sOa8U0NBi4YQAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBArgoIaMjVJ2fdBAgQIEAgk8DCvyZhDFuFM2ypqX4t4lcXR1z6u4hBxVt6B/zP+sam+PED8+O7f3k5NjY0deiR+qabVDDDCUlAg4MAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKZBMrLMge9V1bXZCrXR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBADgkIaMihh2WpBAgQIECgXYHFsyOuPzeiIcuHel57NOKhb0cc86l2pxkog0+9tjo+9Ztn4oWqtR1uOS8v4uJDd4pPnLh7DCsp7LBeAQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECA1egImtAQ+3ARbFzAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAv1EQEBDP3mQtkGAAAECA1yg8pmI686MqFuXHWLGaRGH/1P28QEysm5jQ/zvXS/GLx5eGM3NHW9613FD46tn7xMzdxrVcbEKAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQGvEBFWWlGg7W1DZF6v3JosY9sZQTSSYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCAHBLzblwMPyRIJECBAgEC7AstfjLj2jIja6uxlB10WcfI3I/Lzs9cMgJF7Xng9/vO3z8bS6o6/maaoID8++o7p8aGjd4miQQPbbQD807BFAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAj0mUFFWknWuquqamD5uWNZxAwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI9G0BAQ19+/lYHQECBAgQaF9g5SsRV58WsWFl9rr9Lxrw4QzL126My3//XNz+TGV2p61GDpk6Kr581j7JB6OGbtXrlAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAh0LjB+ePaChMgmTF9DQsaEKAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAn1VQEBDX30y1kWAAAECBDoSWP1axDWnR6yryl6511kRp30vIj8/e00/Hmlubo6b/v5afOkPc2NNbUOHOx1WMig+c/KMOO+gyQlZXof1CggQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINBaoGhQfowZWhwr1m1sPRSVq2vb9OkgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCB3BAQ05M6zslICBAgQIPCWwNoklOGa0yKqk5CGbMfuJ0ec9eMknKEgW0W/7p+/fF185rdz4tH5qzq1z5P3KY/Pn7pXjGvn22w6NZEiAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQGvEBFWUnmgIZqAQ0D/h8HAAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZwWENCQ04/P4gkQIEBgQAqsX5GEM5wesWp+9u3v8o6I9/w8oqAwe00/HalraIofP/BKfPeeeZE67+hIfTDqC6fvHcfvOb6jUuMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDolEDqfcg5S6rb1FZW17Tp00GAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQO4ICGjInWdlpQQIECBAIKLmjYhrz4hY/kJ2jZ2OiDjvlxGFJdlr+unIk4veiE/9Zk68+PraDneYlxdxydt2in8/YfcYVjLwgiw6BFJAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEC3BVIBDZmOyuraTN36CBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIEQEBDTnyoCyTAAECBAjExiR04Lr3RFTNyY4x8aCIC38VUTQ4e00/HFm3sSG+eeeLcfUjC6O5ueMN7jZ+aHzlrH1j5k4jOy5WQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgS4KVIwozXhFlYCGjC46CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECOSKgICGXHlS1kmAAAECA1ugbkPE9edFLPl7dofyfSIu/nVE8bDsNf1w5O7nX4//uu3Z6Mw3zRQNyo+PvWN6fODtu0Tq3EGAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIHeEKgoK8k47dLqmoz9OgkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQyA0BAQ258ZyskgABAgQGskDDxohfXRTx6l+zK4zZPeIfbo0oHZm9pp+NLFtbG5f/7vn4w5zKTu3s0J1HxVfO2iemjR3aqXpFBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ6K5A+fDMAQ1raxti3caGGFrsY1vdtXUdAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgR0p4J2+Hanv3gQIECBAoCOBxvqIm2dFvHJP9spR0yIu/V3EkDHZa/rRSHNzc/zqb6/Fl++YG2uSDy91dAwvGRSfOXlGnHvQ5MjPz+uo3DgBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgS2WWDCiNKsc1RV18T0ccOyjhsgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDvCgho6LvPxsoIECBAgEDEw9+LePGO7BJlkyMuScIZhpVnr+lHI68sXxefuWVOPLZgVad29e59K+Jzp+4Z44Zl/naaTk2iiAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAl0UGDe8OOsVldW1Ahqy6hggQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0LcFBDT07edjdQQIECAw0AXe9uGIRY9GvHxnW4mhSSjDJbdFjEhCGvr5UdfQFD+6/5X43r3zInXe0VFRVhJfPGPvOG7G+I5KjRMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDHBYoHFcSYocWxYt3GNnOnAhocBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjkpoCAhtx8blZNgAABAgNFoLAk4rzrIm55f8Tzt76168GjN4czjN7lrb5+ejb71Tfi07c8Ey+9vq7DHeblRVx62NT49xN2j6HFfs3pEEwBAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQK9JpAKls8Y0LBaQEOvoZuYAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQC8L+MvFXgY2PQECBAgQ2GaBQUURZ/80YlAS1vDMjRElZRH/cGvEuD22eeq+PMHa2vr4xp0vxrWPvhrNzR2vdI/yYfGVs/aJA6aM7LhYBQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC/VugqSli1fyIJbMjlj4RsevxEdPfuV33XJ4ENMxZUt3mnlVratr06SBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAIDcEBDTkxnOySgIECBAY6AIFyX9kn3FlxODREXufFVGxb78W+fPzr8d/3fpsVK3p+Jtjigblxz8ft2t84O3TorAgv1+72BwBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAh0IPP6TiBduT0IZnoyo3SocIZUKv50DGiYkAQ2ZjqWrO34fNNN1+ggQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ2PECAhp2/DOwAgIECBAg0DmB/CR84MQvd642R6uWJYEMn/vdc/HHZ6s6tYPDpo2OL5+1T+w8Zkin6hURIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINDPBarmRMy/r+0ml8xu29fLPeVlpRnvUFUtoCEjjE4CBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECOSAgoCEHHpIlEiBAgACB/i7QnHxbza9nL44v3P58rK1t6HC7ZaWF8dmTZ8Q5B02KvLy8DusVECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECAwQAQmHhjxxNVtN1v1TERDXcSgorZjvdQzYURJxpkrq2sy9uskQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDvCwho6PvPyAoJECBAoL8L1K6JKBne33eZdX/rNzbEf936bNzy5JKsNVsPnLrfhPjvU/aMscOKt+52ToAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYiJMzMrNCbhDMuei5hwQObxXugtH545oGFNElqfep90SLGPbvUCuykJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI9KpAfq/ObnICBAgQIECgfYFnbo747v4RS55ov66fjr5QtSZOu+KhToUzTBxRGj+bdVB874IDhDP0038PtkWAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgmwXGzogYVJp5miWzM/f3Um9FWZZ1JPerrK7tpbualgABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB3hQQ0NCbuuYmQIAAAQLtCcz9fcRvPxixYWXENadHLHqsvep+Ndbc3Bw3Pr4oTr/ir/HK8vXt7i0/L+Ifj9g57vqXt8c79hjfbq1BAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQGuEDBoIiK/TIjbOfg/PFlxZnXkfRWVtdkHTNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDfFRDQ0HefjZURIECAQH8WePnPETe/N6K5cfMuN66JuPbMiPn39+ddb9rbuo0N8fFfPRWfumVObGxoane/e5QPi99++Ij471P3jCHFyQepHAQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEOhIYOLMzBVLZmfu76Xe4kEFMWZoUcbZK6trM/brJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgbwsIaOjbz8fqCBAgQKA/Cix4IOJXF0c01afvrn59xPXnRqTCG/rp8fzSNXHa9x6K255a2u4OCwvy4j9O2D1+/09Hxn6TR7Rba5AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJpAhMPTGu2NJa/GLFxbUtze5xUlJVmvE2VgIaMLjoJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI9HUBAQ19/QlZHwECBAj0L4FFjyUhDOdHNGT5NpRUf+XT/WvPyW6am5vjl4+9Gmf84K8xf0USRNHOMXlUafz6Q4fHR46dHoUFflVph8oQAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKZBCbOzNSb9DVHLH0qy1jvdJeXlWScuLK6JmO/TgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE+rbAoL69PKsjQIAAAQL9SGDpkxG/fE9EfTsBBUf+a8RR/9aPNh2xtrY+Pn3LnLj9mcoO93XiXuXxtffsG2WlhR3WKiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBGgZFTI0pHRdSsaju8ZHbEzke17e+lnoqsAQ1ZQv17aR2mJUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgZwQENPSMo1kIECBAgED7Aq8/F3HtmREb12SvO/RDEcf9d0ReXvaaHBt5dkl1fPT6J2Lhyg3trryoID8+++4ZcclhOyXb7z/7b3fTBgkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ6B2B1HuOEw+MmHd32/lTAQ3b8agoK814t8rVAhoywugkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0McFBDT08QdkeQQIECDQDwRWvBxxzRnJt7O8kX0zB14aceJX+004Q3Nzc1z32KL4n9ufj7qGpuz7TkamjBoc37/wwNhnUlm7dQYJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQaYGJM7MENDzR6Sl6orCirCTjNJXVNRn7dRIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0LcFBDT07edjdQQIECCQ6wJvLIy4+rSI9cuy72SfcyNO+Xa/CWdYU1sfn/7NnPjDnMrse35z5N37VMRXzt4nhpcUdlirgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAp0WSAU0ZDrWLI5Y+3rEsPGZRnu8L1tAw5rahli/sSGGFPv4Vo+jm5AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBALwrk9+LcpiZAgAABAgNboHrJ5nCGtUuzO8xIwhvOuDIivyB7TQ6NzFlcHad+76EOwxmKCvLjf07fK6648ADhDDn0fC2VAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQM4ITDgw+1KXPpF9rIdHKspKs85YWV2bdcwAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJ9U0BAQ998LlZFgAABArkusG5ZxDVJ+MLqV7PvZNd3RZz904iC3P9GlObm5rj64YVx9pUPx6srN2TfczIydfTguOXDh8c/HDY18vLy2q01SIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgW4JDB0bUTYl86VLZmfu74Xe8WXFWWetEtCQ1cYAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgb4qkPt/EdpXZa2LAAECBAauwIZVSTjDGREr52U32PntEedeGzGoKHtNjoxU19THp37zTPzx2aoOV3zKvhXxlbP2iWElhR3WKiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMA2CUw8MKJ6UdsptmNAQ/GgghgztChWrKtrs46l1TVt+nQQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINC3BQQ09O3nY3UECBAgkGsCtdUR154Zsey57Cuf/LaI82+IKCzJXpMjI88sXh0fuf6JeG1V+x8cKhqUH/99yp5x0aFTIi8vL0d2Z5kECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECOS0QCqg4flb225hyRMRzc2RvHnZdqwXesrLSjIGNFRV1/bC3UxJgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBvCgho6E1dcxMgQIDAwBLYuC7il+dEVD6Vfd8TDoi46KaI4qHZa3JgpDn5sNIvHl4YX75jbtQ3Jh9caufYecyQuOLCA2KvCWXtVBkiQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBADwtMnJl5wtrVEavmR4zeJfN4D/dWlJXGs0vWtJm1UkBDGxMdBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBPq6gICGvv6ErI8AAQIEckOgvibixgsiXnss+3rH7RVx8S0RJbkdVFC9oT4+8Zun487nXs++1zdHTttvQnz5rH1iaLFfOTrEUkCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQM8KVOwfkZcf0dzUdt4lT2zHgIaStvdPeiqrk/eZHQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI5JRA8g6kgwABAgQIENgmgYa6iJsuiVjwQPZpRu8accmtEYNHZa/JgZGnXlsd7/7egx2GMxQPyo+vJMEM/3f+/sIZcuC5WiIBAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBfilQPDRi7B6Zt7Zkdub+XugtL8sc0FBVXdsLdzMlAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQK9KeDrrHtT19wECBAgMDAEnr4+4uW7su91xE5JOMNtEUPHZa/p4yPNzc3x04cWxNf+9ELUNza3u9ppY4fE9y88MGZUDG+3ziABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgR6XWDCgRHLnm97m+0Y0DChrLTt/ZOepatrMvbrJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECg7wrk992lWRkBAgQIEMgRgQMvjXjbhzMvdvjEiEt/F1GW/MzRY/WGunj/NbPji3+Y22E4w5kHTIzff/RI4Qw5+qwtmwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEC/E5iYBDRkOpbNjWhqzDTS433lZSUZ51xT2xDrNzZkHNNJgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDfFBjUN5dlVQQIECBAIIcE8vIiTvhyROHgiAe/+dbCh4yLuCQJZxg59a2+HDt7YtEb8U/XPxlLOvjmluJB+fE/p+8d5xw0KfJSHg4CBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAj0BYGJMzevYtQuEanzVGBD6mf5PhH5BdtlhRPKSrPep2pNbewydmjWcQMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPQtAQENfet5WA0BAgQI5KpAKpTguP9KQhqSbz6554sRpaOScIbbIsZMz8kdNTc3x1UPLoiv/emFaGhqbncPu4wdEj+4aGbsXj6s3TqDBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ2O4C4/eO+MSCiMHJe7g76Bg3vDjrnStXC2jIimOAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQB8UENDQBx+KJREgQIBADgu8/T8iissiJh8cMX7PnNzIG+vr4t9vfjr+8sKyDtd/1oET439O3zuGFPuVokMsBQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIbH+BguS9zB0YzpDacElhQYweUhQrk/diWx+V1TWtu7QJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEOjDAv6asg8/HEsjQIAAgRwVOPQDObrwiNmvrop/uv7JWFpd2+4eSgrzNwUznHPQ5HbrDBIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBARMWIkiwBDe2/N8uOAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIG+JSCgoW89D6shQIAAAQI7RKCpqTl+8uD8+PqdL0Zjct7eseu4ofH9iw6M3cYPa6/MGAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAi8KVA+vDSeXbKmjUdlB+H5bS7QQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDADhUQ0LBD+d2cAAECBHJGYM3SiOETcma5XVnoqvV18W83PRX3vri8w8vOmTkpLj99rxhc5FeIDrEUECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA4E2BCSNKMlpUVddk7NdJgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDfFPDXlX3zuVgVAQIECPQVgZrVEXd9NuKZmyLe87OIGaf2lZX1yDr+tnBV/NP1T0bVmtp25ystLIgvnrF3nJ0ENDgIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoGsC5WWZAxoqq9t/r7Zrd1FNgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBvCwho6G1h8xMgQIBA7gq88IeI2/81Yl3V5j3cdGnEmT+K2Pec3N3TmytvamqOHz7wSvzvXS9FY3Le3rHb+KHxg4sOjOnjhrVXZowAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEsghUCGjIIqObAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQG4JCGjIredltQQIECCwPQTWr4i44z8inrsl/W7NjRG3vD+ioSbiwEvSx3KotXLdxvjXm56O+19a3uGqzztocnz+tL2itKigw1oFBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIJBZoKKsNONAdU19bKhriMFFPsaVEUgnAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgT4m4J29PvZALIcAAQIEdqBAc3PEnF9H/PETETWrsiwkqfndP0XUJyENh34wS03f7X58war4pxueiNfXbGx3kYOTQIYvnbl3nHnApHbrDBIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCBnBRrrI5bNjRi1c0TxsF7dRkVZSdb5K6trY5exQ7OOGyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoO8ICGjoO8/CSggQIEBgRwqsWRpx+79EvPSnzq0i9UGdHDqamprjB/fNi2/9+aVITts99igfFldceGBMH+cDQO1CGSRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAILcEVr4SseSJ5DU7Ymnys/LpiIbaiAtvitjthF7dy/jh2QMaqgQ09Kq9yQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAj0pICAhp7UNBcBAgQI5J5Ac5JW8MTVEXf9V8TGNR2vf2TyzSmnfTdi57d3XNtHKlas2xj/8qun4sGXV3S4ogsOmRyfO3WvKCks6LBWAQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBHJK4OpTI9YsabvkVGhDLwc0pN6DHT2kKFaur2tz/6Wra9r06SBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoG8KCGjom8/FqggQIEBgewisWhDx+49FLHig47vl5Ue87cMRx342omhwx/V9pOKRV1bGP9/4ZCxbu7HdFQ0pKogvn7VPnL7/xHbrDBIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCBnBSYemCWgYfZ22VJ5WUnGgIaq6trtcn83IUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBg2wUENGy7oRkIECBAINcEmhojHvtRxD3/E1G/oePVj90j4vTvR0w6qOPaPlLR2NQc3793Xnzn7pciOW33mFExPL5/4QExbezQdusMEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAIKcFJs6MmPv7tltYkgQ0NCdvrObltR3rwZ6KstJ4bumaNjMuFdDQxkQHAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgb4qIKChrz4Z6yJAgACB3hFY/mLEbR+NWPx4x/PnJ/8xeeS/Rrz93yMGFXdc30cq6hub4uO/eir+8Exlhyu66NAp8V+n7BklhQUd1iogQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBATgtMODDz8mtWRax+NWLk1MzjPdRbUVaScaaq6pqM/ToJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEOh7AgIa+t4zsSICBAgQ6A2BxvqIv34n4v6vRzTWdXyHiv0jTr8ionyfjmv7UEVdQ1N87IYn40/PVbW7qqHFg+IrZ+0Tp+43od06gwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEOg3AhP2T7aSl7ya225pyezeD2gYkTmgobK6tu169BAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0CcFBDT0ycdiUQQIECDQowKVT0fc9pGIqjkdT1tQHHHsZyIO+2hEQW79x2QqnOEj1z8Rf37+9Xb3udeE4XHFhQfGzmOGtFtnkAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAv1KoKQsYsxuEStebLutJU9E7H122/4e7KkoE9DQg5ymIkCAAAECBAgQIECAAAECBAgQIECAAAECBAgQILBDBHLrL093CJGbEiBAgEDOCtQn3zJy/9ci/vp/yRegNHa8jSmHRZx2RfKBnOkd1/axio0NjfGRXz4Rd89d1u7K/uFtO8Vn3z0jSgoL2q0zSIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgX4pMHFmloCG2b2+3fLhpRnvUV1THxvqGmJwkY9yZQTSSYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKAPCeT3obVYCgECBAgQ6FmBxo0RT9/YcThD4ZCIk78ZMeuOnAxnqK1vjP93XfvhDEOKCuL7Fx4Y/3PG3sIZevZfmdkIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEMglgYkHZl5t5dMRjQ2Zx3qod8KIkqwzVVYnX0DgIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgzwsIaOjzj8gCCRAgQKDbAiVlEad8u/3Ld3lHxEcejTjk/RH5ufcfi6lwhg9dNzvueWFZ1n0OKx4U173v0Hj3vhVZawwQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgQAhkC2io3xCx/IVeJRg/PHtAQ5WAhl61NzkBAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBnhLIvb9E7amdm4cAAQIEBobA7idG7HNO272mwhtO/0HExbdEjJjSdjwHelLhDB+4dnbc9+LyrKsdXrI5nOGAKSOz1hggQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDAgBEYv3dEQVHm7S6Znbm/h3pLCgti9JDM964U0NBDyqYhQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0LsCAhp619fsBAgQINAXBE78WsTgMW+tZI9TIj7yeMQBF0Xk5b3Vn0NnNXWN8f5r/h4PvJQ9nKGstDB++b63xX6TR+TQziyVAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECvSgwqDiifJ/MN+jlgIbUTcvLSjLeu3J1TcZ+nQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI9C0BAQ1963lYDQECBAj0hsCQ0REnfz1iyNiIc34Rcd51EcPKe+NO22XOVDjDZVf/LR58eUXW+40YnApnODT2mVSWtcYAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEBqTAxJmZt730icz9PdhbkS2gYU1tD97FVAQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI9JbAoN6a2LwECBAgQKBXBdYtj1j+QsTOR3XuNnudFTH9+IiS4Z2r76NVG+oa4h9/8bd4dP6qrCscuSmc4W2x54Tc3mvWDRogQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDAtghMODDz1a8/H1G3IaJocObxHuitKCvNOEvl6pqM/ToJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEOhbAvl9azlWQ4AAAQIEOhBobo545uaI7x8S8auLItZWdXDBm8N5eTkfzrB+Y0PM+nn74QyjhhTF9e8XztC5fxSqCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAYkAITZ2bednNjRNUzmcd6qLe8rCTjTJXVtRn7dRIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0LcEBDT0redhNQQIECDQnkD1kogbzo+45X0RNasiaqsj/vBvEanQhn5+rNsUzvB4PL4g2XeWY3QSznBDEs4wo2J4lgrdBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIBCjp0cUZ3lfdcnsXgWaMCJzQEPVGgENvQpvcgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQI9JCCgoYcgTUOAAAECvSiQCmCY/YuIH7wt4qU/pd/ohdsjnr81va+ftdbW1selP3s8/rbwjaw7GzO0OG78wNti9/JhWWsMECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEAikJ98ZGrCAZkpljyRub+HesuHl2acafWG+qipa8w4ppMAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgb4jIKCh7zwLKyFAgACBTAKr5kdcfWrE7/85YuOaTBURd/xHxIZVmcdyvHdNEs5wSRLOMPvV7OEMY4dtDmfYdbxwhhx/3JZPgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMD2Epg4M/OdlszO3N9DvRVlJVlnqqyuyTpmgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBviEgoKFvPAerIECAAIHWAk3JN4M88v2IHxwesfDB1qPp7fXLIx7+bnpfP2hV19THP/z08Xhy0eqsuxn3ZjjD9HFDs9YYIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFWAhMPbNXxZvONBb36BQHl7QY01GZek14CBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBPqMgICGPvMoLIQAAQIEWgSWvRDxsxMi7vxMREMH3xCSPyji6E9GHPPplsv7w0n1hlQ4w2Px9Gurs25n/PDiuPEDb4tdxgpnyIpkgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABApkEJs7M1Lu5b+kT2ce2caSksCBGDSnKOEtltYCGjDA6CRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPQhgeSvWh0ECBAgQKCPCDTWRzz0nYgHvh7RWNfxoir2jzj9+xHle3dcm0MVqzfUxcVJOMOzS9ZkXXVF8q0qN7z/bTF1zJCsNQYIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAIIvA8AkRwyoi1la2LViSBDRMf2fb/h7qSb3fu2p92/fEq6o7+AKDHrq/aQgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ6L5AfvcvdSUBAgQIEOhBgaVPRfz42Ih7v9hxOMOgkojjvxDxvr/0u3CGN5IP4Vz4k/bDGSYkH9a58QPCGXrwX5+pCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAYiAITZ2be9ZLZmft7qDcV0JDpWFpdm6lbH4FfscQAAQAASURBVAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECfUhgUB9ai6UQIECAwEAUqE8+YHL/VyP++t2I5saOBaYcHnHa9yLGTO+4NscqUt+QctFVj8XcyjVZVz5xROmmcIbJowZnrTFAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAp0QmHBAxAu3by7MK4gYv2dEKrRh6lGduLj7JeVZAhqqBDR0H9WVBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBLaTgICG7QTtNgQIECCQQWDRoxG3fTRi5csZBlt1FQ2NeOfnIw66LCI/v9Vg7jdXrtu4KZzhhaq1WTczaWRp3PD+t4VwhqxEBggQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINB5gd1OjCgs3RzKUL5vRNH2CcqvKEvumeFYuromQ68uAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgT6koCAhr70NKyFAAECA0Wgbn3E3ZdHPP7jZMfNHe96l+MiTv1OxIgpHdfmYMXytalwhkfjpdfXZV39lFGD44YPvC0mjsj8QZ2sFxogQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgcwC5XtHpF7b+agoK8l4x6o1tRn7dRIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0HcEBDT0nWdhJQQIEBgYAg0bI264IGLB/R3vt6Qs4sSvRuyX1OfldVyfgxXL1tbGhT95LOYtyx7OsNPoJJzh/W+LCcIZcvAJWzIBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTSBSrKMgfzr95QHzV1jVFaVJB+gRYBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAn1GQEBDn3kUFkKAAIEBIvDQtzsXzjDj1IiT/zdi2Ph+C7Ms+faTC37yaLyyfH3WPe48ZsimcIbyLN+gkvVCAwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQJwUq2nn/t7K6JqaNHdon121RBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAhECGjwr4AAAQIEtp/AuuURD3+v/fsNGZsEM3wzYq8z2q/L8dGq6tq4MAlnmL8iezjDtLGbwxnGDy/J8d1aPgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAhsEWgvoD/1XrKAhi1SfhIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDoewL5fW9JVkSAAAEC/VZg8OiId38romxK5i3ue37ERx7v9+EMqW88Of/Hj7QbzrBLEs5w4/vfFsIZMv9T0UuAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFcFSgpLIhRQ4oyLn9pEtDgIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECg7woIaOi7z8bKCBAg0P8E8pP/2NnvvIiP/i3ihC9HlI58a4/nXRdx1o8iBo96q68fni1dnQpneDQWrtyQdXe7jhsaN37gsBg3vCRrjQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQyF2B8izvB1clgf8OAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgT6rsCgvrs0KyNAgACBfitQmAQPHPaRiP0vivjrdyKGVUTMOLXfbnfLxpYk4QwXJOEMi1ZlD2fYffyw+OX7D40xQ4u3XOYnAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECPQzgQkjSuL5yjVtdlVZXdumTwcBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAn1HQEBD33kWVkKAAIGBJ1A6IuKdnx8Q+34tCWW44CePxuI3sn/byR7lSTjD+w6N0cIZBsS/CZskQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGDgCpSXJV9skOEQ0JABRRcBAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBPiQgoKEPPQxLIUCAAIH+KZAKZzj/x4/GktXZwxn2rBge1yXhDKOGFPVPBLsiQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAXxdobIhYPjdiyezk9URE5VMR/3hnRGFpj6+8oizznAIaepzahAQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgR6VEBAQ49y7rjJXnnllXj88cdj8eLFUVdXFyNHjow99tgjDj/88CgpyZy4vz1X29jYGLNnz47nn38+li1bFvX19TF06NCYNGlSzJgxY9Na8/Pzt+eS3IsAAQLbReDVlevjgiScYWl1bdb77TVhePwyCWcYMVg4Q1YkAwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEOgtgfUrIm68KAlkeDqioVXwftWciMmH9PidK8oyf56nsrrV/Xv8ziYkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGBbBAQ0bIteH7j21ltvjf/5n/+JJ55IUvszHKkQhFmzZsXnPve5GDNmTIaK3u1asGBBfOMb34gbbrghVq9enfVmw4cPj2OPPTY+8IEPxMknn5y1zgABAgRySWDhiiSc4SePRnvfcLLPxLK47rJDo2xwYS5tzVoJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQfwRKR0a8/mzbcIbUDpfM7pWAhvIsAQ2rN9RHTV1jlBYV9B9fOyFAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQjwTy+9FeBtRWNm7cGBdffHGceeaZWcMZUiDr1q2LK664Ivbcc8944IEHtptRU1NTfOUrX4kZM2bElVde2W44Q2pRa9asidtuuy2uueaa7bZGNyJAgEBvCsxfvi7O+/Ej7YYz7DcpCWd4n3CG3nwO5iZAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECHAvlJGMKEAzKXLcn8pSmZizvfO6GsNGtx1ZrarGMGCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDYsQICGnasf7fungo/OO+88+KXv/xl2vUFBQWx8847x/777x9lZWVpY8uXL4+TTjopHnnkkbT+3mjU19fH+eefH5/5zGciFSSx9ZFa1x577BGHHHLIpvCGwYMHbz3snACB/iRQn3xgpLa6P+2o03uZt2xdnP/jR+P1Nen/P3DrCfafPCKuuSwJZygt3LrbOQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjsCIGJB2a+65LZmfu3sbe8rCTrDJWra7KOGSBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYMcKCGjYsf7duvs3vvGNuO2229Ku/dCHPhSLFi2K+fPnx5NPPhmrVq2KW265JaZMmdJSt2HDhjj33HOjurp3/2D6sssui5tvvrnlvoMGDYqPfOQj8fjjj8cbb7wRc+fOjcceeyyef/75WLt27ab2d77znTj88MMjLy+v5TonBAjkuMDjP474v/0jHvlBREP2oIIc32Wb5c9btnZTOMOytdn3fMCUVDjDIcIZ2ujpIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwA4SmDgz841XvRJR80bmsW3oLSksiJGDMwf6V1YnX4jgIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgTwoIaOiTjyX7olauXBlf+tKX0gq+8pWvxJVXXhkTJkxo6c/Pz48zzzwzHn744Zg6dWpL/+LFi+Nb3/pWS7unT6677rq49tprW6ZNrWn27NlxxRVXxMEHH9wmgCG1zj322CP++Z//Of7617/GD36Q/CG3gwCB3BdIfTjlwf9NPqSyKuLOT0dccVDEM0lwS1NT7u+tnR289PrmcIYV67KHM8zcaWRc84+HxPCSzB+0aWd6QwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQWwITDsw+89Ins49tw0hFWWnGqyurazL26yRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYMcLCGjY8c+gSyv4+te/HmvXrm255u1vf3t88pOfbGm3Ppk4cWJcddVVad3f/va3IxX00NPHihUr4l/+5V9api0rK4v7778/9t1335a+jk5GjhzZUYlxAgRyQeChb0fUrn5rpasXRdzyvogfHx2xbO5b/f3o7IWqNXHBjx+NFevqsu7q4Kkj4+oknGGYcIasRgYIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCwQwTKJkUMGZf51ktmZ+7fxt6KspKMM1RW12bs10mAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwI4XENCw459Bp1fQlHzz/M9//vO0+s9//vORl5eX1te6cdxxx8VRRx3V0p0KeLjpppta2j118qUvfSlSIQ1bji9/+csxffr0LU0/CRAYKALViyMe/WHm3a6aHzF4TOaxHO59fumauPAnj8XK9dnDGQ7ZeVT84r2HxNDiQTm8U0snQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAPxVIff5m4szMm1vyROb+beytGJE5oKFKQMM2yrqcAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQO8JCGjoPdsen/nhhx+O5cuXt8w7bdq0OOaYY1ra7Z1cdtllacO33nprWntbGxs3boxrrrmmZZry8vL44Ac/2NJ2QoDAABK498sRjRszb/jwj0UMHZt5LEd7n1taHRde9Wisaiec4bBpo5NwhoNjiHCGHH3Klk2AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwIAQmHhg5m0umR3R3Jx5bBt6K8pKM169VEBDRhedBAgQIECAAAECBAgQIEDg/7N33/F2VWXCgN/b0nu5IQkJoaWBpNEEgZDQRXB0QBSBWABh9NNRsIw4DjoziijOWAARBERlFBRRFCkJvZMQiiQhISQh9SYhCenJLd/ZB+8hJ3ef1Nvz7N/vePZ637XXWvs5ePPHWefdBAgQIECAAAECBAgQINAcBBRoaA6fwg6u4S9/+UtezxNPPDGKkur9O3Akfbc8Hn744Vi7du2Wod06v+uuu+Ktt97KjXHOOedESUlJru2EAIE9RGDJ3yOm/ib9ZjuWR7z3X9JzLTT6yoJMcYafPxMr120ueAdHH9AzfjHhsOjQprRgHwkCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaAYChQo0rFkS8fbCel/gXl3apY65eNX61LggAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJNL6BAQ9N/Bju8gqlTp+b1Peqoo/La22r069cvBg0alOuyadOmePXVV3Pt3T3ZunjE8ccfv7tDup4AgZYo8OCVmVUXeGrI2K9GtO3UEu8qdc0vzV+ZKc7wdKxaX7g4wzEH9oqbLjgs2rdRsCYVUZAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLNSaDf6MKrWTC5cG4XM327pRdoWJF5SMD6TVW7OKrLCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoSAEFGhpSt57HnjZtWt6Iw4cPz2tvr7F1/63H297128o/99xzeekRI0Zk21VVVXHvvffGOeecE0OGDImOHTtGt27d4sADD4yzzz47br755li3bl3etRoECLRQgTmPR8y8L33xPQ+IGH1+eq4FRqe+uTLOvfGZeHtDZcHVHzu4d/z8/EOjXZniDAWRJAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINCcBDr0iOixX/qKGqJAQ9f26XNloovf3lAwJ0GAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQNMJKNDQdPY7NfP69etj3rx5edcMGDAgr729xtb9Z8yYsb1Ldii/atWqeO2113J9S0pKYp999onZs2fHMcccE6eddlr89re/zfZJijEk/WfNmhV33HFHfPKTn8wWa7jtttty1zshQKAFCtTURDzw74UXPj6TKykrnG9BmSnzVsR5meIMq7dRnOH4Ib3jhvPGKM7Qgj5XSyVAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBWoN/odIgGKdDQLn2uTHTRqvUFcxIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDSdgAINTWe/UzMvW7YsapIfQP/jKCsri/Ly8trmDr33798/r19FRUVee1cbSSGGLdfWuXPnePXVV2P06NHx1FNPbXfYhQsXxvnnnx9f/epXt9tXBwIEmqnAq3dHFNqM0v/QiGFnNNOF79yyJs9dEeff9Gys3lhZ8MLxQ8vjesUZCvpIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoFkL9B+TvryFUyOqq9NzuxhtV1YS3TukP+xg0coNuziqywgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaEiB0oYc3Nj1J7BmzZq8wTp06BBFRUV5se01OnbsmNdl6zHzkjvRWLlyZV7vZF2nn356rFq1KhtP1vqxj30sjj322OjZs2csX748HnnkkfjNb34T69e/W+3/qquuiqSIxOc+97m88XankRShWLp06U4NMWvWrJ3qrzOBPV6ganPExG8VZjgxk9vJv1eFB2u6zPNz3ooLfvFsrN1UVXARJwzrEz89d1S0LS0p2EeCAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBJqxQKECDZtWRyyfGdF7SL0ufq+u7WPFusz37lsdi99WoGErEk0CBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECzUJAgYZm8TFsfxFbF1No167d9i/aqkf79u3zIluPmZfcicbWBRpWrFgRySs5xowZE3/4wx9i4MCBeSOed955ccUVV8SZZ54ZL730Ui53+eWXx8knnxyDBw/OxXbn5Nprr40rr7xyd4ZwLQEC2xOYfEvEW6+n9xp8SsSgo9NzLSj64psr4/xMcYZ12yjOcPJBfeLHHx0dbUqLW9CdWSoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI5An0PSTzEIJMUf6alOL9CybXe4GGfl3bxbRFb+ctIWksXPnuQ0/qJAUIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGgyAb8ibTL6nZt4w4b8qvht2rTZuQEyvdu2bZt3zfr19fNFbqFCD3vvvXc88MADdYoz1C5i0KBBMXHixNhrr71qQ7Fx48b4/ve/n2s7IUCgmQtsXBPxyFXpiyzK/BNzwn+k51pQdNmajfGZX03eZnGGUw/eK37yMcUZWtDHaqkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBIFyjLPAClz/D0XFKgoZ6PvTIFGtKOxavy9wql9REjQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDxBRRoaHzzXZqxXbv8L2M3bdq00+MkxQ+2PLYec8vczpwXGufqq6+O7t27b3OoXr16xXe/+928PrfddlvUV/GIvIE1CBCof4GnfhKxdmn6uCM/FlE+LD3XQqKVVdXxud+8EIu2sfHl/e/pGz/66KgoK/FPagv5WC2TAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC2xboPyY9v2BKenw3ov26ZQpCpBzb+p46pbsQAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKNJFDaSPOYZjcFOnXqlDfChg07XyV/66IHW4+ZN8FONNLG6dGjR3z4wx/eoVE+8pGPxOc///lYtWpVtn9yb88++2wcd9xxO3T9tjpdeumlcdZZZ22rS53crFmz4oMf/GCduAABAlsJrKmIeOJHWwX/0SzNFJUZ+2/puRYUvfr+GfHU7OUFV/yBEf3ih2ePiFLFGQoaSRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDFCSQFGibfUnfZi1+OqMw8IKW0bd3cLkb26pL/0JbaYRauWh81NTVRVFRUG/JOgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEAzEFCgoRl8CDuyhK2LIKxbt26nv4Rdu3Zt3lRbj5mX3IlG2jjvfe97o6ysbIdGadeuXRx++OHxwAMP5Po///zz9VKgoby8PJKXgwCBBhB45HsRm/P/ruRmOeIzEV3755ot8eTelxfFzx6ZXXDppx/SV3GGgjoSBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaMEC/UanL756c8TiVyL2zhRwqKejb7f0Ag0r122O2cvWxv698x/qUk/TGoYAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgV0UKN7F61zWyAK9evXKq4i/efPmqKjIPL1+J44FCxbk9a6vwgV9+vTJGzdpDB48uE5sW4EhQ4bkpXf23vIu1iBAoOEFlr+eeVrIzenztOsW8b5/Tc+1kOisijVx2R0vFlztQf26xPfPGhGlJf4ZLYgkQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZYq0HtoRFmH9NUvmJwe38XosL26ZPYEpV88adrO7Q1KH0WUAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIH6FPDL0vrUbMCx2rdvHwMHDsybYd68eXnt7TW27j90aObL5Ho49t9//2jTpk3eSF26dMlrb6+xdf8VK1Zs7xJ5AgSaUmDityKqK9NXcOxlEe27pedaQHTNxsr4zK8mx9pNVamr7dq+LK7/+JhoV1aSmhckQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRYuUFIa0Xdk3ZsobRexYWXd+G5EundsE6MGdEsdYdJ0BRpSYQQJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINKFA5ttER0sRSAoqzJ07N7fcV199NQ477LBce3sn06ZNy+tSXwUaSkpKYvDgwfHKK6/kxt+4cWPufEdONmzYkNetQ4cCTyHI66VBgECTCMzPPA3k1T+mT911QMRhF6bnWkC0pqYmvnLnSzGrYk3qapOnlvzvOSNjQA9/o1KBBAkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINBaBAZk9uRsfDui/+iIfplX/zER5cMiSsrq/Q7HD+sTU+atrDPuc3PeilXrN0fyIAEHAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLNQ6C4eSzDKnZEYOTIkXndnnzyybz2thqLFi2KOXPm5LqUlZXF8OHDc+3dPRk9OvNF9BbHkiVLtmht/7SiIr/if8+ePbd/kR4ECDS+QKaAQTzw74XnHXdFRFnmiSEt9LjxsTfiLy8vKrj6fz1hcIwdUl4wL0GAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECrUTghCsjLnki4owfRxz6iYi+hzRIcYZEa9zQ9O+hK6tr4rGZS1sJqNsgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0DoEFGhoQZ/j6aefnrfaBx98MJKnve/Icf/99+d1O/7446NTp055sd1pnHHGGXmXT548Oa+9vcbW/YcMGbK9S+QJEGgqgdHnRXQdUHf2PgdHvOesuvEWEnnq9eXx3b9NL7ja8ZkNMZ89/oCCeQkCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaEUCRUWNdjND9+ocfbumPwxh0rT8h5402qJMRIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAqoACDakszTN41FFHRa9evXKLmz17djz88MO59rZObrrpprz0mWeemdfe3cYpp5wS7dq9+0XxSy+9FDNnztyhYf/+97/HtGnT8vqOHTs2r61BgEAzEUg2oIw4J+Kzz0ec9J8R7bq9u7Dk6SHFJe+2W9DZolXr43O3T4mqzNNH0o59enaIaz4yMoqLG28DTto6xAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECg9QkUZb6LH5d5aEDa8dCMioLfZaf1FyNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoGEFFGhoWN96Hb24uDgmTJiQN+aVV14ZNTXpPyiu7Thx4sR47LHHapvRuXPnOPvss3Pt+jjp2LFjfPzjH88b6j//M/Pj7R04vvWtb+X1Ou6446K8PP1L57yOGgQINJ1AWaYgy1Gfi/j81IijvxBx4MkRB4xvuvXsxsybKqvj0l9PiWVrNqWO0q6sOK7/+Jjo2r4sNS9IgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgR2V2D8sPS9MivWbY6pb67Y3eFdT4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAPQko0FBPkI01zFe+8pXo1KlTbrpHHnkkrrrqqlx765MFCxbEpz/96bzw5z//+ejVq1debOtGUpl/y9fDDz+8dZc67W9+85vRrl3mR9v/OH75y1/GL37xi9pm6vu1114bv/vd7/JyX/va1/LaGgQINGOB9t0jTrwy4mO/jcwfjWa80MJL+8+/vBovzFtZsMN3PvSeGNa3S8G8BAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ2F2Bo/bvFckDBNKOidMq0sJiBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0gUD6t3pNsBBT7phAUljh3/7t3/I6JwUNLr300li4cGEuXl1dHX/84x/jqKOOijlz5uTi/fr1iy996Uu5dn2e7L333pEUkNjySIpDfPazn40333xzy3DMmzcvLrnkkmxuy8RHP/rROPnkk7cMOSdAoCUItNDiDH+YMj9++dTcgsIXvHef+KdRexfMSxAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgfoQaFdWEkdnijSkHZOmK9CQ5iJGgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoCkEFGhoCvXdnDMpgnD66afnjXLdddfFwIEDY//994/Ro0dHz54945/+6Z+yhRBqO7Zv3z5+97vfRbdu3WpD9f7+jW98I29tNTU18dOf/jT22Wef7NoOP/zw7HvSvv766yPJ1x7Jum+44YbapncCBAg0qMDfF66Kr/3h5YJzjNmne3z9/cML5iUIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEB9CowbVp463PTFq2PByvWpOUECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBBpXQIGGxvWul9mKi4vjjjvuiHPOOSdvvKqqqpg9e3a88MILsXLlyrxcUrDhr3/9axx99NF58fpulJSUxJ133hkXXHBB3tBJIYZkbc8991z2PS+ZaZxxxhnxyCOPRKdOnbZOaRMgQKDeBVat2xyX/GpKbKysTh27V6e2ce25o6NNqX8mU4EECRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDeBcYNTS/QkEw0aXpFvc9nQAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEdl7AL0933qxZXNGuXbu4/fbbs8UQRo4cWXBNHTt2jEsvvTReffXVGDt2bMF+9Zlo27Zt3HLLLXHvvfdusyBEUVFRHHHEEfHnP/857r77bsUZ6vNDMBYBAgUFqqtr4gu/fSHmvbUutU9JcVH85GOjok+Xdql5QQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDYgwU2r4+Y90zEq3fXO0Lfru1jWN8uqeNOmrYkNS5IgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDjCpQ27nRmq2+BD3/4w5G8Zs2aFc8880wsWLAgNm3aFN26dYthw4ZlCyQkxRx29qipqdnZS+r0P+WUUyJ5JWt66qmnYu7cubFhw4bo3r179O3bN7u28vLClf/rDChAgEDjC1RujCht2/jzNuCMP540Kx6asbTgDF87dWgcuV/PgnkJAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAs1NIPle/tlnn83uG0jen3/++Vi9enVumfvss0/MmTMn127Ik0GDBmX3B9THHBdccEH2ARGFxkoeHvGJT3yiUHq78eOOOy4efvjh7fbTYQ8XWFMR8drfIhZMzrymRFS8GlFdGdGua8TQD0QU1+/zccYPLY9pi96ug/7E68tj3abK6NDGdq86OAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEGlHAN3aNiN2QUx1wwAGRvJrj0b9///jnf/7n5rg0ayJAYFsCi1+JuO2fIo75UsShn8wUamizrd4tIvfQjIr4n4mvFVzr+w/pG596374F8xIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEmovAE088ET/4wQ+yRRkWLlzYXJZVr+to06blf0dZryAGaxqB5bMi/vS5unNvWBXx1uyIXvW7X2fcsPL4yUOZObc6NlVWx5OzlscJw/tsldEkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKAxBeq3hHtjrtxcBAgQINCwAhOvjFibeRLI374S8ZNDI16+M/MUkOqGnbMBR5+3fF18/vYXoqYmfZIDyzvF9z58SBQVFaV3ECVAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQjASee+65uOuuu6K1FmdIqE8//fRmJG4pe6xA3xERRQW2WC2YXO8sI/buFj07phcnmTg98x2+gwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBJhUobdLZTU6AAAECzVPgjcciZt7/7tpWzo34/acinvxRxKnfixh45Lu5FnC2flNVfOZXk+PtDZWpq+3UtjSuP29MdMy8OwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAi0dIFOnTrFmjVrmuQ2fv3rX8f69et3eu4777wzfvazn+WuKy8vj9NOOy3X3pGTyy+/PE466aQd6Zrt07179x3uq+MeLNCmY0T58Iglr9RFSAo0jPhI3fhuREqKi2LskPL4/ZT5dUZ5KFOgoSbzVAIPHqhDI0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECg0QT8ErXRqE1EgACBFiKQ2cwRD/x7+mIXvRixpiI910yjyeaUr//x5Xh10dsFV/j9s0bE/r07FcxLECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGiuAp07d44xY8bEYYcdFocffnj2/Y033ojjjz++SZZ89NFH79K8//7v+d9RnnvuuVFaunPbWoYPHx4nnHDCLs3vIgLbFOg3Kr1Aw8Ip27xsV5Pjh6UXaFj89obsd98H9eu6q0O7jgABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB3RTYuW+yd3MylxMgQIBACxB49Y8RhTaR7H14xLAPtICbeHeJv35mXvxhyoJ3A1udXTJ2/zjl4L22imoSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaN4CH/jAB+Kkk06KoUOHRnFxcd5ikwINLel47bXX4qmnnspb8oQJE/LaGgSaVKD/mIgXbqu7hEUvRVRuiihtUze3G5H3HdgrSouLorI684CFrY5J0ypCgYatUDQJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINKJA/jf0jTixqQgQIECgGQpUbY6Y+K3CCzvxyoiiosL5ZpaZMm9FXPnnvxdc1dEH9IwvnTi4YF6CAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQHMV2H///WP48OF1ijM01/Vua1233HJLXnrUqFFxyCGH5MU0CDSpQFKgIe2o2hhRUfg76bRLdiTWpV1ZHL5vj9SuE6dXpMYFCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoHAEFGhrH2SwECBBoGQKTb4l4a3b6WgefGrHPUem5ZhhdtmZjXPqrKbG5qu4TRZLl9uvaLn50zqgoLfFPYTP8+CyJAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgDxGorq6O2267Le9uJ0yYkNfWINDkAuXDIkrbpy9jweT0+G5Gxw0tTx3hxfkrY+nqTGEIBwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECTSLgV6lNwm5SAgQINEOBjasjHv5u+sKKMv9cnPAf6blmGK2sqo7P/mZKLH57Q+rq2mSKMlz78THRs1Pb1LwgAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKNIzBx4sSYP39+brKysrL42Mc+lms7IdAsBErKIvoekr6UBVPS47sZHT+sT+oINZlnFDw8oyI1J0iAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQMMLKNDQ8MZmIECAQMsQePInEeuWpa915LkR5UPTc80wevV9M+Lp2W8VXNl/nHFQjBzQrWBeggABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBxhG49dZb8yY6/fTTo1evXnkxDQLNQqD/mPRlNFCBhn17dYz9Mq+0Y9J0BRrSXMQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINIZAaWNMYg4CBAgQaOYCq5dEPPnj9EWWtosY+7X0XDOM3vvyovjZo7MLruzsQ/eOjx4+oGBeggABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBxhF4++2346677sqbbMKECXntnW1UVVXF7NmzY+nSpVFUVBQ9e/aMvn37RufOnXd2KP0J5AsUKtCwdHrExtURbev/v7FxQ8tj9uNv5K8j03ps5rLYVFkdbUo9m6cOjgABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBBhbwLV0DAxueAAECLULgkasiNq9NX+qRl0R07Z+ea2bRWRWr47I7Xiy4qoP7d4lvnXlwdiNWwU4SBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0isDvfve7WLduXW6uPn36xGmnnZZr7+zJf//3f0f37t1j8ODBcfTRR8dRRx0VQ4YMiW7dusXIkSPj8ssvj7lz5+7ssPoTeEeg/+gCEjURC6cWyO1eeNyw8tQB1mysjOfmvJWaEyRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoGEFSht2eKMTIECAQLMXWDYrYvIt6cts3z3i6C+k55pZNNmAcvFtk2PtpqrUlXXrUBbXnTsm2pWVpOYFCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoXIFbb701b8Jzzz03Skt3fSvLzJkz88arbVRXV8eLL76Yff3P//xPfPrTn45rrrkm2rdvX9ul3t4rKipi6dKlOzXerFmZ72wdzV+g+74RyXfo61fUXeuCyRH7HlM3vpuRwwb1iM5tS2N15vvwrY+J0yri6AN6bR3WJkCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECggQV2/VvtBl6Y4QkQIECgkQQmfSuiJr2oQRx7eWaDSbdGWsiuT1NTUxOX3/FivL50beogRUUR/3vOqBjQo0NqXpAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgcYVeP311+Pxxx/Pm3TChAl57YZoVFZWxvXXXx9PPPFE3HfffdG3b996nebaa6+NK6+8sl7HNFgzEUi+eO43OuL1iXUXtHBK3Vg9RMpKiuPYwb3jLy8vqjPaxOlL4hunD4uiZF0OAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQaTaC40WYyEQECBAg0P4H5z0e8enf6uroOjDjs0+m5Zhb9+WOz495XFhdc1RdPGBzHZTatOAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaB4Ct9xyS95CRo8eHe95z3vyYjvaGDlyZFxxxRXx17/+NebMmRNr1qyJTZs2xeLFi+OBBx6Iyy67LLp27Zo33Msvvxwf+MAHYu3a9CLweZ01CNQK9B9Te5b/vqBhCjQkk4wbWp4/1z9ac5evi9nL/PebiiNIgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoAEFShtwbEMTIECAQHMWqKmJeODfC69w3BURpW0L55tJ5snXl8V3751ecDUnDCuPfzn+gIJ5CQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEGlegJvNd5W233ZY36YQJE/LaO9JIijpMnjw5kve0o0+fPpG8TjjhhPi3f/u3+OQnPxl//OMfc12Ta//93/89fvCDH+RiTghsU6BQgYZVb0asXhLRuc82L9+V5NghvaOoKCL5in/rY9K0iti/d6etw9oECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDSggAINDYhraAIECDRrgZn3R8x9In2JfTJPpnnPWem5ZhRdtGp9fO43L0R1ykaUZJn79OwQPzh7ZBQXZ3arOAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaBYCDz30UMydOze3ljZt2sTHPvaxXHtHTw455JAd7Rrdu3eP3//+93HWWWfFH/7wh9x11157bXzxi1+M/v3752K7c3LppZdm59iZMWbNmhUf/OAHd+YSfZtKoH96MZDschZOiRhyar2vrGentjFqQLeYMm9lnbEnTl8SFx67X524AAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECDSegQEPD2RqZAAECzVeguiriwf8ovL4TM7ni4sL5ZpDZWFkVl/xqSixfuyl1Ne3KiuP6j4+Jru3LUvOCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0jcCtt96aN/Hpp58ePXv2zIs1RKM48x3ojTfeGJMmTYqVK1dmp9iwYUPccccd8YUvfKFepiwvL4/k5WilAp0yn23XARGr3qx7gwsmN0iBhmSi8cP6pBZoeH7Oili1frPvxet+GiIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEGkygef/6tsFu28AECBDYwwVevD2i4tV0hH2Pi9h/fHquGUW/fc+rMfXNlQVX9N0PHRLD+nYpmJcgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDxBdasWRO///3v8yaeMGFCXrshG927d49PfvKTeVPcf//9eW0NAtsU6D86Pb1gSnq8HqLHD0kv+lFZXROPzVxaDzMYggABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBHRVQoGFHpfQjQIBAaxHYvD7iof8ufDcnXhlRVFQ43wwyd06eH796el7BlUw4alB8cFT/gnkJAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSaRuCOO+6ItWvX5ibv06dPnHrqqbl2Y5yMH59fsH7GjBmNMa05WotA/zHpd7JgckRNTXpuN6PD+naOvl3bpY4yaVpFalyQAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGGEVCgoWFcjUqAAIHmK/DMzyLeXpC+voM/HNFvVHqumUT/vnBVfP2ulwuuZsw+3ePfThtWMC9BgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDTCdx66615k5977rlRWlqaF2voxoABA/KmWLp0aV5bg8A2BQoVaNiwMuKt2du8dFeTRZmHLIwbWp56+UMzKqKqumEKQ6ROKEiAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgDxdQoGEP/w/A7RMgsAcKdMtsNuqyd90bLy6LGPeNuvFmFFm5blN85leTY2NldeqqenVqG9eeOzralPrnLRVIkAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEATCrzxxhvx6KOP5q3gE5/4RF67MRplZZnvRrc4Nm/evEXLKYHtCPQdkelQlN5pwZT0eD1Exw9LL9CwYt3mmPrminqYwRAECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECOyIgF+w7oiSPgQIEGhNAgd/OOJzkyNO/FZEu67v3tlhn4rose+77WZ2Vp154scXfjs13nxrferKSoqL4qcfGxV9urRLzQsSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINC0ArfeemvU1NTkFjFmzJg4+OCDc+3GOlm8eHHeVL17985raxDYpkDbzhG9h77TpaRtxN6HRxzxmYgP/Txi32O2eenuJI/av1e0K0vf6jVxWsXuDO1aAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgR2QqB0J/rqSoAAAQKtRaAsU8Tg6M9HjD4/4rFrIl68PeLYy5v13f3vxJnx8IylBdf4b6cNiyP261kwL0GAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQNMJJIUZfvnLX+YtYMKECXntxmo8/vjjeVMNGDAgr61BYLsCp30vom2XiD4HRZSUbbd7fXRoV1YSR2eKNEycXrcYw6RM7Mun/KNoRH1MZgwCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAoKpJdVL9hdggABAgRalUD77hEnfTviCy9HdOzVbG9t0vQlkRRoKHScfkjf+OTRgwqlxQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaGKBRx99NN54443cKtq0aRMf+9jHcu3GOqmsrIxbb701b7rx48fntTUIbFdg32Mj+o1stOIMtesZN6y89jTvffri1bFg5fq8mAYBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAg0joEBDw7galQABAi1LoKx9s13vvOXr4gv/N7Xg+gb36RRXffiQKCoqKthHggABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBphXYuijCBz7wgejRo0ejL+q73/1uzJo1K2/eM888M6+tQaC5Chw/JL1AQ7LeSdMrmuuyrYsAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAqxJQoKFVfZxuhgABAq1LYP2mqrj4V5Pj7Q2VqTfWqW1pXP/xMdEx8+4gQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKD+BZJC6Vu+Hn744Z2eZN26dXHnnXfmXTdhwoS89s42rrvuupg0adJOXXbNNdfEv//7v+ddc8YZZ8SYMWPyYhoEmqtAv27tY1jfLqnLmzRtSWpckAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB+hXwi9b69TQaAQIECNSTQE1NTXz9rpdj2qK3C474/bNGxH69OxXMSxAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBozQJPPPFErF+/vs4tvvjii3mxDRs2xIMPPpgXq23069cvhg8fXttskPekOMPq1atzY++1115xyimn5Nq7cvLMM8/EpZdeGiNGjIizzz47O95BBx0Ubdu2zRsuKQ4xceLE+P73vx+PPvpoXq5nz56RFG1wEGhJAuOHlqd+j/7E68tj3abK6NDGdrCW9HlaKwECBAgQIECAAAECBAgQIECAAAECBAgQIECAQMsT8I1cy/vMrJgAAQJ7hMCvnp4bf3hhQcF7vWTs/nHKwXsVzEsQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaO0C5557bsydO3e7t7lkyZI48cQTU/tdcMEFccstt6Tm6it466235g2VrLu0tH62rCTFKJLX17/+9eyYAwYMiK5du0abNm1ixYoVMWfOnNi8eXPe/Emjc+fO8ec//zn233//OjkBAs1ZYNyw8vjJQ7PqLHFTZXU8OWt5nDC8T52cAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC9SdQP9921996jESAAAEC9SlQUxNRVFSfIzbKWJPnrohv3fNqwbned0CvuOykIQXzEgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINA+BefPmxUMPPZS3mAkTJuS166tRWVkZb7zxxnaHO+KII+LXv/614gzbldKhOQqM2Ltb9OzYJpav3VRneROnVyjQUEdFgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgED9ChTX73BGI0CAAIFmI1CVeQrMTSdFPPOziMq6GzOazTq3WsjS1Rvj0l9Pjs1VmeISKUe/ru3if88ZGSXFLa/wRMrtCBEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBo1QK//OUvoyYpLP+PY8yYMXHwwQfXNnf5/ZJLLokvfOELMXr06CgrK9vuOO3atYtTTjkl/vznP8dTTz2lOMN2xXRorgLJd+Vjh5SnLu+hTIGGLf//ltpJkAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB3RIo3a2rXUyAAAECzVdg8i0R85995/X0dRHjvxEx/J8iiptvbZ7Kqur43O1TYsnbG1Nd25QUx3UfHxM9O7VNzQsSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ2JME5syZ0+C3u7s/9r7iiisiedX3ccQRR0TySo5NmzbFtGnT4o033oiFCxfG6tWrY/PmzdGlS5fo3r17DB48OEaNGhVt2rSp72UYj0C6QHVV5rv5kvRcPUTHDS2P30+ZX2ekxW9viFcXvR0H9etaJydAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgED9CCjQUD+ORiFAgEDzEti4OuLh7767phVvRNz5yYi+P4o48VsR+x33bq4ZnX3vvhnx9Oy3Cq7oyjMPihEDuhXMSxAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgsOcJJIUXRowYkX3teXfvjptcYPOGiMUvRyyYHLFwyjvvex0ScdbNDba0Ywb3itLioqisrqkzx6RpFQo01FERIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFB/Ago01J+lkQgQINB8BJ78ScS6ZXXXs2hqxCt3NssCDX95aVHc8Ojsumv+R+TsQ/eOcw4bUDAvQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEGlXgmRsi7vtaRHVl/rRVm/Lb9dzq0q4sDt+3Rzz5+vI6I0+cXhGfG39gnbgAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQL1I1BcP8MYhQABAgSajcDqJRFP/jh9OaXtI8ZmNoc0s2NWxeq4/M4XC67qPf27xrfOPDiKiooK9pEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKNKtC1f93iDMkCVs6LWJvyUIV6XNy4oeWpo704f2UsXb0xNSdIgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMDuCyjQsPuGRiBAgEDzEnjkqojNa9PXdOQlEV36peeaKLp6w+a46LbJsW5TVeoKunUoi2vPHR3tykpS84IECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBJBPqPKTztgimFc/WQGT+sT+ooNTURD8+oSM0JEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCw+wIKNOy+oREIECDQfASWzYqYfEv6etr3iHjfF9JzTRStyewM+fKdL8XspekFJYqKIn50zqgY0KNDE63QtAQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoIBA570yD0non55cMDk9Xk/RfXt1jP0yr7Rj0nQFGtJcxAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjUh4ACDfWhaAwCBAg0F4FJ34qoqUpfzbGXR7Trmp5rougNj86Oe19ZXHD2L504OI4d3LtgXoIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDSpQL9R6dM3cIGGZNJxQ8tT535s5rLYVFmdmhMkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGD3BBRo2D0/VxMgQKD5CMx/PuLVu9PX021gxGGfSs81UfTJWcviqr9NLzj7CcPK49KxBxTMSxAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgSYX6D8mfQkLp2QesFCTnqunaKECDWs2VsZzc96qp1kMQ4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDAlgIKNGyp4ZwAAQItVSDZ1PHAvxde/bhvRJS2LZxv5MzClevjc7e/ENUF9qIM6tkhfnD2yCguLmrklZmOAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjshEChAg3rlkesnLsTA+1810MH9YjObUtTL5w4rSI1LkiAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwO4JKNCwe36uJkCAQPMQmHl/xNwn0tey13siDv7n9FwTRDdXVcelv54Sy9duSp29fVlJXH/emOjaviw1L0iAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBJqNQL+RmaUUePjAgskNusw2pcVx7ODeqXNMnL4kapKHPTgIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKhXAQUa6pXTYAQIEGgCgeqqiAf/o/DEJ1wZUdx8/tzf9tTcmPrmyoLr/e6H3xND9+pSMC9BgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSajUC7rhG9DkxfzoIp6fF6jI4bWp462tzl62L2srWpOUECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBHZdoPn8YnfX78GVBAgQ2LMFXrw9ouLVdIP9xkYcMD491wTRNRsr4ycPzSo484SjBsWZI/sXzEsQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFmJ9B/TPqSGqFAw9ghvaOoKH36SdMq0hOiBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjssoACDbtM50ICBAg0A4HKTREPfafwQk74j8K5Jsjc9Ngb8dbazJpTjkP36R7/dtqwlIwQAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoxgKFCjQsmhpRVdmgC+/ZqW2MGtAtdY6J05ekxgUJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIENh1AQUadt3OlQQIEGh6gWl/inh7fvo6Dv7niH6j0nNNEF2+ZmP8/LHZqTO3LyuJH39sVLQp9c9SKpAgAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDRfgX6j09e2eV3E0unpuXqMjh/WJ3W05+esiFXrN6fmBAkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ2DWBVvtL2K997Wvxxhtv7JqKqwgQINBSBJ65Pn2lxWUR465IzzVR9NqHX481G9OfDPLJ9w2Kvl3bN9HKTEuAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBHZDYK+DI5Lv6dOOhVPSovUaO35Ieep4ldU18djMpak5QQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEdk2g1RZouOqqq+LAAw+ME044IX73u9/F5s2qwe/afyKuIkCg2QrMnxwx/7n05Y06N6LHvum5JoguWLk+bntqburMXduXxUXH7p+aEyRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAs1eoLRtxF7vSV/mgsx3+w18DOvbOfNQhHaps0yaVpEaFyRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYNcEWm2BhoSjpqYmHnroofjoRz8a/fv3j8suuyymT5++a1KuIkCAQHMTePZnhVd0xGcK55og8z8PvBabqqpTZ7507P6RFGlwECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBFivQf0z60huhQENRUVGMG1qeOv9DMyqiqromNSdIgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMDOC7TqAg21HEmhhmXLlsUPf/jDOOigg+KYY46J2267LTZs2FDbxTsBAgRalsDqJRGv/CF9zfseG1E+LD3XBNFZFavj91Pmp87cp0vbuOCoQak5QQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0GIE+o9OX+qSVyM2rUvP1WN0/LD0Ag0r1m2OqW+uqMeZDEWAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgzxZotQUa/ud//idbjCEpzpAcSaX45EjaTz75ZEyYMCH69u0bn/vc5+LFF1/M5vwPAQIEWozA5FsiqjenL/eIz6THmyj6/ftei0IP4/j8+MHRrqykiVZmWgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUE8C/cekD1RTFbH45fRcPUaP2r9X5vv39K1gE6dV1ONMhiJAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCwZwukfyvXCkz+3//7f/HSSy/FU089FZ/4xCeiQ4cO2eIMWxZqWLVqVVx77bUxevToOPzww+PGG2+MtWvXtoK7dwsECLRqgerM5o3JN6ffYreBEYNPSc81QXTqmyvjb39fnDrzvr06xlmH7p2aEyRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAi1KoOeBEW06py95weT0eD1Gk4cjHJ0p0pB2TJquQEOaixgBAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBXRFotQUaajGOOOKIuOmmm2LRokVx/fXXx5gxY7KFGpL8lsUann/++bj44oujb9++2ffnnnuudgjvBAgQaF4CxSURF9wTcfjFdTd3HHZhRJJvJsf3/ja94Eq+dNLgKCtp9f8MFbx/CQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoRQLFme+/+49Kv6FGKNCQTHz80PLU+acvXh0LVq5PzQkSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQILBzAnvML2M7deoUF110UTz77LMxderUuPTSS6Nr1655xRpqampizZo1ceONN8aRRx4ZI0eOjGuvvTZWrVq1c6p6EyBAoKEFeh0Qcdr3Ir74asSpmfce+0eUdYgYfV5Dz7zD4z8+c1k8+fry1P4H9esSpx3cNzUnSIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEWqRAv9Hpy26kAg3jChRoSBY1aXpF+tpECRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDYKYE9pkDDliqHHHJI/OQnP4mFCxfGrbfeGsccc0xeoYakb1Ks4aWXXorPfe5z0a9fv5gwYUI8/vjjWw7jnAABAk0v0K5LxBEXR3z2+YgLH4po373p15RZQfI39Kq/TS+4li+fMjSKi4sK5iUIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECLE+g/Jn3JK96IWPdWeq4eo/26tY9hfTP7CFKOSdOWpESFCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDYWYE9skBDLVK7du3ivPPOi0ceeSSmT58eX/rSl6JXr155xRqSHxmvX78+brvttjjuuONi+PDh8cMf/jCWL09/Knzt2N4JECDQqALFmT/n5UMbdcptTXbvK4vj5QWrUrscuV+POPbAXqk5QQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0GIF0go0tO0asd/YiPUrGuW2xg8tT53nideXx7pNlak5QQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEdlxgjy7QsCXT4MGD4+qrr4758+fHb3/72zjxxBOz6aKiokheSaGG5JUUcrjsssti7733jnPPPTeeeOKJLYdxToAAgT1eoLKqOr5/34yCDl8+ZWj272rBDhIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKAlCnTpF3HgSRGHXxzxTz+L+OzzEV+ZE3H+3RE992+UOxo3LL1Aw6bK6nhylgfSNMqHYBICBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFWLaBAw1Yfb1lZWZx11lnZIg3/+q//mi3KkHSpLdRQW6xh48aN8X//939x7LHHxpFHHhn333//ViNpEiBAYM8UuHPy/Ji9bG3qzZ84vE+MHtg9NSdIgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgRatEDmITBx7h0Rp30vYsQ5Eb0OjChu3O1ZI/buFj07tkllnDi9IjUuSIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDAjgs07jeAO76uJuv5+OOPxwUXXBD9+/ePH/7wh3lPea+pqckr2JAsMok9++yzceqpp8Y555wTa9asabK1m5gAAQJNLbBhc1X878SZqctI9qFcfvKQ1JwgAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgsPsCJcVFMXZIeepAD2UKNCR7nRwECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECOy6gAINGbvly5fHNddcE8OHD4/jjjsufvWrX8X69etzX0jWfjF54oknxu233x7f+MY3sgUcauNFmV8dJ+d33HFHnHzyyVFVVbXrn4grCRAg0IIFbntqbixatSH1Dj40au8Y3Kdzak6QAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqB+BcUPTCzQsfntDvLro7fqZxCgECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE9lCBPbpAw4MPPhjnnHNO7L333nH55ZfH9OnTc0UZav976NWrV3z5y1+OmTNnxn333Rcf+chH4sorr4w5c+bE3XffHUcffXT2mtoiDU8//XTccMMNtZd7J0CAwB4j8PaGzfHTh2el3m+bkuL4wgkHpuYECRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgfoTOGZwrygtLkodcNK0itS4IAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECOyawxxVoWLRoUfz3f/937L///nHyySfHHXfcERs3bswVWUjYampq4rjjjovbb7895s+fH9/97ndjv/32yxMtLi6OD3zgA/HYY4/FL37xi0jaSZGG5EiucxAgQKDeBBZMifjNORGvP5T8gaq3Yet7oJ8/OjtWrtucOuzHjhgYA3p0SM0JEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAvUn0KVdWRy+b4/UASdOV6AhFUaQAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwA4KlO5gvxbdLSm48Ne//jV+/vOfZ9+rqqqyRRiSm6otqpCcd+vWLS644IK4+OKLY8iQIUloh44JEybEo48+Grfccku2/yuvvLJD1+lEgACBHRJ45mcRr937zqtX5m/TERdFHJIp2NC20w5d3hidlq7eGDc9/kbqVB3alMRnxx2QmhMkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE6l9g3NDyePL15XUGfnH+yki+4+/duW2dnAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAtsXKN5+l5bbY968efHNb34z9tlnnzjjjDPiz3/+c1RWVmZvqLYwQ1K84aijjopbb701Fi5cGNdcc81OFWeo1TnxxBNrT+Ptt9/OnTshQIDAbgmsXhLxyu/fHWLZjIi/fCnimuERk295N97EZz99aFas21SVuopPH7Nf9OpkY0cqjiABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGgAgfHD+qSOmtkqFQ/PqEjNCRIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgsH2B0u13aZk9TjnllHjwwQcjKcCQvJIjKcqQvJJ2ly5d4rzzzouLL744Dj744N2+yfLy8twYtfPlAk4IECCwqwJJEYbqzXWv3rgqomPvuvEmiLz51rr49TNzU2fu3qEsLjxm39ScIAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINAwAvv26hj7ZV6zl62tM8Gk6RVx1qED6sQFCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDYvkCrLdBw//33Z4sxJAS1RRmSwgmHHnpotijDRz/60ejQocP2hfQgQIBAUwlUbop4/hfps3cbGDH4lPRcI0d/+MBrsbnqnUI4W0/9L8cfEJ3blW0d1iZAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAnuOwIbMQxgWTo1YMDmi/5iI/Y5rlHs/fmh5zH78jTpzPTZzWWyqrI42pcV1cgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECGxboNUWaKi97aQoQ6dOnSIpyHDxxRfH6NGja1P1+n7QQQfFzTffXK9jGowAgT1cYNqfItYsTkc4/KKI4pL0XCNGZyxeHXdNXZA6Y9+u7eLjR+6TmhMkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKtWuDvf4x47W/vFGVY9tq7t3ropxqtQMP4TIGGm1IKNKzZWBnPzXkrjj6g17vrckaAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwA4JtOoCDe95z3viM5/5TJx77rnRuXPnHQLZ1U577bVXXHDBBbt6uesIECBQV+CZ6+vGkkhZh4hRH0/PNXL06vtmRKYOTurxrycMjnZlTV9EInVxggQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoCEF3ngk4sXb686wYHLdWANFDh3UIzq3LY3VmYIMWx8Tp1Uo0LA1ijYBAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBHRAo3oE+LbLLU089FVOnTs0WaGjo4gwtEsiiCRBo3gLJhoz5z6Wv8ZCPRLTvnp5rxOjkuW/Fg9OWpM64f++O8aHR/VNzggQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoNUL9BudfotLXonYvCE9V8/RNqXFcezg3qmjTpy+JPNAhgJPZEi9QpAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgUSg1RZoOOKII3zCBAgQaLkCz9xQeO1HXFw410iZZJPGVffOKDjbZScNidKSVvtPTMH7liBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAlmB/mPSIaorIxa/nJ5rgOi4oeWpo85dvi5mL1ubmhMkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKCwgF/PFraRIUCAQNMIrF4S8crv0+fe99iI8mHpuUaMPvza0nh2zlupMx6yd9c45eC9UnOCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgjxDoPSSirGP6rS6ckh5vgOjYIb2jqCh94EnTKtITogQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIFBRQoKEgjQQBAgSaSGDyLRHVm9MnP+Iz6fFGjFZX18TVf5tRcMavnDI0s7mjwO6OgldJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBViRQXBLRb1T6DS2YnB5vgGjPTm1j1IBuqSNPnJ55gISDAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGdEmi1BRpmz54d48aNy72eeOKJnYKp7fz444/nxhg/fnzMnz+/NuWdAAEC9S9QuSni+V+kj9ttYMTgU9JzjRi95+VF8eqit1NnfN8BveLozMtBgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgT2eIH+o9MJGrFAQ7KAcUPLU9fx/JwVsWp9gQdIpF4hSIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAqy3QcP3118fDDz8cjzzySLzxxhtx5JFH7tKnnVz3+uuvZ8dJxrvxxht3aRwXESBAYIcEpv0pYs3i9K6HXRiRPGGjCY/NVdXxg/tnFFzB5ScPKZiTIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECe5RAoQINy2dFrF/ZaBTjhvZJnauyuiYem7k0NSdIgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEC6QKst0HDnnXfm7vi8886LkpJd+1FzaWlpJNfX1NRkX7/73e9y4zohQIBAvQs8c336kGUdIkafl55rxOhvn3sz5i5flzrjqQfvFSMGdEvNCRIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgT1OoP+Ywre88IXCuXrODOvbOfp2bZc66qRpFalxQQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE0gVaZYGG2bNnx5w5c3J3/MEPfjB3visnH/rQh3KXzZgxIxYuXJhrOyFAgEC9CSyYHDH/ufThDvlIRPvu6blGiq7fVBU/mjgzdbbioogvnTQkNSdIgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgT2SIGuAyI69k6/9WSPQCMdRUVFMW5oeepsD82oiKrqmtScIAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECdQVaZYGGV155JXen7dq1i5EjR+bau3IyYsSISMapPV566aXaU+8ECBCoP4Fnbig81uEXFc41UuaWJ+dExeqNqbOdNWZAHFDeKTUnSIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE9kiBTGGE6D8m/dYXTEmPN1B0/LD0Ag0r1m2OqW+uaKBZDUuAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECg9Qm0ygINc+fOzX5SSfX3ffbZJ4qLd+82S0pKYtCgQblP/4033sidOyFAgEC9CKxeEvHK79OH2vfYiD7D03ONFF2V2ZBx3cOzUmdrU1ocnz/hwNScIAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ2KMF+o1Ov/0Fz0fU1KTnGiB61P69ol1Z+h6qidMqGmBGQxIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBonQLp37q18HtdvXp17g66du2aO9+dky3Hefvtt3dnKNcSIECgrsDkWyKqN9eNJ5EjPpMeb8To9Y++Hm9vqEyd8fwj94l+3dqn5gQJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMAeLdB/TPrtr8k8yOHthem5Boi2KyuJpEhD2jFpugINaS5iBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBNIEWmWBhg4dOuTutb6KKWxZ9KGkpCQ3vhMCBAjstkDlpojnf5E+TLeBEYNPSc81UrTi7Q1x8xNvpM7WqW1pXHr8Aak5QQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgsMcL9B9dmGDhlMK5BsiMG1qeOur0xatjwcr1qTlBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTyBVplgYbevXtn77KmpiYWLFgQyfvuHNXV1fHmm2/mhujVK72afK6DEwIECOyMwLQ/RaxZnH7FYRdGFDdtUZgfTZoZGzZXp67vomP3ix4d26TmBAkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwB4v0KFHRPd90xkWTE6PN1C0UIGGZLpJ0ysaaFbDEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGhdAq2yQMM+++yT+5RWr14dTz31VK69KydPP/10JOPUHnvvvXftqXcCBAjsvsAz16ePUdYhYvR56blGis5Ztjb+79l3C9RsOW3PTGGGT76vwCaSLTs6J0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECe7JA/zHpd9/IBRr6dWsfw/p2SV3LpGlLUuOCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjkC7TKAg1HHHFEdOjQIYqKirJ3e8011+Tf9U62try+TZs2cfTRR+/kCLoTIECggEDlxojyYRGl7ep2OOTsiPbd68YbMXLNA69FZXVN6oyfHXdAdGpbmpoTJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBP4h0H90OsXCqRHV1em5BoqOH1qeOvITry+PdZsqU3OCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAi8K9AqCzSUlZXFuHHjoqamJvu666674ne/+927d70TZ7/97W/jD3/4Q7bYQ1LwYezYsdG+ffudGEFXAgQIbEOgtG3EGT+O+OK0iBP+I6LrgHc7H37xu+dNcPb3haviTy8uTJ25f+apGh87YmBqTpAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDYQqD/mC0aW5xufDti+awtAg1/Om5YeoGGTZXV8eSs5Q2/ADMQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaOECrbJAQ/KZfO1rX8t+NElRhaRQwwUXXBC/+MUvdurjuummm2LChAnZ4gzJGMlRO+5ODaQzAQIEtifQoUfE+/414v9NjTj7toijPhfRZ/j2rmrQ/Pfvm1Fw/C+eODjalpYUzEsQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC/xDY65CIogLfsS+Y3KhMI/buFj07tkmdc+L0itS4IAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC7wq02gIN733ve+NDH/pQtjhDUqRh48aNceGFF8bxxx8fd911V6xbt+5dhS3Okvgf/vCHGDt2bFx00UXZ65J0MsYZZ5wRxx577Ba9nRIgQKCeBUpKI4afEXHSf9bzwDs33DOzl8dDM5amXjS4T6f44Kj+qTlBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYCuBNh0KP6ShkQs0lBQXxXFDem+1wHeaD2UKNNQ+xCa1gyABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABApH5JXDrPW655ZaYPn16vPrqq9kCC8kXiI8++mj2VVxcHEOGDIny8vLo1KlTrFmzJioqKmLGjBlRXV2dRUn6J4UZkveDDz44fvnLX7ZeLHdGgACBfwgkf/O+d9+Mgh6XnTQkkg0bDgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGAHBfqNjlj8ct3OjVygIVnA+KF94g9TFtRZy+K3N8Sri96Og/p1rZMTIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEDgHYFWXaAhKbxw3333xYc+9KF47rnnssUWkttOfnxcVVWVLdwwbdq03H8LSbz2SAoz1BZnOPLII+POO++Mzp0716a9EyBAoNUKTJxWEZPnrki9v1EDu8WJw/uk5gQJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBAgL9x0RMubVuMinaULkxorRt3VwDRY4Z3CtKMw9mqKx+d69U7VSTMnsGFGio1fBOgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoK5Acd1Q64r0798/Hn/88fjKV74SHTp0yBZnSO6wtgDDlne7ZSwp1pAUeLjiiivi0UcfjX79+m3Z1TkBAgRapUBVZvPF1ffNKHhvXzllaK7YTcFOEgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEC+QFKgITnaZB4Qs++xEe/714izb4v4/IsRJW3eyTXS/3ZpVxaH79sjdbaJ0ytS44IECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLwjULonQJSVlcV3vvOd+PKXvxw33nhj3H///fH000/H2rVr69x+UpThve99b5xyyinxyU9+Mrp27VqnjwABAgRaq8CfXlwQM5asTr294wb3jiP365maEyRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgS2IdB7aMS/PBvR88CI4qZ/ps64oeXx5OvL6yz4xfkrY+nqjdG7c9s6OQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBCL2iAINtR909+7d4/LLL8++qqqqYvHixfHWW2/F6tWro3PnztGjR4/Ya6+9oqSkpPYS7wQIENhjBDZVVscP7n+t4P1efvKQgjkJAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYBsCJZltWr2bz/fu44f1if/8y7Q6C66piXh4RkWcdeiAOjkBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgT2sAINW37gSRGG/v37Z19bxp0TIECgQQXWLotYPitiwBERRUUNOtXODn77s/Ni/or1qZedfkjfOLh/19ScIAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINCyBPbt1TGS1xvL1tZZ+KTpCjTUQREgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg8A+BYhIECBAg0IgCz/8i4hcnR9xwXMTU30Rs3tCIkxeeau3GyvjxpJmpHUqKi+JLJw1JzQkSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECLVNg3NDy1IU/NnNZbKqsTs0JEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIENjTBRRo2NP/C3D/BAg0nkDlpojnbnpnvkUvRvzxkogfDo+Y+O2Itxc23jpSZrr5iTdi2ZrM+lKOjxw2IPvUjJSUEAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINBCBcYXKNCwJvOQh+fmvNVC78qyCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDSsgAINDetrdAIECLwrMO1PEWsWv9tOztYtj3js+xEv35kfb8TWirWb4mePzE6dsW1pcfy/cQem5gQJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBlitw6KAe0bltaeoNTJxWkRoXJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQILCnCyjQsKf/F+D+CRBoPIFnfpY+V1mHiNHnpecaIXrdI6/H6szTL9KOCUcPir26tktLiREgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQItWKBN5qENxw7unXoHE6cviZqamtScIAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIE9WSC9BHorFZk+fXo8+eST8cILL8SyZcti5cqVsXHjxp2626Kiopg4ceJOXaMzAQIEYsHkiPnPpkMc8pGI9t3Tcw0cXbRqfdzy5JzUWTq3K41Ljts/NSdIgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQItHyBcUPL4y8vL6pzI3OXr4vZy9bG/r071ckJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIENiTBfaIAg133313fPe7341nny3w4+gd/C8gqQqfFGhwECBAYKcFnrmh8CWHX1Q418CZH02cGZsqq1Nn+UymOEO3Dm1Sc4IECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAPQqsXhLRtnNEmw71OOj2hxo7pHdmP1REZltUnWPStAoFGuqoCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECOzpAq26QENVVVVcfPHFcfPNN2c/5y0LLCTntUda0YXt5Wuv9U6AAIHtCqypiHjl9+nd9j02os/w9FwDR19fuiZ+9/z81Fl6dWobnzh6UGpOkAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIENgNgY2rIxZOjVgw+R+vKRFvZ76/P+c3EUPfvxsD7/ylPTP7A0YO6BYvzFtZ5+KJ05fEhcfuVycuQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGBPFmjVBRq+8IUvxC9+8Yvs51tbhKG28EJtO0nWxrb8D2F7+S37OidAgMA2BSbfElG9Ob3LEZ9JjzdC9Jr7X4uq6neL1Ww55efHHxAd2rTqfyK2vF3nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBLYrsGbNmnjmmWdi2bJl0b179xg5cmSUl5dv9zodCBAgUEfg+vdFrJhTJxwLMoUaGrlAQ7KI8UPLUws0PDdnRaxavzm6ti+ru1YRAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAnuoQHFrve9HHnkkfvrTn0ZSaCF5tWnTJq644oqYPn16bNiwIa8ow4MPPpiNLVy4MB544IH42te+lt1EUVu4Yfjw4fHCCy9EdXV1VFVVtVYy90WAQEMIVG6KeO6m9JG7DYwYfEp6roGjL89fFX95eVHqLAN7dIiPHJZZm4MAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAKxTYuHFjzJ49O/dat27dNu8y2WPw2c9+Nnr16hUnnXRSfOxjH4tTTz01+vfvHx/+8IdjwYIF27xekgABAnUE+o2qE8oGFkxOjzdwdNzQPqkzJA99eGzm0tScIAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIE9VaDVFmj4zne+k/1MkyILJSUl8ec//zm+9a1vxeDBg7PFGrb+wJMCDnvttVeMHz8+/uu//ivmzp0bl112WbbbtGnT4thjj43HHnts68u0CRAgsG2BaX+KWLM4vc9hF0YUl6TnGjj6vfumF5zhSydl/k6Wttp/HgretwQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgMCeIZA87OHAAw/MvoYNGxYrVqwoeOOVlZVx4oknxnXXXRebNm3KPgwi2YeQvJIHPPzxj3+MQw89NF5//fWCY0gQIECgjkD/MXVC2cDCKZF5gkx6rgGjw/p2jr5d26XOMGlaRWpckAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMCeKtAqf4G7du3amDhxYhQVFWVfF110UZxwwgk79RknBRu+973vxbXXXpvdWLF69er4p3/6p1iyZMlOjaMzAQJ7uMAzP0sHKOsQMfq89FwDR5+ctSzzhItlqbMM3atzfOCQfqk5QQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKtQeD3v/99rtDCGWecEf379y94W8kDHp544olsPtmDsOWRtJNCDck+gjPPPDNbsGHLvHMCBAgUFOg3Oj21YVXEW7PTcw0YTf6ejRtanjrDQzMqoqq6JjUnSIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGBPFGiVBRqefvrp7MaHZCNEcnzmM5/Z5c/24osvjrPOOit7ffLUjG984xu7PJYLCRDYwwQWTI6Y/2z6TR9ydkT77um5Bowmfxevum9GwRm+fMqQKC7O31hWsLMEAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRYmsHHjxpg8eXLugQ9JYYVCx6pVq+Kaa67J9k2+Z0te73vf++IrX/lKfOpTn4ouXbpkc8n106ZNi5/9rEDx9kITiBMgsOcK9B0RUVRg21ay16AJjvHD0gs0rFi3Oaa+uaIJVmRKAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAs1ToMA3fc1zsTu6qrlz5+a6du3aNQ4++OBcO+0k2YCxrePrX/96Np1stvj1r38dGzZs2FZ3OQIECLwj8MwNhSUOv7hwrgEz9/19Sbz45srUGQ4b1D2OH5K+4SL1AkECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECLUzg73//e2zatClbbCFZ+vHHH1/wDu68885YvXp1Np88Xf6KK66IRx99NL7zne/Ez3/+83jhhReiT58+uQIOScxBgACBHRJo2ymi97D0rgunpMcbOPre/XpF29L0rWQTp1U08OyGJ0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQINByBNK/VWs5609d6VtvvZWNJxskBg4cmNqntLQ0F99ewYVDDjkku6kiuSDp++STT+audUKAAIFUgTWZzQl//0NqKvY9NqLP8PRcA0arqmvi+/fPKDjDl08ZmnvCT8FOEgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgRasMDs2bNzq+/WrVv0798/19765A9/eOf7vuRhDv369YtvfvObeV0GDRoU3/72t3PFHl566aVYtGhRXh8NAgQIFBToPzo9tWByeryBo+3blMTRB/RKnWXSdAUaUmEECRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE9kiBVlmgobKyMvdhduzYMXe+5Unnzp1zmyQqKrb/JeLee++du3zGjMI/cM51ckKAwJ4tMPmWiKpN6QaHX5web+DoH6bMj1kVa1JnGTe0PA4b1CM1J0iAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgtQjUFlBIHviQFF0odCT7Dh577LFsgfOk78c+9rEoKSmp0/3ss8/Oi0+dOrVOHwECBAikChQq0LDopYjKAvsNUgeqv2CydyDtmL54dSxYuT4tJUaAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgjxNolQUaunbtmvsg16xJ/zFy8iSM2mPu3Lm1pwXfq6urc7mVK1fmzp0QIECgjkCyUeK5m+qEs4GuAyOGnJqea8Dohs1V8T8PzkydIbOfLC4/eUhqTpAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAaxJYu3Zt7naSBzsUOpJCC8l+g5qammyX0047LbVrMsagQYNyuTlz5uTOnRAgQGCbAv3HpKerNkZU/D0918DRQgUakmknTa9o4NkNT4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBlCLTKAg0DB2Z+AJ05ko0Sb731VuonMXTo0Fz8mWeeyZ2nnVRVVcXMmTOzT8ZI8m3btk3rJkaAAIF3BKb9KWLN4nSNwy+MKK77ZJ30zvUX/fUz8wo+zeLMEf1iWN8u9TeZkQgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0U4HaggvJ8jZv3lxwlU888UQuV1ZWFkceeWSuvfVJz549c6G33347d+6EAAEC2xQoHx5R2i69y4Ip6fEGjvbr1r7g/oFJ05Y08OyGJ0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQINAyBFplgYaDDjoop79w4cLsUy1ygX+cjBw5MnuWbL54/PHHI+lX6LjrrrvynozRt2/fQl3FCRAgEPHMz9IVSttHjPp4eq4Bo2s2VsZPH5qVOkNpcVF88cQhqTlBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAq1NoEuXdwqXJ3sFFi8uUHQ9c9MPPfRQ9taLiori0EMP3eaDHJKHPtQeWxaAqI15J0CAQKpASVlE3xGpqWiiAg3JYsYPLU9d0xOvL491mypTc4IECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE9iSBVlmgYdCgQbHXXnvlPsfnn38+d1578sEPfjB7mmymqKysjEsuuST7XpuvfZ89e3Z8/vOfj6Rf7XH00UfXnnonQIBAvsCCyRHzn82P1bZGfCSiQ4/aVqO93/jY7Hhr7abU+T56+MAY2LNDak6QAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQGsT2HvvvXO3tGjRoli6dGmuXXuyfv36ePDBB3P7BI477rjaVOr7ihUrcvFOnTrlzp0QIEBguwL9Rqd3SfYeNNExblh6gYZNldXx5KzlTbQq0xIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoPgKtskBDwjtu3Lic8l//+tfcee3JYYcdFu95z3tqm3HPPffEmDFj4sc//nHcf//92fZXv/rVGD16dPapGclTLpIiDccee2wMHDgwd50TAgQI5Ak8c0NeM69x+MV5zcZoLF+zMX7+6OzUqdqXlcTnxh2QmhMkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0BoFRo0alb2t5Pv/ZB/Ar371qzq3+Zvf/CbWrVuXzSfJ448/vk6f2sDmzZtj/vz5uWIOffv2rU15J0CAwPYF+o9J77N0esTG1em5Bo6O2Ltb9OjYJnWWidMrUuOCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBPYkgVZboOFDH/pQ7nO84447chsncsHMyU9+8pNcM9l48fLLL8cXvvCFOPXUU+PMM8+Mq6++Ot5+++1cn7KysrjqqqtybScECBDIE9i4JmL6PXmhXGPQMRF9hueajXXy04dej7WbqlKn++T7BkV5l3apOUECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECrVEgeSDDIYcckr21ZJ/AN7/5zXj00Udzt/riiy/G17/+9VzBhR49esTYsWNz+a1PXnnlldi0aVNuT8IBBxywdRdtAgQIFBboP7pAriZi0YsFcg0bLikuirFDeqdO8lCmQEPyt9NBgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYE8WKG6tN//+978/Ro8eHcOHD49OnTrFk08+WedWjznmmLj22muz8eTpGLVPyEi+SKz9MrE2lhRnuOGGG+Lwww+vM44AAQIEsgJtO0V89vmI474S0XGrzQpHfKbRkeavWBe/enpu6rxd25fFRcfun5oTJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINCaBS699NLsnoBkP8CaNWvi+OOPj4MOOihGjhwZhx12WCxdujSX/9SnPhWlpaUFOR544IFcrm3bttk9CrmAEwIECGxPoMd+Ee26pfdaMDk93gjR8UP7pM6y+O0N8eqit1NzggQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgT2FIFWW6Ah2fjw/PPPx8svv5x9HX300amf6cUXXxwPPvhgjBgxIleUobZjbaGG9773vfHwww/H+eefX5vyToAAgXSBLn0jjv+3iH/9e8Q/3RDRb1RE14ERQ05N79+A0f99cGZsqqpOneGSsftHUqTBQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGBPE7jwwgvjqKOOyhVhSPYGTJs2LV566aWorKzMcfTt2ze++tWv5tppJ3feeWc2nBR7OPTQQyN5+IODAAECOyyQ+dsR/cekd2/CAg3HDO4VpcWZtaUck6ZVpESFCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECOw5AoUf87DnGGSfhjFlypSYOXNmPP3007FkyZLsRoy99toruylj//09ZX4P+s/BrRKoH4HSthEjPhJxyNkRa5dFFJfUz7g7OMrMJavj91Pmp/bu06VtXPDeQak5QQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKtXSAppnDPPffEGWecEY8//njudpN47YMc+vTpE3fffXd069Ytl9/6ZOrUqdkHRyTXJceJJ564dRdtAgQIbF+g/+iI1yfW7ffmsxHVmYcyFDf+83e6tCuLw/ftEU++vrzOuiZOr4jPjT+wTlyAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwJ4ioEDDFp/0gQceGMnLQYAAgXoTSDZjdepdb8Pt6EDfv39GVNek9/78+MHRvk3jFoxIX4koAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgaYRSAovPProo3HHHXfEnXfeGa+99lqsX78++vXrly208JnPfCa6d+++zcV9//vfz+aTog7JceaZZ2bf/Q8BAgR2SqD/mPTuqxe9U7jhwKYp/jJuaHlqgYYX56+Mpas3Ru/OmQdXOAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjsgQIKNOyBH7pbJkCgdQu8MG9F3Pf3Jak3uW+vjnHWoXun5gQJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI7GkCZ511ViSvXTmuu+66+OlPf5q7tGvXrrlzJwQIENhhgQFHRBSXRVRvrnvJczdFNGGBhv/8y7Q6a0pq0jw8oyKz92BAnZwAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgT1BoLg13uTtt98ePXr0yL3uu+++1nib7okAAQJ1BJKn83zvbzPqxGsDXzxxcJSVtMo//bW36J0AAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAowh07tw5kqIMta9GmdQkBAi0PoEOPSKGfSD9vl77W8TKeem5Bo7u17tTJA+BSDsmTa9IC4sRIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ2CMEWuWvdOfOnRsrV67MviorK+OEE07YIz5MN0mAAIHHZy2Lp2YvT4U4qF+XeP97+qbmBAkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEmEjjs0+kTl7SJWDAlPdcI0XFDy1NneWzmsthUWZ2aEyRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQ2gVaZYGGdu3aZT+3oqKi2GeffaKkpKS1f47ujwABAlFdXRPf+9uMghJfPmVoFBcXFcxLECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAk0gsM9REb2HvTtx930jTvrPiC9Njzjog+/GG/lsfIECDWs2VsZzc95q5NWYjgABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDzEChtHsuo31X07fvuE+Lbtm1bv4MbjQABArUCNTURmUIwzeW495XF8fKCVanLOXK/HnHsgb1Sc4IECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECGxf4L777ovHH388li1bFt27d48xY8bE6aefHvYlbN9ODwIEtiOQ7D044qKImQ9GHPapiP2Oj8wTGLZzUcOnDx3UIzq3LY3VmYIMWx8Tp1XE0QfYh7C1izYBAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDrF2iVBRoOOOCA7CdXk/nx9IIFC1r/p+gOCRBoGoFXfh/x3I2ZTRIXRww9PaKkrGnWkZm1sqo6fnD/jILzf/mUoZlaEs2nmETBhUoQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaGCBZB9BUmyh9jj55JOjf//+tc067zNnzox//ud/jldeeaVOLnmAxI033hinnHJKnZwAAQIEdkrg0E9GJK9mdLQpLY5jB/eOv7y8qM6qJk5fEt84fZi9CHVkBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBFq7QNOXWm8A4eQpFfvuu2925IqKitRNEg0wrSEJENjTBJ75WcS8pyLumBDxvyMiHv1+xNplTaJw5+T5MXvZ2tS5TxzeJ0YP7J6aEyRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCwpwn85Cc/iQsvvDD7uuyyy6J798LfpSV7Do477rjsvoPkIRHJq/ZIzhcuXBhnnHFG3HPPPbVh7wQIEGhVAuOGlqfez9zl6wruU0i9QJAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAKxFolQUaks9mwoQJuY/oO9/5Tu7cCQECBOpFYMGUiPnPvjvU2wsiJn074prhEVN/8268Ec42bK6K/3lwZupMRUURl588JDUnSIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGBPFLj77rtzhRY++tGPRocOHQoyJAUcFi9enM0XJV++ZY4tCzUkscrKyuwehbfeeiub9z8ECBBoTQJjh/SOf/z5q3Nbk6ZV1IkJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGjtAq22QMPll18ew4YNy26M+L//+79InoDhIECAQL0JPHtD+lBVGyP6jkzPNVD0l0/NicVvb0gd/UOj9o7BfTqn5gQJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI7GkCK1eujBkzZmR+bPxOsYXTTz+9IMHcuXPjN7/5TbZvUpShXbt2ccUVV8S9994bt912Wxx22GG5Qg8rVqyIq6++uuBYEgQIEGipAj07tY2RA7qlLn/i9CWpcUECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECrVmg1RZoSDZGJJsiBg8enN0Q8fnPfz4+/vGPx+zZs1vz5+neCBBoDIE1mSdAvPL79Jn2PTaiz/D0XANEN2yuiusefj115LKSovjCCQem5gQJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI7IkCf//737N7CJKCC8lx1FFHFWT49a9/HdXV1dn+SUGHpP2tb30rTj755Dj33HPjscceizFjxmSvT8b71a9+VXAsCQIECLRkgfFDy1OX/9ycFbFq/ebUnCABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB1ipQ2lpv7Je//GX21v7lX/4l/vu//zuWLFkSt99+e/aVPMXi8MMPj3333Te6dOkSZWVlO8Vw/vnn71R/nQkQaGUCk2+JqNqUflOHX5web6Dok68vixXr0jc7nHvEPjGgR4cGmtmwBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBFqewBtvvJFbdN++faNr16659tYn99xzTzaUFGcYMWJEfPCDH8zr0qZNm/j2t78dp512Wja+cOHCeO2117IPksjrqEGAAIEWLjBuaJ/4/v2v1bmLquqaeGzm0jj9kH51cgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEWqtAqy3QMGHChEg2SdQeyXntEzCeffbZeO6552pTO/2uQMNOk7mAQOsRqMoUQ3jupvT76TowYsip6bkGik6cVpE6coc2JfHZcQek5gQJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI7KkCy5Yty956soegV69eBRnWrFkTzz//fG7fwUc+8pHUvieccEK0a9cuNmzYkM2/9NJLCjSkSgkSIFBvApvXR5S1r7fhdmSgYX07R9+u7WLRqnf+1m15zaTMvgUFGrYUcU6AAAECBAgQIECAAAECBAgQIECAAAECBAgQINDaBYpb+w3WFmVI7jPZYFH7StpJbkdftf2TdwcBAnuwwKt3R6xZnA5w+IURxSXpuQaIJn+/Jk1PL9Bw8kF7Ra9ObRtgVkMSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaLkC69atyy2+Y8eOufOtT5IHP1RWVuYeBHHKKads3SXbLi0tjf322y+XW7y4wHeJuR5OCBAgsAsCmzJ/u6bcFvGz4yL+9LldGGD3Lkn2W40bWp46yEMzKqKquiY1J0iAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgNQq06gINtcUZChVh2JkPtHasnblGXwIEWqHAMz9Lv6nSzNMpRn08PddA0emLV6c+nSKZrtDGiAZaimEJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQItAiBpKBC7bF+feYp9AWOxx57LJfp0qVLjBgxItfe+iTJ1x6rV6+uPfVOgACB3RdY+lrEvV+NuGZopjDDZyMWTY3IPlhi6e6PvZMjFNqHsGLd5pj65oqdHE13AgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAi1X4N2dBy33HlJXfvPNN6fGBQkQILDLAgumRMx/Nv3yER+J6NAjPddA0UnTK1JHLikuimMH907NCRIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDYkwW6du2avf3kIQ1vvvlmQYqJEydmc8lT44866qiC/ZLEloUeSkpKttlXkgABAjssMO/piF+cXLd71aaIF26LOOaLdXMNGDlq/17RtrQ4NlZW15ll4rSKGLNP4+6ZqLMIAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKNJNBqCzRccMEFjURoGgIE9hiBZ28ofKuHX1w410CZQgUaDt2ne3RtX9ZAsxqWAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQMsVOOCAA3KLf+utt2LGjBkxZMiQXCw5WbJkSTz55JORFGdIjrFjx2bfC/3P8uXLc6kuXbrkzp0QIEBgtwT2Piyi68CIVfPqDjM58+Caoz8fUdx4RWHatymJow/oFWl7FZLYl08ZWnedIgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgRaoUBxK7wnt0SAAIH6F1hTEfHK79PHHXRMRJ/h6bkGir61dlNMmbcidfTxw8pT44IECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE9nSB0aNHR3Fxca74wo9+9KM6JD/5yU+iuro6ampqsrnx48fX6VMbWL16dSxYsCA33sCBmR9TOwgQIFAfAknxhUMnpI+0MlO0YdaD6bkGjI4bmr4fYfrizN/ClesbcGZDEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGg+Ago0NJ/PwkoIEGjOApNviajalL7CIz6THm/A6MMzKjIbwtInKLQhIr23KAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIE9R6B79+4xbty4bPGFpADD9ddfH9/61rdi6dKlsXLlykiKM1x11VW5ggsHHHBAJEUdCh1TpkzJjZX0OfDAAwt1FSdAgMDOC4w6P6K4LP26525KjzdgdFv7ESZNzzz4wkGAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgDxBQoGEP+JDdIgECuylQtTmi0MaGrpkn4Aw5dTcn2PnLC21sGNijQ+zfu9POD+gKAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAnuIwFe+8pXsnRYVFWWLK1x55ZWx1157Rc+ePePzn/98VFZWZuNJ/otf/OI2Ve65555cvlu3bgo05DScECBQLwKdekcMPzN9qJn3R6yYk55roGi/bu1jWN8uqaNPmrYkNS5IgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoLUJKNDQ2j5R90OAQP0LvHp3xJrF6eMe/unM0ypK0nMNFN1cVR2PvLY0dfTkaRXJRjEHAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLpAuPHj49/+Zd/yRVhSHrV1NTkXrXftx155JHx6U9nvg/cxnHnnXdmv59Lrjn66KO30VOKAAECuyhwWKG/QzURk2/ZxUF3/bLxmX0JaccTry+PdZsq01JiBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBFqVgAINrerjdDMECDSIwDM/Sx+2tH3EqPPScw0YfX7Oili9IX1TQ1KgwUGAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwLYFfvzjH8fXv/71KC0tzRZm2LJ3UqzhxBNPjD/96U9RUlK4WPs999wTc+fOzV1/6qmnbjmMcwIECNSPwMAjI8qHp4815ZcRlRvTcw0UPb7AvoRNldXxxKzlDTSrYQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0H4HS5rOU+l3JvHnz6nfALUYbOHDgFi2nBAi0aoEFUyLmP5t+iyM+EtGhR3quAaMPzahIHb1Dm5I4Yr/GX0/qYgQJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINHOBb3/723HJJZfE3XffHa+99lqsX78++vXrly3O8N73vne7q//b3/4WI0aMyPU744wzcudOCBAgUG8CRUURh30q4i9fqjvkukxBhFf/FHHIWXVzDRQZOaBb9OjYJt5au6nODL98ak6cOLxPnbgAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgdYk0GoLNAwaNCiKki8o6/lIxqysTH9yfT1PZTgCBJqDwLM3FF7F4RcVzjVgZuK0JamjH3Ngr2hbWvgJPqkXCRIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDYgwWSggxJkYZdOX7yk5/symWuIUCAwM4LHJJ5gMQD34zYtKbutc/d2KgFGkqKi2LskN7xhykL6qzlsZnL4pnZyzMPl+hZJydAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoLUIFLeWGyl0HzU1NVHfr0JziRMg0MoE1lREvPL79JsadExEn4PScw0Ynbt8bby+dG3qDOOGlqfGBQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEWLNC2c6YIQ6ZIQ9rx5tMRi19JyzRY7EOj9i449g/ufy27V6tgBwkCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECLVyg1Rdo2JXPp6ioKLZ87coYriFAoBUITL4lompT+o0c8Zn0eANHJ03PFI0ocBw/RIGGAjTCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgZQsc9qnC63/+psK5BsgcfUDPOGxQ99SRn53zVjw6c1lqTpAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAaxAobQ03kXYPF1xwQVp4m7F169bF0qVLY8qUKfH2229n+yaFGvbbb7845phjtnmtJAECrUyganPEcwU2MHQdGDHk1Ca54UIFGg7Zu2uUd2nXJGsyKQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINDAAn0Oihj43oh5T9Wd6KXfRZxwZUS7LnVzDRBJ9lN96aQhcc4NT6eO/oP7Z8SxB/bKPiAntYMgAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRYs0GoLNNx88827/LHU1NTEX//61/iP//iPmDx5crzxxhvxkY98JP7rv/5rl8d0IQECLUxg8/qIQ86OmHJrxIZV+Ys//NMRxSX5sUZordlYGc/Mfit1puOHlKfGBQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ2HGBmTNnxtNPPx3z5s2LFStWxOrVq6Nz587RvXv32GeffeLII4+MAw44YMcH1JMAAQL1KXBYZr9CWoGGTWsiXvptxOEX1uds2xzryP16xjGZIgyPzVxWp99L81fF/a8uiZMP2qtOToAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBASxcobek30BDrT6q8v//974+TTz45Lrzwwrj11lvju9/9blRVVWXfG2JOYxIg0MwEkqdKnPTtiLFfzWxiyDxp4pmfRSydFlHaPmLUeU2y2Mczmxo2VVWnzj1+mAINqTCCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBLYjsHjx4rjuuuvi5z//eSxZsmQ7vSP69u2b3Utw8cUXx157+fHxdsF0IECg/gSGfSCiQ6+IdXWLIsTzv4hICjhk9j011vHFEwenFmhI5r/m/tfixGF9ori48dbTWPdtHgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgT1boHjPvv1t331paWnceOONccQRR0RNTU1cffXVcf/992/7IlkCBFqXQJuOEYd+IuLSpyIu+HPEyf+V2ezQo0nucdL09M1gvTq1jYP7dW2SNZmUAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQEsWuOGGG+LAAw+M//zP/4ykUEOyN6D2teV91caS94ULF8a3vvWtGDx4cLaow5b9nBMgQKBBBUrbRow+P32Kilcj5mX2NjTiMWpg9zihwAMlZixZHX9+aWEjrsZUBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBBpHQIGG7TiXlJRkN1bUdvva175We+qdAIE9SSB5wsS+x2aeNvGpJrnr6uqaeGjG0tS5xw3t7YkTqTKCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAoLXHjhhXHJJZfE2rVrs0UZijLfCSav2mPLogy1sdo+SW7NmjXxmc98Ji666KLatHcCBAg0vMCYCZk53v1blTfhczflNRuj8cUThxSc5n8enBmVVdUF8xIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEWqJAaUtcdGOvedy4cdG5c+dYvXp1TJ06NaZPnx5Dhw5t7GWYjwCBPVjglYWrYunqjakC44b2SY0LEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCQLnDFFVfETTe980PmpOhCbTGGvffeO44//vgYMWJE9OrVKzp27Jgt4LBs2bJ48cUX4+GHH44333wzV8ghuS4Zp0+fPvHtb387fTJRAgQI1KdA930iBp8c8drf6o766t0Ra74T0am8bq6BIsP7dYn3H9I3/vLSojozvLFsbfxhyoI4+7ABdXICBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBFqqgAINO/DJlZSUxKBBg+Lll1/O9n722WcVaNgBN10IEKg/gUnTK1IHKyspivcd2Cs1J0iAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQF2Bv//973HVVVflFVl4z3veE1dffXWceOKJuXjdK9+J3H///fHlL385XnrppWzfpEhDMt4555wTBx10UKHLxAkQIFB/Aod9Or1AQ/XmiCm/jDj2svqbawdG+tcTBse9Ly+K6pq6nf934sw4c1S/aFtaUjcpQoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKAFChS3wDU3yZLbtm2bm3fRoroV33NJJwQIEGgAgUIFGo7cr2d0aqvWTgOQG5IAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKCVCnzjG9+Iqqqq3N2df/75MWXKlDjppJO2W5whuSjpl/S/4IILIinOUFRUlB3vm9/8Zm5MJwQIEGhQgf3HR3TbJ32KybdEVL/7Ny69U/1GDyjvFP80au/UQResXB+/e+7N1JwgAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgZYooEDDDn5q8+bNy/UsLfVj6ByGEwIEGlyg4u0N8dL8VanzjBtanhoXJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgrsCGDRvib3/7W64Qw/ve97645ZZboqRk557sXlxcHDfffHMcc8wx2SINSaGGe++9N5LxHQQIEGhwgczfoDj0k3Wn6dQnYsRHIyo31s01cOQLJxwYpcVFqbP8eNKsWL+pcYtGpC5EkAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEA9CCjQsAOIjzzySFRUVOR6lpf7QXQOwwkBAg0u8PCMpQXnUKChII0EAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgToCjz/+eLaIQlJQITm+973v1emzM4Grrroq1z0pzpCM7yBAgECjCIz6eERJm3emGnRMxFm3RPzr3yPGfT2iTYdGWcKWkwzo0SE+ctiALUO584rVG+NXT8/NtZ0QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaMkCCjRs59Nbvnx5XHrppbmnZyTdDz/88O1cJU2AAIH6E5g4fUnqYPv37hj79OyYmhMkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKCuwJtvvpkL9u7dO4444ohce1dOjjzyyNjyIQ9bjr8r47mGAAECOyzQsVfEB34UcekzERPuiTjonzIFG8p2+PKG6Pi5cQdGm9L07WjXPfJ6rNlY2RDTGpMAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAowqkfyPWqEtonpOtXLkyfv7zn8fIkSNj+vTp2UUWFRXFQQcdFEOGDGmei7YqAgR2T+Cpn0ZM+q+I6X+NeHvR7o1VT1dvrKyKx2YuSx1t/LA+qXFBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTSBSoqKrKJ5Pv/AQPSn/SefmXh6JbjLF26tHBHGQIECNS3wMiPRpQPre9Rd3m8vbq2i/OO3Cf1+rfWboqbH38jNSdIgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoCUJlLakxe7MWseNG7cz3XN9169fH0uWLIl58+ZFTU1N9pVszEjOk/fvfve7ub5OCBBoZQJTfhmx9J2CLNk765QpgNBvVMThF0UcML5JbvbZN96KdZuqUuc+fkh5alyQAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIF0gXbt2uUS69aty53vzkmyz6D2aNu2be2pdwIECOyRApeM3T9uf3Ze6l6HGx6bHee/d1B07VC2R9q4aQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgdYh0GoLNDz88MPZggq78jElxRhqj9riDEn7yiuvjNNOO6025Z0AgdYksHFNxLLX8u9ozZKI1/4W8Z6z8uON2Jo47Z0n+Gw9Zed2pXHooO5bh7UJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIENiGQHn5O0XQk30Bc+bMiaRIQ4cOHbZxxbZTyfVvvPHuE+Frx9/2VbIECBBovQK9OrWNTxw9KH760Ot1bnL1hsq44bHX4/KTh9bJCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoKQLFLWWhjbnOpChD8kqOZFNG//79484774wrrriiMZdhLgIEGlNg8cuZ/8NXp8/Yb1R6vIGjyd+fSdPTCzQcN7h3lJX4E97AH4HhCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEWpnA8OHDs3eU7AnYsGFD/Pa3v92tO0yuX79+fW6Mgw46KHfuhAABAnuqwEXH7B/JgyfSjpufmBPL1mxMS4kRIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaBECrfrXvcmPm3f21bZt2+jdu3cceuihcfHFF8fdd9+dfWrGhz70oRbxgVokAQK7KLDwhfQL23aN6LFfeq6Bo68vXRvz3lqXOsu4oe882Sc1KUiAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQKrAiBEjol+/ftlcsp/gK1/5SsyfPz+17/aCCxYsyF5f+wCIZNxDDjlke5fJEyBAoNULdO1QFhcdk77XYt2mqrju4ddbvYEbJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaL0C6aXKW8H9VldXt4K7cAsECDSawKKp6VP1GxGReXpOUxyTpi9JnTZZztghCjSk4ggSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ2I7AhAkT4r//+78zXwMWxbJly+J973tf/P73v48xY8Zs58p30y+88EJ8+MMfzl6fRJOxknEdzUNg+fLl8cQTT8Trr78ea9eujY4dO8b+++8fRx99dPTs2bN5LNIqCLRygU+8b9+4+ck58dbaTXXu9Lan58anj9k3+nZtXycnQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKC5CxQ39wVaHwECBBpFYOEL6dP0G5Ueb4TopOkVqbOMGtAtenRsk5oTJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBg2wJf/epXo3fv3tlOSWGFefPmxZFHHhkXXHBBPPzww1FZWZk6QBJP8kkhhsMPPzzmzJmTLcyQdC4vL49k3KY6FixYEHfddVd2DePGjYsuXbpk15bcX/IaNGhQoy5t7NixefPXrmNH32+55ZZdWu+LL74YZ555ZvbzSN6/+MUvxje+8Y3se9Lu06dPNv/SSy/t0vguItDiBKo2R/z9jxEbVjX60ju1LY1Ljts/dd5NldXxk0mzUnOCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBJq7QGlzX6D1ESBAoMEFNq6OWDYzfZq+I9PjDRxdtX5zPDdnReos44f1SY0LEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCwfYFOnTrF7373uzj11FNj48aN2UICVVVV8atf/Sr7Kisri6FDh0avXr2iY8eOsXbt2li+fHlMnz49Nm1650nwNTU12euS93bt2mXHS/o25vHEE0/ED37wg3jmmWdi4cKFjTl1s5zrf//3f+Oyyy4rWGAjWXTyOf/pT3+Kv/71r3HNNdfE5z73uWZ5LxZFYLcFVi2ImHJrxOTMa83iiFO/F3HExbs97M4OcN5794mfPzY7KlZvrHPpb597My4+dv8Y2LNDnZwAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgeYsoEBDc/50rI0AgcYRWJQ8HaUmfa5+o9LjDRx99LWlUVWdvqZxQ8sbeHbDEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGjdAscdd1zccccdcd5558XKlSuzxRaSO04KLiRFGF566aVcrDZeK1JUVJQrztCtW7dsUYdjjjmmNt1o788991zcddddjTZfc54oKbbwpS99qc4S+/btG/369csWsFi0aFEuX1lZGf/v//2/7OedvDsItBqBuU9GPPXTiBn3Zv6gVb17W8/dFHH4RZH54/VurBHO2pWVxOfGHRDfuPvvdWarzOyJ+N+JM+MHZ4+okxMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0JwFFGhozp+OtREg0DgCC19In6ddt4jug9JzDRx9aHpF6gx9u7aLoXt1Ts0JEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCw4wLvf//7s4UYLrnkkvjrX/+a/bF+cnVSgGHrozaWFHBIXkn7Ax/4QFx77bXRv3//rbs3ebtTp06xZs2aJl9H7QIeeOCB2tMdej/ooIN2qF/S6cknn4wvf/nLef3Hjh0bP/jBD2L06NG5+PPPPx+XXXZZPPLII7lYUtThyCOPjMMPPzwXc0KgRQu8Pili+j11b2HZjIg5j0fs2/jFZD5y2MC4/pHZsWDl+jrruuuF+XHJ2P3igHL7IOrgCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDRbAQUamu1HY2EECDSawKKp6VP1G9noT49IFlKVeUrEQzPSCzSMG1qeuiEs/QZECRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDYlsDee+8df/7zn+O1116Lm266Kfvj/alTp8amTZvqXNamTZsYNWpUHHfccfGpT30qDjzwwDp9miLQuXPnGDNmTBx22GHZQgPJ+xtvvBHHH398Uywndc4TTjghNV4fwcsvvzyqqqpyQyWFM+68885IPq8tj0MPPTTuv//++NCHPhR/+ctfsqnKyspIrt+yaMOW1zgn0OIExkyIeOwHETXVdZf+/E1NUqChTWlxfP6EA+PLd75UZ02Z7RHxwwdnxk8/9m4xlTqdBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0M4FWW6DhpZdeig9+8IM57ptvvjm7SSIX2MGThx9+OD75yU9meydPwLj33ntj8ODBO3i1bgQItAiBhS+kL7PfqPR4A0envrkiVqzbnDrL+GHlqXFBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgR2XSDZB3DVVVdlB0iKMyxevDhWrFgRa9asiU6dOkX37t2jb9++UVZWtuuT1POVSSGCk046KYYOHRrFxcV5oycFGvaEI9nD8eSTT+ZutWfPntlCG1sXZ6jtkMR/8YtfxPDhw2P58uXZ8KOPPhoPPPBAnHjiibXdvBNouQJd944YfGrEjHeKkOTdyLQ/R6xeHNF5r7xwYzQ+NKp/XP/w6zF72do60/3lpUVx6dhVcVC/rnVyAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSao0D+N/TNcYW7uKbrrrsu5syZk3116NBhl4ozJFOPHTs22rZtmxvrZz/72S6uyGUECDRLgQ2rIpbPSl9a35Hp8QaOTppekTpD28xTJd67X6/UnCABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAvUjkPyIf+DAgTFixIg4+uijs+9JO604w8SJE6OkpCT7Ki1t3Gdk7L///tlCA1sXZ6gfhZYxyo033pi30H/5l3+J3r1758W2bpSXl8ell16aF956nLykBoGWJnDYOw+iqbPs6sqIKbfVCTdGoLSkOL5wYuEH4vzwgdcaYxnmIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFAvAq22QMPdd9+dBSoqKoqPf/zju4V1/vnnZ6+vqamJu+66a7fGcjEBAs1MYNFLhRfUb1ThXANmJk5LL9Bw9AG9on2bkgac2dAECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECOysQLKXoPa1s9fqv+sCGzdujPvuuy9vgE9+ssAP0/N6RWzd7957741NmzZt1UuTQAsV2G9cRPd90xc/+eaIqkyhhiY4Tn9P3xi6V+fUmR/M7JOYMm9Fak6QAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQHMTaJUFGqZNmxaLFy/OWZ955pm581052fL6uXPnxhtvvLErw7iGAIHmKLDwhfRVte8R0W1geq4BowtXro/pi1enzjBuaHlqXJAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJ7msDDDz8ca9euzd32kCFDYp999sm1t3UyaNCgOPDAA3NdVq9eHY888kiu7YRAixYozmwHO+xT6bfw9oKI1/6WnmvgaHFxUXzxxMEFZ7nm/tcK5iQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINCeBVlmg4dVXX80Zd+rUKYYNG5Zr78pJcn0yTu3xyiuv1J56J0CgpQssmpp+B/1GRhQVpecaMDppekXB0Y9XoKGgjQQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAnuWwNSpU/Nu+Kijjsprb69x9NFH53XZery8pAaBliYw8tyIkrbpq37+pvR4I0RPHN4nRuzdNXWmx2cti6deX56aEyRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQnARaZYGGBQsy1d4zR1Hmx9UDBgzYbe9knIEDB+bGmTdvXu7cCQECLVxg4QvpN9BvVHq8gaOFCjQM3atz9O/WvoFnNzwBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQaRmDVqlXx0ksvxaOPPhpTpkyJuXPnRlVV1S5PNm3atLxrhw8fntfeXmPr/luPt73r5Qk0a4EOPSIO/nD6El+fFLH89fRcA0eTPVhfOmlIwVl+cP+MqKmpKZiXIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINAcBFplgYY1a9bkbLt06ZI7352Tzp075y5fvXp17twJAQItWGD9yoi3ZqffQBMUaFi/qSqeyDwRIu0YN7Q8LSxGgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBZi8watSo6NGjR4wYMSKOO+64GDNmTAwaNCi6desWp5xySvz85z+PjRs37tR9zJgxI6//zj7AY+v+W4+XN7gGgZYocNinCq/6+V8UzjVw5pgDe8XhgzIFJFKO5+euiEdeW5qSESJAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQfARaZYGGLYsprFixol60V65cmRunTZs2uXMnBAi0YIFFLxZefN+RhXMNlHlq9rLYWFmdOvr4YQo0pMIIEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQ7AWmTp0a1dV1vwtNHsBx3333xUUXXZQt2HDHHXfs8L1UVFTk9d17773z2ttr9O/fP6/L1uPlJTUItESB/mMi+o5IX/kLv4rYvD4918DRoqKi+NJJgwvO8oP7X4uampqCeQkCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECTS1Q2tQLaIj5e/XqlR02+bLuzTffjM2bN0dZWdkuT7Vp06bsOLUD9O7du/bUOwECLVlg4Qvpq++Q+RvSdec276QPtHPRidPyNxDVXt29Q1mMHNC9tumdAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECrU5g8eLFcfbZZ8dll10WV1999XbvLynusOXRsWPHLZvbPd+6/9bjbXeAAh2SQg9Lly4tkE0Pz5o1Kz0hSmB3BDKFEOLQT0X8+f/VHWXDyoi/3xUx8mN1c40QOWK/nnHMgb3isZnL6sz28oJVcd/fl8QpB+9VJydAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoDkItMoCDfvvv3/Odv369fHII4/ECSeckIvt7Ely/bp163KX7bPPPrlzJwQItGCBRVPTF99vZESyUaERj6SgzEPT0ws0jB1SHiXFjbueRrx1UxEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0AoF2rVrFyeeeGKceuqpMXLkyDjggAOiW7dusXHjxkiKGDz11FNx++23x1//+tdIvi+tPb7//e9Hz54946tf/WptKPV964IKyXw7c7Rv3z6v+9bj5SV3onHttdfGlVdeuRNX6EqgAQXe888R938jYuOqupM8d2OTFWhIFnPZSUNSCzQkuWsemBEnDu9jr0SC4SBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGh2AsXNbkX1sKBDDz00unbtmvl99Ts/aP7Od76zW6N+97vfzV2fPEHhve99b67thACBFiyw8IX0xfcblR5vwOj0xatj4aoNqTOMG1qeGhckQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAcxT44he/GPPnz48//elPcckll2T3WfTu3TvKysqiU6dOsd9++8W5554b99xzTzz66KPRv3//vNv4t3/7t3jxxRfzYls3NmzI/361TZs2W3fZZrtt27Z5+eQBIA4CrU6gTcfCRRgWTI4otG+iESBGDOiWLcKQNtVrS9bEPS8tTEuJESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGhygVZZoKG4uDhOO+207BMWkqcsPPzww/HDH/5wl7CvueaaeOihh7LFHpKCDyeffHJ2w8AuDeYiAgSaj8D6lREr5qSvpwkKNEyaXpG6lpLiojh2cO/UnCABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSao8AZZ5wRPXv23KGlve9978vu6+jVq1euf7LX44orrsi1007atWuXF960aVNee3uNjRs35nXZery8pAaBlixw6CcLr/65mwrnGiHzpZMGZ/ZkpU/0wwdei81V1elJUQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJNKFDahHM36NRf//rX47e//W2uSMPll18eK1asiG9+85tRUlKy3bmrqqriP/7jP+I73/lOtjhD8uV/UvjhG9/4xnav1YEAgRYg0L5bxOWzIxa98M4TIRZOzbxnXm/Pj+g7Mhr7KFSg4dB9ukfX9mWNvRzzESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoNEEDjjggLj66qvjE5/4RG7Ov/71r/HWW29Fjx49crEtTzp16hTr1q3LhTZs2JA735GT9evX53VLxquP49JLL42zzjprp4aaNWtWfPCDH9ypa3QmsMMCvQdH7HtsxBuP1r3k5TsjTvp2RPvudXONEBm6V5c4/ZB+8ecXF9aZbc7ydfGHKfPjI4cNrJMTIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINCUAq22QMPw4cPjoosuiuuvvz5bYKG6ujr+67/+K26//fZIvgw/9dRTY+jQoXXsp0+fHsmX/Nddd13Mnj07W+ChKFOqPXl96lOfikMOOaTONQIECLRQgY6ZJ7YccMI7r9pbWLM0omOv2lajvL+1dlNMmbcida7xw8pT44IECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoTQLnn39+fPnLX46lSzPf2WaOZJ/Hgw8+GGeffXbqbSYFFSoqKnK5tWvX5s535GTr/vVVoKG8vDySl4NAsxI49FPpBRoqM4VKXvy/iCMvabLl/usJB8ZfXloY1TV1l/CjiZniJaP6R9vS7T+Mp+7VIgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQaRqC4YYZtHqP+6Ec/imOOOSZXZKGmpiZef/31uOyyy+Kggw6KLl26xH777ZctupC8J+0kfvnll2f7Jf2TwgzJ+3HHHRc//elPm8eNWQUBAg0n0Kl3ZP6P33Djp4z8yGsVmb8zKYlMaNzQPukJUQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLQigeLi4hg7dmzeHc2YMSOvvWVj6yII8+fP3zK93fMFCxbk9dl6vLykBoGWLjD0/RGd9kq/i+duioKbFtKvqNfofr07xYdH75065oKV6+P/nn0zNSdIgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoKkESptq4saYt7S0NP785z/HhAkT4o9//GO22EIyb1JwITnWrFmTfWUbW/1PUpghOZK+//zP/xw33XRTJOM5CBAgUN8CE6e9+1SXLcce2KND7N+745Yh5wQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIbEfg0Ucf3U6P+ku/+OKL9TeYkWLAgAF5CkuXLs1rb9kYMmRIPP3007nQvHnzcuc7crJ1/6FDh+7IZfoQaJkCJWURYy6IeOSquutfPjPijczfzf2Oq5trpMj/G39g/HHqgthcVffpFj95aFacfeiAaN+mpJFWYxoCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC2xZo9RUHunTpEn/4wx/iZz/7WXznO9+J2i/YawswpPEkRRmS16BBg+KKK66IT37yk2ndxAgQILDbApurquOR19I3FY0bWp4rLLPbExmAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwB4iMHbs2Eb9ni3Zf1D7oIg9hLjBbrOsLPMj8i2OzZs3b9HKP926oMKrr76a32E7rWnTpuX12Hq8vKQGgdYgMDpToOHR72eeVlNV925e+FWTFmgYkHmAxTmHDYzbnp5bZ21LV2+MXz41Jy4+bv86OQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECTSFQ3BSTNsWcF198cbz++uvx29/+Nj71qU/FgQceGCUlJdlNErUFGZJ28oSFCy+8MH7/+9/HrFmzFGdoig/LnAT2IIHJc1fE6g2VqXecFGhwECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCwawK1ewEa+n3XVueqNIHFixfnhXv37p3X3rIxcuTILZvx5JNP5rW313jiiSfyumw9Xl5Sg0BrEOjaP2Loafl3stchEWf8OOID/5Mfb4LWZ8cdEG1L07eyXffI65m9FYULtjTBck1JgAABAgQIECBAgAABAgQIECBAgAABAgQIECCwBwuU7kn3nhRgOOuss7Kv2vtevXp1JK/OnTtnX7Vx7wQIEGgMgUnTK1Kn6dCmJI7Yr0dqTpAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAge0LFBUVbb+THs1K4PHHH89bz4ABA/LaWzbGjh0bHTt2jLVr12bDr732WsydOzf22WefLbulns+ZMydmzpyZyyV7RpLxHARavcChn4p47f6Igz8ccVjmvP+YiGbyt7JPl3Zx/nv3iZ8/9kadj2Hlus3xi8fnxOdPOLBOToAAAQIECBAgQIAAAQIECBAgQIAAAQIECBD4/+zdd3xV9fk48CcJgTDDhgRBRRQcKKDiHoh71b2tWrXDto62dmn1a2tbW63+aqu2jlbbqm3ValvbOhEVtQ4ENyjIUEiYEmYgJPndGwsSODes7LzP65Xmnuf5nM/n+bwP8kfv4TkECBCob4EW1aAhCVdjhiQVMQIE6ksgU4OG/bbtnnozRE59lWEdAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAs1GoF+/fql/b6w5Q1O7oc8++2xMnjy5WtkjR46sdr7mSV5eXhx66KHx8MMPrw7/7ne/i2uuuWb1eaYP6XFrHocffni0bt16zZDPBJqnwNYHRHxzQkS7xvnCiC8fsE3c9/L0WLKifB3/O5//MM7Ze8vo3M5/q+vgCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECNSrQItv0FCv2hYjQIDAGgLT5i2JSbMXrxH57ONBg3p+duITAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIbLDB16tQNHmtg4xBYsmRJXHzxxdWKGTx4cPTv379abO2T888/v1qDhltuuSW+9rWvRY8ePdYeuvp89uzZceutt64+T39Iz+Mg0CIEsrMbbXOGtH+3Dm3iC/tuHb8aNWmd27Fo+cr47XMfxncOH7ROToAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAfQqkvnVzECBAoAUJrFga8cm0iMrKBt/0qAmzM9YwYqAGDRlxJAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqDeBrKysWPNn9OjRNa59ySWXxMyZM2scs2Zy7ty5ceyxx8abb765ZjiuueaaaudJJ0cddVTsueeeq1Pz5s2rarZQVla2OrbmhxUrVlTl0+NWHfvtt18cdthhq079JkCggQUu2K9/dMpLfufQ3S9MjdmLShu4QssTIECAAAECBAgQIECAAAECBAgQIECAAAECBAi0dIHkb7Nauor9EyDQfAWmvRhx74kRbbtGFA5J/QyNKPjf785963XfmRo07LxFfvTslFevtViMAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGmJ/DCCy/EsmXL1in8jTfeqBYrLS2Np556qlps1UlhYWHssMMOq043+/fNN98cv/3tb+OII46Ik046KfbZZ5/Yaqut1pn3o48+ij//+c9x4403RnFxcbX8cccdF8cff3y1WKaT66+/Pg444ICoqKioGvLPf/4zDj300PjFL34Rw4YNW33Z2LFj45vf/GY8++yzq2M5OTnx85//fPW5DwQINLxAftvc+NIB28T1j09cp5hlZeVx2+jJcfUxO66TEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQXwLNtkHDmDFjqr6AXwWZftBgxIgRq043+PeoUaPikEMOqRqffiPEyy+/HLvuuusGX28gAQKNTGDmuE8LWjY/YvKoT3/SkY6FEd98r96KXbx8Zbz8YaqGhGPEwJ4JUSECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAhUFzjzzDNj2rRp1YMJZ7NmzVr97MPa6XPOOSfuvvvutcObdb58+fJ45JFHqn7SE3Xq1CkKCgoiPz8/ysrKIl3PzJkzE9fYb7/94r777kvMJQX33Xff+OlPfxrf+c53VqdHjx5d9WxHuvlEet30WkVFRavzqz6kmzPsueeeq079JkCgkQicu/dW8bsxU2LekhXrVHTvf6fHhfv1j8LObdfJCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoD4Fm26Ah/TaGysrKKsPhw4dvUnOG9MUHHXRQDB06NF5//fWq+e64445G2aBh8uTJ8corr8THH38cK1asiC5dusSgQYNi7733jry8vPr4s2QNAk1DYFWDhrWrLRy6dqROz8d8MDdWlH/6Bpe1Fxq5vQYNa5s4J0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECg6QosXLgw0j81HdnZ2fGtb30rrr322sjNza1p6Dq5b3/725GTk1PVpKG8vHx1Pt2YIakRRHrsDTfcEJdeeunqsT4QINB4BNq3aRVfOXCbuPZf675oI/2sxa9GTYqfnjC48RSsEgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgRYlkN0cd1tRURH//ve/Iysrq+on/caIzTk+//nPV12enu8f//jH5kxV69em3zix6667xoABA+KMM86I9EMHV155ZXz1q1+NkSNHRo8ePeLrX/96zJ07t9bXXnvCAw88cLX5KvuN+V3bb+RYuz7nBKoEisYnQxQOSY7XUfSZCbMTZ+7RsU3sVJifmBMkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAYxe4/fbb47TTTou+fftuUKm9e/eOSy65JCZOnBg/+9nPNro5w6pFvvnNb8Zrr70WRx11VKSbPSQd6fjRRx8dY8eO1ZwhCUiMQCMSOGvPLaNXpzaJFT3w2kcxbd6SxJwgAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgboWaFXXCzTE/G+99VZ88sknVUunGwSkv3zfnCN9ffqtCZWVlTFr1qyqhwIGDhy4OVNu9rXLly+P888/P+69994a51q8eHH8+te/jr/85S/x4IMPxv7771/jeEkCzVpgcaopwsIZyVssHJocr4NoRUVljJqY3KBhxMAeqYeFsupgVVMSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINDcBKZOnVrnW0o/K7Exx4UXXhjpn/Qxb968eO+992LatGkxZ86cWLJkSeTk5ESXLl2ie/fuMXTo0Ojfv//GTF/j2CFDhsSjjz5a9RKLMWPGxIcffli1Zvv27WObbbaJffbZp2rdGieRJNCSBZbOjxh/X8SM1yJOvrtBJfJyc+LrB20bVz7y9jp1rEw9d/HLpz6IG08dsk5OgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBdCzTLBg3pL/dXHZ07d97sL/PTX9Kn51mwYEHVtO+88040ZIOGioqKOPXUU+Pvf//7qm1W/U4/xNCvX7/Iz8+PKVOmRElJyep8+kGHI444Ip566qnYa6+9Vsd9INCiBGaOz7zdgiGZc7WceXtmScxZtDxx1oMG9UqMCxIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKCpCXTr1i323Xffqp/6rD3d/OG4446rzyWtRaBpC8wYG/HqXRFvPxSxsvTTvez99Yg+uzbovk7ZrW/85tnJ8fEny9ap4+HxM+IrB24T2/bquE5OgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBdCjTLBg3FxcVVZllZWdGnT59a8dtiiy1WN2iYMWNGrcy5qZNcf/316zRn+PKXvxw/+MEPorCwsGradBOHdAOHSy+9NKZPn14VW7p0aZxyyinx9ttvVzVx2NT1N/S6J598ckOHVo3bcccdN2q8wQQ2WmDmuORLOm0R0aFHcq4OoqMmzE6cNTcnK/bdtntiTpAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUKsCZanGB78/IiLpeYp0w4YGbtDQulV2XHrwdvGtB95YZ9uVlRE3PfV+3HpmwzaRWKcwAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgWYv0CwbNKQbEaw62rdvv+rjZv1ec57Fixdv1lybc/G8efPixz/+cbUpfvrTn8Z3v/vdarHs7Ow4/vjjY/jw4VVvopg6dWpV/uOPP44bb7wxrrnmmmrj6+Lk4IMProtpzUlg0wWSHihIz1Y4ZNPn3IQrMzVo2LN/t+jQpln+tbwJSi4hQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE6lQgt21Em07JS7z9UMSh10a065qcr6focUMK49bRk+LDOUvWWfHfbxXH2zNKYqc++evkBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjUlUB2XU3ckPPm53/2pVu6oUFtHPPnz189Tbt27VZ/ru8PP//5z2PRokWrl91///3jO9/5zurztT/06dMn7rzzzmrhm266KWrLpdrETgg0doGi8ckV1mODhtmLSuPNj0sS6zhoUM/EuCABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoE4Edr8gedqVpRHj70vO1WO0VU52fOOQ7TKueOOT72fMSRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoC4Fm2aChR48eVVaVlZXx0UcfxbJlyzbLbunSpTFt2rTIysqqmmfV/Js16SZcXFFREb///e+rXfl///d/q+uqlljjZOTIkbHffvutjqQbPPz1r39dfe4DgRYhsLAoYlHqJ+koHJoUrZPY6AlzMs6rQUNGGgkCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgLgQGHhnRsSB55td+F5F6XqmhjyN3KojtCzolljFqwuwYO+2TxJwgAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgboQaJYNGgYNGrTaasWKFfHEE0+sPt+UD48//nik50k3fEgf22yzzaZMs9nXvPjiizFnzmf/uLt///5x4IEHbtC8559/frVxjzzySLVzJwSavUDR+MxbLKi/Bg1PT5iVWMc2PdrHlt3aJ+YECRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJ1IpDTKmLXc5Onnj85Ysro5Fw9RrOzs+Kbh2yXccVfPDExY06CAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQG0LNMsGDTvvvHP07NkzsrKyqpoq/OhHP9ost2uvvbZqrvQknTt3juHDh2/WfJt68b/+9a9qlx5yyCGr66qWSDhJj13zGD16dCxZsmTNkM8EmrfAzPHJ+8vvF9G+W3KulqPLV5bHmA/mJs46cvteiXFBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECdCgw7JyIrJ3mJV+9KjtdzdOT2PWOXvp0TV31x8rx4cVLy8xiJFwgSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ2AyBZtmgIe1x3HHHVTVnSH8eN25cfOMb30h/3OgjfV36+vSRbviQnjf9uyGO8ePHV1t27733rnZe00lhYWFstdVWq4esWLEi3n333dXnPhBo9gIzP/3veJ19Fg5ZJ1RXgVemzI8lK8oTpx8xsGdiXJAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUKcCnQoiBh2VvMTEf0eUzEjO1WM0/bzW5YcOzLjiDU9MXP2sWMZBEgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgRqQaDZNmi44ooronXr1lXNFCorK+OXv/xlfP7zn4+FCxduEFt63Nlnn111XfoLvvQcubm5ceWVV27Q9XUx6L333qs27Q477FDtfH0na49fe771Xb8p+ZKSknjzzTfjueeei9dffz2mTZsW5eXJ/0B9U+Z3DYENEkj99xtF45OH1mODhqffm51YQ8e8VrHbVl0Sc4IECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgToX2P2C5CUqKyJevyc5V8/RfQZ0iz227pq46uvTF8ToiXMSc4IECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEalOg2TZo6Nu3b3zve9+raqywqsHCvffeG/369YuLL744HnvssZg7d241y/R5Op7Ob7nllnHfffdVXZ9uzpCe4zvf+U5svfXW1a6pr5Nly5bF9OnTqy2X3uPGHGuPnzhx4sZcvtFjhw4dGl27do1ddtklDjjggNh1111jq622is6dO8fhhx8ed9xxRyxfvnyj53UBgY0WWFQUsXhW8mWFQ5PjtRxN/z0yakJyg4YDtusRuTnN9q/jWpY0HQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFDrAlvvH9Ft2+Rpx6YaNJSXJefqMZp+futbhw3MuOINT0yMiorUSzwcBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBOpQoFn/i+Crr746TjzxxGpNGhYuXBi33HJLHHXUUdGrV69o1apVdOrUqep3+jwdT+dLSkpWX5f2P+WUU+Kaa66pw1tR89Tp5hHpf+C96sjNzY2ePXuuOt2g33369Kk2bvbs5H8sXm3QZpyMHz8+9aVnqov+WsfixYvj8ccfjy9+8YtVDRseeOCBtUY4JVDLAjPHZZ6wYEjmXC1mJs9ZEtPnL02c8aBBG/ffcuIkggQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBTRVINT+I3c9PvnpxccSEfyXn6jm6+1ZdI/0ijKTjnZkL4/F3UrU6CBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECNShQKs6nLtRTH3//ffH5ZdfHr/85S8j3UV91bGq2UH6d7phwJpHelz6Z9WYb37zm3HdddetOaTeP69dY7t27artZ0MKat++fbVha89ZLVlPJ8XFxVXNL771rW/F9ddfX+urpptQzJkzZ6PmnTRp0kaNN7gJCMwcn1xk5y0j2nVNztVy9JkJyQ1R0n8tHThQg4Za5jYdAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgsLECu5we8VTqBTYrl6175at3Rux43LrxBoh869CB8ez7yc8D/eLJ9+PQHXtHTvZnz4k1QImWJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaMYCzb5BQ6tWreKmm26Kww8/PK655pr473//u/p2rtmwYVUw3ZRhVWOGfffdN66++uoYOXLkqnSD/V67mUJeXt5G19K2bdtq16w9Z7XkJp6k6zrkkEPiiCOOiCFDhsSAAQOic+fOsXz58kg3S3jppZci3TTj3//+92rn9FI33HBDdOvWLb773e9u4srJl916661V9z05K9piBGaOS95q4dDkeB1En54wK3HWYf26RNf2rRNzggQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBehNo2zli8EkR4/647pJTn4+YMzGix8B1c/UcGbxFfhy2Y694/J11n8WYNHtx/OONGXH80C3quSrLESBAgAABAgQIECBAgAABAgQIECBAgAABAgQItBSBZt+gYdWNPOywwyL98+qrr8YTTzwRzz//fEyePDnmz58fixYtio4dO0bXrl1j2223jf3226+qocPQofX3j7dX1Znpd2lpabVU69Yb/w+627RpU22OZcsSut1XG7FxJ9/4xjdin332qWq0sPaVubm50aFDh+jfv3+ceeaZMWbMmDjttNNixowZq4d+//vfr2rssMsuu6yO+UBgswVSTVeiaHzyNIVDkuO1HC1ZVhavTv0kcdaDBvVMjAsSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBOpdYPcLkhs0pAt57XcRR/ys3ktKWvAbhwyMJ96dlXpBzLrZm578II7euTByc7LXTYoQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ2EyBFtOgYZXT7rvvHumfTT3Ky8sjJydnUy/f5Ovy8vKqXbtixYpq5xtysnz58mrD1p6zWnITTo499tgNvmrfffeN0aNHx1577RVz586tuq4y9Y3plVdeGf/85z83eB4DCaxXYGGqCciSOcnDCuunCcvzH8yJ8oqEJwJSVWnQkHxrRAkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEGEEi/7KLPrhEzxq67+Pj7I0ZeFdG6/bq5eo4M7N0xjt2lMP4+fuY6K0+fvzQeHPtxnD683zo5AQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKbK9DiGjRsKtgbb7wR99xzT9x///1RVFS0qdNs8nUdOnSodm1paWm18w05WbZsWbVha89ZLVkPJwMGDIjrr78+zjvvvNWr/fvf/4758+dH165dV8c258NFF10UJ5988kZNMWnSpDjuuOM26hqDG7HAzHGZiyvYJXOuFjOj3pudOFtBfl4MSj0w4CBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINBqB3S9IbtCwvCTirQcjdj2nUZR66cHbxaNvFiW+NOPmpz+I44f2ibzc+n8RT6PAUQQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgECdCWjQUAPt3Llz409/+lNVY4Y333yzhpF1n1q7mcLSpUujsrIysrKyNnjxJUuWVBu79pzVkvV08vnPfz6+/e1vx5w5c6pWrKioiKeeeipOOeWUWqmgZ8+ekf5xtGCBmeOTN99l64i2XZJztRgtr6iMZyYmN2g4aFDPjfpvuBbLMhUBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAIFlgx+MjHvteROmCdfOv3hkx7POReuBh3Vw9R7bu3j5OGrZF/OW1j9ZZuaikNO5/ZXqct0/q+RAHAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgVoUyK7FuZrFVCtXroyHH344Pve5z0WfPn3im9/8ZrzxxhtVzRDSDREa6ujevXu1f8hdVlYWs2cn/6PvTDXOmDGjWqoxNC7Izs6OAw88sFpdEydOrHbuhMBmCfQeHJF+cCDdkGHNo3Dommd19nn8Rwvik6VlifOP3F7zkEQYQQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDhBHLbRgw9K3n94tRLbmaMTc41QPTrIwdEbk5W4sq3PDM5lq5YmZgTJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQILCpAq029cLmdt3YsWPjnnvuifvvvz/mz59ftb1VDRmy/tfxfdV5Q+y9bdu20a9fv5g2bdrq5adPnx69evVafb6+D+nxax6DBg1a87TBPvft27fa2nPmzKl27oTAZgnseFyqQUPqJ30s+ySi6I2ImeMiug/8NFbH/ztqwqzEFdq0yo69+ndPzAkSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBBpUYLcvRLz06+QSXr0zYovdknP1HN2iS7s4Y3i/uOelz56pWlXC3MXL454Xp8VXDtxmVchvAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABApstkL3ZMzThCWbNmhU33HBDDB48OIYPHx633HJLzJs3L1Y1YlizMUO6QcIpp5wSf/vb3xpsx2s3VHj33Xc3qpb33nuv2vi156uWrMeT3NzcaquVlZVVO3dCoNYE2naJ6H9gxL6XRQw6stamrWmiUROSG47sM6B7tG2dU9OlcgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBhhHolmpqsM1ByWu/nXp+aumnL8BJHlC/0a+OGBB5ucmPwf3m2cmxsNSzSPV7R6xGgAABAgQIECBAgAABAgQIECBAgAABAgQIEGjeAsnfTDXjPa9YsSIeeOCBOOqoo6Jv377xne98J955552qpgzpxgxrNmVINw445phj4t57743Zs2fHn//85/jc5z7XYDpDhgyptvaLL75Y7bymk6Kiopg6derqIem97bDDDqvPG/JDcXFxteV79OhR7dwJgaYqMHPBsnivaGFi+QcN6pkYFyRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINAqB3S9ILiO/T8QnU5NzDRDt2Skvztlrq8SVS5aVxV3PT0nMCRIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDYFIFWm3JRU7zm5ZdfjnvuuSf+8pe/xIIFC6q2kG7IkD7WbMqQPh85cmScfvrpccIJJ0Tnzp3ToUZxHH300fGzn/1sdS1PPfVUVWOJVfWvTiR8eOKJJ6pFR4wYER06dKgWa6iTMWPGVFs63TjDQaA5CIyaMDvjNkZo0JDRRoIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoBALbHhbRKdWMYeGM1ANWqfcADTwyYvfzI7Y+MCK7cb0X6EsHbBP3vjw9Fi9fuQ7cXWOmxLl7bxVd2rdeJydAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYGMFmnWDhpkzZ8Yf/vCHqsYM77//fpXNmk0Z0o0N0ufpnzWbHDz55JMb61gv4/fee+/o3r17zJ07t2q9Dz/8MEaPHh3pZgvrO+66665qQz73uc9VO2+ok2effTYmT55cbfl0gwwHgeYg8EyGBg2DeneMPp3bNoct2gMBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQXAVyUo+W7XtZxOLUCyp2PScif4tGu9OuqeYLX9h367j56Q/WqTHdtOE3z02O7x2x/To5AQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIbK9C4WplvbPUJ40tLS+P++++Pww47LLbccsu44oorYuLEiVVNGNLDVzViSDdlaN++fZx99tlx9dVXr84nTNloQtmpzvPnnntutXquueaa9db+9NNPx/PPP7/6uo4dO8Ypp5yy+ryhPixZsiQuvvjiassPHjw4+vfvXy3mhEBTFFi2ojzGTPq0mcra9Y/cvufaIecECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgcYnMPzCiIOuaNTNGVahXbDf1pHfNnfVabXf97w4NWYvKq0Wc0KAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgUwSaTYOGF154Ib74xS9GQUFBnHXWWfHUU09FeXl5VfOCNZsy5OTkxJFHHhn33ntvzJo1K+65557Yd999N8WuQa75zne+Ex06dFi99rPPPhs/+9nPVp+v/WHGjBlxwQUXVAtfcskl0b1792qxtU/SZmv+jB49eu0h1c7Tc86cObNarKaTuXPnxrHHHhtvvvlmtWHphhMOAs1B4KUP58bylRWJWzlokAYNiTCCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFNFOiUlxtfOiD5xTClZRVx6zOTN3FmlxEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBD4TKBJN2j46KOP4tprr43tttsu9t9//7jrrruipKSkqilDeotrNmYYPnx43HzzzVVNBB599NE4/fTTo23btp9JNJFP6cYK3//+96tV+73vfS8uuuiiag0SKioq4pFHHom99947pk6dunp8YWFhfPOb31x9Xlsf0rb9+/eP448/vqr5xZprrrlG+p5df/31MXjw4Bg1atSaqTjuuOOqrq8WdEKgiQqMmjA7sfIu7XJjSN8uiTlBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBTRc4d++tonuH1okT3Pfy9JixYFliTpAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDAhgq02tCBjW3cyJEj49lnn61qxlBZWVlVXrohQ/onfZ7+2WabbeLMM8+Ms846KwYMGNDYtrDJ9XznO9+JF198MdKNJlYdt912W9x+++2x5ZZbRn5+fkyZMiUWLFiwKl31O92Q4q9//Wt07ty5Wry2TpYvX17VFCLdGCJ9dOrUKQoKCqrqKSsri1mzZlVrIlE16H//s99++8V99923ZshnAk1WIP33z6j3khs0HDiwZ+RkZzXZvSmcAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINBYBdq1bhUXHTggfvjou+uUuKK8In719Adx3Yk7r5MTIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQILChAk22QcMzzzyzeo9rNmXo3r17nHrqqVVNGfbYY4/VY5rTh+zs7HjggQfivPPOiz//+c+rt1ZeXh4ffvjh6vM1P3Tr1i0efPDB2GeffdYM1+nnhQsXRvqnpiO9l29961tx7bXXRm5ubk1D5QhsnMDjV3w6vnBoRPqna/9IdXDZuDk2cfTEWYtiZklp4tUHDeqZGBckQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDYfIEz9ugXdzz/YRQlPLvxwNiP48sHbBNbdW+/+QuZgQABAgQIECBAgAABAgQIECBAgAABAgQIECBAoEUKZDflXacbM6w69t1333j00UejqKgofvWrX0Vzbc6war95eXlx//33VzVdGDJkyKrwOr/bt28fF110Ubz77rtx4IEHrpOvrcDtt98ep512WvTt23eDpuzdu3dccsklMXHixPjZz36mOcMGqRm0wQKVlRHj/hjx0q8jHjo/4lfDIn62ZcQ9x0RMe2mDp9nUgU+/Nzvx0pzsrNh/ux6JOUECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIHNF8jLzYmvH7Rt4kTlFZXx/556PzEnSIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGBDBFptyKDGPCbdpKEy9Y+xX3zxxap/6D9z5sw4+eSTIz8/vzGXXWu1nXjiiZH+mTRpUrz88ssxY8aMWLFiRXTu3Dm233772GeffSLdzGFjj7TpxhwXXnhhpH/Sx7x58+K9996LadOmxZw5c2LJkiWRk5MTXbp0ie7du8fQoUOjf//+GzO9sQQ2TuCTKRGlJdWvSZ9PeS7iwO9Vj9fB2agJyQ0adtuyS+S3za2DFU1JgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGgggRVLI8qWRbTv1kAFrLvsybttEb95dnJMn5+qba3j72/MjItGDIjtenVcK+OUAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwPoFmnSDhnQTgXSDhvRPRUVFjBkzpurn61//ehx55JFx1llnxdFHHx25uc3/H0QPGDAg0j+N4ejWrVvsu+++VT+NoR41tECBmeMybDorovfOGXK1E56/ZEWMm/5J4mQjt++ZGBckQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDQ5gbkfRLx6V8Qb90XsfGrEkdc3mi3k5mTHpQdvG9/46xvr1JR+b82NT7wfvzl713VyAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTWJ5C9vgGNNf+f//wnTjnllGjTpk2kGzWsOtKfly9fHo888kicdNJJ0atXr/jSl74Uzz333KohfhMg0NwFMjVo6L5dRJsOdbr7Z9+fHRWf/ZVUba2DBvWqdu6EAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINCkBMrLIt79e8Q9x0T8ereIl2+LKC2JGH9/xPLFjWornxvSJwb0TH5O5LF3iuOtj1N1OwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAhspECTbdBw2GGHxZ///OcoLi6O2267Lfbcc8/VjRqysrKqGNLNGhYsWBB33nlnjBgxIrbaaqu44oor4t13391IJsMJEGhSAjPHJ5dbODQ5XovRp9+bnThbv67tYpse7RNzggQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBJiGQbs7w189HTFnrZTkrFkWM+2Oj2kJOdlZ845DUyzwyHD9/fMLq580yDBEmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgsI5Ak23QsGonnTp1ii996Uvx4osvxsSJE+O73/1u9OnTZ/WXZ2s2a5g+fXpcd911MXjw4Bg6dGjceOONUVRUtGoqvwkQaA4CFRURRW8k76SOGzSUlVfEc+/PSVz7oEE9Y9XfR4kDBAkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECjV1g0NERbbsmV/nszyOWfZKca6Do4Tv2jh0KOiWu/vwHc+N3L0xNzAkSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQyCTQ5Bs0rLmxbbfdNn7yk5/EtGnT4oknnojTTz898vLyqjVrqKysrDp/44034vLLL49+/frFxRdfvOY0PhMg0JQFPpkSsXxh8g4KhyTHayk6dtonsbB0ZeJsI7fvmRgXJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0GYHcvIhhZyeXu2x+xHM3JOcaKJqdnRXfOmy7jKv/9N/vxWtTU3U7CBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECGygQLNq0LBqz+m31B988MFx7733RnFxcdx+++2x7777VmvUkB6TbtZQXl4eEyZMqPZm+zFjxqyaym8CBJqawMxxyRVnpf666z04OVdL0VETZifO1K51TgzfumtiTpAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0KQE9vhKRG675JJf/m3E/A+Tcw0UHTGwZwzr1zlx9ZUVlfHV+16PuYuXJ+YFCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECKwt0CwbNKy5yY4dO8YFF1wQzz33XEyaNCmuuOKK6NevX7VmDavGr2racMABB0Tfvn3j8ssvj9dee21V2m8CBJqCQKYGDd0HRrRuX6c7yNSgYb9tu0ebVjl1urbJCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQL1ItCpIGKfS5KXqiiLeOr/knMNFE0/E/aTEwannt1IflRu1sLlccmfx0V5qlmDgwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMD6BJK/dVrfVU00379///jRj34UU6ZMiaeffjrOOuusaNeuXVWzhsrKT79gW9WkYcaMGXHjjTfGHnvsEdttt11cddVV8e677zbRnSubQAsSmDk+ebOFQ5PjtRSdPm9pTJq9OHG2gwb1TIwLEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSapMDeX4/omGrUkHS8+/eIaS8lZRosNqh3p7j2uJ0yrv/CpHlx05PvZ8xLECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEFgl0KIaNKzadPr3iBEj4g9/+EMUFxfHXXfdFQcccEBVOt2oId2kYVWjhvT5pEmT4sc//nEMHjw4dtlllzWn8ZkAgcYkUFERUfRGckV13KBh1IRZyeumoiMGatCQEUeCAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaHoCrdtHHPSDzHU//v2I9HMcjeg4ebe+cdrufTNW9OtnJkVNz39kvFCCAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgRQm02AYNq+5y+/bt47zzzotnnnkmJk+eHFdddVVstdVWkW7MkD7Wbtbw9ttvr7rUbwIEGpvA/MkRKxYlV1U4JDleS9GnJ8xOnGnnLfKjZ6e8xJwgAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDJCuxyekTvnZPLn/l6xNsPJucaMPp/x+4YOxZ2yljBZX95Iz6avzRjXoIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAi2/QsOYfgXRjhv/7v/+ratQwevToOPfcc6NDhw6rmzWsOdZnAgQaocDMcclFZeVE9NopOVcL0SXLV8bLH85PnGnEwJ6JcUECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQJMWyE49enbYjzNv4alrIsqWZc43QCYvNyduO3PX6JTXKnH1kmVlcdG9r0dpWXliXpAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQICABg0Z/gzsv//+8bvf/S6Ki4vj7rvvjoMOOiiysrIyjBYmQKBRCGRq0NBz+4jW7eqsxDGT5saK8orE+Udur0FDIowgAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0PQFtt4/YuBRyftY+HHES7ck5xow2q9bu7jxlCEZK3hrRkn88NF3M+YlCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEWraABg3ruf9t27aNz3/+8/HUU0/FlClT4oc//OF6rpAmQKDBBGaOT166YEhyvJaio96bnThTj45tYqfC/MScIAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgWQgcknqeKrtV8lbG3BSxaFZyrgGjB+/QK75y4DYZK7jv5enxt9dTDSYcBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBNYS0KBhLZCaTvv16xdXXHFFTUPkCBBoKIGK8oiiN5JXLxySHK+FaEVFZYyamNygYcTAHpGdnVULq5iCAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINBIBboPiNj9guTiViyOeObHybkGjn7zkO1ir/7dMlbx/YffignFCzPmJQgQIECAAAECBAgQIECAAAECBAgQIECAAAECBFqmgAYNLfO+2zWB5icw94OIsiXJ+yocmhyvheg7MxfGnEXLE2c6aFCvxLggAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBZCRzwnYi8/OQtjftjRPHbybkGjLbKyY6bTx8aPTu2SayitKwivvKn12NRaVliXpAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBlCmjQ0DLvu10TaH4CReOT95TdKqLXjsm5Wog+PWFW4iytU1/i77tt98ScIAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgWQm06xqRbtKQdFRWRDxxRURlZVK2QWM9Us0Zfn3GsMjJzkqsY8rcJfHtB99Mld74ak8sWJAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDOBTRoqHNiCxAgUC8CM8clL9Nz+4jctsm5Wog+M2F24ix79O8aHdqkmkM4CBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQItQWD3CyO6bJ280w9HR3zwZHKugaPDt+4a3z18UMYq/vN2cdw1ZkrGvAQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDLEtCgoWXdb7sl0HwFZo5P3lvBkOR4LURnLyqNNz4uSZzpoEE9E+OCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFmKdCqdcQhP8y8tSeujChfmTnfgJkL9ts6Dt+xd8YKrvvPhHht6vyMeQkCBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGWI6BBQ8u513ZKoPkKpL+8L34zeX+FQ5PjtRAdPWFOxlk0aMhII0GAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0V4Htj4not3fy7uZOjHj97uRcA0ezsrLi5yfvHFt1a5dYycqKyvjqfa/H3MXLE/OCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECLUdAg4aWc6/tlEDzFfhkakTZsuT9FQ5JjtdCdNSE2YmzbNOjfWzZrX1iTpAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0GwFUo0O4rAfZ97ei7+OqCjPnG/ATKe83LjtrF0jLzf5kbpZC5fHxfePi/JUswYHAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAyxVI/jap5XrYOQECTVGg+4CI730Uce6/Iw5Nfck/+OSIbqlYTuuIXjvVyY6WryyP5z+Ykzj3yO17JcYFCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLNXqDPsIidT62+zazUY2q7nR9x/pMR2TnVc43obPuCTnHtcYMzVvTi5Hlx45MTM+YlCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEmr9Aq+a/RTskQKBFCLTpGLHVPp/+rNrwiiURrdqsOqvV369MmR9LViS/0WHEwJ61upbJCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJNSmDkVRHv/j1iZWnEgENSL9z4UUTP7ZvEFk7adYsYO21+3P9K6mUhCcctz0yOYf26hBd4JOAIESBAgAABAgQIECBAgAABAgQIECBAgAABAgRagECqNbmDAAECzVSgdfs629ioCbMT5+6Y1yp226pLYk6QAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINAiBPK3iDjsJxFnPZT6ebDJNGdYdW+uPmbH2KlPp1Wn6/y+7C/j46P5S9eJCxAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDR/AQ0amv89tkMCBGpZoLKyMjI1aDhgux6Rm+Ov1lomNx0BAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQ1AR2Pz9iwMFNreqqevNyc+K2M3eNTqkXdSQdC0tXxlfuHRulZeVJaTECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFmLOBfETfjm2trBAjUjcCHc5fEtHnJb0E4aFDPulnUrAQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAvUm0Ldru7jp1CEZ13t7xsK45p/vZsxLECBAgAABAgQIECBAgAABAgQIECBAgAABAgQINE8BDRqa5321KwIE6lBg1HuzE2fPyoo4cKAGDYk4ggQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBJiYwcvtecdGB22Ss+v5XpsdDYz/OmJcgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBofgIaNDS/e2pHBAjUscDTE2YlrjCsX5fo2r51Yk6QAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECg6Ql845DtYq/+3TIWfsUjb8WE4oUZ8xIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLNS0CDhuZ1P+2GAIE6FihZVhavTf0kcZWDBvVMjAsSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0TYFWOdlx8+lDo2fHNokbKC2riK/86fVYWFqWmBckQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoXgIaNDSv+2k3BAjUscDzH8yJlRWViato0JDIIkiAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQSBaoTD2D8d4/IxbPSc43kmiPVHOGW84cFjnZWYkVTZm7JL79wJtRmd6PgwABAgQIECBAgAABAgQIECBAgAABAgQIECBAoFkLaNDQrG+vzRFo5gJL50fMnhBRUV5vGx313uzEtQrz82JQ746JOUECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIG1BGaOi7j7qIi/nBUx+qdrJRvf6e5bdY3vHTEoY2GPvVMcd42ZkjEvQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0DwEWjWPbdgFAQItUmDCoxH/+HpEbvuIgp1TP0MiCodG9BkW0X3bWicpr6iM0e8nv7FhxKCekZWV/JaEWi/EhAQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBpipQMiNi1I8i3rj/sx2M/X3E8Asjem7/WawRfjp/361j7LRP4j9vFydW99P/TIhd+naOdDMHBwECBAgQIECAAAECBAgQIECAAAECBAgQIECAQPMUyG6e27IrAgRahED6TQrpo2xJxPSXIl6+LeLhL0b8LfVTB8f4jxbE/CUrEmceuX3PxLggAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDA/wSmpZ7v+NWu1ZszpFOVFRFP/KDRM6Vf3vHzk3aOrbunXiaScKRf/vHVe1+POYuWJ2SFCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEmoOABg3N4S7aA4GWKrCqQcPa+y8cunakVs5HTZiVOE+bVtmxV//uiTlBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB/wmkn+no0COZY9KTEZOeTs41omjHvNy47axhkZeb/Ojd7FRzhovvHxcry1NNJxwECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLNTiD5W6Jmt00bIkCg2QmsXBEx653kbRUOSY5vZnTUhDmJM+wzoHu0bZ2TmBMkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBD4n0BuXsTB12TmeOLKiIryzPlGkhnUu1P8+LjBGat56cN5ceOT72fMSxAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDRdAQ0amu69UzmBli0w+92I8lSThqQj/baFWj5mLlgW7xUtTJz1oEE9E+OCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECawnseHzEFsPXCv7vNP08yLg/JucaWfTEXbeI04f3y1jVraMnx1PvzsqYlyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGiaAho0NM37pmoCBGaOSzbIaRPRY1BybjOiz0ycnfHqERo0ZLSRIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAhUE8jKijjsJ9VC1U5GXRuxfFG1UGM9ufqYHWKnPp0ylveNv46P6fOWZsxLECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIND0BDRqa3j1TMQECaYGi8ckOvQdH5OQm5zYjOuq95AYNg3p3jD6d227GzC4lQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLQwgb67R+x0YvKml8yJGHNTcq6RRfNyc+K2M3eN/LbJz6osLF0ZF903NkrLyhtZ5cohQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDYVAENGjZVznUECDSswMxxyesXDk2Ob0Y0/SX5C5PnJs4wcvueiXFBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBGgRGXp16CUeb5AEv3RKx4KPkXCOL9u3aLm46dZeMVb09Y2Fc8893MuYlCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEmpaABg1N636plgCBtMDK5RGz3k22KBySHN+M6EuT56XeZFCROMNBgzRoSIQRJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjUJNBly4i9LkoesbI04ukfJucaYfSgQb3iqyO2yVjZ/a98FA+O/ThjXoIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDpCGjQ0HTulUoJEFglMCv1VoGKslVn1X8XDq1+XgtnT0+YlThLl3a5MaRvl8ScIAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwHoE9v1GRLvuyYPe+mvEx2OTc40w+o1DBsbe23TLWNkVD78V7xUtzJiXIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaBoCGjQ0jfukSgIE1hSYOW7Ns88+t2ob0X3gZ+e18KmysjJGvTc7caYRA3tGTnZWYk6QAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgPQJ5nSJGfD/zoMdTudSzG03hSD9DcvPpQ6NXpzaJ5S5fWRFf+dPYWFia4aUkiVcJEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQINDYBDRoa2x1RDwEC6xcoGp88pvfgiJxWyblNjE6ctShmlpQmXj1iUM/EuCABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMAGCgw7J6LHoOTBH/034r1/JOcaYbR7hzZxyxnDolWGF35Mnbc0vv3Am6meE02j6UQjJFYSAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDBBTRoaPBboAACBDZaYOa45EsKhybHNyP69HuzE69Ov/Vg/+16JOYECRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIENlAg/TKOQ3+cefCTV0WsXJ4538gyu23VNb57RIaGE6laH3unOO4aM6WRVa0cAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBDRXQoGFDpYwjQKBxCJSVRsx+L7mWwiHJ8c2IPjMhuUHDblt2ify2uZsxs0sJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSqBLY9OGKbg5IxPpka8crtyblGGj1/363jyMG9M1b30/9MiFenzs+YlyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGi8Aho0NN57ozICBJIEZr0TUbEyKRNRODQ5vonR+UtWxOvTP0m8euT2PRPjggQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABApsgcOi1EVkZHmd79vqIJfM2YdKGuSQrKyt+duLO0b97+8QCyisq46v3vh5zFi1PzAsSIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0XoEM32g13oJVRoBACxeY+XoyQG67iO7bJec2Mfrs+7Mj9X144nHQoF6JcUECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFNEOi1Y8SwzydfuLwk4tnrknONNNoxLzduPWtY5OUmP6I3O9Wc4eL7x8XK8opGugNlESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIJAkkf/uTNFKMAAECjUGgaHxyFb13jsjOSc5tYnTUhDmJV/br2i626ZH8hoPECwQJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTWLzDiiojWHZLHvXpXxJz3k3ONNDqod6f4yfGDM1b30ofz4sYnm9aeMm5GggABAgQIECBAgAABAgQIECBAgAABAgQIECDQQgQ0aGghN9o2CTQbgZnjk7dSODQ5vonRstTbCZ6dODvx6oMG9YysrKzEnCABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMAmCnToGbHfN5IvriyPePKq5Fwjjp4wbIs4Y49+GSu8dfTkeOrdWRnzEgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAo1LQIOGxnU/VEOAQE0CZcsiZr+XPKJwSHJ8E6Njp30SC0tXJl49cvvUwwAOAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB2hfY86KI/L7J804dE1EyIznXiKNXHb1DDO6Tn7HCb/x1fEyftzRjXoIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDxCGjQ0HjuhUoIEFifQPHbEem3ISQdhUOTopsce2bC7MRr27XOieFbd03MCRIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECGymQG7biJFXV58kK/WY267nRVz8eqp5Q5/quSZwlpebE7eeOSzy2+YmVpt+ichF942N0rIMz8UkXiVIgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQEAIaNDSEujUJENg0gZnjkq/LbR/RbUBybhOjT2do0LDftt2jTaucTZzVZQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAusV2OnEiD67fjpsm5ERX34h4pj/F9Gh53ovbawD+nZtFzedukvG8t6esTCu+ec7GfMSBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECjUNAg4bGcR9UQYDAhggUjU8eVZD68jq79pomTJ+3NCbNXpy41shBvRLjggQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABArUkkJ16rO3I6yPOfCji7L9F9NqhliZu2GkOSj138rURmV9Ccv8rH8WDYz9u2CKtToAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUKOABg018kgSINCoBAYcHDHkzIieO0ZkrfHXV+HQWi1z1IRZGec7cFCPjDkJAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBWhLos2vEtqlnRZrZcdkh28U+A7pl3NUVD78V7xUtzJiXIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaFiBVg27vNUJECCwEQI7nRCR/kkfK5ZGFL8VUTQ+omBIOlJrx9MTZifOtfMW+dGzY15iTpAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDA+gRysrPil6cNjaNvHhPFC0vXGb58ZUV85U9j4x9f3zc65eWukxcgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoWIE1XkHfsIVYnQABAhsl0LpdRL89Ivb40qe/N+rizIOXLF8ZL384P3HAiIE9E+OCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBDZUoHuHNnHLmUOjVapZQ9Ixdd7S+PYDb0ZlZWVSWowAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKABBTRoaEB8SxMg0PgExkyaGyvKKxILG7m9Bg2JMIIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIbJbDrll3je0dun/Gax94pjjufn5IxL0GAAAECBAgQIECAAAECBAgQIECAAAECBAgQINAwAho0NIy7VQkQaKQCo96bnVhZj45tYqfC/MScIAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGNFfjCPlvFUYMLMl523WMT4pUp8zPmJQgQIECAAAECBAgQIECAAAECBAgQIECAAAECBOpfQIOG+je3IgECjVjgtWnJX2qPGNgjsrOzGnHlSiNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQItDCBysqICf+KmDyqSW48KysrrjtxcPTv3j6x/vKKyvjafa/H7EWliXlBAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB+hfQoKH+za1IgEAjFahMfWk/Y8GyxOr2GdA9MS5IgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQAAIzx0fcc0zEn8+I+Nc3I1auaIAiNn/Jjnm5cdtZu0bb3JzEyWYvWh4X3z8uVpZXJOYFCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE6ldAg4b69bYaAQKNWKBkWVm7JbDGAAEAAElEQVSUliV/md23a7tGXLnSCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQItRGDhzIhHLoq4/cCIqc9/uun5H0a8emeTBRjYu2P85ISdMtb/3w/nxy+efD9jXoIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKD+BDRoqD9rKxEg0MgFikpKM1ZYkJ+XMSdBgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQDwJL50f8enjE+HtTi1VWX/DZn0Wk8030OH7oFnHmHv0yVn/b6MnxyLgZGfMSBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC9SOgQUP9OFuFAIEmIFC8MLlBQ3ZWRI8ObZrADpRIgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGjGAu26Rux4XPIGSxdEPHd9cq6JRK86ZofYeYv8jNV+46/j419vFmXMSxAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECNS9gAYNdW9sBQIENlfggXMj/vXNiNf/GFH8dkT5ys2dMfH64pLkBg09O+ZFqxx/XSaiCRIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE6lPgoCsjctsnr/jK7RFzJyXnmkC0TaucuOWMYZHfNjex2orKiIv/PC4ee7s4MS9IgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQ9wL+xXHdG1uBAIHNEVi+KOKdRyJevTPiH1+L+M0+ET/tE3HnwREzx2/OzOtcW5ShQUOv/Lx1xgoQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0gEDH3hH7Xpq8cMXKiKeuTs41kWjfru3iplN3yVhteapLw9fvfz2eendWxjESBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECdSegQUPd2ZqZAIHaECh6MzVLqv3/msfK0oiPX43I67RmdLM/F5csS5yjoJMGDYkwggQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBhhDYK/WSj46FyStPeDRi6pjkXBOJHjSoV1x+2MCM1ZaVV8ZF974eoyfOzjhGggABAgQIECBAgAABAgQIECBAgAABAgQIECBAoG4ENGioG1ezEiBQWwIzxyXPlJcf0WXr5NwmRotKUo0fEo7e+Ro0JLAIESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQaRqB1u4iDr8689uPfj6ioyJxvApmLDtwmvjZiQMZKV5RXxBf/ODbGfDA34xgJAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB2hfQoKH2Tc1IgEBtChSNT56tYEhEVlZybhOjxRkaNBRo0LCJoi4jQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECNSRwOBTItLPjyQdRW9EvPmXpEyTiWWlnov55qHbxZf275+x5hUrK+KCP7waL02el3GMBAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQO0KaNBQu55mI0CgtgVmjkuesXBocnwzopkaNPTWoGEzVF1KgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKgDgezUo2+H/TjzxE//MGLFksz5JpBJN2n47hGD4gv7bJ2x2tKyijj/nlfj1anzM46RIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqD0BDRpqz9JMBAjUtkBpScS8Scmz1nKDhsXLV8ai1E/SUZDfNiksRoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0JACW+0bMejo5AoWzYx48dfJuSYUTTdp+MHR28fn99oyY9VLV5THub97JcZO+yTjGAkCBAgQIECAAAECBAgQIECAAAECBAgQIECAAIHaEdCgoXYczUKAQF0IFL2ZedbCIZlzm5ApLinNeFVBfl7GnAQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEADChzyw4jsVskFvPD/IhYWJeeaUDTdpOH/jtkxTh/eL2PVS/7XpOGNjxZkHCNBgAABAgQIECBAgAABAgQIECBAgAABAgQIECCw+QIaNGy+oRkIEKgrgZnjkmdu2yWic+a3AiRfVHO0pgYNPTu1qfliWQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYYR6LZNxPAvJq9dtjTimWuTc00smp2dFT8+bqc4edctMla+aPnKOPuul+PtGSUZx0gQIECAAAECBAgQIECAAAECBAgQIECAAAECBAhsnoAGDZvn52oCBOpSIFODhoIhEak3A9TmUVSyLHG6bu1bR5tWOYk5QQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgUYgsP/lEXmdkwsZd29E0ZvJuSYWTTdpuO7EneP4oX0yVr6wdGWclWrS8F7RwoxjJAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBDZdQIOGTbdzJQECdS1QND55hcKhyfHNiBaXlCZe3Ts/LzEuSIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0EgE2nWNOPC7GYqpjHjiiojK1O9mcOSkmjRcf9LOccwuhRl3s2BpWZx558vx/qxFGcdIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIbJqABg2b5uYqAgTqWmDZgoj5HyavUgcNGooWJjdoKNCgIfkeiBIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEGpPAbudHdO2fXNGU5yLefyw51wSjrXKy48ZTdokjduqdsfr5S1bEGXe8HJNmL844RoIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGDjBTRo2HgzVxAgUB8CRW9kXqVwSObcJmZmlSQ3aOitQcMmirqMAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFCPAq1aRxzyo8wLPvGDiPKyzPkmlslNNWn45WlD4+Dte2WsfO7i5akmDf+NKXOXZBwjQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgsHECGjRsnJfRBAjUl8DMcckrtesWkd83ObcZ0aIMDRoK8ttuxqwuJUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqDeBQUdFbLlv8nLzPoh47ffJuSYabd0qO245c2iMGNgj4w5mL/q0ScP0eUszjpEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDYcAENGjbcykgCBOpTIFODhsKhEVlZtV5J8cLSxDl7d8pLjAsSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0MoH0MyWH/ThVVIZnS0b/NGLZJ42s6M0rp02rnLjtrF1jv227Z5wo/eKS0+/4b3z8iSYNGZEkCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIbKKBBwwZCGUaAQD0LFI1PXrBgSHJ8M6KlZeUxf8mKxBl652vQkAgjSIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBojAKFQyJ2OS25svLU8yFFbyTnmnA0Lzcnbj97t9irf7eMu5ixYFmcccfLUVSyLOMYCQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgfULaNCwfiMjCBCob4Gl8yM+mZq8auHQ5PhmRGctLM14tQYNGWkkCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKNU+CgH0S0avtZbVmpx+SGnRPx9dcj+h/4WbwZfWrbOifuOne3GL5V14y7mj5/aVWThpqelcl4sQQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgECVgAYN/iAQIND4BGp6U0H6LQe1fBSV1NCgoVNeLa9mOgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgToVyO8Tsc/Fny7Rf0TEl8dEHHtzRMdedbpsQ0/ernWr+N15u8euW3bJWMqUuUtSTRr+G3MWLc84RoIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCCzgAYNmW1kCBBoKIGZ45JXbt8jolPqC/RaPoozNGjolNcq2rdpVcurmY4AAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDOBfZONWg486GIsx+O6LVjnS/XWBbokHrW5fepJg279O2csaTJc5bEmXf+N+Yt1qQhI5IEAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCCDgAYNGWCECRBoQIFMDRoKh0ZkZdV6YcULSxPnLMhvmxgXJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaOQCbTpEbHtwnTxr0sh3Hp3ycuMPXxgeO/XplLHU92ctTjVpeDk+WbIi4xgJAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBdQU0aFjXRIQAgYYWKBqfXEHBkOT4ZkaLS5IbNPTOz9vMmV1OgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoP4F8tvmxp/O3yO2L8jcpGFC8aI4+3cvR8nSsvov0IoECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgSYqoEFDE71xyibQbAWWzItYMD15e4VDk+ObGS0qWZY4Q+9OGjQkwggSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBJqbQGVlc9tRdG7XOtWkYXhs16tDxr29PWNhfD7VpGFhqSYNGZEkCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJrCGjQsAaGjwQINAKBeZMisnOTCykckhzfzGhxSWniDL3zNWhIhBEkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDQngQ+eivjd4RELZzanXVXtpVuHNnHvBXvGNj3aZ9zbGx+XxLm/eyUWL1+ZcYwEAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDApwIaNPiTQIBA4xLot0fE92dEXPhMxNE3RQz7fETvnSM6bRHRsaBOai3K0KChQIOGOvE2KQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECg0QjMnxLx0PkRH/034rcHREx7sdGUVluF9OjYJu6/cM/YunvmJg2vT18QX/j9q7F0hSYNteVuHgIECBAgQIAAAQIECBAgQIAAAQIECBAgQKB5CmjQ0Dzvq10RaNoCrdpE9BkWsdsXIo79VcSXn4+49M2IrKxa31dZeUXMWbw8cd7eGjQkuggSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBJqFwIqlEX85O6J0wafbWTI74p5jIv77m4jKymaxxVWb6NkpL+67cI/o17XdqtA6v1+ZOj/Ov/u1WLaifJ2cAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwKcCGjT4k0CAQNMQyM6pkzpnL1qe8fv0gvy2dbKmSQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBBpYIN2A4dFLI2a9Vb2QipURj30n4m9fjEg3cGhGR/pZmHSThj6dMz8T89KH8+KLf3wtSss0aWhGt95WCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgVoU0KChFjFNRYBA0xMoLinNWHTv/LyMOQkCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEmLDD29xFv/iXzBt76a8Rdh0bMn5J5TBPMbNGlXdx/4Z5RUMNzMc9/MDe+/KexsXylJg1N8BYrmQABAgQIECBAgAABAgQIECBAgAABAgQIEKhjAQ0a6hjY9AQING6BTA0a2rXOiU55rRp38aojQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDYNIHtDo/YYvear531VsTtB0Z88FTN45pYtl+3T5s09OzYJmPloyfOia/e+3qsWFmRcYwEAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKAlCmjQ0BLvuj0TILBaoKhk2erPa37o3SkvsrKy1gz5TIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0FwEOhVGnPuviN2+UPOOShdE3HtSxLPXR1Q0n2YFW3VvH/d/cc/o3iFzk4an3psdF98/LsrKm8++a77ZsgQIECBAgAABAgQIECBAgAABAgQIECBAgACB9Qto0LB+IyMIEGjGAsUlpYm7652flxgXJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQaCYCrVLNCY6+KeLYX0fkZG5UEFEZ8cy1EX85K6K0pJlsPmKbHh3i/gv3iG7tW2fc02PvFMdlfxkfKzVpyGgkQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECLQsAQ0aWtb9tlsCBNYSKFqoQcNaJE4JECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAi1LYNjZEV94LCK/b837nviviDsOipg9oeZxTSi7ba+O8acL9ojO7XIzVv3om0Vx+YNvRnlFqlGFgwABAgQIECBAgAABAgQIECBAgAABAgQIECDQwgU0aGjhfwBsn0BLFyguSW7QUJCf19Jp7J8AAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0HIE+gyL+OLoiK0PqHnP8yZ92qThnUdqHteEstsXdIo/nb9HdMprlbHqh8fNiO889GZUaNKQ0UiCAAECBAgQIECAAAECBAgQIECAAAECBAgQaBkCGjS0jPtslwQav8CC6REzXo9Yubxea83UoKF3ftt6rcNiBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECDSzQvnvEWX+L2OeSmgspWxLxwDkRT14VUb6y5rFNJLtTn/z4Y6pJQ8c2mZs0PDj247jikbc0aWgi91SZBAgQIECAAAECBAgQIECAAAECBAgQIECAQN0IZP42pW7WMysBAgSSBcbfHzH6JxHZuRG9dowoHJL6GRqxxfDU+Q7J12xmNN3Rf9bC0sRZCjrlJcYFCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGDDBcrKymLixInxzjvvxKxZs2LRokXRoUOH6NatW+y8886x0047RXa294tsuKiRBAjUuUBO6pG6Q3746XMrj3w1It2MIdPxwi8jZo6POOn3Ee27ZRrVZOK79O0c95w/PM6+8+VYsqI8se77X/koWqX+3v7h53aMrKysxDGCBAgQIECAAAECBAgQIECAAAECBAgQIECAAIHmLKBBQ3O+u/ZGoCkJzBz3abUVZRFF4z/9GXt3xKCjI067t052MnfJ8liZatKQdPTO16AhyUWMAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIHGJzBjxox45ZVX4uWXX676/dprr1U1QlhV6ZZbbhlTp05ddVrnv6dMmRIPPvhgPPnkkzFmzJhYtmxZxjXz8/PjrLPOiksuuSS23XbbjOOSEnfffXecd955SakNih1wwAExevToDRprEAECLVBgx+MjegyK+MtZEfMmZQaY8mzE7QdEnPrHT5s6ZB7ZJDLD+nWJu78wPD5/1yuxrCy5ScMf/zstWuVkxVVH76BJQ5O4q4okQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEalPAKwhqU9NcBAhsukC6KUPSUTAkKVorseKS0ozzaNCQkUaCAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFGIPDCCy/ECSecEH369Iktttii6vPPfvazeOaZZ6o1Z6jPUpcvXx577rln9O/fP7797W9XNWioqTlDuraSkpK45ZZbYqeddoobbrghKiuTm+zX5z6sRYAAgdUCPbePuHBUxMAjV4cSP5R8FHHXYRHj/pSYbmrB3bfqGr87d/fIy838eOHvX5ga1/1ngr+3m9rNVS8BAgQIECBAgAABAgQIECBAgAABAgQIECCw2QKZv0HZ7KlNQIAAgQ0UWFgUsSj1k3QUDk2K1kqsKEODhtY52dG1XetaWcMkBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqAuBV199NR5++OGYOXNmXUy/SXOWlZXFyy+/nHhtXl5ebL311rH77rvHDjvsEK1bV/9OdsWKFXH55ZfH1772tcTrBQkQINBgAnn5EafeGzHiylQJWZnLKF8e8a9vpTrPzMg8pgll9tqmW9z5+d2jdavMjxj+9rkP44YnJmrS0ITuq1IJECBAgAABAgQIECBAgAABAgQIECBAgACBzRdotflTmIEAAQKbKVA0PvMEhUMy5zYzU5yhQUOv/DaRnV3DF+qbua7LCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUJcCHTp0iMWLF9flEhs0d7ohwznnnBOHHHJIVWOG3Nzc1dctW7YsHnroobjyyitj2rRpq+O33nprbL/99pvUqCHd4OHQQw9dPdf6PnTp0mV9Q+QJECDwqUB2qknBAZdHpJ9jeej8iNKSZJljb47I75Oca4LRfbftHrefvWt88Q9jY0V5ReIObnlmcuSmXoZy6cHbJeYFCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLNTUCDhuZ2R+2HQFMUmDk+uer8vhHtuyfnaiFalKFBQ0GntrUwuykIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQ9wIdO3aMXXfdtaoBwvDhw6t+T5kyJUaMGFH3i2dYYZ999omrrrqqqjFDVlZW4qi2bdvGWWedFUcddVQcdthh8eqrr64e94Mf/CDOOOOM6Nq16+rYhnzYYYcd4uCDD96QocYQIEBg0wS2PSTii6Mj/nJ2xKy3q8+xx1cidj6leqwZnB04sGfcdtaw+PKfxkZZeWXijv7fUx9UNWn46ogBiXlBAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBzEki19nYQIECggQVmjksuIP3WgTo8Zi0sTZy9d35eYlyQAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECjUXgmGOOiXfeeScWLFgQzzzzTPz85z+Pk046KbbccssGK7F169bx6KOPxpgxY+LQQw+NTM0Z1iywS5cu8cgjj0T79u1Xh9N7euihh1af+0CAAIFGJdC1f8T5T0YMPvmzsvrtHXHojz47b2afRm7fK351+rDIyU5uupPe7vWPT4zbn5vczHZuOwQIECBAgAABAgQIECBAgAABAgQIECBAgACBdQU0aFjXRIQAgfoUqEx11s/UoKFgSJ1WUlSyLHH+Ag0aEl0ECRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoPALbbLNN7LDDDpGd3Xge/Ug3aDjqqKM2GqmwsDDOOeecatc9/vjj1c6dECBAoFEJtG4XccIdEYf/LCK/X8TJd0fk5DaqEmu7mMN36h03nzY0aujRED/594T43Zgptb20+QgQIECAAAECBAgQIECAAAECBAgQIECAAAECjUqg8XxL36hYFEOAQL0JLCqKWDI7ebnCocnxWooWl5QmztRbg4ZEF0ECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjUlcB+++1Xberp06dXO3dCgACBRieQlRWx55cjvvZKRMdeja68uijoqJ0L4qZTh9TYpOGHj74bf3xpal0sb04CBAgQIECAAAECBAgQIECAAAECBAgQIECAQKMQ0KChUdwGRRBowQIzx2XefB02aKisrIyiTA0aOuVlrkmGAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBGpdoEuXLtXmLCkpqXbuhAABAo1WILfthpe2YknElOc2fHwjHPm5IX3i5yftEun+FJmOH/z9nbj/FY12MvmIEyBAgAABAgQIECBAgAABAgQIECBAgAABAk1bQIOGpn3/VE+g6QvMHJ+8h879Itp1Tc7VQnTB0rJYvrIicabe+Ro0JMIIEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoI4EZsyYUW3mbt26VTt3QoAAgSYvkHqZSPzzkoh7jo149vqIiuTnVprCPk/adYu47oTBNZb6/Yffivte1qShRiRJAgQIECBAgAABAgQIECBAgAABAgQIECBAoEkKtGqSVSuaAIHmIzBzXPJeCocmx2spWlRSmnGmgvyNeLNBxlkkCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGBDBZ5//vlqQ7fbbrtq5xt6Ul5eHh9++GHMmTMn9Xb3rEg3eigoKIiOHTtu6BTGESBAoG4EXv5NxFsPfDr3M9dGpJ+ZOf62iLz8ulmvjmc9dfd+UVZeGVc+8nbiSul+FOkmDW/PLImrj9kh2rTKSRwnSIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoagLZTa1g9RIg0IwE0t/ENlCDhuKFyxIhc7KzokfHNok5QQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCofYGFCxfGgw8+WG3iI488str5hpz85Cc/iS5dukS6ucM+++wTe++9dwwcODA6d+4cQ4YMicsvvzymTZu2IVMZQ4AAgdoVmDom4vErqs858V8RdxwUMXtC9XgTOjtrzy2rmi/UVPJ9L0+Pk3/zUnz8ydKahskRIECAAAECBAgQIECAAAECBAgQIECAAAECBJqMgAYNTeZWKZRAMxRYOCNi6dzkjRUMSY7XUrS4ZHniTD1TzRnSTRocBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFA/Atdee20sXrx49WLdu3ePo48+evX5hn744IMPYtGiResMr6ioiDfeeCNuuOGGGDBgQHzlK1+JZcuSm/qvc7EAAQIENldg4cyIB86NqCxfd6Z5kz5t0vDOI+vmmkjkvH22jiuO3L7Gat/8uCSO/tWYGD1xdo3jJAkQIECAAAECBAgQIECAAAECBAgQIECAAAECTUGgVVMoUo0ECDRTgZnjMm+scEjmXC1kikuSH7bpnZ9XC7ObggABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQ2RODFF1+MG2+8sdrQK6+8Mtq1a1ctVlsnK1eujN/85jfxwgsvxOOPPx4FBQW1NXXVPLNnz445c+Zs1JyTJqX+gbaDAIHmK/D+YxFLavh7oWxJqoHDOREzL4k46KqInKb3SN+F+/ePslQznJ8/NjHjfVywtCzOu/vVuGTktnHxQdtGtheoZLSSIECAAAECBAgQIECAAAECBAgQIECAAAECBBq3QNP7Nqdxe6qOAIGNEZg5Pnl0l60i2nZJztVStKikNHGmAg0aEl0ECRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUNsC6WYGp512WpSXf/ZW+d133z2+9rWvbdRSQ4YMiaOPPjr23nvv2GGHHaJ79+7RunXrmD9/frz11ltVjRjuuOOOKCkpWT1vOn7MMcfEs88+G+3bt18d39wPt956a1xzzTWbO43rCRBoTgK7fSH1HEzXiL9/NWLF4sw7e+GXqSYN4yNO+n1E+26ZxzXSzEUHDoi2uTlx7b/ei/KKysQqK1Ph//fUBzFu+oL4f6cOiS7tWyeOEyRAgAABAgQIECBAgAABAgQIECBAgAABAgQINGaB7MZcnNoIEGjmAjPHJW+wcGhyvBajxQuTGzT06pRXi6uYigABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSSBJYvXx7HH398fPTRR6vTHTt2jPvuuy9ycnJWx2r6MGzYsBg7dmyMGzcufvSjH8URRxwRW265ZVXDhdzc3OjVq1ccfPDBcf3118eUKVPiuOOOqzZd+tqrrkq9rd5BgACBuhbY8biIC56O6Dag5pWmPBtx+wGpRg0Znqmp+eoGz563z9Zx/4V7Ro+ObWqs5dn358TRvxoTb3y0oMZxkgQIECBAgAABAgQIECBAgAABAgQIECBAgACBxiigQUNjvCtqItASBNIt8TN9mVwPDRqKSpIbNBTka9DQEv742SMBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAg0nUFFREWeddVa8+OKLq4tIN2W49957Y8CA9fzj5dVXROy8886RbtKwIUeXLl3ioYceihNOOKHa8FtvvTVmzJhRLeaEAAECdSLQc1DEhaMiBh5V8/QlqcY1dx0WMe7emsc10uzwrbvGvy7eN9K/azpmLFgWJ//mpbj35WlRmX6OyEGAAAECBAgQIECAAAECBAgQIECAAAECBAgQaCICrZpIncokQKC5CaS/TF42P3lXBUOS47UYLc7QoKF3fttaXMVUBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQILC2wEUXXRQPPvjg6nBWVlbccccdccwxx6yO1cWH7OzsuPPOO2PUqFGxYMGCqiVKS0vjgQceiEsvvbRWlkzv7eSTT96ouSZNmhTHHXfcRl1jMAECTVQgLz/i1D9FjPlFxKgfpzaRoTFB+fKIv18UMWNsxOHXRbRq3aQ23LNjXtx3wR5x/eMT47fPfZix9hXlFXHFw2/H2GmfxI+PGxxtW+dkHCtBgAABAgQIECBAgAABAgQIECBAgAABAgQIEGgsAho0NJY7oQ4CLU1g5rjMOy7YJXOuFjKLSsti8fKViTMV5OclxgUJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYPMFvve978Vvf/vbahP94he/iPPOO69arK5OunTpEl/4whfixhtvXL3EE088UWsNGnr27BnpHwcBAgQyCqSaxcT+l0cUDo148PyI0gUZh8Zrd0UUvxlxyh8iOhVmHtcIM61ysuN7R24fQ/t1jm898GbGZ3XSpf/t9Rnx7syFcdtZu8bW3ds3wt0oiQABAgQIECBAgAABAgQIECBAgAABAgQIECDwmUDq2x4HAQIEGkAgU4OGrv0j2nau04JmLSzNOH/vTho0ZMSRIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwGYIXHfddZH+WfO46qqr4rLLLlszVOefR44cWW2NiRMnVjt3QoAAgXoRGHBwxBdHR/QaXPNyH78a8dsDIqa9WPO4Rpo9fKeC+MfX9omBvTrWWOGE4kVx7K/GxBPvFNc4TpIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0NACGjQ09B2wPoGWKjBzfPLO028HqOOjqCRzg4ZeGjTUsb7pCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoiQK33HJLfO9736u29UsuuSSuueaaarH6OOnbt2+1ZebMmVPt3AkBAgTqTaDr1hHnPxGx86k1L7lkdsQ9x0S8+/eaxzXSbP8eHeLhr+4dxw/tU2OFi5avjC/+cWxc958JsbK8osaxkgQIECBAgAABAgQIECBAgAABAgQIECBAgACBhhLQoKGh5K1LoKULDDs7YvcLIvrsGpHT5jONBmzQ0L1D62jdyl+Ln90MnwgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQILD5An/4wx/i61//erWJvvCFL8RNN91ULVZfJ7m5udWWKisrq3buhAABAvUq0LpdxPG/jTji5xHZrTIvXbEy4oHzIt55OPOYRpxp17pV3HjKLvGj43aK3JysGiv9zbOT46y7Xo45i5bXOE6SAAECBAgQIECAAAECBAgQIECAAAECBAgQINAQAjV8o9MQ5ViTAIEWI7DTiRHpn/RRnnrYZfZ7ETPHRfTb69NYHf5vcUlp4uy98/MS44IECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgsGkCDz30UKSbMVRWVq6e4JRTTok77rgjsrJq/ge6qy+o5Q/FxcXVZuzRo0e1cycECBCod4H034d7fCmi9+CIv54TsWR2cgmV5REPnh+pv1RTz92ckDymEUfTf++fveeWMbhPflz0p7ExM8MzPOkt/PfD+XHUzc/HrWcOi9226tqId6U0AgQIECBAgAABAgQIECBAgAABAgQIECBAoKUJeFV8S7vj9kugMQrkpN5OUrBzxK6pL5h7bFfnFRZl+HK3d6e2db62BQgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINBSBP7zn//EGWecEeXlqX9Q/L/jqKOOij/96U+Rnd1wj6yMGTNmVTlVv/v27Vvt3AkBAgQaTGDLvSO+9FzEFsMzl5Bu0vDoZRHLFmQe08gzQ/p2jkcv3i/227Z7jZXOXrQ8Trv9v3HXmCnVGv3UeJEkAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKCOBRru2+463pjpCRAgkEmguGRZYqogPy8xLkiAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECGyfw7LPPxoknnhgrVqxYfeGIESPiwQcfjNzcVBP/BjpWrlwZ99xzT7XVR44cWe3cCQECBBpUoFNBxLn/Sr3o5LzkMlp3iDjjrxFtOyfnm0i0a/vWcfd5w+PikdvWWPHKisr40aPvxtfuHxeLl6+scawkAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKA+BDRoqA9laxAg0KgEihcuT6yntwYNiS6CBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ2BiB1157LY455phYtuyz5vl77rln/OMf/4i8vIZtnH/dddfFpEmTqm3nc5/7XLVzJwQIEGhwgVatI46+KWKfS6qXkts+4qyHIvrtUT3eRM9ysrPiG4dsF78/d/fIb1tz855/vVkUn/v1mPhg1qImultlEyBAgAABAgQIECBAgAABAgQIECBAgAABAs1FQIOG5nIn7YMAgQ0WKC757CGgNS8q0KBhTQ6fCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgEFlZWdV+Ro8eXaPKO++8E4cffngsWvTZP6AdMmRI/Oc//4kOHVJvfa+l47bbbotRo0Zt1Gw33nhjXHXVVdWuOfbYY2PXXXetFnNCgACBRiGQ+vs3Dr4mYt/LPi2nqjnDg6nmDHs2ivJqs4gRg3rGo1/fNwb3ya9x2slzlsTnbnkh/vHGzBrHSRIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE6lKgVV1Obm4CBAg0NoHSsvL4ZGlZYlm9NWhIdBEkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBxCrzwwguxbNm6DerfeOONagWXlpbGU089VS226qSwsDB22GGHVaeb9buoqCgOPfTQmDdv3up52rdvH9/+9rfjtddeWx3b0A8HH3xwxqEvv/xyXHTRRbHLLrvEKaecUtUUYscdd4w2bdpUu2bp0qXx9NNPxw033BDPPfdctVy3bt0i3bTBQYAAgUYrkG7SMPLqiFZ5EVvtG7Hl3o221M0trG/XdvHAl/eKa/75btz/yvSM0y1dUR4X3z8uXp/2SXz/yO2jdSvvqMqIJUGAAAECBAgQIECAAAECBAgQIECAAAECBAjUiYAGDXXCalICBBqrQHFJacbSendKfZntIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQBMROPPMM2PatGnrrXbWrFlxyCGHJI4755xz4u67707MbWxw4sSJMXNm9beaL1myJM4444yNnapqfGVl5XqvSzejSP9cccUV0apVq+jbt2/k5+dH69at45NPPompU6dGWdm6Tfw7duwY//znP2ObbbZZ7xoGECBAoEEF0k0aDvxug5ZQX4vn5ebET08YHMP6dY4rH3k7lq+syLj03S9OjbdmlMQtZwwLL2XJyCRBgAABAgQIECBAgAABAgQIECBAgAABAgQI1IGABg11gGpKAgQar0BRTQ0a8jVoaLx3TmUECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoWWDlypUxZcqUmgelsnvssUfce++9mjOsV8oAAgQINIzAybv1jR0KO8VF974e0+YtzVjE2GmfxFE3Px+/On1o7D2ge8ZxEgQIECBAgAABAgQIECBAgAABAgQIECBAgACB2hTIrs3JzEWAAIHGLlC8cFliifltc6Ndaz1rEnEECRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg0MgEvvKVr8Sll14aw4YNi9zc3PVWl5eXF4cffnj885//jJdeeklzhvWKGUCAQJMVKC+LmPRUky1/VeE7FubHP762bxy8fa9VocTf85asiLPuejluHT0pKioqE8cIEiBAgAABAgQIECBAgAABAgQIECBAgAABAgRqU8C/Rq5NTXMRIFCzQEVFxO8Ojei+XUTh0IiCIRG9d4rIbVvzdbWYLSopTZytID8vMS5IgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBxiowderUOi+tsnLD/7HrgQceGBszfnOK32OPPSL9kz5WrFgR7733XkyZMiVmzpwZixYtirKysujUqVN06dIltttuuxg6dGi0bt16c5Z0LQECBBq/QLo5w4NfiHjvHxFH3Rix+/mNv+YaKky/cOX2s3eN3zw3OW54fGJk6r+Qjv/8sYnx+rQF8YtTdon0dQ4CBAgQIECAAAECBAgQIECAAAECBAgQIECAQF0JaNBQV7LmJUBgXYH5H0Z8/OqnP+Pv/TSflRPRc4eIU+6J6LbNutfUcmRWhgYNvTVoqGVp0xEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKB+BNKNF3bZZZeqn/pZ0SoECBBohALlKyMeuuDT5gzp8v71jYjK1MtUhl/YCIvd8JKys7PiogMHxJAtOsfX7x8X85asyHjxU+/NimN+NSZuO2tY7FiYn3GcBAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgcwSyN+di1xIgQGCjBIrGrzu8sjxi9jsRHXqtm6uDSFGGBg0FGjTUgbYpCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE6lwg3Zzhb6lGDO8+Un2pf38r4uXbq8ea6NneA7rHvy7eL4b161zjDqbPXxon3PpiPPDaRzWOkyRAgAABAgQIECBAgAABAgQIECBAgAABAgQIbKqABg2bKuc6AgQ2XmDmuORrug+MaNMhOVfL0eKFpYkz9u7UNjEuSIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDRClRWRjz8pYh3/pZc4n8uj/jvbcm5JhbtnXoBy5+/uFect89WNVa+fGVFXP7gm/G9v70ZpWWpl8c4CBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQK1KKBBQy1imooAgfUIzByfPKBwSHK8DqJFJRkaNOS3qYPVTEmAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgDgWysiLW9+zNY9+NeOmWOiyi/qZu3So7rj5mx/jV6UOjXeucGhe+/5WP4qTfvBgfzV9a4zhJAgQIECBAgAABAgQIECBAgAABAgQIECBAgMDGCGjQsDFaxhIgsOkCFRURReOTry8cmhyv5eiKVHf8uYuXJ87aO79tYlyQAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQKMW2PvrEYf9pOYSH/9+xIu/qnlME8oes0th/ONr+8Q2PdrXWPXbMxbG0b8aE89MnF3jOEkCBAgQIECAAAECBAgQIECAAAECBAgQIECAwIYKaNCwoVLGESCweQLzJkWsWJw8R8GQ5HgtR2cvKo3KyuRJC/LzkhOiBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBBq7wF5fjTj8upqrfOLKiBd+WfOYJpQd0LNj/P1r+8ZROxfUWHXJsrL4wt2vxo1Pvh/lFRkeHqpxBkkCBAgQIECAAAECBAgQIECAAAECBAgQIECAwGcCGjR8ZuETAQJ1KVA0Pnn2rNRfQ70HJ+dqOVpcUppxxt4aNGS0kSBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGgCAnt+JeKI62su9MmrIsbcVPOYJpTt0KZV/Pr0oXHV0TtEq+ysjJWnX+py89MfxLm/fyXmL1mRcZwEAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGB9Aho0rE9IngCB2hGYOS55nh7bR7Rul5yr5WjxwuQGDe1b50TH1Je1DgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJNWmCPL0YceUPNW3jq/yKeW8+YmmdoVNmsrKz4wr5bx5+/uGf06tSmxtqe/2BuHH3z8zH+owU1jpMkQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECGQS0KAhk4w4AQK1K5CpQUPhkNpdp4bZikuSGzT0zs+L9Be1DgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJNXmD4hRFH3VjzNkb9KOLZ62se08Syu23VNR79+n6xV/9uNVY+M/UM0cm/eTH++N9pUVlZWeNYSQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDA2gIaNKwt4pwAgdoXqCiPKHozed7CocnxOogWZWjQUJDftg5WMyUBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBBhLY/fyIo/9fzYs/c23E6J/VPKaJZXt0bBN/PH94fOXAbWqsvKy8Mn7wyNvxjb++EctWpJ5tchAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIENlBAg4YNhDKMAIHNEJj7QUTZkuQJ6rFBQ3GGBg29OuUl1yZKgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoKkK7HZexDE311z96J9EPPPTiMrKmsc1oWyrnOz4zuGD4vazd42ObVrVWPnD42bE8be+EFPmZni2qcarJQkQIECAAAECBAgQIECAAAECBAgQIECAAIGWKKBBQ0u86/ZMoL4FisYnr5iVE9Frx+RcHUSLSpYlzlqQr0FDIowgAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA0xbY9ZyIY3+d2kNW5n08e12qSUOqUUMzatKQ3uyhO/aOf3593xjUu2PmvacyE4oXxbG/GhOPvV1c4zhJAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBaQIMGfw4IEKh7gZnjktfouUNEbtvkXB1Ei0tKE2ftrUFDoosgAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAMxAYdnbE525JbaSGJg3P/Txi1LXNrknDVt3bx8MX7RMnDOtT441ctHxlfPlPY+O7D70Zi0rLahwrSYAAAQIECBAgQIAAAQIECBAgQIAAAQIECLRsAQ0aWvb9t3sC9SOQqUFD4S71s35qlfKKypi9aHniegUaNCS6CBIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDQTgaFnRhx3W2ozNTRpeP6GiKevaXZNGtq2zolfnLxL/OT4wdE6p+ZHJv/86kdx2E3PxXPvz2kmN942CBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgdoWqPnbhtpezXwECLQ8gfKVEcVvJe+7cGhyvA6i8xYvj5WpJg1JR28NGpJYxAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBJqTwJDTI47/bapHQw2PDY65KSL908yOrKysOGOPfvHgV/aKPp3b1ri7mSWl8fnfvRLf+9ubsai0rMaxkgQIECBAgAABAgQIECBAgAABAgQIECBAgEDLE6jhm5aWh2HHBAjUgcDc9yPKliZPXI8NGopSX5xmOgrya/7SNdN14gQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSalMAup6aaNNyeuUlDpy0idjy+SW1pY4rdeYvO8ejX940Dtuux3svuf+WjOPz/PR/PfzBnvWMNIECAAAECBAgQIECAAAECBAgQIECAAAECBFqOgAYNLede2ymBhhEoGp+8bnariJ47JufqIJqpQUPrVtnRpV1uHaxoSgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKNUGDnkyNOuGPdJg0dCyPO/WdE160bYdG1V1KX9q3j9+fuHpcdvF1kZdU874wFy+Lsu16J7z/8VixevrLmwbIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAixDQoKFF3GabJNCAAjPHJS/ec4eI3LzkXB1Ei0uWJc7au1Ne6ovW9XzTmnilIAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEmKjD4pIgT70o1acj5dAMdC1LNGR5NNWfo30Q3tHFlZ2dnxSUHbxv3X7hn9Ovabr0X3/fy9DjspufihUlz1zvWAAIECBAgQIAAAQIECBAgQIAAAQIECBAgQKB5C2jQ0Lzvr90RaHiBTA0aCofUa21FC0sT1+udX39NIhILECRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQEAI7nRBx0u8i8vtGnJNqztBtm4aookHX3LN/t3js0v3inL22XG8dMxYsizPvfDmuePitWLx85XrHG0CAAAECBAgQIECAAAECBAgQIECAAAECBAg0TwENGprnfbUrAo1DoDz1RWTxW8m1FA5NjtdRtLgkuUFDgQYNdSRuWgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgUYvsONxEV97LaL7gEZfal0V2K51q7jmczvF/RfuGVt0abveZe59eXoc/v+eixcnzV3vWAMIECBAgAABAgQIECBAgAABAgQIECBAgACB5iegQUPzu6d2RKDxCMyZELEyuTFCNJIGDb01aGg8f15UQoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUP8CuXn1v2YjXHGvbbrF45fuH2fvueV6q/v4k2Vxxp0vxw8eeTuWLE+9xMZBgAABAgQIECBAgAABAgQIECBAgAABAgQItBgBDRpazK22UQINIFDycURuu3UXzs6N6LnDuvE6jBQvTG4UUdDJF8x1yG5qAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB5iSwfHFERUVz2lG1vbRv0yp+dNxOcd8Fe8QWXdpWyyWd/PG/0+LwXz4XL02el5QWI0CAAAECBAgQIECAAAECBAgQIECAAAECBJqhgAYNzfCm2hKBRiMw8PCI76WaNFz0csRxv4kY/qWIvntEbLF7RKs29VZmZWVlFJUkN2jonb/+L1LrrVALESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGisAssWRNxzTMSjlzbrJg1p/r0HdI/HLt0/ztqzX/q0xuOj+cvi9Dv+G1f//e1YumJljWMlCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAgaYv0Krpb8EOCBBo1ALZORE9B336M+T0T0tNNUyoz+OTpWWxYmVy5/7e+Xn1WYq1CBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDQ9gdKSiD+dGDHz9U9/KlPP4hxzc0R2831HVIc2reLa4wbHETsVxLcffDNmLFhW432756Vp8czEOfHzk3aOPft3q3GsJAECBAgQIECAAAECBAgQIECAAAECBAgQINB0BZrvtyNN956onEDzF8jKqtc9FpVk/nK0QIOGer0XFiNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGhiAqULP23OMOO1zwof98eIf3wtoqL8s1gz/bTPgO7x+GX7xxl79FvvDqfPXxqn3f7f+L9/vBNLV6xc73gDCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgaYnoEFD07tnKiZAYCMFiktKE6/Iyc6K7h3aJOYECRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECLR4geWLIu49KeLjV9elGH9vxN+/2iKaNHRo0yp+cvzg+OP5w6NwA14Ic/eLU+OIXz4fL384b103EQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBJC2jQ0KRvn+IJENgQgaIMDRp6dWwT6SYNDgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEEgRmvRtR9EZC4n+hN+6PeOQrLaJJQ3rH+23bIx6/bP84fXjfzCb/y0ybtzROu+O/8X//eCeWrli53vEGECBAgAABAgQIECBAgAABAgQIECBAgAABAk1DQIOGpnGfVEmAwGYIzFpYmnh17w3oZp94oSABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBliDQb4+I0/8c0Sov827f/EvEw1+KKG8ZTQg65uXGT0/YOf7wheFRuJ7njyorI+5+cWoc+cvn49Wp8zMbyhAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJNRkCDhiZzqxRKgMCmChSVJDdoKMhvu6lTuo4AAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAyxDYZkTEGakmDK1qeNbmrQdSTRq+2GKaNKRv/P7b9YjHLts/Ttu973r/HEydtzRO+e1L8cN/vhvLVpSvd7wBBAgQIECAAAECBAgQIECAAAECBAgQIECAQOMV0KCh8d4blREgUEsCxRkaNPReTwf7WlreNAQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSatkD/AyPO/GvNTRrefijibxe0qCYNnfJy47oTd457vjA8CtbzLFJlZcTvXpgSR978fLw2dX7T/vOgegIECBAgQIAAAQIECBAgQIAAAQIECBAg0IIFNGhowTff1gm0FIGikmWJW+3dKS8xLkiAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwFoCW+8fcdaDEbnt1kqscfrOwxEPnZ9q0lC2RrD5fzxgux7x+GX7xym7bbHezU6ZuyRO/u1Lce2j70ZpWfl6xxtAgAABAgQIECBAgAABAgQIECBAgAABAgQINC4BDRoa1/1QDQECtSxQmWo9X1RSmjhr7/V0rU+8SJAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBASxXYat+IM9NNGtpnFnj3kYgHv9DimjR0ysuNn5+0S/z+vN1jfS+OST3SFHeOmRJH/vL5GDttfmZLGQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKDRCWjQ0OhuiYIIEKhNgUXLV8bSFcmd5gs0aKhNanMRIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAi0BIGt9ok466GI1h0y7/a9f0T8+YyI0pLMY5ppZsTAnvH4ZfvHybtusd4dfjh3SZz0m5fiJ/9+L0rLkp9xWu8kBhAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQL1KqBBQ71yW4wAgfoWmFVSmnHJ3ho0ZLSRIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIJBRYMu9/tekoWPGIfHBExF3jIyY837mMc00k982N64/eZf4/bm7R69ObWrcZWVlxO3PfRhH3vx8vD79kxrHShIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQINL6BBQ8PfAxUQIFCHAkUZGjRkZUX07JhXhyubmgABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEAzFui3Z8TZf4toXUOThnkfpJo0HBTx3qPNGCLz1kYM6hlPXHpAnDhsi8yD/pf5cM6SOOm2F+On/34vSsvK1zveAAIECBAgQIAAAQIECBAgQIAAAQIECBAgQKBhBDRoaBh3qxIgUE8CxRkaNHTv0CZat/JXYD3dBssQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0R4G+w1NNGh6OaNMp8+5WLIr4y5kRo34cUVGReVwzzeS3y41fnLJL3HXObqkXyrSpcZcVlRG/fe7DOOrm52Pc9E9qHCtJgAABAgQIECBAgAABAgQIECBAgAABAgQINIyAf53cMO5WJUCgngSKMjRoKMjPq6cKLEOAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgGQv03T3VpOGRVJOG/Jo3+dzPI/58ekRpSc3jmml25Pa94snLDogThvZZ7w4nz1kSJ972Yvz0P+9FaVn5escbQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECNSfgAYN9WdtJQIEGkCgeOGyxFV7ddKgIRFGkAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMDGCmyxa8QFT0Z0G1Dzle8/FjHp6ZrHNONsfrvcuPHUIXHn53eLHh3b1LjTisqI3z77YRz9qzHxxkcLahwrSYAAAQIECBAgQIAAAQIECBAgQIAAAQIECNSfgAYN9WdtJQIEGkCgqKQ0cdWCfA0aEmEECRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECGyKQI+BEReOitju8MxXD/9ixE4nZM63kMzBO/SKJy/bP44f2me9O540e3Ecf+sL8bPHJsTyleXrHW8AAQIECBAgQIAAAQIECBAgQIAAAQIECBAgULcCGjTUra/ZCRBoYIHiDA0aemvQ0MB3xvIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLNTiAvP+K0+yMO+O66W+u3d8RhP1k33kIjndu1jptOHRK3n71rdO/QpkaFisqI20ZPjqNvHhNvfLSgxrGSBAgQIECAAAECBAgQIECAAAECBAgQIECAQN0KaNBQt75mJ0CggQWKF5YmVlCgQUOiiyABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBzRLITj2WOOJ7qUYN90W07vjpVJ36RJxyT0RO7mZN3RwvPnTH3vHkZfvH54YUrnd7H8xeHCfc9mJc//iEWL6yfL3jDSBAgAABAgQIECBAgAABAgQIECBAgAABAgRqX0CDhto3NSMBAo1EYNmK8liwtCyxmt6d2ibGBQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqAWBQUdFXDgqotfgiFP/GNGhZy1M2jyn6NK+dfzytKHx27N3je4dWte4yfKKyrjlmclx7K9eiLHTPqlxrCQBAgQIECBAgAABAgQIECBAgAABAgQIECBQ+wIaNNS+qRkJEGgkAsULSzNWUpCflzEnQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBALQj02C7iS89F9Nm1FiZr/lMctmPvePKyA+LYXQrXu9mJsxbFibe9GF/642sxafai9Y43gAABAgQIECBAgAABAgQIECBAgAABAgQIEKgdAQ0aasfRLAQINEKBopJlGavqrUFDRhsJAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABArUmkL0RjylWVka8+4+IiopaW76pTdSlfeu4+fSh8ZuzhkX3Dq3XW/7j78yKQ296Li5/4I2YsSDz81LrncgAAgQIECBAgAABAgQIECBAgAABAgQIECBAYIMENuKbjw2azyACBAg0GoHiktLEWjq3y4283JzEnCABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAg0k8OqdEX89O+L+UyOWLWigIhrHsofvVBBPXHZAHL1zwXoLqkj1tXhg7Mcx4obRce2j78YnS1as9xoDCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgU0T0KBh09xcRYBAExAoytCgoXenvCZQvRIJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQItCCBqS9EPPbdTzf8wRMRdxwUMXtCCwJYd6td27eOX58xLG49c1h0S31e37FiZUXcOWZK7P/zZ+JXT38QS5avXN8l8gQIECBAgAABAgQIECBAgAABAgQIECBAgMBGCmjQsJFghhMg0HQEijM0aCjI16Ch6dxFlRIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDR7gZKPIx44J6JijYYC8ydH3Dky4t1/NPvtr2+DRw4uiCcu2z+OSv3ekGNRqjHDL558Pw64/pm458WpkW7c4CBAgAABAgQIECBAgAABAgQIECBAgAABAgRqR0CDhtpxNAsBAo1QoHhhaWJVvfPbJsYFCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoZ4Gy1DM+fzk7YsmcdRdesTjir6nc0z9KNW8oXzffgiLdOrSJW84cFn88f3js1KfTBu187uIVcfU/3omRN46OR8bNiIqKyg26ziACBAgQIECAAAECBAgQIECAAAECBAgQIEAgs4AGDZltZAgQaOICxSXJDRoK8vOa+M6UT4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKCZCMx5L2LepJo38/wNEfefFrFsQc3jWkB2v217xD++um/8+oyhsXX39hu044/mL4tL/zI+jrz5+XhmwuyorNSoYYPgDCJAgAABAgQIECBAgAABAgQIECBAgAABAgkCGjQkoAgRINA8BIoyNGjorUFD87jBdkGAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIND0BQqHRlw4KqL7djXv5YMnIu4YETE71dChhR/Z2Vlx9M6F8cRl+8dPjh8cPTu22SCRCcWL4ry7X41Tf/vfGDtt/gZdYxABAgQIECBAgAABAgQIECBAgAABAgQIECBQXUCDhuoezggQaCYCK1ZWxNzFyxN307tTXmJckAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBBhDovm3EBU9HDDyq5sXnf5hq0jAy4t2/1zyuhWRzc7LjjD36xbOXj4jvHD4oOuW12qCdvzJ1fpx420txwT2vxcRU0wYHAQIECBAgQIAAAQIECBAgQIAAAQIECBAgsOECGjRsuJWRBAg0IYFZC0szVluQr0FDRhwJAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAg0hkNcp4tQ/RYy4IrV6VuYKypZE/PXzEU//MKKiPPO4FpRp2zonvnLgNvH8tw+KLx+wTbRptWGPhj713qw4/JfPxTf+Oj4+mr+0BYnZKgECBAgQIECAAAECBAgQIECAAAECBAgQ2HSBDft/4Td9flcSIECgQQSKa2jQ0FuDhga5JxYlQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUKNAduqRxgO+HXH6nyPapBo21HQ8/4uI+06NWPZJTaNaVC6/XW5894hB8ezlI+KMPfpFTnYNjS7+J1NZGfG312fEyF88G9f8852Yt3h5izKzWQIECBAgQIAAAQIECBAgQIAAAQIECBAgsLECGjRsrJjxBAg0CYGiktLEOju0aRUd83ITc4IECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECDQCgYGHR1z4TET3gTUXM+nJiNtHRMx6t+ZxLSybfoHNT44fHE9etn8ctXPBBu1+RXlF/P6FqbH/z5+J//fU+7F4+coNus4gAgQIECBAgAABAgQIECBAgAABAgQIECDQ0gQ0aGhpd9x+CbQQgVkZGjSkv3x0ECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECDQyAW6D4i44KmIQUfXXOgnUyLuPDjinUdqHtcCs/17dIhbzhgW//zavrHftt03SGDJivJUg4YPqho1/G7MlFi+snyDrjOIAAECBAgQIECAAAECBAgQIECAAAECBAi0FAENGlrKnbZPAi1MoChDg4YCDRpa2J8E2yVAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEGiyAnmdIk75Y8SIK1NbyMq8jbIlEQ+cE/HUNREVGgqsDTV4i/z44/l7xL0X7BG7pD5vyDF/yYr44aPvxkE3PBsPjf04yisqN+QyYwgQIECAAAECBAgQIECAAAECBAgQIECAQLMX0KCh2d9iGyTQMgWKFy5L3HjvTnmJcUECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBBqhQHbqMccDLo844y8RbVING2o6xtwYcd8pEcs+qWlUi83tM6B7PPLVfeK2M4dF/x7tN8hhxoJl8c0H3ogjfvlcPPnurKis1Khhg+AMIkCAAAECBAgQIECAAAECBAgQIECAAIFmK9Cq2e6shW1s8uTJ8corr8THH38cK1asiC5dusSgQYNi7733jrw8/yC9hf1xsN2UQFFJaaJD73z/PSTCCBIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBozALbHRZx4TMRfzkzYs6EzJVOeiri9hGfNnToMTDzuBaaycrKiiMGF8QhO/SKB8d+HP/vqQ+ieGHys1ZrEr0/a3Fc+IfXYtctu8R3Dh8Uw7fuumbaZwIECBAgQIAAAQIECBAgQIAAAQIECBAg0GIENGho4rf6kUceiR/96Efx+uuvJ+6kQ4cOce6558bVV18d3bt3TxxTn8GlS5fGzjvvHOmGEmse55xzTtx9991rhnwmsFkCxRo0bJafiwkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAg0OoHuAyIuSDVgePjLERMezVxe2dKINp0y52WiVU52nDa8Xxw3tE/84aWpccszk6NkWdl6ZcZO+yRO+e1LMWJgj/h2qlHD9gWc14tmAAECBAgQIECAAAECBAgQIECAAAECBAg0K4HsZrWbFrSZ5cuXx1lnnRXHH398xuYMaY7FixfHr3/969hhhx3iueeea3ChK6+8cp3mDA1elAKanUB5RWXMXrQ8cV8F+XmJcUECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBJqAQJuOEaf8MeKgK1PFZq1bcHbup/lOBevmRNYRyMvNiS/uv0089+0R8dUR20Tb1PmGHM9MnBNH3vx8XPrncTF9XqohhoMAAQIECBAgQIAAAQIECBAgQIAAAQIECLQQAQ0amuCNrqioiFNPPTXuvffeatXn5OTE1ltvHUOGDIn8/PxquTlz5sQRRxwRL730UrV4fZ688sor8ctf/rI+l7RWCxWYu3h5pJs0JB29O7VNCosRIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINBUBLJTjz7uf3nEGX+NaFP9Wbk48vqIfns0lZ00mjrz2+bG5YcNimcvPzDO2rNftMpOaH6xVrWVqUe0Hhk/M0beODqu/vvbMSfDS3XWuswpAQIECBAgQIAAAQIECBAgQIAAAQIECBBo0gIaNDTB23f99dfH3//+92qVf/nLX47p06fHhx9+GOPGjYv58+fH3/72t+jXr9/qcUuXLo1TTjklSkpKVsfq68OKFSvi/PPPj3RzifTRvn37+lraOi1QoKikNOOuC/LzMuYkCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBoQgLbHRrxxWciegz6tOhh50Tsdl4T2kDjK7Vnp7y49rjB8dQ3DohjdyncoALL/j979wEfd134f/x9d9m7WU3aNB3pBtpS2tINZVRkSAGL6+dfQFTEhSKgPyeKAxygPwcKogKKAgrIEii0pXswSqGlu0lHdpu9c/f/fL9p01x6l9xlXpLX9/H4ePf97M/zy+/3gOTyvmaP/rohV+f9bKV++fIuVdQ1BjSOTggggAACCCCAAAIIIIAAAggggAACCCCAAAIIDEQBAhoG2FMrLS3Vj370I69d/+QnP9Hvf/97jRhx6pchTpMQftVVV2n9+vUaM2ZMa//Dhw/rl7/8Zet9X7358Y9/rHfffddebuTIkfrc5z7XV0uzzhAUKCiv9XnqyDCnkmLCfbZRiQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgNQICVHunGFtPg26dKfDcADhOaWx6TG6tcfO1vPfWmhzpuYFtAmaxqa9evX9uq8e1bqwTX7VdfYHNA4OiGAAAIIIIAAAggggAACCCCAAAIIIIAAAgggMJAECGgYSE/L7PWee+5RZWVl664XL16sO+64o/W+/RsrDOHBBx/0qr733ntlBT301fXee+/JCpE4ef3mN79RfHz8yVteEehxgfzyOp9zZiZGyeFw+GyjEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBAaoQKT5PNoF35bCIgfoAUJ322eOTNRfb5ijxz4zVzNGJQW00eM1jbrr+Z264Oer9PjWQ2pqdgc0jk4IIIAAAggggAACCCCAAAIIIIAAAggggAACCAwEAQIaBsJTOrFHt9utP//5z147/v73v9/pH5xfeOGFWrRoUes4K+Dh8ccfb73vzTfWnj/96U+roaHBXuaqq67SsmXLenNJ5kZABX4CGoYnRKGDAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACQ12gIl/692elmmNDXSLg88/LSdFTN8/XHz55jsanxwU07qj5HNftT76jS361Ri+9VyCPxxPQODohgAACCCCAAAIIIIAAAggggAACCCCAAAIIIBDKAgQ0hPLTabe39evXq7i4uLV23LhxOv/881vvO3pjhSS0vZ5++um2t732/r777tOmTZvs+RMSEvSb3/ym19ZiYgROCuT7CWjITCSg4aQRrwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIDEmBpnrp8U9K7/xTemCJVPheaDNYoQbWnuvKpSrz+cGyQ9Lxgy11fbxzh8OhD5yRoZduWayffXiaRgT4eay9RVX63CNv6Krfrdfru4sJaujj58ZyCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAj0rENaz0zFbbwo8//zzXtNffPHFsn7hEchl9W17rVq1StXV1YqNjW1b3aPv9+/fr+985zutc/7kJz/RiBEjWu95g0BvCRT4CWjISIzurSWZFwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBAaCwIu3S4e3tOzUCjp48CLpyt9KZ17tvXsrGKG50RQTjmAFJNilruXVq860WfcTlkphkd5z+Lp79itSTamZp8EUM1/ziVe/92ZuX1eY+bKaeV+QzvuGWTfCV49eq3M5HVo+a5SumD5Cj27M1W9X7tXxGmPVyfX2oTL9v4c2a9boYfrqxRM1Pycl4M9AdjI1zQgggAACCCCAAAIIIIAAAggggAACCCCAAAII9JkAAQ19Rt39hd5++22vSebPn+9139GNFYwwZswYHTx40O7W0NCgHTt2aPbs2R0N61bbZz7zGdXU1NhzzJs3T5///Oe7NR+DEQhUoKDC/OLSx5UZYGK7j6FUIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwEAX2Ppn6Y2/eJ+i0XzG7cnrpVe+dyKMwXz26GQgg0xIQ6DXrbuk+IzOe+/6r1RV0Hm/znpY4Q5rfiHtXy0tN+dKyu5sRI+3R4W7dOOicbp29ig9+Pp+Pbj2gGoamjtdZ2vucX3iwU2aMybZDmqYZ4IauBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQGCgCzoGyUfYp7dy504th6tSpXved3bTv336+zsYH0/7ggw/qtddes4eEh4frgQceIOk6GED6dlnAY5LrC8rNLx99XBkENPhQoQoBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSEgcGiz9MJt/g9anmeCEwqlunIT0GB9/iiIcAZrVnuM/+lbW8IiWt/2yJsjW6X7F0m7XuyR6boySUJUuL62dJJW37ZEn5o3WuEuR0DTbD54TB97YKM++scN2rS/NKAxdEIAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoL8FCGjo7ycQ4Pq1tbXKyzO/AGpzjRo1qs1d52/b99+1yyR298KVn5+v22479Yus22+/XWeccUYvrMSUCJwucKy6QQ3N7tMbTE0mAQ0+XahEAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQGDQC8SkSCnje++YTQ2BzR0WFVi/YHrVlUmPfVR6+dsmVyLIYIlg1umkb1p8pO688ky9+rXzddXZI82XOnUy4ETzxv3H9JE/btTHTVjDFhPawIUAAggggAACCCCAAAIIIIAAAggggAACCCCAQCgLENAQyk+nzd5KSkrM701O/eIkPDxc6enpbXp0/nbkyJFenYqKirzue+rm5ptvVllZmT3dhAkT9O1vm1/6cCHQRwL55VZ6ve8rg4AG3zDUIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAw2AVScqQbX5GmfKh3Ttrk/3NLXgu6Ir1ue/wm0FSEHl/41ITZKTG69yMz9MKXF+mCyYF/znH9vlItv3+DPvmnTXoj9/ipCXmHAAIIIIAAAggggAACCCCAAAIIIIAAAggggEAICYSF0F7YSgcCVVVVXq0xMTEmXTrAeOkTI2NjY73maD+nV2MXbx5//HE9/fTTraP/8Ic/KCqqFxK/W1fo+I0VQlFcXNxxp3ate/fubVfD7UASKPAT0BDmdCg1tpd/uTmQoNgrAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJDTSAyXrr2YWntL6VXf2hOf+pLk7pN0dwQ2BRhvfQZpqw50oXfC2wPfdRrSmaCHrputh22cN+K3VqzpySgla1+Vlk8MU1fvWiCzs4eFtA4OiGAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0BcCBDT0hXIPrNE+TKEroQfR0dFeO2k/p1djF25KS0v1pS99qXXk9ddfryVLlrTe98eb3/3ud7rzzjv7Y2nW7CeB/ArfSfTDE6LkNCENXAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIDCEBawvRlp0q5QxXXrqc1JNYKEBfsXCzBcYWaEL7ma/XbwaplwhjTi7ZYw1zmWK9dpazHyuCHN/Yt72fdxN0ovfkHLXnpo2epj04YfMuPBTdSH07pzRw/TIp8/V1oPHdK8Jali3tzSg3b2+u1hWWTLJBDVcPFHTspICGkcnBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQR6U4CAht7U7cG56+rqvGaLiDC/gAnyiow0v8Rpc9XW1ra56/7bW265RUVFRfZE6enp+vnPf979SZkBgSAFCsp9/3OdkWh+YcmFAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFgCEy6SvvyWtO+1lpAGKxAhkLAEu9+JAAUrEMEKfAjmWnhLML199/1/z0irfyq9bn1GzyMtu19KGuW7bwjVzhqTrL/dOFebD5ighld2a8P+wIIaVu4qllUunJxuBzWcOTIxhE7FVhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSGmgABDQPkiUdFef9xeUNDQ9A7r6+v9xrTfk6vxiBvXnzxRT366KOto+69914lJye33vMGgb4SKCj3/uf85LoENJyU4BUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQRsgagE6YxlAw/DZT76ecG3pex50lETMjHpkgF1hjljk/XYZ+dqw75S3btitx3YEMgBXn2/SFa5eOpw3XLRBJ0xgqCGQNzogwACCCCAAAIIIIAAAggggAACCCCAAAIIINCzAgQ09Kxnr80WFxfnNXddXZ3XfSA3tbW1Xt3az+nVGMRNZWWlbrrpptYRl1xyiT7+8Y+33vfnm5tvvlnLly8Pagt79+7VsmXLghpD59ARKKjw/uf85M4yE7xDTk7W84oAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIDEiB8RdKVgn0crslT7PkCg90RK/2m5eTornjTgU1bDl4PKD1XtlRKKt84AwrqGGipmSaoA0uBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQT6SICAhj6C7u4y7cMUampq5PF45HA4Ap66urraq2/7Ob0ag7j5xje+oby8PHtETEyMfv/73wcxune7pqenyypcQ0cgv9x3eElGIgENQ+efAk6KAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACpwls+D9p53PS8j9LiVmnNfdHhfUZyPnjU2WFNazdW6J7X9mtN/PKAtrKS+8VyiqXnpWhr1w4UZMy4gMaRycEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBLoj4OzOYMb2nUBqaqpXGENjY6OKioqC2sCRI0e8+vdEcMGBAwe8AhnuvPNOjRkzxmsdbhDoKwErtKTAT0BDZmJ0X22DdRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB0BLI2yituFM6vFm6f6G0+6WQ2p8V1LBoQpr+9fn5+usNczRjVFLA+3the4Eu+dXr+sLf39SewsqAx9ERAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGuCBDQ0BW1fhgTHR2t7Oxsr5Xz8vK87ju7ad9/8uTJnQ3ptL28vFzWH8WfvG677TY7SML6ZUlHxQpyaHv99a9/9eqflJTUtpn3CAQkUFHXpJqGZp99MxIjfdZTiQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggMaoHqUunJGyTPic9W1R6X/n6t9Mp3pebGkDq69bnD8yam6amb5+vP183WtKzEgPZnfYzx+XfytfS+1/Xlx97S3qKqgMbRCQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBYAUIaAhWrB/7tw9U2LFjR1C72blzp1f/9vN5NXKDwAAUKCiv87vrjMRov200IIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAKDUsDtlp6+Sao4cvrx1v1K+stlUvnh09v6ucYKalgyOV3PfGGB/vSpWTpzZEJAO7KCGv6z7aiW3rtaX/3n29pfTFBDQHB0QgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAhYgICGgKn6v+OMGTO8NrF+/Xqv+45u8vPzdfDgwdYu4eHhmjp1aus9bxAYDAIFFb4DGszv6pQeHzkYjsgZEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHABTb9Xtrzsv/+hzZJ9y+SdnfQx//oXm+xghounDJcz35xof74yXM0NTOwoAa3CWp46q0juuiXq/W1x9/WwZLqXt8rCyCAAAIIIIAAAggggAACCCCAAAIIIIAAAggMDYGwoXHMwXHKyy+/XHfffXfrYVasWCGPiXu2fgHR2fXyy96/PFmyZIni4uI6G9Zp+/jx4/XKK6902q99h4cffliPPPJIa/XSpUt12223td5bARJcCAQrUFBe63NIWlykwl3k0fjEoRIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQGr8DUZdLOZ6W8Df7PWHtM+vtyacEt0gXfllyh9/k963OSS8/I0EUmrOHlHYW6b8VuvV9Q6f9MJ1qsoIZ/v3lEz7x9VFefPVJfumCCslNiOh1HBwQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE/AkQ0OBPJgTr58+fr9TUVJWUlNi7279/v1atWiUrbKGz609/+pNXlyuvvNLrvqs3VsjDRRddFPTwtWvXeo3JzMzs0jxek3Az5AXyy+t8GmQmRvmspxIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQGNQCiSOlTz0nrbxLWntvx0ddd58JctgoffghyRoXgpfT6dAlZ2Zo6dTh+u97BXZQw+7Cqk532mySGp5447CeeuuIrpmZpS9eMF6jkglq6BSODggggAACCCCAAAIIIIAAAggggAACCCCAAAKnCfCV8qeRhG6F0+nUdddd57XBO++8Ux6PiXju4Hr11Ve1Zs2a1h7x8fG69tprW+95g8BgESjwE9CQQUDDYHnEnAMBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSCFXCFSRd9X/r4E1J0csejD5mAhvsXSnte6bhfP7daQQ2XnpWp/35lsX7z8bM1IT0uoB01maCGf249pCU/X6Vv/nu7jpTVBjSOTggggAACCCCAAAIIIIAAAggggAACCCCAAAIInBQgoOGkxAB5veOOOxQXd+oXCatXr9bdd9/td/dHjhzRjTfe6NX+la98RampqV517W8cDofallWrVrXvwj0CISeQ7y+gISEq5PbKhhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBPhWYuFS6yXzZ06hzO1629pj0tw9LK74vNTd13LefW62ghsunjdB/b1msX310hsalxQa0Iyuo4bHNeTr/Zyv1rae26yhBDQG50QkBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBAIqBhgP1TYAUr/O///q/Xrr/5zW/q5ptv1tGjR1vr3W63nn76ac2fP18HDx5srR8xYoRuvfXW1nveIDCYBAr8BTQkRg+mY3IWBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKBrAolZ0nXPSwtu6Xz82nulv14uVZz6bGLng/qnh8sENVw5Y6Re+ep5uu8jMzQ2NbCghsZmj/62yQpqWKXvPvOu/H0GrX9OxaoIIIAAAggggAACCCCAAAIIIIAAAggggAACoShAQEMoPpVO9nTHHXfo8svNLz3aXL///e+VnZ2tnJwczZw5UykpKbrqqquUl5fX2is6OlqPP/64kpKSWut4g8BgEsgvr/V5nMzEKJ/1VCKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACQ07AFS5dfKf08Sek6GEdHz9vg3T/QmnPio77hUirFdSw7GwrqGGxfrF8ukanxAS0s4Zmtx7ekKvFP1up7//nPRVW1AU0jk4IIIAAAggggAACCCCAAAIIIIAAAggggAACQ0+AgIYB+MydTqeeeOIJffSjH/XafXNzs/bv36+33npLZWVlXm1WYMMLL7ygBQsWeNVzg8BgEahpaFJFXZPP42QQ0ODThUoEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAYwgITl0o3rZVGndsxQk2p9LdrpFd/IDX7/oxWxxP0fWuYy6lrzsnSq187Tz/78DSNSo4OaBMNTW79Zf1BLb5npX7w7A6CGgJSoxMCCCCAAAIIIIAAAggggAACCCCAAAIIIDC0BAhoGKDPOyoqSo899piefPJJzZgxw+8pYmNjdfPNN2vHjh06//zz/fajAYGBLlBQ7j+xPJOAhoH+eNk/AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII9IZAYpZ03fPS/C93PvuaX0h/vUKqONp53xDpYQU1LJ81Sq/der7uvuYsZQ0LLKih3gQ1PLTugOb/9DV9/tE3tHZPidxuT4icim0ggAACCCCAAAIIIIAAAggggAACCCCAAAII9KdAWH8uztrdF7jmmmtklb1792rTpk06cuSIGhoalJSUpClTpmjBggWywhyCvTye3v1Fwve//31ZhQuBnhLoKKBheELw/zfQU/tiHgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgpAVc4dLSH0qjF0hP3yTVHve/3bz10v2LpE88Lo08x3+/EGsJN0ENH5mdravOztK/3jys37y2V0fKajvdZbMJZXjx3QK7jE2N1cfnZOvD52RpWGxEp2PpgAACCCCAAAIIIIAAAggggAACCCCAAAIIIDA4BQhoGCTPdfz48bIKFwJDVSC/vM7n0ZPNL8Kiwl0+26hEAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBA4ITDpEulza6Qnb5AOb/bPEh4tDRvrvz2EWyLCnPqYCVm4ZmaWHt96SL9duVf+PnvW/hgHSqr1oxd26mcv79LlZ2XqE3NHa2Z2khwOR/uu3COAAAIIIIAAAggggAACCCCAAAIIIIAAAggMYgHnID4bR0MAgSEkUFDhO6BheELUEFLgqAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBANwSSRknXvyDN/7LvSZzme8E+/GcpJtl3+wCptYIa/scELKy67Xz98MozNDwhMuCdNzS59e+3juia36/XB3+1Ro9uzFVVfVPA4+mIAAIIIIAAAggggAACCCCAAAIIIIAAAgggMLAFCGgY2M+P3SOAwAmB/PJanxaZiQQ0+IShEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwJeAKl5b+UPrYP6SoJO8eF90pjZrtXTeA7yLDXPrkvDFafdsSff+KqUqPDzyowTr2+wWV+vbT7+rcH63Qt57arh1HKwawBltHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQCESAgIZAlOiDAAIhL1BQXudzjxkENPh0oRIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ6FBg0gelm9ZKWScCGSZdKs37QodDBmpjVLhL1y0Yq9dvX6LvmaCGsamxQR2luqFZf9uUp0t/vUZX/26d/vXGYdU1Ngc1B50RQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEBoZA2MDYJrtEAAEEOhYoqPAd0JCZENXxQFoRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQR8CySNkq5/UVp7rzT7Rsnh8N1vkNRaQQ3Xm6CGT80bow37S/Xoxly9vKNQzW5PwCd8M69MVvnh8zv04ZlZ+vi52RqXFhfweDoigAACCCCAAAIIIIAAAggggAACCCCAAAIIhLYAAQ2h/XzYHQIIBChQUO47oCEjkYCGAAnphgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgicLuAKl867/fT6jmpqj0vRwzrqEdJtTqdDC8an2qXQfHnQP7cc0mOb85Tv53Nqvg5TVtOoB9cesMuC8Sn6xLmjdfHU4Qp3OX11pw4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBggAgQ0DBAHhTbRAAB/wL1Tc0qqWrw2SEzMdpnPZUIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAK9IHA8V/rj+dKcz5hghzskp6sXFum7KYcnROnLF07QzefnaOWuYv1tU65W7y6WxxP4HtbtLZVV0uIj9dHZo/TROdkamcRn2wIXpCcCCCCAAAIIIIAAAggggAACCCCAAAIIIBA6AgQ0hM6zYCcIINBFgaKKer8jMxKj/LbRgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0IMCTeaLdp68Xqo9Jq2+W8pdL13zoBSf0YOL9PJUzU1Ss/lMWniM5HC0LhbmcuriqcPtkldao8e25OnxLYdUWu37y4VaB7Z5U1xZr/97ba9+u3KvLpicrk/MHa3FE9Lkcp5ap0133iKAAAIIIIAAAggggAACCCCAAAIIIIAAAgiEoAABDSH4UNgSAggEJ5BfXud3AAENfmloQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQR6VmDF96Ujb5ya8+Aa6f5FJqThAWnc+afqO3tnhSQ0mc+FNZmghKZaKSbVBCYE8GU92/4hHT/YMrbRGt9mDnuuE/eNZs7W+7b9zHu3Wdu6rICG6R+TLvq+FJVgV538n+yUGN1xyWTdctEEvfReof62MVebDphQigAvt0dasbPILlnDovWxOdm6dtYopcVHBjgD3RBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQT6S4CAhv6SZ10EEOgxgfxy88syH1d8ZJjiTOFCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDoZYH3n5c2/vb0RaqLpIeXSRMvaWlrDU04EZZgBTC0hiWYQAYrPMHT7D3Pp56Txpqgh86uNx+Rctd21iuw9sYaaeufpP0rpeV/lTKnnTYuMsylD00fYZc9hZX626Y8/evNw6qsOxHycNqI0ysOH6/Vz17apftW7NYHzsjQ/8wdrXPHJsvhcJzemRoEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBfhfgL5f7/RGwAQQQ6K5AQbn5RZ2PKyMxykctVQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAj0qUFsmPX1zB1N6pN0vdtDeSZMV4BDIFd4Lnxk7tl968CLpgz+VzrleJjnB504mDI/X9z90hm6/ZJKe25avRzfl6p3D5T77+qpsbPbouXfy7TI+PU6fODdbV8/MUmJ0uK/u1CGAAAIIIIAAAggggAACCCCAAAIIIIAAAgj0k4Czn9ZlWQQQQKDHBAoqCGjoMUwmQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSCFYhOkq78rRSVGOzIwPo3+f6M2GmDw3ohoMFapNkERDx/q1S047Ql21fERITp2tmj9J8vLjRlgT4ya5SiwoP7uO7eoird+ewOnfvjFbr9yW3adqis/TLcI4AAAggggAACCCCAAAIIIIAAAggggAACCPSTQFg/rcuyCCCAQI8JFJT7/uVbZmIv/bKtx3bORAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDAIBGYcrmUcab0xPXS0Td79lABBzRE9uy6bWc77xvS8DPa1nT6flpWkqZ9OEn/e9kUPfXmYf1tU572mPCFQK+6Rrce33rYLmeNTNQnzs3Wh2aMkBUCwYUAAggggAACCCCAAAIIIIAAAggggAACCCDQPwLBRfL2zx5ZFQEEEOhQIN9PQENGYnSH42hEAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDoQYFhY6QbXpLO/XwPTmqmaqoPbL6wXvrM2NjzpMVfD2wPPnolRofrugVj9fJXF+ufn52rD00foXCXw0dP/1Xbj5TrG//ernN/9Kq+98y72l1Y6b8zLQgggAACCCCAAAIIIIAAAggggAACCCCAAAK9JkCEbq/RMjECCPSVQIGfgIbMxKi+2gLrIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIWAJhEdIHfyqNWSA9/QWpvrz7Lk21gc2ROkHKni+Fm8+OhVkl8sRrm/twE+LQWm+1t7m3xrlM3ZYHpff+3bJm3HDpGnPvdAW2hw56ORwOnTsuxS4lVVP1xNbD+vvmXB06VtvBKO+myvom/XVDrl3mjEnWJ+Zm65IzMxQZ1v39ea/EHQIIIIAAAggggAACCCCAAAIIIIAAAggggIAvAQIafKlQhwACA0agqdmtoso6n/vNSDC/LONCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDoe4EpV0ijzpXe+KtUdtAEHISb4IQ2YQh2SEK7+9PaTwQrxKYFtv+Ft0hW6e412oQ8WAETL3+nJZwhLr27M542PjUuUp8/P0efWzxOr+8p1qMb8/Ta+4Vye07r6rdi88FjskpybISWz8rSJ+aMVnZKjN/+NCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgh0X4CAhu4bMgMCCPSjQHFVvd9fSGUkEtDQj4+GpRFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQGCoC1jBBufdNvAUHA5p9o3S1GVSbGqv7t/pdOj8Sel2OVpWq39sOaR/bM4zX1xUH/C6x6ob9IfV+/XH1/dr8YQ0fXLuaC2ZnC6XmZsLAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoGcFCGjoWU9mQwCBPhYoKK/zu2ImAQ1+bWhAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDoRCCYcAZ3s7TuV9Kcz0qRcZ1M7Lt5RFK0vnbxRH3pgvF6dWehHt2Yp7V7S3x39lHr8UirdxfbZaSZ6+PnZusjs0cpNS7SR2+qEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBLoi4OzKIMYggAACoSLgL6AhKtypxOjwUNkm+0AAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEBjMAqvvll69U3pgiVS4o1snDXc5dcmZmXr0xnO18uvn6zOLxiopJrjPwx0pq9XPXtqleT95VV/5x1vacvCYPFaCAxcCCCCAAAIIIIAAAggggAACCCCAAAIIIIBAtwQIaOgWH4MRQKC/BfLL63xuITMxWg6Hw2cblQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgj0mMC+16TV97RMV7LbhDRcIL35iEwiQreXGJsaq29dNlUbv3mhfnntdJ0zelhQczY2e/TM20e1/P4N+uCv1ujRjbmqqm8Kag46I4AAAggggAACCCCAAAIIIIAAAggggAACCJwSIKDhlAXvEEBgAAoUVPgOaMhIiBqAp2HLCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACA0qgIl/612fMltuEMTTVSv/5ovT056WG6h45TlS4S1fPzNK/Pj9fL35lkf5nbrZiI1xBzf1+QaW+/fS7mvvjV/XdZ97V7sLKoMbTGQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQEAioIF/ChBAYEAL5Jf7CWhIJKBhQD9YNo8AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIhLpAc5MJZ7hRqinxvdNtj0l/XCIV7vDd3sXaKZkJumvZWdr0rYv0o6vOlHUfzFVV36SHN+Rq6b2v6yN/2KBntx1VQ5M7mCnoiwACCCCAAAIIIIAAAggggAACCCCAAAIIDFmBsCF7cg6OAAKDQqCg3CSN+7gyCGjwoUIVAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAjwlU5kvlhzqermSX9MAF0mW/kM7+RMd9g2yNiwzTJ84drY/PydabeWV6dGOunn8nXw3NgYctbDpwTFZJjYvUx+aMMiVbI5Kig9wJ3RFAAAEEEEAAAQQQQAABBBBAAAEEEEAAgaEj4Bw6R+WkCCAwGAXyy+t8HiuTgAafLlQigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgj0kEDSKOlzr0uTL+94wibzRUTP3Cw99Xmpobrjvl1odTgcOmf0MN37kRna8M0LdMclk5U1LLiQhZKqev3fa3u18O7X9JmHt+r13cVyuz1d2A1DEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBwS1AQMPgfr6cDoFBLWD98qeoot7nGTMSonzWU4kAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAjwlEJ0kfeVS65KeSM7zjabf9XXrgAqno/Y77daM1JS5Snz8/R6tvW6I/XzdbF0xOl8lvCPiyMhle2VGo//fQZl3wi1V6cM1+ldU0BDyejggggAACCCCAAAIIIIAAAggggAACCCCAwGAXIKBhsD9hzofAIBY4Zn7p09Ds9nnCzMTg0r99TkIlAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAp0JWAkIcz8v3fCSlJjdce9iE87wwBLp7cc67tfNVpfToSUmnOEhE9LwuglruOm8HCXHRgQ168HSGt31/E6d++NXddsT2/TO4bKgxtMZAQQQQAABBBBAAAEEEEAAAQQQQAABBBAYjAIENAzGp8qZEBgiAgXldX5PmpEY5beNBgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQR6XCDrHOmm16VJl3U8dWON9PRNpnxBajDve/kalRyjb3xwsjZ88wLd95EZOmf0sKBWrG9y64k3DutDv1mnK3+zVo9vPaS6xuag5qAzAggggAACCCCAAAIIIIAAAggggAACCCAwWAQIaBgsT5JzIDAEBfL9BDSEuxxKCTLpewjycWQEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGeFog24Qcf/Zv0gR9LzrCOZ3/7UemBC6TiXR3366HWyDCXlp09Uv/6/Hw9/+WF+ticbEWHu4Kafdvhct3+5Ds698ev6q7nduhASXVQ4+mMAAIIIIAAAggggAACCCCAAAIIIIAAAggMdAECGgb6E2T/CAxhgYLyWp+nT4+PktPp8NlGJQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAK9KuAwn1+b9wXphpekxFEdL1W8U/rj+dK2f3Tcr4dbzxiRqJ9cfZY2fetCff+KqRqfHhfUCuW1jXpw7QEt+fkqffJPm/TSewVqanYHNQedEUAAAQQQQAABBBBAAAEEEEAAAQQQQACBgShAQMNAfGrsGQEEbIH88jqfEpmJUT7rqUQAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgzwSyZkmfe12adGnHSzbWSE99TnrGhDo0mPd9eCVEheu6BWP1ylcX67HPzNVlZ2UqLMgvSFqzp0Sfe+QNLbpnpf7v1T0qqvT92b4+PBZLIYAAAggggAACCCCAAAIIIIAAAggggAACvSZAQEOv0TIxAgj0tkCBn4CGDAIaepue+RFAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBAIRiEmWPvp3aemPJGdYxyPeelR68EKpeHfH/Xqh1eFwaF5Oin77iZla940L9NWLJmp4QmRQK1lfuvSLV3Zr/k9e0xf//qY27S+Vx+MJag46I4AAAggggAACCCCAAAIIIIAAAggggAACoS5AQEOoPyH2hwACfgUKKnynbGcS0ODXjAYEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIE+FjDhB5r/Ren6F6WErI4XL9ohrbuv4z693Do8IUpfuWiC1t1xge7/n3O0cHxqUCs2uT167p18feSPG/WB+17XwxsOqrKuMag56IwAAggggAACCCCAAAIIIIAAAggggAACCISqAAENofpk2BcCCHQqUGDStn1dGYnRvqqpQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKD/BEbNkW5aI028xP8eknOkS37qv70PW8JcTl1yZoYevfFcvXrrebphwVjFR4UFtYPdhVX67jPv6dwfv6pvPbVdO/MrghpPZwQQQAABBBBAAAEEEEAAAQQQQAABBBBAINQECGgItSfCfhBAICABj8ejfD8BDZmJUQHNQScEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE+lQgJln66GPSxT+UHC7vpV2R0vK/SFEJ3vUhcJeTFqfvXjFVm//3It1zzTSdOTK4PdY0NOtvm/L0wV+t0fL71+uZt4+ovqk5BE7GFhBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgeAEgouxDW5ueiOAAAK9JlBR26TaRt+/nMkgoKHX3JkYAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgmwJO8/1qC74sjTpXevJ6qeJIy4QfvFvKnNbNyXt3eHSES9fOHqXls7K07XC5HtmQq2ffOaqGJnfAC285eFxWSYmN0NUzR+qyaSM0PStRDocj4DnoiAACCCCAAAIIIIAAAggggAACCCCAAAII9JcAAQ39Jc+6CCDQLYH8ilq/4zMSovy20YAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBASAhkm4CGm9ZKT31OikqUzrkuJLYVyCasMIUZo5Ls8u3LpujJNw7r0U25yi2tCWS43ae0ukEPrDlgl5FJ0br0rAxTMu05CWsImJGOCCCAAAIIIIAAAggggAACCCCAAAIIINDHAgQ09DE4yyGAQM8I5JfX+ZzIaQK00+IjfbZRiQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQPwIej0dvvvmm3n77bRUVFdmbGD58uKZPn66ZM2f26Lcll5aWat26ddq3b5+qq6sVGxurnJwcLViwQCkpKf0DwKoIIIAAAggggIA/gZhk6WP/lJobZP6lyF+vkK4fFhuhzywep08vHKs1e0v0yIZcvfZ+odyewLd9pKzWK6zhg2dm6LJphDUELkhPBBBAAAEEEEAAAQQQQAABBBBAAAEEEOgrAQIa+kqadRBAoEcFCv0ENFjhDOEuZ4+uxWQIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAKAscOXJEmzdv1qZNm+zXrVu3qrKysnXLo0eP1sGDB1vv+/JNY2OjfvWrX+m+++6TtU9fV1ZWlm655RZ9+ctfVnh4uK8uAdVt27ZN3/3ud/Xcc8/J7XafNsblcumyyy7TD3/4Q02bNu20dioQQAABBBBAAIF+E3Caz7w5owJf/r2nJI/5950zrwl8TB/0dJpvWDpvYppdDh+v0WOb8/TPLYdUUmXCJ4K4rLCGB9cesMvIpGhZYQ2XmrCGs0cl9WiwVxBboisCCCCAAAIIIIAAAggggAACCCCAAAIIINAqQEBDKwVvEEBgIAnk+wloyEiMHkjHYK8IIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAlwTWrVunX/ziF3Yow9GjR7s0R28POnTokK688kq99dZbHS51+PBhff3rX9djjz2mZ555RiNHjuywv69GKwTCmqOpqclXs13X3Nys//znP3rhhRf0y1/+Ul/60pf89qUBAQQQQAABBBAIWYGSPdIzX5QaqqSD66QP/FgKDyLcoY8OljUsRrd9YLK+cuFE/fe9Aj26IVebDx4LevW2YQ0jEqP0wbMydakpVliDFQjBhQACCCCAAAIIIIAAAggggAACCCCAAAII9LUAAQ19Lc56CCDQIwIFfgIaMhNC7xdNPXJgJkEAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQTaCGzZskVPPWW+OTlEr6KiIi1ZskT79u3z2mF0dLTGjRsnt9utAwcOqK6urrX9jTfesMesX79eqamprfWdvbHCFm699dbTumVmZmrEiBGyAizy8/Nb260Qhy9/+cvyeDz2a2sDbxBAAAEEEEAAgVAXaKyVHv9USziDtdetf5IOb5GW/0VKyQnJ3UeEOfWh6SPs8n5BhR7dmKun3jyi6obmoPd71Hxu8E9rD9gl0wprODNTl03LMGENwwhrCFqTAQgggAACCCCAAAIIIIAAAggggAACCCDQVQFnVwcyDgEEEOhPgfyKUx/SabuPDPNLFy4EEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBgKAvExcX1+/Gvu+46r3CGqKgo3XfffSopKdG7776rHTt22O+tcAWr7eS1Z88e3XDDDSdvO321whxuv/12r37nn3++rLAHK5hh69at9qsVaHHeeed59bNCHTZv3uxVxw0CCCCAAAIIIBDSAi+af+8pes97iwXvSH8w/57zXuiGd53c8OSMBN217Cxt+tZFuufD03T+pDSFOR0nm4N6zTdhDQ+tO6Brfr9B83/6mu589j1tPXjMBIF5gpqHzggggAACCCCAAAIIIIAAAggggAACCCCAQLACYcEOoD8CCCAQCgIF5SYJ3MdlpWJzIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAkNFID4+Xuecc45mz56tOXPm2K8HDhzQkiVL+o3g5Zdf1osvvti6fnh4uF566SUtXry4tc56Exsbq69+9auaOXOmLr74YjU2Ntrtzz77rFauXBnQGW677TY1N5/69uUrrrhCTz75pCIiIrzWmjVrlqx9XX311Xr++efttqamJlnjV69e7dWXGwQQQAABBBBAICQFtv1TevNh31trqJSeuE468Lp0xtVSyngpPkNydC38wPciPVcbFxmma2eNsktZTYNe3lGoF7bna93eEjU2Bx+wUGC+8OnP6w7aJSMhSpecmaHLpmXqnOxhcnYxAKLnTstMCCCAAAIIIIAAAggggAACCCCAAAIIIDDYBAhoGGxPlPMgMEQErPRrX1cGAQ2+WKhDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFBJmAFESxdulSTJ082f3Tm9DqdFdDQn9d3vvMdr+W/8Y1vnBbO0LbDeeedpzvuuEN33XVXa/W3v/1trVu3rvXe1xsrBGL9+vWtTSkpKfrTn/50WjjDyQ5WaMNDDz2kqVOnqrS01K5+/fXX9corr9gBESf78YoAAggggAACCISkQE2JCVww/97ncfvf3taHJKtYV3isCWoY1xLWYAU2JOeceG9eY5Jb+oTA/ybFRLSGNZTXNJqwhgI7rGFtN8Ia/rL+oKwyPCFSHzwzk7CGEHjObAEBBBBAAAEEEEAAAQQQQAABBBBAAIHBJEBAw2B6mpwFgSEiUF3fpMq6Jp+ntdKvuRBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHBLpCTY/6wLgSv7du3a/Pmza07i42N1W233dZ67+/N7bffrnvvvVfV1dV2Fyt4YefOnZoyZYq/IXrwwQe92r7whS8oLS3Nq679TXp6um6++Wb98Ic/bG2y5rn44otb73mDAAIIIIAAAgiEpMC8L0iZM6Qnb5CqCjrfYqP596qC7S2lfe9oE9CQYv590gpusF5HzpJylrTv1ef3iTHhWj5rlF2ssIZXdhbaYQ1r9hSrsdkT9H4KK+rtoIa2YQ2XnpWpWaOHmZAzR9DzMQABBBBAAAEEEEAAAQQQQAABBBBAAAEEELAEnDAggAACA02goKLO75YzE6P9ttGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIINC7As8884zXAtdee63i4+O96nzdWH2WL1/u1fT000973be9qa+v10svvdS2SjfcYP5YMYCrfb8XX3xRDQ0NAYykCwIIIIAAAggg0M8CYxZIN601YQoXdG8jtcekw1ukbY9Jr90lvfGX7s3XC6OtsIYPn5Olh66bra3fvli/WD5dF05OV4Srax99PhnWcO0fNmjuT17V9555V5v2l6rZHXzwQy8clykRQAABBBBAAAEEEEAAAQQQQAABBBBAYAAJdO2nlAPogGwVAQQGn0BBuf+AhvSEyMF3YE6EAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIDBCB559/3munS5cu9brv6Obiiy/2an7uuee87tverFq1StXV5luhT1yTJk3S6NGjT952+DpmzBhNmDChtU9lZaVWr17des8bBBBAAAEEEEAgpAXi0qRP/Eu64NuSo4c+BpwyPrAj73xW+tu10n//V9ryoLR/lVR+WHK7AxvfxV6J0eG6xoQ1/MkKa/jORfrltdN10ZSuhzUUVdbrrxty9ZE/brTDGr5rwho2EtbQxafDMAQQQAABBBBAAAEEEEAAAQQQQAABBIaeQNjQOzInRgCBgS6Q7yegISU2QlHhroF+PPaPAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIDEgBj8ejd955x2vv8+fP97rv6GbBAvON0G2ubdu2yZrT4XC0qW15+/bbb3vVBbOONdBaa8+ePa1zWPO1D4hobeQNAggggAACCCAQagJOE8yw+DZp1FzpX5+Wqgq7t8NAAxqOvCHteamltF0xLFpKyZGSx5lXE/bQtsQkmyCJ0/99ru3wYN4nRIXr6plZdqmoa9SKHYV6YXu+Xt9doobm4IMiik1Yw8MmrMEqafGRuuSMDF16VqbmjE2Wy9lz+w7mjPRFAAEEEEAAAQQQQAABBBBAAAEEEEAAgdAWIKAhtJ8Pu0MAAR8CBeW1PmqljMQon/VUIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgj0vkBubq5qampaF4qNjVV2dnbrfWdvRo8erZiYmNY5qqurdejQIZ9z7Ny502u6qVOnet13dtO+f/v5OhtPOwIIIIAAAgggEBICYxdJN2+U3vyr9P4L0rF9Uk1p8FsLNKChdK/vuZvMZ/oK320p7XtEJXoHNthBDibMwXqNjG/fO6j79mENr+4s1PPvFJiwhuIuhzU8sjFXVkmNM2ENZw63wxrOHZtCWENQT4bOCCCAAAIIIIAAAggggAACCCCAAAIIDG4BAhoG9/PldAgMSoH88jqf58okoMGnC5UIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAXwjs2rXLa5lRo0Z53QdyY41pO4/13lfIQ9s+1rzBrtW+f/v5AtkrfRBAAAEEEEAAgZAQiEmWFn61pVgbqjlmghr2S1aYgl1MaMPJ18Zq31u2whICuUrNvMFedeXSkTdaSvuxCVnStGul+V+SrHN047LCGq46O8sulXWNenVnkZ7fnq/VVlhDkzvomUuq6vXoxjy7pMZF6ANnZOiyaZkirCFoSgYggAACCCCAAAIIIIAAAggggAACCCAw6AQIaBh0j5QDITD4BQr8BDQMT4ga/IfnhAgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggECIChQVFXntLCvL/MFdkNfIkSO9Ahraz3lyuvb1wa5lrdP2aj9f2zbeI4AAAggggAACA0rACjqwStYs7217PFJlQUtYw7E2oQ1V5t/hAglHcJuQA2tcT14Vh6W1v5TeeVz68ENS9rk9Mnu8CWtYdvZIu1hhDa+9b8Ia3snXqi6HNTTob5vy7GKFNVx2VqauNPOfPSpJDoejR/bMJAgggAACCCCAAAIIIIAAAggggAACCCAwcAQIaBg4z4qdIoDACYF8PwENmYkENPAPCQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIINBfAlVVVV5Lx8bGet0HctN+TPs5T87Rvr79uJP9/L22799+Pn/jOqu3gh6Ki4s76+bVvnev+XZrLgQQQAABBBBAoLcFrCCBhMyWMnZR8KtVHJGa6oIfF8gIK6jhzx+UblojDT8jkBEB97HCGq6cMdIuPRXW8NcNubLK6JQYe95lM0ZoXFpcwHuiIwIIIIAAAggggAACCCCAAAIIIIAAAggMbAECGgb282P3CAxJgcIK37/kyUiMHpIeHBoBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAIBYH2IQdRUcGH7EdHe//et/2cJ8/Zvj7YtQJd5+R6gb7+7ne/05133hlod/ohgAACCCCAAAIDRyDc/HvaRd+XSk24VOn+ltfqop7b/5nXSOlTe24+HzO1DWuoqm/SqzsL9cL2fK3aVaz6JrePER1X5ZbW6Nev7rHLtKxELTNBEJdPz1R6fPD/HtzxSrQigAACCCCAAAIIIIAAAggggAACCCCAQCgJENAQSk+DvSCAQKcCdY3NKq1u8NkvM5FfaviEoRIBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDoA4G6Ou+w/YiIiKBXjYyM9BpTW1vrdX/yprtrBbrOyfV4RQABBBBAAAEEhrxAbKq08KveDHXlJqhh34liBTeYcszcl5jXhkrvvh3dpYyXLv+l5HB01KtH2+Iiw3SlCVSwihXW8Nr7RXrhnXyt3FXUpbCGdw6Xyyp3Pb9DC8an2mENHzgzQ9Y6XAgggAACCCCAAAIIIIAAAggggAACCCAwuAT4qd/gep6cBoFBL1BUUe/3jBkENPi1oQEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDobYGoKO9Q/YYG3+H7He2jvt77d8Lt5zw51qqvqak5eatg1wp0ndYFeIMAAggggAACCCBwukBUojRyZktp2+rxSNXFLYENVmiDXU4EORzbLzW3+Xe+MPPvkMv/KkXGt52hT99bIQofmj7CLtUnwxq2t4Q11DW6g9qL2xx9zZ4Su3zr6e26eGqGCWsYocUT0xTucgY1F50RQAABBBBAAAEEEEAAAQQQQAABBBBAIDQFCGgIzefCrhBAwI9Afrnvb0exumckeH/Yx88UVCOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII9IJAXFyc16x1dXVe94Hc1NZ6/064/Zwn57Dq2wY0BLtWoOucXC/Q15tvvlnLly8PtLvdb+/evVq2bFlQY+iMAAIIIIAAAgiEtIDDIcWlt5TR87236m6WSvZIK++Sdj4rXfJT8+G/M7379ONdrAlruMKENVjFCmtYuatIL5iwhtfeL1KwYQ1W/2e3HbVLcmyELjsrU8vOHqGZ2cPksIy4EEAAAQQQQAABBBBAAAEEEEAAAQQQQGBAChDQMCAfG5tGYOgKFFT4/gBPfFSYrF+McCGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII9I9A+zCF6urqoDfSfkz7OU9OaNUXFRWdvFX7ca0Nft607+9vHT/D/Vanp6fLKlwIIIAAAggggAACfgScLil9svSRR6Xc9VL2PD8d+7/a+kzi5dNG2KWmoUmv7CjU028d0et7StTs9gS1wWPVDXpkY65dRiVHa9mMkbrSlPHp3iFnQU1KZwQQQAABBBBAAAEEEEAAAQQQQAABBBDoFwH+mrlf2FkUAQS6KpBf7jugITMxqqtTMg4BBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAoAcE2gcTHD58OOhZjxw54jWm/ZwnG636/fv3n7xVsGsFuk7rArxBAAEEEEAAAQQQ6HmB0fODm3P3S9L4iyWnM7hxPdA7JiLMDlSwQhVKqur1/Dv5evrtI3orryzo2Q8dq9X/vbbXLmeOTLDDGj40fYTSE/gcZNCYDEAAAQQQQAABBBBAAAEEEEAAAQQQQKAfBAho6Ad0lkQAga4LFPgJaMhIjO76pIxEAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEOi2wKRJk7zmOHTokNd9IDftx0yebL5d2cdlrbVx48bWlry8vNb3gbxp39/fOoHMRR8EEEAAAQQQQACBPhDY9k/pqc9KORdIV/1Rikvrg0V9L5EaF6lPzR9jl4Ml1Xrm7aOmHNF+8z7Y690jFbLKj1/Yqfk5qSYEYoQuOTND8VHhwU5FfwQQQAABBBBAAAEEEEAAAQQQQAABBBDoI4G+j5Dto4OxDAIIDE4BfwENmSRHD84HzqkQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQGDACIwePVrR0afC9aurq5Wbmxvw/q2+NTU1rf1jY2M1atSo1vu2b9oHKuzYsaNtc6fvd+7c6dWn/XxejdwggAACCCCAAAII9K9A8W7pua+27GHfa9L9C6WDa/t3TydWH5Maq69cNEGv3nqe/vPFBbp+wRhZAQ7BXm6PtHZviW578h3NumuFvvD3N/XKjkI1NLmDnYr+CCCAAAIIIIAAAggggAACCCCAAAIIINDLAgQ09DIw0yOAQM8K5FfU+ZwwIzHKZz2VCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJ9I+BwODRt2jSvxdavX+9139HNunXrvJqtuaw5fV0zZszwqg5mHWtg+7Xaz+c1OTcIIIAAAggggAAC/SfQWCs9cZ3UWH1qD1UF0l+vkFb/THI3n6rvx3f2vwtnJel7V5yhjd+8QA/fMEdXzxyp2AhX0LuqN6EMz7+Tr888vFVzfrxC33pqu7YcPCa3leLAhQACCCCAAAIIIIAAAggggAACCCCAAAL9LkBAQ78/AjaAAALBCBSUm1+2+LgyCWjwoUIVAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0LcCl19+udeCr7zyitd9Rzft+15xhfmjOz/X+eefr9jY2NbW3bt3Kzc3t/W+ozcHDx7Unj17WrvEx8fLmo8LAQQQQAABBBBAIAQFXrxDKnrv9I153NLKu6RHr5aqik5v78eaMJdTiyem6ZfXztDWb1+sX3/sbF04OV1hTt/hYx1ttaymUX/blKfl92/Q4p+t1M9eel97Cis7GkIbAggggAACCCCAAAIIIIAAAggggAACCPSyAAENvQzM9Agg0HMCjc1uFVXW+5wwg4AGny5UIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAn0p8KEPfchruSeeeEJVVVVedb5uKisrZfVte1155ZVtb73eR0VFaenSpV51Dz30kNe9v5v2/S655BJFRET46049AggggAACCCCAQH8JlB+W3v13x6vvXyXdv1A68HrH/fqpNTrCpQ9NH6E/XTdbm791kX545Rk6Z/SwLu3m8PFa/XblPl187+u69Fdr9MDr+1VQXteluRiEAAIIIIAAAggggAACCCCAAAIIIIAAAl0XIKCh63aMRACBPhYoNuEMHo/vRQlo8O1CLQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIINCXAtOmTdPs2bNbl7TCGe65557We39vrD7V1dWtzXPnztXUqVNb7329+fSnP+1V/dvf/lbFxcVede1vioqK9Lvf/c6ruv08Xo3cIIAAAggggAACCPSfQGKW9LnVUsZZHe+hqlB62IR7rbpbcjd33LcfW5NjI/TJeWP0r8/P1+u3LdGtF09UTlpsl3a0I79CP3php+b99FV9/IGNenzrIVXUNXZpLgYhgAACCCCAAAIIIIAAAggggAACCCCAQHACBDQE50VvBBDoR4H8DpKeMxOi+3FnLI0AAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggMTgGHw6G2ZdWqVZ0e9Ac/+IFXn5/+9Kd6/XX/32i8evVq3X23+WO6Ntddd93V5s7328suu0xWkMPJq7S0VFbYQmOj7z9Ma2hosNutfievRYsW6QMf+MDJW14RQAABBBBAAAEEQk0gJUf69App9o0d78zjNgENP5YeWSZVmsCGEL+yU2L0pQsnaMXXztNzX1qoGxeOVXp8ZNC7tr70av2+Ut3+5DuaddcK3fy3N/TSewWqbwrdoIqgD8kABBBAAAEEEEAAAQQQQAABBBBAAAEEQkwgLMT2w3YQQAABvwKFFXU+26LDXUqI5v+d+cShEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEBq3AunXrVFtbe9r5tm3b5lVXV1enFSvMH7X5uEaMGKGpU6f6aOl61SWXXKKlS5fq5ZdftiexAhOsEAQrqOEzn/mMYmJi7Prq6mo98MAD+uY3v+kVqnDppZfqwgsvDGgDP/vZz3TeeefJ7TZ/kGeuZ5991l77F7/4hWbOnNk6xxtvvKFbb71VVhjEycvlcumee+45ecsrAggggAACCCCAQKgKhEdJl/1CGrNQeuZLUkOl/50eMMFg95t+1zwgjTvff78QabHC0M4cmWiXb146RRtM2MLTbx/Rf98tUFV9U1C7bGhy64XtBXZJjA7XpWdlatmMEZo9JllOpyOoueiMAAIIIIAAAggggAACCCCAAAIIIIAAAv4F+Itm/za0IIBAiAnkl/sOaMhMjLK/sSXEtst2EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgV4V+MQnPqHc3NxO1ygsLNTFF1/ss9+nPvUp/eUvf/HZ1p3Khx9+WPPmzdOBAwfsaayQiFtuucUOYxg3bpw85qt+9+/fL6u+7ZWTkxPUfhYuXKif/OQnuuOOO1qnWbVqlc455xxZ4ROZmZk6evSo8vPzW9tPvrHCGebOnXvyllcEEEAAAQQQQACBUBc44yopY5r05PVS/jb/u60ukh5eJp13uynm3xOdLv99Q6jFZUIUFk5Itctdy87Uip2Fevqto1q9u0iNzZ6gdlpe26jHNufZJT0+smXe8WZuU9ITTOAFFwIIIIAAAggggAACCCCAAAIIIIAAAgh0WYCAhi7TMRABBPpaoKD89G9+sfaQYQIauBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEQkdg+PDhWrlypa688kpt23bqj+dqa2v13nvv+dzojBkz9J///EdpaWk+2/1V3n777XK5XHZIQ3Nzc2s3K5jBKu0vq+/Pf/5zOzCifRv3CCCAAAIIIIAAAiEukJIjffoV6eVvS5v/2MFmTaDB6rul3PXSNQ9K8Rkd9A29pqhwly6fNsIux6sb9Pz2fD3z9hFtOXg86M0WVdbr328esYs1eOLwOC04EdZw7rgUxUXycfKgURmAAAIIIIAAAggggAACCCCAAAIIIDCkBZxD+vQcHgEEBpRAfnmdz/0S0OCThUoEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEECgXwVGjx6tzZs36+6779aIESP87sVqu+eee7Rp0yaNGjXKb7+OGm699VZt3bpVl112mZxO3x+Hseovv/xyvfHGG4QzdIRJGwIIIIAAAgggEOoCYZHSpT+Tlv9VikzoeLcH10j3L5T2vdZxvxBuHRYbof+ZO1pP3DRfa25fots+MEkT0uO6vOPdhVX687qD+vRft2rGnS9r+f3rdd+K3Xoj95gam91dnpeBCCCAAAIIIIAAAggggAACCCCAAAIIDBUBIk+HypPmnAgMAoECPwENmYlRg+B0HAEBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAITuDgwYPBDehCb4/HfPNwN66IiAjdfvvt+vrXv24HI2zbtk1FRUX2jOnp6ZoxY4ZmzpzpN1QhmKWtuZ577jmVlJRo7dq12r9/v6qrqxUbG6ucnBwtWLBAqampwUxJXwQQQAABBBBAAIFQFjhjmZQ5TXriein/bf87rS6WHrlaWvx16bxvSK6B+/HpUckx+sKS8br5/BztyK/QM28fNeWICivq/Z+/g5Ymt0dbDh63y30r9iguMkxzxyVrwfhULZqQqpy0ODkcjg5moAkBBBBAAAEEEEAAAQQQQAABBBBAAIGhJzBwf8I49J4VJ0ZgyAvk+wloyEggoGHI/8MBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIhLSA0+nU7Nmz7dLbG7VCGJYtW9bbyzA/AggggAACCCCAQCgIJI+TPv2y9Mp3pU33d7AjEzz2+s+k3PXSNX+SEjI76Bv6TVZowhkjEu1yxyWTtWl/qZ42QQ0vbi9QZX1Tlw9QZcau2FlkF2uS4QmRrWENC3JSlc7nNbtsy0AEEEAAAQQQQAABBBBAAAEEEEAAgcEjQEDD4HmWnASBQS3gNinNhRV1Ps+YkRjts55KBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAY5AJhkdIH75ZGL5Ce+aJUX+7/wLnrpOe+Kn38H/77DLAWl9Oh+eNT7fKDK8/Ua+8X6em3jmjlriI1Nptgim5chRX1+vebR+xiTTNxeFxrYMOcsSmKi+Sj6N3gZSgCCCCAAAIIIIAAAggggAACCCCAwAAV4KdiA/TBsW0EhppAaXWDmkxIg68rMzHKVzV1CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAwVASmfkjKnCY9cb109E3fp45Kki69x3fbIKiNCnfp0rMy7VJR16iN+0q1bm+J1pqyr7i62yfcXVglq/x53UGFmWCIs7OTtHB8mhZOSNG0rCSFu5zdXoMJEEAAAQQQQAABBBBAAAEEEEAAAQQQCHUBAhpC/QmxPwQQsAUKyuv8SmQQ0ODXhgYEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEhozAsDHSDS9JK74nbfzd6cde9nspKfv0+kFYkxAVrqVnZNjFOl5+ea3W7ik5EdhQqpKq+m6d2vrSrS0Hj9vl3hVSXGSY5o5LNoENqSawIVU5aXFyOBzdWoPBCCCAAAIIIIAAAggggAACCCCAAAIIhKIAAQ2h+FTYEwIInCZg/WLA1xVh0paTYyJ8NVGHAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJDTSDMfKbwkp9IoxdIz9ws1ZW3CMz7ojT50qGm0XrezMRoLZ81yi4ej0e7C6u0Zk+xHdiw6cAx1TQ0t/btypuq+iat2FlkF2v88IRILTBhDYtMWMOCnFSlJ0R1ZVrGIIAAAggggAACCCCAAAIIIIAAAgggEHICBDSE3CNhQwgg4EugoKLOV7WGJ0bK6SRh2ScOlQgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggMVYEpl0sZZ0lPXt8icOH3hqrEaed2OByalBFvlxsXjVNDk1tv5R23wxrW7i3RtsPlanZ7ThsXTEVhRb3+/eYRu1jjJg6P08LxaVo4IUVzxqYoLpKPsQfjSV8EEEAAAQQQQAABBBBAAAEEEEAAgdAR4CdbofMs2AkCCHQgkF/uO6AhMyG6g1E0IYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDAkBUYNlq6/r9SXbkUFjFkGTo7eESYU+eOS7HL15ZOUkVdozbuK20NbNhXXN3ZFJ227y6sklUeWndAYeaLuWZmD9OC8al2YMO0rCSFu5ydzkEHBBBAAAEEEEAAAQQQQAABBBBAAAEEQkGAgIZQeArsAQEEOhUo8BPQMDwxqtOxdEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSEqYAUzxKUFfvhDm6XaMmni0sDHDLKeCVHhWnpGhl2so+WX12rtnpITgQ2lKqmq79aJm9webT54zC73rjCPJzJMc01AxMLxpkxIVU5anBwOR7fWYDACCCCAAAIIIIAAAggggAACCCCAAAK9JUBAQ2/JMi8CCPSogPXDfV9XJgENvlioQwABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBYAVqjklPXC9VHJYWfEW64DuSKzzYWQZd/8zEaC2fNcouHo9HuwurtGZPsR3YsOnAMdU0NHfrzFX1TVqxs9Au1kRZw6J14eR0XThluM4dl6zIMFe35mcwAggggAACCCCAAAIIIIAAAggggAACPSlAQENPajIXAgj0mkBhhe+05YyEqF5bk4kRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQGCICJjgAT39+ZZwBuvI634l5W2UPvyQlJg1RBA6P6bD4dCkjHi73LhonBqa3Hor77gd1rB2b4m2HS5Xs9tYduM6fLxWf92Qa5fYCJcWT0yzwxqWTEpTSlxkN2ZmKAIIIIAAAggggAACCCCAAAIIIIAAAt0XIKCh+4bMgAACvSxgpS3nl9f6XCUzkYAGnzBUIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBA4AIbfiPt/q93/0ObpPsXSsvulyZd4t3GnS0QEebUueNS7PK1pZNUUdeojftKWwMb9hVXd0uquqFZL75bYBeTDaGzRyXZYQ0XTRmuicPjZAVGcCGAAAIIIIAAAggggAACCCCAAAIIINCXAgQ09KU2ayGAQJcEymsbVdfo9jk2g4AGny5UIoAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIBAgAKHtkgrvu+7c+1x6bGPSPO/LF34XckV7rsftbZAQlS4lp6RYRerwvqCrrV7Sk4ENpSqpKq+y1Lm+770Zl6ZXX720i5lDYuWFdRw4ZR0nTs2RVZYBBcCCCCAAAIIIIAAAggggAACCCCAAAK9LUBAQ28LMz8CCHRbIL+8zu8cmYnRfttoQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBDoVyNsguZs67rb+11LuOmn0fNPXfOmUp9kU8+o+8Wrd2/Xt2s7/hpQ2qeO5rdbnbzVpBtu857MSCdrO37qeqbfXa7O23Wat3WZ9hwksSM5p2fMlP5Gcrs730cM9rM95Lp81yi4ec57dhVVas6fYDmzYdOCYahrMGbp4HT5eq7+sP2iXuMgwLZ6YqgsmD9eSSWlKiYvs4qwMQwABBBBAAAEEEEAAAQQQQAABBBBAoGMBAho69qEVAQRCQKDAT0CD0yGlxkWEwA7ZAgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIDFiBBV82IQqTpac+J9Ue83+MI29IVgnmmnVDYAENRTulw1uCmTmwvoXbpabafglnaL9Bh8OhSRnxdrlx0Tg1NLn1Vt5xO6xh7d4SbTtcrma3CZ/owlVV36QXthfYxSyjmdnDdOGUdF00ZbgmpMfJWpsLAQQQQAABBBBAAAEEEEAAAQQQQACBnhAgoKEnFJkDAQR6VSDfT0BDenyUwlwm3ZkLAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ6I7AxKXSTWulJ02gwqGN3ZnJe6zH7X3v787Ri5+HHD3f36re9c1NLUEOfRRmEBHm1LnjUuzytaWTVFbToNW7i7ViZ5FW7SpSZZ3ZTxcuj8l4eCP3uF3u+e8ujUqO1oWTh9thDXPGJstalwsBBBBAAAEEEEAAAQQQQAABBBBAAIGuChDQ0FU5xiGAQJ8JFFTU+VwrIzHKZz2VCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQNACiSOl656XVv5IWvvLoIf7HOBp9ll9WqXTdVpVj1WMXhDYVO89Jf33G9LoeVK2CXWwgh0yzmoJbQhshm71SoqJ0JUzRtqlsdmtLQeP6VUT1vDqzkIdLK3p8tyHjtXqL+sP2iU+MkyLJ6bpgsnpWmJKcmxEl+dlIAIIIIAAAggggAACCCCAAAIIIIDA0BQgoGFoPndOjcCAEigor/W530wCGny6UIkAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAl0UcJmPV1/0PRNOYEINnvqsVFPaxYlODPO4AxvvcAbWryu9sk3gQiBX7jpz3hJp57MtxRoTmSCNmtMS1mCZjDhbCosMZLZu9Ql3OTU/J9Uu37l8qvYVV9lBDStMYMNWE9zg9nRt+sr6Jj2/Pd8uToc0M3uYLpwyXBdNSdf49Dg5HKaSCwEEEEAAAQQQQAABBBBAAAEEEEAAgQ4ECGjoAIcmBBAIDYH88jqfG8kgoMGnC5UIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIINBNgQkXSTetlZ78tJS3vuuTuQMNaHB1fY2ORiZkSUnZHfU41Za34dT7k+/qK6S9K1qKVRcWJY2cdSKwwQQ/ZJnwhsi4k7177TUnLU5W+eziHJXVNGjVrmKt2Fmo1buLVVnX1KV1rZCHrbnH7XL3f99XdnKMCWtIN2ENwzV7TLIiwnoxNKNLO2YQAggggAACCCCAAAIIIIAAAggggEAoCBDQEApPgT0ggECHAgV+AhoyCWjo0I1GBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDohkDCCOlTz0rb/t4SUNBQLTnMH+07TJiC9eps+/5EnVebaU8cGdgGpn9Uyp5r5mw/z8l7a72T70+8tt77aasskNyNZq+OzvdQXSIVv995v6Y6KdcEV1jFuqzzZk4/EdiwoOUMMcktbb30v0kxEVp29ki7NDa7teXAMRPWUKRX3y9UbmlNl1fNO1ajP687aJf4yDAtnphmBzYsmZSuYbERXZ6XgQgggAACCCCAAAIIIIAAAggggAACg0uAgIbB9Tw5DQKDUsBfQENGYvSgPC+HQgABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBEBFwmY9bz/x/LaU3t3TWh3tz9s7nztvQeR9fPTzN0tE3W8qG37T0SJ/aEtiQPc+8mtCGhExfI3ukLtzl1PzxqXb5zuVTtK+4Sq9aYQ2mbM09Jrena8tU1jfp+e35dnGafItzRg8zYQ3DddGUdOWkxZnMiwBCL7q2NKMQQAABBBBAAAEEEEAAAQQQQAABBEJcgICGEH9AbA+BoS5QWdco64fcvq6MhChf1dQhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCAQjkNvFgAZfaxTtkKyy5cGW1mFjpf/5l5SS46t3j9VZoQnj0+Pt8rnzcnS8ukGrdhdphQlreH1Xsd/Po3a2ASvkYcvB43b56Yvva3RKjC6c3BLWMHtssqyQCC4EEEAAAQQQQAABBBBAAAEEEEAAgaEjQEDD0HnWnBSBASlQWFHnd9+ZiQQ0+MWhAQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAhUYMn/ShMuknLXm2LCGg5vkZrrAx3dcb+Ko1JiVsd9eqF1WGyErjo7yy4NTW4TsHDMhDUU6lUT2JB3rKbLK+aW1uihdQfsEh8ZpsUT07RoQqoWmpI1LKbL8zIQAQQQQAABBBBAAAEEEEAAAQQQQGBgCBDQMDCeE7tEYMgKFJT7/+F+ekLkkHXh4AgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggECPCUTGSTkXtBRr0ibz+c0jb0p5VmCDKXmbpIbKri2XNVsKC+Azn81NUv42acQMyenq2lp+RkWEObVgfKpdvnv5VO0rrjJhDUUmrKFQb+Qel9vjZ2An1ZX1TXp+e75drK5jUmLsoIaFZq1541KVGBPeyQw0I4AAAggggAACCCCAAAIIIIAAAggMNAECGgbaE2O/CAwxgfzyWp8nTo2LUGRYz/7w3edCVCKAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJDTcAKVBg9r6UsulWywhMK320Ja8hdZwIbNkg1pYGpjJ4fWL8CE87woAmJiBsunXmNdNaHTVjDTMnhCGx8gL0cZr7x6fF2uem8HB2rbtCqXVZYQ5FW7y5WlQld6Op1sLRGB0vz9OjGPDnNts/KStLC8Sl2MMQ5o4fx2deuwjIOAQQQQAABBBBAAAEEEEAAAQQQCCEBAhpC6GGwFQQQOF2goLzu9EpTk5EY5bOeSgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBHhZwmY+dj5jRUubdLHk8UsnuE4EN61teKw77XtQKegjkyjWhD9ZVVSht/F1LSc4xKQfLW8IaUie0tPfw/ybHRujqmVl2aWhya/OBY1qxs1Cvvl+oQ8dqu7ya2xBtO1Rml9+u3KeocKfmjE2xAxsWjk/T5Ix4Oa0UBy4EEEAAAQQQQAABBBBAAAEEEEAAgQElQEDDgHpcbBaBoSeQX+EnoCEheuhhcGIEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAgFAQcJlggbVJLmXV9y47K8k4ENqwzryZsoXSP5HBJWXMC23GuCXpofx3bJ63+aUvJnNES1nDm1VLCiPY9e+Q+IsyphRNS7fK9K6ZqT1GVXt1ZZEqh3sw7Lit0oatXXaNbr+8utov0vlJMMMT88alaZMoCs+bIJD4b21VbxiGAAAIIIIAAAggggAACCCCAAAJ9KUBAQ19qsxYCCAQtUFDuO6AhMzEq6LkYgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQSwJJ2ZJVpn+0ZYGqIqnwPSkyrvMF3W4pz0dAQ9uR+W9LVnn529KYhS1hDVM/JEUPa9urx947TAjFxOHxdvn8+Tk6Vt2gle+bsIb3C03IQomq6pu6tVapme/ZbUftYk00NjVWC62wBlPm5aQoMTq8W/MzGAEEEEAAAQQQQAABBBBAAAEEEECgdwQIaOgdV2ZFAIEeEsj3E9CQQUBDDwkzDQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIINALAnHpklUCuUp2SbXHA+lp+nikg2taygtflyYsNWENH5YmXiKFRwc4R/DdkmMjdM05WXZpaHJr04FSE9RQrLV7S7UzvyL4CduNOFBSLas8sjFXToc0LSupNbBh5ugkRYa52o3gFgEEEEAAAQQQQAABBBBAAAEEEECgPwQIaOgPddZEAIGABQrKa332zUiI8llPJQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIDAABM4tl8KM58NbaoLbuPNDdL7z7WUiHhpyuUtYQ1jz5dcvfdR+YgwpxZNSLOLteGSqnqt21til7V7SnTUzxeUWX0Dudwmg+LtQ2V2+c3KvYoOd2nO2GQ7sGHhhFRNGh4vp5XiwIUAAggggAACCCCAAAIIIIAAAggg0OcCvfdTpz4/CgsigMBgE6hrbNbxmkafx8pMJKDBJwyVCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwEATmHyZdNteE7TwvLT9CWnfSsnTHNwpGiqlbY+1lNg06YyrTVjDcilrluTo3TCD1LhIXTljpF08Ho8OlFTbYQ1rTFjDhv2lqqxrCu4s7XrXms/Urt5dbBerKTUuQvNzUmWFNSwcn6oRSdHtRnCLAAIIIIAAAggggAACCCCAAAIIINBbAgQ09JYs8yKAQLcFCiv8pyBnENDQbV8mQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBEJGIDJemv7RllJVLO14uiWs4dCm4LdYbcZv/kNLSR4nfX69FN43IQYOEwYxLi3OLp+cN0ZNzW5tP1KutSasYe3eEr2Zd1yNzZ7gz9RmRElVg/6z7ahdrOpxqbF2WMMCE9Ywd1yKEqPD2/TmLQIIIIAAAggggAACCCCAAAIIIIBATwoQ0NCTmsyFAAI9KpBfTkBDj4IyGQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIDAQBOLSpDmfaSnHD5qghidbwhqK3w9+94lZfRbO4GtzYS6nzs4eZpcvXThBNQ1N2nTgmNadCGx4v6DS17Cg6vaXVMsqD2/IldNhMi5GJWmhCWuwAhtmmrUjwpxBzUdnBBBAAAEEEEAAAQQQQAABBBBAAAH/AgQ0+LehBQEE+lmgwE9Ag5XqGxPB//vq58fD8ggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDvCwwbIy3+urToVqnwvZagBiuwoeJwYGuftTywfn3Uy/oM7JJJ6XaxliyurNf6fSVaeyKwoaMvOAtki26P9FZemV3+77W9ig536dxxyXZgw8IJqZo0PF4Oh0lx4EIAAQQQQAABBBBAAAEEEEAAAQQQ6JIAf+HcJTYGIYBAXwj4+wFzZmJUXyzPGggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACoSJghQpknNlSLvyedGiTCWt4XHrvKan2uO9duiKkKVf4bmtfezxXik2VImLbt/TqfVp8pK6cMdIuHo9H+0uqtW5vidaYwIaN+0pVWd/UrfVrG5u1alexXayJUuMiNT8nRXPHWSVZY1NjCWzoljCDEUAAAQQQQAABBBBAAAEEEEBgqAkQ0DDUnjjnRWAACRSU1/rc7fAEAhp8wlCJAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIDAUBp1MaPa+lXHK3tH+lCWt4Qnr/eamx5pTAhKVS9LBT9x29e+6rUt4GafJl0lnLpZwLJFd4RyN6vM1hQihy0uLs8v/mjVFTs1vvHCnXWhPWsNaENryVd1yNzZ5urVtSVa//bDtqF2uidBMQ0RLWQGBDt2AZjAACCCCAAAIIIIAAAggggAACQ0aAgIYh86g5KAIDT6Cgos7npjMTCWjwCUMlAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggMNQEwiKkiR9oKQ3V0q4XpXcel/a92hK0EIhHVZEJeVgleZpbgh6ssIfoZOmMZWaOa6VR50pWKEQfX2Eup2ZmD7PLly+coOr6Jm0+cMwOa1hnAhveL6js9o6KKgls6DYiEyCAAAIIIIAAAggggAACCCCAwJASIKBhSD1uDovAwBIoKPcd0JBBQMPAepDsFgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEOgLgYhYE6jw4ZZSXSpFxgW26ntPt4QztO1de0za+lBLSRwlnXlNS+DD8DMkh6Ntzz57HxsZpiWT0+1iLVpUWaf1e0vtwIa1e0rk78vRgtkggQ3BaNEXAQQQQAABBBBAAAEEEEAAAQSGogABDUPxqXNmBAaIQL6fgIZMAhoGyBNkmwgggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEA/CcSmBL7w9ic67lt+SFp3X0tJm3IqBGLYmI7H9XJrenyUlp090i4ej0f7iqu1bm+J1piwho37S1VV39TtHbQPbEiLj9TccSmmJNuv41JjTV5F/wRWdPtwTIAAAggggAACCCCAAAIIIIAAAgh0QYCAhi6gMQQBBHpfoLHZreKqep8LZSRG+6ynEgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgaAEjh2QDm8OfEjxTum1H7aUrDnSmAWSwymZgATzP96vCSOluTd1PnfZiQCIk3NYI06+P+3Vbjyt3WH6jTfrjzevn4r1yH2GW2U1DTpaG6YfOD6vN/OOq8lt7dH/leUoVpUnShWKlVvmTD6u4sp6PbvtqF2sZgIbfCBRhQACCCCAAAIIIIAAAggggAACg1qAgIZB/Xg5HAIDV8BK27V/nuzjCJmJUT5qqUIAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQCBIgWP7pJhUqaYkyIGmuxXs0FG4Q+b0wAIaqoulLQ8Gv34HI6x4hWSrRA/T43c8rOr6Jm06UKqN+4+ZUqp3j5SrfV7DUxHfUZqjwtQ7VG5CGo574lSmOB3zxJvXePu+pa7lvdV2vCpem7YV6KVtcWpQOIENHTwTmhBAAAEEEEAAAQQQQAABBBBAYHAIENAwOJ4jp0Bg0AkUlNf6PVMGAQ1+bWhAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAhCYPxF0q27pAOrpO1PSjuflRqqgpigg67+vq2s/RCHo31Nz92f2ENsZJgumDzcLtbkFXWN2nrQCms4GdhQpiRV2+s6HR4NU5WGOYJzqPZE6niDCXPYaYIbdsRphwlweDM8SXHDhqtm+nWaMWWixqXGytGb5+05OWZCAAEEEEAAAQQQQAABBBBAAAEEfAoQ0OCThUoEEOhvgfzyOp9biIlwKd78gJgLAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACBHhFwmc+mWkENVrnsl9Kel6R3njCvL0vuxm4s4QlwbC8GNPjZQUJUuHdgQ1mpwu9r9tM7sOpYR71iVa8sR8mpAW7ztlRa/OIM5b2Qr7T4SM0dl2JKsv16WmDDC7dJjeaL3mKSTUmRos1r0igpa44UEXNqXt4hgAACCCCAAAIIIIAAAggggAAC/STAXzn3EzzLIoBAxwIFfgIaMhKjSM3tmI5WBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIGuClghAGdc1VJqj0s7/iNtN2ENB9eaGQMNXDixeKDdHb0Z0BDYJhLcFV0VC2hcmSfO7ldcWa9ntx21i1VxWmDDu/+Wo6ZNwMPJ2SPizTO5Upr+cSl7nuR0nmzhFQEEEEAAAQQQQAABBBBAAAEEEOhTAQIa+pSbxRBAIFABfwENmSaggQsBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIFeF4geJp3zqZZScVQy4QF2WEP+2wEuHVg4gtSLAQ2BbqH2WIBnCr5bk8epCpngCx+Xd2CDR3ujjsnnHzk0VEpvPdpSkrKlaR81YQ2mpOT4mJUqBBBAAAEEEEAAAQQQQAABBBBAoPcEfP7soveWY2YEEEAgMIH8ijqfHTMSon3WU4kAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggECvCSSMkOZ/saWU7GkJazj6ptRYY5Y0AQsOK2Sh3euwMYFtJypRmvKhdnNYQ9vN1+G9n/7hvoMRTttYzfHTqnqqokxxZirLp+MrQTUmnMHdcSertSxPev2elpI1R5rxMemMqyQrUIMLAQQQQAABBBBAAAEEEEAAAQQQ6GUBAhp6GZjpEUCgawIF5b4DGjITo7o2IaMQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDoCYHUCdL5d/TETC1zDBstfeSRnpuvKzONXSzdsl2qOSbVmmK/mtCGtvc1pd5t9RUBrXTcEx9QvyRHVUD9vDod3ixZ5UXzPCZ9UJpuwhrGXyS5wr26cYMAAggggAACCCCAAAIIIIAAAgj0lAABDT0lyTwIINCjAv4CGjIIaOhRZyZDAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBAYRFSUnZLCZSjudEENrQNcTABDicCHRoqS1RSVKCq40XaWxcvp+nq9nQ88TBVdtyho9bmBmnHMy0lJlU6a7kJa/iolDldcjg6GkkbAggggAACCCCAAAIIIIAAAgggEJQAAQ1BcdEZAQT6QqDZ/PS1sKLO51IZCVE+66lEAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgT4UcIVLcektpd2yJu5BI07UTTSv2+oatfXgcW3cX2qX7UfKTwtsKFesHmm6SMMcVUoyYQ3J5jXLUawER0272Tu5rSmRNv2+paRNaQlqmHatlHByR52MpxkBBBBAAAEEEEAAAQQQQAABBBDoQICAhg5waEIAgf4RKK2qV5OfiNyMRAIa+uepsCoCCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAJdE4iPCteSyel2sWao9BHYcNCTqe803eC1QLiatMT5lq52rdUFzjcV4Wj2au/0pnintOJ78rzxZzm+/LbkcHQ6hA4IIIAAAggggAACCCCAAAIIIIBARwIENHSkQxsCCPSLQEFFnd91Mwlo8GtDAwIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgNBIJDABuv73hoVppfds+2SpEpd7tqoa1xrdLZzb1DH/OPxc/TOY2/pvIlpWjwhTXxpXFB8dEYAAQQQQAABBBBAAAEEEEAAgTYCBDS0weAtAgiEhkB+ue+AhgiXU8mxEaGxSXaBAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAj0i4C+wYd3eEq3ZU6JdhZUqU7webb7YLjmOI7rKtdYuIx2lne7hsfr5OvhOvp43xbomDY/X4omppqRp9phkRYW7Op2DDggggAACCCCAAAIIIIAAAggggIAlQEAD/xwggEDICRT4CWiwkmodDkfI7ZcNIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEDPCbQPbMgvr9Wa3SVavadYa01gw77akfp500f0i6blmuvcqauda/RB12bFOU7/org33BN00JPptTkr8MEqD6w5YMIZnJo7LkWLJ6Rpadx+jZwwQ47YFK/+3CCAAAIIIIAAAggggAACCCCAAAInBQhoOCnBKwIIhIxAfgcBDSGzSTaCAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAn0ikJkYrWtnj7JLs9ujdw6X6XUrsGF3kTYdOkMbms7Qd5uu0wecW3W1a40WOt+V0+Gx9/av5sUd7rGu0a1Vu4q1ble+lkXerCYT8rArYYHqz7hW4xdcpcS42A7H04gAAggggAACCCCAAAIIIIAAAkNLgICGofW8OS0CA0KgwCTc+royE6N8VVOHAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAkNEwOV06OzsYXb5ykUTVF7TqHX7SkxgQ7EpSXq6fKGG65iWudbpCtcGPdd8bkAy5zvfVrKjyu57ZsVqacNqHVt/h16IWaKKSR/W5Jnn6aysJFnrcyGAAAIIIIAAAggggAACCCCAwNAVIKBh6D57To5AyArkl9f53FtGAgENPmGoRAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAYIgKJMaE69KzMu3i8Xi0t6hKq62whj2T9Jf9V6pe7oBkrnatOa2fFdhwae2z0tvPas+bI/Vb13kqHrtM06ZO1eKJaRrO55tPM6MCAQQQQAABBBBAAAEEEEAAgcEuQEDDYH/CnA+BAShQUOEnoCGRgIYB+DjZMgIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAn0i4HA4NGF4vF1uXDROdY3N2nzgmF43gQ1WaMMeE97g60pSpS50vumrqbVugvOIJnj+Lve+x7R+z1Td3bxI+9Mu0JxJ2Vo8IU2zxw5TZJirtT9vEEAAAQQQQAABBBBAAAEEEEBgcAoQ0DA4nyunQmDACliptQXlvgMaMgloGLDPlY0jgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCDQ1wJR4S4tnphml2+bxY+W1WrNnmIT2FCitXtLVF7baG/pctdGRTiaA9qe0+HRQtd7dqkp+7Ne3DBbv1+7SJ9zTdOccan2WnPGJmtsaqxiIviTjYBQ6YQAAggggAACCCCAAAIIIIDAABLgv/YH0MNiqwgMBYGymkbVN7l9HjUjMdpnPZUIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggEBnAiOSovWR2dl2aXZ7tO1wmVbvKlb4O5t0uCJVWY6Szqbwao9x1Osa11q7HPUk6+l9C/Xo7kW60zPS7md9QZ0V1HCyjEuz3scpa1i0wl1Or7m4QQABBBBAAAEEEEAAAQQQQACBgSFAQMPAeE7sEoEhI5BfXuf3rNYPKLkQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHuCricDs3MHmYXXfwDlVX/rzZsfElh2/+pqWWvKVa1QS0xwnFMN4f9xy7vuMfqv81z9FLFLK0vH6n1+0q95goza2cnx7QGN4y1gxtiNc6ENwxPiJTD4fDqzw0CCCCAAAIIIIAAAggggAACCISOAAENofMs2AkCCBiBggrfP8i0fgCaGheJEQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0OMCSbFRmnfhlZIpnoZqFWz6lxrfekwjj22UU+6g1pvmPCCr3K5/6m13jpY1/MCMPxW60OT2aH9JtV3aTxwT4dKYlFhZoQ3jUs3riWKFNyTGhLfvzj0CCCCAAAIIIIAAAggggAACCPSxAAENfQzOcggg0LFAfnmdzw7D4yNlhTRwIYAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACvSngiIhVxqL/J1mlIl+N2/6p+q1/U1z57qCXzfOkmzGBfw66pqFZO/Ir7NJ+seTYiNbABiu4wQ5wMEEOVqBDVLirfXfuEUAAAQQQQAABBBBAAAEEEECgFwQIaOgFVKZEAIGuCxT4C2hIjOr6pIxEAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQS6IpCQqfBFtyh84Vekgnekbf9Q8zuPy1VTEtBsLzfPCqhfIJ2OVTfIKm/kHj+t+8ikaK/whrEmuMEKcLDqw1zO0/pTgQACCCCAAAIIIIAAAggggAACXRMgoKFrboxCAIFeEvAX0JBJQEMviTMtAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCHQq4HBImdPt4rr4B9K+10xYw2PyvP+CHM31PofXe8K0ym3GBHBd7tygWEedVjTPVKkSAxjh3eVIWa2ssnavd3BEuMuh7OQYE94Qp3EmtGFMSqwd5GC9T4+PlMM6FxcCCCCAAAIIIIAAAggggAACCAQsQEBDwFR0RACBvhAoqKjzuUxGQrTPeioRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAIE+FXCFSxM/YBdH7XHpvadNWMM/pEMbvbZRnHqurs6eogMl1dpfXK2j5bXyeLy6tN58Puw/OsOZK3eYQ1s9E/VS8yy97J6lQ57hrX268qax2aN9Zm2raKf3DLERLo1JjTXBDXE6JztJiyamaZy5J7TB24k7BBBAAAEEEEAAAQQQQAABBNoKENDQVoP3CCDQ7wL55b4DGjITo/p9b2wAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBDwEogeJs26vqUc229CEJ6T3jfl0GZlzVuuH8w6s7V7XWOzcktrTGBDlfab0IYDJjTBCm+oKz6gM9y5dj+nw6M5jl2a49yl7+hv2unOtoMarMCGHZ7Rpo+jdb7uvqluaNZ7Ryvs8uy2o/Z0I5OitWhCqilpWjA+RUkxEd1dhvEIIIAAAggggAACCCCAAAIIDCoBAhoG1ePkMAgMfIECPwENGQQ0DPyHywkQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAYzALJ46QFX24plYVSeLTXaaPCXZqUEW8Xr4YNb0svedW03kxx5skqXwn7tw650+ywhpdNWMNWz0Q1y9Xar6feHCmr1T+2HLKLw2RBTBuZaIc1WKENZ2cPU0SYs6eWYh4EEEAAAQQQQAABBBBAAAEEBqQAAQ0D8rGxaQQGp0BlXaOq6pt8Hi6TgAafLlQigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAQAgKxA8PfFPvPx9Q31HOYn3a+aI+HfaiyhwJeqXpbL1kwhrWuM9SvSICmiOYTh6PtO1wuV1+s3KvYiNcmpeT0hrYMDY1Vg4rxYELAQQQQAABBBBAAAEEEEAAgSEkQEDDEHrYHBWBUBcoKK/zu8UMAhr82tCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgNUoLpEylsf9OaTPBVa7lptl2ZXtPKS52tr9Hy93DRd75U6dbSDz2YHvdiJAdUNzVqxs8guVtXIpGgtnphqBzbMN8ENSTE9HxLR1b2GxDgr4aKxVqo9LkUnSRGxIbEtNoEAAggggAACCCCAAAIIINA9AQIauufHaAQQ6EGB/A5+CJgeH9WDKzEVAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCAQAgLuZmneF6X3n5OO7e/ShlzNtRpb/KrG6lUtd5o/ExmzUA3nXarctPO1py5BB0qqtb+42rxW2e+P1zR2aZ32g46U1eqxzYfs4nRIZ2UlafGElsCGs7OTFO5yth8yMO+toIX6ipagBStswS5lndyf6Ndc33Lmjz4mTb50YJ6fXSOAAAIIIIAAAggggAACCHgJENDgxcENAgj0p0BBRZ3P5VPjIhURNkh+OOfzhFQigAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAwJAUiB8uLf2hdPEPpOL3W4Iadpqwhvy3u8bhbpL2r1KEKRPMDBOW/khaYgIg2lzHqxt0oNQENpjQhj1FVdp0oFTbDpXJbXIIunpZY605rPJ/r+1VXGSY5o5L0eKJLYENY1Ji5HCYFIdQvtb9Wip8t13wghW0UCZ5TJBGdy4r1IELAQQQQAABBBBAAAEEEEBgUAgQ0DAoHiOHQGBwCBSU+w5oyEyMGhwH5BQIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggIAvASu8IH1KS1l8m1R+2IQ1vGDKs9LBdV0PCBh5zmmrDYuNkFVmZg9rbSuvadT6fSV6fY8pu4t1pKy2ta0rb6rqm7RiZ6FdrPFZw6K1aEKaFk9I1fycVCXGhHdlWsltghKa6qX6Ch9BClaYgo9y2b1mA6c7nLaBvSukA6tPq+6RCgIaeoSRSRBAAAEEEEAAAQQQQACBUBAgoCEUngJ7QAABWyDfT0BDBgEN/BOCAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAkNJIDFLOvezLaXmmLT7JRPW8Jy091UTUBBgeEJMqjRqTkBqVmDCB8/KtIvHhCDkFh3Xht1HtXlvod45WKjGxgZFqNGUphOlUeGOk++tV3Nvtdl1Le8jzf1z7rnK8wzX4eO1emxznl2cJotiWlaSHdawaGKaZoxKUviK70h5G6XmhpZihTA0N5pivZq6phP1HhPQEOxVmR/YiOhTgRWBDQiiV6ABDVYAhXU5XS2v/C8CCCCAAAIIIIAAAggggEDICRDQEHKPhA0hMHQFCsp9/6Awk4CGofsPBSdHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBgqAvEJEszPtZSGmqk/StNWMPz0q4XpI7+8H/ypYH9of9Dl0hFO1oCEUwwgsOEIIwx5lYxq5o5TIm03gR/7WzItgMa2o50e6S3D5XZ5dev7VVcZJj+HrNF02q3tu3Wc+87Mmq7SigENOx4WlrxfWnWDdLZn5RiTcgGFwIIIIAAAggggAACCCCAQEgJENAQUo+DzSAwtAXyy+t8AmQQ0ODThUoEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQGGICETHS5MtaSnOTlLfBhDU81xLYUH7IG2Py5d73/u7qK6W6cn+t3aqPUGOn46vqm3TU7dY0V6ddu9ZhIAU0bPmTVJbXEtKw8sfS1GXS7BulUXMkh6Nr52cUAggggAACCCCAAAIIIIBAjwoQ0NCjnEyGAALdESio8B3QkElAQ3dYGYsAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACg1HAZf4kZOyilnLJT6WCd6SdJ8IaynJN/XmBndoVEVi/LvSKkAmRCOBqUC/+eUuPBzSYoIToJFOGSVEnXq33HZXY1M4VinZKuetO9WtukLY/3lKGn2mCGj4tnXWtFBl3qg/vEEAAAQQQQAABBBBAAAEE+lygF/8Lts/PwoIIIDCABeoam1VW4zsddXhC1AA+GVtHAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQR6WcBhQgMyp7eUC74lVZdI4QF+Drs3AxocgQU0NIZCQEOGCUGY/jEfQQtJ3nWRiZLT2fMPdMuf/M9Z+K703Fell79r9vjRlrCG9Cn++9OCAAIIIIAAAggggAACCCDQawIENPQaLRMjgEAwAgXldX67ZyZG+22jAQEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKCdQGxqu4oObsMiOmjsXtMPLpugJXFna83uEq3ZU6yjfj43Xu/p+p+31CpS1c54NUaY4IToJIXHpSgmMVXRCalyRA+TRpwd2CFyLpCs0h9XfaW07R+dr9xg+m15oKWMXmiCGm6QJl8h9eIz7HxT9EAAAQQQQAABBBBAAAEEhpZA1/8Ldmg5cVoEEOhlgXw/P2izls1ICDC5tZf3yPQIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggMCgE3BFdvFIDhMMYMZa413hJ96bV+veCgxwRSg2KU2XTx2hy6eNkMfj0f6SahPWUGzCGkq0YX+pahqa7bVfds/S4cY0NSjclDA1mtLgaXlv3bfWmyAH632NCWU47olThWJVrxMBEzVmqrJTR4mPDFNOepwmFJhyZJ/GW+/T4zUyKVpOp9l7KF2Ht0pN/r/00OdWc9dKVolNl875lCnXSYlZPrtSiQACCCCAAAIIIIAAAggg0HMCBDT0nCUzIYBANwQKKmp9jk6KCVd0hMtnG5UIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC3RRY+FVp5ifbBS20BCxYIQstIQwn7k8EL9ghDE7zOW9H4EEHDtM3Jy3OLtctGKuGJrfezDtuwhqswIZE/f5IuQlx6OZZ2gyvrG/S24fK7NKmWlHhTnsPE6zAhuHxdnCDFd4wOjlGYS5n26599z5nifS1HdJbj0hb/yyVHwp87eoi6fWfSWt+IU38oDT709I4M5+zn84S+M7piQACCCCAAAIIIIAAAggMSAECGgbkY2PTCAw+gfxy32mfGQlRg++wnAgBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEAgVgTEL+mUnEWFOzR2XYpfbPiAdq27Qur0lJwIbSuTvM+bd3Wxdo1vvHa2wS9u5Ikw4w9jU2NbAhgnD4+z3Vl1kmAmj6O0rLl1adKu04BZpzyvSlgelvSvMqgGmVnjc0q7nW0ryOGnWDdKMT0gxyb29c+ZHAAEEEEAAAQQQQAABBIaUAAENQ+pxc1gEQlegwE9AQ2YiAQ2h+9TYGQIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0DMCybERumL6CLt4PB7tK64yYQ1WYEOJNuwrVW1jc88s5GeWhma3dhVW2qVtF5fTodHJMcpJj9MEq5jghgnp8RqXFquYiF74sxynCYOYdElLOXZAeuPP0puPSLXH2m6r4/fH9ksvf1t67S7pzGuki+6U4tI6HkMrAggggAACCCCAAAIIIIBAQAK98F+CAa1LJwQQQMBLwF+6aQYBDV5O3CCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAoNdwOFwaLwJQbDK9QvGqr6pWW/mlpmwhmJtOXhMuwurVF7b2CcMzW6P9pdU2+WVHYVea2YNi7ZDG8bb4Q1mvya8wXqfEBXu1a/LN8ljpYt/IJ3/v9KOp6Utf5IObw58uqY66f3npUt/HvgYeiKAAAIIIIAAAggggAACCHQoQEBDhzw0IoBAXwkUVpgf/Pi4MhKifdRShQACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIDBUBCLDXJqXk2IX68wej0clVQ3aU1SpfUVV5tUUE9pgvZZU1fcZy+HjtbLKyl3FXmsOT4g0wQ1WwERLYMME8zo5M0GJ0V0MbgiPkqZ/tKXkb2sJatj+hNRY47Wuz5uz/0eKiPHZRCUCCCCAAAIIIIAAAggggEDwAgQ0BG/GCAQQ6AWB/HLfAQ2ZieYHSVwIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCJwQcDgcSouPtMv8nFQvl7KaBu09EdrQ+lpYqaN+PrPuNbiHbgor6mWVtXtLvGYclxqrGaOSNN0U63WKCW2ICHN69en0JnO69KFfS0t/KG37hwlreFAq2e1/2Kwb/LfRggACCCCAAAIIIIAAAgggELQAAQ1BkzEAAQR6WqChye03pTSDgIae5mY+BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBg0AokxURo1phku7Q9ZFV9k/a1CW7YW1SpPeY+71iNPJ62PXvv/f6Salnl328dsReJcDk1dUSCHdZwMrhhTEqMrACKTq+oROncz0lzPisdXNsS1PD+c5K76dTQnAuklJxT9x29y9skJWVLCZkd9aINAQQQQAABBBBAAAEEEBjyAgQ0DPl/BABAoP8Fiirr/P5AK5OAhv5/QOwAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBAY4AJxkWGaPirJLm2PUtfYrP3F1SasobI1wMEKbjhoghSa3L2b3NDQ7Nbbh8rscnJPidHh9h6twIYZoxI1PStJKXGRJ5tPf7XCHMYuaikV+dKbD0tv/EWqPCrN+vTp/X3VuN3Svz8jVZjgiMmXSbNvlMaYOQMJivA1H3UIIIAAAggggAACCCCAwCAWIKBhED9cjobAQBEoKK/zu9UMAhr82tCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0D2BqHCXpo5IsEvbmRpNeEJuqQluKKzSXhPYYIU2WGV/cZXqm0ygQS9d5bWNen13sV1OLjEqOdqENQwzYQ2JOjs7SWeMSJS179OuhEzp/DukRbdKe16WJiw9rYvPin2vSmW5LU07npGskjJBGjFDikk1JUWKNcV6bb039dHDJKfL55RUIoAAAggggAACCCCAAAKDVYCAhsH6ZDkXAgNIIN9PQIOVUBofFT6ATsJWEUAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBAaDQLjLqfHp8XZpe55mt0eHj9e0BDeYsIaWAIdKO8ShuqG5bdcee3/oWK2s8uy2o/acYU6HJmfGm8CGJBPc0FJy0uLkNPX25TJ/LjT50sDX3/Kn0/uW7pGs0uFl1rNCGuwAhxNBDnaIgxXocOJ+/EUt7zuch0YEEEAAAQQQQAABBBBAYOAImP/i4kIAAQT6V6DAT0DD8ITI/t0YqyOAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg0EbAZUIQRqfE2uUiDW9t8Xg8sr68cE9RlR3WsLeo0g5vsO7Laxtb+/XEmyYTEvHukQq7/G1Tnj2l9QWJ07ISNf1EYIMV3DA8Iarz5Y7nSrv/23k/nz08Uu2xluIvzOEzKwMLaHj771JTnQl7aBP0YIU8WAEQTpfP1alEAAEEEEAAAQQQQAABBPpDgICG/lBnTQQQ8BIoqDA/RPFxZSZG+6ilCgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB0BJwOBwakRRtl/MmprVuzgpuOFJWq22HyvX2oeP26/Yj5aptbG7t0xNvquqbtH5fqV1OzpeZGKXpWUmakZ1kv1oBDrEmyMHreuMv5tYELfTWFZMS2Mxrfin5DHlwtIQ0WPNYgQ3W68nSem/VJ0vDxrS8BrYivRBAAAEEEEAAAQQQQACBLgm0+6+qLs3BIAQQQKBbAgUmJdTXlWF+GMSFAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggMBAFbCCG7KGxdjlsmmZ9jGamt3aXVhlAhvKTGBDmf26u6hSJsuhR69881n9/PIC/fe9Antep8k6mJAerxmjTGCDKdbrpKTRciWPk47t79G1WyezQhQCuWpK/PQyKLXHWorPAId2w1ImSNlzTZnX8mqdzTwDLgQQQAABBBBAAAEEEECgpwQIaOgpSeZBAIEuC+SX1/oca6V1ciGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggMJgEwlxOTR2RYJePn5ttH62qvknbD5dr22ET2JBnghvMqxWw0JOX22Qd7CqstMs/tx6yp44Oz9C0Eb/RlRP36ILKZzW84DU5PO6eWTbM/E1AeEznczU3mQCGss77BdLDCnGwyluPtPSOTZMu+I50zqcCGU0fBBBAAAEEEEAAAQQQQKBTAQIaOiWiAwII9LZAgZ8fGmUQ0NDb9MyPAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggEAICcZFhmpeTYpeT2ymsqNPbh0xggynbTHnHBDhYQQ49edU2NmtTbpk2yQQZ6AZl6kp9KOYdzYw7rhERNUpzVirBXaGoxuNy1h6TGqoCXz4mVXI4Ou9fe9z0MekRvXFVF0uR8b0xM3MigAACCCCAAAIIIIDAEBUgoGGIPniOjUCoCDSbCM7Cynqf28kkoMGnC5UIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACg19geEKUPnBGhl2s01qfv99fXKW3TgQ2WMEN7xdU2vU9pZGvFP2hZolUc/qMGWY/U0ZG6KxhTZqYUK9x0XXKiqxRvLtcjppSM8aU6hLzaoIcasxrfMbpk/iqscb15pU9N7DZj7whJWSZfQ8PrD+9EEAAAQQQQAABBBBAYEgKENAwJB87h0YgdARKqur9/jAoIyE6dDbKThBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ6EcBl9OhCcPj7XLtrFH2Tuoam/Xe0XK9lVembYfL9fah4zp0rLZXdllQUSerrGydPdy8S1RidKpy0qZpfHqcxmeaYl5z0uKUNSxGrta+HbzxNEsjZraEOljhDg1VHXQOsilptAldGBHYoCdvkI4flIaNlbLnmWKCHazX1AmSwxHYHPRCAAEEEEAAAQQQQACBQS9AQMOgf8QcEIHQFsgvr/O7wYzEKL9tNCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgggMNQFosJdOmd0sl1OWpSaL1LcdrjMhDVYgQ0muMGU8trGk809/mrN/aYJiLBK2ysyzKmxqbEtwQ1WeMOJ4Aarztp36zX8DOmzp2If1GgCJqyghpoSU0qlalOsV7u0r7PuTV8r5MHXZQUsBHJV5LeEM1h9jx9oKdv+3jIyJkUaZYU1nAhsyJwuhUUEMit9EEAAAQQQQAABBBBAYBAKENAwCB8qR0JgIAkU+AloiDA/iBkWY6VpciGAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggECgAilxkbpg8nC7WGM8Ho8OltbYQQ1WYINVdhytUEOzO9Apu9Svvsmt9wsq7dJ2AqfD5B0kx2h82onQhhPBDVaAQ2K0+TuC8GgpcWRLaTvQ33u3OUflUenQJilvoykbpIJ3TW9PS6iCv3Ft6w+Zcf4uKxhi1/MtxeoTFiWNnHUqsGHUbCkq0d9o6hFAAAEEEEAAAQQQQGCQCRDQMMgeKMdBYKAJFJSbZEsfV2ZilBwO81MXLgQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEOiygPXZ/LGpsXZZdrYJPjBXfVOz3s+vtMMatp0IbdhfUt3lNYIZ6Da5CbkmMMIqr75f5DU0LT6yNbjBCmzIORHiMDwh0v/fGDidJswhq6WceU3LfHXl0uEt0vAzveb3e2MFOwR6NdWZA6xtKfYY87cP1jrZc0+FNlgBE1wIIIAAAggggAACCCAwKAUIaBiUj5VDITBwBPIrzA8mfFwZCVE+aqlCAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQACB7gpEhrk0fVSSXU7OVV7TqG2Hy/SOKbsLq7S3qEr7S6pU1+g+2aXXX4sr62WVDftLvdaKjwzTOBPYMN4ENuSkx7aGOGQnxyjMZQIa2l9RidL4i9rX+r/P2+C/rdMWkzhRuL2lbHmgpXdi9qnAhjELpbRJnc5CBwQQQAABBBBAAAEEEBgYAgQ0DIznxC4RGLQCBeW+AxoyEwloGLQPnYMhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIhJxAYky4Fk9Ms8vJzbndHh0pq9Xe4irtM4ENVmiDXcx9mQl06Kursr5J2w6V2aXtmhEmnGFMaoxyTHDDeBPgMDY11i7jzH1idHjbrv7fN5tzNNT4b+9KS3metN0qj7cERfzPv7oyC2MQQAABBBBAAAEEEEAgBAUIaAjBh8KWEBhKAvl+AhoyEqOHEgNnRQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAg5AScTodGJcfYZcmkdK/9lVbVt4Y1nAxu2F9cbQc6eHXsxZuGZrd2F1bZpf0yKbERrYENY9NiNS41TuPMa7Y5T1S461R3lwly+NJWqbJQOrRRyrPKBin/HcnTfKpfV99lz+18pBUS8djHOu/X2sPT+i6gN1c/IMUkd971yRuk2uP++0XESqmTpPQpLSVlghQW4b8/LQgggAACCCCAAAIIDEIBAhoG4UPlSAgMJIECPwENmYlRA+kY7BUBBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSElkBIXKaucOy7F69zV9U2yghr2Fle2BDgUVWmfuT9YUq0md5DBAl4zB3dTWt0gq2zN9Q4ccDikkUnRdnhDTlrcqRCH1HiNmPwhuaZe2bJQfZV0xAQ3nAxsOLRFaqwObhNW7+x5nY/xuKW9r3Ter6s9mhsCG3lwrVRlgir+P3t3AidJWd8N/L+zM7Oz933CspxyCSoICiigoBHv20STFxATzzdqEo94IWq8NYmv8SbiFRVvIyYiCoJiEDQo97277LL3OXvMzrVvPT07vd29PTM95053f5/Pp7brrqe+1bXVPf3Ur/ot/7l/akN2a9qco/YFNpyQvR6Xddnr7CMiJrptbT+UPgIECBAgQIAAgVoS8Em3lo6mfSFQZQJ79+6NtdvbytZ64QwBDWVhjCRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAuNYYOqkxjjp0Jm5rrCaHV3dsWLTrlxowwMbdhS97mrvKpx1VPuzWxli1Zbdue6G+zYWbau5sSGOmDu1J7Rhfno9Ko48/OQ48rS/i9ktE2LCutv3Bzas+G3EzvVFyx8w0NAUseSUA0bXzIjuzoiN9/R0d/5w/25NnBQx71H7ghuO73k95NSIaQv2z6Ovf4H0Rk1pIgoBAgQIECBAgMC4ExDQMO4OiQoRqB+BLbs6or0zS3ksUxbPFNBQhsUoAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQlQJNExvi6AXTcl3hDqSHP67Z1pYLbLh//Y4oDG/YuKO9cNZR70/3ONyzrjXXlW5s5uSmXHDDkfPOiCPnnx9HHDs1HjVpYxy249aYtPp3PcENm+4rXmzJYyOapxSPq4ehrj0R627r6Xr394KPRjzh1b1D9fO6Z0fEtoezblUW1vG4iKnzKtv3L5wTMXNpxBHZ65FZlwIvBDZUZmcuAgQIECBAgMAoCwhoGGVgqydAoG+BNdt29zlRQEOfNCYQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGaEZiQ3XS+ZNbkXHf2o+YX7dfWXe0HBDfcv2FHrNqyO7JchzEt23Z3xK0Pb811xRueG4tnviALbfjLOPHR7XF6w33xqD13xMKt/xtNy54UDcUz1+/QguMr2/cHf9UTRDA/m39a8fuhshWM4Vzd2UNLd67vCV/YurLntTeMIb1uzbq2rfsr9Of/EXHcs/YP99W3ZXnEmj/2dHf/pGeu6YuzsIaz9wc2zDy0r6WNJ0CAAAECBAgQGGUBAQ2jDGz1BAj0LbA2S7gsVxobJsTcaZPKTTKOAAECBAgQIECAAAECBAgQIECAOLFD1wAA3WJJREFUAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqBOBWVOa4/GHz8l1hbu8u70rHty4Ixfe8MCGnfHA+h3Z8M54KBvX1pHdND/GZU12f0TqfpNt9wuxKPs3dedF06oJcdifrosj5k3LAhymxpHzpmb9WZf1z8/um0jhFHVTUuBCJeWXH4hY9bueOafMi0jBDr1dWseC4yImz65kTcOfpyO772X76ixooSR8oXc4Tetqr3w7KbChkpJCKkpL65qIP327p0vT5h69P6zh8CdHTJlTuoRhAgQIECBAgACBURIQ0DBKsFZLgMDAAumPD+XKwhktMTELaVAIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAqUCk5snxolLZua6wmnd3XtjXWtbPJSFNqTAhgez1xTa8FDW//CW3dGVTR/L0tG1N3IBElk94q7iLU+b1BiPWjitZz8WTYmnnvTqmDO1OdJDLysqgwl3aJpS0Srj9L+OaM/qWq7szYIvUsDAhrsjNt4b0d1Zbq7y41LQwrT55acVjt2bHZ+0/t6ya2PE8ht6ut5x6XX6kp6ghgUnRMw/LutPr8dGTJpWONfQ+q/7SMS9/x2xbVXEzvVDW0dfS22rMKDhoTIBDaXr3HR/ROpuuTybkr1nFp+8P7DhsDMimqeWLmGYAAECBAgQIEBghAQENIwQpNUQIDB4gbV9BDQsmtky+JVZggABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKhrgYYs3GDxzMm57syjs1CAgtLe2Z2FNOzaF97QE9rQE+CwM9a37imYc2x6d+zpjD+s3JrrerZ4Tu5hl0fPT6ENM+KEfd2Ji2fGzClNY1Ops99S2Xa6OrJwgAci1t+ZdVnyxIasS6+bH4xIQQ6lZcHxpWPKD29fHbFne/lphWNbH4lI3QO/LBwbMeuwfWEN+0IbZh+eBUlkdU1hC4ecGjHvmOL5yw1tXRHxyB/KTRn+uFSPgUoKqXjo+oHmKpmeLbPmjz3djZ+KaMjeL0tP3xfYcG6276dETMzGKQQIECBAgAABAiMiIKBhRBithACBoQis6SugYYaAhqF4WoYAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAoL9Dc2BBHZeEHqYtYWDRTCkt4aMPOeHBjT3DDQxt3RupSgEOaNlalq3tv3LOuNdd9/3+zsIJ95ZBZk/OhDScumZkLb1iSPRxzwoQJvbOM7Wu62X9BCkHIusLS0Rax8d6esIYU3rDh7p4QhwUnFM7Vd38KeRhO2boyInX3/veBa3nGRyoLaJh56IHLjtSYbQ8PvKbktnPDwPP1N0cKpVjxm57uug9GNGfv+WVnRRx5TsSjnhEx96j+ljaNAAECBAgQIEBgAAEBDQMAmUyAwOgJrNueffEuUxZlfyRQCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJjITBtUmOcdOjMXFe4vb1798aGHXty4Q29oQ0PZKEND2VBDis374qOrr2Fs49a/+qtuyN1V9+5Lr+NWVOa4oTFM3LBDb2hDUfOmxqNExvy84x5T1N2P8jik3u6wo13dxcO9d0/3ICGvtccUUk4Qlp+5tL+1jKMaVmYRlcWnDBQmXt0xP/5ccRDv4p4MOse+UPE3gr9+lp3+46I+37W03XuiXjy3/U1p/EECBAgQIAAAQIVCAhoqADJLAQIjI7Amm27y654sYCGsi5GEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAmMnMGHChFgwvSXXPeHIuUUb7uzqzoUmPLhxZzy4L7QhF+KQ9T+yrfwDLYtWMMyBrbs64sYHNuW63lVNamyI4xZNjxOWzMy6nvCG4xfNiMnNE3tnOTivDRWGRnR3RkzJnHdtGvl6VhzQcOjQtt04OQt3yJadlQU8pNeZh+173Tdu+pKIxuaB1904KeLIc3q687LZ27ZFLP/N/sCGDXcNvI7+5kjrVggQIECAAAECBIYlIKBhWHwWJkBgqAIpRXJNH39wWCSgYaisliNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTGQKBxYkMsmzs11z3l2OIN7m7vilxYQxbe8NDGHZFCHNJwCnLYtrujeOYRHNrT2R1/XLUt1/WutmFCxBHzpsaJBaENJyyeEXOnZUEA4608+e8iUrdjQ8T6OyM23N3zuj4LJVif9e/JwgqGWratqmzJWVmwQrkyZV7f4Qszs1CGFCyRBXqMeGmZGXHcM3u6tPLWdVlYw/VZd13Eg9nrtpWVbzKta/FjK5v/5ssjZhwSsezMiJYZlS1jLgIECBAgQIBAnQgIaKiTA203CYw3gdY9nbEr+4NDubJYQEM5FuMIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBKhCY3DwxTlgyI9cVVjc97HLLro4sqGFH3LOuNe54ZHvcmXV3r90ebR3dhbOOWH/33ogHsmCI1P34j4/k17toRksW2tBTx9zr4pmxdM7kLGNgFEIG8lutsGfa/Ihp50QcmXW9JbOL7Vn9N6SwhoIuhTh07Oqdq+/XrQ/3Pa1wSgolOPutETMP3RfIkIUvpP6myYVzHbz+6QsjTn5JT5dMtjyUBTX8KgtsyLr0untz33U7/MkRDRP7nt47pbM94up39bhOyOY/5NSeY3FEdjyWnh7ROKl3Tq8ECBAgQIAAgboUENBQl4fdThM4+AJrt7X1WYlFM8fJl9Y+a2gCAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGBwAin8YM7U5qybE48/fE5+4c6u7li+aWc+sCEFN9zxyLZcmEN+phHuWbu9LVL3i7vX59c8vaUxTljcG9owM9d/zMJp0TSxIT/PQetJwREzs/CE1B19/v5qdGfBFltXZMENWVDD+juzLr1mAQ4b74noyoIGUmmZFZGCDbo6IyYOcDtdU0vEU9+ZW2zc/5NM5hzZ0z3+4ohkse72/WENK27MQhZ27t+NFLBQSVl18/7Qi73Zw1lX/a6nu/5jWThDds/PYU/cH9iw+DGVhT5Usl3zECBAgAABAgSqRGCAT5RVsheqSYBA1Qms6SOgIX03XDBdkl7VHVAVJkCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBIYk0JgFIBy9YHque95jswCCrOzduzcXoHDH6u1x55qewIb0+vDm3UPaRiULtbZ1xk0Pbc51vfM3Z3VLIQ0nLpkRxy2aEYfMnhyLZ7Zk3eSYm4VNNDRkN4IczNKQhUfMOaKnO/aC/TVJYQy7NkY0TckCGmbsH1/Lfcli8ck93Zn/N6IzC6hY/fv9gQ1HnlvZ3j94Xd/zdWbvvwev7enSXCn84rAzekIiZh0WUdjVi3vfWqYQIECAAAECNSogoKFGD6zdIjDeBdZuK/8HgXnTJo2PZMXxDqh+BAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQM0KTMiegJlCEFJ3/gkL8/u5bXdH3JULbNgX2vDI9rh//Y7o7N6bn2cke9q7uuOObBupKy0pvGFRFtaQuiUptGHW5Nzroly9s3HZ8OwpTZH2ZczLxOy2uemLxnyz42qDjc0Ry7LwhNSd+/bKq/bQryqft21rxL3/VX7+FN4wa2nWLdsf3HD4kyIWnVR+fmMJECBAgAABAlUiIKChSg6UahKoNYG12/aU3aWUoqgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgcKDBzclM88ci5ua53altHVy6k4Y5HtsWd+8IUUojDzvau3llG5TWFN6zcvCvX9bWBSY0NWchEFt6QQhtmpSCHyT2BDll/GpeGZ0xuPDghDn1Vup7H72mNWP37kRFI4Q1rU3fb/vU97X2VBTR0dUQ0ZLc+Hoxwj/211UeAAAECBAgQKCsgoKEsS/WNfOCBB+J3v/tdrFq1Ktrb22P27Nlx3HHHxZlnnhktLWN/w/v27dvj7rvvjhUrVsSaNWti586dOdRZs2bFokWL4pRTTolly7L0M6VuBdZu31123xfNGPv3a9mKGEmAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqAKBlqaJ8ehDZua63up2d++NFVl4QmFow51ZaMOG1vIP3OxdbqRf93R2x/JNu3JdX+ue0jyxJ7QhhTjkwhyy8IZZPf1LstdF2bgZLU19LW78SAqkgIYTXxjx0K8idqwbyTX3rGvWYZWt86dvibj9exFp/t5u5tL9/Wnc5NkCHCrTNBcBAgQIECAwwgICGkYYdKxX98Mf/jDe//73xx/+8Ieym542bVpcdNFFcemll8a8efPKzjMSI3ft2hVXXHFFXH/99XHTTTfF8uXLB1zt4YcfHhdffHG84Q1viDlz5gw4vxlqS2DNtrayO5S+SCsECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJDF2homBBHzJua65598pL8ita3tsWdj2zPghu2515TaMNDG3sezJqfaYx7drV3xYMbdua6vjY9bVJjT3hDCm7IHg66eFZLLEmBDtlrT6jD5JiazaMMU2BG9l550Rcj9u6N2HBPT1DDg1lYw/IbIvZsH+bKs8UrDWjY9nDP9tbdHpG6cqV5+r7AhpLghlygQ/ZgYQEO5dSMI0CAAAECBEZAwKfOEUA8GKvYs2dPXHLJJfGNb3yj383v2LEjPv3pT8e3v/3t+O53vxtnn312v/MPdeIjjzwSr3/96we1eApxSMER//Zv/xaf/exn44UvzNLVlLoRWNtHQMOi7MuxQoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgMPICC6a3xIJjW+LcYxfkV75jT2fcnQU19IY23LFmW9y7dke0d3Xn5znYPamO963fkev6qsuMlsZYkgU4LMoeHro4uz9lSfZ66JzJsWzu1Dg862ZPaYoJEyb0tbjxhQLJacFxPd0TXh3R1Rmx5taIB6/rCW1YeVM2bk/hEpX1z8qCEyopW1cOPFd7a8T6O3q6cnM3T4uYWSa8YekTImYsLrdE8bgN92bDWVBFrhS8b4reQ32N37dYeik3/4xDIhqbC2bqo3f7mojuzL5hYkTTlJ6ukuX6WJ3RBAgQIECAwMgICGgYGccxXUt3d3e87GUvix/96EdF2504cWIcdthhMXPmzHjooYdi27Zt+ekbNmyICy64IK655po444wz8uNHu2fWrFmxePHimDFjRrS1tcWaNWti/fr1RZtNwy95yUvi8ssvj4suuqhomoHaFVjTR0BDSi1UCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIExkZg2qTGePzhc3Jd7xY7snCG+7NAhN7QhruyAIfVW3dHemDneApu6K1vet3e1hnb17bG3VlXrkzPAhxSUMOyuVP2v87rGZ4/bZLwhnJoveMmZrchHvr4nu7sf4jo2B3xcBbS8PDvIrYsj0iBCltXRGxbnWUadPUuVfyaAgamzC0eV25obxaKUElAQ7llC8e174jYcFdPVzj+xf8e8egXFY4p3//57EHJndl+jkZ5XWaXAjAGKl99XsTGe4rnasiORdPUrJsc0ZxCG/rpz03P5kvz5PrT/FmX+hecEDF9UfG6DREgQIAAAQIVCWRXY6XaBD72sY8dEM7wmte8Jt797nfHkiVLcruTQhxSgMOb3vSmWLmyJzFs165d8dKXvjRuv/32XIjDaOz3ox/96FwQxJOf/OQ4/fTTY+HChQdsJoVHfPnLX46Pf/zjsXt3z4fUVN9Xv/rV8cQnPjGOO66CD5cHrNWIahLY1d4Z23Z3lK1ySilUCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEDp5A08SGOH7xjFwXp+6vR3f33ti0sz3WbNsdj2xtywIbdmf9bfFI1q3JAhxS/7rtbdGZzTfeSmsW4HDb6m25rrRuU5onZsENU7Pghim51xTi0BvksGhGSzQ0TChdpL6HUzjAkef2dIUSXZ0RrWv2BTak0IbeLgtvmNgcWQpG4dzl+3duyIIR2spPG4mxs5aNxFoO3jq6M+M923q64dTi+Z+NeOzLB17DtR+MeODaAwMeUtBDb1ca/pDGJ+e5R1V2zAeuhTkIECBAgMC4EhDQMK4Ox8CV2bRpU/zTP/1T0Ywf+tCH4u1vf3vRuIaGhnjBC16QC0l40pOeFMuXL89NX7VqVXzyk5+Myy67rGj+4Q4sXrw47rvvvjj66KMHXNURRxwR73vf++KFL3xhPPWpT40tW7bklmlvb49LL700vv3tbw+4DjNUt0BKS+yrpC+tCgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwPgTSEEF86dPynUnH1q+fl1ZOMPGHXuyAIfdWYBDcXhDCnboDXEYTxkOu9q74q4123Nd6V41NzbEsjk9wQ25AId5PUEOh2eBDouzB5U2ZmEWyj6BidntirOW9nRx1tBYtj48tOUqXWpmVr+Kyt6K5qramVKIQiVlwz0Rq35XyZwHzjPrsIjjnp11z4pY+sQspMPtrAciGUOAAAEC1SjgilZlR+2jH/1otLa25mt99tlnx9ve9rb8cGnPIYccEl/60pfi/PPPz0/653/+5/jbv/3bmDt3bn7ccHumTp1aUThD4XYe+9jHRgqXeM1rXpMffdVVV0VbW1u0tLhJP49Sgz1rsyTEvsqi7IupQoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUJ0CE7MQh4XZAzxT11fp7OqO9a17srCGnsCGNVtTkEPWn72uye47WZOFO2zIQh72joN75Ns7u+O+9TtyXen+NE2cEEtnp/CGggCHLLghDR+ajU/hDsogBeYfG3Hxf0dsXRmxLevSa77Lwhu6Owa5woLZG7P35LQFBSMOUu+ECRVueBRPgEoDGjp2VVjXMrOl4/Y/n+npJs+JOPaCnrCGo54a0TS5zAJGESBAgACB6hAQ0FAdxylXy+7u7vjyl79cVOP3vve9MWGAD2TnnXdePPnJT44bbrght2wKeLjyyivjta99bdG6DsbAX/zFX8TrXve6SPuWys6dO2PlypXxqEc96mBUxzbHSCClH5Yrs6c0RUvTxHKTjCNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKgRgcaJDbFk1uRc19cupWCEdVlYQ3pQ6CNZYMOa7H6UFNyQe039WaDDxh3tfS0+JuM7uvbGgxt35rqIDUXbzHIq4pDZk+PwfYENPa9Ts+EpsXTOFPfQFGkVDEyaFrHsjJ6uYHSuN92DtmPtvsCGLKxh64qC8IYsDGBbNq6rn/fEzKWR3YxXutb6HG6eUtl+d+yubL6B5tq9OeLWb/R0KRwihTSc9JKIE58/0JKmEyBAgACBcScgoGHcHZK+K3TjjTfGhg37P6gfeeSRce655/a9QMGUSy65JB/QkEb/8Ic/HBcBDTNmzIj58+fHunXr8rXduHGjgIa8Rm32pC/C5cqimZLPyrkYR4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgUoFHnjggfjd734Xq1ativb29pg9e3Ycd9xxceaZZ0ZLS/ZkMIUAAQIECBAgQIAAAQIECBAgQIAAAQJVItDc2JALMkhhBn2Vto6uWL99TzyShTWkwIZHtvYEN6SHi67asjtWbt4Vu9q7+lp8VMd37414ePPuXHfDfcWbShkBi2e0xLIsvOHweVN6XrPghjR8xLypwhuKufYPNTREzFjS0x32xP3je/tyAQ7ZfWopqGFrFthQGuAwz0OFe6kihSRUUtp3VjLX4Obp2BVx908imrMwDgENg7MzNwECBAiMCwEBDePiMFRWiauuuqpoxqc97WlZYFdliV1p3sJy3XXXxc6dO2Pq1KmFow9Kf1tb8c36s2bNOij1sNGxE0hfcsuVxTM1BirnYhwBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQGEkgPanj/+98ff/jDH8rOOm3atLjooovi0ksvjXnz5pWdZyRGHn744bFixYqRWFVceOGFccUVV/S5rjTt4osv7nP6QBPOOeecSO0nFAIECBAgQIAAAQIECBAgQIAAAQIEqlegpWliHJYFG6SuXNm7d29s2LEnVmzaFcs37ux53bTvNRtu3dNZbrFRH5dVKwuVaMt1v31wU9H2GrLbxQ7PghoetXB6PGpR1i2cFsdm/YdnwQ1NE7OAAqVvgVyAw+IswCHrlp7e93yVTHnTbT1zpYOVLwX9wxk/fVF+jf32/NUPIro6eroUatCxO+uywIT2/vrTtKzLzbOvPy2XghZ615H6myu8rzAtM1rluGeN1pqtlwABAgQIjKqAgIZR5R3Zld96661FK0xPt6i0LFmyJFIjiOXLl+cWSU/JuPPOO+O0006rdBWjMt8999wT27Zty687NQh51KMelR/WU5sCa/oIaFgkoKE2D7i9IkCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBg1AT27NkTl1xySXzjG9/odxs7duyIT3/60/Htb387vvvd78bZZ5/d7/zjYWJzc/N4qIY6ECBAgAABAgQIECBAgAABAgQIECBQxQLp4bgLprfkutMOn1O0Jym8YcuujlieC2zYmQU47MoCHLLXLMxh5eZdsXlne9H8YzXQnWUAPJiFR6Tuv+9Ym99s08QJceS87N6rLLTh2Cy0IRfgkAU3LJ0zJSamVAdlZAWmLRjZ9Q1lbTMPHcpSAy9TFC4xwOxnvD6idV1PMES5oIdcaEQW4pALgEgBEln/ntZspQVhFuU20Zg96Pfo88pNOXDctlUR07PQjYaJB04zhgABAgQIHAQBAQ0HAX2om7zrrruKFj3hhBOKhgcaSPP3BjSkedP6DnZAwwc+8IGiar/iFa+IxkZvyyKUGhxYuz37sF2mLJ6RfbBWCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKAige7u7njZy14WP/rRj4rmnzgxe2LcYYfFzJkz46GHHip6cMKGDRviggsuiGuuuSbOOOOMouXG28Czn/3s8VYl9SFAgAABAgQIECBAgAABAgQIECBAoIYEUnjDnKnNue6Uw2YfsGfbdnfEyiysIR/gkPX3BjhsaN1zwPyjPaKja2/cs6411/1nwcZamhrimAXT9wU29AY4TI/F2YNU0z4qBA4QGMz74pT/c8DiA47YtTnivqsj7v5JxP2/6AltKF3oyKdENE8tHVt++Osvjti5IeLYCyKOy347OPLciCb3oZXHMpYAAQIExkLAnfBjoTwC29i9e3esXLmyaE1Lly4tGh5ooHT+e+65Z6BFRm16W1tbvP3tb4+vf/3r+W3Mnz8/3ve+9+WH9dSuwNpt5b+ELsy++CkECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUJnAxz72sQPCGV7zmtfEu9/97liyZEluJSnEIQU4vOlNb8q3O9i1a1e89KUvjdtvvz0X4lDZ1iqb6xvf+EakNg6DLd/97nfj85//fH6xBQsWxDOf+cz8cCU9b3nLW+LpT396JbPm5pk9+8AG1xUvbEYCBAgQIECAAAECBAgQIECAAAECBGpeYObkpjjp0Jm5rnRnd+7pzMIa9gc2rNy8M5Zv7Bl+ZFtb6eyjOtzW0R23rd6W6wo3NH1SYxyzcFocu6gnvOHYhdOz4ekxb1qz4IZCKP0jLzBlTsRj/ryn68h+M3jg2iys4aqIe34asTsLb0jluGf1vA7076YHIjbse/D1/34tInVNWbDD0edFHP+ciGOeFjG5jv7e39kesTW7z3Tr8oj2nZleFsKSAjcmNPTRn007YJ5s3lxIRzZt0UkRLTOyeQYo6TikY1nRtgrWn+rVu8yEiRFT5+3b9gDbM7n2Bfbu9V6o/aNc03sooKFKDu/GjRtjb/oPZ19pamqK1BhhMOWQQw4pmn39+vVFwyM9cNNNN0Vra2t+tSmUIW3zlltuie9973u5/t6JixYtip/+9KeD3qfe5b1Wj0B7Z3ds3FE+oCEl8ykECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgMLDApk2b4p/+6Z+KZvzQhz6Ue1hC4ciGhoZ4wQteEKeffno86UlPiuXLl+cmr1q1Kj75yU/GZZddVjj7sPvPOuusIa3jPe95T9Fyr3jFK6KxcXDNWk444YQ4//zzi9ZjgAABAgQIECBAgAABAgQIECBAgAABAqMhMDULPzhhyYxcV7r+to6ueHjzrlieD3DYmQtzWL5pZ6zesju6998iVrroiA63ZiESf1i5NdcVrnjO1OZ4VBbc8KgsrCF1uQCHBdNj5pSmwtn0ExgZgabJWRhDFsicuq7OiIdv6glreNQzKlt/CnYoLR1ZMMFdP+7pGrLfEg5/Urb+Z0ccm21jZvE9lKWLVt3w5ocifv3JiPS6ZUXE9lURe7tHbjcuuSZi6WkDr+/7fx2x+vcDzzfQHClM44TnRZyWrW/Rowea2/RaEdi5MWLtbT3dutt7Xpc+IeI5/1Ire2g/6lAgu/oo1SCwY8eOompOmTIlCw7KEooGUaZOzZKhCkrpOgsmjUjvq1/96vjjH//Y77paWlrioosuive9730xf/78fucdysQUCLFhw4ZBLXr//fcPan4zD05g3fa+UwAFNAzO0twECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECNSvwEc/+tGihyacffbZ8ba3va1PkPRQhy996UtFAQb//M//HH/7t38bc+fO7XO5sZhw7733xm9/+9uiTaW2BAoBAgQIECBAgAABAgQIECBAgAABAgSqUaClaWIckwUfpK60pAefrtqyKx/YsGJfiEN6XZmFOnSOQXrD5p3t8T8Pbs51hfVbOGNST2BDCm5Y1BPecMyCaZHCKBQCIyIwMXsvHZ4FPaeu0lIuoKFw2e7OiAev6+l++g8RS07Jwhqe1RPYMP/YyG7CLJx7fPR3ZwELuzdHTJ03cH3S/v3hqwPPN9Q5KvUpePj4UDeVW273lojfX9HTHXZmxOmvijj+uRETm4a1WguPE4HurohND0Ss2xfGsPb2njCGHWsPrODE5gPH9TUmnQMppGTRSVl3csScIyOykHqFwMEUaDyYG7ftygVKwxRSsMFgy+TJWdpUQSldZ8GkMeltbm7ONfT4m7/5m1EJZ0g78ZnPfGbEn/YxJjg1vJG1/QQ0LJpZ/B6tYQa7RoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgSELdGcN97785S8XLf/e9753wAc9nHfeefHkJz85brjhhtyyra2tceWVV8ZrX/vaonWN9cAVV1xRtMnHPe5xcfLJWeMqhQABAgQIECBAgAABAgQIECBAgAABAjUm0NzYEEfOn5brSnets6s7VmQhDfeta4171u6Ie9Nr1j20cWd0jUFww7rteyJ1N9yXPem8oCydMzmO3Rc4kV4flXVHzp8aKYhCITCqAjvWRzx80+A28cgfIlL3y/dnN3Ef1RPWcPxzIg55/Nje0N2xO2LLiqzLbipPN5an1y3Le/q3ZuOnzI34+7sH3rdZh2XzpJCJvQPPO5Q5Kg1oGI3tr7wxInWzj4h4wy1ZSIPbnYdyCA/aMntasyCGO3oCGNbelvVnYQzr7ozozN77lZT1d0V0ZQEklRz3274T8dD1+9faNDULanj0vsCGFNqQdQtOiGhyf+p+JH2jLeB/rNEWHqH1t7W1Fa0phRsMtkyaNKlokd27K/yPrmipkRtob2+P9ESPT3ziE5GefJGezDF9+vSR24A1jUuBNduK38u9lZyepelNk6jXy+GVAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECfQrceOONsWHDhvz0I488Ms4999z8cH89l1xyST6gIc33wx/+8KAGNKSwia997WtFVU5tCBQCBAgQIECAAAECBAgQIECAAAECBAjUm0DjxIY4KgtvSN0zsvtOe8uezq5cSMM9a1tzoQ33rusJb1iZhTmM1EPte7dV7vXhzbsjddfcld0sv69MbJgQy+ZOyQU3HL1gWhw6e3LWTcm9Ls4e4JqCKBQCwxZY+6eIxuyeyM7y96MNuP7ND0Tc+KmebuqCLKzhmVn37Igjzu5Z74Ar6GeGdPLt2rQvfGF5QRDDvv7WNf0snE1K01OIw0A3lKf9n3FIxPZV/a9vyFNT+EMFZW93BTMNcZbDn1TZTfpDXL3FhimQ3uvbsvdfbwhDOi/XZmEMKXRkOKVrT8Sm+7JgheP7X0vaftp2YenY2RPeUhjgMmFixLxHFYc2LDo5YurcwiX1ExgxAQENI0Y5uitqaWkp2kAKNxhs2bMn+w+roJSus2DSiPTeeuutRetJT95Yu3Zt/O53v4tvfOMb8V//9V+56V1dXXH55ZfHzTffHL/85S9j7lz/4RXB1djA2m3ZB8cyZdHM4vd4mVmMIkCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFM4KqrripyeNrTnhYTKnzCUZq3sFx33XWxc+fOmDo1e9LMQSi/+MUvYtWq/Y0Km5qa4uUvf/lBqIlNEiBAgAABAgQIECBAgAABAgQIECBAYHwKTGqcGMctmpHrCmu4q70z7l+fwhp6Aht6Axz6erhq4bLD7e/q3hsPbtiZ60rXlf5cvXB6SxySC22YHIfM6glvKBxuacpupFUIDCRw9PkRb30w4oFrI+7+ScQ92f2IbVsHWqr89J1ZwMjvr+jpmrOHTB+T/V7ypDdHLM5u4O6rZCHTsXVFz43oW5bvC2PIbkrfnPWn4fbWvpasbPyWbN0Ljht43jlHjF5AQ4W/L41qGszpfz2wgTkOjkB6j37+ydl5t210tp+CHgYKaNi+OmL3loG3v7crYsNdPd1tV+6fPwWcLDqpuJt1eESDIKH9SPqGItA4lIUsM/YC06ZNK9poW9vgU5927y6+Mb50nUUbGIWB6dOnR+qOOeaYeMUrXhE///nP42Uve1ls2dLzn+Of/vSnuPDCC+MnP8k+LI1Qed3rXhcveclLBrW2+++/P57//OcPahkzVy7Q15c8AQ2VG5qTAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIH6Fih9YMKZZ55ZMciSJUvi8MMPj+XLl+eWSQ+IuPPOO+O0006reB0jOeNXvvKVotU9+9nPjnnz5hWNM0CAAAECBAgQIECAAAECBAgQIECAAAECBwpMaW6Mkw+dlesKp27b3ZEFN7TGPWt7ghvuXdeahTi0xsYd7YWzjVp/7mHn29tibdb9fkX5m2rnTZuUD3A4NAU5FIQ4pECHqZPc9jhqB6jaVtycBUwf/+yerqszYuWNWVjDVT3dtoeHtjcpWOGO70c88XX9L9+Z3Y/5qcf2P89wpm7Jwh4qCWiYfXjE8hsO3FLLzJ5xe9NL9s/eLFAinYAD9fcste/fCUVDfQ/kNtL35KFOOfT0LCTjMUNd2nKjLZDCDToGfy9zxdVa+6eIkwe4/3dNNs9wSgp4SN29/71/LZNmZElCj+4JbTjnrRFT/Ta5H0dfpQI+qVQqdZDnKw1T2LVrV3at3FvxEzBS9dMTLwpL6ToLp41Ff3oqR3qqx5Oe9KToTmlSWUnDKbih9IkdQ63PggULInXK+BFYl325KlcWzWgpN9o4AgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECgRuOuu7OkvBeWEE04oGBq4N83fG9CQ5k7rOxgBDdu3b48f/OAHRRW+6KKLioYHO9DV1RUPPvhgbNiwIdemYu7cubF48eLcAyUGuy7zEyBAgAABAgQIECBAgAABAgQIECBAoBoFZk5uilOXzcl1hfXftGNPFtTQE9pwTwptWJuFOGSvrW3ZTe9jXDZmdUndHx/eWnbLs6c0xaGzp0QKa0gBDoekEIdsuLd/RktT2eWMrHGBidntsEec3dM948MRa/64P6xh/R2D2/lpiyIOObX/ZVI4xLSFETvW9T/fUKduWV7ZkkefF9E0JWLOERGzU3d41i3Lxk2ubPnSuVKIQ2+Qw4SG0qnlhy+6KqK7a/9y5cIg0rhcOERaf2F/NpzGp+P1uy9GPPw/+7dx+l/v7++vL9X3qr+POOopEY+6ICK9F5TKBNJx2/RAxLrbItam7vasPztf/u8tEek93l9JzguOz47drf3NVfm0qdm9votOyrosHGFh9rr0tIGXTXUe6bJne0/Yy8rfRpz37pFeu/XViYD/harkQKenQ0yYMCEXypCq3NHREevXr4+FC7MLfIVl9erVRXOOh+CCM844I/7yL/8yvvrVr+brdsUVV4xYQEN+pXrGjcCabW1l67J4ZkvZ8UYSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwH6B3bt3x8qVK/ePyPqWLl1aNDzQQOn899xzz0CLjMr0K6+8MtIDKnpLagPxzGc+s3dw0K8f/OAH42//9m+jtbW1aNmGhoY46aSTcm0R3vCGN8SyZcuKphsgQIAAAQIECBAgQIAAAQIECBAgQIBAPQjMnTYpzkjdUXPzu5seILxu+55cUEMKbLg3BTfkuh2xu6MrP99Y92zZ1RFbdm2L21ZvK7vpGS2NWWjDvsCGfSEOKbyhN8QhhVSke/GUGhZIx3fJY3u6p74zYvODWVjDT7PuJ9mN1ykAIIUC9FOOy36PyH4/GLCkQITRCmjY/NCAm8/NcOILIlI3UiXZDfb8aJk5/K3POybipBf3hASkoIYHr4s44XmVrffh30XccnlPN+PQiMdfHHHKhVmAxvzKlq+XufZkv5Gl8IVcEEMWbLDu9qy7M6Jz94ECaXwlAQkpTGGwAQ0TJkak453CGBZmy/cGMkyv/H7ofIUXnhjx6H3vm0337Qv/yE8dXs+cIyMmTR94HSnk4lcf7dmPRSdHzDps8OfQwFsxR5UJNFZZfeu2upMnT47DDjssVqxYkTdIDS4GE9BQ2kDjuOOOy6/rYPa88IUvLApouPHGGw9mdWx7lAXW9hHQsGjmEBO7Rrm+Vk+AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIHxJLBx48b8wx1SvZqammKwD2g45JBDinYpPSDiYJSvfOUrRZt9xSteEY2NQ2/Kct99WaOsMqW7uzv++Mc/5rp/+Zd/iVe96lXxyU9+MlJbDIUAAQIECBAgQIAAAQIECBAgQIAAAQL1LJBCDBZlD11N3TmP2n+jc3f33li9dXfck4U23FMQ2vDA+h3R3tV90Mm2t3XG9jXb466sK1emNk/MhTUckgttmByH5EIcpmShDinEYXLMmdKc3Zuf3aSu1I5AutH6zDf0dDs2RNz7X1lYw1URD1wb0bXnwP087lkHjis3ZvbhEQ+nwIchlglZCMTMLFAgBT2kdc1Jr739WZ3rsaSb9p/7qey4dEZMrPB3oZu/uF9q+6qIX74/u2H+I1nAw/MjTv/riENPq88b5revyQJJsvtxV/w267LX9VnowkDhJL2S67IAh4oCGrJAgv7KpBn7Qhiy45oLYsgCGRYcn/2IOUK/wx3/7IjUpdK+K9vHu7IAij8WhFDcEdGRjR9KSe/FSsqm+7P324f3z3n8cyNe9rX9w/rqUqDC/73q0mbc7XQKVCgMaLjzzjvjtNOyC0eF5a67sv94Csp4CWg46qijCmqV/b+4dm3RsIHaEejMvoCtby3zgTbbxcXZFzmFAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBPoX2LFjR9EMU6ZMGfRTwKZOnVq0jtJ1Fk0cpYEHHnggfv3rXxet/aKLLioaHo2Bzs7O+NznPhe/+c1v4mc/+1ksXrx4RDeTwi42bMgafg6i3H9/1qhLIUCAAAECBAgQIECAAAECBAgQIECAwDgSSOEFS+dMyXXnn7AwX7N0b9DyTbvi3n2hDfet2xGrtuzKut2xaWd7fr6D3bOzvSsXLJHCJcqVxmz/5k2bFPOmN8f89Jp186f3vM7LXtO4+blpLTFjcuOg/w5fbpvGjaHAtPkRp/yfnm5P9rvK/df0hDXc+7OIPdsi0g3lh59dWYVSoMJApSn73SUfvnB4QX+27MylEY3NA62hPqdXGs6wIwsav+OHBxp1Zf/n3HZlT7fo5Cyo4W8iHv2iiOYpB85bC2P27o3Y/GBPEEMKY0jBDFuWD33P1t5W2bILH71/vlnLshCGFMSQdWl8CmRI47KwnzEp6dgeempP17vB7q4el7V/iliTdWm/Uv/OCn6vqzSgodRq3jG9W/daxwICGqro4D/2sY/NNQ7orfKNN94YF154Ye9gv69r1qyJ5cuX5+dJT9A44YQT8sPjqSfVTalNgY072qMrS9ArV1LSnkKAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC/QuUhim0tAz+t9bJk4ufWFO6zv5rMDJTr7jiiqIVnXLKKXHSSVljriGU1J7i2c9+dpx55pm5thDz5s2L5ubm2Lx5c9x22225thZf/OIXY9u2rNHlvpLGP+c5z4lf/epXURpY0TvPUF4/85nPxGWXXTaURS1DgAABAgQIECBAgAABAgQIECBAgACBcS/QOLEhjl4wLdc986TiANxd7Z3xyNbdubCGFNiwel//6n0BDn099PVg7HRndn/T2u1tuW6g7Tdn+zxvWnMW5tAT3LA/zCELd5jesn9aNn36JGEOA3mO+fRJ0yJOfH5P19URsTwLj962qvLQhNlZyEIq07KgkhTCkIZTaENh/9QsEGKsblDPVabO/vnDVyK6s2PXX0k35P/4DRFXvyvicX8Zcdol2XE6sr8lqmPaujsjHrq+J4xhxW+z0IH1I1fvtbdXtq4lj424+L+yQIYTI1pmVrbMWM7VMDEiBSakLgV09JbWdfvDGtL7I4UsbHogm1pwf2sK9qikpOULS6XBDoXL6K85AQENVXRIU2OCj3zkI/kaX3PNNbE3S72ZUMHF++qrr84vl3qe8pSnxLRp2YeLcVBWrFhRVIuFC/enqhVNMFD1Amu27e5zHxYLaOjTxgQCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAj0CrS1tfX25l5TEMFgy6RJk4oW2b27799yi2YcoYHU1uFrX/ta0douuuiiouFKBlKow+9///tIr+VKan+QuvPPPz/e8Y53xCtf+cr44Q9/mJ81Lfue97wnPvGJT+TH6SFAgAABAgQIECBAgAABAgQIECBAgACBoQlMaW7Mghum57pya2jr6Io129qyAIddsToLcNgf4tAznAIT+ngubLnVjdm49q7ueCSrd+oGKs2NDTF/2qR8mMP86VmIQ8FwPuQhC3OY2jyxovsCB9qm6YMQmJg9WPqopwxigWzW45+TdY9ENE8d3HLmHhmB7q6IW75c+bratkb89tNZ928RR58fcfpfZ69Pi2hoqHwd42nO6z4Ycdd/jk6N1t2RBV9kvingoL+S3vvLzuxvjvE5bXp2n3LqjsneB71lz46I9VnoRW9gw+LH9E7p/zWFOxSWSoMdCpfRX3MCjTW3RzW8Q+lJD+kpDxs3bszt5YMPPhjXXXddLmxhoN2+/PLLi2Z53vOeVzR8MAf+8z+LLxAnn1xh6szBrLRtD0lgbR9fRCZlXz5mTm4a0jotRIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgXoSaGlpKdrd9vb2ouFKBvbs2VM0W+k6iyaOwsC1114bhQ9zSCETL3/5ywe9pcG0L5g9e3Z873vfi5e85CXx/e9/P7+tz3zmM/F3f/d3ccghh+TH6SFAgAABAgQIECBAgAABAgQIECBAgACBkRdoaZoYR8ybmuvKrb0jC0JI9x49nAU45MIb8iEOPcMp3KFrPCY4FOxMe2d3rN66O9cVjC7b29KUhTlkQQ3zsgCHciEOPeEOLVnYQ3Ok8AvlIAk0TzlIG7bZnEAKD3jp1yJu/mLE7dnvO13Fv3H1rbQ34v6f93SzD494/CURj/vLiClz+l5kPE5ZdtbIBTRMyCznHROx6KSIhY/OXrMuC1WvqzJpWsTS03u6Snc8Ga350/65m7N1zD5i/7C+uhVwZa6iQ9+QpfSkJ0Z8/OMfz9f6sssui3PPPbfftKxf/OIXccMNN+SXmT59erz0pS/NDx/Mnrvuuiu+/OUvF1VhPIVHFFXMwLAFUpJdubJ4Zku/7+FyyxhHgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBehSYNi1r9FNQ2trK/w5bMMsBvbt37y4aV7rOoomjMPCVr3ylaK3PfvazY+7cuUXjRmMgtbv40pe+FL/85S9j69atuU0kv+985zvxpje9aUQ2+brXvS4XAjGYld1///3x/Oc/fzCLmJcAAQIECBAgQIAAAQIECBAgQIAAAQI1J9A0sSGWzpmS68rtXGcW4LCudU+szgU3FIQ4bN2VG5eCETq6qudm47aO7nh48+5cV25/C8dNbZ4YS2ZNzneHzk79LbFk5uQ4JOtfOKMlkp9CoCYFDj01InVP/6eI//1qFtbw7xHbVla+q1uWR/z83RHXZss/+sURp78qYsnjKl9+pObcsSFi5W97urlHRZyW1WOgctgZA81RfvqkGcVBDCmUYf7xEU3FQfDlFza2SKAz+y122ZkRa2+L2PJQT7hF9pujQkBAQ5W9B972trfF5z73udixY0eu5r/61a/iIx/5SLz97W8vuyerV6+OV72q+D/qN77xjTFv3ryy8/eOnDBhQm9v7jU9vSIFQZQrra2tker1jne8Iw499NBys5Qdd/vtt8czn/nMKHyax7JlywbdUKHsyo0clwIpxa5cWZQFNCgECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgMLBAaZjCrl27sofb7B1UKP7OnTuLNlS6zqKJIzyQ2jt873vfK1preljFWJXZs2fHK1/5yvjkJz+Z3+TVV189YgENCxYsiNQpBAgQIECAAAECBAgQIECAAAECBAgQIDCyAo1ZAMEhWUhB6k4/Ys4BK+/u3hsbduyJVVt6whtW5YIcdkcKbkjjUrDDns7uA5arhhE727vivvU7cl25+jZktwKmkIYU4pB8el57hnP9WYjDjJamcosaR6B6BKbOjXjSmyPO/NuI+66O+N0XIx74ReX1Tzfa3/r1nu6Qx2dBDX8dceILIhonVb6OSufMfruLrVmIxIobs0CGrFuRBTNsum//0kufWFlAQwpWaJ4e0d66f9lyfXOPjkhhDilI4LBs3bOPiOzHw3JzGjdYgabJES/7Ws9Sbdsjdm0a7BrMX6MCjTW6XzW7WylYIQUhpK63/OM//mOsXLky3vWud8WSJUtyo7u7u+PHP/5xpDCGNK23pOl///d/3zs4Iq9dXV3x2c9+NveUiT/7sz/LBSycddZZceSRRx7QACSFMdxyyy3xta99LS6//PLo6OjI1yGFQvy///f/YvLk7D8spSYF1vQR0LA4S2tTCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGBggdRuIP2+nkIZUkm/u69fvz4WLlw48ML75kgPeygsYxko8J3vfCcKAyJSvS+44ILC6ox6/3nnnVcU0HDPPfeM+jZtgAABAgQIECBAgAABAgQIECBAgAABAgRGV6AhSylIIQWpO3XZgdtKf1ffuKM91mzbnb3uiQ2te3LD6TUFO/QM97y2tnUeuIJxPCbLpsj2qy3X/X7FlrI1nT6pMRfcsGRWSxySBTYUhzlMjgXTJ0UKwVAIjHuBhokRx2a/LaVu4/0Rt1we8b/fiNizrfKqr74l4gdZt+3hiLPfUvlyfc2Z3c8bG+7eH8awMgtk2F78e1zRoo/8IfuRLwuMaGopGn3AQNrXpacXB1FMyM7ThY/uCWPIBTKcETFNePgBdqMxomVGROoUApmAgIYqfBu87W1vixtvvDF+8pOf5GufAhK+8IUvxLJly2LmzJnx0EMPxdatW/PTU08KPrjyyitj1qxZReNHaiA1+kh16q3X9OnTY9GiRbntpQ+w27Zti+XLlxeFMvRuOzUe+eIXvxjPec5zekd5rUGBtX0ENCyaOcAHiRq0sEsECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAYikD67f+www6LFStW5BdPD24YTEBD4YMe0kqOO+64/LpGu+crX/lK0SZe8YpXRGPj2DZfWbp0aVEdNmzYUDRsgAABAgQIECBAgAABAgQIECBAgAABAgRqTyDdvzY/CyFI3UClraMrNu1s7wlt2BfgsLH3NR/m0DN9x57OgVY3Lqa3ZvW8Z11rritXoYlZwMWiLNwiF+AwqyfAoTfEoTfQYVoW8qAQGFcC846OeMaHIp76rojbvhPxuy9FrLutsio2ZO/nx/5lZfOWztWVPbh8zR8jVtyYhTJkYQyp210+HKV00dxwV3vE6t9HHH5W2clFI496ShbmsCvisCyIYVk2/9LTspCAmUWzGCBAYOwFXBHH3nzYW2xoaIj0RImLL744vvWtb+XX19XVFQ8++GB+uLBn7ty58d3vfjfOOquC/7ALFxxGf2tra6RuoHLMMcfE5z//+XjKU7ILhVLTAmu27y67f4sFNJR1MZIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLlBFKgQmFAw5133hmnnZY1xqqw3HXXXUVzjlVAQ3rYxPXXX1+07dT2YaxLU1NT0SbTAykUAgQIECBAgAABAgQIECBAgAABAgQIECDQK9DSNDEOyUIKUjdQSWEOG3rDG/KvWXjDjrbY2Jpe98TGfaEOu9q7BlrdQZve1b03Vm/dnetujvI3ms9oacwCHCbHobP3BzjkQxyy8Sn8IgU9KATGXKB5asSpF0WccmHEwzdlQQ1fjLjzRxHd/fwGdHz2sPEZiyuransWkLDq5p4ghhW/yfpv6QlNqGzp8nOtzMIdKgloOPP/RqROIUBgXAkIaBhXh6PyyrS0tMQ3v/nNePGLXxwf+MAH4tZbby278NSpU+PCCy+MSy+9NBYsWFB2nuGOnDlzZvzqV7+Kn/70p3Httdfm6tLeniX49FNSY4ezzz47FzKR9mHSpEn9zG1SLQjs3bs31m3bU3ZXUrqaQoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKVCTz2sY+Nn/3sZ/mZb7zxxlzbgPyIfnrWrFkTy5cvz8+Rfr8/4YQT8sOj2fOVr3wl0m/HveXUU0+NRz/60b2DY/a6du3aom3Nnz+/aNgAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoVCCFOSydMyXXDbTMrvbOfaENbVmow77whnyow56iMIe2ju6BVjfm07e3dcb2ta1xd9aVK41ZOMOi7EG+KbQhPdB3QRbYsGB69jpjUi68obd/+qTGmDBBkEM5Q+OGKZDeV4c9sadr/WDEH74SccuXI1ofOXDFp/31geMKx6TftK65NGJ5Fsiw5tYs7KGzcOrw+1f8dvjrsAYCBA6agICGg0Y/Mht+0YteFKm7//7746abborVq1dHCkeYNWtWHH/88XHWWWdFCnMYbClsEDHQsunDUApbSF0qe/bsifR0jgceeCBSw47W1p4PXCnIIdUrPXnjpJNOiubm5oFWbXoNCWze2R7tXeW/GKQP3goBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIVCbw7Gc/Oz7ykY/kZ77mmmtywQeVNGa8+uqr88ulnqc85Skxbdq0onGjMZDaIXz1q18tWvVFF11UNDxWA7/+9a+LNrV06dKiYQMECBAgQIAAAQIECBAgQIAAAQIECBAgQGA0BKY0N8Zhc1M3pd/Vp7+p72zvysIcekIb1mxri0e27s51q7fsjtX7+lNgwngqnd17Y1VWv9T1V1qaGnqCG1KAQxbekIIb5ufCHNJwb7DDpJg9pTkastAHhcCQBKYvjDjnrRFPenPEPT+N+N0Xs7CFG3pWtSALL192Zv+rTWEP910Tsf6O/ucb7NRZy3q2fdRTB7uk+QkQGEcCAhrG0cEYTlWOPvroSN14KJMmTYrHPe5xuW481EcdxodA+iLQVxHQ0JeM8QQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEDhQ4Mwzz4x58+bFxo0bcxMffPDBuO6663JhCwfOXTzm8ssvLxrxvOc9r2h4tAauv/76eOihh/KrTw91ePnLX54fHquezs7O+MpXsqclFZTzzjuvYEgvAQIECBAgQIAAAQIECBAgQIAAAQIECBA4uAIpkHnapMZcd/i8qX1WprWtIwtt6Alv6A1t6H1N49dub4uuLDRhvJW2ju5YuXlXruuvbo1ZOENvcMP8LMShJ8yhJ9BhQUG4w7xpzdE4saG/VZlWzwITmyJOyH4PS936uyNu/lLEIadEpACGgcqyM4Yf0JDCIA7L1pMCIdLrzEMG2qrpBAhUgYCAhio4SKpIoBYE1vYR0JA+KM+bOqkWdtE+ECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYEwEGhoa4qKLLoqPf/zj+e1ddtllce6552ZtyfpuTPaLX/wibrhh35OBsiWnT58eL33pS/PrGM2e0lCE5zznOTFnzpzR3GTZdX/4wx+O+++/v2jaWIVUFG3UAAECBAgQIECAAAECBAgQIECAAAECBAgQGKbA9JamOHZR6qaXXVNnV3esa92ThTjsznUpvGH1lp7+FOCQhnfs6Sy77HgY2ZmFS6SHBvc8OHhbn1VKP43MndqchTlkIQ4puKEgvKE34GHBvoCHlqaJfa7HhDoQWHBcxLP2/7424B6nQIUU6FBpachu2V782CyMIQUynBWx9AkRU8b+97BKq2s+AgSGLiCgYeh2liRAYBACa7LEtXJl4YyWaMhCGhQCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqFzgbW97W3zuc5+LHTt25Bb61a9+FR/5yEfi7W9/e9mVrF69Ol71qlcVTXvjG98Y8+bNKxpXOlAa+HDttdfmgiBK5+tveNeuXfHd7363aJYUMDGc8tnPfjaOPfbYeOpTn1rxaj75yU/Ge97znqL5n/vc58app55aNM4AAQIECBAgQIAAAQIECBAgQIAAAQIECBCoBYHGiQ1xyKzJua6v/dm2uyMf4JCCHFblwhza8uPWZfeEZTkJ47rszeq3cUd7rrtrTf9Vnd7SuC/EIQtzmLEvzGFfeEOyWjpnSsyfNsn9bv0z1s/UZWf2v69NUyIOPS0LY8jmS2EOhz4+onlq/8uYSoBATQg01sRe2AkCBMa9wNptu8vWcfHMlrLjjSRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBvgVSsMI73vGOXNc71z/+4z/GypUr413velcsWbIkN7q7uzt+/OMfRwpjSNN6S5r+93//972Do/qawhlaW1vz21i0aFE84xnPyA8Ppeemm26K173udfGYxzwmXvrSl+bWd+KJJ8akSZOKVpfCIX7xi1/Exz/+8bj++uuLps2dOzdSaINCgAABAgQIECBAgAABAgQIECBAgAABAgTqVWDm5KZI3fGLZ5Ql6OjqjrXb9gU2ZPeHrd6SdVv3BziszgIddrV3lV12PI5sbeuM1D2wYWef1ZvUmAVbzM7CGmZPyQIbJsdhWWhDT3/P68wpTX0ua0KNCczIfm+bfXjEluU9OzZ5dk8QQwpjSKEMix8TMdH7ocaOut0hUJGAgIaKmMxEgMBwBdZkH8TLlUUCGsqxGEeAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEBBd72trfFjTfeGD/5yU/y8372s5+NL3zhC7Fs2bKYOXNmPPTQQ7F169b89NQzefLkuPLKK2PWrFlF40dr4Ctf+UrRql/xildEY+PINFn54x//GKl75zvfmVvn0qVLc/vd3NwcW7ZsieXLl0dHR0fR9tPA9OnT4z//8z/jqKOOOmCaEQQIECBAgAABAgQIECBAgAABAgQIECBAgECPQNPEhiykIAUVTClLsnfv3ti2uyMLbdgdj2TBDau37IpHsvvI1m/PutY9PV3Wvz0LRaiWsqezOx7MAhxSV65Mb2nMhzfkgxuyIIfUf2jWTW6eWG4x46pV4Kw3RuztzgIZzoqYd2xEQ0O17ol6EyAwggIj82v3CFbIqggQqE2BlJRWriwW0FCOxTgCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgMKNCQNQD7zne+ExdffHF861vfys/f1dUVDz74YH64sGfu3Lnx3e9+N846K2tENgZl5cqVce211xZt6aKLLioaHqmBzs7OXCDFQOt7whOeEN/4xjeEMwwEZToBAgQIECBAgAABAgQIECBAgAABAgQIEBhAYMKECTFrSnOuO3HJzD7nbuvoig25wIYU3rAvuKG1sH9PNr0tNu1sjyzzYVyX1ixs4s4123NduYrOmzYpDkuBDSnYIgtsWLovvCENp3vpGrPQC6WKBB7/yiqqrKoSIDBWAgIaxkradgjUucDaLOmsXFk4o6XcaOMIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoAKBlpaW+OY3vxkvfvGL4wMf+EDceuutZZeaOnVqXHjhhXHppZfGggULys4zGiO/+tWvZg0p97ekPPXUU+PRj370sDf12te+NmbPnh3XX3993HbbbdHR0dHvOpPTueeeG69//evjWc96VqQGowoBAgQIECBAgAABAgQIECBAgAABAgQIECAwNgItTRN7AguykIL+SmdXd2zc0R7ri8IbsiCHLNyhJ+Ahe83uU9uwY090dO3//aG/dY71tI1Z3VL3h5VbD9j0xIYJuZCG0uCG3hCH+dMn+Q3jADUjCBAgMP4EBDSMv2OiRgRqTiA1tlm7rXxAw+KZk2tuf+0QAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIExlrgRS96UaTu/vvvj5tuuilWr14d7e3tMWvWrDj++OPjrLPOihRSMNhSGK4w2GXT/O9617ty3VCW7W+ZJzzhCZG6VNJ+3nXXXfHQQw/FI488Eq2trbnAhhkzZuRCHB71qEfF4x73uGhubu5vlaYRIECAAAECBAgQIECAAAECBAgQIECAAAECB1mgcWJDLJrZkuv6q0p3997YurvjwCCH7b1BDj2hDuuz4d0dXf2takyndWX1XrVld6777YMHbnpSY0NPkMXsyftep2Svk+PQ2el1Ssyc3HTgQsYQIECAwJgLCGgYc3IbJFB/AtvbOmNXe/kPsukDs0KAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECIyNw9NFHR+rqqaTghcc85jG5rp72274SIECAAAECBAgQIECAAAECBAgQIECAAIF6FWhomBBzpjbnuuMW9a2Qgqh37OnMghz2RAprWN/aFhtSf254X4hD1r9m6+7Y2cf9b32vfeSn7OnsjvvX78h15dY+o6WxKLhhyazJkbpD9r3OntIUEyZMKLeocQQIECAwggICGkYQ06oIECgvsHZbW/kJ2djFAhr6tDGBAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBIYmkMIKprc05bqj5k/rcyUpyGHrro54eMuueHjz7li5OXvN9e+KVVt2x+qsa+/q7nP5sZqQHqR8xyPbc125bbY0NcSSmT2hDUtmtWT37u0Pb0jDKcyhpWliuUWNI0CAAIFBCAhoGASWWQkQGJrAmm27yy6YBZXF/OmTyk4zkgABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIjLZACnKYPbU515186KwDNtfdvTfWtbblwhsezoc37M6FOKzKhtdsb4ss4+Ggl7aO7nhw485c11dl5mT7mQtr2BfkcEgW2rB4X3hD6p8/bVI0pBv/FAIECBDoU0BAQ580JhAgMFICa7e1lV1VCmdomthQdpqRBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEDgYAukwILFWaBB6k4/Ys4B1Wnv7I5HtvYENqxMAQ6b94c3PLxld2ze2X7AMgdrRKpL6m5fvb1sFZomToiFM1qyEIfJkQIbcmEO6XVfoEMant7SVHZZIwkQIFAvAgIa6uVI208CB1FgTR8BDYuyD2UKAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCoVoHmxoY4fN7UXFduH3bs6YxVW/YFN6QAh339PeN2xc72rnKLHZRxHV17s7ruznV9VWB6S2MuvGHxzJ4gh94wh97hRdl4D3buS894AgRqQUBAQy0cRftAYJwLrNveVraGi2ZMKjveSAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUAsC0yY1xnGLZuS60v3Zu3dvbN7ZnoU27I6Hy4Q3rN66O1JowngqrW2dcffa1lxXrl4TJkQsnJ7CG1pi8azJuTCHJVlow5xpkyKFO8zIummTmnL9aXhqc2M0NGQLKQQIEKgSAQENVXKgVJNANQus2VY+oGHxzMnVvFvqToAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEhiwwIUszmJsFF6TusUtnHbCeru69kR6g3BPesD/E4ZEsuOGRrW2xZtv4C3DIMidibVbn1MXKrQfsU+mIFOgwLQtpSGEN01v2BzdMK+ifkfWnoIvCedJwGp/GTcu6pokNpas2TIAAgVERENAwKqxWSoBAocDaPgIaFmWpVwoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBwoMDEhgmxZNbkXPeEAydHdxbgsHHHnlidBTakBy2n4IbUn157hzfuaC+z5PgZlQIdWvd05rro417ESmrb0tRQEPCQBTfkAx16gh96Ax4KQx0KAyGmT2qKtI4UmqEQIECgPwEBDf3pmEaAwIgIpBSucmWxgIZyLMYRIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEBBRqyAIcFM1py3eP6mLutoysf1pCCGx7Z2hPk8Eh2319vmENbR3cfS1fP6LQPbR17YkPrniFXujHznN7SE+iQXudPnxQLsm5hMs5e509vyfqzcdnw/GmTormxYcjbsiABAtUrIKCheo+dmhOoCoGdWXLV9rbOsnVdlH0IUQgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIHREWhpmhhHzJua68ptYe/evbF1V0c+rCGFOKzZ1lYw3BbrWtsim63mS2f33tiSWaSukjJnavO+4Ib9IQ4pyCEFOOSCHLJAhxTykI6BQoBA7QgIaKidY2lPCIxLgbXb2/qs1+KZk/ucZgIBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECAwugITJkyI2VnQQOoefcjMshvr6OqOddm9go9sTd3ufHhDCnLoHW7t40HPZVdYIyM372yP1N29trXfPZo5uSkX5LBgRhbkkEIbstcF2WtviENPqMOkmNLstu9+IU0kME4EnKnj5ECoBoFaFVibfcDqq6QPEwoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECAwfgWaJjbEobOn5Lq+arm9rSPWpACHbbtzoQ0puCEFOqzOXlO4w/bdHZFCHDq79/a1ipodvy3b99Tdt35Hv/s4fVLjvvCGLMhhRktPqEMW5JDuxUyBDrmAh2z8tGw+hQCBgyfgDDx49rZMoC4E+gpomJOlabU0TawLAztJgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgRqWWBGS1PMWNQUxy6a3udu7t27N/Z0dkcKc0hhDanbkXvtGU7jd+zpGd9a0L993zw983bG7o6uPrdRzRNa075v6IwHN+zsdzemNE8sG96wYPqkmN/bTZsUs6c0R0PDhH7XZSIBAoMXENAweDNLECAwCIG1WbJVubIoS2lSCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgfoQmDBhQu7Bz+nhzwv6znEYEKOjqzsX7JDCHIrCHvbsD37IhT3sC4EoDHtIoRC9QRBZXkRVll3tXbF8065c198OTMzCGeZNa866fcENva/7Qhzy47Ph6ZMaIx0fhQCBgQUENAxsZA4CBIYhsGbb7rJLL54poKEsjJEECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAnwJNExti9tTmXNfnTANM6O7eG7s6uiKFN6TQhp5uf/+WXe2xoXVPrG9ti3Xb97+2d3YPsObxM7kr28dU99QNVCY1NsT80uCGgkCHFOawYN/0FLChEKhnAQEN9Xz07TuBMRBYu62t7FYWCWgo62IkAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgMLoCDQ0TYtqkxly3eGZl29q7d29s392ZC21Yn4U3rNvelvVn4Q0pBCELcthQEOSwOwt/qKayJwueWLVld64bqN7TM7cU5jAvBTYUhDj09qcwhzR97rTmSGEaCoFaExDQUGtH1P4QGGcCa/oIaFgsoGGcHSnVIUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBPoSmDBhQsyc0pTrjlk4va/ZIgU57NiTghx6Qhw29IY49AY6ZGEOKdQhTU/zVVtpzeqcugc37hyw6nOmNudDHOZlgQ0puKG3S0EOafqsKVk3uSmmNE+MZKwQGO8CAhrG+xFSPwJVLrC2j4CGRTMnV/meqT4BAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoFgghQxMb2nKdUfNn1Y8sWRo574gh/X7whvWZa+5QId94Q4pxCFN295WfUEOaVc372zPdfesay3Z8wMHmyZmARiTU2BDUy6wIb0eMLwvzKFnnuZcWMb0SY3R0CDY4UBRY0ZLQEDDaMlaLwECsaezKzZlF89yZdGMlnKjjSNAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI1IXA1Cxc4IjUzZva7/62dXRlQQ1ZWENrW6zb95rCG/KBDtm4DTv25MIQ+l3ROJ7Y0bU3Nmb7kLrBlJTNMHNyFuqQhTf0vPYGPBQM50IfegIdZu2bd0ZLYzRObBjMpsxLICcgoMEbgQCBURNIF/u+yqKZAhr6sjGeAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINAr0NI0MQ6bOyXX9Y4r99rR1R2bdrTnQg42ZAEOuS4LPCjs37hvfOueznKrqLpx3XsjtuzqyHWDrfz0LKRhVhbeMDsf7tAcPQEOTfnQh97hNN/MyT2hD82Ngh0Ga11L8wtoqKWjaV8IjDOBNdva+qyRgIY+aUwgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECAxaoGliQ6T7Nyu5h3N3e1dPkENhgEMKb9g3vLFg/J7O7kHXpRoWaG3rjNQ9vHn3oKo7tXli/O15x8SrzzlqUMuZuTYEBDTUxnG0FwTGpcCabeUvSClRaNok//2My4OmUgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDNC0zOQgaWzpmS6/rb2b1790brns7YkIU3bCwIcEjDuS4LcugNc9i4oz26uvf2t7qamLYzC7eY2DChJvbFTgxewB3SgzezBAECFQqs3dZWds7FWfqSQoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgML4FJkyYEDNamnLdUfOn9VvZ7iycYcuu9tiQQhta02tbT4hDYZhDbvye2Lyzvd91jfeJs6Y0j/cqqt8oCQhoGCVYqyVAIGJNHwENi2ZOxkOAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFBDAg0NE2LutEm5Lhb1v2OdXd2xva0ztmaBDlt3d8S2XR3Za9afXrNuWzaud1rhcBqf5UAc9DJrctNBr4MKHBwBAQ0Hx91WCdSFwNo+AhoWz2ipi/23kwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgcKNE5siDlTm3PdgVP7HtOdpTO07uksDnTIBTzsC3fIBTukgIfi4RT20DmCyQ6zpgho6Pso1fYUAQ21fXztHYGDKtDc2BAzWhpzCUaFFVk4U0BDoYd+AgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBgQUaGibEzMlNue6wmDLwAvvm2Lt3b+xq74qtuQCH9n0BDx2xdVdHbMnCG7btG5+G0zzbcq/t2bSOaO/sPmA7AhoOIKmbEQIa6uZQ21ECYy/wqb94XG6jO7MkorXb22LttrZYk3XHLZo+9pWxRQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgboUmDBhQkyd1JjrDpk1eVAGbR1ZsMO+wIbca9a/ZJDrGNQGzTyuBQQ0jOvDo3IEakMgXbCOmj8t19XGHtkLAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBehBoaZoYi2amrqUedtc+DiDQMMB0kwkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECdS8goKHu3wIACBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYEEBDQMJGQ6AQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUPcCAhrq/i0AgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEBhIQEDDQEKmEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAnUvIKCh7t8CAAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGBBAQ0DCRkOgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFD3AgIa6v4tAIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAYSEBAw0BCphMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJ1LyCgoe7fAgAIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBgQQENAwkZDoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQ9wICGur+LQCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQGEhAQMNAQqYTIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECdS8goKHu3wIACBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYEEBDQMJGQ6AQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUPcCAhrq/i0AgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEBhIQEDDQEKmEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAnUvIKCh7t8CAAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGBBAQ0DCRkOgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFD3AgIa6v4tAIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAYSEBAw0BCphMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJ1LyCgoe7fAgAIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBgQQENAwkZDoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQ9wICGur+LQCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQGEhAQMNAQqYTIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECdS8goKHu3wIACBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYEEBDQMJGQ6AQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUPcCAhrq/i0AgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEBhIQEDDQEKmEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAnUvIKCh7t8CAAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGBBAQ0DCRkOgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFD3AgIa6v4tAIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAYSEBAw0BCphMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJ1LyCgoe7fAgAIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBgQQENAwkZDoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQ9wICGur+LQCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQGEhAQMNAQqYTIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECdS8goKHu3wIACBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYEEBDQMJGQ6AQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgUPcCAhrq/i0AgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEBhIQEDDQEKmEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAnUvIKCh7t8CAAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGBBAQ0DCRkOgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFD3AgIa6v4tAIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAYSEBAw0BCphMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJ1LyCgoe7fAgAIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBgQQENAwkZDoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBQ9wICGur+LQCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQGEigcaAZTCdQbwJ79uwp2uX777+/aNgAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEakmg9DfR0t9Ma2lf7QuB8ShQes6VnpPjsc7qRIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgeEIlP4uWvq76XDWPdrLCmgYbWHrrzqBhx9+uKjOz3/+84uGDRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQKCWBdJvpqecckot76J9IzCuBLRTGFeHQ2UIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEDgIAtXUVqHhIPjYJAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgqgQENFTV4VJZAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA4GAITNiblYOxYdskMF4Ftm7dGr/61a/y1Vu6dGlMmjQpP6xn8AL3339/PP/5z88v+MMf/jCOPvro/LAeAgRGR8C5Nzqu1kpgIAHn3kBCphMYHQHn3ui4WiuBgQScewMJmU5gdASce6Pjaq0EKhFw/lWiZB4CIy/g3Bt5U2skUCqwZ8+eePjhh/OjzznnnJg1a1Z+WA8BAqMroJ3CyPv6/DDyptZIoBIB514lSuYhMDoCzr/RcbVWAgMJOPcGEjKdwOgIOPdGx9VaCQwk4NwbSMh0AqMj4NwbHVdrJTCQgHNvICHTCYyMQDW3VWgcGQJrIVA7Aqmh0fOe97za2aFxuCcpnOHEE08chzVTJQK1LeDcq+3ja+/Gr4Bzb/weGzWrbQHnXm0fX3s3fgWce+P32KhZbQs492r7+Nq78S3g/Bvfx0ftalfAuVe7x9aeHVyBU0455eBWwNYJ1LGAdgqjf/B9fhh9Y1sgUE7AuVdOxTgCYyPg/BsbZ1shUCrg3CsVMUxgbASce2PjbCsESgWce6UihgmMjYBzb2ycbYVAqYBzr1TEMIGRE6jWtgoNI0dgTQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB2hQQ0FCbx9VeESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAiMoIKBhBDGtigABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKhNAQENtXlc7RUBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECAwggICGkYQ06oIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB2hQQ0FCbx9VeESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAiMoIKBhBDGtigABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKhNAQENtXlc7RUBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECAwggICGkYQ06oIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB2hQQ0FCbx9VeESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAiMoIKBhBDGtigABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEKhNgcba3C17RYDAeBKYP39+XHrppfkqpWGFAIHRF3Dujb6xLRAoJ+DcK6diHIHRF3Dujb6xLRAoJ+DcK6diHIHRF3Dujb6xLRDoS8D515eM8QRGV8C5N7q+1k6AAAECBGpRwOeHWjyq9qkaBJx71XCU1LFWBZx/tXpk7dd4F3DujfcjpH61KuDcq9Uja7/Gu4Bzb7wfIfWrVQHnXq0eWfs13gWce+P9CKkfgYMvMGFvVg5+NdSAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIDB+BRrGb9XUjAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECAwPgQENIyP46AWBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwDgWENAwjg+OqhEgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLjQ0BAw/g4DmpBgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIjGMBAQ3j+OCoGgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIDA+BAQ0jI/joBYECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDAOBYQ0DCOD46qESBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAuNDQEDD+DgOakGAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAiMYwEBDeP44KgaAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgMD4EBDSMj+OgFgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMA4FhDQMI4PjqoRIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC40NAQMP4OA5qQYAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECIxjAQEN4/jgqBoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECAwPgQax0c11IIAgVoVeOCBB+J3v/tdrFq1Ktrb22P27Nlx3HHHxZlnnhktLS21utv2iwABAgQIVCTQ1tYWN954Y9x9992xZcuWaG5ujkMPPTSe8IQnxJFHHlnROsxEgAABAgSGKrB3795Yvnx53HbbbbnvbFu3bo1Jkyblvrcdc8wxcdppp43497bW1tb4zW9+E/fee29s3749Jk+eHMuWLct9R1yyZMlQd8VyBKpK4GCce1UFpLIERkkg/W0yffdK177Vq1dHuiZ1dHTEjBkzYu7cuXHyySfH8ccfHxMnThyRGnR2dsZNN90Ut99+e2zatCm33sWLF8epp54aJ5544ohsw0oIVIPAWJ971WCijgQIECBAgMDYCGirMDbOtkKAAAEC1SmgrUJ1Hje1JkCAQC0IHIzfSrVTqIV3jn0YCYGDcf6NRL2tg0C1C4z176XaKlT7O0b9R0pgrM+9kaq39RAgUF0CAhqq63ipLYGqEfjhD38Y73//++MPf/hD2TpPmzYtLrroorj00ktj3rx5ZecxkgABAgQIjLVAukknBQulm2jS6y233JK7aae3HukG0nQzz3DLhg0b4rLLLosrrrgidu7cWXZ16aadd7/73fG85z2v7HQjCRAgQIDAUARSIFD6vvbf//3f8ctf/jI2btzY52qampriWc96VrzpTW+Kc845p8/5Kpnw0EMPxXve85648sorc+F9pctMmDAht410fTz77LNLJxsmUPUCY3Xupc+qRxxxxLC8UqMMhUCtCHz3u9+Na665JhcOlMIZUkOE/srMmTPjL/7iL+KNb3xjLmS2v3n7mrZjx4748Ic/HJ/97Gdj8+bNZWc79thj421ve1vu76PpGqgQqDWBsTr3Dj/88FixYsWQ+a699to499xzh7y8BQkQIECAAIHxKaCtwvg8LmpFgAABAv0LaKvQv4+pBAgQIFDdAmP1W2mpknYKpSKG61FgrM4/bRXq8d1ln/sTGKvfSwvroK1CoYb+ehUYq3NPW4V6fYfZbwIHCkzIGtxqcXugizEECAxRYM+ePXHJJZfEN77xjYrWMH/+/EgfgNyAUxGXmQgcIPDe9743d5P3ARMqHHHhhRfmbhCvcHazEahJgfQU70984hO5UIZHHnmk330ciYCG6667Ll7ykpf0e0NsYSX+z//5P/HFL34xmpubC0frJ1BTAqPZ4Gi4N7ylH2vTH9IUArUg8PrXvz6+9KUvlQ1IGGj/0vXo//2//5d7yvhA85ZOT6EMF198cezatat00gHD6Zx961vfGh/60IdiuOfvASs3gsBBEhjLc0+jh4N0kG123AoceuihkT5rDrakkKJ3vOMduXDZwVyPbrvttlzIXvoMWUn5sz/7s/j2t78dKRhCIVBLAmN17mn0UEvvGvtCgAABAgSGL6CtwvANrYFApQLaKVQqZT4C/Qtoq9C/j6kExkJAW4WxULaNehcYy99KC621UyjU0F+vAmN5/mmrUK/vMvvdl8BY/V7au31tFXolvNa7wFide9oq1Ps7zf4T2C/QuL9XHwECBIYn0N3dHS972cviRz/6UdGKJk6cGIcddliuoXFqnLxt27b89PQE8QsuuCD3JLszzjgjP14PAQIECBAYK4Gbb745fvCDH4zJ5n7961/HM5/5zNi9e3fR9mbNmpV70nFKK3744Yejq6srP/2rX/1qpFTTFGg0mBuD8ivQQ2CcCgymwdE43QXVIlB1AjfddFPZcIb0nW3x4sWxcOHC6OjoyD2FuPB7W9rRdD1KTx7/xS9+EdOmTat437/zne/knkSevi8WlhTWt3Tp0li/fn3uxtne/ND0+pGPfCRSg/p//ud/LlxEP4GqFTgY517VYqk4gTEQaGlpyf+tMl2fNm7cGCtXrozea1GqQroeXnbZZbnvZ5dffnlFtbrnnnviqU996gFhfOm6eeSRR+a+B6aGSWndveVnP/tZ7m+jv/zlLyPVSyFQywKjde7Vspl9I0CAAAECBCoX0FahcitzEiBAgMD4EdBWYfwcCzWpLwFtFerreNvbgy9wMH4r1U7h4B93NRgfAgfj/Bsfe64WBManwGj9Xqqtwvg83mo1fgRG69wbP3uoJgQIHEwBAQ0HU9+2CdSYwMc+9rEDwhle85rXxLvf/e5YsmRJbm9Tw4gU4PCmN70p1/A5jUxPUX3pS18at99+u6fF1dh7wu4QIECg2gXSjTQpHGEkSgpfSEFGheEMy5Yti3/913+N5z73ufnwhVWrVsUHPvCB+PznP5/f7Pe///3cTap/93d/lx+nh0C1C4xlg6Nqt1J/AqMhkMKBXv7yl8eznvWsePKTnxzTp0/PbyYFBd1www3xnve8J/faO+F3v/tdXHTRRbnQoN5x/b0+8MADcfHFF0dhOMNjHvOY3DXtKU95Sn7R9CNRekp5ut71ln/5l3/J1euFL3xh7yivBGpCYCzOvUKopz/96fGWt7ylcJR+AnUnkP4uma53Z599dqSA2COOOCIaGhqKHNL3tRSK9773vS/Sd7Le8u///u/xpCc9KXc96x1X7rWzszNe8pKXFIUzzJkzJ3fN+4u/+ItoamrKLbZ58+b45Cc/GR/60Ify18ff/va38da3vjU+9alPlVu1cQSqVmAszr1CnBQ29vWvf71w1ID96bOpQoAAAQIECNSGgLYKtXEc7QUBAgQI7BfQVmG/hT4CIy2grcJIi1ofgcoFxuK3Uu0UKj8e5qwvgbE4/wpFtVUo1NBfrwJj8Xuptgr1+u6y3/0JjMW5V7h9bRUKNfQTqD+BCdlTofbW327bYwIERlpg06ZNucbNra2t+VWnhsZvf/vb88OFPatXr841bk5Pjest6eaf9GQ6hQCBygXe+973Fp03H//4x2MwDYvTl48TTjih8g2ak0ANCqQbQN/85jfnbkw99dRT47TTTovTTz899/rQQw9F4Q2kKVCh8No1GI5042m6NvaWdFPQr3/963yIUe/43tcPfvCD8c53vrN3MBdilOoze/bs/Dg9BKpZoPfcK7cPpQ2OhnPuTZgwIb+Jk08+OT7xiU/khyvpSTfkeZpxJVLmqQaBxz/+8ZG+u73rXe/KhTNMnjy532qnoIbXve518YUvfKFovvSU78LrY9HEgoEUAPHNb34zPyZdY6+55pqYMWNGflxvT/rzVAr4K9zWUUcdFXfffXc0NsoX7XXyWp0CY3nupc+q6XNmb7nwwgvjiiuu6B30SqDuBP70pz/FSSedlA/EGwggBTWcf/758Yc//CE/6+LFi3OhDaWhDvkZsp50/Xr1q1+dH5W+t6Xve339zeU//uM/4hWveEV+/nStu/POO+OYY47Jj9NDoJoFxurcO/zww2PFihU5quF8b6xma3UnQIAAAQIEIvf3rvRdWFsF7wYCYyegncLYWdtSbQv0/l6aQrS1VajtY23vxpdA77lXrlbaKpRTMY7A8ATG8rfSVFPtFIZ3vCxdWwJjef5pq1Bb7x17M3yBsfq9VFuF4R8ra6gtgbE697RVqK33jb0hMBwBAQ3D0bMsAQJ5gbe97W3x0Y9+ND+cnkh33XXX9dv4+Re/+EWuwXPvQunHpnTj6dy5c3tHeSVAYACB0oYP1157bZx77rkDLGUyAQKFAik1e8+ePXHccccd8BTVdC0rvAF1qI39N2zYEEceeWTs2LEjv+l0g+p5552XHy7tSTeqpvP5+uuvz09KIQ//9E//lB/WQ6CaBXobPYx2g6PCgIZzzjkn9xm1mt3UncBwBK666qp42tOeFs3NzRWvJoU0PPGJT4xbbrklv0xq0PCNb3wjP1yu54477ogUitLd3Z2bnLZ56623xvHHH19u9ty4tra23DL33Xdffp70I9Jf//Vf54f1EKhGgbE89zR6qMZ3iDqPN4G77rorTjzxxCjMtk7fy5785CeXrWp7e3scffTR8fDDD+enX3755fHKV74yP1yu56/+6q/i61//en5SJdfX/Mx6CNSgwGDPvUSg0UMNvhHsEgECBAgQGIKAtgpDQLMIgWEKaKcwTECLE9gnoK2CtwKBgyOgrcLBcbfV+hUYy99KtVOo3/eZPS8vMJbnn7YK5Y+BsQQGIzDY30u1VRiMrnkJ9C0w2HMvrUlbhb49TSFQbwIN9bbD9pcAgZEXSDfcfPnLXy5acfoxtvBmuKKJ+wbSTamFDZvTEy2uvPLKcrMaR4AAAQIERk0gPZ07PdW0v6ehDnfj3/rWt4rCGVKQUX/hDGl76Tp66aWXFm363//934tuEiqaaIBAlQk85znPifTD6NatWyMFDKWwrxe/+MWRglAUAgRGR+BZz3rWoMIZUi0mTpwYb33rW4sq9LOf/axouNxAumb1hjOk6X/+53/ebzhDmqelpSXe/va3p958+dKXvpTv10OgWgXG8tyrViP1JjCeBFKYUHpiYWFJP8b2VdJ1sTCcIf0Ie/HFF/c1e3586d9Pv/Od78S2bdvy0/UQqDeBwZ579eZjfwkQIECAAIHyAtoqlHcxlgABAgSqQ0Bbheo4TmpZewLaKtTeMbVH41tgLH8r1U5hfL8X1G7sBcby/Bv7vbNFArUnMNjfS7VVqL33gD06OAKDPfcOTi1tlQCB8SogoGG8Hhn1IlBFAjfeeGOkJ4P3lvSE8PTE70rKJZdcUjTbD3/4w6JhAwQIECBAoBYEfvSjHxXtRun1r2hiwcBTnvKUOOKII/Jj1q5dG//zP/+TH9ZDoJoFxqLBUTX7qDuB8SRQGKyX6rVp06bYtWtXv1X88Y9/XDS90mvfy172spg6dWp+2ZtvvjkeeeSR/LAeAvUkMJRzr5587CuB0RRIn1ULy8aNGwsHi/pLv++lcIaBgmvTCtI2zjnnnPy6Ojo64qc//Wl+WA+BehQYzLlXjz72mQABAgQIEDhQQFuFA02MIUCAAAEChQKlf7uq9PcabRUKFfXXmoC2CrV2RO1PrQoM5bdS7RRq9d1gv8ZaYCjn31jX0fYI1KrAYH4vLf2+p61Crb4r7NdYCAzm3BuL+tgGAQLVIyCgoXqOlZoSGLcCV111VVHdnva0p1XUCDktlOYtLNddd13s3LmzcJR+AgQIECBQ1QI7duyI66+/vmgfnv70pxcN9zWQbuo5//zziyb/5Cc/KRo2QIAAAQIERltg9uzZB2yivyd833PPPXH//ffnl0mBC2eeeWZ+uL+e0nn37t0bpd85+1veNAK1JDDYc6+W9t2+EDjYAm1tbUVVmDVrVtFw4UDpdarS73tpHaV/G/V9r1BWfz0KDObcq0cf+0yAAAECBAgcKFD6eVxbhQONjCFAgACB+hXQVqF+j709J0CAQC0IDPa3Uu0UauGo24fxIjDY82+81Fs9CNSCwGB+Ly3926i2CrXwDrAPB0tgMOfewaqj7RIgMD4FBDSMz+OiVgSqSuDWW28tqm+lN96khZYsWRKHH354fvn29va4884788N6CBAgQIBAtQvccccdkZ6E2luOOOKIWLRoUe/ggK9nnXVW0Tyl192iiQYIECBAgMAoCKxevfqAtc6dO/eAcb0jSq9Vp59+ejQ2NvZOHvDVtW9AIjPUicBgz706YbGbBEZdIIUD3XzzzUXbOfXUU4uGewfWrVsXa9eu7R2MSZMmxSmnnJIfHqjHNW8gIdPrSWAw5149udhXAgQIECBAoH+B0r9DaavQv5epBAgQIFBfAtoq1NfxtrcECBCoNYHB/lZa+v1QO4Vae0fYn7EUGOz5N5Z1sy0CtSwwmN9LtVWo5XeCfRtrgcGce2NdN9sjQGD8C1TeOn7874saEiBwkATuuuuuoi2fcMIJRcMDDaT5ly9fnp8tre+0007LD+shQIAAAQLVLDAS18nC/S9dX+E0/QQIECBAYDQEbrjhhqLVLlu2LJqbm4vGFQ6UXquG8h2xv/UVTtNPoJYFBnvu9Wfx8MMP524iT2nfc+bMiQULFsT8+fP7W8Q0AnUr8O///u/xyCOP5Pf/uOOOi9SIr1wpveYdffTR/V4jS9dReo28//77o7Ozc1DBRqXrNEygWgUGc+71t48bN26MVatWxfbt22PGjBmRgsUOPfTQmDBhQn+LmUaAAAECBAhUqUDpZ/LSz9gD7Za2CgMJmU6AAAEC1SwwEtfJwv0vXV/hNP0ECBAgQGCkBQb7W2npdWoo3w8L96F0fYXT9BOodYHBnn/9eWir0J+OaQSKBQbze2npdUpbhWJLQwQGIzCYc6+/9Wqr0J+OaQRqV0BAQ+0eW3tGYEwEdu/eHStXriza1tKlS4uGBxoonf+ee+4ZaBHTCRDoR2DPnj3x4IMPxqZNm6KpqSnXCHnJkiUxZcqUfpYyiQCB0RIova6VXvcG2m7p/CtWrIh0Y11LS8tAi5pOgEAfAmvWrMnddLdz586YPXt2zJs3LxYvXtzH3EYTIJD+AF1YnvnMZxYOHtA/0te+0vUdsEEjCNSowGDPvXIMV199daTvg+naV1oOP/zwOPfcc+Nv/uZv4owzziidbJhAXQp85Stfide97nX5fW9oaIhPf/rTfd7YXXqNKv3+ll9RHz0pKCV9t0vf8VJpb2+Phx56KI455pg+ljCaQG0KDPbcK6ewfv36SA1uSxsjpXlTONGTn/zkePnLXx4vetGLYuLEieVWYRwBAgQIECBQZQLaKlTZAVPdmhfQTqHmD7EdrEKB4f7tqvRvXdoqVOGbQJXHnYC2CuPukKjQOBYY7G+lI33dK13fOKZSNQIjLjDY869cBbRVKKdiHIG+BQb7e2npdar0+1vfW+qZoq3CQEKm14vAYM+9ci7aKpRTMY5A/QgIaKifY21PCYyKQEp42rt3b37d6Wbw9BTGwZRDDjmkaPb04UQhQGBoAq9//etz4Qy9Dft719LY2BinnnpqXHDBBbkbDTwptVfGK4HRFyi9rqWnNg6mLFy4MPf01PQU1VS6u7tzASyl18/BrNO8BOpV4Lbbbosjjzwyd9NbqcGiRYvinHPOiYsuuiie8YxnlE42TKBuBX7605/G9ddfX7T/6Tzprwz32ld6jduwYUN/mzONQE0KDOXcKwdRLpihd77ly5fHFVdckeue+tSnxpe//OU47LDDeid7JVCTAvfee29R2GxHR0ds2bIlbr/99vjRj34Ud955Z36/m5ub4wtf+EKcd955+XGlPcO95qX1pRCVFLTZW9I6BTT0anitFYGRPvfKuaQbNMuFM6R5N2/enDvH03l+1FFHxeWXX577/lduPcYRIECAAAEC1SOgrUL1HCs1rX0B7RRq/xjbw+oUGO7frrRVqM7jrtbjU0BbhfF5XNRq/AoM5bfS4V73tFMYv+8HNRtbgaGcf+VqqK1CORXj6llgpH8vHe51Lx0LbRXq+R1ZP/s+0udeOTltFcqpGEegfgQENNTPsbanBEZFYMeOHUXrnTJlSp9PlCuasWBg6tSpBUMRpessmmiAAIF+BQpvJCicMd3YfdNNN+W6j3zkI/EP//APcemll3paXCGSfgKjJFB6XSu97g202QkTJsTkyZOjtbU1P2vpOvMT9BAg0K9AuikndeXK2rVr49vf/naue9zjHhcpFfWkk04qN6txBOpGIJ0vr371q4v29/nPf36cfvrpReNKB0qvU4O99pXOn26eTU9fmzRpUummDBOoSYGhnnvDwfjlL38Z6fr3gx/8IM4+++zhrMqyBMa1wGc+85n413/9137rmL6DpcCuD33oQ/GYxzym33mHe81LKy+97pWus98KmEigSgRG+twbzm4/8MADueCVT3ziE/HGN75xOKuyLAECBAgQIHCQBUo/O2urcJAPiM3XtYB2CnV9+O38OBYovVaW/h1qoKprqzCQkOkEKhfQVqFyK3MSGOpvpcO97pVeJ7VT8F6sR4Ghnn/DsdJWYTh6lq0mgZH+vXS4171kV3rtK11nNfmqK4G+BEb63OtrO5WM11ahEiXzEKg+gYbqq7IaEyAwngRKP4S3tLQMunrpptPCUrrOwmn6CRAYvkBKaHv/+98f559/vkCU4XNaA4EBBUqva66VA5KZgcBBF/jf//3feMITnhDf+c53DnpdVIDAwRLo7u6Ov/zLv4xVq1blqzBz5sz41Kc+lR/uq2e4177S74hpO6Xr7GvbxhOodoHhnHuF+37ooYfGa1/72ty1LD1NfOvWrZEaEaWni958883x0Y9+NI488sjCRXIhRs973vPi7rvvLhpvgEC9CbzkJS+Jd77znQOGMySX0uuT73v19m6xvyMpMJhzr3C7M2bMiJe+9KVx+eWXxy233BKbNm3KXfO2bdsW6RqYxj/pSU8qXCS6urrizW9+c3zrW98qGm+AAAECBAgQqC4Bn8er63ipLQHtFLwHCIy9gGvl2JvbIoHhCmirMFxBy1e7wHB+Kx3udU87hWp/96j/cAWGc/4VbltbhUIN/QQGJzCY30uHe91LNSu99pWuc3C1NzeB6hUYzLlXuJfaKhRq6CdQvwICGur32NtzAiMi0NbWVrSe5ubmouFKBkqfgpp+lFUIEKhcICXWn3nmmfFP//RP8fOf/zx3E92uXbsinZ+rV6+O//zP/8w9+bj0JoHrrrsu/vzP/zzXILnyrZmTAIHBCrhWDlbM/ARGXmDevHlx0UUXxde//vX405/+lLsBNd2kumXLlvjjH/8Yn/70pw+4AS99Jk03p19//fUjXyFrJFAFAm95y1viv/7rv4pq+vnPfz6WLl1aNK7cwHCvfaXfEdM2fE8sJ21cLQoM59xLHilI5cc//nGsWLEiUgL4i1/84jjuuONy4xsbG2Pu3Lnx+Mc/PtJ27r333rj00kujoWH/n4hTkEO6/u3du7cWee0TgYoErrzyytzN3GeffXbcf//9/S4z3GteWnnpdc81r19yE2tYYDDnXi/Dxz72sdzfP7/97W/HK1/5yjj11FNjzpw5ka55qTFEugam8TfccEN8//vfj1mzZvUumrvWXXLJJbF27dr8OD0ECBAgQIBAdQn4PF5dx0tta09AO4XaO6b2qPYEXCtr75jao+oT0Fah+o6ZGh9cgeH8Vjrc617p7zVJwm82B/f9YOtjKzCc8y/VVFuFsT1etlabAoP5vXS4170kWHrtc92rzfeVvRpYYDDnXu/atFXolfBKgMD+1rcsCBAgMASB0hu+29vbB72WPXv2FC1Tus6iiQYIECgSePrTn557uulvfvObeMc73hHnn39+HHLIIblEw/SlecmSJfHsZz87Pve5z8V9990XZ511VtHyV111Ve6mnaKRBggQGFGB0uuaa+WI8loZgQEFUihDCiz68pe/HK94xSvipJNOitmzZ+du2Ek355x88snx+te/Pm699dbc9bLwj87pfH35y1+eCz0acENmIFBDAp/61Kfik5/8ZNEevfWtb42XvexlReP6Ghjuta/0O2LaTuk6+9q28QSqWWC4517a93SNe85znlMUutCXycSJE+O9733vAef773//+9xNrH0tZzyBahb4l3/5l9xN2SmEJHUp4PLhhx+On/zkJ5Fu1C58QkS6ofu0006LW265pc9dLr0++b7XJ5UJdS4w0udeL2d6ksW0adN6B/t9fcELXpALICs8z9P/ASn0ViFAgAABAgSqU8Dn8eo8bmpdGwLaKdTGcbQXtS/gWln7x9gejm8BbRXG9/FRu/EnMNzfSod73dNOYfy9J9Ro7ASGe/6lmmqrMHbHy5aqU2Ckfy8d7nUvKZZe+0rXWZ3Sak2gWGCkz73etWur0CvhlQABAQ3eAwQIDEugtPFjaRJbJSsvTVorXWcl6zAPgXoVOPPMM+NRj3pURbt/6KGHxjXXXBNnnHFG0fwf+MAHcjckFI00QIDAiAmUXtdcK0eM1ooIVCSQQhmam5srmvfVr351/Md//EfRTa0p3OHf/u3fKlreTARqQSCdA29605uKduWiiy6KD3/4w0Xj+hsY7rWv9Dti2lbpOvvbvmkEqlFgJM69oe73G9/4xjjnnHOKFv/a175WNGyAQK0KpBu1099LnvWsZ8WXvvSl+NOf/hSPfexj87u7devWeP7znx/ptVwpvT75vldOyTgCBwoM99w7cI2VjXniE58YKXissKRrcHd3d+Eo/QQIECBAgECVCPg8XiUHSjVrUkA7hZo8rHaqBgVcK2vwoNqlqhLQVqGqDpfKHmSBkfitdLjXPe0UDvKbwOYPmsBInH9Drby2CkOVs1wtCAz399LhXveSYem1r3SdteBsHwiUCgz33CtdX6XD2ipUKmU+AtUnIKCh+o6ZGhMYVwKlH8LTE6fS0+cGU3bu3Fk0e+k6iyYaIEBgWAIp2fCrX/1q7qnhvStav359XH311b2DXgkQGGGB0uta6XVvoM2l66o/gg2kZDqBkRN44QtfGH/1V39VtEI3qRZxGKhhgfT08AsvvLDoO106J9INqxMmTKh4z4d77Su9VjY2NoaE7or5zViFAiN17g1n1//+7/++aPFf/vKX0dnZWTTOAIF6EDj66KPj5z//eSxdujS/uymw62Mf+1h+uLBnuNe8tK7S617pOgu3p59ArQoM9twbjkNq7Ddx4sT8KjZv3hy33HJLflgPAQIECBAgUD0CpZ+dtVWonmOnpvUnoJ1C/R1zezw+BEqvlaV/hxqoltoqDCRkOoGRFdBWYWQ9ra16BEbqt9LhXvdKr5PaKVTPe0hNhy4wUuff0GsQoa3CcPQsW0sCg/29dLjXvWRXeu0rXWct+doXAn0JDPbc62s9lYzXVqESJfMQqD4BAQ3Vd8zUmMC4Epg3b17RjTodHR2RbvYeTEmNnAvLggULCgf1EyAwwgLpS8Rzn/vcorUKaCjiMEBgRAVKr2urVq0a1PrXrVtXdHNcQ0NDpOuvQoDA6AmU/vCTnqSczkWFQC0LXHvttfGSl7yk6JrztKc9Lb75zW8W3cBWicFwr32l3xHnz59fyWbNQ6AqBUby3BsOwFOf+tSiv++0trbGmjVrhrNKyxKoWoH0feuyyy4rqv8VV1xRNNw7MNxrXlrPI4880ru63GvpOosmGiBQwwKDOfeGwzB79uw45ZRTilZxzz33FA0bIECAAAECBKpDQFuF6jhOakmgV0A7hV4JrwTGTqD070zaKoydvS0RGKqAtgpDlbNctQqM5G+lw73uaadQre8i9R6qwEief0OtQ1pOW4Xh6Fm21gQG83vpcK97yU5bhVp7B9mfoQoM5twb6jbSctoqDEfPsgTGr4CAhvF7bNSMQFUITJ48OQ477LCiuq5cubJoeKCB0vmPO+64gRYxnQCBYQqcd955RWvQCLmIwwCBERU49thji9ZXet0rmlhmoHT+ZcuWeYp4GSejCIykwEknnRSFf8BOT4e59957R3IT1kVgXAncdNNNuQCvtra2fL3OPPPM+MEPfhDNzc35cZX2jPS1z3fESuXNV20CI33uDWf/p06dmvsRqHAdGzZsKBzUT6CuBF7wghcUhZakhgkrVqw4wGC417wUdFt4/U3X3SOPPPKA7RhBoF4EKj33huuxdOnSolW45hVxGCBAgAABAlUjoK1C1RwqFSWQF9BOIU+hh8CYCAz3b1faKozJYbIRAkUC2ioUcRiocYGR/q10pK972inU+BuwzndvpM+/4XBqqzAcPcvWokClv5cO97qnrUItvnvs03AEKj33hrONtKy2CsMVtDyB8ScgoGH8HRM1IlB1AqV/hLrzzjsHtQ933XVX0fyl6yuaaIAAgRER8MF+RBithEBFAqXXNdfJitjMROCgCxx66KFFdXDDThGHgRoS+NOf/hQXXHBB7NixI79Xj3vc4+KnP/1ppB9Bh1Jc+4aiZpl6ExiNc2+4hk1NTUWr6OjoKBo2QKCeBGbNmhVz5swp2uW1a9cWDaeB0mveAw88EO3t7QfM19eI0r+LHnXUUdHY2NjX7MYTqHmBSs+94UK45g1X0PIECBAgQGD8CJR+JvcbzPg5NmpCoJyAdgrlVIwjMHoCrpOjZ2vNBEZTQFuF0dS17vEiMBq/lbrujZejqx7jXWA0zr/h7rPfbYYraPlaEqj099LS6562CrX0LrAvB0Og0nNvuHVzzRuuoOUJjD8BAQ3j75ioEYGqE3jsYx9bVOcbb7yxaLi/gTVr1sTy5cvzs6QPGyeccEJ+WA8BAqMj4IP96LhaK4FyAieeeGIUnnPpupeuf5WW3/zmN0Wzll53iyYaIEBgxAQKz9u0UjepjhitFY0jgXvuuSee9rSnxZYtW/K1Ov744+NnP/tZzJw5Mz9usD2l16qbb745Ojs7K16Na1/FVGasUoHROveGw5HO0U2bNhWtYv78+UXDBgjUu0Dp58PksWjRolzXa7Nnz574/e9/3zs44Ktr3oBEZiBQ9DeVkeIoDVxxzRspWeshQIAAAQJjL1D6dyhtFcb+GNgigcEIlH639tvLYPTMS2DwAtoqDN7MEgTGg4Dr5Xg4CuowmgKj9Vtp6fdD7RRG8yhad7UKjNb5NxwPbRWGo2fZehEo/XyY9ltbhXo5+vbzYAqUO/eGWx9tFYYraHkC409AQMP4OyZqRKDqBJ797GcX1fmaa66JvXv3Fo3ra+Dqq68umvSUpzwlpk2bVjTOAAECIy/gg/3Im1ojgb4Epk+fHmeffXbR5J///OdFw30NpOtpuq4Wluc85zmFg/oJEBglAdfKUYK12nEjsGLFijj//PNj/fr1+TodccQRka5Rw71BLSV0pyeA95adO3dGpY3j07y//e1vexeNCRMmROl3zvxEPQSqUGA0z73hcPzP//xPUZBKY2Nj0U3nw1m3ZQlUo0Bra2ts3ry5qOoLFy4sGu4deNazntXbm3ut9Ptemrl0Xt/3iigN1KHAYM69ofKkIJXUMLewlD7Ft3CafgIECBAgQGB8C5T+3UhbhfF9vNSOgN9evAcIjK2Atgpj621rBEZKwPVypCStZzwKjOZvpdopjMcjrk7jSWA0z7/h7Ke2CsPRs2wtCgzm91JtFWrxHWCfDpbAYM69odZRW4WhylmOwPgWENAwvo+P2hGoCoEzzzwz5s2bl6/rgw8+GNddd11+uL+eyy+/vGjy8573vKJhAwQIjI7Ar3/966IVa4RcxGGAwIgLPPe5zy1aZ+n1r2hiwcC1114bDz30UH5MuiHoCU94Qn5YDwECoyOwatWqSD9KFRbXykIN/dUusGbNmjjvvPMivdd7yyGHHBK/+MUvIr2ORBnqte/b3/527NixI1+Fxz/+8bFkyZL8sB4C1SwwFufeUH1KP5+eccYZMWXKlKGuznIEql7gqquuKgqgTeFFixcvLrtfpde8L3/5y0XLll0oG/nAAw/Er371q/zklLz/zGc+Mz+sh0A9Cgzm3Buqz7e+9a3YtWtXfvFJkybFWWedlR/WQ4AAAQIECFSXgLYK1XW81JaAdgreAwTGXqD0b1elfwvuq0baKvQlYzyB0RXQVmF0fa394AqMxW+lQ73uaadwcN8btj76AmNx/g11L0o/n2qrMFRJy9WKwGB+Ly297mmrUCvvAvtxMAQGc+4NtX7aKgxVznIExreAgIbxfXzUjkBVCDQ0NMRFF11UVNfLLrtswIbI6eafG264Ib9cSu1+6Utfmh/WQ4DA6Ahs3bo1vve97xWtPN2gpxAgMHoCf/7nfx5Tp07Nb+D666+PX/7yl/nhcj179+6NdD0tLBdffHGk665CgMDoCpT+8JPCGY455pjR3ai1ExgjgfQ08Kc97Wm5m0J7N5luOk1P8D7iiCN6Rw379ZWvfGVMmDAhv570x+W77rorP1yup62tLT784Q8XTbrkkkuKhg0QqFaBsTr3huKTQja/9rWvFS36/Oc/v2jYAIF6Eti9e3dceumlRbucnsrb13exP/uzP4tDDz00P//y5csjNXwYqLz3ve8t+vvpi170opg5c+ZAi5lOoGYFBnvuDQUiPX3wne98Z9GiT3/604USFYkYIECAAAEC1SWgrUJ1HS+1rW8B7RTq+/jb+4MnoK3CwbO3ZQJDEdBWYShqlqkGgbH6rVQ7hWp4N6jjWAuM1fk3lP3SVmEoapapZYHB/l6qrUItvxvs21gKDPbcG0rdtFUYipplCFSHgLu7quM4qSWBcS/wtre9LaZNm5avZ3r620c+8pH8cGnP6tWr41WvelXR6De+8Y0xb968onEGCBAYeYF/+Id/iNT4obc0NzfHBRdc0DvolQCBURBYsGBBvOENbyhac7oOPvLII0XjCgc+9KEPRQpy6C3pRp23vOUtvYNeCRAYJYF0A/knPvGJorW7SbWIw0AVC7S2tsYznvGMuOOOO/J7MWvWrLj66qvj+OOPz48biZ5HP/rRRQF87e3tceGFF8b27dvLrj4FE73pTW+K++67Lz/9yCOPjNSAQiFQ7QJjde6loJV0U3hnZ2fFZCk07IUvfGF0dXXll1m8eHG85jWvyQ/rIVCtAm9961vj5ptvHlT1UwOl9JSJe++9N7/cxIkT481vfnN+uLRn0qRJB9zwnf72cuedd5bOmh/+j//4j/j617+eH07bKA3oy0/UQ6DKBMbi3EtPekpBKlu2bKlYJ4WnpM/C6beJ3pICxVJYikKAAAECBAhUt4C2CtV9/NS+fgS0U6ifY21Px5eAtgrj63ioDYH+BLRV6E/HtGoWGKvfSpORdgrV/E5R99EQGKvzT1uF0Th61lnNAmPxe2ny0Vahmt8l6j4aAmNx7mmrMBpHzjoJVLfAhKwB/N7q3gW1J0BgvAikG0nf8Y53FFXnta99bbzrXe+KJUuW5MZ3d3fHj3/840hhDCtXrszPm6anm4TSzUEKAQKVCaSnC6enH5966qkVLZBu0kkNlD75yU8Wzf+3f/u38a//+q9F4wwQqDeB3/zmN5HSD0vLH//4x0iNhXrLwoULi26i6R2fXtO17IQTTigcVdSfbvQ58cQTIyUg9pZly5bFpz71qXjOc56Tf8r4qlWr4gMf+EB8/vOf750t9/rRj35UQEORiIFaFkjp2E95ylPyu5jOlXQzzWDKrbfeGtdee228+tWvrvhpqGmZ5z3veUWfUydPnhz3339//vPsYOpgXgLjTSCdV+n8Kizve9/74owzzigcVVF/+gw6e/bsfudN585jHvOY2LVrV36+NPwv//Ivce655+bHpZtg//Ef/zG+//3v58elniuvvDJe8pKXFI0zQKAaBcbq3Lviiivi4osvjkMOOSR37qSbzE855ZRIQV+FJYUx3HLLLfGZz3wm99k2/a2mt6Qnj373u9+NF7zgBb2jvBKoWoHHPvaxkb7TnX766fGyl70snvrUp+a+kzU1NRXtU/qJ5J577onvfOc7ue9nGzduLJqevhN+7GMfKxpXOtDR0RGPe9zjikKQ5syZE//8z/8cL3/5y6OxsTG3SPpemMZ98IMfjMJz73Wve13827/9W+lqDROoSoGxOPfS98MjjjgiFxqdrncvetGL4olPfGLZ723pM2m6Rn7605+Obdu2FZmmgLB0TioECBAgQIBA9Qtoq1D9x9AeVI+AdgrVc6zUtDoEtFWojuOklvUjoK1C/Rxrezp2AmP1W2nvHmmn0CvhlUDk2t+NRTshbRW82wgUC4zF76W9W9RWoVfCK4GIsTj3tFXwTiNAoFRAQEOpiGECBIYskBoVpxvafvKTnxStIz0BLt1Ul24IeOihh2Lr1q1F09NNbyk58ayzzioab4AAgf4F0k1tv/rVr+LMM8/MPZ34vPPOi+OOOy7f6L936dTw+Kc//Wmkm7vTjaeF5aijjoqbbrop5s6dWzhaP4G6Ezj88MNjxYoVw9rv9FTw9Ifm/sr1118ff/ZnfxZtbW1Fs6WAonRjQbpGpgCjwicYpxnT9fUHP/hBPsShaGEDBKpYYDQbHPU2nEjXuPRk8HSj6WmnnRbz5s0rEks35N1+++3xxS9+Mb7whS/Enj17iqanG8lTuJhCoBYE0hOCR6qkAJTCkIW+1vutb30rd2NqaT7o/Pnz47DDDov169dHCicqnf5//+//zd0k29d6jSdQTQJjde71NnootUmBDelG8alTp8b27dtznzd37NhROlvus2YK70vnn0KgFgR6f3gt3Jfm5uZciEn6Dpb601NjHn744dxr4Xy9/el73r//+79HCi8ZqKSnmz3pSU+KFMJQWKZNmxbp7y8pFDD9bTQ1kCgsKUAifXZNfyNVCNSCwFice72NHkq90ve/9GTQGTNm5M659PSKDRs2lM6WG05BYOmzaiXnd9kVGEmAAAECBAiMKwFtFcbV4VCZGhfQTqHGD7DdG3MBbRXGnNwGCeQEtFXwRiAwdgJj9Vtp4R5pp1Coob+eBcbq/NNWoZ7fZfa9nMBY/F5auF1tFQo19NezwFice9oq1PM7zL4TKC/Q89im8tOMJUCAwKAEUkPG9KS59LTG9Met3pJuMn3wwQd7B4teU4PJ9GRG4QxFLAYIDErgxhtvjNSlMmnSpDj00ENzgSgpHGXTpk2RvgQUPpWxd+WLFi2K//qv/xLO0AvilcAYCJx99tlx1VVX5Z5oXHjTTgpm+N///d+yNUhPW003BI3kH8vLbshIAgdB4BWveEVF4Sjr1q2Lpz3taWVrOFA4SroWpvCF1KWycOHCXEjD9OnTI92cunr16tiyZUvZdf/93/+9cIayMkYSqFzgz//8z3PhC5dccknuJrneJdONcn3dLJeeVJ7CxRQCBEZGIF3rUtdfWbx4cXzlK1/p83rb37KmEagmgfb29lxIwkB1Tjd3pyeCvuY1r6n4u9jxxx8fv/zlL3MBe4UBgOkz5x//+Meymzz//PNzf08VzlCWx8gaEhjNc6+QKX3/S11/Jf399IMf/GC8+c1vrvj87m99phEgQIAAAQLjQ0BbhfFxHNSivgS0U6iv421vq19AW4XqP4b2YGQFtFUYWU9rIzDeBLRTGG9HRH3qVUBbhXo98va7nMBo/l6qrUI5ceMI9AiM5rlXaKytQqGGfgL1JTDwY5/qy8PeEiAwTIGWlpb45je/mQtdSOlTfZX01MbXve51ceedd1b01NW+1mM8AQLFAump3w888ED84Q9/iJtvvjkXjlIunOGZz3xm7uaAY445pngFhggQGHWBpz71qbnr32tf+9qYMmVKn9t73OMeF9/73vfiG9/4Ri58pc8ZTSBAYFACKezhjjvuiP/5n/+J22+/vWw4Q7oh7+tf/3p8/OMfH9S6zUyAQHmBv/iLv8idbyl0qKmpqfxM2djUODA9QfxjH/uYm+X6VDKBQN8C6XPmZZddlvs7SwoiGqikm1dOOeWU+NznPhf333+/cIaBwEyvOoH0N8qPfOQjkUIQ0ue7gUoKxTv55JNz16F0TqTvbIMNynvMYx4Tt912W/zjP/5jzJ49u89Npr/HpACxq6++OmbNmtXnfCYQqEaBsTj3UvDev/7rv8bzn//8XAhfJU7Lli2Ld73rXbm/l/7d3/3doM/vSrZhHgIECBAgQODgCmircHD9bb2+BbRTqO/jb++rR0Bbheo5VmpamwLaKtTmcbVX41dAO4Xxe2zUrPYEtFWovWNqj4YnMBa/l5bWUFuFUhHD9SgwFueetgr1+M6yzwT6F5iwNyv9z2IqAQIEhi6QGjPfdNNNuSc1puSp1OA4JbSdddZZkRpIKAQIDF3g5z//eXz/+9+PG264Ie6+++7o6urqd2XTpk2LCy64IN7whjfkbn7rd2YTCRAYE4Hdu3dHerrMXXfdFVu3bo3m5uY45JBD4glPeEIcffTRY1IHGyFwMAUOP/zwKHy68FDqcuGFF8YVV1xxwKIpjfTyyy+Pa6+9Nn73u9/F5s2bD5indMRxxx0Xr3zlK+NVr3pVvzfUlS5nmACBygW2b98ev/71r+O+++6L1tbW3PfCww47LPcdMV0DFQIERkYg/ck3hfelv8s8/PDDuc+abW1tkQIz003jS5cujdNPP72im9ZHpkbWQuDgCqTwynTtSefEypUrI12POjo6IoWZzJw5M9Ln0hRYUkmQQ6V7ktaf/i6aQsHSZ9OJEyfG4sWLc9s56aSTKl2N+QhUtcBYnXtr1qyJe+65J3d+b9y4MXbt2pX7G0u65i1YsCBOO+20WLJkSVVbqjwBAgQIECAweAFtFQZvZgkClQhop1CJknkIjH8BbRXG/zFSw9EV0FZhdH2tncB4E9BOYbwdEfWpZQFtFWr56Nq3oQiM1e+lhXXTVqFQQ3+9CozVuaetQr2+w+w3gf0CAhr2W+gjQIAAAQJVK5AaHd95552xfPnySB/yd+zYEelLRQpFSQ2RTzjhhEiN/9PNAAoBAgQIEKhHgRQEkW7KSzfkbdmyJVKjoxQYlq6T6Ua5FIwyd+7ceqSxzwQIECBAgAABAgQIECBAgAABAgQIECBAgACBQQtopzBoMgsQIECAQB0KaKtQhwfdLhMgQIAAAQIECBAgQIAAAQJ1ISCgoS4Os50kQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEhiPQMJyFLUuAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqAcBAQ31cJTtIwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIDAsAQENw+KzMAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFAPAgIa6uEo20cCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgWAICGobFZ2ECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgHgQENNTDUbaPBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwLAEBDQMi8/CBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQD0ICGioh6NsHwkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFhCQhoGBafhQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIF6EBDQUA9H2T4SIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECwxIQ0DAsPgsTIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC9SAgoKEejrJ9JECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBIYlIKBhWHwWJkCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBOpBQEBDPRxl+0iAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgMS0BAw7D4LEyAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjUg4CAhno4yvaRAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQGJaAgIZh8VmYAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQqAcBAQ31cJTtIwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIDAsAQENw+KzMAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIFAPAgIa6uEo20cCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgWAICGobFZ2ECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgHgQENNTDUbaPBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwLAEBDQMi8/CBAgQIECAAIH/397dB1lV1g8A/+5CrLMLxi6FghlLTYLKi2G+hFhgTpO96YwzMZIvTGblZOMfEkPNOJoONRZONtM0gYw1WVM4Ma790cv0ImgEGy8T4aQWCLuwNazgQiJJAZvn9rv3d8/du3APLLrL+dyZnft8v+d7nnOez7P+g898lwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCQBwENGvKwy9ZIgAABAgQIECBAgAABAgQIEBgggVWrVkVdXV3p59577x2gmU1DgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEOgr4KxCXxMZAgQIECBAgAABAgQIEHjjBDRoeOPsPZkAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAYIgIaNAyRjfKaBAgQIECAAAECBAgQIEAgzwKtra1RV1c3ID9tbW15prR2AgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAoAYBZxVqQFJCgAABAgQIECBAgAABAgRyKKBBQw433ZIJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBbAIaNGTzUk2AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjkUGB4DtdsyQQIECBAgAABAgQIECBAgMAQF1iyZElMnz79hFZxoved0MPcRIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECJwWAs4qnBbbaBEECBAgQIAAAQIECBAgQOCkBTRoOGlCExAgQIAAAQIECBAgQIAAAQKvt8DFF18cs2fPfr0f63kECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBATgWcVcjpxls2AQIECBAgQIAAAQIECBCoEKiviIUECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIVAho0VIAICRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQKVAsMrE2ICBAgQIECAAAECBAgQIECAAIG+Alu3bo329vbo6uoqXDznnHNixowZcf755/ctPoFMZ2dn/PGPf4zdu3fH/v37o6WlJc4+++y44oor4q1vfesJzFj9lmT+ZB3d3d2xZ8+eqK+vj9GjR8d5550XF110UWFc/c7as5s3b44NGzYUntHQ0FBYx8yZM6O1tbX2SVQSIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGcCzirUPsvgLMKtVupJECAAAECBAgQIECAAIGTE9Cg4eT83E2AAAECBAgQIECAAAECBAicJgJJ84COjo7CaiZMmBA7duwojFetWhVf+tKXYt26dVVXOn369Fi8eHF85CMfqXr9WMmjR4/G97///fjmN78ZzzzzTNXSpIHCpZdeGl/+8pfjYx/7WNWa4yX//e9/x/Lly2Pp0qWxZcuW6O3trXrLsGHD4vLLL4/58+fHvHnzorGxsWpdf8kf//jH8ZWvfCWef/75qiWXXXZZLFmyJGbNmlX1uiQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEMiTgLMKEc4q5Ok33loJECBAgAABAgQIECBwegjUnx7LsAoCBAgQIECAAAECBAgQIECAwMALfOMb34irrrqq3+YMyROTv8Dw0Y9+ND73uc/12/ig2pt1dXXFJZdcErfeemu/zRmS+5ImDklziI9//OPx4Q9/OF5++eVq0/WbW7t2bZx33nnx+c9/Pv785z8f8x2PHDkSa9asidtuuy0ee+yxfuesvJA0gLjxxhsLTR36a86Q3NPe3h6zZ88uNKWonENMgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIRDirUNtvgbMKtTmpIkCAAAECBAgQIECAAIGBFxg+8FOakQABAgQIECBAgAABAgQIECAw9AUeffTRWLhwYWkhDQ0Nkfzliqampti5c2e8+OKLpWvJYOnSpYXmB8n38T7bt28vNCro7OxMldbX1xee0dLSUpi/o6Mjdf0Xv/hFzJkzJ379619Hc3Nz6lq14Cc/+UnMnz8/Dh061OfyuHHj4uyzz466urrYs2dPVL5LnxuOkbjlllsieVbxk7zbueeeG8OHD48XXngh9u3bV7wUSROIT3/603HhhRcWGlSULhgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGcCzirUPsvgLMKtVupJECAAAECBAgQIECAAIGBFagf2OnMRoAAAQIECBAgQIAAAQIECBAY+gL79++PL3zhC4WFjBo1Kr71rW9Fd3d3PPfcc7Fx48bCeM2aNfHe9743tdhly5bFihUrUrnK4PDhw3HDDTekGiIkjQwWLVpUaPywbdu2WL9+fezYsSO2bt1aaGZQPkfy/Ntvv708VXWczJEcRihvznDmmWfG/fffH0mDiL///e+xadOmwnqSRhAvvfRStLW1xbx582LEiBFV56yWTA6HFJszfOhDH4q1a9fG3r17Y/PmzYW5k+YPjz/+eIwfP750e9Kk4Y477ijFBgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAIO8Czio4q5D3/wasnwABAgQIECBAgAABAkNFoK73tc9QeVnvSYAAAQIECBAgQIAAAQIECORToLW1NZImAsXPkiVLYvr06cWw5u+xY8fGtGnTqtZXPiMpam5ujqeeeiqmTJlS9Z6k0cDcuXNj5cqVpetnnXVWobHCyJEjS7nywYMPPhgLFiwopZJmCE888UQkzQ36+zz88MPxmc98JnU5aXpw3XXXpXLFIGnKMHny5EKTh2LuggsuiF/+8pdx7rnnFlP9fnd1dcWBAwdi0qRJfWpWrVoVc+bM6ZO/++6747777uuTLyb++te/xrvf/e44ePBgMRV/+tOfTmgfSxMYECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBUyRQeY7AWYUo/IEGZxVO0S+caQkQIECAAAECBAgQIEBgyAho0DBktsqLEiBAgAABAgQIECBAgACB/ApUHno4UYlrr7022traqt5e7Rk//elP4/rrr69aX0y++uqrcf7556eaISxdurRPQ4WkPmnoMHHixNi5c2fx9kgOcNx1112luL/B7bffHt/97ndLl2fNmhVPP/10KS4fLFu2LD772c+WUmPGjIktW7bEuHHjSrkTHVRr0HAs1/LnLFq0KB544IFS6mtf+1okOR8CBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIDDYBKqdIziRdzzW/1Ov9gxnFfoqO6vQ10SGAAECBAgQIECAAAECBN44gfo37tGeTIAAAQIECBAgQIAAAQIECBAYvAKXXHLJcZszJG9/xhlnxH333ZdayCOPPJKKi8GvfvWrVHOGCRMmxJ133lm8fMzvxYsXR2NjY6nm97//fTz77LOluHzw0EMPlYfx9a9/fUCaM6QmLQu++tWvlkX9D+fOnZu6uGnTplQsIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECeRZwVqH23XdWoXYrlQQIECBAgAABAgQIECAwsAIaNAysp9kIECBAgAABAgQIECBAgACB00Tg5ptvrnkl119/fYwcObJUv2HDhnjllVdKcXGwevXq4rDwnTxj+PDhqVx/QUtLS1x33XWpy0899VQqToJdu3alGjeMGTMmPvnJT/apG6jE1KlT44ILLqhpuilTpqTWu3PnzpruU0SAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBPIg4KxCbbvsrEJtTqoIECBAgAABAgQIECBA4NQIaNBwalzNSoAAAQIECBAgQIAAAQIECJxCgSeffDJ6e3sz/7S1tdX8VrNnz665trGxMZK/YlH8HDlyJDZu3FgMS9/t7e2lcTK46qqrUvHxgg984AOpknXr1qXiJHj66adTueQZDQ0NqdxABu95z3tqnu5Nb3pTjB49ulS/f//+0tiAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgMZgFnFf63O84qDObfUu9GgAABAgQIECBAgAABAq+HgAYNr4eyZxAgQIAAAQIECBAgQIAAAQJDSmDYsGExefLkTO88ZcqUVP327dtTcRJ0dHSkctOmTUvFxwumT5+eKuns7EzFSbBt27ZULksDhdSNNQZjx46tsfJ/ZU1NTaX6f/3rX6WxAQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQyLOAswq1776zCrVbqSRAgAABAgQIECBAgACBgRfQoGHgTc1IgAABAgQIECBAgAABAgQIDHGBN7/5zTF8+PBMqxgzZkyqft++fak4CXp6ekq5+vr6aGlpKcW1DN7ylrekysrnK1546aWXisPCd9ZDCambawjOOOOMGqqql/T29la/IEuAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBHIm4KxC7RvurELtVioJECBAgAABAgQIECBAYOAFNGgYeFMzEiBAgAABAgQIECBAgAABAkNcoLGxMfMKmpqaUvccOHAgFSdBeW4gnvHyyy/3eUZlbuTIkX1qJAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIHBJTAQ5wjKzyUUV1eeG4hnVJ5LSJ5TmXNWoajvmwABAgQIECBAgAABAgRORwENGk7HXbUmAgQIECBAgAABAgQIECBA4KQEDh48mPn+V155JXVPtcMG5bmBeMaoUaNSz0yCylz5QYs+xRIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDAoBAYiHME5ecSiosqzw3EMyrPJSTPqcw5q1DU902AAAECBAgQIECAAAECp6OABg2n465aEwECBAgQIECAAAECBAgQIHBSAvv374///Oc/mebYu3dvqn706NGpOAmam5tLuaNHj0ZPT08prmWwZ8+eVFn5fMULLS0txWHhu7u7OxULCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgcEn4KzC4NsTb0SAAAECBAgQIECAAAECBKoJaNBQTUWOAAECBAgQIECAAAECBAgQyLXAkSNH4rnnnstksGXLllT9xIkTU3ESTJgwIZXbvHlzKj5eUFlfOV9y/7ve9a7UNBs2bEjFAgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQGDwCTirMPj2xBsRIECAAAECBAgQIECAAIFqAho0VFORI0CAAAECBAgQIECAAAECBHIvsHr16poNDh48GOWNEIYNGxYXX3xxn/svv/zyVO53v/tdKj5eUFlfOV9y/5VXXpmaJrnn0KFDqZyAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQGHwCzioMvj3xRgQIECBAgAABAgQIECBAoFJAg4ZKETEBAgQIECBAgAABAgQIECBA4DWBH/zgBzU7rFy5Mg4cOFCqT5ozNDU1leLi4P3vf39xWPj+4Q9/GIcPH07l+gt6enri8ccfT11+3/vel4qTYPz48TF16tRSfu/evfGjH/2oFBsQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECg1PAWYXBuS/eigABAgQIECBAgAABAgQIlAto0FCuYUyAAAECBAgQIECAAAECBAgQ+D+B9evXR9J44XifV199Ne65555U2ac+9alUXAw++MEPxtvf/vZiGNu3b49vf/vbpfhYg7vvvjsOHjxYKrnyyitj8uTJpbh8cOedd5aHsXDhwvjHP/6RygkIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBwSXgrMLg2g9vQ4AAAQIECBAgQIAAAQIEqglo0FBNRY4AAQIECBAgQIAAAQIECBAg8JrAbbfdFs8880y/FkePHo2bbrqp0GihWDR27NiYN29eMUx9Dxs2LCqbJyxatCh++9vfpuoqg0ceeSS+853vpNJ33XVXKi4Pknd65zvfWUrt3bs3rr766ti1a1cpd6xBV1dXPP/888cqcY0AAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBA4BQLOKpwCVFMSIECAAAECBAgQIECAAIEBFBg+gHOZigABAgQIECBAgAABAgQIECDwughs3LgxDh8+fELPShooTJs27Zj3jh49OpLmCz09PTFz5sxYvHhx3HLLLXHmmWeW7lu7dm0sWLAg/vCHP5RyyeChhx6KUaNGpXLlQdKg4bHHHov29vZC+tChQ3HNNdfEF7/4xbjjjjti3LhxpfIXXnghHnjggXj44Yejt7e3lJ87d25ce+21pbhyMGLEiFixYkVcccUVkcyffP7yl7/ElClTCs+58cYbY8KECanb9u3bF6tXry7ct3Llyli6dGlMmjQpVSMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJ5FXBWwVmFvP7uWzcBAgQIECBAgAABAgQIpAXqXjvc//+n+9PXRAQIECBAgAABAgQIECBAgACBQSHQ2toaHR0dA/IuSWODtra2PnOVPyNpXnD//ffHzTffXKpraGiId7zjHdHY2Bg7d+6M7u7u0rXi4NZbb43ly5cXw36/k8YLc+bMic7OzlRNfX19TJw4MVpaWuLFF1+MHTt2pK4nwYwZM+I3v/lNNDc397lWmUgaQSRrKDZpKL9+zjnnxFlnnRV1dXWFZyVrKv9nou9973sxf/788lsK41WrVhXevXjhnnvuiXvvvbcYHve70rnaGo87iQICBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIHCKBcr///bJPspZhf8JOqtwsr9J7idAgAABAgQIECBAgACBwSAwfDC8hHcgQIAAAQIECBAgQIAAAQIECAw2gZtuuil2794dCxcuLDQuSJocPPvss/2+ZtKcYdmyZf1eL7+QNHpYs2ZNJAcwNm3aVLp09OjR2LZtW+GnlCwbXHPNNbFixYoYNWpUWbb/4Sc+8YkYP3583HDDDbFr165UYVdXVyQ/PgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMDgEHBWYXDsg7cgQIAAAQIECBAgQIAAAQLHEqg/1kXXCBAgQIAAAQIECBAgQIAAAQJ5FliwYEE8+eSTcemll/bLMHXq1PjZz34Wy5cvj/r62v+p5W1ve1usX7++cN+FF17Y7/x1dXVx2WWXxRNPPBE///nPa27OUJxw1qxZ8be//S0efPDBmDRpUjFd9XvEiBFx9dVXx6OPPlpo6lC1SJIAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBA4ZQLOKpwyWhMTIECAAAECBAgQIECAAIEBEajrfe0zIDOZhAABAgQIECBAgAABAgQIECAwhAVaW1ujo6OjsIIJEybEjh07UqvZunVrrFu3Lrq6uiJpmjBu3LiYMWNGHKu5QmqC4wSdnZ3R3t4eu3fvjn/+85/R3NxceMbMmTNj7Nixx7m79svJGpPGEN3d3dHT0xMNDQ3R0tJSaN5w0UUXRVNTU+2TqSRAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgROWMBZhUnhrMIJ//q4kQABAgQIECBAgAABAgTeIAENGt4geI8lQIAAAQIECBAgQIAAAQIEBpfA8Q49DK639TYECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDAUBdwVmGo76D3J0CAAAECBAgQIECAAIE8CtTncdHWTIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIIqBBQxYttQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEAuBTRoyOW2WzQBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCQRUCDhixaagkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIFcCmjQkMttt2gCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEAgi4AGDVm01BIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQK5FNCgIZfbbtEECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAFoG63tc+WW5QS4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIm0B93hZsvQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBrAIaNGQVU0+AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjkTkCDhtxtuQUTIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECWQU0aMgqpp4AAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDInYAGDbnbcgsmQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEsgpo0JBVTD0BAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCQOwENGnK35RZMgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIZBXQoCGrmHoCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEAgdwIaNORuyy2YAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQyCqgQUNWMfUECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBA7gQ0aMjdllswAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkFVAg4asYuoJECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACB3Alo0JC7LbdgAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAIKuABg1ZxdQTIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECuRPQoCF3W27BBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQFYBDRqyiqknQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEciegQUPuttyCCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgawCGjRkFVNPgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI5E5Ag4bcbbkFEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAlkFNGjIKqaeAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQyJ2ABg2523ILJkCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBLIKaNCQVUw9AQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkDsBDRpyt+UWTIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECGQV0KAhq5h6AgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAIHcCGjTkbsstmAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEMgqoEFDVjH1BAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQO4ENGjI3ZZbMAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIJBVQIOGrGLqCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgdwJaNCQuy23YAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCCrgAYNWcXUEyBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABArkT0KAhd1tuwQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBWAQ0asoqpJ0CAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBHInoEFD7rbcggkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGsAho0ZBVTT4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECOROQIOG3G25BRMgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJZBTRoyCqmngABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEMidgAYNudtyCyZAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSyCmjQkFVMPQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIJA7AQ0acrflFkyAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAhkFdCgIauYegIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCB3Aho05G7LLZgAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDIKqBBQ1Yx9QQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEDuBDRoyN2WWzABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCQVUCDhqxi6gkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIHcCfwXc17kRLj1SqgAAAAASUVORK5CYII=\n","text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.google.colaboratory.intrinsic+json":{"summary":"{\n \"name\": \"report_df\",\n \"rows\": 25,\n \"fields\": [\n {\n \"column\": \"precision\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.1924371714826667,\n \"min\": 0.41866394696583376,\n \"max\": 0.9930997876857749,\n \"num_unique_values\": 25,\n \"samples\": [\n 0.9799260433174855,\n 0.5261102977061981,\n 0.9915029208709506\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"recall\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.18704710251697718,\n \"min\": 0.405982905982906,\n \"max\": 0.999465811965812,\n \"num_unique_values\": 23,\n \"samples\": [\n 0.5758547008547008,\n 0.7825854700854701,\n 0.9978621058257616\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"f1-score\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.1892339713779111,\n \"min\": 0.4283850769632142,\n \"max\": 0.996272630457934,\n \"num_unique_values\": 25,\n \"samples\": [\n 0.9856535600425079,\n 0.5498597296608008,\n 0.9946723494938732\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"support\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 10911.801903941645,\n \"min\": 0.7777831746648534,\n \"max\": 41176.0,\n \"num_unique_values\": 4,\n \"samples\": [\n 1872.0,\n 41176.0,\n 1871.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}","type":"dataframe","variable_name":"report_df"},"text/html":["\n","
\n","
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
precisionrecallf1-scoresupport
00.9915030.9978620.9946721871.000000
10.9930850.9978620.9954681871.000000
20.7910530.7462610.7680041872.000000
30.9543520.9604700.9574011872.000000
40.6544890.6698720.6620911872.000000
50.4967350.5285940.5121701871.000000
60.8349850.7649570.7984391872.000000
70.4797980.4059830.4398151872.000000
80.9799260.9914480.9856541871.000000
90.9593020.9695510.9644001872.000000
100.8502610.7825850.8150211872.000000
110.5773620.5943350.5857261871.000000
120.4186640.4385680.4283851872.000000
130.7258550.6467130.6840021871.000000
140.4581280.5464740.4984171872.000000
150.7335730.7637630.7483631871.000000
160.5261100.5758550.5498601872.000000
170.9694320.9487180.9589631872.000000
180.9931000.9994660.9962731872.000000
190.9625920.9759620.9692311872.000000
200.9117310.8556920.8828231871.000000
210.9387860.9503210.9445181872.000000
accuracy0.7777830.7777830.7777830.777783
macro avg0.7818560.7777870.77907741176.000000
weighted avg0.7818520.7777830.77907341176.000000
\n","
\n","
\n","\n","
\n"," \n","\n"," \n","\n"," \n","
\n","\n","\n","
\n"," \n","\n","\n","\n"," \n","
\n","\n","
\n"," \n"," \n"," \n","
\n","\n","
\n","
\n"],"text/plain":[" precision recall f1-score support\n","0 0.991503 0.997862 0.994672 1871.000000\n","1 0.993085 0.997862 0.995468 1871.000000\n","2 0.791053 0.746261 0.768004 1872.000000\n","3 0.954352 0.960470 0.957401 1872.000000\n","4 0.654489 0.669872 0.662091 1872.000000\n","5 0.496735 0.528594 0.512170 1871.000000\n","6 0.834985 0.764957 0.798439 1872.000000\n","7 0.479798 0.405983 0.439815 1872.000000\n","8 0.979926 0.991448 0.985654 1871.000000\n","9 0.959302 0.969551 0.964400 1872.000000\n","10 0.850261 0.782585 0.815021 1872.000000\n","11 0.577362 0.594335 0.585726 1871.000000\n","12 0.418664 0.438568 0.428385 1872.000000\n","13 0.725855 0.646713 0.684002 1871.000000\n","14 0.458128 0.546474 0.498417 1872.000000\n","15 0.733573 0.763763 0.748363 1871.000000\n","16 0.526110 0.575855 0.549860 1872.000000\n","17 0.969432 0.948718 0.958963 1872.000000\n","18 0.993100 0.999466 0.996273 1872.000000\n","19 0.962592 0.975962 0.969231 1872.000000\n","20 0.911731 0.855692 0.882823 1871.000000\n","21 0.938786 0.950321 0.944518 1872.000000\n","accuracy 0.777783 0.777783 0.777783 0.777783\n","macro avg 0.781856 0.777787 0.779077 41176.000000\n","weighted avg 0.781852 0.777783 0.779073 41176.000000"]},"metadata":{},"output_type":"display_data"}],"source":["### seperated model for main catagory only\n","\n","# ✅ استيراد المكتبات\n","import os\n","import pickle\n","import numpy as np\n","import matplotlib.pyplot as plt\n","import seaborn as sns\n","import pandas as pd\n","from sklearn.utils import shuffle, class_weight\n","from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, precision_score, recall_score, f1_score\n","from tensorflow.keras.models import Model, load_model\n","from tensorflow.keras.layers import Input, Dense, Dropout, Conv1D, MaxPooling1D, Bidirectional, LSTM, Reshape, Attention, Multiply\n","from tensorflow.keras.optimizers import Adam\n","from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau\n","\n","# ✅ المسارات\n","model_path = \"/content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/cnn+bilstm_main_with_attention.h5\"\n","conf_matrix_path = \"/content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/pic/cnn+bilstm_conf_matrix_main_attention.png\"\n","acc_loss_plot_path = \"/content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/pic/cnn+bilstm_acc_loss_main_attention.png\"\n","\n","# ✅ تحميل البيانات\n","with open(\"/content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/train_test_data_main-deep-new.pkl\", \"rb\") as f:\n"," X_train, X_test, y_train, y_test = pickle.load(f)\n","\n","X_train, y_train = shuffle(X_train, y_train, random_state=42)\n","\n","# ✅ تحميل أو تدريب النموذج\n","if os.path.exists(model_path):\n"," print(\"✅ تم العثور على النموذج. سيتم استخدامه بدون تدريب.\")\n"," model = load_model(model_path)\n"," history = None\n","else:\n"," print(\"🚀 لم يتم العثور على النموذج. جاري التدريب الآن...\")\n","\n"," weights = class_weight.compute_class_weight(class_weight='balanced', classes=np.unique(y_train), y=y_train)\n"," class_weight_main = {i: w for i, w in enumerate(weights)}\n","\n"," input_layer = Input(shape=(894,), name=\"input_layer\")\n"," x = Reshape((894, 1))(input_layer)\n"," x = Conv1D(filters=128, kernel_size=3, activation=\"relu\")(x)\n"," x = MaxPooling1D(pool_size=2)(x)\n"," x = Bidirectional(LSTM(64, return_sequences=True))(x)\n"," att = Attention()([x, x])\n"," x = Multiply()([x, att])\n"," x = LSTM(64)(x)\n"," x = Dropout(0.3)(x)\n"," output = Dense(22, activation=\"softmax\", name=\"main_output\")(x)\n","\n"," model = Model(inputs=input_layer, outputs=output)\n"," model.compile(optimizer=Adam(learning_rate=0.001), loss=\"sparse_categorical_crossentropy\", metrics=[\"accuracy\"])\n","\n"," model.summary()\n","\n"," history = model.fit(\n"," X_train, y_train,\n"," validation_data=(X_test, y_test),\n"," epochs=30,\n"," batch_size=64,\n"," class_weight=class_weight_main,\n"," callbacks=[\n"," EarlyStopping(patience=5, restore_best_weights=True),\n"," ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=2, min_lr=1e-6, verbose=1)\n"," ]\n"," )\n","\n"," model.save(model_path)\n"," print(\"✅ تم حفظ النموذج.\")\n","\n","# ✅ التنبؤ والتقييم\n","preds = model.predict(X_test)\n","preds = np.argmax(preds, axis=1)\n","\n","report = classification_report(y_test, preds, output_dict=True, zero_division=0)\n","conf_matrix = confusion_matrix(y_test, preds)\n","accuracy = accuracy_score(y_test, preds)\n","precision = precision_score(y_test, preds, average='macro', zero_division=0)\n","recall = recall_score(y_test, preds, average='macro', zero_division=0)\n","f1 = f1_score(y_test, preds, average='macro', zero_division=0)\n","\n","print(f\"\\n🔄 Summary:\")\n","print(f\"✅ Accuracy: {accuracy:.4f}\")\n","print(f\"✅ Precision: {precision:.4f}\")\n","print(f\"✅ Recall: {recall:.4f}\")\n","print(f\"✅ F1-Score: {f1:.4f}\")\n","\n","# ✅ Confusion Matrix\n","plt.figure(figsize=(18, 14))\n","sns.heatmap(conf_matrix, annot=False, cmap=\"Blues\", fmt='d')\n","plt.title(\"Confusion Matrix - Main Category with Attention\")\n","plt.xlabel(\"Predicted\")\n","plt.ylabel(\"Actual\")\n","plt.tight_layout()\n","plt.savefig(conf_matrix_path, dpi=300)\n","plt.show()\n","\n","# ✅ Accuracy & Loss\n","if history:\n"," plt.figure(figsize=(14, 5))\n"," plt.subplot(1, 2, 1)\n"," plt.plot(history.history['accuracy'], label='Train Accuracy')\n"," plt.plot(history.history['val_accuracy'], label='Val Accuracy', linestyle='--')\n"," plt.title(\"Accuracy\")\n"," plt.xlabel(\"Epoch\")\n"," plt.ylabel(\"Accuracy\")\n"," plt.legend()\n","\n"," plt.subplot(1, 2, 2)\n"," plt.plot(history.history['loss'], label='Train Loss')\n"," plt.plot(history.history['val_loss'], label='Val Loss', linestyle='--')\n"," plt.title(\"Loss\")\n"," plt.xlabel(\"Epoch\")\n"," plt.ylabel(\"Loss\")\n"," plt.legend()\n","\n"," plt.tight_layout()\n"," plt.savefig(acc_loss_plot_path, dpi=300)\n"," plt.show()\n"," # ✅ عرض رسم Accuracy & Loss إذا موجود\n","if os.path.exists(acc_loss_plot_path):\n"," from PIL import Image\n"," print(f\"✅ عرض رسم Accuracy & Loss من الملف: {acc_loss_plot_path}\")\n"," display(Image.open(acc_loss_plot_path))\n","\n","# ✅ عرض التقرير كنص\n","report_df = pd.DataFrame(report).transpose()\n","display(report_df)\n"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"executionInfo":{"elapsed":15432893,"status":"ok","timestamp":1745720529816,"user":{"displayName":"noor alqudah","userId":"09593972035402767777"},"user_tz":-180},"id":"Xt4NS4am1evP","outputId":"8b644207-aa4d-4407-d431-2203a1735040"},"outputs":[{"name":"stdout","output_type":"stream","text":["✅ تم تحميل بيانات التدريب والاختبار.\n","🚀 لم يتم العثور على النموذج. سيتم تدريبه الآن...\n"]},{"data":{"text/html":["
Model: \"functional_1\"\n","
\n"],"text/plain":["\u001b[1mModel: \"functional_1\"\u001b[0m\n"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n","┃ Layer (type)         Output Shape          Param #  Connected to      ┃\n","┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n","│ input_layer         │ (None, 894)       │          0 │ -                 │\n","│ (InputLayer)        │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ reshape_1 (Reshape) │ (None, 894, 1)    │          0 │ input_layer[0][0] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ conv1d_1 (Conv1D)   │ (None, 892, 128)  │        512 │ reshape_1[0][0]   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ max_pooling1d_1     │ (None, 446, 128)  │          0 │ conv1d_1[0][0]    │\n","│ (MaxPooling1D)      │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ bidirectional_1     │ (None, 446, 128)  │     98,816 │ max_pooling1d_1[ │\n","│ (Bidirectional)     │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ attention_1         │ (None, 446, 128)  │          0 │ bidirectional_1[ │\n","│ (Attention)         │                   │            │ bidirectional_1[ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ multiply_1          │ (None, 446, 128)  │          0 │ bidirectional_1[ │\n","│ (Multiply)          │                   │            │ attention_1[0][0] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_2 (Dropout) │ (None, 446, 128)  │          0 │ multiply_1[0][0]  │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ lstm_3 (LSTM)       │ (None, 64)        │     49,408 │ dropout_2[0][0]   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_3 (Dropout) │ (None, 64)        │          0 │ lstm_3[0][0]      │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ sub_output (Dense)  │ (None, 75)        │      4,875 │ dropout_3[0][0]   │\n","└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n","
\n"],"text/plain":["┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n","┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mConnected to \u001b[0m\u001b[1m \u001b[0m┃\n","┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n","│ input_layer │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m894\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ - │\n","│ (\u001b[38;5;33mInputLayer\u001b[0m) │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ reshape_1 (\u001b[38;5;33mReshape\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m894\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ input_layer[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ conv1d_1 (\u001b[38;5;33mConv1D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m892\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │ reshape_1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ max_pooling1d_1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m446\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ conv1d_1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","│ (\u001b[38;5;33mMaxPooling1D\u001b[0m) │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ bidirectional_1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m446\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m98,816\u001b[0m │ max_pooling1d_1[\u001b[38;5;34m…\u001b[0m │\n","│ (\u001b[38;5;33mBidirectional\u001b[0m) │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ attention_1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m446\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bidirectional_1[\u001b[38;5;34m…\u001b[0m │\n","│ (\u001b[38;5;33mAttention\u001b[0m) │ │ │ bidirectional_1[\u001b[38;5;34m…\u001b[0m │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ multiply_1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m446\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bidirectional_1[\u001b[38;5;34m…\u001b[0m │\n","│ (\u001b[38;5;33mMultiply\u001b[0m) │ │ │ attention_1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_2 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m446\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ multiply_1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ lstm_3 (\u001b[38;5;33mLSTM\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m49,408\u001b[0m │ dropout_2[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_3 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ lstm_3[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ sub_output (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m75\u001b[0m) │ \u001b[38;5;34m4,875\u001b[0m │ dropout_3[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["
 Total params: 153,611 (600.04 KB)\n","
\n"],"text/plain":["\u001b[1m Total params: \u001b[0m\u001b[38;5;34m153,611\u001b[0m (600.04 KB)\n"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["
 Trainable params: 153,611 (600.04 KB)\n","
\n"],"text/plain":["\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m153,611\u001b[0m (600.04 KB)\n"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["
 Non-trainable params: 0 (0.00 B)\n","
\n"],"text/plain":["\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["Epoch 1/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m443s\u001b[0m 65ms/step - accuracy: 0.0584 - loss: 4.0670 - val_accuracy: 0.2728 - val_loss: 2.9129 - learning_rate: 5.0000e-04\n","Epoch 2/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m438s\u001b[0m 65ms/step - accuracy: 0.2927 - loss: 2.8210 - val_accuracy: 0.4683 - val_loss: 2.0522 - learning_rate: 5.0000e-04\n","Epoch 3/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m439s\u001b[0m 65ms/step - accuracy: 0.4382 - loss: 2.1709 - val_accuracy: 0.5659 - val_loss: 1.6459 - learning_rate: 5.0000e-04\n","Epoch 4/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m439s\u001b[0m 65ms/step - accuracy: 0.5255 - loss: 1.8085 - val_accuracy: 0.6364 - val_loss: 1.3596 - learning_rate: 5.0000e-04\n","Epoch 5/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m438s\u001b[0m 65ms/step - accuracy: 0.5889 - loss: 1.5570 - val_accuracy: 0.6801 - val_loss: 1.1879 - learning_rate: 5.0000e-04\n","Epoch 6/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m439s\u001b[0m 65ms/step - accuracy: 0.6306 - loss: 1.3929 - val_accuracy: 0.7115 - val_loss: 1.0693 - learning_rate: 5.0000e-04\n","Epoch 7/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m438s\u001b[0m 65ms/step - accuracy: 0.6649 - loss: 1.2592 - val_accuracy: 0.7299 - val_loss: 0.9960 - learning_rate: 5.0000e-04\n","Epoch 8/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m438s\u001b[0m 65ms/step - accuracy: 0.6911 - loss: 1.1559 - val_accuracy: 0.7560 - val_loss: 0.8894 - learning_rate: 5.0000e-04\n","Epoch 9/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m438s\u001b[0m 65ms/step - accuracy: 0.7117 - loss: 1.0772 - val_accuracy: 0.7604 - val_loss: 0.8719 - learning_rate: 5.0000e-04\n","Epoch 10/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m439s\u001b[0m 65ms/step - accuracy: 0.7295 - loss: 1.0106 - val_accuracy: 0.7818 - val_loss: 0.7980 - learning_rate: 5.0000e-04\n","Epoch 11/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m439s\u001b[0m 65ms/step - accuracy: 0.7414 - loss: 0.9584 - val_accuracy: 0.7920 - val_loss: 0.7615 - learning_rate: 5.0000e-04\n","Epoch 12/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m439s\u001b[0m 65ms/step - accuracy: 0.7547 - loss: 0.9132 - val_accuracy: 0.7966 - val_loss: 0.7355 - learning_rate: 5.0000e-04\n","Epoch 13/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m438s\u001b[0m 65ms/step - accuracy: 0.7660 - loss: 0.8644 - val_accuracy: 0.8064 - val_loss: 0.7022 - learning_rate: 5.0000e-04\n","Epoch 14/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m439s\u001b[0m 65ms/step - accuracy: 0.7757 - loss: 0.8282 - val_accuracy: 0.8100 - val_loss: 0.6817 - learning_rate: 5.0000e-04\n","Epoch 15/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m439s\u001b[0m 65ms/step - accuracy: 0.7807 - loss: 0.8026 - val_accuracy: 0.8163 - val_loss: 0.6645 - learning_rate: 5.0000e-04\n","Epoch 16/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m438s\u001b[0m 65ms/step - accuracy: 0.7887 - loss: 0.7746 - val_accuracy: 0.8252 - val_loss: 0.6273 - learning_rate: 5.0000e-04\n","Epoch 17/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m439s\u001b[0m 65ms/step - accuracy: 0.7951 - loss: 0.7492 - val_accuracy: 0.8308 - val_loss: 0.6031 - learning_rate: 5.0000e-04\n","Epoch 18/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m438s\u001b[0m 65ms/step - accuracy: 0.8012 - loss: 0.7228 - val_accuracy: 0.8317 - val_loss: 0.5981 - learning_rate: 5.0000e-04\n","Epoch 19/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m438s\u001b[0m 65ms/step - accuracy: 0.8058 - loss: 0.7062 - val_accuracy: 0.8404 - val_loss: 0.5689 - learning_rate: 5.0000e-04\n","Epoch 20/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m438s\u001b[0m 65ms/step - accuracy: 0.8116 - loss: 0.6879 - val_accuracy: 0.8410 - val_loss: 0.5616 - learning_rate: 5.0000e-04\n","Epoch 21/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m438s\u001b[0m 65ms/step - accuracy: 0.8168 - loss: 0.6652 - val_accuracy: 0.8462 - val_loss: 0.5442 - learning_rate: 5.0000e-04\n","Epoch 22/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m438s\u001b[0m 65ms/step - accuracy: 0.8196 - loss: 0.6552 - val_accuracy: 0.8453 - val_loss: 0.5478 - learning_rate: 5.0000e-04\n","Epoch 23/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m439s\u001b[0m 65ms/step - accuracy: 0.8231 - loss: 0.6421 - val_accuracy: 0.8549 - val_loss: 0.5118 - learning_rate: 5.0000e-04\n","Epoch 24/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m439s\u001b[0m 65ms/step - accuracy: 0.8265 - loss: 0.6258 - val_accuracy: 0.8526 - val_loss: 0.5194 - learning_rate: 5.0000e-04\n","Epoch 25/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m439s\u001b[0m 65ms/step - accuracy: 0.8303 - loss: 0.6106 - val_accuracy: 0.8560 - val_loss: 0.5055 - learning_rate: 5.0000e-04\n","Epoch 26/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m438s\u001b[0m 65ms/step - accuracy: 0.8336 - loss: 0.5980 - val_accuracy: 0.8628 - val_loss: 0.4839 - learning_rate: 5.0000e-04\n","Epoch 27/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m438s\u001b[0m 65ms/step - accuracy: 0.8355 - loss: 0.5925 - val_accuracy: 0.8630 - val_loss: 0.4830 - learning_rate: 5.0000e-04\n","Epoch 28/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m439s\u001b[0m 65ms/step - accuracy: 0.8385 - loss: 0.5801 - val_accuracy: 0.8626 - val_loss: 0.4824 - learning_rate: 5.0000e-04\n","Epoch 29/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m438s\u001b[0m 65ms/step - accuracy: 0.8419 - loss: 0.5691 - val_accuracy: 0.8658 - val_loss: 0.4718 - learning_rate: 5.0000e-04\n","Epoch 30/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m438s\u001b[0m 65ms/step - accuracy: 0.8443 - loss: 0.5594 - val_accuracy: 0.8690 - val_loss: 0.4579 - learning_rate: 5.0000e-04\n","Epoch 31/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m438s\u001b[0m 65ms/step - accuracy: 0.8458 - loss: 0.5507 - val_accuracy: 0.8684 - val_loss: 0.4635 - learning_rate: 5.0000e-04\n","Epoch 32/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 59ms/step - accuracy: 0.8484 - loss: 0.5432\n","Epoch 32: ReduceLROnPlateau reducing learning rate to 0.0002500000118743628.\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m439s\u001b[0m 65ms/step - accuracy: 0.8484 - loss: 0.5432 - val_accuracy: 0.8691 - val_loss: 0.4587 - learning_rate: 5.0000e-04\n","Epoch 33/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m440s\u001b[0m 65ms/step - accuracy: 0.8679 - loss: 0.4702 - val_accuracy: 0.8864 - val_loss: 0.3952 - learning_rate: 2.5000e-04\n","Epoch 34/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m442s\u001b[0m 65ms/step - accuracy: 0.8708 - loss: 0.4549 - val_accuracy: 0.8887 - val_loss: 0.3858 - learning_rate: 2.5000e-04\n","Epoch 35/35\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m439s\u001b[0m 65ms/step - accuracy: 0.8720 - loss: 0.4500 - val_accuracy: 0.8899 - val_loss: 0.3839 - learning_rate: 2.5000e-04\n"]},{"name":"stderr","output_type":"stream","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"name":"stdout","output_type":"stream","text":["✅ تم حفظ النموذج.\n","\u001b[1m3390/3390\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m59s\u001b[0m 17ms/step\n","\n","📊 Sub Category Report:\n"," precision recall f1-score support\n","\n"," 0 0.99 1.00 1.00 1446\n"," 1 0.82 0.74 0.78 1447\n"," 2 0.99 1.00 0.99 1447\n"," 3 0.97 0.99 0.98 1446\n"," 4 0.99 0.99 0.99 1446\n"," 5 0.96 0.99 0.97 1446\n"," 6 1.00 1.00 1.00 1446\n"," 7 0.99 0.98 0.98 1446\n"," 8 0.98 1.00 0.99 1446\n"," 9 1.00 1.00 1.00 1446\n"," 10 0.98 1.00 0.99 1446\n"," 11 0.99 1.00 0.99 1447\n"," 12 0.98 0.93 0.96 1446\n"," 13 0.75 0.88 0.81 1446\n"," 14 0.99 0.97 0.98 1447\n"," 15 0.99 1.00 0.99 1447\n"," 16 0.95 0.98 0.96 1446\n"," 17 0.96 1.00 0.98 1446\n"," 18 0.96 0.99 0.98 1446\n"," 19 0.60 0.56 0.58 1446\n"," 20 0.54 0.67 0.60 1447\n"," 21 0.78 0.86 0.82 1447\n"," 22 0.99 1.00 0.99 1446\n"," 23 0.97 1.00 0.98 1447\n"," 24 0.99 1.00 0.99 1447\n"," 25 0.97 0.99 0.98 1446\n"," 26 0.97 1.00 0.98 1447\n"," 27 0.91 0.99 0.95 1447\n"," 28 0.99 1.00 0.99 1446\n"," 29 0.81 0.79 0.80 1447\n"," 30 0.99 1.00 0.99 1446\n"," 31 0.89 0.94 0.92 1446\n"," 32 0.92 0.91 0.91 1447\n"," 33 0.97 0.98 0.97 1446\n"," 34 1.00 1.00 1.00 1446\n"," 35 0.94 0.98 0.96 1446\n"," 36 0.25 0.07 0.11 1446\n"," 37 0.51 0.45 0.48 1447\n"," 38 0.81 0.75 0.78 1446\n"," 39 0.45 0.60 0.51 1446\n"," 40 0.97 0.99 0.98 1446\n"," 41 1.00 1.00 1.00 1447\n"," 42 0.33 0.21 0.25 1446\n"," 43 0.97 0.99 0.98 1447\n"," 44 0.89 0.91 0.90 1446\n"," 45 1.00 1.00 1.00 1446\n"," 46 0.99 0.99 0.99 1447\n"," 47 0.97 1.00 0.98 1446\n"," 48 0.97 0.99 0.98 1447\n"," 49 0.74 0.81 0.78 1446\n"," 50 0.92 0.98 0.95 1446\n"," 51 0.57 0.57 0.57 1447\n"," 52 0.31 0.22 0.26 1447\n"," 53 1.00 1.00 1.00 1446\n"," 54 0.99 0.99 0.99 1446\n"," 55 0.80 0.72 0.76 1447\n"," 56 1.00 1.00 1.00 1446\n"," 57 0.99 1.00 0.99 1447\n"," 58 0.94 0.96 0.95 1446\n"," 59 0.36 0.29 0.32 1447\n"," 60 1.00 1.00 1.00 1447\n"," 61 0.97 0.97 0.97 1446\n"," 62 1.00 1.00 1.00 1446\n"," 63 1.00 1.00 1.00 1446\n"," 64 1.00 1.00 1.00 1446\n"," 65 0.99 1.00 1.00 1447\n"," 66 0.87 0.95 0.91 1446\n"," 67 0.98 0.98 0.98 1447\n"," 68 1.00 1.00 1.00 1447\n"," 69 0.95 0.96 0.95 1446\n"," 70 0.78 0.84 0.81 1447\n"," 71 1.00 1.00 1.00 1447\n"," 72 0.98 1.00 0.99 1446\n"," 73 0.93 0.90 0.92 1447\n"," 74 0.44 0.57 0.50 1446\n","\n"," accuracy 0.89 108480\n"," macro avg 0.88 0.89 0.88 108480\n","weighted avg 0.88 0.89 0.88 108480\n","\n","\n","🔄 Summary:\n","✅ Accuracy: 0.8899\n","✅ Precision: 0.8813\n","✅ Recall: 0.8899\n","✅ F1-Score: 0.8839\n","✅ تم حفظ Confusion Matrix: /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/cnn+bilstm_conf_matrix_sub.png\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAACIUAAAfGCAYAAACDcpw1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XuYlWW5P/B7wcwsBpFBBDmYgqmp2/YOzTBTjpoChVpiaobH0tyZtUlyT2VipkstQc1OukM0D5nmocQDshXBEx4HN5bs8ECleUpgPMBiBtbvDzbzYzkjorHmfeedz+e61oXzrmc93/t515oB9PZ5cqVSqRQAAAAAAAAAAGRKl6QLAAAAAAAAAABg09MUAgAAAAAAAACQQZpCAAAAAAAAAAAySFMIAAAAAAAAAEAGaQoBAAAAAAAAAMggTSEAAAAAAAAAABmkKQQAAAAAAAAAIIM0hQAAAAAAAAAAZJCmEAAAAAAAAACADNIUAgAA0M4aGxvjG9/4Rmy33XZRXV0duVwuGhoaKpo5ePDgGDx4cEUzsmzKlCmRy+Vizpw5SZfSbmbMmBG5XC5mzJiRdCkAAAAAfECaQgAAgMx77LHH4vjjj48dd9wxNttss6itrY3tt98+Jk6cGHfddVe71/Ptb387Lr744vjoRz8a//mf/xlnnHFG9O/fv93rSNLgwYMjl8tFLpeLhQsXtjlm9erVsfXWW7eMe/755z9wXhYbHEqlUlx11VUxevTo2HLLLaOmpib69esXu+22W/z7v/973HvvvUmX2Mrbb78dF110UYwaNSr69u0b1dXV0bt379hnn33i3HPPjVdfffUDzz1nzpzI5XIxZcqUTVcwAAAAQAdXlXQBAAAAlbJmzZo49dRTY9q0aVFVVRWjR4+OAw88MKqrq+PZZ5+NmTNnxlVXXRU/+MEP4vTTT2+3um699db4yEc+En/4wx/aLfO///u/2y1rY3Xpsvb/U5g+fXpMnTq11fO33357vPjii1FVVRXNzc3tXV6Zk08+OQ4//PDYdtttE61jfccdd1zMmDEjtthii/jsZz8bW2+9daxYsSIWLFgQv/rVr6KxsTFGjBiRdJktFixYEAcddFAsWbIkBg0aFAceeGD069cvGhsb46GHHor6+vooFArx4osvxmabbZZ0uQAAAACZoCkEAADIrO9973sxbdq0GDJkSNxwww2x/fbblz2/YsWKuOSSS+If//hHu9b14osvxvDhw9s1851rT4Pq6uoYPnx4XHXVVXHeeedFdXV12fPTp0+Purq6+NjHPhZz585NqMq1+vTpE3369Em0hvXNmzcvZsyYEUOGDIl77703evbsWfb8smXL4o9//GNC1bX2t7/9Lfbff/947bXX4oILLohvfOMb0bVr17IxTzzxRJx88snR1NSUUJUAAAAA2eP4GAAAIJMWL14c559/fmy55ZZxxx13tNkUUVtbG5MnT44zzzyz7Pprr70W3/zmN2O77baLfD4fW221VXzhC19o85iTY445JnK5XDz33HNx8cUXx8477xz5fD4GDRoUZ555ZqxZs6bV2FKpFPfee2/LsSgjR46MiIgpU6ZELpeLOXPmtMp5t+NP7rnnnhg7dmwMHDgw8vl89OvXL4YNGxaXXnpp2bjBgwfH4MGDW8371ltvxRlnnBE777xzdOvWLXr37h2f+cxn4v777281dv36rrnmmhgyZEjU1tbGgAED4hvf+EasWLGi1Wvey3HHHRevvvpqq11TXn311bj11lvjiCOOiNra2lavW7VqVfzkJz+JAw44ILbZZpuW9+nzn/98PPHEE2VjjznmmDj22GMjIuLYY49tue+5XK5lzMiRIyOXy8XKlSvje9/7Xmy//fZRXV3dchRJW+/NV7/61cjlcnHuuee2qm/dc+edd977vicb48EHH4yIiKOPPrpVQ0hERK9eveJTn/pU2bV1a2zLus/mux3Rc8stt8TQoUOje/fu0bdv3zjuuOPi5Zdf3uh6v/vd78Yrr7wS3/nOd2LSpEmtGkIiInbbbbdWDS7Tp0+Pgw46KAYPHtzy+TzggAPinnvuKXvtlClTYtSoURERceaZZ5a9x+uvadWqVTF16tTYfffdY7PNNovNN988hg0bFr///e/brPv555+Pww47LHr37h09evSIESNGxNy5czf4vXr55ZfHnnvuGT169IgePXrEnnvu2eaxResfd/PAAw/E/vvvH7169YpcLhd//vOfo0uXLjFu3Lg263rjjTeiR48esfPOO7f5PAAAAMA6dgoBAAAyacaMGbF69eo48cQTo1+/fhscm8/nW/751Vdfjb322iueeeaZGDlyZBx++OHx3HPPxQ033BAzZ86MO++8M/bZZ59Wc0yePDnuvffe+OxnPxsHHHBA3HzzzTFlypRYtWpVnH322RERcfDBB8fgwYPjzDPPjEGDBsUxxxwTEdFms8bGmDlzZowfPz569eoVBx10UAwYMCBeffXVWLBgQfz617+OE044YYOvX7lyZYwePToefvjh2H333eOb3/xmvPzyy3HdddfFnXfeGddee20ceuihrV53ySWXxB133BEHHXRQjB49Ou644464+OKL47XXXourr776fa3hc5/7XGyxxRZx+eWXx+c///mW67/+9a+jqakpjjvuuDaP9nn99dfjm9/8ZgwbNizGjRsXW2yxRTz77LPx+9//Pm6//faYO3dufOITn4iItfd92bJlccstt8RBBx0UQ4YMedd6DjnkkFiwYEGMGTMmevXqFdttt927jp02bVrMnTs3vv/978e+++7bknfTTTfFL3/5yxg9enRMnjz5fd2PjbXllltGRMT//u//VmT+9f3ud7+LO++8MyZMmBD77bdfPPTQQ3H55ZfHvHnz4uGHH44ttthig69/++234ze/+U3U1tbGqaeeusGxVVXl/5ria1/7WnzsYx+L/fbbL/r27RsvvPBC3HzzzbHffvvFjTfeGAcddFBErG14ef755+OKK66IESNGtDRaRaxtkImIKBaLMWbMmJgzZ04MGTIkjj/++GhqaoqZM2fGQQcdFD/5yU/i5JNPbnndCy+8EJ/61Kfi73//e4wZMyZ22223WLRoUXz605+O0aNHt1n/KaecEj/5yU9i6623juOPP77l/h177LHxxBNPxEUXXdTqNQ888ECcc845MWrUqDjhhBPiL3/5S+y4444xatSouPPOO+Ovf/1rbLPNNmWvueaaa+Ktt96KL3/5yxu8nwAAAABRAgAAyKCRI0eWIqI0e/bs9/W6Y489thQRpfr6+rLrM2fOLEVEaYcddiitXr265frRRx9diojSdtttV3rxxRdbrr/66qulXr16lTbffPNSsVgsmysiSiNGjGiVfcYZZ5QionTPPfe0eu7yyy8vRUTp8ssvb7n2+c9/vhQRpYaGhlbjX3vttbKvBw0aVBo0aFDZtTPPPLMUEaUjjzyytGbNmpbrjz/+eKmmpqbUq1evUmNjY6v66urqSk8//XTL9bfffrv0kY98pNSlS5fSCy+80KqWtgwaNKiUz+dLpVKpdPLJJ5eqqqpKf//731ue33XXXUv/+q//WiqVSqUDDjigFBGl5557ruX5lStXlv72t7+1mnfhwoWlHj16lPbbb7+y623dv/WNGDGiFBGlIUOGlP7xj3+0ev7d3puGhoZSPp8vbb/99qU33nij9Ne//rXUu3fv0pZbbrnR9+KD+Otf/1rq2bNnKZfLlb74xS+Wrr/++tLzzz+/wdesW2Nb1n2O17/H6+5ZRJTuuOOOsvH/+Z//WYqI0sknn/yetc6ZM6cUEaV99tnnvRf2Ds8++2yray+++GJp4MCBpR133LHs+j333FOKiNIZZ5zR5lzf+c53ShFROv3008s+742NjaU99tijVFNTU/aefelLXypFROnss88um+dXv/pVy31Z//Nw7733liKitMsuu5SWLVvWcv31118vfeQjHylFRGnu3Lmt6o2I0vTp01vVe91115UiojRlypRWz62r95VXXmlzrQAAAADrOD4GAADIpJdeeikiIj70oQ9t9GtWrVoV1157bWy55Zbxve99r+y5cePGxac//elYvHhxm0ernH766TFgwICWr/v06RMHHXRQvPHGG7Fo0aIPuIqN09bxKut2ktiQK664Iqqrq+Pcc88tO1Zkt912i6OPPjqWLVsWN998c6vXfeMb34iddtqpLP+II46INWvWxGOPPfa+6z/uuOOiubk5rrjiioiImD9/fjz11FNx3HHHvetr8vl8bL311q2u77rrrjFq1KiYO3duNDU1ve9azjzzzOjdu/dGj//Yxz4W5513XjzzzDNx0kknxcSJE+P111+P6dOnx8CBA993/sb60Ic+FL/73e9im222iWuuuSYOPfTQGDx4cGy11VZx2GGHxd13373Jsvbbb7844IADyq5997vfjV69esWVV15ZdkRSWz7I9+I6be3UMmDAgDjkkEPiz3/+cyxZsmSj5lmzZk38/Oc/j+23377leJl1Nt988/j+978fq1atihtvvDEi1u4qcv3118dWW20V3/rWt8rmOvbYY8s+/+us+/xOmTIl6urqWq5vscUWccYZZ0REtHmMzO67795yvNH6Pve5z0W/fv3i8ssvL7vHTz75ZDz66KNx0EEHRd++fTdq/QAAAEDn5fgYAACA//P000/HypUrY9SoUdG9e/dWz48aNSruuuuuaGhoiGHDhpU99/GPf7zV+HX/EXzZsmUVqffwww+PG2+8MT75yU/GF7/4xdh3331j2LBh0adPn/d8bWNjYzz77LOxyy67tPkf60eNGhWXXXZZNDQ0xMSJE8ue29Rr3W233WLIkCFx+eWXx2mnnRbTp0+Pmpqa+NKXvrTB1zU0NMT5558f9913X7z00kutmkBee+21skadjTF06ND3Xf8pp5wSd955Z1x11VUREXHSSSfFgQceuFGvXbZsWVx44YWtrk+ZMuU9X7vffvvFM888E3PmzIm5c+fGY489Fvfdd1/89re/jd/+9rdRX18f55xzzvtZSpve+VmPiOjRo0cMGTIk5syZE88++2zssMMO/3ROW5599tkoFApx9913xwsvvBDFYrHs+RdffDEGDRr0nvMsWrQoli5dGgMHDowzzzyz1fOvvvpqRKz9GbBufLFYjD322KPseKmIiFwuF5/61KdaNXs98cQTERFlR9esM2rUqIhY+5l9p3XHDr1TdXV1HHvssXHuuefGrFmzYsyYMRERcdlll0VExFe+8pV3Wy4AAABAC00hAABAJvXv3z+efvrpeOGFF9r8v/rb0tjYGBER/fr1a/P5dQ0G68atr2fPnq2uVVWt/SvX6tWrNyr//Tr00EPj5ptvjqlTp8YvfvGL+OlPfxq5XC5GjRoVF1xwQQwZMuRdX5u2tR533HFxyimnxOzZs+M3v/lNjB8/foPNLQ888ECMHj06IiL233//2HHHHaNHjx6Ry+Xi5ptvjgULFrRqINgY73Y/NiSXy8XBBx8ct99+e0REfP3rX9/o1y5btqzNJoWNaQqJWHvf99tvv9hvv/0iIqK5uTlmzJgRJ510UhQKhZgwYULsvvvuG11PW97tnqy7vnz58g2+vn///hER8cILL7yv3MWLF8fQoUOjsbExRo0aFePHj4+ePXtGly5dYs6cOXHvvfdu9Hv8+uuvR0TEU089FU899dS7jnvrrbci4v9/7rfaaqs2x7V1TxobG6NLly5t7t7Rr1+/yOVybX4/begzd8IJJ8R5550X//Vf/xVjxoyJlStXxtVXXx3bbbddy3sOAAAAsCGaQgAAgEzae++9Y86cOfHf//3fLc0D72Vds8PLL7/c5vPrjsFoqyliU+jSZe0Jn83Nza2ee7f/8H7QQQe1HFNz//33x4033hi/+tWvYsyYMfH0009Hr1692nxd0mt9pyOPPDImT54cxxxzTDQ2Nsbxxx+/wfFnn312FIvFmDdvXuyzzz5lzz300EOxYMGCD1TH+seKbKznnnsuJk+eHL17946lS5fGl7/85Zg7d2507dr1PV87ePDgKJVKH6TUNlVVVcWXv/zlmDdvXlx55ZVxzz33tDSFrP/5WtfEs86GGjve7TOy7vr6R6W05ROf+ETU1NTEo48+Go2NjRv9mZo2bVosXbo0fv3rX7faNearX/1q3HvvvRs1T8T//xwfcsghccMNN2z0+FdeeaXN59u6Jz179ow1a9bEq6++2qqZ5JVXXolSqdTm2jf0mdtuu+1i//33j9///vfxyiuvxF133RVLly6Nb33rWx/oswoAAAB0Pl2SLgAAAKASjjnmmOjatWtceumlLUdDvJt1uw3svPPO0a1bt3jkkUfi7bffbjVuzpw5EREb3IHjn7HFFltERNs7Kqw7muLdbL755jFmzJi49NJL45hjjomXX3455s+f/67je/bsGR/+8Idj8eLFbeZVeq3v1Lt37zj44IPjhRdeiK233joOOOCADY5/5plnonfv3q0aQt5+++14/PHHW41f16CxqXdtaW5ujiOPPDLeeOONuO6662LSpEnxwAMPtLn7R3vq0aNHq2vv9vlas2bNBpto5s2b1+ram2++GQ0NDS2fow3p3r17HH744bFixYq44IILNji2ubk51qxZExFr3+OItY1P6yuVSnH//fe3eu2G3uNddtklevbsGY8++mirY4bastNOO0U+n4/HHnus1W4kpVIpHnzwwVav2W233SLi/3/vrO+f+X468cQTo6mpKa644or4r//6r+jatWsce+yx73seAAAAoHPSFAIAAGTSDjvsEN/+9rfjtddei7Fjx8Zzzz3XaszKlStj6tSpLUd11NTUxBFHHBGvvfZaFAqFsrF33HFH3HnnnbHDDjvE3nvvXZGaP/GJT0RExJVXXtnyH8YjIh588MG4+uqrW42fO3dum/8BfN3uBt26ddtg3tFHHx1NTU1RX19ftlvFk08+GTNmzIi6uro4+OCDP8hSPpBzzz03brrpprj55ptbdrV4N4MGDYqlS5eWHQWyevXqOPXUU9tsAurdu3dERPz1r3/dpDWfeeaZ8eCDD8a3vvWt2G+//eKcc86J3XffPc4555w2myk2lTvuuCNuueWWNneVWbx4cVx//fUREWVNM+s+XzNmzCgbP3Xq1Da/P9aZPXt23HnnnWXXzj777Fi2bFkcddRR7/lerRvft2/fOPvss+Piiy8u+3yv8+STT8bIkSNbjlgZNGhQRETcd999ZePOPffcWLhwYavXb+g9rqqqipNOOimWLFkSp556apuNIQsXLmz53snn8zFhwoR4+eWX48ILLywbd+WVV8bTTz/d6vVHH310RKz9TKx/TMzy5ctbmoTWjXk/xo8fHwMHDoxp06bFvffeG5/5zGdi4MCB73seAAAAoHNyfAwAAJBZP/zhD2PlypUxbdq02GmnnWL06NHx0Y9+NKqrq+O5556L2bNnxz/+8Y/44Q9/2PKa8847L+6999744Q9/GA888EDsueee8fzzz8f1118f3bt3j8svv3yj/iP4B/HJT34y9t5777j77rtjr732iuHDh8eSJUvilltuifHjx8dNN91UNv6UU06JF198MfbZZ58YPHhw5HK5uO++++Lhhx+OT37yk6120Xinb3/72zFz5sz49a9/HX/6059i3333jVdeeSWuu+66aG5ujssuuyw233zziqy1LYMHD47Bgwdv1Nivf/3rMWvWrNhnn33iC1/4QnTr1i3mzJkTL7zwQowcObLVbg177bVX1NbWxoUXXhhLly6Nvn37RkTE9773vQ9c79y5c1uaQM4+++yIWNtYdM0118THP/7x+NKXvhQLFix41yN8/hlPP/10/Md//Ef06dMnhg8fHttvv32USqVYvHhx3HbbbbFq1ao46aSTYs8992x5zbHHHhvnn39+TJkyJRoaGmL77bePRx99NBYuXBgjRox41+NYPvvZz8b48eNjwoQJMXjw4HjooYfinnvuie233z5+8IMfbFS9H/rQh2LWrFlx8MEHxze+8Y2YNm1a7LvvvtGvX79obGyMhx9+OB555JHo2bNnVFdXR8TaI2Iuv/zyOOSQQ+ILX/hCbLnllvHQQw/F448/Hp/5zGdi5syZZRk777xzDBw4MH7zm99EPp+PD33oQ5HL5eLrX/961NXVxZlnnhmPP/54XHzxxTFz5swYPnx4bLXVVvHCCy/E//zP/8SCBQviwQcfbDn6pVAoxOzZs+M///M/4957743ddtstFi1aFLfeemuMGTMm7rjjjrKfBcOHD4+vf/3r8ZOf/CQ++tGPxiGHHBKlUil+97vfxd/+9rc45ZRTYvjw4e/rfY5Y29By/PHHx1lnnRUREV/5ylfe9xwAAABA52WnEAAAILO6dOkSU6dOjUceeSQmTpwYzzzzTPzsZz+LadOmxfz58+OAAw6Iu+66K7773e+2vKZv374xf/78OOWUU+KZZ56JH//4x3HXXXfFwQcfHPPnz3/PRot/1i233BJHHXVULF68OH7605/GX//61/jDH/4QBx54YKux9fX1MWrUqHjyySfjl7/8ZfzqV7+KYrEY5513Xtx1110tx2m8m27dusXdd98dp59+ejQ2Nsa0adPipptuihEjRsScOXPi0EMPrdQy/2mf/exn44YbbogPf/jDcdVVV8U111wTO++8czz88MMtO0ysr3fv3nHDDTfERz7ykbjsssvi9NNPj9NPP/0D5y9dujS+9KUvRW1tbVx77bVRU1PT8txOO+0UF154YfzlL3+p2H/AP/LII+Oyyy6LkSNHxlNPPRW/+MUv4qKLLor58+fH/vvvHzfccEP87Gc/K3tNv3794p577ol99903Zs2aFZdddln06tUrHnrooQ024xxyyCFx/fXXx+LFi+PCCy+MJ598Mo455pi47777Wo6k2RhDhgyJP/7xj3HhhRfGoEGD4pZbbonzzz8/rrrqqujatWv88Ic/jGeeeSY222yziFh7HMusWbNi9913jxtvvDGmT58evXr1ivvvvz/22GOPVvN37do1brzxxvjkJz8Z1157bXz/+9+P008/PZYuXRoRa3f/uP322+OXv/xl9O/fP373u9/FhRdeGHPnzo0BAwbEz3/+8/jXf/3Xlvm22WabePDBB+PQQw+NBx54IC688MJ45ZVXYtasWbHDDjtExNpjmNZ38cUXx/Tp06N///5x6aWXxmWXXRYDBgyI6dOnx0UXXbTR9+qd1u0wsvXWW8fYsWM/8DwAAABA55Mrrb9HMAAAAAAbtM8++8SDDz4Yy5cvjx49elQ874YbbohDDz00Tj/99I3enQUAAAAgwk4hAAAAAG36+9//3uraVVddFffff3/st99+7dIQUiqV4oILLoiqqipHxwAAAADvW1XSBQAAAACk0Uc/+tHYbbfd4l/+5V+ia9eu0dDQEHPmzInNN988fvzjH1c0+3/+53/i1ltvjQceeCAeeuihOPHEE2ObbbapaCYAAACQPY6PAQAAAGjDd7/73fjDH/4Qf/nLX+Ktt96Kvn37xqhRo+L000+PnXfeuaLZM2bMiGOPPTbq6uriwAMPjJ/97GftsjMJAAAAkC2aQgAAAAAAAAAAMqhL0gUAAAAAAAAAALDpaQoBAAAAAAAAAMggTSEAAAAAAAAAABlUlXQBAAAAAAAAANDZ1e52ctIldFornrgk6RIqJtNNIZX8pln3oVjZXLGI6PZ/706lMio9v4zOl5GFNchIz/wy0pWRhTXISM/8MjpfRhbWICM988tIV0YW1iAjPfPL6HwZWViDjPTMLyNdGVlYg4x0ZWRhDTLSM38WMwA2xPExAAAAAAAAAAAZpCkEAAAAAAAAACCDNIUAAAAAAAAAAGSQphAAAAAAAAAAgAzSFAIAAAAAAAAAkEGaQgAAAAAAAAAAMqgq6QIAAAAAAAAAoNPL2dOBTa9DfKpOO+20GDZsWEycODGampqSLgcAAAAAAAAAIPVS3xSyYMGCeOGFF2LevHmx8847xw033JB0SQAAAAAAAAAAqZf6ppAHHngg9t9//4iIGDNmTNx///0JVwQAAAAAAAAAkH5VSRfwXpYuXRoDBgyIiIi6urp4/fXXW40pFotRLBbLruXz+XapDwAAAAAAAAAgjVK/U0ivXr2isbExIiKWL18evXv3bjWmUChEXV1d2aNQKLR3qQAAAAAAAAAAqZH6ppBPfepTMXv27IiIuPPOO2PvvfduNaa+vj6WL19e9qivr2/vUgEAAAAAAAAAUiP1x8cMGTIk+vXrF8OGDYttt902Tj311FZj8vm842IAAAAAAAAA6LhyuaQrIINS3xQSEfGjH/0o6RIAAAAAAAAAADqU1B8fAwAAAAAAAADA+6cpBAAAAAAAAAAggzSFAAAAAAAAAABkkKYQAAAAAAAAAIAM0hQCAAAAAAAAAJBBmkIAAAAAAAAAADKoKukCAAAAAAAAAKDTy9nTgU3PpwoAAAAAAAAAIINypVKplHQRAAAAAAAAANCZ1e7xH0mX0GmteHRa0iVUjJ1CAAAAAAAAAAAyqCrpAippZXPl5u72f3duh1Nvr1jG4h+PjYjKrWPdGtrjPsnoHBlZWEMWMxpXrqnI/D27re0rzMp9krFx87/dVLkNxrpX5yKife7TW6sqt47NatpvHX6ey+goGVlYg4z0zN/eGVn5ve/VNysT0rfH2oCsvN/t8WeEFU0Vi4ja6rW/Vupz256fWRkbn9Een6mK/z2jgt973f/vey8rP887ckYW1tDeGVn4/s7KeyEj+YwsrEFGeuZv74z2+LMOwIbYKQQAAAAAAAAAIIM0hQAAAAAAAAAAZFCmj48BAAAAAAAAgA4h50ggNj07hQAAAAAAAAAAZJCmEAAAAAAAAACADNIUAgAAAAAAAACQQalvClm+fHkMHTo0evToEQsXLky6HAAAAAAAAACADiH1TSHdu3ePmTNnxoQJE5IuBQAAAAAAAACgw0h9U0h1dXX07ds36TIAAAAAAAAAADqUqqQL2BSKxWIUi8Wya/l8PqJrPqGKAAAAAAAAAOB9yKV+Twc6oEx8qgqFQtTV1ZU9CoVC0mUBAAAAAAAAACQmEzuF1NfXx6RJk8qu5fP5KCVUDwAAAAAAAABA0jpEU8i4ceOioaEhFi1aFCeeeGIcc8wxZc/n8/m1x8W8w8rmdioQAAAAAAAAACBlOkRTyG233ZZ0CQAAAAAAAAAAHUqXpAsAAAAAAAAAAGDT0xQCAAAAAAAAAJBBmkIAAAAAAAAAADKoKukCAAAAAAAAAKDTy+WSroAMslMIAAAAAAAAAEAGaQoBAAAAAAAAAMggTSEAAAAAAAAAABmkKQQAAAAAAAAAIINypVKplHQRAAAAAAAAANCZ1e45OekSOq0V83+UdAkVY6cQAAAAAAAAAIAMqkq6gEpa2Vy5ubtVtV9G7W4nV2T+FU9cEhHZuU8yks/IwhpkpGd+GenKyMIaZKRnfhmdLyMLa5CRnvllpCsjC2uQkZ75ZXS+jCysQUZ65peRrowsrEFGujKysAYZ6Zk/ixlkSM6eDmx6PlUAAAAAAAAAABmkKQQAAAAAAAAAIIM0hQAAAAAAAAAAZJCmEAAAAAAAAACADNIUAgAAAAAAAACQQZpCAAAAAAAAAAA20ty5c2P8+PExcODAyOVycfPNN7/r2K9+9auRy+XiwgsvLLv++uuvx5FHHhk9e/aMXr16xfHHHx9vvvlm2Zgnn3wyhg0bFt26dYttttkmzj///Pdda+qbQh5++OHYa6+9Yvjw4XHEEUdEU1NT0iUBAAAAAAAAAJ3UW2+9FR/72Mfipz/96QbH3XTTTfHQQw/FwIEDWz135JFHxlNPPRV33XVX3HrrrTF37tw44YQTWp5vbGyM/fffPwYNGhSPPfZY/OhHP4opU6bEpZde+r5qrXpfoxOwzTbbxN133x21tbVRX18ft9xyS0yYMCHpsgAAAAAAAABg08nlkq6AjTR27NgYO3bsBse88MIL8fWvfz3uvPPO+MxnPlP23J/+9Ke444474pFHHok99tgjIiJ+8pOfxLhx4+LHP/5xDBw4MK6++upYtWpVTJ8+PWpqamLXXXeNhoaGmDp1alnzyHtJ/U4hAwYMiNra2oiIqKmpiS5dUl8yAAAAAAAAANBBFIvFaGxsLHsUi8UPPN+aNWti4sSJMXny5Nh1111bPf/ggw9Gr169WhpCIiL222+/6NKlS8yfP79lzPDhw6OmpqZlzAEHHBCLFi2KpUuXbnQtHabDYsmSJTFr1qwYP3580qUAAAAAAAAAABlRKBSirq6u7FEoFD7wfOedd15UVVXFKaec0ubzL730Umy11VZl16qqqqJ3797x0ksvtYzp169f2Zh1X68bszFSf3xMxNqzciZOnBgzZsyI6urqVs8Xi8VWXTr5fD6ia769SgQAAAAAAAAAOqD6+vqYNGlS2bV8/oP1Gzz22GNx0UUXxeOPPx65FBwJlPqdQpqbm+Pwww+PM844I3baaac2x2zqrh0AAAAAAAAAoHPI5/PRs2fPsscHbQqZN29evPLKK7HttttGVVVVVFVVxZIlS+Jb3/pWDB48OCIi+vfvH6+88krZ65qbm+P111+P/v37t4x5+eWXy8as+3rdmI2R+qaQa6+9NubPnx9nnXVWjBw5Mq677rpWY+rr62P58uVlj/r6+gSqBQAAAAAAAAA6q4kTJ8aTTz4ZDQ0NLY+BAwfG5MmT484774yIiL322iuWLVsWjz32WMvr7r777lizZk3sueeeLWPmzp0bTU1NLWPuuuuu2GmnnWKLLbbY6HpSf3zMxIkTY+LEiRsck8/n2+zSWdlcqaoAAAAAAAAAgM7ozTffjMWLF7d8/dxzz0VDQ0P07t07tt1229hyyy3LxldXV0f//v1bTkfZZZddYsyYMfGVr3wlfvGLX0RTU1OcfPLJcfjhh8fAgQMjIuKLX/xinHnmmXH88cfHaaedFgsXLoyLLroopk2b9r5qTX1TCAAAAAAAAABkXi71B33wfx599NEYNWpUy9eTJk2KiIijjz46ZsyYsVFzXH311XHyySfHvvvuG126dIlDDjkkLr744pbn6+rqYtasWfG1r30tPv7xj0efPn3i+9//fpxwwgnvq1ZNIQAAAAAAAAAAG2nkyJFRKpU2evzzzz/f6lrv3r3jmmuu2eDr/u3f/i3mzZv3fssro9UIAAAAAAAAACCDNIUAAAAAAAAAAGSQphAAAAAAAAAAgAzSFAIAAAAAAAAAkEGaQgAAAAAAAAAAMkhTCAAAAAAAAABABuVKpVIp6SIAAAAAAAAAoDOr3fu7SZfQaa24/+ykS6gYO4UAAAAAAAAAAGRQVdIFVNLK5srN3a2q42esm79291MqExARKx6/OCI69n2SkZ75ZaQrIwtrkJGe+WWkKyMLa5CRrowsrGH9jBVNlcuorV77a0e+V1l7v2UkO7+MdGVkYQ0y0pWRhTXISM/8MtKVkYU1yEhXRhbWICM982cxA2BD7BQCAAAAAAAAAJBBmkIAAAAAAAAAADJIUwgAAAAAAAAAQAZpCgEAAAAAAAAAyKCqpAsAAAAAAAAAgE4vZ08HNj2fKgAAAAAAAACADNIUAgAAAAAAAACQQak/Publl1+Oz33uc1FdXR1du3aNq6++OgYMGJB0WQAAAAAAAAAAqZb6nUL69OkT9913X9x7771x1FFHxa9+9aukSwIAAAAAAAAASL3U7xTStWvXln9+4403Ytddd02wGgAAAAAAAACAjiH1TSEREQ0NDXHiiSfGsmXLYtasWa2eLxaLUSwWy67l8/mIrvn2KhEAAAAAAAAAIFVSf3xMRMSQIUNi/vz5cdZZZ0WhUGj1fKFQiLq6urJHW+MAAAAAAAAAADqL1O8UsmrVqqipqYmIiLq6uujevXurMfX19TFp0qSya/l8PkrtUiEAAAAAAAAA/JNyuaQrIINS3xTS0NAQp556anTt2jW6desW06dPbzUmn8+vPS7mHVY2t0eFAAAAAAAAAADpk/qmkKFDh8bcuXOTLgMAAAAAAAAAoEPpknQBAAAAAAAAAABseppCAAAAAAAAAAAySFMIAAAAAAAAAEAGaQoBAAAAAAAAAMigqqQLAAAAAAAAAIBOL2dPBzY9nyoAAAAAAAAAgAzSFAIAAAAAAAAAkEGaQgAAAAAAAAAAMihXKpVKSRcBAAAAAAAAAJ1Z7fApSZfQaa2YOyXpEirGTiEAAAAAAAAAABlUlXQBlbSyuXJzd6vq+BntuYba3U+pWMaKxy+OiI79XmQlIwtrkJGe+WWkKyMLa5CRnvlldL6MLKxBRnrml5GujCysQUZ65pfR+TKysAYZ6ZlfRroysrAGGenKyMIaZKRn/ixmAGyIHxUAAAAAAAAAkLScgz7Y9HyqAAAAAAAAAAAySFMIAAAAAAAAAEAGaQoBAAAAAAAAAMggTSEAAAAAAAAAABmkKQQAAAAAAAAAIIM6RFPItddeG3379k26DAAAAAAAAACADiP1TSGrV6+O66+/PrbZZpukSwEAAAAAAAAA6DBS3xRy7bXXxqGHHhpduqS+VAAAAAAAAAD4YLrkPJJ6ZFiqOy1Wr14dv/3tb+Owww7b4LhisRiNjY1lj2Kx2E5VAgAAAAAAAACkT6qbQq666qr4whe+8J67hBQKhairqyt7FAqFdqoSAAAAAAAAACB9Ut0U8sc//jGuvPLKGDNmTPz5z3+OU045pc1x9fX1sXz58rJHfX19O1cLAAAAAAAAAJAeVUkXsCHnnXdeyz/vsccecfHFF7c5Lp/PRz6fb3V9ZXPFSgMAAAAAAAAASLVU7xSyvkcffTTpEgAAAAAAAAAAOowO0xQCAAAAAAAAAMDGS/XxMQAAAAAAAADQKeTs6cCm51MFAAAAAAAAAJBBmkIAAAAAAAAAADJIUwgAAAAAAAAAQAZpCgEAAAAAAAAAyCBNIQAAAAAAAAAAGaQpBAAAAAAAAAAgg3KlUqmUdBEAAAAAAAAA0JnVjj476RI6rRV3fzfpEiqmKukCAAAAAAAAAKDTy+WSroAMynRTyMrmys3drarjZ2RhDetn1O7xHxXLWPHotIjIzr3ymZLREeaXka6MLKxBRnrml9H5MrKwBhnpmV9GujKysAYZ6ZlfRufLyMIaZKRnfhnpysjCGmSkKyMLa5CRnvmzmAGwIV2SLgAAAAAAAAAAgE1PUwgAAAAAAAAAQAZpCgEAAAAAAAAAyCBNIQAAAAAAAAAAGaQpBAAAAAAAAAAgg6qSLgAAAAAAAAAAOr2cPR3Y9FL/qXr++eejb9++MXLkyBg5cmS8+uqrSZcEAAAAAAAAAJB6HWKnkBEjRsQNN9yQdBkAAAAAAAAAAB1G6ncKiYi4//77Y9iwYfGd73wnSqVS0uUAAAAAAAAAAKRe6ptCBgwYEIsXL465c+fGK6+8EjfeeGPSJQEAAAAAAAAApF7qm0Ly+Xxsttlmkcvl4vOf/3wsWLCg1ZhisRiNjY1lj2KxmEC1AAAAAAAAAADpkPqmkDfeeKPln+fNmxc77LBDqzGFQiHq6urKHoVCoT3LBAAAAAAAAABIldQ3hdx3333x8Y9/PIYNGxYvvPBCfPGLX2w1pr6+PpYvX172qK+vT6BaAAAAAAAAAIB0qEq6gPcyduzYGDt27AbH5PP5yOfzra6vbK5UVQAAAAAAAACwCeVySVdABqV+pxAAAAAAAAAAAN4/TSEAAAAAAAAAABmkKQQAAAAAAAAAIIM0hQAAAAAAAAAAZJCmEAAAAAAAAACADNIUAgAAAAAAAACQQVVJFwAAAAAAAAAAnV7Ong5sej5VAAAAAAAAAAAZpCkEAAAAAAAAACCDcqVSqZR0EQAAAAAAAADQmdXu/6OkS+i0VsyanHQJFWOnEAAAAAAAAACADKpKuoBKWtlcubm7VXX8jCysob0zanc7uWIZK564JCI69r3K2vstI9n5ZaQrIwtrkJGe+WV0vowsrEFGeuaXka6MLKxBRnrml9H5MrKwBhnpmV9GujKysAYZ6crIwhpkpGf+LGYAbIidQgAAAAAAAAAAMkj/GAAAAAAAAAAkLZdLugIyyE4hAAAAAAAAAAAZpCkEAAAAAAAAACCDNIUAAAAAAAAAAGSQphAAAAAAAAAAgAzqEE0hc+bMiX333TdGjRoVN910U9LlAAAAAAAAAACkXlXSBbyXFStWxAUXXBC333571NTUJF0OAAAAAAAAAECHkPqdQh588MGora2N8ePHx+c+97l46aWXki4JAAAAAAAAACD1Ur9TyMsvvxyLFy+Ohx56KGbPnh1TpkyJX/ziF2VjisViFIvFsmv5fD6ia749SwUAAAAAAACADyaX+j0d6IBS/6nq1atX7L333lFTUxP77rtvPPXUU63GFAqFqKurK3sUCoUEqgUAAAAAAAAASIfUN4V84hOfiD/96U9RKpWioaEhPvzhD7caU19fH8uXLy971NfXJ1AtAAAAAAAAAEA6pP74mD59+sTnPve5GDFiRORyuZg+fXqrMfl8fu1xMe+wsrk9KgQAAAAAAAAASJ/UN4VERHzta1+Lr33ta0mXAQAAAAAAAADQYaT++BgAAAAAAAAAAN4/TSEAAAAAAAAAABnUIY6PAQAAAAAAAIBMy+WSroAMslMIAAAAAAAAAEAGaQoBAAAAAAAAAMggTSEAAAAAAAAAABmkKQQAAAAAAAAAIIM0hQAAAAAAAAAAZFCuVCqVki4CAAAAAAAAADqz2rHTki6h01px+38kXULF2CkEAAAAAAAAACCDqpIuoJJWNldu7m7/d+feWlW5jVY2q8lFROXWsW4N7XGfZGx8Ru2ekyuWsWL+jyLCZ0pGx5hfRroysrAGGemZX0bny8jCGmSkZ34Z6crIwhpkpGd+GZ0vIwtrkJGe+WWkKyMLa5CRrowsrEFGeubPYgYZkrOnA5ueTxUAAAAAAAAAQAZpCgEAAAAAAAAAyCBNIQAAAAAAAAAAGaQpBAAAAAAAAAAggzSFAAAAAAAAAABkkKYQAAAAAAAAAIAMqkq6gPfy4IMPRn19fUREvPjii/GZz3wmpk2blnBVAAAAAAAAALAJ5XJJV0AGpb4pZK+99oo5c+ZERMQxxxwTBx98cKL1AAAAAAAAAAB0BB3m+JhVq1bFww8/HMOGDUu6FAAAAAAAAACA1OswTSGzZ8+OfffdN7p06TAlAwAAAAAAAAAkJvXHx6xz/fXXx7HHHtvmc8ViMYrFYtm1fD4f0TXfHqUBAAAAAAAAAKROh9h2o6mpKR555JHYZ5992ny+UChEXV1d2aNQKLRzlQAAAAAAAAAA6dEhdgqZPXt2jB49+l2Pjqmvr49JkyaVXcvn81Fqj+IAAAAAAAAAAFKoQzSFjB07NsaOHfuuz+fz+bXHxbzDyuZKVgUAAAAAAAAAkF4doikEAAAAAAAAADIt1/bJGfDP8KkCAAAAAAAAAMggTSEAAAAAAAAAABmkKQQAAAAAAAAAIIM0hQAAAAAAAAAAZJCmEAAAAAAAAACADNIUAgAAAAAAAACQQVVJFwAAAAAAAAAAnV7Ong5serlSqVRKuggAAAAAAAAA6Mxqx/8s6RI6rRV/+PekS6gYrUYAAAAAAAAAABmU6eNjVjZXbu5uVR0/IwtrkPHBMmp3O7ki86944pKIyM59kpHs/DLSlZGFNchIz/wyOl9GFtYgIz3zy0hXRhbWICM988vofBlZWIOM9MwvI10ZWViDjHRlZGENMtIzfxYzADbETiEAAAAAAAAAABmkKQQAAAAAAAAAIIM0hQAAAAAAAAAAZJCTpgAAAAAAAAAgablc0hWQQXYKAQAAAAAAAADIIE0hAAAAAAAAAAAZlPqmkDVr1sQxxxwTw4YNi3322SeefvrppEsCAAAAAAAAAEi91DeFNDQ0RLFYjHnz5kWhUIipU6cmXRIAAAAAAAAAQOqlvinkQx/6UJRKpSiVSrF06dLo06dP0iUBAAAAAAAAAKReVdIFvJc+ffpEdXV17LzzzrFy5cq4//77ky4JAAAAAAAAACD1Ur9TyKxZs6KqqioWLVoUv/vd7+Jb3/pWqzHFYjEaGxvLHsViMYFqAQAAAAAAAADSIfVNIaVSKbbccsuIWLtryPLly1uNKRQKUVdXV/YoFArtXSoAAAAAAAAAfDC5Lh5JPTIs9cfHfPrTn44ZM2bEiBEjolgsxtSpU1uNqa+vj0mTJpVdy+fzUWqvIgEAAAAAAAAAUib1TSFVVVVx3XXXbXBMPp+PfD7f6vrK5kpVBQAAAAAAAACQbtneBwUAAAAAAAAAoJPSFAIAAAAAAAAAkEGaQgAAAAAAAAAAMkhTCAAAAAAAAABABlUlXQAAAAAAAAAAdHq5XNIVkEF2CgEAAAAAAAAAyCBNIQAAAAAAAAAAGaQpBAAAAAAAAAAggzSFAAAAAAAAAABkUK5UKpWSLgIAAAAAAAAAOrPagy9NuoROa8XNJyRdQsXYKQQAAAAAAAAAIIOqki6gklY2V27ublUdPyMLa5CRrox189fudnJlAiJixROXRETHvk9ZycjCGmSkZ34Z6crIwhpkpCsjC2uQkZ75ZaQrIwtrkJGe+WV0vowsrEFGeuaXka6MLKxBRroysrAGGemZP4sZABviRwUAAAAAAAAAJC3noA82PZ8qAAAAAAAAAIAM0hQCAAAAAAAAAJBBmkIAAAAAAAAAADJIUwgAAAAAAAAAQAZpCgEAAAAAAAAAyKDUN4WsXr06vvSlL8WoUaPiuOOOi+bm5qRLAgAAAAAAAABIvdQ3hdx0002x3XbbxT333BM777xz3HjjjUmXBAAAAAAAAACbVi7nkdQjw1LfFPLMM8/EkCFDIiJi9913j7lz5yZbEAAAAAAAAABAB5D6ppB/+Zd/ibvvvjsiImbPnh1Lly5tNaZYLEZjY2PZo1gstnepAAAAAAAAAACpkfqmkM9+9rPRrVu3GD16dLz11lvRv3//VmMKhULU1dWVPQqFQgLVAgAAAAAAAACkQ1XSBbyXXC4XF1xwQURETJkyJUaPHt1qTH19fUyaNKnsWj6fj1K7VAgAAAAAAAAAkD6pbwp56aWX4ogjjoguXbrEvvvuG8OHD281Jp/PRz6fb3V9ZXN7VAgAAAAAAAAAkD6pbwrp379/3HPPPUmXAQAAAAAAAADQoXRJugAAAAAAAAAAADa91O8UAgAAAAAAAABZl8vlki6BDLJTCAAAAAAAAABABmkKAQAAAAAAAADIIE0hAAAAAAAAAAAZpCkEAAAAAAAAACCDNIUAAAAAAAAAAGSQphAAAAAAAAAAgAzKlUqlUtJFAAAAAAAAAEBnttmEy5MuodN664Zjky6hYuwUAgAAAAAAAACQQVVJF1BJK5srN3e3qo6fkYU1yEhXRnuuoXa3kyuWseKJSyKiY78X7ZGRhTXISM/8MtKVkYU1yEhXRhbWICM988tIV0YW1iAjPfPL6HwZWViDjPTMLyNdGVlYg4x0ZWRhDTLSM38WMwA2xE4hAAAAAAAAAAAZpCkEAAAAAAAAACCDNIUAAAAAAAAAAGSQphAAAAAAAAAAgAyqSroAAAAAAAAAAOj0ckkXQBbZKQQAAAAAAAAAIINS1RSyfPnyGDp0aPTo0SMWLlwYERHXX399fOpTn4p99903/va3vyVcIQAAAAAAAABAx5CqppDu3bvHzJkzY8KECRER0dzcHFOnTo05c+bED37wgzjrrLMSrhAAAAAAAAAAoGNIVVNIdXV19O3bt+XrP//5z7HLLrtETU1N7L333vHkk08mWB0AAAAAAAAAQMeRqqaQd1q6dGn07Nmz5evVq1cnWA0AAAAAAAAAQMdRlXQBG9KrV69obGxs+bpr165tjisWi1EsFsuu5fP5iK75itYHAAAAAAAAAJBWqd4pZMcdd4w//elPsWrVqnjggQfi3/7t39ocVygUoq6uruxRKBTauVoAAAAAAAAAgPRI3U4h48aNi4aGhli0aFGceOKJ8c1vfjNGjhwZ3bp1iyuuuKLN19TX18ekSZPKruXz+Si1R8EAAAAAAAAA8E/K5XJJl0AGpa4p5Lbbbmt17bDDDtvga/L5/NrjYt5hZfMmKwsAAAAAAAAAoENJ9fExAAAAAAAAAAB8MJpCAAAAAAAAAAAySFMIAAAAAAAAAEAGaQoBAAAAAAAAAMggTSEAAAAAAAAAABlUlXQBAAAAAAAAANDZ5XK5pEsgg+wUAgAAAAAAAACQQZpCAAAAAAAAAAAyKFcqlUpJFwEAAAAAAAAAndnmh12RdAmd1hvXHZ10CRVjpxAAAAAAAAAAgAyqSrqASlrZXLm5u1V1/IwsrEFGujKysIb1M2p3P6ViGSsevzgiOva9ytr7LSPZ+WWkKyMLa5CRrowsrEFGeuaXka6MLKxBRnrml9H5MtbNv6KpMvNHRNRWr/21I9+nrGRkYQ0y0jO/jM6XkYU1yEjP/FnMANgQO4UAAAAAAAAAAGSQphAAAAAAAAAAgAyyqRAAAAAAAAAAJCyXyyVdAhlkpxAAAAAAAAAAgAzSFAIAAAAAAAAAkEGaQgAAAAAAAAAAMkhTCAAAAAAAAABABqWqKWT58uUxdOjQ6NGjRyxcuDAiIo466qjo27dvXHLJJQlXBwAAAAAAAADQcVQlXcD6unfvHjNnzozJkye3XDv33HNj9OjR8eabbyZYGQAAAAAAAABAx5KqppDq6uro27dv2bWBAwcmVA0AAAAAAAAAtI9cLpd0CWRQqppCPqhisRjFYrHsWj6fj+iaT6giAAAAAAAAAIBkdUm6gE2hUChEXV1d2aNQKCRdFgAAAAAAAABAYjKxU0h9fX1MmjSp7Fo+n49SQvUAAAAAAAAAACQtdU0h48aNi4aGhli0aFGceOKJsWjRovj9738fq1evjmeeeSamTZvW6jX5fH7tcTHvsLK5PSoGAAAAAAAAAEif1DWF3Hbbba2uOQoGAAAAAAAAAOD96ZJ0AQAAAAAAAAAAbHqaQgAAAAAAAAAAMih1x8cAAAAAAAAAQKeTS7oAsshOIQAAAAAAAAAAGaQpBAAAAAAAAAAggzSFAAAAAAAAAABkkKYQAAAAAAAAAIAM0hQCAAAAAAAAAJBBuVKpVEq6CAAAAAAAAADozOq++OukS+i0ll8zMekSKqYq6QIAAAAAAAAAoLPL5XJJl0AGZbopZGVz5ebuVtXxM7KwBhnpysjCGto7o3bfcyqWseK/vxMR3m8Zm3b+5SvWVCYgIupq155q15HvU1YysrAGGenKyMIaZKRn/vbOWNFUuYza6rW/duR75f3eeN5vGR05o1LfG1n4vpCRnvllpCsjC2uQka6MLKxBRnrmz2IGwIZ0SboAAAAAAAAAAAA2PU0hAAAAAAAAAAAZpCkEAAAAAAAAACCDNIUAAAAAAAAAAGSQphAAAAAAAAAAgAyqSroAAAAAAAAAAOjscrlc0iWQQanaKWT58uUxdOjQ6NGjRyxcuDDeeOONGD16dAwfPjxGjx4dS5YsSbpEAAAAAAAAAIAOIVVNId27d4+ZM2fGhAkTIiKiuro6rrrqqpg7d26cdtpp8aMf/SjhCgEAAAAAAAAAOoZUNYVUV1dH3759W77u1q1bDBw4MCIiampqokuXVJULAAAAAAAAAJBaVUkXsDFWrVoVU6ZMif/6r/9q8/lisRjFYrHsWj6fj+iab4/yAAAAAAAAAABSp0NsvXHCCSfEv//7v8eOO+7Y5vOFQiHq6urKHoVCoZ2rBAAAAAAAAABIj9TvFHLmmWfGhz/84TjssMPedUx9fX1MmjSp7Fo+n49SpYsDAAAAAAAAAEip1DWFjBs3LhoaGmLRokUxbty4OOuss2KfffaJu+++O/baa682dwDJ5/Nrj4t5h5XN7VExAAAAAAAAAED6pK4p5Lbbbiv7+vTTT0+oEgAAAAAAAABoH7lcLukSyKAuSRcAAAAAAAAAANBRzJ07N8aPHx8DBw6MXC4XN998c8tzTU1Ncdppp8W//uu/xmabbRYDBw6Mo446Kl588cWyOV5//fU48sgjo2fPntGrV684/vjj48033ywb8+STT8awYcOiW7dusc0228T555//vmvVFAIAAAAAAAAAsJHeeuut+NjHPhY//elPWz339ttvx+OPPx6nn356PP7443HjjTfGokWL4sADDywbd+SRR8ZTTz0Vd911V9x6660xd+7cOOGEE1qeb2xsjP333z8GDRoUjz32WPzoRz+KKVOmxKWXXvq+ak3d8TEAAAAAAAAAAGk1duzYGDt2bJvP1dXVxV133VV27ZJLLomhQ4fGX/7yl9h2223jT3/6U9xxxx3xyCOPxB577BERET/5yU9i3Lhx8eMf/zgGDhwYV199daxatSqmT58eNTU1seuuu0ZDQ0NMnTq1rHnkvdgpBAAAAAAAAADotIrFYjQ2NpY9isXiJpt/+fLlkcvlolevXhER8eCDD0avXr1aGkIiIvbbb7/o0qVLzJ8/v2XM8OHDo6ampmXMAQccEIsWLYqlS5dudLamEAAAAAAAAACg0yoUClFXV1f2KBQKm2TulStXxmmnnRZHHHFE9OzZMyIiXnrppdhqq63KxlVVVUXv3r3jpZdeahnTr1+/sjHrvl43ZmM4PgYAAAAAAAAA6LTq6+tj0qRJZdfy+fw/PW9TU1N84QtfiFKpFD//+c//6fk+CE0hAAAAAAAAAJCwXC6XdAmdVj6f3yRNIOtb1xCyZMmSuPvuu1t2CYmI6N+/f7zyyitl45ubm+P111+P/v37t4x5+eWXy8as+3rdmI3h+BgAAAAAAAAAgE1kXUPIn//855g9e3ZsueWWZc/vtddesWzZsnjsscdart19992xZs2a2HPPPVvGzJ07N5qamlrG3HXXXbHTTjvFFltssdG15EqlUumfXA8AAAAAAAAA8E/Y8qhrky6h0/rHlUe8r/FvvvlmLF68OCIidtttt5g6dWqMGjUqevfuHQMGDIgJEybE448/Hrfeemv069ev5XW9e/eOmpqaiIgYO3ZsvPzyy/GLX/wimpqa4thjj4099tgjrrnmmoiIWL58eey0006x//77x2mnnRYLFy6M4447LqZNmxYnnHDCRteqKQQAAAAAAAAAEqYpJDnvtylkzpw5MWrUqFbXjz766JgyZUpst912bb7unnvuiZEjR0ZExOuvvx4nn3xy/OEPf4guXbrEIYccEhdffHH06NGjZfyTTz4ZX/va1+KRRx6JPn36xNe//vU47bTT3letmW4KWdlcubm7VXX8jCysQUa6MrKwhixm1B58aUXmX3Hz2g7ErNyn9sh4u6lyv+V2r157zqDv743LeHtVBd+Lmsq+FxF+nsvoeBlZWIOM9My/fkZ7/N66ouk9Bv4TaqvX/toe9+rNYmXuVY98tu5TVtaRhe9vGZ0joz2/996q4N8BNsvA3wHaIyMLa5CRnvlldL6MLKxBRnrmb++M9vi7K9mhKSQ577cppCPpknQBAAAAAAAAAABseppCAAAAAAAAAAAySFMIAAAAAAAAAEAGVSVdAAAAAAAAAAB0ermkCyCL7BQCAAAAAAAAAJBBmkIAAAAAAAAAADIoVU0hy5cvj6FDh0aPHj1i4cKFERFxyCGHxIgRI2LPPfeMuXPnJlwhAAAAAAAAAEDHUJV0Aevr3r17zJw5MyZPntxy7dprr42ampp4/vnn48tf/nLMnj07wQoBAAAAAAAAADqGVO0UUl1dHX379i27VlNTExERb7zxRnz0ox9NoiwAAAAAAAAAgA4nVTuFvJvhw4fH//7v/8aVV16ZdCkAAAAAAAAAAB1Ch2gKmTt3bvzlL3+Jgw46KPbff/9WzxeLxSgWi2XX8vl8RNd8e5UIAAAAAAAAAB9YLpdLugQyKFXHx7xTqVSKpqamiIjo0aNH9OjRo81xhUIh6urqyh6FQqE9SwUAAAAAAAAASJXU7RQybty4aGhoiEWLFsXRRx8dv/nNbyIiYvXq1XHOOee0+Zr6+vqYNGlS2bV8Ph+lilcLAAAAAAAAAJBOqWsKue2228q+/upXv/qer8nn82uPi3mHlc2brCwAAAAAAAAAgA4l1cfHAAAAAAAAAADwwWgKAQAAAAAAAADIIE0hAAAAAAAAAAAZpCkEAAAAAAAAACCDqpIuAAAAAAAAAAA6u1wul3QJZJCdQgAAAAAAAAAAMkhTCAAAAAAAAABABmkKAQAAAAAAAADIoFypVColXQQAAAAAAAAAdGZ9j70u6RI6rVcvPyzpEirGTiEAAAAAAAAAABlUlXQBlbSyuXJzd6vq+BlZWIOMdGVkYQ0y3v/8tXtOrkxARKyY/6OI6Nj3KSsZWViDjPTMn8WMFU2Vy6itXvtrR75XWXu/ZSQ7v4x0ZWRhDTLSM7+MzpeRhTXISM/8MtKVkYU1yEhXRhbW0N4ZHfnfVWTtvWiPDIAN8aMCAAAAAAAAABKWy+WSLoEMcnwMAAAAAAAAAEAGaQoBAAAAAAAAAMggTSEAAAAAAAAAABmkKQQAAAAAAAAAIIM0hQAAAAAAAAAAZJCmEAAAAAAAAACADEpVU8jy5ctj6NCh0aNHj1i4cGHL9SVLlkQ+ny+7BgAAAAAAAADAu0tVU0j37t1j5syZMWHChLLr559/fuy9994JVQUAAAAAAAAAFZbzSOyRYalqCqmuro6+ffuWXXvuuecil8vFtttum1BVAAAAAAAAAAAdT6qaQtpy3nnnxamnnrrBMcViMRobG8sexWKxnSoEAAAAAAAAAEifVDeFPPPMMxERMXjw4A2OKxQKUVdXV/YoFArtUCEAAAAAAAAAQDpVJV3AhixYsCCeeuqpGDNmTPzP//xPLF68OGbPnh3dunUrG1dfXx+TJk0qu5bP56PUnsUCAAAAAAAAAKRI6ppCxo0bFw0NDbFo0aI48cQTY968eRERccwxx8Spp57aqiEkYm0DSD6fb3V9ZXPFywUAAAAAAAAASKXUNYXcdtttbV6fMWNG+xYCAAAAAAAAANCBpa4pBAAAAAAAAAA6m1wul3QJZFCXpAsAAAAAAAAAAGDT0xQCAAAAAAAAAJBBmkIAAAAAAAAAADJIUwgAAAAAAAAAQAZpCgEAAAAAAAAAyCBNIQAAAAAAAAAAGVSVdAEAAAAAAAAA0NnlcrmkSyCDcqVSqZR0EQAAAAAAAADQmfX/yg1Jl9BpvXTZhKRLqBjHxwAAAAAAAAAAZFCmj49Z2Vy5ubtVdfyMLKxBRroysrAGGemZf/2M2t1OrljGiicuiYiO/V60R0YW1iAjPfPL6HwZWViDjPTMLyNdGVlYg4z0zC+j82VkYQ0y0jO/jHRlZGENMtKVkYU1yEjP/FnMANgQO4UAAAAAAAAAAGSQphAAAAAAAAAAgAzSFAIAAAAAAAAAkEGaQgAAAAAAAAAAMqgq6QIAAAAAAAAAoLPL5XJJl0AG2SkEAAAAAAAAACCDUtUUsnz58hg6dGj06NEjFi5cGBERO+64Y4wcOTJGjhwZd911V8IVAgAAAAAAAAB0DKk6PqZ79+4xc+bMmDx5csu1urq6mDNnTnJFAQAAAAAAAAB0QKnaKaS6ujr69u1bdu3NN9+MESNGxBe/+MV4/fXXE6oMAAAAAAAAAKBjSVVTSFvuv//+uPfee2PMmDFxxhlnJF0OAAAAAAAAAECHkPqmkC233DIiIiZMmBALFixoc0yxWIzGxsayR7FYbM8yAQAAAAAAAABSJdVNIatWrWpp7pg3b17ssMMObY4rFApRV1dX9igUCu1ZKgAAAAAAAAB8YLlcziOhR5ZVJV3AO40bNy4aGhpi0aJFcfDBB8dvf/vb2GyzzSKfz8f06dPbfE19fX1MmjSp7Fo+n49SexQMAAAAAAAAAJBCqWsKue2228q+Pu20097zNfl8PvL5fKvrK5s3WVkAAAAAAAAAAB1Kqo+PAQAAAAAAAADgg9EUAgAAAAAAAACQQZpCAAAAAAAAAAAySFMIAAAAAAAAAEAGaQoBAAAAAAAAAMigqqQLAAAAAAAAAIBOL5d0AWSRnUIAAAAAAAAAADJIUwgAAAAAAAAAQAblSqVSKekiAAAAAAAAAKAzG/jVG5MuodN68RefT7qEirFTCAAAAAAAAABABlUlXUAlrWyu3Nzdqjp+RhbWICNdGVlYg4z0zN/eGbV7Tq5Yxor5P4qIjn2vsvZ+v91UuY3SulfnIqJj36usvd8yks/IwhpkpGd+GenKyMIa1s9Y0VS5jNrqtb925HuVtfdbRvIZWViDjPTMLyNdGVlYg4x0ZWRhDTLSM38WMwA2xE4hAAAAAAAAAAAZpH8MAAAAAAAAABKWy+WSLoEMslMIAAAAAAAAAEAGaQoBAAAAAAAAAMggTSEAAAAAAAAAABmkKQQAAAAAAAAAIINS1RSyfPnyGDp0aPTo0SMWLlwYERF/+9vf4sADD4xRo0bFGWeckXCFAAAAAAAAAAAdQ1XSBayve/fuMXPmzJg8eXLLtcmTJ8fPf/7z2HrrrROsDAAAAAAAAACgY0nVTiHV1dXRt2/flq+bmpri+eefj29961sxevToeOCBBxKsDgAAAAAAAACg40jVTiHv9Nprr0VDQ0Ncd911UVNTE+PHj49HHnkk6bIAAAAAAAAAYJPK5XJJl0AGpboppFevXrHDDjvEtttuGxFrdxJpbm6OqqrysovFYhSLxbJr+Xw+omu+3WoFAAAAAAAAAEiTVB0f8061tbWx5ZZbxrJly+Ktt96KYrHYqiEkIqJQKERdXV3Zo1AoJFAxAAAAAAAAAEA6pG6nkHHjxkVDQ0MsWrQoTjzxxDjnnHNi/PjxsWrVqjjzzDPbfE19fX1MmjSp7Fo+n49SexQMAAAAAAAAAJBCqWsKue2221pdmzdv3gZfk8/n1x4X8w4rmzdZWQAAAAAAAAAAHUqqj48BAAAAAAAAAOCD0RQCAAAAAAAAAJBBqTs+BgAAAAAAAAA6m1wul3QJZJCdQgAAAAAAAAAAMkhTCAAAAAAAAABABmkKAQAAAAAAAADIIE0hAAAAAAAAAAAZpCkEAAAAAAAAACCDNIUAAAAAAAAAAGRQrlQqlZIuAgAAAAAAAAA6s21OviXpEjqtv15yUNIlVIydQgAAAAAAAAAAMqgq6QIqaWVz5ebuVtXxM7KwBhnpysjCGmSkZ/4sZtTudnLFMlY8cUlEeL9ldIz5ZXS+jCysQUZ65peRrowsrEFGeuaX0fkysrAGGemZX0a6MrKwBhnpysjCGmSkZ/4sZgBsiJ1CAAAAAAAAAAAySFMIAAAAAAAAAEAGaQoBAAAAAAAAAMggTSEAAAAAAAAAABmkKQQAAAAAAAAAIIOqki4AAAAAAAAAADq7XC6XdAlkUKqaQpYvXx6f/vSn449//GM89NBDsf3228fYsWMjIuLtt9+OpqameOKJJxKuEgAAAAAAAAAg/VLVFNK9e/eYOXNmTJ48OSIiamtrY86cORERMWPGjFiyZEmC1QEAAAAAAAAAdBxdki5gfdXV1dG3b982n7v++uvjC1/4QjtXBAAAAAAAAADQMaVqp5B3s2zZsnjppZdil112afP5YrEYxWKx7Fo+n4/omm+P8gAAAAAAAAAAUidVO4W8m1tuuSUOOuigd32+UChEXV1d2aNQKLRjhQAAAAAAAAAA6dIhdgq5/vrr48c//vG7Pl9fXx+TJk0qu5bP56NU6cIAAAAAAAAAAFIqdU0h48aNi4aGhli0aFGceOKJ8bnPfS5eeuml2Hnnnd/1Nfl8fu1xMe+wsrmSlQIAAAAAAADAppHL5ZIugQxKXVPIbbfd1urao48+mkAlAAAAAAAAAAAdV5ekCwAAAAAAAAAAYNPTFAIAAAAAAAAAkEGaQgAAAAAAAAAAMkhTCAAAAAAAAABABmkKAQAAAAAAAADIIE0hAAAAAAAAAAAZVJV0AQAAAAAAAADQ2eVyuaRLIIPsFAIAAAAAAAAAkEG5UqlUSroIAAAAAAAAAOjMBn/j1qRL6LSev+izSZdQMXYKAQAAAAAAAADIoKqkC6iklc2Vm7tbVcfPyMIaZKQrIwtrkJGe+WV8sIzaj3+jIvOveOyiiMjOfZKR7PwyOl9GFtYgIz3zy0hXRhbWICM988vofBlZWIOM9MwvI10ZWViDjHRlZGENMtIzfxYzADbETiEAAAAAAAAAABmkKQQAAAAAAAAAIINsKgQAAAAAAAAACcvlckmXQAbZKQQAAAAAAAAAIIM0hQAAAAAAAAAAZJCmEAAAAAAAAACADEpVU8jy5ctj6NCh0aNHj1i4cGFERPz0pz+NoUOHxtChQ+N3v/tdwhUCAAAAAAAAAHQMVUkXsL7u3bvHzJkzY/LkyS3Xfvazn8WCBQti1apVMWzYsDjkkEMSrBAAAAAAAAAAoGNIVVNIdXV19O3bt+zahz/84VixYkW8/fbb0atXr2QKAwAAAAAAAADoYFLVFNKWz3zmM7HLLrvE6tWr41e/+lXS5QAAAAAAAAAAdAipbgppbGyMn//85/HnP/85Vq1aFaNHj46xY8dGLpcrG1csFqNYLJZdy+fzEV3z7VkuAAAAAAAAAHwwufceAu9Xl6QL2JAuXbpEbW1tdOvWLTbbbLNYtWpVlEqlVuMKhULU1dWVPQqFQgIVAwAAAAAAAACkQ+p2Chk3blw0NDTEokWL4sQTT4zPf/7zsddee8WaNWvia1/7WnTp0rqPpb6+PiZNmlR2LZ/PR+v2EQAAAAAAAACAziF1TSG33XZbq2vf/va3N/iafD6/9riYd1jZvMnKAgAAAAAAAADoUFJ9fAwAAAAAAAAAAB+MphAAAAAAAAAAgAzSFAIAAAAAAAAAkEFVSRcAAAAAAAAAAJ1dLpdLugQyyE4hAAAAAAAAAAAZpCkEAAAAAAAAACCDNIUAAAAAAAAAAGSQphAAAAAAAAAAgAzKlUqlUtJFAAAAAAAAAEBn9uFJtyVdQqf17NRxSZdQMXYKAQAAAAAAAADIoKqkC6iklc2Vm7vb/925t1dVbqOV7jW5iKjcOtatoT3uk4zOkZGFNbR3xoqmymXUVlc2Y938WXkvZGzc/Idf8URlAiLiN0fvFhEd+/fWiGy93x15DTLSlZG131s78nvRHhntuYY3i5X7PaNHfu3vGS8sW1WxjK171URE+9yrpW+vrsj8W3TvGhEd+zO7fsZbFfxzyGbt+OeQt5sqs47u1dn6s1RW/tzZuHJNxTJ6dlv7/5NV6l6tu0/LV1RuDXW1a9eQle9vv2dsWBb+LJWVjCysQcYHy6jUz9us/ayVkez862e0x79HqNSfzyP+/5/RyY5cznvKpmenEAAAAAAAAACADNIUAgAAAAAAAACQQZpCAAAAAAAAAAAySFMIAAAAAAAAAEAGaQoBAAAAAAAAAMggTSEAAAAAAAAAABmkKQQAAAAAAAAAIINS1RSyfPnyGDp0aPTo0SMWLlwYEREXXHBB7L333nHAAQfE3//+94QrBAAAAAAAAIBNL5fzSOqRZalqCunevXvMnDkzJkyYEBERL730UsycOTPuu+++OOuss+Kss85KuEIAAAAAAAAAgI4hVU0h1dXV0bdv35avlyxZErvuumvkcrnYfffdY968eQlWBwAAAAAAAADQcVQlXcCGbL/99vHoo49GsViMe+65J15//fU2xxWLxSgWi2XX8vl8RNd8e5QJAAAAAAAAAJA6qdop5J369OkTJ510Uuy///5x++23x84779zmuEKhEHV1dWWPQqHQztUCAAAAAAAAAKRHqncKiYg46qij4qijjoo5c+ZEnz592hxTX18fkyZNKruWz+ej1B4FAgAAAAAAAACkUOqaQsaNGxcNDQ2xaNGiOPHEE+OOO+6IV155JQYNGhQ//elP23xNPp9fe1zMO6xsrnS1AAAAAAAAAADplLqmkNtuu63s62OOOSaZQgAAAAAAAACgneRyuaRLIIO6JF0AAAAAAAAAAACbnqYQAAAAAAAAAIAM0hQCAAAAAAAAAJBBmkIAAAAAAAAAADJIUwgAAAAAAAAAQAZpCgEAAAAAAAAAyCBNIQAAAAAAAAAAGVSVdAEAAAAAAAAA0NnlcklXQBblSqVSKekiAAAAAAAAAKAz+8i370i6hE7rf88fk3QJFeP4GAAAAAAAAACADMr08TErmys3d7eqjp+RhTXISFdGFtYgIz3zy0hXRnuuYc/CvRXLmF8/IiIi3m6q3EZp3avX7u/n/ZYho/3ml5GujPZcw4qmymXUVq/9tT3W8dLyyi2kf93ahSxfsaYi89fVrv1/TTryZ3b9jKVvr65Yxhbdu0ZEx75XWfgZJSNdGevmf7NYuT+f98iv/fP5G8XK/ByMiNg8n62fhZV6P9a9F1m5T+2RsWxF5X5f6lVb2d+XsvZeyEg+IwtraO+Mjvz3pay9F2+vquC/i6xx1gjw3uwUAgAAAAAAAACQQZpCAAAAAAAAAAAySFMIAAAAAAAAAEAGVSVdAAAAAAAAAAB0drlcLukSyCA7hQAAAAAAAAAAZJCmEAAAAAAAAACADEpNU8jDDz8ce+21VwwfPjyOOOKIaGpqiuuvvz4+9alPxb777ht/+9vfki4RAAAAAAAAAKDDSE1TyDbbbBN33313zJ07NwYPHhy33HJLTJ06NebMmRM/+MEP4qyzzkq6RAAAAAAAAACADiM1TSEDBgyI2traiIioqamJRYsWxS677BI1NTWx9957x5NPPplwhQAAAAAAAAAAHUdqmkLWWbJkScyaNSv22Wef6NmzZ8v11atXv+trisViNDY2lj2KxWJ7lAsAAAAAAAAAkEqpagppbGyMiRMnxowZM6Jv377R2NjY8lzXrl3f9XWFQiHq6urKHoVCoT1KBgAAAAAAAABIpaqkC1inubk5Dj/88DjjjDNip512iqampvjTn/4Uq1atikcffTT+7d/+7V1fW19fH5MmTSq7ls/no1TpogEAAAAAAABgE8jlkq6ALEpNU8i1114b8+fPj7POOivOOuusOOmkk+Kb3/xmjBw5Mrp16xZXXHHFu742n89HPp9vdX1lcyUrBgAAAAAAAABIr9Q0hUycODEmTpzY6vphhx2WQDUAAAAAAAAAAB1bl6QLAAAAAAAAAABg09MUAgAAAAAAAACQQZpCAAAAAAAAAAAySFMIAAAAAAAAAEAGVSVdAAAAAAAAAAB0dl265JIugQyyUwgAAAAAAAAAQAZpCgEAAAAAAAAAyCBNIQAAAAAAAAAAGZQrlUqlpIsAAAAAAAAAgM7sX74zK+kSOq0/nrN/0iVUjJ1CAAAAAAAAAAAyqCrpAippZXPl5u5W1fEzsrAGGenKyMIaspjxRnFNRebfPL+2rzAr90lGsvOvn7GiqXIZtdVrf93s0MsrlvHW9cdGhPdbRsfMqNT337rvvazcJxnJzi/jg2W8vaoym4R2r8lFRHbu01sVuk8REZu1471qXFmZvwP07ObvADI61vzrZ7TH3zM68nvRHhlZWIOM9Mwvo/NlZGEN62f4fSnZ+ds7oz3eb4ANyXRTCAAAAAAAAAB0BLlc0hWQRY6PAQAAAAAAAADIIE0hAAAAAAAAAAAZpCkEAAAAAAAAACCDNIUAAAAAAAAAAGSQphAAAAAAAAAAgAxKTVPIww8/HHvttVcMHz48jjjiiGhqaoqjjjoq+vbtG5dccknS5QEAAAAAAAAAdChVSRewzjbbbBN333131NbWRn19fdxyyy1x7rnnxujRo+PNN99MujwAAAAAAAAAgA4lNU0hAwYMaPnnmpqa6NKlSwwcODDBigAAAAAAAACgfeRyuaRLIINSc3zMOkuWLIlZs2bF+PHjky4FAAAAAAAAAKDDSs1OIRERjY2NMXHixJgxY0ZUV1dv9OuKxWIUi8Wya/l8PqJrflOXCAAAAAAAAADQIaRmp5Dm5uY4/PDD44wzzoiddtrpfb22UChEXV1d2aNQKFSoUgAAAAAAAACA9EvNTiHXXnttzJ8/P84666w466yz4qSTToqGhob4/e9/H6tXr45nnnkmpk2b1uZr6+vrY9KkSWXX8vl8lNqjcAAAAAAAAACAFEpNU8jEiRNj4sSJZdcOO+ywjdrxI5/Prz0u5h1WNm+y8gAAAACA/8fe/4fJVdd34/9z9tfsRmARgpBwxRKUGzG1DS0GgzSkiBqpiJRCgrhS/BGKUqVptO5dIEisU7ClCFjRu2CghBSoFbz0Lg0SIUTtRixRFKtIJa1+IPT+QtgAySSb7PePNCsrBJO4s3P27ONxXefK5syc9/P1njM7P+CV9wEAAGBMKczlYwAAAAAAAAAAGDmFWSkEAAAAAAAAAMarSqXZFVBGVgoBAAAAAAAAACghTSEAAAAAAAAAACWkKQQAAAAAAAAAoIQ0hQAAAAAAAAAAlJCmEAAAAAAAAACAEtIUAgAAAAAAAABQQpXBwcHBZhcBAAAAAAAAAOPZay68s9kljFsPLH5js0tomLZmFwAAAAAAAAAA412lUml2CZRQqZtCNg00buzOtrGfUYY5yChWRhnmIKM448soVkYZ5jDaGV1HntewjI33X53E+ZYxdjLKMAcZxRlfRrEyyjAHGcUZX8b4yyjDHGQUZ3wZxcoowxxkFCujDHOQUZzxy5gB8GJaml0AAAAAAAAAAAAjT1MIAAAAAAAAAEAJaQoBAAAAAAAAACghTSEAAAAAAAAAACWkKQQAAAAAAAAAoITaml0AAAAAAAAAAIx3lUql2SVQQlYKAQAAAAAAAAAoocI0haxevTozZ87MrFmzcsYZZ2TDhg05/vjjM2vWrBx//PFZu3Zts0sEAAAAAAAAABgzCtMUMmXKlKxYsSIrV67MIYcckttvvz033nhjVq5cmT/7sz/LJz/5yWaXCAAAAAAAAAAwZrQ1u4AdJk2aNPRzR0dHJkyYkMmTJw/9vaWlMP0rAAAAAAAAAACFV5imkB3Wrl2b5cuX54ILLkiSbN68ORdffHH+7u/+bqfH1Ov11Ov1Yfuq1WrSWm1orQAAAAAAAAAARVWo5Tf6+/vT09OTJUuWpL29PUkyf/78vP/9789hhx220+NqtVq6u7uHbbVabbTKBgAAAAAAAAAonMKsFDIwMJB58+Zl0aJFOfzww5MkH/vYx3LooYdm7ty5L3psb29vFixYMGxftVrNYMOqBQAAAAAAAAAotsKsFLJs2bL09fVl8eLFmT17dq6//vosXrw4K1asyOzZs9Pb27vTY6vVavbZZ59hW7Xq0jEAAAAAAAAAjA2Viq1ZW5kVZqWQnp6e9PT0DNt31llnNakaAAAAAAAAAICxrTArhQAAAAAAAAAAMHI0hQAAAAAAAAAAlJCmEAAAAAAAAACAEtIUAgAAAAAAAABQQppCAAAAAAAAAABKqK3ZBQAAAAAAAADAeFepVJpdAiVkpRAAAAAAAAAAgBLSFAIAAAAAAAAAUEKVwcHBwWYXAQAAAAAAAADj2ZEfW9HsEsat+xcd3+wSGsZKIQAAAAAAAAAAu2jlypU56aSTMnny5FQqldx2223Dbh8cHMxFF12USZMmpaurKyeccEIeeuihYfd54okncuaZZ2afffbJvvvum/e85z15+umnh93nu9/9bn7nd34nnZ2dmTJlSi677LLdrrVtt48YQzYNNG7szraxn1GGOcgoVkYZ5iCjOOPLKFZGGeZQxoyu3/pgQ8bf+G9XJinP4ySj+RllmIOM4owvo1gZZZiDjOKML2P8ZZRhDjKKM76MYmWUYQ4yipVRhjnIKM74ZcwARt8zzzyT3/zN38y73/3u/P7v//7zbr/sssty5ZVX5vrrr8/UqVNz4YUX5s1vfnMefPDBdHZ2JknOPPPMPProo7nzzjuzZcuWnH322Zk/f35uuummJEl/f3/e9KY35YQTTsg111yTBx54IO9+97uz7777Zv78+btcq5cKAAAAAAAAAIBd9Ja3vCVvectbXvC2wcHBXHHFFbngggty8sknJ0luuOGGHHjggbntttsyb968/OAHP8gdd9yRb33rWznqqKOSJFdddVVOPPHE/NVf/VUmT56cpUuXZvPmzbnuuuvS0dGRadOmZc2aNbn88st3qynE5WMAAAAAAAAAoMkqFVuztnq9nv7+/mFbvV7fo/P4k5/8JI899lhOOOGEoX3d3d05+uij881vfjNJ8s1vfjP77rvvUENIkpxwwglpaWlJX1/f0H1mzZqVjo6Oofu8+c1vzg9/+MM8+eSTu1yPphAAAAAAAAAAYNyq1Wrp7u4ettVqtT0a67HHHkuSHHjggcP2H3jggUO3PfbYY3nZy1427Pa2trbst99+w+7zQmM8N2NXuHwMAAAAAAAAADBu9fb2ZsGCBcP2VavVJlUzsjSFAAAAAAAAAADjVrVaHbEmkIMOOihJsm7dukyaNGlo/7p16zJ9+vSh+zz++OPDjhsYGMgTTzwxdPxBBx2UdevWDbvPjr/vuM+ucPkYAAAAAAAAAIARMHXq1Bx00EG56667hvb19/enr68vM2fOTJLMnDkz69evz7e//e2h+6xYsSLbtm3L0UcfPXSflStXZsuWLUP3ufPOO3P44YfnpS996S7XU5imkNWrV2fmzJmZNWtWzjjjjGzZsiWnnnpqjjvuuBx99NFZuXJls0sEAAAAAAAAAMa5p59+OmvWrMmaNWuSJD/5yU+yZs2a/Od//mcqlUrOP//8fPzjH8+XvvSlPPDAA3nXu96VyZMn5+1vf3uS5IgjjsicOXPyvve9L6tXr87Xv/71nHfeeZk3b14mT56cJHnHO96Rjo6OvOc978n3v//93HzzzfnUpz71vMvc/DKFuXzMlClTsmLFinR1daW3tze33357li1blo6OjjzyyCN573vfm69+9avNLhMAAAAAAAAAGMfuu+++/O7v/u7Q33c0apx11llZsmRJPvKRj+SZZ57J/Pnzs379+hx77LG544470tnZOXTM0qVLc9555+UNb3hDWlpacuqpp+bKK68cur27uzvLly/PBz7wgfz2b/92Jk6cmIsuuijz58/frVoL0xTy3GvpdHR0pKWlJR0dHUmSDRs25Nd//debVRoAAAAAAAAAQJJk9uzZGRwc3OntlUoll1xySS655JKd3me//fbLTTfd9KI5v/Ebv5F77713j+tMCtQUssPatWuzfPnyXHDBBUmSWbNm5Uc/+lFuuOGGnR5Tr9dTr9eH7atWq0lrtaG1AgAAAAAAAMBIqFQqzS6BEmppdgHP1d/fn56enixZsiTt7e1JkpUrV2b16tX5sz/7s50eV6vV0t3dPWyr1WqjVTYAAAAAAAAAQOEUZqWQgYGBzJs3L4sWLcrhhx+ewcHBDAwMpL29PXvttVf22muvnR7b29s7dI2eHarVana+WAsAAAAAAAAAQLkVpilk2bJl6evry+LFi7N48eKcffbZ+fznP58k2bp1az7xiU/s9Nhqtbr9cjG/YNNAw8oFAAAAAAAAACi0wjSF9PT0pKenZ9i+s846q0nVAAAAAAAAAACMbS3NLgAAAAAAAAAAgJGnKQQAAAAAAAAAoIQKc/kYAAAAAAAAABivKpVmV0AZWSkEAAAAAAAAAKCENIUAAAAAAAAAAJSQphAAAAAAAAAAgBLSFAIAAAAAAAAAUEKaQgAAAAAAAAAASqgyODg42OwiAAAAAAAAAGA8O+rjX2t2CePWfRf8brNLaBgrhQAAAAAAAAAAlFBbswtopE0DjRu7s23sZ5RhDjKKlVGGOcgozvgyipVRhjnI2P3xu448rzEBSTbef3WSsf04ySjO+DKKlVGGOcgozvgyipVRhjnIKFZGGeYgozjjyyhWRhnmIKNYGWWYg4zijF/GDMqjUqk0uwRKyEohAAAAAAAAAAAlpCkEAAAAAAAAAKCENIUAAAAAAAAAAJSQphAAAAAAAAAAgBLSFAIAAAAAAAAAUEKaQgAAAAAAAAAASqgwTSGrV6/OzJkzM2vWrJxxxhnZsmVLkmTt2rWpVqv53ve+1+QKAQAAAAAAAKAxKhVbs7YyK0xTyJQpU7JixYqsXLkyhxxySG6//fYkyWWXXZbXv/71Ta4OAAAAAAAAAGBsaWt2ATtMmjRp6OeOjo60tLTkJz/5SSqVSl7+8pc3sTIAAAAAAAAAgLGnMCuF7LB27dosX748J510Ui699NIsXLiw2SUBAAAAAAAAAIw5hVkpJEn6+/vT09OTJUuW5D//8z+TJIcccsgvPa5er6derw/bV61Wk9ZqI8oEAAAAAAAAACi8wqwUMjAwkHnz5mXRokU5/PDD853vfCff//73M2fOnNx55535oz/6o2zatOkFj63Vaunu7h621Wq1UZ4BAAAAAAAAAEBxFKYpZNmyZenr68vixYsze/bsbNmyJffee2/uuOOOvPGNb8w111yTzs7OFzy2t7c3Tz311LCtt7d3lGcAAAAAAAAAAFAchbl8TE9PT3p6el7wtiVLlrzosdVqdfvlYn7BpoGRqAwAAAAAAAAAYOwpTFMIAAAAAAAAAIxXlUql2SVQQoW5fAwAAAAAAAAAACNHUwgAAAAAAAAAQAlpCgEAAAAAAAAAKCFNIQAAAAAAAAAAJaQpBAAAAAAAAACghDSFAAAAAAAAAACUUFuzCwAAAAAAAACA8a5SaXYFlJGVQgAAAAAAAAAASqgyODg42OwiAAAAAAAAAGA8e91f3tPsEsatf/3occ0uoWGsFAIAAAAAAAAAUEJtzS6gkTYNNG7szraxn1GGOcgoVkYZ5iCjOOPLKFZGGeYgozjjPzej66g/aVjGxvv+JsnYPhdlySjDHGQUZ3wZxcoowxxkFGd8GeMvowxzkFGc8Uc7Y+OWxmV0tW//cyw/VmU73zKan1GGOcgozvhlzAB4MVYKAQAAAAAAAAAoIU0hAAAAAAAAAAAlpCkEAAAAAAAAAKCEXGkKAAAAAAAAAJqsUqk0uwRKyEohAAAAAAAAAAAlpCkEAAAAAAAAAKCECtMUsnr16sycOTOzZs3KGWeckS1btuSwww7L7NmzM3v27Nx5553NLhEAAAAAAAAAYMxoa3YBO0yZMiUrVqxIV1dXent7c/vtt6e7uzt33313s0sDAAAAAAAAABhzCrNSyKRJk9LV1ZUk6ejoSEtLS55++ukcd9xxecc73pEnnniiyRUCAAAAAAAAAIwdhWkK2WHt2rVZvnx5TjrppHz961/PPffckzlz5mTRokU7PaZer6e/v3/YVq/XR7FqAAAAAAAAAIBiKVRTSH9/f3p6erJkyZK0t7dn//33T5L8wR/8Qb7zne/s9LharZbu7u5hW61WG62yAQAAAAAAAOBXUqnYmrWVWVuzC9hhYGAg8+bNy6JFi3L44Ydn8+bNGRwcTLVazb333ptXvvKVOz22t7c3CxYsGLavWq1msNFFAwAAAAAAAAAUVGGaQpYtW5a+vr4sXrw4ixcvzrnnnpvLLrssL3nJS1KtVnPdddft9NhqtZpqtfq8/ZsGGlkxAAAAAAAAAEBxFaYppKenJz09PcP2zZ07t0nVAAAAAAAAAACMbS3NLgAAAAAAAAAAgJGnKQQAAAAAAAAAoIQ0hQAAAAAAAAAAlFBbswsAAAAAAAAAgPGuUqk0uwRKyEohAAAAAAAAAAAlpCkEAAAAAAAAAKCENIUAAAAAAAAAAJSQphAAAAAAAAAAgBKqDA4ODja7CAAAAAAAAAAYz17/yXubXcK49fUP/06zS2gYK4UAAAAAAAAAAJRQW7MLaKRNA40bu7Nt7GeUYQ4yipVRhjnIKM74MoqVUYY5yCjO+KOd0fVbH2xYxsZ/uzJJeR4rzykZY2F8GcXKKMMcZBRnfBnjL6MMc5BRnPFlFCujDHOQUayMMsxBRnHGL2MGwIvxUgEAAAAAAAAATVapNLsCysjlYwAAAAAAAAAASkhTCAAAAAAAAABACWkKAQAAAAAAAAAoIU0hAAAAAAAAAAAlpCkEAAAAAAAAAKCECtMUsnr16sycOTOzZs3KGWeckS1btuSnP/1p3va2t+V3f/d3s2jRomaXCAAAAAAAAAAwZrQ1u4AdpkyZkhUrVqSrqyu9vb25/fbb84UvfCGf+cxncvDBBze7PAAAAAAAAABomEql0uwSKKHCrBQyadKkdHV1JUk6OjqydevWPPLII/nTP/3THH/88fnGN77R5AoBAAAAAAAAAMaOwqwUssPatWuzfPnyvPe9780f/uEf5uabb05HR0dOOumkfOtb32p2eQAAAAAAAAAAY0KhmkL6+/vT09OTJUuWZOLEiXnlK1+Zl7/85UmS9vb2DAwMpK3t+SXX6/XU6/Vh+6rVatJaHZW6AQAAAAAAAACKpjCXjxkYGMi8efOyaNGiHH744enq6sr++++f9evX55lnnkm9Xn/BhpAkqdVq6e7uHrbVarVRngEAAAAAAAAAQHEUZqWQZcuWpa+vL4sXL87ixYtz7rnn5hOf+EROOumkbN68OR/72Md2emxvb28WLFgwbF+1Ws1go4sGAAAAAAAAACiowjSF9PT0pKen53n777333l96bLVa3X65mF+waWBESgMAAAAAAAAAGHMKc/kYAAAAAAAAAABGTmFWCgEAAAAAAACA8apSqTS7BErISiEAAAAAAAAAACWkKQQAAAAAAAAAoIQ0hQAAAAAAAAAAlJCmEAAAAAAAAACAEtIUAgAAAAAAAABQQppCAAAAAAAAAABKqDI4ODjY7CIAAAAAAAAAYDw77m++3uwSxq17/uT1zS6hYawUAgAAAAAAAABQQm3NLqCRNg00buzOtrGfUYY5yChWRhnmIKM448soVkYZ5iCjOOOXMaPrqD9pWMbG+/4mydh+rMp2vmU0d3wZxcoowxxkFGd8GeMvowxzkFGc8WUUK6MMc5BRrIwyzGG0M57d0rgLBUxoryRxvouUAfBirBQCAAAAAAAAAFBCmkIAAAAAAAAAAEpIUwgAAAAAAAAAQAlpCgEAAAAAAAAAKCFNIQAAAAAAAAAAJdTW7AIAAAAAAAAAYLyrVCrNLoESKkxTyOrVq/OhD30o7e3tOfjgg/O5z30uJ510UpLk2WefzZYtW3L//fc3uUoAAAAAAAAAgLGhME0hU6ZMyYoVK9LV1ZXe3t78y7/8S+6+++4kyZIlS7J27drmFggAAAAAAAAAMIa0NLuAHSZNmpSurq4kSUdHR1pafl7arbfemtNPP71ZpQEAAAAAAAAAjDmFaQrZYe3atVm+fPnQpWPWr1+fxx57LEcccUSTKwMAAAAAAAAAGDsKc/mYJOnv709PT0+WLFmS9vb2JMntt9+ek08++UWPq9frqdfrw/ZVq9WktdqwWgEAAAAAAAAAiqwwK4UMDAxk3rx5WbRoUQ4//PCh/bty6ZharZbu7u5hW61Wa3TJAAAAAAAAAACFVZimkGXLlqWvry+LFy/O7Nmzc/PNN+epp57KY489lle96lUvemxvb2+eeuqpYVtvb+8oVQ4AAAAAAAAAv5pKxdasrcwKc/mYnp6e9PT0PG//fffd90uPrVar2y8X8ws2DYxIaQAAAAAAAAAAY05hVgoBAAAAAAAAAGDkaAoBAAAAAAAAACghTSEAAAAAAAAAACWkKQQAAAAAAAAAoIQ0hQAAAAAAAAAAlFBbswsAAAAAAAAAgPGuUqk0uwRKyEohAAAAAAAAAAAlpCkEAAAAAAAAAKCENIUAAAAAAAAAAJRQZXBwcLDZRQAAAAAAAADAeHb8ld9sdgnj1ooPzmx2CQ1jpRAAAAAAAAAAgBJqa3YBjbRpoHFjd7aN/YwyzEFGsTLKMAcZxRlfRrEyyjAHGcUZX8aeZXQdeV7DMjbef3USzykZY2N8GcXKKMMcZBRnfBnjL6MMc5BRnPFlFCujDHOQUayMMsxBRnHGL2MGwIuxUggAAAAAAAAAQAnpHwMAAAAAAACAJqtUml0BZWSlEAAAAAAAAACAEtIUAgAAAAAAAABQQppCAAAAAAAAAABKSFMIAAAAAAAAAEAJFaYpZPXq1Zk5c2ZmzZqVM844I1u2bMmnP/3pzJgxIzNmzMgXvvCFZpcIAAAAAAAAADBmtDW7gB2mTJmSFStWpKurK729vbn99tvzt3/7t/nOd76TzZs353d+53dy6qmnNrtMAAAAAAAAAIAxoTBNIZMmTRr6uaOjIy0tLTn00EOzcePGPPvss9l3332bVxwAAAAAAAAANFBLpdLsEiihwjSF7LB27dosX748F1xwQR5//PEcccQR2bp1a6699tqdHlOv11Ov14ftq1arSWu10eUCAAAAAAAAABRSS7MLeK7+/v709PRkyZIl2bhxYz7zmc/koYceyr//+7/nwgsvzODg4AseV6vV0t3dPWyr1WqjXD0AAAAAAAAAQHEUZqWQgYGBzJs3L4sWLcrhhx+ep59+Ol1dXens7Ex7e3s2b96cwcHBVF5gyZze3t4sWLBg2L5qtZoXbiEBAAAAAAAAACi/wjSFLFu2LH19fVm8eHEWL16cc889N7//+7+fmTNnZtu2bfnABz6QlpYXXtikWq1uv1zML9g00OiqAQAAAAAAAACKqTBNIT09Penp6Xne/o985CNNqAYAAAAAAAAAYGx74aU3AAAAAAAAAAAY0zSFAAAAAAAAAACUUGEuHwMAAAAAAAAA41Wl0uwKKCMrhQAAAAAAAAAAlJCmEAAAAAAAAACAEtIUAgAAAAAAAABQQppCAAAAAAAAAABKSFMIAAAAAAAAAEAJVQYHBwebXQQAAAAAAAAAjGdv+vS/NruEcWv5B17X7BIapq3ZBQAAAAAAAADAeFepVJpdAiVU6qaQTQONG7uzbexnlGEOz83YuKVxGV3t2/8sy2PlOSVjLIwvY88ynt3SmAXAJrRv/yBalsdJRnPHf27GaLx/N+r3Iinf78bkc/6pIeP/f5/9/STleZx87mzu+M/NcC6an1GGOTw346mN2xqW0d21/Qq+Y/mxKtv5HpXP55sb+DmkY+x/DhnN13PvGc3PKMMcRjtjLD9vy3YuZDQ/owxzeG7GWP79Tsp1vkfjXDzxzNaGZez3ktaGjQ2UR0uzCwAAAAAAAAAAYORpCgEAAAAAAAAAKCFNIQAAAAAAAAAAJaQpBAAAAAAAAACghDSFAAAAAAAAAACUkKYQAAAAAAAAAIASamt2ATusXr06H/rQh9Le3p6DDz44N9xwQ6688sr80z/9U/baa68sWbIkkyZNanaZAAAAAAAAADDiWirNroAyKsxKIVOmTMmKFSuycuXKHHLIIbn55pvzla98JatWrcrixYuzePHiZpcIAAAAAAAAADBmFKYpZNKkSenq6kqSdHR05Gc/+1mmTZuWSqWS3/qt38q9997b5AoBAAAAAAAAAMaOwjSF7LB27dosX7487373u3PfffelXq/nq1/9ap544olmlwYAAAAAAAAAMGa0NbuA5+rv709PT0+WLFmSAw44IOeee27e9KY3Zfr06XnVq1610+Pq9Xrq9fqwfdVqNWmtNrpkAAAAAAAAAIBCKsxKIQMDA5k3b14WLVqUww8/PEnyrne9K/fcc09OOeWUzJ49e6fH1mq1dHd3D9tqtdooVQ4AAAAAAAAAUDyFWSlk2bJl6evry+LFi7N48eKce+65+eIXv5jHH388v/Zrv5ZPf/rTOz22t7c3CxYsGLavWq1msNFFAwAAAAAAAAAUVGGaQnp6etLT0zNs39y5c3fp2Gq1uv1yMb9g08CIlAYAAAAAAAAADVWpVJpdAiVUmMvHAAAAAAAAAAAwcjSFAAAAAAAAAACUkKYQAAAAAAAAAIAS0hQCAAAAAAAAAFBCmkIAAAAAAAAAAEpIUwgAAAAAAAAAQAm1NbsAAAAAAAAAABjvKpVmV0AZWSkEAAAAAAAAAKCEKoODg4PNLgIAAAAAAAAAxrPf++zqZpcwbn3lnBnNLqFhrBQCAAAAAAAAAFBCbc0uoJE2DTRu7M62sZ9RhjnIKFZGGeYgozjjyyhWRhnmIKM448sYfxk7xu868rzGBCTZeP/VScb241SWjDLMQUZxxpdRrIwyzEFGsTLKMAcZxRlfRrEyyjAHGcXKKMMcZBRn/DJmALwYK4UAAAAAAAAAAJSQphAAAAAAAAAAgBLSFAIAAAAAAAAAUEKuNAUAAAAAAAAATVZJpdklUEJWCgEAAAAAAAAAKCFNIQAAAAAAAAAAJaQpBAAAAAAAAACghArTFLJu3bocc8wxOe6443L88cfn0UcfzapVq3LMMcfk2GOPzQMPPNDsEgEAAAAAAAAAxoy2Zheww8SJE7Nq1aq0tLRkyZIlufbaa3PnnXfmK1/5SjZs2JA/+qM/yv/9v/+32WUCAAAAAAAAAIwJhVkppLW1NS0t28vZsGFDXvGKV6S1tTUvfelL8/KXvzxPPPFEkysEAAAAAAAAABg7CrNSSJKsWbMm55xzTtavX5/ly5fn5ptvHrqtra0tmzdvTkdHx/OOq9frqdfrw/ZVq9WktdrwmgEAAAAAAADgV9VSaXYFlFFhVgpJkunTp6evry+LFy/OX/zFX6S/v3/otoGBgRdsCEmSWq2W7u7uYVutVhutsgEAAAAAAAAACqcwK4U8dxWQ7u7u7LXXXhkYGMj69euzYcOG7Lfffjs9tre3NwsWLBi2r1qtZrChFQMAAAAAAAAAFFdhmkLWrFmThQsXprW1NZ2dnbnuuuvy0EMP5cQTT0ylUsnf/u3f7vTYarW6/XIxv2DTQCMrBgAAAAAAAAAorsI0hcyYMSMrV64ctm/SpEn5xje+0aSKAAAAAAAAAADGrpZmFwAAAAAAAAAAwMjTFAIAAAAAAAAAUEKaQgAAAAAAAAAASqit2QUAAAAAAAAAwHhXqVSaXQIlZKUQAAAAAAAAAIAS0hQCAAAAAAAAAFBCmkIAAAAAAAAAAEpIUwgAAAAAAAAAQAlVBgcHB5tdBAAAAAAAAACMZyf/n/uaXcK4dfv7jmp2CQ1jpRAAAAAAAAAAgBJqa3YBjbRpoHFjd7aN/YwyzEFGsTLKMAcZxRlfRrEyyjAHGcUZv4wZG7c0LqOrffufY/mxGs1z0XXcJQ3L2HjPRUnG9rkYjYwyzEFGccYf7Qyv580dX8b4y/C7N74yyjCH0c4Yy78bZTsXMpqfUYY5yCjO+KOd8ezmxl20YUJHpWFj0xwVp5QGsFIIAAAAAAAAAEAJaQoBAAAAAAAAACghTSEAAAAAAAAAACWkKQQAAAAAAAAAoIQ0hQAAAAAAAAAAlJCmEAAAAAAAAACAEipMU8i6detyzDHH5Ljjjsvxxx+fRx99NB/96EczefLkLFy4sNnlAQAAAAAAAACMKW3NLmCHiRMnZtWqVWlpacmSJUty7bXX5vzzz8+b3/zmfOUrX2l2eQAAAAAAAADQMC2VSrNLoIQKs1JIa2trWlq2l7Nhw4ZMmzYtBx10UCqe+AAAAAAAAAAAu60wK4UkyZo1a3LOOedk/fr1Wb58+S4fV6/XU6/Xh+2rVqtJa3WkSwQAAAAAAAAAGBMKs1JIkkyfPj19fX1ZvHhxarXaLh9Xq9XS3d09bNud4wEAAAAAAAAAyqYwK4Vs3rw5HR0dSZLu7u5MmDBhl4/t7e3NggULhu2rVqsZHNEKAQAAAAAAAADGjsI0haxZsyYLFy5Ma2trOjs7c9111+VTn/pUbrjhhvy///f/8rOf/SzLli17wWOr1er2y8X8gk0Dja4aAAAAAAAAAKCYCtMUMmPGjKxcuXLYvg996EP50Ic+1KSKAAAAAAAAAADGrsI0hQAAAAAAAADAeFWpNLsCyqil2QUAAAAAAAAAADDyNIUAAAAAAAAAAJSQphAAAAAAAAAAgBLSFAIAAAAAAAAAUEKaQgAAAAAAAAAASkhTCAAAAAAAAABACbU1uwAAAAAAAAAAGO8qlUqzS6CEKoODg4PNLgIAAAAAAAAAxrM/+Py/NbuEcesfz/6tZpfQMC4fAwAAAAAAAABQQqW+fMymgcaN3fk/j9zGLY3L6Grf/mej5rFjDs9sbtxiMS/p2L7E0WicCxnNzyjDHGQUZ3wZxcoowxxkFGd8GeMvowxzeG5G15zLG5ax8Y4FScb2Y1WG70pJ+Z63fr93LePZLY37fjyhfex/Py7b+ZbR/IwyzEFGccYvY8ZYfl8q27mQ0fyMMsxhtDPG8neysp2LZxv4/+EmdLjUCPDLWSkEAAAAAAAAAKCENIUAAAAAAAAAAJSQphAAAAAAAAAAgBLSFAIAAAAAAAAAUEJtzS4AAAAAAAAAAMa7SqXZFVBGVgoBAAAAAAAAACihwqwUsm7dupxyyilpb29Pa2trli5dmvnz5+fJJ59Mklx11VU58sgjm1wlAAAAAAAAAMDYUJimkIkTJ2bVqlVpaWnJkiVLcu211+ZTn/pUDj300Pzwhz/Mn/7pn+bLX/5ys8sEAAAAAAAAABgTCtMU0traOvTzhg0bMm3atBx66KFJko6OjrS0uNINAAAAAAAAAMCuKkxTSJKsWbMm55xzTtavX5/ly5cP7V+4cGEWLlzYxMoAAAAAAAAAAMaWQi2/MX369PT19WXx4sWp1WpJkkWLFuV1r3tdZs2atdPj6vV6+vv7h231en20ygYAAAAAAAAAKJzCNIVs3rx56Ofu7u5MmDAhS5YsyU9/+tN8+MMfftFja7Vauru7h207mkoAAAAAAAAAoOhaKhVbk7YyK8zlY9asWZOFCxemtbU1nZ2d+bu/+7tMnTo1r33tazN79uxMnTo1n//851/w2N7e3ixYsGDYvmq1msHRKBwAAAAAAAAAoIAK0xQyY8aMrFy5cti+564e8mKq1Wqq1erz9m8aGJHSAAAAAAAAAADGnMJcPgYAAAAAAAAAgJGjKQQAAAAAAAAAoIQ0hQAAAAAAAAAAlJCmEAAAAAAAAACAEtIUAgAAAAAAAABQQm3NLgAAAAAAAAAAxrtKswuglKwUAgAAAAAAAABQQppCAAAAAAAAAABKqDI4ODjY7CIAAAAAAAAAYDybd/39zS5h3PqHs45sdgkNY6UQAAAAAAAAAIASamt2AY20aaBxY3e2jf2MMsxBRrEyyjAHGcUZX0axMsowhzJmbNzSmPG72rf/WZbHSUbzM8owh9HO6Dr6ww3L2Nj3ySTOt4yxMb6MYmWUYQ4yipVRhjnIKM74Zcxo1He+pPHf+8p2LmQ0P6MMcxjtDK8h4ysD4MVYKQQAAAAAAAAAoIT0jwEAAAAAAABAk1UqlWaXQAlZKQQAAAAAAAAAoIQ0hQAAAAAAAAAAlJCmEAAAAAAAAACAEtIUAgAAAAAAAABQQppCAAAAAAAAAABKqDBNIevWrcsxxxyT4447Lscff3weffTRnHfeeTnuuOPy2te+Nv/4j//Y7BIBAAAAAAAAAMaMwjSFTJw4MatWrco999yTd73rXbn22mtz+eWX55577smKFSvy8Y9/vNklAgAAAAAAAADj2NatW3PhhRdm6tSp6erqyite8YosXrw4g4ODQ/cZHBzMRRddlEmTJqWrqysnnHBCHnrooWHjPPHEEznzzDOzzz77ZN9998173vOePP300yNeb9uIj7iHWltbh37esGFDpk2blo6OjiTJs88+m1e/+tXNKg0AAAAAAAAAGqql0uwK2BWXXnppPvOZz+T666/PtGnTct999+Xss89Od3d3PvjBDyZJLrvsslx55ZW5/vrrM3Xq1Fx44YV585vfnAcffDCdnZ1JkjPPPDOPPvpo7rzzzmzZsiVnn3125s+fn5tuumlE6y1MU0iSrFmzJuecc07Wr1+f5cuXJ0nmzZuXr33ta7nssst2ely9Xk+9Xh+2r1qtJq3VhtYLAAAAAAAAAIwf3/jGN3LyySfn937v95IkhxxySJYtW5bVq1cn2b5KyBVXXJELLrggJ598cpLkhhtuyIEHHpjbbrst8+bNyw9+8IPccccd+da3vpWjjjoqSXLVVVflxBNPzF/91V9l8uTJI1ZvYS4fkyTTp09PX19fFi9enFqtliT5h3/4h/z7v/97/uIv/iLbtm17weNqtVq6u7uHbTuOBwAAAAAAAADYmXq9nv7+/mHbLy5MscMxxxyTu+66Kz/60Y+SJN/5zneyatWqvOUtb0mS/OQnP8ljjz2WE044YeiY7u7uHH300fnmN7+ZJPnmN7+Zfffdd6ghJElOOOGEtLS0pK+vb0TnVpimkM2bNw/93N3dnQkTJgw9yBMmTMjee++dlpYXLre3tzdPPfXUsK23t3dU6gYAAAAAAAAAxq7dWYjiox/9aObNm5dXvepVaW9vz5FHHpnzzz8/Z555ZpLkscceS5IceOCBw4478MADh2577LHH8rKXvWzY7W1tbdlvv/2G7jNSCnP5mDVr1mThwoVpbW1NZ2dnrrvuusydOzfr16/P5s2b8+d//uc7PbZarW6/XMwv2DTQyIoBAAAAAAAAgLGut7c3CxYsGLbvhXoQkuSWW27J0qVLc9NNN2XatGlZs2ZNzj///EyePDlnnXXWaJS7WwrTFDJjxoysXLly2L7bbrutOcUAAAAAAAAAAOPCzhaieCEf/vCHh1YLSZLXvOY1Wbt2bWq1Ws4666wcdNBBSZJ169Zl0qRJQ8etW7cu06dPT5IcdNBBefzxx4eNOzAwkCeeeGLo+JFSmMvHAAAAAAAAAAAU2bPPPpuWluGtFq2trdm2bVuSZOrUqTnooINy1113Dd3e39+fvr6+zJw5M0kyc+bMrF+/Pt/+9reH7rNixYps27YtRx999IjWW5iVQgAAAAAAAABgvKpUKs0ugV1w0kkn5S/+4i/y8pe/PNOmTcv999+fyy+/PO9+97uTbD+P559/fj7+8Y/nsMMOy9SpU3PhhRdm8uTJefvb354kOeKIIzJnzpy8733vyzXXXJMtW7bkvPPOy7x58zJ58uQRrVdTCAAAAAAAAADALrjqqqty4YUX5v3vf38ef/zxTJ48Oeecc04uuuiioft85CMfyTPPPJP58+dn/fr1OfbYY3PHHXeks7Nz6D5Lly7Neeedlze84Q1paWnJqaeemiuvvHLE69UUAgAAAAAAAACwC/bee+9cccUVueKKK3Z6n0qlkksuuSSXXHLJTu+z33775aabbmpAhcO1/PK7AAAAAAAAAAAw1mgKAQAAAAAAAAAoIU0hAAAAAAAAAAAlpCkEAAAAAAAAAKCEKoODg4PNLgIAAAAAAAAAxrOepd9pdgnj1t+f+ZvNLqFhrBQCAAAAAAAAAFBCbc0uoJE2DTRu7M62sZ9RhjnIKFZGGeYgozjjyyhWRhnmIKM448sYfxllmEMZM7qOPK8h42+8/+ok5XmcZDR3fBnFyijDHGQUK6MMc5BRnPFlFCujDHOQUayMMsxBRnHGL2MGwIuxUggAAAAAAAAAQAlpCgEAAAAAAAAAKCFNIQAAAAAAAAAAJaQpBAAAAAAAAACghDSFAAAAAAAAAACUUFuzCwAAAAAAAACA8a5SqTS7BEqoMCuFrFu3Lsccc0yOO+64HH/88Xn00UeTJE8//XQOOOCAfPnLX25yhQAAAAAAAAAAY0dhmkImTpyYVatW5Z577sm73vWuXHvttUmSK6+8Mr/927/d5OoAAAAAAAAAAMaWwlw+prW1dejnDRs2ZNq0aenv788DDzyQ173udU2sDAAAAAAAAABg7CnMSiFJsmbNmhx99NG5+uqr81u/9Vv51Kc+lfPOO6/ZZQEAAAAAAAAAjDmFagqZPn16+vr6snjx4lx88cX5zne+k9e//vW/9Lh6vZ7+/v5hW71eH4WKAQAAAAAAAACKqTBNIZs3bx76ubu7O4888kh++tOfZs6cObnxxhuzaNGirF279gWPrdVq6e7uHrbVarXRKh0AAAAAAAAAoHDaml3ADmvWrMnChQvT2tqazs7O3HTTTZk0aVKS5OKLL85RRx2VX/u1X3vBY3t7e7NgwYJh+6rVagYbXjUAAAAAAAAA/OpaKs2ugDIqTFPIjBkzsnLlyhe87eKLL37RY6vVaqrV6vP2bxoYicoAAAAAAAAAAMaewlw+BgAAAAAAAACAkaMpBAAAAAAAAACghDSFAAAAAAAAAACUkKYQAAAAAAAAAIAS0hQCAAAAAAAAAFBCmkIAAAAAAAAAAEqordkFAAAAAAAAAMB4V6lUml0CJWSlEAAAAAAAAACAEqoMDg4ONrsIAAAAAAAAABjPzv6HB5pdwrj1+XmvaXYJDWOlEAAAAAAAAACAEmprdgGNtGmgcWN3to39jDLMQUaxMsowBxnFGV9GsTLKMAcZxRlfxvjLKMMcZOz++F0zFjYmIMnG1X+VZGw/TmXJKMMcnpuxcUvjMrrat/85lh+rsp1vGc3PKMMcZBRnfBnFyijDHGQUK6MMc5BRnPFHO2M0vmcAvBgrhQAAAAAAAAAAlJCmEAAAAAAAAACAEir15WMAAAAAAAAAYCyoNLsASslKIQAAAAAAAAAAJaQpBAAAAAAAAACghDSFAAAAAAAAAACUUFuzC9hh3bp1OeWUU9Le3p7W1tYsXbo0Z5xxRrZu3ZrW1ta85z3vSU9PT7PLBAAAAAAAAAAYEwrTFDJx4sSsWrUqLS0tWbJkSa699tokyT//8z9nr732anJ1AAAAAAAAAABjS2EuH9Pa2pqWlu3lbNiwIdOmTUtLS0tOPPHEvO1tb8vatWubXCEAAAAAAAAAwNhRmJVCkmTNmjU555xzsn79+ixfvjy33npr9t9//9xzzz354z/+43zpS19qdokAAAAAAAAAAGNCoZpCpk+fnr6+vtxyyy2p1Wq55pprkiTHHXdc/vRP/3Snx9Xr9dTr9WH7qtVq0lptaL0AAAAAAAAAMBJaKpVml0AJFebyMZs3bx76ubu7OxMmTEh/f3+S5MEHH8xLX/rSnR5bq9XS3d09bKvVag2vGQAAAAAAAACgqAqzUsiaNWuycOHCtLa2prOzM9ddd12OP/74dHV1JUk+/elP7/TY3t7eLFiwYNi+arWawYZWDAAAAAAAAABQXIVpCpkxY0ZWrlw5bN999923S8dWq9Xtl4v5BZsGRqQ0AAAAAAAAAIAxpzCXjwEAAAAAAAAAYORoCgEAAAAAAAAAKCFNIQAAAAAAAAAAJdTW7AIAAAAAAAAAYLyrVJpdAWVkpRAAAAAAAAAAgBLSFAIAAAAAAAAAUEKaQgAAAAAAAAAASkhTCAAAAAAAAABACWkKAQAAAAAAAAAoocrg4OBgs4sAAAAAAAAAgPHsfbd8r9kljFv/5/Rfb3YJDdPW7AIAAAAAAAAAYLyrVCrNLoESKnVTyKaBxo3d+T+P3IZN2xqWsXfn9qv7NGoeO+YwGo/TaGRs3NK4jK727X+W5bHynBpfGU8+u7Uh4790QmuS8jxOZXmdalTGjvHXb2zM8ylJ9u3a/px6amPj3lu7u7a/tz67uXELpU3o2P6hfSw/p7zv7X7Gs1sa+JxqH73nVKN+N0bz92I0Pp+X5Xw3+jPhaLzvPb6hcSEv23t7yH8+UW9Yxsv3qyYZncfq3x99tiHjv2rShCTl+T42Gp9DxvL7Uhleo8qY0ajvfMnPv/c1+jm1od7A9+/q9t+90XjPKMtzqgyfCcfy97Hk5+99/tuzjLGY0ajPU6P5WaosryFj+TN62f6bTn8DX8/3+Z/Xc4AX45UCAAAAAAAAAKCENIUAAAAAAAAAAJSQphAAAAAAAAAAgBLSFAIAAAAAAAAAUEKaQgAAAAAAAAAASkhTCAAAAAAAAABACbU1u4Ad1q1bl1NOOSXt7e1pbW3N0qVL09XVlXPPPTfr1q3LYYcdls9+9rPNLhMAAAAAAAAARlyl0uwKKKPCNIVMnDgxq1atSktLS5YsWZJrr702//3f/52PfOQjOfLII5tdHgAAAAAAAADAmFKYy8e0trampWV7ORs2bMi0adNy//3352//9m8ze/bs3Hbbbc0tEAAAAAAAAABgDCnMSiFJsmbNmpxzzjlZv359li9fnr6+vvz1X/91jjjiiMyaNStz5sxJZ2fn846r1+up1+vD9lWr1aS1OlqlAwAAAAAAAAAUSmFWCkmS6dOnp6+vL4sXL06tVsuUKVPy2te+NnvttVcOP/zw/OxnP3vB42q1Wrq7u4dttVptlKsHAAAAAAAAACiOwqwUsnnz5nR0dCRJuru7M2HChPzmb/5mfvzjH2fq1Kl5+OGHM2nSpBc8tre3NwsWLBi2r1qtZrDhVQMAAAAAAAAAFFNhmkLWrFmThQsXprW1NZ2dnbnuuuvS39+f973vfdm4cWPe9773ZcKECS94bLVa3X65mF+waaDRVQMAAAAAAAAAFNMuNYVccskluz1wpVLJhRdeuMv3nzFjRlauXDls36RJk/K1r31tt7MBAAAAAAAAYCxpqVSaXQIltEtNIRdffPFuD7y7TSEAAAAAAAAAAIycXWoK2bZtW6PrAAAAAAAAAABgBLU0uwAAAAAAAAAAAEaephAAAAAAAAAAgBLapcvHvJDvfve7ueqqq/Jv//Zveeqpp553iZlKpZKHH374Vy4QAAAAAAAAAIDdt0crhdx9992ZMWNGvvzlL2fy5Mn5j//4jxx66KGZPHly1q5dm7322iuzZs0a6VoBAAAAAAAAANhFe9QUctFFF+XQQw/ND3/4w3z+859Pkvzv//2/s2rVqnzjG9/IT3/605x++ukjWigAAAAAAAAAALtuj5pC/u3f/i3vec97ss8++6S1tTVJsnXr1iTJ0UcfnXPOOScXXnjhyFUJAAAAAAAAACVWqdiatZVZ2x4d1NaWvffeO0my7777pr29PY8//vjQ7YceemgefPDBkanwV9C5R7PbPXt37lFfzW5p9DxG43EajYyu9sZnlOWx8pwaXxkvndDa0PHL8jiV5XWq0Rn7djX2+ZQk3V2Nf2+d0NH4T3hleE6V5XdvNDImtJfjOdXo342yfD4vy/ludMZovO+9bO/Gh7x8v2rDM0bjsXrVpAkNHb8s38dG43NIGd6XyvAaVaaMRn/nSxr/nNq72vjfvdF4zyjLc6oMnwnL8H0s8d+eZYzNjEZ/nirL41SG/06YlOM1ZDS+4+8zCq/nAC9mj16FXvnKV+ahhx5KklQqlbzqVa/KF7/4xaHbv/KVr+Sggw4amQoBAAAAAAAAANhte9Rjd+KJJ+a6665LrVZLW1tbFixYkLPPPjuHHXZYkuThhx9OrVYb0UL3xKaBxo29oztx45bGZezo4mzUPHbMYTQeJxnjI6MMcyhjxlMbtzVk/B1d/2V5nGTs2viPPrW5MQFJJnV3JEk21BvznE1+/i8Qx/K5GI2MMsxBxp5lNOqzbaM/1yblOxdjOaMMn3OSn3/WuXj5Qw3LuPhN279Dj8b3ykf+f5saMv4h+3cmGdvP2edmjOXv+InX8/GaMRqvhY1+Tj27ZbAxAfn5v/59fEPjfsF3rEJSlueU15DiZIzl96WynQsZu57x5LNbGzL+jpWxyvI4yWju+M/NGI3X2tHIAHgxe9QUcuGFF+ZDH/pQWlu3vwmfddZZaW1tzRe+8IW0trbmz//8z/OHf/iHI1knAAAAAAAAAAC7YY+aQtrb27P//vsP2/fOd74z73znO0ekKAAAAAAAAAAAfjUtzS4AAAAAAAAAAICRt0crhRx//PG/9D6VSiV33XXXngwPAAAAAAAAAONKpVJpdgmU0B41hWzbtu15T8itW7dm7dq1+a//+q+88pWvzMEHHzwiBQIAAAAAAAAAsPv2qCnk7rvv3ultX/7ylzN//vxcfvnle1oTAAAAAAAAAAC/oj1qCnkxb33rW/POd74z559/fu65555dPm7dunU55ZRT0t7entbW1ixdujR/9Ed/lKeeeirbtm3LAw88kCeffHKkywUAAAAAAAAAKKURbwpJkle84hW5+uqrd+uYiRMnZtWqVWlpacmSJUty7bXX5vbbb0+yfWWS66+/vhGlAgAAAAAAAACU0og3hQwMDOSWW27JxIkTd+u41tbWoZ83bNiQadOmDf391ltvzemnnz5iNQIAAAAAAAAAlN0eNYW8+93vfsH969evz7/+67/msccey+WXX77b465ZsybnnHNO1q9fn+XLlydJtm3blq997Wu54oor9qRUAAAAAAAAAIBxaY+aQlasWJFKpTJsX6VSyUtf+tIce+yxee9735s3velNuz3u9OnT09fXl1tuuSW1Wi3XXHNN7r333rzuda9Le3v7To+r1+up1+vD9lWr1aS1uts1AAAAAAAAAACUwR41hTzyyCMjXEayefPmdHR0JEm6u7szYcKEJLt26ZharZaPfexjw/YtWrQoH73g4hGvEwAAAAAAAABGWkuzC6CU9qgp5IYbbsisWbNyyCGHvODtjzzySFauXJl3vetduzzmmjVrsnDhwrS2tqazszPXXXddtm3blrvvvvuXXjqmt7c3CxYsGLavWq1mcJfTAQAAAAAAAADKZY+aQs4+++z8/d///U6bQvr6+nL22WfvVlPIjBkzsnLlyuft/973vvdLj61Wq9svF/MLNg3scjwAAAAAAAAAQKns0Qo0g4MvvgbHM888k7a2Peo3AQAAAAAAAABgBOxy58Z3v/vdrFmzZujv9957bwYGnr8Ux/r163PNNdfkf/2v/zUiBQIAAAAAAAAAsPt2uSnki1/8Yj72sY8lSSqVSj772c/ms5/97Aved999980NN9wwMhUCAAAAAAAAALDbdrkpZP78+XnrW9+awcHBzJgxI5dcckne8pa3DLtPpVLJS17ykrziFa9w+RgAAAAAAAAAgCba5c6NSZMmZdKkSUmSr33ta3n1q1+dAw44oGGFAQAAAAAAAMB4UalUml0CJdSyJwe95jWvyaOPPrrT2x944IE8+eSTe1wUAAAAAAAAAAC/mj1qCvmTP/mTzJ8/f6e3n3POOVm4cOEeFwUAAAAAAAAAwK9mj5pCVqxYkbe97W07vf2kk07KV7/61T0uCgAAAAAAAACAX03bnhz03//935k4ceJOb99///3z+OOP73FRI6Vzj2a3e7raG5/R6HmMxuMkY3xllGEOZcro7tqj/r9dVpbHScaumdTd0diAJHtXG/ucTcpxLkYjowxzkLF7Gv3ZtiyPk4xijJ80/nNOklz8psManjEa3ysP2b+zoeOX4TmblOM7fuL1fLxljMZrYaOfUxPaG3/d9Jft3fhf8LI8p7yGFCejDO9LZTkXMnbdSye0NnT8sjxOMooxfjI6r7WjkQHwYvboW+OkSZNy//337/T2b3/72znggAP2uCgAAAAAAAAAAH41e9Rj9/a3vz2f/vSn85a3vOV5l5G5/fbb8/nPfz7nnnvuiBT4q9g00Lixd3QnjuWMMsxBRrEyyjAHGcUZX0axMnaMv3FLY8ZPft4x/8j/29SwjEMmbv9X0mP5XIxGRhnmIKNYGWWYg4zijF/GjEMX/N+GZfzH5Scmadx7+I7377Kci9H4rDOWH6uy/e6VJePZLYMNy9ixgkejn1PPbm7gHDq2z2EsP05JOV4Ly/A6ONoZG+rbGpaxY5VO7xkyxkpGGeYw2hlj+bOtc7HrrEIC7Io9agq5+OKL89WvfjWnnHJKfvM3fzO//uu/niT53ve+lzVr1uTVr351Pvaxj41ooQAAAAAAAAAA7Lo9agrp7u7Ov/7rv+ayyy7LP/3TP+Uf//EfkySveMUrctFFF+UjH/lI6vX6iBYKAAAAAAAAAGXVUml2BZRRy54e+JKXvCQf+9jH8sADD+TZZ5/Ns88+m29961uZNm1a3vGOd2TSpEkjWScAAAAAAAAAALthj1YKea7BwcHcddddWbp0ab74xS9mw4YNmThxYt7xjneMRH0AAAAAAAAAAOyBPW4K+fa3v52lS5fmH/7hH/LYY4+lUqlk3rx5Oe+88/K6170ulYq1bQAAAAAAAAAAmmW3mkL+4z/+I0uXLs3SpUvz0EMP5eCDD86ZZ56ZGTNmZO7cuTn11FMzc+bMRtUKAAAAAAAAAMAu2uWmkJkzZ2b16tWZOHFi/uAP/iB/93d/l2OPPTZJ8vDDDzesQAAAAAAAAAAAdt8uN4X09fVl6tSpufzyy/N7v/d7aWvb4yvPvKB169bllFNOSXt7e1pbW7N06dJ84xvfyF/+5V+mpaUlPT09Oe+880Y0EwAAAAAAAACgrHa5s+Pqq6/OTTfdlFNOOSX77bdfTj311MybNy+zZ88ekUImTpyYVatWpaWlJUuWLMm1116b22+/PXfddVf22muvTJ8+Pe9///vT0tIyInkAAAAAAAAAUBQtlWZXQBntcofF+9///qxatSoPP/xwzj///Nx77715wxvekIMPPjgXXXRRKpVKKpU9f5a2trYONXxs2LAh06ZNy+GHH57+/v5s2rQpXV1dGkIAAAAAAAAAAHbRbl8DZurUqbngggtywQUX5Nvf/naWLl2am2++OYODg3n/+9+ff/7nf87b3va2nHDCCens7NytsdesWZNzzjkn69evz/Lly9PW1pYZM2aktbU1F1xwwU6Pq9frqdfrw/ZVq9Wktbq70wMAAAAAAAAAKIVfaemN3/7t387ll1+e//qv/8ry5cvz5je/OTfffHPe9ra3ZeLEibs93vTp09PX15fFixenVqvlox/9aB544IH8+Mc/zt///d/nySeffMHjarVauru7h221Wu1XmRoAAAAAAAAAwJg2ItdjaWlpyQknnJAlS5Zk3bp1WbZsWd7whjfs1hibN28e+rm7uzsTJkxIR0dH9t5771Sr1bS1tWXTpk0veGxvb2+eeuqpYVtvb++vNCcAAAAAAAAAgLFsty8f88t0dnZm7ty5mTt37m4dt2bNmixcuDCtra3p7OzMddddlyOPPDLHHntsWltb88Y3vjGTJk16wWOr1er2y8X8gk0DezQFAAAAAAAAAIAxb8SbQvbUjBkzsnLlymH7enp60tPT06SKAAAAAAAAAADGrsI0hQAAAAAAAADAeFWpVJpdAiXU0uwCAAAAAAAAAAAYeZpCAAAAAAAAAABKSFMIAAAAAAAAAEAJaQoBAAAAAAAAACghTSEAAAAAAAAAACWkKQQAAAAAAAAAoIQ0hQAAAAAAAAAAlFBlcHBwsNlFAAAAAAAAAMB49uEv/7DZJYxbn3zr4c0uoWGsFAIAAAAAAAAAUEJtzS6gkTYNNG7szv955J6uN26hlb2qlSSNm8eOOYzG4yRjfGSUYQ5lzHhmc2Nep17S0djXqKR85+LZLY17z5jQPjrvGY16PiU/f07999ONOxkH7LV9ImP5XCRez2U0LmPjlsaM39W+/U+P0y9XhsdqNM/Fhvq2hmXsXd3+byj6NzUuY5/O7Rmj8Zz6vc+ubsj4XzlnRpLyvLeO5e/4idfz8Zoxlp+3o/l6/tTGxmV0d23PKMtzqgyfEcqS8WwDv4NPaPB/1ynbuZCx6xmNet42+jmblO9cjOWMMszhuRmj8X0J4MVYKQQAAAAAAAAAoIQ0hQAAAAAAAAAAlJCmEAAAAAAAAACAEtIUAgAAAAAAAABQQm3NLgAAAAAAAAAAxrtKpdkVUEZWCgEAAAAAAAAAKKHCNIWsW7cuxxxzTI477rgcf/zxefTRR7Ns2bK87nWvy+zZs/Pggw82u0QAAAAAAAAAgDGjMJePmThxYlatWpWWlpYsWbIkn/vc53L77benr68vjz/+eD7wgQ/ktttua3aZAAAAAAAAAABjQmFWCmltbU1Ly/ZyNmzYkFe96lU5+OCD097enoMPPjj//u//3uQKAQAAAAAAAADGjsI0hSTJmjVrcvTRR+fqq6/O6173uvzXf/1XnnrqqXz/+9/Pj3/842zZsuUFj6vX6+nv7x+21ev1Ua4eAAAAAAAAAKA4CtUUMn369PT19WXx4sWp1Wr5y7/8y5x88sm57LLLcvTRR6e9vf0Fj6vVaunu7h621Wq1Ua4eAAAAAAAAAKA42ppdwA6bN29OR0dHkqS7uzsTJkzInDlzMmfOnPzoRz/K5ZdfvtNje3t7s2DBgmH7qtVqBhtaMQAAAAAAAABAcRWmKWTNmjVZuHBhWltb09nZmeuuuy7nn39+vvvd72a//fbLNddcs9Njq9VqqtXq8/ZvGmhkxQAAAAAAAAAwMloqlWaXQAkVpilkxowZWbly5bB9V1xxRXOKAQAAAAAAAAAY41qaXQAAAAAAAAAAACNPUwgAAAAAAAAAQAlpCgEAAAAAAAAAKCFNIQAAAAAAAAAAJaQpBAAAAAAAAACghNqaXQAAAAAAAAAAjHdWdKARPK8AAAAAAAAAAEpIUwgAAAAAAAAAQAlVBgcHB5tdBAAAAAAAAACMZ//7//6o2SWMW5848X81u4SGsVIIAAAAAAAAAEAJtTW7gEbaNNC4sTvbxn5GGeYgo1gZZZiDjOKML6NYGWWYg4zijC9j/GWUYQ4yijO+jD3L2LilMeN3tf/Pn7/9ocYEJNn47U8lKc+5GMsZZZiDjGJllGEOMoozvoxiZZRhDjKKlVGGOcgozvhlzAB4MVYKAQAAAAAAAAAoIU0hAAAAAAAAAAAlZFEhAAAAAAAAAGiySqXZFVBGVgoBAAAAAAAAACghTSEAAAAAAAAAACWkKQQAAAAAAAAAoIQK1xSybNmyHHDAAUmSW2+9Ncccc0ze8IY35Kc//WmTKwMAAAAAAAAAGDsK1RSydevW3HrrrZkyZUoGBgZy+eWX5+67784ll1ySxYsXN7s8AAAAAAAAAIAxo1BNIcuWLctpp52WlpaWPPTQQzniiCPS0dGR17/+9fnud7/b7PIAAAAAAAAAAMaMtmYXsMPWrVtzyy235Lbbbstf//Vf58knn8w+++wz7HYAAAAAAAAAKKOWSqXZJVBChWkKufHGG3P66aenpWX74iX77rtv+vv7h25vbW3d6bH1ej31en3Yvmq1mrRWG1MsAAAAAAAAAEDBFebyMQ8++GBuuOGGzJkzJw899FCuuuqq/OAHP8jmzZvzjW98I7/xG7+x02NrtVq6u7uHbbVabRSrBwAAAAAAAAAolsKsFHLppZcO/XzUUUflM5/5TG6++ebMnj07nZ2duf7663d6bG9vbxYsWDBsX7VazWDDqgUAAAAAAAAAKLbCNIU813333ZckmTt3bubOnftL71+tVrdfLuYXbBoY8dIAAAAAAAAAAMaEwlw+BgAAAAAAAACAkaMpBAAAAAAAAACghAp5+RgAAAAAAAAAGE8qlWZXQBlZKQQAAAAAAAAAoIQ0hQAAAAAAAAAAlJCmEAAAAAAAAACAEtIUAgAAAAAAAABQQppCAAAAAAAAAABKqDI4ODjY7CIAAAAAAAAAYDy76F8eanYJ49Ylbz6s2SU0jJVCAAAAAAAAAABKqK3ZBTTSpoHGjd3ZNvYzyjAHGcXKKMMcZBRnfBnFyijDHGQUZ3wZ4y+jDHOQUZzxZRQrYzTn0HXkeQ3L2Hj/1UnG9rkYjYwyzEFGsTLKMAcZxRlfRrEyyjAHGcXKKMMcZBRn/DJmUB4tlWZXQBlZKQQAAAAAAAAAoIQ0hQAAAAAAAAAAlJCmEAAAAAAAAACAEtIUAgAAAAAAAABQQppCAAAAAAAAAABKSFMIAAAAAAAAAEAJtTW7AAAAAAAAAAAY71oqlWaXQAkVbqWQZcuW5YADDkiSvOtd78oBBxyQq6++uslVAQAAAAAAAACMLYVaKWTr1q259dZbM2XKlCTJX/7lX+b444/P008/3eTKAAAAAAAAAADGlkKtFLJs2bKcdtppaWnZXtbkyZObXBEAAAAAAAAAwNhUmKaQrVu35pZbbsncuXN3+9h6vZ7+/v5hW71eb0CVAAAAAAAAAABjQ2GaQm688cacfvrpQ6uE7I5arZbu7u5hW61Wa0CVAAAAAAAAAABjQ2GaQh588MHccMMNmTNnTh566KF88IMf3OVje3t789RTTw3bent7G1gtAAAAAAAAAECxtTW7gB0uvfTSoZ+POuqoXHnllent7c2XvvSlbN26NQ8//HD+5m/+5gWPrVarqVarz9u/aaBh5QIAAAAAAAAAFFphmkKe67777kuy/bIwLgMDAAAAAAAAQNlVKs2ugDIqzOVjAAAAAAAAAAAYOZpCAAAAAAAAAABKSFMIAAAAAAAAAEAJaQoBAAAAAAAAACghTSEAAAAAAAAAACWkKQQAAAAAAAAAoITaml0AAAAAAAAAAIx3LZVmV0AZWSkEAAAAAAAAAKCEKoODg4PNLgIAAAAAAAAAxrO/uOvHzS5h3PrzN7yy2SU0jJVCAAAAAAAAAABKqK3ZBTTSxi2NG7urffufz25u3EIrEzq2XzRq00Bjxu/8n7M/Go9To+aQ/HwezzTwXLykweci+fk8xnLGaM6hLM/b0ch4dktjfjcmtJfr9+LpeuNeQ/aqjt5j1aj3pR3vSaPxOD3W37hf8IP22f4L/uSzWxuW8dIJrUnG9mvhaL4OjsZnqUa9DiY/fy0sy/tSo343RvP3wnPql2v0c2o031tHI6Ms3yvL8Ps9Ghn3r93QsIwjf23vJKPzGrJh07aGjL935/Z/W1SW8z2WP68lz3kNGYXnVKO/ZzTqOZv8/Hm7od7AjGq5fje8huxaxlh+/04a/x5ettdzGc3PKMMcnpsxKu/fo5BRhv9/NRqP02i8ngO8GCuFAAAAAAAAAACUkKYQAAAAAAAAAIAS0hQCAAAAAAAAAFBCbc0uAAAAAAAAAADGu0oqzS6BErJSCAAAAAAAAABACWkKAQAAAAAAAAAoocI1hSxbtiwHHHBANmzYkOOPPz6zZs3K8ccfn7Vr1za7NAAAAAAAAACAMaNQTSFbt27NrbfemilTpqS9vT033nhjVq5cmT/7sz/LJz/5yWaXBwAAAAAAAAAwZhSqKWTZsmU57bTT0tLSks7OzkyePDlJ0tHRkZaWQpUKAAAAAAAAAFBohem02Lp1a2655ZbMnTt32P7Nmzfn4osvzh//8R/v9Nh6vZ7+/v5hW71eb3TJAAAAAAAAAACFVZimkBtvvDGnn37681YEmT9/ft7//vfnsMMO2+mxtVot3d3dw7ZardbokgEAAAAAAABgRLRUbM3ayqyt2QXs8OCDD+b+++/PjTfemIceeigf/OAHs//+++fQQw993uohv6i3tzcLFiwYtq9arWZbIwsGAAAAAAAAACiwwjSFXHrppUM/H3XUUfnwhz+cqVOn5thjj82KFSsyc+bMna7+Ua1WU61Wn7d/45aGlQsAAAAAAAAAUGiFaQp5rvvuuy9JMjAw0ORKAAAAAAAAAADGppZmFwAAAAAAAAAAwMjTFAIAAAAAAAAAUEKaQgAAAAAAAAAASqit2QUAAAAAAAAAwHjXUml2BZSRlUIAAAAAAAAAAEpIUwgAAAAAAAAAQAlpCgEAAAAAAAAAKCFNIQAAAAAAAAAAJVQZHBwcbHYRAAAAAAAAADCeXfa1h5tdwrj1kd99RbNLaBgrhQAAAAAAAAAAlFBbswtopE0DjRu7s23sZ5RhDjKKlVGGOcgozvgyipVRhjnIKM74MsZfRhnmIKM448soVkYZ5jDaGV1H/UnDMjbe9zdJnG8ZYyejDHOQUZzxZRQrowxzkFGsjDLMYbQzNm5pXEZX+/Y/ne/iZAC8GC8VAAAAAAAAANBklUql2SVQQi4fAwAAAAAAAABQQppCAAAAAAAAAABKSFMIAAAAAAAAAEAJaQoBAAAAAAAAACghTSEAAAAAAAAAACVUuKaQZcuW5YADDkiSnHrqqTnuuONy9NFHZ+XKlU2uDAAAAAAAAABg7GhrdgHPtXXr1tx6662ZMmVKku0NIh0dHXnkkUfy3ve+N1/96lebXCEAAAAAAAAAjLyWSrMroIwKtVLIsmXLctppp6WlZXtZHR0dSZINGzbk13/915tZGgAAAAAAAADAmFKYppCtW7fmlltuydy5c4ftnzVrVt74xjfmxBNPbFJlAAAAAAAAAABjT2EuH3PjjTfm9NNPH1olZIeVK1fmP//zP3PyySfnTW960wseW6/XU6/Xh+2rVqtJa7Vh9QIAAAAAAAAAFFlhVgp58MEHc8MNN2TOnDl56KGH8sd//MfZsmVLkmSvvfbKXnvttdNja7Vauru7h221Wm20SgcAAAAAAAAAKJzCrBRy6aWXDv181FFH5ZOf/GTe+MY3Jtl+aZlPfOITOz22t7c3CxYsGLavWq1msDGlAgAAAAAAAAAUXmGaQp7rvvvuS5Lcfffdu3T/arW6/XIxv2DTwEhWBQAAAAAAAAAwdhTm8jEAAAAAAAAAAIycQq4UAgAAAAAAAADjSaXS7AooIyuFAAAAAAAAAACUkKYQAAAAAAAAAIBd9LOf/SzvfOc7s//++6erqyuvec1rct999w3dPjg4mIsuuiiTJk1KV1dXTjjhhDz00EPDxnjiiSdy5plnZp999sm+++6b97znPXn66adHvFZNIQAAAAAAAAAAu+DJJ5/M61//+rS3t+ef//mf8+CDD+av//qv89KXvnToPpdddlmuvPLKXHPNNenr68tLXvKSvPnNb86mTZuG7nPmmWfm+9//fu688858+ctfzsqVKzN//vwRr7dtxEcEAAAAAAAAACihSy+9NFOmTMnnP//5oX1Tp04d+nlwcDBXXHFFLrjggpx88slJkhtuuCEHHnhgbrvttsybNy8/+MEPcscdd+Rb3/pWjjrqqCTJVVddlRNPPDF/9Vd/lcmTJ49YvVYKAQAAAAAAAADGrXq9nv7+/mFbvV5/wft+6UtfylFHHZXTTjstL3vZy3LkkUfm//yf/zN0+09+8pM89thjOeGEE4b2dXd35+ijj843v/nNJMk3v/nN7LvvvkMNIUlywgknpKWlJX19fSM6N00hAAAAAAAAAMC4VavV0t3dPWyr1WoveN//+I//yGc+85kcdthh+Zd/+Zece+65+eAHP5jrr78+SfLYY48lSQ488MBhxx144IFDtz322GN52cteNuz2tra27LfffkP3GSkuHwMAAAAAAAAATdZSqTS7hHGrt7c3CxYsGLavWq2+4H23bduWo446Kp/4xCeSJEceeWS+973v5ZprrslZZ53V8Fp3V6mbQjpHYXZlyCjDHGQUK6MMc5BRnPFlFCujDHOQUZzxZYy/jDLMQUZxxpdRrIwyzGG0Mjbe9zcNz3C+ZYy1jDLMQUZxxpdRrIwyzEFGsTLKMIfRyuhqb3yG812cDOBXV61Wd9oE8osmTZqUV7/61cP2HXHEEfnCF76QJDnooIOSJOvWrcukSZOG7rNu3bpMnz596D6PP/74sDEGBgbyxBNPDB0/Ulw+BgAAAAAAAABgF7z+9a/PD3/4w2H7fvSjH+XXfu3XkiRTp07NQQcdlLvuumvo9v7+/vT19WXmzJlJkpkzZ2b9+vX59re/PXSfFStWZNu2bTn66KNHtN5S96ZtGmjc2Du6+sZyRhnmIKNYGWWYg4zijC+jWBllmMNzM558dmvDMl46oTXJ2H6syna+ZTQ/owxzkFGc8WXsWcazWwYbMv6E9u3L2pblcdq4pXEZO/6l5mjMo2vO5Q0Zf+Md25fRLcv5ltH8jDLMQUZxxpdRrIwyzEFGsTLKMAcZxRm/jBnA6PqTP/mTHHPMMfnEJz6R008/PatXr87nPve5fO5zn0uSVCqVnH/++fn4xz+eww47LFOnTs2FF16YyZMn5+1vf3uS7SuLzJkzJ+973/tyzTXXZMuWLTnvvPMyb968TJ48eUTr9VIBAAAAAAAAALALXvva1+aLX/xient7c8kll2Tq1Km54oorcuaZZw7d5yMf+UieeeaZzJ8/P+vXr8+xxx6bO+64I52dnUP3Wbp0ac4777y84Q1vSEtLS0499dRceeWVI16vphAAAAAAAAAAgF301re+NW9961t3enulUskll1ySSy65ZKf32W+//XLTTTc1orxhWhqeAAAAAAAAAADAqNMUAgAAAAAAAABQQi4fAwAAAAAAAABN1lJpdgWUkZVCAAAAAAAAAABKqHBNIcuWLcsBBxww9Pe1a9emWq3me9/7XhOrAgAAAAAAAAAYWwrVFLJ169bceuutmTJlytC+yy67LK9//eubWBUAAAAAAAAAwNhTqKaQZcuW5bTTTktLy/ayfvKTn6RSqeTlL395kysDAAAAAAAAABhbCtMUsnXr1txyyy2ZO3fu0L5LL700Cxcu/KXH1uv19Pf3D9vq9XojywUAAAAAAAAAKLTCNIXceOONOf3004dWCXn44YeTJIcccsgvPbZWq6W7u3vYVqvVGlkuAAAAAAAAAEChtTW7gB0efPDB3H///bnxxhvz0EMP5ZRTTkl3d3fmzJmTBx54ID/+8Y/z1a9+NZ2dnc87tre3NwsWLBi2r1qtZnC0igcAAAAAAACAX0Gl0uwKKKPCNIVceumlQz8fddRRue+++4b+/od/+IdZuHDhCzaEJNsbQKrV6vP2bxoY+ToBAAAAAAAAAMaCwjSFPNdzG0KSZMmSJc0pBAAAAAAAAABgjGppdgEAAAAAAAAAAIw8TSEAAAAAAAAAACWkKQQAAAAAAAAAoIQ0hQAAAAAAAAAAlFBbswsAAAAAAAAAgPGuJZVml0AJWSkEAAAAAAAAAKCENIUAAAAAAAAAAJSQphAAAAAAAAAAgBKqDA4ODja7CAAAAAAAAAAYzz799UeaXcK49YHXH9LsEhrGSiEAAAAAAAAAACXU1uwCGmnTQOPG7mwb+xllmIOMYmWUYQ4yijO+jGJllGEOMoozvozxl1GGOcgozvgyipVRhjnI2P3xu448rzEBSTbef3WSsf04ySjO+DKKlVGGOcgozvgyxl9GGeYgozjjlzED4MVYKQQAAAAAAAAAoIT0jwEAAAAAAABAk1Uqza6AMrJSCAAAAAAAAABACWkKAQAAAAAAAAAoIU0hAAAAAAAAAAAlpCkEAAAAAAAAAKCECtcUsmzZshxwwAFJksMOOyyzZ8/O7Nmzc+eddza5MgAAAAAAAACAsaOt2QU819atW3PrrbdmypQpSZLu7u7cfffdzS0KAAAAAAAAAGAMKtRKIcuWLctpp52WlpbtZT399NM57rjj8o53vCNPPPFEk6sDAAAAAAAAgMZoqdiatZVZYZpCtm7dmltuuSVz584d2vf1r38999xzT+bMmZNFixY1sToAAAAAAAAAgLGlME0hN954Y04//fShVUKSZP/990+S/MEf/EG+853v7PTYer2e/v7+YVu9Xm94zQD8/9m7+zC76vJe+PdOJrMyE5IJkCjRCiXQFvANhFBCCDPJqDByRU2oYO2D9Tw96VEHBceXOsgpsTk9W2mjlYtA+/QYUTmNNQi1qKk11kDeUKGEIkQfxqvhzSbBQ5MJMLMnE/bzR8w8GSEx6uxZa//259NrXcmsmfX73vfeO3tm7M1vAQAAAAAAAEVVmKGQhx9+OL7whS/ExRdfHI888ki8973vHRns2LBhQ5x66qmHvbZcLkdbW9uoo1wuj1fpAAAAAAAAAACF05R3AQd98pOfHPn7OeecE9ddd12cf/75MWXKlMiyLFatWnXYa3t7e6Onp2fUuSzLolqzagEAAAAAAAAAiq0wQyGHuvfeeyMi4r777juqr8+yLLIse8H5weExLQsAAAAAAAAAoG4U5vYxAAAAAAAAAACMHUMhAAAAAAAAAAAJKuTtYwAAAAAAAACgkUwolfIugQTZKQQAAAAAAAAAIEGGQgAAAAAAAAAAEmQoBAAAAAAAAAAgQYZCAAAAAAAAAAASZCgEAAAAAAAAACBBpWq1Ws27CAAAAAAAAABoZP/PPY/mXULD+uPzTsq7hJppyrsAAAAAAAAAAGh0pVLeFZCipIdCBodrt/bkpvrPSKEHGcXKSKEHGcVZX0axMlLoQUZx1pfReBkp9CCjOOvLKFZGCj3IKM76h2a0nH1VzTIG7vtMRNT3c5FKRgo9yCjO+jKKlZFCDzKKlZFCDzKKs36KGQBHMiHvAgAAAAAAAAAAGHuGQgAAAAAAAAAAEmQoBAAAAAAAAAAgQYZCAAAAAAAAAAASZCgEAAAAAAAAACBBhkIAAAAAAAAAABJUuKGQ1atXx8yZMyMi4oknnog3v/nNsWDBgrjuuutyrgwAAAAAAAAAamNCqeTI6UhZU94FHGr//v2xZs2aeMUrXhERER/+8Ifj5ptvjpe//OU5VwYAAAAAAAAAUF8KtVPI6tWr421ve1tMmDAh9u3bF9u3b48PfvCDsXDhwti8eXPe5QEAAAAAAAAA1I3CDIXs378/vvzlL8fll18eERE//elPY+vWrXH99dfH3/3d38VVV12Vc4UAAAAAAAAAAPWjMLePufXWW+Oyyy6LCRMOzKlMnz49Tj311DjxxBMjImLSpEkxPDwcTU0vLLlSqUSlUhl1LsuyiIlZ7QsHAAAAAAAAACigwuwU8vDDD8cXvvCFuPjii+ORRx6JP/mTP4njjz8+du/eHc8++2xUKpUXHQiJiCiXy9HW1jbqKJfL49wBAAAAAAAAAEBxFGankE9+8pMjfz/nnHPihhtuiM2bN8eiRYtiaGgoPv7xjx/22t7e3ujp6Rl1LsuyqNasWgAAAAAAAACAYivMUMih7r333oiIOP/882PDhg2/8OuzLDtwu5ifMzg85qUBAAAAAAAAwJgrlfKugBQV5vYxAAAAAAAAAACMHUMhAAAAAAAAAAAJMhQCAAAAAAAAAJAgQyEAAAAAAAAAAAkyFAIAAAAAAAAAkCBDIQAAAAAAAAAACWrKuwAAAAAAAAAAaHR2dKAWvK4AAAAAAAAAABJkKAQAAAAAAAAAIEGlarVazbsIAAAAAAAAAGhkt3z/sbxLaFjvmnNi3iXUjJ1CAAAAAAAAAAAS1JR3AbU0OFy7tSc31X9GCj3IKFZGCj3IKM76MoqVkUIPMoqzvozGy0ihBxnFWV9GsTJS6EFGcdYf74yW172/ZhkD/3pDRKTzWHlNyaiH9WUUKyOFHmQUKyOFHmQUZ/0UMwCOxE4hAAAAAAAAAAAJMhQCAAAAAAAAAJAgmwoBAAAAAAAAQM5KpVLeJZAgO4UAAAAAAAAAACTIUAgAAAAAAAAAQIIMhQAAAAAAAAAAJKhwQyGrV6+OmTNnxsDAQHR0dERHR0ece+65cdZZZ+VdGgAAAAAAAABA3WjKu4BD7d+/P9asWROveMUroqWlJdavXx8REbfccks8+uij+RYHAAAAAAAAAFBHCrVTyOrVq+Ntb3tbTJgwuqw1a9bEZZddllNVAAAAAAAAAAD1pzBDIfv3748vf/nLcfnll486v3v37tixY0ecfvrph722UqlEf3//qKNSqdS6ZAAAAAAAAAAYEyVHbkfKCjMUcuutt8Zll132gl1CvvrVr8Zb3vKWI15bLpejra1t1FEul2tZLgAAAAAAAABAoRVmKOThhx+OL3zhC3HxxRfHI488Eu9///sj4uhuHdPb2xt79uwZdfT29o5H2QAAAAAAAAAAhdSUdwEHffKTnxz5+znnnBM33HBD7NmzJ3bs2BGnnXbaEa/NsiyyLHvB+cHhMS8TAAAAAAAAAKAuFGankEPde++9ERHR1tY28ncAAAAAAAAAAI5eIYdCAAAAAAAAAAD49RgKAQAAAAAAAABIkKEQAAAAAAAAAIAENeVdAAAAAAAAAAA0ugmlUt4lkCA7hQAAAAAAAAAAJMhQCAAAAAAAAABAggyFAAAAAAAAAAAkyFAIAAAAAAAAAECCStVqtZp3EQAAAAAAAADQyG6974m8S2hY/9fZv5F3CTVjpxAAAAAAAAAAgAQ15V1ALQ0O127tyU31n5FCDzKKlZFCDzKKs76MYmWk0IOM4qwvo7gZA/tqs37LpAN/pvI4ych3fRnFykihBxnFWT/FjJazr6pZxsB9n4mI+n6sUnu+ZeS7voxiZaTQg4xiZaTQg4zirJ9iBuko5V0ASbJTCAAAAAAAAABAggyFAAAAAAAAAAAkyFAIAAAAAAAAAECCDIUAAAAAAAAAACTIUAgAAAAAAAAAQIIMhQAAAAAAAAAAJKhwQyGrV6+OmTNnRkTEypUr49xzz41zzz03vvKVr+RcGQAAAAAAAABA/WjKu4BD7d+/P9asWROveMUrIiLipptuigceeCCGhoZi/vz5cemll+ZcIQAAAAAAAACMvVIp7wpIUaF2Clm9enW87W1viwkTDpQ1e/bsGBgYiL1798b06dPzLQ4AAAAAAAAAoI4UZihk//798eUvfzkuv/zykXOXXHJJnH766XHmmWfGBz/4wRyrAwAAAAAAAACoL4W5fcytt94al1122cguIf39/XHzzTfHI488EkNDQ7Fw4cLo6uqK0ovsmVOpVKJSqYw6l2VZxMRsXGoHAAAAAAAAACiawuwU8vDDD8cXvvCFuPjii+ORRx6Jq6++OlpaWmLy5MkxZcqUGBoaimq1+qLXlsvlaGtrG3WUy+Vx7gAAAAAAAAAAoDgKs1PIJz/5yZG/n3POObFq1aq4/vrrY+7cufH8889Hd3f3yC4iP6+3tzd6enpGncuyLF58hAQAAAAAAAAAIH2FGQo51L333hsRER/5yEfiIx/5yC/8+izLDtwu5ucMDo95aQAAAAAAAAAAdaGQQyEAAAAAAAAA0EhKpVLeJZCgF78fCwAAAAAAAAAAdc1QCAAAAAAAAABAggyFAAAAAAAAAAAkyFAIAAAAAAAAAECCDIUAAAAAAAAAACTIUAgAAAAAAAAAQIIMhQAAAAAAAAAAJKhUrVareRcBAAAAAAAAAI3s7+9/Mu8SGtblZ7087xJqxk4hAAAAAAAAAAAJasq7gFoaHK7d2pOb6j8jhR5kFCsjhR5SzBjYV5v1WyYd+DOVx0nG0a3/7FDtNhib0lyKiIjn9tUuo3XSgYx6fi7GIyOFHmQUKyOF73sRvvcVZf1DM8bje8YzldplHJMdyBiP122tvocf/P5dz6/ZQzO8h+S7voxfLeMl//eXa5axa9VlEVH719TewedrExARUycf+G/ixuP9PJXXlPeQ4mTU8+/HqT0XMvLPSKGH8c6o559tU3suxiMD4EjsFAIAAAAAAAAAkCBDIQAAAAAAAAAACTIUAgAAAAAAAACQIEMhAAAAAAAAAAAJasq7AAAAAAAAAABodKVSKe8SSJCdQgAAAAAAAAAAEmQoBAAAAAAAAAAgQYUbClm9enXMnDkzIiJWrFgR8+bNi4suuij+4z/+I+fKAAAAAAAAAADqR6GGQvbv3x9r1qyJV7ziFbFjx474+te/Hhs3bozly5fH8uXL8y4PAAAAAAAAAKBuFGooZPXq1fG2t70tJkyYEI8++mi88pWvjFKpFK973etiw4YNeZcHAAAAAAAAAFA3CjMUsn///vjyl78cl19+eUREnHLKKXHvvfdGpVKJdevWxdNPP33YayuVSvT39486KpXKeJUOAAAAAAAAAFA4hRkKufXWW+Oyyy6LCRMOlDRjxox4z3veE2984xtj7dq1cdpppx322nK5HG1tbaOOcrk8XqUDAAAAAAAAwK+l5MjtSFlT3gUc9PDDD8f9998ft956azzyyCPx/ve/P2644YZ45zvfGevXr48ZM2Yc9tre3t7o6ekZdS7LsqjWumgAAAAAAAAAgIIqzFDIJz/5yZG/n3POOXHDDTfE29/+9ti1a1ecdNJJsXLlysNem2VZZFn2gvODwzUpFQAAAAAAAACg8AozFHKoe++9NyIivvSlL+VcCQAAAAAAAABAfZqQdwEAAAAAAAAAAIw9QyEAAAAAAAAAAAkyFAIAAAAAAAAAkCBDIQAAAAAAAAAACWrKuwAAAAAAAAAAaHSlUinvEkiQnUIAAAAAAAAAABJkKAQAAAAAAAAAIEGGQgAAAAAAAAAAElSqVqvVvIsAAAAAAAAAgEZ22wP/kXcJDev3Xjsr7xJqxk4hAAAAAAAAAAAJasq7gFoaHK7d2pOb6j8jhR5kFCsjhR5kFGd9GcXKSKEHGcVZX0bjZaTQg4zirC+jWBkp9CCjOOvLKG5Gy5yemqw/8P1PRUQ6j5OMfNeXUayMFHqQUayMFHqQUZz1U8wAOBJvFQAAAAAAAACQM7f5oBa8rgAAAAAAAAAAEmQoBAAAAAAAAAAgQYZCAAAAAAAAAAASZCgEAAAAAAAAACBBhkIAAAAAAAAAABJUmKGQ7du3x8yZM6OjoyM6OjriqaeeijVr1sT5558fnZ2d8cQTT+RdIgAAAAAAAABA3WjKu4BDtbe3x2233RYREcPDw/GpT30q7rrrrvj+978fy5cvj7/5m7/JuUIAAAAAAAAAgPpQqKGQTZs2xfz582P+/PlxxRVXxOmnnx7Nzc0xb968+NCHPpR3eQAAAAAAAABQE6VSKe8SSFBhhkJmzZoVfX190draGkuXLo3bb789pk2bNvL5/fv3H/baSqUSlUpl1LksyyImZjWrFwAAAAAAAACgyCbkXcBBWZbFlClTolQqxZIlS+KBBx6I/v7+kc9PnDjxsNeWy+Voa2sbdZTL5fEoGwAAAAAAAACgkAozFLJ3796Rv2/YsCEuueSS2LZtWwwNDcXmzZvjNa95zWGv7e3tjT179ow6ent7x6NsAAAAAAAAAIBCKsztYzZu3BjXXntttLa2xsknnxzLly+PyZMnR0dHR0yePDk+//nPH/baLMsO3C7m5wwO17JiAAAAAAAAAIDiKsxQSFdXV3R1dY06d/nll8fll1+eU0UAAAAAAAAAAPWrMLePAQAAAAAAAABg7BRmpxAAAAAAAAAAaFSlvAsgSXYKAQAAAAAAAABIkKEQAAAAAAAAAIAEGQoBAAAAAAAAAEiQoRAAAAAAAAAAgAQZCgEAAAAAAAAASJChEAAAAAAAAACABJWq1Wo17yIAAAAAAAAAoJH9w7/tyLuEhvXW15yQdwk105R3AQAAAAAAAADQ6EqlvCsgRUkPhQwO127tyT975Ab21S6jZdKBP2vVx8EexuNxklGsjFq9bmv9mo1I77nwfB/ZeD5Oz+2r3cZZrZMO/BRXz4/VwfX3Vp6vTUBETM0O3NVuz0DtMtpaDmTU8/fviPF7vuu5h/HO8B6S7/rjneE9JN/1D814bqiG//aaD/zbG4/nezwyntpbmydk5tQDT0Yq/y78HHJk3s+P3ni+bsfjZ/Rav6bedsu/1iYgIta863URkc7zXc/fXw9+b03lcRqP19SzNfxZZ0qNn4/UvmfIyD8jhR7GO+OpZ2oXMvOYAyGe76PLGI/fXQGOZELeBQAAAAAAAAAAMPYMhQAAAAAAAAAAJMhQCAAAAAAAAABAggyFAAAAAAAAAAAkyFAIAAAAAAAAAECCmvIuAAAAAAAAAAAa3YQo5V0CCSrMTiHbt2+PmTNnRkdHR3R0dMRTTz0V73znO2PmzJlx44035l0eAAAAAAAAAEBdKdROIe3t7XHbbbeNfPyJT3wiFi5cGM8880yOVQEAAAAAAAAA1J/C7BQSEbFp06aYP39+XHPNNVGtVuNlL3tZ3iUBAAAAAAAAANSlwgyFzJo1K/r6+uLuu++OXbt2xe233553SQAAAAAAAAAAdaswQyFZlsWUKVOiVCrFkiVL4oEHHjjqayuVSvT39486KpVKDasFAAAAAAAAACi2wgyF7N27d+TvGzZsiFNPPfWory2Xy9HW1jbqKJfLtSgTAAAAAAAAAKAuNOVdwEEbN26Ma6+9NlpbW+Pkk0+O5cuXR29vb/zjP/5j7N+/P3784x/Hpz/96Re9tre3N3p6ekady7IsquNROAAAAAAAAAD8mkqlvCsgRYUZCunq6oqurq5R58rl8lHt+JFlWWRZ9oLzg8NjVh4AAAAAAAAAQF0pzO1jAAAAAAAAAAAYO4ZCAAAAAAAAAAASZCgEAAAAAAAAACBBhkIAAAAAAAAAABJkKAQAAAAAAAAAIEGGQgAAAAAAAAAAEtSUdwEAAAAAAAAA0OhKUcq7BBJkpxAAAAAAAAAAgASVqtVqNe8iAAAAAAAAAKCRff0Hu/IuoWFd8qqX5F1CzdgpBAAAAAAAAAAgQU15F1BLg8O1W3vyzx655/bVbqOV1kkH7hlVqz4O9jAej5OMxshIoYcUM55+dn9N1j9uysSISOdxknF06z83VMPve80Hvu/9n2dr90AdP+VAI3srz9csY2p2YOZ2PJ7vgX21Wb9l0oE/6/k1K+NXy6jVz7a1/rk2Ynzfp1J5vlP4mfDZGj7fU372fO/aW6M324h4ydQDb7i1ej+P+P/f0596pjZPyMxjDjwZ9fyaPTQjlZ8RUvj3LePoM3YP1OZ3voiI6S0Hfu+r9c8Iz1Rq935+THYg477t/TXLOPs3p0VEOq8pv2cUJ+OJ/xyqWcZvHNscEb5nyBj7DO8hR5cxHv+/pfH4PSOF95DxeC62/eTZmmWc/rIpNVsbSIedQgAAAAAAAAAAEmQoBAAAAAAAAAAgQUnfPgYAAAAAAAAA6kGplHcFpMhOIQAAAAAAAAAACTIUAgAAAAAAAACQIEMhAAAAAAAAAAAJMhQCAAAAAAAAAJCgwgyFbN++PWbOnBkdHR3R0dERjz/+eCxcuDAuvPDCWLhwYTz66KN5lwgAAAAAAAAAUDea8i7gUO3t7XHbbbdFRMTg4GDceuut8bKXvSy++c1vxl/8xV/EjTfemHOFAAAAAAAAAAD1oTA7hUREbNq0KebPnx/XXHNNZFkWL3vZyyIiorm5OSZMKFSpAAAAAAAAAACFVpidQmbNmhV9fX3R2toaS5cujdtvvz0uvfTSGBoaimXLlsX/+l//67DXViqVqFQqo85lWRYxMat12QAAAAAAAADwa5sQpbxLIEGF2X4jy7KYMmVKlEqlWLJkSTzwwAMREfHHf/zH8d73vjd+67d+67DXlsvlaGtrG3WUy+XxKh0AAAAAAAAAoHAKs1PI3r17Y+rUqRERsWHDhjj99NPj4x//eMyePTsuv/zyI17b29sbPT09o85lWRbVmlULAAAAAAAAAFBshdkpZOPGjXH22WfH/Pnz48knn4wFCxbE8uXL41/+5V+io6Mjent7D3ttlmUxbdq0UUeWuXUMAAAAAAAAANC4CrNTSFdXV3R1dY06Nzw8nFM1AAAAAAAAAAD1rTA7hQAAAAAAAAAAMHYMhQAAAAAAAAAAJKgwt48BAAAAAAAAgEZVKuVdASmyUwgAAAAAAAAAQIIMhQAAAAAAAAAAJMhQCAAAAAAAAABAggyFAAAAAAAAAAAkyFAIAAAAAAAAAECCStVqtZp3EQAAAAAAAADQyL758FN5l9CwLjpjZt4l1IydQgAAAAAAAAAAEtSUdwG1NDhcu7UnN9V/Rgo9yChWRgo9yCjO+jKKlZFCDzKKs76MxstIoQcZxVlfRrEyUuhBRnHWl9F4GSn0cGhGy1lX1ixj4P4bI6K+H6vUnm8Z+a4vo/EyUuhBRnHWTzGDdJRKeVdAiuwUAgAAAAAAAACQIEMhAAAAAAAAAAAJMhQCAAAAAAAAAJAgQyEAAAAAAAAAAAkyFAIAAAAAAAAAkCBDIQAAAAAAAAAACWrKu4CDtm/fHnPmzIlXvvKVERGxZs2aePe73x0//elPY3BwMP7iL/4iLrzwwpyrBAAAAAAAAICxV4pS3iWQoMIMhUREtLe3x2233Tby8erVq6O5uTm2b98e//W//tdYt25djtUBAAAAAAAAANSPQt0+ZtOmTTF//vy45pprolqtRnNzc0RE7N27N171qlflXB0AAAAAAAAAQP0ozFDIrFmzoq+vL+6+++7YtWtX3H777RERceGFF8Yb3vCGeNOb3pRzhQAAAAAAAAAA9aMwQyFZlsWUKVOiVCrFkiVL4oEHHoiIiLvvvju+973vxZ/8yZ8c9tpKpRL9/f2jjkqlMl6lAwAAAAAAAAAUTmGGQvbu3Tvy9w0bNsQpp5wS+/bti4iIY445Jo455pjDXlsul6OtrW3UUS6Xa14zAAAAAAAAAEBRNeVdwEEbN26Ma6+9NlpbW+Pkk0+Oj33sY/GGN7whIiL2798f//N//s/DXtvb2xs9PT2jzmVZFtWaVgwAAAAAAAAAUFyFGQrp6uqKrq6uUefWr19/VNdmWRZZlr3g/ODwWFQGAAAAAAAAALU1oZR3BaSoMLePAQAAAAAAAABg7BgKAQAAAAAAAABIkKEQAAAAAAAAAIAEGQoBAAAAAAAAAEiQoRAAAAAAAAAAgAQZCgEAAAAAAAAASJChEAAAAAAAAACABDXlXQAAAAAAAAAANLpSlPIugQSVqtVqNe8iAAAAAAAAAKCR/csP/0/eJTSshacdn3cJNeP2MQAAAAAAAAAACUr69jGDw7Vbe3JT/Wek0IOMYmWk0IOM4qwvo1gZKfQgozjry2i8jBR6kFGc9WUUKyOFHmQUZ30ZjZeRQg/jndHyuvfXLGPgX2+ICM93kTIG9tUuo2XSgT893zLqJSOFHmQUZ/0UMwCOxE4hAAAAAAAAAAAJMhQCAAAAAAAAAPAr+MQnPhGlUimuvvrqkXODg4PR3d0dxx9/fBxzzDFx6aWXxs6dO0dd99hjj8Ull1wSra2t8ZKXvCQ+/OEPx/Dw2G8vZCgEAAAAAAAAAOCX9P3vfz/+5m/+Jl7zmteMOv+BD3wg7rzzzlizZk3cdddd8ZOf/CSWLFky8vn9+/fHJZdcEkNDQ7F58+b4/Oc/H7fcckv86Z/+6ZjXaCgEAAAAAAAAAHJWKjnyOn4VzzzzTPzBH/xB/O3f/m0ce+yxI+f37NkTn/3sZ+NTn/pULFy4MM4+++z43Oc+F5s3b4577rknIiL++Z//OR5++OG49dZb48wzz4yurq5Yvnx5rFy5MoaGhsbi5TTCUAgAAAAAAAAA0LAqlUr09/ePOiqVyhGv6e7ujksuuSRe//rXjzp/3333xb59+0adP+200+LEE0+MLVu2RETEli1b4tWvfnW89KUvHfmaiy66KPr7++Ohhx4aw84MhQAAAAAAAAAADaxcLkdbW9uoo1wuH/brv/SlL8W//uu/vujX7NixI5qbm2P69Omjzr/0pS+NHTt2jHzNoQMhBz9/8HNjqTBDIdu3b4+ZM2dGR0dHdHR0xFNPPRUREY8++mhkWRY/+MEPcq4QAAAAAAAAAEhNb29v7NmzZ9TR29v7ol/7+OOPx1VXXRX/+3//75g8efI4V/rLa8q7gEO1t7fHbbfdNurc9ddfH/PmzcupIgAAAAAAAAAgZVmWRZZlR/W19913X+zatSte97rXjZzbv39/3H333XHjjTfGN7/5zRgaGordu3eP2i1k586dccIJJ0RExAknnBDf+973Rq27c+fOkc+NpcLsFBIRsWnTppg/f35cc801Ua1W49///d+jVCrFiSeemHdpAAAAAAAAAECD6+zsjAcffDC2bt06cpxzzjnxB3/wByN/nzRpUnz7298eueZHP/pRPPbYYzF37tyIiJg7d248+OCDsWvXrpGv+da3vhXTpk2LM844Y0zrLcxOIbNmzYq+vr5obW2NpUuXxu233x7f+ta34qMf/WgsW7Ys7/IAAAAAAAAAgAY3derUeNWrXjXq3JQpU+L4448fOf9Hf/RH0dPTE8cdd1xMmzYt3ve+98XcuXPjvPPOi4iIN77xjXHGGWfEFVdcEddff33s2LEjrr322uju7j7qHUuOVmGGQg7djmXJkiWxevXqmDJlSvzmb/7mL7y2UqlEpVJ5wXoxcWwfLAAAAAAAAACAI/n0pz8dEyZMiEsvvTQqlUpcdNFFcdNNN418fuLEifG1r30t3vOe98TcuXNjypQp8Yd/+IfxZ3/2Z2NeS2GGQvbu3RtTp06NiIgNGzbEG97whvjbv/3buPjii+PBBx+Mvr6+WLduXUyePPkF15bL5fj4xz8+6tx1110XH7122XiUDgAAAAAAAAC/llKU8i6BX9H69etHfTx58uRYuXJlrFy58rDXnHTSSfGNb3yjxpVFTKh5wlHauHFjnH322TF//vx48skn4x3veEds2LAh/umf/ine8IY3xF//9V+/6EBIRERvb2/s2bNn1NHb2zvOHQAAAAAAAAAAFEdhdgrp6uqKrq6uF/3cLbfccsRrD731zKEGh8eiMgAAAAAAAACA+lOYnUIAAAAAAAAAABg7hkIAAAAAAAAAABJkKAQAAAAAAAAAIEGGQgAAAAAAAAAAEtSUdwEAAAAAAAAA0OgmlPKugBTZKQQAAAAAAAAAIEGGQgAAAAAAAAAAEmQoBAAAAAAAAAAgQYZCAAAAAAAAAAASVKpWq9W8iwAAAAAAAACARnb3//t03iU0rAt/+7i8S6gZO4UAAAAAAAAAACSoKe8CamlwuHZrT26q/4wUepBRrIwUepBRnPVlFCvj4Pq79u6rTUBEvGTqpIiIeKZSu03MjslKERExULs2ouVAG0k83/Xcw3hneE3lu76MYmWk9m/vuaHafV9qbT7wfameH6sU3qMOzXi2hs/3lHF8vlP4913P/y4i0vu3UevX1J6B52sTEBFtLQf+mzjP99FnnPbRb9Zk/R9+4qKISOdxGo+Mev45JLXnQkb+GSn0MN4Zeyu1+/46NTvw/dXzfXQZz+2r4fv5pFLN1gbSkfRQCAAAAAAAAADUg1IY9GHsuX0MAAAAAAAAAECCDIUAAAAAAAAAACTIUAgAAAAAAAAAQIIMhQAAAAAAAAAAJMhQCAAAAAAAAABAggozFLJ9+/aYOXNmdHR0REdHRzz11FPxW7/1WyMff+tb38q7RAAAAAAAAACAutGUdwGHam9vj9tuu23k47a2tli/fn1+BQEAAAAAAADAOCiV8q6AFBVmp5CIiE2bNsX8+fPjmmuuiWq1Gs8880y0t7fHO97xjnj66afzLg8AAAAAAAAAoG4UZihk1qxZ0dfXF3fffXfs2rUrbr/99ti0aVPcddddcfHFF8d111132GsrlUr09/ePOiqVyjhWDwAAAAAAAABQLIUZCsmyLKZMmRKlUimWLFkSDzzwQBx//PEREfF7v/d78cADDxz22nK5HG1tbaOOcrk8XqUDAAAAAAAAABROU94FHLR3796YOnVqRERs2LAhTj/99KhUKpFlWWzYsCFOPfXUw17b29sbPT09o85lWRbVmlYMAAAAAAAAAFBchRkK2bhxY1x77bXR2toaJ598clx99dVx/vnnx5QpUyLLsli1atVhr82yLLIse8H5weFaVgwAAAAAAAAAUFyFGQrp6uqKrq6uUefuu+++nKoBAAAAAAAAAKhvhRkKAQAAAAAAAIBGVcq7AJI0Ie8CAAAAAAAAAAAYe4ZCAAAAAAAAAAASZCgEAAAAAAAAACBBhkIAAAAAAAAAABJkKAQAAAAAAAAAIEGGQgAAAAAAAAAAEmQoBAAAAAAAAAAgQaVqtVrNuwgAAAAAAAAAaGRb+nbnXULDmnvq9LxLqBk7hQAAAAAAAAAAJKgp7wJqaXC4dmtPbqr/jBR6kFGsjBR6kFGc9WUUKyOFHmQUZ30ZjZeRQg8yirO+jGJlpNCDjOKsL6PxMlLoQcYvv37LWVfWJiAiBu6/MSLq+3FKJSOFHmQUKyOFHmQUZ/0UMwCOxE4hAAAAAAAAAAAJMhQCAAAAAAAAAJAgQyEAAAAAAAAAAAkyFAIAAAAAAAAAkKCmvAsAAAAAAAAAgEZXyrsAkmSnEAAAAAAAAACABBVmKGT79u0xc+bM6OjoiI6OjnjqqafiiSeeiDe/+c2xYMGCuO666/IuEQAAAAAAAACgbhTq9jHt7e1x2223jXz8+7//+3HzzTfHy1/+8hyrAgAAAAAAAACoP4XZKSQiYtOmTTF//vy45pprYt++fbF9+/b44Ac/GAsXLozNmzfnXR4AAAAAAAAAQN0ozE4hs2bNir6+vmhtbY2lS5fGl7/85di6dWv8/d//fTQ3N8eiRYvi+9//ft5lAgAAAAAAAADUhcIMhWRZFlmWRUTEkiVL4jvf+U6ceuqpceKJJ0ZExKRJk2J4eDiaml5YcqVSiUql8oL1YmJW+8IBAAAAAAAAAAqoMLeP2bt378jfN2zYEK9+9avj+OOPj927d8ezzz4blUrlRQdCIiLK5XK0tbWNOsrl8niVDgAAAAAAAABQOIXZKWTjxo1x7bXXRmtra5x88smxfPnyOPXUU2PRokUxNDQUH//4xw97bW9vb/T09Iw6l2VZVGtdNAAAAAAAAACMhVLeBZCiwgyFdHV1RVdX16hz559/fmzYsOEXXnvorWcONTg8ZuUBAAAAAAAAANSVwtw+BgAAAAAAAACAsWMoBAAAAAAAAAAgQYZCAAAAAAAAAAASZCgEAAAAAAAAACBBhkIAAAAAAAAAABLUlHcBAAAAAAAAANDoSlHKuwQSZKcQAAAAAAAAAIAEGQoBAAAAAAAAAEhQqVqtVvMuAgAAAAAAAAAa2Xd/vCfvEhrW757SlncJNWOnEAAAAAAAAACABDXlXUAtDQ7Xbu3JTfWfkUIPMoqVkUIPMoqzvoxiZaTQg4zirC+j8TJS6EFGcdaXUayMFHqQUZz1ZTReRgo9yCjO+odmtJx1Zc0yBu6/MSLq+7kYj4wUepBRrIwUepBRnPVTzAA4EjuFAAAAAAAAAAAkyFAIAAAAAAAAAECCbCoEAAAAAAAAADkrlfKugBTZKQQAAAAAAAAAIEGGQgAAAAAAAAAAEmQoBAAAAAAAAAAgQYZCAAAAAAAAAAAS1JR3AQdt37495syZE6985SsjIuKLX/xiXHHFFRER8dxzz8W+ffvi/vvvz7NEAAAAAAAAAIC6UZihkIiI9vb2uO2220Y+Xr9+fURE3HLLLfHoo4/mVBUAAAAAAAAAQP0p1O1jNm3aFPPnz49rrrkmqtXqyPk1a9bEZZddlmNlAAAAAAAAAFA7JUduR8oKMxQya9as6Ovri7vvvjt27doVt99+e0RE7N69O3bs2BGnn376Ya+tVCrR398/6qhUKuNVOgAAAAAAAABA4RRmKCTLspgyZUqUSqVYsmRJPPDAAxER8dWvfjXe8pa3HPHacrkcbW1to45yuTweZQMAAAAAAAAAFFJT3gUctHfv3pg6dWpERGzYsGFkZ5A1a9bEX/7lXx7x2t7e3ujp6Rl1LsuyqB7m6wEAAAAAAAAAUleYnUI2btwYZ599dsyfPz+efPLJeMc73hF79uyJHTt2xGmnnXbEa7Msi2nTpo06siwbp8oBAAAAAAAAAIqnMDuFdHV1RVdX16hzbW1tce+99+ZUEQAAAAAAAABA/SrMTiEAAAAAAAAAAIydwuwUAgAAAAAAAAANq5R3AaTITiEAAAAAAAAAAAkyFAIAAAAAAAAAkCBDIQAAAAAAAAAACTIUAgAAAAAAAACQIEMhAAAAAAAAAAAJMhQCAAAAAAAAAJCgUrVareZdBAAAAAAAAAA0su//+568S2hYc05uy7uEmmnKuwAAAAAAAAAAaHSlKOVdAglKeihkcLh2a09uqv+MFHqQUayMFHqQUZz1ZRQrI4UeZBRnfRmNl5FCDzKKs76MYmWk0MOhGQP7apfRMunAn/X8WKX2fMvIPyOFHmQUZ/3xzmiZ97GaZQxs+vOIqO/HKrXnW0b+GX5ea6yMFHo4NGM8XrcARzIh7wIAAAAAAAAAABh7hkIAAAAAAAAAABJkKAQAAAAAAAAAIEGGQgAAAAAAAAAAEmQoBAAAAAAAAAAgQU15FwAAAAAAAAAAja5UyrsCUlSYnUK2b98eM2fOjI6Ojujo6IinnnoqVq5cGeeee26ce+658ZWvfCXvEgEAAAAAAAAA6kahdgppb2+P2267beTjm266KR544IEYGhqK+fPnx6WXXppjdQAAAAAAAAAA9aMwO4VERGzatCnmz58f11xzTVSr1Zg9e3YMDAzE3r17Y/r06XmXBwAAAAAAAABQNwqzU8isWbOir68vWltbY+nSpXH77bfHJZdcEqeffnrs378/PvvZzx722kqlEpVKZdS5LMsiJma1LhsAAAAAAAAAoJAKs1NIlmUxZcqUKJVKsWTJkti0aVPcfPPN8cgjj8QPf/jD+O///b9HtVp90WvL5XK0tbWNOsrl8jh3AAAAAAAAAABQHIXZKWTv3r0xderUiIjYsGFDnHnmmbF58+aYPHlyTJo0KYaGhqJarUapVHrBtb29vdHT0zPqXJZl8eIjJAAAAAAAAAAA6SvMUMjGjRvj2muvjdbW1jj55JNj+fLlsWPHjpg7d248//zz0d3dHRMmvPjGJlmWHbhdzM8ZHK511QAAAAAAAAAAxVSYoZCurq7o6uoade4jH/lIfOQjH8mpIgAAAAAAAAAYHy+8Zwb8+l586w0AAAAAAAAAAOqaoRAAAAAAAAAAgAQZCgEAAAAAAAAASJChEAAAAAAAAACABBkKAQAAAAAAAABIkKEQAAAAAAAAAIAENeVdAAAAAAAAAAA0vFLeBZAiO4UAAAAAAAAAACSoVK1Wq3kXAQAAAAAAAACN7F8f7c+7hIb1upOm5V1CzdgpBAAAAAAAAAAgQU15F1BLg8O1W3vyzx65gX21y2iZdODPWvVxsIfxeJxkNEZGCj2kmPHsUG02hJrSfODGdqk8TjKObv3n9tVug7HWSQdeU//53P6aZRzbOjEi6vv7d0Ttfw4Zzx5SyajVe23E+L7fpvCaeq6Gz0Xrz56L8XgPGY/32xR+JhyX52IcXlP9g8/XLGPa5AP/LUit+mhN7GfCvTV8Lqb+7Lmo58cqte/fqWQ8U6nd+9Qx2fh8z9g9ULvfAaa3HPgdYMee2n3TOKHtwDeNVF5TvmcUJ+Nb235as4w3nD4jItL43xFSeb5lHN36qfxvOuORsWegdj/btrXU9mfb1H6vvG977XZ+OPs3093ZABg7dgoBAAAAAAAAAEiQoRAAAAAAAAAAgAQZCgEAAAAAAAAASFBT3gUAAAAAAAAAQKMrRSnvEkiQnUIAAAAAAAAAABJkKAQAAAAAAAAAIEGFGQrZvn17zJw5Mzo6OqKjoyOeeuqpWLFiRcybNy8uuuii+I//+I+8SwQAAAAAAAAAqBuFGQqJiGhvb4/169fH+vXrY//+/fH1r389Nm7cGMuXL4/ly5fnXR4AAAAAAAAAQN0o1FDIpk2bYv78+XHNNdfEo48+Gq985SujVCrF6173utiwYUPe5QEAAAAAAAAA1I3CDIXMmjUr+vr64u67745du3bF9u3b4957741KpRLr1q2Lp59+Ou8SAQAAAAAAAADqRlPeBRyUZVlkWRYREUuWLIl77rkn3vOe98Qb3/jGOPPMM+O000477LWVSiUqlcoL1ouJWU1rBgAAAAAAAICxUCrlXQEpKsxOIXv37h35+4YNG+LUU0+Nd77znXHXXXfF4sWLo6Oj47DXlsvlaGtrG3WUy+VxqBoAAAAAAAAAoJgKs1PIxo0b49prr43W1tY4+eSTY/ny5fH2t789du3aFSeddFKsXLnysNf29vZGT0/PqHNZlkW11kUDAAAAAAAAABRUYYZCurq6oqura9S5L33pS0d17aG3njnU4PCYlAYAAAAAAAAAUHcKc/sYAAAAAAAAAADGjqEQAAAAAAAAAIAEGQoBAAAAAAAAAEhQU94FAAAAAAAAAECjK+VdAEmyUwgAAAAAAAAAQIIMhQAAAAAAAAAAJMhQCAAAAAAAAABAggyFAAAAAAAAAAAkqFStVqt5FwEAAAAAAAAAjeyBx/bmXULDeu2JU/MuoWbsFAIAAAAAAAAAkKCmvAuopcHh2q09uan+M1LoQUaxMlLoQUZx1pdRrIwUepBRnPVlNF5GCj3IKM76MoqVkUIPMoqzvozGy0ihBxnFWV/Gr5bRctaVNVl/4P4bIyKdx0lG/hkp9CCjOOunmAFwJN4qAAAAAAAAACBvpbwLIEVuHwMAAAAAAAAAkCBDIQAAAAAAAAAACTIUAgAAAAAAAACQIEMhAAAAAAAAAAAJMhQCAAAAAAAAAJAgQyEAAAAAAAAAAAkq1FDI+vXro7OzMxYsWBB33HFHbNy4Mc4///y44IIL4sEHH8y7PAAAAAAAAACoiZL/y+3/UtaUdwEHDQwMxIoVK2Lt2rXR3NwcERHt7e3x9a9/Pfbu3Rvvfve74xvf+EbOVQIAAAAAAAAA1IfCDIVs2bIlWlpaYtGiRdHa2ho33XRTTJw4MY499tg49thj4+mnn867RAAAAAAAAACAulGYoZCdO3dGX19f3HPPPbFu3bq47rrrYtq0aSOfb2pqiqGhoZFdRA5VqVSiUqmMOpdlWcTErOZ1AwAAAAAAAAAU0YS8Czho+vTpMW/evGhubo7Ozs64//77o7+/f+Tzw8PDLzoQEhFRLpejra1t1FEul8erdAAAAAAAAACAwinMUMicOXNi27ZtUa1WY+vWrXHGGWfE8PBw7N69Ox5//PE47rjjDnttb29v7NmzZ9TR29s7jtUDAAAAAAAAABRLYW4fM2PGjFi8eHG0t7dHqVSKVatWxZNPPhlvetObolQqxU033XTYa7MsO3C7mJ8zOFzLigEAAAAAAAAAiqswQyEREd3d3dHd3T3y8SmnnBKbN2/OsSIAAAAAAAAAgPpUqKEQAAAAAAAAAGhEpVLeFZCiCXkXAAAAAAAAAADA2DMUAgAAAAAAAACQIEMhAAAAAAAAAAAJMhQCAAAAAAAAAJAgQyEAAAAAAAAAAAkyFAIAAAAAAAAAkKCmvAsAAAAAAAAAgEZXyrsAklSqVqvVvIsAAAAAAAAAgEb2gyeeybuEhvWq3zgm7xJqxu1jAAAAAAAAAAASlPTtYwaHa7f25Kb6z0ihBxnFykihBxnFWV9GsTJS6EFGcdZPMeO5odptvtfafGDTyHp+rMbzuRjYV7uMlkkH/qzn52I8MlLoQUZx1pdRrIwUepBRrAzfvxsrI4UeZPzy67fM/WhtAiJiYMsnIqK+HycZxVlfRrEyUuhhvDMAjsROIQAAAAAAAAAACTIUAgAAAAAAAACQIEMhAAAAAAAAAAAJMhQCAAAAAAAAAJCgprwLAAAAAAAAAICGV8q7AFJkpxAAAAAAAAAAgAQVaihk/fr10dnZGQsWLIg77rgjPvrRj8bLXvay+NCHPpR3aQAAAAAAAAAAdaUwt48ZGBiIFStWxNq1a6O5uTkiIubOnRsXXXRRfP3rX8+5OgAAAAAAAACA+lKYnUK2bNkSLS0tsWjRoli8eHHs2LEjTjjhhCiV3DgJAAAAAAAAAOCXVZihkJ07d0ZfX1/ceeedsXTp0li2bNlRX1upVKK/v3/UUalUalcsAAAAAAAAAEDBFWYoZPr06TFv3rxobm6Ozs7OeOihh4762nK5HG1tbaOOcrlcw2oBAAAAAAAAAIqtKe8CDpozZ06sWLEiqtVqbN26NWbPnn3U1/b29kZPT8+oc1mWRXWsiwQAAAAAAACAGihFKe8SSFBhhkJmzJgRixcvjvb29iiVSrFq1ar4zGc+E1/4whfipz/9aTz55JOxevXqF702y7LIsuwF5weHa101AAAAAAAAAEAxFWYoJCKiu7s7uru7Rz6+6qqr4qqrrsqxIgAAAAAAAACA+jQh7wIAAAAAAAAAABh7hkIAAAAAAAAAABJkKAQAAAAAAAAAIEGGQgAAAAAAAAAAEmQoBAAAAAAAAAAgQU15FwAAAAAAAAAAja5UyrsCUmSnEAAAAAAAAACABBkKAQAAAAAAAABIUKlarVbzLgIAAAAAAAAAGtnDP3k27xIa1hkvm5J3CTVjpxAAAAAAAAAAgAQ15V1ALQ0O127tyU31n5FCDzKKlZFCDzKKs76MYmWk0IOM4qwvo/EyUuhBRnHWl1GsjBR6kFGc9WU0XkYKPcgozvoyipUxnj20nHVlzTIG7r8xIur7uUglI4UeZBRn/RQzAI7ETiEAAAAAAAAAAAkyPwYAAAAAAAAAOSvlXQBJslMIAAAAAAAAAECCDIUAAAAAAAAAACTIUAgAAAAAAAAAQIIMhQAAAAAAAAAAJKhQQyHr16+Pzs7OWLBgQdxxxx2xaNGiuOCCC+KCCy6I+++/P+/yAAAAAAAAAADqRlPeBRw0MDAQK1asiLVr10Zzc3NERLz2ta+N2bNnx49+9KP44Ac/GF/72tdyrhIAAAAAAAAAoD4UZihky5Yt0dLSEosWLYrW1ta4+eabY/bs2RER0dzcHBMmFGpTEwAAAAAAAAAYO6W8CyBFhZm02LlzZ/T19cWdd94ZS5cujWXLlo187kMf+lB86EMfyq84AAAAAAAAAIA6U5ihkOnTp8e8efOiubk5Ojs746GHHoqIiOuuuy7OO++8uPDCCw97baVSif7+/lFHpVIZr9IBAAAAAAAAAAqnMEMhc+bMiW3btkW1Wo2tW7fG7Nmz45ZbboknnngiPvzhDx/x2nK5HG1tbaOOcrk8TpUDAAAAAAAAABRPU94FHDRjxoxYvHhxtLe3R6lUilWrVsXpp58ec+bMiY6Ojjj55JPjc5/73Ite29vbGz09PaPOZVkW1fEoHAAAAAAAAACggAozFBIR0d3dHd3d3SMfDw0NHdV1WZZFlmUvOD84PGalAQAAAAAAAADUlcLcPgYAAAAAAAAAgLFjKAQAAAAAAAAAIEGFun0MAAAAAAAAADSiUpTyLoEE2SkEAAAAAAAAACBBhkIAAAAAAAAAABJkKAQAAAAAAAAAIEGGQgAAAAAAAAAAEmQoBAAAAAAAAAAgQYZCAAAAAAAAAAASVKpWq9W8iwAAAAAAAACARvajHc/lXULD+p0TWvMuoWbsFAIAAAAAAAAAkKCmvAuopcHh2q09uan+M1LoQUaxMlLoQUZx1pdRrIwUepBRnPVlNF5GCj3IKM76MoqVkUIPMoqzvozGy0ihBxnFWV9GsTJS6OHQjJazrqxZxsD9N0ZEOo+V15SMelg/xQyAI7FTCAAAAAAAAABAggyFAAAAAAAAAAAkyFAIAAAAAAAAAECCDIUAAAAAAAAAACTIUAgAAAAAAAAAQIKa8i4AAAAAAAAAABpdKe8CSFKhdgpZv359dHZ2xoIFC+KOO+6IK6+8Mtrb22POnDlx22235V0eAAAAAAAAAEDdKMxOIQMDA7FixYpYu3ZtNDc3R0TEJZdcEs3NzbF3796YP39+/N7v/V7OVQIAAAAAAAAA1IfC7BSyZcuWaGlpiUWLFsXixYtjx44dI8Mhzz33XJxxxhk5VwgAAAAAAAAAUD8KMxSyc+fO6OvrizvvvDOWLl0ay5Yti4iIt7/97fGa17wmLrroosNeW6lUor+/f9RRqVTGqXIAAAAAAAAAgOIpzFDI9OnTY968edHc3BydnZ3x0EMPRUTEl770pfjhD38Yf/7nfx7PP//8i15bLpejra1t1FEul8ezfAAAAAAAAACAQinMUMicOXNi27ZtUa1WY+vWrTF79uyR3T5aW1tj6tSpMWHCi5fb29sbe/bsGXX09vaOZ/kAAAAAAAAAAIXSlHcBB82YMSMWL14c7e3tUSqVYtWqVXH55ZfH7t27Y2hoKD72sY8d9tosyyLLshecHxyuZcUAAAAAAAAAMEZKeRdAigozFBIR0d3dHd3d3SMf/8M//EN+xQAAAAAAAAAA1LHC3D4GAAAAAAAAAICxYygEAAAAAAAAACBBhkIAAAAAAAAAABJkKAQAAAAAAAAAIEGGQgAAAAAAAAAAEmQoBAAAAAAAAAAgQU15FwAAAAAAAAAAja4UpbxLIEF2CgEAAAAAAAAASFCpWq1W8y4CAAAAAAAAABrZIzsH8i6hYf3WS1vyLqFm7BQCAAAAAAAAAJCgprwLqKXB4dqtPbmp/jNS6EFGsTJS6EFGcdaXUayMFHqQUZz1ZTReRgo9yCjO+jKKlZFCDzKKs76MxstIoQcZxVlfRrEyUuhhvDNazrqyZhkD998YEfX9WKX2fMvId/0UMwCOxE4hAAAAAAAAAAAJMhQCAAAAAAAAAJAgmwoBAAAAAAAAQM5KpbwrIEV2CgEAAAAAAAAASJChEAAAAAAAAACABBkKAQAAAAAAAABIUKGGQtavXx+dnZ2xYMGCuOOOOyIi4plnnomZM2fG1772tZyrAwAAAAAAAACoH015F3DQwMBArFixItauXRvNzc0j52+44YY4++yzc6wMAAAAAAAAAKD+FGankC1btkRLS0ssWrQoFi9eHDt27Ij+/v548MEH47zzzsu7PAAAAAAAAACAulKYoZCdO3dGX19f3HnnnbF06dJYtmxZfOYzn4krr7wy79IAAAAAAAAAoKZKjtyOX0a5XI45c+bE1KlT4yUveUm89a1vjR/96EejvmZwcDC6u7vj+OOPj2OOOSYuvfTS2Llz56iveeyxx+KSSy6J1tbWeMlLXhIf/vCHY3h4+Jes5hcrzFDI9OnTY968edHc3BydnZ3x3e9+Nx544IGYN2/eL7y2UqlEf3//qKNSqYxD1QAAAAAAAABAo7jrrruiu7s77rnnnvjWt74V+/btize+8Y3x7LPPjnzNBz7wgbjzzjtjzZo1cdddd8VPfvKTWLJkycjn9+/fH5dcckkMDQ3F5s2b4/Of/3zccsst8ad/+qdjXm9hhkLmzJkT27Zti2q1Glu3bo0TTjghnnjiibj44ovj1ltvjeuuuy4effTRF722XC5HW1vbqKNcLo9zBwAAAAAAAABAyv7pn/4p3vWud8UrX/nKeO1rXxu33HJLPPbYY3HfffdFRMSePXvis5/9bHzqU5+KhQsXxtlnnx2f+9znYvPmzXHPPfdERMQ///M/x8MPPxy33nprnHnmmdHV1RXLly+PlStXxtDQ0JjW2zSmq/0aZsyYEYsXL4729vYolUqxatWqOOWUUyIiYtmyZXHOOefESSed9KLX9vb2Rk9Pz6hzWZZFteZVAwAAAAAAAACNas+ePRERcdxxx0VExH333Rf79u2L17/+9SNfc9ppp8WJJ54YW7ZsifPOOy+2bNkSr371q+OlL33pyNdcdNFF8Z73vCceeuihOOuss8asvsIMhUREdHd3R3d39wvOL1u27IjXZVkWWZa94Pzg2N9uBwAAAAAAAABISKVSiUqlMurc4eYQDvX888/H1VdfHfPmzYtXvepVERGxY8eOaG5ujunTp4/62pe+9KWxY8eOka85dCDk4OcPfm4sFeb2MQAAAAAAAAAA461cLkdbW9uoo1wu/8Lruru74wc/+EF86UtfGocqfzWF2ikEAAAAAAAAAGA89fb2Rk9Pz6hzv2iXkCuvvDK+9rWvxd133x2/8Ru/MXL+hBNOiKGhodi9e/eo3UJ27twZJ5xwwsjXfO973xu13s6dO0c+N5bsFAIAAAAAAAAANKwsy2LatGmjjsMNhVSr1bjyyivjjjvuiH/5l3+Jk08+edTnzz777Jg0aVJ8+9vfHjn3ox/9KB577LGYO3duRETMnTs3Hnzwwdi1a9fI13zrW9+KadOmxRlnnDGmvdkpBAAAAAAAAADyVsq7AI5Gd3d3/N3f/V189atfjalTp8aOHTsiIqKtrS1aWlqira0t/uiP/ih6enriuOOOi2nTpsX73ve+mDt3bpx33nkREfHGN74xzjjjjLjiiivi+uuvjx07dsS1114b3d3dv3CHkl+WoRAAAAAAAAAAgKNw8803R0RER0fHqPOf+9zn4l3veldERHz605+OCRMmxKWXXhqVSiUuuuiiuOmmm0a+duLEifG1r30t3vOe98TcuXNjypQp8Yd/+IfxZ3/2Z2Ner6EQAAAAAAAAAICjUK1Wf+HXTJ48OVauXBkrV6487NecdNJJ8Y1vfGMsS3tRE2qeAAAAAAAAAADAuDMUAgAAAAAAAACQoFL1aPY2AQAAAAAAAABq5sdPDeRdQsM6ZWZL3iXUjJ1CAAAAAAAAAAAS1JR3AbU0OFy7tSc31X9GCj3IKFZGCj3IKM76MoqVkUIPMoqzvozGy0ihBxnFWV9GsTJS6EFGcdaX0XgZKfQgozjryyhWRgo9pJjRctaVNcsYuP/GiPCaklEf66eYQTpKUcq7BBJkpxAAAAAAAAAAgAQZCgEAAAAAAAAASJChEAAAAAAAAACABBkKAQAAAAAAAABIkKEQAAAAAAAAAIAEGQoBAAAAAAAAAEhQoYZC1q9fH52dnbFgwYK44447oqOjI+bPnx8dHR3xxS9+Me/yAAAAAAAAAADqRlPeBRw0MDAQK1asiLVr10Zzc3NERHzmM5+JtWvXxjHHHJNzdQAAAAAAAABQO6VS3hWQosLsFLJly5ZoaWmJRYsWxeLFi2PHjh0xYcKEeNOb3hRvfvOb49FHH827RAAAAAAAAACAulGYnUJ27twZfX19cc8998S6deti2bJlsWbNmjj++OPjrrvuive9733xj//4j3mXCQAAAAAAAABQFwqzU8j06dNj3rx50dzcHJ2dnfHQQw/F8ccfHxER7e3t8ZOf/OSw11Yqlejv7x91VCqV8SodAAAAAAAAAKBwCjMUMmfOnNi2bVtUq9XYunVrzJ49O/r7+yMi4uGHH45jjz32sNeWy+Voa2sbdZTL5fEqHQAAAAAAAACgcApz+5gZM2bE4sWLo729PUqlUqxatSoWLlwYLS0tERGxcuXKw17b29sbPT09o85lWRbVmlYMAAAAAAAAAFBchRkKiYjo7u6O7u7ukY/vvffeo7ouy7LIsuwF5weHx6w0AAAAAAAAAIC6UqihEAAAAAAAAABoRKW8CyBJE/IuAAAAAAAAAACAsWcoBAAAAAAAAAAgQYZCAAAAAAAAAAASZCgEAAAAAAAAACBBhkIAAAAAAAAAABJkKAQAAAAAAAAAIEGGQgAAAAAAAAAAEtSUdwEAAAAAAAAA0PBKeRdAikrVarWadxEAAAAAAAAA0Mi2/5/BvEtoWL95/OS8S6gZt48BAAAAAAAAAEhQ0rePGRyu3dqTm+o/I4UeZBQrI4UeUswY2Feb9VsmHfgzlcdJRr7ryyhWRgo9yChWRgo9yCjO+odmPDdUu40vW5tL45YxLo/Vvtr00Tpp/HqQkX9GCj3IKFZGCr8bR/j9uCjryyhWRgo9yPjVMlouXFaT9QfuPrBuKo+TjHzXTzED4EjsFAIAAAAAAAAAkCBDIQAAAAAAAAAACTIUAgAAAAAAAACQIHeaAgAAAAAAAICclaKUdwkkyE4hAAAAAAAAAAAJMhQCAAAAAAAAAJCgQg2FrF+/Pjo7O2PBggVxxx13xO7du+P3f//3Y+HChfHf/tt/y7s8AAAAAAAAAIC60ZR3AQcNDAzEihUrYu3atdHc3BwREVdddVV85CMfibPOOivn6gAAAAAAAAAA6kthhkK2bNkSLS0tsWjRomhtbY2bb7457r///njuuefikUceiauvvjre+ta35l0mAAAAAAAAAEBdKMxQyM6dO6Ovry/uueeeWLduXSxbtiy++93vxooVK+L000+PCy+8MC6++OKYPHnyC66tVCpRqVRGncuyLGJiNl7lAwAAAAAAAAAUyoS8Czho+vTpMW/evGhubo7Ozs546KGH4hWveEXMmTMnjjnmmPid3/mdePLJJ1/02nK5HG1tbaOOcrk8zh0AAAAAAAAAwK+mVHLkdaSsMEMhc+bMiW3btkW1Wo2tW7fG7Nmz47WvfW309fXF/v3748c//nHMmjXrRa/t7e2NPXv2jDp6e3vHuQMAAAAAAAAAgOIozO1jZsyYEYsXL4729vYolUqxatWqGB4ejqVLl8bAwEAsXbo0WveFECgAADmdSURBVFtbX/TaLMsO3C7m5wwO17pqAAAAAAAAAIBiKsxQSEREd3d3dHd3jzr3ne98J6dqAAAAAAAAAADqV2FuHwMAAAAAAAAAwNgxFAIAAAAAAAAAkCBDIQAAAAAAAAAACTIUAgAAAAAAAACQoKa8CwAAAAAAAACARlfKuwCSZKcQAAAAAAAAAIAEGQoBAAAAAAAAAEiQoRAAAAAAAAAAgASVqtVqNe8iAAAAAAAAAKCRPf50Je8SGtYrjsvyLqFm7BQCAAAAAAAAAJCgprwLqKXB4dqtPbmp/jNS6EFGsTJS6EFGcdaXUayMFHqQUZz1ZTReRgo9yCjO+jKKlZFCDzKKs76MxstIoQcZxVn/0IyBfbXLaJk0fhmebxkyXrh+y7kfqk1ARAx87y8jor4fp1QyUuhhvDMAjsRbBQAAAAAAAADkrFTKuwJS5PYxAAAAAAAAAAAJMhQCAAAAAAAAAJAgQyEAAAAAAAAAAAkyFAIAAAAAAAAAkCBDIQAAAAAAAAAACWrKu4BDrV+/PpYvXx7PP/98vP/9749bbrkl9uzZE88//3w8+OCD8Z//+Z95lwgAAAAAAAAAUBcKMxQyMDAQK1asiLVr10Zzc3NERCxevDgiDgyLfP7zn8+zPAAAAAAAAACAulKY28ds2bIlWlpaYtGiRbF48eLYsWPHyOfWrFkTl112WY7VAQAAAAAAAEAtlRy5HekqzFDIzp07o6+vL+68885YunRpLFu2LCIinn/++fjOd74Tr3/96/MtEAAAAAAAAACgjhRmKGT69Okxb968aG5ujs7OznjooYciImLDhg1x3nnnxaRJkw57baVSif7+/lFHpVIZr9IBAAAAAAAAAAqnMEMhc+bMiW3btkW1Wo2tW7fG7NmzI+Lobh1TLpejra1t1FEul8ejbAAAAAAAAACAQmrKu4CDZsyYEYsXL4729vYolUqxatWqeP7552P9+vXxV3/1V0e8tre3N3p6ekady7IsqjWsFwAAAAAAAACgyAozFBIR0d3dHd3d3aPO/eAHP/iF12VZFlmWveD84PCYlQYAAAAAAAAAUFcKc/sYAAAAAAAAAADGTqF2CgEAAAAAAACARlQq5V0BKbJTCAAAAAAAAABAggyFAAAAAAAAAAAkyFAIAAAAAAAAAECCDIUAAAAAAAAAACTIUAgAAAAAAAAAQIIMhQAAAAAAAAAAJKhUrVareRcBAAAAAAAAAI3syd1DeZfQsF4+vTnvEmqmKe8CAAAAAAAAAKDRlfIugCQlPRQyOFy7tSc31X9GCj3IKFZGCj3IKM76MoqVkUIPMoqzvozGy0ihBxnFWV9GsTJS6EFGcdaX0XgZKfQgozjryyhWRgo9yChWxnj20HLWlTXLGLj/xoio7+diPDJS6GG8MwCOZELeBQAAAAAAAAAAMPYMhQAAAAAAAAAAJMhQCAAAAAAAAABAggyFAAAAAAAAAAAkyFAIAAAAAAAAAECCmvIuAAAAAAAAAAAaXamUdwWkyE4hAAAAAAAAAAAJKtRQyPr166OzszMWLFgQd9xxR3zlK1+JOXPmxO/+7u/GjTfemHd5AAAAAAAAAAB1ozC3jxkYGIgVK1bE2rVro7m5OSIi5syZE9/+9rfjmGOOiTPPPDPe+973xoQJhZpjAQAAAAAAAAAopMJMWGzZsiVaWlpi0aJFsXjx4tixY0f8zu/8TvT398fg4GC0tLQYCAEAAAAAAAAAOEqF2Slk586d0dfXF/fcc0+sW7culi1bFpdffnmce+65MXHixLj22msPe22lUolKpTLqXJZlEROzWpcNAAAAAAAAAFBIhdl6Y/r06TFv3rxobm6Ozs7OeOihh+KjH/1oPPjgg9HX1xdf/OIX4z//8z9f9NpyuRxtbW2jjnK5PM4dAAAAAAAAAAAUR2F2CpkzZ06sWLEiqtVqbN26NWbPnh3PPPNMTJ06NZqbm6OpqSkGBwdf9Nre3t7o6ekZdS7LsqiOR+EAAAAAAAAA8GsqRSnvEkhQYYZCZsyYEYsXL4729vYolUqxatWq2Lx5c1xwwQUxceLEeMMb3hCzZs160WuzLDtwu5ifMzhc66oBAAAAAAAAAIqpMEMhERHd3d3R3d098vEpp5wSV1xxRY4VAQAAAAAAAADUpwl5FwAAAAAAAAAAwNgzFAIAAAAAAAAAkCBDIQAAAAAAAAAACTIUAgAAAAAAAACQIEMhAAAAAAAAAAAJasq7AAAAAAAAAABoeKW8CyBFdgoBAAAAAAAAAEiQoRAAAAAAAAAAgASVqtVqNe8iAAAAAAAAAKCR7ejfl3cJDeuEaZPyLqFm7BQCAAAAAAAAAJCgprwLqKXB4dqtPbmp/jNS6EFGsTJS6EFGcdaXUayMFHo4NOO5fbXbKK11Uiki6vuxSu35lpF/Rgo9yCjO+jKKlZFCD4dmDNTwP8hq+dl/cFTPj1Vqz7eM/DNS6EFGcdaXUayMFHqQUayMFHo4NKPlgv9es4yBjcsjor4fq9Se7/H4PQPgSOwUAgAAAAAAAACQoKR3CgEAAAAAAACAelDKuwCSZKcQAAAAAAAAAIAEGQoBAAAAAAAAAEiQoRAAAAAAAAAAgAQZCgEAAAAAAAAASFChhkLWr18fnZ2dsWDBgrjjjjti9erVcd5550VHR0c8/PDDeZcHAAAAAAAAAFA3mvIu4KCBgYFYsWJFrF27Npqbm2P//v0xZ86c+O53vxu7du2K7u7u+Id/+Ie8ywQAAAAAAAAAqAuF2Slky5Yt0dLSEosWLYrFixfHE088ES9/+ctj0qRJ8fKXvzx++MMf5l0iAAAAAAAAAEDdKMxOITt37oy+vr645557Yt26dfHnf/7n8fjjj8eePXviiSeeiL6+vti3b19MmjTpBddWKpWoVCqjzmVZFjExG6/yAQAAAAAAAOBXVirlXQEpKsxOIdOnT4958+ZFc3NzdHZ2xrZt2+ITn/hEvOUtb4nrr78+fvd3f/dFB0IiIsrlcrS1tY06yuXyOHcAAAAAAAAAAFAchRkKmTNnTmzbti2q1Wps3bo1Zs+eHRdffHGsX78+Pvaxj8WrX/3qw17b29sbe/bsGXX09vaOY/UAAAAAAAAAAMVSmNvHzJgxIxYvXhzt7e1RKpVi1apVcfXVV8e//du/xXHHHRd//dd/fdhrsyw7cLuYnzM4XMuKAQAAAAAAAACKqzBDIRER3d3d0d3dPfLxX/3VX+VXDAAAAAAAAABAHSvM7WMAAAAAAAAAABg7hkIAAAAAAAAAABJUqNvHAAAAAAAAAEAjKkUp7xJIkJ1CAAAAAAAAAAASZCgEAAAAAAAAACBBhkIAAAAAAAAAABJkKAQAAAAAAAAAIEGGQgAAAAAAAAAAElSqVqvVvIsAAAAAAAAAgEb21N7hvEtoWDOnNuVdQs3YKQQAAAAAAAAAIEHpjrtExGANB6km/+yRG9hXu4yWSQf+rFUfB3sYj8dJRmNkpNCDjOKsL6NYGePZw3P7areJWeukUkTU93MxHhkp9DDeGfX8M2GE15SM+lpfRrEyUujh0Azv5/muL6PxMg6u/9NnatfEjGMOhNTz4zTeGbV6L0zhfXC8M54bquHvx821/f04tedCRv4ZKfQw3hltv//FmmXsWX1FRHi+jzZjPN7PSYinlBqwUwgAAAAAAAAAQIIMhQAAAAAAAAAAJMhQCAAAAAAAAABAggyFAAAAAAAAAAAkyFAIAAAAAAAAAECCDIUAAAAAAAAAACSoMEMhW7ZsiY6Ojujo6Ijf/u3fjg984AOxcePGOP/88+OCCy6IBx98MO8SAQAAAAAAAKAmSo7cjpQ15V3AQXPnzo3169dHRMS73vWueOtb3xof+9jH4utf/3rs3bs33v3ud8c3vvGNfIsEAAAAAAAAAKgThdkp5KChoaH43ve+F+ecc05MnDgxjj322DjxxBPj6aefzrs0AAAAAAAAAIC6UbihkHXr1kVnZ2fs2bMnpk2bNnK+qakphoaGcqwMAAAAAAAAAKB+FOb2MQetWbMm/st/+S8xffr06O/vHzk/PDwczc3NL3pNpVKJSqUy6lyWZRETs5rWCgAAAAAAAABQVIXaKWTfvn3x/e9/Py644IJobW2N4eHh2L17dzz++ONx3HHHHfa6crkcbW1to45yuTyOlQMAAAAAAAAAFEuhdgpZt25dLFy4MCZMODCr8j/+x/+IN73pTVEqleKmm2467HW9vb3R09Mz6lyWZVGtabUAAAAAAAAAAMVVqKGQrq6u6OrqGvn4wgsvjM2bN//C67IsO3C7mJ8zODym5QEAAAAAAABATZRKeVdAigp1+xgAAAAAAAAAAMaGoRAAAAAAAAAAgAQZCgEAAAAAAAAASJChEAAAAAAAAACABBkKAQAAAAAAAABIkKEQAAAAAAAAAIAEGQoBAAAAAAAAAEhQU94FAAAAAAAAAECjK0Up7xJIUKlarVbzLgIAAAAAAAAAGtnTz+7Pu4SGddyUiXmXUDNuHwMAAAAAAAAAkKCkbx8zOFy7tSc31X9GCj3IKFZGCj3IKM76MoqVkUIPMoqzvozGy0ihBxnFWV9GsTJS6EFGcdaX0XgZKfQgozjryyhWRgo9yChWRgo9pJjRctaVNVl/4P4bIyKdx2k8MgCOxE4hAAAAAAAAAAAJMhQCAAAAAAAAAJAgQyEAAAD/X3v3HmdVWe8P/DswMFwE9EV4CUXL29HyzlXkIoPAABVRKoYikxe0FBC1IkvBS1NmJSapr06GqKlhXk5KpaNSaih00hLvGiBKgPqTO8yN9fuDwxxGUPG49uw9i/f79dovZhazv5/nWWs/ez0bnlkLAAAAACCD3GkKAAAAAAAAAPKsqCjfLSCLXCkEAAAAAAAAACCDLAoBAAAAAAAAAMggi0IAAAAAAAAAADKoON8N2GLu3LkxefLkiIhYunRpDBs2LEpKSmLmzJnxta99La655po8txAAAAAAAAAAoOkomEUhvXr1ijlz5kRExNixY2PEiBFx8MEHx+DBg+PBBx/Mb+MAAAAAAAAAAJqYgrt9THV1dcybNy/69OkTe+65ZxQVFeW7SQAAAAAAAAAATU7BXClki8rKyigtLY1mzXZ8vUpVVVVUVVU12FZSUhLRvCTt5gEAAAAAAAAANAkFd6WQWbNmxYknnvixnlNRUREdOnRo8KioqMhRCwEAAAAAAAAACl9BXSmkpqYm5s+fH7/61a8+1vMmT54ckyZNarCtpKQkkjQbBwAAAAAAAADQhBTUopDKysoYMGBA/a1jpk2bFjNnzox33nkn3nrrrbjjjju2+7ySkpLNt4t5n421OW0uAAAAAAAAAEDBKqhFIWVlZVFWVlb//YQJE2LChAl5bBEAAAAAAAAAQNPULN8NAAAAAAAAAAAgfRaFAAAAAAAAAABkkEUhAAAAAAAAAAAZVJzvBgAAAAAAAADAzq6oKN8tIItcKQQAAAAAAAAAIIMsCgEAAAAAAAAAyCCLQgAAAAAAAAAAMsiiEAAAAAAAAACADCpKkiTJdyMAAAAAAAAAYGe2ckNdvpuw09q1dfN8NyFnXCkEAAAAAAAAACCDivPdgFzaWJu72q2Km35GFvogo7AystAHGYVTX0ZhZWShDzIKp76MnS8jC32QUTj1ZRRWRhb6IKNw6svY+TKy0AcZhVNfRmFlZKEPMgorIwt9kPHx67c+6rzcBETEhmeuj4imvZ+2zgD4MN4qAAAAAAAAACDPiqIo300gg9w+BgAAAAAAAAAggywKAQAAAAAAAADIIItCAAAAAAAAAAAyyKIQAAAAAAAAAIAMsigEAAAAAAAAACCDivPdgC3mzp0bkydPjoiIpUuXxrBhw+K1116L9957LyIifv7zn8dRRx2VzyYCAAAAAAAAADQZBbMopFevXjFnzpyIiBg7dmyMGDEi9tlnn/jsZz8bL7/8clx44YXxwAMP5LeRAAAAAAAAAJADRUX5bgFZVHC3j6muro558+ZFnz594rOf/WxERLRs2TKaNSu4pgIAAAAAAAAAFKyCW2lRWVkZpaWlDRaBXHTRRXHRRRflsVUAAAAAAAAAAE1Lwdw+ZotZs2ZFeXl5/feXXXZZ9OzZM/r27fuBz6mqqoqqqqoG20pKSiKal+SsnQAAAAAAAAAAhaygrhRSU1MT8+fPj+OOOy4iImbMmBFvvvlmXHzxxR/6vIqKiujQoUODR0VFRWM0GQAAAAAAAACgIBXUlUIqKytjwIAB0axZs6irq4uzzz47unXrFv3794/PfOYz8etf/3q7z5s8eXJMmjSpwbaSkpJIGqPRAAAAAAAAAAAFqKAWhZSVlUVZWVlERDRv3jyqq6t36HklJSWbbxfzPhtrU20eAAAAAAAAAECTUVC3jwEAAAAAAAAAIB0FdaUQAAAAAAAAANgZFeW7AWSSK4UAAAAAAAAAAGSQRSEAAAAAAAAAABlkUQgAAAAAAAAAQAZZFAIAAAAAAAAAkEEWhQAAAAAAAAAAZJBFIQAAAAAAAAAAGVSUJEmS70YAAAAAAAAAwM5sTdWmfDdhp9WuJLvX08huzwAAAAAAAAAAdmLF+W5ALm2szV3tVv+z5zbU5C6jdYvNf+aqH1v60Bj7ScbOkZGFPsgonPoyCisjC32QUTj1ZRRuxpqNuflNhHatNq9Fz8p+kpHf+ltnNMbnsab8mS8i9/uqMfvQlPdTRDb2VRbeo7KYsb4mdxcBbtOiKCK8pmQ0jfpZzGjK56WsHQsZ+c/IQh9kFE79rTNaD7suZxkbHhwfERHrqnM3X2vbsihntYHscKUQAAAAAAAAAIAMsigEAAAAAAAAACCDLAoBAAAAAAAAAMggi0IAAAAAAAAAADKoON8NAAAAAAAAAICdXVEU5bsJZJArhQAAAAAAAAAAZFDBXClk7ty5MXny5IiIWLp0aQwbNixqamriueeei/Xr18e3v/3t+OpXv5rnVgIAAAAAAAAANA0FsyikV69eMWfOnIiIGDt2bIwYMSJ69eoVLVu2jDVr1kSfPn0sCgEAAAAAAAAA2EEFd/uY6urqmDdvXvTp0ydatmwZERHr16+PQw89NM8tAwAAAAAAAABoOgpuUUhlZWWUlpZGs2abmzZq1Kg4/PDDY/DgwXluGQAAAAAAAABA01Ewt4/ZYtasWVFeXl7//Z133hnvvfde9OjRI0477bT6xSJbq6qqiqqqqgbbSkpKIpqX5Ly9AAAAAAAAAACFqKCuFFJTUxPz58+P4447LiKifqFHmzZtol27dttdEBIRUVFRER06dGjwqKioaLR2AwAAAAAAAAAUmoK6UkhlZWUMGDCgfvHHySefHCtXrozq6uq45JJLPvB5kydPjkmTJjXYVlJSEklOWwsAAAAAAAAA6SgqyncLyKKCWhRSVlYWZWVl9d/fd999O/S8kpKSzbeLeZ+NtWm1DAAAAAAAAACgaSmo28cAAAAAAAAAAJAOi0IAAAAAAAAAADLIohAAAAAAAAAAgAyyKAQAAAAAAAAAIIMsCgEAAAAAAAAAyKDifDcAAAAAAAAAAHZ2RfluAJnkSiEAAAAAAAAAABlkUQgAAAAAAAAAQAZZFAIAAAAAAAAAkEFFSZIk+W4EAAAAAAAAAOzM1lf7r/t8adOyKN9NyBlXCgEAAAAAAAAAyKDifDcglzbW5q52q//ZcxtqcpfRusXmP3PVjy19aIz9JGPnyMhCH7KYsS5Hq0rb/s+KyazsJxn5rb91Ri5XQm9Z6bu+JocZLZr+2MjCa1bG/y1j1YZNOanfofXmtehN+bwX8b/nPu8hO1a/KX9WitjqvOR457V+Y2esqcrN+2BERLuSxnsvdLx3rozGeL/NVcaW+murcvdeu0vJ5vfa99bX5SxjtzbNI8Jr6qM05vk7K3OERe9uzFnGfh1bRYRzhoymk5GFPmyd0Rjn78b4fOx471jGV3/995xl3F1+dM5qA9nhSiEAAAAAAAAAABmU6SuFAAAAAAAAAECTUJTvBpBFrhQCAAAAAAAAAJBBFoUAAAAAAAAAAGSQRSEAAAAAAAAAABlkUQgAAAAAAAAAQAYVzKKQuXPnRv/+/aN///5x0EEHxQUXXBAREWvXro1OnTrFAw88kOcWAgAAAAAAAAA0HcX5bsAWvXr1ijlz5kRExNixY2PEiBEREXHdddfFMccck7+GAQAAAAAAAAA0QQWzKGSL6urqmDdvXtx8882xevXqeO6556Jnz575bhYAAAAAAAAA5ExRFOW7CWRQwdw+ZovKysooLS2NZs2axbRp0+K88877yOdUVVXF6tWrGzyqqqoaobUAAAAAAAAAAIWp4BaFzJo1K0488cRYtWpV/OMf/4jevXt/5HMqKiqiQ4cODR4VFRWN0FoAAAAAAAAAgMJUULePqampifnz58evfvWrmD9/frz55psxZMiQeO211+L3v/99HHbYYbHvvvtu87zJkyfHpEmTGmwrKSmJpLEaDgAAAAAAAABQYApqUUhlZWUMGDAgmjVrFj169IinnnoqIiKmTJkSXbt23e6CkIjNC0BKSkq22b6xNqfNBQAAAAAAAAAoWAW1KKSsrCzKysq22T5lypTGbwwAAAAAAAAAQBPWLN8NAAAAAAAAAAAgfRaFAAAAAAAAAABkUEHdPgYAAAAAAAAAdkZFRfluAVnkSiEAAAAAAAAAABlkUQgAAAAAAAAAwMcwffr02G+//aJVq1bRo0ePmDdvXr6btF0WhQAAAAAAAAAA7KC77rorJk2aFJdddln8/e9/jyOOOCIGDx4cK1asyHfTtmFRCAAAAAAAAADADvrpT38aZ511VpSXl8ehhx4aN954Y7Rp0yZuvvnmfDdtGxaFAAAAAAAAAADsgOrq6vjv//7vGDhwYP22Zs2axcCBA2Pu3Ll5bNn2FSVJkuS7EQAAAAAAAACwM9tYm+8W7LyK6qqiqqqqwbaSkpIoKSnZ5meXLl0anTt3jr/+9a/Rq1ev+u3f+ta34s9//nM8/fTTOW/vx+FKIRFRVVUVU6ZM2eYgy8hmRhb6IKOwMrLQBxmFU19GYWVkoQ8yCisjC32QUTj1ZRRWRhb6IKNw6svY+TKy0AcZhVNfRmFlZKEPMgqnvoydLyMLfZBROPVpGloVe+TrUVFRER06dGjwqKioyPdLIhWuFBIRq1evjg4dOsSqVauiffv2MjKekYU+yCisjCz0QUbh1JdRWBlZ6IOMwsrIQh9kFE59GYWVkYU+yCic+jJ2vows9EFG4dSXUVgZWeiDjMKpL2Pny8hCH2QUTn3gw1VV7fiVQqqrq6NNmzZx9913x4gRI+q3n3766bFy5cq4//77c93cj8WVQgAAAAAAAACAnVZJSUm0b9++wWN7C0IiIlq2bBnHHHNMPPLII/XbNm3aFI888kiD28kUiuJ8NwAAAAAAAAAAoKmYNGlSnH766dG1a9fo3r17XHvttbFu3booLy/Pd9O2YVEIAAAAAAAAAMAOOvnkk+Ptt9+OSy+9NJYtWxZHHnlk/PGPf4w99tgj303bhkUhsflSMJdddtkHXv5FRrYystAHGYWVkYU+yCic+jIKKyMLfZBRWBlZ6IOMwqkvo7AystAHGYVTX8bOl5GFPsgonPoyCisjC32QUTj1Zex8GVnog4zCqQ+k77zzzovzzjsv3834SEVJkiT5bgQAAAAAAAAAAOlqlu8GAAAAAAAAAACQPotCAAAAAAAAAAAyyKIQAAAAAAAAAIAMsigEAAAAAAAAACCDdspFIXV1dXHXXXfF+PHj49RTT43x48fHXXfdFbW1tY2SP3PmzFTq1NXVxT333BP33Xdf1NXV1W+fNWtWKvUjIpYvXx4/+MEP4v77748lS5bEueeeGxdddFEsX748tYztmThxYqr13n333fqv77333pgyZUrcdtttsWnTplTq33///RERsWLFijj33HOjX79+UV5eHgsXLkylfkTEhRdeGI8//nhq9bbnlVdeiXHjxsX3vve9WLp0aYwaNSqGDh0aTz31VGoZmzZtirvvvjvGjx8fp512Wlx88cXxxBNPpFafwlddXZ3vJnxiab13QNYY36Slsebl7LglS5bkuwmfSHV1dSxcuDA2btyY76Z8IqtWrcrpZ7GtP1ey83D+huwyvkmL+XnhMT8vHLmcozfG/Nz4LkxNfYwDhWenXBTy9a9/PV5//fUYO3ZsTJ06NcaOHRv/+te/ory8PNWcF154YZvH888/HzfddFMq9ceMGRN/+9vf4tlnn42+ffvGa6+9FhERN9xwQyr1IyJGjx4dnTt3jiVLlsSgQYOitLQ0Bg0aFF//+tdTy9h9992ja9eu0b179+jWrVt069YtZsyYEd27d08t48QTT4yIiEsuuST+8Ic/RI8ePeKFF15IrR/XXXddRESce+658cUvfjEefvjhOOecc1LdTw888EDcfPPN8bnPfS4mTJiQk4UUZ555Zpx22mnRvXv36N27d3zrW9+KX/ziFzFp0qTUMs4+++xYtGhRfOlLX4q99947qqur45FHHokf/vCHqWUsXbo0zjnnnDj22GOjZ8+e0bt37zj33HPjrbfeSi3jg1x44YWp1VqyZEmcf/75MXHixHj99dfrt19yySWp1H/iiSfihBNOiEmTJkVlZWUcffTR0a9fv3jyySdTqR+x7fvg888/HwMHDowXX3wxtYxHHnkkIiJWrlwZ48ePj/79+8eZZ56Z6vGeOnVqRETMnTs3unfvHn369Ilu3brF7NmzU8s45phj4oorroiXX345tZpbu+eee6Jr165xwgknxB//+Mfo2rVrHHHEEfHLX/4ytYzly5fHN7/5zTj88MNjn332iRNOOCGuuuqqVD/gZ2F853psRxjfH0eux3eux3ZEdsb3888/H8OGDYtjjz02BgwYEL169Yrhw4fHc889l1rGBxk9enRqtf7xj3/EF77whRgxYkSD+doZZ5yRSv3f/e53cdRRR8Wpp54at956axx88MHRrVu3uO+++1KpHxExe/bsBo8HH3wwRo4cmep57/bbb4+IiDfeeCO+9KUvRbdu3WLw4MGxYMGC1DLOPffciNi8gLtXr15xySWXRP/+/ePmm29OLaNjx45xxhlnxJ/+9Kec/IPt9OnT44gjjohevXrFL3/5yxg+fHiccsopMWXKlNQyXnrppfjyl78chxxySLRu3Tr69OkT3/jGN+L//b//l1qG8/eOcf7ecc7fO8b8fMdlYYwb3zsuC2Pc/HzH5Xp+HpH7Obr5+Y7L9fw8Ivdz9MaYnxvfOy4rn8EBItkJ9enT52Nt/79q165dUl5enowdO7bBo3PnzqnU79evX/3XixYtSvr27Zs8+uijyfHHH59K/fdn9OjRo/7rAQMGpJbxm9/8Jhk5cmRy55131m8bMmRIavWTJKnfJ3379m2w/f3f/1+VlpYmNTU1yeDBg5OamprU6ydJkvTv3z9JkiSprq5OZs+enZSXlyeHHXZYMmHChNQyth4DBx98cP3XW78OPqn3v3ZKS0uTJEmSgQMHppYxcODA5Mknn2yw7cknn6zPSsP06dO3eVx//fXJIYccklpGaWlp8tBDDyWPPfZY0q9fv2TWrFlJkiSpjfGePXsmixcvTv75z38me+21V7JkyZLk3XffTfV1W1JSkpSWljZ4L+zcuXNSXl6eWsaW/TF69Ojk1ltvTdavX5/88Y9/TAYNGpRaxpbXbWlpabJs2bIkSZJk7dq1Sc+ePVPL6N69ezJjxoxk2LBhSdeuXZMrrrgiefnll1Or36NHj2T9+vXJsmXLkk9/+tPJ6tWrk5qamgbv7Z/UkCFDkvnz5ye1tbXJH/7wh2TixInJnDlzkq9//eupZWRhfOd6bCeJ8f1x5Hp853psJ0l2xnefPn2SN954o8G2N954IznuuONSy7j44ou3eVx00UXJfvvtl1pGnz59kldeeSVZuHBh8pWvfCX5yU9+kiTJ/87lPqnu3bsna9euTZYtW5bsueeeycqVK5ONGzcmvXv3TqV+kiRJp06dkrKysmTq1KnJlClTkilTpiQHHHBAMnXq1NQytozvL33pS8mf//znJEmS5Pnnn0/1fWrLueH4449P1q5dmyRJktTW1ia9evVKLaNv377JnDlzkm9+85vJoYcempxxxhnJn/70p6Suri6V+lvei9atW5d06dIlqa6uTpIkSY499thU6ifJ5v3z1ltvJUmSJAsWLEjGjh2bvPLKK8mJJ56YWobz945x/t5xzt87xvx8x2VhjBvfOy4LY9z8fMflen6eJLmfo5uf77hcz8+TJPdz9MaYnxvfOy4rn8EBivO9KCUfjj322BgzZkwMGjQo2rdvH6tXr47Kysro2bNnqjmHHHJI/PjHP46OHTs22D5s2LBU6ldXV0dVVVWUlJTEvvvuGw888ECMGjUq1dWcNTU19V9vfYWTNC8pdsopp8TJJ58cd9xxR4wYMSJOOumkSJIktfoREQsWLIiTTjopXn311diwYUO0bt06IiLWrVuXSv3vf//7MXLkyOjQoUP9b8a8+OKLMWrUqFTqb61FixZRVlYWZWVlUVtbG5WVlanV3n///WP06NGRJEl07949zjjjjOjYsWPsueeeqWV8+tOfjssuuyyOPPLIePTRR+Ooo46KiHQvhbd+/fro0aNHg23dunWLDRs2pJYxZcqUuOaaa7Z5rTZv3jy1jNra2jjhhBMiIuKhhx6KcePGxUsvvZRa/ZKSkujSpUtERBx44IGx9957R0REs2bpXUTq5Zdfjh//+MdRVFQUF198cXTp0iXKyspS/Q2ALd5666049dRTIyJi8ODBUVFRkVrtXXbZJf79739Hp06d6t//6urqokWLFqlltG3bNk4//fQ4/fTTY9WqVXH//ffHhRdeGMuXL4958+Z94vpJkkSrVq2irq4umjVrFiUlJVFcXBxFRUUptH6zNWvWRNeuXSMiYsCAAfGjH/0ofvazn8Xll1+eWkYWxneux3aE8f1x5Hp853psR2RnfNfV1UWHDh0abGvfvn2qlwy//fbb4ze/+c022x977LHUMpIkiQMPPDAiIu6+++6YMmVKnHnmmanNn1u3bh1t27aNtm3bRv/+/ev3WZrnpIULF8a0adNiwYIFcf7550evXr3iqaeeiksvvTS1jLq6uli/fn2899570bdv34iIOPTQQ1OrH7H5ioT/+Mc/4oADDoiXX345jj766Fi0aFG0atUqtYzmzZtHv379ol+/fpEkSTz++OMxa9asuOiii+Kf//znJ65fV1cX69ati5UrV0ZtbW2sW7cu2rZtm+rnsQ0bNtTP97t06RKLFy+OAw88sMEtOD8p5+8d80Hn7zQ/Y2T5/F1bW+v8/T7m5zuupqamyY/xLI/vpvb5OyL3YzzL8/MkSZrU/Dwi93P0hQsXxnXXXRfPPfec+flHyPX8PCL3c/St5+f77LNPLFq0KPX5eZY/f5911llNanxHRPzrX/+Kn//85w3G+NNPP53qGAfYKReF/PCHP4x//vOf8de//jWWLFkSu+66a1xwwQVxxBFHpJrz8MMPR9u2bbfZ/uCDD6ZSf9q0abFy5crYY489IiKiXbt28V//9V9xxx13pFI/IuLee++NJEmiqKiofv/U1NTENddck1pGxOb/pBo9enSccsopcdttt8WRRx6Zav358+fXf11cvPllv3bt2rjyyitTqd+vX7/o0aNHzJ07N5YvXx677rprXHrppdssCPoktvcBu7i4OIYMGZJaxs033xzPPvts7L333vGpT30qHnrooUiSpP4fRtJwyy23xL333huvvvpqDB48OIYPHx4RkerrduLEidGnT5849NBDo3379rFq1ap46aWXYuLEialllJWVxaBBg7ZZMJPmpUebN28ey5Ytiz333DNatmwZv/71r2Pq1Kmp3TroU5/6VNTW1kZxcXH8+c9/joj07yG57777xvXXXx+LFi2KioqKKCoqivXr16ea8eabb0a3bt1i7dq18d5778Vuu+0W1dXVsXbt2tQyfvGLX8SFF15Y/58kBx54YHTs2DGuvvrq1DK2/gfODh06xJgxY2LMmDGxevXqVOqPGTMmDjvssNh///3je9/7XnTv3j3atGkTX/nKV1KpHxExcuTIGDhwYHzuc5+Lv/3tb/WXBd19991Ty5g4cWL07ds3DjnkkCY7vnM9tiOyNb67d+/epMd3rsd2ROOM7y9/+cs5H99XX311fPGLX4zi4uJo165drFmzJmpra1O9xdyYMWPikEMO2abdY8aMSS1jt912i0WLFsV+++0XEZv/I+uWW26JW2+9NZX6hx12WP343jJ/qq6ujl133TWV+hGb/6Pku9/9bqxZsyamTZsWP/vZz2LVqlWp1Y/YPP8fPnx4tGjRon58r1mzJtX3kRtuuCEuu+yyePnll+PYY4+NLl26xBFHHBE33nhjahnt27ev/7qoqCj69u0bffv2TW2R+7e//e0YMGBAHHzwwXHTTTfFcccdFyUlJXHBBRekUj8iYvz48dG9e/f624ZuGXOHH354ahkfND+fMGFCahn5OH9ffvnl8fjjj6dSP+KDz99p/tLE+8/fEZH6+XvJkiV5m5//6Ec/SqV+Ps/fI0eOTC2jMc7f7x/fq1evjhdffLFJje+Izf++0tTHeGPOz9esWdMo4/uggw6KAw44INXxHZGfMd6jR49o3bp1amO8MT5/bz0/3zK+a2trUz0WWZifR+R+jt62bduYPHlyzufnw4YNi+Li4kaZn/fu3Tv22WefJjc/j4j4zne+E8cff3z8x3/8R9x0003Rp0+faNmyZWq3YJ8wYUJ069YtOnfuHG+++WZO5ufvH9+rVq2Kurq6TIzvGTNmxMyZM1PLaIzP4LvsskuDMf7Tn/40Vq5cmVp9gIjYOW8fA2RfbW1t8uKLLyZ//etfkxdeeCGpqalJbrnllpznppmxZs2aZOPGjdtsv+KKK1LL2J6bbropZ7Vff/315J577sn5saiurk5+9KMfpV63pqYm+fe//51s2LAhSZJ0j/eWmu+Xq321evXqZO3atanXX7ZsWfL0008n77zzTv22NDNqa2uTu+++O7nqqquSv/zlL/Xj+7e//W1qGTU1Ncnvfve75N57701qa2vrt6eVsWbNmuT222/fpn6a++mD+jBz5szUMmpraxtkbBnfaR+Lu+++u0E/qqurk7vuuiu1jC2vqd/+9rfJkiVL6sdimsc7l6+nJNl2P20Z32ln3HbbbcnVV1/dYHynmbFs2bLkyiuvTO68885k8eLFydlnn51MmjSp/rLhafj3v/+dXHXVVcl9992XvPHGG8k555yTXHjhhY2SsXTp0pzWT7MPy5Ytq89YvHhxUl5engwYMCD1/XTllVfmvB9bMhYvXtyoxzutjO3tp1yMi6lTpya//e1vc7afkuR/5+dz585NXnjhheQb3/hGqvW3J81bba5duzapqqrapv6bb76ZWsb2jB8/fpvcNL3++uvJEUcckbP6W3zzm99MVqxYkXrdrefnaR7v7X0OS7P+9qxevTo544wzUq+7bNmyZN68ecm7776bJEn6/XjnnXfqx/dVV12VnHTSScnMmTNTvUz/1nOPe+65J7nsssuSW2+9NdWMJUuW1I+1rTOWLFmSWsb2+jFz5sxk3bp1qdf/3e9+l5x22mmp76e33367/uut91Oa43tLP2pqapLbb789ufjii3NyvLfI1Wvq/cdj0qRJqWa888479Z+/77rrrpz04b777kuSZPNc4eyzz066deuWnH766cm//vWv1DOWL1+enHPOOUnfvn2TsWPHyviI+kcddVQydOjQVPtw7733Jkmy+byR6/20JaNPnz5N7lhsnbF1P9IcG/fdd19SV1dX/7k4F/tp0qRJyV/+8pdk/fr1ydKlS5P169enVvv9Gbl0wQUXbDcjzffCxujH+zNWrVqVPP300znNBHY+RUmS8n06APLshRde2O72s846K5588smcZSRJEmeffXZOMyLS60e++pCVjIim9ZrKQh8iIkaPHh377bdftGjRIh5++OG45ZZb4oADDogBAwbEo48+mlrGvvvuGy1btsxJRq7rZy2jMY53LjPspx03cODA+t/QnD59elxxxRXRvn37mDZtWmpX2stCxsCBA+O0006LNWvW5LQPjZHR1I/Floxc7qus7Kfdd989unTpEs2aNav/Lc3XXnstDjzwwNQu07+9jFdffTUOOuigVDJyXT8fGRGb52pZ6MeWjLReU/nqwyuvvNLkjveWucAll1wSK1asiJEjR8bjjz8eS5cujRkzZjTJjLfffju+/OUvN7l+NGYfvve978WKFSuafEZT3leN0YfS0tJ45JFH4itf+UqcddZZMWDAgHjmmWfiO9/5Tmq3f9g648wzz4zS0lIZH1E/K8ciK/1oqsf74IMPjt69e8e8efOitLQ0TjzxxDjuuONSqb11xrHHHhvz5s2LgQMHyshzBoArhQCZ065du6S8vDwZO3Zsg0fnzp1lNGJ9GYWVkYU+JEmS9OvXr/7rRYsWJf369UseffTR5Pjjj89ZRt++fVPNyHX9fGU0xWPRGBlZ6EM+Mnr06FH/9YABAzKRkYvXVC7qf1hGU9pPH5bRlF5TWTkWv/nNb5KRI0cmd955Z/22IUOGpFa/MTKy0AcZhVM/Sxlb3iv69u3bYPv7v5eR+4ws9EFG4dRPkiQpLS1NampqksGDByc1NTUy8piRhT7IKJz6SZIk/fv3T5Jk89VYZ8+enZSXlyef//znU72i2PYyDjvsMBl5ygAozveiFIC0HXLIIfHjH/84Onbs2GD7sGHDZDRifRmFlZGFPkRsvmdnVVVVlJSUxL777hu///3vY9SoUfHcc8/lLOOBBx5INSPX9fOV0RSPRWNkZKEPjZVRU1NT//VNN91U/3VtbW0mMurq6ppE/Q/LaEr76cMymtJrKivH4pRTTomTTz457rjjjhgxYkScdNJJqd7XvTEystAHGYVTP0sZCxYsiJNOOileffXV2LBhQ7Ru3ToiItatWyejkTOy0AcZhVM/IuL73/9+jBw5Mjp06BA9e/aM3r17x4svvhijRo2S0cgZWeiDjMKpv7UWLVpEWVlZlJWVRW1tbVRWVsrIeAaw83L7GCBzVq9eHW3bto3mzZvLyGN9GYWVkYU+RETMnz8/unTpEnvssUf9trq6urjjjjvi1FNPbRIZWeiDjMKpn6WMFStWRKdOnaKoqKh+W01NTTz77LPRrVs3GY1UX0ZhZWShD++3adOmuO222+KFF16IH/7wh6nXb4yMLPRBRuHUb+oZixcvrv/605/+dLRo0SLWrl0bTzzxRAwZMkRGI2ZkoQ8yCqf+Fhs3boy5c+fG8uXLY9ddd41u3bpt84sgMhonIwt9kFE49Z966qno2bNnavVkFH4GgEUhAAAAAAAAAAAZ1CzfDQAAAAAAAAAAIH0WhQAAAAAAAAAAZJBFIQAAAAAAAAAAGWRRCAAAAAAAAABABlkUAgAAAB/TfvvtF2PHjq3/fs6cOVFUVBRz5szJW5ve7/1tBAAAAGDnY1EIAAAATc6MGTOiqKio/tGqVas46KCD4rzzzovly5fnu3k7bPbs2TFlypR8NwMAAACAjCrOdwMAAADg/+ryyy+Pz3zmM7Fx48Z44okn4oYbbojZs2fHggULok2bNo3Wjr59+8aGDRuiZcuWH+t5s2fPjunTp1sYAgAAAEBOWBQCAABAk1VWVhZdu3aNiIgzzzwzOnbsGD/96U/j/vvvj1NOOWWbn1+3bl20bds29XY0a9YsWrVqlXpdAAAAAPgk3D4GAACAzBgwYEBERCxcuDDGjh0bu+yyS7z++usxdOjQaNeuXYwePToiIjZt2hTXXnttfO5zn4tWrVrFHnvsEePGjYv33nuvQb0kSeLKK6+MvffeO9q0aRPHH398PP/889vkzpkzJ4qKimLOnDkNtj/99NMxdOjQ2G233aJt27Zx+OGHx7Rp0yIiYuzYsTF9+vSIiAa3wtki7TYCAAAAsPNxpRAAAAAy4/XXX4+IiI4dO0ZERG1tbQwePDiOO+64uOaaa+pvKTNu3LiYMWNGlJeXx/jx42PhwoVx/fXXxzPPPBNPPvlktGjRIiIiLr300rjyyitj6NChMXTo0Pj73/8egwYNiurq6o9sy8MPPxzDhw+PvfbaKyZMmBB77rlnvPjii/HAAw/EhAkTYty4cbF06dJ4+OGH49Zbb93m+Y3RRgAAAACyzaIQAAAAmqxVq1bFO++8Exs3bownn3wyLr/88mjdunUMHz485s6dG1VVVXHiiSdGRUVF/XOeeOKJ+M///M+4/fbb42tf+1r99uOPPz6GDBkSs2bNiq997Wvx9ttvx9VXXx3Dhg2L3//+9/VX8bjkkkviBz/4wYe2q66uLsaNGxd77bVXPPvss7HrrrvW/12SJBER0atXrzjooIPi4YcfjlNPPbXB8xujjQAAAABkn9vHAAAA0GQNHDgwOnXqFPvss0+MGjUqdtlll7j33nujc+fO9T9z7rnnNnjOrFmzokOHDnHCCSfEO++8U/845phjYpdddonHHnssIiIqKyujuro6zj///Aa3dZk4ceJHtuuZZ56JhQsXxsSJExssCImIBrU+SGO0EQAAAIDsc6UQAAAAmqzp06fHQQcdFMXFxbHHHnvEwQcfHM2a/e/vPxQXF8fee+/d4DmvvvpqrFq1Knbfffft1lyxYkVERCxevDgiIg488MAGf9+pU6fYbbfdPrRdW25j8/nPf/7jdagR2wgAAABA9lkUAgAAQJPVvXv36Nq16wf+fUlJSYNFIhERmzZtit133z1uv/327T6nU6dOqbbx/6IptBEAAACAwmdRCAAAADuV/fffPyorK6N3797RunXrD/y5fffdNyI2X7Xjs5/9bP32t99+O957772PzIiIWLBgQQwcOPADf+6DbiXTGG0EAAAAIPuaffSPAAAAQHacdNJJUVdXF1dcccU2f1dbWxsrV66MiIiBAwdGixYt4uc//3kkSVL/M9dee+1HZhx99NHxmc98Jq699tr6eltsXatt27YREdv8TGO0EQAAAIDsc6UQAAAAdir9+vWLcePGRUVFRTz77LMxaNCgaNGiRbz66qsxa9asmDZtWnz1q1+NTp06xUUXXRQVFRUxfPjwGDp0aDzzzDPxhz/8IT71qU99aEazZs3ihhtuiC984Qtx5JFHRnl5eey1117x0ksvxfPPPx9/+tOfIiLimGOOiYiI8ePHx+DBg6N58+YxatSoRmkjAAAAANlnUQgAAAA7nRtvvDGOOeaYuOmmm+K73/1uFBcXx3777Rennnpq9O7du/7nrrzyymjVqlXceOON8dhjj0WPHj3ioYceimHDhn1kxuDBg+Oxxx6LqVOnxk9+8pPYtGlT7L///nHWWWfV/8zIkSPj/PPPjzvvvDNuu+22SJIkRo0a1WhtBAAAACDbipKtry8LAAAAAAAAAEAmNMt3AwAAAAAAAAAASJ9FIQAAAAAAAAAAGWRRCAAAAAAAAABABlkUAgAAAAAAAACQQRaFAAAAAAAAAABkkEUhAAAAAAAAAAAZZFEIAAAAAAAAAEAGWRQCAAAAAAAAAJBBFoUAAAAAAAAAAGSQRSEAAAAAAAAAABlkUQgAAAAAAAAAQAZZFAIAAAAAAAAAkEEWhQAAAAAAAAAAZND/B/IiuL1pBwsiAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["✅ تم حفظ رسم Accuracy & Loss: /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/cnn+bilstm_acc_loss_sub.png\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABW0AAAHqCAYAAAB/bWzAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA3GZJREFUeJzs3Xd4VNXaxuHfpPdeaCn0TpAqHQ8giCIiCGJBsH16wIZ6jlgRCx4LYgULTQVREBVFUUSRLk2U3klo6aT3mfn+2ClEWkImmSQ893XNNTN71l77nQjnDE/WvMtktVqtiIiIiIiIiIiIiEi14GDvAkRERERERERERESkhEJbERERERERERERkWpEoa2IiIiIiIiIiIhINaLQVkRERERERERERKQaUWgrIiIiIiIiIiIiUo0otBURERERERERERGpRhTaioiIiIiIiIiIiFQjCm1FREREREREREREqhGFtiIiIiIiIiIiIiLViEJbERERERERERERkWpEoa2IiA29//77mEwmunbtau9SRERERETsYu7cuZhMJrZs2WLvUkREaiyFtiIiNjR//nwiIyPZtGkTBw8etHc5IiIiIiIiIlIDKbQVEbGRI0eOsH79eqZNm0ZwcDDz58+3d0nnlJmZae8SREREREREROQCFNqKiNjI/Pnz8ff359prr2XEiBHnDG1TUlJ45JFHiIyMxNXVlQYNGjBmzBgSExOLx+Tk5DB58mSaNWuGm5sbdevW5cYbb+TQoUMArFq1CpPJxKpVq0rNffToUUwmE3Pnzi0+NnbsWLy8vDh06BCDBw/G29ubW2+9FYA1a9Zw0003ER4ejqurK2FhYTzyyCNkZ2efVffevXsZOXIkwcHBuLu707x5c5566ikAfvvtN0wmE19//fVZ5y1YsACTycSGDRvK/fMUERERkdrrzz//5JprrsHHxwcvLy/69evHxo0bS43Jz8/n+eefp2nTpri5uREYGEjPnj1ZsWJF8ZjY2FjGjRtHgwYNcHV1pW7dugwdOpSjR49W8TsSEbEtJ3sXICJSW8yfP58bb7wRFxcXRo8ezYwZM9i8eTOdO3cGICMjg169erFnzx7uvPNOOnToQGJiIkuXLuX48eMEBQVhNpu57rrrWLlyJTfffDMPPfQQ6enprFixgp07d9K4ceNy11VQUMDAgQPp2bMnr7/+Oh4eHgAsWrSIrKws7r//fgIDA9m0aRPvvPMOx48fZ9GiRcXn//333/Tq1QtnZ2fuvfdeIiMjOXToEN999x0vvfQSffv2JSwsjPnz5zNs2LCzfiaNGzemW7duFfjJioiIiEhtsmvXLnr16oWPjw//+c9/cHZ25oMPPqBv3778/vvvxftDTJ48malTp3L33XfTpUsX0tLS2LJlC9u2bWPAgAEADB8+nF27dvHAAw8QGRlJfHw8K1asICYmhsjISDu+SxGRilFoKyJiA1u3bmXv3r288847APTs2ZMGDRowf/784tD2tddeY+fOnSxZsqRUuPn0009jtVoB+OSTT1i5ciXTpk3jkUceKR7zxBNPFI8pr9zcXG666SamTp1a6vj//vc/3N3di5/fe++9NGnShCeffJKYmBjCw8MBeOCBB7BarWzbtq34GMArr7wCgMlk4rbbbmPatGmkpqbi6+sLQEJCAj///HPxilwRERERETA+/+bn57N27VoaNWoEwJgxY2jevDn/+c9/+P333wFYtmwZgwcP5sMPPzznPCkpKaxfv57XXnuNxx57rPj4pEmTKv9NiIhUMrVHEBGxgfnz5xMaGspVV10FGEHmqFGjWLhwIWazGYCvvvqKqKios1ajFo0vGhMUFMQDDzxw3jGX4v777z/r2JmBbWZmJomJiXTv3h2r1cqff/4JGMHr6tWrufPOO0sFtv+sZ8yYMeTm5rJ48eLiY1988QUFBQXcdtttl1y3iIiIiNQuZrOZn3/+mRtuuKE4sAWoW7cut9xyC2vXriUtLQ0APz8/du3axYEDB845l7u7Oy4uLqxatYrTp09XSf0iIlVFoa2ISAWZzWYWLlzIVVddxZEjRzh48CAHDx6ka9euxMXFsXLlSgAOHTpEmzZtLjjXoUOHaN68OU5OtvsihJOTEw0aNDjreExMDGPHjiUgIAAvLy+Cg4Pp06cPAKmpqQAcPnwY4KJ1t2jRgs6dO5fq4zt//nyuvPJKmjRpYqu3IiIiIiI1XEJCAllZWTRv3vys11q2bInFYuHYsWMATJkyhZSUFJo1a0bbtm15/PHH+fvvv4vHu7q68r///Y8ff/yR0NBQevfuzauvvkpsbGyVvR8Rkcqi0FZEpIJ+/fVXTp06xcKFC2natGnxbeTIkQDn3JCsIs634rZoRe8/ubq64uDgcNbYAQMGsGzZMv773//yzTffsGLFiuJNzCwWS7nrGjNmDL///jvHjx/n0KFDbNy4UatsRUREROSS9e7dm0OHDjF79mzatGnDxx9/TIcOHfj444+Lxzz88MPs37+fqVOn4ubmxjPPPEPLli2LvzkmIlJTqaetiEgFzZ8/n5CQEN57772zXluyZAlff/01M2fOpHHjxuzcufOCczVu3Jg//viD/Px8nJ2dzznG398fMHp4nSk6OrrMNe/YsYP9+/czb948xowZU3z8zJ14geKvrF2sboCbb76ZiRMn8vnnn5OdnY2zszOjRo0qc00iIiIiUvsFBwfj4eHBvn37znpt7969ODg4EBYWVnwsICCAcePGMW7cODIyMujduzeTJ0/m7rvvLh7TuHFjHn30UR599FEOHDhA+/bteeONN/jss8+q5D2JiFQGrbQVEamA7OxslixZwnXXXceIESPOuk2YMIH09HSWLl3K8OHD+euvv/j666/Pmqdok7Hhw4eTmJjIu+++e94xERERODo6snr16lKvv//++2Wu29HRsdScRY/feuutUuOCg4Pp3bs3s2fPJiYm5pz1FAkKCuKaa67hs88+Y/78+QwaNIigoKAy1yQiIiIitZ+joyNXX3013377LUePHi0+HhcXx4IFC+jZsyc+Pj4AJCUllTrXy8uLJk2akJubC0BWVhY5OTmlxjRu3Bhvb+/iMSIiNZVW2oqIVMDSpUtJT0/n+uuvP+frV155JcHBwcyfP58FCxawePFibrrpJu688046duxIcnIyS5cuZebMmURFRTFmzBg++eQTJk6cyKZNm+jVqxeZmZn88ssv/Pvf/2bo0KH4+vpy00038c4772AymWjcuDHff/898fHxZa67RYsWNG7cmMcee4wTJ07g4+PDV199dc4NHN5++2169uxJhw4duPfee2nYsCFHjx5l2bJlbN++vdTYMWPGMGLECABeeOGFsv8gRURERKTWmT17NsuXLz/r+OTJk1mxYgU9e/bk3//+N05OTnzwwQfk5uby6quvFo9r1aoVffv2pWPHjgQEBLBlyxYWL17MhAkTANi/fz/9+vVj5MiRtGrVCicnJ77++mvi4uK4+eabq+x9iohUBoW2IiIVMH/+fNzc3BgwYMA5X3dwcODaa69l/vz55ObmsmbNGp577jm+/vpr5s2bR0hICP369SveKMzR0ZEffviBl156iQULFvDVV18RGBhIz549adu2bfG877zzDvn5+cycORNXV1dGjhzJa6+9dtENw4o4Ozvz3Xff8eCDDxb3/xo2bBgTJkwgKiqq1NioqCg2btzIM888w4wZM8jJySEiIqK4Z++ZhgwZgr+/PxaL5bxBtoiIiIhcHmbMmHHO42PHjmXNmjVMmjSJqVOnYrFY6Nq1K5999hldu3YtHvfggw+ydOlSfv75Z3Jzc4mIiODFF1/k8ccfByAsLIzRo0ezcuVKPv30U5ycnGjRogVffvklw4cPr5L3KCJSWUzWf36/VURE5BIVFBRQr149hgwZwqxZs+xdjoiIiIiIiEiNpJ62IiJiM9988w0JCQmlNjcTERERERERkfLRSlsREamwP/74g7///psXXniBoKAgtm3bZu+SRERERERERGosrbQVEZEKmzFjBvfffz8hISF88skn9i5HREREREREpEbTSlsRERERERERERGRakQrbUVERERERERERESqEYW2IiIiIiIiIiIiItWIk70LqGoWi4WTJ0/i7e2NyWSydzkiIiIiUg5Wq5X09HTq1auHg8Plu/5An2lFREREaqayfp697ELbkydPEhYWZu8yRERERKQCjh07RoMGDexdht3oM62IiIhIzXaxz7OXXWjr7e0NGD8YHx8fO1cjIiIiIuWRlpZGWFhY8We6y5U+04qIiIjUTGX9PHvZhbZFXx/z8fHRB1wRERGRGupybwmgz7QiIiIiNdvFPs9evo3ARERERERERERERKohhbYiIiIiIiIiIiIi1YhCWxEREREREREREZFq5LLraVtWZrOZ/Px8e5chtYSzszOOjo72LkNEREREREREqillUbWDrTIghbb/YLVaiY2NJSUlxd6lSC3j5+dHnTp1LvuNU0RERERERESkhLKo2scWGZBC238o+ksSEhKCh4eHAjapMKvVSlZWFvHx8QDUrVvXzhWJiIiIiIiISHWhLKr2sGUGZPfQ9r333uO1114jNjaWqKgo3nnnHbp06XLOsfn5+UydOpV58+Zx4sQJmjdvzv/+9z8GDRpkk1rMZnPxX5LAwECbzCkC4O7uDkB8fDwhISFqlSAiIiIiIiIiyqJqIVtlQHbdiOyLL75g4sSJPPfcc2zbto2oqCgGDhxYnEb/09NPP80HH3zAO++8w+7du7nvvvsYNmwYf/75p03qKeob4uHhYZP5RM5U9OdK/WlEREREREREBJRF1Va2yIDsGtpOmzaNe+65h3HjxtGqVStmzpyJh4cHs2fPPuf4Tz/9lCeffJLBgwfTqFEj7r//fgYPHswbb7xh07q0DF0qg/5ciYiIiIiIiMi5KDOoXWzx39NuoW1eXh5bt26lf//+JcU4ONC/f382bNhwznNyc3Nxc3Mrdczd3Z21a9dWaq0iIiIiIiIiIiIiVcVuoW1iYiJms5nQ0NBSx0NDQ4mNjT3nOQMHDmTatGkcOHAAi8XCihUrWLJkCadOnTrvdXJzc0lLSyt1k7KJjIxk+vTp9i5DRERERERERERqOeVQpdm1PUJ5vfXWWzRt2pQWLVrg4uLChAkTGDduHA4O538bU6dOxdfXt/gWFhZWhRVXDZPJdMHb5MmTL2nezZs3c++999qkxs8//xxHR0fGjx9vk/lERERERERERKTqVeccqm/fvjz88MMVmqO6sFtoGxQUhKOjI3FxcaWOx8XFUadOnXOeExwczDfffENmZibR0dHs3bsXLy8vGjVqdN7rTJo0idTU1OLbsWPHbPo+qoNTp04V36ZPn46Pj0+pY4899ljxWKvVSkFBQZnmDQ4Otlkj7FmzZvGf//yHzz//nJycHJvMeany8vLsen0RERERERERkZqqJuRQtYHdQlsXFxc6duzIypUri49ZLBZWrlxJt27dLnium5sb9evXp6CggK+++oqhQ4eed6yrqys+Pj6lbrVNnTp1im++vr6YTKbi53v37sXb25sff/yRjh074urqytq1azl06BBDhw4lNDQULy8vOnfuzC+//FJq3n8uSzeZTHz88ccMGzYMDw8PmjZtytKlSy9a35EjR1i/fj1PPPEEzZo1Y8mSJWeNmT17Nq1bt8bV1ZW6desyYcKE4tdSUlL4v//7P0JDQ3Fzc6NNmzZ8//33AEyePJn27duXmmv69OlERkYWPx87diw33HADL730EvXq1aN58+aAsbFdp06d8Pb2pk6dOtxyyy3Ex8eXmmvXrl1cd911+Pj44O3tTa9evTh06BCrV6/G2dn5rFYeDz/8ML169broz0REREREREREpCaq7jnUhXz11VfF+VNkZCRvvPFGqdfff/99mjZtipubG6GhoYwYMaL4tcWLF9O2bVvc3d0JDAykf//+ZGZmVqieC7Fre4SJEyfy0UcfMW/ePPbs2cP9999PZmYm48aNA2DMmDFMmjSpePwff/zBkiVLOHz4MGvWrGHQoEFYLBb+85//VFqNVquVrLwCu9ysVqvN3scTTzzBK6+8wp49e2jXrh0ZGRkMHjyYlStX8ueffzJo0CCGDBlCTEzMBed5/vnnGTlyJH///TeDBw/m1ltvJTk5+YLnzJkzh2uvvRZfX19uu+02Zs2aVer1GTNmMH78eO6991527NjB0qVLadKkCWAE+ddccw3r1q3js88+Y/fu3bzyyis4OjqW6/2vXLmSffv2sWLFiuLANz8/nxdeeIG//vqLb775hqNHjzJ27Njic06cOEHv3r1xdXXl119/ZevWrdx5550UFBTQu3dvGjVqxKefflo8Pj8/n/nz53PnnXeWqzYREZFqyWKBvCzISoa0k5CfXfJa2ik48Avs+R5s+HlFqq+t0adZtOUYpzP1jSUREZHKpByqtEvJoc5n69atjBw5kptvvpkdO3YwefJknnnmGebOnQvAli1bePDBB5kyZQr79u1j+fLl9O7dGzBWF48ePZo777yTPXv2sGrVKm688Uab/sz+yanSZi6DUaNGkZCQwLPPPktsbCzt27dn+fLlxZuTxcTElOpXm5OTw9NPP83hw4fx8vJi8ODBfPrpp/j5+VVajdn5Zlo9+1OlzX8hu6cMxMPFNv+JpkyZwoABA4qfBwQEEBUVVfz8hRde4Ouvv2bp0qWlVrn+09ixYxk9ejQAL7/8Mm+//TabNm1i0KBB5xxvsViYO3cu77zzDgA333wzjz76KEeOHKFhw4YAvPjiizz66KM89NBDxed17twZgF9++YVNmzaxZ88emjVrBnDBdhjn4+npyccff4yLi0vxsTPD1UaNGvH222/TuXNnMjIy8PLy4r333sPX15eFCxfi7OwMUFwDwF133cWcOXN4/PHHAfjuu+/Iyclh5MiR5a5PRETEJiwW477o81PyEYj9G3JSITvFuM9JhZzCx/0nQ2hrY+xfC2HFs5CfAwU5YM4tPffohdD8GuPx4VXwzX3G46fjwcm1ct+X2N1/Fv/FoYRMPrurKz2bBtm7HBERkVpLOVRp5c2hLmTatGn069ePZ555BjAynt27d/Paa68xduxYYmJi8PT05LrrrsPb25uIiAiuuOIKwAhtCwoKuPHGG4mIiACgbdu25a6hPOwa2gJMmDDhvP9xVq1aVep5nz592L17dxVUVft06tSp1POMjAwmT57MsmXLiv/gZWdnX/Q3HO3atSt+7OnpiY+Pz1ktBc60YsUKMjMzGTx4MGD0Mh4wYACzZ8/mhRdeID4+npMnT9KvX79znr99+3YaNGhQKiy9FG3bti0V2ILxG5bJkyfz119/cfr0aSyF/9CNiYmhVatWbN++nV69ehUHtv80duxYnn76aTZu3MiVV17J3LlzGTlyJJ6enhWqVURE5IKsVjj4C2xfAJkJJQFsdirkpsGdP0F4V2Ps/uWw/Inzz9X57pLQ1pwPGXHnHufgBOYzVlh6BkOdtuDkDpYCQKFtbRcR6MmhhEyikzPpiUJbERERuTB75VAXsmfPnrNarPbo0YPp06djNpsZMGAAERERNGrUiEGDBjFo0KDi1gxRUVH069ePtm3bMnDgQK6++mpGjBiBv7//JdVSFnYPbas7d2dHdk8ZaLdr28o/g8THHnuMFStW8Prrr9OkSRPc3d0ZMWLERTfp+meAaTKZisPOc5k1axbJycm4u7sXH7NYLPz99988//zzpY6fy8Ved3BwOGspen5+/lnj/vn+MzMzGThwIAMHDmT+/PkEBwcTExPDwIEDi38GF7t2SEgIQ4YMYc6cOTRs2JAff/zxrF80iIiI2Nya1+HXF8//ek5KyWO/cAjrCm5+4OYL7oX3Rc9DWpWMbT4Y7lsLTm7GzdndWEHr5A6O//jI2LS/cZPLRniAsSlITFKWnSsRERGp3ZRDlVbeHKoivL292bZtG6tWreLnn3/m2WefZfLkyWzevBk/Pz9WrFjB+vXr+fnnn3nnnXd46qmn+OOPP4q/SW5rCm0vwmQy2WxpeHWybt06xo4dy7BhwwDjNx5Hjx616TWSkpL49ttvWbhwIa1bty4+bjab6dmzJz///DODBg0iMjKSlStXctVVV501R7t27Th+/Dj79+8/52rb4OBgYmNjsVqtmEwmwFidezF79+4lKSmJV155hbCwMMDoXfLPa8+bN4/8/Pzzrra9++67GT16NA0aNKBx48b06NHjotcWEREpF4sF8tKNkBWg7U2w7m244nao38EIYM8MY93P+G1/i2uNW1l4Bho3kXOICDRC22iFtiIiIpVKOVTladmyJevWrTurrmbNmhXvneTk5ET//v3p378/zz33HH5+fvz666/ceOONmEwmevToQY8ePXj22WeJiIjg66+/ZuLEiZVSb+37UyBl0rRpU5YsWcKQIUMwmUw888wzNv9NxaeffkpgYCAjR44sDlSLDB48mFmzZjFo0CAmT57MfffdR0hICNdccw3p6emsW7eOBx54gD59+tC7d2+GDx/OtGnTaNKkCXv37sVkMjFo0CD69u1LQkICr776KiNGjGD58uX8+OOP+Pj4XLC28PBwXFxceOedd7jvvvvYuXMnL7zwQqkxEyZM4J133uHmm29m0qRJ+Pr6snHjRrp06ULz5s0BGDhwID4+Prz44otMmTLFpj8/ERG5zFkssOdb+P01CGwMowo3v/SPhEf3gova8UjVKQ5tkxXaioiISPlVRQ5VJCEh4awFfXXr1uXRRx+lc+fOvPDCC4waNYoNGzbw7rvv8v777wPw/fffc/jwYXr37o2/vz8//PADFouF5s2b88cff7By5UquvvpqQkJC+OOPP0hISKBly5aV8h4AHC4+RGqjadOm4e/vT/fu3RkyZAgDBw6kQ4cONr3G7NmzGTZs2FmBLcDw4cNZunQpiYmJ3HHHHUyfPp3333+f1q1bc91113HgwIHisV999RWdO3dm9OjRtGrViv/85z+YzWbA+C3J+++/z3vvvUdUVBSbNm3iscceu2htwcHBzJ07l0WLFtGqVSteeeUVXn/99VJjAgMD+fXXX8nIyKBPnz507NiRjz76qNSqWwcHB8aOHYvZbGbMmDGX+qMSEREpYTHDjsUwoxssGgvxu+DI75B1xi65CmylioUHGH/mYpIyK3WXZBEREamdqiKHKrJgwQKuuOKKUrePPvqIDh068OWXX7Jw4ULatGnDs88+y5QpUxg7diwAfn5+LFmyhH/961+0bNmSmTNn8vnnn9O6dWt8fHxYvXo1gwcPplmzZjz99NO88cYbXHPNNZXyHgBM1svsU1daWhq+vr6kpqaetRozJyeHI0eO0LBhQ9zc3OxUodQ0d911FwkJCSxduvSC4/TnS0RELshcADsXw+rXIOmgcczNF678N3T9v9JtDy5jF/osdzmp6p9DboGZFs8sx2qFLU/3J8hLm8+JiIjYgrKC2ulC/13L+jlO7RFELlFqaio7duxgwYIFFw1sRURELmrbPFhW2A/L3R+6jYcu95b0sq2min7/f65v1kjt4erkSD1fd06kZBOdlKXQVkRERKSSKbQVuURDhw5l06ZN3HfffQwYMMDe5YiISE1TkAdpJyCgcLfZqJth04fQbhR0uQdcvSu9hLwCC+k5+WTkFpCeY9wycgvIyM0vfm4cyyej6HlugfG48FhGbgF/PXd1rdwwQ0oLD/AoDG0z6Rihld8iIiIilUmfrkUu0apVq+xdgoiIXIzVCtmnISMeMuON+5wUcHACB2dofwsUrRA9sQ2yksDB0XjN0blwnJPxOLglOBRuB5CZCDmpYCkAcz5Y8o32BpZ843lED3As/Jh1fKvR7qDoNUsBZKfA1rnGKtr71hrzunjCvzeW1HPBt2VlX1w6yZl5ZOWaycwrIDPXTFaeEaJm5ZnJLLw3nhuvFx0zxheQb7ZNl6yMnAKFtpeBiEAPNhxOIjpJm5GJiIiIVDZ9uhYREZGaxWo1AtMzg9iix/k5MOjlkrHzhsDRNeeex+QAV9xa8nzNG7D3+/Nf96k4cCjsR/XD47BryfnHPhEDjoVtDbbOgT8/Pfc4SwGkRJesti1DYLvzRCrPf7eLzUdPX3RsWXm6OOLt5oyXmxNerk54uxk347HzP44Z47zdnPB2dcLLzYlAfVX+shAe6AFATLJCWxEREZHKptBWRERE7K9oRWxmwhlhbMK5g9hPhsKR3889j8kRrn6xZEWsR6Bx7+YLXqHgGQLufmC1nH2ufyTUjSpZMWspKP3Y4YyPTS6e4OJtrKY9c1Wuo7Px/Mx9XkNaQqO+/xjnAhHdoP1t4Fy2DScSM3J5/ad9fLHlGFYruDo5EBbggaerE54ujni4OOHl6oiHqxG2erg44uniZLzuarzu6Xr2MS9XJxwd1I9WLi4iwBOA6KRMO1ciIiIiUvsptBUREamtrFY4fRRi/4bkI0bwiBVcfaHrvSXjNn8MaSeN8VaLMcZqMZ67eMJVT5Yee/qosUrV5Gi0Eii6d3SBng+XjN33I6QeN1aPFo3JSSsJYge/WjK2PEGse2EvTVdf8Ao2glivM26WAnBwMcYMeQtu/BCcyrASdOBLFx9TZOi7xq0suo03bpcor8DCJxuO8tYvB0jPLTAu374e/x3Ugnp+7pc8r0h5RWilrYiIiEiVUWgrIiJSG1itpb9a/8VtcHg15KaePdYvvHRo++dncPLPc8/rEVQ6tN25BKLXnXuss0fp0Hbzx3Dwl3OPNTnAoKlGkAvgEWDcu/mWhLCewYX3IcZqV4fC4HXIdBg2E5zLEFi6+118TDX22954Xvh+N4cTjZWNber7MHlIazpFBti5MrkcFbVHSMzIIyO3AC9X/VNCREREpLLok5aIiEhNk58D8buNFbSn/oJTf0NuOkzYVDImJ80IbB1dIKQVBDc3HptMJS0DirQZDmFdjSAVU+HKWAfj3sXr7LH1O4DFAlYzWMwl947OpceGdzNW6lrMxspdixlcvQrbFAQXrogtDG2HvAXDPijbilj32r9r/cH4DF5ctptV+xIACPJy4T8DWzCiYwMc1MpA7MTHzRl/D2dOZ+UTk5RFq3o+9i5JREREpNZSaCsiIlJd5WeDk1vJCtrfX4Pd30DC3sJWB/+QlVyyYrX/ZCNEDWoOTi4Xvk73B8peU+e7yj6292NlH+vmW/axtVhqdj5vrzzAvPVHKbBYcXY0cWePhkz4VxO83ZwvPoFIJYsI9OR0VgoxyZkKbUVEREQqkUJbKda3b1/at2/P9OnT7V2KiIh9ZZ+G41ug6YCSY/t/hhNbjVWe7n7g5lf63jO4ZNXohRRtUFUUxB5dZ8ybEQfpsWfcxxsrZf97tGRladoJiNtpPHYPgLrtoE47Y/OsulFGLUXqd6jAD0Cqmtli5YvNx3j9530kZ+YB0L9lCE9d24qGQZ52rk6kRESgB9uPpXA0SX1tRUREpGKUQ12YQttaYMiQIeTn57N8+fKzXluzZg29e/fmr7/+ol27dja5XnZ2NvXr18fBwYETJ07g6lqGr7KKiFRn5nw4vhkO/QaHfoWT24yv8z+yG3zrG2MO/GT0aD2fB7ZBYGPj8R8fGL1fi0Ld/KzSoeyje0uC2J1fwZZZ5583Pa5kbIcxRpBcpx34Nijdw1ZqrI2Hk3j+u93sOZUGQJMQL565rhV9mgXbuTKRs0UEGH1toxXaioiIXLaqKoeaO3cuDz/8MCkpKRWap6ZSaFsL3HXXXQwfPpzjx4/ToEGDUq/NmTOHTp062SywBfjqq69o3bo1VquVb775hlGjRtls7vKyWq2YzWacnPRHWUQuweHf4Y+ZcGQN5KWXfi2oOaSfKgltw7sZPVlzUiA75ez7M1e5JuyDYxvPf90zg9iwrpCbZvR59a4DXnXAO9R47hVaum2AVs/WKsdPZzH1h70s23EKAG83Jx7p34zbu0Xg7Ohg5+pEzi080Fj5HZOcaedKRERExF6qOoe6XOlfBLXAddddR3BwMHPnzi11PCMjg0WLFnHXXXeRlJTE6NGjqV+/Ph4eHrRt25bPP//8kq43a9YsbrvtNm677TZmzTp7ddiuXbu47rrr8PHxwdvbm169enHo0KHi12fPnk3r1q1xdXWlbt26TJgwAYCjR49iMpnYvn178diUlBRMJhOrVq0CYNWqVZhMJn788Uc6duyIq6sra9eu5dChQwwdOpTQ0FC8vLzo3Lkzv/xSesfy3Nxc/vvf/xIWFoarqytNmjRh1qxZWK1WmjRpwuuvv15q/Pbt2zGZTBw8ePCSfk4iUs1kJcOuryH58BnHEmHfD0Zg6x5gbLJ1/bvwyC5jU68GnUrGth0BQ6bDTXNhzDdw7yp4aLvRvuDZM3rJAnS+G26aZ2yu1f95uOY1GPkJ3PkTPLgdApuUjI0aBcM/hoEvGb1l290EDXsbG4e5+2k1bQ1msVhJzconOimT7cdSWLUvnm/+PMHcdUeYvHQX/d74nWU7TuFgglu7hrPqsb7c2bOhAlup1iICtdJWRETkclfVOdT5xMTEMHToULy8vPDx8WHkyJHExcUVv/7XX39x1VVX4e3tjY+PDx07dmTLli0AREdHM2TIEPz9/fH09KR169b88MMPNq2vorQ8sazyLrCawOQIzm5lHOsAzu4XH+tS9v51Tk5OjBkzhrlz5/LUU09hKvwH/qJFizCbzYwePZqMjAw6duzIf//7X3x8fFi2bBm33347jRs3pkuXLmW+1qFDh9iwYQNLlizBarXyyCOPEB0dTUREBAAnTpygd+/e9O3bl19//RUfHx/WrVtHQYGxYc6MGTOYOHEir7zyCtdccw2pqamsW7euzNcv8sQTT/D666/TqFEj/P39OXbsGIMHD+all17C1dWVTz75hCFDhrBv3z7Cw8MBGDNmDBs2bODtt98mKiqKI0eOkJiYiMlk4s4772TOnDk89ljJpjlz5syhd+/eNGnS5HxliIgtWcyQehySD0HSIQhpCZE9jdfys2HDe+DoUnhzLv3YP7JkFarFAif/NI7npMLhVXD4NzixDbDCv54p2SCr0VXQ7zlofBXUiQKHSwzL/nleaCvjJjVagdlCVr6ZrFwzWXkFZOWZC28FpOcUkJKVR0pWPqez8knJNh6XHMsjNTsfi/XC1+jaMIDnhrTWhk5SYxS1RziZkk1egQUXJ/2SQUREpFIoh7ogi8VSHNj+/vvvFBQUMH78eEaNGlW88O/WW2/liiuuYMaMGTg6OrJ9+3acnY3NfcePH09eXh6rV6/G09OT3bt34+XlVeG6bEmhbVm9XO/8rzW9Gm5dVPL8tSZG/8JziegJ45aVPJ/eFrKSzh43ObVc5d1555289tpr/P777/Tt2xcwQsfhw4fj6+uLr69vqUDygQce4KeffuLLL78s11+W2bNnc8011+Dvb3ytd+DAgcyZM4fJkycD8N577+Hr68vChQuL/yI0a9as+PwXX3yRRx99lIceeqj4WOfOncv1XgGmTJnCgAElGwQFBAQQFRVV/PyFF17g66+/ZunSpUyYMIH9+/fz5ZdfsmLFCvr37w9Ao0aNisePHTuWZ599lk2bNtGlSxfy8/NZsGDBWatvRcSGspJh7ZvGytekg5B8BMy5Ja93vrsktM1Nh19fOP9cUbfAsBnG44Js+Phf5x4X3NJYvVrEIwB6TazQ25Dqp8BsITU7n5TsfFKy8knNLglXU7PySMspIDO3oDCQNcLY7HwzmbkFZOeZi4PaPLPFJvV4uDji5+6Mn4cLfh7O+Hu44OvhTJ9mwVzdKrT4Q65ITRDs7Yq7syPZ+WZOpGRrozwREZHKohzqglauXMmOHTs4cuQIYWFhAHzyySe0bt2azZs307lzZ2JiYnj88cdp0aIFAE2bNi0+PyYmhuHDh9O2bVugdEZUXSi0rSVatGhB9+7dmT17Nn379uXgwYOsWbOGKVOmAGA2m3n55Zf58ssvOXHiBHl5eeTm5uLh4VHma5jNZubNm8dbb71VfOy2227jscce49lnn8XBwYHt27fTq1ev4sD2TPHx8Zw8eZJ+/fpV+P126tSp1POMjAwmT57MsmXLOHXqFAUFBWRnZxMTEwMYrQ4cHR3p06fPOeerV68e1157LbNnz6ZLly5899135ObmctNNN1W4VpFazWo1NuxycCx5nhEPlnxIO1UYxh4y7pMOQZN+0H+yMdbkAOvfLj2fowv4NzTaB9Rpe8ZxZ2MTLnM+mPOgILfksTkfgkt+OYSlAPzCjeMmR4joZqyobXwV+Fzgg49UO1arlbTCFa3JmXmczsojOdNYzZpaGMgawWzhKtfCcDY9p8CmdTg6mPBwccTDxRFPFyfcXRzxcnXCvzCELQljnfF1d8G/8Ji/hzO+Hs64OjnatB4RezKZTIQHeLAvLp3opEyFtiIiIpepqsihLmTPnj2EhYUVB7YArVq1ws/Pjz179tC5c2cmTpzI3Xffzaeffkr//v256aabaNzY2Dz6wQcf5P777+fnn3+mf//+DB8+vNr14VVoW1ZPnjz/a6Z//GPs8Qv0QDX94ytkD++49Jr+4a677uKBBx7gvffeY86cOTRu3Lg4pHzttdd46623mD59Om3btsXT05OHH36YvLy8Ms//008/ceLEibM2HjObzaxcuZIBAwbg7u5+nrO54GsADoVfL7ZaS75Lmp+ff86xnp6l/4Hw2GOPsWLFCl5//XWaNGmCu7s7I0aMKH5/F7s2wN13383tt9/Om2++yZw5cxg1apTN/sdEpNqzmCF2B0Svg6PrILQ1/Osp47W8LHinoxHEmvONsUWPrWZoNdTo11rkjWbnvgaAV0jJY3c/6PEQ+DSAwEZGUOsbVhIAn8ndH65/p2zvxc3Xpv/bKrZhtVpJzy0gJTOf5Kw8TmeWBLFFYezpzDySs/IKQ1ojjC24WH+BC/B2czJCVXcjVPV1N1a5+rg74eHiVCqE9XR1xN258JirI+4uTni6OOLu4oiLo4NWw8p5zZgxgxkzZnD06FEAWrduzbPPPss111xzzvFz585l3LhxpY65urqSk5NT2aXaTESgEdrGJKuvrYiISKVRDlVhkydP5pZbbmHZsmX8+OOPPPfccyxcuJBhw4Zx9913M3DgQJYtW8bPP//M1KlTeeONN3jggQeqrL6LUWhbVuXo7VFpYy9i5MiRPPTQQyxYsIBPPvmE+++/v/gfmevWrWPo0KHcdtttgNH7Y//+/bRqVfaei7NmzeLmm2/mqaeeKnX8pZdeYtasWQwYMIB27doxb9488vPzz1pt6+3tTWRkJCtXruSqq646a/7g4GAATp06xRVXXAFQalOyC1m3bh1jx45l2LBhgLHytugfTwBt27bFYrHw+++/F7dH+KfBgwfj6enJjBkzWL58OatXry7TtUVqJIvZ6Pt6dK0R1MZshNy0ktfP/N8mB0dIv8AHBou55LHJBA5OgAk8gyGoCQQ0NgLZwMbG5lpnGjDFJm9Hqo7VaiU732z0cS1a4VrYw/XMHq+p2Xmlx2TnY77EANbDxRF/DxcCPEvaCxhhrDO+HkUrW41VrsXH3Z1x0oZeUgUaNGjAK6+8QtOmTbFarcybN4+hQ4fy559/0rp163Oe4+Pjw759+4qf17RfChRtRnY0UaGtiIhIpVEOdUEtW7bk2LFjHDt2rHi17e7du0lJSSl1jWbNmtGsWTMeeeQRRo8ezZw5c4qzo7CwMO677z7uu+8+Jk2axEcffaTQViqHl5cXo0aNYtKkSaSlpTF27Nji15o2bcrixYtZv349/v7+TJs2jbi4uDL/ZUlISOC7775j6dKltGnTptRrY8aMYdiwYSQnJzNhwgTeeecdbr75ZiZNmoSvry8bN26kS5cuNG/enMmTJ3PfffcREhLCNddcQ3p6OuvWreOBBx7A3d2dK6+8kldeeYWGDRsSHx/P008/Xab6mjZtypIlSxgyZAgmk4lnnnkGi6WkF2FkZCR33HEHd955Z/FGZNHR0cTHxzNy5EgAHB0dGTt2LJMmTaJp06Z069atTNcWqREKciHtJAQ0NJ5bzDBvSOm+R64+EH4lRPSAxmf0hHV0gXt/N8JYR+cz7gsfn9kAH+CZRCO8lWrNarWSk28hJTuP05lGa4HUwnD1dFbh46IwNjuf1DMe5xVceq9Xd2dHAjxd8Pc0wteiMNa4N9oKlDw3Qlg3Z7UXkOpryJAhpZ6/9NJLzJgxg40bN543tDWZTNSpU6cqyqsU4YHGP/Ziki+w6YmIiIjUepWZQxUxm81nLehzdXWlf//+tG3blltvvZXp06dTUFDAv//9b/r06UOnTp3Izs7m8ccfZ8SIETRs2JDjx4+zefNmhg8fDsDDDz/MNddcQ7NmzTh9+jS//fYbLVu2rOiPxKYU2tYyd911F7NmzWLw4MHUq1fSu/Hpp5/m8OHDDBw4EA8PD+69915uuOEGUlPL1mj6k08+wdPT85z9aPv164e7uzufffYZDz74IL/++iuPP/44ffr0wdHRkfbt29OjRw8A7rjjDnJycnjzzTd57LHHCAoKYsSIEcVzzZ49m7vuuouOHTvSvHlzXn31Va6++uqL1jdt2jTuvPNOunfvTlBQEP/9739JS0srNWbGjBk8+eST/Pvf/yYpKYnw8HCefPLJs35+L7/88llfWxSpcfKz4fiWwnYHa+H4ZqPP64TNxutOLtBsIBTkQWQPI6it0/bcrQlMJqjXvuzXVmBrN2aLlaTMXOLTcklIzyUuLYf4wvvEjNzCjbiMgPZ0VsXCV2dHk9HL1f2Mla9nbLLlX/ian4cR0Ba1KFAAK7WZ2Wxm0aJFZGZmXvCXvxkZGURERGCxWOjQoQMvv/zyeQPeIrm5ueTmlmzW+M/POVUpIsBYaRudpJW2IiIil7vKyqGKZGRkFH8bu0jjxo05ePAg3377LQ888AC9e/fGwcGBQYMG8c47Rls9R0dHkpKSGDNmDHFxcQQFBXHjjTfy/PPPA8bntvHjx3P8+HF8fHwYNGgQb775ZgV/GrZlsp7ZQPQykJaWhq+vL6mpqfj4+JR6LScnhyNHjtCwYUPc3NzOM4PUZmvWrKFfv34cO3aM0NBQm86tP19yQVYrZCYYm3XlZ0KTM9p4HPrN2MjLnFe4CVcemHNLNuMa+JKx8hVgw/uw+1s4uc0YeybPYHjwT3D1rrr3JTZhtlhJysglLi2X+PSc4vv49FziSwWzeeVuQeDkYCrV79Wv1GZaJZtsFYWuRcGsh4tjjftKt9QOF/osZy87duygW7du5OTk4OXlxYIFCxg8ePA5x27YsIEDBw7Qrl07UlNTef3111m9ejW7du2iQYMG573G5MmTi/+RcSZ7/ByikzLp89oqXJ0c2DNlEA4O+t8CERGRS6WsoHa60H/Xsn6e1UpbEYzVKwkJCUyePJmbbrrJ5oGtyFmOrjVWwiYegMR9kLgfcs74jeOzp6Fwcz62zYNdX59/rn89XRLaxu+CYxuNx951jRW0Ed0hsicENdMq2GomO89MfHoOCem5xKfnFt7nGCtlM3KL75MycilrFmsyQaCnKyHeroT6uBLi7UaojytB3q7Foay/hwu+7kYA6+XqpPBVpIKaN2/O9u3bSU1NZfHixdxxxx38/vvv5/z6X7du3Uqtwu3evTstW7bkgw8+4IUXXjjvNSZNmsTEiROLn6elpZXaLbkq1fNzx9HBRG6Bhfj0XOr46h+YIiIiIram0FYE+Pzzz7nrrrto3749n3zyib3LkdogNwOSDkDCfiOQTT4Mw2eVBLGbPz5HEGsCvzBw8wVLPji4GocbdDZ60Dq6gJPrGffO4OhauPFXofa3QsM+UL8jBDRSSGsHVquV9NwC4tOMFbFFLQpKglgjpE1IzyU9t6DM8zqYIMjLlRAfV0K93QgpDGRDzghmQ7zdCPJy0QZcIlXMxcWFJk2aANCxY0c2b97MW2+9xQcffHDRc52dnbniiis4ePACuz5j9G5zdXW1Sb0V5ezoQH0/d2KSs4hOylRoKyIiIlIJFNqKAGPHji3VMFvkkmz6CPYuM0LatBNnv95/MvhHGI8b9gGTo7H6NaipcR/YGJzdzz6v23jjVhYR3S+5fLm4rLyC4iA2Ls1YERuXlkNcUf/YwqA2O99c5jndnB2M8NXblWBv1zPu3Qg+41iglyuO+gqySI1gsVhK9Z+9ELPZzI4dO87bTqG6igj0MELb5Cy6Ngq0dzkiIiIitY5CWxGR8spNh+gNcHQ19P4PuBX2oEk7CYd/KxnnGVI6lHXxLHmt0zjjJnaXb7aQlJFHYoaxEjYxPZfEjDySMnKLjxUFtek5ZV8Z6+PmRB1ft+LVsGcGsWcGtGpPIFKzTZo0iWuuuYbw8HDS09NZsGABq1at4qeffgJgzJgx1K9fn6lTpwIwZcoUrrzySpo0aUJKSgqvvfYa0dHR3H333fZ8G+UWXrgZWYw2IxMRERGpFAptRUQuJjfD6BN7ZI3Ri/bkn2AtXEkZ2RuaXW08bjfSaEkQ3BwCm4BHgP1qvsyZLVYS0nOJTcspDGGLbnnFwWxSphHUpmTll2tuDxdH6vgYQWyojxuhPm6F/WPdCm9GOOvu4lhJ705EqpP4+HjGjBnDqVOn8PX1pV27dvz0008MGDAAgJiYGBwcSlqWnD59mnvuuYfY2Fj8/f3p2LEj69evP2f/2+osMtD4RWR0skJbERERkcqg0PYcLBaLvUuQWkh/rmqo3d/C4jvB8o8Vlv6RENkLvIJLjoW0NG5SqQrMxsY3p1JzOJWaTWxqDqdSc4hNzeFk4fP49FzMZd25C3B0MBHo6UKglytBXi4EexkbdwV5uRDk5VoY0hqBrFbGisiZZs2adcHXV61aVer5m2++yZtvvlmJFVWN8EBjpW10UqadKxEREakdlBnULrb476nQ9gwuLi44ODhw8uRJgoODcXFx0T/MpcKsVit5eXkkJCTg4OCAi4uLvUuSM1mtkH4K4nbB8c3Gatr2t0CH243Xg1saga1vODTsZQS1kT2NDcPE5qxWK0mZeRxLzuL46WxOpWafEcjmEJuaTUJ6LmXJYx0dTMVtCIK8XAn0dCkMYv8ZzLri5+6Mg/rFioiUWURxaKuVtiIiIhWhLKp2sWUGpND2DA4ODjRs2JBTp05x8uRJe5cjtYyHhwfh4eGlviIpdpKVDL//zwhq43ZC9unSr3uHloS2QU3hob9LNhCTCkvNzi8MZY1g9lhyFscK74+fzi7TJl7OjiZCfdyo6+tGHV936vq6Fd+Kngdp4y4RkUpT1NM2NTuf1Kx8fD2c7VyRiIhIzaQsqnayRQak0PYfXFxcCA8Pp6CgALO57Lt/i1yIo6MjTk76SnWVsVgg5SjE7S4JZkNawVWTjNed3WHTh2At/LqCyQECm0LddsYq2oa9S+YymRTYllNugZljyVnEJGdxLLkolC0JaNMuspmXyQR1fNwI8/egnl9JCFunOJh1J9DTRStjRUTsyMPFiWBvVxLSc4lOzqSdh5+9SxIREamxlEXVLrbKgBTanoPJZMLZ2RlnZ60YEKm2LGbIywA335LnyyYWhrS7If8fPfbSY0uHtv96GrzrQmhrCGoOzm5VW38NZ7ZYOZmSzeHETI4kZHA0Kct4nJjBidPZF21fEOTlQgN/Dxr4uxMW4EGYvwdhAe6FQa07Lk5akS4iUt1FBHgYoW1SFu0a+Nm7HBERkRpNWZT8k0JbEane/voCUmMg7ZQRvKYX3mfEQf0OcPcvxjgHRzi4ElKPGc8dXSGkBYS0NoLZeu1Lz9vr0Sp9GzWR1WolPj2XwwmZHE3K5EhiZvHjmKQs8sznb6zu5epEeEBJEFsczgYYjz1c9H8/IiI1XXigB1uiTxOTrL62IiIiIrZm9381v/fee7z22mvExsYSFRXFO++8Q5cuXc47fvr06cyYMYOYmBiCgoIYMWIEU6dOxc1Nq+REapyUGCNoPbrWCFvTTxkbfo1bVjLmtxeNceeSEVf6+VVPgZMLhLaBgMbgaPf/iav2svPMJb1lz2hhEJ2UxdGkTLLyzv/VHBcnByIDPYgM9KRhsCeNgjxpGORFZJAHwV6uagciIlLLRQR4AhCdlHmRkSIiIiJSXnZNNL744gsmTpzIzJkz6dq1K9OnT2fgwIHs27ePkJCQs8YvWLCAJ554gtmzZ9O9e3f279/P2LFjMZlMTJs2zQ7vQEQuyS/Pw97vIXH/2a9Z//G9+pbXQ06q0crAu07pe8/g0mPbj668mmuo3AIzJ1Nyijf5OnY6q/jx8dNZJGbkXfB8BxOEBXjQMMiTyEBPGgV7Fj+u5+eujb5ERC5jkUHGZmTRSVppKyIiImJrdg1tp02bxj333MO4ceMAmDlzJsuWLWP27Nk88cQTZ41fv349PXr04JZbbgEgMjKS0aNH88cff1Rp3SJSRlYrxO+GE1uhw5iS47F/G4GtyQEadIbG/4KQliWB7JkGvlS1NddAeQUWopMyORCfwcH4DI4kZhYHs3HpOWfl4P/k7epEg8K2BUWtDMIDPGgY7EmYv4f6y4qIyDmFByi0FREREaksdgtt8/Ly2Lp1K5MmTSo+5uDgQP/+/dmwYcM5z+nevTufffYZmzZtokuXLhw+fJgffviB22+//bzXyc3NJTc3t/h5Wlqa7d6EiJwtKxkO/wYHf4VDK42WBwCN+4FvfeNx9weMELdhH3D3s1upNU1mbgGHEoxgtviWkEF0UhbmC+z85e7sSFiAOw38PQjzL7wvfu6Bj3vFd7UUEZHLT0Sg0R4hNi2HnHwzbs6Odq5IREREpPawW2ibmJiI2WwmNDS01PHQ0FD27t17znNuueUWEhMT6dmzJ1arlYKCAu677z6efPLJ815n6tSpPP/88zatXUTOYc/3sHYanNgGnBEgOrlDZE/ITS851qhvVVdXoyRl5BYHskXh7KH4DE6m5pz3HC9XJxqHeNEk2IvGIZ6EB3gUh7QBni4KZUVExOb8PZzxdnUiPbeAY8lZNA31tndJIiIiIrVGjdqlZ9WqVbz88su8//77dO3alYMHD/LQQw/xwgsv8Mwzz5zznEmTJjFx4sTi52lpaYSFhVVVySI1n9UKWUlwOhpSjhbeRxv33R+AJv2McQU5RhsEgJBWRsuDJv0gvDs4a6PAc0nJymN/XAb74tI5EJfOvth0DsRnkJx5/j6zQV4uNA72oklI6VsdHzcFsyIiUqVMJhPhgR7sOplGdJJCWxERERFbsltoGxQUhKOjI3FxpXd/j4uLo06dOuc855lnnuH222/n7rvvBqBt27ZkZmZy77338tRTT+HgcHbfRVdXV1xdXW3/BkRqk9z0kjA2uAUENjaOH/oVvrgd8jLOfV5RMFv0+Pp3jfuiNggCQEZuAQfi0tkfl86+2AwOxBsBbXx67jnHm0xQ38/dCGT/EdD6ebhUcfUiIiLnF1EU2iarr62IiIiILdkttHVxcaFjx46sXLmSG264AQCLxcLKlSuZMGHCOc/Jyso6K5h1dDR6Z1kvttOOiJRIPgwHVsCBn412BtnJJa9d/aKxghbAPaAksPWuC34R4B9Rch92Zcl5HgHQ4fz9pS8HOflmDsZnGOFsXDoH4jLYF5vOiZTs855T38+d5nW8aRrqRfNQb5qFetM42At3F/UFFBGR6i88wOhrG5OUaedKRERERGoXu7ZHmDhxInfccQedOnWiS5cuTJ8+nczMTMaNGwfAmDFjqF+/PlOnTgVgyJAhTJs2jSuuuKK4PcIzzzzDkCFDisNbEbmImI0we+DZx939jTDWzbfkWEhLmLAFfMPU4uAfLBYrhxMz2X4she3HTrP9WAp7T6VTcJ4NwUK8XY1wNsSb5nW8aBbqTdNQb7xca1SXGhERkVIiAj0AtNJWRERExMbsmhaMGjWKhIQEnn32WWJjY2nfvj3Lly8v3pwsJiam1Mrap59+GpPJxNNPP82JEycIDg5myJAhvPTSS/Z6CyLVV+oJOLjCWFEb3Bz6PWscr9fBCGhD20DTAdCwNwQ0Kh3WFnFyhaCmVVt3NZWYkcv2mJTCkDaFv46nkJ5TcNY4Pw/n4hWzzep4Fz5WWwMREamdikLbmCSFtiIiIiK2ZLJeZn0F0tLS8PX1JTU1FR8fH3uXI2I75gI4vsloeXBgBcTtLHktoBE8+GfJ84JcI5CVc8rJN7PzRGpxQLv9WArHT5/d4sDN2YG29X1pH+ZH+zB/osJ8qe/nrg3BREQqkT7LGarLz+FESjY9XvkVZ0cTe1+4BkcH/X+giIiIyIWU9XOcvpcrUlt82BfidpxxwAQNOkPTq40VtVarscMVKLA9Q06+mQNxGew+lcqOwqD2XG0OTCZoEuxF+zA/osL8aB/mR/M63jg7nr0BooiIyOWijo8bLo4O5JktnEzJJizAw94liYiIiNQKCm1FaqKMePjrc+j+YEkQ26ATpJ2AJv2NoLbxv8Az0L51VjPx6TnsOZXOnlNp7D6Zxp5TaRxOzMR8jj60QV6utA/z44pwI6Bt28AXHzdnO1QtIiJSfTk6mGgQ4M7hhExikrMU2oqIiIjYiEJbkZrEYoYts2HlC5CbamwQ1uZG47UBz8O1b4CDNuXLN1s4nJDJnlNGMLu78D4xI++c4/09nGlVz4dWdX1oH+ZP+3A/6vm6qc2BiIhIGUQEeHA4IZPopCx6NLF3NSIiIiK1g0JbkZri+FZYNhFObTee140C/4iS18+1kdhlwGKxsvtUGpuPJhurZ2PT2B+bQZ7ZctZYkwkaBnnSsq4R0Laq60PLuj6E+rgqoBUREblEEYGeQALRyZn2LkVERESk1lBoK1LdZSXDyudh6zzACq6+0O8Z6HTnZbuq9vjpLNYdTGTNgUTWH0oiOfPsFbSeLo60LAxljZs3zet44+Gi/9kTERGxpfDClggxSVl2rkRERESk9lB6IVLdLbwVYtYbj6NGw4Ap4BVi35qqWGp2PhsOJbHuYCJrDyZyJLH0Sh4PF0e6NAygXQM/WtX1pmVdH8L8PXDQDtYiIiKVLiLQCG2jFdqKiIiI2IxCW5Hqru8TsPwJGPw6RPawdzVVIq/Awp8xp1lbGNL+dSyFM/cKc3QwEdXAl55Ng+nZJIj2YX64ODnYr2AREZHLWFFoG5OchdVqVcshERERERtQaCtSneSkwm8vGxuMdZ9gHGvUB+5bW6tbIVitVvbHZRgh7YEE/jiSTFaeudSYRsGe9GwSRM8mQVzZOBAfN2c7VSsiIiJnauDvgckEGbkFJGXmEeTlau+SRERERGo8hbYi1YHVCjsWwc9PQ0YcOHtC+1vAI8B4vRYGtokZuaw7mMjv+xNYeyCR+PTcUq8HerrQozCk7dE0iPp+7naqVERERC7EzdmRuj5unEzNITopS6GtiIiIiA0otBWxt/i98MNjcHSN8TywidEKoSiwrSXyCixsjT7NmgMJrD6QwM4TaaVed3VyoEvDAHo1DaJHkyBa1vFRT1oREZEaIjzQg5OpOcQkZ9Ixwt/e5YiIiIjUeAptRewlNwN+/x9sfB8sBeDkDr0fg+4PgFPNX6FitVo5mpTF6v0JrDmQwIZDSWT+o+VBy7o+9G4WRO+mwXSM8MfNufatKBYREbkcRAR4svFwsjYjExEREbERhbYilcliMdodpMQYN6sZom42Xks7URLYNr8WBk0F/wj71ltBaTn5rD+YxOoDRlB7LDm71OuBni70ahpE72bB9GwaRIi3m50qFREREVsKL9qMTKGtiIiIiE0otBWpCKvV2DzM3a/k2C/Pw6nthUHtMTCf0avVL7wktA1uDgOmQEBjaD6oKqu2GavVys4Tafy2L57V+xP481gKZou1+HVnRxOdIgLo3SyYXk2DaFVXLQ9ERERqo4jC0DY6WaGtiIiIiC0otBUpr6xk+OU5iNloBLNeIfDwjpLXo9fBsT9KnpscwKeBEdgGNDSCXlNhcNltfNXWbiMH4tJZ+tdJvvvrJEf/saKmUbAnvZsG07tZEF0bBuLpqv+ZERERqe0iAjwB1B5BRERExEaUpoiUR8wf8NVdkHqs5Fh6LJgLwLHwr9OV/4YOY4yQ1i8cfOqDo7N96rWhY8lZfPf3SZZuP8ne2PTi4+7OjvRpFkyf5sZq2gb+HnasUkREROyhqD1CYkYumbkF+qWtiIiISAXp05RIWVgssO5N+PUloy9tQCMY+LLR4sCnQUlgC9D6BruVaWsJ6bn8sOMUS/86ydbo08XHnR1N9GkWzJCoevRvGap/mImIiFzmfN2d8fdw5nRWPtFJWbSq52PvkkRERERqNCUtImVxYiusnGI8bnsTXPcmuHrbt6ZKkpqdz0+7Yvnur5OsO5hIUYtakwmubBjI9e3rcU2bOvh5uNi3UBEREalWwgM9OZ2VQkxypkJbERERkQpSaCtSFmGdoc8T4NsArritpCdtLZGdZ2bl3jiWbj/Jqn0J5Jktxa9FhflxfVQ9rmtXl1AfNztWKSIiItVZRIAHfx1LUV9bERERERtQaCtyLuYCWP0atB8N/pHGsasm2bUkWzNbrKw5kMA3f57g591xZOWZi19rFurF9VH1GBJVj4hATztWKSIiIjVFRGFf2+hkhbYiIiIiFaXQVuSfUo7BV3fDsY1wcAXctQIcHO1dlc3EJGWxaOsxFm89zqnUnOLjDfzduT6qHte3r0eLOvpKo4iIiJRPeIAR2sZopa2IiIhIhSm0FTnT3mXwzb8hJwVcfaD7A7UisM3JN7N8ZyxfbjnG+kNJxcd93Z25oX09hl5RnyvC/DDVsrYPIiIiUnWKvp0TnZxp50pEREREaj6FtiIABbnw8zOw6QPjeb0OMGI2BDS0b10VYLVa2XkijS+3HOPb7SdIyykAjHa8PZsEMbJTGANaheLmXPNDaREREbG/ovYIJ1NyyDdbcHZ0sHNFIiIiIjWXQluRtFOwYCTE/m087/4A/OtZcHKxb12XKCUrj2/+PMEXW46z51Ra8fH6fu7c1KkBIzo2oIG/hx0rFBERkdooxNsVN2cHcvItnDidTWSQ+uKLiIiIXCqFtiIeAYX3gXDDTGh2tX3ruQQWi5V1hxL5YvMxft4VR57ZAoCLowMD29RhVKcwujcOxMFB7Q9ERESkcphMJsIDPNgfl8HRpEyFtiIiIiIVoNBWLk95meDoCo5O4OQKIz8x7n3q2buycjl+OotFW46zeOtxTqRkFx9vVdeHUZ3DGNq+Hn4eNXPFsIiIiNQ8EYGe7I/LICZZm5GJiIiIVIRCW7n8nNwOS+6BVjfAv54yjtWg3rVWq5U/jiTz8ZojrNwbh9VqHPdxc+KGK+ozslMYber72rdIERERuSxFBBgtmKKTFNqKiIiIVIRCW7l8JB6EVS/Dzq+M59vnQ4+HwNXLvnWVUb7Zwg87TvHxmiPsOJFafLx740BGdQ5jYOs62lRMRERE7KpoMzKFtiIiIiIVoy1dpfZLOQbfToD3upQEtm1GwP+trhGBbVpOPh+uPkSfV3/joYXb2XEiFVcnB27tGs7KR/uw4J4rGdq+vgJbERERO5gxYwbt2rXDx8cHHx8funXrxo8//njBcxYtWkSLFi1wc3Ojbdu2/PDDD1VUbeULDzT62MYkZ9q5EhEREZGaTSttpXbb/S18dTeY84znzQbBVU9B3Xb2rasMjp/OYs66o3yx+RgZuQUABHm5MKZbJLddGUGAp3rVioiI2FuDBg145ZVXaNq0KVarlXnz5jF06FD+/PNPWrdufdb49evXM3r0aKZOncp1113HggULuOGGG9i2bRtt2rSxwzuwraL2CDHJWVitVkwmbYIqIiIicilMVmtRR8zLQ1paGr6+vqSmpuLj42PvcqSypcfBW1HQoBP0exbCuti7oov661gKH605zI87YzFbjL+eTUO8uLtXQ62oFRGRy15N+CwXEBDAa6+9xl133XXWa6NGjSIzM5Pvv/+++NiVV15J+/btmTlzZpmvUV1/DvlmCy2eWY7ZYuWPJ/sR6uNm75JEREREqpWyfo7TSlupPXIz4I+ZkLAXhn9sHPMOhX9vAP9IqMYrPcwWK7/siePjNYfZfPR08fGeTYK4q1dD+jYL1koVERGRas5sNrNo0SIyMzPp1q3bOcds2LCBiRMnljo2cOBAvvnmmyqosPI5OzpQz8+NY8nZRCdlKbQVERERuUQKbaXmy8+BrXNgzRuQmWAc63qfsboWIKCh/Wq7iKy8Ar7aepxZa49wtHDDDmdHE0Oi6nF3z0a0qld9Vs6IiIjIue3YsYNu3bqRk5ODl5cXX3/9Na1atTrn2NjYWEJDQ0sdCw0NJTY29oLXyM3NJTc3t/h5WlpaxQuvJBEBnhxLzuZoUiZdGgbYuxwRERGRGkmhrdRc5gLYPh9+/x+knTCO+Tc0etbWu8K+tV1EalY+H605zGd/RJOSlQ+Ar7szt3YN547ukVqVIiIiUoM0b96c7du3k5qayuLFi7njjjv4/fffzxvcXoqpU6fy/PPP22y+yhQR6MHagxBT+AtpERERESk/hbZSMyUehAUjIfmQ8dy7HvT9L7S/FRyd7VvbBeQVWPh0YzRvrzxAarYR1oYHeHBXz4aM6NgAT1f9lRQREalpXFxcaNKkCQAdO3Zk8+bNvPXWW3zwwQdnja1Tpw5xcXGljsXFxVGnTp0LXmPSpEml2iqkpaURFhZmg+ptLyLQ2IwsOlmhrYiIiMilUkIkNZNfGJjzwCMIej0Kne4E5+q7OtVqtfLjzlj+t3wv0YWrTpqFevFI/2Zc3boOjg7qVysiIlJbWCyWUq0MztStWzdWrlzJww8/XHxsxYoV5+2BW8TV1RVXV1dblllpwgM8AYhJyrRzJSIiIiI1l0JbqTlid0Joa2NDMSdXuHmB0a/W1dvelV3Q1ujTvLRsN9tiUgAI9nbl0QHNGNGxAU6ODvYtTkRERCpk0qRJXHPNNYSHh5Oens6CBQtYtWoVP/30EwBjxoyhfv36TJ06FYCHHnqIPn368MYbb3DttdeycOFCtmzZwocffmjPt2FTWmkrIiIiUnHVIjF67733iIyMxM3Nja5du7Jp06bzju3bty8mk+ms27XXXluFFUuV2zoPPugNq18rOVa3XbUObKOTMhk/fxvDZ6xnW0wK7s6OPNSvKase68vNXcIV2IqIiNQC8fHxjBkzhubNm9OvXz82b97MTz/9xIABAwCIiYnh1KlTxeO7d+/OggUL+PDDD4mKimLx4sV88803tGnTxl5vwebCA4zQNiUrv7gdlIiIiIiUj91X2n7xxRdMnDiRmTNn0rVrV6ZPn87AgQPZt28fISEhZ41fsmQJeXl5xc+TkpKIioripptuqsqypapYrfD7q7DqZeP56aPGMVP1bSeQkpXHO78e5JMNR8k3WzGZYGTHMCZe3UwbjImIiNQys2bNuuDrq1atOuvYTTfdVKs/u3q6OhHk5UpiRi4xSVm0beBr75JEREREahy7h7bTpk3jnnvuYdy4cQDMnDmTZcuWMXv2bJ544omzxgcEBJR6vnDhQjw8PGr1B9/LlrkAlk2EbfOM570eg389XW0D29wCM59uiOadXw8Wryrp3SyYSde0oGVdHztXJyIiIlJ1IgI9SMzIJTo5U6GtiIiIyCWwa2ibl5fH1q1bmTRpUvExBwcH+vfvz4YNG8o0x6xZs7j55pvx9PSsrDLFHvKyYPGdsP9HMDnA4Neg8932ruqcrFYry3ac4n/L93IsORuAFnW8mTS4JX2aBdu5OhEREZGqFxHgwdbo08UbsIqIiIhI+dg1tE1MTMRsNhMaGlrqeGhoKHv37r3o+Zs2bWLnzp0X/Fpabm5uqd1709LSLr1gqRoWC3x2I8RsACc3GD4LWl5n76rOaWt0Mi8u28OfhZuMhXi78tjVzRnesQGODtVzRbCIiIhIZYsINBZURCdl2rkSERERkZrJ7u0RKmLWrFm0bduWLl26nHfM1KlTef7556uwKqkwBwdofysk7IXRCyH8SntXdJbopExe+XEvP+6MBcDDxZH/692Ye3o3xMOlRv+1EhERETnb/p/h6BpoNRQadLro8IhAYzMyrbQVERERuTR2TZeCgoJwdHQkLi6u1PG4uDjq1KlzwXMzMzNZuHAhU6ZMueC4SZMmMXHixOLnaWlphIWFXXrRUnksFiOwBehwO7S4FjwCLnxOFbNYrMxed4RXf9pHXoEFBxOM6hzGI/2bEaJNxkRERKS22rEIdnwJbr5lCm3DC0PbmGSFtiIiIiKXwsGeF3dxcaFjx46sXLmy+JjFYmHlypV069btgucuWrSI3NxcbrvttguOc3V1xcfHp9RNqqGDK+HDPpCRUHKsmgW2x5KzuOXjjby4bA95BRZ6Ngnix4d6M/XGdgpsRUREpHYLbWXcx+8u0/CIACO0jU3LISffXFlViYiIiNRadv8e98SJE7njjjvo1KkTXbp0Yfr06WRmZjJu3DgAxowZQ/369Zk6dWqp82bNmsUNN9xAYGCgPcoWW/prIXw7HiwFsHYaDJp68XOqkNVqZdHW40z5bjcZuQV4uDjy9LWtGN0lDJNJfWtFRETkMhDaxriP21Wm4QGeLni5OpGRW8Dx01k0CfGuxOJEREREah+7h7ajRo0iISGBZ599ltjYWNq3b8/y5cuLNyeLiYnBwaH0guB9+/axdu1afv75Z3uULLZitcK66fDLZON5mxHQv3r1H05Iz2XSkh38ssdo4dEpwp83RkYVb64hIiIiclkIKVxpm3gACnLByfWCw00mE+EBHuw+lUZ0kkJbERERkfKye2gLMGHCBCZMmHDO11atWnXWsebNm2O1Wiu5KqlUFjMsfwI2fWg87/4A9J9S0tO2Gli+8xRPfr2T5Mw8XBwdmHh1M+7p1QhHB62uFRERkcuMTz1w84OcFEjYB3XbXfSUiMCS0FZEREREyqdahLZymcnPgSX3wJ6lgAkGvgzd/m3vqoqlZufz/NJdLPnzBAAt6/rw5qgoWtRRP2QRERG5TJlMENoaotcZfW3LENpqMzIRERGRS6fQVqpeXibE7QRHFxj2AbS50d4VFVt7IJHHF//FqdQcHExwf9/GPNSvGS5O1WcFsIiIiIhdFIW2CfvKNDwiwGgndTQpszKrEhEREamVFNpK1fMMhNuWQNoJiOxp72oAyM4z87/le5m7/igAkYEevDGyPR0j/O1bmIiIiEh10eMh4+ZTv0zDI4tW2qo9goiIiEi5KbSVqlGQB7E7oEFH43lAQ+NWDfwZc5pHv/yLw4nGKpDbr4xg0uAWeLjor4eIiIhIMd8G5Rpe1B7h2OkszBar9gUQERERKQelUlI1lj8BW+fCtW9Ap3H2rgaAvAIL7/x6gPd+O4jFCqE+rrw6Ioo+zYLtXZqIiIhIjVfX1x1nRxP5ZiunUrNp4O9h75JEREREagyFtlL5ts6FLbMAE3jXtXc1AOyPS+eRL7az62QaADe0r8fz17fB18PZzpWJiIiIVGN/fAhHfoeej0CDThcc6uhgIszfg8OJmcQkZSm0FRERESkH7a4klStmIyx7zHj8r6eg+SC7lmO1Wpm3/ijXvbOWXSfT8PNw5r1bOjD95isU2IqIiIhczOFVsPd7OL6lTMOLWiREJ6uvrYiIiEh5aKWtVJ7UE/DF7WDJh1ZDoddjdi2nwGzh+e928+nGaAD+1SKEV25sS4iPm13rEhEREakxQlvBvmUQt7NMwyMCCkNbbUYmIiIiUi4KbaVy5OfAF7dBZjyEtIah74PJfptPpOfk88Dnf7JqXwImE0y6pgX39GqEyY41iYiIiNQ4oa2N+/jdZRoeHugJQExyZmVVJCIiIlIrKbSVyvH3F3ByG7j7w+gF4Oplt1JOpGRz19zN7I1Nx83ZgbduvoKBrevYrR4RERGRGiukKLTdAxYLOFy421rRStujiVppKyIiIlIeCm2lcnQYA7npUKcN+EfarYy/j6dw17wtJKTnEuztyqw7OtGugZ/d6hERERGp0QIagZMb5GfB6SMQ2PiCwyODjNA2JjkLq9WqbzmJiIiIlJE2IpPKYTJB9wnQqK/dSvhpVywjP9hAQnouLep48834HgpsRURERCrC0QmCmxuP43ZddHgDfw9MJsjILSA5M6+SixMRERGpPRTaiu0kH4Gv74OcNLuWYbVa+Wj1Ye77bCs5+Rb6NAtm0X3dqO/nbte6RERERGqF0DbGatvMhIsOdXN2pE7hpq/RyWqRICIiIlJWao8gtpGbAQtvhfhdYDHD8I/sUka+2cJzS3ex4I8YAG6/MoLnhrTCyVG/nxARERGxiUFT4fp3wMGxTMPDAzw4lZpDTFIWHcL9K7k4ERERkdpBoa1UnNUK3/7bCGw9Q6D/ZLuUkZaTz/j521hzIBGTCZ6+thV39ohU7zQRERERW3LzLdfwiEAP/jiSTHSSVtqKiIiIlJVCW6m4NW/A7m/BwRlGfQa+9au8hOOns7hz7mb2x2Xg7uzI26OvYECr0CqvQ0RERERKiwj0BCA6OdPOlYiIiIjUHPrOuFTM/p/g1xeNx9e+DuFdq7yE7cdSuOG99eyPyyDE25Uv/6+bAlsRERGRyvTDf+D97nDyz4sODQ/wACBGK21FREREykyhrVy6hP3w1d2AFTrdCR3HVnkJP+44xc0fbiAxI5eWdX34dkIP2jYo31f2RERERKScEvcZrbFid1x0aESgEdoeVWgrIiIiUmYKbeXS5WeCixeEd4NB/6vSS1utVmb+foj7528jJ9/Cv1qEsOi+btT1da/SOkREREQuSyGtjfu43RcdGhFgtEdIzMglM7egMqsSERERqTXU01YuXb0r4N5VYHIAJ5cqu2y+2cIz3+xk4eZjAIztHsnT17bEyVG/gxARERGpEqFFoe3Oiw719XDGz8OZlKx8YpKzaFnXp5KLExEREan5lHJJ+aXHlTz2DgWv4Cq7dFpOPuPmbGbh5mM4mOC5Ia2YfH1rBbYiIiIiVSm0lXEftwus1osOjyjsaxutFgkiIiIiZaKkS8pn1zfwdnvYsbjKL51bYObueVtYezARDxdHPhrTiXE9GlZ5HSIiIiKXveAWxretspMhI+6iw8MDjRYJMcmZlV2ZiIiISK2g0FbKLnYnfHM/5GeVaadgW7JarTzx1Q42HUnG29WJL/+vG/1ahlZpDSIiIiJSyNkdAhobj+N2XXS4VtqKiIiIlI962krZ5GfDF7cagW2jq6D/81V6+em/HODrP0/g6GDi/ds60Ka+b5VeX0RERET+oW47cHAEc95Fh4YHGqFtTLJCWxEREZGyUGgrZbN1Hpw+Cj71YcRscKy6PzpfbT3OWysPAPDiDW3o1bTqeuiKiIiIyHkMnwUmU5mGaqWtiIiISPmoPYJcXH42rH3TeNz7cfAIqLJLbzycxBNL/gbgvj6NGd0lvMquLSIiIiIXUMbAFiAyyOhpeyIlm5x8c2VVJCIiIlJrKLSVi9s6DzJiwTcM2t9aZZc9lJDB/326lXyzlWvb1uU/A5tX2bVFREREpIwsFrBaLzgkxNuVOj5umC1WNh9NrqLCRERERGouhbZycblp4OgKvR4FJ5cquWRSRi7j5mwmNTufK8L9eGNkFA4OZV/NISIiIiJVYN71MLUBJO6/4DCTyUSvpkEArDmQWBWViYiIiNRoCm3l4vr8Bx7aXmWrbHPyzdz76VZikrMIC3DnozGdcHN2rJJri4iIiEg55GdBfibE7bzo0F7NjH0JVu9PqOyqRERERGo8hbZSNj71qmSVrcVi5bFFf7E1+jQ+bk7MGduZIC/XSr+uiIiIiFyCkFbGfdzuiw7t2SQIkwn2xqYTn5ZTyYWJiIiI1GwKbeX89v0Ix7dW6SXfWLGP7/8+hbOjiQ9u70STEO8qvb6IiIiIlENoG+M+btdFhwZ4utCmni8Aaw+qRYKIiIjIhSi0lXPLz4bvHoKP/wX7f6qSS365+Rjv/XYIgKk3tqNb48Aqua6IiIiIXKLQ1sZ9GUJboLivrVokiIiIiFyYQls5t61zISMOfMOh0VWVfrm1BxJ58usdADz4ryaM6Nig0q8pIiIiIhUUWtgeITUGclIvOrx3YV/btQcTsVislVmZiIiISI2m0FbOlp8Na980Hvd+tNJ72e6PS+f+z7ZSYLEytH09HhnQrFKvJyIiIiI24u4PPvWNx/F7Ljq8Q7g/Hi6OJGbksSc2rZKLExEREam5FNrK2c5cZRt1S6VeKiE9l3FzNpOeW0DnSH9eHdEOk8lUqdcUERERERtq0g+aDwYH54sOdXFyoFsjowXWmgPqaysiIiJyPgptpbQqXGWbnWfm7k+2cCIlm4ZBnnx4eydcnRwr7XoiIiIitjZ16lQ6d+6Mt7c3ISEh3HDDDezbt++C58ydOxeTyVTq5ubmVkUVV4Lr34HRn0ODjmUaXtTXds0B9bUVEREROR+FtlJaFa2ytVisPPLFdv46loKfhzOzx3bG37Ny2zCIiIiI2Nrvv//O+PHj2bhxIytWrCA/P5+rr76azMzMC57n4+PDqVOnim/R0dFVVLH99Srsa7v5yGmy88x2rkZERESkerJ7aPvee+8RGRmJm5sbXbt2ZdOmTRccn5KSwvjx46lbty6urq40a9aMH374oYqqvQy4B4B3vUpfZfvK8r0s3xWLi6MDH97eiYZBnpV2LREREZHKsnz5csaOHUvr1q2Jiopi7ty5xMTEsHXr1gueZzKZqFOnTvEtNDS0iiquJFYrpJ0y7i+iUZAn9f3cyTNb+ONIUhUUJyIiIlLz2DW0/eKLL5g4cSLPPfcc27ZtIyoqioEDBxIfH3/O8Xl5eQwYMICjR4+yePFi9u3bx0cffUT9+vWruPJaLGoUPLQd2t9aaZf4bGM0H64+DMBrN7WjS8OASruWiIiISFVKTU0FICDgwp9vMjIyiIiIICwsjKFDh7Jr166qKK9yWMzwRnOY1gJSj190uMlkOqNFgvraioiIiJyLXUPbadOmcc899zBu3DhatWrFzJkz8fDwYPbs2eccP3v2bJKTk/nmm2/o0aMHkZGR9OnTh6ioqCquvJZzcgXHi28kcSlW7YvnuaXGP0omDmjG0PYK3EVERKR2sFgsPPzww/To0YM2bdqcd1zz5s2ZPXs23377LZ999hkWi4Xu3btz/Pj5A8/c3FzS0tJK3aoNB0fwMDYXI353mU7p1dRokaC+tiIiIiLnZrfQNi8vj61bt9K/f/+SYhwc6N+/Pxs2bDjnOUuXLqVbt26MHz+e0NBQ2rRpw8svv4zZfP5eWNX6A2518veX8NdCMBdU2iUOJ2QwYcGfmC1WhndowAP/alJp1xIRERGpauPHj2fnzp0sXLjwguO6devGmDFjaN++PX369GHJkiUEBwfzwQcfnPecqVOn4uvrW3wLCwuzdfkVE9rauI/bWabhPZoE4mCC/XEZnErNrsTCRERERGomu4W2iYmJmM3ms/p3hYaGEhsbe85zDh8+zOLFizGbzfzwww8888wzvPHGG7z44ovnvU61/4BbHeRnw89Pw9f/BzsXV8olrFYrT329k4zcAro0DGDqjW0xmUyVci0RERGRqjZhwgS+//57fvvtNxo0aFCuc52dnbniiis4ePDgecdMmjSJ1NTU4tuxY8cqWrJthbQy7uPKttLWz8OFdg38ALVIEBERETkXu29EVh4Wi4WQkBA+/PBDOnbsyKhRo3jqqaeYOXPmec+p9h9wq4OtcyEjDnzDofWNlXKJb7afYMPhJFydHHjjpihcnGrUHz0RERGRc7JarUyYMIGvv/6aX3/9lYYNG5Z7DrPZzI4dO6hbt+55x7i6uuLj41PqVq2EFraDiCt7b97e6msrIiIicl5O9rpwUFAQjo6OxMXFlToeFxdHnTp1znlO3bp1cXZ2xtHRsfhYy5YtiY2NJS8vDxcXl7POcXV1xdXV1bbF1yb52bD2TeNx70fB6eyfYUWlZuXz4vd7AHiwX1PCAjxsfg0RERERexg/fjwLFizg22+/xdvbu/gbY76+vri7uwMwZswY6tevz9SpUwGYMmUKV155JU2aNCElJYXXXnuN6Oho7r77bru9jwoLLVxpm3QACnKNPRIuolezYN7+9SBrDyRgsVhxcNC3sERERESK2G25o4uLCx07dmTlypXFxywWCytXrqRbt27nPKdHjx4cPHgQi8VSfGz//v3UrVv3nIGtlMGZq2yjbqmUS/zvp70kZebRJMSLe3o1qpRriIiIiNjDjBkzSE1NpW/fvtStW7f49sUXXxSPiYmJ4dSpU8XPT58+zT333EPLli0ZPHgwaWlprF+/nlatWtnjLdiGT31w8wVLASTuL9Mp7cP88HJ14nRWPrtOat8JERERkTPZbaUtwMSJE7njjjvo1KkTXbp0Yfr06WRmZjJu3Djg7FUJ999/P++++y4PPfQQDzzwAAcOHODll1/mwQcftOfbqLmqYJXt1ujTLPgjBoCXbmijtggiIiJSq1it1ouOWbVqVannb775Jm+++WYlVWQnJhNccbvx2MWzTKc4OzrQrXEgK3bHsfpAAm0b+FZigSIiIiI1i11D21GjRpGQkMCzzz5LbGws7du3Z/ny5cWbk8XExODgUBLyhYWF8dNPP/HII4/Qrl076tevz0MPPcR///tfe72Fmq2SV9kWmC089fUOAEZ0bEDXRoE2v4aIiIiIVBMDXyr3Kb2bBrFidxxrDiQw/qomlVCUiIiISM1k19AWjJ12J0yYcM7X/rkqAaBbt25s3Lixkqu6TNSNgvBuEHVzpayynbv+KHtj0/HzcGbSNS1sPr+IiIiI1Gy9mgYDxrezMnML8HS1+z9PRERERKoFfVf9chbRHcb9CFeMsfnUJ1OymbbC6Gc26ZoWBHppMzgRERGRWi/7NMT8UebhkUGehAd4kG+28seRpEosTERERKRmUWh7uTOZwMH2fwye/24XWXlmOkX4c1PHMJvPLyIiIiLVTF4m/K8hzL4aspLLfFqvpkEArN6fWFmViYiIiNQ4Cm0vR1vmwMoXyvVhujx+2R3HT7vicHIw8eKwNjg4mCrlOiIiIiJSjbh4gl+48ThuV5lPK2qRsPpAQmVUJSIiIlIjKbS93ORnw6qpsOZ12POdzafPyivguaXGh/S7ejWkRR0fm19DRERERKqp0DbGfTlC226NA3F0MHE4IZPjp7MqqTARERGRmkWh7eVmyxzIiDNWQUSNtvn0b688yImUbOr7ufNQv6Y2n19EREREqrHQVsZ9fNlDW193Z9qH+QGw9oBaJIiIiIiAQtvLS342rJtuPO71GDi52HT6/XHpfLzmMADPX98aDxft/isiIiJyWQltbdyXY6UtlPS1XaPQVkRERARQaHt5qcRVthaLlae+3kGBxcrVrULp3yrUpvOLiIiISA0QUhjaxu8Bi6XMpxX1tV17MBGzxVoZlYmIiIjUKAptLxeVvMp28bbjbD56Gg8XR567vrVN5xYRERGRGiKgETi5QX4WnD5S5tOiGvji7eZEanY+O06kVmKBIiIiIjWDQtvLRSWusk3OzGPqD3sAeKR/M+r7udt0fhERERGpIRydoPfjcO0b4OZX5tOcHB3o2aSwRcL+hEoqTkRERKTmUNPRy0WLayFhL4R1tfkq21d+3MPprHxa1PFmbI9Im84tIiIiIjVM78cu6bReTYP5cWcsqw8k8IA2tBUREZHLXLlX2kZGRjJlyhRiYmIqox6pLP4RcP3bcMWtNp1205FkvtxyHICXhrXB2VGLt0VERESk/Io2I9sWk0J6Tr6dqxERERGxr3InbA8//DBLliyhUaNGDBgwgIULF5Kbm1sZtUk1l1dg4elvdgAwuksYHSMC7FyRiIiIiNidOR9ObIOdS8p1WliABw2DPDFbrGw4lFRJxYmIiIjUDJcU2m7fvp1NmzbRsmVLHnjgAerWrcuECRPYtm1bZdQoFZGfA98/AkdWl2sH37KYtfYI++MyCPB04b+DWth0bhERERGpobJPw0dXweI7IS+rXKcWrbZdcyCxMioTERERqTEu+bvsHTp04O233+bkyZM899xzfPzxx3Tu3Jn27dsze/ZsrFarLeuUS7V/OWyZDd/826bTHkvO4q2V+wF4anBL/Dxs2ydXRERERGoorxDwCAKsxp4K5dCraTAAaw5oMzIRERG5vF1yaJufn8+XX37J9ddfz6OPPkqnTp34+OOPGT58OE8++SS33mrb3qlyif7+wrhvexM42KbfrNVq5bmlu8jJt9C1YQA3dqhvk3lFREREpJYIbW3cx+0q12lXNgrAycHE0aQsYpLKt0pXREREpDZxKu8J27ZtY86cOXz++ec4ODgwZswY3nzzTVq0KPl6/LBhw+jcubNNC5VLkJkEB342HrcbZbNpf9oVx69743F2NPHSsDaYTCabzS0iIiIitUBoGzjye7lDW283ZzqE+7PpaDJrDiZwa2BEJRUoIiIiUr2Ve+ll586dOXDgADNmzODEiRO8/vrrpQJbgIYNG3LzzTfbrEi5RLuWgKUA6kZBiG16zmbkFvD8d8aH7//r3ZgmId42mVdEREREapHQVsZ9fPlCWzijr+1+9bUVERGRy1e5V9oePnyYiIgL/8bb09OTOXPmXHJRYiN/f2nc23CV7fQV+zmVmkN4gAcT/tXEZvOKiIiISC1yZnsEqxXK8c2s3s2CeWPFftYdSqTAbMHJ0TYtvkRERERqknJ/AoqPj+ePP/446/gff/zBli1bbFKU2EDSITi+CUwO0GaETabcdTKVOeuPAjBlaGvcnB1tMq+IiIiI1DLBLYzPoVlJkBFfrlPb1PfFz8OZ9JwC/jqeUjn1iYiIiFRz5Q5tx48fz7Fjx846fuLECcaPH2+TosQG0k6CfyQ0ugq8Qys8ndVq5elvdmK2WLm2bV36Ng+peI0iIiIiUjs5u8OQt+D2r8HNp1ynOjqY6NHEaJGwWi0SRERE5DJV7tB29+7ddOjQ4azjV1xxBbt377ZJUWIDDXvBg9thxCybTLf6QCJ/xqTg4eLIM9e1ssmcIiIiIlKLdRgDjf9lBLjl1Luor+2BBFtXJSIiIlIjlDu0dXV1JS4u7qzjp06dwsmp3C1ypTKZTODub5OpZq09AsCozmHU8XWzyZwiIiIiIufSs2kwANuPpZCanW/nakRERESqXrlD26uvvppJkyaRmppafCwlJYUnn3ySAQMG2LQ4uUSxO6Ag12bTHYhLZ/X+BEwmGNe9oc3mFREREZFaLCcVdiyGjTPLfWp9P3caB3tiscKGQ2qRICIiIpefcoe2r7/+OseOHSMiIoKrrrqKq666ioYNGxIbG8sbb7xRGTVKeRTkwbwh8HpTSNhnkylnrzNW2V7dKpTwQA+bzCkiIiIitVxWEnx1F6x4FswF5T69V+Fq29UHFNqKiIjI5afcoW39+vX5+++/efXVV2nVqhUdO3bkrbfeYseOHYSFhVVGjVIeB3+B7NPg5A6BTSo8XXJmHku2nQDgrp6NKjyfiIiIiFwm/CLB2RPMuZB8qNyn925WtBlZAlar1cbFiYiIiFRvl9SE1tPTk3vvvdfWtYgt/L3QuG87AhwcKzzd/I3R5BZYaFvfl86RtumPKyIiIiKXAQcHCGkJJ7ZA3E4Ibl6u069sFIizo4njp7OJTsoiMsizkgoVERERqX4ueeew3bt3ExMTQ15eXqnj119/fYWLkkuUnQL7lhuP242q8HS5BWY+2RgNwF09G2IymSo8p4iIiIhcRkJbF4a2u6HN8HKd6uHiRKeIADYcTmL1gQSFtiIiInJZKXdoe/jwYYYNG8aOHTswmUzFX1UqCvTMZrNtK5Sy2/2t8fWzkFZQp22Fp/v+r1MkpOcS6uPK4LZ1bVCgiIiIiFxWQlsb9/G7L+n0Xs2CjNB2fyJjukXari4RERGRaq7cPW0feughGjZsSHx8PB4eHuzatYvVq1fTqVMnVq1aVQklSpn9/aVx324kVHBVrNVqZdZaYwOyMd0icXEq9x8VERERkWrt2LFjHD9+vPj5pk2bePjhh/nwww/tWFUtUxTaxu28pNN7F25GtuFQIvlmi62qEhEREan2yp3EbdiwgSlTphAUFISDgwMODg707NmTqVOn8uCDD1ZGjVIWaacgei1ggrYjKzzdxsPJ7D6VhpuzA7d2Da94fSIiIiLVzC233MJvv/0GQGxsLAMGDGDTpk089dRTTJkyxc7V1RIhrYz7lBjISSv36a3q+hDg6UJmnpk/Y1JsW5uIiIhINVbu0NZsNuPt7Q1AUFAQJ0+eBCAiIoJ9+/bZtjopO5+6MH4TDJkOvvUrPF3RKtvhHRrg5+FS4flEREREqpudO3fSpUsXAL788kvatGnD+vXrmT9/PnPnzrVvcbWFRwDcsgge+gtcvct9uoODiZ5NggBYcyDB1tWJiIiIVFvlDm3btGnDX3/9BUDXrl159dVXWbduHVOmTKFRo0Y2L1DKIbg5dBxb4WmOJGaycm8cAHf2bFjh+URERESqo/z8fFxdXQH45ZdfijfUbdGiBadOnbJnabVLs6vBP/KS23f1amqEtqsPJNqwKBEREZHqrdyh7dNPP43FYvSTmjJlCkeOHKFXr1788MMPvP322zYvUKrenHVHsFrhqubBNA72snc5IiIiIpWidevWzJw5kzVr1rBixQoGDRoEwMmTJwkMDLRzdVKkV2Ff27+Pp5CSlWfnakRERESqhlN5Txg4cGDx4yZNmrB3716Sk5Px9/fHVMHNr+QS/fI8JB+GHg9B/Q4Vmio1K59FW4wNOe7qqZXTIiIiUnv973//Y9iwYbz22mvccccdREVFAbB06dLitgliA6nHYfsCMOfDv54q9+l1fN1oHurNvrh01h1M4tp2dSuhSBEREZHqpVyhbX5+Pu7u7mzfvp02bdoUHw8ICLB5YVJG5gL48zPIjIeo0RWe7vPNMWTnm2lRx5seTbTCRERERGqvvn37kpiYSFpaGv7+/sXH7733Xjw8POxYWS2TfRp+ewlcfeGqJy+pTUKvpkHsi0tnzYEEhbYiIiJyWShXewRnZ2fCw8Mxm82VVY+U1+FVRmDrEQRN+lVoqnyzhXnrjwJGL1utnBYREZHaLDs7m9zc3OLANjo6munTp7Nv3z5CQkLsXF0tEtQMHJwgN9VYdXsJejUzWiSs3p+A1Wq1ZXUiIiIi1VK5e9o+9dRTPPnkkyQnJ9usiPfee4/IyEjc3Nzo2rUrmzZtOu/YuXPnYjKZSt3c3NxsVkuN8/dC477NcHB0rtBUP+6M5VRqDkFeLlwfVc8GxYmIiIhUX0OHDuWTTz4BICUlha5du/LGG29www03MGPGDDtXV4s4uRrBLUD87kuaoktkAC5ODpxMzeFQQqYNixMRERGpnsod2r777rusXr2aevXq0bx5czp06FDqVl5ffPEFEydO5LnnnmPbtm1ERUUxcOBA4uPjz3uOj48Pp06dKr5FR0eX+7q1Qm467PneeNxuVIWmslqtzFp7BIDbrozAzdmxotWJiIiIVGvbtm2jV69eACxevJjQ0FCio6P55JNPtMGurYW0Mu7jdl7S6e4ujnSJNFqyrTmQYKuqRERERKqtcm9EdsMNN9i0gGnTpnHPPfcwbtw4AGbOnMmyZcuYPXs2TzzxxDnPMZlM1KlTx6Z11Eh7voeCbAhsUuENyLbFnOavYym4ODlw25URNipQREREpPrKysrC29sbgJ9//pkbb7wRBwcHrrzyyst3UUBlCW0NOxdD3KWttAWjr+3ag4n8ujeecT0a2rA4ERERkeqn3KHtc889Z7OL5+XlsXXrViZNmlR8zMHBgf79+7Nhw4bznpeRkUFERAQWi4UOHTrw8ssv07p1a5vVVWMUtUZoN+qSNnQ4U9Eq2xva1yPIy7WilYmIiIhUe02aNOGbb75h2LBh/PTTTzzyyCMAxMfH4+PjY+fqapnQws/qcbsueYqBrevwyvK9rDmQyL7YdJrX8bZRcSIiIiLVT7nbI9hSYmIiZrOZ0NDQUsdDQ0OJjY095znNmzdn9uzZfPvtt3z22WdYLBa6d+/O8ePn3tQgNzeXtLS0UrdawWqFpldDnbbQbmSFpjqWnMXyncbP+86eWrUgIiIil4dnn32Wxx57jMjISLp06UK3bt0AY9XtFVdcYefqapmi0DYvEyyXtqlxZJAng1ob37b7YPUhW1UmIiIiUi2VO7R1cHDA0dHxvLfK1q1bN8aMGUP79u3p06cPS5YsITg4mA8++OCc46dOnYqvr2/xLSwsrNJrrBImE3QbD/etBf/ICk01b/1RLFbo2SSIFnW0qkREREQuDyNGjCAmJoYtW7bw008/FR/v168fb775ph0rq4V86sMd38FD28Hh0v/NcF+fxgAs3X6SEynZNipOREREpPopd2j79ddfs2TJkuLbF198wRNPPEHdunX58MMPyzVXUFAQjo6OxMXFlToeFxdX5p61zs7OXHHFFRw8ePCcr0+aNInU1NTi27Fjx8pVY22XkVvAF5uNn8ldWmUrIiIil5k6depwxRVXcPLkyeJvbnXp0oUWLVqU6fypU6fSuXNnvL29CQkJ4YYbbmDfvn0XPW/RokW0aNECNzc32rZtyw8//FCh91HtmUzQsHeFAluAqDA/ujUKpMBiZdaaIzYqTkRERKT6KXdoO3To0FK3ESNG8NJLL/Hqq6+ydOnScs3l4uJCx44dWblyZfExi8XCypUri7+edjFms5kdO3ZQt27dc77u6uqKj49PqVuNl3QItn8OuRkVnurLzcdIzy2gUbAnfZoF26A4ERERkZrBYrEwZcoUfH19iYiIICIiAj8/P1544QUsFkuZ5vj9998ZP348GzduZMWKFeTn53P11VeTmZl53nPWr1/P6NGjueuuu/jzzz+54YYbuOGGG9i5c6et3lr1Zi6o0OfY+/oaq20Xbo4hJSvPVlWJiIiIVCs262l75ZVXlgpfy2rixIl89NFHzJs3jz179nD//feTmZnJuHHjABgzZkypjcqmTJnCzz//zOHDh9m2bRu33XYb0dHR3H333bZ6K9XftnnwzX2wdEKFpjFbrMxZb6xQuLNHQxwcKraZmYiIiEhN8tRTT/Huu+/yyiuv8Oeff/Lnn3/y8ssv88477/DMM8+UaY7ly5czduxYWrduTVRUFHPnziUmJoatW7ee95y33nqLQYMG8fjjj9OyZUteeOEFOnTowLvvvmurt1Z9bV8Ab7aGNW9c8hS9mwbRqq4PWXlmPtkQbcPiRERERKoPJ1tMkp2dzdtvv039+vXLfe6oUaNISEjg2WefJTY2lvbt27N8+fLizcliYmJwcCjJlk+fPs0999xDbGws/v7+dOzYkfXr19OqVStbvJXqz2KGvxcZj9sMr9BUK3bHcSw5Gz8PZ4Z3aGCD4kRERERqjnnz5vHxxx9z/fXXFx9r164d9evX59///jcvvfRSuedMTU0FICAg4LxjNmzYwMSJE0sdGzhwIN988815z8nNzSU3N7f4eY3dXNfZHTJi4a+F8K+nL6ldgslk4v/6NOKhhduZu/4o9/RqhLtL5e+tISIiIlKVyh3a+vv7YzKVrMi0Wq2kp6fj4eHBZ599dklFTJgwgQkTzr1qdNWqVaWev/nmm5f3xhBH10L6SXDzg6ZXV2iq2WuNVba3dAnXB10RERG57CQnJ5+zd22LFi1ITk4u93wWi4WHH36YHj160KZNm/OOi42NLV6gUCQ0NJTY2NjznjN16lSef/75ctdU7TS7xvgcm34SDq+CJv0uaZpr29bl9Z/3cSw5m0VbjzGmW6QtqxQRERGxu3KHtm+++Wap0NbBwYHg4GC6du2Kv7+/TYuTc/j7C+O+9TBwcr3kaXYcT2XT0WScHEz6kCsiIiKXpaioKN59913efvvtUsffffdd2rVrV+75xo8fz86dO1m7dq2tSiw2adKkUqtz09LSCAsLs/l1Kp2zG7S9CTZ/BNvnX3Jo6+TowD29GvHst7v4cPVhbukSjpOjzTq/iYiIiNhduUPbsWPHVkIZUiZ5WbC7cLO3dqMqNNWstYcBuK5dXer4ulW0MhEREZEa59VXX+Xaa6/ll19+Kd4Ed8OGDRw7dowffvihXHNNmDCB77//ntWrV9OgwYXbTtWpU4e4uLhSx+Li4qhTp855z3F1dcXV9dJ/YV+ttL/FCG33fA/ZKeDud0nT3NQxjOm/HOD46WyW7TjF0Pblb9UmIiIiUl2V+9fRc+bMYdGiRWcdX7RoEfPmzbNJUXIe+36AvHTwC4fwKy95mtjUHL7/+xQAd/VsZKvqRERERGqUPn36sH//foYNG0ZKSgopKSnceOON7Nq1i08//bRMc1itViZMmMDXX3/Nr7/+SsOGDS96Trdu3c7awHfFihXFwXGtV+8KCGkF5lzYteSSp3F3cWRs90gAZv5+GKvVaqMCRUREROyv3KHt1KlTCQoKOut4SEgIL7/8sk2KkvOI22XctxsFZ7SoKK9PNhylwGKlS2QAbRv42qg4ERERkZqnXr16vPTSS3z11Vd89dVXvPjii5w+fZpZs2aV6fzx48fz2WefsWDBAry9vYmNjSU2Npbs7OziMWPGjGHSpEnFzx966CGWL1/OG2+8wd69e5k8eTJbtmw57x4PtY7JZKy2BfhzfoWmGtMtAg8XR/acSmP1gUQbFCciIiJSPZQ7tI2JiTnnCoKIiAhiYmJsUpScR//n4OGd0OXeS54iO8/Mgk3Gf6c7e158JYiIiIiInN+MGTNITU2lb9++1K1bt/j2xRdfFI+JiYnh1KlTxc+7d+/OggUL+PDDD4mKimLx4sV88803F9y8rNZpNwo63wPXvl6hafw8XLi5czgAM1cdskVlIiIiItVCuXvahoSE8PfffxMZGVnq+F9//UVgYKCt6pLz8avYhhNfbTtOSlY+4QEeDGgVevETREREROS8yvKV/FWrVp117KabbuKmm26qhIpqCK+QCge2Re7u1ZBPNhxlw+Ek/jqWQlSYn03mFREREbGncq+0HT16NA8++CC//fYbZrMZs9nMr7/+ykMPPcTNN99cGTUKQFZyhaewWKzMXnsEgHE9InF0uPQWCyIiIiIi1UE9P3eub18PgJm/a7WtiIiI1A7lXmn7wgsvcPToUfr164eTk3G6xWJhzJgx6mlbWRIPwHtdoenVcPMCcCh31g7Aqv3xHE7MxNvViZs6VWzFroiIiEhNdeONN17w9ZSUlKopRODYJtg6D9rdBI36XvI09/VpzJJtJ1i+K5bDCRk0CvayXY0iIiIidlDu0NbFxYUvvviCF198ke3bt+Pu7k7btm2JiIiojPoEYOcSsJrBarnkwBZgVuEq25u7hOHlWu7/9CIiIiK1gq/vhTdi9fX1ZcyYMVVUzWVu51ew/TPIz6xQaNss1Jt+LUJYuTeej9YcZuqN7WxXo4iIiIgdXHJy17RpU5o2bWrLWuR8Tm4z7pv0v+Qp9pxKY93BJBxMcEf3SNvUJSIiIlIDzZkzx94lSJH2t8AfM2HvMsg+De7+lzzVfX0bs3JvPF9tPcEj/ZsR4uNmw0JFREREqla5l20OHz6c//3vf2cdf/XVVy/vzRQqU9wu477Ope8oPGedscr2mjZ1aeDvYYuqREREREQqpm4UhLYFcx7sWFyhqTpHBtAxwp88s4XZ647apj4REREROyl3aLt69WoGDx581vFrrrmG1atX26QoOUP2aUg9ZjwOaXVJUxSYLSzfGQvAmG5qYyEiIiIi1Uj7W4z77fMrPNV9fRoDMH9jNGk5+RWeT0RERMReyh3aZmT8f3t3Hh9VefZ//DNLZrJP9pVA2FcBWY0KLqC4lLq11dYq4vZYl6rRX33o04raVqy2llaptFq1dUWtWlvriiIuKIKyyhqWsCQhCSSTTPaZ8/vjJJNEtgCzJXzfr9f9OmfO3Oecaw6j3Fy5c921OByO/Y5HRUXhdrsDEpR0UPaNuXXlQUzSUV1i1a5q3A0tJEbbGdvn6H/lTEREREQk4Eb+AKx22P11+9j3KE0ZksHAjHhqGlt4/oviAAUoIiIiEnpHnLQ94YQTWLBgwX7HX3zxRYYNO7qZoHIIbaURMo++NMLijeUAnDowDbvt6BcyExEREREJuLg0GHSOuX+Ms22tVgvXT+4HwJOfbKWxxXus0YmIiIiExREvRPbLX/6Siy++mKKiIs4880wAFi5cyPPPP88rrxxbHSo5gOR8GH4R9C446kt8vKkCgMkD0wMUlIiIiIhIAI2+HMrWQFLvY77UBaNzefi9jZRUN/D617u4dPyxX1NEREQk1I44aTt9+nRef/117r//fl555RViYmIYNWoUH3zwASkpKcGI8fg26GyzHaXq+mZW7KgCYNIgJW1FREREJAINOsds1mP/rTCH3co1p/bl12+u4y+Lt/D9sXlYrZYABCkiIiISOkc1Kjr//PP59NNP8Xg8bNmyhR/84AfceeedjBo1KtDxyTFaUlSB12fQPz2O3KSYcIcjIiIiIrI/qzUgCds2l03oTWK0nS3lHt79pixg1xUREREJlaMeGS1evJgZM2aQk5PD73//e84880w+//zzQMYmjTWwdyv4fEd9iY82mqURJqk0goiIiIhEupZGWPs61O09psvEO+1cWZAPwPyPijAM49hjExEREQmhI0ralpaW8sADDzBw4EC+//3vk5iYSGNjI6+//joPPPAA48ePD1acx6eiD+BPo+Hp84/qdMMw/IuQnabSCCIiIiIS6Z77Hrw8A1a/fMyXuuqUfJx2Kyt2VPHF1mNLAouIiIiEWpeTttOnT2fw4MGsWrWKuXPnsnv3bh555JFgxiZla81tar+jOn1rhYddVfU4bFYm9lO9YRERERGJcEO+Y25XPHfMl0qLd/L9cb0Ac7atiIiISHfS5aTtW2+9xTXXXMO9997L+eefj81mC2ZcAlC6xtxmjjiq09tm2Y7LTybWccRrzomIiIiIhNaI74E1CkpWto+Fj8H1k/pjtcCiDeWsK3EHIEARERGR0Ohy0vaTTz6hpqaGsWPHMnHiRB599FEqKiqCGZuUHVvS9uNN5p/PZJVGEBEREZHuIC4VBp9r7q94/pgv1zs1lvNOyAbgL5ptKyIiIt1Il5O2J510Eo8//jglJSX8z//8Dy+++CI5OTn4fD7ee+89ampqghnn8afBDVXbzf3M4Ud8elOLjyVbKgGYNDAtkJGJiIiIiATP6MvN7aoF4G0+5svdcFp/AP69qoQde+uO+XoiIiIioXBEC5EBxMXFcfXVV/PJJ5+wevVq7rjjDh544AEyMjL47ne/G4wYj0971pnbhByIPfJ6tMu276WuyUtavJOhWYkBDk5EREREJEgGTIW4DKirgE3vHvPlRuS6mDQwDa/P4G+fbA1AgCIiIiLBd8RJ244GDx7Mgw8+yM6dO3nhhRcCFZNAh9IIRz7LFtpLI0wamIbVaglUVCIiIiIiwWWzw6hLzf3izwNyybbZti9+WcxeT1NArikiIiISTMeUtG1js9m48MILeeONNwJxOQHIORFOLYQRFx/V6W2LkE0epNIIIiIiItLNTPwJ3PgFnP2rgFzu5P6pnJDroqHZx98/2xaQa4qIiIgEU0CSthIEuWNg6mwY/aMjPrWitpG1u83VcU8doEXIRERERKSbceVCxpCAXc5isfhn2/59yTbqmloCdm0RERGRYFDStgf6pLU0wrDsRNITnGGORkRERETkGDRUB+Qy54zIIj81lqq6Zp7WbFsRERGJcEraRqK6vbB5IdTuOarT20sjaJatiIiIiHRThgGv3QAPDYCSlcd8OZvVwi1nDgRg7vub2Lyn9pivKSIiIhIsStpGouIl8OzFZjtChmGwuHWm7eSBqmcrIiIiIt2UxQItDeBtghXPB+SSF4/J5bRB6TS1+Ljj5ZW0eH0Bua6IiIhIoClpG4lK15jbzBFHfOq6khoqahuJibIxNj85wIGJiIiIiITQ6MvN7aqXoKXpmC9nsVh44JITSIi2s3JHFX/9eMsxX1NEREQkGJS0jURlbUnb4Ud86sebzNIIBf1TcdptgYxKRERERCS0+p8JCdlQvxc2vh2QS2a7YrhnujnOnvveJjaU1gTkuiIiIiKBpKRtJCpba26PYqbt4tak7SSVRhARERGR7s5qg5GXmvsBKpEAZpmEqUMzaPL6uOPlFTSrTIKIiIhEGCVtI02TB/a2/prWESZt65pa+HLrPkCLkImIiIhID9FWImHTu0e9UO+3WSwW7r/oBFwxUazZ5eaxRUUBua6IiIhIoChpG2n2rAcMiMuA+CNLvH6xdS9NXh+5STH0S4sLTnwiIiIiIqGUPgh6jQfDC6sWBOyyGYnR3HeBWSbhTws3sXZ3dcCuLSIiInKslLSNNMdQz3bxRrM0wuRBaVgslkBGJSIiIiISPif/FM7+NZzwg4Be9rujcjhneBYtPoM7X15FU4vKJIiIiEhksIc7APmWfqfDdx+F2JQjPvXjTRUATB6o0ggiIiIi0oMM+25QLmuxWPj1RSNYum0v60rcPPrBJgrPHhyUe4mIiIgciYiYaTtv3jzy8/OJjo5m4sSJLF26tEvnvfjii1gsFi688MLgBhhKyX1gzBUw5PwjOm13VT2b99RitcDJ/bUImYiIiIhIV6TFO/nVBeZaEvMWFbF6p8okiIiISPiFPWm7YMECCgsLmT17Nl999RWjRo1i2rRp7Nlz6EUGtm3bxp133smkSZNCFGlk+3iTWRphdF4SrtioMEcjIiIiIhJghgHr34S/ng7VuwJ66fNHZvOdkdl4fQZ3vLyCxhZvQK8vIiIicqTCnrR9+OGHue6665g5cybDhg1j/vz5xMbG8uSTTx70HK/Xy+WXX869995Lv379QhhtkHkqYOnjsKNrM407WrzRLI0wSaURRERERKSn+uwR2P01fPRAwC993wUjSIt3sLGslrnvbwr49UVERESORFiTtk1NTSxfvpypU6f6j1mtVqZOncqSJUsOet59991HRkYG11xzzWHv0djYiNvt7tQi1s5l8N874d+3HdFpXp/BJ5tb69kOUtJWRERERHogiwWm3mvuf/0slG8M6OVT4hz85qITAPjLR0V8XbwvoNcXERERORJhTdpWVFTg9XrJzMzsdDwzM5PS0tIDnvPJJ5/wt7/9jccff7xL95gzZw4ul8vf8vLyjjnuoClbY24zhx/Raat2VlFd30xCtJ1RvVxBCExEREREJAL0ngiDzwPDBx/cF/DLTxuexUUn5uIz4M6XV9LQrDIJIiIiEh5hL49wJGpqarjiiit4/PHHSUvr2mJbs2bNorq62t927NgR5CiPQdlac3uESdu20ginDkjDbutWf6QiIiIiIkdmyt2ABdb92/xNtQCbPX0YGQlOiso9PPxeYGfzioiIiHRVWDN8aWlp2Gw2ysrKOh0vKysjKytrv/5FRUVs27aN6dOnY7fbsdvt/OMf/+CNN97AbrdTVFS03zlOp5PExMROLWL5k7Yjjui0tkXIVBpBRERERHq8jKEw6ofm/vv3mAuUBVBSrIMHLjHLJDz+8RaWbdsb0OuLiIiIdEVYk7YOh4OxY8eycOFC/zGfz8fChQspKCjYr/+QIUNYvXo1K1as8Lfvfve7nHHGGaxYsSKySx8cTnMDVLYueHAEM23dDc18vaMKgEkDuzb7WERERESkWztjFtgcsO1j2PFFwC9/5pBMvj+2F0ZrmYT6JpVJEBERkdCyhzuAwsJCZsyYwbhx45gwYQJz587F4/Ewc+ZMAK688kpyc3OZM2cO0dHRjBjReRZqUlISwH7Hu53y9WZtrpgUSNh/lvHBfLa5Aq/PoF96HL2SY4MYoIiIiIhIhEjqDWfdB8l9IW9iUG7xi+8M45PNFWyrrOPBd9Yze/qRlTATERERORZhT9peeumllJeXc/fdd1NaWsro0aN5++23/YuTFRcXY7UeB3VaO9aztVi6fNriTWY928kDVRpBRERERI4jJ/0kqJd3xUTxwCUjmfHkUp76dBvThmdxUr/UoN5TREREpI3FMAJcBCrCud1uXC4X1dXVkVXftsENZWvM/T4nd+kUwzCY9OCH7NxXz5NXjePMIZlBDFBEREQk/CJ2LBdieg7fUl8FUbFgdwT80rNeXc0LS4vJS4nh7VsnE+cM+7wXERER6ca6Oo47DqawdhPRiWaytosJW4BtlXXs3FdPlM2in/qLiIiIyPFp2VPwx1Hw1d+Dcvn/O38ouUkx7NhbzwNvrQ/KPURERES+TUnbbmzxxnIAxvVJIdahn/iLiIiIyHHI1wINVfDRg9BYG/DLxzvtPPS9kQA88/l2Pt1cEfB7iIiIiHybkraRoLYc3v45rHzxiE5rS9pOHqR6tiIiIiLhsnjxYqZPn05OTg4Wi4XXX3/9kP0XLVqExWLZr5WWloYm4J5mzAxIzgfPHvj8saDc4uQBaVxZ0AeAn72yipqG5qDcR0RERKSNkraRoGQlfD4PPn64y6c0tfhYsqUSgEkD04IVmYiIiIgchsfjYdSoUcybN++IztuwYQMlJSX+lpGREaQIezi7A874hbn/6R/BUxmU29x1zhB6p8Syq6qe+/+7Lij3EBEREWmjpG0kaFuALHN4l09Zvn0fdU1e0uIdDMvW4hMiIiIi4XLuuefy61//mosuuuiIzsvIyCArK8vfrFYNzY/aiEsg6wRoqoFPuj4R4kjEtZZJsFjghaU7eOnLHUG5j4iIiAgoaRsZytaa2yNI2n68ySyNMGlgOlarJRhRiYiIiEgQjR49muzsbM466yw+/fTTQ/ZtbGzE7XZ3atKB1QpT7jH3l/4VqoKTUJ3YL5WbTh8AwF2vruKNlbuDch8RERERJW0jgT9pO6LLpyz2J21VGkFERESkO8nOzmb+/Pn885//5J///Cd5eXmcfvrpfPXVVwc9Z86cObhcLn/Ly8sLYcTdxIApkD/JXJhs6+Kg3eaOswdx+cTeGAYULljBe9+UBe1eIiIicvyyhzuA415LE1RsMPe7ONO2oraRNbvM2RWnKmkrIiIi0q0MHjyYwYMH+1+ffPLJFBUV8Yc//IFnnnnmgOfMmjWLwsJC/2u3263E7bdZLHDeQ2CxQvrgw/c/6ttY+NUFI6hv8vLq17u46bmvePKq8RqXi4iISEBppm24VWwwZwM4XeDq1aVTPt1cAcDQ7EQyEqKDGZ2IiIiIhMCECRPYvHnzQd93Op0kJiZ2anIAGUODmrBtY7VaePB7IzlneBZNXh/X/WMZX27bG/T7ioiIyPFDSdtwK+8wy9bStdq0H200SyNMHqSf5ouIiIj0BCtWrCA7OzvcYfQs5Rug7JugXd5us/KnH57I6YPTqW/2cvVTX7JqZ1XQ7iciIiLHF5VHCLcRl0D+qdBQ3aXuhmHw8SZzpu3kgenBjExEREREuqC2trbTLNmtW7eyYsUKUlJS6N27N7NmzWLXrl384x//AGDu3Ln07duX4cOH09DQwBNPPMEHH3zAu+++G66P0POseB7+dRPknQQz/9vlyRFHymG3Mv/HY7nqqaV8vmUvVz65lAXXFzA4KyEo9xMREZHjh2bahpvFAglZXf41rvWlNZTXNBITZWNcfnKQgxMRERGRw1m2bBknnngiJ554IgCFhYWceOKJ3H333QCUlJRQXFzs79/U1MQdd9zBCSecwGmnncbKlSt5//33mTJlSlji75H6ngbWKCj+DDYFNxkeHWXjiRnjGZ2XRFVdM5c/8QVbKzxBvaeIiIj0fBbDMIxwBxFKbrcbl8tFdXV1t6wF9tfFRdz/3/WcMTidp2ZOCHc4IiIiIiHV3cdygaLn0AXv/gI+ewQyhsMNH4PVFtTbVdc1c9njn7OuxE2OK5qXbiigV3JsUO8pIiIi3U9Xx3GaaRtOngp4/jL44DfQxdz54o1maYRJKo0gIiIiInJwpxaai/3uWQurXwn67VyxUTxzzQT6pcexu7qBy5/4gj3uhqDfV0RERHomJW3DqXQ1bHwL1vyzS3W26pu8LG1dlXbyICVtRUREREQOKjYFTr3V3P/w19DSGPRbpsU7ef7ak8hLiWF7ZR2XP/EFez1NQb+viIiI9DxK2oZT2Vpzmzm8S92/2FpJU4uPHFc0/dPjghiYiIiIiEgPMPEnEJ8FVcWw7KmQ3DLLFc3z155EVmI0m/bUcsXfvqC6vjkk9xYREZGeQ0nbcPInbUd0qXtbaYTJg9KxBGkFXBERERGRHsMRC6f9DKKTwO4I2W3zUmJ59tqJpMY5WLvbzdVPf4mnsSVk9xcREZHuT0nbcCpbY267ONP2403lgEojiIiIiIh02Zgr4dYVMO7qkN52QEY8z1wzkcRoO8u37+O6fyyjodkb0hhERESk+1LSNly8zVC+3tzvQtJ2d1U9m/bUYrXAKf3TghyciIiIiEgPYYuCmOSw3HpYTiJPXz2BOIeNz4oqufG5r2hq8YUlFhEREelelLQNl8rN4G0CRzwk9Tls97ZZtqPyknDFRgU7OhERERGRnsUwYMNb8NmjIb3tmN7JPDFjPE67lQ/W7+H2BSvw+oyQxiAiIiLdj5K24eLeBVFx5ixb6+H/GBZvMuvZThqo0ggiIiIiIkds5zJ44TJ4/x7Yty2kty7on8r8K8YSZbPw5uoS7vrnKnxK3IqIiMghKGkbLgOmwqyd8MMXD9vV6zP4pDVpe9oglUYQERERETlieeOh3+nga4aXr4LG2pDe/ozBGTzywxOxWS28snwnv/jXGlq8KpUgIiIiB6akbThZrRCbcthuq3dVU13fTEK0nVG9koIfl4iIiIhIT3T+wxCTAru/NhO33uaQ3v6cEdn87vsjsVjg+S+K+fHfvqC8pjGkMYiIiEj3oKRtN/BJaz3bU/qnYbfpj0xERERE5Kik9ocfvQT2GNj8HvznNrPWbQhddGIv5v1oDLEOG59v2ct3HvmY5dv3hTQGERERiXzKAIZD3V54dAK8cjX4vIft/k2JG4Bx+eFZ9VZEREREpMfIGw/ffwosVvj6WVg0J+QhnHdCNm/cfAr90+Moczdy2V+X8PfPtmGEOIEsIiIikUtJ23AoWwsVG8zFEKy2w3bfvMest9U/Iz7YkYmIiIiI9HyDz4Xv/MHctxx+PB4MAzIS+NfNp3LeCVk0ew1mv7GW2xesoK6pJSzxiIiISGRR0jYcytaa28wRh+3a4vWxtcIDwIB0JW1FRERERAJi7FXwP4vh9LvCFkK80868H43hF+cPxWa18PqK3Vw07zP/+F9ERESOX0rahkPZGnObOfywXYv31tHsNYiJspGbFBPkwEREREREjiPZo9r3mzztkytCyGKxcO2kfjx/7UTS4p1sKKvhu498wrtrS0Mei4iIiEQOJW3DoS1pm3X4mbbtpRHisFotwYxKREREROT45KmEv0+Hp78DFZvCEsLEfqm8+dNTGdcnmZrGFq5/ZjkPvr0er091bkVERI5HStqGms8Le9aZ+10oj7C53EzaqjSCiIiIiEiQREWDYUD9Xnj2YqgpC0sYmYnRvHD9Scw8JR+APy8qYsaTS6msbQxLPCIiIhI+StqG2t4t0NIAUbGQnH/Y7m0zbQdoETIRERERkeBwxMGPXoKUflBVDM99DxprwhJKlM3K7OnD+eNlo4mJsvHJ5gqmP/IJK3ZUhSUeERERCQ8lbUOtodqcYZs9CqyHX6lWSVsRERERkRCIT4cf/xNi06B0Fbx0JbQ0hS2cC0bn8q+bT6FfWhy7qxv4wfwlPPv5dgxD5RJERESOB0rahlqvcfCTT2HmW4ftahgGRUraioiIiIiERko/uPxliIqDog/gjVvMsglhMigzgX/dfArThmfS5PXxi9fXcOfLq6hv8oYtJhEREQkNJW3DxXL4RcVKqhvwNHmxWy30SY0LQVAiIiIiIse53DHwg7+DxQZFC6F6Z1jDSYiOYv6PxzLr3CFYLfDPr3Zy8WOfsb3SE9a4REREJLiUtA01X9d/Kt5WGqFPaixRNv1RiYiIiIiExMCz4Ht/g2vehaS8cEeDxWLhf07rz7PXTCQ1zsG6EjfTH/mE/64uUbkEERGRHkqZwFBqqIb7c+Evp0HL4VeAVT1bEREREZEwGX6RWS6hTZgWJuvo5AFp/Oenp3Ji7yTcDS3c+NxXXP30lxRX1oU7NBEREQmwiEjazps3j/z8fKKjo5k4cSJLly49aN9XX32VcePGkZSURFxcHKNHj+aZZ54JYbTHoOwbaKkHTwXYnYftvrlcSVsRERERkbDb+A7MPQG2Lwl3JGS7YlhwfQG3nDmAKJuFDzeUc9YfPuLRDzbR2KJatyIiIj1F2JO2CxYsoLCwkNmzZ/PVV18xatQopk2bxp49ew7YPyUlhf/7v/9jyZIlrFq1ipkzZzJz5kzeeeedEEd+FMrWmNvM4V3qrpm2IiIiIiIR4OtnoH4fvHAZ7Fkf7mhw2K3ccfZg3r5tMif3T6Wxxcfv3t3IuX/8mM82V4Q7PBEREQmAsCdtH374Ya677jpmzpzJsGHDmD9/PrGxsTz55JMH7H/66adz0UUXMXToUPr378+tt97KyJEj+eSTT0Ic+VE4wqRtUVvSNj0hWBGJiIiIiMjhXPRX6DUBGqrg2UvAvTvcEQHQPz2e566dyB8vG01avJMt5R5+9MQX3Pbi15TXHL4cm4iIiESusCZtm5qaWL58OVOnTvUfs1qtTJ06lSVLDv+rR4ZhsHDhQjZs2MDkyZODGWpglK01t1kjDtt1n6eJSk8TAP0z4oIZlYiIiIiIHIojFn60AFIHgnsnPPs9qCkNd1SAuUjZBaNzWXjHaVxZ0AeLBV5fsZszf7+IZ5Zsw+vTQmUiIiLdUViTthUVFXi9XjIzMzsdz8zMpLT04IOg6upq4uPjcTgcnH/++TzyyCOcddZZB+zb2NiI2+3u1MLC5zNr2gJkHj5p21bPNjcphliHPZiRiYiIiIjI4cSmwI//CfGZsGct/GUybP8s3FH5uWKiuO+CEfzrplM4IddFTUMLv/zXWi7686es3lkd7vBERETkCIW9PMLRSEhIYMWKFXz55Zf85je/obCwkEWLFh2w75w5c3C5XP6Wl5cX2mDbVG2DZg/YnJDS/7Dd2+rZ9lc9WxERERGRyJDcB676L6QPhdoy2PRuuCPaz8heSbx+0yncd8FwEpx2Vu2s5oJ5nzD7X2twNzSHOzwRERHporAmbdPS0rDZbJSVlXU6XlZWRlZW1kHPs1qtDBgwgNGjR3PHHXfwve99jzlz5hyw76xZs6iurva3HTt2BPQzdJm3BYZOh4Fnge3wM2f9i5ClK2krIiIiIhIx0gbAte/DlLvhjF+EO5oDslktXFmQz8I7T+OC0Tn4DPj7ku1M+f1H/GvFLgxDJRNEREQiXViTtg6Hg7Fjx7Jw4UL/MZ/Px8KFCykoKOjydXw+H42NBy6073Q6SUxM7NTCIn0QXPosXPZcl7r7k7aaaSsiIiIiElmc8TDpjvbJGC2N8Or1sGd9eOP6loyEaP542Yk8d+1E+qXFUV7TyK0vruDHf/uCotZybCIiIhKZwl4eobCwkMcff5y///3vrFu3jp/85Cd4PB5mzpwJwJVXXsmsWbP8/efMmcN7773Hli1bWLduHb///e955pln+PGPfxyujxAUStqKiIiIiHQTH/0WVi2Ax8+E1a+EO5r9nDIgjbdum8QdZw3Cabfy6eZKzp37Mb9/dwN1TS3hDk9EREQOIOwrXF166aWUl5dz9913U1payujRo3n77bf9i5MVFxdjtbbnlj0eDzfeeCM7d+4kJiaGIUOG8Oyzz3LppZeG6yN0jXs3JGSDxXLYrnVNLeyqqgeUtBURERERiXgn3Qg7l8HWj+Cf18DOL+GsX4HdEe7I/Jx2G7dMGcgFo3OZ/cYaPtxQziMfbOb5L4q5fnI/rijoowWQRUREIojFOM4KGrndblwuF9XV1aErldBYC3NywemC29dA9KHvu2ZXNd955BNS4hx89cuzQhOjiIiISDcQlrFcBNJziEA+L3z4G/j49+brvInw/achMSesYR2IYRi8s7aUOW+tZ3tlHQCpcQ4lb0VEREKgq+O4sJdHOC7s+cbcRsUcNmELWoRMRERERKTbsdrMxckue8GcrLHjC5g/CYq/CHdk+7FYLJwzIpuFhafxu++Pok9qLJWeJua8tZ5Tf/sh8z8qwtOosgkiIiLhpKRtKJStMbdZI7rUvS1p21+lEUREREREupch58H/LILME8DbDHFp4Y7ooOw2K98b24uFhafx+++PIj81lr2eJh54az2THlTyVkREJJyUtA2FsrXmNnN4l7prETIRERERkW4spR9c8y5c+Tqk9m8/7m0OW0iHYrdZuWRsL95X8lZERCRiKGkbCv6kbRdn2pYraSsiIiIi0q05YiF3TPvrzQvhzydB6ZrwxXQYh0vePrZIyVsREZFQUdI22AzjiJK2zV4f2yo8gJK2IiIiIiI9gmHAwvugcjM8MRVWvhjuiA7pYMnb3769nlN/+4GStyIiIiGgpG2wVe+ARjdYoyBt4GG7b6+so8VnEOewkeOKDkGAIiIiIiISVBYLXPEa9J8CLfXw2v/Aaz+BfdvDHdkhdUzePvyDUfRNi2NfXbOStyIiIiGgpG2wWe1wyq0w5kqwRR22e8dFyCwWS7CjExERERGRUIhNgctfhtP+F7DAyufhTyfCazfA3q3hju6Q7DYrF4/pxXu3T94veXvyAx9w37+/8f87RkRERAJDSdtgS8yBs+6D7zzcpe5FbfVs01UaQURERESkR7Ha4IxZcPXb0O8MMLyw8gWo3xvuyLrkQMnb6vpmnvx0K1Mf/ogf/GUJr3+9i4Zmb7hDFRER6fbs4Q5AOus401ZERERERHqg3ifBla/DruWw6X3IHdv+3rKnIGOo2SdCtSVvLxidy+KN5Tz3RTEfrC9j6da9LN26l+R/R3HJmF5cNqG31ukQERE5SpppG2HakrYa3IiIiIh0D4sXL2b69Onk5ORgsVh4/fXXD3vOokWLGDNmDE6nkwEDBvD0008HPU6JQLlj4fS72l/XlMFbd8GT0+Cp82DzQnMRswhls1o4Y0gGT8wYx6f/eya3Tx1EjiuafXXNPPGJOfv20r8s4V8rdtHYotm3IiIiR0JJ2wji8xnt5RGUtBURERHpFjweD6NGjWLevHld6r9161bOP/98zjjjDFasWMFtt93GtddeyzvvvBPkSCXyGTDqMnMR4+2fwrMXw+NnwLp/g88X7uAOKdsVw61TB/LxXWfy5FXjmDo0A6sFvti6l1tfXMFJ9y/kN29+4//3joiIiByaxTAi+Ee3QeB2u3G5XFRXV5OYmBjucDrZua+OU3/7IVE2C+vuOwe7TTl1ERERkY4ieSwHYLFYeO2117jwwgsP2ueuu+7izTffZM2aNf5jl112GVVVVbz99ttduk+kPwc5RtW7YMmjZqmElnrzWPoQuGg+5JwY3tiOwO6qel5atoMFX+6gpLrBf/ykfin8cEJvzhmRhdNuC2OEIiIiodfVcZyyghGkrTRCfmqcErYiIiIiPdSSJUuYOnVqp2PTpk1jyZIlYYpIIo4rF86ZA7evgUl3gtMF+7ZBYm64IzsiOUkx3DZ1EB//7AyeuHIcU4aYs28/32LOvi2Y8wH3/3ed/99BIiIi0k4LkUUQ1bMVERER6flKS0vJzMzsdCwzMxO32019fT0xMTH7ndPY2EhjY6P/tdvtDnqcEgHi0mDKL+GUn8LOLyE+o/29126A/Ekw+kdgsYQvxi6w26xMHZbJ1GGZ7Kqq56Uvzdm3pe4G/rp4C39dvIVh2YlcMDqH74zKITdp//8GREREjjeazhlBVM9WRERERA5kzpw5uFwuf8vLywt3SBJK0S4Y0GF29q7lsPIF+NeNsODH4KkIX2xHKDcphtvPGsQnd53B41eO48whGditFr4pcTPnrfWc8sAHfH/+ZzyzZBuVtY2Hv6CIiEgPpaRtBNFMWxEREZGeLysri7Kysk7HysrKSExMPOAsW4BZs2ZRXV3tbzt27AhFqBKpMkfA1HvMBcvW/wf+fBJs7F4L2dltVs4alsmTV41n6f9N5dcXjmBC3xQsFvhy2z5++a+1TLh/IVc+uZRXlu+kpqE53CGLiIiElMojRJC2pG3/dCVtRURERHqqgoIC/vvf/3Y69t5771FQUHDQc5xOJ06nM9ihSXdhd8Kpt0P/KfDq9VC+Dp7/AYydCWf/Gpzd698TKXEOfnxSH358Uh9Kquv5z8oS3li5m9W7qlm8sZzFG8v5+WtWzhycwXdH53DmkAyio7SAmYiI9GxK2kaIytpG9tU1Y7EoaSsiIiLSndTW1rJ582b/661bt7JixQpSUlLo3bs3s2bNYteuXfzjH/8A4IYbbuDRRx/lZz/7GVdffTUffPABL730Em+++Wa4PoJ0V9kj4fpF8MGvYMmjsPwpKN8AM/8b8XVuDybbFcN1k/tx3eR+bCmv5d8rS3hj5S6Kyj28vbaUt9eWEu+0c/awTKaPzuHUAWlEaRFnERHpgZS0jRBts2xzk2KIceinxiIiIiLdxbJlyzjjjDP8rwsLCwGYMWMGTz/9NCUlJRQXF/vf79u3L2+++Sa33347f/zjH+nVqxdPPPEE06ZNC3ns0gNERcO038DAs+H1G2FSYbdN2H5bv/R4bp06kJ9OGcA3JW7eWLmb/6wsYVdVPa9+vYtXv95FSpyDc0dkcf4J2Yzvm6IEroiI9BgWwzCMcAcRSm63G5fLRXV1NYmJieEOx++5L7bzf6+t4fTB6Tw9c0K4wxERERGJSJE6lgs1PQc5oOYGM4nbZtN7kJwPaQPDFlKg+XwGXxXv442Vu3lzVQmVnib/e4nRdqYMzeSsYZmcNiidOKfmKImISOTp6jhOf4tFCP8iZCqNICIiIiIiR6NjwrZqB7xyDXibYNqvYdw1PWIGrtVqYVx+CuPyU7j7O8P4rKiS/6zazfvr9rDX08RrX+/ita934bBbOXVAGmcNy2TK0AwyEqIPf3EREZEIoqRthPAnbTOUtBURERERkWNktUHOaNj6Ebx5B2x4Gy54FBKywh1ZwNhtViYPSmfyoHS8PoPl2/fx3jelvPtNGdsr6/hg/R4+WL8HiwVOzEvi7OFZnDUsU2uIiIhIt6DyCBHi5DkL2V3dwCs3FDAuPyXc4YiIiIhEpEgdy4WanoN0ic8HS/8C780GbyPEpMD0P8Kw74Y7sqAyDINNe2p5d20p731Txsqd1Z3e758e50/gju6VhNXa/Wcgi4hI99HVcZySthHA09jC8NnvALDi7rNIinWEOSIRERGRyBSJY7lw0HOQI7JnPbx6HZSuMl+P/jF89xGwHh+LdpVU1/P+N2W8+00ZS4oqafG1/xM4PcHJ1KGZnD0sk4n9Uoh16JdRRUQkuFTTthspKjdLI6TFO5SwFRERERGRwMoYAtcuhEVz4NO5EJ143CRsAbJdMVxRkM8VBflU1zezaMMe3vumjEUbyimvaeSFpcW8sLSYKJuFUb2SKOifSkG/VMb0SSY6yhbu8EVE5DilpG0EaKtnq9pKIiIiIiISFHYHTJ0NQ86HzBHtxz/4NWx8GxJ7gSsXEnPB1at1mwuuPLM+bg/hionigtG5XDA6l8YWL59v2cu7a0v5cP0edlc3sGz7PpZt38cjH2zGYbcypncSBf3SKOifyui8JBz24yfZLSIi4aWkbQTQImQiIiIiIhISvcZ1fr1nHZSuNtuB/L8tEJdq7n/9LJR90zm5m9ofYpKDG3OQOO02ThuUzmmD0jEMg+K9dSwpqmTJlkqWFFWyp6aRz7fs5fMte/nD+xAdZWV8fgon9UuloH8qI3Nd2G1K4oqISHAoaRsBlLQVEREREZGwOOs+GDMDqneAexdU72rd7oT6fRDbYZHkDW/B+v90Pt9qh1E/hFNvNxO43ZTFYqFPahx9UuO4bEJvDMNgS4XHn8T9vKiSSk8TH2+q4ONNFQDEOWyM75tCQb9UTu6fxrCcRGxa1ExERAJESdsIsLlcSVsREREREQmD1P4HT7YaBlg6JCFHXAwpfTsndt274OtnYO3rcOcGcMSFJOxgs1gs9E+Pp396PD8+qQ+GYbCxrJYlRRVmEnfL3tb6uOUs2lAOQILTzpg+yYzrk8y4/BRG5yUR4+g5pSVERCS0lLQNs6YWH9sr6wAlbUVEREREJIJYvjVrdMQlZutox1JY/DtIHdA5YVuxCdIGBj/GELFYLAzOSmBwVgJXndIXn89gXambJUWVfL6lki+27KWmsYWPNpbz0UYziWu3Whie62J8n2TG5Scztk8K6QnOMH8SERHpLpS0DbPtlR68PoN4p52sxOhwhyMiIiIiItJ1eRPg8pfA520/VvwFPHk2DDgLJv8/6D0xfPEFidVqYXiOi+E5Lq6d1I8Wr4/1pTUs27aXZdv38eW2vZS5G1m5o4qVO6p44pOtAOSnxjIuP8U/G7d/ehyWbyfHRUREUNI27Nrq2fbPiNdf1iIiIiIi0j1ZO5QB2LUMLFbY/J7Z8ieZydu+k/efvdtD2G1WRuS6GJHr4qpT+mIYBjv31bO8NYG7fPs+NpTVsK2yjm2VdbyyfCcAybFRjO2Twrj8ZMbnJzM8x0V0lEoqiIiIkrZh51+ELF2lEUREREREpAcouAkGnQOfzoUVL8C2j83WawJMvhMGnt1jk7dtLBYLeSmx5KXEcuGJuQBU1zfzVfE+czbutn2s2FHFvrpm3l9XxvvrygCzpMKAjPjWWbyJDM9JZFhOIgnRUeH8OCIiEgZK2oaZFiETEREREZEeJ7U/fPcRmPwz+OxP8NU/YOdS+O+dcMtXYDv+kpCumCjOGJzBGYMzAHN9kzW7q1m+rX02bqWnifWlNawvreGfX7Wfm58ay/AcF8NaE7nDc1yqjysi0sMpaRtm/pm2StqKiIiIiEhPk5QH5z0Ek+6EJY9CxtD2hK23Gda9AUMvANvx909Th93KmN7JjOmdzHWT+2EYBiXVDazZVc3a3W7W7nbzze5qdlc3+MsqvLm6xH9+ZqKzw4xcc9srOUZl90REeojj72/GCOLzGRRppq2IiIiIiPR0CZlw9q86H1u1AP51E8QkQ+8Cs/U5GbJHHZczcS0WCzlJMeQkxXD28Cz/8b2eJtbubk/krt1dzdYKD2XuRsrce/hg/R5/X1dMFEOzExiWbc7KHZqdwMCMBBx2azg+koiIHAMlbcNoV1U9Dc0+HDYreckx4Q5HREREREQkdAwfxKZCXSVs+K/ZAKJiodc4OP8PkDYgvDFGgJQ4B5MGpjNpYLr/mKexhXUl7UnctbvdbCyrobq+mc+37OXzLXv9faNsFgZkJLQmc80aucOyE0mKdYTj44iISBdFRNJ23rx5PPTQQ5SWljJq1CgeeeQRJkyYcMC+jz/+OP/4xz9Ys2YNAGPHjuX+++8/aP9I1lbPtm9aHHabfvIpIiIiIiLHkTFXwqgfQslK2P6Z2YqXQEMVbF0MsSntfZf/HSo3Qe+TofdJnd87DsU57YzLT2FcfvtzaGrxsbGshnUlbr4pcfPNbjfrSty4G8wE77oSN6+yy98/xxXdOhs30Z/MzUuOxWpVeQURkUgQ9qTtggULKCwsZP78+UycOJG5c+cybdo0NmzYQEZGxn79Fy1axA9/+ENOPvlkoqOj+e1vf8vZZ5/N2rVryc3NDcMnOHqby1QaQUREREREjmO2KHNWba9xcMpPweeD8vVQtrZzYnbVS7D9E/jsEfN1+lAzedvnZLOsQlJeeOKPIA67lRG5LkbkuvzHDMNgV1V9awK3hm9KqvmmxM2OvfXsrm5gd3UD769rL68Q57AxJDuRvmlx/pafGkd+WiyxjrCnD0REjisWwzCMcAYwceJExo8fz6OPPgqAz+cjLy+PW265hf/93/897Pler5fk5GQeffRRrrzyysP2d7vduFwuqqurSUxMPOb4j8Vdr6xiwbId/HTKQArPGhTWWERERES6g0gay4WTnoMcd9a8Cls/gu1LoGJD5/fiM+HOje2vN7wF0S5IH3Lcz8g9GHdDM+tLavhmt5nEXVdSw4ayGppafAc9JzPRSX5qayK3NZnbNy2OPqmxREfZQhi9iEj31tVxXFh/VNbU1MTy5cuZNWuW/5jVamXq1KksWbKkS9eoq6ujubmZlJQD/2Xc2NhIY2Oj/7Xb7T62oANosxYhExERERERObwRF5sNwFNhllHYvgSKPzPr4nb0n0Ko2W3ux2dBxtD2ljUSckaHNPRIlBgdxYS+KUzo2/7v6Gavjy3lHtaXutlWUce2Sg9bKzxsq/RQVdfcuvBZI19s3dvpWhYLZCdGm4nctDj6tiZzB2TE0ys5RqUARUSOUliTthUVFXi9XjIzMzsdz8zMZP369V26xl133UVOTg5Tp0494Ptz5szh3nvvPeZYA80wDDbvaU3apitpKyIiIiIi0iVxaTB0utnALKnQxtsMWSeA1Q7VxVBbarYtH5rv9z4Zrn6rvf/Hv4eEbMgYZjb78bs4V5TNyuCsBAZnJez3XlVdkz+Bu7Wijm3+fQ81DS3+UgufFVV2Os9hs5KfFkv/9HizZcTRPz2efunxxDtVbkFE5FC69f8lH3jgAV588UUWLVpEdHT0AfvMmjWLwsJC/2u3201eXvjrHVXUNlFd34zFAv3S48IdjoiIiIiISPdk7TCT0xYFl79k7jfWQPkG2PMN7FkP5esgZ0x736Y6WPgroLVioM1pzsLtNR5yx0LeRHB1r3VTgiUp1sGJvR2c2Du503HDMNjraeqUzN1a6WFruYctFbU0NPvYWFbLxtb1XDrKSoz2J3E7JnWzEqOxWLQYmohIWJO2aWlp2Gw2ysrKOh0vKysjKyvrkOf+7ne/44EHHuD9999n5MiRB+3ndDpxOp0BiTeQ2mbZ5iWr/o+IiIiIiEjAORPaFzk7kJYGmHAd7FkHpauhoQp2fGE2gJGXwsV/Nfd9XrMkQ86J4NCkmzYWi4XUeCep8U7G9ulcstDnM9hdXU9RuYeiPbVsLq+laE8tReUeKmobKXU3UOpu4NPNnWfnxjls9EuPp3dqLNmJ0WQnxZDjat+mxTuxWpXUFZGeL6xJW4fDwdixY1m4cCEXXnghYC5EtnDhQm6++eaDnvfggw/ym9/8hnfeeYdx4w7yF3CEUz1bERERERGRMIpNgfMeMvcNAyqLYNcy2Pkl7FwGvU9q71u+AZ4+Hyw2yBxmzsbtNR5yx0HqgM6zfQUAq9VCr+RYeiXHctqg9E7vVdc1U1TRnsQtKq+lqLyW7ZV1eJq8rN5Vzepd1Qe8rt1qITMxmpykaLJcrQnd1qRutiuabFcMqXEOJXZFpNsLe3mEwsJCZsyYwbhx45gwYQJz587F4/Ewc+ZMAK688kpyc3OZM2cOAL/97W+5++67ef7558nPz6e0tBSA+Ph44uO7TwK0aI+StiIiIiIiIhHBYoG0AWYbddn+73v2QGIuuHeZs3JLV8OyJ833ol1wzm9h9A/N14010FANCTlK5h6EKzaKMb2TGfOtcgtNLT6K99axeU8tu6rqKamqp6S6gd3V9ZRWN1DmbqDFZ7Crqp5dVfXAvgNe32GzkuWKpndKLL1TY8lPjaVPahx9UmPpkxJHjEO/7SoikS/sSdtLL72U8vJy7r77bkpLSxk9ejRvv/22f3Gy4uJirB3+onvsscdoamrie9/7XqfrzJ49m3vuuSeUoR8TLUImIiIiIiLSTfQ7HQq/gepdHWbjLofdX5sJ2ri09r6b3oVXrgabA5L6QHI+pPQ1t8n5Zq3cjv3Fz2G3MiAj/qCTm1q8PvbUNFJS3UBJdT0lVe0J3d3VDZRU1VNe20iT10z+Fu+tg837Xycz0UmfFDOJm58WR++UWPJT4+idGosrJirIn1JEpGsshmEY4Q4ilNxuNy6Xi+rqahITE8MWx0n3L6TU3cA/f3IyY/skH/4EEREREYmYsVy46TmIRAhvM5StNUskOFsTjUsfh7f/F3wtBz7nshdgyHnm/tbF8PVz7YldV565+FlCDtgdIfkIPU2z10eZu4HdVQ0U761je6WHbZV1FFd62Frhwd1wkD+XVsmxUfRJjSM/NZbeKbFkJEaTmRhNRoKTjEQnafFOomyaQS0iR6+r47iwz7Q9HtU0NFPqbgBUHkFERERERKTbskVBzujOxyZcB2NnmqUU9m2FfdvMtrd1P7V/e9+dy2DViwe+dlwG/OAf0KfAfL1nPZStAVcvSMyBhGzz/tJJlM3qr6U7oW/Kfu9X1TWxvbKObZUe/7a4so5tlXVU1Dayr66ZfXVVrNhRdcDrWyyQGucgPSGazESnmcxNiCYjsePWSXqCE6ddZRhE5OgpaRsGReUeANITnPrVCxERERERkZ7GZofkPmY7lH6nm9t928wEb/VOswSDt9Gso+tMaO+78S14/54OJ1sgIctM4Cbmwpm/gPTBgf0cPVBSrIOkWAej8pL2e6+2sYXiyvbZuTv21bHH3ciemgb2uBspr23E6zOoqG2ioraJdSWHvldybBSZidFktS6WlplobrNcMa3baBKcdiwWLZomIvtT0jYMVM9WREREREREyB1jto4MA+oqzQRu6oD24/GZ0OcU87h7N/iaoabEbLuWw2l3tff96h+w4nnoc7LZ8iZ2TgDLAcU77QzLSWRYzoF/XdnrM9jraTKTuDWN7HE3tCZ1zcRumbuR8tb9Zq/ROmu3mfWlNQe9Z6zD5k/qZiXGkOVymknd1mRvliualFgHVqsSuyLHGyVtw8CftFVpBBEREREREenIYjEXKvv2YmWjf2Q2AJ8P6ipaE7i7zCRux1m9WxZB8RKzffx7sNgge1RrEvcU6H8mREWH7CP1FDarhfTW0gfDD9HPMMyE7Z6aBkqrGyhzN1DSYVtabW6r65upa/KypdzDltbfyD3YfZNjo0iJc5AS5yA1zklqfNu+g5Q4p7nfeiw51oFNSV6Rbk9J2zBQ0lZERERERESOmtUK8Rlm+/ZMXYAzfwn9zoDtn5qtqhh2f2W2z/8Md21vT9qWfWMmiOMzQvsZejCLxeJPsA7JOvgiQ/VNXkrdDZRU1/sTud9O7FZ6Opdk6Nr9ISkmyp/gbUvopsU7SUtwkh7vIDXeXFQtLd5BvEo0iEQkJW3DoKhcSVsREREREREJkpS+Zhtzhfm6agds/8xM4DZUQ3SHROK/b4WdSyF1IOSfAr0LIGOo+doRG574jxMxDht90+LomxZ30D5NLT721TVRWdvEXk8TlZ5G9nra9puorG307+/1NFFV14xh4C/NUHSIGbxtnHarP4Gb2rpNi3f699M77CerVINIyChpG2KNLV62V5r/01TSVkRERERERIIuKQ+SLoVRl3Y+7vOZtXGxQOUmsy1/uv39vpNhxr/bX5esNBc9i001p3NK0DnsVjITzUXMuqLF62NfXfN+CV5zpm4jFTWNVHra9z1NXhpbfOyqqmdXVf1hr2+zWkiNa5+125bUNV87SI+PJi3BfF9lGkSOjZK2Ibatog6fAQnRdjISnOEOR0RERERERI5XVitcvwjq9kLx5+ZM3J3LoGID1O8DR4fFywwDnv4ONLohJhnSBkPaQEgfDGmDIGOYmRyWsLLbrP66u3D4xefqm7xmAre2kcq2xG5tY3uSt8N+VV0zXp/RuvBaI5Qc+tpWC6TEtSZ2E5z+RG5KXBTJcQ5SYh3mtrUOb1JsFFE2a2AehEgPoKRtiHWsZ6uaMSIiIiIiIhJ2sSkw5DyztfFUQHNd++uGKohJgsYaM6G743OztRl4Nlz+srnf0giv3QD2aLN2rj0a7E6wx5jbjGEw6Gyzr2HApndb3+/QLzEbol3B/uTHvRiHjbyUWPJSDl8Ko9nr8yd2y1tn6nZM7pbXtCd599U14TPwv7e+tKZL8SRE2/1J3PZte5I3qTW564qJIik2iqQYB9FRVuVXpEdS0jbE/EnbdJVGEBERERERkQgVl9b5dUwy3LYamuqgcjNUbISKTeas3IpNkDWyvW+TB9a+evBrn/D99qStrwWe/8GB+yXnw7AL4ax7j+WTSIBE2axkuaLJch2+VEOL18deT5OZ3K1tai3L0GjW2m0t2bCvrm3bzL66JgwDahpaqGloYXtl3WHv0cZht5IU057IdcU4WhO6HY7FOkjqkOh1xUaR4LSrPq9ENCVtQ2yzFiETERERERGR7soRC9kjzXYw9mg457fQ0tChNUJzvbntNa69r7cZcsZ8q1+dOZt33zaoq2jv29IEfzrRLMmQdYIZQ9YoSOlnlnqQiGG3WclIjCaji7V4vT4Dd30ze+uavpXUbfYnd82F1pqoqm/GXd9MVV0zLT6DphZfe8mGI2C1QGJMa3K3U1L3W687JIJdrYlglXGQUFDSNsQ6lkcQERERERER6XEcsXDSDV3ve/2H+x+v2wulq82SDG0qNoB7p9mKFna4RjxkjoAxV8CJPz6m0CU8bFYLyXFmjVvSu3aOYRh4mrxmIreuNZHbmsytqm+iur6Z6rr211V1zeax+mbqmrz4DMz36prhCGb2AjjtVhKi7cQ57cQ7zW1C6zY+2jx24OM24p1RJMbYSY51EB1lO4qnJccLJW1DyOsz2KKZtiIiIiIiIiKHFpsC/U7rfCxtEFy7EEpXQckqc1u2Fppqzfq6bSUXAHYuh+e/D444M6nriG/db3094mIYNM3s66mE9f/p0DcOnPHgTISEbDOxLBHHYrH4k6O9ko/s3MYWb3tSty3RW2cmer+d5O34uqahpfV8H421TVTUNh3TZ4iJspm1e+OiOtXxPdCCbcmxZj+nXYne44WStiG0a189jS0+HHYrvZL1P30RERERERGRLrM7zdIKncortEDlJjOJmzO6/XhjNdRVmu1Aska0J233bYV///Tg9538Mzjz/8z9ur2w/Glw9YLEXHDlQkIO2B3H8skkxJx2GxkJNjISula+oU2L10dNQwu1jWbzNLZQ07qtbWg75qW2sZnaRq+/T+23zqmuN0s71Dd72VVVz66q+i7HEOewkRzn8M/kjXXYWtsB9p12YqNsxDltxDjsxDlsxDhsxLW+33a+FnKLTErahtDmcnO1xH5pcdhU7FpERERERETk2NjskDHUbB3lTYQbP4fGWnMmbpOntbW+7nNKe9+oWBh0bod+rdv6Kmj2dF6UrXIzLPz2wmgWiM8wk7gTrofRPzQPN3lgx1JzsTVvU2trbt/vNd6szQtQtQOWP7V/H28LJObA4PMgb3ygn54cIbvN2l7G4RgYhkFtYwv7PPvX8fXX8vU0sbfOrOPbVtvX6zNLQniaup7kPRyLBeIcduKctk5lHdpKP8T7923+420lHzIToxmUGa+kb5AoaRtCqmcrIiIiIiIiEgKOuP0TuQeTOQx+9OL+xw0DGqrB2uHX0R3xMOqHUL3TbO7d4G2E2jKzNbrb+5athWcuPPh9z/pVe9K2tgw+/v3B+1qs7UnbhmrY+C70KTBn/Eq3Y7FYSIiOIiE6it6pXftNbMMwcDe0+JO5ntZZvfXNrdsmL56mFv+2rslLXWPHY17qm1pat+ZxwzC/5m2zgMs4ssXcACb0TeG2qQMp6Jeq5G2AKWkbQkraioiIiPRM8+bN46GHHqK0tJRRo0bxyCOPMGHChAP2ffrpp5k5c2anY06nk4aGhlCEKiIiXWWxdF4IDcwE70Xz218bBngqzMXRqneZ77dproeM4WCLApujtUW1b1P6tvdNyIKJN+zf12KDik0wYEp73+LP4dVrzX1XHvQ+qbWdDOlDwGoN+KOQ8LNYLLhionDFRJFP3DFfzzDM8gz+kg4N7eUbPE2t5RwaWss7NHrNbVPHYy1sKfewdOtefvT4F0reBoGStiG0SUlbERERkR5nwYIFFBYWMn/+fCZOnMjcuXOZNm0aGzZsICMj44DnJCYmsmHDBv9r/eNGRKSbslggPt1sOSd2fq/faXDjZ127jqsXnPvbrvU1DPNeJaugeges3gGrXzbfi3bBJU/CwKmHv47Pa87gbfs7aN82qCpuLSnhgaaa9vIS3maYcJ1ZqgGgfh/4fBCTrCRxN2WxWFpr39oh4eiuUVJdz2OLinhx6Q4lb4NASdsQMQxDM21FREREeqCHH36Y6667zj97dv78+bz55ps8+eST/O///u8Bz7FYLGRlZYUyTBER6SkGn2O2xlrYtcyceVu8BHZ8aZZOSO7T3nfZU7DiObBGmUnYJk97Ira5Du7cZNbjBVgyD5b+9eD3HX15+/6SP8PiB8Fqh7h0s8VnQHymuT/xBkjMNvsqwdtjZbtiuO+CEfzk9P5K3gaBkrYhUl7TSE1DC1YL9E079mnsIiIiIhJ+TU1NLF++nFmzZvmPWa1Wpk6dypIlSw56Xm1tLX369MHn8zFmzBjuv/9+hg8fHoqQRUSkp3DGQ7/TzQbmbNjS1ZA6oL3P1o9g55cHv0ZjTXvSNjEX0gab13XEgSOhdT/eTM4mdPhhY5M5KQ1fC9SUmK2jMVe27y+ZB4sfAns0JPeFlH5maYiUfmbLm2DeT7qtjsnb+YuKeEHJ24BQ0jZE2mbZ9k6JxWm3Haa3iIiIiHQHFRUVeL1eMjMzOx3PzMxk/fr1Bzxn8ODBPPnkk4wcOZLq6mp+97vfcfLJJ7N27Vp69TrwgjKNjY00NrYvDuJ2uw/YT0REjmO2KMgd0/nYlNkw5DvmYmqOBDM52paIdSaYs1/bnHqb2brinDkw9V7wlINnD9SWm4upte13TPA21pjblgYoX2e2jm5eBmkDzf21r5kzhjsmdV15YFP6qjvIdsVw7wUjuOFAydv81uRtfyVvu0rf+hDZXK7SCCIiIiICBQUFFBQU+F+ffPLJDB06lL/85S/86le/OuA5c+bM4d577w1ViCIi0lOk9O284Fkg2R3gyjXboZz7WzjrV+DeBXuLYO9W2LultW2FpA7lHDa+Cyuf73y+1W72SekHlz0Hdqd5fNlTsGOpWZPXYgEsHWr0WuDsX5mJaYA1r7b3xdJex7ft9aTC9gT2pvfMkhOd+nbYjr8G4tLMvtU7zcR1TDJEJ4EzUSUgOEjydttefvSEkrdHQknbEGmbadtfSVsRERGRHiMtLQ2bzUZZWVmn42VlZV2uWRsVFcWJJ57I5s2bD9pn1qxZFBYW+l+73W7y8vKOLmgREZFQszu6lkAe+h2ITemc1PU2tiZ7i8xF2NoUL4FVCw5+rSl3t+9vXQzLnzp43wnXtydtiz6Ez+cdvO/wi9qTtl89Ax890P6exWomb2OSzOtd8GfIGGK+t+NLs1RFTLL5GePS22sA2x0Hv183puTtsVHSNkT8i5ClK2krIiIi0lM4HA7Gjh3LwoULufDCCwHw+XwsXLiQm2++uUvX8Hq9rF69mvPOO++gfZxOJ06nMxAhi4iIRK4h55utjc8HNbvbk7jWDmmsEZdAxjAwfIBhbg3aX0fFtPcdeJaZKDV8rYlfo/O2bUYuQJ8Cs1bvt/u0baNd7X3tDkjIMRdba6k3r1+/12zQPqMXYPP7nRO8HUUnwRWvQu5Y8/X2JbD9086Lu8VntCZ4DzEe8LaYC8y1NEBzvdmS+7Q/i/KNULrKfL+l0SypYY82r2mPhl7jzecEUF9lfg57dOc+1iMv+dmWvP3J6QN4bNHmTsnb/NRY0hOcJMU6SI6NIjnW4d/3H4tzkBQbRVKMA4f9+JnJrKRtiPiTtpppKyIiItKjFBYWMmPGDMaNG8eECROYO3cuHo+HmTNnAnDllVeSm5vLnDlzALjvvvs46aSTGDBgAFVVVTz00ENs376da6+9NpwfQ0REJPJYreDqZba+kzu/N2ia2bri28ngQxk63WxdMekOswE0N0BDlZnArW/dujr8VkzGEDPRXL8P6irN2r+ePWaCuKHKLK3QZsuH8NFvD3zPaBdc8Xp7/eKPfw+fzDWTtb6W/ftf/xHkjDb31/8bFt538M8z4z/Qd5K5v/pl+O+d+/ex2s3k7Q/+DgOmHvxaB5Dlit4vebutso5tlXVdvka8024mcDskeBOi7cQ5bMQ67MQ527dxDjtxTjuxDlv71mEn1mnDYbNG/AxfJW1DwN3QzJ4ac+EIlUcQERER6VkuvfRSysvLufvuuyktLWX06NG8/fbb/sXJiouLsXaob7dv3z6uu+46SktLSU5OZuzYsXz22WcMGzYsXB9BREREjlVUNERldV6EraPhF5mtI5/PTNjW7ulc2zdrJIz+cevCbmWtCd5y8DVDQ3Xn2b4+HzQeYIFSe4wZk+FtP5acD/mTzJm3Ngf4vK2zbltbTFJ7X4vFXLyupcG8r/9+LdBUC5YOM27Xvg7r3oDx10Lvgs4zjA+gLXl7y5SBbCytYV9dM/vqmqiqa/LvV/uPtW7rmzEMqG1sobaxhZ376g95j8OxWy2dkrkXjM7lp1MGHtM1A81iGB0LgvR8brcbl8tFdXU1iYmJhz8hAL4q3sfFf/6MzEQnX/z8yH4KISIiIiLtwjGWi0R6DiIiIscZwzBn6XrKzUXZbFHmcU+Fmci1R5vJ2KgYcz+Qs0h9XrOcQltZhZZ6iM8CR6z5/pPnQvFn5n7GcHOxtpE/6Fx24lhD8Bm4G5o7J3g95r6n0UtdUwuephbqGr3mtsmLp7F12+F4Q7PvgNefeUo+s6cPD1i8h9LVcZxm2oaASiOIiIiIiIiIiMhRs1jMerNtNWfbxKW1L4wWLFabmaBtS9J+2zlzYNnfYNXLsGctvFkI782GUZeZCdyMoccegtVCUms5hL7EHfV1vD6Dum8ndRtbSEuIvLUDlLQNgSItQiYiIiIiIiIiIj1Rzmj47iNw1n2w4gX48gnYWwRfPg5la+Dqt8MdoZ/NaiEhOoqE6Khwh3JYx8+Sa2GkmbYiIiIiIiIiItKjxSRDwY1w8zJzsbQh34GJ/9P+vqcSPrwfqneFLcTuRDNtQ2BzuZm01SJkIiIiIiIiIiLSo1mt0P8Ms3X09TPw0W9h8e9gyHnmwmV9Twts/d0eREnbIGto9rJjbx2gmbYiIiIiIiIiInKcyhwOfU6B7Z/Cun+bLdoFMSnm9roPzPq5AKtegr1bzePRLohO7LDvgsReZnK4B1PSNsi2VnjwGZAYbSc9PvKKGouIiIiIiIiIiATdwLPMVvaNuXDZyhehodps9pj2hC3Amn/CxkPUwv1FOVgd5v6/bobN74PFZiZyrfbWfZu5ve4DiIo2+y5+CIo+BIvVfN9qh2EXwpgrgvaxj5aStkHWVs92YGYCFk33FhERERERERGR41nmMDj/9+bCZVXF0OCG5rrOfQaeDQlZ5nttid225m0Cu6O9b91eqCk5+P065uPKN5ozfTvFM+LYP1MQKGkbZOPzU5h76Wiio2yH7ywiIiIiIiIiInI8cMRBxtADvzf+mq5f55w5cPpd4POC4TO3vhYwvOa+Naq978QbzHq6HftmDDm2zxEkStoGWZYrmgtPzA13GCIiIiIiIiIiIj1Pch+gT9f69hprtm4g7BV7582bR35+PtHR0UycOJGlS5cetO/atWu55JJLyM/Px2KxMHfu3NAFKiIiIiIiIiIiIhICYU3aLliwgMLCQmbPns1XX33FqFGjmDZtGnv27Dlg/7q6Ovr168cDDzxAVlZWiKMVERERERERERERCb6wJm0ffvhhrrvuOmbOnMmwYcOYP38+sbGxPPnkkwfsP378eB566CEuu+wynE5niKMVERERERERERERCb6wJW2bmppYvnw5U6dObQ/GamXq1KksWbIkXGGJiIiIiIiIiIiIhFXYFiKrqKjA6/WSmZnZ6XhmZibr168P2H0aGxtpbGz0v3a73QG7toiIiIiIiIiIiEighX0hsmCbM2cOLpfL3/Ly8sIdkoiIiIiIiIiIiMhBhS1pm5aWhs1mo6ysrNPxsrKygC4yNmvWLKqrq/1tx44dAbu2iIiIiIiIiIiISKCFLWnrcDgYO3YsCxcu9B/z+XwsXLiQgoKCgN3H6XSSmJjYqYmIiIiIiIiIiIhEqrDVtAUoLCxkxowZjBs3jgkTJjB37lw8Hg8zZ84E4MorryQ3N5c5c+YA5uJl33zzjX9/165drFixgvj4eAYMGBC2zyEiIiIiIiIiIiISKGFN2l566aWUl5dz9913U1payujRo3n77bf9i5MVFxdjtbZPBt69ezcnnnii//Xvfvc7fve733HaaaexaNGiUIcvIiIiIiIiIiIiEnAWwzCMcAcRSm63G5fLRXV1tUoliIiIiHQzGsuZ9BxEREREuqeujuPCVtNWRERERERERERERPanpK2IiIiIiIiIiIhIBFHSVkRERERERERERCSCKGkrIiIiIiIiIiIiEkHs4Q4g1NrWXXO73WGORERERESOVNsY7jhbS3c/GtOKiIiIdE9dHc8ed0nbmpoaAPLy8sIciYiIiIgcrZqaGlwuV7jDCBuNaUVERES6t8ONZy3GcTZNwefzsXv3bhISErBYLCG5p9vtJi8vjx07dpCYmBiSe/ZUepaBpecZWHqegaXnGTh6loGl5xlYR/o8DcOgpqaGnJwcrNbjt9JXqMe0+t4Hlp5nYOl5Bo6eZWDpeQaWnmdg6XkGTrDGs8fdTFur1UqvXr3Ccu/ExET9hxAgepaBpecZWHqegaXnGTh6loGl5xlYR/I8j+cZtm3CNabV9z6w9DwDS88zcPQsA0vPM7D0PANLzzNwAj2ePX6nJ4iIiIiIiIiIiIhEICVtRURERERERERERCKIkrYh4HQ6mT17Nk6nM9yhdHt6loGl5xlYep6BpecZOHqWgaXnGVh6nt2D/pwCS88zsPQ8A0fPMrD0PANLzzOw9DwDJ1jP8rhbiExEREREREREREQkkmmmrYiIiIiIiIiIiEgEUdJWREREREREREREJIIoaSsiIiIiIiIiIiISQZS0DbJ58+aRn59PdHQ0EydOZOnSpeEOqVu65557sFgsndqQIUPCHVa3sXjxYqZPn05OTg4Wi4XXX3+90/uGYXD33XeTnZ1NTEwMU6dOZdOmTeEJths43PO86qqr9vu+nnPOOeEJNsLNmTOH8ePHk5CQQEZGBhdeeCEbNmzo1KehoYGbbrqJ1NRU4uPjueSSSygrKwtTxJGtK8/z9NNP3+/7ecMNN4Qp4sj12GOPMXLkSBITE0lMTKSgoIC33nrL/76+l0fmcM9T38vIpzFtYGhMe/Q0ng0sjWcDR+PZwNJ4NrA0pg2sUI9plbQNogULFlBYWMjs2bP56quvGDVqFNOmTWPPnj3hDq1bGj58OCUlJf72ySefhDukbsPj8TBq1CjmzZt3wPcffPBB/vSnPzF//ny++OIL4uLimDZtGg0NDSGOtHs43PMEOOecczp9X1944YUQRth9fPTRR9x00018/vnnvPfeezQ3N3P22Wfj8Xj8fW6//Xb+/e9/8/LLL/PRRx+xe/duLr744jBGHbm68jwBrrvuuk7fzwcffDBMEUeuXr168cADD7B8+XKWLVvGmWeeyQUXXMDatWsBfS+P1OGeJ+h7Gck0pg0sjWmPjsazgaXxbOBoPBtYGs8Glsa0gRXyMa0hQTNhwgTjpptu8r/2er1GTk6OMWfOnDBG1T3Nnj3bGDVqVLjD6BEA47XXXvO/9vl8RlZWlvHQQw/5j1VVVRlOp9N44YUXwhBh9/Lt52kYhjFjxgzjggsuCEs83d2ePXsMwPjoo48MwzC/i1FRUcbLL7/s77Nu3ToDMJYsWRKuMLuNbz9PwzCM0047zbj11lvDF1Q3lpycbDzxxBP6XgZI2/M0DH0vI53GtIGjMW1gaDwbWBrPBpbGs4Gl8WzgaUwbWMEc02qmbZA0NTWxfPlypk6d6j9mtVqZOnUqS5YsCWNk3demTZvIycmhX79+XH755RQXF4c7pB5h69atlJaWdvquulwuJk6cqO/qMVi0aBEZGRkMHjyYn/zkJ1RWVoY7pG6huroagJSUFACWL19Oc3Nzp+/nkCFD6N27t76fXfDt59nmueeeIy0tjREjRjBr1izq6urCEV634fV6efHFF/F4PBQUFOh7eYy+/Tzb6HsZmTSmDTyNaQNP49ng0Hj26Gg8G1gazwaOxrSBFYoxrT0Qgcr+Kioq8Hq9ZGZmdjqemZnJ+vXrwxRV9zVx4kSefvppBg8eTElJCffeey+TJk1izZo1JCQkhDu8bq20tBTggN/VtvfkyJxzzjlcfPHF9O3bl6KiIn7+859z7rnnsmTJEmw2W7jDi1g+n4/bbruNU045hREjRgDm99PhcJCUlNSpr76fh3eg5wnwox/9iD59+pCTk8OqVau466672LBhA6+++moYo41Mq1evpqCggIaGBuLj43nttdcYNmwYK1as0PfyKBzseYK+l5FMY9rA0pg2ODSeDTyNZ4+OxrOBpfFsYGhMG1ihHNMqaSvdwrnnnuvfHzlyJBMnTqRPnz689NJLXHPNNWGMTGR/l112mX//hBNOYOTIkfTv359FixYxZcqUMEYW2W666SbWrFmj2n4BcrDnef311/v3TzjhBLKzs5kyZQpFRUX0798/1GFGtMGDB7NixQqqq6t55ZVXmDFjBh999FG4w+q2DvY8hw0bpu+lHDc0ppXuQuPZo6PxbGBpPBsYGtMGVijHtCqPECRpaWnYbLb9Vt0rKysjKysrTFH1HElJSQwaNIjNmzeHO5Rur+37qO9q8PTr14+0tDR9Xw/h5ptv5j//+Q8ffvghvXr18h/PysqiqamJqqqqTv31/Ty0gz3PA5k4cSKAvp8H4HA4GDBgAGPHjmXOnDmMGjWKP/7xj/peHqWDPc8D0fcycmhMG1wa0waGxrPBp/Hs4Wk8G1gazwaOxrSBFcoxrZK2QeJwOBg7diwLFy70H/P5fCxcuLBTrQs5OrW1tRQVFZGdnR3uULq9vn37kpWV1em76na7+eKLL/RdDZCdO3dSWVmp7+sBGIbBzTffzGuvvcYHH3xA3759O70/duxYoqKiOn0/N2zYQHFxsb6fB3C453kgK1asAND3swt8Ph+NjY36XgZI2/M8EH0vI4fGtMGlMW1gaDwbfBrPHpzGs4Gl8WzwaUwbWMEc06o8QhAVFhYyY8YMxo0bx4QJE5g7dy4ej4eZM2eGO7Ru584772T69On06dOH3bt3M3v2bGw2Gz/84Q/DHVq3UFtb2+knO1u3bmXFihWkpKTQu3dvbrvtNn79618zcOBA+vbtyy9/+UtycnK48MILwxd0BDvU80xJSeHee+/lkksuISsri6KiIn72s58xYMAApk2bFsaoI9NNN93E888/z7/+9S8SEhL8tZNcLhcxMTG4XC6uueYaCgsLSUlJITExkVtuuYWCggJOOumkMEcfeQ73PIuKinj++ec577zzSE1NZdWqVdx+++1MnjyZkSNHhjn6yDJr1izOPfdcevfuTU1NDc8//zyLFi3inXfe0ffyKBzqeep7Gfk0pg0cjWmPnsazgaXxbOBoPBtYGs8Glsa0gRXyMa0hQfXII48YvXv3NhwOhzFhwgTj888/D3dI3dKll15qZGdnGw6Hw8jNzTUuvfRSY/PmzeEOq9v48MMPDWC/NmPGDMMwDMPn8xm//OUvjczMTMPpdBpTpkwxNmzYEN6gI9ihnmddXZ1x9tlnG+np6UZUVJTRp08f47rrrjNKS0vDHXZEOtBzBIynnnrK36e+vt648cYbjeTkZCM2Nta46KKLjJKSkvAFHcEO9zyLi4uNyZMnGykpKYbT6TQGDBhg/L//9/+M6urq8AYega6++mqjT58+hsPhMNLT040pU6YY7777rv99fS+PzKGep76X3YPGtIGhMe3R03g2sDSeDRyNZwNL49nA0pg2sEI9prUYhmEcXbpXRERERERERERERAJNNW1FREREREREREREIoiStiIiIiIiIiIiIiIRRElbERERERERERERkQiipK2IiIiIiIiIiIhIBFHSVkRERERERERERCSCKGkrIiIiIiIiIiIiEkGUtBURERERERERERGJIEraioiIiIiIiIiIiEQQJW1FRAQAi8XC66+/Hu4wRERERESOisazItKTKGkrIhIBrrrqKiwWy37tnHPOCXdoIiIiIiKHpfGsiEhg2cMdgIiImM455xyeeuqpTsecTmeYohEREREROTIaz4qIBI5m2oqIRAin00lWVlanlpycDJi/6vXYY49x7rnnEhMTQ79+/XjllVc6nb969WrOPPNMYmJiSE1N5frrr6e2trZTnyeffJLhw4fjdDrJzs7m5ptv7vR+RUUFF110EbGxsQwcOJA33ngjuB9aRERERHoMjWdFRAJHSVsRkW7il7/8JZdccgkrV67k8ssv57LLLmPdunUAeDwepk2bRnJyMl9++SUvv/wy77//fqdB7GOPPcZNN93E9ddfz+rVq3njjTcYMGBAp3vce++9/OAHP2DVqlWcd955XH755ezduzekn1NEREREeiaNZ0VEus5iGIYR7iBERI53V111Fc8++yzR0dGdjv/85z/n5z//ORaLhRtuuIHHHnvM/95JJ53EmDFj+POf/8zjjz/OXXfdxY4dO4iLiwPgv//9L9OnT2f37t1kZmaSm5vLzJkz+fWvf33AGCwWC7/4xS/41a9+BZgD5/j4eN566y3VIhMRERGRQ9J4VkQksFTTVkQkQpxxxhmdBrEAKSkp/v2CgoJO7xUUFLBixQoA1q1bx6hRo/wDXIBTTjkFn8/Hhg0bsFgs7N69mylTphwyhpEjR/r34+LiSExMZM+ePUf7kURERETkOKLxrIhI4ChpKyISIeLi4vb79a5AiYmJ6VK/qKioTq8tFgs+ny8YIYmIiIhID6PxrIhI4KimrYhIN/H555/v93ro0KEADB06lJUrV+LxePzvf/rpp1itVgYPHkxCQgL5+fksXLgwpDGLiIiIiLTReFZEpOs001ZEJEI0NjZSWlra6ZjdbictLQ2Al19+mXHjxnHqqafy3HPPsXTpUv72t78BcPnllzN79mxmzJjBPffcQ3l5ObfccgtXXHEFmZmZANxzzz3ccMMNZGRkcO6551JTU8Onn37KLbfcEtoPKiIiIiI9ksazIiKBo6StiEiEePvtt8nOzu50bPDgwaxfvx4wV8J98cUXufHGG8nOzuaFF15g2LBhAMTGxvLOO+9w6623Mn78eGJjY7nkkkt4+OGH/deaMWMGDQ0N/OEPf+DOO+8kLS2N733ve6H7gCIiIiLSo2k8KyISOBbDMIxwByEiIodmsVh47bXXuPDCC8MdioiIiIjIEdN4VkTkyKimrYiIiIiIiIiIiEgEUdJWREREREREREREJIKoPIKIiIiIiIiIiIhIBNFMWxEREREREREREZEIoqStiIiIiIiIiIiISARR0lZEREREREREREQkgihpKyIiIiIiIiIiIhJBlLQVERERERERERERiSBK2oqIiIiIiIiIiIhEECVtRURERERERERERCKIkrYiIiIiIiIiIiIiEURJWxEREREREREREZEI8v8BRxmCYWusr9sAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["# ✅ استيراد المكتبات\n","## seperated model for sub catagory only\n","# ✅ استيراد المكتبات\n","import os\n","import pickle\n","import numpy as np\n","import matplotlib.pyplot as plt\n","import seaborn as sns\n","from sklearn.utils import shuffle, class_weight\n","from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, precision_score, recall_score, f1_score\n","from tensorflow.keras.models import Model, load_model\n","from tensorflow.keras.layers import Input, Dense, Dropout, Conv1D, MaxPooling1D, Bidirectional, LSTM, Reshape, Attention, Multiply\n","from tensorflow.keras.optimizers import Adam\n","from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau\n","import matplotlib.image as mpimg\n","\n","# ✅ المسارات\n","base_path = \"/content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files\"\n","model_path = os.path.join(base_path, \"cnn+bilstm_sub.h5\")\n","conf_matrix_path = os.path.join(base_path, \"cnn+bilstm_conf_matrix_sub.png\")\n","acc_loss_path = os.path.join(base_path, \"cnn+bilstm_acc_loss_sub.png\")\n","data_path = os.path.join(base_path, \"train_test_data_sub-deep-new.pkl\")\n","\n","# ✅ تحميل البيانات\n","if os.path.exists(data_path):\n"," with open(data_path, \"rb\") as f:\n"," X_train, X_test, y_train, y_test = pickle.load(f)\n"," X_train, y_train = shuffle(X_train, y_train, random_state=42)\n"," print(\"✅ تم تحميل بيانات التدريب والاختبار.\")\n","else:\n"," raise FileNotFoundError(f\"❌ لم يتم العثور على بيانات التدريب: {data_path}\")\n","\n","# ✅ تحميل أو تدريب النموذج\n","if os.path.exists(model_path):\n"," print(\"✅ تم العثور على النموذج. سيتم استخدامه بدون تدريب.\")\n"," model = load_model(model_path)\n"," history = None\n","else:\n"," print(\"🚀 لم يتم العثور على النموذج. سيتم تدريبه الآن...\")\n","\n"," # ✅ حساب class_weight للفئة الفرعية\n"," weights = class_weight.compute_class_weight(class_weight='balanced', classes=np.unique(y_train), y=y_train)\n"," class_weight_sub = {i: w for i, w in enumerate(weights)}\n","\n"," # ✅ بناء النموذج\n"," input_layer = Input(shape=(894,), name=\"input_layer\")\n"," x = Reshape((894, 1))(input_layer)\n"," x = Conv1D(filters=128, kernel_size=3, activation=\"relu\")(x)\n"," x = MaxPooling1D(pool_size=2)(x)\n"," x = Bidirectional(LSTM(64, return_sequences=True))(x)\n"," att = Attention()([x, x])\n"," x = Multiply()([x, att])\n"," x = Dropout(0.4)(x) # زيادة خفيفة للدروب آوت\n"," x = LSTM(64)(x)\n"," x = Dropout(0.4)(x)\n"," output = Dense(75, activation=\"softmax\", name=\"sub_output\")(x)\n","\n"," model = Model(inputs=input_layer, outputs=output)\n","\n"," model.compile(\n"," optimizer=Adam(learning_rate=0.0005), # تخفيض Learning Rate\n"," loss=\"sparse_categorical_crossentropy\",\n"," metrics=[\"accuracy\"]\n"," )\n","\n"," model.summary()\n","\n"," history = model.fit(\n"," X_train, y_train,\n"," validation_data=(X_test, y_test),\n"," epochs=35, # زيادة Epochs\n"," batch_size=64,\n"," class_weight=class_weight_sub,\n"," callbacks=[\n"," EarlyStopping(patience=5, restore_best_weights=True),\n"," ReduceLROnPlateau(monitor=\"val_loss\", factor=0.5, patience=2, verbose=1, min_lr=1e-6)\n"," ]\n"," )\n","\n"," model.save(model_path)\n"," print(\"✅ تم حفظ النموذج.\")\n","\n","# ✅ التنبؤ\n","preds = model.predict(X_test)\n","preds = np.argmax(preds, axis=1)\n","\n","# ✅ تقييم الأداء\n","print(\"\\n📊 Sub Category Report:\")\n","print(classification_report(y_test, preds))\n","\n","accuracy = accuracy_score(y_test, preds)\n","precision = precision_score(y_test, preds, average='macro', zero_division=0)\n","recall = recall_score(y_test, preds, average='macro', zero_division=0)\n","f1 = f1_score(y_test, preds, average='macro', zero_division=0)\n","\n","print(f\"\\n🔄 Summary:\")\n","print(f\"✅ Accuracy: {accuracy:.4f}\")\n","print(f\"✅ Precision: {precision:.4f}\")\n","print(f\"✅ Recall: {recall:.4f}\")\n","print(f\"✅ F1-Score: {f1:.4f}\")\n","\n","# ✅ رسم Confusion Matrix\n","def plot_conf_matrix(y_true, y_pred, title, save_path):\n"," cm = confusion_matrix(y_true, y_pred)\n"," labels = [str(i) for i in range(len(np.unique(y_true)))]\n"," figsize = (24, 20) if len(labels) > 30 else (10, 7)\n"," annot = True if len(labels) <= 20 else False\n"," fontsize = 10 if len(labels) <= 20 else 6\n","\n"," plt.figure(figsize=figsize)\n"," sns.heatmap(cm, annot=annot, fmt=\"d\", cmap=\"Blues\",\n"," xticklabels=labels, yticklabels=labels, linewidths=0.3)\n"," plt.title(f\"Confusion Matrix - {title}\", fontsize=14)\n"," plt.xlabel(\"Predicted\", fontsize=12)\n"," plt.ylabel(\"Actual\", fontsize=12)\n"," plt.xticks(rotation=90, fontsize=fontsize)\n"," plt.yticks(rotation=0, fontsize=fontsize)\n"," plt.tight_layout()\n"," plt.savefig(save_path, dpi=300)\n"," print(f\"✅ تم حفظ Confusion Matrix: {save_path}\")\n"," plt.show()\n","\n","plot_conf_matrix(y_test, preds, \"Sub Category\", conf_matrix_path)\n","\n","# ✅ رسم Accuracy & Loss\n","if history is not None:\n"," plt.figure(figsize=(14, 5))\n","\n"," plt.subplot(1, 2, 1)\n"," plt.plot(history.history['accuracy'], label='Train Accuracy')\n"," plt.plot(history.history['val_accuracy'], label='Val Accuracy', linestyle='--')\n"," plt.title(\"Accuracy\")\n"," plt.xlabel(\"Epoch\")\n"," plt.ylabel(\"Accuracy\")\n"," plt.legend()\n","\n"," plt.subplot(1, 2, 2)\n"," plt.plot(history.history['loss'], label='Train Loss')\n"," plt.plot(history.history['val_loss'], label='Val Loss', linestyle='--')\n"," plt.title(\"Loss\")\n"," plt.xlabel(\"Epoch\")\n"," plt.ylabel(\"Loss\")\n"," plt.legend()\n","\n"," plt.tight_layout()\n"," plt.savefig(acc_loss_path, dpi=300)\n"," print(f\"✅ تم حفظ رسم Accuracy & Loss: {acc_loss_path}\")\n"," plt.show()\n"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"zDfwqc2_SUhz"},"outputs":[],"source":[]},{"cell_type":"code","execution_count":null,"metadata":{"id":"SaHAxmhd37mV"},"outputs":[],"source":["# اجرب مودل جديد مع ال cnn +BiGRU"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"executionInfo":{"elapsed":16499788,"status":"ok","timestamp":1745751214777,"user":{"displayName":"noor alqudah","userId":"09593972035402767777"},"user_tz":-180},"id":"7aTj-GjaKmUZ","outputId":"1c17be11-b001-4cfc-9c8a-791a5be0c8df"},"outputs":[{"name":"stdout","output_type":"stream","text":["❌ [TRAINING] MAIN model not found. Training...\n"]},{"data":{"text/html":["
Model: \"functional\"\n","
\n"],"text/plain":["\u001b[1mModel: \"functional\"\u001b[0m\n"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃ Layer (type)                     Output Shape                  Param # ┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ input_layer (InputLayer)        │ (None, 894)            │             0 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ reshape (Reshape)               │ (None, 894, 1)         │             0 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ conv1d (Conv1D)                 │ (None, 892, 128)       │           512 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ max_pooling1d (MaxPooling1D)    │ (None, 446, 128)       │             0 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ bidirectional (Bidirectional)   │ (None, 128)            │        74,496 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dropout (Dropout)               │ (None, 128)            │             0 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dropout_1 (Dropout)             │ (None, 128)            │             0 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ main_output (Dense)             │ (None, 22)             │         2,838 │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n","
\n"],"text/plain":["┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ input_layer (\u001b[38;5;33mInputLayer\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m894\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ reshape (\u001b[38;5;33mReshape\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m894\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ conv1d (\u001b[38;5;33mConv1D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m892\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ max_pooling1d (\u001b[38;5;33mMaxPooling1D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m446\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ bidirectional (\u001b[38;5;33mBidirectional\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m74,496\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dropout (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dropout_1 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ main_output (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m22\u001b[0m) │ \u001b[38;5;34m2,838\u001b[0m │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["
 Total params: 77,846 (304.09 KB)\n","
\n"],"text/plain":["\u001b[1m Total params: \u001b[0m\u001b[38;5;34m77,846\u001b[0m (304.09 KB)\n"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["
 Trainable params: 77,846 (304.09 KB)\n","
\n"],"text/plain":["\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m77,846\u001b[0m (304.09 KB)\n"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["
 Non-trainable params: 0 (0.00 B)\n","
\n"],"text/plain":["\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["Epoch 1/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m94s\u001b[0m 35ms/step - accuracy: 0.1872 - loss: 2.7198 - val_accuracy: 0.4169 - val_loss: 1.9552 - learning_rate: 0.0010\n","Epoch 2/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 35ms/step - accuracy: 0.4215 - loss: 1.9515 - val_accuracy: 0.5136 - val_loss: 1.6250 - learning_rate: 0.0010\n","Epoch 3/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 35ms/step - accuracy: 0.4989 - loss: 1.6883 - val_accuracy: 0.5568 - val_loss: 1.4794 - learning_rate: 0.0010\n","Epoch 4/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m90s\u001b[0m 35ms/step - accuracy: 0.5379 - loss: 1.5470 - val_accuracy: 0.5960 - val_loss: 1.3428 - learning_rate: 0.0010\n","Epoch 5/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m90s\u001b[0m 35ms/step - accuracy: 0.5707 - loss: 1.4364 - val_accuracy: 0.6132 - val_loss: 1.2826 - learning_rate: 0.0010\n","Epoch 6/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m91s\u001b[0m 35ms/step - accuracy: 0.5962 - loss: 1.3539 - val_accuracy: 0.6275 - val_loss: 1.2410 - learning_rate: 0.0010\n","Epoch 7/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m91s\u001b[0m 35ms/step - accuracy: 0.6118 - loss: 1.2926 - val_accuracy: 0.6433 - val_loss: 1.1735 - learning_rate: 0.0010\n","Epoch 8/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m91s\u001b[0m 35ms/step - accuracy: 0.6277 - loss: 1.2336 - val_accuracy: 0.6516 - val_loss: 1.1364 - learning_rate: 0.0010\n","Epoch 9/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m90s\u001b[0m 35ms/step - accuracy: 0.6369 - loss: 1.1900 - val_accuracy: 0.6678 - val_loss: 1.0862 - learning_rate: 0.0010\n","Epoch 10/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m90s\u001b[0m 35ms/step - accuracy: 0.6491 - loss: 1.1466 - val_accuracy: 0.6748 - val_loss: 1.0622 - learning_rate: 0.0010\n","Epoch 11/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 35ms/step - accuracy: 0.6605 - loss: 1.1079 - val_accuracy: 0.6841 - val_loss: 1.0290 - learning_rate: 0.0010\n","Epoch 12/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 35ms/step - accuracy: 0.6685 - loss: 1.0806 - val_accuracy: 0.6802 - val_loss: 1.0377 - learning_rate: 0.0010\n","Epoch 13/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 35ms/step - accuracy: 0.6733 - loss: 1.0574 - val_accuracy: 0.6923 - val_loss: 0.9994 - learning_rate: 0.0010\n","Epoch 14/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 35ms/step - accuracy: 0.6800 - loss: 1.0305 - val_accuracy: 0.6875 - val_loss: 1.0137 - learning_rate: 0.0010\n","Epoch 15/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 35ms/step - accuracy: 0.6856 - loss: 1.0138 - val_accuracy: 0.7040 - val_loss: 0.9569 - learning_rate: 0.0010\n","Epoch 16/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 35ms/step - accuracy: 0.6927 - loss: 0.9846 - val_accuracy: 0.7057 - val_loss: 0.9568 - learning_rate: 0.0010\n","Epoch 17/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 35ms/step - accuracy: 0.6961 - loss: 0.9744 - val_accuracy: 0.7081 - val_loss: 0.9521 - learning_rate: 0.0010\n","Epoch 18/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 35ms/step - accuracy: 0.7001 - loss: 0.9600 - val_accuracy: 0.7160 - val_loss: 0.9260 - learning_rate: 0.0010\n","Epoch 19/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 35ms/step - accuracy: 0.7044 - loss: 0.9505 - val_accuracy: 0.7131 - val_loss: 0.9277 - learning_rate: 0.0010\n","Epoch 20/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 35ms/step - accuracy: 0.7091 - loss: 0.9293 - val_accuracy: 0.7177 - val_loss: 0.9235 - learning_rate: 0.0010\n","Epoch 21/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 35ms/step - accuracy: 0.7098 - loss: 0.9278 - val_accuracy: 0.7180 - val_loss: 0.9095 - learning_rate: 0.0010\n","Epoch 22/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 35ms/step - accuracy: 0.7111 - loss: 0.9191 - val_accuracy: 0.7207 - val_loss: 0.9150 - learning_rate: 0.0010\n","Epoch 23/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 35ms/step - accuracy: 0.7167 - loss: 0.9033 - val_accuracy: 0.7241 - val_loss: 0.8926 - learning_rate: 0.0010\n","Epoch 24/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 35ms/step - accuracy: 0.7194 - loss: 0.8923 - val_accuracy: 0.7244 - val_loss: 0.8918 - learning_rate: 0.0010\n","Epoch 25/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 35ms/step - accuracy: 0.7208 - loss: 0.8879 - val_accuracy: 0.7249 - val_loss: 0.8954 - learning_rate: 0.0010\n","Epoch 26/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 35ms/step - accuracy: 0.7260 - loss: 0.8742 - val_accuracy: 0.7296 - val_loss: 0.8813 - learning_rate: 0.0010\n","Epoch 27/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 35ms/step - accuracy: 0.7266 - loss: 0.8677 - val_accuracy: 0.7299 - val_loss: 0.8817 - learning_rate: 0.0010\n","Epoch 28/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 35ms/step - accuracy: 0.7278 - loss: 0.8622 - val_accuracy: 0.7334 - val_loss: 0.8703 - learning_rate: 0.0010\n","Epoch 29/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 35ms/step - accuracy: 0.7327 - loss: 0.8465 - val_accuracy: 0.7330 - val_loss: 0.8627 - learning_rate: 0.0010\n","Epoch 30/30\n","\u001b[1m2574/2574\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m89s\u001b[0m 35ms/step - accuracy: 0.7333 - loss: 0.8457 - val_accuracy: 0.7325 - val_loss: 0.8732 - learning_rate: 0.0010\n"]},{"name":"stderr","output_type":"stream","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"name":"stdout","output_type":"stream","text":["✅ تم حفظ النموذج.\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABWwAAAHqCAYAAACQrwf+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA4TVJREFUeJzs3Xd4FOX6xvHvbnonlRICCb33IiDFA4ioCAiCHj2IoP5UUBEr6kHEo6jYUdGjFD2iiBRFUQRROopU6TUhoYUUkpCe7O7vjyEbIgSSsGGTcH+ua6/dmZ1559mIOtx593lNNpvNhoiIiIiIiIiIiIg4ndnZBYiIiIiIiIiIiIiIQYGtiIiIiIiIiIiISAWhwFZERERERERERESkglBgKyIiIiIiIiIiIlJBKLAVERERERERERERqSAU2IqIiIiIiIiIiIhUEApsRURERERERERERCoIBbYiIiIiIiIiIiIiFYQCWxEREREREREREZEKQoGtiIgUMW/ePIKCgkhPT7/i1540aRImk6lM53700UfUqVOHnJwcB1clIiIiIuXtoYceom/fvk65dq9evejVq1eZzr399tsZNmyYYwsSkaueAlsRqXI+/PBDTCYTnTt3dnYplY7FYuGFF17g4YcfxtfX19nllMrIkSPJzc3l448/dnYpIiIiIk43e/ZsTCYTmzZtcnYplxQdHc2nn37Ks88+6+xSSu3pp59mwYIFbN++3dmliEgVosBWRKqcOXPmEBkZycaNGzl48KCzy6lUvv/+e/bt28f999/vlOs///zzZGVllelcT09P7r77bt566y1sNpuDKxMRERGR8vLuu+8SFRXFdddd55TrL1u2jGXLlpXp3LZt29KhQwfefPNNB1clIlczBbYiUqVER0ezfv163nrrLUJDQ5kzZ46zSypWRkaGs0s4z6xZs+jWrRvh4eFOub6rqyuenp5lPn/YsGEcOXKE3377zYFViYiIiEh5ycvLY86cOU5tK+Du7o67u3uZzx82bBgLFy50SksxEamaFNiKSJUyZ84cAgMDuemmmxg6dGixgW1KSgqPPfYYkZGReHh4ULt2bUaMGEFiYqL9mOzsbCZNmkSjRo3w9PSkZs2a3HrrrRw6dAiAlStXYjKZWLlyZZGxY2JiMJlMzJ49275v5MiR+Pr6cujQIW688Ub8/Py48847AVizZg233XYbderUwcPDg4iICB577LELzjTdu3cvw4YNIzQ0FC8vLxo3bsxzzz0HwG+//YbJZGLRokXnnffll19iMpnYsGFDsT+77Oxsli5dSp8+fc57z2QyMXbsWL755huaNWuGl5cXXbp0YceOHQB8/PHHNGjQAE9PT3r16kVMTEyR80v6GS/Uw7bg2t9++y0tWrTAw8OD5s2bs3Tp0vPqbN++PUFBQXz33XfFfk4RERERKbR161b69++Pv78/vr6+9O7dm99//73IMXl5ebz44os0bNgQT09PgoODufbaa1m+fLn9mJMnT3LPPfdQu3ZtPDw8qFmzJgMHDjzvvvDv1q5dS2Ji4nn3oAX32vPmzePFF18kPDwcPz8/hg4dSmpqKjk5OYwbN46wsDB8fX255557zlvLYNasWfzjH/8gLCwMDw8PmjVrxvTp08+r4e89bM+99ssvv0zt2rXx9PSkd+/eF/wGX9++fcnIyCjy8xARuRyuzi5ARMSR5syZw6233oq7uzt33HEH06dP588//6Rjx472Y9LT0+nevTt79uxh1KhRtGvXjsTERBYvXszRo0cJCQnBYrFw8803s2LFCm6//XYeffRRzpw5w/Lly9m5cyf169cvdW35+fn069ePa6+9ljfeeANvb28AvvnmGzIzM3nwwQcJDg5m48aNTJs2jaNHj/LNN9/Yz//rr7/o3r07bm5u3H///URGRnLo0CG+//57Xn75ZXr16kVERARz5sxh8ODB5/1c6tevT5cuXYqtb/PmzeTm5tKuXbsLvr9mzRoWL17MmDFjAJgyZQo333wzTz31FB9++CEPPfQQp0+f5vXXX2fUqFH8+uuv9nNL+hmLs3btWhYuXMhDDz2En58f7733HkOGDCE2Npbg4OAix7Zr145169ZdckwRERGRq92uXbvo3r07/v7+PPXUU7i5ufHxxx/Tq1cvVq1aZV8TYtKkSUyZMoV7772XTp06kZaWxqZNm9iyZYt9obAhQ4awa9cuHn74YSIjIzl16hTLly8nNjaWyMjIYmtYv349JpOJtm3bXvD9KVOm4OXlxTPPPMPBgweZNm0abm5umM1mTp8+zaRJk/j999+ZPXs2UVFRTJw40X7u9OnTad68Obfccguurq58//33PPTQQ1itVvs97cW8+uqrmM1mnnjiCVJTU3n99de58847+eOPP4ocVzChYd26defdh4uIlIlNRKSK2LRpkw2wLV++3Gaz2WxWq9VWu3Zt26OPPlrkuIkTJ9oA28KFC88bw2q12mw2m23mzJk2wPbWW28Ve8xvv/1mA2y//fZbkfejo6NtgG3WrFn2fXfffbcNsD3zzDPnjZeZmXnevilTpthMJpPtyJEj9n09evSw+fn5Fdl3bj02m802YcIEm4eHhy0lJcW+79SpUzZXV1fbCy+8cN51zvXpp5/aANuOHTvOew+weXh42KKjo+37Pv74Yxtgq1Gjhi0tLa1IDUCRY0v6GV944QXb3//XBNjc3d1tBw8etO/bvn27DbBNmzbtvHHvv/9+m5eX10U/q4iIiEhVN2vWLBtg+/PPP4s9ZtCgQTZ3d3fboUOH7PuOHz9u8/Pzs/Xo0cO+r3Xr1rabbrqp2HFOnz5tA2xTp04tdZ133XWXLTg4+Lz9BffaLVq0sOXm5tr333HHHTaTyWTr379/keO7dOliq1u3bpF9F7oH7devn61evXpF9vXs2dPWs2fP867dtGlTW05Ojn3/u+++W+z9cqNGjc6rSUSkrNQSQUSqjDlz5lC9enX7YgUmk4nhw4czd+5cLBaL/bgFCxbQunXrC/72u+Dr+AsWLCAkJISHH3642GPK4sEHHzxvn5eXl/11RkYGiYmJdO3aFZvNxtatWwFISEhg9erVjBo1ijp16hRbz4gRI8jJyWH+/Pn2fV9//TX5+fncddddF60tKSkJgMDAwAu+37t37yKzIwpmXAwZMgQ/P7/z9h8+fLhUn/Fi+vTpU2RWc6tWrfD39y9yjQKBgYFkZWWRmZl5yXFFRERErlYWi4Vly5YxaNAg6tWrZ99fs2ZN/vnPf7J27VrS0tIAqFatGrt27eLAgQMXHMvLywt3d3dWrlzJ6dOnS1VHUlJSsfefYNzfurm52bc7d+6MzWZj1KhRRY7r3LkzcXFx5OfnF6mrQGpqKomJifTs2ZPDhw+Tmpp6ydruueeeIr1tu3fvDlDsPei57dVERC6HAlsRqRIsFgtz587luuuuIzo6moMHD3Lw4EE6d+5MfHw8K1assB976NAhWrRocdHxDh06ROPGjXF1dVznGFdXV2rXrn3e/tjYWEaOHElQUBC+vr6EhobSs2dPAPuNZMFN4aXqbtKkCR07dizSu3fOnDlcc801NGjQoER12my2C+7/e1AcEBAAQERExAX3n3uzXpLPeDF/vzYYN8UX+gtBQf2XE6yLiIiIVHUJCQlkZmbSuHHj895r2rQpVquVuLg4ACZPnkxKSgqNGjWiZcuWPPnkk/z111/24z08PHjttdf46aefqF69Oj169OD111/n5MmTJaqluPtPKN09qNVqLXJvuW7dOvr06YOPjw/VqlUjNDSUZ599FijbPWhBsFzcPajuP0XEURTYikiV8Ouvv3LixAnmzp1Lw4YN7Y+C1WaLW3zschR3Q3bubN5zeXh4YDabzzu2b9++LFmyhKeffppvv/2W5cuX2xcss1qtpa5rxIgRrFq1iqNHj3Lo0CF+//33S86uBey9YIubFeHi4lKq/QU33o74jJe6xrlOnz6Nt7d3kRkVIiIiIlJ2PXr04NChQ8ycOZMWLVrw6aef0q5dOz799FP7MePGjWP//v1MmTIFT09P/v3vf9O0adNLfpsqODj4orNyy3oPeujQIXr37k1iYiJvvfUWS5YsYfny5Tz22GNA+dyDhoSEXHJMEZGS0KJjIlIlzJkzh7CwMD744IPz3lu4cCGLFi3io48+wsvLi/r167Nz586Ljle/fn3++OMP8vLyinwF61wFv2FPSUkpsv/IkSMlrnvHjh3s37+fzz77jBEjRtj3/32F2YKvqV2qboDbb7+d8ePH89VXX5GVlYWbmxvDhw+/5HlNmjQBIDo6mpYtW5b4M1xKST+jo0RHR9O0adNyGVtERESkqggNDcXb25t9+/ad997evXsxm81FZrEGBQVxzz33cM8995Cenk6PHj2YNGkS9957r/2Y+vXr8/jjj/P4449z4MAB2rRpw5tvvskXX3xRbB1NmjRhzpw5pKam2mfPOsL3339PTk4OixcvLjJT9rfffnPYNQrk5+cTFxfHLbfc4vCxReTqpBm2IlLpZWVlsXDhQm6++WaGDh163mPs2LGcOXOGxYsXA0bP1e3bt7No0aLzxir4bfmQIUNITEzk/fffL/aYunXr4uLiwurVq4u8/+GHH5a49oLf2p/7W3qbzca7775b5LjQ0FB69OjBzJkziY2NvWA9BUJCQujfvz9ffPEFc+bM4YYbbijRb/vbt2+Pu7s7mzZtKnH9JVHSz+goW7ZsoWvXruUytoiIiEhV4eLiwvXXX893331HTEyMfX98fDxffvkl1157Lf7+/kDhWgcFfH19adCgATk5OQBkZmaSnZ1d5Jj69evj5+dnP6Y4Xbp0wWazsXnzZgd8qkIXugdNTU1l1qxZDr0OwO7du8nOztY9qIg4jGbYikilt3jxYs6cOVPsb7SvueYaQkNDmTNnDsOHD+fJJ59k/vz53HbbbYwaNYr27duTnJzM4sWL+eijj2jdujUjRozg888/Z/z48WzcuJHu3buTkZHBL7/8wkMPPcTAgQMJCAjgtttuY9q0aZhMJurXr88PP/zAqVOnSlx7kyZNqF+/Pk888QTHjh3D39+fBQsWXPBrYe+99x7XXnst7dq14/777ycqKoqYmBiWLFnCtm3bihw7YsQIhg4dCsBLL71Uolo8PT25/vrr+eWXX5g8eXKJP8OllOYzXq7NmzeTnJzMwIEDHT62iIiISGU0c+ZMli5det7+Rx99lP/85z8sX76ca6+9loceeghXV1c+/vhjcnJyeP311+3HNmvWjF69etG+fXuCgoLYtGkT8+fPZ+zYsQDs37+f3r17M2zYMJo1a4arqyuLFi0iPj6e22+//aL1XXvttQQHB/PLL7/wj3/8w2Gf+/rrr8fd3Z0BAwbwf//3f6Snp/PJJ58QFhbGiRMnHHYdML455u3tTd++fR06rohcvRTYikilN2fOHDw9PYu9QTKbzdx0003MmTOHpKQkgoODWbNmDS+88AKLFi3is88+IywsjN69e9sXBXNxceHHH3/k5Zdf5ssvv2TBggUEBwdz7bXXFmkXMG3aNPLy8vjoo4/w8PBg2LBhTJ069ZKLgxVwc3Pj+++/55FHHrH3+xo8eDBjx46ldevWRY5t3bo1v//+O//+97+ZPn062dnZ1K1b196n91wDBgwgMDAQq9Vaqq9mjRo1iiFDhhAXF3feQg5lVZrPeLm++eYb6tSp49CbfREREZHKbPr06RfcP3LkSJo3b86aNWuYMGECU6ZMwWq10rlzZ7744gs6d+5sP/aRRx5h8eLFLFu2jJycHOrWrct//vMfnnzyScBYAOyOO+5gxYoV/O9//8PV1ZUmTZowb948hgwZctH63N3dufPOO/nmm2945ZVXHPa5GzduzPz583n++ed54oknqFGjBg8++CChoaGMGjXKYdcB4x701ltvxc/Pz6HjisjVy2S72HKMIiJSKeXn51OrVi0GDBjAjBkzSnyexWKhWbNmDBs2rMQzcyuKnJwcIiMjeeaZZ3j00UedXY6IiIiIlNDhw4dp0qQJP/30E71793Z2OaWybds22rVrx5YtW2jTpo2zyxGRKkI9bEVEqqBvv/2WhISEIot8lYSLiwuTJ0/mgw8+ID09vZyqKx+zZs3Czc2NBx54wNmliIiIiEgp1KtXj9GjR/Pqq686u5RSe/XVVxk6dKjCWhFxKM2wFRGpQv744w/++usvXnrpJUJCQtiyZYuzSxIRERERERGRUtAMWxGRKmT69Ok8+OCDhIWF8fnnnzu7HBEREREREREpJc2wFREREREREREREakgNMNWREREREREREREpIJQYCsiIiIiIiIiIiJSQbg6u4ArzWq1cvz4cfz8/DCZTM4uR0RERERKwGazcebMGWrVqoXZrDkHuqcVERERqVxKcz971QW2x48fJyIiwtlliIiIiEgZxMXFUbt2bWeX4XS6pxURERGpnEpyP3vVBbZ+fn6A8cPx9/d3cjUiIiIiUhJpaWlERETY7+WudrqnFREREalcSnM/e9UFtgVfGfP399fNrYiIiEglo6//G3RPKyIiIlI5leR+Vg3ARERERERERERERCoIBbYiIiIiIiIiIiIiFYQCWxEREREREREREZEK4qrrYVtSFouFvLw8Z5chVYSbmxsuLi7OLkNEREREREREKhhlUFWDI7MfBbZ/Y7PZOHnyJCkpKc4uRaqYatWqUaNGDS2WIiIiIiIiIiLKoKogR2U/Cmz/puBflLCwMLy9vRWuyWWz2WxkZmZy6tQpAGrWrOnkikRERERERETE2ZRBVR2Ozn4U2J7DYrHY/0UJDg52djlShXh5eQFw6tQpwsLC1B5BRERERERE5CqmDKrqcWT2o0XHzlHQL8Tb29vJlUhVVPDnSn1pRERERERERK5uyqCqJkdlPwpsL0BT0KU86M+ViIiIiIiIiJxLWUHV4qh/ngpsRURERERERERERCoIBbZSrMjISN555x1nlyEiIiIiIiIiIlWYMqiiFNhWASaT6aKPSZMmlWncP//8k/vvv98hNX711Ve4uLgwZswYh4wnIiIiIiIiIiJXVkXOoHr16sW4ceMua4yKwtXZBcjlO3HihP31119/zcSJE9m3b599n6+vr/21zWbDYrHg6nrpf/ShoaEOq3HGjBk89dRTfPzxx7z55pt4eno6bOzSys3Nxd3d3WnXFxERERERERGpjCpDBlUVaIZtFVCjRg37IyAgAJPJZN/eu3cvfn5+/PTTT7Rv3x4PDw/Wrl3LoUOHGDhwINWrV8fX15eOHTvyyy+/FBn379PRTSYTn376KYMHD8bb25uGDRuyePHiS9YXHR3N+vXreeaZZ2jUqBELFy4875iZM2fSvHlzPDw8qFmzJmPHjrW/l5KSwv/93/9RvXp1PD09adGiBT/88AMAkyZNok2bNkXGeuedd4iMjLRvjxw5kkGDBvHyyy9Tq1YtGjduDMD//vc/OnTogJ+fHzVq1OCf//wnp06dKjLWrl27uPnmm/H398fPz4/u3btz6NAhVq9ejZubGydPnixy/Lhx4+jevfslfyYiIiIiIiIiIpVNRc+gLmbBggX27CkyMpI333yzyPsffvghDRs2xNPTk+rVqzN06FD7e/Pnz6dly5Z4eXkRHBxMnz59yMjIuKx6LkYzbC/BZrORlWdxyrW93FwctrrcM888wxtvvEG9evUIDAwkLi6OG2+8kZdffhkPDw8+//xzBgwYwL59+6hTp06x47z44ou8/vrrTJ06lWnTpnHnnXdy5MgRgoKCij1n1qxZ3HTTTQQEBHDXXXcxY8YM/vnPf9rfnz59OuPHj+fVV1+lf//+pKamsm7dOgCsViv9+/fnzJkzfPHFF9SvX5/du3fj4uJSqs+/YsUK/P39Wb58uX1fXl4eL730Eo0bN+bUqVOMHz+ekSNH8uOPPwJw7NgxevToQa9evfj111/x9/dn3bp15Ofn06NHD+rVq8f//vc/nnzySft4c+bM4fXXXy9VbSIiIkVYrXDmBCQfhqxkMLsWfYQ2Ab/qxrHZqZASd877LkWP9fADt7PfarHZjGetRCxlsPlIModOZdCvRQ0CvNycXY6IiEiV5KwMypH5Ezg3gyrO5s2bGTZsGJMmTWL48OGsX7+ehx56iODgYEaOHMmmTZt45JFH+N///kfXrl1JTk5mzZo1gDGr+I477uD1119n8ODBnDlzhjVr1mAruL8uBwpsLyErz0KziT875dq7J/fD290x/4gmT55M37597dtBQUG0bt3avv3SSy+xaNEiFi9eXGR269+NHDmSO+64A4BXXnmF9957j40bN3LDDTdc8Hir1crs2bOZNm0aALfffjuPP/440dHRREVFAfCf//yHxx9/nEcffdR+XseOHQH45Zdf2LhxI3v27KFRo0YA1KtXr9Sf38fHh08//bRIK4RRo0bZX9erV4/33nuPjh07kp6ejq+vLx988AEBAQHMnTsXNzfjLyYFNQCMHj2aWbNm2QPb77//nuzsbIYNG1bq+kRE5CpjtULaMSOUTT4M9a+DwEjjvc0zYcnjxZ976yfQ6uz/a2LWwtx/Fn/sze9Ah3uM14dXwv8GgckFXNzBxc0IdQte93wK2o0wjo3fBd+PM/a7uIHZrejrFrdCk5su60cglcu4r7cRl5xFZIgPnaJK/5ckERERuTRnZVCOzJ/AeRnUxbz11lv07t2bf//734CR7+zevZupU6cycuRIYmNj8fHx4eabb8bPz4+6devStm1bwAhs8/PzufXWW6lbty4ALVu2LHUNpaHA9irRoUOHItvp6elMmjSJJUuW2P/gZWVlERsbe9FxWrVqZX/t4+ODv7//eW0EzrV8+XIyMjK48cYbAQgJCaFv377MnDmTl156iVOnTnH8+HF69+59wfO3bdtG7dq1iwSlZdGyZcvz+tZu3ryZSZMmsX37dk6fPo3VagUgNjaWZs2asW3bNrp3724Pa/9u5MiRPP/88/z+++9cc801zJ49m2HDhuHj43NZtYqISBUUvxu2zSkMaJOjwZJT+P7gjwsD26B6RpBarS74hILNAtb8sw8LeFYrPM/sBr7Vi75vyTNe2yzGjNsC1nzj2WaB/Czjca68c7azUuDoxmI/Tm5IU7Ijr8fLzQU3F3XYuhpEhfgSl5xFdGK6AlsRERG5KGdlUBezZ88eBg4cWGRft27deOedd7BYLPTt25e6detSr149brjhBm644QZ7O4bWrVvTu3dvWrZsSb9+/bj++usZOnQogYGBZaqlJBTYXoKXmwu7J/dz2rUd5e8h4hNPPMHy5ct54403aNCgAV5eXgwdOpTc3NyLjvP38NJkMtmDzguZMWMGycnJeHl52fdZrVb++usvXnzxxSL7L+RS75vN5vOmoOfl5Z133N8/f0ZGBv369aNfv37MmTOH0NBQYmNj6devn/1ncKlrh4WFMWDAAGbNmkVUVBQ//fQTK1euvOg5IiJSgeRlw6nd4FcD/GsZ+9JOwJF1YLMWBqAFYajNCnW7QY0WxrGnj8D2r4oel58DKbGQfAh6TTBmogKcOQ4b3i96fbOrEdIG1QPv4ML9kT3guZPGbNZLaXQ9PLG/yK7M3HxikzM5kphBbFIGR77dQWxyFieTwNV9FmabBRdbHmZbPmZbPi7WPMzkc+LHapz6YSlWm41qtjTaMh4X8nGxWXA35eOKBVcsuJPPpp/d+WvpMj4d0YE+zaqX7ecvlUq9EB9W70/gcGL59WoTERG52jkrg3Jk/gTOy6Auh5+fH1u2bGHlypUsW7aMiRMnMmnSJP7880+qVavG8uXLWb9+PcuWLWPatGk899xz/PHHH/ZvjzuaAttLMJlMDp0WXlGsW7eOkSNHMnjwYMD4bUdMTIxDr5GUlMR3333H3Llzad68uX2/xWLh2muvZdmyZdxwww1ERkayYsUKrrvuuvPGaNWqFUePHmX//v0XnGUbGhrKyZMnsdls9n4r27Ztu2Rte/fuJSkpiVdffZWIiAgANm3adN61P/vsM/Ly8oqdZXvvvfdyxx13ULt2berXr0+3bt0ueW0REXGC7FQ4uQNO/AUn/4IT2yFhnzHbdOAH0PYu47j4nbBgdPHj9J9aGNimxsHKKcUfm3hOkBrWDK4ZA0FRRkAbXB/8a4PLBe4xLrTvHDabjcT0XGKTM4xgNimT2KRMjpx9nZiec5GzPS46Nhg90+LxZSkdLnEsWMuxb5dULFEhxl+8ohMU2IqIiJQXZVDlp2nTpvb1ks6tq1GjRvZ1klxdXenTpw99+vThhRdeoFq1avz666/ceuutmEwmunXrRrdu3Zg4cSJ169Zl0aJFjB8/vlzqrXp/CqREGjZsyMKFCxkwYAAmk4l///vfDv8txf/+9z+Cg4MZNmzYec2rb7zxRmbMmMENN9zApEmTeOCBBwgLC7MvMLZu3ToefvhhevbsSY8ePRgyZAhvvfUWDRo0YO/evZhMJm644QZ69epFQkICr7/+OkOHDmXp0qX89NNP+Pv7X7S2OnXq4O7uzrRp03jggQfYuXMnL730UpFjxo4dy7Rp07j99tuZMGECAQEB/P7773Tq1InGjRsD0K9fP/z9/fnPf/7D5MmTHfrzExGRMjoTb7QC8Akxtg/8AnOGXPhY72DwDDhnOwgiuxcu3mUqWMTLbDwHnfMbdL+a0GHUOce4GLNiAyKMULZ64S8r8a8FN7xSovKtVhupWXkkZeRwPCWbI8mZxkzZpExikzOJS84kI/fii1EEeLlRN9ibOkHGo26wNxFB3vi4u+JiNmEygdlkwsVswnz2dcH2ue+ZTOBy9j3zOccWvOdmVjuEq0VBYBuTpMBWRERESudKZFAFEhISzpvIV7NmTR5//HE6duzISy+9xPDhw9mwYQPvv/8+H374IQA//PADhw8fpkePHgQGBvLjjz9itVpp3Lgxf/zxBytWrOD6668nLCyMP/74g4SEBJo2bVounwEU2F613nrrLUaNGkXXrl0JCQnh6aefJi0tzaHXmDlzJoMHD77gSoNDhgzhX//6F4mJidx9991kZ2fz9ttv88QTTxASEsLQoUPtxy5YsIAnnniCO+64g4yMDBo0aMCrr74KGL8h+fDDD3nllVd46aWXGDJkCE888QT//e9/L1pbaGgos2fP5tlnn+W9996jXbt2vPHGG9xyyy32Y4KDg/n111958skn6dmzJy4uLrRp06bILFqz2czIkSN55ZVXGDFixOX+yEREpDRsNkg5YsyaPbH97MzZvyD9JFz3PPQ0FoUkpKHxHBABNVpBzdZQs5Xx2r8WnPv/qfD2MPKHkl0/uD7c/HaJDs3Jt5CUnktSei6J6TlnH7kkpeeQlJFbZDs5I5d868VnrppMUCvAyx7I1gk2Qtm6QT7UCfImwLsE7RRESqEwsM3EYrXhYnbcStIiIiJStV2JDKrAl19+yZdffllk30svvcTzzz/PvHnzmDhxIi+99BI1a9Zk8uTJjBw5EoBq1aqxcOFCJk2aRHZ2Ng0bNuSrr76iefPm7Nmzh9WrV/POO++QlpZG3bp1efPNN+nfv3+5fAYAk+3vDUCruLS0NAICAkhNTT1vFmZ2djbR0dFERUXh6enppAqlshk9ejQJCQksXrz4osfpz5eIVHnWs31fTabC/qtWK2Qln10IK894tuSBJdd49g40ZqOCsb1/6dn38s8+5xpjWnIhqD40MRax5HQMfNzDaHVwHhN0vBduesPYtNkgMxl8gi9wbFk+po0z2fmczswlJSuP05m5pGYaz6cz84wQ9mwwWxDGnsnOL/V1ArzcCPPzODtT1qdwxmywN7UDvfBwdWyvsYruYvdwzjRlyhQWLlzI3r178fLyomvXrrz22mv2b+Ncyty5c7njjjsYOHAg3377bYmve6V/Hharjab/Xkquxcqap64jIsi73K8pIiJSlSkjqJou9s+1NPdvmmErUkapqans2LGDL7/88pJhrYhIhZd2ArZ+AaejITka0uMLF9qyWqDjKOhxdsbq6SMwvaux32YpfC7Q8b7CsDQjAd48vwe5XZu7YNAHxuu8LPj6ruKPbT64MLD1DzcWDTO7QVjTs7NmWxuzZqs3Bw/fwvNMpguGtTabjfScfFIy80g5G7imZOWRkplr304tst94LzUrj0tMgL0gNxcTwT4eBPu6E+zrQYivOyFnnwv2G9seBPm44+6qdgOVwapVqxgzZgwdO3YkPz+fZ599luuvv57du3eft+DG38XExPDEE0/QvXv3K1Rt2bmYTdQN9ubAqXSiEzMU2IqIiIiUIwW2ImU0cOBANm7cyAMPPEDfvn2dXY6IyIVZrXDmuBHCFoSxyYeN161uhy4PGcflnIHf/lP8OFkpRbdz04s/9tzw1nx2FqjJBVzcjZm3Lm5G0OriDl7VCo919YCIzsZ+s2vR413cIfycRbBc3ODBdVCtLri6A5BnsXI6M5fk07kkZySSnJHL6Yxcks4+J2fmkZyRQ3KG8Xw6I49cS9l7Z3m7uxDo7U6AlxuBPm5U83KnmrdbkTA22McIZ0N9PfD3cr1gmyCp3JYuXVpke/bs2YSFhbF582Z69OhR7HkWi4U777yTF198kTVr1pCSklLOlV6+qBAfe2Dbo1Gos8sRERERqbIU2IqU0cqVK51dgoiIIScd0o4ZbQJ8QiG8nbE/6RB82AUsORc+r3rLwteBdaHNnRAYZSys5V/LCFXNZiNs9Q0rPNa/Fjyy9exiWy6Fz2ZXMJmN4LWAdzC8kFK0T2xxXD1g9LLzdttsNk6dyeFwQgaH/zhCXHIWSek5nM7MJSnjlBHGZuSSVoa2AwAermYCvY2wtZq3EbwG+rgR4OVOYME+b3eqebkR6GM8B3i7XXUtCaRkUlONNh1BQUEXPW7y5MmEhYUxevRo1qxZcyVKu2xRocaM4ehELTwmIiIiUp4U2IqIiFRUNpvRo9WaDz4hxr6s07DseaOFQdpx45FzTh/Xtv8qDGz9axlhrdkVqtUxesUWBLKBUUYrgQKuHjDow5LV5eJW2Hf2Ukoxo/RMdh4xiZkcTkw3wtnEDKIT04lOyCAj13LpAc5eLtDbnSAfd4LOPgf6uBPk40aQj0fhs7c7Qb7GMV7uCl7FMaxWK+PGjaNbt260aNGi2OPWrl3LjBkzzlvB+GJycnLIySn85Ut5LdRxMVHBCmxFRERErgQFtiIiIlea1Wr0hnU5+7/h3EzY/mVhAJt2rPB1Xia0vQsGnu3z6upp9Jr9Ow9/oz2Af63CfW5eMG4H+NUqvJaT5VmsxCZnEp2QQXRiRpFwNuFMMTOBMfpnRgR6ERXiQ91gH0L9jD6vgd7uBPu620PaAC83rV4vTjNmzBh27tzJ2rVriz3mzJkz/Otf/+KTTz4hJCSkxGNPmTKFF1980RFllllUiAJbERERkSuhYvztTUREpCKy5EFuRmGf1awUmPcvY5Eta/45j7PbjftDn0nGsbmZ8E7Lou8XPLBBs4Ew7HPjWJMJljxefB3Z58ygdfOCvpPBO8QIZ/3Dwb8mePhd+NxqdS7vZ1AK2XkWEtNzSEzPJSk9x/464UwOccmZHE7MIDY5E8tFVuwK8fWgXogP9UJ9iAoxHvVCfakT5K1FuKRCGzt2LD/88AOrV6+mdu3axR536NAhYmJiGDBggH2f1Wr0UnZ1dWXfvn3Ur1//vPMmTJjA+PHj7dtpaWlEREQ48BNcWkFLhKOnM8nJt6gtiIiIiEg5UWArIiIVg80GCXvh+DajD2u1CAioDe4XX2XdYbJOw8mdEL8TTu6Ak39Bwj5oPxJunHq2RitEry5+jJqtC1+bXSAzsfhjred8xd/NC1oOA8+Ac0LYWoUPN6+i53Z7tNQfryxsNhtp2flnw9dcEtNzSErPIeFvgWzB++k5Jesh6+XmcjaI9aFeiA9RoT7UC/ElMsSHAC+3cv5UIo5ls9l4+OGHWbRoEStXriQqKuqixzdp0oQdO3YU2ff8889z5swZ3n333WJDWA8PDzw8PC743pUS6uuBr4cr6Tn5xCVn0iCsmF8UiYiIiMhlUWArIiLOdXIH7PoWdn8HSQeKvmd2g+dPGQtfgdEKIDPZCHKr1TGefcIK3y8JqxVy0gpnzeakGwtzpcZe+Pikg4Wv3X1hyAyjJ2yRx9kFt3yrFx7r4g4P/V70/XMfLu5FrzPkk5J/hnKQcCaHv46msD0uhW1HUzkYf4bEjFxy862lGsfdxUyIrzvBvh7nPHsQHuhF/bPhbA1/T0yl6G0rUpGNGTOGL7/8ku+++w4/Pz9OnjwJQEBAAF5exi9bRowYQXh4OFOmTMHT0/O8/rbVqlUDuGjf24rAZDIRFeLDjmOpRCcqsBUREREpLwpsRUTkyrLZii5EtWIyHFhmvHZxh/AORguA1DjwDioaxm6aCcc2Fx3P7AYB4cYiWHctLBz75E5jvJwzEL/j7KzZszNoIzrDvxYax3n4gjXPeF2tDtRoBdVbQI2WUKOF0Re2gKs7tBxass9pMhVd1KsCycjJZ+exVLYfTWF7XCrb4lI4lpJV7PG+Hq5FQtgQXw+CfT0IPSeQLXjf39NVYaxcVaZPnw5Ar169iuyfNWsWI0eOBCA2NhZzaX6xVIFF2gPbdKD6JY8XERERkdJTYCt2vXr1ok2bNrzzzjvOLkVEqhqrBWI3wO7FsPcHGLW0sLdqy2Hg6gFNB0KjfuDpX3hebmbRcZrcBIFRkHrUeJw5boStp2OM988NCr9/FI5tunA9iX+byXvXQqP1QMGs2yok32Jlf3z62XA2hW1xKeyPP8Pf28iaTNAg1JfWEdVoHVGNZjX9qe5vhLGebupTKVIcm634nswFVq5cedH3Z8+e7ZhirgAtPCYiIiKOoAzq4hTYVgEDBgwgLy+PpUuXnvfemjVr6NGjB9u3b6dVq1YOuV5WVhbh4eGYzWaOHTvm9H5qIlJBWfKMfq97FsPeJZCRUPjenh+gy0PG61a3GY8Lcfcuut39bwtzWfLhzAljNm5+dtH33LzA3Q/cPM/OmG1ROHs2pGHRY6s3K/3nq4BsNhtHT2exLc4IZ7cfTWHHsVSy885va1DD35M2Z8PZ1hEBtAwPwM9T/WNF5OLqnQ1sDycosBUREbkaXakMavbs2YwbN46UlJTLGqeyUmBbBYwePZohQ4Zw9OjR81YlnjVrFh06dHBYWAuwYMECmjdvjs1m49tvv2X48OEOG7u0bDYbFosFV1f9URapUI5ugi+GQHZK4T7PasYM2aa3QL1ejrmOi6uxOFm1CyzSM/IHx1yjHOTkWziSlEnimRxyLVbyLDZy863kWaxnt63k5Z/db7Ha38uzXHhfbr6NrLx89p44Q1JG7nnX8/NwpVVEAK1rnw1oa1ejRoCnEz65iFR2mmErIiJydbvSGdTVqmo007rK3XzzzYSGhp73dbr09HS++eYbRo8eTVJSEnfccQfh4eF4e3vTsmVLvvrqqzJdb8aMGdx1113cddddzJgx47z3d+3axc0334y/vz9+fn50796dQ4cO2d+fOXMmzZs3x8PDg5o1azJ27FgAYmJiMJlMbNu2zX5sSkoKJpPJ/lXClStXYjKZ+Omnn2jfvj0eHh6sXbuWQ4cOMXDgQKpXr46vry8dO3bkl19+KVJXTk4OTz/9NBEREXh4eNCgQQNmzJiBzWajQYMGvPHGG0WO37ZtGyaTiYMHDyIiF5GbYSwYtuecgDS0MeRlgU8otL8H/rUInjwIgz6ExjcYs16vAskZufwZk8zcjbG8vGQ3o2b/Sa+pv9H030u5/u3V/PPTPxg560/u+3wTY77cwrivt/HU/L94btFOJn2/m5d/3MPUn/fx7ooDfLjyEJ+siWb2+hi+/COW+ZuP8t224/y44yS/7Iln3cEkkjJycXMx0ap2AP+6pi5v3taaX8b3ZPsL1zPn3mt46oYm9GteQ2GtiJRZ5NnA9tSZHNJz8p1cjYiIiFxpVzqDKk5sbCwDBw7E19cXf39/hg0bRnx8vP397du3c9111+Hn54e/vz/t27dn0yajZd6RI0cYMGAAgYGB+Pj40Lx5c3788UeH1ne5NC2xpHIvMovA5FI0fLjosWbja7qXOtbdp8Slubq6MmLECGbPns1zzz1nX+zlm2++wWKxcMcdd5Cenk779u15+umn8ff3Z8mSJfzrX/+ifv36dOrUqcTXOnToEBs2bGDhwoXYbDYee+wxjhw5Qt26xqI8x44do0ePHvTq1Ytff/0Vf39/1q1bR36+cUM/ffp0xo8fz6uvvkr//v1JTU1l3bp1Jb5+gWeeeYY33niDevXqERgYSFxcHDfeeCMvv/wyHh4efP755wwYMIB9+/ZRp47RJ3PEiBFs2LCB9957j9atWxMdHU1iYiImk4lRo0Yxa9YsnnjiCfs1Zs2aRY8ePWjQoEGp6xOpEnIzIDsN/GsW7ls1FZIOQvpJOBNvPGedNt6r0Qqa3my89vCD/1sFIY3AXLX7n+ZbrMQmZ3IoIYPDCekcSkjnUEIGhxLSScnMK/Y8Xw9XagZ44u5qxt3VjJuLGXcXM24uJuO1a8G2GTfXC+yzb5vs2/VCfWha0189Z0Wk3AR4uRHs405SRi4xiRm0CA9wdkkiIiJVz5XMoEqRP8GVzaCKY7Va7WHtqlWryM/PZ8yYMQwfPtw+4e/OO++kbdu2TJ8+HRcXF7Zt24abm9ECbsyYMeTm5rJ69Wp8fHzYvXs3vr6+l12XIymwLalXahX/XsPr4c5vCrenNoC8zAsfW/dauGdJ4fY7LSEz6fzjJqWWqrxRo0YxdepUVq1aZV+leNasWQwZMoSAgAACAgKKhJEPP/wwP//8M/PmzSvVvywzZ86kf//+BAYGAtCvXz9mzZrFpEmTAPjggw8ICAhg7ty59n8RGjVqZD//P//5D48//jiPPvqofV/Hjh1L9VkBJk+eTN++fe3bQUFBtG7d2r790ksvsWjRIhYvXszYsWPZv38/8+bNY/ny5fTp0weAevXq2Y8fOXIkEydOZOPGjXTq1Im8vDy+/PLL82bdilR6lnzIywDPc/6C/ecMSD5s9IItCGHPxEPuGQhtCmN+Lzx25wJI2HP+uNXqQr2exuJiBQFtWNPy/SxXUHaehcT0HOLTcohONMLYw2eD2SNJGeRZil90KLyaF/XDfKkX4kP9MF/qh/rQINSXUD8P+82NiEhlEhXiQ1JGLtEKbEVERMrHlcygSpk/wZXLoIqzYsUKduzYQXR0NBERRnu8zz//nObNm/Pnn3/SsWNHYmNjefLJJ2nSpAkADRsWrmMSGxvLkCFDaNmyJVA0H6ooFNhWEU2aNKFr167MnDmTXr16cfDgQdasWcPkyZMBsFgsvPLKK8ybN49jx46Rm5tLTk4O3t7elxi5kMVi4bPPPuPdd9+177vrrrt44oknmDhxImazmW3bttG9e3d7WHuuU6dOcfz4cXr37n3Zn7dDhw5FttPT05k0aRJLlizhxIkT5Ofnk5WVRWxsLGC0N3BxcaFnz54XHK9WrVrcdNNNzJw5k06dOvH999+Tk5PDbbcVsxCSiLPlZRkzWwseAJHXFr6/YrIRwp57TFYK5KQZs17H/ll47J+fwqndF75Ozpmi2x1HQ246+NYAv+pnn2uAVyBUovDRYrWRkplLUkYuiek5JKUXPidl5JCYnktSeuFzRq7louN5upmpF+JrD2Trh/pSL9SHeiG+eLlrtquIVC1RIT5sOnJafWxFRESuUlcig7qYPXv2EBERYQ9rAZo1a0a1atXYs2cPHTt2ZPz48dx7773873//o0+fPtx2223Ur18fgEceeYQHH3yQZcuW0adPH4YMGVLh+u5WiMD2gw8+YOrUqZw8eZLWrVszbdq0YhP3Xr16sWrVqvP233jjjSxZsuQCZzjIs8eLf8/0t7+MP3mRnqemv7UNHrej7DX9zejRo3n44Yf54IMPmDVrFvXr17cHlFOnTuXdd9/lnXfeoWXLlvj4+DBu3Dhyc89fnKY4P//8M8eOHTtvkTGLxcKKFSvo27cvXl5exZzNRd8DMJuNn43NVjhTLS/vwl8n9vEpOmX/iSeeYPny5bzxxhs0aNAALy8vhg4dav98l7o2wL333su//vUv3n77bWbNmsXw4cMd9h8TEYf4fCCc2mss5JWfXfS9v4ew+5bCqV0XHqcg4C3Q8jbjt6x+NY3w1bd64bOHX9FjO9132R/jSrBYbew5kcammGSOJGfag1gjmM0lOSMHa/GTYi/I3cVMiK87kSE+1DsbytYPNULamv6emM2VJ7AWEbkcUaFaeExERKRcKYO6bJMmTeKf//wnS5Ys4aeffuKFF15g7ty5DB48mHvvvZd+/fqxZMkSli1bxpQpU3jzzTd5+OGHr1h9l+L0wPbrr79m/PjxfPTRR3Tu3Jl33nmHfv36sW/fPsLCws47fuHChUX+ASclJdG6devynwlZmp4e5XXsJQwbNoxHH32UL7/8ks8//5wHH3zQ/nXbdevWMXDgQO666y7A6Pexf/9+mjVrVuLxZ8yYwe23385zzz1XZP/LL7/MjBkz6Nu3L61ateKzzz4jLy/vvFm2fn5+REZGsmLFCq677rrzxg8NDQXgxIkTtG3bFqDIAmQXs27dOkaOHMngwYMBY8ZtTEyM/f2WLVtitVpZtWqVvSXC39144434+Pgwffp0li5dyurVq0t0bZErJiPRaFdQwORizGz1CoTAqKLHdhljzIT1rFZ4TMHD829fX+0+vtxLL29ZuRa2xaWwKSaZjTHJbI1NKdFiONW8jV6MIb4ehPh6EOzrTrCP8Wzscyf47H4/D1e1MBARAeqdXXjssAJbERGR8qEM6qKaNm1KXFwccXFx9lm2u3fvJiUlpcg1GjVqRKNGjXjssce44447mDVrlj03ioiI4IEHHuCBBx5gwoQJfPLJJwpsz/XWW29x3333cc899wDw0UcfsWTJEmbOnMkzzzxz3vFBQUFFtufOnYu3t7e+ug74+voyfPhwJkyYQFpaGiNHjrS/17BhQ+bPn8/69esJDAzkrbfeIj4+vsT/siQkJPD999+zePFiWrRoUeS9ESNGMHjwYJKTkxk7dizTpk3j9ttvZ8KECQQEBPD777/TqVMnGjduzKRJk3jggQcICwujf//+nDlzhnXr1vHwww/j5eXFNddcw6uvvkpUVBSnTp3i+eefL1F9DRs2ZOHChQwYMACTycS///1vrFar/f3IyEjuvvtuRo0aZV907MiRI5w6dYphw4YB4OLiwsiRI5kwYQINGzakS5cuJbq2SLk4sR1+fBJu/S8ERhr7Br5v/Ia0IHh19y2+DUHbO69Yqc5wOiOXTUdO82dMMn/GJLPzWOp5fWT9PFxpVzeQJjX9CP1bGBvq60GgjztuLuZiriAiIsWJPBvYRiekY7PZ9MssERGRq1B5ZlAFLBbLeRP5PDw86NOnDy1btuTOO+/knXfeIT8/n4ceeoiePXvSoUMHsrKyePLJJxk6dChRUVEcPXqUP//8kyFDhgAwbtw4+vfvT6NGjTh9+jS//fYbTZtWrDVYnBrY5ubmsnnzZiZMmGDfZzab6dOnDxs2bCjRGAWzPv/+FfkCOTk55OTk2LfT0tIur+gKbvTo0cyYMYMbb7yRWrUKm1Q///zzHD58mH79+uHt7c3999/PoEGDSE0tWXPpzz//HB8fnwv2n+3duzdeXl588cUXPPLII/z66688+eST9OzZExcXF9q0aUO3bt0AuPvuu8nOzubtt9/miSeeICQkhKFDh9rHmjlzJqNHj6Z9+/Y0btyY119/neuvv/6S9b311luMGjWKrl27EhISwtNPP33eP+vp06fz7LPP8tBDD5GUlESdOnV49tlnz/v5vfLKK/ZfIIhccZY8WPMmrJ4K1nxY9m8Y/j/jvVptnVubk9hsNo6ezmLTkWQ2Rp9mU0wyB06ln3dcdX8POkYG0TEyiA6RgTSp4Y+L2hSIiDhcZLBx352Wnc/pzDyCfNydXJGIiIg4Q3llUAXS09Pt38AuUL9+fQ4ePMh3333Hww8/TI8ePTCbzdxwww1MmzYNMCbkJSUlMWLECOLj4wkJCeHWW2/lxRdfBIwgeMyYMRw9ehR/f39uuOEG3n777cv8aTiWyXZuw9Ar7Pjx44SHh7N+/foisxmfeuopVq1axR9//HHR8zdu3Ejnzp35448/iu15O2nSJPs/kHOlpqbi7+9fZF92djbR0dFERUXh6elZhk8kld2aNWvo3bs3cXFxVK9e3aFj68+XXFL8Llj0AJz8y9huegvc9Bb4hjq3rivMYrWxP/7M2dmzp/kzOpmTadnnHdcgzJeOkYF0qBtEp6ggagd6aZaXSBWWlpZGQEDABe/hrkbO/nl0e/VXjqVkseDBLrSvG3TpE0RERKQIZQRV08X+uZbm/s3pLREux4wZM2jZsmWxYS3AhAkTGD++sD9jWlpakVXkRMCYiZ2QkMCkSZO47bbbHB7WilyUJR/WvQMrXwVrntHu4MY3oMWQ4lseVCI2m4207HxSMnNJzsjldGYupzPyjOfMXJIz8uzvpWTmcTwlizN/6z/rajbRIjyAjpGBdIwMon3dQIJ9PZz0iUREJCrEh2MpWRxOyFBgKyIiIuJgTg1sQ0JCcHFxIT4+vsj++Ph4atSocdFzMzIymDt3LpMnT77ocR4eHnh46C/1cnFfffUVo0ePpk2bNnz++efOLkeuNptmwK8vGa8b9YcB74Jf5filQWJ6Dr8fTuJ4ShanM/M4fYFANiUzj3xr6b7M4ePuQru6gfb2Bm0iquHtXql/xygiUqVEhfiw9mAi0Vp4TERERMThnPq3X3d3d9q3b8+KFSsYNGgQYKwct2LFCsaOHXvRc7/55htycnLsK86JXI6RI0cWaZAtckW1Hwm7FkG7u6H17RV6Vm1WroU/opNYdzCRNQcS2XvyTInP9XZ3IdDbnUAfN+PZ250gH/fz9oX4udMg1BdXLQgmIlJhFSw8FpOkwFZERETE0Zw+XWn8+PHcfffddOjQgU6dOvHOO++QkZFhX/RpxIgRhIeHM2XKlCLnzZgxg0GDBhEcHOyMskVEyi7xIPz+AfSfCi6u4OoB9/xUIYNai9XGjmOprD2QwNqDiWw5kkKuxVrkmKY1/Wlc3ZdAe/jqTqC3G0H21+5U83bD083FSZ9CREQcrd7ZwPZwggJbEREREUdzemA7fPhwEhISmDhxIidPnqRNmzYsXbrU3kM0NjYWs7noLKt9+/axdu1ali1b5oySRaQqstlg+1fgWx1qtgGfcvhlkNUKGz+GX16E/CwIiIDuZ3tsV5Cw1mazEZOUydqDiaw9kMCGQ0mkZRftJxtezYtrG4TQrWEIXesHE6JesiIiV52oc2bYWq02zOaK8f8xERERkarA6YEtwNixY4ttgbBy5crz9jVu3BibrXT9EEvDarVe+iCRUtKfqwrOZIIDy2HXQmM7IAJqtjbC21ptjNe+YWUfPzkavhsDR9YZ21E9oeXQy63aIZLSc1h3KIl1BxJZezCRYylZRd7383Sla/1grm0YyrUNQogM9sZUQQJmERFxjtqBXriaTWTnWTmZlk2tal7OLklERKRSUlZQtTjqn2eFCGwrCnd3d8xmM8ePHyc0NBR3d3eFEnLZbDYbubm5JCQkYDabcXd3d3ZJApB2Ata9C53vh6B6xr7OD8CJ7ZB8CFLjjMfeHwrPefIQ+IQYrxMPgocv+F18gUSsVtg8E5ZNhLwMcPOB61+CDqOcNqs2NSuP7XEpZ2fRJrL7RFqR991cTLSvG8i1DUK4tmEoLWr5q5+siIgU4epipk6wN4cTMohOzFBgKyIiUkrKoKoWR2c/CmzPYTabiYqK4sSJExw/ftzZ5UgV4+3tTZ06dc5r8SFXWOoxWPcObP4MLDmQcwYGfWC8V6czPLIFslPhxF9GeHtim/Gcm1kY1gIsfRoO/lLYQqFm68KZuP7hhWHssueNfrUAda+Fge9DUNQV+ahp2XkciE/nQPwZ9senc+DUGQ7Ep3MyLfu8Y5vW9OfaBsF0axBCp6ggvN31vwcREbm4qGAfe2DbrUHIpU8QERERO2VQVZOjsh/9jfxv3N3dqVOnDvn5+VgsFmeXI1WEi4sLrq6u+m2ZM6UehbVvw5bPwZJr7KvTBVrddv6xngEQ1d14FMjPLXpMfg6YzJAeDwd+Nh4FgurBw1uM0Lb93bBtDvSaAJ3uh3II7M9k53HwVDoH4tPZH3+G/aeMkPZE6vnBbIHwal50OxvQdq0fQqif+tCKiEjpFPSxjU7UwmMiIiJloQyqanFk9qPA9gJMJhNubm64ubk5uxQRcYTlL8CGD8CaZ2zX7Qa9noHI7iVvS+D6t68zjPzBmHUbvxOObyucjXtqD/jVKhw3tDE8tston3CZMnLyOXDKCGXts2bjz3D8IsFsdX8PGlX3o2GYH42q+9Kwuh8Nq/vi76n/vomIyOWJClVgKyIicrmUQcmFKLAVkarP1cMIayO7Q8+ni86cvRzu3hDRyXgUyMuGzKSix5UhrM3Jt7D7eBpbYlPYGnua7UdTiEvOKvb4MD8PGlb3PRvMng1nw/wI8Nb/9EVEpHxohq2IiIhI+VBgKyLlz2qFmDVGa4CjmyCgNoQ2gdBGENIYqjcH7yDHXOt0DKx5E5oPhvr/MPZd8yBE9YDIax1zjYtx84SA8FKdYrPZOJaSxdbYFOMRd5pdx9LItZy/umSIrweNqvsas2YLnsN8qeatxexEROTKKghsY5MzybNYcdMClSIiIiIOocBWRMpfzGr4fGDhdvIhiF5VuH3dc9DzKeN1+inYMd8Ic0ObFF3A62KSo2HNG7B9Lljz4dReqHedca5X4JUJa0soMzefHUdT2RpnzJ7dGpvCqTM55x0X5ONO24hqtK1TjbZ1AmlW059AHwWzIiJSMVT388TLzYWsPAtHT2fZA1wRERERuTwKbEXEsXIzYc9iY1Gu9ncb+yK7Q2hTqHMNNLkJzpyExH2QsB8S9hrBbIFjW+DnCYXb7r4Q0sjoBRvSyDg/tHHh+0mHjBm12+eC7WyT9vr/gJ7PlLw/bTmy2WzEJGXag9mtcafZc+IMFqutyHGuZhPNavmfDWgDaVunGnWCvLVQnYiIVFhms4nIEB/2nEgjOjFdga2IiIiIgyiwFZHLZ7NB3EbY9gXsXAS5Z8AnDNr8E1zcwOwCD20oWYDqGQBNb4GEfcZM3Nx0OL7FeMDZdgpnA9tDv8EXt4LtbOuA+r2NxcTO7Sl7heVbrOw8nsa6g4lsiklmW1wKpzPzzjuuur8H7c4Gs+3qBNIiPABPNxcnVCwiIlJ29c4GtocTMvhHk0sfLyIiIiKXpsBWRMou7QRs/wq2fQlJBwr3V6sLbe8CS64R2ELJZ7vW7WI8ACx5kHzYCG8T9xnPNVsXHpuw1whrG/Q1gtraHRzzuUrBZrOxPz6d9YcSWXcwiT+ikziTnV/kGHdXM63CA+ytDdrWqUbNAK8rXquIiIijaeExEREREcdTYCsiZbf2bdj4sfHazRuaDYQ2d0LdbmB2wMIjLm7GbNpzWyCcK6onPLAOarS4/GuVQlxypj2gXX8oicT0ov1n/T1d6VI/mGvqBdOuTiBNa/rj7qqFWEREpOqJVGArIiIi4nAKbEWkZE5sh61zoMWtRi9agLZ3Gvvb3gnNB4OH35WtqXqzK3KZhDM5bDicxPqDiaw7lEhcclaR9z3dzHSMDKJr/RC6NQimea0AXMzqPSsiIlVfwQzbGAW2IiIiIg6jwFZEipd0CPYvhW1fQfwOY19OWmFgW7M1jP7ZefWVk7TsPP44nMz6Q4msP5jEvvgzRd53NZtoE1GNrvWD6doghLZ1quHhqv6zIiJy9al3NrA9nppNVq4FL3f9/1BERETkcimwFZGiLPnw8wQ4sBxORxfud3GHJjdB69udV1s5Sc3MY0vcaTbFJLPuYBJ/HU3Bait6TNOa/nSrH0y3BiF0jArC10P/+RQREQn0caeatxspmXnEJGXQtKa/s0sSERERqfSUOIhc7ZIOGYt5NbnR2HZxhcOrjLDW7GYsANb0FmgxBLyDnFurA9hsNmKSMtkUk8yW2NNsPnKa/fHp5x0XGexN1wYhdKsfQpf6wQT5uDuhWhERkYovKsSHrbEpRCcqsBURERFxBAW2IlebvCyIWQsHlhXOonXzhqeiwc3TOOa6Z40Fv6J6XPm+tA6WnWdhx7FUNh85zaaY02yJPU1yRu55x0UGe9OubiDX1DNm0YZX83JCtSIiIpVPVHBhYCsiIiIil0+BrcjVYs/3sHm2EdbmZxfuN7tB7Q6QkQDVIox9zQc5o0KHOJWWzeYjxszZzbGn2XkslTxL0f4G7q5mWoUH0L5uIO3rBtKubiAhvh5OqlhERKRyK1h4TIGtiIiIiGMosBWpinIzjWC2dofCNgZJB+HgL8Zr/9rQsK/xqMSzaC1WG/tOnmFz7Gk2xySzOfY0cclZ5x0X4utBh3PC2Rbh/lokTERExEGiQhXYioiIiDiSAluRqiQ7FX6ZBNu+NGbRDv4vtB5uvNf0FjC5GCFtaBMwmZxaalnZbDa2xaXw7dZjfP/XifPaG5hM0Li6Hx0ijYC2fZ0gIoK8MFXSzysiIhXblClTWLhwIXv37sXLy4uuXbvy2muv0bhx42LP+eSTT/j888/ZuXMnAO3bt+eVV16hU6dOV6psh9IMWxERERHHUmArUlUc+AW+fwTSjhnb/rXBck6YGVwfuj3inNocIDoxg2+3HuPbbcc4kpRp3+/r4UrbOtXs7Q3aRFTDz9PNiZWKiMjVZNWqVYwZM4aOHTuSn5/Ps88+y/XXX8/u3bvx8fG54DkrV67kjjvuoGvXrnh6evLaa69x/fXXs2vXLsLDw6/wJ7h8kcHG50zOyCUlM5dq3lqoU0RERORyKLAVqeyyUuDn52DbF8Z2YBTc8h5Edq+0s2gLJKXn8MNfJ1i09Rjb4lLs+73cXLihRQ0GtQ2nW/1gXF3MzitSRESuakuXLi2yPXv2bMLCwti8eTM9evS44Dlz5swpsv3pp5+yYMECVqxYwYgRI8qt1vLi4+FKdX8P4tNyiE7MoG0dBbYiIiIil0OBrUhl9+1DsG8JYIJrHoR//BvcvZ1dVZll5VpYtvsk3207zqr9CVisxoJhZhN0bxjK4Lbh9G1WHR8P/edLREQqntTUVACCgoJKfE5mZiZ5eXmlOqeiiQrxIT4th5ikDNrWCXR2OSIiIiKVmhIPkcqu90Q4HQM3vwV1rnF2NWVisdpYfyiRRVuP8fPOk2TkWuzvta4dwKC24dzcqhahfh5OrFJEROTirFYr48aNo1u3brRo0aLE5z399NPUqlWLPn36FHtMTk4OOTk59u20tLTLqtXRokJ8+f1wMtEJ6mMrIiIicrkU2IpUNnuXQOIBuHacsR3WBB5cV+naH9hsNnYdT+PbrcdYvP04p84U/iU0IsiLwW3CGdg2nPqhvk6sUkREpOTGjBnDzp07Wbt2bYnPefXVV5k7dy4rV67E09Oz2OOmTJnCiy++6Igyy0W9swuPHdbCYyIiIiKXTYGtSGWRkQQ/PQU754PJDPV6Qq22xnuVKKyNS85k8fbjfLv1GAdOpdv3B3q7cXOrWgxqW4t2dQIxVaLPJCIiMnbsWH744QdWr15N7dq1S3TOG2+8wauvvsovv/xCq1atLnrshAkTGD9+vH07LS2NiIiIy6rZkaLOBrbRCmxFRERELpsCW5HKYPd3sORxyEgwwtquj0BoU2dXVWJp2Xn8tOMEC7YcY2N0sn2/h6uZPs2qM7hNOD0aheLuqsXDRESkcrHZbDz88MMsWrSIlStXEhUVVaLzXn/9dV5++WV+/vlnOnTocMnjPTw88PCouK2BIs8JbG02m37xKiIiInIZFNiKVGTpCfDjE7D7W2M7tAkM/BBqt3dqWSWRb7Gy5kAiC7YcZfnueHLyrYAxGbhr/WAGtQnnhhY18PN0c3KlIiIiZTdmzBi+/PJLvvvuO/z8/Dh58iQAAQEBeHl5ATBixAjCw8OZMmUKAK+99hoTJ07kyy+/JDIy0n6Or68vvr6VsxVQnSBvzCbIzLWQcCaHMP/i2zuIiIiIyMUpsBWpqCx5MKOPsaCYyQWufQx6PgWuFXd2TUFf2oVbjrF4+zES03Pt7zUM8+XWdrUZ1LYWNQO8nFiliIiI40yfPh2AXr16Fdk/a9YsRo4cCUBsbCxms7nIObm5uQwdOrTIOS+88AKTJk0qz3LLjburmYggb44kZXI4MUOBrYiIiMhlUGArUlG5uEG3R2HjpzDog8J+tRXQydRsvt12jEVbjrEv/ox9f7CPO7e0qcWQdrVpXstfX48UEZEqx2azXfKYlStXFtmOiYkpn2KcLCrEhyNJmUQnZnBNvWBnlyMiIiJSaSmwFakobDbYMR98w4wFxQDa3wNt7gJXd+fWdgEZOfn8vOski7YeY+3BRAr+vuruaqZvs+oMaRdO94ahuLmoL62IiMjVICrEh5X7ErTwmIiIiMhlUmArUhGcOQk/PAb7foSACHhoA3j4GQ1fK1BYa7Ha+P1wEgu2HGXpzpNk5lrs73WKDOLWduH0b1mTAC/1pRUREbnaRJ1deOxwggJbERERkcuhwFbEWawWOLIOdi40HjmpYHaDdneDa8Xq+7Y//gwLtxzj263HOJmWbd8fGezN4La1Gdw2nDrB3k6sUERERJytILCNTkx3ciUiIiIilZsCWxFn2Psj/DAO0uML99VsDYOmQ/XmTivrXMkZuSzedowFW46x41iqfb+/pysDWtfi1na1aVenmvrSioiICFAY2MYmZ2Kx2nAx6x5BREREpCwU2IqUN5sNjm0Bdx8Ia2Ls869lhLWeAdB0ADS/Fer1ArOLU0vNs1hZuS+BBZuPsmJvPHkWozGtq9nEdU3CGNIunOuahOHh6tw6RUREpOKpFeCFu6uZ3Hwrx05n6ds3IiIiImWkwFakPNhscPIvo9XBrkWQcgRa/xMGTzfer9ka/rUI6l5bIXrU7jmRxvzNR/l26zGSMnLt+1uE+zO0XW1uaRNOkI/z6xQREZGKy2w2ERXsw774MxxOTFdgKyIiIlJGCmxFHOnUnrMh7UJIOli43827aDBrMkH9f1z5+s6RlJ7Dd9uOs2DLUXYdT7PvD/F1Z3DbcIa0r02TGv5OrFBEREQqm8gQb/bFnyE6MYNejZ1djYiIiEjlpMBWxFFsNpg3AhL3G9uuntCwr9HuoFE/oyWCk+VZrPy29xTzNx/l172nyLcaLQ/cXEz0aVqdoe1r06NRKG4uZidXKiIiIpVRVIgvEE90YoazSxERERGptBTYipRF2nH462vY/7PR2sDNy5g12/p2iPsTWtwKjfuDh5+zKwVg1/FU5m8+yuJtx4u0PGhVO4Ch7WszoFUtAtXyQERERC5TvbMLjymwFRERESk7BbYipWG1wMb/worJkJdp7DuwDJoNNF53f9x5tf1N4tmWB/M3H2XPiXNbHnhwa7twhrSrTeMaFSNQFhERkaohKlSBrYiIiMjlUmArUlKn9sLisXD0T2M7vAO0vQsiuzu3rr9ZdzCR2etj+O2clgfuLmb6NjNaHnRvGIKrWh6IiIhIOYg6O8P2WEoW2XkWPN1cnFyRiIiISOWjwFbkUqwWWPMmrHodrHng7gfXT4Z2I8FccYLP7XEpvP7zXtYdTLLva13Q8qB1Lap5q+WBiIiIlK9gH3f8PFw5k5NPbHImjarr2zwiIiIipaXAVuRSTGZjVq01DxrdADe9BQHhzq7K7uCpdN5cto+fdp4EjNm0d3SK4M5r6uovSSIiInJFmUwmokJ9+OtoKocTMnQvIiIiIlIGCmxFLiQ3E6z54OlvLCZ289sQ+zu0GGJsVwDHU7J495cDfLM5DqvNKOvWtrUZ16chEUHezi5PRERErlJRIUZgG5OkPrYiIiIiZaHAVuTvolfD4oeh7rUw6ANjX0BtaDnUuXWddTojlw9XHuSzDUfIzbcC0LdZdZ64vrEWERMRERGnK+hjG52gwFZERESkLBTYihTISoHlE2HLZ8a2JQ+yToNXoFPLKpCRk8+MtdF8svowZ3LyAegcFcRTNzShfd2KUaOIiIiIPbBNVGArIiIiUhYKbEUA9v4IS8bDmRPGdofR0GeS0RLByXLyLXz1Ryzv/3aQxPRcAJrX8uepG5rQo2EIpgrSokFEREQECgPbwwpsRURERMpEga1c3TKTYcnjsGuhsR1UH26ZBpHdnFsXYLHa+G7bMd5avp+jp7MAiAz25vHrG3NTy5qYzQpqRUREpOKJPBvYJqbncCY7Dz9PNydXJCIiIlK5KLAViVkLJhfo+jD0egbcvJxajs1mY8WeU0z9eR/74s8AEObnwaN9GjKsQwRuLman1iciIiJyMf6eboT4epCYnkNMYiYtawc4uyQRERGRSkWBrVx90k+BTyiYTOAdBIM/Mp5rtXV2ZWyMTua1pXvZfOQ0AP6erjx0XQPu7hKJl7uLk6sTERERKZl6IT4kpudwODFdga2IiIhIKSmwlauH1QqbZsAvk2DAu9ByqLG/QW+nlgWw+3gaU3/ey2/7EgDwdDMzqlsU/9ejPgHe+hqhiIiIVC6RId5sjEnWwmMiIiIiZaDAVq4Op/bAD49B7AZje+fCwsDWiaITM3h7+X4Wbz8OgKvZxO2dInjkHw0J8/d0cnUiIiIiZRMV4gugwFZERESkDBTYStWWmQwrp8CfM8BmAXdf6DMJOox2alknUrN4b8VB5m2Kw2K1ATCgdS0e79vIvlCHiIiISGUVdfZ+RoGtiIiISOkpsJWqa/di+P5RyEo2tpsOgH6vQLU6TispOSOX6SsP8tmGI+TmWwH4R5MwHr++Ec1rqb+biIiIVA31QgsDW5vNhslkcnJFIiIiIpWHAlupunxCjbA2rBncMAXq9XJaKek5+Xy65jCfrokmPScfgE6RQTx5Q2M6RgY5rS4RERGR8lAnyBuTCc5k55OUkUuIr4ezSxIRERGpNBTYStVx+gic2AbNBhrbdbvAnQuMoNbFOX/Us/MsfPH7ET5ceYjkjFwAmtfy58l+jenZKFSzTURERKRK8nRzoVaAF8dSsohOzFBgKyIiIlIKCmyl8svNgLXvwPr3ABPUagfVIoz3GvZxSkn5FivzNx/l3RUHOJGaDUC9EB8ev74x/VvUwGxWUCsiIiJVW71QHyOwTcjQN4pERERESkGBrVReNhvsXADLJ0LaMWNfZHew5DqtJKvVxpIdJ3hr+X77Ihs1AzwZ16chQ9rVxtXF7LTaRERERK6kqBAf1hxI5LAWHhMREREpFQW2Ujkd3wo/PQNxvxvbAXWg33+g6S3ghDYDNpuNlfsSmPrzPnafSAMgyMedMdc14M7OdfB0c7niNYmIiIg4U1SIsfBYjAJbERERkVJRYCuVT2YyzOwP+Vng5g3XjoeuY8HNyynl/BmTzOtL9/JnzGkAfD1cua97PUZ3j8LXQ/+KiYiIyNWpILCNVmArIiIiUipKk6RysFrBfLadgHcQdBkDKUegz4sQEO6UknYeS+WNZftYuS8BAA9XM3d3jeSBnvUJ8nF3Sk0iIiIiFYU9sE3KwGq1qYe/iIiISAkpsJWK78By+PlZGDQdancw9v3jeae0PgBIy85j0uJdLNxi9M11MZsY3jGCR/7RkBoBnk6pSURERKSiCa/mhZuLidx8K8dTs6gd6O3skkREREQqBQW2UnElHYKlE+DAz8b2qtfhznnGayeFtZtiknl07jaOpWQBcEvrWozv24jIszNIRERERMTg6mKmTpA3hxIyiE7MUGArIiIiUkIKbKXisVph439h+USw5IDZFTo/AD2fclpJ+RYr7/16kPd/PYDVBhFBXrwzvC3t6wY6rSYRERGRii4qxJdDCRnEJGbQvWGos8sRERERqRQU2ErFknYCvhsDh1YY2/WugxunQkhDp5UUl5zJo3O3siU2BYBb24bz4sDm+Hm6Oa0mERERkcqgXqgP7IHDWnhMREREpMQU2ErFsm+JEda6esL1/4GO9zqt/QHAoq1H+fe3u0jPycfPw5X/DG7BwDbOWeRMREREpLKJDD678JgCWxEREZESMzu7AJEiOoyGLmPh/1ZDp/ucurDYo3O38tjX20nPyadD3UB+fLS7wloREREpYsqUKXTs2BE/Pz/CwsIYNGgQ+/btu+R533zzDU2aNMHT05OWLVvy448/XoFqr7yoEAW2IiIiIqWlwFacK24jfD4Ics4Y2yYT9HsZQhs7raTNR5K58d01fLftOC5mE4/1acTc+68hIkgLZYiIiEhRq1atYsyYMfz+++8sX76cvLw8rr/+ejIyig8o169fzx133MHo0aPZunUrgwYNYtCgQezcufMKVn5l1As1Atu45Exy861OrkZERESkcjDZbDabs4u4ktLS0ggICCA1NRV/f39nl3P1suTD6qnGw2aBrg8bLRCcKN9iZdqvB5mmhcVEREQqnMpyD5eQkEBYWBirVq2iR48eFzxm+PDhZGRk8MMPP9j3XXPNNbRp04aPPvqoRNepLD8Pm81G8xd+JjPXworHe1I/1NfZJYmIiIg4RWnu39TDVq68pEOw8H44tsnYbjkMuj/h1JLikjMZ9/U2Nh85DcDgtuFM1sJiIiIiUkqpqakABAUFFXvMhg0bGD9+fJF9/fr149tvvy32nJycHHJycuzbaWlpl1foFWIymYgK8WHX8TSiEzIU2IqIiIiUgNNbInzwwQdERkbi6elJ586d2bhx40WPT0lJYcyYMdSsWRMPDw8aNWpUZXt+VTk2G2z5HD7qboS1HgEwZAYM+QS8qjmtrO+2HePGd9ew+chp/Dxceff2Nrw9vI3CWhERESkVq9XKuHHj6NatGy1atCj2uJMnT1K9evUi+6pXr87JkyeLPWfKlCkEBATYHxEREQ6ru7xFqo+tiIiISKk4dYbt119/zfjx4/noo4/o3Lkz77zzDv369WPfvn2EhYWdd3xubi59+/YlLCyM+fPnEx4ezpEjR6hWrdqVL15Kb9078Msk43Xda2HwR1DNeX/ZOJOdx8TvdrFo6zEA2tcN5J3hbdSrVkRERMpkzJgx7Ny5k7Vr1zp87AkTJhSZlZuWllZpQtt6ZwPbwwpsRURERErEqYHtW2+9xX333cc999wDwEcffcSSJUuYOXMmzzzzzHnHz5w5k+TkZNavX4+bmzH7MTIy8kqWLJejzZ2w8RPodL/Rs9bs4rRSNh85zbivtxKXnIXZBA//oyEP/6MBri5On3QuIiIildDYsWP54YcfWL16NbVr177osTVq1CA+Pr7Ivvj4eGrUqFHsOR4eHnh4eDik1istyj7DNt3JlYiIiIhUDk5Lp3Jzc9m8eTN9+vQpLMZspk+fPmzYsOGC5yxevJguXbowZswYqlevTosWLXjllVewWCzFXicnJ4e0tLQiD7lC8rJg+9eF275h8PBmuHac08LafIuVd385wLCPNxCXnEV4NS/m/V8XHuvbSGGtiIiIlJrNZmPs2LEsWrSIX3/9laioqEue06VLF1asWFFk3/Lly+nSpUt5lelUBYFtTGKmkysRERERqRycNsM2MTERi8Vywf5de/fuveA5hw8f5tdff+XOO+/kxx9/5ODBgzz00EPk5eXxwgsvXPCcKVOm8OKLLzq8frmEkztgwX2QsAdcXKHFEGO/m5fTSjp6OpNxc7ex6ezCYgPb1OKlQS3wV69aERERKaMxY8bw5Zdf8t133+Hn52fvQxsQEICXl3HfM2LECMLDw5kyZQoAjz76KD179uTNN9/kpptuYu7cuWzatIn//ve/Tvsc5akgsD2Zlk1GTj4+Hlr3WERERORiKtWUQqvVSlhYGP/9739p3749w4cP57nnnuOjjz4q9pwJEyaQmppqf8TFxV3Biq9CViusew8++YcR1vqEgWc1Z1fFb3tP0f/dNWw6chpfD1feHt6ad29vq7BWRERELsv06dNJTU2lV69e1KxZ0/74+uvCbxnFxsZy4sQJ+3bXrl358ssv+e9//0vr1q2ZP38+33777UUXKqvMqnm7E+ht3HPFJKmPrYiIiMilOO3X2yEhIbi4uJSqf1fNmjVxc3PDxaXw6/RNmzbl5MmT5Obm4u7uft45lbnfV6Vz5iQsuBdi1hjbjW+CW94DnxCnlvXNpjieWbgDi9VG2zrVeHd4W+oEa2ExERERuXw2m+2Sx6xcufK8fbfddhu33XZbOVRUMUWF+HA6NoXoxAya1wpwdjkiIiIiFZrTZti6u7vTvn37Iv27rFYrK1asKLZ/V7du3Th48CBWq9W+b//+/dSsWfOCYa1cQVYrfP0vI6x184YB78Ltc5wa1tpsNqavPMST8//CYrVxa7tw5v1fF4W1IiIiIldYVIgvANEJmmErIiIicilObYkwfvx4PvnkEz777DP27NnDgw8+SEZGBvfccw9g9PuaMGGC/fgHH3yQ5ORkHn30Ufbv38+SJUt45ZVXGDNmjLM+ghSIXgVHN4K7H9y/CtqPBJPJaeVYrTZe+mEPry01+iH/X496vHlba9y0sJiIiIjIFVcv1OhjG52owFZERETkUpza8X/48OEkJCQwceJETp48SZs2bVi6dKl9IbLY2FjM5sKALSIigp9//pnHHnuMVq1aER4ezqOPPsrTTz/trI8gBepfB//6FjISILSRU0vJzbfyxDfbWbz9OADP39SUe7vXc2pNIiIiIlezgoXHotXDVkREROSSTLaSNN6qQtLS0ggICCA1NRV/f39nlyMOlp6Tz4NfbGbNgURczSbeuK01g9qGO7ssERERuUy6hyvqiv88jm2GA79Agz5Qu32pT999PI0b31tDNW83tk28vhwKFBEREanYSnP/5tQZtlIFHNsMvtUhoLazKyExPYdRs//kr6OpeLu7MP2u9vRsFOrsskREREQqvz9nwLY5kJdZpsA2MsRYQyAlM4/TGbkE+mj9CREREZHiqKGnlF1uJnxzD3zQGWLWOrWUuORMhk5fz19HUwnycefL+65RWCsiIiLiKJHdjeeYNWU63dvdlZoBngAcVh9bERERkYtSYCtlt/p1SDkCngFQs43Tyth9PI1bp68nJimT8GpezH+gC20iqjmtHhEREZEqJ+psYHt8K2Snlm2IEC08JiIiIlISCmylbOJ3w/ppxusbp4KHr1PK2HAoieEfbyDhTA5Navix8KGu1At1Ti0iIiIiVVZAbQiqBzYrHNlQpiEizwa2MQpsRURERC5Kga2UntUKP4wDaz40uRma3OSUMn7acYK7Z27kTE4+naKC+Pr/ulDd39MptYiIiIhUeVE9jOfo1WU6vZ5m2IqIiIiUiAJbKb0tn0HcH+DuC/1fc0oJX/x+hIe+3EKuxUq/5tX5fFQnArzcnFKLiIiIyFWhILCNKVtgW9ASQT1sRURERC7O1dkFSCWTfgp+ecF4/Y/nja/HXUE2m413fjnAuysOAPDPznV4aWALXMymK1qHiIiIyFWnYOGxlFjIzQB3n1KdHnVOSwSr1YZZ928iIiIiF6TAVkrH3Rfa3wMxa6HT/Vf00harjee/3clXG2MBeLR3Q8b1aYjJpJt9ERERkXLnGwYPrIXQpuBS+r9GRAR542I2kZVnIf5MNjUDvMqhSBEREZHKT4GtlI67N/R9ESz5YHa5YpfNzrPw6Nyt/LwrHpMJXhrYgruuqXvFri8iIiIiQI2WZT7VzcVMRKAXMUmZRCdmKLAVERERKYZ62ErJ5Ocai40VKMOsirJKzcpjxMyN/LwrHncXMx/+s53CWhEREZFKKEoLj4mIiIhckgJbKZlVr8GMvnBy5xW9bHxaNsM/3sDG6GT8PFz5fHQn+reseUVrEBEREZGzrFZY/Ai82wbOnCz16VEhvgBEJyiwFRERESmOAlu5tFN7Yd27cGwTnI6+Ypc9nJDOrR+uZ+/JM4T6efD1/3XhmnrBV+z6IiIiIvI3ZjMc32rcE8asLfXpUaGaYSsiIiJyKQps5eKsVvhhHFjzoFF/aHLzFblsXHImt320gWMpWUSF+LDwwa40q+V/Ra4tIiIiIhcR1cN4jl5d6lPrqSWCiIiIyCUpsJWL2/YFxG4ANx+4cSqYTOV+yfScfO77fBNJGbk0q+nP/Ae6EBHkXe7XFREREZESuIzANvJsYBubnEm+xXqJo0VERESuTgpspXjpCbDs38br656FahHlfkmr1cZjX2+zt0GYMbIDwb4e5X5dERERESmhOl3A5GK0RUiJK9WpNf098XA1k2+1cfR0VjkVKCIiIlK5KbCV4i17HrJToEZL6PzAFbnk27/sZ/nueNxdzXz8r/bUDPC6ItcVERERkRLy9IdabY3XMWtKdarZbCJKbRFERERELkqBrVxYbiYk7gNMMOBdcHEt90t+v/040349CMCUwS1pVyew3K8pIiIiImVgb4tQusAWsAe2hxXYioiIiFxQ+adwUjm5e8O9K4z+teHty/1yO46m8uT87QDc36MeQ9rXLvdrioiIiEgZRfWAvT9AtTqlP9U+wzbd0VWJiIiIVAkKbKV4ZheIvLbcL3PqTDb3/28T2XlWejUO5ekbmpT7NUVERETkMtTrBWP/LNOpBQuPxSRmOrAgERERkapDLRGkqIT9sOIlyLsyi0Dk5Fv4v/9t5kRqNvVDfXjvjra4mE1X5NoiIiIiUkamst+vNanhB8CW2NNk5OQ7qiIRERGRKkOBrRSy2eCHcbDmDVj6zBW4nI1nF+5ka2wK/p6ufHp3R/w93cr9uiIiIiLiIPm5kHiwVKe0DA8gKsSHzFwLS/46UU6FiYiIiFReCmyl0LY5cGQduHlD98fL/XIz1kazYMtRXMwmPriznb2fmYiIiIhUAid3wmt1YVZ/4xf/JWQymbitg7Fewdeb4sqrOhEREZFKS4GtGDISYdnzxuteE8q0gERp/LbvFK/8uAeA529qSveGoeV6PRERERFxsJCGYLNCxilI2FeqU4e0q43ZBJuPnObgKS0+JiIiInIuBbZiWPY8ZJ2G6i3hmgfL9VIHT6XzyJdbsdpgeIcIRnaNLNfriYiIiEg5cPWAiM7G65g1pTq1ur8n1zUOA+AbzbIVERERKUKBrUD0atj+FWCCAe+AS/n1kU3NzOO+zzdxJiefjpGBvDSoBabLWLRCRERERJwoqofxHL2q1KcO6xgBwIItx8izWB1ZlYiIiEilpsD2amezwc/PGa87jobaHcrtUvkWK2O/2kJ0Ygbh1byYfld73F31R1BERESk0ioIbGPWgrV0oes/moQR4utOYnoOv+09VQ7FiYiIiFROSsuudiYT3D4HWv8Tek8s10u98uNe1hxIxMvNhf+OaE+Ir0e5Xk9EREREylmttuDua7TWit9ZqlPdXMzc2s5YfGye2iKIiIiI2CmwFWOBscHTwTOg3C4x7884Zq6LBuCtYa1pXqv8riUiIiIiV4iLG9TtarwuZR9bgGEdjMD2t30JnErLdmRlIiIiIpWWAturWeKBK3KZTTHJPPftDgDG9WlI/5Y1r8h1RUREROQKaHsX9H4BGvQp9akNwvxoV6caFquNBVuOlUNxIiIiIpWPAtur1eFV8H4HWPSg0ce2nBxLyeKBLzaTZ7FxY8saPPKPhuV2LRERERFxgmYDoft4CG1cptOHn1187JtNcdjK8b5UREREpLJQYHs1slrg52eN1x6+Rh/bcpCZm899n20iMT2XZjX9eeO21pjN5XMtEREREamcbmpVC293Fw4nZrDpyGlnlyMiIiLidApsr0ZbvzAWhfAMgF4TyuUSVquNJ77Zzu4TaQT7uPPJ3R3wdnctl2uJiIiIONPq1asZMGAAtWrVwmQy8e23317ynDlz5tC6dWu8vb2pWbMmo0aNIikpqfyLLS/pCbBjPhz4pdSn+nq4ctPZlllf/6nFx0REREQU2F5tstPg15eM1z2fAe+gcrnMtF8P8uOOk7i5mPj4X+0Jr+ZVLtcRERERcbaMjAxat27NBx98UKLj161bx4gRIxg9ejS7du3im2++YePGjdx3333lXGk52rkAFoyG30v2M/i7YWfbIiz56wTpOfmOrExERESk0tGUx6vN2rcgIwGC6kPHe8vlEj/tOMHbv+wH4OVBLekQWT6hsIiIiEhF0L9/f/r371/i4zds2EBkZCSPPPIIAFFRUfzf//0fr732WnmVWP6iuhvPsb9Dfi64upfq9A51A6kX6sPhhAx+2H6c2zvVKYciRURERCoHzbC9mpyOgQ0fGq+v/0+pb6RLYvfxNMbP2w7APd0i7bMlRERERMTQpUsX4uLi+PHHH7HZbMTHxzN//nxuvPFGZ5dWdqFNwTsE8jLh2OZSn24ymRjWwbhvnLdJbRFERETk6qbA9mpy+gh4VYOontC45LNASioxPYf7Pt9EVp6F7g1DeO7Gpg6/hoiIiEhl161bN+bMmcPw4cNxd3enRo0aBAQEXLSlQk5ODmlpaUUeFYrZXDjLNnp1mYa4tV04LmYTW2JTOHjqjAOLExEREalcFNheTer1hIc3w6APwWRy6NA2m43x87ZzLCWLqBAf3r+jHa4u+uMlIiIi8ne7d+/m0UcfZeLEiWzevJmlS5cSExPDAw88UOw5U6ZMISAgwP6IiKiA32KKvLzANszPk+sahwEwb9NRR1UlIiIiUukoUbvaePhBQG2HDzt/81FW70/A3dXMf//VngBvN4dfQ0RERKQqmDJlCt26dePJJ5+kVatW9OvXjw8//JCZM2dy4sSJC54zYcIEUlNT7Y+4uArYNiCqp/F8dCPkZZVpiGEdjPvUhVuOkmexOqoyERERkUpFge3VYM/38Nc8sJbPTe+ptGxe+mE3AI/1aUTD6n7lch0RERGRqiAzMxOzuehtuIuLC2B8a+lCPDw88Pf3L/KocILrg19NsOTC8W1lGuK6JmGE+HqQmJ7Lij2nHFufiIiISCWhwLaqy82AH5+ChffBtjkOH95ms/HctztJy86nZXgA93WPcvg1RERERCqy9PR0tm3bxrZt2wCIjo5m27ZtxMbGAsbs2BEjRtiPHzBgAAsXLmT69OkcPnyYdevW8cgjj9CpUydq1arljI/gGCYT3DYbxu+Ful3KNISbi5kh7cMB+EaLj4mIiMhVSoFtVbfuPThzHKrVgZa3OXz4H/46wfLd8bi5mJh6Wyv1rRUREZGrzqZNm2jbti1t27YFYPz48bRt25aJEycCcOLECXt4CzBy5Ejeeust3n//fVq0aMFtt91G48aNWbhwoVPqd6g614B/zcsa4rb2Rn/e3/adIj4t2xFViYiIiFQqJltx37sqRmRkJKNGjWLkyJHUqVOnvOoqN2lpaQQEBJCamloxv0rmSKnHYFp7yM8yZjs0H+zQ4ZPSc7j+7dUkZeTyaO+GPNa3kUPHFxERESlwVd3DlUBV/3kMnb6eTUdO89QNjXmoVwNnlyMiIiJy2Upz/1bq6ZDjxo1j4cKF1KtXj759+zJ37lxycnLKXKyUoxWTjbC2ThdoNsjhw7/4/W6SMnJpXN2PMdfpRlpEREREgC2fw/9uhcMryzzEsA7GLNtvNh0ttq+viIiISFVVpsB227ZtbNy4kaZNm/Lwww9Ts2ZNxo4dy5YtW8qjRimLY5vhr7nG634vGz3FHGj57ngWbz+O2QRTb2uFu6taIYiIiIgIEPcHHFoBB1eUeYibWtXEx92F6MQMNkYnO7A4ERERkYqvzClbu3bteO+99zh+/DgvvPACn376KR07dqRNmzbMnDlTvwl3JpsNfn7OeN36Dghv79DhU7PyeG7RDgDu61GPVrWrOXR8EREREanEInsYz9GryzyEj4crN7cyFmCbt+moI6oSERERqTTKHNjm5eUxb948brnlFh5//HE6dOjAp59+ypAhQ3j22We58847HVmnlIbJBP943miF0Huiw4d/ecluTp3JoV6ID4/1Ud9aERERETlHVHfj+eRfkHW6zMMM61gbgB93nOBMdp4jKhMRERGpFFxLe8KWLVuYNWsWX331FWazmREjRvD222/TpEkT+zGDBw+mY8eODi1USinyWhi11OHDrt6fwLxNRzGZ4PWhrfB0c3H4NURERESkEvOvBcENIekAHFkPTW4q0zDt6gRSP9SHQwkZ/PDXCe7oVPkWPBYREREpi1LPsO3YsSMHDhxg+vTpHDt2jDfeeKNIWAsQFRXF7bff7rAipRTyy28BuPScfCYsNFoh3N0lkg6RQeV2LRERERGpxApm2UavKfMQJpPJvvjY13/GOaIqERERkUqh1IHt4cOHWbp0Kbfddhtubm4XPMbHx4dZs2ZddnFSSmfi4Z2WsPJVyM91+PCvL93LsZQsagd68WS/xg4fX0RERESqiKjL72MLcGu72riaTWyLS2F//BkHFCYiIiJS8ZU6sD116hR//PHHefv/+OMPNm3a5JCipIx++w+kx8P+n8Fc6m4XF/XH4SQ+33AEgNeGtMLHw7Hji4iIiEgVEtkd3LzBN+yyJhKE+nnwjyZhAMzTLFsRERG5SpQ6sB0zZgxxceffLB07dowxY8Y4pCgpg5M7YMv/jNc3TAFzmdeTO09WroWnF/wFwB2dIujWIMRhY4uIiIhIFeQTAs/EwohvwdX9soYqaIuwcOsxcvOtDihOREREpGIrdaq3e/du2rVrd97+tm3bsnv3bocUJaVks8HPzwI2aD4Y6lzj0OHf/mU/MUmZ1PD3ZMKNTR06toiIiIhUUS4Xbp9WWr0ahxLq50FyRi6/7o13yJgiIiIiFVmpA1sPDw/i48+/UTpx4gSurvqavFPs+8noD+biAX1edOjQ2+JS+HTNYQBeHtwCf0/H3HiLiIiIyFUiI+myTnd1MTOkXW1Ai4+JiIjI1aHUge3111/PhAkTSE1Nte9LSUnh2WefpW/fvg4tTkogPxeWPW+87vIQBNZ12NA5+Raemr8dqw0Gtw2nd9PqDhtbRERERKo4Sx582BWm1oO0E5c11LAORmC7an8CJ1OzHVGdiIiISIVV6sD2jTfeIC4ujrp163Lddddx3XXXERUVxcmTJ3nzzTfLo0a5mGObITUOfMLg2vEOHfqDXw+yPz6dEF93Jt7czKFji4iIiEgV5+JW2BYhZs1lDVUv1JdOkUFYbbBgy1EHFCciIiJScZU6sA0PD+evv/7i9ddfp1mzZrRv3553332XHTt2EBERUR41ysXU7QJj/4Qhn4Cnv8OG3X08jQ9XHgJg8sAWBPpc3mIRIiIiInIViuphPEevvuyhbjs7y3bepjisVttljyciIiJSUZWp6ayPjw/333+/o2uRsgqMNB4Okmex8uT87eRbbfRvUYMbW9Z02NgiIiIichWJ6gHr33NIYHtTq5pMWryLI0mZbIxJ5pp6wQ4oUERERKTiKfMqYbt37yY2Npbc3Nwi+2+55ZbLLkpKIOkQZKVA7fYOH/q/qw+z63ga1bzdeHFgc4ePLyIiIiJXiTrXgNkVUo7A6SOXtd6Ct7srA1rXYu6fccz7M06BrYiIiFRZpQ5sDx8+zODBg9mxYwcmkwmbzfg6kslkAsBisTi2Qrmwn56Gg8uh/+vQ+f8cNuzBU2d4d8UBACbe3IwwP0+HjS0iIiIiVxkPP6jVDo5uNPrYXuYCucM6RjD3zzh+3HmCSQOb4+/p5qBCRURERCqOUvewffTRR4mKiuLUqVN4e3uza9cuVq9eTYcOHVi5cmU5lCjnOfiLEdaa3aBBH4cNa7HaeGr+X+TmW7mucSiD24Y7bGwRERGRiiYuLo6jRwsXsNq4cSPjxo3jv//9rxOrqoIc2Me2bUQ1Gob5kp1n5fvtxy97PBEREZGKqNSB7YYNG5g8eTIhISGYzWbMZjPXXnstU6ZM4ZFHHimPGuVclnz4+Tnjdaf7Ibi+w4aevT6GLbEp+Hm48sqtLe2zpkVERESqon/+85/89ttvAJw8eZK+ffuyceNGnnvuOSZPnuzk6qqQRv2g7V3QbOBlD2UymRjWwVjoeN6fcZc9noiIiEhFVOrA1mKx4OfnB0BISAjHjxu/2a5bty779u1zbHVyvs2zIGEveAVBzycdNuyRpAym/rwXgAk3NqVmgJfDxhYRERGpiHbu3EmnTp0AmDdvHi1atGD9+vXMmTOH2bNnO7e4qiSiEwz8AJrc5JDhBrcLx9VsYvvRVPaeTHPImCIiIiIVSakD2xYtWrB9+3YAOnfuzOuvv866deuYPHky9erVc3iB8jd/fGQ895oAXoEOGdJqtfHMgh1k51npWj+YOzpFOGRcERERkYosLy8PDw8PAH755Rf74rlNmjThxIkTzixNLiLE14PeTcMAmPfn0UscLSIiIlL5lDqwff7557FarQBMnjyZ6Ohounfvzo8//sh7773n8ALlHGnHIekgmMzQapjDhv3qz1g2HE7Cy82FV29tpVYIIiIiclVo3rw5H330EWvWrGH58uXccMMNABw/fpzg4GAnV1fFWC1wbAvs/dEhww3vaEwwWLT1KDn5WvRYREREqhbX0p7Qr18/++sGDRqwd+9ekpOTCQwMVNBX3lLiwK8W+IaBVzWHDHk8JYspPxqtEJ7s15g6wd4OGVdERESkonvttdcYPHgwU6dO5e6776Z169YALF682N4qQRwkbiPMugG8Q6Bxf7jMvzf0aBhKdX8P4tNyWLHnFDe2rOmgQkVEREScr1SBbV5eHl5eXmzbto0WLVrY9wcFBTm8MLmAOp1h/G7ITnHIcDabjWcX7SA9J5/2dQO5u2ukQ8YVERERqQx69epFYmIiaWlpBAYWtpq6//778fbWL7EdKrw9uHlDZiKc2gPVm13WcK4uZoa0q82HKw/x9Z9xCmxFRESkSilVSwQ3Nzfq1KmDxaKvHTmNyeSw3rXrDyWxcl8C7q5mXhvSChezZkiLiIjI1SMrK4ucnBx7WHvkyBHeeecd9u3bR1hYmJOrq2Jc3aHONcbrmDUOGXJYB6MtwuoDCRxPyXLImCIiIiIVQal72D733HM8++yzJCcnl0c9UhxLHpztHewoX/8ZB8DwDhE0CPN16NgiIiIiFd3AgQP5/PPPAUhJSaFz5868+eabDBo0iOnTpzu5uioosrvxHL3aMcOF+NApKgibDRZs1uJjIiIiUnWUOrB9//33Wb16NbVq1aJx48a0a9euyEPKyY75MLU+rJjskOFSM/NYuuskULhog4iIiMjVZMuWLXTvboSI8+fPp3r16hw5coTPP/9ci+mWh6iexnPMWmMRMgcYfnaW7bzNcVitNoeMKSIiIuJspV50bNCgQQ4v4oMPPmDq1KmcPHmS1q1bM23atGIXepg9ezb33HNPkX0eHh5kZ2c7vK4KJWYNZCU77OZ28fZj5OZbaVrTn+a1/B0ypoiIiEhlkpmZiZ+fHwDLli3j1ltvxWw2c80113DkyBEnV1cF1WwN7n7Gegwnd0CtNpc95I0ta/LC4l3EJWex5mAiPRuFXvaYIiIiIs5W6sD2hRdecGgBX3/9NePHj+ejjz6ic+fOvPPOO/Tr1++ivcP8/f3Zt2+ffdt0mavMVgrRZ3t9RXV3yHDzNhlfGxvWofbV8fMTERER+ZsGDRrw7bffMnjwYH7++Wcee+wxAE6dOoW/v36h7XAurhDZDfYvNdoiOCCw9XJ3YWj72sxeH8OL3+/ix0e64+nmcvm1ioiIiDhRqVsiONpbb73Ffffdxz333EOzZs346KOP8Pb2ZubMmcWeYzKZqFGjhv1RvXr1K1ixE5w+AqmxYHaFiGsue7g9J9LYcSwVNxcTA9uEO6BAERERkcpn4sSJPPHEE0RGRtKpUye6dOkCGLNt27Zt6+Tqqqjuj8PIJdD5/xw25GN9GhHq58HhhAym/XrAYeOKiIiIOEupA1uz2YyLi0uxj9LIzc1l8+bN9OnTp8j4ffr0YcOGDcWel56eTt26dYmIiGDgwIHs2rWr2GNzcnJIS0sr8qh0ClbSrdUOPC5/cbBvzs6u7dusOkE+7pc9noiIiEhlNHToUGJjY9m0aRM///yzfX/v3r15++23nVhZFRbRCSKvBVcPhw0Z4O3GSwNbAPDRqsPsOp7qsLFFREREnKHULREWLVpUZDsvL4+tW7fy2Wef8eKLL5ZqrMTERCwWy3kzZKtXr87evXsveE7jxo2ZOXMmrVq1IjU1lTfeeIOuXbuya9cuateufd7xU6ZMKXVdFY4D2yHk5ltZtNUIbG/roMXGRERE5OpW8I2to0eN+6PatWsXu5aCVFw3tKjBjS1r8OOOkzw1/y++G9MNVxenf5lQREREpExKHdgOHDjwvH1Dhw6lefPmfP3114wePdohhRWnS5cu9q+rAXTt2pWmTZvy8ccf89JLL513/IQJExg/frx9Oy0tjYiIShRU2myFM2wjLz+wXbEnntOZedTw96RHQy3KICIiIlcvq9XKf/7zH958803S09MB8PPz4/HHH+e5557DbFbgVy7i/oQd86BGK2j3L4cNO+mW5qw7mMSu42l8siaaB3vVd9jYIiIiIleSw+5Cr7nmGlasWFGqc0JCQnBxcSE+Pr7I/vj4eGrUqFGiMdzc3Gjbti0HDx684PseHh74+/sXeVQqljxofTvU6QoRnS97uHmb4gAY0j4cF7MWGxMREZGr13PPPcf777/Pq6++ytatW9m6dSuvvPIK06ZN49///rezy6u6TmyDjf+F7V85dNgwP0/+fXMzAN7+ZT+HE9IdOr6IiIjIleKQwDYrK4v33nuP8PDSLWDl7u5O+/btiwS9VquVFStWFJlFezEWi4UdO3ZQs2bNUl270nB1h94TYdRP4O59WUOdTM1m1f4EAIa2r0SzjEVERETKwWeffcann37Kgw8+SKtWrWjVqhUPPfQQn3zyCbNnz3Z2eVVXw75gcoEj6+DQrw4deki7cLo3DCE338ozC3ZgtdocOr6IiIjIlVDqwDYwMJCgoCD7IzAwED8/P2bOnMnUqVNLXcD48eP55JNP+Oyzz9izZw8PPvggGRkZ3HPPPQCMGDGCCRMm2I+fPHkyy5Yt4/Dhw2zZsoW77rqLI0eOcO+995b62lebBVuOYrVBp8ggokJ8nF2OiIiIiFMlJyfTpEmT8/Y3adKE5OTkEo+zevVqBgwYQK1atTCZTHz77beXPCcnJ4fnnnuOunXr4uHhQWRkJDNnzixN+ZVXYCR0ut94/dMzxjfKHMRkMvHK4JZ4u7uwMSaZORtjHTa2iIiIyJVS6h62b7/9NiZT4VfpzWYzoaGhdO7cmcDAwFIXMHz4cBISEpg4cSInT56kTZs2LF261L4QWWxsbJH+YadPn+a+++7j5MmTBAYG0r59e9avX0+zZs1Kfe0Kz2aDgysgoiN4BlzmUDbmby5YbOz8xdlERERErjatW7fm/fff57333iuy//3336dVq1YlHicjI4PWrVszatQobr311hKdM2zYMOLj45kxYwYNGjTgxIkTWK3WUtVfqfV6xuhjm7gP/pwB1zzgsKEjgrx5ql9jJn2/m1d/3MM/moQRXs3LYeOLiIiIlDeTzWa7qr4nlJaWRkBAAKmpqRW/n23iAXi/A7h5w9NHjPYIZfRnTDK3fbQBH3cXNj7XBx+PUmf1IiIiIk5THvdwq1at4qabbqJOnTr2dlwbNmwgLi6OH3/8ke7dS7/gq8lkYtGiRQwaNKjYY5YuXcrtt9/O4cOHCQoKKlPtleqetjibZsEP44yJCQ9vAZ8Qhw1tsdoY9vEGNh85Ta/Gocwa2bHIpBMRERGRK60092+lbokwa9Ysvvnmm/P2f/PNN3z2/+3deXxU1fnH8c8smcm+7xCSsO+LbIKgqCiixbVu+FPErVSsC9paWpVSbbFara1ra7Vqq7hVrQtqFVQEUWQJILKTkBCy7/s29/fHDQkpoASTuZPk+3697mtm7r3nnmfmMnp4OPOc559v7+Xku6SvNB97jf1ByVqAV782Fxv70chEJWtFREREgFNOOYWdO3dywQUXUFpaSmlpKRdeeCFbt27ln//8Z6f1+/bbbzNu3DgeeOABevXqxcCBA7njjjuoqanptD590glXQfwIqC2DLx7t0Es77Db+cNEIXA47n+4o4D9pBzr0+iIiIiKdqd2ZuyVLlvDXv/71sP2xsbHccMMNzJkzp0MCEyDjc/Mxpf2zOw5VWdfIe1tyAJVDEBERETlUYmIiv/vd79rs27RpE8888wx/+9vfOqXPvXv3smrVKvz9/XnzzTcpLCzkxhtvpKioiH/84x9HbFNXV0ddXV3L6/Ly8k6JzavsDpj5gDlJYfLNHX75/rEh3Hx6f/74350sfmcrUwZEEx3s7vB+RERERDpau2fYZmZmkpqaetj+5ORkMjNV1L/DGAZkrDKfp/6whO2yzTlU1zfRNzqIscntrzMsIiIiIh3H4/Fgs9l48cUXmTBhAmeffTYPP/wwzz///FFn2S5ZsoSwsLCWLSkpyctRd5LkyWY9W1dgp1z+J6f0Y3B8CCXVDSx+59tO6UNERESko7U7YRsbG8vmzZsP279p0yaioqI6JCgBCnZAVQE4/c2SCD/Aa+vNcggXj0tS7S4RERERiyUkJNCrVy/CwloXlR0yZAiGYbB///4jtlm4cCFlZWUtW1ZWlrfC9R5PExSnd+gl/Rx2HvzxKOw2eGfTAT76Nq9Dry8iIiLSGdqdsL388su5+eab+eSTT2hqaqKpqYkVK1Zwyy23cNlll3VGjD3TwXIISRPBefw/3dpbUMnXGSU47DYuOqFXBwUnIiIiIsfrpJNO4sCBA1RWVrbs27lzJ3a7nd69j1y+yu12Exoa2mbrVkoy4G/T4LkfQX11h156RO8wrj+5LwB3vbWF8tqGDr2+iIiISEdrdw3be++9l4yMDE4//XScTrO5x+Phqquu4ve//32HB9hjHVxw7AeWQ3htvTlLY9rAGGJD/X9oVCIiIiJd3oUXXvidx0tLS9t1vcrKSnbv3t3yOj09nbS0NCIjI+nTpw8LFy4kOzubF154AYDZs2dz7733MnfuXBYvXkxhYSE///nPueaaawgICGj3++kWgmKhpgTK98PqP8OpCzv08rdNH8h/t+aRXljFkmXbWXLhiA69voiIiEhHavcMW5fLxSuvvMKOHTt48cUXeeONN9izZw/PPvssLperM2Lsmab/Bn70Jxhy7nFforHJw7+bE7YXj+smdc5EREREfqBDa8EeaUtOTuaqq6465uutW7eOMWPGMGbMGAAWLFjAmDFjuOeeewDIyclps9ZDcHAwH330EaWlpYwbN44rrriCWbNm8Ze//KVj32hX4gqEM+81n69+BEo7tuSDv5+D+5uTtEvXZvLFnsIOvb6IiIhIR7IZhmFYHYQ3lZeXExYWRllZWff7Kdn/WLE9j2ueW0dkkIsvF56Oy9nu/LyIiIiIT+hJY7hj0S0/D8MwSyLsWwXDLoCLn+vwLu56awv/+jKT5KhAPrjlZAJcjg7vQ0RERORI2jN+a3cG76KLLuIPf/jDYfsfeOABLr744vZeTjrRq1+bs2svGNNLyVoRERER8W02G8y8H2x22PomZKzq8C7uPGswCWH+7Cuq5k8f7+zw64uIiIh0hHZn8VauXMnZZ5992P6ZM2eycuXKDgmqx1v9F1j7NFTmH/cliirrWL7dXAX3EpVDEBEREZGuIH4EjL3afP7+L8HT1KGXD/H343cXDAfg75/vZVNWaYdeX0RERKQjtDthW1lZecRatX5+fpSXl3dIUD2axwOfPwTL7oCSfcd9mbfSDtDQZDCqdxiD4kM6MEARERERkU506l3gHwZ+/lBd1OGXP21wHOePTsRjwJ3/3kx9o6fD+xARERH5IdqdsB0xYgSvvPLKYftffvllhg4d2iFB9Wh530BtKbiCIXH0cV3CMAxeW2cu1KDFxkRERESkSwmKgutWwLUfQXBsp3Rxz6xhRAa52J5bwVOf7emUPkRERESOl7O9De6++24uvPBC9uzZw2mnnQbA8uXLeemll3j99dc7PMAeJ+Nz87HPJHD4HdcltmSXsT23ArfTzqxRiR0YnIiIiIiIF0T379TLRwa5+M25w7h56UYeXbGLmcPjGRCnX6WJiIiIb2j3DNtZs2bx1ltvsXv3bm688UZuv/12srOzWbFiBf37d+7AqkdIb07Ypk497ku82jy79qzh8YQFHF/SV0RERETEcnUV8NEiyN/e4ZeeNTKB6UNiaWgy+MW/N9PkMTq8DxEREZHj0e6ELcA555zD6tWrqaqqYu/evVxyySXccccdjBo1qqPj61k8TbDvC/N5ypTjukRtQxP/STsAaLExEREREeni3v8lrH4EPvglGB2bULXZbNx7/nBC3E42Zpby/BcZHXp9ERERkeN1XAlbgJUrVzJnzhwSExN56KGHOO200/jyyy87MraeJ3cz1JWBOxTijy/5/eHWXCpqG+kVHsCkvlEdHKCIiIiIiBedfDs4XLD3E9jxfodfPiEsgIVnDwHgwQ93kFVc3eF9iIiIiLRXuxK2ubm53H///QwYMICLL76Y0NBQ6urqeOutt7j//vsZP358Z8XZMxTsAJsDkieDo93lhQF4bd1+AC4e1xu73daR0YmIiIiIeFdkX5g033z+4a+gsa7Du7hsfBIn9o2kpqGJhW9swejgmbwiIiIi7XXMCdtZs2YxaNAgNm/ezCOPPMKBAwd49NFHOzO2nmfUZXBnBsx84LiaZxVXs3pPIQAXndC7AwMTEREREbHI1NshOB5K0uHLJzr88na7jfsvHInbaWfV7kJeW7+/w/sQERERaY9jTti+//77XHvttSxevJhzzjkHh8PRmXH1XP6hEJF8XE3/vWE/hgEn9Y8iKTKwgwMTEREREbGAOwTOWGw+X/lHqMjt8C5SooO4/cyBANz37rfkl9d2eB8iIiIix+qYE7arVq2ioqKCsWPHMnHiRB577DEKCws7MzZpB4/HaCmHoMXGRERERKRbGXEJ9BoH9ZWw4r5O6eKak1IZ2TuM8tpGfv3WNyqNICIiIpY55oTtiSeeyNNPP01OTg4/+clPePnll0lMTMTj8fDRRx9RUVHRmXF2f188Ck+fBpteOa7ma/YWkV1aQ4i/kxnD4js4OBERERERC9ntcPYDZuJ22sJO6cLpsPOHi0bi57Dx0bd5PPHpnk7pR0REROT7tGvRMYCgoCCuueYaVq1axZYtW7j99tu5//77iY2N5dxzz+2MGHuGPZ9A9nqoKT6u5q+tywLgvNGJ+PupXIWIiIiIdDO9xsJFT0NYr07rYkhCKIvPHQ7Agx/u4INvOr78goiIiMj3aXfC9lCDBg3igQceYP/+/SxdurSjYup5mhog80vzecqUdjcvq2ng/ebB5MVjVQ5BRERERHqA6uOb6PB9Zk/sw9WTUwC47ZU0th4o65R+RERERI7mByVsD3I4HJx//vm8/fbbHXG5nufARmiogoBIiB3W7ubvbDpAXaOHQXEhjOwd1gkBioiIiIj4iOpieHUOPHEi1HVOWba7zhnC1AHR1DQ0cf3z6yioqOuUfkRERESOpEMStvIDpa80H1NOMutztdPBcggXj+uNzWbryMhERERERHyLKwhyN0NlHqz8Y6d04XTYeezyE+gbHcSBslp+8s911DU2dUpfIiIiIv9LCVtfkPG5+Zhycrubbs8tZ9P+Mpx2GxeM6bx6XiIiIiIiPsHphhlLzOdfPgFFnbM4WFigH3+fM45QfycbMktZ+MYWDMPolL5EREREDqWErdUa6yHzK/P5cdSvfW3dfgCmD4kjKtjdkZGJiIiIiPimgTOg/3Roqof/3tVp3fSNCeaJK8bisNt4Y0M2f1u5t9P6EhERETlICVur1ZaaA86YIRA7pF1N6xs9vLUxGzDLIYiIiIiI9Ag2mznL1u6EHctg9/JO62rKgGgWzRoKwP0fbOfjb/M6rS8RERERUMLWesGxcMnzMP9Lc+DZDiu251NUVU9MiJtTBsZ0UoAiIiIiIj4oZiBM+In5/IOF0NTQaV1deWIyV0zsg2HALS9vZEdu5yx2JiIiIgJK2HZpBxcbu+iE3jgdupUiIiIi0sOc8gsIjIb6KijN7LRubDYbvzl3GJP7RVFV38S1z39NUWVdp/UnIiIiPZuyfFZqrIPC3XAcixfkldfyyY58QOUQRERERKSHCgiH2a/A/K8gql+nduXnsPPEFSeQHBXI/pIafvqvDdQ3ejq1TxEREemZlLC1UtZaeGws/O2Udjd9Y0M2HgPGJUfQLya4E4ITEREREekCeo8Dt3fGw+GBLp6ZM44Qt5O1GcXc9dYWjOOYfCEiIiLyXZSwtVLG5+ZjVP92NTMMo6UcwiXjkjo6KhERERGRrsfjgfXPwc7/dmo3/WNDeHT2GOw2eHXdfp5Zld6p/YmIiEjPo4StlTJWmY8pU9vVbENmCXsLqwjwc3D2yIROCExEREREpItZ9wy8cwu8exvUVXZqV9MGxfLrc4YC8Ptl21pKlYmIiIh0BCVsrdJQA/u/Np+3M2H76tf7AThnZALBbmdHRyYiIiIi0vWMvgLC+0D5fvjs/k7v7pqTUrhsfBIeA25+aSO78ys6vU8RERHpGZSwtUrWV9BUDyEJ7VogoaqukXc3HwBUDkFEREREpIUrEM7+o/l8zROQ+02ndmez2fjtecOZkBpJRV0j1z6/jpKq+k7tU0RERHoGJWytkt5cvzZlKthsx9xs2ZYcquqbSIkKZHxKRCcFJyIiIiLSBQ2cAUPOBaMJ3r3VrGvbiVxOO0/931h6RwSwr6ian764noamzu1TREREuj8lbK1ysH5tavvKIbyVlg3AxeOSsLUj0SsiIiIi0iOcdT+4gs3yYxue7/TuIoNcPDNnPEEuB1/uLWbR21sxDKPT+xUREZHuSwlbq5z8c5h0E/Sd1q5m3x4oB+CUgTGdEJSIiIiISBcX1gtOu8t8vvy3UF/V6V0Oig/hL5ePwWaDl77K5IU1+zq9TxEREem+lLC1yoDpMON35sIIx6isuoGS6gYAUqKDOisyEREREZGubfz1MGo2XPE6uLwzbj59SBy/PGswAL9991s+31XglX5FRESk+1HCtgvJKDJnB8SEuAl2Oy2ORkRERETERzmccMGT0HusV7u94eS+XHRCb5o8BvNf3MDegkqv9i8iIiLdgxK2Vlj7NOxZAY117Wp2MGGbGqXZtSIiIiIix6xoT7vH3sfDZrPx+wuHMzY5gvLaRq57fh1lzb+QExERETlWSth6W10FvH8n/PMCqMxrV9OMwmoAUqIDOyMyEREREZHu58sn4YkTYdUjXunO7XTw1P+NpVd4AHsLq5j/0gYamzxe6VtERES6ByVsvS3zSzCaIDy5XfVroXWGbbJm2IqIiIiIHJvgWGiqh88fMmfaekFMiJunrxpHoMvBqt2F3PpKGnWNTV7pW0RERLo+JWy9LX2l+Zg6tf1NC5tLImjBMRERERGfsXLlSmbNmkViYiI2m4233nrrmNuuXr0ap9PJ6NGjOy2+Hm/YhdDvNGiqg/cWgGF4pduhiaH85bIx+DlsvLs5h2ufW0dlXaNX+hYREZGuTQlbb8tYZT6mtD9hu695hm2KZtiKiIiI+IyqqipGjRrF448/3q52paWlXHXVVZx++umdFJkAYLPBOQ+Bww17P4Vv/u21rqcPjeOZOeNbZtpe/rcvKazs/Fq6IiIi0rUpYetNtWWQk2Y+b2fCtqy6gZLmBQuSo1TDVkRERMRXzJw5k/vuu48LLrigXe3mzZvH7NmzmTRpUidFJi0i+8LJPzeff7AQakq91vXJA2N4+YYTiQxysSW7jB8/+QWZRdVe619ERES6HiVsvWnfGjA85oAxrFe7mqY3z66NDXET5HZ2RnQiIiIi4iX/+Mc/2Lt3L4sWLTqm8+vq6igvL2+zSTuddDNEDYCqfFj+W692PbJ3OK/Pm0TviAAyiqq56Kkv2HqgzKsxiIiISNehhK03ZX1lPh5HOYSM5vq1KapfKyIiItKl7dq1i1/+8pf861//wuk8tn+IX7JkCWFhYS1bUlJSJ0fZDTnd8KM/gTMAwr3/+fWNCeaNn05mcHwIBRV1XPbXL1mzp8jrcYiIiIjvU8LWm067G+athkk3tbtpRvMM21TVrxURERHpspqampg9ezaLFy9m4MCBx9xu4cKFlJWVtWxZWVmdGGU3ljoVbtsKU26zpPvYUH9enTeJiamRVNQ1MufZtSzbkmNJLCIiIuK7lLD1Jrsd4odDzLEPzg86OMM2OVr1a0VERES6qoqKCtatW8dNN92E0+nE6XTy29/+lk2bNuF0OlmxYsUR27ndbkJDQ9tscpyCoiztPtTfj+evmcBZw+Kpb/Iw/6UN/PPLfZbGJCIiIr5FCdsuIr15YQLNsBURERHpukJDQ9myZQtpaWkt27x58xg0aBBpaWlMnDjR6hB7jn1fwN+nQ9l+r3ft7+fg8StOYPbEPhgG3P3WNzz80U4Mw/B6LCIiIuJ7tHqVt6x8EAp2wvhroc+J7W6+r0g1bEVERER8UWVlJbt37255nZ6eTlpaGpGRkfTp04eFCxeSnZ3NCy+8gN1uZ/jw4W3ax8bG4u/vf9h+6USGYS48tv9reP9OuOxFr4fgsNv43fnDiQ1x88jHu/jL8l0UVNRx3/nDcdhtXo9HREREfIdm2HrL1v/AllehPLvdTUur6ymtbgAgOUolEURERER8ybp16xgzZgxjxowBYMGCBYwZM4Z77rkHgJycHDIzM60MUf6XzQbnPAR2J2x/F3a8b1EYNm6dPpD7zh+OzQZL12Zy44vrqW1osiQeERER8Q02o4f97qa8vJywsDDKysq8V/uruhgeSDWf37ELgmPb1XxjZgkXPPEFcaFuvvrV9E4IUERERMS3WTKG82H6PDrIR/fA6j9DWBLM/wpc1v2a7f0tOdzychr1TR4mpEby9FXjCAvwsyweERER6VjtGb9phq03ZKwyH2MGtztZC5BxsByC6teKiIiIiHScU+6EsD5QlgWf/cHSUGaOSOD5ayYQ4nayNr2YS/+6hrzyWktjEhEREWsoYesNGZ+bjylTj695obngmBK2IiIiIiIdyBUEZz9oPl/zOORttTScSf2ieOUnk4gJcbM9t4KLnvyCvQWVlsYkIiIi3qeErTccnGGbMuX4mmvBMRERERGRzjHoLBj8I/A0wkbvLz72v4YmhvLveZNJiQpkf0kNP35qDZuySq0OS0RERLxICdvOVlUI+d+az497hq2ZsE2N1oJjIiIiIiIdbuYDcMHfYMbvrI4EgD5Rgbz+08mM6BVGcVU9lz/9JSt3FlgdloiIiHiJEradrSIH4kdA3AgIijquS2QUNZdE0AxbEREREZGOF9YLRl0KNpvVkbSIDnaz9IYTmdI/mur6Jq557mv+k5ZtdVgiIiLiBUrYdrb4ETBvFVy/4rial1TVU1bTAEBypBK2IiIiIiKdqrYMvn4GmhqsjoRgt5Nnrx7PrFGJNHoMbnk5jb9/vhfDMKwOTURERDqRErbe4nQdV7P05vq18aH+BLgcHRmRiIiIiIgcqq4CHj8R3lsAz5wJRXusjgiX086fLx3N1ZNTALjvvW3c+koaVXWN1gYmIiIinUYJWx+3r2XBMdWvFRERERHpVO4QOPsB8A+HAxvgqamw4QWweEar3W5j0ayh3HXOEBx2G/9JO8C5j61iR26FpXGJiIhI51DC1selFzbXr41SOQQRERERkU43ZBb89AtzweCGKnj7Z/DqlVBdbGlYNpuN66b25ZUbTiQ+1J89BVWc9/gqXl2XZWlcIiIi0vGUsPVxGYUHZ9gqYSsiIiIi4hVhveCqt+GM34LdD7a9A09OhoIdVkfGuJRI3rt5CicPjKG2wcMvXt/MHa9toqa+yerQREREpIMoYevjMg6WRNAMWxERERER77Hb4aRb4LqPIWoABEZBRIrVUQEQFezmuavHc8eZA7Hb4PX1+zn/8dXszq+0OjQRERHpAErY+jDDMEhvnmGbqhm2IiIiIiLelzgafvIZXL4UnG5zX1MjFO+1NCy73cZNpw3gxetOJCbEzY68Cs59bBX/Scu2NC4RERH54ZSw9WEl1Q1U1Jqrv/aJ1KJjIiIiIiKWcAVBeJ/W158/BE9MhnXPWr4g2aR+Ubx38xQm9Y2iur6JW15OY+EbW6htUIkEERGRrkoJWx92cHZtQpg/AS6HxdGIiIiIiAgeD+z/Ghpr4N3b4OXZUFVoaUixIf7867qJ3Hz6AGw2WLo2kwuf+KJlPQwRERHpWnwiYfv444+TkpKCv78/EydOZO3atcfU7uWXX8Zms3H++ed3boAW2af6tSIiIiIivsVuh9mvwozfg8MFO5aZC5LtXm5pWA67jQVnDOT5uROICnLxbU45P3p0Fe9tzrE0LhEREWk/yxO2r7zyCgsWLGDRokVs2LCBUaNGMWPGDPLz87+zXUZGBnfccQdTp071UqTed/BfxFOiVQ5BRERERMRn2O0waT5cvwJiBkNlHvzrQvhgITTUWhrayQNjeO/mqYxPiaCyrpH5L21g0X++oa5RJRJERES6CssTtg8//DDXX389c+fOZejQoTz11FMEBgby7LPPHrVNU1MTV1xxBYsXL6Zv375ejNa70ouqAc2wFRERERHxSfEj4IZPYcIN5ut1z0JZlqUhAcSH+bP0+hOZd0o/AJ5fs4+Ln1pDVnG1xZGJiIjIsbA0YVtfX8/69euZPn16yz673c706dNZs2bNUdv99re/JTY2lmuvvfZ7+6irq6O8vLzN1lW0lESIVsJWRERERMQn+QXA2Q/C7NfgR3+C6AFWRwSA02HnlzMH8+zV4wgL8GPz/jLO+cvn/HdrrtWhiYiIyPewNGFbWFhIU1MTcXFxbfbHxcWRm3vkgcSqVat45plnePrpp4+pjyVLlhAWFtayJSUl/eC4vcEwjJZFxzTDVkRERETExw08E0bPbn2d+RW8dBlUfnept8522uA4lt0ylTF9wimvbeSGf67nd+99S0OTx9K4RERE5OgsL4nQHhUVFVx55ZU8/fTTREdHH1ObhQsXUlZW1rJlZVn/E6VjUVxVT0VtIwDJUaphKyIiIiLSZXg88PbPYOf78MQkWP88NNZbFk6v8ABeuWES105JBeDpz9O59K9rOFBaY1lMIiIicnSWJmyjo6NxOBzk5eW12Z+Xl0d8fPxh5+/Zs4eMjAxmzZqF0+nE6XTywgsv8Pbbb+N0OtmzZ89hbdxuN6GhoW22riCjuRxCYpg//n4Oi6MREREREZFjZrfDxc9B7DCoLoR3boZHT4Cvn4HGOktCcjnt3P2joTz1f2MJ8XeyIbOUc/7yOe9vycEwDEtiEhERkSOzNGHrcrkYO3Ysy5cvb9nn8XhYvnw5kyZNOuz8wYMHs2XLFtLS0lq2c889l1NPPZW0tLQuU+7gWGQUNi84pvq1IiIiIiJdT9xQuH4FnPk7CI4zFyN7bwH8eTR8+x/LwjpreDzv/Wwqw3uFUlLdwE9f3MDV//i6pRybiIiIWM9pdQALFixgzpw5jBs3jgkTJvDII49QVVXF3LlzAbjqqqvo1asXS5Yswd/fn+HDh7dpHx4eDnDY/q7u4AzbZNWvFRERERHpmvz8YfJNMP5a2PACrHoEKg6Aw21pWH2iAvn3Tyfz2Ird/PWzvXy2s4AZf1rJT07py43T+hPg0i/8RERErGR5wvbSSy+loKCAe+65h9zcXEaPHs0HH3zQshBZZmYmdnuXKrXbIQ7+C3dqtOrXioiIiIh0aX4BMPEnMPZq2PYODJzRemzt09BQDeOuBXew10JyOx3cfuYgLjyhN4ve3srKnQU8umI3b2zIZtGsoZwxNA6bzea1eERERKSVzehhBYvKy8sJCwujrKzMp+vZznp0FVuyy/jblWM5c9jh9XxFREREepKuMobzFn0e3URdBTwyAmpKIDAKJt0EE64Hd4hXwzAMgw+35nHvu9+S3bwQ2amDYvjNucP0iz8REZEO0p7xW8+butoFGIZBRvMMW9WwFRERERHpppz+Zo3byL5QXQTLF5sJ3M8ehNoyr4Vhs9k4a3g8Hy04mfmn9sPPYeOTHQWc8aeVPPzRTmobmrwWi4iIiChh65OKquqpqGvEZoM+kSqJICIiIiLSLTn8YMwVMP9ruOBvEDXAnG37yX3wpxFm+QQvCnQ5+fmMwXx468lMHRBNfaOHvyzfxRl/+ozl2/K8GouIiEhPpoStDzo4uzYxLAB/PxX8FxERERHp1hxOGHUpzP8KLnoGYgZDXTlED7IknL4xwbxwzQSevOIEEsL8ySqu4drn13Hd81+TVVxtSUwiIiI9iRK2PiijyBwEpWjBMRERERGRnsPugBE/hp+ugWs/gpiBrcfevQ0+ugcqC7wSis1mY+aIBD5ecArzTumH027j4235TH/4M/788S6VSRAREelEStj6oIMzbFXgX0RERESkB7LbIWl86+uSDFj/HKz+Mzw6FnZ84LVQgtxOfjlzMB/cOpWT+kdR1+jhTx/vZMYjK/lke77X4hAREelJlLD1QelFZsI2VQlbEREREREJT4bLlkL8SKgrg6WXwqd/AI/HayH0jw3hX9dO5LHZY4gLdbOvqJq5z33N9S+sU5kEERGRDqaErQ/a15ywTYlWwlZEREREpMez2WDQWXDdchh/nbnv09/DK/8HteVeDMPGj0Ymsvz2afzk5L447TY++jaPM/70GY+t2EVdo8okiIiIdAQlbH2MYRhkFDbXsI1SDVsREREREWnmdME5D8G5j4HDBTvegxfO8+pMW4Bgt5OFZw/h/VumcmLfSGobPPzxvzuZ8aeVfPRtHoZheDUeERGR7kYJWx9TWFlPZV0jNhskRSphKyIiIiIi/+OEK2HuBxDaC6bcZta8tcCAuBCWXn8if75sNLEhbjKKqrn+hXX83zNfsS3HezN/RUREuhslbH3MwXIIiWEB+Ps5LI5GRERERER8Uu+xcNM6GHpu677idK/PtrXZbJw3uhcr7pjGjdP64XLaWb27iHP+8jkL39hCYWWdV+MRERHpDpSw9THphQfr12p2rYiIiEhXsHLlSmbNmkViYiI2m4233nrrO89/4403OOOMM4iJiSE0NJRJkybx4YcfeidY6V5ch/ydoWw//H06vHw51JZ5PZRgt5NfnDWY5QtO4ZyRCXgMWLo2k2kPfspTn+1RfVsREZF2UMLWx2QcXHAsSguOiYiIiHQFVVVVjBo1iscff/yYzl+5ciVnnHEGy5YtY/369Zx66qnMmjWLjRs3dnKk0q3lfgN1FbDzA3j6NCjYYUkYSZGBPD77BF6bN4mRvcOorGvk/ve3c8bDK3l/S47q24qIiBwDm9HD/o9ZXl5OWFgYZWVlhIaGWh3OYea/uIH3tuRw1zlDuG5qX6vDEREREfEJvj6GO8hms/Hmm29y/vnnt6vdsGHDuPTSS7nnnnuO6fyu8nmIl2VvgFeuhPL94AqGC/4KQ35kWTgej8GbG7N54MPt5JWbpREmpEZyz4+GMrxXmGVxiYiIWKE94zfNsPUxmmErIiIi0rN4PB4qKiqIjIw86jl1dXWUl5e32UQO0+sEuOFTSJ4C9ZXwyhWw4j6v17U9yG63cdHY3nxyxzRuPn0A/n521qYXM+uxVfz8tU3kl9daEpeIiIivU8LWhxiGQYZq2IqIiIj0KH/84x+prKzkkksuOeo5S5YsISwsrGVLSkryYoTSpQTHwFVvwYk3mq9XPghfHlu5js4S6HKy4IyBrLh9GuePTsQw4LX1+5n2x095bMUuahtU31ZERORQStj6kILKOqrqm7DbzNpPIiIiItK9vfTSSyxevJhXX32V2NjYo563cOFCysrKWrasrCwvRildjsMPzloCF/wNeo+HcddaHREAieEBPHLZGN68cTJj+oRTXd/EH/+7k9Mf+oy3Nx1QfVsREZFmStj6kH1F1YA5kHE7HRZHIyIiIiKd6eWXX+a6667j1VdfZfr06d95rtvtJjQ0tM0m8r1GXQrX/BdczZNBPB7I/NLamIAxfSJ446eT+fNlo0kM8ye7tIabl27koie/YGNmidXhiYiIWE4JWx+SXqj6tSIiIiI9wdKlS5k7dy5Lly7lnHPOsToc6c7sh/yVb9VD8OwMWP5b8FhbhsBms3He6F4sv30at58xkAA/BxsyS7ngiS+47ZU0cspqLI1PRETESkrY+hDVrxURERHpeiorK0lLSyMtLQ2A9PR00tLSyMzMBMxyBldddVXL+S+99BJXXXUVDz30EBMnTiQ3N5fc3FzKysqsCF96ktrmP2OfPwQvXQo11s9mDXA5+NnpA/j059O46ITeALy5MZtT//gpS5ZtY39JtcURioiIeJ8Stj7kYEkEzbAVERER6TrWrVvHmDFjGDNmDAALFixgzJgx3HPPPQDk5OS0JG8B/va3v9HY2Mj8+fNJSEho2W655RZL4pce5Mz74MK/gzMAdn8EfzsVMlaDD9SOjQv156FLRvH2TScxPiWC2gYPf125l5Mf+IR5/1zPl3uLVONWRER6DJvRw/6vV15eTlhYGGVlZT5X++vsP3/OtznlPDNnHKcPibM6HBERERGf4ctjOCvo85AfJGczvHIFlDb/Q0LiGDj3MYgfbm1czQzDYPm2fJ5dnc4Xe4pa9g+OD2HuSSmcN7oX/n5a80NERLqW9ozfNMPWRxiGQUaRWRIhWTNsRURERESksySMhBs+g7FXg9Mf8rZC8CETRiye02Oz2Zg+NI6Xrj+RD289mdkT++DvZ2d7bgV3/nsLJy5Zzh8+2M6BUtW5FRGR7kkzbH1EfnktE36/HLsNtt87E5dTuXQRERGRg3x1DGcVfR7SYaoKYf/XMGhm675//RjCesHEn0LsYOtiO0RpdT2vrsvi+S/2kd2cqHXYbcwYFsfVk1MZnxKBzWazOEoREZGja8/4zemlmOR7ZDTXr+0VEaBkrYiIiIiIeEdQdNtkbf52s74twPrnoN9pcOJ889Fu3d9TwgNd3HByP66d0pePt+Xx3OoM1uwtYtmWXJZtyWVoQihXT07h3NGJKpcgIiJdnjKDPiKj0CyHoAXHRERERETEMjGDYO77MPhHgA32rIAXL4InJsK6Z6G+2tLwzFm18Sy94UQ+uHUql09Iwt/Pzrc55fzi35uZtGQ5D6hcgoiIdHFK2PqI9CIlbEVERERExGI2GyRPhstehJs3mrNrXSFQuBPevQ22v2t1hC0Gx4ey5MKRfLnwdBbOHEyv8ABKqht44tM9TH3gE+a/uIGvM4rpYVUARUSkG1BJBB+x72DCNloJWxERERER8QGRqXDW72HaLyHtRdj6Fgw9v/X4ro8gIBJ6j7UqQsAsl/CTU/px7ZRUPt6Wz3NfpPPl3mLe25LDe1tyGJYYypzJKcwamUiAS+USRETE9ylh6yPSC82fFqVEBVociYiIiIiIyCH8Q+HEn5rbQZ4meG8BlGZC0kTz2OBZ4LDur5hOh52zhsdz1vB4tuWU8/wXGby5MZutB8r5xeubuffdb7lgTC8uHZ/EsMQwy+IUERH5PiqJ4AMMw9AMWxERERER6TrqyqHPZLD7QdZX8NrV8OgYcxauD5QgGJIQyv0XmeUS7jxrMEmRAVTUNvLCmn2c85dVnPvYKl76KpOK2garQxURETmMzehhBX3Ky8sJCwujrKyM0NBQq8MBIK+8lom/X47dBtvvnYnLqTy6iIiIyKF8cQxnJX0e4jMqcuHrv5sLklUXmftST4FzHoLoAdbGdgiPx+CLPUUs/TqT/27NpaHJ/GtwoMvBj0YmcNmEPoxJCsdms1kcqYiIdFftGb+pJIIPyCg0Z9f2jghUslZERERERLqOkHg47S6YsgBW/xlW/QnSP4PKPJ9K2NrtNqYMiGbKgGiKKut4c2M2S9dmsqegilfX7efVdfsZFBfCpeOTuPCEXoQHuqwOWUREejAlbH1ARnM5hGTVrxURERERka7IFQinLoRRl8GO9yFlSuux/G0QMxh8ZPZqVLCb66b25dopqazbV8LLa7N4b8sBduRV8Nt3v+X+D7Zz1rB4LpuQxKS+UZp1KyIiXqeErQ84uOBYqurXioiIiIhIVxaZCpNubH1dmgV/OxUSR8PMByBhpGWh/S+bzcb4lEjGp0Ryz6yhvJ2WzdK1WXybU87bmw7w9qYDpEQFcsn4JH48tjexIf5WhywiIj2Efn/vA1oWHItSwlZERERERLqR3M3mzNrMNfC3U+C9O6CmxOqoDhMW4MeVk1JYdstU3rlpCrMn9iHY7SSjqJoHPtjB5CUr+Mk/1/HJ9nyaPD1qGRgREbGAErY+IL25hm1KtEoiiIiIiIhINzL4HLjpaxh2IRge+PppeHQsrH8ePB6rozuiEb3D+P0FI1j769N54McjOaFPOI0egw+35jH3ua+Z+ocVPPTfHezKq7A6VBER6aZshmH0qH8e9LUVdQ3DYOg9H1LT0MSK20+hb0yw1SGJiIiI+BxfG8NZTZ+HdEnpK2HZz6Fgu/k66USYuwzsDmvjOgY78yp4eW0Wb2zcT2l1Q8v+wfEhzBqVyI9GJpCsX0yKiMh3aM/4TTVsLZZfUUdNQxMOu42kSM2wFRERERGRbir1ZJi3CtY+DZ8ugeTJXSJZCzAwLoR7Zg3lF2cN4r/f5vF22gE+25nP9twKtufu4MEPdzAqKZxZIxP40chE4sNU71ZERI6fErYWO1gOoXdEAH4OVagQEREREZFuzOFnLko2/CJwH/LrwuwNsH8djLsGHL7711R/Pwfnjkrk3FGJlFU38OHWXN7ZfIDVuwvZlFXKpqxSfrdsG+NTIpk1KpGzh8cTFey2OmwREelifPf/hD1ERnPCVj+fERERERGRHiMkrvW5xwPL7oDs9bDheTj7QXP2rY8LC/TjkvFJXDI+iYKKOj74Joe3Nx3g64wS1qYXsza9mN+8vZXJ/aI4d1QiZw6LJyzAz+qwRUSkC1DC1mLpRWbCNjVK5RBERERERKQnMmD0FVC0B/K+gX/MhBEXw7SFENXP6uCOSUyImysnpXDlpBQOlNbw3uYc3tl8gM37y/h8VyGf7yrk129+wymDYpg1KpHpQ2IJdOmv4yIicmT6P4TF9hVWA5ASrRm2IiIiIiLSA9kdMP5aGHo+rLgX1j8HW14zt8i+cNrdMPxCq6M8ZonhAVx/cl+uP7kvGYVVvLv5AG9vOsDOvEo++jaPj77NI8DPwfShccwamcApg2JwO7tGLV8REfEOJWwtltE8wzZFJRFERERERKQnC4qCWY/A2Dmw/LeQvhKK94LzkAW88rZC+ucw4IwuMfs2JTqIm04bwE2nDWBHbgXvbDrAO5sPsK+o2ny+6QAh/k5OGRjDaYNjmTYolsggl9Vhi4iIxZSwtZDHY7QmbDXDVkREREREBBLHwJVvQm25mbRNPbn12Df/hs8fgg/uhIhU6D/dTN6mTAWXb5eZGxQfwqD4Qdx+5kC2ZJfxdtoB3t2cQ255Le9uzuHdzTnYbDA6KZzTBsVy2pBYhiaEYrPZrA5dRES8zGYYhmF1EN5UXl5OWFgYZWVlhIaGWhpLblktJy5ZjsNuY/u9Z+HnsFsaj4iIiIiv8qUxnC/Q5yE91uZXYeM/Yd8a8DS07ne4IeUkuPBpCIq2Lr528ngMNmaV8sn2fJZvz2dbTnmb4/Gh/pw6OIZTB8VyUv9ogtyacyUi0lW1Z/ym/9pbKL3QnF3bOyJAyVoREREREZHvM/ISc6urMGff7voIdn8MZVlwIA0CIlrP3fwquILNGbruYMtC/i52u42xyRGMTY7gjhmDyCmr4ZPtBazYns/q3YXklteydG0WS9dm4XLYmdg3ktMGx3La4FiSVVZPRKTbUsLWQqpfKyIiIiIichzcITD4HHMzDCjcCSUZ5gJmYO77aBFUHACHC5Inw6jLYeh54BdgaejfJSEsgNkT+zB7Yh9qG5r4Kr2YT7bns2J7PpnF1Xy+q5DPdxWy+J1v6RsTZJZOGBzLuJRIXE5NAhIR6S6UsLVQRvMM21TVrxURERERETk+NhvEDDK3gxpqYPDZ5gzc0n2w91NzW/YLc4bu2KshfrhFAR8bfz8HpwyM4ZSBMSyaNZQ9BVWs2J7Hiu35rMsoYW9BFXsL0vn7qnSC3U6mDojm1MGxTBsUQ2yI//d3ICIiPksJWwu1zrD17eL4IiIiIiIiXYorEM55yJxpW7Qbtr5p1r4tzYSvnzbPOeeP1sbYDjabjf6xwfSPDeaGk/tRXtvA5zsLWbE9n0935FNUVc/73+Ty/je5AAyOD2FK/2imDIhmYmoUAS6Hxe9ARETaQwlbC2UUVgOQrBm2IiIiIiIiHc9mg+gBcMovYOodkP4prH8exs5pPSdrbeu+3uPNNj4u1N+Pc0YmcM7IBDweg83ZZazYlseKHfl8k13O9twKtudW8PdV6bgcdk5IDmfqgBhO6h/NiF5hOOy+/x5FRHoym2EYhtVBeJOvrKjr8RgMuecD6ho9fHrHNFKUtBURERE5Kl8Zw/kKfR4iHejNn8Kml8znMUPghKtg5KUQFGVtXMepqLKO1XuKWL2rkFW7C8kurWlzPCzAj8n9ojipfzRTB0Rr8TIRES9pz/hNM2wtkldRS12jB6fdRu8I3y16LyIiIiIi0q2Nm2s+bn0TCrbBhwvh40Uw+EfmrNvUU7rErNuDooLdnDsqkXNHJWIYBhlF1azaVcCq3YV8saeIspqGNuUTkiIDzPIJ/WOY3C+KiCCXxe9ARESUsLVIevOCY70jAnA6tJqniIiIiIiIJZImmNvM+2HLa7DhBcjZBFvfgOz1cHPa8SVs66uhIsfcynNan1fkwMm/gLih5nn52+GDX8Lkn0G/0zo0OWyz2UiNDiI1OogrJ6XQ2ORhc3YZq3cV8vnuQjZmlpBVXMPStVksXZuFzQbDE8OYMiCaKf2jGZscgb+f6t+KiHibErYWOVi/VqUQREREREREfIB/GIy/ztwOpJmLlEX1B3vzBJvGOvjPfBh+EcSPgIrc5gRsLpQfgDH/B1H9zHO//ju8d/vR+xp2QWvCds1jsPcTc4sdBpNvguE/BmfHz3R1Ouyc0CeCE/pE8LPTB1BV18ja9GI+31XI6t2F7MirYEt2GVuyy3jy0z24nXZGJ4UzNtlsc0JyBJGagSsi0umUsLXIviJzhm2K6gWJiIiIiIj4lsTR5nao7e+ZM3C3vHbkNgmjWhO2QTHmo18ghCRAaCKExJvPQxIgbnhru5N/Du4Qc+Gz/K3w1k9h+W9h4k9g7FwICO/gN9cqyO3k1MGxnDo4FoD88lpW7ylsSeDmldfxVXoxX6UXt7TpGx3EmD4RZhI3OZwBsSFaxExEpINp0TGL3PDCOv77bR6Lzx3GnMkplsUhIiIi0hX4yhjOV+jzELFA8V74+hnYtBRqyyA43kzChjYnYUddDr1OMM9tqIGmenCHHnuJg5oSWP8cfPkUVJr1ZQlPNksy2L1fRs8wDPYUVLFhXwnr95WwPrOE3fmVh50X4nYyuk84JzQncUf3CSfU38/r8YqI+DotOtYFZDTPsE2OCrQ4EhEREREREflekX1hxu/gzPvAML47ieoXYG7tERABU26DE+fDN6/DF4/C0PNa+/F4IO8bSBh5/O+hHWw2G/1jg+kfG8wl45MAKK2uZ2NWKRv2lbAhs4S0zFIq6hr5fJc5K9dsBwNjQzghOYIT+pjlFFKjg7B1oYXbRESspoStBTweg31FZg3bVNWwFREREenSVq5cyYMPPsj69evJycnhzTff5Pzzz//ONp9++ikLFixg69atJCUlcdddd3H11Vd7JV4R+YFstg5dGOwwTheMnm3O2G2qb92/67+w9FJImWouUNb/jM6ZedvUAEV7oGCbuQiaf1jLofBAF6cOiuXUQWYJhcYmDzvyKtiQWdoyEzezuJodeRXsyKtg6dpMACIC/Vpq4I5JCmdkUjjBbqUjRESORv+FtEBueS11jR6cdhu9wtv5r64iIiIi4lOqqqoYNWoU11xzDRdeeOH3np+ens4555zDvHnzePHFF1m+fDnXXXcdCQkJzJgxwwsRi0iXYLOB0936umAb2J2Q8bm5RQ8yFygbcQn4+R9fHxV5sH8t5G8zt4LtULgLPA3m8TnvQOrJR23udNgZlhjGsMQwrjwx2Qyzoo4NmSUts3A37S+jpLqB5dvzWb49v+WtDYoLYXRSOGP6hDOmTwT9YoJVC1dEpJlq2Frgi92FzP77V6RGB/HJHdMsiUFERESkK/GFMdyxsNls3zvD9s477+S9997jm2++adl32WWXUVpaygcffHBM/XSVz0NEOljZfvjqKVj3HNRXmPuCYmHCDTDlVnAcoXasxwOlGZC/3Uz6DjkXogeYx9b9A9699fA2rmCIGQyn3w19p5n7Nr8KccPMrR3qGz1sPVDWMgs3LauU7NKaw84LdjsZlRTGmKQIRieFM7pPONHB7iNcUUSka1INWx+X3ly/NkX1a0VERER6nDVr1jB9+vQ2+2bMmMGtt95qTUAi0nWE9TZr6J78c9jwAnz5JJRnw7a34eQ7zHNK9sG3b7XOmi3cCQ3VrdcIjGpN2MaPhMQxEDMEYgc3Pw4x+zm07EP+dvjPTWB44NSFMPkWcBxbOsHltDOmTwRj+kRw7ZRU83LltWzMKiUtq5SNmSVs3l9GZV0jq3cXsXp3UUvbPpGBLbNwRyeFMzQxFLfT8UM+QRGRLkEJWwscrF+bovq1IiIiIj1Obm4ucXFxbfbFxcVRXl5OTU0NAQGHl8yqq6ujrq6u5XV5eXmnxykiPsw/zKxjO3EebH3LXLDsYIK1JAM+uqft+Q43RA80k7LhfVr39x4LN3z6/f0FRJj1bHe+D8t/C9vehQuegphBxxV+bKg/M4bFM2NYPGDWwt2VX8nGzFLSskrYmFnKrvxKMourySyu5u1NBwBwOewM6xXanMSNYHTvcJIiA7SgmYh0O0rYWiC98OAMWyVsRUREROT7LVmyhMWLF1sdhoj4GocfjLy47b64YTDsQnOmbMxgiB0KESnHPCP2iELi4PKlsOlleP9OOLABnpoKp/0aJt0E9h8269XpsDMkIZQhCaHMnmgmlMtrG9icVcbGTLOMwsasUoqr6tmYWcrGzFL+sToDMBc0G9E7nNG9wxjZO5yRSWHEhhxnTV8RER+hhK0FMg4mbDXDVkRERKTHiY+PJy8vr82+vLw8QkNDjzi7FmDhwoUsWLCg5XV5eTlJSUmdGqeIdFFB0XDxPzr+ujYbjL4c+p4Cb98Muz8yZ/Lu+giuehvs9g7tLtTfjykDopkyIBoAwzDILK5uLqNgllLYllNBSXUDK3cWsHJnQUvbhDB/RjYncEf1DmdE7zDCAo5Q31dExEcpYetlHo/BvmKzJEKqZtiKiIiI9DiTJk1i2bJlbfZ99NFHTJo06aht3G43brcW3xERHxCaCFe8Bhv/BR/+Cvqd2uHJ2iOx2WwkRwWRHBXEeaN7AVDX2MSO3Ao27S9jU1Ypm/ebpRRyymrJKavlw62t/ziWGh3UksQdnRTG0IQwAlyqhysivkkJWy/LKa+lvtGDn8NGYrh+piEiIiLS1VVWVrJ79+6W1+np6aSlpREZGUmfPn1YuHAh2dnZvPDCCwDMmzePxx57jF/84hdcc801rFixgldffZX33nvPqrcgItI+NhuccCX0Px2CYlv3520FvwCI7OuVMNxOh1kGoXc4V56YDEBVXSPfZJexeX8Zm/aXsnl/GZnF1aQXVpFeWMV/0sx6uA67jYFxIYxqTuKO6BVGakwQwW6lSUTEevovkZcdLIeQFBGI09H5/wopIiIiIp1r3bp1nHrqqS2vD5YumDNnDs899xw5OTlkZma2HE9NTeW9997jtttu489//jO9e/fm73//OzNmzPB67CIiP0hoYuvzxjp4/RoozYQzfgvjrvXKzNv/FeR2MrFvFBP7RrXsK66qZ3Nz8nbz/lI27S+joKKObTnlbMsp5+Wvs1rOjQxy0ScykD6RgSRHBZIUGUhyZCDJUUHEhrix27XAmYh0PiVsvSxd9WtFREREupVp06ZhGMZRjz/33HNHbLNx48ZOjEpExMtqyyEoBgq2w7I74Nv/wHmPQ0Sy1ZERGeRi2qBYpg0yZwMbhkFueS2bsspaErnf5pRTXFXfsqVllR52HbfTTlJzMvfQpG6fSDOx6++nEgsi0jGUsPWyfUXNCVvVrxUREREREZHuIjjGXHzs67/Dx4sg43N4cjKceS+MnWuWUfARNpuNhLAAEsICOGt4fMv+itoGMourySyqJrO4mn3F1WQVV7OvqJrs0hrqGj3szq9kd37lEa8bF+omOTKIpMhAUqMD6RsTTN+YIFKigpTMFZF2UcLWy9ILzQXHUqIDLY5EREREREREpAPZ7TDxBrO27X/mQ+YaePc2+PZtuOR58A+zOsLvFOLvx7DEMIYlHh5nY5OHA6W1zYncqpbE7r7m5G5lXSN55XXkldexNqO4TVubDXpHBNA32kzg9o0Jpl90EP1ig4kNcWPzoWS2iPgGn0jYPv744zz44IPk5uYyatQoHn30USZMmHDEc9944w1+//vfs3v3bhoaGhgwYAC33347V155pZejPj4ZmmErIiIiIiIi3VlUP7h6GXz1FCxfDJ5GcIWYx0qzIOur1nNbkpXNj73GtpZRqMiFzC/bXvvQ5GbccLMvgMZ6aKgCdyjYO342q9Nhp09UIH2iAplCdJtjhmFQUm3Ozt1XVEVmUTXpRVXsLahiT0ElFbWNZBXXkFVcw2c7C9q0DXY7SY0Oom9MEP2aZ+T2jQ4mNTqIAJdm5Yr0VJYnbF955RUWLFjAU089xcSJE3nkkUeYMWMGO3bsIDY29rDzIyMj+fWvf83gwYNxuVy8++67zJ07l9jYWJ9fqKHJY5BZZM6wTVUNWxEREREREemu7HaYdCMMOBOcrtYFyPavhX9fe/R25z/ZmrA9kAavzTn6uTMfaE3YZq+Df8w0n/sFgTsE/EPNR3eIWZZh2Pnm8Yo82PxK6zF3KARFQfwocLQ/TWKz2YgMchEZ5GJ0UnibY4ZhUFhZz96CSvYWVrG3oJI9BeZjVkkNlXWNbMkuY0t22WHX7RUe0JLITY0OIiU6iL7RQSSGB+DQ4mci3ZrlCduHH36Y66+/nrlz5wLw1FNP8d577/Hss8/yy1/+8rDzp02b1ub1LbfcwvPPP8+qVat8PmGbU1ZDfZMHP4eNhDB/q8MRERERERER6VzR/du+DoqBlKlHPz/okIlbARGQfFLr6zYLPBoQfsiCZnWH1JVtqDK3ytzWfQNntj4v3gsf3X143wERMGAGjJsLfU48eoztYLPZiAlxExPiZmLfqDbH6hs9ZBZXNSdwzdm4BxO7pdUNZJfWkF1aw+e7Ctu0cznsJEUGkBodTGp0IKnRwaREB5IaHUR8qL9KLIh0A5YmbOvr61m/fj0LFy5s2We325k+fTpr1qz53vaGYbBixQp27NjBH/7whyOeU1dXR11dXcvr8vLyHx74ccporl+bFBmI02G3LA4RERERERERS6SebG7Hos9EmLvs2M4deCbclW8mbuvKm7eK1i1hdOu5AeEw8rLmY83nlmZCTQlsftlM1h5M2NaUQmMthMQfodMfxuW00z82hP6xIYcdK66qb56NW8negirSC6vIKKoio6ia+kYPewrMRO//CvBzkBwV2LLY2cFZuSnRQUQFuZTMFekiLE3YFhYW0tTURFxcXJv9cXFxbN++/ajtysrK6NWrF3V1dTgcDp544gnOOOOMI567ZMkSFi9e3KFxH6/05vq1qapfKyIiIiIiItKxnG5zC4r67vNih8CFf227r6nRrK27YxkMOmQ27qaX4YM7odc4GHw2DDoHYga1raXbCcwSC5GMS4lsG6bHIKesxkzgFlaRXlhNemElGc2Ln9U0NLE9t4LtuRWHXTPE36yXmxptllnoHxtMv5hgkqMC8fdTvVwRX2J5SYTjERISQlpaGpWVlSxfvpwFCxbQt2/fw8olACxcuJAFCxa0vC4vLycpKcmL0bbaV9i84Jjq14qIiIiIiIj4DocTUk4yt0MV7zEfs9eZ2/LfQmRfGHQ2DD4HkiZ2yiJnRw3TbqN3RCC9IwKZOiCmzbGGJg/7S2rIKKxib0tC19wOlNVQUdvI5v1lbN7ftl6u3Wb+ErhfTDD9YoJaErn9YoKJCHJ57b2JSCtLE7bR0dE4HA7y8vLa7M/LyyM+/ug/N7Db7fTvb9bBGT16NNu2bWPJkiVHTNi63W7cbneHxn28Mppn2KZEBVociYiIiIiIiIh8r7MfhCkLYOf7sH0ZpH9m1sBd8xh89Vf4xV5zcTMwa+xaWHLAz2FvmUF76v8cq21oIrO4uqW8wp7mcgu78yupqG1kX1E1+4qqWfE/P3aODHLRL6btjNx+McH0itDCZyKdydKErcvlYuzYsSxfvpzzzz8fAI/Hw/Lly7npppuO+Toej6dNnVpfla4ZtiIiIiIiIiJdS2gCjLvG3OoqYM8KM3nraWxN1gI8e5ZZH3fQ2RA3HDwN0NRgPgbHQdww87ymBtjyWuuxpsZDzm2E6AEw7ALzXMOAZXeAXwC4QsAVBO5gcDVvIfGQOLo1hrpK8AsEe9t1c/z9HAyMC2FgXNt6uYZhUFBZx5781iTunoIq9uRXkl1aQ3FVPcVV9XydUdKmnctpp290EH1jgggPdOHvdBDgsjc/OnD7OfB32glwOfB3OvD3M4+7m4/7/89xu5K/Im1YXhJhwYIFzJkzh3HjxjFhwgQeeeQRqqqqmDt3LgBXXXUVvXr1YsmSJYBZk3bcuHH069ePuro6li1bxj//+U+efPJJK9/G92ryGGQV1wCQohq2IiIiIiIiIl2POwSGnmduhyo/AFlfms93fnB4u5GXtdbN9TTCWz89eh9DZrUmbG02+PoZwDjyuX1Phavean398BBzETW/wOak7iEJ3sQT4Kzft56bsxlbaCKxIdHEhvgzqV/b2r/V9Y3sLahqTeIWVLInv5K9hVXUN3qOWiv3eLgcdvz97IQG+NEvJpgBscEMiAtmQFwI/WODCfX365B+RLoKyxO2l156KQUFBdxzzz3k5uYyevRoPvjgg5aFyDIzM7Ef8i9DVVVV3Hjjjezfv5+AgAAGDx7Mv/71Ly699FKr3sIxOVBaQ32TB5fDTmJ4gNXhiIiIiIiIiEhHCUmAeathx/tm+YTKArMurt0PHH4Qmth6rsMF/ac3HzvknIOvE0a1vfa0X5oze+uroL7SfDz4OmZQ63mGYR4HaKg2t6pDruP8n3KR/zwfqosgMApiBh+yDYLYoQQGxzC8VxjDe4W1adbkMcguqWFPgZm8raxtpLaxiZr6Juoam6ht8FBT39Syr7bRQ11DEzUNTdQ2tO6rb/S0XLO+yUN9k4fy2kb2l9Tw2c6CNn3Gh/ozIM4syzAgNsRM5sYGEx6oGrvSPdkMwzjKP9N0T+Xl5YSFhVFWVkZoaOj3N+ggn+8q4Mpn1tIvJojlt0/zWr8iIiIi3YFVYzhfpc9DREQOYxjQWNec1K00yyMc+jwgAvqeYp5bVwFPTYGSfRxx9m7faXDVf1pfr38eIpIhZggEx7a/Vm9jHdSWgd0JgZEAeKpLaNz0Ko3VpXiqS/HUlFLbCLv9R/AFw9lU4mZXXiW55bVHvWxMiNucjRsbTP+4EAbEBjMwLoRILZYmPqg94zfLZ9j2FBlF1QCkqn6tiIiIiIiIiHQ0mw38/M0tKPq7z3WHwC2boL4aCndCwQ4o2Nb8uB1ih7WeW1MK79zc+to/vHUmbswgSJoIvceZx8r2w7sLoLbUTNDWND82miUimfwzOPM+AOz1lbg+/AWHplZDgVhgMsDEeXDtHyiraWB3fiW78yvYlVfJrnxzsbTs0hoKKuooqKjjiz1Fbd5eVJCL/rHBpEYHkRQZaG4RAfSJDCQyyIXNwsXhRI6FErZeknFwwTHVrxURERERERERX+AKNBctO3ThMjBn6x5UXwmDzjETuSXpZjI268vWmr2TbmpN2BoG7PrwKJ3ZzJm2BwVGwuAfmQu1+TdvdWWQvhJyNkNUfwDCAvwYG1LC2I9/as78PX0a9J5KZaON3fmV7MqrMB/zK9mVX0FWcQ1FVfUUpRfzVXrxYVEEuhwkRTQncSPNJO6hrwNdSpWJ9fSn0EsOJmyTNcNWRERERERERHzZoTNQw3rD5S+ZzxtqoGg35G83E7hFuyF6QOu5QTFw7qPNCdiw5mRsmPnaHQqHrFGEKwgue/HI/VcVmfV8D9r7aWuS+LP7wRVMcPJkRvedxui+02Ds0JaYDy6WtjOvgn1F1WSVVLO/uIbM4mryKmqprm9iR14FO/KOvGBadLCL3hGBZiL3fxK6CWH+OB32I7YT6UhK2HpJepGZsE3VDFsRERERERER6Yr8AiB+hLkd8bg/nHDVD+8nKKrt64Ez4Vynmbjd+xlUF8Ku/5obwGVLYfDZAAQ6OOJiaQC1DU1kl9aQVVxNVknzY7GZ1M0sqqa8tpHCynoKK+tJyyo9rL3dBglhAfSKCKB3eAC9I5qfRwTSOyKAhLAAXM7vSOh6mszF4lzBbZPXIv9DCVsvaPIYZBWbNWxTogMtjkZEREREREREpAsJTTATwSdcBR4P5G9tTd5mfQXJk1vP/ewP8M3rkHqKuVCazQ42B9js+Nsd9Bt/Pf1igs1z01dCaWbL8eoGD4XVjRRVNVJQ1cAqx3j2lTSQVVJNcPF2ehvZBFbUEVBRR2BmHXZbHaXUUU8d1zT+H/U2F3Eh/vzM9TZTG78gyFaPv1GLy1OLo6kGe1NzSYjbd0JInPl82zvme4gZArGDIXoQuIO9+vGK71HC1gsOlNbQ0GTgcthJCAuwOhwRERERERERka7Jbm+d5Tv5Z9DU2LZ8QsbnULzX3I5kwg2tz79+Br59q+VlINCneQM4c+F+c4E2wHjzFWybXjpqWE/YLiGnwUVueS1Nzmz6OHce9dx5z32OJyyFsAA//i9vKaMK32tzvC64F02Rg7DFDsY57Q78gqOOciXprpSw9YL05vq1faICcdi1EqGIiIiIiIiISIdw/E9qa/arsG81pH8OtWVgNIHhMcsRGE1t6/MmjIKG6kOOe9pu9tZr28L7QJ/J5kJtfoFmDV6/gJbnX0w6i6JGf/aX1FCeEcSyglnkVtvZX2VjXwXsKzcoqndSjT912X6QnQdAmX0gk+0NDLTtZ4A9mxhbGe7KbKjMxrPvE4auGo/DFUhYgB838ipD2UOBfyqlQf2oDOtPQ8QAgkLCiAlxExPiT1yom5gQN26nwxufvnQSJWy9YF9z/doU1a8VEREREREREek8/qEwaKa5fZ+pC479uqcuNLejsAHRQHSwG5KmHXbcMAxKqxvYX1LD/pJqCqvqKa9poKymL9uqG/iypoGymgY8VUVE1ewlvi6DsKYianFDfRNV9U0McKVxgn071H0NZcAB89oHjEgKjHDOq7+vpb+n/B/jBNtOnHZw2Mz6u47mDaeL/GvXExPixt/PAa9fA7s/BsMwN1cgRKRARKr5eNIt5j7xGiVsvSC9sLl+bZT+cIuIiIiIiIiI9DQ2m42IIBcRQS5G9D58QbQjaWzycFVtI2UHk7lZ97E5fwuu4p0El+8mvGoPwQ3FJNqKCbE30DsigPyKOuobPYQ2lRLrKISmw69bV+vH1Ac+ASAswI+/OvZxYmNZ6wn1FVCZB1lfYdicZAybT2RwAyH+Tuzv3gz717VN6Eamms/Dk8Dp/uEflihh6w0ZB2fYRmuGrYiIiIiIiIiIfD+nw96S5AUg6QzgjLYnVRdD8V5CsLGq91gMw6CspoGSzF5sLC2huKqBour65scGiisbKKxuwN1kp67RQ1lNA7cyh0DbZRjYMIAQauhjyyfZlkewrYYHHv4cMGfp/se9hhHsgvxvD4u3ye7iows2Eh4UQESgi7icjwm2N+IMS4TgWHNzh7YtS9HZqgqhdJ+5uNyhW8k+M9E8+xXvxdIOSth6QUZzDdtUJWxFRERERERERKSjBEaaWzObzUZ4oIvwwaO/s5lhGJTXNpJfXkt+RR15hzwWVdZTUl3P59UNFFfVE1RdT1V9Ex4Dbqy7kb62XJJs+S1J3T62fPrY8ihoDGfei5ta+njDdR8n2He36bfR5qLWHUV9SBI5F7xO7/BAQgOc2HZ+aNYTDo6FoFgIjgH/8O9O7hqGmbA+NCHrcMGJ81rPeWISVOUfuX1T3Xd+RlZSwraTNTZ5yCppLomghK2IiIiIiIiIiFjMZrMRFuBHWIAfA+JCvvf8usYmyqobKGlO4pZW11NS3cDu6nrWVddTUlVPbWUJJ9S6KK1uoKS6no31A2jASSwlRNvKCbHV4DTqCa7NIau6kXP+sgqAYLeT1513M7hpZ5s+PXYXRlAM9sgUbHOXtR544yeQs8lM0DZUtQ00IrVtwjYiGewOCO9zhC35uD+/zqaEbSc7UFpLQ5OBy2knIdTf6nBERERERERERETaxe10EBvqILYduS2P5wxKaxrIKathTUkNuUUllBUcoLokh9KKSqIqXRRV1VNZ18hXTcmU2e1EU0aMrYxQWzV2Tz1UZJNV3sD/PfgJvcIDiA/1Z8G+zfSu3tbST7U7ltqgXtSH9KYxLJXS7DICXQ6C3E4CZ79LkL8bu92LZRg6gBK2nSy9uX5tcmRgl/vDISIiIiIiIiIicjzsdhuRQS4ig1wMSwwD4oEhLceXADX1TWSX1pBdOoE9JTWsLK0mu6SG/JIyakty8FTm42c0sq+omn1F5i/Y8+znYeM89hvR5BhR1NW64JA101i76rBYAvwcBLkdBLqcBLmdBLkcBLqdJIb5c/9FIzv1czgeSth2sn1acExEREREREREROQwAS4H/WOD6R8bfMTjDU0e8spryS6pIbu0hvyKOqrr+lNV30RSfSNVdU1U1TVSVd9IdX3z87qmltdNHgOAmoYmahqagPo210+OCuzst3hclLDtZNMGxvLQxU6igl1WhyIiIiIiIiIiItJl+Dns9I4IpHdE+xOrhmFQ1+hpTeQ2J3irD0n0upz2Toj6h1PCtpP1iQqkj49m60VERERERERERLojm82Gv58Dfz8HkUFdayKlb6aRRURERERERERERHogJWxFREREREREREREfIQStiIiIiIiIiIiIiI+QglbERERERERERERER+hhK2IiIiIiIiIiIiIj1DCVkRERERERERERMRHKGErIiIiIvIDPf7446SkpODv78/EiRNZu3btd57/yCOPMGjQIAICAkhKSuK2226jtrbWS9GKiIiIiC9TwlZERERE5Ad45ZVXWLBgAYsWLWLDhg2MGjWKGTNmkJ+ff8TzX3rpJX75y1+yaNEitm3bxjPPPMMrr7zCr371Ky9HLiIiIiK+SAlbEREREZEf4OGHH+b6669n7ty5DB06lKeeeorAwECeffbZI57/xRdfcNJJJzF79mxSUlI488wzufzyy793Vq6IiIiI9AxK2IqIiIiIHKf6+nrWr1/P9OnTW/bZ7XamT5/OmjVrjthm8uTJrF+/viVBu3fvXpYtW8bZZ5991H7q6uooLy9vs4mIiIhI9+S0OgARERERka6qsLCQpqYm4uLi2uyPi4tj+/btR2wze/ZsCgsLmTJlCoZh0NjYyLx5876zJMKSJUtYvHhxh8YuIiIiIr5JM2xFRERERLzo008/5fe//z1PPPEEGzZs4I033uC9997j3nvvPWqbhQsXUlZW1rJlZWV5MWIRERER8SbNsBUREREROU7R0dE4HA7y8vLa7M/LyyM+Pv6Ibe6++26uvPJKrrvuOgBGjBhBVVUVN9xwA7/+9a+x2w+fU+F2u3G73R3/BkRERETE52iGrYiIiIjIcXK5XIwdO5bly5e37PN4PCxfvpxJkyYdsU11dfVhSVmHwwGAYRidF6yIiIiIdAmaYSsiIiIi8gMsWLCAOXPmMG7cOCZMmMAjjzxCVVUVc+fOBeCqq66iV69eLFmyBIBZs2bx8MMPM2bMGCZOnMju3bu5++67mTVrVkviVkRERER6rh6XsD04a0Er64qIiIh0HQfHbr44A/XSSy+loKCAe+65h9zcXEaPHs0HH3zQshBZZmZmmxm1d911Fzabjbvuuovs7GxiYmKYNWsWv/vd7465T41pRURERLqW9oxnbYYvjno70f79+0lKSrI6DBERERE5DllZWfTu3dvqMCynMa2IiIhI13Qs49kel7D1eDwcOHCAkJAQbDabV/osLy8nKSmJrKwsQkNDvdKnHE73wXq6B75B98E36D74Bt0H33As98EwDCoqKkhMTDziolw9jbfHtPqu+AbdB9+g++AbdB98g+6Db9B9sF5Hj2d7XEkEu91u2ayM0NBQfXF8gO6D9XQPfIPug2/QffANug++4fvuQ1hYmBej8W1WjWn1XfENug++QffBN+g++AbdB9+g+2C9jhrPanqCiIiIiIiIiIiIiI9QwlZERERERERERETERyhh6wVut5tFixbhdrutDqVH032wnu6Bb9B98A26D75B98E36D74Pt0j36D74Bt0H3yD7oNv0H3wDboP1uvoe9DjFh0TERERERERERER8VWaYSsiIiIiIiIiIiLiI5SwFREREREREREREfERStiKiIiIiIiIiIiI+AglbDvZ448/TkpKCv7+/kycOJG1a9daHVKP8pvf/AabzdZmGzx4sNVhdXsrV65k1qxZJCYmYrPZeOutt9ocNwyDe+65h4SEBAICApg+fTq7du2yJthu7Pvuw9VXX33Y9+Oss86yJthuasmSJYwfP56QkBBiY2M5//zz2bFjR5tzamtrmT9/PlFRUQQHB3PRRReRl5dnUcTd07Hch2nTph32fZg3b55FEXdPTz75JCNHjiQ0NJTQ0FAmTZrE+++/33Jc3wXfpjGttTSmtYbGtL5BY1rraUzrGzSm9Q3eGtMqYduJXnnlFRYsWMCiRYvYsGEDo0aNYsaMGeTn51sdWo8ybNgwcnJyWrZVq1ZZHVK3V1VVxahRo3j88cePePyBBx7gL3/5C0899RRfffUVQUFBzJgxg9raWi9H2r19330AOOuss9p8P5YuXerFCLu/zz77jPnz5/Pll1/y0Ucf0dDQwJlnnklVVVXLObfddhvvvPMOr732Gp999hkHDhzgwgsvtDDq7udY7gPA9ddf3+b78MADD1gUcffUu3dv7r//ftavX8+6des47bTTOO+889i6dSug74Iv05jWN2hM630a0/oGjWmtpzGtb9CY1jd4bUxrSKeZMGGCMX/+/JbXTU1NRmJiorFkyRILo+pZFi1aZIwaNcrqMHo0wHjzzTdbXns8HiM+Pt548MEHW/aVlpYabrfbWLp0qQUR9gz/ex8MwzDmzJljnHfeeZbE01Pl5+cbgPHZZ58ZhmH+2ffz8zNee+21lnO2bdtmAMaaNWusCrPb+9/7YBiGccoppxi33HKLdUH1UBEREcbf//53fRd8nMa01tOY1noa0/oGjWl9g8a0vkFjWt/RGWNazbDtJPX19axfv57p06e37LPb7UyfPp01a9ZYGFnPs2vXLhITE+nbty9XXHEFmZmZVofUo6Wnp5Obm9vmuxEWFsbEiRP13bDAp59+SmxsLIMGDeKnP/0pRUVFVofUrZWVlQEQGRkJwPr162loaGjzfRg8eDB9+vTR96ET/e99OOjFF18kOjqa4cOHs3DhQqqrq60Ir0doamri5ZdfpqqqikmTJum74MM0pvUdGtP6Fo1pfYvGtN6lMa1v0JjWep05pnV2dLBiKiwspKmpibi4uDb74+Li2L59u0VR9TwTJ07kueeeY9CgQeTk5LB48WKmTp3KN998Q0hIiNXh9Ui5ubkAR/xuHDwm3nHWWWdx4YUXkpqayp49e/jVr37FzJkzWbNmDQ6Hw+rwuh2Px8Ott97KSSedxPDhwwHz++ByuQgPD29zrr4PnedI9wFg9uzZJCcnk5iYyObNm7nzzjvZsWMHb7zxhoXRdj9btmxh0qRJ1NbWEhwczJtvvsnQoUNJS0vTd8FHaUzrGzSm9T0a0/oOjWm9S2Na36AxrbW8MaZVwla6tZkzZ7Y8HzlyJBMnTiQ5OZlXX32Va6+91sLIRKx32WWXtTwfMWIEI0eOpF+/fnz66aecfvrpFkbWPc2fP59vvvlGNQctdrT7cMMNN7Q8HzFiBAkJCZx++uns2bOHfv36eTvMbmvQoEGkpaVRVlbG66+/zpw5c/jss8+sDkvE52lMK3J0GtN6l8a0vkFjWmt5Y0yrkgidJDo6GofDcdhKcHl5ecTHx1sUlYSHhzNw4EB2795tdSg91sE///pu+J6+ffsSHR2t70cnuOmmm3j33Xf55JNP6N27d8v++Ph46uvrKS0tbXO+vg+d42j34UgmTpwIoO9DB3O5XPTv35+xY8eyZMkSRo0axZ///Gd9F3yYxrS+SWNa62lM67s0pu08GtP6Bo1preeNMa0Stp3E5XIxduxYli9f3rLP4/GwfPlyJk2aZGFkPVtlZSV79uwhISHB6lB6rNTUVOLj49t8N8rLy/nqq6/03bDY/v37KSoq0vejAxmGwU033cSbb77JihUrSE1NbXN87Nix+Pn5tfk+7Nixg8zMTH0fOtD33YcjSUtLA9D3oZN5PB7q6ur0XfBhGtP6Jo1pracxre/SmLbjaUzrGzSm9V2dMaZVSYROtGDBAubMmcO4ceOYMGECjzzyCFVVVcydO9fq0HqMO+64g1mzZpGcnMyBAwdYtGgRDoeDyy+/3OrQurXKyso2/4KXnp5OWloakZGR9OnTh1tvvZX77ruPAQMGkJqayt13301iYiLnn3++dUF3Q991HyIjI1m8eDEXXXQR8fHx7Nmzh1/84hf079+fGTNmWBh19zJ//nxeeukl/vOf/xASEtJStygsLIyAgADCwsK49tprWbBgAZGRkYSGhvKzn/2MSZMmceKJJ1ocfffxffdhz549vPTSS5x99tlERUWxefNmbrvtNk4++WRGjhxpcfTdx8KFC5k5cyZ9+vShoqKCl156iU8//ZQPP/xQ3wUfpzGt9TSmtYbGtL5BY1rraUzrGzSm9Q1eG9Ma0qkeffRRo0+fPobL5TImTJhgfPnll1aH1KNceumlRkJCguFyuYxevXoZl156qbF7926rw+r2PvnkEwM4bJszZ45hGIbh8XiMu+++24iLizPcbrdx+umnGzt27LA26G7ou+5DdXW1ceaZZxoxMTGGn5+fkZycbFx//fVGbm6u1WF3K0f6/AHjH//4R8s5NTU1xo033mhEREQYgYGBxgUXXGDk5ORYF3Q39H33ITMz0zj55JONyMhIw+12G/379zd+/vOfG2VlZdYG3s1cc801RnJysuFyuYyYmBjj9NNPN/773/+2HNd3wbdpTGstjWmtoTGtb9CY1noa0/oGjWl9g7fGtDbDMIz2pXhFREREREREREREpDOohq2IiIiIiIiIiIiIj1DCVkRERERERERERMRHKGErIiIiIiIiIiIi4iOUsBURERERERERERHxEUrYioiIiIiIiIiIiPgIJWxFREREREREREREfIQStiIiIiIiIiIiIiI+QglbERERERERERERER+hhK2IiGCz2XjrrbesDkNERERE5LhoPCsi3YkStiIiFrv66qux2WyHbWeddZbVoYmIiIiIfC+NZ0VEOpbT6gBERATOOuss/vGPf7TZ53a7LYpGRERERKR9NJ4VEek4mmErIuID3G438fHxbbaIiAjA/HnXk08+ycyZMwkICKBv3768/vrrbdpv2bKF0047jYCAAKKiorjhhhuorKxsc86zzz7LsGHDcLvdJCQkcNNNN7U5XlhYyAUXXEBgYCADBgzg7bff7tw3LSIiIiLdhsazIiIdRwlbEZEu4O677+aiiy5i06ZNXHHFFVx22WVs27YNgKqqKmbMmEFERARff/01r732Gh9//HGbAeyTTz7J/PnzueGGG9iyZQtvv/02/fv3b9PH4sWLueSSS9i8eTNnn302V1xxBcXFxV59nyIiIiLSPWk8KyJy7GyGYRhWByEi0pNdffXV/Otf/8Lf37/N/l/96lf86le/wmazMW/ePJ588smWYyeeeCInnHACTzzxBE8//TR33nknWVlZBAUFAbBs2TJmzZrFgQMHiIuLo1evXsydO5f77rvviDHYbDbuuusu7r33XsAcNAcHB/P++++r9piIiIiIfCeNZ0VEOpZq2IqI+IBTTz21zQAWIDIysuX5pEmT2hybNGkSaWlpAGzbto1Ro0a1DG4BTjrpJDweDzt27MBms3HgwAFOP/3074xh5MiRLc+DgoIIDQ0lPz//eN+SiIiIiPQgGs+KiHQcJWxFRHxAUFDQYT/p6igBAQHHdJ6fn1+b1zabDY/H0xkhiYiIiEg3o/GsiEjHUQ1bEZEu4Msvvzzs9ZAhQwAYMmQImzZtoqqqquX46tWrsdvtDBo0iJCQEFJSUli+fLlXYxYREREROUjjWRGRY6cZtiIiPqCuro7c3Nw2+5xOJ9HR0QC89tprjBs3jilTpvDiiy+ydu1annnmGQCuuOIKFi1axJw5c/jNb35DQUEBP/vZz7jyyiuJi4sD4De/+Q3z5s0jNjaWmTNnUlFRwerVq/nZz37m3TcqIiIiIt2SxrMiIh1HCVsRER/wwQcfkJCQ0GbfoEGD2L59O2CuePvyyy9z4403kpCQwNKlSxk6dCgAgYGBfPjhh9xyyy2MHz+ewMBALrroIh5++OGWa82ZM4fa2lr+9Kc/cccddxAdHc2Pf/xj771BEREREenWNJ4VEek4NsMwDKuDEBGRo7PZbLz55pucf/75VociIiIiItJuGs+KiLSPatiKiIiIiIiIiIiI+AglbEVERERERERERER8hEoiiIiIiIiIiIiIiPgIzbAVERERERERERER8RFK2IqIiIiIiIiIiIj4CCVsRURERERERERERHyEErYiIiIiIiIiIiIiPkIJWxEREREREREREREfoYStiIiIiIiIiIiIiI9QwlZERERERERERETERyhhKyIiIiIiIiIiIuIjlLAVERERERERERER8RH/D6YuG23MCvC8AAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["\u001b[1m1287/1287\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m14s\u001b[0m 11ms/step\n","\n","🔄 Summary:\n","✅ Accuracy: 0.7330\n","✅ Precision: 0.7321\n","✅ Recall: 0.7330\n","✅ F1-Score: 0.7293\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAACIUAAAfGCAYAAACDcpw1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA0KBJREFUeJzs3Xmc1XW9P/D3d+Ywh1IYNhUoBZdC3HHJiwhCuGFueU0RzSUVLXOj0IumDnavg4Ii5l6SZCxWv9S0MkjwYoap6GCZkQtqpWipgJqOLPP7owdzO4I4owe+8DnP5+PxfTw63/V1jt9Zghfvb9bU1NQUAAAAAAAAAAAkpSrvAAAAAAAAAAAAlJ9SCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAfy9NPPx37779/1NbWRpZlceedd5b1/M8//3xkWRa33nprWc+7IRs4cGAMHDgw7xgAAAAArOeUQgAAABLw7LPPxmmnnRZbbbVVtG3bNtq3bx/9+vWLCRMmxDvvvLNWr33CCSfE73//+/if//mfuO2222L33Xdfq9dbl0488cTIsizat2+/2s/x6aefjizLIsuyGDduXKvP/9JLL0VdXV00NDSUIe260bNnz8iyLPbdd9/Vbv/ud7/b/Jk8+uijq93nvPPOiyzL4uijj17t9pVFoH//TO+///7m886dO3eVY0488cTYeOONP8I7AgAAAEhXIe8AAAAAfDw///nP40tf+lIUi8U4/vjjY4cddoj33nsvfvOb38TIkSPjySefjJtvvnmtXPudd96JOXPmxIUXXhhf//rX18o1evToEe+88060adNmrZz/wxQKhfjnP/8Zd999dxx11FEl2yZPnhxt27aNd9999yOd+6WXXorRo0dHz549Y5dddmnxcdOnT/9I1yuXtm3bxqxZs2LhwoXRtWvXkm0f9pk0NTXF1KlTo2fPnnH33XfHm2++Ge3atWvV9evq6uLuu+/+yPkBAAAAKoVJIQAAABuwBQsWxNChQ6NHjx7xxz/+MSZMmBCnnnpqnHHGGTF16tT44x//GNtvv/1au/7f//73iIjo0KHDWrtGlmXRtm3bqK6uXmvXWJNisRiDBw+OqVOnrrJtypQp8YUvfGGdZfnnP/8ZERE1NTVRU1Ozzq77fv369YuNN944br/99pL1f/3rX+OBBx5Y42dy//33x1//+teYOHFiLFu2LH7605+26tq77LJL3HPPPfHYY499pOwAAAAAlUQpBAAAYAN2xRVXxFtvvRW33HJLdOvWbZXt22yzTZx99tnNr5ctWxbf/va3Y+utt45isRg9e/aMCy64IBobG0uO69mzZxx88MHxm9/8Jj73uc9F27ZtY6uttoof/OAHzfvU1dVFjx49IiJi5MiRkWVZ9OzZMyL+9SiPlf/739XV1UWWZSXrZsyYEXvvvXd06NAhNt544+jVq1dccMEFzdtXPkrk1ltvLTlu5syZ0b9//9hoo42iQ4cOcdhhh8VTTz212us988wzceKJJ0aHDh2itrY2TjrppOaCRUsMGzYsfvnLX8aiRYua1z3yyCPx9NNPx7Bhw1bZ//XXX49vfvObseOOO8bGG28c7du3jyFDhsS8efOa97n//vtjjz32iIiIk046qfnRKCvf58CBA2OHHXaIuXPnxoABA+KTn/xk8+cycODAGDhwYPO5TjjhhGjbtu0q7/+AAw6Ijh07xksvvdTi99oSbdu2jSOOOCKmTJlSsn7q1KnRsWPHOOCAAz7w2MmTJ8d2220XgwYNin333TcmT57cqmufeeaZ0bFjx6irq/so0QEAAAAqilIIAADABuzuu++OrbbaKvbaa68W7X/KKafExRdfHLvuumuMHz8+9tlnn6ivr4+hQ4eusu8zzzwTRx55ZOy3335x5ZVXRseOHePEE0+MJ598MiIijjjiiBg/fnxERBxzzDFx2223xdVXX92q/E8++WQcfPDB0djYGJdeemlceeWVceihh8aDDz64xuN+/etfxwEHHBCvvvpq1NXVxYgRI+K3v/1t9OvXL55//vlV9j/qqKPizTffjPr6+jjqqKPi1ltvjdGjR7c45xFHHBFZlpVMtZgyZUpsu+22seuuu66y/3PPPRd33nlnHHzwwXHVVVfFyJEj4/e//33ss88+zQWN3r17x6WXXhoREcOHD4/bbrstbrvtthgwYEDzeV577bUYMmRI7LLLLnH11VfHoEGDVptvwoQJsckmm8QJJ5wQy5cvj4iIm266KaZPnx7f+c53onv37i1+ry01bNiwePjhh+PZZ59tXjdlypQ48sgjP/BRP42NjfH//t//i2OOOSYi/nXfzJw5MxYuXNji67Zv3z7OPffcuPvuu00LAQAAAPgQhbwDAAAA8NEsWbIk/va3v8Vhhx3Wov3nzZsXkyZNilNOOSW++93vRkTE1772tdh0001j3LhxMWvWrJLSwfz582P27NnRv3//iPhXsWLzzTeP73//+zFu3LjYaaedmv+Cftddd43jjjuu1e9hxowZ8d5778Uvf/nL6NKlS4uPGzlyZHTq1CnmzJkTnTp1ioiIww8/PPr06ROXXHJJTJo0qWT/Pn36xC233NL8+rXXXotbbrklLr/88hZdr127dnHwwQfHlClT4itf+UqsWLEipk2bFl/96ldXu/+OO+4Yf/7zn6Oq6v/+LcaXv/zl2HbbbeOWW26Jiy66KDbbbLMYMmRIXHzxxdG3b9/Vfn4LFy6MG2+8MU477bQ15uvQoUPccsstccABB8SYMWNi2LBh8c1vfjMOP/zwj/TfpSU+//nPR9euXWPq1KnxrW99K5566qloaGiICRMmxHPPPbfaY+65555YtGhRcwnp8MMPj+HDh8e0adPinHPOafG1zzrrrBg/fnyMHj067rrrrnK8HQAAAIAkmRQCAACwgVqyZElE/Kuw0BK/+MUvIiJixIgRJeu/8Y1vRETEz3/+85L12223XXMhJCJik002iV69en3gX/h/FB06dIiIiLvuuitWrFjRomNefvnlaGhoiBNPPLG5EBIRsdNOO8V+++3X/D7/3emnn17yun///vHaa681f4YtMWzYsLj//vtj4cKFzdMtVvfomIiIYrHYXAhZvnx5vPbaa82PxmnNdItisRgnnXRSi/bdf//947TTTotLL700jjjiiGjbtm3cdNNNLb5Wa1VXV8dRRx0VU6dOjYh/PRZm8803L7ln3m/y5Mmx++67xzbbbBMR/7p3v/CFL7T6ETK1tbVxzjnnxM9+9rN4/PHHP/qbAAAAAEicUggAAMAGqn379hER8eabb7Zo/xdeeCGqqqqa/0J+pa5du0aHDh3ihRdeKFm/xRZbrHKOjh07xhtvvPERE6/q6KOPjn79+sUpp5wSm222WQwdOjR+9KMfrbEgsjJnr169VtnWu3fv+Mc//hFvv/12yfr3v5eOHTtGRLTqvRx00EHRrl27uP3222Py5Mmxxx57rPJZrrRixYoYP358fOYzn4lisRhdunSJTTbZJJ544olYvHhxi6/5qU99Kmpqalq8/7hx46JTp07R0NAQ11xzTWy66aYfeszf//73WLhwYfPy1ltvtfh6w4YNiz/+8Y8xb968mDJlSgwdOjSyLFvtvosWLYpf/OIXsc8++8QzzzzTvPTr1y8effTR+POf/9zi60ZEnH322dGhQ4eoq6tr1XEAAAAAlUQpBAAAYAPVvn376N69e/zhD39o1XEf9Jf271ddXb3a9U1NTR/5GsuXLy95/YlPfCJmz54dv/71r+PLX/5yPPHEE3H00UfHfvvtt8q+H8fHeS8rFYvFOOKII2LSpElxxx13fOCUkIiIyy67LEaMGBEDBgyIH/7wh/GrX/0qZsyYEdtvv32LJ6JE/OvzaY3HH388Xn311YiI+P3vf9+iY/bYY4/o1q1b8zJu3LgWX2/PPfeMrbfeOs4555xYsGDBGj+TH//4x9HY2BhXXnllfOYzn2leVk6uMS0EAAAAoPwKeQcAAADgozv44IPj5ptvjjlz5kTfvn3XuG+PHj1ixYoV8fTTT0fv3r2b17/yyiuxaNGi6NGjR9lydezYMRYtWrTK+vdPI4mIqKqqisGDB8fgwYPjqquuissuuywuvPDCmDVrVuy7776rfR8REfPnz19l25/+9Kfo0qVLbLTRRh//TazGsGHDYuLEiVFVVRVDhw79wP1+8pOfxKBBg+KWW24pWb9o0aLo0qVL8+uWFnRa4u23346TTjoptttuu9hrr73iiiuuiC9+8Yuxxx57rPG4yZMnxzvvvNP8equttmrVdY855pj47//+7+jdu3fssssua7zODjvsEJdccskq22666aaYMmVKjB49ulXXPuecc+Lqq6+O0aNHNz+KCAAAAID/oxQCAACwATvvvPNi8uTJccopp8TMmTNjs802K9n+7LPPxj333BNnn312HHTQQXHBBRfE1VdfHTfddFPzPldddVVERHzhC18oW66tt946Fi9eHE888UTstNNOERHx8ssvxx133FGy3+uvvx6dOnUqWbeyWNDY2Ljac3fr1i122WWXmDRpUowaNaq5DPCHP/whpk+fHscdd1zZ3sf7DRo0KL797W9H586do2vXrh+4X3V19SpTSH784x/H3/72t5JHzqwsr6yuQNNa559/frz44ovx0EMPRa9eveK+++6LE044IR5//PEoFosfeFy/fv0+1nVPOeWUqK6ujj333PMD9/nLX/4Ss2fPjtGjR8eRRx65yvb33nsvjj322Pjd7363xvO838ppIXV1dbHzzjt/pPwAAAAAKVMKAQAA2IBtvfXWMWXKlDj66KOjd+/ecfzxx8cOO+wQ7733Xvz2t7+NH//4x3HiiSdGRMTOO+8cJ5xwQtx8882xaNGi2GeffeLhhx+OSZMmxeGHHx6DBg0qW66hQ4fG+eefH1/84hfjrLPOin/+859xww03xGc/+9l47LHHmve79NJLY/bs2fGFL3whevToEa+++mpcf/318elPfzr23nvvDzz/2LFjY8iQIdG3b984+eST45133onvfOc7UVtbG3V1dWV7H+9XVVUV3/rWtz50v4MPPjguvfTSOOmkk2KvvfaK3//+9zF58uRVpnBsvfXW0aFDh7jxxhujXbt2sdFGG8Wee+4ZW265ZatyzZw5M66//vq45JJLYtddd42IiO9///sxcODAuOiii+KKK65o1flao0ePHh/6mU+ZMiWampri0EMPXe32gw46KAqFQkyePLlVpZCIiLPPPjvGjx8f8+bNW2sTYgAAAAA2VFV5BwAAAODjOfTQQ+OJJ56II488Mu66664444wz4r/+67/i+eefjyuvvDKuueaa5n2/973vxejRo+ORRx6Jc845J2bOnBmjRo2KadOmlTVT586d44477ohPfvKTcd5558WkSZOivr4+DjnkkFWyb7HFFjFx4sQ444wz4rrrrosBAwbEzJkzo7a29gPPv++++8a9994bnTt3josvvjjGjRsX//Ef/xEPPvhgqwsVa8MFF1wQ3/jGN+JXv/pVnH322fHYY4/Fz3/+89h8881L9mvTpk1MmjQpqqur4/TTT49jjjkm/vd//7dV13rzzTfjK1/5SvTp0ycuvPDC5vX9+/ePs88+O6688sp46KGHyvK+PqrJkyfHFlts8YHTPDp06BB777133H777bFs2bJWnbtDhw5xzjnnlCElAAAAQHqypvfPswUAAAAAAAAAYINnUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACSrkHWBt+MSuZ+UdITlvPHxN3hEAAAAAAACAf9M2yb/trVyf6PP1vCNUrHcevzbvCGuNSSEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJKiQdwAAAAAAAAAAqHiZmQ6Un7sKAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJCgQt4BAAAAAAAAAKDiZVneCUiQSSEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJKiQdwAAAAAAAAAAqHiZmQ6Un7sKAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJCgQt4BAAAAAAAAAKDiZVneCUiQSSEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJKiQdwAAAAAAAAAAqHiZmQ6Un7sKAAAAAAAAACBBSiEAAAAAAAAAAAnK9fEx//jHP2LixIkxZ86cWLhwYUREdO3aNfbaa6848cQTY5NNNskzHgAAAAAAAADABiu3SSGPPPJIfPazn41rrrkmamtrY8CAATFgwICora2Na665Jrbddtt49NFH84oHAAAAAAAAALBBy21SyJlnnhlf+tKX4sYbb4wsy0q2NTU1xemnnx5nnnlmzJkzZ43naWxsjMbGxtLjVyyPrKq67JkBAAAAAAAAADYUuU0KmTdvXpx77rmrFEIiIrIsi3PPPTcaGho+9Dz19fVRW1tbsix7xYQRAAAAAAAAAKCy5VYK6dq1azz88MMfuP3hhx+OzTbb7EPPM2rUqFi8eHHJUths93JGBQAAAAAAAIC1K8sseS0Jy+3xMd/85jdj+PDhMXfu3Bg8eHBzAeSVV16J++67L7773e/GuHHjPvQ8xWIxisViyTqPjgEAAAAAAAAAKl1upZAzzjgjunTpEuPHj4/rr78+li9fHhER1dXVsdtuu8Wtt94aRx11VF7xAAAAAAAAAAA2aLmVQiIijj766Dj66KNj6dKl8Y9//CMiIrp06RJt2rTJMxYAAAAAAAAAwAYv11LISm3atIlu3brlHQMAAAAAAAAAIBlVeQcAAAAAAAAAAKD8lEIAAAAAAAAAABK0Xjw+BgAAAAAAAAAqWmamA+XnrgIAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQYW8AwAAAAAAAABAxcuyvBOQIJNCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJKuQdAAAAAAAAAAAqXmamA+XnrgIAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQYW8AwAAAAAAAABAxcuyvBOQIJNCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJKuQdAAAAAAAAAAAqXmamA+XnrgIAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJCgQt4B1oY3Hr4m7wjJ6bjH1/OOkJQ3Hrk27wgAAAAAAAAAJM6kEAAAAAAAAACABCmFAAAAAAAAAAAkKMnHxwAAAAAAAADABiXL8k5AgkwKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkqJB3AAAAAAAAAACoeJmZDpSfuwoAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkKBC3gEAAAAAAAAAoOJlZjpQfu4qAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABJUyDsAAAAAAAAAAFS8qizvBCTIpBAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIIKeQcAAAAAAAAAgIqXmelA+bmrAAAAAAAAAABaYPbs2XHIIYdE9+7dI8uyuPPOO0u2Z1m22mXs2LHN+/Ts2XOV7WPGjCk5zxNPPBH9+/ePtm3bxuabbx5XXHHFR8qrFAIAAAAAAAAA0AJvv/127LzzznHdddetdvvLL79cskycODGyLIv//M//LNnv0ksvLdnvzDPPbN62ZMmS2H///aNHjx4xd+7cGDt2bNTV1cXNN9/c6rweHwMAAAAAAAAA0AJDhgyJIUOGfOD2rl27lry+6667YtCgQbHVVluVrG/Xrt0q+640efLkeO+992LixIlRU1MT22+/fTQ0NMRVV10Vw4cPb1Vek0IAAAAAAAAAgIrV2NgYS5YsKVkaGxs/9nlfeeWV+PnPfx4nn3zyKtvGjBkTnTt3jj59+sTYsWNj2bJlzdvmzJkTAwYMiJqamuZ1BxxwQMyfPz/eeOONVmVQCgEAAAAAAAAAKlZ9fX3U1taWLPX19R/7vJMmTYp27drFEUccUbL+rLPOimnTpsWsWbPitNNOi8suuyzOO++85u0LFy6MzTbbrOSYla8XLlzYqgweHwMAAAAAAAAAVKxRo0bFiBEjStYVi8WPfd6JEyfGscceG23bti1Z/+/X2mmnnaKmpiZOO+20qK+vL8t1/51SCAAAAAAAAABQsYrFYtnLGA888EDMnz8/br/99g/dd88994xly5bF888/H7169YquXbvGK6+8UrLPytddu3ZtVQ6PjwEAAAAAAACAvGWZJa9lLbjllltit912i5133vlD921oaIiqqqrYdNNNIyKib9++MXv27Fi6dGnzPjNmzIhevXpFx44dW5VDKQQAAAAAAAAAoAXeeuutaGhoiIaGhoiIWLBgQTQ0NMSLL77YvM+SJUvixz/+cZxyyimrHD9nzpy4+uqrY968efHcc8/F5MmT49xzz43jjjuuufAxbNiwqKmpiZNPPjmefPLJuP3222PChAmrPOKmJdbrx8f85S9/iUsuuSQmTpz4gfs0NjZGY2Njybqm6vKPdgEAAAAAAAAAKtujjz4agwYNan69sqhxwgknxK233hoREdOmTYumpqY45phjVjm+WCzGtGnToq6uLhobG2PLLbeMc889t6TwUVtbG9OnT48zzjgjdtttt+jSpUtcfPHFMXz48FbnzZqamppafdQ6Mm/evNh1111j+fLlH7hPXV1djB49umTdhRddEt+6uG4tp6ssHff4et4RkvLGI9fmHQEAAAAAAIANXNv1egQArfWJwZflHaFivXPfBXlHWGty/Tbxs5/9bI3bn3vuuQ89x6hRo1YZkdJUbUoIAAAAAAAAAFDZci2FHH744ZFlWaxpWEmWZWs8R7G46qNi3l1WlngAAAAAAAAAABusqjwv3q1bt/jpT38aK1asWO3y2GOP5RkPAAAAAAAAAGCDleukkN122y3mzp0bhx122Gq3f9gUEQAAAAAAAABIQpbrTAcSlWspZOTIkfH2229/4PZtttkmZs2atQ4TAQAAAAAAAACkIddSSP/+/de4faONNop99tlnHaUBAAAAAAAAAEiH+TMAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJCgQt4BAAAAAAAAAKDiZVneCUiQSSEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQV8g4AAAAAAAAAABUvM9OB8nNXAQAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJCgQt4BAAAAAAAAAKDiZVneCUiQSSEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQV8g4AAAAAAAAAABUvM9OB8nNXAQAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASVMg7AAAAAAAAAABUvCzLOwEJMikEAAAAAAAAACBBSU4KWb6iKe8IyXnjkWvzjpCUg66fk3eE5Nzz1f/IO0Jyli7zvbScVjT5PMvtEzXVeUdIjtu0vJp8oGVXVeVfSpSTW7T8lq1YkXeE5PidtLyqfR8tO/+Ir7wK1T7QcvN9tPyKbfw7S6gk7y3zO3651RR8HwVY13znBQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABBXyDgAAAAAAAAAAFS8z04Hyc1cBAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABJUyDsAAAAAAAAAAFS8LMs7AQkyKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABBXyDgAAAAAAAAAAFS8z04Hyc1cBAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABJUyDsAAAAAAAAAAFS8zEwHys9dBQAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECCCnkHAAAAAAAAAICKl2V5JyBBJoUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECCci+FvPPOO/Gb3/wm/vjHP66y7d13340f/OAHOaQCAAAAAAAAANiwFfK8+J///OfYf//948UXX4wsy2LvvfeOadOmRbdu3SIiYvHixXHSSSfF8ccf/4HnaGxsjMbGxpJ1y7KaKBaLazU7AAAAAAAAAJRNlvtMBxKU6111/vnnxw477BCvvvpqzJ8/P9q1axf9+vWLF198scXnqK+vj9ra2pJl3BX1azE1AAAAAAAAAMD6L9dJIb/97W/j17/+dXTp0iW6dOkSd999d3zta1+L/v37x6xZs2KjjTb60HOMGjUqRowYUbJuWVaztiIDAAAAAAAAAGwQcp0U8s4770Sh8H+9lCzL4oYbbohDDjkk9tlnn/jzn//8oecoFovRvn37ksWjYwAAAAAAAACASpfrpJBtt902Hn300ejdu3fJ+muvvTYiIg499NA8YgEAAAAAAAAAbPBynRTyxS9+MaZOnbrabddee20cc8wx0dTUtI5TAQAAAAAAAABs+HIthYwaNSp+8YtffOD266+/PlasWLEOEwEAAAAAAAAApCHXUggAAAAAAAAAAGtHIe8AAAAAAAAAAFDxsizvBCTIpBAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIIKeQcAAAAAAAAAgIqXmelA+bmrAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJKuQdAAAAAAAAAAAqXpblnYAEmRQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIIKeQcAAAAAAAAAgEqXZVneEUiQSSEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQV8g4AAAAAAAAAAJUuy7K8I5Agk0IAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAkq5B1gbaiuyvKOAGv0i6/1zTtCcjru9+28IyTntenfyjtCUqoyPcxyW76iKe8IyfE7VHllmc8TKk2baj/vy63gIy0rP5qg8hTb+MIH+Dhq/EIKQAKSLIUAAAAAAAAAwAZFp5e1QMURAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJCgQt4BAAAAAAAAAKDSZVmWdwQSZFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAkq5B0AAAAAAAAAACpdlmV5RyBBJoUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABJUyDsAAAAAAAAAAFS6LMvyjkCCTAoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACSokHcAAAAAAAAAAKh0WZblHYEEmRQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIIKeQcAAAAAAAAAgIqX5R2AFJkUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACSokHeAp556Kh566KHo27dvbLvttvGnP/0pJkyYEI2NjXHcccfF5z//+TUe39jYGI2NjSXrmqqLUSwW12ZsAAAAAAAAAID1Wq6TQu69997YZZdd4pvf/Gb06dMn7r333hgwYEA888wz8cILL8T+++8fM2fOXOM56uvro7a2tmQZe3n9OnoHAAAAAAAAAADrp1xLIZdeemmMHDkyXnvttfj+978fw4YNi1NPPTVmzJgR9913X4wcOTLGjBmzxnOMGjUqFi9eXLKMPH/UOnoHAAAAAAAAAADrp1wfH/Pkk0/GD37wg4iIOOqoo+LLX/5yHHnkkc3bjz322Pj+97+/xnMUi6s+KubdZeXPCgAAAAAAAABrS5ZleUcgQblOCon4vxu7qqoq2rZtG7W1tc3b2rVrF4sXL84rGgAAAAAAAADABivXUkjPnj3j6aefbn49Z86c2GKLLZpfv/jii9GtW7c8ogEAAAAAAAAAbNByfXzMV7/61Vi+fHnz6x122KFk+y9/+cv4/Oc/v65jAQAAAAAAAABs8HIthZx++ulr3H7ZZZetoyQAAAAAAAAAAGnJ9fExAAAAAAAAAACsHUohAAAAAAAAAAAJUgoBAAAAAAAAAEhQIe8AAAAAAAAAAFDpsizLOwIJMikEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJCgQt4BAAAAAAAAAKDSZVmWdwQSZFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAkq5B0AAAAAAAAAACpdlmV5RyBBJoUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABJUyDsAAAAAAAAAAFS8LO8ApMikEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASVMg7AAAAAAAAAABUuizL8o5AgkwKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABJUyDsAVKIVK5ryjpCc16dflHeE5Ay68n/zjpCUGef0zztCcqqrPVux3Jb7+VRWVZ7/WXZN4R4tJ1/z5Vft677sli53n5ZTm4J7tOzcomVVVeUeLbe3G5flHSE5GxX9kTrrN3/2XF7vLl2Rd4TktK3x79XLz+9QwJr5zgsAAAAAAAAAkCClEAAAAAAAAACABJl1BwAAAAAAAAA5yzyalrXApBAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIIKeQcAAAAAAAAAgEqXZVneEUiQSSEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJKiQdwAAAAAAAAAAqHhZ3gFIkUkhAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEFfIOAAAAAAAAAACVLsuyvCOQIJNCAAAAAAAAAAASpBQCAAAAAAAAANACs2fPjkMOOSS6d+8eWZbFnXfeWbL9xBNPjCzLSpYDDzywZJ/XX389jj322Gjfvn106NAhTj755HjrrbdK9nniiSeif//+0bZt29h8883jiiuu+Eh5lUIAAAAAAAAAAFrg7bffjp133jmuu+66D9znwAMPjJdffrl5mTp1asn2Y489Np588smYMWNG3HPPPTF79uwYPnx48/YlS5bE/vvvHz169Ii5c+fG2LFjo66uLm6++eZW5y20+ggAAAAAAAAAgAo0ZMiQGDJkyBr3KRaL0bVr19Vue+qpp+Lee++NRx55JHbfffeIiPjOd74TBx10UIwbNy66d+8ekydPjvfeey8mTpwYNTU1sf3220dDQ0NcddVVJeWRljApBAAAAAAAAACgTO6///7YdNNNo1evXvHVr341XnvtteZtc+bMiQ4dOjQXQiIi9t1336iqqorf/e53zfsMGDAgampqmvc54IADYv78+fHGG2+0KotJIQAAAAAAAABAxWpsbIzGxsaSdcViMYrFYqvPdeCBB8YRRxwRW265ZTz77LNxwQUXxJAhQ2LOnDlRXV0dCxcujE033bTkmEKhEJ06dYqFCxdGRMTChQtjyy23LNlns802a97WsWPHFucxKQQAAAAAAAAAqFj19fVRW1tbstTX13+kcw0dOjQOPfTQ2HHHHePwww+Pe+65Jx555JG4//77yxu6hUwKAQAAAAAAAICcZVmWd4SKNWrUqBgxYkTJuo8yJWR1ttpqq+jSpUs888wzMXjw4OjatWu8+uqrJfssW7YsXn/99ejatWtERHTt2jVeeeWVkn1Wvl65T0uZFAIAAAAAAAAAVKxisRjt27cvWcpVCvnrX/8ar732WnTr1i0iIvr27RuLFi2KuXPnNu8zc+bMWLFiRey5557N+8yePTuWLl3avM+MGTOiV69erXp0TIRSCAAAAAAAAABAi7z11lvR0NAQDQ0NERGxYMGCaGhoiBdffDHeeuutGDlyZDz00EPx/PPPx3333ReHHXZYbLPNNnHAAQdERETv3r3jwAMPjFNPPTUefvjhePDBB+PrX/96DB06NLp37x4REcOGDYuampo4+eST48knn4zbb789JkyYsMo0k5ZQCgEAAAAAAAAAaIFHH300+vTpE3369ImIiBEjRkSfPn3i4osvjurq6njiiSfi0EMPjc9+9rNx8sknx2677RYPPPBAyeSRyZMnx7bbbhuDBw+Ogw46KPbee++4+eabm7fX1tbG9OnTY8GCBbHbbrvFN77xjbj44otj+PDhrc5b+PhvGQAAAAAAAAAgfQMHDoympqYP3P6rX/3qQ8/RqVOnmDJlyhr32WmnneKBBx5odb73MykEAAAAAAAAACBB610pZE2NGgAAAAAAAAAAWma9e3xMsViMefPmRe/evfOOAgAAAAAAAADrRJZleUcgQbmVQkaMGLHa9cuXL48xY8ZE586dIyLiqquuWpexAAAAAAAAAACSkFsp5Oqrr46dd945OnToULK+qakpnnrqqdhoo41a1IRqbGyMxsbG0nNUF6NYLJYzLgAAAAAAAADABqUqrwtfdtllsXjx4rjoooti1qxZzUt1dXXceuutMWvWrJg5c+aHnqe+vj5qa2tLlrGX16+DdwAAAAAAAAAAsP7KbVLIf/3Xf8XgwYPjuOOOi0MOOSTq6+ujTZs2rT7PqFGjVnkUTVO1KSEAAAAAAAAAQGXLbVJIRMQee+wRc+fOjb///e+x++67xx/+8IcWPTLm3xWLxWjfvn3J4tExAAAAAAAAAECly21SyEobb7xxTJo0KaZNmxb77rtvLF++PO9IAAAAAAAAAAAbvNxLISsNHTo09t5775g7d2706NEj7zgAAAAAAAAAABu09aYUEhHx6U9/Oj796U/nHQMAAAAAAAAA1qksy/KOQIKq8g4AAAAAAAAAAED5KYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECCCnkHAAAAAAAAAICKl+UdgBSZFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASFAh7wAAAAAAAAAAUOmyLMs7AgkyKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABBXyDgAAAAAAAAAAlS7LsrwjkCCTQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACSrkHQAAAAAAAAAAKl2WZXlHIEEmhQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQoELeAQAAAAAAAACg4mV5ByBFSiGQgxVNeSdIT1XmQy23e77eL+8ISZna8Je8IyTn2F23yDtCcpYuX5F3hKTUFAzlY/3WuNTXfLll/uCm7Jr8ml9WVZmfTeW2+J2leUdIykZFf1RZbr6Plp/PtLz8/lR+VVU+1HJq28bvT+VW5QsfYJ3z0wwAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABJUyDsAAAAAAAAAAFS6LMvyjkCCTAoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEGFvAMAAAAAAAAAQKXLsizvCCTIpBAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIIKeQcAAAAAAAAAgEqXZVneEUiQSSEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJKiQdwAAAAAAAAAAqHRZluUdgQSZFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASFAh7wAAAAAAAAAAUPGyvAOQIpNCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQYW8A/y7t99+O370ox/FM888E926dYtjjjkmOnfuvMZjGhsbo7GxsWRdU3UxisXi2owKAAAAAAAAALBey3VSyHbbbRevv/56RET85S9/iR122CHOPffcmDFjRlxyySWx3XbbxYIFC9Z4jvr6+qitrS1Zxl5evy7iAwAAAAAAAEBZZFlmyWlJWa6lkD/96U+xbNmyiIgYNWpUdO/ePV544YV4+OGH44UXXoiddtopLrzwwjWeY9SoUbF48eKSZeT5o9ZFfAAAAAAAAACA9dZ68/iYOXPmxI033hi1tbUREbHxxhvH6NGjY+jQoWs8rlhc9VEx7y5bazEBAAAAAAAAADYIuU4KiYjmUSzvvvtudOvWrWTbpz71qfj73/+eRywAAAAAAAAAgA1a7pNCBg8eHIVCIZYsWRLz58+PHXbYoXnbCy+8EJ07d84xHQAAAAAAAADAhinXUsgll1xS8nrjjTcueX333XdH//7912UkAAAAAAAAAIAkrFelkPcbO3bsOkoCAAAAAAAAAJCWqrwDAAAAAAAAAABQfrlOCgEAAAAAAAAAIrIsyzsCCTIpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQoELeAQAAAAAAAACg0mVZ3glIkUkhAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACSokHcAAAAAAAAAAKh0WZblHYEEmRQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEhQIe8AAAAAAAAAAFDpsizvBKTIpBAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAElTIOwAAAAAAAAAAVLosy/KOQIJMCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQV8g4AlahQneUdITnLVzTlHSE5xYLeYDkdt9sWeUdIzjZn3pF3hOQ8Nf7wvCMkpSrz877cmvy4L6tPFqvzjgCsY342lV/7T7TJO0JSavz/0LLz+1P5+VbK+m6FL/yyqqryRV9u/ix/bXCfAmumFAIAAAAAAAAAOVNAZW1QvwcAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQYW8AwAAAAAAAABApauqyvKOQIJMCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJKiQdwAAAAAAAAAAqHRZlncCUmRSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQYW8AwAAAAAAAABApcuyLO8IJMikEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASVMg7AAAAAAAAAABUuizLOwEpMikEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJCgQt4BAAAAAAAAAKDSZVmWdwQSZFIIAAAAAAAAAECClEIAAAAAAAAAABKUaynkscceiwULFjS/vu2226Jfv36x+eabx9577x3Tpk3LMR0AAAAAAAAAwIYr11LISSedFM8++2xERHzve9+L0047LXbfffe48MILY4899ohTTz01Jk6cuMZzNDY2xpIlS0qWxsbGdREfAAAAAAAAAGC9lWsp5Omnn47PfOYzERFx/fXXx4QJE2LChAlx+umnx/jx4+Omm26KK6+8co3nqK+vj9ra2pJl7OX16yI+AAAAAAAAAMB6q5DnxT/5yU/GP/7xj+jRo0f87W9/i8997nMl2/fcc8+Sx8uszqhRo2LEiBEl65qqi2XPCgAAAAAAAACwIcl1UsiQIUPihhtuiIiIffbZJ37yk5+UbP/Rj34U22yzzRrPUSwWo3379iVLsagUAgAAAAAAAABUtlwnhVx++eXRr1+/2GeffWL33XePK6+8Mu6///7o3bt3zJ8/Px566KG444478owIAAAAAAAAAGtdlmV5RyBBuU4K6d69ezz++OPRt2/fuPfee6OpqSkefvjhmD59enz605+OBx98MA466KA8IwIAAAAAAAAAbJBynRQSEdGhQ4cYM2ZMjBkzJu8oAAAAAAAAAADJyHVSCAAAAAAAAAAAa4dSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJCgQt4BAAAAAAAAAKDSZVneCUiRSSEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJKiQdwAAAAAAAAAAqHRZluUdgQSZFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASFAh7wAAAAAAAAAAUOmyLO8EpMikEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAggp5BwAAAAAAAACASpdlWd4RSJBJIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkqJB3AAAAAAAAAACodFmWdwJSZFIIAAAAAAAAAECClEIAAAAAAAAAABLk8TGQg6amvBOkp7rKPK1ye2/ZirwjJOVdn2fZzb384LwjJGfeXxblHSEpn9uqU94RkrPCL1Fl1bjUz6Zya1PwO2m5+Z20vIqF6rwjJOfphW/lHSEpW226Ud4RkuPXp/L7RI3vpeVkRH75ZeFDLSffR8uvyhc+wDpnUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQoELeAQAAAAAAAACg0mVZlncEEmRSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJKuQdAAAAAAAAAAAqXZblnYAUmRQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEhQIe8AAAAAAAAAAFDpsizLOwIJMikEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAC8yePTsOOeSQ6N69e2RZFnfeeWfztqVLl8b5558fO+64Y2y00UbRvXv3OP744+Oll14qOUfPnj0jy7KSZcyYMSX7PPHEE9G/f/9o27ZtbL755nHFFVd8pLxKIQAAAAAAAAAALfD222/HzjvvHNddd90q2/75z3/GY489FhdddFE89thj8dOf/jTmz58fhx566Cr7XnrppfHyyy83L2eeeWbztiVLlsT+++8fPXr0iLlz58bYsWOjrq4ubr755lbnLbT6CAAAAAAAAACACjRkyJAYMmTIarfV1tbGjBkzStZde+218bnPfS5efPHF2GKLLZrXt2vXLrp27bra80yePDnee++9mDhxYtTU1MT2228fDQ0NcdVVV8Xw4cNbldekEAAAAAAAAACgYjU2NsaSJUtKlsbGxrKce/HixZFlWXTo0KFk/ZgxY6Jz587Rp0+fGDt2bCxbtqx525w5c2LAgAFRU1PTvO6AAw6I+fPnxxtvvNGq6yuFAAAAAAAAAEDOssyS11JfXx+1tbUlS319/cf+b/ruu+/G+eefH8ccc0y0b9++ef1ZZ50V06ZNi1mzZsVpp50Wl112WZx33nnN2xcuXBibbbZZyblWvl64cGGrMnh8DAAAAAAAAABQsUaNGhUjRowoWVcsFj/WOZcuXRpHHXVUNDU1xQ033FCy7d+vtdNOO0VNTU2cdtppUV9f/7Gv+35KIQAAAAAAAABAxSoWi2UtY6wshLzwwgsxc+bMkikhq7PnnnvGsmXL4vnnn49evXpF165d45VXXinZZ+Xrrl27tiqLx8cAAAAAAAAAAJTBykLI008/Hb/+9a+jc+fOH3pMQ0NDVFVVxaabbhoREX379o3Zs2fH0qVLm/eZMWNG9OrVKzp27NiqPCaFAAAAAAAAAAC0wFtvvRXPPPNM8+sFCxZEQ0NDdOrUKbp16xZHHnlkPPbYY3HPPffE8uXLY+HChRER0alTp6ipqYk5c+bE7373uxg0aFC0a9cu5syZE+eee24cd9xxzYWPYcOGxejRo+Pkk0+O888/P/7whz/EhAkTYvz48a3OqxQCAAAAAAAAANACjz76aAwaNKj59YgRIyIi4oQTToi6urr42c9+FhERu+yyS8lxs2bNioEDB0axWIxp06ZFXV1dNDY2xpZbbhnnnntu83kiImpra2P69OlxxhlnxG677RZdunSJiy++OIYPH97qvEohAAAAAAAAAAAtMHDgwGhqavrA7WvaFhGx6667xkMPPfSh19lpp53igQceaHW+91MKAQAAAAAAAICcZVmWdwQSVJV3AAAAAAAAAAAAyk8pBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQoFxLIWeeeWY88MADeUYAAAAAAAAAgNxlmSWvJWW5lkKuu+66GDhwYHz2s5+Nyy+/PBYuXNjqczQ2NsaSJUtKlsbGxrWQFgAAAAAAAABgw5H742OmT58eBx10UIwbNy622GKLOOyww+Kee+6JFStWtOj4+vr6qK2tLVnGXl6/llMDAAAAAAAAAKzfci+F7LjjjnH11VfHSy+9FD/84Q+jsbExDj/88Nh8883jwgsvjGeeeWaNx48aNSoWL15csow8f9Q6Sg8AAAAAAAAAsH7KvRSyUps2beKoo46Ke++9N5577rk49dRTY/LkydGrV681HlcsFqN9+/YlS7FYXEepAQAAAAAAAADWT+tNKeTfbbHFFlFXVxcLFiyIe++9N+84AAAAAAAAAAAbnFxLIT169Ijq6uoP3J5lWey3337rMBEAAAAAAAAAQBoKeV58wYIFeV4eAAAAAAAAANYLWZblHYEErZePjwEAAAAAAAAA4ONRCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQV8g4AAAAAAAAAAJUuy/JOQIpMCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQYW8AwAAAAAAAABApcuyLO8IJMikEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAggp5BwAAAAAAAACASpdlWd4RSJBJIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkqJB3AAAAAAAAAACodFmWdwJSZFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBhbwDAAAA/5+9+w+zsq7zx/+6z5xhRIwBU5jBNVOxFDM13IwtItOVRSJJ170sN/Cy1c3VLSXRUPNnOYpda2tWXm2u0g9/bEouH2tNMYo0/AW6uNbXVCx0YSBFHYX18GPO949dZ5sFBkbO8Gbe5/Houq+Lud/3uefJdIY5HJ+83gAAAABAvSuKInUEMqQUAsAm7dTYkDpCVryOoz94/z67po6QlaEfnJ46QnZefuDq1BGysnOTn/Xs+MolA05ryWvS2jvwTwanjgAA3fh5DwD8X95dAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkqJw6AAAAAAAAAADUu6JInYAcmRQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMhQOXUAAAAAAAAAAKh3RVGkjkCGTAoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGSonDoAAAAAAAAAANS7okidgByZFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhsqpAwAAAAAAAABAvSsVReoIZMikEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhsqpAwAAAAAAAABAvSuK1AnIkUkhAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQoeSlkOuuuy6mTJkSt956a0REfO9734tRo0bF/vvvH+eff36sX7++x8dXKpXo6OjodlQqle0RHQAAAAAAAABgh5W0FPLlL385zj///FizZk2cffbZcdVVV8XZZ58dJ510UkydOjW+853vxOWXX97jPdra2qK5ubnbcfVVbdvpdwAAAAAAAAAAsGMqqtVqNdUnHzlyZMycOTOOO+64+Pd///cYPXp0zJo1K0466aSIiPjRj34U5557bjz99NObvUelUtloMki1oSmampr6NDtsi3TfdfkqitQJ8uN5Wlueo1B/hn5weuoI2Xn5gatTRwC2M69Ja8trUgAAyM9O5dQJqKXx33wodYS69dO/Ozx1hD6T9I+JZcuWxWGHHRYREQcffHCUSqU45JBDutbf9773xbJly3q8R1PTxgWQN3recQYAAAAAAAAAIHtJt49paWmJX//61xER8fTTT8eGDRu6Po6IePLJJ2PYsGGp4gEAAAAAAAAA9FtJJ4WcdNJJMWXKlDj22GPjvvvui3PPPTfOOeeceOmll6IoivjKV74Sf/mXf5kyIgAAAAAAAABAv5S0FHLppZfGwIEDY8GCBXHqqafGF7/4xTj44IPj3HPPjTVr1sSkSZPi8ssvTxkRAAAAAAAAAKBfKqrVajV1iFp7Y33qBNCz/L7r0iuK1Any43laW56jUH+GfnB66gjZefmBq1NHALYzr0lry2tSAADIz05JRwBQa+O/+VDqCHXrp393eOoIfaaUOgAAAAAAAAAAALWnOwYAAAAAAAAAiZVMeKQPmBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIbKqQMAAAAAAAAAQL0riiJ1BDJkUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIEPl1AEAAAAAAAAAoN4VReoE5MikEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAyVE4dAAAAAAAAAADqXRFF6ghkyKQQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGyqkDAAAAAAAAAEC9KxWpE5Ajk0IAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkqJw6ANSjokidALasGtXUEbJShG98dnxV3/Y19fIDV6eOkJ2hH/lS6ghZefnnl6eOANDvdXZ6AVVLpZK/NwEAANSaSSEAAAAAAAAAABkyKQQAAAAAAAAAEitsN0AfMCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAyVUwcAAAAAAAAAgHpXFKkTkCOTQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGSqnDgAAAAAAAAAA9a5UFKkjkCGTQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIUDl1AAAAAAAAAACod0WROgE5MikEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJChcuoAAAAAAAAAAFDviqJIHYEMmRQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIbKqQMAAAAAAAAAQL0ritQJyFHSUsjy5cvjW9/6Vtx///2xfPnyKJVKsc8++8TkyZPj5JNPjoaGhpTxAAAAAAAAAAD6rWTbxzz66KNxwAEHxE9+8pNYt25dPP300zF69OgYNGhQnHPOOfHhD384XnvttVTxAAAAAAAAAAD6tWSlkLPOOivOPvvsePTRR+OXv/xl3HTTTfHb3/42br311liyZEmsWbMmLrzwwi3ep1KpREdHR7ejUqlsh98BAAAAAAAAAMCOK1kpZNGiRfHpT3+66+NPfepTsWjRolixYkUMHTo0Zs6cGbfffvsW79PW1hbNzc3djquvauvL6AAAAAAAAAAAO7xyqk88bNiwWL58eeyzzz4REbFixYpYv359DB48OCIi9ttvv1i1atUW7zNjxoyYNm1at3PVhqbaBwYAAAAAAAAA6EeSlUImT54cn/3sZ+Pqq6+OpqamuPzyy2PcuHExcODAiIh46qmnYo899tjifZqamqKpqXsJ5I31fRIZAAAAAAAAAKDfSFYK+fKXvxzLly+PSZMmxYYNG2LMmDHx/e9/v2u9KIpoa7MNDAAAAAAAAAD5KxVF6ghkKFkpZJdddonbbrst3njjjVi/fn3ssssu3daPPvroRMkAAAAAAAAAAPq/ZKWQN+20006pIwAAAAAAAAAAZKeUOgAAAAAAAAAAALWnFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBD5dQBAAAAAAAAAKDeFakDkCWTQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGSqnDgAAAAAAAAAA9a4oitQRyJBJIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADJVTBwAAAAAAAACAelcqUicgRyaFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJChcuoAAAAAAAAAAFDviqJIHYEMmRQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMhQOXUAAAAAAAAAAKh3RZE6ATkyKQQAAAAAAAAAIENKIQAAAAAAAAAAGbJ9DACbtG59NXWErJRKvp611lAyR6/W1q7vTB0hKzs1NqSOkJ2Xf3556ghZef9lc1NHyM5DXzoqdYTsbOj0GqqWqlVfz5rzkrS2vBytudVrN6SOkJ1dmrylXktG5EP98ZIUYPszKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGyqkDAAAAAAAAAEC9K4oidQQyZFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBD5dQBAAAAAAAAAKDelYrUCciRSSEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAALAV5s+fH5MmTYoRI0ZEURRx5513dluvVqtx0UUXRWtrawwcODCOOuqoePrpp7tds2rVqjjppJNi8ODBMWTIkPjMZz4Tr7/+erdrFi9eHGPHjo2ddtop9txzz5g5c+ZbyqsUAgAAAAAAAACwFVavXh0HH3xwfOMb39jk+syZM+Paa6+N66+/Ph566KEYNGhQjB8/Pt54442ua0466aR48skn495774277ror5s+fH6eddlrXekdHRxx99NGx1157xcKFC+Pqq6+OSy65JL797W/3Om+5979FAAAAAAAAAID6M2HChJgwYcIm16rVanzta1+LCy+8MI499tiIiPjud78bw4cPjzvvvDNOPPHE+M1vfhN33313PPLII3HYYYdFRMTXv/71OOaYY+KrX/1qjBgxIn7wgx/E2rVr45//+Z9jwIABceCBB8bjjz8e//AP/9CtPLI1TAoBAAAAAAAAgMSKonAkOiqVSnR0dHQ7KpVKr/8/fO6556K9vT2OOuqornPNzc1x+OGHx4IFCyIiYsGCBTFkyJCuQkhExFFHHRWlUikeeuihrms+/OEPx4ABA7quGT9+fDz11FPx8ssv9yqTUggAAAAAAAAAULfa2tqiubm529HW1tbr+7S3t0dExPDhw7udHz58eNdae3t7DBs2rNt6uVyOXXfdtds1m7rHH3+OrWX7GAAAAAAAAACgbs2YMSOmTZvW7VxTU1OiNLWlFAIAAAAAAAAA1K2mpqaalEBaWloiImLFihXR2tradX7FihVxyCGHdF2zcuXKbo9bv359rFq1quvxLS0tsWLFim7XvPnxm9dsLdvHAAAAAAAAAABso7333jtaWlrivvvu6zrX0dERDz30UIwZMyYiIsaMGROvvPJKLFy4sOuan/3sZ9HZ2RmHH3541zXz58+PdevWdV1z7733xrvf/e4YOnRorzIphQAAAAAAAAAAbIXXX389Hn/88Xj88ccjIuK5556Lxx9/PJYuXRpFUcRZZ50VX/7yl2POnDnxxBNPxJQpU2LEiBExefLkiIg44IAD4i/+4i/i1FNPjYcffjgeeOCBOPPMM+PEE0+MESNGRETEpz71qRgwYEB85jOfiSeffDJuu+22+Md//MeNtrjZGraPAQAAAAAAAADYCo8++mgcccQRXR+/WdSYOnVq3HTTTXHuuefG6tWr47TTTotXXnklPvShD8Xdd98dO+20U9djfvCDH8SZZ54ZRx55ZJRKpTj++OPj2muv7Vpvbm6Oe+65J84444wYPXp07LbbbnHRRRfFaaed1uu8RbVarW7D73eH9Mb61AkA+r/Kus7UEbJSMpur5hpKReoI2Vm73vd9Le3U2JA6AvTo/ZfNTR0hOw996ajUEbKzoTO7tyySyvAtoPS8JK2phsIXtNZWr92QOkJ2dmny7yxrybc91B8vSWtvYGPqBNTSKbc+kTpC3frnEw9KHaHP+E9UAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMlVMHAAAAAAAAAIB6VyqK1BHIkEkhAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIbKqQOsXbs27rzzzliwYEG0t7dHRERLS0v82Z/9WRx77LExYMCAxAkBAAAAAAAAAPqfpJNCnnnmmTjggANi6tSp8dhjj0VnZ2d0dnbGY489FlOmTIkDDzwwnnnmmZQRAQAAAAAAAAD6paSTQk4//fQ46KCD4rHHHovBgwd3W+vo6IgpU6bEGWecET/96U8TJQQAAAAAAAAA6J+SlkIeeOCBePjhhzcqhEREDB48OC6//PI4/PDDEyQDAAAAAAAAAOjfkpZChgwZEr/73e/iPe95zybXf/e738WQIUN6vEelUolKpdLtXLWhKZqammoVEwAAAAAAAAD6VFGkTkCOSik/+d/8zd/ElClT4pprronFixfHihUrYsWKFbF48eK45ppr4uSTT47TTjutx3u0tbVFc3Nzt+Pqq9q20+8AAAAAAAAAAGDHlHRSyGWXXRaDBg2Kq6++Or7whS9E8T/Vp2q1Gi0tLXHeeefFueee2+M9ZsyYEdOmTet2rtpgSggAAAAAAAAAUN+SlkIiIs4777w477zz4rnnnov29vaIiGhpaYm99957qx7f1LTxVjFvrK95TAAAAAAAAACAfiXp9jF/bO+9944xY8bEmDFjugohzz//fJxyyimJkwEAAAAAAAAA9D87TClkU1atWhWzZs1KHQMAAAAAAAAAoN9Jun3MnDlzelxfsmTJdkoCAAAAAAAAAJCXpKWQyZMnR1EUUa1WN3tNURTbMREAAAAAAAAAbH/+2zh9Ien2Ma2trTF79uzo7Ozc5LFo0aKU8QAAAAAAAAAA+q2kpZDRo0fHwoULN7u+pSkiAAAAAAAAAABsWtLtY6ZPnx6rV6/e7PrIkSNj3rx52zERAAAAAAAAAEAekpZCxo4d2+P6oEGDYty4cdspDQAAAAAAAABAPpJuHwMAAAAAAAAAQN9QCgEAAAAAAAAAyJBSCAAAAAAAAABAhsqpAwAAAAAAAABAvSuK1AnIkUkhAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMlVMHAAAAAAAAAIB6VyqK1BHIkEkhAAAAAAAAAAAZUgoBAAAAAAAAAMjQVm0fM2fOnK2+4cc//vG3HAYAAAAAAAAAgNrYqlLI5MmTt+pmRVHEhg0btiUPAAAAAAAAAAA1sFWlkM7Ozr7OAQAAAAAAAABADZVSBwAAAAAAAAAAoPa2alLI/7V69er4xS9+EUuXLo21a9d2W/vc5z5Xk2AAAAAAAAAAALx1vS6FPPbYY3HMMcfEmjVrYvXq1bHrrrvGiy++GDvvvHMMGzZMKQQAAAAAAAAAeqkoUicgR73ePubss8+OSZMmxcsvvxwDBw6MBx98MH7/+9/H6NGj46tf/WpfZAQAAAAAAAAAoJd6XQp5/PHH4wtf+EKUSqVoaGiISqUSe+65Z8ycOTPOP//8vsgIAAAAAAAAAEAv9boU0tjYGKXSfz9s2LBhsXTp0oiIaG5ujueff7626QAAAAAAAAAAeEvKvX3AoYceGo888kjst99+MW7cuLjooovixRdfjO9973vxnve8py8yAgAAAAAAAADQS72eFHLFFVdEa2trRER85StfiaFDh8bpp58ef/jDH+Lb3/52zQMCAAAAAAAAANB7vZ4Ucthhh3X9etiwYXH33XfXNBAAAAAAAAAAANuu16UQAAAAAAAAAKC2iqJIHYEM9boUsvfee/f4ZFyyZMk2BQIAAAAAAAAAYNv1uhRy1llndft43bp18dhjj8Xdd98d06dPr1UuAAAAAAAAAAC2Qa9LIZ///Oc3ef4b3/hGPProo9scCAAAAAAAAACAbVeq1Y0mTJgQd9xxR61uBwAAAAAAAADANqhZKeT222+PXXfdtVa3AwAAAAAAAABgG/R6+5hDDz00iqLo+rharUZ7e3v84Q9/iG9+85s1DQcAAAAAAAAAwFvT61LIscce260UUiqVYvfdd4+PfOQjsf/++9c0HAAAAAAAAAAAb01RrVarqUPU2hvrUyeAnnXm922XXOmPymrURmVdZ+oIWVm73tez1gYOaEgdITsbOv18qqWmxprt1Mj/8BKKHd0F//b/pY6QnQuOHJk6QlZ2avT6qdZefG1t6ghZad651/9+jS0owvslteZ1PtSX/1q7IXWE7HhPr/Z28hIqK3//o9+kjlC3vv6JA1JH6DO9fgXb0NAQK1eu3Oj8Sy+9FA0N/iAHAAAAAAAAANgR9LoUsrnBIpVKJQYMGLDNgQAAAAAAAAAA2HZbPVDo2muvjYiIoijiO9/5Tuyyyy5daxs2bIj58+fH/vvvX/uEAAAAAAAAAAD02laXQq655pqI+O9JIddff323rWIGDBgQ73znO+P666+vfUIAAAAAAAAAAHptq0shzz33XEREHHHEETF79uwYOnRon4UCAAAAAAAAAGDbbHUp5E3z5s3rixwAAAAAAAAAANRQqbcPOP744+Oqq67a6PzMmTPjhBNOqEkoAAAAAAAAAKgnRVE4Eh0563UpZP78+XHMMcdsdH7ChAkxf/78moQCAAAAAAAAAGDb9LoU8vrrr8eAAQM2Ot/Y2BgdHR01CQUAAAAAAAAAwLbpdSnkoIMOittuu22j87feemuMGjWqJqEAAAAAAAAAANg25d4+4Etf+lIcd9xx8eyzz8ZHP/rRiIi477774uabb47bb7+95gEBAAAAAAAAAOi9XpdCJk2aFHfeeWdcccUVcfvtt8fAgQPj4IMPjp/97Gex66679kVGAAAAAAAAAAB6qdelkIiIiRMnxsSJEyMioqOjI2655ZY455xzYuHChbFhw4aaBgQAAAAAAAAAoPfeUikkImL+/Plxww03xB133BEjRoyI4447Lr7xjW/UMhsAAAAAAAAA1IVSkToBOepVKaS9vT1uuummuOGGG6KjoyP+6q/+KiqVStx5550xatSovsoIAAAAAAAAAEAvlbb2wkmTJsW73/3uWLx4cXzta1+LZcuWxde//vW+zAYAAAAAAAAAwFu01ZNC/u3f/i0+97nPxemnnx777bdfX2YCAAAAAAAAAGAbbfWkkPvvvz9ee+21GD16dBx++OFx3XXXxYsvvtiX2QAAAAAAAAAAeIu2uhTygQ98IP7pn/4pli9fHn/7t38bt956a4wYMSI6Ozvj3nvvjddee60vcwIAAAAAAAAA0AtbXQp506BBg+KUU06J+++/P5544on4whe+EFdeeWUMGzYsPv7xj/dFRgAAAAAAAAAAeqnXpZA/9u53vztmzpwZL7zwQtxyyy21ygQAAAAAAAAAwDYq1+ImDQ0NMXny5Jg8eXItbgcAAAAAAAAAdaVUpE5AjrZpUggAAAAAAAAAADsmpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMhQOXUAAAAAAAAAAKh3RVGkjkCGTAoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIEPl1AEAAAAAAAAAoN6VitQJyNEOPSlkxYoVcdlll6WOAQAAAAAAAADQ7+zQpZD29va49NJLU8cAAAAAAAAAAOh3km4fs3jx4h7Xn3rqqe2UBAAAAAAAAAAgL0lLIYccckgURRHVanWjtTfPF4WNkwAAAAAAAAAAeitpKWTXXXeNmTNnxpFHHrnJ9SeffDImTZrU4z0qlUpUKpVu56oNTdHU1FSznAAAAAAAAAAA/U0p5ScfPXp0LFu2LPbaa69NHnvssccmp4j8sba2tmhubu52XH1V23b6HQAAAAAAAAAA7JiSTgr57Gc/G6tXr97s+jve8Y648cYbe7zHjBkzYtq0ad3OVRtMCQEAAAAAAACg/yiK1AnIUdJSyCc+8Yke14cOHRpTp07t8Zqmpo23inlj/TZHAwAAAAAAAADo15JuH7Mlzz//fJxyyimpYwAAAAAAAAAA9Ds7dClk1apVMWvWrNQxAAAAAAAAAAD6naTbx8yZM6fH9SVLlmynJAAAAAAAAAAAeUlaCpk8eXIURRHVanWz1xRFsR0TAQAAAAAAAADkIen2Ma2trTF79uzo7Ozc5LFo0aKU8QAAAAAAAAAA+q2kpZDRo0fHwoULN7u+pSkiAAAAAAAAAABsWtLtY6ZPnx6rV6/e7PrIkSNj3rx52zERAAAAAAAAAGx/paJIHYEMJS2FjB07tsf1QYMGxbhx47ZTGgAAAAAAAACAfCTdPgYAAAAAAAAAgL6hFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBD5dQBAAAAAAAAAKDemehAX/C8AgAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkqJw6AAAAAAAAAADUu6JInYAcmRQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIbKqQMAAAAAAAAAQL0rFUXqCGTIpBAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIbKqQMAAAAAAAAAQL0ritQJyJFJIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADJUTh2gL1SrqRPkpyhSJ8iL52jt+ZKyo2tq1MOstYaSH0611ukHVE35etZeEb7va2ndhs7UEbJz6fh3pY6QnW/96rnUEbLyyYP/JHUE6NH6DV4/1dqAstdPtbah0/O0lvzdvvb8VbS2BpS9pwdA/+enGQAAAAAAAABAhpRCAAAAAAAAAAAylOX2MQAAAAAAAADQn9hZjb5gUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIEPl1AEAAAAAAAAAoN6ViiJ1BDJkUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGSqnDgAAAAAAAAAA9a4oUicgRyaFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAyVE4dAAAAAAAAAADqXalInYAcmRQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIbKqQMAAAAAAAAAQL0rokgdgQyZFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDO0Qp5IUXXojXX399o/Pr1q2L+fPnJ0gEAAAAAAAAANC/JS2FLF++PN7//vfHXnvtFUOGDIkpU6Z0K4esWrUqjjjiiIQJAQAAAAAAAAD6p3LKT/7FL34xSqVSPPTQQ/HKK6/EF7/4xTjiiCPinnvuiaFDh0ZERLVaTRkRAAAAAAAAAPpcqUidgBwlnRQyd+7cuPbaa+Owww6Lo446Kh544IFobW2Nj370o7Fq1aqIiCgKz3wAAAAAAAAAgN5KWgp59dVXuyaCREQ0NTXF7Nmz453vfGccccQRsXLlyi3eo1KpREdHR7ejUqn0ZWwAAAAAAAAAgB1e0lLIPvvsE4sXL+52rlwuxw9/+MPYZ5994mMf+9gW79HW1hbNzc3djquvauuryAAAAAAAAAAA/ULSUsiECRPi29/+9kbn3yyGHHLIIVGtVnu8x4wZM+LVV1/tdkw/b0ZfRQYAAAAAAAAA6BfKKT/5V77ylVizZs0m18rlctxxxx3xn//5nz3eo6mpKZqamrqd+691NYsIAAAAAAAAANAvJZ0UUi6XY/DgwZtdX758eVx66aXbMREAAAAAAAAAQB6SlkK2ZNWqVTFr1qzUMQAAAAAAAACgT5UKR6ojZ0m3j5kzZ06P60uWLNlOSQAAAAAAAAAA8pK0FDJ58uQoiiKq1epmrymKzGs5AAAAAAAAAAB9IOn2Ma2trTF79uzo7Ozc5LFo0aKU8QAAAAAAAAAA+q2kpZDRo0fHwoULN7u+pSkiAAAAAAAAAABsWtLtY6ZPnx6rV6/e7PrIkSNj3rx52zERAAAAAAAAAEAekpZCxo4d2+P6oEGDYty4cdspDQAAAAAAAABAPpJuHwMAAAAAAAAAQN9IOikEAAAAAAAAAIgoiiJ1BDJkUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIEPl1AEAAAAAAAAAoN6VitQJyJFJIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkqJw6AAAAAAAAAADUu6JInYAcmRQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMhQOXUAAAAAAAAAAKh3paJIHYEMmRQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIbKqQMAAAAAAAAAQL0rFakTkCOTQgAAAAAAAAAAMpTlpJBCg4odnOco/UG5wRO1ljqr1dQRsuPP0tprbNAXZsfm+762/GiqvbJ/zlNzxx04InWErJx5xxOpI2Tn+1PelzpCVjZ0+uFUa+s2dKaOkJ3GhizfUgc2w99DAciBd/4BAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkqJw6AAAAAAAAAADUu6JInYAcmRQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAANgK73znO6Moio2OM844IyIiPvKRj2y09tnPfrbbPZYuXRoTJ06MnXfeOYYNGxbTp0+P9evX90necp/cFQAAAAAAAAAgM4888khs2LCh6+P/+I//iD//8z+PE044oevcqaeeGpdddlnXxzvvvHPXrzds2BATJ06MlpaW+NWvfhXLly+PKVOmRGNjY1xxxRU1z6sUAgAAAAAAAACJlaJIHYGtsPvuu3f7+Morr4x99903xo0b13Vu5513jpaWlk0+/p577olf//rXMXfu3Bg+fHgccsghcfnll8d5550Xl1xySQwYMKCmeW0fAwAAAAAAAADQS2vXro3vf//7ccopp0RR/G+p5wc/+EHstttu8Z73vCdmzJgRa9as6VpbsGBBHHTQQTF8+PCuc+PHj4+Ojo548skna57RpBAAAAAAAAAAoG5VKpWoVCrdzjU1NUVTU1OPj7vzzjvjlVdeiZNPPrnr3Kc+9anYa6+9YsSIEbF48eI477zz4qmnnorZs2dHRER7e3u3QkhEdH3c3t5eg99Nd0ohAAAAAAAAAEDdamtri0svvbTbuYsvvjguueSSHh93ww03xIQJE2LEiBFd50477bSuXx900EHR2toaRx55ZDz77LOx77771jT31lAKAQAAAAAAAADq1owZM2LatGndzm1pSsjvf//7mDt3btcEkM05/PDDIyLimWeeiX333TdaWlri4Ycf7nbNihUrIiKipaWlt9G3qFTzOwIAAAAAAAAA9BNNTU0xePDgbseWSiE33nhjDBs2LCZOnNjjdY8//nhERLS2tkZExJgxY+KJJ56IlStXdl1z7733xuDBg2PUqFHb9hvZBJNCAAAAAAAAAAC2UmdnZ9x4440xderUKJf/t3bx7LPPxs033xzHHHNMvP3tb4/FixfH2WefHR/+8Ifjve99b0REHH300TFq1Kj49Kc/HTNnzoz29va48MIL44wzzthiEeWtUAoBAAAAAAAAgMSKInUCttbcuXNj6dKlccopp3Q7P2DAgJg7d2587Wtfi9WrV8eee+4Zxx9/fFx44YVd1zQ0NMRdd90Vp59+eowZMyYGDRoUU6dOjcsuu6xPsiqFAAAAAAAAAABspaOPPjqq1epG5/fcc8/4xS9+scXH77XXXvGTn/ykL6JtpLRdPgsAAAAAAAAAANuVUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMlVMHAAAAAAAAAIB6VypSJyBHJoUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkKFy6gAAAAAAAAAAUO9KRZE6AhkyKQQAAAAAAAAAIENKIQAAAAAAAAAAGUq+fcxLL70UixcvjoMPPjh23XXXePHFF+OGG26ISqUSJ5xwQhxwwAGpIwIAAAAAAAAA9DtJSyEPP/xwHH300dHR0RFDhgyJe++9N0444YQol8vR2dkZV155Zdx///3xvve9L2VMAAAAAAAAAIB+J+n2MRdccEGccMIJ8eqrr8b5558fkydPjiOPPDJ++9vfxjPPPBMnnnhiXH755SkjAgAAAAAAAAD0S0lLIQsXLoxp06bF2972tvj85z8fy5Yti1NPPbVr/cwzz4xHHnkkYUIAAAAAAAAAgP4p6fYxa9eujYEDB0ZERGNjY+y8886x2267da3vtttu8dJLL/V4j0qlEpVKpdu5akNTNDU11T4wAAAAAAAAAPSBokidgBwlnRSy5557xpIlS7o+vvXWW6O1tbXr4+XLl3criWxKW1tbNDc3dzuuvqqtzzIDAAAAAAAAAPQHSSeFnHjiibFy5cqujydOnNhtfc6cOfH+97+/x3vMmDEjpk2b1u1ctcGUEAAAAAAAAACgviUthVx88cU9rl9wwQXR0NDQ4zVNTRtvFfPG+m2OBgAAAAAAAADQryXdPmZLXnrppTj99NNTxwAAAAAAAAAA6Hd26FLIqlWrYtasWaljAAAAAAAAAAD0O0m3j5kzZ06P60uWLNlOSQAAAAAAAAAA8pK0FDJ58uQoiiKq1epmrymKYjsmAgAAAAAAAADIQ9LtY1pbW2P27NnR2dm5yWPRokUp4wEAAAAAAADAdlEqCkeiI2dJSyGjR4+OhQsXbnZ9S1NEAAAAAAAAAADYtKTbx0yfPj1Wr1692fWRI0fGvHnztmMiAAAAAAAAAIA8JC2FjB07tsf1QYMGxbhx47ZTGgAAAAAAAACAfCTdPgYAAAAAAAAAgL6hFAIAAAAAAAAAkCGlEAAAAAAAAACADJVTBwAAAAAAAACAelcUqROQI5NCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMhQOXUAAAAAAAAAAKh3JjrQFzyvAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZKqcOAAAAAAAAAAD1riiK1BHIkEkhAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMlVMHAAAAAAAAAIB6V6QOQJZMCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZKicOgDUoyKK1BGyU/iS1pwvaW2tXdeZOkJ2On1Ja27N2vWpI2Rl6KABqSNkp7OzmjpCVhob/LSvtQ2eozW384CG1BGycsvJo1NHyM5nbvn31BGy8o3jD0odITsDG/05CvXG+6S1VfUSH4AMKIUAAAAAAAAAQGIl7T76gO1jAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZKqcOAAAAAAAAAAD1rkgdgCyZFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhsqpAwAAAAAAAABAvSuK1AnIkUkhAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMlVMHAAAAAAAAAIB6VxRF6ghkyKQQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADJUTh0AAAAAAAAAAOqdiQ70Bc8rAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGyqkDbMo+++wTP/3pT2O//fZLHQUAAAAAAAAA+lxRFKkjkKGkpZBrr712k+eXLl0aN954Y7S0tERExOc+97ntGQsAAAAAAAAAoN9LWgo566yzYo899ohyuXuMzs7O+O53vxuNjY1RFIVSCAAAAAAAAABALyUthZx22mnx0EMPxc033xwHHHBA1/nGxsa45557YtSoUQnTAQAAAAAAAAD0X6WUn/z666+Piy66KMaPHx/XXXfdW7pHpVKJjo6ObkelUqlxUgAAAAAAAACA/iVpKSQi4hOf+EQsWLAgfvSjH8WECROivb29V49va2uL5ubmbsfVV7X1UVoAAAAAAAAAgP4h6fYxb9pjjz1i7ty5ceWVV8ahhx4a1Wp1qx87Y8aMmDZtWrdz1YamWkcEAAAAAAAAAOhXdohSSEREURQxY8aMOProo+P++++P1tbWrXpcU1NTNDV1L4G8sb4vEgIAAAAAAAAA9B/Jt4/5v0aPHh2f//znY+jQofH888/HKaeckjoSAAAAAAAAAPSpwpHsyNkOVwr5Y6tWrYpZs2aljgEAAAAAAAAA0O8k3T5mzpw5Pa4vWbJkOyUBAAAAAAAAAMhL0lLI5MmToyiKqFarm72mKHIf1gIAAAAAAAAAUHtJt49pbW2N2bNnR2dn5yaPRYsWpYwHAAAAAAAAANBvJS2FjB49OhYuXLjZ9S1NEQEAAAAAAAAAYNOSbh8zffr0WL169WbXR44cGfPmzduOiQAAAAAAAAAA8pC0FDJ27Nge1wcNGhTjxo3bTmkAAAAAAAAAII2iKFJHIENJt48BAAAAAAAAAKBvKIUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGyqkDAAAAAAAAAEC9M9GBvuB5BQAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGyqkDAAAAAAAAAEC9K4oidQQyZFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBD5dQBAAAAAAAAAKDeFakDkCWTQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIUDl1AAAAAAAAAACod0WROgE5MikEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyFA5dQCoR/YDoz8oeaLW1MDGhtQRslMqeY7WWrmhMXUE6JHv+9qqVlMnyFDhi1prjWX/lqWmPEVr7hvHH5Q6QlYOOmdO6gjZeebaT6SOkB1vl0B98R4pADnw7goAAAAAAAAAQIaUQgAAAAAAAAAAMmT7GAAAAAAAAABIrBS2raL2TAoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIEPl1AEAAAAAAAAAoN4VReoE5MikEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhsqpAwAAAAAAAABAvSuiSB2BDJkUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIUDl1AAAAAAAAAACod0WROgE5MikEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAyVUwcAAAAAAAAAgHpXiiJ1BDJkUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMlVMH+GPVajV+/vOfxzPPPBOtra0xfvz4aGxsTB0LAAAAAAAAAKDfSVoKOeaYY+KWW26J5ubmWLVqVRxzzDHx8MMPx2677RYvvfRSvOtd74r58+fH7rvvnjImAAAAAAAAAEC/k3T7mLvvvjsqlUpERFx44YXx2muvxbPPPhsrV66M3//+9zFo0KC46KKLUkYEAAAAAAAAgD5XFI5UR86SlkL+2M9+9rNoa2uLvffeOyIi/uRP/iSuuuqq+OlPf5o4GQAAAAAAAABA/5N0+5iIiOJ/ajcvv/xy7Lvvvt3WRo4cGcuWLevx8ZVKpWvayJuqDU3R1NRU26AAAAAAAAAAAP1I8kkhJ598chx33HGxbt26eO6557qttbe3x5AhQ3p8fFtbWzQ3N3c7rr6qrQ8TAwAAAAAAAADs+JJOCpk6dWrXr4899thYs2ZNt/U77rgjDjnkkB7vMWPGjJg2bVq3c9UGU0IAAAAAAAAAgPqWtBRy44039rh+8cUXR0NDQ4/XNDVtvFXMG+u3ORoAAAAAAAAAQL+WfPuYnqxatSr+7u/+LnUMAAAAAAAAAIB+Z4cvhcyaNSt1DAAAAAAAAACAfifp9jFz5szpcX3JkiXbKQkAAAAAAAAApFMUqROQo6SlkMmTJ0dRFFGtVjd7TeGZDwAAAAAAAADQa0m3j2ltbY3Zs2dHZ2fnJo9FixaljAcAAAAAAAAA0G8lLYWMHj06Fi5cuNn1LU0RAQAAAAAAAABg05JuHzN9+vRYvXr1ZtdHjhwZ8+bN246JAAAAAAAAAADykLQUMnbs2B7XBw0aFOPGjdtOaQAAAAAAAAAA8pF0+xgAAAAAAAAAAPpG0kkhAAAAAAAAAEBEEUXqCGTIpBAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMlROHQAAAAAAAAAA6l2pSJ2AHJkUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIUDl1AAAAAAAAAACod0UUqSOQIZNCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMhQOXUAAAAAAAAAAKh3RZE6ATkyKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkKFy6gAAAAAAAAAAUO+KKFJHIENKIZDAhs5q6gjZKfyMrLmVHZXUEbIysLEhdYTsvG2glzG1tmbthtQRsrJLk+dorVXDa6haevG1takjZOftuwxIHSE/vu1r6r/W+Vlfa+WSIby19NTXJqeOkJ3/9+Sy1BGy87EDW1NHyErJm3o111n1AqqmfDlrrlTyfQ+wvfmbKwAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZKicOgAAAAAAAAAA1LtSkToBOTIpBAAAAAAAAABgK1xyySVRFEW3Y//99+9af+ONN+KMM86It7/97bHLLrvE8ccfHytWrOh2j6VLl8bEiRNj5513jmHDhsX06dNj/fr1fZLXpBAAAAAAAAAAgK104IEHxty5c7s+Lpf/t3px9tlnx49//OP44Q9/GM3NzXHmmWfGcccdFw888EBERGzYsCEmTpwYLS0t8atf/SqWL18eU6ZMicbGxrjiiitqnlUpBAAAAAAAAABgK5XL5Whpadno/Kuvvho33HBD3HzzzfHRj340IiJuvPHGOOCAA+LBBx+MD3zgA3HPPffEr3/965g7d24MHz48DjnkkLj88svjvPPOi0suuSQGDBhQ06y2jwEAAAAAAAAA6lalUomOjo5uR6VS2ez1Tz/9dIwYMSL22WefOOmkk2Lp0qUREbFw4cJYt25dHHXUUV3X7r///vGOd7wjFixYEBERCxYsiIMOOiiGDx/edc348eOjo6MjnnzyyZr/3pRCAAAAAAAAAIC61dbWFs3Nzd2Otra2TV57+OGHx0033RR33313fOtb34rnnnsuxo4dG6+99lq0t7fHgAEDYsiQId0eM3z48Ghvb4+IiPb29m6FkDfX31yrNdvHAAAAAAAAAAB1a8aMGTFt2rRu55qamjZ57YQJE7p+/d73vjcOP/zw2GuvveJf/uVfYuDAgX2a860wKQQAAAAAAAAAqFtNTU0xePDgbsfmSiH/15AhQ+Jd73pXPPPMM9HS0hJr166NV155pds1K1asiJaWloiIaGlpiRUrVmy0/uZarSmFAAAAAAAAAEBihf8l+9+2eP311+PZZ5+N1tbWGD16dDQ2NsZ9993Xtf7UU0/F0qVLY8yYMRERMWbMmHjiiSdi5cqVXdfce++9MXjw4Bg1atQ2ZdkU28cAAAAAAAAAAGyFc845JyZNmhR77bVXLFu2LC6++OJoaGiIT37yk9Hc3Byf+cxnYtq0abHrrrvG4MGD4+///u9jzJgx8YEPfCAiIo4++ugYNWpUfPrTn46ZM2dGe3t7XHjhhXHGGWds9XSS3lAKAQAAAAAAAADYCi+88EJ88pOfjJdeeil23333+NCHPhQPPvhg7L777hERcc0110SpVIrjjz8+KpVKjB8/Pr75zW92Pb6hoSHuuuuuOP3002PMmDExaNCgmDp1alx22WV9kreoVqvVPrlzQm+sT50AerahM7tvu+SKbZvqxCas7KikjpCVgY0NqSNk520DdVtrbXVlQ+oIWdmlyXO01qrhNVQtvfja2tQRsvP2XQakjpCdNX421VTJJsI1V/ZFramGkr/c19pPfrM8dYTsfOzA1tQRslLypl7Ndeb3n3zS8uWsuZKf9zW3k7egsvLL376cOkLdGvuuoakj9Bl/cwUAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAyZJcpAAAAAAAAAEisKFInIEcmhQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQoXLqAAAAAAAAAABQ74rUAciSSSEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAyVUwcAAAAAAAAAgHpXKorUEciQSSEAAAAAAAAAABlSCgEAAAAAAAAAyFDSUsgLL7wQL774YtfHv/zlL+Okk06KsWPHxl//9V/HggULEqYDAAAAAAAAAOi/kpZCjj/++HjwwQcjIuJf//Vf4yMf+Ui8/vrr8cEPfjDWrFkT48aNi7vuuitlRAAAAAAAAACAfqmc8pM/+eSTceCBB0ZERFtbW1xxxRVx3nnnda1fd911cdFFF8XHPvaxVBEBAAAAAAAAAPqlpJNCyuVyvPbaaxER8dxzz8WECRO6rU+YMCGeeuqpFNEAAAAAAAAAAPq1pKWQcePGxS233BIREYceemj8/Oc/77Y+b9682GOPPXq8R6VSiY6Ojm5HpVLpq8gAAAAAAAAAAP1C0u1jrrzyyhg7dmwsW7YsPvShD8UFF1wQjzzySBxwwAHx1FNPxW233RbXX399j/doa2uLSy+9tNu5C750cVx40SV9mBwAAAAAAAAAaqdIHYAsFdVqtZoywLPPPhsXXnhh/PjHP47XX389Iv57W5k//dM/jenTp8fkyZN7fHylUtloMki1oSmampr6KjJssw2dSb/tslT4KVlzKztMXaqlgY0NqSNk520Dk3Zbs7S6siF1hKzs0uQ5WmvV8Bqqll58bW3qCNl5+y4DUkfIzho/m2qqlHRebJ7Kvqg11VDyl/ta+8lvlqeOkJ2PHdiaOkJWSt7Uq7nOtP/JJz++nDVX8vO+5nbyFlRWHnzmldQR6tYHRg5JHaHPJP9jYt99941bbrklqtVqrFy5Mjo7O2O33XaLxsbGrXp8U9PGBZA31vdFUgAAAAAAAACA/mOH+ecMRVHE8OHDo7W1tasQ8vzzz8cpp5ySOBkAAAAAAAAAQP+zw5RCNmXVqlUxa9as1DEAAAAAAAAAAPqdpNvHzJkzp8f1JUuWbKckAAAAAAAAAAB5SVoKmTx5chRFEdVqdbPXFEWxHRMBAAAAAAAAAOQh6fYxra2tMXv27Ojs7NzksWjRopTxAAAAAAAAAGD7KBzJjowlLYWMHj06Fi5cuNn1LU0RAQAAAAAAAABg05JuHzN9+vRYvXr1ZtdHjhwZ8+bN246JAAAAAAAAAADykLQUMnbs2B7XBw0aFOPGjdtOaQAAAAAAAAAA8pF0+xgAAAAAAAAAAPqGUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQoXLqAAAAAAAAAABQ74ooUkcgQyaFAAAAAPz/7d17mJVlvTfw34KBYcQBBOWkgQcMPCAlHkJTdEuAeilgpZkaivm+JpRAm4zKtCzHw9by9KKWech0m+W5toQEmOURYqdpeGKLBoilgCIMMPO8f+yr2XuSk7rgZt3z+VzXc13O86xZ6zu3z6y1njVf7hsAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQoarUAQAAAAAAAACgpSuVUicgR2YKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkqCp1AAAAAAAAAABo6UqpA5AlM4UAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkKGq1AEAAAAAAAAAoMUrpQ5AjswUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGSoVRVGkDlFuq9amTgAAzeX3apteqZQ6AUBla2z04lRuJS9OZbe2sTF1hKy0buUcLbdWfu/ZyrkWLb/OR1+aOkJW3vr1pNQRACpeu6rUCSinJ+cvSx2hxdp/l46pI2w2niYAAAAAAAAAILFSKJ5TfpaPAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDVakDAAAAAAAAAEBLVyqlTkCOzBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMhQVeoAAAAAAAAAANDSlVIHIEtmCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ1WpAwAAAAAAAABAi1dKHYAcmSkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJChqtQBAAAAAAAAAKClK0UpdQQyZKYQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGkpZCLrvssnjllVdSRgAAAAAAAACA5EolW6otZ0lLIZMmTYrddtstPvWpT8Udd9wRq1evThkHAAAAAAAAACAbyZeP+fGPfxzt27ePU045JXr27Bnjx4+PZ555JnUsAAAAAAAAAICKlrwUctRRR8U999wTr732Wnzta1+LqVOnxoABA+KAAw6IH/3oR/H222+njggAAAAAAAAAUHGSl0L+oWvXrvG1r30tnnvuuZg5c2bsueeeMWHChOjRo8cGv6++vj6WL1/ebKuvr99CqQEAAAAAAAAAtk5JSyGlUmmd+w855JC46aabYuHChfGDH/xgg/dRV1cXHTt2bLZdenHd5ogLAAAAAAAAAFAxSkVRFKkevFWrVrF48eLo2rXrB76P+vr698wMUrSujurq6g8bDwDKJt2rbb7W0y0FYBM1NnpxKrf1/cMHPri1jY2pI2SldSvnaLm18nvPVs61aPl1PvrS1BGy8tavJ6WOAFDx2lWlTkA5zV3wduoILdbHetWmjrDZJH2aaCzDhzvV1e8tgKxa+6HvFgAAAAAAAACgoiVdPmZjXn311RgzZkzqGAAAAAAAAACwWZVsybacbdWlkDfffDNuvvnm1DEAAAAAAAAAACpO0uVj7rvvvg0ef/nll7dQEgAAAAAAAACAvCQthYwcOTJKpVIURbHe25RKuU/WAgAAAAAAAABQfkmXj+nRo0fcdddd0djYuM5tzpw5KeMBAAAAAAAAAFSspKWQgQMHxuzZs9d7fGOziAAAAAAAAAAAsG5Jl4+ZNGlSrFixYr3H+/TpEzNmzNiCiQAAAAAAAAAA8pC0FHLIIYds8Hj79u1j8ODBWygNAAAAAAAAACRSSh2AHCVdPgYAAAAAAAAAgM1DKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkKGq1AEAAAAAAAAAoKUrRSl1BDJkphAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaqUgcAAAAAAAAAgJauVEqdgByZKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADFWlDgAAAAAAAAAALV0pdQCyZKYQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGqlIHAAAAAAAAAIAWr5Q6ADkyUwgAAAAAAAAAQIaUQgAAAAAAAAAAMlQqiqJIHaLcVq1NnQAAAAAAANiQ7fYflzpCdt568urUEYAtrF1V6gSU0zN/fSd1hBZr7x23TR1hszFTCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAxVpQ4AAAAAAAAAAC1dKUqpI5AhM4UAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADJUlToAAAAAAAAAALR0pVLqBOTITCEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAxVpQ4AAAAAAAAAAC1dKXUAsmSmEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAyVJU6AAAAAAAAAAC0eKXUAciRmUIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABmqSh0AAAAAAAAAAFq6UpRSRyBDZgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQoeSlkAceeCC+/e1vx+9///uIiPjtb38bRx11VAwfPjyuv/76xOkAAAAAAAAAACpT0lLIddddF6NGjYpf//rXcdRRR8Wtt94aI0eOjB133DF23nnnGD9+fFxxxRUpIwIAAAAAAAAAVKSqlA9+5ZVXxv/7f/8vzjjjjJgxY0YcddRRcdlll8VZZ50VERGf+MQn4pJLLomzzz47ZUwAAAAAAAAAgIqTdKaQ+fPnx7BhwyIi4vDDD4+GhoY49NBDm44fdthh8corr6SKBwAAAAAAAABbRKlkS7XlLGkppEuXLk2lj4ULF8batWtjwYIFTcdfeeWV6Ny58wbvo76+PpYvX95sq6+v36y5AQAAAAAAAAC2dklLISNGjIjTTz89vv/978eoUaPiC1/4Qnz1q1+NBx98MKZOnRpf/vKXY+jQoRu8j7q6uujYsWOz7dKL67bQTwAAAAAAAAAAsHUqFUVRpHrwFStWxIQJE+LRRx+Ngw46KK666qq48sor45vf/GasWbMmBg8eHHfccUd07dp1vfdRX1//nplBitbVUV1dvbnjAwAAAAAAH9B2+49LHSE7bz15deoIwBbWrip1Aspp3uJ3U0dosfp23yZ1hM0maSlkfVatWhVr1qyJ2traD/b9a8scCAAAAAAAKCulkPJTCoGWRykkL0oh6eRcCkm6fMz6tGvXLmpra+PVV1+NMWPGpI4DAAAAAAAAAFBxtspSyD+8+eabcfPNN6eOAQAAAAAAAABQcZJOKHTfffdt8PjLL7+8hZIAAAAAAAAAQDql1AHIUtJSyMiRI6NUKkVRFOu9Tank1AcAAAAAAAAAeL+SLh/To0ePuOuuu6KxsXGd25w5c1LGAwAAAAAAAACoWElLIQMHDozZs2ev9/jGZhEBAAAAAAAAAGDdki4fM2nSpFixYsV6j/fp0ydmzJixBRMBAAAAAAAAAOQhaSnkkEMO2eDx9u3bx+DBg7dQGgAAAAAAAACAfCRdPgYAAAAAAAAAgM1DKQQAAAAAAAAAIENJl48BAAAAAAAAACKilDoAOTJTCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ1WpAwAAAAAAAABAS1eKUuoIZMhMIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADFWlDgAAAAAAAAAALV2plDoBOTJTCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZqkodAAAAAAAAAABaulLqAGTJTCEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAxVpQ4AAAAAAAAAAC1eKXUAclQqiqJIHaLcVq1NnQCg8jU0ZvfykFTrVt7JAbB1ye9KML2Sl3sAABLb7rBzU0fIylszL0gdITuuRcuvpk3qBJTTS2+sTB2hxdpth5rUETYby8cAAAAAAAAAAGyCurq62H///aO2tja6du0aI0eOjHnz5jW7zWGHHRalUqnZduaZZza7zYIFC+Loo4+ObbbZJrp27RqTJk2KtWvLPwOG5WMAAAAAAAAAADbBrFmzYuzYsbH//vvH2rVr4xvf+EYMHTo0nn322Wjfvn3T7c4444z47ne/2/T1Ntts0/TfDQ0NcfTRR0f37t3jD3/4QyxatCi+8IUvRJs2beLCCy8sa16lEAAAAAAAAACATfDggw82+/qmm26Krl27xuzZs+PQQw9t2r/NNttE9+7d13kfv/nNb+LZZ5+Nhx56KLp16xYf+9jH4oILLohzzjknzj///Gjbtm3Z8lo+BgAAAAAAAABoserr62P58uXNtvr6+k363mXLlkVEROfOnZvt/9nPfhbbb7997L333jF58uR49913m449+uij0b9//+jWrVvTvmHDhsXy5cvjz3/+cxl+ov+hFAIAAAAAAAAAtFh1dXXRsWPHZltdXd1Gv6+xsTHGjx8fBx98cOy9995N+z//+c/HrbfeGjNmzIjJkyfHT3/60zj55JObji9evLhZISQimr5evHhxmX6q/2b5GAAAAAAAAACgxZo8eXJMnDix2b7q6uqNft/YsWPjmWeeiUceeaTZ/v/zf/5P03/3798/evToEUcccUS89NJLsdtuu5Un9CZSCgEAAAAAAACAxEpRSh2hxaqurt6kEsj/Nm7cuHjggQfi4Ycfjp122mmDtz3wwAMjIuLFF1+M3XbbLbp37x5PPPFEs9u8/vrrERHRvXv395VjYywfAwAAAAAAAACwCYqiiHHjxsXdd98dv/3tb2OXXXbZ6PfMnTs3IiJ69OgRERGDBg2Kp59+OpYsWdJ0m2nTpkWHDh1izz33LGteM4UAAAAAAAAAAGyCsWPHxm233Rb33ntv1NbWxuLFiyMiomPHjlFTUxMvvfRS3HbbbXHUUUdFly5d4k9/+lNMmDAhDj300Nhnn30iImLo0KGx5557ximnnBKXXHJJLF68OL71rW/F2LFj3/eMJRtTKoqiKOs9bgVWrU2dAKDyNTRm9/KQVOtWpnwDYOuS35VgeiUv9wAAJLbdYeemjpCVt2ZekDpCdlyLll9Nm9QJKKeX31iVOkKLtesO7Tb5tqX1fAh04403xqmnnhqvvvpqnHzyyfHMM8/EihUr4iMf+UiMGjUqvvWtb0WHDh2abv/KK6/El770pZg5c2a0b98+Ro8eHRdddFFUVZV3bg+lEADWSSmkvJRCANja5HclmJ5SCAAAqSmFlJdSSPm5Fi0/pZC8KIWk835KIZWmVeoAAAAAAAAAAACUn1IIAAAAAAAAAECGyrsYDQAAAAAAAADwvlmals3BTCEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZKgqdQAAAAAAAAAAaOlKqQOQJTOFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAyVJU6AAAAAAAAAAC0eKXUAciRmUIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyFBV6gAAAAAAAAAA0NKVopQ6AhlKXgpZuXJl3H777fHII4/EokWLolWrVrHrrrvGyJEj44gjjkgdDwAAAAAAAACgIiVdPubFF1+MPfbYIyZPnhwPPfRQTJ06NUqlUjz55JMxbNiwOP7442Pt2rUpIwIAAAAAAAAAVKSkpZCvfOUrMXz48Fi8eHEsWLAg6urqorGxMR577LF47rnn4sknn4zvfe97KSMCAAAAAAAAAFSkUlEURaoHb9++fcydOzd23333iIhYvXp1bLvttrFo0aLo0qVL3HvvvTF+/PiYP3/++7rfVSYXAfjQGhqTvTxkqXUr6wACsHVJdyWYr5KXewAAEtvusHNTR8jKWzMvSB0hO65Fy6+mTeoElNMrf69PHaHF6t2lOnWEzaYq5YN36tQp3n777aav33333Vi7dm20bds2IiL22WefWLRo0Qbvo76+Purrm/9yFK2ro7o63/9pAAAAAAAAAAAbk3T5mE996lMxceLE+Mtf/hLz58+PM888Mz72sY9FbW1tREQsWLAgunbtusH7qKuri44dOzbbLr24bkvEBwAAAAAAAADYaiWdKeSSSy6JESNGxJ577hmlUik+8pGPxN133910/I033ohJkyZt8D4mT54cEydObLavaG2WEAAAAAAAAAAqh6Vp2RySlkK6du0ajz76aLzwwgtRX18f/fr1i6qq/4n0mc98ZqP3UV393qViVq0te1QAAAAAAAAAgIqSdPmYf9h9991j7733blYIiYh49dVXY8yYMYlSAQAAAAAAAABUrq2iFLI+b775Ztx8882pYwAAAAAAAAAAVJyky8fcd999Gzz+8ssvb6EkAAAAAAAAAAB5SVoKGTlyZJRKpSiKYr23KZVKWzARAAAAAAAAAEAeki4f06NHj7jrrruisbFxnducOXNSxgMAAAAAAAAAqFhJSyEDBw6M2bNnr/f4xmYRAQAAAAAAAIAclGzJtpwlXT5m0qRJsWLFivUe79OnT8yYMWMLJgIAAAAAAAAAyEPSUsghhxyywePt27ePwYMHb6E0AAAAAAAAAAD5SLp8DAAAAAAAAAAAm4dSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAxVpQ4AAAAAAAAAAC1dqZQ6ATkyUwgAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENVqQMAAAAAAAAAAKXUAciQmUIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyFBV6gAAAAAAAAAA0NKVSqkTkCMzhQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMlSVOgAAAAAAAAAAtHSl1AHIkplCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ6WiKIrUIcpt1drUCQAq3/KVa1JHyEptuzapI2SnVEqdID/5vStMyzkKLc+ahsbUEbLT2pNpWbVqZTzLrdEbqLJq5Xe+7Jyj5ec8ZWvn1768ep72s9QRsrPwxpNSR8hOjY+es7Jw6erUEVqsnp3apo6w2ZgpBAAAAAAAAAAgQ1WpAwAAAAAAAABAS2dSMjYHM4UAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADJUlToAAAAAAAAAALR0pSiljkCGzBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaqUgcAAAAAAAAAgBavlDoAOTJTCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ1WpAwAAAAAAAABAS1dKHYAsmSkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJChqtQBAAAAAAAAAKClK5VSJyBHZgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMVaUOEBHxxBNPxKOPPhqLFy+OiIju3bvHoEGD4oADDkicDAAAAAAAAACgMiUthSxZsiQ+/elPx+9///vo1atXdOvWLSIiXn/99ZgwYUIcfPDB8ctf/jK6du2aMiYAAAAAAAAAQMVJWgo566yzoqGhIZ577rno27dvs2Pz5s2LMWPGxNixY+POO+9MlBAAAAAAAAAANr9SlFJHIENJSyFTp06Nhx9++D2FkIiIvn37xpVXXhmHHXbYlg8GAAAAAAAAAFDhWqV88Orq6li+fPl6j7/99ttRXV29BRMBAAAAAAAAAOQhaSnkhBNOiNGjR8fdd9/drByyfPnyuPvuu+O0006LE088cYP3UV9fH8uXL2+21dfXb+7oAAAAAAAAAABbtaSlkMsvvzyOPPLI+NznPhfbbbdd1NTURE1NTWy33Xbxuc99Lo488sj4t3/7tw3eR11dXXTs2LHZdunFdVvoJwAAAAAAAAAA2DqViqIoUodYvnx5zJ49OxYvXhwREd27d4+BAwdGhw4dNvq99fX175kZpGhdbdkZgA9p+co1qSNkpbZdm9QRslMqpU6Qn/TvCvPiHIWWZ01DY+oI2WntybSsWrUynuXW6A1UWbXyO192ztHyc56ytfNrX149T/tZ6gjZWXjjSakjZKfGR89ZeePttakjtFg71FaljrDZbBU/WYcOHeLwww//QN9bXf3eAsgqvysAAAAAAAAAQAuXdPmYiIiVK1fGI488Es8+++x7jq1atSpuueWWBKkAAAAAAAAAYAsq2ZJtGUtaCnn++edjjz32iEMPPTT69+8fgwcPjoULFzYdX7ZsWZx22mkJEwIAAAAAAAAAVKakpZBzzjkn9t5771iyZEnMmzcvamtr45Of/GQsWLAgZSwAAAAAAAAAgIqXtBTyhz/8Ierq6mL77bePPn36xP333x/Dhg2LQw45JF5++eWU0QAAAAAAAAAAKlrSUsjKlSujqqqq6etSqRRTpkyJY445JgYPHhzPP/98wnQAAAAAAAAAAJWrauM32Xz69esXTz31VOyxxx7N9l999dUREXHsscemiAUAAAAAAAAAUPGSzhQyatSouP3229d57Oqrr44TTzwxiqLYwqkAAAAAAAAAACpfqciwdbFqbeoEAJVv+co1qSNkpbZdm9QRslMqpU6Qn/zeFablHIWWZ01DY+oI2WntybSsWrUynuXW6A1UWbXyO192ztHyc56ytfNrX149T/tZ6gjZWXjjSakjZKfGR89ZeeMdf+hOZYdtky6yslnl+5MBAAAAAAAAQIVQP2VzSLp8DAAAAAAAAAAAm4dSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZKgqdQAAAAAAAAAAaOlKpdQJyJGZQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIUFXqAAAAAAAAAADQ0pWilDoCGTJTCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ1WpAwAAAAAAAABAS1cqpU5AjswUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkKFSURRF6hDltmpt6gQAlW9tQ3YvD0m1blVKHSE7RThHy61VyXkKLUl+V4LpeRoFACA17/PZ2nUefmHqCNlZOf0bqSNQRm+925A6Qou13TatU0fYbMwUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENVqQMAAAAAAAAAQEtXKqVOQI7MFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyFBV6gAAAAAAAAAA0NKVopQ6AhkyUwgAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGapKHQAAAAAAAAAAWrpSKXUCcmSmEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhqpSBwAAAAAAAACAlq6UOgBZMlMIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABmqSh0AAAAAAAAAAFq8UuoA5MhMIQAAAAAAAAAAGdqqSyFvvfVW3HLLLaljAAAAAAAAAABUnK26FLJgwYI47bTTUscAAAAAAAAAAKg4VSkffPny5Rs8/vbbb2+hJAAAAAAAAAAAeUlaCunUqVOUSqX1Hi+KYoPHAQAAAAAAAABYt6SlkNra2vjmN78ZBx544DqPv/DCC/F//+//3cKpAAAAAAAAAAAqX9JSyL777hsREYMHD17n8U6dOkVRFBu8j/r6+qivr2+2r2hdHdXV1eUJCQAAAAAAAACbWSmsokH5tUr54J///OejXbt26z3evXv3OO+88zZ4H3V1ddGxY8dm26UX15U7KgAAAAAAAABARSkVG5uKYytnphCAzWNtQ0W/PGx1WrfS7i23Ipyj5daq5DyFlqSyrwS3Tp5GAQBIzft8tnadh1+YOkJ2Vk7/RuoIlNE79Z7IU9m2Ot8PdpIuH1MO1dXvLYCsWpsoDAAAAAAAAADAViLp8jEREStXroxHHnkknn322fccW7VqVdxyyy0JUgEAAAAAAAAAVLakpZDnn38+9thjjzj00EOjf//+MXjw4Fi0aFHT8WXLlsVpp52WMCEAAAAAAAAAQGVKWgo555xzYu+9944lS5bEvHnzora2Ng4++OBYsGBBylgAAAAAAAAAABUvaSnkD3/4Q9TV1cX2228fffr0ifvvvz+GDRsWhxxySLz88sspowEAAAAAAAAAVLSkpZCVK1dGVVVV09elUimmTJkSxxxzTAwePDief/75hOkAAAAAAAAAYMsolWyptpxVbfwmm0+/fv3iqaeeij322KPZ/quvvjoiIo499tgUsQAAAAAAAAAAKl7SmUJGjRoVt99++zqPXX311XHiiSdGURRbOBUAAAAAAAAAQOUrFRm2LlatTZ0AoPKtbcju5SGp1q0yn3ssgSKco+XWKvc58oBm8rsSTM/TKAAAqXmfz9au8/ALU0fIzsrp30gdgTJasdoTeSrt2+b7wU7SmUIAAAAAAAAAANg8lEIAAAAAAAAAADKkFAIAAAAAAAAAkKGq1AEAAAAAAAAAoKUrpQ5AlswUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIUFXqAAAAAAAAAADQ4pVSByBHZgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENVqQMAAAAAAAAAQEtXilLqCGTITCEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAxVpQ4AAAAAAAAAAC1dqZQ6ATkyUwgAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAADwPlxzzTWx8847R7t27eLAAw+MJ554InWkdVIKAQAAAAAAAADYRHfccUdMnDgxzjvvvJgzZ04MGDAghg0bFkuWLEkd7T2UQgAAAAAAAAAANtHll18eZ5xxRpx22mmx5557xrXXXhvbbLNN/OQnP0kd7T2UQgAAAAAAAAAANsHq1atj9uzZMWTIkKZ9rVq1iiFDhsSjjz6aMNm6VaUOAAAAAAAAAACQSn19fdTX1zfbV11dHdXV1e+57d/+9rdoaGiIbt26NdvfrVu3+Mtf/rJZc34QWZZC2lXIT1VfXx91dXUxefLkdZ5MvD/Gs/yMaXlV3HhWlVIn2KiKG9MKUFlj6hxtiYxpeRnP8jOm5WdMy8t4lp8xLS/jWX7GtPyMaXkZz/IzpuVnTMvLeJZfJY3pyunfSB1hoyppPMlPpfydO0fnf68uvvOd7zTbd95558X555+fJlAZlYqiKFKHaKmWL18eHTt2jGXLlkWHDh1Sx6l4xrP8jGl5Gc/yM6blZ0zLy3iWnzEtL+NZfsa0/IxpeRnP8jOm5WU8y8+Ylp8xLS/jWX7GtPyMaXkZz/IzpuVlPKFlej8zhaxevTq22Wab+MUvfhEjR45s2j969OhYunRp3HvvvZs77vvSKnUAAAAAAAAAAIBUqquro0OHDs229c0W1LZt2xg4cGBMnz69aV9jY2NMnz49Bg0atKUibzIT0AAAAAAAAAAAbKKJEyfG6NGjY7/99osDDjggfvjDH8aKFSvitNNOSx3tPZRCAAAAAAAAAAA20QknnBBvvPFGfPvb347FixfHxz72sXjwwQejW7duqaO9h1JIQtXV1XHeeeetd9oZ3h/jWX7GtLyMZ/kZ0/IzpuVlPMvPmJaX8Sw/Y1p+xrS8jGf5GdPyMp7lZ0zLz5iWl/EsP2Nafsa0vIxn+RnT8jKewKYaN25cjBs3LnWMjSoVRVGkDgEAAAAAAAAAQHm1Sh0AAAAAAAAAAIDyUwoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQhK55pprYuedd4527drFgQceGE888UTqSBXr4YcfjmOOOSZ69uwZpVIp7rnnntSRKlpdXV3sv//+UVtbG127do2RI0fGvHnzUseqaFOmTIl99tknOnToEB06dIhBgwbFf/zHf6SOlY2LLrooSqVSjB8/PnWUinX++edHqVRqtvXr1y91rIr317/+NU4++eTo0qVL1NTURP/+/eOpp55KHati7bzzzu85T0ulUowdOzZ1tIrU0NAQ5557buyyyy5RU1MTu+22W1xwwQVRFEXqaBXr7bffjvHjx0fv3r2jpqYmDjrooHjyySdTx6oYG3tPXxRFfPvb344ePXpETU1NDBkyJF544YU0YSvExsb0rrvuiqFDh0aXLl2iVCrF3Llzk+SsJBsa0zVr1sQ555wT/fv3j/bt20fPnj3jC1/4QixcuDBd4K3cxs7R888/P/r16xft27eP7bbbLoYMGRKPP/54mrAV4v18PnLmmWdGqVSKH/7wh1ssX6XZ2Hieeuqp73lvOnz48DRhK8SmnKPPPfdcHHvssdGxY8do37597L///rFgwYItH7ZCbGxM13UNVSqV4tJLL00TeCu3sfF85513Yty4cbHTTjtFTU1N7LnnnnHttdemCVshNjamr7/+epx66qnRs2fP2GabbWL48OHe52/Apnx2v2rVqhg7dmx06dIltt122/j0pz8dr7/+eqLEW79NGdPrr78+DjvssOjQoUOUSqVYunRpmrAAH4JSSAJ33HFHTJw4Mc4777yYM2dODBgwIIYNGxZLlixJHa0irVixIgYMGBDXXHNN6ihZmDVrVowdOzYee+yxmDZtWqxZsyaGDh0aK1asSB2tYu20005x0UUXxezZs+Opp56Kf/mXf4kRI0bEn//859TRKt6TTz4Z1113Xeyzzz6po1S8vfbaKxYtWtS0PfLII6kjVbS33norDj744GjTpk38x3/8Rzz77LNx2WWXxXbbbZc6WsV68sknm52j06ZNi4iIz372s4mTVaaLL744pkyZEldffXU899xzcfHFF8cll1wSV111VepoFeuLX/xiTJs2LX7605/G008/HUOHDo0hQ4bEX//619TRKsLG3tNfcsklceWVV8a1114bjz/+eLRv3z6GDRsWq1at2sJJK8fGxnTFihXxyU9+Mi6++OItnKxybWhM33333ZgzZ06ce+65MWfOnLjrrrti3rx5ceyxxyZIWhk2do5+9KMfjauvvjqefvrpeOSRR2LnnXeOoUOHxhtvvLGFk1aOTf185O67747HHnssevbsuYWSVaZNGc/hw4c3e496++23b8GElWdjY/rSSy/FJz/5yejXr1/MnDkz/vSnP8W5554b7dq128JJK8fGxvR/n5+LFi2Kn/zkJ1EqleLTn/70Fk5aGTY2nhMnTowHH3wwbr311njuuedi/PjxMW7cuLjvvvu2cNLKsaExLYoiRo4cGS+//HLce++98cc//jF69+4dQ4YM8Vn0emzKZ/cTJkyI+++/P+68886YNWtWLFy4MI477riEqbdumzKm7777bgwfPjy+8Y1vJEwK8CEVbHEHHHBAMXbs2KavGxoaip49exZ1dXUJU+UhIoq77747dYysLFmypIiIYtasWamjZGW77bYrfvzjH6eOUdHefvvtYvfddy+mTZtWDB48uDj77LNTR6pY5513XjFgwIDUMbJyzjnnFJ/85CdTx8ja2WefXey2225FY2Nj6igV6eijjy7GjBnTbN9xxx1XnHTSSYkSVbZ33323aN26dfHAAw8027/vvvsW3/zmNxOlqlz//J6+sbGx6N69e3HppZc27Vu6dGlRXV1d3H777QkSVp4NXSfNnz+/iIjij3/84xbNVOk25drziSeeKCKieOWVV7ZMqAq2KeO5bNmyIiKKhx56aMuEqnDrG9PXXnut2HHHHYtnnnmm6N27d/GDH/xgi2erROsaz9GjRxcjRoxIkicH6xrTE044oTj55JPTBMrApjyXjhgxoviXf/mXLROowq1rPPfaa6/iu9/9brN93vNvun8e03nz5hURUTzzzDNN+xoaGooddtih+NGPfpQgYeX558/uly5dWrRp06a48847m27z3HPPFRFRPProo6liVpQN/T1kxowZRUQUb7311pYPBvAhmSlkC1u9enXMnj07hgwZ0rSvVatWMWTIkHj00UcTJoN1W7ZsWUREdO7cOXGSPDQ0NMS///u/x4oVK2LQoEGp41S0sWPHxtFHH93s+ZQP7oUXXoiePXvGrrvuGieddJLpeT+k++67L/bbb7/47Gc/G127do2Pf/zj8aMf/Sh1rGysXr06br311hgzZkyUSqXUcSrSQQcdFNOnT4/nn38+IiL+8z//Mx555JE48sgjEyerTGvXro2Ghob3/CvWmpoaMy+Vwfz582Px4sXNXvM7duwYBx54oGsotmrLli2LUqkUnTp1Sh2l4q1evTquv/766NixYwwYMCB1nIrV2NgYp5xySkyaNCn22muv1HGyMHPmzOjatWv07ds3vvSlL8Xf//731JEqVmNjY/zqV7+Kj370ozFs2LDo2rVrHHjggZaJLqPXX389fvWrX8Xpp5+eOkrFOuigg+K+++6Lv/71r1EURcyYMSOef/75GDp0aOpoFam+vj4iotl1VKtWraK6utp11Cb658/uZ8+eHWvWrGl27dSvX7/o1auXa6dN5O8hQK6UQrawv/3tb9HQ0BDdunVrtr9bt26xePHiRKlg3RobG2P8+PFx8MEHx9577506TkV7+umnY9ttt43q6uo488wz4+67744999wzdayK9e///u8xZ86cqKurSx0lCwceeGDcdNNN8eCDD8aUKVNi/vz5ccghh8Tbb7+dOlrFevnll2PKlCmx++67x9SpU+NLX/pSfOUrX4mbb745dbQs3HPPPbF06dI49dRTU0epWF//+tfjc5/7XPTr1y/atGkTH//4x2P8+PFx0kknpY5WkWpra2PQoEFxwQUXxMKFC6OhoSFuvfXWePTRR2PRokWp41W8f1wnuYaikqxatSrOOeecOPHEE6NDhw6p41SsBx54ILbddtto165d/OAHP4hp06bF9ttvnzpWxbr44oujqqoqvvKVr6SOkoXhw4fHLbfcEtOnT4+LL744Zs2aFUceeWQ0NDSkjlaRlixZEu+8805cdNFFMXz48PjNb34To0aNiuOOOy5mzZqVOl4Wbr755qitrbWMxIdw1VVXxZ577hk77bRTtG3bNoYPHx7XXHNNHHrooamjVaR/lBUmT54cb731VqxevTouvvjieO2111xHbYJ1fXa/ePHiaNu27XtKya6dNo2/hwA5q0odANh6jR07Np555hnN7DLo27dvzJ07N5YtWxa/+MUvYvTo0TFr1izFkA/g1VdfjbPPPjumTZtmXeEy+d8zA+yzzz5x4IEHRu/evePnP/+5f0H0ATU2NsZ+++0XF154YUREfPzjH49nnnkmrr322hg9enTidJXvhhtuiCOPPDJ69uyZOkrF+vnPfx4/+9nP4rbbbou99tor5s6dG+PHj4+ePXs6Rz+gn/70pzFmzJjYcccdo3Xr1rHvvvvGiSeeGLNnz04dDdjC1qxZE8cff3wURRFTpkxJHaeiHX744TF37tz429/+Fj/60Y/i+OOPj8cffzy6du2aOlrFmT17dlxxxRUxZ84cM62Vyec+97mm/+7fv3/ss88+sdtuu8XMmTPjiCOOSJisMjU2NkZExIgRI2LChAkREfGxj30s/vCHP8S1114bgwcPThkvCz/5yU/ipJNO8lnKh3DVVVfFY489Fvfdd1/07t07Hn744Rg7dmz07NnTTLYfQJs2beKuu+6K008/PTp37hytW7eOIUOGxJFHHhlFUaSOt9Xz2X35GVMgZ2YK2cK23377aN26dbz++uvN9r/++uvRvXv3RKngvcaNGxcPPPBAzJgxI3baaafUcSpe27Zto0+fPjFw4MCoq6uLAQMGxBVXXJE6VkWaPXt2LFmyJPbdd9+oqqqKqqqqmDVrVlx55ZVRVVXlX2WVQadOneKjH/1ovPjii6mjVKwePXq8p/S1xx57WJanDF555ZV46KGH4otf/GLqKBVt0qRJTbOF9O/fP0455ZSYMGGCGZg+hN122y1mzZoV77zzTrz66qvxxBNPxJo1a2LXXXdNHa3i/eM6yTUUleAfhZBXXnklpk2bZpaQD6l9+/bRp0+f+MQnPhE33HBDVFVVxQ033JA6VkX63e9+F0uWLIlevXo1XUe98sor8dWvfjV23nnn1PGysOuuu8b222/vOuoD2n777aOqqsp11Gbyu9/9LubNm+c66kNYuXJlfOMb34jLL788jjnmmNhnn31i3LhxccIJJ8S//du/pY5XsQYOHBhz586NpUuXxqJFi+LBBx+Mv//9766jNmJ9n9137949Vq9eHUuXLm12e9dOG+fvIUDulEK2sLZt28bAgQNj+vTpTfsaGxtj+vTpMWjQoITJ4L8VRRHjxo2Lu+++O37729/GLrvskjpSlhobG5vWzeT9OeKII+Lpp5+OuXPnNm377bdfnHTSSTF37txo3bp16ogV75133omXXnopevTokTpKxTr44INj3rx5zfY9//zz0bt370SJ8nHjjTdG165d4+ijj04dpaK9++670apV80uB1q1bN/0LTT649u3bR48ePeKtt96KqVOnxogRI1JHqni77LJLdO/evdk11PLly+Pxxx93DcVW5R+FkBdeeCEeeuih6NKlS+pI2XEd9cGdcsop8ac//anZdVTPnj1j0qRJMXXq1NTxsvDaa6/F3//+d9dRH1Dbtm1j//33dx21mdxwww0xcODAGDBgQOooFWvNmjWxZs0a11GbSceOHWOHHXaIF154IZ566inXUeuxsc/uBw4cGG3atGl27TRv3rxYsGCBa6f18PcQoKWwfEwCEydOjNGjR8d+++0XBxxwQPzwhz+MFStWxGmnnZY6WkV65513mv0rjPnz58fcuXOjc+fO0atXr4TJKtPYsWPjtttui3vvvTdqa2ub1hrs2LFj1NTUJE5XmSZPnhxHHnlk9OrVK95+++247bbbYubMmT54+4Bqa2vfs6Zj+/bto0uXLtZ6/ID+9V//NY455pjo3bt3LFy4MM4777xo3bp1nHjiiamjVawJEybEQQcdFBdeeGEcf/zx8cQTT8T1118f119/fepoFa2xsTFuvPHGGD16dFRVeRv7YRxzzDHx/e9/P3r16hV77bVX/PGPf4zLL788xowZkzpaxZo6dWoURRF9+/aNF198MSZNmhT9+vXzHn8Tbew9/fjx4+N73/te7L777rHLLrvEueeeGz179oyRI0emC72V29iYvvnmm7FgwYJYuHBhRETTH+G6d+/uXxGux4bGtEePHvGZz3wm5syZEw888EA0NDQ0XUt17tw52rZtmyr2VmtD49mlS5f4/ve/H8cee2z06NEj/va3v8U111wTf/3rX+Ozn/1swtRbt4393v9zUalNmzbRvXv36Nu375aOWhE2NJ6dO3eO73znO/HpT386unfvHi+99FJ87Wtfiz59+sSwYcMSpt66bewcnTRpUpxwwglx6KGHxuGHHx4PPvhg3H///TFz5sx0obdym/K56PLly+POO++Myy67LFXMirGx8Rw8eHBMmjQpampqonfv3jFr1qy45ZZb4vLLL0+Yeuu2sTG98847Y4cddohevXrF008/HWeffXaMHDkyhg4dmjD11mtjn9137NgxTj/99Jg4cWJ07tw5OnToEF/+8pdj0KBB8YlPfCJx+q3Tpvw9ZPHixbF48eKmc/npp5+O2tra6NWrV3Tu3DlZdoD3pSCJq666qujVq1fRtm3b4oADDigee+yx1JEq1owZM4qIeM82evTo1NEq0rrGMiKKG2+8MXW0ijVmzJiid+/eRdu2bYsddtihOOKII4rf/OY3qWNlZfDgwcXZZ5+dOkbFOuGEE4oePXoUbdu2LXbcccfihBNOKF588cXUsSre/fffX+y9995FdXV10a9fv+L6669PHaniTZ06tYiIYt68eamjVLzly5cXZ599dtGrV6+iXbt2xa677lp885vfLOrr61NHq1h33HFHseuuuxZt27YtunfvXowdO7ZYunRp6lgVY2Pv6RsbG4tzzz236NatW1FdXV0cccQRngs2YmNjeuONN67z+HnnnZc099ZsQ2M6f/789V5LzZgxI3X0rdKGxnPlypXFqFGjip49exZt27YtevToURx77LHFE088kTr2Vu39fj7Su3fv4gc/+MEWzVhJNjSe7777bjF06NBihx12KNq0aVP07t27OOOMM4rFixenjr1V25Rz9IYbbij69OlTtGvXrhgwYEBxzz33pAtcATZlTK+77rqipqbGe9NNsLHxXLRoUXHqqacWPXv2LNq1a1f07du3uOyyy4rGxsa0wbdiGxvTK664othpp52KNm3aFL169Sq+9a1vuS7dgE357H7lypXFWWedVWy33XbFNttsU4waNapYtGhRutBbuU0Z0/POO8/fTICKVyqKotjUAgkAAAAAAAAAAJWh1cZvAgAAAAAAAABApVEKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAADwPp166qkxcuTIpq8PO+ywGD9+/BbPMXPmzCiVSrF06dIt/tgAAAAAbP2UQgAAAMjGqaeeGqVSKUqlUrRt2zb69OkT3/3ud2Pt2rWb9XHvuuuuuOCCCzbptoocAAAAAGwpVakDAAAAQDkNHz48brzxxqivr49f//rXMXbs2GjTpk1Mnjy52e1Wr14dbdu2Lctjdu7cuSz3AwAAAADlZKYQAAAAslJdXR3du3eP3r17x5e+9KUYMmRI3HfffU1Lvnz/+9+Pnj17Rt++fSMi4tVXX43jjz8+OnXqFJ07d44RI0bEf/3XfzXdX0NDQ0ycODE6deoUXbp0ia997WtRFEWzx/zn5WPq6+vjnHPOiY985CNRXV0dffr0iRtuuCH+67/+Kw4//PCIiNhuu+2iVCrFqaeeGhERjY2NUVdXF7vsskvU1NTEgAED4he/+EWzx/n1r38dH/3oR6OmpiYOP/zwZjkBAAAA4J8phQAAAJC1mpqaWL16dURETJ8+PebNmxfTpk2LBx54INasWRPDhg2L2tra+N3vfhe///3vY9ttt43hw4c3fc9ll10WN910U/zkJz+JRx55JN588824++67N/iYX/jCF+L222+PK6+8Mp577rm47rrrYtttt42PfOQj8ctf/jIiIubNmxeLFi2KK664IiIi6urq4pZbbolrr702/vznP8eECRPi5JNPjlmzZkXEf5dXjjvuuDjmmGNi7ty58cUvfjG+/vWvb65hAwAAACADlo8BAAAgS0VRxPTp02Pq1Knx5S9/Od54441o3759/PjHP25aNubWW2+NxsbG+PGPfxylUikiIm688cbo1KlTzJw5M4YOHRo//OEPY/LkyXHcccdFRMS1114bU6dOXe/jPv/88/Hzn/88pk2bFkOGDImIiF133bXp+D+WmunatWt06tQpIv57ZpELL7wwHnrooRg0aFDT9zzyyCNx3XXXxeDBg2PKlCmx2267xWWXXRYREX379o2nn346Lr744jKOGgAAAAA5UQoBAAAgKw888EBsu+22sWbNmmhsbIzPf/7zcf7558fYsWOjf//+TYWQiIj//M//jBdffDFqa2ub3ceqVavipZdeimXLlsWiRYviwAMPbDpWVVUV++2333uWkPmHuXPnRuvWrWPw4MGbnPnFF1+Md999Nz71qU8127969er4+Mc/HhERzz33XLMcEdFUIAEAAACAdVEKAQAAICuHH354TJkyJdq2bRs9e/aMqqr/ufRt3759s9u+8847MXDgwPjZz372nvvZYYcdPtDj19TUvO/veeeddyIi4le/+lXsuOOOzY5VV1d/oBwAAAAAoBQCAABAVtq3bx99+vTZpNvuu+++cccdd0TXrl2jQ4cO67xNjx494vHHH49DDz00IiLWrl0bs2fPjn333Xedt+/fv380NjbGrFmzmpaP+d/+MVNJQ0ND074999wzqqurY8GCBeudYWSPPfaI++67r9m+xx57bOM/JAAAAAAtVqvUAQAAACCVk046KbbffvsYMWJE/O53v4v58+fHzJkz4ytf+Uq89tprERFx9tlnx0UXXRT33HNP/OUvf4mzzjorli5dut773HnnnWP06NExZsyYuOeee5ru8+c//3lERPTu3TtKpVI88MAD8cYbb8Q777wTtbW18a//+q8xYcKEuPnmm+Oll16KOXPmxFVXXRU333xzRESceeaZ8cILL8SkSZNi3rx5cdttt8VNN920uYcIAAAAgAqmFAIAAECLtc0228TDDz8cvXr1iuOOOy722GOPOP3002PVqlVNM4d89atfjVNOOSVGjx4dgwYNitra2hg1atQG73fKlCnxmc98Js4666zo169fnHHGGbFixYqIiNhxxx3jO9/5Tnz961+Pbt26xbhx4yIi4oILLohzzz036urqYo899ojhw4fHr371q9hll10iIqJXr17xy1/+Mu65554YMGBAXHvttXHhhRduxtEBAAAAoNKViqIoUocAAAAAAAAAAKC8zBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIEP/H16ydg0jNyFgAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["❌ [TRAINING] SUB model not found. Training...\n"]},{"data":{"text/html":["
Model: \"functional_1\"\n","
\n"],"text/plain":["\u001b[1mModel: \"functional_1\"\u001b[0m\n"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n","┃ Layer (type)         Output Shape          Param #  Connected to      ┃\n","┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n","│ input_layer         │ (None, 894)       │          0 │ -                 │\n","│ (InputLayer)        │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ reshape_1 (Reshape) │ (None, 894, 1)    │          0 │ input_layer[0][0] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ conv1d_1 (Conv1D)   │ (None, 892, 128)  │        512 │ reshape_1[0][0]   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ max_pooling1d_1     │ (None, 446, 128)  │          0 │ conv1d_1[0][0]    │\n","│ (MaxPooling1D)      │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ bidirectional_1     │ (None, 446, 128)  │     74,496 │ max_pooling1d_1[ │\n","│ (Bidirectional)     │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ attention           │ (None, 446, 128)  │          0 │ bidirectional_1[ │\n","│ (Attention)         │                   │            │ bidirectional_1[ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ multiply (Multiply) │ (None, 446, 128)  │          0 │ bidirectional_1[ │\n","│                     │                   │            │ attention[0][0]   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ gru_2 (GRU)         │ (None, 64)        │     37,248 │ multiply[0][0]    │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_2 (Dropout) │ (None, 64)        │          0 │ gru_2[0][0]       │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ sub_output (Dense)  │ (None, 75)        │      4,875 │ dropout_2[0][0]   │\n","└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n","
\n"],"text/plain":["┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n","┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mConnected to \u001b[0m\u001b[1m \u001b[0m┃\n","┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n","│ input_layer │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m894\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ - │\n","│ (\u001b[38;5;33mInputLayer\u001b[0m) │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ reshape_1 (\u001b[38;5;33mReshape\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m894\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ input_layer[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ conv1d_1 (\u001b[38;5;33mConv1D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m892\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │ reshape_1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ max_pooling1d_1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m446\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ conv1d_1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","│ (\u001b[38;5;33mMaxPooling1D\u001b[0m) │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ bidirectional_1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m446\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m74,496\u001b[0m │ max_pooling1d_1[\u001b[38;5;34m…\u001b[0m │\n","│ (\u001b[38;5;33mBidirectional\u001b[0m) │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ attention │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m446\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bidirectional_1[\u001b[38;5;34m…\u001b[0m │\n","│ (\u001b[38;5;33mAttention\u001b[0m) │ │ │ bidirectional_1[\u001b[38;5;34m…\u001b[0m │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ multiply (\u001b[38;5;33mMultiply\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m446\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ bidirectional_1[\u001b[38;5;34m…\u001b[0m │\n","│ │ │ │ attention[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ gru_2 (\u001b[38;5;33mGRU\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m37,248\u001b[0m │ multiply[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_2 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ gru_2[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ sub_output (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m75\u001b[0m) │ \u001b[38;5;34m4,875\u001b[0m │ dropout_2[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["
 Total params: 117,131 (457.54 KB)\n","
\n"],"text/plain":["\u001b[1m Total params: \u001b[0m\u001b[38;5;34m117,131\u001b[0m (457.54 KB)\n"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["
 Trainable params: 117,131 (457.54 KB)\n","
\n"],"text/plain":["\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m117,131\u001b[0m (457.54 KB)\n"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["
 Non-trainable params: 0 (0.00 B)\n","
\n"],"text/plain":["\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["Epoch 1/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m426s\u001b[0m 62ms/step - accuracy: 0.1227 - loss: 3.7388 - val_accuracy: 0.4960 - val_loss: 1.9711 - learning_rate: 0.0010\n","Epoch 2/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m422s\u001b[0m 62ms/step - accuracy: 0.5018 - loss: 1.9340 - val_accuracy: 0.6396 - val_loss: 1.3686 - learning_rate: 0.0010\n","Epoch 3/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m423s\u001b[0m 62ms/step - accuracy: 0.6153 - loss: 1.4608 - val_accuracy: 0.6999 - val_loss: 1.1224 - learning_rate: 0.0010\n","Epoch 4/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m422s\u001b[0m 62ms/step - accuracy: 0.6720 - loss: 1.2301 - val_accuracy: 0.7397 - val_loss: 0.9752 - learning_rate: 0.0010\n","Epoch 5/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m422s\u001b[0m 62ms/step - accuracy: 0.7080 - loss: 1.0835 - val_accuracy: 0.7713 - val_loss: 0.8428 - learning_rate: 0.0010\n","Epoch 6/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m422s\u001b[0m 62ms/step - accuracy: 0.7337 - loss: 0.9827 - val_accuracy: 0.7809 - val_loss: 0.8007 - learning_rate: 0.0010\n","Epoch 7/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m422s\u001b[0m 62ms/step - accuracy: 0.7527 - loss: 0.9056 - val_accuracy: 0.7975 - val_loss: 0.7386 - learning_rate: 0.0010\n","Epoch 8/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m422s\u001b[0m 62ms/step - accuracy: 0.7680 - loss: 0.8427 - val_accuracy: 0.8054 - val_loss: 0.7033 - learning_rate: 0.0010\n","Epoch 9/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m422s\u001b[0m 62ms/step - accuracy: 0.7795 - loss: 0.7983 - val_accuracy: 0.8181 - val_loss: 0.6590 - learning_rate: 0.0010\n","Epoch 10/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m421s\u001b[0m 62ms/step - accuracy: 0.7891 - loss: 0.7608 - val_accuracy: 0.8248 - val_loss: 0.6321 - learning_rate: 0.0010\n","Epoch 11/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m422s\u001b[0m 62ms/step - accuracy: 0.7956 - loss: 0.7346 - val_accuracy: 0.8183 - val_loss: 0.6458 - learning_rate: 0.0010\n","Epoch 12/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m422s\u001b[0m 62ms/step - accuracy: 0.8019 - loss: 0.7042 - val_accuracy: 0.8334 - val_loss: 0.5967 - learning_rate: 0.0010\n","Epoch 13/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m423s\u001b[0m 62ms/step - accuracy: 0.8076 - loss: 0.6834 - val_accuracy: 0.8419 - val_loss: 0.5628 - learning_rate: 0.0010\n","Epoch 14/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m422s\u001b[0m 62ms/step - accuracy: 0.8117 - loss: 0.6659 - val_accuracy: 0.8414 - val_loss: 0.5627 - learning_rate: 0.0010\n","Epoch 15/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m422s\u001b[0m 62ms/step - accuracy: 0.8178 - loss: 0.6438 - val_accuracy: 0.8429 - val_loss: 0.5519 - learning_rate: 0.0010\n","Epoch 16/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m422s\u001b[0m 62ms/step - accuracy: 0.8218 - loss: 0.6295 - val_accuracy: 0.8453 - val_loss: 0.5470 - learning_rate: 0.0010\n","Epoch 17/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m421s\u001b[0m 62ms/step - accuracy: 0.8238 - loss: 0.6211 - val_accuracy: 0.8519 - val_loss: 0.5189 - learning_rate: 0.0010\n","Epoch 18/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m421s\u001b[0m 62ms/step - accuracy: 0.8267 - loss: 0.6053 - val_accuracy: 0.8564 - val_loss: 0.5063 - learning_rate: 0.0010\n","Epoch 19/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m421s\u001b[0m 62ms/step - accuracy: 0.8295 - loss: 0.5947 - val_accuracy: 0.8543 - val_loss: 0.5118 - learning_rate: 0.0010\n","Epoch 20/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 56ms/step - accuracy: 0.8325 - loss: 0.5816\n","Epoch 20: ReduceLROnPlateau reducing learning rate to 0.0005000000237487257.\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m421s\u001b[0m 62ms/step - accuracy: 0.8325 - loss: 0.5816 - val_accuracy: 0.8530 - val_loss: 0.5133 - learning_rate: 0.0010\n","Epoch 21/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m421s\u001b[0m 62ms/step - accuracy: 0.8581 - loss: 0.4919 - val_accuracy: 0.8772 - val_loss: 0.4262 - learning_rate: 5.0000e-04\n","Epoch 22/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m421s\u001b[0m 62ms/step - accuracy: 0.8633 - loss: 0.4706 - val_accuracy: 0.8802 - val_loss: 0.4197 - learning_rate: 5.0000e-04\n","Epoch 23/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m422s\u001b[0m 62ms/step - accuracy: 0.8644 - loss: 0.4645 - val_accuracy: 0.8805 - val_loss: 0.4143 - learning_rate: 5.0000e-04\n","Epoch 24/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m421s\u001b[0m 62ms/step - accuracy: 0.8678 - loss: 0.4515 - val_accuracy: 0.8811 - val_loss: 0.4130 - learning_rate: 5.0000e-04\n","Epoch 25/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m421s\u001b[0m 62ms/step - accuracy: 0.8700 - loss: 0.4423 - val_accuracy: 0.8856 - val_loss: 0.3979 - learning_rate: 5.0000e-04\n","Epoch 26/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m421s\u001b[0m 62ms/step - accuracy: 0.8712 - loss: 0.4398 - val_accuracy: 0.8864 - val_loss: 0.3954 - learning_rate: 5.0000e-04\n","Epoch 27/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m421s\u001b[0m 62ms/step - accuracy: 0.8735 - loss: 0.4300 - val_accuracy: 0.8859 - val_loss: 0.3921 - learning_rate: 5.0000e-04\n","Epoch 28/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m421s\u001b[0m 62ms/step - accuracy: 0.8750 - loss: 0.4259 - val_accuracy: 0.8853 - val_loss: 0.3996 - learning_rate: 5.0000e-04\n","Epoch 29/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m420s\u001b[0m 62ms/step - accuracy: 0.8755 - loss: 0.4220 - val_accuracy: 0.8868 - val_loss: 0.3910 - learning_rate: 5.0000e-04\n","Epoch 30/30\n","\u001b[1m6780/6780\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m419s\u001b[0m 62ms/step - accuracy: 0.8758 - loss: 0.4208 - val_accuracy: 0.8903 - val_loss: 0.3802 - learning_rate: 5.0000e-04\n"]},{"name":"stderr","output_type":"stream","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"name":"stdout","output_type":"stream","text":["✅ تم حفظ النموذج.\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABWwAAAHqCAYAAACQrwf+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA1g9JREFUeJzs3Xd4FGXbxuHfpm16gYQUeu+9SRHwlSaIgDSxINZXBUVRP8WCCCo2ECtYABsIKkVeC4ogolSpUgSkJpCE0FJIz+58f2yyISRAEjZZklznccyxu7PPzNwbAYeLZ+/HZBiGgYiIiIiIiIiIiIg4nYuzCxARERERERERERERGwW2IiIiIiIiIiIiIlcJBbYiIiIiIiIiIiIiVwkFtiIiIiIiIiIiIiJXCQW2IiIiIiIiIiIiIlcJBbYiIiIiIiIiIiIiVwkFtiIiIiIiIiIiIiJXCQW2IiIiIiIiIiIiIlcJBbYiIiIiIiIiIiIiVwkFtiIiUihff/01lSpV4ty5cyVy/h49etCsWbPLjtuzZw9ubm7s2rWrROoQERERkavHQw89RK9evUrs/CaTibFjx1523KxZs6hRowbp6eklVouISA4FtiJSYXzwwQeYTCY6duzo7FLKHIvFwgsvvMDDDz+Mr6+vU2tp0qQJ/fv3Z+LEiU6tQ0RERKQs+vTTTzGZTGzevNnZpVzW4cOH+eSTT3jmmWecXQqjR48mIyODDz/80NmliEgFoMBWRCqMefPmUatWLTZt2sSBAwecXU6Z8r///Y99+/Zx//33O7sUAB544AGWLFnCwYMHnV2KiIiIiJSQt99+m9q1a3Pdddc5uxQ8PT258847mT59OoZhOLscESnnFNiKSIVw+PBh1q1bx/Tp0wkJCWHevHnOLumikpOTnV1CPnPnzqVLly5UrVrV2aUA0LNnT4KCgvjss8+cXYqIiIiIlIDMzEzmzZvH8OHDnV2K3fDhwzl69Ci//fabs0sRkXJOga2IVAjz5s0jKCiI/v37M3To0IsGtvHx8Tz22GPUqlULs9lMtWrVGDVqFKdOnbKPSUtLY9KkSTRo0ABPT0/Cw8O5+eab7bM9V69ejclkYvXq1XnOfeTIEUwmE59++ql93+jRo/H19eXgwYP069cPPz8/brvtNgD++OMPhg0bRo0aNTCbzVSvXp3HHnuM1NTUfHXv3buX4cOHExISgpeXFw0bNuTZZ58F4LfffsNkMrFkyZJ8x82fPx+TycT69esv+rNLS0tj+fLl9OzZM997K1asoGvXrgQGBuLr60vDhg3zfGUt5yt3R44cyXPcxX5GAFu2bKFz5854eXlRu3ZtZs2alW+Mu7s7PXr04Lvvvrto3SIiIiJSfNu2beOGG27A398fX19frr/+ejZs2JBnTGZmJi+++CL169fH09OTypUr07VrV1asWGEfExsby1133UW1atUwm82Eh4czcODAfPeHF/rzzz85depUgfeg7777Lk2bNsXb25ugoCDatWvH/Pnz7e+PHj2aWrVq5Ttu0qRJmEymAq83b948GjZsiKenJ23btmXNmjX5xrRt25ZKlSrpHlRESpybswsQESkN8+bN4+abb8bDw4ORI0cyc+ZM/vrrL9q3b28fc+7cOa699lr++ecf7r77btq0acOpU6dYtmwZx44dIzg4GIvFwo033sjKlSu55ZZbGDduHElJSaxYsYJdu3ZRt27dIteWlZVFnz596Nq1K2+++Sbe3t4AfPPNN6SkpPDggw9SuXJlNm3axLvvvsuxY8f45ptv7Mf//fffXHvttbi7u3P//fdTq1YtDh48yP/+9z9efvllevToQfXq1Zk3bx6DBw/O93OpW7cunTp1umh9W7ZsISMjgzZt2uTZv3v3bm688UZatGjB5MmTMZvNHDhwgLVr1xb5Z5Dj7Nmz9OvXj+HDhzNy5Ei+/vprHnzwQTw8PLj77rvzjG3bti3fffcdiYmJ+Pv7F/uaIiIiIpLX7t27ufbaa/H39+f//u//cHd358MPP6RHjx78/vvv9jUhJk2axNSpU7n33nvp0KEDiYmJbN68ma1bt9oXChsyZAi7d+/m4YcfplatWsTFxbFixQoiIyMLDFVzrFu3DpPJROvWrfPs//jjj3nkkUcYOnQo48aNIy0tjb///puNGzdy6623Fuvz/v777yxcuJBHHnkEs9nMBx98QN++fdm0aVO+RXHbtGlzRfe7IiKFYoiIlHObN282AGPFihWGYRiG1Wo1qlWrZowbNy7PuIkTJxqAsXjx4nznsFqthmEYxpw5cwzAmD59+kXH/PbbbwZg/Pbbb3neP3z4sAEYc+fOte+78847DcB4+umn850vJSUl376pU6caJpPJOHr0qH1ft27dDD8/vzz7zq/HMAxjwoQJhtlsNuLj4+374uLiDDc3N+OFF17Id53zffLJJwZg7Ny5M8/+t956ywCMkydPXvTYuXPnGoBx+PDhPPsL+hl1797dAIxp06bZ96WnpxutWrUyqlSpYmRkZOQ5x/z58w3A2Lhx4yXrFxEREZFcOfdnf/3110XHDBo0yPDw8DAOHjxo3xcdHW34+fkZ3bp1s+9r2bKl0b9//4ue5+zZswZgvPHGG0Wu8/bbbzcqV66cb//AgQONpk2bXvLYO++806hZs2a+/S+88IJxYQwCGICxefNm+76jR48anp6exuDBg/Od4/777ze8vLwK+SlERIpHLRFEpNybN28eoaGh9sUKTCYTI0aMYMGCBVgsFvu4RYsW0bJly3yzUHOOyRkTHBzMww8/fNExxfHggw/m2+fl5WV/npyczKlTp+jcuTOGYbBt2zYATp48yZo1a7j77rupUaPGResZNWoU6enpfPvtt/Z9CxcuJCsri9tvv/2StZ0+fRqAoKCgPPsDAwMB+O6777BarYX4lJfn5ubGf//7X/trDw8P/vvf/xIXF8eWLVvyjM2p5/x2FSIiIiJyZSwWC7/88guDBg2iTp069v3h4eHceuut/PnnnyQmJgK2+8Hdu3fz77//FnguLy8vPDw8WL16NWfPni1SHadPn853/5lzzWPHjvHXX38V6XyX0qlTJ9q2bWt/XaNGDQYOHMjPP/+c5+8LYLsHTU1NJSUlxWHXFxG5kAJbESnXLBYLCxYs4LrrruPw4cMcOHCAAwcO0LFjR06cOMHKlSvtYw8ePJjvK08XOnjwIA0bNsTNzXEdZdzc3KhWrVq+/ZGRkYwePZpKlSrh6+tLSEgI3bt3ByAhIQGAQ4cOAVy27kaNGtG+ffs8vXvnzZvHNddcQ7169QpVp3HBargjRoygS5cu3HvvvYSGhnLLLbfw9ddfX1F4GxERgY+PT559DRo0AMjX5yynnisJykVEREQkr5MnT5KSkkLDhg3zvde4cWOsVitRUVEATJ48mfj4eBo0aEDz5s158skn+fvvv+3jzWYzr732Gj/99BOhoaF069aN119/ndjY2ELVcuH9J8BTTz2Fr68vHTp0oH79+owZM+aKWxTUr18/374GDRqQkpLCyZMnC6xJ96AiUpIU2IpIubZq1SpiYmJYsGAB9evXt285q81ebPGxK3Gxm7cL/3U+h9lsxsXFJd/YXr168cMPP/DUU0+xdOlSVqxYYV+wrDih6KhRo/j99985duwYBw8eZMOGDZedXQtQuXJlgHyzIry8vFizZg2//vord9xxB3///TcjRoygV69e9s9a1J9FUeTUExwcfMXnEhEREZGi69atGwcPHmTOnDk0a9aMTz75hDZt2vDJJ5/Yxzz66KPs37+fqVOn4unpyfPPP0/jxo3t3xi7mMqVKxc4K7dx48bs27ePBQsW0LVrVxYtWkTXrl154YUX7GNK+h7U29s7z7fhREQcTYGtiJRr8+bNo0qVKnzzzTf5tpEjR7JkyRJSU1MBqFu3Lrt27brk+erWrcu+ffvIzMy86Jicr27Fx8fn2X/06NFC171z507279/PtGnTeOqppxg4cCA9e/YkIiIiz7icr6ldrm6AW265BVdXV7766ivmzZuHu7s7I0aMuOxxjRo1AuDw4cP53nNxceH6669n+vTp7Nmzh5dffplVq1bx22+/AUX/WURHR5OcnJxn3/79+wHyLUpx+PBhXFxc7DNwRUREROTKhYSE4O3tzb59+/K9t3fvXlxcXKhevbp9X6VKlbjrrrv46quviIqKokWLFkyaNCnPcXXr1uXxxx/nl19+YdeuXWRkZDBt2rRL1tGoUSPOnj1r/2bZ+Xx8fBgxYgRz584lMjKS/v378/LLL5OWlgbY7kEvvP+Ei9+DFtTSYf/+/Xh7exMSEpJn/+HDh2ncuPElaxcRuVIKbEWk3EpNTWXx4sXceOONDB06NN82duxYkpKSWLZsGWBbwXbHjh0sWbIk37lyvvo0ZMgQTp06xXvvvXfRMTVr1sTV1ZU1a9bkef+DDz4odO2urq55zpnz/O23384zLiQkhG7dujFnzhwiIyMLrCdHcHAwN9xwA19++SXz5s2jb9++hZqd2rZtWzw8PNi8eXOe/WfOnMk3tlWrVgCkp6cDtptzIM/PwmKx8NFHHxV4raysLD788EP764yMDD788ENCQkLy9BUD2LJlC02bNiUgIOCyn0FERERECsfV1ZXevXvz3Xff5WlJdeLECebPn0/Xrl3x9/cHctc6yOHr60u9evXs94IpKSn2EDVH3bp18fPzs4+5mE6dOmEYRr51DC68poeHB02aNMEwDPukirp165KQkJCnPUNMTEyB9/kA69evZ+vWrfbXUVFRfPfdd/Tu3dt+X55j69atdO7c+ZK1i4hcKcc1YRQRucosW7aMpKQkbrrppgLfv+aaawgJCWHevHmMGDGCJ598km+//ZZhw4Zx991307ZtW86cOcOyZcuYNWsWLVu2ZNSoUXz++eeMHz+eTZs2ce2115KcnMyvv/7KQw89xMCBAwkICGDYsGG8++67mEwm6taty/fff09cXFyha2/UqBF169bliSee4Pjx4/j7+7No0aICvxb2zjvv0LVrV9q0acP9999P7dq1OXLkCD/88APbt2/PM3bUqFEMHToUgClTphSqFk9PT3r37s2vv/7K5MmT7fsnT57MmjVr6N+/PzVr1iQuLo4PPviAatWq0bVrVwCaNm3KNddcw4QJEzhz5gyVKlViwYIFZGVlFXitiIgIXnvtNY4cOUKDBg1YuHAh27dv56OPPsLd3d0+LjMzk99//52HHnqoUJ9BRERERPKaM2cOy5cvz7d/3LhxvPTSS6xYsYKuXbvy0EMP4ebmxocffkh6ejqvv/66fWyTJk3o0aMHbdu2pVKlSmzevJlvv/2WsWPHArZZqtdffz3Dhw+nSZMmuLm5sWTJEk6cOMEtt9xyyfq6du1K5cqV+fXXX/nPf/5j39+7d2/CwsLo0qULoaGh/PPPP7z33nv0798fPz8/wPbNsqeeeorBgwfzyCOPkJKSwsyZM2nQoEGeYDZHs2bN6NOnD4888ghms9k+0eLFF1/MM27Lli2cOXOGgQMHFvKnLCJSTIaISDk1YMAAw9PT00hOTr7omNGjRxvu7u7GqVOnDMMwjNOnTxtjx441qlatanh4eBjVqlUz7rzzTvv7hmEYKSkpxrPPPmvUrl3bcHd3N8LCwoyhQ4caBw8etI85efKkMWTIEMPb29sICgoy/vvf/xq7du0yAGPu3Ln2cXfeeafh4+NTYG179uwxevbsafj6+hrBwcHGfffdZ+zYsSPfOQzDMHbt2mUMHjzYCAwMNDw9PY2GDRsazz//fL5zpqenG0FBQUZAQICRmppamB+jYRiGsXjxYsNkMhmRkZH2fStXrjQGDhxoREREGB4eHkZERIQxcuRIY//+/XmOPXjwoNGzZ0/DbDYboaGhxjPPPGOsWLHCAIzffvvNPq579+5G06ZNjc2bNxudOnUyPD09jZo1axrvvfdevnp++uknAzD+/fffQn8GERERETGMuXPnGsBFt6ioKMMwDGPr1q1Gnz59DF9fX8Pb29u47rrrjHXr1uU510svvWR06NDBCAwMNLy8vIxGjRoZL7/8spGRkWEYhmGcOnXKGDNmjNGoUSPDx8fHCAgIMDp27Gh8/fXXhar1kUceMerVq5dn34cffmh069bNqFy5smE2m426desaTz75pJGQkJBn3C+//GI0a9bM8PDwMBo2bGh8+eWXxgsvvGBcGIMAxpgxY4wvv/zSqF+/vmE2m43WrVvnuU/N8dRTTxk1atQwrFZroeoXESkuk2EUsOyiiIiUS1lZWURERDBgwABmz55d6OMsFgtNmjRh+PDhhZ6ZW5IGDRqEyWS66NfaRERERKTsO3ToEI0aNeKnn37i+uuvd2ot6enp1KpVi6effppx48Y5tRYRKf/Uw1ZEpAJZunQpJ0+eZNSoUUU6ztXVlcmTJ/P+++9z7ty5EqqucP755x++//77qyI4FhEREZGSU6dOHe655x5effVVZ5fC3LlzcXd354EHHnB2KSJSAWiGrYhIBbBx40b+/vtvpkyZQnBwcIG9u0RERERERETE+TTDVkSkApg5cyYPPvggVapU4fPPP3d2OSIiIiIiIiJyEZphKyIiIiIiIiIiInKV0AxbERERERERERERkauEAlsRERERERERERGRq4SbswsobVarlejoaPz8/DCZTM4uR0REREQKwTAMkpKSiIiIwMVFcw50TysiIiJSthTlfrbCBbbR0dFUr17d2WWIiIiISDFERUVRrVo1Z5fhdLqnFRERESmbCnM/W+ECWz8/P8D2w/H393dyNSIiIiJSGImJiVSvXt1+L1fR6Z5WREREpGwpyv1shQtsc74y5u/vr5tbERERkTJGX/+30T2tiIiISNlUmPtZNQATERERERERERERuUoosBURERERERERERG5SiiwFREREREREREREblKVLgetoVlsVjIzMx0dhlSTri7u+Pq6ursMkRERERERETkKqMMqnxwZPajwPYChmEQGxtLfHy8s0uRciYwMJCwsDAtliIiIiIiIiIiyqDKIUdlPwpsL5DzG6VKlSp4e3srXJMrZhgGKSkpxMXFARAeHu7kikRERERERETE2ZRBlR+Ozn6cHti+//77vPHGG8TGxtKyZUveffddOnToUODYzMxMpk6dymeffcbx48dp2LAhr732Gn379nVILRaLxf4bpXLlyg45pwiAl5cXAHFxcVSpUkXtEUREREREREQqMGVQ5Y8jsx+nLjq2cOFCxo8fzwsvvMDWrVtp2bIlffr0safRF3ruuef48MMPeffdd9mzZw8PPPAAgwcPZtu2bQ6pJ6dfiLe3t0POJ3K+nF9X6ksjIiIiIiIiUrEpgyqfHJX9ODWwnT59Ovfddx933XUXTZo0YdasWXh7ezNnzpwCx3/xxRc888wz9OvXjzp16vDggw/Sr18/pk2b5tC6NAVdSoJ+XYmIiIiIiIjI+ZQVlC+O+u/ptMA2IyODLVu20LNnz9xiXFzo2bMn69evL/CY9PR0PD098+zz8vLizz//vOh10tPTSUxMzLOJiIiIiIiIiIiIXI2cFtieOnUKi8VCaGhonv2hoaHExsYWeEyfPn2YPn06//77L1arlRUrVrB48WJiYmIuep2pU6cSEBBg36pXr+7Qz1Ge1apVixkzZji7DBERERERERERKceUQeXl1JYIRfX2229Tv359GjVqhIeHB2PHjuWuu+7CxeXiH2PChAkkJCTYt6ioqFKsuHSYTKZLbpMmTSrWef/66y/uv/9+h9T41Vdf4erqypgxYxxyPhERERERERERKV1XcwbVo0cPHn300Ss6x9XCzVkXDg4OxtXVlRMnTuTZf+LECcLCwgo8JiQkhKVLl5KWlsbp06eJiIjg6aefpk6dOhe9jtlsxmw2O7T2q835M4wXLlzIxIkT2bdvn32fr6+v/blhGFgsFtzcLv+fPiQkxGE1zp49m//7v//jww8/ZNq0aflaW5SmjIwMPDw8nHZ9EREREREREZGyqCxkUOWB02bYenh40LZtW1auXGnfZ7VaWblyJZ06dbrksZ6enlStWpWsrCwWLVrEwIEDS7rcq1pYWJh9CwgIwGQy2V/v3bsXPz8/fvrpJ9q2bYvZbObPP//k4MGDDBw4kNDQUHx9fWnfvj2//vprnvNeOB3dZDLxySefMHjwYLy9valfvz7Lli27bH2HDx9m3bp1PP300zRo0IDFixfnGzNnzhyaNm2K2WwmPDycsWPH2t+Lj4/nv//9L6GhoXh6etKsWTO+//57ACZNmkSrVq3ynGvGjBnUqlXL/nr06NEMGjSIl19+mYiICBo2bAjYFrFr164dfn5+hIWFceuttxIXF5fnXLt37+bGG2/E398fPz8/rr32Wg4ePMiaNWtwd3fP177j0Ucf5dprr73sz0REREREREREpKy52jOoS1m0aJE9e6pVqxbTpk3L8/4HH3xA/fr18fT0JDQ0lKFDh9rf+/bbb2nevDleXl5UrlyZnj17kpycfEX1XIpTWyKMHz+ejz/+mM8++4x//vmHBx98kOTkZO666y4ARo0axYQJE+zjN27cyOLFizl06BB//PEHffv2xWq18n//938lVqNhGKRkZDllMwzDYZ/j6aef5tVXX+Wff/6hRYsWnDt3jn79+rFy5Uq2bdtG3759GTBgAJGRkZc8z4svvsjw4cP5+++/6devH7fddhtnzpy55DFz586lf//+BAQEcPvttzN79uw878+cOZMxY8Zw//33s3PnTpYtW0a9evUAW4h/ww03sHbtWr788kv27NnDq6++iqura5E+/8qVK9m3bx8rVqywh72ZmZlMmTKFHTt2sHTpUo4cOcLo0aPtxxw/fpxu3bphNptZtWoVW7Zs4e677yYrK4tu3bpRp04dvvjiC/v4zMxM5s2bx913312k2kRERMqMjJK7KZWr27oDp/h2yzGS07OcXYqIiEi55awMypH5Ezg3g7qYLVu2MHz4cG655RZ27tzJpEmTeP755/n0008B2Lx5M4888giTJ09m3759LF++nG7dugG2WcUjR47k7rvv5p9//mH16tXcfPPNDv+5nc9pLREARowYwcmTJ5k4cSKxsbG0atWK5cuX2xcii4yMzNOfNi0tjeeee45Dhw7h6+tLv379+OKLLwgMDCyxGlMzLTSZ+HOJnf9S9kzug7eHY/4TTZ48mV69etlfV6pUiZYtW9pfT5kyhSVLlrBs2bI8s1svNHr0aEaOHAnAK6+8wjvvvMOmTZvo27dvgeOtViuffvop7777LgC33HILjz/+OIcPH6Z27doAvPTSSzz++OOMGzfOflz79u0B+PXXX9m0aRP//PMPDRo0ALhkC4yL8fHx4ZNPPsnTCuH8YLVOnTq88847tG/fnnPnzuHr68v7779PQEAACxYswN3dHcBeA8A999zD3LlzefLJJwH43//+R1paGsOHDy9yfSIiIleNI39C7E5IioGkWNtjYvbzjCR4/hS4uju7SillD3+1jdPJGTQJ96dJhL+zyxERESmXnJVBOTJ/AudlUJcyffp0rr/+ep5//nnAlu/s2bOHN954g9GjRxMZGYmPjw833ngjfn5+1KxZk9atWwO2wDYrK4ubb76ZmjVrAtC8efMi11AUTg1sAcaOHXvR/zirV6/O87p79+7s2bOnFKoqf9q1a5fn9blz55g0aRI//PCD/RdeamrqZf91o0WLFvbnPj4++Pv752sjcL4VK1aQnJxMv379AFvv4l69ejFnzhymTJlCXFwc0dHRXH/99QUev337dqpVq5YnKC2O5s2b5+tbu2XLFiZNmsSOHTs4e/YsVqsVsP1DQZMmTdi+fTvXXnutPay90OjRo3nuuefYsGED11xzDZ9++inDhw/Hx8fnimoVEZESZBhgyQRLBlizwCsw9720RMAAF7fczeQCJpOzqi06SxZkJttmwvqF59Ye8zecOQjJp/IGsUmxtu3xfeCW/f/JrV/A3wsufo1zJyCgWsl/FrmqhAd6cjo5g5iEVAW2IiIicknOyqAu5Z9//snXUrVLly7MmDEDi8VCr169qFmzJnXq1KFv37707dvX3o6hZcuWXH/99TRv3pw+ffrQu3dvhg4dSlBQULFqKQynB7ZXOy93V/ZM7uO0azvKhSHiE088wYoVK3jzzTepV68eXl5eDB06lIyMjEue58Lw0mQy2YPOgsyePZszZ87g5eVl32e1Wvn777958cUX8+wvyOXed3FxyTcFPTMzM9+4Cz9/cnIyffr0oU+fPsybN4+QkBAiIyPp06eP/WdwuWtXqVKFAQMGMHfuXGrXrs1PP/2U7x8ZRETkClktkJ4IXufdDP3vUds+S4YtfM1Kzw1hA6rCsE9zx87tB3H/ZI/N3nIE1oBHd+a+/mIwHN+cvwYXN/AOhidyF1Pg6zshalN2sOuavWWHvG6ecF9uj35+mwrRW3Pfd3XPfu4Orm7Qf7rteIBdiyBub/Y4N1vAnJliC2AzkmHAO5Dz7aNfJ8G+n3Lfy0gGS3rudSccA7Of7fmmD2Hblxf/OZ87AYHVbc9rdLT9nPzCwS/sgsfQ3HNKhRLm78Wu44nEJKQ5uxQREZFyy1kZlCPzJ3BeBnUl/Pz82Lp1K6tXr+aXX35h4sSJTJo0ib/++ovAwEBWrFjBunXr+OWXX3j33Xd59tln2bhxo/3b446mwPYyTCaTQ6eFXy3Wrl3L6NGjGTx4MGD7144jR4449BqnT5/mu+++Y8GCBTRt2tS+32Kx0LVrV3755Rf69u1LrVq1WLlyJdddd12+c7Ro0YJjx46xf//+AmfZhoSEEBsbi2EYmLJnEW3fvv2yte3du5fTp0/z6quvUr267S+omzfn/Ut6ixYt+Oyzz8jMzLzoLNt7772XkSNHUq1aNerWrUuXLl0ue20RESlA7C44cwjOHsnd4o9CfCSEtcgbgB7+3Ta2ICl1875OS4DUi/S5slzwD3zWi/TmtGblfy/5FCRFFzze7YJ/8Du+BQ6sKHgswI0zcp/v+c62XcwNr4FH9g3wuTg4ubfgcSZXyEjJDVeDG0CNTuATfJEgNiz32HZ32zaR80QEegIQq8BWRESkxCiDKjmNGzdm7dq1+epq0KCBfZ0kNzc3evbsSc+ePXnhhRcIDAxk1apV3HzzzZhMJrp06UKXLl2YOHEiNWvWZMmSJYwfP75E6i1/vwqkUOrXr8/ixYsZMGAAJpOJ559/3uH/SvHFF19QuXJlhg8fbg9Tc/Tr14/Zs2fTt29fJk2axAMPPECVKlW44YYbSEpKYu3atTz88MN0796dbt26MWTIEKZPn069evXYu3cvJpOJvn370qNHD06ePMnrr7/O0KFDWb58OT/99BP+/pf+ql6NGjXw8PDg3Xff5YEHHmDXrl1MmTIlz5ixY8fy7rvvcssttzBhwgQCAgLYsGEDHTp0oGHDhgD06dMHf39/XnrpJSZPnuzQn5+ISJmX037AmmmbwWkPY4/aZpRePzF37MLb4ezhgs+TcCzv6x7PQEp2H1VXD3A12567mcF8wZ//wz4Dw5J/rKuHbTvffatyw1mrJe+jccH/Iwe+C+lJF4zNyh8CA3QeC00H5b5//lirJW/LhXq9wDc09+eGyRbQunvbHk3nrRfbaSy0HAke3uDuY3s/Z3P1yHveLuNsm0gxhQXYAtvohFQnVyIiIiJlTWlkUDlOnjyZbyJfeHg4jz/+OO3bt2fKlCmMGDGC9evX89577/HBBx8A8P3333Po0CG6detGUFAQP/74I1arlYYNG7Jx40ZWrlxJ7969qVKlChs3buTkyZM0bty4RD4DKLCtsKZPn87dd99N586dCQ4O5qmnniIxMdGh15gzZw6DBw/OF9YCDBkyhDvuuINTp05x5513kpaWxltvvcUTTzxBcHAwQ4cOtY9dtGgRTzzxBCNHjiQ5OZl69erx6quvArZ/Ifnggw945ZVXmDJlCkOGDOGJJ57go48+umRtISEhfPrppzzzzDO88847tGnThjfffJObbrrJPqZy5cqsWrWKJ598ku7du+Pq6kqrVq3yzKJ1cXFh9OjRvPLKK4waNepKf2QiIpeXlWELK5NPZm/Zzz188s6K/PVFSIu3BY05mzX7MaAaXP987tjvx9sCVavlvPHZIaRfONx83p+pC26DU//awsTzw0pLpi1oHLMhd+wn19tmlxbEJyRvYBvRGrwrQ1AtCKqZ/Zi9+UXkPbbFsML/vILrFX5sTmsDzJcfW6kIC2DW6VH4sW3uKPzY0CaFHytyhcIDNMNWREREiqc0Mqgc8+fPZ/78+Xn2TZkyheeee46vv/6aiRMnMmXKFMLDw5k8eTKjR48GIDAwkMWLFzNp0iTS0tKoX78+X331FU2bNuWff/5hzZo1zJgxg8TERGrWrMm0adO44YYbSuQzAJiMCxuAlnOJiYkEBASQkJCQbxZmWloahw8fpnbt2nh6ejqpQilr7rnnHk6ePMmyZcsuOU6/vkSkQFarLVi1B7DnhbC+odD+ntyxbzawBasFqd4R7vnlvLEN4VxswWPDmsMDf+a+fqf1xVsMVKoDj2zLfT2zK5zYWfBY37C8fV5n94aojbbnbp628DXwvDD2mgfL1oJe4lSXuoeriEr757Hh0Glu+WgDtYN9+O2JHiV+PRERkfJOGUH5dKn/rkW5f9MMW5FiSkhIYOfOncyfP/+yYa2IyEW9WgMykgp+r1qHvIGtS3Y/bZOrrRepT0juY0TrvMd2HmtbhMrkagtFTS65m2+VvGN7PGOrweSaOyZnEa0LWwwMeBuyUnMX0Dp/c7ugxcCtX2fX7Wb7Sr+LCyJSNuXMsI1JSM2zdoCIiIiIOJ4CW5FiGjhwIJs2beKBBx6gV69ezi5HRMqKc3F5A1OvQFtY6hmQHcCeF8IGN8x77F0/2AJUz8DLh5+dHy58TUVpMVCtbeHHegUWfqw4nMVqkGmxkmGxkpllJdNikJ5lIS3TSnqWhfQsK2mZFtIzrbnPs6wFj8mykp5pJS0rZ7zt8eHr63Ft/RBnf1QpBaH+tsA2LdNKQmomgd4elzlCRERERIpLga1IMa1evdrZJYhIWWLJhNVTYf0HcO8KW1sCgPt+A09/24JZlxNUq0RLlJJhGAYZFiupGRaSMyykpGfZH1MyLCRnZD9mv7ZtWSSnW0jLtNgC15wty8jzOsty/muDzCyr/bW1FJpenUhML/mLXOVmzpzJzJkz7SsdN23alIkTJ16yp9k333zD888/z5EjR6hfvz6vvfYa/fr1K6WKi8fT3ZXKPh6cTs4gOj5Nga2IiIhICVJgKyIiUtJOHYDF90H0VtvrvT/kBra+mp1YmnLC05R0CymZFlIzskjNsJJhyZ45arGSkWWbcZqRPdv0Uq9znufMTE3PsgWzKReEsFmlkZ5ehpuLCbObC57urpjdXDBf8Gjfn+e5K57utkezuwueF4xvUS3A2R/L6apVq8arr75K/fr1MQyDzz77jIEDB7Jt2zaaNm2ab/y6desYOXIkU6dO5cYbb2T+/PkMGjSIrVu30qxZMyd8gsILC/DkdHIGsYmpNIlQH2ERERGRkqLAVkREpKQYBmz9DJZPgMwUWyuDAW9D00HOruyqZxgGaZlW2+zT9JxZqLZZp/YwNMMWuJ4/KzUlw5InjE1Ot5Camf1e9n6LE8NTDzcXfDxc8fZww8fsipeHW57X3h5ueHu42vaZ3fB0c8HDzRV3VxMebi64u+ZsJjxcXXB3u+C1fd95r7PfV8/RkjFgwIA8r19++WVmzpzJhg0bCgxs3377bfr27cuTTz4J2FYtXrFiBe+99x6zZs0qlZqLKzzAi93RicQkpDm7FBEREZFyTYGtiIhISUg+Df97BPZ+b3tduxsMmgUBVZ1bVwlKz7KQlJaVvWXaHxPTsuwzTfM95glk8+43SjhX9XBzwdvDFc/s2aMeri65j26ueGTPNvVwy/s6d1/+92yBrBteHq74eLjhbc599HZ3xc1VC6+VZxaLhW+++Ybk5GQ6depU4Jj169czfvz4PPv69OnD0qVLS6HCK2NfeCxega2IiIhISVJgKyIiUhJ2fm0La13c4fqJ0Gns5RcKcyKL1SAxNZOE1EwS02yP5weviReEsPmD2SwyLNYSqc37ghmoPh6uuYFoznOzG17urraxZje8s59f+J6P2RamKjwVR9q5cyedOnUiLS0NX19flixZQpMmTQocGxsbS2hoaJ59oaGhxMbGXvIa6enppKfn9gxOTEy88sKLKCwnsNUMWxEREZESpcBWRESkJHS4H07uhXb3QHiLUrlklsW2erstdM2yP09IzbSHsQkpmXn257yXlJ7lsDr8zG74ebrh5+mOn6cbvp5u+Jrd8s04zQlcfcwXPJ73vpe7Ky4u+iq/XN0aNmzI9u3bSUhI4Ntvv+XOO+/k999/v2hoWxxTp07lxRdfdNj5iiMiMCewTXVqHSIiIiLlnQJbERERRzixG1a/CoM/BA9vcHG19at1kIwsKycS0zgen0pMQirR8dnP423PoxNSSUq78tDV28OVAC93Arzc84SueZ+741/APj9PN3w93BSwSoXj4eFBvXr1AGjbti1//fUXb7/9Nh9++GG+sWFhYZw4cSLPvhMnThAWFnbJa0yYMCFPK4XExESqV6/ugOoLL8zfC4BYzbAVERERKVEKbMWuR48etGrVihkzZji7FBGRssNqhY0z4ddJYMmAoFrQe0qRTmEYBqeTM4jJDmGjLwhlo+NTOXkuvdA9XX3NbgR4uePv5U6Al5s9gD1/87/IPne1CRC5YlarNU/7gvN16tSJlStX8uijj9r3rVix4qI9b3OYzWbMZrMjyyyy8PNaIhiGoYXsREREpNiUQV2aAttyYMCAAWRmZrJ8+fJ87/3xxx9069aNHTt20KKFY76Sm5qaStWqVXFxceH48eNO/8uDiIjTJMbA0gfh0G+21w36QudHLnuYYRh8ueEoy3fH2mbHxqeSnnX5/q8ebi5UDfQiPMCTiEAv22Z/7kllHzN+nm7qzSpSiiZMmMANN9xAjRo1SEpKYv78+axevZqff/4ZgFGjRlG1alWmTp0KwLhx4+jevTvTpk2jf//+LFiwgM2bN/PRRx8582MUSk4P29RMCwmpmQR6ezi5IhERESltpZVBffrppzz66KPEx8df0XnKKgW25cA999zDkCFDOHbsGNWqVcvz3ty5c2nXrp3DwlqARYsW0bRpUwzDYOnSpYwYMcJh5y4qwzCwWCy4uemXsoiUsn/+B8segdQz4OYFfV6GdnfDZWacJadn8X/f/s0PO2Py7DeZIMTXTESgV/5QNtD2vLKPh2a0iVxl4uLiGDVqFDExMQQEBNCiRQt+/vlnevXqBUBkZCQu5y042LlzZ+bPn89zzz3HM888Q/369Vm6dCnNmjVz1kcoNE93Vyr5eHAmOYOYhDQFtiIiIhVQaWdQFZWm4JQDN954IyEhIXz66ad59p87d45vvvmGe+65h9OnTzNy5EiqVq2Kt7c3zZs356uvvirW9WbPns3tt9/O7bffzuzZs/O9v3v3bm688Ub8/f3x8/Pj2muv5eDBg/b358yZQ9OmTTGbzYSHhzN27FgAjhw5gslkYvv27fax8fHxmEwmVq9eDcDq1asxmUz89NNPtG3bFrPZzJ9//snBgwcZOHAgoaGh+Pr60r59e3799dc8daWnp/PUU09RvXp1zGYz9erVY/bs2RiGQb169XjzzTfzjN++fTsmk4kDBw4U6+ckIpeQkQKnD+bd98tzMLMLvFEf3m4JH3aDzwbAwtvhuzGQdd7XiyM3wt4f4MifEPM3nD0KqfG29gSlYcMsW12pZyC8Jfx3DbS/57Jh7aGT5xj0/lp+2BmDu6uJJ/s0ZMH91/DH/13Hvik3sOnZniwd04X3b2vDczc24e6utenbLIwW1QIJ9jUrrBW5Cs2ePZsjR46Qnp5OXFwcv/76qz2sBdu9y4X3aMOGDWPfvn2kp6eza9cu+vXrV8pVF19uWwQtPCYiIlIRlXYGdTGRkZEMHDgQX19f/P39GT58eJ51Anbs2MF1112Hn58f/v7+tG3bls2bNwNw9OhRBgwYQFBQED4+PjRt2pQff/zRofVdKU1LLKyM5Iu/Z3IFd89CjnUBd6/Lj/XwKXRpbm5ujBo1ik8//ZRnn33W/hf6b775BovFwsiRIzl37hxt27blqaeewt/fnx9++IE77riDunXr0qFDh0Jf6+DBg6xfv57FixdjGAaPPfYYR48epWbNmgAcP36cbt260aNHD1atWoW/vz9r164lK8u2EM7MmTMZP348r776KjfccAMJCQmsXbu20NfP8fTTT/Pmm29Sp04dgoKCiIqKol+/frz88suYzWY+//xzBgwYwL59+6hRowZg+0ri+vXreeedd2jZsiWHDx/m1KlTmEwm7r77bubOncsTTzxhv8bcuXPp1q2bfRERESmG41tsi3GdPQrxR+HsEdvz5Dhw84RnY3NDzrNH4cQu2/ML/2g0ucCAd3Nfb3gf9nxXwAVNYPaD8XtsjwDr34eojbZZsO6e4O5tu7a7l21rf2/un8sndsO5E9ljs7ecsW6etnOaTNDkJljzOrS+A657FtwuP8tsxZ4TjF+4naT0LEL9zXxwW1va1gwqyk9TRMTpwgM82R2dSIwWHhMRESk5pZlBFSF/gtLNoC7GarXaw9rff/+drKwsxowZw4gRI+wT/m677TZat27NzJkzcXV1Zfv27bi7uwMwZswYMjIyWLNmDT4+PuzZswdfX98rrsuRFNgW1isRF3+vfm+47Zvc12/Ug8yUgsfW7Ap3/ZD7ekZzSDmdf9ykhCKVd/fdd/PGG2/w+++/06NHD8AWOA4ZMoSAgAACAgLyhJEPP/wwP//8M19//XWRfrPMmTOHG264gaAgW8jQp08f5s6dy6RJkwB4//33CQgIYMGCBfbfCA0aNLAf/9JLL/H4448zbtw4+7727dsX6bMCTJ48Oc/slUqVKtGyZUv76ylTprBkyRKWLVvG2LFj2b9/P19//TUrVqygZ8+eANSpU8c+fvTo0UycOJFNmzbRoUMHMjMzmT9/fr5ZtyJyHqsVzh6G2L9ts2Xjj0JiNNz2bW4I++dbttYBBXE1Q8oZ8Klse91prC0A9QuDzFRIS4D0REiLt70+7yvFVKoL1drbxqQlQFoiZKUCBmScA/fzbjqiNl0k3M3WdnTu8w0fwLYvLz52/F7wDwf/CHh4K3gFXnxsNqvVYMbKf3ln5b8AdKhVifdua00VP8/LHCkicvXJ6WMbq8BWRESk5JRmBlXE/AlKL4O6mJUrV7Jz504OHz5M9erVAfj8889p2rQpf/31F+3btycyMpInn3ySRo0aAVC/fn378ZGRkQwZMoTmzZsDefOhq4UC23KiUaNGdO7cmTlz5tCjRw8OHDjAH3/8weTJkwGwWCy88sorfP311xw/fpyMjAzS09Px9vYu9DUsFgufffYZb7/9tn3f7bffzhNPPMHEiRNxcXFh+/btXHvttfaw9nxxcXFER0dz/fXXX/HnbdeuXZ7X586dY9KkSfzwww/ExMSQlZVFamoqkZGRgK29gaurK927dy/wfBEREfTv3585c+bQoUMH/ve//5Gens6wYcOuuFaRcuevT2DnIojdCRlJ+d8/Fwd+obbn1drb2h8E1YKgmhBY0/YYVAu8LphdWqNj4Wvo+UL+fVnptuA2PTFvuNt2NNTqagt9M1NtwW5mmu2mJivNNps2h18EVGmaO+b8R8j7L9mFCGsTUjJ5dOE2ftt3EoDRnWvxbP/GuGtRMBEpo8IDbH9mRscrsBUREamoSiODupR//vmH6tWr28NagCZNmhAYGMg///xD+/btGT9+PPfeey9ffPEFPXv2ZNiwYdStWxeARx55hAcffJBffvmFnj17MmTIkKuu764C28J6Jvri75lc875+8hI9T00X/CX90Z3Fr+kC99xzDw8//DDvv/8+c+fOpW7duvaA8o033uDtt99mxowZNG/eHB8fHx599FEyMjIKff6ff/6Z48eP51tkzGKxsHLlSnr16oWXl9dFjuaS7wH2BTkMw7Dvy8zMLHCsj0/eKftPPPEEK1as4M0336RevXp4eXkxdOhQ++e73LUB7r33Xu644w7eeust5s6dy4gRIxz2h4lImZKZCif2QMx22+zZmB1w+2LwrmR7/+wRiFxne+5qhtCmENLQFsIG1sz7lZsu42xbaXAzg2+IbTtf3etsW2H851nbdiHDyA53Cz8rdm9sIv/9YgtHT6dgdnNh6s3NublNtcsfKCJyFcvpYRubqB62IiIiJUYZ1BWbNGkSt956Kz/88AM//fQTL7zwAgsWLGDw4MHce++99OnThx9++IFffvmFqVOnMm3aNB5++OFSq+9yFNgWVlF6epTU2MsYPnw448aNY/78+Xz++ec8+OCD9l4ia9euZeDAgdx+++2Ard/H/v37adKkSaHPP3v2bG655RaefTZvmPHyyy8ze/ZsevXqRYsWLfjss8/IzMzMN8vWz8+PWrVqsXLlSq67Ln94EhJiC1liYmJo3bo1QJ4FyC5l7dq1jB49msGDBwO2GbdHjhyxv9+8eXOsViu///67vSXChfr164ePjw8zZ85k+fLlrFmzplDXFikXDq2G7V/ZwtlT+8Gw5H0/difUyZ6h3myIbRZqeAsIbgCu+WfUlzsmU94g+jKW7YjmqW//JjXTQrUgL2bd3pZmVQNKsEARkdKRM8NWPWxFRERKkDKoS2rcuDFRUVFERUXZZ9nu2bOH+Pj4PNdo0KABDRo04LHHHmPkyJHMnTvXnhtVr16dBx54gAceeIAJEybw8ccfK7CVkuHr68uIESOYMGECiYmJjB492v5e/fr1+fbbb1m3bh1BQUFMnz6dEydOFPo3y8mTJ/nf//7HsmXLaNasWZ73Ro0axeDBgzlz5gxjx47l3Xff5ZZbbmHChAkEBASwYcMGOnToQMOGDZk0aRIPPPAAVapU4YYbbiApKYm1a9fy8MMP4+XlxTXXXMOrr75K7dq1iYuL47nnnitUffXr12fx4sUMGDAAk8nE888/j/W81eJr1arFnXfeyd13321fdOzo0aPExcUxfPhwAFxdXRk9ejQTJkygfv36dOrUqVDXFrlqpSXAmcOQehZSz9geU87aHhOioPtTEJb9+/nMIfh7Qe6x3sEQ3tIWyoa1gNDzft9HtLZtkk+WxcqrP+3lkz8PA3Bt/WDeuaU1QT6XX5RMRKQsyJlhGxOfhmEY9r+YiYiISMVSkhlUDovFkm8in9lspmfPnjRv3pzbbruNGTNmkJWVxUMPPUT37t1p164dqampPPnkkwwdOpTatWtz7Ngx/vrrL4YMGQLAo48+yg033ECDBg04e/Ysv/32G40bN77SH4lDKbAtZ+655x5mz55Nv379iIjIbVL93HPPcejQIfr06YO3tzf3338/gwYNIiGhcM2lP//8c3x8fArsP3v99dfj5eXFl19+ySOPPMKqVat48skn6d69O66urrRq1YouXboAcOedd5KWlsZbb73FE088QXBwMEOHDrWfa86cOdxzzz20bduWhg0b8vrrr9O7d+/L1jd9+nTuvvtuOnfuTHBwME899RSJiYl5xsycOZNnnnmGhx56iNOnT1OjRg2eeeaZfD+/V155hbvuuqtQPxeREpOVAZnJtv6vXoG5/xJ6+qBtNmzqGUiNzw5hs8PY1LPQdyrUy/59uv9nWHzfxa9R9z+5gW2tbnDds7ZwNrwF+IXnLhwmhXLqXDpj529lw6EzADzUoy6P926Iq4t+jiJSfuQsOpaaaSExNYsA7wrwLQsREREpUEllUDnOnTtn/wZ2jrp163LgwAG+++47Hn74Ybp164aLiwt9+/bl3XffBWwT8k6fPs2oUaM4ceIEwcHB3Hzzzbz44ouALQgeM2YMx44dw9/fn759+/LWW29d4U/DsUzG+Q1DK4DExEQCAgJISEjA398/z3tpaWkcPnyY2rVr4+mp1bsroj/++IPrr7+eqKgoQkNDHXpu/fq6ShmGbXbpkT8heputFYDJFVzcbFvH/0Kl2raxUX/BwZXZ7+eMyX40uUDDGyAgu0fpmUMQuTE7dM0OXnMC2MwU6DQ2Nyzd8x2snHzemGSwZuXWOOJLaDzA9vzvry8dwg78AFrfZnt+cBUsfci2uJdXJVvw6xVk60XrUwXq97L1npUrtj0qnge/3EJMQho+Hq5MG96Svs3CnV2WSLlyqXu4isiZP482U1ZwJjmDn8ZdS+Nw/bcQEREpDmUE5dOl/rsW5f5NM2xFgPT0dE6ePMmkSZMYNmyYw8NauYoYhm3LXuSO316GNW9cfHzTwbmB7bFNsHrqxcdWrpsb2B76Hb5/9OJjGw/IDWwz0+D0RRrFu7iB5bzG7JXqQKMbs0PYoNwANud5yHlf46j7H3h878VrEIdY+Fckzy/dTYbFSp0QHz66oy31qvg5uywRkRIT5u/JmeQMYhPSFNiKiIiIlAAFtiLAV199xT333EOrVq34/PPPnV2OOJJhwMl9cOQPOLoWjqyFIR9DnR629yNag6sHVG0HNTraWg9YrbYZroYF/HO/1kFoU2h3t+2988dYs8BqAd/zgn6/MFtg6u4NHr7g4Z393Me2BZ83s7XudTD6R9sYD9/scd7g7gNuF/Q+rdYObplXYj8uKbz0LAuTlu3hq02RAPRuEsq04S3x89TXg0WkfAsP8GRPTKIWHhMREREpIQpsRYDRo0fnaZAtZdy5k7B7SXZIuw5STuV9/+i63MC2Xk94OhLcvS5/3jo9co+7nIY32LbC8K1i26TMiElI5cEvt7I9Kh6TCZ7o3ZAHu9fFRf1qRaQCCA/MXngsIdXJlYiIiIiUTwpsRaRss1rgxC7bLNkq2e0AkmLgpydzx7h5QfUOUKsr1OwCVdue9565dOuVMm/DodOMnb+VU+cyCPBy552RreneIMTZZYmIlJrwANs/cmqGrYiIiEjJUGArImWPYUDUJtg4y7YIWFoCtLwVBs+0vR/azNbnNaK1LaSNaJO/tYBIIRmGQVJ6FvHJmfyyJ5apP+3FYjVoHO7Ph7e3pUZlb2eXKCJSqsIDNMNWREREpCQpsC2A1Wp1dglSDunXlQNYMmHPd7DhAzi+JXe/hx+4nvfHmYuL+rxKgTItVs6mZBCfksnZ5AzOpmQSn3L+Y/598SmZZFmNPOcZ1CqCqTe3wMvD1UmfRETEecLsga1m2IqIiFwpZQXli6P+eyqwPY+HhwcuLi5ER0cTEhKCh4cHJpP6EcqVMQyDjIwMTp48iYuLCx4emulZbJ8NgMj1tueuZmgxDNqMzl44TH+cVSQWq0FiaibxqZmcTckgISXTHsTGp2QQn5ppC2Vzwtnsx3PpWcW+pqe7CyF+Zu7pUps7O9fS/x9EpMLKaYkQm5CGYRj681BERKQYlEGVL47OfpRwnMfFxYXatWsTExNDdHS0s8uRcsbb25saNWrg4uLi7FLKjtMHIbAGuLrbXjfqD6cPQPt7od094Ku+oeWBYRgkpmYRl5RGXFI6p86l22e/JqSeN9s1NXfGa2JaJoZx+XMXxGSCAC93grw9CPTO+xjk7U6gt0fe5z629zzdNZtWRARyWyKkZFhITM0iwNvdyRWJiIiUPcqgyidHZT8KbC/g4eFBjRo1yMrKwmKxOLscKSdcXV1xc3PTv5YVhmHAkT9tbQ/2/QQ3f2ybSQu2oLb9feDu6dwapVAsVoPT59KJS0rnZFK6LZBNtL3OCWfjEtM5eS6djKzifW3E1+xmC1993An0sgWvOeHr+aFsYHYAG+Ttgb+XO64u+r0oIlJcnu6uBHm7czYlk5jEVAW2IiIixaQMqnxxZPajwLYAJpMJd3d33N118ykVUEYynNgNMTsgZjsE1oLuT+a+f/Yo+Efkznp1lKwM2LXIFtTG/p27P3ZHbmDr7uXYa0qRGIZBSoYlT5uBM8m256fOpWeHsdlBbFI6p8+lYy3CLFh/Tzeq+HsS4mu2BbDeHgRmh64BeWbCuhOQHc66u2rGuoiIM4QHeNkC24Q0GoX5O7scERGRMksZlBREga1IRWcYsGGmLZyN2QGn9oNx3mzH8Ja5ga1hwIfdIDMVqjSG8BYQlr2FNgWzb9Gvb7XCn9Ng08dw7oRtn5sXtBoJHR+EkAZX/BElP6vVIDEtkzMFLLyVd19uOHs2OZMMS9FmwppMUNnHTBU/M1X8sx/9PKnibybEN2efJyF+ZrUcEBEpQ8IDPNkTk0hMvBYeExEREXE0BbYiFUXKmdxQNisdejxt228ywaaP4Ozh3LG+YbagNrwlVG2buz/5lC3MtaRnn2v7eRcwQcuRMHhm3mt6V7p0XS4ucPA3W1jrFw4d7oO2d13+OLkki9XgRGIaUWdSiDqbmv2YwrEzqUSdTeFEYlqRZr+ez8PVJV/v12A/D1sQmx3MhvjaQtnKPh64aRasiEi5E5bdxzY2IdXJlYiIiIiUPwpsRcqrQ79D1KbckDYhKvc9sz90+z9bWArQ/h7brNnwVrZZs35hBZ/TNwSeOgrxRyB2J8T8bWtfELsTkmLAp3Lu2JQz8HptWwgb1iJ7Nm5zcDXDlk9h4HvgE2wb22OC7fgmg8DtylZSrCgMw+BMckaeMDbqTCrHzqYQdSaF4/GpZFoun8j6mt3yha+VfApajCt38S1vD1f1YxYRqeAiAm1tiqITNMNWRERExNEU2IqUF2mJ4HleD7m1b8PBlXnHVKqTO3PWmgkuZtv+zg8X/jouLrbzVKoDTQbm7j8XZ2uZkOPUv4DJFsQmxcC/P+c9z+Y50P3/bM9rX1v461cgGVlWjp1N4cjpZI6cSiHyTEp2IGsLZpMzLt2U3s3FRESgF9UreVE9yJvqlbypFuRF9UreVA30IsjbAw83zX4VEZGiC/PPmWGrwFZERETE0RTYipRlmWmw70fY8RUcXgOP7c6dtVq/N3hXhohWtoA2rDl4BpRcLb5V8r6u0REmRNkWMIvdaZvlG7vTFuw2uQmaDy25WsqQjCwrUWdTOHo6mcOnch6TOXraFs5erm1BqL/ZHsZWD/KiWiXv7NdehPl7qh2BiIiUiPDslggxaokgIiIi4nAKbEXKGsOwtTrYMR92LYH0hNz3Dv4GLYbZnl/zgHPqO5/ZD2pcY9sqsJxQ9sipZI6cznm0bcfPpl4ylPX2cKVmZR9qVfamRmXvPOFsRKCXFuoSERGnCM9uiRCTkIZhGGqVIyIiIuJACmxFypLjW2HRPXDmUO4+/2rQ8hbbgl/B9ZxXWwWXkJpp6yV7xta6wDZrNqVIoWztYG9qVfaxbcG2kDbEz6y/BIuIyFUnpyVCSoaFxLQsArzcnVyRiIiISPmhwFbkapZ+DpJic4PYoFoQHwXuPra2Ai1HQq1rcxcPkxKTkWXleHyqLYzN2c5mh7NnUklIzbzk8d4ertlBrEJZEREp+7w8XAnydudsSiYxCakKbEVEREQcSIGtyNXGaoUja2D7V/DPMlvv2Xt+sb3nXQluXwRV24LZ17l1ljOGYXDqXAaRZ5KJOmMLZs8PZ2MS0/KsqVaQYF8z1St5USO7j2yNSt62UDbYmxBfhbIiIlK+hAV4ZQe2aTQK87/8ASIiIiJSKApsRa4Wp/6F7fPh768h8Vju/pTTkJ5k6wcLUKe7c+orR1IzLPwbl8TemCT+iU1kb0wSe2MTOZty6VmyXu6utjC2kld2H1nv7Ne2fd4e+iNVREQqjvAAT/6JSSQ2Ic3ZpYiIiIiUK05PF95//33eeOMNYmNjadmyJe+++y4dOnS46PgZM2Ywc+ZMIiMjCQ4OZujQoUydOhVPT89SrFrEwVa/BqtfyX3tGQDNhkDLW6FaO9DMzGKxWg2OnU1lb2wie2NtoezemCQOn04ucLasiwnCA7zss2Rzw1hbOBvs66FZsiIiItnCA2z33zHxqU6uRERERKR8cWpgu3DhQsaPH8+sWbPo2LEjM2bMoE+fPuzbt48qVarkGz9//nyefvpp5syZQ+fOndm/fz+jR4/GZDIxffp0J3wCkUIyDDh9ACI3QNQGiNwIN39oa20AEFgdTK5Qrye0GgkNbgB3/SNEUSSkZrIvJ5SNTWJvTCL7YpNIzrAUOL6yjweNwv1oFOZPozA/Gof7U6+KL57urqVcuYiISNlkD2w1w1ZERETEoZwa2E6fPp377ruPu+66C4BZs2bxww8/MGfOHJ5++ul849etW0eXLl249dZbAahVqxYjR45k48aNpVq3SKHER8GuRRC10balnM77fuSG3MC2YT94fC/45v+HCsnrXHoWB+POcSDuHAdOnmN/bBJ7Y5M4fpHZPR6uLtQP9aVhmB+Nw/ztIW2In7mUKxcRESlfwgK8AIhNVGArIiIi4khOC2wzMjLYsmULEyZMsO9zcXGhZ8+erF+/vsBjOnfuzJdffsmmTZvo0KEDhw4d4scff+SOO+646HXS09NJT0+3v05MTHTchxDJkXzaFsoGVrctEgYQHwm/vpA7xtVsC2hrdITq19gec3gFlmq5ZcHpc+n2UPZAXO52qVk8VQO9aBjmR6MwPxqF+9M4zI9awT64u7qUYuUiIiIVQ0T2DNtotUQQERERcSinBbanTp3CYrEQGhqaZ39oaCh79+4t8Jhbb72VU6dO0bVrVwzDICsriwceeIBnnnnmoteZOnUqL774okNrFyExBg78mtve4PS/tv0d/gv9Xrc9r9oGGg+Aah2gxjUQ3hLcNKvzfIZhEJ2QlieQPRh3jn/jki65AFiwr5l6VXyoV8WX+lVs7QwahvkR4OVeitWLiIhUbGHntUQwDEN93kVEREQcxOmLjhXF6tWreeWVV/jggw/o2LEjBw4cYNy4cUyZMoXnn3++wGMmTJjA+PHj7a8TExOpXr16aZUs5U1aAvzyPGyfD9YLAsWQRuB33j9AuHvBiC9Lt76rWGJaJjui4tl5PIEDJ2wzZw/Gnbtoj1mAakFe1KviS70QX1s4G+pL3RBfAr09SrFyERERKUh4dkuElAwLiWlZ+odTEREREQdxWmAbHByMq6srJ06cyLP/xIkThIWFFXjM888/zx133MG9994LQPPmzUlOTub+++/n2WefxcUl/9eezWYzZrNmNYqDuPvA4d9tYW3VtlC7m629QfUO4F3J2dVdNSxWg3/jktgWGc+2yLNsi4znwMlzGEb+sW4uJmoF+9hD2ZytbogvXh5aAExERORq5eXhSqC3O/EpmcQmpCmwFREREXEQpwW2Hh4etG3blpUrVzJo0CAArFYrK1euZOzYsQUek5KSki+UdXW1BTpGQUmQyJWK3QWbZ0Pf18DNA1zdoP80W3Bbs5Ozq7tqnDqXzvbIeLZF2cLZHVHxBc6crVHJm5bVA2kYmhPM+lGzsrd6zIqIiJRRYf6exKdkEpOQSsMwP2eXIyIiIlIuOLUlwvjx47nzzjtp164dHTp0YMaMGSQnJ3PXXXcBMGrUKKpWrcrUqVMBGDBgANOnT6d169b2lgjPP/88AwYMsAe3Ig5xfAusmQb7frC9Dm8Fbe+0Pa/X02llXQ0ysqzsjU1kW2Q8W7Nnz0aeSck3zsfDlZbVA2ldI5DW1YNoVSOQYF/NdhcRESlPIgK92BubdMlFQUVERESkaJwa2I4YMYKTJ08yceJEYmNjadWqFcuXL7cvRBYZGZlnRu1zzz2HyWTiueee4/jx44SEhDBgwABefvllZ30EKW+Oroc1b8DBldk7TNB0sK3lQQUVm5CWHczawtmdxxNIz7LmG1e/iq8tnK0RROsagdSv4oerixYfERERKc/OX3hMRERERBzDZFSwXgKJiYkEBASQkJCAv7+/s8uRq0VGCswbBkf/tL02uUKLEXDteAiu79zaSllsQhobDp22b0dO5589G+jtTuvqueFsi2qB6lsnIiIlSvdweV0tP4/3Vv3Lm7/sZ1jbarwxrKXT6hARERG52hXl/s2pM2xFrhoe3rYetS7u0Po26PIoVKrt7KpKRWxCGhsPn2b9wYIDWhcTNA73p012ONu6RhC1KntjMmn2rIiISEUXFuAFQGyiZtiKiIiIOIoCW6l4rFbY+z2sfw+Gfw5+Ybb9N7wO7t4QUNW59ZWwE4nnz6A9w+FTyXnedzFBs6oBXFOnMp3qVKZdrSD8PDV7VkRERPILV0sEEREREYdTYCsVhyULdi+BP96Ek3tt+zZ8AL0m256X09YHcYlprM8OZzceOs2hAgLaphEBXFOnEp3qVqZdrUr4K6AVERGRQrAHtvGpGIahb+CIiIiIOIACWynfrFaI2ggHfoXdi+HMIdt+cwB0/C9c86Bz6ysBZ5Mz+OPAKfss2kMn8wa0JhM0jfCnU53KXFPHFtCq/6yIiIgUR86iY8kZFpLSs/SPviIiIiIOoMBWyp+0RPA8r3nzwtsg5bTtuVcl6PQQdLgfPAOcU18JiEtK4+fdJ1i+K4YNh85gseauJWgyQZPw3IC2fW0FtCIiIuIY3h5uBHi5k5CaSWxCmgJbEREREQdQYCtlX1Y6RK63zaI9sBJS42H8HltS6eICzYbaAtt610Pjm8Ds6+yKHeJ4fCrLd8WyfFcMm4+excjNaGkU5keXesFcU6cyHWpVIsBbf3kSERGRkhEe4ElCaibR8ak0CPVzdjkiIiIiZZ4CWymbzh6Ff3+xhbSH10BmSu57Jhdb64PKdW2v+73unBpLwNHTyfy0K5afdsWyIyo+z3stqwdyQ7MwbmgWRs3KPs4pUERERCqc8ABP9sYmEauFx0REREQcQoGtlA0ZyeDqAa7ZM0U3fQTr38t93zcM6vW0zaKt0wO8KzmlzJLw74kke0j7T0yifb/JBO1rVqJvszD6NgsjItDLiVWKiIhIRRWefQ8SrcBWRERExCEU2MrV6+wR+Od/tlm0R9fBrQuh7n9s79XvDTE7bAFtvZ4Q2syWYJYDhmGwJyaRn3bG8tOuGA6et2iYq4uJa+pUom+zcPo0DaWKn6cTKxURERGBcH/b/UhsQqqTKxEREREpHxTYytVp74/w7V2Qdd5MjciNuYFtne62rZwwDIPtUfEsz55JG3kmt8WDu6uJrvWCuaFZOD2bhFLJx8OJlYqIiIjkFRZgC2xjNMNWRERExCEU2MrVZ/tX8N0YMCxQtR00G2KbRRtc39mVOVzk6RS+2RLFoi3H8nyN0OzmQo+GIdzQLJz/NK6iFZdFRETkqpXTlkmBrYiIiIhjKLCVq8umj+HHJ2zPW94KN70LruXrl2lapoWfd8ey8K8o1h08bd/v4+HKdY2qcEOzcHo0DMHHXL4+t4iIiJRPOTNsteiYiIiIiGMoEZKrS0gjcDVD+3uh90vg4uLsihxmd3QCX/8VxdLt0SSkZgK2trtd6wUzvF11ejUJxdPd1clVioiIiBRNeHZgey49i8S0TH0zSEREROQKKbCVq0vta+HBdVC5brlYRCwhNZNlO6L5+q8odh5PsO+vGujF0LbVGNauGtWCvJ1YoYiIiMiV8fZwI8DLnYTUTGIT0hTYioiIiFwhBbbiXFkZthYI1zwIVRrb9gXXc25NV8gwDDYePsPCv6L4cWcM6VlWwLZ4WO8mYYxoX50u9YJxdSn7gbSIiIgI2GbZJqRmEpOQRoNQP2eXIyIiIlKmKbAV50k/B1/fAQdXwaHfYOwWcPNwdlXFdiIxjW+3HOObzVEcOZ1i398w1I/h7aszuHVVKvmU3c8nIiIicjHhAZ7sjU0iJj7V2aWIiIiIlHkKbMU5Us7AvGFwfDO4e8ONM8pkWJtpsfLb3ji+3hzFb/tOYrEagG0BsZtaRTC8XXVaVQ/EVA7aO4iIiIhcTFiAFwAxWnhMRERE5IopsJXSlxgNXwyGk3vBMxBu+xaqt3d2VUUSeTqF+Zsi+XbLMU6dS7fvb1cziBHtq9O/RTjeHvrtJSIiIhVDzsJjsQpsRURERK6YEiUpXacPwueDICES/MLhjiW5vWvLgMjTKbyz6l+WbDtun00b7OvBkDbVGNauOvWq+Dq5QhERESlNU6dOZfHixezduxcvLy86d+7Ma6+9RsOGDS96zKeffspdd92VZ5/ZbCYtreyGnTmBbXSCWiKIiIiIXCkFtlK6Vk62hbWV6trC2qCazq6oUKLOpPDeqgMs2nqMrOyg9tr6wdzWsSbXN66Cu6uLkysUERERZ/j9998ZM2YM7du3Jysri2eeeYbevXuzZ88efHx8Lnqcv78/+/bts78u6+2TwrNbImiGrYiIiMiVU2Arpeumd2w9a3u9CL5VnF3NZR2PT+W9VQf4ZnOUPajt3iCER3vWp3WNICdXJyIiIs62fPnyPK8//fRTqlSpwpYtW+jWrdtFjzOZTISFhZV0eaUmPNA2w1Y9bEVERESunAJbKXkn90FI9tcCPQNg8Ezn1lMIMQmpfPDbQRb8FUmmJXdG7aM9G9C2poJaERERKVhCQgIAlSpVuuS4c+fOUbNmTaxWK23atOGVV16hadOmpVFiiQjztwW259KzSErLxM/T3ckViYiIiJRdCmylZG3/Cr4bAz0nQZdHnF3NZZ1ITGPm6oPM3xhJhsUKQOe6lXmsVwPa17r0X7xERESkYrNarTz66KN06dKFZs2aXXRcw4YNmTNnDi1atCAhIYE333yTzp07s3v3bqpVq1bgMenp6aSn5y50mpiY6PD6r4SP2Q1/TzcS07KITUhTYCsiIiJyBRTYSslZ/wH8PMH2/OReMAy4SvuzxSWlMWv1IeZtPEp6li2o7VC7Eo/1bECnupWdXJ2IiIiUBWPGjGHXrl38+eeflxzXqVMnOnXqZH/duXNnGjduzIcffsiUKVMKPGbq1Km8+OKLDq3X0SICvUiMTSI6IY36oX7OLkdERESkzFJgK45nGLDqJfjjTdvra8ZA75euyrD21Ll0Pvz9IF9sOEpapi2obVcziPG9bEFtWV8ARERERErH2LFj+f7771mzZs1FZ8lejLu7O61bt+bAgQMXHTNhwgTGjx9vf52YmEj16tWLXW9JCAvwZG9sErEJqc4uRURERKRMU2ArjmW1wA+Pw5a5ttf/eR6uffyqC2vPJGfw4ZqDfL7uKKmZFgBa1whkfK8GdK0XrKBWRERECsUwDB5++GGWLFnC6tWrqV27dpHPYbFY2LlzJ/369bvoGLPZjNlsvpJSS1x4gK2PbXS8Fh4TERERuRIKbMVxDAMW3we7FgEmuHE6tLvb2VXlcTY5g4//OMRn646QnGELaltWC+CxXg3o3iBEQa2IiIgUyZgxY5g/fz7fffcdfn5+xMbGAhAQEICXlxcAo0aNomrVqkydOhWAyZMnc80111CvXj3i4+N54403OHr0KPfee6/TPocjhAfYPm9sggJbERERkSuhwFYcx2SC6h1hzzIY8jE0HezsiuyS07P48PeDzFl7hHPpWQA0q+rP+F4NuK5hFQW1IiIiUiwzZ84EoEePHnn2z507l9GjRwMQGRmJi4uL/b2zZ89y3333ERsbS1BQEG3btmXdunU0adKktMouEWHZM2xjEhXYioiIiFwJBbbiWB3/C/V7Q6Wifx2wpGyPimfcgm0cPZ0CQJNwfx7r1YCejRXUioiIyJUxDOOyY1avXp3n9VtvvcVbb71VQhU5T0T2DNuYePWwFREREbkSCmzlyu3/GWp0Ak9/2+urJKy1WA1mrj7AW7/+i8VqEBHgycQBTejdJAwXFwW1IiIiIo6UM8NWLRFERERErowCW7kyB36Fr0ZCSCO46wfwCnJ2RQAcO5vC+IU72HTkDAA3tgjn5cHNCfByd3JlIiIiIuVTzqJjSelZJKVl4uep+y4RERGR4lBgK8V3Yjd8PRoMC4S3AM9AZ1cEwLId0Ty7ZCdJaVn4mt2YPLApg1tXVfsDERERkRLkY3bD39ONxLQsYhPSFNiKiIiIFJMCWymepFiYNxwykqDWtTDgHduiY84sKS2TF77bzeJtxwFoUyOQGSNaU6Oyt1PrEhEREakowgO8SExLIiYhjfqhfs4uR0RERKRMUmArRZeRDPNHQOIxqFwfhn8Obh5OLWnL0TM8unA7UWdScTHBw/+pz8P/qYebq8vlDxYRERERhwgP9GTfiSRiErTwmIiIiEhxKbCVorFaYNF9ELMdvCvDbV+DdyWnlZNlsfLebwd4d9UBLFaDakFezBjRina1nFeTiIiISEWV08c2RguPiYiIiBSbAlspmsRoiN4Grma45SuoVMdppUSdSWHcgm1sjYwHYHDrqrw4sCn+6pcmIiIi4hRh/l4AxCqwFRERESk2BbZSNIHV4b6VELsLanR0SgmGYbB0+3GeX7qbc+lZ+JndeGlwMwa2quqUekRERETEJjzQNsM2WoGtiIiISLEpsJXCST8HZl/bc/8I2+YECamZPL90F8t2RAPQvlYQ04e3onolLSwmIiIi4mw5LRFi1cNWREREpNi0IpNcXszf8HYL2LXYqWVsOnyGfm//wbId0bi6mHi8VwMW3N9JYa2IiIjIVcLewzZeM2xFREREikszbOXSEqNh/ghIOQ1bP4Omg8FkKtUSMi1W3ln5L+//dgCrATUrezNjRCta1wgq1TpERERE5NLCAmw9bJPSs0hKy8RPawuIiIiIFJkCW7m49HMwfzgkRUNwQxj2WamHtUdOJTNu4XZ2RMUDMKxtNV64qSm+Zv3SFREREbna+Jrd8PN0IyktixOJaQpsRURERIpBqZcUzGqBb++G2J3gEwK3fQ1egaVawqItx5j43S6SMyz4e7ox9eYW9G8RXqo1iIiIiEjRRAR4sS8tiej4NOpV8XN2OSIiIiJljgJbKdjyCfDvz+DmCSMXQFCtUru0YRi8/9sB3vxlPwAda1firRGtiAj0KrUaRERERKR4wgI82XciidgE9bEVERERKQ4FtpLfvuWw6UPb88EfQrV2pXZpwzB49ae9fLjmEABjr6vHY70a4OpSuq0YRERERKR4chYei05IdXIlIiIiImWTAlvJr35v6DIOvCpB00GldlmL1eD573Yxf2MkAM/1b8y919YpteuLiIiIyJULz154TDNsRURERIpHga3k5+ICvSaX6iUzLVae+GYH322PxmSCV29uzoj2NUq1BhERERG5cjkzbGMU2IqIiIgUi4uzCwB4//33qVWrFp6ennTs2JFNmzZddGyPHj0wmUz5tv79+5dixeVQwjH46SnISi/1S6dlWnjwy618tz0aNxcT79zSWmGtiIiISBkVZg9s1RJBREREpDicPsN24cKFjB8/nlmzZtGxY0dmzJhBnz592LdvH1WqVMk3fvHixWRkZNhfnz59mpYtWzJs2LDSLLt8SU+C+SPgxC7ITIGb3i21SyenZ3Hf55tZd/A0ZjcXZt7ehv80Ci2164uIiIiIY0UEaoatiIiIyJVw+gzb6dOnc99993HXXXfRpEkTZs2ahbe3N3PmzClwfKVKlQgLC7NvK1aswNvbW4FtcVmy4Ju7bGGtTxXo9mSpXTohJZPbZ29k3cHT+Hi48tndHRTWioiIiJRxYdk9bJPSsjiXnuXkakRERETKHqcGthkZGWzZsoWePXva97m4uNCzZ0/Wr19fqHPMnj2bW265BR8fn5Iqs/wyDFj+FBxYAW5ecOsCCCydVgQnk9IZ8dF6tkXGE+jtzrz7ruGaOpVL5doiIiIiUnJ8zW74edq+yBertggiIiIiRebUwPbUqVNYLBZCQ/POqgwNDSU2Nvayx2/atIldu3Zx7733XnRMeno6iYmJeTbJtu9H+OsTwARDPoaqbUvlssfjUxnx4Xr2xiYR4mdm4f2daFU9sFSuLSIiIiIlTwuPiYiIiBSf01siXInZs2fTvHlzOnTocNExU6dOJSAgwL5Vr169FCu8imVlwC/P2Z53eQQaDyiVyx4+lcywmes4dCqZqoFefPPfTjQM8yuVa4uIiIhI6chpixATr8BWREREpKicGtgGBwfj6urKiRMn8uw/ceIEYWFhlzw2OTmZBQsWcM8991xy3IQJE0hISLBvUVFRV1x3uRC3B1JOl2rf2n9iEhk2az3RCWnUCfHh2wc7UStYrSxEREREypsIzbAVERERKTanBrYeHh60bduWlStX2vdZrVZWrlxJp06dLnnsN998Q3p6Orfffvslx5nNZvz9/fNsAkS0goe3wYgvwVzyM1y3RZ5lxIfrOXUunSbh/nz9306EZ8+8EBEREZHyJSw7sI1NVA9bERERkaJyc3YB48eP584776Rdu3Z06NCBGTNmkJyczF133QXAqFGjqFq1KlOnTs1z3OzZsxk0aBCVK2uhqmLzqWzbSti6g6e497PNpGRYaFsziDmj2xPg5V7i1xURERER54jI/of5aLVEEBERESkypwe2I0aM4OTJk0ycOJHY2FhatWrF8uXL7QuRRUZG4uKSdyLwvn37+PPPP/nll1+cUXLZdnI/nDkEDfqAyVTil/t1zwkemr+VjCwrXesF89Gotnh7OP2XnYiIiIiUIPsMW7VEEBERESmyqyI5Gzt2LGPHji3wvdWrV+fb17BhQwzDKOGqyqmfJ8CBX6HHM9DjqRK91Hfbj/P41zvIshr0bhLKOyNb4+nuWqLXFBERERHnC88ObKMT1BJBREREpKic2sNWStm/v9rCWhd3aD60RC81f2Mkjy7cTpbVYHDrqnxwWxuFtSIiIiIVRHigrSVCUloW59KznFyNiIiISNmiwLaisGTBz8/Ynnf8L1SuW2KX+mjNQZ5ZshPDgNuvqcG0YS1xc9UvNREREZGKwtfshp/Z9mU+tUUQERERKRqlaBXFlrlwah94VYJuT5bIJQzDYPov+3jlx70APNijLlMGNsPFpeR75YqIiIjI1SWnj22M2iKIiIiIFIkC24og9Sz89ort+XXPgFdgiVzmvVUHeGfVAQD+r29DnurbCFMpLGwmIiIiIlefnLYIMZphKyIiIlIkV8WiY1LC1rwJqWcgpBG0vatELrHreAIzVv4LwAsDmnBXl9olch0RERERKRvC/W0zbNUSQURERKRoNMO2IqjdHSrXgz4vg6vjM/qMLCtPfLMDi9Wgf/NwhbUiIiIiQnigWiKIiIiIFIdm2FYEDXpD3f+USFgL8MHqA+yNTaKSjwcvDmxaItcQERERkbIl3N7DVjNsRURERIpCM2zLM8PIfV5CYe2e6ETey+5bO+mmpgT7mkvkOiIiIiJStoQFZPewjVdgKyIiIlIUCmzLK6sFPhsA69+HrIwSuUSmxcqT3+4gy2rQu0koA1qEl8h1RERERKTsiQhQSwQRERGR4lBgW15t+xKO/AG/vwbpSSVyiQ9/P8ju6EQCvNx5aXAzTCZTiVxHRERERMqesOzANjEti+T0LCdXIyIiIlJ2KLAtj9KTYNVLtufdnwKfyg6/xP4TSbyzMqcVQhOq+Hk6/BoiIiIiUnb5ebrja7a15VIfWxEREZHCU2BbHv0xHZLjoFJdaH+fw0+fZbHy5Dc7yLBYub5RFQa1qurwa4iIiIhI2Zez8FisAlsRERGRQlNgW96cPWrrWwvQewq4eTj8Eh//cZgdxxLw83Tj5cHN1QpBRERERAqU0xYhWn1sRURERApNgW158+sLYEmHWtdCw34OP/2BuHO89et+ACbe2MR+Ey4iIiIicqGIAC9AM2xFREREikKBbXly9gjsWQaYoO9UcPDMV4vV4Mlvd5CRZaVHwxCGtq3m0POLiIiISPmS84/76mErIiIiUnhuzi5AHCioFjzwJxz5A8KaO/z0c9ceZltkPL5mN15RKwQRERERuYxwe2CrlggiIiIihaXAtrwJbWLbHOzQyXO88fM+AJ7t35iIQC+HX0NEREREypfwQLVEEBERESkqtUQoDzJSIG5viZ3eajV4atHfpGdZ6VovmFvaVy+xa4mIiIhI+RGulggiIiIiRabAtjxY9w7M7Ay/v1Eip/9s/RH+OnIWHw9XXh2iVggiIiIiUjg5gW1CaiYpGVlOrkZERESkbFBgW9YlRsPat8GwQOW6Dj/90dPJvL7c1grh6X6NqRbk7fBriIiIiEj55Ofpjq/Z1oVNs2xFRERECkeBbVm3cjJkpkD1a6DpYIee2mo1+L9v/yY108I1dSpxW4caDj2/iIiIiJR/YTltEeIV2IqIiIgUhgLbsuz4Ftjxle1531fAwa0K5m08ysbDZ/Byd+X1IS1xcVErBBEREREpmtw+tqlOrkRERESkbFBgW1YZBix/xva8xS1Qta1DTx91JoWpP9kWMnuqb0NqVFYrBBEREREpupzANlYtEUREREQKRYFtWbVnKURtADcvuH6iQ09tGAYTFu8kJcNCh1qVGNWplkPPLyIiIiIVR1iAFwDRCmxFRERECsXN2QVIMWWmgjkAOj0EAVUdeuoFf0Xx54FTmN1ceG1oC7VCEBEREZFii7DPsFVLBBEREZHCUGBbVrW6Fer3AXcvh572eHwqL//wDwBP9mlI7WAfh55fRERERCoW+6JjmmErIiIiUigKbMsyn8oOPV1OK4Rz6Vm0qRHIXV1qO/T8IiIiIlLxRATaJhgosBUREREpHPWwLWv+mA77f7YtOuZg32w5xpr9J/Fwc+H1oS1xVSsEEREREblCOTNsE1IzScnIcnI1IiIiIlc/BbZlidUK696F+cPh+BaHnjo2IY0p3+8BYHyvBtSr4uvQ84uIiIhIxeRndsPHwxXQLFsRERGRwlBgW5ac2g+pZ8DNC8JaOOy0hmHwzJKdJKVl0bJ6IPd2VSsEERERkcKYOnUq7du3x8/PjypVqjBo0CD27dt32eO++eYbGjVqhKenJ82bN+fHH38shWqdw2QyEZ7dFiFWga2IiIjIZSmwLUsi19seq7UDNw+HnXbJtuOs2huHh6sLbw5tgZurflmIiIiIFMbvv//OmDFj2LBhAytWrCAzM5PevXuTnJx80WPWrVvHyJEjueeee9i2bRuDBg1i0KBB7Nq1qxQrL13hWnhMREREpNC06FhZkhPY1uzssFPGJabx4v9srRDG9axP/VA/h51bREREpLxbvnx5nteffvopVapUYcuWLXTr1q3AY95++2369u3Lk08+CcCUKVNYsWIF7733HrNmzSrxmp3BHtjGpzq5EhEREZGrn6ZSliVHswPbGp0ccjrDMHh26S4SUjNpVtWf+7vVcch5RURERCqqhIQEACpVqnTRMevXr6dnz5559vXp04f169df9Jj09HQSExPzbGVJWICtJUJMombYioiIiFyOAtuyIuEYJESCyRWqtXfIKTcdPsOKPSdwdzXxxtCWuKsVgoiIiEixWa1WHn30Ubp06UKzZs0uOi42NpbQ0NA8+0JDQ4mNjb3oMVOnTiUgIMC+Va9e3WF1lwbNsBUREREpPCV0ZcWxv2yP4S3B7OuQUy7aegyAm1tXo3G4v0POKSIiIlJRjRkzhl27drFgwQKHn3vChAkkJCTYt6ioKIdfoySph62IiIhI4amHbVnRZBA8sh1SzzrkdKkZFn7caZvFMaRtNYecU0RERKSiGjt2LN9//z1r1qyhWrVL31uFhYVx4sSJPPtOnDhBWFjYRY8xm82YzWaH1OoM4dktEWLVEkFERETksjTDtqwwmaBSbajaxiGn+2VPLOfSs6heyYt2NYMcck4RERGRisYwDMaOHcuSJUtYtWoVtWvXvuwxnTp1YuXKlXn2rVixgk6dHLNOQYnJyoCs9GIdGpY9wzY+JZPUDIsjqxIREREpdxTYVlCLtx4HYHCrqri4mJxcjYiIiEjZNGbMGL788kvmz5+Pn58fsbGxxMbGkpqa26t11KhRTJgwwf563LhxLF++nGnTprF3714mTZrE5s2bGTt2rDM+QuEsewRerQ77lxfrcH9PN3w8XAGISVAfWxEREZFLUWBbFhxcBQtugx0LHXK6uKQ0/vj3JACD26gdgoiIiEhxzZw5k4SEBHr06EF4eLh9W7gw974tMjKSmJgY++vOnTszf/58PvroI1q2bMm3337L0qVLL7lQmdO5mSErDY6uK9bhJpPJPstWfWxFRERELq3IPWxr1arF3XffzejRo6lRo0ZJ1CQXOrgK9n4P3pWh5YgrPt2y7dFYDWhTI5DawT4OKFBERESkYjIM47JjVq9enW/fsGHDGDZsWAlUVEJqdIJNHxU7sAWICPTi4MlkBbYiIiIil1HkGbaPPvooixcvpk6dOvTq1YsFCxaQnl68XlZSSEfX2x5rdnbI6RbltEPQ7FoRERERKYyc+9DYnZCWUKxThPnbZtjGqiWCiIiIyCUVK7Ddvn07mzZtonHjxjz88MOEh4czduxYtm7dWhI1VmwZyRCz3fa8xpUvRPFPTCL/xCTi7mpiQIvwKz6fiIiIiFQAfmFQqQ5gQOTGYp0iPLslQrRm2IqIiIhcUrF72LZp04Z33nmH6OhoXnjhBT755BPat29Pq1atmDNnTqG+HiaFcGwzWLPAvyoEXnkLiiXbbLNrr28USqC3xxWfT0REREQqiJxZtpHFa4sQHugFQKwCWxEREZFLKnZgm5mZyddff81NN93E448/Trt27fjkk08YMmQIzzzzDLfddpsj66y4IrPbIdToBCbTFZ3KYjVYmh3Y3tym6pVWJiIiIiIVSY3swLaYfWxzFh2LjldLBBEREZFLKfKiY1u3bmXu3Ll89dVXuLi4MGrUKN566y0aNWpkHzN48GDat2/v0EIrrJwb4ppX3g5h7YFTxCWlE+TtTo+GVa74fCIiIiJSgdTqAvX7QJ0exTo8pyVCbKJm2IqIiIhcSpED2/bt29OrVy9mzpzJoEGDcHd3zzemdu3a3HLLLQ4psEIzDHBxBRd3h/SvXbz1GAADWkbg4VbsydUiIiIiUhEF1YLbvi724eEBtpYI8SmZpGZY8PJwdVBhIiIiIuVLkVO7Q4cOsXz5coYNG1ZgWAvg4+PD3LlzC3W+999/n1q1auHp6UnHjh3ZtGnTJcfHx8czZswYwsPDMZvNNGjQgB9//LGoH6NsMJngjiUwIQpCGl/Rqc6lZ7F8dywAN7ep5ojqREREREQKzd/TDe/skDYmQW0RRERERC6myIFtXFwcGzfmXxl248aNbN68uUjnWrhwIePHj+eFF15g69attGzZkj59+hAXF1fg+IyMDHr16sWRI0f49ttv2bdvHx9//DFVq5bzfqzuXuByZTNil++KJS3TSp1gH1pWC3BQYSIiIiJS4SQcg0Ori3yYyWTKbYughcdERERELqrIKeCYMWOIiorKt//48eOMGTOmSOeaPn069913H3fddRdNmjRh1qxZeHt7M2fOnALHz5kzhzNnzrB06VK6dOlCrVq16N69Oy1btizqxygbstIddqqcdgg3t6mK6QoXLxMRERGRCipuL7zVFL66FSxZRT48py1CjAJbERERkYsqcmC7Z88e2rRpk29/69at2bNnT6HPk5GRwZYtW+jZs2duMS4u9OzZk/Xr1xd4zLJly+jUqRNjxowhNDSUZs2a8corr2CxWIr6Ma5+VqvtZnhWV4jPH5AXxfH4VNYfOg3AoNblfDayiIiIiJSc4AbgGQiZyRC7o8iHh2XPsFVLBBEREZGLK3JgazabOXHiRL79MTExuLkVfg2zU6dOYbFYCA0NzbM/NDSU2NjYAo85dOgQ3377LRaLhR9//JHnn3+eadOm8dJLL130Ounp6SQmJubZyoRT+yH5JJw6AL6hlx9/CUu3HccwoGPtSlQL8nZQgSIiIiJS4bi45C6Ge3RdkQ+PsAe2mmErIiIicjFFDmx79+7NhAkTSEhIsO+Lj4/nmWeeoVevXg4t7kJWq5UqVarw0Ucf0bZtW0aMGMGzzz7LrFmzLnrM1KlTCQgIsG/Vq1cv0RodJjL7BrhaO3DzKPZpDMNgybbjAAzRYmMiIiIicqVqdrY9Hi34W3GXEqaWCCIiIiKXVeTA9s033yQqKoqaNWty3XXXcd1111G7dm1iY2OZNm1aoc8THByMq6trvtm6J06cICwsrMBjwsPDadCgAa6urvZ9jRs3JjY2loyMjAKPyQmXc7aC+u9elXJugHNuiItp5/EEDsSdw+zmwg3NC/65ioiIiIgUWs79aeQ6WxuvIggP1AxbERERkcspcmBbtWpV/v77b15//XWaNGlC27Ztefvtt9m5c2eRZq96eHjQtm1bVq5cad9ntVpZuXIlnTp1KvCYLl26cODAAazn3Rju37+f8PBwPDwKnoVqNpvx9/fPs5UJkdmBbY1rrug0i7faZtf2aRqGn6f7lVYlIiIiIhVdeEtw94bUs3BqX9EOzW6JEKsetiIiIiIXVfims+fx8fHh/vvvv+KLjx8/njvvvJN27drRoUMHZsyYQXJyMnfddRcAo0aNomrVqkydOhWABx98kPfee49x48bx8MMP8++///LKK6/wyCOPXHEtV5X4KEiIApMrVOtQ7NNkWqws2xENwOA2WmxMRERERBzA1R2qtYfDv8PRtVClcaEPDfe3tUQ4m5JJaoYFLw/XyxwhIiIiUvEUK7AF2LNnD5GRkflaEdx0002FPseIESM4efIkEydOJDY2llatWrF8+XL7QmSRkZG4uOROAq5evTo///wzjz32GC1atKBq1aqMGzeOp556qrgf4+qUM7s2vAWYfYt9mt/3neRMcgbBvmaurRfsoOJEREREpMLr/DC0vRNqdSvSYf5ebnh7uJKSYSE2MY3awT4lVKCIiIhI2VXkwPbQoUMMHjyYnTt3YjKZMAwDAJPJBIDFYinS+caOHcvYsWMLfG/16tX59nXq1IkNGzYUreiyxr8qNB8OVRpd0WkWbzsGwKBWEbi5Frn7hYiIiIhIweoXb7Fhk8lEWIAnh04mExOfqsBWREREpABFTvHGjRtH7dq1iYuLw9vbm927d7NmzRratWtXYMAqxVCrCwz5GK59vNinSEjJ5Nd/4gC1QxAREREpSFRUFMeOHbO/3rRpE48++igfffSRE6sq/3L62GrhMREREZGCFTmwXb9+PZMnTyY4OBgXFxdcXFzo2rUrU6dOLX+9ZMuwH3bGkJFlpVGYH03Cy8hCayIiIiKl6NZbb+W3334DIDY2ll69erFp0yaeffZZJk+e7OTqyoCYv2HNm3BodZEOCw+w9bGNTVRgKyIiIlKQIge2FosFPz8/AIKDg4mOti1qVbNmTfbtK9oqsVKAs0fgxB6wWq/oNIu32maL3Nymqr1dhYiIiIjk2rVrFx062BZ4/frrr2nWrBnr1q1j3rx5fPrpp84trizYtQhWTYGd3xbpsJwZttHxqSVRlYiIiEiZV+TAtlmzZuzYsQOAjh078vrrr7N27VomT55MnTp1HF5ghbPpY5jZCZY/XexTHD2dzOajZ3ExwcBWaocgIiIiUpDMzEzMZjMAv/76q33x3EaNGhETE+PM0sqGmp1tjzkL5haSfYatWiKIiIiIFKjIge1zzz2HNXv25+TJkzl8+DDXXnstP/74I++8847DC6xwcm54q7Yt9imWbDsOQJd6wYT6ezqiKhEREZFyp2nTpsyaNYs//viDFStW0LdvXwCio6OpXLmyk6srA6p3BExw+gAknSj0YbWCvQHYFhVPRtaVfatMREREpDxyK+oBffr0sT+vV68ee/fu5cyZMwQFBemr91cqIxlibLOXqXFNsU5hGAaLt9oC2yFtqjmqMhEREZFy57XXXmPw4MG88cYb3HnnnbRs2RKAZcuW2VslyCV4BUJoMzix0zbpoOmgQh3WoVYlQvzMnExKZ/W+OHo3DSvRMkVERETKmiLNsM3MzMTNzY1du3bl2V+pUiWFtY5w7C+wZoF/VQisUaxTbDl6lsgzKfh4uNK7aaiDCxQREREpP3r06MGpU6c4deoUc+bMse+///77mTVrlhMrK0Ny2iIcXVfoQ9xcXRjUKgKARdnrLoiIiIhIriIFtu7u7tSoUQOLxVJS9VRsR7PbIdToBMUMwBdnt0Po2ywcb48iT6AWERERqTBSU1NJT08nKCgIgKNHjzJjxgz27dtHlSpVnFxdGVGzk+0xsvCBLcCQtrZvgq3aG8fZ5AxHVyUiIiJSphW5h+2zzz7LM888w5kzZ0qinootp39tzo1vEaVlWvh+RzQAQ9posTERERGRSxk4cCCff/45APHx8XTs2JFp06YxaNAgZs6c6eTqyoga2TNszxyBjJRCH9YozJ+mEf5kWgyWZd+/ioiIiIhNkQPb9957jzVr1hAREUHDhg1p06ZNnk2KyZJpa4kAuTe+RbRqbxyJaVlEBHhyTR0tlCEiIiJyKVu3buXaa68F4NtvvyU0NJSjR4/y+eefazHdwvILhf+ugacOg4d3kQ7NWW9BbRFERERE8iryd+YHDRpUAmUIAMO/sIW2IY2KdXjOYmMDW1fFxUU9hUVEREQuJSUlBT8/PwB++eUXbr75ZlxcXLjmmms4evSok6srQ8JbFuuwm1pF8MqP//D3sQT+PZFE/VA/BxcmIiIiUjYVObB94YUXSqIOcXWH+j1tWzGcPmdbZRfg5tZqhyAiIiJyOfXq1WPp0qUMHjyYn3/+mcceewyAuLg4/P39nVxd+Rfsa6ZHwxB+/SeORVuP8/QNxZu0ICIiIlLeFLklglyd/rcjmiyrQYtqAZqdICIiIlIIEydO5IknnqBWrVp06NCBTp1s6wj88ssvtG7d2snVlSGZabDsEfigE2SmFunQnLYIS7Ydw2I1SqI6ERERkTKnyIGti4sLrq6uF92kGKxWWPUS7Ftu62VbDEu22dohDNbsWhEREZFCGTp0KJGRkWzevJmff/7Zvv/666/nrbfecmJlZYybGf5dAXF74NjmIh36n8ZVCPBy50RiOmsPnCqhAkVERETKliK3RFiyZEme15mZmWzbto3PPvuMF1980WGFVSin9sGaN8DNC56OLPLhB+KS2HEsATcXEwNaRpRAgSIiIiLlU1hYGGFhYRw7Zlv4qlq1anTo0MHJVZUxJhPU7AS7FsHRdVD72kIfanZz5aaWEXyx4SiLth6jW4OQEixUREREpGwocmA7cODAfPuGDh1K06ZNWbhwIffcc49DCqtQjq6zPVZrB24eRT48Z7GxHg1DCPY1O7IyERERkXLLarXy0ksvMW3aNM6dOweAn58fjz/+OM8++ywuLuoeVmg1O9sC28h1RT50SNtqfLHhKD/vjiUpLRM/T/cSKFBERESk7HDYXeg111zDypUrHXW6iiVyg+2xZuciH2q1GizNbodwc3YPMBERERG5vGeffZb33nuPV199lW3btrFt2zZeeeUV3n33XZ5//nlnl1e21Mi+j43aVOQWXy2rBVA3xIe0TCs/7owpgeJEREREyhaHBLapqam88847VK2q/qnFErne9lijU5EP3XD4NNEJafh5uvGfRlUcXJiIiIhI+fXZZ5/xySef8OCDD9KiRQtatGjBQw89xMcff8ynn37q7PLKlpBG4BUEmSkQ83eRDjWZTAxpa5t4sGjL8ZKoTkRERKRMKXJLhKCgIEwmk/21YRgkJSXh7e3Nl19+6dDiKoT4KEiIApMrVGtf5MNz2iHc2CICT3ct+iYiIiJSWGfOnKFRo0b59jdq1IgzZ844oaIyzMXFNvlg349wdC1Ua1ukwwe3rsobP+9j05EzRJ5OoUZl7xIqVEREROTqV+TA9q233soT2Lq4uBASEkLHjh0JCgpyaHEVQs7s2vCWYPYt0qGpGRZ+yv7a2JA2mt0sIiIiUhQtW7bkvffe45133smz/7333qNFixZOqqoMq9kZTu0Hd68iHxoe4EXXesH88e8pFm09xmO9GpRAgSIiIiJlQ5ED29GjR5dAGRVY9DbbYzH61/6yJ5bkDAs1KnnTtqbCchEREZGieP311+nfvz+//vornTrZWlOtX7+eqKgofvzxRydXVwZdMwY6P1zsw4e0qcYf/55i8bZjjLu+Pi4upssfJCIiIlIOFbmH7dy5c/nmm2/y7f/mm2/47LPPHFJUhdLnFRi7GTrcX+RDF2W3QxjcumqeWc8iIiIicnndu3dn//79DB48mPj4eOLj47n55pvZvXs3X3zxhbPLK3tcrmx5jD5Nw/A1uxF1JpW/jqglhYiIiFRcRb6rmjp1KsHBwfn2V6lShVdeecUhRVUoJhME14egmkU6LC4xjT//PQnAzWqHICIiIlIsERERvPzyyyxatIhFixbx0ksvcfbsWWbPnu3s0souSxakFD1w9fJwpV/zMAAWbT3m6KpEREREyowiB7aRkZHUrl073/6aNWsSGRnpkKLk8r7bHo3VgHY1g6hZ2cfZ5YiIiIiIwI4F8GoN+PGJYh1+c5tqAPy4M5bUDIsjKxMREREpM4oc2FapUoW///473/4dO3ZQuXJlhxRVYfwxDb6+Ew6vKfKhObMOBmt2rYiIiIhcLfyrQmYyHF0PhlHkwzvUqkS1IC/OpWfx8+7YEihQRERE5OpX5MB25MiRPPLII/z2229YLBYsFgurVq1i3Lhx3HLLLSVRY/m19wfYsxQSY4p02J7oRPbGJuHh6sKNzSNKpjYRERERkaKq1g5c3CEpGs4eKfLhLi4m+yxbtUUQERGRisqtqAdMmTKFI0eOcP311+PmZjvcarUyatQo9bAtioxkiNlhe16zU5EOXbLNdvPas0kVArzdHV2ZiIiISLl28803X/L9+Pj40imkPHL3gqptIGojRK6HSvlbqV3OkDZVeWflv/x54BSxCWmEBXiWQKEiIiIiV68iB7YeHh4sXLiQl156ie3bt+Pl5UXz5s2pWbNoi2ZVeMf+AmsW+FeDwBqFPizLYmXp9mgABreuVlLViYiIiJRbAQEBl31/1KhRpVRNOVSjky2wPboWWt1a5MNrVvahfa0g/jpyliXbjvNgj7olUKSIiIjI1avIgW2O+vXrU79+fUfWUrEcXW97LOLs2j8PnOJkUjqVfDzo3iCkBAoTERERKd/mzp3r7BLKt5pdYO2M3PvdYhjSphp/HTnLoq3HeKB7HUwmk+PqExEREbnKFbmH7ZAhQ3jttdfy7X/99dcZNmyYQ4qqECLX2R5rFLUdwnEAbmoZgYdbkf/ziYiIiIiUrOodABOcOQhJJ4p1in4twjG7uXAg7hx/H0twbH0iIiIiV7kiJ35r1qyhX79++fbfcMMNrFmzxiFFlXuWTDi22fa8ZuciHbotMh6A3k1CHVyUiIiIiIgDeAVCu7vhuufAVLwJBv6e7vRpGgZo8TERERGpeIp8B3Xu3Dk8PDzy7Xd3dycxMdEhRZV75+IgpBH4VIHghoU+zGo1iElIBaBmsE9JVSciIiIicmVunA7dnwTf4rfwGtLWtl7Dsh3RpGdZHFWZiIiIyFWvyIFt8+bNWbhwYb79CxYsoEmTJg4pqtwLqAr3/waP7QaXwv8nOHUunUyLgYsJQv3MJVigiIiIiIhzda0XTKi/mfiUTH7bG+fsckRERERKTZEXHXv++ee5+eabOXjwIP/5z38AWLlyJfPnz+fbb791eIHlmlv+mcqXcizeNrs2zN8TN1f1rxURERGRq1jSCdu6DXWvB0//Ih/u6mJiUOuqfPj7Ib7dcpy+zcJLoEgRERGRq0+RU78BAwawdOlSDhw4wEMPPcTjjz/O8ePHWbVqFfXq1SuJGssXw4CM5GIdGp0d2FYN8nJkRSIiIiIijvdpP/hmNESuL/YphraxtUVYvS+O0+fSHVSYiIiIyNWtWNM0+/fvz9q1a0lOTubQoUMMHz6cJ554gpYtWzq6vvLn5D6YWh3m9reFt0WQE9hGBCqwFREREZGrXI1Otseja4t9ivqhfrSoFkCW1eC77dEOKkxERETk6lbs79WvWbOGO++8k4iICKZNm8Z//vMfNmzY4MjayqfIdWBYwGSybUVw/KwCWxEREREpI2p2sT0eLf4MW4Ah2bNsF209dqUViYiIiJQJRQpsY2NjefXVV6lfvz7Dhg3D39+f9PR0li5dyquvvkr79u1Lqs7yI+eGtWbnIh96PD4NgKoKbEVERETkalcze4Zt9FbISCn2aQa0jMDd1cTu6ET2xiY6qDgRERGRq1ehA9sBAwbQsGFD/v77b2bMmEF0dDTvvvtuSdZWPuX08Mr5ilgR2HvYKrAVERERkatdYE3wrwrWLDi+udinqeTjwXUNqwCwaItm2YqIiEj5V+jA9qeffuKee+7hxRdfpH///ri6upZkXeVTfBQkRIHJFaoVfTbycfWwFREREbnqrFmzhgEDBhAREYHJZGLp0qWXHL969WpMJlO+LTY2tnQKLi0m0/+3d+fhUZV3/8c/M5NZsq9kZd/CHjBAAK2KoIgrrmitIlWsVvxV0Vppq1TLU9pq1VZRfLRWH3etitZdUbQoiICRRfadbBCyb5NkZn5/nKxCJECSc0jer+s615w5c88532Q6z3Pz8c73NOlj+9VxneqSdKMtwpvfZqvW5z/eygAAACyt1YHtsmXLVFpaqvT0dGVkZOjRRx9Vfn5+e9bW+dSvrk1Kk9xhR/XWMm+tiitrJEnJUZ62rgwAAADHqLy8XGlpaVq4cOFRvW/z5s3Kyclp2OLj49upQhPVtwE7zsB2Ymq8okOcyi/z6r/b+DcIAADo3Fod2I4bN05PPvmkcnJy9Itf/EIvv/yykpOT5ff79fHHH6u0tLQ96+wc6ieqx9C/NqdudW2EJ0jhHmdbVgUAAIDjMHXqVM2fP18XXXTRUb0vPj5eiYmJDZvdfsz3A7augVOki/5XuvDowuwfcgXZdeHIFEm0RQAAAJ3fUc8KQ0ND9fOf/1zLli3TunXrdPvtt+vPf/6z4uPjdcEFF7RHjZ1H71OkoRdJ/Scd9Vv30Q4BAACgUxk5cqSSkpJ05pln6ssvvzS7nPYR2V1Kmy5F9TjuU11yktEW4aPv8xr+8gwAAKAzOq7/jJ+amqq//vWv2rdvn1566aW2qqnzGn6pdNkzUr8zjvqt3HAMAACgc0hKStKiRYv0+uuv6/XXX1ePHj10+umna82aNS2+x+v1qqSkpNnW1QxLidDAhDBV1/r17tocs8sBAABoN23yd1cOh0PTpk3T22+/3Ranw2E0BLbRBLYAAAAnstTUVP3iF79Qenq6JkyYoKeffloTJkzQQw891OJ7FixYoMjIyIatR4/jX7HaYUqypS//Ln1x/3GdxmazNayyfX0NbREAAEDn1QkbZVnUvtVS/lYpEDimt2cV0hIBAACgsxo7dqy2bdvW4utz585VcXFxw7Z3794OrO44leZIH98jffWo5Pcf16kuGpUiu01avbtQO/PL26hAAAAAayGw7Sjv/1p6dLS0/vVjent2UZUkAlsAAIDOKDMzU0lJSS2+7na7FRER0Ww7YSSmSc5QqapIOrDxuE4VH+HRTwZ0kyS9wSpbAADQSVkisF24cKF69+4tj8ejjIwMrVy5ssWxzzzzjGw2W7PN4/F0YLXHoLpcyvnO2O8+5phOkUUPWwAAAEsqKytTZmamMjMzJUk7d+5UZmam9uzZI8lYHXvNNdc0jH/44Yf11ltvadu2bVq/fr1uvfVWffrpp7r55pvNKL/9OYKkHmON/d1fHffpLkk32iK8sSZLfv+x/fUaAACAlZke2L7yyiuaM2eO5s2bpzVr1igtLU1TpkzR/v37W3xPRESEcnJyGrbdu3d3YMXHYN83kr9WikiRonoe9dtrfX7llhgrbAlsAQAArGXVqlUaNWqURo0aJUmaM2eORo0apXvuuUeSlJOT0xDeSlJ1dbVuv/12DR8+XKeddpq+++47ffLJJ5o0aZIp9XeIXhOMxzYIbM8akqBwT5Cyiiq1YufB4z4fAACA1QSZXcCDDz6oWbNmaebMmZKkRYsW6d1339XTTz+tu+6667DvsdlsSkxM7Mgyj8/u5cZjz/GSzXbUb99f6pXPH1CQ3aZu4e42Lg4AAADH4/TTT1fgR+5T8MwzzzR7fuedd+rOO+9s56ospj6w3bPcuKfDMcyJ63mcDp03Ikkvrdyr11dnaUK/uDYqEgAAwBpMXWFbXV2t1atXa/LkyQ3H7Ha7Jk+erOXLl7f4vrKyMvXq1Us9evTQhRdeqA0bNrQ41uv1qqSkpNnW4fbUrSToNf6Y3p5d1w4hKcojh/3YJ7cAAACAKVLSJbvTuAFZ4c7jPt3FJxltEd5fn6Nyb+1xnw8AAMBKTA1s8/Pz5fP5lJCQ0Ox4QkKCcnNzD/ue1NRUPf3003rrrbf0/PPPy+/3a8KECdq37/A3HViwYIEiIyMbth49erT5z/GjfDXSvlXGfs8Jx3SK+v61yZG0QwAAAMAJyBlshLYOt5S/9bhPN7pXtHrFhqii2qcP1h/+3w0AAAAnKtN72B6t8ePH65prrtHIkSN12mmn6Y033lC3bt30xBNPHHb83LlzVVxc3LDt3bu3YwvO+U6qqZA8UVK3Qcd0Cm44BgAAgBPeJU9Jc/dKA6cc96lsNpsuHmWssn19zeEXbgAAAJyoTO1hGxcXJ4fDoby8vGbH8/LyWt2j1ul0atSoUdq2bdthX3e73XK7Tez72i1VuvJlqeKgZD+2fLy+JUJKNIEtAAAATlBRbfuXbheflKKHPtmi5TsOKquoksUNAACg0zB1ha3L5VJ6erqWLFnScMzv92vJkiUaP751/V59Pp/WrVunpKSk9irz+LjDpdSp0qifHfMpsgrrWiIwCQUAAAAkST1iQpTRJ0aBgPQmq2wBAEAnYnpLhDlz5ujJJ5/Us88+q40bN+qmm25SeXm5Zs6cKUm65pprNHfu3Ibx9913nz766CPt2LFDa9as0c9+9jPt3r1b119/vVk/QrvLLqqSRGALAACAE9yXf5cemyBtWNwmp7sk3WiL8MaaLAUCgTY5JwAAgNlMbYkgSdOnT9eBAwd0zz33KDc3VyNHjtQHH3zQcCOyPXv2yN6klUBhYaFmzZql3NxcRUdHKz09XV999ZWGDBli1o/Q7rLpYQsAAIDOoCRb2r9B2v2lNHTacZ/unOFJmvfWBu3IL9fyHQc1oV/c8dcIAABgMlugi/2n6JKSEkVGRqq4uFgRERFml3NExZU1Srv3I0nS9/dNUYjL9IwdAACgw51oc7j2dsL+PjYsll6bISUMk276sk1OOfeNdXpp5R71jg3Re7/6CfNlAABgSUczfzO9JQJ+XP3q2ugQJ5NPAAAAnNh6TTAe8zZIlYVtcsq7zh6kxAiPdh2s0J/e29gm5wQAADATga3FNbRDiKYdAgAAAE5wYfFSbH9JAWnP121yysgQpx64LE2S9PyKPfps8/42OS8AAIBZCGwtLqsusE2OJLAFAABAJ1C/ynbPV212ylMGxOnaCb0lSXf+e60Ky6vb7NwAAAAdjcDW4hoCW244BgAAgM6g18nG4/dvS7XeNjvtXVMHqV+3UB0o9ep3i9epi92qAwAAdCIEthaXXVQlSepOSwQAAAB0BoPOlSJ7SsMukQL+Njutx+nQw9NHKchu03vrcrU4M6vNzg0AANCRCGwtLquwQhIrbAEAANBJuMOlW1ZJk+6WnG07xx3ePVK/mjRAknTP4g0Nf60GAABwIiGwtbj6FbYEtgAAAOg0gtyN+23cuuCm0/tpVM8olXprdcer38nvpzUCAAA4sRDYWliNz6+8UiOwTSGwBQAAQGezb5X01CRpz4o2O2WQw64HLx+pYKdDy3cc1NNf7myzcwMAAHQEAlsLyy2uUiAguYLsig11mV0OAAAA0LbW/J+UtVp67w7J72uz0/aJC9Xvzh0sSfrrh5u1Ja+0zc4NAADQ3ghsLay+51ZypEd2u83kagAAAIA2NukeyR0p5a6T1jzbpqe+KqOnTk/tpupav259OVPVtW13gzMAAID2RGBrYdl1gW1KNO0QAAAA0AmFxkkTf2vsL/mjVFHQZqe22Wz66yUjFB3i1Pc5Jfr7ki1tdm4AAID2RGBrYdkNK2wJbAEAANBJjble6jZYqiyQPvtTm546PsKjP100XJL0+NLtWr277QJhAACA9kJga2ENLRG44RgAAAA6K0eQdM5fjf1V/zTaI7ShqcOTdPGoFPkD0m2vfKdyb22bnh8AAKCtEdhaWFZRlSRaIgAAAKCT63OqNGSaFPBLq59p89P/4cKhSokK1p6CCs1/9/s2Pz8AAEBbIrC1sIYetqywBQAAQGd31nzpgkekqfe3+akjPE49cFmabDbppZV7tWRjXptfAwAAoK0Q2FpUIBBQViEtEQAAANBFRPWQTrpGsrfPP1HG94vVdSf3kST95vW1OljmbZfrAAAAHC8CW4sqqqhRZY1PkpQU6TG5GgAAAKADVZdL2z9r89PeMSVVAxPClF9WrblvrFMgEGjzawAAABwvAluLqr/hWFyYWx6nw+RqAAAAgA5Smis9OkZ68XKpYEebntrjdOih6SPldNj00fd5+vfqfW16fgAAgLZAYGtRWQ39a1ldCwAAgC4kLEGKGyj5qqUPf9fmpx+aHKnbzhwoSbr3P99rb0FFm18DAADgeBDYWlTDDcei6V8LAACALsRmk6b+RbIHSZvfk7Z+0uaX+MWp/TS6V7TKvLW6/bXv5PPTGgEAAFgHga1F1Qe2yZEEtgAAAOhiuqVKGTca+x/8RqqtbtPTO+w2PXj5SIW6HFq5s0D/XNa2rRcAAACOB4GtRdW3REiOIrAFAABAF3TanVJovHRwm/T1421++p6xIbr7vCGSpAc+3KKNOSVtfg0AAIBjQWBrUVlFVZJoiQAAAIAuyhMpTf6Dsf/5X42bkbWx6WN6aPLgeFX7/LrtlUx5a31tfg0AAICjRWBrUQ09bFlhCwAAgK4q7UopZbTUf7IUaPs+szabTQsuHqHYUJc25ZbqwY+3tPk1AAAAjhaBrQVV1fh0oNQriZYIAAAA6MLsdmnGf6TLn5UiktrlEt3C3Vpw8XBJ0v9+sUMrdxa0y3UAAABai8DWgnKLjXYIwU6HokOcJlcDAAAAmMgV0u6XOGtooi4f3V2BgDTn1UyVVtW0+zUBAABaQmBrQdkNNxzzyGazmVwNAAAAYAEl2dLr10urn22X09993hB1jw7WvsJK/X7xevn9bd+CAQAAoDUIbC1oX0NgSzsEAAAAQJL0/dvSutekJfdKlYVtfvpwj1MPXj5Sdpv0Vma25ryaqRqfv82vAwAAcCQEthZUv8K2ezSBLQAAACBJGnOd1G2QVHFQWvrndrnE2D4xemj6SAXZbVqcma0bn1utqhpfu1wLAACgJQS2FtTQEiGSwBYAAACQJDmc0tS/GPsrn5Tyvm+Xy1w4MkX/e0263EF2Ldm0XzOeXklPWwAA0KEIbC0oi5YIAAAAwKH6ni4NvkAK+KT375QC7dNn9oxBCXruugyFu4P09c4CXfnkCh0s87bLtQAAAH6IwNaCsouqJEkptEQAAAAAmpvyP1KQR9r1X+n7xe12mbF9YvTSDeMUG+rS+qwSXfbE8oa/hAMAAGhPBLYWEwgEGlbYprDCFgAAAGguqqd0ym3G/lePttsqW0kalhKpV28cr+RIj3YcKNelj3+lHQfK2u16AAAAEoGt5eSXVau61i+bTUqI8JhdDgAAAGA9J/9Kmvh76ZrFks3Wrpfq1y1Mr900QX3jQpVdXKXLFi3X+qzidr0mAADo2ghsLab+z6ziw91yBfHxAAAAAIdwBkun/Vpyh3fI5VKigvXqjeM1NDlCB8urdeX/rtDKnQUdcm0AAND1kAhaTDbtEAAAAIDW8/ulHUvb/TJxYW69dMM4je0To1Jvra7+59f6bNP+dr8uAADoeghsLaa+f20ygS0AAADw4/w+6dnzpP+7UPr2+Xa/XITHqf/7+VidMShe3lq/Zv3fKr39XXa7XxcAAHQtBLYWww3HAAAAgFayO6Se44z9t2ZLa19t90t6nA49cXW6LhyZrFp/QL96+Vs9v2J3u18XAAB0HQS2FtPQEiGawBYAAAA4oom/l9JnSgpIb/5CWv96u1/S6bDroctH6upxvRQISL9fvF4LP9umQCDQ7tcGAACdH4GtxTS0RIgksAUAAACOyG6Xzn1QGnW1FPBLr8+SNizugMvadN+FQ3XLGf0lSfd/uFl/fn8ToS0AADhuBLYWk11UJYketgAAAECr2e3S+f+Q0n4qBXzS69dJG99p98vabDbdflaqfn/uYEnSE1/s0F2vr5PPT2gLAACOHYGthVRW+1RQXi2JlggAAADAUbHbpQsflYZfLjlckieiwy59/U/66q+XjJDdJr2yaq9ueWmNvLW+Drs+AADoXAhsLaS+HUKYO0gRniCTqwEAAABOMHaHNO1x6folUp9TO/TSl4/poceuOkkuh13vrcvV9c+uUkV1bYfWAAAAOgcCWwupv+FYcpRHNpvN5GoAAACAE5AjSEoY0vh8/0Zpx9IOufTZw5L09LVjFOJy6L9b8/Wzp75WcUVNh1wbAAB0HgS2FlIf2KbQvxYAAAA4fge3S8+cK704XdrxeYdc8pQBcXrh+gxFBju1Zk+Rpv/v8oa/pAMAAGgNAlsLyWpYYUtgCwAAABy3yB5S97FSbZX00hXSrmUdctlRPaP16i/GKz7crU25pZry0Bd64evdCgS4GRkAADgySwS2CxcuVO/eveXxeJSRkaGVK1e26n0vv/yybDabpk2b1r4FdhACWwAAAKANBbmky5+VBpwl1VRIL1wu7V7eIZdOTQzX6zdNUHqvaJV5a/W7N9frqqe+1t6Cig65PgAAOHGZHti+8sormjNnjubNm6c1a9YoLS1NU6ZM0f79+3/0fbt27dIdd9yhn/zkJx1Uafurb4nQPZrAFgAAAGgTQW7p8uekfmdINeXSC5dKe1u3QOR49YgJ0au/GK+7zxsij9Our7Yf1JSHv9CzX+2S389qWwAAcHimB7YPPvigZs2apZkzZ2rIkCFatGiRQkJC9PTTT7f4Hp/Pp6uuukr33nuv+vbt24HVti9W2AIAAADtwOmRrnhR6nOqVF0mPX+JlLO2Qy7tsNt03Sl99MGvTtXYPjGqqPZp3tsbdMWTK7Qrv7xDagAAACcWUwPb6upqrV69WpMnT244ZrfbNXnyZC1f3vKfKt13332Kj4/Xddddd8RreL1elZSUNNusyOcPKLe4ShKBLQAAwInkiy++0Pnnn6/k5GTZbDYtXrz4iO9ZunSpTjrpJLndbvXv31/PPPNMu9fZ5TmDpStflnqdIsUPlqJ7d+jle8eF6uVZ43TfhUMV4nJo5c4Cnf33L/TUf3fIx2pbAADQhKmBbX5+vnw+nxISEpodT0hIUG5u7mHfs2zZMv3zn//Uk08+2aprLFiwQJGRkQ1bjx49jrvu9pBf5lWNLyCH3aaEcLfZ5QAAAKCVysvLlZaWpoULF7Zq/M6dO3Xuuedq4sSJyszM1K233qrrr79eH374YTtXCrlCpZ++Iv3sdckT0eGXt9ttumZ8b31466k6uX+sqmr8mv/uRl3+xHJtP1DW4fUAAABrMr0lwtEoLS3V1VdfrSeffFJxcXGtes/cuXNVXFzcsO3du7edqzw2+wqNdgiJER4FOU6ojwUAAKBLmzp1qubPn6+LLrqoVeMXLVqkPn366G9/+5sGDx6s2bNn69JLL9VDDz3UzpVCkuQOk9zhjc9XLJJy13doCT1iQvT8dRn600XDFeYO0urdhZr69/9q0efbVevzd2gtAADAeoLMvHhcXJwcDofy8vKaHc/Ly1NiYuIh47dv365du3bp/PPPbzjm9xsTmqCgIG3evFn9+vVr9h632y232/orVrMb+td6TK4EAAAA7Wn58uXNWoJJ0pQpU3Trrbe2+B6v1yuv19vw3Kptvk443z4vffAbKSROuvYdo1VCB7HZbPppRk+dltpNc99Ypy+2HNCf39+k99fl6P7L0jQwIfzIJwEAAJ2SqUs5XS6X0tPTtWTJkoZjfr9fS5Ys0fjx4w8ZP2jQIK1bt06ZmZkN2wUXXNDw52RWbXfQGvWBbQr9awEAADq13Nzcw7YEKykpUWVl5WHfc6K0+TrhDDpPShopVeRLz54vHdjc4SWkRAXr2Zlj9NdLRyjcE6Tv9hXrvH8s06OfblUNq20BAOiSTP/b+zlz5ujJJ5/Us88+q40bN+qmm25SeXm5Zs6cKUm65pprNHfuXEmSx+PRsGHDmm1RUVEKDw/XsGHD5HK5zPxRjktWwwpbAlsAAAA0d6K0+TrhBEdJV78pJQ6Xyg8YoW3+tg4vw2az6fLRPfTxbadp0qB4Vfv8euCjLbrosS+1MYfV1AAAdDWmB7bTp0/XAw88oHvuuUcjR45UZmamPvjgg4ZVB3v27FFOTo7JVba/bAJbAACALiExMfGwLcEiIiIUHHz4uaDb7VZERESzDW0kJEa6+i0pfqhUlic9e550cLsppSRGevTUjNF6aHqaIoOdWp9VovMfWaaHPt6i6lpW2wIA0FWY2sO23uzZszV79uzDvrZ06dIffe8zzzzT9gWZIKuoSpKUEk1gCwAA0JmNHz9e7733XrNjH3/88WFbgqGDhMZK17xlhLUHNhkrbW/+uvnNyTqIzWbTRaO66+T+cbp78Xp9uCFPf1+yVR9uyNUDl6VpWEpkh9cEAAA6lukrbGHIKqyQRA9bAACAE01ZWVnD/RUkaefOncrMzNSePXskGe0MrrnmmobxN954o3bs2KE777xTmzZt0mOPPaZXX31Vt912mxnlo15YN2nGf6Rug6Txs00Ja5uKD/do0c/S9ciVoxQT6tKm3FJduPBLLXh/owrKq02tDQAAtC8CWwsorapRSVWtJFoiAAAAnGhWrVqlUaNGadSoUZKMezSMGjVK99xzjyQpJyenIbyVpD59+ujdd9/Vxx9/rLS0NP3tb3/TU089pSlTpphSP5oIi5duWCqN/2XjMb/PtHJsNpvOT0vWx7edqnNHJMnnD+iJz3folL98qvnvfK+8kirTagMAAO3HFggEAmYX0ZFKSkoUGRmp4uJiy/T+2pJXqrMe+kKRwU59N+8ss8sBAACwHCvO4czE76ODVBZJz02Txv1SGnG52dXok+/z9NAnW7Qh27gRmcth12Wju+vG0/qpR0yIydUBAIAfczTzN1bYWkBWITccAwAAACxn1dNS9rfSG7OkFY+bXY0mD0nQO7ecomdmjtGY3tGq9vn1wtd7dPoDSzXnlUxtzSs1u0QAANAGCGwtIKvICGxTojwmVwIAAACgwcm3Shk3Gfsf3CUtuU8y+Q8UbTabTk+N12s3TtArN4zTqQO7yecP6I1vs3TWw1/oxudWa92+YlNrBAAAxyfI7AIgZTcEtqywBQAAACzDbpfOXiCFxkmf/lH679+k8nzpvIcku8Ps6pTRN1YZfWO1dl+RFn62TR9uyNMHG3L1wYZcnTqwm2ZP7K+xfWLMLhMAABwlVthaQP0KW1oiAAAAABZjs0mn3iGd/3fJZpfWPCu9NkOqsc4Nv0Z0j9ITV4/WR7edqotGpchht+mLLQd0+RPLdfmi5fp8ywF1sVuXAABwQiOwtYBsAlsAAADA2tKvlS57VnK4pKw1UmWB2RUdYmBCuB6aPlKf3X66rhzbUy6HXSt3FWjG0yt1waNf6oP1OfL7CW4BALA6WiJYQHaR8V/nU6IJbAEAAADLGnKBFPy6FJYgRSSbXU2LesaGaMHFw/WrSQP05H936MWv92hdVrFufH6N+seH6Zen99MFackKcrB+BwAAK+L/Q5us1udXbkldYMsKWwAAAMDa+pwqdUttfL7lQ6lwl2nl/JjESI/uPm+Ilv1momZP7K9wT5C27S/TnFe/08S/LdXzK3arqsZndpkAAOAHCGxNllfqlc8fkNNhU7cwt9nlAAAAAGitXcukV34m/fMsKXe92dW0KDbMrTumpOrLu87Qr6ekKjbUpb0Flfr94vUaM/8TzX1jndbsKaTPLQAAFkFga7L6/rVJkcGy220mVwMAAACg1WL6SbEDpLI86V/nSLu/MruiHxXhcermif217DdnaN75Q9Q9Olil3lq9tHKPLn7sK01+8HM9vnS78kqsc0M1AAC6IgJbk2UV1t9wzGNyJQAAAACOSkSSNPM9qed4yVssPXeRtPl9s6s6omCXQzNP7qMvfj1RL87K0MWjUuRx2rX9QLn+8sEmjV+wRNf+a6XeWZtNywQAAExAYGuyrKL6wJb+tQAAAMAJJzhKuvpNaeBUqbZKevkqKfNFs6tqFbvdpgn94vTg9JH65neT9ZdLhmtM72j5A9LSzQc0+8VvlfGnJbp78Xqt3VdEywQAADpIkNkFdHX1LRG6E9gCAAAAJyZnsDT9eentW6TvXpQW3yRFpEh9TzO7slYL9zg1fUxPTR/TUzvzy/X66n16fc0+5RRX6bkVu/Xcit1KTQjXpendNW1UirqFc/8NAADaC4GtybJZYQsAAACc+BxB0rTHpNBYqTRP6v0Tsys6Zn3iQnXHlFTdduZAfbktX/9evU8fbsjV5rxS/c97G/XnDzZpYmo3XZreQ2cMipcriD/cBACgLRHYmoyWCAAAAEAnYbNJZ82X/D7JXhdi1lRJPq/kiTS3tmPgsNt06sBuOnVgNxVX1uidtdl6bdU+Ze4t0icb9+uTjfsVE+rShSOTdWl6dw1NPvF+RgAArIjA1kSBQKDhpmMp0QS2AAAAQKdgdxiPfp/RHmHjf6Re46UBZxlb3EAj3D2BRAY7dVVGL12V0Uvb9pfq36uz9Maafdpf6tW/vtylf325S4MSw3XW0ESdOThBw1IiZDvBfkYAAKyCwNZEJVW1Kq827rqaHElgCwAAAHQqBzZJuWslf4208wtj++j3UlQvI7gddI7U7wyzqzxq/ePDddfUQbrjrIH677Z8/XvVPn38fZ425ZZqU26p/rFkqxIjPJo8JF6TBydofL9YuYMcZpcNAMAJg8DWRPWra2NCXQp2MYEBAAAAOpWEodItq6WD26WtH0tbP5R2LZOKdkvfPGk8Ng1si7OkyBTz6j1KQQ67JqbGa2JqvIoqqo02Cd/n6YutB5RbUqXnV+zR8yv2KNTl0Gmp3TR5cIImpsYrOtRldukAAFgaga2J6m84lkL/WgAAAKDziu1nbONulKrLjZW2Wz6Uep3cOKZor/TwMKnbIGnAmcYK3J7jJYfTvLqPQlSIS5emd9el6d1VVePT8u0H9fHGPH3yfZ72l3r13rpcvbcuVw67TaN7RevMIQmaPDhBveNCzS4dAADLIbA1UXZx/Q3HPCZXAgAAAKBDuEKl1KnG1lROpmRzGG0UDmySvnpEckdIfU+XBk6RBp4thcaZUfFR8zgdmjgoXhMHxWv+hcO0LqtYn2zMa2ib8PXOAn29s0Dz392o/vFhDeHtyB5RctjpewsAAIGtiepbIiSzwhYAAADo2gafL925Xdr+mbT1I6OFQkW+tPFtY7vsGWnoRWZXedTsdpvSekQprUeUbj8rVXsLKvTJxjx9sjFPX+8o0Lb9Zdq2v0yPL92uuDCXzhgUrzOHJOqU/nG0jQMAdFkEtibKoiUCAAAAgHrB0dKwi43N75dyvpW2fCRt+0TqO7Fx3KqnpT1fSxm/kFJOMq/eY9AjJkQzT+6jmSf3UXFljT7fckAff5+npZv2K7+sWq+u2qdXV+2TO8iusX1iNKa3sY3qGSWPkwAXANA1ENiaiB62AAAAAA7LbpdS0o1t4tzG436/9NWjUsF2ae3LUvexRnA75MITpt9tvchgpy5IS9YFacmqrvXrm10F+vh7o3VCVlGl/rs1X//dmi9JcjpsGp4S2RDgju4dragQbl4GAOicbIFAIGB2ER2ppKREkZGRKi4uVkREhKm1ZPzpE+WVePXWzScrrUeUqbUAAABYmZXmcFbA76OL27daWvmEtP4NyV9jHAtPkkb/XEq/VgqLN7W84xUIBLQlr0xf7zyolTsL9M2uAuWVeA8Zl5oQrjF9ojWmd4zG9olRUiQLYQAA1nU08zcCW5NU1/qVevf7CgSkb343Wd3C3abVAgAAYHVWmcNZBb8PSJJK86TVz0ir/imV5RnHhkyTLn/WzKraXCAQ0N6CSq3cVaBv6gLcHfnlh4zrHh2ssb1jNKaulUK/bqGy2biJGQDAGo5m/kZLBJPklVQpEJBcQXbFhfGnPAAAAACOUniCdPpvpFNuk75/S/p6kTT2hsbXC3dJWaulwReccO0SmrLZbOoZG6KesSG6NL27JOlAqVerdhXom12F+mZXgTZkF2tfYaX2FWbpjW+zJEmxoS6N7h3d0EZhUFK43EH0wQUAWB+BrUn2FTb2r+W/+gIAAAA4ZkEuacRlxtb0Dyi/fkJa8ZjRLmHMdVL6TCk0zrw621C3cLemDk/S1OFJkqQyb63W7DbC25U7C5S5t0gHy6v14YY8fbjBWH3sdNg0MCFcw1MiNSwlUsNTIpWaGM7NzAAAlkNga5L6G44lR3lMrgQAAABAp9F0MUh4khQaL5XmSJ/Olz6/Xxp+qbEKN3mkaSW2hzB3kE4d2E2nDuwmSfLW+rQ+q1grdxoh7po9hSqqqNGG7BJtyC6RvtkrSQqyNwlxuxsh7iBCXACAyQhsTVIf2KZE0RgfAAAAQDs4+f9JGb8w2iWseFzKXiNlvmBsA8+WfvqK2RW2G3eQQ+m9YpTeK0Y3qZ8CgYD2FVZqfVax1tVt67OKVVhRo+9zSvR9ToleWWWEuA67TQPiwzQ8JVLDuxurcYckRRDiAgA6DIGtSbIaVtgS2AIAAABoJ0FuacTlxrZvldHndsObUtyAxjHeMum/f5N6nSz1zJDc4ebV205sNpt6xISoR0xIQxuFQCCgrKKmIW6J1mcVq6C8WptyS7Upt1Svrd4nqTHErW+lMDgpQgMTwhQVwv1IAABtj8DWJAS2AAAAADpU99FS96ekM/8o2Zv8U3DfSmnZg8Zmc0hJaVKvCVLvU6Se46TgaPNqbkc2m03do0PUPTpEZw9rDHFziqsaVuDWP+aXNYa4/64LcSWjl+7AhDANiA/XwITwhv3IkBP3Jm8AAPMR2JqkviVCdwJbAAAAAB0pIqn58+BoKe2n0u4vpaLdRuuE7DXS8kcl2aSL/9dYoSsZNzXrxDdNttlsSo4KVnJUsKYMTZRkhLi5JVVat68xxN2SV6asokodKPXqQKlXX2472Ow88eFuDUwI14CEsIYgt398uCKDCXIBAEdGYGuC+j+9kVhhCwAAAMBkyaOkix439ov3Sbu/knYtMwLcg9uk+CGNY799Tvrq0cYVuL0mSBHJ5tTdQWw2m5Iig5UUGayz6kJcSSqtqtG2/WXamlemLXml2rK/TFvzSpVTXKX9pV7tL/Vq2bb8ZudKiKgLcuPrVuPWhboRHoJcAEAjAlsTFFbUqKrGL0lKjPSYXA0AAAAA1Ins3tjzVpJK86TQbo2v71om5W82ttX/Mo5F9zH63/b5iTToPMkd1vF1myDc49SontEa1bN5y4iSqhptzSvTtv2l2lIX5m7NK1NuSZXySrzKK/Hqv1ubB7mJER71jw9T//gwDUgIU/9uRpgbE0qPXADoighsTVDfDqFbuJs7jQIAAACwrvCE5s/P/rM0+AJjFe7uZVLuOqlwp7FlviDdsbUxsPWWdZnwtqkIj1PpvaKV3qt5kFtcWdMQ4m7NK9PW/aXakleqvBKvckuqlFtSdciK3NhQl/rFh2lA3dY/3liRGx/ulq0Tt6YAgK6OwNYE+wpphwAAAADgBBQSIw0+z9gkqapY2vO1Ed6WH5TCmqzGfekKqSxPSj3H2LqPluxdd8FKZLBT6b1ilN4rptlxI8g1VuRu21+mrXVtFrKKKnWwvFoHdxZo5c6CZu8J9wQZq3HjjZuc1a/OTYkKlt1OkAsAJzoCWxPUr7BNiaIdAgAAAIATmCdSGniWsTVVXS7tWyXVVkr5W6QvHzZaKwycYoS3fSdKrhBTSrYaI8g9dEVuubdWOw6Ua2uTIHfb/jLtPliu0qpafbunSN/uKWr2nmCnQ33iQtUrNkQ9Y0LUMzZEvWJC1TMmRMlRHgU57B34kwEAjhWBrQkaA1tW2AIAAADohFyh0h2bpW2fSJvek7Z+LJUfkL593thSz5WufNHsKi0t1B2k4d0jNbx7ZLPjVTU+7TpYXtcnt6wuzC3VzvxyVdb49H1Oib7PKTnkfEF2m1Kig40gNyakMdSNCVXP2BCFuYkHAMAq+L/IJsgqoiUCAAAAgE7OEykNu8TYfDXS7i+lze8bAe6AMxvHFe2RXpspDaprndBtkER/1hZ5nA4NSozQoMSIZsdrfH7tPlih3QfLtftghfYUGNvug+XaW1ip6tr61ysOe97YUJd61oW4vWJC1DPWWJnbPTpYCREeOWi1AAAdhsDWBNkEtgAAAAC6EodT6nu6sZ39Z8nva3xt8wdS1ipjW3KfFN3HCG57nywlDJOiehLgtoLTYW/oZftDfn9AeaVVjUHuwQrtLqjfL1dhRY3RL7e8+pA2C5KxOjcpyqOUqGClRBkhbkp0sLpHBat7dIgSIz1yBdFuAQDaCoGtCbKKqiTREgEAAABAF2SzSY4m/xQdcqHxfPP70o7PpcKd0oqFxiZJM96R+vzE2C/YKXlLjFW4Qe6Or/0EZbfblBQZrKTIYI3rG3vI6yVVNdrTbFVuhfYWVGh3QblyiqpU6w9ob0Gl9hZUSio45P02m5QQ7jFC3OhgI9iNNsJcI+QNVrCr695wDgCOFoFtB6uq8Sm/zCuJwBYAAAAAFJ4gjf65sXnLpO2fSls/lLK/kw5skhKHNY5d9U/pq0cke5AR2iYMkxKHN24hMW1XV3WFVJZn3ECtaQ1L/ig5XNLQaVK31La7nokiPE4NS4nUsJTIQ17z+QPKK6lSVlGlsgorlVVUqX2FFdpXt59VWClvrV+5JVXKLanS6t2Fh71GbKhLKdHBSor0KCkyWImRnob9pEiPEiJYpQsA9QhsO1hOsbG6NtjpUFSI0+RqAAAAAMBC3GHSkAuMTZJqq6UgV/MxniipqkjKW29sa19ufG3ORiki2dg/sNkIdqP7SPa6INDvkyoOSt5SKbZf4/u+uF/K2yCV7TdC2rL9xkpeSYrsId22vnHszi+kfSulpX+S4odKwy6Shl7c/HydiMNuU3JUsJKjgjWm96GvBwIB5ZdVNwS5WU2C3PpQt8xb29ByYe2+4havFRfmVnKUR4kRHiVHHRrqxke45Q5ipS6Azo/AtoPV969NiQ6WjT5MAAAAANCyH4a1Z82XzvyjVLzPCGtz10m5a6Xc9UbAGp7UOHbJfdKmdyRXmNEHt6JAKj8gBXxSRHdpzobGsVs/lvZ+fZjreyRnsBQINPbRHTtLCo4yVgLv3yB9ukH6dL6UOEI66Rrj9S7EZrOpW7hb3cLdGtkj6pDXA4GASiprtbewQtlFlcotqVJOcZVyiiqVU1zV8Ly61q/8Mq/yy7xaqx8PdZPqgty4cLdiQ12KqdtiQ93GY5hL0SEuVuwCOGFZIrBduHCh7r//fuXm5iotLU2PPPKIxo4de9ixb7zxhv70pz9p27Ztqqmp0YABA3T77bfr6quv7uCqj01WITccAwAAAIBjZrNJUT2MLXVq4/GaqkNvThbkkarLpP3fNz2BpEDzEHb0ddLQi6SweCksoXFzhx96zhGXG1tFgbTpXWnDG0bv3dy1Uk5m47hAQCrJliJT2vCHP/HYbDZFhjgVGXL4lguSEeoWlFcbQW5xlXKLK5VdXKXc4irlFFc2HG8a6q7LajnUrRfuCWoS6NaFu2GuQ0PeumMeJ6t3AViD6YHtK6+8ojlz5mjRokXKyMjQww8/rClTpmjz5s2Kj48/ZHxMTIx+97vfadCgQXK5XHrnnXc0c+ZMxcfHa8qUKSb8BEcnq36FbZTH5EoAAAAAoBNx/uDfWFe8IPlqpYPbpJJ9UkicFJ5oPDp+8E/htOlHf72QGOmkq42tPF/a+LaUmNb4evYa6ckzpB4ZRsuEIRdKEUktn68Ls9lsig1zKzbM3apQtz7IzS+rVkG5sR0s9zbsF5RXyx+QSqtqVVpVq10HK1pVR7gnyFgtHOZuWDV8uOexoW457PzFLID2YwsEAgEzC8jIyNCYMWP06KOPSpL8fr969OihW265RXfddVerznHSSSfp3HPP1R//+Mcjji0pKVFkZKSKi4sVERFxXLUfi1+/9p1eW71Pd5w1ULPPGNDh1wcAADgRmT2Hsxp+H8AJ4Ov/ld6/U1L9P7ltUq+TjZuVDZkmhXUzr7ZOzu8PqKiyRgXlXh0sqw90m4a71c1eKyivVq2/9dGI3SbFhv14sBsXZqzqjQp2yk64C0BHN38zdYVtdXW1Vq9erblz5zYcs9vtmjx5spYvX37E9wcCAX366afavHmz/vKXvxx2jNfrldfrbXheUlJy/IUfh/oVtrREAAAAAIBOLOMGafB50obF0oY3jRuV7V5mbO/fKc36TEoeaXaVnZLdbmtoedD/0D/cPUR9n90DZV4dKPU2PpYe+vxguVf+gBqeK+cItdjUUEvTPrv1vXbr9+PCjOPRIS5W7wIwN7DNz8+Xz+dTQkJCs+MJCQnatGlTi+8rLi5WSkqKvF6vHA6HHnvsMZ155pmHHbtgwQLde++9bVr38cgmsAUAAACAriEiWRr/S2Mr2tMY3pZkSYnDG8d99ifJWyr1HCf1GCeFJ7R4SrS9xj67TvWPD/vRsbU+vwoqqlsMdOu3/DKvSqpq5Q9I+WXVyi+rbmUtUlSws3m4G+ZSVLBTEcFORR5miwh2KtwdxEpeoBMxvYftsQgPD1dmZqbKysq0ZMkSzZkzR3379tXpp59+yNi5c+dqzpw5Dc9LSkrUo0ePDqy2kd8fUHZxlSQphcAWAAAAALqOqJ7Syf/P2CqLJHuTG1xlvigV75VWPGY8j+kr9RxvBLg9J0hx/U0pGYcKctgVH+5RfPiR70tT4/OrsK4Fw8Gy5n12D5ZXq6Cssf/uwfJqFVXUKBCQCitqVFhRo+0Hyltdl90mhXsOF+YGHRL0DkqMOGIwDcBcpga2cXFxcjgcysvLa3Y8Ly9PiYmJLb7Pbrerf3/j/2GNHDlSGzdu1IIFCw4b2Lrdbrnd7jat+1jll3tVXeuXzSYlRnLTMQAAAADokoKjGvf9fmnyH6Q9y6U9K6S8DVLBDmPLfMFYiXvjssbxed9Lsf2lIFdHV42j5HTYFR/hUXxE6/79X+vzq7Ci5pCbqB0sq1ZxZY1KKmtU/IOtpKpGVTV++QNqOHYkNpt03cl9dMeUVHmcjiOOB9DxTA1sXS6X0tPTtWTJEk2bNk2ScdOxJUuWaPbs2a0+j9/vb9an1qqyi4zVtQnhHjkddpOrAQAAAACYzm6Xhl9qbJKx+nbfN40BbspJjWNrKqUnTpXsQVL30XUrcMdJ3cdInkhTykfbCXLYG25aJoW3+n1VNT6VVB0m0K2oUXFlrUqqGo/ll3n17Z4iPbVspz7dvF8PXJamk3pGt98PBeCYmN4SYc6cOZoxY4ZGjx6tsWPH6uGHH1Z5eblmzpwpSbrmmmuUkpKiBQsWSDJ60o4ePVr9+vWT1+vVe++9p+eee06PP/64mT9Gq9T3r02Jph0CAAAAAOAwgqOkAWca2w8V7pbc4VJlgbTrv8YmSbJJCcOksbOk9BnGodJcadM7PzhBkx6nKemNNz0rPyhtfLvJMFvjeE+EFD9E6pZ63D8a2ofH6ZDH6WhVmwZJ+mzTft31xlrtOFCuSx//Sjec2k+3Th7AalvAQkwPbKdPn64DBw7onnvuUW5urkaOHKkPPvig4UZke/bskd3euBq1vLxcv/zlL7Vv3z4FBwdr0KBBev755zV9+nSzfoRWyyrkhmMAAAAAgGMUP0i6c4eUv1Xa85WxAnfPcqlwl5S3zrhxWb2CndK7t7d8rkn3NAa2xXuld25teezJt0pn1t3Mu3C3tDBDComRgmOkkOi6x7rnvU+R+k00xvpqpaLdxmvuSGM1MUw3cVC8Prr1NN37nw1649ssLfp8u5ZszNMDl6UprUeU2eUBkAUCW0maPXt2iy0Qli5d2uz5/PnzNX/+/A6oqu1lFdUHtvSvBQAAAAAcA5tN6jbQ2NKvNY6V5Eh7V0hJIxvHhcRIgy9o8sZA8/PENrmRmSdCSj330GsFfFJViRQ3oPFYxUGptlIqyTK2w72nPrAt3is9UtfSwWaX3BGSM1gKcktBwdLInxo3YZOkigLp3TnGcadHCqrb6scnpUl9TzfG+mqkHUulqF5SbL/mN3BDq0SGOPXg9JE6e1iifvvmem3dX6aLH/9KN53WT7dM6i93EL9TwEyWCGy7ivqWCN1ZYQsAAAAAaCsRSdLQi5of65YqTX+ude+P6Std+WLrxiYMk/5fptGWoaKw7rGg8bHHuMax1WWSK8x4DPilqiJjq1eR37hfVSxteLPl6465vjGwrSySXqjr+esMNW7MlpQmJY0wHrsNkhzO1v08XdxZQxM1pneM5r29QW9/l61HP9umT+pW2w5LoS8yYBYC2w7UuMKWwBYAAAAAcAIKckkxfST1OfLYxOHSb7OkWq9UWWiEsrVVUk2V8RiR0jg2OEo6+y/G8doq4wZrtV5jNW9NlZQyusmJA1LCcOngNqmm3FhdvHdF48vp10rn/93Yr62WctdKCUON1bo4RHSoS/+4cpSmDkvU7xav16bcUk1b+KVmn9FfN0/sz03TARMQ2HagbAJbAAAAAEBXE+SWwhONrSXB0dK4G1t3vrB46aZlkt9n9PPN+c4IZXO+k3LWSokjGsfu/156apJkcxirjpPSjNeT0oxA2RNxfD9bJzJ1eJLG9InR3YvX6/31uXr4k636aEOe/nZ5mgYn8XsCOhL/maSDVFTXqrCiRpKUEk1gCwAA0JksXLhQvXv3lsfjUUZGhlauXNni2GeeeUY2m63Z5vFwjwMAOGp2h3EjtrTp0pT/ka59R7prtzTq6sYx5QekkDijt+7+76XvXpI+nCs9c4705x7SN/9sHFuSLW35SMpaIxXvM1b4djFxYW49dtVJeuTKUYoKcer7nBJd8OgyPfrpVtX6/GaXB3QZrLDtIPWra8PdQYrw0EsHAACgs3jllVc0Z84cLVq0SBkZGXr44Yc1ZcoUbd68WfHx8Yd9T0REhDZv3tzw3GazdVS5ANC52WxG24Z6A86Ufr1NKs1pXIGb852xlewz+vfW2/G5tPgHq3zdkVJonBTaTTrjd1KfU43jRXuMYDe0m7HiNzRO8kQZ1/8xvlqppsJo+VD/GJkieer6xRbulvasaD6mtspYTRzwSUMvlpJHGmPzNhiBc8BvvOb3N+4H/NLIqxpvAJe7Tvp0vnE8uo/0k9ul8IQWfoU2nZ+WrIy+Mfrdm+v18fd5euCjLfqwbrXtwITwVn0UAI4dgW0HySqqkkQ7BAAAgM7mwQcf1KxZszRz5kxJ0qJFi/Tuu+/q6aef1l133XXY99hsNiUm/sifBgMA2o7NJkUkG1vq1Mbj5QclV2jjc2ew0Sqh7ICxMtdfI3mLja1ge/MVt7u+PDTctTuNADc0TjrvIal7Xd/d716R3rvDCGD9NYfWd/lz0pALjP1930hv3tDyz9JtUGNgW7RXWvXPlsf2HNcY2FYUSFs+aHztu5ekib8zbubmOHw0FB/u0f9ena7FmVma99YGrcsq1nn/WKbbzhyoWT/poyB62wLthsC2g9SvsKUdAgAAQOdRXV2t1atXa+7cuQ3H7Ha7Jk+erOXLl7f4vrKyMvXq1Ut+v18nnXSS/vSnP2no0KEtjvd6vfJ6G4OCkpKStvkBAKArC41t/nzoNGOTpEBAqiqSyvON8LZsvxHm1vNESD3HG8fL841Q118jlWYbW1le41ibTfL+8P9u2yRnyKE3QotIkfpObHytfrMHSTa70Ye3Xmx/6bS7jNYQNpvRp9fuMMbZHFKPjMax3VKlCx4xfq7V/5Kyv5U++I307XPSuX8zwt3DsNlsumhUd03oF6e7Xl+rzzYf0F8+2KQPN+TqgcvS1D8+rBW/aABHi8C2g2QV1t9wjP5kAAAAnUV+fr58Pp8SEpr/WWlCQoI2bdp02Pekpqbq6aef1ogRI1RcXKwHHnhAEyZM0IYNG9S9e/fDvmfBggW6995727x+AEALbDbjRmjB0VLcgENfH3SusdWrqZIq8usC3ANSwrDG1wZOkW5ZIwV56gLYEONGbIdrn9BrvHTN4tbVGNdfmjj3yOMk44ZvJ11j7I/6mbTmWemTe6W89dLzl0pzNjS2ZTiMhAiPnr52jP69ep/u+8/3ytxbpHP+8V/9+qxU/TSjp0LdxEtAW+Ib1UHqV9jSEgEAAKBrGz9+vMaPH9/wfMKECRo8eLCeeOIJ/fGPfzzse+bOnas5c+Y0PC8pKVGPHj3avVYAQCs5PVJkd2P7IU/kj4ahHc7ukEb/XBp8obTkD0abhab1+f2S/dB2BzabTZeN7qGT+8fprjfW6YstB/Q/723U/7y3UeGeICVFepQYGaykCI8SIz1Kjqp7Hmk8D3cH0bMdaCUC2w6SVd8SgcAWAACg04iLi5PD4VBeXl6z43l5ea3uUet0OjVq1Cht27atxTFut1tut/u4agUAoJnQWKNNQlPbP5U+nme0Segx9rBvS44K1rMzx+iVb/bqgY+2KL/Mq9KqWpVWlWlLXlnLl3M5lBjpUVJkcN2jp/Exwgh2o0KchLqACGw7DIEtAABA5+NyuZSenq4lS5Zo2rRpkiS/368lS5Zo9uzZrTqHz+fTunXrdM4557RjpQAAtMJnf5Jy10r/PNNonTD5XuMmaj9gs9l0xdieumJsT5VW1SivpEo5xcaW2/BYaTyWVKmookbl1T5tP1Cu7QfKW7y8y2FXRLBTkcFBigx2HrJF/OCx6RbichD2otMgsO0APn9AucVVkmiJAAAA0NnMmTNHM2bM0OjRozV27Fg9/PDDKi8v18yZMyVJ11xzjVJSUrRgwQJJ0n333adx48apf//+Kioq0v3336/du3fr+uuvN/PHAABAuvJl6ZN50rfPG9vG/0iT7pHSZxqtFA4j3ONUuMep/vHhLZ62stqn3JIq5RRXNgl0jef1+wfLq1Xt8yu/zKv8Mm+L52qJ02FThKd5oBvmCVKYK0ih7iCFuR0KdRv74Z4ghTYcD1Ko21H3GETwC0sgsO0AB0q9qvUH5LDblBDBTccAAAA6k+nTp+vAgQO65557lJubq5EjR+qDDz5ouBHZnj17ZG/SC7CwsFCzZs1Sbm6uoqOjlZ6erq+++kpDhgwx60cAAMAQGidduFA6aYb07hwpd5307u3Smv+TzntISkk/ptMGuxzqExeqPnGhLY6pqvHpYHm1iitqVFxpbCWVjftNt5Kq5q/X+AKq8QV0sLxaB8urj/Wnl2TcC84Icx2NgW6T0DfEHaRQV134W3c81O1QqCtIIXWPDcfcQQpxOhTkOLQnMPBjbIFAIGB2ER2ppKREkZGRKi4uVkRERIdcc/XuAl3y+HKlRAXry7vO6JBrAgAAdCZmzOGsjN8HAKDd+X3SqqelJX+UvMXS5c9JQy4wu6pDBAIBVdb4GgPdJoFvmbdW5d5alXl9Km/Yr1V59WGOeWvlb6eEzB1kV5i7eaAb4nLI43QouG7zOO3yuJo+r3t0Nb7ecNzVfIw7yC67nVXBVnc08zdW2HaArCKjHQL9awEAAAAAwAnB7pDGzpKGTJPWviwNPr/xtQNbpNh+LbZJ6Eg2m00hriCFuIKUFHnsuUsgEFBVjb9JyGs8/jDcLff6VFFtvF5R7WsYU143pqLaV/e8VjU+IwH21vrlra3WwZbb9x43V5Bd7iC73EFGgOt2NtkPssvtbLIf5Kh7/fDjPU6HQlxGMBziNFYKB7uMYyFOY98VxKrh9kRg2wGy6284Fk1gCwAAAAAATiBh3aQJtzQ+ryiQnp4iRfeSzv3bMbdJsBqbzWasXHU51C3c3SbnrK71NwS6FdU+I+T1Go9VNT5V1vhUWW08VtVtxjF/w37Tcc32a/2qrvU3u1Z1rV+lqm2T2o8kyG78vkJdQY3hrsuhYJfRBiLE5VCI26EQV5BcDrtcQXVbk333D567HHY56x7dQYd/j8th7xI9hglsO0BWoRHYJkfRvxYAAAAAAJzActdJ/lop+1vpyUlSWILkCpVcIZIrTDprvtR9tDF232pp41vGcVeo5Axp3HeFSgnDpNBYY2xttXHeII9k7xyrN42Q0aXoUFe7nN/nDzSEuN5av7z1jz/cr/XJW9Nkv9Zf99x32Ncra/yqrAuZK6t9DauGK6t9qq3rG1HrD6i0qlalVR0TEDcVZLcpyGGT0243Hh12OR3GfpC9+fPmY2wKqnvuqns9LsytO88e1OE/w5EQ2HaA+hW2ybREAAAAAAAAJ7K+p0mzV0mfzJO+e0kqy23+ek1F437Ot9KXf2/5XFe8JA06x9jf8Kb05g3GfpBHcgZLQcHGozNYOvNeqf9k4/V9q6Vvnmwc1zC27nmf06S4AcbY0jwpe41kc0g2u3FXMXv9vl2K7S+FJxpjq0qkgu11rzUZY7NLDqcUnmRcwyIcdlvdDc46Lt6rrvUbIW7N4QNd45jxWkXd6mFvjU/VPiMQrq71q8ZnPFbXP9YFy02fNx1T31qiXq0/oFp/QFXyt1Bl6/WMCSGw7aqyCGwBAAAAAEBnEZ4gXbRImjRPKj8gVZcbW025FD+kcVz8UGnczcbx6nKpukKqLqsbWyGFxDaOrS5r3K+tMjYVNh6rqWrcL9hhhMUtueiJxsA2a5X08k9bHnveQ9Lon9eNXS09N63lsRN/J512p7FftEda+hcpIskIciOSjeA3PFkK7dZpVgn/UH1rgkg5O+yafn/ACHPrQtxaX0A1Pr8R3NYdr/UFVOs3wt361+vH1Pjqj/tVU/ee+mPhHmtGo9asqpOpX2HbncAWAAAAAAB0FhFJxtaSXuONrTXSr5VGXG4EszUVRmBbU2E8r62UEoY3jk0cLp153w/GVhpbbaUU1atxrCfS6LPr90kBvxQI1D36pYBP8kQ1jnW4pIjuxvH6MfXvq/UawWy9g9ukzOcP/7PYg4zWEONuMp6X5Bg3bguvC3Ujko267EHG5gw2VvCeyHw1krfUCN69pZK3TKouNX5nCUONMYGAVJIteSKM1hit7EVrt9vksTvkcZp/k7uOQmDbzkqralRS188jicAWAAAAAADgUHaH5A43tiOJH2RsrdH7FGnWp60ce7I0Z8PhX6sPeutF9ZLO+L0RxpbmSqXZxn75fqMXb9Of48BG6ZM/tHzdqfdLGXXtIHZ9KT13UWOYa3cYYW79/im3Na4IPrBZWnyT8ZrDZYyrf7Q7pSEXSkOnGWPL9ktf/aPu9SZj7U5jPymtsfdwZaH0/Vt1oWt9AFsfxpYZbSzSrzXGFu6SHh0r+byH/9nGXG/cnE6Sqoqlh+pWYNvskjvCCG/dkcbjgLOkU241Xvf7peWP/GBM3RYSYwTtjs4ba3ben8wisouMJfuRwU6FdWBPEQAAAAAAALQRm83oa1svtp906q8PHeerNUJbV2jjseAYacQVjaFuaU7zFhD2Juf11xjhZ0sBaHV547631Gjj0JJuTULt8gPSV4+0PHbC/2sMbCsKpP/8quWx0U1WMDtDmtfqcEvuMCOwdoVLYYlNai8zwmV/rRF+VxUZW73Yfk3Glkof39NyDYMvkKY/Z+wHAtJLVxghbkisFBJt/M5DYoznkd2lmL4tn8uCSBDbWX07hBRW1wIAAAAAAHRujiCj5UFTySOli59ofiwQMNot+GubB7Y9xkm3bTCO+31GqwF/beMWkdI4NrafdOUrdSFv/VZdt9U0BrCSEWCOn22co+mY+semvYeDo6XUc4y2BU3DV3eYcSyhydiQWOlXaxtXR/9Ya4fI7tLd+UbrCm+JcZO3qmLJW2zsR/Vs/vsZcUXduLrXvcV1+8VGGFuvqlja8kHL1/1huPuPkcbK3W6p0iVPtfw+ExHYtrN93HAMAAAAAAAATdlsRrj7wz/rd3qMYLM1gqOl1LNbNzYiSZryP60bGxIjXfkjN3Vryu5ovuL2SGw2yRVibOGJLY8Ljjo05K7nqwud6zlc0gWPGCuDKwukioNSRWHdfoEU3btxbFWx0cZBMsJbiyKwbWenDojT3y5LU2yYy+xSAAAAAAAAgBPbD4NuV4h00jWte68rVLr+UyPMtVv3JmYEtu2sV2yoesWGHnkgAAAAAAAAgPbjcErd082u4ojsZhcAAAAAAAAAADAQ2AIAAAAAAACARRDYAgAAAAAAAIBFENgCAAAAAAAAgEUQ2AIAAAAAAACARRDYAgAAAAAAAIBFENgCAAAAAAAAgEUQ2AIAAAAAAACARRDYAgAAAAAAAIBFENgCAAAAAAAAgEUQ2AIAAAAAAACARRDYAgAAAAAAAIBFENgCAAAAAAAAgEUQ2AIAAAAAAACARRDYAgAAAAAAAIBFBJldQEcLBAKSpJKSEpMrAQAAQGvVz93q53JdHXNaAACAE8vRzGe7XGBbWloqSerRo4fJlQAAAOBolZaWKjIy0uwyTMecFgAA4MTUmvmsLdDFlin4/X5lZ2crPDxcNputQ65ZUlKiHj16aO/evYqIiOiQa+JQfA7m4zOwBj4Ha+BzsAY+B2tozecQCARUWlqq5ORk2e109eroOS3fFWvgc7AGPgdr4HOwBj4Ha+BzMF9bz2e73Apbu92u7t27m3LtiIgIvjgWwOdgPj4Da+BzsAY+B2vgc7CGI30OrKxtZNaclu+KNfA5WAOfgzXwOVgDn4M18DmYr63msyxPAAAAAAAAAACLILAFAAAAAAAAAIsgsO0Abrdb8+bNk9vtNruULo3PwXx8BtbA52ANfA7WwOdgDXwO1sdnZA18DtbA52ANfA7WwOdgDXwO5mvrz6DL3XQMAAAAAAAAAKyKFbYAAAAAAAAAYBEEtgAAAAAAAABgEQS2AAAAAAAAAGARBLbtbOHCherdu7c8Ho8yMjK0cuVKs0vqUv7whz/IZrM12wYNGmR2WZ3eF198ofPPP1/Jycmy2WxavHhxs9cDgYDuueceJSUlKTg4WJMnT9bWrVvNKbYTO9LncO211x7y/Tj77LPNKbaTWrBggcaMGaPw8HDFx8dr2rRp2rx5c7MxVVVVuvnmmxUbG6uwsDBdcsklysvLM6nizqk1n8Ppp59+yPfhxhtvNKnizunxxx/XiBEjFBERoYiICI0fP17vv/9+w+t8F6yNOa25mNOagzmtNTCnNR9zWmtgTmsNHTWnJbBtR6+88ormzJmjefPmac2aNUpLS9OUKVO0f/9+s0vrUoYOHaqcnJyGbdmyZWaX1OmVl5crLS1NCxcuPOzrf/3rX/WPf/xDixYt0tdff63Q0FBNmTJFVVVVHVxp53akz0GSzj777Gbfj5deeqkDK+z8Pv/8c918881asWKFPv74Y9XU1Oiss85SeXl5w5jbbrtN//nPf/Taa6/p888/V3Z2ti6++GITq+58WvM5SNKsWbOafR/++te/mlRx59S9e3f9+c9/1urVq7Vq1SqdccYZuvDCC7VhwwZJfBesjDmtNTCn7XjMaa2BOa35mNNaA3Naa+iwOW0A7Wbs2LGBm2++ueG5z+cLJCcnBxYsWGBiVV3LvHnzAmlpaWaX0aVJCrz55psNz/1+fyAxMTFw//33NxwrKioKuN3uwEsvvWRChV3DDz+HQCAQmDFjRuDCCy80pZ6uav/+/QFJgc8//zwQCBj/23c6nYHXXnutYczGjRsDkgLLly83q8xO74efQyAQCJx22mmBX/3qV+YV1UVFR0cHnnrqKb4LFsec1nzMac3HnNYamNNaA3Naa2BOax3tMadlhW07qa6u1urVqzV58uSGY3a7XZMnT9by5ctNrKzr2bp1q5KTk9W3b19dddVV2rNnj9kldWk7d+5Ubm5us+9GZGSkMjIy+G6YYOnSpYqPj1dqaqpuuukmHTx40OySOrXi4mJJUkxMjCRp9erVqqmpafZ9GDRokHr27Mn3oR398HOo98ILLyguLk7Dhg3T3LlzVVFRYUZ5XYLP59PLL7+s8vJyjR8/nu+ChTGntQ7mtNbCnNZamNN2LOa01sCc1nztOacNautiYcjPz5fP51NCQkKz4wkJCdq0aZNJVXU9GRkZeuaZZ5SamqqcnBzde++9+slPfqL169crPDzc7PK6pNzcXEk67Hej/jV0jLPPPlsXX3yx+vTpo+3bt+u3v/2tpk6dquXLl8vhcJhdXqfj9/t166236uSTT9awYcMkGd8Hl8ulqKioZmP5PrSfw30OkvTTn/5UvXr1UnJystauXavf/OY32rx5s9544w0Tq+181q1bp/Hjx6uqqkphYWF68803NWTIEGVmZvJdsCjmtNbAnNZ6mNNaB3PajsWc1hqY05qrI+a0BLbo1KZOndqwP2LECGVkZKhXr1569dVXdd1115lYGWC+K664omF/+PDhGjFihPr166elS5dq0qRJJlbWOd18881av349PQdN1tLncMMNNzTsDx8+XElJSZo0aZK2b9+ufv36dXSZnVZqaqoyMzNVXFysf//735oxY4Y+//xzs8sCLI85LdAy5rQdizmtNTCnNVdHzGlpidBO4uLi5HA4DrkTXF5enhITE02qClFRURo4cKC2bdtmdildVv3//vluWE/fvn0VFxfH96MdzJ49W++8844+++wzde/eveF4YmKiqqurVVRU1Gw834f20dLncDgZGRmSxPehjblcLvXv31/p6elasGCB0tLS9Pe//53vgoUxp7Um5rTmY05rXcxp2w9zWmtgTmu+jpjTEti2E5fLpfT0dC1ZsqThmN/v15IlSzR+/HgTK+vaysrKtH37diUlJZldSpfVp08fJSYmNvtulJSU6Ouvv+a7YbJ9+/bp4MGDfD/aUCAQ0OzZs/Xmm2/q008/VZ8+fZq9np6eLqfT2ez7sHnzZu3Zs4fvQxs60udwOJmZmZLE96Gd+f1+eb1evgsWxpzWmpjTmo85rXUxp217zGmtgTmtdbXHnJaWCO1ozpw5mjFjhkaPHq2xY8fq4YcfVnl5uWbOnGl2aV3GHXfcofPPP1+9evVSdna25s2bJ4fDoSuvvNLs0jq1srKyZv8Fb+fOncrMzFRMTIx69uypW2+9VfPnz9eAAQPUp08f3X333UpOTta0adPMK7oT+rHPISYmRvfee68uueQSJSYmavv27brzzjvVv39/TZkyxcSqO5ebb75ZL774ot566y2Fh4c39C2KjIxUcHCwIiMjdd1112nOnDmKiYlRRESEbrnlFo0fP17jxo0zufrO40ifw/bt2/Xiiy/qnHPOUWxsrNauXavbbrtNp556qkaMGGFy9Z3H3LlzNXXqVPXs2VOlpaV68cUXtXTpUn344Yd8FyyOOa35mNOagzmtNTCnNR9zWmtgTmsNHTanDaBdPfLII4GePXsGXC5XYOzYsYEVK1aYXVKXMn369EBSUlLA5XIFUlJSAtOnTw9s27bN7LI6vc8++ywg6ZBtxowZgUAgEPD7/YG77747kJCQEHC73YFJkyYFNm/ebG7RndCPfQ4VFRWBs846K9CtW7eA0+kM9OrVKzBr1qxAbm6u2WV3Kof7/UsK/Otf/2oYU1lZGfjlL38ZiI6ODoSEhAQuuuiiQE5OjnlFd0JH+hz27NkTOPXUUwMxMTEBt9sd6N+/f+DXv/51oLi42NzCO5mf//zngV69egVcLlegW7dugUmTJgU++uijhtf5Llgbc1pzMac1B3Naa2BOaz7mtNbAnNYaOmpOawsEAoGji3gBAAAAAAAAAO2BHrYAAAAAAAAAYBEEtgAAAAAAAABgEQS2AAAAAAAAAGARBLYAAAAAAAAAYBEEtgAAAAAAAABgEQS2AAAAAAAAAGARBLYAAAAAAAAAYBEEtgAAAAAAAABgEQS2AADZbDYtXrzY7DIAAACAY8J8FkBnQmALACa79tprZbPZDtnOPvtss0sDAAAAjoj5LAC0rSCzCwAASGeffbb+9a9/NTvmdrtNqgYAAAA4OsxnAaDtsMIWACzA7XYrMTGx2RYdHS3J+POuxx9/XFOnTlVwcLD69u2rf//7383ev27dOp1xxhkKDg5WbGysbrjhBpWVlTUb8/TTT2vo0KFyu91KSkrS7Nmzm72en5+viy66SCEhIRowYIDefvvt9v2hAQAA0GkwnwWAtkNgCwAngLvvvluXXHKJvvvuO1111VW64oortHHjRklSeXm5pkyZoujoaH3zzTd67bXX9MknnzSbwD7++OO6+eabdcMNN2jdunV6++231b9//2bXuPfee3X55Zdr7dq1Ouecc3TVVVepoKCgQ39OAAAAdE7MZwGg9WyBQCBgdhEA0JVde+21ev755+XxeJod/+1vf6vf/va3stlsuvHGG/X44483vDZu3DiddNJJeuyxx/Tkk0/qN7/5jfbu3avQ0FBJ0nvvvafzzz9f2dnZSkhIUEpKimbOnKn58+cftgabzabf//73+uMf/yjJmDSHhYXp/fffp/cYAAAAfhTzWQBoW/SwBQALmDhxYrMJrCTFxMQ07I8fP77Za+PHj1dmZqYkaePGjUpLS2uY3ErSySefLL/fr82bN8tmsyk7O1uTJk360RpGjBjRsB8aGqqIiAjt37//WH8kAAAAdCHMZwGg7RDYAoAFhIaGHvInXW0lODi4VeOcTmez5zabTX6/vz1KAgAAQCfDfBYA2g49bAHgBLBixYpDng8ePFiSNHjwYH333XcqLy9veP3LL7+U3W5XamqqwsPD1bt3by1ZsqRDawYAAADqMZ8FgNZjhS0AWIDX61Vubm6zY0FBQYqLi5Mkvfbaaxo9erROOeUUvfDCC1q5cqX++c9/SpKuuuoqzZs3TzNmzNAf/vAHHThwQLfccouuvvpqJSQkSJL+8Ic/6MYbb1R8fLymTp2q0tJSffnll7rllls69gcFAABAp8R8FgDaDoEtAFjABx98oKSkpGbHUlNTtWnTJknGHW9ffvll/fKXv1RSUpJeeuklDRkyRJIUEhKiDz/8UL/61a80ZswYhYSE6JJLLtGDDz7YcK4ZM2aoqqpKDz30kO644w7FxcXp0ksv7bgfEAAAAJ0a81kAaDu2QCAQMLsIAEDLbDab3nzzTU2bNs3sUgAAAICjxnwWAI4OPWwBAAAAAAAAwCIIbAEAAAAAAADAImiJAAAAAAAAAAAWwQpbAAAAAAAAALAIAlsAAAAAAAAAsAgCWwAAAAAAAACwCAJbAAAAAAAAALAIAlsAAAAAAAAAsAgCWwAAAAAAAACwCAJbAAAAAAAAALAIAlsAAAAAAAAAsAgCWwAAAAAAAACwiP8PKBeNmURfE8wAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["\u001b[1m3390/3390\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m57s\u001b[0m 17ms/step\n","\n","🔄 Summary:\n","✅ Accuracy: 0.8903\n","✅ Precision: 0.8797\n","✅ Recall: 0.8903\n","✅ F1-Score: 0.8837\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAACIUAAAfGCAYAAACDcpw1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XmcVWUdP/DvGQYuijIDEjJY4kIpam64K4zmFuSCWoqaIJrmWkkhISUu2Yi4QZRmuWC5tIiGViom/lxCwUGjzAVFwUIkhQBZLgxzf3/0Y35NwAA6d87M4f1+vc7r5Zzn3PN87nDnzgx8fJ6kUCgUAgAAAAAAAACATClJOwAAAAAAAAAAAI1PKQQAAAAAAAAAIIOUQgAAAAAAAAAAMkgpBAAAAAAAAAAgg5RCAAAAAAAAAAAySCkEAAAAAAAAACCDlEIAAAAAAAAAADJIKQQAAAAAAAAAIIOUQgAAAAAAAAAAMkgpBAAAgEY3Y8aMOOqoo6KsrCySJImHHnqoUe//zjvvRJIkcddddzXqfVuyQw89NA499NC0YwAAAADQjCiFAAAAZNRbb70VX//612OHHXaItm3bRvv27ePggw+O0aNHx7Jly4o698CBA+Ovf/1rXHPNNfGLX/wi9tlnn6LO15TOPPPMSJIk2rdvv9bP44wZMyJJkkiSJK6//vqNvv+cOXPiiiuuiJdffrkR0jaNFStWxOjRo2OvvfaK9u3bR3l5eey6665x7rnnxmuvvVZ33RVXXBFJksQHH3yw1vvstttu9Yotq8s//320b98+9txzzxg7dmysWrWq2E8NAAAAoEUrTTsAAAAAje/3v/99fOUrX4lcLhcDBgyI3XbbLVasWBHPPvtsDBkyJF555ZW47bbbijL3smXLYvLkyTF8+PC46KKLijJHt27dYtmyZdG6deui3H99SktLY+nSpfHwww/HySefXG/snnvuibZt28by5cs/1r3nzJkTV155ZWy33Xax5557bvDjHn/88Y81X2M46aST4o9//GOceuqpcc4558TKlSvjtddei0ceeSQOOuig2HnnnT/R/U899dTo27dvREQsXLgw/vCHP8TFF18cs2bNilGjRjXGUwAAAADIJKUQAACAjHn77bejf//+0a1bt3jyySejoqKibuzCCy+MN998M37/+98Xbf5//etfERFRXl5etDmSJIm2bdsW7f7rk8vl4uCDD4777rtvjVLIvffeG1/60pfigQceaJIsS5cujc033zzatGnTJPP9r6lTp8YjjzwS11xzTVx22WX1xsaOHRv//ve/P/Ece++9d3z1q1+t+/iCCy6I/fffP+69916lEAAAAIAG2D4GAAAgY6677rr46KOP4vbbb69XCFmte/fu8c1vfrPu45qamrj66qtjxx13jFwuF9ttt11cdtllkc/n6z1uu+22i2OOOSaeffbZ2G+//aJt27axww47xN133113zRVXXBHdunWLiIghQ4ZEkiSx3XbbRcR/tl1Z/d//bfWWIv9t4sSJccghh0R5eXlsscUWsdNOO9UrHKzeVuSuu+6q97gnn3wyevXqFe3atYvy8vI4/vjj49VXX13rfG+++WaceeaZUV5eHmVlZTFo0KBYunTpuj+x/+O0006LP/7xj/VKD1OnTo0ZM2bEaaedtsb18+fPj+985zvx+c9/PrbYYoto37599OnTJ/7yl7/UXfPUU0/FvvvuGxERgwYNqtsyZfXzPPTQQ2O33XaL6urq6N27d2y++eZ1n5dDDz203tYrAwcOjLZt267x/I8++ujo0KFDzJkzZ4Ofa0PeeuutiIg4+OCD1xhr1apVbLXVVo0yz39LkiS23nrrKC31/7oAAAAANEQpBAAAIGMefvjh2GGHHeKggw7aoOu/9rWvxeWXXx5777133HTTTVFZWRlVVVXRv3//Na59880348tf/nIceeSRccMNN0SHDh3izDPPjFdeeSUiIk488cS46aabIuI/W3784he/iJtvvnmj8r/yyitxzDHHRD6fj6uuuipuuOGGOO644+K5555r8HFPPPFEHH300TFv3ry44oorYvDgwfHnP/85Dj744HjnnXfWuP7kk0+OxYsXR1VVVZx88slx1113xZVXXrnBOU888cRIkiTGjx9fd+7ee++NnXfeOfbee+81rp85c2Y89NBDccwxx8SNN94YQ4YMib/+9a9RWVlZV9Do0aNHXHXVVRERce6558YvfvGL+MUvfhG9e/euu8+HH34Yffr0iT333DNuvvnmOOyww9aab/To0fGpT30qBg4cGKtWrYqIiJ/+9Kfx+OOPx49+9KPo2rXrBj/XhqwuAd1zzz1RU1PTKPf8X0uXLo0PPvggPvjgg5g5c2b8+Mc/jkcffTQGDhxYlPkAAAAAssL/UgMAAJAhixYtin/+859x/PHHb9D1f/nLX2LcuHHxta99LX72s59FxH+25ujcuXNcf/31MWnSpHqlg9dffz2efvrp6NWrV0T8p1jxmc98Ju688864/vrrY/fdd4/27dvHJZdcssaWHxtq4sSJsWLFivjjH/8YnTp12uDHDRkyJDp27BiTJ0+Ojh07RkREv379Yq+99ooRI0bEuHHj6l2/1157xe2331738Ycffhi33357jBw5coPm23LLLeOYY46Je++9N84666yora2N+++/P84///y1Xv/5z38+3njjjSgp+f//f8YZZ5wRO++8c9x+++3x/e9/P7beeuvo06dPXH755XHggQeu9fM3d+7cuPXWW+PrX/96g/nKy8vj9ttvj6OPPjquvfbaOO200+I73/lO9OvX72P9uazLAQccEJWVlfGzn/0sJkyYEF/4whfikEMOiWOOOSa23XbbRpljxIgRMWLEiHrnzj///I0q8QAAAABsiqwUAgAAkCGLFi2KiP8UFjbEH/7wh4iIGDx4cL3z3/72tyMi4ve//32987vssktdISQi4lOf+lTstNNOMXPmzI+d+X+Vl5dHRMTvfve7qK2t3aDHvPfee/Hyyy/HmWeeWVcIiYjYfffd48gjj6x7nv/tvPPOq/dxr1694sMPP6z7HG6I0047LZ566qmYO3duPPnkkzF37ty1bh0TEZHL5eoKIatWrYoPP/ywbmucadOmbfCcuVwuBg0atEHXHnXUUfH1r389rrrqqjjxxBOjbdu28dOf/nSD59oQSZLEY489Fj/4wQ+iQ4cOcd9998WFF14Y3bp1i1NOOaXe9jof17nnnhsTJ06MiRMnxgMPPBAXXnhh/PSnP13jdQsAAABAfUohAAAAGdK+ffuIiFi8ePEGXT9r1qwoKSmJ7t271zvfpUuXKC8vj1mzZtU7v7aVHzp06BALFiz4mInXdMopp8TBBx8cX/va12LrrbeO/v37x69//esGCyKrc+60005rjPXo0SM++OCDWLJkSb3z//tcOnToEBGxUc+lb9++seWWW8avfvWruOeee2Lfffdd43O5Wm1tbdx0003x2c9+NnK5XHTq1Ck+9alPxfTp02PhwoUbPOc222wTbdq02eDrr7/++ujYsWO8/PLLMWbMmOjcufN6H/Ovf/0r5s6dW3d89NFHDV6fy+Vi+PDh8eqrr8acOXPivvvuiwMOOCB+/etfx0UXXbTBWSP+UzL5X5/97GfjiCOOiCOOOCJOPPHEGDt2bFxwwQVx8803x1//+teNuj8AAADApkQpBAAAIEPat28fXbt2jb/97W8b9bi1/UP82rRq1Wqt5wuFwseeY9WqVfU+3myzzeLpp5+OJ554Is4444yYPn16nHLKKXHkkUeuce0n8Umey2q5XC5OPPHEGDduXDz44IPrXCUkIuKHP/xhDB48OHr37h2//OUv47HHHouJEyfGrrvuusErokT85/OzMV566aWYN29eRMQGFyj23XffqKioqDuuv/76DZ6voqIi+vfvH08//XR89rOfjV//+tdRU1MTERFt27aNiIhly5at9bFLly6tu2Z9Dj/88IiIePrppzc4GwAAAMCmRikEAAAgY4455ph46623YvLkyeu9tlu3blFbWxszZsyod/7999+Pf//739GtW7dGy9WhQ4e1biXyv6uRRESUlJTE4YcfHjfeeGP8/e9/j2uuuSaefPLJmDRp0lrvvTrn66+/vsbYa6+9Fp06dYp27dp9siewDqeddlq89NJLsXjx4ujfv/86r/vtb38bhx12WNx+++3Rv3//OOqoo+KII45Y43OyoQWdDbFkyZIYNGhQ7LLLLnHuuefGddddF1OnTl3v4+6555667VomTpwYAwYM2Oi5W7duHbvvvnusXLkyPvjgg4ho+M9p6dKl8e67727wa2510WR9q5gAAAAAbMqUQgAAADLm0ksvjXbt2sXXvva1eP/999cYf+utt2L06NER8Z/tTyIibr755nrX3HjjjRER8aUvfanRcu24446xcOHCmD59et259957Lx588MF6182fP3+Nx+65554REZHP59d674qKithzzz1j3Lhx9UoWf/vb3+Lxxx+ve57FcNhhh8XVV18dY8eOjS5duqzzulatWq2xCslvfvOb+Oc//1nv3OryytoKNBtr6NChMXv27Bg3blzceOONsd1228XAgQPX+Xlc7eCDD67bruWII46IHXbYYZ3XzpgxI2bPnr3G+X//+98xefLk6NChQ3zqU5+KiP+s7tGmTZu45ZZb1lgd5bbbbouampro06fPBj23hx9+OCIi9thjjw26HgAAAGBTVJp2AAAAABrXjjvuGPfee2+ccsop0aNHjxgwYEDstttusWLFivjzn/8cv/nNb+LMM8+MiP/8g/rAgQPjtttui3//+99RWVkZU6ZMiXHjxkW/fv3isMMOa7Rc/fv3j6FDh8YJJ5wQ3/jGN2Lp0qVxyy23xOc+97mYNm1a3XVXXXVVPP300/GlL30punXrFvPmzYuf/OQn8elPfzoOOeSQdd5/1KhR0adPnzjwwAPj7LPPjmXLlsWPfvSjKCsriyuuuKLRnsf/Kikpie9973vrve6YY46Jq666KgYNGhQHHXRQ/PWvf4177rlnjcLFjjvuGOXl5XHrrbfGlltuGe3atYv9998/tt9++43K9eSTT8ZPfvKTGDFiROy9994REXHnnXfGoYceGt///vfjuuuu26j7rctf/vKXOO2006JPnz7Rq1ev6NixY/zzn/+McePGxZw5c+Lmm2+u26qnc+fOcfnll8f3vve96N27dxx33HGx+eabx5///Oe477774qijjopjjz12jTmmTZsWv/zlLyMiYvHixfGnP/0pHnjggTjooIPiqKOOapTnAQAAAJBFSiEAAAAZdNxxx8X06dNj1KhR8bvf/S5uueWWyOVysfvuu8cNN9wQ55xzTt21P//5z2OHHXaIu+66Kx588MHo0qVLDBs2LEaMGNGombbaaqt48MEHY/DgwXHppZfG9ttvH1VVVTFjxox6pZDjjjsu3nnnnbjjjjvigw8+iE6dOkVlZWVceeWVUVZWts77H3HEEfHoo4/GiBEj4vLLL4/WrVtHZWVljBw5cqMLFcVw2WWXxZIlS+Lee++NX/3qV7H33nvH73//+/jud79b77rWrVvHuHHjYtiwYXHeeedFTU1N3HnnnRv1HBYvXhxnnXVW7LXXXjF8+PC687169YpvfvObccMNN8SJJ54YBxxwwCd+Xr17946rr746/vjHP8aNN94Y//rXv2LLLbeMvfbaK0aOHBknnXRSveuHDx8e2223XYwdOzauuuqqqKmpie233z6uvPLKGDp0aJSUrLmo6X333Rf33XdfRESUlpbGtttuG0OGDInLL798rdcDAAAA8B9J4X/XrgUAAAAAAAAAoMXzv9MAAAAAAAAAAGSQUggAAAAAAAAAQAYphQAAAAAAAAAAZJBSCAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGKYUAAAAAAAAAAGRQadoBimGzvS4q+hwLpo4t+hwAAAAAAAAA69I2k//au+lqin/nZu2WvZTdf/+3UggAAAAAAAAAQAYphQAAAAAAAAAAZJBSCAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGKYUAAAAAAAAAAGSQUggAAAAAAAAAQAaVph0AAAAAAAAAADZ5iTUdaHxeVQAAAAAAAAAAGZTqSiEffPBB3HHHHTF58uSYO3duRER06dIlDjrooDjzzDPjU5/6VJrxAAAAAAAAAABarNRWCpk6dWp87nOfizFjxkRZWVn07t07evfuHWVlZTFmzJjYeeed48UXX0wrHgAAAAAAAABAi5baSiEXX3xxfOUrX4lbb701kiSpN1YoFOK8886Liy++OCZPntzgffL5fOTz+fqPr10VSUmrRs8MAAAAAAAAANBSpLZSyF/+8pe45JJL1iiEREQkSRKXXHJJvPzyy+u9T1VVVZSVldU7at6vLkJiAAAAAAAAAICWI7VSSJcuXWLKlCnrHJ8yZUpsvfXW673PsGHDYuHChfWO0q17NmZUAAAAAAAAAIAWJ7XtY77zne/EueeeG9XV1XH44YfXFUDef//9+NOf/hQ/+9nP4vrrr1/vfXK5XORyuXrnbB0DAAAAAAAAQIuyll024JNKrRRy4YUXRqdOneKmm26Kn/zkJ7Fq1aqIiGjVqlX07Nkz7rrrrjj55JPTigcAAAAAAAAA0KKlVgqJiDjllFPilFNOiZUrV8YHH3wQERGdOnWK1q1bpxkLAAAAAAAAAKDFS7UUslrr1q2joqIi7RgAAAAAAAAAAJlRknYAAAAAAAAAAAAan1IIAAAAAAAAAEAGKYUAAAAAAAAAAGSQUggAAAAAAAAAQAaVph0AAAAAAAAAADZ5iTUdaHxeVQAAAAAAAAAAGaQUAgAAAAAAAACQQZncPmbB1LFFn2P7Cx4o+hxv/+Skos9B81EoFH+OJCn+HDQfXlM0tiy8pmqb4EmU+MKgBcrC1zebntra4r9wiz1Dq5Lif2HUrCr+56m0VTa+wJvivbDYvNduWrLys21TvJ83hZImeE8HgA1V7B8TsvJzZ1P8HNIkP+qUZuQPBCgaK4UAAAAAAAAAAGSQUggAAAAAAAAAQAYphQAAAAAAAAAAZFBp2gEAAAAAAAAAYJOXJGknIIOsFAIAAAAAAAAAkEFKIQAAAAAAAAAAGaQUAgAAAAAAAACQQUohAAAAAAAAAAAZpBQCAAAAAAAAAJBBSiEAAAAAAAAAABnUrEsh7777bpx11lkNXpPP52PRokX1jnw+30QJAQAAAAAAAACap2ZdCpk/f36MGzeuwWuqqqqirKys3jFqZFUTJQQAAAAAAACARpCUONI6Mqw0zcknTJjQ4PjMmTPXe49hw4bF4MGD650rtMp9olwAAAAAAAAAAC1dqqWQfv36RZIkUSgU1nlNkiQN3iOXy0UuV78EsrymUeIBAAAAAAAAALRYqa6DUlFREePHj4/a2tq1HtOmTUszHgAAAAAAAABAi5VqKaRnz55RXV29zvH1rSICAAAAAAAAAMDapbp9zJAhQ2LJkiXrHO/evXtMmjSpCRMBAAAAAAAAAGRDqqWQXr16NTjerl27qKysbKI0AAAAAAAAAADZkWopBAAAAAAAAACIiCRJOwEZVJJ2AAAAAAAAAAAAGp9SCAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGKYUAAAAAAAAAAGRQadoBWqq3f3JS0efosP83iz7HghdGF30ONkySpJ2ArPGaorFl4TVVkoUnAUXgS4OWqKTEC3dDlLbyedpQ3gtpabLys6338w1TKBR/joy8pAAI7+kbqil+DvF/5wPNgVIIAAAAAAAAAKQtUSWi8XlVAQAAAAAAAABkkFIIAAAAAAAAAEAGKYUAAAAAAAAAAGSQUggAAAAAAAAAQAYphQAAAAAAAAAAZJBSCAAAAAAAAADABnj66afj2GOPja5du0aSJPHQQw+t89rzzjsvkiSJm2++ud75+fPnx+mnnx7t27eP8vLyOPvss+Ojjz6qd8306dOjV69e0bZt2/jMZz4T11133cfKqxQCAAAAAAAAALABlixZEnvssUf8+Mc/bvC6Bx98MJ5//vno2rXrGmOnn356vPLKKzFx4sR45JFH4umnn45zzz23bnzRokVx1FFHRbdu3aK6ujpGjRoVV1xxRdx2220bnbd0ox8BAAAAAAAAADSuJEk7ARugT58+0adPnwav+ec//xkXX3xxPPbYY/GlL32p3tirr74ajz76aEydOjX22WefiIj40Y9+FH379o3rr78+unbtGvfcc0+sWLEi7rjjjmjTpk3suuuu8fLLL8eNN95YrzyyIawUAgAAAAAAAABssvL5fCxatKjekc/nP9a9amtr44wzzoghQ4bErrvuusb45MmTo7y8vK4QEhFxxBFHRElJSbzwwgt11/Tu3TvatGlTd83RRx8dr7/+eixYsGCj8qReClm2bFk8++yz8fe//32NseXLl8fdd9+dQioAAAAAAAAAYFNQVVUVZWVl9Y6qqqqPda+RI0dGaWlpfOMb31jr+Ny5c6Nz5871zpWWlkbHjh1j7ty5dddsvfXW9a5Z/fHqazZUqtvHvPHGG3HUUUfF7NmzI0mSOOSQQ+L++++PioqKiIhYuHBhDBo0KAYMGLDOe+Tz+TUaOoVWucjlckXNDgAAAAAAAAC0fMOGDYvBgwfXO/dxOgfV1dUxevTomDZtWiTNZDugVFcKGTp0aOy2224xb968eP3112PLLbeMgw8+OGbPnr3B91hbY2fUyI/X2AEAAAAAAAAANi25XC7at29f7/g4pZBnnnkm5s2bF9tuu22UlpZGaWlpzJo1K7797W/HdtttFxERXbp0iXnz5tV7XE1NTcyfPz+6dOlSd837779f75rVH6++ZkOlulLIn//853jiiSeiU6dO0alTp3j44YfjggsuiF69esWkSZOiXbt2673H2ho7hVZWCQEAAAAAAAAAms4ZZ5wRRxxxRL1zRx99dJxxxhkxaNCgiIg48MAD49///ndUV1dHz549IyLiySefjNra2th///3rrhk+fHisXLkyWrduHREREydOjJ122ik6dOiwUZlSLYUsW7YsSkv/f4QkSeKWW26Jiy66KCorK+Pee+9d7z1yuTW3ille0+hRAQAAAAAAAIBN3EcffRRvvvlm3cdvv/12vPzyy9GxY8fYdtttY6uttqp3fevWraNLly6x0047RUREjx494otf/GKcc845ceutt8bKlSvjoosuiv79+0fXrl0jIuK0006LK6+8Ms4+++wYOnRo/O1vf4vRo0fHTTfdtNF5Uy2F7LzzzvHiiy9Gjx496p0fO3ZsREQcd9xxacQCAAAAAAAAgKaVlKSdgA3w4osvxmGHHVb38eqdTQYOHBh33XXXBt3jnnvuiYsuuigOP/zwKCkpiZNOOinGjBlTN15WVhaPP/54XHjhhdGzZ8/o1KlTXH755XHuuedudN6kUCgUNvpRjaSqqiqeeeaZ+MMf/rDW8QsuuCBuvfXWqK2t3aj7ZmWlkA77f7Pocyx4YXTR5wAAAAAAPr6m+BvcJCn+HABA42ub6hIANLbNDros7QibrGV//mHaEYom1VJIsSiFbDilEAAAAABo3pRCAIB1UQrJFqWQ9GS5FGL9GQAAAAAAAACADFIKAQAAAAAAAADIIKUQAAAAAAAAAIAMUgoBAAAAAAAAAMggpRAAAAAAAAAAgAwqTTsAAAAAAAAAAGzykiTtBGSQlUIAAAAAAAAAADLISiHN2IIXRhd9jg4HXFL0ORY8f1PR5wAAgGIrFIo/h/8ZBABYGz8jAAAAH5eVQgAAAAAAAAAAMkgpBAAAAAAAAAAgg5RCAAAAAAAAAAAySCkEAAAAAAAAACCDStMOAAAAAAAAAACbvMSaDjQ+ryoAAAAAAAAAgAxSCgEAAAAAAAAAyCClEAAAAAAAAACADFIKAQAAAAAAAADIIKUQAAAAAAAAAIAMKk07wKuvvhrPP/98HHjggbHzzjvHa6+9FqNHj458Ph9f/epX4wtf+EKDj8/n85HP5+udK7TKRS6XK2ZsAAAAAAAAAIBmLdWVQh599NHYc8894zvf+U7stdde8eijj0bv3r3jzTffjFmzZsVRRx0VTz75ZIP3qKqqirKysnrHqJFVTfQMAAAAAAAAAACap6RQKBTSmvyggw6KL3zhC/GDH/wg7r///rjgggvi/PPPj2uuuSYiIoYNGxbV1dXx+OOPr/MeVgr5ZDoccEnR51jw/E1FnwMAAIqtKX5zSpLizwEAAABkR9vU94WgMW3W6/K0I2yylj1zVdoRiibVlUJeeeWVOPPMMyMi4uSTT47FixfHl7/85brx008/PaZPn97gPXK5XLRv377eoRACAAAAAAAAAGzqUi2FREQk/+9/hSspKYm2bdtGWVlZ3diWW24ZCxcuTCsaAAAAAAAAAECLlWopZLvttosZM2bUfTx58uTYdttt6z6ePXt2VFRUpBENAAAAAAAAAKBFS3WXqfPPPz9WrVpV9/Fuu+1Wb/yPf/xjfOELX2jqWAAAAAAAAAAALV6qpZDzzjuvwfEf/vCHTZQEAAAAAAAAACBbUt0+BgAAAAAAAACA4kh1pRAAAAAAAAAAICISazrQ+LyqAAAAAAAAAAAySCkEAAAAAAAAACCDlEIAAAAAAAAAADJIKQQAAAAAAAAAIINK0w5AuhY8f1PR5+iw70VFvf+CqWOLen8AAIiISJK0EwAAAAAAbBwrhQAAAAAAAAAAZJCVQgAAAAAAAAAgbYk1HWh8XlUAAAAAAAAAABmkFAIAAAAAAAAAkEFKIQAAAAAAAAAAGaQUAgAAAAAAAACQQUohAAAAAAAAAAAZpBQCAAAAAAAAAJBBza4UUigU0o4AAAAAAAAAANDilaYd4H/lcrn4y1/+Ej169Eg7CgAAAAAAAAA0jZIk7QRkUGqlkMGDB6/1/KpVq+Laa6+NrbbaKiIibrzxxqaMBQAAAAAAAACQCamVQm6++ebYY489ory8vN75QqEQr776arRr1y6SZP1NqHw+H/l8vv49WuUil8s1ZlwAAAAAAAAAgBalJK2Jf/jDH8bChQvj+9//fkyaNKnuaNWqVdx1110xadKkePLJJ9d7n6qqqigrK6t3jBpZ1QTPAAAAAAAAAACg+UptpZDvfve7cfjhh8dXv/rVOPbYY6Oqqipat2690fcZNmzYGlvRFFpZJQQAAAAAAAAA2LSltlJIRMS+++4b1dXV8a9//Sv22Wef+Nvf/rZBW8b8t1wuF+3bt6932DoGAAAAAAAAANjUpbZSyGpbbLFFjBs3Lu6///444ogjYtWqVWlHAgAAAAAAAABo8VIvhazWv3//OOSQQ6K6ujq6deuWdhwAAAAAAAAAaDpJqht9kFHNphQSEfHpT386Pv3pT6cdAwAAAAAAAACgxVM1AgAAAAAAAADIIKUQAAAAAAAAAIAMUgoBAAAAAAAAAMggpRAAAAAAAAAAgAxSCgEAAAAAAAAAyCClEAAAAAAAAACADCpNOwDZt2Dq2KLev8MBlxT1/hERC56/qehzAAAAAAAAAJuwJEk7ARlkpRAAAAAAAAAAgAxSCgEAAAAAAAAAyCClEAAAAAAAAACADFIKAQAAAAAAAADIIKUQAAAAAAAAAIAMUgoBAAAAAAAAAMig0rQDAAAAAAAAAMAmL7GmA43PqwoAAAAAAAAAIIOUQgAAAAAAAAAAMkgpBAAAAAAAAAAgg0rTDvDflixZEr/+9a/jzTffjIqKijj11FNjq622SjsWAAAAAAAAAECLk2opZJdddolnn302OnbsGO+++2707t07FixYEJ/73Ofirbfeiquvvjqef/752H777dd5j3w+H/l8vt65Qqtc5HK5YscHAAAAAAAAAGi2Ut0+5rXXXouampqIiBg2bFh07do1Zs2aFVOmTIlZs2bF7rvvHsOHD2/wHlVVVVFWVlbvGDWyqiniAwAAAAAAAAA0W81m+5jJkyfHrbfeGmVlZRERscUWW8SVV14Z/fv3b/Bxw4YNi8GDB9c7V2hllRAAAAAAAAAAYNOWeikkSZKIiFi+fHlUVFTUG9tmm23iX//6V4OPz+XW3CpmeU3jZgQAAAAAAACAovp//3YOjSn1Usjhhx8epaWlsWjRonj99ddjt912qxubNWtWbLXVVimmAwAAAAAAAABomVIthYwYMaLex1tssUW9jx9++OHo1atXU0YCAAAAAAAAAMiEZlUK+V+jRo1qoiQAAAAAAAAAANlSknYAAAAAAAAAAAAan1IIAAAAAAAAAEAGKYUAAAAAAAAAAGRQadoBAAAAAAAAAGCTl1jTgcbnVQUAAAAAAAAAkEFKIQAAAAAAAAAAGaQUAgAAAAAAAACQQaVpB4BPasHzNxV9jg77XlT0ORZMHVv0OQAAAAAAAADYdFgpBAAAAAAAAAAgg5RCAAAAAAAAAAAySCkEAAAAAAAAACCDStMOAAAAAAAAAACbvCRJOwEZZKUQAAAAAAAAAIAMUgoBAAAAAAAAAMggpRAAAAAAAAAAgAxSCgEAAAAAAAAAyCClEAAAAAAAAACADFIKAQAAAAAAAADIoFRLIdOmTYu333677uNf/OIXcfDBB8dnPvOZOOSQQ+L+++9f7z3y+XwsWrSo3pHP54sZGwAAAAAAAAAaV1LiSOvIsFSf3aBBg+Ktt96KiIif//zn8fWvfz322WefGD58eOy7775xzjnnxB133NHgPaqqqqKsrKzeMWpkVVPEBwAAAAAAAABotpJCoVBIa/LNN988Xn311ejWrVvsvffecf7558c555xTN37vvffGNddcE6+88so675HP59dYGaTQKhe5XK5oudn0dNj3oqLPsWDq2KLPAQAAAAAAQHa0LU07AY1psy/emHaETdayRwenHaFoUn2b2HzzzeODDz6Ibt26xT//+c/Yb7/96o3vv//+9baXWZtcbs0CyPKaRo8KAAAAAAAAANCipLp9TJ8+feKWW26JiIjKysr47W9/W2/817/+dXTv3j2NaAAAAAAAAAAALVqqK4WMHDkyDj744KisrIx99tknbrjhhnjqqaeiR48e8frrr8fzzz8fDz74YJoRAQAAAAAAAABapFRXCunatWu89NJLceCBB8ajjz4ahUIhpkyZEo8//nh8+tOfjueeey769u2bZkQAAAAAAAAAgBYp1ZVCIiLKy8vj2muvjWuvvTbtKAAAAAAAAACQjiRJOwEZlOpKIQAAAAAAAAAAFIdSCAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGKYUAAAAAAAAAAGSQUggAAAAAAAAAQAaVph0AWoIFU8cWfY4O+3+z6HMseGF00ecAAAAAAAAAoHlQCgEAAAAAAACAtCU2+qDxeVUBAAAAAAAAAGSQUggAAAAAAAAAQAYphQAAAAAAAAAAZJBSCAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGlaYdAAAAAAAAAAA2eUmSdgIyyEohAAAAAAAAAAAZpBQCAAAAAAAAAJBBqZZCLr744njmmWfSjAAAAAAAAAAAkEmplkJ+/OMfx6GHHhqf+9znYuTIkTF37tyNvkc+n49FixbVO/L5fBHSAgAAAAAAAAC0HKlvH/P4449H37594/rrr49tt902jj/++HjkkUeitrZ2gx5fVVUVZWVl9Y5RI6uKnBoAAAAAAAAAoHlLCoVCIa3JS0pKYu7cudG5c+dYuXJlPPjgg3HHHXfEE088EVtvvXWceeaZMWjQoOjevfs675HP59dYGaTQKhe5XK7Y8aFRddj/m0WfY8ELo4s+BwAAAAAAAE2jbWnaCWhMm31pTNoRNlnLfv+NtCMUTeorhazWunXrOPnkk+PRRx+NmTNnxjnnnBP33HNP7LTTTg0+LpfLRfv27esdCiEAAAAAAAAAwKauWXbHtt1227jiiitixIgR8cQTT6QdBwAAAAAAAACKK2k2azqQIam+qrp16xatWrVa53iSJHHkkUc2YSIAAAAAAAAAgGxIdaWQt99+O83pAQAAAAAAAAAyy/ozAAAAAAAAAAAZpBQCAAAAAAAAAJBBSiEAAAAAAAAAABmkFAIAAAAAAAAAkEGlaQcAAAAAAAAAgE1eYk0HGp9XFQAAAAAAAABABlkpBJqJBS+MLvocHfb7RtHnWDBlTNHnAAAAAAAAAGD9rBQCAAAAAAAAAJBBSiEAAAAAAAAAABmkFAIAAAAAAAAAkEFKIQAAAAAAAAAAGaQUAgAAAAAAAACQQaVpBwAAAAAAAACATV6SpJ2ADLJSCAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGKYUAAAAAAAAAAGSQUggAAAAAAAAAQAalXgoZO3ZsDBgwIO6///6IiPjFL34Ru+yyS+y8885x2WWXRU1NTYOPz+fzsWjRonpHPp9viugAAAAAAAAAAM1WqqWQH/zgB3HZZZfF0qVL45JLLomRI0fGJZdcEqeffnoMHDgwfv7zn8fVV1/d4D2qqqqirKys3jFqZFUTPQMAAAAAAAAAaARJiSOtI8OSQqFQSGvy7t27x3XXXRcnnnhi/OUvf4mePXvGuHHj4vTTT4+IiAcffDAuvfTSmDFjxjrvkc/n11gZpNAqF7lcrqjZoSXqsN83ij7Hgiljij4HAAAAAAAAEW1L005AY9rs+J+mHWGTtex3X087QtGk+jYxZ86c2GeffSIiYo899oiSkpLYc88968b33nvvmDNnToP3yOXWLIAsb3jHGQAAAAAAAACAzEt1HZQuXbrE3//+94iImDFjRqxataru44iIV155JTp37pxWPAAAAAAAAACAFivVlUJOP/30GDBgQBx//PHxpz/9KS699NL4zne+Ex9++GEkSRLXXHNNfPnLX04zIgAAAAAAAABAi5RqKeTKK6+MzTbbLCZPnhznnHNOfPe734099tgjLr300li6dGkce+yxcfXVV6cZEQAAAAAAAACgRUoKhUIh7RCNbXlN2gmgeeqw3zeKPseCKWOKPgcAAAAAAAARbVNdAoDGttnxP007wiZr2e++nnaEoilJOwAAAAAAAAAAAI1PdwwAAAAAAAAA0pYkaScgg6wUAgAAAAAAAACQQUohAAAAAAAAAAAZpBQCAAAAAAAAAJBBSiEAAAAAAAAAABlUmnYAoOksmDKm6HN02Peiot5/wdSxRb0/AAAAAAAAQFZYKQQAAAAAAAAAIIOsFAIAAAAAAAAAaUus6UDj86oCAAAAAAAAAMggpRAAAAAAAAAAgAxSCgEAAAAAAAAAyCClEAAAAAAAAACADFIKAQAAAAAAAADIIKUQAAAAAAAAAIAMKk07AAAAAAAAAABs8pIk7QRkUKqlkPfeey9uueWWePbZZ+O9996LkpKS2GGHHaJfv35x5plnRqtWrdKMBwAAAAAAAADQYqW2fcyLL74YPXr0iD/84Q+xcuXKmDFjRvTs2TPatWsX3/nOd6J3796xePHitOIBAAAAAAAAALRoqZVCvvWtb8Ull1wSL774YjzzzDNx1113xRtvvBH3339/zJw5M5YuXRrf+9731nuffD4fixYtqnfk8/kmeAYAAAAAAAAAAM1XaqWQadOmxRlnnFH38WmnnRbTpk2L999/Pzp06BDXXXdd/Pa3v13vfaqqqqKsrKzeMWpkVTGjAwAAAAAAAAA0e6VpTdy5c+d47733YocddoiIiPfffz9qamqiffv2ERHx2c9+NubPn7/e+wwbNiwGDx5c71yhVa7xAwMAAAAAAAAAtCCplUL69esX5513XowaNSpyuVxcffXVUVlZGZtttllERLz++uuxzTbbrPc+uVwucrn6JZDlNUWJDAAAAAAAAADQYqRWCvnBD34Q7733Xhx77LGxatWqOPDAA+OXv/xl3XiSJFFVZRsYAAAAAAAAAICPI7VSyBZbbBG/+tWvYvny5VFTUxNbbLFFvfGjjjoqpWQAAAAAAAAA0LSSJEk7AhmUWilktbZt26YdAQAAAAAAAAAgc0rSDgAAAAAAAAAAQONTCgEAAAAAAAAAyCClEAAAAAAAAACADFIKAQAAAAAAAADIIKUQAAAAAAAAAIAMKk07AAAAAAAAAABs6pIkSTsCGaQUAjSqBVPHFvX+Hfb7RlHvHxGxYMqYos8BAAAAAAAAUGy2jwEAAAAAAAAAyCClEAAAAAAAAACADFIKAQAAAAAAAADIIKUQAAAAAAAAAIAMUgoBAAAAAAAAAMggpRAAAAAAAAAAgAwqTTsAAAAAAAAAAGzykrQDkEWpl0JWrFgRDz30UEyePDnmzp0bERFdunSJgw46KI4//vho06ZNygkBAAAAAAAAAFqeVLePefPNN6NHjx4xcODAeOmll6K2tjZqa2vjpZdeigEDBsSuu+4ab775ZpoRAQAAAAAAAABapFRXCjn//PPj85//fLz00kvRvn37emOLFi2KAQMGxIUXXhiPPfZYSgkBAAAAAAAAAFqmVEshzz33XEyZMmWNQkhERPv27ePqq6+O/fffP4VkAAAAAAAAAAAtW6qlkPLy8njnnXdit912W+v4O++8E+Xl5Q3eI5/PRz6fr3eu0CoXuVyusWICAAAAAAAAALQ4JWlO/rWvfS0GDBgQN910U0yfPj3ef//9eP/992P69Olx0003xZlnnhnnnntug/eoqqqKsrKyeseokVVN9AwAAAAAAAAAAJqnpFAoFNIMMHLkyBg9enTMnTs3kiSJiIhCoRBdunSJb33rW3HppZc2+HgrhcCmpcN+3yj6HAumjCn6HAAAAAAAAJ9U21T3haCxbXHyXWlH2GR99Osz045QNKm/TQwdOjSGDh0ab7/9dsydOzciIrp06RLbb7/9Bj0+l1uzALK8ptFjAgAAAAAAAAC0KKluH/Pftt9++zjwwAPjwAMPrCuEvPvuu3HWWWelnAwAAAAAAAAAoOVpNqWQtZk/f36MGzcu7RgAAAAAAAAAAC1OqtvHTJgwocHxmTNnNlESAAAAAAAAAIBsSbUU0q9fv0iSJAqFwjqvSZKkCRMBAAAAAAAAAGRDqtvHVFRUxPjx46O2tnatx7Rp09KMBwAAAAAAAADQYqVaCunZs2dUV1evc3x9q4gAAAAAAAAAALB2qW4fM2TIkFiyZMk6x7t37x6TJk1qwkQAAAAAAAAA0PSSJEk7AhmUaimkV69eDY63a9cuKisrmygNAAAAAAAAAEB2pLp9DAAAAAAAAAAAxaEUAgAAAAAAAACQQaluHwOwsRZMGVP0OTrse1HR51gwdWzR5wAAAAAAAAA2bVYKAQAAAAAAAADIIKUQAAAAAAAAAIAMsn0MAAAAAAAAAKQsSZK0I5BBVgoBAAAAAAAAAMggpRAAAAAAAAAAgAxSCgEAAAAAAAAAyKBmXQp5//3346qrrko7BgAAAAAAAABAi9OsSyFz586NK6+8Mu0YAAAAAAAAAAAtTmmak0+fPr3B8ddff72JkgAAAAAAAAAAZEuqpZA999wzkiSJQqGwxtjq80mSpJAMAAAAAAAAAJqOfxunGFIthXTs2DGuu+66OPzww9c6/sorr8Sxxx7b4D3y+Xzk8/l65wqtcpHL5RotJwAAAAAAAABAS1OS5uQ9e/aMOXPmRLdu3dZ6bLPNNmtdReS/VVVVRVlZWb1j1MiqJnoGAAAAAAAAAADNU6orhZx33nmxZMmSdY5vu+22ceeddzZ4j2HDhsXgwYPrnSu0skoIAAAAAAAAALBpS7UUcsIJJzQ43qFDhxg4cGCD1+Rya24Vs7zmE0cDAAAAAAAAAGjRUt0+Zn3efffdOOuss9KOAQAAAAAAAADQ4jTrUsj8+fNj3LhxaccAAAAAAAAAAGhxUt0+ZsKECQ2Oz5w5s4mSAAAAAAAAAABkS6qlkH79+kWSJFEoFNZ5TZIkTZgIAAAAAAAAAFLgn8YpglS3j6moqIjx48dHbW3tWo9p06alGQ8AAAAAAAAAoMVKtRTSs2fPqK6uXuf4+lYRAQAAAAAAAABg7VLdPmbIkCGxZMmSdY537949Jk2a1ISJAAAAAAAAAACyIdVSSK9evRocb9euXVRWVjZRGgAAAAAAAACA7Eh1+xgAAAAAAAAAAIpDKQQAAAAAAAAAIINS3T4GoDlaMHVs0efocPCQos+x4LlRRZ+DTUuhUPw5kqT4cwAAAAAA+PtOmqPEi4YisFIIAAAAAAAAAEAGKYUAAAAAAAAAAGSQUggAAAAAAAAAQAYphQAAAAAAAAAAZJBSCAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGlaYdICLiH//4R5SXl8cWW2xR7/zKlStj8uTJ0bt375SSAQAAAAAAAEDxJUmSdgQyKNWVQt57773Yb7/9olu3blFeXh4DBgyIjz76qG58/vz5cdhhh6WYEAAAAAAAAACgZUq1FPLd7343SkpK4oUXXohHH300/v73v8dhhx0WCxYsqLumUCikmBAAAAAAAAAAoGVKtRTyxBNPxJgxY2KfffaJI444Ip577rmoqKiIL3zhCzF//vyIsEQOAAAAAAAAAMDHkWopZOHChdGhQ4e6j3O5XIwfPz622267OOyww2LevHnrvUc+n49FixbVO/L5fDFjAwAAAAAAAAA0e6mWQnbYYYeYPn16vXOlpaXxm9/8JnbYYYc45phj1nuPqqqqKCsrq3eMGllVrMgAAAAAAAAAAC1CqqWQPn36xG233bbG+dXFkD333DMKhUKD9xg2bFgsXLiw3jFk6LBiRQYAAAAAAAAAaBFK05z8mmuuiaVLl651rLS0NB544IH45z//2eA9crlc5HK5eueW1zRaRAAAAAAAAAAouiRJ0o5ABqW6UkhpaWm0b99+nePvvfdeXHnllU2YCAAAAAAAAABg7Z5++uk49thjo2vXrpEkSTz00EN1YytXroyhQ4fG5z//+WjXrl107do1BgwYEHPmzKl3j/nz58fpp58e7du3j/Ly8jj77LPjo48+qnfN9OnTo1evXtG2bdv4zGc+E9ddd93HyptqKWR95s+fH+PGjUs7BgAAAAAAAABALFmyJPbYY4/48Y9/vMbY0qVLY9q0afH9738/pk2bFuPHj4/XX389jjvuuHrXnX766fHKK6/ExIkT45FHHomnn346zj333LrxRYsWxVFHHRXdunWL6urqGDVqVFxxxRVx2223bXTeVLePmTBhQoPjM2fObKIkAAAAAAAAAAAN69OnT/Tp02etY2VlZTFx4sR658aOHRv77bdfzJ49O7bddtt49dVX49FHH42pU6fGPvvsExERP/rRj6Jv375x/fXXR9euXeOee+6JFStWxB133BFt2rSJXXfdNV5++eW48cYb65VHNkSqpZB+/fpFkiRRKBTWeY19kwAAAAAAAACAYsnn85HP5+udy+VykcvlPvG9Fy5cGEmSRHl5eURETJ48OcrLy+sKIRERRxxxRJSUlMQLL7wQJ5xwQkyePDl69+4dbdq0qbvm6KOPjpEjR8aCBQuiQ4cOGzx/qtvHVFRUxPjx46O2tnatx7Rp09KMBwAAAAAAAABkXFVVVZSVldU7qqqqPvF9ly9fHkOHDo1TTz012rdvHxERc+fOjc6dO9e7rrS0NDp27Bhz586tu2brrbeud83qj1dfs6FSLYX07Nkzqqur1zm+vlVEAAAAAAAAAAA+iWHDhsXChQvrHcOGDftE91y5cmWcfPLJUSgU4pZbbmmkpBsv1e1jhgwZEkuWLFnnePfu3WPSpElNmAgAAAAAAAAA2JQ01lYxq60uhMyaNSuefPLJulVCIiK6dOkS8+bNq3d9TU1NzJ8/P7p06VJ3zfvvv1/vmtUfr75mQ6VaCunVq1eD4+3atYvKysomSgMAAAAAAAAA6UiSJO0INILVhZAZM2bEpEmTYquttqo3fuCBB8a///3vqK6ujp49e0ZExJNPPhm1tbWx//77110zfPjwWLlyZbRu3ToiIiZOnBg77bRTdOjQYaPypLp9DAAAAAAAAABAS/HRRx/Fyy+/HC+//HJERLz99tvx8ssvx+zZs2PlypXx5S9/OV588cW45557YtWqVTF37tyYO3durFixIiIievToEV/84hfjnHPOiSlTpsRzzz0XF110UfTv3z+6du0aERGnnXZatGnTJs4+++x45ZVX4le/+lWMHj06Bg8evNF5k0KhUGi0Z99MLK8p/hy1TfBpK9EEAz6BDsfcWPQ5Fjyy8d94IE1N8VOPb98ATaMpficrtqb4nc/3vg1X7M9VVj5P0Nia4n2qEP4eDwBIR1P8rLNZ6+LPQdPZasB9aUfYZH1496kbfO1TTz0Vhx122BrnBw4cGFdccUVsv/32a33cpEmT4tBDD42IiPnz58dFF10UDz/8cJSUlMRJJ50UY8aMiS222KLu+unTp8eFF14YU6dOjU6dOsXFF18cQ4cO3bgnFilvHwMAAAAAAAAA0FIceuih0dDaGxuyLkfHjh3j3nvvbfCa3XffPZ555pmNzve/bB8DAAAAAAAAAJBBSiEAAAAAAAAAABmkFAIAAAAAAAAAkEGlaQcAAAAAAAAAgE1eknYAsshKIQAAAAAAAAAAGaQUAgAAAAAAAACQQalvH/Phhx/G9OnTY4899oiOHTvGBx98ELfffnvk8/n4yle+Ej169Eg7IgAAAAAAAABAi5NqKWTKlClx1FFHxaJFi6K8vDwmTpwYX/nKV6K0tDRqa2vj2muvjWeffTb23nvvNGMCAAAAAAAAALQ4qW4fM3z48PjKV74SCxcujMsuuyz69esXhx9+eLzxxhvx5ptvRv/+/ePqq69OMyIAAAAAAAAAQIuUaimkuro6Bg8eHFtuuWV885vfjDlz5sQ555xTN37RRRfF1KlTU0wIAAAAAAAAANAypbp9zIoVK2KzzTaLiIjWrVvH5ptvHp06daob79SpU3z44YcN3iOfz0c+n693rtAqF7lcrvEDAwAAAAAAAAC0EKmuFPKZz3wmZs6cWffx/fffHxUVFXUfv/fee/VKImtTVVUVZWVl9Y5RI6uKlhkAAAAAAAAAGluSJI6UjixLdaWQ/v37x7x58+o+/tKXvlRvfMKECbHffvs1eI9hw4bF4MGD650rtLJKCAAAAAAAAACwaUu1FDJixIgGx4cPHx6tWrVq8Jpcbs2tYpbXfOJoAAAAAAAAAAAtWqrbx6zPhx9+GOeff37aMQAAAAAAAAAAWpxmXQqZP39+jBs3Lu0YAAAAAAAAAAAtTqrbx0yYMKHB8ZkzZzZREgAAAAAAAACAbEm1FNKvX79IkiQKhcI6r0mSpAkTAQAAAAAAAABkQ6rbx1RUVMT48eOjtrZ2rce0adPSjAcAAAAAAAAATSJJEkdKR5alWgrp2bNnVFdXr3N8fauIAAAAAAAAAACwdqluHzNkyJBYsmTJOse7d+8ekyZNasJEAAAAAAAAAADZkGoppFevXg2Ot2vXLiorK5soDQAAAAAAAABAdqS6fQwAAAAAAAAAAMWhFAIAAAAAAAAAkEGpbh/TkpUkSdoRABq04JHBRZ+jwwGXFH2OBc/fVPQ52HT49g2QHX4n2zA+TRvO5wrS0RRfe0n4AqflKRSKe3/f9wCahvdboDlQCgEAAAAAAACAlCWaRBSB7WMAAAAAAAAAADJIKQQAAAAAAAAAIIOUQgAAAAAAAAAAMkgpBAAAAAAAAAAgg5RCAAAAAAAAAAAyqFmWQnbYYYeYMWNG2jEAAAAAAAAAAFqs0jQnHzNmzFrPz549O+68887o0qVLRER84xvfaMpYAAAAAAAAAAAtXqqlkG9961uxzTbbRGlp/Ri1tbVx9913R+vWrSNJEqUQAAAAAAAAALItSTsAWZRqKeTcc8+NF154Ie69997o0aNH3fnWrVvH448/HrvsskuK6QAAAAAAAAAAWq6SNCe/9dZb4/LLL4+jjz46xo4dm2YUAAAAAAAAAIBMSbUUEhFxwgknxOTJk+PBBx+MPn36xNy5czfq8fl8PhYtWlTvyOfzRUoLAAAAAAAAANAypF4KiYjYZptt4oknnojevXvHXnvtFYVCYYMfW1VVFWVlZfWOUSOripgWAAAAAAAAAKD5Swob08BoAtXV1fHss8/GgAEDokOHDuu9Pp/Pr7EySKFVLnK5XLEiAvD/dDjgkqLPseD5m4o+BwAAAEBzUuy/tU+S4t4fgKbTtjTtBDSmzmf/Ou0Im6x5t5+cdoSiaXZvEz179oyePXtGRMS7774bI0aMiDvuuGOd1+dyaxZAltcUNSIAAAAAAAAAQLPXLLaPWZf58+fHuHHj0o4BAAAAAAAAAEWVJIkjpSPLUl0pZMKECQ2Oz5w5s4mSAAAAAAAAAABkS6qlkH79+kWSJFFoYIPErLdyAAAAAAAAAACKIdXtYyoqKmL8+PFRW1u71mPatGlpxgMAAAAAAAAAaLFSLYX07Nkzqqur1zm+vlVEAAAAAAAAAABYu1S3jxkyZEgsWbJknePdu3ePSZMmNWEiAAAAAAAAAIBsSLUU0qtXrwbH27VrF5WVlU2UBgAAAAAAAAAgO1LdPgYAAAAAAAAAgOJIdaUQAAAAAAAAACAiSZK0I5BBSiEAfGwLnr+p6HN02Peiot5/wdSxRb0/AAAAwMby70EAADQW28cAAAAAAAAAAGSQUggAAAAAAAAAQAYphQAAAAAAAAAAZJBSCAAAAAAAAABABimFAAAAAAAAAABkUGnaAQAAAAAAAABgU5ckSdoRyCArhQAAAAAAAAAAZFCzWimkUCjEU089FW+++WZUVFTE0UcfHa1bt047FgAAAAAAAABAi5NqKaRv375x3333RVlZWcyfPz/69u0bU6ZMiU6dOsWHH34Yn/vc5+Lpp5+OT33qU2nGBAAAAAAAAABocVLdPubRRx+NfD4fERHf+973YvHixfHWW2/FvHnzYtasWdGuXbu4/PLL04wIAAAAAAAAANAipVoK+W9PPvlkVFVVxfbbbx8REZ/+9Kdj5MiR8dhjj6WcDAAAAAAAAACg5Ul1+5iIiCRJIiJiwYIFseOOO9Yb6969e8yZM6fBx+fz+brVRlYrtMpFLpdr3KAAAAAAAAAAAC1I6iuFnHnmmXHiiSfGypUr4+233643Nnfu3CgvL2/w8VVVVVFWVlbvGDWyqoiJAQAAAAAAAACav1RXChk4cGDdfx9//PGxdOnSeuMPPPBA7Lnnng3eY9iwYTF48OB65wqtrBICAAAAAAAAQMuxepcNaEyplkLuvPPOBsdHjBgRrVq1avCaXG7NrWKW13ziaAAAAAAAAAAALVrq28c0ZP78+XHBBRekHQMAAAAAAAAAoMVp9qWQcePGpR0DAAAAAAAAAKDFSXX7mAkTJjQ4PnPmzCZKAgAAAAAAAACQLamWQvr16xdJkkShUFjnNUmSNGEiAAAAAAAAAIBsSHX7mIqKihg/fnzU1tau9Zg2bVqa8QAAAAAAAAAAWqxUSyE9e/aM6urqdY6vbxURAAAAAAAAAMiExJHakWGpbh8zZMiQWLJkyTrHu3fvHpMmTWrCRAAAAAAAAAAA2ZBqKaRXr14Njrdr1y4qKyubKA0AAAAAAAAAQHakun0MAAAAAAAAAADFoRQCAAAAAAAAAJBBqW4fAwDrs2Dq2KLev0Pvy4p6/4iIBU//sOhzAMCmplAo/hxJUvw5aD6K/ZryegIAgE1PU/zuCrA+VgoBAAAAAAAAAMggK4UAAAAAAAAAQMoSy0xSBFYKAQAAAAAAAADIIKUQAAAAAAAAAIAMUgoBAAAAAAAAAMggpRAAAAAAAAAAgAxKtRTyj3/8Iz744IO6j5955pk4/fTTo1evXvHVr341Jk+enGI6AAAAAAAAAICWK9VSyEknnRTPP/98RET87ne/i0MPPTQ++uijOPjgg2Pp0qVRWVkZjzzySJoRAQAAAAAAAABapNI0J3/llVdi1113jYiIqqqq+OEPfxhDhw6tGx87dmxcfvnlccwxx6QVEQAAAAAAAACgRUq1FFJaWhqLFy+OiIi33347+vTpU2+8T58+9UoiAAAAAAAAAJBFSZKkHYEMSnX7mMrKyrjvvvsiImKvvfaKp556qt74pEmTYptttmnwHvl8PhYtWlTvyOfzxYoMAAAAAAAAANAipLpSyLXXXhu9evWKOXPmxCGHHBLDhw+PqVOnRo8ePeL111+PX/3qV3Hrrbc2eI+qqqq48sor650b/v0R8b3LryhicgAAAAAAAACA5i0pFAqFNAO89dZb8b3vfS9+//vfx0cffRQR/9lWZt99940hQ4ZEv379Gnx8Pp9fY2WQQqtc5HK5YkUGIEM69L6s6HMsePqHRZ8DADY1TfGbrBVbNy3Ffk15PQEAwKanKX533ax18eeg6Xz6gofSjrDJ+sdP+qUdoWhSXSkkImLHHXeM++67LwqFQsybNy9qa2ujU6dO0br1hr2D5XJrFkCW1xQjKQAAAAAAAABAy1GSdoDVkiSJrbfeOioqKuoKIe+++26cddZZKScDAAAAAAAAAGh5mk0pZG3mz58f48aNSzsGAAAAAAAAAECLk+r2MRMmTGhwfObMmU2UBAAAAAAAAADSkyRJ2hHIoFRLIf369YskSaJQKKzzGi98AAAAAAAAAICNl+r2MRUVFTF+/Piora1d6zFt2rQ04wEAAAAAAAAAtFiplkJ69uwZ1dXV6xxf3yoiAAAAAAAAAACsXarbxwwZMiSWLFmyzvHu3bvHpEmTmjARAAAAAAAAAEA2pFoK6dWrV4Pj7dq1i8rKyiZKAwAAAAAAAACQHaluHwMAAAAAAAAAQHEohQAAAAAAAAAAZFCq28cAwPoUCsW9/4Knf1jcCSKiw/7fLPocC14YXfQ5AKA5SZK0E5A1XlMAAEBj83sGG81rhiKwUggAAAAAAAAAQAYphQAAAAAAAAAAZJBSCAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGKYUAAAAAAAAAAGRQadoBAAAAAAAAAGBTlyRJ2hHIoFRXCrnhhhti1qxZaUYAAAAAAAAAAMikVEshQ4YMiR133DGOPPLI+NWvfhUrVqxIMw4AAAAAAAAAQGakWgqJiPj5z38e7dq1izPOOCO6du0a3/rWt+Jvf/tb2rEAAAAAAAAAAFq01Eshffv2jYceeij+8Y9/xKWXXhqPPfZY7LHHHrHffvvFz372s1i8eHHaEQEAAAAAAAAAWpzUSyGrde7cOS699NJ49dVX46mnnopddtklLrnkkqioqGjwcfl8PhYtWlTvyOfzTZQaAAAAAAAAAKB5SrUUkiTJWs/36tUr7rrrrpgzZ07cdNNNDd6jqqoqysrK6h2jRlYVIy4AAAAAAAAAQIuRFAqFQlqTl5SUxNy5c6Nz584f+x75fH6NlUEKrXKRy+U+aTwAmoFif5daRz+xUXXY/5tFn2PBC6OLPgcAAAAAAM1L29K0E9CYtr14QtoRNlmzf3Rc2hGKJtW3idra2k98j1xuzQLI8ppPfFsAAAAAAAAAaDLr2mkDPolUt49Zn3fffTfOOuustGMAAAAAAAAAALQ4zboUMn/+/Bg3blzaMQAAAAAAAAAAWpxUt4+ZMKHhPZFmzpzZREkAAAAAAAAAALIl1VJIv379IkmSKBQK67zGvkkAAAAAAAAAABsv1e1jKioqYvz48VFbW7vWY9q0aWnGAwAAAAAAAABosVIthfTs2TOqq6vXOb6+VUQAAAAAAAAAAFi7VLePGTJkSCxZsmSd4927d49JkyY1YSIAAAAAAAAAaHpJkqQdgQxKtRTSq1evBsfbtWsXlZWVTZQGAAAAAAAAACA7Ut0+BgAAAAAAAACA4kh1pRAAWJ8srJS24IXRRZ+jwwGXFH2OBc/fVPQ5AAAAAAAAaDxWCgEAAAAAAAAAyCClEAAAAAAAAACADFIKAQAAAAAAAADIIKUQAAAAAAAAAIAMKk07AAAAAAAAAABs6pIkSTsCGWSlEAAAAAAAAACADFIKAQAAAAAAAADIoNRLIY888khcfvnl8dxzz0VExJNPPhl9+/aNL37xi3HbbbelnA4AAAAAAAAAoGVKtRTy05/+NE444YT4wx/+EH379o1f/vKX0a9fv9hmm21iu+22i29961sxevToNCMCAAAAAAAAALRIpWlOPmbMmPjJT34S55xzTkyaNCn69u0bN9xwQ1xwwQUREXHAAQfEddddF9/85jfTjAkAAAAAAAAA0OKkulLI22+/HUcffXRERBx22GGxatWq6N27d934oYceGrNmzUorHgAAAAAAAABAi5XqSiFbbbVVzJo1K7bddtuYM2dO1NTUxOzZs2O33XaLiIhZs2ZFx44dG7xHPp+PfD5f71yhVS5yuVzRcgMAAAAAAABAo0rSDkAWpbpSyPHHHx9nn312XHPNNXHCCSfEgAED4tvf/nY8+uij8dhjj8XFF18cRx11VIP3qKqqirKysnrHqJFVTfQMAAAAAAAAAACap1RXChk5cmSsWLEi7r///jjooIPiRz/6UYwZMyaOP/74WLlyZVRWVkZVVcMFj2HDhsXgwYPrnSu0skoIAAAAAAAAALBpSwqFQiHtEP9r+fLlsXLlythyyy0/3uNrGjkQADRzHQ64pOhzLHj+pqLPAQAAAADAhmub6hIANLbtL/l92hE2WW/f9KW0IxRNqtvHrEvbtm1jyy23jHfffTfOOuustOMAAAAAAAAAALQ4zbIUstr8+fNj3LhxaccAAAAAAAAAAGhxUl1QaMKECQ2Oz5w5s4mSAAAAAAAAAABkS6qlkH79+kWSJFEoFNZ5TZIkTZgIAAAAAAAAAJqefxunGFLdPqaioiLGjx8ftbW1az2mTZuWZjwAAAAAAAAAgBYr1VJIz549o7q6ep3j61tFBAAAAAAAAACAtUt1+5ghQ4bEkiVL1jnevXv3mDRpUhMmAgAAAAAAAADIhlRLIb169WpwvF27dlFZWdlEaQAAAAAAAAAAsiPV7WMAAAAAAAAAACgOpRAAAAAAAAAAgAxKdfuYlmzlqtqiz9G6lc4OZFVtoVD0OUqSpOhz0HwseP6mos/x5dunFn2O3569b9HnAPi4muDbd/j2veFqVhX/D2TRspVFvX/HLdoU9f4REStrmuB319Js/O5aW1vc11RJSfG/wL1PbVqWr1xV9Dlypa2KPseKpnifalX8F25TfI0X27IVxX9Nbdam+K+prCj2e7r3cxqbn0NoiYr9O0BENn5GAFo+pRAAAAAAAAAASFmiAUcRZON/5wEAAAAAAAAAoB6lEAAAAAAAAACADFIKAQAAAAAAAADIIKUQAAAAAAAAAIAMUgoBAAAAAAAAAMig0rQDLFu2LO6777549tln47333ouSkpLYYYcdol+/fnH44YenHQ8AAAAAAAAAoEVKtRTy5ptvxhFHHBHLli2LXC4X//jHP6Jv374xderUuOWWW+LEE0+Me++9N0pLU++uAAAAAAAAAEDRJEnaCciiVLeP+cY3vhFf/OIXY+7cuTF79uyoqqqK2traeP755+PVV1+NqVOnxg9+8IM0IwIAAAAAAAAAtEiplkL+z//5P/Htb387kv9XebrkkkviiSeeiA8//DA++9nPxs033xzjxo1LMyIAAAAAAAAAQIuU6r4s5eXlsXjx4rqPly5dGjU1NdGmTZuIiNh9993jvffea/Ae+Xw+8vl8vXOFVrnI5XKNHxgAAAAAAAAAoIVIdaWQI488MgYPHhyvvfZavP3223HeeefFnnvuGVtuuWVERMyePTs6d+7c4D2qqqqirKys3jFqZFVTxAcAAAAAAAAAaLZSXSnkuuuui+OPPz522WWXSJIkPvOZz8SDDz5YN/6vf/0rhgwZ0uA9hg0bFoMHD653rtDKKiEAAAAAAAAAwKYt1VJI586dY/LkyTFjxozI5/Ox8847R2np/4/05S9/eb33yOXW3CpmeU2jRwUAAAAAAAAAaFFS3T5mtc9+9rOx22671SuERES8++67cdZZZ6WUCgAAAAAAAACg5WoWpZB1mT9/fowbNy7tGAAAAAAAAABQVEmSOFI6sizV7WMmTJjQ4PjMmTObKAkAAAAAAAAAQLakWgrp169fJEkShUJhnddkvZUDAAAAAAAAAFAMqW4fU1FREePHj4/a2tq1HtOmTUszHgAAAAAAAABAi5VqKaRnz55RXV29zvH1rSICAAAAAAAAAMDapbp9zJAhQ2LJkiXrHO/evXtMmjSpCRMBAAAAAAAAAGRDqqWQXr16NTjerl27qKysbKI0AAAAAAAAAADZkWopBAAAAAAAAACISJK0E5BFJWkHAAAAAAAAAACg8Vkp5GNq3UqfBvj4Spqg6lkoFH0KjdVNzK/P2qfoc5w2rrqo9//lGXsX9f4RESUlvjAgq3zfa15aNcH7bXm71kW9/9yFy4t6/4iI8s2L+xwiIoo/Q9PI19QW9f6btWlV1Puz6cmVFv811RTf+0pbFX+SYn99R2Tja9zfdzYv+ZpVRb1/29Yt/zVL8+L3peal2H83nJU/76b4e7zapviL+sjIHwhQNH7SBwAAAAAAAADIIKUQAAAAAAAAAIAMUgoBAAAAAAAAAMggpRAAAAAAAAAAgAxSCgEAAAAAAAAAyKDStAMAAAAAAAAAwKYuSZK0I5BBzaIUMmXKlJg8eXLMnTs3IiK6dOkSBx54YOy3334pJwMAAAAAAAAAaJlSLYXMmzcvTjrppHjuuedi2223ja233joiIt5///245JJL4uCDD44HHnggOnfunGZMAAAAAAAAAIAWpyTNyS+44IJYtWpVvPrqq/HOO+/ECy+8EC+88EK888478eqrr0ZtbW1ceOGFaUYEAAAAAAAAAGiRUl0p5LHHHounn346dtpppzXGdtpppxgzZkwceuihTR8MAAAAAAAAAKCFS3WlkFwuF4sWLVrn+OLFiyOXyzVhIgAAAAAAAACAbEi1FHLKKafEwIED48EHH6xXDlm0aFE8+OCDMWjQoDj11FMbvEc+n49FixbVO/L5fLGjAwAAAAAAAAA0a6luH3PjjTdGbW1t9O/fP2pqaqJNmzYREbFixYooLS2Ns88+O66//voG71FVVRVXXnllvXPDvz8ivnf5FcWKDQAAAAAAAACNKknSTkAWJYVCoZB2iEWLFkV1dXXMnTs3IiK6dOkSPXv2jPbt26/3sfl8fo2VQQqtcradATZ5TfHu7oeTTUttE7yovnr3tKLe/5dn7F3U+0dElJT4wgBoCk3xs04hijvJvEXFX+WyfPPWRZ+jbetWRZ+jKSxbsaqo99+sTfE/T34H2LRk5c97VW3xn8iKmtqiz9EUX+PFVrOq+H8Wpa28iWyo5SuL+30pK9+/gbUr9s8JfibccE3xd6qbt/YHkiU7f/extCNssl679ui0IxRNqiuFrNa+ffs47LDDPtZjc7k1CyDLaxojFQAAAAAAAABAy1WSdoBly5bFs88+G3//+9/XGFu+fHncfffdKaQCAAAAAAAAAGjZUi2FvPHGG9GjR4/o3bt3fP7zn4/KysqYM2dO3fjChQtj0KBBKSYEAAAAAAAAAGiZUi2FDB06NHbbbbeYN29evP7667HlllvGIYccErNnz04zFgAAAAAAAABAi5dqKeTPf/5zVFVVRadOnaJ79+7x8MMPx9FHHx29evWKmTNnphkNAAAAAAAAAKBFS7UUsmzZsigtLa37OEmSuOWWW+LYY4+NysrKeOONN1JMBwAAAAAAAADQcpWu/5Li2XnnnePFF1+MHj161Ds/duzYiIg47rjj0ogFAAAAAAAAAE2qpCRJOwIZlOpKISeccELcd999ax0bO3ZsnHrqqVEoFJo4FQAAAAAAAABAy5dqKWTYsGHxhz/8YZ3jP/nJT6K2trYJEwEAAAAAAAAAZEOqpRAAAAAAAAAAAIpDKQQAAAAAAAAAIINK0w7QUtWsKhR9jtJWSdHnALKrUCj++1SStPz3qSb4NEUGPk0REVHSBE/k3oE9i3r/roPuLer9IyLm3Hla0eeAxua9ENYuieK+cLuUtS3q/dk4udKW///N1DbBG3orb+jNRlb+KJri94y2rVsVfY4s8HeRzUuu1OuWlsXvlbB2tbVpJwCwUggAAAAAAAAAQCZZKQQAAAAAAAAAUmZVJIrBSiEAAAAAAAAAABmkFAIAAAAAAAAAkEFKIQAAAAAAAAAAGdSsSyELFiyIu+++O+0YAAAAAAAAAAAtTrMuhcyePTsGDRqUdgwAAAAAAAAAgBanNM3JFy1a1OD44sWLmygJAAAAAAAAAEC2pFoKKS8vjyRJ1jleKBQaHAcAAAAAAACALPBv4xRDqqWQLbfcMoYPHx7777//WsdnzJgRX//615s4FQAAAAAAAABAy5dqKWTvvfeOiIjKysq1jpeXl0ehUGjwHvl8PvL5fL1zhVa5yOVyjRMSAAAAAAAAAKAFKklz8tNOOy3atm27zvEuXbrEiBEjGrxHVVVVlJWV1TtGjaxq7KgAAAAAAAAAAC1KUljfUhzNXForhdSsKv6nrbSVPaOAj6+2tvjvUyUlLf99qim+C9oCsPnoOujeos8x587Tij4HNDbvhbRELfs32f/wddG8FPvn56b42XlVE/wO0CoDvwPQvGTh/TzCezqNr9hfG16zNDa/VzYv3kOaj6b498Qtcv5AsmS3701MO8Im628/ODLtCEWT6vYxjSGXW7MAsrwmpTAAAAAAAAAAAM1EqtvHREQsW7Ysnn322fj73/++xtjy5cvj7rvvTiEVAAAAAAAAAEDLlmop5I033ogePXpE79694/Of/3xUVlbGe++9Vze+cOHCGDRoUIoJAQAAAAAAAABaplRLIUOH/l/2/j/O6rrOG/8fZxgYFMYRl1RYQ3HpEhQXTc38SZEfSFtQy0ykTDNTzNqiyNhWS1cd/LGmRmF1bZRdpe6u2qpXEKjdLi6TSDR1UwRKdHa/gRAhoMAoM+f7x17O7qyGoHPOm3O432+39+3G+/065/V6nHPe5z3nzDx5vS7OyJEjs2rVqixZsiTNzc055phj0tbWVmQsAAAAAAAAAKiqUslW1FbPCi0Keeihh9La2pqBAwdm2LBhueeeezJu3Lgcd9xxeeaZZ4qMBgAAAAAAAABQ0wotCtm0aVMaGxu79kulUmbOnJnx48dn9OjRWbp0aYHpAAAAAAAAAABqV+Mb36Ryhg8fnkWLFmXEiBHdjs+YMSNJMmHChCJiAQAAAAAAAADUvEJnCjn11FNz6623vm7bjBkzMnHixJTL5SqnAgAAAAAAAACofYUWhUybNi0//elP/2T7t771rXR2dlYxEQAAAAAAAABAfSi0KAQAAAAAAAAAgMpoLDoAAAAAAAAAAOzsSqVS0RGoQ4pC3qTGXt6QwI6tocF1alv4fLVz+f2sMys+xoAjLqr4GGsfnlHxMdi5uBZSi5y39LR6+Pzcqw4eAzsf13N4fd4b1Brn7I7F67Hj8PdEYEdg+RgAAAAAAAAAgDqkKAQAAAAAAAAAoA4pCgEAAAAAAAAAqEOKQgAAAAAAAAAA6pCiEAAAAAAAAACAOrRDFIV0dnb+yeNtbW1VTgMAAAAAAAAAUPsKLQpZv359Tj/99PTr1y977bVXLr300nR0dHS1r169OkOHDi0wIQAAAAAAAABUXqlUshW01bPGIge/5JJL8vjjj+eHP/xhXnjhhVxxxRV59NFHc+edd6ZPnz5JknK5XGREAAAAAAAAAICaVOhMIT/5yU/y7W9/O6eddlo++clPZtGiRVm9enXGjx+f9vb2JKn7qhwAAAAAAAAAgEootChk9erV2Xfffbv2Bw4cmPvuuy8bNmzISSedlI0bNxaYDgAAAAAAAACgdhVaFDJkyJAsXry427Hm5ubMnTs3mzZtyqmnnlpQMgAAAAAAAACA2lZoUcjYsWMza9as1xzv379/fvazn6Vv375v2Ed7e3vWr1/fbXt16RkAAAAAAAAAgJ1VoUUhl112Wb72ta+9bltzc3PmzZuXBx54YKt9tLa2pqWlpdt27dWtFUgLAAAAAAAAAFA7SuVyuVx0iLeivb39NTODlHs1pampqaBEAMDObMARF1V8jLUPz6j4GAAAAADAjq9vY9EJ6EmHfO3+oiPstB772vuKjlAxhc4UkiSbNm3Kgw8+mKeeeuo1bZs3b84tt9yy1fs3NTVlt91267YpCAEAAAAAAAAAdnaFFoUsXbo0I0aMyPHHH5+DDz44o0ePzooVK7ra161bl3POOafAhAAAAAAAAAAAtanQopCLL744I0eOzKpVq7JkyZI0NzfnmGOOSVtbW5GxAAAAAAAAAABqXqFFIQ899FBaW1szcODADBs2LPfcc0/GjRuX4447Ls8880yR0QAAAAAAAAAAalqhRSGbNm1KY2Nj136pVMrMmTMzfvz4jB49OkuXLi0wHQAAAAAAAABA7Wp845tUzvDhw7No0aKMGDGi2/EZM2YkSSZMmFBELAAAAAAAAACAmlfoTCGnnnpqbr311tdtmzFjRiZOnJhyuVzlVAAAAAAAAAAAta9UrsOqi81bik4AAOysBhxxUcXHWPvwjIqPAQAAAADs+PoWui4EPe3Qyx4oOsJO69dfHVN0hIopdKYQAAAAAAAAAAAqQ1EIAAAAAAAAAEAdMqEQAEAPqsbSLgPe9dmKj7H2VzdVfAwAAAAAAKg18+fPz7XXXptHHnkkK1asyF133ZVTTjmlq71cLuerX/1qvvvd7+aFF17IMccck5kzZ+Yd73hH123++Mc/5jOf+UzuueeeNDQ05EMf+lBuvPHG9O/fv+s2TzzxRD796U/n4Ycfztve9rZ85jOfyZe+9KXtzmumEAAAAAAAAACAbfDSSy9l1KhR+eY3v/m67ddcc01uuumm3HzzzVm4cGH69euXcePGZfPmzV23mTRpUp588snMmzcv9957b+bPn59PfepTXe3r16/P2LFjs+++++aRRx7Jtddem6997Wv5zne+s915zRQCAAAAAAAAALANTjzxxJx44omv21Yul3PDDTfkb//2b3PyyScnSW655Zbstdde+clPfpIzzjgjixcvzpw5c/Lwww/n8MMPT5J84xvfyEknnZTrrrsugwcPzo9+9KO8/PLL+d73vpc+ffrkoIMOymOPPZbrr7++W/HItjBTCAAAAAAAAADAW7R8+fKsXLkyJ5xwQtexlpaWHHnkkVmwYEGSZMGCBdl99927CkKS5IQTTkhDQ0MWLlzYdZvjjz8+ffr06brNuHHjsmTJkqxdu3a7MpkpBAAAAAAAAAAKVioVnWDn1d7envb29m7Hmpqa0tTUtF39rFy5Mkmy1157dTu+1157dbWtXLkye+65Z7f2xsbG7LHHHt1uM3To0Nf08WrbgAEDtjmTmUIAAAAAAAAAgJ1Wa2trWlpaum2tra1Fx+oRZgoBAAAAAAAAAHZa06ZNy5QpU7od295ZQpJk7733TpI8//zzGTRoUNfx559/PoccckjXbVatWtXtflu2bMkf//jHrvvvvffeef7557vd5tX9V2+zrQqfKaRcLmf58uXZsmVLkuTll1/O7bffnltuuSV/+MMfCk4HAAAAAAAAANSzpqam7Lbbbt22N1MUMnTo0Oy99965//77u46tX78+CxcuzFFHHZUkOeqoo/LCCy/kkUce6brNAw88kM7Ozhx55JFdt5k/f35eeeWVrtvMmzcvBxxwwHYtHZMUXBSyZMmSDB06NMOGDcuIESOyfPnyHH300Tn33HMzefLkjBgxIsuWLSsyIgAAAAAAAABAkuTFF1/MY489lsceeyxJsnz58jz22GNpa2tLqVTK5z73uVxxxRW5++6786//+q8566yzMnjw4JxyyilJkhEjRuT9739/zjvvvPzqV7/KL37xi1x00UU544wzMnjw4CTJmWeemT59+uTcc8/Nk08+mdtvvz033njja2Yz2RaFFoVcfPHFGTVqVB577LH81V/9VT7wgQ9kn332ydq1a/PHP/4xRx11VC6//PIiIwIAAAAAAAAAJEkWLVqUQw89NIceemiSZMqUKTn00ENz6aWXJkm+9KUv5TOf+Uw+9alP5YgjjsiLL76YOXPmpG/fvl19/OhHP8rw4cPzvve9LyeddFKOPfbYfOc73+lqb2lpydy5c7N8+fIcdthh+cIXvpBLL700n/rUp7Y7b6lcLpff4mN+0/bcc8/MnTs3hxxySF566aU0Nzdn/vz5OfbYY5MkDz30UCZOnJjnnntuu/rdvKUSaQEAdgwD3vXZio+x9lc3VXwMAAAAAOCt6dtYdAJ60jsvf6DoCDutRy8dU3SEiin0MvHiiy9mjz32SJL069cv/fr1y6BBg7ra3/72t+f5558vKh4AAAAAAAAAVEWpVCo6AnWo0KKQwYMHp62tLUOGDEmSXHPNNdlzzz272levXp0BAwZstY/29va0t7d3O1bu1ZSmpqaeDwwAAAAAAAAAUCMaihz8hBNOyNNPP921P3ny5DQ3N3ftz507N+985zu32kdra2taWlq6bdde3VqxzAAAAAAAAAAAtaBULpfLRYf4U5YvX56+fft2W1LmvzNTCACwsxnwrs9WfIy1v7qp4mMAAAAAAG9N30LXhaCnHfZ3Py86wk7rkUveW3SEitmhLxNDhw59w9s0Nb22AGTzlkolAgAAAAAAAACoDYUuH5MkmzZtyoMPPpinnnrqNW2bN2/OLbfcUkAqAAAAAAAAAIDaVmhRyNKlSzNixIgcf/zxOfjggzN69OisWLGiq33dunU555xzCkwIAAAAAAAAAFCbCi0KufjiizNy5MisWrUqS5YsSXNzc4455pi0tbUVGQsAAAAAAAAAoOY1Fjn4Qw89lPvuuy8DBw7MwIEDc8899+TCCy/Mcccdl5///Ofp169fkfEAAAAAAAAAoCpKpaITUI8KnSlk06ZNaWz8z7qUUqmUmTNnZvz48Rk9enSWLl1aYDoAAAAAAAAAgNpV6Ewhw4cPz6JFizJixIhux2fMmJEkmTBhQhGxAAAAAAAAAABqXqEzhZx66qm59dZbX7dtxowZmThxYsrlcpVTAQAAAAAAAADUvlK5DqsuNm8pOgEAQOUMeNdnKz7G2l/dVPExAAAAAIC3pm+h60LQ0w6/4udFR9hpLfrb9xYdoWIKnSkEAAAAAAAAAIDKUBQCAAAAAAAAAFCHTCgEAFBjqrG0y4AjLqr4GGsfnlHxMQAAAAAAakWpVCo6AnXITCEAAAAAAAAAAHVIUQgAAAAAAAAAQB1SFAIAAAAAAAAAUIcUhQAAAAAAAAAA1CFFIQAAAAAAAAAAdWiHLAoZM2ZMnnvuuaJjAAAAAAAAAADUrMYiB7/77rtf9/j8+fNz77335u1vf3uSZMKECdWMBQAAAAAAAABQ8wotCjnllFNSKpVSLpdf0/aZz3wmSVIqldLR0VHtaAAAAAAAAABQNaVS0QmoR4UuHzNu3LiceOKJWblyZTo7O7u2Xr165Te/+U06OzsVhAAAAAAAAAAAvAmFFoXMnj0773vf+3L44Yfn3nvvLTIKAAAAAAAAAEBdKXT5mCT5/Oc/n/e+972ZNGlS7rnnnnz961/frvu3t7envb2927Fyr6Y0NTX1ZEwAAAAAAAAAgJpS6EwhrzrkkEOyaNGilEqlHHLIISmXy9t839bW1rS0tHTbrr26tYJpAQAAAAAAAAB2fIXPFPKqXXbZJTfffHPuvvvu/PznP8/AgQO36X7Tpk3LlClTuh0r9zJLCAAAAAAAAACwc9thikJeNWHChEyYMGGbb9/U9NqlYjZv6elUAAAAAAAAAAC1pfDlYzZt2pQHH3wwTz311GvaNm/enFtuuaWAVAAAAAAAAABQPaVSyVbQVs8KLQpZunRpRowYkeOPPz4HH3xwRo8enRUrVnS1r1u3Luecc06BCQEAAAAAAAAAalOhRSEXX3xxRo4cmVWrVmXJkiVpbm7OMccck7a2tiJjAQAAAAAAAADUvEKLQh566KG0trZm4MCBGTZsWO65556MGzcuxx13XJ555pkiowEAAAAAAAAA1LRCi0I2bdqUxsbGrv1SqZSZM2dm/PjxGT16dJYuXVpgOgAAAAAAAACA2tX4xjepnOHDh2fRokUZMWJEt+MzZsxIkkyYMKGIWAAAAAAAAAAANa/QmUJOPfXU3Hrrra/bNmPGjEycODHlcrnKqQAAAAAAAAAAal+pXIdVF5u3FJ0AAKC2DTjiooqPsfbhGRUfAwAAAADqWd9C14Wgpx3Z+n+KjrDTWjhtdNERKsZlAgAAAAAAAAAKVioVnYB6VOjyMQAAAAAAAAAAVIaZQgAAeI1qLO0y4N2fr/gYa3/59YqPAQAAAAAAOyozhQAAAAAAAAAA1CFFIQAAAAAAAAAAdUhRCAAAAAAAAABAHVIUAgAAAAAAAABQhxqLDgAAAAAAAAAAO7tSqVR0BOqQmUIAAAAAAAAAAOrQDjdTyPLly/Pb3/42gwYNysiRI4uOAwAAAAAAAABQkwqdKeTCCy/Miy++mCTZtGlTTjvttAwbNizjxo3LqFGjMmbMmK52AAAAAAAAAAC2XaFFId/+9rezcePGJMnf/d3fZeHChbnvvvvy4osvZv78+Wlra8uVV15ZZEQAAAAAAAAAgJpUaFFIuVzu+vc999yTa665Ju9973uz66675phjjsn111+fO++8s8CEAAAAAAAAAAC1qdCikCQplUpJkpUrV+Yv//Ivu7WNGjUq//Zv/1ZELAAAAAAAAACAmtZYdIBLLrkku+66axoaGvL73/8+Bx10UFfbmjVr0q9fv63ev729Pe3t7d2OlXs1pampqSJ5AQAAAAAAAABqQaEzhRx//PFZsmRJfv3rX+fAAw/Mc8891639pz/9abcikdfT2tqalpaWbtu1V7dWMjYAAAAAAAAA9KhSyVbUVs9K5XK5XHSIP+WZZ55Jnz59ss8++/zJ25gpBACgNg149+crPsbaX3694mMAAAAAQFH6Fr4uBD3p6GvmFx1hp/XQl44vOkLF7NCXif333/8Nb9PU9NoCkM1bKpUIAAAAAAAAAKA2FLp8TJJs2rQpDz74YJ566qnXtG3evDm33HJLAakAAAAAAAAAAGpboUUhS5cuzYgRI3L88cfn4IMPzujRo7NixYqu9nXr1uWcc84pMCEAAAAAAAAAQG0qtCjk4osvzsiRI7Nq1aosWbIkzc3NOeaYY9LW1lZkLAAAAAAAAACAmldoUchDDz2U1tbWDBw4MMOGDcs999yTcePG5bjjjsszzzxTZDQAAAAAAAAAgJrWWOTgmzZtSmPjf0YolUqZOXNmLrrooowePTo//vGPC0wHAAAAAAAAANVRKpWKjkAdKrQoZPjw4Vm0aFFGjBjR7fiMGTOSJBMmTCgiFgAAAAAAAABAzSt0+ZhTTz01t9566+u2zZgxIxMnTky5XK5yKgAAAAAAAACA2lcq12HVxeYtRScAAOCNDHj35ys+xtpffr3iYwAAAABAUfoWui4EPe2Ya/9v0RF2Wr+YelzRESqm0JlCAAAAAAAAAACoDEUhAAAAAAAAAAB1yIRCAAAUohpLuwx412cr2v/aX91U0f4BAAAAAOCtUBQCAAAAAAAAAAUrlYpOQD2yfAwAAAAAAAAAQB1SFAIAAAAAAAAAUIcUhQAAAAAAAAAA1CFFIQAAAAAAAAAAdaixyMHb29vT0NCQ3r17J0l+97vf5Xvf+17a2tqy77775txzz83QoUOLjAgAAAAAAAAAUJMKnSlk3Lhx+Zd/+ZckyS9+8YscdNBBuffee/PKK6/kpz/9aUaOHJkFCxYUGREAAAAAAAAAoCYVWhTy61//OqNGjUqSfOUrX8mFF16Yxx9/PLfddlseffTRTJkyJVOnTi0yIgAAAAAAAABATSp0+ZiOjo50dHQkSZ5++unceOON3drPPvvs3HDDDQUkAwAAAAAAAIDqKZVKRUegDhU6U8iRRx6Ze+65J0nyF3/xF3n88ce7tT/22GPZY489iogGAAAAAAAAAFDTCp0p5IorrsiJJ56Yl156KRMnTswXvvCFLFu2LCNGjMiSJUty0003Zdq0aVvto729Pe3t7d2OlXs1pampqZLRAQAAAAAAAAB2aIUWhRx11FGZPXt2pkyZkoULFyZJrrzyyiTJ4MGD87WvfS1//dd/vdU+Wltbc9lll3U79pVLvpq/vfRrFckMAAAAAAAAAFALSuVyuVx0iCRZvXp1nnnmmXR2dmbQoEHZb7/9tul+ZgoBAOBPGfCuz1a0/7W/uqmi/QMAAADA1vQtdAoAetpxf/9g0RF2Wv/3C8cWHaFidpjLxNve9ra87W1v2+77NTW9tgBk85aeSgUAAAAAAAAAUJsaig6wadOmPPjgg3nqqade07Z58+bccsstBaQCAAAAAAAAAKhthRaFLF26NCNGjMjxxx+fgw8+OKNHj86KFSu62tetW5dzzjmnwIQAAAAAAAAAUHmlUslW0FbPCi0KufjiizNy5MisWrUqS5YsSXNzc4455pi0tbUVGQsAAAAAAAAAoOYVWhTy0EMPpbW1NQMHDsywYcNyzz33ZNy4cTnuuOPyzDPPFBkNAAAAAAAAAKCmFVoUsmnTpjQ2Nnbtl0qlzJw5M+PHj8/o0aOzdOnSAtMBAAAAAAAAANSuxje+SeUMHz48ixYtyogRI7odnzFjRpJkwoQJRcQCAAAAAAAAAKh5hc4Ucuqpp+bWW2993bYZM2Zk4sSJKZfLVU4FAAAAAAAAAFD7SuU6rLrYvKXoBAAA7AgGvOuzFe1/7a9uqmj/AAAAALA1fQtdF4Kedvz1vyg6wk5r/pRjio5QMYXOFAIAAAAAAAAAQGWoHQMAAAAAAACAgpVKRSegHikKAQCgblV6eZcB7/58RftPkrW//HrFxwAAAADqR7lc2f790Rqgtlg+BgAAAAAAAACgDikKAQAAAAAAAACoQ4pCAAAAAAAAAADqkKIQAAAAAAAAAIA6pCgEAAAAAAAAAKAONRY5+B133JETTzwxu+66a5ExAAAAAAAAAKBQpVKp6AjUoUJnCvnwhz+cQYMG5VOf+lQWLlxYZBQAAAAAAAAAgLpS+PIxX/ziF7No0aIcddRRGTlyZG644YasWbOm6FgAAAAAAAAAADWt8KKQ888/P48++mgefvjhHH/88bnsssvy53/+5zn99NMzb968ouMBAAAAAAAAANSkwotCXnXYYYflW9/6VlasWJHvfve7Wb16dd7//vdn6NChRUcDAAAAAAAAAKg5hRaFlEql1xzr27dvPvaxj+XnP/95lixZkjPPPLOAZAAAAAAAAAAAta2xyMHL5fJW24cNG5Yrr7xyq7dpb29Pe3t79357NaWpqekt5wMAAAAAAAAAqFWFzhSyfPnyvO1tb3tLfbS2tqalpaXbdu3VrT2UEAAAAAAAAACgNhU6U8i+++77lvuYNm1apkyZ0u1YuZdZQgAAAAAAAACoHaVS0QmoR4XOFJIkmzZtyoMPPpinnnrqNW2bN2/OLbfcstX7NzU1Zbfdduu2WToGAAAAAAAAANjZFVoUsnTp0owYMSLHH398Dj744IwePTorVqzoal+3bl3OOeecAhMCAAAAAAAAANSmQotCLr744owcOTKrVq3KkiVL0tzcnGOOOSZtbW1FxgIAAAAAAAAAqHmFFoU89NBDaW1tzcCBAzNs2LDcc889GTduXI477rg888wzRUYDAAAAAAAAAKhphRaFbNq0KY2NjV37pVIpM2fOzPjx4zN69OgsXbq0wHQAAAAAAAAAALWr8Y1vUjnDhw/PokWLMmLEiG7HZ8yYkSSZMGFCEbEAAAAAAAAAAGpeoTOFnHrqqbn11ltft23GjBmZOHFiyuVylVMBAAAAAAAAQHWVSiVbQVs9K5XrsOpi85aiEwAAsDMY8O7PV3yMtb/8esXHAAAAAOpHpf/yV+d/O605fQtdF4KeNuamBUVH2Gk98Nmjio5QMYXOFAIAAAAAAAAAQGUoCgEAAAAAAAAAqEMmFAIAgDepGku7DDjiooqPsfbhGRUfAwAAAKgOy7sA8F+ZKQQAAAAAAAAAoA4pCgEAAAAAAAAAqEOWjwEAAAAAAACAgln+iUowUwgAAAAAAAAAQB1SFAIAAAAAAAAAUIcUhQAAAAAAAAAA1KHGogM8/vjjeeSRR/Ke97wn+++/f5588sl885vfTGdnZ0499dSMGzeu6IgAAAAAAAAAADWn0JlC7rzzzhx22GH50pe+lFGjRuW+++7Lsccem2XLluXZZ5/NBz7wgfz4xz8uMiIAAAAAAAAAQE0qtCjkyiuvzGWXXZY//OEP+e53v5sPf/jDmTJlSubNm5c5c+bk6quvzrXXXltkRAAAAAAAAACAmlRoUciSJUsyadKkJMlHPvKRvPTSSznllFO62k899dT89re/LSgdAAAAAAAAAEDtaixy8Obm5qxZsyb77bdfXnjhhWzZsiVr1qzpal+zZk369+9fYEIAAAAAAAAAqLyGUqnoCNShQotCTjjhhHz605/OZz7zmdx+++0ZO3Zspk2bllmzZqVUKmXq1Kk59thjt9pHe3t72tvbux0r92pKU1NTJaMDAAAAAAAAAOzQCl0+5rrrrstuu+2WCy64IC+//HJuv/32HH744TnwwANz4IEH5ve//32mT5++1T5aW1vT0tLSbbv26tYqPQIAAAAAAAAAgB1TqVwul4sO8d8988wz2bhxY4YPH57Gxq1PZmKmEAAA6tmAIy6q+BhrH55R8TEAAAAA6Hl9C10Xgp72/834ZdERdlrzLnp30REqZoe8TOy///7bfNumptcWgGze0tOJAAAAAAAAAABqS6HLxyTJpk2b8uCDD+app556TdvmzZtzyy23FJAKAAAAAAAAAKC2FVoUsnTp0owYMSLHH398Dj744IwePTorVqzoal+3bl3OOeecAhMCAAAAAAAAANSmQotCLr744owcOTKrVq3KkiVL0tzcnGOOOSZtbW1FxgIAAAAAAACAqiqVbEVt9azQopCHHnoora2tGThwYIYNG5Z77rkn48aNy3HHHZdnnnmmyGgAAAAAAAAAADWt0KKQTZs2pbGxsWu/VCpl5syZGT9+fEaPHp2lS5cWmA4AAAAAAAAAoHY1vvFNKmf48OFZtGhRRowY0e34jBkzkiQTJkwoIhYAAAAAAAAAQM0rdKaQU089Nbfeeuvrts2YMSMTJ05MuVyucioAAAAAAAAAgNpXKtdh1cXmLUUnAACAnjHgiIsqPsbah2dUfAwAAAAAel7fQteFoKeN/eYvi46w05r76XcXHaFiCp0pBAAAAAAAAACAylAUAgAAAAAAAABQh0wo9CZ1VmHVnYZSqeJj1AOvxbbzXAFA7anG0i5DL7yj4mP87psfrPgYpVT2c0g5PkvtSDo7q/B6NHg9diZbOip7TjX2cj7tbCp9nXKN2nbVWDzbj3B6WqXPW+csQHW+V75S4e8ZSdK30RwA9aTkhzQV4CoBAAAAAAAAAFCHFIUAAAAAAAAAANQhRSEAAAAAAAAAAHVIUQgAAAAAAAAAQB1SFAIAAAAAAAAAUIcaiw6QJA888EAefPDBrFixIg0NDdl///0zYcKEvOMd7yg6GgAAAAAAAABATSq0KGTVqlUZP358Fi1alIaGhnR2dubQQw/NnXfemYsvvjhTpkzJNddcU2REAAAAAAAAAKi4hlLRCahHhS4f89nPfjaDBw/O2rVr8+KLL+bCCy/MQQcdlBUrVmTu3Ln53ve+lxtvvLHIiAAAAAAAAAAANanQopDZs2fniiuuyG677ZampqZMnz49t956a9avX58xY8bkhhtuyMyZM4uMCAAAAAAAAABQkwotCmlqakqp9J9z4DQ0NKSjoyNbtmxJkhx99NF59tlnC0oHAAAAAAAAAFC7Ci0KOfbYY3PppZfmpZdeyiuvvJK/+Zu/yf7775899tgjSbJ69eoMGDBgq320t7dn/fr13bb29vZqxAcAAAAAAAAA2GEVWhRy3XXX5bHHHsvuu++efv365fvf/3635WIWL16cs88+e6t9tLa2pqWlpdt27dWtFU4OAAAAAAAAALBjK5XL5XKRATZu3JgHH3wwL7/8ct797ndn4MCB23X/9vb218wMUu7VlKampp6M+RqdVXjaGv7L0jr8aV6Lbee5AgBez9AL76j4GL/75gcrPkYplf0cUo7PUjuSzs4qvB4NXo+dyZaOyp5Tjb2cTzubSl+nXKO2XTV+++lHOD2t0uetcxagOt8rX6nw94wkadml0DkA6GEnzlxYdISd1uzJRxYdoWIaiw6w6667ZuzYsW/6/k1Nry0A2bzlraYCAAAAAAAAAKhthZeObdq0KQ8++GCeeuqp17Rt3rw5t9xySwGpAAAAAAAAAKB6SqWSraCtnhVaFLJ06dKMGDEixx9/fA4++OCMHj06K1as6Gpft25dzjnnnAITAgAAAAAAAADUpkKLQi6++OKMHDkyq1atypIlS9Lc3JxjjjkmbW1tRcYCAAAAAAAAAKh5hRaFPPTQQ2ltbc3AgQMzbNiw3HPPPRk3blyOO+64PPPMM0VGAwAAAAAAAACoaYUWhWzatCmNjY1d+6VSKTNnzsz48eMzevToLF26tMB0AAAAAAAAAAC1q/GNb1I5w4cPz6JFizJixIhux2fMmJEkmTBhQhGxAAAAAAAAAABqXqEzhZx66qm59dZbX7dtxowZmThxYsrlcpVTAQAAAAAAAADUvlK5DqsuNm+p/BidVXjaGkqlio9RD7wW285zBQC8nqEX3lHxMX73zQ9WfIxSKvs5pByfpXYknZ1VeD0avB47ky0dlT2nGns5n3Y2lb5OuUZtu2r89tOPcHpapc9b5yxAdb5XvlLh7xlJ0rJLoXMA0MM+8O1fFR1hp/W/z39X0REqxlUCAAAAAAAAAKAOKQoBAAAAAAAAAKhDjUUHqFWmdd5xeC22necKAHg9y7/1oYqPMeCIiyo+xtqHZ1S0/0ovT8P2sWwCPc3yLvQ016kdh1+HUIuctwCVV43Pa00+EwI7ADOFAAAAAAAAAADUIUUhAAAAAAAAAAB1SFEIAAAAAAAAAEAdUhQCAAAAAAAAAFCHGosOAAAAAAAAAAA7u1JKRUegDpkpBAAAAAAAAACgDikKAQAAAAAAAACoQzvE8jG/+tWvsmDBgqxcuTJJsvfee+eoo47Ku971roKTAQAAAAAAAADUpkKLQlatWpUPfehD+cUvfpEhQ4Zkr732SpI8//zz+fznP59jjjkmd9xxR/bcc88iYwIAAAAAAAAA1JxCl4+58MIL09HRkcWLF+fZZ5/NwoULs3Dhwjz77LNZvHhxOjs78+lPf7rIiAAAAAAAAAAANanQmUJ+9rOfZf78+TnggANe03bAAQfkpptuynve857qBwMAAAAAAAAAqHGFFoU0NTVl/fr1f7J9w4YNaWpq2mof7e3taW9v73as3KvpDe8HAAAAAAAAADuKhlLRCahHhS4f85GPfCQf//jHc9ddd3UrDlm/fn3uuuuunHPOOZk4ceJW+2htbU1LS0u37dqrWysdHQAAAAAAAABgh1boTCHXX399Ojs7c8YZZ2TLli3p06dPkuTll19OY2Njzj333Fx33XVb7WPatGmZMmVKt2PlXmYJAQAAAAAAAAB2boUvHzNz5sxcffXVeeSRR7Jy5cokyd57753DDjssu+222zb18d+Xitm8pSJxAQAAAAAAAABqRqHLxyTJ4sWLc8cdd2TQoEGZOHFiDj300PzjP/5jPve5z+WBBx4oOh4AAAAAAAAAQE0qdKaQOXPm5OSTT07//v2zcePG3HXXXTnrrLMyatSodHZ2ZuzYsZk7d27GjBlTZEwAAAAAAAAAgJpT6Ewhl19+eaZOnZo1a9Zk1qxZOfPMM3Peeedl3rx5uf/++zN16tRMnz69yIgAAAAAAAAAADWp0KKQJ598MmeffXaS5PTTT8+GDRty2mmndbVPmjQpTzzxREHpAAAAAAAAAKA6SqWSraCtnhVaFJKk6wluaGhI375909LS0tXW3NycdevWFRUNAAAAAAAAAKBmFVoUst9++2XZsmVd+wsWLMiQIUO69tva2jJo0KAiogEAAAAAAAAA1LTGIgefPHlyOjo6uvZHjhzZrX327NkZM2ZMtWMBAAAAAAAAANS8QotCLrjggq22X3XVVVVKAgAAAAAAAABQXwpdPgYAAAAAAAAAgMoodKYQAACgeJ2d5YqPsfbhGRUfY8AHrqto/2v/9xcr2j/bp1z50zalUuXHAHizXAehvnVW+E3e4A0Oda3SnxNcQrZdNX7nknhBgK0zUwgAAAAAAAAAQB0yUwgAAAAAAAAAFMxMPFSCmUIAAAAAAAAAAOqQohAAAAAAAAAAgDqkKAQAAAAAAAAAoA4pCgEAAAAAAAAAqEOKQgAAAAAAAAAA6tAOXRSydu3a3HLLLUXHAAAAAAAAAACoOY1FB9iatra2nHPOOTnrrLOKjgIAAAAAAAAAFdNQKhUdgTpUaFHI+vXrt9q+YcOGKiUBAAAAAAAAAKgvhRaF7L777iltpdqpXC5vtR0AAAAAAAAAgNdXaFFIc3NzvvKVr+TII4983fZly5bl/PPP32of7e3taW9v73as3KspTU1NPZYTAAAAAAAAAKDWFFoU8s53vjNJMnr06Ndt33333VMul7faR2tray677LJux75yyVfzt5d+rUcyAgAAAAAAAADUokKLQs4888xs3LjxT7bvvffe+epXv7rVPqZNm5YpU6Z0O1buZZYQAAAAAAAAAGDnVmhRyHnnnbfV9r322usNi0Kaml67VMzmLW85GgAAAAAAAABATWsoOsDixYsza9asPP3000mSp59+OpMnT84nPvGJPPDAAwWnAwAAAAAAAACoTYXOFDJnzpycfPLJ6d+/fzZu3Ji77rorZ511VkaNGpXOzs6MHTs2c+fOzZgxY4qMCQAAAAAAAAAVVSoVnYB6VOhMIZdffnmmTp2aNWvWZNasWTnzzDNz3nnnZd68ebn//vszderUTJ8+vciIAAAAAAAAAAA1qdCikCeffDJnn312kuT000/Phg0bctppp3W1T5o0KU888URB6QAAAAAAAAAAalehRSFJUvp/c+A0NDSkb9++aWlp6Wprbm7OunXriooGAAAAAAAAAFCzCi0K2W+//bJs2bKu/QULFmTIkCFd+21tbRk0aFAR0QAAAAAAAAAAalpjkYNPnjw5HR0dXfsjR47s1j579uyMGTOm2rEAAAAAAAAAAGpeoUUhF1xwwVbbr7rqqiolAQAAAAAAAACoL4UWhQAAAAAAAAAASalUKjoCdaih6AAAAAAAAAAAAPQ8M4W8SeVy5ceoRiFYZxUeSIOKNoC6UC8/+4DXUSfvvbX/+4sV7X/Ah/9nRftPkrX/9MmKjwG8vkp/P/bdmJ5WL6dUZ2cVfjfVUCdPFgB1we/YAKg2M4UAAAAAAAAAANQhRSEAAAAAAAAAAHVIUQgAAAAAAAAAQB1SFAIAAAAAAAAAUIcUhQAAAAAAAAAA1KHGogMAAAAAAAAAwM6uVCo6AfVoh5gppLOz808eb2trq3IaAAAAAAAAAIDaV2hRyPr163P66aenX79+2WuvvXLppZemo6Ojq3316tUZOnRogQkBAAAAAAAAAGpTocvHXHLJJXn88cfzwx/+MC+88EKuuOKKPProo7nzzjvTp0+fJEm5XC4yIgAAAAAAAABATSp0ppCf/OQn+fa3v53TTjstn/zkJ7No0aKsXr0648ePT3t7e5KkZOEkAAAAAAAAAIDtVmhRyOrVq7Pvvvt27Q8cODD33XdfNmzYkJNOOikbN24sMB0AAAAAAAAAQO0qtChkyJAhWbx4cbdjzc3NmTt3bjZt2pRTTz31Dftob2/P+vXru22vzjICAAAAAAAAALCzKrQoZOzYsZk1a9Zrjvfv3z8/+9nP0rdv3zfso7W1NS0tLd22a69urURcAAAAAAAAAKiIhlLJVtBWzxqLHPyyyy7L73//+9dta25uzrx58/Loo49utY9p06ZlypQp3Y6VezX1WEYAAAAAAAAAgFpUaFHIgAEDsnLlysyaNStHHXVUhg8fnqeffjo33nhj2tvb89GPfjRjxozZah9NTU1paupeBLJ5SyVTAwAAAAAAAADs+AotCpkzZ05OPvnk9O/fPxs3bsxdd92Vs846K6NGjUpnZ2fGjh2buXPnvmFhCAAAAAAAAAAA3TUUOfjll1+eqVOnZs2aNZk1a1bOPPPMnHfeeZk3b17uv//+TJ06NdOnTy8yIgAAAAAAAABATSq0KOTJJ5/M2WefnSQ5/fTTs2HDhpx22mld7ZMmTcoTTzxRUDoAAAAAAAAAgNpVaFFIkpRKpSRJQ0ND+vbtm5aWlq625ubmrFu3rqhoAAAAAAAAAAA1q9CikP322y/Lli3r2l+wYEGGDBnStd/W1pZBgwYVEQ0AAAAAAAAAoKY1Fjn45MmT09HR0bU/cuTIbu2zZ8/OmDFjqh0LAAAAAAAAAKqqVHQA6lKhRSEXXHDBVtuvuuqqKiUBAAAAAAAAAKgvhS4fAwAAAAAAAABAZSgKAQAAAAAAAACoQ4UuH1PLSnWyoFNDvTwQACrOjwyoXz4Tbpu1//TJio8x4OgvVnyMtQ9dV/ExqsFpS09zLYRiNDR478Hr8XMJ6lc13t7lcmX7d4nadj7rADsCM4UAAAAAAAAAANQhRSEAAAAAAAAAAHXI8jEAAAAAAAAAULCS9ZmoADOFAAAAAAAAAADUIUUhAAAAAAAAAAB1SFEIAAAAAAAAAEAdUhQCAAAAAAAAAFCHCi8KKZfLWb58ebZs2ZIkefnll3P77bfnlltuyR/+8IeC0wEAAAAAAAAA1KZCi0KWLFmSoUOHZtiwYRkxYkSWL1+eo48+Oueee24mT56cESNGZNmyZUVGBAAAAAAAAABIknR0dOSSSy7J0KFDs8suu+Qv/uIv8nd/93cpl8tdtymXy7n00kszaNCg7LLLLjnhhBNeU/vwxz/+MZMmTcpuu+2W3XffPeeee25efPHFHs9baFHIxRdfnFGjRuWxxx7LX/3VX+UDH/hA9tlnn6xduzZ//OMfc9RRR+Xyyy8vMiIAAAAAAAAAVFxDyVbUtj2uvvrqzJw5MzNmzMjixYtz9dVX55prrsk3vvGNrttcc801uemmm3LzzTdn4cKF6devX8aNG5fNmzd33WbSpEl58sknM2/evNx7772ZP39+PvWpT/XU6dSlVP6v5SpVtueee2bu3Lk55JBD8tJLL6W5uTnz58/PsccemyR56KGHMnHixDz33HPb1e/mLZVICwAAUFkDjv5ixcdY+9B1FR8DAACA4lT6L3+l7fzjKZXVt7HoBPSkST98rOgIO60ffeyQbb7tX/3VX2WvvfbKP/zDP3Qd+9CHPpRddtkl/+t//a+Uy+UMHjw4X/jCF/LFL/7H7/vWrVuXvfbaK9///vdzxhlnZPHixTnwwAPz8MMP5/DDD0+SzJkzJyeddFL+/d//PYMHD+6xx1boTCEvvvhi9thjjyRJv3790q9fvwwaNKir/e1vf3uef/75rfbR3t6e9evXd9va29srmhsAAAAAAAAA2PkcffTRuf/++7N06dIkyeOPP54HH3wwJ554YpJk+fLlWblyZU444YSu+7S0tOTII4/MggULkiQLFizI7rvv3lUQkiQnnHBCGhoasnDhwh7NW2hRyODBg9PW1ta1f80112TPPffs2l+9enUGDBiw1T5aW1vT0tLSbbv26taKZQYAAAAAAAAA6sf2TEbx5S9/OWeccUaGDx+e3r1759BDD83nPve5TJo0KUmycuXKJMlee+3V7X577bVXV9vKlSu71UYkSWNjY/bYY4+u2/SUQotCTjjhhDz99NNd+5MnT05zc3PX/ty5c/POd75zq31MmzYt69at67ZNvXhaxTIDAAAAAAAAAPXj9SajaG19/cko/vEf/zE/+tGP8uMf/ziPPvpofvCDH+S6667LD37wgyqn3jaFrjJ18803b7X9Ix/5SD7+8Y9v9TZNTU1pamrqdmzzlrccDQAAAAAAAADYCUybNi1Tpkzpduy/1yG8aurUqV2zhSTJwQcfnOeeey6tra35+Mc/nr333jtJ8vzzz2fQoEFd93v++edzyCGHJEn23nvvrFq1qlu/W7ZsyR//+Meu+/eUQmcKSZLFixdn1qxZXTOGPP3005k8eXI+8YlPZPny5d2eJAAAAAAAAACAntTU1JTddtut2/anikI2btyYhobupRa9evVKZ2dnkmTo0KHZe++9c//993e1r1+/PgsXLsxRRx2VJDnqqKPywgsv5JFHHum6zQMPPJDOzs4ceeSRPfrYCp0pZM6cOTn55JPTv3//bNy4MXfddVfOOuusjBo1Kp2dnRk7dmzmzp2bMWPGFBkTAAAAAAAAACDjx4/PlVdemSFDhuSggw7Kr3/961x//fX5xCc+kSQplUr53Oc+lyuuuCLveMc7MnTo0FxyySUZPHhwTjnllCTJiBEj8v73vz/nnXdebr755rzyyiu56KKLcsYZZ2Tw4ME9mrfQopDLL788U6dOzRVXXJHbbrstZ555ZiZPnpwrr7wyyX9M0TJ9+nRFIQAAAAAAAADUtVKpVHQEtsE3vvGNXHLJJbnwwguzatWqDB48OOeff34uvfTSrtt86UtfyksvvZRPfepTeeGFF3Lsscdmzpw56du3b9dtfvSjH+Wiiy7K+973vjQ0NORDH/pQbrrpph7PWyqXy+Ue73UbtbS05JFHHsmwYcPS2dmZpqam/OpXv8qhhx6aJPnNb36TE044IStXrtyufjdvqURaAACAyhpw9BcrPsbah66r+BgAAAAUp9J/+fM36x1L30KnAKCnffR/PV50hJ3W//roqKIjVEzDG9+ksl6tdmpoaEjfvn3T0tLS1dbc3Jx169YVFQ0AAAAAAAAAoGYVWhSy3377ZdmyZV37CxYsyJAhQ7r229raMmjQoCKiAQAAAAAAAADUtEInFJo8eXI6Ojq69keOHNmtffbs2RkzZky1YwEAAAAAAAAA1LxCi0IuuOCCrbZfddVVVUoCAAAAAAAAAFBfCl0+BgAAAAAAAACAyih0phAAAAAAAAAAICmVik5APVIUAgAAsINY+9B1FR9jwBEXVXyMtQ/PqPgYAAAAvD5/VAbgv7J8DAAAAAAAAABAHVIUAgAAAAAAAABQhxSFAAAAAAAAAADUIUUhAAAAAAAAAAB1SFEIAAAAAAAAAEAdUhQCAAAAAAAAAFCHdsiikDFjxuS5554rOgYAAAAAAAAAVEWpVLIVtNWzxiIHv/vuu1/3+Pz583Pvvffm7W9/e5JkwoQJ1YwFAAAAAAAAAFDzCi0KOeWUU1IqlVIul1/T9pnPfCbJf1RDdXR0VDsaAAAAAAAAAEBNK3T5mHHjxuXEE0/MypUr09nZ2bX16tUrv/nNb9LZ2akgBAAAAAAAAADgTSi0KGT27Nl53/vel8MPPzz33nvvm+qjvb0969ev77a1t7f3cFIAAAAAAAAAgNpSaFFIknz+85/P3XffnYsvvjjnn39+Nm7cuF33b21tTUtLS7ft2qtbK5QWAAAAAAAAAKA2FF4UkiSHHHJIFi1alFKplEMOOSTlcnmb7ztt2rSsW7eu2zb14mkVTAsAAAAAAAAAsONrLDrAq3bZZZfcfPPNufvuu/Pzn/88AwcO3Kb7NTU1pampqduxzVsqkRAAAAAAAAAAKqOhVHQC6lHhM4UsXrw4s2bNytNPP50k+R//439k06ZN+fKXv5wHHnig4HQAAAAAAAAAALWp0JlC5syZk5NPPjn9+/fPxo0bc9ddd+Wss87KqFGj0tnZmbFjx2bu3LkZM2ZMkTEBAAAAAAAAAGpOoTOFXH755Zk6dWrWrFmTWbNm5cwzz8x5552XefPm5f7778/UqVMzffr0IiMCAAAAAAAAANSkQotCnnzyyZx99tlJktNPPz0bNmzIaaed1tU+adKkPPHEEwWlAwAAAAAAAACoXYUWhSRJqVRKkjQ0NKRv375paWnpamtubs66deuKigYAAAAAAAAAULMKLQrZb7/9smzZsq79BQsWZMiQIV37bW1tGTRoUBHRAAAAAAAAAABqWmORg0+ePDkdHR1d+yNHjuzWPnv27IwZM6basQAAAAAAAAAAal6hRSEXXHDBVtuvuuqqKiUBAAAAAAAAgOKUSqWiI1CHCl0+BgAAAAAAAACAylAUAgAAAAAAAABQhwpdPgYA6BnlcuXHMGsdQH1Y+/CMio8x4LgvV3yMtf93esXHYOdS6c9TPksBAMDOpxq/twV4I2YKAQAAAAAAAACoQ4pCAAAAAAAAAADqkKIQAAAAAAAAAIA61Fh0AAAAAAAAAADY2ZWKDkBdMlMIAAAAAAAAAEAdUhQCAAAAAAAAAFCHdrjlY5YvX57f/va3GTRoUEaOHFl0HAAAAAAAAACAmlToTCEXXnhhXnzxxSTJpk2bctppp2XYsGEZN25cRo0alTFjxnS1AwAAAAAAAACw7QotCvn2t7+djRs3Jkn+7u/+LgsXLsx9992XF198MfPnz09bW1uuvPLKIiMCAAAAAAAAANSkQotCyuVy17/vueeeXHPNNXnve9+bXXfdNcccc0yuv/763HnnnQUmBAAAAAAAAACoTY1FByiVSkmSlStX5i//8i+7tY0aNSr/9m//VkQsAAAAAAAAAKiahv/3t3PoSYUXhVxyySXZdddd09DQkN///vc56KCDutrWrFmTfv36bfX+7e3taW9v73as3KspTU1NFckLAAAAAAAAAFALCl0+5vjjj8+SJUvy61//OgceeGCee+65bu0//elPuxWJvJ7W1ta0tLR02669urWSsQEAAAAAAAAAdnilcrlcLjrEn/LMM8+kT58+2Wefff7kbcwUAgBJNX6am7UOgG014LgvV3yMtf93esXHYOdS6c9TPksBAMDOpxq/t92ld+XHoHo+eftvio6w0/qfHxlZdISKKXz5mMWLF+eXv/xljj766BxwwAF5+umnc+ONN6a9vT0f/ehHM2bMmK3ev6nptQUgm7dUMjEAAAAAAAAAwI6v0KKQOXPm5OSTT07//v2zcePG3HXXXTnrrLMyatSodHZ2ZuzYsZk7d+4bFoYAAAAAAAAAANBdQ5GDX3755Zk6dWrWrFmTWbNm5cwzz8x5552XefPm5f7778/UqVMzfbopgQEAAAAAAAAAtlehRSFPPvlkzj777CTJ6aefng0bNuS0007rap80aVKeeOKJgtIBAAAAAAAAANSuQpePSZJSqZQkaWhoSN++fdPS0tLV1tzcnHXr1hUVDQAAAAAAAACq4v/96Rx6VKEzhey3335ZtmxZ1/6CBQsyZMiQrv22trYMGjSoiGgAAAAAAAAAADWt0JlCJk+enI6Ojq79kSNHdmufPXt2xowZU+1YAAAAAAAAAAA1r9CikAsuuGCr7VdddVWVkgAAAAAAAAAA1JdCl48BAAAAAAAAAKAyFIUAAAAAAAAAANShQpePqWWbX+mo+Bh9e/eq+Bj1oFyu/BilUuXHqJfHwbapxuv98pbOio/R1Ftt4baol/d3NX729elV4XOqCs9TQxVejHo5p9hxdHRW/qTq1VD5k+qVCv/s69Wr8o+hVIULVTXe33+cP73iYzy/rr3iY1T6vbF3S1NF+0+SP770csXH+LP+lX8c1ThvK/352WfnbeezzrbZ9HJ9/G6qGt9d27dU/rnabZfeFR+DHUc1rlNbOiv73uhd6e/f7HS2dNTH98pqfEborMZFpMJDNFThtaiGavw+pLMKY8R3DeANKAoBAAAAAAAAgIKV6qGCnR2O0jEAAAAAAAAAgDqkKAQAAAAAAAAAoA4pCgEAAAAAAAAAqEOKQgAAAAAAAAAA6pCiEAAAAAAAAACAOqQoBAAAAAAAAACgDjUWOXh7e3saGhrSu3fvJMnvfve7fO9730tbW1v23XffnHvuuRk6dGiREQEAAAAAAAAAalKhM4WMGzcu//Iv/5Ik+cUvfpGDDjoo9957b1555ZX89Kc/zciRI7NgwYIiIwIAAAAAAABAxZVKtqK2elZoUcivf/3rjBo1Kknyla98JRdeeGEef/zx3HbbbXn00UczZcqUTJ06tciIAAAAAAAAAAA1qdCikI6OjnR0dCRJnn766Xz84x/v1n722Wfn8ccfLyIaAAAAAAAAAEBNK7Qo5Mgjj8w999yTJPmLv/iL1xSAPPbYY9ljjz222kd7e3vWr1/fbWtvb69YZgAAAAAAAACAWtBY5OBXXHFFTjzxxLz00kuZOHFivvCFL2TZsmUZMWJElixZkptuuinTpk3bah+tra257LLLuh37yiVfzd9e+rUKJgcAAAAAAAAA2LGVyuVyucgACxYsyJQpU7Jw4cJuxwcPHpypU6fmr//6r7d6//b29tfMDFLu1ZSmpqYez/pfbX6lo6L9J0nf3r0qPkY9qMYZXCpVfox6eRxsm2q83i9v6az4GE29C51wqmbUy/u7Gj/7+vSq8DlVheepoQovRr2cU+w4Ojorf1L1aqj8SfVKhX/29epV+cdQqsKFql4+265aX/kZIiv93ti7pbLfW5Pkjy+9XPEx/qx/5R9HNc7b9lcqew3x2Xnb+ayzbTa9XB+/m6rGd9f2LZV/rnbbpXfFx2DHUY3r1JbOyr43elf6+zc7nS0d9fG9shqfETqrcRGp8BANVXgtqqEavw/prMIYzX1d0+vJ+f/8ZNERdlrfPu2goiNUTKEzhSTJUUcdlQULFmT16tV55pln0tnZmUGDBmW//fbbpvs3Nb22AGTzlgoEBQAAAAAAAACoIYUXhSxevDi//OUvc/TRR+fII4/M008/nauvvjrt7e356Ec/mjFjxhQdEQAAAAAAAAAqqhozUbPzKbQoZM6cOTn55JPTv3//bNy4MXfddVfOOuusjBo1Kp2dnRk7dmzmzp2rMAQAAAAAAAAAYDsVusjU5ZdfnqlTp2bNmjWZNWtWzjzzzJx33nmZN29e7r///kydOjXTp08vMiIAAAAAAAAAQE3applC7r777m3ucMKECdt82yeffDK33HJLkuT000/Pxz72sZx22mld7ZMmTcqsWbO2uT8AAAAAAAAAAP7DNhWFnHLKKdvUWalUSkdHx3YFKP2/dZEaGhrSt2/ftLS0dLU1Nzdn3bp129UfAAAAAAAAAADbuHxMZ2fnNm3bWxCy3377ZdmyZV37CxYsyJAhQ7r229raMmjQoO3qEwAAAAAAAACAbZwppFImT57crZBk5MiR3dpnz56dMWPGVDsWAAAAAAAAAEDNe1NFIS+99FL+z//5P2lra8vLL7/cre2zn/3sNvdzwQUXbLX9qquuejPxAAAAAAAAAAB2ettdFPLrX/86J510UjZu3JiXXnope+yxR/7whz9k1113zZ577rldRSEAAAAAAAAAQFIqFZ2AetSwvXf4/Oc/n/Hjx2ft2rXZZZdd8stf/jLPPfdcDjvssFx33XWVyAgAAAAAAAAAwHba7plCHnvssXz7299OQ0NDevXqlfb29uy///655ppr8vGPfzwf/OAHK5Fzh9O713bX01Ah9VIxVy+Pg23TWS5XfIzejU6qHUW9vL/bX+ms+BhNjb0qPkY9qJdzih1Hr4b6OKkaK/wZ3Xtv21Xjuerft/I/M/5m9pKK9n/9hAMr2n+S7NLHz9Zt1aex9r/nV+FrRlXe366326ahCk9UNV6Lxl6VH2RLp5NqW9TLNaQaqvE4etXLk8VOo1yFi0ipTt4X1fgZnvp4qiquKtfzOvmdC1Dbtvs3Hr17905Dw3/cbc8990xbW1uSpKWlJf/2b//Ws+kAAAAAAAAAAHhTtnumkEMPPTQPP/xw3vGOd2T06NG59NJL84c//CE//OEPM3LkyEpkBAAAAAAAAABgO233TCFXXXVVBg0alCS58sorM2DAgEyePDmrV6/Od77znR4PCAAAAAAAAADA9tvumUIOP/zwrn/vueeemTNnTo8GAgAAAAAAAADgrdvuohAAAAAAAAAAoGeVSqWiI1CHtrsoZOjQoVs9GZ955pm3FAgAAAAAAAAAgLduu4tCPve5z3Xbf+WVV/LrX/86c+bMydSpU7errzvuuCMnnnhidt111+2NAQAAAAAAAADAVmx3Uchf//Vfv+7xb37zm1m0aNF29fXhD384zc3N+chHPpJzzz03Rx555PbGAQAAAAAAAADgdTT0VEcnnnhi7rjjju2+3xe/+MUsWrQoRx11VEaOHJkbbrgha9as6alYAAAAAAAAAAA7pR4rCvnnf/7n7LHHHtt9v/PPPz+PPvpoHn744Rx//PG57LLL8ud//uc5/fTTM2/evJ6KBwAAAAAAAACwU9nu5WMOPfTQlEqlrv1yuZyVK1dm9erV+da3vvWmgxx22GE57LDDcv311+ef/umf8r3vfS/vf//7M2TIkCxfvvxN9wsAAAAAAAAAsDPa7qKQk08+uVtRSENDQ972trflPe95T4YPH75dff3Xfl7Vt2/ffOxjH8vHPvax/Pa3v82sWbO22kd7e3va29u7HSv3akpTU9N2ZQEAAAAAAAAAqCfbXRTyta99rccGL5fLW20fNmxYrrzyyq3eprW1NZdddlm3Y1+55Kv520u/9lbjAQAAAAAAAEBVNBQdgLq03UUhvXr1yooVK7Lnnnt2O75mzZrsueee6ejo2Oa+li9fnre97W3bG6GbadOmZcqUKd2OlXuZJQQAAAAAAAAA2Lltd1HIn5rdo729PX369Nmuvvbdd98sXrw4v/zlL3PUUUdl+PDhefrpp3PjjTemvb09H/3oRzNmzJit9tHU9NqlYjZv2a4YAAAAAAAAAAB1Z5uLQm666aYkSalUyv/8n/8z/fv372rr6OjI/PnzM3z48O0afM6cOTn55JPTv3//bNy4MXfddVfOOuusjBo1Kp2dnRk7dmzmzp37hoUhAAAAAAAAAAB0t81FIV//+teT/MdMITfffHN69erV1danT5/st99+ufnmm7dr8MsvvzxTp07NFVdckdtuuy1nnnlmJk+enCuvvDLJfywNM336dEUhAAAAAAAAAADbaZuLQpYvX54kee9735s777wzAwYMeMuDP/nkk7nllluSJKeffno+9rGP5bTTTutqnzRpUmbNmvWWxwEAAAAAAAAA2Nlsc1HIq37+85/3aIBSqZQkaWhoSN++fdPS0tLV1tzcnHXr1vXoeAAAAAAAAAAAO4OG7b3Dhz70oVx99dWvOX7NNdfkwx/+8Hb1td9++2XZsmVd+wsWLMiQIUO69tva2jJo0KDtjQgAAAAAAAAANaVUKtkK2urZdheFzJ8/PyeddNJrjp944omZP3/+dvU1efLkdHR0dO2PHDkyjY3/OXnJ7NmzM2bMmO2NCAAAAAAAAACw09vu5WNefPHF9OnT5zXHe/funfXr129XXxdccMFW26+66qrt6g8AAAAAAAAAgP+w3TOFHHzwwbn99ttfc/y2227LgQce2COhAAAAAAAAAAB4a7Z7ppBLLrkkH/zgB/O73/2ua2mX+++/Pz/+8Y/zz//8zz0eEAAAAAAAAACA7bfdRSHjx4/PT37yk1x11VX553/+5+yyyy4ZNWpUHnjggeyxxx6VyLhDaiiVKj5GuVzxIVKFhwG8jl4N9XENYefSsmvvio+x6eWOiva/S59eFe0fKJbPtjuXfk3b/XV2u91w8kEV7X/ohZX/jxXLv3Vaxcfw3ttxeC12Ln0at3sC4J3WLr19D6D2dFT4FzsN8UODntW7Cj+X/M1k23VW+hpSJ09UNR5Hpa/nANviTf0W7QMf+EA+8IEPJEnWr1+fW2+9NV/84hfzyCOPpKOjsn/MAQAAAAAAAADgjb3p/1o1f/78/MM//EPuuOOODB48OB/84AfzzW9+syezAQAAAAAAAMBOoQoTzbMT2q6ikJUrV+b73/9+/uEf/iHr16/P6aefnvb29vzkJz/JgQceWKmMAAAAAAAAAABsp21e5G38+PE54IAD8sQTT+SGG27I73//+3zjG9+oZDYAAAAAAAAAAN6kbZ4pZPbs2fnsZz+byZMn5x3veEclMwEAAAAAAAAA8BZt80whDz74YDZs2JDDDjssRx55ZGbMmJE//OEPlcwGAAAAAAAAAMCbtM1FIe9+97vz3e9+NytWrMj555+f2267LYMHD05nZ2fmzZuXDRs2VDInAAAAAAAAAADbYZuLQl7Vr1+/fOITn8iDDz6Yf/3Xf80XvvCFTJ8+PXvuuWcmTJiw3QEef/zxfO9738szzzyTJHnyySdz4YUX5oILLsjPfvaz7e4PAAAAAAAAAIA3URTyXx1wwAG55ppr8u///u+59dZbt/v+d955Zw477LB86UtfyqhRo3Lffffl2GOPzbJly/Lss8/mAx/4QH784x+/lYgAAAAAAAAAADult1QU8qpevXrllFNOyd13371d97vyyitz2WWX5Q9/+EO++93v5sMf/nCmTJmSefPmZc6cObn66qtz7bXX9kREAAAAAAAAANhhNZRsRW31rEeKQt6sJUuWZNKkSUmSj3zkI3nppZdyyimndLWfeuqp+e1vf1tQOgAAAAAAAACA2tVY5ODNzc1Zs2ZN9ttvv7zwwgvZsmVL1qxZ09W+Zs2a9O/ff6t9tLe3p729vduxcq+mNDU1VSQzAAAAAAAAAEAtKHSmkBNOOCGf/vSn86Mf/Sgf//jHM3bs2EybNi1PP/10lixZkqlTp+bYY4/dah+tra1paWnptl17dWuVHgEAAAAAAAAAwI6p0KKQ6667LrvttlsuuOCCvPzyy7n99ttz+OGH58ADD8yIESPy+9//PtOnT99qH9OmTcu6deu6bVMvnlalRwAAAAAAAAAAsGMqdPmYvfbaK3Pnzu127Bvf+EY+//nPZ+PGjRk+fHgaG7cesanptUvFbN7S41EBAAAAAAAAAGpKoTOFJMnixYsza9asLFmyJEny9NNP59prr83111+f+fPnF5wOAAAAAAAAAKA2FTpTyJw5c3LyySenf//+2bhxY+66666cddZZGTVqVDo7OzN27NjMnTs3Y8aMKTImAAAAAAAAAFRUqVQqOgJ1qNCZQi6//PJMnTo1a9asyaxZs3LmmWfmvPPOy7x583L//fdn6tSpmT59epERAQAAAAAAAABqUqFFIU8++WTOPvvsJMnpp5+eDRs25LTTTutqnzRpUp544omC0gEAAAAAAAAA1K5Ci0KS/5wCp6GhIX379k1LS0tXW3Nzc9atW1dUNAAAAAAAAACAmlVoUch+++2XZcuWde0vWLAgQ4YM6dpva2vLoEGDiogGAAAAAAAAAFDTGoscfPLkyeno6OjaHzlyZLf22bNnZ8yYMdWOBQAAAAAAAABQ8wotCrngggu22n7VVVdVKQkAAAAAAAAAQH0pdPkYAAAAAAAAAAAqo9CZQgAAAAAAAACApKFUdALqkaKQN6l9S0fFx+jbu1fFx2DHUS5XfoySHyQ7jGq83uVUfpBSnFTbol7e369s6az4GL0q/Im3Xl4L6GneG9SiDZu3VHyMcoXfHM9860MV7T9Jpv306YqPMf0Dwys+RjVs6ajsZ53GXvUxWavr+Y5jS2flP5/3rsJ529lZ+Q8iW6owxi59av/3eN7fO5ZeXpCdSqW/k1XjdOqswhfLBu+Lbeb3ttumGuet0xbYEdTHbyQAAAAAAAAAAOhGUQgAAAAAAAAAQB1SFAIAAAAAAAAAUIcUhQAAAAAAAAAA1CFFIQAAAAAAAAAAdaix6AAAAAAAAAAAsLMrlYpOQD3aIYpCHnjggTz44INZsWJFGhoasv/++2fChAl5xzveUXQ0AAAAAAAAAICaVGhRyKpVqzJ+/PgsWrQoDQ0N6ezszKGHHpo777wzF198caZMmZJrrrmmyIgAAAAAAAAAADWpocjBP/vZz2bw4MFZu3ZtXnzxxVx44YU56KCDsmLFisydOzff+973cuONNxYZEQAAAAAAAACgJhVaFDJ79uxcccUV2W233dLU1JTp06fn1ltvzfr16zNmzJjccMMNmTlzZpERAQAAAAAAAABqUqHLxzQ1NaVUKnXtNzQ0pKOjI1u2bEmSHH300Xn22We32kd7e3va29u7HSv3akpTU1OP5wUAAAAAAAAAqBWFzhRy7LHH5tJLL81LL72UV155JX/zN3+T/fffP3vssUeSZPXq1RkwYMBW+2htbU1LS0u37dqrW6sRHwAAAAAAAABgh1XoTCHXXXddxo4dm9133z2lUin9+vXLP/3TP3W1L168OGefffZW+5g2bVqmTJnS7Vi5l1lCAAAAAAAAAICdW6FFIfvvv3+eeOKJ/OIXv0h7e3ve/e53Z+DAgV3tb1QQkvzHEjT/famYzVt6OikAAAAAAAAAVE5DqVR0BOpQocvHJMlzzz2Xf//3f8+wYcMycODAPP3005k8eXI+8YlP5IEHHig6HgAAAAAAAABATSp0ppA5c+bk5JNPTv/+/bNx48bcddddOeusszJq1Kh0dnZm7NixmTt3bsaMGVNkTAAAAAAAAACAmlPoTCGXX355pk6dmjVr1mTWrFk588wzc95552XevHm5//77M3Xq1EyfPr3IiAAAAAAAAAAANanQopAnn3wyZ599dpLk9NNPz4YNG3Laaad1tU+aNClPPPFEQekAAAAAAAAAAGpXoUUhSVIqlZIkDQ0N6du3b1paWrrampubs27duqKiAQAAAAAAAADUrEKLQvbbb78sW7asa3/BggUZMmRI135bW1sGDRpURDQAAAAAAAAAgJrWWOTgkydPTkdHR9f+yJEju7XPnj07Y8aMqXYsAAAAAAAAAKiqwpf5oC4VWhRywQUXbLX9qquuqlISAAAAAAAAAID6otgIAAAAAAAAAKAOKQoBAAAAAAAAAKhDhS4fU8v69u5VdATqTKlUdAKqqRqvdylOqh1Fvby/ezeqJYV6VS/XKXYuzX19nd0WrScNr/gYA47864qPsXbhjRUfw2cdak3vXvVxzlbjvde74iNAz2to8CF9Z1IP38ka6uFB1BEvx7Zx3gI7i/r49ggAAAAAAAAAQDeKQgAAAAAAAAAA6pD5dgEAAAAAAACgYFY1ohLMFAIAAAAAAAAAUIcUhQAAAAAAAAAA1KHCl4/51a9+lQULFmTlypVJkr333jtHHXVU3vWudxWcDAAAAAAAAACgdhVWFLJq1ap86EMfyi9+8YsMGTIke+21V5Lk+eefz+c///kcc8wxueOOO7LnnnsWFREAAAAAAAAAoGYVtnzMhRdemI6OjixevDjPPvtsFi5cmIULF+bZZ5/N4sWL09nZmU9/+tNFxQMAAAAAAAAAqGmFzRTys5/9LPPnz88BBxzwmrYDDjggN910U97znvdUPxgAAAAAAAAAQB0obKaQpqamrF+//k+2b9iwIU1NTVVMBAAAAAAAAABQPwqbKeQjH/lIPv7xj+frX/963ve+92W33XZLkqxfvz73339/pkyZkokTJxYVDwAAAAAAAACqpqFUKjoCdaiwopDrr78+nZ2dOeOMM7Jly5b06dMnSdLe3p7evXvn3HPPzXXXXfeG/bS3t6e9vb3bsXKvJrOMAAAAAAAAAAA7tcKKQpqamjJz5sxcffXVWbRoUZ5//vkkyV577ZXDDz+8a+aQN9La2prLLrus27GvXPLV/O2lX+vpyAAAAAAAAAAANaOwopBX7bbbbhkzZkzXfp8+ffL4449vc1HItGnTMmXKlG7Hyr3MEgIAAAAAAAAA7NwKKwr574Ucr+ro6Mj06dPzZ3/2Z0n+Y5mZrWlqeu1SMZu39ExGAAAAAAAAAIBaVVhRyA033JBRo0Zl991373a8XC5n8eLF6devX0qlUjHhAAAAAAAAAABqXGFFIVdddVW+853v5O///u+7LR/Tu3fvfP/738+BBx5YVDQAAAAAAAAAgJpXWFHIl7/85bzvfe/LRz/60YwfPz6tra3p3bt3UXEAAAAAAAAAoDAW0qASGooc/IgjjsgjjzyS1atX5/DDD89vfvMbS8YAAAAAAAAAAPSAwmYKeVX//v3zgx/8ILfddltOOOGEdHR0FB0JAAAAAAAAAKDmFV4U8qozzjgjxx57bB555JHsu+++RccBAAAAAAAAAKhpO0xRSJLss88+2WeffYqOAQAAAAAAAABQ8xqKDgAAAAAAAAAAQM9TFAIAAAAAAAAAUId2qOVjAAAAgJ5TKlV+jLULb6z4GAOOuKjiY6x9eEbFxwAAAACoNkUhAAAAAAAAAFCwhir85w52PpaPAQAAAAAAAACoQ4pCAAAAAAAAAADqkKIQAAAAAAAAAIA6pCgEAAAAAAAAAKAOKQoBAAAAAAAAAKhDO2xRyNq1a3PLLbcUHQMAAAAAAAAAoCY1Fh3gT2lra8s555yTs846q+goAAAAAAAAAFBRDaVS0RGoQ4UVhaxfv36r7Rs2bKhSEgAAAAAAAACA+lNYUcjuu++e0lYqncrl8lbbAQAAAAAAAAD40worCmlubs5XvvKVHHnkka/bvmzZspx//vlVTgUAAAAAAAAAUB8KKwp55zvfmSQZPXr067bvvvvuKZfLb9hPe3t72tvbux0r92pKU1PTWw8JAAAAAAAAAFCjGooa+Mwzz0zfvn3/ZPvee++dr371q2/YT2tra1paWrpt117d2pNRAQAAAAAAAABqTqm8LdNxVFG5XE6pVNrm25spBAAAAOrbgCMuqvgYax+eUfExAAAAelrfwtaFoBIun/fboiPstC79/4YVHaFidrjLRFNTUx5//PGMGDFim2//3wtANm+pRDIAAAAAAAAAgNpRWFHIlClTXvd4R0dHpk+fnj/7sz9Lklx//fXVjAUAAAAAAAAAVbcdC2rANiusKOSGG27IqFGjsvvuu3c7Xi6Xs3jx4vTr12+7lpEBAAAAAAAAAOA/FVYUctVVV+U73/lO/v7v/z5jxozpOt67d+98//vfz4EHHlhUNAAAAAAAAACAmtdQ1MBf/vKXc/vtt2fy5Mn54he/mFdeeaWoKAAAAAAAAAAAdaewopAkOeKII/LII49k9erVOfzww/Ob3/zGkjEAAAAAAAAAAD2gsOVjXtW/f//84Ac/yG233ZYTTjghHR0dRUcCAAAAAAAAAKh5hReFvOqMM87Isccem0ceeST77rtv0XEAAAAAAAAAAGraDlMUkiT77LNP9tlnn6JjAAAAAAAAAEBVNZSKTkA9aig6AAAAAAAAAAAAPU9RCAAAAAAAAABAHdqhlo+pJVs6yhUfo7FX5ecHKlf+YVRcuQoPosFcTTuVarwvSlU4perlcVSa6/m26+is/CDtWzoq2n9DFU7aXfr0qvgY9aIa5205lR2klMqfU9W41m5+pbLvvSRpaqz8e6PSr3c1ztlqXKeqcU690tFZ8TE6Kz9EejdW9smqxjlVjdeib+/Kv7/XPjyj4mMs/v9tqGj/BwzuX9H+k+p8Xuvdq/L/v6hevstU+nFU+udeUp3POluqcJ2qht6Ntf9/7+rl+3E1dFbhQrX55cq+N3ZtqsLn8zq5nrPjqMZ7rxrfyarxOCo9RK86+ZtJNX72banCl9e+VfidC1Dbav/bCgAAAAAAAAAAr6EoBAAAAAAAAACgDikKAQAAAAAAAACoQ4pCAAAAAAAAAADqUGPRAQAAAAAAAABgZ1dKqegI1KHCZwrp7Oz8k8fb2tqqnAYAAAAAAAAAoD4UVhSyfv36nH766enXr1/22muvXHrppeno6OhqX716dYYOHVpUPAAAAAAAAACAmlbY8jGXXHJJHn/88fzwhz/MCy+8kCuuuCKPPvpo7rzzzvTp0ydJUi6Xi4oHAAAAAAAAAFDTCpsp5Cc/+Um+/e1v57TTTssnP/nJLFq0KKtXr8748ePT3t6eJCmVrJkEAAAAAAAAAPBmFFYUsnr16uy7775d+wMHDsx9992XDRs25KSTTsrGjRuLigYAAAAAAAAAUPMKKwoZMmRIFi9e3O1Yc3Nz5s6dm02bNuXUU0/dpn7a29uzfv36bturM40AAAAAAAAAAOysCisKGTt2bGbNmvWa4/3798/Pfvaz9O3bd5v6aW1tTUtLS7ft2qtbezouAAAAAAAAAFRMQ8lW1FbPGosa+LLLLsvvf//71xwvl8tpbm7OvHnz8uijj75hP9OmTcuUKVO699GrqcdyAgAAAAAAAADUosKKQgYMGJABAwa85nhTU1Mef/zxjBgxIqNHj37DfpqamtLU1L0IZPOWHosJAAAAAAAAAFCTCisK+e+ze7yqo6Mj06dPz5/92Z8lSa6//vpqxgIAAAAAAAAAqAuFFYXccMMNGTVqVHbfffdux8vlchYvXpx+/fqlVKrzxXsAAAAAAAAAACqksKKQq666Kt/5znfy93//9xkzZkzX8d69e+f73/9+DjzwwKKiAQAAAAAAAADUvIaiBv7yl7+c22+/PZMnT84Xv/jFvPLKK0VFAQAAAAAAAACoO4UVhSTJEUcckUceeSSrV6/O4Ycfnt/85jeWjAEAAAAAAABgp9NQshW11bPClo95Vf/+/fODH/wgt912W0444YR0dHQUHQkAAAAAAAAAoOYVXhTyqjPOOCPHHntsHnnkkey7775FxwEAAAAAAAAAqGk7TFFIkuyzzz7ZZ599io4BAAAAAAAAAFDzGooOAAAAAAAAAABAz1MUAgAAAAAAAABQh3ao5WNqSa+GUtERekSpDh5GqR4eBDuUejml6uVxVFpjr/p4oqrxelfjuWrs5aPJzqQa520p9fEer7S+vXsVHaFHVPz1djpts969qvD/D+rhtK3COdWroR6eqOoY8efNFe1/wFFTKtp/kqxdcH3Fx6iGevkuU+nHUS+fc3o3+j9rO4p6+X5cDQ1VuFDt2lT7P8Pr5XrOjqMa771qqMrjqI+nquKq8/vO2r+eA7XPty4AAAAAAAAAgDrkv+MCAAAAAAAAQMGskEAlmCkEAAAAAAAAAKAOKQoBAAAAAAAAAKhDikIAAAAAAAAAAOqQohAAAAAAAAAAgDpUaFFIuVzO8v8/e3cfZ3VZ4I3/c4ahQRgZHkx5MsJVN0YSS9AI1E24dc1qa8sW1+3Bus01rVbSlKVU8mF8SLNuV81aH2q3RbfVNnyVqbXlDwVRNFtLWEUd2RRFRWfFGGE4vz+65W7SFGvOXJzD+/16fV8vzvc6870+83TOnJkP1/XQQ9m4cWOS5IUXXsjVV1+db37zm3nyySdLRgMAAAAAAAAAqGvNpSZesWJFDj744KxatSq77LJLbrzxxhx22GFZvnx5qtVqBg8enNtuuy277bZbqYgAAAAAAAAAAHWr2EohJ510UiZPnpyf/exnede73pVDDz0048aNy9q1a/P0009n2rRp+eIXv1gqHgAAAAAAAAD0m6aKo9TRyIqVQm677bbMnz8/b37zm3PGGWdk+fLlOeGEEzJw4MC0tLTk5JNPzi233FIqHgAAAAAAAABAXStWCnnuuecyYsSIJMmQIUMyZMiQjB49evP4zjvvnMcff7xUPAAAAAAAAACAutZcauIxY8bkkUceyRve8IYkybnnnpsdd9xx8/iaNWsyfPjwV71Od3d3uru7e52rDmhJS0tL3wYGAAAAAAAAAKgjxVYKmTVrVpYvX7759jHHHJPtt99+8+0bb7wxb33rW1/1Oh0dHWlra+t1nHdOR00yAwAAAAAAAADUi0q1Wq2WDvHbqtVqKpVKHnrooQwaNKjXljIvp9RKIf3xUatUaj8HAAAAUHvDp82p+RxrF19Q8zkAAICty6Bi+0JQC+f/9MHSEbZZnz1gl9IRamare5hoaWnJPffck4kTJ27x/X+3ALJ+Yy2SAQAAAAAAAADUj2KlkDlzXv5/yPT09OTss8/OyJEjkyQXXOB/uQAAAAAAAAAAvFbFSiEXXnhhJk+enGHDhvU6X61Wc99992XIkCGp2D8FAAAAAAAAgG2AP49TC8VKIWeddVYuu+yynH/++TnwwAM3nx84cGCuvPLKtLe3l4oGAAAAAAAAAFD3mkpNfPLJJ+fqq6/OMccckxNOOCEbNmwoFQUAAAAAAAAAYIv86le/yt/8zd9k5MiR2W677fLmN785d9555+bxarWaU045JaNHj852222XWbNm5f777+91jaeffjpHHHFEhg4dmmHDhuXjH/94nnvuuT7PWqwUkiRTp07NsmXLsmbNmkyZMiX33nuvLWMAAAAAAAAAgK3S2rVrM3369AwcODA/+MEP8stf/jLnn39+hg8fvvk+5557br761a/m0ksvze23354hQ4bk4IMPzvr16zff54gjjsgvfvGL3HTTTbn++utzyy235BOf+ESf5y22fcyLWltbc9VVV2XBggWZNWtWenp6SkcCAAAAAAAAAHiJc845JzvvvHOuuOKKzecmTJiw+d/VajUXXnhhPv/5z+cv/uIvkiTf/OY3s9NOO+W73/1uZs+enfvuuy833HBD7rjjjkyZMiVJ8n/+z//JO9/5znzpS1/KmDFj+ixv0ZVCftvs2bNz55135tprr8348eNLxwEAAAAAAAAAtgHd3d3p6urqdXR3d7/sfb/3ve9lypQpOeyww7LjjjvmLW95S77+9a9vHn/ooYeyevXqzJo1a/O5tra27Lvvvlm8eHGSZPHixRk2bNjmQkiSzJo1K01NTbn99tv79H3bakohSTJu3Lj8xV/8RYYMGVI6CgAAAAAAAACwDejo6EhbW1uvo6Oj42Xv++CDD+aSSy7Jbrvtlh/+8Ic55phj8ulPfzpXXXVVkmT16tVJkp122qnX2+20006bx1avXp0dd9yx13hzc3NGjBix+T59pfj2MQAAAAAAAACwrWuqVEpH2GbNnTs3c+bM6XWupaXlZe+7adOmTJkyJWeddVaS5C1veUvuvffeXHrppfnIRz5S86yv1Va1UggAAAAAAAAAQH9qaWnJ0KFDex2/rxQyevTotLe39zo3ceLEPPLII0mSUaNGJUkef/zxXvd5/PHHN4+NGjUqTzzxRK/xjRs35umnn958n75ipZA/kJIWANSf9Rt6aj7HoIEDaj4HAP2jWq3t9fvjdWWt34ekcV4f1/pjtXbxBbWdIMnw915U8znWfve4ms8Bfc1jIQBQyqb++EEkfhCB/jZ9+vSsWLGi17n/+q//yvjx45MkEyZMyKhRo/KjH/0oe+21V5Kkq6srt99+e4455pgkybRp0/LMM89k2bJl2XvvvZMkP/7xj7Np06bsu+++fZpXKQQAAAAAAAAAYAscf/zxefvb356zzjorH/zgB7N06dJcdtllueyyy5IklUolf/d3f5czzjgju+22WyZMmJAvfOELGTNmTN773vcm+c3KIn/+53+eo446Kpdeemk2bNiQ4447LrNnz86YMWP6NK9SCAAAAAAAAADAFpg6dWquu+66zJ07N1/84hczYcKEXHjhhTniiCM23+dzn/tc1q1bl0984hN55plnMmPGjNxwww0ZNGjQ5vv88z//c4477rjMnDkzTU1Nef/735+vfvWrfZ63Uq32y7pF/Wr9xtIJAICtke1jAHgtbB+zZRply4RG+HzbPgZensdCAKCU/tg+ZvBAP4g0kgv/v4dKR9hm/d1+E0pHqJmm0gEAAAAAAAAAAOh7SiEAAAAAAAAAAA1oqyuFHHjggens7CwdAwAAAAAAAAD6TVPFUepoZM2lJv7e9773sudvueWWXH/99dl5552TJO95z3v6MxYAAAAAAAAAQEMoVgp573vfm0qlkmq1+pKxT33qU0mSSqWSnp6e/o4GAAAAAAAAAFD3im0fc/DBB+eQQw7J6tWrs2nTps3HgAEDcu+992bTpk0KIQAAAAAAAAAAf6BipZAf/OAHmTlzZqZMmZLrr7++VAwAAAAAAAAAgIZUbPuYJDn++OPzjne8I0cccUQWLlyYL3/5y6/5Gt3d3enu7u51rjqgJS0tLX0VEwAAAAAAAACg7hRbKeRFe+21V+68885UKpXstddeqVarr+ntOzo60tbW1us475yOGqUFAAAAAAAAAKgPRVcKedF2222XSy+9NN/73vfyox/9KDvssMMWv+3cuXMzZ86cXueqA6wSAgAAAAAAAED9qFRKJ6ARFV8p5Le95z3vySWXXJKnnnpqi9+mpaUlQ4cO7XXYOgYAAAAAAAAA2NYVWynkd1f3eFFPT0/OPvvsjBw5MklywQUX9GcsAAAAAAAAAICGUKwUcuGFF2by5MkZNmxYr/PVajX33XdfhgwZkor1cQAAAAAAAAAA/iDFSiFnnXVWLrvsspx//vk58MADN58fOHBgrrzyyrS3t5eKBgAAAAAAAABQ95pKTXzyySfn6quvzjHHHJMTTjghGzZsKBUFAAAAAAAAAKDhFCuFJMnUqVOzbNmyrFmzJlOmTMm9995ryxgAAAAAAAAAgD5QbPuYF7W2tuaqq67KggULMmvWrPT09JSOBAAAAAAAAABQ94qXQl40e/bszJgxI8uWLcv48eNLxwEAAAAAAACAftMUu2rQ97aaUkiSjBs3LuPGjSsdAwAAAAAAAACg7jWVDgAAAAAAAAAAQN9TCgEAAAAAAAAAaEBb1fYxAAC1NGjggNIRAKgjlQbYxrcR3of+0ggfq7XfPa7mcwyfWvs51t5xUc3nYNvSCN/fAEB9avKDCLAVsFIIAAAAAAAAAEADUgoBAAAAAAAAAGhAto8BAAAAAAAAgMLsOEQtWCkEAAAAAAAAAKABKYUAAAAAAAAAADSgrWr7mIceeigPPPBARo8enUmTJpWOAwAAAAAAAABQt4qtFPLJT34yzz33XJLk17/+dT7wgQ9k1113zcEHH5zJkyfnwAMP3DwOAAAAAAAAAMBrU6wU8rWvfS3PP/98kuT000/P7bffnptvvjnPPfdcbrnlljzyyCM588wzS8UDAAAAAAAAAKhrxUoh1Wp1878XLlyYc889N+94xzsyePDgTJ8+PRdccEGuvfbaUvEAAAAAAAAAAOpac8nJK5VKkmT16tXZc889e41Nnjw5q1atKhELAAAAAAAAAPpVU6V0AhpR0VLIF77whQwePDhNTU159NFHs8cee2wee+qppzJkyJCC6QAAAAAAAAAA6lexUsj++++fFStWJEna29vT2dnZa/z73/9+r5LI79Pd3Z3u7u5e56oDWtLS0tJ3YQEAAAAAAAAA6kyxUshPfvKTlz1frVZTqVTy13/91/noRz/6qtfp6OjI/Pnze52b94VT8/lTTvvjQwIAAAAAAAAA1Kmi28e8nJaWltxzzz2ZOHHiFt1/7ty5mTNnTq9z1QFWCQEAAAAAAAAAtm3FSiG/W+R4UU9PT84+++yMHDkySXLBBRe84nVaWl66Vcz6jX2TEQAAAAAAAACgXhUrhVx44YWZPHlyhg0b1ut8tVrNfffdlyFDhqRSqZQJBwAAAAAAAABQ54qVQs4666xcdtllOf/883PggQduPj9w4MBceeWVaW9vLxUNAAAAAAAAAKDuFSuFnHzyyZk5c2b+5m/+Ju9+97vT0dGRgQMHlooDAAAAAAAAAMU02UmDGmgqOfnUqVOzbNmyrFmzJlOmTMm9995ryxgAAAAAAAAAgD5QbKWQF7W2tuaqq67KggULMmvWrPT09JSOBAAAAAAAAABQ94qXQl40e/bszJgxI8uWLcv48eNLxwEAAAAAAAAAqGtbTSkkScaNG5dx48aVjgEAAAAAAAAAUPeaSgcAAAAAAAAAAKDvKYUAAAAAAAAAADSgrWr7GAAAAAC2XmvvuKjmcwx/2/E1n2Ptki/XfA4AAIDXqlIpnYBGZKUQAAAAAAAAAIAGpBQCAAAAAAAAANCAlEIAAAAAAAAAABqQUggAAAAAAAAAQANSCgEAAAAAAAAAaEBKIQAAAAAAAAAADai51MTd3d1pamrKwIEDkyQrV67M5ZdfnkceeSTjx4/Pxz/+8UyYMKFUPAAAAAAAAACAulZspZCDDz44//7v/54kufXWW7PHHnvk+uuvz4YNG/L9738/kyZNyuLFi0vFAwAAAAAAAIB+01SpOAodjaxYKeTuu+/O5MmTkyTz5s3LJz/5ydxzzz1ZsGBB7rrrrsyZMycnnnhiqXgAAAAAAAAAAHWtWCmkp6cnPT09SZLly5fnIx/5SK/xj370o7nnnntKRAMAAAAAAAAAqHvFSiH77rtvFi5cmCT5kz/5k5cUQH72s59lxIgRJaIBAAAAAAAAANS95lITn3HGGTnkkEOybt26HH744fnsZz+b+++/PxMnTsyKFSvy1a9+NXPnzn3V63R3d6e7u7vXueqAlrS0tNQqOgAAAAAAAADAVq9YKWTatGn5wQ9+kDlz5uT2229Pkpx55plJkjFjxuS0007LZz7zmVe9TkdHR+bPn9/r3LwvnJrPn3Jan2cGAAAAAAAAAKgXlWq1Wi0dYs2aNXnwwQezadOmjBo1KhMmTNjit7VSCAAAAEDjGP6242s+x9olX675HAAA0B8GFVsCgFr4x6WPlI6wzfr4Pm8oHaFmtoqHide//vV5/etfnyR53etel3vuuScTJ07cordtaXlpAWT9xj6PCAAAAAAAAAA1U6mUTkAjKlYKmTNnzsue7+npydlnn52RI0cmSS644IL+jAUAAAAAAAAA0BCKlUIuvPDCTJ48OcOGDet1vlqt5r777suQIUNSUYUCAAAAAAAAAPiDFCuFnHXWWbnsssty/vnn58ADD9x8fuDAgbnyyivT3t5eKhoAAAAAAAAAQN1rKjXxySefnKuvvjrHHHNMTjjhhGzYsKFUFAAAAAAAAACAhlOsFJIkU6dOzbJly7JmzZpMmTIl9957ry1jAAAAAAAAAAD6QLHtY17U2tqaq666KgsWLMisWbPS09NTOhIAAAAAAAAAQN0rXgp50ezZszNjxowsW7Ys48ePLx0HAAAAAAAAAKCubTWlkCQZN25cxo0bVzoGAAAAAAAAAPSrptIBaEi+rgAAAAAAAAAAGpBSCAAAAAAAAABAA9qqto8BALZem6rVms/RVKnUfA4AALZua5d8ueZzDH/b8TWfoz/eDwAAAHg1VgoBAAAAAAAAAGhASiEAAAAAAAAAAA1IKQQAAAAAAAAAoAE1lw4AAAAAAAAAANu6SqVSOgINyEohAAAAAAAAAAANqFgp5N/+7d/y/PPPl5oeAAAAAAAAAKChFSuFHHbYYRk9enQ+8YlP5Pbbby8VAwAAAAAAAACgIRXdPuaEE07InXfemWnTpmXSpEm58MIL89RTT5WMBAAAAAAAAADQEIqWQo4++ujcddddueOOO7L//vtn/vz5GTt2bD74wQ/mpptuKhkNAAAAAAAAAKCuFS2FvGjvvffOxRdfnMceeyxf//rXs2bNmvz5n/95JkyYUDoaAAAAAAAAAEBdai41caVSecm5QYMG5UMf+lA+9KEP5YEHHsgVV1zxqtfp7u5Od3d3r3PVAS1paWnps6wAAAAAAAAAUEsv/Qs6/PGKrRRSrVZfcXzXXXfNmWee+arX6ejoSFtbW6/jvHM6+iomAAAAAAAAAEBdKrZSyEMPPZQddtjhJeer1erLriLy+8ydOzdz5szpfY0BVgkBAAAAAAAAALZtxUoh48ePf9nzLS0tueeeezJx4sQtuk5Ly0u3ilm/8Y+OBwAAAAAAAABQ14qVQn53dY8X9fT05Oyzz87IkSOTJBdccEF/xgIAAAAAAAAAaAjFSiEXXnhhJk+enGHDhvU6X61Wc99992XIkCGvaRsZAAAAAAAAAAD+n2KlkLPOOiuXXXZZzj///Bx44IGbzw8cODBXXnll2tvbS0UDAAAAAAAAAKh7TaUmPvnkk3P11VfnmGOOyQknnJANGzaUigIAAAAAAAAA0HCKlUKSZOrUqVm2bFnWrFmTKVOm5N5777VlDAAAAAAAAADbnKZKxVHoaGTFto95UWtra6666qosWLAgs2bNSk9PT+lIAAAAAAAAAAB1r3gp5EWzZ8/OjBkzsmzZsowfP750HAAAAAAAAACAurbVlEKSZNy4cRk3blzpGAAAAAAAAAAAda+pdAAAAAAAAAAAAPqeUggAAAAAAAAAQAPaqraPAQC2Xk2VSukIAADQJ9Yu+XLN5xj+tuNrev3+eB8AAACof0ohAAAAAAAAAFCY/5pJLdg+BgAAAAAAAACgASmFAAAAAAAAAAA0IKUQAAAAAAAAAIAGpBQCAAAAAAAAANCAlEIAAAAAAAAAABpQc8nJ77nnnixbtix/9md/ll122SW/+MUv8g//8A/ZtGlT3ve+9+Xggw8uGQ8AAAAAAAAAoG4VWynk2muvzd57753Pfe5zmTx5cm6++ebMmDEj999/fx5++OEceuih+fa3v10qHgAAAAAAAABAXStWCjnzzDMzf/78PPnkk/n617+eww47LHPmzMlNN92UG264Ieecc07OO++8UvEAAAAAAAAAoN9UKo5SRyMrVgpZsWJFjjjiiCTJX/3VX2XdunV573vfu3n8fe97Xx544IFC6QAAAAAAAAAA6luxUsj222+fp556KknyzDPPZOPGjZtvJ8lTTz2V1tbWUvEAAAAAAAAAAOpac6mJZ82alWOPPTaf+tSncvXVV+eggw7K3Llzc8UVV6RSqeTEE0/MjBkzXvU63d3d6e7u7nWuOqAlLS0ttYoOAAAAAAAAALDVK7ZSyJe+9KUMHTo0f/u3f5sXXnghV199daZMmZL29va0t7fn0Ucfzdlnn/2q1+no6EhbW1uv47xzOvrhPQAAAAAAAAAA2HpVqtVqtXSI3/bggw/m+eefz5ve9KY0N7/6QiZWCgEAAABgazP8bcfX9Pprl3y5ptcHAKA+DCq2LwS18O27/rt0hG3WX791XOkINbPVPUy86U1vyj333LNFhZAkaWl5aQFk/cZaJAMAAAAAAAAAqB/FSiFz5sx52fM9PT05++yzM3LkyCTJBRdc0J+xAAAAAAAAAKDfVSqV0hFoQMVKIRdeeGEmT56cYcOG9TpfrVZz3333ZciQIb7oAQAAAAAAAAD+QMVKIWeddVYuu+yynH/++TnwwAM3nx84cGCuvPLKtLe3l4oGAAAAAAAAAFD3mkpNfPLJJ+fqq6/OMccckxNOOCEbNmwoFQUAAAAAAAAAoOEUK4UkydSpU7Ns2bKsWbMmU6ZMyb333mvLGAAAAAAAAACAPlBs+5gXtba25qqrrsqCBQsya9as9PT0lI4EAAAAAAAAAFD3ipdCXjR79uzMmDEjy5Yty/jx40vHAQAAAAAAAACoa1tNKSRJxo0bl3HjxpWOAQAAAAAAAABQ97aqUggAAAAAAAAAbIuaSgegIfm6AgAAAAAAAABoQFYK+QNVq7Wfo1Kp/RwAsKV6NtX+ya+pxk9+nlsBGsemfnheqrkGeV6q9fM31Ku1S75c0+vv9OFv1fT6SfL4Nz9U8zn643VGfxjQ5LGQvlXr3z97+gbwtz5g22GlEAAAAAAAAACABqQUAgAAAAAAAADQgJRCAAAAAAAAAAAakFIIAAAAAAAAAEADai4dAAAAAAAAAAC2dZVKpXQEGlDxUsiPf/zjLFq0KI899liampqyyy675D3veU9222230tEAAAAAAAAAAOpWsVLIE088kXe/+925884709TUlE2bNuUtb3lLrr322px00kmZM2dOzj333FLxAAAAAAAAAADqWlOpiT/96U9nzJgxWbt2bZ577rl88pOfzB577JHHHnssN954Yy6//PJ85StfKRUPAAAAAAAAAKCuVarVarXExG1tbbntttuyxx57JEnWrVuX4cOH58knn8zQoUPzT//0TznjjDOyfPny13zt9Rv7Ou1L9cdHzZZRAGxNejbV/smvqcZPfp5bARrHpn54Xqq5BnleqvXzN/Dydvrwt2o+x+Pf/FDN5+iP1xn9YUCTx0L6Vq1//+zpG6Bx/tY3qNi+ENTCNT97tHSEbdYH9xpTOkLNFFsppKWlJZXfeiRsampKT09PNm78TaPj7W9/ex5++OFC6QAAAAAAAAAA6luxUsiMGTNyyimnZN26ddmwYUP+/u//PrvssktGjBiRJFmzZk2GDx/+qtfp7u5OV1dXr6O7u7vW8QEAAAAAAAAAtmrFSiFf+tKX8rOf/SzDhg3LkCFDcuWVV+aSSy7ZPH7fffflox/96Ktep6OjI21tbb2O887pqGFyAAAAAAAAAICtX6Va7Y8ds17e888/n0WLFuWFF17I2972tuywww6pVqu9tpV5Nd3d3S9ZGaQ6oCUtLS19Hbf3HA2yzxgAbKn+2Ou7qcZPfp5bARrHpn54Xqq5BnleqvXzN/Dydvrwt2o+x+Pf/FDN5+iP1xn9YUCTx0L6Vq1//+zpG6Bx/tY3qLn2c9B//vVnj5aOsM06bK8xpSPUTNGHicGDB+eggw7qda6lpSX33HNPJk6cuEXXaGl5aQFk/cY+iwgAAAAAAAAAUJeKlULmzJnzsud7enpy9tlnZ+TIkUmSCy64oD9jAQAAAAAAAAA0hGKlkAsvvDCTJ0/OsGHDep2vVqu57777MmTIkNe0jQwAAAAAAAAAAP9PsVLIWWedlcsuuyznn39+DjzwwM3nBw4cmCuvvDLt7e2logEAAAAAAAAA1L2mUhOffPLJufrqq3PMMcfkhBNOyIYNG0pFAQAAAAAAAABoOMVKIUkyderULFu2LGvWrMmUKVNy77332jIGAAAAAAAAAKAPFNs+5kWtra256qqrsmDBgsyaNSs9PT2lIwEAAAAAAABAv7KAArVQvBTyotmzZ2fGjBlZtmxZxo8fXzoOAAAAAAAAAEBd22pKIUkybty4jBs3rnQMAAAAAAAAAIC611Q6AAAAAAAAAAAAfU8pBAAAAAAAAACgAW1V28fUk0qldAIA6F9N/fDk5/kVgC3V1ORJA9i2Pf7ND9V8juHTT6z5HGtvPa/mc7BlqtXaz+E135bzsQKoPY+1wLbCSiEAAAAAAAAAAA3ISiEAAAAAAAAAUJgVHagFX1cAAAAAAAAAAA1IKQQAAAAAAAAAoAEphQAAAAAAAAAANCClEAAAAAAAAACABtRcOkCSLF26NIsXL87q1auTJKNGjcq0adOyzz77FE4GAAAAAAAAAFCfipZCnnjiibz//e/Prbfemje84Q3ZaaedkiSPP/54jj/++EyfPj3/9m//lh133LFkTAAAAAAAAACAulN0+5hPfvKT6enpyX333ZeHH344t99+e26//fY8/PDDue+++7Jp06Yce+yxJSMCAAAAAAAAANSloiuF/PCHP8wtt9ySP/3TP33J2J/+6Z/mq1/9av7sz/6s/4MBAAAAAAAAQD+qVCqlI9CAiq4U0tLSkq6urt87/j//8z9paWnpx0QAAAAAAAAAAI2haCnkr/7qr/KRj3wk1113Xa9ySFdXV6677roceeSROfzww1/xGt3d3enq6up1dHd31zo6AAAAAAAAAMBWrWgp5IILLsghhxyS2bNnZ/jw4dluu+2y3XbbZfjw4Zk9e3YOOeSQfOlLX3rFa3R0dKStra3Xcd45Hf30HgAAAAAAAAAAbJ0q1Wq1WjpEV1dXli1bltWrVydJRo0alb333jtDhw591bft7u5+ycog1QEttp0BgD7WHz8x2C4RAAC2HsOnn1jzOdbeel7N52DLeM0HAPVpUHPpBPSl636+unSEbdb79hxVOkLNbBUPE0OHDs073vGOrFu3Ltdcc01uvvnm/PKXv8zs2bMzcuTIV3zblpaXFkDWb6xlWgAAAAAAAACArV/R7WPa29vz9NNPJ0lWrVqVSZMm5fjjj89NN92UU045Je3t7XnooYdKRgQAAAAAAAAAqEtFSyHLly/Pxo2/WdZj7ty5GTNmTDo7O7N06dJ0dnZmzz33zLx580pGBAAAAAAAAICaqziKHY2saCnkty1evDinnXZa2trakiStra2ZP39+Fi1aVDgZAAAAAAAAAED9KV4KqVR+07tZv359Ro8e3Wts7NixWbNmTYlYAAAAAAAAAAB1rbl0gJkzZ6a5uTldXV1ZsWJFJk2atHmss7MzI0eOLJgOAAAAAAAAAKA+FS2FnHrqqb1ut7a29rq9cOHC7Lfffv0ZCQAAAAAAAACgIVSq1Wq1dIi+tn5j6QQA0Hj64yeG/7urHAAAsBUYPv3Ems+x9tbzaj4HW8ZrPgCoT4OK7wtBX/ruz1eXjrDNeu+eo0pHqJmm0gEAAAAAAAAAAOh7SiEAAAAAAAAAAA3IgkJ/oBc2bqr5HK9r1tmBEhpludRN/fCONFn3dYs0yueiZ1P97zg3oKn2HyffFtuWRvn+bpTnvlprlI03G+FzkfTP81Ktv8f74/t7Q0/tX7sOGjig5nP0h1p/vivxcwh9a/2GnprP0R9bu3zmu7+o+Rznv7u95nM0D6j/b8D++H1ny0C/79xSG2r8+Rjod8/Q0J7vru3PCYNbGuM1QH+8zq+mP36ZUP8/h/D/eF1HLfjJDwAAAAAAAACgASmFAAAAAAAAAAA0IKUQAAAAAAAAAIAGpBQCAAAAAAAAANCAlEIAAAAAAAAAABqQUggAAAAAAAAAQANqLh0AAAAAAAAAALZ1TamUjkAD2qpXClm7dm2++c1vlo4BAAAAAAAAAFB3tupSyCOPPJIjjzyydAwAAAAAAAAAgLpTdPuYrq6uVxz/n//5n35KAgAAAAAAAADQWIqWQoYNG5ZK5ffvi1StVl9xHAAAAAAAAACAl1e0FLL99ttn3rx52XfffV92/P7778/RRx/9itfo7u5Od3d3r3PVAS1paWnps5wAAAAAAAAAAPWmaCnkrW99a5LkgAMOeNnxYcOGpVqtvuI1Ojo6Mn/+/F7n5n3h1Hz+lNP6JCMAAAAAAAAAQD0qWgr567/+6/z617/+veOjRo3Kqaee+orXmDt3bubMmdPrXHWAVUIAAAAAAAAAgG1b0VLIUUcd9YrjO+2006uWQlpaXrpVzPqNf3Q0AAAAAAAAAOg3lUrpBDSioqWQ37Vu3bpcc801eeCBBzJ69OgcfvjhGTlyZOlYAAAAAAAAAAB1p2gppL29PYsWLcqIESOyatWq7L///lm7dm123333rFy5MqeffnqWLFmSCRMmlIwJAAAAAAAAAFB3mkpOvnz58mzc+Ju9XubOnZsxY8aks7MzS5cuTWdnZ/bcc8/MmzevZEQAAAAAAAAAgLpUtBTy2xYvXpzTTjstbW1tSZLW1tbMnz8/ixYtKpwMAAAAAAAAAKD+FC+FVCqVJMn69eszevToXmNjx47NmjVrSsQCAAAAAAAAAKhrzaUDzJw5M83Nzenq6sqKFSsyadKkzWOdnZ0ZOXJkwXQAAAAAAAAAAPWpaCnk1FNP7XW7tbW11+2FCxdmv/32689IAAAAAAAAANDvKqmUjkAD2qpKIb/rvPPO66ckAAAAAAAAAACNpal0AAAAAAAAAAAA+p5SCAAAAAAAAABAAyq6fUw9a26ynxM0qkqDfHtv2Fit+RwtAxvkg1VjTQ3yRdUfT309m2r7dVut/bdFKv3w+e6f96P2czSCRvn+rvX3XpI0D6j9x2pTjd+PJq8Btir98XX7zPMbanr9HVpfV9PrJ/3znNEoNm2q7fWbB9T2+o3EzzpbplG+vy94T3vN5/jFf3fVfI4939BW8zlqrWWg/z+4NVnX3VPT6w9r9vmmb23qhyemRnkN3h8GeUzfIv3xuvLRZ35d8zl232lwzecA6ptnBQAAAAAAAACABqQUAgAAAAAAAADQgGwfAwAAAAAAAACF2SmLWrBSCAAAAAAAAABAA1IKAQAAAAAAAABoQEohAAAAAAAAAAANaKsohWzatOn3nn/kkUf6OQ0AAAAAAAAAQP0rWgrp6urKBz/4wQwZMiQ77bRTTjnllPT09GweX7NmTSZMmFAwIQAAAAAAAABAfWouOfkXvvCF3HPPPfnWt76VZ555JmeccUbuuuuuXHvttXnd616XJKlWqyUjAgAAAAAAAADUpaIrhXz3u9/N1772tXzgAx/I//7f/zt33nln1qxZk3e/+93p7u5OklQqlZIRAQAAAAAAAADqUtFSyJo1azJ+/PjNt3fYYYfcfPPN+Z//+Z+8853vzPPPP/+q1+ju7k5XV1ev48VCCQAAAAAAAADUg6ZUHIWORla0FPKGN7wh9913X69z22+/fW688cb8+te/zvve975XvUZHR0fa2tp6Heed01GryAAAAAAAAAAAdaFoKeSggw7KFVdc8ZLzra2t+eEPf5hBgwa96jXmzp2bZ599ttdx4klzaxEXAAAAAAAAAKBuNJecfP78+Xn00Udfdmz77bfPTTfdlLvuuusVr9HS0pKWlpZe59Zv7LOIAAAAAAAAAAB1qWgpZPjw4Rk+fPjm2+vWrcs111yTBx54IKNHj87hhx+eAw44oGBCAAAAAAAAAID6VLQU0t7enkWLFmXEiBFZtWpV9t9//6xduza77757Vq5cmdNPPz1LlizJhAkTSsYEAAAAAAAAAKg7TSUnX758eTZu/M1eL3Pnzs2YMWPS2dmZpUuXprOzM3vuuWfmzZtXMiIAAAAAAAAAQF0qulLIb1u8eHEuvfTStLW1JUlaW1szf/78zJ49u3AyAAAAAAAAAKitSqV0AhpR0ZVCkqTyf7+y169fn9GjR/caGzt2bNasWVMiFgAAAAAAAABAXSu+UsjMmTPT3Nycrq6urFixIpMmTdo81tnZmZEjRxZMBwAAAAAAAABQn4qWQk499dRet1tbW3vdXrhwYfbbb7/+jAQAAAAAAAAA0BC2qlLI7zrvvPP6KQkAAAAAAAAAQGNpKh0AAAAAAAAAAIC+pxQCAAAAAAAAANCAKtVqtVo6RF9bv7F0AgAAAABgWzF86nE1vf7aOy6q6fUBgPo1qLl0AvrSD3+5pnSEbdbB7a8vHaFmPEwAAAAAAAAAQGGVSukENCLbxwAAAAAAAAAANCClEAAAAAAAAACABqQUAgAAAAAAAADQgJRCAAAAAAAAAAAakFIIAAAAAAAAAEADUgoBAAAAAAAAAGhAzaUDVKvVPPzww9l5553T3NycF154Idddd126u7vzzne+MzvssEPpiAAAAAAAAABQU5VUSkegARUthaxYsSIHH3xwVq1alV122SU33nhjDjvssCxfvjzVajWDBw/Obbfdlt12261kTAAAAAAAAACAulN0+5iTTjopkydPzs9+9rO8613vyqGHHppx48Zl7dq1efrppzNt2rR88YtfLBkRAAAAAAAAAKAuVarVarXU5DvuuGNuvPHG7LXXXlm3bl2233773HLLLZkxY0aS5Lbbbsvhhx+ezs7O13Td9RtrkRYAAAAA4KWGTz2uptdfe8dFNb0+AFC/BhXdF4K+dtN9T5aOsM36XxN3KB2hZoo+TDz33HMZMWJEkmTIkCEZMmRIRo8evXl85513zuOPP/6K1+ju7k53d3evc9UBLWlpaen7wAAAAAAAAAAAdaLo9jFjxozJI488svn2ueeemx133HHz7TVr1mT48OGveI2Ojo60tbX1Os47p6NmmQEAAAAAAAAA6kHRlUJmzZqV5cuXb94u5phjjuk1fuONN+atb33rK15j7ty5mTNnTq9z1QFWCQEAAAAAAAAAtm2VarVaLR3i93nooYcyaNCgXlvKbIn1G2sUCAAAAADgdwyfelxNr7/2jotqen0AoH4NKroEAH3tpvueLB1hm/W/Ju5QOkLNbFUPE+vWrcs111yTBx54IKNHj87hhx+ekSNHlo4FAAAAAAAAADXVVCmdgEZUtBTS3t6eRYsWZcSIEVm1alX233//rF27NrvvvntWrlyZ008/PUuWLMmECRNKxgQAAAAAAAAAqDtNJSdfvnx5Nm78zV4vc+fOzZgxY9LZ2ZmlS5ems7Mze+65Z+bNm1cyIgAAAAAAAABAXSpaCvltixcvzmmnnZa2trYkSWtra+bPn59FixYVTgYAAAAAAAAAUH+Kl0Iqld9sjLR+/fqMHj2619jYsWOzZs2aErEAAAAAAAAAAOpac+kAM2fOTHNzc7q6urJixYpMmjRp81hnZ2dGjhxZMB0AAAAAAAAAQH0qWgo59dRTe91ubW3tdXvhwoXZb7/9+jMSAAAAAAAAAEBDqFSr1WrpEH1t/cbSCQAAAACAbcXwqcfV9Ppr77ioptcHAOrXoOL7QtCXfrz8qdIRtlkHvqlxdzBpKh0AAAAAAAAAAIC+pzsGAAAAAPBHqPVKHrVeiSSxGgkAADQqK4UAAAAAAAAAADQgpRAAAAAAAAAAgAakFAIAAAAAAAAA8Ac4++yzU6lU8nd/93ebz61fvz7HHntsRo4cmdbW1rz//e/P448/3uvtHnnkkRx66KEZPHhwdtxxx5x44onZuHFjn+dTCgEAAAAAAAAAeI3uuOOOfO1rX8uee+7Z6/zxxx+fhQsX5l//9V/z05/+NI8++mj+8i//cvN4T09PDj300Lzwwgu57bbbctVVV+XKK6/MKaec0ucZlUIAAAAAAAAAAF6D5557LkcccUS+/vWvZ/jw4ZvPP/vss/nHf/zHXHDBBTnwwAOz995754orrshtt92WJUuWJEluvPHG/PKXv8w//dM/Za+99sohhxyS008/Pf/wD/+QF154oU9zKoUAAAAAAAAAQGGViqPU0d3dna6url5Hd3f3K36+jj322Bx66KGZNWtWr/PLli3Lhg0bep1/05velDe84Q1ZvHhxkmTx4sV585vfnJ122mnzfQ4++OB0dXXlF7/4RR9+VSmFAAAAAAAAAADbsI6OjrS1tfU6Ojo6fu/9FyxYkLvuuutl77N69eq87nWvy7Bhw3qd32mnnbJ69erN9/ntQsiL4y+O9aWtshRy4IEHprOzs3QMAAAAAAAAAKDBzZ07N88++2yvY+7cuS9731WrVuUzn/lM/vmf/zmDBg3q56SvXXPJyb/3ve+97Plbbrkl119/fXbeeeckyXve857+jAUAAAAAAAAAbCNaWlrS0tKyRfddtmxZnnjiibz1rW/dfK6npye33HJLLrroovzwhz/MCy+8kGeeeabXaiGPP/54Ro0alSQZNWpUli5d2uu6jz/++OaxvlS0FPLe9743lUol1Wr1JWOf+tSnkiSVSiU9PT39HQ0AAAAAAAAAoJeZM2fmP//zP3udO/LII/OmN70pJ510UnbeeecMHDgwP/rRj/L+978/SbJixYo88sgjmTZtWpJk2rRpOfPMM/PEE09kxx13TJLcdNNNGTp0aNrb2/s0b9FSyMEHH5wBAwbk8ssv3/yOJsnAgQNzzz339Pk7CwAAAAAAAADwh9p+++0zadKkXueGDBmSkSNHbj7/8Y9/PHPmzMmIESMydOjQfOpTn8q0adPytre9LUly0EEHpb29PR/60Idy7rnnZvXq1fn85z+fY489dotXLNlSTX16tdfoBz/4QWbOnJkpU6bk+uuv/4Ou0d3dna6url5Hd3d3HycFAAAAAAAAAHh1X/7yl/Oud70r73//+7P//vtn1KhRufbaazePDxgwINdff30GDBiQadOm5W/+5m/y4Q9/OF/84hf7PEul+nJ7t/Szn/3sZzniiCMyY8aMfPnLX05bW9sWrxRy2mmnZf78+b3OzfvCqfn8KafVKC0AAAAAQP8ZPvW4ms+x9o6Laj4HAND3BhXdF4K+9pMVT5eOsM36sz8dUTpCzRRdKeRFe+21V+68885UKpXstddeeS09lblz5+bZZ5/tdZx40twapgUAAAAAAAAA2PptNd2x7bbbLpdeemkWLlyYH//4x9lhhx226O1aWlpesqfO+o21SAgAAAAAAAAAUD+2ipVCXrRu3bo8+eSTGTx4cK655po89dRTpSMBAAAAAAAAANSloiuFtLe3Z9GiRRkxYkRWrVqV/fbbL88880x23333rFy5MqeffnqWLFmSCRMmlIwJAAAAAAAAAFB3iq4Usnz58mzc+Ju9XubOnZuxY8ems7MzS5cuTWdnZ/bcc8/MmzevZEQAAAAAAAAAgLq01Wwfs3jx4px22mlpa2tLkrS2tmb+/PlZtGhR4WQAAAAAAAAAAPWn6PYxSVKpVJIk69evz+jRo3uNjR07NmvWrCkRCwAAAAAAAAD6TVOldAIaUfFSyMyZM9Pc3Jyurq6sWLEikyZN2jzW2dmZkSNHFkwHAAAAAAAAAFCfipZCTj311F63W1tbe91euHBh9ttvv/6MBAAAAAAAAADQECrVarVaOkRfW7+xdAIAAAAAgL4xfOpxNZ9j7R0X1XwOAKDvDSq+LwR96Zb/erp0hG3W/ruPKB2hZppKBwAAAAAAAAAAoO8phQAAAAAAAAAANCALCv2B+mPTnUql9nMAwJb6n1/Xfn+2IYMG1PT6ldT+ydXzN5SzaVNtf0hvavINvjXZ1A8vymo9xYB++Jry2nXL1fprqqkfPlA+39uW/ngc7I+v2409/fB+9MN/i6v1x6o/tnZp/9z3az7HL899Z83naBSN8LwElNNT49fH/fFaplH0x89s6YffeQL1zUohAAAAAAAAAAANyEohAAAAAAAAAFBYf6x2zbbHSiEAAAAAAAAAAA1IKQQAAAAAAAAAoAEphQAAAAAAAAAANCClEAAAAAAAAACABtRcOsDveuihh/LAAw9k9OjRmTRpUuk4AAAAAAAAAAB1qehKIZ/85Cfz3HPPJUl+/etf5wMf+EB23XXXHHzwwZk8eXIOPPDAzeMAAAAAAAAAAGy5oqWQr33ta3n++eeTJKeffnpuv/323HzzzXnuuedyyy235JFHHsmZZ55ZMiIAAAAAAAAA1Fyl4ih1NLKipZBqtbr53wsXLsy5556bd7zjHRk8eHCmT5+eCy64INdee23BhAAAAAAAAAAA9aloKSRJKv+3drN69ersueeevcYmT56cVatWlYgFAAAAAAAAAFDXmksH+MIXvpDBgwenqakpjz76aPbYY4/NY0899VSGDBnyim/f3d2d7u7uXueqA1rS0tJSk7wAAAAAAAAAAPWg6Eoh+++/f1asWJG777477e3t6ezs7DX+/e9/v1dJ5OV0dHSkra2t13HeOR21jA0AAAAAAAAAsNWrVKvVaukQv8+DDz6Y173udRk3btzvvU+plUL646P2f3fWAYCtwv/8emPN5xgyaEBNr19J7Z9cPX9DOZs21faH9KYm3+Bbk0398KKs1lMM6IevKa9dt1ytv6aa+uED5fO9bemPx8H++Lrd2NMP70c//Le4/vhY1Vr7575f8zl+ee47az5Ho2iE5yWgnJ4avz7uj9cyjaI/fmYbPNDno5Esun9t6QjbrBm7DS8doWaKbx/z29atW5drrrkmDzzwQEaPHp3DDz88I0eOfMW3aWl5aQFkfe3/ZgUAAAAAAAAAsFUrWgppb2/PokWLMmLEiKxatSr77bdfnnnmmey+++5ZuXJlTj/99CxZsiQTJkwoGRMAAAAAAAAAoO70w+KJv9/y5cuzceNvlvWYO3duxo4dm87OzixdujSdnZ3Zc889M2/evJIRAQAAAAAAAKDmKo5iRyMrWgr5bYsXL85pp52Wtra2JElra2vmz5+fRYsWFU4GAAAAAAAAAFB/ipdCKpXf9G7Wr1+f0aNH9xobO3Zs1qxZUyIWAAAAAAAAAEBday4dYObMmWlubk5XV1dWrFiRSZMmbR7r7OzMyJEjC6YDAAAAAAAAAKhPRUshp556aq/bra2tvW4vXLgw++23X39GAgAAAAAAAABoCFtVKeR3nXfeef2UBAAAAAAAAACgsTSVDgAAAAAAAAAAQN8rulIIAAAAAAAAAJA0VSqlI9CAKtVqtVo6RF9bv7F0AgAAAAAAftvwqcfVfI61d1xU8zkAYGsyyBIADWXxA8+UjrDNmrbrsNIRasb2MQAAAAAAAAAADUgpBAAAAAAAAACgASmFAAAAAAAAAAA0IKUQAAAAAAAAAIAGpBQCAAAAAAAAANCAlEIAAAAAAAAAABpQc+kAAAAAAAAAALCtq5QOQEMqWgrp7u5OU1NTBg4cmCRZuXJlLr/88jzyyCMZP358Pv7xj2fChAklIwIAAAAAAAAA1KWi28ccfPDB+fd///ckya233po99tgj119/fTZs2JDvf//7mTRpUhYvXlwyIgAAAAAAAABAXSpaCrn77rszefLkJMm8efPyyU9+Mvfcc08WLFiQu+66K3PmzMmJJ55YMiIAAAAAAAAAQF0qWgrp6elJT09PkmT58uX5yEc+0mv8ox/9aO65554S0QAAAAAAAAAA6lrRUsi+++6bhQsXJkn+5E/+5CUFkJ/97GcZMWLEK16ju7s7XV1dvY7u7u6aZQYAAAAAAAAAqAfNJSc/44wzcsghh2TdunU5/PDD89nPfjb3339/Jk6cmBUrVuSrX/1q5s6d+4rX6OjoyPz583udm/eFU/P5U06rYXIAAAAAAAAAgK1bpVqtVksGWLx4cebMmZPbb7+91/kxY8bkxBNPzGc+85lXfPvu7u6XrAxSHdCSlpaWPs8KAAAAAMAfZvjU42o+x9o7Lqr5HACwNRlUdAkA+tqSlc+UjrDNetufDCsdoWaKP0xMmzYtixcvzpo1a/Lggw9m06ZNGT16dN74xjdu0du3tLy0ALJ+Yw2CAgAAAAAAAADUkeKlkBe9/vWvz+DBg3PNNdfk+uuvz5gxYzJ79uyMHDmydDQAAAAAAAAAgLrTVHLy9vb2PP3000mSVatWZdKkSTn++ONz00035ZRTTkl7e3seeuihkhEBAAAAAAAAAOpS0VLI8uXLs3Hjb/Z6mTt3bsaMGZPOzs4sXbo0nZ2d2XPPPTNv3rySEQEAAAAAAAAA6lLRUshvW7x4cU477bS0tbUlSVpbWzN//vwsWrSocDIAAAAAAAAAgPpTvBRSqVSSJOvXr8/o0aN7jY0dOzZr1qwpEQsAAAAAAAAAoK41lw4wc+bMNDc3p6urKytWrMikSZM2j3V2dmbkyJEF0wEAAAAAAAAA1KeipZBTTz211+3W1tZetxcuXJj99tuvPyMBAAAAAAAAQL+rpFI6Ag2oUq1Wq6VD9LX1G0snAAAAAADgtw2felzN51h7x0U1nwMAtiaDiu8LQV+6feWzpSNss/b9k7bSEWqmqXQAAAAAAAAAAAD6nlIIAAAAAAAAAEADsqAQAAAAAAA11x9bu9iiBgAAerNSCAAAAAAAAABAA1IKAQAAAAAAAABoQLaPAQAAAAAAAIDCKpXSCWhEVgoBAAAAAAAAAGhASiEAAAAAAAAAAA1IKQQAAAAAAAAAoAEVLYX827/9W55//vmSEQAAAAAAAAAAGlLRUshhhx2W0aNH5xOf+ERuv/32klEAAAAAAAAAABpK8e1jTjjhhNx5552ZNm1aJk2alAsvvDBPPfVU6VgAAAAAAAAAAHWteCnk6KOPzl133ZU77rgj+++/f+bPn5+xY8fmgx/8YG666abS8QAAAAAAAACg5iqOYkcjK14KedHee++diy++OI899li+/vWvZ82aNfnzP//zTJgw4RXfrru7O11dXb2O7u7ufkoNAAAAAAAAALB1KloKqVRe2rkZNGhQPvShD+U//uM/smLFivz1X//1K16jo6MjbW1tvY7zzumoVWQAAAAAAAAAgLpQqVar1VKTNzU1ZfXq1dlxxx3/4Gt0d3e/ZGWQ6oCWtLS0/LHxAAAAAACoI8OnHlfzOdbecVHN5wCALTWouXQC+tIdDz5bOsI2a+oubaUj1EzRh4mHHnoor3/96/+oa7S0vLQAsn7jH3VJAAAAAAAAAIC6V7QUMn78+F63161bl2uuuSYPPPBARo8encMPPzwjR44slA4AAAAAAAAAoH4VLYW0t7dn0aJFGTFiRFatWpX9998/a9euze67756VK1fm9NNPz5IlSzJhwoSSMQEAAAAAAAAA6k5TycmXL1+ejRt/s9fL3LlzM2bMmHR2dmbp0qXp7OzMnnvumXnz5pWMCAAAAAAAAABQl4quFPLbFi9enEsvvTRtbW1JktbW1syfPz+zZ88unAwAAAAAAAAAaqxSOgCNqOhKIUlSqfzmK3v9+vUZPXp0r7GxY8dmzZo1JWIBAAAAAAAAANS14iuFzJw5M83Nzenq6sqKFSsyadKkzWOdnZ0ZOXJkwXQAAAAAAAAAAPWpaCnk1FNP7XW7tbW11+2FCxdmv/32689IAAAAAAAAAAANoVKtVqulQ/S19RtLJwAAAAAAoL8Nn3pczedYe8dFNZ8DALbUoOL7QtCX7njo2dIRtllTJ7SVjlAzTaUDAAAAAAAAAADQ95RCAAAAAAAAAAAakAWFAAAAAABoCP2xtcvwGSfVfI61i86p+RxQb6rV2s9RqdR+DoBXUokHIvqelUIAAAAAAAAAABqQUggAAAAAAAAAQANSCgEAAAAAAAAAaEBKIQAAAAAAAAAADUgpBAAAAAAAAACgASmFAAAAAAAAAAA0IKUQAAAAAAAAAIAG1Fw6wD333JNly5blz/7sz7LLLrvkF7/4Rf7hH/4hmzZtyvve974cfPDBpSMCAAAAAAAAQE1VKqUT0IiKrhRy7bXXZu+9987nPve5TJ48OTfffHNmzJiR+++/Pw8//HAOPfTQfPvb3y4ZEQAAAAAAAACgLhUthZx55pmZP39+nnzyyXz961/PYYcdljlz5uSmm27KDTfckHPOOSfnnXdeyYgAAAAAAAAAAHWpaClkxYoVOeKII5Ikf/VXf5V169blve997+bx973vfXnggQcKpQMAAAAAAAAAqF/NJSfffvvt89RTT+WNb3xjnnnmmWzcuDFPPfXU5vGnnnoqra2tr3iN7u7udHd39zpXHdCSlpaWmmQGAAAAAAAAAKgHRVcKmTVrVo499tj88z//cz7ykY/koIMOyty5c7N8+fKsWLEiJ554YmbMmPGK1+jo6EhbW1uv47xzOvrpPQAAAAAAAAAA2DoVLYV86UtfytChQ/O3f/u3eeGFF3L11VdnypQpaW9vT3t7ex599NGcffbZr3iNuXPn5tlnn+11nHjS3H56DwAAAAAAAAAAtk6VarVaLR3idz344IN5/vnn86Y3vSnNza99h5v1G2sQCgAAAACAbd7wGSfVfI61i86p+RxQb/rjr1mVSu3ngL426LX/KZWt2F0Pd5WOsM166xuHlo5QM1vVw8S6detyzTXX5IEHHsiYMWMyevTojBw5snQsAAAAAAAAAIC6U7QU0t7enkWLFmXEiBFZtWpV9ttvvzzzzDPZfffds3Llynzxi1/MkiVLMmHChJIxAQAAAAAAAADqTlPJyZcvX56NG3+z18vcuXMzduzYdHZ2ZunSpens7Myee+6ZefPmlYwIAAAAAAAAAFCXipZCftvixYtz2mmnpa2tLUnS2tqa+fPnZ9GiRYWTAQAAAAAAAADUn+KlkEqlkiRZv359Ro8e3Wts7NixWbNmTYlYAAAAAAAAAAB1rbl0gJkzZ6a5uTldXV1ZsWJFJk2atHmss7MzI0eOLJgOAAAAAAAAAKA+FS2FnHrqqb1ut7a29rq9cOHC7Lfffv0ZCQAAAAAAAACgIVSq1Wq1dIi+tn5j6QQAAAAAADSi4TNOqvkcaxedU/M5oN70x1+zKpXazwF9bVDxfSHoS3d1dpWOsM166/ihpSPUTFPpAAAAAAAAAAAA9D3dsT/Qpn6opDappAJ/hJ5NHqe2RAO8C/2mP577av11O6Cp9p/wRvi+YMs1ys+E/fGc0R/ffxs2bqrp9Qc2175T73++bbmNPf3x/Vfb67/QU9uv2SRpaR5Q8zka5WtqQ40/HwMH+H859K3+eBxsHlD7b/D+eD+efK675nOMahtU0+v3x88I/bGgdFM//EzYH57+/2q/iscv/ru2/0t4j3G1/5+wfraFcp59fkNNr982eGBNr99fNvXD70Puf/y5ms8xeeftaz4HUN/8RgIAAAAAAAAAoAEphQAAAAAAAAAANCClEAAAAAAAAACABqQUAgAAAAAAAADQgJpLBwAAAAAAAACAbV0lldIRaEBWCgEAAAAAAAAAaEBKIQAAAAAAAAAADWir2D7mxz/+cRYtWpTHHnssTU1N2WWXXfKe97wnu+22W+loAAAAAAAAAAB1qWgp5Iknnsi73/3u3HnnnWlqasqmTZvylre8Jddee21OOumkzJkzJ+eee27JiAAAAAAAAAAAdano9jGf/vSnM2bMmKxduzbPPfdcPvnJT2aPPfbIY489lhtvvDGXX355vvKVr5SMCAAAAAAAAABQl4qWQn7wgx/kjDPOyNChQ9PS0pKzzz47//Iv/5Kurq4ceOCBufDCC3PJJZeUjAgAAAAAAAAAUJeKbh/T0tKSSqWy+XZTU1N6enqycePGJMnb3/72PPzww694je7u7nR3d/c6Vx3QkpaWlj7PCwAAAAAAAAC18Ft/Ooc+U3SlkBkzZuSUU07JunXrsmHDhvz93/99dtlll4wYMSJJsmbNmgwfPvwVr9HR0ZG2trZex3nndPRHfAAAAAAAAACArVbRlUK+9KUv5aCDDsqwYcNSqVQyZMiQXHPNNZvH77vvvnz0ox99xWvMnTs3c+bM6XWuOsAqIQAAAAAAAADAtq1oKWSXXXbJz3/+89x6663p7u7O2972tuywww6bx1+tEJL8Zgua390qZv3Gvk4KAAAAAAAAAFBfipZCkmTw4MH5X//rfyVJ1q1blyuuuCIPPPBARo8encMPPzwjR44snBAAAAAAAAAAoP4ULYW0t7dn0aJFGTFiRFatWpX99tsvzzzzTHbfffesXLkyp59+epYsWZIJEyaUjAkAAAAAAAAAUHeaSk6+fPnybNz4m71e5s6dm7Fjx6azszNLly5NZ2dn9txzz8ybN69kRAAAAAAAAACAulS0FPLbFi9enNNOOy1tbW1JktbW1syfPz+LFi0qnAwAAAAAAAAAoP4U3T4mSSqVSpJk/fr1GT16dK+xsWPHZs2aNSViAQAAAAAAAEC/qZQOQEMqXgqZOXNmmpub09XVlRUrVmTSpEmbxzo7OzNy5MiC6QAAAAAAAAAA6lPRUsipp57a63Zra2uv2wsXLsx+++3Xn5EAAAAAAAAAABrCVlUK+V3nnXdePyUBAAAAAAAAAGgsTaUDAAAAAAAAAADQ95RCAAAAAAAAAAAaUKVarVZLh+hr6zeWTgAAAAAAAFun4VOPq/kca++4qOZzAJAMai6dgL50zyP/UzrCNmvyG7YvHaFmPEwAAAAAAAAAQGmV0gFoRLaPAQAAAAAAAABoQEohAAAAAAAAAAANSCkEAAAAAAAAAKABKYUAAAAAAAAAADSg5tIBXnjhhXz3u9/N4sWLs3r16iTJqFGj8va3vz1/8Rd/kde97nWFEwIAAAAAAAAA1J+iK4U88MADmThxYj7ykY/k7rvvzqZNm7Jp06bcfffd+fCHP5w99tgjDzzwQMmIAAAAAAAAAAB1qehKIcccc0ze/OY35+67787QoUN7jXV1deXDH/5wjj322Pzwhz8slBAAAAAAAAAAoD4VLYXceuutWbp06UsKIUkydOjQnH766dl3330LJAMAAAAAAACA/mQjy/UAAGhCSURBVFNJpXQEGlDR7WOGDRuWhx9++PeOP/zwwxk2bFi/5QEAAAAAAAAAaBRFVwr53//7f+fDH/5wvvCFL2TmzJnZaaedkiSPP/54fvSjH+WMM87Ipz71qZIRAQAAAAAAAADqUtFSyBe/+MUMGTIk5513Xj772c+mUvnNcjjVajWjRo3KSSedlM997nOveI3u7u50d3f3Olcd0JKWlpaa5QYAAAAAAAAA2NoV3T4mSU466aQ8+uijWblyZRYtWpRFixZl5cqVefTRR1+1EJIkHR0daWtr63Wcd05HPyQHAAAAAAAAANh6VarVarV0iD+GlUIAAAAAAGDLDZ96XM3nWHvHRTWfA4BkUNF9IehrP1/1XOkI26w9d24tHaFmiq4Uctddd+Whhx7afPtb3/pWpk+fnp133jkzZszIggULXvUaLS0tGTp0aK9DIQQAAAAAAAAA2NYVLYUceeSRWblyZZLkG9/4Ro4++uhMmTIl8+bNy9SpU3PUUUfl8ssvLxkRAAAAAAAAAGquUnGUOhpZ0QWF7r///uy2225Jkosvvjhf+cpXctRRR20enzp1as4888x87GMfKxURAAAAAAAAAKAuFV0pZPDgwXnyySeTJL/61a+yzz779Brfd999e20vAwAAAAAAAADAlilaCjnkkENyySWXJEkOOOCAfOc73+k1fs0112TXXXctEQ0AAAAAAAAAoK4V3T7mnHPOyfTp03PAAQdkypQpOf/88/OTn/wkEydOzIoVK7JkyZJcd911JSMCAAAAAAAAANSloiuFjBkzJnfffXemTZuWG264IdVqNUuXLs2NN96YcePG5dZbb8073/nOkhEBAAAAAAAAAOpSpVqtVkuH6GvrN5ZOAAAAAAAAW6fhU4+r+Rxr77io5nMAkAwqui8Efe0///u50hG2WW8e11o6Qs0UXSkEAAAAAAAAAIDa0B0DAAAAAAAAgMIqpQPQkJRCAAAAAABgG9IfW7sMf/sJNZ9j7W1fqvkcAAD1zvYxAAAAAAAAAAANSCkEAAAAAAAAAKABKYUAAAAAAAAAADQgpRAAAAAAAAAAgAakFAIAAAAAAAAA0ICaSwcAAAAAAAAAgG1epXQAGtFWvVLI448/ni9+8YulYwAAAAAAAAAA1J2tuhSyevXqzJ8/v3QMAAAAAAAAAIC6U3T7mJ///OevOL5ixYp+SgIAAAAAAAAA0FiKlkL22muvVCqVVKvVl4y9eL5SsXESAAAAAAAAAMBrVbQUMmLEiJx77rmZOXPmy47/4he/yLvf/e5+TgUAAAAAAAAAUP+KlkL23nvvPProoxk/fvzLjj/zzDMvu4rIb+vu7k53d3evc9UBLWlpaemznAAAAAAAAAAA9aap5OR/+7d/mze+8Y2/d/wNb3hDrrjiile8RkdHR9ra2nod553T0cdJAQAAAAAAAADqS6X6aktxbOWsFAIAAAAAAFuX4W8/oeZzrL3tSzWfA2BrN6jovhD0tV/8al3pCNusPcYOKR2hZur+YaKl5aUFkPUbC4UBAAAAAAAAANhKFN0+5q677spDDz20+fa3vvWtTJ8+PTvvvHNmzJiRBQsWFEwHAAAAAAAAAFC/ipZCjjzyyKxcuTJJ8o1vfCNHH310pkyZknnz5mXq1Kk56qijcvnll5eMCAAAAAAAAABQl4puH3P//fdnt912S5JcfPHF+cpXvpKjjjpq8/jUqVNz5pln5mMf+1ipiAAAAAAAAAAAdanoSiGDBw/Ok08+mST51a9+lX322afX+L777ttrexkAAAAAAAAAALZM0VLIIYcckksuuSRJcsABB+Q73/lOr/Frrrkmu+66a4loAAAAAAAAAAB1rej2Meecc06mT5+eAw44IFOmTMn555+fn/zkJ5k4cWJWrFiRJUuW5LrrrisZEQAAAAAAAABqrlIpnYBGVHSlkDFjxuTuu+/OtGnTcsMNN6RarWbp0qW58cYbM27cuNx666155zvfWTIiAAAAAAAAAEBdqlSr1WrpEH1t/cbSCQAAAAAAYNs1/O0n1HyOtbd9qeZzAGztBhXdF4K+9stH15WOsM1qHzOkdISaKbpSCAAAAAAAAAAAtaEUAgAAAAAAAADQgGwfAwAAAAAA1J3hU4+r+Rxr77io5nMA/DFsH9NYbB9Tju1jAAAAAAAAAACoK7pjAAAAAAAAAFBYpXQAGpKVQgAAAAAAAAAAGpBSCAAAAAAAAABAA1IKAQAAAAAAAABoQFtFKeS///u/89xzz73k/IYNG3LLLbcUSAQAAAAAAAAAUN+KlkIee+yx7LPPPhk/fnyGDRuWD3/4w73KIU8//XTe8Y53FEwIAAAAAAAAAFCfipZCTj755DQ1NeX222/PDTfckF/+8pd5xzvekbVr126+T7VaLZgQAAAAAAAAAKA+FS2F3HzzzfnqV7+aKVOmZNasWbn11lszevToHHjggXn66aeTJJVKpWREAAAAAAAAAIC6VLQU8uyzz2b48OGbb7e0tOTaa6/NG9/4xrzjHe/IE088UTAdAAAAAAAAAPSTiqPY0cCKlkJ22WWX/PznP+91rrm5Of/6r/+aXXbZJe9617te9Rrd3d3p6urqdXR3d9cqMgAAAAAAAABAXShaCjnkkENy2WWXveT8i8WQvfba61Wv0dHRkba2tl7Heed01CAtAAAAAAAAAED9qFSr1WqpyTdu3Jjnn38+Q4cO/b3jv/rVrzJ+/Pjfe43u7u6XrAxSHdCSlpaWPs0KAAAAAABsPYZPPa7mc6y946KazwHwxxjUXDoBfem+x9aVjrDNmjh6SOkINVP0YaK5ufn3FkJeHH+lQkiStLS8tACyfmOfxAMAAAAAAAAAqFtFt4+566678tBDD22+/a1vfSvTp0/PzjvvnBkzZmTBggUF0wEAAAAAAAAA1K+ipZAjjzwyK1euTJJ84xvfyNFHH50pU6Zk3rx5mTp1ao466qhcfvnlJSMCAAAAAAAAANSlotvH3H///dltt92SJBdffHG+8pWv5Kijjto8PnXq1Jx55pn52Mc+VioiAAAAAAAAANRcJZXSEWhARVcKGTx4cJ588skkya9+9avss88+vcb33XffXtvLAAAAAAAAAACwZYqWQg455JBccsklSZIDDjgg3/nOd3qNX3PNNdl1111LRAMAAAAAAAAAqGtFt48555xzMn369BxwwAGZMmVKzj///PzkJz/JxIkTs2LFiixZsiTXXXddyYgAAAAAAAAAAHWp6EohY8aMyd13351p06blhhtuSLVazdKlS3PjjTdm3LhxufXWW/POd76zZEQAAAAAAAAAgLpUqVar1dIh+tr6jaUTAAAAAAAAtTR86nE1n2PtHRfVfA6AP8agovtC0NeWP/Z86QjbrDeNHlw6Qs0UXSkEAAAAAAAAAIDaUAoBAAAAAAAAAGhAto8BAAAAAAB4GbaoAbZ2to9pLCtW2z6mlD8dZfsYAAAAAAAAAADqiFIIAAAAAAAAAEADUgoBAAAAAAAAAGhASiEAAAAAAAAAAA1IKQQAAAAAAAAAoAEphQAAAAAAAAAANKDm0gGeeuqp/PznP8/kyZMzYsSIPPnkk/nHf/zHdHd357DDDsvEiRNLRwQAAAAAAACAmqqUDkBDKloKWbp0aQ466KB0dXVl2LBhuemmm3LYYYelubk5mzZtytlnn51FixblrW99a8mYAAAAAAAAAAB1p+j2MfPmzcthhx2WZ599Nn//93+f9773vZk5c2b+67/+Kw888EBmz56d008/vWREAAAAAAAAAIC6VKlWq9VSk48YMSK33nprJk6cmA0bNmTQoEFZvHhx9tlnnyTJXXfdlfe85z357//+79d03fUba5EWAAAAAADYlgyfelzN51h7x0U1nwNoXIOK7gtBX/uv1c+XjrDN2n3U4NIRaqboSiEvvPBCtttuuyTJwIEDM3jw4Oywww6bx3fYYYc89dRTpeIBAAAAAAAAANStot2xnXfeOQ8++GDe+MY3JkkWLFiQ0aNHbx5/7LHHepVEXk53d3e6u7t7nasOaElLS0uf5wUAAAAAAAAAqBdFVwqZPXt2nnjiic23Dz300M0rhyTJ9773vc1byfw+HR0daWtr63Wcd05HzTIDAAAAAAAAANSDSrVarZYO8fs8//zzGTBgwCuu+mGlEAAAAAAAoBaGTz2u5nOsveOims8BNK5BRfeFoK/91+rnS0fYZu0+anDpCDWzVT9MDB786h/4lpaXFkDWb6xVIgAAAAAAAACogUrpADSiotvH3HXXXXnooYc23/7Wt76V6dOnZ+edd86MGTOyYMGCgukAAAAAAAAAAOpX0VLIkUcemZUrVyZJvvGNb+Too4/OlClTMm/evEydOjVHHXVULr/88pIRAQAAAAAAAADqUtHtY+6///7stttuSZKLL744X/nKV3LUUUdtHp86dWrOPPPMfOxjHysVEQAAAAAAAACgLhVdKWTw4MF58sknkyS/+tWvss8++/Qa33fffXttLwMAAAAAAAAAwJYpWgo55JBDcskllyRJDjjggHznO9/pNX7NNddk1113LRENAAAAAAAAAKCuFd0+5pxzzsn06dNzwAEHZMqUKTn//PPzk5/8JBMnTsyKFSuyZMmSXHfddSUjAgAAAAAAAADUpaKlkDFjxuTuu+/O2WefnYULF6ZarWbp0qVZtWpVpk+fnltvvTVTpkwpGREAAAAAAAAAaq6SSukINKBKtVqtlg7R19ZvLJ0AAAAAAACod8OnHlfzOdbecVHN5wAa16CiSwDQ1+5//NelI2yzdttpu9IRaqapdAAAAAAAAAAAAPqelUIAAAAAAAAKqfVqJFYigcZmpZDGYqWQcqwUAgAAAAAAAABAXVEKAQAAAAAAAABoQEohAAAAAAAAAAANyC5TAAAAAAAAAFBYpVI6AY3ISiEAAAAAAAAAAA1IKQQAAAAAAAAAoAFtlaWQXXbZJffff3/pGAAAAAAAAAAAdau55ORf/epXX/b8I488kiuuuCKjRo1Kknz605/uz1gAAAAAAAAAAHWvUq1Wq6Umb2pqytixY9Pc3Lub0tnZmTFjxmTgwIGpVCp58MEHX9N112/sy5QAAAAAAAC1MXzqcTW9/to7Lqrp9YGyBhVdAoC+9sATvy4dYZu1647blY5QM0UfJj7xiU/k9ttvz7e//e1MnDhx8/mBAwfmxhtvTHt7e8F0AAAAAAAAAAD1q6nk5JdeemlOOeWUHHzwwbnoIk1VAAAAAAAAAIC+UrQUkiTve9/7snjx4lx33XU55JBDsnr16tf09t3d3enq6up1dHd31ygtAAAAAAAAAPS9iqPY8Vp0dHRk6tSp2X777bPjjjvmve99b1asWNHrPuvXr8+xxx6bkSNHprW1Ne9///vz+OOP97rPI488kkMPPTSDBw/OjjvumBNPPDEbN258jWleXfFSSJKMHTs2N998c/bff/+85S1vSbVa3eK37ejoSFtbW6/jvHM6apgWAAAAAAAAANgW/fSnP82xxx6bJUuW5KabbsqGDRty0EEHZd26dZvvc/zxx2fhwoX513/91/z0pz/No48+mr/8y7/cPN7T05NDDz00L7zwQm677bZcddVVufLKK3PKKaf0ed5K9bU0MPrBsmXLsmjRonz4wx/O8OHDX/X+3d3dL1kZpDqgJS0tLbWKCAAAAAAA0CeGTz2uptdfe8dFNb0+UNag5tIJ6Esrn/h16QjbrD/Zcbs/+G3XrFmTHXfcMT/96U+z//7759lnn83rX//6fPvb384HPvCBJMny5cszceLELF68OG9729vygx/8IO9617vy6KOPZqeddkqSXHrppTnppJOyZs2avO51r+uT9yvZSlYK+W177713PvOZz2xRISRJWlpaMnTo0F6HQggAAAAAAAAAUGvPPvtskmTEiBFJfrMQxoYNGzJr1qzN93nTm96UN7zhDVm8eHGSZPHixXnzm9+8uRCSJAcffHC6urryi1/8ok/zFS2F3HXXXXnooYc23/7Wt76V6dOnZ+edd86MGTOyYMGCgukAAAAAAAAAgEbX3d2drq6uXsfv7ljycjZt2pS/+7u/y/Tp0zNp0qQkyerVq/O6170uw4YN63XfnXbaKatXr958n98uhLw4/uJYXypaCjnyyCOzcuXKJMk3vvGNHH300ZkyZUrmzZuXqVOn5qijjsrll19eMiIAAAAAAAAA0MA6OjrS1tbW6+jo6HjVtzv22GNz7733btULXhTdZer+++/PbrvtliS5+OKL85WvfCVHHXXU5vGpU6fmzDPPzMc+9rFSEQEAAAAAAACABjZ37tzMmTOn17mWlpZXfJvjjjsu119/fW655ZaMGzdu8/lRo0blhRdeyDPPPNNrtZDHH388o0aN2nyfpUuX9rre448/vnmsLxVdKWTw4MF58sknkyS/+tWvss8++/Qa33fffXttLwMAAAAAAAAADaniKHW0tLRk6NChvY7fVwqpVqs57rjjct111+XHP/5xJkyY0Gt87733zsCBA/OjH/1o87kVK1bkkUceybRp05Ik06ZNy3/+53/miSee2Hyfm266KUOHDk17e/vLzvuHKloKOeSQQ3LJJZckSQ444IB85zvf6TV+zTXXZNdddy0RDQAAAAAAAACgl2OPPTb/9E//lG9/+9vZfvvts3r16qxevTq//vWvkyRtbW35+Mc/njlz5uQ//uM/smzZshx55JGZNm1a3va2tyVJDjrooLS3t+dDH/pQ7rnnnvzwhz/M5z//+Rx77LGvukLJa1WpVqvVPr3ia/Doo49m+vTpecMb3pApU6bkkksuyd57752JEydmxYoVWbJkSa677rq8853vfE3XXb+xRoEBAAAAAAD60PCpx9X0+mvvuKim1wfKGtRcOgF9aeWaX5eOsM36k9dvt8X3rVQqL3v+iiuuyEc/+tEkyfr16/PZz342//Iv/5Lu7u4cfPDBufjii3ttDdPZ2ZljjjkmP/nJTzJkyJB85CMfydlnn53m5r79xi5aCkmSZ555JmeffXYWLlyYBx98MJs2bcro0aMzffr0HH/88ZkyZcprvqZSCAAAAAAAUA+UQoA/hlJIY1EKKee1lELqTfFSSC0ohQAAAAAAAPVAKQT4YyiFNBalkHIauRTSVDoAAAAAAAAAAAB9TykEAAAAAAAAAKAB2T4GAADg/2/vT+OkKs/88f8qtmaRzQUVoVGDIskYjbIMwQiJCkpGUTMh38nmNkQTMRpnjDrEZeIYgtGJJq6J0YzLuMSIOpgAbqgxKhpQk4wiYKsJiEtEAZFm6fv/YP7woxG6qrtOceji/X696kFXVd+f63T3VafOXXefAwAAUKUqfXmaCJeogTy5fEx1cfmY/FTz5WO8TAAAAAAAAABAzgpRyLsEqpDLxwAAAAAAAAAAVCGLQgAAAAAAAAAAqpBFIQAAAAAAAAAAVciiEAAAAAAAAACAKtQu7wI2lFKKmTNnxvz582PXXXeN0aNHR/v27fMuCwAAAAAAAACg1cl1UciYMWPitttui+7du8e7774bY8aMiVmzZsWOO+4Yf/vb32LvvfeOxx57LHbaaac8ywQAAAAAAAAAaHVyvXzMtGnTor6+PiIivve978WyZctiwYIF8dZbb8Vrr70WXbp0ifPPPz/PEgEAAAAAAACg4goFt7xu1SzXRSEbevjhh2PSpEmxxx57REREnz59YvLkyTF9+vScKwMAAAAAAAAAaH1yXxRS+P8vu1myZEl87GMfa/RY//79Y9GiRXmUBQAAAAAAAADQqrXLu4Djjz8+ampqYvXq1VFXVxef+MQn1j+2ePHi6NGjR5PfX19fv/4SNOuktjVRU1NTiXIBAAAAAAAAAFqFXM8Uctxxx0WvXr2ie/fuMXbs2FixYkWjx3/961/H/vvv3+QYkyZNiu7duze6/WjypApWDQAAAAAAAACw9SuklFLeRWzOBx98EG3bto2OHTtu9jnOFAIAAAAAALBpPQdPqHjGkmeurHgGsGkdc78uBFmqe2dl3iVss/bYcfNrElq7rfplokuXLkWfU1Pz0QUgK9dUqiIAAAAAAAAAgNYh18vHzJ49O+rq6tZ/ffPNN8fw4cOjb9++cdBBB8Xtt9+eY3UAAAAAAAAAAK1XrotCTjjhhFiwYEFERFx//fVx8sknx6BBg2LixIkxePDgGD9+fNxwww15lggAAAAAAAAAFVdwy+1WzXK9fMy8efNir732ioiIq6++Oq644ooYP378+scHDx4cF198cZx44ol5lQgAAAAAAAAA0CrleqaQzp07xzvvvBMREQsXLowhQ4Y0enzo0KGNLi8DAAAAAAAAAEBpcl0UcsQRR8Q111wTEREjRoyIu+66q9Hjd955Z/Tv3z+P0gAAAAAAAAAAWrVcLx8zefLkGD58eIwYMSIGDRoUl112WcycOTMGDhwYc+fOjaeeeiqmTJmSZ4kAAAAAAAAAAK1SrmcK6d27d8yZMyeGDRsW06ZNi5RSzJo1K2bMmBF9+vSJJ554IsaMGZNniQAAAAAAAAAArVIhpZTyLiJrK9fkXQEAAAAAAED+eg6eUPGMJc9cWfEMYNM65npdCLL26jsr8y5hm7X7jh3zLqFivEwAAAAAAAAAQN4KeRdANcr18jEAAAAAAAAAAFSGy8cAAADQ6jRsgUPZSke0bVP5f//ZEkf8Bf/FBGzlvBYCVF7Pz11Y8YwlD1c+A1ojl4+pLq/+zeVj8rL7DtV7+RhnCgEAAAAAAAAAqEIWhQAAAAAAAAAAVCGLQgAAAAAAAAAAqpBFIQAAAAAAAAAAVciiEAAAAAAAAACAKtQu7wIAAAAAAAAAYFtXiELeJVCFcj1TyF//+td455131n/9+OOPx1e+8pX4zGc+E1/96lfjySefzLE6AAAAAAAAAIDWK9dFIV/4whfiqaeeioiIe++9N0aOHBnLly+P4cOHx4oVK2LEiBExderUPEsEAAAAAAAAAGiVcr18zJ///Of4xCc+ERERkyZNih/84Adx9tlnr3/8yiuvjPPPPz/+4R/+Ia8SAQAAAAAAAABapVzPFNKuXbtYtmxZRETU1dXFEUcc0ejxI444IubOnZtHaQAAAAAAAAAArVqui0JGjBgRt912W0REfOpTn4qZM2c2evyRRx6J3XbbLYfKAAAAAAAAAABat1wvH/PDH/4wPvOZz8SiRYvioIMOiokTJ8YzzzwTAwcOjLlz58Ydd9wR1157bZNj1NfXR319faP7UtuaqKmpqWTpAAAAAAAAAABbtVzPFDJw4MB4+umnY9WqVXHJJZfEBx98ELfeemtceOGFMX/+/Lj99tvj+OOPb3KMSZMmRffu3RvdfjR50pbZAAAAAAAAAADIQKHgltetmhVSSinvIiIiUkrx1ltvRUNDQ+y4447Rvn37kr7PmUIAAAC2PQ1b4FC20hFt21R+xmFLHPFX+8QJ0Pp5LQSovJ6fu7DiGUsernwGtEYdc70uBFl7/d364k+iImq3r971BVvNy0ShUIidd9652d9XU/PRBSAr12RVFQAAAAAAAABA65Tr5WNmz54ddXV167+++eabY/jw4dG3b9846KCD4vbbb8+xOgAAAAAAAACA1ivXRSEnnHBCLFiwICIirr/++jj55JNj0KBBMXHixBg8eHCMHz8+brjhhjxLBAAAAAAAAABolXK9fMy8efNir732ioiIq6++Oq644ooYP378+scHDx4cF198cZx44ol5lQgAAAAAAAAA0CrleqaQzp07xzvvvBMREQsXLowhQ4Y0enzo0KGNLi8DAAAAAAAAAEBpcl0UcsQRR8Q111wTEREjRoyIu+66q9Hjd955Z/Tv3z+P0gAAAAAAAABgiym45XarZrlePmby5MkxfPjwGDFiRAwaNCguu+yymDlzZgwcODDmzp0bTz31VEyZMiXPEgEAAAAAAAAAWqVczxTSu3fvmDNnTgwbNiymTZsWKaWYNWtWzJgxI/r06RNPPPFEjBkzJs8SAQAAAAAAAABapUJKKeVdRNZWrsm7AgAAACqpYQscylY6om2byp+cdEsc8Req/RyrQKvntRCg8np+7sKKZyx5uPIZ0Bp1zPW6EGTtL+/W513CNqvv9jV5l1AxuZ4pBAAAAAAAAACAyrAoBAAAAAAAAACgCrl8DAAAAAAAAFu1nkNPr3jGkqevqHgGZM3lY6qLy8fkx+VjAAAAAAAAAABoVawdAwAAAAAAAICcFQp5V0A1cqYQAAAAAAAAAIAqZFEIAAAAAAAAAEAVsigEAAAAAAAAAKAK5boo5LLLLovXXnstzxIAAAAAAAAAAKpSrotCzjrrrPjYxz4Whx12WNxxxx2xatWqPMsBAAAAAAAAAKgauV8+5vrrr48uXbrE1772tejdu3ecccYZ8ac//SnvsgAAAAAAAAAAWrXcF4WMGTMm7rnnnvjrX/8a3/3ud2P69Omx3377xZAhQ+LnP/95LFu2LO8SAQAAAAAAAKDCCm653apX7otC1unVq1d897vfjRdffDFmzpwZH//4x+M73/lO7LrrrnmXBgAAAAAAAADQ6rTLM7xQ2PSKm8985jPxmc98Jn7yk5/EHXfc0eQY9fX1UV9f3+i+1LYmampqMqsTAAAAAAAAAKC1yfVMISmlJh/v1q1bjB8/vsnnTJo0Kbp3797o9qPJk7IsEwAAAAAAAACg1SmkYisztnLOFAIAAAAAAFDdeg49veIZS56+ouIZkLWOuV4Xgqz9dcmqvEvYZvXp2SHvEiqm1b9M1NR8dAHIyjU5FQMAAAAAAAAAsJXI9fIxs2fPjrq6uvVf33zzzTF8+PDo27dvHHTQQXH77bfnWB0AAAAAAAAAQOuV66KQE044IRYsWBAREddff32cfPLJMWjQoJg4cWIMHjw4xo8fHzfccEOeJQIAAAAAAAAAtEq5Xj5m3rx5sddee0VExNVXXx1XXHFFjB8/fv3jgwcPjosvvjhOPPHEvEoEAAAAAAAAgIorFPKugGqU65lCOnfuHO+8805ERCxcuDCGDBnS6PGhQ4c2urwMAAAAAAAAAAClyXVRyBFHHBHXXHNNRESMGDEi7rrrrkaP33nnndG/f/88SgMAAAAAAAAAaNVyvXzM5MmTY/jw4TFixIgYNGhQXHbZZTFz5swYOHBgzJ07N5566qmYMmVKniUCAAAAAAAAALRKuZ4ppHfv3jFnzpwYNmxYTJs2LVJKMWvWrJgxY0b06dMnnnjiiRgzZkyeJQIAAAAAAAAAtEqFlFLKu4isrVyTdwUAAAAAAABkpefQ0yueseTpKyqeAVnrmOt1IcjawvdW5V3CNmu3Hh3yLqFicj1TCAAAAAAAAAAAlWHtGAAAAAAAAADkrJB3AVQll48BAAAAAABgm9dz8ISKZyx55sqKZ7BtcfmY6rLI5WNy09vlYwAAAAAAAAAAaE0sCgEAAAAAAAAAqEIWhQAAAAAAAAAAVCGLQgAAAAAAAAAAqpBFIQAAAAAAAAAAVciiEAAAAAAAAACAKtQu7wKmTp0as2bNitGjR8fw4cPj4YcfjksvvTQaGhri2GOPjW984xt5lwgAAAAAAAAAFVUo5F0B1SjXM4Vcd911ccwxx8RvfvObGDNmTNxyyy1x9NFHx2677Ra77757nHHGGXHFFVfkWSIAAAAAAAAAQKuU65lCfvKTn8TVV18d48ePj0ceeSTGjBkTl112WXzrW9+KiIi///u/j0suuSROP/30PMsEAAAAAAAAAGh1cj1TSF1dXYwePToiIj772c/G2rVr4+CDD17/+MiRI+O1117LqzwAAAAAAAAAgFYr10UhO+yww/pFH4sWLYo1a9bE66+/vv7x1157Lbbffvu8ygMAAAAAAAAAaLVyvXzM2LFj46STTorjjjsu7rvvvvj6178e//Iv/xJt2rSJQqEQZ511VowaNarJMerr66O+vr7RfaltTdTU1FSydAAAAAAAAACArVquZwqZPHlyjBw5Mm6//fbYf//942c/+1mcdNJJMXbs2DjiiCNihx12iEmTJjU5xqRJk6J79+6Nbj+a3PT3AAAAAAAAAABUu0JKKeVdxMZWrlwZq1evjq5duxZ9rjOFAAAAAAAAUK6egydUPGPJM1dWPINtS8dcrwtB1ha/vzrvErZZu3Rvn3cJFbNVvkx07NgxOnbsWNJza2o+ugBk5ZpKVAUAAAAAAAAA0HrkevmY2bNnR11d3fqvb7755hg+fHj07ds3DjrooLj99ttzrA4AAAAAAAAAoPXKdVHICSecEAsWLIiIiOuvvz5OPvnkGDRoUEycODEGDx4c48ePjxtuuCHPEgEAAAAAAAAAWqVcLx8zb9682GuvvSIi4uqrr44rrrgixo8fv/7xwYMHx8UXXxwnnnhiXiUCAAAAAAAAALRKuZ4ppHPnzvHOO+9ERMTChQtjyJAhjR4fOnRoo8vLAAAAAAAAAABQmlwXhRxxxBFxzTXXRETEiBEj4q677mr0+J133hn9+/fPozQAAAAAAAAAgFYt18vHTJ48OYYPHx4jRoyIQYMGxWWXXRYzZ86MgQMHxty5c+Opp56KKVOm5FkiAAAAAAAAAECrlOuZQnr37h1z5syJYcOGxbRp0yKlFLNmzYoZM2ZEnz594oknnogxY8bkWSIAAAAAAAAAVF7BLbdbFSuklFLeRWRt5Zq8KwAAAAAAAKA16Tl4QsUzljxzZcUz2LZ0zPW6EGRt8dLVeZewzdqlW/u8S6iYXM8UAgAAAAAAAABAZThTCAAAbOO2xBFBocpPwUhj/qZojRoq/Ifbxh8tAAAR0fOwiyqeseSB8yqeQWkaGip/gNy5g2ONauJMIflxphAAAAAAAAAAAFoVi0IAAAAAAAAAAKqQRSEAAAAAAAAAAFWoXd4FAAAAAAAAAMC2rpB3AVQlZwoBAAAAAAAAAKhCFoUAAAAAAAAAAFSh3C8f8+GHH8Ztt90Wv/vd7+KNN96INm3axJ577hlHH310HHLIIXmXBwAAAAAAAADQKuV6ppD58+fHwIED49xzz40HH3wwpk+fHoVCIZ555pkYPXp0jBs3LtasWZNniQAAAAAAAAAArVKui0K+/e1vx+GHHx6LFy+O119/PSZNmhQNDQ3x1FNPxYsvvhjPPPNM/Md//EeeJQIAAAAAAAAAtEqFlFLKK7xLly7x3HPPxV577RUREatWrYrtttsu3njjjdhhhx3i3nvvjTPOOCPq6uqaNe5KJxcBAICSbYkjgkKh8hlsPfxN0Ro1VPgPt40/WgAAIqLnYRdVPGPJA+dVPIPSNDRU/gC5cwfHGtXkzaWr8y5hm7Vzt/Z5l1Ax7fIM79GjRyxbtmz91ytWrIg1a9ZEhw4dIiLik5/8ZLzxxht5lQcAAAAAAAAAW4T/J6AScr18zGGHHRZnnnlmvPTSS1FXVxennHJK7L///tG1a9eIiHj99dejV69eTY5RX18fS5cubXSrr6/fEuUDAAAAAAAAAGy1cl0Ucskll0R9fX18/OMfj/79+8dTTz0Vv/jFL9Y//vbbb8dZZ53V5BiTJk2K7t27N7r9aPKkSpcOAAAAAAAAALBVK6S0Ja723LR58+ZFfX197LPPPtGuXfOuaFNfX/+RM4OktjVRU1OTZYkAAFC1tsQRgVNfblv8TdEaNVT4D7eNP1oAACKi52EXVTxjyQPnVTyD0jQ0VP4AuXMHxxrV5K1lq/MuYZvVq2v7vEuomOatwKiQvfbaq8XfW1Pz0QUgK9eUWxEAAAAAAAAAQOuW6+VjZs+eHXV1deu/vvnmm2P48OHRt2/fOOigg+L222/PsToAAAAAAAAAgNYr10UhJ5xwQixYsCAiIq6//vo4+eSTY9CgQTFx4sQYPHhwjB8/Pm644YY8SwQAAAAAAAAAaJVyvXzMvHnz1l865uqrr44rrrgixo8fv/7xwYMHx8UXXxwnnnhiXiUCAAAAAAAAALRKuS4K6dy5c7zzzjvRr1+/WLhwYQwZMqTR40OHDm10eRkAAAAAAAAAqEaFKORdAlUo18vHHHHEEXHNNddERMSIESPirrvuavT4nXfeGf3798+jNAAAAAAAAACAVi3XM4VMnjw5hg8fHiNGjIhBgwbFZZddFjNnzoyBAwfG3Llz46mnnoopU6bkWSIAAAAAAAAAQKuU65lCevfuHXPmzIlhw4bFtGnTIqUUs2bNihkzZkSfPn3iiSeeiDFjxuRZIgAAAAAAAABAq1RIKaW8i8jayjV5VwAAAK3HljgiKLgc6jbF3xStUUOF/3Db+KMFACAieh52UcUzljxwXsUzKE1DQ+UPkDt3cKxRTd5e5oPuvOzUNdeLrFRUrmcKAQAAAAAAAACgMiwKAQAAAAAAAACoQi4f00KVPq1shFPLQl6c7hwAYOtXDe/ZHFcCRKxZW/nXwnZtvRbS+lT6cgNt2ugLqGY9j72mouMvufubFR2/mmyJ477O7b2mV5O3l7t8TF522s7lYwAAAAAAAAAAaEUsCgEAAAAAAAAAqEIWhQAAAAAAAAAAVCGLQgAAAAAAAAAAqpBFIQAAAAAAAAAAVciiEAAAAAAAAACAKtQu7wIiImbNmhVPPvlkLF68OCIidtlllxg2bFgMGTIk58oAAAAAAAAAAFqnXBeFvPXWW/GFL3whnnjiiaitrY2dd945IiLefPPN+M53vhPDhw+PX//619GrV688ywQAAAAAAACAiirkXQBVKdfLx3zrW9+KtWvXxosvvhivvvpqPP300/H000/Hq6++Gi+++GI0NDTEqaeemmeJAAAAAAAAAACtUq5nCpk+fXo89thjMWDAgI88NmDAgPjJT34SI0eO3PKFAQAAAAAAAAC0crkuCqmpqYmlS5du9vFly5ZFTU1Nk2PU19dHfX19o/tS25qi3wcAAAAAAAAAUM1yvXzMl770pTjuuONiypQpjRaHLF26NKZMmRInnHBC/NM//VOTY0yaNCm6d+/e6PajyZMqXToAAAAAAAAAwFatkFJKeYXX19fHGWecETfccEOsWbMmOnToEBERq1atinbt2sVJJ50UP/7xj5s860deZwpp2AI/tjaFQsUzgI/aEq+K2hsAoDzV8J7NcSVAxJq1lX8tbNfWayGtT0NDZXujTRt9AdWs57HXVHT8JXd/s6LjV5MtcdzXub3X9GryzvI1eZewzdpxu1wvslJRuS4KWWfp0qXx7LPPxptvvhkREbvssksceOCB0a1btxaNt3IL9IrJO6he1fABAwBAtauG92yOKwEsCoHNsSgEKIdFIVsPi0JoLotC8lPNi0Jy3bLTTjstxo0bF5/5zGfic5/7XJ6lAAAAAAAAAEBu/G8HldAmz/CrrroqRo4cGXvvvXdMnjw5Fi9enGc5AAAAAAAAAABVI9dFIRERM2bMiDFjxsSll14atbW1MXbs2Jg6dWo0NDTkXRoAAAAAAAAAQKuV+6KQfffdNy6//PJYtGhR3HLLLVFfXx9HH3109O3bNyZOnBjz58/Pu0QAAAAAAAAAgFYn90Uh67Rv3z7GjRsX06ZNi1deeSXGjx8ft956awwYMCDv0gAAAAAAAAAAWp2tZlHIhmpra+PCCy+Murq6mDZtWt7lAAAAAAAAAAC0OrkuCunXr1+0bdt2s48XCoU47LDDtmBFAAAAAAAAAADVoV2e4XV1dXnGAwAAAAAAAABUrVwXhQAAAAAAAAAAEYUo5F0CVSjXy8cAAAAAAAAAAFAZhZRSyruIrK1ck3cFAAAAAAAAUH16Dp5Q8Ywlz1xZ8Yxq0dF1IarKux+szbuEbdb2XdrmXULFOFMIAAAAAAAAAEAVsigEAAAAAAAAAKAKWRQCAAAAAAAAAFCFLAoBAAAAAAAAAKhC7fIuAAAAAAAAAAC2dYVC3hVQjZwpBAAAAAAAAACgClkUAgAAAAAAAABQhbbqRSFLliyJm266Ke8yAAAAAAAAAABana16Ucjrr78eJ5xwQt5lAAAAAAAAAAC0Ou3yDF+6dGmTjy9btmwLVQIAAAAAAAAAUF1yXRTSo0ePKBQKm308pdTk4wAAAAAAAAAAbFqui0K6du0aEydOjKFDh27y8Xnz5sXJJ5/c5Bj19fVRX1/f6L7UtiZqamoyqxMAAAAAAAAAoLXJdVHIAQccEBERI0aM2OTjPXr0iJRSk2NMmjQp/v3f/73RfRPPuyC+d/6FmdQIAAAAAAAAANAa5boo5Mtf/nKsWLFis4/vsssuccEFFzQ5xrnnnhtnnnlmo/tSW2cJAQAAAAAAAAC2bYVU7FQcrdDKNXlXAAAAAAAAANWn5+AJFc9Y8syVFc+oFh1zPQUAWVuyYm3eJWyzenZum3cJFdMmz/DTTjstHn/88TxLAAAAAAAAAACoSrkuCrnqqqti5MiRsffee8fkyZNj8eLFeZYDAAAAAAAAAFA1cl0UEhExY8aMGDNmTFx66aVRW1sbY8eOjalTp0ZDQ0PepQEAAAAAAAAAtFq5LwrZd9994/LLL49FixbFLbfcEvX19XH00UdH3759Y+LEiTF//vy8SwQAAAAAAAAAaHUKKaWUV3ibNm1i8eLF0atXr0b3v/7663HDDTfEL3/5y/jLX/4Sa9eubda4K9dkWSUAAAAAAAAQEdFz8ISKZyx55sqKZ1SLju3yroAsvfdh8z4XJzs9OrXNu4SKyf1MIZtSW1sbF154YdTV1cW0adPyLgcAAAAAAAAAoNXJdVFIv379om3bza+4KRQKcdhhh23BigAAAAAAAAAAqkOuJxSqq6vLMx4AAAAAAAAAoGptlZePAQAAAAAAAACgPBaFAAAAAAAAAABUoUJKKeVdRNZWrsm7AgCyUum9VKFQ2fEBAAAAAGienkNPr3jGkqevqHjGltCxXd4VkKX3PlybdwnbrB6d2uZdQsV4mQAAAAAAAACAnBXCf7KSPZePAQAAAAAAAACoQhaFAAAAAAAAAABUIYtCAAAAAAAAAACqkEUhAAAAAAAAAABVyKIQAAAAAAAAAIAqtFUsCmloaNjs/a+//voWrgYAAAAAAAAAoPXLdVHI0qVLY9y4cdGlS5fYeeed4/zzz4+1a9euf/ztt9+OPfbYI8cKAQAAAAAAAABap3Z5hp933nnx/PPPx8033xzvvfde/Md//EfMnj077r777ujQoUNERKSU8iwRAAAAAAAAACquUMi7AqpRrmcKueeee+K6666Lf/zHf4x//ud/jmeffTbefvvtOPLII6O+vj4iIgr+8gEAAAAAAAAAmi3XRSFvv/129OvXb/3XO+64Yzz44IOxbNmyGDNmTKxYsaLoGPX19bF06dJGt3ULSgAAAAAAAAAAtlW5Lgqpra2NF198sdF9Xbt2jRkzZsSHH34YxxxzTNExJk2aFN27d290+9HkSZUqGQAAAAAAAACgVSiklFJe4aeddlosXrw4fvWrX33ksWXLlsVhhx0WzzzzTKxdu3azY9TX13/kzCCpbU3U1NRkXi8AW16l91KuUgYAAAAAsHXpOfT0imcsefqKimdsCR3b5V0BWVq6siHvErZZ3Trmej6Nisr1ZeL73/9+LFq0aJOPde3aNR544IGYPXt2k2PU1Hx0AcjKNZmVCAAAAAAAAADQKuW63OX888+Pd999d7OPd+3aNUaMGLEFKwIAAAAAAAAAqA65Lgq56qqrYuTIkbH33nvH5MmTY/HixXmWAwAAAAAAAAC5KLjldqtmuV8YZ8aMGTFmzJi49NJLo7a2NsaOHRtTp06NhgbXSwIAAAAAAAAAaKncF4Xsu+++cfnll8eiRYvilltuifr6+jj66KOjb9++MXHixJg/f37eJQIAAAAAAAAAtDq5LwpZp3379jFu3LiYNm1avPLKKzF+/Pi49dZbY8CAAXmXBgAAAAAAAADQ6mw1i0I2VFtbGxdeeGHU1dXFtGnT8i4HAAAAAAAAAKDVyXVRSL9+/aJt27abfbxQKMRhhx22BSsCAAAAAAAAAKgO7fIMr6uryzMeAAAAAAAAAKBqbZWXjwEAAAAAAAAAoDy5nikEAAAAAAAAAIiIQt4FUI0KKaWUdxFZW7mm8hlb4qdW0PQAAAAAAACQuZ6fPb/iGUse+X7FMzo6BUBVWVbfkHcJ26yuNdV7kZXq3TIAAAAAAAAAgG2YRSEAAAAAAAAAAFXIohAAAAAAAAAAgCpkUQgAAAAAAAAAQBWyKAQAAAAAAAAAoAq1y7sAAAAAAAAAANjWFaKQdwlUodzPFJJSirq6ulizZk1ERKxatSruuOOOuOmmm+Kdd97JuToAAAAAAAAAgNYp1zOFzJ07N0aPHh1/+ctfYs8994wZM2bEF7/4xXjppZcipRSdO3eO3//+97HXXnvlWSYAAAAAAAAAQKuT65lCzj777Nhvv/3iueeei3/4h3+Iz3/+89GnT59YsmRJvPvuuzFs2LD4/ve/n2eJAAAAAAAAAACtUiGllPIK79WrV8yYMSP233//+OCDD6Jr167x2GOPxUEHHRQREb///e/jn/7pn+K1115r1rgr11Si2sa2xE+t4JJRAAAAAAAAkLmenz2/4hlLHqn8P793zPW6EGRteX1uH91v87arqd4P53M9U8jy5ctj++23j4iILl26RJcuXWLXXXdd/3jfvn3jzTffzKs8AAAAAAAAAIBWK9e1Y717947XX389amtrIyLikksuiV69eq1//O23346ePXs2OUZ9fX3U19c3ui+1rYmamprsCwYAAAAAAAAAaCVyPVPIoYceGi+99NL6r7/5zW9G165d1389Y8aMOOCAA5ocY9KkSdG9e/dGtx9NnlSxmgEAAAAAAAAAWoNCSmmrvTBRXV1ddOzYsdElZTaW15lCtsRPrVC9ly0CAAAAAACA3PT87PkVz1jyyPcrntEx1+tCkLUPVm21H91XvS4dqvfD+VzPFHLaaafF448/vtnH99hjjyYXhERE1NTURLdu3RrdXDoGAAAAAAAAANjW5boo5KqrroqRI0fG3nvvHZMnT47FixfnWQ4AAAAAAAAAQNXIdVFIRMSMGTNizJgxcemll0ZtbW2MHTs2pk6dGg0NDXmXBgAAAAAAAADQauW+KGTfffeNyy+/PBYtWhS33HJL1NfXx9FHHx19+/aNiRMnxvz58/MuEQAAAAAAAACg1cl9Ucg67du3j3HjxsW0adPilVdeifHjx8ett94aAwYMyLs0AAAAAAAAAIBWZ6tZFLKh2trauPDCC6Ouri6mTZuWdzkAAAAAAAAAAK1OuzzD+/XrF23btt3s44VCIQ477LAtWBEAAAAAAAAAbHmFvAugKuW6KKSuri7PeAAAAAAAAACAqrVVXj4GAAAAAAAAAIDyWBQCAAAAAAAAAFCFCimllHcRWVu5pvIZDVvgx9am4KpRQMs1NGyB16k2lX+dqvTLrZfarUs1vCvZEn9TW+LnpDe2LStXr614Rsf2bSuesXptQ0XHb9+28mvq9XfptsR7nUKFf1hb4riy7RZ4v1Yt1lb4b8rvonReC0tTLXNTW2I7Vq6q7HuEiIjONZV/r1Npeq90W+Jn9f6Hqys6fo/O7Ss6PrB5W+I1ZE1D6z8+3hLWrK38L+Ok25+reMYdx32q4hlsOStWVcEkeSvVuUOVvFndhOp41QYAAAAAAAAAoBGLQgAAAAAAAAAAqlC7vAsAAAAAAAAAgG1e9V7BhBw5UwgAAAAAAAAAQBWyKAQAAAAAAAAAoApZFAIAAAAAAAAAUIUsCgEAAAAAAAAAqEJb5aKQz33uc/Haa6/lXQYAAAAAAAAAQKvVLs/w++67b5P3P/bYYzF16tTo27dvREQcddRRW7IsAAAAAAAAAIBWL9dFIUcffXQUCoVIKX3ksdNOOy0iIgqFQqxdu3ZLlwYAAAAAAAAA0Krluihk9OjR0bZt27jhhhuiV69e6+9v3759PP/88/Hxj388x+oAAAAAAAAAYMsoRCHvEqhCbfIM/+1vfxuHHHJIDBo0KKZOndqiMerr62Pp0qWNbvX19RlXCgAAAAAAAADQuuS6KCQi4jvf+U7cd999cfbZZ8fJJ58cK1asaNb3T5o0Kbp3797o9qPJkypULQAAAAAAAABA65D7opCIiP333z+effbZKBQKsf/++0dKqeTvPffcc+P9999vdDvr7HMrWC0AAAAAAAAAwNavXd4FrNOpU6e49tpr47777otHHnkkdtxxx5K+r6amJmpqahrdt3JNJSoEAAAAAAAAAGg9cj1TyGmnnRaPP/54o/uOOuqo+PGPfxy9evXKqSoAAAAAAAAAgNYv10UhV111VYwcOTL23nvvmDx5cixevDjPcgAAAAAAAAAAqkaui0IiImbMmBFjxoyJSy+9NGpra2Ps2LExderUaGhoyLs0AAAAAAAAANgiCgW3vG7VLPdFIfvuu29cfvnlsWjRorjllluivr4+jj766Ojbt29MnDgx5s+fn3eJAAAAAAAAAACtTu6LQtZp3759jBs3LqZNmxavvPJKjB8/Pm699dYYMGBA3qUBAAAAAAAAALQ6W82ikA3V1tbGhRdeGHV1dTFt2rS8ywEAAAAAAAAAWO+qq66K3XffPTp27BhDhw6NWbNm5V3SJuW6KKRfv37Rtm3bzT5eKBTisMMO24IVAQAAAAAAAABs3h133BFnnnlmXHDBBTF79uzYb7/9YvTo0fHWW2/lXdpH5LoopK6uLnbYYYc8SwAAAAAAAAAAKNl//ud/xvjx4+OEE06Ij3/843HttddG586d44Ybbsi7tI/YKi8fAwAAAAAAAACwtVm1alX84Q9/iEMPPXT9fW3atIlDDz00nnzyyRwr27R2eRcAAAAAAAAAAJCX+vr6qK+vb3RfTU1N1NTUfOS577zzTqxduzZ23nnnRvfvvPPO8dJLL1W0zhZJpJUrV6YLLrggrVy5stVmVMM2yNh6xpex7WVUwzbI2HrGl7HtZVTDNsjYesaXse1lVMM2yNh6xpex7WVUwzbI2HrGl7HtZVTDNsjYesaXse1lVMM2yNh6xt9SGcDmXXDBBSkiGt0uuOCCTT534cKFKSLS73//+0b3n3XWWWnIkCFboNrmKaSUUq6rUrYCS5cuje7du8f7778f3bp1a5UZ1bANMrae8WVsexnVsA0ytp7xZWx7GdWwDTK2nvFlbHsZ1bANMrae8WVsexnVsA0ytp7xZWx7GdWwDTK2nvFlbHsZ1bANMrae8bdUBrB5zTlTyKpVq6Jz585x1113xdFHH73+/uOOOy7ee++9uPfeeytdbrO0ybsAAAAAAAAAAIC81NTURLdu3RrdNrUgJCKiQ4cOceCBB8ZDDz20/r6GhoZ46KGHYtiwYVuq5JK1y7sAAAAAAAAAAIDW4swzz4zjjjsuBg0aFEOGDInLL788PvjggzjhhBPyLu0jLAoBAAAAAAAAACjRl770pXj77bfj/PPPj8WLF8f+++8f06ZNi5133jnv0j7CopD4v1PBXHDBBZs9/UtryKiGbZCx9YwvY9vLqIZtkLH1jC9j28uohm2QsfWML2Pby6iGbZCx9YwvY9vLqIZtkLH1jC9j28uohm2QsfWML2Pby6iGbZCx9Yy/pTKAbE2YMCEmTJiQdxlFFVJKKe8iAAAAAAAAAADIVpu8CwAAAAAAAAAAIHsWhQAAAAAAAAAAVCGLQgAAAAAAAAAAqtA2vyjkqquuit133z06duwYQ4cOjVmzZmU6/mOPPRZHHnlk9O7dOwqFQtxzzz2Zjj9p0qQYPHhwdO3aNXr16hVHH310zJ07N9OMa665Jj75yU9Gt27dolu3bjFs2LD47W9/m2nGhn74wx9GoVCIM844I7MxL7zwwigUCo1u++yzT2bjr7Nw4cL46le/GjvssEN06tQp9t1333j22WczG3/33Xf/yHYUCoU49dRTM8tYu3ZtnHfeebHHHntEp06d4mMf+1hcdNFFkVLKLGPZsmVxxhlnRL9+/aJTp07x6U9/Op555pmyxizWaymlOP/882PXXXeNTp06xaGHHhrz5s3LbPy77747Ro0aFTvssEMUCoV47rnnMt2G1atXx9lnnx377rtvdOnSJXr37h1f//rXY9GiRZllRPxfr+yzzz7RpUuX6NmzZxx66KHx9NNPZ5qxoVNOOSUKhUJcfvnlmWYcf/zxH+mTww8/PNNtePHFF+Ooo46K7t27R5cuXWLw4MHx+uuvZ5axqV4vFArxox/9KLOM5cuXx4QJE6JPnz7RqVOn+PjHPx7XXnttyeOXkvHmm2/G8ccfH717947OnTvH4Ycf3qzeK2U/t3Llyjj11FNjhx12iO222y6+8IUvxJtvvplpxs9+9rMYOXJkdOvWLQqFQrz33nslj19KxrvvvhunnXZaDBgwIDp16hS1tbXx7W9/O95///1Mt+Pkk0+Oj33sY9GpU6fYaaedYuzYsfHSSy9lmrFOSimOOOKIZr3/KWX8kSNHfqQvTjnllMy34cknn4zPfe5z0aVLl+jWrVscfPDB8eGHH2aS8eqrr262x3/1q19lth2LFy+Or33ta7HLLrtEly5d4oADDohf//rXJY1fasaCBQvimGOOiZ122im6desW48aNa1b/FXufWW5/Fxu/3N4ulpFFb5eyHeX2dikZ67Skt0vNKLe/S9mGcnq7WEYWvV3KdpTb26VklNvbG9vUMV65/V1KRhY93lRGVj1ebDuy6PFiGeuU0+NNjV9uf5eSEVF+jzeVkVWPF9uOLHq8WEa5PV5sjiWL/i6WkUV/N5WRRX8X24YservU+a5yertYRhb9Xcp2lNvfTWVk0d/FtiGL3i6WkdX+u9j8ZrlzbKVkZDHP1lRGFvNsxbYhizm25sw1t3SOrVhGuXNspW5HufNsxTLKnWcrNn4Wc2zFMsqdYyv22UIW++9iGVnsv5vKyOr9ebHtyGIfXupnPVm8PweI2MYXhdxxxx1x5plnxgUXXBCzZ8+O/fbbL0aPHh1vvfVWZhkffPBB7LfffnHVVVdlNuaGHn300Tj11FPjqaeeigceeCBWr14do0aNig8++CCzjD59+sQPf/jD+MMf/hDPPvtsfO5zn4uxY8fGn//858wy1nnmmWfiuuuui09+8pOZj/2JT3wi3njjjfW33/3ud5mOv2TJkhg+fHi0b98+fvvb38b//u//xmWXXRY9e/bMLOOZZ55ptA0PPPBARER88YtfzCxj8uTJcc0118SVV14ZL774YkyePDkuueSS+OlPf5pZxj//8z/HAw88EDfffHP88Y9/jFGjRsWhhx4aCxcubPGYxXrtkksuiZ/85Cdx7bXXxtNPPx1dunSJ0aNHx8qVKzMZ/4MPPoiDDjooJk+eXJFtWLFiRcyePTvOO++8mD17dtx9990xd+7cOOqoozLLiIjYe++948orr4w//vGP8bvf/S523333GDVqVLz99tuZZawzZcqUeOqpp6J3797N2oZSMw4//PBG/XLbbbdlNv6CBQvioIMOin322SdmzpwZL7zwQpx33nnRsWPHzDI2rP2NN96IG264IQqFQnzhC1/ILOPMM8+MadOmxS233BIvvvhinHHGGTFhwoS47777MslIKcXRRx8dr7zyStx7770xZ86c6NevXxx66KEl76dK2c995zvfif/5n/+JX/3qV/Hoo4/GokWL4thjjy15G0rJWLFiRRx++OHxb//2byWP25yMRYsWxaJFi+LSSy+NP/3pT/HLX/4ypk2bFieddFKm23HggQfGjTfeGC+++GJMnz49UkoxatSoWLt2bWYZ61x++eVRKBRKrr85448fP75Rf1xyySWZZjz55JNx+OGHx6hRo2LWrFnxzDPPxIQJE6JNm9LeOhfL6Nu370d6/N///d9ju+22iyOOOCKz7fj6178ec+fOjfvuuy/++Mc/xrHHHhvjxo2LOXPmZJLxwQcfxKhRo6JQKMTDDz8cTzzxRKxatSqOPPLIaGhoKCmj2PvMcvu72Pjl9naxjCx6u5TtKLe3S8lYpyW93ZyMcvq72Pjl9naxjCx6u5TtKLe3i2Vk0dsb2twxXrn9XUpGFj3eVEZWPd5URkQ2PV4sY51yerzY+OX0dykZWfR4UxlZ9Xix7ciix5vKyKrHm5pjyaq/m8rIqr83l5FVfze1DVn1dinzXeX2drGMLPq7qYys+ntzGVn1d1PbkFVvby4jq94uZX6z3Dm2UjLKnWcrllHuPFsp21DuHFtz5ppbOsdWakY5c2ylZJQ7z1ZKRjnzbKWMX+4cW7GMLObYin22kMX+u1hGFvvvpjKy2n8X244s9uGlftZT7j4cYL20DRsyZEg69dRT13+9du3a1Lt37zRp0qSK5EVEmjJlSkXGXuett95KEZEeffTRiub07NkzXX/99ZmOuWzZsrTXXnulBx54II0YMSKdfvrpmY19wQUXpP322y+z8Tbl7LPPTgcddFBFMzZ2+umnp4997GOpoaEhszE///nPpxNPPLHRfccee2z6yle+ksn4K1asSG3btk1Tp05tdP8BBxyQJk6cmEnGxr3W0NCQdtlll/SjH/1o/X3vvfdeqqmpSbfddlvZ42+orq4uRUSaM2dOs8ctNWOdWbNmpYhIr732WsUy3n///RQR6cEHH8w0469//Wvabbfd0p/+9KfUr1+/9OMf/7hF428u47jjjktjx45t8ZjFxv/Sl76UvvrVr2Yy/uYyNjZ27Nj0uc99LtOMT3ziE+n73/9+o/vK6cWNM+bOnZsiIv3pT39af9/atWvTTjvtlH7+85+3KGPj/dx7772X2rdvn371q1+tf86LL76YIiI9+eSTmWRs6JFHHkkRkZYsWdKisUvJWOfOO+9MHTp0SKtXr65YxvPPP58iIs2fPz/TjDlz5qTddtstvfHGG2W9/9nU+Fm/R9hUxtChQ9P3vve9imZsbP/99//I/rfcjC5duqSbbrqp0fO23377zPpv+vTpqU2bNun9999f/5z33nsvFQqF9MADD7QoI6X/731mJfp7w/E3lFVvN5WxTrm9XUpGub29uYysentzGVn398bjZ93bm8rYWLm9vamMrHt744wse3tzx3hZ9ncpx5Hl9nhzjlVb2uPNyWhpjxfLKLfHmxo/q/5uKiOrHm/O76KlPd5URlY9vrmMLHq8qTmWrPq71Hmccvq7uXNFze3v5o7fkt4uJaPc3i6WkUV/F8vIor+b+/tobn8XGz+L3m4qI6v9d7H5zSzm2Jozh9rSebaWzNM2Z56tJeM3d46t1Ixy5thKySh3jq2UjHLn2Vry+2jOPFsp45c7x1YsoxJzbBt+tlCp4+/NfX6R5TF4sc9IsjgGL5aRxTH4pjIqcQwObLu22TOFrFq1Kv7whz/EoYceuv6+Nm3axKGHHhpPPvlkjpWVZ91psLbffvuKjL927dq4/fbb44MPPohhw4ZlOvapp54an//85xv9TrI0b9686N27d+y5557xla98pVmnnyvFfffdF4MGDYovfvGL0atXr/jUpz4VP//5zzPN2NCqVavilltuiRNPPDHTlaKf/vSn46GHHoqXX345IiKef/75+N3vftei/3zalDVr1sTatWs/stK7U6dOmZ+9ZZ26urpYvHhxo7+t7t27x9ChQ1t9vxcKhejRo0dFxl+1alX87Gc/i+7du8d+++2X2bgNDQ3xta99Lc4666z4xCc+kdm4G5s5c2b06tUrBgwYEN/85jfjb3/7WybjNjQ0xP333x977713jB49Onr16hVDhw6t6On73nzzzbj//vtb/F+nm/PpT3867rvvvli4cGGklOKRRx6Jl19+OUaNGpXJ+PX19RERjfq9TZs2UVNT0+J+33g/94c//CFWr17dqL/32WefqK2tbXF/V3pfWmrG+++/H926dYt27dpVJOODDz6IG2+8MfbYY4/o27dvZhkrVqyIL3/5y3HVVVfFLrvs0qJxmxo/IuLWW2+NHXfcMf7u7/4uzj333FixYkVmGW+99VY8/fTT0atXr/j0pz8dO++8c4wYMaKsfVSx38Uf/vCHeO6558rq8U1lfPrTn4477rgj3n333WhoaIjbb789Vq5cGSNHjswko76+PgqFQtTU1Kx/TseOHaNNmzYt+nlt/D4z6/6u5PvY5mSU29vFMrLo7U1lZNnbm8uIyK6/Nx6/Er1d7HeRRW9vKiPr3t44I8ve3twxXpb9XenjyOZmtLTHS80op8ebysiix4ttQxb9vbmMLHu81N9FOT3eVEZWPb65jKx6fHNzLFn2d6XncZqb0ZL+LnX8cnq7qYys9t/FtiOL/t5cRpb9Xervo6X93dT4WfX25jKy6u1i85tZzLFtiTnUlmQ0Z56tueO3ZI6tlIxy59hK3Y5y5tiKZWQxz9bc30dz59lKGb/cObZiGVnPsW382UIl5tcq9flFczPKPQYvlpHFMfimMrI+BgfYZs8UsnDhwhQR6fe//32j+88666w0ZMiQimRGhVfyrV27Nn3+859Pw4cPz3zsF154IXXp0iW1bds2de/ePd1///2Zjn/bbbelv/u7v0sffvhhSin7/xL8zW9+k+688870/PPPp2nTpqVhw4al2tratHTp0swyampqUk1NTTr33HPT7Nmz03XXXZc6duyYfvnLX2aWsaE77rgjtW3bNi1cuDDTcdeuXZvOPvvsVCgUUrt27VKhUEg/+MEPMs0YNmxYGjFiRFq4cGFas2ZNuvnmm1ObNm3S3nvvncn4G/faE088kSIiLVq0qNHzvvjFL6Zx48aVPf6GttSZQj788MN0wAEHpC9/+cuZZ/zP//xP6tKlSyoUCql3795p1qxZmWb84Ac/SIcddtj6Vc+VOFPIbbfdlu699970wgsvpClTpqSBAwemwYMHpzVr1pQ9/rqV2Z07d07/+Z//mebMmZMmTZqUCoVCmjlzZmbbsKHJkyennj17rn+NzCpj5cqV6etf/3qKiNSuXbvUoUOH9F//9V+ZZaxatSrV1tamL37xi+ndd99N9fX16Yc//GGKiDRq1Khmj7+p/dytt96aOnTo8JHnDh48OH33u9/NJGNDWfwnQyn767fffjvV1tamf/u3f8s846qrrkpdunRJEZEGDBjQ4v9i2FzGN77xjXTSSSet/7ql7382N/51112Xpk2bll544YV0yy23pN122y0dc8wxmW3Dk08+mSIibb/99umGG25Is2fPTmeccUbq0KFDevnllzPbjg1985vfTAMHDmzRNjSVsWTJkjRq1Kj1Pd6tW7c0ffr0zDLeeuut1K1bt3T66aenDz74IC1fvjxNmDAhRUT6xje+UfLYm3ufmVV/l/I+ttzeLvW9cjm9XSwji95uKiOr3m4qI4v+3tz4WfZ2qb/vcnq7qYysentzGVn1dlPHeFn1d6nHkeX0eHOOVVva46VklNvjxTLK7fFi42fR301lZNXjzfl9t7THi2Vk0eNNZWTR403NsWTV36XO45TT382ZK2pJf5cyfrm9XSwji/13sYws+rupjKz6uzm/75b0d7Hxs+jtpjKy2n8Xm9/MYo6tOXOoLZ1na+48bXPn2Uodv5w5tlIyyp1jKyWj3Dm2YhlZzLM19/fd3Hm2UsYvd46tWEbWc2wbf7aQ9fzapjI2lNWZQop9RlLu/FpTGVnNr20uI6tjcIB1LAqpokUhp5xySurXr1/6y1/+kvnY9fX1ad68eenZZ59N55xzTtpxxx3Tn//850zGfv3111OvXr3S888/v/6+Spw6ekNLlixJ3bp1y/QSOO3bt0/Dhg1rdN9pp52W/v7v/z6zjA2NGjUq/cM//EPm4952222pT58+6bbbbksvvPBCuummm9L222+f6eKW+fPnp4MPPjhFRGrbtm0aPHhw+spXvpL22WefTMav9kUhq1atSkceeWT61Kc+1ei0oFllLF++PM2bNy89+eST6cQTT0y77757evPNNzPJePbZZ9POO+/c6A1uJRaFbGzBggUtvgzOxuOv23/80z/9U6PnHXnkken//b//1+zxN5WxsQEDBqQJEya0aOymMn70ox+lvffeO913333p+eefTz/96U/Tdttt1+LLPmwq49lnn0377bff+n4fPXp0OuKII9Lhhx/e7PE3tZ/L+qC12L40i4PWYhnvv/9+GjJkSDr88MPTqlWrMs9477330ssvv5weffTRdOSRR6YDDjigRQuONpVx7733pv79+6dly5atv6+l739KfV/z0EMPtfgUnZvKWLfPOPfccxs9d999903nnHNOJhkbWrFiRerevXu69NJLmz12sYwJEyakIUOGpAcffDA999xz6cILL0zdu3dPL7zwQmYZ06dPT3vuuWcqFAqpbdu26atf/Wo64IAD0imnnFLy2Jt7n5lVf5fyPrbc3i4lo9zeLpaRRW9vLiPL3m7OcUVL+ntz42fZ26VsQ7m93VRGVr3dVEa5vV3sGC+L/m7OcWRLe7w5GS3t8VIzyunxYhnl9nhLjumb29/FMrLo8eZsR0t7vJSMcnu8lIws9t8b2nCOpRIfKm2csaEsTz+/uYws3p9vbvys3ptvKiPL/ffmMjalnPfnm8rI+v35pjI2lMX7802Nn+V7881lZNHbxeY3s5hja84cakvn2ZqT0ZJ5tlLHL2eOrVhGFnNsLZnPbu4cW7GMLObZmrsdzZ1nK2X8cufYSsnIco5t488WKrH/burzi6z2301lZLX/3lxGlvvwjTMqtQ8Htm3b7KKQ+vr61LZt24+8iH79619PRx11VEUyK/mifeqpp6Y+ffqkV155pSLjb+yQQw5p1irzpkyZMmX9G5l1t4hYfwDTkv/sL8WgQYPKOnjcWG1tbaOVmymldPXVV6fevXtnlrHOq6++mtq0aZPuueeezMfu06dPuvLKKxvdd9FFF6UBAwZknrV8+fL1B5Hjxo1LY8aMyWTcjXtt3cHKxgeQBx98cPr2t79d9vgbqvSikFWrVqWjjz46ffKTn0zvvPNORTI21r9//xafLWbjjB//+Mfre3vDfm/Tpk3q169fJhmbs+OOO6Zrr7227PHr6+tTu3bt0kUXXdToed/97nfTpz/96WaPv6mMDT322GMpItJzzz3XorE3l7FixYrUvn37NHXq1EbPO+mkk9Lo0aMzydjQe++9l956662UUkpDhgxJ3/rWt5o19ub2c+smHDc+iKytrU3/+Z//mUnGhso9aC2WsXTp0jRs2LB0yCGHtPhAsjnvCerr61Pnzp3Tf//3f2eScfrpp2+2x0eMGFGRbVi+fHmKiDRt2rRMtuGVV15JEZFuvvnmRvePGzeu2WdnKmU7brrpptS+ffv1/dFcm8uYP3/+R643nNL/vYc7+eSTM8nY0Ntvv72+L3beeed0ySWXNCtj4xq/8Y1vZNrfmxp/Q1l+oLSpjCx6u1jGhlra25vLyKq3m8rYlJb296bGz7K3N5exoXJ7e3MZWfb25jI21NLeLnaM9+CDD5bd3805jmxpj5eaUU6Pt+R4uLk9XixjwoQJZfV4S7ahuf1dLGNdb5TT483Zjpb2eKnbUU6PN2c7stx/r5tjqdT+e8OMDWW9D984I+t9eFNzUVntv9dlVHL/3dR2ZLH/3jCjkvvwTW1HlvvwdeNXcv+9qW0op7eLzW9mMcfWnDnUls6zlZrR0nm2ls4DN2eOrVhGFnNsLd2O5syxFcvIYp6tOdvRknm2YuNnMcfWnG0od45tU58tZL3/Lvb5RRb776Yystp/l/o5TDn78E1lVHIfDmy72sQ2qkOHDnHggQfGQw89tP6+hoaGeOihhyp2jfFKSCnFhAkTYsqUKfHwww/HHnvssUVyGxoa1l/HrlyHHHJI/PGPf4znnntu/W3QoEHxla98JZ577rlo27ZtJjkbWr58eSxYsCB23XXXzMYcPnx4zJ07t9F9L7/8cvTr1y+zjHVuvPHG6NWrV3z+85/PfOwVK1ZEmzaNXxratm0bDQ0NmWd16dIldt1111iyZElMnz49xo4dm3lGRMQee+wRu+yyS6N+X7p0aTz99NOtqt9Xr14d48aNi3nz5sWDDz4YO+ywwxbJzbLfv/a1r8ULL7zQqN979+4dZ511VkyfPj2TjE3561//Gn/7298y6fkOHTrE4MGDt1i//+IXv4gDDzyw5GvOlmr16tWxevXqLdbv3bt3j5122inmzZsXzz77bMn9Xmw/d+CBB0b79u0b9ffcuXPj9ddfL7m/t8S+tJSMpUuXxqhRo6JDhw5x3333NbpObFYZm/qelFLJPV4s45xzzvlIj0dE/PjHP44bb7yxItuwLqPU/i6Wsfvuu0fv3r3L6vHmbMcvfvGLOOqoo2KnnXYqaexSM9Zdx72cHm/Oduy4447Ro0ePePjhh+Ott96Ko446qlnbs6F1+50s+rup8Stpw4xye7uUjI01t7eLZZTb26VkbEpz+7up8bPo7WIZG2ppbxfLyKK3i2VsqKW9XewYb9CgQWX395Y4jiwlo9web8l2NLfHi2VMnDixrB5vyTY0t7+LZey5555l93hztqOlPV4sI4seb852ZLX/3nCOpVL770rM4xTLyHofXmwbsth/b5hRqf13se3IYv+9YUal9uGb246s9uEbjl+p/ffmtqGc3i42v5nFHNuWmEMtJaOcebaWbkNzjkWKZWQxx9aS7WjuHFuxjCzm2ZqzHS2ZZys2fhZzbM3ZhpbOsa2zqc8Wst5/V/Lzi2IZWe6/S92Ocvbhm8qo5DE4sA3boktQtjK33357qqmpSb/85S/T//7v/6ZvfOMbqUePHmnx4sWZZSxbtizNmTMnzZkzJ0XE+uvivfbaa5mM/81vfjN17949zZw5M73xxhvrbytWrMhk/JRSOuecc9Kjjz6a6urq0gsvvJDOOeecVCgU0owZMzLL2FjWl4/5l3/5lzRz5sxUV1eXnnjiiXTooYemHXfcMbP/3EsppVmzZqV27dqliy++OM2bNy/deuutqXPnzumWW27JLCOllNauXZtqa2vT2Wefnem46xx33HFpt912S1OnTk11dXXp7rvvTjvuuGNZp3nd2LRp09Jvf/vb9Morr6QZM2ak/fbbLw0dOrSs07gV67Uf/vCHqUePHuuvgTl27Ni0xx57lLxSuNj4f/vb39KcOXPS/fffnyIi3X777WnOnDnpjTfeyGQbVq1alY466qjUp0+f9NxzzzXq9/r6+kwyli9fns4999z05JNPpldffTU9++yz6YQTTkg1NTUf+W+Wcn5WG2vJ5WOayli2bFn613/91/Tkk0+murq69OCDD6YDDjgg7bXXXmnlypWZbMPdd9+d2rdvn372s5+lefPmpZ/+9Kepbdu26fHHH89kG9Z5//33U+fOndM111zTrJ9PqRkjRoxIn/jEJ9IjjzySXnnllXTjjTemjh07pquvvjqzjDvvvDM98sgjacGCBemee+5J/fr1S8cee2zJ45eynzvllFNSbW1tevjhh9Ozzz6bhg0b9pFTbpab8cYbb6Q5c+akn//85yki0mOPPZbmzJmT/va3v2WS8f7776ehQ4emfffdN82fP7/Rc0o9Y1axjAULFqQf/OAH6dlnn02vvfZaeuKJJ9KRRx6Ztt9++5JPX9uS9x3RjDOlFRt//vz56fvf/3569tlnU11dXbr33nvTnnvumQ4++OCSxi91G3784x+nbt26pV/96ldp3rx56Xvf+17q2LFjyafALvXnNG/evFQoFNJvf/vbkusvNWPVqlWpf//+6TOf+Ux6+umn0/z589Oll16aCoVCuv/++zPbjhtuuCE9+eSTaf78+enmm29O22+/fTrzzDNL3o5i7zPL7e9i45fb28UysujtYhlZ9HYpP6uNNae3S8nIor+LbUO5vV1KRkrl9XaxjCx6u5TtKLe3N2XjY7xy+7uUjCx6vKmMrHq8qYyserypjE1pSY9vbvws+rtYRkrZ9HixjJTK7/GmMrLq8aYyUiq/x4vNsWTR38UysujvpjKy6O+mxs+qt5s739WS3m4qI6v+LrYdWfR3KT+rcvq7qfGz6u1i25DF/ruU+c1y59hKySh3nq1YRrnzbMXGz2KOrSVzzc2dYyuWkcUcWynbUe48W6k/q5bOs5UyfrlzbKVklDvHllLTny1k9f68qYys3p9vLiPL9+eby8jy/XlzPusp9/05wDa9KCSllH7605+m2tra1KFDhzRkyJD01FNPZTr+utNgbXw77rjjMhl/U2NHRLrxxhszGT+llE488cTUr1+/1KFDh7TTTjulQw45pKILQlLKflHIl770pbTrrrumDh06pN122y196UtfKmtiaHP+53/+J/3d3/1dqqmpSfvss0/62c9+lnnG9OnTU0SkuXPnZj52Sv93arXTTz891dbWpo4dO6Y999wzTZw4sVkLD4q544470p577pk6dOiQdtlll3Tqqaem9957r6wxi/VaQ0NDOu+889LOO++campq0iGHHNKsn2Gx8W+88cZNPn7BBRdkkrHudJmbuj3yyCOZZHz44YfpmGOOSb17904dOnRIu+66azrqqKPSrFmzSh6/lJ/VxlqyKKSpjBUrVqRRo0alnXbaKbVv3z7169cvjR8/vlkL/krZhl/84hepf//+qWPHjmm//fZr9uWcSsm47rrrUqdOnVrcH8Uy3njjjXT88cen3r17p44dO6YBAwakyy67LDU0NGSWccUVV6Q+ffqk9u3bp9ra2vS9732vWa8npeznPvzww/Stb30r9ezZM3Xu3Dkdc8wxzVqQVUrGBRdcUNb+tljG5n6OEZHq6uoyyVi4cGE64ogjUq9evVL79u1Tnz590pe//OX00ksvZfqz2tT3lHrQWmz8119/PR188MFp++23TzU1Nal///7prLPOKvm6z83ZhkmTJqU+ffqkzp07p2HDhjVr0VepGeeee27q27dvWrt2bcljNyfj5ZdfTscee2zq1atX6ty5c/rkJz+Zbrrppkwzzj777LTzzjun9u3bp7322qvZryHF3meW29/Fxi+3t4tlZNHbxTKy6O1iGZvSnN4uJSOL/i5lG8rp7VIzyuntUjLK7e1SMsrt7U3Z+Biv3P4uJSOLHm8qI6sebyojqx5vKmNTWtLjmxs/i/4ulrFOuT1eSka5PV4sI4seL5ZRbo8Xm2PJor+LZWTR301lZNHfTY2fVW83d76rJb3dVEZW/V3KdpTb36VklNPfxcbPoreLZWS1/y42v1nuHFspGVnMszWVkcU8W1PjZzXH1ty55pbMsTWVkcUcW6nbUe48WykZ5cyzFRs/izm2YhnlzrGl1PRnC1m9P28qI6v355vLyPL9+eYysnx/3pzPesp9fw5QSCmlAAAAAAAAAACgqrQp/hQAAAAAAAAAAFobi0IAAAAAAAAAAKqQRSEAAAAAAAAAAFXIohAAAAAAAAAAgCpkUQgAAAAAAAAAQBWyKAQAAAAAAAAAoApZFAIAAAAAAAAAUIUsCgEAAAAAAAAAqEIWhQAAAEAzHX/88XH00Uev/3rkyJFxxhlnbPE6Zs6cGYVCId57770tng0AAADA1s+iEAAAAKrG8ccfH4VCIQqFQnTo0CH69+8f3//+92PNmjUVzb377rvjoosuKum5FnIAAAAAsKW0y7sAAAAAyNLhhx8eN954Y9TX18dvfvObOPXUU6N9+/Zx7rnnNnreqlWrokOHDplkbr/99pmMAwAAAABZcqYQAAAAqkpNTU3ssssu0a9fv/jmN78Zhx56aNx3333rL/ly8cUXR+/evWPAgAEREfGXv/wlxo0bFz169Ijtt98+xo4dG6+++ur68dauXRtnnnlm9OjRI3bYYYf47ne/GymlRpkbXz6mvr4+zj777Ojbt2/U1NRE//794xe/+EW8+uqr8dnPfjYiInr27BmFQiGOP/74iIhoaGiISZMmxR577BGdOnWK/fbbL+66665GOb/5zW9i7733jk6dOsVnP/vZRnUCAAAAwMYsCgEAAKCqderUKVatWhUREQ899FDMnTs3HnjggZg6dWqsXr06Ro8eHV27do3HH388nnjiidhuu+3i8MMPX/89l112Wfzyl7+MG264IX73u9/Fu+++G1OmTGky8+tf/3rcdttt8ZOf/CRefPHFuO6662K77baLvn37xq9//euIiJg7d2688cYbccUVV0RExKRJk+Kmm26Ka6+9Nv785z/Hd77znfjqV78ajz76aET83+KVY489No488sh47rnn4p//+Z/jnHPOqdSPDQAAAIAq4PIxAAAAVKWUUjz00EMxffr0OO200+Ltt9+OLl26xPXXX7/+sjG33HJLNDQ0xPXXXx+FQiEiIm688cbo0aNHzJw5M0aNGhWXX355nHvuuXHsscdGRMS1114b06dP32zuyy+/HHfeeWc88MADceihh0ZExJ577rn+8XWXmunVq1f06NEjIv7vzCI/+MEP4sEHH4xhw4at/57f/e53cd1118WIESPimmuuiY997GNx2WWXRUTEgAED4o9//GNMnjw5w58aAAAAANXEohAAAACqytSpU2O77baL1atXR0NDQ3z5y1+OCy+8ME499dTYd9991y8IiYh4/vnnY/78+dG1a9dGY6xcuTIWLFgQ77//frzxxhsxdOjQ9Y+1a9cuBg0a9JFLyKzz3HPPRdu2bWPEiBEl1zx//vxYsWJFHHbYYY3uX7VqVXzqU5+KiIgXX3yxUR0RsX4BCQAAAABsikUhAAAAVJXPfvazcc0110SHDh2id+/e0a7d/3fo26VLl0bPXb58eRx44IFx6623fmScnXbaqUX5nTp1avb3LF++PCIi7r///thtt90aPVZTU9OiOgAAAADAohAAAACqSpcuXaJ///4lPfeAAw6IO+64I3r16hXdunXb5HN23XXXePrpp+Pggw+OiIg1a9bEH/7whzjggAM2+fx99903Ghoa4tFHH11/+ZgNrTtTydq1a9ff9/GPfzxqamri9ddf3+wZRgYOHBj33Xdfo/ueeuqp4hsJAAAAwDarTd4FAAAAQF6+8pWvxI477hhjx46Nxx9/POrq6mLmzJnx7W9/O/76179GRMTpp58eP/zhD+Oee+6Jl156Kb71rW/Fe++9t9kxd9999zjuuOPixBNPjHvuuWf9mHfeeWdERPTr1y8KhUJMnTo13n777Vi+fHl07do1/vVf/zW+853vxH/913/FggULYvbs2fHTn/40/uu//isiIk455ZSYN29enHXWWTF37tz47//+7/jlL39Z6R8RAAAAAK2YRSEAAABsszp37hyPPfZY1NbWxrHHHhsDBw6Mk046KVauXLn+zCH/8i//El/72tfiuOOOi2HDhkXXrl3jmGOOaXLca665Jv7xH/8xvvWtb8U+++wT48ePjw8++CAiInbbbbf493//9zjnnHNi5513jgkTJkRExEUXXRTnnXdeTJo0KQYOHBiHH3543H///bHHHntERERtbW38+te/jnvuuSf222+/uPbaa+MHP/hBBX86AAAAALR2hZRSyrsIAAAAAAAAAACy5UwhAAAAAAAAAABVyKIQAAAAAAAAAIAqZFEIAAAAAAAAAEAVsigEAAAAAAAAAKAKWRQCAAAAAAAAAFCFLAoBAAAAAAAAAKhCFoUAAAAAAAAAAFQhi0IAAAAAAAAAAKqQRSEAAAAAAAAAAFXIohAAAAAAAAAAgCpkUQgAAAAAAAAAQBWyKAQAAAAAAAAAoAr9/wBI0KZ7aUbnuwAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["❌ [TRAINING] RF model not found. Training...\n"]},{"data":{"text/html":["
Model: \"functional_2\"\n","
\n"],"text/plain":["\u001b[1mModel: \"functional_2\"\u001b[0m\n"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃ Layer (type)                     Output Shape                  Param # ┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ input_layer (InputLayer)        │ (None, 894)            │             0 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ reshape_2 (Reshape)             │ (None, 894, 1)         │             0 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ conv1d_2 (Conv1D)               │ (None, 892, 128)       │           512 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ max_pooling1d_2 (MaxPooling1D)  │ (None, 446, 128)       │             0 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ bidirectional_2 (Bidirectional) │ (None, 128)            │        74,496 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dropout_3 (Dropout)             │ (None, 128)            │             0 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dropout_4 (Dropout)             │ (None, 128)            │             0 │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ rf_output (Dense)               │ (None, 2)              │           258 │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n","
\n"],"text/plain":["┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n","┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n","┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n","│ input_layer (\u001b[38;5;33mInputLayer\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m894\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ reshape_2 (\u001b[38;5;33mReshape\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m894\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ conv1d_2 (\u001b[38;5;33mConv1D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m892\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ max_pooling1d_2 (\u001b[38;5;33mMaxPooling1D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m446\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ bidirectional_2 (\u001b[38;5;33mBidirectional\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m74,496\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dropout_3 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ dropout_4 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n","├─────────────────────────────────┼────────────────────────┼───────────────┤\n","│ rf_output (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2\u001b[0m) │ \u001b[38;5;34m258\u001b[0m │\n","└─────────────────────────────────┴────────────────────────┴───────────────┘\n"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["
 Total params: 75,266 (294.01 KB)\n","
\n"],"text/plain":["\u001b[1m Total params: \u001b[0m\u001b[38;5;34m75,266\u001b[0m (294.01 KB)\n"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["
 Trainable params: 75,266 (294.01 KB)\n","
\n"],"text/plain":["\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m75,266\u001b[0m (294.01 KB)\n"]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["
 Non-trainable params: 0 (0.00 B)\n","
\n"],"text/plain":["\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["Epoch 1/30\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m41s\u001b[0m 35ms/step - accuracy: 0.6558 - loss: 0.6182 - val_accuracy: 0.6593 - val_loss: 0.5854 - learning_rate: 0.0010\n","Epoch 2/30\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m38s\u001b[0m 34ms/step - accuracy: 0.7418 - loss: 0.5153 - val_accuracy: 0.8361 - val_loss: 0.3447 - learning_rate: 0.0010\n","Epoch 3/30\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m38s\u001b[0m 35ms/step - accuracy: 0.8632 - loss: 0.3019 - val_accuracy: 0.8892 - val_loss: 0.2499 - learning_rate: 0.0010\n","Epoch 4/30\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m39s\u001b[0m 35ms/step - accuracy: 0.8886 - loss: 0.2550 - val_accuracy: 0.8922 - val_loss: 0.2486 - learning_rate: 0.0010\n","Epoch 5/30\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m38s\u001b[0m 35ms/step - accuracy: 0.8957 - loss: 0.2392 - val_accuracy: 0.9000 - val_loss: 0.2292 - learning_rate: 0.0010\n","Epoch 6/30\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m38s\u001b[0m 35ms/step - accuracy: 0.8872 - loss: 0.2546 - val_accuracy: 0.8954 - val_loss: 0.2393 - learning_rate: 0.0010\n","Epoch 7/30\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m38s\u001b[0m 35ms/step - accuracy: 0.9044 - loss: 0.2183 - val_accuracy: 0.9074 - val_loss: 0.2107 - learning_rate: 0.0010\n","Epoch 8/30\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m38s\u001b[0m 35ms/step - accuracy: 0.9128 - loss: 0.2027 - val_accuracy: 0.9165 - val_loss: 0.1974 - learning_rate: 0.0010\n","Epoch 9/30\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m38s\u001b[0m 35ms/step - accuracy: 0.9182 - loss: 0.1920 - val_accuracy: 0.9196 - val_loss: 0.1917 - learning_rate: 0.0010\n","Epoch 10/30\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m38s\u001b[0m 35ms/step - accuracy: 0.9180 - loss: 0.1932 - val_accuracy: 0.9174 - val_loss: 0.2002 - learning_rate: 0.0010\n","Epoch 11/30\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m38s\u001b[0m 34ms/step - accuracy: 0.9213 - loss: 0.1864 - val_accuracy: 0.9257 - val_loss: 0.1844 - learning_rate: 0.0010\n","Epoch 12/30\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m38s\u001b[0m 35ms/step - accuracy: 0.9240 - loss: 0.1772 - val_accuracy: 0.9144 - val_loss: 0.1981 - learning_rate: 0.0010\n","Epoch 13/30\n","\u001b[1m1105/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 31ms/step - accuracy: 0.9224 - loss: 0.1826\n","Epoch 13: ReduceLROnPlateau reducing learning rate to 0.0005000000237487257.\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m38s\u001b[0m 35ms/step - accuracy: 0.9224 - loss: 0.1826 - val_accuracy: 0.9234 - val_loss: 0.1857 - learning_rate: 0.0010\n","Epoch 14/30\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m38s\u001b[0m 35ms/step - accuracy: 0.9320 - loss: 0.1628 - val_accuracy: 0.9227 - val_loss: 0.1829 - learning_rate: 5.0000e-04\n","Epoch 15/30\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m38s\u001b[0m 35ms/step - accuracy: 0.9303 - loss: 0.1628 - val_accuracy: 0.9233 - val_loss: 0.1851 - learning_rate: 5.0000e-04\n","Epoch 16/30\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m38s\u001b[0m 35ms/step - accuracy: 0.9315 - loss: 0.1592 - val_accuracy: 0.9259 - val_loss: 0.1778 - learning_rate: 5.0000e-04\n","Epoch 17/30\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m38s\u001b[0m 35ms/step - accuracy: 0.9325 - loss: 0.1575 - val_accuracy: 0.9257 - val_loss: 0.1815 - learning_rate: 5.0000e-04\n","Epoch 18/30\n","\u001b[1m1105/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 31ms/step - accuracy: 0.9349 - loss: 0.1548\n","Epoch 18: ReduceLROnPlateau reducing learning rate to 0.0002500000118743628.\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m38s\u001b[0m 35ms/step - accuracy: 0.9349 - loss: 0.1548 - val_accuracy: 0.9275 - val_loss: 0.1800 - learning_rate: 5.0000e-04\n","Epoch 19/30\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m38s\u001b[0m 35ms/step - accuracy: 0.9375 - loss: 0.1488 - val_accuracy: 0.9292 - val_loss: 0.1774 - learning_rate: 2.5000e-04\n","Epoch 20/30\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m39s\u001b[0m 35ms/step - accuracy: 0.9377 - loss: 0.1466 - val_accuracy: 0.9295 - val_loss: 0.1874 - learning_rate: 2.5000e-04\n","Epoch 21/30\n","\u001b[1m1105/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 31ms/step - accuracy: 0.9400 - loss: 0.1416\n","Epoch 21: ReduceLROnPlateau reducing learning rate to 0.0001250000059371814.\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m38s\u001b[0m 35ms/step - accuracy: 0.9400 - loss: 0.1416 - val_accuracy: 0.9288 - val_loss: 0.1806 - learning_rate: 2.5000e-04\n","Epoch 22/30\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m38s\u001b[0m 35ms/step - accuracy: 0.9399 - loss: 0.1387 - val_accuracy: 0.9292 - val_loss: 0.1836 - learning_rate: 1.2500e-04\n","Epoch 23/30\n","\u001b[1m1105/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 31ms/step - accuracy: 0.9431 - loss: 0.1338\n","Epoch 23: ReduceLROnPlateau reducing learning rate to 6.25000029685907e-05.\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m38s\u001b[0m 35ms/step - accuracy: 0.9431 - loss: 0.1338 - val_accuracy: 0.9280 - val_loss: 0.1821 - learning_rate: 1.2500e-04\n","Epoch 24/30\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m38s\u001b[0m 35ms/step - accuracy: 0.9427 - loss: 0.1342 - val_accuracy: 0.9283 - val_loss: 0.1841 - learning_rate: 6.2500e-05\n"]},{"name":"stderr","output_type":"stream","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"name":"stdout","output_type":"stream","text":["✅ تم حفظ النموذج.\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABW4AAAHqCAYAAACUWtfDAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA2jhJREFUeJzs3Xd4VNXaxuHfzKT3kE5JaKH3KlU8gBRFRRDEgoDls2BDPYoiIKh4LMixN5qIBRUVD4giitKrSO8ltDQgldSZ+f7YyYQYAklISHvu65prz+xZa887Ac8Znqx5l8lut9sRERERERERERERkQrDXN4FiIiIiIiIiIiIiEh+Cm5FREREREREREREKhgFtyIiIiIiIiIiIiIVjIJbERERERERERERkQpGwa2IiIiIiIiIiIhIBaPgVkRERERERERERKSCUXArIiIiIiIiIiIiUsEouBURERERERERERGpYBTcioiIiIiIiIiIiFQwCm5FROSKWLBgATVq1CAlJaVI41NSUrjnnnsIDQ3FZDLx2GOPsWvXLpycnNixY0cZVysiIiIilc2DDz5I3759izx+//79XHvttfj6+mIymfj+++/54IMPCA8PJyMjowwrFREpGgW3IiJF9N5772EymejcuXN5l1LpWK1WJk2axMMPP4yXl1eR5rz88svMmTOHBx54gHnz5nHnnXfSrFkzrrvuOiZOnFjGFYuIiIjInDlzMJlMbNq0qbxLuaTDhw/zySef8OyzzxZ5zl133cX27dt56aWXmDdvHh06dGDUqFFkZmby4YcflmG1IiJFY7Lb7fbyLkJEpDLo1q0bJ0+e5MiRI+zfv5+GDRuWd0mVxvfff8/NN9/MsWPHqFWrVpHmXHXVVTg5ObFq1ap853/66ScGDhzIgQMHaNCgQVmUKyIiIiIYwe3o0aPZuHEjHTp0KO9yLuqxxx7jp59+Yu/evUUan5aWhoeHB8899xwvvvhivueefvppvvrqKw4fPozJZCqLckVEikQrbkVEiuDw4cOsWbOG6dOnExQUxPz588u7pEKlpqaWdwkFzJ49m27dul0ytLXZbKSnpwMQGxuLn59fgTF9+vTB39+fuXPnlkWpIiIiIlLJZGVlMX/+fIYNG3bJsenp6dhsNuLi4gAu+Hlz2LBhHD16lN9//720SxURKRYFtyIiRTB//nz8/f257rrrGDp0aKHBbUJCAo8//jh169bF1dWV2rVrM3LkSOLj4x1j0tPTmTx5Mo0aNcLNzY2wsDBuvvlmDh48CMCKFSswmUysWLEi37WPHDmCyWRizpw5jnOjRo3Cy8uLgwcPMnDgQLy9vbn99tsBWLlyJbfccgvh4eG4urpSp04dHn/8cdLS0grUvWfPHoYNG0ZQUBDu7u40btyY5557DoDff/8dk8nEd999V2De559/jslkYu3atYX+7NLT01m6dCl9+vQp8JzJZGLs2LHMnz+f5s2b4+rqytKlSzGZTBw+fJjFixdjMpkwmUwcOXIEAGdnZ3r16sUPP/xQ6GuKiIiIyJXz119/MWDAAHx8fPDy8qJ3796sW7cu35isrCxeeOEFIiMjcXNzIyAggO7du7Ns2TLHmOjoaEaPHk3t2rVxdXUlLCyMG2+80fE5sDCrVq0iPj6+wOfN3M/VX375JRMmTKBWrVp4eHgwbtw4IiIiAHjqqacwmUzUrVvXMa99+/bUqFFDnzdFpNw5lXcBIiKVwfz587n55ptxcXFhxIgRvP/++2zcuJGOHTs6xqSkpNCjRw92797NmDFjaNeuHfHx8SxatIjjx48TGBiI1Wrl+uuvZ/ny5dx66608+uijJCcns2zZMnbs2FGir/5nZ2fTr18/unfvzuuvv46HhwcAX3/9NefOneOBBx4gICCADRs28Pbbb3P8+HG+/vprx/xt27bRo0cPnJ2due+++6hbty4HDx7kxx9/5KWXXqJXr17UqVOH+fPnM3jw4AI/lwYNGtClS5dC69u8eTOZmZm0a9fugs//9ttvLFiwgLFjxxIYGEhYWBjz5s3j8ccfp3bt2jzxxBMABAUFOea0b9+eH374gaSkJHx8fIr9MxMRERGR0rFz50569OiBj48P//73v3F2dubDDz+kV69e/PHHH479ISZPnsy0adO455576NSpE0lJSWzatIktW7Y4NhQbMmQIO3fu5OGHH6Zu3brExsaybNkyoqKi8gWr/7RmzRpMJhNt27a94PNTp07FxcWFJ598koyMDAYOHEjdunV5/PHHGTFiBAMHDiywD0O7du1YvXp16fyQRERKyi4iIhe1adMmO2BftmyZ3W632202m7127dr2Rx99NN+4iRMn2gH7woULC1zDZrPZ7Xa7fdasWXbAPn369ELH/P7773bA/vvvv+d7/vDhw3bAPnv2bMe5u+66yw7Yn3nmmQLXO3fuXIFz06ZNs5tMJvvRo0cd53r27Gn39vbOd+78eux2u338+PF2V1dXe0JCguNcbGys3cnJyT5p0qQCr3O+Tz75xA7Yt2/fXuA5wG42m+07d+4s8FxERIT9uuuuu+A1P//8cztgX79+/UVfW0RERERKbvbs2XbAvnHjxkLH3HTTTXYXFxf7wYMHHedOnjxp9/b2tvfs2dNxrnXr1oV+trPb7fazZ8/aAftrr71W7DrvuOMOe0BAQIHzuZ+r69evX+Czce5n68Je77777rO7u7sXuxYRkdKkVgkiIpcwf/58QkJCuOaaawDj6/3Dhw/nyy+/xGq1OsZ9++23tG7dusCq1Nw5uWMCAwN5+OGHCx1TEg888ECBc+7u7o77qampxMfH07VrV+x2O3/99RcAcXFx/Pnnn4wZM4bw8PBC6xk5ciQZGRl88803jnNfffUV2dnZ3HHHHRet7fTp0wD4+/tf8Pmrr76aZs2aXeId5pd7rfNbUIiIiIjIlWW1Wvnll1+46aabqF+/vuN8WFgYt912G6tWrSIpKQkwesnu3LmT/fv3X/Ba7u7uuLi4sGLFCs6ePVusOk6fPl3oZ02Au+66K99n46Lw9/cnLS2Nc+fOFWueiEhpUnArInIRVquVL7/8kmuuuYbDhw9z4MABDhw4QOfOnYmJiWH58uWOsQcPHqRFixYXvd7Bgwdp3LgxTk6l16nGycmJ2rVrFzgfFRXFqFGjqFGjBl5eXgQFBXH11VcDkJiYCMChQ4cALll3kyZN6NixY77evvPnz+eqq66iYcOGRarTbrdf8Hy9evWKNP9C19IuvyIiIiLlJy4ujnPnztG4ceMCzzVt2hSbzcaxY8cAmDJlCgkJCTRq1IiWLVvy1FNPsW3bNsd4V1dX/vOf//DTTz8REhJCz549efXVV4mOji5SLYV91gR93hSRykvBrYjIRfz222+cOnWKL7/8ksjISMctd8fawjYpuxyFfTg8f3Xv+VxdXTGbzQXG9u3bl8WLF/P000/z/fffs2zZMsfGZjabrdh1jRw5kj/++IPjx49z8OBB1q1bd8nVtgABAQEAha6cKO7qh/OvFRgYWOy5IiIiInLl9ezZk4MHDzJr1ixatGjBJ598Qrt27fjkk08cYx577DH27dvHtGnTcHNz4/nnn6dp06aOb4sVJiAg4KKrdEv6edPDw6NEc0VESouCWxGRi5g/fz7BwcF8/fXXBW4jRozgu+++Iy0tDYAGDRqwY8eOi16vQYMG7N27l6ysrELH5H7NKyEhId/5o0ePFrnu7du3s2/fPt544w2efvppbrzxRvr06UPNmjXzjcv9Stul6ga49dZbsVgsfPHFF8yfPx9nZ2eGDx9+yXlNmjQB4PDhw0Wu/1IOHz6M2WymUaNGpXZNERERESmeoKAgPDw82Lt3b4Hn9uzZg9lspk6dOo5zNWrUYPTo0XzxxRccO3aMVq1aMXny5HzzGjRowBNPPMEvv/zCjh07yMzM5I033rhoHU2aNOHs2bOOb5WVhsOHD9O0adNSu56ISEkouBURKURaWhoLFy7k+uuvZ+jQoQVuY8eOJTk5mUWLFgHGLrh///033333XYFr5X7VasiQIcTHx/POO+8UOiYiIgKLxcKff/6Z7/n33nuvyLVbLJZ818y9/9///jffuKCgIHr27MmsWbOIioq6YD25AgMDGTBgAJ999hnz58+nf//+RVrx2r59e1xcXNi0aVOR67+UzZs307x5c3x9fUvtmiIiIiJSPBaLhWuvvZYffviBI0eOOM7HxMTw+eef0717d3x8fIC8fQ9yeXl50bBhQzIyMgA4d+4c6enp+cY0aNAAb29vx5jCdOnSBbvdzubNm0vhXRm2bNlC165dS+16IiIlUXpNFkVEqphFixaRnJzMDTfccMHnr7rqKoKCgpg/fz7Dhw/nqaee4ptvvuGWW25hzJgxtG/fnjNnzrBo0SI++OADWrduzciRI/n0008ZN24cGzZsoEePHqSmpvLrr7/y4IMPcuONN+Lr68stt9zC22+/jclkokGDBvzvf/8jNja2yLU3adKEBg0a8OSTT3LixAl8fHz49ttvL/gVsrfeeovu3bvTrl077rvvPurVq8eRI0dYvHgxW7duzTd25MiRDB06FICpU6cWqRY3NzeuvfZafv31V6ZMmVLk91CYrKws/vjjDx588MHLvpaIiIiIXNqsWbNYunRpgfOPPvooL774IsuWLaN79+48+OCDODk58eGHH5KRkcGrr77qGNusWTN69epF+/btqVGjBps2beKbb75h7NixAOzbt4/evXszbNgwmjVrhpOTE9999x0xMTHceuutF62ve/fuBAQE8Ouvv/Kvf/3rst/v5s2bOXPmDDfeeONlX0tE5HIouBURKcT8+fNxc3Ojb9++F3zebDZz3XXXMX/+fE6fPk1AQAArV65k0qRJfPfdd8ydO5fg4GB69+7t2DzMYrGwZMkSXnrpJT7//HO+/fZbAgIC6N69Oy1btnRc++233yYrK4sPPvgAV1dXhg0bxmuvvXbJTcRyOTs78+OPP/LII484eoQNHjyYsWPH0rp163xjW7duzbp163j++ed5//33SU9PJyIiwtHH93yDBg3C398fm81WaKB9IWPGjGHIkCEcO3Ys39flSmL58uWcOXOGu+6667KuIyIiIiJF8/7771/w/KhRo2jevDkrV65k/PjxTJs2DZvNRufOnfnss8/o3LmzY+wjjzzCokWL+OWXX8jIyCAiIoIXX3yRp556CoA6deowYsQIli9fzrx583BycqJJkyYsWLCAIUOGXLQ+FxcXbr/9dr7++mtefvnly36/X3/9NeHh4aUSAouIXA6T/WJbL4qIiJwnOzubmjVrMmjQIGbOnFnkeVarlWbNmjFs2LAir9QtzE033YTJZLpgSwoRERERqZ4OHTpEkyZN+Omnn+jdu3eJr5ORkUHdunV55plnePTRR0uxQhGR4lOPWxERKbLvv/+euLg4Ro4cWax5FouFKVOm8O6775KSklLi19+9ezf/+9//Ljv8FREREZGqpX79+tx999288sorl3Wd2bNn4+zszP33319KlYmIlJxW3IqIyCWtX7+ebdu2MXXqVAIDA9myZUt5lyQiIiIiIiJSpWnFrYiIXNL777/PAw88QHBwMJ9++ml5lyMiIiIiIiJS5WnFrYiIiIiIiIiIiEgFoxW3IiIiIiIiIiIiIhWMglsRERERERERERGRCsapvAuoiGw2GydPnsTb2xuTyVTe5YiIiIhIIex2O8nJydSsWROzufquSdDnVxEREZHKoTifXxXcXsDJkyepU6dOeZchIiIiIkV07NgxateuXd5llBt9fhURERGpXIry+VXB7QV4e3sDxg/Qx8ennKsRERERkcIkJSVRp04dx+e36kqfX0VEREQqh+J8flVwewG5Xy/z8fHRB18RERGRSqCitQd49913ee2114iOjqZ169a8/fbbdOrUqdDxCQkJPPfccyxcuJAzZ84QERHBjBkzGDhwYJFeT59fRURERCqXonx+VXArIiIiIlKKvvrqK8aNG8cHH3xA586dmTFjBv369WPv3r0EBwcXGJ+ZmUnfvn0JDg7mm2++oVatWhw9ehQ/P78rX7yIiIiIVBgKbkVEREREStH06dO59957GT16NAAffPABixcvZtasWTzzzDMFxs+aNYszZ86wZs0anJ2dAahbt+6VLFlEREREKqBy33r33XffpW7duri5udG5c2c2bNhQ6NisrCymTJlCgwYNcHNzo3Xr1ixdujTfmMmTJ2MymfLdmjRpUtZvQ0RERESEzMxMNm/eTJ8+fRznzGYzffr0Ye3atRecs2jRIrp06cJDDz1ESEgILVq04OWXX8ZqtV6pskVERESkAirXFbfF/RrZhAkT+Oyzz/j4449p0qQJP//8M4MHD2bNmjW0bdvWMa558+b8+uuvjsdOTmXzNq1WK1lZWWVybal+XFxcMJvL/XcpIiIichni4+OxWq2EhITkOx8SEsKePXsuOOfQoUP89ttv3H777SxZsoQDBw7w4IMPkpWVxaRJky44JyMjg4yMDMfjpKSk0nsTIiIiUi6UM1UNzs7OWCyWUrlWuQa3xf0a2bx583juueccmzQ88MAD/Prrr7zxxht89tlnjnFOTk6EhoaWWd12u53o6GgSEhLK7DWk+jGbzdSrVw8XF5fyLkVERESuIJvNRnBwMB999BEWi4X27dtz4sQJXnvttUKD22nTpvHCCy9c4UpFRESkLChnqnr8/PwIDQ297A10yy24zf0a2fjx4x3nLvU1soyMDNzc3PKdc3d3Z9WqVfnO7d+/n5o1a+Lm5kaXLl2YNm0a4eHhhdZS3BULuf8xBQcH4+HhUeF2MZbKx2azcfLkSU6dOkV4eLj+TomIiFRSgYGBWCwWYmJi8p2PiYkpdGFBWFhYgZUZTZs2JTo6mszMzAv+Unf8+PGMGzfO8TgpKYk6deqU0rsQERGRK0k5U9Vht9s5d+4csbGxgPE573KUW3Bbkq+R9evXj+nTp9OzZ08aNGjA8uXLWbhwYb7+X507d2bOnDk0btyYU6dO8cILL9CjRw927NiBt7f3Ba9bnBULVqvV8R9TQEBAEd+tyKUFBQVx8uRJsrOzHRuTiIiISOXi4uJC+/btWb58OTfddBNg/IJ2+fLljB079oJzunXrxueff47NZnO0Tdq3bx9hYWGFfhPH1dUVV1fXMnkPIiIicuUoZ6p63N3dAYiNjSU4OPiy2iZUqoaa//3vf4mMjKRJkya4uLgwduxYRo8ena8v6IABA7jlllto1aoV/fr1Y8mSJSQkJLBgwYJCrzt+/HgSExMdt2PHjhU6NrfXiIeHR+m9MRFw/MNMG5GIiIhUbuPGjePjjz9m7ty57N69mwceeIDU1FRHe7CRI0fm+9bZAw88wJkzZ3j00UfZt28fixcv5uWXX+ahhx4qr7cgIiIiV4hypqop98/zcnsWl9uK25J8jSwoKIjvv/+e9PR0Tp8+Tc2aNXnmmWeoX79+oa/j5+dHo0aNOHDgQKFjSrJiQcvWpbTp75SIiEjVMHz4cOLi4pg4cSLR0dG0adOGpUuXOr5pFhUVlW/hQZ06dfj55595/PHHadWqFbVq1eLRRx/l6aefLq+3ICIiIleYMoGqpbT+PMstuC3J18hyubm5UatWLbKysvj2228ZNmxYoWNTUlI4ePAgd955Z2mWLyIiIiJSqLFjxxb6mXbFihUFznXp0oV169aVcVUiIiIiUpmUa6uE4n6NbP369SxcuJBDhw6xcuVK+vfvj81m49///rdjzJNPPskff/zBkSNHWLNmDYMHD8ZisTBixIgr/v6qurp16zJjxozyLkNERERERERERCo55UwFlWtwO3z4cF5//XUmTpxImzZt2Lp1a4GvkZ06dcoxPj09nQkTJtCsWTMGDx5MrVq1WLVqFX5+fo4xx48fZ8SIETRu3Jhhw4YREBDAunXrCAoKutJvr8IwmUwXvU2ePLlE1924cSP33XdfqdT4xRdfYLFY1MtNRERERERERKQCq8g5U69evXjssccu6xoVSbm1SshVnK+RXX311ezateui1/vyyy9Lq7Qq4/zw+6uvvmLixIns3bvXcc7Ly8tx3263Y7VacXK69F+N0gzDZ86cyb///W8+/PBD3njjDdzc3Ert2sWVmZlZ6A7OIiIiIiIiIiLVWWXImaqKcl1xK1dGaGio4+br64vJZHI83rNnD97e3vz000+0b98eV1dXVq1axcGDB7nxxhsJCQnBy8uLjh078uuvv+a77j+XsJtMJj755BMGDx6Mh4cHkZGRLFq06JL1HT58mDVr1vDMM8/QqFEjFi5cWGDMrFmzaN68Oa6uroSFheUL+xMSEvi///s/QkJCcHNzo0WLFvzvf/8DYPLkybRp0ybftWbMmEHdunUdj0eNGsVNN93ESy+9RM2aNWncuDEA8+bNo0OHDnh7exMaGsptt91GbGxsvmvt3LmT66+/Hh8fH7y9venRowcHDx7kzz//xNnZmejo6HzjH3vsMXr06HHJn4mIiIiIiIiISEVU0XOmi/n2228d+VLdunV544038j3/3nvvERkZiZubGyEhIQwdOtTx3DfffEPLli1xd3cnICCAPn36kJqaeln1XEq5r7itCux2O2lZ1iv+uu7OllLbpe6ZZ57h9ddfp379+vj7+3Ps2DEGDhzISy+9hKurK59++imDBg1i7969hIeHF3qdF154gVdffZXXXnuNt99+m9tvv52jR49So0aNQufMnj2b6667Dl9fX+644w5mzpzJbbfd5nj+/fffZ9y4cbzyyisMGDCAxMREVq9eDRgb2g0YMIDk5GQ+++wzGjRowK5du7BYLMV6/8uXL8fHx4dly5Y5zmVlZTF16lQaN25MbGws48aNY9SoUSxZsgSAEydO0LNnT3r16sVvv/2Gj48Pq1evJjs7m549e1K/fn3mzZvHU0895bje/PnzefXVV4tVm4iISEVht9vJyLaRnmUlPctGWpY1576VtCwrGVnGc8E+brSP8C/vckVEREQqnfLKmKDq5EyF2bx5M8OGDWPy5MkMHz6cNWvW8OCDDxIQEMCoUaPYtGkTjzzyCPPmzaNr166cOXOGlStXAsYq4xEjRvDqq68yePBgkpOTWblyJXa7vcQ/o6JQcFsK0rKsNJv48xV/3V1T+uHhUjp/hFOmTKFv376OxzVq1KB169aOx1OnTuW7775j0aJFhba2AGP1au5GcC+//DJvvfUWGzZsoH///hccb7PZmDNnDm+//TYAt956K0888QSHDx+mXr16ALz44os88cQTPProo455HTt2BODXX39lw4YN7N69m0aNGgFQv379Yr9/T09PPvnkk3wtEsaMGeO4X79+fd566y06duxISkoKXl5evPvuu/j6+vLll1/i7OwM4KgB4O6772b27NmO4PbHH38kPT2dYcOGFbs+ERGRi8kNVNMyrZzLspKWmU1apo1zmdmcy7KSnmnlXM5z6Zk5YWu2lbRMG+nZeeFrepZxDeOc7bzzOcFsto2ifDa9sU1NBbdVXUIUxOwCn5oQ1qq8qxEREakyyitjgqqRM13M9OnT6d27N88//zxgZDi7du3itddeY9SoUURFReHp6cn111+Pt7c3ERERtG3bFjCC2+zsbG6++WYiIiIAaNmyZbFrKC4FtwJAhw4d8j1OSUlh8uTJLF682PGXMy0tjaioqItep1WrvA/unp6e+Pj4FGgvcL5ly5aRmprKwIEDAQgMDKRv377MmjWLqVOnEhsby8mTJ+ndu/cF52/dupXatWvnC0xLomXLlgX62m7evJnJkyfz999/c/bsWWw2G2BsmtesWTO2bt1Kjx49HKHtP40aNYoJEyawbt06rrrqKubMmcOwYcPw9PS8rFpFRKTqsNvtJKZlcSIhjVMJ6cQkp3MuwwhZ03IC2Lz71vz3s4xwNi0zm7QsK7ay/WV/AU5mE27OlpybGTdnC+459+sF6v/rqryNn8Dq/0Ln+xXcioiISAHllTNdzO7du7nxxhvznevWrRszZszAarXSt29fIiIiqF+/Pv3796d///6ONg2tW7emd+/etGzZkn79+nHttdcydOhQ/P3LdrGCgttS4O5sYdeUfuXyuqXln2Hik08+ybJly3j99ddp2LAh7u7uDB06lMzMzIte558hpslkcgSeFzJz5kzOnDmDu7u745zNZmPbtm288MIL+c5fyKWeN5vNBZatZ2VlFRj3z/efmppKv3796NevH/PnzycoKIioqCj69evn+Blc6rWDg4MZNGgQs2fPpl69evz0008FNtwTEZGqLS3TyslEI5Q9mZDGycQ0TiakcSox3RHWlvZX4VyczHi4GCGqu4sFDxcLHs5OuLlY8Mg5d37Y6uZkwd0l776biwU3p5wg1iXnXO7Y8+Y5W7RVQrXml/OVxoSL/2NLREREiqe8Mqbc1y4t5ZUzXQ5vb2+2bNnCihUr+OWXX5g4cSKTJ09m48aN+Pn5sWzZMtasWcMvv/zC22+/zXPPPcf69esd3xgvCwpuS4HJZCq1peQVxerVqxk1ahSDBw8GjN+MHDlypFRf4/Tp0/zwww98+eWXNG/e3HHearXSvXt3fvnlF/r370/dunVZvnw511xzTYFrtGrViuPHj7Nv374LrroNCgoiOjoau93u6NOydevWS9a2Z88eTp8+zSuvvEKdOnUA2LRpU4HXnjt3LllZWYWuur3nnnsYMWIEtWvXpkGDBnTr1u2Sry0iIpVDttVGTHKGEcjmhLHG/fScx2mcPVfwl4UXEuDpQk0/d0J83PB2c8LNOSdwzQlZc++7uzjh7px735LvvoeLE25OZpwUqMqV4Gd8RVDBrYiISOmqihkTXJmc6VKaNm3q2DPp/LoaNWrk2CvJycmJPn360KdPHyZNmoSfnx+//fYbN998MyaTiW7dutGtWzcmTpxIREQE3333HePGjSuzmqve3wQpFZGRkSxcuJBBgwZhMpl4/vnnS/03GvPmzSMgIIBhw4YVaH49cOBAZs6cSf/+/Zk8eTL3338/wcHBjo3IVq9ezcMPP8zVV19Nz549GTJkCNOnT6dhw4bs2bMHk8lE//796dWrF3Fxcbz66qsMHTqUpUuX8tNPP+Hj43PR2sLDw3FxceHtt9/m/vvvZ8eOHUydOjXfmLFjx/L2229z6623Mn78eHx9fVm3bh2dOnWicePGAPTr1w8fHx9efPFFpkyZUqo/PxERubTc3q/GzUpmzv3cY0aWlUyrjYwsm3HMtubdz8o/JyPbRnxKhiOkjUlKL1J7Ak8XCzX93HNuboT55tz3daOmnzuhvm64leLqBpEr4vwVt3Y7lNJGJiIiIlI1XYmcKVdcXFyBRXthYWE88cQTdOzYkalTpzJ8+HDWrl3LO++8w3vvvQfA//73Pw4dOkTPnj3x9/dnyZIl2Gw2GjduzPr161m+fDnXXnstwcHBrF+/nri4OJo2bVom7yGXglu5oOnTpzNmzBi6du1KYGAgTz/9NElJSaX6GrNmzWLw4MEX3LFwyJAh3HnnncTHx3PXXXeRnp7Om2++yZNPPklgYCBDhw51jP3222958sknGTFiBKmpqTRs2JBXXnkFMH6b8t577/Hyyy8zdepUhgwZwpNPPslHH3100dqCgoKYM2cOzz77LG+99Rbt2rXj9ddf54YbbnCMCQgI4LfffuOpp57i6quvxmKx0KZNm3yras1mM6NGjeLll19m5MiRl/sjExGpErKtNqNPa5YRkub2bM07l9vH1XjOsTlWzpjcTbNy5xmbbFkdQez5wWymtWw+DOZytpgI83UnLCeEzQ1ma/m5E5Zz38fNqdR25xWpMHyNbySRkQTpCeCuzehERESkcFciZ8r1+eef8/nnn+c7N3XqVCZMmMCCBQuYOHEiU6dOJSwsjClTpjBq1CgA/Pz8WLhwIZMnTyY9PZ3IyEi++OILmjdvzu7du/nzzz+ZMWMGSUlJRERE8MYbbzBgwIAyeQ+5TPZ/NgAVkpKS8PX1JTExscDKzPT0dA4fPky9evVwc3MrpwqlMrn77ruJi4tj0aJFFx2nv1siUpXY7XYOxqWw/vAZNhw+w5aosySkZpGebSXLWj4fPUwmcLGYcXUy4+psMe47m3F1suDilHPecct/ziXn5u/hkhPKGiFtoKcrZrNC2fJ0sc9t1Um5/BxeawipcfB/f0JY60uPFxERkQKUBVRNF/tzLc7nNq24FSkjiYmJbN++nc8///ySoa2ISGVntdnZE53EhsNnWH/oDBuPnOF06sU3GjCZjA0Q3M/b9Cq3b2vuRli5z7u7WHB1Nucb7+5sbKTlft6GWbmha27Ymne04GwxaeWrSGnyCzeC24QoBbciIiIiZUDBrUgZufHGG9mwYQP3338/ffv2Le9yRERKVZbVxo4TiUZQe9gIapPTs/ONcXM20y7cn071atCpbg1q+rmfF7iacbGYFaSKVGbdx0F2OtRqX96ViIiIiFRJCm5FysiKFSvKuwQRkVKTnmXl72MJjqB289GzpGVZ843xcnWifYQ/nevXoHO9GrSs5YeLk7mcKhaRMtf0+vKuQERERKRKU3ArIiIiBaRmZLMl6qyj9cHWYwkFNvry83CmY10jpO1cL4CmYd44WRTUioiIiIiIlAYFtyIiIkJiWhabjhgbia07fIYdJxKx2vJvIhbo5epYTdupXg0aBXtrYy6R6iwjGY6uMY4th5Z3NSIiIiJVjoJbERGRy5BltXEu04rVZifbZiPbas+5b8dqs5Fts5NtPe/xec8XHG8ny2rL99iYb1wny2qMz8qZl221kZX7vNXuuJ9lzbt2ltXmuEa+847njboS0rKw589pqeXn7ghpO9WrQb1AT/WkFZE8SSfh82Hg6gMthhg7DoqIiIhIqVFwKyIicp6MbCtnUjM5nZLJmVTjdjo1k9MpGY77uefjUzIKbMhVmdUL9KRT3Rp0rm8EtbX9Pcq7JBGpyHzrGMeMJEhPAHf/ci1HREREpKpRcCsiIuUmMS2LpLQsTCYwmUyYMBZsmXPuYwITJuN5jDHmnHOYyHfeRM68nAVfppxxNrs9X9B6fhh7JiWT06kZeWFsSibJGSUPYs0mcDKbsZhNOJlNOFlMWMxmnMwm45wl53zuGItx3vkfjx1jcsbnjnGymHC25FzPUvCck8WMs8WYa5w37uc/V3Css8WEn4cLQd6ul/1nKiLViIsHeAZBahwkRCm4FRERESllCm5FROSKstvtbDp6ljlrjvDzjmiy/9FHtSKwmE3U8HQhwNOFGjm3QC9Xx/3c8wFergR4uuDp6oST2aR+ryJS/fiF5wW3Ya3LuxoRERGRKkXBrRRZr169aNOmDTNmzCjvUkSkEkrLtPLD1hPMXXuU3aeSHOddnczYAexgx47dDnaMgNc4Xv5rO+UEsUbY6kKAp2teAOtlHAO88s75uDkrhC1rdjvYsnNuVrDbwM0n7/nkaMg6Zzx3/jib1Xi+dvu8scc3GcGR3Q5OruDsDk5ueUf/upWj96bdbvwczJbyrkTkkjKzbaw+EE83r9q4sNkIbkVERESKQTnTpSm4rQYGDRpEVlYWS5cuLfDcypUr6dmzJ3///TetWrUqlddLS0ujVq1amM1mTpw4gaurvnorUp0dO3OOz9Yd5cuNx0hMywLAzdnMTW1qcWeXCJrX9L3kNez2goGuLeec8Xz+0NfxnB1MZvB2ddKmWmUl8xykxkJKXM4x1ghRU2LBxRP6vpA39qNrIHo72HOC2vN514Qnduc9/uoOOL7xwq/p5gvPnBcSLZ8Ch/8opEATTDqb93DBXXDg1/zBrrN73v3bvzbCX4Ctnxv1nj/WZAJrJlizoMeTYMn5KLVlHkSty3ku5/nz79/2VV4wvXwqbPvKeC47I2+szfjvg4c2QlAj4/5f82HP/4z37OYH7n7G0c3XuB/RLe+6NqvxF15/1+UKuGvWBtYeOs3ipjVoDgpuRUREqpErlTPNmTOHxx57jISEhMu6TmWm4LYauPvuuxkyZAjHjx+ndu3a+Z6bPXs2HTp0KLXQFuDbb7+lefPm2O12vv/+e4YPH15q1y4uu92O1WrFyUl/1UWuJLvdzqoD8cxdc5Tle2IcAWttf3dGdolgWIc6+Hm4FPl6pvN61xpdbaVMpSflha//DGNdveDaF/PGvt8Vzh6+8HV8aucPbm3ZeeHkP9n+0VvY2QNcvI3Vp2an/EdXn/xjgxpDZipgN4LQrDTITjeOJlP+IDMzJe92IWbnvPv7foZd3194HECXsWDxMu5HrYWt8wsfm50O5NSdngiJxwof63beLzOit8HeJYWPfWhDXnD7x39g1ZsXDnjd/KD7Y+Cb8zkgap2xUtluPW81c3berfMD4BNmjN33C+z5seCY3Md9pxh/BgA7voWEY8ZrSZXWs1EQaw+dZv1Zz5zg9iJ/p0VERKRKudI5U3WmNKsauP766wkKCmLOnDlMmDDBcT4lJYWvv/6a1157jdOnTzN27Fj+/PNPzp49S4MGDXj22WcZMWJEsV9v5syZ3HHHHdjtdmbOnFkguN25cydPP/00f/75J3a7nTZt2jBnzhwaNGgAwKxZs3jjjTc4cOAANWrUYMiQIbzzzjscOXKEevXq8ddff9GmTRsAEhIS8Pf35/fff6dXr16sWLGCa665hiVLljBhwgS2b9/OL7/8Qp06dRg3bhzr1q0jNTWVpk2bMm3aNPr06eOoKyMjg4kTJ/L5558TGxtLnTp1GD9+PGPGjCEyMpL777+fJ5980jF+69attG3blv3799OwYcNi/5xEqqKUjGy+3XycuWuPcCgu1XG+R2Qgd3WpyzVNgrGoBUH5yM4wgteUmLxbcs7RxRP6vZQ39qOr4cyhC1/Hp1b+4NYrGJJPgWcweAXlP/rUzD/3tgU5rQCczgtjcwJZ0z/aA9y1qOjvbeBrRR87+CPISISsnGA3O824n51m/IzM5ryxTQcZbRZyQ+DcINjiYtxM54+9AQIa5j1ncTZW7ubed/XOG9t1LLS5Lf/Y8695/gZPLYdBUBMj7E1PgLQE45ieaNx3r5E3Ni3BWLmbmhO4/1One/Pu718GK18v/OfU/Oa84DZmO2z5tPCx3R7Lu58SB6cPFD5WqozrWobxn6V7+Cy2AbcM/gDvOi3KuyQRERG5Qq50zlSYqKgoHn74YZYvX47ZbKZ///68/fbbhISEAPD333/z2GOPsWnTJkwmE5GRkXz44Yd06NCBo0ePMnbsWFatWkVmZiZ169bltddeY+DAgaVWX2lQcFuaMlMLf85kAWe3Io41G1/JvNhYF88il+Xk5MTIkSOZM2cOzz33nOPrwl9//TVWq5URI0aQkpJC+/btefrpp/Hx8WHx4sXceeedNGjQgE6dOhX5tQ4ePMjatWtZuHAhdrudxx9/nKNHjxIREQHAiRMn6NmzJ7169eK3337Dx8eH1atXk51trLR6//33GTduHK+88goDBgwgMTGR1atXF/n1cz3zzDO8/vrr1K9fH39/f44dO8bAgQN56aWXcHV15dNPP2XQoEHs3buX8PBwAEaOHMnatWt56623aN26NYcPHyY+Ph6TycSYMWOYPXt2vuB29uzZ9OzZU6GtCHAwLoVP1xzh2y0nSMkw/nv2dLEwtH1t7uxSl4bBXuVcYRVlt0Pa2YKBbEoMWFyh9/N5Y9/rAmcOXvg63jXzB7eewcY1PYOMm1dw3tE7LP/ckYuMgLIoX8/3Cbv0mLLmGWDciqLlUONWFI37G7ei8K9r3Iqidvv8/Xwvps8kIxTODXXPD3rTEsArJG9saEsjFP5ngJ578wzMGxvRHf71fP7nzx9fo37e2EbXQnjnotUrlVp4gActavmw4wT8z96SEaHh5V2SiIhI1XIlMyaosDlTYWw2GzfeeCNeXl788ccfZGdn89BDDzF8+HBWrFgBwO23307btm15//33sVgsbN26FWdn4xt2Dz30EJmZmfz55594enqya9cuvLwq3r9bFdyWppdrFv5c5LVG37xcrzU0Nl25kIjuMHpx3uMZLeHc6fxjJicWq7QxY8bw2muv8ccff9CrVy/ACB6HDBmCr68vvr6++ULJhx9+mJ9//pkFCxYU6z+oWbNmMWDAAPz9jdVC/fr1Y/bs2UyePBmAd999F19fX7788kvHfyyNGjVyzH/xxRd54oknePTRRx3nOnbsWKz3CjBlyhT69u3reFyjRg1at87b6Xjq1Kl89913LFq0iLFjx7Jv3z4WLFjAsmXLHKtw69fP+4foqFGjmDhxIhs2bKBTp05kZWXx+eef8/rrF1mtJNWX3Q7HNhgr+OpdXWX7TVptdn7fE8vctUdYuT/ecb5+kCd3danLze1q4e3mfJErVGJ2O2xbYKxKPXsYMlKMlZqmnADMt07+FgErXjFaDeQ+b7bk3fcIgC4P5Y3d+gWci897PndV57nTxuOeT+WNfa8LxJ3XF/Z83mH5g1uvEOPr+V4hRgDrFZpzDCm4MnbU/4xVoEVx/gdGKV8unkX/wN38JuNWFOGdix7Gnh/iSpU3oEUYO04ksWT7KUZ0UnArIiJSqq5kxgQVNmcqzPLly9m+fTuHDx+mTp06AHz66ac0b96cjRs30rFjR6Kionjqqado0qQJAJGRkY75UVFRDBkyhJYtWwL5M6CKRMFtNdGkSRO6du3KrFmz6NWrFwcOHGDlypVMmTIFAKvVyssvv8yCBQs4ceIEmZmZZGRk4OHhUeTXsFqtzJ07l//+97+Oc3fccQdPPvkkEydOxGw2s3XrVnr06OEIbc8XGxvLyZMn6d2792W/3w4dOuR7nJKSwuTJk1m8eDGnTp0iOzubtLQ0oqKMjTS2bt2KxWLh6quvvuD1atasyXXXXcesWbPo1KkTP/74IxkZGdxyyy2XXatUIdkZRn/Hde8ZGxoB1L8Grn8TatQr39pKUcK5TL7aeIx5645y/GwaYGTTvZuEcFfXCLo3DKzcG4FZsyHpOJw5bISyZw4Z9z0C4Ia3jDEmEyybCCnRF75GcPP8we22BYWvdvWvlz+4Xfdu3t+ff/IKzR/c5n6l3s0vL5D1Dr1wGHvHt8Zv2ovyZ1PU0FZEqrXrWobx2s974dAfpK7cgmerQXl9lEVERKRKuxI508Xs3r2bOnXqOEJbgGbNmuHn58fu3bvp2LEj48aN45577mHevHn06dOHW265xdGm85FHHuGBBx7gl19+oU+fPgwZMqRC9uVVcFuanj1Z+HP/7N331EX6v53fMw/gsUL+AV9Md999Nw8//DDvvvsus2fPpkGDBo6g8rXXXuO///0vM2bMoGXLlnh6evLYY4+RmZlZ5Ov//PPPnDhxokBPW6vVyvLly+nbty/u7u6FzOaizwGYc/oO2nN3OQKysi68yY2nZ/4VR08++STLli3j9ddfp2HDhri7uzN06FDH+7vUawPcc8893Hnnnbz55pvMnj2b4cOHl9r/4Egll3oaNn4MGz8xVlUCOLkbm/4cXVMmL2m12Tl7LhMXJzOeLk5XpG/srpNJzF1zhO+3niAj2waAr7szt3aswx1XRVCnRiX67yErDc4egYxkqHPeb3tn9oMTmwpulAXGKtrzNR8MWalG8Orun7PJk804nt93FKDz/xm/1bZZz9sMqpCxjfpDcLP8Y+1246vr3v8IY4d/ZqywLMqqV5dK9OcjIpVC3UBPmoX58MTpL/FcfhACayu4FRERKS0VPGOCss+ZLtfkyZO57bbbWLx4MT/99BOTJk3iyy+/ZPDgwdxzzz3069ePxYsX88svvzBt2jTeeOMNHn744StWX1EouC1NxegHUmZjL2LYsGE8+uijfP7553z66ac88MADjlVxq1ev5sYbb+SOO+4AjF4h+/bto1mzZkW+/syZM7n11lt57rnn8p1/6aWXmDlzJn379qVVq1bMnTuXrKysAqtuvb29qVu3LsuXL+eaa64pcP2goCAATp06Rdu2bQFjpWxRrF69mlGjRjF48GDAWIF75MgRx/MtW7bEZrPxxx9/5Nuw7HwDBw7E09OT999/n6VLl/Lnn38W6bWlGjgXDyumGfd9akHHe6D9KKP36Mm/8q+2Pb4ZarW74KpHm83OmXOZxKdkEJeccd4x8x+PMzidmsl5v8PAy9UJL1cnvN2c8HJzwtvNGe/cx67GY+O8U875go/dnM35V8rG7SP72Aa2xFt47VAEG4+cBaCR6Rj1gr0Y1L4evVvWxd3dE5wtRrh4JVfa2u3GRkxZOZtK5W4uZbNCyHn/23XgVzjxV87q2ZxVtMmnjOf8IuCxbedf1AhKLa7gH2GEsjXqGceABvlff8ArRa+18/8Vfey/Jlx6TK6i9moVESkj17UK4/hvQbThICRElXc5IiIiVUcFz5ig7HOmi2natCnHjh3j2LFjjlW3u3btIiEhId9rNGrUiEaNGvH4448zYsQIZs+e7ciG6tSpw/3338/999/P+PHj+fjjjxXcSvnx8vJi+PDhjB8/nqSkJEaNGuV4LjIykm+++YY1a9bg7+/P9OnTiYmJKfJ/UHFxcfz4448sWrSIFi3y7yo8cuRIBg8ezJkzZxg7dixvv/02t956K+PHj8fX15d169bRqVMnGjduzOTJk7n//vsJDg5mwIABJCcns3r1ah5++GHc3d256qqreOWVV6hXrx6xsbH5di+8mMjISBYuXMigQYMwmUw8//zz2Gw2x/N169blrrvuYsyYMY7NyY4ePUpsbCzDhg0DwGKxMGrUKMaPH09kZCRdunQp0mtLFWOzwp7FcHo/9HjCOBfUGLo+DDXbGjvL537N3KMGNv/6JKQaYWz6obW0+vkWTvh3YnHtx9lrrUVcSgbxyRnEpWRwJjUTq81e+GtfREpGNikZ2UQnlfytOZlNeLk50cH5MKNt39Elax1O2HG11Wdj5otYzCb6twhl+sl/45p0HH7HuOUymSGkBdy/Mu/cgpGQdBKc3MDZw1gZ6uRuHL1C4ZrxeWN/e8n4R39uAJudDlnpxtGjBtz5Xd7YmdcafYS5wM/LIxD+fV5bgpVvwtFVBce5+hqrWG02oz8twA3vGCtTvWvmnRMRkUINaBHKL8uNX65nxB/GtZzrERERkSunLHOmXFartcCiPVdXV/r06UPLli25/fbbmTFjBtnZ2Tz44INcffXVdOjQgbS0NJ566imGDh1KvXr1OH78OBs3bmTIkCEAPPbYYwwYMIBGjRpx9uxZfv/9d5o2bXq5P5JSp+C2mrn77ruZOXMmAwcOpGbNvK/cTpgwgUOHDtGvXz88PDy47777uOmmm0hMLFpz6k8//RRPT88L9qft3bs37u7ufPbZZzzyyCP89ttvPPXUU1x99dVYLBbatGlDt27dALjrrrtIT0/nzTff5MknnyQwMJChQ/N29J41axZ333037du3p3Hjxrz66qtce+21l6xv+vTpjBkzhq5duxIYGMjTTz9NUlL+hOv999/n2Wef5cEHH+T06dOEh4fz7LPPFvj5vfzyy4wePbpIPxepQtIS4K95sOEjI1w0O0HrEeBTk4xsK1Gtn+ZgXCqHVh7lUFwqh+JSOJGQxumUTLJzwthbLCuY6uRMrbMbGH3mDmZb+7M0+2ZSyd+qo4anC0FergR65xy9XAnyLnis4elCltVGSkY2yenZpKRnk5yeRbLjcZZxzMgmKeeYnJ5FiuN+zuOMbGx2Ox3ZyYNZP9DDtsNRy3pbEw5aGvDIvxpyW+cIQn3d4MMAsKXlhKppYM/5JYjdRoEg9dQ2Y4XrhdSonz+43fsTxBTW2zXkHydM/3gtk9G/1ckV3P3yD63dHvzC81bO1qhv3Hf3L7hCOKgRIiJSdPWDvMjyrg1pEH/8ALXKuyARERG5osoqZ8qVkpLi+NZ1rgYNGnDgwAF++OEHHn74YXr27InZbKZ///68/fbbgLH47vTp04wcOZKYmBgCAwO5+eabeeEFYy8Sq9XKQw89xPHjx/Hx8aF///68+eabl/nTKH0m+/kNQwWApKQkfH19SUxMxMfHJ99z6enpHD58mHr16uHmpp20q5uVK1fSu3dvjh07RkjIP4Oky6O/WxVU/AFY/wH2rZ9jykoFIN3Zj40BN7LAaRDbzjpx7Mw5LrVQ1s/DmUAvV5q5neWecx/RKmU1AGmuQRxu9zS25rcQ5ONGDU8XnC1XdqWn3W4n+6fncN7wrvHYZCG27g3saXA3WTUa0aNRIK5OlsImn9euIN147BOW9/yRVUbonZ2eNybrnBH6uvnAVQ/kjd0yz2gv4eSWszL3vJurF0R0zRubEmscnVyNFbwW5yvbpkFEKoyLfW6rTsrz57Do6zncsPNRopzrE/7cX1f0tUVERCo7ZQFV08X+XIvzuU0rbkWKICMjg7i4OCZPnswtt9xS6qGtVBxpmVYOxadwKC4V8+4fuG7PM4CxvnOPrQ6zrf35Pr0bGckuQGbOzegxWz/Ik/qBntQL9KJ+kCfhNTwI9nElwNMVF6fzw9ibYN8vsPRp3M8cotnaJyFxJQz79Mq9UWu2sVrW1RuTyYRzixtgy0xoeyemrg8T4h9Bkf6Wm0w54WkhX46t273oNbW7s+hjvYKLPlZERMpUm1atYSf4Z54iITUDP081TBAREREpDQpuRYrgiy++4O6776ZNmzZ8+ukVDNeqE7sdkqONr7vnftU98xzE7zN2qPYIKJUVldlWG+eyrCSey+JwvNHS4FB8KofiUjkRexpb8imO2kMB8KEGV7u6sdbWjNnW/qyzN6dODU+6BnpSP8grJ6j1okGQJ0Hervk39rqURtdCvZ6w9m348w2I7HfZ761IstJh62ew+i1ocj30f9k4H34VjNtt9JIVEREphvB6jQHwNqXx/d/7ualri0vMEBEREZGiUHArUgSjRo3K12RbLoPNCglHIW4fxO+FuJxb/D7ISILr34QOY4yxMTthZh9jmsWNbM9Q0j3CSHMPJdk1hKjAnhzzaE5qZjap6VmkZlhJzbQajzOspOZs2HUu07ifmplNepatQEmhnGak0zJGWH7jiHMoo52mUT/Qk/pBtfnKbwm1wmrxQpAn4QEehbcMKAlnN+j5FLS53dioK9eexZCeCK1uLb0NstKTYNMsWPcepMTkvM6P0HcKWHL+r0ChrYiIlISLB0uavMInf6dTY08iN3W99BQRERERuTQFtyJSNrIz4cxBI5StUR/CWhnno9bCnOsuOMWGmZ/Xb+fNlX8Qk5RBm6y/eN3iS5ApEbM1HZekI7gkHcEHCAE+yzrHHKsxt61pP/NcpnHKHsApew1O2AON+9TgpD2AvbZw0vF1vJaLxUw/3yhGmpbQPnUlZowL+fhlsfW+duAZWIY/nH/wyWvgTkYyLH4Ckk/B5jkw8PW8n11JpJ6G9R/Ahg+NMBjApzZ0ewTa3pkX2oqIiFyGRv+6gy1b/8T5YCKJaVn4ujuXd0kiIiIilZ7+xS4ily89CfYuyVs5G7cHzhwGe06q2vURR/hoDWiEyeJKkkcEUZY6bM8IZV1yIHutNTliDyXzmDOQAsAftKBj9vu4kEUdpwTquyQQ7nSG2uazhJlOYw5pz0CfUDxdnOh47hBeh9OJNJ0gkhMFSozpNoXM9jfh6eqEV8IeXL67x1jxm6tuD+h8P5bGA8Bciqtqi8viCp3vhz9ehWPr4aOrocPd8K/nwN2/+Ndb/SasMXbVJCASuj8OLW8BJ5fSrVtERKq1hsHeNArxYl9MCst2xTC0fe3yLklERESk0lNwW0I2W8GvW4tcDrvdXt4lFE3Ueti9CEJaQJsRxrmMZPju/woMtbt4k+nfkH3Jnnz/v11sO57AjhOJZGTNxJaavwWAv4czXWr70bq2L61q+xER4IGnq5Nxc7HgZCnYMqD/+Q+yGkNif0g8DkknIPEEJB03HieeICSiKdTwMMYePmCEthYXaDkMOv/f5a1qLU1OLtD9MSNc/WUC7FwIGz82jn0mQ5s7Lt4+If6AEZgHGf0GuepB48+s61ijp215htIiIlJ1xe3lmYCVfBFnZcn2YAW3IiIixaScqWoprT9PBbfF5OLigtls5uTJkwQFBeHi4lK8DYlELsButxMXF4fJZMLZuQJ+tdBuh0MrYOUbcGSlca7J9XnBrU9NaNCbc561iTLXZntGKCsTAvgz2omEo9lwFOCw43KeLs60qOVL6zp+tKrtS+vaftT2d7+8/5ac3SAw0rhdSs22cPMnUP9q8Aou+WuWJd9acMtsaD8Kfvq3sYp50cMQ3Axqdyg4/tTfsHI67PoBIvvC7V8b531qwj3LrmjpIiJSDR1Zxb8OvYbV0p4H93ckKT0LH7cK+JlGRESkglHOVLXY7XYyMzOJi4vDbDbj4nJ533ZVcFtMZrOZevXqcerUKU6ePFne5UgVYjKZqF27NhZLBVoRabfD3p9g5etwYrNxzuwMLYeSWrcvm/fFse14An8fT2Tb8QeJScr4xwWycbGYaVrTx7GStnVtX+oHeWExl+P/EdWoZ9wqg/pXw/2rYP2HRhuK80Nba7bRTmHVdDjwa955s5PRY1jtEERE5ErxiwCgvvNpss7Z+XVXDDe306pbERGRS1HOVDV5eHgQHh6O+TI3HFdwWwIuLi6Eh4eTnZ2N1Wot73KkinB2dq5YoS3Ad/fDti8BsDu5E91wOPMtN/C/A2aOrD8HbMg33GyCyGBvYxVtHT9a1/ajcag3Lk6X9z9U1Z7F2Wh1cL7E4/Bm87zHJjO0GGL0sA1pjoiIyBXlFw5AbVMcYGfJ9lMKbkVERIpIOVPVYrFYcHJyKpWV0wpuSyj3K+0V8mvtIiWVnWn0R3V2B8Da5Drsu//Hav+bePH0v9i/1Q1IdwyPCPBwrKJtVduPFrV88HDR/6xcEes/MI4WF2hzO3R7BGrUL9+aRESk+vKrA4CrNRUfUvlzX7zaJYiIiBSDcia5ECUsIgJZabBlHqz+L9YOY1hf8y4Wbz/FLztcyUh9k6RkTwB83Jy4tnko/ZuH0qGuP34e+ip+uek9Ger1gtAW4B1azsWIiEi15+wOnsGQGkuXGqn8fMaL5btjGNxWq25FRERESkrBrUh1lpEMG2diX/suptRYAA7+Npfb0hsDxpJ+X3c/hjUPYWDLMLo2CFTbg4rC4gSRfcq7ChERkTx+4ZAay3V1Mvn5DCzZHq3gVkREROQyKLgVqY7OncG27gOs6z7AOTMRE3DcHsgH2YP42no1fh4u9GsWysBWYXRtEICzRWGtiIiIXIJfOJzYROcaqQD8sS+O5PQsvNUuQURERKREFNyKVCNZVhtrDp7Gc8nDdEj4CTNw0BbG+9Yb+MOlF33a1+aTlmFcVV9hrYiIiBRT98eg8/8RHNiI+tu3cSg+ld/2xHJjm1rlXZmIiIhIpaTgVqSKy7La2PT33/y2J46vD0DCuSwamXrxpvMuPrUMwdL6Rm5qVZtX6tfASWGtiIiIlFRYa8BotjSwZRjv/H6AxdtOKbgVERERKSEFtyJVUGa2jdUH4lm/aQNNDnzCdfY/OW7tRkL2/QR6udCxeTcSWwzhpfoBCmtFRESk1OUGtyv2xZGSkY2Xq/7ZISIiIlJc+gQlUoWkZmTz8pLd7Pl7LaOs3/KUeT0Wkx1M0No/g89v6EDnBsFYzKbyLlVERESqmsxzsHU+JJ+i6TUTqBfoyeGcdgk3tK5Z3tWJiIiIVDoKbkWqCKvNzovzlnDN0Rm8ZNkMFuP8mdq98b32GRqFd6JR+ZYoIiIiVZnJBEueNO52fZiBLUN59/eDLNl2SsGtiIiISAnoO9IiVcTLS3ZT78iXXGvZjB0TtmaD4f5V1LhnIZbwTuVdnoiIiFR1zu7gGWzcT4hiQIswAH7fG0tqRnY5FiYiIiJSOSm4FansrNnMW3eUmasOMyN7CMfDb8D00HrMw+ZAaMvyrk5ERESqE79w45gQRfOaPkQEeJCRbeO3PbHlW5eIiIhIJaTgVqSyykiBpc9y9sOBvLBoOwAP9WtN7THzIKhxORcnIiIi1VJucHv2KCaTiYEtjVW3S7afKseiRERERConBbcildH+ZfBeF1j3Lv6x6+nMDoa0q82DvRqUd2UiIiJSnZ234hbgupZ57RLOZapdgoiIiEhxKLgVqUxS4uCbu2H+UEiM4hRBjMr8N9a6VzPt5paYTKbyrlBERESqs38Et81r+hBew4P0LBu/74krx8JEREREKp9yD27fffdd6tati5ubG507d2bDhg2Fjs3KymLKlCk0aNAANzc3WrduzdKlSy/rmiKVgt0Of82HdzvCjm+wm8x87zaY3un/IapGNz64oz0uTuX+n7OIiIhUd/8Ibk0mEwNahgJqlyAiIiJSXOWa9Hz11VeMGzeOSZMmsWXLFlq3bk2/fv2Ijb3w5gUTJkzgww8/5O2332bXrl3cf//9DB48mL/++qvE1xSpFGxWWPc+pJ3FHtqSaTXf5bGEW3D18GbWqI74ebiUd4UiIiIiULsjjPkZ7vjWcSq3XcJve2JJy7SWV2UiIiIilY7Jbrfby+vFO3fuTMeOHXnnnXcAsNls1KlTh4cffphnnnmmwPiaNWvy3HPP8dBDDznODRkyBHd3dz777LMSXfNCkpKS8PX1JTExER8fn8t9myIlY80yVto65YSyJ7bA4T/5T2Jv3l8ZhYvFzPx7O9Oxbo3yrVNERKQc6XOboSL/HOx2Oz1e/Z3jZ9N47/Z2jg3LRERERKqj4nxuK7cVt5mZmWzevJk+ffrkFWM206dPH9auXXvBORkZGbi5ueU75+7uzqpVq0p8TZEK6fhm+KgXrHwj71ytdnzhcjPvrzS+evjq0FYKbUVERKTCM5lMjlW3apcgIiIiUnTlFtzGx8djtVoJCQnJdz4kJITo6OgLzunXrx/Tp09n//792Gw2li1bxsKFCzl16lSJrwlGIJyUlJTvJtXMyb/g69HwYii83QF+fBS2LYDE41e2jowU+OkZ+KQ3xOyAzXMg8xwAq/bHM+H7HQA82juSm9rWurK1iYiIiBTF7h9h2UQ4vslxauB57RLSs9QuQURERKQoKtVuRv/973+JjIykSZMmuLi4MHbsWEaPHo3ZfHlvY9q0afj6+jpuderUKaWKpdKI2wc7F0J2GpzebwSmC++FN5vDjJYQta7sa9j3C7x3Fax/H7BDq+HwwGpw8WB/TDIPzN+M1WbnpjY1eaxPZNnXIyIiIlISOxbC6v/m+/zUqrYvtfzcOZdpZcVe7T0hIiIiUhTlFtwGBgZisViIiYnJdz4mJobQ0NALzgkKCuL7778nNTWVo0ePsmfPHry8vKhfv36Jrwkwfvx4EhMTHbdjx45d5ruTCu3EFvjhIdjwcd65ZjdC5/vh7l/h1i+g68NQqz2YLMauyD4188ZungsL7oL1H0H0DrDZLq+elDhjte/nt0DiMWM35ju+hZs/As9A4lMyGD1nI8np2XSs689/hrbCZDJd3muKiIiIlBW/cOOYEOU4ZTKZGNjS+Dy+eHvh34QTERERkTxO5fXCLi4utG/fnuXLl3PTTTcBxkZiy5cvZ+zYsRed6+bmRq1atcjKyuLbb79l2LBhl3VNV1dXXF1dS+V9SQWVmQo7voWNM+HUVuPckdXQ4W4wm7FaXPk1/HF+Wn2K3k3bcH3fAUY4mpECJ7fk/QMEYN9S2LsEdn1vPHbzhfCuENEFIrpBzbZgthSjtmTjeiYzdHkIeo0HF08A0rOs3PvpJo6fTSMiwIMP7+yAq1Mxri0iIiJypeV+bkrMvxhiYMswPl55mOW7Y0jPsuLmrM80IiIiIhdTbsEtwLhx47jrrrvo0KEDnTp1YsaMGaSmpjJ69GgARo4cSa1atZg2bRoA69ev58SJE7Rp04YTJ04wefJkbDYb//73v4t8TalmYvfAplnw95eQkWics7hA88HQYQwpmVYWbDrKnDVHiDpj9JL9futJvtwYxQs3tKBhsBfU65n/mt3HQa12cHQNRK2H9ETY95Nxs7jCM1F5we2ZQ+AdBs7u+a+Reho8A4z7NerDoLcgqDHUbOMYYrPZeeLrv/krKgFfd2dmjepIDU+XMvghiYiIiJQivwjjeN6KW4A2dfyo5efOiYQ0/tgXR7/mhX8jTkRERETKObgdPnw4cXFxTJw4kejoaNq0acPSpUsdm4tFRUXl61+bnp7OhAkTOHToEF5eXgwcOJB58+bh5+dX5GtKNfPna7DjG+O+fz3oMBra3MGxDHfmrjnCVxt/IzkjGwBfd2euaRzETzuiWX3gNAP++yd3d6/Pw/9qiKfref+p1Olo3ACs2RC9zQhxj64Bkwmc3fLGfnUnxO012i5EdDVW5J7aCn++Dnd+Z6zSBWg9vEDpbyzby+Jtp3C2mPjgjvY0CPIqgx+QiIiISCk7v1WC3W58PsJolzCgRSifrDrMku2nFNyKiIiIXILJbrfby7uIiiYpKQlfX18SExPx8fEp73KkqM4eNTYVa32rsXoVjDB17bvQYQz2+r3YciyRmasOs3RHNLacv/n1gzwZ060eN7erhYeLE1Gnz/HCjztZvsfYOCPM142J1zejf4vQ4vWWzUqHt9pC8skLP9/xHrjujQs+9fWmYzz1zTYAXhvails6aMM8ERGRC9HnNkOF+jlkpcFLOaHs00fA3d/x1OajZxny/hq8XJ3YNKGP2iWIiIhItVOcz23luuJW5LLZrLB/GWyaaRyxG/1sB75qPB/RlazaV/HTjmhmvr+Ov48lOKZ2bxjI3d3rcXWjIMzmvEA2PMCDmaM68uuuGCb/uJPjZ9N4YP4WekQG8sINzalf1JWvzm4wbpfRLiFqrREiH1llPHfNc9Bq2AWnrT14mme/2w7AQ9c0UGgrIiIilYuzO3gGQ2qsser2vOC2bR0/wnzdOJWYzp/74rhWq25FRERECqXgViqn5Bj461PYPDf/xhf1e0HD3gAknsvi8w1RfLr2CKcS0wFwcTJzU5uajOlejyahF/+tRp9mIXSPDOS9FQf54I+DrNwfT/8ZK7m3Zz3GXhOJu0sRVoiYTBDQwLi1veOSww/GpXD/Z5vJstq5vlUYT/RtfOnXEBEREalo7vgWPALAO38wazabGNAijFmrjXYJCm5FRERECqfgViofmxU+uhqSTxmP3f2hze3QYQwENOBQXAqzv9/BN5uPk5ZlBSDQy4U7rorgjqsiCPRyLfJLuTlbGNe3ETe3rcWkRTv5Y18c7/5+kO//OsnEQc24tllI8donXMSZ1EzGzNlIYloWbcP9eP2W1vlWAouIiIhUGmGtCn3qulahzFp9mF93x5KRbcXVSe0SRERERC5Ewa1UPHY7JEdD/F6I2wdxeyB+HwyfZ4S0ZovRZuDoWuh4NzS7EbuTG2sPnmbmjxv5bW8suZ2bm4R6c3f3egxqXfOyeqjVDfRkzuiO/LIrhik/7uJEQhr/N28z1zQOYvINzYkI8Lyst5yRbeX/5m3i6Olz1PZ35+ORHdTzTURERKqktnX8CfVxIzopnZX74unTTJsIi4iIiFyIglspPzabcTSbjePfX8HGj42wNiOx4Pi4fRDe2bj/r4lgcSIj28qirSeZueowe6KTHUN7Nwnm7u716NIgoNRWxJpMJvo1D6VHZCDv/n6Aj/48xO9741j95p/cf3UDHuzVoERhq91u59/fbGPjkbN4uzkxe1THYq0KFhERkYrn3Xff5bXXXiM6OprWrVvz9ttv06lTpwuOnTNnDqNHj853ztXVlfT09CtRatmI3Q1/fwkeNaDbo/meMptN9G8Rypw1R1iy/ZSCWxEREZFCKLiVspedaWzQlbtyNm6vsZo2fj+M/glqtTPGpSfA8Y3GfZMZ/OtBUGMIbGQca9R3XDI+zcr8dYeZt+4o8SkZALg7Wxjavjaju9Ut+gZiJeDh4sRT/ZowpF1tJi3aycr98by1fD/f/XWcyYOa07tp8f7xMePX/fyw9SQWs4n3b29PZIh3GVUuIiIiV8JXX33FuHHj+OCDD+jcuTMzZsygX79+7N27l+Dg4AvO8fHxYe/evY7HpfWL53KTeAJWz4CQFgWCW4DrWoUxZ80Rlu2KUbsEERERkUIouJXSk5lqBLN+EcbqCoAtn8KPj4HdeuE58fvygtvIvuA5OyekbQDObgWG741OZuaqQ3y/9SSZ2caK3TBfN+7qWpdbO9bBz8OlDN7YhdUP8uLTMZ34aUc0U/+3i2Nn0rh77ib6NA1m0qDm1KnhcclrfP/XCf67fD8AL97Ugu6RgWVdtoiIiJSx6dOnc++99zpW0X7wwQcsXryYWbNm8cwzz1xwjslkIjS0Cm3U5RduHBOijDZY/wii24f7E+LjSkxSBqv2xxf7F98iIiIi1YGCWykdWz+HH8YaAe3QWdBiiHHeO8w45+INQY0gqEneCtrARuBfN+8aNernW1V7vsxsG48v2Mribacc51rX8ePu7vUY0CIUZ4u5DN9c4UwmEwNbhnF1oyDe/u0An6w8xK+7Y1m5P56HrmnIfT3rF9o+YcPhM/z7m20A/F/P+ozoFH4lSxcREZEykJmZyebNmxk/frzjnNlspk+fPqxdu7bQeSkpKURERGCz2WjXrh0vv/wyzZs3L3R8RkYGGRkZjsdJSUml8wZKi18d45iRZHyryt0/39Nms4kBLcJy2iVEK7gVERERuQAFt3L57HZY/V8joHWvYay8zRXRDcbtNgLcEn7lz263M+H77SzedgqzCfq3COXu7vVoF+5fYb5G6OnqxDMDmjC0fS2e/34naw+dZvqyfXy75TiTb2jONY3zfy3ySHwq/zdvE5lWG/2bh/J0/yblVLmIiIiUpvj4eKxWKyEh+YPIkJAQ9uzZc8E5jRs3ZtasWbRq1YrExERef/11unbtys6dO6ldu/YF50ybNo0XXnih1OsvNc7u4BkMqbHGqtt/BLcAA3L63C7bFU1mdktcnMrnF/EiIiIiFZU+Hcnli95u9K+1uMAjf0G7kXnPuXiAT80Sh7YAH/xxiAWbjmM2wcy7OvLe7e1pH1GjwoS252sY7M3n93bmrRFtCfZ25ejpc4yevZH/m7eJ42fPAZBwLpMxczZy9lwWrWr78ubwNpjNFe+9iIiIyJXRpUsXRo4cSZs2bbj66qtZuHAhQUFBfPjhh4XOGT9+PImJiY7bsWPHrmDFRXR+u4QL6FC3BkHeriSlZ7P6QPwVLExERESkclBwK5dv+wLj2KgfuPuV6qWXbD/Ff5Yaq1Mm39Cca5pceEOPisRkMnFD65r89mQv7u1RD4vZxM87Y+gz/Q/e/f0A/zdvM4fiU6np68YnIzvg7qLNOERERKqKwMBALBYLMTEx+c7HxMQUuYets7Mzbdu25cCBA4WOcXV1xcfHJ9+twrlEcGsxmxjQwviZLN5+6oJjRERERKozBbdyeWxW2P6tcb/V8FK99NZjCTz+1VYARnWty8gudUv1+mXNy9WJ565rxpJHetCpXg3Ss2y89vNe1h8+g5erE7NGdyTYp+AGbCIiIlJ5ubi40L59e5YvX+44Z7PZWL58OV26dCnSNaxWK9u3bycsLKysyrwyLhHcAgxsabzHX3ZGOzaeFRERERGDglu5PEdWQfJJcPOFyGtL7bLHz57jnrmbyMi28a8mwTx/fbNSu/aV1jjUm6/uu4oZw9sQ6OWKi8XMO7e1pUloBVwZIyIiIpdt3LhxfPzxx8ydO5fdu3fzwAMPkJqayujRowEYOXJkvs3LpkyZwi+//MKhQ4fYsmULd9xxB0ePHuWee+4pr7dQOq56EB7fCf1eLnRIx7o1CPQy2iWsOah2CSIiIiLn0+ZkcnmCm8G1L4E1E5xcS+WSyelZ3D1nE/EpGTQN8+GtEW2xVPIesCaTiZva1qJ/i1BSMrIJ9Cqdn5WIiIhUPMOHDycuLo6JEycSHR1NmzZtWLp0qWPDsqioKMzmvPUTZ8+e5d577yU6Ohp/f3/at2/PmjVraNas8v7iGgDvkEsOsZhN9G8Rwmfroliy/RS9Glf8tlgiIiIiV4rJbrfby7uIiiYpKQlfX18SExMrZr+wKizbauPuuZv4Y18cwd6ufP9QN2r6uZd3WSIiIlJB6XOboTL/HNYcjOe2j9fj5+HMxuf64GzRlwJFRESk6irO5zZ9KpIKw263M/nHnfyxLw53Zwsz7+qo0FZERESksrLb4dcX4JsxkHa20GGd6wUQ6OVCwrks1hw8fQULFBEREanYFNxKya34D/w1HzKSS+Vys1cf4bN1UZhMMOPWNrSs7Vsq1xURERGRcmAywV+fwY5v4ezRQodZzCb6NQ8FYMm2U1eqOhEREZEKT8GtlMy5M/Dna/DDgxfdKbioft0Vw9TFuwB4dkBTx4d3EREREanE/MKN4yU+L17XMgyAn3dFk2W1lXVVIiIiIpWCglspmV0/gC0LQlpASPPLutSOE4k88uVf2O0wolM49/SoV0pFioiIiEi5KmJw26leDWp4Gu0S1h1SuwQRERERUHArJbVtgXFsectlXSY6MZ175m7iXKaVHpGBTLmxOSaTqRQKFBEREZFyV8Tg1slizmuXsF3tEkRERERAwa2UREIURK0BTNByaIkvk5qRzd1zNxKdlE5ksBfv3NZOuwiLiIiIVCVFDG7hvHYJO2PIVrsEEREREQW3UgLbvzGOdbuDb+0SXcJqs/Pol1vZeTKJAE8XZo3qiK+7cykWKSIiIiLlzi/COBYhuL2qvtEu4UxqJusOnSnjwkREREQqPgW3Ujx2e16bhFbDSnyZaUt28+vuGFyczHw0sgN1aniUUoEiIiIiUmHkrrhNPnnJoUa7hBAAluxQuwQRERERBbdSPBnJ4BkITu7Q9IYSXeKzdUf5ZNVhAN64pTXtI/xLs0IRERERqShq1IfHd8JTB4s0fECLnHYJO6LVLkFERESqPafyLkAqGTcfGPU/SDsL7n7Fnv7nvjgmLdoJwJPXNmJQ65qlXKCIiIiIVBgWp2K11urSIAA/D2dOp2ay4fAZujYMLMPiRERERCo2rbiVknEv/irZfTHJPDR/C1abnZvb1eKhaxqWQWEiIiIiUlk5W8z0axYKwOLtapcgIiIi1ZuCWym6hChIiS3R1LjkDEbP3khyRjad6tVg2s0tMZlMpVygiIiIiFQ427+Bb8bkbXB7CQNb5bRL2BmN1WYvy8pEREREKjQFt1J0K/4DbzSGte8Va1p6lpV7P93EiYQ06gV68uEd7XF1spRRkSIiIiJSocTsgB3fwrENRRretUEAvu7OxKcY7RJEREREqisFt1I0WemwexHYbRDWqsjTbDY7Tyz4m63HEvDzcGbWqI74e7qUYaEiIiIiUqH4hRvHhKgiDXe2mLm2WQgAS9QuQURERKoxBbdSNPuWQkYS+NSG8K5FnjZ92T4Wbz+Fs8XEB3e0p16gZxkWKSIiIiIVTjGDW8hrl/DTjmhsapcgIiIi1ZSCWymabQuMY8uhYC7aX5uvNx3jnd8PAPDKza24qn5AWVUnIiIiIhWVX4RxTIgCe9FC2G4NAnGxmIlPyeBEQloZFiciIiJScSm4lUs7dwb2/2LcbzW8SFPWHjzNs99tB+DhfzVkSPvaZVWdiIiIiFRkvjmfAzOTIe1skaa4OJmpH2R8U2tfTHJZVSYiIiJSoSm4lUvb9QPYsiCkBYQ0u+TwQ3Ep3P/ZZrKsdq5vFcbjfRpdgSJFREREpEJydgcvo2dtcdolNArxBmBfTEpZVCUiIiJS4Sm4lUvbudA4thp2yaFnUjMZM2cjiWlZtA334/VbWmM2m8q4QBERERGp0PzCwWSBlNgiT2kcmhvcasWtiIiIVE9O5V2AVALDPjVW3UZee9FhGdlW7p+3mSOnz1Hb352PR3bAzdlyhYoUERERkQrrtgXg6gOWov/zIzLYC1BwKyIiItWXglu5NHd/aD/qokPsdjvjv93OhiNn8HZ1YvaojgR6uV6Z+kRERESkYvOoUewpua0SDsSmYLXZsehbXCIiIlLNqFWClIovNhxj4V8nsJhNvHdHOyJzPmiLiIiIiJREnRoeuDqZyci2EXXmXHmXIyIiInLFKbiVwkVvh497w6bZlxz66+4YAB75VyQ9IoPKujIRERERqUxOH4RvxsDC+4o8xWI2ERmidgkiIiJSfSm4lcJt+wpObIKDv11y6K6TSQB0jwwo66pEREREpLKxWWHHt7BnCdjtRZ7WKNj4Ftd+BbciIiJSDSm4lQuzWWH7t8b9VsMuOvR0SgbRSemYTNAk1OcKFCciIiIilYpfHeOYmQxpZ4s8Lbf91r6YlLKoSkRERKRCU3ArF3ZkFSSfBDdfiLz2okN3nTJW29YL8MTTVfvdiYiIiMg/OLuDZ7BxPyGqyNMah6pVgoiIiFRfCm7lwrYvMI7NbgIn14sOzW2T0LSmVtuKiIiISCH8wo1jwtEiT4nMaZVwKC6VbKutLKoSERERqbAU3EpBWemwa5Fxv9XwSw7fmRPcNgtTcCsiIiIihXAEt0VfcVvLzx0PFwuZVhtHTp8ro8JEREREKiYFt1LQvqWQkQQ+tSG8yyWH57ZKaK4VtyIiIiJSmBIEt2azichgtUsQERGR6knBrRTkHQqNr4M2t4H54n9F0jKtHIozNotopuBWRERERArjFw4mC2QVb+VsI8cGZQpuRUREpHrRTlJSUPhVxq0I9kQnYbNDoJcrwd5uZVyYiIiIiFRabe+AdneBpXj/BMkNbvfHpJRFVSIiIiIVloJbuSxqkyAiIiIiRXKJDW8LExmiVgkiIiJSPalVguT312dw5nCRh+/K3ZhMwa2IiIiIlIHcFbeH41PJzLaVczUiIiIiV46CW8mTEAU/PARvt4OUuCJN2Zkb3IYpuBURERGRS1j8JHzSF2J2FnlKmK8b3q5OZNvsHI5PLcPiRERERCoWBbeSZ/vXxjGiG3gFXXK41WZnT7RaJYiIiIhIEZ3aCsc3wOmDRZ5iMpnULkFERESqJQW3YrDbYdsC436rYUWacjg+lfQsGx4uFiICPMuwOBERERGpEvzCjWNCVLGm5W1QpuBWREREqg8Ft2KI3g5xe8DiCk1vKNKUnScTAWgS6o3FbCrL6kRERESkKrjM4HavglsRERGpRhTcimF7zmrbRv3A3a9IU3adym2T4FtGRYmIiIhIlXLZK25TSrsiERERkQpLwa2AzQrbvzHutxpe5Gm7cjcmU39bERERESmKEge3Ro/bI6dTSc+ylnZVIiIiIhVSuQe37777LnXr1sXNzY3OnTuzYcOGi46fMWMGjRs3xt3dnTp16vD444+Tnp7ueH7y5MmYTKZ8tyZNmpT126jcTh+AjGRw84XIvkWaYrfb84LbMAW3IiIiIlIEfhHGMSHK2GOhiIK8XfF1d8Zmh4NxWnUrIiIi1YNTeb74V199xbhx4/jggw/o3LkzM2bMoF+/fuzdu5fg4OAC4z///HOeeeYZZs2aRdeuXdm3bx+jRo3CZDIxffp0x7jmzZvz66+/Oh47OZXr26z4ghrDk/shbjc4uRZpSmxyBqdTM7GYTTQO9S7jAkVERESkSvCtDWYn8PCHzBRwLdrnSJPJROMQbzYcOcP+mBS16hIREZFqoVwTzenTp3PvvfcyevRoAD744AMWL17MrFmzeOaZZwqMX7NmDd26deO2224DoG7duowYMYL169fnG+fk5ERoaGjZv4GqxMUDarUv8vDc1bYNgjxxc7aUVVUiIiIiUpU4u8NzMWAp/j9DIkO82HDkDPu0QZmIiIhUE+XWKiEzM5PNmzfTp0+fvGLMZvr06cPatWsvOKdr165s3rzZ0U7h0KFDLFmyhIEDB+Ybt3//fmrWrEn9+vW5/fbbiYoqXg+taiUjpVhfU8u182QioDYJIiIiIlJMJQhtIW+Dsn3aoExERESqiXJbcRsfH4/VaiUkJCTf+ZCQEPbs2XPBObfddhvx8fF0794du91OdnY2999/P88++6xjTOfOnZkzZw6NGzfm1KlTvPDCC/To0YMdO3bg7X3hr2JlZGSQkZHheJyUlFQK77CSWHgfnDkIA1+Hej2KPG3XKeNnpK+piYiIiMiVEJmzQZlW3IqIiEh1Ue6bkxXHihUrePnll3nvvffYsmULCxcuZPHixUydOtUxZsCAAdxyyy20atWKfv36sWTJEhISEliwYEGh1502bRq+vr6OW506da7E2yl/587A/l8gbg94BhZrqmNjsppacSsiIiIixbD9G5h5Lfz+crGmNc5ZcXvs7DnSMq1lUZmIiIhIhVJuwW1gYCAWi4WYmJh852NiYgrtT/v8889z5513cs8999CyZUsGDx7Myy+/zLRp07DZbBec4+fnR6NGjThw4EChtYwfP57ExETH7dixYyV/Y5XJru/BlgUhLSG4aZGnJadnceT0OUCtEkRERESkmDKS4Nh6OLWtWNMCvFwJ8HTBbocDsWqXICIiIlVfuQW3Li4utG/fnuXLlzvO2Ww2li9fTpcuXS4459y5c5jN+Uu2WIyNseyF9GlNSUnh4MGDhIWFFVqLq6srPj4++W7VwravjWOrYcWatifa+HpaTV83/D1dSrsqEREREanK/MKNY0Lx96HIbZewV+0SREREpBoo11YJ48aN4+OPP2bu3Lns3r2bBx54gNTUVEaPHg3AyJEjGT9+vGP8oEGDeP/99/nyyy85fPgwy5Yt4/nnn2fQoEGOAPfJJ5/kjz/+4MiRI6xZs4bBgwdjsVgYMWJEubzHCishCqLWACZoObRYU9UmQURERERKzC/COCZEFXuT3Nx2CfsV3IqIiEg1UG6bkwEMHz6cuLg4Jk6cSHR0NG3atGHp0qWODcuioqLyrbCdMGECJpOJCRMmcOLECYKCghg0aBAvvfSSY8zx48cZMWIEp0+fJigoiO7du7Nu3TqCgoKu+Pur0LbnrLat1wN8ahZr6s6TiYDaJIiIiIhICfjWNo6ZyZB2FjxqFHlqZE5wqw3KREREpDoo1+AWYOzYsYwdO/aCz61YsSLfYycnJyZNmsSkSZMKvd6XX35ZmuVVTXY7bMvZrK1l8dokAOw6lbvi1rc0qxIRERGR6sDZHbxCICXGWHVbjOC2kSO4VY9bERERqfrKtVWClKNrX4JWt0KzG4o1LctqY1+08UG5uVoliIiIiEhJlLDPbaOcHrcnEtJIycgu7apEREREKhQFt9WRyQSRfeDmD8GteKtmD8SmkGm14e3mRG1/9zIqUERERESqNP964BsOtqxiTfPzcCHY2xVQn1sRERGp+sq9VYJULo6NycJ8MJlM5VyNiIiIiFRKN39kLCYogUYh3sQmZ7A/JoW24f6lXJiIiIhIxaEVt9VN1Hr45XmI2VWi6Xn9bdUmQURERERK6DIWAETmtEvQBmUiIiJS1Sm4rW62fApr3oINH5Zo+s6TiYCx4lZERERE5EprnLNB2V4FtyIiIlLFKbitTrLSYPci436r4cWebrfbHa0SmtcsXm9cERERERGH5BiY2Q/ebg92e7GmRuYEt/tjUsqiMhEREZEKQ8FtdbJvKWQkgW8dqHNVsaefSEgjKT0bZ4uJhsFeZVCgiIiIiFQLbj5wbB2cPgBpZ4s1NbdVQnRSOolpxdvcTERERKQyUXBbnWz72ji2vAXMxf+j35mz2jYy2BsXJ/3VEREREZEScnYHrxDjfsLRYk31cXMmzNcNgP1qlyAiIiJVmNK36uLcGdj/i3G/1bASXSKvTYL624qIiIjIZfILN44JUcWe2iinXcI+tUsQERGRKkzBbXWx63uwZUFoSwhuWrJLnDKC22YKbkVERETkcl1WcGu0S9inFbciIiJShSm4rS6yM8G9BrQs2WpbyFtx2yxMwa2IiIiIXKbLCG4dG5TFKrgVERGRqsupvAuQK+Sq+6Hj3WAt2QYOCecyOZGQBkBTrbgVERERkctVCq0S9karVYKIiIhUXVpxW51YnMHFo0RTc9skhNfwwMfNuTSrEhEREZHqyL8u+NYBj4BiT40MNlolxKdkcDY1s5QLExEREakYtOK2OrDbwWS6rEuoTYKIiIiIlKoG/4LHd5RoqqerE7X93Tl+No19Mcl0rl/88FdERESkotOK2+pg9X/h1fqwfGqJL5Eb3DZXmwQRERERqQBy2yVogzIRERGpqhTcVgdJJ+HcabDbSnyJ3FYJzRTcioiIiEgFkBfcqs+tiIiIVE0KbquDpBPG0admiaanZ1nZH2t8IFZwKyIiIiKl5n+PwxtNYdeiYk9tFGL0udWKWxEREamqFNxWB8mnjKN3WImm749JwWqzU8PThVAft1IsTERERESqtfRESD4JCUeLPfX8Vgl2u720KxMREREpdwpuq4OknOC2hCtud51KBIyNyUyXucmZiIiIiIiDX7hxTIgq9tQGQV6YTHD2XBbxKZmlXJiIiIhI+VNwW9VZsyEl2rhfwuB250n1txURERGRMnAZwa27i4WIGh4A7Fe7BBEREamCFNxWdamxxqZkZifwDCrRJXblBLfNFdyKiIiISGm6jOAWIPK8dgkiIiIiVY2C26rOmgn1e0FEVzBbij3dZrOz+1TOitswBbciIiIiRfHuu+9St25d3Nzc6Ny5Mxs2bCjSvC+//BKTycRNN91UtgVWFH4RxjEhCkrQpzZ3g7K9MSmlWZWIiIhIhaDgtqrzrwsjf4C7fizR9KNnzpGaacXVyUy9QM/SrU1ERESkCvrqq68YN24ckyZNYsuWLbRu3Zp+/foRGxt70XlHjhzhySefpEePHleo0grAt7ZxzEyBtLPFnp67QZlaJYiIiEhVpOBWLiq3TUKTMB+cLPrrIiIiInIp06dP595772X06NE0a9aMDz74AA8PD2bNmlXoHKvVyu23384LL7xA/fr1r2C15czZHWq2hfCukFH88LXRea0S7CVYsSsiIiJSkSmJq+pstsuavutUIqA2CSIiIiJFkZmZyebNm+nTp4/jnNlspk+fPqxdu7bQeVOmTCE4OJi77767SK+TkZFBUlJSvluldd8KGPMT+EcUe2r9IE8sZhNJ6dnEJmeUfm0iIiIi5UjBbVX33f/Bf+rBX/NLNH1nzorbZtqYTEREROSS4uPjsVqthISE5DsfEhJCdHT0BeesWrWKmTNn8vHHHxf5daZNm4avr6/jVqdOncuqu7JydbIQEeABwN5otUsQERGRqkXBbVWXdBLSzoCTa4mm57ZKaK7gVkRERKTUJScnc+edd/Lxxx8TGBhY5Hnjx48nMTHRcTt27FgZVnmFlLDVQePz2iWIiIiIVCVO5V2AlLHkk8bRp2axp8YlZxCbnIHJBE1CvUu5MBEREZGqJzAwEIvFQkxMTL7zMTExhIaGFhh/8OBBjhw5wqBBgxznbDmtrpycnNi7dy8NGjQoMM/V1RVX15L9Yr7C2f0/+OnfENYaRnxR7OmRId78tCOa/TEpZVCciIiISPkp9orbunXrMmXKFKKiosqiHilNdrux4hbAO6zY03edMlbb1gv0xMNFGb+IiIjIpbi4uNC+fXuWL1/uOGez2Vi+fDldunQpML5JkyZs376drVu3Om433HAD11xzDVu3bq0eLRCc3SDpBJw9UqLpjUK8ANgXqxW3IiIiUrUUO7h97LHHWLhwIfXr16dv3758+eWXZGRoI4AKKe0sZKcb90sS3DraJPiWZlUiIiIiVdq4ceP4+OOPmTt3Lrt37+aBBx4gNTWV0aNHAzBy5EjGjx8PgJubGy1atMh38/Pzw9vbmxYtWuDi4lKeb+XK8MvZlCwhqkTtEhrltErYH5OCvYTtFkREREQqohIFt1u3bmXDhg00bdqUhx9+mLCwMMaOHcuWLVvKokYpqeRTxtEjwFjJUEy5K26bham/rYiIiEhRDR8+nNdff52JEyfSpk0btm7dytKlSx0blkVFRXHq1KlyrrIC8a1tHDNTjIUHxVQ3wBNni4mUjGxOJqaXcnEiIiIi5afEm5O1a9eOt956i5MnTzJp0iQ++eQTOnbsSJs2bZg1a5Z+210RONokFL+/LcDOk4kANNPGZCIiIiLFMnbsWI4ePUpGRgbr16+nc+fOjudWrFjBnDlzCp07Z84cvv/++7IvsqJwdgcvI9Qm4Wixp7s4makX6AlogzIRERGpWkoc3GZlZbFgwQJuuOEGnnjiCTp06MAnn3zCkCFDePbZZ7n99ttLs04pCWcPqH8N1OlU7KnnMrM5HJ8KaMWtiIiIiJQxv3DjmFCyfTQic9ol7ItWcCsiIiJVR7F3nNqyZQuzZ8/miy++wGw2M3LkSN58802aNGniGDN48GA6duxYqoVKCdTtZtxKYE90MnY7BHu7EuRdRXYsFhEREZGKyS8cjm8scXDbOMSbxZxiX0xKKRcmIiIiUn6KHdx27NiRvn378v7773PTTTfh7OxcYEy9evW49dZbS6VAKR87czYmU5sEERERESlzYa0h6RR4BJZoeqMQLwD2x2rFrYiIiFQdxQ5uDx06RERExEXHeHp6Mnv27BIXJaXEmg2WYv8RA7ArJ7htruBWRERERMpat0eNWwnltkrYH5OCzWbHbDaVVmUiIiIi5abYPW5jY2NZv359gfPr169n06ZNpVKUlJKProb/1IOodcWeuutUzorbMN/SrkpEREREpFRF1PDAxWImLcvK8bNp5V2OiIiISKkodnD70EMPcezYsQLnT5w4wUMPPVQqRUkpSToBaWfArXjha7bVxp5TapUgIiIiIldYdibY7cWe5mQx0yDYaJewL0btEkRERKRqKHZwu2vXLtq1a1fgfNu2bdm1a1epFCWlICsN0s4a973DijX1cHwqGdk2PF0sRNTwKIPiRERERETOY82CN1vASyF5n2GLKbfP7T71uRUREZEqotjBraurKzExMQXOnzp1CienkvVTlTKQdNI4OnsUe8VtbpuEpmE+6g8mIiIiImXP4myEt3YbJBwt0SUa5fS53Ret4FZERESqhmIHt9deey3jx48nMTHRcS4hIYFnn32Wvn37lmpxchlyg1ufmmAqXvi686TaJIiIiIjIFeYXbhwToko0PdLRKiGltCoSERERKVfFXiL7+uuv07NnTyIiImjbti0AW7duJSQkhHnz5pV6gVJCyaeMYzHbJADsyglumyu4FREREZErxS8cjm8ocXDbONRYcXswLgWrzY5F3xwTERGRSq7YwW2tWrXYtm0b8+fP5++//8bd3Z3Ro0czYsQInJ2dy6JGKQnHittaxZpmt9sdrRKahRWvxYKIiIiISIld5orbOv4euDmbSc+yEXXmHPUCPUuxOBEREZErr0RNaT09PbnvvvtKuxYpTT61oMG/oGabYk2LTkrnTGomFrOJyJwNHkREREREytxlBrdms4mGwV7sOJHE3uhkBbciIiJS6ZV4N7Fdu3YRFRVFZmZmvvM33HDDZRclpaDVLcatmHLbJEQGe+HmbCntqkRERERELuwyg1swNijbcSKJ/THJ9G8RWkqFiYiIiJSPYge3hw4dYvDgwWzfvh2TyYTdbgfAlLMBltVqLd0K5YrKDW6bham/rYiIiIhcQTXqQ3hXCGpc4ks0CjH63O6L1QZlIiIiUvmZizvh0UcfpV69esTGxuLh4cHOnTv5888/6dChAytWrCiDEqVEsjNKNG1nbnCrjclERESkmjl27BjHjx93PN6wYQOPPfYYH330UTlWVY3UqAdjfoJBM0p8iUY5rb72xySXUlEiIiIi5afYwe3atWuZMmUKgYGBmM1mzGYz3bt3Z9q0aTzyyCNlUaMUlzUbXgqD/9SF1NPFmurYmEzBrYiIiFQzt912G7///jsA0dHR9O3blw0bNvDcc88xZcqUcq5OiiIy2FhxezAuhSyrrZyrEREREbk8xQ5urVYr3t7GB6LAwEBOnjwJQEREBHv37i3d6qRkUmPBboX0JHD3K/K0pPQsos6cA9QqQURERKqfHTt20KlTJwAWLFhAixYtWLNmDfPnz2fOnDnlW1x1Ys2CrLQSTa3l546ni4Usq52jp1NLuTARERGRK6vYwW2LFi34+++/AejcuTOvvvoqq1evZsqUKdSvX7/UC5QSSDplHL3DwFz0DcZ257RJqOXnjp+HS1lUJiIiIlJhZWVl4erqCsCvv/7q2HS3SZMmnDp1qjxLqz4WPwkvBsPGT0o03Ww20TC3z22M+tyKiIhI5Vbs4HbChAnYbMbXjqZMmcLhw4fp0aMHS5Ys4a233ir1AqUEkk4YR5+wYk1TmwQRERGpzpo3b84HH3zAypUrWbZsGf379wfg5MmTBAQElHN11YSrN9htkBBV4ks0Cjb63O6NVp9bERERqdycijuhX79+jvsNGzZkz549nDlzBn9/f0wmU6kWJyWUfN6K22LYlbsxmdokiIiISDX0n//8h8GDB/Paa69x11130bp1awAWLVrkaKEgZcwv3DheTnCbs+J2f6yCWxEREancihXcZmVl4e7uztatW2nRooXjfI0aNUq9MLkMjhW3tYo1bedJrbgVERGR6qtXr17Ex8eTlJSEv7+/4/x9992Hh4dHOVZWjZRGcBuqVgkiIiJSNRSrVYKzszPh4eFYrdayqkdKQ26P22K0SsjMtjlWJTRXcCsiIiLVUFpaGhkZGY7Q9ujRo8yYMYO9e/cSHBxcztVVE34RxjEhCuz2El2iUYjRKuFIfCoZ2fp3i4iIiFRexe5x+9xzz/Hss89y5syZUing3XffpW7duri5udG5c2c2bNhw0fEzZsygcePGuLu7U6dOHR5//HHS09Mv65pVTmgLaPAvCGpa5CkHYlPIstrxcXOilp97GRYnIiIiUjHdeOONfPrppwAkJCTQuXNn3njjDW666Sbef//9cq6umvCtbRwzUyDtbIkuEerjhrerE9k2O4fjU0uxOBEREZErq9jB7TvvvMOff/5JzZo1ady4Me3atct3K46vvvqKcePGMWnSJLZs2ULr1q3p168fsbGxFxz/+eef88wzzzBp0iR2797NzJkz+eqrr3j22WdLfM0qqdujcOd30OjaIk/ZeTIRMNokqFexiIiIVEdbtmyhR48eAHzzzTeEhIRw9OhRPv30U23Ce6U4u4FXqHE/4WiJLmEymdQuQURERKqEYm9OdtNNN5Xai0+fPp17772X0aNHA/DBBx+wePFiZs2axTPPPFNg/Jo1a+jWrRu33XYbAHXr1mXEiBGsX7++xNcUw65TRn/b5jV9y7kSERERkfJx7tw5vL2NwO+XX37h5ptvxmw2c9VVV3H0aMlCRCmBJgMhMxWc3Ep8iUYhXmw+epb9MdqgTERERCqvYge3kyZNKpUXzszMZPPmzYwfP95xzmw206dPH9auXXvBOV27duWzzz5jw4YNdOrUiUOHDrFkyRLuvPPOEl+zyrFZwZoJzsVrd7Ard2OyMPW3FRERkeqpYcOGfP/99wwePJiff/6Zxx9/HIDY2Fh8fPQZ6Yq5/s3LvkRksBHA741WcCsiIiKVV7GD29ISHx+P1WolJCQk3/mQkBD27NlzwTm33XYb8fHxdO/eHbvdTnZ2Nvfff7+jVUJJrgmQkZFBRkaG43FSUlJJ31b5i9sD73eFGg3gkS1FmmK32x0rbptpYzIRERGppiZOnMhtt93G448/zr/+9S+6dOkCGKtv27ZtW87VSXE0CjGC2/2xapUgIiIilVexe9yazWYsFkuht7K0YsUKXn75Zd577z22bNnCwoULWbx4MVOnTr2s606bNg1fX1/HrU6dOqVUcTlIOmkcnT2KPOX42TSS07NxsZhpGOxVRoWJiIiIVGxDhw4lKiqKTZs28fPPPzvO9+7dmzffvPxVoFIM1ixIiSvx9Eahxmfao6dTSc+yllZVIiIiIldUsVfcfvfdd/keZ2Vl8ddffzF37lxeeOGFIl8nMDAQi8VCTExMvvMxMTGEhoZecM7zzz/PnXfeyT333ANAy5YtSU1N5b777uO5554r0TUBxo8fz7hx4xyPk5KSKm94mxvc+oQVecrOnDYJjUK9cLYUO8sXERERqTJCQ0MJDQ3l+PHjANSuXZtOnTqVc1XVzJFVMHcQBDaGh9aV6BJBXq74eTiTcC6Lg3Ep2sdBREREKqVip3Q33nhjvtvQoUN56aWXePXVV1m0aFGRr+Pi4kL79u1Zvny545zNZmP58uWOr6X907lz5zCb85ecu8rXbreX6JoArq6u+Pj45LtVWsmnjKNPzSJP2XUyEVB/WxEREanebDYbU6ZMwdfXl4iICCIiIvDz82Pq1KnYbLbyLq/68AoFuw0SosBuL9ElTCYTjXL63O7TBmUiIiJSSZVaj9urrrqK++67r1hzxo0bx1133UWHDh3o1KkTM2bMIDU1ldGjRwMwcuRIatWqxbRp0wAYNGgQ06dPp23btnTu3JkDBw7w/PPPM2jQIEeAe6lrVnlJJ4yjdzGC25z+tlqJICIiItXZc889x8yZM3nllVfo1q0bAKtWrWLy5Mmkp6fz0ksvlXOF1YRvbeOYlQrnzoBnQIkuExnixYYjZ9gXoz63IiIiUjmVSnCblpbGW2+9Ra1atYo1b/jw4cTFxTFx4kSio6Np06YNS5cudWwuFhUVlW+F7YQJEzCZTEyYMIETJ04QFBTEoEGD8n2IvtQ1q7yk3BW3RW+VsOukNiYTERERmTt3Lp988gk33HCD41yrVq2oVasWDz74oILbK8XZzVh1mxINCUdLHNw2Ds3ZoEwrbkVERKSSKnZw6+/vj8lkcjy22+0kJyfj4eHBZ599VuwCxo4dy9ixYy/43IoVK/I9dnJyYtKkSUyaNKnE16zyHD1ui7bi9mxqJicT0wFokvPhVkRERKQ6OnPmDE2aNClwvkmTJpw5c6YcKqrG/MJzgtsoqNWuRJeIdLRK0IpbERERqZyKHdy++eab+YJbs9lMUFAQnTt3xt/fv1SLkxKofzV4h4J/vSINz22TUDfAA28357KsTERERKRCa926Ne+88w5vvfVWvvPvvPMOrVq1Kqeqqim/cDi+wQhuS6hRiBcAUWfOcS4zGw+XUusSJyIiInJFFPvTy6hRo8qgDCk1/acVa7jaJIiIiIgYXn31Va677jp+/fVXx8a2a9eu5dixYyxZsqScq6tm/MKN42UEtwFergR6uRCfksmB2BRa1fYrndpERERErhDzpYfkN3v2bL7++usC57/++mvmzp1bKkXJlbPzZCIAzcIU3IqIiEj1dvXVV7Nv3z4GDx5MQkICCQkJ3HzzzezcuZN58+aVd3nVS+2O0HIY1O5wWZdRuwQRERGpzIq94nbatGl8+OGHBc4HBwdz3333cdddd5VKYVICWelgt4GLR5Gn5LZKaF7Tt6yqEhEREak0atasWWATsr///puZM2fy0UcflVNV1VCTgcbtMjUK8WLtodPs0wZlIiIiUgkVe8VtVFQU9eoV7J8aERFBVFTJv8okpWD3Ing5DD6/tUjD07OsHIxLBdQqQURERESqnsiQ3BW3Cm5FRESk8il2cBscHMy2bdsKnP/7778JCAgolaKkhJJOGke3ooWwe6OTsdrsBHi6EOztWoaFiYiIiIgUk90OJ7fmfcYtgcahRnC7X60SREREpBIqdnA7YsQIHnnkEX7//XesVitWq5XffvuNRx99lFtvLdpKTykjuR9qfWoWaXhum4RmNX0wmUxlVZWIiIiISPH98BB8dDX8Nb/El2iU0+P2REIayelZpVWZiIiIyBVR7B63U6dO5ciRI/Tu3RsnJ2O6zWZj5MiRvPzyy6VeoBRDck5w613E4PZkXnArIiIiUl3dfPPNF30+ISHhyhQi+YVfBVvnG+3Arn6qRJfw9XAm2NuV2OQM9sem0C7cv5SLFBERESk7xQ5uXVxc+Oqrr3jxxRfZunUr7u7utGzZkoiIiLKoT4oj6ZRxLOKK250nEwFoFqbgVkRERKovX9+Lb9Lq6+vLyJEjr1A14tB4IJgehehtcPYo+Jfs3xuNQ72N4DYmWcGtiIiIVCrFDm5zRUZGEhkZWZq1yOVytEoIu+RQq83Onmhjk4bmNS/+jxURERGRqmz27NnlXYJciGcghHeFo6tgz2Lo8mCJLhMZ7M3K/fHsU59bERERqWSK3eN2yJAh/Oc//ylw/tVXX+WWW24plaKkBKzZkBJj3C9Cq4Sjp1M5l2nFzdlMvUDPMi5ORERERKQEml5vHHf/WOJLNArxAmBfTHJpVCQiIiJyxRQ7uP3zzz8ZOHBggfMDBgz4//buPD6q6v7/+GuWzGTfCFnZt7CDgETEBRQFRdwr+LNVqUuraFXcqq2i/dpi1VpqtfqtX6xaqyLWvYqVKCI7ogjIjqwhOySTTJKZZOb+/rhZiARIIMnMkPfz8biPO3Pn3DufmXEeHt45cw6LFy9ulaLkONRUwfD/B30mQHTyMZt/Xzu/bf/UWGxWLUwmIiIiIkGo/2Rzv2c5lBcc1yX6ppgLlCm4FRERkVDT4uC2vLwch8Nx2PGwsDBcLlerFCXHwRkNlzwLP/03WG3HbL4x1/ysBmlhMhEREREJVvHdIG04YMDWBcd1iboRt/kuD6WV1a1Xm4iIiEgba3FwO2TIEObNm3fY8TfffJOBAwe2SlHS9jbWjrgdqOBWRERERILZuQ/BtR/AsKuP6/SY8DDS48IB2KZRtyIiIhJCWrw42UMPPcTll1/Ojh07OOeccwDIzs7m9ddf5+233271AqWZqkrBagdH8+arrZsqYWCaglsRERERCWJ9JpzwJfqmxLC/tIot+WWM6pHYCkWJiIiItL0Wj7idMmUK7733Htu3b+fWW2/l7rvvJicnh88//5w+ffq0RY3SHF89DX9Ih88ePmbTgrIqiso9WC3mHLciIiIiIiezuukStuWXB7gSERERkeZr8YhbgMmTJzN5srlQgMvl4o033uCee+5hzZo1+Hy+Vi1Qmsm139xHdjpm07ppEnp1jibCcez5cEVEREREAqp4B6x60bx9weMtPr2fFigTERGRENTiEbd1Fi9ezHXXXUd6ejp/+tOfOOecc1ixYkVr1iYtUZZr7mPSj9lU0ySIiIiISEipKoGVz8O3/4TqqhafruBWREREQlGLRtzm5eXx8ssvM3fuXFwuF1dddRUej4f33ntPC5MFmivH3MceO7jdmGsGt4O0MJmIiIiIhIL0ERCbYfZ5f1gEmZNadHqfZHOqhKJyLwfcXhKjHG1QpIiIiEjravaI2ylTppCZmcm6deuYM2cO+/fv569//Wtb1ibNZRjgqh1xG5t2zOab6kbcKrgVERERkVBgsUB/c6o2Nn/Y4tOjnHa6JkYAGnUrIiIioaPZwe0nn3zCDTfcwKOPPsrkyZOx2TQ3atCoKoGaSvP2MaZKcHtq2FnsBjRVgoiIiIiEkAFTzP3mj8FX0+LT+yWb0yVsU3ArIiIiIaLZwe2SJUsoKytj5MiRZGVl8eyzz1JUVNSWtUlz1S1MFpEIYeFHbbo5z4VhQGpsOJ2ine1QnIiIiIhIK+h2utnfrTwAe5a3+PS+tfPcblFwKyIiIiGi2cHtaaedxosvvkhubi6/+MUvePPNN0lPT8fv9/PZZ59RVqYOUMDYw+GUn8Ggy47ZdKOmSRARERGRUGSzQ+YF5u3NH7X49H4p5jy3W/PLW7MqERERkTbT7OC2TlRUFD//+c9ZsmQJ69ev5+677+bxxx8nOTmZiy++uC1qlGPp1BsueRYuevqYTb+vC241TYKIiIiIhJoBU8xFyiKTWnxqv5SGqRIMw2jtykRERERaXYuD20NlZmbyxBNPsG/fPt54443Wqkna0MZcM7gdpBG3IiIiIhJq+p4Pd30PZ9/b4lP7JEdjtcDBimqKyr1tUJyIiIhI6zqh4LaOzWbj0ksv5YMPPmiNy0lLlReC133MZjU+P5vzzCktNFWCiIiIiIQcqw0sluM6NTzMRrfESAC2ap5bERERCQGtEtxKgL13C/whHda+ftRmOwrdeGv8xDjtdE2IbKfiRERERERama8G9q5q8Wl1C5QpuBUREZFQoOD2ZFCWa+6jk4/abGNuKQAD0mKxWo9vpIKIiIiISEDVeGHOYJh7HhRuadGpmfXBrRYoExERkeCn4PZk4Mox9zHpR222sW5hMk2TICIiIiKhyu6AlEHm7U0ftujUvinRgEbcioiISGhQcBvqqiuh8qB5OzbtqE2/V3ArIiIiIieD/heZ+80ftei0fodMlWAYRmtXJSIiItKqFNyGurppEsIiITz+iM0Mw2Bjbm1wm6bgVkRERERCWP/JgAX2fwul+5p9Wq/OUdisFsqqash3edquPhEREZFWoOA21Ln2m/uYtKOusJtbWkVJRTV2q6X+J2IiIiIiIiEpOhm6nWbe3vyfZp/mtNvo0clcpFfTJYiIiEiwU3Ab6ly1I25jjz6/bd00CX1TYnDabW1dlYiIiIhI26qbLqGF89weOl2CiIiISDBTcBvq4rvCiGuh7/lHbVa/MJmmSRARERGRk8GA2uB291JwFzf7tL4KbkVERCRE2ANdgJygbqc1/EzsKDbmlgJamExEREREThIJPWDibOiWBZGJzT4tsz64LW+jwkRERERah4LbDqJuqoRBCm5FRERE5GQx5tYWn9Kvdr2HbfllGIaB5SjrRIiIiIgEkqZKCHUle8Fz9NECpZXV7DtYCcAATZUgIiIiIh1Yj6QowmwW3F4fOSWVgS5HRERE5IgU3Ia6lybC7AzI+eaITVbtPABA906RxEWEtVdlIiIiIh3Wc889R48ePQgPDycrK4tVq1Ydse0777zDqFGjiI+PJyoqiuHDh/PPf/6zHasNcTu/gvdmwNZPm9U8zGalV1LdqFtNlyAiIiLBS8FtKPP7oCzPvB2TdsRmi7YUAHBW387tUZWIiIhIhzZv3jxmzpzJrFmz+Oabbxg2bBgTJ06koKCgyfaJiYn85je/Yfny5axbt47p06czffp0Pv20eUFkh7ftv7D2NVj3VrNP6Vs7XYIWKBMREZFgpuA2lJUXgOEDiw2ik5tsYhgGi7YUAjAuU8GtiIiISFt7+umnuemmm5g+fToDBw7khRdeIDIykpdeeqnJ9uPGjeOyyy5jwIAB9O7dmzvuuIOhQ4eyZMmSdq48RA2YYu63fgo1nmad0q92gbItCm5FREQkiCm4DWWu/eY+JhWstiab7CgsJ6ekEofdypjendqxOBEREZGOx+v1smbNGiZMmFB/zGq1MmHCBJYvX37M8w3DIDs7my1btnDWWWe1Zaknj4xREJ0K3jLYubhZpzQsUKapEkRERCR4KbgNZWV1we3RpkkwR9tm9Uwk0mFvj6pEREREOqyioiJ8Ph8pKSmNjqekpJCXl3fE80pLS4mOjsbhcDB58mT++te/ct555x2xvcfjweVyNdo6LKsV+k82b2/6sFmn1I243V5Qjt9vtFVlIiIiIidEwW0oc+Wa+9j0IzZpmCah6akURERERCTwYmJiWLt2LatXr+b3v/89M2fOZNGiRUdsP3v2bOLi4uq3rl27tl+xwWjAReZ+83/MdSCOoXunKBx2K5XVPvYdrGzj4kRERESOj4LbUObKMfdHCG7dnhpW7TwAaH5bERERkfaQlJSEzWYjPz+/0fH8/HxSU1OPeJ7VaqVPnz4MHz6cu+++myuvvJLZs2cfsf0DDzxAaWlp/bZ3795Wew0hqceZEB4HFUWwd+Uxm9usFnp3NqdL0Dy3IiIiEqwU3IayLqNgxLXQbUyTDy/bUYzX56drYgS9kqLauTgRERGRjsfhcDBy5Eiys7Prj/n9frKzsxkzpuk+W1P8fj8ez5EX2nI6ncTGxjbaOjRbGPS7AJL6gad5QWzdPLdbFdyKiIhIkNKkp6FswJSGVXSbsGhLAQDj+iVjsVjaqyoRERGRDm3mzJlcd911jBo1itGjRzNnzhzcbjfTp08H4NprryUjI6N+RO3s2bMZNWoUvXv3xuPx8PHHH/PPf/6T559/PpAvI/RM+QuEhTe7+cC0WN5fu59/f7OPn4/tSYSj6cV+RURERAJFwe1JyjCMQ+a31TQJIiIiIu1l6tSpFBYW8vDDD5OXl8fw4cNZsGBB/YJle/bswWpt+OGb2+3m1ltvZd++fURERNC/f39ee+01pk6dGqiXEJpaENoCTD21Ky8t3ckPhW4e/2QTj14yuI0KExERETk+FsMwtIzqj7hcLuLi4igtLQ3en50ZBhRvh5g0cEYf9vD2gjImPL0Yh93K2ofPI9KhjF5EREROPiHRb2sHeh8OUV0Fpfsgqc8xmy7eWsi1L60C4JWfj+bsfhrwICIiIm2rJf02zXEbqqpK4NlRMDsDqg9fCbdutG1Wz0SFtiIiIiLSMexaCk/0gnk/bVbzs/p15vrTewBw7/zvOOj2tmFxIiIiIi2j4DZUuXLNfUQihEUc9nDDNAnJ7VmViIiIiEjgpAwEnwcKN0Hxjmadcv+k/vTuHEVBmYffvLce/SBRREREgoWC21Dl2m/uY9MPe8jtqWHVzgOA5rcVERERkQ4kIgF6nGne3vRh805x2Jgz9RTsVgsfr8/j3W9z2rBAERERkeZTcBuqyo4c3C7bUYzX56drYgS9kqLauTARERERkQAacJG53/xRs08Z0iWOOyf0BWDW+9+z72BFW1QmIiIi0iIKbkNV3YjbmLTDHlq0pQCAcf2SsVgs7VmViIiIiEhgZU429/tWN/SZm+GXZ/dmRLd4yjw13P3Wd/j9mjJBREREAkvBbag6wlQJhmHUz287vr+mSRARERGRDiY2DbqMNm9v/k+zT7PbrPx56nAiHTZW7jzA/y35oY0KFBEREWmeoAhun3vuOXr06EF4eDhZWVmsWrXqiG3HjRuHxWI5bJs8eXJ9m+uvv/6wxydNmtQeL6X9lNUuTvaj4HZHYTk5JZU47FbG9EoKQGEiIiIiIgF2HNMlAHTvFMXDFw0E4KlPt7Ip19XalYmIiIg0mz3QBcybN4+ZM2fywgsvkJWVxZw5c5g4cSJbtmwhOTn5sPbvvPMOXq+3/n5xcTHDhg3jJz/5SaN2kyZN4h//+Ef9fafT2XYvIhAyLzSnSUgd0uhw3WjbrJ6JRDhsgahMRERERCSwBl4C/hroP6XFp049tSsLNxWwcFM+d81by3szxhIepn61iIiItL+Aj7h9+umnuemmm5g+fToDBw7khRdeIDIykpdeeqnJ9omJiaSmptZvn332GZGRkYcFt06ns1G7hISE9ng57WfUdLj4GUg/pdHhuuB2XObhobeIiIiISIeQ0APOvBs692vxqRaLhcevGEKnKAeb88p4+rOtrV+fiIiISDMENLj1er2sWbOGCRMm1B+zWq1MmDCB5cuXN+sac+fOZdq0aURFRTU6vmjRIpKTk8nMzOSWW26huLi4VWsPRm5PDat2HgBgXKbmtxUREREROR5J0U4ev2IoAC9+9QPLd5z8/5YQERGR4BPQ4LaoqAifz0dKSkqj4ykpKeTl5R3z/FWrVrFhwwZuvPHGRscnTZrEq6++SnZ2Nn/84x/58ssvueCCC/D5fE1ex+Px4HK5Gm1BzVsBRdvAU97o8LIdxXh9fromRtArKeoIJ4uIiIiIdAB+H6ybD/Ong9fd4tPPG5jCtFO7Yhhwz/zvcFVVt0GRIiIiIkcW8KkSTsTcuXMZMmQIo0ePbnR82rRpXHzxxQwZMoRLL72Ujz76iNWrV7No0aImrzN79mzi4uLqt65du7ZD9Sdg/zfw7Cj437MaHV60pQCAcf2SsVgsgahMRERERCQ4WKzw+e/g+3dge/ZxXeKhiwbSLTGSnJJKHnn/+1YuUEREROToAhrcJiUlYbPZyM/Pb3Q8Pz+f1NTUo57rdrt58803ueGGG475PL169SIpKYnt27c3+fgDDzxAaWlp/bZ3797mv4hAcOWa+9j0+kOGYdTPbzu+v6ZJEBEREZEOzmKBARebtzd/dFyXiHLa+fPU4Vgt8M63OfxnXW4rFigiIiJydAENbh0OByNHjiQ7u+Ev4H6/n+zsbMaMGXPUc+fPn4/H4+GnP/3pMZ9n3759FBcXk5aW1uTjTqeT2NjYRltQK9tv7g8JbncUlpNTUonDbmVMr6QAFSYiIiIiEkT6X2TutyyAGu9xXWJk9wRmjO8DwG/eW0++q6q1qhMRERE5qoBPlTBz5kxefPFFXnnlFTZt2sQtt9yC2+1m+vTpAFx77bU88MADh503d+5cLr30Ujp16tToeHl5Offeey8rVqxg165dZGdnc8kll9CnTx8mTpzYLq+pzblqg9uYhiC6brRtVs9EIhy2QFQlIiIiIhJcuo6GqM7gKYVdXx33ZX51bl+GZMRRUlHNPfO/wzCMVixSREREpGkBD26nTp3KU089xcMPP8zw4cNZu3YtCxYsqF+wbM+ePeTmNv5J0pYtW1iyZEmT0yTYbDbWrVvHxRdfTL9+/bjhhhsYOXIkX331FU6ns11eU5urC25jM+oPfVE3v21mciAqEhEREREJPlYb9J9s3j7O6RIAwmxW/jx1GE67la+2FfHq8t2tVKCIiIjIkVkM/bn4MC6Xi7i4OEpLS4Nz2oQXz4Wcr2HqazBgCm5PDaf87jO8Pj/Zd59N787Rga5QREREpF0Efb+tneh9OIptC+FfV0B0CszcDNbjH7vyyrJdzPrge5x2K//51Zn0SVa/W0RERFqmJf22gI+4leNQVjsCOcac43bZjmK8Pj9dEyPolRQVwMJERERERIJMz7MgPA7iuoC74IQu9bPTunNm3yQ8NX7umreWap+/lYoUEREROZyC21A06ucw4jpI6A7AotppEsZnJmOxWAJZmYiIiIhIcLE74M71cNPnEJN6QpeyWi08eeUw4iLCWJ9TyjPZ21qpSBEREZHDKbgNRWfdAxc/A1FJGIZRvzDZuMzOAS5MRERERCQIhce12qVS48L5w2VDAHjui+2s2X2w1a4tIiIicigFtyFuR2E5OSWVOOxWxvRKCnQ5IiIiIiLBq7IEKg6c8GUmD03jslMy8Bsw8621uD01J16biIiIyI8ouA017iIo3AKeMoD60bZZPROJcNgCWZmIiIiISPBa9Dg82QdW/b1VLvfIxYNIjwtnd3EFj/1nY6tcU0RERORQCm5DzYZ34LnR8N6tAHxRO7/tuMzkQFYlIiIiIhLc4rqCvxo2fdQ6l4sI409XDcdigTdW7WXhxvxWua6IiIhIHQW3ocaVY+5j03F7ali905xTS/PbioiIiIgcReYFYLFB/no4sLNVLjmmdyduPKMnAL9+Zx1F5Z5Wua6IiIgIKLgNPWW55j4mjWU7ivH6/HRNjKBXUlRg6xIRERERCWaRidD9dPP25tYZdQtw9/mZ9E+Noajcy6//vR7DMFrt2iIiItKxKbgNNa795j42g0W10ySMz0zGYrEEsCgRERERkRAw4GJz30rTJQCEh9n489ThOGxWFm7K562v97batUVERKRjU3AbamqDWyMmtX5hMk2TICIiIiLSDP0nm/u9K6Gs9eakHZAWy93n9wPg0Q83srvY3WrXFhERkY5LwW0oMYz6qRJ218STU1KJw25lTK+kABcmIiIiIhIC4jIgfQRgwJb/tOqlbzyzF1k9E6nw+rhr3lpqfP5Wvb6IiIh0PApuQ0lVCVRXAPD5PhsAWT0TiXDYAliUiIiIiEgIOf02uPApyLywVS9rs1r401XDiHba+WZPCf+7+IdWvX6gGIZBuacm0GWIiIh0SApuQ4oFxj0IWbeQvcMFwLjM5ADXJCIiIiISQgZfAaNvgpjUVr90l4RIHr14EAB//mwr6/eVtvpztKedRW4u/dsyRvzuMxZubL2pJURERKR5FNyGkoh4GHc/7nMeY/XOg4DmtxURERERCSaXj8jgwiGp1PgN7pz3LVXVvkCX1GKGYfDmqj1c+Jev+G5vCV6fn3vf/o4CV1WgSxMREelQFNyGoGU7ivH6/HRNjKBXUlSgyxERERERCS0VB+Drl2Dxk61+aYvFwu8vHUJyjJMdhW4e/2Rzqz9HWzro9vLL19bw63fWU1ntY0yvTgxMi+VgRTV3z/8Ov98IdIkiIiIdhoLbUHJwFxRuYenG3QCMz0zGYrEEtiYRERERkVBTshs+ugu+ehqqK1v98glRDp64cigALy/bxc2vfs3eAxWt/jyt7atthUycs5hPv88nzGbhgQv6868bs3jm6uE47Va+2lbEy8t2BbpMERGRDkPBbSj56ml4bjRdNs8FNE2CiIiIiMhxSRsOcV3NhX8XPwUbP4DtC2H3cqjxNrSr8YDv+BbmGpeZzH2TMrFZLfx3Yz4Tnv6SP3+2NSinTqiq9vG7Dzfys7mrKCjz0Cc5mndvHcsvzu6N1WqhT3IMv71oIACPL9jM5jxXgCsWERHpGOyBLkBaoCwXgG2VMTjsVsb0SgpwQSIiIiIiIchigf6TYeUL8NVTjR+7byfYE83bn9wPa/4BNic4IiEsytw7oszbP3kZomsHU2z6CPatrn0sEhyR3JoQxUXTUvn1SifLdhTzl+xt/PubfTx00UDOH5gSFL+e25JXxh1vfsvmvDIAfnZadx68cAARDlujdj/N6saizQVkby7gjjfW8v5tYwkPszV1SREREWklCm5DiWs/AHlGIlm9Eg/rTImIiIiISDOd/iuoPAjuQvBWgNcN1W4zeK3jdZt7nwcqPWb7Q1kO+QHjjmxz3twf6Qb8a9BlLLzyPmZ9lsu+g5X84p9rOKtfZ2ZNGUjvztGt/9qawTAMXl62i9mfbMZb46dT7fQO5w5IabK9xWLhj1cOZdKcxWzJL+OJBVt4eMrAdq5aRESkY1FwG0rqg9sErspMDnAxIiIiIiIhLC4DLv/70dtc8ixc8MfaULc23D30dnhsQ9te48AefsjjFeBxwe5lWHZ+xXmTn2bs0H4898V2Xly8k8VbC5k0ZzE3nNGL28/pQ5Sz/f5pVuCq4p6317F4ayEA4zM788SVw+gc4zzqeUnRTp68chjTX17NS0t3Mi6zM2f10/RtIiIibUXBbaioroLKAwDkGoma31ZEREREpK3ZneYWmXjstgMvMbcf278W3EUQmUgkcO/5mUzr7+Dhz4v4YkshL3y5g/e+zeHByQOYMjStzadP+O/3efz6nfUccHtx2q38ZvIAfnZa92Y/7/j+yVw7pjuvLt/N3fO/49M7zyIxytGmNYuIiHRUWpwsVJSZo20rDQfxCZ3plRR1jBNERERERCTg0odD3wkN979/l67/PJ1/ZK7kpZ8Np1tiJHmuKn71xrdM+/uKNlv4q8Jbw4Pvrufmf67hgNvLwLRYPrr9DK4d06PFYfGDFw6gT3I0hWUe7v/3OgzDaJOaRUREOjoFt6HCZS5MlmckMK5/clAsZCAiIiIiIi206UOoqYT//pZzll7DZ/8vkbvP60d4mJWVOw8w+ZklPPrh95RWVrfaU67fV8pFzyzh9ZV7ALj5rF68O+N0+qbEHNf1wsNs/GXacMJsFj7bmM+bq/e2Wq0iIiLSQMFtiDBi03nRfjX/8k3QNAkiIiIiIqHqypfg4r+CMw72f4tz7nhuN15n4a9Gc8HgVHx+g38s3cW5f1rEW1/vxe8//tGsPr/B3xZt57K/LeWHIjepseH868YsHrxwAE77iS10PCg9jnsnZgLwuw838kNh+QldT0RERA6n4DZEbK9O4vflU3jVMoUxvZICXY6IiIiIiBwPiwVGXAu3rYIBF4PhgyVP0+WN83j+rBr+ecNoeneOoqjcy31vr+Py55exbl9Ji58mp6SS//fiCp5YsIUav8GFQ1JZcOeZjO3Tev+WuPGMXpzeuxOV1T7unLeWap+/1a4tIiIiCm5DxqIt5oqvWT0TiXCc2F/HRUREREQkwGJSYeo/YeprEJ0KB3ZATSVn9u3MJ3ecxYMX9ifKYWPt3hIueW4pD9QuKNYcH3y3n0lzFrNy5wGiHDaevHIoz/2/EcRHtmARMb8fdi+HT+6H16dB8Y7DmlitFv501TDiIsJYt6+UOQu3Nv/6IiIickz2QBcgzbNjwwr6WMo4t0+vQJciIiIiIiKtZcAU6HEmbPkEeo0DwGG3cvMQO5cMH8fjn2zm3W9zeGPVHj5en8s9EzP5f6O7YbMevuZFWVU1s97/nne+zQFgeNd4/jJtON07NXNhY78f9q2G79+Fje/XL5AMQM4auO4DSB7Q6JS0uAhmXz6EW//1DX9btIOz+nYmq1en43orREREpDGNuA0Bbk8NU/OeZqHzPiaFbwh0OSIiIiIi0poi4mH41Q33S/bC38aQ8slN/PnCNN76xRj6p8ZQWlnNQ+9tYMpfl7Bm94FGl/h61wEu+MtXvPNtDlYL/Orcvsz/5Zjmh7YAe5bDS+fDyufN0NYZC0OnQcpgcEZDREKTp104JI2fjOyCYcDMt75r1YXVREREOjKNuA0By3YUM8hSDEBKRs8AVyMiIiIiIm1q9zKoqYJNH8DOLxl9/mN8dNs1/GvVXv703y1szHVxxfPLuXxEBvdOzOSNlXt49ovt+A3omhjBnKnDGdk98cjXNwzY9zVsfA/C4+Hse83j3U6DTn0gYyQMugx6nwN2J1QeBK/bnN7hCGZdPIhVuw6wu7iCh9/fwF+mndKqb4mIiEhHZDEM4/iXKT1JuVwu4uLiKC0tJTY2NtDl8Nt31vLId+OxW/wwczPEpgW6JBEREZGgEGz9tkDR+3ASylsP798GuWvN+z3PgovmUOzswpOfbmHe13sxDHOts7p/0V0+IoNHLx5ETHjY4dczDMj5Br5/x5wGoXSveTw6FWZuAmvtjzH9/obbR7LuLYjsBH3ObXT4mz0H+ckLy/H5DeZMHc6lp2Qc/+sXERE5SbWk36apEoKcYRis37Idu8WP32KD6ORAlyQiIiIiIm0tdQjcmA3nPwb2CNi5GJ4/nU7r/4/HrxjKu7eOZViXOAwDYsPt/PXqU3j6quFNh7ZL/wJzhsL/nQPLnzVDW0c0DL4SJv8JDH9D22OFtruWwru/gDemwaaPGj00olsCvzqnLwAPvbeBvQcqTvRdEBER6dAU3Aa57QXlGC5zUQBLdDJYbQGuSERERERE2oXNDqffDrcuNxcuq6kCdyFgLjz27q1jee2GLBbefTZThqWb59SNrPXVNFynLB9K90BYFAy+Aqa+BvduhyvnwoCLzOdpri6nmguq+bzw1rXm6NtDzBjfm5HdEyjz1DDzrbX4/PqBp4iIyPHSHLdBbtGWQlIt5sIDllj91EhEREREpMNJ7Ak/ew82/Bv6T64/bC3L4Ywencx5aPevhe/fNbeS3Wb73uPNhiOvM+ev7TMBHJEnVovdAVe8BGG3w3evwzs3m/PfjppuPmyz8uerhnPhM1+xetdBnl+0ndtqR+GKiIhIyyi4DXKLthbQuza41dy2IiIiIiIdlMUCQ65suO/3wbyfQeUBwAIHdzY8Zo+ovV8b3HbONLfWYrPDJc+BIwpWvwgf3WmGt6ffBkC3TpE8evEg7p7/HXMWbuPMvp0Z1jW+9Z5fRESkg9BUCUHM7alh9c6DfOvvy4Gse2HQ5YEuSUREREREgsHBXVCWZ+4P7jTD2oGXwE9ehvt2wKift+3zW61w4ZMw9k7z/n9/Azu+qH/48hEZXDQ0jRq/wZ3z1uL21DR9HRERETkijbgNYst2FOP1+SlNHEzCpHHmX9lFREREREQ69YYZK2H9WxAeD/0mgTO6fWuwWGDCI+bzluWb8/DWP2Th95cO4ZvdB9lZ5OZ/PtrI41cMbd/6REREQpxG3AaxRVsKABiX2RmLQlsRERERETlUeCyceqM5hUJ7h7Z1LBY4615z9G3dv1lqPOD3ExcZxp+uGo7FAm+u3suCDXmBqVFERCREKbgNUoZhsGiLuWLsJYm7oWAz+KoDXJWIiIiIiEgT6kNbrzn37nu/BF8NY3p34hdn9Qbg1++sI99VFcAiRUREQouC2yC1vaCcnJJKHHYLIxbfCH/LgpI9gS5LRERERETkyHK+hu0LYd08mH8d1HiYeV4/BmfEUlJRzT3zv8PvNwJdpYiISEhQcBuk6kbbju/uxFJdYR6MTQ9gRSIiIiIiIsfQ/XSY+hrYHLD5I3jjahz+KuZMPYXwMCtfbSviH8t2BbpKERGRkKDgNkgt2mrObzuxq988EJEAYREBrEhERERERKQZ+l8I/+8tCIuEHdnw2hX0ifXz28kDAfjjJ5vZlOsKcJEiIiLBT8FtEHJ7ali98yAAYzp7zIMxGm0rIiIiIiIhovd4+Nm74IyFPcvg1Uu4Zkg0EwYk4/X5ufPNtVRV+wJdpYiISFBTcBuElu0oxuvz0y0xklSKzYOaJkFEREREREJJt9Pgug8hIhGKtmIp3cPjVwwlKdrJlvwyHv9kc6ArFBERCWoKboPQoi3mNAnjMjtjKcszD8amBbAiERERERGR45A+HKZ/bE6dkH4KSdFOnvzJUABeXraLL7cWBrY+ERGRIKbgNsgYhlG/MNm4zM5Qtt98IDYjgFWJiIiIiIgcp+QB0GNs/d3xMTncNcIGwD3zv6O43BOoykRERIKagtsgs72gnJySShx2K2N6JcHAS+Gc30KvcYEuTURERERE5MQUbIZ/Xsavdv+KCZ0OUFjm4f5/r8cwjEBXJiIiEnQU3AaZutG2WT0TiXDYzEn9z7rXnB9KREREREQklEUmQkw6Fnc+L9Q8xCm2XSzclM/cJTvx+xXeioiIHErBbZBZtNWc33Z8ZnKAKxEREREREWll0clw/UeQMRK75yDzwv/AKMtmHvvPJs59+kteXrqTck9NoKsUEREJCgpug4jbU8PqnQeB2vlta7ywPdv8OZF+OiQiIiIiIieDyES49n3oPhaHr5w3Ip7g4vBv2VlUziMfbuS0P2Tz6Iffs7vYHehKRUREAkrBbRBZtqMYr89Pt8RIeiZFgSsHXrsc/j4u0KWJiIiIiIi0HmcMXPM29JlAmL+KZ3iSuaeX0qtzFOWeGv6xdBfjnlrEja+sZsm2Is2BKyIiHZI90AVIgy+2mNMkjMvsjMViAdd+84HYNLBYAliZiIiIiIhIK3NEwrTXYeEjsOMLzr1oGuOx8tX2IpZkf8i/d0ewcBMs3FRA3+Rorh/bg8tP6WKuBSIiItIBaMRtkDAMgy9rFyYbl9nZPFiWa+5jMwJUlYiIiIiISBuyO2HSbLhlKVhtWK0Wzu4Vx2/cf+TrqDv4d8brDHPksK2gnN+8u4HTZmcz++NN7DtYEejKRURE2pyC2yCxvaCcnJJKHHYrY3olmQddOeY+Ji1whYmIiIiIiLQ16yGjaMvzIDYdq8/DyOKPeN96L0vTn+GquI24Kj387+IfOOuJL/jlP9ew8odiTaMgIiInLQW3QWJR7WjbrJ6JDT/9cdWNuFVwKyIiIiIiHUR8N7jpc/j5pzDwErBYyTiwgic8j7Gh80Pc1GUvfgMWfJ/H1L+vYPIzS3jr671UVfsCXbmIiEirCorg9rnnnqNHjx6Eh4eTlZXFqlWrjth23LhxWCyWw7bJkyfXtzEMg4cffpi0tDQiIiKYMGEC27Zta4+XctwWbTXntx2fmdxwsKxujltNlSAiIiISSlrSv33xxRc588wzSUhIICEhgQkTJhy1vUiHYLFAt9PgqlfhV2thzG3gjCWqbCe/uXIs/73rLK4e3Y3wMAsbc13c9/Y6Tn/8c576dAv5rqpAVy8iItIqAh7czps3j5kzZzJr1iy++eYbhg0bxsSJEykoKGiy/TvvvENubm79tmHDBmw2Gz/5yU/q2zzxxBM888wzvPDCC6xcuZKoqCgmTpxIVVVw/g/c7alh9c6DwCHz20LD4mSaKkFEREQkZLS0f7to0SKuvvpqvvjiC5YvX07Xrl05//zzycnJaefKRYJUQneY+HuYuRF+8jKkDqFfSgyzLx/CdyM+4bNur3JuzF4OuL08+8V2xj7+Ob9641u+2XMw0JWLiIicEIsR4AmBsrKyOPXUU3n22WcB8Pv9dO3aldtvv51f//rXxzx/zpw5PPzww+Tm5hIVFYVhGKSnp3P33Xdzzz33AFBaWkpKSgovv/wy06ZNO+Y1XS4XcXFxlJaWEhsbe2IvsBk+25jPTa9+TbfESL681xxRDMDG96FoKwy+EhJ7tnkdIiIiIqGmvfttzXGi/Vufz0dCQgLPPvss1157bbOeMxjfB5E2V3kQnsoEnweAA51G8A/fhfwtLxMf5vRzw7rGM/30Hlw4JA2HPeDjlkRERFrUbwvo/7m8Xi9r1qxhwoQJ9cesVisTJkxg+fLlzbrG3LlzmTZtGlFRUQDs3LmTvLy8RteMi4sjKyvriNf0eDy4XK5GW3v6Yos5+mJcZueG0BbM+ZzOulehrYiIiEiIaI3+bUVFBdXV1SQmJh6xTaD7ryJBISIBbvgvDJ0G1jASi7/h7pLH2JT0AM90X0qirYrv9pZw57y1jP3j59z/9jreX5tDQVlw/hKzSdWVsG0hfPJreGkSfP4Y1HgDXZWIiLQTeyCfvKioCJ/PR0pKSqPjKSkpbN68+Zjnr1q1ig0bNjB37tz6Y3l5efXX+PE16x77sdmzZ/Poo4+2tPxW89U2c2GyRtMkiIiIiEjIOdH+LcD9999Penp6o/D3xwLdfxUJGunD4fL/hfMehdX/B6vn4ijfx8Xlz3Hu+Ad4yXIF/1yxm4IyD/O+3su8r/cC0C8lmtN7JzG2TxJZvRKJDQ8L7Os4VOEW2L7Q3HYtrR9RDIDfB+N/E7jaTpTfB1jAqtHPIiLNEdDg9kTNnTuXIUOGMHr06BO6zgMPPMDMmTPr77tcLrp27Xqi5TXb+zPO4KtthYzpldRw0F0EuWshvjsk9W23WkREREQkcB5//HHefPNNFi1aRHh4+BHbBbr/KhJ0YlLhnN/CmXfDurfg65eIGnMjt0cl8Yuze7N+xX8p2rqSzw6msKCwE1vzYWt+OS8v24XVAkO6xDO2dydO753EqB4JhIfZ2q/26ioIO+T7Pv96KNjYcD+2C/Q5F1IGQ/op5sJtAJUlsOHfcMrPwO5ov3qPR/5GWP6s+dlEp8DEx2DQZYGuSkQk6AU0uE1KSsJms5Gfn9/oeH5+PqmpqUc91+128+abb/K73/2u0fG68/Lz80lLa1jUKz8/n+HDhzd5LafTidPpPI5X0DoSoxxcMjyj8cE9K2DeNZAxEm76PDCFiYiIiEiLnEj/9qmnnuLxxx9n4cKFDB069KhtA91/FQlaYREw8jpzq+WwWxm57RnYs5SJwFPh4I7qzg/2nqys7MKS8jS+3DuM7/aW8LdFO8z23RIY26cTY3onMaxLHHZbK44Q9fshb13tqNpsyFsP924zawfoP9kMonufC30mQOfMhrD2UMv+Cl89BUv/AuMfhCE/AWs7Bs7HYhiwczEse8Z8rXVc+yAsquF+dRXYnU2/RhGRDi6gwa3D4WDkyJFkZ2dz6aWXAubiDdnZ2dx2221HPXf+/Pl4PB5++tOfNjres2dPUlNTyc7Org9qXS4XK1eu5JZbbmmLl9E2XPvNfWx6YOsQERERkWY73v7tE088we9//3s+/fRTRo0a1U7VinQQvmrocQY4Y8yQ1JVDlHs3Q9jNEODnMfG8c94Slu0oZumOIk4vX0j1Ljvv7OzOn/6bSpTTQVbPRMb07sTYPklkpsRgtbYwZHQXw47PzQBzRza4Cxs/vm819DzLvH3Ob5t3zYQe5ujVkt3w7i9gyZ/Nc/tfFPgQtKoUXpkCud+Z9y1WGDAFsm6Bsv3mCOI6i5+ATR/CqJ/DsKshIj4gJYuIBKOAT5Uwc+ZMrrvuOkaNGsXo0aOZM2cObreb6dOnA3DttdeSkZHB7NmzG503d+5cLr30Ujp16tTouMVi4c477+Sxxx6jb9++9OzZk4ceeoj09PT6znNIKKsNbmMU3IqIiIiEkpb2b//4xz/y8MMP8/rrr9OjR4/6dRmio6OJjo4O2OsQOWnYwswRqXXcRWaAm7cO8tZjtYdz5aiuXDmqK4ZhUPPnuwhz7QGgAicb/d3ZuL0732/rwbv+nuRF9mNM7bQKY/t0oltiZONFpgF8NWD4zJGkAN+9Dv89JJB1REPPs80As8+5ZgjbUiN+BoOvgFV/N0Pbws0w76eQPgImzIJe41p+zRPhqwFbbcQQHmeOqrVHwCk/hTG3QmKvw88xDNjwDhzcCQt+DQsfhSFXwKgbIGNE+9YvIhKEAh7cTp06lcLCQh5++GHy8vIYPnw4CxYsqF/QYc+ePVh/NHH5li1bWLJkCf/973+bvOZ9992H2+3m5ptvpqSkhDPOOIMFCxYcdZ6woOPKNfcacSsiIiISUlrav33++efxer1ceeWVja4za9YsHnnkkfYsXaRjiEqC3uPN7UcshkFYvwmQuw7yvyeyppJR1q2Msm4FYL3Riynux/hoXS4frcvlStuXeCLTSeg1ksHJdnqWriCjaBmdC5eza9RDlA+4igiHjbikM0jqPBijz7nY+p6HrVtW68xL64iEM+6Ekdebc8gu/xvs/wbWzW+/4Na1H1b+L6ybB79cClG1g6um/MV8ryMTj3yuxQK/WGye+/VL5ty+375mbumnwJjbYMiVRz5fROQkZzEMwwh0EcHG5XIRFxdHaWkpsbGxgSni5Ytg11dw+Ysw9KrA1CAiIiIS5IKi3xYE9D6ItAFfDRRvrx2d+x3krceXMoRvMmeydHsRq7fl8nLeZYRZfE2e/lbN2dxX84smH3PYrEQ4bESE2Yh02Aiv3dcdi3D86HiYjUiHnf6pMQzvFk+k4whjsMoLYcnTcNotEN/NPHZgJ1RXQMqg1nhXGuRvNOfZXT8f/NXmsYmzzdG1x8MwzLVevp4LG98HnxdOvREm/6n1ahYRCQIt6bcFfMStHEFZ7YjbmLSjtxMREREREZHWZ7NDcn9zG/oT8xBwKnBqj0Q4LZ6aDy+gct93RLj34sfKD87+fOsYwSrbCNb7e9K1Biq9Piq9PiqqfdQNm/L6/Hgr/ZRWVre8LKuFgWmxjOyewKgeCYzqnkhqXO2vS6M7w6TG0wyycBZs/MBcvGz8A01PWdBchgE7vzQD20MXHOt2Ooz9FfSdePzXtlig+xhzmzgb1r4G/S5oeHzvKsj+nRnm9p9sToEhInKSU3AbjAxDi5OJiIiIiIgEs+hk7Ff/y/xHdWUJVouFPuFx9AF+0kRzwzDw1PjNILfaR4XXR1XtvrLaR6W3pv54Xdh7aLuSimrW7Sthf2kV63NKWZ9TysvLdgGQER9RG+ImMLJ7IpmpMdisFnPUsMUKGLD+Lfj+HRhxLZx17/H9W9NdCK9daY6wrVtw7PRfQZdWXlQxujOccVfjY6v/z/xV6q6vIDrVfB0jr4e4jNZ9bhGRIKKpEpoQ8J+a+f2w7k0zvB0zA8Ii2r8GERERkRAQ8H5bkND7INJx7C+p5OvdB1mz6wBf7z7IplwX/h/9qz7GaWd4t3hGdU9kVI8ERoTtJuKrPzSMkrWHw+ib4IyZR5+D1lNmnjPosoZjH99rDjY60oJjbaVkD6x5Gb551QyQwQyP+10Ap94AvcbDj9bHEQlqNd7WmetaQk5L+m0Kbpugjq+IiIhIaFC/zaT3QaTjKvfUsHZPCV/vPsCa3Qf5dk8J5Z6aRm1sVgsD0mK4InE3lxTPJfHAN+YD5/0Oxt5x+EVd+2HlC/D1y+ApNRcdSx3c9i+mOWq8sPlDWP0S7F5iHovvBr9aC1ZbQEsTOaaCTfD9e7DxPegzASb+3jzu98Mb08zvWZfR0HX00f+oIiFNc9yKiIiIiIiIdADRTjtn9E3ijL5JAPj8BpvzXKzZfZCvdx1kze6D5JRUsiHHxYacBB7lbsZZ1/KL8IW8vWs0w6y7GNk9gf6OYmzeUlj598YLjnXqC5UHAvgKf8TugMFXmFvBZvj6JejUpyG0PbAT/m8CRKeYUy5Ep0B0MkQlm7fThpnzFgcLbwUUbjbf48oSqDwIXjekDDbDu3D9MS7kHRrWFm5uOO7zwvmPmfM7F22BbZ+aW51OfRpC3F5nt+8IdwkaGnHbhICPWCjaDiW7zP9BJnRv/+cXERERCREB77cFCb0PInI0uaWV9SHu17sPsHF/4+kVLPhZ4PwNmZbd9ceq0k/DedYdWPpNCq0pCPashJfOP/LjZ94D5z5k3j6wE16aZAa70SmHh72pQyGp79Gfz+83RyVb7eCMMY+V5ZkLwlUeMIPYQ7eKA3DaLeZUFQA538CL45u+tsVqzkc8/sGWvQcSPF6ZAjsXN9y3OaD3OTDwUsi8ACLizeMVB2DTh+YifPtWQdHWxtc5614457fm7apS2Pe1Obd0eFx7vIrD1XjM/87L882pS2xOcEaDI9rcx3YxF3gMFq79cHCX+ceRqpIf7UvhvEchJrX9ytGI2xC34d+w6A/mZOsX/zXQ1YiIiIiIiEgIS4uLYMqwCKYMMxckc3tqWLu3hK93mUFuwZ6txFCGz7DwiT+LF2su5Lsf+hC738bgjFUMyYhjcO3WPTESq9US4Fd0FGlDzakd6gKl8nwoL6jd8iF5QEPb8nwozzO3phwalh34AV65GKI6m4FqfShbAhiNp51w7YdP7j1yjaX7Gm5HdoLYDIhINEO8iASwhUHOGjNoiu/W0DZ3HbxzE3Q/HbqPhW5jtDhbsDAMc2Ttlo/NhfXqRoAnZcKeFWZYO+gyM6xtKmyNTISR15kbmEHuvq9h70ozyO0+tqHt7mXmtApYzP+eu5wKXbPMkbmd+pgjeI9XdaUZyJbVfi/K8qEs1/yuTHmmYU7e928zFzw8kjvWNQxEXPQ4fPtaQ6hbv48x92feAzEpZtu8DeZ37dDHHdHmd66qxBzgWFfDD4tg19Imgtja/Y2fQUIPs+2qv8OSPx+53tN+2a7BbUsouA1GZfvNfcxxrPIpIiIiIiIichRRTjtj+yQxtk/d9Aqj2bL/Ir7aU8jaPA/G/lIcuWW4qmpYtqOYZTuK68+NcdoZlBHL4PQ4hnQxw9yenaKCIsz11PjwGWFEpg4GmjEnb+pQuPnLhlDXfUjAW15ghm51yvKgdK+5NfnkZQ23Y9LMEZURCY23yERzXxcmgRluzdzY9DVd+8ER1XB/9zLzp/aFtVNEAMR3N0O97qdDv0nmiOH25veZ7091ReMRyl8+Cd4yM4BzRB0S2sWYQXWXkQ1tazzmaNQTCR3bm2FAwcaGaRDqRsl2Ow16nGHePutec4R3S0fGRiZCv/PN7ceqK83/hg7uMp+/YCN884r5WEQiXDnXDIoP5XU3Hcie81BDEPrBrxqu05RzfgtxXczbManm5xWTav4xw+cFTzl4y8193ehzML9PR/reAJx2a8Pt9W/B0r8cue2vvm2YMuKHRUcPYysPNnzXYjPM88LjzT+Q/HgfnXLk6wSYgttg5Mo197EKbkVERERERKRt2awWBnZJYGCXBKbWHvPW+NmaX8b3+0tZn1PK+hwXm3JdlHlqWPHDAVb80DDvbZTDxqD0ulG5sQzJiKNX52hsrRDmVnhrKC73UljuoajMQ1G5l6JyT8NW1nDfVVWD1QJXjOjC3ednkhoXfvSLOyIhfXjzCkkdCjdmmyGUYdSGsLVBbEQ82J0NbWPT4KqjBGDN9eNMYOhVEN/VDHB3L4Xc76Bkt7l99zpc+wFEn222PfCDGfB1HtC6U12sf9ucYqJkN5TsMbfSfeacyBmj4KbshrbfvHLkwC6pH9y2uuH+38eZgbQjuvHITEeUGU5f+lxD229fM3/e7ow1Q8OozmZgHdUZwiJa77UeSek+WPMKfP8uFG9rOG5zmAuO2Q+pIaYNAsHBl5tbWT7sW107Kne1Oe1G5QFzmoI6q16EhY+YgWpTsn7REMbWhcv2cDOQjU419zGpZrB56Os65yFzlHlzgvYz74Hh15h/3KgLdr2HhLxRSQ1tY7uYo4c95Wbo73Wbtw2fGbJWVza07ZoFo25oOogNj2/8R4TRNzVMTxJiFNwGI1ftiFsFtyIiIiIiIhIADru1fnqEqaeax6p9frYXlLM+p5QNtdvGXBdur49Vuw6waldDmBsRZmNgeuwh0yzE0qc2zC3z1DQKYYvLPRTWBbJldaGseb/C62tR3X4D5q/Zx4fr9nPzmb24+ezeRDtbIfpwRptzigZSZCL0n2xuYAZhe1fC7uXmz/G7nNrQdtWLsOJvZoDVbUzD9AppQ82pGA5VN2K2Logt2dMQzEYkNA6hP/8fc6Tnj1lswI+WUDr1BigvbBzAecvNun+8no+nHAw/eFzmdsgAZjrlNm67/G9Q8H3T71F8N7hzfeO2VSUNAW9U59rF6pLM96Y5waNhQE1VQyjsyoXFT5i368LaQZeZI57bczG5mBQYcJG5AdR4IW+dOV1Cnd3LGkLbsCjznEMDWesh340zZ8KZd5sB7rHel7pRus0Rl9H8KT2ybja35si8wNxOclqcrAkBX9zhiV5QUQy3LIOUQe3//CIiIiIhIuD9tiCh90FEAqXG52dHoZsNOaX1ge7GXFeTgavTbsXAHM3bEk67laRoJ0kxTjpHO8zb0U6Soh0kxRxyO9rJD0Vu/vCfTXy9+yAASdFOZp7Xj6tGdcFuC6FF1k7Ux/fCt/+Canfj42GR5lyoU19r+Dn7X0dC8famrxOdAvccslDWp78x5w+N79Z4i0k7scWoPGW1wa7bDHrrR2W6zXB04MUNbbNrw+OqEnAX1c5lXGCO+u3cH2asbGj7tzHmVAJNiUmDuzc33F8yxxyxGtUZopLN0HrvSnMahO6nN6xBZBjmHK+9zm7/sLalXPvN9zAmtfH0BRJQLem3KbhtQkA7vtVV8PvaofT37TT/oiYiIiIiTVJgadL7ICLBxOc32Flkjsxdv8/Fhv2lfJ9TivuQMDfKYTssdD00nO10SDgb7bRjacHcp4Zh8On3eTz+yWZ2FVcA0Dc5mgcvHMC4zM4tulZI81WbC5rtWVY7vcIyM+yMSYOZmxpGVb58EexZbv5kvj6M7d5wu/vpAX0ZzWIY5vQJ3vKGn/4DLH0GDu40g113YW3IWzsKuPMAmLGioe1zp0HhpqavH5MOd33futNOSIel4PYEBbTje2AnPDPcnFPkN3mhNTG3iIiISDtTYGnS+yAiwc7vN9hzoAKb1UJStJMIh63Nn9Nb4+dfK3fzl+xtlFRUAzC2TyceuGAAgzNauFjUycDvN4PJslzz5/11Kg+a88Va2/4zCRrVleao3kMXc1v5v+ZI3vICc6E6dzEk9oSBlwT/yFoJKQpuT1BAO76VJbDlE/OvRCE6cbKIiIhIe1FgadL7ICJyZKWV1fzti+38Y+kuvD4/FgtcdkoG907MJC2uHRazEhE5hILbE6SOr4iIiEhoUL/NpPdBROTY9h6o4Kn/buH9teaC4E67lZvO7MUvzu5FTHjYMc4WEWkdLem3aXIOERERERERETnpdU2M5C/TTuH9GWMZ3TMRT42fZ7/YzrgnF/HPFbup8bVs0TQRkbam4DbY7Psati0EV26gKxERERERERE56QzrGs+8m0/j7z8bSa+kKIrdXh56bwMT5yxm4cZ89MNkEQkWCm6DzbJn4F9XwKYPAl2JiIiIiIiIyEnJYrFw/qBUPr3rLH53ySASoxzsKHRz46tfc/WLK1i/rzTQJYqIKLgNOi5zrh1i0gJbh4iIiIiIiMhJLsxm5doxPVh07zhuGdcbh93Kih8OMOXZJdw1by05JZWBLlFEOjAFt8GmboqE2PTA1iEiIiIiIiLSQcSGh3H/pP58cc84Lj8lA4B3v81h/FOL+OOCzbiqqgNcoYh0RApug4nfB+V55m0FtyIiIiIiIiLtKiM+gqenDufD287gtF6JeGv8PL9oB+OeXMSry3dRrQXMRKQd2QNdgBzCXQj+GrBYISo50NWIiIiIiIiIdEhDusTxxk2nkb2pgNmfbGJHoZuH3/+el5fuYuqpXYmLCCPKaSfaaSc63E6Uw7wd5bQR5bTjtFuxWCyBfhkiEuIU3AaTuvlto1PBpo9GREREREREJFAsFgsTBqYwLrMzb67ey58/28oPRW5mf7L5mOeG2SxEORsC3ehwe23QayPKYd6OqT1WdzzaGUaU00ZseBhdEiKIj3S0w6sUkWCmdDCY1AW3sVqYTERERERERCQY2G1Wfnpady4Zns6ry3ezNb8Mt6eG8trN7fHV7muo8PoAqPYZlFRUU1Jx/HPjxkeG0aNTFD2TzK1HUhQ9O0XRIymSmPCw1np5IhLEFNwGk/ThcOkL4IgMdCUiIiIiIiIicoiY8DBmjO9z1DY+v4Hba4a4bk8NZVWNg92GsLf28frbvvrHSiurKSzzUFJRzdqKEtbuLTnseZKiHfWhbo+6YLc21I10KOoROVno2xxM4rrA8KsDXYWIiIiIiIiIHAeb1UJseBixJzgitsJbw66iCnYVu9lZZG67itzsKnZTVO6t377effCwc1NinQ2jdDs1BLvdEiMJD7OdUF0i0r4U3IqIiIiIiIiIBJFIh52B6bEMTI897DFXVTW7iyr4oai8Ubi7q9hNSUU1+S4P+S4PK3440Og8iwXS4yLomRRFcqyTMKsVu82C3WrBbrPW7i3YrFbCrBZsNgthVis2q4Uwm9mm7nZ9G6uFsNrj5rUarum02wgPs9bvw8NsWrRNpIUU3AaTrZ+CxQZdRkJEQqCrEREREREREZEgExsexpAucQzpEnfYYwfdXnYW147OLXKzs7jC3Be5KffUkFNSSU5JZQCqbuCwWwm31wa5YVbC7TbCwxqHvM7akDc8zEa4/dB2DQFwYpSDMb07ab5fOakpuA0mnz4Ixdvhuo+g55mBrkZEREREREREQkhClIOEKAcjujUeDGYYBkXl3vrRuQfcXnx+g2qfv3Zv4PP7a/cGNX4/NT6DGn/t5vP/aG+2q/Y3nF9Td63ac701fqqqfVTVmMfreGv8eGv8uKpqTvj1htksnNarE+cPTOHcASmkx0ec8DVFgomC22BhGODKNW/Hpge2FhERERERERE5aVgsFjrHOOkc4+TUHont/vw1Pj9VdUFutQ9P/W0/nhofnuq6kPfQ237zdo2vybY7i9z8UOTmq21FfLWtiIfe/57BGbFMGJDCeQNTGJgWq2kZJOQpuA0WVaVQ7TZvK7gVERERERERkZOE3WYl2mYl2tm6MdSOwnIWbszns435rNlzkA05LjbkuJizcBsZ8RFMGJDMhIEpZPXshMNubdXnFmkPCm6DRVntaNvweAjT0H4RERERERERkaPp3Tma3mdH84uze1NU7uHzzQUs3JjP4m2F5JRU8sry3byyfDcxTjtnZ3bmvIEpjMtMJi5C8+JKaFBwGyxc+819bEZg6xARERERERERCTFJ0U6uGtWVq0Z1parax9LtRXy2MZ+FmwooKvfw0bpcPlqXi91qIatXIhMGpDBhQApdEyMDXbrIESm4DRb1wW1aYOsQEREREREREQlh4WE2zh1gLljm9xus3VdSP6XCtoJylm4vZun2Yh79cCP9U2M4f2AKEwamMCQjTvPiSlBRcBssyrQwmYiIiIiIiIhIa7JaLYzolsCIbgncN6k/u4rcLNxkhrirdx1gc14Zm/PKeObz7aTGhnPugGTOG5jCmN6dcNptgS5fOjiLYRhGoIsINi6Xi7i4OEpLS4mNjW2fJy3cCvu/gfhu0P309nlOERERkRAXkH5bENL7ICIi0nIH3V6+2FLAZxvz+XJrIRVeX/1jUQ4b/VJjSIh01G5hJEQ5iI8MazgWZd6OjwxTyCvN1pJ+m0bcBovO/cxNRERERERERETaXEKUg8tHdOHyEV2oqvax/IdiFm7MZ+GmfPJdHr7dU9Lsa0U5bMQ3CnMdJEaGmcdqQ9+6wDe+9n6Uw6apGeSoFNyKiIiIiIiIiEiHFh5mY3xmMuMzk/mfSwazMddFTkklJRVeDrirKanwcrDCy8GK6tpjXkoqqimprMbnN3B7fbi9leSUVDb7OcNsFqKcdqIcdqKcNiJr9+b9htv1x512Ih02op3msWinncj69ub5NquC4JOJgttgsfYNiEqCHmdCWHigqxERERERERER6ZCsVguDM+IYnBF3zLZ+v0GZp4aDbjPYLamo5uAhwW7dsQM/etxT46faZ5jhb0V1q9UeHmatD3ajnHY6xzjpmxxtbinR9EmOIS4irNWeT9qWgttgUF0F7/3SvH3fTgW3IiIiIiIiIiIhwGq1EBcRRlxEGD2IavZ5lV4fByu8VHhrcHt8uD01uL0+Krw1lHtqqPD4zL3XPO72NLRrfMy87fObS1hVVfupqvYCXgA25cLirYWNnjsl1knf5Bj6pkTX7/slxxAXqUA32Ci4DQZluebeHg4RCYGtRURERERERERE2lSEw0aEI6JVrmUYBp4aPxV1Ya7XDHTLPT72l1SyLb+cbQVlbMsvJ89VRb7LQ77Lw5LtRY2uUzc6t19KDH1qR+n2S4khIcrRKnVKyym4DQZ1wW1MGmhSahERERERERERaSaLxUJ4mI3wMBuJxwhZXVXVbC8oZ3t+OVvzy9hWUM72gnJySiopLPNQWOZh2Y7iRuckRTvoUxvi9k02p1volxJNp2hnW74sQcFtcHDtN/exGYGtQ0RERERERERETlqx4WGM6JbAiG6Nf/Fd7qlhe0E52/LL2F7QEOruO1hJUbmXovIDrPjhQKNzEqMc9OkcTWKUg+hwOzHhdmKc9trbYUTX3o4NtxPtDKtvE6VF1JpNwW0wqA9u0wJbh4iIiIiIiIiIdDjRTjvDu8YzvGt8o+MV3rpAt5xttcHutoJy9h6s4IDbyyr3gaYv2Izni64Pec3bZvBrBrz192tD4Lp5hOMiwoiNCCPGacfaAcJfBbfBoG6qhNj0wNYhIiIiIiIiIiJSK9JhZ2iXeIZ2iW90vNLrY0dhOT8UuSmtrKa8qoayqmrKPTWUV9Xgqqqh3GPeL6syj5V5avDW+AFzhG+5pwZcx1eX1QKxEYcHunERYcT/6Pihj8VFmqGvJUSmKlVwGwxcOeY+RsGtiIiIiIiIiIgEtwiHjcEZcQzOiGvReZ4aX23IW1Mf6tYHvvX3zdC3LvB1VVVTWtmwVVX78RtQUlFNSUV1i2u3WS3EhtsbhboD0mJ58MIBLb5WW1NwGwzOuAsyL4T0EYGuREREREREREREpE047Tac0bYTWtisqtqHq7JxmFu3lVSY+6YeL6msxlvjx+c3OFhRzcFDQt9Kr681Xl6rU3AbDNJPMTcRERERERERERE5ovAwG+FhNpJjw1t8blW1r3GgWxv0xkaEtUGlJ07BrYiIiIiIiIiIiJz06kLflOMIfQPBGugCRERERERERERERKQxBbciIiIiIiIiIiIiQUbBrYiIiIiIiIiIiEiQUXArIiIiIiIiIiIiEmQU3IqIiIiIiIiIiIgEmYAHt8899xw9evQgPDycrKwsVq1addT2JSUlzJgxg7S0NJxOJ/369ePjjz+uf/yRRx7BYrE02vr379/WL0NERERERERERESk1dgD+eTz5s1j5syZvPDCC2RlZTFnzhwmTpzIli1bSE5OPqy91+vlvPPOIzk5mbfffpuMjAx2795NfHx8o3aDBg1i4cKF9fft9oC+TBEREREREREREZEWCWii+fTTT3PTTTcxffp0AF544QX+85//8NJLL/HrX//6sPYvvfQSBw4cYNmyZYSFhQHQo0ePw9rZ7XZSU1PbtHYRERERERERERGRthKwqRK8Xi9r1qxhwoQJDcVYrUyYMIHly5c3ec4HH3zAmDFjmDFjBikpKQwePJg//OEP+Hy+Ru22bdtGeno6vXr14pprrmHPnj1HrcXj8eByuRptIiIiIiIiIiIiIoESsOC2qKgIn89HSkpKo+MpKSnk5eU1ec4PP/zA22+/jc/n4+OPP+ahhx7iT3/6E4899lh9m6ysLF5++WUWLFjA888/z86dOznzzDMpKys7Yi2zZ88mLi6ufuvatWvrvEgRERERERERERGR4xBSk7/6/X6Sk5P5+9//js1mY+TIkeTk5PDkk08ya9YsAC644IL69kOHDiUrK4vu3bvz1ltvccMNNzR53QceeICZM2fW33e5XApvRUREREREREREJGACFtwmJSVhs9nIz89vdDw/P/+I89OmpaURFhaGzWarPzZgwADy8vLwer04HI7DzomPj6dfv35s3779iLU4nU6cTudxvhIRERERERERERGR1hWwqRIcDgcjR44kOzu7/pjf7yc7O5sxY8Y0ec7YsWPZvn07fr+//tjWrVtJS0trMrQFKC8vZ8eOHaSlpbXuCxARERERERERERFpIwELbgFmzpzJiy++yCuvvMKmTZu45ZZbcLvdTJ8+HYBrr72WBx54oL79LbfcwoEDB7jjjjvYunUr//nPf/jDH/7AjBkz6tvcc889fPnll+zatYtly5Zx2WWXYbPZuPrqq9v99YmIiIiIiIiIiIgcj4DOcTt16lQKCwt5+OGHycvLY/jw4SxYsKB+wbI9e/ZgtTZky127duXTTz/lrrvuYujQoWRkZHDHHXdw//3317fZt28fV199NcXFxXTu3JkzzjiDFStW0Llz53Z/fSIiIiIiIiIiIiLHw2IYhhHoIoJNaWkp8fHx7N27l9jY2ECXIyIiIiJHULeobElJCXFxcYEuJ2DUfxUREREJDS3pvwZ0xG2wKisrA8wRviIiIiIS/MrKyjp0cKv+q4iIiEhoaU7/VSNum+D3+9m/fz8xMTFYLJY2f766pF0jJE5++qw7Dn3WHYc+645Dn3VwMgyDsrIy0tPTG02x1dGo/yptRZ91x6HPuuPQZ91x6LMOTi3pv2rEbROsVitdunRp9+eNjY3VF6mD0Gfdceiz7jj0WXcc+qyDT0ceaVtH/Vdpa/qsOw591h2HPuuOQ5918Glu/7XjDksQERERERERERERCVIKbkVERERERERERESCjILbIOB0Opk1axZOpzPQpUgb02fdceiz7jj0WXcc+qxFGuj70HHos+449Fl3HPqsOw591qFPi5OJiIiIiIiIiIiIBBmNuBUREREREREREREJMgpuRURERERERERERIKMglsRERERERERERGRIKPgNgg899xz9OjRg/DwcLKysli1alWgS5JW9sgjj2CxWBpt/fv3D3RZ0goWL17MlClTSE9Px2Kx8N577zV63DAMHn74YdLS0oiIiGDChAls27YtMMXKCTnWZ3399dcf9j2fNGlSYIqV4zZ79mxOPfVUYmJiSE5O5tJLL2XLli2N2lRVVTFjxgw6depEdHQ0V1xxBfn5+QGqWCQw1H89+an/evJS/7XjUP+1Y1D/9eSm4DbA5s2bx8yZM5k1axbffPMNw4YNY+LEiRQUFAS6NGllgwYNIjc3t35bsmRJoEuSVuB2uxk2bBjPPfdck48/8cQTPPPMM7zwwgusXLmSqKgoJk6cSFVVVTtXKifqWJ81wKRJkxp9z9944412rFBaw5dffsmMGTNYsWIFn332GdXV1Zx//vm43e76NnfddRcffvgh8+fP58svv2T//v1cfvnlAaxapH2p/9pxqP96clL/teNQ/7VjUP/1JGdIQI0ePdqYMWNG/X2fz2ekp6cbs2fPDmBV0tpmzZplDBs2LNBlSBsDjHfffbf+vt/vN1JTU40nn3yy/lhJSYnhdDqNN954IwAVSmv58WdtGIZx3XXXGZdccklA6pG2U1BQYADGl19+aRiG+R0OCwsz5s+fX99m06ZNBmAsX748UGWKtCv1XzsG9V87BvVfOw71XzsO9V9PLhpxG0Ber5c1a9YwYcKE+mNWq5UJEyawfPnyAFYmbWHbtm2kp6fTq1cvrrnmGvbs2RPokqSN7dy5k7y8vEbf8bi4OLKysvQdP0ktWrSI5ORkMjMzueWWWyguLg50SXKCSktLAUhMTARgzZo1VFdXN/pe9+/fn27duul7LR2C+q8di/qvHY/6rx2P+q8nH/VfTy4KbgOoqKgIn89HSkpKo+MpKSnk5eUFqCppC1lZWbz88sssWLCA559/np07d3LmmWdSVlYW6NKkDdV9j/Ud7xgmTZrEq6++SnZ2Nn/84x/58ssvueCCC/D5fIEuTY6T3+/nzjvvZOzYsQwePBgwv9cOh4P4+PhGbfW9lo5C/deOQ/3Xjkn9145F/deTj/qvJx97oAsQ6QguuOCC+ttDhw4lKyuL7t2789Zbb3HDDTcEsDIRaS3Tpk2rvz1kyBCGDh1K7969WbRoEeeee24AK5PjNWPGDDZs2KA5HUWkQ1L/VeTkp/7ryUf915OPRtwGUFJSEjab7bCV/PLz80lNTQ1QVdIe4uPj6devH9u3bw90KdKG6r7H+o53TL169SIpKUnf8xB122238dFHH/HFF1/QpUuX+uOpqal4vV5KSkoatdf3WjoK9V87LvVfOwb1Xzs29V9Dm/qvJycFtwHkcDgYOXIk2dnZ9cf8fj/Z2dmMGTMmgJVJWysvL2fHjh2kpaUFuhRpQz179iQ1NbXRd9zlcrFy5Up9xzuAffv2UVxcrO95iDEMg9tuu413332Xzz//nJ49ezZ6fOTIkYSFhTX6Xm/ZsoU9e/boey0dgvqvHZf6rx2D+q8dm/qvoUn915ObpkoIsJkzZ3LdddcxatQoRo8ezZw5c3C73UyfPj3QpUkruueee5gyZQrdu3dn//79zJo1C5vNxtVXXx3o0uQElZeXN/qL9M6dO1m7di2JiYl069aNO++8k8cee4y+ffvSs2dPHnroIdLT07n00ksDV7Qcl6N91omJiTz66KNcccUVpKamsmPHDu677z769OnDxIkTA1i1tNSMGTN4/fXXef/994mJiamf9ysuLo6IiAji4uK44YYbmDlzJomJicTGxnL77bczZswYTjvttABXL9I+1H/tGNR/PXmp/9pxqP/aMaj/epIzJOD++te/Gt26dTMcDocxevRoY8WKFYEuSVrZ1KlTjbS0NMPhcBgZGRnG1KlTje3btwe6LGkFX3zxhQEctl133XWGYRiG3+83HnroISMlJcVwOp3Gueeea2zZsiWwRctxOdpnXVFRYZx//vlG586djbCwMKN79+7GTTfdZOTl5QW6bGmhpj5jwPjHP/5R36aystK49dZbjYSEBCMyMtK47LLLjNzc3MAVLRIA6r+e/NR/PXmp/9pxqP/aMaj/enKzGIZhtH08LCIiIiIiIiIiIiLNpTluRURERERERERERIKMglsRERERERERERGRIKPgVkRERERERERERCTIKLgVERERERERERERCTIKbkVERERERERERESCjIJbERERERERERERkSCj4FZEREREREREREQkyCi4FREREREREREREQkyCm5FROSoLBYL7733XqDLEBERERFpFvVfReRkoeBWRCSIXX/99VgslsO2SZMmBbo0EREREZHDqP8qItJ67IEuQEREjm7SpEn84x//aHTM6XQGqBoRERERkaNT/1VEpHVoxK2ISJBzOp2kpqY22hISEgDzZ2DPP/88F1xwAREREfTq1Yu333670fnr16/nnHPOISIigk6dOnHzzTdTXl7eqM1LL73EoEGDcDqdpKWlcdtttzV6vKioiMsuu4zIyEj69u3LBx980LYvWkRERERClvqvIiKtQ8GtiEiIe+ihh7jiiiv47rvvuOaaa5g2bRqbNm0CwO12M3HiRBISEli9ejXz589n4cKFjTq2zz//PDNmzODmm29m/fr1fPDBB/Tp06fRczz66KNcddVVrFu3jgsvvJBrrrmGAwcOtOvrFBEREZGTg/qvIiLNYzEMwwh0ESIi0rTrr7+e1157jfDw8EbHH3zwQR588EEsFgu//OUvef755+sfO+200xgxYgR/+9vfePHFF7n//vvZu3cvUVFRAHz88cdMmTKF/fv3k5KSQkZGBtOnT+exxx5rsgaLxcJvf/tb/ud//gcwO9PR0dF88sknmqtMRERERBpR/1VEpPVojlsRkSA3fvz4Rh1bgMTExPrbY8aMafTYmDFjWLt2LQCbNm1i2LBh9Z1egLFjx+L3+9myZQsWi4X9+/dz7rnnHrWGoUOH1t+OiooiNjaWgoKC431JIiIiInISU/9VRKR1KLgVEQlyUVFRh/30q7VEREQ0q11YWFij+xaLBb/f3xYliYiIiEiIU/9VRKR1aI5bEZEQt2LFisPuDxgwAIABAwbw3Xff4Xa76x9funQpVquVzMxMYmJi6NGjB9nZ2e1as4iIiIh0XOq/iog0j0bciogEOY/HQ15eXqNjdrudpKQkAObPn8+oUaM444wz+Ne//sWqVauYO3cuANdccw2zZs3iuuuu45FHHqGwsJDbb7+dn/3sZ6SkpADwyCOP8Mtf/pLk5GQuuOACysrKWLp0Kbfffnv7vlAREREROSmo/yoi0joU3IqIBLkFCxaQlpbW6FhmZiabN28GzBVz33zzTW699VbS0tJ44403GDhwIACRkZF8+umn3HHHHZx66qlERkZyxRVX8PTTT9df67rrrqOqqoo///nP3HPPPSQlJXHllVe23wsUERERkZOK+q8iIq3DYhiGEegiRETk+FgsFt59910uvfTSQJciIiIiInJM6r+KiDSf5rgVERERERERERERCTIKbkVERERERERERESCjKZKEBEREREREREREQkyGnErIiIiIiIiIiIiEmQU3IqIiIiIiIiIiIgEGQW3IiIiIiIiIiIiIkFGwa2IiIiIiIiIiIhIkFFwKyIiIiIiIiIiIhJkFNyKiIiIiIiIiIiIBBkFtyIiIiIiIiIiIiJBRsGtiIiIiIiIiIiISJBRcCsiIiIiIiIiIiISZP4/sWPsloT1l4YAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["\u001b[1m553/553\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m6s\u001b[0m 11ms/step\n","\n","🔄 Summary:\n","✅ Accuracy: 0.9292\n","✅ Precision: 0.9335\n","✅ Recall: 0.9292\n","✅ F1-Score: 0.9290\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAACIUAAAfGCAYAAACDcpw1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAmaVJREFUeJzs3Xu01HW5+PHniwMbpGCjyC0N1Eo07YiXDBHUJUkIpXklLAEvaGGFeMtKQio5IaKiR0kjIYOuJ63kiKJYnJSEKBVJDe+/0g2Z0vYKKvv3R4s57sDcGPitZ16vtWYV8/3Md57BWf3ju2eKpqampgAAAAAAAAAAIJVWZQ8AAAAAAAAAAMDmJwoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAOBts2LFijj00EOjY8eOURRF3HDDDZv1/o899lgURREzZ87crPf9d3bQQQfFQQcdVPYYAAAAAJRAFAIAAFBjHn744Tj11FNjp512irZt20aHDh2iX79+cdlll8VLL720Rd97xIgRsWzZsvj6178e1113Xeyzzz5b9P3eTiNHjoyiKKJDhw4b/XtcsWJFFEURRVHElClTNvn+Tz75ZEyYMCHuvvvuzTDt26NXr17Vz1wURbRv3z4++MEPxne+850Nzv7iF79odvb1j2HDhpUwPQAAAMC/v0rZAwAAAPD2mTt3bhxzzDFRV1cXJ5xwQuy+++6xdu3a+NWvfhVnn312LF++PK6++uot8t4vvfRSLFq0KL70pS/F6aefvkXeo2fPnvHSSy9F69att8j930ylUokXX3wxfv7zn8exxx7b7Nrs2bOjbdu28fLLL7+lez/55JNxwQUXRK9evWLPPfds8etuueWWt/R+m8uee+4ZZ555ZkREPPXUU/Gtb30rRowYEWvWrIlTTjllg/Of+9znYt999232XK9evd6OUQEAAADSEYUAAADUiEcffTSGDRsWPXv2jAULFkT37t2r18aMGRMPPfRQzJ07d4u9/5///OeIiKivr99i71EURbRt23aL3f/N1NXVRb9+/eJ73/veBlHInDlzYsiQIfHf//3fb8ssL774Ymy99dbRpk2bt+X93si73vWu+OQnP1n988iRI2OnnXaKSy65ZKNRSP/+/ePoo49+O0cEAAAASMvPxwAAANSIyZMnx/PPPx8zZsxoFoSs9573vCc+//nPV//86quvxle/+tXYeeedo66uLnr16hVf/OIXY82aNc1e16tXrxg6dGj86le/ig9+8IPRtm3b2GmnnZr9RMiECROiZ8+eERFx9tlnR1EU1e0PI0eO3OgmiAkTJkRRFM2emz9/fhxwwAFRX18f73jHO2KXXXaJL37xi9Xrjz32WBRFETNnzmz2ugULFkT//v2jffv2UV9fH4cffnjcf//9G32/hx56KEaOHBn19fXRsWPHGDVqVLz44otv/Bf7d4YPHx433XRTrF69uvrckiVLYsWKFTF8+PANzj/zzDNx1llnxR577BHveMc7okOHDjF48OC45557qmd+8YtfVLdnjBo1qvqzKus/50EHHRS77757LF26NAYMGBBbb7119e/loIMOioMOOqh6rxEjRkTbtm03+PyDBg2KTp06xZNPPtniz/pWbLfddtG7d+94+OGHt+j7AAAAACAKAQAAqBk///nPY6eddor999+/RedPPvnkGD9+fOy1115xySWXxIEHHhiTJk2KYcOGbXD2oYceiqOPPjo+/OEPx8UXXxydOnWKkSNHxvLlyyMi4sgjj4xLLrkkIiI+8YlPxHXXXReXXnrpJs2/fPnyGDp0aKxZsyYmTpwYF198cXzsYx+LO+644x++7tZbb41BgwbFqlWrYsKECTFu3Li48847o1+/fvHYY49tcP7YY4+N5557LiZNmhTHHntszJw5My644IIWz3nkkUdGURTxk5/8pPrcnDlzonfv3rHXXnttcP6RRx6JG264IYYOHRpTp06Ns88+O5YtWxYHHnhgNdDYddddY+LEiRERMXr06LjuuuviuuuuiwEDBlTv85e//CUGDx4ce+65Z1x66aVx8MEHb3S+yy67LLbbbrsYMWJEvPbaaxER8c1vfjNuueWWuPzyy6NHjx4t/qxvxauvvhp//OMfo1OnThu9/txzz8XTTz/d7LFu3botOhMAAABAVn4+BgAAoAY0NjbGn/70pzj88MNbdP6ee+6JWbNmxcknnxzXXHNNRER85jOfiS5dusSUKVPi9ttvbxYdPPjgg7Fw4cLo379/RPwtrNhhhx3i2muvjSlTpsQHPvCB6NChQ5xxxhmx1157Nfs5kZaaP39+rF27Nm666abo3Llzi1939tlnxzbbbBOLFi2KbbbZJiIijjjiiOjTp0985StfiVmzZjU736dPn5gxY0b1z3/5y19ixowZ8Y1vfKNF7/fOd74zhg4dGnPmzIkTTzwx1q1bF9///vfj05/+9EbP77HHHvGHP/whWrX6v//fxqc+9ano3bt3zJgxI84///zo2rVrDB48OMaPHx99+/bd6N9fQ0NDTJ8+PU499dR/OF99fX3MmDEjBg0aFP/5n/8Zw4cPj7POOiuOOOKIt/TP5c288sor8fTTT1dnnDx5cjQ0NMSYMWM2ev7EE0/c4LlHH310o9tkAAAAAPjHRCEAAAA1oLGxMSL+Fiy0xP/8z/9ERMS4ceOaPX/mmWfGlClTYu7cuc2ikN12260ahET87SdCdtlll3jkkUf+2dGr6uvrIyLipz/9aYwaNapZRPFGnnrqqbj77rvjnHPOqQYhEREf+MAH4sMf/nD1c77eaaed1uzP/fv3j+uvvz4aGxujQ4cOLZp1+PDhccwxx0RDQ0Pcd9990dDQsNGfjomIqKurq/731157LVavXl39aZzf/va3LXq/9fcZNWpUi84eeuihceqpp8bEiRPjxz/+cbRt2za++c1vtvi9NsUtt9wS2223XbPnRo0aFRdddNFGz48fP77Zdykiolu3bltkNgAAAIDs/HwMAABADVgfMzz33HMtOv/4449Hq1at4j3veU+z57t16xb19fXx+OOPN3v+3e9+9wb36NSpUzz77LNvceINHXfccdGvX784+eSTo2vXrjFs2LD44Q9/+A9/WmT9nLvssssG13bdddd4+umn44UXXmj2/N9/lvU/c7Ipn+Wwww6Ld77znfGDH/wgZs+eHfvuu+8Gf5frrVu3Li655JJ473vfG3V1ddG5c+fYbrvt4t57742//vWvLX7Pd73rXdGmTZsWn58yZUpss802cffdd8e0adOiS5cub/qaP//5z9HQ0FB9PP/882/6mv322y/mz58f8+bNiylTpkR9fX08++yzbzjrHnvsEQMHDmz2aNu2bYs/FwAAAAD/RxQCAABQAzp06BA9evSI++67b5NeVxRFi85ttdVWG32+qanpLb/Ha6+91uzP7dq1i4ULF8att94an/rUp+Lee++N4447Lj784Q9vcPaf8c98lvXq6uriyCOPjFmzZsX111//hltCIiIuvPDCGDduXAwYMCC++93vxs033xzz58+P97///f8wePl77dq1a/HZiIjf/e53sWrVqoiIWLZsWYtes++++0b37t2rjylTprzpazp37hwDBw6MQYMGxZlnnhnf/e5344YbbojLLrtsk+YFAAAAYNOJQgAAAGrE0KFD4+GHH45Fixa96dmePXvGunXrYsWKFc2eX7lyZaxevTp69uy52ebq1KlTrF69eoPn/34bSUREq1at4pBDDompU6fG73//+/j6178eCxYsiNtvv32j914/54MPPrjBtQceeCA6d+4c7du3/+c+wBsYPnx4/O53v4vnnnsuhg0b9obnfvzjH8fBBx8cM2bMiGHDhsWhhx4aAwcO3ODvpKWBTku88MILMWrUqNhtt91i9OjRMXny5FiyZMmbvm727Nkxf/786uOEE07Y5PceMmRIHHjggXHhhRdusKUFAAAAgM1LFAIAAFAjzjnnnGjfvn2cfPLJsXLlyg2uP/zww9XtDYcddlhERFx66aXNzkydOjUi/vYv9jeXnXfeOf7617/GvffeW33uqaeeiuuvv77ZuWeeeWaD1+65554REbFmzZqN3rt79+6x5557xqxZs5pFFvfdd1/ccsst1c+5JRx88MHx1a9+Na644oro1q3bG57baqutNthC8qMf/Sj+9Kc/NXtufbyysYBmU5177rnxxBNPxKxZs2Lq1KnRq1evGDFixBv+Pa7Xr1+/Zj/rstNOO73l9//LX/4S11xzzVt6PQAAAAAtUyl7AAAAAN4eO++8c8yZMyeOO+642HXXXeOEE06I3XffPdauXRt33nln/OhHP4qRI0dGRMR//Md/xIgRI+Lqq6+O1atXx4EHHhiLFy+OWbNmxRFHHBEHH3zwZptr2LBhce6558bHP/7x+NznPhcvvvhiXHXVVfG+970vfvvb31bPTZw4MRYuXBhDhgyJnj17xqpVq+LKK6+M7bffPg444IA3vP9FF10UgwcPjr59+8ZJJ50UL730Ulx++eXRsWPHmDBhwmb7HH+vVatW8eUvf/lNzw0dOjQmTpwYo0aNiv333z+WLVsWs2fP3iC42HnnnaO+vj6mT58e73znO6N9+/ax3377xY477rhJcy1YsCCuvPLK+MpXvhJ77bVXRERce+21cdBBB8X5558fkydP3qT7vRWDBw+O3XffPaZOnRpjxoyJ1q1bb/H3BAAAAKhFNoUAAADUkI997GNx7733xtFHHx0//elPY8yYMfGFL3whHnvssbj44otj2rRp1bPf+ta34oILLoglS5bE2LFjY8GCBXHeeefF97///c0607bbbhvXX399bL311nHOOefErFmzYtKkSfHRj350g9nf/e53x7e//e0YM2ZM/Nd//VcMGDAgFixYEB07dnzD+w8cODDmzZsX2267bYwfPz6mTJkSH/rQh+KOO+7Y5KBiS/jiF78YZ555Ztx8883x+c9/Pn7729/G3LlzY4cddmh2rnXr1jFr1qzYaqut4rTTTotPfOIT8ctf/nKT3uu5556LE088Mfr06RNf+tKXqs/3798/Pv/5z8fFF18cv/71rzfL53ozZ511Vvy///f/Yvbs2W/L+wEAAADUoqLp73fUAgAAAAAAAADwb8+mEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAIKFK2QNsCe2GXlH2CAAAANSYFdedUvYIAAAA1JjtO9WVPQKbUbs+p5c9Qs166Xd5GwObQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIQqZQ8AAAAAAAAAADWvsNOBzc+3CgAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACRUKXsAAAAAAAAAAKh5RVH2BCRkUwgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJBQpewBAAAAAAAAAKDmFXY6sPn5VgEAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICEKmUPAAAAAAAAAAA1ryjKnoCEbAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASqpQ9AAAAAAAAAADUvMJOBzY/3yoAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQUKXsAQAAAAAAAACg5hVF2ROQkE0hAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAIKFK2QMAAAAAAAAAQM0r7HRg8/OtAgAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEqqUPQAAAAAAAAAA1LyiKHsCErIpBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACRUKXsAAAAAAAAAAKh5hZ0ObH6+VQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKVsgcAAAAAAAAAgJpXFGVPQEI2hQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICEKmUPAAAAAAAAAAA1r7DTgc3PtwoAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEioUvYAAAAAAAAAAFDziqLsCUjIphAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQUKXsAQAAAAAAAACg5hV2OrD5+VYBAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhCplDwAAAAAAAAAANa+w04HNz7cKAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABIqFL2AAAAAAAAAABQ81oVZU9AQjaFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIQqZQ8AAAAAAAAAADWvsNOBzc+3CgAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASKhS9gAAAAAAAAAAUPOKouwJSMimEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJBQpewBAAAAAAAAAKDmFXY6sPn5VgEAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAlVyh4AAAAAAAAAAGpeUZQ9AQnZFAIAAAAAAAAAkJAoBAAAAAAAAACgBV577bU4//zzY8cdd4x27drFzjvvHF/96lejqampeqapqSnGjx8f3bt3j3bt2sXAgQNjxYoVze7zzDPPxPHHHx8dOnSI+vr6OOmkk+L5559vdubee++N/v37R9u2bWOHHXaIyZMnb/K8ohAAAAAAAAAAgBb4xje+EVdddVVcccUVcf/998c3vvGNmDx5clx++eXVM5MnT45p06bF9OnT46677or27dvHoEGD4uWXX66eOf7442P58uUxf/78uPHGG2PhwoUxevTo6vXGxsY49NBDo2fPnrF06dK46KKLYsKECXH11Vdv0ryVf/4jAwAAAAAAAADkd+edd8bhhx8eQ4YMiYiIXr16xfe+971YvHhxRPxtS8ill14aX/7yl+Pwww+PiIjvfOc70bVr17jhhhti2LBhcf/998e8efNiyZIlsc8++0RExOWXXx6HHXZYTJkyJXr06BGzZ8+OtWvXxre//e1o06ZNvP/974+77747pk6d2iweeTM2hQAAAAAAAAAANWvNmjXR2NjY7LFmzZqNnt1///3jtttuiz/84Q8REXHPPffEr371qxg8eHBERDz66KPR0NAQAwcOrL6mY8eOsd9++8WiRYsiImLRokVRX19fDUIiIgYOHBitWrWKu+66q3pmwIAB0aZNm+qZQYMGxYMPPhjPPvtsiz+bKAQAAAAAAAAAqFmTJk2Kjh07NntMmjRpo2e/8IUvxLBhw6J3797RunXr6NOnT4wdOzaOP/74iIhoaGiIiIiuXbs2e13Xrl2r1xoaGqJLly7Nrlcqldhmm22andnYPV7/Hi3h52MAAAAAAAAAoGyFnQ5lOe+882LcuHHNnqurq9vo2R/+8Icxe/bsmDNnTvUnXcaOHRs9evSIESNGvB3jbhJRCAAAAAAAAABQs+rq6t4wAvl7Z599dnVbSETEHnvsEY8//nhMmjQpRowYEd26dYuIiJUrV0b37t2rr1u5cmXsueeeERHRrVu3WLVqVbP7vvrqq/HMM89UX9+tW7dYuXJlszPr/7z+TEtIjQAAAAAAAAAAWuDFF1+MVq2apxZbbbVVrFu3LiIidtxxx+jWrVvcdttt1euNjY1x1113Rd++fSMiom/fvrF69epYunRp9cyCBQti3bp1sd9++1XPLFy4MF555ZXqmfnz58cuu+wSnTp1avG8ohAAAAAAAAAAgBb46Ec/Gl//+tdj7ty58dhjj8X1118fU6dOjY9//OMREVEURYwdOza+9rWvxc9+9rNYtmxZnHDCCdGjR4844ogjIiJi1113jY985CNxyimnxOLFi+OOO+6I008/PYYNGxY9evSIiIjhw4dHmzZt4qSTTorly5fHD37wg7jssss2+JmbN+PnYwAAAAAAAAAAWuDyyy+P888/Pz7zmc/EqlWrokePHnHqqafG+PHjq2fOOeeceOGFF2L06NGxevXqOOCAA2LevHnRtm3b6pnZs2fH6aefHocccki0atUqjjrqqJg2bVr1eseOHeOWW26JMWPGxN577x2dO3eO8ePHx+jRozdp3qKpqanpn//Y/1raDb2i7BEAAACoMSuuO6XsEQAAAKgx23eqK3sENqN2h15U9gg166Vbzi57hC3Gz8cAAAAAAAAAACQkCgEAAAAAAAAASKhS9gAAAAAAAAAAUPOKouwJSMimEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJBQpewBAAAAAAAAAKDmFXY6sPn5VgEAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICEKmUPAAAAAAAAAAA1ryjKnoCEbAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASqpQ9AAAAAAAAAADUvMJOBzY/3yoAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQUKXsAQAAAAAAAACg5hVF2ROQkE0hAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQpWyBwAAAAAAAACAmlfY6cDm51sFAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEqqUPQAAAAAAAAAA1LzCTgc2P98qAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgoUrZAwAAAAAAAABAzSuKsicgIZtCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKVsgcAAAAAAAAAgJpX2OnA5udbBQAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJFQpewAAAAAAAAAAqHlFUfYEJGRTCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEioUvYAAAAAAAAAAFDzCjsd2Px8qwAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBClbIHAAAAAAAAAICaVxRlT0BCNoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJVcoeAAAAAAAAAABqXVEUZY9AQjaFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIQqZQ8AAAAAAAAAALWuKIqyRyAhm0IAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICEKmUPAAAAAAAAAAA1ryh7ADKyKQQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkVCl7AAAAAAAAAACodUVRlD0CCdkUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJFQpewAAAAAAAAAAqHVFUZQ9AgnZFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASqpQ9AAAAAAAAAADUuqIoyh6BhGwKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAlVyh4AAAAAAAAAAGpdURRlj0BCNoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJVcoeAAAAAAAAAABqXlH2AGRkUwgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABIqFL2AAAAAAAAAABQ64qiKHsEErIpBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASKhS9gAAAAAAAAAAUOuKoih7BBKyKQQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkVCl7AAAAAAAAAACodUVRlD0CCdkUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJFQpewAAAAAAAAAAqHVFUZQ9AgnZFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASqpQ9AAAAAAAAAADUvKLsAcjIphAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACChStkDAAAAAAAAAECtK4qi7BFIyKYQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkFCl7AEAAAAAAAAAoNYVRVH2CCRkUwgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABIqFL2AAAAAAAAAABQ64qiKHsEErIpBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASKhS9gAAAAAAAAAAUPOKsgcgI5tCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAADQAr169YqiKDZ4jBkzJiIiXn755RgzZkxsu+228Y53vCOOOuqoWLlyZbN7PPHEEzFkyJDYeuuto0uXLnH22WfHq6++2uzML37xi9hrr72irq4u3vOe98TMmTPf0ryiEAAAAAAAAACAFliyZEk89dRT1cf8+fMjIuKYY46JiIgzzjgjfv7zn8ePfvSj+OUvfxlPPvlkHHnkkdXXv/baazFkyJBYu3Zt3HnnnTFr1qyYOXNmjB8/vnrm0UcfjSFDhsTBBx8cd999d4wdOzZOPvnkuPnmmzd53qKpqanpn/zM/3LaDb2i7BEAAACoMSuuO6XsEQAAAKgx23eqK3sENqMuJ/2w7BFq1qoZx77l144dOzZuvPHGWLFiRTQ2NsZ2220Xc+bMiaOPPjoiIh544IHYddddY9GiRfGhD30obrrpphg6dGg8+eST0bVr14iImD59epx77rnx5z//Odq0aRPnnntuzJ07N+67777q+wwbNixWr14d8+bN26T5bAoBAAAAAAAAgJJt7CdJPN6ex5o1a6KxsbHZY82aNW/6z2zt2rXx3e9+N0488cQoiiKWLl0ar7zySgwcOLB6pnfv3vHud787Fi1aFBERixYtij322KMahEREDBo0KBobG2P58uXVM6+/x/oz6++xKUQhAAAAAAAAAEDNmjRpUnTs2LHZY9KkSW/6uhtuuCFWr14dI0eOjIiIhoaGaNOmTdTX1zc717Vr12hoaKieeX0Qsv76+mv/6ExjY2O89NJLm/TZKpt0GgAAAAAAAAAgkfPOOy/GjRvX7Lm6ujf/eaYZM2bE4MGDo0ePHltqtH+aKAQAAAAAAAAAqFl1dXUtikBe7/HHH49bb701fvKTn1Sf69atW6xduzZWr17dbFvIypUro1u3btUzixcvbnavlStXVq+t/8/1z73+TIcOHaJdu3abNKefjwEAAAAAAAAA2ATXXnttdOnSJYYMGVJ9bu+9947WrVvHbbfdVn3uwQcfjCeeeCL69u0bERF9+/aNZcuWxapVq6pn5s+fHx06dIjddtuteub191h/Zv09NoUoBAAAAAAAAACghdatWxfXXnttjBgxIiqV//uBlo4dO8ZJJ50U48aNi9tvvz2WLl0ao0aNir59+8aHPvShiIg49NBDY7fddotPfepTcc8998TNN98cX/7yl2PMmDHVbSWnnXZaPPLII3HOOefEAw88EFdeeWX88Ic/jDPOOGOTZ/XzMQAAAAAAAAAALXTrrbfGE088ESeeeOIG1y655JJo1apVHHXUUbFmzZoYNGhQXHnlldXrW221Vdx4443x6U9/Ovr27Rvt27ePESNGxMSJE6tndtxxx5g7d26cccYZcdlll8X2228f3/rWt2LQoEGbPGvR1NTU9NY+5r+udkOvKHsEAAAAasyK604pewQAAABqzPad6soegc2o68k/KnuEmrXyW8eUPcIWY1MIAAAAAAAAAJSsKIqyRyChVmUPAAAAAAAAAADA5icKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICEKmUPAAAAAAAAAAC1riiKskcgIZtCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhCplDwAAAAAAAAAAta4oirJHICGbQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBClbIHAAAAAAAAAICaV5Q9ABnZFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASqpQ9AAAAAAAAAADUuqIoyh6BhGwKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEqqUPQAAAAAAAAAA1LqiKMoegYRsCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJVcoeAAAAAAAAAABqXVEUZY9AQjaFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACVXKHgAAAAAAAAAAal5R9gBkZFMIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASKhS9gAAAAAAAAAAUOuKoih7BBKyKQQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEioUvYAAAAAAAAAAFDriqIoewQSsikEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJFQpewAAAAAAAAAAqHVFUZQ9AgnZFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACRUKXsAAAAAAAAAAKh1RVGUPQIJ2RQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEqqUPQAAAAAAAAAA1Lyi7AHIyKYQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkVCnzzZ9++un49re/HYsWLYqGhoaIiOjWrVvsv//+MXLkyNhuu+3KHA8AAAAAAAAA4N9WaZtClixZEu973/ti2rRp0bFjxxgwYEAMGDAgOnbsGNOmTYvevXvHb37zmze9z5o1a6KxsbHZo+m1V96GTwAAAAAAAAAA8K+rtE0hn/3sZ+OYY46J6dOnR1EUza41NTXFaaedFp/97Gdj0aJF//A+kyZNigsuuKDZc1u9d3C0ft9hm31mAAAAAAAAANgS/v7fm8PmUDQ1NTWV8cbt2rWL3/3ud9G7d++NXn/ggQeiT58+8dJLL/3D+6xZsybWrFnT7Lkux82IYqvWm21WAAAAeDMrrjul7BEAAACoMdt3qit7BDajncb9T9kj1KxHpuZdOlHappBu3brF4sWL3zAKWbx4cXTt2vVN71NXVxd1dc3/x04QAgAAAAAAAADUutKikLPOOitGjx4dS5cujUMOOaQagKxcuTJuu+22uOaaa2LKlClljQcAAAAAAAAA8G+ttChkzJgx0blz57jkkkviyiuvjNdeey0iIrbaaqvYe++9Y+bMmXHssceWNR4AAAAAAAAAwL+10qKQiIjjjjsujjvuuHjllVfi6aefjoiIzp07R+vWfv4FAAAAAAAAAOCfUWoUsl7r1q2je/fuZY8BAAAAAAAAAJBGq7IHAAAAAAAAAABg8/uX2BQCAAAAAAAAALWsKIqyRyAhm0IAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQpWyBwAAAAAAAACAWlcUZU9ARjaFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACVXKHgAAAAAAAAAAal1RFGWPQEI2hQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICEKmUPAAAAAAAAAAC1rijKnoCMbAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASqpQ9AAAAAAAAAADUuqIoyh6BhGwKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAlVyh4AAAAAAAAAAGpdUZQ9ARnZFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACRUKXsAAAAAAAAAAKh1rVoVZY9AQjaFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIQqZQ8AAAAAAAAAALWuKMqegIxsCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJVcoeAAAAAAAAAABqXVEUZY9AQjaFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACVXKHgAAAAAAAAAAal1RlD0BGdkUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABKqlD0AAAAAAAAAANS6oijKHoGEbAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASqpQ9AAAAAAAAAADUuqIoyh6BhGwKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAlVyh4AAAAAAAAAAGpdUZQ9ARnZFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACRUKXsAAAAAAAAAAKh1RVGUPQIJ2RQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEqqUPQAAAAAAAAAA1LqiKHsCMrIpBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAALTQn/70p/jkJz8Z2267bbRr1y722GOP+M1vflO93tTUFOPHj4/u3btHu3btYuDAgbFixYpm93jmmWfi+OOPjw4dOkR9fX2cdNJJ8fzzzzc7c++990b//v2jbdu2scMOO8TkyZM3eVZRCAAAAAAAAACUrCgKj5Iem+LZZ5+Nfv36RevWreOmm26K3//+93HxxRdHp06dqmcmT54c06ZNi+nTp8ddd90V7du3j0GDBsXLL79cPXP88cfH8uXLY/78+XHjjTfGwoULY/To0dXrjY2Nceihh0bPnj1j6dKlcdFFF8WECRPi6quv3rTvVVNTU9MmveLfQLuhV5Q9AgAAADVmxXWnlD0CAAAANWb7TnVlj8BmtPdXby97hJq19PyDW3z2C1/4Qtxxxx3xv//7vxu93tTUFD169IgzzzwzzjrrrIiI+Otf/xpdu3aNmTNnxrBhw+L++++P3XbbLZYsWRL77LNPRETMmzcvDjvssPjjH/8YPXr0iKuuuiq+9KUvRUNDQ7Rp06b63jfccEM88MADLZ7XphAAAAAAAAAAoGatWbMmGhsbmz3WrFmz0bM/+9nPYp999oljjjkmunTpEn369Ilrrrmmev3RRx+NhoaGGDhwYPW5jh07xn777ReLFi2KiIhFixZFfX19NQiJiBg4cGC0atUq7rrrruqZAQMGVIOQiIhBgwbFgw8+GM8++2yLP5soBAAAAAAAAACoWZMmTYqOHTs2e0yaNGmjZx955JG46qqr4r3vfW/cfPPN8elPfzo+97nPxaxZsyIioqGhISIiunbt2ux1Xbt2rV5raGiILl26NLteqVRim222aXZmY/d4/Xu0RKXFJwEAAAAAAAAAkjnvvPNi3LhxzZ6rq9v4zzOtW7cu9tlnn7jwwgsjIqJPnz5x3333xfTp02PEiBFbfNZNZVMIAAAAAAAAAFCz6urqokOHDs0ebxSFdO/ePXbbbbdmz+26667xxBNPREREt27dIiJi5cqVzc6sXLmyeq1bt26xatWqZtdfffXVeOaZZ5qd2dg9Xv8eLSEKAQAAAAAAAABogX79+sWDDz7Y7Lk//OEP0bNnz4iI2HHHHaNbt25x2223Va83NjbGXXfdFX379o2IiL59+8bq1atj6dKl1TMLFiyIdevWxX777Vc9s3DhwnjllVeqZ+bPnx+77LJLdOrUqcXzikIAAAAAAAAAAFrgjDPOiF//+tdx4YUXxkMPPRRz5syJq6++OsaMGRMREUVRxNixY+NrX/ta/OxnP4tly5bFCSecED169IgjjjgiIv62WeQjH/lInHLKKbF48eK444474vTTT49hw4ZFjx49IiJi+PDh0aZNmzjppJNi+fLl8YMf/CAuu+yyDX7m5s1UNuunBwAAAAAAAAA2WVGUPQEtse+++8b1118f5513XkycODF23HHHuPTSS+P444+vnjnnnHPihRdeiNGjR8fq1avjgAMOiHnz5kXbtm2rZ2bPnh2nn356HHLIIdGqVas46qijYtq0adXrHTt2jFtuuSXGjBkTe++9d3Tu3DnGjx8fo0eP3qR5i6ampqZ//mP/a2k39IqyRwAAAKDGrLjulLJHAAAAoMZs36mu7BHYjPb52u1lj1CzfvPlg8seYYvx8zEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkFCl7AEAAAAAAAAAoNYVRVH2CCRkUwgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJBQpewBAAAAAAAAAKDWFUXZE5CRTSEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgoUrZAwAAAAAAAABArSuKouwRSMimEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAIKFK2QMAAAAAAAAAQK0rirInICObQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBClbIHAAAAAAAAAIBaVxRF2SOQkE0hAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQpWyBwAAAAAAAACAWlcUZU9ARjaFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIQqZQ8AAAAAAAAAALWuKIqyRyAhm0IAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQpWyBwAAAAAAAACAWlcUZU9ARjaFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACVXKHgAAAAAAAAAAal1RFGWPQEI2hQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICEKmUPAAAAAAAAAAC1riiKskcgIZtCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhCplDwAAAAAAAAAAta4oyp6AjGwKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAlVyh4AAAAAAAAAAGpdURRlj0BCNoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJVcoeAAAAAAAAAABqXVGUPQEZ2RQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEqqUPQAAAAAAAAAA1LqiKMoegYRsCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJVcoeAAAAAAAAAABqXVGUPQEZ2RQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkVCl7AAAAAAAAAACoda2KouwRSMimEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJBQpewBAAAAAAAAAKDWFUXZE5CRTSEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBClbIHAAAAAAAAAIBaVxRF2SOQkE0hAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAA/5+9uw/Ssr7vPf69lpvdIrgrOMLqUBM6pOJWTYQ4YadNU61xx2xMPGCaZBxjBz1TmMUEMOjQY0xipmJpU2qDljY64qRBo+ahUaqEQICxrqMh0qKeOHnwZM3gLpoWVi0sD+75o8PWrU97y5LLfq/Xa+Ye9b5/98VnE/58z28BAAAAICFRCAAAAAAAAABAQrWyBwAAAAAAAABA1TUUZS8gIzeFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACdXKHgAAAAAAAAAAVVcURdkTSMhNIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACChWtkDAAAAAAAAAKDqiqLsBWTkphAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACChWtkDAAAAAAAAAKDqiijKnkBCbgoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACdXKHgAAAAAAAAAAVddQlL2AjNwUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABKqlT0AAAAAAAAAAKquKIqyJ5CQm0IAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICEamUPAAAAAAAAAICqK4qyF5CRm0IAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQrWyBwAAAAAAAABA1TUURdkTSMhNIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEK1sgcAAAAAAAAAQNUVRdkLyMhNIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACChWtkDAAAAAAAAAKDqiqIoewIJuSkEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAAAYgS984QtRFMWw14wZM4Y+37dvX3R1dcXxxx8fEyZMiLlz50ZfX9+wZ/T09ERnZ2ccc8wxMXny5Fi6dGkcPHhw2JnNmzfHzJkzo6mpKaZPnx5r1qx5S3trb+lbAAAAAAAAAMCoKYqyFzBSv/M7vxPf//73h/67Vvuv9GLx4sWxbt26uPvuu6OlpSUWLlwYc+bMiX/+53+OiIhDhw5FZ2dntLa2xkMPPRTPPvtsfOpTn4qxY8fG9ddfHxERTz/9dHR2dsb8+fPj61//emzcuDEuv/zyOPHEE6Ojo6OuraIQAAAAAAAAAIARqtVq0dra+qr39+zZE7feemusXbs2zjnnnIiIuO222+LUU0+Nhx9+OGbPnh3f+9734sknn4zvf//7MWXKlHjPe94TX/rSl+Lqq6+OL3zhC9HY2BirV6+OadOmxZe//OWIiDj11FPjwQcfjJUrV9Ydhfj1MQAAAAAAAAAAI/STn/wkTjrppPit3/qtuPjii6OnpyciIrZt2xYHDhyIc889d+jsjBkz4uSTT47u7u6IiOju7o7TTz89pkyZMnSmo6Mj+vv744knnhg688pnHD5z+Bn1cFMIAAAAAAAAAFBZAwMDMTAwMOy9pqamaGpqetXZ973vfbFmzZo45ZRT4tlnn40vfvGL8f73vz8ef/zx6O3tjcbGxjjuuOOGfWfKlCnR29sbERG9vb3DgpDDnx/+7I3O9Pf3x969e2PcuHEj/tncFAIAAAAAAAAAVNby5cujpaVl2Gv58uWvefb888+Pj33sY3HGGWdER0dH/NM//VPs3r077rrrrl/z6pERhQAAAAAAAAAAlbVs2bLYs2fPsNeyZctG9N3jjjsufvu3fzt++tOfRmtra+zfvz9279497ExfX1+0trZGRERra2v09fW96vPDn73Rmebm5rpuCYkQhQAAAAAAAAAAFdbU1BTNzc3DXq/1q2Ney4svvhg/+9nP4sQTT4xZs2bF2LFjY+PGjUOfP/XUU9HT0xPt7e0REdHe3h47duyIXbt2DZ3ZsGFDNDc3R1tb29CZVz7j8JnDz6hHre5vAAAAAAAAAACjqqEoyp7ACHz2s5+NCy64IN7xjnfEzp074/Of/3yMGTMmPvnJT0ZLS0tcdtllsWTJkpg0aVI0NzfHFVdcEe3t7TF79uyIiDjvvPOira0tLrnkklixYkX09vbGNddcE11dXUMhyvz582PVqlVx1VVXxbx582LTpk1x1113xbp16+reKwoBAAAAAAAAABiBX/7yl/HJT34yfvWrX8UJJ5wQv/d7vxcPP/xwnHDCCRERsXLlymhoaIi5c+fGwMBAdHR0xM033zz0/TFjxsR9990XCxYsiPb29hg/fnxceumlcd111w2dmTZtWqxbty4WL14cN954Y0ydOjVuueWW6OjoqHtvMTg4OHjkP/bby7gPryp7AgAAABXzk6/977InAAAAUDFTJ47s11vwP8PHb3+s7AmV9Y1Lzyx7wlHTUPYAAAAAAAAAAABGnygEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJ1coeAAAAAAAAAABVV5Q9gJTcFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASqpU9AAAAAAAAAACqriiKsieQkJtCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEK1sgcAAAAAAAAAQNU1FGUvICM3hQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAnVyh4AAAAAAAAAAFVXFEXZE0jITSEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgoVrZAwAAAAAAAACg6oqi7AVk5KYQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgoVrZAwAAAAAAAACg6oqiKHsCCbkpBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACRUK3sAAAAAAAAAAFRdQ1H2AjJyUwgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJBQrewBAAAAAAAAAFB1RVGUPYGE3BQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEqqVPQAAAAAAAAAAqq4oewApuSkEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJFQrewAAAAAAAAAAVF1DUZQ9gYTcFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACRUK3sAAAAAAAAAAFRdUZS9gIzcFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASqpU9AAAAAAAAAACqriiKsieQkJtCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhGplDwAAAAAAAACAqiuKsheQkZtCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEK1sgcAAAAAAAAAQNU1FEXZE0jITSEAAAAAAAAAAAmJQgAAAAAAAAAAEhrRr4/57ne/O+IHfuQjH3nLYwAAAAAAAAAAGB0jikIuvPDCET2sKIo4dOjQkewBAAAAAAAAAGAUjCgKefnll4/2DgAAAAAAAAAARlFD2QMAAAAAAAAAABh9I7op5L976aWXYsuWLdHT0xP79+8f9tmnP/3pURkGAAAAAAAAAMBbV3cU8thjj8WHPvSh+I//+I946aWXYtKkSfH888/HMcccE5MnTxaFAAAAAAAAAECdiqLsBWRU96+PWbx4cVxwwQXx7//+7zFu3Lh4+OGH4xe/+EXMmjUr/vIv//JobAQAAAAAAAAAoE51RyHbt2+PK6+8MhoaGmLMmDExMDAQv/mbvxkrVqyIP/3TPz0aGwEAAAAAAAAAqFPdUcjYsWOjoeE/vzZ58uTo6emJiIiWlpZ45plnRncdAAAAAAAAAABvSa3eL5x55pnx6KOPxrve9a74wAc+ENdee208//zz8bWvfS1OO+20o7ERAAAAAAAAAIA61X1TyPXXXx8nnnhiRET82Z/9WUycODEWLFgQzz33XPz93//9qA8EAAAAAAAAAKB+dd8U8t73vnfo3ydPnhwPPPDAqA4CAAAAAAAAAODI1R2FAAAAAAAAAACjqyiKsieQUN1RyLRp097wL+PPf/7zIxoEAAAAAAAAAMCRqzsKWbRo0bD/PnDgQDz22GPxwAMPxNKlS0drFwAAAAAAAAAAR6DuKOQzn/nMa75/0003xQ9/+MMjHgQAAAAAAAAAwJFrGK0HnX/++fHNb35ztB4HAAAAAAAAAMARGLUo5J577olJkyaN1uMAAAAAAAAAADgCdf/6mDPPPDOKohj678HBwejt7Y3nnnsubr755lEdBwAAAAAAAADAW1N3FPLRj350WBTS0NAQJ5xwQvzBH/xBzJgxY1THAQAAAAAAAADw1hSDg4ODZY8YbfsOlr0AAACAqpl41sKyJwAAAFAxex9bVfYERtEV3/6/ZU+orK/8r1PLnnDUNNT7hTFjxsSuXbte9f6vfvWrGDNmzKiMAgAAAAAAAADgyNQdhbzexSIDAwPR2Nh4xIMAAAAAAAAAADhytZEe/Ju/+ZuIiCiKIm655ZaYMGHC0GeHDh2KrVu3xowZM0Z/IQAAAAAAAAAAdRtxFLJy5cqI+M+bQlavXj3sV8U0NjbGO9/5zli9evXoLwQAAAAAAAAAoG4jjkKefvrpiIg4++yz41vf+lZMnDjxqI0CAAAAAAAAAODIjDgKOewHP/jB0dgBAAAAAAAAAMAoaqj3C3Pnzo0///M/f9X7K1asiI997GOjMgoAAAAAAAAAqqQoCq+SXpnVHYVs3bo1PvShD73q/fPPPz+2bt06KqMAAAAAAAAAADgydUchL774YjQ2Nr7q/bFjx0Z/f/+ojAIAAAAAAAAA4MjUHYWcfvrp8Y1vfONV7995553R1tY2KqMAAAAAAAAAADgytXq/8LnPfS7mzJkTP/vZz+Kcc86JiIiNGzfG2rVr45577hn1gQAAAAAAAAAA1K/uKOSCCy6I73znO3H99dfHPffcE+PGjYt3v/vdsWnTppg0adLR2AgAAAAAAAAAQJ3qjkIiIjo7O6OzszMiIvr7++OOO+6Iz372s7Ft27Y4dOjQqA4EAAAAAAAAAKB+bykKiYjYunVr3HrrrfHNb34zTjrppJgzZ07cdNNNo7kNAAAAAAAAACqhoSh7ARnVFYX09vbGmjVr4tZbb43+/v74oz/6oxgYGIjvfOc70dbWdrQ2AgAAAAAAAABQp4aRHrzgggvilFNOiX/913+Nv/7rv46dO3fGV77ylaO5DQAAAAAAAACAt2jEN4Xcf//98elPfzoWLFgQ73rXu47mJgAAAAAAAAAAjtCIbwp58MEH44UXXohZs2bF+973vli1alU8//zzR3MbAAAAAAAAAABv0YijkNmzZ8dXv/rVePbZZ+NP/uRP4s4774yTTjopXn755diwYUO88MILR3MnAAAAAAAAAAB1GHEUctj48eNj3rx58eCDD8aOHTviyiuvjBtuuCEmT54cH/nIR47GRgAAAAAAAAAA6lR3FPJKp5xySqxYsSJ++ctfxh133DFamwAAAAAAAAAAOEK10XjImDFj4sILL4wLL7xwNB4HAAAAAAAAAJXSUJS9gIyO6KYQAAAAAAAAAADenkQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJBQrewBAAAAAAAAAFB1RVGUPYGE3BQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkVCt7AAAAAAAAAABUXUNR9gIyclMIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASKhW9gAAAAAAAAAAqLqiKHsBGbkpBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASKhW9gAAAAAAAAAAqLqGoih7Agm5KQQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkVCt7AAAAAAAAAABUnRsdOBr8vQIAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJ1coeAAAAAAAAAABVVxRlLyAjN4UAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJ1coeAAAAAAAAAABV11AUZU8gITeFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIRqZQ8AAAAAAAAAgKorirIXkJGbQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIRqZQ8AAAAAAAAAgKprKMpeQEZuCgEAAAAAAAAAeAtuuOGGKIoiFi1aNPTevn37oqurK44//viYMGFCzJ07N/r6+oZ9r6enJzo7O+OYY46JyZMnx9KlS+PgwYPDzmzevDlmzpwZTU1NMX369FizZk3d+0QhAAAAAAAAAAB1evTRR+Pv/u7v4owzzhj2/uLFi+Pee++Nu+++O7Zs2RI7d+6MOXPmDH1+6NCh6OzsjP3798dDDz0Ut99+e6xZsyauvfbaoTNPP/10dHZ2xtlnnx3bt2+PRYsWxeWXXx7r16+va6MoBAAAAAAAAACgDi+++GJcfPHF8dWvfjUmTpw49P6ePXvi1ltvjb/6q7+Kc845J2bNmhW33XZbPPTQQ/Hwww9HRMT3vve9ePLJJ+Mf/uEf4j3veU+cf/758aUvfSluuumm2L9/f0RErF69OqZNmxZf/vKX49RTT42FCxfGRRddFCtXrqxrpygEAAAAAAAAAKAOXV1d0dnZGeeee+6w97dt2xYHDhwY9v6MGTPi5JNPju7u7oiI6O7ujtNPPz2mTJkydKajoyP6+/vjiSeeGDrz35/d0dEx9IyRqtV1GgAAAAAAAAAgkYGBgRgYGBj2XlNTUzQ1Nb3m+TvvvDN+9KMfxaOPPvqqz3p7e6OxsTGOO+64Ye9PmTIlent7h868Mgg5/Pnhz97oTH9/f+zduzfGjRs3op/NTSEAAAAAAAAAQGUtX748Wlpahr2WL1/+mmefeeaZ+MxnPhNf//rX4zd+4zd+zUvr56YQAAAAAAAAAChZQ1GUPaGyrl62LJYsWTLsvde7JWTbtm2xa9eumDlz5tB7hw4diq1bt8aqVati/fr1sX///ti9e/ew20L6+vqitbU1IiJaW1vjkUceGfbcvr6+oc8O//Pwe68809zcPOJbQiLcFAIAAAAAAAAAVFhTU1M0NzcPe71eFPKHf/iHsWPHjti+ffvQ673vfW9cfPHFQ/8+duzY2Lhx49B3nnrqqejp6Yn29vaIiGhvb48dO3bErl27hs5s2LAhmpubo62tbejMK59x+MzhZ4yUm0IAAAAAAAAAAEbg2GOPjdNOO23Ye+PHj4/jjz9+6P3LLrsslixZEpMmTYrm5ua44ooror29PWbPnh0REeedd160tbXFJZdcEitWrIje3t645pproqurayhGmT9/fqxatSquuuqqmDdvXmzatCnuuuuuWLduXV17RSEAAAAAAAAAAKNk5cqV0dDQEHPnzo2BgYHo6OiIm2++eejzMWPGxH333RcLFiyI9vb2GD9+fFx66aVx3XXXDZ2ZNm1arFu3LhYvXhw33nhjTJ06NW655Zbo6Oioa0sxODg4OGo/2dvEvoNlLwAAAKBqJp61sOwJAAAAVMzex1aVPYFRdN2Gn5Y9obKu/eD0siccNQ1lDwAAAAAAAAAAYPSJQgAAAAAAAAAAEhKFAAAAAAAAAAAkVCt7AAAAAAAAAABUXVGUvYCM3BQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEqqVPQAAAAAAAAAAqq6hKHsBGbkpBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASKhW9gAAAAAAAAAAqLoiirInkJCbQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCtbIHAAAAAAAAAEDVNRRlLyAjN4UAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhGplDwAAAAAAAACAqmsoyl5ARm4KAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEqqVPQAAAAAAAAAAqq4oirInkJCbQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCtbIHAAAAAAAAAEDVNRRlLyAjN4UAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJ1coeAAAAAAAAAABVVxRlLyAjN4UAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhGplDwAAAAAAAACAqmsoirInkJCbQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIRqZQ8AAAAAAAAAgKprKMpeQEZuCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJ1coeAAAAAAAAAABVVxRlLyAjN4UAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJ1coeAAAAAAAAAABV1xBF2RNIyE0hAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAIKFa2QMAAAAAAAAAoOqKouwFZOSmEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJBQrewBAAAAAAAAAFB1DUXZC8jITSEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCtbIHAAAAAAAAAEDVNRRF2RNIyE0hAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAIKFa2QMAAAAAAAAAoOqKouwFZOSmEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAIKFa2QMAAAAAAAAAoOoaiqLsCSTkphAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQUK3sAQAAAAAAAABQdUVR9gIyclMIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQUK3sAQAAAAAAAABQdW504Gjw9woAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkVCt7AAAAAAAAAABUXVEUZU8gITeFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIRqZQ8AAAAAAAAAgKoryh5ASm4KAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEqqVPQAAAAAAAAAAqq6hKMqeQEJuCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJ1coeAAAAAAAAAABVV5Q9gJTcFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACRUK3sAAAAAAAAAAFRdUZS9gIzcFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASqpU9AAAAAAAAAACqriiKsieQkJtCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhGplDwAAAAAAAACAqnOjA0eDv1cAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgoVrZAwAAAAAAAACg6oqiKHsCCbkpBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASKhW9gAAAAAAAAAAqLqi7AGk5KYQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkFCt7AEAAAAAAAAAUHVFUZQ9gYTcFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAMAI/O3f/m2cccYZ0dzcHM3NzdHe3h7333//0Of79u2Lrq6uOP7442PChAkxd+7c6OvrG/aMnp6e6OzsjGOOOSYmT54cS5cujYMHDw47s3nz5pg5c2Y0NTXF9OnTY82aNW9prygEAAAAAAAAAGAEpk6dGjfccENs27YtfvjDH8Y555wTH/3oR+OJJ56IiIjFixfHvffeG3fffXds2bIldu7cGXPmzBn6/qFDh6KzszP2798fDz30UNx+++2xZs2auPbaa4fOPP3009HZ2Rlnn312bN++PRYtWhSXX355rF+/vu69xeDg4OCR/9hvL/sOvvkZAAAAGE0Tz1pY9gQAAAAqZu9jq8qewCi651+eLXtCZV307hOP6PuTJk2Kv/iLv4iLLrooTjjhhFi7dm1cdNFFERHx4x//OE499dTo7u6O2bNnx/333x8f/vCHY+fOnTFlypSIiFi9enVcffXV8dxzz0VjY2NcffXVsW7dunj88ceH/oxPfOITsXv37njggQfq2uamEAAAAAAAAACgsgYGBqK/v3/Ya2Bg4E2/d+jQobjzzjvjpZdeivb29ti2bVscOHAgzj333KEzM2bMiJNPPjm6u7sjIqK7uztOP/30oSAkIqKjoyP6+/uHbhvp7u4e9ozDZw4/ox6iEAAAAAAAAAAoWYNXaa/ly5dHS0vLsNfy5ctf9/+rHTt2xIQJE6KpqSnmz58f3/72t6OtrS16e3ujsbExjjvuuGHnp0yZEr29vRER0dvbOywIOfz54c/e6Ex/f3/s3bv3dXe9llpdpwEAAAAAAAAAElm2bFksWbJk2HtNTU2ve/6UU06J7du3x549e+Kee+6JSy+9NLZs2XK0Z74lohAAAAAAAAAAoLKampreMAL57xobG2P69OkRETFr1qx49NFH48Ybb4yPf/zjsX///ti9e/ew20L6+vqitbU1IiJaW1vjkUceGfa8vr6+oc8O//Pwe68809zcHOPGjavrZ/PrYwAAAAAAAAAA3qKXX345BgYGYtasWTF27NjYuHHj0GdPPfVU9PT0RHt7e0REtLe3x44dO2LXrl1DZzZs2BDNzc3R1tY2dOaVzzh85vAz6uGmEAAAAAAAAACAEVi2bFmcf/75cfLJJ8cLL7wQa9eujc2bN8f69eujpaUlLrvssliyZElMmjQpmpub44orroj29vaYPXt2REScd9550dbWFpdcckmsWLEient745prromurq6h20rmz58fq1atiquuuirmzZsXmzZtirvuuivWrVtX915RCAAAAAAAAADACOzatSs+9alPxbPPPhstLS1xxhlnxPr16+ODH/xgRESsXLkyGhoaYu7cuTEwMBAdHR1x8803D31/zJgxcd9998WCBQuivb09xo8fH5deemlcd911Q2emTZsW69ati8WLF8eNN94YU6dOjVtuuSU6Ojrq3lsMDg4OHvmP/fay72DZCwAAAKiaiWctLHsCAAAAFbP3sVVlT2AUfetfni17QmXNefeJZU84ahrKHgAAAAAAAAAAwOjz62MAAAAAAAAAoGRFUZQ9gYTcFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASqpU9AAAAAAAAAACqrih7ACm5KQQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEioVvYAAAAAAAAAAKi6oih7ARm5KQQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkVCt7AAAAAAAAAABUXUMUZU8gITeFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACdXKHgAAAAAAAAAAVVcUZS8gIzeFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIRqZQ8AAAAAAAAAgKoroih7Agm5KQQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkVCt7AAAAAAAAAABUXVGUvYCM3BQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkVCt7AAAAAAAAAABUXUMUZU8gITeFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIRqZQ8AAAAAAAAAgKorirIXkJGbQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIRqZQ8AAAAAAAAAgKorirIXkJGbQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCtbIHAAAAAAAAAEDVFVGUPYGE3BQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkVCt7AAAAAAAAAABUXUNR9gIyclMIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASKhW9gAAAAAAAAAAqLoiirInkJCbQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIRqZQ8AAAAAAAAAgKorirIXkJGbQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCtbIHAAAAAAAAAEDVFVGUPYGE3BQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEqqVPQAAAAAAAAAAqq6hKHsBGbkpBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASKhW9gAAAAAAAAAAqLoiirInkJCbQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCtbIHAAAAAAAAAEDVFUXZC8jITSEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCtbIHAAAAAAAAAEDVFWUPICU3hQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICEamUPAAAAAAAAAICqayiKsieQkJtCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACCht3UU8swzz8S8efPKngEAAAAAAAAA8D/O2zoK+bd/+7e4/fbb3/DMwMBA9Pf3D3sNDAz8mhYCAAAAAAAAALw91cr8w7/73e++4ec///nP3/QZy5cvjy9+8YvD3vs/n/t8XHPtF45kGgAAAAAAAAD82hRlDyClYnBwcLCsP7yhoSGKoog3mlAURRw6dOh1Px8YGHjVzSCDY5qiqalp1HYCAADAm5l41sKyJwAAAFAxex9bVfYERtHDP91d9oTKmj39uLInHDWl/vqYE088Mb71rW/Fyy+//JqvH/3oR2/6jKampmhubh72EoQAAAAAAAAAAFVXahQya9as2LZt2+t+/ma3iAAAAAAAAAAA8NpqZf7hS5cujZdeeul1P58+fXr84Ac/+DUuAgAAAAAAAADIodQo5P3vf/8bfj5+/Pj4wAc+8GtaAwAAAAAAAACQR6m/PgYAAAAAAAAAgKOj1JtCAAAAAAAAAICIKMoeQEZuCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABKqlT0AAAAAAAAAAKquiKLsCSTkphAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQUK3sAQAAAAAAAABQdUVR9gIyclMIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASKhW9gAAAAAAAAAAqLqi7AGk5KYQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgoVrZAwAAAAAAAACg8oqyB5CRm0IAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQrWyBwAAAAAAAABA1RVRlD2BhNwUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJFQrewAAAAAAAAAAVF1RlL2AjNwUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABKqlT0AAAAAAAAAAKquKHsAKbkpBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAABGYPny5XHWWWfFscceG5MnT44LL7wwnnrqqWFn9u3bF11dXXH88cfHhAkTYu7cudHX1zfsTE9PT3R2dsYxxxwTkydPjqVLl8bBgweHndm8eXPMnDkzmpqaYvr06bFmzZq694pCAAAAAAAAAABGYMuWLdHV1RUPP/xwbNiwIQ4cOBDnnXdevPTSS0NnFi9eHPfee2/cfffdsWXLlti5c2fMmTNn6PNDhw5FZ2dn7N+/Px566KG4/fbbY82aNXHttdcOnXn66aejs7Mzzj777Ni+fXssWrQoLr/88li/fn1de4vBwcHBI/+x3172HXzzMwAAADCaJp61sOwJAAAAVMzex1aVPYFR9KP/11/2hMqa+c7mt/zd5557LiZPnhxbtmyJ3//93489e/bECSecEGvXro2LLrooIiJ+/OMfx6mnnhrd3d0xe/bsuP/+++PDH/5w7Ny5M6ZMmRIREatXr46rr746nnvuuWhsbIyrr7461q1bF48//vjQn/WJT3widu/eHQ888MCI97kpBAAAAAAAAADKVniV9RoYGIj+/v5hr4GBgZH8vxZ79uyJiIhJkyZFRMS2bdviwIEDce655w6dmTFjRpx88snR3d0dERHd3d1x+umnDwUhEREdHR3R398fTzzxxNCZVz7j8JnDzxgpUQgAAAAAAAAAUFnLly+PlpaWYa/ly5e/6fdefvnlWLRoUfzu7/5unHbaaRER0dvbG42NjXHccccNOztlypTo7e0dOvPKIOTw54c/e6Mz/f39sXfv3hH/bLURnwQAAAAAAAAASGbZsmWxZMmSYe81NTW96fe6urri8ccfjwcffPBoTTtiohAAAAAAAAAAoLKamppGFIG80sKFC+O+++6LrVu3xtSpU4feb21tjf3798fu3buH3RbS19cXra2tQ2ceeeSRYc/r6+sb+uzwPw+/98ozzc3NMW7cuBHv9OtjAAAAAAAAAABGYHBwMBYuXBjf/va3Y9OmTTFt2rRhn8+aNSvGjh0bGzduHHrvqaeeip6enmhvb4+IiPb29tixY0fs2rVr6MyGDRuiubk52trahs688hmHzxx+xki5KQQAAAAAAAAAYAS6urpi7dq18Y//+I9x7LHHRm9vb0REtLS0xLhx46KlpSUuu+yyWLJkSUyaNCmam5vjiiuuiPb29pg9e3ZERJx33nnR1tYWl1xySaxYsSJ6e3vjmmuuia6urqEbS+bPnx+rVq2Kq666KubNmxebNm2Ku+66K9atW1fX3mJwcHBwdP8nKN++g2UvAAAAoGomnrWw7AkAAABUzN7HVpU9gVH0o1/0lz2hsma+o3nEZ4uieM33b7vttvjjP/7jiIjYt29fXHnllXHHHXfEwMBAdHR0xM033zz0q2EiIn7xi1/EggULYvPmzTF+/Pi49NJL44Ybboha7b/u9ti8eXMsXrw4nnzyyZg6dWp87nOfG/ozRrxXFAIAAABHThQCAADAr5soJJfHfvFC2RMq68x3HFv2hKOmoewBAAAAAAAAAACMPlEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACRUK3sAAAAAAAAAAFRdUZS9gIzcFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACRUK3sAAAAAAAAAAFRdUfYAUnJTCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEioVvYAAAAAAAAAAKi8ouwBZOSmEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAIKFa2QMAAAAAAAAAoOqKKMqeQEJuCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJ1coeAAAAAAAAAABVVxRlLyAjN4UAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJ1coeAAAAAAAAAABVV5Q9gJTcFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASqpU9AAAAAAAAAAAqryh7ABm5KQQAAAAAAAAAICFRCAAAAAD8//buP1brgu7/+OuDVxwJgSOZ4HGolMtwc5g/YmylsU7C2pxkrTktsUxXiqVoBmupZUnp3JR0YLPEljVdJnPoNKIh6gwLb8o5JXU48/sVtBk66AbEc75/NM/3Prd136DYp97X47HxB9d1neu8zvnvbM+9LwAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABXXaHgAAAAAAAAAA3a5J0/YECnIpBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABTUaXsAAAAAAAAAAHS7pml7ARW5FAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAK6rQ9AAAAAAAAAAC6XdP2AEpyKQQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAACio0/YAAAAAAAAAAOh6TdsDqMilEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFBQp+0BAAAAAAAAANDtmjRtT6Agl0IAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCOm0PAAAAAAAAAIBu1zRtL6Ail0IAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQZ22BwAAAAAAAABAt2vaHkBJLoUAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFddoeAAAAAAAAAABdr2l7ABW5FAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAK6rQ9AAAAAAAAAAC6XZOm7QkU5FIIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKKjT9gAAAAAAAAAA6HZN0/YCKnIpBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKKjT9gAAAAAAAAAA6HZN2wMoyaUQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUFCn7QEAAAAAAAAA0PWatgdQkUshAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQZ22BwAAAAAAAABAt2vStD2BglwKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAV12h4AAAAAAAAAAN2uadpeQEUuhQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAV12h4AAAAAAAAAAN2uaXsAJbkUAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAArqtD0AAAAAAAAAALpe0/YAKnIpBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKKjT9gAAAAAAAAAA6HZNmrYnUJBLIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQkCgEAAAAAAAAAKCgTtsDAAAAAAAAAKDbNU3bC6jIpRAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQUKftAQAAAAAAAADQ7Zq2B1CSSyEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBnbYHAAAAAAAAAEC3a5q2F1CRSyEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgoE7bAwAAAAAAAACApu0BFORSCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAANgFq1evzoknnpi+vr40TZNly5YNe35wcDCXXHJJDjjggIwaNSr9/f158sknh73mpZdeymmnnZaxY8emt7c3Z555ZrZs2TLsNX/4wx/y4Q9/OHvvvXcmTZqUK6+88k3tFYUAAAAAAAAAAOyCrVu3ZurUqbn++uv/7vNXXnllFi1alCVLlmTNmjUZPXp0Zs6cmW3btg295rTTTstjjz2WFStWZPny5Vm9enXOPvvsoedfeeWVnHDCCTn44IOzdu3aXHXVVbnsssvygx/8YLf3NoODg4O7/2P+a9u2s+0FAAAAdJt9j53b9gQAAAC6zH/+x3VtT2AP+j+bd7Q9oWsd2DvyTX1d0zS54447Mnv27CR/uxLS19eXCy+8MBdddFGS5OWXX86ECROydOnSnHLKKXn88cdz+OGH57e//W2OOeaYJMk999yTj3/843nuuefS19eXxYsX5+tf/3o2btyYkSP/tm3+/PlZtmxZnnjiid3a6FIIAAAAAAAAAMBbtGHDhmzcuDH9/f1Dj40bNy7Tpk3LQw89lCR56KGH0tvbOxSEJEl/f39GjBiRNWvWDL3muOOOGwpCkmTmzJlZv359/vKXv+zWps5b+YEAAAAAAAAAAP6dbd++Pdu3bx/2WE9PT3p6enbrfTZu3JgkmTBhwrDHJ0yYMPTcxo0bs//++w97vtPpZPz48cNeM3ny5De8x+vP7bvvvru8yaUQAAAAAAAAAKBrLVy4MOPGjRv2b+HChW3P2iNcCgEAAAAAAAAAutaCBQsyb968YY/t7pWQJJk4cWKSZNOmTTnggAOGHt+0aVOOPPLIode88MILw75u586deemll4a+fuLEidm0adOw17z+/9dfs6tcCgEAAAAAAAAAulZPT0/Gjh077N+biUImT56ciRMnZuXKlUOPvfLKK1mzZk2mT5+eJJk+fXo2b96ctWvXDr3m17/+dQYGBjJt2rSh16xevTqvvvrq0GtWrFiRww47bLc+OiYRhQAAAAAAAAAA7JItW7Zk3bp1WbduXZJkw4YNWbduXZ599tk0TZPzzz8/3/72t3PnnXfm0Ucfzemnn56+vr7Mnj07STJlypTMmjUrZ511Vh5++OE8+OCDmTt3bk455ZT09fUlSU499dSMHDkyZ555Zh577LHceuutufbaa99wzWRX+PgYAAAAAAAAAGhZ0/YAdsnvfve7zJgxY+j/r4cac+bMydKlS3PxxRdn69atOfvss7N58+Z86EMfyj333JO999576GtuueWWzJ07Nx/96EczYsSIfPKTn8yiRYuGnh83blx++ctf5txzz83RRx+d/fbbL5dccknOPvvs3d7bDA4ODr6Fn/df0radbS8AAACg2+x77Ny2JwAAANBl/vM/rmt7AnvQ/928o+0JXauvd2TbE942Pj4GAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFNRpewAAAAAAAAAAdLumaXsBFbkUAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAArqtD0AAAAAAAAAALpdk6btCRTkUggAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFBQp+0BAAAAAAAAAND1mrYHUJFLIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQkCgEAAAAAAAAAKCgTtsDAAAAAAAAAKDbNW0PoCSXQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBnbYHAAAAAAAAAEC3a5q2F1CRSyEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBnbYHAAAAAAAAAEC3a9K0PYGCXAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABXXaHgAAAAAAAAAAXa9pewAVuRQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAU1Gl7AAAAAAAAAAB0u6btAZTkUggAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoqNP2AAAAAAAAAADodk3T9gIqcikEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoqNP2AAAAAAAAAADodk2atidQkEshAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoKBO2wMAAAAAAAAAoNs1TdsLqMilEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUFCn7QEAAAAAAAAA0O2apu0FVORSCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAACio0/YAAAAAAAAAAOh2TZq2J1CQSyEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBnbYHAAAAAAAAAEC3a5q2F1CRSyEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgoE7bAwAAAAAAAACg2zVtD6Akl0IAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCOm0PAAAAAAAAAICu17Q9gIpcCgEAAAAAAAAAKEgUAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFddoeAAAAAAAAAADdrknT9gQKcikEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoqNP2AAAAAAAAAADodk3T9gIqcikEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFNRpewAAAAAAAAAAdLum7QGU5FIIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKKjT9gAAAAAAAAAA6HpN2wOoyKUQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgoE7bAwAAAAAAAACg2zVp2p5AQS6FAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAAAAAAAAAgII6bQ8AAAAAAAAAgG7XNG0voCKXQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAAAAAAAAAgIKawcHBwbZHAAD/GrZv356FCxdmwYIF6enpaXsOAAAAxfk7FAAA3l6iEABgyCuvvJJx48bl5ZdfztixY9ueAwAAQHH+DgUAgLeXj48BAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIADCkp6cnl156aXp6etqeAgAAQBfwdygAALy9msHBwcG2RwAAAAAAAAAAsGe5FAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAIEly/fXX55BDDsnee++dadOm5eGHH257EgAAAEWtXr06J554Yvr6+tI0TZYtW9b2JAAAKEkUAgDk1ltvzbx583LppZfmkUceydSpUzNz5sy88MILbU8DAACgoK1bt2bq1Km5/vrr254CAAClNYODg4NtjwAA2jVt2rQce+yxue6665IkAwMDmTRpUs4777zMnz+/5XUAAABU1jRN7rjjjsyePbvtKQAAUI5LIQDQ5Xbs2JG1a9emv79/6LERI0akv78/Dz30UIvLAAAAAAAAeCtEIQDQ5f785z/ntddey4QJE4Y9PmHChGzcuLGlVQAAAAAAALxVohAAAAAAAAAAgIJEIQDQ5fbbb7/stdde2bRp07DHN23alIkTJ7a0CgAAAAAAgLdKFAIAXW7kyJE5+uijs3LlyqHHBgYGsnLlykyfPr3FZQAAAAAAALwVnbYHAADtmzdvXubMmZNjjjkmH/zgB3PNNddk69at+dznPtf2NAAAAArasmVLnnrqqaH/b9iwIevWrcv48eNz0EEHtbgMAABqaQYHBwfbHgEAtO+6667LVVddlY0bN+bII4/MokWLMm3atLZnAQAAUNCqVasyY8aMNzw+Z86cLF269J8/CAAAihKFAAAAAAAAAAAUNKLtAQAAAAAAAAAA7HmiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAOymM844I7Nnzx76/0c+8pGcf/75//Qdq1atStM02bx58z/9ewMAAADwr08UAgAAQBlnnHFGmqZJ0zQZOXJkDj300HzrW9/Kzp0739bv+4tf/CKXX375Lr1WyAEAAADAP0un7QEAAACwJ82aNSs33XRTtm/fnrvvvjvnnntu3vGOd2TBggXDXrdjx46MHDlyj3zP8ePH75H3AQAAAIA9yaUQAAAASunp6cnEiRNz8MEH50tf+lL6+/tz5513Dn3ky3e+85309fXlsMMOS5L86U9/yqc//en09vZm/PjxOemkk/LMM88Mvd9rr72WefPmpbe3N+9617ty8cUXZ3BwcNj3/O8fH7N9+/Z87Wtfy6RJk9LT05NDDz00P/zhD/PMM89kxowZSZJ99903TdPkjDPOSJIMDAxk4cKFmTx5ckaNGpWpU6fm5z//+bDvc/fdd+d973tfRo0alRkzZgzbCQAAAAD/nSgEAACA0kaNGpUdO3YkSVauXJn169dnxYoVWb58eV599dXMnDkzY8aMyf33358HH3ww++yzT2bNmjX0NVdffXWWLl2aH/3oR3nggQfy0ksv5Y477vgfv+fpp5+en/3sZ1m0aFEef/zx3HDDDdlnn30yadKk3H777UmS9evX5/nnn8+1116bJFm4cGF+/OMfZ8mSJXnsscdywQUX5DOf+Uzuu+++JH+LV04++eSceOKJWbduXb7whS9k/vz5b9evDQAAAIACfHwMAAAAJQ0ODmblypW59957c9555+XFF1/M6NGjc+ONNw59bMxPfvKTDAwM5MYbb0zTNEmSm266Kb29vVm1alVOOOGEXHPNNVmwYEFOPvnkJMmSJUty7733/sPv+8c//jG33XZbVqxYkf7+/iTJe97znqHnX/+omf333z+9vb1J/nZZ5IorrsivfvWrTJ8+fehrHnjggdxwww05/vjjs3jx4rz3ve/N1VdfnSQ57LDD8uijj+Z73/veHvytAQAAAFCJKAQAAIBSli9fnn322SevvvpqBgYGcuqpp+ayyy7LueeemyOOOGIoCEmS3//+93nqqacyZsyYYe+xbdu2PP3003n55Zfz/PPPZ9q0aUPPdTqdHHPMMW/4CJnXrVu3LnvttVeOP/74Xd781FNP5a9//Ws+9rGPDXt8x44d+cAHPpAkefzxx4ftSDIUkAAAAADA3yMKAQAAoJQZM2Zk8eLFGTlyZPr6+tLp/P8/fUePHj3stVu2bMnRRx+dW2655Q3v8+53v/tNff9Ro0bt9tds2bIlSXLXXXflwAMPHPZcT0/Pm9oBAAAAAKIQAAAAShk9enQOPfTQXXrtUUcdlVtvvTX7779/xo4d+3dfc8ABB2TNmjU57rjjkiQ7d+7M2rVrc9RRR/3d1x9xxBEZGBjIfffdN/TxMf/V65dKXnvttaHHDj/88PT09OTZZ5/9hxdGpkyZkjvvvHPYY7/5zW/+9x8SAAAAgK41ou0BAAAA0JbTTjst++23X0466aTcf//92bBhQ1atWpUvf/nLee6555IkX/nKV/Ld7343y5YtyxNPPJFzzjknmzdv/ofvecghh2TOnDn5/Oc/n2XLlg2952233ZYkOfjgg9M0TZYvX54XX3wxW7ZsyZgxY3LRRRflggsuyM0335ynn346jzzySL7//e/n5ptvTpJ88YtfzJNPPpmvfvWrWb9+fX76059m6dKlb/evCAAAAIB/Y6IQAAAAutY73/nOrF69OgcddFBOPvnkTJkyJWeeeWa2bds2dDnkwgsvzGc/+9nMmTMn06dPz5gxY/KJT3zif3zfxYsX51Of+lTOOeecvP/9789ZZ52VrVu3JkkOPPDAfPOb38z8+fMzYcKEzJ07N0ly+eWX5xvf+EYWLlyYKVOmZNasWbnrrrsyefLkJMlBBx2U22+/PcuWLcvUqVOzZMmSXHHFFW/jbwcAAACAf3fN4ODgYNsjAAAAAAAAAADYs1wKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBB/w/ZUpGrD9tDggAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["# ✅ استيراد المكتبات\n","import os\n","import pickle\n","import numpy as np\n","import matplotlib.pyplot as plt\n","import seaborn as sns\n","import pandas as pd\n","from sklearn.utils import shuffle, class_weight\n","from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, precision_score, recall_score, f1_score\n","from tensorflow.keras.models import Model, load_model\n","from tensorflow.keras.layers import Input, Dense, Dropout, Conv1D, MaxPooling1D, Bidirectional, GRU, Reshape, Attention, Multiply\n","from tensorflow.keras.optimizers import Adam\n","from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau\n","\n","# ✅ المسارات الأساسية\n","base_path = \"/content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/\"\n","\n","# ✅ دالة عامة لتدريب أو تحميل نموذج\n","\n","def train_or_load_model(name, X_train, y_train, X_test, y_test, num_classes, use_attention=False):\n"," model_path = os.path.join(base_path, f\"CNN + BiGRU_model_all_{name}.h5\")\n"," conf_matrix_path = os.path.join(base_path, f\"CNN + BiGRU_conf_matrix_all_{name}.png\")\n"," acc_loss_path = os.path.join(base_path, f\"CNN + BiGRU_accuracy_loss_all_{name}.png\")\n"," comparison_path = os.path.join(base_path, \"all_models_comparison.csv\")\n","\n"," X_train, y_train = shuffle(X_train, y_train, random_state=42)\n"," weights = class_weight.compute_class_weight(class_weight='balanced', classes=np.unique(y_train), y=y_train)\n"," class_weight_dict = {i: w for i, w in enumerate(weights)}\n","\n"," if os.path.exists(model_path):\n"," print(f\"✅ [LOADED] {name.upper()} model loaded from disk\")\n"," model = load_model(model_path)\n"," history = None\n"," else:\n"," print(f\"❌ [TRAINING] {name.upper()} model not found. Training...\")\n"," input_layer = Input(shape=(894,), name=\"input_layer\")\n"," x = Reshape((894, 1))(input_layer)\n"," x = Conv1D(filters=128, kernel_size=3, activation=\"relu\")(x)\n"," x = MaxPooling1D(pool_size=2)(x)\n"," x = Bidirectional(GRU(64, return_sequences=use_attention))(x)\n"," if use_attention:\n"," att = Attention()([x, x])\n"," x = Multiply()([x, att])\n"," x = GRU(64)(x)\n"," else:\n"," x = Dropout(0.3)(x)\n"," x = Dropout(0.3)(x)\n"," output = Dense(num_classes, activation=\"softmax\", name=f\"{name}_output\")(x)\n","\n"," model = Model(inputs=input_layer, outputs=output)\n"," model.compile(optimizer=Adam(learning_rate=0.001), loss=\"sparse_categorical_crossentropy\", metrics=[\"accuracy\"])\n"," model.summary()\n","\n"," history = model.fit(\n"," X_train, y_train,\n"," validation_data=(X_test, y_test),\n"," epochs=30,\n"," batch_size=64,\n"," class_weight=class_weight_dict,\n"," callbacks=[EarlyStopping(patience=5, restore_best_weights=True),\n"," ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=2, min_lr=1e-6, verbose=1)]\n"," )\n","\n"," model.save(model_path)\n"," print(\"✅ تم حفظ النموذج.\")\n","\n"," # ✅ رسم Accuracy & Loss\n"," if history:\n"," plt.figure(figsize=(14, 5))\n"," plt.subplot(1, 2, 1)\n"," plt.plot(history.history['accuracy'], label='Train Accuracy')\n"," plt.plot(history.history['val_accuracy'], label='Val Accuracy', linestyle='--')\n"," plt.title(f\"Accuracy ({name})\")\n"," plt.xlabel(\"Epoch\")\n"," plt.ylabel(\"Accuracy\")\n"," plt.legend()\n","\n"," plt.subplot(1, 2, 2)\n"," plt.plot(history.history['loss'], label='Train Loss')\n"," plt.plot(history.history['val_loss'], label='Val Loss', linestyle='--')\n"," plt.title(f\"Loss ({name})\")\n"," plt.xlabel(\"Epoch\")\n"," plt.ylabel(\"Loss\")\n"," plt.legend()\n","\n"," plt.tight_layout()\n"," plt.savefig(acc_loss_path, dpi=300)\n"," plt.show()\n","\n"," # ✅ التنبؤ والتقييم\n"," preds = model.predict(X_test)\n"," preds = np.argmax(preds, axis=1)\n","\n"," report = classification_report(y_test, preds, output_dict=True, zero_division=0)\n"," conf_matrix = confusion_matrix(y_test, preds)\n"," accuracy = accuracy_score(y_test, preds)\n"," precision = precision_score(y_test, preds, average='macro', zero_division=0)\n"," recall = recall_score(y_test, preds, average='macro', zero_division=0)\n"," f1 = f1_score(y_test, preds, average='macro', zero_division=0)\n","\n"," print(f\"\\n🔄 Summary:\")\n"," print(f\"✅ Accuracy: {accuracy:.4f}\")\n"," print(f\"✅ Precision: {precision:.4f}\")\n"," print(f\"✅ Recall: {recall:.4f}\")\n"," print(f\"✅ F1-Score: {f1:.4f}\")\n","\n"," # ✅ Confusion Matrix\n"," plt.figure(figsize=(24, 20))\n"," sns.heatmap(conf_matrix, annot=False, fmt=\"d\", cmap=\"Blues\")\n"," plt.title(f\"Confusion Matrix - {name.upper()}\")\n"," plt.xlabel(\"Predicted\")\n"," plt.ylabel(\"Actual\")\n"," plt.tight_layout()\n"," plt.savefig(conf_matrix_path, dpi=300)\n"," plt.show()\n","\n"," # ✅ حفظ النتائج\n"," results_df = pd.DataFrame({\n"," \"Model\": [name],\n"," \"Accuracy\": [accuracy],\n"," \"Precision\": [precision],\n"," \"Recall\": [recall],\n"," \"F1_Score\": [f1]\n"," })\n","\n"," if not os.path.exists(comparison_path):\n"," results_df.to_csv(comparison_path, index=False)\n"," else:\n"," results_df.to_csv(comparison_path, mode='a', header=False, index=False)\n","\n","# ✅ تنفيذ للنماذج الثلاثة\n","\n","try:\n"," with open(os.path.join(base_path, \"train_test_data_main-deep-new.pkl\"), \"rb\") as f:\n"," X_train_main, X_test_main, y_train_main, y_test_main = pickle.load(f)\n"," train_or_load_model(\"main\", X_train_main, y_train_main, X_test_main, y_test_main, num_classes=22)\n","except Exception as e:\n"," print(f\"⚠️ خطأ في نموذج MAIN: {e}\")\n","\n","try:\n"," with open(os.path.join(base_path, \"train_test_data_sub-deep-new.pkl\"), \"rb\") as f:\n"," X_train_sub, X_test_sub, y_train_sub, y_test_sub = pickle.load(f)\n"," train_or_load_model(\"sub\", X_train_sub, y_train_sub, X_test_sub, y_test_sub, num_classes=75, use_attention=True)\n","except Exception as e:\n"," print(f\"⚠️ خطأ في نموذج SUB: {e}\")\n","\n","try:\n"," with open(os.path.join(base_path, \"train_test_data_rf-deep-new.pkl\"), \"rb\") as f:\n"," X_train_rf, X_test_rf, y_train_rf, y_test_rf = pickle.load(f)\n"," train_or_load_model(\"rf\", X_train_rf, y_train_rf, X_test_rf, y_test_rf, num_classes=2)\n","except Exception as e:\n"," print(f\"⚠️ خطأ في نموذج RF: {e}\")\n"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"executionInfo":{"elapsed":1736909,"status":"ok","timestamp":1746292661148,"user":{"displayName":"noor alqudah","userId":"09593972035402767777"},"user_tz":-180},"id":"zFggyKqbPPVc","outputId":"ba67df18-db75-49e7-f4b8-9bf22b0fe2d5"},"outputs":[{"name":"stdout","output_type":"stream","text":["\n","🚀 بدء Fine-Tuning لموديل MAIN\n","✅ [LOADED] تم العثور على نموذج Fine-Tuned لموديل MAIN. سيتم تحميله بدون إعادة تدريب.\n","\u001b[1m1287/1287\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m392s\u001b[0m 304ms/step\n","\n","📊 Classification Report:\n"," precision recall f1-score support\n","\n"," 0 0.99 1.00 0.99 1871\n"," 1 0.99 1.00 0.99 1871\n"," 2 0.83 0.76 0.79 1872\n"," 3 0.96 0.97 0.96 1872\n"," 4 0.69 0.71 0.70 1872\n"," 5 0.54 0.54 0.54 1871\n"," 6 0.83 0.80 0.81 1872\n"," 7 0.53 0.39 0.45 1872\n"," 8 0.98 0.99 0.98 1871\n"," 9 0.96 0.97 0.97 1872\n"," 10 0.83 0.82 0.83 1872\n"," 11 0.65 0.56 0.60 1871\n"," 12 0.39 0.51 0.44 1872\n"," 13 0.73 0.67 0.70 1871\n"," 14 0.47 0.53 0.50 1872\n"," 15 0.73 0.76 0.75 1871\n"," 16 0.57 0.58 0.58 1872\n"," 17 0.97 0.95 0.96 1872\n"," 18 0.99 1.00 1.00 1872\n"," 19 0.95 0.98 0.97 1872\n"," 20 0.90 0.88 0.89 1871\n"," 21 0.95 0.95 0.95 1872\n","\n"," accuracy 0.79 41176\n"," macro avg 0.79 0.79 0.79 41176\n","weighted avg 0.79 0.79 0.79 41176\n","\n","\n","🔄 Summary for MAIN:\n","✅ Accuracy: 0.7877\n","✅ Precision: 0.7919\n","✅ Recall: 0.7877\n","✅ F1-Score: 0.7884\n","✅ عرض رسم Accuracy & Loss المخزن: /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/CNN + Bilstm_main_finetuned_acc_loss1.png\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABEkAAAGrCAYAAAA8UcljAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA7LlJREFUeJzs3XeYE1Xbx/HvpCfbKwssdelFQJBelmJBuhTBRrFgR0SwFyyvFZUH+4OiSBNEEX1UQEBFBFQU6QhIL9v7pue8fwwJxF2qIMX7c125YCeTyZkku5n5zX3O0ZRSCiGEEEIIIYQQQoh/OcPZboAQQgghhBBCCCHEuUBCEiGEEEIIIYQQQggkJBFCCCGEEEIIIYQAJCQRQgghhBBCCCGEACQkEUIIIYQQQgghhAAkJBFCCCGEEEIIIYQAJCQRQgghhBBCCCGEACQkEUIIIYQQQgghhAAkJBFCCCGEEEIIIYQAJCQRQghxHkhPTyc9Pf1sN+OM+/bbb9E0jW+//fZsN0WIEzZ79mzi4+MpLi4+200p15n4+6FpGk888UTo57feeouqVavidrtP6/MIIYT450lIIoQQ57n3338fTdPQNI0ffvihzP1KKapUqYKmafTs2bPcbeTn52Oz2dA0jU2bNpW7zrBhw4iMjAxblp6ejqZp9OrVq8z6O3fuRNM0XnrppePuQ7D9f72lpKQc97FnwrBhw47apiNvw4YNOyvtO9PeeOMNNE2jVatWZ7sp56UVK1bQqVMnoqOjSU5Opnv37ixfvvyEH38yvztnm9/v5/HHH+euu+4K+/tQvXr1o/69uRANGzYMj8fD22+/fbabIoQQ4m8yne0GCCGEOD1sNhszZsygffv2Ycu/++479u7di9VqPepj58yZEwolpk+fztNPP31Sz/3FF1+wevVqmjdvfkptB7j00ku54YYbwpbZ7XYAFi5ceMrbPRUjR46kW7duoZ937NjBY489xi233EKHDh1Cy9PS0k7r83bs2BGn04nFYjmt2z1Z06dPp3r16vz0009s27aNWrVqndX2nE92797N5ZdfTkJCAuPHjycQCLBo0SIWL15Mu3btznbzTrvPP/+cLVu2cMstt5ztppxVNpuNoUOH8vLLL3PXXXehadrZbpIQQohTJCGJEEJcIK688krmzJnDf/7zH0ymw3/eZ8yYQfPmzcnOzj7qY6dNm8aVV15JtWrVmDFjxkmFJFWrVqWoqIjx48czf/78U25/nTp1uO6668q9758ODdq0aUObNm1CP//yyy889thjtGnT5qhtPB0MBgM2m+2Mbf9E7Nixgx9//JFPPvmEkSNHMn36dB5//PGz2qajKSkpISIi4mw3I8z//vc/ioqKWLx4MZdccgkAY8aMuWC7YUyZMoV27dpRuXLls92Us27QoEG88MILLF26lC5dupzt5gghhDhF0t1GCCEuEEOGDCEnJ4dFixaFlnk8Hj7++GOuueaaoz5u9+7dLFu2jMGDBzN48ODQSfKJioqKYvTo0Xz++ef8+uuvf2sfjuavYwoEx+6YPXs2zzzzDKmpqdhsNrp27cq2bdvKPH7VqlVcccUVxMTE4HA46NSp00l1fyjPE088Ue7V4mD3p507d4aWBbse/PDDD7Rs2RKbzUbNmjWZOnVq2GPLG5MkPT2dRo0asXHjRjp37ozD4aBy5cq88MILZZ57165d9O7dm4iICJKTkxk9ejQLFiw4qXFOpk+fTlxcHD169GDAgAFMnz693PXy8/MZPXo01atXx2q1kpqayg033BAWxrlcLp544gnq1KmDzWajYsWKXHXVVWzfvv2o+wuHu5u8//77oWXB7l7bt2/nyiuvJCoqimuvvRaAZcuWMXDgQKpWrYrVaqVKlSqMHj0ap9NZpt2bN29m0KBBJCUlYbfbqVu3Lg8//DAAS5cuRdM0Pv300zKPmzFjBpqmsWLFimO+fgaDfmillApbfqxKrlOVmZnJjTfeSIUKFbDZbDRp0oQPPvigzHqzZs2iefPmREVFER0dTePGjZk4cWLofq/Xy/jx46lduzY2m42EhATat28f9rekPC6Xi6+//jqs6upk+Hw+nnrqKdLS0rBarVSvXp2HHnqoTKD02Wef0aNHDypVqoTVaiUtLY2nnnoKv99fZpvvvPMOaWlp2O12WrZsybJly8p9brfbzeOPP06tWrVCn5lx48aVeW63283o0aNJSkoiKiqK3r17s3fv3nK32bx5c+Lj4/nss89O6fUQQghxbpCQRAghLhDVq1enTZs2zJw5M7Tsq6++oqCggMGDBx/1cTNnziQiIoKePXvSsmVL0tLSjnpifDSjRo0iLi4ubCDDk+VyucjOzg67He/q+3PPPcenn37Kfffdx4MPPsjKlStDJ85BS5YsoWPHjhQWFvL444/zf//3f+Tn59OlSxd++umnU27vydq2bRsDBgzg0ksvZcKECcTFxTFs2DA2bNhw3Mfm5eVxxRVX0KRJEyZMmEC9evW4//77+eqrr0LrlJSU0KVLF7755hvuvvtuHn74YX788Ufuv//+k2rn9OnTueqqq7BYLAwZMoStW7fy888/h61TXFxMhw4dmDRpEpdddhkTJ07k1ltvZfPmzaETSL/fT8+ePRk/fjzNmzdnwoQJjBo1ioKCAtavX39SbQry+XxcfvnlJCcn89JLL9G/f39A7y5WWlrKbbfdxqRJk7j88suZNGlSme5ba9eupVWrVixZsoSbb76ZiRMn0rdvXz7//HNAD6SqVKlS7ud/+vTppKWlhVUYleeqq64iJiaGsWPH4vF4Tmk/T4TT6SQ9PZ0PP/yQa6+9lhdffJGYmBiGDRsWFoAsWrSIIUOGEBcXx/PPP89zzz1Henp6WEj4xBNPMH78eDp37sxrr73Gww8/TNWqVY8beq5evRqPx8PFF198Svtw00038dhjj3HxxRfzyiuv0KlTJ5599tkyf6/ef/99IiMjuffee5k4cSLNmzfnscce44EHHghb791332XkyJGkpKTwwgsv0K5dO3r37s2ePXvC1gsEAvTu3ZuXXnqJXr16MWnSJPr27csrr7zC1VdfXaaNr776KpdddhnPPfccZrOZHj16HHWfLr744r8dwAohhDjLlBBCiPPalClTFKB+/vln9dprr6moqChVWlqqlFJq4MCBqnPnzkoppapVq6Z69OhR5vGNGzdW1157bejnhx56SCUmJiqv1xu23tChQ1VERETYsk6dOqmGDRsqpZQaP368AtTq1auVUkrt2LFDAerFF1887j4A5d6mTJkSep5OnTqF1l+6dKkCVP369ZXb7Q4tnzhxogLUunXrlFJKBQIBVbt2bXX55ZerQCAQWq+0tFTVqFFDXXrppcdtm1JK/fzzz2HtUUqpxx9/XJX3NRp8P3bs2BFaVq1aNQWo77//PrQsMzNTWa1WNWbMmDL7tXTp0tCyTp06KUBNnTo1tMztdquUlBTVv3//0LIJEyYoQM2bNy+0zOl0qnr16pXZ5tH88ssvClCLFi1SSumvX2pqqho1alTYeo899pgC1CeffFJmG8HX+b333lOAevnll4+6Tnn7q9Thz86Rr/fQoUMVoB544IEy2wt+3o/07LPPKk3T1K5du0LLOnbsqKKiosKWHdkepZR68MEHldVqVfn5+aFlmZmZymQyqccff7zM8/zVjz/+qOLi4pTFYlEDBw5UPp/vuI/5qxP53Xn11VcVoKZNmxZa5vF4VJs2bVRkZKQqLCxUSik1atQoFR0dfcx2NGnSpNy/DcczefLksN+3Ix3t703QmjVrFKBuuummsOX33XefAtSSJUtCy8p7f0eOHKkcDodyuVxKKX3fk5OTVdOmTcP+JrzzzjsKCPv78eGHHyqDwaCWLVsWts233npLAWr58uVhbbz99tvD1rvmmmsUUO7n4ZZbblF2u/2o+y2EEOLcJ5UkQghxARk0aBBOp5MvvviCoqIivvjii2N2tVm7di3r1q1jyJAhoWVDhgwhOzubBQsWnNRzB6tJxo8ff0pt79OnD4sWLQq7XX755cd8zPDhw8PGKwkOqvrnn38CsGbNGrZu3co111xDTk5OqEKlpKSErl278v333xMIBE6pvSerQYMGYYO+JiUlUbdu3VBbjyUyMjJsLBSLxULLli3DHvv1119TuXJlevfuHVpms9m4+eabT7iN06dPp0KFCnTu3BnQZx26+uqrmTVrVljXhrlz59KkSRP69etXZhvBLkhz584lMTGRu+6666jrnIrbbrutzLLgAL+gV9RkZ2fTtm1blFL89ttvAGRlZfH9998zYsQIqlatetT23HDDDbjdbj7++OPQso8++gifz3fc8Wh27drFlVdeyY033si8efP49NNPufnmm8O63owcOZIqVaqc3E6X48svvyQlJSXsd9dsNnP33XdTXFzMd999B0BsbCwlJSXH7DoTGxvLhg0b2Lp160m1IScnB4C4uLhTaj/AvffeG7Z8zJgxgD62S9CR729RURHZ2dl06NCB0tJSNm/eDOjjBmVmZnLrrbeG/U0YNmwYMTExYc8xZ84c6tevT7169cIq14LjiCxdujSsjXfffXfY4++5556j7ldcXBxOp5PS0tLjvwhCCCHOSTJwqxBCXECSkpLo1q0bM2bMoLS0FL/fz4ABA466/rRp04iIiKBmzZqhsTxsNhvVq1dn+vTpxywr/6uYmBjuueceHn/8cX777beTPnFKTU096bEN/nqyG3zOvLw8gNBJ39ChQ4+6jYKCAiIiIsjNzQ1bnpSUhNFoPKn2nExbQW9vsK3HkpqaWiZYiIuLY+3ataGfd+3aRVpaWpn1TnRmGr/fz6xZs+jcuTM7duwILW/VqhUTJkxg8eLFXHbZZQBs37491NXlaLZv307dunXDBhH+u0wmE6mpqWWW7969m8cee4z58+eXeT0LCgqAw8FZo0aNjvkc9erV45JLLmH69OnceOONgB4etW7d+riv5bPPPovBYODpp5/GarXy3nvvMXToUKKiokJdYNavX39aplbetWsXtWvXDo2BElS/fv3Q/QC33347s2fPpnv37lSuXJnLLruMQYMGccUVV4Qe8+STT9KnTx/q1KlDo0aNuOKKK7j++uu56KKLTqgt6i/jr5xo+w0GQ5nXNCUlhdjY2FD7ATZs2MAjjzzCkiVLKCwsDFs/+P4G169du3bY/WazmZo1a4Yt27p1K5s2bSIpKanctmVmZoa18a+zWNWtW/eo+xV8LWR2GyGEOH9JSCKEEBeYa665hptvvpmDBw/SvXt3YmNjy11PKcXMmTMpKSmhQYMGZe7PzMykuLiYyMjIE37uUaNG8corrzB+/HheffXVU9yDE3e0ECN4ohKsEnnxxRdp2rRpuetGRkayfPnyUPVE0I4dO6hevfpRn/toJ0HlDSZ5Im09lr/z2BO1ZMkSDhw4wKxZs5g1a1aZ+6dPnx4KSU6Xk30NrVZrmVDA7/dz6aWXkpuby/3330+9evWIiIhg3759DBs27JQqhW644QZGjRrF3r17cbvdrFy5ktdee+24j/vxxx9p2rRpaJDW66+/noyMDMaOHUtUVBSDBw9mxYoVzJ0796TbdKqSk5NZs2YNCxYs4KuvvuKrr75iypQp3HDDDaFBXjt27Mj27dv57LPPWLhwIZMnT+aVV17hrbfe4qabbjrqthMSEgA9lCwvvDoRxwsT8vPz6dSpE9HR0Tz55JOkpaVhs9n49ddfuf/++0/p/Q0EAjRu3JiXX3653Pv/TqVPXl4eDocjrPpFCCHE+UVCEiGEuMD069ePkSNHsnLlSj766KOjrvfdd9+xd+9ennzyydDV56C8vDxuueUW5s2bd1JT3garSZ544oljVm/8U4JXgKOjo49ZpdKkSZMy3RFSUlKOue1g1Up+fn5YEHXkFfB/UrVq1di4cSNKqbATz/Jm+ynP9OnTSU5O5vXXXy9z3yeffMKnn37KW2+9hd1uJy0t7biDr6alpbFq1Sq8Xi9ms7ncdY58DY90Mq/hunXr+OOPP/jggw/CBmr96/sZrCY4kUFjBw8ezL333svMmTNxOp2YzeYyA3qWR9O0MoOE3nfffWRkZPDMM88wffp0mjVrRp8+fU5k146pWrVqrF27lkAgEBYcBbufVKtWLbTMYrHQq1cvevXqRSAQ4Pbbb+ftt9/m0UcfDVVyxMfHM3z4cIYPH05xcTEdO3bkiSeeOGZIUq9ePUAPFBs3bnzS7Q8EAmzdujXs709GRgb5+fmh9n/77bfk5OTwySef0LFjx9B6R1Y7Hbm/W7duDZt+1+v1smPHDpo0aRJalpaWxu+//07Xrl2PGdIE2xisigrasmXLUR+zY8eOMn9PhRBCnF9kTBIhhLjAREZG8uabb/LEE0/Qq1evo64X7GozduxYBgwYEHa7+eabqV279knPcgN6f/3Y2FiefPLJv7Mbp0Xz5s1JS0vjpZdeori4uMz9WVlZgH6y3q1bt7CbzWY75raDAcz3338fWlZSUlLuFKz/hMsvv5x9+/Yxf/780DKXy8V///vf4z7W6XTyySef0LNnzzKfhQEDBnDnnXdSVFQU2nb//v35/fffy50qN1jd0r9/f7Kzs8utwAiuU61aNYxGY9hrCPDGG2+c8H4Hq2yOrKpRSoXN8AJ696mOHTvy3nvvsXv37nLbE5SYmEj37t2ZNm0a06dP54orriAxMfG4benWrRtbt27lww8/DFv+3HPP0aBBA3bu3Env3r3LVMOciiuvvJKDBw+GBaE+n49JkyYRGRlJp06dgMPjhgQZDIZQN5rg7FF/XScyMpJatWodd3ap5s2bY7FY+OWXX06p/UCZirNgdUewq19576/H4ynzGWnRogVJSUm89dZbYbMKvf/++2VCuEGDBrFv375yfzecTiclJSUAdO/eHYD//Oc/Yescq0ru119/pW3btke9XwghxLlPKkmEEOICdLwqDrfbzdy5c7n00kuPGgb07t2biRMnkpmZSXJy8gk/d0xMDKNGjTrlAVxPJ4PBwOTJk+nevTsNGzZk+PDhVK5cmX379rF06VKio6ND07+erMsuu4yqVaty4403MnbsWIxGI++99x5JSUllTsL/CSNHjuS1115jyJAhjBo1iooVKzJ9+vTQ+3usK+bz58+nqKgobNDXI7Vu3ZqkpCSmT5/O1VdfzdixY/n4448ZOHAgI0aMoHnz5uTm5jJ//nzeeustmjRpwg033MDUqVO59957+emnn+jQoQMlJSV888033H777fTp04eYmBgGDhzIpEmT0DSNtLQ0vvjii9CYECeiXr16pKWlcd9997Fv3z6io6OZO3duuWO9/Oc//6F9+/ZcfPHF3HLLLdSoUYOdO3fyv//9jzVr1oSte8MNN4TG83nqqadOqC0PPvgg8+bNY+jQoSxatIi2bdtSXFzMzJkz2bFjB5dccglPP/00bdq0OaGuS4sXL8blcpVZ3rdvX2655Rbefvtthg0bxurVq6levToff/wxy5cv59VXXyUqKgrQp7DNzc2lS5cupKamsmvXLiZNmkTTpk1DFQ8NGjQgPT2d5s2bEx8fzy+//MLHH3/MnXfeecz22Ww2LrvsMr755ptyQ9Ft27bx9NNPl1nerFkzevTowdChQ3nnnXdCXWp++uknPvjgA/r27Rvq/ta2bVvi4uIYOnQod999N5qm8eGHH5YJtsxmM08//TQjR46kS5cuXH311ezYsYMpU6aUGZPk+uuvZ/bs2dx6660sXbqUdu3a4ff72bx5M7Nnz2bBggW0aNGCpk2bMmTIEN544w0KCgpo27YtixcvPmp11urVq8nNzT0tlUJCCCHOon9+Qh0hhBCn05FTAB/LkVNyzp07VwHq3XffPer63377rQLUxIkTlVLHnwL4SHl5eSomJuakpgC+4447jnr/0aYAnjNnTth65U0dq5RSv/32m7rqqqtUQkKCslqtqlq1amrQoEFq8eLFx22bUuVPAayUUqtXr1atWrVSFotFVa1aVb388stHnQK4vOlQj7Zff50CuLzXeOjQoapatWphy/7880/Vo0cPZbfbVVJSkhozZkzovV65cuVR969Xr17KZrOpkpKSo64zbNgwZTabVXZ2tlJKqZycHHXnnXeqypUrK4vFolJTU9XQoUND9yulT9368MMPqxo1aiiz2axSUlLUgAED1Pbt20PrZGVlqf79+yuHw6Hi4uLUyJEj1fr168udAvivn7+gjRs3qm7duqnIyEiVmJiobr75ZvX777+X+56tX79e9evXT8XGxiqbzabq1q2rHn300TLbdLvdKi4uTsXExCin03nU1+WvsrOz1Z133qmqVKmiTCaTSklJUTfccIPavHmzKiwsVPXq1VPR0dHlTpsbFPwcH+324YcfKqWUysjIUMOHD1eJiYnKYrGoxo0bl9nfjz/+WF122WUqOTk59DkdOXKkOnDgQGidp59+WrVs2VLFxsYqu92u6tWrp5555hnl8XiOu7+ffPKJ0jRN7d69O2x5cNrr8m433nijUkopr9erxo8fH/p8VKlSRT344IOhaX2Dli9frlq3bq3sdruqVKmSGjdunFqwYEG500e/8cYbqkaNGspqtaoWLVqo77//vszvmVL6lMHPP/+8atiwobJarSouLk41b95cjR8/XhUUFITWczqd6u6771YJCQkqIiJC9erVS+3Zs6fcKYDvv/9+VbVq1bAppYUQQpx/NKVO46hvQgghhDinvPrqq4wePZq9e/dSuXLls92c84bP56NSpUr06tWLd99992w355zl9/tp0KABgwYNOuGKmwuR2+2mevXqPPDAA4waNepsN0cIIcTfIGOSCCGEEBcIp9MZ9rPL5eLtt9+mdu3aEpCcpHnz5pGVlRU2GKwoy2g08uSTT/L666+XO+7Pv8WUKVMwm83ceuutZ7spQggh/iapJBFCCCEuEN27d6dq1ao0bdqUgoICpk2bxoYNG5g+fTrXXHPN2W7eeWHVqlWsXbuWp556isTERH799dez3SQhhBBC/INk4FYhhBDiAnH55ZczefJkpk+fHuoGMWvWrBOavlbo3nzzTaZNm0bTpk15//33z3ZzhBBCCPEPk0oSIYQQQgghhBBCCGRMEiGEEEIIIYQQQghAQhIhhBBCCCGEEEIIQEISIYQQQgghhBBCCEBCEiGEEEIIIYQQQghAQhIhhBBCCCGEEEIIQEISIYQQQgghhBBCCEBCEiGEEEIIIYQQQghAQhIhhBBCCCGEEEIIQEISIYQQQgghhBBCCEBCEiGEEEIIIYQQQghAQhIhhBBCCCGEEEIIQEISIYQQQgghhBBCCEBCEiGEEEIIIYQQQghAQhIhhBBCCCGEEEIIQEISIYQQQgghhBBCCABMZ7sBQvybKKVwOp0EAgHsdjtGozF0n9/vx+l0YjQasdlsaJoWus/r9eJ2u8s8RilFaWkpVqsVk8kU2obZbMZisYS24fP58Hg82O32sO0Gud1uvF5v2DKDwYDb7Wb+/Pn069eP6Ojo0/Y6+Hw+XC7XUe83mUxYrdZy23o8Ho+HuXPn0rZtW6pVq/Z3mnlMSik8Hg8+nw+Hw3FKbRVCCCHOhuB3mNfrxWq1Yjabw+4rLS0FwG63YzAcvqYaCARCxx1/fYzL5cJgMGCxWAAoLS1F07SwY49AIIDT6cRms4UdzwQd7fjAYrHw6aefcskll1CzZs3T8yIc0R6lVLn3GwyGox47HY9SikWLFhETE0OrVq3+blPL3b7b7UbTtLBjPiHE3yeVJEL8g3w+H0OHDqVFixYsW7Ys7Et56dKlNG/enJtuugmfzxdarpTirbfeonnz5ixYsCDsMYWFhfTs2ZPFixcDsGHDBi655BJGjBgRdpCxZMkS+vbtS1FRUbntev3112nRogWdOnUiPT2d9PR0hg8fzr59+3j22WfJzc09ra/DypUr6dy5M+np6XTs2JFmzZrRrl270HM//fTTp7xtt9vNhAkT+OOPP05ji8vy+/3cc889tG3bli1btpzR5xJCCCFOtwkTJtC0aVNee+21sGOLPXv2kJ6eTteuXcnKygotV0rxww8/0KJFC55//vmwxyilGD16NBMmTAD045Mrr7ySbt26sXfv3tC6+/bt47LLLjvq9+by5ctp3rw5HTt2DB0TdO/enR07dvDqq6+yYcOG0/oaZGZm0qtXL9LT0+nUqRMtWrSgVatWoee+/vrrcbvdp7z9mTNnsmjRotPY4sMCgQBjxozhxRdfPCPbF+LfTCpJhPgHKaXYt28fTqeT6dOn06FDB4xGI36/n2nTpuFyudi3b1/YY4qLi5k2bRpms5mpU6dy2WWXYTLpv7qBQIDdu3dTXFwM6AHBnj17yMjIYOHChfTu3RtN0ygpKWH37t0EAoFy25Wbm0tiYiLvv/9+6EqExWIhKSmJ//3vf1SqVKnMfgQCATRNC93+er/f78doNJZ7ZePiiy/mo48+QilFfn4+V155JWPGjOHSSy8FICoq6oRez0AggFIKg8EQep6IiAhmz55NcnJymTYFb0euf6xtHcuuXbv4+uuvMZlMfPLJJzz44INHfR2C2zzy/mPddzzl7cvxthd8z4AT3kchhBAXruzsbEpLS5k1axY33ngj0dHRKKX43//+R0ZGBn6/H7/fH1pfKcW0adMwGAx89NFH3HbbbSQkJITuP3jwIA6HAzh8fJKbm8vbb7/Nk08+iaZpeL1edu7cedTgobS0lIKCAmbMmEFsbCygf2dVqlSJGTNmkJiYGLb+8b7bj3e8kpiYyHvvvYff70cpxbBhw6hXrx4PPvggoB8LBStjjuVoxz3PPPNMWMVN0LGOOY53DHWkgwcPlrv9v+4/lP3uD75ugUAAg8EQVjEkxwzi305CEiHOgp49e7Js2TIOHDhAamoqe/bsYfXq1Vx55ZVs2rQptJ5Sip9++om8vDxeeuklRo0axY4dO6hdu/ZRtx0TE0OPHj2YMGECnTt3PuFuMna7nZo1a4Z9SWZkZDB58mTGjBlDQkICs2fPDnUJ+t///ofdbueWW26hdevWoRP1NWvW8MEHH7Bnzx4qV67MiBEjaNKkSdgXrMPhCJXL5uTkYDQaSUlJIS0tjY0bNzJ16lQeeughrFYrSik++eQTSkpKuP7668nKyuKVV16hV69ezJkzh927d9O6dWtuvfVWoqKi8Hg8fPjhhwwYMICGDRuycuVKvvvuO5o0acKsWbNwu90MHDiQPn36YDQaUUrx888/M3nyZAoKCujatSs2mw2TycSQIUPKPTBQSjF//nyqV6/OkCFDeOedd7jzzjtDr3UgEGDNmjV8+OGH7N69m5iYGAYPHhwKgdavX8/UqVP5888/iYqKol+/fvTu3Zvvv/+eX3/9lVGjRmEwGAgEArzzzjtUr16dyy+/nK1bt/Lhhx/SqVMnZs+ejcVi4fnnn2fJkiV8+eWXZGRkkJCQwJAhQ0hPT8dgMKCUIicnh2nTprFy5UqUUrRo0YLbbruNjz/+GIvFEtpPpRS///478+bNY9y4caGDXSGEEBemiy++mOzsbFatWkW3bt1wuVx8/PHHDBw4kDlz5oSte+DAAZYuXcpzzz3H448/znfffUe/fv2OegJtNBoZNmwYM2bM4Prrr6dOnTon1CaTyUS1atXCAhGPx8P06dPp2bMnTZs2ZfXq1Xz99de0bNmSGTNm4HQ66devH/3798dkMqGUYu/evUyZMoV169YRGRnJwIEDwy40BZ+revXqAKGu0LGxsaSlpZGXl8eLL77IHXfcQeXKlQH4/fff+fzzzxk7diyapjFhwgRatGjBzz//zOrVq6levTr33HMPqampAHz11VckJyfTq1cvDhw4wH/+8x969uzJrFmzOHDgAB06dODmm2/G4XCglGLPnj28/vrrbNu2jYsuuojWrVuzevVq7rvvvhMKa4KUUhQVFTF16lSWLVuG2Wyme/fu9O/fH5vNhs/nY/78+Xz22WcUFhaSmJjI9ddfT4cOHSgoKOC9995j5cqVBAIBatSowahRo0L7JMS/gXS3EeIsqFWrFrVq1eKrr75CKcWXX35JgwYNqFGjRth6gUCAGTNm0KlTJ7p27Uq1atWYP3/+UfvOAmiaxk033URubi6ffPLJMdc9ktvtZv/+/aFbcXExBQUFzJw5M9RN58cff+Txxx/n999/59prryU6Opobb7yRgwcPopRi1apVDB06lKSkJG688UYSExO54YYb2Lx58wm/Nnv37mXOnDlhY6SsWrWK7777DqUUhYWFvPvuuzzxxBM0bdqU/v37M2XKFN555x2UUni9XubMmcOePXsA2Lp1Ky+88AKzZs2ib9++XHzxxdx999388ssvKKXYtGkT1113HTExMVx33XVs3LiRRx55hGXLlh21jaWlpcyZM4cBAwbQo0cP8vPzWbFiReiqzI8//sigQYMwGo0MHz6cTp06sWfPHpRS/PrrrwwYMACXy8WwYcNCpcgAmzZt4osvvghdvQn2Z/79998B/QB10qRJvPrqq3Tt2pWePXuiaRrbt2+nXbt23HzzzdSvX58777yTn376KXSQNGLECL744gv69u3LkCFD8Hg8OJ1OIiMjef7558nLywP0z9sbb7zBgQMHsFqtJ/yeCSGEOD9FRkbSp08fZs2aRSAQYO3ateTn59OpU6ew9ZRSfP3118TGxnLppZdyxRVXMGPGjLBKk/Kkp6dz8cUXM3HixOOuG+T3+8nIyAgdj+Tm5uLz+Zg7dy47d+4E4M8//2TChAl88MEH9OrVi1atWjFmzBhWrFgB6BUW1157LQcPHuSGG26gTZs2PPDAA8c9hjpSSUkJM2bMCH1Hgl5FOnfuXHw+H36/n08++YT7778fm83GDTfcwPr16xkzZkyo2/SSJUv45ZdfAMjPz+ett97i6aefpnXr1vTp04fXXnuNqVOnho5vhg0bxvbt27nhhhuw2+3cd999fPLJJ2HdsE+Ez+dj7NixfPjhh/Tt25f09HSeeuop/vOf/xAIBPjhhx8YO3YsrVq1YuTIkbRq1SrUteqVV15h7ty5DBw4kOHDh5OSkkJ+fv5JPb8Q5zupJBHiLDCbzVx99dW89957DBgwgI8//pi77rqLP//8M2y9/fv3s3TpUt5++20cDgf9+/dn+vTpjBw5ksjIyKNuv0KFCtxxxx1MnDiRnj17nlCb1qxZEzrpBrjnnnto06ZNmfXS0tJ46qmnsNlstGnThq+++oqNGzeSnJzMf/7zHzp37syNN96Ipmk0a9aMNWvWMHfuXB5++OGw7j5/t3xz1KhRXHnllYDex3nhwoWMGjWq3HUjIyP5v//7PypWrIjP5+Obb75h2bJltGzZkpkzZ1K7dm2efvppLBYLXbp0YfXq1Ud9XqUUv/zyC/v27aN79+5UrFiR9PR0Zs6cSbdu3VBKMXHiRLp27cpzzz1XZqDd119/nebNmzNhwoRjlsgejcFg4IknnqB58+ahZXfccQe7du1i//79XHTRRaSlpfH555/TqlUrli5dyoYNG1iyZAlVq1YFoE+fPgB07dqV//u//2PJkiX079+fvXv3smTJEt5///2wiiIhhBAXrj59+jB48GD27dvHnDlz6NatG/Hx8WHruN1uZs6cSZ8+fYiKimLAgAEMGjSI7du3H7NCxGq1ct999zF48GBGjBhRZrvlycvLY/DgwaGKj+AJ/l/Z7XaeeeYZqlatit/v59tvv+W7776jffv2zJkzB03TeOCBB0Khf05ODu+9916oK3LQyXZ5PZJSip49e3LPPfegaRpxcXEMGzaMvLw8kpKSyqyvaRrjxo0jPT0dgG3btrFo0SJuvvlmli9fzp49e5g2bRoVK1YkEAhw4MCBY160OZpt27bxxRdfMGfOnNCxnN1uZ/z48dx4443s3r2bhIQE+vfvT1JSUtjAutu2baNVq1b06NEDu90eOtYS4t9EjoKFOEu6dOlCZmYmM2bMoKCggI4dO4bdH6wwsVgsVK9enczMTFq0aMHu3btDVRBHo2kagwcPxmKx8MEHH5xQe5o3b84333zD4sWLWbx4MYMGDSp3vTp16oRm33E4HERGRlJUVITb7Wb9+vV8+umndO/enSuuuILu3buzZs0a8vPzOXjwIEOGDKFXr1706dOHVatWnfiL9Rc2m406deqEDmxSUlIoKSk56lWqypUrk5CQgKZpGI1GkpKSKCgoAGDLli00bdo0NDK8w+GgcePGR31upRSzZs2iYcOG2Gw2srKy6NKlC0uWLGHv3r14PB42b95Mx44dQ/2JgzePx8PGjRvp2LEjZrM57L4TPUCLj4+nRo0aoce4XC7Gjh1Lnz59eOKJJ5gwYQIbNmwgIyMDpRTr16+nVq1aVKpUqczzxcbGMmjQIKZOnYrX62XevHmkpqbSvHlz6X8shBD/ErVq1aJ27dpMmzaNxYsXM3DgwLD7g98l69evp23btmRmZlKhQgUSExP57LPPjrv9Fi1acOmll/LSSy+VmUmvPPHx8Xz66aeh45Enn3yy3OC+YsWKoRN8o9FIYmJi6Lv9t99+Y/369fTu3ZsrrriCK664gg8++ACn04nT6WT06NH06tWLXr168f7775/YC1UOTdNo2LBh6MJPQkICgUDgqDP4RUZGUrNmzdD3cIUKFSgsLEQpxfbt26lSpQqJiYmhfWrRosUpfR/v3LkTu90edqzUvHlziouLycjIoEuXLsTHx9O9e3eGDx/O1KlTKSgowGAwMHz4cJYsWcLll1/OPffcwzfffHPSlSxCnO+kkkSIsyQhIYHOnTvz+OOPc9NNN5W5uuJyuZg1axaFhYUMHDgQTdMIBAKhqzl/DVX+KjY2lnvvvZfHH3+cO+6447jtMZlMxMfHH7eCoLz7lVJomobJZOL2229nxIgRYV/qwTE+7rzzTrxeL5qmkZaWdtTtB7utBP11gLejDUx6Mm0OstvtoYFvg9spKSk56ngcBw8e5KuvvsJgMNCjRw9AL2vNy8vjyy+/ZNiwYZjN5nIPkILT9DmdznK3HRwX5Mi2eDyesHWMRmPY/vz666/Mnz+fefPmUa9ePYxGI3feeWfoNbNarbjd7nJfH03TGDhwIO+99x4//fQTM2fO5KabbsJmsx3t5RJCCHGBMZlMDB48mNtvv50mTZrQqFGjUBeRoNmzZ+N2uxk9enTYeFdz5szhtttuIyIi4qjbNxqN3HPPPaHx2I7HYDAQGxsbdlxU3vfmXytSj/wONZvNpKen88Ybb4R9ZxqNRhwOB9dffz2FhYUAVKtWrdx2BI81juwCW96As0du/3iBxl+PX45ss81mw+VyhT1fcXHxCXcPOpLFYikz8K7H4wkdq1WuXJm5c+eyZcsWfvrpJ9544w2+++473nnnHbp27co333zD+vXr+e677xg5ciSPP/44N9xwg1xAEf8aUkkixFkSHDtkxIgRDBs2rMwXz9q1a9myZQtz5sxh0aJFLFy4kG+++YbXX3+dRYsWceDAgeNuv2fPnlSpUoV33333TO4KoJ+Md+jQgaVLl2I2m0lMTCQxMTEUNtjtdjp27EjXrl3p0qVLuWWooI80X1JSwr59+1BKkZubG+pjfCZ07NiRpUuXhmb/2bZt21EP4pRSLFy4ELvdHnpPFi5cyJIlS7j33nv56KOPCAQCtG/fnrlz54auDgUCAZxOJxaLhQ4dOvDZZ5+Rk5MTdp9SipSUFA4cOEBeXh5KKXbv3s26deuO2f7CwkLMZjMVK1bEbDazb98+vv3229D9bdq0Yfv27aHqo+BBXvDAqXr16nTo0IEHHniAvLw8evToIQdBQgjxL9OtWzduvfVWxo4dW2ZMqpycHD7//HOee+45vvnmGxYuXMiiRYv4/PPPycjI4KeffjrmtjVNo169egwaNIgJEyb8rSl1T1Tnzp1Zu3YteXl5oeORmJgYQA81LrnkErp27UrXrl2pVatWud97kZGROBwOtmzZErpo8c0335xSaHEiWrRowd69e1m1ahWBQID8/HzmzZt33McF23PkTD/BLlDffvstgUAAn8/H559/TqVKlahUqRJFRUUYjUaaNWvGyJEjufPOO/n5559xuVzk5eURGxtLp06dePjhh2nbti0///zzGdlnIc5VUkkixD8s+EWsaRr169fn+eefL7NOIBBg9uzZNGzYkBYtWoQdsFx66aWMHz+eBQsW0K9fv2M+l8PhYOzYsfTt25cqVaqcULtOlcFg4L777mPEiBGhQdRcLhfr1q3j/vvvD1VdHE+dOnVo1qwZw4cPp23btqFxWv565eV00DSNAQMGsGDBAnr37k2dOnXIz8+nUqVKYWOJBHk8HmbOnEn37t1D5bKgH5j079+f//73v6xbt457772XoUOH0rt3by655BJycnKoVq0ajz32GHfccQc///wzffr0oXXr1hQUFBAbG8uLL75ImzZtQgPINmzYkO3bt2O324+5D82aNQt7zPr168OmUG7ZsiVDhw5lxIgRdOrUCbvdzp49e3jttdeoWLEiBoOBoUOHcsUVVzBy5EgqVKhwWl5bIYQQ577g91hsbCxPPvlkaNmR37PffvstTqeTHj16hF3giIuLo1WrVsyaNavMQK9/ZTQaue222/joo4+OWk15umiaRu/evfnuu+8YNGgQHTp0wGq1smnTJtq2bcsjjzxyQtuJiopi4MCBPPzwwyxfvpzMzEyys7PPyPEIQOPGjbnxxhu5+eabadSoEUVFRdjt9uNOBbxgwQKuu+660M9Wq5XHH3+cMWPG8Mgjj7BkyRKcTicrVqxgwoQJREREMHnyZGbNmkWjRo0AWLp0Kf3798disXDXXXdRUFBArVq1yMrK4ueff2bSpEmnbT+FOB9o6kzFoUKIMgKBAN9++y1Vq1alVq1aZe7/448/2L9/P+3bt2fZsmUkJCTQuHHjsC/HQCDAihUrsNlsNG7cmMWLF9O4cWNSU1PJzc3lxx9/pEuXLqEKDo/Hw5IlSwB9HJTyppBbv349ubm5dOjQIey5ioqKWLZsGZ06dcLhcPD7778TCARo1qwZmqbh8/n49ttvqV+/PpUrVw6Nzr58+XK2bt2K3W6nYcOGNGvW7KjdV9xuN4sWLaJZs2ahbeTk5LBgwQLy8vJo3749oHdpad68OSUlJXz33Xd06tQpNHjtrl27+PPPP+nYsSOBQIClS5dy0UUXkZKSEnbfkVP+OhwOGjVqhFKK0tJSVq9eTUFBAQ0aNOC+++7jkksu4cEHHwx7PVwuV+j1rlKlSth9Xq+XxYsXU7t2bWrWrEleXh7fffcdu3btIjExkQ4dOoQGTi0oKGDZsmVs376duLg42rdvH5oSee/evSxatAiv10vnzp3Jzs4mPj6eunXrkp2dzerVq8Pex+CUgYsWLcLtdtO+ffvQLD/BwV19Ph+rV6/m119/BaBp06a0bNkyNCjexo0bufzyy/n0009p0aLFUT69QgghLhRKKdauXYvT6aRVq1ZlTsKD0wJ36dKFrVu3kpOTQ6dOncK6liil2LJlC3v37iU9PZ1Vq1YRGRnJRRddFPpObNq0KRUrVgytv3LlSg4ePEh6ejpxcXFl2nXw4EF++eUXLr300rALRH6/nyVLltCgQQMqV67M3r172bJlC+np6aHv9tWrV2M2m2nSpEmo8uOXX34JHbvUqlWLSy65hPj4+HJDB6UUy5YtIyYmhiZNmgB6N58lS5awbds2GjVqRFpaGlu3bqVz585omsa3335L3bp1Q9PjFhYW8sMPP5Ceno7dbuenn34iMjKShg0bUlhYyLJly+jcuXPomGj79u3s27eP9u3bh46r1q1bx549e6hZsyZffPEFy5cv57PPPitz8UYpxYoVK9i3b1/YcpPJROfOnYmMjGTNmjX89NNPmM1m2rdvT926dTEYDOTm5rJq1Sq2b98OQJMmTWjZsiUWi4UdO3aEBqiPjo6mbdu2occJ8W8hIYkQ4l/N6/Xy+eefU6NGDaxWKwsXLuTVV19l7ty5YTPIXIjcbjc7d+7k5ZdfJjMzk1mzZsnUv0IIIcRZoJRi8eLFOBwO4uPj2bBhAw899BDjxo0rM9abEOLMku42Qoh/vZ9//pmXX34Zt9sdmsq4WbNmZ7tZZ9zu3bu58cYbiYyM5KWXXiq3ykgIIYQQ/4w9e/bw4YcfUlRUREREBHfeeSfXXnutBCRC/MOkkkQI8a8XnDVIKYXZbMZkMv0rDkiCg8aazebQlMRCCCGEODuC3YR8Ph8mkwmLxSLfzUKcBRKSCCGEEEIIIYQQQiDdbUIkKxJCCCH+WRfyFVI5rhBCCCH+OafzmEJCkiPMnj2bVatWlTv1pxBCCCH+PqUUERERjBs3joiIiLPdnDNm27ZtvPHGG6FZpIQQQghxeimlMJlMjBs3jvj4+NO2XfnmPsKqVauwWq20atXqbDdFCCGEuCAVFxfz+uuvM3r06LPdlDMqMzOTtWvXcuedd17QFTNCCCHE2eLxeJgwYQJ33XXXad2uhCRHMBqNtGrVir59+57tpgghhBAXpNzcXN5//30MBsPZbsoZZTQaSU1NpU+fPhf8vgohhBBnQ2lpKZMnTz7t37PyrS2EEEIIIYQQQgiBhCRCCCGEEEIIIYQQgHS3OS6lFIFAAKfTidfrPdvNEX+DpmlYrVZsNpv0DxdCCCGEEEIIUYaEJMcRCATYv38/Xq8Xi8Vytpsj/galFNnZ2cTHxxMXFydBiRBCCCGEEEKIMBKSHEdpaSk+n4+qVavK1MAXgKKiInJycoiNjZWQRAghhBBCCCFEGAlJjsPn82E2mzEajXJSfQGwWq0EAgGUUme7KUIIIYQQQgghzjEycKsQQgghhBBCCCEEUklyXvF4PBQWFpapgtA0jaioKKxW6zEfr5Tiyy+/pFKlSjRr1uyknlsphdPpxO12S1cVIYQQQgghhBAXJAlJziObNm3iwQcfxO/3k5mZidfrpXLlyhgMBu6//37S09OPu43NmzcDnFJI8uijj7J06VK+/PJLUlJSTmUXhBBCCCGEEEKIc5aEJOeRRo0a8fHHH6OU4oUXXiAjI4MJEybgdrux2WwUFBRQWlpKhQoVcLvd5OTkYDQaSUpKCg06e+utt2IymUKVIWazmaKiIpxOJ8nJyZhMpnKrRLKysvj++++JiopiyZIlDBkyBE3TQlMk5+Tk4Ha7SUxMxGazAfp4LtnZ2QQCARITE7FYLDidTiwWS1gbLBYLRqOR0tJSLBYLeXl5mM1mYmJiKCoqoqCggMjIyFAFS/B5S0pKyM3NJSIigri4ONxuN0ajMTQLkd/vx+l0EhERIZUvQgghhBBCCCGOS0KSk6SU4kwN+Rk8jT/aCb3RaMThcKCUwmw2YzabcTgcTJgwgd27d5Ofn09SUhIPPvggDz30EIWFhZSWllK/fn2effZZIiIieO6557jooosYMGAA48aNw2QysXv3brKzs2nZsiX/93//V2aqY6UUS5YsIS0tjauuuopZs2YxcOBAzGYzhYWFPP7446xduxa73U5qaiqTJk0iNzeXBx54gL1792KxWLj44osZP348o0eP5pprrqFTp074fD5uu+027r77burXr891111HlSpV2L17N5dffjkNGzbkpZdeAvRZaa677jqGDx8OwJdffsnLL7+MzWYjEAjw6KOP8tNPPxEIBBg9ejQAK1as4J133uG///3vcbsiCSHEv83RBrAOKAgohT+gCAQUJqMBi0mGMBNCCCHOW8HvfE07/P/gz6IMCUlO0tq9Bbz13fYzEpS0S0vkutZVT/pxubm57N+/n6lTpxIVFYVSihdffJGIiAiKi4u56667WLp0KT179iQ3N5fi4mIAMjIyiImJYcqUKRQVFdG3b1+2bt1Kw4YNw7bv8/mYM2cOV199Nenp6bz44ots27aNevXq8d5777Fv3z4++ugjoqKiyMvLw2Aw8OKLLxIVFcXcuXOxWCwUFBSgaRpZWVk4nc7QtjMzM3G5XAQCAXbs2EGrVq147rnnMJlMlJaW8t5772E2m/nzzz+588476dGjBz6fj0cffZQXXniB9u3b43Q6QwHSqFGjuPHGG4mKimL69Om0atWqTOgjhBAXIqUU6lDAEVDgVwqvL4DbF8Dt8+P2BXB6/BS7ffrNpf9b5PJS6PJR6PRS5PJR4tZvxR4fpW4/N3esyZCWJ//dJIQQQoizSAXA64SCfXBwHdiioVY3ffmaGWC0QEpjiEkFSwRoBglNDpGQ5CQVuXxs2F/ImagnqZEYccqPvfTSS0lISEDTNIqKinjzzTdDlRXbtm2jQ4cOZR5jMBjo3r07MTExOBwOUlJSyM7OLrPen3/+ybZt22jatCkmk4nGjRszf/586tSpw9KlSxk+fDiJiYlomkbFihVxuVz8+OOPTJw4kejoaDRNw263H3faXbvdTvfu3UPVMpmZmTz77LPs27cPpRQ7duwgMzOTgwcPkpCQQKdOnTCbzaHuPQ0aNCAhIYEff/yRxo0bs3r1ah544AHpaiOEOO+oQ0GHxx+gyOXF6fHj9PopcftDIUZRMOBwHg46SoIByKF1XF49IPEcCkt8fhX6/lJKPxYyaBoWkwGryYDFaMBqNuKwGImwmkiOshFtuzAOFYLdQw0Gg3wvCCGEuLAcWSlSmgub/we7V8KBNZC/G7ylUPdKSOsMPjesngIHfgeTFaIqQYUGUKU1XHw9WKP0IAXtXxuaXBhHPv+gVjXj+eKu9mdk2+ZTLGcOhhDBsTrmzZvHunXreO2114iJieGxxx7D5/OV/5xmc2gbBoOBQCAQdr9Sivnz55Ofn8+dd96Jpmnk5OSwadMmbrvtNpRSZQ429auZCoOh7P4E2xhcz+v1hu4zGo2hbjGBQICnn36ahg0b8tRTTxEIBLjqqqvw+/2h7ZS3L4MHD2bmzJns3LmTiy66iNTU1BN9GYUQ4h8V7L7p8ytK3D7ySj3sL3CxJ6eUP7OL2ZVTyt48JznFbko8fnz+AAEFChU6FjJoGmajHnKYjXrQYT8i4IiwGomymYmymYg+9G+UzUyk1USkzUSk1USE1YjNZMRqNmA1GbGaDBgNGgZNO/TvWX2Z/jalFNnZ2UyaNImtW7fStGlTbr311lCIH7Rv3z4mTJiAx+MB9O+hypUrM3bsWPLz83nuuedC9zkcDu6//34SEhLOyj4JIYT4l1MKlB+c+ZC7Hfb/BtU76mFHcQYsfASMJkiopQcfVVpBxSagGcFkhwHvQcZG2PcL7PsV9v4CGRugydX6tjf/D3avgMotoEJDiK4EZse/ptpEQpKTZDYaMNvP7b7Zubm5pKSkkJqaSkZGBitXriQtLe2UtlVaWsr8+fN56623QtUopaWlXHXVVfz222906tSJ2bNn07FjRyIjIykoKCAuLo5WrVoxc+ZM6tWrFxocNiEhgZSUFNauXUvXrl3ZsGEDf/zxR7nPGwgEyMvLo1atWiQnJ7N06VL27t0LQP369cnOzmbFihW0adMGl8uFpmlERkbStWtXXn31VdasWcOrr75ablAjhBD/lGAo7A8onF4/hU4fBwtd7M0rZUd2CTuzS9idW0pmkZu8Ug8eXwClwGExEuuwUDHGRoNK0SRFWYk+IuCICgUcJmxmIzazAZtZDzhMBgMGAxg1DYNBo7xDmX9TJYXf7+fhhx/GZrNx7733MnHiRF566SXGjx8f9jrExMTQu3dvAoEASinefPNNvF4vJpOJgoIClixZwjPPPIPdbsdkMuFwOM7iXgkhhPhXObJSJHMTbPoc9v6s/78kU7//sqf1kCSuBgyZBbFVICJJ71YTfGzw37jqEFsN6naHgA9cBXoFii1WX2ffr/Drh7DqbTDZ9C45FRpB27ugUlO90iQQAIPxggxNJCQ5T0VFRYXG9oiOjiYi4nBXnR49evDZZ5/Rv39/bDYb9erVIzIyEiDUtQYgLi4u1FUFID4+vsz4HX/88Qc2m422bdsSFRUFQGRkJL169eLbb7/l7rvvZtu2bQwYMICoqChSUlKYNGkS48aNY8yYMVx11VXYbDYaN27MU089xYgRI7j77rtZvnw5SUlJ1K1bF4vFgqZpJCYmYjLpH0mTycSwYcN44YUXmDp1KomJiTRo0ACz2UxqaiqPPPIIjz76KDExMfj9fh566CHatWtHfHw8nTp1YsmSJbRs2fJfdSIghDg7gkFIQIHHF6DY7SOryM3+fCc7c0rYkV3CrpxSDhQ4ySn2UOr14w8orCYDUTYTFaJtNK4cQ43ECKonRlAt3kGFaBvxERbsFiOmv5RyyN+1k3PgwAFWrlzJ/PnzqVatGvfddx8jRozg3nvvJS4uLrReZGQk6enpABQUFLB7925uvfXW0OvtcDho3bo10dHRR50JTgghhPjbgoGIz6VXhWRshKxN0GIE2OP0cOSHlyEyRa8OqdIKUltAcgP9cWYbVGtz/OcJfo8ZzRCRqN+Cz99pLDS9BjI3wr7Vemiy5yd9jBOAzM2w6DG9yiS1BSTXh6iKYLZzIXTTkZDkPHXLLbeEusaMGzcuNMWvpmmkpaUxb948MjMzQ1PvBg/mHn744VAQ8dJLL4VCEaPRyKRJk8JCE9DH+Zg7d24oIAk+xz333IPX6yUyMpJJkyaRkZGBx+MhOTkZs9lMpUqV+OCDDzh48CBKKSpUqICmaVx88cV8/vnn5Ofnk5KSgs/nC12Vmzp1aijs0TSNfv360a5dO5xOJxUrVsTj8eBwOEL3denShezsbKKiokhMTEQphd/vp7CwkCFDhoQFR0II8Xcd2T2m1OMjt8TDwUIXu3IOVYXklLAvz0lWkZsilw+PP4DJoOGwGEmMtJIa56BdrUQ9DEmIoGKsjaRIKxFWExaT4bgznIlTs3//fiwWC8nJyWiaRuXKlfH5fGRlZYWFJEFKKVatWoWmaWFhe1ZWFtdffz1Go5GrrrqKa6+9NuzCglKK3NxcSkpKAELff0IIcUxKgd8NxVn64Jm2aL1LBJz3J5riBIV9VyjYuki/7f8Vcv8EdxFYoyGtqx6S1L0SUi6CuGr68tPdBUbT9K41ibX17jr1e0PAq1ebWKP1dUqzoWCP3iVnxWtgjtArV5peC61v0/fJU6JXoRjOv8+zhCTnoeAYJEF/DQM0TSM6Opro6Ogyjz1y3WB1SfAxRwYhQVartdzpc202WyhQCVZ3lPfYatWqlVkeHx9PfHx8meV/ba/BYCAlJSXsOY9sb2xsLLGxsaFlu3fv5rnnnmPt2rU89NBDcqIhxL/IsU5GFRAIHJ7xRf+//q8voPD4A3h8Abz+AB6f/rPXF8Dl8+Py+nF5A5R6/GQUukLdYw4Wuihw6gOqooHdbCTWYSYl2kaH2olUT4ygRkIEqfF2KkTZiLKbsZuNofE95O/TP8fpdGIymUIXE4JVIG63u9z1A4EAs2fPpmfPnqHvxZSUFGbNmkVKSgrbt2/nnnvuISYmhn79+oW9lx9++CELFiwAID8/nxo1apzhvRNCnNcK9sHaj2DrQsjaog+YmVQHLroaGg04FKB49Cv9F8DVeXGIUnp3FXcR5O/SxxPxOqHlzXrgsX4u/LFA7xLTsN/h8UTia+qPP7Lq40wLVZtY9K47QdXbw03f6J/hjPX62Cb71xC64uMpho+u0wO/ys31W3J9PUjRzv3hECQkEReM6Oho+vXrx/3330+lSpXOdnOEEH9TaDwPpSh1+8kscpFX6j0UXOjhRfD/zrD/H/rXc3gdty+Ax394ppfgbC9efwB/MEAJqMO3QwNQgz44qqaByaB3j0mOstKoUgzVEh3USIigaoKDijF24hxmIqwmjIfGAZEg5NwQFRWFx+PB6/VitVpxu90EAoGjVhsePHiQVatWMWrUqLBtNG/eHIBKlSpx1VVXsWjRIvr16xf22DvuuIPbbrsNgFWrVjF58uQztFdCiPNKMMj3FEPWHxBfHRwJ+oCby17WB8WsdyWU5uhhScG+w+t/eitYHFCpOVS8SD9Rtsfrwcn5+j3z1wsb5+t+nIjgvganlPOW6mN97P4RDq6HogPg90JKI2h2LViiIP1BSH8AolL0SoxzMSDTDHqol1wPkupCo/56oBfk90JEst5VZ/cK/b6UxjD0C7BGHn275wgJScQFIzY2lksvvfRsN0MIcQqCgYTXryhyeTlQ4GJbZjGbDhSy+WARO3NKyC524/IG9NIQjUNBxKHZuQjO0gVmgz7Ti9mohf1rMRlwWEzERxiwmYxhA57azEbsh362m43YLMGf9cFQrSa9UiQx0kqUzYTZaMCgSRByPqhSpQqBQIAdO3bQqFEjNm/eTFRUFMnJyfh8Ptxud6grp1KKRYsWUa1aNerWrRt6fwOBQNj/MzMzy1RfapoWmjEOCOvqKoT4FwqeHLsK4OA62LoAti/Vu090fwGaXafPHHLDPL1bgzVKf4y7CAyHTtG8Tv2292fYME9fZo+Hqq2h7xt6lwhnnn613hp5+Ar9ufC3569BiLtID4GKM6FgN+TthJIc6HifXhVRkg15u/TAyB6rT01LqPzyH2783xDsPlWaC7k7IGOdXmFRoxM0GayHB6vfB3chJNWDxgOhyiV6lYUlUt/X+POsCjH4/piO6H1gj4N+b+nve8EePRDyuQ6NWXLuk5BECCHEP+bIbjFuX4D8Ug9785z8kVHExgOF/JFRzJ7cUvJKPPgCCpvZSHKUlVpJkfRoXJGq8Q4cFiPWI8ILq8kQmr7WYjJgMmiYDBpGo4bJoP9sPHTT4FDAooVCliA5ob0wJSYmMmjQIO6//3569uzJ7NmzufHGG4mIiGDFihU8//zzfPTRR9hsNrxeL3PmzGHQoEFhgcfXX3/NihUrqFmzJps2beKHH35gypQp8pkRQoRTilCSD7DlK/jmMcjbrVd+JNeDdqP0kAP0CpHUFocfr6EHBEERSfosJc5cPVw5sFYfp8LsODRjiYIlT8Gf30JiXajcDCo207vsRFc+1E3nH6ACeqWAp0QPB4oOQP5uvf21L9Pv++QWvaLAo4/bhNGkVxq0GKGHJFsXwhej9TEvoivpY2FUaABpXaBi00PP4z93xmsJHs/4PeAqBHuM/p7sXqEPaJq3E1z56H1y4/TZYUAfc+bqD/VZZOyxeiB2tvflTNA0/b2yx+q3lMZlg7NzmIQkQgghzhil9K4sLq+fnGI3u3JL2XJQD0S2ZRazP99JodOHQhFpNZESbaN5tTjqV4ymXkoUNRIjSIqyYrcYMWqanJSKk6ZpGvfee2+oiuThhx8mPT0dTdOoWbMmt956a2hA80AgwMiRI+nQoUPYZ61JkyZkZmZy8OBB6tSpw6233irjjQghdMHxJUqy9IqPP7+F1rfr3WIikiA6FZpeD7U6Q0JtvfvEiX6XaRqYLHq3i6gUqNoGUBDw6yfXKgAVGkPBXn32kx3fgt+nn5Rf8xFUvvhQhcYOfbpXeywYTqGbjlJ6QOH36oGAMweKDurhhSNeD2/+N0Zf5irQKwY09AFGa1+qhzVVWkJCTYirCbFVIaay3uUoOLZGagvo+pg+k0v2H3p3lM1f6NUxFZvqFQlfjtUrZpIb6F08Yqvq2zA7/pmgQSm9cidvJ2RsgANr9PE4CvfDgCn6PpgdeptrX65PlVuhkT62iCNB34Zm0CuH/o3Oo2M4CUmEEEKcFkrp43mUePxkFbn4M6uEzQeL2HSgkO1ZxWQUuin1+PSBl+1mKsfa6Vw3mQaVoqlbIYqqCQ7iIyzYTMZQNxoh/i5N07DZbPTu3ZvevXuH3ZeSkkL37t1DPwfX+6vKlSszbNiwM91Uca4InvQGZ4zwOvXSeJMNjFZ9pgbNcG51bTjXBCsqgq+lCkDAp59Agh4oFOzVX1dXof6vM18fDLJiE/3q/Jav9JP66Mr6Sb816tBV99M8k8epUkrvOrLje/jjK9i9Uv/ZFq1XP8TX1EOKa2efWjBRHk0DNDAGP3tGaDEcmt+gv44Fe/ST9qw/9AEyAbYvgfl36d10EtL017fyxZB6CcRU0bcZvMIf8IHPrb8ffo8erAD88p5e6VGwV+8y4yrQ39MhM/V9Ndv197ZKK328lbga+vPH1SBUVdP+Ho45tkZiHT1EgkPVGQV6RUpwsFBviT6GS8528Hygb8sSqe/LoKn682f/oQc0URXBFnPqA94qpb8W7iJ9n135UK2d/tlb+n/w24d6UGWN1CtEqrY53I0kpTEMna9XlZwHA5SK8klIch4pKSmhsLCQlJSUsJOHwsJCXC4XSUlJ5Z5ULF68mJKSEnr16lXu/V6vlwMHDpCcnFxmCmAhhCiPUvrMMIVOffyQ7VnFbDxQyJaDRezMLiGr2I3bG8BsNBAfYaFqvIM2aYk0qBhF7QpRVI61E2s3YzEdPoCQUESIkxQqXQ4O1KMdvuKr1OH/B/z6v5ZI/QTfU6qX7/u9+slI8OZI1K/MKj/s/EE/GfK69JMOn1s/12l8NUQk6NtwF+lTlpoOBQfn4uCC5flryXdJln5yW7hPHxMh708ozYPLn9ZP0LYuhK8eALNNn+bSFqOX1tfrAU2u0a/c//GV/jrbYvTuArZo/bWJTD58xV8FgCNO8M/11yo04GQAUIe7OXhL9RNyn1P/DARvwelC3UWwfOKhk8tCcBcc6o4QB4On65/DX6fC9y8cDlFA/wxd+pR+El+aA1+N1a/aG616WBKRDJWa6e+Lya5v3+fUT/7/iQBFKX0a1JIsvS0GE6ybA988oe9b6iVQ9wo96ImpcnifMJ6Z9gRpGmgmvaLDEa9PDXukyhdDl0dh36+QuVF/7Ve9pQ8O2mGMHgL+/C5kb9VnWinar3eZiU+DGz7Tf7/zdur3R1fUQ4C4Gnp1RHID/TkSa8N1c/UuNEcdR+QE3pcjx7aITNZvQZEV9PaUHJp6NmuLvj8m2+GuR8snwvpPwBGnV/Ak1tG77DToq1euBP8mHtllJ/g51zT97922RbD3F30cmZxtUJKpByE3fqP/ftfqqm8rpbH+eY9I1v82BPfPYDw85a04b0lIch7ZunUrt99+O/PnzycxUS9NCwQCPPPMMzgcDh577LFyH/f777+Tm5tLr169ytynlOK7777j2muv5fnnn2fo0KFyoiLEv1hwzBClIKD06XD1KXB95Jd6yTs0hsimQ4HInrxScks8eP0Ku9lIUpSVGokRXNm4IvUqRlMrKYKUGDtRNhOmQ/Pfyt8YIf6GjI2waf7h4CL4b/UOhwcF/GI05GzVlwe8+km8yapf9Y1J1QeQ/GK0vq4KHL7q32IEXP5/+vKFj+rl5KCfPBiMYIvTy+cd8fpV/oUP6f3qI5L0q/0xlaFmZ/0kEaUPymg06+MuaMazU3mhAvoYCO6iI4KQnfqYBw36HhorYSTsWaHvt3bo6nRkil7ZEJGk/z+tix4sBSsfCvfpJ+ygvwdLn9Gv3muGwydJkRVg6OeHXvNF8NM7+kmWLVZ/De1xeheEyi30dubu0E8yzXY9GDBZ9AqE4JgFfo9+EhcMXII3i0Nvc8Cvt8vn0t/zwKGbpkGFhvqJZN4uyNp8KCDzQsBzaGaNxno44XXCb9P0kMJTol/NdxXoj+3xkh4ArZkB3z6nP08wgFMB6PyIXi0Q8MOWL/X3P9g2a5TeXSR4Qlqzkx4i2WIO36xR+okt6K/PgPf1cTjyduivTcEevbIg+Dn68T96W4IBSrByockQvSuG8uvvlcVxqJLjFAKU4BS8eTvhz+/gj6/1aoUhM/VuFPWu1KsWqrbU/9WMZz/8+uvzx6dBmzsApYebRQf0z0BiXX3dooOw8nX9c+BIgKhKemVESpPD2+o0DjqN1QMJg7nsc2kG/fN6RvfLoH9mLBEQV02v7IDDVV8oaHqtvr+ZG/WAY+tC2DgPKl2s/33K2ABLn9bXSW6gV4IcXK9/9uv10D/T3zwBRRn657VCo8OVN8EuPXWu0G9H7r+44EhIch6pW7cuNpuNH374gT59+qBpGnl5eSxatIi33nqLkpIS9u/fTyAQoEqVKqHR+o9FKcXs2bPp1KkTc+fOZciQIVit+sjEgUCArKwssrKyiIuLIyUlBaPRiN/v5+DBg+Tl5ZGUlERSUhJutxu3201MTAyaplFaWorX6yU6OpqSkhKUUjidTvLz86lZsyalpaUcOHAATdNITU3FbreHZhZwOp3s3bsXpRSpqamYTCZKSkqIi4sLrZOXl4fD4ZDKFyFOwJGDpSoFvoDC4/Pj8gUocvkoKPWQV+olq9hNVtHhW3axm3ynlyKnl2K3D48/gM+vbyvSaiIlxkbTKnHUrxhF/ZRoaiRGkBxtxWExYQhdSJIDCCFOq+w/4MdJ+smYwXDoX2P4FVef81DXBhsYo/UTXFvs4auncTWg6TWHTsRteoBisuknyqCvf8Whk2CTVV/PaNaXR1fW14muBLW66VOVlmTpoYynRF+nentwF8OMQXqZuiNBXz+6sn7ltclg/UTHU6wHOcFBKE82RAmGOwG/fnLvKoDiDP0ksGprPeDYtxrmj4Lig/oJot+jBxH1ekL93noAUbc7VG+nXxmPraKHG/Y4/eQe9CCjSsvDzxUMnoyHDqPNdujzhn7F2ZmnhyvO3EPl+IdmQXIX6a9V5mb9/fEfCifajdJDEk8xzL5BDwLMNv31MUfqV+77va2HBuvmwA+vHGqD7/C/be+GtnfqAc6Mq/UBM4PVH0rpn42bvtH3a8uXsOBh/b4gzaCfBFdsor8fP0/WqzQMRv19MTv0987v09dPqAUNeh8eeNIWq4ccwc+PLRqunat/ZoJVRgbToRlbDlUbVW6h3472Xpts+ntSrW3wzT4U6vj0zyNAne56aJP7p/667fsVdiyDGh31AVIzt+ivqTUKYqoe6gZSE1IaQuXmeluU/9Dn7ijt2PAJ/PyeXlXgLdU/xzU66pUsmnaooqLGuX2yHGqbpocC1kMVP0HRleD6efrrZI3WP3+aMfzxwc/xuSQU0ATbqumfl2ptAaV/lp35egiUVEdfpTQHsrfBzh/17jtK6Z+15jfogZc1Cvq8rv/+R1XUfw//+nfpXH6vxWkjIcmp+Lsj8x5Z2lXefUdhs9m46qqrmD17Nj179sRoNLJs2TJiY2OpWbMmY8aMIS8vD5fLBcDrr79OlSpVjtmUAwcO8Ntvv/Hf//6X2267jS1bttC4cWMCgQCTJ09m2rRppKSk4HK5eOqpp2jQoAHPP/8833zzDRUqVMDr9TJx4kR+++03Fi1axH/+8x80TWPevHmsWbOG559/njfffJPly5djsVhISEjgoYce4tFHH6W0tJTS0lLsdjuvv/46SUlJbN++ndGjR6OUwmKx0KRJEwYNGsTo0aOZNWsWsbGxFBYWcs011zBhwgQaNmx4ym+DEOe7I8OPgAKvP4DHF8Dp9VPg9FJQ6iWnxENWkSssAMkt8VDg9FLo9OH0+vH6A3j9AQyahsWkT5UbaTURYzeTGGGhXkoUSVFWkiKtJEVZqRhjo0r8ofFDzMbQoaUEIkL8A9K6wM1L9Ku5xiNupkP94Y1mfWpQODxuRqhf/KHf0YpN9NuRwqZ6MuonqEejlB5CVG2tn4z73PoJpDNPP0EOPnfNTnpJfHGGPgXmn9/pgzQ2ugqUA1Z/ACve0AOAyAp6xUVMZX3Aw5TG+rad+YeCGpNeReHM00+WEw+d5K18EzZ/qYcgpTl6O5TSZwSp1VU/gY+tAlVb6SFIXHX9eaIrH35dWt5c9jUo97U5NBaE0QxHThqiGfUrzUe+Pn/VsK/eFcPv1ffDU6zfIg6FW0aLPrZEwR59H0vz9IApeIUc9H2JrxX+vhvM+jgToJ/sNb1WD2SMlsPrWKPBcugkt/Zlh2c9CT7eaD48foU1Cq6epocHRusR3anMh8dcqJmu38q8PqEFerhzLCczcGlwmyYrcMQUo2md9VswQAl+BiMr6PcbLXoFQf5OfYDNP5fqYVrty+Dqqfo2Fz2h3x9XQ592NaqiflJ90dX6/hYd1MOviwbq1QOVLta7cpyPU9Me6ch2m6x65c2F4MjPi9mu3478LFZvr//9LMnSuxa5i/Xfn9gq+mMMhsMzD4l/NQlJTsXOZfogTX9V+1JIban/kf7pv/qX35FssXDJjfov7M4fYMd3h++LrgQXDw1Pbv9C0zSuvPJK3nnnHfbs2UOVKlWYM2cO/fr1Iy4ujueeew5N03C5XLzwwgt89NFH3HfffUfdnlKKRYsWUbt2bRo2bEjHjh359NNPady4MZs3b+bNN99k2rRp1K9fH5fLFQplvvzyS2bPnk2lSpUoLS3FarXi8XgoLj68v263m5ISfYovp9NJcXExc+bMITo6GqUUr7zyCpqm4XQ6eeSRR/jiiy8YOnQoTz/9NC1btmTs2LGhChK73U5ERATLli2jZ8+eLF++HJPJRK1atY62a0JccIKBiNPjZ3deKVszisksch2u/Ch2k1+qByNFbh9urx+PP4A/oDAZDJiNGjazkSibHn5UiXeEQo/gLSHCSqzDTIzdrE+ze2hKXU1DghAhzhW26MNBxNGYjlNl+Xd/j/8aqFgc+i04SwXoJ9ddH0c/gfUcqvQo1I+RrIfaH1tNDy8K9+snqvt/0++PTNFDkpJMmNoHfYDGCD0Ecebp3QSGfa6fxJdk62FCfJoeIAXHSgiGQAm1YPCMf7arT3nPYTAdrkyxl/MYsx0uuemIBUcMeBrs3lD3Sr3qJfzJDv/XZDvUreIY7UhIOxyqlMdgPH9m3vhrgGKy6hUAQQm14Kq3Dwcopbl66GE6VCkR8OmfqQNr9QDP59KX2WL1yqEKDfVj86bXHvqdO0/G3BFHZzAe/ht6rN8D8a8nIcmp2PuLfuXiryIrHA5JVr+vp5RHiqkCza7Tvwj/uo2KTaHZ9RxvcKeqVavSoEEDvv76a7p37866det46qmn8Hg8vPLKKyxfvhyj0cj+/fvp2LHjMbfl9XqZM2cOPXr0ICsrizZt2vDss88yevRofv/9d+rWrUv9+vUxGo1EREQA8NNPP9G+fXtSU1PRNI2oqBMrv2vfvj2xsbFomkZRURH/93//x6+//orRaGTXrl1UqlSJkpISNmzYwJgxY0LdaGJiYlBKMXjwYGbNmsVll13GrFmzGDhwIBbLGe77KMRZFAxFvH5FRqGL9fsK+HF7Dqt35bErpwS3L4DRoGE2GoiwGomy6eFGvYpRJB4ZfkRaiY+wEOuwEG0zYTMbsZoNmAwSfgghzqCwE1ibfjvyBFYpfQyAelce7i7jKdFPWqNSDg1GaYRq7fXuFO5C/aQ1troeoARDj45j9ZvJWn4QEtzO+SDs77BGmZkxgjObnNDjRej1OjJAOfLE2GCC3hP1z50zDwoP6F21Yqse7o5ijTwrTRdCnF0SkpyK5sOgQZ+yy4PzX9vj4IZ5+pf+kQymw336mg/V+3MGmayH+moem9FoZNCgQbz11lt4PB4aNmxI1apV+f777/nhhx+YMmUK8fHxvPPOO2zduvWY29qyZQvr1q3D5XLx+eef4/f72bdvH6tWrcJkMuH1ess85mjLDQYDgYA+OrlSCrfbHXa/1WoNnYQtWrSIzZs3M3XqVKKjo3nuuefw+/1omobBYMDn86GUCq2vaRpdunRh0qRJLF26lC1btvDCCy/ISZ24oARDkYCC/FIPWzKKWPVnLqt25PBHRjGFTi8Oi5G05Eiua12N5tXiSI62EecwE2ExYbMYsZoMGDRNxgMRQpz7yuvCYosOL42PSNIHCw1WVAQHfz3yb5vF8Y82W1xANE3vkmO36Mfu8TXPdouEEOcICUlORXCKraPRTHqp59/ZxtE2rWl07NiRJ598kkmTJvHiiy9iNBpxu92YTCYiIyPJz8/nf//7H7VrH71cUinFvHnz6NWrFxMmTAidTE2aNIk5c+Ywbtw4nn32WZYtW0bLli0pLCzE4XDQsWNH7rjjDtauXUvt2rXJy8sjPj6eSpUqsW3bNg4ePIjRaOTLL7886ngoLpcLi8VCZGQkmZmZLFq0iG7duuFwOGjdujVTpkzhiSeewGw2U1BQQOXKlYmPj6dLly6MGTOGyy67jOTk5HK3LcT5JqAUpW4/O3NKWL0rjx+357B+XwGZRS5MBgOV4+x0q59Mm7REmlaJoWKMHavJIAGIEOLCF6wE+GtFhRBCCHEGnbMhiVIqdDMYjn5CoJQKVTAca70LSUJCAn379uX777+nY8eOaJpGmzZtmDlzJgMHDiQ2NpZmzZoRGamXCMbFxWEwhB9guN1uNm7cyMiRI8NmiOnZsyfjxo0jLi6OJ554gqeffhqz2YzJZOLZZ5+lefPm3H777YwePRqr1UpERAQTJ06kadOmtGjRgmuuuYakpCTq1KlDdHR0qL0m0+GPWrdu3Zg3bx79+/cnLi6O1q1bk5SUhMFg4MEHH+SRRx4Jdafp1KkT48aNw2AwcNVVV/HWW29x9dVX/yveZ3FhUkrh8QU4UOhi7Z58ftyew6+789iT68QXCJAYaaVR5RhurFmDFtXjqJEYQYTVhIZUhgghhBBCCHGmaUr93alaTj+lFKtWrWLy5Mm43W4GDBgQms3lSF6vl7lz5/Lll1/i9/vp1KkT119/PXb74RGx8vPzee6552jSpAmDBw8+Ztgybtw42rVrR9++fUPL8/LyKCkpoXLlyufMCYpSCp/Ph9/vD3VjUUrh9XrJzc0lMjISq9UamiHG6/WilMJsNof2QSmFy+XCarWGBShHLg9O5VtUVERERASRkZGh5yoqKqK0tJTo6OjQ6+3z+cjLy8Nut2Oz2ULP6fPpU8aZzebQc3g8HvLy8oiKisJisYTWBfD7/eTl5aFpGjExMZhMJpRSLFiwgIkTJzJv3rxTnvrX7Xazd+9eqlevXubzJMSZoJTCH1DklnrYfKCIlX/m8NOOXLZmFlPi9hFlM1E7OZKWNRNoXSOBuilRxEWYMWraOfM3R4jTKTc3l0GDBvHJJ5+EwvQL0cqVK3nzzTeZMmVKmQsVQgghhPj7SktL6du3Lx988AEVKx5nVq2TcE5Wkuzdu5e77rqLe++9l8TERB588EGSkpJo27Zt2Hrff/89zz77LBMmTMBms3HffffhcDi47rrrAAgEArz99tt8+umnlJSUMHjw4LOxO6edpmmYzeZQqBBcZrFYSElJKbP+kesduf6RYdLRlkdERIQGbT1ynejo6DIHt2azudxuMH99fk3TsFqt5bYV9HFPkpKSQj/7fD6eeeYZvvzySx5++GGsVmu5jxPiXKCUQgHFLh9/Zpfwy85cVmzPYcP+QnJK3JiNBqrGO+h5UUXapCVwUWosKdFWzEb9JEqCESGEEEIIIc6ecy4kCU5LW6NGDQYOHIjRaGTFihXMnj2bNm3ahJ1A7Nixgzp16tC5c2cMBgOtWrVi+/btoe2sXr2a33//nX79+oWmoxXnH4PBwMCBA7nmmmuoWbOmnESKc0qwGM/lC7A/z8lve/RxRdbszmd/gZNAACpEW7m4Wixt0xJpXi2OqvEOHBa9kkk+z0IIIYQQQpw7zrmQBGDjxo3Uq1cv1B2iQYMGvPfee/h8vrCqhC5dujBr1qxQJcnmzZt56aWXACguLubll1/mnnvuYdGiReWGJH6/nwMHDuD3+1FKUVhY+M/soDgpBoOBBg0anO1miH+5YBiigEBA4fYFKHR62XigkBXbc/h5Zy5/Zpfg9PiJsZupmxJF32aVaVUjntoVooixmzFoEooIIYQQQghxLjsnQxKn00lCgj6dbrD7h8vl4sjhU5RSWK1WEhIS2Lp1KxaLBe1QH/5AIMD7779P/fr1adGiBYsWLSr3eYqKinjooYfIzs4G9Clxu3fvHrZOcAwOcWGQ91L81ZGfiYACjy+A2+en2O0jv9RLXqmHrCI3GYVuMotcZBa6ySp2k1/qIafYQ4HTi81spHqCg/4Xp9ImLYFGlWNIjrJiMhyexloIIYQQQghx7jsnQ5LY2FgKCgoA/QSmoKCA6OjoMgOf/fe//6VixYqhKWxfeuklXn75ZZ5//nneffddLrvsMl566SWWLVtGcXEx8+bNo0+fPqHtxMTEMHny5NBJ0oMPPlimLRaLBY/HQ2lpqYyFcZ4LDjhrNptlEL1/gb+GH15/AK8/QLHbR6HTS36pl8wit34rdJFZ5CaryE1eqYe8Ug+lbj8unx+vT6FpYDJqWE1Gomwmom1mkqNsNK0SS/NqcTSrGkdqnB27WbrQCCGEEEIIcT4750ISTdNo3rw5b7/9Nm63G4vFwqpVq2jWrBlGoxGn04nBYMBisZCXl0dERETohDciIoLi4mLsdjsPPfQQpaWlAERGRhIIBIiNjQ07eQkOdgr6CVV5s53YbDZiYmI4ePDgP7D34kwKvscVKlQ4200Rp0EwBPH6FV5/gBKPjyKnj3ynl+xi96HqD73yI7PIRW6Jh7xSL8VuHy6vH7cvgAYYDRpmo4FIm4lom4k4h4UaiREkRVmpEG2jQpSVxCgr8Q4LsQ4LDosRm8WIxWhA05CpeYUQQgghhLiAnHMhCUDnzp155513eOihh4iPj2flypVMmzYNTdMYP348lStX5s4776RPnz6MGjWK6OhorFYrH3zwAQ899BAREREMGjQotL29e/eSkZFBenr6SZ/MGAwGEhISiI2NJRAInO5dFf8wo9GIwWCQk9rzTDAQ8StFscvHvnwnmw4UsXZvPlsOFpFV5KbI7cPp0as/UGDQNExGjQiriSiriViHmfoVo0iMPBR+RFtJirQSH2klzmEmwmrCYTZiMRkwaBrBj4h8VoQQQgghhPj3OCdDktjYWKZMmcIXX3yB0+nkww8/pFatWgD07ds3NCVteno6U6dO5YcffsDn8/Hmm29yySWXlDmp6dOnDy6X65Tbo2kaJtM5+VIJccEKKIXL6yeryM22zGLW7Stg7d4CtmUWk1XkxusPEGE1USnWRrUEB0lRVpKjDoUfUTYSIi3ER1iItJqIsBixmIwYDRoGCT+EEEIIIYQQR3FOnvlrmkbFihW5+eaby9zXunXrsPWaNWtGs2bNjrm9xo0bn/Y2CiFOH6UUXr8i3+lhV04pG/cX8vuefDYdLGR/vosStw+z0UBytJU6FSLp3zyVxpVjqJUcSVKkFbNJw6jJIKlCCCGEEEKIv+ecDEmEEBcupRQBBSVuHwcKXGw5WMjvewvYsL+AHdkl5JV6UUoR67BQLcFB32aVaZIaQ72K0VSOtRNpNclUukIIIYQQQogzQkISIcQZo5RCoU+rm1PsZntWyaFuM/lszSjmYKELty+Aw2KkUoyNVjUSaJIaQ6PKMVRPjCDOYcFslAoRIYQQQgghxD9DQhIhxGmjlMIfUBS6vOzJdbLxgN5tZuOBQvbkllLk8mEyaCREWklLiqB74xQuqhxL7QqRVIi2YbcYZbYYIYQQQgghxFkjIYkQ4piCM8sAKEAp8PkD+tS7gQAur58ip48/s0tYuzefdfsK+DOrmJxiD76AItpmokq8gysapXBRaiwNKkZTJd5BtM2E0SBVIkIIIYQQQohzh4QkQvwLHBl0BAWCYUdA4fMHcHr9lLj9lHp8FLt9FJR6KXB6yXd6KSj1ku/06MtcXopdPko8fkrcPlxePx5fAJcvgM1koEK0jcaVY7koNYbGqTHUTIwkIdKC1WQAJBARQgghhBBCnLskJBHiPBcMQNw+varD6fFT6tHDjiK3j4JDIcdfA49Cpx6GFLt9lLh9uL0BPP4AXn8An1+BBgYNjAYNk8GA1WzAYTbisJiIsBpJjbMTYzcTYzcT57CQlhxJ3QpRVIy1EWGRwVWFEEIIIYQQ5x8JSYQ4Dx0ZjGzNKGbx5gy+3ZLJwUI3Hl8gdPMrhQYYNA2DAUwGAzazAbvFiMOshx1V4uxEHwo7Yh1mYu0WYh1mou1moqwmIm0moqwmbGYjFpMBi8mA2WjAoGloGgRjEAlEhBBCCCGEEOc7CUmEOI8opfD4A+zILmHp5iwWbcxg88FC/AFFWlIkLavHHwo6zMQ6LMQ4zMTYzETZTETZTEQcCjusJgNWkwGT0YCm6SGKhB1CCCGEEEKIfzsJSYQ4xyml8AUUu3NL+W5LFgs3HmT9vkI8/gDV4h1c26oalzWoQP1K0ThkdhghhBBCCCGEOGUSkghxDgpOpbs/38kP27JZsCGDNXvyKfX4SI1zcNXFlbm8YQqNK8cQZTNJKCKEEEIIIYQQp4GEJEKcI5RSBBRkFLpYsT2HrzccZPWuPAqdXlJibFzRKIXLG6bQrGossXYzIBUjQgghhBBCCHE6SUgixFkUDEZyit38tDOXr9cfZNWOXPJKPCRGWulYO5ErGqXQono88REW6UojhBBCCCGEEGeQhCRC/MOUUiggr8TDr7vz+Hr9QVZszyGzyE2sw8wl1eO5olEKrWokkBRllal0hRBCCCGEEOIfIiGJEP+A4JS9hU4va/YWsGD9QX7Yls3+fCdRNhPNqsZxT7cU2tZKICXGhlHTJBgRQgghhBBCiH+YhCRCnCHBYKTY7WP9vgIWbsjguz+y2JNXit1s5KLUWG7uUIMOtZOoHGfHZJBgRAghhBBCCCHOJglJhDiNgsGI0+Nn08FCFm3MYOnmLHbklGA2ajSsFMM1rarSqW4S1eIjMBslGBFCCCGEEEKIc4WEJEKcomAgAuDxBch3etmTW8oP27JZvCmTrZlFaGjUTYliVJfadK6XTM2kCKwmgwQjQgghhBBCCHEOkpBEiBMUnInG5fWTU+Jhd04JWzKK2HSgiG2ZxezLd1JQ6sWgQc3kSG7uUJNu9StQp0IkNrNRghEhhBBCCCGEOMdJSCJEOZRS+AOKErefzCIXf2aXsPlAIZsPFrE9q5jMQjclHh8aGjF2M5VibXSsnUj9itE0rRJLvYrRRFgkGBFCCCGEEEKI84mEJOJfLdhlxutXFDi9HChwsi2zmE0HCtlysIhdOaVkF7tx+wKYjQbiIyxUjXfQpmYC9StGU7tCFJVj7cQ6zFhNBkCm6xVCCCGEEEKI85WEJOJfQymFUuDy+ckr8bI7t5Q/MorYdKCQrRlF7M13kl/qxR9QOCxGkqKs1K4QSa+mlaiXEkVaUiQp0TYibSZMBj0IkUBECCGEEEIIIS4cEpKIC06wOiSgoMTtI6vYzc7sEjYfLGLzgUK2ZRVzsMBFsdsHQJTNTKUYG60PVYfUS4miWkIESZFW7BYjh/IQCUSEEEIIIYQQ4gInIYk4bwXDEF9A4fT4yXd6yShwsSevlK2ZxWw+UMjOnFKyitw4vX7MRo1Yh4UqcXaubFyR+hWjqVMhktQ4B3EOC1azAQ0JQ4QQQgghhBDi30pCEnFOCwYhfqVweQMUOr1kFrrYm+dkZ04pu3JK2J1bSkahi9xSD06Pn4ACu9lIYqSFagkRXNagAvUrRpOWFEmlWBtRNjNmo3SXEUIIIYQQQggRTkIScdYd2T3G7fNT5PKRVeRmX76TXTkl7MwpZXdOKQcLnOSUeCjx+PEHFBajgUiricQoC7WSI6maEEGNBAdVEyKoHGsnKcpKhNWIUZNARAghhBBCCCHE8UlIIv4RwSBEKfD4AxS7feQUu9mf72JXbik7s0vYlVvCgXwX2cVuit0+vH6FyaARYTWREGGhUpyd1mmJ1EhwUC0hgkqxNhIjrUTZTFhMMnaIEEIIIYQQQoi/R0IScVodOaVusdtHbomHAwVO9hwKQnbmlLI/30lWsZtCpw+vP4DBoOEwG4mLsFAxxkaTKrFUT4igeoKDynF6RUi0zYzVbJCqECGEEEIIIYQQZ4yEJOKUKaVQgNsbIK/Uw57cUv7IKNan1M0sYl++kwKnF7c3gKaBzWwkzmGhQrSVdmmJVE+MoFqCg9Q4BxWircTYzdjMRpleVwghhBBCCCHEWSEhiTghSikCSlHq8ZNd7GZHdilbDhax6UAh27OKOVDgosjlBfQpdVOibTSrEkeNRL0iJDXeQUq0jTiHBbvFiMmoyUwyQgghzjilFG63m4ULF7J582aaNWtGeno6ZrM5bL28vDy+/vpr/H5/aFlcXByXX345RqOR7OxsPv/8cwoKCrj00ktp2LChfIcJIYQQFyAJSUSYI6fVLXL5OFjg4s+sYjYdLGTzwSJ2ZJeQVahPqWs0aMQ5LKTG2bm8YYVDU+pGUSXOQXzE4Sl1QcIQIYQQZ4dSildeeYVly5bRs2dPnnnmGfbs2cPw4cPDvpu8Xi979uzB5/MBsGjRolBIUlJSwsiRI6lYsSLVqlVjxIgR/Pe//6VJkyZna7eEEEIIcYZISPIvFuwu4/EFKHB62ZtXytZD3WW2ZBSxJ9dJbokHjz+AzWwgIcJK9QQHXeslU79iNLWSI6kUaydaptQVQghxjsrJyWH27NlMnTqVRo0aUb9+fR5++GEGDRpEZGRkaL2kpCTGjh0LgMvlYvHixVx99dUYjUZWrlxJVlYWU6dOJSIigtLSUqZMmcIrr7wi33tCCCHEBUZCkn8JpRRKgdPrJ6fYw67ckkPdZYrYdmj8kEKXj0BAEWE1kRJto3FqDPVToqhXMZoaiRFUiLYRYTFilDFDhBBCnCd2796NpmnUqFEDTdOoX78+RUVFZGZmhoUkR36nrV+/nuzsbDp37gzAmjVraNiwIQ6HA4CWLVsyYcIEvF4vFosF0L9n/X5/qLuO1+sNVWcKIYQQ4vwhIckFSimF2xdgd24pO7JK9O4yB4r4M7uYjEI3JW4fBoNGtM1EapyD9LrJ1K8YRd0K0VRNcJAQYcFuNqLJtLpCCCHOY0VFRVgsltAYJFarFYPBQElJSbnrK6X45JNP6NSpE4mJiQDk5+cTHR2NpmlomkZ0dDRFRUVh45cAvPbaayxcuDD0mOrVq5+5HRNCCCHEGSEhyQUk2H0mo9DFkk2ZzFuzj00HinB6/ViMBuIjLFSNd9A2LZH6FaOolRxFapydGLsZi8kgA6kKIYS44Njtdnw+XyjQ8Pl8KKWwWq3lrp+Xl8fChQt59dVXQ9+JdrudwsLC0DoulwubzYbBYAh77PXXX0+/fv0A+O233/jkk0/OxC4JIYQQ4gySkOQCoJTC5Q2wbl8B89bsY8mmTLKL3VSJdzD4kio0qxpHzaQIUqJtRNpMMsWuEEKIf41KlSrh8XjIzMykWrVq7Nu3D6PRSFJSUlh3GE3TUEqxfPlyHA4HF198ceh7sn79+ixbtgyv14vZbGbTpk3UrFkzbIYcTdNISEggISEBgAMHDsj3rBBCCHEekpDkPBWqGilwsXizXjWyfl8BJoOBS6rH0e/i+rSvlUicwywHaUIIIf61KlasSKtWrXj55Ze5/vrrmThxIj179iQmJoZ169bx4Ycf8vTTT2O1WgkEAsyePZs+ffqExh8BaN++PS+99BJTp06lVq1azJgxgyeeeEK+X4UQQogL0DkbkgQCAfLz8/H7/cTHx2M0Gstdz+fzkZ+fTyAQIC4uDpPJhKZp+P1+SkpKKCkpwW63Ex0dXaYs9nx0rKqR4e1q0OuiitRKjsJs1OTgTQghxL+e0WjkmWeeYdKkSUyYMIGmTZty2223oWkaFouFuLi40Pely+WiVq1aDBw4MGwbSUlJvPHGG7z11lssXbqUe+65h65du8r3rBBCCHEBOidDEr/fz1tvvcWcOXPQNI1WrVrx2GOPhV3VASgoKODhhx9m48aNGAwGKlasyIsvvkhKSgpz585l8uTJmEwmSkpK6NWrF6NGjQorjT2fBAKKjMJDVSO/7WP9/gLMBgMtqsdx1cX1aSdVI0IIIUQZmqaRnJzMk08+id/vx2g0hr4r69Wrx0MPPRRaNyIigscff7zcbTRp0oQ33ngDpRQGg0G+b4UQQogL1DkZkqxbt453332X6dOnExcXx/XXX8///vc/BgwYEHZQ8vXXX7N27VrmzJmDxWJhxIgRzJgxg3vvvZf09HQ6d+5MZGQk27Zt4+qrr6Zbt240bdr07O3YSQqrGvltH0s2S9WIEEIIcSo0TcNkOvXDnuDMNkIIIYS4sJ1zIYlSiiVLltC8eXPq1q2Lpmn07t2bL7/8kv79+4cdoAQCAaKiooiOjsZoNBIfHx+6Pzk5WR+3QymSk5Ox2+0EAoGztVsnpbyqkeBYI0dWjYAMviqEEEIIIYQQQpwu51xIArBr1y6qVq0aumpTtWpVPv/8c/x+f9i4It27d+eLL75g4MCBoW4011xzTej+VatWMXnyZP744w+uuOIKGjVqFPY8LpeLhQsX4nQ6UUqxZcsW2rVr98/s5F8ca6yREe1q0POiStSuEInJIFeyhBBCCCGEEEKIM+GcDEkCgUBYGGIwGAgEAmFT9Sml+OOPP8jOzmb48OHYbDbeeOMNVqxYQZ8+fdA0jZo1azJ06FBWr17NJ598wu7du6lVq1ZoGz6fjz/++IOCggIAsrOz/7mdPLQPSsHBQheLN2Uwb81+Nhwaa+SSGvFc1awy7WolEitVI0IIIYQQQgghxBl3ToYkKSkpHDx4ENCDhIyMDJKSksrMcDNjxgzatm3L1VdfDeghx7Rp0+jVqxdGo5Hk5GSSk5Np27Yty5cvZ8mSJWEhSUREBGPGjAn97HK5/oG9O1w1snZffmiskZxij1SNCCGEEEIIIYQQZ9E5F5JomkaHDh0YN24cWVlZREZGsmDBAi699FIMBgPbtm3DarWSmppKZGQku3fvxuPxYDAY2LFjBzExMQDk5uYSFRWFyWQiNzeXAwcOkJSUVOa5go6sUjkTyq0a2VeA2ahXjfQ7VDUiM9QIIYQQQgghhBBnxzkXkgC0atWKdu3acc0112C323E4HKGZbV577TVSU1MZM2YMw4YNY+TIkQwaNAiTycTBgweZNGkSAM8//zxbt24lKiqK3bt306RJE7p16/aP7kcweDmyamTp5qzDY420r0HPJpWonRSJSWaoEUIIIYQQQgghzqpzMiSxWCw8++yzbNu2Da/XS61atXA4HAA88sgjoSn80tLS+PTTT9mxYweBQIDq1asTGxsLwMMPP8zevXspLi4mMTGRKlWq/K2p/07Vqh25vLRgC+uPGGtEqkaEEEIIIYQQQohzzzkZkmiahsVioUGDBmXuS0xMDPs5OjqaJk2alFkvOjq63Mf/0zQNit0+fayRJpWolRSJWapGhBBCCCGEEEKIc845GZJcKDRNo3nVOGaPbEOUzSTBiBBCCCGEEEIIcQ6TkOQMMxkNRNsNx19RCCGEEEIIIYQQZ5WcvQshhBBCCCGEEEIgIYkQQgghhBBCCCEEICGJEEIIIYQQQgghBCAhiRBCCCGEEEIIIQQgIYkQQgghhBBCCCEEICGJEEIIIYQQQgghBCAhiRBCCCGEEEIIIQQgIYkQQgghhBBCCCEEICGJEEIIIYQQQgghBCAhiRBCCCGEEEIIIQQgIYkQQgghhBBCCCEEICGJEEIIIYQQQgghBCAhiRBCCCGEEEIIIQQgIYkQQgghhBBCCCEEICGJEEIIIYQQQgghBCAhiRBCCCGEEEIIIQQgIYkQQgghhBBCCCEEICGJEEIIIYQQQgghBCAhiRBCCCGEEEIIIQQgIYkQQgghhBBCCCEEICGJEEIIIYQQQgghBCAhiRBCCCGEEEIIIQQgIYkQQgghhBBCCCEEICGJEEIIIYQQQgghBCAhiRBCCCGEEEIIIQQgIYkQQgghhBBCCCEEICGJEEIIIYQQQgghBCAhiRBCCCGEEEIIIQQgIYkQQgghhBBCCCEEICGJEEIIIYQQQgghBCAhiRBCCCGEEEIIIQQgIYkQQgghhBBCCCEEICGJEEIIIYQQQgghBACms92Ao1FKhf2sadpJr3fkfUd7vBBCCCGEEEIIIQScoyGJUoqdO3cye/ZsnE4nffr0oWnTpmWCjkAgwM8//8zXX3+N3++nU6dOdOrUCaPRyKZNm1i8eDH79u2jRo0aXHXVVSQmJkpYIoQQQgghhBBCiHKdk91tcnJyGDFiBB6Ph+TkZG655RY2btxYZr3Vq1dz0003kZycTM2aNRkzZgwLFiwgEAgwc+ZMSkpKaNmyZWi90tLSs7A3QgghhBBCCCGEOB+ck5UkixcvJiIigvvvvx+TycSOHTuYOXMmTz31VFglyG+//Ub9+vW55ZZbMBgMrFmzhlWrVnHllVfy6KOPYjab0TSNdu3a0blzZ3bt2kWDBg3O4p4JIYQQ4p8WCATYsWMHe/fupWbNmqSmppZbWaqUIj8/n02bNgFQp04dEhIS8Pl87NixA7/fD4DBYKBGjRpYLJZ/dD+EEEIIceadcyGJUoo1a9Zw0UUXYTabAWjevDkzZszA7/djMh1ucsuWLZk6dSqff/45drudjRs38sgjj6BpWujARSnFgQMH0DSNmJiYsOcKBAI4nU6UUiil8Hq9/9yOCiGEEOKMU0oxd+5cXnnlFerWrcvmzZt55pln6Ny5c5lxzNatW8e4ceNITk7GZDLRqFEjRo8ezf79++nVqxcNGjTAZDJht9t5/vnnqVix4lncMyGEEEKcCWc0JPH7/fj9/lBFx4kqLCwkNTUV0AdcjYqKori4mEAgELZe9erVqVOnDq+99hpmsxmbzUbNmjVD9yulyM3N5dFHH2Xo0KFlDmYKCwu5/fbbycrKAmDbtm2kp6ef4t4KIYQQ4lxTVFTEyy+/zNNPP03nzp2ZPXs2L7zwAu3atcNqtYbWc7vdPPbYY9x888307dsXTdPw+XyAfjwRFxfH5MmTiYmJQdM0DIZzsseyEEIIIf6mM/oNv3PnTq699lqmT59ORkYGgUCgzGw05YmIiKCkpATQD0xKSkpwOBxhByRKKd577z2UUnz++ed89tlnNGzYkBdffDH0PIWFhdx7773UqlWLu+66q0xQEx0dzaRJk5gxYwYzZsygR48ep/cFEEIIIcRZtWvXLpxOJ82bN8dgMNCuXTv27t1LZmZm2Hp//vknu3btwmg0Mn78eKZMmRI2lllpaSlffPEFX3/9NdnZ2WWeJ1iVeuRNCCGEEOefMxqSpKamMnz4cBYsWEDfvn0ZN24cP//8My6X65gHD40bN2bDhg2hKzhr166lfv36GI1GAoFAqKJk+/bt1KhRA5vNhtlspnbt2uzZs4dAIEBJSQn3338/NpuNp556CpvNViYkMRgMJCQkkJSURGJiIna7/cy9GEIIIYT4x+Xl5WG1WkPf8RERERiNRgoKCsLWO3DgADt27ODjjz+mYcOGLFq0iLFjx+Lz+bBarbRu3To0816/fv34448/yjzXRx99xOjRoxk9ejQTJ04MHccIIYQQ4vxxRrvbWK1WunfvzmWXXcbOnTv56KOPGDJkCDVq1OC6666jT58+xMbGhoUXmqbRrVs33njjDSZPnkxiYiJfffUV77zzDpqmMWHCBCpUqMB1111H586deeaZZ2jcuDE2m413332Xa665Bk3TePbZZ1m6dCkPPvggCxcuxGg00qFDB+Lj48/kLgshhBDiHGI0GsMqO4LVpn/tLmMwGDCbzTz88MPUq1ePFi1a0KtXLw4cOECVKlV46623Ql1wRo0axXvvvcdzzz0XdgxTv359IiMjAdiyZQtr1qz5x/ZTCCGEEKfHGQ1JggclWVlZ/PDDD6xcuZKaNWty2WWXsWTJEubPn8/UqVNDBxRBKSkpvPPOO3zwwQds2LCBl156iWbNmgGQlpZGbGwsAH369MFkMvHNN9/g9/u5/fbb6d+/PwA1a9ZkwIABbNu2Td9Rk4mLL75YQhIhhBDiXyQ5ORmXy0VBQQE2m428vDyUUiQmJoatV6lSJeLi4oiKikLTNCIjIzEYDLjdbjRNC4UhJpOJOnXq8Ouvv4Y9XtM0mjRpQpMmTQBITExk7dq1/8xOCiGEEOK0OaMhSV5eHk8//TQrV66kcePG3HfffbRo0QKHw4HT6WTw4MHk5uaWCUk0TaNRo0a8+OKLKKXCDk769esXWs9sNtOnTx969+4delxwvRtvvPFM7poQQgghzgNVqlShatWqzJ07lyFDhjB9+nRatGhBfHw8u3fvZtmyZVx99dVUq1aNOnXq8MUXX/x/e/cdJ0V9/3H8Ndvb7V4v3B29Cdgbdn+KGktUxG7ssQQj9hJ71CAiUdRobDHWqEixG40FLFGUGFGk936da3vb5/fH3C2ciNGE44699/PxWI6bnZv5zpXZmfd+v58vp556Km+//Ta5ubmUlJSwatUq4vE4BQUFrFu3jmnTpnH66ad39qGJiIhIB+jQkKSlpYWBAwcyZswYysvLsdls6RDD6/Vy3333UVRU9INf27bef5oVZ9NgRERERGRTbrebsWPHcvPNNzNlyhTy8/MZN24cdrud9evX89ZbbzFq1Cjcbjfjxo3jlltuYcqUKXi9XiZMmIDf7+eLL77g7rvvBiAej3PooYdyxhln6PpDREQkA3VoSJKXl8fgwYMpLS3FbrcDsHbtWtavX8+uu+5Kv379OnL3IiIi0s0ZhsGOO+7IpEmTaG5uJhAI4HQ6MQyDPfbYg7/+9a/pz4cOHcoLL7xAc3Mzfr8fl8uFYRgcfPDBDB8+nJaWFtxu92Yz7omIiEjm6NBX+Hnz5vHEE0+0e6elubmZP/zhD8Tj8Y7ctYiIiAhgBSVut5vc3Nx08AFWsdZNP990Pbfb3W49n89HXl5eulaJiIiIZKYOfZWvq6sjGAyme5EAhEIhwuEwsVisI3ctIiIiIiIiIvKzdGhI0rt3b7799lvmzp1LPB6npaWFV199lby8PDweT0fuWkRERERERETkZ+nQmiS9evXi1FNP5Ve/+hUFBQVEIhEMw+DBBx9s17tERERERERERKSzdWhIYrfbufjiiznyyCNZunQpXq+XIUOGkJ2drYrwIiIiIiIiItKldOhwG9M0SaVSGIZBTk4ObrebJUuWsHDhQkzT7Mhdi4iIiIiIiIj8LB3akyQWi3HLLbcwY8YM1qxZQ0lJCcuXL+eEE07goYce0pAbERER+clM06SpqQmXy4XL5WL9+vXMmTOHYcOGUVxcrF6qIiIi8j/r0J4k8+fP57vvvuNPf/oTu+++O++++y5jx46lpKREFzIiIiLys6RSKa666ioWLlxIU1MTv/71rxk3bhznnnsuGzZs6OzmiYiISAbo0JCkpqaGvn37UlBQQDwex+Px8Mtf/pIvvviClpaWjty1iIiIZJhIJMLq1aspLi7mu+++w+fz8dprr1FUVMR3333X2c0TERGRDNChw2169OhBXV0dwWCQaDTKyy+/TE1NDXa7HafT2ZG7FhERkQzTNky3oqKC9957j3333Refz4ff7ycWi3Vy60RERCQTdGhI0rdvX37961/j9/u59dZb+dOf/oTD4eDWW29VSCIiIiI/i9vt5phjjuG8887D6XTy1FNPEQ6HWblyJeXl5Z3dPBEREckAHRqSLFu2jFWrVnHggQey//77s++++wJgs9lUk0RERER+FsMwuPDCCznyyCPx+/0UFBQQiUSYMGECffr06ezmiYiISAbo0JokDQ0NfPLJJ5imiWEY2O127Ha7AhIRERH52UzT5OOPP8bpdJKfn89LL73Eueeey1dffaVrCxEREdkqOjQk6d+/PzU1NTz99NN88803fPfdd3z33XcsX74c0zQ7ctciIiKSYWKxGPfddx+xWIw1a9bw4IMPcvjhh/Poo4+ybNmyzm6eiIiIZIAOHW6zYcMGqqur+fOf/4zH40m/y7PLLrtw7733pguwiYiIiPwn8XiceDxOVlYW//znP9l1110555xz+Pe//83y5cvp379/ZzdRREREtnMdGpL06tWLN998c7PlNpsNm61DO7GIiIhIhvF4PASDQV566SWmT5/Oqaeeimma1NfX4/f7O7t5IiIikgE6NCRpaWnhq6++IpVKtVuenZ3NTjvt1JG7FhERkQxjt9u58cYbuf/++xk6dCi/+MUvaG5uJjc3lwEDBnR280RERCQDdGhIUl1dzcSJE4nFYoAVmsybN48TTjiB+++/X0XWRERE5CczDIMdd9yRhx9+mOrqampqasjNzWXChAkawisiIiJbRYeGJD179uSll15Kf55KpfjHP/7BP//5TxVuFRERkZ/FNE1WrFjB9ddfz4IFC7DZbHg8Hq666iqOP/54vfkiIiIi/7MOLQxiGAYOhyP9cLlc7L777nz11VdEIpGO3LWIiIhkmFQqxZ133smQIUN47bXXePvtt7n11luZMGECK1as6OzmiYiISAbo0J4kjY2NfPLJJySTSQCSySTvvfceubm5uFyujty1iIiIZJhIJMLq1au58847KS4uBuCwww5j2rRpLF26lD59+nRyC0VERGR71+FTAD///PPE43HAmtVm4MCBXHvttTgcHbprERERyTAul4usrCymT5/O8ccfj91uZ+XKlSxYsCAdmoiIiIj8Lzo0qSgrK+Ppp59uN92vapGIiIjIf8PhcHDllVdy5ZVX8vDDD+PxeKiqquKkk05i0KBBnd08ERERyQAdGpJUVFRw//33c+utt+LxeACYM2cOb7/9NldffbUKrImIiMhPZhgGw4cP54033mD+/PlEIhF69uzJF198QXV1tXqTiIiIyP+sQwu3Lly4kLq6Otxud3pZQUEBM2bMUOFWERER+dkMwyAvL4/99tuPQw89lL59+/Lmm29SVVXV2U0TERGRDNChIYnT6aSxsTFduNU0TZqamkgmk+pFIiIiIiIiIiJdSocOt9lhhx2oqKjgnnvu4bDDDqOxsZGHHnqIAw44ID38RkREROTHmKZJKpX6wbpmyWRS9c5ERERkq+nQkCQUCvGnP/2JCRMm8Prrr+N2uzn66KO5+OKL1ZNEREREfpJkMslVV13FokWLNnvONE3mz5/fCa0SERGRTNTh8/D26dOHRx99lHg8js1mw2azpd8NUlAiIiIi/4nNZuO4446jrq5ui8/37NlzG7dKREREMlGHhiSrV69m7Nix3HfffenhNV9//TUvvPACY8eOxW63d+TuRUREJAPYbDYOOeSQzm6GiIiIdAMdWrh18eLFGIbRbnabHj168O2332p2GxERERERERHpUjo0JAkEAlRWVhKLxTBNE9M0qaysBFAvEhERERERERHpUjp8dptEIsEVV1zBEUccQX19PU899RQnnXRSu94lIiIiIiIiIiKdrUNDEr/fz8MPP8zjjz/Ok08+ic/n44ILLuDII4/syN2KiIiIiIiIiPxsHRqSGIZBjx49uOWWW2hubmb27NlMmTKF6dOn8/DDD//okBvTNInH45imicvl2uJMOKZpEovFAHC5XOn9mqaZfr7tazWbjoiIiIiIiIhsSYeFJKZpkkwmWbZsGW+88QbTpk1j7dq1nHnmmZx77rnYbFsuh5JKpXj77bd57LHHSCQSHHfccZx77rk4nc5260UiER555BHee+89TNNkzz335MorryQYDLJkyRKeeeYZvv32W44++mjOP//8jjpUEREREREREckAHRKShMNh3nzzTSZPnszy5cvZY489OO200/jggw+4+eabfzQgAViyZAk333wz99xzD3l5efzmN7+hT58+jBgxol1vkPfff5/nnnuOJ598ErfbzW9+8xt69OjBhRdeSE1NDW63G8MwmD9/fkccpoiIiIiIiIhkkA6Z3Wb+/PlceOGF5OXl8dxzz/HAAw9wwAEHYLPZ/uOQF9M0ee+99xgyZAgHH3wwO++8MyNHjmTq1KnpITRtKisr6dmzJ0OGDGHAgAEMGTKEqqoqAPbaay9uuOEGhg4d2hGHKCIiIiIiIiIZpkN6kgwYMIB77rmHV155hXPOOYeDDjqIwYMHp6cB/k9ByaJFixgwYEA6VOnfvz8ffPAByWSyXS+UI444gqlTp3LVVVfhdrtZtmwZV155JfDT6o/E43Hmz5+fnqK4oqLifztwEREREREREdludUhIkpWVxfnnn8+ZZ57JvHnzmDZtGg8++CB1dXVMnDiRY445hgEDBmwxyIjFYukirGAVZG0r4trGNE2am5ux2Wzk5OTgdruJxWKsX7+ePn36/KSQJBwO8+ijj1JbWwvA119/zQknnPA/Hr2IiIiIiIiIbI86rHCrYRi43W523nlndt55Z6688ko+//xzJk2axLfffssTTzyxxdlt8vLyqKmpAawwpLa2luzs7M3W/8tf/sIOO+zALbfcgmEYBAIBHnroIfbee+8fnTmnTTAY5IEHHkjv57rrrvsfj1pEREREREREtlcdOgUwbBz2EgqFOPzwwxkxYgRNTU1bLN5qGAZ7770348ePp7m5GY/Hw0cffcTw4cOx2WzU1dVht9vJysoikUiQSqXSPUyi0Wi7qX/bHm2fb9qetv+3ff5ThgGJiIiIiIiISObqkMKtW2IYBna7nVAo9KOBxIEHHkhRUREXXXQRY8aMYcmSJZx22mkYhsHvf/97Hn/8cQBOOeUUPvzwQy6//HKuvfZannvuOc4++2xsNhtLlizh8ssv55133uGDDz7g0ksvZe7cudvqUEVERERERERkO9PhPUn+G36/n8cee4xPP/2UaDTKLbfcQlFREQCjR4/G7XYDsMcee/DKK6/w1VdfkUwmueiii+jXrx+GYVBQUMCJJ57IqFGj0tstKSnplOMRERERERERka6vS4YkhmEQCoU46qijNntu4MCB7T7v1asXvXr12my9UCjEgQce2GFtFBEREREREZHMsk2H24iIiIiIiIiIdFUKSURERERERERE6KLDbURERES2FtM0aWlpoaGhgezsbNxu9xYLyCcSCerq6gDIzs7G4XBgGAamadLQ0EA0GiU3NxeHQ5dQIiIimUiv8CIiIpKxTNPkX//6FzfffDOJRAK/38/48eMZMGBAu6DENE0qKyu57bbbWLJkCTabjSOOOILLL7+cVCrFiy++yOOPP47NZmPQoEHcddddhEKhTjwyERER6QgabiMiIiIZKxqNctNNN3HSSScxdepUhg8fzu23304ymWy3XjKZ5NZbb6VXr15MmjSJl19+mTPOOAOAFStWcM899zBu3DgmTZpEVVUVzz77LKZpdsYhiYiISAdSSCIiIiIZa+XKlaxdu5ZjjjmGrKwsTjrpJGbPnk11dXW79VatWsWXX37JYYcdxj//+U8WLVpETk4OhmHw2Wef0bNnT3bffXdyc3M5+eSTefvtt0kkEp10VCIiItJRNNxGREREMlZlZSUej4dgMAhYdUZsNhu1tbUUFxen12sLU2677TYGDhzIzJkz+eUvf8k111zDihUrKCsrw263YxgG5eXlVFRUkEgkcDqdgDVc58svv2TZsmUALFq0aLPeKiIiItL1KSQRERGRjJVKpTAMI11/pO1jKpVqt148HqelpYUbbriB4cOH8+9//5szzzyTs88+m1Qqhc22sfOtzWYjlUptNtxmzZo1fPvtt+n/aziOiIjI9kchiYiIiGSs3NxcIpEI4XAYt9tNU1MTyWSS7OzsdusVFBSQl5dHr1690r1FbDYb9fX1lJSUMHv27HRYUllZSV5e3mYz3Bx//PEcf/zxAHz++ec88sgj2+goRUREZGtRTRIRERHJWL169SIQCPD555+TTCb58MMP6dWrFwUFBdTX1/PNN9+QSqXo06cPRUVFfPvtt6RSKebOnYvD4SA/P5+99tqLRYsWsXLlSuLxOG+99Rb7779/eqgNkO6tsulDREREtj/qSSIiIiIZKxAIcN1113HHHXfw9NNPs2rVKu6++25cLhczZ87k97//PW+88QZZWVnccMMN3HHHHTzzzDMsX76ca665htzcXEKhEKNGjeLcc88lNzeXaDTKjTfeqCBEREQkAykkERERkYxlGAbHHHMMu+22G+vWraO8vJyioiIMw2DPPffk2Wefxe12YxgGRx99NLvuuitr166lpKSEHj16YBgGDoeD66+/npNPPpmmpib69+9PVlZWZx+aiIiIdACFJCIiIpLRbDYbZWVllJWVtVvu9Xrxer3pzw3DoLS0lNLS0s224XA4GDhwYIe3VURERDqXapKIiIiIiIiIiKCQREREREREREQEUEgiIiIiIiIiIgIoJBERERERERERARSSiIiIiIiIiIgACklERERERERERACFJCIiIiIiIiIigEISERERERERERFAIYmIiIiIiIiICKCQREREREREREQEUEgiIiIiIiIiIgIoJBERERERERERARSSiIiIiIiIiIgACklERERERERERACFJCIiIiIiIiIigEISERERERERERFAIYmIiIiIiIiICKCQREREREREREQEUEgiIiIiIiIiIgIoJBERERERERERARSSiIiIiIiIiIgACklERERERERERACFJCIiIiIiIiIiADg6uwE/xDRNkskkq1evJh6P07NnT1wuF4ZhbLZeNBpl9erVpFIpSktL8fl8GIaRfm7VqlW4XC5KS0ux2+2bbUNEREREREREBLpoSJJIJLjzzjuZMWMGLpeLsrIyJk6cSDAYbLdedXU1l1xyCfX19TgcDlKpFA8//DB9+vRhw4YNjBkzhsrKSiKRCIcffjjXXXcdDkeXPGQRERERERER6WRdcrjNrFmzeOutt3j++eeZPHkyNTU1TJ06FdM0263397//nbq6OiZPnszkyZPJzc3lxRdfxDRNXnrpJSKRCFOmTOGZZ55h6tSpzJ49u5OOSERERERERES6ui4XkpimyYwZM9hrr73o0aMHWVlZHHXUUbz33nubhSR+vx/DMEgmk6RSKQBycnJIpVK8//77HHPMMfj9fsrLy9l11135+OOP223DNM30Q0RERERERES6ty459mTNmjX06NEDAMMwKCkpoaKigkQigcvlSq93+OGH8+abb3LUUUfhcDgoKiri5JNPJplMUlFRQUlJSboGSY8ePVi9enW7/bS0tPDMM8/Q2NgIwJdffsl+++23jY5SRERERERERLqSLteTBEgXXv2h5W1M02TmzJmsXr2au+66i/HjxxOJRHjttdd+cJumaW5WtNUwDLKysgiFQgSDQdxu99Y9EBERERERERHZbnTJniTl5eUsWbIkHZSsXr2akpIS7HZ7u/WmTZvGgQceyIEHHgjAqFGjeO211zj99NMpKSlh9erV6eE0q1evZtddd20XlHi9Xs444wzAClEWL168jY5QRERERERERLqaLteTxDAMDj74YL788ktWrFhBXV0db7zxBkcccQSGYTBr1izmzp0LQHFxMd988w0NDQ2Ew2G++uorSkpKcDgcHH744bz66qvU19ezZMkSZs+enQ5TRERERERERES+r0v2JNl11105+eSTOeecc3A4HAwePJjjjjsOwzCYNGkSZWVl7LDDDpx77rlcfvnljBo1CpvNhtPp5L777sMwDE466SRmzpzJiSeeSCwW41e/+hXDhg3r7EMTERERERERkS6qS4Ykdrudq6++mrPOOotEIkFxcTEOh9XU2267DZvN6gDTo0cPnnvuOaqqqkilUhQUFODxeNK1Rv70pz9RUVGB0+mksLBws5okIiIiIiIiIiJtumRIYhgGdrudkpKSzZ7z+XztPne73ZSVlf3gNlwuF+Xl5R3WThERERERERHJHF2uJomIiIiIiIiISGdQSCIiIiIiIiIigkISERERERERERFAIYmIiIjIdiGRTLGipplIPIlpmp3dHBERkYzUJQu3ioiIiEh7y6qbOfMvX1Ca4+XgQQUcNLCA/oUBvE67ZvATERHZShSSiIiIiGwH/G4Hx+xUwkeLqvjTB4v58/Ql9C8McPDAAg4eXMigoix8LgUmIiIi/wuFJCIiIiLbgZKQhxuP3oHLogOYt66RD+dXMmNRFY99vJTHPl5K3/wABw7M55DBhexQEiTgti7zFJqIiIj8dApJRERERLYDbWFHlsfJnr1z2LN3Dr89pD8LKxr5cEEV0xdU8sxnK/jrp8vpledj/wEFHDq4kGE9gmR5nRgoMBEREflPFJKIiIiIbGfawg6/28Eu5dnsUp7Nbw7qx5KqJmYsrOKD+ZVM+nIlz322grIcL/v2z+PQHYrYuSybbJ8CExERkS1RSCIiIiKyHWsLO7wuO8NKQwztEeT8/fuwvLqZjxZZgcmrX6/lpS9XURLysk/fPA4dUsiu5Tnk+V0YhgITERGRNgpJRERERDKIYRh4nHYGlwQZVJzF2fv2ZmVNmE8XV/P+/Ere+W49U75aTVHQw159cjlsSBG798ohP+DGpsBERES6OYUkIiIiIhnKMAzcDjsDirLoXxjg9L17sWZDC/9cUs378yqZsbCK12evJT/gZo/eOYzYoYi9+uRSGHRjNwwFJiIi0u0oJBEREZGMZpompmmSTCZxOH54xhfTNH/waw3D+NHntieGYeByGPTJ99M7z8fJe5Szrj7C50treH9eBTOX1vL3OevJ8bnYrVc2I3YoYnjfPEpCHuw2BSYiItI9KCQRERGRjGWaJuvWrWPChAksW7aMYcOGccUVV5CTk9Pupj8Wi3Hbbbexbt06DMPAZrNx6aWXsssuu1BdXc1NN91ELBYDwOv1cuutt1JUVNRZh/U/MwwDp92gZ66P8hwvJ+xaSmVjlC+W1fLevApmLa/j/XmVBL1OdinP5tAdCtmnbx4l2V7cDhs2BSYiIpKhFJKIiIhIxkomk9xwww0UFhZyxx13cN9993H33Xdz1113tQtJkskkH374IVdeeSU9e/bEMAx69eoFQHNzMzNnzmTChAkEAgHsdjuhUKizDmmrMwwDh92gR7aX43bpwS937kF1U5RZy+t4b14FXyyr5eNFVfhcDspzvexQHGTHshBDSoL0zPWR7XPhtKuniYiIZAaFJCIiIpKx1qxZw1dffcUbb7xBz549ueyyyzjrrLO47rrryM3NbbeuzWZj8ODBDBgwALfb3e6m3+PxMHToUHJycjZ7LpMYhoHdgKKgh6N2LObIYcXUNMf496o6PlpYzdy19Xy4oJJXvl6DYRjkeJ30zPMxtEeIHUtDDC7OokeOlyy3Q0N0RERku6SQRERERDLWunXrcLlcFBQUAFBSUkIqlaKqqmqzkATgyiuvBGC33XZLBymGYVBXV8c555yDaZoceeSRXHzxxXi93vTXmaZJRUUF9fX1AKxcuXKLtUy2F4ZhYBhQkOXmsB2KOGyHImLJFHXNcZbXNDN3bQPfrK5nQUUD0/69huc+X4HDbpAfcNOvIMDQHlaPkwGFWRQF3fhcDs2eIyIiXZ5CEhEREclY0WgUh8OBzWYDwG63YxhGur5IG7fbzeOPP05BQQGNjY387ne/46677mL8+PEUFBQwdepUioqKWLVqFaNHjyY3N5ezzjqr3Q3/yy+/zHvvvQdAXV0dZWVl2+5AO1jbcboddopDdoqCbvbuk4sJROJJqhqjLK1q5ts19Xy7pp7FlU3MWl5LJJHC67RTHPQwoCjAjqUhhpWG6JvvJy/gxu20YaDgREREug6FJCIiIpKxgsEg0WiUWCyG2+0mGo2STCYJBALt1rPb7QwdOhSAgoICLrzwQm655Rai0Sg+ny/9XF5eHieddBIffvghZ511VrttjB49mt/85jcAzJw5k0cffXQbHGHnaAs1DMDnctArz0HPXB8HDyogZUJzLMH6DREWVjby7ep65qytZ/bqDXw4v5JEyiTgcVCW7WVwSZAdS0MM6RGk1yb1TTbdh4iIyLakkEREREQyVnl5OYZhsHjxYnbZZRfmzJlDdnY2hYWFxONxwuEwwWAwPU1wW4+TlStXkpWVhd1uJ5lMtg49MUilUqxatWqzoTqGYWC329Oft/VY6U7ajtduQNDjJFjsZEBRgKN3LCGZMmmIxFlV28L89dYwnXnrGpi+oJJXv16DgUG2z0mvPB9DegTZqTSbQcVZlG5S32TTfYiIiHQUhSQiIiKSsXJzc/nVr37FNddcw+GHH85rr73GxRdfjM/n49NPP+UPf/gD06ZNY+XKlUyYMIEhQ4ZQU1PD66+/zu9//3ucTifvvPMOb7/9Nv3792fRokX885//5Mknn+zsQ9sutIUaDrtBrt9Nrt/NTmUhTt6jfPP6Jms2sGB9I6/8ey3Pf74Sp91GXsBFv4IAQ3oE6V8QoFeej6KghxyfC4/TpvBERES2OoUkIiIikrEMw+C3v/0tO+20EwsXLuTuu+9m7733xjAMBg0axHXXXYfT6aS0tJTjjz+eFStW0LdvX/72t78xePBgDMNg9913p7m5mfXr1zN8+HCuueYaysrKdGP+X/p+fZPikGez+iZLqpqZs6aeOWvqWVTZxKwVtUTjKQwD/G4HeX4XPbK99Mn30zffT+98P6XZXvIDbnxuOy67bbP9iYiI/BQKSURERCRjGYaBy+VixIgRjBgxot1zBQUFHHzwwQD4/X6OOuqoH9xGQUEBo0aN6uimdmuGYbSrb9Irz8//tdU3iSaoaoqypq6F5TXNLK1qZnlNM6vrWpizpp7mWJJUysTtsBHyOikOeSjP9dE330+fggC9cn0UZrkJ+Zy4HXZaO58oPBERkR+kkEREREREuhzDMKz6Jl4nQa+TfgUBDqQA0zRJpkyiiRQbwnHWN0RYVRtmaVUTS6ubWVkbZuayWt79roJ4MoXNZpDldpAXcFGe46N3vp9+BX565fnpke0l1+fE53LgUMFYERFBIYmIiIiIbEcMw8BhN3DYbfjdDkpzvOzeK6e1+C7Ekykaowmqm6KsrrV6nyypamJFTZglVU3MWlFHOJYAwOOwk+N3URLy0CvPR9/8AH3y/ZTleikIuAl6nTjtNmyGwhMRke5CIYmIiIiIbPesGYjAbbPjdtrJD7gZVJSVfj6RMonEk9Q2x1hXH2FF69CdZdXW0J0P51fxamQtyZSJw24Q9DgpyHJTluOlKOihOOihOOShIMtNnt9Nts+Jz2XH67LjsNk0jEdEJEMoJBERERGRjLRpYOG0GzjtNrI8Tnrl+dm7jzWNs2lCNJGiIRKnsjHKqtowy6qbWVrVxMraMHPXNfDFsloi8SSxpInNALvNwOO0E/Q4CXmtMKUo6E6HKYVBD3l+F7l+F363A6/TjsthwzDAQEGKiEhXppBERERERLqdtqDCMMDb2iOkKOhhWI9gep140up90hRNsCEcp7Y5SkVDlIrGCBX1EdY3RKhuirG8upnZqzYQiSeJJlKYgNNm4HLYCHgcZHtd5AVcFGZ5KAq6KQ55KAp6yA+4yfU7CXqceJx23A4bNptVxHbTNoqIyLajkEREREREpNWmwYTLYQUdQa+THtne9HLTNK2PQCJpEkskCceSbGiJUxeOUdUQZX1DhIqGCOsbolS2/n/B+kZaYlaQkkilcNhsuBw2fC472T4nOT4XhVmtPVJCHkpzvPTO81MU9JDlceCwqbisiEhHU0giIiIiIvIzpHuhsDFICXicFAY96XU2DVJSrbPxROJJ6lvi1IXjVDdFrRCl3gpQKhqi1DbHWFUXpimSIJZIEW+d2jjb56Qsx8eAwgCDirLoXxSgPMdHrt+F12nHUD0UEZGtRiGJiIiIiMhWtmmQYttkNp68gLvdeqZpYmLVRoklUrTEkzRHE9Q2x1i7oYUFFY0srGhkWVUzb327jpdnrSZlmgTcDgqDbnrn+RlYnMWgoiz65vspDnnI8jhxakpjEZH/ikISEREREZFOYhitNUg2qY2S63dRnutj5/JsfjGsmJQJ0USSunCc1XVhllQ2sWB9I4sqm5i3roFPFlcTS6Rw2A2yvS7Kcrz0KwgwqDiLAUUBynN95AfceJ12zcIjIvIfKCQREREREemiDMPAboDP5cDnclCa7WWv3tbMPImUSXM0QWVjlOXVzSysaGRBRRNLq5p4f34F0/69hpRp4nPbKQi09jopymJgcRb9CqxeJyGPs3XmHYUmIiKgkEREREREZLvSFmg47QbZPhfZPhcDi7I4bEiRNaVxMsWGsDVcZ0llM/PXN7K4spHFVU3MbJ3O2G4zyPY5KQl56VfgZ1BxkAFFAXq19Tpx2bG3zrSjAEVEuhOFJCIiIiIiGcAwDGtKY5sdb8hLScjL7r1yMU2TZMokHEtS1RhleU0zi1qH7CytauLjRdW8/s06UqaJx2GnIMtNSciaYack5KFHtpfioIfCLDc5fhcBtwOfy47dZtPwHRHJOF06JDFNE9M0W0/4P//E2/b1wH+9DRERERGR7ZlhGDjsBkGvNZ1x3wI/hwwuBCCaSFHfEmddfYQlVa21TioaWdv6eXM0SSSeBMBuM/A47YS8TnJ8zvRUxT2yvfQIeSgMesgPuAl5nfhcdtwOGzb1RhGR7UyXDElM02T9+vU88sgjrFy5kv33358zzjgDj8fTbr3Fixfz+OOPk0ql0l/Xv39/LrjgAkzT5O233+aNN97A6XRy5plnstdee+kELSIiIiLd2qbXwx6nHY/TTlHQw85lIQBSJsQSScKxJBta4tQ1x1jfEGFdfYS1G1pYtyFCZWOEBRWNfLm8lpZ4knjCxGYDZ+ssPtleJ/kBd7veKCUhK0TJC1i9UbwuOw71RhGRLqZLhiSxWIwrr7yS8vJyzj77bMaNG0c8Hueiiy5qd/LMzs7mwAMPxDRNUqkU9913Hw6HA5vNxttvv83tt9/O73//exobG7nssst49tlnGTBgQCcemYiIiIhI19R2nW03wOty4HW1TllcQLp3NoAJxJMpYokUjZEEdeEYVY1R1tdvEqTUR6hpjrK0uolwNEkkkSSVsuqouJw2Qh4nOX4XhVluSkLedJBSFPSQF3CR7XPibQ1w2mqjbNpGEZGO0iVDkiVLljBv3jzuv/9+CgoKiMVi/OEPf+Dss8/G6/Wm18vPz+foo48GoLKykpqaGkaNGgXAq6++ygknnMCRRx6JaZq89957vPLKK1x99dU6uYqIiEinME2TeDxOPB5vd9MpW49hGLhcLhwOh675tqJNv5cG4HbYcTvsZHmc9Mi2rs83/Z1um7Y4Ek+yIRynpjlGZUOEtfUR1rWGKBUNERZXNvGvFXVE4iliyVTrtm14XHayvU5y/S4KszbWRykOeSjM8pDrd5HtdeJ12XE5bDhsxg+2VUTk5+qSIcmyZcvIzc0lNzcXwzDo168ftbW11NfXtwtJ2pimyYcffkhBQQHDhg1LL2uXeJsm3377bbrGCUAymaS2tpZk0hpn2dzcvA2OTkRERLoj0zRpaGigqqoKu92uG7kO0tbDuLi4GJ/Pp+/zNrTp93rTaYtz/W76FljL267PTSCRNInEkzTHEtQ2x6hujLK+IcLaDRHWN0SoqI9Q1RTl61UbaFwUJ5pIkUiZGFjDhLytQUpewApS2kKU4qBVHyXH5yTUFqTYbdgVpIjIT9AlQ5Lm5mbcbjc2mw0Al8uFaZrEYrEfXD+RSDBp0iRGjRqVrltyzDHHcOuttzJ06FCampqYMWMGO++8c7vgpLGxkcsvv5yqqioAFi1axOGHH97BRyciIiLdkWma1NbWUlBQQFZWVmc3J6PV1tZSW1uLz+fr7KbI97SFEwbgchi4HFYx2ZLQxjdCTdPEBEzTGtbTEkvSFG0NUpqsIGVdW5DSEKG6KcrKmjANkQTxpBWk2AwrSPG57GT7XOT7XRQGvxekZLnJ9rkIeq2hPU67oSBFRLpmSBIMBgmHwyQSCVwuF5FIBMMwNivc2mbZsmXMnz+fCRMmpE9mRx55JMlkkr///e8UFRVxzDHHpLfTJhQK8cQTT6R7ndx4443b5PhERESk+0kmkySTSXw+X/qNIOkYPp+PhoaGdj2IZfthGK01SAyw26y6JDl+F+W5G0OvtiAllTKJJ03CsQRN0QQ1m/RIWVcfYX19hMoGq0fKkqpmGqNx4gmTlGla0yU77VahWZ+LgoCLgiw3RUEPRa0hSkGWmxyfiyyPA7/bgdNuw2HfWCOlrb0ikjm6ZEjSv39/6urqqKyspLS0lDlz5lBSUkIoFCKRSJBMJnG5XBiGgWmavP766+y6666Ul5ent+FwODj++OM5/vjjiUajnHbaaZx22mntx1MaRnr4jmmaOJ3ObX6sIiIiIrJ16aY187UFKTa7gcMOXpedvICbXnn+9Drtg5QUzdEkjdEENU1Rq9DspkFKo1UvZUFFI83RJLFEKh2kuBw2/C4HAY+DPL+LvICboiw3RSEPRVkeCrLc5AesHikBtwOP047DtrFXin4fRbYvXTIk6d27NwceeCDXX389hx56KE888QSXXXYZLpeLt956i2nTpvHII4/gcDgIh8O88sorXHvttdjt9vQ2Vq5cyZQpUygtLWXGjBn4fD6OOuoonaRERESk20ulUlscxuxwOHA4fvwSsa3Wm81mS9eD+ynaetM4nU5dk0mHax+k2PC6HORnuemTv3mQktwkSGmKWjP2VDduDFMqGiJUNUapborx3Zp6voglCUcTVo0UA2yGgddpJ+B2EPQ6yc9yURCweqUUBz0UBN3W9Md+a/pjn9uB227DZjOwGQpSRLqSLhmS2O12xo4dy9SpU1m+fDm33norhxxyCIZhMHDgQI4//vh0N9VkMskll1zCwQcfvNlQGr/fz3fffce+++7LL3/5S/x+/5Z2KSIiItJtrFixgssuu4xYLEY4HCYajZKTkwPARRddxMiRI//jNqZPn47T6fxZIcn06dOZNGkSDz300H8MYkS2hU2DFKfdhs/loCDLTR+s+4ZN6xkmTZNk0iSSSNEUSdAQiVu9UpqiVDZYYUplQ5TqpihrN0RYsL4xPf2xaVpBisNuEHA7yPI4yPFZw3sKW4f4FIc8VpAScJHtdeFz2/E57djtBrbWdipMEel4XfLVyTAMgsEgZ599drtlAAMGDGDAgAHp5cFgkFNPPXWzbWRnZ3PhhRdu9vUiIrKdMlNWFT/DgLbR4Jlwbk9fgJuAYR1TKgWxRkhEIRkDuwvcWdZHw5YZxy2dqqysjMcffxyA559/nunTp/Poo48CEAgEiMfjRCIR/H4/pmnS0tIC0G62mAsuuCC9vWQyiWEYxONxotEofr8fm8222fVXQ0MDy5Yt22z6Y9M0SSaThMNh3G53u2HVbcttNhterzf9Rlk0GiUSieDxeHC73brWkw6x6e+VwzBw2MDttBPyOill86mPwZq1J55KEY4maYjE2dASp6q1V0pFg1VwtqohSk1zjG/X1NMcTdASTxJPWgVn7TYDt8NO0NPaKyVgBSmFQQ/FQetjnt9Frt9FlseavcftsGE3jPTLg/4eRP57XTIkafO//nHr5CAisp0wTUjFId4CsTC01EJztfV5v/8Dhxu+nQJzJoM7CJ5g68cQ9D4AynaHZAIqvgXDDi4/OH3gcFnBgiuw6c5g05J7W/u1wjStfZgmpBJWyJGMWZ/78qx1quZD1QJoqWt91ELLBtjtbCjfE+pXwYunQ7j1e+D0gb8AyvaEX4wFuxtql0EiYi13BzYGKB1xTNIhvn9j1RG2dC3kdDopKioCrDecPB4PRUVFPP/888yZM4fKykri8Tjjx4/nj3/8I/Pnzycej7PHHntwww034Pf7eeGFF3A4HJx11lncf//9NDc3M3/+fNatW8f+++/PjTfeiNvt/o9tNE2TVatWceutt7JmzRpcLhdjxozhsMMOo6qqihtvvJEVK1Zgs9k4/PDDufzyy3n33Xd54IEHSCaTuN1uxo4d+7N6tIhsTd//O3M6DJxYvVLyszb+DWz6N59qnbkn2torpb4lTm1zlMrGjb1SrJl7YqzZ0MLcdQ20xJJEE0lSKbDbDZx2A7/LQcjrJNvnpDDLQ2HQTVGWh6KQm4KAh1y/i2yfE5/LKoDrtNswDNQrReRHdOmQREREtmNtF4OGAck4xMMQa4JwnXXz37ge8vpD2R4QbYRpF1vhQWQDxCOQjFoBwEUzIFBk9SSpWWyFBvEWK4BIJcBmt0KSyAZ4+RxoqrSW2Zzg9EJ2LzjtBStQmf8mzH3F+n9b2OIJQflwKNwBzCRULwK7szVk8YDNYX3uaJ1hLdpotT/aZPX2iDRYQUfZntbxhKvhH7dCwzqI1kOs2TruUBmc+Yq1na+egZmPWIGO3dn6cEO/Q6yQxOmz2mN3gjtkhSgbVkK0wfoaTPjoHpj3qnUcgUIIlkFuH9jjXKsdyThE6q3AyOEmo3rfZIg1G1p47vOVpFJbPyzJ8jo4f/8++Fw/71Jv7dq1vP322/ztb3+jR48eeL1ezjvvPIqKimhpaeG6667jjTfe4JRTTmH16tW4XC7Ammlw3rx56d4op59+OkcffTR77733f9xnMpnk5ptvpqysjPHjx/Pll19y/fXXM2TIEN577z2i0SjPP/88pmnS0NBALBbjj3/8I2PGjGH//fenrq6O7Ozsn/09EtnWNg0l7JvM3BPyOinNaT8FMpCulRJNpIjEktRH4mwIx6hqjFHZaIUoFQ1RKhsi1DbH+HrVBpqiCaIJq1eKATjtNtwOG1leB9leF3kBF0VtYUrQQ1FrrZTikIeQ14nHaU+/jaAQRborhSQiIvLzbPrut2FYn7eFBeHajQFIpB52Od0KIRa8Be/dZi2Lt1gBCAbscwmU7t4aSnghfwBk9YBgCQR7WMGCJ9va17CRMOhIKxhJRCHebPU6CVjvhuPywUHXQ1OFtZ9og9Ump9faPlg9NFZ8ZgU2qTikktbj8NutUCJcB387xQo9bA5wesDpt8KHE/9qBQ6fP2w9knHrYSat4OLoCVY4YZqw/lvrOXcAgqXgzYG8fqSDil3OgL4HWQGIOwCuLKv9npD1vD8fTnis7ZsMtPVKSVjtwoQdT4TsnlC3DDasgMq5sGom7PBLqx3rv7FCI28uhEohpw/k9oWSna3vOWwMmRSgdIqaphiTZq0inkxt9W0XBz2cObwXPtfP/9oRI0YwdOjQ9PCZb775hrfeeovm5maWLFlC7969OeWUUzb7umOPPZa+fftimiaDBg1i1apVPykkaWhoYPbs2dx8880UFBQwYsQIHnzwQWbPnk1ZWRkLFixg8uTJ7LvvvgwePBi73U7Pnj15+eWXMU2T3XffPV1PRSQTtIUTm9ZKCbh/vFdKLJkiGreKzm4Ix6lrjlHROrynsjVMqWqKsqo2zJw19dbwnoRJIpXC0br94qCH3vk+BhRmMbAoQO98P8VBDwGPA5fd1q5tIplMIYmIiLT3/RAkGbOGvoRrrQCica3VSyJvAAw93go8Jp8Pq2dBogUSMWvYhycE/UdYH335VggRKLbCj2APyCqG3H7WfhweGPlIa72NLQwZsbcOndkSpw92Oa19+2n7f+u2dj8XdjrZOqZY2OrlEW+2epsYhhWK7DO6NWhpDVmiDdYx2FpnUCvdHXY/xwo+vLnWR08ICgZZz/vz4ezXW3uguKyv+34dleJh1mNLNl2/rf3tjt+A/odaPU/aApRY2AqHAoWt31Mv9NoXapdDxXew7GNreM6Q46wAJpWCv19vBVo5fawgKKe3Ferk9rWGKm3aG0i2usElWbz22/3oiFE3dptBlsf5X31tMBhM3wh99tlnPPjgg9x5552UlJTw9NNPE4/HN/sawzDwer3pOiJ2u51kMvmT9pdIJDBNMz00p632SDQa5YgjjmDixIn84x//4Oqrr2bIkCHcc889TJgwgXfeeYe3336bsWPHMnbsWP7v//5PN3DSbXy/V4rXZsfrtJPtc1G2SWaY7pViWoVnI/EkkXiS+pYEdc0xqpujrK1rYVFlE0uqmpi9qp7pC6qIJlK47AYhr4se2R76FgQYWBRgQGEW5bk+CrLc+F12TXMsGUkhiYhId/JDd2OxptYeILWtAcgaa8jKHudZYcbyT2HqhVZvkWTM6jVhc8CwUTD0OGtYS+nurTfYrQFIoAj8hVZPB4Be+0DP4T9eM8P+393Qbcb4XriwKafHemyJOwv2vrh9MdV0UNBaMLX/COuxxQtCA7zZ/13bf662MMXuAq+r/X4Ld4Dj/7wxQGnZYP183VnW15gJKwRKBygtVq8YXwGc+5bV8yUR2TjMSLY6t8NOWY6vs5vxo1atWkXfvn058MADiUQizJs3r10B/f9GWzHWtpuqQCBAYWEhn332GaWlpaxevZply5YxcOBAwuEwu+22G8OHD2fOnDmcddZZbNiwAafTycknn8xJJ53EzTffzD/+8Q/+7//+b2scskhGSfdKMcCG1Ssly+OkIGvjOptOg9wYSVDVGGFFTZiFFY0sqmxiaVUzMxZW8frstSRSJl6nnVy/k7IcH/0LAwwsyqJfQYCyHC+5fhcepx2bCsjKdkwhiYhIJvl+L5BU0ho6EqmH5iqrB0jDaqv3wy5nWHU+3rgSFv/DupE2k1YY4ArAgMM3DnkZchxklUB2mfXRX2A92mZjOehafnTIhmHbLK/o0tLHYGze7u3lgu+HApTc3huft7vh+IetkKxlAzSus+qeNFdbvVHaCs9KxnM4HOleHE6nk0Ri4899n3324aGHHuLss88mkUgQj8fTdUicTmd6Gl+Xy4XTuTHodLvd2O32zfZlt9tZtGgRp59+evrm6bjjjuP666/n5ptv5s0332TlypWMHDmSwYMH8+yzzzJ16lRKSkpYsWIFhx9+OB6Ph4svvhjDMHC73SxcuJBx48Z12PdHJNNtOg1ybuusOYOKgxw2pMgaUZtMUd8SZ319hGXVzenwZEVNM3PXNdAcTWCaEHBb0yf3yrOG7AwoCtC3IEBJa70Tl8OmgrGyXVBIIiKyvTJN653+SL1VtLSxwrrRbVhjhRp5/a1CqC+eAeGa1p4CWIFF34Ngp1OsHiFle4IvF7LLreKfWSUQKLACErC2c9Q9/yEc0AXPdscwrN473hzrkdvHGp7TxjStGiyS8UaOHMnhhx+OYRicc8457Wod9OnTh6lTp7J48WJKSkrIyclJD6O58MIL0zc71157bTpoMQyD2267Db9/89+fQw45hHfffbfdspycHPLz8xkyZAhLly4lLy+P/v3743A4OPXUU9l7772prq4mPz+f/v3743Q6mThxIsuXLycej9O3b1+Ki4t14yWylRmtUwp7WgvMFgU97FyejWmapEyIxJPUhWOsrmthaVUTC9Y3sqSqmUUVTXy+tJZIPInNZhDyOCkKuemT3zZkx6p3UpjlJuB2YrcZ6nkiXYpCEhGRrspMWTOoRBut2U0a10PDWuu5Xc+whr3MuBu+fsGqm5GKWze2dpdVLySvv3Xz2+cAq3ZGdnlrLZASaziMrfUlYK8LrI9bujDRBUv3tFldFMlUoVCIUMgqGpybm9vuOcMwKC4upri4eLOvy8vLS/+/sLBws6/5IYFAgIEDB/7gcyUlJZSUlLRb5vV6GTJkyGbrFhYWttuniGw7hmFgN8DvduB3OyjL8TG8bx6maZJImYRjSaqboqysCbO4somFFY0srW5m1vJa/jF3PYmkidNuI8fvpDjYNk2xixyfk1y/m1y/9f+Q10nQ6yTgduBx2vE6bbgc1lAeW2uAo1BFOoJCEhGRzpKMWwFItNEaCtNUAfVrrNodJTtZociLp1tDIGLN1tAZTCgaCsNOsIbE5A+wCniGyq1hMW0FUdtqgWSVwC8faL9fXVCIiIjIVmYYBk67QchrI+R10jffz8GDCgCIJ1M0RhJUNERZVt3MospGFlY0sabOClLCsSTRhDVDTzxlTV9sMwxsNnDZbfhcDnwuOwGPg2yvk2yfi2yfMz08KNfvskIVjxWs+Fx23A4bHqcdh83AMNRbRX46hSQiIh2hbShMrNkaCtNUaYUesWZr6lanF756Gj59wHo+EbXqPxg2OOx2KyRx+qBwCPTYzQpA0iFIifUcwM6nW48233/h14WAiIiIdIJNwwiXw05ewE5ewM0OJVlAMSYQT6SIp6xZd5qjCcKxJA0tcerCMerC1sfaZuuxIRyjviXB+oYIiyqbiMSTxBIpYskUqRTYbFaw4rAZeFx2/C4HfredoMdJziahSk5rqJLjc5Hd2lsly+PA7bDhdtpx2g1sGOlLKIUq3Y9CEhHp2r5fiDQRgaYqq+dF4zrrYbb2rui5j1V4dOkMq3eG3WkNKbE5wOG2wgaXz5rFpW5Z6ywtrQ/DYRW29FvveBCusbZF64wmbVPTurOs9ZMJq8ZHPNw6NW6lNRQmrx+U72UNf5l8HlTOtdqSiFo9QYIlMOAwKyTJKoGSnVsDkHIIlUJWj43FNT0hOO5PtBvyoBdqERER2Y6lZ9wB3E47bqyir/kBd7v1zO/NyGeakEiZxJMp4skU4ViSpmiCpmiC+tZApa45Rm04Rm1znLrmGBtaYjRGEqyrj9AcTRBLpoglUiSSJhjgsFmhittpJ+B2EHA7CHmtMCUv4Gr96Ca/dUhQyOto7aniwOWw4bLbcNiMdnXeFaps/xSSiEjn+v6UtPGwNS1puNrqedE228ae54M/Hxa+C69fZq2XjFuBBQbsca4VkiRj8P7tsP6b9tv1ZMOv37NCjKUfwquXtD5hbKy9sNtZcMRYK4h5+WyonLcxSDHs4AnCaS9CTi9Y+gG8c5M1c0y82QpBwJo+tmxPK5TJKrFqgrT1Agm1FkX1tY75H3Sk9djSrDCqCSEiIiLd1PfDBsMAl83A5bABkP0DM6hvGqyYQCplEk9awUokYfVWaYxYj7pwjJqmGDXN0daPsXSwsqoubIUqiRTxpEkilcJmWFMoOx0GPqeDLI/1yPG5yA24yPO7yPO7yWv9f8jnstZpranibA1VbO3e+9J1XlekkEREth0zBfEWa8hJuNrqfbFhFfjyrLAgFYdXfwvLPmoNHmJWQOEJweCjrJAkrx/sfCoES626G4Eiq39lWw8Qu9uaiSVSb20vmWgdxmJY05oCFO8EI35vhSypuPV8MgE9drWeN+zQbwTkD7Kea9uO3QUOT+t+PJDT2+o10tYTJFgKeX03tuOX97cPOjYLQWwd+d0WERER6VY2DR3apjV22MGLnSBOyGq//g+FKm29TSLxFI2ROA2ROBvCcWqaY9Q0RalpjlHbGqpsCMdYVtPMt2vqaYkliaesXiop08Rht0IRt8OG3+0g6LF6oeT6XRQFPfTM9VGe66U46CU/4CLgceBuLUz7/WORbUshiYj8PN/v+dHuuZTVk6NtCEpzJTSsg977W8VE139rhSBNFRBrsnpsGDbofxgMPMIaFlM01ApFsntaj2APKwgJlVv7KBxi9faAHx56Ytit4OLH5A+wHltid8L+l7cd1Pd3YH3ocwD03m9jCLKltoiIdEGb3hhseiG+peVtampqaGhooHfv3j/r60REuqIfDlVs+FzWsuKQp936bec6E+uSOJlKWQVnEymaowkaWuLUt7T1UolS3RqotNVVqWmOsaImTGMkTiSRIpkycdlt+N128gNuioMeynN99MzzUZ7jozTbQ17ATcjrxO2wYd+kG4rOtR1HIYlIZ/ux0MEwWs/AcSuAIGV9nkpYz7uD1sfmSmvYRyrZur3W9bJ7WXU24mEroGjbTipl1dtwB6B0DyuoWP8N1C1vfT5pfTRT0GtfK6xo2QDzXreGlZjJjev582HHk6y2fnIfzHvNqhcSbbL2a9jhlOeskMSdZX0sHgahntawlbYeIW29Kg64ki32vNjSsq2t3T5+ZFpchSAisp1avnw5999/P7fffjvBoPVaYpom77//PrNmzeKaa67Bbt/8HPfuu+/y0Ucf8dBDD7W7QG9ubuaWW27h8ssvp2fPntvsOEREtqVN66lggN1mx+WwkwWb1VSBjaFKyrT+H0umiMZTNEUTVDREWFsfYWVNMytrw6yqa2FlXZjZqzcQjiVJpkzsNgO/20GOz0lxyENZto9eeT7Kc32U5ngpCLjJ9jlxO6yCs99vp/x3FJKI/LdMszVISFqhQypu9YxIxqw6FE6fFShULbCGmCQirY8ouPzQ92ArGFj0D1j7Ves6LRBvXW+vC6FsD6hfBa+N2TgDSiJq7atwCJz8jDUE5KMJ8O/nWoMU02qbYYMTHoMhx1lDWv52ilVAdFMlu8C5b1rb+NdT8NWz1vJ05SkbjHzMCjGaq+Aft1g9QNpWMrCGrgwdaW3DNK3j7rnvxp4goTKrYCpATh849QVreMyWel+oBoeISIfLz8/nyy+/5PPPP+ewww7DMAySySSPP/44Bx54IDabjWQyiWma2O329AW3aZokk8nNtheLxXjvvfc477zzNnvONE1SqRQANput3bZSqdQW92EYRrv1RUS2N23nL3trqtLWSyXH76I81yqqYpomJpBMmUTjSRoiCaoao6ytb2FVbZgVNWFW17Wwrr6FheubaIzGSSRNDAP8Lgchn5OioIfSbC+9WnuhlGZ7KQp6yPY58brsOO02DBSe/FQKSaT7Mk2sQCG1sXdFMmYV3HS4rTCicq5V2yLaaBUTjWywQoDdzrR6EXzxKMx7w3o+1twaksThlxNh8NFWwPHMsVawsGmHkZKdoNd+1n4W/wP+/TzYHRtnYrE7YejxrSsbVo8Nh9cqPurwWF+X1590oNDvEKsmh81pBRCGfePQFbCGqxxxlxXoGHYr/LDZwJtrfQ0G7HGeNetK2/OGzaoHUjjE2kaoDM6YZB2HrfV5w259P+xOK/DY/zLrYXPwgyGIYVjHKSIinSoQCHDMMcfw8ssvM2LECAzDYMWKFcydO5c//OEPPP3003zwwQdEIhH23ntvLrroIgKBwM/eTzKZ5I033uDll18mlUpx7LHHMmrUKOx2O++++y7PP/88kUiE3r17c9NNNwHwpz/9ia+//hqXy8Vxxx3HSSedpAt7EclYhmGkh/o47TYCHic9sr3sXJ4NtAbHrbVSGloS1DbHWFvfwuraMCtqw6yqDbN2Q4TPltTwznfriSVSGAZ4nHZCXicFWW5Ks72U5/roleujKOgh1Dr1sc9lx+O043HacNhs2FunUW5rV3elu5WOZprWFKVNldaNpN3ZeiNrt25Q3QHr5jyyYWP3fZt94w2qzblxO6TYfBjCjwxLyDTthqW0hRuty9qGfrR9j5MJaFpvDfmINVohRrTRunkfeIT1fZ4zGRa+Y4Uf0Qbr+XgLHHY77HCM9XN7bpS1vC1QMWxQvKNVONRhh1jYCkDcQWvYiCcIroA1gwmALx8Oucn6Oodn48OXZ7UT4ICrYM8LWkMS58Zpa9uG0oRK4VeTN6l9Ydu8GOjAX1iPLfGErDa3rf9Dine0Hlvi9FqztvwYu+vHnxcRkfaqF8OqmZsvLxpi9fZLJWDh363Xqk053FbBa5ff2sbqLza+Jtrs1mudN2eLuzUMg+OOO47TTjuN9evXU1JSwttvv82OO+5IWVkZJSUlXHXVVZimyb333suzzz7LxRdf/LMOzTRNPv30U+644w7uuusu3G431113HX6/n+HDh3PLLbdw22230adPH1atWoXNZmPy5MnMnj2bW265hUQiQUtLy8/ap4hIpjEMA0e6VoqD4pCHIT2C7YbyxJOp9Iw96+sjrKoLs7ImzMraMGvrW/hqZR3TF1QRiSetW04M7DYDr8uO12nH57IT9DrJ9jnJ9jrJ8VvTH+f6XOT4XVao4nGS5XGkQxWXw4bdMLAZRvr2IlOCFYUk28K/noJP7yf9zrphWDfBh90Bu58N4Sp4/iSrx0JbDwCb3RqqcOKT1jv1s1+A76ZaN6F2Z+tHl3Xj2/sAKwyY+Yg1DMPu3vi8LxeGHGv9v+I7qFm8sbdC27Sm+QOtG/FkDCrnY4UBm7TD4bGKZ9rsG3tMGG036zbABi6fdcFmpjZOhQpWcNFWP8MTsj62bIBwDSSjG4ePJKOQN8BqR7TJqn0RqW8dftL68IRg30utY/n6BZg7bePQlLYhKAf9DoYeZwUkfz3SGiKSSm2s55E3wBrm4vRB7VJY8U/r/+4s63vlyrL+D1aQceit1v48QWv/7izro8NtfQ/2GwP7XLLxe/n92Uo8IdjjfOv/WzppZBVbjy0xbNb+fsx/OiFlyAlLRCTjrPgU3rxi8+X7jrFCkmQU3r8Dahe3f96bBz2HWyHJin+2bqM1JLG74fx3fzQkAejfvz+9evXi/fff58QTT2TatGmMGTMGt9tNaWkpr7/+OpWVlWzYsIGPP/74Z4ckAK+//jrHHnssI0aMAODMM89k6tSp7LPPPhiGwerVqxkwYAAHHXQQLpcLl8vFhg0bqK6uZujQoeTn52fMRbeIyNa06VAeu83qEVKQ5WZgUVa7ArPxRIpwPEldc4zKxihVjVE2hDcWk60Nx6gPW7P4LK1qJhxLEI1bxWjjyZTVidwAu2HgdNjwOe343A78Ljshn5Mcn4tsn4tcnzVzT27r9Mdts/n4XQ7cTmuWn7Zgpauf1xWSbAv9DrVulpMxa0rTZOujYLD1vM1p1WxoqbWeT8WtIRvu4Mab7mgD1K9unbK0dUrSVNIKSMDqzfDVM1b40DZ8xExZU5QOPMK60Z8zxSqs2W4YhAFHjbeGWjRXwwunWrOStFUjMgzI7QvnvGUFBTMftcKYtp4ubT1fDr4Bdj7F2sbkc62AA6z2JuNW+HHqC9bF3MxH4LMHN6np0dpL48jxsMe5EK2H926zCpFuuo/cvrD3RdaxtNRB3UorPLC7rPDC7gKnx9qeJwQ7n24FPd4QuEPWskDBxsBh+CVW3Q+bc2MgZLOT7qHhCsBuZ7V+m7bwh2x3wY/V7uziJwAREelkA4+AvNc3Xx4qtT46vDDyEevNgk3ZHRunPh94OOS9tvG5ttfu/8DpdHLSSScxefJk+vfvz4YNG9h///1Zs2YN559/PieffDIjRowgJyeHf//73//V4dXW1jJgwID0BXFRUREbNmwgNzeXhx9+mL/97W9MnjyZnJwc7r//fk444QSSySR/+ctfWLFiBaeccgqjR4/GZtOU6SIiP9WmBWbdTjtup50cn4u+BdawSbNdD31ImSaJpEkiZRKJJ2mOJWmOJmiMJNgQjlEXjlEXjlO3SbDS0BKnpinG8upmWuLWtMmxRIpEKoXNsHqq2G0GHqcdv8sKVkbsUMjVhw/a1t+On00hSUczDOi5949PSerNgWPu2/j5prOT2Fp/RHueD7ueSfsaGkkrdDAMa1jHWa9a7zilEtZwk1TC6nXitIoCsfNpVjvanmt7lO5uPe8OwoHXWIFLOoxJtPacaB1GUbgDDD5m43Nt6/nzNx6vN3fjsdjdVnAR2mT2kp7DrfY7vVYvFafXWqe0dSiHrwBO+xtWyehNes04vdbxAux1Aex+zsbaGpvW0QAr4Dj4+vY/h+9z/4ex1Qo4RESko/3H3oR2KN3tf9vGljZtGBx66KFMmDCBCRMmcOihh5KTk8O8efMIBoP89re/xeFwMGvWrHTh1f/ENM12F98DBw7kq6++IpFIYBgG//rXvxgwYACmabLTTjux22670dTUxMknn8ynn37KL3/5S371q19xxhlnMHPmTH77299y1llnpWfgERGR/933e3LYDQO7DdyA3+0g73vrfz9UMaE1VEkRT5qEYwmao0maognqW6wwpS4cs0KVcIy65jh14Rhe5/YxM6RCkm3lx264f6i4Jd97x6QtKNgSuwNy+/x4G/IHWI8tcQesnhyw5WlpBx1lPayVNm209cGXDyc9tfG5dsNPWtfpe7D1gB/+vjhcG4ObLWkrrioiIiL/teLiYoYPH86LL77Itddei2EY9O3bl4aGBm688UbsdjszZ84kNzf3P24rHo8zYcIE8vKsy+uCggJGjhzJhRdeyFVXXYXL5eKTTz7hySefZOXKldxyyy0MHjyYSCRCbW0tgwcP5qmnnmL27Nn06dOHr776it133x2v19vR3wYREfkR3w9VDMDlMHC13rOGvM7NvmbTYMWkdRDBlu4xuxiFJPLDthTqtFv+A+u0FZ8VERGRLs8wDG688UZOO+00dt11VwzDoKSkhOeff55PP/2UgoICRo8eTU1NDQAHH3wwO+2002YXzFlZWTzyyCOEw+H0Mr/fT79+/XjxxRf5+OOPSSaTXHrppZSXlxOPxxk9ejQLFizA6XRy9tln069fP/Lz8ykpKaGiooIzzzyT/fffH4dDl6siItubTV8njPb/dHl61REREZGMt+m7V/9Nwbjvv/vV1YvO/VSGYdCzZ0969uzZbln//v3p379/elmvXr0A6NGjBz169NhsO06nk4MOOugH99GjRw9OOeWUdstcLhf77LMP++yzT7vlRUVF/PKXv/yvj0dEROR/pZBEREREMpZpmrS0tPDqq68yd+5cdt99d4488kjc7vZDNhOJBFOnTqW6uhqwgoIjjzyS3r17Y5omlZWVvPzyy9TU1HDEEUew1157qZioiIhIBtKru4iIiGQs0zS5++67mTRpEgMHDuShhx7iL3/5y2Y9Q2KxGPfccw/r1q0jmUySTCbT6zQ3N3PRRRexdOlSiouLufTSS5k5c+Z2M7ZaREREfjr1JBEREZGMVVVVxauvvsrf/vY3dthhB/r06cPVV1/NmWeeSVZWVrt1nU4nZ5xxBoMGWdMTtg2pmTVrFlVVVTz77LMEAgEaGxt58skn2XvvvTNm2I2IiIhYFJKIiIhIxlq1ahU2m42ePXuma200NzdTWVm5WUgSj8e54447CAaDHHLIIRx77LG43W6++eYbBg0ahN/vxzAMdt99d1555RVisRgejweweqzEYjESiQQAkUhks54mNpsNm81GS0sLdruKnHcU0zQJh8M4HA6FWCIi8rMpJBEREZGM1dTUhMvlwum0pid0u93YbLZ2s7AAOBwOrr32WoqLi6mpqeHuu+9m3bp1XHrppdTX15OVlZW+4Q4EAjQ1NZFKpdpt46GHHuLvf/87APX19fTr16/d8zabjdzcXKqqqqiurtYNfAcxTRPTNCkqKurspoiIyHZIIYmIiIhkLJ/PRzweJ5lMAlZvkVQqtVnhVqfTyYknnohhGJimiWEY3HvvvVx00UX4/X5WrlyZXt7S0oLX692scOv555/PGWecAcC//vUvXnzxxXbPG4ZBKBTC7/cTj8dV06SDGIaBy+XCbrcriBIRkZ9NIYmIiIhkrNLSUuLxOOvXr6dPnz6sWrUKl8tFYWFhusfBD91It4UlpmkyZMgQXnvtNaLRKB6Phzlz5tCvX79075S29UOhEKFQCIDc3NwtbtfpdLb7WhEREek6NLuNiIiIZKzi4mIOPPBA7rrrLj766CPGjRvH8ccfTzAY5Ouvv+bSSy8lFouxatUqnnjiCT777DPefPNNxo8fz8iRI3G73ekCrQ8//DDvvPMOzzzzDL/61a80BbCIiEgGUk8SERERyVg2m43bb7+dxx9/nKeeeoqDDjqIc845B8MwyMrKYuDAgdhsNrxeL2vWrOGzzz7D7XYzZswYjjvuOAzDIDs7m0cffZTHH3+c+fPnc/311zNixAgN5RAREclACkk2kUwmmTdvHvn5+Z3dFBERkYzU2Nj4gzO/dBTDMMjNzeXaa69ND61pCzf69+/PZZddBkBBQQG33nprul2brmcYBgMGDGD8+PGbbWNLUqkUVVVVfPrppwpTREREOkA0GqW5uXmrX1MoJNnE0KFDmTFjBosWLdpq2zRNk48++ohddtklPU65O9iwYQPffPMNBxxwQLe6OFy7di1r1qxhzz337OymbFOffvopgwcPJi8vr7Obss2kUimmT5/O8OHD8fl8nd2cbaayspIlS5awzz77dHZTtqmlS5fS3NzMjjvu2NlN2WZM02TGjBnstttuBIPBrbrdXXbZZZtPgftTgo0fW2fTwOSnCIVC5OXl8de//vXnNfQ/+Oyzz+jXrx+FhYVbdbtdWSqVYsaMGey5554EAoHObs42U1NTw7x589h///07uynb1MqVK6mpqWHXXXft7KZsM6Zp8vHHH7PTTjuRnZ3d2c3ZZhKJBDNmzGC//fZLT6feHXTX+4WFCxeSTCbZYYcdtup2hwwZgsvl2qrbNEyVVgc2The3tSWTSU455RRuv/12hgwZstW331V99913/P73v+fFF1/sVmO2//73v/P2228zceLEbhMOpVIpzj77bC677DL22GOPzm7ONhONRhk5ciSPPfYYZWVlnd2cbeaTTz7hqaee4vHHH+82v+MAzz77LCtWrOCmm27q7KZsM4lEghNPPJF77rmHAQMGbPXt/5TQYnvWEdcVpmlywQUXcM4553SrG+d4PM6oUaOYOHEiffv27ezmbDOzZs3i/vvv5+mnn+5W11JTpkzhX//6F2PHju3spmwzqVSKU089lVtuuYVhw4Z1dnO2mXA4zMiRI3n22We7VfD77rvv8sYbb3D//fdn9Ovg9z366KOEw2GuuOKKrb7trX1NoZ4krTrqYm3Tbrvd6QVu03fcuttxtx1zdzrpbXrc3UXbMeu4u4dNj7u7/G1315/11tIRvyupVKpb/ky68zUFWHV1uuNxd6fzbXe+X+jO57Tuer+wPfxtKyTZBgKBwDbvVtzZ7HZ7t+oS28bpdHaroRdt/H5/t/sdNwyDQCDQrV7UARwOB36/v7Obsc253e5u1RUYuu/veFfn9/txOLrX5Vtbkd3u9rvocDi65bWUy+XqltdS3fF+obv+bTudzm57LZVKpTq7GT+Jhtt0MNM0qaioIDc3d6uPlerKYrEYdXV1FBYWdvmkcGsKh8OEw2Hy8vK6zXGbpklVVRXBYLBb3USapsn69espKCjoVjcsLS0tNDU1kZ+f321+x8EqNppIJMjOzu42x91dX7+6MtM0qa6uJhAI4PV6O7s520zb72JeXh5Op7Ozm7PNRKNR6uvrKSgo6DbnHYCmpiai0Si5ubnd5rhN06SyspKcnJxudb5NpVJUVFRQWFjYrQKi7ni/ANDQ0EAqlSIUCnX541ZIIiIiIiIiIiICdK++TSIiIiIiIiIiW9B9+oh3AtM0CYfDVFZWEgqFyMnJ6fJdi/5XpmnS3NxMdXU1TqeTwsJCHA5Hxh93m7afeSqVIhAIdIvjNk2T+vp6ampqCAaD5OXlZfzYUtM02bBhA7W1tYRCIXJzczPymE3TJB6PEw6Hcbvd7br3m6ZJXV0d9fX1FBUV4fV6M+L3va1zZSwWo6WlBZ/Pl+76bJomTU1N1NTU4HK50t2DM+m4I5EIkUiErKyszYaRdcfzW1dimiaRSISKigoCgUC36KZtmiYtLS1UVVVhs9koKirC6XRm/HG3aTv+eDxOMBjsFsdtmiaNjY1UV1fj9/vJz8/P+GEYpmkSjUapqKjAbrdTWFiYkb/npmmSSqUIh8OYpklWVlb6GNvOb+vXrycrKyujzm+bXkt5PJ700PS219Tq6uqM+7m3XVNEo1FaWlrw+/2bDSNrO78lEol2vwtdhUKSDmKaJkuWLOGyyy4jlUrR3NzM7373O37xi190uV+CrenTTz/l1ltvxePx0NLSwsCBAxk3bly3mPO97abx9NNPx+Px8PLLL2f82OlUKsWkSZP4y1/+gtfrJZlMMnHixA6ZLrSrME2TadOmcd9995GdnU1tbS1nnnkmF154YcYFJe+//z4TJkxg6dKlXHLJJVx22WWA9T148803GT9+PD6fD4fDwQMPPECfPn0y4vz2t7/9jSeffJIVK1bwxz/+keOOOw6AGTNmcMcdd+D1egmHwwwePJi77rqLUCjUyS3+35mmyX333cerr77KunXreOmll9htt93arVNTU8Npp51GTk4Ozz//fMaf37oS0zRZt24dY8aMobGxkXA4zOjRozn11FMz4m9uS+bMmcNVV12Fw+EgFotRVFTEvffeS1FRUWc3bZsIh8Ocf/75rF+/nrfeeivji5mapsnbb7/N/fffj9vtJh6Pc8cdd7DHHnt0dtM6jGmarFy5kjFjxhCNRonH4/Ts2ZN7772XnJyczm7eVlVdXc1VV13FnDlzKCws5NVXX8XtdmOaJmvWrGHMmDGEw2Gam5sZM2YMJ554Ykac39566y3uv/9+li1bxnXXXcevf/1rAGbPns21116bPr/16NGDP/7xjxQUFHRyi7eOJ598kueee46VK1fyyCOPcNhhh7V7vqmpiXPOOYeGhgZeeeWVLlfINrOu6LuQVCrF3XffzV577cXUqVP53e9+xx133EF9fX1nN61DlZWV8ec//5mpU6cyadIklixZwiuvvJJOFDNZKpXikUcewe/3U1NT09nN6XCmaTJ79mweeeQR/vSnPzFlyhT+9re/0bNnz85uWodqaWlh/PjxXH755UyZMoVx48bxwAMPZOTPvKysjOuvv57hw4fT2NiYXl5XV8edd97JTTfdxLRp09htt90YP358xvydDx48mNtuu42ePXvS0tKSXt6zZ08eeeQRpkyZwksvvcS8efN4/fXXO7GlW9dee+3FnXfeidfrJRaLtXsumUzy8MMPk5WVRW1tbcb8rLcnDz30ECUlJUybNo177rmHe+65h3Xr1nV2szpUfn4+9957L1OnTmXKlCnE43H++te/dovfP9M0ee6554jH49TV1XWLY166dCl33XUXd911F5MnT2bSpEkMHTq0s5vV4Z599llCoRBTpkxh0qRJLF68mPfff7+zm7XVud1uTj/9dC6//PJ2ryOmafLAAw/Qq1cvpk6dyrhx4xg3bhwVFRWd3OKto1evXtx4443ssssuNDU1pZcXFBRw3333MXXqVCZPnkxTUxPPPvtsxvytDxs2jDvuuIOioqJ211Jg3TM988wzAF32/KaQpIM0Njby5ZdfMnLkSLxeLwcccADxeJwFCxZ0dtM6VO/evRk4cCBut5vc3FzKy8upqqrq7GZ1ONM0mTVrFt999x2nnXZaZzdnm5kyZQrDhw9nxYoVTJ48OT0MIZMZhoHL5cLtdmOz2dJTFWZid+DBgwdz0EEHbdZTYv78+ZimyX777YfX62XkyJHMnDmzXZCyvTIMg91335199tlns3dt+/bty4ABA3C73eTl5VFWVkZ1dXUntXTrstlsHHDAAey+++4/2CX2888/Z/HixZx88smd1MLuLRqNMn36dEaNGoXP52O33XYjJyeHf//7353dtA5VUlLCsGHD8Hg8BINB+vfvT2VlZWc3q8OZpsmCBQt49913M7KX4pa89dZbDBo0iPr6el5++WXWrFmD2+3u7GZ1OJfLhcvlwm6343A42g3JyCTBYJBf/OIX9O7du93ylpYWPvroo/T5bY899iArK4tvvvmmcxq6lQ0bNowDDjiArKysdstLS0sZOnQoHo+HUChE3759M+aeyTAM9t57b/bee+/NZmIzTZO5c+fy4Ycfcv7553fZ3kLd46zbCRobG4lEIuTn5wOkQ4P169d3csu2DdM0mTNnDrNmzWLEiBFd9g9ga2lsbOTee+/l8ssvJxAIdHZztpl58+bx1ltv8dprrzFr1ixOPvlkvvnmmy6ZCG8tHo+HG2+8kVtvvZWTTjqJ0aNHc+2112Zct9gfs27dOvLy8tI30wUFBbS0tNDc3NzJLds2TNPkm2++Yfbs2RxyyCGd3ZwO19DQwMSJE7n88sszvrt/V9XS0kJ9fT3FxcUAOBwOioqKWLNmTSe3bNswTZPly5fzzjvvcPTRR2f8NUU0GuWee+7hoosuIi8vr7Obs02Ypsm8efP45JNPeOGFF5gzZw6nn346n3zySUZfUxiGwVlnncX69es57rjjOPbYYxkwYEC3eG1p0zbEpm2YicvlIi8vj7Vr13Zyy7YN0zRZunQpH3zwAUceeWRnN6fDtbS0cM899zB69Ogufe2skGQby+QTfRvTNFm1ahVXXHEFo0ePZuedd+7sJnUo0zR58sknGTRoEDvuuCOJRCJdpCmTf96maZJMJunfvz/33nsv48eP56CDDuLZZ5/t7KZ1qGg0ypQpUzjqqKP43e9+x+mnn84zzzzDhg0bOrtp28z3f683LbyW6dpu1q644grGjBnDsGHDOrtJHSqVSvH444+z0047MWTIEBKJBKlUKn2ek23nh/7uusPPwDRNqqqquOyyyzjhhBM46KCDOrtJHco0TSZPnozX62W//fZLX0tk+jUFWMP6CgsLmThxImPHjuWUU07hiSeeyOjjNk2TGTNm4HQ6+d3vfsc111zD3LlzmTVrVkYft1hM06SyspLLLruMU045hX333TejQ2DTNJk0aRK5ubkMHz68S5/fVLi1gwQCAdxuNzU1NfTo0YNoNEpdXV36XaBM1VZc7je/+Q1HHnkkv/71rzO+m2gymWTGjBnU1NTw5ZdfUl1dzZIlSxgzZgwPPPBAxr7zahgGZWVlOJ3OdAHHvn378tlnn3VyyzrW2rVr+fjjj5k+fTpFRUXssMMOvPjii8ydO5f99tuvs5u3TRQXF1NbW0s8HsfpdFJdXY3H48n4XlRtxeV+85vfcOyxx3LOOedk/PktHo/zySefUFdXxz//+U8qKytZsWIFV1xxBRMnTtysG610jLbu2BUVFQwePJhEIkFFRQU9evTo7KZ1qLaC6GPGjGHo0KFcffXVGTm08fumT5/O3LlzOfHEE2loaGDp0qVcfPHF/PnPf+7S77z+r8rLy2lsbEyfV/r168eHH35IKpXK2HNtW22GX/3qV+kA8PPPP+fVV1/lgAMO6OTWbRs+nw+fz0d1dTWDBg0iFotRW1vbLe6Zamtr+e1vf8uuu+7K5ZdfvtmscpkmlUoxY8YMFi5cyKhRo9iwYQOLFi3ikksu4eGHH+5SE31k9k+iEwWDQXbbbTdef/11Bg0axOeff47NZmPgwIGd3bQOVVNTw+jRo9lxxx254IILiMVimKaZ0dMA2+12Hn/88XShw+nTp3P//ffz+9//PiPHlG7q8MMPZ+LEidTU1ODxePjkk082mxEj07RdvC1atIi8vDxWrlxJU1NTlzqxby3JZJJoNEoymSQej9PS0oLL5WLw4MGkUilmzpzJvvvuy2uvvcYee+yRMSFJIpGgpaWFVCqVngrY7XZTXV3NxRdfzB577MF5552XPr9lyiwvbceaSqWIRqNEIhFcLhdPPPFE+vz27rvv8pe//IVbbrmlW9QK6Co8Hg8HHHAAr776KnvvvTffffcdNTU17Lrrrp3dtA7V1NTEFVdcQSgU4uqrr06fizJlmswtGT9+PJFIBLBmwLjmmmsYO3YswWCwk1vWcQzD4JBDDuH1119n7dq15ObmMn36dHbccceMDUjAOu78/HzmzJlDLBYjFouxYMEC9txzz85u2lbXNtVxNBpNT/9qs9nwer3su+++vPrqq+yxxx7Mnj2b+vp6dtppp85u8laRSCQ2u5Zyu900NjYyZswYCgsLueKKK0gmk8RisYw5v7Ud6/evpf74xz+mz2//+te/uPnmm7nzzjs3q9nS2Qyzq/VtyRBtRbfGjBmD2+2mrq6Oa665hmOPPTYjfvG3ZNKkSVx55ZUMHDgwXa/gpJNO4rzzzsvo497UBx98wMSJE5kyZUrG3DxtSUtLCzfddBOzZ8/G4XCQm5vL/fffT35+fsb+vFOpFI899hhPP/00JSUlrF+/nqOOOorrrrsu437eX375JbfeeisrV67E4XBQVlbGuHHjGDp0KFOnTk1PgxyPx3nwwQcZMGBARvzcX3vtNR5++GGWLFmSLkD94IMP8v777/O73/2OAQMGpM9vp5xyCueee24nt3jr+POf/8y0adNYuHAh5eXl9O/fnwceeKDdhcs777zD448/zgsvvJBxv+9dmWmarF69mtGjR5NKpaivr+fXv/41Z511VkbfQH7wwQecddZZ9OvXLx1QH3rooVx11VUZfdyb+vrrr7nyyit5/fXXu9wUmVtbPB5n3LhxfPDBB/h8PpxOJw888ADl5eUZ8dryQ9pqXF1xxRX4fD6i0SiBQCA9m1UmHXdzczO//e1vWbRoEWvWrGHgwIGMHDmSiy66iBUrVnDJJZcAUF9fz8UXX8zpp5+eEX/nH3/8MWPHjmX58uV4vV7KysqYMGECS5cu5YILLqBv377p89sRRxzB5ZdfnhE/95deeoknn3ySxYsXU1hYSK9evXjwwQfbTXE8a9YsbrjhBqZNm9blzm8KSTqQaZo0NjamE/GCgoKM+KX/MS0tLZvNcOHz+fD7/Rl/7G2i0SjhcJjs7OyMP2bTNEkkEqxZs4ZkMklpaSlutzvjjzuVSlFdXU1NTQ2hUIiioiJsNlvGHXc0Gm03bblhGIRCIVwuF6lUiqqqKurq6igtLSUQCGTM8YfD4XbT9BmGQW5uLtFotN1ysM5vmdKDprGxsd00fXa7nZycnHYXqdFolJaWFkKhUMb8vLcXpmkSDodZvXo1wWAwfd7JZN8/B4HVqyYrK6vb/P7F43EaGxvJycnpFsecTCZZu3YtkUiE0tJSvF5vxh+3aZo0Nzezdu1a7HZ7xl5LpVIp6urqSCaT6WVerzf9Gtrc3MyaNWsy7vwWiURoaGhIf24YBtnZ2SSTyXbLIbPOb83Nze0K+ttsNnJyctoNmezK5zeFJCIiIiIiIiIiaHYbERERERERERFAIYmIiIiIiIiICKCQREREREREREQEUEgiIiIiIiIiIgIoJBGRTtY2Q04sFmv3SKVSW3U/DQ0NfPjhhyQSia26XREREek6tsU1RUtLC++//z7RaHSrbldEugbNbiMinco0Ta699lr+9a9/4fF4AHA4HNxxxx3svPPOW20/c+fO5eKLL+bvf/87Pp9vq21XREREuo5x48a1e603DIPrrruOAw88cKvtY82aNZxwwgm89dZb5OXlbbXtikjX4OjsBohI92aaJkuWLOGYY47h5JNPBqwLmvz8fEzTTD8ikQgejwebzYZhGOnlLS0tOBwOXC5Xeo510zRJJpNEIhFcLhdOpzO9PJVK0dzcjNPpxOl0drl52UVEROS/t2LFCvbdd19Gjx6dXpabm5u+bgCrJ4jb7cZut7e7pohEIthsNtxud7trilQqRUtLC06nE5fLld6uaZqEw2Hsdnu76xAR2b4pJBGRLiEnJ4fS0tJ2y7744gueffZZnE4n3333HeXl5dx5550UFxdTV1fHXXfdxTfffIPT6eTcc89l5MiRGIbBzJkzue+++6ivrycQCHDnnXcCEI1Guffee/n8889xuVyMHTuWHXbYQRc1IiIiGSQYDG52TbFw4UL++Mc/kp+fz1dffUVubi533HEHffv2pbm5mQkTJvDZZ59hs9k4+eSTOfPMM7Hb7cyZM4fx48dTVVWF2+3mpptuokePHiQSCR577DE+++wzUqkUt9xyC3vttZeuKUQygEISEekSJk2axNy5cwHwer2MGTOGuro6Jk2axBNPPME111zDuHHjGDt2LBMnTmTixIlUVFTwxBNPsGzZMsaMGcOgQYPIzc3l0ksv5aqrruKQQw6htraWvLw8qqqqWLVqFX369OGiiy7i8ccf59577+Wxxx7TBY2IiEgGefvtt6mpqQHA6XTym9/8hsbGRqZOncp9993HmDFjePTRR7npppt45plneOqpp/jqq6945JFHqKur48ILL6R///4MGzaMSy65hDPOOIPjjz+exsZGvF4vAFVVVQQCAZ544gmmTJnCXXfdxcsvv5zuvSoi2y+FJCLSJQwePJiDDjoIsC5o2i5Chg0bxi9+8QucTifnn38+F1xwAbW1tXz44YfcddddlJWVUVpaym677cYnn3xCSUkJhYWFjBo1CqfTSWFhIWBdzJSXl3PccccRDAY5/PDDueGGG0gmk9hsqmEtIiKSKfr27Zu+prDb7WRlZVFRUUGvXr0YOXIkgUCAc845h+OOO46qqireeecdzj//fHr37k3v3r057LDDeP/997Hb7aRSKc4880x8Ph9FRUWAVZMkLy+Pk046iaKiIkaMGMEzzzxDLBZTSCKSARSSiEiXsPPOO3PMMcdsttzr9abHDHu9XpLJJPF4nGg0SiAQSPcCCQQCtLS0EA6HCQQCPxh8uN1uHA7rtNd24aPa1SIiIpll8ODBHH300Zv1FPV4POkQo63uSCwWo6WlhaysrPR6WVlZbNiwgZaWFrxeb/raYVMulytdn8Rut7ereSIi2ze9fSoiXUIqlSKZTKYfbRcaCxYsYM2aNaRSKb744guKi4vJycmhf//+fPTRR6RSKTZs2MDXX3/NkCFDGDJkCIsWLWLVqlWYpkk8Hicej3fy0YmIiMi2kkql2l1XtE0BvHLlShYvXoxpmnz99df4/X7y8/MZNmwY06dPJ5lMEg6H+eyzz9hpp53o168fVVVVLFy4ENM009MLi0hmU08SEel0TqeTJ554gnfffRcAm83Gb3/7W8B6p+baa68lKyuLr7/+mnHjxuHxeLjyyiu57LLL+Prrr6moqGDw4MEccMABuFwuRo0axdlnn82wYcOoq6vj6quvxuv1tqtIb7PZVIleREQkwzidTiZPnszs2bMBa8a8s846i4KCArxeL7fffjvZ2dl89dVXXHfddfj9fkaPHs2FF17IeeedR2NjI36/n2OOOYZgMMiFF17IRRddxE477URjYyPnnXcegwcPbndNYRiGrilEMohhql+YiHQi0zRZtWoVDQ0N7ZaXlZXx+eef89hjj3HfffexZMkS+vTpQ+/evdPT9VVUVDB//nyysrIYOnRouutsIpFg8eLFrF69msLCQgYPHkwqlWLt2rX07t0bm81GS0sL69evT29PREREtn9r166ltra23bLi4mKWL1/ONddcwzPPPMPixYspLS2lf//+2Gw2TNOktraW7777DrfbzbBhw/D5fBiGQTKZZNmyZSxfvpzc3FyGDBmC3W5n5cqV9OrVC4fDQSwWSxeHV50zke2fQhIR6bL+/ve/89hjjzF58mRddIiIiMh/bdasWVx77bW88847Kq4qIj9Kdx0i0mUNGjSIc845Rz09RERE5H9SXl7OxRdfrDddROQ/Uk8SERERERERERHUk0REREREREREBFBIIiIiIiIiIiICKCQREREREREREQEUkoiIiIiIiIiIAApJREREREREREQAhSQiIiIiIiIiIoBCEhERERERERERQCGJiIiIiIiIiAigkEREREREREREBFBIIiIiIiIiIiICKCQREREREREREQEUkoiIiIiIiIiIAApJREREREREREQAhSQiIiIiIiIiIoBCEhERERERERERQCGJiIiIiIiIiAigkEREREREREREBFBIIiIiIiIiIiICKCQREREREREREQEUkoiIiIiIiIiIAPD/vYvEPSx8fogAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAACIUAAAfGCAYAAACDcpw1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA1PdJREFUeJzs3XucVXW9P/73goEhEQYEFUgEL4kYXhCNr3L3hnhFMwTSgDTUzBupHPIoYOc4KCDiXTuS5AFRyzQ1DQoINUyFwDuBolaKdyEVRy7z+8Mfc9yCMIMDCz7zfD4e6/For7X2Wq+93RuIefH+ZOXl5eUBAAAAAAAAAEBSauUdAAAAAAAAAACA6qcUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAALCFWLhwYRxxxBFRUlISWZbFfffdV63Xf/XVVyPLsrj99tur9bpbs+7du0f37t3zjpGkmTNnRpZlMXPmzLyjbPEGDhwYrVu3zjsGAAAAkCClEAAAgC94+eWX44wzzohdd9016tWrFw0bNoxOnTrF+PHjY/ny5Zv03gMGDIhnn302/vu//zvuuOOOOOCAAzbp/TangQMHRpZl0bBhw3W+jwsXLowsyyLLshgzZkyVr//GG2/EiBEjYt68edWQdvNo3bp1ZFkWhx122DqP/+IXv6h4T55++ul1nnPxxRdHlmVx8sknr/P4miLQF9/TNWWNLMtizpw5az1n4MCBse22224w/4gRIyqu8+Xt5ptv3uDzq9ua11qZ7dVXX93s+QAAAADyUJR3AAAAgC3FQw89FN/73veiuLg4fvCDH0S7du3is88+i8ceeywuuuiieP755+PWW2/dJPdevnx5zJ49Oy655JL4yU9+sknu0apVq1i+fHnUqVNnk1x/Q4qKiuKTTz6JBx54IPr06VNwbNKkSVGvXr349NNPN+rab7zxRowcOTJat24d++23X6WfN3Xq1I26X3WpV69ezJgxI5YsWRLNmjUrOLah96S8vDzuvPPOaN26dTzwwAPx73//Oxo0aFCl+48YMSIeeOCBjc4fEXHTTTetVSLp2LFj7LbbbrF8+fKoW7fu17p+ZW2//fZxxx13FOwbO3Zs/POf/4xx48atdS4AAABATaAUAgAAEBGLFy+Ovn37RqtWrWL69OnRvHnzimNnn312LFq0KB566KFNdv933nknIiIaNWq0ye6RZVnUq1dvk11/Q4qLi6NTp05x5513rlUKmTx5chx99NHxm9/8ZrNk+eSTT2KbbbbZbIWFr9KpU6d46qmn4q677orzzjuvYv8///nPePTRR+OEE074yvdk5syZ8c9//jOmT58ePXv2jHvvvTcGDBhQ6Xvvt99+8eCDD8bcuXNj//333+jXcNJJJ0XTpk3XeWxzft7q168fp5xySsG+KVOmxAcffLDWfgAAAICawvIxAAAAEXHVVVfFRx99FLfddltBIWSN3XffveCH9itXroyf//znsdtuu0VxcXG0bt06fvazn0VZWVnB81q3bh3HHHNMPPbYY/Gd73wn6tWrF7vuumv86le/qjhnxIgR0apVq4iIuOiiiyLLsmjdunVEfL6Ux5r//UVrlu74omnTpkXnzp2jUaNGse2220abNm3iZz/7WcXxNctr3H777QXPmz59enTp0iXq168fjRo1iuOPPz5efPHFdd5v0aJFMXDgwGjUqFGUlJTEoEGD4pNPPvnqN/ZL+vfvHw8//HB8+OGHFfueeuqpWLhwYfTv33+t899///248MILY++9945tt902GjZsGL169Yr58+dXnDNz5sw48MADIyJi0KBBFUuErHmd3bt3j3bt2sWcOXOia9eusc0221S8L927d4/u3btXXGvAgAFRr169tV5/z549o3HjxvHGG29U+rVWRr169eLEE0+MyZMnF+y/8847o3HjxtGzZ8+vfO6kSZNir732ih49esRhhx0WkyZNqtK9zznnnGjcuHGMGDFiY6Jv0JplambOnFmxb81/ixdeeCF69OgR22yzTXzzm9+Mq666aq3nl5WVxfDhw2P33XeP4uLiaNmyZVx88cVrfceqKsuydb7m1q1bx8CBAyse33777ZFlWTz++OMxZMiQ2H777aN+/fpxwgknVJS4vujhhx+u+B41aNAgjj766Hj++efXOu++++6Ldu3aRb169aJdu3bx29/+9mu9HgAAAID1UQoBAACIiAceeCB23XXXOPjggyt1/umnnx6XXXZZ7L///jFu3Ljo1q1blJaWRt++fdc6d9GiRXHSSSfF4YcfHmPHjo3GjRvHwIEDK35gfOKJJ1Ysb9GvX7+444474pprrqlS/ueffz6OOeaYKCsri8svvzzGjh0bxx13XDz++OPrfd4f//jH6NmzZ7z99tsxYsSIGDJkSPzlL3+JTp06xauvvrrW+X369Il///vfUVpaGn369Inbb789Ro4cWemcJ554YmRZFvfee2/FvsmTJ8eee+65zmkVr7zyStx3331xzDHHxNVXXx0XXXRRPPvss9GtW7eKgkbbtm3j8ssvj4iIwYMHxx133BF33HFHdO3ateI67733XvTq1Sv222+/uOaaa6JHjx7rzDd+/PjYfvvtY8CAAbFq1aqIiLjlllti6tSpcd1110WLFi0q/Vorq3///vHkk0/Gyy+/XLFv8uTJcdJJJ33lUj9lZWXxm9/8Jvr16xcRn39upk+fHkuWLKn0fRs2bBgXXHBBPPDAAzF37tyNzv/+++/Hu+++W7F98MEH6z3/gw8+iCOPPDL23XffGDt2bOy5554xdOjQePjhhyvOWb16dRx33HExZsyYOPbYY+O6666L3r17x7hx4+Lkk0/e6Kwb45xzzon58+fH8OHD46yzzooHHnhgrSWe7rjjjjj66KNj2223jSuvvDIuvfTSeOGFF6Jz584F36OpU6fGd7/73ciyLEpLS6N3794xaNCgePrppzfrawIAAABqDsvHAAAANd6yZcviX//6Vxx//PGVOn/+/PkxceLEOP300+MXv/hFRET8+Mc/jh122CHGjBkTM2bMKCgdLFiwIGbNmhVdunSJiM+LFS1btoxf/vKXMWbMmNhnn30qfkC///77b9RSF9OmTYvPPvssHn744a9cymNdLrroothuu+1i9uzZsd1220VERO/evaN9+/YxfPjwmDhxYsH57du3j9tuu63i8XvvvRe33XZbXHnllZW6X4MGDeKYY46JyZMnxw9/+MNYvXp1TJkyJc4666x1nr/33nvH3//+96hV6//+TcOpp54ae+65Z9x2221x6aWXxo477hi9evWKyy67LA466KB1vn9LliyJm2++Oc4444z15mvUqFHcdttt0bNnzxg1alT0798/Lrzwwujdu/cmW4LkkEMOiWbNmsWdd94Z//mf/xkvvvhizJs3L8aPHx+vvPLKOp/z4IMPxocfflhRQurdu3cMHjw4pkyZEueff36l733uuefGuHHjYuTIkXH//fdvVP42bdoUPG7VqtU6C0VrvPHGG/GrX/0qTj311IiIOO2006JVq1Zx2223Ra9evSLi81LMH//4x/jzn/8cnTt3rnhuu3bt4swzz4y//OUvlS5wfV1NmjSJqVOnVkzmWb16dVx77bWxdOnSKCkpiY8++ijOPffcOP300+PWW2+teN6AAQOiTZs2ccUVV1TsHzp0aOy4447x2GOPRUlJSUREdOvWLY444oiKaUEAAAAA1cmkEAAAoMZbtmxZRHxeWKiM3//+9xERMWTIkIL9P/3pTyMi4qGHHirYv9dee1UUQiIitt9++2jTps1X/sB/YzRq1CgiIu6///5YvXp1pZ7z5ptvxrx582LgwIEVhZCIiH322ScOP/zwitf5RWeeeWbB4y5dusR7771X8R5WRv/+/WPmzJmxZMmSiukW61o6JiKiuLi4ohCyatWqeO+99yqWxqnKdIvi4uIYNGhQpc494ogj4owzzojLL788TjzxxKhXr17ccsstlb5XVdWuXTv69OkTd955Z0R8vixMy5YtCz4zXzZp0qQ44IADYvfdd4+IqFiupKpLyJSUlMT5558fv/vd7+Jvf/vbRuX/zW9+E9OmTavYNpRh2223LSjY1K1bN77zne8UfB/uueeeaNu2bey5554FU0gOOeSQiIiYMWPGRmXdGIMHDy5YqqlLly6xatWqeO211yLi80LWhx9+GP369SvIWrt27ejYsWNF1jXftwEDBlQUQiIiDj/88Nhrr7022+sBAAAAahalEAAAoMZr2LBhRET8+9//rtT5r732WtSqVaviB/JrNGvWLBo1alTxw+I1dt5557Wu0bhx4w0us1EVJ598cnTq1ClOP/302HHHHaNv375x9913r7cgsibnlyc9RHy+JMu7774bH3/8ccH+L7+Wxo0bR0RU6bUcddRR0aBBg7jrrrti0qRJceCBB671Xq6xevXqGDduXHzrW9+K4uLiaNq0aWy//fbxzDPPxNKlSyt9z29+85tRt27dSp8/ZsyY2G677WLevHlx7bXXxg477LDB57zzzjuxZMmSiu2jjz6q9P369+8fL7zwQsyfPz8mT54cffv2LSgifNGHH34Yv//976Nbt26xaNGiiq1Tp07x9NNPx9///vdK3zci4rzzzotGjRrFiBEjqvS8Nbp27RqHHXZYxdapU6f1nr/TTjut9dq+/H1YuHBhPP/887H99tsXbHvssUdERLz99tsR8fnSNV98z6vymaisDX3mFy5cGBGfT3z5ct6pU6dWZF3zffvWt7611j3W9R0EAAAAqA6WjwEAAGq8hg0bRosWLeK5556r0vO+6of2X1a7du117i8vL9/oe6xatarg8Te+8Y2YNWtWzJgxIx566KF45JFH4q677opDDjkkpk6d+pUZqurrvJY1iouL48QTT4yJEyfGK6+8st4ywhVXXBGXXnpp/PCHP4yf//znsd1220WtWrXi/PPPr/RElIjP35+q+Nvf/lbxw/xnn302+vXrt8HnHHjggQWFoOHDh1e6aNGxY8fYbbfd4vzzz4/Fixd/5eSUiM+naJSVlcXYsWNj7Nixax2fNGlSjBw5slL3jfi/aSEjRozY6GkhVVGZz9Dq1atj7733jquvvnqd57Zs2TIiIk488cT485//XLF/wIABcfvtt29Uri9/pyqbd83n8I477ohmzZqtdV5Rkb96AQAAAPLjbyYAAAAi4phjjolbb701Zs+eHQcddNB6z23VqlWsXr06Fi5cGG3btq3Y/9Zbb8WHH34YrVq1qrZcjRs3jg8//HCt/V+eRhIRUatWrTj00EPj0EMPjauvvjquuOKKuOSSS2LGjBlx2GGHrfN1REQsWLBgrWMvvfRSNG3aNOrXr//1X8Q69O/fPyZMmBC1atWKvn37fuV5v/71r6NHjx5x2223Fez/8MMPo2nTphWPK1vQqYyPP/44Bg0aFHvttVccfPDBcdVVV8UJJ5wQBx544HqfN2nSpFi+fHnF41133bVK9+3Xr1/813/9V7Rt2zb222+/9d6nXbt2MXz48LWO3XLLLTF58uQqlUIiIs4///y45pprYuTIkRVLEeVpt912i/nz58ehhx663v+2Y8eOLZgw0qJFiw1ee13fqc8++yzefPPNjc4aEbHDDjus83u2xprv25rJIl+0ru8gAAAAQHWwfAwAAEBEXHzxxVG/fv04/fTT46233lrr+Msvvxzjx4+PiM+XP4mIuOaaawrOWTPV4Oijj662XLvttlssXbo0nnnmmYp9b775Zvz2t78tOO/9999f67lrigVlZWXrvHbz5s1jv/32i4kTJxb8kPy5556LqVOnVrzOTaFHjx7x85//PK6//vp1TldYo3bt2mtNIbnnnnviX//6V8G+NeWVdRVoqmro0KHx+uuvx8SJE+Pqq6+O1q1bx4ABA77yfVyjU6dOBcuoVLUUcvrpp8fw4cPXOf1jjX/84x8xa9as6NOnT5x00klrbYMGDYpFixbFX//61yrde820kPvvvz/mzZtXpeduCn369Il//etf8Ytf/GKtY8uXL69Y1qhDhw4F7/lee+21wWvvtttuMWvWrIJ9t95661dOCtmQnj17RsOGDeOKK66IFStWrHX8nXfeiYjC79sXl7mZNm1avPDCCxt1bwAAAIANMSkEAAAgPv9B8eTJk+Pkk0+Otm3bxg9+8INo165dfPbZZ/GXv/wl7rnnnhg4cGBEROy7774xYMCAuPXWW+PDDz+Mbt26xZNPPhkTJ06M3r17R48ePaotV9++fWPo0KFxwgknxLnnnhuffPJJ3HTTTbHHHnvE3LlzK867/PLLY9asWXH00UdHq1at4u23344bb7wxdtppp+jcufNXXn/06NHRq1evOOigg+K0006L5cuXx3XXXRclJSWVXvpkY9SqVSv+8z//c4PnHXPMMXH55ZfHoEGD4uCDD45nn302Jk2atFbhYrfddotGjRrFzTffHA0aNIj69etHx44dY5dddqlSrunTp8eNN94Yw4cPj/333z8iIn75y19G9+7d49JLL42rrrqqSterilatWm3wPZ88eXKUl5fHcccdt87jRx11VBQVFcWkSZOiY8eOVbr/eeedF+PGjYv58+dvsgkxlXXqqafG3XffHWeeeWbMmDEjOnXqFKtWrYqXXnop7r777vjDH/4QBxxwwEZd+/TTT48zzzwzvvvd78bhhx8e8+fPjz/84Q8Fk2eqomHDhnHTTTfFqaeeGvvvv3/07ds3tt9++3j99dfjoYceik6dOsX1118fERGlpaVx9NFHR+fOneOHP/xhvP/++3HdddfFt7/97fjoo4826v4AAAAA62NSCAAAwP/vuOOOi2eeeSZOOumkuP/+++Pss8+O//iP/4hXX301xo4dG9dee23Fuf/zP/8TI0eOjKeeeirOP//8mD59egwbNiymTJlSrZmaNGkSv/3tb2ObbbaJiy++OCZOnBilpaVx7LHHrpV95513jgkTJsTZZ58dN9xwQ3Tt2jWmT58eJSUlX3n9ww47LB555JFo0qRJXHbZZTFmzJj4f//v/8Xjjz9e5ULFpvCzn/0sfvrTn8Yf/vCHOO+882Lu3Lnx0EMPRcuWLQvOq1OnTkycODFq164dZ555ZvTr1y/+/Oc/V+le//73v+OHP/xhtG/fPi655JKK/V26dInzzjsvxo4dG0888US1vK6NNWnSpNh5551j3333XefxRo0aRefOneOuu+6KlStXVunajRo1ivPPP78aUn59tWrVivvuuy9GjRoVzz77bFx44YUV37fzzjsv9thjj42+9o9+9KMYOnRozJo1K37605/G4sWLY9q0aV+rCNO/f//405/+FN/85jdj9OjRcd5558WUKVNiv/32i0GDBlWcd+SRR8Y999wTq1atimHDhsW9994bv/zlLze64AIAAACwIVn5l+fwAgAAAAAAAACw1TMpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEFeUdYFP4Rvuf5B0hOR88dX3eEQAAAAAAAIAvqJfkT3trLj/nzs/yv6X783CTQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIUFHeAQAAAAAAAACgxsvMdKD6+VQBAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABJUlHcAAAAAAAAAAKjxsizvBCTIpBAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAElSUdwAAAAAAAAAAqPEyMx2ofj5VAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEFeUdAAAAAAAAAABqvCzLOwEJMikEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQV5R0AAAAAAAAAAGq8zEwHqp9PFQAAAAAAAABAgpRCAAAAAAAAAAASlOvyMe+++25MmDAhZs+eHUuWLImIiGbNmsXBBx8cAwcOjO233z7PeAAAAAAAAAAAW63cJoU89dRTsccee8S1114bJSUl0bVr1+jatWuUlJTEtddeG3vuuWc8/fTTecUDAAAAAAAAANiq5TYp5Jxzzonvfe97cfPNN0eWZQXHysvL48wzz4xzzjknZs+evd7rlJWVRVlZWeHzV6+KrFbtas8MAAAAAAAAALC1yG1SyPz58+OCCy5YqxASEZFlWVxwwQUxb968DV6ntLQ0SkpKCraVb83ZBIkBAAAAAAAAALYeuZVCmjVrFk8++eRXHn/yySdjxx133OB1hg0bFkuXLi3YinbsUJ1RAQAAAAAAAGDTyjJbXlvCcls+5sILL4zBgwfHnDlz4tBDD60ogLz11lvxpz/9KX7xi1/EmDFjNnid4uLiKC4uLthn6RgAAAAAAAAAoKbLrRRy9tlnR9OmTWPcuHFx4403xqpVqyIionbt2tGhQ4e4/fbbo0+fPnnFAwAAAAAAAADYquVWComIOPnkk+Pkk0+OFStWxLvvvhsREU2bNo06derkGQsAAAAAAAAAYKuXaylkjTp16kTz5s3zjgEAAAAAAAAAkIxaeQcAAAAAAAAAAKD6KYUAAAAAAAAAACRoi1g+BgAAAAAAAABqtMxMB6qfTxUAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACSrKOwAAAAAAAAAA1HhZlncCEmRSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUV5BwAAAAAAAACAGi8z04Hq51MFAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKK8g4AAAAAAAAAADVeluWdgASZFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASFBR3gEAAAAAAAAAoMbLzHSg+vlUAQAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASFBR3gE2hQ+euj7vCMlpfOBP8o6QFJ9RAAAAAAAAADY1k0IAAAAAAAAAABKkFAIAAAAAAAAAkKAkl48BAAAAAAAAgK1KluWdgASZFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASFBR3gEAAAAAAAAAoMbLzHSg+vlUAQAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASVJR3AAAAAAAAAACo8TIzHah+PlUAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJKgo7wAAAAAAAAAAUOPVyvJOQIJMCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAADyltWy5bVVwaxZs+LYY4+NFi1aRJZlcd999xX+Z8yydW6jR4+uOKd169ZrHR81alTBdZ555pno0qVL1KtXL1q2bBlXXXXVRn2slEIAAAAAAAAAACrh448/jn333TduuOGGdR5/8803C7YJEyZElmXx3e9+t+C8yy+/vOC8c845p+LYsmXL4ogjjohWrVrFnDlzYvTo0TFixIi49dZbq5y3qMrPAAAAAAAAAACogXr16hW9evX6yuPNmjUreHz//fdHjx49Ytdddy3Y36BBg7XOXWPSpEnx2WefxYQJE6Ju3brx7W9/O+bNmxdXX311DB48uEp5TQoBAAAAAAAAAGqssrKyWLZsWcFWVlb2ta/71ltvxUMPPRSnnXbaWsdGjRoVTZo0ifbt28fo0aNj5cqVFcdmz54dXbt2jbp161bs69mzZyxYsCA++OCDKmVQCgEAAAAAAAAAaqzS0tIoKSkp2EpLS7/2dSdOnBgNGjSIE088sWD/ueeeG1OmTIkZM2bEGWecEVdccUVcfPHFFceXLFkSO+64Y8Fz1jxesmRJlTJYPgYAAAAAAAAAqLGGDRsWQ4YMKdhXXFz8ta87YcKE+P73vx/16tUr2P/Fe+2zzz5Rt27dOOOMM6K0tLRa7vtFSiEAAAAAAAAAQI1VXFxc7WWMRx99NBYsWBB33XXXBs/t2LFjrFy5Ml599dVo06ZNNGvWLN56662Cc9Y8btasWZVyWD4GAAAAAAAAAKAa3XbbbdGhQ4fYd999N3juvHnzolatWrHDDjtERMRBBx0Us2bNihUrVlScM23atGjTpk00bty4SjlMCgEAAAAAAACAvGVZ3gmohI8++igWLVpU8Xjx4sUxb9682G677WLnnXeOiIhly5bFPffcE2PHjl3r+bNnz46//vWv0aNHj2jQoEHMnj07LrjggjjllFMqCh/9+/ePkSNHxmmnnRZDhw6N5557LsaPHx/jxo2rcl6lEAAAAAAAAACASnj66aejR48eFY+HDBkSEREDBgyI22+/PSIipkyZEuXl5dGvX7+1nl9cXBxTpkyJESNGRFlZWeyyyy5xwQUXVFwnIqKkpCSmTp0aZ599dnTo0CGaNm0al112WQwePLjKebPy8vLyKj9rM/nHP/4Rw4cPjwkTJnzlOWVlZVFWVlawr7x29a/3U9M1PvAneUdIygdPXZ93BAAAAAAAALZy9YwASMo3Dr0i7wg11vI//SzvCJtMrbwDrM/7778fEydOXO85paWlUVJSUrCNvrJ0MyUEAAAAAAAAANgy5dod+93vfrfe46+88soGrzFs2LCCMSoRn08KAQAAAAAAAACoyXIthfTu3TuyLIv1rWCTZdl6r1FcvPZSMZ+urJZ4AAAAAAAAAABbrVyXj2nevHnce++9sXr16nVuc+fOzTMeAAAAAAAAAMBWK9dJIR06dIg5c+bE8ccfv87jG5oiAgAAAAAAAABJyHKd6UCici2FXHTRRfHxxx9/5fHdd989ZsyYsRkTAQAAAAAAAACkIddSSJcuXdZ7vH79+tGtW7fNlAYAAAAAAAAAIB3mzwAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKK8g4AAAAAAAAAADVeluWdgASZFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASFBR3gEAAAAAAAAAoMbLzHSg+vlUAQAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJCgorwDAAAAAAAAAECNl2V5JyBBJoUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABJUlHcAAAAAAAAAAKjxMjMdqH4+VQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABBXlHQAAAAAAAAAAarwsyzsBCTIpBAAAAAAAAAAgQSaFUCkfPHV93hGSsudPH8w7QnJeGntM3hGS83HZyrwjJKW4qHbeEZJTVFtjmi1beXneCdLjH0pUL5/R6lce3tTq9knZqrwjJKV+sb8Gqm6r/WJarWrX8pt9dVuxanXeEZJTVMu/s6xO/ozPls5v9dXP9x5g8/MnWAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASFBR3gEAAAAAAAAAoMbLzHSg+vlUAQAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASVJR3AAAAAAAAAACo8bIs7wQkyKQQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABJUlHcAAAAAAAAAAKjxMjMdqH4+VQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABBXlHQAAAAAAAAAAarzMTAeqn08VAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAkqyjsAAAAAAAAAANR4WZZ3AhJkUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACQo91LI8uXL47HHHosXXnhhrWOffvpp/OpXv8ohFQAAAAAAAADA1q0oz5v//e9/jyOOOCJef/31yLIsOnfuHFOmTInmzZtHRMTSpUtj0KBB8YMf/OArr1FWVhZlZWUF+8prF0dxcfEmzQ4AAAAAAAAA1SbLfaYDCcr1UzV06NBo165dvP3227FgwYJo0KBBdOrUKV5//fVKX6O0tDRKSkoKttFXlm7C1AAAAAAAAAAAW75cJ4X85S9/iT/+8Y/RtGnTaNq0aTzwwAPx4x//OLp06RIzZsyI+vXrb/Aaw4YNiyFDhhTsK69tSggAAAAAAAAAULPlOilk+fLlUVT0f72ULMvipptuimOPPTa6desWf//73zd4jeLi4mjYsGHBZukYAAAAAAAAAKCmy3VSyJ577hlPP/10tG3btmD/9ddfHxERxx13XB6xAAAAAAAAAAC2erlOCjnhhBPizjvvXOex66+/Pvr16xfl5eWbORUAAAAAAAAAwNYv11LIsGHD4ve///1XHr/xxhtj9erVmzERAAAAAAAAAEAaci2FAAAAAAAAAACwaRTlHQAAAAAAAAAAarwsyzsBCTIpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQoKK8AwAAAAAAAABAjZeZ6UD186kCAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACSoKO8AAAAAAAAAAFDjZVneCUiQSSEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJKgo7wAAAAAAAAAAUNNlWZZ3BBJkUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFFeQcAAAAAAAAAgJouy7K8I5Agk0IAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAkqyjsA1EQvjT0m7wjJadx5aN4RkvPBY1fmHSEpq8vL844AbGZZlncCWD+f0eqXhTe1utUv9tcW1cn3vvrV9qayhatT278JBPg6/FYPQAr87QoAAAAAAAAA5E0ZjU1AVRwAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkKCivAMAAAAAAAAAQE2XZVneEUiQSSEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJKgo7wAAAAAAAAAAUNNlWZZ3BBJkUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFFeQcAAAAAAAAAgJouy7K8I5Agk0IAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAkqyjsAAAAAAAAAANR0WZblHYEEmRQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKK8g4AAAAAAAAAADVelncAUmRSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJCgorwDvPjii/HEE0/EQQcdFHvuuWe89NJLMX78+CgrK4tTTjklDjnkkPU+v6ysLMrKygr2ldcujuLi4k0ZGwAAAAAAAABgi5brpJBHHnkk9ttvv7jwwgujffv28cgjj0TXrl1j0aJF8dprr8URRxwR06dPX+81SktLo6SkpGAbfWXpZnoFAAAAAAAAAABbpqy8vLw8r5sffPDBccghh8R//dd/xZQpU+LHP/5xnHXWWfHf//3fERExbNiwmDNnTkydOvUrr2FSCBAR0bjz0LwjJOeDx67MO0JSVuf3222yamVZ3hEAgE3MH6Gqlz8+AQBAeurlvi4E1amk/x15R6ixlk4+Ne8Im0yuv0w8//zz8atf/SoiIvr06ROnnnpqnHTSSRXHv//978cvf/nL9V6juHjtAsinK6s/KwAAAAAAAABsKpk2P5tArsvHRPzfB7tWrVpRr169KCkpqTjWoEGDWLp0aV7RAAAAAAAAAAC2WrmWQlq3bh0LFy6seDx79uzYeeedKx6//vrr0bx58zyiAQAAAAAAAABs1XJdPuass86KVatWVTxu165dwfGHH344DjnkkM0dCwAAAAAAAABgq5drKeTMM89c7/ErrrhiMyUBAAAAAAAAAEhLrsvHAAAAAAAAAACwaSiFAAAAAAAAAAAkSCkEAAAAAAAAACBBRXkHAAAAAAAAAICaLsuyvCOQIJNCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJKso7AAAAAAAAAADUdFmW5R2BBJkUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECCivIOAAAAAAAAAAA1XZZleUcgQSaFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASVJR3AAAAAAAAAACo8bK8A5Aik0IAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASFBR3gEAAAAAAAAAoKbLsizvCCTIpBAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUV5B4CaqGzF6rwjJOf9R6/MO0JyvnP5H/OOkJTHLzkk7wjpUW2tdllYr7I6Wf4Tap5Vq8vzjpCcT1esyjtCUr5Rp3beEZJjve/q5e2sfss/8+todftGXb+WsmUr90fSavXZSn+XX93q1PYbfvXzngLr58cpAAAAAAAAAAAJUgoBAAAAAAAAAEiQ5WMAAAAAAAAAIGeWqGRTMCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJCgorwDAAAAAAAAAEBNl2VZ3hFIkEkhAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACSoKO8AAAAAAAAAAFDjZXkHIEUmhQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAElSUdwAAAAAAAAAAqOmyLMs7AgkyKQQAAAAAAAAAoBJmzZoVxx57bLRo0SKyLIv77ruv4PjAgQMjy7KC7cgjjyw45/3334/vf//70bBhw2jUqFGcdtpp8dFHHxWc88wzz0SXLl2iXr160bJly7jqqqs2Kq9SCAAAAAAAAABAJXz88cex7777xg033PCV5xx55JHx5ptvVmx33nlnwfHvf//78fzzz8e0adPiwQcfjFmzZsXgwYMrji9btiyOOOKIaNWqVcyZMydGjx4dI0aMiFtvvbXKeS0fAwAAAAAAAABQCb169YpevXqt95zi4uJo1qzZOo+9+OKL8cgjj8RTTz0VBxxwQEREXHfddXHUUUfFmDFjokWLFjFp0qT47LPPYsKECVG3bt349re/HfPmzYurr766oDxSGSaFAAAAAAAAAABUk5kzZ8YOO+wQbdq0ibPOOivee++9imOzZ8+ORo0aVRRCIiIOO+ywqFWrVvz1r3+tOKdr165Rt27dinN69uwZCxYsiA8++KBKWUwKAQAAAAAAAABqrLKysigrKyvYV1xcHMXFxVW+1pFHHhknnnhi7LLLLvHyyy/Hz372s+jVq1fMnj07ateuHUuWLIkddtih4DlFRUWx3XbbxZIlSyIiYsmSJbHLLrsUnLPjjjtWHGvcuHGl85gUAgAAAAAAAADUWKWlpVFSUlKwlZaWbtS1+vbtG8cdd1zsvffe0bt373jwwQfjqaeeipkzZ1Zv6EpSCgEAAAAAAAAAaqxhw4bF0qVLC7Zhw4ZVy7V33XXXaNq0aSxatCgiIpo1axZvv/12wTkrV66M999/P5o1a1ZxzltvvVVwzprHa86pLMvHAAAAAAAAAEDOsizLO0KNtbFLxVTGP//5z3jvvfeiefPmERFx0EEHxYcffhhz5syJDh06RETE9OnTY/Xq1dGxY8eKcy655JJYsWJF1KlTJyIipk2bFm3atKnS0jERJoUAAAAAAAAAAFTKRx99FPPmzYt58+ZFRMTixYtj3rx58frrr8dHH30UF110UTzxxBPx6quvxp/+9Kc4/vjjY/fdd4+ePXtGRETbtm3jyCOPjB/96Efx5JNPxuOPPx4/+clPom/fvtGiRYuIiOjfv3/UrVs3TjvttHj++efjrrvuivHjx8eQIUOqnFcpBAAAAAAAAACgEp5++ulo3759tG/fPiIihgwZEu3bt4/LLrssateuHc8880wcd9xxsccee8Rpp50WHTp0iEcffbRgEsmkSZNizz33jEMPPTSOOuqo6Ny5c9x6660Vx0tKSmLq1KmxePHi6NChQ/z0pz+Nyy67LAYPHlzlvJaPAQAAAAAAAACohO7du0d5eflXHv/DH/6wwWtst912MXny5PWes88++8Sjjz5a5XxfZlIIAAAAAAAAAECClEIAAAAAAAAAABK0xZVC1jdmBQAAAAAAAACAyinKO8CXFRcXx/z586Nt27Z5RwEAAAAAAACAzSLLsrwjkKDcSiFDhgxZ5/5Vq1bFqFGjokmTJhERcfXVV2/OWAAAAAAAAAAAScitFHLNNdfEvvvuG40aNSrYX15eHi+++GLUr1+/Uk2osrKyKCsrK7xG7eIoLi6uzrgAAAAAAAAAAFuVWnnd+IorroilS5fGpZdeGjNmzKjYateuHbfffnvMmDEjpk+fvsHrlJaWRklJScE2+srSzfAKAAAAAAAAAAC2XLlNCvmP//iPOPTQQ+OUU06JY489NkpLS6NOnTpVvs6wYcPWWoqmvLYpIQAAAAAAAABAzZbbpJCIiAMPPDDmzJkT77zzThxwwAHx3HPPVWrJmC8qLi6Ohg0bFmyWjgEAAAAAAAAAarrcJoWsse2228bEiRNjypQpcdhhh8WqVavyjgQAAAAAAAAAsNXLvRSyRt++faNz584xZ86caNWqVd5xAAAAAAAAAAC2altMKSQiYqeddoqddtop7xgAAAAAAAAAsFllWZZ3BBJUK+8AAAAAAAAAAABUP6UQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIUFHeAQAAAAAAAACgxsvyDkCKTAoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACSoKO8AAAAAAAAAAFDTZVmWdwQSZFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAkqyjsAAAAAAAAAANR0WZblHYEEmRQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEhQUd4BAAAAAAAAAKCmy7Is7wgkyKQQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABJUlHcAAAAAAAAAAKjxsrwDkCKlECqlvDzvBGkpqu1X9Oq22oe02j1+ySF5R0jKj3/9bN4RknPL9/bJO0JyPlu1Ou8ISSmuYyhfdVu12u/31SnzR9Jqt/yzVXlHSI5vffXyfla/ZZ+syDtCUurXq513BAAoULfI/7evbv6/KMDm53czAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIUFHeAQAAAAAAAACgpsuyLO8IJMikEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASVJR3AAAAAAAAAACo6bIsyzsCCTIpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQoKK8AwAAAAAAAABATZdlWd4RSJBJIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkqCjvAAAAAAAAAABQ02VZlncEEmRSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUV5BwAAAAAAAACAGi/LOwApMikEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASVJR3gC/6+OOP4+67745FixZF8+bNo1+/ftGkSZP1PqesrCzKysoK9pXXLo7i4uJNGRUAAAAAAAAAYIuW66SQvfbaK95///2IiPjHP/4R7dq1iwsuuCCmTZsWw4cPj7322isWL1683muUlpZGSUlJwTb6ytLNER8AAAAAAAAAqkWWZbactpTlWgp56aWXYuXKlRERMWzYsGjRokW89tpr8eSTT8Zrr70W++yzT1xyySXrvcawYcNi6dKlBdtFQ4dtjvgAAAAAAAAAAFusLWb5mNmzZ8fNN98cJSUlERGx7bbbxsiRI6Nv377rfV5x8dpLxXy6cpPFBAAAAAAAAADYKuQ6KSQiKkaxfPrpp9G8efOCY9/85jfjnXfeySMWAAAAAAAAAMBWLfdJIYceemgUFRXFsmXLYsGCBdGuXbuKY6+99lo0adIkx3QAAAAAAAAAAFunXEshw4cPL3i87bbbFjx+4IEHokuXLpszEgAAAAAAAABAEraoUsiXjR49ejMlAQAAAAAAAABIS628AwAAAAAAAAAAUP1ynRQCAAAAAAAAAERkWZZ3BBJkUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFFeQcAAAAAAAAAgJouy/JOQIpMCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUV5BwAAAAAAAACAmi7LsrwjkCCTQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACSrKOwAAAAAAAAAA1HRZlncCUmRSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJKso7AAAAAAAAAADUdFmW5R2BBJkUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACSrKOwBbhyzLO0FaaoU3tLr5jG4Cq/MOkJYbT9o77wjJ2fXs3+QdITnPjuudd4SkFNfRv65utWv5DZ8t2zbFtfOOkJzV/kxarfw6Wv3q+95Xqzq1/fmputXOyvOOAGxm/p4UAPgypRAAAAAAAAAAyJlyH5uC+j0AAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACSrKOwAAAAAAAAAA1HS1amV5RyBBJoUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABJUlHcAAAAAAAAAAKjpsizvBKTIpBAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKK8g4AAAAAAAAAADVdlmV5RyBBJoUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkKCivAMAAAAAAAAAQE2XZXknIEUmhQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAElSUdwAAAAAAAAAAqOmyLMs7AgkyKQQAAAAAAAAAIEFKIQAAAAAAAAAACcq1FDJ37txYvHhxxeM77rgjOnXqFC1btozOnTvHlClTckwHAAAAAAAAALD1yrUUMmjQoHj55ZcjIuJ//ud/4owzzogDDjggLrnkkjjwwAPjRz/6UUyYMGG91ygrK4tly5YVbGVlZZsjPgAAAAAAAADAFivXUsjChQvjW9/6VkRE3HjjjTF+/PgYP358nHnmmTFu3Li45ZZbYuzYseu9RmlpaZSUlBRso68s3RzxAQAAAAAAAAC2WEV53nybbbaJd999N1q1ahX/+te/4jvf+U7B8Y4dOxYsL7Muw4YNiyFDhhTsK69dXO1ZAQAAAAAAAAC2JrlOCunVq1fcdNNNERHRrVu3+PWvf11w/O67747dd999vdcoLi6Ohg0bFmzFxUohAAAAAAAAAEDNluukkCuvvDI6deoU3bp1iwMOOCDGjh0bM2fOjLZt28aCBQviiSeeiN/+9rd5RgQAAAAAAACATS7LsrwjkKBcJ4W0aNEi/va3v8VBBx0UjzzySJSXl8eTTz4ZU6dOjZ122ikef/zxOOqoo/KMCAAAAAAAAACwVcp1UkhERKNGjWLUqFExatSovKMAAAAAAAAAACQj10khAAAAAAAAAABsGkohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKK8g4AAAAAAAAAADVdluWdgBSZFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgoryDgAAAAAAAAAANV2WZXlHIEEmhQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAElSUdwAAAAAAAAAAqOmyLO8EpMikEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgoryDgAAAAAAAAAANV2WZXlHIEEmhQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQoKK8AwAAAAAAAABATZdleScgRSaFAAAAAAAAAAAkSCkEAAAAAAAAACBBlo8BgM3g0xWr846QnOev6Z13hOT85tl/5R0hKT84oFXeEWC9Vqzye1N1W+0trXaf+ZxWq/pZ7bwjJOeVdz7OO0JSWjetn3eE5Hy6YlXeEZJTsk2dvCMAAECVmBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJKgo7wAAAAAAAAAAUNNlWZZ3BBJkUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACSrKOwAAAAAAAAAA1HRZlncCUmRSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUV5BwAAAAAAAACAmi7LsrwjkCCTQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIBKmDVrVhx77LHRokWLyLIs7rvvvopjK1asiKFDh8bee+8d9evXjxYtWsQPfvCDeOONNwqu0bp168iyrGAbNWpUwTnPPPNMdOnSJerVqxctW7aMq666aqPyKoUAAAAAAAAAAFTCxx9/HPvuu2/ccMMNax375JNPYu7cuXHppZfG3Llz4957740FCxbEcccdt9a5l19+ebz55psV2znnnFNxbNmyZXHEEUdEq1atYs6cOTF69OgYMWJE3HrrrVXOW1TlZwAAAAAAAAAA1EC9evWKXr16rfNYSUlJTJs2rWDf9ddfH9/5znfi9ddfj5133rlif4MGDaJZs2brvM6kSZPis88+iwkTJkTdunXj29/+dsybNy+uvvrqGDx4cJXymhQCAAAAAAAAANRYZWVlsWzZsoKtrKysWq69dOnSyLIsGjVqVLB/1KhR0aRJk2jfvn2MHj06Vq5cWXFs9uzZ0bVr16hbt27Fvp49e8aCBQvigw8+qNL9lUIAAAAAAAAAgBqrtLQ0SkpKCrbS0tKvfd1PP/00hg4dGv369YuGDRtW7D/33HNjypQpMWPGjDjjjDPiiiuuiIsvvrji+JIlS2LHHXcsuNaax0uWLKlSBsvHAAAAAAAAAEDOsizvBDXXsGHDYsiQIQX7iouLv9Y1V6xYEX369Iny8vK46aabCo598V777LNP1K1bN84444woLS392vf9MqUQAAAAAAAAAKDGKi4urtYyxppCyGuvvRbTp08vmBKyLh07doyVK1fGq6++Gm3atIlmzZrFW2+9VXDOmsfNmjWrUhbLxwAAAAAAAAAAVIM1hZCFCxfGH//4x2jSpMkGnzNv3ryoVatW7LDDDhERcdBBB8WsWbNixYoVFedMmzYt2rRpE40bN65SHpNCAAAAAAAAAAAq4aOPPopFixZVPF68eHHMmzcvtttuu2jevHmcdNJJMXfu3HjwwQdj1apVsWTJkoiI2G677aJu3boxe/bs+Otf/xo9evSIBg0axOzZs+OCCy6IU045paLw0b9//xg5cmScdtppMXTo0Hjuuedi/PjxMW7cuCrnVQoBAAAAAAAAAKiEp59+Onr06FHxeMiQIRERMWDAgBgxYkT87ne/i4iI/fbbr+B5M2bMiO7du0dxcXFMmTIlRowYEWVlZbHLLrvEBRdcUHGdiIiSkpKYOnVqnH322dGhQ4do2rRpXHbZZTF48OAq51UKAQAAAAAAAACohO7du0d5eflXHl/fsYiI/fffP5544okN3mefffaJRx99tMr5vqzW174CAAAAAAAAAABbHJNCAAAAAAAAACBnWZblHYEEmRQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIJyLYWcc8458eijj+YZAQAAAAAAAAByl2W2vLaU5VoKueGGG6J79+6xxx57xJVXXhlLliyp8jXKyspi2bJlBVtZWdkmSAsAAAAAAAAAsPXIffmYqVOnxlFHHRVjxoyJnXfeOY4//vh48MEHY/Xq1ZV6fmlpaZSUlBRso68s3cSpAQAAAAAAAAC2bLmXQvbee++45ppr4o033oj//d//jbKysujdu3e0bNkyLrnkkli0aNF6nz9s2LBYunRpwXbR0GGbKT0AAAAAAAAAwJYp91LIGnXq1Ik+ffrEI488Eq+88kr86Ec/ikmTJkWbNm3W+7zi4uJo2LBhwVZcXLyZUgMAAAAAAAAAbJm2mFLIF+28884xYsSIWLx4cTzyyCN5xwEAAAAAAAAA2OrkWgpp1apV1K5d+yuPZ1kWhx9++GZMBAAAAAAAAACQhqI8b7548eI8bw8AAAAAAAAAW4Qsy/KOQIK2yOVjAAAAAAAAAAD4epRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUV5BwAAAAAAAACAmu7/Y+/+o7Ss67yBf6577mFEjAFSmMHMVEzFTGo8Kbshma4sEkm67rEs8LF0c3VLSDTMNX+Uo9hZy6z1tLlqP8w2JZfHbf2BsZGGv0AXo46pWOjKYIqKwnLzY+7nj+dxtnmAkZF7+DLf+/U65zrHub7Xfc175twz98z45vMtitQJyJFJIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkqJw6AAAAAAAAAADUu6IoUkcgQyaFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAyVE4dAAAAAAAAAADqXVEUqSOQIZNCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMhQOXUAAAAAAAAAAKh3RZE6ATkyKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkKFy6gAAAAAAAAAAUO+KokgdgQwphQCwRQ0lP3jU0tt28ZLLzm/qYXunjpCVoUdMTx0hOy8/cHXqCFlpbDA4suYaUgfIT1Oj5yk7twNa35Y6AvTI91EAAMBvBQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADJVTBwAAAAAAAACAelcUqROQI5NCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZKqcOAAAAAAAAAAD1riiK1BHIkEkhAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMlVMHAAAAAAAAAIB6VxSpE5Ajk0IAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyFA5dQAAAAAAAAAAqHelokgdgQyZFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyFA5dQAAAAAAAAAAqHdFkToBOTIpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMpS8FHLttdfG1KlT45ZbbomIiO9///sxevToOPDAA+OCCy6IjRs39vj4SqUSq1ev7nZUKpUdER0AAAAAAAAAYKeVtBTyla98JS644IJYu3ZtTJ8+Pa688sqYPn16nHLKKTFt2rT47ne/G5dddlmP92hvb4/m5uZux1VXtu+gjwAAAAAAAAAAYOdUVKvVaqp3PmrUqJg9e3accMIJ8Z//+Z/R1tYWN910U5xyyikREfHTn/40zjvvvHjyySe3eo9KpbLZZJBqQ1M0NTX1aXbYHum+6vJVFKkTAEB3Q4+YnjpCdl5+4OrUEQAAAAB2KruUUyegliZ8+8HUEerWXX97eOoIfSbpt4nnn38+DjvssIiIOPTQQ6NUKsWYMWO61t///vfH888/3+M9mpo2L4Cs63nHGQAAAAAAAACA7CXdPqalpSV+85vfRETEk08+GZs2bep6OyJi6dKlMXz48FTxAAAAAAAAAAD6raSTQk455ZSYOnVqHH/88XHvvffGeeedF+eee2689NJLURRFfPWrX42/+qu/ShkRAAAAAAAAAKBfSloKueSSS2LgwIGxcOHCOP300+OLX/xiHHrooXHeeefF2rVrY/LkyXHZZZeljAgAAAAAAAAA0C8V1Wq1mjpEra3bmDoB9Cy/r7r0iiJ1AgDobugR01NHyM7LD1ydOgIAAADATmWXpCMAqLUJ334wdYS6ddffHp46Qp8ppQ4AAAAAAAAAAEDt6Y4BAAAAAAAAQGIlk/HpAyaFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJChcuoAAAAAAAAAAFDviqJIHYEMmRQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMhQOXUAAAAAAAAAAKh3RZE6ATkyKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADJVTBwAAAAAAAACAeldEkToCGTIpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQoXLqAAAAAAAAAABQ70pF6gTkyKQQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGSqnDgD1qChSJwB2tM5qNXWE7JR8M2Un9/IDV6eOkJ2hfz4zdYSsvHz/VakjZMfLfe15uWdn5+u+tnzNAwAA1J5JIQAAAAAAAAAAGTIpBAAAAAAAAAASK4zPow+YFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhsqpAwAAAAAAAABAvSuK1AnIkUkhAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMlVMHAAAAAAAAAIB6VyqK1BHIkEkhAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGSonDoAAAAAAAAAANS7okidgByZFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyFA5dQAAAAAAAAAAqHdFUaSOQIZMCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ+XUAQAAAAAAAACg3hVF6gTkKGkpZMWKFfGP//iPcd9998WKFSuiVCrFvvvuG1OmTIlTTz01GhoaUsYDAAAAAAAAAOi3km0f88gjj8RBBx0UP/vZz2LDhg3x5JNPRltbWwwaNCjOPffcOPLII+O1115LFQ8AAAAAAAAAoF9LVgo555xzYvr06fHII4/EL3/5y7jxxhvjd7/7Xdxyyy2xbNmyWLt2bVx44YVvep9KpRKrV6/udlQqlR3wEQAAAAAAAAAA7LySlUIWL14cn/rUp7re/sQnPhGLFy+OlStXxtChQ2P27Nlx6623vul92tvbo7m5udtx1ZXtfRkdAAAAAAAAAGCnV071jocPHx4rVqyIfffdNyIiVq5cGRs3bozBgwdHRMT+++8fq1atetP7zJo1K2bMmNHtXLWhqfaBAQAAAAAAAAD6kWSlkClTpsRnP/vZuOqqq6KpqSkuu+yyGD9+fAwcODAiIp544onYc8893/Q+TU1N0dTUvQSybmOfRAYAAAAAAAAA6DeSlUK+8pWvxIoVK2Ly5MmxadOmGDt2bPzgBz/oWi+KItrbbQMDAAAAAAAAQP5KRZE6AhlKVgrZbbfd4sc//nGsW7cuNm7cGLvttlu39WOPPTZRMgAAAAAAAACA/i9ZKeQNu+yyS+oIAAAAAAAAAADZKaUOAAAAAAAAAABA7SmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyFA5dQAAAAAAAAAAqHdF6gBkyaQQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGyqkDAAAAAAAAAEC9K4oidQQyZFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBD5dQBAAAAAAAAAKDelYrUCciRSSEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZKicOgAAAAAAAAAA1LuiKFJHIEMmhQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMlROHQAAAAAAAAAA6l1RpE5AjkwKAQAAAAAAAADIkFIIAAAAAAAAAECGbB8DwBZVq6kT5MXnsw8Yo1dzGzZ2po6Qlcay/nWtvXz/VakjZOUdn7kldYTsPPfdk1NHyM6GTV6baqnBHGJ2cn5tqr3KBt9Ha23ggIbUEQD6NX8nBdjx/KUaAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhsqpAwAAAAAAAABAvSuKInUEMmRSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ+XUAQAAAAAAAACg3pWK1AnIkUkhAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAtsGCBQti8uTJMXLkyCiKIm6//fZu69VqNS666KJobW2NgQMHxjHHHBNPPvlkt2tWrVoVp5xySgwePDiGDBkSn/70p+P111/vds2SJUti3Lhxscsuu8Ree+0Vs2fPfkt5lUIAAAAAAAAAALbBmjVr4tBDD41vfetbW1yfPXt2XHPNNXHdddfFgw8+GIMGDYoJEybEunXruq455ZRTYunSpXHPPffEHXfcEQsWLIgzzjija3316tVx7LHHxt577x2LFi2Kq666Ki6++OL4zne+0+u85d5/iAAAAAAAAAAA9WfixIkxceLELa5Vq9X4+te/HhdeeGEcf/zxERHxve99L0aMGBG33357nHzyyfHb3/427rzzznj44YfjsMMOi4iIb37zm3HcccfF1772tRg5cmT88Ic/jPXr18c///M/x4ABA+Lggw+Oxx57LP7hH/6hW3lkW5gUAgAAAAAAAACwnZ555pno6OiIY445putcc3NzHH744bFw4cKIiFi4cGEMGTKkqxASEXHMMcdEqVSKBx98sOuaI488MgYMGNB1zYQJE+KJJ56Il19+uVeZTAoBAAAAAAAAgMSKokgdoW5VKpWoVCrdzjU1NUVTU1Ov7tPR0RERESNGjOh2fsSIEV1rHR0dMXz48G7r5XI5hg0b1u2affbZZ7N7vLE2dOjQbc5kUggAAAAAAAAAULfa29ujubm529He3p46Vk2YFAIAAAAAAAAA1K1Zs2bFjBkzup3r7ZSQiIiWlpaIiFi5cmW0trZ2nV+5cmWMGTOm65oXXnih2+M2btwYq1at6np8S0tLrFy5sts1b7z9xjXbyqQQAAAAAAAAAKBuNTU1xeDBg7sdb6UUss8++0RLS0vce++9XedWr14dDz74YIwdOzYiIsaOHRuvvPJKLFq0qOuan//859HZ2RmHH3541zULFiyIDRs2dF1zzz33xAEHHNCrrWMilEIAAAAAAAAAALbJ66+/Ho899lg89thjERHxzDPPxGOPPRbLly+PoijinHPOia985Ssxd+7cePzxx2Pq1KkxcuTImDJlSkREHHTQQfGXf/mXcfrpp8dDDz0U999/f5x99tlx8sknx8iRIyMi4hOf+EQMGDAgPv3pT8fSpUvjxz/+cXzjG9/YbJrJtrB9DAAAAAAAAADANnjkkUfiqKOO6nr7jaLGtGnT4sYbb4zzzjsv1qxZE2eccUa88sor8cEPfjDuvPPO2GWXXboe88Mf/jDOPvvsOProo6NUKsWJJ54Y11xzTdd6c3Nz3H333XHWWWdFW1tb7L777nHRRRfFGWec0eu8RbVarW7Hx7tTWrcxdQKA/i+/V4e0On1Ca66hVKSOkJ0NGztTR8hKY9lQPnZu7/jMLakjZOe5756cOkJ2Nmzy2lRLDYWfn9jJeYrWXGWD76O1NnBAQ+oIAP2aP5PW3sDG1Amopf91y+OpI9StG04+JHWEPmNSCAAAAAAAAAAkpidNX/DPFwEAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGSqnDgAAAAAAAAAA9a5UFKkjkCGTQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMlVMHWL9+fdx+++2xcOHC6OjoiIiIlpaW+LM/+7M4/vjjY8CAAYkTAgAAAAAAAAD0P0knhTz11FNx0EEHxbRp0+LRRx+Nzs7O6OzsjEcffTSmTp0aBx98cDz11FMpIwIAAAAAAAAA9EtJJ4WceeaZccghh8Sjjz4agwcP7ra2evXqmDp1apx11llx1113JUoIAAAAAAAAANA/JS2F3H///fHQQw9tVgiJiBg8eHBcdtllcfjhhydIBgAAAAAAAADQvyUthQwZMiR+//vfx3ve854trv/+97+PIUOG9HiPSqUSlUql27lqQ1M0NTXVKiYAAAAAAAAA9KmiSJ2AHJVSvvPPfOYzMXXq1Lj66qtjyZIlsXLlyli5cmUsWbIkrr766jj11FPjjDPO6PEe7e3t0dzc3O246sr2HfQRAAAAAAAAAADsnIpqtVpNGeDKK6+Mb3zjG9HR0RHF/6s+VavVaGlpiXPOOSfOO++8Hh9vUghA30j76pCfTp/QmmsoqUzX2oaNnakjZKWxnLR/DW/qHZ+5JXWE7Dz33ZNTR8jOhk1em2qpwT85Y2fnKVpzlQ2+j9bawAENqSMA9Gv+TFp7AxtTJ6CWTv+XX6eOULf+6a+3vLtJDpJuHxMRcf7558f5558fzzzzTHR0dEREREtLS+yzzz7b9Pimps0LIOs21jwmAAAAAAAAAEC/stP888V99tknxo4dG2PHju0qhDz77LNx2mmnJU4GAAAAAAAAAND/7DSlkC1ZtWpV3HTTTaljAAAAAAAAAAD0O0m3j5k7d26P68uWLdtBSQAAAAAAAAAA8pK0FDJlypQoiiKq1epWrymKYgcmAgAAAAAAAIAdz/8bpy8k3T6mtbU15syZE52dnVs8Fi9enDIeAAAAAAAAAEC/lbQU0tbWFosWLdrq+ptNEQEAAAAAAAAAYMuSbh8zc+bMWLNmzVbXR40aFfPnz9+BiQAAAAAAAAAA8pC0FDJu3Lge1wcNGhTjx4/fQWkAAAAAAAAAAPKRdPsYAAAAAAAAAAD6hlIIAAAAAAAAAECGlEIAAAAAAAAAADJUTh0AAAAAAAAAAOpdUaROQI5MCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZKicOgAAAAAAAAAA1LtSUaSOQIZMCgEAAAAAAAAAyJBSCAAAAAAAAABAhrZp+5i5c+du8w0/+tGPvuUwAAAAAAAAAADUxjaVQqZMmbJNNyuKIjZt2rQ9eQAAAAAAAAAAqIFtKoV0dnb2dQ4AAAAAAAAAAGqolDoAAAAAAAAAAAC1t02TQv5/a9asiV/84hexfPnyWL9+fbe1z33uczUJBgAAAAAAAADAW9frUsijjz4axx13XKxduzbWrFkTw4YNixdffDF23XXXGD58uFIIAAAAAAAAAPRSUaROQI56vX3M9OnTY/LkyfHyyy/HwIED44EHHog//OEP0dbWFl/72tf6IiMAAAAAAAAAAL3U61LIY489Fl/4wheiVCpFQ0NDVCqV2GuvvWL27NlxwQUX9EVGAAAAAAAAAAB6qdelkMbGxiiV/u/Dhg8fHsuXL4+IiObm5nj22Wdrmw4AAAAAAAAAgLek3NsHvO9974uHH3449t9//xg/fnxcdNFF8eKLL8b3v//9eM973tMXGQEAAAAAAAAA6KVeTwq5/PLLo7W1NSIivvrVr8bQoUPjzDPPjD/+8Y/xne98p+YBAQAAAAAAAADovV5PCjnssMO6/nv48OFx55131jQQAAAAAAAAAADbr9elEAAAAAAAAACgtoqiSB2BDPW6FLLPPvv0+GRctmzZdgUCAAAAAAAAAGD79boUcs4553R7e8OGDfHoo4/GnXfeGTNnzqxVLgAAAAAAAAAAtkOvSyGf//znt3j+W9/6VjzyyCPbHQgAAAAAAAAAgO1XqtWNJk6cGLfddlutbgcAAAAAAAAAwHaoWSnk1ltvjWHDhtXqdgAAAAAAAAAAbIdebx/zvve9L4qi6Hq7Wq1GR0dH/PGPf4xvf/vbNQ0HAAAAAAAAAMBb0+tSyPHHH9+tFFIqlWKPPfaID33oQ3HggQfWNBwAAAAAAAAAAG9NUa1Wq6lD1Nq6jakTQM868/uyS670J2U1amPDps7UEbLy3+s3pY6QnYGNDakjZGeT16ea2sVztOY8RWvLj0+1d+oPH00dITvfPOGQ1BGyMqjJa1OtvfrfG1JHyMqgpl7/+zXehNf72mtsqNmO7EA/sKnTL6K15m/5tTewMXUCaunvfvrb1BHq1jc/dlDqCH2m1z/BNjQ0xAsvvLDZ+ZdeeikaGvxxAQAAAAAAAABgZ9DrUsjWBotUKpUYMGDAdgcCAAAAAAAAAGD7bfNMxmuuuSYiIoqiiO9+97ux2267da1t2rQpFixYEAceeGDtEwIAAAAAAAAA0GvbXAq5+uqrI+L/Tgq57rrrum0VM2DAgHjXu94V1113Xe0TAgAAAAAAAADQa9tcCnnmmWciIuKoo46KOXPmxNChQ/ssFAAAAAAAAAAA22ebSyFvmD9/fl/kAAAAAAAAAACghkq9fcCJJ54YV1555WbnZ8+eHSeddFJNQgEAAAAAAABAPSmKwpHoyFmvSyELFiyI4447brPzEydOjAULFtQkFAAAAAAAAAAA26fXpZDXX389BgwYsNn5xsbGWL16dU1CAQAAAAAAAACwfXpdCjnkkEPixz/+8Wbnb7nllhg9enRNQgEAAAAAAAAAsH3KvX3A3//938cJJ5wQTz/9dHz4wx+OiIh77703br755rj11ltrHhAAAAAAAAAAgN7rdSlk8uTJcfvtt8fll18et956awwcODAOPfTQ+PnPfx7Dhg3ri4wAAAAAAAAAAPRSr0shERGTJk2KSZMmRUTE6tWr40c/+lGce+65sWjRoti0aVNNAwIAAAAAAAAA0HtvqRQSEbFgwYK4/vrr47bbbouRI0fGCSecEN/61rdqmQ0AAAAAAAAA6kKpSJ2AHPWqFNLR0RE33nhjXH/99bF69er467/+66hUKnH77bfH6NGj+yojAAAAAAAAAAC9VNrWCydPnhwHHHBALFmyJL7+9a/H888/H9/85jf7MhsAAAAAAAAAAG/RNk8K+fd///f43Oc+F2eeeWbsv//+fZkJAAAAAAAAAIDttM2TQu6777547bXXoq2tLQ4//PC49tpr48UXX+zLbAAAAAAAAAAAvEXbXAo54ogj4p/+6Z9ixYoV8Td/8zdxyy23xMiRI6OzszPuueeeeO211/oyJwAAAAAAAAAAvbDNpZA3DBo0KE477bS477774vHHH48vfOELccUVV8Tw4cPjox/9aF9kBAAAAAAAAACgl3pdCvlTBxxwQMyePTuee+65+NGPflSrTAAAAAAAAAAAbKdyLW7S0NAQU6ZMiSlTptTidgAAAAAAAABQV0pF6gTkaLsmhQAAAAAAAAAAsHNSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAyVUwcAAAAAAAAAgHpXFEXqCGTIpBAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMlROHQAAAAAAAAAA6l2pSJ2AHO3Uk0JWrlwZl156aeoYAAAAAAAAAAD9zk5dCuno6IhLLrkkdQwAAAAAAAAAgH4n6fYxS5Ys6XH9iSee2EFJAAAAAAAAAADykrQUMmbMmCiKIqrV6mZrb5wvChsnAQAAAAAAAAD0VtJSyLBhw2L27Nlx9NFHb3F96dKlMXny5B7vUalUolKpdDtXbWiKpqammuUEAAAAAAAAAOhvSinfeVtbWzz//POx9957b/HYc889tzhF5E+1t7dHc3Nzt+OqK9t30EcAAAAAAAAAALBzSjop5LOf/WysWbNmq+vvfOc744YbbujxHrNmzYoZM2Z0O1dtMCUEAAAAAAAAgP6jKFInIEdJSyEf+9jHelwfOnRoTJs2rcdrmpo23ypm3cbtjgYAAAAAAAAA0K8l3T7mzTz77LNx2mmnpY4BAAAAAAAAANDv7NSlkFWrVsVNN92UOgYAAAAAAAAAQL+TdPuYuXPn9ri+bNmyHZQEAAAAAAAAACAvSUshU6ZMiaIoolqtbvWaoih2YCIAAAAAAAAAgDwk3T6mtbU15syZE52dnVs8Fi9enDIeAAAAAAAAAEC/lbQU0tbWFosWLdrq+ptNEQEAAAAAAAAAYMuSbh8zc+bMWLNmzVbXR40aFfPnz9+BiQAAAAAAAABgxysVReoIZChpKWTcuHE9rg8aNCjGjx+/g9IAAAAAAAAAAOQj6fYxAAAAAAAAAAD0DaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGSqnDgAAAAAAAAAA9c5EB/qC5xUAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIEPl1AEAAAAAAAAAoN4VReoE5MikEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAyVE4dAAAAAAAAAADqXakoUkcgQyaFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAyVE4dAAAAAAAAAADqXVGkTkCOTAoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQoXLqAFCPNm6qpo6QnQHlInWE/Hia1tSAsh5mrZUbfE5rrVT1hQ/1ZMPGztQRsvNPJx+aOkJ2zv3fv00dIStfPmb/1BGyU/hVtKY2bPLaVGvlkt+baq2z5PemWir5RlpzfrWvLU/R2vM5Bdjx/FYAAAAAAAAAAJAhpRAAAAAAAAAAgAzZPgYAAAAAAAAAEivZYok+YFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBD5dQBAAAAAAAAAKDelYoidQQyZFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABkqpw4AAAAAAAAAAPWuKFInIEcmhQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMlROHQAAAAAAAAAA6l2pSJ2AHJkUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGyqkDAAAAAAAAAEC9K6JIHYEMmRQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQztFKeS5556L119/fbPzGzZsiAULFiRIBAAAAAAAAADQvyUthaxYsSI+8IEPxN577x1DhgyJqVOndiuHrFq1Ko466qiECQEAAAAAAAAA+qdyynf+xS9+MUqlUjz44IPxyiuvxBe/+MU46qij4u67746hQ4dGRES1Wk0ZEQAAAAAAAAD6XKlInYAcJZ0UMm/evLjmmmvisMMOi2OOOSbuv//+aG1tjQ9/+MOxatWqiIgoCs98AAAAAAAAAIDeSloKefXVV7smgkRENDU1xZw5c+Jd73pXHHXUUfHCCy+86T0qlUqsXr2621GpVPoyNgAAAAAAAADATi9pKWTfffeNJUuWdDtXLpfjJz/5Sey7777xkY985E3v0d7eHs3Nzd2Oq65s76vIAAAAAAAAAAD9QtJSyMSJE+M73/nOZuffKIaMGTMmqtVqj/eYNWtWvPrqq92OmefP6qvIAAAAAAAAAAD9QjnlO//qV78aa9eu3eJauVyO2267Lf7rv/6rx3s0NTVFU1NTt3PrNtYsIgAAAAAAAABAv5R0Uki5XI7BgwdvdX3FihVxySWX7MBEAAAAAAAAAAB5SFoKeTOrVq2Km266KXUMAAAAAAAAAOhTpcKR6shZ0u1j5s6d2+P6smXLdlASAAAAAAAAAIC8JC2FTJkyJYqiiGq1utVriiLzWg4AAAAAAAAAQB9Iun1Ma2trzJkzJzo7O7d4LF68OGU8AAAAAAAAAIB+K2kppK2tLRYtWrTV9TebIgIAAAAAAAAAwJYl3T5m5syZsWbNmq2ujxo1KubPn78DEwEAAAAAAAAA5CFpKWTcuHE9rg8aNCjGjx+/g9IAAAAAAAAAAOQj6fYxAAAAAAAAAAD0jaSTQgAAAAAAAACAiKIoUkcgQyaFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAyVE4dAAAAAAAAAADqXalInYAcmRQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIbKqQMAAAAAAAAAQL0ritQJyJFJIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADJVTBwAAAAAAAACAelcqitQRyJBJIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkqJw6AAAAAAAAAADUu1KROgE5MikEAAAAAAAAACBDJoVAAo0N+ljs/BrUUWuqFD6ftVb4lNacTyk7O1/3teW1vvYKT9Ka+8K4fVJHyMrH/nFh6gjZmX/ukakjZGXjpmrqCNnZsKkzdYTsDPAndXZyfiStrcJfSwDIgP8zDQAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIEPl1AEAAAAAAAAAoN4VReoE5MikEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAADANnjXu94VRVFsdpx11lkREfGhD31os7XPfvaz3e6xfPnymDRpUuy6664xfPjwmDlzZmzcuLFP8pb75K4AAAAAAAAAAJl5+OGHY9OmTV1v//rXv46/+Iu/iJNOOqnr3Omnnx6XXnpp19u77rpr139v2rQpJk2aFC0tLfGrX/0qVqxYEVOnTo3Gxsa4/PLLa55XKQQAAAAAAAAAEitFkToC22CPPfbo9vYVV1wR++23X4wfP77r3K677hotLS1bfPzdd98dv/nNb2LevHkxYsSIGDNmTFx22WVx/vnnx8UXXxwDBgyoaV7bxwAAAAAAAAAAdatSqcTq1au7HZVK5U0ft379+vjBD34Qp512WhTF/5R6fvjDH8buu+8e73nPe2LWrFmxdu3arrWFCxfGIYccEiNGjOg6N2HChFi9enUsXbq0th9YKIUAAAAAAAAAAHWsvb09mpubux3t7e1v+rjbb789XnnllTj11FO7zn3iE5+IH/zgBzF//vyYNWtWfP/7349PfvKTXesdHR3dCiER0fV2R0dHbT6gP2H7GAAAAAAAAACgbs2aNStmzJjR7VxTU9ObPu7666+PiRMnxsiRI7vOnXHGGV3/fcghh0Rra2scffTR8fTTT8d+++1Xu9DbSCkEAAAAAAAAAKhbTU1N21QC+VN/+MMfYt68eTFnzpwerzv88MMjIuKpp56K/fbbL1paWuKhhx7qds3KlSsjIqKlpaVXGbaF7WMAAAAAAAAAAHrhhhtuiOHDh8ekSZN6vO6xxx6LiIjW1taIiBg7dmw8/vjj8cILL3Rdc88998TgwYNj9OjRNc9pUggAAAAAAAAAwDbq7OyMG264IaZNmxbl8v/ULp5++um4+eab47jjjou3v/3tsWTJkpg+fXoceeSR8d73vjciIo499tgYPXp0fOpTn4rZs2dHR0dHXHjhhXHWWWf1elrJtlAKAQAAAAAAAIDEiiJ1ArbVvHnzYvny5XHaaad1Oz9gwICYN29efP3rX481a9bEXnvtFSeeeGJceOGFXdc0NDTEHXfcEWeeeWaMHTs2Bg0aFNOmTYtLL720T7IqhQAAAAAAAAAAbKNjjz02qtXqZuf32muv+MUvfvGmj997773jZz/7WV9E20xph7wXAAAAAAAAAAB2KKUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGSqnDgAAAAAAAAAA9a5UpE5AjkwKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBD5dQBAAAAAAAAAKDelYoidQQyZFIIAAAAAAAAAECGlEIAAAAAAAAAADKUfPuYl156KZYsWRKHHnpoDBs2LF588cW4/vrro1KpxEknnRQHHXRQ6ogAAAAAAAAAAP1O0lLIQw89FMcee2ysXr06hgwZEvfcc0+cdNJJUS6Xo7OzM6644oq477774v3vf3/KmAAAAAAAAAAA/U7S7WO+9KUvxUknnRSvvvpqXHDBBTFlypQ4+uij43e/+1089dRTcfLJJ8dll12WMiIAAAAAAAAAQL+UtBSyaNGimDFjRrztbW+Lz3/+8/H888/H6aef3rV+9tlnx8MPP5wwIQAAAAAAAABA/5R0+5j169fHwIEDIyKisbExdt1119h999271nffffd46aWXerxHpVKJSqXS7Vy1oSmamppqHxgAAAAAAAAA+kBRpE5AjpJOCtlrr71i2bJlXW/fcsst0dra2vX2ihUrupVEtqS9vT2am5u7HVdd2d5nmQEAAAAAAAAA+oOkk0JOPvnkeOGFF7renjRpUrf1uXPnxgc+8IEe7zFr1qyYMWNGt3PVBlNCAAAAAAAAAID6lrQU8uUvf7nH9S996UvR0NDQ4zVNTZtvFbNu43ZHAwAAAAAAAADo15JuH/NmXnrppTjzzDNTxwAAAAAAAAAA6Hd26lLIqlWr4qabbkodAwAAAAAAAACg30m6fczcuXN7XF+2bNkOSgIAAAAAAAAAkJekpZApU6ZEURRRrVa3ek1RFDswEQAAAAAAAABAHpJuH9Pa2hpz5syJzs7OLR6LFy9OGQ8AAAAAAAAAdohSUTgSHTlLWgppa2uLRYsWbXX9zaaIAAAAAAAAAACwZUm3j5k5c2asWbNmq+ujRo2K+fPn78BEAAAAAAAAAAB5SFoKGTduXI/rgwYNivHjx++gNAAAAAAAAAAA+Ui6fQwAAAAAAAAAAH1DKQQAAAAAAAAAIENKIQAAAAAAAAAAGSqnDgAAAAAAAAAA9a4oUicgRyaFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJChcuoAAAAAAAAAAFDvTHSgL3heAQAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAyVE4dAAAAAAAAAADqXVEUqSOQIZNCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZKqcOAAAAAAAAAAD1rkgdgCyZFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyFA5dQCoR9Wopo6QnSKK1BGyUxQ+p7W0Zt3G1BGys0ujbmutrV2/KXWErDTv2pg6QnaqfoRiJ7dug++jtdZUbkgdISvzzz0ydYTsnHXbr1NHyMo/fHR06gjZ2aXR99Fa8+cSAAD6G6UQAAAAAAAAAEispIFKH/BPbAEAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGSqnDgAAAAAAAAAA9a5IHYAsmRQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIbKqQMAAAAAAAAAQL0ritQJyJFJIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADJVTBwAAAAAAAACAelcUReoIZMikEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAyVE4dAAAAAAAAAADqnYkO9AXPKwAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhsqpA2zJvvvuG3fddVfsv//+qaMAAAAAAAAAQJ8riiJ1BDKUtBRyzTXXbPH88uXL44YbboiWlpaIiPjc5z63I2MBAAAAAAAAAPR7SUsh55xzTuy5555RLneP0dnZGd/73veisbExiqJQCgEAAAAAAAAA6KWkpZAzzjgjHnzwwbj55pvjoIMO6jrf2NgYd999d4wePTphOgAAAAAAAACA/quU8p1fd911cdFFF8WECRPi2muvfUv3qFQqsXr16m5HpVKpcVIAAAAAAAAAgP4laSkkIuJjH/tYLFy4MH7605/GxIkTo6Ojo1ePb29vj+bm5m7HVVe291FaAAAAAAAAAID+Ien2MW/Yc889Y968eXHFFVfE+973vqhWq9v82FmzZsWMGTO6nas2NNU6IgAAAAAAAABAv7JTlEIiIoqiiFmzZsWxxx4b9913X7S2tm7T45qamqKpqXsJZN3GvkgIAAAAAAAAANB/JN8+5v/X1tYWn//852Po0KHx7LPPxmmnnZY6EgAAAAAAAAD0qcKR7MjZTlcK+VOrVq2Km266KXUMAAAAAAAAAIB+J+n2MXPnzu1xfdmyZTsoCQAAAAAAAABAXpKWQqZMmRJFUUS1Wt3qNUWR+7AWAAAAAAAAAIDaS7p9TGtra8yZMyc6Ozu3eCxevDhlPAAAAAAAAACAfitpKaStrS0WLVq01fU3myICAAAAAAAAAMCWJd0+ZubMmbFmzZqtro8aNSrmz5+/AxMBAAAAAAAAAOQhaSlk3LhxPa4PGjQoxo8fv4PSAAAAAAAAAEAaRVGkjkCGkm4fAwAAAAAAAABA31AKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADJVTBwAAAAAAAACAemeiA33B8woAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADJVTBwAAAAAAAACAelcUReoIZMikEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhsqpAwAAAAAAAABAvStSByBLJoUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkKFy6gAAAAAAAAAAUO+KInUCcmRSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJChcuoAUI9KNgSjH/A0ra2BAxpSR8hOucGTtNbeVvI5Zefmtam2qqkDZKjB99Ga27XJz1A15Qu/5v7ho6NTR8jKmC/+LHWE7Pz2ax9JHQEAAEjMpBAAAAAAAAAAgAwphQAAAAAAAAAAZMj2MQAAAAAAAACQWClsTUvtmRQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIbKqQMAAAAAAAAAQL0ritQJyJFJIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADJVTBwAAAAAAAACAeldEkToCGTIpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQoXLqAAAAAAAAAABQ74oidQJyZFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABkqpw4AAAAAAAAAAPWuFEXqCGTIpBAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZKqcO8Keq1Wr8x3/8Rzz11FPR2toaEyZMiMbGxtSxAAAAAAAAAAD6naSlkOOOOy5+9KMfRXNzc6xatSqOO+64eOihh2L33XePl156Kd797nfHggULYo899kgZEwAAAAAAAACg30m6fcydd94ZlUolIiIuvPDCeO211+Lpp5+OF154If7whz/EoEGD4qKLLkoZEQAAAAAAAAD6XFE4Uh05S1oK+VM///nPo729PfbZZ5+IiHjHO94RV155Zdx1112JkwEAAAAAAAAA9D9Jt4+JiCj+X+3m5Zdfjv3226/b2qhRo+L555/v8fGVSqVr2sgbqg1N0dTUVNugAAAAAAAAAAD9SPJJIaeeemqccMIJsWHDhnjmmWe6rXV0dMSQIUN6fHx7e3s0Nzd3O666sr0PEwMAAAAAAAAA7PySTgqZNm1a138ff/zxsXbt2m7rt912W4wZM6bHe8yaNStmzJjR7Vy1wZQQAAAAAAAAAKC+JS2F3HDDDT2uf/nLX46GhoYer2lq2nyrmHUbtzsaAAAAAAAAAEC/lnz7mJ6sWrUq/vZv/zZ1DAAAAAAAAACAfmenL4XcdNNNqWMAAAAAAAAAAPQ7SbePmTt3bo/ry5Yt20FJAAAAAAAAACCdokidgBwlLYVMmTIliqKIarW61WsKz3wAAAAAAAAAgF5Lun1Ma2trzJkzJzo7O7d4LF68OGU8AAAAAAAAAIB+K2kppK2tLRYtWrTV9TebIgIAAAAAAAAAwJYl3T5m5syZsWbNmq2ujxo1KubPn78DEwEAAAAAAAAA5CFpKWTcuHE9rg8aNCjGjx+/g9IAAAAAAAAAAOQj6fYxAAAAAAAAAAD0jaSTQgAAAAAAAACAiCKK1BHIkEkhAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGSonDoAAAAAAAAAANS7UpE6ATkyKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkKFy6gAAAAAAAAAAUO+KKFJHIEMmhQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQoXLqAAAAAAAAAABQ74oidQJyZFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBD5dQBAAAAAAAAAKDeFVGkjkCGlEIggc7OauoI2SmVvEjW2trKptQRsrKp6uu+1gaVGlJHyM76TZ2pI2RlF89RdnIbNnptqrXGBj+T1tp/+92ppjZs8vmstQFlQ3hraelVH0kdITuf/P7i1BGyc/O0ttQRoEf+9lxbReFnfAD6P7+5AgAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAACCxUuFIdfTGxRdfHEVRdDsOPPDArvV169bFWWedFW9/+9tjt912ixNPPDFWrlzZ7R7Lly+PSZMmxa677hrDhw+PmTNnxsaNG2vxNNpMuU/uCgAAAAAAAACQoYMPPjjmzZvX9Xa5/D/Vi+nTp8e//du/xU9+8pNobm6Os88+O0444YS4//77IyJi06ZNMWnSpGhpaYlf/epXsWLFipg6dWo0NjbG5ZdfXvOsSiEAAAAAAAAAANuoXC5HS0vLZudfffXVuP766+Pmm2+OD3/4wxERccMNN8RBBx0UDzzwQBxxxBFx9913x29+85uYN29ejBgxIsaMGROXXXZZnH/++XHxxRfHgAEDaprV9jEAAAAAAAAAANvoySefjJEjR8a+++4bp5xySixfvjwiIhYtWhQbNmyIY445puvaAw88MN75znfGwoULIyJi4cKFccghh8SIESO6rpkwYUKsXr06li5dWvOsJoUAAAAAAAAAAHWrUqlEpVLpdq6pqSmampo2u/bwww+PG2+8MQ444IBYsWJFXHLJJTFu3Lj49a9/HR0dHTFgwIAYMmRIt8eMGDEiOjo6IiKio6OjWyHkjfU31mrNpBAAAAAAAAAAoG61t7dHc3Nzt6O9vX2L106cODFOOumkeO973xsTJkyIn/3sZ/HKK6/Ev/zLv+zg1NtGKQQAAAAAAAAAqFuzZs2KV199tdsxa9asbXrskCFD4t3vfnc89dRT0dLSEuvXr49XXnml2zUrV66MlpaWiIhoaWmJlStXbrb+xlqtKYUAAAAAAAAAAHWrqakpBg8e3O3Y0tYxW/L666/H008/Ha2trdHW1haNjY1x7733dq0/8cQTsXz58hg7dmxERIwdOzYef/zxeOGFF7quueeee2Lw4MExevTo2n5gEVGu+R0BAAAAAAAAgF4pokgdgW1w7rnnxuTJk2PvvfeO559/Pr785S9HQ0NDfPzjH4/m5ub49Kc/HTNmzIhhw4bF4MGD4+/+7u9i7NixccQRR0RExLHHHhujR4+OT33qUzF79uzo6OiICy+8MM4666xtLqL0hlIIAAAAAAAAAMA2eO655+LjH/94vPTSS7HHHnvEBz/4wXjggQdijz32iIiIq6++OkqlUpx44olRqVRiwoQJ8e1vf7vr8Q0NDXHHHXfEmWeeGWPHjo1BgwbFtGnT4tJLL+2TvEW1Wq32yZ0TWrcxdQLoWWdndl92yZVKmpO1trayKXWErGzK7+U2uUFNDakjZGf9xs7UEbKyS6PnKDu3ygZf87XW2OBn0lp7zS/4NeW1qfbKvu5ryq9NtTf1B4tTR8jOzdPaUkeAHvnbc20Vhdd6dn4DG1MnoJZ++buXU0eoW+PePTR1hD5TSh0AAAAAAAAAAIDaUwoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMlROHQAAAAAAAAAA6l1RpE5AjkwKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBD5dQBAAAAAAAAAKDeFakDkCWTQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGSqnDgAAAAAAAAAA9a5UFKkjkCGTQgAAAAAAAAAAMqQUAgAAAAAAAACQoaSlkOeeey5efPHFrrd/+ctfximnnBLjxo2LT37yk7Fw4cKE6QAAAAAAAAAA+q+kpZATTzwxHnjggYiI+Nd//df40Ic+FK+//nr8+Z//eaxduzbGjx8fd9xxR8qIAAAAAAAAAAD9UjnlO1+6dGkcfPDBERHR3t4el19+eZx//vld69dee21cdNFF8ZGPfCRVRAAAAAD4P+3de5iVZb038N+CgQFxOConDVQwQEVSPIQnNAlQLxWtNFNDMfdrQgm2ycwM052jtdU8vahlHjLdpnlAbUtogFoeIXaahie2aIBYihyE4TDP+8e+4t2TnNTF3Kx7Pp/req7LeZ41z/rO7Vqz1rPmy30DAABARUo6U0hVVVUsWbIkIiLmzJkThx12WIPjhx12WMyePTtFNAAAAAAAAACAipa0FDJ48OC44447IiJijz32iGnTpjU4PnXq1Nhuu+02eI66urpYvHhxg62urm5zRQYAAAAAAAAAqAhJl4+55JJL4sADD4x58+bFAQccEOedd148++yz0a9fv5g9e3bceeedcd11123wHLW1tfGDH/ygwb7zzp8Q3/v+BZsxOQAAAAAAAACUTyl1ALJUKoqiSBngtddei+9973vx0EMPxdKlSyPif5aV2XvvvWP8+PExYsSIDX5/XV3dh2YGKZpXR3V19eaKDJ9YfX3Sp12WmjXzMlluH9StSR0hK2vSvtxmqU1189QRsrNydX3qCFlp1cJjlC1b3SrP+XJr0dx70nJbsmJ16ghZ8dpUflWe92Xlsqn8vnrbzNQRsnP7yIGpI8AG+ey5vEolr/Vs+Vq3SJ2Acnrq1UWpIzRZn+3dPnWEzSbpTCEREb169Yo77rgjiqKIhQsXRn19fWyzzTbRosWm/Qarrv5wAcRnRgAAAAAAAABAU9csdYB/KJVK0aVLl+jWrdvaQsibb74Zo0aNSpwMAAAAAAAAAKDybDGlkHV5991345ZbbkkdAwAAAAAAAACg4iRdPmbSpEkbPP766683UhIAAAAAAAAAgLwkLYWMGDEiSqVSFEWx3tuUSqVGTAQAAAAAAAAAkIeky8d069Yt7rnnnqivr1/nNnPmzJTxAAAAAAAAAKBxlGzJtowlLYUMHDgwZsyYsd7jG5tFBAAAAAAAAACAdUu6fMz48eNj2bJl6z3eu3fvmDp1aiMmAgAAAAAAAADIQ9JSyIEHHrjB423atInBgwc3UhoAAAAAAAAAgHwkXT4GAAAAAAAAAIDNQykEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyFBV6gAAAAAAAAAA0NSVopQ6AhkyUwgAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENVqQMAAAAAAAAAQFNXKqVOQI7MFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyFBV6gAAAAAAAAAA0NSVUgcgS2YKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDVakDAAAAAAAAAECTV0odgByZKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADJUKoqiSB2i3FasTp0AAAAA+KTW1Gf3kUVSzZuVUkcAGll9fh/9JtfpcxNSR8jKe1MvTB0BoOK1qkqdgHJ6ds77qSM0WXvv2C51hM3GrwkAAAAAAAAASKwUyvyUn+VjAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMhQVeoAAAAAAAAAANDUlUqpE5AjM4UAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADJUlToAAAAAAAAAADR1pdQByJKZQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIUFXqAAAAAAAAAADQ5JVSByBHZgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGSoKnUAAAAAAAAAAGjqSlFKHYEMmSkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJChpKWQyy67LN54442UEQAAAAAAAAAguVLJlmrLWdJSyPjx46NXr17x+c9/Pu68885YuXJlyjgAAAAAAAAAANlIvnzMz372s2jTpk2cfPLJ0b179xg7dmy88MILqWMBAAAAAAAAAFS05KWQww8/PO67775466234tvf/nZMnjw5BgwYEPvss0/89Kc/jSVLlqSOCAAAAAAAAABQcZKXQv6hc+fO8e1vfzteeumlmDZtWuyyyy4xbty46Nat2wa/r66uLhYvXtxgq6ura6TUAAAAAAAAAABbpqSlkFKptM79Bx54YNx8880xb968uOKKKzZ4jtra2mjXrl2D7ceX1m6OuAAAAAAAAAAAFaNUFEWR6s6bNWsWCxYsiM6dO3/sc9TV1X1oZpCieXVUV1d/0ngAAABAQmvqk31kkaXmzdb9j3OAfNWn++g3W50+NyF1hKy8N/XC1BEAKl6rqtQJKKdZc5ekjtBkfaZHTeoIm03SXxP19fWf+BzV1R8ugKxY/YlPCwAAAAAAAABQ0ZIuH7Mxb775ZowaNSp1DAAAAAAAAADYrEq2ZFvOtuhSyLvvvhu33HJL6hgAAAAAAAAAABUn6fIxkyZN2uDx119/vZGSAAAAAAAAAADkJWkpZMSIEVEqlaIoivXeplTKfbIWAAAAAAAAAIDyS7p8TLdu3eKee+6J+vr6dW4zZ85MGQ8AAAAAAAAAoGIlLYUMHDgwZsyYsd7jG5tFBAAAAAAAAACAdUu6fMz48eNj2bJl6z3eu3fvmDp1aiMmAgAAAAAAAADIQ9JSyIEHHrjB423atInBgwc3UhoAAAAAAAAASKSUOgA5Srp8DAAAAAAAAAAAm4dSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ1WpAwAAAAAAAABAU1eKUuoIZMhMIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADFWlDgAAAAAAAAAATV2plDoBOTJTCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZqkodAAAAAAAAAACaulLqAGTJTCEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAxVpQ4AAAAAAAAAAE1eKXUAcmSmEAAAAAAAAACADCmFAAAAAAAAAABkqFQURZE6RLmtWJ06AQAAAAAAsCEd9h6TOkJ23nv2mtQRgEbWqip1Asrphb8uTR2hydptu61TR9hszBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ1WpAwAAAAAAAABAU1eKUuoIZMhMIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADFWlDgAAAAAAAAAATV2plDoBOTJTCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ1WpAwAAAAAAAABAU1dKHYAsmSkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAxVpQ4AAAAAAAAAAE1eKXUAcmSmEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhqpSBwAAAAAAAACApq4UpdQRyJCZQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGQoeSnkwQcfjO9///vx+9//PiIifve738Xhhx8ew4cPjxtuuCFxOgAAAAAAAACAypS0FHL99dfHMcccE7/5zW/i8MMPj9tuuy1GjBgR2223Xeywww4xduzYuPLKK1NGBAAAAAAAAACoSFUp7/yqq66K//t//2+cfvrpMXXq1Dj88MPjsssuizPPPDMiIj772c/Gj370ozjrrLNSxgQAAAAAAAAAqDhJZwqZM2dODBs2LCIiDjnkkFizZk0cdNBBa48ffPDB8cYbb6SKBwAAAAAAAACNolSypdpylrQU0qlTp7Wlj3nz5sXq1atj7ty5a4+/8cYb0bFjxw2eo66uLhYvXtxgq6ur26y5AQAAAAAAAAC2dElLIUcffXScdtpp8cMf/jCOOeaY+OpXvxrf+ta34uGHH47JkyfHN77xjRg6dOgGz1FbWxvt2rVrsP340tpG+gkAAAAAAAAAALZMpaIoilR3vmzZshg3blw8+eSTsd9++8XVV18dV111VZx33nmxatWqGDx4cNx5553RuXPn9Z6jrq7uQzODFM2ro7q6enPHBwAAAAAAPqYOe49JHSE77z17TeoIQCNrVZU6AeU0e8EHqSM0WX26bpU6wmaTtBSyPitWrIhVq1ZFTU3Nx/v+1WUOBAAAAAAAlJVSSPkphUDToxSSF6WQdHIuhSRdPmZ9WrVqFTU1NfHmm2/GqFGjUscBAAAAAAAAAKg4W2Qp5B/efffduOWWW1LHAAAAAAAAAACoOEknFJo0adIGj7/++uuNlAQAAAAAAAAA0imlDkCWkpZCRowYEaVSKYqiWO9tSiUPfQAAAAAAAACAjyrp8jHdunWLe+65J+rr69e5zZw5M2U8AAAAAAAAAICKlbQUMnDgwJgxY8Z6j29sFhEAAAAAAAAAANYt6fIx48ePj2XLlq33eO/evWPq1KmNmAgAAAAAAAAAIA9JSyEHHnjgBo+3adMmBg8e3EhpAAAAAAAAAADykXT5GAAAAAAAAAAANg+lEAAAAAAAAACADCVdPgYAAAAAAAAAiIhS6gDkyEwhAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMVaUOAAAAAAAAAABNXSlKqSOQITOFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAyVJU6AAAAAAAAAAA0daVS6gTkyEwhAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGSoKnUAAAAAAAAAAGjqSqkDkCUzhQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMlSVOgAAAAAAAAAANHml1AHIUakoiiJ1iHJbsTp1AgAAAAAAgMbV4bPjUkfIyntPXZE6AmxUK1MAZOW1d5anjtBk9dq2deoIm43lYwAAAAAAAAAANkFtbW3svffeUVNTE507d44RI0bE7NmzG9zm4IMPjlKp1GA744wzGtxm7ty5ccQRR8RWW20VnTt3jvHjx8fq1eWfAUN3DAAAAAAAAABgE0yfPj1Gjx4de++9d6xevTq++93vxtChQ+PFF1+MNm3arL3d6aefHhdeeOHar7faaqu1/71mzZo44ogjomvXrvGHP/wh5s+fH1/96lejRYsWcfHFF5c1r1IIAAAAAAAAAMAmePjhhxt8ffPNN0fnzp1jxowZcdBBB63dv9VWW0XXrl3XeY7f/va38eKLL8YjjzwSXbp0ic985jNx0UUXxTnnnBMXXHBBtGzZsmx5LR8DAAAAAAAAADRZdXV1sXjx4gZbXV3dJn3v+++/HxERHTt2bLD/l7/8ZWyzzTax2267xbnnnhsffPDB2mNPPvlk9O/fP7p06bJ237Bhw2Lx4sXx5z//uQw/0f+nFAIAAAAAAAAANFm1tbXRrl27Blttbe1Gv6++vj7Gjh0b+++/f+y2225r93/lK1+J2267LaZOnRrnnntu/OIXv4iTTjpp7fEFCxY0KIRExNqvFyxYUKaf6n9YPgYAAAAAAAAAaLLOPffcOPvssxvsq66u3uj3jR49Ol544YV44oknGuz/l3/5l7X/3b9//+jWrVsceuih8dprr0WvXr3KE3oTKYUAAAAAAAAAQGKlKKWO0GRVV1dvUgnkfxszZkw8+OCD8dhjj8X222+/wdvuu+++ERHx6quvRq9evaJr167xzDPPNLjN22+/HRERXbt2/Ug5NsbyMQAAAAAAAAAAm6AoihgzZkzce++98bvf/S523HHHjX7PrFmzIiKiW7duERExaNCgeP7552PhwoVrbzNlypRo27Zt7LLLLmXNa6YQAAAAAAAAAIBNMHr06Lj99tvj/vvvj5qamliwYEFERLRr1y5at24dr732Wtx+++1x+OGHR6dOneJPf/pTjBs3Lg466KDYfffdIyJi6NChscsuu8TJJ58cP/rRj2LBggXxve99L0aPHv2RZyzZmFJRFEVZz7gFWLE6dQIAAAAAAIDG1eGz41JHyMp7T12ROgJsVCtTAGTl9XdWpI7QZO20batNvm2ptO5lfm666aY45ZRT4s0334yTTjopXnjhhVi2bFl86lOfimOOOSa+973vRdu2bdfe/o033oivf/3rMW3atGjTpk2MHDkyLrnkkqiqKu8TWykEAAAAAAAgA0oh5aUUQiVQCsmLUkg6H6UUUmmapQ4AAAAAAAAAAED5KYUAAAAAAAAAAGTIhEIAAAAAAAAAkFiplDoBOTJTCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZqkodAAAAAAAAAACaulLqAGTJTCEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAxVpQ4AAAAAAAAAAE1eKXUAcmSmEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAyVJU6AAAAAAAAAAA0daUopY5AhpKXQpYvXx533HFHPPHEEzF//vxo1qxZ7LTTTjFixIg49NBDU8cDAAAAAAAAAKhISZePefXVV6Nfv35x7rnnxiOPPBKTJ0+OUqkUzz77bAwbNiyOO+64WL16dcqIAAAAAAAAAAAVKWkp5Jvf/GYMHz48FixYEHPnzo3a2tqor6+Pp556Kl566aV49tln49/+7d9SRgQAAAAAAAAAqEiloiiKVHfepk2bmDVrVuy8884REbFy5crYeuutY/78+dGpU6e4//77Y+zYsTFnzpyPdN4VJhcBAAAAAACamA6fHZc6Qlbee+qK1BFgo1pVpU5AOb3x97rUEZqsnp2qU0fYbJL+mmjfvn0sWbJk7dcffPBBrF69Olq2bBkREbvvvnvMnz9/g+eoq6uLurqGT46ieXVUV+f7Pw0AAAAAAAAAYGOSLh/z+c9/Ps4+++z4y1/+EnPmzIkzzjgjPvOZz0RNTU1ERMydOzc6d+68wXPU1tZGu3btGmw/vrS2MeIDAAAAAAAAAGyxki4fs3Dhwjj66KPj6aefjlKpFJ/61Kfi3nvvjT322CMiIu6+++6YP39+fOMb31jvOcwUAgAAAAAAYPmYcrN8DJXA8jF5mfuu5WNS6dEx335B0lLIP7zyyitRV1cXffv2jaqqT/6ba8XqMoQCAAAAAACoIEoh5aUUQiVQCsmLUkg6OZdCki4f8w8777xz7Lbbbh8qhLz55psxatSoRKkAAAAAAAAAACrXFlEKWZ933303brnlltQxAAAAAAAAAAAqTtIJhSZNmrTB46+//nojJQEAAAAAAAAAyEvSUsiIESOiVCpFURTrvU2pVGrERAAAAAAAAAAAeUi6fEy3bt3innvuifr6+nVuM2fOTBkPAAAAAAAAAKBiJS2FDBw4MGbMmLHe4xubRQQAAAAAAAAAclCyJdtylnT5mPHjx8eyZcvWe7x3794xderURkwEAAAAAAAAAJCHpKWQAw88cIPH27RpE4MHD26kNAAAAAAAAAAA+Ui6fAwAAAAAAAAAAJuHUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMVaUOAAAAAAAAAABNXamUOgE5MlMIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDVakDAAAAAAAAAACl1AHIkJlCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMhQVeoAAAAAAAAAANDUlUqpE5AjM4UAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADJUlToAAAAAAAAAADR1pdQByJKZQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIEOloiiK1CHKbcXq1Algw/J71qVXKqVOkJ/lK9ekjpCVVi2ap46QHc97ALY0q9bUp46QnWZe8MuqeTPjCU2Nz6DKz0sTNC0dvnhD6gjZee/uf0kdITutqlInoJzmLVqZOkKT1b19y9QRNhszhQAAAAAAAAAAZEh3DAAAAAAAAAASMysZm4OZQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGapKHQAAAAAAAAAAmrpSlFJHIENmCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ1WpAwAAAAAAAABAk1dKHYAcmSkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJChqtQBAAAAAAAAAKCpK6UOQJbMFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyFBV6gAAAAAAAAAA0NSVSqkTkCMzhQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaqUgeIiHjmmWfiySefjAULFkRERNeuXWPQoEGxzz77JE4GAAAAAAAAAFCZkpZCFi5cGF/4whfi97//ffTo0SO6dOkSERFvv/12jBs3Lvbff//49a9/HZ07d04ZEwAAAAAAAACg4iQthZx55pmxZs2aeOmll6JPnz4Njs2ePTtGjRoVo0ePjrvuuitRQgAAAAAAAADY/EpRSh2BDCUthUyePDkee+yxDxVCIiL69OkTV111VRx88MGNHwwAAAAAAAAAoMI1S3nn1dXVsXjx4vUeX7JkSVRXVzdiIgAAAAAAAACAPCQthRx//PExcuTIuPfeexuUQxYvXhz33ntvnHrqqXHCCSds8Bx1dXWxePHiBltdXd3mjg4AAAAAAAAAsEVLWgq5/PLL47DDDosvf/nL0aFDh2jdunW0bt06OnToEF/+8pfjsMMOi3//93/f4Dlqa2ujXbt2DbYfX1rbSD8BAAAAAAAAAMCWqVQURZE6xOLFi2PGjBmxYMGCiIjo2rVrDBw4MNq2bbvR762rq/vQzCBF82rLzrBFS/+sy0+plDpBfpavXJM6QlZatWieOkJ2PO8B2NKsWlOfOkJ2mnnBL6vmzYwnNDU+gyo/L03QtHT44g2pI2Tnvbv/JXWE7LSqSp2AcnpnyerUEZqsbWvyfTJtET9Z27Zt45BDDvlY31td/eECyArPFQAAAAAAAACgiUu6fExExPLly+OJJ56IF1988UPHVqxYEbfeemuCVAAAAAAAAADQiEq2ZFvGkpZCXn755ejXr18cdNBB0b9//xg8eHDMmzdv7fH3338/Tj311IQJAQAAAAAAAAAqU9JSyDnnnBO77bZbLFy4MGbPnh01NTVxwAEHxNy5c1PGAgAAAAAAAACoeElLIX/4wx+itrY2ttlmm+jdu3c88MADMWzYsDjwwAPj9ddfTxkNAAAAAAAAAKCiJS2FLF++PKqqqtZ+XSqVYuLEiXHkkUfG4MGD4+WXX06YDgAAAAAAAACgclVt/CabT9++feO5556Lfv36Ndh/zTXXRETEUUcdlSIWAAAAAAAAAEDFSzpTyDHHHBN33HHHOo9dc801ccIJJ0RRFI2cCgAAAAAAAACg8pWKDFsXK1anTgAblt+zLr1SKXWC/CxfuSZ1hKy0atE8dYTseN4DsKVZtaY+dYTsNPOCX1bNmxlPaGp8BlV+XpqgaenwxRtSR8jOe3f/S+oI2WmVdF0Iyu2dpf7Qncq2W+f7ZMr3JwMAAAAAAACACqF/yuaQdPkYAAAAAAAAAAA2D6UQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIUFXqAAAAAAAAAADQ1JVKqROQIzOFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJChqtQBAAAAAAAAAKCpK0UpdQQyZKYQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGqlIHAAAAAAAAAICmrlRKnYAcmSkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ6WiKIrUIcptxerUCQAqX319di8PSTVrVkodAQAayO9KML2Sl/uy8zhlS+d5z5bO79Hy87wH+GQ6HPL91BGys/zxC1NHoIze+2BN6ghNVoetmqeOsNmYKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGqlIHAAAAAAAAAICmrlRKnYAcmSkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJChqtQBAAAAAAAAAKCpK0UpdQQyZKYQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADJUlToAAAAAAAAAADR1pVLqBOTITCEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAxVpQ4AAAAAAAAAAE1dKXUAsmSmEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAyVJU6AAAAAAAAAAA0eaXUAciRmUIAAAAAAAAAADK0RZdC3nvvvbj11ltTxwAAAAAAAAAAqDhbdClk7ty5ceqpp6aOAQAAAAAAAABQcapS3vnixYs3eHzJkiWNlAQAAAAAAAAAIC9JSyHt27ePUqm03uNFUWzwOAAAAAAAAAAA65a0FFJTUxPnnXde7Lvvvus8/sorr8T/+T//p5FTAQAAAAAAAABUvqSlkD333DMiIgYPHrzO4+3bt4+iKDZ4jrq6uqirq2uwr2heHdXV1eUJCQAAAAAAAACbWSmsokH5NUt551/5yleiVatW6z3etWvXmDBhwgbPUVtbG+3atWuw/fjS2nJHBQAAAAAAAACoKKViY1NxbOHMFAKwedTXV/TLwxanWTPtXgC2LJV9JbhlKnm5LzuPU7Z0nvds6fweLT/Pe4BPpsMh308dITvLH78wdQTKaGmdN3CpbF2d7xu9pMvHlEN19YcLICtWJwoDAAAAAAAAALCFSLp8TETE8uXL44knnogXX3zxQ8dWrFgRt956a4JUAAAAAAAAAACVLWkp5OWXX45+/frFQQcdFP3794/BgwfH/Pnz1x5///3349RTT02YEAAAAAAAAACgMiUthZxzzjmx2267xcKFC2P27NlRU1MT+++/f8ydOzdlLAAAAAAAAACAipe0FPKHP/whamtrY5tttonevXvHAw88EMOGDYsDDzwwXn/99ZTRAAAAAAAAAAAqWtJSyPLly6Oqqmrt16VSKSZOnBhHHnlkDB48OF5++eWE6QAAAAAAAACgcZRKtlRbzqo2fpPNp2/fvvHcc89Fv379Guy/5pprIiLiqKOOShELAAAAAAAAAKDiJZ0p5Jhjjok77rhjnceuueaaOOGEE6IoikZOBQAAAAAAAABQ+UpFhq2LFatTJwCofPX12b08JNWsWeZzjwFQcfK7Ekwv96lGU/A4ZUvnec+Wzu/R8vO8B/hkOhzy/dQRsrP88QtTR6CMlq30Bi6VNi3zfaOXdKYQAAAAAAAAAAA2D6UQAAAAAAAAAIAMKYUAAAAAAAAAAGSoKnUAAAAAAAAAAGjqSqkDkCUzhQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMlSVOgAAAAAAAAAANHml1AHIkZlCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMhQVeoAAAAAAAAAANDUlaKUOgIZMlMIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDVakDAAAAAAAAAEBTVyqlTkCOzBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAfATXXntt7LDDDtGqVavYd99945lnnkkdaZ2UQgAAAAAAAAAANtGdd94ZZ599dkyYMCFmzpwZAwYMiGHDhsXChQtTR/sQpRAAAAAAAAAAgE10+eWXx+mnnx6nnnpq7LLLLnHdddfFVlttFT//+c9TR/sQpRAAAAAAAAAAgE2wcuXKmDFjRgwZMmTtvmbNmsWQIUPiySefTJhs3apSBwAAAAAAAAAASKWuri7q6uoa7Kuuro7q6uoP3fZvf/tbrFmzJrp06dJgf5cuXeIvf/nLZs35cWRZCmlVIT9VXV1d1NbWxrnnnrvOBxMfjfEsP2NaXpU3nqXUATaq8sZ0y2dMy8t4lp8xLS/jWX7GtPyMaXkZz/IzpuVlPMvPmJafMS0v41l+xrT8jGl5Gc/yq6QxXf74hakjbFQljSf5qZS/c+fogn+rjR/84AcN9k2YMCEuuOCCNIHKqFQURZE6RFO1ePHiaNeuXbz//vvRtm3b1HEqnvEsP2NaXsaz/Ixp+RnT8jKe5WdMy8t4lp8xLT9jWl7Gs/yMaXkZz/IzpuVnTMvLeJafMS0/Y1pexrP8jGl5GU9omj7KTCErV66MrbbaKu6+++4YMWLE2v0jR46MRYsWxf3337+5434kzVIHAAAAAAAAAABIpbq6Otq2bdtgW99sQS1btoyBAwfGo48+unZffX19PProozFo0KDGirzJTEADAAAAAAAAALCJzj777Bg5cmTstddesc8++8RPfvKTWLZsWZx66qmpo32IUggAAAAAAAAAwCY6/vjj45133onvf//7sWDBgvjMZz4TDz/8cHTp0iV1tA9RCkmouro6JkyYsN5pZ/hojGf5GdPyMp7lZ0zLz5iWl/EsP2NaXsaz/Ixp+RnT8jKe5WdMy8t4lp8xLT9jWl7Gs/yMafkZ0/IynuVnTMvLeAKbasyYMTFmzJjUMTaqVBRFkToEAAAAAAAAAADl1Sx1AAAAAAAAAAAAyk8pBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgpJ5Nprr40ddtghWrVqFfvuu28888wzqSNVrMceeyyOPPLI6N69e5RKpbjvvvtSR6potbW1sffee0dNTU107tw5RowYEbNnz04dq6JNnDgxdt9992jbtm20bds2Bg0aFP/5n/+ZOlY2LrnkkiiVSjF27NjUUSrWBRdcEKVSqcHWt2/f1LEq3l//+tc46aSTolOnTtG6devo379/PPfcc6ljVawddtjhQ4/TUqkUo0ePTh2tIq1ZsybOP//82HHHHaN169bRq1evuOiii6IoitTRKtaSJUti7Nix0bNnz2jdunXst99+8eyzz6aOVTE29p6+KIr4/ve/H926dYvWrVvHkCFD4pVXXkkTtkJsbEzvueeeGDp0aHTq1ClKpVLMmjUrSc5KsqExXbVqVZxzzjnRv3//aNOmTXTv3j2++tWvxrx589IF3sJt7DF6wQUXRN++faNNmzbRoUOHGDJkSDz99NNpwlaIj/L5yBlnnBGlUil+8pOfNFq+SrOx8TzllFM+9N50+PDhacJWiE15jL700ktx1FFHRbt27aJNmzax9957x9y5cxs/bIXY2Jiu6xqqVCrFj3/84zSBt3AbG8+lS5fGmDFjYvvtt4/WrVvHLrvsEtddd12asBViY2P69ttvxymnnBLdu3ePrbbaKoYPH+59/gZsymf3K1asiNGjR0enTp1i6623ji984Qvx9ttvJ0q85duUMb3hhhvi4IMPjrZt20apVIpFixalCQvwCSiFJHDnnXfG2WefHRMmTIiZM2fGgAEDYtiwYbFw4cLU0SrSsmXLYsCAAXHttdemjpKF6dOnx+jRo+Opp56KKVOmxKpVq2Lo0KGxbNmy1NEq1vbbbx+XXHJJzJgxI5577rn43Oc+F0cffXT8+c9/Th2t4j377LNx/fXXx+677546SsXbddddY/78+Wu3J554InWkivbee+/F/vvvHy1atIj//M//jBdffDEuu+yy6NChQ+poFevZZ59t8BidMmVKRER86UtfSpysMl166aUxceLEuOaaa+Kll16KSy+9NH70ox/F1VdfnTpaxfra174WU6ZMiV/84hfx/PPPx9ChQ2PIkCHx17/+NXW0irCx9/Q/+tGP4qqrrorrrrsunn766WjTpk0MGzYsVqxY0chJK8fGxnTZsmVxwAEHxKWXXtrIySrXhsb0gw8+iJkzZ8b5558fM2fOjHvuuSdmz54dRx11VIKklWFjj9FPf/rTcc0118Tzzz8fTzzxROywww4xdOjQeOeddxo5aeXY1M9H7r333njqqaeie/fujZSsMm3KeA4fPrzBe9Q77rijERNWno2N6WuvvRYHHHBA9O3bN6ZNmxZ/+tOf4vzzz49WrVo1ctLKsbEx/d+Pz/nz58fPf/7zKJVK8YUvfKGRk1aGjY3n2WefHQ8//HDcdttt8dJLL8XYsWNjzJgxMWnSpEZOWjk2NKZFUcSIESPi9ddfj/vvvz/++Mc/Rs+ePWPIkCE+i16PTfnsfty4cfHAAw/EXXfdFdOnT4958+bFsccemzD1lm1TxvSDDz6I4cOHx3e/+92ESQE+oYJGt88++xSjR49e+/WaNWuK7t27F7W1tQlT5SEiinvvvTd1jKwsXLiwiIhi+vTpqaNkpUOHDsXPfvaz1DEq2pIlS4qdd965mDJlSjF48ODirLPOSh2pYk2YMKEYMGBA6hhZOeecc4oDDjggdYysnXXWWUWvXr2K+vr61FEq0hFHHFGMGjWqwb5jjz22OPHEExMlqmwffPBB0bx58+LBBx9ssH/PPfcszjvvvESpKtc/v6evr68vunbtWvz4xz9eu2/RokVFdXV1cccddyRIWHk2dJ00Z86cIiKKP/7xj42aqdJtyrXnM888U0RE8cYbbzROqAq2KeP5/vvvFxFRPPLII40TqsKtb0zfeuutYrvttiteeOGFomfPnsUVV1zR6Nkq0brGc+TIkcXRRx+dJE8O1jWmxx9/fHHSSSelCZSBTfldevTRRxef+9znGidQhVvXeO66667FhRde2GCf9/yb7p/HdPbs2UVEFC+88MLafWvWrCm23Xbb4qc//WmChJXnnz+7X7RoUdGiRYvirrvuWnubl156qYiI4sknn0wVs6Js6O8hU6dOLSKieO+99xo/GMAnZKaQRrZy5cqYMWNGDBkyZO2+Zs2axZAhQ+LJJ59MmAzW7f3334+IiI4dOyZOkoc1a9bEf/zHf8SyZcti0KBBqeNUtNGjR8cRRxzR4PcpH98rr7wS3bt3j5122ilOPPFE0/N+QpMmTYq99torvvSlL0Xnzp1jjz32iJ/+9KepY2Vj5cqVcdttt8WoUaOiVCqljlOR9ttvv3j00Ufj5ZdfjoiI//qv/4onnngiDjvssMTJKtPq1atjzZo1H/pXrK1btzbzUhnMmTMnFixY0OA1v127drHvvvu6hmKL9v7770epVIr27dunjlLxVq5cGTfccEO0a9cuBgwYkDpOxaqvr4+TTz45xo8fH7vuumvqOFmYNm1adO7cOfr06RNf//rX4+9//3vqSBWrvr4+Hnroofj0pz8dw4YNi86dO8e+++5rmegyevvtt+Ohhx6K0047LXWUirXffvvFpEmT4q9//WsURRFTp06Nl19+OYYOHZo6WkWqq6uLiGhwHdWsWbOorq52HbWJ/vmz+xkzZsSqVasaXDv17ds3evTo4dppE/l7CJArpZBG9re//S3WrFkTXbp0abC/S5cusWDBgkSpYN3q6+tj7Nixsf/++8duu+2WOk5Fe/7552PrrbeO6urqOOOMM+Lee++NXXbZJXWsivUf//EfMXPmzKitrU0dJQv77rtv3HzzzfHwww/HxIkTY86cOXHggQfGkiVLUkerWK+//npMnDgxdt5555g8eXJ8/etfj29+85txyy23pI6Whfvuuy8WLVoUp5xySuooFes73/lOfPnLX46+fftGixYtYo899oixY8fGiSeemDpaRaqpqYlBgwbFRRddFPPmzYs1a9bEbbfdFk8++WTMnz8/dbyK94/rJNdQVJIVK1bEOeecEyeccEK0bds2dZyK9eCDD8bWW28drVq1iiuuuCKmTJkS22yzTepYFevSSy+Nqqqq+OY3v5k6ShaGDx8et956azz66KNx6aWXxvTp0+Owww6LNWvWpI5WkRYuXBhLly6NSy65JIYPHx6//e1v45hjjoljjz02pk+fnjpeFm655ZaoqamxjMQncPXVV8cuu+wS22+/fbRs2TKGDx8e1157bRx00EGpo1Wkf5QVzj333Hjvvfdi5cqVcemll8Zbb73lOmoTrOuz+wULFkTLli0/VEp27bRp/D0EyFlV6gDAlmv06NHxwgsvaGaXQZ8+fWLWrFnx/vvvx9133x0jR46M6dOnK4Z8DG+++WacddZZMWXKFOsKl8n/nhlg9913j3333Td69uwZv/rVr/wLoo+pvr4+9tprr7j44osjImKPPfaIF154Ia677roYOXJk4nSV78Ybb4zDDjssunfvnjpKxfrVr34Vv/zlL+P222+PXXfdNWbNmhVjx46N7t27e4x+TL/4xS9i1KhRsd1220Xz5s1jzz33jBNOOCFmzJiROhrQyFatWhXHHXdcFEUREydOTB2noh1yyCExa9as+Nvf/hY//elP47jjjounn346OnfunDpaxZkxY0ZceeWVMXPmTDOtlcmXv/zltf/dv3//2H333aNXr14xbdq0OPTQQxMmq0z19fUREXH00UfHuHHjIiLiM5/5TPzhD3+I6667LgYPHpwyXhZ+/vOfx4knnuizlE/g6quvjqeeeiomTZoUPXv2jMceeyxGjx4d3bt3N5Ptx9CiRYu455574rTTTouOHTtG8+bNY8iQIXHYYYdFURSp423xfHZffsYUyJmZQhrZNttsE82bN4+33367wf633347unbtmigVfNiYMWPiwQcfjKlTp8b222+fOk7Fa9myZfTu3TsGDhwYtbW1MWDAgLjyyitTx6pIM2bMiIULF8aee+4ZVVVVUVVVFdOnT4+rrroqqqqq/KusMmjfvn18+tOfjldffTV1lIrVrVu3D5W++vXrZ1meMnjjjTfikUceia997Wupo1S08ePHr50tpH///nHyySfHuHHjzMD0CfTq1SumT58eS5cujTfffDOeeeaZWLVqVey0006po1W8f1wnuYaiEvyjEPLGG2/ElClTzBLyCbVp0yZ69+4dn/3sZ+PGG2+MqqqquPHGG1PHqkiPP/54LFy4MHr06LH2OuqNN96Ib33rW7HDDjukjpeFnXbaKbbZZhvXUR/TNttsE1VVVa6jNpPHH388Zs+e7TrqE1i+fHl897vfjcsvvzyOPPLI2H333WPMmDFx/PHHx7//+7+njlexBg4cGLNmzYpFixbF/Pnz4+GHH46///3vrqM2Yn2f3Xft2jVWrlwZixYtanB7104b5+8hQO6UQhpZy5YtY+DAgfHoo4+u3VdfXx+PPvpoDBo0KGEy+B9FUcSYMWPi3nvvjd/97nex4447po6Upfr6+rXrZvLRHHroofH888/HrFmz1m577bVXnHjiiTFr1qxo3rx56ogVb+nSpfHaa69Ft27dUkepWPvvv3/Mnj27wb6XX345evbsmShRPm666abo3LlzHHHEEamjVLQPPvggmjVreCnQvHnztf9Ck4+vTZs20a1bt3jvvfdi8uTJcfTRR6eOVPF23HHH6Nq1a4NrqMWLF8fTTz/tGootyj8KIa+88ko88sgj0alTp9SRsuM66uM7+eST409/+lOD66ju3bvH+PHjY/LkyanjZeGtt96Kv//9766jPqaWLVvG3nvv7TpqM7nxxhtj4MCBMWDAgNRRKtaqVati1apVrqM2k3bt2sW2224br7zySjz33HOuo9ZjY5/dDxw4MFq0aNHg2mn27Nkxd+5c107r4e8hQFNh+ZgEzj777Bg5cmTstddesc8++8RPfvKTWLZsWZx66qmpo1WkpUuXNvhXGHPmzIlZs2ZFx44do0ePHgmTVabRo0fH7bffHvfff3/U1NSsXWuwXbt20bp168TpKtO5554bhx12WPTo0SOWLFkSt99+e0ybNs0Hbx9TTU3Nh9Z0bNOmTXTq1Mlajx/Tv/7rv8aRRx4ZPXv2jHnz5sWECROiefPmccIJJ6SOVrHGjRsX++23X1x88cVx3HHHxTPPPBM33HBD3HDDDamjVbT6+vq46aabYuTIkVFV5W3sJ3HkkUfGD3/4w+jRo0fsuuuu8cc//jEuv/zyGDVqVOpoFWvy5MlRFEX06dMnXn311Rg/fnz07dvXe/xNtLH39GPHjo1/+7d/i5133jl23HHHOP/886N79+4xYsSIdKG3cBsb03fffTfmzp0b8+bNi4hY+0e4rl27+leE67GhMe3WrVt88YtfjJkzZ8aDDz4Ya9asWXst1bFjx2jZsmWq2FusDY1np06d4oc//GEcddRR0a1bt/jb3/4W1157bfz1r3+NL33pSwlTb9k29rz/56JSixYtomvXrtGnT5/GjloRNjSeHTt2jB/84AfxhS98Ibp27RqvvfZafPvb347evXvHsGHDEqbesm3sMTp+/Pg4/vjj46CDDopDDjkkHn744XjggQdi2rRp6UJv4Tblc9HFixfHXXfdFZdddlmqmBVjY+M5ePDgGD9+fLRu3Tp69uwZ06dPj1tvvTUuv/zyhKm3bBsb07vuuiu23Xbb6NGjRzz//PNx1llnxYgRI2Lo0KEJU2+5NvbZfbt27eK0006Ls88+Ozp27Bht27aNb3zjGzFo0KD47Gc/mzj9lmlT/h6yYMGCWLBgwdrH8vPPPx81NTXRo0eP6NixY7LsAB9JQRJXX3110aNHj6Jly5bFPvvsUzz11FOpI1WsqVOnFhHxoW3kyJGpo1WkdY1lRBQ33XRT6mgVa9SoUUXPnj2Lli1bFttuu21x6KGHFr/97W9Tx8rK4MGDi7POOit1jIp1/PHHF926dStatmxZbLfddsXxxx9fvPrqq6ljVbwHHnig2G233Yrq6uqib9++xQ033JA6UsWbPHlyERHF7NmzU0epeIsXLy7OOuusokePHkWrVq2KnXbaqTjvvPOKurq61NEq1p133lnstNNORcuWLYuuXbsWo0ePLhYtWpQ6VsXY2Hv6+vr64vzzzy+6dOlSVFdXF4ceeqjfBRuxsTG96aab1nl8woQJSXNvyTY0pnPmzFnvtdTUqVNTR98ibWg8ly9fXhxzzDFF9+7di5YtWxbdunUrjjrqqOKZZ55JHXuL9lE/H+nZs2dxxRVXNGrGSrKh8fzggw+KoUOHFttuu23RokWLomfPnsXpp59eLFiwIHXsLdqmPEZvvPHGonfv3kWrVq2KAQMGFPfdd1+6wBVgU8b0+uuvL1q3bu296SbY2HjOnz+/OOWUU4ru3bsXrVq1Kvr06VNcdtllRX19fdrgW7CNjemVV15ZbL/99kWLFi2KHj16FN/73vdcl27Apnx2v3z58uLMM88sOnToUGy11VbFMcccU8yfPz9d6C3cpozphAkT/M0EqHiloiiKTS2QAAAAAAAAAABQGZpt/CYAAAAAAAAAAFQapRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAB/RKaecEiNGjFj79cEHHxxjx45t9BzTpk2LUqkUixYtavT7BgAAAGDLpxQCAABANk455ZQolUpRKpWiZcuW0bt377jwwgtj9erVm/V+77nnnrjooos26baKHAAAAAA0lqrUAQAAAKCchg8fHjfddFPU1dXFb37zmxg9enS0aNEizj333Aa3W7lyZbRs2bIs99mxY8eynAcAAAAAyslMIQAAAGSluro6unbtGj179oyvf/3rMWTIkJg0adLaJV9++MMfRvfu3aNPnz4REfHmm2/GcccdF+3bt4+OHTvG0UcfHf/93/+99nxr1qyJs88+O9q3bx+dOnWKb3/721EURYP7/OflY+rq6uKcc86JT33qU1FdXR29e/eOG2+8Mf77v/87DjnkkIiI6NChQ5RKpTjllFMiIqK+vj5qa2tjxx13jNatW8eAAQPi7rvvbnA/v/nNb+LTn/50tG7dOg455JAGOQEAAADgnymFAAAAkLXWrVvHypUrIyLi0UcfjdmzZ8eUKVPiwQcfjFWrVsWwYcOipqYmHn/88fj9738fW2+9dQwfPnzt91x22WVx8803x89//vN44okn4t1334177713g/f51a9+Ne6444646qqr4qWXXorrr78+tt566/jUpz4Vv/71ryMiYvbs2TF//vy48sorIyKitrY2br311rjuuuviz3/+c4wbNy5OOumkmD59ekT8T3nl2GOPjSOPPDJmzZoVX/va1+I73/nO5ho2AAAAADJg+RgAAACyVBRFPProozF58uT4xje+Ee+88060adMmfvazn61dNua2226L+vr6+NnPfhalUikiIm666aZo3759TJs2LYYOHRo/+clP4txzz41jjz02IiKuu+66mDx58nrv9+WXX45f/epXMWXKlBgyZEhEROy0005rj/9jqZnOnTtH+/btI+J/Zha5+OKL45FHHolBgwat/Z4nnngirr/++hg8eHBMnDgxevXqFZdddllERPTp0yeef/75uPTSS8s4agAAAADkRCkEAACArDz44IOx9dZbx6pVq6K+vj6+8pWvxAUXXBCjR4+O/v37ry2ERET813/9V7z66qtRU1PT4BwrVqyI1157Ld5///2YP39+7LvvvmuPVVVVxV577fWhJWT+YdasWdG8efMYPHjwJmd+9dVX44MPPojPf/7zDfavXLky9thjj4iIeOmllxrkiIi1BRIAAAAAWBelEAAAALJyyCGHxMSJE6Nly5bRvXv3qKr6/5e+bdq0aXDbpUuXxsCBA+OXv/zlh86z7bbbfqz7b9269Uf+nqVLl0ZExEMPPRTbbbddg2PV1dUfKwcAAAAAKIUAAACQlTZt2kTv3r036bZ77rln3HnnndG5c+do27btOm/TrVu3ePrpp+Oggw6KiIjVq1fHjBkzYs8991zn7fv37x/19fUxffr0tcvH/G//mKlkzZo1a/ftsssuUV1dHXPnzl3vDCP9+vWLSZMmNdj31FNPbfyHBAAAAKDJapY6AAAAAKRy4oknxjbbbBNHH310PP744zFnzpyYNm1afPOb34y33norIiLOOuusuOSSS+K+++6Lv/zlL3HmmWfGokWL1nvOHXbYIUaOHBmjRo2K++67b+05f/WrX0VERM+ePaNUKsWDDz4Y77zzTixdujRqamriX//1X2PcuHFxyy23xGuvvRYzZ86Mq6++Om655ZaIiDjjjDPilVdeifHjx8fs2bPj9ttvj5tvvnlzDxEAAAAAFUwpBAAAgCZrq622isceeyx69OgRxx57bPTr1y9OO+20WLFixdqZQ771rW/FySefHCNHjoxBgwZFTU1NHHPMMRs878SJE+OLX/xinHnmmdG3b984/fTTY9myZRERsd1228UPfvCD+M53vhNdunSJMWPGRETERRddFOeff37U1tZGv379Yvjw4fHQQw/FjjvuGBERPXr0iF//+tdx3333xYABA+K6666Liy++eDOODgAAAACVrlQURZE6BAAAAAAAAAAA5WWmEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZ+n+nzUqEsN/WAQAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["\n","🚀 بدء Fine-Tuning لموديل SUB\n","✅ [LOADED] تم العثور على نموذج Fine-Tuned لموديل SUB. سيتم تحميله بدون إعادة تدريب.\n","\u001b[1m3390/3390\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1026s\u001b[0m 302ms/step\n","\n","📊 Classification Report:\n"," precision recall f1-score support\n","\n"," 0 0.99 1.00 0.99 1446\n"," 1 0.81 0.84 0.82 1447\n"," 2 0.99 1.00 1.00 1447\n"," 3 0.98 1.00 0.99 1446\n"," 4 0.99 1.00 1.00 1446\n"," 5 0.98 0.99 0.98 1446\n"," 6 1.00 1.00 1.00 1446\n"," 7 0.99 0.99 0.99 1446\n"," 8 0.99 1.00 0.99 1446\n"," 9 1.00 1.00 1.00 1446\n"," 10 0.98 1.00 0.99 1446\n"," 11 0.99 1.00 0.99 1447\n"," 12 0.97 0.98 0.97 1446\n"," 13 0.85 0.89 0.87 1446\n"," 14 0.98 0.99 0.99 1447\n"," 15 0.99 1.00 0.99 1447\n"," 16 0.95 0.99 0.97 1446\n"," 17 0.98 1.00 0.99 1446\n"," 18 0.98 0.99 0.99 1446\n"," 19 0.64 0.62 0.63 1446\n"," 20 0.60 0.63 0.61 1447\n"," 21 0.83 0.89 0.86 1447\n"," 22 0.99 1.00 1.00 1446\n"," 23 0.98 1.00 0.99 1447\n"," 24 0.99 1.00 1.00 1447\n"," 25 0.98 1.00 0.99 1446\n"," 26 0.97 1.00 0.98 1447\n"," 27 0.94 1.00 0.97 1447\n"," 28 1.00 1.00 1.00 1446\n"," 29 0.84 0.82 0.83 1447\n"," 30 0.99 1.00 1.00 1446\n"," 31 0.90 0.95 0.92 1446\n"," 32 0.96 0.91 0.94 1447\n"," 33 0.96 0.99 0.98 1446\n"," 34 1.00 1.00 1.00 1446\n"," 35 0.95 0.99 0.97 1446\n"," 36 0.26 0.07 0.10 1446\n"," 37 0.49 0.56 0.52 1447\n"," 38 0.81 0.78 0.79 1446\n"," 39 0.51 0.54 0.53 1446\n"," 40 0.98 0.99 0.99 1446\n"," 41 1.00 1.00 1.00 1447\n"," 42 0.36 0.22 0.27 1446\n"," 43 0.97 1.00 0.98 1447\n"," 44 0.91 0.94 0.93 1446\n"," 45 1.00 1.00 1.00 1446\n"," 46 0.99 1.00 0.99 1447\n"," 47 0.98 1.00 0.99 1446\n"," 48 0.97 1.00 0.98 1447\n"," 49 0.76 0.87 0.81 1446\n"," 50 0.96 0.99 0.97 1446\n"," 51 0.66 0.58 0.62 1447\n"," 52 0.30 0.26 0.28 1447\n"," 53 1.00 1.00 1.00 1446\n"," 54 0.99 1.00 0.99 1446\n"," 55 0.80 0.79 0.79 1447\n"," 56 1.00 1.00 1.00 1446\n"," 57 0.99 1.00 0.99 1447\n"," 58 0.96 0.96 0.96 1446\n"," 59 0.37 0.30 0.33 1447\n"," 60 1.00 1.00 1.00 1447\n"," 61 0.96 0.98 0.97 1446\n"," 62 1.00 1.00 1.00 1446\n"," 63 1.00 1.00 1.00 1446\n"," 64 1.00 1.00 1.00 1446\n"," 65 1.00 1.00 1.00 1447\n"," 66 0.92 0.96 0.94 1446\n"," 67 0.98 0.99 0.98 1447\n"," 68 1.00 1.00 1.00 1447\n"," 69 0.94 0.97 0.95 1446\n"," 70 0.78 0.91 0.84 1447\n"," 71 1.00 1.00 1.00 1447\n"," 72 0.99 1.00 0.99 1446\n"," 73 0.91 0.95 0.93 1447\n"," 74 0.47 0.59 0.52 1446\n","\n"," accuracy 0.90 108480\n"," macro avg 0.89 0.90 0.90 108480\n","weighted avg 0.89 0.90 0.90 108480\n","\n","\n","🔄 Summary for SUB:\n","✅ Accuracy: 0.9013\n","✅ Precision: 0.8918\n","✅ Recall: 0.9013\n","✅ F1-Score: 0.8951\n","✅ عرض رسم Accuracy & Loss المخزن: /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/CNN + Bilstm_sub_finetuned_acc_loss1.png\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABEkAAAGrCAYAAAA8UcljAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4FNXXwPHvbE/vjQQSQgu99xaK9CJVRToIFopIU38WQFReK4oFbAgCShUFRESKoHSk99BLIAkhve7uvH8MuxASmlIinM/z5Eky9c7uJjNz5txzFVVVVYQQQgghhBBCCCEecrr73QAhhBBCCCGEEEKIwkCCJEIIIYQQQgghhBBIkEQIIYQQQgghhBACkCCJEEIIIYQQQgghBCBBEiGEEEIIIYQQQghAgiRCCCGEEEIIIYQQgARJhBBCCCGEEEIIIQAJkgghhBBCCCGEEEIAEiQRQgghhBBCCCGEACRIIoQQopCJjo4mOjr6fjfjrlu7di2KorB27dr73RQhbtm8efPw9fUlLS3tfjelQHfj/4eiKIwbN875+9SpUylWrBjZ2dl3dD9CCCEKBwmSCCHEA2jPnj107dqV8PBwLBYLoaGhPPLII0yZMiXPcoqiMGTIkAK3sWDBgnw38X379kVRFOeXwWCgaNGiPP744+zfv/+W2nb1+ld/BQcH/+Pj/TeuPabrffXt2/e+tO9u++yzz1AUhdq1a9/vpvwnbdy4kcaNG+Pp6UlgYCCtW7fmr7/+uuX1T5w4gaIovPfee3exlXeGzWbj9ddfZ+jQobi7uzunR0RE0K5du/vYsnurb9++5OTkMG3atPvdFCGEEHeB4X43QAghxJ21YcMGmjRpQrFixXjqqacIDg7m9OnTbNq0iY8++oihQ4f+q+2bzWa++uorAKxWK0ePHmXq1Kn8+uuv7N+/nyJFitx0G4888gi9e/fOM83FxQWA33777V+173YNHjyY5s2bO38/fvw4r732GoMGDaJhw4bO6SVKlLij+23UqBGZmZmYTKY7ut3bNXv2bCIiItiyZQsxMTGULFnyvrbnv+TUqVO0bNkSPz8/xo8fj91uZ+XKlaxatYr69evf7+bdcUuWLOHQoUMMGjTofjflvrJYLPTp04cPPviAoUOHoijK/W6SEEKIO0iCJEII8YB588038fLyYuvWrXh7e+eZFxcX96+3bzAY6NmzZ55pderUoV27dixbtoynnnrqptsoXbp0vm043OugQd26dalbt67z923btvHaa69Rt27d67bxTtDpdFgslru2/Vtx/PhxNmzYwKJFixg8eDCzZ8/m9ddfv69tup709HTc3NzudzPyWLZsGampqaxatYqaNWsCMHLkyAe2G8b06dOpX78+oaGh97sp91337t155513WLNmDU2bNr3fzRFCCHEHSXcbIYR4wBw9epTy5cvnC5AABAYG3pV9OrrKGAz/PvZ+bU0BR+2OefPm8eabbxIWFobFYqFZs2bExMTkW3/z5s20atUKLy8vXF1dady48W11fyjIuHHjCnxa/O2336IoCidOnHBOc3Q9+PPPP6lVqxYWi4XIyEhmzpyZZ92CapJER0dToUIF9u/fT5MmTXB1dSU0NJR33nkn375PnjxJhw4dcHNzIzAwkBEjRrBixYrbqnMye/ZsfHx8aNu2LV27dmX27NkFLpeUlMSIESOIiIjAbDYTFhZG7969SUhIcC6TlZXFuHHjKF26NBaLhZCQEDp37szRo0eve7xwpbvJt99+65zWt29f3N3dOXr0KG3atMHDw4Mnn3wSgPXr19OtWzeKFSuG2WymaNGijBgxgszMzHztPnjwIN27dycgIAAXFxfKlCnD//73PwDWrFmDoij8+OOP+dabM2cOiqKwcePGG75+Op12GaWqap7pZrP5huv9E3FxcQwYMICgoCAsFguVK1dmxowZ+Zb74YcfqF69Oh4eHnh6elKxYkU++ugj5/zc3FzGjx9PqVKlsFgs+Pn50aBBA1auXHnD/WdlZfHrr7/mybq6HVarlTfeeIMSJUpgNpuJiIjg5ZdfzhdQ+umnn2jbti1FihTBbDZTokQJ3njjDWw2W75tfvHFF5QoUQIXFxdq1arF+vXrC9x3dnY2r7/+OiVLlnR+ZsaMGZNv39nZ2YwYMYKAgAA8PDzo0KEDZ86cKXCb1atXx9fXl59++ukfvR5CCCEKL8kkEUKIB0x4eDgbN25k7969VKhQ4a7sw3FzbLPZOHbsGGPHjsXPz++W6xJkZWXlucEG8PDwuOHN5aRJk9DpdIwaNYrk5GTeeecdnnzySTZv3uxcZvXq1bRu3Zrq1avz+uuvo9PpmD59Ok2bNmX9+vXUqlXrHxzt7YuJiaFr164MGDCAPn368M0339C3b1+qV69O+fLlb7jupUuXaNWqFZ07d6Z79+4sWLCAsWPHUrFiRVq3bg1oWRVNmzYlNjaW4cOHExwczJw5c1izZs1ttXP27Nl07twZk8nEE088weeff87WrVudWREAaWlpNGzYkAMHDtC/f3+qVatGQkICP//8M2fOnMHf3x+bzUa7du1YtWoVjz/+OMOHDyc1NZWVK1eyd+/ef9RVyWq10rJlSxo0aMB7772Hq6srAPPnzycjI4NnnnkGPz8/tmzZwpQpUzhz5gzz5893rr97924aNmyI0Whk0KBBREREcPToUZYsWcKbb75JdHQ0RYsWZfbs2XTq1Cnf61KiRIk8GUYF6dy5M2PHjmX06NGsXLnyrmVBZWZmEh0dTUxMDEOGDKF48eLMnz+fvn37kpSUxPDhwwFYuXIlTzzxBM2aNeP//u//ADhw4AB//fWXc5lx48bx9ttvM3DgQGrVqkVKSgrbtm3j77//5pFHHrluG7Zv305OTg7VqlX7R8cwcOBAZsyYQdeuXRk5ciSbN2/m7bff5sCBA3kCVd9++y3u7u688MILuLu7s3r1al577TVSUlJ49913nct9/fXXDB48mHr16vH8889z7NgxOnTogK+vL0WLFnUuZ7fb6dChA3/++SeDBg2ibNmy7Nmzhw8//JDDhw+zePHiPG2cNWsWPXr0oF69eqxevZq2bdte95iqVav2rwOwQgghCiFVCCHEA+W3335T9Xq9qtfr1bp166pjxoxRV6xYoebk5ORbFlCfe+65Arczf/58FVDXrFnjnNanTx8VyPcVGhqqbt++/ZbaV9D6gDp9+nRVVVW1cePGauPGjZ3Lr1mzRgXUsmXLqtnZ2c7pH330kQqoe/bsUVVVVe12u1qqVCm1ZcuWqt1udy6XkZGhFi9eXH3kkUduqX1bt27N0x5VVdXXX39dLeiUOX36dBVQjx8/7pwWHh6uAuq6deuc0+Li4lSz2ayOHDky33Fd/fo2btxYBdSZM2c6p2VnZ6vBwcFqly5dnNPef/99FVAXL17snJaZmalGRUXl2+b1bNu2TQXUlStXqqqqvX5hYWHq8OHD8yz32muvqYC6aNGifNtwvM7ffPONCqgffPDBdZcp6HhVVVWPHz+e7/V2fM5efPHFfNvLyMjIN+3tt99WFUVRT5486ZzWqFEj1cPDI8+0q9ujqqr60ksvqWazWU1KSnJOi4uLUw0Gg/r666/n28+1NmzYoPr4+Kgmk0nt1q2barVab7rOtRzH/+677153mcmTJ6uAOmvWLOe0nJwctW7duqq7u7uakpKiqqqqDh8+XPX09LxhOypXrqy2bdv2ttv51Vdf5fl7u1p4ePgNt7lz504VUAcOHJhn+qhRo1RAXb16tXNaQe/v4MGDVVdXVzUrK0tVVe3YAwMD1SpVquT5n/DFF1+oQJ7/H999952q0+nU9evX59nm1KlTVUD966+/8rTx2WefzbNcjx49VKDAz8OgQYNUFxeX6x63EEKI/ybpbiOEEA+YRx55hI0bN9KhQwd27drFO++8Q8uWLQkNDeXnn3/+19u3WCysXLmSlStXsmLFCqZNm4a7uztt2rTh8OHDt7SNjh07Orfh+GrZsuUN1+nXr1+eJ/WOoqrHjh0DYOfOnRw5coQePXpw8eJFEhISSEhIID09nWbNmrFu3Trsdvs/POrbU65cuTxFXwMCAihTpoyzrTfi7u6epxaKyWSiVq1aedb99ddfCQ0NpUOHDs5pFovllurBOMyePZugoCCaNGkCaKMOPfbYY/zwww95ujYsXLiQypUr58u2cKzjWMbf37/AosD/pqjlM888k2+ao8AvaBk1CQkJ1KtXD1VV2bFjBwDx8fGsW7eO/v37U6xYseu2p3fv3mRnZ7NgwQLntLlz52K1Wm9aj+bkyZO0adOGAQMGsHjxYn788UeeeuqpPF1vBg8enCer4Z/65ZdfCA4O5oknnnBOMxqNDBs2jLS0NP744w8AvL29SU9Pv2HXGW9vb/bt28eRI0duqw0XL14EwMfH5x+1H+CFF17IM33kyJGAVtvF4er3NzU1lYSEBBo2bEhGRgYHDx4EtLpBcXFxPP3003n+J/Tt2xcvL688+5g/fz5ly5YlKirK+T8hISHBWUfEkX3laOOwYcPyrP/8889f97h8fHzIzMwkIyPj5i+CEEKI/wzpbiOEEA+gmjVrsmjRInJycti1axc//vgjH374IV27dmXnzp2UK1fulrd17U2uXq/PV5egTZs2lCpVipdeeomFCxfedJthYWG3Xdvg2ptdx83apUuXAJw3fX369LnuNpKTk3FzcyMxMTHP9ICAAPR6/W2153baClp7HW29kbCwsHyvuY+PD7t373b+fvLkSUqUKJFvuVsdmcZms/HDDz/QpEkTjh8/7pxeu3Zt3n//fVatWkWLFi0ArcZNly5dbri9o0ePUqZMmTtSk8bBYDAQFhaWb/qpU6d47bXX+Pnnn/O9nsnJycCVwNnNuptFRUVRs2ZNZs+ezYABAwAteFSnTp2bvpZvv/02Op2OiRMnYjab+eabb+jTpw8eHh7OGiB79+69I0Mrnzx5klKlSjlroDiULVvWOR/g2WefZd68ebRu3ZrQ0FBatGhB9+7dadWqlXOdCRMm0LFjR0qXLk2FChVo1aoVvXr1olKlSrfUFvWa+iu32n6dTpfvNQ0ODsbb29vZfoB9+/bxyiuvsHr1alJSUvIs73h/HcuXKlUqz3yj0UhkZGSeaUeOHOHAgQMEBAQU2DZHMWtHG6/tGlamTJnrHpfjtZDRbYQQ4sEiQRIhhHiAmUwmatasSc2aNSldujT9+vVj/vz5zhFMzGZzgQUvAefT0VsZgSUsLIwyZcqwbt26O9f4a1wviOG4UXFkibz77rtUqVKlwGXd3d3566+/nNkTDsePHyciIuK6+77eTVBBxSRvpa038m/WvVWrV68mNjaWH374gR9++CHf/NmzZzuDJHfK7b6GZrM5X1DAZrPxyCOPkJiYyNixY4mKisLNzY2zZ8/St2/ff5Qp1Lt3b4YPH86ZM2fIzs5m06ZNfPLJJzddb8OGDVSpUsVZR6dXr15cuHCB0aNH4+HhweOPP87GjRtvKWh4pwQGBrJz505WrFjB8uXLWb58OdOnT6d3797OIq+NGjXi6NGj/PTTT/z222989dVXfPjhh0ydOpWBAwded9t+fn6AFpQsKHh1K24WTEhKSqJx48Z4enoyYcIESpQogcVi4e+//2bs2LH/6P212+1UrFiRDz74oMD5/ybT59KlS7i6uubJfhFCCPHfJ0ESIYR4SNSoUQOA2NhY57Tw8HAOHTpU4PKO6eHh4be0favVSlpa2r9s5T/neALs6el5wyyVypUr5+uO4Bid53ocWStJSUl5Rg26+gn4vRQeHs7+/ftRVTXPjWdBo/0UZPbs2QQGBvLpp5/mm7do0SJ+/PFHpk6diouLCyVKlGDv3r033F6JEiXYvHkzubm5GI3GApe5+jW82u28hnv27OHw4cPMmDGD3r17O6df+346sglu1m6Axx9/nBdeeIHvv/+ezMxMjEYjjz322E3XUxSF06dP55k2atQoLly4wJtvvsns2bOpWrUqHTt2vJVDu6Hw8HB2796N3W7PEzhydD+5+m/UZDLRvn172rdvj91u59lnn2XatGm8+uqrzkwOX19f+vXrR79+/UhLS6NRo0aMGzfuhkGSqKgoQAsoVqxY8bbbb7fbOXLkiDP7BeDChQskJSU527927VouXrzIokWLaNSokXO5q7Odrj7eI0eO5Bl+Nzc3l+PHj1O5cmXntBIlSrBr1y6aNWt2wyCNo42OrCiH6/1/dLTr6uMRQgjxYJCaJEII8YBZs2ZNgVkHjj73V98AtGnThk2bNrF9+/Y8yyYlJTF79myqVKly0wACwOHDhzl06FCem5N7rXr16pQoUYL33nuvwGBNfHw8oN2sN2/ePM/XzbJlHAGYqzNl0tPTCxyC9V5o2bIlZ8+ezVNjJisriy+//PKm62ZmZrJo0SLatWtH165d830NGTKE1NRU57a7dOni7LJ1LcfnrEuXLiQkJBSYgeFYJjw8HL1eny/b6LPPPrvl43Zk2Vz9+VZVNc8Qt6B1n2rUqBHffPMNp06dKrA9Dv7+/rRu3ZpZs2Yxe/ZsWrVqhb+//03b0rx5c44cOcJ3332XZ/qkSZMoV64cJ06coEOHDvmyYf6JNm3acP78eebOneucZrVamTJlCu7u7jRu3Bi4UjfEQafTObvROIa7vXYZd3d3SpYsmW843GtVr14dk8nEtm3b/lH7ASZPnpxnuiO7wzGCTEHvb05OTr7PSI0aNQgICGDq1Knk5OQ4p3/77bf5gnDdu3fn7NmzBf5tZGZmkp6eDuAcOerjjz/Os8y1bb7a33//Tb169a47XwghxH+TZJIIIcQDZujQoWRkZNCpUyeioqLIyclhw4YNzJ07l4iICPr16+dc9sUXX2T+/Pk0atSIwYMHExUVxblz5/j222+JjY1l+vTp+bZvtVqZNWsWoKWynzhxgqlTp2K3253deO4HnU7HV199RevWrSlfvjz9+vUjNDSUs2fPsmbNGjw9PVmyZMk/2naLFi0oVqwYAwYMYPTo0ej1er755hsCAgLy3YTfC4MHD+aTTz7hiSeeYPjw4YSEhDB79mxnsOdGT8x//vlnUlNT8xR9vVqdOnUICAhg9uzZPPbYY4wePZoFCxbQrVs3+vfvT/Xq1UlMTOTnn39m6tSpVK5cmd69ezNz5kxeeOEFtmzZQsOGDUlPT+f333/n2WefpWPHjnh5edGtWzemTJmCoiiUKFGCpUuXOmtC3IqoqChKlCjBqFGjOHv2LJ6enixcuLDAWi8ff/wxDRo0oFq1agwaNIjixYtz4sQJli1bxs6dO/Ms27t3b7p27QrAG2+8cUtteemll1i8eDF9+vRh5cqV1KtXj7S0NL7//nuOHz9OzZo1mThxInXr1r2lrkurVq0iKysr3/RHH32UQYMGMW3aNPr27cv27duJiIhgwYIF/PXXX0yePBkPDw9AG8I2MTGRpk2bEhYWxsmTJ5kyZQpVqlRxZjyUK1eO6Ohoqlevjq+vL9u2bWPBggUMGTLkhu2zWCy0aNGC33//nQkTJuSbHxMTw8SJE/NNr1q1Km3btqVPnz588cUXzi41W7ZsYcaMGTz66KPO7m/16tXDx8eHPn36MGzYMBRF4bvvvssX2DIajUycOJHBgwfTtGlTHnvsMY4fP8706dPz1STp1asX8+bN4+mnn2bNmjXUr18fm83GwYMHmTdvHitWrKBGjRpUqVKFJ554gs8++4zk5GTq1avHqlWrrpudtX37dhITE+9IppAQQohC5t4PqCOEEOJuWr58udq/f381KipKdXd3V00mk1qyZEl16NCh6oULF/Itf+bMGXXgwIFqaGioajAYVF9fX7Vdu3bqpk2b8i1b0BDAnp6earNmzdTff//9ltrHDYYdVtXrDwE8f/78PMsVNHSsqqrqjh071M6dO6t+fn6q2WxWw8PD1e7du6urVq26pfYVNASwqqrq9u3b1dq1a6smk0ktVqyY+sEHH1x3COCChkO93nFdOwRw+fLl863bp08fNTw8PM+0Y8eOqW3btlVdXFzUgIAAdeTIkerChQtVoMD3zqF9+/aqxWJR09PTr7tM3759VaPRqCYkJKiqqqoXL15UhwwZooaGhqomk0kNCwtT+/Tp45yvqtrQrf/73//U4sWLq0ajUQ0ODla7du2qHj161LlMfHy82qVLF9XV1VX18fFRBw8erO7du7fAIYDd3NwKbNv+/fvV5s2bq+7u7qq/v7/61FNPqbt27SrwPdu7d6/aqVMn1dvbW7VYLGqZMmXUV199Nd82s7OzVR8fH9XLy0vNzMy87utyrYSEBHXIkCFq0aJFVYPBoAYHB6u9e/dWDx48qKakpKhRUVGqp6dngcPmOjg+x9f7+u6771RVVdULFy6o/fr1U/39/VWTyaRWrFgx3/EuWLBAbdGihRoYGOj8nA4ePFiNjY11LjNx4kS1Vq1aqre3t+ri4qJGRUWpb775ZoFDhF9r0aJFqqIo6qlTp/JMdwx7XdDXgAEDVFVV1dzcXHX8+PHOz0fRokXVl156yTmsr8Nff/2l1qlTR3VxcVGLFCniHML82r8VVVXVzz77TC1evLhqNpvVGjVqqOvWrcv3d6aq2pDB//d//6eWL19eNZvNqo+Pj1q9enV1/PjxanJysnO5zMxMddiwYaqfn5/q5uamtm/fXj19+nSBQwCPHTtWLVasWJ4hpYUQQjwYFFW9g5XghBBCCHHfTJ48mREjRnDmzBlCQ0Pvd3P+M6xWK0WKFKF9+/Z8/fXX97s5hZbNZqNcuXJ07979ljNuHkTZ2dlERETw4osvMnz48PvdHCGEEHeY1CQRQggh/oOuHZUoKyuLadOmUapUKQmQ3KbFixcTHx+fpxisyE+v1zNhwgQ+/fTT+1qk+X6bPn06RqORp59++n43RQghxF0gmSRCCCHEf1Dr1q0pVqwYVapUITk5mVmzZrFv3z5mz55Njx497nfz/hM2b97M7t27eeONN/D39+fvv/++300SQgghxH0mhVuFEEKI/6CWLVvy1VdfMXv2bGc3iB9++OGWhq8Vms8//5xZs2ZRpUoVvv322/vdHCGEEEIUApJJIoQQQgghhBBCCIHUJBFCCCGEEEIIIYQAJEgihBBCCCGEEEIIAUiQRAghhBBCCCGEEAKQIIkQQgghhBBCCCEEIEESIYQQQgghhBBCCECCJEIIIYQQQgghhBCABEmEEEIIIYQQQgghAAmSCCGEEEIIIYQQQgASJBFCCCGEEEIIIYQAJEgihBBCCCGEEEIIAUiQRAghhBBCCCGEEAKQIIkQQgghhBBCCCEEIEESIYQQQgghhBBCCECCJEIIIYQQQgghhBCABEmEEEIIIYQQQgghADDc7wYIIfJSVRVVVUlJSSEtLQ2z2YynpycmkwlFUbBarWRnZ+Pq6oqiKM51cnNzsVqtuLi4AJCZmYndbndu12g0Ordxvf1mZGSgqmqe6SaTie3bt5Oenk6zZs2uu/4/Oc6srCxsNtt1l3FxcUGv1/+j7cfExPD333/TuXNnDIa796/O8boZDIYbvr5CCCFEYaeqKna7neTkZDIyMnBxccHDwwOj0YiiKOTk5DivNa6+BsnJycFut2OxWADyXU+YTCbnNgpit9vJzMzMdw1iNptZt24dLi4u1KtX744e57XXSddydXVFp/tnz5P37NnDsWPHaN++/T/exvVce80n1x1C3HkSJBGikElOTubtt9/mt99+w2AwYLPZ8PHx4f3336dKlSqsWLGCSZMmsWzZMjw9PZ3rTZ8+nV9//ZW5c+cC0KtXLw4fPozZbAbA09OTJ554gj59+mAymQrc76OPPsqlS5cwGo3O6aNGjWL//v3ExsbSrFmzO3acqqry8ssvs379egCys7PJzs7Gw8MDRVHQ6/VMmzaNKlWq/KPt79mzh48//pgOHTrc1SDJ4cOH6d69O/Xq1WPKlCl3dV9CCCHE3aKqKvHx8YwfP56//voLo9GIzWYjODiYTz75hMjISObMmcP8+fNZtGiR8/oC4L333uPYsWN8+eWXZGZm0rFjR+Li4pzXG76+vgwYMICuXbsW+PDj/PnzdOzYkdzc3Dzn0bfeeouFCxcSEBBwR4Mkubm5PPvss+zduxeArKwsrFYrbm5uKIqCxWJh5syZREZG/qPtb9iwgaVLl9KuXbs71uarzZw5kxUrVjB79uwCr+mEEP+OXM0LUYioqsqnn37KL7/8whdffEGJEiXIzMzk77//dmaIpKWlcfLkyXxPP5KSkjhz5gyqqqIoCmfOnKFDhw70798fm83G+vXreemll4iIiOCRRx7Jt2+73c6pU6cYM2ZMnvn+/v40bdoUq9VaYHttNht6vT7fkwxHRoyqquh0unzzFUVh7NixDBkyBIDvv/+eGTNmMGPGDOeTkSJFitzSa2a321EUxfkF0KxZM6pWrZrv4sGxfEFtut62brTvhQsXkpGRwfLlyzl58iQlSpS45dfBMd1utxf4Gt7Oset0OufvQIHH51jHZrM558sTKCGEEKCdH95880127NjB9OnTCQsLIzU1lW3btjkfniQnJ3P69Ol8GR8JCQmcO3fOeR46deoUzz77LO3bt8dqtbJs2TKGDRtGyZIlqV69er59W61WTp8+zZQpU6hWrRqgXScEBgZSsWLFAgMrdrv9utcYNzsfGo1G3nzzTbKysgD4+OOP2bBhA7NmzcJgMKDT6QgNDb2l16yg64bu3bvTunXrfFkkN7tuuvqcfiPJycmcPXs23/tw9bZu5drj2muBa69LALlOEA8lCZIIUYjYbDY2bdpEw4YNqVOnjvPEVKxYsX+0PT8/P+dNe0hICB9++CGHDx8uMEjiEBQUlO9G/8cffyQ5OZk+ffqQmprK22+/TZs2bViyZAkxMTFUqVKFIUOG4O3tjaIoZGRksGDBAn777Tdyc3OpX78+ffr0wcvLy7lNRVEIDg52/h4QEIDJZKJ48eK4uLjw5ZdfUqxYMVq1aoWiKKSnp/PWW28xYMAAIiMjWbJkCWfOnMHf358ff/wRg8FAv379aNy4MTqdjpiYGH799VdGjx6N3W7ngw8+oFKlSuzevZstW7YQFhbG8OHDiYiIcLZ55syZrF69Gh8fH3r06MGKFSsYPHgw4eHhBb5WqampLFq0iNGjRzNnzhyWLFnC8OHDne9beno6CxcuZOXKlWRmZlK6dGmGDx9OUFAQWVlZLF68mOXLl5OWlkaJEiUYNmwYgYGBvPfee7Rq1cp5oRgbG8uUKVMYOXIkvr6+fPPNN7i6upKYmMgff/xBjx49qF+/PtOnT2fnzp3k5ORQqVIlnnrqKYKDg1EUBbvdzrZt25g9ezanT5/G19eXJ598kgoVKvD+++/zzDPPOI/TZrPx2WefERkZSZs2beQCSQghHgI5OTls2bKF1q1bU6VKFRRFISAggOLFi/+j7V19PeHt7c1HH33E8ePHCwySAM6HI1dfgzgeRnh4eNC5c2fi4uL44IMPaN++PfPmzePMmTPUq1ePwYMH4+7uDkBKSgpz5sxh3bp1qKpKs2bN6NGjB66urnn2dXUQxMfHB4vFQmRkJIqiMHnyZOrVq+fMXrl48SLvvfcezz//PIGBgcyZMwe73Y7NZmP58uW4u7vz9NNPU6NGDRRFYdeuXezcuZNhw4aRk5PDpEmTaNSoEevWrWP37t2UKlWK4cOHO6+DUlNT+fLLL9m4cSMhISF0796dZcuWMXLkSAICAm7rdc/JyWHJkiX89NNPZGVlUbt2bfr164ePjw8AW7ZsYcaMGcTGxuLh4cEjjzxCjx49sNlsLFy4kGXLlpGRkUFgYCD9+vWjdu3at7V/IR4EUrhViEJEp9MRFRXF8uXL+e677zh06BCpqanAP4vkX7p0iZMnT3L06FEWLFhARkYGNWrUuOk6586d49y5c5w/fx6bzcaWLVtYs2YNoKWkfvvtt/zvf/+jVKlSPP744/z444+8++67gPY06LXXXmPGjBm0adOGxx57jN9++40XX3yR3NzcW2q3qqqsXLmSnTt3OqdlZ2fz/fffc+HCBQC2b9/OG2+8wfr163niiScIDQ1l4MCBnDx5EoBjx46xaNEibDYbdrudn376ibFjxwLQu3dvjh07xvDhw539qD/44AM+/fRT2rZtS+PGjXnrrbf4/PPPiY+Pv24bN27cSFJSEu3ataNbt27MmzePjIwMQEvl/d///seHH35IdHQ0ffv2xcvLi4sXL2Kz2Zg4cSITJ06kXr169O/fH39/fxISErDZbPz4448cO3bMua+kpCTmzJlDWloaqqqyevVqXnrpJc6cOUOvXr0oWbIk8fHx2O12Hn/8cXr16sWhQ4d47rnnyM7ORlVV1qxZwxNPPIGrqysDBgygfv36nD59Gk9PT/bs2cPs2bOdT6ROnjzJ5MmT8fX1vaX3SwghxH+f0WikTJkyzJ07l/nz53P06FHS09OBf3YNkpCQwMmTJ4mJieGHH37AbDZTsWLF6y6vqqozI+XcuXNcuHABu93O2rVr2bx5M6AFQL788ksmTJhAjRo16Ny5M19++SVff/21s9bZiBEj+OWXX+jUqROdOnVi9uzZvP322zesgXY1u93OkiVLOHTokHNaWloas2fPJikpCYD169fz2muvceDAAXr27InFYmHAgAEkJCQAsG/fPn755Rdn/ZC5c+cyduxYfH196dmzJ5s2beJ///ufM9Dy6quvMnfuXLp06UK1atV45ZVX+Oabb0hJSbmt11xVVaZPn87YsWOpU6cO3bp1Y8mSJTz77LNkZWVx7tw5+vXrh6+vL4MGDaJ169YkJyejqiq//fYbr732GtHR0Tz11FNUrVr1utdAQjzoJJNEiEJEURRGjRpFWloar732GhkZGRQpUoRu3boxdOjQPDVIbsX06dNZtmwZNpuNCxcu0LlzZ8qVK3fd5VVVZeLEiUyZMgXQnqzMmTOnwOUGDRpEjx49gCtPQLKzszlx4gQLFy5k5syZlC5dGtCeJvXu3ZszZ84QHh6eJz30et1CbkVoaChvvvkm7u7uNG7cmGXLlrFz587rPvV65JFHGDVqFIqiEBISQrdu3UhISMBsNjNr1izeeustOnXqBEBgYCDdunW77r7tdjvff/890dHRBAUF0bp1a9555x22b99Oo0aNOHToEPPnz2fevHnOJ1Ft27YF4Pjx48ycOZOvvvrKmdXTpk0bAGfq781UrFiRcePG5elOFBoaSkxMDCkpKbRv354xY8Zw8uRJIiMjmTx5Mu3bt2fixIno9fo870Hfvn15++23efbZZ/Hy8mLRokUUL16cqlWrShaJEEI8JHQ6HePHj+eVV15h5MiR5OTkUKxYMXr27MlTTz2VJxPjVnzwwQdMnz4dq9VKXFwcAwcOvG5mJmhZjKNHj8bNzQ3QzmmzZ8/Ot5yqqrzwwgu0aNECgFOnTrFy5Uqee+45duzYwdq1a1m4cCEhISEAuLm5MXLkSIYNG4afn98duwYpU6YM48ePx2w2U7NmTerXr8+hQ4cKzPxQVZVu3bo5uxhbLBZGjBhBamoqycnJLF68mJkzZ9KoUSNAK1w/dOjQ225TWloan3/+Oc8//zzPPPMMAFFRUbRq1Yrdu3fj6upKRkYGXbt2pUKFCnm6MZ04cYLQ0FA6d+7szAwW4mElQRIhChFH/9tPPvmEhIQEYmJi+P3335k8eTJZWVmMHz8+T7/RqzlqkVzt2Wef5bnnnkNVVU6dOkX//v35+OOPefnllws8+SmKwvjx450384qiFBiYMZlMlClTxrmNwMBA0tPTsdlsxMTEEBsby7PPPussvmaz2bDZbCQnJzNnzhxn4CUiIoL333/fWW/ldkVGRuLu7u4ssubl5UVycnKByyqKQvny5Z19b318fLDb7WRnZ5Oenk5aWppzPkC5cuXw8PC47r7PnDnD6tWrmTRpEgkJCVgsFsqXL88PP/xAgwYNOHr0KG5ublSoUCHfa33ixAn0ej2VK1f+xxchFSpUcI6mo6oqu3bt4tlnnyU3NxdfX19sNhspKSlcunSJrKwsDh8+TL9+/QrsY9y8eXPeeust1q5dS9OmTZk7dy5DhgzJU5RPCCHEg01RFIoVK8b06dO5cOECMTExLFu2jPHjx6PX63nuueec55xrFXQN8sorr9C1a1dUVeXgwYP079+f8PBwBg4cWOC5z2Aw8NFHHzm7d+h0ugLPw25ubpQoUcK5jaCgIFJTU1FV1Vlovk+fPs66HlarFbvdTlpaGnPnzuWXX34BoFKlSkycOPEfF1wvU6YMZrMZRVFwd3fH1dXVmf17Lb1eT7ly5Zxt9vf3Jzs7G6vVyvnz5wEoXbq0c37lypWdIwXdjkuXLnHx4kVq1qzp3FZkZCR+fn7ExMTQqVMnWrduzZNPPklUVBQNGjSgS5cuFC1alNatW7Nw4UJatGhBpUqVaN68Oe3bt3deZwnxMJEgiRCFjGNkl6CgIIKCgqhbty6JiYmsWrWKV155BTc3N6xWKxkZGc7+paB1yXB3d3cW8AScgQMALy8voqOjWbZsGaNHj75uNXR3d/ebdrO4tuDn1T8bDAb8/PyYO3duvqcp3t7eeHp6Op/uuLu75xlJ59p9XF2cNjc3N1+x2qsLm93KCfx6T4wcwxI6uqYoinLD4YlVVWXp0qVcunSJt99+29nVKDk5mYMHD3LhwgVMJhNWq7XALkYmkwmbzXbd7kfXHrujS1BBbXa05+OPP6ZcuXK8//77uLm5ERsbS7169ZzHYzQaycrKKvBC1tvbm+7duzNz5kxn/RdHLRghhBAPD0VRMBgMhIaGEhoaSv369Z2ZGs888wweHh5kZ2eTlZXlvIlXVZWkpCQ8PT3znDdcXV2d1yC1atWiWrVqLF26lAEDBlz3/OLp6ZnnGqSggExBRccdyxmNRsLCwli8eLGzRoljHW9vb5o3b07ZsmUBLVv2egVSb+U8fLtZKNfbl8lkwm63k5OT45x2s+GJr8dgMDivZxysVitWqxWTyYSLiwsfffQRx44dY8eOHcydO5cffviBX375xVnv7cCBA2zatIl3332XjRs3Mnny5AIL5wrxIJOaJEIUIna7nUOHDjlrT6iqSnZ2NvHx8fj5+aHX6ylbtiw6nY4//vjDWdk9MTGRtWvXUqdOnXxPRBzbSU1NZf/+/QQGBt60avq/Ub58eSwWC1u3bsXX1xd/f3/8/PzQ6XTodDoiIyNp1qwZzZo1o3bt2gU+wdHpdAQHB3Pw4EFnTZGNGzdy6dKlu9LmoKAgihcvzoIFC8jNzSU3N5fFixdfNyslMzOTuXPnMnz4cFavXs1vv/3Gb7/9xsqVK7FYLPz222/OrJRff/0Vm82Gqqrk5OSQm5tL6dKlcXNzY+nSpVitVmef5dzcXIxGIwEBAezfv9/ZV3nNmjV5Lniupaoqly5dIiQkxDmE8q+//up8vVxcXKhbty4LFixwfrbsdjuZmZnOC8tu3bqxd+9e3njjDdq1a3fbheKEEEL8t9lsNg4cOEBGRobz2iEzM5PExEQCAgJQFIXKlSuTkpLC5s2bndcg586dY/PmzdSrV6/AUVRUVeXixYscOXKEoKCguxqAr169OpmZmezbtw8/Pz/8/f2dQRdH3TfHNUi1atUKvB4yGAwEBgZy4MAB5zXI2rVryczMvOn+rzfazI1ERETg6+vLzz//TG5uLtnZ2SxYsOCWut9e/Rqrqoqvry8lS5ZkyZIl5ObmoqoqGzZsICUlhYoVK5KVlUV2djZlypTh8ccfZ8KECZw+fZq4uDhSUlIwGo3UqFGDIUOGMHDgQLZs2XLL9eSEeJBIJokQhYiqqrz33nvs2bOHKlWqOItqHjt2jM8//xy9Xk94eDgjR47k9ddfZ+XKlfj5+bFlyxYsFgtPP/10nouP2bNns337dudwfKmpqUydOvWOPBG43kVOaGgo48ePZ+LEiaxYsYKwsDDOnDnjLHp2oy4sV2+7e/fu9OrViwEDBuDm5sa5c+ewWCx35eLKxcWFcePG8dxzz7Fp0yYsFgsmkwkPD48CL6B27drF4cOHmTJlSp5ggr+/P23atOH777/nscce45VXXmH8+PGsWLGCoKAgYmJiePXVV6lWrZqz3/e6desIDQ3lyJEjjB49mnr16tGzZ09efPFFzp8/T25uLnFxcdfNuAHtwq9z58688sorxMfHk5OTw7lz55xP0XQ6HWPHjqVPnz507NiR6tWrExcXR5kyZXjppZdQFIXixYtTv359Fi1axJdffnlXA2lCCCEKH0cB0QsXLlCpUiVcXFzYvn07CQkJTJo0CUVRqFixIk899RTDhg2jcePGuLm5sWHDBkqUKEGPHj3ynKM/++wzZ120o0ePoigKw4YNu6vHEBUVxZgxYxg5ciQLFiwgMDCQ48ePYzQamT59+i11I1UUhSeffJJhw4Y5H5bc7Dx89bq3y9vbm9dee42XXnqJ5cuXo9PpcHFxwWKx3PBcfOTIEfr16+dcRlEUBg0axKuvvsozzzzD6dOn8fPz4/fff+eZZ56hVKlSbN++nRdeeIEKFSrg4eHB5s2bqVu3LkWLFuWLL77g119/pXz58litVlavXk3fvn2vm3ksxINMUf9JyFMIcVc4nrbs2bOHw4cPOwu3Ok5gjpOv1Wpl3759bN26lfT0dCIjI2nQoIGz0JbdbmfNmjUkJiYC2k2yj48PFStWxN/fv8CTeE5ODr///juVK1fOMywewJ49e8jKyqJGjRrk5OSwatUq6tat6+zuExsby549e2jatCkGgwG73U5MTIwz+yMkJIQaNWpQvHjx657wjx49SkxMDM2aNXNuY+fOnWzYsAFfX1+aNGnCjh07qF27Nn5+fuzbt4/U1FRq167tPOY//viD4sWLExERwZkzZzh48CBNmjRBUZQ880ArbvbHH3/QuHFj3N3dnXVbdu/ejaenJyaTiSeeeIK1a9c617m6rYcPH6ZZs2Z5Lh5UVeX06dPs2bOHZs2aYTQaOXjwIBs3biQjI4OoqCgaNmyIi4sLdrudI0eO8Ndff5Gamkrp0qVp1KiRszvVxo0b2bFjB8WKFaN27drs2LGD6OhoXFxc2LJlC+7u7pQvX96579zcXOc6wcHBNG7cmB07dlCrVi1nobqLFy/yxx9/cPr0aQICAmjUqBFhYWHOPuYvv/wye/fuZeHChXJRJIQQDxlVVYmLi2PXrl3ExMQ4C7fWrVvXOZy8qqpYrVZ27tzJ33//TXZ2NqVLl6Z+/frO2hW5ubmsWrXKWZ9Dp9MREBBAxYoVr1sQNCMjw3lt4e/vn6dN27Ztw2w2U6lSpXznbtCKoZ88eZJGjRqh0+mcGTGbN28mNTWVokWLUrNmzTzXUdfat28fcXFxNG7c2LmNLVu2sHXrVooUKUKDBg2chdnd3d35+++/0ev1VKlSBcAZVKhYsSIhISHExMRw7tw5GjZsiM1mY/Xq1VSqVMk55G9iYiKbNm2iWbNmmM1m7HY7x44dY//+/fj7+5OSksKwYcPYsGFDntfD8ZocPnyY3bt355muKAo1atQgPDyco0ePsm7dOjIzM6lWrRo1atTAYDCQlZXFtm3b2L9/P5mZmZQsWZKGDRvi6elJQkICmzdv5tixYxgMBqpWrUqNGjVuKTgkxINGgiRCCIH2RObQoUOULFnSWWvEZDIxe/bsB7qAqWPIxf379zNo0CDeeecdOnToIPVIhBBCiHtk9+7dnD9/nmLFinHhwgXGjRtHVFQUn3zyidQDEeI+kO42QggBZGdn88UXX3DhwgXn05ixY8c+FBkVM2fOZM6cOXTt2pWWLVtKgEQIIYS4h9LS0pg8eTIJCQkYDAYaNGjA6NGjpeurEPeJZJIIIQQ4U4hzc3NRFMU5rN+DHjBwFJS12WyYzWZ5YiWEEELcYwVdg0iARIj7p9AGSRwX7tnZ2bi5uV13mC1VVcnKysJqtTqXu3qeYwgtV1dX5zzHtrOysnBxcckzlKYQQgghhBBCCCEeToWyu42qqmzfvp2JEyeSlpZGqVKlmDBhQr4hKW02G7NmzeL777/HbrdTq1YtXnzxRdzd3bHZbMyZM4fvvvsOu91O27Ztee655zAYDHzzzTcsXryY3NxczGYzw4cPp2nTptcNlBTSOJIQQgjxwHiQH1bIdYQQQghxd93J64hCmUmSmppKhw4d6Nu3Ly1btuT111/H39+fN954I0+myLZt2+jfvz/ffPMNISEhvPDCCzRp0oTBgweze/du+vXrx5dffomHhwf9+vXj9ddfp3nz5ixZsoSSJUsSEhLC77//zltvveUcorMgdrudGTNmsGfPHklFF0IIIe6g3NxcBg4cSIUKFe53U+6arKws3n33XZKTkx/oYJAQQghxL6mqisFgYMyYMfj6+t6x7RbKTJJDhw6RmppKp06dnAGOYcOG8dJLLzmH+wLYvn075cqVo1q1aiiKQseOHZk5cyYDBgxg5cqV1KxZk2rVqgHQrl07fv75Z5o3b55n5Ibo6GgmTJjAxYsXrxskAVi/fj2RkZEP9EWcEEIIcS+pqsoXX3zBuXPnHujzq9Vq5bfffmPAgAF4e3vf7+YIIYQQD4ScnBzef/99hg4deke3WyiDJGfOnMHHxwc3NzcURSE4OJiMjAySk5PzBEm8vb2Jj48nOzsbi8XC2bNnOXnyJFlZWcTExFCiRAlAS70pUaIEf/75J3a7HYNBO2xVVVm1ahU+Pj6EhYXlaUNWVhZbt24lNzcXVVWJj4+nd+/eREdH37PXQQghhHiQqarKihUrHvgsTZ1Oh4uLC61atSI4OPh+N0cIIYR4IGRkZPDVV1/d8ULHhTJIYrVa81wwOX622+15lmvSpAlTp05l6NChhIaGsmrVKlRVdVaINhqNzmUNBgNWq9X5u6qqbNq0iQ8++IB3330XDw+PPNtOT0/np59+IjU1FYDjx4/f8eMUQgghhBBCCCFE4VEogyR+fn6kpqaSm5uLXq8nNTUVvV6Pq6trnuUCAgL44Ycf+OOPPwAoXbo033zzDRaLhcDAQOLi4gCcmSD+/v7odDpUVWXXrl2MHDmSV155hUaNGuXrI+zr68u7777rDLo888wz9+bghRBCCCGEEEIIcV8UyiBJmTJlSE9P5/Dhw1SoUIE//viDqKgovLy8SElJITk52dk9xtfXl27dupGdnc3w4cNp27YtRqOR+vXr895775GamorZbGbNmjU0btwYRVE4ePAgQ4YM4bnnnqNt27bOQMjVgRLHz4qi5MtgcVBVFZvNRkZGBjab7e6/MOKuURQFi8WC2WyWonpCCCGEEEKIm1JVFbvdTkZGRp5eC+LO0ul0uLq6YjAY7sm9WqEMkgQHB9O/f3+GDh1K2bJl2blzJ5MnT0av1/Pbb78xZ84c5s2bR2ZmJqNGjcLFxYXTp0/j7u5Ov379UBSF6Oho5s6dS9++fXFxcSEtLY2uXbtis9kYP348Z86cYdmyZSxfvhyj0cirr75KZGTkbbXTarVy9uxZAGedE/HfpKoqCQkJBAQE4OnpKYESIYQQQgghxA3Z7XbOnTuXr9SDuLNsNhsXL14kNDQUs9l81/dXKO/sFUXh2WefpXHjxsTGxvLyyy9TtGhRFEWhWbNmVKlSBb1ej5ubGyNGjOD48eP4+flRsWJFLBYLAK6urnz++efs2LGD3NxcqlatipeXFwATJ0501hoBLTJ1u4XUVFUlPT0dRVEICwu748VixL2XnJxMUlISnp6e97spQggh7qJrM0j/SWD86m1IYF0IIR5OWVlZ5ObmUqxYsQe+CPn9pKoqsbGxpKSk4O/vf9fPu4U2SGIwGKhcuTKVK1fOM8/HxwcfHx/nclFRUURFRRW4DTc3Nxo0aJBvXsmSJe9IO202G0ajEZ1OJxdIDwCTyYTNZsvX9UoIIcSDw2q1snjxYpYvX46vry+DBw+mRIkSBf7fV1WV8+fP8+mnn9KiRQsaNWqEqqqkpaXx9ddfs3PnTsqVK8dTTz2Ft7e3nDuEEOIhY7PZMBgM6PV6OQfcZWazmdzc3HuyL0l/+BfkZvrBIu+lEEI82FRVZfny5XzwwQc8/vjjBAYG8vTTT5OSklLg8larlffff5+ZM2eyY8cO5zbeffddNm/ezIABAzh06BATJky4bv0yIYQQQvy3FMpMEnF7HF1/MjMz883T6XR4e3vfNP0rKyuLWbNm0bVrV7y9vW97/8nJyRiNRlxdXSXYIIQQolCy2+3Mnj2b/v3707x5c+rXr8/PP//Mtm3baNasWZ5lVVVl1apVpKam0rBhQ+f0pKQkli5dyjfffEPlypUJDg6mS5cuxMXFERIScq8PSQghhEBVVbKyskhLS8s3T1EUvL29b1pD02azMXv2bJo1a0ZoaOgt79sxEq2Li8sDcx8omSQPiO+++46ePXvy5JNPUqdOHR599FF69uzJkCFDuHTp0k3Xt1qtbNmypcBAy81cunSJ1q1bM3LkSHmSJoQQotDKzs4mJiaG8uXLO0c1i4yM5MCBA/mWjY+PZ9q0abzwwguYTCbn9Li4OHJzc5210oKDgzEajc5C7g5ZWVmcP3+e8+fPc+HCBRn1QAghxF3166+/0rNnT3r27EnDhg1p06YNPXv2ZMCAAZw6deqm69vtdv7++2+Sk5Nva7/jx49n+vTp/7TZhZJkkjwgBgwYQO/evcnOzqZdu3a89NJLNGnShIyMDDw9Pblw4QImkwkvLy9SU1NJTk7G3d0db29v55BK7733Hm5ubs5hrMxmM/Hx8ZhMJnx9fQssTquqKuvXr0en07F161bOnj1LsWLFnPOys7NJSEjAYDDg7++PwWBAVVUyMzO5ePEiFosFX19fFEUhIyMDNzc357DLmZmZuLq6YrPZyM7ORq/Xk5CQ4NzOpUuXyMzMxM/Pz5nB4iikd+nSJdLT0/H19cXV1ZWMjAxcXV2dx5CTk4PNZsNisTwwEU8hhBA3ZrVayc3NdRZ5d9QvS09Pz7OczWZjypQptGzZMl8ds5ycHBRFcY5iYDAY0Ol0ZGdn51lu165djBs3DpvNhs1m4/Tp03fxyIQQQjzs2rVrR4sWLbDb7fTt25fmzZvTu3dvMjMz8fDwICEhAQA/Pz/S0tK4dOkSrq6uznsxg8HAG2+8gYuLC6qqkpGRgclkIjExEQB/f/8Ca3GmpKSQkZGRrz2O3gapqan4+fk5M01UVSUlJYWkpCTc3NycvR5sNhvx8fHk5ubi6+vrvC+8HyRIcgepqop6l7bt+HgU9EFRFAWTyYTJZEKv16PT6bBYLOh0Ovr160dkZCQnT56kffv2FC9enI8++shZeK5Pnz707t3b+fOUKVMwm808+eSTVKhQgZiYGOLj4xk9ejSdOnXKt3+bzcb8+fN56qmnWL9+PStWrGDgwIEA7N27l//973/k5OQA8Nhjj9G3b1/+/PNPJk6ciF6vx263M3z4cKpVq8bAgQOZNWsWXl5enDp1ihdeeIFZs2Zx8OBBXnnlFUJCQkhISGD8+PH89ttvrF+/Hrvdjt1u5+2336Zy5cpkZ2fzzjvvsHr1atzd3fH09OT9999nxIgRjB07lqpVq2K325k0aRIhISHOtgoh7jH18n9LWw4oCuguD5snQUtxFxmNRiwWizMo4rhQc4x+53D8+HEWLlxI3759mTp1KgcPHiQtLY2aNWvi7+/vfAgAV4Lurq6uebZRo0YNFi5cCEBGRgaPP/74HT0WVVVJzszFYtRjNkgBeSGEuN/Uy9c29+t+0Gg0YjQasdls6PV6TCYTFouFwYMH4+Pjw+nTp6lZsybt2rVzBvFTU1Np06YNI0aMwG6388wzzzBq1CjKlClDjx49KFWqFEeOHCE+Pp6ePXvy9NNP39L5xm63M2/ePD7//HNcXV1RVZW3336bKlWq8Ouvv/LOO+/g7u5OTk4OI0aMIDo6mpdeeondu3fj4uKCp6cnU6dOvW+jjkqQ5A7adCyRGRtP3JVttygXRKeqt943DLQP57Fjx2jSpAmTJk3CYDCQnp7O9OnTMRgMxMTEMGzYMNq0aYPJZCI2NtY5xvehQ4fo168fb731FitXrmTy5Mm0bds237jUp0+f5sCBA0yaNImAgAA+/fRTevXqBcCLL75ImzZt6NevH3a7naysLJKSkhg7diwvvPAC7dq1Izs725k1Ehsbi81mAyA3N5fz589jt9vJzs5m165d/O9//6N69eoYDAaCg4MZPHgwdrudhQsXMnnyZL7++muWLFnC2rVrmTlzJkFBQVy6dAk/Pz+qVavGDz/8QOXKlUlMTOSXX35h+vTpclEpxL2kqmiXDpf/7nbMgp2zQW+CUi2gRFPwjQSDWYIl4q4wmUyUK1eObdu2Ub9+fdLS0oiJieGZZ55xBj5MJhPe3t4MGzYMq9WK3W53ZimqqkpQUBAuLi4cOXIEf39/Tp48iaqqhIWF5dmXXq/PEzgpKBvz30jPsfHCvF14uxgZ0yqKIE+znNOEEOI++2VPLEt2x96VbVcv5sPAhsVve72zZ88SGBjIrFmzMBqN5OTkMG3aNCwWC+fPn2fAgAF06NCB4sWLc+HCBXJyclBVlRMnTtC4cWMmTJjA3r17efbZZ3niiSecI83eyJkzZ5g0aRKfffYZVatWZcaMGbzyyivMnz+fb7/9lkGDBtG5c2eysrIAOHnyJBs3bmTx4sX4+PiQnJyc7+HDvSRBkjsoKTOHfedurw/Xraoc5nXzhS67+iLJxcWFNm3aOCN458+fZ9KkScTGxjqDKImJiQQHB+fZho+PD02bNsVisVC+fHkyMjLIzs7OEyRRVZVffvmFkiVL4uLiQtmyZYmNjeXAgQP4+/tz+vRpunXr5vyAu7u78/fff2Oz2WjdujUWi8WZ8nyzWiilSpWievXqWCwW7HY7mzZt4ttvvyUjI8NZoCg3N5e1a9fSoUOHPH3FATp37kyfPn24ePEiq1evJjw8/I4NBS2EuAFVhdwMuHQCTm3Uvke/DEYXyEyErCSwZsOq8fDHJAiuCK3fheAKV7JN5MZP3CE6nY7+/fvzwgsv4OLiwr59+wgLC6Nq1apkZGTw2GOP8fbbb1OxYkWefvpp4Eof7SpVqlC/fn1UVaVnz56MGzeOnj17Mn/+fLp27Yqfn989PRYFKObrwvdbTnPoQirjOpSnergPOvl7EUKI+yY+Nfuu3Q8GeZivftR0y/R6Pe3atcPd3R1VVYmPj+ett97i6NGjqKpKTEwM586do3jxvAEYi8VCq1atcHV1pWTJkuj1etLS0m4pSHLw4EECAgKoWbMmRqORdu3aMW3aNJKSkqhduzZffPEFp0+fpnHjxlSrVo2AgAC8vLx4+eWXadKkCU2aNLnpwCN3kwRJ7qDmUUHUL+F/V7ZtMvyzJ1AGg8FZcM5utzN+/Hhq1arFW2+9RW5uLp07d3Zmb1xNr9c7P5iOp1+OFDKH7OxsFi5cSGJiIk888QSqqpKUlMSPP/7o7MZy7VMtxzaune7on+bg6MPtYDabne24cOECEydO5J133qF8+fLs2rWL8ePHO5/yFfQkrXjx4pQuXZrly5fz008/0bNnz5tWeBZC/At2GxxbC0d+g5MbIPGYFgzxjYBag8CrKNQcCDUGaF1uYnfB4V/h3A4we2gBkrPb4ehqKNkMAqLA6CoBE/GvKIpC/fr1+fjjj1m5ciVRUVG8+uqruLi4kJubS69evQgKCsq3Tu/evfH393f+PnjwYIoVK8aOHTvo1asX7du3v+OZIjfjZjbwcptylC/ixbsrDjH4u+2MaF6K7jWKYjbevwtLIYR4mD1Ruxidq4XdfMF/wKjX3XaABLR7uasfdH/00Ue4ubnx5ZdfYjQa6dGjR4H3gzqdznm/pChKvvu1G7n2nuzqn4cMGUKjRo34888/GT16NN27d+e5555jzpw5bNiwgTVr1vDpp5/y/fff5wvc3Ctyl3gHGQ06jP8wmHEnXe/D6yhoWqpUKQICAli5cmW+avy3Y+/evSQnJ7N06VJnf+4dO3YwZswYnn32WYoUKcLixYvp1auXc1iq4sWLoygKv//+O61atSInJwe73Y6Liws6nY5jx47h5ubG6tWrCywABFrWiaqqlCpVCg8PD9asWUNubi6KotC4cWO++uorunfvjr+/v7OvuV6vp0ePHowZMwaz2Ux0dLSkJQtxJzi60GSnQsIR7XtkNKh22PQZnN4C/qWh5gAo3ljLFHHz14IdJrcr24mM1r5yM8GoZZhxfB2sfx/+/EDbRsnmWrec4EpaJor8DYt/QKfTUadOHerUqeOc5qjt9dhjj+VbXlEUmjRpkmea2WymY8eOdOzY0bnM/WAy6OhaPYyoYA9e/3kfbyw9wO4zyYxuWYYAD+l+I4QQ95KiKJgNesyGwh2ovnjxIjVq1CA4OJgdO3Zw6NChf73NnJycPEXQS5YsSVxcHLt27aJSpUqsWLGCoKAgfHx8OHfuHOXKlaNy5coYjUY2b95Mr169yMrKomXLljRs2JD27dtz8uRJCZKIO0NRFPz9/TGZTM6fHRkher2e/v37M3HiRL766iv8/PwoX768szJ/QECAs/BrQECA86mYXq/H398/z8WWqqqsXbuWFi1aUKRIEeey1atXJyAggKNHj/L222/z0ksvsXjxYgC6dOlCv379ePPNN3nzzTf58ssvsdlsDBkyhFatWtG7d2+GDh1KcHAwYWFhzi4zJpMJPz8/5/7DwsJo1KgRTz75JD4+PhQtWpSQkBAURaF9+/bs2rWLxx9/HB8fH1xdXfnss8/w9vamTp06KIpCy5Yt8fb2vndvihAPIrsNkk7B2W1w7A84vVn7PbAcFK2tBTGaj9fqjXgXBcPlwMf1btoc002X+5+qKtQeDOH1tWyUmN9h0+ewaSp0m64FS2w5WnaKyQ1QJGgibtmdCB4UlgCEoihUCPXii941+GDlYRZuP6N1v2lfnirFvKX7jRBCPIQc90GgjWZz9VD2vXv35sUXX+TXX3/F09OTSpUqOef7+flhNBqd95GOTBKdTpfnvvJq3t7eLFy4kHXr1jmXfeuttxgxYgQvvPACnp6eZGZm8vbbb2M0Gvnwww85ePAgFouF1NRUXn/9dWJjYxk6dCguLi5kZ2dTunRpqlaterdfputS1FvNmXmI2e12nn76aXr06EF0dDSgBQkuXrxIbm4uwcHBheZiSVVVUlNTcXFxwWAwkJKSgru7u/MDbbfbiYuLIzMzk5CQEHJycpxD46ampuLu7o6iKKSmpuLh4YFOp8Nms5GWlub83bGf9PR09Hp9nmF0HaPmOEbbycjIcA4/HBQUhNFodLYxPj4eV1dXAgICMBgM2Gw2Z7HWoKAgMjMz8fT0xGazkZGRgYeHhzPNKzc3l3PnzmEymfD39ycrKwsPD488x5iRkYG/v7+zKnJCQgIdOnTgiy++oEKFCvneM0fx2IiIiHueNi1EoaaqWmZIVpL2s6sfpCfAt220bjQWLy04UrwhFI+GsOqgu0MxeMcpKjcD4g9qXXcqdQe3QDiyAn4fr+23dCsIqQouXkjA5L9DVVWeeeYZunXrRrNmze53c+6ajIwMHn30UWbOnJmvBtidoqoquTaVhX+f4f3fDqGqMLJFabpUD8Okl9FvhBDibnAMZet4uFsYXHs/5rg3dAxd77iPTU5OJjg4GLvdjsViwWAwkJqaiqurK3q9Ps99pN1ud94rXhsoSU9PdxZgBS147+HhgV6vJzExkeTkZAIDA3F3dwe0kg0JCQlkZWUREBCAp6enc7S5ixcvYjQaCQ4OdgZrrm7ztffejvPrjBkzCAkJuWOvoWSSPGAURckzVNK1wxrqdLo8F2iOwqnXLnv1z3q9Pt92FEVxftCvne4IVgC4ubkRGRlZYBuvHdJJr9cTGnplBB9HRNNgMORZ1pFdEhERkW9Zx3au/iNRVZUVK1YwdepUqlatSlRUVKH5JyZEoaWqYM2CSye1LJFja7UaIaVbQetJ4OIN1fuBRzCEVgOPIqC/C8P4OjNM3CC0OhSpdtU8nRag2TkHtk3X6pxENoYa/SGoggRKxENFURRMBoXHahYlKtiDcT/vY/yS/ew5m8zIFmXwczPJuU8IIR4C196PXXvP5cgScdTautr17iN1Ol2++0EHNzc33NzcCpxX0H4sFku+EeEURcHb27vQZPtLkEQ8FCIjIxk+fLhzCGEhxFUc2RqqDVBAp9eyNn4eqn3PzdSyR0IqQ5HLqY86A9R5Rvv5Xt54Xb2vko9ARCNIPApH12iFX/ct1oYSDqoAmZfgzHYIqQSul+ugyE2ieMDpFIUqRb35sk8N3ltxiIXbz3LwvNb9plKYlwRKhBBCiJuQu0XxwFMUhdKlS1O6dOn73RQhCg9HYCQnDS4e1YbnPb4OqvWB0i21DA2zB1TtpRVcDakEbgFacKSw3GQpilbkNai81t2n1lOQfEbLblEUOPEXLOyvdc0JrwdlWkPROuAeqGWhFJbjEOIOUxSFAHczb3SsQMVQbz78/TADZ25jdMsyPFolFKNekWCJEEIIcR0SJBFCiIeFIzCiKHBhL2z9Gk5v0rrU2K1acCE1VlvGIwSe+EErvOpYpzBTFDCYwa/ElWlhNaHVO3B4OcSsgr0LtUBP9EtQrfeVWisSMBEPIEVRMBv1PFmnGGVDPBi3ZB+vLt7L7jNJjGheGl/pfiOEEEIUSIIkQgjxoFJV7Ss7Wes2c2YbVOgKniGQcg4OLAH/UlC3HRRvpGVjuPho6zqCDv9lHkFQvQ9UfVI73pN/weEV4BOhHV/yGVj9JkTUh4gG4BlauDJlChO7FTKTweJxJXAm/hN0ikL1cB++7lOTd349yLytZzgYm8q4DuUpX8RTAiVCCCHENSRIIoQQDxpVheTTcGK9Njzvma2QchYUvRYU8QiGiIbw1GrtZ73pwQ0MKIpWUNYnHLyLQaXHrhxr0kmti9Ge+WDxhNAaUKYVlGyuFYF9UF+TazmK9GanaIGQtAuQeg5Sz0OFLuAVpgXYfnoOOk2DsBr3u8XiNimKQqCHmTc7VaRiqBcfrTrCgBlbGdMyig5VimDQSfcbIYQQwkGCJA8AVVVJSEjAZDLh6XnlqZCqqsTFxTkrDl97AWS1Wvn8889p27ZtvhFoHOunpqaSkpJCkSJFZFhcIQojVdUKrmYkaoGR4EpaNsT2b+Gvj7XMkOAKWveS8AYQVE5bz+QKpvD72vR7TlG0QJFD0Trw1O9wajMcWq5lmhxdDfWHQdNXwW7TggVugf/tQJJqh5wMrf5MZiKkXtAyawxmqNBZ+wytfE3LLMpOAVuuto7BAiFVtCCJeyAUrQ1Gl/t9NOIfUhQFi1FP73oRlC3iybif9/G/H/ew91wyw5qWwtvVKIESIYT4j1JVFbvdjqqqeQapUFUVm82GoijodPmHg1dVla1bt1KkSJF8I87Y7XZsNhsGg+GhOz9IkOQB8e2333Lq1Ck++ugj54c4JSWF7t27M2nSJOrUqZNvHbvdztKlS6lRo8Z1gyQTJkxg0aJF/P777wUuI4S4D1QVcjMg8bhWcPXYH3BuB9hzof/l7iQVu2lD5oZUBvcgLXAC/90b/btBp9dqr5TrCGU7QEaCljHhqGuSdBK+66RllZRuqY2a41tCCy4UltfRESRzBEEyLmpBkNRzEF5fO5bE4zC/n1ZvJidNC4Jgh7BaULa9FgDyjYTIaO1YvcLAKxTcg8G3uLYfn+LQ8dP7eaTiDtEpCrUifPmmb00mLT/IrE0n2X8uhXEdyhMV7PHQXQgLIcSDYtGiRWzfvp0333wTvV57KGS323nxxRdp0KABHTt2zLeOqqp8+umntG/fnq5du+aZt2PHDj755BOmTp2K2fwf74J9myRI8gBQFIWWLVvSs2dP4uLiCA4ORlVVNm/ejNVqpXz58iQkJDizSkJDQ29pGNyLFy+yfv16ypUrx7JlyxgyZAiKoqCqKlarlbNnz5KRkUFISIhzTOvs7GzOnDlDbm4uoaGheHh4kJycjMViwWKxoKoqSUlJuLq6YjKZSExMxNXVlfPnz2MymQgODiYhIYH4+Hg8PT0pUqSIs62qqpKYmMj58+dxd3enSJEiZGRkYDAYnGNz22w2Ll26hK+vr2S+iAeH40Y4NxNM7lp9iKUvwMElYM3RnvIXqQKRTbTMEUWBgCjtS254bs4xNLB7oDYCjmOa3qR1vTm2FlZNgLX/p42kU60XVOkBKFeWvVtUVQt+5WZCdiqkx2tBEGsWlG2nZcZs/Az+nqllieRmXA6CKNDxEy1IYnYH3whthCLvy0EQzzCtBoveqLW/9uArx1PQMcnn6IGiKArBnhYmdalEhVAvPlkdQ/9vt/Ji6yjaVAyR7jdCCPEfoygKFSpUYMKECTz33HMULVoUgDNnzrBixQoGDx6M3W4nKysLvV6P2Wy+6f/51NRUDh48iN1uzzNdVVVUVSUzMxOj0YjRaHTeIzqmK4qCxWJx7sNqtZKdnY3JZHIuX5hJkOROc4weURBFufH8my1zgw9TmTJlCAsLY/Xq1TzxxBOoqsq8efNo3749x48fZ/z48ZhMJhISEqhRowYTJky4yWGorF27lqJFizJ48GDeeecdBg4ciIuLC8nJyYwZM4Zjx47h4+ODh4cHU6ZMISkpiREjRpCamoqbmxvh4eG8/fbbvPTSS7Rt25Z27dqhqirPP/88ffr0oX79+vTq1YugoCDS09Np1KgR1apV45133sFisRAXF0fTpk158cUX0ev1/Pjjj3z44YcEBQWRlZXF888/z7Fjxzh27BhvvfUWiqKwadMm3n//febMmYPFYrnxay1EYaaqgKp1ozmxHvYu0m6Wu30LerNWF8IjBCIbQVAFcPXLO0pLIT/5FFpXv26eodDmXchKhthdcOhXOLYGkk4BihaM2DNPC0YFlgWja/5t3IjjPbblaEGQrGRIT9AyPvxKQUAZLfCx8ClIPAZZSdpytlwtwyMyWhuq2cVH+92r0eUskKLgWURbH7TuQl2na5+Pgo4T8s4TDwVFUXAx6hlQvzjli3gy/uf9jF24mz1nkhnStCReLoX/IlYIIQqdf3Ovdytu8H+5ZMmSlChRgpUrV9KvXz8AVqxYQVRUFG5ubjz33HOcPn0au91Ou3btGDRokDPj5FY5yjxMnDiRgwcPYjKZGDx4MG3atCEtLY033niD3bt3o9PpqFevHi+//DJbt27lnXfeISMjA7PZzEsvvVRgL4fCRIIkd9qR37Qiidcq20F7ipeVDFu/0p4CXs0tAKr3A4MJYlbC6S1X5vkWh8o9brhbk8lE165dWbBgAd26dSM+Pp6tW7fywgsvEBkZyTfffIPdbicxMZH+/ftz6NAhypQpc93tWa1W5s+fT6dOnahduzYZGRns3r2bWrVqMXPmTJKSkliwYAEeHh6kpaVhsVj48MMPKVKkCG+99RYmk4n09HT0ej2pqank5OQ4t52amkpubi6gZatER0fz/PPPo9fryc7O5ttvv8Vut3P+/HkGDhzIk08+icViYeLEiUyePJl69eqRm5uLqqoUL16cb7/9lvj4eAICAvj++++Jjo5+6FLCxAPGbtO6fexdqP1PST4Drr5alw9brhYkqTmAe5LJ8DBTFEDRghDFG2tf2alX5qec1TJMslPArzSUbKa9R0HltYwf0Gp7OIIgmZe0IEhWEkQ21t7HfYth4ydahkhWirac3QpNXtKCHDqjFnwJLHc5ABJ2ORukKJjctDZW6aF9OQIdBWWBKLd3ESQeHjqdQt1IP77pW5O3lx9gxsYT7I9N4fX25Skd5C6BEiGEuF17FkDCobzTFJ12P+cbodUF+3umliV8Nd9IqPS4dt7euwDir9qGmz/UGKBlgF6HwWCge/fuzJ49m549e6KqKosWLWLAgAG4u7vz7LPPEhwcTGJiIkOHDqVGjRrUrFnztg5NVVUmTZpEVlYW33zzDQcPHmTkyJGUKVOGw4cPs3//fr7++msMBgMXL15EVVXef/992rdvT/v27UlKSnL2ACjMJEhyp534C7Z9nX+6fxktSJKdClu/1i6qrxZQBqr2BEzaNrZ+dWVe8YZQ+QnypEJfQ1EUWrRoweTJkzl27BibN28mIiKCkiVLcvr0aV599VUuXLiAXq/n8OHDnD9//oZBkhMnTrBv3z7Gjh1LWloa1apVY+HChVSvXp0NGzbQsWNHvLy8UBQFLy8vsrOz2b59O+PGjcPVVXua6uXllS8961pGo5GmTZtiMplQVZXjx48zbtw4EhMT0el0HD9+nLi4OLKzs/H09KRWrVoYDAZnF5yIiAiioqJYuXIlTZs2ZevWrYwaNUou6sR/i6pqN8Y5aWDx1n5e/YZWZ6RINa2QaMnmWmaDM1tEPuP3lON/isXzyjTPUHhslhbIOrISNk+FTZ9pNU46fqq9j8vHQOxuLQiSnQbWDO09fmq1NtqO3qgFMIpU1brAOLrDBFXQ9mH2gG7faMtcLwiikwCI+HcURaGIt4V3umrdbz5bo3W/eblNFC3LB6OX7jdCCHHrDi+HwyvyTtPptYctvhHaKHJbpl3uHnuV4o2gUndAp2WvHv71yjz/UlCt7w2DJIqi0LRpU9555x0OHz6M1WrlwoULREdHYzQa2bp1K+vWrSMzM5MTJ06wf//+2w6SZGRk8Ndff/HJJ58QGhpKcHAwUVFRbN68mVKlSnHhwgWWLl1KvXr1KFOmDDqdjtDQUFauXElAQABVq1YlKCjotvZ5P0iQ5E6rPwyq98k/3T1Q++4RDP1+0Z4uXk1vujJqQL2h2kgUDkYXbuWGKCQkhBo1arB48WL++usvunfvjtFo5NNPP6VkyZJMmTIFvV5Ply5dbhi8UFWVpUuXkpmZyf/+9z8URSEtLY2UlBRGjx6NwWBwZoJcTafTYbVaUVU1z8WUTqdzVlu22+15skp0Oh0mk8m53/fee486derQr18/7HY7HTp0wG63o9frndu4dp89evTgk08+IS0tjfLlyzv74AlRqDm6WqTFwfE/tO40thx4bLb2N9/0VTBatACqvhAVChVXGExQtBaE1YQGI7QnPjErteCJzqD9n89O097PYnWudIXxDte6R4FWA6VUS+3i6eruUlfTm+7tcYmHkqIouJoMPNUwUut+s2Q/oxfsZu/ZFJ6JLoGH5eEb3UAIIf6Rlm9Bk//ln+5ZRPseWA4Grso/3+hyJfOz5ZvQ5OUr8/RG7brjJgIDA6lXrx6LFy/GarXSsGFD/Pz8+P7775k/fz4vvvgivr6+vPnmm3nuyW6VzWbDarU6s0F0Oh2urq5kZmZSo0YNPv30U5YvX87o0aOJiIjgo48+Yvz48fzyyy8sXbqUN998k5dffpl27doV6nOKBEnuNDd/7et69MYrowX8021ch06no3v37jz33HO4uLjQrFkzADIzMwkODsZisbBlyxb27dt3w+1kZmayePFipkyZQvPmzQHIycmhS5cubNy4kebNm/PDDz/QrFkz/Pz8uHjxIsHBwURHRzNjxgwqVqyIq6srly5dIjQ0lGLFirF582ZatWrFgQMH2Lt37w337eHhgdlsZs2aNRw9ehTQaq7k5OTwyy+/0KpVKzIzM9HpdPj6+lKnTh3eeustPvroIz7++GMp2CoKP7tNG5Vmz3yI+R1Sz2uB1NKttLojiisUq32/WylulaJoXV9Cq2kZIVwO5upN8OhnlwMghisFYq+mM4D8yxKFiF6n0KCkP9/0rclbyw7w1Z/H2Hcumdfal6dEgFuhvqgVQoj7TlG0h+I3YrRcGUnvem62jevQ6XR069aN559/HoBPPvkERVE4cuQIderUoVGjRiQmJnL8+PFb2p7jIbfNpnUNcnFxISwsjL/++osyZcpw8eJFDhw4QN++fcnKyqJKlSrUqlWLkydP0q5dO+Lj4/Hy8uKxxx6je/fufPTRR/z000+0a9fuHx3fvVJogyQ2m42jR49y4cIFSpUqRVBQUIHjOmdnZ3Pw4EEyMjIoW7Ys3t7ezuq6WVlZ7N+/H6vVSrly5XB3d3fOS0lJYf/+/bi4uFC2bFlMJtN//sSvKAp169alVKlSVK5c2fmaDRgwgNGjR7N69WrCwsJo3Lgxbm7ahU7RokVxcXHJs50TJ07g6elJ3bp1nbU9TCYT3bt3Z/Pmzbz88sucOHGC3r17Y7FYCA8P54MPPmDIkCGMGzeOxx9/HLPZTNWqVZkwYQJ9+vRh6NChdOnSheLFi1OnTh3n/osVK+bch6IoPPPMM7z66qv8+OOPRERE0LBhQywWC35+frz77ru89dZbfPnllyiKwosvvug8ltatWzN37lzq1Knzn38fxQNIvVycMytFC4CqNvjzQ61+UVhNiH4ZSjTRhuqVApr/bdd2hTK6XHdRIQorRVEo6uPC+90rM/2v40z74xj9vt3C/9qUo3m5QAzyMEIIIQqtGjVq4Orqil6vp1q1agA88sgjDB06lNjYWJKTkzEajc6irVf/fDWdTse5c+fo16+f8yF0dHQ0o0aNYsyYMWzatIkzZ85Qs2ZNatWqxfLly5k+fTrh4eGcPn2aOnXq4OnpyahRo8jKysLDw4Ndu3YxZsyYe/di/EOKem3/hULAbrfz9ddfM2PGDCIjIzl27Bgff/wxVatWzXMDnJaWxvDhw4mNjcXX15f4+HimTZtGREQEGRkZjBgxgjNnzmA2m9HpdHzxxRf4+Phw4cIFBg4ciKurK8nJyZQvX55JkyY5u30U1J6nn36aHj16EB0dDWgBmosXL5Kbm0twcHChuTF3BI6u7caSnp5Oeno6Pj4+qKqKwWBAp9ORnZ2d7w/DZrORm5ubb2goq9WK1WrFbDajqirJycnk5OTg7e3t3JfdbicpKQmbzYa3tzdGo9ZvLjMzk9TUVOdQwVfv32QyOf/wVFUlNTWVzMxMfH19sdlszvY5Al/Jycm4uLjg4eGBoihYrVZGjRpF0aJFGTly5D9+LzIzM4mNjSUiIkKyUcS/p6pad4vUWDi6WutOk5sJPeeDyQPO79Yyy/xKasU5C8n/ECHuJVVVeeaZZ+jWrZsz+/FBlJGRwaOPPsrMmTMJDv5nTwfvF5tdZd3heCYs3c+FlCz61y/O4MaRuJul+40QQqSkpJCUlETRokULzf9EVVU5ffo0iqIQFhaGoijY7XaOHTvGyZMniYyMxGw2Y7FY8PHx4ezZs3h4eODl5ZVnO+np6fkyTry9vQkNDSU2NpZDhw7h7e1NuXLlMJvNZGZmEhMTw/nz5/H19aVcuXLOEUuPHj1KZmYmkZGRhIeH3/a91vXuvR3n1xkzZhASEvLvXrirFMpMkri4OD777DO+/vprqlSpwpQpU3j//feZMWOGs2AnwB9//MHBgwdZunQpHh4evP7663z++edMmjSJ9evXc+DAAX7++WfMZjO9evVyVvedNWsWAQEBTJs2jaSkJNq1a8f27dupW7fufTzqO8MxJvW109zd3XF3d8+3fEHD5Or1+gKjiVcXTFUUBR8fnwLX9fPzyzfd1dXVWdD1RvtXFAVPT088PbXiiI4gi2Oei4tLnsyXM2fO8PLLL3Py5EnGjBlTaP45iYec3QbH18HuudqQsekJWj/UMm3AbtcCIsGVtGXlMyuEKMT0OoXoMgEUD6jJxKX7mbbuKPvOJfNqu3IU95fuN0IIUdg4svWvptPpKFmyJCVLlsy3fFhYWIHbcXNzo0KFCgXOK1KkCEWKFMkzzcXFhYoVK1KxYsU804OCgv4TxVqvVigflx88eNDZDUan09GsWTP27dtHSkreEWFOnTpFeHg4Xl5e6PV6KlasyPr168nOzmb9+vXUrVsXLy8vLBYLzZo1448//sBqtbJu3TpatGiB0WjE39+fqlWrsmHDhjxFQVVVdX6JwsvX15fhw4czb968fH+oQtwzqgq5WdqQbo4Mkq1fapXNQ6tDpy+0Al2t3gbL5Sh9QfUphBCiEFIUhXBfVyY/XpUhTUqy5UQi/b7dyqoDcdjscp0khBDiwVIoM0kSEhLw9PR0duHw8vLCarWSnp6Or6+vc7lSpUrx5ZdfcubMGfz8/Pjjjz9ISEggOzub8+fPU65cOUA7uQcFBREXF0dOTg5JSUkEBAQ4n34EBgZy4cKFPG24dOkSH374IWlpaQBs2bKFHj163IvDF7fB1dWV6tWr3+9miIeRqmq1RZLPaEPA7lsMOenQe7E2xGuz17RinT4Rlwt3SkBECPHfpSgKbiY9Q5qWonwRL95Ytp/hc3fwVMNIBjaMxM2kl6wSIYQQD4RCGSTR6/XOCrqAc7jaa/suNWjQgObNm/Pkk0/i5eWFu7s7FosFvV6PwWDIsw2bzYZer53AdTpdnnlWqzVf9xKLxULDhg3JyclBVVUOHjyYr52OIrDiv0+yhsRtsdsgZhXsmgMn/oTMJPAuBlFttfmKAgFR97WJQghxpymKgl6BZmUDiQxw442l+/l0TQx7z2rdb4r5ukqgRAjx0JF7iHvjXr7OhTJIEhoaSlJSEhkZGbi7u3PhwgVcXFycdSoczGYzb731FnFxcQCsXr2a3NxcLBYLxYsXdxaaUVWV48ePEx4ejtlsJiQkhJMnTzqHNDp16hSNGjXKs21XV1datGgBaEGaJUuW5GunyWQiOTmZ7OzsPLVSxH+Po2DsgzDKkbjDHP+QrZmQFqcFQwB2/6AFSCIaQoXOEF4PXHzIM7KJEEI8gBRFobi/Gx8/UZVpfxzjm7+O02/6Vl5tX45GpQLQKci5VAjxUDAajeTm5pKZmXndQUDEv2ez2cjIyMDDw+Oe7K9Q3tlHRUVhsVhYvnw5zZs3Z9asWURHR+Pm5sbBgwfZv38/jz76KDabjbNnz+Ln50dsbCwzZ85k6NCh6PV6mjdvzlNPPcW+ffvw8PBg6dKljBkzBp1OR/v27ZkxYwZt27YlNjaW/fv389prr93WCV1RFNzc3EhPT+fs2bN38dUQ94JjxJ//WlEhcRepqpYxcukEHP4V9i+G7BTosxTcAqDpq1rGiFcYKNKdRgjxcFEUBXezgecfKUWFUE/eXHaAYXN2MLhxCfrXj8BFut8IIR4CFosFLy8vYmNj73dTHmiqqjqTJu7FuaVQBkk8PDyYNGkSEydOZNq0aYSFhTFp0iR0Oh3Hjx/nt99+o0OHDmRnZzN+/HjOnTuHqqp069aNVq1aoSgKlStXZvDgwQwbNgyAFi1a8Mgjj6AoCo8++ih79+6lV69eKIrCyJEjKVWq1G2301HrxGq1SprVA8Bg0IYzlIs6gd2uBUZ2zoKTGyEnDXyLQ1T7K8P1+ha/360UQoj7SlEUDIpCy/LBlAh0Z8KS/Xy06jD7ziXzcpuyhPm4yDlVCPFAUxQFf39/fHx8nCUixJ2nKMo97blRKIMkiqJQr149Fi1aREZGBp6ens4XpUWLFjRr1gy9Xo+bmxtTp04lNTUVi8WCm9uVoegMBgNPPfUUTzzxBHa7HU9PT2dNE1dXV9544w1SUlIwGAy4u7v/o5O4Y52rh6kVQvwHqapWdDX1HPheHhrt0C9wdjuUbgHlO0PR2trINHLBL4QQeSiKQskAdz7tUY3P1sYwY8NJYuLSeK19OeqV8Eevk/+bQogH172+gRd3X6F9NxVFwcXFBRcXlzzT9Xp9niKrZrMZs9lc4DZ0Ol2+OiZXb8fHx+fONVgI8d+iqmDLhYsxcGgZHFgCWSnQ7xfwCIHol7Qvj2BQdBIcEUKIG1AUBU8XI6NalKFiqBdv/XKQ52b/zbPRJeldLxwXo3S/EUII8d9QaIMkQghx16h2OLAU/p4Bp7eANRsCSkOVHmBwuVxrJPR+t1IIIf5zDHodbSqGUDLQg/FL9vH+ykPsOZvMy22iKOIt3W+EEEIUfhIkEUI8+FRVK7qadAoCy2lBkJN/QvwhbWSa8p0htBqY3O93S4UQ4j9PURRKB7nz+ZPV+GRNDLM2neJIXCrj2penTqQfOul+I4QQohCTIIkQ4sGkqmDLgfiDWleag8sgKwn6/aoN49twFDQYCe4BgCLdaYQQ4g5ydL8Z2yqKCqFeTFp+kGdm/83QpiV5sk44FoNOskqEEEIUShIkEUJc3+2O2qQol9cpaD3lynzVri3jWNaxuP7yyDG2XC3Ace0yBrP2pdq1+iGq7ar5qrauq5+2rX2LYft0OPs32K1aBkntp8HiqS3nHvhPXhEhhBC3SFEUDHqFDpWLUDrIg3E/7+P/fj3InrPJvNg6imBPiwRKhBBCFDoSJBHiYeIIethyIT0O4g5o3VDKXh7a9swWOLNVGwJXtYHdpn0v2RyKVNOGwt34KWSnXplnt4GLDzQaBUYXOPCzlrlx9XzVBtX6QJnWkJkIS57Xvqv2y/uyawVSH/0MzB5arZBt07Xpqu3ydxUajtTqhqQnwOxukHbh8rzL873CoM/PYPaE83sg6TRUeRLKPwohlcHoKhkjQghxjymKQlSwB1N7VuejVUf4YcspjlxI5fUO5akZ4YtO/i8LIYQoRCRIIsSD7OpMEHsuHF8HJ/6C05sh4TBkXgKfCCjVAkxGOLYW1n+AlvWB9h0FXP21IEluFuz6ATIuXh7x5fKoL97hUH+4FiRJOg2nNmnTncvoIDPpSpuykiArGdBdWY6rMlCMrlpGiE4Piv7Kd5fLI1LpTRBWUwvWOJfRgVuAFuwBqDcU6j4Hrr5IdxohhLi/FEXBx83E/9qUpWKoF//360Ge/m47w5uX4vGaxTBL9xshhBCFhARJhHiQODNFcrQsiwv7tMyM8PraCC6/vaoVL/UuqgVGitWFwLJacAOgam8o1VILWuh0WvBB0V3pmuLqC32XAZe7tjiCDzoDmC8XPa3RH6o8cWWeotN+Nlgub8MPeszTfnZuwxEsuTy8d+XHoVL3ywd11UWz4wLa4gVt3rnm4K9ZztX3X7yQQggh7gajQUfnaqGUCda637y17CC7zyQztlUUgR5mCZQIIYS47yRIIsR/mSMooihaVsXx9XBqo9ZtJuGIlq0R1U4LhpjcoM17WjaGd1Ht92szLDxDtK/rUfQ3HxrX5Kp9XXcbypWgzHWXuZx9cqNtIBfSQgjxX6QoCuWLeDKtV3Um/36EedtOc/h8KuM6lKdauI90vxFCCHFfSZBEiP8aVQVbNqSe1zJFgiqATzhcOgE/Dtbm+4RDmbYQXhfCal3J1Iiof79bL4QQQqAoCr5uJl5tV46KoV68+9shBn23nRceKU23GmGY9NL9RgghxP0hQRIh/gtUFdLjtVofpzZpxVUvxmjZIy0mQu3B4FsCHv0c/EqCd5hW10NqcQghhCikFEXBZFDoViPM2f1mwtL97DydxJO1i1Hc3w0PixGdggRMhBBC3DMSJBGiMHF0n7FmQWosXDwK4fW0gMehX2DZ5RFkfCKgXEetG40jO8ToAlFtJSgihBDiP0VRFCqFefFl7xq8v/IQP+44y5Jd5wjytFC+iCc1I3ypWsybCH83PCVoIoQQ4i6TIIkQhYGqQvJpOLv9ck2RbVqAxG6FPksgtBpENoFO0yC4ojbUraOuh1woCiHELVNVlfT0dI4fP467uzvFihVDr9fnWyYjI4PY2FhSU1Px9/enSJEizuXsdjuxsbEkJCQQGhqKn5+f3LT/S4qi4OduYnyHCnSuGsaWE4lsO5HIztNJ/H7gAjpFIcjTQrkQT2pG+FC1mA/F/d3wdJGgiRBCiDtLgiRC3EtXZ4qknNOG0g2roU1f/SbsXaAVVPUpDhW6aFkkvsW1dbyLaV9yISiEEP/YuXPnePrpp1EUhaSkJDp16sSwYcPyBUo+/fRT/vzzT9zc3Dh16hTt2rVj9OjR6HQ6ZsyYwddff02RIkWIi4tj4sSJ1K9fX27U/yVH95saET7UiPDBZo8kKTOXmLg0/j55ia0nEtl9JonVB+NQFAj0NF8OmvhStZgPkRI0EUIIcQdIkESIe8Fu0wqrxu6Ekxvh7DZIPAbuQTDgd7B4QtUnoXQLCK4MXkXAcE2miFzwCSHEv6KqKl9++SVFixblww8/5OTJk3Tv3p22bdtSunTpPMs+88wzPP/88xgMBvbu3Uu3bt3o2bMnBoOBDz/8kC+++IKaNWuyePFiJk6cyOLFi7FYLPfpyB4sjgCHQa/g727Gz81E7eK+DFIjScrI5WhcGn+fusTWE5fYczaZNQfjtaCJh5myIZ7ULO5LtWLeFPd3x0uCJkIIIW6TBEmEuJMcmSK5mZByRhsy1zdSK7A6rxfEHwKTO/iVgEqPQ0QDMFoujzzTUFtXLuSEEOKuyM3N5Y8//mDMmDGYTCZKlChBREQEW7duzRMkURQFDw8PbDYbubm5ZGRk4ObmhslkIi4uDlVViYqKQq/XU61aNQ4dOsS5c+eIjIx0bkN1nA/Ev+YMmiha0MTf3Uyt4r481UglOSOXo/Hp/H3qEttOJLLvXAprD8cDVwVNInyoVsyHyIArQZOrtyuEEEJcTYIkQtwJthxIPH5Vpsh2LXOkTGvoNBXMHlBrMFi8IKQSeISA4fITR8kUEUKIeyI7O5tLly4RFBSEoijodDqCg4M5d+5cgcvPnTuXWbNmcezYMV566SUCAgKw2WzY7XYOHDhArVq12L59OxcvXiQxMTFPkCQmJoa5c+eiqiq5ubnExcXdq8N8KCiKgkFR8HM34+dupmaEDwMbFic5I5djCemXu+dcYv+5FP64HDQJcDdTNsSDmhG+WtAk0A1vF5METYQQQuQhQRIhboczUyQDks+CewC4+MCF/TCrC2QlaQERv5JQtSeUekRbXtFBtd6Xf5aLMCGEuB8URUFRlDxZHna7/bo3x23atKF27dr88ccfTJs2jWbNmlGkSBGGDBnCiBEjKFq0KFarFR8fn3w1TVxcXAgPD0dVVXJycjAajXf12B521wZNaoT7MKChSkqmlmmy43L3nAOxKaw/koCqQoCHFjSpcTloUiLADS9XI/rLnwcJmgghxMNJgiRC3IyqXskUOfe3NvrM2b8h6RS0fBOq9gKfcKg1CILKaaPPuAeDwSwBESGEKETMZjMBAQGcOXOGatWqYbPZOHv2LM2bNy9weW9vb7y9vQkNDeXrr79m3759hIWFMWjQINq3b09KSgo2m41evXoREhKSZ92wsDB69eoFQEZGBvPmzbvrxyeucARNfN3M+LpdDpo0UEnOtHIsPo0dp5LYeiIxX9AkKlgLmlQP9yYywB1vFyN6nSIBEyGEeIhIkESI67m6P/nO2bDyNcjN0oqs+pWEan0guJI23+INjcdIUEQIIQoxg8FAixYtmD9/PtHR0Rw+fJhz585Rq1YtcnNz+eWXX6hfvz4+Pj4cO3aMkJAQDAYDu3btIikpidDQUFRV5eLFi/j6+uLh4cGkSZNo0qQJAQEB9/vwxA0oioJeUfB1M+Hr5kv1cB/6NyhOcmYuxxOuBE32n0vhzxgtaOLvYSIq2JMa4T5UD/ehRKAETYQQ4mEgQRIhrqaq2vC853fDwWVaIMQ3EorW0n4Orw9B5cEjGPQmbR25UBJCiP8ERVHo168fo0aNokuXLuTm5jJy5EiKFStGZmYmn332GcWLF8fT05P333+fEydOoNPpyMrKYtSoUZQtWxaAL774gj///BObzUbJkiWZMGECOp3uPh+duB1a0ARn0KRaMR/61S9OSmYuxxMchWAvsT82hb8uB0383E1XZZr4UDLAHW9XCZoIIcSDRoIkQqiq9pUaC0dWwO75ELsDdAYIqqAFSQLLQ4uJ2vJyISSEEP9Zvr6+TJs2jYSEBFxcXPD29kZRFFxdXVm0aBEWiwWdTsfHH39MUlISOTk5eHt74+bm5qxnMnr0aAYMGIBOp8PPzw+9Xi83yf9xjqCJj5sJb1cjVYt5069+cVKztKDJ1ZkmG45eRFXB191EVJAH1SO0TJNSgR74SNBECCH+8yRIIh5eV3enObIClr0AafHgXRRqDoIKnSGwnDZfLnaEEOKBoCgKJpOJIkWK5Jvu5ubm/N1kMhEYGFjg+mazOV8NEvHgcAQ49Ap4u5qoWsxElaLe9KkXQWpWLicS0tlxWgua7DuXwqZjF7GpKn5uZsoEezi755QMcsfX1SRBEyGE+I+RIIl4uKgqqHZIOQsxv0NEQ62+iE9xKFobotpBZDS4+mnLy0WNEEII8dBzZJp4u5qoUsxE5aLe9K57OWhyMYOdpy6x5XKmyebjF7HZVXzdTJQJutI9p3SQB75u2pDDEjQRQojCS4Ik4sHnHLY3Hc5sh91ztQBJZiI0Gwd1S0JAGejyFSh6CYwIIYQQ4obyBE1cTVQO86JX3QjSLgdNdpxOYuvxRPadS2bLiURsdhV/dzPVivnQJCqAmhG+FPF2wSBZJkIIUegU2iCJenVXCK4fcb/Rcv90nnhAXP0en9sBv4yCC3vBYIHwBlD5MSjeWJuvKKAU2j8HIYQQQhRijqCJl6uJyq4mKoV50atOOGnZVk4kpLPzdBJ/xSSw9UQiK/adx8NioEKoF9FlAqhXwp8IfzcsBp1zW0IIIe6fQnlXqKoqJ06cYO7cuWRmZtKxY0eqVq2a76Rht9vZsmULK1aswGq10rhxY6KjozEYDOTm5rJy5Ur+/PNPgoKCeOyxxwgKCgIgPT2dxYsXs3fvXgICAujSpQvh4eFyUnoQOAIjOWlwZit4h2uFVy1e2mg0DUZAuUe1LjY6g2SNCCGEEOKOcwZNXIxULupNpTAvnqxTjPjUbHacSmL1wTi2Hk9k0vKDmAw6SgV60LCUP41KBxAV7IG72eDcjhBCiHurUI5Xl5CQQL9+/bBarYSEhDBo0CD279+fb7lt27bx1FNPERwcTMmSJRk1ahS//vorqqoyY8YMJk2aRKVKlbhw4QLPPPMM6enpqKrKxIkTmTdvHrVq1SI+Pp5evXqRlJR07w9U3DmqCnYrXDwKf06G6W1gzuOw4zttvm9x6LkIGr8IgWVBb5QAiRBCCCHuCUVRMOh0hHi50LpCMO90qcTi5+ozvV8tetQqRrbVzlfrj9Pzq810+mwDr/20j9UH40hIzcZmV/NlQAshhLh7CmUmyapVq3B3d2fMmDEYDAaOHTvGnDlzmDhxYp6I+s6dOylbtiwDBw5Ep9OxY8cOtmzZQosWLZgzZw4jRozg0UcfpUOHDrRo0YItW7ZQv359Nm3axKhRo2jXrh0NGjRg6dKlxMbG4uPjcx+PWvwrSadg1Xg4ukbLIvEvA9FjoXxnbb6iA5Pr/W2jEEIIIR56iqKgXB5uuEFJf+qX8CMjx0ZMXBrrj8Sz7nACP+08yw9bTxHgYaZGuC9NogKpEe5DsJdF6pgIIcRdVuiCJKqqsnPnTipVqoTRaASgWrVqzJkzB5vNhsFwpcm1atVi5syZ/Pzzz1gsFvbv38+rr76KqqpkZ2fj6qrdFDvW2b17N9HR0TRv3pwFCxbg5eXF1q1biYqKomjRonnaYbfbycjIQFW16H1ubu49egXETTmyRhKPafVFvItpQZC4g1CyGVR6TBupxuwh2SJCCCGEKNQURcHNbHB2y3mqUSSnEzPZdOwiaw7FseFoAr/sicXLxUjFy3VM6pbwJ9zPFbNBJwETIYS4wwpdkAQgNTWVsLAwQDtxeHh4kJaWht1uz7NcREQEpUuX5rPPPsNoNGKxWIiIiMBoNNKkSROmTZtGcHAwu3fv5tChQ6SkpKAoCk2bNmX58uVMnjyZc+fO0alTJywWS55tx8fH89xzz5GcnAzA4cOH6dOnz715AUTBVBWykuDEn7Brrva9Qido+z54hUKfn8DFVwuYyAWDEEIIIf5jFEXBbNBTMtCdEgFuPF6zKHGp2Ww/eYk1B+PYeiKRv44mYDboKR3kTuPSATQsFUDpIHfcpI6JEELcEYUySOLm5kZ6ejqgZZakp6fj6uqKTnelhIqqqnz99dcA/Pzzz+j1esaNG8e7777L5MmTGTVqFB9//DETJkygdOnS1K5dG19fX9LT0xk7diyvvPIKLVq04Pz583Ts2JGGDRtSt25d5/b9/f2ZNm2aM5Nk5MiR9/ZFEHllXoJNU2Hfj1oGiYsPlGkFFbtq8xUduAXc3zYKIYQQQtwhiqJg0CsU8XYhxMtC24ohXMrIYe/ZZNYejmdDzEU+X3uUz9ceJdzPjXol/YguE0iFUE98XEzawH0SMBFCiNtWKIMkFStWZNGiRVitVgwGA7t376ZcuXLo9XpnNomiKBw7doyIiAhnFkiJEiVYtmwZqqri5eXFq6++it1uJyUlhXbt2lGrVi0yMjJISEggMjISvV6Pv78/Hh4eXLhwIU8b9Ho9fn5+gNb15tpME3EXOYqTZSaCLRfcg8CaDXsXgMUbWrwBZdqAV5hkjQghhBDigeeoY+LnbqZR6QAalQ4gPdvK4QtprDsSz7rD8czfdoZZm04S7GmhZoRWx6R6uA+BHmb0UsdECCFuWaELkiiKQvPmzfnss8/44osvCAgIYPny5Xz55ZcoisJ7771HUFAQvXr1omnTprzxxhtUqFABs9nM119/Tc+ePdHpdOzdu5cjR47g4+PD3LlzqVy5MlWqVAGgUqVK/N///R+9e/dmx44dXLx40TlP3EeqqgVF4g/CvkVwYAmE1YCOn4F7IPSYBx7BYHSVwIgQQgghHkqOYIe7xUi1cB+qFvPm6cYlOHkxg41HE1hzKJ61h+P5edc5vF21IYiblAmkTqQfRX1dMOl1ebYjhBAir0IXJAEIDg7myy+/5Ntvv+XAgQO8//77ziBGyZIl8fb2BqBDhw4YDAZWrlyJ3W5nyJAhdO7cGUVRMJlMbNiwgdTUVGrUqMHjjz/uLAT78ccf89133zFnzhx8fX2ZMWMG4eHh9+loBQC5WXBwKez6Hk5vBpsVQipDRCNABUUPfiXudyuFEEIIIQoVRVGwGPWUCfagdJA7T9YJ53xyFttOJLL6UDzbTybyx6F4XE16okI8L9cx8adEgDuuJr1zG0IIITSFMkiiKArly5fn3XffzTMNoFOnTs5pRqORDh060KFDB1RVvZyKqC1XunRp3n333XzTAYKCghg5cqRz3tXbF/eIqoItB3IzweKlff/jHW343ordoVI3CKmijV4j740QQgghxE0pioJRr1DU15UwHxc6VAnlUnoOu88mseZgPBuPXeTjVUf4ZHUMEf5uNCjpR+PSgZQP9cTLxYiCXBMLIUShDJLArf+Dvl6Q42bBj2sDJ+IeUFVAhbQ4iPkdds/TutE8+jm4eEOnz8GjCHgEAYoER4QQQggh/iFFUdAr4O9hpkmZQKLLBJKWZeXQ+VTWHYln/ZF45mw+xbcbTlDE24Val+uYVCvmQ4CHGZ0UfhVCPKQKbZDkoaCqYM8FFS6XINcKkXL5hPQgnZjsNjj7N+yZD4d+gdTz4FlEqzlit4HeCKHV73crhRBCCCEeOIqioACeLkZqFvelRoQPz0aX5MTFdP6KSWDtoXh+P3CBH3ecxdfNRNViWh2T2sV9CfVxxaiXh4tCiIeHBEnuJ1sO/DwMkk5o3UoMZu272Qua/k8rUnphv1bA1GgBowsYXLSf/UpBkSqg2iHuANit2vo6oxZw0BnBPQB0Bm2eLfdKAObagMzdOunZ7WDL1o7JmgnLx0DCYQirCU1ehpLNLg/bKyddIYQQQoh7RVEUXEx6yoZ4EhXsQZ+6EZxLzmTriURWH4zj71NJrDoQh5vZQLkQTxqXCaBBSX8iA9xwMeolYCKEeKBJkOR+UlUtUGHNgexUbZhbW64WDLFma8vEH4QNH2sZJ3Y7WtoJUGOAFiSxZsNPz2nBFEUHOr0WJLF4Qe+fwSccYlbByteuBGEc38u0hur9tH1u/FQbctfgou3f6AJmD4hqBxZPLfMj/tDldc2gv/zdxRtcfLU2ZadcObYL+7TuNLmZ0GEKGN2g2Wva8oHlQG96sDJlhBBCCCH+gxRFwWhQCPdzo5ivK52qhnEx7f/Zu+/4qur7j+Ovc/e9uTe52TshYe+NiGBxi7bOOnDjpNqltWrtsD+rXc62WrWOOuqqA7WOahVFEVEEUfbeCdn75u7z++OQCAVbq4SE8H4+HvcByT333nNuQnLOm8/384mweEsjb6+q5sP19dz+r9X88a019M1OYXK/bL4xIJvB+QEC6mMiIr2QQpLu5HDDCX8EM2EFJmbSqvpIJqyQA6DfkXDJbCvISESsKTDxsLVUBaxKkUnfg5ZK675Yu3UDcPs/f53UAitQiUegvcH6s63Wuj+ZgNWvQfXKz1/fjIMrAKWTrJBk/Rx46XvW9oaBVYFig/EXw1H/Z+3TsxdB/Xprm+YKsDug7xEQC4EjCOVTd3q8iIiIiPQkHX1MclI9HDUklyOH5NISjrOispk5q2qYu7aWRz7YyIPvb6Ao6OWg8gwO6ZfFkPxU8tI8eJx2hSYist9TSNKdDMOq+sD5xdt4Uq3bF7E7Yegp//l1yr4BfSZbIczON9uO13W44LRHrDAjEdtxi1phSSDP2qZ4AnzrTisMiYWt5TOxdmvpTMexZA+w9icRg6EnwdCTIXvg56+jX5giIiIi+4WOPiZpXicHlWVwUFkG34v1Y31NG3PX1jJnVQ2vLtnO3z/eis9lpyTDx4iiNMaVZjCsMI3CoBefW6GJiOx/FJL0Bv/tF49hgPGfvtTG52HIF8kos26wY0rNv7G74eibP7+/Y5/0S1FERERkv9YRcvhcDoYVpjG0IJULDymjoqmdZduaWbipnsVbGvnn0u088/FW3A4bBUEvwwrTGFeazojiICUZPvxuh6bmiEiPp5BE/ndfJpQRERERkV7JMAxcDoM+mSmUZvg4bnge0XiSmtYIK7e3sHBTA59sbmDumlr+8VkFTptBbqqHIQWpjC3NYFRxkLKsFNK8ToUmItLjKCQREREREZGvpCPgcDvtFKX7KAx6OWJQDrGESX1blDXVLSza1MDCzQ18srmRN5dXYxiQ5XczKC/A2NJ0RpcE6ZfjJ+hz4bAZuzyviMi+ppBERERERET2io5ww+UwyEvzkJfmYXK/LBJJk8ZQjHU1rXyypZGFmxpYWdnM3LW1JE2TjBQX/XMDjClJZ2xJkP65AbL8bpx2hSYism8pJBERERERkS5jGAYOu0FWwE1WwM2EsgySJjS3x9hY18anWxr5eFMDyyuaWbixgT8nkgR9Tsqz/YwuDjK2NJ1B+ankBNy4HbbO5xQR6QoKSUREREREZJ/pGDWcnuIiPcXFqOIg5x7ch7ZInC0NIZZsbeLjTQ0s2dbE4x9u4sG5G/B7HPTJTGFkURpj+2QwtCCV/B1jh20KTERkL1JIIiIiIiIi3aYjNEn1OhnqTWNIfiqnjy+mPZpgW2M7yyqa+HhjA59tbeKFxRU8/uFmvC47xek+hhdZE3SGF6ZRmO4lxeWwBjsqOBGRr0ghiYiIiIiI9BiGYWAAKW4HA3ID9M/xc9KoQsKxJFXNYZZXNrNwUwOLtzTyr+VVPLdwK66OscMFqYzrk8GIojRKM3z4PZqgIyL/G4UkIiIiIiLSY3UEHF6XnT5ZKZRm+pg2LI9oIkltS4RVVS0s3NTIJ5sbmLeujleWVGLfMXZ4cH4qY0vTGVUcpHzH2GG7zVBoIiJfSCGJiIiIiIjsNzrHDjvsFKb7KAh6OWxgDvGkNXZ4bXVr59jhz7Y0MntFNRiQ5XcxMLdj7HA6/XL8ZKRo7LCI7EohiYiIiIiI7Lc6wg2n3aoeyQm4mdQ3k0TSpKk9xvraNj7Z3MjCTfWsqGzhg3V1JEyTdJ+L/jl+RpekM7Y0nQF5AbL8Llx2TdAROZApJBERERERkV6jI9xw2A0y/W4y/W7GlaZz0eQyWsIxNtWF+HRrIx9vbGBZRRMPvb+Be+esI9XrpDwrhZHFQfpm+ynN9JGb6iEzxYXPZcfpsGH822uISO+jkERERERERHq1jgk6QZ+LoM/FiKI0zjmolLZonC0N7TvGDtezZGsTf/94C+FYgqQJXqedVI+D3FQPhele+mRaPVFKMnzkpHrISHHhddpx2o1dXktE9l8KSURERERE5IBiGAaGAQGPkyH5TgbnBThtXBHt0QQ1LREqm8JsbQixobaNTfUhttaHWLS5gbdXVhNNJDFN8LnspHqd5KV5KAp6dzSVTaE43UtOqod0nxOP097Z86TjdUWkZ1NIIiIiIiIiB7Sdxw6nuB30yUoBMjFNE9OEWDJJWyRBQyhKZWOYLQ0hNnYEKA0h5m+o5/XlVcQSSQzA53IQ3BGgFGf46JPpozQzhaJ0L9kBN0GfC7fDpgBFpAdSSCIiIiIiIrIHHRUnbpsdt8NORoqLvtl+AEzTJGlCLJGkNRKnvi1KRWM7W+qtCpTN9e1sawzx7uoaXg7HiCdMbIZBittOus9FftBDcbrPqkDJ8FGY7iXb7ybV68TtsGlUsUg3UUgiIiIiIiLyP+roc2K32fE47WT53QzIDQCfByjReJKWcIy6tijbGtvZXBdiY10bm+tDVDS2s2p7Cy3hOImkid1m4Hc7yEhxURD0UpzhpSwrhZIMH4VBL5l+N6keJy6Hgc1QgCLSVRSSiIiIiIiI7EUdAYrXZcfrspOT6mFQXqDz/oRpEo0naW6PUdsaZWtDO5vr29hQ28aW+na2NoRYsrWJ1kicpGnisBsEPE4yU1wUBr2UZProk2kFKAVBDxkpbgIeB067DZuhpTsiX4dCEhERETmgWD0GzM6LiD1dTJim2fmnsYf/sf0yzyEisrOdf044DAOHy4bP5SAvzcvQgtTO+xJJk0g8SWMoRk1rhK0NITbVWT1QtjSEWFfTysJNDbRF45gmOO02Ur0OsvxuitK9lGRYS3hKMnzkp1kTeFLcDpw2G4YCFJH/qseGJKZpEolESCaTeL3eL/zHbJom4XAY0zTxeDydJzIdJy/t7e04nU6cTucuz2GaJtFolHg8jsfjwWaz6QeGiIhILxePx3n55Zd57bXXyMzM5OKLL6asrGy3c4TZs2fzyiuv0NTURFFREeeeey59+/YFoKqqiocffpi1a9eSl5fH+eefT79+/XQeISJf2S4Bit3AYbeR4nZQmO5lZFFa533xpEk4lqAxFKO6JcyW+nY21bWxsS7EloYQyyua+WBdHaFoAgC3w0aa10l2wE1pZgqD8gIMyg/QJzOF7IAbn8uhyhORf9MjQ5JkMsmsWbN44IEHSCQSHH/88XznO9/B5XLtsl0oFOLOO+9kzpw5mKbJqFGjuP766wkGg9TU1HDzzTezcuVKPB4PP/jBDzjssMMwDINYLMYTTzzBM888QzweZ8iQIfzmN7/B7XZ30xGLiIhIVzNNkzfeeIPf/e53/PznP+fTTz9l5syZPPvss6Smpu6ybSQS4fDDDycjI4PXX3+dGTNm8PLLL5OSksLVV19NSkoKF1xwAW+++SYXXXQRr7zyCoFA4AteWUTkq9s5wHDaDZx2GwGPk+IMH2NKzM77YgmT9pg1gae6OczmzgClja0N7Xy0oZ43lm8nljDxOu1kB9z0yfQxKD+VwXkB+mb7yQ96CXgcnVN3FJ7IgahHhiSrV6/mpptu4q677ur8X54BAwZw7LHH7vIP9V//+hcvvPACjz32GG63m0svvZQnnniCmTNn8rvf/Y62tjYeeughli1bxvXXX8/zzz9Pfn4+L7zwAs8//zy///3vycrKoq6uDrvd3o1HLCIiIl0tmUzy2GOPMWPGDKZNm8bUqVN55ZVX+Pjjjzn88MN32XbatGmdfy8rK+Ppp5+mvr4ep9PJihUr+OMf/8ikSZMoLi7m6aefpqmpSSGJiOxzO18buRwGrh2VI30yUxjfZ8eyQXZM4AnHqWgMs66mlRWVzazc3sKG2jY+2lhPOJbEZbeR7rPClwG5AQbnB+ifG6A43ds5snhPryvS2/S4kMQ0Td566y1GjBjBwQcfjGEYnHTSSbzwwgscc8wxu/yDbGxspLCwkPLycux2O/369aOpqYlYLMa8efO46aabKCgoICcnB6/Xy7x58zjhhBN48MEHueKKK0gmk9TX19O3b1+FJCIiIr1cNBpl7dq1fP/738cwDDweD3379mX58uW7hCQd5xpr165l1apVzJ49m8mTJ5Ofn4/L5eLEE0/kvvvuo6amhnfffZcjjzySnJycXV4rEonQ1NQEQHt7O/F4fN8dqIgIn/8sMwC3w47bbyfT72ZYYSonjiogYZq0RRLUtETYUNvKysoWVm5vYV1NK//4tIKnFlg/t1K9TgrSvPTL8TM4P8DAvFRKM3xkB9x4nHZ2FJ0oOJFeo8eFJGCdlJSXl3f2F+nbty9vvvkmiUQCm+3zBPPYY4/lhRde4PLLL8ftdrNlyxauvfZabDYbfr+fqqoqwDo5aWhoYO3atTQ3N7Nu3Tr+8pe/4Pf7qaysZMyYMbsttwmHw3z66afE43FM0+x8LhEREdk/xWIxotEoHo8HsE7oU1JSaGtr2+P2a9as4dVXX+Wzzz7jiCOO6DwvGTZsGG+//TavvfYaa9eu3a3SFeCTTz7hl7/8JYlEgmQyyZYtW7r8+EREvoyOn1cOwyDNa1We9Mvxc+TgXJImROIJ6tuibKoLsbqqhRWVzaypbuX9tbW8uqSSRNLE57aTE/BQntXR5ySV8uwU8lI9pLi1XEf2bz0yJInFYjidzs6PnU4nsViss9M8WBUn9fX1xGIx+vfvj8fjYeXKlWzcuJGSkhIuuOACbrvtNrZu3cq6deuor68nHo8Ti8Voa2vjoIMO4tprr6Wqqorjjz+ehQsXMmnSpM7nb21t5fHHH6elpQWwTpRERERk/+V0OvF4PJ2hiGmaNDc379aPpMO0adM49thjqays5Pjjj+fYY4+lvLycm2++mfvvv5/Ro0ezbds2jj/+eI4++mhGjhzZ+dhx48bx3HPPdTaRnz59+j45RhGRr6pjbLHP5cDnclCU7mNS38zO5TpNoRgVje2sqbaW66yusv6cu7aWaDyJy2EjI8VFaaaPgbkBBuen0i/HT2HQS5rPicuuQRmyf+iRIUlWVha1tbWAdQJTV1dHRkbGbkti/vrXvzJy5Eh+/OMfA+BwOLj33nuZPHkyZ5xxBuXl5Xz66aecdtppVFVVUVJSgs/nIxgMMmHCBJxOJ3l5eZSWlrJhw4ZdQpLMzEzuvPPOzn2YOXPmvjl4ERER6RIul4vBgwezcOFCDjnkEFpbW1m3bh0zZ87snHrXMQ1v59G/qampuFwuQqEQbW1ttLe3k5GRgWEYpKWlYbfbaW1t3eW1HA4HDod1mmWz2XaphBUR2V8YhtG5XCcn1U5OqodRJemYpkk8adIWiVPVHGF9TSsrt7ewcnsz62vaWLKtmfboJgzDIOh1Uhj00i/Xz5D8VAbkBijJ8JHpd+F22DVdR3qcHheSGIbBwQcfzM0330xLSwter5e3336bgw8+GJvNRnV1NU6nk2AwCEBLS0vnMpzm5ubOIMUwDA466CAmTpzI6tWrqaysZPLkyfj9fkaPHs2KFSs48sgjaWpqorKykqKiot32o+MfazKZ1D9cERGR/ZzNZmPGjBlcffXVBAIBlixZQn5+PqNHjyYUCnHWWWdx8803079/f37/+99TWlpKSkoKb775JmlpaYwaNQqfz8fQoUP5+c9/zoknnsjcuXPx+/0MGjSouw9PRGSfMQwDp90g6HMR9LkYmBfg2GF5JE0IxxLUtkbYVBdi1XZruc7amlbeXlnNi59UYGKS4nKQm+ahb3YKg/JSGZQXoCwrhZxUDykuO3aboesv6TY9LiQBmDJlCn369OHCCy8kNTWVbdu28Zvf/AbDMLj55pspLi7mRz/6EdOnT+eSSy5h5syZuFwuPvjgA26//XZsNhuzZ8/mqaeeIi0tjYULFzJz5kz69OmDYRhceeWV/OAHP2Dt2rVs3ryZESNGMH78+O4+bBEREelChmEwZcoU7rjjDt544w3Kysq47rrr8Pl8xGIxTj/9dLKzs3E6nUycOJEPP/yQUCjEhAkT+L//+z/S09MBuOeee3jhhRdYtGgR5eXlXHXVVWRkZHTz0YmIdK+O5TopbgcpbgclGT6m9M8CIBJP0hiKsa0x1LlMZ3VVC4u3NPL2yhpiiSRuh42sgJs+mSk7lusE6JvjpyDoJdXjxGlXnxPZNwxz50YfPYRpmrS1tbFgwQIikQjjxo0jMzMTwzDYsGEDbreb/Px8ACorK1myZAmJRIKhQ4dSUlKCYRg0NzezcOFCWlpaGDx4MH379u0sdTVNk61bt/Lpp5+Snp7OmDFj8Hg8X/gPLplMMnPmTM466yymTp26r94GERGRXs00Tb7zne9w2mmnccQRR+zT193Znn7//7dtvsxzdAiFQpx00kk8+uij5OXl/a+7KyLSq3T8/IwnTVrDcSqbrLHEK7c3s7KyhY11bVS3RAhFEzhtBkGfk8J0HwNy/QzesVynOMNHhs+J22HH0HKdA1bH79dHHnmkMx/YG3pkJYlhGPj9fg477LDd7isrK9vl44KCAgoKCnbbLjU1dY+P73j+4uJiiouL984Oi4iIyH7jy5xM/7dtdEIuIvLVdPz8dNoN0lNcpKe4GJwf4Jsj8kmaEIrGqWmxluus3N7MikprLPHry6p4duFWAPxuB/lpXvrlpDCuTwYT+mRQmunD47Tv8hoiX0WPDElERERERETkwNARatgNCHicBDxOyrP9TB2YjQlEYkkaQlG21O8YS7y9hdVVLXy4oZ7Xlm7H5bBRnuVnYnkmk/tnMTQ/lfQUl5rCyleikERERERERER6nI7pOl6XHa/LS0HQy4QyqwdULGHS2B5lRYU1hnj++nqe+HATD8/bQLbfzcjiIFP6ZzO+TzrFGT7cDlvnc4r8JwpJREREREREZL/QEXK4HAY5AQ85Az0cOiCb9liCzXUhPtpYz3tralm0uYF/La/C67TTN8fPpL6ZHNIvi8H5AYJel3qZyBdSSCIiIiIiIiL7LcMw8LkcDMpPZWBegLMOKqGuNcrSbU3MXVPLhxvqeXjeRu5/bz25qR5Gl1hVJuNK0ykMenGpykR2opBEREREREREegXDMHAYBrmpHnICbg4flEMommBjXRsfrreqTOavr+e1JdvxuewMyA0wqW8mk/plMTAvQJrHqSqTA5xCEhEREREREel1OoKOFLeDoQVpDMlP5byDS6ltjfDZjiqTjzbUc/97G7h3znry0jyMKQkyZUA2Y0vSyQ96cNltCkwOMApJREREREREpNczDAOH3SAvzUtuqoejBufSFk2woaaV+evrmbu2lrlra3n5s0pS3A4G5gU4pG8mk/pmMSDXT0BVJgcEhSQiIiIiIiJyQOkIOvxuB8OLggwrTOOCQ/pQ0xLh0y2NvLemlgUb67lnzjr+/M46CoJexpamM6V/FqNL0slL9eC0GwpMeiGFJCIiIiIiInJAMwwDp92gIOglP83DscPyaI3EWVvdyvz1dcxdW8vsldW88Mk2Ah4Hg/NTOaRfFgf3zaRfth+/x4GBqkx6A4UkIiIiIiIiIjt0BB0Bj5NRxUFGFQe5eEo525vCLN7SyHtravh4YwN/fGsNf3xrDUXpPsb3SWdK/2xGFQfJSXXjsKnKZH+lkERERERERERkDzqCDqfdoDjDR1G6l+NH5NMSjrOmqoV56+p4f20t/1y6nWcXbiXN62RIQSqTd1SZlGf5SXHbd3ku6dkUkoiIiIiIiIh8CYZhYABpXifj+mQwtjSdmd/oS2VTO4s2NfDemloWbm7gtjdWY7dBSYaP8WWZTOmfxYiiNLL9buyqMunRFJKIiIiIiIiIfAWGYeByGJRmplCS4ePEUYU0h2Os2m5VmcxbV8s/Pt3GUx9tJt3nYmhhKlP6ZXFQeSZlWSn4XKoy6WkUkoiIiIiIiIh8TYZhYBgQ9Lk4qDyTCWUZXD61L9sarSqTd9fU8snmBuatrcNuN+iT6eOgskwm989ieGEamX4XdkNVJt1NIYmIiIiIiIjIXmYYBm6nnfJsP2VZKZw8poim9hgrK5t5f10tH6yr47lFW/nb/E1k+l0ML0xjSv9sxvWxRgz7PQ6cdpum5uxjCklEREREREREupBhGNgNyEhxMWlHU9dIPMnWhnY+3ljPu2tq+HRLE3NW1+Cw2Uj3OclN89AnM4W+2Sn0zfZTkuEjO9VNqseJ027DZig86QpdGpIkEgkSiQROp1NfPBERERERERGscMPjtNMvx0/f7BROG1dMQyjK8opmPtncwJrqVjbXh5i3rpbXllYST5g47AapHie5qR5KM32UZ6XQN8dPaYaPvDQPqV4nbodd4cnX1KUhycaNG7nuuus48cQTOeqoo8jOzt6xTktfMBEREREREZGOKpMsv5sp/bOY0j8LE4jGk7SE49S0hNlcH2JdTRvrqlvZVB9i0aYGZq+sJhJP4rAZ+N0OsgNuSjJ8lGen0C/HT2lmCgVpHtJ8LrxOKzzpeD35Yl0akhQVFTFjxgyefPJJ7r77bg455BBOP/10RowYgdvt1hdHREREREREZIeOa2QD8DjteJx2sgNuBuendm4TSyRpjSSoaYmwtSHE+po21tW0sqG2jRWVzcxbV0d7LIHdMPC5rMcXpnspz7LCkz5ZKRQGvaT7XPhcduw70hNdn1u6NCRxu91MmzaNo48+mo0bN/L0008zffp0ysrKOOecczjxxBMJBoP6YoiIiIiIiIh8gZ2vmV0OOxkOOxkpLgbmBTh8kAlAPGkSisSpbYtS0djeGZ6sr2ljU51VfdIeS2Ca4HPZyfS7KQh6KM+ylvyUZ/spCHrJ8rtIcTtwHKDhSZeGJKZpYpomNTU1zJ07l/nz51NeXs7RRx/N7Nmzeemll3j00Ufx+/1duRsiIiIiIiIivVJHiOG0G6T5XKT5XPTN9jO5XxYACdOkPZqgIRSjorGdjbVtrN0RnmxtCLG8opm2aIJE0sTrtBP0OSlI89Iny0ffbD/l2X6K073kpLpJcTtw2W27vXZv0qUhSUNDAzfddBPz589n+PDhXH311YwbNw6fz0d7eztnnnkm9fX1CklERERERERE9qKOAMNhGAQ8NgIeJyUZPg4qywAgaUI4lqCpPUZlUzub6kKsrbbCk831IWavrObFxRXEkyZuh41Ur5P8NA+lGT765vg7J+7k7Ji443JY44p3fu39UZeGJO3t7QwYMIDvf//7FBcXY7PZOt8sr9fLHXfcQW5ublfugoiIiIiIiIjs0HFNbjcgxe0gxe2gIOhlbGkGpmmSNK2msc3hGNubOprGtrKuppVNdSE+WF/HP5dttybu2AxSvU5yUq2msf12VJ70yfSRm+ohzff5xJ2dX7sn69KQJDMzk0GDBlFYWIjdbgegoqKC7du3M3r0aPr27duVLy8iIiIiIiIiX1LHpB2vy47XZSc31cPI4uCOVhpW09jmcJyalgib60Os3xGebKwL8emWJt5ZVUM0nsRmGAQ81sSd4gxrXPHI4iBHD83FYbP99x3pRl0akqxYsYIHHniAyZMnd36ura2Nm2++mSeffBKXy9WVLy8iIiIiIiIiX5NhGBgGuG12sndM3BlSkGqFJ0A8YdIaiVPbGmFrfYj1O/qebKoNsWp7C/PX1fHZ1iaOHJwLPTsj6fqeJKmpqZ1VJABpaWmEQiGi0egXhiSmaRKNRlmzZg3RaJSBAwfi8/l2K80xTZPW1lbWrl1LIpGgb9++ndNyTNOkrq6O9evXEwwGKS8vx+HY9XCj0SgVFRVkZWWpL4qIiIiIiIjI/8AwDAzA5TDIcLjISHExIDfAYeZOE3eiCepaI8STJk77Ab7cpk+fPixZsoTly5czYMAA4vE4L774IpmZmXg8ni98XDQa5dprr2X58uX4fD4cDgf33XcfmZmZu2xXWVnJRRddhMfjweFwUFVVxX333cegQYNYsGABP/rRjyguLqa6uprDDz+ca665pjMoMU2Txx57jJ/85CfcddddnH766V35VoiIiIiIiIgcEHaZuOO1keZ1dvMefXldWuhSWlrKmWeeyTnnnMPxxx/PMcccw9/+9jeuueaaXapL/t38+fP58MMPeeKJJ3jyySex2Ww888wzmDvSqA5vvPEGhmHwxBNP8MQTT9C3b1+ee+45EokEt9xyC6eccgqPPfYYDz/8MLNmzWLlypWAFZCsXbuWl19+uTO8EREREREREZEDW5eGJHa7nZkzZ/Lcc89xzTXX8Jvf/IYXXniB4cOHf2FXW9M0mTt3LuPHj++sODnmmGOYM2cOyWRyl22zsrIIh8M0NTXR0tJCa2srhYWFJBIJNm/ezOjRo7Hb7eTl5REIBPjwww8Bq1Ll1ltv5eKLLyYjI+ML96PjJiIiIiIiIiK9X5eGJKZpkkwmMQyD9PR03G4369atY/Xq1f8xfNi+fTt5eXmAVaaTk5NDTU0NiURil+0OP/xw+vfvz3HHHce0adMwDIOTTz4Zh8NBeXk57733HpFIhA0bNrBu3ToqKysxTZNZs2bh9Xo54ogjvnAfGhsbuemmm/jJT37C9ddfz8cff7x33hQRERERERER6ZG6tCdJNBrlF7/4BXPmzGHbtm3k5+ezceNGTjnlFO6+++4vXHJjs9l2CUSSySQ2m22X6hPTNJk9ezabN2/mwQcfxO128/Of/5wnnniC73znO1xzzTVceeWVzJ8/H4fDQU5ODk6nk8rKSh588EFuvfVWWltbicfjtLW1EQ6Hd+mT4nK5GDVqFJFIBIBFixZ10bskIiIiX0U0GiUcDhMIBAiHw3z00Uekp6czbNgwbD18vKCIiIj0TF0akqxcuZJly5Zx1113cdNNN/Hwww/z7LPPsm3bti9cbgNWw9dly5Z1Vpts3ryZwsLC3UKV1157jSlTpjBq1CgATjzxRGbNmsWll17KqFGjeOmll6iuriYQCHD++eczZMgQKisraWpq4sc//jGmafLpp5+ydetWgsEgp512Wudzp6Sk8K1vfQuwQpo33nhjL787IiIi8lWZpslzzz1HdXU13/ve9/jjH//ICy+8QDwe57bbbmPKlCn/8VxDREREZE+6NCSpq6ujvLyc7OxsYrEYHo+Hb33rW1x44YW0t7eTkpKy22MMw+Dwww/n0UcfZcWKFaSnp/PCCy/wne98B8MweOedd/D7/YwdO5Y+ffowd+5cqqurcTqdzJkzhz59+mC322lsbCQej5OXl8err75KLBZj8uTJBAIB3nrrLQASiQRnn302p556KieeeGJXvhUiIiKyly1fvpxRo0bR3t7OW2+9xSOPPMKiRYt49dVXmTJlSnfvnoiIiOyHujQkKSgooKGhgdTUVCKRCM888wx1dXXY7Xaczi8eATRs2DAuu+wyvvvd7wIwadIkjj/+eAzDYPbs2RQUFDB27FguuOACVq9ezfTp0zEMg9zcXG644QYMw2Dx4sX85je/wTAMAoEAt99+O8FgsPNjsEKSsrIycnJycLlcXflWiIiIyF7m8/moqKhg2bJluN1uSktLWbduXedSWREREZH/VZeGJOXl5Vx88cWkpKRwww03cNddd+FwOLjhhhv+Y0hit9u59NJLOfPMM0kkEgSDwc6lNj/72c86y2ezsrK45557aGpqwjRN0tLScDisQzr00EMZPXo00WiUtLQ0XC7XbmW3NpuN22677T+OIxYREZGe6Zvf/CYzZ87kkUce4Xvf+x4ul4tPPvmEgQMHdveuiYiIyH6qS0OSDRs2sGXLFg499FAmT57MpEmTAHZrwronNpuNYDC42+f/veLD4XCQmZm523Z2u32Pj9+ZYRi43e7/fBAiIiLS4xiGwbBhw5g1axahUIiioiKSySRnnHEGWVlZ6kciIiIiX0mXtn5vbm5m7ty5mKaJYRjY7XbsdrtOXERERORrMU2TDRs2sHr1akpLS1m9ejUXXXQRDz30UHfvmoiIiOzHurSSpF+/ftTV1fHII48wduzYzmUtKSkplJaWKiwRERGRr2zWrFkEAgEmTpzIb3/7WwYMGMCaNWt4+umnueSSS/Z4nmGaJqFQiE2bNuH3+/c4Pc80Tdrb26mqqqKlpYXMzEzy8vKw2+0kk0lqa2tJJBKd29tsNrKysrR8V0REpBfo0pCksbGR2tpa7rnnHjweT+fJyqhRo7j99tt1MiEiIiJfWX19PWVlZTQ0NFBRUcGdd97Jxx9/zCuvvPKFj9m+fTvf+c53iMfjNDU1cdppp3HFFVfsdk5y11138e677+Lz+di6dSsnnXQSV111FW1tbVx99dXU1tYC0NDQQCQS4V//+tcel/+KiIjI/qVLQ5LS0tI9nqjYbDZsti5d6SMiIiK9XL9+/XjppZdYs2YNxcXFpKWlUV9fj9/v3+P2pmnyl7/8hby8PO688042btzImWeeybRp0+jfv/8u286cOZMf/OAHOBwOlixZwhlnnMH06dMpKiri/vvvxzRNTNPk17/+NRUVFf+1D5qIiIjsH7o0JGlvb2fRokUkk8ldPh8MBhkxYkRXvrSIiIj0YoZhcMopp7B+/XpWr17NNddcg2EYVFdXc/jhh+/xMbFYjDlz5vDjH/8Yt9tN//79KS0tZcGCBbuEJIZhkJqaSiKRIJFIEIvF8Pl8nZPyOpq+Nzc388Ybb/CrX/1qt//8MU2z6w5eREREukyXhiS1tbXceeedRKNRwApNVqxYwSmnnMIf/vAH9SQRERGRryw1NZVf/vKXNDQ00NLSQn19Pd/5zndwOBx7PMeIRCLU19eTm5uLYRjYbDby8vLYtm3bHp//73//O48//jjr16/nmmuuITs7u/M+0zT56KOPME2TiRMn7vZ669at47nnniOZTBKLxaipqdm7By8iIiJdoktDkpKSEp5++unOj5PJJP/617+YN2+e/odFREREvpZwOMxtt93GrFmzMAwD0zQ59thjuf7660lJSdlte8MwOrfr0DGBb0+OOeYYxowZw5w5c3jggQc46qijKCws7Hzc3//+d44//ngCgcBuj3W5XOTk5JBMJolGo+rDJiIisp/o0sYghmHgcDg6by6Xi7Fjx7Jo0SLC4XBXvrSIiIj0YqZp8uqrr/Lhhx/y8MMP889//pO//e1vrFq1imeffXaP/xnjcrnIyspi27ZtmKZJIpGgoqKCkpKSPb5GRkYGAwcO5LzzzsM0TZYtW9Z53/bt2/nggw84+eST9/jYkpISZsyYwUUXXcT5559PRkbG3jlwERER6VJdWknS0tLC3LlzO8fkJRIJ3nzzTTIyMnC5XF350iIiItLLLV68mLPPPpvhw4cDkJWVxYwZM3jzzTc577zzdtve6XRy1FFH8eyzzzJ16lTWrl3Ltm3bGD9+PLFYjDfeeIOJEycSDAbZtGlT59jfpUuX0tjYSH5+PmAFNG+99RbFxcUMGjRIy4dFRER6kS4fAfz4448Ti8UAa6rNgAEDuOaaa3A4uvSlRUREpJcrLS1l9uzZHH300aSmptLW1sZbb731hZUhhmFw4YUXctVVV3HqqacSiUT44Q9/SGlpKe3t7dxxxx3cdtttBAIBfve737F582bsdjutra1ceeWVDB48GLD+0+f999/n7LPPxul07stDFhERkS7WpUlFUVERjzzyyC4d39WLRERERL6ujuk2s2fP5phjjiEzM5OGhgaKioq49tprv7C6IzMzkwceeICqqiq8Xi8ZGRnYbDZ8Ph8vvPACXq8Xm83GH/7wBxoaGohGo6SnpxMIBDqf0263c+utt+LxeFRFIiIi0st0aUhSVVXFH/7wB2644QY8Hg8AS5cu5bXXXuPqq6/WiYWIiIh8Zenp6Tz00EOsXLmSmpoaMjMzCYfDrFixgtzc3D0+xjAMXC4XxcXFu33e7/d3fuzxeDqX1+zpOXbeVkRERHqPLm3cunr1ahoaGnC73Z2fy87OZs6cOWrcKiIiIl+LYRh4PB5GjRrFUUcdxZgxY1i/fj0ffPBBd++aiIiI7Ke6NCRxOp20tLR0Nm41TZPW1lYSiYSqSERERERERESkR+nS5TaDBw+mqqqKW265haOOOoqWlhbuvvtupkyZ0rn8RkREROR/kUwmSSaTe7yv4z9mRERERL6KLg1J0tLSuOuuu7j11lv5xz/+gdvt5vjjj2fmzJmqJBEREZGv5JlnnuGRRx7Z430VFRWcccYZ+3iPREREpLfo8jm8ZWVl3HfffcRiMWw2GzabjWQyiWmaCkpERETkfzZy5EguuuiiL7x/6NCh+3BvREREpDfp0pBk69at/PrXv+aOO+7oXF6zePFinnzySX79619jt9u78uVFRESkFxo0aBCDBg3q7t0QERGRXqhLG7euXbsWwzB2mW5TUFDAkiVLNN1GRERERERERHqULg1J/H4/1dXVRKNRTNPENE2qq6sBVEUiIiIiIiIiIj1Kl0+3icfjXHnllRxzzDE0NTXx8MMPc9ppp+1SXSIiIiIiIiIi0t26NCRJSUnhz3/+M/fffz8PPfQQPp+PSy65hGnTpnXly4qIiIiIiIiI/M+6NCQxDIOCggJ+8Ytf0NbWxqeffspzzz3HO++8w5///GctuRERERERERGRHqPLQhLTNEkkEmzYsIGXX36ZWbNmUVFRwbnnnsuMGTOw2bq0HYqIiIiIiIiIyP+kS0KSUCjEK6+8wrPPPsvGjRsZN24c06dPZ/bs2fz85z//0gGJaZqdfzcM479u8+/bfdn7vui5RURE5PPfmfGkicNm6PemiIiI9FpdEpKsXLmSSy+9lOnTp3PTTTdRXl7OihUreOedd77UiZVpmrS0tPDcc8+xceNGDjnkEA4//HAcDsdu223evJmXXnqJmpoahg8fzvHHH4/P58M0TZYsWcKrr76KYRiceOKJDBw4ELBGE7/99tts3bqV0tJSTjjhBLKysnTSJyIiwuehSDSepKo5zLKKZj7aWE9VU5jfnjqCVK+zm/dQREREpGt0yZqX/v37c8stt7B582YuuOACfv7zn7No0aLOMcD/TSKR4Prrr2f27NmUlZVx44038vzzz+/22IaGBs4991y2bNnCoEGD+Mtf/sItt9xCMplk8eLFXHDBBXg8HtxuNxdddBHr168H4LHHHqOiooKhQ4cyf/58LrroItra2rrirRAREdkvmKZJJJZgc32IN5ZVcdMrKzjz/vmccNf7fO/JT3h24VaqWiK0hOPdvasiIiIiXaZLKkkCgQAXXXQR5557LitWrGDWrFn86U9/oqGhgTvvvJNvfvOb9O/f/wsrNzZu3Mi7777Lq6++SmFhIWlpadxzzz2ceOKJu4wO3rJlC42NjVx77bVkZGTg8Xi45557iMfjPPfcc0yZMoXvf//7AKxbt46nnnqK66+/np/+9Ke4XC4Mw+Dwww/nsMMOY/369YwYMaIr3g4REZEexzRNookkNS0Rllc0s2BjPYs2N7K+ppWWcByv005Jpo/jR+QzoSyDYYVpFKR58TjVU0xERER6ry5r3GoYBm63m5EjRzJy5Eiuuuoq5s+fz9///neWLFnCAw888IXTbdauXUt6ejq5ubkYhsGwYcPYvn07TU1N5OTkdG5XXFxMbm4uzzzzDKNGjeIf//gHxx57LE6nk7a2NgKBQGcQ4/f7WbRoEclksjNoMU2T6upqTNMkLS1tl31IJpOEw+HO7eJx/c+ZiIjsv0zTJJYwqWkJs2J7Cws21LNwUwPra1ppDsfxOO2UZPg4dlgeE8oyGF4YpCDoweu0fldrSaqIiIgcCLp0BDB8flKVlpbG0UcfzZFHHklra+t/bN7a3NyMz+frDFE8Hs8uoUWH1NRUjjvuOP7617+Sm5tLTU0Nl156KQBTp07lxhtv5Jvf/CamafLaa6+RlZW1y5KdpqYmbrjhBk4//XSKiop2ee6amhq++93v0tTUBMCqVas477zzvv4bIiIi0sU6ftfFEia1rRFWbm9mwYYGFm5qYG1NK83tMdxOG8XpPo4aYoUiI4rSKEz3KhQRERGRA1qXhyQ7MwwDu92+W9XGv0tJSSESiZBIJLDZbESjUQzDwOVy7bLdggULePrpp5k1axY5OTm8+OKLXHfddbz66qtMmzaNqqoqfvvb35Kens43vvENKioqOk/6Wltbufbaa8nOzubqq6/eLbTJysri7rvvJplMYpom11xzzd59M0RERPaSzukzCZPatgirtrewYGM9H29sYG11K03tMdwOG0XpPo4YnMOEPhmMKApSlO7F51IoIiIiItJhn4YkX1ZZWRn19fU0NDSQnZ3NunXryMjIIC0trbP5q2EYbNmyhbS0NHJycrDb7QwcOJC6ujra29vx+XxccsklXHjhhZimyfe//30OOeQQbDYboVCIn/3sZ0QiEf74xz/i8/l2Ozm02+2dS3uSySRer7c73goREZE9Mk2TeNKkrjXKqu3NLNjYwMeb6llb3UpjKIbLYaMo3cthg3KYUJbByKI0itJ9eF12DBSKiIiIiOxJjwxJ+vbty+DBg7nllls47rjjuO2225g+fToej4d33nmH119/nZtvvpmRI0eydetWHnroIYYOHcoDDzzAyJEjSUtLo76+ntmzZ1NcXMwHH3zAmjVr+MUvfoFpmtx+++28+uqr/PSnP2XOnDkYhsGkSZPIyMjo7kMXERHZTWelSNKkvi3K6u0tLNhkVYqsqWqlIRTF5bBREPRy6IBsJvTJYGRxkOJ0Hz63QhERERGRL6tHhiQul4vbb7+d++67j0cffZTTTz+ds88+G8MwCAaDlJeXA9ao4QceeICnn36aDz74gIEDBzJjxgwcDgd2u53PPvuMV155hdLSUh544AHy8vIwTZPc3FxOPPFEli1bBoDNZmPYsGEKSUREpEfoCEUSHaFIVSsf7whFVle1UN8WxWm3URD0cEi/TCaUZTKqOI3iDB8pbodCEREREZGvqEeGJIZhkJ+fzw033NC5tKbjZG/06NGMHj26c9uJEycyceLE3bYLBoPceOONu33eMAwuueSSfX9QIiIiX2DnUKQhFGNNdQsfb2xgwcb6zlDEbjMoSPNycHkm48syGFUcpCTTh9/lwDAUioiIiIjsDT0yJOmwc7jxn7bZ+c//9fEiIiLdwTRNEkmTxlCMNdWtLNxUz4KNDaza3kJdWwS7zSA/zcuEPhmML8tgdHGQ0swU/G6FIiIiIiJdpUeHJCIiIr1FZyjSHmNddSsLN1mVIiu3t1DXGsVmQG6ah7Gl6Uwoy2BUSZA+O0IRm0IRERERkX1CIYmIiEgXME2ThGnSFIqxrqaNRTtCkRXbm6ltiWIYkJvqYVRxkAllGYwuSadPpo+Ax6lQRERERKSbKCQRERHZC3auFNlY28aizQ0s2NDA8spmalojGEBOwM3wwjQm9MlgdGk65VkpnaEIKBgRERER6W4KSURERP5HHY1WI/Ekta0RVle1snhzA59saWRtdSt1bVHACkWGFqQyoSyDMSXplGWnkKpQRERERKTHUkgiIiLyX5imiQmEInEqGsMsr2xm0eYGPtvaxKa6NlrCcVwOW+fymTGl6YwuDlKe7SfNq+UzIiIiIvsLhSQiIiI72Xkcb1M4xqbaEJ9tbWTR5kZWVDZT0dhOOJ7E73ZQnOHl2GF5jClJZ2hBGkXpXk2fEREREdmPKSQREZEDWkcoEk0kqW2Jsra6hU+2NLJ4cyOrq63JM0nTJN3nom+2nyMH5zK6JMjAvAA5AQ9upw0DhSIiIiIivYFCEhEROaB0LJ1pjyaoaGxnRWUzizY38tnWRjbWhWhuj+G028hNtZqsji5JZ1RxkPKsFNJTXDhshgIRERERkV5KIYmIiPRanUtnTJPm9jib69r4bFsTizY3sryiiYrGMOFYAp/LTnGGj6MG5zK6NMiwgjSK0334PQ71ExERERE5gCgkERGRXsU0TaKJJHWtUdZWt7J4SyOLtzSyuqqFmpYISdMk6HNRnpXC1IE5jCkJMjAvldxUNx6nXUtnRERERA5gCklERGS/tfPSmcqm8I6lM9bUmY21bTSHY9htBrkBD0PyUxl9UJCRxUH6ZvtJ97lw2rV0RkREREQ+p5BERET2G6ZpkjBNWtrjbKoPsXRbE4s2NbCsspltDe2dS2eK0n0cPiiHMaXpDCtMozjdS8CjUbwiIiIi8p8pJBERkR6po59ILGFS1xb5fOnMZmvpTHXH0hmvi7LsFA7tn8XoknQG5QXIS/PgddoBhSIiIiIi8uUpJBERkR5h56UzVc3hXabObKhto6ndWjqTHXAzMC/AmRNKGLVj6UxGirV0BhSKyH+XTCZpb2/H4XDgcrl2+54xTRPTNInFYkSjUdxuN06nc5ftTNMkHA6TSCTwer3YbDZ974mIiPQCCklERGSf6qgQAUiaJi3hOJs7ls5sbmTZtia2NrYTilpLZwqDXr4xIJsxJekML0qjJMPXuXQGFIrI/6atrY3f//73zJs3D4/Hw5VXXslhhx222/fRQw89xAsvvEAsFsPj8XD55Zdz9NFHYxgGkUiEBx98kJdffplkMsn48eO54YYbcDh0WiUiIrK/029zERHZa3YOQEwglkgSiSVpicRpaItS2xqhsilMZVM7lY1hKpvCbK4PUd0SJp4wSfM6KctK4fRxxYwuCTI4L9VaOuPS1Bn5+kzT5Mknn2ThwoXcf//9LF26lOuuu46XXnqJvLy8XbY95JBDOPLII/H7/bzzzjtcffXVvPXWW2RnZ/Poo4/y3nvv8cc//pHU1FQaGhqw2WzddFQiIiKyNykkERGRL23nECSeNInFk7RFEzS1R6lri1LVFN4RgoSpaGynpjVCXWuUlnCM9liCWNzEZgOn3UaK20HQ66Rfjp9vjy1idHGQfjl+Mv0unHbrglOhiOxN8XicF154gfPOO4/S0lIKCgr44x//yEcffcQJJ5zQuZ1hGAwePLjz+33cuHEkEgnC4TChUIhHH32UX/3qV7S1tWGaJn379tX3qoiISC+hkERERIB/XwZjVYGEYwma2+M0hKJUt4TZ3hSmoilMZWM7Vc0RalsjNLbHCEXjRGJJABw2A4/LTprXSbrPxeD8AHmpHgqCXvKDXnICbrL8btK8TnwuOx6nXVNnZJ+IRqNUVFRQVlaGYRg4nU5KSkpYt27dHrd/5513eOutt/j4448599xzKSgoYNu2bWzdupVbb72VtLQ0Nm/ezGGHHcbPf/5znE5n52Pr6+tZvnx5Z++Stra2fXWYIiIi8jUoJBEROQD8+zKYeMIkmkjSGo7T1B6jpjVCVbMVflQ0htneHKamJUJ9W5TWSJz2aIKkaWIzDFwOGwGPgzSvk7w0D6OKg+SnWSFIbqqH7ICbjBQXKW4HXqcdu81Q/xDpEZLJJMlkcpfeIU6nk2g0usfts7OzGTRoENXV1SxdupRQKEQ0GqW5uZnjjjuOSy+9lI0bN3LiiSdy+umnM2zYsM7HbtmyhUceeYRkMkk8HqehoaHLj09ERES+PoUkIiK9iGmaJJIm8aRJWyROSzhOXVuU6mYr+KhobKeyKUz1jiqQ5nCMtkiCWCKJYYDdZpDidpDqcZKZ4mJUcZC8HQFIfpqHnICbTL+bgMdBisuB025gt2mqjOwfXC4Xfr+f+vr6zgk2tbW1TJgwYY/bDxs2jGHDhnHiiSdy5JFHsnDhQgYPHkxaWhrjx4/H4XBQUlJCeno627Zt2yUkGTFiBPfddx8AoVCIU045ZZ8co4iIiHw9CklERPYTpmmSNCGRNAnHErRG4jSGolS3RKhqjlDZ1E7FjmUw1S1hmkIxWsJxIvEkSdPEMMDnspPidpDhc1Ga6SN3xzKYgqCH3ICH7FRrGUzA7cDlsOOwGRhaCiO9hNPpZMKECcyePZupU6dSVVXFunXrGDNmDMlkki1btpCbm4vb7aa9vR2v1wtYE3EikQgej4eMjAyGDh3KihUrGDduHDU1NTQ1Ne3W+NUwjM5/N2rqKiIisv9QSCIi0kOZpkksYVLVHOaTLY0s3txAZZNVEdLQFqWpPUZ7NEHCNDFNcDlspLgcpHkdZAXc9M8JUBD0kJ/mJS/NQ26qh3Sfk1SvE6/TjtNu61wGAwpCpPczDIPLLruMiy66iMsvv5wtW7ZwxBFHMGTIEEKhEGeccQb33HMPQ4YM4Qc/+AEulwufz8cnn3zCIYccwqhRo3A6nVx99dX85Cc/YeHChaxatYqjjz6awYMHd/fhiYiIyF6gkEREpIcwTRMTaIvEWVvdygfr6nh/bS3LK5tpCcfxueykep1k+l30y/GTn2ZVgOSleclL9ZDpdxH0OklxO3A5bDh2SkAUgIhY/w4GDBjA3//+dxYvXkwwGGTMmDE4HA5sNhv3338/5eXluFwufvazn7F69Wra29s555xzGDRoEC6XC8MwOPTQQ3n88cdZtmwZZ599NiNHjtylaauIiIjsvxSSiIh0I9O0+odUN0f4dGsj762pYcHGBrbWhzCBgqCXIwfnMqV/FiOKgqSnuHA7bLgcNnaOPRSCiHw5hmFQUFBAQUHBLp+32+0MHz688+PS0lJKS0u/8DnKysooKyvr0n0VERGRfa/HhiSmaRKLxUgmk7jd7i+8ADBNk2g0immauN1uwDp56WjIFolEcDgcOByOzufY+T6n04ndbtcFhojsEx1TZtqiCdbXtDJ/fR1z19SyrLKZplAMv9vBwLwA3xpRwKR+mQzIDRDwODBQECIiIiIi0tV6ZEiSTCZ5+eWXuf/++4nH45xwwglcfPHFu5WyhsNh7r77bt566y1M02TcuHFcffXVpKWlUV9fz29/+1uWLl1KSkoKP/jBD5g8eTIAjY2N3HzzzSxZsoTMzEx++tOfMmTIEF2AiEiX6Jg4U9Ma4bOtTby3poaPNtSzuT5EMgn5QQ+H9s/m0P5ZjClNJz/Ni9Nu6GeSiIiIiMg+1iNDkrVr13LDDTdwxx13kJmZyWWXXUbfvn056qijdrloePPNN3nqqaf461//itvtZubMmTz11FNccskl/P73v6empoZ7772XpUuXcu211/L888+Tm5vLH/7wB2pra7nvvvt49dVX+dGPfsTzzz+Pz+frxqMWkd6io1okFE2wobaNDzfUM3dNDUsrmmloi+Jz2RmQG+DSQ8s5pG8WA/ICpHmcmiIjIiIiItLNelxIYpomb775JsOGDePQQw/FMAxOOukkZs2axZFHHrnLBURtbS3FxcUMGjQIm83GoEGDqKurIxaL8d5773HjjTdSUlJCQUEBt956K/PmzeOYY47h1Vdf5c4776RPnz6cddZZPPDAA6xevZpRo0Z134GLyH7NNE0Spklda5Ql25qYu6aWDzfUsakuRDyRJDfVw8HlmUzpn8XY0nQKg16rr4hCERERERGRHqPHhSRgVZL069cPw7DKzfv378/s2bNJJBLYbLbO7Y455hief/55fvjDH+J2u9m0aRNXX301NpsNn89HbW0tYC3LaWxsZM2aNUycOJG2tjYKCwsBSElJITMzk82bN+8SkkQiEZYvX048Hsc0zc7nEhHpYJom7bEEm+pCfLShnvfW1LBkWxN1rVG8Ljv9cvxcMKkPh/TLYnB+KmleJzZVi4iIiIiI9Fg9MiSJRqO4XK7Oj51OJ7FYrLOEHayLk5aWFgByc3Nxu9189tlnVFRU0KdPH84991xuu+02qqqqWLNmDTU1NUSjUeLxOIZhYLfbAetixel0EolEdtmHlpYW/vKXv9DS0oJpmixbtmwfHLmI9GSmaZI0ob4tyrIKq1pk/oY6NtS0EU0kyQm4GVuazpT+2Yzvk05Rug+3qkVERERERPYbPTIkyczM7KzcME2T+vp60tPTO4ONDg8++CBDhw7lpz/9KYZh4PP5+POf/8zEiRM5++yzKSsrY9GiRRx33HFs27aN4uJiUlJSAGhrawMgkUjQ1NREZmbmbvtw9913d+7DzJkzu/qwRaQHMk2TcCzJloYQCzbU896aWj7d2khtawS3w055dgpnTyxlcr8shhSkku5zqVpERERERGQ/1eNCEsMwmDhxIr/97W9pbW3F4/EwZ84cJk6ciM1mo66uDofDQWpqKolEonP8L0B7e/suzzN58mSmTJnCunXr2LZtG5MnTyY1NZX+/fszb948BgwYwLp162hra2PAgAG77UfHRU4ymdQFj8gBoqNapCEUZXlFM++vreWD9XWsr2kjHE+Q7XczsijI5P5ZTOiTQXGGD4/TWgaonxMiIiIiIvu3HheSABx66KE89thjXHrppaSmprJhwwZuvPFGDMPgV7/6FcXFxVx11VVMnz6dSy65hO9973u4XC7eeecdbrnlFmw2G2+//TbPPvsswWCQ+fPnc/HFF1NeXo5hGPzgBz/g2muvZdmyZXzyySecddZZFBQUdPdhi0g3MU2TSDzJ1oYQH29s4L01tSze0kh1SxiX3UZZVgpnji9mcv8shhakkZGiahERERERkd6oR4YkPp+Pe++9lw8++IBwOMzEiRPJyckB4IorrsDtdgMwZswYXnzxRT755BMSiQTf+973KCsrwzAMxowZQywWo7m5mXPOOYeBAwd2Nn3tCGE+/fRTTj31VMaOHauLHZEDiGmamCY0tsdYud2qFpm3ro611a20RxNk+l0ML0zj0kPLmVCWQWmmD6/z8z5GIiI9gmmCmQRjR1N7/XwSERH52npkSGIYBqmpqRxzzDG73de/f/9dPi4uLqa4uHi37YLB4B4fD2Cz2RgwYMBuS2xEpHfqWJIXTSSpaGxn4aYG3ltdy6LNDWxvDuOw2+iT6ePUMUVM7pfF8KI0Mv0u7DstuxMR6XFCdfDqjyG9FArGQM4gCBSAywcYCk1ERES+gh4ZkoiIfF2maWICze0xVm1vYd66Ouatq2V1VSttkTjpPidDC9M4f1IfJpZnUpaVgs+lahER2Y+010PtaljzBsTD4PRBagH0PwaO+DnYHBBtA7sT7DumBurnm4iIyH+kkERE9lu7jAUHYokk4ViSutYIn21t4t01NSza1EBFUxibASUZPr41Ip/J/bMZUZRGTsCN3aZqERHZT2X2gxmvQXMFVC+HbYugcjHE28FmBzMBL18JjZsgbwQUjoHcYRAsBk/a58t0REREpJNCEhHp0TqCEBOIJ0wi8QRN7THq26JUNoWpaGxna0M7WxtCVDVHqGmJ0ByO0R5NkOZ1MrQglekHlXBweSblWX58bjsGqhYRkV7AsIEn1bplD4ShJ0Mybt0wIJmwKktqVsHSZ2Hhw2B3QLAPnPW0tUwnVAfhJvDngdODlumIiMiBTiGJiHS7jiAknrSmzLS0x2gIRdneHKaiMczWhhBbG9rZ3hSmpjVCc3uMtmiCZNLEZhh4XXZSvQ6yUtyMLEqjMN3H6JIgI4vSyEn14FC1iIj0dh0/4+xO6wbWEpsjb4Cp10JrNdSshopPoKUSvOlW49fFT8C7t0JaMeQOtapN8kdAzhCr2kREROQAo5BERLpcRwiSSJpEE0law3EaQzGqmsNUNH0eglQ2tVPdEqEpFKMtEidumhiAx2kn4HGQmeJmQE6AgqCH4gwfBUEv+WkeMv1u0jwOvC7HjkBElSIiIlZwYli9StL7WLf+R+06EadwDIw4A7Z/BuvfhmXPW4854Y8w8kyItMD6OZBRDmmF4PJbj9XPWBER6aUUkojI19YRgiRNa4JMWyROU3uM6uYI25va2dLQ3hmCVDWHaQzFaAnHiSeTmCa4HTb8HgcZKS5KMnwUlHkpzvBSGPSSn+YlK+Am6HXiddlx2m3Ydjo3VxgiIvI/MAww7J9/XDLJuiWiEKqH+vVQtQSKxlv316yGWZdafw/kQ/Yga5JOn0OgeAJg7PrcIiIi+zmFJCLyX+0cgsQTSULRBM3hGNUtEaqawp09QbY1tlPVHKE+FKWlPUY0kSRpgsthI8VlJ93nIifVzciiIEXpPgrTvRQEPeQE3AR9LlJcDlwOhSAiIvtMx89YhxtS861b6aTP78/qByf/xVqmU/EJVH4Ka9+Emm9B0QQgCQseBIfLagqb3sdapmNzKDQREZH9kkISEdmtOWp7LEFLOEZtS4Sq5ghbG63lMNsa2tneHKauNUpze4xIPEkiaeJ0GPicDoI+J9kBNwNy/Z0hSGHQS07ATUaKixS3A7fDhn2nFEQhiIhID7Pzz2VPGgw63rolExBpgoZNVqhiGNaI4c+essITmwNSsiCzv1VlcvAV4E7dsbxnx9If/cwXEZEeTiGJyAFk5waprZE4VR3TYXZMiNm2Y0lMXWuUxvYY4ViCWCKJ027D47ST5nWS5XcxqjhIUbq3MwTJTfWQ6XfhdzvwOO04FIKIiPQenU1hHeDLtG4dXClw+mNQuxoqFkPFIqheAW3VMPE71jZLnoHVr+9oCjsKMvtaz2F3KTQREZEeRyGJSC9lmiYmEIklaWyPsrWhnbXVraysbGZ1VStb6kPUh6JEYgnsNhtup41Uj5NMv4uBeQEK070UBb0UpvvIS3OT5XcT8DjxOu047EbnKnSFICIiBzDDZjV0TSuE8qlW1Ui0zRor3DEdp3ELbJ4PK18BkuBJtxrBHvELq7dJIg6xNitw6eiXot8tIiLSTRSSiOzndp4cE4omqG6JsLGujVXbW1i5vYX1Na1UNoVpCccASHE5yE3zMLwojYF5Afpl+8lL85AdcJPqdeJzWs1RO85PFYKIiMiX0tEU1pNq3cAaMzz5hzD2fGjYCJWfWdUmNavA6bG2qVoKz19i9TMpGG01hs0dAv48a5yxfg+JiMg+pJBEZD/REYYARONJmtpjVDaFreqQ7c2srmphY12IutYo7bEETrtB0OeiMOjl6CG5DM5PpX+On+IMHxkpLjxOOzaNyhURka5kGFbQ4c+xbkXjgQshHrGW23Rsk9nPWqazca41aceTBmPOt6pNTBPCjdb4YZvj88eIiIh0AYUkIj2UaZokTWiPJahrjbC5LsTqqhZWbG9hXXUr2xrbaWqPkTBNvE472QE3fbP9HDcswKD8AOXZfvLTPKR6nJ3LYxSIiIhIt+po4Or0fv65vBFwxmMQaYGmrbB9CWyaB1kDrPsjzfDkdCtUKTnYuuUMBl+GpuiIiMhep5BEpAcwTZNYwqQlHKOqOcy6Gmu5zKqqFjbUtlHTEqEtGsdmGKR5nOQHPRzSL4vB+QEG5AYozUwhy+/C67JjNwyFISIisv8wDDAc4E23bnnDYeSZVgWJYUAybk3M2fIBzPsDzL3davxaPhW+eQc4PFb1ic1uLffR70AREfkaFJKI7EMd1SGReIKGthhbGkKsrW5lRWUza6pb2doQor4tSjxh4nbYyPC7KM1IYUr/LAbnpdIvx09B0EvQ58TlsKk6REREeifDRmeHcG8GnPAHq9KkfgNsXQCb3rfGENudgAlv/h80bIDSSVB8kLV8x5O243n0e1JERL48hSQiXWDnZqqtkTg1LRE21O5oplplNVPd3hSmNRIHwO92kJfmYXRxOoPyAgzIC1CWlUJuwI3P7egcqatAREREDjgdS3Q8aVAwCvJHwrgLrQoTww7JmHXbvhTWvmkFI4E8KBwLR98EqQXW1B3TVGgiIiL/lUISka+pY9RuRzPVbY3trNtRHbK6qpXN9SHqWiOE40lcdhtBn5PidB9jhluBSP/cAEXp3s5mqhqtKyIi8h90TNGx7RgXbHPCsb+Fb1wHtatgy4dWT5P6DVbPEtOEFS/Dipeg9BAoGmdN0nGlAIZCExER2YVCEpEvqaM6JGlCKBqntjXKpp1G7a6raaWisZ2WcJxE0sTntpMT8DAwN8DAkQUMygtQnp1CXpoXv9uB067qEBERka+tIzRJyQTfjsauk74H0TZwB6xtGjbAhndh2QvWEp1gsVVpctB3IH+EFaTs/HwiInLAUkgi8h+YpknCNKlsDPPJ5kZWbG9m1fYWNtZZzVRD0QQOm0Ga10lB0MvUgTkMygswMC9ASYaPTL8b745Ru6BAREREpEt1/J41HNbyHLACkImXw/DToXq5VWWyZT6sextGTre2adgI8++xqkwKRkNaITi8uz6niIgcEBSSiPwb0zQxTahpjfDh+jpeXbqdBRvqaWqP4XbayPa7KcnwccSgHAblpdI3x09B0EOax4lTzVRFRER6FsOwqkdS861eJX0Ph0QMQrXWGGGA2jWw9Fn4+EFw+iCzLxSNhyEnWkt0/v35RESk11JIIsLnS2kaQzEWbW7gtSXbeX9dLTUtETJSXEzql8kxQ/IYlJ9KdsBNisuO3aZRuyIiIvuVjt/bDpfV0LVD36lwyWyo/MyanLPlI/jsaWvUcOkhEA/DggchowzyRoA/B+yuXZ9TRER6BYUkcsDqCEZaI3GWbmvin8u2M2dVDdsa20lxOxhTks5VR+VxSL8sclM92AxViIiIiPRKdpfVzDVYCoO/ZYUizdvAFbBCkNYqmH83tFaDJwjZA6B4IpRPhT6TrSayHX1NdK4gIrJfU0giBxzTNAnHkqyqauFfy7fz1opqNtS24bTbGFaYygWT+vCNgdkUpftwqFpERETkwNHxO9/phcx+n38+tRDOnQXbFsHG96FiIXx0H1QsgtKDwbTBmn9ZFSrZg61lPDaHAhMRkf2QQhI5IJimSSyRZENtG7NXVvPG8ipWVrYAJgNyA3zv8H4cMTiX8uwUXHabghERERH5nN0J2YOs28gzrck5DZus3iY2J8Qj8N6tUPEJ+LIgdyiUToKSidYUHYe7u49ARES+JIUk0muZpkkiabKtsZ05q2t4fel2PtvWRCSWpE+Wj/MnlXL0kDwG5QfwOu0KRkREROS/M2zWaOG8YdYSm47GsMfdak3N2fg+VH4KG9+zKkoufgsC+dBWA2YC/LnWc4iISI/UI0MS0zSJxWKsX7+eWCxG37598Xq9u13EmqZJKBRiw4YNJBIJ+vTpQ2pqKoZhYJomTU1NbNy4EafTSVlZWedzmKZJTU0NW7duxe/306dPH5xOpy6SewHTNEmaUN0cZt66Ol5bWsnCTQ20RuIUBL2cNLqQY4fmMaIoDb/b+vbX111ERES+ko5zCJsd8kdA3nAYdxFEmqFuLTRthZRswIQ5v4c1r1ujiEedZfVAMWxakiMi0sP0yJAkGo3y85//nEWLFuHxeAgEAvz5z38mPT19l+2qqqq49NJLMU0Th8NBU1MT9957LwMGDGDZsmVcccUVZGVlEQqF8Hq9/OUvfyEzM5M333yTX/ziF5SWllJdXc2gQYO47bbb8Hq93XTE8nWYpokJNLRFWbCxgdeWVjJ/XR11bVGy/G4OG5jDtOF5jC3NIOhzakSviIiIdA3DAMMO3nRrhHDhuB13mFaT1+rl8MGfYNEj1njhMedbS3Ns9u7caxER2UmPDEkWLFjAnDlzeOmllwgEApx77rk8++yzXHzxxbtc3L7++utEo1Gef/55HA4Hl1xyCc888ww//elP+dvf/sbw4cO54447CIfDHH/88cyZM4eTTjqJe+65h7POOovLL7+cyspKjj76aFatWsWoUaO676Dlf9IxmaYlHOfTrY38c+l23l1TQ2VjmFSvk/F90pk2LJ+J5ZlkB9yaTCMiIoD1+2PDhg3Mnz+fjIwMpkyZgs/n2+V3hGmabNmyhcWLF9PQ0EBRURETJ07E5/MBsGTJEqqrqzu379+/P6Wlpfv8WGQ/0Pl9ZcCg46Hv4daI4QUPwuInYcN7MONVa9Twbo8REZHu0ONCEtM0effdd5kwYQI5OTkAHHvssbz99ttceOGF2O2fJ+3BYJBYLEYoFMLpdBIOh8nNzQUgMzOT6upqwuEwbW1tmKZJZmYmhmGQkZFBc3MzkUiElpYWvF4vgUBgt/2QnqXja9IeS7CispnXl1Xx9spqNtWFcDttjCwKMvPQvkzpn01B0INdk2lERGQnpmmydOlSLrnkEg499FDWrVvHSy+9xJ133onL5dpl2xdffJGNGzeSmZnJM888Q1ZWFvfeey8ul4ubbrqJcDhMnz59ADjxxBMVksh/Zxjg8kG/I6HsG1aT16bNVt8SMwkL7odgHyibAk6fwhIRkW7S40ISgMrKSvLy8gDrf//z8vKorq4mkUjsEpIceeSRvPzyy0ybNg2Hw0FRURGnnnoqAOeffz4XXngh06ZNIxQKMXXqVA4++GAMw+Dqq69mxowZvPnmm9TW1nLxxRd3nuh0aGpq4i9/+QuhUAjTNPnkk08466yz9tl7IJ8zTZNoPMm6mjbeWlHFG8urWFPdgs0wGJQX4KqjB3D4oBz6ZKbgtCsYERGRPTNNk/vuu4/jjjuOn/3sZ9TV1XHssceyZMkSxo4du8u2l19+OTab1Vxz8+bNHHXUUVRWVlJaWophGFxyySV885vf7I7DkP2dYVijgosnWDeAUC18/DDUr4eC0TDuQhhwDHjSFJaIiOxjPTIksdlsu1RyJJNJbDbbbqWw7777Llu2bOHuu+/G7XZzww038Mwzz3DJJZfw7LPPkpqaym9+8xuam5u5/vrree+99zjssMN44IEHmDRpEpdeeilr167lpptu4phjjmHQoEGdz+90OikvLycSiWCaJqmpqfv0PTjQmaZJPGmypT7EO6tqeH3ZdpZWNBFPmJRnp3DJlHKOHJLLgJwAHqdG9oqIyH8XjUZZtGgRN998M4ZhkJmZSb9+/Vi8ePEuIYlhGNjtdlpbW2lubmbevHkUFhZ29kYzTZN//OMfLF++nLFjx3LooYfu1gDeNE2SySQAiURi3x6o7B92PndJyYLpT8KnT8FnT8GLV0D2QJh4OYycDjZNw9lndq4m1/mlyAGpR4YkJSUlrFq1qjMo2bJlCwUFBbtUkQC8/PLLHHrooYwfPx6Ak08+mRdeeIHzzjuPF198kcsuu4xhw4YBMGnSJP71r38xYcIEXn/9dR5//HEGDhxI3759efDBB5k/f/4uIUlKSgrf/va3ASukeffdd/fFoR/QOibTbG9qZ+5aazLNJ5sbCUXjFKf7OGNcMccMzWNoYRopLo3sFRGR/03HEt1gMNj5OyQjI4Pa2to9bj9r1iweeeQRNm7cyPXXX9/5HyZHHXUUAPF4nBtuuIHjjz+e6667bpffS4sWLeKWW24hmUySSCTYvHlzFx+d7NcMG2SUwdTrYNwMWP4CLHoM6teBASQT0N5gLc3B0MX73maa1i1UC1s+shrsDj0ZMvvpvRY5APW4kMQwDA4//HAef/xx1qxZQzAY5KWXXuKiiy7CMAzmzp2L3+9n5MiRFBcX89FHH1FXV4fT6WTevHmUlJTgcDgoKChg3rx5HHXUUYRCIRYtWsSJJ56Iy+UiMzOT999/n379+lFRUcH69espKirq7kM/YCWTJnVtET7cUM9rS7bz0YZ6GkJRclM9HDM0l2nD8hldEiTV68SmX1QiIvIV2Ww27HY7sVis83PRaBS3273H7adPn86pp57KJ598whVXXMHBBx/MoEGDuPjiizu3GT16NBdffDEzZ84kIyOj8/P9+/fn+uuvxzRNwuEwP/7xj7vuwKT3MAwI5MGEy2DEmTum5digZjk8cwGUHwZjzrOqTAy7LuD3hkgLrJ8DK1+Bje9By3br8/EIHP5TrJRKRA4kPS4kARg+fDgzZszgsssuwzAMxo0bx7e+9S0Mw+C1116jsLCQkSNHMmPGDFasWMHpp5+OzWYjGAxyyy23YLfbufbaa7n22ms55ZRTiMfjDBgwgDPPPBO3282NN97Ir371K1588UVCoRAnnHACkydP7u7DPmB0jOxtbo/xyeZGXltayftr66hqDhP0OTmoLJNpw/M4qCyDzBQ3Npt+OYmIyNfndrspKipizZo1jB8/nmg0ysaNGznllFP2uL3D4cDhcDB27Fj8fj+bN29m8ODBu2yTkZFBPB7fJXgBSE1NZcSIEQCEQiE8Hk/XHJT0ToYB3uDOn4BgCSx61FqSM/BYGDsDCsaA3amw5MsyTatJbns9OLzg9kP1Cph1GdhdUDQWpvwIgsWQN8IKqFq2W0FKZl/rYxHp9XpkSOJwOLjiiis466yzSCQSZGRkdC61+cUvftFZzpqTk8MDDzxAQ0MDyWSSjIyMzjXBAwcO5O9//zsNDQ3Y7XbS09Ox260lGlOmTOHFF1+ksbERj8ezS9mtdB3TNGmLJli2rYnXl23nnVU1bGkI4XM5GF0S5PtH9OOQflnkp3k1sldERPY6u93Ot7/9bR5++GFGjx7NZ599RigUYsKECYTDYX7/+99z/vnnU1BQwJtvvknfvn1xu93MmTOHlpYWBg4cSGtrK++//z4DBgwgFotx++23M2rUqM5+JSJdInsQnPE4bPsYPv4rrHoNVvwDjr8DRpz+eR8NnTvtrnMpTR1s/WhHxchcmPxDK2jKHQIn/AkKRkFaMdh2ujxKJuCd38Hq12DKVTDqbE0eEjkA9MiQBKyS2MzMzN0+/+8lsU6ns3NU8M4Mw8DtdndOyfn3+3w+Hz6fb+/tsOyRaZpE4klWV7Xw5vIq3lxRzbqaVhw2g6GFaZw9sZSpA7MpyfDh0MheERHpQoZhcNppp1FdXc2Pf/xj/H4/d9xxB1lZWYTDYaqqqohGowAsXryY++67j3g8TnZ2Nvfeey+lpaW0tLTw2muvcdddd2GaJkOHDuUXv/gFTqezm49OejXDAIcbSiZB8UFQtRyWPmdNxzEMqFsH25dA38PAnaqL+J3Vrob3/wgb34XmSnAHoHAspBZa9ztTrP4je3zPDBh+Kmz/FF6/Htb8C474BeQOVVWJSC/WY0MS2X+ZpkksYbKpro3ZK6t5Y3kVKyqbSSZN+ucGuHxqX44ckku/bD8uhybTiIjIvuPxeLjqqqv47ne/i91u76wy9Xg83HXXXZ3bXXfddcTjcRKJBC6XC8OwgvxAIMAdd9zRGaa4XC5A1Y+yjxgGGA7IG27dwKqS+OwpmHsHZA+GsRfA4BOsiTkH0velaQI7Kka2LYK8YRAogEgzrJ8NOUPgkCuhfKq1nMbm+O/vj2GD0kPg7Gfggz/DgvvhsVNg6k9g7Plgs//nx4vIfkkhiew1pmnSHk3wypJKXlxcwadbG4nEkpRm+jhnYinHDM1lcF4qXk2mERGRbtRRbfrvn/t3TqdztwqRju2+qNmryD6x8/eracK4i8CdBp88Bq9dCx/cDaPOgvEX/1tvk16mIxhp23kpzY7mq8f82jr+/JFw0b/An/vlgpF/ZxjgzYDDrod+R8Bbv4Jwg/V5LXMS6ZUUksheYZoma6pb+d1rK3l3TQ15qR5OGFnAscPyGFkUJOCxvtUUjoiIiIjsRR0TcQ6+wgpGVr1q9S1Z+LDVr8STBonojoDAtv9f0HcEIx1TZ1a/Aa9dA80VO5bSjIHJV0L/Y6z77S5I+5pTLA3DmiZUcjCc/fcdfUsMqFoGm96HkdOt197f31sRARSSyNfU0XNk1ifb+MOba2iLxLn00HIumNSHTL8bAwUjIiIiIl3OMMCXYTUXHXISNG6ywgEzCbN/Be0NVqPS/JFfraKiO+28lGbLAlj7Lxh/CeQM3jGJZjgc8oMdS2lKuu74DMMKQ8B6X5f8Heb/GVa+DEf8EgpHA8b+9d6KyG4UkshXZpomm+pC3PL6Kv61vIoBeX5uO30kE8szsWtsr4iIiMi+ZxjWaNvcodbH8XYIt8DyF2HZC1Zz13EXQclEcHh69gW9aUK4ETZ9YFXIbHj384qR0klWSJIzGE5/xKr02KfHYljjgj1pMO8uePzbVjXPhEvUPFdkP6eQRL6SaDzJq0sque2NVdS1RTlnYgmXT+1Hpt+lyhERERGRnsLhgeNvhXEXWEtwVvzDmtIy6Hg48W5wert7D3dlJiHcBK6A1Rh1xT/glR+BKwUKxuxaMQI7lhB1w6QZw7ACkslXQtlUeOv/YM5vrSU4J99rTSMSkf2SQhL5n5imSUVjmDveXM0/Pq2gNNPHn04YzTcGZOOwaxSaiIiISI9iGGB3QsFoyBsBE6+AxY9b1RgONyQTsHk+ZA8EX2b3VECYSQjVw9YFVvPVLR9ZAU7xeCsQOe5W6HPIjqU0zp5VpWHYrD4oZ/wNFj1iNYi1u6z3NRHt+dU6IrIbhSTypcUSSWavqOb3r69kW2M7p4wp5AdH9Cc31aPqEREREZGezmaH7AFw5A1WMIEBjRvh2QvBk2r1Mxn+bUgt2DfVGaYJ2z6GhY/stJTGb1WMdJxbBkuscbs9mWFY79/B38VqKos1ZWfunfCNH0PxRI0LFtmPKCSR/8o0TWpaIvxp9lqeXbiV3FQ3t542kmOG5uGwGQpIRERERPYnOy9RScmBw35iLcV5+2ZYcD8MPw3GnAfpZXuvCqKz+Wo9VK+AwrHWUp/tS63qkYJRMOn70Hfq5xUj+xvDAHaMBm6rherl8OR0q8nswZdbo4R13izS4ykkkS9kmiYJ0+T9NbX85rWVbKhtY9rwPH501ECK0r0KR0RERET2d24/jDkfhp0Ka2fDxw/C/HvB6YNDf2xd8JvJrzY+eOdgpGMpzYZ3IVQLZz1jLaEZdgqUfwPSineM1qV3BAnDTrGayr71fzDvj7D+bTjiBugzWVUlIj2cQhLZI9M0aQhFuXfOeh7/cBNBr4ubTx7Gt0YW4LLbFJCIiIiI9BYdo22HnAADjoatH0NmuXVfzSrrIn/kmVA0wepj8p/OA01z148XPGQ9vnMpzWiY9D3IGmDd70mzbr1JR0VJzhD49l9h8RPw3m1Wpc45z1vvg4j0WApJZDeJpMnHG+v5zWsrWFbRzOGDcrjm2EGUZ6UoHBERERHprQzDWgLTZ/Lnn6taCqteg6XPQ+nB1vjg8qnWtJmO88JdKkY+hq0fWUGIJwi+dMjsZ31cfhik98Dmq13FMKz3afzF0GcKxELWx/EI1K6BnEHdMLpYRP4bhSTSyTRNmsNx/vr+Bh6auwGP087PvzmE08YW43GqekRERETkgLBz+DH0ZMgdBp/8DZY+C8/OgPyRcPxt1rSc9gYrFOlYStO0DbxBGHg8FI2FwSdYN5vjwA0DDMOaHtRh9evwjx/AyOkw+QdWX5gD9b0R6YEUkggASdPksy2N/Oa1lSza3MCkvllcN20QA/MC2PRDW0REROTAYxhWpUP2QDj6RjjoUvjs77DmdXAFABPm/B4WPGBVSBSMtkYM9z0M0vtYz2HfDxuwdoWdg6e8YVA2xWqSu2GO1auk7+FWrxKdd4t0O4UkBzjTNGmLJnjiw03cO2c9AFcfPZCzJ5aS4rKrekRERETkQNfRYyNYAlN+BAfNBJfP+tzgb0JGuRWMBEutUETnj1/MMKypQSffB0uehTm/g2cugDHnwuE/s3rDiEi3UkhyADNNk5XbW/jtayuZt66WMSXp/OS4wYwoSlP1iIiIiIjszjB2bTxaeoh107njl9fR+2X0OVA6Cd7+tdWjBHZtfKv3VKRbKCQ5AJmmSTiW4JmFW7lr9lrC8QRXHNaPCw8pI+BxqHpERERERL4cnTd+dYZhVeGc9GeItoLLb/256DEYciKkFuj9FekGCkkOMKZpsq6mjVteX8nsldUMLUjjJ9MGMa5PBnabfgiLiIiIiOwzhmGNVXa4rY83z4e3b4KFf7WW3wycduBMAxLpIWzdvQOyb5imSSSW4NmFWznvoQ+Zu7aWCw8p46ELxjOhTAGJiIiIiEi3KzsUTvgTJBPw/GXw8lXQtGXXZTgi0qVUSXIAME2TLQ3t3PbGKl5bup2+2Sn85pQRTO6Xhc1Ay2tERERERHoChxuGngJF463JQUueha0fw1lPQ3ppd++dyAFBIUkvZpom8YTJ68u3c+vrq6hqjnDm+GK+e1g/sgNuhSMiIiIiIj2NYUBaMXzzduh/FGz5CPy5VjVJPGIFKTqPF+kyCkl6KdM02d4c5o9vrmHW4m0UBr3ceeYoDh+Ug8NmKCAREREREempDAPsLhh8Agz6Jhg2aKuFf3wPhpwMQ0+y7tc5vchep5CklzFNk0TSZM7qGn73z5VsqgvxrZEFXHnkAAqCHoUjIiIiIiL7C8MAw279PVQDDZusoGTNG3DY9dZ0HJ3fi+xVCkl6EdM0qW2N8ud31vL0gi1k+l38/tsjmDYsH6dd1SMiIiIiIvut7MFwzvMw93b45HFrGc7Ua2HYt8Hp6e69E+k1enRIYu7o4vzfLu7/03Zf5r4v8xo9XSJp8sH6On776gpWV7Vy9NBcrj56IKWZvv3+2EREREREDniGAYE8OObX0O9IeOtGeOPnkDcc8kd2996J9Bo9MiQxTZOKigpefPFF2tvbOe644xg0aNBuF/vJZJIlS5bw1ltvkUgkmDx5MhMmTMButxOPx5k/fz7vv/8+brebo446iiFDhmAYRufzv/rqq9TU1DBkyBC++c1v4nD0yLfjPzJNk8b2GA+8u55HP9iE3+PgxhOHctLoQtwOmwISEREREZHewjDA7oT+R0PBKNiyAHKHWk1d69ZCWiE4vFqCI/I12Lp7B/akoaGBGTNmsGnTJuLxOBdccAFr1qzZbbtPP/2Uc889l0QigcfjYebMmbz11lsAvPLKK3z/+98nNTWVtrY2zjrrLFauXIlpmmzcuJEZM2awbds2ioqKWLt2LdFodF8f5teWTJos3NTAxY98zF/eW8+E8gweuXACZ4wvxuO0KyAREREREemNDMOaeDP4m2BzQPM2eHI6PHcx1KwEM9ndeyiy3+qRpROzZ8/GZrNx44034nQ62b59O0888QQ33HDDLhf+CxYsYODAgVx11VXYbDbWrl3L3LlzOfroo3n77bc5/vjjmTlzJolEgvfee4/FixczcOBA7rrrLo466ih++MMfYhgGdru9G4/2f2eaJq2ROI/M28gD723AYTe4/rjBnDG+GK/CERERERGRA4s7AIOOg48fgsdOhik/glFngdOnqhKR/1GPqyQxTZNFixYxevRoXC4XhmEwYcIEFi9eTCKR2GXb0aNHU1FRwdtvv83777/PihUrOPTQQwGYPHkyCxYsYP78+bzxxhu0t7czevRowuEwc+fOpbW1lXPOOYczzjiDl156aZf+JB37EQ6HCYfDRCKR3V67uyRNk6XbmrjssYX84a01DCtM5eEZEzh/Uh8FJCIiIiIiByJ3KhxxA5zxOKQWwOvXwzMzoGGDtRRHRL60HllJ0tTURFFREWA1VE1NTaW5uZlkcteysUGDBjFkyBB++ctf4nA4CAaDDB06FNM0mTRpEo888gg/+9nPCIVCjBo1isLCQqLRKNXV1SxYsIDf//73bNmyhR//+MeUl5czfPjwzueurq7m+9//Pk1NTQCsXLmSc889d9+9Cf/GNE3aowmeWrCFu99eS8I0+eGRAzjv4FL8bofCERERERGRA1XHqOCyQ+HsZ+CDP8Oy5yHSYt3fEZTomqHn6fjaJBOQjFo9ZQCatkCoHgwb2Oyf/xnItyqHEjFoqwEM6z7DsG42J3jSrOeIhyER3bHNjhs2cLisZVqmCcm4ta1hWNvt/HfD2LF//x607bTdF4Vw+/H3Wo8MSXw+H+3t7cCOcKC9Ha/Xu0sQYJomDz/8MOFwmNdeew2Hw8HPfvYzbrvtNn73u9/xm9/8hjFjxvCTn/yESCTCBRdcwFNPPcX06dNxu92cffbZDB06lMGDB/PQQw/x4Ycf7hKSZGZmcscdd5BMJjFNk+uuu26fvw87H+ua6lZ+99pK3l1Tw8iiID85bhCji9Ox2fbfbz4REREREdmLDAO8GXDY9TDuQkjNB0xY9iL4syG9DDyp1oW4zf75Y6Rr7RwkGIYVXNSthYbN1p91a6F+Hfiy4OR7we6CeXfBokd3DSwMG5zwJxh6khWiPHICRFt3hCQ7brlDYfqTYHfD3DtgybNgs1khWkfQcsQN0P8oaK6AFy+HeGTH4+3W/RnlMO23VuCy6FFY/44Vqth23G9zwJjzoHAstNfD/HsgEf/8PpvdmsQ0crr18ab3oWEjDD0FXL7u+Rr8D3pkSDJkyBBeeeUVEokEdrudpUuXMnDgQBwOxy7LYlasWMHAgQPx+/0ADBs2jJdeeolYLMaqVau49NJLcbvduN1uBgwYwNq1a/F4PPTv37+zUatpmsTj8d0m2zgcDgoKCgBrik5KSso+OvrPmaZJJJ7k+UVb+cNbawhFE1x2aF8unlJGmtep6hEREREREdlVR1VJWqH1cUslvH0TNG4Bdwr4MsGfb11MH/5TqyqhtRqibeBNB6fXukjf+fnkyzNNq3FurB3aG6z3v36DFYT0PQxKDrbe78dPg+ZKa1qRyw/+HEgrAXNHm4dBx0N6yY4Kk4RV8WEmIWuAdb8rAMO/DdEQmPHPt0sttL7+YFWd5Aze6fEJSCbB4d6xr0nr8/Gw9XkzYX3OHfj8eBo3w7aFn9+XTFp/9jsKCoFwM3zyuBXWYH5eeZI7DIafZoUkK16CVf+0ghmFJP87wzA46qijuOeee3jiiSfIysri5Zdf5q677sIwDP70pz+Rk5PD6aefzuTJk7n99tuZMGECbrebRx55hBNPPBGXy8UhhxzCAw88QH5+Po2Njfzzn//kpptuwm63c95553H33XdTXl7Opk2b2LRpU2cvk57CNE021oW45fWVvLm8moF5Aa6bNoiJ5ZnYVT0iIiIiIiJfRkounPogbHzPulhv3GxNw6n8FNixXOKjv8BH91vLNAJ5kFZkVZ0MPRnyhlkX2ZFmcHh2XGDvvCzjALNzVUgiaoVLbTXW0pjCMVbAtPRZePc26/PRVitUcLitKp6Sg62g6pAfgi8DgqVWHxlPmvX+diydKf+GdfsiKVlWRcjnO7bT33d8Xcaeb1V8/LuOr1taEZw7y9o/c6eAgx3LdsBqAnzwFXQGIKYJJMGd9vlzXPwvK2xJdgQpCWtJT0cYM/EKGHmWVeW0H+hxIQlAYWEhd999Nw8++CCRSIT/+7//Y/z48YC1DCYtzfqCnHrqqSSTSZ588kkSiQTTp0/nnHPOwWazceWVV5KRkcF9993XuRTn2GOPxTAMTjrpJGKxGA899BB+v597772XsrKy7jzkTqZpEkuYvLKkktvfWEVdW5RzDy7lO1P7kpniUvWIiIiIiIh8eTYbFIyC/JHWx2bCWl4Rj4BrR7V8ycEQC0HDJmjaCpvnw+rXIW+4FZI0bYEnTrem5aQWQnqpFaLkDLYea9isi+SOKpYO+/O1S0cYYiat9wrTOv5kHBb+FbZ+bC0haa6wKkYcHrhkNgRLrAAhrQjKpkBmf8jsC2nFn1f3OL0w4ZKvt3+7vbd7eq+NPX965+fYuWpoT1y+/1z9YXdax/qfpJdat/1EjwxJDMNg3LhxjB07FtM0sdlsneHAWWed1bldR2+Rs846a7ftUlNT+e53v0symcQwjM4bgNPpZPr06Zxxxhm73dedTNOkorGdO95cwz8+raA008ddJ4zm0AHZOOw9bhCRiIiIiIjsLzqudwwHuByfByQA/Y6AvofvqAKIWQ1f2xutJSBghSD5o6xQoGqpVZUSa4fiiXDu89b97/zWqk4JlkBGmVUhkVYM2QOs1+rJzWN33rdws3Uc9euhdo3VK6RxE5QfBkf/ytp2xctQuxr8uVZfjsy+kD3IWq5kGNaykn5Hqu/LfqpHhiTAlw4u/tN2hmFgt9v/5/v2NdM0iSdN3lpRxe9fX0VFYzunjCnkB0cMIDfV3SMCHBERERER6cU6qkBsdqsqIiX78/vSiq2Gook4xNqsAKV1+47tHTuqLdqtEKViEUR2WmJy7vNQfJAVKnxwl/Vc6X2sPwN51tITd2DfBAmmaS2RCTdCa40VftSts/Z74ncgqz9s/8yqmknErAoKb4ZVKeHPtVai2J1w0p+tP91p1p8dS2Q62HrGdaZ8NT02JDlQmKZJdUuEu2av5dmFW8lNdXPbaSM5emgeDlvPqHAREREREZEDWMeEFYfLunnTrWqRTjY48v9g6k92BBC11hKdlu2QXm5t0rQV1vwLwk1WUGHYrCk7I8+Aab+3+lh8+qQVZASLIVAAvnSrQanD/eVClJ3H6cZ3NE5t3mYFHqWTraUns39lTXwJN1qft9nBE4TB37RCkuxBcNyt1j6kFlq9P5xeq0fHzr08pNdSSNKN4skk762p5XevrWRDbRvHDc/nqqMGUJTuVTgiIiIiIiL7B8OwKirsTqsqJK3Y6oOys7JD4dI5EKqzgovGzdCwwep7AtaElY8fspa6dPTK8ASt5TunPmAFEw0boWaV1eg0JcuaChOPWCGG02eNo333VqheYYUybTVWr5WsgXDRG9Z26WVQ9g0rEMnsa1W1+POs5wOrsmXUWVoicwBTSNJN4okkd729lvvfXU/Q5+LXJw/nmyPzcdltCkhERERERGT/9u/XNHYnBHKtW+6QXafEgFVVcsoDOwKUTVYT2YYNVu8Tp8/aftVr8MbPPh+b6023QpApP4KxM6wlPuvfsZrTppdafVay+kPOICt0MQwYNwPGXfjF+6lrsQOeQpJuYrMZpLgcfGNgNlcfPZCyrBSFIyIiIvtAMpkkHA7jcDhwOp27/f41d5y4x2IxYrEYLpcLh8Oxx+2SyeQujeNFRORL2lM4kVlu3czJn38+Gbf6ngAMnGb1SmnYtGOyzFar2iR1x9QYbwac9wI4U6yqEcO2+2sZGogh/5lCkm5iMwzOn9SH8yhV9YiIiMg+EgqFuO2225g7dy4ej4errrqKQw89dLffw3/961+ZNWsWsVgMn8/H5ZdfzhFHHNG5nWmazJ49m1tuuYVf/epXjB8/vjsOR0Skd9r5Z7Ld+fnf0/tYU3M6mMnP+6WA1V/En7sv9lB6MYUk3cjlUIopIiKyr5imyVNPPcUHH3zAPffcw5IlS7jmmmt46aWXyM3d9aT6oIMO4hvf+AZ+v5+3336bq666ijfffJOcHGscZm1tLX/6059YtWoV9fX13XE4IiIHpl2qQjRFRvY+XaWLiIjIASGRSDBr1izOO+88ysrKmDZtGqmpqXz00Ue7bGcYBkOHDqW8vJycnBwOPvhg4vE44XC483nuuusupk2bRmFhYXccioiIiHQRVZKIiIjIASESibBt2zb69u2LYRg4nU5KS0tZt27dHrd/7733ePvtt1mwYAFnnXUWBQUFmKbJvHnzWL9+PVdeeSV/+9vf9vjYhoYGVq1ahWmahMNhQqFQVx6aiIiI7CUKSUREROSAkEwmSSaTOByfn/44nU4ikcgetw8Gg5SWlrJ582ZWr15NKBQimUxy55138rOf/Qyfz/eFr7Vp0ybuu+8+kskkiUSCurq6vX48IiIisvcpJBEREZEDgsvlwu/3U19fj2mamKZJXV3dFzZdHTFiBCNGjOCUU07hyCOPZOHChUQiEZYtW8Y999yDaZqsXbuWP/3pTwQCASZNmtT52JEjR/Lggw8CVrPYU045ZZ8co4iIiHw9CklERETkgOB0Ohk3bhzvvPMOU6dOpaamhrVr1zJmzBiSySQVFRVkZ2fjcrkIh8N4PB4A2tvbicViuN1uhg8fzv33349pmsTjcT788EMOO+wwysvLd3ktwzA6J+HYbGoBJyIisr9QSCIiIiIHBMMwuOyyy7j44oupr69n06ZNTJ06laFDhxIKhTjttNP485//zJAhQ/jhD3+Ix+PB5/OxcOFCJkyYwKhRo/D5fEyZMgWAaDRKRkYGw4cPJy8vr5uPTkRERPYGhSQiIiJyQDAMg0GDBvH000+zcOFC0tPTGT9+PA6HA5vNxj333EO/fv1wuVxcd911rFy5kvb2dr797W8zbNgwXC7XLs/ncDi46667KCoq6qYjEhERkb1NIYmIiIgcMAzDoKioaLdgw263M2rUqM6Py8rKKCsr+4/PZbPZGDZsWFfspoiIiHQTLZIVEREREREREUEhiYiIiIiIiIgIoOU2X1oikWDJkiU4HHrLRERE9gbTNKmqqiKZTHb3rnQp0zSJRCJ89NFHZGRkdPfuiIiI9AqRSIS2tjZM09yrz6sr/i9pxIgRfPzxx3zyySd77Tnb2tr48MMPmTp1aq8aD7h69WoSiQSDBw/u7l3Za5LJJHPmzGHcuHEEAoHu3p29pqmpiU8//ZQpU6Z0jqrsDZYsWYLP56Nv377dvSt7TSKR4J133mHSpEl4vd7u3p29Zvny5TidTvr379/du7LXJJNJ3nnnHQ466CBSUlK6e3f2mvr6epYvX84hhxyyV39epKSkkJmZudeeryey2WyMGTOGWbNm7dX3buvWrVRVVTF27Ni99pw9wbx58xgwYABZWVndvSt7TXt7O/PmzWPq1KnY7fbu3p29Zv369bS1tTF8+PDu3pW9xjRN3nvvPUaMGEEwGOzu3dlrWlpa+Pjjj/nGN77Ra647TNNk7ty5DB06tFcF0LpG/N8MGTJkt8bqX5dh7u3YpRcyTXOvp1MAmzZt4oorruD555/f61/Y7nTPPfcQiUT44Q9/2N27stfE43FOPfVUbr/99l514b1s2TJ++ctf8tRTT/Wqk7Zf//rXFBYWcv7553f3ruw14XCYk046ib/+9a/k5+d39+7sNbfeeitpaWlccskl3b0re000GuXkk0/m3nvvpbi4uLt3Z69ZtGgRt912G4899theP2kzDKNXBbX/rqvOI/7xj3/w7rvvcsstt+z15+4upmly4YUXctlllzFx4sTu3p29prKykhkzZvDCCy/g8Xi6e3f2mkcffZQtW7bw05/+tLt3Za9JJBKceeaZ/PKXv2To0KHdvTt7zbp167jqqqt47rnnek1lfDKZ5JxzzuHHP/4xo0eP7u7d2Wt66zXifffdRygU4sorr9zrz723zyN6x7+QLtZVJ28dz2uz2XpVSthxXL3ppLfjODq+Xr1Fx7H0pu/BjguR3va12vnfVG85LtM0e90xQe/9edFbf2ftC115HtGVz98dOpZe9dZ/P735uHrL92BvPo/o+LO3HFdv/Vp1HEtvO6796eeFQpJuZLPZ8Pv93b0be53b7e7x3/hfRSAQ6FU/qMAaedkbvwe9Xi9ut7u7d2Ov643fgx6PR1+r/YTdbu9Vy4d6A6fTic/n6+7d2OtSUlJ6zf90d7DZbL1quW4Ht9vdqypjOvj9/l5VYfv/7d17dFTVvQfw75lMkkkmM5MEkslT0mBEAvJcZIHQ5QMBy2OBKE8rLdoCCkEggClSBRGRUqBlCUFFs+wqpYDIo+UhJFQERAlEaARKeCXhkTczk8xk3mffP3IzV+zt7aqT25Mz/X7W4o8MhPntdc7s2ee3f3tvoLUPD7V7UJIkxMTEhGx/EWrPU5GRkarZg4zLbRTk9XrR0NCApKSkkPoQ2Gw2CCFgMplCpl1tmwt26tQJ4eHhSofTbjweDywWCxITE0PqWlmtVmi12pAaDMiyjNraWiQkJITMYEAIAZvNBo1GA6PRqHQ47UYIgZqampC6VkDr5mhWqzWk+gu1czgccLlciI+PD5lrIoRAfX09jEZjSD18+3w+1NfXw2w2h1QCtbm5GT6fD7GxsSF1D9bV1SEuLi6kljp4vV40NjbCbDaH3LWKjY0NqQmXUH1GbGpqgizLqnhGZJKEiIiIiIiIiAhA6KSyiYiIiIiIiIiCEDp1wCojhEBjYyOam5uRlJQEnU7X4cuO/hkhBPx+PxwOB7RaLaKjo0OiTU6nEw0NDZAkCWazGeHh4apvl8/ng81mg9VqRXR0NBISEhAWFqb6drXx+/1obm5GdHS06ktl/1GxXyhcKyEEWlpaUFdXB51Oh86dO6t6OZsQAg6HA16v957XY2JiVN0uoHW5l8VigdVqRVxcHOLi4kLiHlQrIURgCZ7f70dSUhK0Wq3qr4kQAh6PB06nM2T2lpJlGc3Nzbh79y6io6PRuXNnaDQa1V8rt9sNi8UCh8OB2NjYQJ+g9nYBrfeh1+tFS0sLDAaD6vcmCfVxhNVqxd27d2EymRAfH6/q5Wxt/cW39+2QJAlGo1HV7Wp7Rqyvr4fL5UJCQgL0en2HvgeZJFGAEAK7du3Chg0bEB0djaioKGzYsAFpaWkd+mb5Z8rKyrB06VJcvXoVTz75JNauXat0SEG7cOEC8vLyEBYWBq/Xi8TERKxduxZJSUlKhxaUo0eP4te//jWioqJgtVrRp08frFy5MiQ2cRVC4JNPPkF+fj5++9vfYvTo0UqHFBRZlvHmm2/im2++CQzUpk+fjhEjRigcWXCEEPjqq6+wYsUKSJIEv9+P3NxcjBw5UunQvjdZlrFq1SqUlJQAaF1TfOvWLWzduhU5OTkKR/f9ybKMjz76CB988AHi4uJgsViQm5uLiRMnqvo7S818Ph/efvttFBcXQ6PRoGfPnli1apWqN9ZtGxtt3rwZFRUVePPNNzF58mSlwwraJ598gk2bNkGv16OpqQlDhgzBL3/5S1XvtyKEwDvvvIPDhw9Dp9OhsbERU6ZMwaxZs1SfUABaJ1qWL1+O3bt348CBA8jIyFA6pKA0NTVhwYIFsNvtkCQJ4eHhWLZsGbp27ap0aEHx+/344x//iMLCQkRHR0OWZWzYsAGZmZlKh/a9NTU1Yfbs2aivrwcA2O12+Hw+HDhwAJ07d1Y4uu/P7Xbj9ddfx5dffomYmBi4XC6sWbMGffv27bjjCEH/djU1NaJfv37i2LFjwuFwiAULFoi8vDzh9/uVDi0oVVVV4vDhw2LJkiXiJz/5iZBlWemQgnbnzh1RVlYmnE6nsNlsYtKkSWLlypWqb5vNZhMWi0V4PB5x+/Zt0b9/f3Ho0CGlwwqaLMuiqqpKjB07VvTp00fs2LFD6ZCC5vV6xZgxY8SWLVvE+fPnxfnz50VDQ4PSYQWtvr5ePPbYY+LIkSPC5XIJu90u7Ha70mEFRZZl0dLSIpqamkRTU5P485//LPr27SssFovSoQWlsbFR9OzZUxw9elS43W6xZ88e0a9fP9Hc3Kx0aP+xTpw4IQYMGCCqqqpEQ0ODGDZsmNixY4eqv5tkWRZff/21OHbsmPjRj34ktmzZonRI7eLChQuioqJCuN1uUVFRIfr27SuKi4uVDisosiyL+vp60dzcLDwej/jyyy9Ft27dRFVVldKhBU2WZXH06FExduxYkZmZKa5cuaJ0SEGrq6sT/fr1E8XFxeL8+fOirKxMOBwOpcMKiizLoqSkRDz66KPi8uXLwuPxCKvVKtxut9KhBcXv9wu73R4YR7z++uvi2WefFV6vV+nQgnL69GnRo0cPUVFRIZxOp1i6dGmHf1ZUb92OipWVlUGv1yMnJwfR0dF4+umncfz4cTidTqVDC0p6ejqGDRuGhIQEpUNpN8nJyejZsyd0Oh0MBgPuv/9+1NXVKR1W0IxGI0wmEzQaTeD4PrUvBwBaZ1fXrl2LKVOmqL7a57uSk5ORkZGB7OxsxMfHKx1O0E6ePAm9Xo+oqCjs3LkTV65cUfXMKtBaEhsVFQWDwQC9Xo/9+/dj5MiRMJlMSocWFI1Gg4iICERERAT6DL1er+rSXzUTQuDo0aN4+OGHkZaWhvj4eIwcORKHDx/+h2X1aiBJEvr06YPBgweHRFVjm+zsbHTp0gURERFISUlBfHw87t69q3RYQZEkCZ07dw4sq46OjkZkZGRIVJFYLBZs3LgR8+fPD4nlXm3CwsKQnp6OzMxMZGdnh8TR4Tt37sSQIUNw48YN7Nq1CxaLRfVjWY1GA71eHzj+98iRI5g8ebLqP1tarfZ/HUd0ZBzhKKC6uhrx8fGBvRISEhLQ0tICh8OhcGT0jwghUFlZiUOHDmHUqFEdtzTsX1BWVoZp06Zh1KhR6NevHwYNGqR0SDRC6A4AABBwSURBVEERQuDTTz+F0+lU/RKb7woPD8fq1asxbtw4PP/887hx44aqH4aEELh8+TLKysqwefNmlJeX42c/+xl2796t6nZ9W11dHY4fP47x48ervr8wmUxYvHgx5s6diwkTJmDp0qVYunQpoqKilA7tP9bNmzeRlpYGoPWBNS0tDXfu3LlnHTt1LEIIHDt2DI2Njapefvdtu3fvxtSpU/Hcc89h9uzZqp+c8Pv92LRpEx555BE8+OCDSofTrrxeL2bPno0xY8bg1Vdfhc1mUzqkoAghcOnSJezbtw/79+/H6dOnMWHCBFy8eDEkxhFCCJSWlsLlcmHw4MGqH0f06NEDo0ePxvjx4zF+/HgUFxdj/vz5Sof1f2KSRAFCiJDZ3Oo/gRACDQ0NePnllzFu3Dg8+uijSofULn7wgx9g8eLFmD9/PkpKSnDu3DlVf7HU19ejoKAAubm5kCQJsizD5/PB7/crHVpQNBoN1qxZg927d2Pbtm0wm81YtGjR320OqjZ+vx+RkZFYv349li9fjgULFuDdd99VfbuA/5npT05ORnZ2ttLhBM3hcGDPnj2YNGkSfvGLX2DUqFEoLCxUffWj2n13DKHm/jvUCSHw17/+FUuXLsWyZcuQnp6udEjtYsiQIcjPz8e0adOwbds21VfanjlzBmfPnsWUKVPg8/kCG7iqPfloMpnw8ccfY+fOndiyZQvOnz+PgoIC1fcZfr8f3bp1w9q1a7FmzRoMGjQIW7duVTqsdiGEwM6dOzFixAjExsYqHU5QhBCoqqrCqVOnMHfuXCxZsgRpaWnYvn17h74HuXGrApKSknD37l243e7AhldRUVEhUfoWaoQQsFgsmDt3Lrp3746FCxdCqw2Nj43BYEDv3r3Rq1cvnDx5EocOHcLAgQOVDut7Ky8vx/Xr17Fw4UIAQGlpKerq6qDX6zFmzBjVJiU1Gk1gEzIhBKZPn44JEyagqalJ1Zt4paWlISkpCSaTCZIkISMjAxaLBV6vV/UnEvl8PuzYsQPPPPNMSJRrl5eX49KlS3j33XdhNBqRkZGBoUOHorKyEt27d1c6vP9IqampuH37NoDWfuHOnTtITk7mEqgOqK1ybs6cOcjNzVX199F3mc1mmM1m9OjRA7t27cL58+dVXU1y6tQpVFRU4LnnnoPH48HNmzeRm5uLd955R9WVJREREYFNWo1GI6ZOnYrt27dDlmXVLuOQJAnp6ekwGo2BcXnXrl1x7tw5ZQNrJ/X19Th27BgKCwuVDqVdFBUVISEhAZMmTQpMZM6fPx8vv/xyh11eyW9TBTz00ENobm7GuXPn4Ha7sWfPHjz88MOqT5LIsgyn0wmv1wu/3w+n0wmfz6d0WEGx2+1YsGABDAYDFi1aBFmW4fV6O3Tm858RQqCmpgYtLS3w+/1oaGjA5cuXcd999ykdWlAGDBiA4uJifPjhh3jvvffw0EMP4cUXX8TQoUOVDi0o373nrl+/Hlj/rVaSJGHgwIGw2Wy4evUqPB4Pjh07hqysLFW3q83Vq1cDp3yFwsNQTEwMnE4nKioq4PP5cO3aNfh8vg47sAl1kiThsccewxdffIGamhrYbDYcPHgQTzzxhOrvN5/PB6fTCb/fD6/XC6fTqfpZ/IqKCsyYMQMTJkzA2LFj4XK5VD82kmUZd+7cgcfjCfQJVqsVZrNZ6dCC8sILL2D//v344IMPsH79eqSkpGDFihWqPi0FQKCqVvz30eHl5eVISEhQfX8xfPhwfP3117BYLLDb7Thx4gT69OmjdFhBE0LgL3/5SyABqfbrBACdOnVCVVUVGhsb4fP58M0338BkMnXoPWRCY0pcZZKSkpCXl4eFCxfCZDJBCIFNmzap/kNQWVmJefPm4ebNm3A6nXj66aexaNEiPP7440qH9r2dPXsWRUVFyMzMxLPPPgsAePzxx7Fw4UJVX6/f//73KCoqQkxMDBobG5GdnY1nnnlG1W2KjIxESkoKgNYBgdlsRnJycoffGOqfqa2tRX5+PjIzM+F0OnHkyBHMnTtX9Q+oXbt2xaxZszBz5kzExsbC5XJh3bp1qp3VatO278APf/hDpKamKh1Ou8jMzMT06dMxa9YsJCUlobq6GnPmzAl83ujfb+DAgRg6dCimTp0KrVaLzMzMkKhQOHr0KNatW4cbN26gqqoKn376KX7zm9+gS5cuSof2vX388ceorKzEn/70Jxw4cAAAkJubi1GjRikc2ffn9Xrx2muvoba2FhEREairq8MLL7yAHj16KB1aUAwGAwwGA4DW6ovExEQkJSWpvrrxq6++wvvvv4+srCzcunULJSUlKCgoUHV/IUkSnnzySXz++eeYOHEiwsLCkJiYiB//+MdKhxY0WZZRXFyMyZMnh8TEkSRJGD58OA4ePIiJEyfCaDSioaEBb7zxRof+bElCzVPiKibLMurq6mCz2ZCamgq9Xq/qzgpofTC1WCz3VFkYjUZVn1jhdrv/bnOrtpNu1Hq9hBDweDyor69HU1MTTCYTzGYzwsLCVNum7xJCwGazQafTqfr+A1oHo2fPnsW1a9cQFhaG3r1744EHHlB9MgFo7QdramrQ3NyMlJQUxMTEqP4eFELAbrdDo9EETn5Qu7bZx7q6OlitVsTHxwdmIUOhfWokhIDf78etW7fg9/uRnp6O8PBw1V8Pp9OJ5ubmwM+SJCEuLk7Vy1ztdjtaWlruec1gMKh642MhBFpaWlBbWwu3242EhATEx8eHVJ8gyzKsVitMJpPqv2+bm5tx+vRp3L59G0ajEQMGDEBKSorqr5UQAj6fD7du3YIsy0hLS0NERERItMtqtUKv13foJMK/om1/n+rqajidznuWW3dUTJIQEREREREREYF7khARERERERERAWCShIiIiIiIiIgIAJMkREREREREREQAmCQhIiIiIiIiIgLAJAkRdVB+vx8ej+eeP7Ist+t7uFwuFBcXw+Vytev/S0RERMppO03ju+OI9j6vor6+HidOnGj38QkRKUu9Z6oRUUjbsGED9uzZA71eD6D1KMj58+fjiSeeaLf3sNlsWLJkCfbt26f6o4KJiIiolc/nw8yZM1FVVRU4RlWn02HdunXIyMhot/e5dOkSfvWrX2H37t3QaDj3TBQqmCQhog7p5s2b6NevH/Ly8gKvxcXFQQgBWZYhSRKcTiciIiKg1WohSVJghsjpdEKj0SAyMjJwBnvb77lcLmi12nvOnhdCoKWlBWFhYYiIiOjQ57YTERHR/00IgfLycrz44ot45JFHALROtiQmJgaqPmRZhtvthk6ng0ajCYwj2sYK4eHhCA8Pv2cc4fP54Ha7ERkZCa32fx6jZFmGw+G4Z0xCROrFJAkRdVhGoxGpqan3vHbjxg289dZbSE5ORklJCUwmE1asWIGsrCw4nU6sX78en3/+OTQaDZ566ilMnz4dWq0Wf/vb37B69WpUV1cjMjISr7zyCu6//374/X4UFhbiiy++gM/nw6uvvorBgwdzgENERKRikiShc+fOfzeOOHjwID777DM0NTXh2rVryM7OxrJlyxAbG4vq6mqsWLEC169fh06nQ25uLoYOHQohBIqKilBQUACn04n4+HisWbMGAGC327F8+XKUlpYiLi4Oq1evRnp6OscRRCrGJAkRdVhHjhxBS0sLACAsLAwzZ86Ew+HA3r17sWrVKsyePRuFhYXIz8/Htm3b8Ic//AHHjx/Hxo0b4XA4MGPGDGRmZiInJwdz5szBuHHjMHHiRNjt9kAlSWNjI8LDw/H+++/jwIEDWLlyJfbu3XtPpQkRERGpiyzL2LJlC4qKigAAJpMJ8+bNQ01NDbZv347f/e53yMzMRH5+PjZu3Ij8/HwsW7YMMTExKCwsRGlpKRYvXoy9e/fCbrfjlVdewapVq9C/f3/U1dUhJiYGAFBeXo68vDzMnTsXK1euxHvvvYcVK1Yo2XQiChKTJETUYWVkZATKZDUaDUwmE+x2O1JTUzFhwgSYTCZMmzYN27dvR21tLQ4dOoRp06aha9euAIDRo0ejqKgIsbGxcDgc+OlPfwqDwQCz2QwAqK2tRWxsLCZNmoSkpCQMHToUBQUFcLlcTJIQERGpmCRJ6NWrF/r27QsAiIqKQnh4OABg0KBBGDJkCDQaDZ5//nm89dZbmDFjBkpKSrBt2zakpKQgISEBmzdvRmlpKaqrq9G3b18MHz4cGo0GCQkJgffp3r07hg8fjsjISAwbNgxbt25VpL1E1H6YJCGiDisrKwujRo26p2T19u3biIyMDAx0IiMjodFo4PF40NLSAqPRGPi3BoMBdXV1cLlc0Ol0gd/5toiIiEBCpG3Ttfbe/Z6IiIj+vSRJQk5ODkaMGPF3f6fX6wP7kERHR8Pj8cDr9cLn8yE6OhpAawVrdHQ0nE4nHA4HjEbj/7qEJioqKjB+0Gq18Pv9EEJwuQ2RinEbZiLqsNo2UPP7/fD7/YHN1m7fvo3Lly9DCIGysjJEREQgMTERvXr1wmeffQafzweXy4WTJ0+id+/eyMjIgNVqxcWLFyGECBwvTERERKHr22OItuQFAJw7dw53796F3+/HyZMn0bVrV8THxyM5ORmnTp2CLMuorq7GtWvX8MADD6B37944c+YMGhoaIISAx+OBz+dTuHVE9P+FlSRE1CFptVrs27cP5eXlAFpnhCZPnozMzExERUXh7bffRlxcHEpLSzFv3jwYDAbMmDEDP//5zzF9+nS4XC4IIfDUU08hLi4Oubm5mDNnDnr37g273Y6pU6eif//+9yyrkSSJy2yIiIhCgFarxZo1a/DRRx8Ffl6yZAmA1kmY3NxcREZG4uLFiygoKIBOp8OiRYvw2muvobi4GNevX8ewYcPQs2dPyLKMnJwcTJkyBQ8++CAsFgveeOMNaDSae6pUv/szEamTJFhXTkQdUHV1NRobG+95zWw2o6amBi+99BK2bt2Ka9euITk5GVlZWQgLC4MQAhaLBRcuXEB4eDh69uwJvV4PSZIgyzIqKipw48YNxMbGonv37oiIiEBlZSW6dOkCrVYLr9eLqqoqZGRkICwsTKGWExERUTCEELh+/TqcTuc9r2dkZGDHjh04c+YM8vLyUFlZiW7duiElJSVwBPCtW7dw5coVdOrUKTBWAACPx4PLly+jtrYWqampyMrKgtvtRkNDA+677z5IkoTm5mZYLBaebkOkckySEJGqlJWV4aWXXsKRI0eg0+mUDoeIiIhU5MMPP8TZs2exceNGpUMhog6Ky22ISFWSk5Mxe/ZsaLXsvoiIiOhfk5OTgy5duigdBhF1YKwkISIiIiIiIiICT7chIiIiIiIiIgLAJAkREREREREREQAmSYiIiIiIiIiIADBJQkREREREREQEgEkSIiIiIiIiIiIATJIQEREREREREQFgkoSIiIiIiIiICACTJEREREREREREAJgkISIiIiIiIiICwCQJEREREREREREAJkmIiIiIiIiIiAAwSUJEREREREREBIBJEiIiIiIiIiIiAEySEBEREREREREBYJKEiIiIiIiIiAgAkyRERERERERERACYJCEiIiIiIiIiAsAkCRERERERERERACZJiIiIiIiIiIgAMElCRERERERERAQA+C8A4rh9oWdsewAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAACIUAAAfGCAYAAACDcpw1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XeYVOX9P+73WRYGBVlQRMAoFhJFsWKJZVkVS7BiiTUK1lhjJEFCMGKJrogNJdGYWIixJqJBjVg+YoyKihA1sQVFwQiICoJShrLz+yNf9pcJsIDu7GEP931d57qcc848z2uW2V3WffE8SaFQKAQAAAAAAAAAAJlSlnYAAAAAAAAAAADqn1IIAAAAAAAAAEAGKYUAAAAAAAAAAGSQUggAAAAAAAAAQAYphQAAAAAAAAAAZJBSCAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGKYUAAAAAAAAAAGSQUggAAMBqasKECbH//vtHRUVFJEkSDz/8cL2O/+GHH0aSJHHnnXfW67iN2V577RV77bVX2jEanWeffTaSJIlnn3027SirvT59+sQmm2ySdgwAAABgDaEUAgAAUIf3338/fvjDH8Zmm20WzZs3j1atWsUee+wRQ4cOjXnz5pV07t69e8c//vGPuOKKK+Kuu+6KnXbaqaTzNaQ+ffpEkiTRqlWrZX4cJ0yYEEmSRJIkcc0116zy+FOmTIlLLrkkXnvttXpI2zAWLFgQQ4cOjR122CFatWoVrVu3jq233jrOOOOMeOedd2rvu+SSSyJJkvjss8+WOU7Xrl2Lii1Lyj//fbRq1Sq23377GDZsWCxevHiF2ZbMuazjlltu+cavfVUt6zUt7/jwww8bPB8AAADA6qI87QAAAACrq8ceeyy+//3vRy6Xi5NOOim6du0aCxYsiOeffz769esXb775Ztx6660lmXvevHkxZsyYGDhwYJx77rklmaNTp04xb968aNq0aUnGX5Hy8vKYO3duPPLII3H00UcXXbv77rujefPmMX/+/K819pQpU+LSSy+NTTbZJLbffvuVft6TTz75tearD0ceeWQ8/vjjcdxxx8Xpp58eCxcujHfeeSceffTR2H333WPLLbf8RuMfd9xxceCBB0ZExKxZs+Ivf/lLnHfeeTFp0qQYMmTISo1x8803R8uWLYvO7brrrrH55pvHvHnzolmzZt8o48paf/3146677io6d+2118a///3vuP7665e6FwAAAGBNpRQCAACwDB988EEce+yx0alTp3jmmWeiQ4cOtdfOOeeceO+99+Kxxx4r2fyffvppRES0bt26ZHMkSRLNmzcv2fgrksvlYo899oh77713qVLIPffcEwcddFA8+OCDDZJl7ty5sfbaazdYqeF/jR07Nh599NG44oor4uc//3nRtWHDhsUXX3zxjefYcccd4wc/+EHt47PPPjt23XXXuOeee1a6FHLUUUdF27Ztl3mtId9LLVq0KHotERH33XdfzJw5c6nzAAAAAGsy28cAAAAsw9VXXx1fffVV3HbbbUWFkCU6d+4c559/fu3jRYsWxeWXXx6bb7555HK52GSTTeLnP/955PP5oudtsskmcfDBB8fzzz8fu+yySzRv3jw222yz+P3vf197zyWXXBKdOnWKiIh+/fpFkiSxySabRMR/tl1Z8t//bcn2Hv/tqaeeij333DNat24dLVu2jC222KKocLBkC44777yz6HnPPPNMVFZWRosWLaJ169Zx2GGHxdtvv73M+d57773o06dPtG7dOioqKuLkk0+OuXPnLv8D+z+OP/74ePzxx4tKD2PHjo0JEybE8ccfv9T9M2bMiJ/+9KexzTbbRMuWLaNVq1bRs2fPeP3112vvefbZZ2PnnXeOiIiTTz65dhuRJa9zr732iq5du8a4ceOie/fusfbaa9d+XPbaa6+irVd69+4dzZs3X+r1H3DAAdGmTZuYMmXKSr/Wurz//vsREbHHHnssda1Jkyax3nrr1cs8/y1Jkthggw2ivPyb/3uRZ599NpIkiWeffbb23JKP81tvvRV77713rL322rHhhhvG1VdfvdTz8/l8DBo0KDp37hy5XC422mijuPDCC5f6/FlVSZLEJZdcstT5TTbZJPr06VP7+M4774wkSeKFF16Ivn37xvrrrx8tWrSIww8/vLag9d8ef/zx2s+RddZZJw466KB48803l7rv4Ycfjq5du0bz5s2ja9eu8dBDD32j1wMAAACwqpRCAAAAluGRRx6JzTbbLHbfffeVuv+0006Liy++OHbccce4/vrro6qqKqqrq+PYY49d6t733nsvjjrqqNhvv/3i2muvjTZt2kSfPn1qf6l8xBFH1G6Bcdxxx8Vdd90VN9xwwyrlf/PNN+Pggw+OfD4fl112WVx77bVx6KGHxgsvvFDn855++uk44IADYvr06XHJJZdE375948UXX4w99tgjPvzww6XuP/roo+PLL7+M6urqOProo+POO++MSy+9dKVzHnHEEZEkSYwYMaL23D333BNbbrll7LjjjkvdP3HixHj44Yfj4IMPjuuuuy769esX//jHP6Kqqqq2oNGlS5e47LLLIiLijDPOiLvuuivuuuuu6N69e+04n3/+efTs2TO23377uOGGG2LvvfdeZr6hQ4fG+uuvH717947FixdHRMRvfvObePLJJ+Omm26Kjh07rvRrrcuSEtDdd98dixYtqpcx/9fcuXPjs88+i88++ywmTpwYv/rVr2LUqFHRu3fvlR5jxowZtWN89tlnMXPmzDrvnzlzZnzve9+L7bbbLq699trYcssto3///vH444/X3lNTUxOHHnpoXHPNNXHIIYfETTfdFL169Yrrr78+jjnmmK/9er+O8847L15//fUYNGhQnHXWWfHII48stX3TXXfdFQcddFC0bNkyBg8eHL/4xS/irbfeij333LPoc+TJJ5+MI488MpIkierq6ujVq1ecfPLJ8eqrrzboawIAAADWbLaPAQAA+B+zZ8+Ojz/+OA477LCVuv/111+P4cOHx2mnnRa//e1vI+I/W3O0a9currnmmhg9enRR6eDdd9+N5557LiorKyPiP8WKjTbaKO6444645pprYtttt41WrVrFBRdcsNSWHyvrqaeeigULFsTjjz++3O0+lqVfv36x7rrrxpgxY2LdddeNiIhevXrFDjvsEIMGDYrhw4cX3b/DDjvEbbfdVvv4888/j9tuuy0GDx68UvOts846cfDBB8c999wTp5xyStTU1MR9990XZ5111jLv32abbeJf//pXlJX9///G4cQTT4wtt9wybrvttvjFL34RG2ywQfTs2TMuvvji2G233Zb58Zs2bVrccsst8cMf/rDOfK1bt47bbrstDjjggLjqqqvi+OOPj5/+9KfRq1evet2m5Lvf/W5UVVXFb3/72xg5cmTss88+seeee8bBBx8cG2+8cb3MMWjQoBg0aFDRubPOOmuVSjxbbLFF0eNOnTotsyy0xJQpU+L3v/99nHjiiRERceqpp0anTp3itttui549e0bEf0pATz/9dPz1r3+NPffcs/a5Xbt2jTPPPDNefPHFlS5nfVPrrbdePPnkk7Wr7tTU1MSNN94Ys2bNioqKivjqq6/iRz/6UZx22mlx66231j6vd+/escUWW8SVV15Ze75///6xwQYbxPPPPx8VFRUREVFVVRX7779/bQkIAAAAoNSsFAIAAPA/Zs+eHRH/KSysjL/85S8REdG3b9+i8z/5yU8iIuKxxx4rOr/VVlvVFkIiItZff/3YYostYuLEiV878/9q3bp1RET8+c9/jpqampV6ztSpU+O1116LPn361BZCIiK23Xbb2G+//Wpf538788wzix5XVlbG559/XvsxXBnHH398PPvsszFt2rR45plnYtq0acvcOiYiIpfL1RZCFi9eHJ9//nnt1jjjx49f6TlzuVycfPLJK3Xv/vvvHz/84Q/jsssuiyOOOCKaN28ev/nNb1Z6rpWRJEk88cQT8ctf/jLatGkT9957b5xzzjnRqVOnOOaYY4q21/m6zjjjjHjqqafiqaeeigcffDDOOeec+M1vfrPU+7YuDz74YO0YTz31VNx999113t+yZcui8kyzZs1il112KXqv//GPf4wuXbrElltuWbQKyT777BMREaNHj17FV/r1nXHGGUXbMFVWVsbixYtj0qRJEfGfstUXX3wRxx13XFHWJk2axK677lqbdcnnUu/evWsLIRER++23X2y11VYN9noAAAAArBQCAADwP1q1ahUREV9++eVK3T9p0qQoKyuLzp07F51v3759tG7duvYXykssa+WHNm3arHArjlVxzDHHxO9+97s47bTT4mc/+1n06NEjjjjiiDjqqKOKVtn439cRsfRqEBH/2ZLliSeeiDlz5kSLFi1qz//va2nTpk1E/GfbkCUfxxU58MADY5111on7778/Xnvttdh5552jc+fOy1yBoqamJoYOHRq//vWv44MPPqjd0iXiP6s8rKwNN9wwmjVrttL3X3PNNfHnP/85XnvttbjnnnuiXbt2K3zOp59+WpSvZcuW0bJly+Xen8vlYuDAgTFw4MCYOnVq/PWvf42hQ4fGAw88EE2bNo0//OEPK533v4sNS3z729+Offfdt/bxkq17brjhhjjllFNim222WeG43bt3X6WVZ771rW8tlaVNmzbxxhtv1D6eMGFCvP3227H++usvc4zp06dHxH+2rlmwYEHt+bXWWquocFEf6no/L8kaEbWFlf+15D2/5HPp29/+9lL3rGqBCQAAAOCbUAoBAAD4H61atYqOHTvGP//5z1V63rJ+Eb8sTZo0Web5QqHwtef47/JBxH9+Yf7cc8/F6NGj47HHHotRo0bF/fffH/vss088+eSTy82wqr7Ja1kil8vFEUccEcOHD4+JEyfGJZdcstx7r7zyyvjFL34Rp5xySlx++eWx7rrrRllZWfz4xz9e6RVRIv7z8VkVf//732vLCf/4xz/iuOOOW+Fzdt5556JC0KBBg+p8bf+tQ4cOceyxx8aRRx4ZW2+9dTzwwANx5513Rnl5eTRv3jwiIubNm7fM586dO7f2nhXp0aNHDBs2LJ577rmVKoWsqpV5f9TU1MQ222wT11133TLv3WijjSLiPyWWv/71r7Xne/fuHXfeeefXyvW/ny8rm3fJe+yuu+6K9u3bL3Vfebn/zQIAAACsXvzfCgAAgGU4+OCD49Zbb40xY8bEbrvtVue9nTp1ipqampgwYUJ06dKl9vwnn3wSX3zxRXTq1KnecrVp02aZW4n872okERFlZWXRo0eP6NGjR1x33XVx5ZVXxsCBA2P06NFFK0b89+uIiHj33XeXuvbOO+9E27Zti1YJqU/HH3983H777VFWVhbHHnvscu/705/+FHvvvXfcdtttRee/+OKLohUsVragszLmzJkTJ598cmy11Vax++67x9VXXx2HH3547LzzznU+7+677y4qbmy22WarPHfTpk1j2223jQkTJsRnn30W7du3L/pzWlKYWGLu3Lnx0Ucfxf77779S4y9atCgiIr766qtVzlZfNt9883j99dejR48edf65XXvttUWr6XTs2HGFYy/r82XBggUxderUr501IqJdu3bL/BxaYsmf0ZKVRf7bsj6/AAAAAEpl2WsGAwAArOEuvPDCaNGiRZx22mnxySefLHX9/fffj6FDh0bEf7Y/iYi44YYbiu5ZsvLBQQcdVG+5Nt9885g1a1bR9htTp06Nhx56qOi+GTNmLPXc7bffPiIi8vn8Msfu0KFDbL/99jF8+PCiX6T/85//jCeffLL2dZbC3nvvHZdffnkMGzZsmSswLNGkSZOlViH54x//GB9//HHRuSXllWUVaFZV//79Y/LkyTF8+PC47rrrYpNNNonevXsv9+O4xB577BH77rtv7VFXKWTChAkxefLkpc5/8cUXMWbMmGjTpk3t9io9evSIZs2axc0337zU6ii33nprLFq0KHr27LlSr+2RRx6JiIjttttupe4vhaOPPjo+/vjj+O1vf7vUtXnz5sWcOXMiIqJbt25FH8+tttpqhWNvvvnm8dxzzxWdu/XWW5e7UsiKHHDAAdGqVau48sorY+HChUtd//TTTyOi+HNp1qxZtdefeuqpeOutt77W3AAAAABfh5VCAAAAlmHzzTePe+65J4455pjo0qVLnHTSSdG1a9dYsGBBvPjii/HHP/4x+vTpExH/+YV6796949Zbb40vvvgiqqqq4pVXXonhw4dHr169Yu+99663XMcee2z0798/Dj/88PjRj34Uc+fOjZtvvjm+853vxPjx42vvu+yyy+K5556Lgw46KDp16hTTp0+PX//61/Gtb30r9txzz+WOP2TIkOjZs2fstttuceqpp8a8efPipptuioqKipXe+uTrKCsri4suumiF9x188MFx2WWXxcknnxy77757/OMf/4i77757qcLF5ptvHq1bt45bbrkl1llnnWjRokXsuuuusemmm65SrmeeeSZ+/etfx6BBg2LHHXeMiIg77rgj9tprr/jFL34RV1999SqNtzyvv/56HH/88dGzZ8+orKyMddddNz7++OMYPnx4TJkyJW644YbarU3atWsXF198cVx00UXRvXv3OPTQQ2PttdeOF198Me69997Yf//945BDDllqjvHjx8cf/vCHiIj48ssv4//+7//iwQcfjN13332lVxYphRNPPDEeeOCBOPPMM2P06NGxxx57xOLFi+Odd96JBx54IJ544onYaaedvtbYp512Wpx55plx5JFHxn777Revv/56PPHEE0WryqyKVq1axc033xwnnnhi7LjjjnHsscfG+uuvH5MnT47HHnss9thjjxg2bFhERFRXV8dBBx0Ue+65Z5xyyikxY8aMuOmmm2LrrbdOdWUWAAAAYM2iFAIAALAchx56aLzxxhsxZMiQ+POf/xw333xz5HK52HbbbePaa6+N008/vfbe3/3ud7HZZpvFnXfeGQ899FC0b98+BgwYEIMGDarXTOutt1489NBD0bdv37jwwgtj0003jerq6pgwYUJRKeTQQw+NDz/8MG6//fb47LPPom3btlFVVRWXXnppVFRULHf8fffdN0aNGhWDBg2Kiy++OJo2bRpVVVUxePDgVS5UlMLPf/7zmDNnTtxzzz1x//33x4477hiPPfZY/OxnPyu6r2nTpjF8+PAYMGBAnHnmmbFo0aK44447Vuk1fPnll3HKKafEDjvsEAMHDqw9X1lZGeeff35ce+21ccQRR8R3v/vdb/y6unfvHpdffnk8/vjjcd1118Wnn34a66yzTuywww4xePDgOPLII4vuHzhwYGyyySYxbNiwuOyyy2LRokWx6aabxqWXXhr9+/ePsrKlFwa999574957742IiPLy8th4442jX79+cfHFFy/z/oZSVlYWDz/8cFx//fXx+9//Ph566KFYe+21Y7PNNovzzz8/vvOd73ztsU8//fT44IMP4rbbbotRo0ZFZWVlPPXUU9GjR4+vPebxxx8fHTt2jKuuuiqGDBkS+Xw+Ntxww6isrIyTTz659r7vfe978cc//jEuuuiiGDBgQGy++eZxxx13xJ///Od49tlnv/b8AAAAAKsiKfzvursAAAAAAAAAADR66f1TIAAAAAAAAAAASkYpBAAAAAAAAAAgg5RCAAAAAAAAAAAySCkEAAAAAAAAACCDlEIAAAAAAAAAADJIKQQAAAAAAAAAIIOUQgAAAAAAAAAAMqg87QClsNYO55Z8jpljh5V8DgAAAAAAAIDlaZ7J3/auuRri99ws27y/Z/f3/1YKAQAAAAAAAADIIKUQAAAAAAAAAIAMUgoBAAAAAAAAAMggpRAAAAAAAAAAgAxSCgEAAAAAAAAAyCClEAAAAAAAAACADFIKAQAAAAAAAADIoPK0AwAAAAAAAADAGi+xpgP1z7sKAAAAAAAAACCDUl0p5LPPPovbb789xowZE9OmTYuIiPbt28fuu+8effr0ifXXXz/NeAAAAAAAAAAAjVZqK4WMHTs2vvOd78SNN94YFRUV0b179+jevXtUVFTEjTfeGFtuuWW8+uqracUDAAAAAAAAAGjUUlsp5Lzzzovvf//7ccstt0SSJEXXCoVCnHnmmXHeeefFmDFj6hwnn89HPp8vfn7N4kjKmtR7ZgAAAAAAAACAxiK1lUJef/31uOCCC5YqhEREJEkSF1xwQbz22msrHKe6ujoqKiqKjkWfjCtBYgAAAAAAAACAxiO1Ukj79u3jlVdeWe71V155JTbYYIMVjjNgwICYNWtW0VG+Qbf6jAoAAAAAAAAA0Oiktn3MT3/60zjjjDNi3Lhx0aNHj9oCyCeffBL/93//F7/97W/jmmuuWeE4uVwucrlc0TlbxwAAAAAAAADQqCxjlw34plIrhZxzzjnRtm3buP766+PXv/51LF68OCIimjRpEt26dYs777wzjj766LTiAQAAAAAAAAA0aqmVQiIijjnmmDjmmGNi4cKF8dlnn0VERNu2baNp06ZpxgIAAAAAAAAAaPRSLYUs0bRp0+jQoUPaMQAAAAAAAAAAMqMs7QAAAAAAAAAAANQ/pRAAAAAAAAAAgAxSCgEAAAAAAAAAyCClEAAAAAAAAACADCpPOwAAAAAAAAAArPESazpQ/7yrAAAAAAAAAAAySCkEAAAAAAAAACCDMrl9zMyxw0o+R4c+d5d8jql3nlDyOYDsWlxTKPkcTcqSks/B6qOmUPr3VFlS2vdUFl4DAA2npsR/nyprgL9LLVxUU/I5mpZn49+blPrPO8nI3xEy8jJYjTTAX9Gj0BA/B/j5GABYhlL/nPEf/h4C1C0b/+cGAAAAAAAAAIAiSiEAAAAAAAAAABmkFAIAAAAAAAAAkEHlaQcAAAAAAAAAgDVekqSdgAyyUggAAAAAAAAAQAYphQAAAAAAAAAAZJBSCAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGKYUAAAAAAAAAAGTQal0K+eijj+KUU06p8558Ph+zZ88uOvL5fAMlBAAAAAAAAABYPa3WpZAZM2bE8OHD67ynuro6Kioqio4hg6sbKCEAAAAAAAAA1IOkzJHWkWHlaU4+cuTIOq9PnDhxhWMMGDAg+vbtW3Su0CT3jXIBAAAAAAAAADR2qZZCevXqFUmSRKFQWO49SZLUOUYul4tcrrgEMn9RvcQDAAAAAAAAAGi0Ul0HpUOHDjFixIioqalZ5jF+/Pg04wEAAAAAAAAANFqplkK6desW48aNW+71Fa0iAgAAAAAAAADAsqW6fUy/fv1izpw5y73euXPnGD16dAMmAgAAAAAAAADIhlRLIZWVlXVeb9GiRVRVVTVQGgAAAAAAAACA7Ei1FAIAAAAAAAAARESSpJ2ADCpLOwAAAAAAAAAAAPVPKQQAAAAAAAAAIIOUQgAAAAAAAAAAMkgpBAAAAAAAAAAgg5RCAAAAAAAAAAAyqDztAI3V1DtPKPkcbXY+t+RzzBw7rORzAOloUpakHYGMKUsa/3sqC68BgIZTloG/TzUt929BVlYW/ryhMWqIv6Infg4AAFLi5wxgdaAUAgAAAAAAAABpS/zjDuqfdxUAAAAAAAAAQAYphQAAAAAAAAAAZJBSCAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGKYUAAAAAAAAAAKyE5557Lg455JDo2LFjJEkSDz/88HLvPfPMMyNJkrjhhhuKzs+YMSNOOOGEaNWqVbRu3TpOPfXU+Oqrr4rueeONN6KysjKaN28eG220UVx99dVfK69SCAAAAAAAAADASpgzZ05st9128atf/arO+x566KF46aWXomPHjktdO+GEE+LNN9+Mp556Kh599NF47rnn4owzzqi9Pnv27Nh///2jU6dOMW7cuBgyZEhccsklceutt65y3vJVfgYAAAAAAAAAUL+SJO0ErISePXtGz54967zn448/jvPOOy+eeOKJOOigg4quvf322zFq1KgYO3Zs7LTTThERcdNNN8WBBx4Y11xzTXTs2DHuvvvuWLBgQdx+++3RrFmz2HrrreO1116L6667rqg8sjKsFAIAAAAAAAAArLHy+XzMnj276Mjn819rrJqamjjxxBOjX79+sfXWWy91fcyYMdG6devaQkhExL777htlZWXx8ssv197TvXv3aNasWe09BxxwQLz77rsxc+bMVcqTeilk3rx58fzzz8dbb7211LX58+fH73//+xRSAQAAAAAAAABrgurq6qioqCg6qqurv9ZYgwcPjvLy8vjRj360zOvTpk2Ldu3aFZ0rLy+PddddN6ZNm1Z7zwYbbFB0z5LHS+5ZWaluH/Ovf/0r9t9//5g8eXIkSRJ77rln3HfffdGhQ4eIiJg1a1acfPLJcdJJJy13jHw+v1RDp9AkF7lcrqTZAQAAAAAAAIDGb8CAAdG3b9+ic1+nczBu3LgYOnRojB8/PpLVZDugVFcK6d+/f3Tt2jWmT58e7777bqyzzjqxxx57xOTJk1d6jGU1doYM/nqNHQAAAAAAAABgzZLL5aJVq1ZFx9cphfztb3+L6dOnx8Ybbxzl5eVRXl4ekyZNip/85CexySabRERE+/btY/r06UXPW7RoUcyYMSPat29fe88nn3xSdM+Sx0vuWVmprhTy4osvxtNPPx1t27aNtm3bxiOPPBJnn312VFZWxujRo6NFixYrHGNZjZ1CE6uEAAAAAAAAAAAN58QTT4x999236NwBBxwQJ554Ypx88skREbHbbrvFF198EePGjYtu3bpFRMQzzzwTNTU1seuuu9beM3DgwFi4cGE0bdo0IiKeeuqp2GKLLaJNmzarlCnVUsi8efOivPz/j5AkSdx8881x7rnnRlVVVdxzzz0rHCOXW3qrmPmL6j0qAAAAAAAAALCG++qrr+K9996rffzBBx/Ea6+9Fuuuu25svPHGsd566xXd37Rp02jfvn1sscUWERHRpUuX+N73vhenn3563HLLLbFw4cI499xz49hjj42OHTtGRMTxxx8fl156aZx66qnRv3//+Oc//xlDhw6N66+/fpXzploK2XLLLePVV1+NLl26FJ0fNmxYREQceuihacQCAAAAAAAAgIaVlKWdgJXw6quvxt577137eMnOJr17944777xzpca4++6749xzz40ePXpEWVlZHHnkkXHjjTfWXq+oqIgnn3wyzjnnnOjWrVu0bds2Lr744jjjjDNWOW9SKBQKq/yselJdXR1/+9vf4i9/+csyr5999tlxyy23RE1NzSqNm5WVQtrsfG7J55g5dljJ5wAAAAAAAADqX/NUlwCgvq21+8/TjrDGmvfilWlHKJlUSyGlohSy8pRCAAAAAAAAoHFSCskWpZD0ZLkUYv0ZAAAAAAAAAIAMUgoBAAAAAAAAAMggpRAAAAAAAAAAgAxSCgEAAAAAAAAAyCClEAAAAAAAAACADCpPOwAAAAAAAAAArPGSJO0EZJCVQgAAAAAAAAAAMshKIauxmWOHlXyONjufW/I5GuJ1AAAAAAAAAADFrBQCAAAAAAAAAJBBSiEAAAAAAAAAABmkFAIAAAAAAAAAkEFKIQAAAAAAAAAAGVSedgAAAAAAAAAAWOMl1nSg/nlXAQAAAAAAAABkkFIIAAAAAAAAAEAGKYUAAAAAAAAAAGSQUggAAAAAAAAAQAYphQAAAAAAAAAAZFB52gHefvvteOmll2K33XaLLbfcMt55550YOnRo5PP5+MEPfhD77LNPnc/P5/ORz+eLzhWa5CKXy5UyNgAAAAAAAADAai3VlUJGjRoV22+/ffz0pz+NHXbYIUaNGhXdu3eP9957LyZNmhT7779/PPPMM3WOUV1dHRUVFUXHkMHVDfQKAAAAAAAAAABWT0mhUCikNfnuu+8e++yzT/zyl7+M++67L84+++w466yz4oorroiIiAEDBsS4cePiySefXO4YVgr5ZtrsfG7J55g5dljJ5wAAAAAAAIA1TfPU94WgPq1VeXHaEdZY8/52WdoRSibVlULefPPN6NOnT0REHH300fHll1/GUUcdVXv9hBNOiDfeeKPOMXK5XLRq1aroUAgBAAAAAAAAANZ0qZZCIiKSJImIiLKysmjevHlUVFTUXltnnXVi1qxZaUUDAAAAAAAAAGi0Ui2FbLLJJjFhwoTax2PGjImNN9649vHkyZOjQ4cOaUQDAAAAAAAAAGjUUt1l6qyzzorFixfXPu7atWvR9ccffzz22Wefho4FAAAAAAAAANDopVoKOfPMM+u8fuWVVzZQEgAAAAAAAACAbEl1+xgAAAAAAAAAAEoj1ZVCAAAAAAAAAICISKzpQP3zrgIAAAAAAAAAyCClEAAAAAAAAACADFIKAQAAAAAAAADIIKUQAAAAAAAAAIAMKk87AOmaOXZYyedos/O5JR2/IV4DAAAAAAAAADQ2VgoBAAAAAAAAAMggK4UAAAAAAAAAQNoSazpQ/7yrAAAAAAAAAAAySCkEAAAAAAAAACCDlEIAAAAAAAAAADJIKQQAAAAAAAAAIIOUQgAAAAAAAAAAMkgpBAAAAAAAAAAgg1a7UkihUEg7AgAAAAAAAABAo1eedoD/lcvl4vXXX48uXbqkHQUAAAAAAAAAGkZZknYCMii1Ukjfvn2XeX7x4sVx1VVXxXrrrRcREdddd11DxgIAAAAAAAAAyITUSiE33HBDbLfddtG6deui84VCId5+++1o0aJFJMmKm1D5fD7y+XzxGE1ykcvl6jMuAAAAAAAAAECjUpbWxFdeeWXMmjUrfvGLX8To0aNrjyZNmsSdd94Zo0ePjmeeeWaF41RXV0dFRUXRMWRwdQO8AgAAAAAAAACA1VdqK4X87Gc/ix49esQPfvCDOOSQQ6K6ujqaNm26yuMMGDBgqa1oCk2sEgIAAAAAAAAArNlSWykkImLnnXeOcePGxaeffho77bRT/POf/1ypLWP+Wy6Xi1atWhUdto4BAAAAAAAAANZ0qa0UskTLli1j+PDhcd9998W+++4bixcvTjsSAAAAAAAAAECjl3opZIljjz029txzzxg3blx06tQp7TgAAAAAAAAA0HCSVDf6IKNWm1JIRMS3vvWt+Na3vpV2DAAAAAAAAACARk/VCAAAAAAAAAAgg5RCAAAAAAAAAAAySCkEAAAAAAAAACCDlEIAAAAAAAAAADJIKQQAAAAAAAAAIIOUQgAAAAAAAAAAMqg87QBk38yxw0o6fptdzy/p+BERM18eWvI5AAAAAAAAgDVYkqSdgAyyUggAAAAAAAAAQAYphQAAAAAAAAAAZJBSCAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGKYUAAAAAAAAAAGRQedoBAAAAAAAAAGCNl1jTgfrnXQUAAAAAAAAAkEFKIQAAAAAAAAAAGaQUAgAAAAAAAACQQeVpB/hvc+bMiQceeCDee++96NChQxx33HGx3nrrpR0LAAAAAAAAAKDRSbUUstVWW8Xzzz8f6667bnz00UfRvXv3mDlzZnznO9+J999/Py6//PJ46aWXYtNNN13uGPl8PvL5fNG5QpNc5HK5UscHAAAAAAAAAFhtpbp9zDvvvBOLFi2KiIgBAwZEx44dY9KkSfHKK6/EpEmTYtttt42BAwfWOUZ1dXVUVFQUHUMGVzdEfAAAAAAAAACA1dZqs33MmDFj4pZbbomKioqIiGjZsmVceumlceyxx9b5vAEDBkTfvn2LzhWaWCUEAAAAAAAAAFizpV4KSZIkIiLmz58fHTp0KLq24YYbxqefflrn83O5pbeKmb+ofjMCAAAAAAAAQEn9v9+dQ31KvRTSo0ePKC8vj9mzZ8e7774bXbt2rb02adKkWG+99VJMBwAAAAAAAADQOKVaChk0aFDR45YtWxY9fuSRR6KysrIhIwEAAAAAAAAAZMJqVQr5X0OGDGmgJAAAAAAAAAAA2VKWdgAAAAAAAAAAAOqfUggAAAAAAAAAQAYphQAAAAAAAAAAZFB52gEAAAAAAAAAYI2XWNOB+uddBQAAAAAAAACQQUohAAAAAAAAAAAZpBQCAAAAAAAAAJBB5WkHgG9q5stDSz5Hm53PLfkcM8cOK/kcAAAAAAAAAKw5rBQCAAAAAAAAAJBBSiEAAAAAAAAAABmkFAIAAAAAAAAAkEHlaQcAAAAAAAAAgDVekqSdgAyyUggAAAAAAAAAQAYphQAAAAAAAAAAZJBSCAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGKYUAAAAAAAAAAGRQqqWQ8ePHxwcffFD7+K677oo99tgjNtpoo9hzzz3jvvvuW+EY+Xw+Zs+eXXTk8/lSxgYAAAAAAACA+pWUOdI6MizVV3fyySfH+++/HxERv/vd7+KHP/xh7LTTTjFw4MDYeeed4/TTT4/bb7+9zjGqq6ujoqKi6BgyuLoh4gMAAAAAAAAArLaSQqFQSGvytddeO95+++3o1KlT7LjjjnHWWWfF6aefXnv9nnvuiSuuuCLefPPN5Y6Rz+eXWhmk0CQXuVyuZLlZ87TZ+dySzzFz7LCSzwEAAAAAAEB2NC9POwH1aa3vXZd2hDXWvFF9045QMql+mVh77bXjs88+i06dOsXHH38cu+yyS9H1XXfdtWh7mWXJ5ZYugMxfVO9RAQAAAAAAAAAalVS3j+nZs2fcfPPNERFRVVUVf/rTn4quP/DAA9G5c+c0ogEAAAAAAAAANGqprhQyePDg2GOPPaKqqip22mmnuPbaa+PZZ5+NLl26xLvvvhsvvfRSPPTQQ2lGBAAAAAAAAABolFJdKaRjx47x97//PXbbbbcYNWpUFAqFeOWVV+LJJ5+Mb33rW/HCCy/EgQcemGZEAAAAAAAAAIBGKdWVQiIiWrduHVdddVVcddVVaUcBAAAAAAAAgHQkSdoJyKBUVwoBAAAAAAAAAKA0lEIAAAAAAAAAADJIKQQAAAAAAAAAIIOUQgAAAAAAAAAAMkgpBAAAAAAAAAAgg5RCAAAAAAAAAAAyqDztAI1VTaFQ8jnKkqTkc7ByZo4dVvI52nz3gpLPMfOl60s+BwAAAAAAAACrB6UQAAAAAAAAAEhbYqMP6p93FQAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGKYUAAAAAAAAAAGSQUggAAAAAAAAAQAYphQAAAAAAAAAAZFB52gEAAAAAAAAAYI2XJGknIIOsFAIAAAAAAAAAkEFKIQAAAAAAAAAAGZRqKeS8886Lv/3tb2lGAAAAAAAAAADIpFRLIb/61a9ir732iu985zsxePDgmDZt2iqPkc/nY/bs2UVHPp8vQVoAAAAAAAAAgMYj9e1jnnzyyTjwwAPjmmuuiY033jgOO+ywePTRR6Ompmalnl9dXR0VFRVFx5DB1SVODQAAAAAAAACweksKhUIhrcnLyspi2rRp0a5du1i4cGE89NBDcfvtt8fTTz8dG2ywQfTp0ydOPvnk6Ny583LHyOfzS60MUmiSi1wuV9LsNQ3wYStLkpLPweqjzXcvKPkcM1+6vuRzAAAAAAAA0DCal6edgPq01kE3ph1hjTXvsR+lHaFkUl8pZImmTZvG0UcfHaNGjYqJEyfG6aefHnfffXdsscUWdT4vl8tFq1atio5SF0IAAAAAAAAAAFZ3q2V3bOONN45LLrkkBg0aFE8//XTacQAAAAAAAACgtJLVZk0HMiTVd1WnTp2iSZMmy72eJEnst99+DZgIAAAAAAAAACAbUl0p5IMPPkhzegAAAAAAAACAzLL+DAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGKYUAAAAAAAAAAGRQedoBAAAAAAAAAGCNl1jTgfrnXQUAAAAAAAAAkEFWCvmaypIk7QhkzMyXri/5HG12Prfkc8wcO6zkcwAAAAAAAACwYlYKAQAAAAAAAADIIKUQAAAAAAAAAIAMUgoBAAAAAAAAAMggpRAAAAAAAAAAgAxSCgEAAAAAAAAAyKDytAMAAAAAAAAAwBovSdJOQAZZKQQAAAAAAAAAIIOUQgAAAAAAAAAAMkgpBAAAAAAAAAAgg5RCAAAAAAAAAAAySCkEAAAAAAAAACCDUi+FDBs2LE466aS47777IiLirrvuiq222iq23HLL+PnPfx6LFi2q8/n5fD5mz55ddOTz+YaIDgAAAAAAAACw2kq1FPLLX/4yfv7zn8fcuXPjggsuiMGDB8cFF1wQJ5xwQvTu3Tt+97vfxeWXX17nGNXV1VFRUVF0DBlc3UCvAAAAAAAAAADqQVLmSOvIsKRQKBTSmrxz585x9dVXxxFHHBGvv/56dOvWLYYPHx4nnHBCREQ89NBDceGFF8aECROWO0Y+n19qZZBCk1zkcrmSZofGqM3O55Z8jpljh5V8DgAAAAAAACKal6edgPq01mG/STvCGmven3+YdoSSSfXLxJQpU2KnnXaKiIjtttsuysrKYvvtt6+9vuOOO8aUKVPqHCOXW7oAMr/uHWcAAAAAAAAAADIv1XVQ2rdvH2+99VZEREyYMCEWL15c+zgi4s0334x27dqlFQ8AAAAAAAAAoNFKdaWQE044IU466aQ47LDD4v/+7//iwgsvjJ/+9Kfx+eefR5IkccUVV8RRRx2VZkQAAAAAAAAAgEYp1VLIpZdeGmuttVaMGTMmTj/99PjZz34W2223XVx44YUxd+7cOOSQQ+Lyyy9PMyIAAAAAAAAAQKOUFAqFQtoh6tv8RWkngNVTm53PLfkcM8cOK/kcAAAAAAAARDRPdQkA6ttah/0m7QhrrHl//mHaEUqmLO0AAAAAAAAAAADUP90xAAAAAAAAAEhbkqSdgAyyUggAAAAAAAAAQAYphQAAAAAAAAAAZJBSCAAAAAAAAABABimFAAAAAAAAAABkUHnaAYCGM3PssJLP0Wbnc0s6fkO8BgAAAAAAAIAssFIIAAAAAAAAAEAGWSkEAAAAAAAAANKWWNOB+uddBQAAAAAAAACQQUohAAAAAAAAAAAZpBQCAAAAAAAAAJBBSiEAAAAAAAAAABmkFAIAAAAAAAAAkEFKIQAAAAAAAAAAGVSedgAAAAAAAAAAWOMlSdoJyKBUSyFTp06Nm2++OZ5//vmYOnVqlJWVxWabbRa9evWKPn36RJMmTdKMBwAAAAAAAADQaKW2fcyrr74aXbp0ib/85S+xcOHCmDBhQnTr1i1atGgRP/3pT6N79+7x5ZdfphUPAAAAAAAAAKBRS60U8uMf/zguuOCCePXVV+Nvf/tb3HnnnfGvf/0r7rvvvpg4cWLMnTs3LrroohWOk8/nY/bs2UVHPp9vgFcAAAAAAAAAALD6Sq0UMn78+DjxxBNrHx9//PExfvz4+OSTT6JNmzZx9dVXx5/+9KcVjlNdXR0VFRVFx5DB1aWMDgAAAAAAAACw2itPa+J27drF1KlTY7PNNouIiE8++SQWLVoUrVq1ioiIb3/72zFjxowVjjNgwIDo27dv0blCk1z9BwYAAAAAAAAAaERSK4X06tUrzjzzzBgyZEjkcrm4/PLLo6qqKtZaa62IiHj33Xdjww03XOE4uVwucrniEsj8RSWJDAAAAAAAAADQaKRWCvnlL38ZU6dOjUMOOSQWL14cu+22W/zhD3+ovZ4kSVRX2wYGAAAAAAAAAODrSK0U0rJly7j//vtj/vz5sWjRomjZsmXR9f333z+lZAAAAAAAAADQsJIkSTsCGZRaKWSJ5s2bpx0BAAAAAAAAACBzytIOAAAAAAAAAABA/VMKAQAAAAAAAADIIKUQAAAAAAAAAIAMUgoBAAAAAAAAAMggpRAAAAAAAAAAgAwqTzsAAAAAAAAAAKzpkiRJOwIZpBQC1KuZY4eVdPw2O59b0vEjSv8aAAAAAAAAABqC7WMAAAAAAAAAADJIKQQAAAAAAAAAIIOUQgAAAAAAAAAAMkgpBAAAAAAAAAAgg5RCAAAAAAAAAAAySCkEAAAAAAAAACCDytMOAAAAAAAAAABrvCTtAGRR6qWQBQsWxMMPPxxjxoyJadOmRURE+/btY/fdd4/DDjssmjVrlnJCAAAAAAAAAIDGJ9XtY957773o0qVL9O7dO/7+979HTU1N1NTUxN///vc46aSTYuutt4733nsvzYgAAAAAAAAAAI1SqiuFnHXWWbHNNtvE3//+92jVqlXRtdmzZ8dJJ50U55xzTjzxxBMpJQQAAAAAAAAAaJxSLYW88MIL8corryxVCImIaNWqVVx++eWx6667ppAMAAAAAAAAAKBxS7UU0rp16/jwww+ja9euy7z+4YcfRuvWrescI5/PRz6fLzpXaJKLXC5XXzEBAAAAAAAAABqdsjQnP+200+Kkk06K66+/Pt5444345JNP4pNPPok33ngjrr/++ujTp0+cccYZdY5RXV0dFRUVRceQwdUN9AoAAAAAAAAAAFZPSaFQKKQZYPDgwTF06NCYNm1aJEkSERGFQiHat28fP/7xj+PCCy+s8/lWCoE1S5udzy35HDPHDiv5HAAAAAAAAN9U81T3haC+tTz6zrQjrLG+eqBP2hFKJvUvE/3794/+/fvHBx98ENOmTYuIiPbt28emm266Us/P5ZYugMxfVO8xAQAAAAAAAAAalVS3j/lvm266aey2226x22671RZCPvroozjllFNSTgYAAAAAAAAA0PisNqWQZZkxY0YMHz487RgAAAAAAAAAAI1OqtvHjBw5ss7rEydObKAkAAAAAAAAAADZkmoppFevXpEkSRQKheXekyRJAyYCAAAAAAAAAMiGVLeP6dChQ4wYMSJqamqWeYwfPz7NeAAAAAAAAAAAjVaqpZBu3brFuHHjlnt9RauIAAAAAAAAAACwbKluH9OvX7+YM2fOcq937tw5Ro8e3YCJAAAAAAAAAKDhJUmSdgQyKNVSSGVlZZ3XW7RoEVVVVQ2UBgAAAAAAAAAgO1LdPgYAAAAAAAAAgNJQCgEAAAAAAAAAyKBUt48BWFUzxw4r+Rxtdj635HM0xOsAAAAAAAAA1mxWCgEAAAAAAAAAyCClEAAAAAAAAACADLJ9DAAAAAAAAACkLEmStCOQQVYKAQAAAAAAAADIIKUQAAAAAAAAAIAMUgoBAAAAAAAAAMig1boU8sknn8Rll12WdgwAAAAAAAAAgEZntS6FTJs2LS699NK0YwAAAAAAAAAANDrlaU7+xhtv1Hn93XffbaAkAAAAAAAAAADZkmopZPvtt48kSaJQKCx1bcn5JElSSAYAAAAAAAAADcfvximFVEsh6667blx99dXRo0ePZV5/880345BDDqlzjHw+H/l8vuhcoUkucrlcveUEAAAAAAAAAGhsytKcvFu3bjFlypTo1KnTMo8NN9xwmauI/Lfq6uqoqKgoOoYMrm6gVwAAAAAAAAAAsHpKdaWQM888M+bMmbPc6xtvvHHccccddY4xYMCA6Nu3b9G5QhOrhAAAAAAAAAAAa7ZUSyGHH354ndfbtGkTvXv3rvOeXG7prWLmL/rG0QAAAAAAAAAAGrVUt49ZkY8++ihOOeWUtGMAAAAAAAAAADQ6q3UpZMaMGTF8+PC0YwAAAAAAAAAANDqpbh8zcuTIOq9PnDixgZIAAAAAAAAAAGRLqqWQXr16RZIkUSgUlntPkiQNmAgAAAAAAAAAUuBX45RAqtvHdOjQIUaMGBE1NTXLPMaPH59mPAAAAAAAAACARivVUki3bt1i3Lhxy72+olVEAAAAAAAAAABYtlS3j+nXr1/MmTNnudc7d+4co0ePbsBEAAAAAAAAAADZkGoppLKyss7rLVq0iKqqqgZKAwAAAAAAAACQHaluHwMAAAAAAAAAQGkohQAAAAAAAAAAZFCq28cArI5mjh1W8jna7NGv5HPMfGFIyedgzVIolH6OJCn9HACwskr9vc/3PQAAAOC/Jf5nASVgpRAAAAAAAAAAgAxSCgEAAAAAAAAAyCClEAAAAAAAAACADFIKAQAAAAAAAADIIKUQAAAAAAAAAIAMUgoBAAAAAAAAAMggpRAAAAAAAAAAgAwqTztARMS///3vaN26dbRs2bLo/MKFC2PMmDHRvXv3lJIBAAAAAAAAQOklSZJ2BDIo1ZVCpk6dGrvsskt06tQpWrduHSeddFJ89dVXtddnzJgRe++9d4oJAQAAAAAAAAAap1RLIT/72c+irKwsXn755Rg1alS89dZbsffee8fMmTNr7ykUCikmBAAAAAAAAABonFIthTz99NNx4403xk477RT77rtvvPDCC9GhQ4fYZ599YsaMGRFhiRwAAAAAAAAAgK8j1VLIrFmzok2bNrWPc7lcjBgxIjbZZJPYe++9Y/r06SscI5/Px+zZs4uOfD5fytgAAAAAAAAAAKu9VEshm222WbzxxhtF58rLy+OPf/xjbLbZZnHwwQevcIzq6uqoqKgoOoYMri5VZAAAAAAAAACARiHVUkjPnj3j1ltvXer8kmLI9ttvH4VCoc4xBgwYELNmzSo6+vUfUKrIAAAAAAAAAACNQnmak19xxRUxd+7cZV4rLy+PBx98MD7++OM6x8jlcpHL5YrOzV9UbxEBAAAAAAAAoOSSJEk7AhmU6koh5eXl0apVq+Venzp1alx66aUNmAgAAAAAAAAAYNmee+65OOSQQ6Jjx46RJEk8/PDDtdcWLlwY/fv3j2222SZatGgRHTt2jJNOOimmTJlSNMaMGTPihBNOiFatWkXr1q3j1FNPja+++qronjfeeCMqKyujefPmsdFGG8XVV1/9tfKmWgpZkRkzZsTw4cPTjgEAAAAAAAAAEHPmzIntttsufvWrXy11be7cuTF+/Pj4xS9+EePHj48RI0bEu+++G4ceemjRfSeccEK8+eab8dRTT8Wjjz4azz33XJxxxhm112fPnh37779/dOrUKcaNGxdDhgyJSy65JG699dZVzpvq9jEjR46s8/rEiRMbKAkAAAAAAAAAQN169uwZPXv2XOa1ioqKeOqpp4rODRs2LHbZZZeYPHlybLzxxvH222/HqFGjYuzYsbHTTjtFRMRNN90UBx54YFxzzTXRsWPHuPvuu2PBggVx++23R7NmzWLrrbeO1157La677rqi8sjKSLUU0qtXr0iSJAqFwnLvsW8SAAAAAAAAAFAq+Xw+8vl80blcLhe5XO4bjz1r1qxIkiRat24dERFjxoyJ1q1b1xZCIiL23XffKCsri5dffjkOP/zwGDNmTHTv3j2aNWtWe88BBxwQgwcPjpkzZ0abNm1Wev5Ut4/p0KFDjBgxImpqapZ5jB8/Ps14AAAAAAAAAEDGVVdXR0VFRdFRXV39jcedP39+9O/fP4477rho1apVRERMmzYt2rVrV3RfeXl5rLvuujFt2rTaezbYYIOie5Y8XnLPykq1FNKtW7cYN27ccq+vaBURAAAAAAAAAIBvYsCAATFr1qyiY8CAAd9ozIULF8bRRx8dhUIhbr755npKuupS3T6mX79+MWfOnOVe79y5c4wePboBEwEAAAAAAAAAa5L62ipmiSWFkEmTJsUzzzxTu0pIRET79u1j+vTpRfcvWrQoZsyYEe3bt6+955NPPim6Z8njJfesrFRLIZWVlXVeb9GiRVRVVTVQGgAAAAAAAABIR5IkaUegHiwphEyYMCFGjx4d6623XtH13XbbLb744osYN25cdOvWLSIinnnmmaipqYldd9219p6BAwfGwoULo2nTphER8dRTT8UWW2wRbdq0WaU8qW4fAwAAAAAAAADQWHz11Vfx2muvxWuvvRYRER988EG89tprMXny5Fi4cGEcddRR8eqrr8bdd98dixcvjmnTpsW0adNiwYIFERHRpUuX+N73vhenn356vPLKK/HCCy/EueeeG8cee2x07NgxIiKOP/74aNasWZx66qnx5ptvxv333x9Dhw6Nvn37rnLepFAoFOrt1a8m5i8q/Rw1DfBhK9MEA76BNkf+puRzzHzwhyWfA+pTTU0DfP8u8/0boCE0xE+yhSjtJA3xM9+ixaX/QJU3ycb3vlK/p/yID8vWIF/PG+L/4/k5gHrm+xJANjTE7xPXbuqLepasd9K9aUdYY33+++NW+t5nn3029t5776XO9+7dOy655JLYdNNNl/m80aNHx1577RURETNmzIhzzz03HnnkkSgrK4sjjzwybrzxxmjZsmXt/W+88Uacc845MXbs2Gjbtm2cd9550b9//1V7YZHy9jEAAAAAAAAAAI3FXnvtVWf5fGWK6euuu27cc889dd6z7bbbxt/+9rdVzve/bB8DAAAAAAAAAJBBSiEAAAAAAAAAABmkFAIAAAAAAAAAkEHlaQcAAAAAAAAAgDVeknYAsshKIQAAAAAAAAAAGaQUAgAAAAAAAACQQalvH/P555/HG2+8Edttt12su+668dlnn8Vtt90W+Xw+vv/970eXLl3SjggAAAAAAAAA0OikWgp55ZVXYv/994/Zs2dH69at46mnnorvf//7UV5eHjU1NXHVVVfF888/HzvuuGOaMQEAAAAAAAAAGp1Ut48ZOHBgfP/7349Zs2bFz3/+8+jVq1f06NEj/vWvf8V7770Xxx57bFx++eVpRgQAAAAAAAAAaJRSLYWMGzcu+vbtG+uss06cf/75MWXKlDj99NNrr5977rkxduzYFBMCAAAAAAAAADROqW4fs2DBglhrrbUiIqJp06ax9tprR9u2bWuvt23bNj7//PM6x8jn85HP54vOFZrkIpfL1X9gAAAAAAAAAIBGItWVQjbaaKOYOHFi7eP77rsvOnToUPt46tSpRSWRZamuro6KioqiY8jg6pJlBgAAAAAAAID6liSJI6Ujy1JdKeTYY4+N6dOn1z4+6KCDiq6PHDkydtlllzrHGDBgQPTt27foXKGJVUIAAAAAAAAAgDVbqqWQQYMG1Xl94MCB0aRJkzrvyeWW3ipm/qJvHA0AAAAAAAAAoFFLdfuYFfn888/jrLPOSjsGAAAAAAAAAECjs1qXQmbMmBHDhw9POwYAAAAAAAAAQKOT6vYxI0eOrPP6xIkTGygJAAAAAAAAAEC2pFoK6dWrVyRJEoVCYbn3JEnSgIkAAAAAAAAAALIh1e1jOnToECNGjIiampplHuPHj08zHgAAAAAAAAA0iCRJHCkdWZZqKaRbt24xbty45V5f0SoiAAAAAAAAAAAsW6rbx/Tr1y/mzJmz3OudO3eO0aNHN2AiAAAAAAAAAIBsSLUUUllZWef1Fi1aRFVVVQOlAQAAAAAAAADIjlS3jwEAAAAAAAAAoDSUQgAAAAAAAAAAMijV7WMas7IkSTsCQJ1mPvjDks/RZpcflXyOma/cWPI5WHOUlfn+DZAVDfEjWRKN//tGeZPG/xoaih/zIR0N8vXcJziNkLctQDb4fSKwOlAKAQAAAAAAAICUKTRTCraPAQAAAAAAAADIIKUQAAAAAAAAAIAMUgoBAAAAAAAAAMggpRAAAAAAAAAAgAxSCgEAAAAAAAAAyKDVshSy2WabxYQJE9KOAQAAAAAAAADQaJWnOfmNN964zPOTJ0+OO+64I9q3bx8RET/60Y8aMhYAAAAAAAAAQKOXainkxz/+cWy44YZRXl4co6amJn7/+99H06ZNI0kSpRAAAAAAAAAAsi1JOwBZlGop5IwzzoiXX3457rnnnujSpUvt+aZNm8aTTz4ZW221VYrpAAAAAAAAAAAar7I0J7/lllvi4osvjgMOOCCGDRuWZhQAAAAAAAAAgExJtRQSEXH44YfHmDFj4qGHHoqePXvGtGnTVun5+Xw+Zs+eXXTk8/kSpQUAAAAAAAAAaBxSL4VERGy44Ybx9NNPR/fu3WOHHXaIQqGw0s+trq6OioqKomPI4OoSpgUAAAAAAAAAWP0lhVVpYDSAcePGxfPPPx8nnXRStGnTZoX35/P5pVYGKTTJRS6XK1VEAP6fNrv8qORzzHzlxpLPAQAAAAAAjVHz8rQTUJ/anfpA2hHWWNNvOzrtCCWz2n2Z6NatW3Tr1i0iIj766KMYNGhQ3H777cu9P5dbugAyf1FJIwIAAAAAAAAArPZWi+1jlmfGjBkxfPjwtGMAAAAAAAAAQEklSeJI6ciyVFcKGTlyZJ3XJ06c2EBJAAAAAAAAAACyJdVSSK9evSJJkigUCsu9J+utHAAAAAAAAACAUkh1+5gOHTrEiBEjoqamZpnH+PHj04wHAAAAAAAAANBopVoK6datW4wbN26511e0iggAAAAAAAAAAMuW6vYx/fr1izlz5iz3eufOnWP06NENmAgAAAAAAAAAIBtSLYVUVlbWeb1FixZRVVXVQGkAAAAAAAAAALIj1e1jAAAAAAAAAAAojVRXCgEAAAAAAAAAIpIkSTsCGaQUAsDXNvOVG0s+R5udzy3p+DPHDivp+AAAAAAAAJAW28cAAAAAAAAAAGSQUggAAAAAAAAAQAYphQAAAAAAAAAAZJBSCAAAAAAAAABABimFAAAAAAAAAABkUHnaAQAAAAAAAABgTZckSdoRyCArhQAAAAAAAAAAZNBqtVJIoVCIZ599Nt57773o0KFDHHDAAdG0adO0YwEAAAAAAAAANDqplkIOPPDAuPfee6OioiJmzJgRBx54YLzyyivRtm3b+Pzzz+M73/lOPPfcc7H++uunGRMAAAAAAAAAoNFJdfuYUaNGRT6fj4iIiy66KL788st4//33Y/r06TFp0qRo0aJFXHzxxWlGBAAAAAAAAABolFIthfy3Z555Jqqrq2PTTTeNiIhvfetbMXjw4HjiiSdSTgYAAAAAAAAA0Pikun1MRESSJBERMXPmzNh8882LrnXu3DmmTJlS5/Pz+XztaiNLFJrkIpfL1W9QAAAAAAAAAIBGJPWVQvr06RNHHHFELFy4MD744IOia9OmTYvWrVvX+fzq6uqoqKgoOoYMri5hYgAAAAAAAACA1V+qK4X07t279r8PO+ywmDt3btH1Bx98MLbffvs6xxgwYED07du36FyhiVVCAAAAAAAAAGg8luyyAfUp1VLIHXfcUef1QYMGRZMmTeq8J5dbequY+Yu+cTQAAAAAAAAAgEYt9e1j6jJjxow4++yz044BAAAAAAAAANDorPalkOHDh6cdAwAAAAAAAACg0Ul1+5iRI0fWeX3ixIkNlAQAAAAAAAAAIFtSLYX06tUrkiSJQqGw3HuSJGnARAAAAAAAAAAA2ZDq9jEdOnSIESNGRE1NzTKP8ePHpxkPAAAAAAAAAKDRSrUU0q1btxg3btxyr69oFREAAAAAAAAAyITEkdqRYaluH9OvX7+YM2fOcq937tw5Ro8e3YCJAAAAAAAAAACyIdVSSGVlZZ3XW7RoEVVVVQ2UBgAAAAAAAAAgO1LdPgYAAAAAAAAAgNJQCgEAAAAAAAAAyKBUt48BgBWZOXZYScdvs+v5JR0/ImLmy0NLPgcAAAAAAAD8LyuFAAAAAAAAAABkkJVCAAAAAAAAACBlSZKkHYEMslIIAAAAAAAAAEAGKYUAAAAAAAAAAGSQUggAAAAAAAAAQAYphQAAAAAAAAAAZFCqpZB///vf8dlnn9U+/tvf/hYnnHBCVFZWxg9+8IMYM2ZMiukAAAAAAAAAABqvVEshRx55ZLz00ksREfHnP/859tprr/jqq69ijz32iLlz50ZVVVU8+uijaUYEAAAAAAAAAGiUytOc/M0334ytt946IiKqq6vjyiuvjP79+9deHzZsWFx88cVx8MEHpxURAAAAAAAAAKBRSrUUUl5eHl9++WVERHzwwQfRs2fPous9e/YsKokAAAAAAAAAQBYlSZJ2BDIo1e1jqqqq4t57742IiB122CGeffbZouujR4+ODTfcsM4x8vl8zJ49u+jI5/OligwAAAAAAAAA0CikulLIVVddFZWVlTFlypTYc889Y+DAgTF27Njo0qVLvPvuu3H//ffHLbfcUucY1dXVcemllxadG/iLQXHRxZeUMDkAAAAAAAAAwOotKRQKhTQDvP/++3HRRRfFY489Fl999VVE/GdbmZ133jn69esXvXr1qvP5+Xx+qZVBCk1ykcvlShUZgAxps+v5JZ9j5stDSz4HAAAAAABrnuapLgFAffvW2Q+nHWGN9e9f90o7Qsmk/mVi8803j3vvvTcKhUJMnz49ampqom3bttG0adOVen4ut3QBZP6iUiQFAAAAAAAAAGg8ytIOsESSJLHBBhtEhw4dagshH330UZxyyikpJwMAAAAAAAAAaHxWm1LIssyYMSOGDx+edgwAAAAAAAAAgEYn1e1jRo4cWef1iRMnNlASAAAAAAAAAEhPkiRpRyCDUi2F9OrVK5IkiUKhsNx7vPEBAAAAAAAAAFZdqtvHdOjQIUaMGBE1NTXLPMaPH59mPAAAAAAAAACARivVUki3bt1i3Lhxy72+olVEAAAAAAAAAABYtlS3j+nXr1/MmTNnudc7d+4co0ePbsBEAAAAAAAAAADZkGoppLKyss7rLVq0iKqqqgZKAwAAAAAAAACQHaluHwMAAAAAAAAAQGkohQAAAAAAAAAAZFCq28cAQNpmvjy05HO02fncks8xc+ywks8BAAAAAACUUJJ2ALLISiEAAAAAAAAAABmkFAIAAAAAAAAAkEFKIQAAAAAAAAAAGaQUAgAAAAAAAACQQUohAAAAAAAAAAAZpBQCAAAAAAAAAJBB5WkHAAAAAAAAAIA1XZIkaUcgg1JdKeTaa6+NSZMmpRkBAAAAAAAAACCTUi2F9OvXLzbffPPYb7/94v77748FCxakGQcAAAAAAAAAIDNSLYVERPzud7+LFi1axIknnhgdO3aMH//4x/HPf/4z7VgAAAAAAAAAAI1a6qWQAw88MB5++OH497//HRdeeGE88cQTsd1228Uuu+wSv/3tb+PLL79MOyIAAAAAAAAAQKOTeilkiXbt2sWFF14Yb7/9djz77LOx1VZbxQUXXBAdOnSo83n5fD5mz55ddOTz+QZKDQAAAAAAAACwekq1FJIkyTLPV1ZWxp133hlTpkyJ66+/vs4xqquro6KiougYMri6FHEBAAAAAAAAABqNpFAoFNKavKysLKZNmxbt2rX72mPk8/mlVgYpNMlFLpf7pvEAoF602fncks8xc+ywks8BAAAAAMDqpXl52gmoTxufNzLtCGusyTcdmnaEkkn1y0RNTc03HiOXW7oAMn/RNx4WAAAAAAAAABrM8nbagG8i1e1jVuSjjz6KU045Je0YAAAAAAAAAACNzmpdCpkxY0YMHz487RgAAAAAAAAAAI1OqtvHjBxZ955IEydObKAkAAAAAAAAAADZkmoppFevXpEkSRQKheXeY98kAAAAAAAAAIBVl+r2MR06dIgRI0ZETU3NMo/x48enGQ8AAAAAAAAAoNFKtRTSrVu3GDdu3HKvr2gVEQAAAAAAAAAAli3V7WP69esXc+bMWe71zp07x+jRoxswEQAAAAAAAAA0vCRJ0o5ABqVaCqmsrKzzeosWLaKqqqqB0gAAAAAAAAAAZEeq28cAAAAAAAAAAFAaqa4UAgBrgpljh5V8jja7nl/yOWa+PLTkcwAAAAAAAFB/rBQCAAAAAAAAAJBBSiEAAAAAAAAAABmkFAIAAAAAAAAAkEFKIQAAAAAAAAAAGVSedgAAAAAAAAAAWNMlSZJ2BDLISiEAAAAAAAAAABmkFAIAAAAAAAAAkEGpl0IeffTRuPjii+OFF16IiIhnnnkmDjzwwPje974Xt956a8rpAAAAAAAAAAAap1RLIb/5zW/i8MMPj7/85S9x4IEHxh/+8Ifo1atXbLjhhrHJJpvEj3/84xg6dGiaEQEAAAAAAAAAGqXyNCe/8cYb49e//nWcfvrpMXr06DjwwAPj2muvjbPPPjsiIr773e/G1VdfHeeff36aMQEAAAAAAAAAGp1UVwr54IMP4oADDoiIiL333jsWL14c3bt3r72+1157xaRJk9KKBwAAAAAAAADQaKW6Ush6660XkyZNio033jimTJkSixYtismTJ0fXrl0jImLSpEmx7rrr1jlGPp+PfD5fdK7QJBe5XK5kuQEAAAAAAACgXiVpByCLUl0p5LDDDotTTz01rrjiijj88MPjpJNOip/85CcxatSoeOKJJ+K8886L/fffv84xqquro6KiougYMri6gV4BAAAAAAAAAMDqKdWVQgYPHhwLFiyI++67L3bfffe46aab4sYbb4zDDjssFi5cGFVVVVFdXXfBY8CAAdG3b9+ic4UmVgkBAAAAAAAAANZsSaFQKKQd4n/Nnz8/Fi5cGOuss87Xe/6ieg4EAKu5NrueX/I5Zr48tORzAAAAAACw8pqnugQA9W3TCx5LO8Ia64PrD0o7Qsmkun3M8jRv3jzWWWed+Oijj+KUU05JOw4AAAAAAAAAQKOzWpZClpgxY0YMHz487RgAAAAAAAAAAI1OqgsKjRw5ss7rEydObKAkAAAAAAAAAADZkmoppFevXpEkSRQKheXekyRJAyYCAAAAAAAAgIbnd+OUQqrbx3To0CFGjBgRNTU1yzzGjx+fZjwAAAAAAAAAgEYr1VJIt27dYty4ccu9vqJVRAAAAAAAAAAAWLZUt4/p169fzJkzZ7nXO3fuHKNHj27ARAAAAAAAAAAA2ZBqKaSysrLO6y1atIiqqqoGSgMAAAAAAAAAkB2pbh8DAAAAAAAAAEBpKIUAAAAAAAAAAGRQqtvHNGaLawoln6NJWVLyOYB0FEr/JSQSX0LWKDNfHlryOQ655aWSzzHyh98t6fg+LyDbSv391deQ1UtNA/yF6tPZC0o6/gYVuZKOHxGxcHFNyedo2iQb/96k1D/n+xl/9dIQX0PKSvyNY8Gi0n9+Nysv/ed3Q7yOhvj8y8Ln+PyFi0s+R/OmTUo+R1b4uy2Njf/fSWPUEO9bgNWBUggAAAAAAAAApCzRgKMEsvHPeQAAAAAAAAAAKKIUAgAAAAAAAACQQUohAAAAAAAAAAAZpBQCAAAAAAAAAJBBSiEAAAAAAAAAABlUnnaAefPmxb333hvPP/98TJ06NcrKymKzzTaLXr16RY8ePdKOBwAAAAAAAADQKKVaCnnvvfdi3333jXnz5kUul4t///vfceCBB8bYsWPj5ptvjiOOOCLuueeeKC9PvbsCAAAAAAAAACWTJGknIItS3T7mRz/6UXzve9+LadOmxeTJk6O6ujpqamripZdeirfffjvGjh0bv/zlL9OMCAAAAAAAAADQKKVaCvnrX/8aP/nJTyL5f5WnCy64IJ5++un4/PPP49vf/nbccMMNMXz48DQjAgAAAAAAAAA0Sqnuy9K6dev48ssvax/PnTs3Fi1aFM2aNYuIiG233TamTp1a5xj5fD7y+XzRuUKTXORyufoPDAAAAAAAAADQSKS6Ush+++0Xffv2jXfeeSc++OCDOPPMM2P77bePddZZJyIiJk+eHO3atatzjOrq6qioqCg6hgyuboj4AAAAAAAAAACrrVRXCrn66qvjsMMOi6222iqSJImNNtooHnroodrrn376afTr16/OMQYMGBB9+/YtOldoYpUQAAAAAAAAAGDNlmoppF27djFmzJiYMGFC5PP52HLLLaO8/P+PdNRRR61wjFxu6a1i5i+q96gAAAAAAAAAAI1KqtvHLPHtb387unbtWlQIiYj46KOP4pRTTkkpFQAAAAAAAABA47ValEKWZ8aMGTF8+PC0YwAAAAAAAABASSVJ4kjpyLJUt48ZOXJkndcnTpzYQEkAAAAAAAAAALIl1VJIr169IkmSKBQKy70n660cAAAAAAAAAIBSSHX7mA4dOsSIESOipqZmmcf48ePTjAcAAAAAAAAA0GilWgrp1q1bjBs3brnXV7SKCAAAAAAAAAAAy5bq9jH9+vWLOXPmLPd6586dY/To0Q2YCAAAAAAAAAAgG1IthVRWVtZ5vUWLFlFVVdVAaQAAAAAAAAAAsiPVUggAAAAAAAAAEJEkaScgi8rSDgAAAAAAAAAAQP2zUsjX1KRMTQv4+jQ9aYweOfO7JZ+j569eLOn4j529W0nHj4go8wkOqfHpR31r1ypX0vFnzllQ0vEjIlrm/Ni/shYurinp+E3KmpR0fFZNFv7O1qw8G//WqyH+H9uCRaX9/I6IWKtZ4/8cb5KBz4ssmb9wcUnHz8J7ltWLLyGrl0KhtONn5c+7IV5HTU2J/zAiIiIjfyBAyWTjp0cAAAAAAAAAAIoohQAAAAAAAAAAZJBSCAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGlacdAAAAAAAAAADWdEmSpB2BDFotSiGvvPJKjBkzJqZNmxYREe3bt4/ddtstdtlll5STAQAAAAAAAAA0TqmWQqZPnx5HHnlkvPDCC7HxxhvHBhtsEBERn3zySVxwwQWxxx57xIMPPhjt2rVLMyYAAAAAAAAAQKNTlubkZ599dixevDjefvvt+PDDD+Pll1+Ol19+OT788MN4++23o6amJs4555w0IwIAAAAAAAAANEqprhTyxBNPxHPPPRdbbLHFUte22GKLuPHGG2OvvfZq+GAAAAAAAAAAAI1cqiuF5HK5mD179nKvf/nll5HL5RowEQAAAAAAAABANqRaCjnmmGOid+/e8dBDDxWVQ2bPnh0PPfRQnHzyyXHcccfVOUY+n4/Zs2cXHfl8vtTRAQAAAAAAAABWa6luH3PddddFTU1NHHvssbFo0aJo1qxZREQsWLAgysvL49RTT41rrrmmzjGqq6vj0ksvLTo38BeD4qKLLylVbAAAAAAAAACoV0mSdgKyKCkUCoW0Q8yePTvGjRsX06ZNi4iI9u3bR7du3aJVq1YrfG4+n19qZZBCk5xtZwCgEer5qxdLOv5jZ+9W0vEjIsr8rR2gQdQ0wI+ySZT2a/oXcxeUdPyIiJa50v9bkKblqS5CWm/mL1xc0vGbN21S0vGhsVpcU/qv5wsW1ZR8jrWaNf7P8YUN8HHKyveMhjBvQWm/L2XhPQssX6l/XPK/v1ZeTQP8XWftZv5AsmTLnz2RdoQ11jtXHZB2hJJJdaWQJVq1ahV7773313puLrd0AWT+ovpIBQAAAAAAAADQeKVezZ43b148//zz8dZbby11bf78+fH73/8+hVQAAAAAAAAAAI1bqqWQf/3rX9GlS5fo3r17bLPNNlFVVRVTpkypvT5r1qw4+eSTU0wIAAAAAAAAANA4pVoK6d+/f3Tt2jWmT58e7777bqyzzjqx5557xuTJk9OMBQAAAAAAAADQ6KVaCnnxxRejuro62rZtG507d45HHnkkDjjggKisrIyJEyemGQ0AAAAAAAAAoFFLtRQyb968KC8vr32cJEncfPPNccghh0RVVVX861//SjEdAAAAAAAAAEDjVb7iW0pnyy23jFdffTW6dOlSdH7YsGEREXHooYemEQsAAAAAAAAAGlRZWZJ2BDIo1ZVCDj/88Lj33nuXeW3YsGHx/7F3/3FW1nXe+F9nGBgUxhEjFTL8sbSC4qKpmT8p8oa0BXUzEynTXFPMflFkbKulqw7+WFOjtLqLorvU3VVb8Q4CtcfN1yQSTd0UgVZ0du9AiBBQ4Cgz5/vHbrP3rIagc+biHJ7Px+N6PLyuz3U+n9dw5lznOsf3fD4TJkxIpVLp4VQAAAAAAAAAALWv0KKQqVOn5qc//emfbP/mN7+Zjo6OHkwEAAAAAAAAAFAfCi0KAQAAAAAAAACgOhSFAAAAAAAAAADUocaiAwBQHR0dlaqP0dBQqvoY7Fz+90VHV7X/t5z+7ar2nyRr77yg6mMAkDSUqn8fUqny7dSAfn2qO0CSjmr/EHWkT6/a/7uZV7ZUfwne3o21/+/EjqVXD3yu7Nu7V9XHqAde3zuWXfr4vYV61RO36D3wcYltVPJkADsAd/oAAAAAAAAAAHXITCEAAAAAAAAAUDCTy1ANZgoBAAAAAAAAAKhDikIAAAAAAAAAAOqQohAAAAAAAAAAgDq0QxeFrF27NjNnziw6BgAAAAAAAABAzdmhi0La2tpy7rnnFh0DAAAAAAAAAKDmNBY5+Pr167favmHDhh5KAgAAAAAAAABQXwotCtl9991TKpX+ZHulUtlqOwAAAAAAAADUA/9vnGootCikubk5X/7yl3PUUUe9ZvuyZctywQUX9HAqAAAAAAAAAIDaV2hRyDvf+c4kyahRo16zfffdd0+lUtlqH+VyOeVyucuxSq+mNDU1dU9IAAAAAAAAAIAa1FDk4GeddVb69u37J9v33nvvfOUrX9lqH62trWlpaemyXXdNa3dHBQAAAAAAAACoKaXK603FsYMzUwjAa+voqP7lvaHB2nZ0r44q35a85fRvV7X/JFl7p6XvAOpFtT8t98QywdV+b02ShjpZ77ja9889ce/8ypaOqo/Ru7HQvy+CN6Qnvv2sk0shAD3A+9LOpSee7116V38Mes6Iv51XdISd1m+u/B9FR6iaQpeP6Q5NTa8uANm8paAwAAAAAAAAAAA7iML/vGPTpk158MEH89RTT72qbfPmzZk5c2YBqQAAAAAAAAAAaluhRSFLly7N8OHDc8IJJ+SQQw7JqFGjsmLFis72devW5dxzzy0wIQAAAAAAAABAbSq0KOSSSy7JiBEjsmrVqixZsiTNzc059thj09bWVmQsAAAAAAAAAOhRpZKtqK2eFVoU8tBDD6W1tTUDBw7M0KFDM2vWrIwdOzbHH398nnnmmSKjAQAAAAAAAADUtEKLQjZt2pTGxsbO/VKplFtuuSXjxo3LqFGjsnTp0gLTAQAAAAAAAADUrsbXP6V6hg0blkWLFmX48OFdjk+fPj1JMn78+CJiAQAAAAAAAADUvEJnCjnttNNy2223vWbb9OnTM2HChFQqlR5OBQAAAAAAAABQ+wotCpk6dWp++tOf/sn2b37zm+no6OjBRAAAAAAAAAAA9aHQohAAAAAAAAAAAKqjsegAAAAAAAAAALCzK5VKRUegDikKAahTDQ1uHKg9DVW+4V175wVV7T9JBhx5cdXHWPvw9KqPAUBSD9/DVPu9tZ7Uw/1z70YTwsJrcSkEYEfifWnn4vkGdgS+LQAAAAAAAAAAqEOKQgAAAAAAAAAA6pCiEAAAAAAAAACAOqQoBAAAAAAAAACgDikKAQAAAAAAAACoQztEUUhHR8efPN7W1tbDaQAAAAAAAAAAal+hRSHr16/PGWeckX79+mWvvfbKZZddlvb29s721atXZ//99y8wIQAAAAAAAABUX6lUshW01bPGIge/9NJL8/jjj+eHP/xhXnjhhVx55ZV59NFHc9ddd6VPnz5JkkqlUmREAAAAAAAAAICaVOhMIT/5yU/yrW99K6effnr++q//OosWLcrq1aszbty4lMvlJKn7qhwAAAAAAAAAgGootChk9erV2XfffTv3Bw4cmPvuuy8bNmzIySefnI0bNxaYDgAAAAAAAACgdhVaFDJkyJAsXry4y7Hm5ubMnTs3mzZtymmnnVZQMgAAAAAAAACA2lZoUciYMWMyY8aMVx3v379/fvazn6Vv376v20e5XM769eu7bH9cegYAAAAAAAAAYGdVaFHI5Zdfnq9+9auv2dbc3Jx58+blgQce2Gofra2taWlp6bJdd01rFdICAAAAAAAAANSOUqVSqRQd4s0ol8uvmhmk0qspTU1NBSUCAHZmA468uOpjrH14etXHAAAAAAB2fH0bi05Adzr0q/cXHWGn9dhX31d0hKopdKaQJNm0aVMefPDBPPXUU69q27x5c2bOnLnVxzc1NWW33XbrsikIAQAAAAAAAAB2doUWhSxdujTDhw/PCSeckEMOOSSjRo3KihUrOtvXrVuXc889t8CEAAAAAAAAAAC1qdCikEsuuSQjRozIqlWrsmTJkjQ3N+fYY49NW1tbkbEAAAAAAAAAAGpeoUUhDz30UFpbWzNw4MAMHTo0s2bNytixY3P88cfnmWeeKTIaAAAAAAAAAEBNK7QoZNOmTWlsbOzcL5VKueWWWzJu3LiMGjUqS5cuLTAdAAAAAAAAAEDtanz9U6pn2LBhWbRoUYYPH97l+PTp05Mk48ePLyIWAAAAAAAAAEDNK3SmkNNOOy233Xbba7ZNnz49EyZMSKVS6eFUAAAAAAAAAAC1r1Spw6qLzVuKTgAA7KwGHHlx1cdY+/D0qo8BAAAAAOz4+ha6LgTd7bDLHyg6wk7r118ZXXSEqil0phAAAAAAAAAAAKpDUQgAAAAAAAAAQB0yoRAAQDfqiaVdLFEDAAAAAADFmD9/fq677ro88sgjWbFiRe6+++6ceuqpne2VSiVf+cpX8p3vfCcvvPBCjj322Nxyyy15xzve0XnOH/7wh3zqU5/KrFmz0tDQkA9+8IO56aab0r9//85znnjiiXzyk5/Mww8/nLe+9a351Kc+lS9+8YvbnddMIQAAAAAAAAAA2+Cll17KyJEj841vfOM126+99trcfPPNufXWW7Nw4cL069cvY8eOzebNmzvPmThxYp588snMmzcv9957b+bPn59PfOITne3r16/PmDFjsu++++aRRx7Jddddl69+9av59re/vd15zRQCAAAAAAAAALANTjrppJx00kmv2VapVHLjjTfmb//2b3PKKackSWbOnJm99torP/nJT3LmmWdm8eLFmTNnTh5++OEcccQRSZKvf/3rOfnkk3P99ddn8ODB+dGPfpSXX3453/ve99KnT58cfPDBeeyxx3LDDTd0KR7ZFmYKAQAAAAAAAAB4k5YvX56VK1fmxBNP7DzW0tKSo446KgsWLEiSLFiwILvvvntnQUiSnHjiiWloaMjChQs7zznhhBPSp0+fznPGjh2bJUuWZO3atduVyUwhAAAAAAAAAFCwUqnoBDuvcrmccrnc5VhTU1Oampq2q5+VK1cmSfbaa68ux/faa6/OtpUrV2bPPffs0t7Y2Jg99tijyzn777//q/r4Y9uAAQO2OZOZQgAAAAAAAACAnVZra2taWlq6bK2trUXH6hZmCgEAAAAAAAAAdlpTp07N5MmTuxzb3llCkmTvvfdOkjz//PMZNGhQ5/Hnn38+hx56aOc5q1at6vK4LVu25A9/+EPn4/fee+88//zzXc754/4fz9lWhc8UUqlUsnz58mzZsiVJ8vLLL+eOO+7IzJkz8/vf/77gdAAAAAAAAABAPWtqaspuu+3WZXsjRSH7779/9t5779x///2dx9avX5+FCxfm6KOPTpIcffTReeGFF/LII490nvPAAw+ko6MjRx11VOc58+fPzyuvvNJ5zrx583LggQdu19IxScFFIUuWLMn++++foUOHZvjw4Vm+fHmOOeaYnHfeeZk0aVKGDx+eZcuWFRkRAAAAAAAAACBJ8uKLL+axxx7LY489liRZvnx5HnvssbS1taVUKuWzn/1srrzyytxzzz35l3/5l5x99tkZPHhwTj311CTJ8OHD8/73vz/nn39+fvWrX+UXv/hFLr744px55pkZPHhwkuSss85Knz59ct555+XJJ5/MHXfckZtuuulVs5lsi0KLQi655JKMHDkyjz32WP7yL/8yH/jAB7LPPvtk7dq1+cMf/pCjjz46V1xxRZERAQAAAAAAAACSJIsWLcphhx2Www47LEkyefLkHHbYYbnsssuSJF/84hfzqU99Kp/4xCdy5JFH5sUXX8ycOXPSt2/fzj5+9KMfZdiwYXnf+96Xk08+Occdd1y+/e1vd7a3tLRk7ty5Wb58eQ4//PB8/vOfz2WXXZZPfOIT2523VKlUKm/yZ37D9txzz8ydOzeHHnpoXnrppTQ3N2f+/Pk57rjjkiQPPfRQJkyYkOeee267+t28pRppAQB2DAOOvLjqY6x9eHrVxwAAAAAA3py+jUUnoDu984oHio6w03r0stFFR6iaQi8TL774YvbYY48kSb9+/dKvX78MGjSos/3tb397nn/++aLiAQAAAAAAAECPKJVKRUegDhVaFDJ48OC0tbVlyJAhSZJrr702e+65Z2f76tWrM2DAgK32US6XUy6Xuxyr9GpKU1NT9wcGAAAAAAAAAKgRDUUOfuKJJ+bpp5/u3J80aVKam5s79+fOnZt3vvOdW+2jtbU1LS0tXbbrrmmtWmYAAAAAAAAAgFpQqlQqlaJD/CnLly9P3759uywp89+ZKQQA2NkMOPLiqo+x9uHpVR8DAAAAAHhz+ha6LgTd7fC/+3nREXZaj1z63qIjVM0OfZnYf//9X/ecpqZXF4Bs3lKtRAAAAAAAAAAAtaHQ5WOSZNOmTXnwwQfz1FNPvapt8+bNmTlzZgGpAAAAAAAAAABqW6FFIUuXLs3w4cNzwgkn5JBDDsmoUaOyYsWKzvZ169bl3HPPLTAhAAAAAAAAAEBtKrQo5JJLLsmIESOyatWqLFmyJM3NzTn22GPT1tZWZCwAAAAAAAAAgJrXWOTgDz30UO67774MHDgwAwcOzKxZs3LRRRfl+OOPz89//vP069evyHgAAAAAAAAA0CNKpaITUI8KnSlk06ZNaWz8r7qUUqmUW265JePGjcuoUaOydOnSAtMBAAAAAAAAANSuQmcKGTZsWBYtWpThw4d3OT59+vQkyfjx44uIBQAAAAAAAABQ8wqdKeS0007Lbbfd9ppt06dPz4QJE1KpVHo4FQAAAAAAAABA7StV6rDqYvOWohMAAFTPgCMvrvoYax+eXvUxAAAAAIA3p2+h60LQ3Y648udFR9hpLfrb9xYdoWoKnSkEAAAAAAAAAIDqUBQCAAAAAAAAAFCHTCgEAFBjemJpF0vUAAAAAAD0rFKpVHQE6pCZQgAAAAAAAAAA6pCiEAAAAAAAAACAOqQoBAAAAAAAAACgDikKAQAAAAAAAACoQ4pCAAAAAAAAAADq0A5ZFDJ69Og899xzRccAAAAAAAAAAKhZjUUOfs8997zm8fnz5+fee+/N29/+9iTJ+PHjezIWAAAAAAAAAEDNK7Qo5NRTT02pVEqlUnlV26c+9akkSalUSnt7e09HAwAAAAAAAIAeUyoVnYB6VOjyMWPHjs1JJ52UlStXpqOjo3Pr1atXfvOb36Sjo0NBCAAAAAAAAADAG1BoUcjs2bPzvve9L0cccUTuvffeIqMAAAAAAAAAANSVQpePSZLPfe5zee9735uJEydm1qxZ+drXvrZdjy+XyymXy12OVXo1pampqTtjAgAAAAAAAADUlEJnCvmjQw89NIsWLUqpVMqhhx6aSqWyzY9tbW1NS0tLl+26a1qrmBYAAAAAAAAAYMdX+Ewhf7TLLrvk1ltvzT333JOf//znGThw4DY9burUqZk8eXKXY5VeZgkBAAAAAAAAAHZuO0xRyB+NHz8+48eP3+bzm5pevVTM5i3dnQoAAAAAAAAAoLYUvnzMpk2b8uCDD+app556VdvmzZszc+bMAlIBAAAAAAAAQM8plUq2grZ6VmhRyNKlSzN8+PCccMIJOeSQQzJq1KisWLGis33dunU599xzC0wIAAAAAAAAAFCbCi0KueSSSzJixIisWrUqS5YsSXNzc4499ti0tbUVGQsAAAAAAAAAoOYVWhTy0EMPpbW1NQMHDszQoUMza9asjB07Nscff3yeeeaZIqMBAAAAAAAAANS0QotCNm3alMbGxs79UqmUW265JePGjcuoUaOydOnSAtMBAAAAAAAAANSuxtc/pXqGDRuWRYsWZfjw4V2OT58+PUkyfvz4ImIBAAAAAAAAANS8QmcKOe2003Lbbbe9Ztv06dMzYcKEVCqVHk4FAAAAAAAAAFD7SpU6rLrYvKXoBAAAtW3AkRdXfYy1D0+v+hgAAAAAUM/6FrouBN3tqNb/U3SEndbCqaOKjlA1LhMAAAAAAAAAULBSqegE1KNCl48BAAAAAAAAAKA6zBQCAMCr9MTSLgPe9emqj7H2VzdXfQwAAAAAANhRmSkEAAAAAAAAAKAOKQoBAAAAAAAAAKhDikIAAAAAAAAAAOqQohAAAAAAAAAAgDrUWHQAAAAAAAAAANjZlUqloiNQh8wUAgAAAAAAAABQh3a4mUKWL1+e3/72txk0aFBGjBhRdBwAAAAAAAAAgJpU6EwhF110UV588cUkyaZNm3L66adn6NChGTt2bEaOHJnRo0d3tgMAAAAAAAAAsO0KLQr51re+lY0bNyZJ/u7v/i4LFy7MfffdlxdffDHz589PW1tbrrrqqiIjAgAAAAAAAADUpEKLQiqVSud/z5o1K9dee23e+973Ztddd82xxx6bG264IXfddVeBCQEAAAAAAAAAalOhRSFJUiqVkiQrV67MX/zFX3RpGzlyZP7t3/6tiFgAAAAAAAAAADWtsegAl156aXbdddc0NDTkd7/7XQ4++ODOtjVr1qRfv35bfXy5XE65XO5yrNKrKU1NTVXJCwAAAAAAAABQCwqdKeSEE07IkiVL8utf/zoHHXRQnnvuuS7tP/3pT7sUibyW1tbWtLS0dNmuu6a1mrEBAAAAAAAAoFuVSraitnpWqlQqlaJD/CnPPPNM+vTpk3322edPnmOmEACA2jTgXZ+u+hhrf3Vz1ccAAAAAgKL0LXxdCLrTMdfOLzrCTuuhL55QdISq2aEvEwcccMDrntPU9OoCkM1bqpUIAAAAAAAAAKA2FLp8TJJs2rQpDz74YJ566qlXtW3evDkzZ84sIBUAAAAAAAAAQG0rtChk6dKlGT58eE444YQccsghGTVqVFasWNHZvm7dupx77rkFJgQAAAAAAAAAqE2FFoVccsklGTFiRFatWpUlS5akubk5xx57bNra2oqMBQAAAAAAAABQ8wotCnnooYfS2tqagQMHZujQoZk1a1bGjh2b448/Ps8880yR0QAAAAAAAAAAalpjkYNv2rQpjY3/FaFUKuWWW27JxRdfnFGjRuXHP/5xgekAAAAAAAAAoGeUSqWiI1CHCi0KGTZsWBYtWpThw4d3OT59+vQkyfjx44uIBQAAAAAAAABQ8wpdPua0007Lbbfd9ppt06dPz4QJE1KpVHo4FQAAAAAAAABA7StV6rDqYvOWohMAAPB6Brzr01UfY+2vbq76GAAAAABQlL6FrgtBdzv2uv+v6Ag7rV9MOb7oCFVT6EwhAAAAAAAAAABUh6IQAAAAAAAAAIA6ZEIhAAAK0RNLuww48uKq9r/24elV7R8AAAAAAN4MRSEAAAAAAAAAULBSqegE1CPLxwAAAAAAAAAA1CFFIQAAAAAAAAAAdUhRCAAAAAAAAABAHVIUAgAAAAAAAABQhxqLHLxcLqehoSG9e/dOkvzrv/5rvve976WtrS377rtvzjvvvOy///5FRgQAAAAAAAAAqEmFzhQyduzY/PM//3OS5Be/+EUOPvjg3HvvvXnllVfy05/+NCNGjMiCBQuKjAgAAAAAAAAAUJMKLQr59a9/nZEjRyZJvvzlL+eiiy7K448/nttvvz2PPvpoJk+enClTphQZEQAAAAAAAACgJhW6fEx7e3va29uTJE8//XRuuummLu3nnHNObrzxxgKSAQAAAAAAAEDPKZVKRUegDhU6U8hRRx2VWbNmJUn+7M/+LI8//niX9sceeyx77LFHEdEAAAAAAAAAAGpaoTOFXHnllTnppJPy0ksvZcKECfn85z+fZcuWZfjw4VmyZEluvvnmTJ06dat9lMvllMvlLscqvZrS1NRUzegAAAAAAAAAADu0QotCjj766MyePTuTJ0/OwoULkyRXXXVVkmTw4MH56le/ms985jNb7aO1tTWXX355l2NfvvQr+dvLvlqVzAAAAAAAAAAAtaBUqVQqRYdIktWrV+eZZ55JR0dHBg0alP3222+bHmemEAAA/pQBR15c1f7XPjy9qv0DAAAAwNb0LXQKALrb8X//YNERdlr/3+ePKzpC1ewwl4m3vvWteetb37rdj2tqenUByOYt3ZUKAAAAAAAAAKA2NRQdYNOmTXnwwQfz1FNPvapt8+bNmTlzZgGpAAAAAAAAAABqW6FFIUuXLs3w4cNzwgkn5JBDDsmoUaOyYsWKzvZ169bl3HPPLTAhAAAAAAAAAFRfqVSyFbTVs0KLQi655JKMGDEiq1atypIlS9Lc3Jxjjz02bW1tRcYCAAAAAAAAAKh5hRaFPPTQQ2ltbc3AgQMzdOjQzJo1K2PHjs3xxx+fZ555pshoAAAAAAAAAAA1rdCikE2bNqWxsbFzv1Qq5ZZbbsm4ceMyatSoLF26tMB0AAAAAAAAAAC1q/H1T6meYcOGZdGiRRk+fHiX49OnT0+SjB8/vohYAAAAAAAAAAA1r9CZQk477bTcdtttr9k2ffr0TJgwIZVKpYdTAQAAAAAAAADUvlKlDqsuNm8pOgEAADuCAUdeXNX+1z48var9AwAAAMDW9C10XQi62wk3/KLoCDut+ZOPLTpC1RQ6UwgAAAAAAAAAANWhdgwAAAAAAAAAClYqFZ2AeqQoBACAulXt5V0GvOvTVe0/Sdb+6uaqjwEAAAAAQH2yfAwAAAAAAAAAQB1SFAIAAAAAAAAAUIcUhQAAAAAAAAAA1CFFIQAAAAAAAAAAdUhRCAAAAAAAAABAHWoscvA777wzJ510UnbdddciYwAAAAAAAABAoUqlUtERqEOFzhTyoQ99KIMGDconPvGJLFy4sMgoAAAAAAAAAAB1pfDlY77whS9k0aJFOfroozNixIjceOONWbNmTdGxAAAAAAAAAABqWuFFIRdccEEeffTRPPzwwznhhBNy+eWX521ve1vOOOOMzJs3r+h4AAAAAAAAAAA1qfCikD86/PDD881vfjMrVqzId77znaxevTrvf//7s//++xcdDQAAAAAAAACg5hRaFFIqlV51rG/fvvnoRz+an//851myZEnOOuusApIBAAAAAAAAANS2xiIHr1QqW20fOnRorrrqqq2eUy6XUy6Xu/bbqylNTU1vOh8AAAAAAAAAQK0qdKaQ5cuX561vfeub6qO1tTUtLS1dtuuuae2mhAAAAAAAAAAAtanQmUL23XffN93H1KlTM3ny5C7HKr3MEgIAAAAAAABA7SiVik5APSp0ppAk2bRpUx588ME89dRTr2rbvHlzZs6cudXHNzU1ZbfdduuyWToGAAAAAAAAANjZFVoUsnTp0gwfPjwnnHBCDjnkkIwaNSorVqzobF+3bl3OPffcAhMCAAAAAAAAANSmQotCLrnkkowYMSKrVq3KkiVL0tzcnGOPPTZtbW1FxgIAAAAAAAAAqHmFFoU89NBDaW1tzcCBAzN06NDMmjUrY8eOzfHHH59nnnmmyGgAAAAAAAAAADWt0KKQTZs2pbGxsXO/VCrllltuybhx4zJq1KgsXbq0wHQAAAAAAAAAALWr8fVPqZ5hw4Zl0aJFGT58eJfj06dPT5KMHz++iFgAAAAAAAAAADWv0JlCTjvttNx2222v2TZ9+vRMmDAhlUqlh1MBAAAAAAAAQM8qlUq2grZ6VqrUYdXF5i1FJwAAYGcw4F2frvoYa391c9XHAAAAAKA29S10XQi62+ibFxQdYaf1wKePLjpC1RQ6UwgAAAAAAAAAANWhKAQAAAAAAAAAoA6ZUAgAAN6gnljaZcCRF1d9jLUPT6/6GAAAAAAA9DwzhQAAAAAAAAAA1CFFIQAAAAAAAAAAdcjyMQAAAAAAAABQsFKp6ATUIzOFAAAAAAAAAADUIUUhAAAAAAAAAAB1SFEIAAAAAAAAAEAdaiw6wOOPP55HHnkk73nPe3LAAQfkySefzDe+8Y10dHTktNNOy9ixY4uOCAAAAAAAAABQcwqdKeSuu+7K4Ycfni9+8YsZOXJk7rvvvhx33HFZtmxZnn322XzgAx/Ij3/84yIjAgAAAAAAAADUpEKLQq666qpcfvnl+f3vf5/vfOc7+dCHPpTJkydn3rx5mTNnTq655ppcd911RUYEAAAAAAAAAKhJhRaFLFmyJBMnTkySfPjDH85LL72UU089tbP9tNNOy29/+9uC0gEAAAAAAAAA1K7GIgdvbm7OmjVrst9+++WFF17Ili1bsmbNms72NWvWpH///gUmBAAAAAAAAIDqayiVio5AHSq0KOTEE0/MJz/5yXzqU5/KHXfckTFjxmTq1KmZMWNGSqVSpkyZkuOOO26rfZTL5ZTL5S7HKr2a0tTUVM3oAAAAAAAAAAA7tEKXj7n++uuz22675cILL8zLL7+cO+64I0cccUQOOuigHHTQQfnd736XadOmbbWP1tbWtLS0dNmuu6a1h34CAAAAAAAAAIAdU6lSqVSKDvHfPfPMM9m4cWOGDRuWxsatT2ZiphAAAOrZgCMvrvoYax+eXvUxAAAAAOh+fQtdF4Lu9j+m/7LoCDuteRe/u+gIVbNDXiYOOOCAbT63qenVBSCbt3R3IgAAAAAAAACA2lLo8jFJsmnTpjz44IN56qmnXtW2efPmzJw5s4BUAAAAAAAAAAC1rdCikKVLl2b48OE54YQTcsghh2TUqFFZsWJFZ/u6dety7rnnFpgQAAAAAAAAAKA2FVoUcskll2TEiBFZtWpVlixZkubm5hx77LFpa2srMhYAAAAAAAAA9KhSyVbUVs8KLQp56KGH0tramoEDB2bo0KGZNWtWxo4dm+OPPz7PPPNMkdEAAAAAAAAAAGpaoUUhmzZtSmNjY+d+qVTKLbfcknHjxmXUqFFZunRpgekAAAAAAAAAAGpX4+ufUj3Dhg3LokWLMnz48C7Hp0+fniQZP358EbEAAAAAAAAAAGpeoTOFnHbaabnttttes2369OmZMGFCKpVKD6cCAAAAAAAAAKh9pUodVl1s3lJ0AgAA6B4Djry46mOsfXh61ccAAAAAoPv1LXRdCLrbmG/8sugIO625n3x30RGqptCZQgAAAAAAAAAAqA5FIQAAAAAAAAAAdciEQrAT6YnFokql6o8BvJrXN7y2jiq/OBp64IXRE0u7vO2826o+xv/97oSqj8HOxXsf3e2VLR1V7b93o7/L2dl0dFT5PqShPi5S9bKwtfcMulu1Xxt+Z6E4PsvsONqrfL+WJC9X+XNGkvRt7FX1Meg5JS9gqsA3EgAAAAAAAAAAdUhRCAAAAAAAAABAHVIUAgAAAAAAAABQhxSFAAAAAAAAAADUIUUhAAAAAAAAAAB1qLHoAEnywAMP5MEHH8yKFSvS0NCQAw44IOPHj8873vGOoqMBAAAAAAAAANSkQotCVq1alXHjxmXRokVpaGhIR0dHDjvssNx111255JJLMnny5Fx77bVFRgQAAAAAAACAqmsoFZ2AelTo8jGf/vSnM3jw4KxduzYvvvhiLrroohx88MFZsWJF5s6dm+9973u56aabiowIAAAAAAAAAFCTCi0KmT17dq688srstttuaWpqyrRp03Lbbbdl/fr1GT16dG688cbccsstRUYEAAAAAAAAAKhJhRaFNDU1pVT6rzlwGhoa0t7eni1btiRJjjnmmDz77LMFpQMAAAAAAAAAqF2FFoUcd9xxueyyy/LSSy/llVdeyd/8zd/kgAMOyB577JEkWb16dQYMGLDVPsrlctavX99lK5fLPREfAAAAAAAAAGCHVWhRyPXXX5/HHnssu+++e/r165fvf//7XZaLWbx4cc4555yt9tHa2pqWlpYu23XXtFY5OQAAAAAAAADAjq1UqVQqRQbYuHFjHnzwwbz88st597vfnYEDB27X48vl8qtmBqn0akpTU1N3xoS60BOv9v9nRSigB3l9w2vrqPKLo6FOXhhvO++2qo/xf787oepjsHPx3kd3e2VLR1X7791Y6N/lUICOjirfhzTUx0Wq2G8mu4/3DLpbtV8bfmehOD7L7Djaq3y/liQvV/lzRpIM2LVX1ceg55x0y8KiI+y0Zk86qugIVdNYdIBdd901Y8aMecOPb2p6dQHI5i1vNhUAAAAAAAAAQG0r/M9UNm3alAcffDBPPfXUq9o2b96cmTNnFpAKAAAAAAAAAHpOqVSyFbTVs0KLQpYuXZrhw4fnhBNOyCGHHJJRo0ZlxYoVne3r1q3LueeeW2BCAAAAAAAAAIDaVGhRyCWXXJIRI0Zk1apVWbJkSZqbm3Psscemra2tyFgAAAAAAAAAADWv0KKQhx56KK2trRk4cGCGDh2aWbNmZezYsTn++OPzzDPPFBkNAAAAAAAAAKCmFVoUsmnTpjQ2Nnbul0ql3HLLLRk3blxGjRqVpUuXFpgOAAAAAAAAAKB2Nb7+KdUzbNiwLFq0KMOHD+9yfPr06UmS8ePHFxELAAAAAAAAAKDmFTpTyGmnnZbbbrvtNdumT5+eCRMmpFKp9HAqAAAAAAAAAIDaV6rUYdXF5i1FJ4AdU0+82kul6o8BvJrXN7y2jiq/OBrq5IXxtvNeu1C7O/3f706o+hjsXLz30d1e2dJR1f57Nxb6dzkUoKOjyvchDfVxkaqXbya9Z9Ddqv3a8DsLxfFZZsfRXuX7tSR5ucqfM5JkwK69qj4GPecD3/pV0RF2Wv/7gncVHaFqfCMBAAAAAAAAAFCHFIUAAAAAAAAAANShxqIDAD3HlHFQv7y+4bXVy/Iu1dYTS7sMOPLiqo+x9uHpVR+DHYeXN93N8i50t3pZ3qXaXM/htXltQP3y+t5x9OqB+7Vd+ljaBSiebzwAAAAAAAAAAOqQohAAAAAAAAAAgDqkKAQAAAAAAAAAoA4pCgEAAAAAAAAAqEONRQcAAAAAAAAAgJ1dKaWiI1CHzBQCAAAAAAAAAFCHFIUAAAAAAAAAANShHWL5mF/96ldZsGBBVq5cmSTZe++9c/TRR+dd73pXwckAAAAAAAAAAGpToUUhq1atygc/+MH84he/yJAhQ7LXXnslSZ5//vl87nOfy7HHHps777wze+65Z5ExAQAAAAAAAABqTqHLx1x00UVpb2/P4sWL8+yzz2bhwoVZuHBhnn322SxevDgdHR355Cc/WWREAAAAAAAAAICaVOhMIT/72c8yf/78HHjgga9qO/DAA3PzzTfnPe95T88HAwAAAAAAAACocYUWhTQ1NWX9+vV/sn3Dhg1pamraah/lcjnlcrnLsUqvptd9HAAAAAAAAADsKBpKRSegHhW6fMyHP/zhfOxjH8vdd9/dpThk/fr1ufvuu3PuuedmwoQJW+2jtbU1LS0tXbbrrmmtdnQAAAAAAAAAgB1aoTOF3HDDDeno6MiZZ56ZLVu2pE+fPkmSl19+OY2NjTnvvPNy/fXXb7WPqVOnZvLkyV2OVXqZJQQAAAAAAAAA2LkVvnzMLbfckmuuuSaPPPJIVq5cmSTZe++9c/jhh2e33Xbbpj7++1Ixm7dUJS4AAAAAAAAAQM0odPmYJFm8eHHuvPPODBo0KBMmTMhhhx2Wf/iHf8hnP/vZPPDAA0XHAwAAAAAAAACoSYXOFDJnzpyccsop6d+/fzZu3Ji77747Z599dkaOHJmOjo6MGTMmc+fOzejRo4uMCQAAAAAAAABQcwqdKeSKK67IlClTsmbNmsyYMSNnnXVWzj///MybNy/3339/pkyZkmnTphUZEQAAAAAAAACgJhVaFPLkk0/mnHPOSZKcccYZ2bBhQ04//fTO9okTJ+aJJ54oKB0AAAAAAAAA9IxSqWQraKtnhRaFJOn8B25oaEjfvn3T0tLS2dbc3Jx169YVFQ0AAAAAAAAAoGYVWhSy3377ZdmyZZ37CxYsyJAhQzr329raMmjQoCKiAQAAAAAAAADUtMYiB580aVLa29s790eMGNGlffbs2Rk9enRPxwIAAAAAAAAAqHmFFoVceOGFW22/+uqreygJAAAAAAAAAEB9KXT5GAAAAAAAAAAAqqPQmUIAAICdw9qHp1d9jAHvvayq/a/9+RVV7R8oVqVS3f5Lper2D0B96ajyG1ODNyaAHlHt6/l/cE0Hts5MIQAAAAAAAAAAdchMIQAAAAAAAABQMJN5UQ1mCgEAAAAAAAAAqEOKQgAAAAAAAAAA6pCiEAAAAAAAAACAOqQoBAAAAAAAAACgDikKAQAAAAAAAACoQzt0UcjatWszc+bMomMAAAAAAAAAANScxqIDbE1bW1vOPffcnH322UVHAQAAAAAAAICqaSiVio5AHSq0KGT9+vVbbd+wYUMPJQEAAAAAAAAAqC+FFoXsvvvuKW2l2qlSqWy1HQAAAAAAAACA11ZoUUhzc3O+/OUv56ijjnrN9mXLluWCCy7Yah/lcjnlcrnLsUqvpjQ1NXVbTgAAAAAAAACAWlNoUcg73/nOJMmoUaNes3333XdPpVLZah+tra25/PLLuxz78qVfyd9e9tVuyQgAAAAAAAAAUIsKLQo566yzsnHjxj/Zvvfee+crX/nKVvuYOnVqJk+e3OVYpZdZQgAAAAAAAACAnVuhRSHnn3/+Vtv32muv1y0KaWp69VIxm7e86WgAAAAAAAAAADWtoegAixcvzowZM/L0008nSZ5++ulMmjQpH//4x/PAAw8UnA4AAAAAAAAAoDYVOlPInDlzcsopp6R///7ZuHFj7r777px99tkZOXJkOjo6MmbMmMydOzejR48uMiYAAAAAAAAAVFWpVHQC6lGhM4VcccUVmTJlStasWZMZM2bkrLPOyvnnn5958+bl/vvvz5QpUzJt2rQiIwIAAAAAAAAA1KRCi0KefPLJnHPOOUmSM844Ixs2bMjpp5/e2T5x4sQ88cQTBaUDAAAAAAAAAKhdhRaFJEnpP+fAaWhoSN++fdPS0tLZ1tzcnHXr1hUVDQAAAAAAAACgZhVaFLLffvtl2bJlnfsLFizIkCFDOvfb2toyaNCgIqIBAAAAAAAAANS0xiIHnzRpUtrb2zv3R4wY0aV99uzZGT16dE/HAgAAAAAAAACoeYUWhVx44YVbbb/66qt7KAkAAAAAAAAAQH0ptCgEAAAAAAAAAEhKpVLREahDDUUHAAAAAAAAAACg+5kpZCfX0VGp+hgNDSraAACovrU/v6Kq/Q/4wPVV7T9J1v7vL1R9jJ5Qqf7HjPjDGbpbpcq/uP7aC4DtUYr3DYC60AOfjwFej5lCAAAAAAAAAADqkKIQAAAAAAAAAIA6pCgEAAAAAAAAAKAOKQoBAAAAAAAAAKhDikIAAAAAAAAAAOpQY9EBAAAAAAAAAGBnVyoVnYB6tEPMFNLR0fEnj7e1tfVwGgAAAAAAAACA2ldoUcj69etzxhlnpF+/ftlrr71y2WWXpb29vbN99erV2X///QtMCAAAAAAAAABQmwpdPubSSy/N448/nh/+8Id54YUXcuWVV+bRRx/NXXfdlT59+iRJKpVKkREBAAAAAAAAAGpSoTOF/OQnP8m3vvWtnH766fnrv/7rLFq0KKtXr864ceNSLpeTJCULJwEAAAAAAAAAbLdCi0JWr16dfffdt3N/4MCBue+++7Jhw4acfPLJ2bhxY4HpAAAAAAAAAABqV6FFIUOGDMnixYu7HGtubs7cuXOzadOmnHbaaa/bR7lczvr167tsf5xlBAAAAAAAAABgZ1VoUciYMWMyY8aMVx3v379/fvazn6Vv376v20dra2taWlq6bNdd01qNuAAAAAAAAABQFQ2lkq2grZ41Fjn45Zdfnt/97nev2dbc3Jx58+bl0Ucf3WofU6dOzeTJk7scq/Rq6raMAAAAAAAAAAC1qNCikAEDBmTlypWZMWNGjj766AwbNixPP/10brrpppTL5XzkIx/J6NGjt9pHU1NTmpq6FoFs3lLN1AAAAAAAAAAAO75Ci0LmzJmTU045Jf3798/GjRtz99135+yzz87IkSPT0dGRMWPGZO7cua9bGAIAAAAAAAAAQFcNRQ5+xRVXZMqUKVmzZk1mzJiRs846K+eff37mzZuX+++/P1OmTMm0adOKjAgAAAAAAAAAUJMKLQp58sknc8455yRJzjjjjGzYsCGnn356Z/vEiRPzxBNPFJQOAAAAAAAAAKB2FVoUkiSlUilJ0tDQkL59+6alpaWzrbm5OevWrSsqGgAAAAAAAABAzSq0KGS//fbLsmXLOvcXLFiQIUOGdO63tbVl0KBBRUQDAAAAAAAAAKhpjUUOPmnSpLS3t3fujxgxokv77NmzM3r06J6OBQAAAAAAAAA9qlR0AOpSoUUhF1544Vbbr7766h5KAgAAAAAAAABQXwpdPgYAAAAAAAAAgOpQFAIAAAAAAAAAUIcKXT6G4jU0WJkKAAC2xdr//YWqjzHgqM9UfYy1C2+q+hglHzOoQT4fA7AjcT8FUB98zgB2BGYKAQAAAAAAAACoQ4pCAAAAAAAAAADqkOVjAAAAAAAAAKBgJWvIUQVmCgEAAAAAAAAAqEOKQgAAAAAAAAAA6pCiEAAAAAAAAACAOqQoBAAAAAAAAACgDhVeFFKpVLJ8+fJs2bIlSfLyyy/njjvuyMyZM/P73/++4HQAAAAAAAAAALWp0KKQJUuWZP/998/QoUMzfPjwLF++PMccc0zOO++8TJo0KcOHD8+yZcuKjAgAAAAAAAAAkCRpb2/PpZdemv333z+77LJL/uzP/ix/93d/l0ql0nlOpVLJZZddlkGDBmWXXXbJiSee+Krahz/84Q+ZOHFidtttt+y+++4577zz8uKLL3Z73kKLQi655JKMHDkyjz32WP7yL/8yH/jAB7LPPvtk7dq1+cMf/pCjjz46V1xxRZERAQAAAAAAAKDqGkq2orbtcc011+SWW27J9OnTs3jx4lxzzTW59tpr8/Wvf73znGuvvTY333xzbr311ixcuDD9+vXL2LFjs3nz5s5zJk6cmCeffDLz5s3Lvffem/nz5+cTn/hEd/06dSpV/t9ylR625557Zu7cuTn00EPz0ksvpbm5OfPnz89xxx2XJHnooYcyYcKEPPfcc9vV7+Yt1UgLAABQXQOO+kzVx1i78KaqjwEAAAD0jL6NRSegO0384WNFR9hp/eijh27zuX/5l3+ZvfbaK9/97nc7j33wgx/MLrvskv/1v/5XKpVKBg8enM9//vP5whe+kCRZt25d9tprr3z/+9/PmWeemcWLF+eggw7Kww8/nCOOOCJJMmfOnJx88sn593//9wwePLjbfrZCZwp58cUXs8ceeyRJ+vXrl379+mXQoEGd7W9/+9vz/PPPb7WPcrmc9evXd9nK5XJVcwMAAAAAAAAAO59jjjkm999/f5YuXZokefzxx/Pggw/mpJNOSpIsX748K1euzIknntj5mJaWlhx11FFZsGBBkmTBggXZfffdOwtCkuTEE09MQ0NDFi5c2K15Cy0KGTx4cNra2jr3r7322uy5556d+6tXr86AAQO22kdra2taWlq6bNdd01q1zAAAAAAAAABA/dieySi+9KUv5cwzz8ywYcPSu3fvHHbYYfnsZz+biRMnJklWrlyZJNlrr726PG6vvfbqbFu5cmWX2ogkaWxszB577NF5TncptCjkxBNPzNNPP925P2nSpDQ3N3fuz507N+985zu32sfUqVOzbt26LtuUS6ZWLTMAAAAAAAAAUD9eazKK1tbXnoziH/7hH/KjH/0oP/7xj/Poo4/mBz/4Qa6//vr84Ac/6OHU26bQVaZuvfXWrbZ/+MMfzsc+9rGtntPU1JSmpqYuxzZvedPRAAAAAAAAAICdwNSpUzN58uQux/57HcIfTZkypXO2kCQ55JBD8txzz6W1tTUf+9jHsvfeeydJnn/++QwaNKjzcc8//3wOPfTQJMnee++dVatWdel3y5Yt+cMf/tD5+O5S6EwhSbJ48eLMmDGjc8aQp59+OpMmTcrHP/7xLF++vMs/EgAAAAAAAABAd2pqaspuu+3WZftTRSEbN25MQ0PXUotevXqlo6MjSbL//vtn7733zv3339/Zvn79+ixcuDBHH310kuToo4/OCy+8kEceeaTznAceeCAdHR056qijuvVnK3SmkDlz5uSUU05J//79s3Hjxtx99905++yzM3LkyHR0dGTMmDGZO3duRo8eXWRMAAAAAAAAAICMGzcuV111VYYMGZKDDz44v/71r3PDDTfk4x//eJKkVCrls5/9bK688sq84x3vyP77759LL700gwcPzqmnnpokGT58eN7//vfn/PPPz6233ppXXnklF198cc4888wMHjy4W/OWKpVKpVt73A7HHHNMRo8enSuvvDK33357LrrookyaNClXXXVVkv+YouWRRx7J3Llzt6tfy8cAAAC1aMBRn6n6GGsX3lT1MQAAAICe0bfQKQDobh/5X48XHWGn9b8+MnKbz92wYUMuvfTS3H333Vm1alUGDx6cCRMm5LLLLkufPn2SJJVKJV/5ylfy7W9/Oy+88EKOO+64fPOb38yf//mfd/bzhz/8IRdffHFmzZqVhoaGfPCDH8zNN9+c/v37d+vPVmhRSEtLSx555JEMHTo0HR0daWpqyq9+9ascdthhSZLf/OY3OfHEE7Ny5crt6ldRCAAAUIsUhQAAAADbQ1FIfVEUUpztKQqpNQ2vf0p1lUqlJElDQ0P69u2blpaWzrbm5uasW7euqGgAAAAAAAAAADWr0KKQ/fbbL8uWLevcX7BgQYYMGdK539bWlkGDBhURDQAAAAAAAACgphU6odCkSZPS3t7euT9ixIgu7bNnz87o0aN7OhYAAAAAAAAAQM0rtCjkwgsv3Gr71Vdf3UNJAAAAAAAAAADqS6HLxwAAAAAAAAAAUB2FzhQCAAAAAAAAACSlUtEJqEeKQgAAAHYQaxfeVPUxBhx5cdXHWPvw9KqPAQAAAAC8PsvHAAAAAAAAAADUIUUhAAAAAAAAAAB1SFEIAAAAAAAAAEAdUhQCAAAAAAAAAFCHFIUAAAAAAAAAANQhRSEAAAAAAAAAAHVohywKGT16dJ577rmiYwAAAAAAAABAjyiVSraCtnrWWOTg99xzz2senz9/fu699968/e1vT5KMHz++J2MBAAAAAAAAANS8QotCTj311JRKpVQqlVe1fepTn0ryH9VQ7e3tPR0NAAAAAAAAAKCmFbp8zNixY3PSSSdl5cqV6ejo6Nx69eqV3/zmN+no6FAQAgAAAAAAAADwBhRaFDJ79uy8733vyxFHHJF77733DfVRLpezfv36Llu5XO7mpAAAAAAAAAAAtaXQopAk+dznPpd77rknl1xySS644IJs3Lhxux7f2tqalpaWLtt117RWKS0AAAAAAAAAQG0ovCgkSQ499NAsWrQopVIphx56aCqVyjY/durUqVm3bl2XbcolU6uYFgAAAAAAAABgx9dYdIA/2mWXXXLrrbfmnnvuyc9//vMMHDhwmx7X1NSUpqamLsc2b6lGQgAAAAAAAACojoZS0QmoR4XPFLJ48eLMmDEjTz/9dJLkz//8z7Np06Z86UtfygMPPFBwOgAAAAAAAACA2lToTCFz5szJKaeckv79+2fjxo25++67c/bZZ2fkyJHp6OjImDFjMnfu3IwePbrImAAAAAAAAAAANafQmUKuuOKKTJkyJWvWrMmMGTNy1lln5fzzz8+8efNy//33Z8qUKZk2bVqREQEAAAAAAAAAalKhRSFPPvlkzjnnnCTJGWeckQ0bNuT000/vbJ84cWKeeOKJgtIBAAAAAAAAANSuQotCkqRUKiVJGhoa0rdv37S0tHS2NTc3Z926dUVFAwAAAAAAAACoWYUWhey3335ZtmxZ5/6CBQsyZMiQzv22trYMGjSoiGgAAAAAAAAAADWtscjBJ02alPb29s79ESNGdGmfPXt2Ro8e3dOxAAAAAAAAAABqXqFFIRdeeOFW26+++uoeSgIAAAAAAAAAxSmVSkVHoA4VunwMAAAAAAAAAADVoSgEAAAAAAAAAKAOFbp8DAAAAD1r7cPTqz7GgHd/rupjrP3l16o+BjuXSqW6/ZsBGAAAACiCmUIAAAAAAAAAAOqQohAAAAAAAAAAgDqkKAQAAAAAAAAAoA41Fh0AAAAAAAAAAHZ2paIDUJfMFAIAAAAAAAAAUIcUhQAAAAAAAAAA1KEdbvmY5cuX57e//W0GDRqUESNGFB0HAAAAAAAAAKAmFTpTyEUXXZQXX3wxSbJp06acfvrpGTp0aMaOHZuRI0dm9OjRne0AAAAAAAAAAGy7QotCvvWtb2Xjxo1Jkr/7u7/LwoULc9999+XFF1/M/Pnz09bWlquuuqrIiAAAAAAAAAAANanQopBKpdL537Nmzcq1116b9773vdl1111z7LHH5oYbbshdd91VYEIAAAAAAAAAgNrUWHSAUqmUJFm5cmX+4i/+okvbyJEj82//9m9FxAIAAAAAAACAHtPwn//vHLpT4UUhl156aXbdddc0NDTkd7/7XQ4++ODOtjVr1qRfv35bfXy5XE65XO5yrNKrKU1NTVXJCwAAAAAAAABQCwpdPuaEE07IkiVL8utf/zoHHXRQnnvuuS7tP/3pT7sUibyW1tbWtLS0dNmuu6a1mrEBAAAAAAAAAHZ4pUqlUik6xJ/yzDPPpE+fPtlnn33+5DlmCgEAANixDHj356o+xtpffq3qY7Bzqfa3I2YABgAAqqFv4etC0J3++o7fFB1hp/U/Pzyi6AhVU/hlYvHixfnlL3+ZY445JgceeGCefvrp3HTTTSmXy/nIRz6S0aNHb/XxTU2vLgDZvKWaiQEAAAAAAAAAdnyFFoXMmTMnp5xySvr375+NGzfm7rvvztlnn52RI0emo6MjY8aMydy5c1+3MAQAAAAAAAAAgK4aihz8iiuuyJQpU7JmzZrMmDEjZ511Vs4///zMmzcv999/f6ZMmZJp06YVGREAAAAAAAAAoCYVWhTy5JNP5pxzzkmSnHHGGdmwYUNOP/30zvaJEyfmiSeeKCgdAAAAAAAAAEDtKnT5mCQplUpJkoaGhvTt2zctLS2dbc3NzVm3bl1R0QAAAAAAAACgR/zn/zqHblXoTCH77bdfli1b1rm/YMGCDBkypHO/ra0tgwYNKiIaAAAAAAAAAEBNK3SmkEmTJqW9vb1zf8SIEV3aZ8+endGjR/d0LAAAAAAAAACAmldoUciFF1641farr766h5IAAAAAAAAAANSXQpePAQAAAAAAAACgOhSFAAAAAAAAAADUoUKXj6ll5Vc6qj5GU281O1CvKpXqj7GlvfrXqd6NrlM7k82vtFd9jF6lUnX7b6hu/0nS0ANj9MQ1pMpPRY+p9r9VJdV/Mhp64Mno6OiBn6MHXhuvbKnue1+vXj1wDamTF98fFnyt6mNs2Lyl6mO88NIrVe3/bXv0rWr/SbLyhXLVxxi0e/V/jp54aZS3VPdep2/vXlXtP0k6euAmoV6uU/Vg08vVvz/vie+mOqr/0TXrNlX3ep4kb+nfp+pjVNuW9upfQxp74H6qXlT7+eiJ58Jn153LKz3xXWSv+vgusifu2aqtXu4Je+L7kPYeGKOv7+mB16EoBAAAAAAAAAAKVqqToit2LErHAAAAAAAAAADqkKIQAAAAAAAAAIA6pCgEAAAAAAAAAKAOKQoBAAAAAAAAAKhDikIAAAAAAAAAAOqQohAAAAAAAAAAgDrUWOTg5XI5DQ0N6d27d5LkX//1X/O9730vbW1t2XfffXPeeedl//33LzIiAAAAAAAAAEBNKnSmkLFjx+af//mfkyS/+MUvcvDBB+fee+/NK6+8kp/+9KcZMWJEFixYUGREAAAAAAAAAKi6UslW1FbPCi0K+fWvf52RI0cmSb785S/noosuyuOPP57bb789jz76aCZPnpwpU6YUGREAAAAAAAAAoCYVWhTS3t6e9vb2JMnTTz+dj33sY13azznnnDz++ONFRAMAAAAAAAAAqGmFFoUcddRRmTVrVpLkz/7sz15VAPLYY49ljz322Gof5XI569ev77KVy+WqZQYAAAAAAAAAqAWNRQ5+5ZVX5qSTTspLL72UCRMm5POf/3yWLVuW4cOHZ8mSJbn55pszderUrfbR2tqayy+/vMuxL1/6lfztZV+tYnIAAAAAAAAAgB1bqVKpVIoMsGDBgkyePDkLFy7scnzw4MGZMmVKPvOZz2z18eVy+VUzg1R6NaWpqanbs3YZ95WOqvafJE29C53IBaiinrjybmmv/nWqd6Pr1M5k8yvtVR+jV6lU3f4bqtt/kjT0wBg9cQ2p8lPRY6r9b1VJ9Z+Mhh54Mjo6euDn6IHXxitbqvve16tXD1xD6uTF1xPXqRfLW6o+xgsvvVLV/t+2R9+q9p8kK1+o/kyag3av/s/REy+Nat/r9O3dq6r9J0lHD7z46uU6VQ82vVz9+/Oe+G6qo/ofXbNuU3Wv50nylv59qj5GtW1pr/41pLEH7qfqRbWfj554Lnx23bm80hPfRfaqj+8ie+Kerdrq5Z6wJ74Pae+BMZr71sdrg/9wwT89WXSEnda3Tj+46AhVU+hMIUly9NFHZ8GCBVm9enWeeeaZdHR0ZNCgQdlvv/226fFNTa8uANlc/e8GAQAAAAAAAAB2aIUXhSxevDi//OUvc8wxx+Soo47K008/nWuuuSblcjkf+chHMnr06KIjAgAAAAAAAEBV1ctMPOxYCi0KmTNnTk455ZT0798/GzduzN13352zzz47I0eOTEdHR8aMGZO5c+cqDAEAAAAAAAAA2E6FLjJ1xRVXZMqUKVmzZk1mzJiRs846K+eff37mzZuX+++/P1OmTMm0adOKjAgAAAAAAAAAUJO2aaaQe+65Z5s7HD9+/Daf++STT2bmzJlJkjPOOCMf/ehHc/rpp3e2T5w4MTNmzNjm/gAAAAAAAAAA+A/bVBRy6qmnblNnpVIp7e3t2xWg9J/rIjU0NKRv375paWnpbGtubs66deu2qz8AAAAAAAAAALZx+ZiOjo5t2ra3IGS//fbLsmXLOvcXLFiQIUOGdO63tbVl0KBB29UnAAAAAAAAAADbOFNItUyaNKlLIcmIESO6tM+ePTujR4/u6VgAAAAAAAAAADXvDRWFvPTSS/k//+f/pK2tLS+//HKXtk9/+tPb3M+FF1641farr776jcQDAAAAAAAAANjpbXdRyK9//eucfPLJ2bhxY1566aXsscce+f3vf59dd901e+6553YVhQAAAAAAAAAASalUdALqUcP2PuBzn/tcxo0bl7Vr12aXXXbJL3/5yzz33HM5/PDDc/3111cjIwAAAAAAAAAA22m7Zwp57LHH8q1vfSsNDQ3p1atXyuVyDjjggFx77bX52Mc+lr/6q7+qRs4dTp/G7a6nAehRvRqUk9K9Xiq3V32M3XftXdX+G+rkdaFafNtV+9+qlPp4MurltdHbPfoOoyeuU0098Hxf9rMlVe3/exMOrWr/SdLc9w2tGrtd6uV9qW/vXkVHeNMa6uXJYJs09sD7d0/8TjX0wEvP5+Nt499px9JQB7e23pZ2MpWiA9QO92w7jlIPPBeNvTzfQPG2+9ayd+/eafjPO9I999wzbW1tSZKWlpb827/9W/emAwAAAAAAAADgDdnuPxk67LDD8vDDD+cd73hHRo0alcsuuyy///3v88Mf/jAjRoyoRkYAAAAAAAAAALbTds8UcvXVV2fQoEFJkquuuioDBgzIpEmTsnr16nz729/u9oAAAAAAAAAAAGy/7Z4p5Igjjuj87z333DNz5szp1kAAAAAAAAAAALx5210UAgAAAAAAAAB0r1KpVHQE6tB2F4Xsv//+W/1lfOaZZ95UIAAAAAAAAAAA3rztLgr57Gc/22X/lVdeya9//evMmTMnU6ZM2a6+7rzzzpx00knZddddtzcGAAAAAAAAAABbsd1FIZ/5zGde8/g3vvGNLFq0aLv6+tCHPpTm5uZ8+MMfznnnnZejjjpqe+MAAAAAAAAAAPAaGrqro5NOOil33nnndj/uC1/4QhYtWpSjjz46I0aMyI033pg1a9Z0VywAAAAAAAAAgJ1StxWF/NM//VP22GOP7X7cBRdckEcffTQPP/xwTjjhhFx++eV529veljPOOCPz5s3rrngAAAAAAAAAADuV7V4+5rDDDkupVOrcr1QqWblyZVavXp1vfvObbzjI4YcfnsMPPzw33HBD/vEf/zHf+9738v73vz9DhgzJ8uXL33C/AAAAAAAAAAA7o+0uCjnllFO6FIU0NDTkrW99a97znvdk2LBh29XX/9vPH/Xt2zcf/ehH89GPfjS//e1vM2PGjK32US6XUy6Xuxyr9GpKU1PTdmUBAAAAAAAAAKgn210U8tWvfrXbBq9UKlttHzp0aK666qqtntPa2prLL7+8y7EvX/qV/O1lX32z8QAAAAAAAACgRzQUHYC6tN1FIb169cqKFSuy5557djm+Zs2a7Lnnnmlvb9/mvpYvX563vvWt2xuhi6lTp2by5MldjlV6mSUEAAAAAAAAANi5bXdRyJ+a3aNcLqdPnz7b1de+++6bxYsX55e//GWOPvroDBs2LE8//XRuuummlMvlfOQjH8no0aO32kdT06uXitm8ZbtiAAAAAAAAAADUnW0uCrn55puTJKVSKf/zf/7P9O/fv7Otvb098+fPz7Bhw7Zr8Dlz5uSUU05J//79s3Hjxtx99905++yzM3LkyHR0dGTMmDGZO3fu6xaGAAAAAAAAAADQ1TYXhXzta19L8h8zhdx6663p1atXZ1ufPn2y33775dZbb92uwa+44opMmTIlV155ZW6//facddZZmTRpUq666qok/7E0zLRp0xSFAAAAAAAAAABsp20uClm+fHmS5L3vfW/uuuuuDBgw4E0P/uSTT2bmzJlJkjPOOCMf/ehHc/rpp3e2T5w4MTNmzHjT4wAAAAAAAAAA7Gy2uSjkj37+8593a4BSqZQkaWhoSN++fdPS0tLZ1tzcnHXr1nXreAAAAAAAAAAAO4OG7X3ABz/4wVxzzTWvOn7ttdfmQx/60Hb1td9++2XZsmWd+wsWLMiQIUM699va2jJo0KDtjQgAAAAAAAAANaVUKtkK2urZdheFzJ8/PyeffPKrjp900kmZP3/+dvU1adKktLe3d+6PGDEijY3/NXnJ7NmzM3r06O2NCAAAAAAAAACw09vu5WNefPHF9OnT51XHe/funfXr129XXxdeeOFW26+++urt6g8AAAAAAAAAgP+w3TOFHHLIIbnjjjtedfz222/PQQcd1C2hAAAAAAAAAAB4c7Z7ppBLL700f/VXf5V//dd/7Vza5f7778+Pf/zj/NM//VO3BwQAAAAAAAAAYPttd1HIuHHj8pOf/CRXX311/umf/im77LJLRo4cmQceeCB77LFHNTLukEqlohMAtawnriElFyq62R79Xr18XHf7w0svV7X/t/Sv/s8AtahSqf4Y3pbobn0at3viy+32vQmHVrX/P//sP1e1/yRZdtMpVR+jXlT7Wug6SHfr1as+fqk6Oqp/I7Jb3+3+ChQK117l10ZDnVxD2HH07oH7c7ZdR5Vvbhvq5Oa2J36MnvjOBeD1vKFPRB/4wAfygQ98IEmyfv363HbbbfnCF76QRx55JO3t7d0aEAAAAAAAAACA7feGy+Tnz5+f7373u7nzzjszePDg/NVf/VW+8Y1vdGc2AAAAAAAAANgpNNTHRDzsYLarKGTlypX5/ve/n+9+97tZv359zjjjjJTL5fzkJz/JQQcdVK2MAAAAAAAAAABsp21e5G3cuHE58MAD88QTT+TGG2/M7373u3z961+vZjYAAAAAAAAAAN6gbZ4pZPbs2fn0pz+dSZMm5R3veEc1MwEAAAAAAAAA8CZt80whDz74YDZs2JDDDz88Rx11VKZPn57f//731cwGAAAAAAAAAMAbtM1FIe9+97vzne98JytWrMgFF1yQ22+/PYMHD05HR0fmzZuXDRs2VDMnAAAAAAAAAADbYZuLQv6oX79++fjHP54HH3ww//Iv/5LPf/7zmTZtWvbcc8+MHz9+uwM8/vjj+d73vpdnnnkmSfLkk0/moosuyoUXXpif/exn290fAAAAAAAAAABvoCjk/3XggQfm2muvzb//+7/ntttu2+7H33XXXTn88MPzxS9+MSNHjsx9992X4447LsuWLcuzzz6bD3zgA/nxj3/8ZiICAAAAAAAAAOyU3lRRyB/16tUrp556au65557tetxVV12Vyy+/PL///e/zne98Jx/60IcyefLkzJs3L3PmzMk111yT6667rjsiAgAAAAAAAMAOq6FkK2qrZ91SFPJGLVmyJBMnTkySfPjDH85LL72UU089tbP9tNNOy29/+9uC0gEAAAAAAAAA1K7GIgdvbm7OmjVrst9+++WFF17Ili1bsmbNms72NWvWpH///lvto1wup1wudzlW6dWUpqamqmQGAAAAAAAAAKgFhc4UcuKJJ+aTn/xkfvSjH+VjH/tYxowZk6lTp+bpp5/OkiVLMmXKlBx33HFb7aO1tTUtLS1dtuuuae2hnwAAAAAAAAAAYMdUaFHI9ddfn9122y0XXnhhXn755dxxxx054ogjctBBB2X48OH53e9+l2nTpm21j6lTp2bdunVdtimXTO2hnwAAAAAAAAAAYMdU6PIxe+21V+bOndvl2Ne//vV87nOfy8aNGzNs2LA0Nm49YlPTq5eK2byl26MCAAAAAAAAANSUQmcKSZLFixdnxowZWbJkSZLk6aefznXXXZcbbrgh8+fPLzgdAAAAAAAAAEBtKnSmkDlz5uSUU05J//79s3Hjxtx99905++yzM3LkyHR0dGTMmDGZO3duRo8eXWRMAAAAAAAAAKiqUqlUdATqUKEzhVxxxRWZMmVK1qxZkxkzZuSss87K+eefn3nz5uX+++/PlClTMm3atCIjAgAAAAAAAADUpEKLQp588smcc845SZIzzjgjGzZsyOmnn97ZPnHixDzxxBMFpQMAAAAAAAAAqF2FFoUk/zUFTkNDQ/r27ZuWlpbOtubm5qxbt66oaAAAAAAAAAAANavQopD99tsvy5Yt69xfsGBBhgwZ0rnf1taWQYMGFRENAAAAAAAAAKCmNRY5+KRJk9Le3t65P2LEiC7ts2fPzujRo3s6FgAAAAAAAABAzSu0KOTCCy/cavvVV1/dQ0kAAAAAAAAAAOpLocvHAAAAAAAAAABQHYXOFAIAAAAAAAAAJA2lohNQjxSFvEGvbOmo+hi9G03kArxxHZVK1cdoKLk72RY98FSkJ56KLR3Vf+/bpXevqvZfL88FAMkr7dV/X9r8cnXHWHrjKVXtP0k+8Q9PVH2MWz90SNXH6In7zi1V/p3qic/47nV2Lu0dPfCZr1f1n/Ce+Dm29MAYu/Sp7mcZdj69XHCpMb6L3LGU4t8KgP+i6gAAAAAAAAAAoA4pCgEAAAAAAAAAqEOKQgAAAAAAAAAA6pCiEAAAAAAAAACAOqQoBAAAAAAAAACgDjUWHQAAAAAAAAAAdnalUtEJqEc7RFHIAw88kAcffDArVqxIQ0NDDjjggIwfPz7veMc7io4GAAAAAAAAAFCTCi0KWbVqVcaNG5dFixaloaEhHR0dOeyww3LXXXflkksuyeTJk3PttdcWGREAAAAAAAAAoCY1FDn4pz/96QwePDhr167Niy++mIsuuigHH3xwVqxYkblz5+Z73/tebrrppiIjAgAAAAAAAADUpEKLQmbPnp0rr7wyu+22W5qamjJt2rTcdtttWb9+fUaPHp0bb7wxt9xyS5ERAQAAAAAAAABqUqHLxzQ1NaVUKnXuNzQ0pL29PVu2bEmSHHPMMXn22We32ke5XE65XO5yrNKrKU1NTd2eFwAAAAAAAACgVhQ6U8hxxx2Xyy67LC+99FJeeeWV/M3f/E0OOOCA7LHHHkmS1atXZ8CAAVvto7W1NS0tLV22665p7Yn4AAAAAAAAAAA7rEJnCrn++uszZsyY7L777imVSunXr1/+8R//sbN98eLFOeecc7bax9SpUzN58uQuxyq9zBICAAAAAAAAAOzcCi0KOeCAA/LEE0/kF7/4Rcrlct797ndn4MCBne2vVxCS/McSNP99qZjNW7o7KQAAAAAAAABUT0OpVHQE6lChy8ckyXPPPZd///d/z9ChQzNw4MA8/fTTmTRpUj7+8Y/ngQceKDoeAAAAAAAAAEBNKnSmkDlz5uSUU05J//79s3Hjxtx99905++yzM3LkyHR0dGTMmDGZO3duRo8eXWRMAAAAAAAAAICaU+hMIVdccUWmTJmSNWvWZMaMGTnrrLNy/vnnZ968ebn//vszZcqUTJs2rciIAAAAAAAAAAA1qdCikCeffDLnnHNOkuSMM87Ihg0bcvrpp3e2T5w4MU888URB6QAAAAAAAAAAalehRSFJUiqVkiQNDQ3p27dvWlpaOtuam5uzbt26oqIBAAAAAAAAANSsQotC9ttvvyxbtqxzf8GCBRkyZEjnfltbWwYNGlRENAAAAAAAAACAmtZY5OCTJk1Ke3t75/6IESO6tM+ePTujR4/u6VgAAAAAAAAA0KMKX+aDulRoUciFF1641farr766h5IAAAAAAAAAANQXxUYAAAAAAAAAAHVIUQgAAAAAAAAAQB0qdPmYWta7UT0NsGNrKJWKjsB/qpenonev6r/39e5V9SGA11Av1yl2Lj3yvrRL7X/u+9aH/qLqY+xx1KerPsbaX91c9THq4XO+6/nOpSeugz2hJ157vas+Qn1wDdmxNDR4QqgtvovcsXg6dhyeC2BHUB+fHgEAAAAAAAAA6EJRCAAAAAAAAABAHbJ8DAAAAAAAAAAUzJJDVIOZQgAAAAAAAAAA6pCiEAAAAAAAAACAOlT48jG/+tWvsmDBgqxcuTJJsvfee+foo4/Ou971roKTAQAAAAAAAADUrsKKQlatWpUPfvCD+cUvfpEhQ4Zkr732SpI8//zz+dznPpdjjz02d955Z/bcc8+iIgIAAAAAAAAA1KzClo+56KKL0t7ensWLF+fZZ5/NwoULs3Dhwjz77LNZvHhxOjo68slPfrKoeAAAAAAAAAAANa2wmUJ+9rOfZf78+TnwwANf1XbggQfm5ptvznve856eDwYAAAAAAAAAUAcKmymkqakp69ev/5PtGzZsSFNTUw8mAgAAAAAAAACoH4XNFPLhD384H/vYx/K1r30t73vf+7LbbrslSdavX5/7778/kydPzoQJE4qKBwAAAAAAAAA9pqFUKjoCdaiwopAbbrghHR0dOfPMM7Nly5b06dMnSVIul9O7d++cd955uf7661+3n3K5nHK53OVYpVeTWUYAAAAAAAAAgJ1aYUUhTU1NueWWW3LNNddk0aJFef7555Mke+21V4444ojOmUNeT2tray6//PIux7586Vfyt5d9tbsjAwAAAAAAAADUjMKKQv5ot912y+jRozv3+/Tpk8cff3ybi0KmTp2ayZMndzlW6WWWEAAAAAAAAABg51ZYUch/L+T4o/b29kybNi1vectbkvzHMjNb09T06qViNm/pnowAAAAAAAAAALWqsKKQG2+8MSNHjszuu+/e5XilUsnixYvTr1+/lEqlYsIBAAAAAAAAANS4wopCrr766nz729/O3//933dZPqZ37975/ve/n4MOOqioaAAAAAAAAAAANa+wopAvfelLed/73pePfOQjGTduXFpbW9O7d++i4gAAAAAAAABAYSykQTU0FDn4kUcemUceeSSrV6/OEUcckd/85jeWjAEAAAAAAAAA6AaFzRTyR/37988PfvCD3H777TnxxBPT3t5edCQAAAAAAAAAgJpXeFHIH5155pk57rjj8sgjj2TfffctOg4AAAAAAAAAQE3bYYpCkmSfffbJPvvsU3QMAAAAAAAAAICa11B0AAAAAAAAAAAAup+iEAAAAAAAAACAOrRDLR8DAAAAdJ9SqfpjrP3VzVUfY8CRF1d9jLUPT6/6GAAAAAA9TVEIAAAAAAAAABSsoQf+uIOdj+VjAAAAAAAAAADqkKIQAAAAAAAAAIA6pCgEAAAAAAAAAKAOKQoBAAAAAAAAAKhDikIAAAAAAAAAAOrQDlsUsnbt2sycObPoGAAAAAAAAAAANamx6AB/SltbW84999ycffbZRUcBAAAAAAAAgKpqKJWKjkAdKqwoZP369Vtt37BhQw8lAQAAAAAAAACoP4UVhey+++4pbaXSqVKpbLUdAAAAAAAAAIA/rbCikObm5nz5y1/OUUcd9Zrty5YtywUXXNDDqQAAAAAAAAAA6kNhRSHvfOc7kySjRo16zfbdd989lUrldfspl8spl8tdjlV6NaWpqenNhwQAAAAAAAAAqFENRQ181llnpW/fvn+yfe+9985XvvKV1+2ntbU1LS0tXbbrrmntzqgAAAAAAAAAADWnVNmW6Th6UKVSSalU2ubzzRQCAAAA9W3AkRdXfYy1D0+v+hgAAADdrW9h60JQDVfM+23REXZal/2PoUVHqJod7jLR1NSUxx9/PMOHD9/m8/97AcjmLdVIBgAAAAAAAABQOworCpk8efJrHm9vb8+0adPylre8JUlyww039GQsAAAAAAAAAOhx27GgBmyzwopCbrzxxowcOTK77757l+OVSiWLFy9Ov379tmsZGQAAAAAAAAAA/kthRSFXX311vv3tb+fv//7vM3r06M7jvXv3zve///0cdNBBRUUDAAAAAAAAAKh5DUUN/KUvfSl33HFHJk2alC984Qt55ZVXiooCAAAAAAAAAFB3CisKSZIjjzwyjzzySFavXp0jjjgiv/nNbywZAwAAAAAAAADQDQpbPuaP+vfvnx/84Ae5/fbbc+KJJ6a9vb3oSAAAAAAAAAAANa/wopA/OvPMM3PcccflkUceyb777lt0HAAAAAAAAACAmrbDFIUkyT777JN99tmn6BgAAAAAAAAA0KMaSkUnoB41FB0AAAAAAAAAAIDupygEAAAAAAAAAKAO7VDLx9SSV9o7qj5G715qdrZFR6VS9TEaSuZq2lH0wNOdenm6/Vttm1e2VP963tgD1/NKqv+Ed1T/nyobX95S1f77NFb/uejbu1fVx6gXPfEeXm31co+w6eX2qo+xS5/qvzY6Oqr8O9UDT3epBwbpiV/b9mo/Fz2kHl7iL/fAvU5PvPetfXh61cd46t/XV7X/YW9rrmr/Sc/crzX2qv4Lo14+y1T75+iJzwA98b60pQd+cXvitdHUu/a/x+uJz8e9e+AzWU9cQyo9MMjmV6r7fOzaVP3373q5nrPjqJffqap/du0BDT2wvkW9XM/LPfGZrNH3kcDW1f6nFQAAAAAAAAAAXkVRCAAAAAAAAABAHVIUAgAAAAAAAABQhxSFAAAAAAAAAADUocaiAwAAAAAAAADAzq6UUtERqEOFzxTS0dHxJ4+3tbX1cBoAAAAAAAAAgPpQWFHI+vXrc8YZZ6Rfv37Za6+9ctlll6W9vb2zffXq1dl///2LigcAAAAAAAAAUNMKWz7m0ksvzeOPP54f/vCHeeGFF3LllVfm0UcfzV133ZU+ffokSSqVSlHxAAAAAAAAAABqWmEzhfzkJz/Jt771rZx++un567/+6yxatCirV6/OuHHjUi6XkySlkjWTAAAAAAAAAADeiMKKQlavXp199923c3/gwIG57777smHDhpx88snZuHFjUdEAAAAAAAAAAGpeYUUhQ4YMyeLFi7sca25uzty5c7Np06acdtpp29RPuVzO+vXru2x/nGkEAPj/2bv38KjLO2/8nwnBQYiEEKsEsBRW3RIpWCVaCmgFHllr27Xb2sW6PdiudT30INVqylbFU1CLq15utbbrYbvbB2lXd4tXa9X2aX1QToLStYVUEANV0YjRrNiMJMzvjz7m5xSrWDNzZ4bX67q+1+V8v5P7fk8yzOTw9r4BAAAAAADYUyUrhRx77LFxyy237HK+pqYmfvrTn8agQYN2a5yWlpaora0tOK66oqWv4wIAAAAAAABA0VRlHKmOSladauL58+fHU089tcv5fD4f++yzT9x7772xZs2aNx2nubk55s6dWzjGgGyf5QQAAAAAAAAAKEfJSiF1dXVRV1e3y/lsNhtr166N8ePHx9FHH/2m42Sz2chmC0sgXd19FhMAAAAAAAAAoCwlK4X88eoer+rp6YkFCxZEfX19RERcffXVpYwFAAAAAAAAAFARkpVCrrnmmpg0aVIMGzas4Hw+n49169bFkCFDIpOp8M17AAAAAAAAAACKJFkp5PLLL4+bbropFi5cGDNmzOg9P3DgwLj11lujsbExVTQAAAAAAAAAgLJXlWri888/P26//fY4/fTT45xzzokdO3akigIAAAAAAAAAUHGSlUIiIpqammL16tXR3t4ekydPjkcffdSWMQAAAAAAAADscaoyjlRHJUu2fcyrampq4rbbbotFixbFrFmzoqenJ3UkAAAAAAAAAICyl7wU8qo5c+bEtGnTYvXq1TFmzJjUcQAAAAAAAAAAylq/KYVERIwePTpGjx6dOgYAAAAAAAAAQNmrSh0AAAAAAAAAAIC+pxQCAAAAAAAAAFCB+tX2MeVk4AB9mv6iKpNJHYES8uXefT5Xu2dgdWW8nmei+F/wqgFFnyKG7j2w+JPQb3gP7z/23qsE/8BLoKrKc6q/GOBr0W8MGlgZ/75LoXH00KKOX9d0VlHHj4joWHV90ecohUr5FqHYj6MUPwOUQkl+x+alcLdUzM/HJfinkSnBJIOz5f/ErZTXc/qPSnlO+dl191TK63ml/M4FKG+V8Z0+AAAAAAAAAAAFrBQCAAAAAAAAAImVYgUb9jxWCgEAAAAAAAAAqEBKIQAAAAAAAAAAFUgpBAAAAAAAAACgAimFAAAAAAAAAABUoKSlkHw+H5s2bYru7u6IiHjllVfi9ttvj3/913+N5557LmU0AAAAAAAAAICyVp1q4tbW1pg9e3Zs2bIlxo0bF/fcc0+ceOKJsX79+sjn8zF48OB48MEH46CDDkoVEQAAAAAAAACgbCVbKeS8886LSZMmxSOPPBIf+tCH4vjjj4/Ro0dHR0dHPP/88zFlypS4+OKLU8UDAAAAAAAAgJKpyjhSHZUsWSnkwQcfjPnz58d73vOeuPTSS2P9+vVxzjnnxMCBAyObzcb5558f999/f6p4AAAAAAAAAABlLVkp5KWXXorhw4dHRMSQIUNiyJAh0dDQ0Hv9gAMOiGeeeSZVPAAAAAAAAACAsladauKRI0fG5s2b453vfGdERFx55ZWx33779V5vb2+Purq6Nx0nl8tFLpcrOJcfkI1sNtu3gQEAAAAAAAAAykiylUJmzZoV69ev7719+umnxz777NN7+5577onDDjvsTcdpaWmJ2traguOqK1qKkhkAAAAAAAAAoFxk8vl8PnWI18rn85HJZGLTpk0xaNCggi1lXo+VQgAAAID+rq7prKLP0bHq+qLPAQAA9C+Dku0LQTEs/OXjqSPssb569LjUEYqm371MZLPZWLt2bYwfP3637//HBZCu7mIkAwAAAAAAAAAoH8lKIXPnzn3d8z09PbFgwYKor6+PiIirr766lLEAAAAAAAAAACpCslLINddcE5MmTYphw4YVnM/n87Fu3boYMmRIZDKZNOEAAAAAAAAAoIT8eZxiSFYKufzyy+Omm26KhQsXxowZM3rPDxw4MG699dZobGxMFQ0AAAAAAAAAoOxVpZr4/PPPj9tvvz1OP/30OOecc2LHjh2pogAAAAAAAAAA7JYnn3wy/u7v/i7q6+tj7733jve85z3x0EMP9V7P5/NxwQUXRENDQ+y9994xa9aseOyxxwrGeP755+Pkk0+OoUOHxrBhw+Lzn/98vPTSS32eNVkpJCKiqakpVq9eHe3t7TF58uR49NFHbRkDAAAAAAAAAPRLHR0dMXXq1Bg4cGD85Cc/id/85jexcOHCqKur673PlVdeGdddd13ceOONsWLFihgyZEjMnj07urq6eu9z8sknx69//eu4995746677or7778/vvCFL/R53kw+n8/3+ah/hkWLFsVXvvKVaG9vj//+7/9+W9vHdHX3YTAAAACAt6mu6ayiz9Gx6vqizwEAAPQvg6pTJ6AvXX3/46kj7LHmHjVut+97/vnnxwMPPBD/9//+39e9ns/nY+TIkfHVr341zjnnnIiIePHFF2P//fePW2+9NebMmRPr1q2LxsbGWLVqVUyePDkiIu6+++744Ac/GL/73e9i5MiRb/9B/T9JVwp5rTlz5sRDDz0Ud9xxR4wZMyZ1HAAAAAAAAABgD5DL5aKzs7PgyOVyr3vfH/3oRzF58uQ48cQTY7/99ov3vve98Z3vfKf3+qZNm2Lr1q0xa9as3nO1tbVx5JFHxrJlyyIiYtmyZTFs2LDeQkhExKxZs6KqqipWrFjRp4+t35RCIiJGjx4df/3Xfx1DhgxJHQUAAAAAAAAA2AO0tLREbW1twdHS0vK693388cfjhhtuiIMOOih++tOfxumnnx5f+tKX4rbbbouIiK1bt0ZExP7771/wcfvvv3/vta1bt8Z+++1XcL26ujqGDx/ee5++YkEhAAAAAAAAAEisKpNJHWGP1dzcHHPnzi04l81mX/e+O3fujMmTJ8fll18eERHvfe9749FHH40bb7wxPvOZzxQ961vVr1YKAQAAAAAAAAAopWw2G0OHDi04/lQppKGhIRobGwvOjR8/PjZv3hwRESNGjIiIiGeeeabgPs8880zvtREjRsSzzz5bcL27uzuef/753vv0FSuFAAB7jB09O4s+x8ABOrcAlSKfL+74pfiff4r9GCJK8zhKodifq45V1xd3goiom3lx0efo+NkFRZ8DSMN7BgAA7J6pU6dGa2trwbnf/va3MWbMmIiIGDt2bIwYMSJ+9rOfxaGHHhoREZ2dnbFixYo4/fTTIyJiypQp8cILL8Tq1avj8MMPj4iIn//857Fz58448sgj+zSvUggAAAAAAAAAwG44++yz4/3vf39cfvnl8YlPfCJWrlwZN910U9x0000REZHJZOIrX/lKXHrppXHQQQfF2LFj4xvf+EaMHDkyTjjhhIj4w8oif/VXfxWnnnpq3HjjjbFjx44466yzYs6cOTFy5Mg+zasUAgAAAAAAAACwG5qamuLOO++M5ubmuPjii2Ps2LFxzTXXxMknn9x7n6997Wuxffv2+MIXvhAvvPBCTJs2Le6+++4YNGhQ733+/d//Pc4666yYOXNmVFVVxcc+9rG47rrr+jxvJp8vxcKApdXVnToBANAf2T4GgLfC9jG7p1K2AqiEr7ftY4C3w3sGAJSnQZYAqCjX/N9NqSPssb4yfWzqCEXjrxYAAAAAAAAAABVIKQQAAAAAAAAAoAL1u1LIjBkzoq2tLXUMAAAAAAAAACiZqowj1VHJku0y9aMf/eh1z99///1x1113xQEHHBARER/5yEdKGQsAAAAAAAAAoCIkK4WccMIJkclkIp/P73Lti1/8YkREZDKZ6OnpKXU0AAAAAAAAAICyl2z7mNmzZ8dxxx0XW7dujZ07d/YeAwYMiEcffTR27typEAIAAAAAAAAA8GdKVgr5yU9+EjNnzozJkyfHXXfdlSoGAAAAAAAAAEBFSrZ9TETE2WefHcccc0ycfPLJsWTJkvinf/qntzxGLpeLXC5XcC4/IBvZbLavYgIAAAAAAAAAlJ1kK4W86tBDD42HHnooMplMHHrooZHP59/Sx7e0tERtbW3BcdUVLUVKCwAAAAAAAABQHpKuFPKqvffeO2688cb40Y9+FD/72c9i33333e2PbW5ujrlz5xacyw+wSggAAAAAAAAA5SOTSZ2ASpR8pZDX+shHPhI33HBDbNu2bbc/JpvNxtChQwsOW8cAAAAAAAAAAHu6ZCuF/PHqHq/q6emJBQsWRH19fUREXH311aWMBQAAAAAAAABQEZKVQq655pqYNGlSDBs2rOB8Pp+PdevWxZAhQyJjfRwAAAAAAAAAgD9LslLI5ZdfHjfddFMsXLgwZsyY0Xt+4MCBceutt0ZjY2OqaAAAAAAAAAAAZa8q1cTnn39+3H777XH66afHOeecEzt27EgVBQAAAAAAAACg4iQrhURENDU1xerVq6O9vT0mT54cjz76qC1jAAAAAAAAAAD6QLLtY15VU1MTt912WyxatChmzZoVPT09qSMBAAAAAAAAAJS95KWQV82ZMyemTZsWq1evjjFjxqSOAwAAAAAAAAAlUxV21aDv9ZtSSETE6NGjY/To0aljAAAAAAAAAACUvarUAQAAAAAAAAAA6HtKIQAAAAAAAAAAFahfbR8DAFBMAwfowwKw+zIVsI1vJTyGUqmEz1XHzy4o+hx1TWcVfY6OVdcXfQ5gV5XwOggAAOzKX0YAAAAAAAAAACqQUggAAAAAAAAAQAWyfQwAAAAAAAAAJGZLP4rBSiEAAAAAAAAAABVIKQQAAAAAAAAAoAL1q+1jNm3aFBs2bIiGhoaYMGFC6jgAAAAAAAAAAGUr2UohZ5xxRrz00ksREfH73/8+Pv7xj8eBBx4Ys2fPjkmTJsWMGTN6rwMAAAAAAAAA8NYkK4V8+9vfjpdffjkiIi655JJYsWJF3HffffHSSy/F/fffH5s3b47LLrssVTwAAAAAAAAAgLKWrBSSz+d7/3vJkiVx5ZVXxjHHHBODBw+OqVOnxtVXXx133HFHqngAAAAAAAAAAGWtOuXkmUwmIiK2bt0aEydOLLg2adKk2LJlS4pYAAAAAAAAAFBSVZnUCahESUsh3/jGN2Lw4MFRVVUVTz31VBxyyCG917Zt2xZDhgxJmA4AAAAAAAAAoHwlK4UcddRR0draGhERjY2N0dbWVnD9xz/+cUFJ5E/J5XKRy+UKzuUHZCObzfZdWAAAAAAAAACAMpOsFPKLX/zidc/n8/nIZDLxyU9+Mj772c++6TgtLS0xf/78gnPzvnFh/OMFF739kAAAAAAAAAAAZSrp9jGvJ5vNxtq1a2P8+PG7df/m5uaYO3duwbn8AKuEAAAAAAAAAAB7tmSlkD8ucryqp6cnFixYEPX19RERcfXVV7/hONnsrlvFdHX3TUYAAAAAAAAAgHKVrBRyzTXXxKRJk2LYsGEF5/P5fKxbty6GDBkSmUwmTTgAAAAAAAAAgDKXrBRy+eWXx0033RQLFy6MGTNm9J4fOHBg3HrrrdHY2JgqGgAAAAAAAABA2UtWCjn//PNj5syZ8Xd/93fx4Q9/OFpaWmLgwIGp4gAAAAAAAABAMlV20qAIqlJO3tTUFKtXr4729vaYPHlyPProo7aMAQAAAAAAAADoA8lWCnlVTU1N3HbbbbFo0aKYNWtW9PT0pI4EAAAAAAAAAFD2kpdCXjVnzpyYNm1arF69OsaMGZM6DgAAAAAAAABAWes3pZCIiNGjR8fo0aNTxwAAAAAAAAAAKHtVqQMAAAAAAAAAAND3lEIAAAAAAAAAACpQv9o+BgAAAID+q2PV9UWfo+6ILxV9jo6V1xV9DgAAgLcqk0mdgEpkpRAAAAAAAAAAgAqkFAIAAAAAAAAAUIGUQgAAAAAAAAAAKpBSCAAAAAAAAABABVIKAQAAAAAAAACoQEohAAAAAAAAAAAVqDrVxLlcLqqqqmLgwIEREbFx48a4+eabY/PmzTFmzJj4/Oc/H2PHjk0VDwAAAAAAAACgrCVbKWT27NnxX//1XxER8cADD8QhhxwSd911V+zYsSN+/OMfx4QJE2LZsmWp4gEAAAAAAABAyVRlMo5ERyVLVgp5+OGHY9KkSRERMW/evDjjjDNi7dq1sWjRolizZk3MnTs3zj333FTxAAAAAAAAAADKWrJSSE9PT/T09ERExPr16+Mzn/lMwfXPfvazsXbt2hTRAAAAAAAAAADKXrJSyJFHHhlLliyJiIi/+Iu/2KUA8sgjj8Tw4cNTRAMAAAAAAAAAKHvVqSa+9NJL47jjjovt27fHSSedFF/96lfjsccei/Hjx0dra2tcd9110dzc/Kbj5HK5yOVyBefyA7KRzWaLFR0AAAAAAAAAoN9LVgqZMmVK/OQnP4m5c+fGihUrIiLisssui4iIkSNHxkUXXRRf/vKX33SclpaWmD9/fsG5ed+4MP7xgov6PDMAAAAAAAAAQLnI5PP5fOoQ7e3t8fjjj8fOnTtjxIgRMXbs2N3+WCuFAAAAAFSOuiO+VPQ5OlZeV/Q5AACgFAYlWwKAYviXlZtTR9hjff6Id6aOUDT94mXiHe94R7zjHe+IiIi99tor1q5dG+PHj9+tj81mdy2AdHX3eUQAAAAAAAAAKJpMJnUCKlGyUsjcuXNf93xPT08sWLAg6uvrIyLi6quvLmUsAAAAAAAAAICKkKwUcs0118SkSZNi2LBhBefz+XysW7cuhgwZEhlVKAAAAAAAAACAP0uyUsjll18eN910UyxcuDBmzJjRe37gwIFx6623RmNjY6poAAAAAAAAAABlryrVxOeff37cfvvtcfrpp8c555wTO3bsSBUFAAAAAAAAAKDiJCuFREQ0NTXF6tWro729PSZPnhyPPvqoLWMAAAAAAAAAAPpAsu1jXlVTUxO33XZbLFq0KGbNmhU9PT2pIwEAAAAAAAAAlL3kpZBXzZkzJ6ZNmxarV6+OMWPGpI4DAAAAAAAAAFDW+k0pJCJi9OjRMXr06NQxAAAAAAAAAKCkqlIHoCJ5XgEAAAAAAAAAVCClEAAAAAAAAACACtSvto8BAAAAYM/WsfK6os9R13RW0efoWHV90ecAAACAN2OlEAAAAAAAAACACqQUAgAAAAAAAABQgZRCAAAAAAAAAAAqUHXqAAAAAAAAAACwp8tkMqkjUIGsFAIAAAAAAAAAUIGSlUL+4z/+I15++eVU0wMAAAAAAAAAVLRkpZATTzwxGhoa4gtf+EKsWLEiVQwAAAAAAAAAgIqUdPuYc845Jx566KGYMmVKTJgwIa655prYtm1bykgAAAAAAAAAABUhaSnktNNOizVr1sSqVaviqKOOivnz58eoUaPiE5/4RNx7770powEAAAAAAAAAlLWkpZBXHX744fGtb30rnn766fjOd74T7e3t8Vd/9VcxduzY1NEAAAAAAAAAAMpSdaqJM5nMLucGDRoUn/rUp+JTn/pUbNiwIW655ZY3HSeXy0Uulys4lx+QjWw222dZAQAAAAAAAKCYdv0LOrx9yVYKyefzb3j9wAMPjMsuu+xNx2lpaYna2tqC46orWvoqJgAAAAAAAABAWUq2UsimTZti33333eV8Pp9/3VVE/pTm5uaYO3du4RgDrBICAAAAAAAAAOzZkpVCxowZ87rns9lsrF27NsaPH79b42Szu24V09X9tuMBAAAAAAAAAJS1ZKWQP17d41U9PT2xYMGCqK+vj4iIq6++upSxAAAAAAAAAAAqQrJSyDXXXBOTJk2KYcOGFZzP5/Oxbt26GDJkyFvaRgYAAAAAAAAAgP9fslLI5ZdfHjfddFMsXLgwZsyY0Xt+4MCBceutt0ZjY2OqaAAAAAAAAAAAZa8q1cTnn39+3H777XH66afHOeecEzt27EgVBQAAAAAAAACg4iQrhURENDU1xerVq6O9vT0mT54cjz76qC1jAAAAAAAAANjjVGUyjkRHJUu2fcyrampq4rbbbotFixbFrFmzoqenJ3UkAAAAAAAAAICyl7wU8qo5c+bEtGnTYvXq1TFmzJjUcQAAAAAAAAAAylq/KYVERIwePTpGjx6dOgYAAAAAAAAAQNmrSh0AAAAAAAAAAIC+pxQCAAAAAAAAAFCB+tX2MQAAAABQbB2rri/6HHVNZxV1/FI8BgAAAMqfUggAAAAAAAAAJJZJHYCKZPsYAAAAAAAAAIAKpBQCAAAAAAAAAFCBlEIAAAAAAAAAACqQUggAAAAAAAAAQAVSCgEAAAAAAAAAqEDVKSdfu3ZtrF69Oj7wgQ/EuHHj4te//nX88z//c+zcuTM++tGPxuzZs1PGAwAAAAAAAAAoW8lWCrnjjjvi8MMPj6997WsxadKkuO+++2LatGnx2GOPxRNPPBHHH398fP/7308VDwAAAAAAAACgrCUrhVx22WUxf/78eO655+I73/lOnHjiiTF37ty499574+67744rrrgirrrqqlTxAAAAAAAAAKBkMhlHqqOSJSuFtLa2xsknnxwREX/7t38b27dvjxNOOKH3+kc/+tHYsGFDonQAAAAAAAAAAOUtWSlkn332iW3btkVExAsvvBDd3d29tyMitm3bFjU1NaniAQAAAAAAAACUtepUE8+aNSvOPPPM+OIXvxi33357HHvssdHc3By33HJLZDKZOPfcc2PatGlvOk4ul4tcLldwLj8gG9lstljRAQAAAAAAAAD6vWQrhXzzm9+MoUOHxj/8wz/EK6+8ErfffntMnjw5Ghsbo7GxMZ566qlYsGDBm47T0tIStbW1BcdVV7SU4BEAAAAAAAAAAPRfmXw+n08d4rUef/zxePnll+Pd7353VFe/+UImVgoBAAAAoL+pazqrqON3rLq+qOMDAFAeBiXbF4Ji+P6a36WOsMf65GGjU0comn73MvHud7871q5du1uFkIiIbHbXAkhXdzGSAQAAAAAAAACUj2SlkLlz577u+Z6enliwYEHU19dHRMTVV19dylgAAAAAAAAAUHKZTCZ1BCpQslLINddcE5MmTYphw4YVnM/n87Fu3boYMmSIJz0AAAAAAAAAwJ8pWSnk8ssvj5tuuikWLlwYM2bM6D0/cODAuPXWW6OxsTFVNAAAAAAAAACAsleVauLzzz8/br/99jj99NPjnHPOiR07dqSKAgAAAAAAAABQcZKVQiIimpqaYvXq1dHe3h6TJ0+ORx991JYxAAAAAAAAAAB9INn2Ma+qqamJ2267LRYtWhSzZs2Knp6e1JEAAAAAAAAAAMpe8lLIq+bMmRPTpk2L1atXx5gxY1LHAQAAAAAAAAAoa/2mFBIRMXr06Bg9enTqGAAAAAAAAAAAZa9flUIAAAAAAAAAYE9UlToAFcnzCgAAAAAAAACgAlkp5M+Uzxd/jkym+HMAwO7q7in+m9+AquK++XlvBagcO0vwQ1mxpyj2+15ExM6dxf88VZXgcUA56lh1fVHHr59zS1HHj4jYtuiUos9RitepUvBaSF8r9vchfj4GKI1S/D0R4M1YKQQAAAAAAAAAoAIphQAAAAAAAAAAVCClEAAAAAAAAACACqQUAgAAAAAAAABQgapTBwAAAAAAAACAPV0mk0kdgQqUvBTy85//PJYuXRpPP/10VFVVxbhx4+IjH/lIHHTQQamjAQAAAAAAAACUrWSlkGeffTY+/OEPx0MPPRRVVVWxc+fOeO973xt33HFHnHfeeTF37ty48sorU8UDAAAAAAAAAChrVakm/tKXvhQjR46Mjo6OeOmll+KMM86IQw45JJ5++um455574uabb45rr702VTwAAAAAAAAAgLKWyefz+RQT19bWxoMPPhiHHHJIRERs37496urq4rnnnouhQ4fGv/3bv8Wll14a69evf8tjd3X3ddpdleKzZssoAPqT7p7iv/kNqCrum5/3VoDKsbMEP5QVe4piv+9FROzcWfzPU1UJHgewq/o5txR9jm2LTin6HKV4nSoFr4X0tWJ/H+LnY4DSKMXfE/ceWPw5KJ3FjzyVOsIe6xOHjkwdoWiSrRSSzWYj85rvPKuqqqKnpye6u//Q6Hj/+98fTzzxRKJ0AAAAAAAAAADlLVkpZNq0aXHBBRfE9u3bY8eOHfH1r389xo0bF8OHD4+IiPb29qirq3vTcXK5XHR2dhYcuVyu2PEBAAAAAAAAAPq1ZKWQb37zm/HII4/EsGHDYsiQIXHrrbfGDTfc0Ht93bp18dnPfvZNx2lpaYna2tqC46orWoqYHAAAAAAAAACg/8vk86XYzer1vfzyy7F06dJ45ZVX4n3ve1/su+++kc/nC7aVeTO5XG6XlUHyA7KRzWb7Om7hHCX4rNnXEYD+pLun+G9+A4q8D7f3VoDKsbMEP5QVe4piv+9FROzcWfzPU1UJHgewq/o5txR9jm2LTin6HKV4nSoFr4X0tWJ/H+LnY4DSKMXfE/ceWPw5KJ0fPPJU6gh7rBMPHZk6QtFUp5x88ODBceyxxxacy2azsXbt2hg/fvxujZHN7loA6erus4gAAAAAAAAAAGUpWSlk7ty5r3u+p6cnFixYEPX19RERcfXVV5cyFgAAAAAAAABARUhWCrnmmmti0qRJMWzYsILz+Xw+1q1bF0OGDHlL28gAAAAAAAAAAPD/S1YKufzyy+Omm26KhQsXxowZM3rPDxw4MG699dZobGxMFQ0AAAAAAAAAoOxVpZr4/PPPj9tvvz1OP/30OOecc2LHjh2pogAAAAAAAAAAVJxkpZCIiKampli9enW0t7fH5MmT49FHH7VlDAAAAAAAAABAH0i2fcyrampq4rbbbotFixbFrFmzoqenJ3UkAAAAAAAAACgpCyhQDMlLIa+aM2dOTJs2LVavXh1jxoxJHQcAAAAAAAAAoKz1m1JIRMTo0aNj9OjRqWMAAAAAAAAAAJS9qtQBAAAAAAAAAADoe0ohAAAAAAAAAAAVqF9tH1NOMpnUCQCgtKoHePMDoP+oKsUPZRXw1ldVVQEPAnhd2xadUvQ56o78ctHn6FhxbdHngHLk988AlcHrOdAfWCkEAAAAAAAAAKACWSkEAAAAAAAAABKzogPF4HkFAAAAAAAAAFCBlEIAAAAAAAAAACqQUggAAAAAAAAAQAVSCgEAAAAAAAAAqEDVqQNERKxcuTKWLVsWW7dujYiIESNGxJQpU+KII45InAwAAAAAAAAAoDwlLYU8++yz8bGPfSweeOCBeOc73xn7779/REQ888wzcfbZZ8fUqVPjP/7jP2K//fZLGRMAAAAAAAAAoOwk3T7mjDPOiJ6enli3bl088cQTsWLFilixYkU88cQTsW7duti5c2eceeaZKSMCAAAAAAAAAJSlpCuF/PSnP437778//vIv/3KXa3/5l38Z1113XXzgAx8ofTAAAAAAAAAAKKFMJpM6AhUo6Uoh2Ww2Ojs7/+T1//mf/4lsNlvCRAAAAAAAAAAAlSFpKeRv//Zv4zOf+UzceeedBeWQzs7OuPPOO+OUU06Jk0466Q3HyOVy0dnZWXDkcrliRwcAAAAAAAAA6NeSlkKuvvrqOO6442LOnDlRV1cXe++9d+y9995RV1cXc+bMieOOOy6++c1vvuEYLS0tUVtbW3BcdUVLiR4BAAAAAAAAAED/lMnn8/nUITo7O2P16tWxdevWiIgYMWJEHH744TF06NA3/dhcLrfLyiD5AVnbzgAAAADA21B35JeLPkfHimuLPgcAQCUbVJ06AX3pzl9tTR1hj/XRiSNSRyiafvEyMXTo0DjmmGNi+/btsXjx4rjvvvviN7/5TcyZMyfq6+vf8GOz2V0LIF3dxUwLAAAAAAAAAND/Jd0+prGxMZ5//vmIiNiyZUtMmDAhzj777Lj33nvjggsuiMbGxti0aVPKiAAAAAAAAAAAZSlpKWT9+vXR3f2HZT2am5tj5MiR0dbWFitXroy2traYOHFizJs3L2VEAAAAAAAAACi6jCPZUcmSlkJea9myZXHRRRdFbW1tRETU1NTE/PnzY+nSpYmTAQAAAAAAAACUn+SlkEzmD72brq6uaGhoKLg2atSoaG9vTxELAAAAAAAAAKCsVacOMHPmzKiuro7Ozs5obW2NCRMm9F5ra2uL+vr6hOkAAAAAAAAAAMpT0lLIhRdeWHC7pqam4PaSJUti+vTppYwEAAAAAAAAAFARMvl8Pp86RF/r6k6dAAAAAADKW92RXy76HB0rri36HAAAlWxQ8n0h6Ev/+autqSPssU6YOCJ1hKKpSh0AAAAAAAAAAIC+pxQCAAAAAAAAAFCBLCj0ZyrFpjuZTPHnANjT7SzBC3pVhbyg7+jZWfxJivzlGFitD0vf8hrSvxT7y+FL0b+U4t9fsd+XMiV4Ur38SvH3Vx2SrYxfLXTt6Cnq+IMGDijq+Ox5SvH9eSm2dvnkbauLPse/ffqwos9RCd+z9ews/nvrgKry/zxFlOZ3w8X+elQPqIyvBfD6Xnx5R1HHrx08sKjjV5JSvL9GeE2vJBXwbSX9kL+MAAAAAAAAAABUIKUQAAAAAAAAAIAKpBQCAAAAAAAAAFCBlEIAAAAAAAAAACqQUggAAAAAAAAAQAVSCgEAAAAAAAAAqEDVqQMAAAAAAAAAwJ6uKjKpI1CB+vVKIR0dHfGv//qvqWMAAAAAAAAAAJSdfl0K2bx5c5xyyimpYwAAAAAAAAAAlJ2k28d0dna+4fX/+Z//KVESAAAAAAAAAIDKkrQUMmzYsMhk/vS+SPl8/g2vAwAAAAAAAADw+pKWQvbZZ5+YN29eHHnkka97/bHHHovTTjvtDcfI5XKRy+UKzuUHZCObzfZZTgAAAAAAAACAcpO0FHLYYYdFRMTRRx/9uteHDRsW+Xz+DcdoaWmJ+fPnF5yb940L4x8vuKhPMgIAAAAAAAAAlKOkpZBPfvKT8fvf//5PXh8xYkRceOGFbzhGc3NzzJ07t+BcfoBVQgAAAAAAAACAPVvSUsipp576htf333//Ny2FZLO7bhXT1f22owEAAAAAAABAyWQyqRNQiZKWQv7Y9u3bY/HixbFhw4ZoaGiIk046Kerr61PHAgAAAAAAAAAoO0lLIY2NjbF06dIYPnx4bNmyJY466qjo6OiIgw8+ODZu3BiXXHJJLF++PMaOHZsyJgAAAAAAAABA2alKOfn69euju/sPe700NzfHyJEjo62tLVauXBltbW0xceLEmDdvXsqIAAAAAAAAAABlKWkp5LWWLVsWF110UdTW1kZERE1NTcyfPz+WLl2aOBkAAAAAAAAAQPlJXgrJZDIREdHV1RUNDQ0F10aNGhXt7e0pYgEAAAAAAAAAlLXq1AFmzpwZ1dXV0dnZGa2trTFhwoTea21tbVFfX58wHQAAAAAAAABAeUpaCrnwwgsLbtfU1BTcXrJkSUyfPr2UkQAAAAAAAACg5DKRSR2BCtSvSiF/7KqrripREgAAAAAAAACAylKVOgAAAAAAAAAAAH1PKQQAAAAAAAAAoAIl3T6mnOXz+aLPkcnYMwr4873SvbPoc+xVXf7dwiqvtbttQAk+V91Ffn/t7in++3f1AM+pPUmlvIbsLMH3tqX4XBX7e3Tfn/cvJXjaxosv7yjq+HVD9irq+BGV8zpVCgMHlP/3tuxZSvG97cABRZ8ivvepw4o+x+pNLxR9jqZxdUWfo9gGVHnP2F2leHt94eVXijr+vvtkizo+e55K+bmyFErxs8w+e/vz3+4oxfO27bmXiz5H48ghRZ8DKG9+4wEAAAAAAAAAUIGUQgAAAAAAAAAAKpD1owAAAAAAAAAgsQrZKYt+xkohAAAAAAAAAAAVSCkEAAAAAAAAAKACKYUAAAAAAAAAAFSgflEK2blz5588v3nz5hKnAQAAAAAAAAAof0lLIZ2dnfGJT3wihgwZEvvvv39ccMEF0dPT03u9vb09xo4dmzAhAAAAAAAAAEB5qk45+Te+8Y1Yu3ZtfO9734sXXnghLr300lizZk3ccccdsddee0VERD6fTxkRAAAAAAAAAKAsJV0p5D//8z/j29/+dnz84x+Pv//7v4+HHnoo2tvb48Mf/nDkcrmIiMhkMikjAgAAAAAAAACUpaSlkPb29hgzZkzv7X333Tfuu++++J//+Z/44Ac/GC+//PKbjpHL5aKzs7PgeLVQAgAAAAAAAADloCoyjkRHJUtaCnnnO98Z69atKzi3zz77xD333BO///3v46Mf/eibjtHS0hK1tbUFx1VXtBQrMgAAAAAAAABAWUhaCjn22GPjlltu2eV8TU1N/PSnP41Bgwa96RjNzc3x4osvFhznntdcjLgAAAAAAAAAAGWjOuXk8+fPj6eeeup1r+2zzz5x7733xpo1a95wjGw2G9lstuBcV3efRQQAAAAAAAAAKEtJSyF1dXVRV1fXe3v79u2xePHi2LBhQzQ0NMRJJ50URx99dMKEAAAAAAAAAADlKWkppLGxMZYuXRrDhw+PLVu2xFFHHRUdHR1x8MEHx8aNG+OSSy6J5cuXx9ixY1PGBAAAAAAAAAAoO1UpJ1+/fn10d/9hr5fm5uYYOXJktLW1xcqVK6OtrS0mTpwY8+bNSxkRAAAAAAAAAKAsJV0p5LWWLVsWN954Y9TW1kZERE1NTcyfPz/mzJmTOBkAAAAAAAAAFFcmkzoBlSjpSiEREZn/98zu6uqKhoaGgmujRo2K9vb2FLEAAAAAAAAAAMpa8pVCZs6cGdXV1dHZ2Rmtra0xYcKE3mttbW1RX1+fMB0AAAAAAAAAQHlKWgq58MILC27X1NQU3F6yZElMnz69lJEAAAAAAAAAACpCvyqF/LGrrrqqREkAAAAAAAAAACpLVeoAAAAAAAAAAAD0PaUQAAAAAAAAAIAKlMnn8/nUIfpaV3fqBAAAAADAnqKu6ayijt+x6vqijg8AlK9B1akT0Jd++pv21BH2WLMb35E6QtF4mQAAAAAAAACAxDKZ1AmoRLaPAQAAAAAAAACoQEohAAAAAAAAAAAVSCkEAAAAAAAAAKACKYUAAAAAAAAAAFQgpRAAAAAAAAAAgAqkFAIAAAAAAAAAUIGqUwfI5/PxxBNPxAEHHBDV1dXxyiuvxJ133hm5XC4++MEPxr777ps6IgAAAAAAAAAUVSYyqSNQgZKWQlpbW2P27NmxZcuWGDduXNxzzz1x4oknxvr16yOfz8fgwYPjwQcfjIMOOihlTAAAAAAAAACAspN0+5jzzjsvJk2aFI888kh86EMfiuOPPz5Gjx4dHR0d8fzzz8eUKVPi4osvThkRAAAAAAAAAKAsZfL5fD7V5Pvtt1/cc889ceihh8b27dtjn332ifvvvz+mTZsWEREPPvhgnHTSSdHW1vaWxu3qLkZaAAAAAIBd1TWdVdTxO1ZdX9TxAYDyNSjpvhD0tXvXPZc6wh7rf43fN3WEokn6MvHSSy/F8OHDIyJiyJAhMWTIkGhoaOi9fsABB8QzzzzzhmPkcrnI5XIF5/IDspHNZvs+MAAAAAAAAABAmUi6fczIkSNj8+bNvbevvPLK2G+//Xpvt7e3R11d3RuO0dLSErW1tQXHVVe0FC0zAAAAAAAAAEA5SLpSyKxZs2L9+vW928WcfvrpBdfvueeeOOyww95wjObm5pg7d27BufwAq4QAAAAAAAAAAHu2TD6fz6cO8ads2rQpBg0aVLClzO7o6i5SIAAAAACAP1LXdFZRx+9YdX1RxwcAytegpEsA0NfuXfdc6gh7rP81ft/UEYqmX71MbN++PRYvXhwbNmyIhoaGOOmkk6K+vj51LAAAAAAAAAAoqqpM6gRUoqSlkMbGxli6dGkMHz48tmzZEkcddVR0dHTEwQcfHBs3boxLLrkkli9fHmPHjk0ZEwAAAAAAAACg7FSlnHz9+vXR3f2HvV6am5tj5MiR0dbWFitXroy2traYOHFizJs3L2VEAAAAAAAAAICylLQU8lrLli2Liy66KGprayMioqamJubPnx9Lly5NnAwAAAAAAAAAoPwkL4VkMn/YGKmrqysaGhoKro0aNSra29tTxAIAAAAAAAAAKGvVqQPMnDkzqquro7OzM1pbW2PChAm919ra2qK+vj5hOgAAAAAAAACA8pS0FHLhhRcW3K6pqSm4vWTJkpg+fXopIwEAAAAAAAAAVIRMPp/Ppw7R17q6UycAAAAAAPYUdU1nFXX8jlXXF3V8AKB8DUq+LwR96efrt6WOsMea8e7K3cGkKnUAAAAAAAAAAAD6nu4YAAAAAMDbUOyVPIq9EkmE1UgAAKBSWSkEAAAAAAAAAKACKYUAAAAAAAAAAFQgpRAAAAAAAAAAgD/DggULIpPJxFe+8pXec11dXXHmmWdGfX191NTUxMc+9rF45plnCj5u8+bNcfzxx8fgwYNjv/32i3PPPTe6u7v7PJ9SCAAAAAAAAADAW7Rq1ar49re/HRMnTiw4f/bZZ8eSJUviBz/4Qfzyl7+Mp556Kv7mb/6m93pPT08cf/zx8corr8SDDz4Yt912W9x6661xwQUX9HlGpRAAAAAAAAAAgLfgpZdeipNPPjm+853vRF1dXe/5F198Mf7lX/4lrr766pgxY0Ycfvjhccstt8SDDz4Yy5cvj4iIe+65J37zm9/Ev/3bv8Whhx4axx13XFxyySXxz//8z/HKK6/0aU6lEAAAAAAAAABILJNxpDpyuVx0dnYWHLlc7g2/XmeeeWYcf/zxMWvWrILzq1evjh07dhScf/e73x3vfOc7Y9myZRERsWzZsnjPe94T+++/f+99Zs+eHZ2dnfHrX/+6D59VSiEAAAAAAAAAwB6spaUlamtrC46WlpY/ef9FixbFmjVrXvc+W7dujb322iuGDRtWcH7//fePrVu39t7ntYWQV6+/eq0v9ctSyIwZM6KtrS11DAAAAAAAAACgwjU3N8eLL75YcDQ3N7/ufbds2RJf/vKX49///d9j0KBBJU761lWnnPxHP/rR656///7746677ooDDjggIiI+8pGPlDIWAAAAAAAAALCHyGazkc1md+u+q1evjmeffTYOO+yw3nM9PT1x//33x/XXXx8//elP45VXXokXXnihYLWQZ555JkaMGBERESNGjIiVK1cWjPvMM8/0XutLSUshJ5xwQmQymcjn87tc++IXvxgREZlMJnp6ekodDQAAAAAAAACgwMyZM+O///u/C86dcsop8e53vzvOO++8OOCAA2LgwIHxs5/9LD72sY9FRERra2ts3rw5pkyZEhERU6ZMicsuuyyeffbZ2G+//SIi4t57742hQ4dGY2Njn+ZNWgqZPXt2DBgwIG6++ebeBxoRMXDgwFi7dm2fP1gAAAAAAAAAgD/XPvvsExMmTCg4N2TIkKivr+89//nPfz7mzp0bw4cPj6FDh8YXv/jFmDJlSrzvfe+LiIhjjz02Ghsb41Of+lRceeWVsXXr1vjHf/zHOPPMM3d7xZLdVdWno71FP/nJT2LmzJkxefLkuOuuu/6sMXK5XHR2dhYcuVyuj5MCAAAAAAAAALy5f/qnf4oPfehD8bGPfSyOOuqoGDFiRNxxxx291wcMGBB33XVXDBgwIKZMmRJ/93d/F5/+9Kfj4osv7vMsmfzr7d1SYo888kicfPLJMW3atPinf/qnqK2t3e2VQi666KKYP39+wbl537gw/vGCi4qUFgAAAACgdOqazir6HB2rri/6HABA3xuUdF8I+tovWp9PHWGP9YG/HJ46QtEkXSnkVYceemg89NBDkclk4tBDD4230lNpbm6OF198seA497zmIqYFAAAAAAAAAOj/+k13bO+9944bb7wxlixZEj//+c9j33333a2Py2azu+yp09VdjIQAAAAAAAAAAOWjX6wU8qrt27fHc889F4MHD47FixfHtm3bUkcCAAAAAAAAAChLSVcKaWxsjKVLl8bw4cNjy5YtMX369HjhhRfi4IMPjo0bN8Yll1wSy5cvj7Fjx6aMCQAAAAAAAABQdpKuFLJ+/fro7v7DXi/Nzc0xatSoaGtri5UrV0ZbW1tMnDgx5s2blzIiAAAAAAAAAEBZ6jfbxyxbtiwuuuiiqK2tjYiImpqamD9/fixdujRxMgAAAAAAAACA8pN0+5iIiEwmExERXV1d0dDQUHBt1KhR0d7eniIWAAAAAAAAAJRMVSZ1AipR8lLIzJkzo7q6Ojo7O6O1tTUmTJjQe62trS3q6+sTpgMAAAAAAAAAKE9JSyEXXnhhwe2ampqC20uWLInp06eXMhIAAAAAAAAAQEXI5PP5fOoQfa2rO3UCAAAAAIC+Udd0VtHn6Fh1fdHnAAD63qDk+0LQl+7/7fOpI+yxjjp4eOoIRVOVOgAAAAAAAAAAAH1PKQQAAAAAAAAAoAJZUAgA2C0vlWB/tr33GlDU8QdUZYo6PgCVpWdncXdb9b7Uv+ws8te7ytebPlaKDaEzJXjadvcU/4FUDyj/f3+l2Npl3Fl3FH2Ox6//m6LPUSm8LwFvx47unUUdf2C1/+d8d5XiezaAN+NVGwAAAAAAAACgAlkpBAAAAAAAAAASy4TVvOh7VgoBAAAAAAAAAKhASiEAAAAAAAAAABVIKQQAAAAAAAAAoAIphQAAAAAAAAAAVKDq1AH+2KZNm2LDhg3R0NAQEyZMSB0HAAAAAAAAAKAsJV0p5IwzzoiXXnopIiJ+//vfx8c//vE48MADY/bs2TFp0qSYMWNG73UAAAAAAAAAAHZf0lLIt7/97Xj55ZcjIuKSSy6JFStWxH333RcvvfRS3H///bF58+a47LLLUkYEAAAAAAAAgKLLZBypjkqWtBSSz+d7/3vJkiVx5ZVXxjHHHBODBw+OqVOnxtVXXx133HFHwoQAAAAAAAAAAOUpaSkkIiLz/2o3W7dujYkTJxZcmzRpUmzZsiVFLAAAAAAAAACAsladOsA3vvGNGDx4cFRVVcVTTz0VhxxySO+1bdu2xZAhQ97w43O5XORyuYJz+QHZyGazRckLAAAAAAAAAFAOkq4UctRRR0Vra2s8/PDD0djYGG1tbQXXf/zjHxeURF5PS0tL1NbWFhxXXdFSzNgAAAAAAAAAAP1eJp/P51OH+FMef/zx2GuvvWL06NF/8j5WCgGA0nipq7voc+y914Cijj+gKlPU8QGoLD07i/vjsvel/mVnkb/eVb7e9LFS/EYvU4KnbXdP8R9I9QD//nbHuLPuKPocj1//N0Wfo1J4XwLejh3dO4s6/sDqpP/PeVkpxfdsew8s/hyUztLHOlJH2GNNO6gudYSiSb59zGtt3749Fi9eHBs2bIiGhoY46aSTor6+/g0/JpvdtQBSgr9ZAQAAAAAAAAD0a0lLIY2NjbF06dIYPnx4bNmyJaZPnx4vvPBCHHzwwbFx48a45JJLYvny5TF27NiUMQEAAAAAAAAAyk7S9Z3Wr18f3d1/WNajubk5Ro0aFW1tbbFy5cpoa2uLiRMnxrx581JGBAAAAAAAAICiyziSHZWs32z6tWzZsrjooouitrY2IiJqampi/vz5sXTp0sTJAAAAAAAAAADKT/JSSCbzh95NV1dXNDQ0FFwbNWpUtLe3p4gFAAAAAAAAAFDWqlMHmDlzZlRXV0dnZ2e0trbGhAkTeq+1tbVFfX19wnQAAAAAAAAAAOUpaSnkwgsvLLhdU1NTcHvJkiUxffr0UkYCAAAAAAAAAKgI/aoU8seuuuqqEiUBAAAAAAAAAKgsVakDAAAAAAAAAADQ95KuFAIAAAAAAAAARFRlMqkjUIEy+Xw+nzpEX+vqTp0AAAAAAIDXqms6q+hzdKy6vuhzAEB/MsgSABVl2YYXUkfYY005cFjqCEVj+xgAAAAAAAAAgAqkFAIAAAAAAAAAUIGUQgAAAAAAAAAAKpBSCAAAAAAAAABABVIKAQAAAAAAAACoQEohAAAAAAAAAAAVqDp1AAAAAAAAAADY02VSB6AiJS2F5HK5qKqqioEDB0ZExMaNG+Pmm2+OzZs3x5gxY+Lzn/98jB07NmVEAAAAAAAAAICylHT7mNmzZ8d//dd/RUTEAw88EIccckjcddddsWPHjvjxj38cEyZMiGXLlqWMCAAAAAAAAABQlpKWQh5++OGYNGlSRETMmzcvzjjjjFi7dm0sWrQo1qxZE3Pnzo1zzz03ZUQAAAAAAAAAgLKUtBTS09MTPT09ERGxfv36+MxnPlNw/bOf/WysXbs2RTQAAAAAAAAAgLKWtBRy5JFHxpIlSyIi4i/+4i92KYA88sgjMXz48DccI5fLRWdnZ8GRy+WKlhkAAAAAAAAAoBxUp5z80ksvjeOOOy62b98eJ510Unz1q1+Nxx57LMaPHx+tra1x3XXXRXNz8xuO0dLSEvPnzy84N+8bF8Y/XnBREZMDAAAAAAAAAPRvmXw+n08ZYNmyZTF37txYsWJFwfmRI0fGueeeG1/+8pff8ONzudwuK4PkB2Qjm832eVYAAAAAAP48dU1nFX2OjlXXF30OAOhPBiVdAoC+tnzjC6kj7LHe9xfDUkcomuQvE1OmTIlly5ZFe3t7PP7447Fz585oaGiId73rXbv18dnsrgWQru4iBAUAAAAAAAAAKCPJSyGvesc73hGDBw+OxYsXx1133RUjR46MOXPmRH19fepoAAAAAAAAAABlpyrl5I2NjfH8889HRMSWLVtiwoQJcfbZZ8e9994bF1xwQTQ2NsamTZtSRgQAAAAAAAAAKEtJSyHr16+P7u4/7PXS3NwcI0eOjLa2tli5cmW0tbXFxIkTY968eSkjAgAAAAAAAACUpaSlkNdatmxZXHTRRVFbWxsRETU1NTF//vxYunRp4mQAAAAAAAAAAOUneSkkk8lERERXV1c0NDQUXBs1alS0t7eniAUAAAAAAAAAUNaqUweYOXNmVFdXR2dnZ7S2tsaECRN6r7W1tUV9fX3CdAAAAAAAAAAA5SlpKeTCCy8suF1TU1Nwe8mSJTF9+vRSRgIAAAAAAACAkstEJnUEKlAmn8/nU4foa13dqRMAAAAAAPBadU1nFX2OjlXXF30OAOhPBiXfF4K+tGLji6kj7LGO/Iva1BGKpip1AAAAAAAAAAAA+p5SCAAAAAAAAABABbKgEAAAAAAARVeKrV1sUQMAAIWsFAIAAAAAAAAAUIGUQgAAAAAAAAAAKpDtYwAAAAAAAAAgsUwmdQIqkZVCAAAAAAAAAAAqkFIIAAAAAAAAAEAFUgoBAAAAAAAAAKhASUsh//Ef/xEvv/xyyggAAAAAAAAAABUpaSnkxBNPjIaGhvjCF74QK1asSBkFAAAAAAAAAKCiJN8+5pxzzomHHnoopkyZEhMmTIhrrrkmtm3bljoWAAAAAAAAAEBZS14KOe2002LNmjWxatWqOOqoo2L+/PkxatSo+MQnPhH33ntv6ngAAAAAAAAAUHQZR7KjkiUvhbzq8MMPj29961vx9NNPx3e+851ob2+Pv/qrv4qxY8e+4cflcrno7OwsOHK5XIlSAwAAAAAAAAD0T0lLIZnMrp2bQYMGxac+9an4P//n/0Rra2t88pOffMMxWlpaora2tuC46oqWYkUGAAAAAAAAACgLmXw+n081eVVVVWzdujX222+/P3uMXC63y8og+QHZyGazbzceAAAAAABlpK7prKLP0bHq+qLPAQC7a1B16gT0pVWPv5g6wh6raVxt6ghFk/RlYtOmTfGOd7zjbY2Rze5aAOnqfltDAgAAAAAAAACUvaSlkDFjxhTc3r59eyxevDg2bNgQDQ0NcdJJJ0V9fX2idAAAAAAAAAAA5StpKaSxsTGWLl0aw4cPjy1btsRRRx0VHR0dcfDBB8fGjRvjkksuieXLl8fYsWNTxgQAAAAAAAAAKDtVKSdfv359dHf/Ya+X5ubmGDlyZLS1tcXKlSujra0tJk6cGPPmzUsZEQAAAAAAAACgLCVdKeS1li1bFjfeeGPU1tZGRERNTU3Mnz8/5syZkzgZAAAAAAAAABRZJnUAKlHSlUIiIjKZPzyzu7q6oqGhoeDaqFGjor29PUUsAAAAAAAAAICylnylkJkzZ0Z1dXV0dnZGa2trTJgwofdaW1tb1NfXJ0wHAAAAAAAAAFCekpZCLrzwwoLbNTU1BbeXLFkS06dPL2UkAAAAAAAAAICKkMnn8/nUIfpaV3fqBAAAAAAAlFpd01lFn6Nj1fVFnwMAdteg5PtC0JdWbXoxdYQ9VtPY2tQRiqYqdQAAAAAAAAAAAPqeUggAAAAAAAAAQAWyoBAAAACwxyv25rqZTHHHB+APSrG1S91RXy/6HB33X170OQAovmL/nEHlyYQfHul7VgoBAAAAAAAAAKhASiEAAAAAAAAAABVIKQQAAAAAAAAAoAIphQAAAAAAAAAAVCClEAAAAAAAAACACqQUAgAAAAAAAABQgZRCAAAAAAAAAAAqUHXqAGvXro3Vq1fHBz7wgRg3blz8+te/jn/+53+OnTt3xkc/+tGYPXt26ogAAAAAAAAAUFSZTOoEVKKkK4Xccccdcfjhh8fXvva1mDRpUtx3330xbdq0eOyxx+KJJ56I448/Pr7//e+njAgAAAAAAAAAUJaSlkIuu+yymD9/fjz33HPxne98J0488cSYO3du3HvvvXH33XfHFVdcEVdddVXKiAAAAAAAAAAAZSlpKaS1tTVOPvnkiIj427/929i+fXuccMIJvdc/+tGPxoYNGxKlAwAAAAAAAAAoX9UpJ99nn31i27Zt8a53vSteeOGF6O7ujm3btvVe37ZtW9TU1LzhGLlcLnK5XMG5/IBsZLPZomQGAAAAAAAAACgHSVcKmTVrVpx55pnx7//+7/GZz3wmjj322Ghubo7169dHa2trnHvuuTFt2rQ3HKOlpSVqa2sLjquuaCnRIwAAAAAAAAAA6J+SlkK++c1vxtChQ+Mf/uEf4pVXXonbb789Jk+eHI2NjdHY2BhPPfVULFiw4A3HaG5ujhdffLHgOPe85hI9AgAAAAAAAACA/imTz+fzqUP8sccffzxefvnlePe73x3V1W99h5uu7iKEAgAAACpWsX87kskUd3wASqfuqK8XfY6O+y8v+hwAFF8p/gq798Diz0HprHmiM3WEPdZh7xqaOkLRvPXGRRFt3749Fi9eHBs2bIiRI0dGQ0ND1NfXp44FAAAAAAAAAFB2kpZCGhsbY+nSpTF8+PDYsmVLTJ8+PV544YU4+OCDY+PGjXHxxRfH8uXLY+zYsSljAgAAAAAAAACUnaqUk69fvz66u/+w10tzc3OMGjUq2traYuXKldHW1hYTJ06MefPmpYwIAAAAAAAAAFCWkpZCXmvZsmVx0UUXRW1tbURE1NTUxPz582Pp0qWJkwEAAAAAAAAAlJ/kpZBMJhMREV1dXdHQ0FBwbdSoUdHe3p4iFgAAAAAAAABAWatOHWDmzJlRXV0dnZ2d0draGhMmTOi91tbWFvX19QnTAQAAAAAAAACUp6SlkAsvvLDgdk1NTcHtJUuWxPTp00sZCQAAAAAAAACgImTy+Xw+dYi+1tWdOgEAAABQTor925H/t3suABWg7qivF32OjvsvL/ocABRfKf4Ku/fA4s9B6axp60wdYY912JihqSMUTVXqAAAAAAAAAAAA9L2k28eUs1I0+/xfRMDbsbMEL1SZKP4LldfC/qMU732vdO8s6vh7VRe/D+s5u2fZubP4/zCqqor/pKqU722L/fXIlOBB5KMEz6kKeaEqxfO22F+PHd3FfxADq4v/9a6U51RPkV9DqgdUxueJ/mNHT3G/d46IGDig+N8/l+JxdGzfUfQ59huaLer4pXjfK8XvEQaU4HvbUijFKh6//G17Ucc/+uB3FHX8iNI8pyrl+xB2T6X87FqKx5Hr7inq+IMGDijq+KVSiq/Fb54s/qoPh7+rclc3APqGlUIAAAAAAAAAACqQUggAAAAAAAAAQAVSCgEAAAAAAAAAqEBKIQAAAAAAAAAAFag6dQAAAAAAAAAA2NNlIpM6AhXISiEAAAAAAAAAABVIKQQAAAAAAAAAoAL1i+1jfv7zn8fSpUvj6aefjqqqqhg3blx85CMfiYMOOih1NAAAAAAAAACAspS0FPLss8/Ghz/84XjooYeiqqoqdu7cGe9973vjjjvuiPPOOy/mzp0bV155ZcqIAAAAAAAAAABlKen2MV/60pdi5MiR0dHRES+99FKcccYZccghh8TTTz8d99xzT9x8881x7bXXpowIAAAAAAAAAFCWkve0FtgAAGxYSURBVJZCfvKTn8Sll14aQ4cOjWw2GwsWLIj//b//d3R2dsaMGTPimmuuiRtuuCFlRAAAAAAAAACAspR0+5hsNhuZTKb3dlVVVfT09ER3d3dERLz//e+PJ5544g3HyOVykcvlCs7lB2Qjm832eV4AAAAAAAAAKIbX/Okc+kzSlUKmTZsWF1xwQWzfvj127NgRX//612PcuHExfPjwiIhob2+Purq6NxyjpaUlamtrC46rrmgpRXwAAAAAAAAAgH4r6Uoh3/zmN+PYY4+NYcOGRSaTiSFDhsTixYt7r69bty4++9nPvuEYzc3NMXfu3IJz+QFWCQEAAAAAAAAA9mxJSyHjxo2LX/3qV/HAAw9ELpeL973vfbHvvvv2Xn+zQkjEH7ag+eOtYrq6+zopAAAAAAAAAEB5SVoKiYgYPHhw/K//9b8iImL79u1xyy23xIYNG6KhoSFOOumkqK+vT5wQAAAAAAAAAKD8JC2FNDY2xtKlS2P48OGxZcuWmD59erzwwgtx8MEHx8aNG+OSSy6J5cuXx9ixY1PGBAAAAAAAAAAoO1UpJ1+/fn10d/9hr5fm5uYYNWpUtLW1xcqVK6OtrS0mTpwY8+bNSxkRAAAAAAAAAKAsJS2FvNayZcvioosuitra2oiIqKmpifnz58fSpUsTJwMAAAAAAAAAKD9Jt4+JiMhkMhER0dXVFQ0NDQXXRo0aFe3t7SliAQAAAAAAAEDJZFIHoCIlL4XMnDkzqquro7OzM1pbW2PChAm919ra2qK+vj5hOgAAAAAAAACA8pS0FHLhhRcW3K6pqSm4vWTJkpg+fXopIwEAAAAAAAAAVIR+VQr5Y1dddVWJkgAAAAAAAAAAVJaq1AEAAAAAAAAAAOh7SiEAAAAAAAAAABUok8/n86lD9LWu7tQJAAAAAACgf6prOqvoc3Ssur7ocwAQMag6dQL60trN/5M6wh5r0jv3SR2haLxMAAAAAAAAAEBqmdQBqES2jwEAAAAAAAAAqEBKIQAAAAAAAAAAFUgpBAAAAAAAAACgAimFAAAAAAAAAABUoOrUAV555ZX4z//8z1i2bFls3bo1IiJGjBgR73//++Ov//qvY6+99kqcEAAAAAAAAACg/CRdKWTDhg0xfvz4+MxnPhMPP/xw7Ny5M3bu3BkPP/xwfPrTn45DDjkkNmzYkDIiAAAAAAAAAEBZSrpSyOmnnx7vec974uGHH46hQ4cWXOvs7IxPf/rTceaZZ8ZPf/rTRAkBAAAAAAAAAMpT0lLIAw88ECtXrtylEBIRMXTo0LjkkkviyCOPTJAMAAAAAAAAAEonE5nUEahASbePGTZsWDzxxBN/8voTTzwRw4YNK1keAAAAAAAAAIBKkXSlkL//+7+PT3/60/GNb3wjZs6cGfvvv39ERDzzzDPxs5/9LC699NL44he/mDIiAAAAAAAAAEBZSloKufjii2PIkCFx1VVXxVe/+tXIZP6wHE4+n48RI0bEeeedF1/72tfecIxcLhe5XK7gXH5ANrLZbNFyAwAAAAAAAAD0d0m3j4mIOO+88+Kpp56KjRs3xtKlS2Pp0qWxcePGeOqpp960EBIR0dLSErW1tQXHVVe0lCA5AAAAAAAAAED/lcnn8/nUId4OK4UAAAAAAMDuq2s6q+hzdKy6vuhzABAxKOm+EPS1X215KXWEPdbEA2pSRyiapCuFrFmzJjZt2tR7+3vf+15MnTo1DjjggJg2bVosWrToTcfIZrMxdOjQgkMhBAAAAAAAAADY0yUthZxyyimxcePGiIj47ne/G6eddlpMnjw55s2bF01NTXHqqafGzTffnDIiAAAAAAAAABRdJuNIdVSypAsKPfbYY3HQQQdFRMS3vvWtuPbaa+PUU0/tvd7U1BSXXXZZfO5zn0sVEQAAAAAAAACgLCVdKWTw4MHx3HPPRUTEk08+GUcccUTB9SOPPLJgexkAAAAAAAAAAHZP0lLIcccdFzfccENERBx99NHxwx/+sOD64sWL48ADD0wRDQAAAAAAAACgrCXdPuaKK66IqVOnxtFHHx2TJ0+OhQsXxi9+8YsYP358tLa2xvLly+POO+9MGREAAAAAAAAAoCwlXSlk5MiR8fDDD8eUKVPi7rvvjnw+HytXrox77rknRo8eHQ888EB88IMfTBkRAAAAAAAAAKAsZfL5fD51iL7W1Z06AQAAAAAA9E91TWcVfY6OVdcXfQ4AIgYl3ReCvvbfv3spdYQ91ntG16SOUDRJVwoBAAAAAAAAAKA4dMcAAAAAAAAAILFM6gBUJKUQAAAAACCJUmxsnfGbddhFKbZ2qXv/OUWfo+PBbxZ9DgCAcmf7GAAAAAAAAACACqQUAgAAAAAAAABQgZRCAAAAAAAAAAAqkFIIAAAAAAAAAEAFUgoBAAAAAAAAAKhA1akDAAAAAAAAAMAeL5M6AJWoX68U8swzz8TFF1+cOgYAAAAAAAAAQNnp16WQrVu3xvz581PHAAAAAAAAAAAoO0m3j/nVr371htdbW1tLlAQAAAAAAAAAoLIkLYUceuihkclkIp/P73Lt1fOZjI2TAAAAAAAAAADeqqSlkOHDh8eVV14ZM2fOfN3rv/71r+PDH/5wiVMBAAAAAAAAAJS/pKWQww8/PJ566qkYM2bM615/4YUXXncVkdfK5XKRy+UKzuUHZCObzfZZTgAAAAAAAACAclOVcvJ/+Id/iHe9611/8vo73/nOuOWWW95wjJaWlqitrS04rrqipY+TAgAAAAAAAACUl0z+zZbi6OesFAIAAAAA5akUv5nMZIo/B7CruvefU/Q5Oh78ZtHnAOjvBiXdF4K+9usnt6eOsMc6ZNSQ1BGKpuxfJrLZXQsgXd2JwgAAAAAAAAAA9BNJt49Zs2ZNbNq0qff29773vZg6dWoccMABMW3atFi0aFHCdAAAAAAAAAAA5StpKeSUU06JjRs3RkTEd7/73TjttNNi8uTJMW/evGhqaopTTz01br755pQRAQAAAAAAAADKUtLtYx577LE46KCDIiLiW9/6Vlx77bVx6qmn9l5vamqKyy67LD73uc+liggAAAAAAAAAUJaSrhQyePDgeO655yIi4sknn4wjjjii4PqRRx5ZsL0MAAAAAAAAAAC7J2kp5LjjjosbbrghIiKOPvro+OEPf1hwffHixXHggQemiAYAAAAAAAAAUNaSbh9zxRVXxNSpU+Poo4+OyZMnx8KFC+MXv/hFjB8/PlpbW2P58uVx5513powIAAAAAAAAAEWXyaROQCVKulLIyJEj4+GHH44pU6bE3XffHfl8PlauXBn33HNPjB49Oh544IH44Ac/mDIiAAAAAAAAAEBZyuTz+XzqEH2tqzt1AgAAAADgzZTiN5P+b0tIo+795xR9jo4Hv1n0OQD6u0FJ94Wgr/3mqe2pI+yxGkcOSR2haJKuFAIAAAAAAAAAQHEohQAAAAAAAAAAVCDbxwAAAAAAAGWnrumsos/Rser6os8B8HbYPqay2D4mHdvHAAAAAAAAAABQVnTHAAAAAAAAACCxTOoAVCQrhQAAAAAAAAAAVCClEAAAAAAAAACACqQUAgAAAAAAAABQgfpFKeR3v/tdvPTSS7uc37FjR9x///0JEgEAAAAAAAAAlLekpZCnn346jjjiiBgzZkwMGzYsPv3pTxeUQ55//vk45phjEiYEAAAAAAAAAChPSUsh559/flRVVcWKFSvi7rvvjt/85jdxzDHHREdHR+998vl8woQAAAAAAAAAAOUpaSnkvvvui+uuuy4mT54cs2bNigceeCAaGhpixowZ8fzzz0dERCaTSRkRAAAAAAAAAKAsJS2FvPjii1FXV9d7O5vNxh133BHvete74phjjolnn302YToAAAAAAAAAKJGMI9lRwZKWQsaNGxe/+tWvCs5VV1fHD37wgxg3blx86EMfetMxcrlcdHZ2Fhy5XK5YkQEAAAAAAAAAykLSUshxxx0XN9100y7nXy2GHHrooW86RktLS9TW1hYcV13RUoS0AAAAAAAAAADlI5PP5/OpJu/u7o6XX345hg4d+ievP/nkkzFmzJg/OUYul9tlZZD8gGxks9k+zQoAAAAAAPQfdU1nFX2OjlXXF30OgLdjUHXqBPSldU9vTx1hjzW+YUjqCEWT9GWiurr6TxZCXr3+RoWQiIhsdtcCSFd3n8QDAAAAAAAAAChbSbePWbNmTWzatKn39ve+972YOnVqHHDAATFt2rRYtGhRwnQAAAAAAAAAAOUraSnklFNOiY0bN0ZExHe/+9047bTTYvLkyTFv3rxoamqKU089NW6++eaUEQEAAAAAAAAAylLS7WMee+yxOOiggyIi4lvf+lZce+21ceqpp/Zeb2pqissuuyw+97nPpYoIAAAAAAAAAEWXiUzqCFSgpCuFDB48OJ577rmIiHjyySfjiCOOKLh+5JFHFmwvAwAAAAAAAADA7klaCjnuuOPihhtuiIiIo48+On74wx8WXF+8eHEceOCBKaIBAAAAAAAAAJS1pNvHXHHFFTF16tQ4+uijY/LkybFw4cL4xS9+EePHj4/W1tZYvnx53HnnnSkjAgAAAAAAAACUpaQrhYwcOTIefvjhmDJlStx9992Rz+dj5cqVcc8998To0aPjgQceiA9+8IMpIwIAAAAAAAAAlKVMPp/Ppw7R17q6UycAAAAAAACKqa7prKLP0bHq+qLPAfB2DEq6LwR9bf3TL6eOsMd6d8Pg1BGKJulKIQAAAAAAAAAAFIdSCAAAAAAAAABABbJ9DAAAAAAAwOuwRQ3Q39k+prK0brV9TCp/OcL2MQAAAAAAAAAAlBGlEAAAAAAAAACACqQUAgAAAAAAAABQgZRCAAAAAAAAAAAqkFIIAAAAAAAAAEAFUgoBAAAAAAAAAKhA1akDbNu2LX71q1/FpEmTYvjw4fHcc8/Fv/zLv0Qul4sTTzwxxo8fnzoiAAAAAAAAABRVJnUAKlLSUsjKlSvj2GOPjc7Ozhg2bFjce++9ceKJJ0Z1dXXs3LkzFixYEEuXLo3DDjssZUwAAAAAAAAAgLKTdPuYefPmxYknnhgvvvhifP3rX48TTjghZs6cGb/97W9jw4YNMWfOnLjkkktSRgQAAAAAAAAAKEuZfD6fTzX58OHD44EHHojx48fHjh07YtCgQbFs2bI44ogjIiJizZo18ZGPfCR+97vfvaVxu7qLkRYAAAAAANiT1DWdVfQ5OlZdX/Q5gMo1KOm+EPS13259OXWEPdbBIwanjlA0SVcKeeWVV2LvvfeOiIiBAwfG4MGDY9999+29vu+++8a2bdtSxQMAAAAAAAAAKFtJu2MHHHBAPP744/Gud70rIiIWLVoUDQ0NvdeffvrpgpLI68nlcpHL5QrO5QdkI5vN9nleAAAAAAAAAIBykXSlkDlz5sSzzz7be/v444/vXTkkIuJHP/pR71Yyf0pLS0vU1tYWHFdd0VK0zAAAAAAAAAAA5SCTz+fzqUP8KS+//HIMGDDgDVf9sFIIAAAAAABQDHVNZxV9jo5V1xd9DqByDUq6LwR97bdbX04dYY918IjBqSMUTb9+mRg8+M0/8dnsrgWQru5iJQIAAAAAAACAIsikDkAlSrp9zJo1a2LTpk29t7/3ve/F1KlT44ADDohp06bFokWLEqYDAAAAAAAAAChfSUshp5xySmzcuDEiIr773e/GaaedFpMnT4558+ZFU1NTnHrqqXHzzTenjAgAAAAAAAAAUJaSbh/z2GOPxUEHHRQREd/61rfi2muvjVNPPbX3elNTU1x22WXxuc99LlVEAAAAAAAAAICylHSlkMGDB8dzzz0XERFPPvlkHHHEEQXXjzzyyILtZQAAAAAAAAAA2D1JSyHHHXdc3HDDDRERcfTRR8cPf/jDguuLFy+OAw88MEU0AAAAAAAAAICylnT7mCuuuCKmTp0aRx99dEyePDkWLlwYv/jFL2L8+PHR2toay5cvjzvvvDNlRAAAAAAAAACAspS0FDJy5Mh4+OGHY8GCBbFkyZLI5/OxcuXK2LJlS0ydOjUeeOCBmDx5csqIAAAAAAAAAFB0mcikjkAFyuTz+XzqEH2tqzt1AgAAAAAAoNzVNZ1V9Dk6Vl1f9DmAyjUo6RIA9LXHnvl96gh7rIP23zt1hKKpSh0AAAAAAAAAAIC+Z6UQAAAAAACARIq9GomVSKCyWSmkslgpJB0rhQAAAAAAAAAAUFaUQgAAAAAAAAAAKpBSCAAAAAAAAABABbLLFAAAAAAAAAAklsmkTkAlslIIAAAAAAAAAEAFUgoBAAAAAAAAAKhA/bIUMm7cuHjsscdSxwAAAAAAAAAAKFvVKSe/7rrrXvf85s2b45ZbbokRI0ZERMSXvvSlUsYCAAAAAAAAACh7mXw+n081eVVVVYwaNSqqqwu7KW1tbTFy5MgYOHBgZDKZePzxx9/SuF3dfZkSAAAAAACgOOqazirq+B2rri/q+EBag5IuAUBf2/Ds71NH2GMduN/eqSMUTdKXiS984QuxYsWK+P73vx/jx4/vPT9w4MC45557orGxMWE6AAAAAAAAAIDyVZVy8htvvDEuuOCCmD17dlx/vaYqAAAAAAAAAEBfSVoKiYj46Ec/GsuWLYs777wzjjvuuNi6detb+vhcLhednZ0FRy6XK1JaAAAAAAAAAOh7GUey461oaWmJpqam2GeffWK//faLE044IVpbWwvu09XVFWeeeWbU19dHTU1NfOxjH4tnnnmm4D6bN2+O448/PgYPHhz77bdfnHvuudHd3f0W07y55KWQiIhRo0bFfffdF0cddVS8973vjXw+v9sf29LSErW1tQXHVVe0FDEtAAAAAAAAALAn+uUvfxlnnnlmLF++PO69997YsWNHHHvssbF9+/be+5x99tmxZMmS+MEPfhC//OUv46mnnoq/+Zu/6b3e09MTxx9/fLzyyivx4IMPxm233Ra33nprXHDBBX2eN5N/Kw2MEli9enUsXbo0Pv3pT0ddXd2b3j+Xy+2yMkh+QDay2WyxIgIAAAAAAPSJuqazijp+x6rrizo+kNag6tQJ6Esbn/196gh7rL/Yb+8/+2Pb29tjv/32i1/+8pdx1FFHxYsvvhjveMc74vvf/358/OMfj4iI9evXx/jx42PZsmXxvve9L37yk5/Ehz70oXjqqadi//33j4iIG2+8Mc4777xob2+Pvfbaq08eV0Q/WSnktQ4//PD48pe/vFuFkIiIbDYbQ4cOLTgUQgAAAID/r70/jZOqPPPH/6vYmkU2F1SERg2KmBiNsoRgxEQFJaOomZDvZHMbookYl4wxDkl0klHE6KiJa2Iw4zIuMUENJoAbbgFRQU0yioCtJiAuEQRFmqXv/4P5w49G6K7uOsWhi/f79aoHXVV9f67TzdXnnLtuzgEAAAAot/feey8iIrbffvuI+L8LYaxevToOP/zw9e/ZZ599orq6OmbMmBERETNmzIj99ttv/YKQiIgRI0bEsmXL4q9//Wum9eW6KGT27NlRU1Oz/utbbrklhg4dGr17946DDz447rjjjhyrAwAAAAAAAAAqXW1tbSxbtqzeY+M7lmxKXV1dnHXWWTF06ND4xCc+ERERixcvjnbt2kW3bt3qvXfnnXeOxYsXr3/PhgtC1r2+7rUs5boo5KSTTooFCxZERMSNN94Yp556agwYMCDGjRsXAwcOjDFjxsTEiRPzLBEAAAAAAAAAqGDjx4+Prl271nuMHz++0e87/fTT4y9/+ctWfcGLXO8yNW/evNhrr70iIuLaa6+Nq666KsaMGbP+9YEDB8ZFF10UJ598cl4lAgAAAAAAAAAV7Pzzz49zzjmn3nNVVVUNfs/YsWNj8uTJ8dhjj0WvXr3WP7/LLrvEqlWrYunSpfWuFvLmm2/GLrvssv49s2bNqjfem2++uf61LOV6pZCOHTvGO++8ExERCxcujEGDBtV7ffDgwfVuLwMAAAAAAAAAFangkdejqqoqunTpUu+xuUUhKaUYO3ZsTJo0KR5++OHYY4896r1+0EEHRdu2beOhhx5a/9zcuXPj9ddfjyFDhkRExJAhQ+LPf/5zvPXWW+vf88ADD0SXLl1i33333WRuc+W6KOSoo46K6667LiIihg0bFnfffXe91++6667o27dvHqUBAAAAAAAAANRz+umnx6233hr/8z//E507d47FixfH4sWL48MPP4yIiK5du8Ypp5wS55xzTjzyyCPx7LPPxkknnRRDhgyJT3/60xERMXz48Nh3333j61//ejz//PMxderU+MEPfhCnn356o1coaapCSillOmITLFq0KIYOHRrV1dUxYMCAuO666+Kggw6K/v37x9y5c2PmzJkxadKkGDlyZJPGXbmmTAUDAAAAAABkqPvAsWUdf8nTV5d1fCBf7dvkXQFZWvD2h3mXsM362E4din5voVDY5PM33XRTnHjiiRERsXLlyvjud78bt99+e9TW1saIESPi2muvrXdrmNdeey2+9a1vxfTp06NTp05xwgknxCWXXBJt2mTb2LkuComIWLp0aVxyySXx+9//Pl555ZWoq6uLXXfdNYYOHRpnn312DBgwoMljWhQCAAAAAAC0BBaFAKWwKKSyWBSSn6YsCmlpcl8UUg4WhQAAAAAAAC2BRSFAKSwKqSwWheSnkheFtMq7AAAAAAAAAAAAsmdRCAAAAAAAAABABXL7GAAAAAAAgApV7tvTRLhFDeTJ7WMqi9vH5KeSbx/jzwQAAAAAAAAA5KwQhbxLoAK5fQwAAAAAAAAAQAWyKAQAAAAAAAAAoAJZFAIAAAAAAAAAUIEsCgEAAAAAAAAAqEBt8i5gQymlmD59esyfPz923XXXGDFiRLRt2zbvsgAAAAAAAAAAWpxcF4WMHDkybr/99ujatWu8++67MXLkyJg1a1bsuOOO8Y9//CP23nvveOyxx2KnnXbKs0wAAAAAAAAAgBYn19vHTJkyJWprayMi4gc/+EEsX748FixYEG+99Va89tpr0alTp/jRj36UZ4kAAAAAAAAAUHaFgkdej0qW66KQDT388MMxfvz42GOPPSIiolevXjFhwoSYOnVqzpUBAAAAAAAAALQ8uS8KKfz/l90sWbIkPvaxj9V7rW/fvrFo0aI8ygIAAAAAAAAAaNHa5F3AiSeeGFVVVbF69eqoqamJj3/84+tfW7x4cXTr1q3B76+trV1/C5p1UuuqqKqqKke5AAAAAAAAAAAtQq5XCjnhhBOiR48e0bVr1xg1alSsWLGi3uu//e1v44ADDmhwjPHjx0fXrl3rPX46YXwZqwYAAAAAAAAA2PoVUkop7yI254MPPojWrVtH+/btN/seVwoBAAAAAADYtO4Dx5Y9Y8nTV5c9A9i09rnfF4Is1byzMu8Stll77Lj5NQkt3Vb9Z6JTp06Nvqeq6qMLQFauKVdFAAAAAAAAAAAtQ663j5k9e3bU1NSs//qWW26JoUOHRu/evePggw+OO+64I8fqAAAAAAAAAABarlwXhZx00kmxYMGCiIi48cYb49RTT40BAwbEuHHjYuDAgTFmzJiYOHFiniUCAAAAAAAAQNkVPHJ7VLJcbx8zb9682GuvvSIi4tprr42rrroqxowZs/71gQMHxkUXXRQnn3xyXiUCAAAAAAAAALRIuV4ppGPHjvHOO+9ERMTChQtj0KBB9V4fPHhwvdvLAAAAAAAAAABQnFwXhRx11FFx3XXXRUTEsGHD4u677673+l133RV9+/bNozQAAAAAAAAAgBYt19vHTJgwIYYOHRrDhg2LAQMGxOWXXx7Tp0+P/v37x9y5c2PmzJkxadKkPEsEAAAAAAAAAGiRcr1SSM+ePWPOnDkxZMiQmDJlSqSUYtasWTFt2rTo1atXPPnkkzFy5Mg8SwQAAAAAAAAAaJEKKaWUdxFZW7km7woAAAAAAADy133g2LJnLHn66rJnAJvWPtf7QpC1V99ZmXcJ26zdd2yfdwll488EAAAAAAAAAOStkHcBVKJcbx8DAAAAAAAAAEB5uH0MAAAALU7dljiVLXNEq1bl/+8/W+LHVPC/mAAAtnndD/n3smcseezismdAS+T2MZXl1X+4fUxedt+hcm8f40ohAAAAAAAAAAAVyKIQAAAAAAAAAIAKZFEIAAAAAAAAAEAFsigEAAAAAAAAAKACWRQCAAAAAAAAAFCB2uRdAAAAAAAAAABs6wpRyLsEKlCuVwr5+9//Hu+88876rx9//PH46le/Gp/97Gfja1/7WsyYMSPH6gAAAAAAAAAAWq5cF4V88YtfjJkzZ0ZExL333huHHnpovP/++zF06NBYsWJFDBs2LCZPnpxniQAAAAAAAAAALVKut4/561//Gh//+McjImL8+PFx8cUXx3nnnbf+9auvvjp+9KMfxT/90z/lVSIAAAAAAAAAQIuU65VC2rRpE8uXL4+IiJqamjjqqKPqvX7UUUfF3Llz8ygNAAAAAAAAAKBFy3VRyLBhw+L222+PiIhPfepTMX369HqvP/LII7HbbrvlUBkAAAAAAAAAQMuW6+1jLrnkkvjsZz8bixYtioMPPjjGjRsXTz/9dPTv3z/mzp0bd955Z1x//fUNjlFbWxu1tbX1nkutq6KqqqqcpQMAAAAAAAAAbNVyvVJI//7946mnnopVq1bFpZdeGh988EHcdtttceGFF8b8+fPjjjvuiBNPPLHBMcaPHx9du3at9/jphPFbZgMAAAAAAAAAIAOFgkdej0pWSCmlvIuIiEgpxVtvvRV1dXWx4447Rtu2bYv6PlcKAQAA2PbUbYlT2TJHtGpV/hmHLfFjqvSJEwAAGtf9kH8ve8aSxy4uewa0RO1zvS8EWXv93drG30RZVG9fuesLtpo/E4VCIXbeeecmf19V1UcXgKxck1VVAAAAAAAAAAAtU663j5k9e3bU1NSs//qWW26JoUOHRu/evePggw+OO+64I8fqAAAAAAAAAABarlwXhZx00kmxYMGCiIi48cYb49RTT40BAwbEuHHjYuDAgTFmzJiYOHFiniUCAAAAAAAAALRIud4+Zt68ebHXXntFRMS1114bV111VYwZM2b96wMHDoyLLrooTj755LxKBAAAAAAAAABokXK9UkjHjh3jnXfeiYiIhQsXxqBBg+q9Pnjw4Hq3lwEAAAAAAAAAoDi5Lgo56qij4rrrrouIiGHDhsXdd99d7/W77ror+vbtm0dpAAAAAAAAALDFFDxye1SyXG8fM2HChBg6dGgMGzYsBgwYEJdffnlMnz49+vfvH3Pnzo2ZM2fGpEmT8iwRAAAAAAAAAKBFyvVKIT179ow5c+bEkCFDYsqUKZFSilmzZsW0adOiV69e8eSTT8bIkSPzLBEAAAAAAAAAoEUqpJRS3kVkbeWavCsAAACgnOq2xKlsmSNatSr/xUm3xI+pUOnXWAUAoFHdD/n3smcseezismdAS9Q+1/tCkLW/vVubdwnbrN7bV+VdQtnkeqUQAAAAAAAAAADKw6IQAAAAAAAAAIAK5PYxAAAAAAAAbNW6f/rssmcsmXlF2TMga24fU1ncPiY/bh8DAAAAAAAAAECLYu0YAAAAAAAAAOSsUMi7AiqRK4UAAAAAAAAAAFQgi0IAAAAAAAAAACqQRSEAAAAAAAAAABUo10Uhl19+ebz22mt5lgAAAAAAAAAAUJFyXRRy7rnnxsc+9rE44ogj4s4774xVq1blWQ4AAAAAAAAAQMXI/fYxN954Y3Tq1Cm+/vWvR8+ePeOss86Kv/zlL3mXBQAAAAAAAADQouW+KGTkyJFxzz33xN///vf43ve+F1OnTo39998/Bg0aFL/85S9j+fLleZcIAAAAAAAAAGVW8MjtUblyXxSyTo8ePeJ73/tevPjiizF9+vTYd9994+yzz45dd90179IAAAAAAAAAAFqcNnmGFwqbXnHz2c9+Nj772c/Gz372s7jzzjsbHKO2tjZqa2vrPZdaV0VVVVVmdQIAAAAAAAAAtDS5XikkpdTg6126dIkxY8Y0+J7x48dH165d6z1+OmF8lmUCAAAAAAAAALQ4hdTYyoytnCuFAAAAAAAAVLbunz677BlLZl5R9gzIWvtc7wtB1v6+ZFXeJWyzenVvl3cJZdPi/0xUVX10AcjKNTkVAwAAAAAAAACwlcj19jGzZ8+Ompqa9V/fcsstMXTo0Ojdu3ccfPDBcccdd+RYHQAAAAAAAABAy5XropCTTjopFixYEBERN954Y5x66qkxYMCAGDduXAwcODDGjBkTEydOzLNEAAAAAAAAAIAWKdfbx8ybNy/22muviIi49tpr46qrrooxY8asf33gwIFx0UUXxcknn5xXiQAAAAAAAABQdoVC3hVQiXK9UkjHjh3jnXfeiYiIhQsXxqBBg+q9Pnjw4Hq3lwEAAAAAAAAAoDi5Lgo56qij4rrrrouIiGHDhsXdd99d7/W77ror+vbtm0dpAAAAAAAAAAAtWq63j5kwYUIMHTo0hg0bFgMGDIjLL788pk+fHv3794+5c+fGzJkzY9KkSXmWCAAAAAAAAADQIuV6pZCePXvGnDlzYsiQITFlypRIKcWsWbNi2rRp0atXr3jyySdj5MiReZYIAAAAAAAAANAiFVJKKe8isrZyTd4VAAAAAAAAkJXunz677BlLZl5R9gzIWvtc7wtB1hYuXZV3Cdus3bq1y7uEssn1SiEAAAAAAAAAAJSHtWMAAAAAAAAAkLNC3gVQkdw+BgAAAAAAgG1e94Fjy56x5Omry57BtsXtYyrLIrePyU1Pt48BAAAAAAAAAKAlsSgEAAAAAAAAAKACWRQCAAAAAAAAAFCBLAoBAAAAAAAAAKhAFoUAAAAAAAAAAFQgi0IAAAAAAAAAACpQm7wLmDx5csyaNStGjBgRQ4cOjYcffjguu+yyqKuri+OPPz6++c1v5l0iAAAAAAAAAJRVoZB3BVSiXK8UcsMNN8Rxxx0Xf/jDH2LkyJFx6623xrHHHhu77bZb7L777nHWWWfFVVddlWeJAAAAAAAAAAAtUq5XCvnZz34W1157bYwZMyYeeeSRGDlyZFx++eXx7W9/OyIiPv3pT8ell14aZ555Zp5lAgAAAAAAAAC0OLleKaSmpiZGjBgRERGf+9znYu3atXHIIYesf/3QQw+N1157La/yAAAAAAAAAABarFwXheywww7rF30sWrQo1qxZE6+//vr611977bXYfvvt8yoPAAAAAAAAAKDFyvX2MaNGjYpTTjklTjjhhLjvvvviG9/4Rnz3u9+NVq1aRaFQiHPPPTeGDx/e4Bi1tbVRW1tb77nUuiqqqqrKWToAAAAAAAAAwFYt1yuFTJgwIQ499NC444474oADDohf/OIXccopp8SoUaPiqKOOih122CHGjx/f4Bjjx4+Prl271nv8dELD3wMAAAAAAAAAUOkKKaWUdxEbW7lyZaxevTo6d+7c6HtdKQQAAAAAAIBSdR84tuwZS56+uuwZbFva53pfCLK2+L3VeZewzdqla9u8SyibrfLPRPv27aN9+/ZFvbeq6qMLQFauKUdVAAAAAAAAAAAtR663j5k9e3bU1NSs//qWW26JoUOHRu/evePggw+OO+64I8fqAAAAAAAAAABarlwXhZx00kmxYMGCiIi48cYb49RTT40BAwbEuHHjYuDAgTFmzJiYOHFiniUCAAAAAAAAALRIud4+Zt68ebHXXntFRMS1114bV111VYwZM2b96wMHDoyLLrooTj755LxKBAAAAAAAAABokXK9UkjHjh3jnXfeiYiIhQsXxqBBg+q9Pnjw4Hq3lwEAAAAAAAAAoDi5Lgo56qij4rrrrouIiGHDhsXdd99d7/W77ror+vbtm0dpAAAAAAAAAAAtWq63j5kwYUIMHTo0hg0bFgMGDIjLL788pk+fHv3794+5c+fGzJkzY9KkSXmWCAAAAAAAAADQIuV6pZCePXvGnDlzYsiQITFlypRIKcWsWbNi2rRp0atXr3jyySdj5MiReZYIAAAAAAAAAOVX8MjtUcEKKaWUdxFZW7km7woAAAAAAABoSboPHFv2jCVPX132DLYt7XO9LwRZW7xsdd4lbLN26dI27xLKJtcrhQAAAAAAAAAAUB6uFAIAbDO2xFFPocIvMwcAlarcxwmOESA/zgMA2Jp0P/i8smcseWJC2TMozpY4DulQuRc32Ca5Ukh+XCkEAAAAAAAAAIAWxaIQAAAAAAAAAIAKZFEIAAAAAAAAAEAFapN3AQAAAAAAAACwrSvkXQAVyZVCAAAAAAAAAAAqkEUhAAAAAAAAAAAVKPfbx3z44Ydx++23xxNPPBFvvPFGtGrVKvbcc8849thj47DDDsu7PAAAAAAAAACAFinXK4XMnz8/+vfvH+eff348+OCDMXXq1CgUCvH000/HiBEjYvTo0bFmzZo8SwQAAAAAAAAAaJFyXRTyne98J4488shYvHhxvP766zF+/Pioq6uLmTNnxosvvhhPP/10/Od//meeJQIAAAAAAAAAtEiFlFLKK7xTp07x3HPPxV577RUREatWrYrtttsu3njjjdhhhx3i3nvvjbPOOitqamqaNO5KFxcBADZhSxz1FArlzwAAslfu4wTHCJAf5wEAbE26H3xe2TOWPDGh7BkUZ0sch3RoW/4Mtpw3l63Ou4Rt1s5dKreZ2uQZ3q1bt1i+fPn6r1esWBFr1qyJdu3aRUTEJz/5yXjjjTfyKg8AAAAAAAAAtgiLjSmHXG8fc8QRR8Q555wTL730UtTU1MRpp50WBxxwQHTu3DkiIl5//fXo0aNHg2PU1tbGsmXL6j1qa2u3RPkAAAAAAAAAAFutXBeFXHrppVFbWxv77rtv9O3bN2bOnBm/+tWv1r/+9ttvx7nnntvgGOPHj4+uXbvWe/x0wvhylw4AAAAAAAAAsFUrpLQl7mbVsHnz5kVtbW3ss88+0aZN0+5oU1tb+5Erg6TWVVFVVZVliQBABXAvcQBgc8p9nOAYAfLjPACArUn3g88re8aSJyaUPYPibInjkA5ty5/BlvPW8tV5l7DN6tG5cpupaSswymSvvfZq9vdWVX10AcjKNaVWBAAAAAAAAADQsuV6+5jZs2dHTU3N+q9vueWWGDp0aPTu3TsOPvjguOOOO3KsDgAAAAAAAACg5cp1UchJJ50UCxYsiIiIG2+8MU499dQYMGBAjBs3LgYOHBhjxoyJiRMn5lkiAAAAAAAAAECLlOvtY+bNm7f+1jHXXnttXHXVVTFmzJj1rw8cODAuuuiiOPnkk/MqEQAAAAAAAACgRcp1UUjHjh3jnXfeiT59+sTChQtj0KBB9V4fPHhwvdvLAAAAAAAAAEAlKkQh7xKoQLnePuaoo46K6667LiIihg0bFnfffXe91++6667o27dvHqUBAAAAAAAAALRouV4pZMKECTF06NAYNmxYDBgwIC6//PKYPn169O/fP+bOnRszZ86MSZMm5VkiAAAAAAAAAECLlOuVQnr27Blz5syJIUOGxJQpUyKlFLNmzYpp06ZFr1694sknn4yRI0fmWSIAAAAAAAAAQItUSCmlvIvI2so1eVcAAGyNtsRRT8EtHwGgRSr3cYJjBMiP8wAAtibdDz6v7BlLnphQ9gyKsyWOQzq0LX8GW87by33QnZedOud6k5WyyvVKIQAAAAAAAAAAlIdFIQAAAAAAAAAAFcjtY5rJZScBIHsu205L45gQoHJUwuyIfQYt0eq1dWXPaNva/4srhmPbrUtdmX8hrfwyoKJ1P/qKso6/5Pdnl3X8SuL2MTTV2++7fUxedtrO7WMAAAAAAAAAAGhBLAoBAAAAAAAAAKhAFoUAAAAAAAAAAFQgi0IAAAAAAAAAACqQRSEAAAAAAAAAABXIohAAAAAAAAAAgArUJu8CIiJmzZoVM2bMiMWLF0dExC677BJDhgyJQYMG5VwZAAAAAAAAAEDLlOuikLfeeiu++MUvxpNPPhnV1dWx8847R0TEm2++GWeffXYMHTo0fvvb30aPHj3yLBMAAAAAAAAAyqqQdwFUpFxvH/Ptb3871q5dGy+++GK8+uqr8dRTT8VTTz0Vr776arz44otRV1cXp59+ep4lAgAAAAAAAAC0SLleKWTq1Knx2GOPRb9+/T7yWr9+/eJnP/tZHHrooVu+MAAAAAAAAACAFi7XRSFVVVWxbNmyzb6+fPnyqKqqanCM2traqK2trfdcal3V6PcBAAAAAAAAAFSyXG8f8+UvfzlOOOGEmDRpUr3FIcuWLYtJkybFSSedFP/yL//S4Bjjx4+Prl271nv8dML4cpcOAAAAAAAAALBVK6SUUl7htbW1cdZZZ8XEiRNjzZo10a5du4iIWLVqVbRp0yZOOeWUuOKKKxq86kdeVwrZEj+1QqH8GQCwNSn3/tW+law5JgSoHPnNjmTHPoOWaPXaurJntG2d6/+LazEc225d6sr8C2nllwEVrfvRV5R1/CW/P7us41eSLbF/7dC2/BlsOe+8vybvErZZO26X601WyirXRSHrLFu2LJ555pl48803IyJil112iYMOOii6dOnSrPFWboFecZIEANmzKISWxjEhQOXIf3akdPYZtEQWhWw9HNtuXSwKAUphUcjWw6IQmsqikPxU8qKQXLfsjDPOiNGjR8dnP/vZ+PznP59nKQAAAAAAAACQG+s2KYdcl8lfc801ceihh8bee+8dEyZMiMWLF+dZDgAAAAAAAABAxcj92onTpk2LkSNHxmWXXRbV1dUxatSomDx5ctTVlf/SkQAAAAAAAAAAlSr3RSH77bdfXHnllbFo0aK49dZbo7a2No499tjo3bt3jBs3LubPn593iQAAAAAAAAAALU7ui0LWadu2bYwePTqmTJkSr7zySowZMyZuu+226NevX96lAQAAAAAAAAC0OFvNopANVVdXx4UXXhg1NTUxZcqUvMsBAAAAAAAAAGhxcl0U0qdPn2jduvVmXy8UCnHEEUdswYoAAAAAAAAAACpDmzzDa2pq8owHAAAAAAAAAKhYuS4KAQAAAAAAAAAiClHIuwQqUK63jwEAAAAAAAAAoDwKKaWUdxFZW7km7woAAAAAAACg8nQfOLbsGUuevrrsGZWivftCVJR3P1ibdwnbrO07tc67hLJxpRAAAAAAAAAAgApkUQgAAAAAAAAAQAWyKAQAAAAAAAAAoAJZFAIAAAAAAAAAUIHa5F0AAAAAAAAAAGzrCoW8K6ASuVIIAAAAAAAAAEAFsigEAAAAAAAAAKACbdWLQpYsWRI333xz3mUAAAAAAAAAALQ4W/WikNdffz1OOumkvMsAAAAAAAAAAGhx2uQZvmzZsgZfX758+RaqBAAAAAAAAACgsuS6KKRbt25RKBQ2+3pKqcHXAQAAAAAAAADYtFwXhXTu3DnGjRsXgwcP3uTr8+bNi1NPPbXBMWpra6O2trbec6l1VVRVVWVWJwAAAAAAAABAS5PropADDzwwIiKGDRu2yde7desWKaUGxxg/fnz8x3/8R73nxv3wgvjBjy7MpEYAAAAAAAAAgJYo10UhX/nKV2LFihWbfX2XXXaJCy64oMExzj///DjnnHPqPZdau0oIAAAAAAAAALBtK6TGLsXRAq1ck3cFAAAAAAAAUHm6Dxxb9owlT19d9oxK0T7XSwCQtSUr1uZdwjare8fWeZdQNq3yDD/jjDPi8ccfz7MEAAAAAAAAAICKlOuikGuuuSYOPfTQ2HvvvWPChAmxePHiPMsBAAAAAAAAAKgYuS4KiYiYNm1ajBw5Mi677LKorq6OUaNGxeTJk6Ouri7v0gAAAAAAAAAAWqzcF4Xst99+ceWVV8aiRYvi1ltvjdra2jj22GOjd+/eMW7cuJg/f37eJQIAAAAAAAAAtDiFlFLKK7xVq1axePHi6NGjR73nX3/99Zg4cWL8+te/jr/97W+xdu3aJo27ck2WVQIAAAAAAAAREd0Hji17xpKnry57RqVo3ybvCsjS0g+b9rk42enWoXXeJZRN7lcK2ZTq6uq48MILo6amJqZMmZJ3OQAAAAAAAAAALU6ui0L69OkTrVtvfsVNoVCII444YgtWBAAAAAAAAABQGXK9oFBNTU2e8QAAAAAAAAAAFWurvH0MAAAAAAAAAAClsSgEAAAAAAAAAKACFVJKKe8isrZyTd4VAAAAAAAAAM3RfeDYsmcsefrqsmdsCe3b5F0BWVr64dq8S9hmdevQOu8SysafCQAAAAAAAADIWSEKeZdABXL7GAAAAAAAAACACmRRCAAAAAAAAABABbIoBAAAAAAAAACgAlkUAgAAAAAAAABQgSwKAQAAAAAAAACoQFvFopC6urrNPv/6669v4WoAAAAAAAAAAFq+XBeFLFu2LEaPHh2dOnWKnXfeOX70ox/F2rVr17/+9ttvxx577JFjhQAAAAAAAAAALVObPMN/+MMfxvPPPx+33HJLLF26NP7zP/8zZs+eHb/73e+iXbt2ERGRUsqzRAAAAAAAAAAou0Ih7wqoRLleKeSee+6JG264If75n/85/vVf/zWeeeaZePvtt+Poo4+O2traiIgo+JcPAAAAAAAAANBkuS4Kefvtt6NPnz7rv95xxx3jwQcfjOXLl8fIkSNjxYoVjY5RW1sby5Ytq/dYt6AEAAAAAAAAAGBbleuikOrq6njxxRfrPde5c+eYNm1afPjhh3Hcccc1Osb48eOja9eu9R4/nTC+XCUDAAAAAAAAALQIhZRSyiv8jDPOiMWLF8dvfvObj7y2fPnyOOKII+Lpp5+OtWvXbnaM2traj1wZJLWuiqqqqszrBQAAAAAAAMqr+8CxZc9Y8vTVZc/YEtq3ybsCsrRsZV3eJWyzurTP9XoaZZXrn4kf//jHsWjRok2+1rlz53jggQdi9uzZDY5RVfXRBSAr12RWIgAAAAAAAABAi5Trcpcf/ehH8e6772729c6dO8ewYcO2YEUAAAAAAAAAAJUh10Uh11xzTRx66KGx9957x4QJE2Lx4sV5lgMAAAAAAAAAuSh45PaoZLnfGGfatGkxcuTIuOyyy6K6ujpGjRoVkydPjro690sCAAAAAAAAAGiu3BeF7LfffnHllVfGokWL4tZbb43a2to49thjo3fv3jFu3LiYP39+3iUCAAAAAAAAALQ4uS8KWadt27YxevTomDJlSrzyyisxZsyYuO2226Jfv355lwYAAAAAAAAA0OJsNYtCNlRdXR0XXnhh1NTUxJQpU/IuBwAAAAAAAACgxcl1UUifPn2idevWm329UCjEEUccsQUrAgAAAAAAAACoDG3yDK+pqckzHgAAAAAAAACgYm2Vt48BAAAAAAAAAKA0uV4pBAAAAAAAAACIiELeBVCJCimllHcRWVu5pvwZW+KnVtD0AABsAXV15T+4bdXKwS0tT12ZT/xaOenbqpT7PN+vm6yZmwIAKE33z19Y9ox3Hyp/Roe2ZY9gC1peW5d3CduszlWVe5OVyt0yAAAAAAAAAIBtmEUhAAAAAAAAAAAVyKIQAAAAAAAAAIAKZFEIAAAAAAAAAEAFsigEAAAAAAAAAKACtcm7AAAAAAAAAADY1hWikHcJVKDcrxSSUoqamppYs2ZNRESsWrUq7rzzzrj55pvjnXfeybk6AAAAAAAAAICWKdcrhcydOzdGjBgRf/vb32LPPfeMadOmxZe+9KV46aWXIqUUHTt2jD/96U+x11575VkmAAAAAAAAAECLk+uVQs4777zYf//947nnnot/+qd/ii984QvRq1evWLJkSbz77rsxZMiQ+PGPf5xniQAAAAAAAAAALVIhpZTyCu/Ro0dMmzYtDjjggPjggw+ic+fO8dhjj8XBBx8cERF/+tOf4l/+5V/itddea9K4K9eUo9r6tsRPreCWUQAAbAF1deU/uG3VysEtLU9dmU/8Wjnp26qU+zzfr5usmZsCAChN989fWPaMdx8qf0aHtmWPYAt6vza3j+63edtVVe4JUK5XCnn//fdj++23j4iITp06RadOnWLXXXdd/3rv3r3jzTffzKs8AAAAAAAAAIAWq02e4T179ozXX389qqurIyLi0ksvjR49eqx//e23347u3bs3OEZtbW3U1tbWey61roqqqqrsCwYAAAAAAAAAaCFyvVLI4YcfHi+99NL6r7/1rW9F586d1389bdq0OPDAAxscY/z48dG1a9d6j59OGF+2mgEAAAAAAAAAWoJCSlviDqTNU1NTE+3bt693S5mN5XWlEPdtBQCgUtTVlf/gtlUrB7e0PHVlPvFr5aRvq1Lu83y/brJmbgoAoDTdP39h2TPefaj8GR3alj2CLeiDVVvtR/cVr1O7yj0ByvVKIWeccUY8/vjjm319jz32aHBBSEREVVVVdOnSpd7DrWMAAAAAAAAAgG1drotCrrnmmjj00ENj7733jgkTJsTixYvzLAcAAAAAAAAAoGLkuigkImLatGkxcuTIuOyyy6K6ujpGjRoVkydPjrq6urxLAwAAAAAAAABosXJfFLLffvvFlVdeGYsWLYpbb701amtr49hjj43evXvHuHHjYv78+XmXCAAAAAAAAADQ4uS+KGSdtm3bxujRo2PKlCnxyiuvxJgxY+K2226Lfv365V0aAAAAAAAAAECLs9UsCtlQdXV1XHjhhVFTUxNTpkzJuxwAAAAAAAAAgBanTZ7hffr0idatW2/29UKhEEccccQWrAgAAAAAAAAAtrxC3gVQkXJdFFJTU5NnPAAAAAAAAABAxdoqbx8DAAAAAAAAAEBpLAoBAAAAAAAAAKhAhZRSyruIrK1cU/6MLfFTK7hpFFCCui3wh6qVP1RkrNz/bv2bhU1bvaau7Blt25R/PXq5/4YUKuSurv4UFq/ch1N+F1uXcv8t3BJ/B9m6lPtvSIryn/NtiX3flpiafL+2/JOFXTq0LXtGuZnvLN6W+Fm9+d7Kso6/S7f2ZR0fyNeateX9Q9WmdWX8Qd8Sf8+/fNPTZc+475sDy57BlrNiVcV9dN9idGxXGX/bNsWMBAAAAAAAAABABbIoBAAAAAAAAACgArXJuwAAAAAAAAAA2OZV7h1MyJErhQAAAAAAAAAAVCCLQgAAAAAAAAAAKpBFIQAAAAAAAAAAFciiEAAAAAAAAACACrRVLgr5/Oc/H6+99lreZQAAAAAAAAAAtFht8gy/7777Nvn8Y489FpMnT47evXtHRMQxxxyzJcsCAAAAAAAAAGjxcl0Ucuyxx0ahUIiU0kdeO+OMMyIiolAoxNq1a7d0aQAAAAAAAAAALVqui0JGjBgRrVu3jokTJ0aPHj3WP9+2bdt4/vnnY999982xOgAAAAAAAADYMgpRyLsEKlCrPMP/+Mc/xmGHHRYDBgyIyZMnN2uM2traWLZsWb1HbW1txpUCAAAAAAAAALQsuS4KiYg4++yz47777ovzzjsvTj311FixYkWTvn/8+PHRtWvXeo+fThhfpmoBAAAAAAAAAFqG3BeFREQccMAB8cwzz0ShUIgDDjggUkpFf+/5558f7733Xr3HueedX8ZqAQAAAAAAAAC2fm3yLmCdDh06xPXXXx/33XdfPPLII7HjjjsW9X1VVVVRVVVV77mVa8pRIQAAAAAAAABAy5HrlULOOOOMePzxx+s9d8wxx8QVV1wRPXr0yKkqAAAAAAAAAICWL9dFIddcc00ceuihsffee8eECRNi8eLFeZYDAAAAAAAAAFAxcl0UEhExbdq0GDlyZFx22WVRXV0do0aNismTJ0ddXV3epQEAAAAAAADAFlEoeOT1qGS5LwrZb7/94sorr4xFixbFrbfeGrW1tXHsscdG7969Y9y4cTF//vy8SwQAAAAAAAAAaHFyXxSyTtu2bWP06NExZcqUeOWVV2LMmDFx2223Rb9+/fIuDQAAAAAAAACgxdlqFoVsqLq6Oi688MKoqamJKVOm5F0OAAAAAAAAAMB611xzTey+++7Rvn37GDx4cMyaNSvvkjYp10Uhffr0idatW2/29UKhEEccccQWrAgAAAAAAAAAYPPuvPPOOOecc+KCCy6I2bNnx/777x8jRoyIt956K+/SPiLXRSE1NTWxww475FkCAAAAAAAAAEDR/uu//ivGjBkTJ510Uuy7775x/fXXR8eOHWPixIl5l/YRW+XtYwAAAAAAAAAAtjarVq2KZ599Ng4//PD1z7Vq1SoOP/zwmDFjRo6VbVqbvAsAAAAAAAAAAMhLbW1t1NbW1nuuqqoqqqqqPvLed955J9auXRs777xzved33nnneOmll8paZ7Mk0sqVK9MFF1yQVq5c2WIzKmEbZGw948vY9jIqYRtkbD3jy9j2MiphG2RsPePL2PYyKmEbZGw948vY9jIqYRtkbD3jy9j2MiphG2RsPePL2PYyKmEbZGw942+pDGDzLrjgghQR9R4XXHDBJt+7cOHCFBHpT3/6U73nzz333DRo0KAtUG3TFFJKKddVKVuBZcuWRdeuXeO9996LLl26tMiMStgGGVvP+DK2vYxK2AYZW8/4Mra9jErYBhlbz/gytr2MStgGGVvP+DK2vYxK2AYZW8/4Mra9jErYBhlbz/gytr2MStgGGVvP+FsqA9i8plwpZNWqVdGxY8e4++6749hjj13//AknnBBLly6Ne++9t9zlNkmrvAsAAAAAAAAAAMhLVVVVdOnSpd5jUwtCIiLatWsXBx10UDz00EPrn6urq4uHHnoohgwZsqVKLlqbvAsAAAAAAAAAAGgpzjnnnDjhhBNiwIABMWjQoLjyyivjgw8+iJNOOinv0j7CohAAAAAAAAAAgCJ9+ctfjrfffjt+9KMfxeLFi+OAAw6IKVOmxM4775x3aR9hUUj836VgLrjggs1e/qUlZFTCNsjYesaXse1lVMI2yNh6xpex7WVUwjbI2HrGl7HtZVTCNsjYesaXse1lVMI2yNh6xpex7WVUwjbI2HrGl7HtZVTCNsjYesbfUhlAtsaOHRtjx47Nu4xGFVJKKe8iAAAAAAAAAADIVqu8CwAAAAAAAAAAIHsWhQAAAAAAAAAAVCCLQgAAAAAAAAAAKtA2vyjkmmuuid133z3at28fgwcPjlmzZmU6/mOPPRZHH3109OzZMwqFQtxzzz2Zjj9+/PgYOHBgdO7cOXr06BHHHntszJ07N9OM6667Lj75yU9Gly5dokuXLjFkyJD44x//mGnGhi655JIoFApx1llnZTbmhRdeGIVCod5jn332yWz8dRYuXBhf+9rXYocddogOHTrEfvvtF88880xm4+++++4f2Y5CoRCnn356Zhlr166NH/7wh7HHHntEhw4d4mMf+1j85Cc/iZRSZhnLly+Ps846K/r06RMdOnSIz3zmM/H000+XNGZjvZZSih/96Eex6667RocOHeLwww+PefPmZTb+7373uxg+fHjssMMOUSgU4rnnnst0G1avXh3nnXde7LffftGpU6fo2bNnfOMb34hFixZllhHxf72yzz77RKdOnaJ79+5x+OGHx1NPPZVpxoZOO+20KBQKceWVV2aaceKJJ36kT4488shMt+HFF1+MY445Jrp27RqdOnWKgQMHxuuvv55ZxqZ6vVAoxE9/+tPMMt5///0YO3Zs9OrVKzp06BD77rtvXH/99UWPX0zGm2++GSeeeGL07NkzOnbsGEceeWSTeq+Y/dzKlSvj9NNPjx122CG22267+OIXvxhvvvlmphm/+MUv4tBDD40uXbpEoVCIpUuXFj1+MRnvvvtunHHGGdGvX7/o0KFDVFdXx3e+85147733Mt2OU089NT72sY9Fhw4dYqeddopRo0bFSy+9lGnGOimlOOqoo5p0/FPM+IceeuhH+uK0007LfBtmzJgRn//856NTp07RpUuXOOSQQ+LDDz/MJOPVV1/dbI//5je/yWw7Fi9eHF//+tdjl112iU6dOsWBBx4Yv/3tb4sav9iMBQsWxHHHHRc77bRTdOnSJUaPHt2k/mvsOLPU/m5s/FJ7u7GMLHq7mO0otbeLyVinOb1dbEap/V3MNpTS241lZNHbxWxHqb1dTEapvb2xTZ3jldrfxWRk0eMNZWTV441tRxY93ljGOqX0eEPjl9rfxWRElN7jDWVk1eONbUcWPd5YRqk93tgcSxb93VhGFv3dUEYW/d3YNmTR28XOd5XS241lZNHfxWxHqf3dUEYW/d3YNmTR241lZLX/bmx+s9Q5tmIysphnaygji3m2xrYhizm2psw1N3eOrbGMUufYit2OUufZGssodZ6tsfGzmGNrLKPUObbGPlvIYv/dWEYW+++GMrI6Pm9sO7LYhxf7WU8Wx+cAEdv4opA777wzzjnnnLjgggti9uzZsf/++8eIESPirbfeyizjgw8+iP333z+uueaazMbc0KOPPhqnn356zJw5Mx544IFYvXp1DB8+PD744IPMMnr16hWXXHJJPPvss/HMM8/E5z//+Rg1alT89a9/zSxjnaeffjpuuOGG+OQnP5n52B//+MfjjTfeWP944oknMh1/yZIlMXTo0Gjbtm388Y9/jP/93/+Nyy+/PLp3755ZxtNPP11vGx544IGIiPjSl76UWcaECRPiuuuui6uvvjpefPHFmDBhQlx66aXx85//PLOMf/3Xf40HHnggbrnllvjzn/8cw4cPj8MPPzwWLlzY7DEb67VLL700fvazn8X1118fTz31VHTq1ClGjBgRK1euzGT8Dz74IA4++OCYMGFCWbZhxYoVMXv27PjhD38Ys2fPjt/97ncxd+7cOOaYYzLLiIjYe++94+qrr44///nP8cQTT8Tuu+8ew4cPj7fffjuzjHUmTZoUM2fOjJ49ezZpG4rNOPLII+v1y+23357Z+AsWLIiDDz449tlnn5g+fXq88MIL8cMf/jDat2+fWcaGtb/xxhsxceLEKBQK8cUvfjGzjHPOOSemTJkSt956a7z44otx1llnxdixY+O+++7LJCOlFMcee2y88sorce+998acOXOiT58+cfjhhxe9nypmP3f22WfH73//+/jNb34Tjz76aCxatCiOP/74orehmIwVK1bEkUceGf/+7/9e9LhNyVi0aFEsWrQoLrvssvjLX/4Sv/71r2PKlClxyimnZLodBx10UNx0003x4osvxtSpUyOlFMOHD4+1a9dmlrHOlVdeGYVCoej6mzL+mDFj6vXHpZdemmnGjBkz4sgjj4zhw4fHrFmz4umnn46xY8dGq1bFHTo3ltG7d++P9Ph//Md/xHbbbRdHHXVUZtvxjW98I+bOnRv33Xdf/PnPf47jjz8+Ro8eHXPmzMkk44MPPojhw4dHoVCIhx9+OJ588slYtWpVHH300VFXV1dURmPHmaX2d2Pjl9rbjWVk0dvFbEepvV1MxjrN6e2mZJTS342NX2pvN5aRRW8Xsx2l9nZjGVn09oY2d45Xan8Xk5FFjzeUkVWPN5QRkU2PN5axTik93tj4pfR3MRlZ9HhDGVn1eGPbkUWPN5SRVY83NMeSVX83lJFVf28uI6v+bmgbsurtYua7Su3txjKy6O+GMrLq781lZNXfDW1DVr29uYyseruY+c1S59iKySh1nq2xjFLn2YrZhlLn2Joy19zcObZiM0qZYysmo9R5tmIySplnK2b8UufYGsvIYo6tsc8Wsth/N5aRxf67oYys9t+NbUcW+/BiP+spdR8OsF7ahg0aNCidfvrp679eu3Zt6tmzZxo/fnxZ8iIiTZo0qSxjr/PWW2+liEiPPvpoWXO6d++ebrzxxkzHXL58edprr73SAw88kIYNG5bOPPPMzMa+4IIL0v7775/ZeJty3nnnpYMPPrisGRs788wz08c+9rFUV1eX2Zhf+MIX0sknn1zvueOPPz599atfzWT8FStWpNatW6fJkyfXe/7AAw9M48aNyyRj416rq6tLu+yyS/rpT3+6/rmlS5emqqqqdPvtt5c8/oZqampSRKQ5c+Y0edxiM9aZNWtWioj02muvlS3jvffeSxGRHnzwwUwz/v73v6fddtst/eUvf0l9+vRJV1xxRbPG31zGCSeckEaNGtXsMRsb/8tf/nL62te+lsn4m8vY2KhRo9LnP//5TDM+/vGPpx//+Mf1niulFzfOmDt3boqI9Je//GX9c2vXrk077bRT+uUvf9msjI33c0uXLk1t27ZNv/nNb9a/58UXX0wRkWbMmJFJxoYeeeSRFBFpyZIlzRq7mIx17rrrrtSuXbu0evXqsmU8//zzKSLS/PnzM82YM2dO2m233dIbb7xR0vHPpsbP+hhhUxmDBw9OP/jBD8qasbEDDjjgI/vfUjM6deqUbr755nrv23777TPrv6lTp6ZWrVql9957b/17li5dmgqFQnrggQealZHS/3ecWY7+3nD8DWXV2w1lrFNqbxeTUWpvby4jq97eXEbW/b3x+Fn39qYyNlZqb28qI+ve3jgjy97e3Dlelv1dzHlkqT3elHPV5vZ4UzKa2+ONZZTa4w2Nn1V/N5SRVY835XfR3B5vKCOrHt9cRhY93tAcS1b9Xew8Tin93dS5oqb2d1PHb05vF5NRam83lpFFfzeWkUV/N/X30dT+bmz8LHq7oYys9t+NzW9mMcfWlDnU5s6zNWeetinzbM0Zv6lzbMVmlDLHVkxGqXNsxWSUOs/WnN9HU+bZihm/1Dm2xjLKMce24WcL5Tr/3tznF1megzf2GUkW5+CNZWRxDr6pjHKcgwPbrm32SiGrVq2KZ599Ng4//PD1z7Vq1SoOP/zwmDFjRo6VlWbdZbC23377soy/du3auOOOO+KDDz6IIUOGZDr26aefHl/4whfq/U6yNG/evOjZs2fsueee8dWvfrVJl58rxn333RcDBgyIL33pS9GjR4/41Kc+Fb/85S8zzdjQqlWr4tZbb42TTz4505Win/nMZ+Khhx6Kl19+OSIinn/++XjiiSea9T+fNmXNmjWxdu3aj6z07tChQ+ZXb1mnpqYmFi9eXO/fVteuXWPw4MEtvt8LhUJ069atLOOvWrUqfvGLX0TXrl1j//33z2zcurq6+PrXvx7nnntufPzjH89s3I1Nnz49evToEf369Ytvfetb8Y9//COTcevq6uL++++PvffeO0aMGBE9evSIwYMHl/XyfW+++Wbcf//9zf5fp5vzmc98Ju67775YuHBhpJTikUceiZdffjmGDx+eyfi1tbUREfX6vVWrVlFVVdXsft94P/fss8/G6tWr6/X3PvvsE9XV1c3u73LvS4vNeO+996JLly7Rpk2bsmR88MEHcdNNN8Uee+wRvXv3zixjxYoV8ZWvfCWuueaa2GWXXZo1bkPjR0TcdtttseOOO8YnPvGJOP/882PFihWZZbz11lvx1FNPRY8ePeIzn/lM7LzzzjFs2LCS9lGN/S6effbZeO6550rq8U1lfOYzn4k777wz3n333airq4s77rgjVq5cGYceemgmGbW1tVEoFKKqqmr9e9q3bx+tWrVq1s9r4+PMrPu7nMexTckotbcby8iitzeVkWVvby4jIrv+3nj8cvR2Y7+LLHp7UxlZ9/bGGVn29ubO8bLs73KfRzY1o7k9XmxGKT3eUEYWPd7YNmTR35vLyLLHi/1dlNLjDWVk1eOby8iqxzc3x5Jlf5d7HqepGc3p72LHL6W3G8rIav/d2HZk0d+by8iyv4v9fTS3vxsaP6ve3lxGVr3d2PxmFnNsW2IOtTkZTZlna+r4zZljKyaj1Dm2YrejlDm2xjKymGdr6u+jqfNsxYxf6hxbYxlZz7Ft/NlCOebXyvX5RVMzSj0Hbywji3PwTWVkfQ4OsM1eKWThwoUpItKf/vSnes+fe+65adCgQWXJjDKv5Fu7dm36whe+kIYOHZr52C+88ELq1KlTat26deratWu6//77Mx3/9ttvT5/4xCfShx9+mFLK/n8J/uEPf0h33XVXev7559OUKVPSkCFDUnV1dVq2bFlmGVVVVamqqiqdf/75afbs2emGG25I7du3T7/+9a8zy9jQnXfemVq3bp0WLlyY6bhr165N5513XioUCqlNmzapUCikiy++ONOMIUOGpGHDhqWFCxemNWvWpFtuuSW1atUq7b333pmMv3GvPfnkkyki0qJFi+q970tf+lIaPXp0yeNvaEtdKeTDDz9MBx54YPrKV76Secbvf//71KlTp1QoFFLPnj3TrFmzMs24+OKL0xFHHLF+1XM5rhRy++23p3vvvTe98MILadKkSal///5p4MCBac2aNSWPv25ldseOHdN//dd/pTlz5qTx48enQqGQpk+fntk2bGjChAmpe/fu6/9GZpWxcuXK9I1vfCNFRGrTpk1q165d+u///u/MMlatWpWqq6vTl770pfTuu++m2tradMkll6SISMOHD2/y+Jvaz912222pXbt2H3nvwIED0/e+971MMjaUxf9kKGZ//fbbb6fq6ur07//+75lnXHPNNalTp04pIlK/fv2a/b8YNpfxzW9+M51yyinrv27u8c/mxr/hhhvSlClT0gsvvJBuvfXWtNtuu6Xjjjsus22YMWNGioi0/fbbp4kTJ6bZs2ens846K7Vr1y69/PLLmW3Hhr71rW+l/v37N2sbGspYsmRJGj58+Poe79KlS5o6dWpmGW+99Vbq0qVLOvPMM9MHH3yQ3n///TR27NgUEemb3/xm0WNv7jgzq/4u5ji21N4u9li5lN5uLCOL3m4oI6vebigji/7e3PhZ9naxv+9SeruhjKx6e3MZWfV2Q+d4WfV3seeRpfR4U85Vm9vjxWSU2uONZZTa442Nn0V/N5SRVY835ffd3B5vLCOLHm8oI4seb2iOJav+LnYep5T+bspcUXP6u5jxS+3txjKy2H83lpFFfzeUkVV/N+X33Zz+bmz8LHq7oYys9t+NzW9mMcfWlDnU5s6zNXWetqnzbMWOX8ocWzEZpc6xFZNR6hxbYxlZzLM19ffd1Hm2YsYvdY6tsYys59g2/mwh6/m1TWVsKKsrhTT2GUmp82sNZWQ1v7a5jKzOwQHWsSikghaFnHbaaalPnz7pb3/7W+Zj19bWpnnz5qVnnnkmff/730877rhj+utf/5rJ2K+//nrq0aNHev7559c/V45LR29oyZIlqUuXLpneAqdt27ZpyJAh9Z4744wz0qc//enMMjY0fPjw9E//9E+Zj3v77benXr16pdtvvz298MIL6eabb07bb799potb5s+fnw455JAUEal169Zp4MCB6atf/WraZ599Mhm/0heFrFq1Kh199NHpU5/6VL3LgmaV8f7776d58+alGTNmpJNPPjntvvvu6c0338wk45lnnkk777xzvQPcciwK2diCBQuafRucjcdft//4l3/5l3rvO/roo9P/+3//r8njbypjY/369Utjx45t1tgNZfz0pz9Ne++9d7rvvvvS888/n37+85+n7bbbrtm3fdhUxjPPPJP233//9f0+YsSIdNRRR6UjjzyyyeNvaj+X9UlrY/vSLE5aG8t477330qBBg9KRRx6ZVq1alXnG0qVL08svv5weffTRdPTRR6cDDzywWQuONpVx7733pr59+6bly5evf665xz/FHtc89NBDzb5E56Yy1u0zzj///Hrv3W+//dL3v//9TDI2tGLFitS1a9d02WWXNXnsxjLGjh2bBg0alB588MH03HPPpQsvvDB17do1vfDCC5llTJ06Ne25556pUCik1q1bp6997WvpwAMPTKeddlrRY2/uODOr/i7mOLbU3i4mo9Tebiwji97eXEaWvd2U84rm9Pfmxs+yt4vZhlJ7u6GMrHq7oYxSe7uxc7ws+rsp55HN7fGmZDS3x4vNKKXHG8sotcebc07f1P5uLCOLHm/KdjS3x4vJKLXHi8nIYv+9oQ3nWMrxodLGGRvK8vLzm8vI4vh8c+NndWy+qYws99+by9iUUo7PN5WR9fH5pjI2lMXx+abGz/LYfHMZWfR2Y/ObWcyxNWUOtbnzbE3JaM48W7HjlzLH1lhGFnNszZnPbuocW2MZWcyzNXU7mjrPVsz4pc6xFZOR5Rzbxp8tlGP/3dDnF1ntvxvKyGr/vbmMLPfhG2eUax8ObNu22UUhtbW1qXXr1h/5I/qNb3wjHXPMMWXJLOcf7dNPPz316tUrvfLKK2UZf2OHHXZYk1aZN2TSpEnrD2TWPSJi/QlMc/5nfzEGDBhQ0snjxqqrq+ut3EwppWuvvTb17Nkzs4x1Xn311dSqVat0zz33ZD52r1690tVXX13vuZ/85CepX79+mWe9//77608iR48enUaOHJnJuBv32rqTlY1PIA855JD0ne98p+TxN1TuRSGrVq1Kxx57bPrkJz+Z3nnnnbJkbKxv377NvlrMxhlXXHHF+t7esN9btWqV+vTpk0nG5uy4447p+uuvL3n82tra1KZNm/STn/yk3vu+973vpc985jNNHn9TGRt67LHHUkSk5557rlljby5jxYoVqW3btmny5Mn13nfKKaekESNGZJKxoaVLl6a33norpZTSoEGD0re//e0mjb25/dy6CceNTyKrq6vTf/3Xf2WSsaFST1oby1i2bFkaMmRIOuyww5p9ItmUY4La2trUsWPH9D//8z+ZZJx55pmb7fFhw4aVZRvef//9FBFpypQpmWzDK6+8kiIi3XLLLfWeHz16dJOvzlTMdtx8882pbdu26/ujqTaXMX/+/I/cbzil/zuGO/XUUzPJ2NDbb7+9vi923nnndOmllzYpY+Mav/nNb2ba35saf0NZfqC0qYwseruxjA01t7c3l5FVbzeUsSnN7e9NjZ9lb28uY0Ol9vbmMrLs7c1lbKi5vd3YOd6DDz5Ycn835TyyuT1ebEYpPd6c8+Gm9nhjGWPHji2px5uzDU3t78Yy1vVGKT3elO1obo8Xux2l9HhTtiPL/fe6OZZy7b83zNhQ1vvwjTOy3oc3NBeV1f57XUY5998NbUcW++8NM8q5D9/UdmS5D183fjn335vahlJ6u7H5zSzm2Joyh9rcebZiM5o7z9bceeCmzLE1lpHFHFtzt6Mpc2yNZWQxz9aU7WjOPFtj42cxx9aUbSh1jm1Tny1kvf9u7POLLPbfDWVktf8u9nOYUvbhm8oo5z4c2Ha1im1Uu3bt4qCDDoqHHnpo/XN1dXXx0EMPle0e4+WQUoqxY8fGpEmT4uGHH4499thji+TW1dWtv49dqQ477LD485//HM8999z6x4ABA+KrX/1qPPfcc9G6detMcjb0/vvvx4IFC2LXXXfNbMyhQ4fG3Llz6z338ssvR58+fTLLWOemm26KHj16xBe+8IXMx16xYkW0alX/T0Pr1q2jrq4u86xOnTrFrrvuGkuWLImpU6fGqFGjMs+IiNhjjz1il112qdfvy5Yti6eeeqpF9fvq1atj9OjRMW/evHjwwQdjhx122CK5Wfb717/+9XjhhRfq9XvPnj3j3HPPjalTp2aSsSl///vf4x//+EcmPd+uXbsYOHDgFuv3X/3qV3HQQQcVfc/ZYq1evTpWr169xfq9a9eusdNOO8W8efPimWeeKbrfG9vPHXTQQdG2bdt6/T137tx4/fXXi+7vLbEvLSZj2bJlMXz48GjXrl3cd9999e4Tm1XGpr4npVR0jzeW8f3vf/8jPR4RccUVV8RNN91Ulm1Yl1FsfzeWsfvuu0fPnj1L6vGmbMevfvWrOOaYY2KnnXYqauxiM9bdx72UHm/Kduy4447RrVu3ePjhh+Ott96KY445pknbs6F1+50s+ruh8ctpw4xSe7uYjI01tbcbyyi1t4vJ2JSm9ndD42fR241lbKi5vd1YRha93VjGhprb242d4w0YMKDk/t4S55HFZJTa483Zjqb2eGMZ48aNK6nHm7MNTe3vxjL23HPPknu8KdvR3B5vLCOLHm/KdmS1/95wjqVc++9yzOM0lpH1Pryxbchi/71hRrn2341tRxb77w0zyrUP39x2ZLUP33D8cu2/N7cNpfR2Y/ObWcyxbYk51GIySplna+42NOVcpLGMLObYmrMdTZ1jaywji3m2pmxHc+bZGhs/izm2pmxDc+fY1tnUZwtZ77/L+flFYxlZ7r+L3Y5S9uGbyijnOTiwDduiS1C2MnfccUeqqqpKv/71r9P//u//pm9+85upW7duafHixZllLF++PM2ZMyfNmTMnRcT6++K99tprmYz/rW99K3Xt2jVNnz49vfHGG+sfK1asyGT8lFL6/ve/nx599NFUU1OTXnjhhfT9738/FQqFNG3atMwyNpb17WO++93vpunTp6eampr05JNPpsMPPzztuOOOmf3PvZRSmjVrVmrTpk266KKL0rx589Jtt92WOnbsmG699dbMMlJKae3atam6ujqdd955mY67zgknnJB22223NHny5FRTU5N+97vfpR133LGky7xubMqUKemPf/xjeuWVV9K0adPS/vvvnwYPHlzSZdwa67VLLrkkdevWbf09MEeNGpX22GOPolcKNzb+P/7xjzRnzpx0//33p4hId9xxR5ozZ0564403MtmGVatWpWOOOSb16tUrPffcc/X6vba2NpOM999/P51//vlpxowZ6dVXX03PPPNMOumkk1JVVdVH/jdLKT+rjTXn9jENZSxfvjz927/9W5oxY0aqqalJDz74YDrwwAPTXnvtlVauXJnJNvzud79Lbdu2Tb/4xS/SvHnz0s9//vPUunXr9Pjjj2eyDeu89957qWPHjum6665r0s+n2Ixhw4alj3/84+mRRx5Jr7zySrrppptS+/bt07XXXptZxl133ZUeeeSRtGDBgnTPPfekPn36pOOPP77o8YvZz5122mmpuro6Pfzww+mZZ55JQ4YM+cglN0vNeOONN9KcOXPSL3/5yxQR6bHHHktz5sxJ//jHPzLJeO+999LgwYPTfvvtl+bPn1/vPcVeMauxjAULFqSLL744PfPMM+m1115LTz75ZDr66KPT9ttvX/Tla5tz3BFNuFJaY+PPnz8//fjHP07PPPNMqqmpSffee2/ac8890yGHHFLU+MVuwxVXXJG6dOmSfvOb36R58+alH/zgB6l9+/ZFXwK72J/TvHnzUqFQSH/84x+Lrr/YjFWrVqW+ffumz372s+mpp55K8+fPT5dddlkqFArp/vvvz2w7Jk6cmGbMmJHmz5+fbrnllrT99tunc845p+jtaOw4s9T+bmz8Unu7sYwseruxjCx6u5if1caa0tvFZGTR341tQ6m9XUxGSqX1dmMZWfR2MdtRam9vysbneKX2dzEZWfR4QxlZ9XhDGVn1eEMZm9KcHt/c+Fn0d2MZKWXT441lpFR6jzeUkVWPN5SRUuk93tgcSxb93VhGFv3dUEYW/d3Q+Fn1dlPnu5rT2w1lZNXfjW1HFv1dzM+qlP5uaPyseruxbchi/13M/Gapc2zFZJQ6z9ZYRqnzbI2Nn8UcW3Pmmps6x9ZYRhZzbMVsR6nzbMX+rJo7z1bM+KXOsRWTUeocW0oNf7aQ1fF5QxlZHZ9vLiPL4/PNZWR5fN6Uz3pKPT4H2KYXhaSU0s9//vNUXV2d2rVrlwYNGpRmzpyZ6fjrLoO18eOEE07IZPxNjR0R6aabbspk/JRSOvnkk1OfPn1Su3bt0k477ZQOO+ywsi4ISSn7RSFf/vKX06677pratWuXdtttt/TlL3+5pImhzfn973+fPvGJT6Sqqqq0zz77pF/84heZZ0ydOjVFRJo7d27mY6f0f5dWO/PMM1N1dXVq37592nPPPdO4ceOatPCgMXfeeWfac889U7t27dIuu+ySTj/99LR06dKSxmys1+rq6tIPf/jDtPPOO6eqqqp02GGHNeln2Nj4N9100yZfv+CCCzLJWHe5zE09HnnkkUwyPvzww3Tcccelnj17pnbt2qVdd901HXPMMWnWrFlFj1/Mz2pjzVkU0lDGihUr0vDhw9NOO+2U2rZtm/r06ZPGjBnTpAV/xWzDr371q9S3b9/Uvn37tP/++zf5dk7FZNxwww2pQ4cOze6PxjLeeOONdOKJJ6aePXum9u3bp379+qXLL7881dXVZZZx1VVXpV69eqW2bdum6urq9IMf/KBJf0+K2c99+OGH6dvf/nbq3r176tixYzruuOOatCCrmIwLLrigpP1tYxmb+zlGRKqpqckkY+HChemoo45KPXr0SG3btk29evVKX/nKV9JLL72U6c9qU99T7ElrY+O//vrr6ZBDDknbb799qqqqSn379k3nnntu0fd9bso2jB8/PvXq1St17NgxDRkypEmLvorNOP/881Pv3r3T2rVrix67KRkvv/xyOv7441OPHj1Sx44d0yc/+cl08803Z5px3nnnpZ133jm1bds27bXXXk3+G9LYcWap/d3Y+KX2dmMZWfR2YxlZ9HZjGZvSlN4uJiOL/i5mG0rp7WIzSuntYjJK7e1iMkrt7U3Z+Byv1P4uJiOLHm8oI6sebygjqx5vKGNTmtPjmxs/i/5uLGOdUnu8mIxSe7yxjCx6vLGMUnu8sTmWLPq7sYws+ruhjCz6u6Hxs+rtps53Nae3G8rIqr+L2Y5S+7uYjFL6u7Hxs+jtxjKy2n83Nr9Z6hxbMRlZzLM1lJHFPFtD42c1x9bUuebmzLE1lJHFHFux21HqPFsxGaXMszU2fhZzbI1llDrHllLDny1kdXzeUEZWx+eby8jy+HxzGVkenzfls55Sj88BCimlFAAAAAAAAAAAVJRWjb8FAAAAAAAAAICWxqIQAAAAAAAAAIAKZFEIAAAAAAAAAEAFsigEAAAAAAAAAKACWRQCAAAAAAAAAFCBLAoBAAAAAAAAAKhAFoUAAAAAAAAAAFQgi0IAAAAAAAAAACqQRSEAAADQRCeeeGIce+yx678+9NBD46yzztridUyfPj0KhUIsXbp0i2cDAAAAsPWzKAQAAICKceKJJ0ahUIhCoRDt2rWLvn37xo9//ONYs2ZNWXN/97vfxU9+8pOi3mshBwAAAABbSpu8CwAAAIAsHXnkkXHTTTdFbW1t/OEPf4jTTz892rZtG+eff369961atSratWuXSeb222+fyTgAAAAAkCVXCgEAAKCiVFVVxS677BJ9+vSJb33rW3H44YfHfffdt/6WLxdddFH07Nkz+vXrFxERf/vb32L06NHRrVu32H777WPUqFHx6quvrh9v7dq1cc4550S3bt1ihx12iO9973uRUqqXufHtY2pra+O8886L3r17R1VVVfTt2zd+9atfxauvvhqf+9znIiKie/fuUSgU4sQTT4yIiLq6uhg/fnzsscce0aFDh9h///3j7rvvrpfzhz/8Ifbee+/o0KFDfO5zn6tXJwAAAABszKIQAAAAKlqHDh1i1apVERHx0EMPxdy5c+OBBx6IyZMnx+rVq2PEiBHRuXPnePzxx+PJJ5+M7bbbLo488sj133P55ZfHr3/965g4cWI88cQT8e6778akSZMazPzGN74Rt99+e/zsZz+LF198MW644YbYbrvtonfv3vHb3/42IiLmzp0bb7zxRlx11VURETF+/Pi4+eab4/rrr4+//vWvcfbZZ8fXvva1ePTRRyPi/xavHH/88XH00UfHc889F//6r/8a3//+98v1YwMAAACgArh9DAAAABUppRQPPfRQTJ06Nc4444x4++23o1OnTnHjjTeuv23MrbfeGnV1dXHjjTdGoVCIiIibbropunXrFtOnT4/hw4fHlVdeGeeff34cf/zxERFx/fXXx9SpUzeb+/LLL8ddd90VDzzwQBx++OEREbHnnnuuf33drWZ69OgR3bp1i4j/u7LIxRdfHA8++GAMGTJk/fc88cQTccMNN8SwYcPiuuuui4997GNx+eWXR0REv3794s9//nNMmDAhw58aAAAAAJXEohAAAAAqyuTJk2O77baL1atXR11dXXzlK1+JCy+8ME4//fTYb7/91i8IiYh4/vnnY/78+dG5c+d6Y6xcuTIWLFgQ7733XrzxxhsxePDg9a+1adMmBgwY8JFbyKzz3HPPRevWrWPYsGFF1zx//vxYsWJFHHHEEfWeX7VqVXzqU5+KiIgXX3yxXh0RsX4BCQAAAABsikUhAAAAVJTPfe5zcd1110W7du2iZ8+e0abN/3fq26lTp3rvff/99+Oggw6K22677SPj7LTTTs3K79ChQ5O/5/3334+IiPvvvz922223eq9VVVU1qw4AAAAAsCgEAACAitKpU6fo27dvUe898MAD484774wePXpEly5dNvmeXXfdNZ566qk45JBDIiJizZo18eyzz8aBBx64yffvt99+UVdXF48++uj628dsaN2VStauXbv+uX333Teqqqri9ddf3+wVRvr37x/33XdfvedmzpzZ+EYCAAAAsM1qlXcBAAAAkJevfvWrseOOO8aoUaPi8ccfj5qampg+fXp85zvfib///e8REXHmmWfGJZdcEvfcc0+89NJL8e1vfzuWLl262TF33333OOGEE+Lkk0+Oe+65Z/2Yd911V0RE9OnTJwqFQkyePDnefvvteP/996Nz587xb//2b3H22WfHf//3f8eCBQti9uzZ8fOf/zz++7//OyIiTjvttJg3b16ce+65MXfu3Pif//mf+PWvf13uHxEAAAAALZhFIQAAAGyzOnbsGI899lhUV1fH8ccfH/37949TTjklVq5cuf7KId/97nfj61//epxwwgkxZMiQ6Ny5cxx33HENjnvdddfFP//zP8e3v/3t2GeffWLMmDHxwQcfRETEbrvtFv/xH/8R3//+92PnnXeOsWPHRkTET37yk/jhD38Y48ePj/79+8eRRx4Z999/f+yxxx4REVFdXR2//e1v45577on9998/rr/++rj44ovL+NMBAAAAoKUrpJRS3kUAAAAAAAAAAJAtVwoBAAAAAAAAAKhAFoUAAAAAAAAAAFQgi0IAAAAAAAAAACqQRSEAAAAAAAAAABXIohAAAAAAAAAAgApkUQgAAAAAAAAAQAWyKAQAAAAAAAAAoAJZFAIAAAAAAAAAUIEsCgEAAAAAAAAAqEAWhQAAAAAAAAAAVCCLQgAAAAAAAAAAKpBFIQAAAAAAAAAAFej/BxCABI7PXTADAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["\n","🚀 بدء Fine-Tuning لموديل RF\n","✅ تم تحميل النموذج الأساسي لموديل RF\n","Epoch 1/15\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m14s\u001b[0m 10ms/step - accuracy: 0.9631 - loss: 0.1100 - val_accuracy: 0.9397 - val_loss: 0.1702\n","Epoch 2/15\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 9ms/step - accuracy: 0.9699 - loss: 0.0918 - val_accuracy: 0.9415 - val_loss: 0.1704\n","Epoch 3/15\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 10ms/step - accuracy: 0.9689 - loss: 0.0932 - val_accuracy: 0.9423 - val_loss: 0.1707\n","Epoch 4/15\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 10ms/step - accuracy: 0.9698 - loss: 0.0887 - val_accuracy: 0.9431 - val_loss: 0.1687\n","Epoch 5/15\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 10ms/step - accuracy: 0.9718 - loss: 0.0843 - val_accuracy: 0.9431 - val_loss: 0.1687\n","Epoch 6/15\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 8ms/step - accuracy: 0.9709 - loss: 0.0878 - val_accuracy: 0.9445 - val_loss: 0.1670\n","Epoch 7/15\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 10ms/step - accuracy: 0.9706 - loss: 0.0859 - val_accuracy: 0.9443 - val_loss: 0.1673\n","Epoch 8/15\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 10ms/step - accuracy: 0.9722 - loss: 0.0848 - val_accuracy: 0.9459 - val_loss: 0.1678\n","Epoch 9/15\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m15s\u001b[0m 14ms/step - accuracy: 0.9722 - loss: 0.0860 - val_accuracy: 0.9448 - val_loss: 0.1673\n","Epoch 10/15\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m17s\u001b[0m 11ms/step - accuracy: 0.9725 - loss: 0.0835 - val_accuracy: 0.9460 - val_loss: 0.1669\n","Epoch 11/15\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 10ms/step - accuracy: 0.9729 - loss: 0.0818 - val_accuracy: 0.9458 - val_loss: 0.1681\n","Epoch 12/15\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m21s\u001b[0m 10ms/step - accuracy: 0.9750 - loss: 0.0793 - val_accuracy: 0.9461 - val_loss: 0.1672\n","Epoch 13/15\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 10ms/step - accuracy: 0.9739 - loss: 0.0827 - val_accuracy: 0.9470 - val_loss: 0.1657\n","Epoch 14/15\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m18s\u001b[0m 8ms/step - accuracy: 0.9760 - loss: 0.0766 - val_accuracy: 0.9472 - val_loss: 0.1675\n","Epoch 15/15\n","\u001b[1m1106/1106\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 10ms/step - accuracy: 0.9745 - loss: 0.0792 - val_accuracy: 0.9476 - val_loss: 0.1679\n"]},{"name":"stderr","output_type":"stream","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"name":"stdout","output_type":"stream","text":["✅ تم حفظ النموذج الجديد بعد Fine-Tuning: /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/CNN + Bilstm_rf_finetuned1.h5\n","\u001b[1m553/553\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step\n","\n","📊 Classification Report:\n"," precision recall f1-score support\n","\n"," 0 0.93 0.97 0.95 8846\n"," 1 0.97 0.93 0.95 8846\n","\n"," accuracy 0.95 17692\n"," macro avg 0.95 0.95 0.95 17692\n","weighted avg 0.95 0.95 0.95 17692\n","\n","\n","🔄 Summary for RF:\n","✅ Accuracy: 0.9476\n","✅ Precision: 0.9482\n","✅ Recall: 0.9476\n","✅ F1-Score: 0.9476\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABW0AAAHqCAYAAAB/bWzAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAydNJREFUeJzs3Xd4FOXexvF7N71T0kgIBEIJNaEGVJqAARQBaaIeICIePWKLqKCIiAWPImLHQhPwiAV48XhEMYggUhREBATpgUAaJSEJabv7/rFkkyUJJBjYAN/Pdc21O888M/ObJeB459lnDBaLxSIAAAAAAAAAQLVgdHQBAAAAAAAAAIBihLYAAAAAAAAAUI0Q2gIAAAAAAABANUJoCwAAAAAAAADVCKEtAAAAAAAAAFQjhLYAAAAAAAAAUI0Q2gIAAAAAAABANUJoCwAAAAAAAADVCKEtAAAAAAAAAFQjhLYArmndu3dX9+7dHV3GJbd69WoZDAatXr3a0aUAAACgGuF+GACqJ0JbAJfdvHnzZDAYbIuzs7NCQ0M1evRoJSUllerfvXt3u/4ll127dp33XOXtFxwcfKku77xGjx5dbk0ll9GjRzukvkvt3XfflcFgUExMjKNLAQAAcBjuh6+t++GiP+9ff/3V0aUAuII4O7oAANeuqVOnqkGDBsrNzdWGDRs0b948/fTTT9q+fbvc3d3t+tatW1fTpk0rdYyQkJALnqd3794aOXKkXZuHh4ck6bvvvvsbV1B5//znP9WrVy/b+oEDBzR58mTde++96tKli609IiKiSs/btWtXnTlzRq6urlV63MpatGiRwsPDtWnTJu3du1eNGjVyaD0AAACOxP3wtXc/DAAVRWgLwGH69u2r9u3bS5Luuece+fv769///reWL1+uYcOG2fX18/PTXXfddVHnadKkSbn7Xu6bts6dO6tz58629V9//VWTJ09W586dL/r6KsJoNJa68b/cDhw4oJ9//llLlizRP//5Ty1atEjPPvusQ2sqT3Z2try8vBxdBgAAuMpxP3xt3Q8DQGUwPQKAaqPoN+v79u27bOc8dw6vormuPvvsM7344ouqW7eu3N3d1bNnT+3du7fU/hs3blSfPn3k5+cnT09PdevWTevWrftbNU2ZMkUGg6FUe9HXqg4ePGhrCw8P1y233KKffvpJHTt2lLu7uxo2bKiPP/7Ybt+y5vDq3r27WrZsqZ07d6pHjx7y9PRUaGioXnnllVLnPnTokG699VZ5eXkpMDBQjz76qL799ttKzQu2aNEi1axZUzfffLOGDBmiRYsWldnv1KlTevTRRxUeHi43NzfVrVtXI0eOVHp6uq1Pbm6upkyZoiZNmsjd3V116tTRbbfdZvvZKW/OsoMHD8pgMGjevHm2ttGjR8vb21v79u1Tv3795OPjozvvvFOStHbtWg0dOlT16tWTm5ubwsLC9Oijj+rMmTOl6t61a5eGDRumgIAAeXh4qGnTpnr66aclST/88IMMBoOWLl1aar9PPvlEBoNB69evr9DnCAAArl7cD1tdrffDF/Lbb7+pb9++8vX1lbe3t3r27KkNGzbY9SkoKNBzzz2nxo0by93dXbVr19YNN9yglStX2vokJycrLi5OdevWlZubm+rUqaMBAwbYfW4Aqj9G2gKoNopuImrWrFlqm8lksgvtJMnd3V3e3t4XPG5ubm6pfX18fOTm5lbuPi+//LKMRqPGjx+vjIwMvfLKK7rzzju1ceNGW59Vq1apb9++ateunZ599lkZjUbNnTtXN954o9auXauOHTtesLaqsHfvXg0ZMkRjxozRqFGjNGfOHI0ePVrt2rVTixYtzrvvyZMn1adPH912220aNmyYvvjiCz355JNq1aqV+vbtK8k66vTGG2/UsWPH9PDDDys4OFiffPKJfvjhh0rVuWjRIt12221ydXXViBEj9N577+mXX35Rhw4dbH2ysrLUpUsX/fnnn7r77rvVtm1bpaena/ny5Tpy5Ij8/f1lMpl0yy23KCEhQbfffrsefvhhnT59WitXrtT27dsv6qt0hYWFio2N1Q033KDp06fL09NTkvT5558rJydH999/v2rXrq1Nmzbprbfe0pEjR/T555/b9t+2bZu6dOkiFxcX3XvvvQoPD9e+ffv01Vdf6cUXX1T37t0VFhamRYsWadCgQaU+l4iICLsRJwAA4NrE/fDFuVLuh89nx44d6tKli3x9ffXEE0/IxcVF77//vrp3764ff/zR9kyIKVOmaNq0abrnnnvUsWNHZWZm6tdff9WWLVvUu3dvSdLgwYO1Y8cOPfjggwoPD1dqaqpWrlypxMREhYeHV1nNAC4xCwBcZnPnzrVIsnz//feWtLQ0y+HDhy1ffPGFJSAgwOLm5mY5fPiwXf9u3bpZJJVaRo0adcFzlbWfJMvcuXNtx+7WrZut/w8//GCRZGnWrJklLy/P1v7GG29YJFn++OMPi8VisZjNZkvjxo0tsbGxFrPZbOuXk5NjadCggaV3794V+ix++eUXu3osFovl2WeftZT1z3PR53bgwAFbW/369S2SLGvWrLG1paamWtzc3CyPPfZYqev64YcfbG1Fn+vHH39sa8vLy7MEBwdbBg8ebGt77bXXLJIsy5Yts7WdOXPGEhkZWeqY5fn1118tkiwrV660WCzWz69u3bqWhx9+2K7f5MmTLZIsS5YsKXWMos95zpw5FkmWGTNmlNunrOu1WCyWAwcOlPq8R40aZZFkmTBhQqnj5eTklGqbNm2axWAwWA4dOmRr69q1q8XHx8eurWQ9FovFMnHiRIubm5vl1KlTtrbU1FSLs7Oz5dlnny11HgAAcPXifrjYtXA/XFT3L7/8Um6fgQMHWlxdXS379u2ztR09etTi4+Nj6dq1q60tKirKcvPNN5d7nJMnT1okWV599dXz1gSg+mOkLQCHKfkAAsn61aaFCxeqbt26pfqGh4frww8/tGuryEMXJGnAgAEaN26cXduFfuMeFxdnN79X0VfV9u/fr5YtW2rr1q3as2ePJk2apOPHj9vt27NnTy1YsEBms1lG46WfhaZ58+Z2D20ICAhQ06ZNtX///gvu6+3tbTd3mKurqzp27Gi374oVKxQaGqpbb73V1ubu7q6xY8fqscceq1CNixYtUlBQkHr06CHJ+hTj4cOHa+HChXrttdfk5OQkSfryyy8VFRVVajRq0T5Fffz9/fXggw+W2+di3H///aXaih7QIVlHWJw5c0bXXXedLBaLfvvtN9WrV09paWlas2aNHn74YdWrV6/cekaOHKlp06bpiy++0JgxYyRJixcvVmFh4SWdvw0AAFRf3A9XjSvhfvh8TCaTvvvuOw0cOFANGza0tdepU0d33HGHPvzwQ2VmZsrX11c1atTQjh07tGfPHjVu3LjUsTw8POTq6qrVq1drzJgxZY7aBnBlILQF4DDvvPOOmjRpooyMDM2ZM0dr1qwp9ytaXl5epW5qK6pu3bqV3vfc8K3oZufkyZOSpD179kiSRo0aVe4xMjIy5OXlpRMnTti1BwQE2ELKqnBurZK13qJaz6du3bqlgs6aNWtq27ZttvVDhw4pIiKiVL9GjRpVqD6TyaRPP/1UPXr00IEDB2ztMTExeu2115SQkKCbbrpJknX+tsGDB5/3ePv27VPTpk3l7Fx1/wlzdnYu83+OEhMTNXnyZC1fvrzU55mRkSFJthv6li1bnvcckZGR6tChgxYtWmQLbRctWqROnTpV+LMEAABXF+6Hq0Z1vx++kLS0NOXk5Khp06altjVr1kxms1mHDx9WixYtNHXqVA0YMEBNmjRRy5Yt1adPH/3jH/9Q69atJUlubm7697//rccee0xBQUHq1KmTbrnlFo0cOVLBwcFVUi+Ay4PQFoDDdOzY0fa03IEDB+qGG27QHXfcod27d1dobq5LqbybSIvFIkkym82SpFdffVXR0dFl9vX29ta6detso0uLHDhw4LxzSZU3WtRkMl1Urefzd/atqFWrVunYsWP69NNP9emnn5bavmjRIltoW1Uq+xm6ubmVGgViMpnUu3dvnThxQk8++aQiIyPl5eWlpKQkjR492vYzUBkjR47Uww8/rCNHjigvL08bNmzQ22+/XenjAACAqwP3w2W72u6Hq1LXrl21b98+/d///Z++++47ffTRR3r99dc1a9Ys3XPPPZKkRx55RP3799eyZcv07bff6plnntG0adO0atUqtWnTxsFXAKCiCG0BVAtOTk6aNm2aevToobffflsTJkxwdEnnVfSwK19f3/OOWoiKirJ7kqukC/6Gu2gUw6lTp1SjRg1b+6FDhy6y2r+nfv362rlzpywWi90NdFlPDy7LokWLFBgYqHfeeafUtiVLlmjp0qWaNWuWPDw8FBERoe3bt5/3eBEREdq4caMKCgrk4uJSZp+Sn2FJlfkM//jjD/3111+aP3++Ro4caWs/98+z6CtsF6pbkm6//XbFx8frP//5j86cOSMXFxcNHz68wjUBAICrF/fDxa62++ELCQgIkKenp3bv3l1q265du2Q0GhUWFmZrq1WrluLi4hQXF6esrCx17dpVU6ZMsYW2kvXP57HHHtNjjz2mPXv2KDo6Wq+99poWLlxYJTUDuPQu/eQyAFBB3bt3V8eOHTVz5kzl5uY6upzzateunSIiIjR9+nRlZWWV2p6WlibJesPZq1cvu8Xd3f28xy66AV6zZo2tLTs7W/Pnz6/CK6i42NhYJSUlafny5ba23NzcUnOqleXMmTNasmSJbrnlFg0ZMqTUMm7cOJ0+fdp27MGDB+v333/X0qVLSx2raLTD4MGDlZ6eXuYI1aI+9evXl5OTk91nKEnvvvtuha+7aNRFyVEWFotFb7zxhl2/gIAAde3aVXPmzFFiYmKZ9RTx9/dX3759tXDhQi1atEh9+vSRv79/hWsCAABXN+6Hra6m++GKcHJy0k033aT/+7//08GDB23tKSkp+uSTT3TDDTfI19dXkkrNH+zt7a1GjRopLy9PkpSTk1PqZyciIkI+Pj62PgCuDIy0BVCtPP744xo6dKjmzZun++67z9HllMtoNOqjjz5S37591aJFC8XFxSk0NFRJSUn64Ycf5Ovrq6+++uqijn3TTTepXr16GjNmjB5//HE5OTlpzpw5CggIKBUKXg7//Oc/9fbbb2vEiBF6+OGHVadOHS1atMh2s32+h38tX75cp0+ftntoQ0mdOnVSQECAFi1apOHDh+vxxx/XF198oaFDh+ruu+9Wu3btdOLECS1fvlyzZs1SVFSURo4cqY8//ljx8fHatGmTunTpouzsbH3//ff617/+pQEDBsjPz09Dhw7VW2+9JYPBoIiICP33v/9Vampqha87MjJSERERGj9+vJKSkuTr66svv/yyzLnR3nzzTd1www1q27at7r33XjVo0EAHDx7U119/ra1bt9r1HTlypIYMGSJJev755ytcDwAAuDZwP3x13Q+XNGfOHK1YsaJU+8MPP6wXXnhBK1eu1A033KB//etfcnZ21vvvv6+8vDy98sortr7NmzdX9+7d1a5dO9WqVUu//vqrvvjiC9uD5v766y/17NlTw4YNU/PmzeXs7KylS5cqJSVFt99+exV8GgAuF0JbANXKbbfdZvuN/dixY6v0AQVVrXv37lq/fr2ef/55vf3228rKylJwcLBiYmL0z3/+86KP6+LioqVLl+pf//qXnnnmGQUHB+uRRx5RzZo1FRcXV4VXUDHe3t5atWqVHnzwQb3xxhvy9vbWyJEjdd1112nw4MHnHSlRdDPbu3fvMrcbjUbdfPPNWrRokY4fP67atWtr7dq1evbZZ7V06VLNnz9fgYGB6tmzp+1BYU5OTvrf//6nF198UZ988om+/PJL1a5dWzfccINatWplO/Zbb72lgoICzZo1S25ubho2bJheffXVCz4wrIiLi4u++uorPfTQQ5o2bZrc3d01aNAgjRs3TlFRUXZ9o6KitGHDBj3zzDN67733lJubq/r162vYsGGljtu/f3/VrFlTZrO53DAbAABcu7gfvrruh0t67733ymwfPXq0WrRoobVr12rixImaNm2azGazYmJitHDhQsXExNj6PvTQQ1q+fLm+++475eXlqX79+nrhhRf0+OOPS5LCwsI0YsQIJSQkaMGCBXJ2dlZkZKQ+++yzCz7wF0D1YrBU19m1AQDV2syZM/Xoo4/qyJEjCg0NdXQ5V4zCwkKFhISof//+mj17tqPLAQAAwEXifhjApURoCwC4oDNnzsjDw8O2npubqzZt2shkMumvv/5yYGVXnqLpH1avXq1u3bo5uhwAAABUAPfDAC43pkcAAFzQbbfdpnr16ik6OloZGRlauHChdu3apUWLFjm6tCvGxo0btW3bNj3//PNq06YNgS0AAMAVhPthAJcboS0A4IJiY2P10UcfadGiRTKZTGrevLk+/fRTDR8+3NGlXTHee+89LVy4UNHR0Zo3b56jywEAAEAlcD8M4HJjegQAAAAAAAAAqEaMji4AAAAAAAAAAFCM0BYAAAAAAAAAqhHmtL1IZrNZR48elY+PjwwGg6PLAQAAuCZZLBadPn1aISEhMhoZj3A+3L8CAAA4XkXvXwltL9LRo0cVFhbm6DIAAAAg6fDhw6pbt66jy6jWuH8FAACoPi50/0poe5F8fHwkWT9gX19fB1cDAABwbcrMzFRYWJjt3gzl4/4VAADA8Sp6/0poe5GKvlLm6+vLTS8AAICD8XX/C+P+FQAAoPq40P0rE38BAAAAAAAAQDVCaAsAAAAAAAAA1QihLQAAAAAAAABUI8xpe4mZTCYVFBQ4ugxcBVxcXOTk5OToMgAAAAAAAHCJEdpeIhaLRcnJyTp16pSjS8FVpEaNGgoODuZhKwAAAAAAAFcxQttLpCiwDQwMlKenJyEb/haLxaKcnBylpqZKkurUqePgigAAAAAAAHCpENpeAiaTyRbY1q5d29Hl4Crh4eEhSUpNTVVgYCBTJQAAAAAAAFyleBDZJVA0h62np6eDK8HVpuhninmSAQAAAAAArl6EtpcQUyKgqvEzBQAAAAAAcPUjtAUAAAAAAACAaoTQFpdUeHi4Zs6c6egyAAAAAAAAgCsGoS0kWb92f75lypQpF3XcX375Rffee2+V1Pif//xHTk5OeuCBB6rkeAAAAAAAAEB1RGgLSdKxY8dsy8yZM+Xr62vXNn78eFtfi8WiwsLCCh03ICCgyh7INnv2bD3xxBP6z3/+o9zc3Co55sXKz8936PkBAAAAAABw9aoWoe0777yj8PBwubu7KyYmRps2bSq3b0FBgaZOnaqIiAi5u7srKipKK1assOsTHh5e5mjRkiM0u3fvXmr7fffdd8musboLDg62LX5+fjIYDLb1Xbt2ycfHR998843atWsnNzc3/fTTT9q3b58GDBigoKAgeXt7q0OHDvr+++/tjnvu9AgGg0EfffSRBg0aJE9PTzVu3FjLly+/YH0HDhzQzz//rAkTJqhJkyZasmRJqT5z5sxRixYt5Obmpjp16mjcuHG2badOndI///lPBQUFyd3dXS1bttR///tfSdKUKVMUHR1td6yZM2cqPDzctj569GgNHDhQL774okJCQtS0aVNJ0oIFC9S+fXv5+PgoODhYd9xxh1JTU+2OtWPHDt1yyy3y9fWVj4+PunTpon379mnNmjVycXFRcnKyXf9HHnlEXbp0ueBnAgAAAAAAgKuTw0PbxYsXKz4+Xs8++6y2bNmiqKgoxcbGlgq+ikyaNEnvv/++3nrrLe3cuVP33XefBg0apN9++83W55dffrEbJbpy5UpJ0tChQ+2ONXbsWLt+r7zyyiW5RovFopz8QocsFoulyq5jwoQJevnll/Xnn3+qdevWysrKUr9+/ZSQkKDffvtNffr0Uf/+/ZWYmHje4zz33HMaNmyYtm3bpn79+unOO+/UiRMnzrvP3LlzdfPNN8vPz0933XWXZs+ebbf9vffe0wMPPKB7771Xf/zxh5YvX65GjRpJksxms/r27at169Zp4cKF2rlzp15++WU5OTlV6voTEhK0e/durVy50hb4FhQU6Pnnn9fvv/+uZcuW6eDBgxo9erRtn6SkJHXt2lVubm5atWqVNm/erLvvvluFhYXq2rWrGjZsqAULFtj6FxQUaNGiRbr77rsrVRsAAI5mNluUdOqMftqTrs9+PezocoDqxWKRTIVSfraUc0I6nSydSpTS90on9tv3PbhO2vU/adfXUtpfktnkmJoBAIBDOTu6gBkzZmjs2LGKi4uTJM2aNUtff/215syZowkTJpTqv2DBAj399NPq16+fJOn+++/X999/r9dee00LFy6UZP1Kfkkvv/yyIiIi1K1bN7t2T09PBQcHX4rLsnOmwKTmk7+95Ocpy86psfJ0rZo/5qlTp6p379629Vq1aikqKsq2/vzzz2vp0qVavny53SjXc40ePVojRoyQJL300kt68803tWnTJvXp06fM/mazWfPmzdNbb70lSbr99tv12GOP6cCBA2rQoIEk6YUXXtBjjz2mhx9+2LZfhw4dJEnff/+9Nm3apD///FNNmjSRJDVs2LDS1+/l5aWPPvpIrq6utraS4WrDhg315ptvqkOHDsrKypK3t7feeecd+fn56dNPP5WLi4sk2WqQpDFjxmju3Ll6/PHHJUlfffWVcnNzNWzYsErXBwDA5ZCZW6D9adk6kJ6l/WnZ1iXdup5bYLb1u6V1nSq7BwHOy2KRTAWSucD6anSS3HyKt6XtKrG9UDLlF7/3rCXVbV98rF8+kgpyrX2KlsI862vNBlLnfxX3/Xy0dOakVJgvmc72KTy7T1AL6fZFxX1fbyFlJpVdf1BL6f51xevLH5RO7Cted/GSgltJdVpLoe2kqNv/9kcGAACqP4feSefn52vz5s2aOHGirc1oNKpXr15av359mfvk5eXJ3d3drs3Dw0M//fRTuedYuHCh4uPjZTAY7LYtWrRICxcuVHBwsPr3769nnnmmyuZfvRq1b9/ebj0rK0tTpkzR119/rWPHjqmwsFBnzpy54Ejb1q1b2957eXnJ19e33JHVkrRy5UplZ2fbgnp/f3/17t1bc+bM0fPPP6/U1FQdPXpUPXv2LHP/rVu3qm7dunZh6cVo1aqVXWArSZs3b9aUKVP0+++/6+TJkzKbrf+zmpiYqObNm2vr1q3q0qWLLbA91+jRozVp0iRt2LBBnTp10rx58zRs2DB5eXn9rVoBAPg7CkxmJZ7IKTOcTc/KK3c/Z6NB9Wp7qqG/l7LyCgltr3VnTkmbPrAGpqZ8yVxoH66G31AcQJ45JX055uz2s8Gq7X2B1LSv1Ps5a9/8bOm1yOJjmc951kLzgdKw+cXr73Yqv8bGN0l3fl68/u0kqfBM2X3rX28f2h5YK+Wkl93X3c9+3XjuN7wMkrOb5OQmuZ5z3xfcSvKoKVlMUuouqSBbOrzBugS1sg9t17wqedSS6kRZg2IXj/KvFQAAXFEceiednp4uk8mkoKAgu/agoCDt2rWrzH1iY2M1Y8YMde3aVREREUpISNCSJUtkMpX9taFly5bp1KlTdl9Zl6Q77rhD9evXV0hIiLZt26Ynn3xSu3fvLnOuVMkaFuflFf9PSmZmZoWv08PFSTunxla4f1XycKncFADnc26QOH78eK1cuVLTp09Xo0aN5OHhoSFDhlzwIV3nBpgGg8EWdpZl9uzZOnHihDw8im9CzWaztm3bpueee86uvSwX2m40GktNI1FQUFCq37nXn52drdjYWMXGxmrRokUKCAhQYmKiYmNjbZ/Bhc4dGBio/v37a+7cuWrQoIG++eYbrV69+rz7AABQFSwWi9Ky8myBrC2cTc9W4okcmczlT7EU4OOmhv5eahjgpYb+3moY4KUG/l4Kq+UpFyeHz76F6iLvtPTDi+VvNzoVB5AWs7T3+/L71in+dpeMzlLeee7FS4a4BoPkffabdU4u1n2dXIvf12xgv2+LQdb9nVwlZ9ezfV2tAWuN+vZ9+/7bOnWBs6s1fLX1dysd2o79QTIYi4Nao5O1trKUDJzNJil9j3Tsdyl5m+RV4huFpgLpx1eto3wlyeAk+TexflZ1WkthnaS67cr/nAAAQLV2xQ1/eOONNzR27FhFRkbKYDAoIiJCcXFxmjNnTpn9Z8+erb59+yokJMSu/d5777W9b9WqlerUqaOePXtq3759ioiIKHWcadOm6bnnnruomg0Gw1U50mTdunUaPXq0Bg0aJMk68vbgwYNVeo7jx4/r//7v//Tpp5+qRYsWtnaTyaQbbrhB3333nfr06aPw8HAlJCSoR48epY7RunVrHTlyRH/99VeZo20DAgKUnJwsi8ViG429devWC9a2a9cuHT9+XC+//LLCwsIkSb/++mupc8+fP18FBQXljra95557NGLECNWtW1cRERG6/vrrL3huAAAqKie/UAfSs+3D2fRsHUjL1um8wnL383BxUoOiYDbA2xbShvt7yde97P+mAXbcfKS2o+xD0pLv60QX93X1lga8a93m5CIZXezf+5SY0szJVRq3WXI6ezyji/W90eXs+jn33eN3V7zmQe9VvG+rIRXv6+Vf8b4lGZ2kwEjrEjXcflthrnTdOGuge+x3KTtNSvvTumz7VGrWXxpunT5OFov081vW0bh1oi6+HgAAcNk4NEn09/eXk5OTUlJS7NpTUlLKnWs2ICBAy5YtU25uro4fP66QkBBNmDChzDlKDx06pO+//77c0bMlxcTESJL27t1bZmg7ceJExcfH29YzMzNtQd21qnHjxlqyZIn69+8vg8GgZ5555rwjZi/GggULVLt2bQ0bNqzU9Bb9+vXT7Nmz1adPH02ZMkX33XefAgMD1bdvX50+fVrr1q3Tgw8+qG7duqlr164aPHiwZsyYoUaNGmnXrl0yGAzq06ePunfvrrS0NL3yyisaMmSIVqxYoW+++Ua+vr7nra1evXpydXXVW2+9pfvuu0/bt2/X888/b9dn3Lhxeuutt3T77bdr4sSJ8vPz04YNG9SxY0c1bdpUknX0uK+vr1544QVNnTq1Sj8/AMC1wWS26OipM9qXVjRaNssW1B7LyC13P6NBqlvTs8xwNtjXvdR/e4FK8agh3fpmxfo6u0pt7qxYX4NB8m900WVdNdx8pJ6Tre8tFuvDzYoC3ORtUsPuxX1PJUornyle9w09OyI3Sgo+O1euj/23HwEAgGM5NLR1dXVVu3btlJCQoIEDB0qyfu09ISHhvA+ykiR3d3eFhoaqoKBAX375ZZkPbpo7d64CAwN18803X7CWopGVderUKXO7m5ub3NzcLnica8mMGTN0991367rrrpO/v7+efPLJSk0bURFz5szRoEGDyvyfxsGDB+sf//iH0tPTNWrUKOXm5ur111/X+PHj5e/vryFDikc/fPnllxo/frxGjBih7OxsNWrUSC+//LIkqVmzZnr33Xf10ksv6fnnn9fgwYM1fvx4ffDBB+etLSAgQPPmzdNTTz2lN998U23bttX06dN166232vrUrl1bq1at0uOPP65u3brJyclJ0dHRdqNpjUajRo8erZdeekkjR478ux8ZAOAqkldoUnaeSdl5hTqdW6js/EJl5RUq/XSebbTs/vQsHTyeo/zC8n9xWtPTxRbINigxpUH92p5yc666qZQAOIjBIPnWsS5Ny3i4r7lQanGbNdA9sc/6ULTMJGn3/6zbr39Y6n128EBuhrQ3wRro1mwgGZnyBAAARzBYzp3M8zJbvHixRo0apffff18dO3bUzJkz9dlnn2nXrl0KCgrSyJEjFRoaqmnTpkmSNm7cqKSkJEVHRyspKUlTpkzRgQMHtGXLFtWoUcN2XLPZrAYNGmjEiBG2cK7Ivn379Mknn6hfv36qXbu2tm3bpkcffVR169bVjz/+WKG6MzMz5efnp4yMjFIjMnNzc3XgwAE1aNCg1EPTgLKMGTNGaWlpWr58+Xn78bMFANWbxWJRTr5JWXnWcDXb9mpSVl6Bss4GsNnnbD+3vWhbganit2muzkaF1/a0m2O2KKit6eV64QNcoc53TwZ7fFaQJOVmSinbpWPbikfmdntCajHQun3fD9KCs+/dfK0PRis5Kte/iXU6CgAAcFEqek/m8P/aDh8+XGlpaZo8ebKSk5MVHR2tFStW2B5OlpiYKGOJ3+7m5uZq0qRJ2r9/v7y9vdWvXz8tWLDALrCVpO+//16JiYm6++67S53T1dVV33//vWbOnKns7GyFhYVp8ODBmjRp0iW9VuBcGRkZ+uOPP/TJJ59cMLAFAFyY2WyRyWKRyWxRodn6an1vtr0/d1vxulmFJuv+BSaLXbCanVeo07b3pnLbs/MLdSl+He7h4iQvN2d5u1lfa3q62qY0aODvpYgAb4XU8JCTkekMAFyAu69U/zrrUhaLSQppK6XssD7w7dA661Kk/xtSu9HW9wfWSH98Yb9/yW/IdbzXOo+uJB3eJP3+n3NOVqJv25FSSLT1/dGt0m8Lyz9uq2FSWAfr+9Q/pc3zSh/T3VcKbCbV7Sj5hZZ9rQAAVGMOD20l67yf5U2HsHr1arv1bt26aefOnRc85k033aTyBhGHhYVVeEQtcCkNGDBAmzZt0n333afevXs7uhwAuOSOZZzRql2p2rj/hHLyC88JVotfzSWD1DID1rIDWbNDvz9UzGjQ2ZDV2fZqfe9UTntxIFuyzcvNWV6uTnJ24uvJAC6TRr2si6lAStttnR/XNlfuH9YRt0XSdktb5pd/rKb9ikPb9D3Sr2U/PFqS1KBLcWh78oD0y4fl960TXRzankqUNs4qv+9NL0jXPWh9n3FE2rFMCmouBbWUvAPL3w8AAAerFqEtcK0695cSAHC1MZkt2nr4lFbtStGqXWn681jVzn1eGS5OBjkZDXI2GmU0SM5OxrPrBhkNBjnbtlv7FAWsXm7O8ikRopYVrhaHrE7ycXORu4uRh3gBuLI5uUjBLa1L9B3WtnMfOhzaTrqxxLcVz/3FWe0SD4wLbiV1f0rldg6ItH/f7cmz3Syl+xcFwZJUq6HU5bHS9WelSqk77UPmxA3Sd08Xr3v6WwPcwBbWY0bcyKhcwFEsFinnuCSD5FGT+bQBEdoCAIAqlnGmQGv+StOqXan68a80ncjOt20zGKQ2YTXUvWmgAn3crCGpk0FORqOcDMWhqZOTQU6Gs+/L6nM2YD133bmoj1Pxvk4Gg4xMGwAAf9+5IUpoW+tSEXVaW5eKCGxmXSrCv7HUc3LF+noFSM1utYa5x/dJOenWKR4OrLFuv/2T4tD2yGZpz3fFoW6tBpKRBzcCF81skk4nSxmHpVOHpUY9Jc9a1m3r35USpkqFZ6zrRmfr31evAMk7SOrxVPG/NacOSyf2W9u9A60BL78ox4WYzVL+aSk/++ySZf++duOK/zfqMiK0BQAAf4vFYtG+tCwl/JmqVbtS9euhkzKVmKfAx91Z3ZoE6MbIQHVrEqDa3m4OrBYAcM1q2M26SFJ+jpS2yxrgpuywLkEti/vuWyX9WOKB1s4eUmBk8ajcloMln6DLW//VJOeElJUi5WVZ507Oz5LyTp9dPy3F3Cu5+1n7bp4v/fG5tT0/Syo4Izm7S27ekquP1H+mNbyXpIPrpINrJTcfydW7uI+bt3W9diPJ1dNhl31VK8yXDMbiBxXu/1Hattg6hUnGYSkjSTIXFPcf9V/rtCiS9c+kKLCVJHOhdPqYdZGkruOLt+3+Rvrm8eJ1o7PkFSh5lwh4Q9pYt506bJ1uxTvIGgAT8FZ/FotUmFc6WC04++rfpPjv+6nD0qb3S4Sv5+zT/m6p41hr39Qd0qwbyj/v9Y8Q2gIAgKtDboFJGw+c0Ko/U7Rqd6oOnzhjt71RoLd6RgaqR2Sg2tWvKRfmZAUAVCeunucfKVyntRR9pzXMTdtlDZSO/mZdJCmiR3Fou/P/pMSN1jA3qLl1egcXj8tzHZeDqaA4MC0KVfNPW18jb7FOpSFJ27+UDqy1D2CL+uVlSfevK55HePU0adMH5Z+zxaDi0PZUojWILY+5sPj9wbXWY5fn7u+kejHW9xvfl3540T7UdfMpDnpveEQKaGrtm7pLOrql7CDYzVty8702RmJnpUrHtkkZidY/l1OHi0fOnj4mjf6vFH42GDuxX9q6yH5/o7PkGyL51bO+L9LsVim8i+RXV5LBOgo+K0XKSrO++jcp7uviLvk3tbbnnjob8B61LpLUpWTA+z/pmydKnN/F+jNYcgRv0Vzapw5LJw9at3sHSu41CHiryqnD1rD95IGz/36cE7J2Hie1Hmrte/Anaf4t5R+r5+TiKXHOnJB+fqv8vplHi9+7ellfDU7Ff3ddvayLi5dUI+zvXeMlQmgLAAAqJDkjVz/sto6m/WlPus4UmGzbXJ2M6hRRWzc2DdCNkUGqV5tRLACAK1iTWOsiWb/WfeKAdaRWyg4p9U/7+Xp3fyP9/p/idYNRqhVRPLVCp/uKA8i/y2KxhqiFuZK7b3H7if1Sdrq1vSDX+mpb8qQO9xQHUFv/IyX9Wryt4Iz1taj/yOXFo1GXPSBtXVh+PeP3Wkc4StKh9dLmueX3zTtdHNp61LIubj7Fiy0A9bEPvVsMtE6XUdTPxcNac1Eo7Fe3uG+dKKnd6LPbskoEx2fXS/45nDkl5WZYl7K0G1X8ft8q6duJ5V/bnV9Ijc8+WHrHUunHVyQXT2utRa+uXtbXdnHWuaIl6zQdh34u7ufqab+fT3Bx2HSpnTlVPCrWFsYesoagRcHmrq+l/z5S/jFOJRa/r9fJOue1Xz1rIFajnuRTp+xw27NW8VQJkjXY9Q0p+xxtR1oXyTq6N/tssFv0WjQKU7KOyPZvcjbgzbCO9M1Msi6S/QjeXf+VVkwoXndyPRvuBlpH8t74dPEc2WdOWcNiz9oEu0VMhdLxvVLKduu/k417S/Wvs25L320/OvpcmUeK35f8eXf2KA5Wi0JWrxIPkPSpY33QZMkA1tWn+H3N8OK+NcKlSanWP9cr6M+M0BYAAJTJbLbo9yOntGqXNajdcdT+IWJBvm66MTJQPZoG6vpG/vJy47YCAHAVMjpJ/o2sS/MBpbc3628NA1N2WKdbyDkuHd9jXXYut4YKRda9aW13r2EflBbmWkeADS0Rev7fOOvI0XODVVmsoxQnHy/u+90z1tCpPG1HSs5npyfa/4P1a+vlKThTHNq6uBe3O7kVh6pFI00txb/AVeObJC//0iNWi96XDFd7TLQuFRHcyrpURNO+1qUiYv5pHdFbMtQtGfKWDHz8QqWInmUHwaZ86zUXKXoIXnkaxxaHtokbpOXjyu87ZK7U8jbr+z+/kpb962ygWxQGlwh4O/9Latjd2jd9j3VKCbs+Z/uZ8qTQ9sUjC7cvkb562DpNRVma3lwc2taOsP4iokaY5BdWHMYWBbNeAcX7VWZu6ovl7Gr9synvAYLtRhWH74V51j+b7NTiEbwlf/ni7G6d1zQrVcrLsP652gW8JULHPz6X/jfe+vfYv7F1P/9GZ18bW39p4+x6SS652shKs/47krLDGtSm7bJ+ZkUMxuLQNqiV1KSv9bNx9zsnZPWWAkqMpA5uLU04bN12odHr3oHSTS9UrF6jUTJeeVO08X9XAADAJjO3QGv/SteqXalavTtVx895iFhU3Rq6MTJQN0YGqkWIrwxX0G+qAQC4JCJvti6SdSRsVqo1xEjdaQ2GSs6huutr6fCGso/j7G6/np1m/bp2WcyF1pFtRfOH+gRbQ0Zn9+LFpcR7c4lwtWm/s33dyu5fcqTbjc9IPZ62BisXCqGa3GRdrhQeNaxLRTQfUHZgL1lHe5YMl5r1t06rkJ8jFeRYQ/CCM9Y5OQvOWIPPIj5B1hC3oGTfs6/5OfZ/FvnZ1mC1vHC19bDi92m7pB//Xf71DJwlRY+wvnf3LT6mp3+JQLae9TW0XfF+DbpK//q5/ONWZ85uZ0Pmcr4G3z7OukjW0eolw93sVPs/t6xUSQbr9AxHfrEuJd39rXWksSQd3mT996Ao0PUOunJGehbkWkfJFs37HdJGajXEui3/tPTd0/b9Xb3PThPTovj6JevP+R2fVuycTs6Sk++F+10jDBaLxXLhbjhXZmam/Pz8lJGRIV9f+x+o3NxcHThwQA0aNJC7u3s5R7g6de/eXdHR0Zo5c6ajS7kqXcs/WwAuDYvFov3p2Vp19iFivxw8ocKSDxFzc1bXJgHqERmo7k0D5M9DxFDNnO+eDPb4rIBqYNf/rPPiFuSUHa62/Udx35Sd1pGczm7WrwkXhaxF/a+wr/nib8rLsgaItlA32z7kDb9BqtXA2vfoVum3BecEx2ffG52tc4g2v7X4uJlJ1pHQl2sqhqtBwRnr9BbH90jpe8++nl0e2VY83cOKp6QN7xTv5+ZrHeFbNEK3/d2SV23HXMO58rOljbOKQ9r0Pfaj6VvcVvxtALNZWjLW+guKoqDWr551RCsuqKL3ZIy0hSSpf//+Kigo0IoVK0ptW7t2rbp27arff/9drVtXzdP0zpw5o9DQUBmNRiUlJcnNjRAAwJXBYrEoO9+kUzn5slgkH3dnebk5X1EP2sorNGnTgRNK+DNVP+xO1aHjOXbbGwZ46camgbqxWaA6hNe6oq4NAIBqLbKfdamIoOaXthZcWdzOzvlbESHRxVMaVOS4RQ9cQ8W5eFinuSia6qKIxWL/y5SAptapQ9L3WOcIzsu0PtTu6Bbr9qL5eSVp3RvS/tXFo3KLgl3fkKr7BU1elnVe7qK5Z31DpC7x1m1OrtIP06xz/xbxqCkFtbSGsvWvL243GqUhs6umJpSL0BaSpDFjxmjw4ME6cuSI6tata7dt7ty5at++fZUFtpL05ZdfqkWLFrJYLFq2bJmGDx9eZceuLIvFIpPJJGdn/joA1xKT2aLTuQU6lVOgU2cKdConXxlnzq7nFOjUmXxl5BRY287ZXnIkahF3F6O83Vzk4+4sH3dnebudXdyd5XP21dvNRd7uzvIttd3l7HZnuTpfmoA0NdP+IWLZ+cW/NXdxMqhTw9rq0dQ67UG4P6MsAAAAgEo7N1w9d17dE/utAe7xPdLJQ8UP55OscxzvW2VdSnLxsk7PMOqr4ik9TqdYR0ZfKMi3WKwPxkveZg1pTx6w314nqkRo6yJ1fsB6jqKg1qcOI/odiJQKkqRbbrlFAQEBmjdvniZNmmRrz8rK0ueff65XX31Vx48f17hx47RmzRqdPHlSEREReuqppzRixIhKn2/27Nm66667ZLFYNHv27FKh7Y4dO/Tkk09qzZo1slgsio6O1rx58xQRYZ1HZs6cOXrttde0d+9e1apVS4MHD9bbb7+tgwcPqkGDBvrtt98UHR0tSTp16pRq1qypH374Qd27d9fq1avVo0cP/e9//9OkSZP0xx9/6LvvvlNYWJji4+O1YcMGZWdnq1mzZpo2bZp69eplqysvL0+TJ0/WJ598otTUVIWFhWnixIm6++671bhxY913330aP774CZRbt25VmzZttGfPHjVq1EgAql5+oVkZZwqUcSa/ROB6Tgh7dj3TFsAWKDO3QH9ngiBXZ6OMBim3wCzJ+ppbkKf0rLy/dT1uzsbi0NcW7rrY2nzcywiCz7aX3M/FaNQfSRlK2JWqH3al6o8k+ycjB/i4qUfTAN0YGaQbGvvLm4eIAQAAAJeOs9v5H9DW7QmpSR/7KRdOHrTOh3x8n/UhXkX+N176c7nkG2qdbqF2I+sUFycPWB9q2H+mtZ/BIG371BoWF/EOLp7S4NwR2b2fq8ILxt/F/6FdTvnZ5W8zONk/mfO8fY3WofgX6luJ+WicnZ01cuRIzZs3T08//bTtwTKff/65TCaTRowYoaysLLVr105PPvmkfH199fXXX+sf//iHIiIi1LFjxwqfa9++fVq/fr2WLFkii8WiRx99VIcOHVL9+vUlSUlJSeratau6d++uVatWydfXV+vWrVNhYaEk6b333lN8fLxefvll9e3bVxkZGVq3bl2Fz19kwoQJmj59uho2bKiaNWvq8OHD6tevn1588UW5ubnp448/Vv/+/bV7927Vq1dPkjRy5EitX79eb775pqKionTgwAGlp6fLYDDo7rvv1ty5c+1C27lz56pr164EtkAZCk1mnSkw6Uy+SWcKTMo5+5qbX/w+O6/QFrKeG8pmnA1lS44YvRjebs7y83BRDU+XEq+uquHpohrnrnu6qMbZ9+4u1gdOFJjMys4r1OncQmXlnV1yC5WZW2B7n1Vye26hTucVnH0t3p5z9jryCs3Ky8pXelb++cq+ICejQaZzRgRH1fVTj8hA9YwMUosQXxmN/NYcAAAAqBZC2liXkkwF1uD29DH7Ea/ZadbXzCTrcuDH4m1uvtItrxf37/Qv63GKglov/0t6Gag6PIjsIl3Ug8im+KlcjW+S7vy8eP3FOtZJwstS/wYp7uvi9VcaSjnHS/ebklG67Tx27dqlZs2a2UakSlLXrl1Vv359LViwoMx9brnlFkVGRmr69OmSKvYgsqefflo7d+7U0qVLJUkDBw5UdHS0pkyZIkl66qmn9Omnn2r37t1ycXEptX9oaKji4uL0wgsvlNpWmZG2y5Yt04AB5TwB9KyWLVvqvvvu07hx4/TXX3+padOmWrlypd3o2yJHjx5VvXr19PPPP6tjx44qKChQSEiIpk+frlGjRp33PBXFg8hwuZjNFuUWWgPVnHyTcgvsg9Uz+cVha8nQNffses7Z19wCk3LyC3WmwKwz+YV2/QtMVfefH4NB1sDVw0V+nq62sLWGhzWItWsrEcL6ebhUm/laC01mZeebdLpE2Fsy1M3KLdTp3AL7thJh8OlcaxBcMsT2cnVSl8YBurGZ9SFigT78u4GrDw/Xqjg+KwAAriI5J6Tje4unW8hIkmrUswazzW6VnBinWV3xIDJUWmRkpK677jrNmTNH3bt31969e7V27VpNnTpVkmQymfTSSy/ps88+U1JSkvLz85WXlydPT88Kn8NkMmn+/Pl64403bG133XWXxo8fr8mTJ8toNGrr1q3q0qVLmYFtamqqjh49qp49e/7t623fvr3delZWlqZMmaKvv/5ax44dU2Fhoc6cOaPExERJ1qkOnJyc1K1btzKPFxISoptvvllz5sxRx44d9dVXXykvL09Dhw7927UCVe3IyRx9uTlJP+9LV3Z+4dmA1Xw2YDXZvvJ/ORgNkqers9xdnOThapSni7PcXZ3k6eIkLzen0qNePV1tAW3RyFcfd+crftSos5NRfh5G+XmU/revMkxmi7LzC5WdV6jaXm6XbI5cAAAAAA7kWUvy7CiFVfybz7iyENpeTk8dLX+bwcl+/fG95+l7zv+AP/LHxdd0jjFjxujBBx/UO++8o7lz5yoiIsIWUr766qt64403NHPmTLVq1UpeXl565JFHlJ9f8a/wfvvtt0pKSio1h63JZFJCQoJ69+4tDw+PcvbWebdJktFo/WxKDiAvKCgos6+Xl/30EePHj9fKlSs1ffp0NWrUSB4eHhoyZIjt+i50bkm655579I9//EOvv/665s6dq+HDh1cq1AYupdwCk77dkazPfj2sn/cdr/B8ru4uRnm4OJ0NVo3ycHWyC1Y9XJ3k7uIkT1cneZxdL3r1PLvNw6X4vaerfR9XJ6NtShb8fU5Gg3zdXeTr/vfCXwAAAACA4xDaXk6VmGP2kvW9gGHDhunhhx/WJ598oo8//lj333+/LUxZt26dBgwYoLvuukuSZDab9ddff6l58+YVPv7s2bN1++236+mnn7Zrf/HFFzV79mz17t1brVu31vz581VQUFBqtK2Pj4/Cw8OVkJCgHj16lDp+QECAJOnYsWNq08Y6F8zWrVsrVNu6des0evRoDRo0SJJ15O3Bgwdt21u1aiWz2awff/yxzOkRJKlfv37y8vLSe++9pxUrVmjNmjUVOjdwqVgsFm09fEqfbz6ir34/qtO5hbZtnRvW1oDoEAX5uVsD1DKCVXdnpyt+BCsAAAAAAFcaQlvY8fb21vDhwzVx4kRlZmZq9OjRtm2NGzfWF198oZ9//lk1a9bUjBkzlJKSUuHQNi0tTV999ZWWL1+uli1b2m0bOXKkBg0apBMnTmjcuHF66623dPvtt2vixIny8/PThg0b1LFjRzVt2lRTpkzRfffdp8DAQPXt21enT5/WunXr9OCDD8rDw0OdOnXSyy+/rAYNGig1NVWTJk2qUH2NGzfWkiVL1L9/fxkMBj3zzDMym4u/Ih4eHq5Ro0bp7rvvtj2I7NChQ0pNTdWwYcMkSU5OTho9erQmTpyoxo0bq3PnzhU6N1DVUk/naumWJH2++Yj2pmbZ2kNreGhIu7oa0q6uwmoxChwAAAAAgOqIie5QypgxY3Ty5EnFxsYqJCTE1j5p0iS1bdtWsbGx6t69u4KDgzVw4MAKH/fjjz+Wl5dXmfPR9uzZUx4eHlq4cKFq166tVatWKSsrS926dVO7du304Ycf2kbdjho1SjNnztS7776rFi1a6JZbbtGePXtsx5ozZ44KCwvVrl07PfLII2U+sKwsM2bMUM2aNXXdddepf//+io2NVdu2be36vPfeexoyZIj+9a9/KTIyUmPHjlV2drZdnzFjxig/P19xcXEV/myAqpBfaNaK7cc0Zt4v6jxtlaZ9s0t7U7Pk5mzUoDah+uSeGK19ooce7d2EwBYAAAAAgGrMYLFUdFZDlHS+J73l5ubqwIEDatCggdzdeVL3tWbt2rXq2bOnDh8+rKCgoCo9Nj9bKMvOo5n6fPNh/d/WozqRXTzHdJt6NTS0XZhuiarD/KYArloVffou+KwAAACqg4rekzE9AlBF8vLylJaWpilTpmjo0KFVHtgCJZ3Kydf/bT2qzzcf1vakTFt7gI+bbmsbqqHt6qpRoI8DKwQAAAAAABeL0BaoIv/5z380ZswYRUdH6+OPP3Z0ObgKmcwWrdmTpi9+PaKVO1OUb7LOueziZFCvZkEa2r6uujYOkLMTM98AAAAAAHAlI7QFqsjo0aPtHtwGVJX9aVn6fPMRLdlyRCmZebb25nV8NbR9XQ2IDlUtL1cHVggAAAAAAKoSoS0AVEOncwv09bZj+nzzEW0+dNLWXsPTRQOjQzWkXV21DPVzYIUAAAAAAOBSIbQFgGrCbLZo44ET+nzzYX3zR7LOFJgkSUaD1K1JgIa2D1PPZoFyc3ZycKUAAAAAAOBSIrS9hMxms6NLwFWGn6mr05GTOfpyc5K+2HJYh0+csbU3DPDS0HZhuq1tqIJ83R1YIQAAAAAAuJwIbS8BV1dXGY1GHT16VAEBAXJ1dZXBYHB0WbiCWSwW5efnKy0tTUajUa6uzF8qWR/MlZKZK6PBIF8PZ3m4OF0xf9dyC0xasT1Zn28+rJ/3HZfFYm33dnNW/6g6GtIuTG3r1bhirgcAAAAAAFQdQttLwGg0qkGDBjp27JiOHj3q6HJwFfH09FS9evVkNBodXcplYbFYlJ6Vr8Mnc3T4RI6OnDyjwydyzq6f0dFTZ1Rottj6OxsN8vVwka+789lXF/l6OJ99PV+7y2UJfS0Wi347fEqf/3pE//39qE7nFdq2dW5YW8M61FWfFnXk4cr0BwAAAAAAXMsIbS8RV1dX1atXT4WFhTKZTI4uB1cBJycnOTs7X3UjLzNzC6xB7IkzOnI2nD18Npw9cvKMbV7X8jgbDbLIOuq20GzRiex8ncjOv6haKhr6+pUT/Lq7GMv880k9naulW5L0+eYj2puaZWsPreGhIe3qaki7ugqr5XlRNQMAAAAAgKsPoe0lZDAY5OLiIhcXF0eXAjhMboHJOkL2ZI6OlAhki0bLZpwpOO/+BoNUx9dddWt5Kqymp8JqeZx9tb4P8nGXwSDl5JuUmVugzDOFZ18LitdLvs8tKKNfYZWEvi5OhlIBr+nsw8VMZ0cEuzkb1a9VHQ1tV1edGtaW0Xh1hfAAAAAAAODvI7QF8LcUmsw6lpFrF8QeOVkczqaezrvgMWp7uZ4NZT2sYWyJcDakhodcnS88HYSXm7O83JxVx6/y12CxWKok9C0wWXQ8O1/Hywh929SroaHtwnRLVB35uvOLHAC42r3zzjt69dVXlZycrKioKL311lvq2LFjmX137NihyZMna/PmzTp06JBef/11PfLII6X6JSUl6cknn9Q333yjnJwcNWrUSHPnzlX79u0v8dUAAADgciO0BXBeFotFaafzbIFsyXD28MkcHcvItY0iLY+3m7PqlhHIhtXyVN2aHvJyc+w/RQaD4ZKFvjn5JsU0qKVGgT5VXzgAoFpavHix4uPjNWvWLMXExGjmzJmKjY3V7t27FRgYWKp/Tk6OGjZsqKFDh+rRRx8t85gnT57U9ddfrx49euibb75RQECA9uzZo5o1a17qywEAAIADGCwWy/nTFpQpMzNTfn5+ysjIkK+vr6PLAapUfqFZ6/cf14rtyVq5M0XpWecfLevqZFTdmh7ljpat4ely1c3FCwCoHqrjPVlMTIw6dOigt99+W5JkNpsVFhamBx98UBMmTDjvvuHh4XrkkUdKjbSdMGGC1q1bp7Vr1150XdXxswIAALjWVPSejJG2ACRJZ/JN+vGvNH27I1nf/5mi07mFtm1Gg1THz6P0aNmz7wN93JibFQAASfn5+dq8ebMmTpxoazMajerVq5fWr19/0cddvny5YmNjNXToUP34448KDQ3Vv/71L40dO7YqygYAAEA1Q2gLXMMycwu06s9UrdierNV/pSq3wGzb5u/tptgWQerTMlgdG9SSm7OTAysFAODKkJ6eLpPJpKCgILv2oKAg7dq166KPu3//fr333nuKj4/XU089pV9++UUPPfSQXF1dNWrUqDL3ycvLU15e8bdlMjMzL/r8AAAAuLwIbYFrTHpWnr7fmaIVO5K1bm+6CkzFM6SE1vBQ35bB6tMyWG3q1ZQTo2cBAKgWzGaz2rdvr5deekmS1KZNG23fvl2zZs0qN7SdNm2annvuuctZJgAAAKoIoS1wDTh66oy+3ZGsFduT9cvBEyr53LBGgd7q08Ia1LYI8WXuWQAA/gZ/f385OTkpJSXFrj0lJUXBwcEXfdw6deqoefPmdm3NmjXTl19+We4+EydOVHx8vG09MzNTYWFhF10DAAAALh9CW+AqtT8tSyt2JOvb7cn6/UiG3bZWoX7q0zJYsS2C1CjQx0EVAgBw9XF1dVW7du2UkJCggQMHSrKOkk1ISNC4ceMu+rjXX3+9du/ebdf2119/qX79+uXu4+bmJjc3t4s+JwAAAByH0Ba4SlgsFu08lqlvtydrxY5k/ZWSZdtmMEgd6tdS7Nmgtm5NTwdWCgDA1S0+Pl6jRo1S+/bt1bFjR82cOVPZ2dmKi4uTJI0cOVKhoaGaNm2aJOvDy3bu3Gl7n5SUpK1bt8rb21uNGjWSJD366KO67rrr9NJLL2nYsGHatGmTPvjgA33wwQeOuUgAAABcUoS2wBXMbLbot8MnteJsUHv4xBnbNmejQdc18lefFsHq3TxIAT6MtAEA4HIYPny40tLSNHnyZCUnJys6OlorVqywPZwsMTFRRqPR1v/o0aNq06aNbX369OmaPn26unXrptWrV0uSOnTooKVLl2rixImaOnWqGjRooJkzZ+rOO++8rNcGAACAy8NgsVgsF+6Gc2VmZsrPz08ZGRny9fV1dDm4hhSYzNq4/4RW7Dimb3ekKO108VOh3V2M6tYkQH1aBuvGyCD5ebg4sFIAAC497skqjs8KAADA8Sp6T8ZIW+AKkFtg0to96VqxPVnf/5mijDMFtm0+bs7q2SxQfVoGq2uTAHm68tcaAAAAAADgSma8cJdL75133lF4eLjc3d0VExOjTZs2ldu3oKBAU6dOVUREhNzd3RUVFaUVK1bY9QkPD5fBYCi1PPDAA7Y+ubm5euCBB1S7dm15e3tr8ODBpZ7yCzjS6dwCLf/9qB5YtEVtn1+psR//qi+3HFHGmQLV9nLViI5hmhfXQZuf6a2Zt7dRn5Z1CGwBAAAAAACuAg5PeBYvXqz4+HjNmjVLMTExmjlzpmJjY7V7924FBgaW6j9p0iQtXLhQH374oSIjI/Xtt99q0KBB+vnnn21zgf3yyy8ymUy2fbZv367evXtr6NChtrZHH31UX3/9tT7//HP5+flp3Lhxuu2227Ru3bpLf9FAOU5k5+v7nSlasSNZP+1JV77JbNsW4ueu2JbB6tMiWO3Da8nJaHBgpQAAAAAAALhUHD6nbUxMjDp06KC3335bkmQ2mxUWFqYHH3xQEyZMKNU/JCRETz/9tN2o2cGDB8vDw0MLFy4s8xyPPPKI/vvf/2rPnj0yGAzKyMhQQECAPvnkEw0ZMkSStGvXLjVr1kzr169Xp06dLlg3c4KhqqRm5uqb7clasT1ZGw8cl7nE38iG/l7q0zJYfVoGq1WonwwGgloAAErinqzi+KwAAAAc74qY0zY/P1+bN2/WxIkTbW1Go1G9evXS+vXry9wnLy9P7u7udm0eHh766aefyj3HwoULFR8fbwu8Nm/erIKCAvXq1cvWLzIyUvXq1atwaAv8HTn5hfp2R7KWbEnSur3pdkFtixBf9WlhDWobBXoT1AIAAAAAAFxjHBrapqeny2QyKSgoyK49KChIu3btKnOf2NhYzZgxQ127dlVERIQSEhK0ZMkSu+kQSlq2bJlOnTql0aNH29qSk5Pl6uqqGjVqlDpvcnJymcfJy8tTXl6ebT0zM7MCVwgUM5ktWr/vuJb8dkQrticrJ7/4Z7ZNvRq6uVUdxbYIVlgtTwdWCQAAAAAAAEdz+Jy2lfXGG29o7NixioyMlMFgUEREhOLi4jRnzpwy+8+ePVt9+/ZVSEjI3zrvtGnT9Nxzz/2tY+DatDv5tJb8dkT/99tRJWfm2trr1fLUbW1DNahNqOrX9nJghQAAAAAAAKhOHBra+vv7y8nJSSkpKXbtKSkpCg4OLnOfgIAALVu2TLm5uTp+/LhCQkI0YcIENWzYsFTfQ4cO6fvvv9eSJUvs2oODg5Wfn69Tp07ZjbY933knTpyo+Ph423pmZqbCwsIqeqm4xqSeztXyrUe19Lck7ThaPCrb191Zt0SFaHDbULWtV5OpDwAAAAAAAFCKQ0NbV1dXtWvXTgkJCRo4cKAk64PIEhISNG7cuPPu6+7urtDQUBUUFOjLL7/UsGHDSvWZO3euAgMDdfPNN9u1t2vXTi4uLkpISNDgwYMlSbt371ZiYqI6d+5c5vnc3Nzk5uZ2EVeJa8WZfJO+25mspb8lae2edJnOTlTr4mRQj6aBuq1tqHpEBsrN2cnBlQIAAAAAAKA6c/j0CPHx8Ro1apTat2+vjh07aubMmcrOzlZcXJwkaeTIkQoNDdW0adMkSRs3blRSUpKio6OVlJSkKVOmyGw264knnrA7rtls1ty5czVq1Cg5O9tfpp+fn8aMGaP4+HjVqlVLvr6+evDBB9W5c2ceQoZKMZst2nDguJZuSdI325OVlVdo29amXg3d1iZUt7QOUU0vVwdWCQAAAAAAgCuJw0Pb4cOHKy0tTZMnT1ZycrKio6O1YsUK28PJEhMTZTQabf1zc3M1adIk7d+/X97e3urXr58WLFhQ6qFi33//vRITE3X33XeXed7XX39dRqNRgwcPVl5enmJjY/Xuu+9esuvE1WVv6mkt2ZKkZb8l6WhG8Ty1dWt66LY2oRrYJlQNA7wdWCEAAAAAAACuVAaLxWJxdBFXoszMTPn5+SkjI0O+vr6OLgeXQXpWnr76/aiWbEnSH0kZtnYfd2fd0rqOBrWpq/b1a8poZJ5aAAAuF+7JKo7PCgAAwPEqek/m8JG2uPJtT8rQe6v3ydXZqIb+XmoY4K0G/l5q4O8lD9cre/7W3AKTvv8zRUu2JOnHv9Js89Q6Gw3q3jRAg9rUVc9mgXJ3ubKvEwAAAAAAANUHoS3+lo37j2vM/F/t5nItKbSGhxr4e6lhgJca+nupQYC3Gvp7KbSGR7UdkWo2W/TLwRNa+luSvt52TKdLXFtUXT8NahOq/lEhqu3Ng+kAAAAAAABQ9QhtcdFW707VfQs3K7fArJgGtdS1SYD2p2Vrf3qW9qdlK+NMgZJOnVHSqTP6aW+63b6uzkY1qH02zA3wUgN/bzUM8FKEv7f8PF0ccj3707K09LckLdmSpKRTZ2ztoTU8NLBNiAa1qatGgcxTCwAAAAAAgEuL0BYX5Zs/jumhT39TgcmiGyMD9e6dbe2mCLBYLDqZU6D9aVnan55tDXPTsnQgPVuHjucov9Cs3SmntTvldKlj1/JyPTvNQokwN8BLYbU85eZctdMQnMjO13+3HdWXW5L0++FTtnZvN2f1axWsQW3qKqZBrWo7KhgAAAAAAABXH0JbVNoXm4/oiS9+l9ki3dy6jl4fFi1XZ6NdH4PBoFperqrlVUvtw2vZbSs0mZV06kypMHd/WraSM3N1IjtfJ7Lz9euhk3b7GQ1SWC1P6zQLZ8Nc67QL3grydZPBULFgNa/QpFV/purLLUlavTtVhWfnqXUyGtS1sb9ua1tXvZsHMU8tAAAAAAAAHILQFpXy8fqDmvx/OyRJw9rX1bTbWsupkqNQnZ2Mql/bS/Vre6lHU/tt2XmF1gA33T7M3Z+Wpex8kw4dz9Gh4zn6YXea3X5erk5qUDQy1784zG0Q4CVvN2dZLBZtPnRSX25J0tfbjiozt3ie2pahvrqtTV31jwpRgA/z1AIAAAAAAMCxCG1RYe+u3qtXVuyWJMVdH65nbm5e5dMGeLk5q2Won1qG+tm1WywWpZ3O07607LNBrnXahQPp2Uo8kaPsfJO2J2Vqe1JmqWMG+brJ2Wi0m6e2jp+7BrYJ1W1tQtU4yKdKrwEAAAAAAAD4OwhtcUEWi0Wvfrtb767eJ0l66MZGerR3kwpPR1AVDAaDAn3dFejrrs4Rte225RealXgipzjMLQp207OUnpWvlMw8SdbRuH1a1tHgtqGKaVi70iOEAQAAAAAAgMuB0BbnZTZb9NxXOzR//SFJ0sS+kfpntwgHV2XP1dmoRoHeahToLSnIblvGmQIdSM9WxpkCdQivKU9XfuQBAAAAAABQvZFgoVyFJrMmLPlDX2w+IoNBen5AS93Vqb6jy6oUPw8XRYfVcHQZAAAAAAAAQIUR2qJM+YVmPbL4N/3vj2Q5GQ2aPrS1BrWp6+iyAAAAAAAAgKseoS1KOZNv0n0LN+vHv9Lk6mTUmyPaqE/LYEeXBQAAAAAAAFwTCG1h53RugcbM/1WbDpyQu4tRH/yjvbo2CXB0WQAAAAAAAMA1g9AWNiez8zV67ib9fiRDPm7OmhPXQR3Cazm6LAAAAAAAAOCaQmgLSVJqZq7+MXuTdqecVk1PFy0YE6OWoX6OLgsAAAAAAAC45hDaQkdO5uiujzbq4PEcBfq4adE9MWoc5OPosgAAAAAAAIBrEqHtNW5/Wpbu+mijjmbkqm5ND31yTyfVq+3p6LIAAAAAAACAaxah7TXsz2OZ+sfsjUrPyldEgJcW3dNJwX7uji4LAAAAAAAAuKYR2l6jfks8qVFzNikzt1DN6/jq4zEd5e/t5uiyAAAAAAAAgGseoe016Od96bpn/q/KyTepbb0amhvXUX4eLo4uCwAAAAAAAIAIba85q3al6P6FW5RXaNb1jWrrg3+0l5cbPwYAAAAAAABAdUFadw3577ajeuTTrSo0W9SrWZDevqON3F2cHF0WAAAAAAAAgBIIba8Rn/1yWBOWbJPZIg2IDtH0oVFycTI6uiwAAAAAAAAA5yC0vQbM+emApv53pyRpRMd6emFgSzkZDQ6uCgAAAAAAAEBZCG2vYhaLRW+v2qvXVv4lSRrbpYGe6tdMBgOBLQAAAAAAAFBdEdpepSwWi17+ZpfeX7NfkvRoryZ6qGcjAlsAAAAAAACgmiO0vQqZzRY983/btWhjoiRp0s3NdE+Xhg6uCgAAAAAAAEBFENpeZQpNZj3+xTYt/S1JBoP00qBWGtGxnqPLAgAAAAAAAFBBhLZXkbxCkx785Dd9tzNFzkaDZgyP1q1RIY4uCwAAAAAAAEAlENpeJXLyC/XPBZu1dk+6XJ2NeveOturVPMjRZQEAAAAAAACoJELbq0BmboHunvuLfj10Up6uTvpwZHtd38jf0WUBAAAAAAAAuAiEtle441l5GjV3k7YnZcrX3Vlz4zqqXf2aji4LAAAAAAAAwEUitL2CpWTm6s6PNmpvapZqe7nq4zEd1SLEz9FlAQAAAAAAAPgbCG2vUIdP5OjOjzYq8USO6vi5a8GYGDUK9HZ0WQAAAAAAAAD+JkLbK9De1Czd9dFGJWfmql4tTy26J0ZhtTwdXRYAAAAAAACAKkBoe4XZnpShkXM26UR2vhoHemvhPTEK8nV3dFkAAAAAAAAAqgih7RVk86ETGj33F53OLVSrUD/Nv7ujanm5OrosAAAAAAAAAFWI0PYK8dOedI39+FedKTCpQ3hNzR7dQb7uLo4uCwAAAAAAAEAVI7S9AiT8maL7F25RvsmsLo399cE/2svD1cnRZQEAAAAAAAC4BAhtrwC1vd3k4mRQj8ggvTmijdycCWwBAAAAAACAqxWh7RUgOqyGlj5wvRr6e8nZyejocgAAAAAAAABcQg5PAN955x2Fh4fL3d1dMTEx2rRpU7l9CwoKNHXqVEVERMjd3V1RUVFasWJFqX5JSUm66667VLt2bXl4eKhVq1b69ddfbdtHjx4tg8Fgt/Tp0+eSXF9VaRLkQ2ALAAAAAAAAXAMcOtJ28eLFio+P16xZsxQTE6OZM2cqNjZWu3fvVmBgYKn+kyZN0sKFC/Xhhx8qMjJS3377rQYNGqSff/5Zbdq0kSSdPHlS119/vXr06KFvvvlGAQEB2rNnj2rWrGl3rD59+mju3Lm2dTc3t0t7sQAAAAAAAABQAQaLxWJx1MljYmLUoUMHvf3225Iks9mssLAwPfjgg5owYUKp/iEhIXr66af1wAMP2NoGDx4sDw8PLVy4UJI0YcIErVu3TmvXri33vKNHj9apU6e0bNmyi649MzNTfn5+ysjIkK+v70UfBwAAABePe7KK47MCAABwvIrekzns+/b5+fnavHmzevXqVVyM0ahevXpp/fr1Ze6Tl5cnd3d3uzYPDw/99NNPtvXly5erffv2Gjp0qAIDA9WmTRt9+OGHpY61evVqBQYGqmnTprr//vt1/Pjx89abl5enzMxMuwUAAAAAAAAAqprDQtv09HSZTCYFBQXZtQcFBSk5ObnMfWJjYzVjxgzt2bNHZrNZK1eu1JIlS3Ts2DFbn/379+u9995T48aN9e233+r+++/XQw89pPnz59v69OnTRx9//LESEhL073//Wz/++KP69u0rk8lUbr3Tpk2Tn5+fbQkLC/ubnwAAAAAAAAAAlObQOW0r64033tDYsWMVGRkpg8GgiIgIxcXFac6cObY+ZrNZ7du310svvSRJatOmjbZv365Zs2Zp1KhRkqTbb7/d1r9Vq1Zq3bq1IiIitHr1avXs2bPMc0+cOFHx8fG29czMTIJbAAAAAAAAAFXOYSNt/f395eTkpJSUFLv2lJQUBQcHl7lPQECAli1bpuzsbB06dEi7du2St7e3GjZsaOtTp04dNW/e3G6/Zs2aKTExsdxaGjZsKH9/f+3du7fcPm5ubvL19bVbAAAAAAAAAKCqOSy0dXV1Vbt27ZSQkGBrM5vNSkhIUOfOnc+7r7u7u0JDQ1VYWKgvv/xSAwYMsG27/vrrtXv3brv+f/31l+rXr1/u8Y4cOaLjx4+rTp06F3k1AAAAAAAAAFA1HBbaSlJ8fLw+/PBDzZ8/X3/++afuv/9+ZWdnKy4uTpI0cuRITZw40dZ/48aNWrJkifbv36+1a9eqT58+MpvNeuKJJ2x9Hn30UW3YsEEvvfSS9u7dq08++UQffPCBHnjgAUlSVlaWHn/8cW3YsEEHDx5UQkKCBgwYoEaNGik2NvbyfgAAAAAAAAAAcA6Hzmk7fPhwpaWlafLkyUpOTlZ0dLRWrFhhezhZYmKijMbiXDk3N1eTJk3S/v375e3trX79+mnBggWqUaOGrU+HDh20dOlSTZw4UVOnTlWDBg00c+ZM3XnnnZIkJycnbdu2TfPnz9epU6cUEhKim266Sc8//7zc3Nwu6/UDAAAAAAAAwLkMFovF4ugirkSZmZny8/NTRkYG89sCAAA4CPdkFcdnBQAA4HgVvSdz6PQIAAAAAAAAAAB7hLYAAAAAAAAAUI0Q2gIAAAAAAABANUJoCwAAAAAAAADVCKEtAAAAUMXeeecdhYeHy93dXTExMdq0aVO5fXfs2KHBgwcrPDxcBoNBM2fOPO+xX375ZRkMBj3yyCNVWzQAAACqDUJbAAAAoAotXrxY8fHxevbZZ7VlyxZFRUUpNjZWqampZfbPyclRw4YN9fLLLys4OPi8x/7ll1/0/vvvq3Xr1peidAAAAFQThLYAAABAFZoxY4bGjh2ruLg4NW/eXLNmzZKnp6fmzJlTZv8OHTro1Vdf1e233y43N7dyj5uVlaU777xTH374oWrWrHmpygcAAEA1QGgLAAAAVJH8/Hxt3rxZvXr1srUZjUb16tVL69ev/1vHfuCBB3TzzTfbHRsAAABXJ2dHFwAAAABcLdLT02UymRQUFGTXHhQUpF27dl30cT/99FNt2bJFv/zyS4X3ycvLU15enm09MzPzos8PAACAy4uRtgAAAEA1dvjwYT388MNatGiR3N3dK7zftGnT5OfnZ1vCwsIuYZUAAACoSoS2AAAAQBXx9/eXk5OTUlJS7NpTUlIu+JCx8mzevFmpqalq27atnJ2d5ezsrB9//FFvvvmmnJ2dZTKZytxv4sSJysjIsC2HDx++qPMDAADg8iO0BQAAAKqIq6ur2rVrp4SEBFub2WxWQkKCOnfufFHH7Nmzp/744w9t3brVtrRv31533nmntm7dKicnpzL3c3Nzk6+vr90CAACAKwNz2gIAAABVKD4+XqNGjVL79u3VsWNHzZw5U9nZ2YqLi5MkjRw5UqGhoZo2bZok68PLdu7caXuflJSkrVu3ytvbW40aNZKPj49atmxpdw4vLy/Vrl27VDsAAACuDoS2AAAAQBUaPny40tLSNHnyZCUnJys6OlorVqywPZwsMTFRRmPxF96OHj2qNm3a2NanT5+u6dOnq1u3blq9evXlLh8AAADVgMFisVgcXcSVKDMzU35+fsrIyOCrZgAAAA7CPVnF8VkBAAA4XkXvyZjTFgAAAAAAAACqEUJbAAAAAAAAAKhGCG0BAAAAAAAAoBohtAUAAAAAAACAaoTQFgAAAAAAAACqEUJbAAAAAAAAAKhGCG0BAAAAAAAAoBohtAUAAAAAAACAaoTQFgAAAAAAAACqEUJbAAAAAAAAAKhGCG0BAAAAAAAAoBohtAUAAAAAAACAaoTQFgAAAAAAAACqEUJbAAAAAAAAAKhGCG0BAAAAAAAAoBohtAUAAAAAAACAaoTQFgAAAAAAAACqEUJbAAAAAAAAAKhGCG0BAAAAAAAAoBohtAUAAAAAAACAaoTQFgAAAAAAAACqEUJbAAAAAAAAAKhGCG0BAAAAAAAAoBohtAUAAAAAAACAaoTQFgAAAAAAAACqEUJbAAAAAAAAAKhGHB7avvPOOwoPD5e7u7tiYmK0adOmcvsWFBRo6tSpioiIkLu7u6KiorRixYpS/ZKSknTXXXepdu3a8vDwUKtWrfTrr7/atlssFk2ePFl16tSRh4eHevXqpT179lyS6wMAAAAAAACAyqh0aBseHq6pU6cqMTHxb5988eLFio+P17PPPqstW7YoKipKsbGxSk1NLbP/pEmT9P777+utt97Szp07dd9992nQoEH67bffbH1Onjyp66+/Xi4uLvrmm2+0c+dOvfbaa6pZs6atzyuvvKI333xTs2bN0saNG+Xl5aXY2Fjl5ub+7WsCAAAAAAAAgL/DYLFYLJXZYebMmZo3b562b9+uHj16aMyYMRo0aJDc3NwqffKYmBh16NBBb7/9tiTJbDYrLCxMDz74oCZMmFCqf0hIiJ5++mk98MADtrbBgwfLw8NDCxculCRNmDBB69at09q1a8s8p8ViUUhIiB577DGNHz9ekpSRkaGgoCDNmzdPt99+e4Vqz8zMlJ+fnzIyMuTr61up6wYAAEDV4J6s4visAAAAHK+i92SVHmn7yCOPaOvWrdq0aZOaNWumBx98UHXq1NG4ceO0ZcuWCh8nPz9fmzdvVq9evYqLMRrVq1cvrV+/vsx98vLy5O7ubtfm4eGhn376yba+fPlytW/fXkOHDlVgYKDatGmjDz/80Lb9wIEDSk5Otjuvn5+fYmJiyj1v0bkzMzPtFgAAAAAAAACoahc9p23btm315ptv6ujRo3r22Wf10UcfqUOHDoqOjtacOXN0oQG86enpMplMCgoKsmsPCgpScnJymfvExsZqxowZ2rNnj8xms1auXKklS5bo2LFjtj779+/Xe++9p8aNG+vbb7/V/fffr4ceekjz58+XJNuxK3NeSZo2bZr8/PxsS1hY2HmvDwAAAAAAAAAuxkWHtgUFBfrss89066236rHHHlP79u310UcfafDgwXrqqad05513VmWdkqQ33nhDjRs3VmRkpFxdXTVu3DjFxcXJaCy+DLPZrLZt2+qll15SmzZtdO+992rs2LGaNWvW3zr3xIkTlZGRYVsOHz78dy8HAAAAAAAAAEpxruwOW7Zs0dy5c/Wf//xHRqNRI0eO1Ouvv67IyEhbn0GDBqlDhw7nPY6/v7+cnJyUkpJi156SkqLg4OAy9wkICNCyZcuUm5ur48ePKyQkRBMmTFDDhg1tferUqaPmzZvb7desWTN9+eWXkmQ7dkpKiurUqWN33ujo6HLrdXNzu6h5ewEAAAAAAACgMio90rZDhw7as2eP3nvvPSUlJWn69Ol2ga0kNWjQ4IIP9HJ1dVW7du2UkJBgazObzUpISFDnzp3Pu6+7u7tCQ0NVWFioL7/8UgMGDLBtu/7667V79267/n/99Zfq169vqy04ONjuvJmZmdq4ceMFzwsAAAAAAAAAl1qlR9ru37/fFoCWx8vLS3Pnzr3gseLj4zVq1Ci1b99eHTt21MyZM5Wdna24uDhJ0siRIxUaGqpp06ZJkjZu3KikpCRFR0crKSlJU6ZMkdls1hNPPGE75qOPPqrrrrtOL730koYNG6ZNmzbpgw8+0AcffCBJMhgMeuSRR/TCCy+ocePGatCggZ555hmFhIRo4MCBlf04AAAAAAAAAKBKVTq0TU1NVXJysmJiYuzaN27cKCcnJ7Vv377Cxxo+fLjS0tI0efJkJScnKzo6WitWrLA9JCwxMdFuvtrc3FxNmjRJ+/fvl7e3t/r166cFCxaoRo0atj4dOnTQ0qVLNXHiRE2dOlUNGjTQzJkz7ebYfeKJJ5Sdna17771Xp06d0g033KAVK1bI3d29sh8HAAAAAAAAAFQpg8VisVRmh44dO+qJJ57QkCFD7NqXLFmif//739q4cWOVFlhdZWZmys/PTxkZGfL19XV0OQAAANck7skqjs8KAADA8Sp6T1bpOW137typtm3blmpv06aNdu7cWdnDAQAAAAAAAABKqHRo6+bmppSUlFLtx44dk7NzpWdbAAAAAAAAAACUUOnQ9qabbtLEiROVkZFhazt16pSeeuop9e7du0qLAwAAAAAAAIBrTaWHxk6fPl1du3ZV/fr11aZNG0nS1q1bFRQUpAULFlR5gQAAAAAAAABwLal0aBsaGqpt27Zp0aJF+v333+Xh4aG4uDiNGDFCLi4ul6JGAAAAAAAAALhmXNQktF5eXrr33nuruhYAAAAAAAAAuOZd9JPDdu7cqcTEROXn59u133rrrX+7KAAAAAAAAAC4VlU6tN2/f78GDRqkP/74QwaDQRaLRZJkMBgkSSaTqWorBAAAAAAAAIBriLGyOzz88MNq0KCBUlNT5enpqR07dmjNmjVq3769Vq9efQlKBAAAAC69w4cP68iRI7b1TZs26ZFHHtEHH3zgwKoAAABwLap0aLt+/XpNnTpV/v7+MhqNMhqNuuGGGzRt2jQ99NBDl6JGAAAA4JK744479MMPP0iSkpOT1bt3b23atElPP/20pk6d6uDqAAAAcC2pdGhrMpnk4+MjSfL399fRo0clSfXr19fu3burtjoAAADgMtm+fbs6duwoSfrss8/UsmVL/fzzz1q0aJHmzZvn2OIAAABwTan0nLYtW7bU77//rgYNGigmJkavvPKKXF1d9cEHH6hhw4aXokYAAADgkisoKJCbm5sk6fvvv7c9YDcyMlLHjh1zZGkAAAC4xlR6pO2kSZNkNpslSVOnTtWBAwfUpUsX/e9//9Obb75Z5QUCAAAAl0OLFi00a9YsrV27VitXrlSfPn0kSUePHlXt2rUdXB0AAACuJZUeaRsbG2t736hRI+3atUsnTpxQzZo1ZTAYqrQ4AAAA4HL597//rUGDBunVV1/VqFGjFBUVJUlavny5bdoEAAAA4HKoVGhbUFAgDw8Pbd26VS1btrS116pVq8oLAwAAAC6n7t27Kz09XZmZmapZs6at/d5775Wnp6cDKwMAAMC1plLTI7i4uKhevXoymUyXqh4AAADAIc6cOaO8vDxbYHvo0CHNnDlTu3fvVmBgoIOrAwAAwLWk0nPaPv3003rqqad04sSJS1EPAAAA4BADBgzQxx9/LEk6deqUYmJi9Nprr2ngwIF67733HFwdAAAAriWVDm3ffvttrVmzRiEhIWratKnatm1rtwAAAABXoi1btqhLly6SpC+++EJBQUE6dOiQPv74Yx64CwAAgMuq0g8iGzhw4CUoAwAAAHCsnJwc+fj4SJK+++473XbbbTIajerUqZMOHTrk4OoAAABwLal0aPvss89eijoAAAAAh2rUqJGWLVumQYMG6dtvv9Wjjz4qSUpNTZWvr6+DqwMAAMC1pNLTIwAAAABXo8mTJ2v8+PEKDw9Xx44d1blzZ0nWUbdt2rRxcHUAAAC4llR6pK3RaJTBYCh3u8lk+lsFAQAAAI4wZMgQ3XDDDTp27JiioqJs7T179tSgQYMcWBkAAACuNZUObZcuXWq3XlBQoN9++03z58/Xc889V2WFAQAAAJdbcHCwgoODdeTIEUlS3bp11bFjRwdXBQAAgGtNpUPbAQMGlGobMmSIWrRoocWLF2vMmDFVUhgAAABwOZnNZr3wwgt67bXXlJWVJUny8fHRY489pqefflpGIzOLAQAA4PKodGhbnk6dOunee++tqsMBAAAAl9XTTz+t2bNn6+WXX9b1118vSfrpp580ZcoU5ebm6sUXX3RwhQAAALhWVEloe+bMGb355psKDQ2tisMBAAAAl938+fP10Ucf6dZbb7W1tW7dWqGhofrXv/5FaAsAAIDLptKhbc2aNe0eRGaxWHT69Gl5enpq4cKFVVocAAAAcLmcOHFCkZGRpdojIyN14sQJB1QEAACAa1WlQ9vXX3/dLrQ1Go0KCAhQTEyMatasWaXFAQAAAJdLVFSU3n77bb355pt27W+//bZat27toKoAAABwLap0aDt69OhLUAYAAADgWK+88opuvvlmff/99+rcubMkaf369Tp8+LD+97//Obg6AAAAXEsq/QjcuXPn6vPPPy/V/vnnn2v+/PlVUhQAAABwuXXr1k1//fWXBg0apFOnTunUqVO67bbbtGPHDi1YsMDR5QEAAOAaYrBYLJbK7NCkSRO9//776tGjh137jz/+qHvvvVe7d++u0gKrq8zMTPn5+SkjI0O+vr6OLgcAAOCadDnuyX7//Xe1bdtWJpPpkhz/cuH+FQAAwPEqek9W6ZG2iYmJatCgQan2+vXrKzExsbKHAwAAAK4677zzjsLDw+Xu7q6YmBht2rSp3L47duzQ4MGDFR4eLoPBoJkzZ5bqM23aNHXo0EE+Pj4KDAzUwIEDr5nBEgAAANeiSoe2gYGB2rZtW6n233//XbVr166SogAAAIAr1eLFixUfH69nn31WW7ZsUVRUlGJjY5Wamlpm/5ycHDVs2FAvv/yygoODy+zz448/6oEHHtCGDRu0cuVKFRQU6KabblJ2dvalvBQAAAA4SKUfRDZixAg99NBD8vHxUdeuXSVZbyIffvhh3X777VVeIAAAAHAlmTFjhsaOHau4uDhJ0qxZs/T1119rzpw5mjBhQqn+HTp0UIcOHSSpzO2StGLFCrv1efPmKTAwUJs3b7bdkwMAAODqUenQ9vnnn9fBgwfVs2dPOTtbdzebzRo5cqReeumlKi8QAAAAuJRuu+22824/depUhY+Vn5+vzZs3a+LEibY2o9GoXr16af369RdbYikZGRmSpFq1alXZMQEAAFB9VDq0dXV11eLFi/XCCy9o69at8vDwUKtWrVS/fv1LUR8AAABwSfn5+V1w+8iRIyt0rPT0dJlMJgUFBdm1BwUFadeuXRddY0lms1mPPPKIrr/+erVs2bLcfnl5ecrLy7OtZ2ZmVsn5AQAAcOlVOrQt0rhxYzVu3LgqawEAAAAuu7lz5zq6hEp54IEHtH37dv3000/n7Tdt2jQ999xzl6kqAAAAVKVKP4hs8ODB+ve//12q/ZVXXtHQoUOrpCgAAADgSuTv7y8nJyelpKTYtaekpJT7kLHKGDdunP773//qhx9+UN26dc/bd+LEicrIyLAthw8f/tvnBwAAwOVR6dB2zZo16tevX6n2vn37as2aNVVSFAAAAHAlcnV1Vbt27ZSQkGBrM5vNSkhIUOfOnS/6uBaLRePGjdPSpUu1atUqNWjQ4IL7uLm5ydfX124BAADAlaHS0yNkZWXJ1dW1VLuLiwvzZAEAAOCaFx8fr1GjRql9+/bq2LGjZs6cqezsbMXFxUmSRo4cqdDQUE2bNk2S9eFlO3futL1PSkrS1q1b5e3trUaNGkmyTonwySef6P/+7//k4+Oj5ORkSdb5dj08PBxwlQAAALiUKj3StlWrVlq8eHGp9k8//VTNmzevkqIAAACAK9Xw4cM1ffp0TZ48WdHR0dq6datWrFhhezhZYmKijh07Zut/9OhRtWnTRm3atNGxY8c0ffp0tWnTRvfcc4+tz3vvvaeMjAx1795dderUsS1l3ZcDAADgylfp0PaZZ57R888/r1GjRmn+/PmaP3++Ro4cqRdeeEHPPPPMRRXxzjvvKDw8XO7u7oqJidGmTZvK7VtQUKCpU6cqIiJC7u7uioqK0ooVK+z6TJkyRQaDwW6JjIy069O9e/dSfe67776Lqh8AAAAoady4cTp06JDy8vK0ceNGxcTE2LatXr1a8+bNs62Hh4fLYrGUWlavXm3rU9Z2i8Wi0aNHX76LAgAAwGVT6ekR+vfvr2XLlumll17SF198IQ8PD0VFRWnVqlWqVatWpQtYvHix4uPjNWvWLMXExGjmzJmKjY3V7t27FRgYWKr/pEmTtHDhQn344YeKjIzUt99+q0GDBunnn39WmzZtbP1atGih77//vvhCnUtf6tixYzV16lTbuqenZ6XrBwAAAAAAAICqVOmRtpJ08803a926dcrOztb+/fs1bNgwjR8/XlFRUZU+1owZMzR27FjFxcWpefPmmjVrljw9PTVnzpwy+y9YsEBPPfWU+vXrp4YNG+r+++9Xv3799Nprr9n1c3Z2VnBwsG3x9/cvdSxPT0+7PjycAQAAAAAAAICjXVRoK0lr1qzRqFGjFBISotdee0033nijNmzYUKlj5Ofna/PmzerVq1dxQUajevXqpfXr15e5T15entzd3e3aPDw89NNPP9m17dmzRyEhIWrYsKHuvPNOJSYmljrWokWL5O/vr5YtW2rixInKyckpt9a8vDxlZmbaLQAAAAAAAABQ1So1PUJycrLmzZun2bNnKzMzU8OGDVNeXp6WLVt2UQ8hS09Pl8lksj2UoUhQUJB27dpV5j6xsbGaMWOGunbtqoiICCUkJGjJkiUymUy2PjExMZo3b56aNm2qY8eO6bnnnlOXLl20fft2+fj4SJLuuOMO1a9fXyEhIdq2bZuefPJJ7d69W0uWLCnzvNOmTdNzzz1X6WsEAAAAAAAAgMqocGjbv39/rVmzRjfffLNmzpypPn36yMnJSbNmzbqU9ZXyxhtvaOzYsYqMjJTBYFBERITi4uLsplPo27ev7X3r1q0VExOj+vXr67PPPtOYMWMkSffee6+tT6tWrVSnTh317NlT+/btU0RERKnzTpw4UfHx8bb1zMxMhYWFXYpLBAAAAAAAAHANq/D0CN98843GjBmj5557TjfffLOcnJz+9sn9/f3l5OSklJQUu/aUlBQFBweXuU9AQICWLVum7OxsHTp0SLt27ZK3t7caNmxY7nlq1KihJk2aaO/eveX2KXqib3l93Nzc5Ovra7cAAAAAAAAAQFWrcGj7008/6fTp02rXrp1iYmL09ttvKz09/W+d3NXVVe3atVNCQoKtzWw2KyEhQZ07dz7vvu7u7goNDVVhYaG+/PJLDRgwoNy+WVlZ2rdvn+rUqVNun61bt0rSefsAAAAAAAAAwKVW4dC2U6dO+vDDD3Xs2DH985//1KeffqqQkBCZzWatXLlSp0+fvqgC4uPj9eGHH2r+/Pn6888/df/99ys7O1txcXGSpJEjR2rixIm2/hs3btSSJUu0f/9+rV27Vn369JHZbNYTTzxh6zN+/Hj9+OOPOnjwoH7++WcNGjRITk5OGjFihCRp3759ev7557V582YdPHhQy5cv18iRI9W1a1e1bt36oq4DAAAAAAAAAKpCpR5EJkleXl66++67dffdd2v37t2aPXu2Xn75ZU2YMEG9e/fW8uXLK3W84cOHKy0tTZMnT1ZycrKio6O1YsUK28PJEhMTZTQWZ8u5ubmaNGmS9u/fL29vb/Xr108LFixQjRo1bH2OHDmiESNG6Pjx4woICNANN9ygDRs2KCAgQJJ1hO/333+vmTNnKjs7W2FhYRo8eLAmTZpU2Y8DAAAAAAAAAKqUwWKxWP7uQUwmk7766ivNmTOn0qHtlSozM1N+fn7KyMhgflsAAAAH4Z6s4visAAAAHK+i92QVnh7hfJycnDRw4MBrJrAFAAAAAAAAgEulSkJbAAAAAAAAAEDVILQFAAAAAAAAgGqE0BYAAAAAAAAAqhFCWwAAAAAAAACoRghtAQAAAAAAAKAaIbQFAAAAAAAAgGqE0BYAAAAAAAAAqhFCWwAAAAAAAACoRghtAQAAAAAAAKAaIbQFAAAAAAAAgGqE0BYAAAAAAAAAqhFCWwAAAAAAAACoRghtAQAAAAAAAKAaIbQFAAAAAAAAgGqE0BYAAAAAAAAAqhFCWwAAAAAAAACoRghtAQAAAAAAAKAaIbQFAAAAAAAAgGqE0BYAAAAAAAAAqhFCWwAAAAAAAACoRghtAQAAAAAAAKAaIbQFAAAAAAAAgGqE0BYAAAAAAAAAqhFCWwAAAAAAAACoRghtAQAAAAAAAKAaIbQFAAAAAAAAgGqE0BYAAAAAAAAAqhFCWwAAAAAAAACoRghtAQAAAAAAAKAaIbQFAAAAAAAAgGqE0BYAAAAAAAAAqhFCWwAAAAAAAACoRghtAQAAAAAAAKAaIbQFAAAAAAAAgGqE0BYAAAAAAAAAqhFCWwAAAAAAAACoRghtAQAAAAAAAKAaIbQFAAAAAAAAgGqE0BYAAAAAAAAAqpFqEdq+8847Cg8Pl7u7u2JiYrRp06Zy+xYUFGjq1KmKiIiQu7u7oqKitGLFCrs+U6ZMkcFgsFsiIyPt+uTm5uqBBx5Q7dq15e3trcGDByslJeWSXB8AAAAAAAAAVJTDQ9vFixcrPj5ezz77rLZs2aKoqCjFxsYqNTW1zP6TJk3S+++/r7feeks7d+7Ufffdp0GDBum3336z69eiRQsdO3bMtvz000922x999FF99dVX+vzzz/Xjjz/q6NGjuu222y7ZdQIAAAAAAABARRgsFovFkQXExMSoQ4cOevvttyVJZrNZYWFhevDBBzVhwoRS/UNCQvT000/rgQcesLUNHjxYHh4eWrhwoSTrSNtly5Zp69atZZ4zIyNDAQEB+uSTTzRkyBBJ0q5du9SsWTOtX79enTp1umDdmZmZ8vPzU0ZGhnx9fSt72QAAAKgC3JNVHJ8VAACA41X0nsyhI23z8/O1efNm9erVy9ZmNBrVq1cvrV+/vsx98vLy5O7ubtfm4eFRaiTtnj17FBISooYNG+rOO+9UYmKibdvmzZtVUFBgd97IyEjVq1ev3PMCAAAAAAAAwOXg0NA2PT1dJpNJQUFBdu1BQUFKTk4uc5/Y2FjNmDFDe/bskdls1sqVK7VkyRIdO3bM1icmJkbz5s3TihUr9N577+nAgQPq0qWLTp8+LUlKTk6Wq6uratSoUeHz5uXlKTMz024BAAAAAAAAgKrm8DltK+uNN95Q48aNFRkZKVdXV40bN05xcXEyGosvpW/fvho6dKhat26t2NhY/e9//9OpU6f02WefXfR5p02bJj8/P9sSFhZWFZcDAAAAAAAAAHYcGtr6+/vLyclJKSkpdu0pKSkKDg4uc5+AgAAtW7ZM2dnZOnTokHbt2iVvb281bNiw3PPUqFFDTZo00d69eyVJwcHBys/P16lTpyp83okTJyojI8O2HD58uBJXCgAAAAAAAAAV49DQ1tXVVe3atVNCQoKtzWw2KyEhQZ07dz7vvu7u7goNDVVhYaG+/PJLDRgwoNy+WVlZ2rdvn+rUqSNJateunVxcXOzOu3v3biUmJpZ7Xjc3N/n6+totAAAAAAAAAFDVnB1dQHx8vEaNGqX27durY8eOmjlzprKzsxUXFydJGjlypEJDQzVt2jRJ0saNG5WUlKTo6GglJSVpypQpMpvNeuKJJ2zHHD9+vPr376/69evr6NGjevbZZ+Xk5KQRI0ZIkvz8/DRmzBjFx8erVq1a8vX11YMPPqjOnTurU6dOl/9DAAAAAAAAAICzHB7aDh8+XGlpaZo8ebKSk5MVHR2tFStW2B5OlpiYaDdfbW5uriZNmqT9+/fL29tb/fr104IFC+weKnbkyBGNGDFCx48fV0BAgG644QZt2LBBAQEBtj6vv/66jEajBg8erLy8PMXGxurdd9+9bNcNAAAAAAAAAGUxWCwWi6OLuBJlZmbKz89PGRkZTJUAAADgINyTVRyfFQAAgONV9J7MoXPaAgAAALg6MTYEAADg4hHaAgAAAKhShSazxn3ymz5au9/RpQAAAFyRHD6nLQAAAICry3c7U/T1H8f09R/HlFtg0rgbGzu6JAAAgCsKI20BAAAAVKl+rerosd5NJEnTv/tLr323m+kSAAAAKoHQFgAAAECVe7BnY03sGylJemvVXr38zS6CWwAAgAoitAUAAABwSfyzW4Sm9G8uSXp/zX4999VOmc0EtwAAABdCaAsAAADgkhl9fQO9NKiVDAZp3s8H9fSyPwhuAQAALoDQFgAAAKhi77zzjsLDw+Xu7q6YmBht2rSp3L47duzQ4MGDFR4eLoPBoJkzZ/7tY1Y3d8TU06tDomQ0SP/ZdFjjv/hdhSazo8sCAACotghtAQAAgCq0ePFixcfH69lnn9WWLVsUFRWl2NhYpaamltk/JydHDRs21Msvv6zg4OAqOWZ1NKRdXc28vY2cjAYt2ZKkRxZvVQHBLQAAQJkIbQEAAIAqNGPGDI0dO1ZxcXFq3ry5Zs2aJU9PT82ZM6fM/h06dNCrr76q22+/XW5ublVyzOrq1qgQvXNHW7k4GfTfbcf0wKItyis0ObosAACAaofQFgAAAKgi+fn52rx5s3r16mVrMxqN6tWrl9avX19tjulIfVoG6/1/tJOrs1Hf7UzRfQs2K7eA4BYAAKAkQlsAAACgiqSnp8tkMikoKMiuPSgoSMnJyZf1mHl5ecrMzLRbqosbI4M0e1R7ubsY9cPuNN0z/1fl5Bc6uiwAAIBqg9AWAAAAuApNmzZNfn5+tiUsLMzRJdnp0jhA8+I6ysvVST/tTdfoub8oK4/gFgAAQCK0BQAAAKqMv7+/nJyclJKSYteekpJS7kPGLtUxJ06cqIyMDNty+PDhizr/pdSpYW19PCZGPm7O2nTghP4xe6MyzhQ4uiwAAACHI7QFAAAAqoirq6vatWunhIQEW5vZbFZCQoI6d+58WY/p5uYmX19fu6U6ale/phaNjZGfh4t+SzylOz/aoJPZ+Y4uCwAAwKEIbQEAAIAqFB8frw8//FDz58/Xn3/+qfvvv1/Z2dmKi4uTJI0cOVITJ0609c/Pz9fWrVu1detW5efnKykpSVu3btXevXsrfMwrXeu6NfSfsZ1U28tV25MyNeLDDUrPynN0WQAAAA7j7OgCAAAAgKvJ8OHDlZaWpsmTJys5OVnR0dFasWKF7UFiiYmJMhqLx04cPXpUbdq0sa1Pnz5d06dPV7du3bR69eoKHfNq0DzEV5/e20l3fLRRu5JPa/j76/XJ2E4K8nV3dGkAAACXncFisVgcXcSVKDMzU35+fsrIyKi2XzUDAAC42nFPVnFXymd1ID1bd3y4QccychVe21OfjO2kkBoeji4LAACgSlT0noyRtgAAALgws1nKSZdOHZYyDksZR84uh6XA5tKNTzu6QlwlGvh76bN/dtaIDzfo4PEcDXt/vf4ztpPCank6ujQAAIDLhtAWAAAAUsEZKSPp/9u77/CoyvSN49+ZSe8FUgm9947giigoxbIgCrKsCrq6KCCI6wIKiJVVVsXFzs+yyiKKK+qKUoxdOkiTjkgJhBAgvc/M748TZjIkYBqZSbg/1zVX5rznzJlnDmje3Lx5jjOQ9QuFtjca+2xWmNMACnPKfm3O6ZqrUy4JCREBfPjX3vypRHD7n7/0omn9IHeXJiIiIlIjFNqKiIiI1HV2O2SnQmE2hDd2ji0ZA2mHjNWzOamur2nYxxnami3gH24Eu8GxENrAeIQlQGgC1GtRk59GLhFxYf5GcPt/69ifksXIN9ay6C+9aBEd7O7SRERERC46hbYiIiIidcmWRZB2uHQbA2u+EcTe+aVxnMkERzdARpLztd6BxUFsA4jt5Hreu7+GgEiweNfcZ5FLXlSIH4vvuYw/n7052RtrWXhXL9rGeW5PXhEREZHqoNBWRERExN3sdqP1QEGOsRrWboeIJs79u/5XvFK2+JjcM85ANiQObv2P89jEJyDzWBlvYjKC25IGPgUWX+fKWf9wI8wtS3BMlT+mSGXUC/Ll/bsv4/a31rM9KZ1RC9by3l096dggzN2liYiIiFw0Cm1FREREyquoAAqynOGp2QKRzZz7t34Aeemux5x9HtYI+s90HvvGVUbwejaoLSmmI4z7wbm9cgac+a3sms5ta9BumPGeoQnOMDa0AYTEg5dP6WNFaoHwQB8W/qUXY99ez+bDaYxesI537uxBt0YR7i5NRERE5KJQaCsiIiICkJkMh9eAlz+0GuQcn9cRctOMYNVW5PqaxlfAmM+d28unGqtgyxLb2TW0zUmF7JOlj/MOAC8/17EmV0JUW2OfT4BxkzBHKJvgeuygp3/vk4rUSqH+3rx7Vy/ufGcD6w+e5rY31/PWmB5c1jTS3aWJiIiIVDuFtiIiInLpsdshdZ8R0h5eC4dXO1eyNuzjGtrmpUF+uuvrzd5GeOod4DrecpBxsy6fQGfA6hNkPA+Jcz125H/AZDaOPXu8dwCYzaXrvfFfVf3EInVCkK8X/x7bk7vf3ciP+1MZ8/Z6FtzenSta1Hd3aSIiIiLVSqGtiIiI1H12u2uv1pd7Qurecw4yQUx7aNDNdXjsl2DxKQ5hiwPW892Ma9hr5a8ptmP5jxURB38fC/93R3fuXbiJb/ac5K5/b+TV0V3p3yba3aWJiIiIVBuFtiIiIlL35GfC0Q1waI2xmjYzGSZudO6PbA5phyG+OzS8DBr1hgY9jLYD54puV3N1i0i5+HlbeP227kx8fzMrfjnBuIWbmD+qC4Pax7q7NBEREZFqodBWRERE6oZfv4M9XxohbfJ2sFtd96cdhrCGxvPr54F/eOkbc4lIreHjZealP3XlgQ+28Pm244xf9DMvjLRzY6e433+xiIiIiIdTaCsiIiK1i90Op/Yb4Wz7m42+sQB7voB1JdoThDWEhr2dj5AGzn3B+jVqkbrA22LmxVu74ONl5uPNSUxe/DMFRTZu7tbg918sIiIi4sEU2oqIiIhnsxZC8jbjhmGHVhtfc1KNfRFNofEfjOctB4HNarQ7aNgbQuPdV7OI1BiL2cQ/b+6Er5eZ99cf4W9LtlJQZONPvRq6uzQRERGRSlNoKyIiIp7rl0/gk/ugMNt13OIL8d3AbnOONbvKeIjIJcdsNvH0sA74ell4Z/VvPLx0O/lFVsZe3sTdpYmIiIhUikJbERERca+sFGP17OG1cHg19LoXOo009oU1NAJbv7DiFbSXQcM+ENcZvHzdWbWIeBiTycSjN7TF18vM69//ymP/20l+kY1xVzZzd2kiIiIiFabQVkRERC4umxWsBeDtb2wX5cPW9+HoBji0Bk4fcD3+tx+coW1MR7h3DdRvDWZzzdYtIrWOyWRi2uDW+HqZ+dfX+/nHl7vJL7Rxf//mmEwmd5cnIiIiUm4KbUVERKrCWgQ5p8AnELwD6nawaLdDYQ7knIbc0+ATBJHFK9jys+Cbp5z7Sn7NS4dOo2DYq8XnscH/JpU4sQmi2hqraBv1MfrRnmXxgui2NfYRRaT2M5lMTLm2FT5eZv65ci8vfLWX/CIrDw1speBWREREag2FtiIilyJrEez+HJI2Gn1Bm10NfqHursqz2e2Qsgv2LIOEXtCkrzF+5jd4qZvzOO8A4+ETYISanUdDnwnGvtwzsGoWeAcW7w90fV6vJcR0MI61WSEjyTiHd4DRCqA6wwZroVFP7hnXgDW8kfOz5Z6BxX8uPq54vzXfeY5Oo2DYa8ZzswXWvnL+98s9XeIa+UPLwRDV2ghoE3qCf3j1fTYREWDC1S3w87bw5LJdvPLtAfKLbMy4ro2CWxEREakVFNqKiFxKbFb4aR5seAsyjjrHzV5GeNbhZug2xl3VeR5rERxZB3u+gN3L4MxBY7zjSGewWZgDmAC7c7swB3KKz5GT6jxfzmnY/O7536/H3XDdP53Hzuvg3GcyOwNcnwBodxP0n2nsK8qHz+43xr2Lw2JvfyjKM84T383ZbiArBeZ3g/yMsmvoNMr52bz84dCPpY8xe0NAhPFeZ3n7wxUPgm+Isc8/4pyv54Syf1p8/usgIlJN/nJFU3y8zMz69Bfe/PEg+UVWHr+xPWazZwW3drudjLwiTmcXcDo7n9SsAvIKrfRtUZ/wQB93lyciIiJuoNBWRORSYrbA7i+MwDagHrS41ugremqf0Uc0JM4Z2trtcPB741fWL7UbPlkLjRB073LXFaIWX2h6JTQf4ByL7QiPnoHCXCOsLciCghzn85AGzmP9wuCqGcaNtQpyir9mO4+v19J5bGGO8X5nV7babUbQejZsLVlXfhZsu0AI2vFWZ2jrF+oa2PqFGYHq2YA1up1zn7cf3Pw2+IcZ+84e5xNU9qrf/rPOX4OIiJvc3rsxvl5mpn28nYVrD1NQZGPOTR2xXMTg1m63k5FbxKnsfE5lF3Aqq8AlkDWeF3CqeOx0dgGFVnup8wT4WPjzZY34yx+aEBXid9HqFREREc9jstvtpWcH8rsyMjIIDQ0lPT2dkJAQd5cjIlKatRB2/Q82/9sI3gIijPH9X0HWSWg3zAjlAE4dgH0rIbo9NLnCGDu+DV6/wgjomvaDloOMkDc42i0f56LKOgnJW13D2FcvhxM7jFCz5UBofR006w++QTVbm7WoRMhbIhQOrAf1WhjH5GfCxrdKB8He/safe1wXaHOD85yp+40A1j/MCPJFajHNycrvUr9WS38+yoMfbsVmh6Gd4/jnLZ3wspSvD7nNZicjr7BE4Ooaxp4NX09lGc/PZBdQZKv4j1lBvl5EBPoQEehDVn4R+1OyAPCxmLmlewPGXdmMhIiA3zmLiIiIeLLyzskU2lbSpT7pFREPlnUSNr1jhHiZx4yxa56Ay++v2Hn2LIf/3Q9ZJ1zHYzsbAW7nURDeuBoKdpPU/UZ/2t1fGC0QvHzh778avWUB9q0yxhr2Bou3e2sVkfPSnKz8dK1g2bbjTFr8M0U2O0M6xDDlmpaO4DU1u4DTWc5A9nRxKHsqu4AzOQVYKxHCBvt6ERFkhLCRgT5EBvoSEWQ8jwj0ITLI1/E8ItAHP2/nP6TZ7Xa+3XuSl7/ez8ZDZwCwmE3c2CmOe/s1o2V0cLVdFxEREak5Cm0vMk16RcTjJG2G9W/Ajv+CtcAYC6wP3e+EbmMhJLbi57TZ4PgWYxXu3hVwbLNz3+2fGitwwQiKvXzBz8P/f3hiJ2z/0AhqU/e47ovtBMPfdK5eFZFaQXOy8tO1Mqz8JZkJi36mwGqr8GuDfb2IDDobsvpSL8gZuEYGFYeyxc8jAn3w9aqe32ZY9+spXv72AN/vPekYG9gumvv6NadTQli1vIeIiIjUjFoV2r788svMnTuX5ORkOnXqxPz58+nZs2eZxxYWFjJnzhz+/e9/k5SURKtWrXjmmWcYNGhQmcf/4x//YPr06UyaNIl58+Y5xvv168d3333ncuxf//pXXnvttXLVrEmviHiU7FR4rhXYioztuK7Qaxy0G1q9/WgzT8D+VXDgGxj6KngV3xxl+XRYvwAa9TFW4bYcCJHNqu99K6swD7AbbQIAVr8EKx8xnpu9oPEVRtuDVoMhtMF5TyMinktzsvLTtXL6dk8K0z/eTlZ+EfWCfJ3BqyNw9S2xGtYIY8MDvasthK2s7UfTeeXb/Sz/JZmzP8Vd0aIe9/VrzmVNIzCV1W9cREREPEqtCW0/+OADbr/9dl577TV69erFvHnzWLJkCXv27CEqKqrU8VOnTmXhwoUsWLCA1q1bs2LFCqZMmcLq1avp0qWLy7EbNmxgxIgRhISEcNVVV5UKbVu2bMnjjz/uGAsICCj3BFaTXhFxq6wU2J9otCg4a+m9Rmjb66/QoHvN1vPeTXAg0XUssjm0GAgtr4XGfcFcvr6BVZZz2lgZvHuZcY2GPAtd/mzsO30QEh83gtoW1xg35RKRWk1zsvLTtao79qdk8sq3B/h0yzFH24auDcMYf1Vzrm4dpfBWRETEg9Wa0LZXr1706NGDl156CQCbzUZCQgITJ05k2rRppY6Pi4vjkUceYfz48Y6x4cOH4+/vz8KFCx1jWVlZdO3alVdeeYUnn3ySzp07lwptzx2rCE16RcQtkjbButfhl6VGC4Tx66F+K2Of3Q7u/CEtdT/sW2G0UTj0k3PVb3AcTNnprK0g29k3trqc+c1oebDnCzi0GuxW577Oo2HoK9X7fiLiMTQnKz9dq7rnyOkc3vj+Vz7YeISCIqPdQ+uYYMZf1ZwhHWKxmBXeioiIeJryzsm8arCmUgoKCti0aRPTp093jJnNZgYMGMCaNWvKfE1+fj5+fn4uY/7+/vz4448uY+PHj+e6665jwIABPPnkk2We6z//+Q8LFy4kJiaGG264gZkzZxIQoLuxioiHKSqAnZ8YYW3SRud4gx6Qn+XcdveqmnrNjUfv8ZCXAb9+A3tXQnC0szabFeZ1hLCGxW0UroWYTlVbhZtzGl7sDJT4N8iodtB6iLGiNrZzFT6UiIiI50qICOCJoe2Z2L85b/54kIVrDrE7OZOJ7//Mcyv3cG+/Zgzr0gAfrxr6bRcRERGpNm4NbVNTU7FarURHR7uMR0dHs3v37jJfM3DgQJ5//nn69u1Ls2bNSExM5OOPP8Zqda6qWrx4MZs3b2bDhg3nfe8//elPNGrUiLi4OLZt28bUqVPZs2cPH3/8cZnH5+fnk5+f79jOyMioyEcVEamc5O2wcDhknTC2LT7Qfjj0vAfiu7q3tgvxC4G2fzQeJZ3YATmpxuPYZvj2aQiKhhbXGn1wm/YD3/PcDbuoAH77wVhNm5cOw//PGA+IMHrpYjKC2lZDIKLJxfx0IiIiHiUq2I/pg9tw35XNeWf1b7y9+iC/ncph6n+3M++rfdx9RVNu7ZlAgI9bf/wTERGRCqh137VffPFF7r77blq3bo3JZKJZs2aMHTuWt956C4AjR44wadIkVq1aVWpFbkn33HOP43mHDh2IjY2lf//+HDhwgGbNSt88Z86cOTz22GPV/4FEREqy242Vo4GRxnZkC6PNQHAsdL8Luo2BoPpuLbFKYjvBg3uMnrN7Vxg3NMs6AT+/Zzyu+Bv0n2kca7dDfgbsW2UEtftWGdsAJjMMftYIbAFu/wwste5bmoiISLUKDfBm0oAW/OWKJry//jBvfP8rx9PzePzznbz0zX7u+kMT/nxZI0L9vd1dqoiIiPwOt/a0LSgoICAggI8++oihQ4c6xu+44w7S0tL49NNPz/vavLw8Tp06RVxcHNOmTePzzz/nl19+4ZNPPmHYsGFYLM47u1qtVkwmE2azmfz8fJd9Z2VnZxMUFMTy5csZOHBgqf1lrbRNSEhQTzARqR5F+bDjY1j/utFaYMJGZ8uAE79AvZZgqYM/YBXlG/1v966AvcvhpgWQ0NPYt/sLWDzK9fjA+tBqMLS6DppdBV6+NV+ziHgU9WktP12rS09+kZX/bkrite8OcPh0DgDBvl7c1rsRd/6hCfWC9H1URESkptWKnrY+Pj5069aNxMRER2hrs9lITExkwoQJF3ytn58f8fHxFBYW8t///pcRI0YA0L9/f7Zv3+5y7NixY2ndujVTp04tM7AF2LJlCwCxsbFl7vf19cXXV5MaEalmGcdg41uw8W2jZQCAxRdO7oLodsb22a91kZcvNLvaeAz6h+u+fSuMr5EtivvTXg/x3avW/1ZEROQS4utl4U+9GjKiewM+33acV77dz94TWbzy7QHe/PEgo3o25O6+TYkP83d3qSIiInIOt/8u6ZQpU7jjjjvo3r07PXv2ZN68eWRnZzN27FgAbr/9duLj45kzZw4A69atIykpic6dO5OUlMTs2bOx2Wz8/e9/ByA4OJj27du7vEdgYCCRkZGO8QMHDrBo0SKGDBlCZGQk27Zt44EHHqBv37507NixBj+9iFyyTuyE7+fCrs+M9gcAwXHQo7gFQmA9t5bnFufeSO2ax412CWEJ7qlHRESkjvCymBnaJZ4bO8Xx1a4TvPzNfrYeTeed1b+xcO0hbuoaz7grm9G0fpC7SxUREZFibg9tR44cycmTJ5k1axbJycl07tyZ5cuXO25OdvjwYcwlVlXl5eUxY8YMfv31V4KCghgyZAjvvfceYWFh5X5PHx8fvvrqK0dAnJCQwPDhw5kxY0Z1fzwRuViSt8PRjdB9rHPs6yfhyDrwDQG/0OKvIc6vnUY5WwxknQTsxj7v8/e/vmhyT8MvxTc+bNgHet1jrCStiy0QKssv1HiIiIhItTCbTVzbLoZr2kaz+sApXv5mP6sPnOLDjUdZsukoQzrEcl+/ZrSL0/dfERERd3NrT9vaTD3BRNwgMxm2L4Gti+HEDuNmVFN2Q7Dxjzz85xbjBlfnMzPVGYp+dBfs+Mh4bvEpHfDeugh8g439e1dA6r4S+0OLnxd/Dah34V/ZT0+CjW+Clx9cafxWAHY7fPMUtLkRYrXCX0SksjQnKz9dKynL5sNneOWb/Xy1K8UxdlWr+ky4ujndGkW4sTIREZG6qVb0tBUR+V2FubB7mRHUHkgEu80Yt/gYN6QqyAKKQ9u+D0GHEZCfbtzMKz/D+bUw13UVq60QMAF2sBYY/WTP9pQFI2A9a/sS43E+D/0KgZHG82//AXu+dAa81gLYnwh2q7F92X3gG2S0Arhaq/tFRETEvbo2DOf/7ujBruMZvPrtAT7fdoxv9pzkmz0n6dUkgvFXNeeKFvUwndvGSERERC4qhbYi4tm2fQD/m+TcbtATOt0K7YZBwDmrPxJ6Go/yGPEu2GxQkFk64M3PdA14E3oZK2NLHpOXAXnpxuv9SvzL2Kn9cHxL6fdrfAX0vMc1DBYRERHxEG1iQ/jXqC5MuaYlr39/gI82HWXdwdOsO7ieDvGhjL+qGde2jcFsVngrIiJSE9QeoZL062UiF8HpX2HrB1CvBXS42RjLPQP/dw20G2r0pI1s5tYSS7FZwWxxbqfsgjOHioPddCjKh6b9IKb9eU8hIiKVpzlZ+elaSUUcT89lwfcHWbT+EHmFxm86NY8K4r5+zbihUxzelgu0hhIREZHzKu+cTKFtJWnSK1JNctPgl6VG+4Mja42x+O5wd6LzGLvdaCcgIiJyDs3Jyk/XSirjVFY+76z+jXdW/0ZmXhEADcL9uadvU67vGEdEoI+bKxQREaldFNpeZJr0ilTRvq9gy0LY/QVY840xk9lYldrpT8ZKWwW1IiLyOzQnKz9dK6mKzLxC3lt7iDd/OMip7AIALGYTvZpEMLh9DAPbxRAVojZQIiIiv0eh7UWmSa9IFS26FfZ+aTyv3wY6j4IOt0BInHvrEhGRWkVzsvLTtZLqkFtg5cONR/hgwxF2Hs9wjJtM0K1hOIOKA9yEiAA3VikiIuK5FNpeZJr0ipRTZjJsX2L0qh35HkQ0Mcb3rYL9icZNxWI7aVWtiIhUiuZk5adrJdXt0Klslu9IZvkvyfx8OM1lX4f4UAa1j2FQ+xia1Q9yT4EiIiIeSKHtRaZJr8gFFObC7mWw9X048DXYjZtX0O9h6DfVvbWJiEidojlZ+elaycV0PD2XFTuS+XJHMht+O42txE+ZLaODGNQ+lsHtY2gdE4xJ/1gvIiKXMIW2F5kmvSJlyEqBxMdh56eQ7/x1ORJ6GStq2w0D/3D31SciInWO5mTlp2slNSU1K59VO0/w5Y5kVu9PpahEgts4MoCB7WMY3D6WTg1CFeCKiMglR6HtRaZJr0ixgmzwCXQ+/2dLKMiCsIbQ8VYjrI1s5t4aRUSkztKcrPx0rcQd0nMKSdxtBLjf7z1JfpHNsS8u1I+B7WMY1C6G7o0jsJgV4IqISN2n0PYi06RXLmm5afDLUqP9QV4G3LfG2ZP254UQ3gQa9gaz2a1liohI3ac5WfnpWom7ZecX8c2eFJbvSOab3SlkF1gd++oF+XJtu2gGt4/hsqaReFs0jxQRkbpJoe1FpkmvXHKshUZ/2i2LYM+XYM03xk1mmLBRq2lFRMQtNCcrP10r8SR5hVZ+2JfKlzuO89XOE2TkFTn2hfp7M6CNEeD+oUU9/LwtbqxURESkepV3TuZVgzWJyLmsRXByN2QkuY7HdYGgKON5ehKc2HH+c8R0hJBY43lmMhzfev5jo9pCWILxPOskHNt8/mPrt4LwxsbzrR/Aykcg+6TruTqNgo4jIDjm/OcRERERETmHn7eFa9pGc03baAqtNtYcOMWXO5JZtTOZ1KwC/rv5KP/dfJRAHwtXtY5icPtY+rWqT6CvfoQVEZFLg77jibjDni/hxxfg+DYoyi29/9b3ofUQ4/lvP8DSv57/XMPfhA43G8+PrIcPbzv/sTfOh663G8+Pb4VFI85/7KBn4LJxxvOASCOwDawPHW4xwtqYDs6WCCIiIlJnWK1WCgsL3V2GVJG3tzcWS+1YoeptMdO3ZX36tqzPk0Pbs/G303y5I5kVvyRzPD2Pz7cd5/Ntx/H1MnNly/oM7hDD1a2jCfX3dnfpIiIiF41CW5GLwW6H9KPGStakzXDsZ7jy79D4D8b+onw4ss547hNstBYwlejb5RfqfO4fAXFdz/9e/uElnodd+NiAyBLvEXLhY4PqO583uwr+tMT4atHkWEREpC6y2+0kJyeTlpbm7lKkmoSFhRETE4OpFv1Du8VsolfTSHo1jWTW9W3ZejSN5b8ks3xHModO5bBy5wlW7jyBt8VEn2b1GNw+hmvaRhMZ5Ovu0kVERKqVetpWknqCSSlpR4ybcB0rDmlLthIAuHom9P2b8TzrJBxINELTyOa6YZeIiEglaU5Wfr93rY4fP05aWhpRUVEEBATUqqBPXNntdnJyckhJSSEsLIzY2Fh3l1RldrudXcczWb7jOF/uSGZfSpZjn9kEPZtEMLh9LAPbxRAT6ufGSkVERC5MNyK7yPQDwiUsNw2ObzFW0MZ2gub9jfHjW+H1vs7jzF5G39e4LhDfFZr0hYim7qhYRESkztKcrPwudK2sVit79+4lKiqKyMjI85xBaptTp06RkpJCy5Yta02rhPLan5LFil+S+XLHcXYkZbjs69owjL4t65MQHkB8uD/xYf7EhPrhbdFCCRERcT/diEykOlgLIWlTcYuD4lYHpw8493f+szO0jWoLnUcbQW5cV4hpD97+7qlbREREpALO9rANCAhwcyVSnc7+eRYWFta50LZ5VBDNo5oz/qrmHDmdUxzgJrPp0Bk2H05j8+E0l+NNJogO9iM+3J+4MCPIjQ9z3Q72UxswERHxHAptRc4qKoATO8BWBAk9jbGCbHhrYOljwxoZq2fP9qgFo9fr0FdqplYRERGRi0AtEeqWS+XPMyEigL9c0ZS/XNGUExl5rPwlme1J6RxLyyMpLZektFwKimwkZ+SRnJHHpkNnyjxPsJ9XcZjr7xLmxoX50yDcn/pBvpjNdeua2mx2MvOKyMgrJD23kIzcQjLzi4gP86dldDA+XlqdLCLiLgpt5dJks0LqXtcVtCd2gLUAGl0OY78wjvMPg0Z/cN60K66L8QjUrw2KiIiI1EWNGzdm8uTJTJ482d2lSCVEh/hxW+/GLmN2u53UrAKOFQe4x9JyOXom12X7TE4hmXlF7E7OZHdyZpnn9raYiA31Jy7Mj/iwAOLD/Ixgt0TA6+ddsyua7XY7eYU2I3AtEbxm5BWSnlNIRl6R61huIRm5RY7js/KLOF/DRB+LmTaxwbSPD6Vjg1A6xIfRIjpIbSZERGqIQlup++x2yE6FoPrOsfld4cxvpY/1C4OACNexscsuZnUiIiIiUgm/t4r00UcfZfbs2RU+74YNGwgMDKxkVYZ+/frRuXNn5s2bV6XzSPUwmUzUD/alfrAvnRLCyjwmO7+I4+lGmHs2yE06k+tYrZuckUeh1c7h0zkcPp0DnC7zPJGBPkaIG+p/TisGYzs8wLvU391Cq604VC0iI7fwnAC26Jww1ghcM0scV2it+m1q/L0thPh7Eervjb+PF7+lZpOeW8jWo+lsPZrOf9YZx/l6mWkbF0LH+NDiMDeM5lFBWOrYCmQREU+g0FbqnoxjzhW0x342Hl7+8OAu5zH1WkLWSYjr7LxRWFwXCG9iNLwSEREREY92/Phxx/MPPviAWbNmsWfPHsdYUFCQ47ndbsdqteLl9fs//tSvX/93j5G6J9DXi+ZRwTSPCi5zf5HVxonMfEeYm5TmGu4mpeWSU2DlVHYBp7IL2HY0vczz+HtbiAvzw8tsdoSxOQXWKtdvMZsI9fcmxM+LEH/v4ufehPh7O8LYs9tnjwv1N7aD/bzw9XJdIWy32zlyOpdtSWlsP5rOtqPp7EhKJzO/iJ8Pp/FziZ7B/t4W2sWF0KGBc0Vu03qBda6VhIhITVNoK3XHqkdh62LISi69z5INOaedq2iHvQ5+oWCuWzdkEBEREblUxMTEOJ6HhoZiMpkcY99++y1XXXUVX3zxBTNmzGD79u2sXLmShIQEpkyZwtq1a8nOzqZNmzbMmTOHAQMGOM51bnsEk8nEggULWLZsGStWrCA+Pp7nnnuOG2+8sdK1//e//2XWrFns37+f2NhYJk6cyIMPPujY/8orr/DCCy9w5MgRQkNDueKKK/joo48A+Oijj3jsscfYv38/AQEBdOnShU8//bTKq4PlwrwsZseK2R6NS++32+2k5xYaYW6J1gvGI4+kM7mkZuWTW2jlwMnsMt8jyNfLEbq6Bq/O0DW05D5/L8dYgI+lWnsYm0wmGkYG0DAygOs7xgFG/9tDp3PYdrQ4yE1K55ekdLILrGw8dIaNJXoFB/pYaBcfSsf40OIwN4xGEQEKckVEKkChrdQe+ZlwbIuzB+3xrTDuR/AtXkVRlGcEtiYLRLVx9p+N7wpR7cDLx3muc1sgiIiIiIgLu91ObmHVVwBWlL939YVP06ZN45///CdNmzYlPDycI0eOMGTIEJ566il8fX159913ueGGG9izZw8NGzY873kee+wxnn32WebOncv8+fMZPXo0hw4dIiKi4nPKTZs2MWLECGbPns3IkSNZvXo19913H5GRkYwZM4aNGzdy//33895779GnTx9Onz7NDz/8ABiri0eNGsWzzz7LsGHDyMzM5IcffsB+vqakUmNMJhNhAT6EBfjQLi60zGPyCq0cT8/jWFoudjsuYWywnxdeHt4r1mw20aReIE3qBfLHzvEAWG12DqZmse1oOtuT0tl+NJ0dx4wgd/3B06w/6GwjEeznRfu44tW4DULpGB9GQoT/JXPDPBGRilJoK57twNew9QMjqE3dB5wzIU3eBo36GM+73wntboKYDuATUOOlioiIiNQluYVW2s5aUePvu/PxgQT4VM+PKY8//jjXXHONYzsiIoJOnTo5tp944gmWLl3KZ599xoQJE857njFjxjBq1CgAnn76af71r3+xfv16Bg0aVOGann/+efr378/MmTMBaNmyJTt37mTu3LmMGTOGw4cPExgYyPXXX09wcDCNGjWiS5cugBHaFhUVcdNNN9GoUSMAOnToUOEaxD38vC2O0LOusJhNjrYSN3VtABitJA6czDZW5CYZYe7OYxlk5hWx5tdTrPn1lOP1of7exS0Vih8NQokPU5ArIgIKbcUTWAshZZdzBe3lkyCymbHv5F7Ytth5bGiC6wraWOekm/qtarZuEREREfFo3bt3d9nOyspi9uzZLFu2zBGA5ubmcvjw4Quep2PHjo7ngYGBhISEkJKSUqmadu3axR//+EeXscsvv5x58+ZhtVq55ppraNSoEU2bNmXQoEEMGjSIYcOGERAQQKdOnejfvz8dOnRg4MCBXHvttdx8882Eh4dXqhaRi8HLYqZVTDCtYoK5pXsCYNxsbd+JLLYnpTlW5e4+nkl6biE/7Evlh32pjtdHBPrQIT7UGeY2CCUmxE9BrohcchTaSs3LSjFW0J69WVjydqO1wVkJvZyhbdN+0G+6M6gNinJLySIiIiKXGn9vCzsfH+iW960u5/Z5/dvf/saqVav45z//SfPmzfH39+fmm2+moKDggufx9vZ22TaZTNhstmqrs6Tg4GA2b97Mt99+y8qVK5k1axazZ89mw4YNhIWFsWrVKlavXs3KlSuZP38+jzzyCOvWraNJkyYXpR6R6uBtMdM2LoS2cSGM7GGMFRTZ2HsiszjENcLcPcmZnM4u4Lu9J/lu70nH6+sF+TpC3DaxIfh4mSiy2imyFT+sNopsdqwlnjv2n922OcetZ7fPPcZxThtWm51Cq634WNfzWW12Cm02rFY7hcXve/ZYMFYQh/p7ExbgTZi/D2EB3oSWeB7mf852gHe1toYRkbpBoa1cPHY7pB02gtl6rSC6rTF+7GdY+lfXY31DIK4zxHWFmPbO8ajWEDWtxkoWEREREYPJZKq2NgWe4qeffmLMmDEMGzYMMFbe/vbbbzVaQ5s2bfjpp59K1dWyZUssFiOw9vLyYsCAAQwYMIBHH32UsLAwvv76a2666SZMJhOXX345l19+ObNmzaJRo0YsXbqUKVOm1OjnEKkqHy8z7eNDaR8fChg9pfMKrexOzmR7cWuFbUfT2ZeSRWpWPl/vTuHr3ZVb4V7TcgqM/sUV4WMxFwe5RogbWiLgNUJfnxL7jMA3NMCbYF8v3eBNpI6qW7Mwca/ME84WB8c2G+FsTnG/oiv+5gxt47pCwmVGe4O4LsZ2RFMwe3bjfRERERGp3Vq0aMHHH3/MDTfcgMlkYubMmRdtxezJkyfZsmWLy1hsbCwPPvggPXr04IknnmDkyJGsWbOGl156iVdeeQWAzz//nF9//ZW+ffsSHh7OF198gc1mo1WrVqxbt47ExESuvfZaoqKiWLduHSdPnqRNmzYX5TOI1DQ/bwudE8LonBDmGMstsLLzeAbbj6axLSmd/SlZgNFP18tswstsxstiPLeYzXhbTFjMJrwt5uKvpuJjzcYxFhPe5pL7nK/xshQfU3Kf2fV8xnuVfM8S72U2Y7PbycgrJC2nkLTcQtJzChzP03IKSc8tvV1otVNgtXEyM5+TmfkVumZmE8Wren1KrO49ZzvAGfKW3GdR2Cvi0RTaSvU4dQDmdy09bvaC6HaubQ2C6sNdNX9TCxERERG5tD3//PPceeed9OnTh3r16jF16lQyMjIuynstWrSIRYsWuYw98cQTzJgxgw8//JBZs2bxxBNPEBsby+OPP86YMWMACAsL4+OPP2b27Nnk5eXRokUL3n//fdq1a8euXbv4/vvvmTdvHhkZGTRq1IjnnnuOwYMHX5TPIOIJ/H0sdGsUTrdGdbN3s91uJ6fAWhziFpBeItBNyzW200tsp5XYzi20YrPDmZxCzuQUVvi9Q/y8CA/0cQS5JQPfsABvwgOMoDe8eJVveIAPwX5a2StSU0x2u93u7iJqo4yMDEJDQ0lPTyckJMTd5dS8UwcgdR+0Kr5jrs0GzzaB4FjXFbTR7cDbz721ioiISJ11yc/JKuBC1yovL4+DBw/SpEkT/Pw0d6sr9OcqUrflFVrJyC0R8uYUFK/udQa8pbZzCsnKL6r0e5qKV/aGF6/WDQ8oGfj6EB7o7Vj5G362b2+g0cZBPXtFDOWdv2qlrVTM0Y3w04uw63/gHwYP7ASfAKO1wd/2gpevuysUERERERERqfP8vC34eVuICqnYP8oUWm3O1bvF7RvO5BSQnmt8PRvulgx603IKyC6wGreuKR6rCIvZVOIGbKVX8YYVr/hNiAigdUwwftV4U0qR2kqhrfw+mw32rYCf/gWHVzvH47tD7mkjtAUFtiIiIiIiIiIezttipl6QL/WCKvYzfH6RtUTYWxz0Foe7Z3LOHwLnFdqw2uycyi7gVHbB776PxWyiRVQQbeNCaB9n3KyubVwIQb6KsOTSor/xcmGH1sD/7ofUvca22Rs6joDeE5w3FhMRERERERGROs3Xy0JUsIWo4Iqt7M0rtJ6zivdssFu8mje7OPjNLuTAySxOZRewOzmT3cmZfLw5yXGeJvUCaRcXQvv4UNrFhdAuLpSIQJ/q/pgiHkOhrVxYYD2jd61vCHQfC73GQUicu6sSERER8Wgvv/wyc+fOJTk5mU6dOjF//nx69ux53uOXLFnCzJkz+e2332jRogXPPPMMQ4YMcezPyspi2rRpfPLJJ5w6dYomTZpw//33M27cuJr4OCIiIpV2to1DdDnaONjtdk5k5LMjKZ1fjmWw41g6vySlcyw9j4Op2RxMzebzbccdx8eH+ZdYkWsEulHBvuqfK3WCQltxSjsMa1+Fgmy48V/GWL0WMPI9aHIl+OnmHiIiIiK/54MPPmDKlCm89tpr9OrVi3nz5jFw4ED27NlDVFRUqeNXr17NqFGjmDNnDtdffz2LFi1i6NChbN68mfbt2wMwZcoUvv76axYuXEjjxo1ZuXIl9913H3Fxcdx44401/RFFREQuCpPJREyoHzGhfgxoG+0YP51dwC/H0tmR5AxyfzuVQ1JaLklpuazaecJxbL0gH9oVh7jt4kJpHxdKQoS/glypdUx2u93u7iJqozp1p+LjW41+tb8sBbsVTBaYtBXCEtxdmYiIiMgFeeKcrFevXvTo0YOXXnoJAJvNRkJCAhMnTmTatGmljh85ciTZ2dl8/vnnjrHLLruMzp0789prrwHQvn17Ro4cycyZMx3HdOvWjcGDB/Pkk0+Wq64LXau8vDwOHjxIkyZN8POr2K+9iufSn6uI1GWZeYXsPJbBjmMZ/HIsnV+SMtiXkomtjJQr2M/LaK1Q3CO3XVwITesHYTEryJWaV975q1baXqrsdjiQaIS1B79zjjftB30mQmgDt5UmIiIiUlsVFBSwadMmpk+f7hgzm80MGDCANWvWlPmaNWvWMGXKFJexgQMH8sknnzi2+/Tpw2effcadd95JXFwc3377LXv37uWFF144by35+fnk5+c7tjMyMir5qURERDxPsJ83vZpG0qtppGMst8DK7uQMfikOcnckZbAnOZPMvCLW/nqatb+edhzr722hTWywS4/cltHB+HiZ3fFxSrHb7eQUWMnOLyIzv4js/CKy8ovIzreWeH523Ep+kZX6wb7Eh/nTIDyABuH+xIT64W3xjM8jFafQ9lK1+V3jBmNgrKxtf5MR1sZ2cm9dIiIiIrVYamoqVquV6Ohol/Ho6Gh2795d5muSk5PLPD45OdmxPX/+fO655x4aNGiAl5cXZrOZBQsW0Ldv3/PWMmfOHB577LEqfBoREZHaxd/HQpeG4XRpGO4YKyiysT8ly9FW4ZdjGew8nkFOgZXNh9PYfDjNcay3xUTL6GBHj9y2caG0jQ3B38dSrvfPL7KWClXPDVpdx43ANTu/iOyCkkGsleyCIqr6u/FmE8SE+NEgPID4cH8ahPs7Qt34cH/iwvzw9SrfZ5Oap9D2UpGXAZnJUL+lsd1uGHw7x/h62b0Q1tC99YmIiIjIec2fP5+1a9fy2Wef0ahRI77//nvGjx9PXFwcAwYMKPM106dPd1nBm5GRQUKC2l+JiMilxcfLTNu4ENrGhUB34/ug1WbnYGq20VbhWAY7ktLZkZRORl5R8SrdDD7YaLzebIJm9YNoGxeCj8VcHK5aHatcM/OMwDU7v4hCa/V3IDWbINDXiyBfLwKLH0G+FgJ9XMd8vMykZOSRlJbL0TNGr9+CIhvH0vM4lp4Hv5V9/qhgXyPMDQ8oDnT9iQ/3JyHcn/iwgHIH1lL9FNrWdRnHjJuLbXoHIprCPd+CyWTcVGzydrB4u7tCERERkTqjXr16WCwWTpw44TJ+4sQJYmJiynxNTEzMBY/Pzc3l4YcfZunSpVx33XUAdOzYkS1btvDPf/7zvKGtr68vvr6+Vf1IdV6/fv3o3Lkz8+bNc3cpIiJSQyxmE82jgmgeFcQfO8cDRjuCo2dyHW0VfjmWzvakDFKz8tmXksW+lKxyn9/P2+wMVB3hqoUgP29H4OoaxFocz88d8/e2VOomajabndSsfI6eDXHP5HL0TI4z1D2TS26hlZTMfFIy811WHJcUGehTepVumD8NIoztYD/lSheLR4S2L7/8MnPnziU5OZlOnToxf/58evbsWeaxhYWFzJkzh3//+98kJSXRqlUrnnnmGQYNGlTm8f/4xz+YPn06kyZNcpmI5eXl8eCDD7J48WLy8/MZOHAgr7zySqlfTau1TuyE1fNh+xKwFRpjhTmQnQpB9Y1tBbYiIiIi1crHx4du3bqRmJjI0KFDAeNGZImJiUyYMKHM1/Tu3ZvExEQmT57sGFu1ahW9e/cGjPlvYWEhZrNrTzqLxYLNZrson6M2uOGGGygsLGT58uWl9v3www/07duXrVu30rFjxyq9zzvvvMPkyZNJS0ur0nlERMSzmUwmEiICSIgIYFD7WMd4SkYeO46lszs5E7vduKmZa+hqcVnxGuhjwcsD+siazSaiQvyICvGja4l2EWfZ7XZOZxe4hLglQ92jZ3LJyi/iVHYBp7IL2HY0vcz3CfX3dlmh26DEit0G4f6E+ntXKnQWDwhtP/jgA6ZMmcJrr71Gr169mDdvHgMHDmTPnj1ERUWVOn7GjBksXLiQBQsW0Lp1a1asWMGwYcNYvXo1Xbp0cTl2w4YNvP7662VO1B544AGWLVvGkiVLCA0NZcKECdx000389NNPF+2z1oikzfDN07B/lXOsYR+4/H5oMRDM7v8fh4iIiEhdNmXKFO644w66d+9Oz549mTdvHtnZ2YwdOxaA22+/nfj4eObMmQPApEmTuPLKK3nuuee47rrrWLx4MRs3buSNN94AICQkhCuvvJKHHnoIf39/GjVqxHfffce7777L888/77bP6W533XUXw4cP5+jRozRo4HoT3bfffpvu3btXObAVERGJCvHj6hA/rm5dRxb5FTOZTEQG+RIZ5EvHBmGl9tvtdjJyiziallMi1M0l6ex2Wi5pOYWk5xqPncfLvuFpkK+XS4h79iZpCREBCnV/h9tD2+eff567777bMYl97bXXWLZsGW+99RbTpk0rdfx7773HI488wpAhQwC49957+eqrr3juuedYuHCh47isrCxGjx7NggULePLJJ13OkZ6ezptvvsmiRYu4+uqrAWNi16ZNG9auXctll112sT7uxZdxrDiwNUGbG+DySdCgu7urEhEREblkjBw5kpMnTzJr1iySk5Pp3Lkzy5cvd/xG1+HDh11Wzfbp04dFixYxY8YMHn74YVq0aMEnn3xC+/btHccsXryY6dOnM3r0aE6fPk2jRo146qmnGDduXI1/Pk9x/fXXU79+fd555x1mzJjhGM/KymLJkiXMnTuXU6dOMWHCBL7//nvOnDlDs2bNePjhhxk1alS11XH48GEmTpxIYmIiZrOZQYMGMX/+fMef99atW5k8eTIbN27EZDLRokULXn/9dbp3786hQ4eYMGECP/74IwUFBTRu3Ji5c+c6ftYRERFxF5PJRGiAN6EBobSLCy3zmKz8ojLbLpzdTs0qICu/iD0nMtlzIrPMcwT5epUKdEsGu6H+l+5vibs1tC0oKGDTpk1Mnz7dMWY2mxkwYABr1qwp8zX5+fn4+fm5jPn7+/Pjjz+6jI0fP57rrruOAQMGlAptN23aRGFhoUv/r9atW9OwYUPWrFlTe0Lbgmz4eaHR5qD7ncZYqyHQ9+/Q6VaIbObe+kREREQuURMmTDhvO4Rvv/221Ngtt9zCLbfcct7zxcTE8Pbbb1dXeRVTkH3+fSYLePuV81gzePtf+FifwHKX5eXlxe23384777zDI4884lils2TJEqxWK6NGjSIrK4tu3boxdepUQkJCWLZsGbfddhvNmjU7bzu2irDZbPzxj38kKCiI7777jqKiIsaPH8/IkSMdf86jR4+mS5cuvPrqq1gsFrZs2YK3t/ED6Pjx4ykoKOD7778nMDCQnTt3EhQUVOW6REREakKQrxetYoJpFRNc5v7cAitJacaq3COncxxfz7ZfSM3KJyu/iN3JmexOLjvUDfbzcoa4jlC3ONiN8CekDvfUdWtom5qaitVqLdVHNjo6mt27d5f5moEDB/L888/Tt29fmjVrRmJiIh9//DFWq9VxzOLFi9m8eTMbNmwo8xzJycn4+PgQFhZW6n2Tk5PLfE1+fj75+fmO7YyMspd914isFFj3Omz4P8hLg8D60OlPxoTZbIarH3FfbSIiIiJStzwdd/59La6F0Uuc23ObG/dRKEujP8DYZc7teR0g55TrMbPL7pd3PnfeeSdz587lu+++o1+/foDxG3TDhw8nNDSU0NBQ/va3vzmOnzhxIitWrODDDz+sltA2MTGR7du3c/DgQRISjDuSv/vuu7Rr144NGzbQo0cPDh8+zEMPPUTr1q0BaNGiheP1hw8fZvjw4XTo0AGApk2bVrkmERERT+HvY3Hc8K0sZ0PdI2fOBrnOQDfpTA6pWQVk5hWx63gGu87TfiHU39slyE0oEeg2CA8gyNftTQYqrdZV/uKLL3L33XfTunVrTCYTzZo1Y+zYsbz11lsAHDlyhEmTJrFq1apSK3KrYs6cOTz22GPVdr5KSd1n3Fxs62KwFgfI4U2gzwRQ/w8RERERucS0bt2aPn368NZbb9GvXz/279/PDz/8wOOPPw6A1Wrl6aef5sMPPyQpKYmCggLy8/MJCAiolvfftWsXCQkJjsAWoG3btoSFhbFr1y569OjBlClT+Mtf/sJ7773HgAEDuOWWW2jWzPiNuPvvv597772XlStXMmDAAIYPH64+vCIicsn4vVA3p6DI0Uv3bKB7pESwezq7wNFT95djZYe6YQHepVboJkQ4b5gW6MGhrlsrq1evHhaLhRMnTriMnzhxgpiYmDJfU79+fT755BPy8vI4deoUcXFxTJs2zfGv0ps2bSIlJYWuXbs6XmO1Wvn+++956aWXyM/PJyYmhoKCAtLS0lxW217ofadPn86UKVMc2xkZGS6Ts4tu3evw5VTAbmzHdzduLtb6ejBbaq4OEREREbm0PHzs/PtM58xDH9p/gWPPuSHu5O2Vr6mEu+66i4kTJ/Lyyy/z9ttv06xZM6688koA5s6dy4svvsi8efPo0KEDgYGBTJ48mYKCgmp57/KYPXs2f/rTn1i2bBlffvkljz76KIsXL2bYsGH85S9/YeDAgSxbtoyVK1cyZ84cnnvuOSZOnFhj9YmIiHiqAB8vWkQH0yK67PYL2flF56zQdQ1203IKix/pbE8q+7d5IgJ9HK0XHrim5XkDZHdwa2jr4+NDt27dSExMZOjQoYDRFyoxMfG8PcDO8vPzIz4+nsLCQv773/8yYsQIAPr378/27a4TwLFjx9K6dWumTp2KxWKhW7dueHt7k5iYyPDhwwHYs2cPhw8fpnfv3mW+n6+vL76+vlX8xFXQ+ApjNW3LwdBnIjTsrdW1IiIiInLxVaDP7EU79gJGjBjBpEmTWLRoEe+++y733nuvo7/tTz/9xB//+Ef+/Oc/A8bPGnv37qVt27bV8t5t2rThyJEjHDlyxLGgY+fOnaSlpbm8R8uWLWnZsiUPPPAAo0aN4u2332bYsGEAJCQkMG7cOMaNG8f06dNZsGCBQlsREZFyCPydnrqZeYXGDdJOl92CIT23kNPZBZzOLmDb0XQmDWhR5nncxe1rgKdMmcIdd9xB9+7d6dmzJ/PmzSM7O5uxY8cCcPvttxMfH8+cOXMAWLduHUlJSXTu3JmkpCRmz56NzWbj73//OwDBwcEud9oFCAwMJDIy0jEeGhrKXXfdxZQpU4iIiCAkJISJEyfSu3dvz70JWXRbYzVCaAN3VyIiIiIi4jGCgoIYOXIk06dPJyMjgzFjxjj2tWjRgo8++ojVq1cTHh7O888/z4kTJyoc2lqtVrZs2eIy5uvry4ABA+jQoQOjR49m3rx5FBUVcd9993HllVfSvXt3cnNzeeihh7j55ptp0qQJR48eZcOGDY6FI5MnT2bw4MG0bNmSM2fO8M0339CmTZuqXhIREREBgv28aR3jTeuYkDL3Z+QVcvS0M8hNCK+e9knVxe2h7ciRIzl58iSzZs0iOTmZzp07s3z5csfNyQ4fPozZ7PxVqry8PGbMmMGvv/5KUFAQQ4YM4b333it1U7Hf88ILL2A2mxk+fDj5+fkMHDiQV155pTo/WvVTYCsiIiIiUspdd93Fm2++yZAhQ4iLc9447ezPDQMHDiQgIIB77rmHoUOHkp5esRueZWVl0aVLF5exZs2asX//fj799FMmTpxI3759MZvNDBo0iPnz5wNgsVg4deoUt99+OydOnKBevXrcdNNNjntlWK1Wxo8fz9GjRwkJCWHQoEG88MILVbwaIiIiUh4hft60jfOmbVzZoa67mex2u93dRdRGGRkZhIaGkp6eTkiIZ/7hioiIiNR1mpOV34WuVV5eHgcPHqRJkybVejNfcS/9uYqIiHie8s5fzefdIyIiIiIiIiIiIiI1TqGtiIiIiIiIiIiIiAdRaCsiIiIiIiIiIiLiQRTaioiIiIiIiIiIiHgQhbYiIiIiIiIiIiIiHkShrYiIiIiIAGC3291dglQj/XmKiIjUXgptRUREREQucd7e3gDk5OS4uRKpTmf/PM/++YqIiEjt4eXuAkRERERExL0sFgthYWGkpKQAEBAQgMlkcnNVUll2u52cnBxSUlIICwvDYrG4uyQRERGpIIW2IiIiIiJCTEwMgCO4ldovLCzM8ecqIiIitYtCWxERERERwWQyERsbS1RUFIWFhe4uR6rI29tbK2xFRERqMYW2IiIiIiLiYLFYFPaJiIiIuJluRCYiIiIiIiIiIiLiQRTaioiIiIiIiIiIiHgQhbYiIiIiIiIiIiIiHkQ9bSvJbrcDkJGR4eZKRERERC5dZ+diZ+dmcn6av4qIiIi4X3nnrwptKykzMxOAhIQEN1ciIiIiIpmZmYSGhrq7DI+m+auIiIiI5/i9+avJrmUJlWKz2Th27BjBwcGYTKaL/n4ZGRkkJCRw5MgRQkJCLvr71SW6dlWj61c1un6Vp2tXNbp+ladrVzU1ff3sdjuZmZnExcVhNqvz14Vo/lp76NpVja5f1ej6VZ6uXdXo+lWNrl/leer8VSttK8lsNtOgQYMaf9+QkBD9x1dJunZVo+tXNbp+ladrVzW6fpWna1c1NXn9tMK2fDR/rX107apG169qdP0qT9euanT9qkbXr/I8bf6q5QgiIiIiIiIiIiIiHkShrYiIiIiIiIiIiIgHUWhbS/j6+vLoo4/i6+vr7lJqHV27qtH1qxpdv8rTtasaXb/K07WrGl0/OUt/FypP165qdP2qRtev8nTtqkbXr2p0/SrPU6+dbkQmIiIiIiIiIiIi4kG00lZERERERERERETEgyi0FREREREREREREfEgCm1FREREREREREREPIhC21rg5ZdfpnHjxvj5+dGrVy/Wr1/v7pJqhTlz5tCjRw+Cg4OJiopi6NCh7Nmzx91l1Ur/+Mc/MJlMTJ482d2l1BpJSUn8+c9/JjIyEn9/fzp06MDGjRvdXVatYLVamTlzJk2aNMHf359mzZrxxBNPoBbsZfv++++54YYbiIuLw2Qy8cknn7jst9vtzJo1i9jYWPz9/RkwYAD79u1zT7Ee5kLXrrCwkKlTp9KhQwcCAwOJi4vj9ttv59ixY+4r2MP83t+9ksaNG4fJZGLevHk1Vp+4l+avlaP5a/XR/LXiNH+tPM1fK0bz18rT/LVqatv8VaGth/vggw+YMmUKjz76KJs3b6ZTp04MHDiQlJQUd5fm8b777jvGjx/P2rVrWbVqFYWFhVx77bVkZ2e7u7RaZcOGDbz++ut07NjR3aXUGmfOnOHyyy/H29ubL7/8kp07d/Lcc88RHh7u7tJqhWeeeYZXX32Vl156iV27dvHMM8/w7LPPMn/+fHeX5pGys7Pp1KkTL7/8cpn7n332Wf71r3/x2muvsW7dOgIDAxk4cCB5eXk1XKnnudC1y8nJYfPmzcycOZPNmzfz8ccfs2fPHm688UY3VOqZfu/v3llLly5l7dq1xMXF1VBl4m6av1ae5q/VQ/PXitP8tWo0f60YzV8rT/PXqql181e7eLSePXvax48f79i2Wq32uLg4+5w5c9xYVe2UkpJiB+zfffedu0upNTIzM+0tWrSwr1q1yn7llVfaJ02a5O6SaoWpU6fa//CHP7i7jFrruuuus995550uYzfddJN99OjRbqqo9gDsS5cudWzbbDZ7TEyMfe7cuY6xtLQ0u6+vr/399993Q4We69xrV5b169fbAfuhQ4dqpqha5HzX7+jRo/b4+Hj7jh077I0aNbK/8MILNV6b1DzNX6uP5q8Vp/lr5Wj+WjWav1ae5q+Vp/lr1dSG+atW2nqwgoICNm3axIABAxxjZrOZAQMGsGbNGjdWVjulp6cDEBER4eZKao/x48dz3XXXufwdlN/32Wef0b17d2655RaioqLo0qULCxYscHdZtUafPn1ITExk7969AGzdupUff/yRwYMHu7my2ufgwYMkJye7/DccGhpKr1699H2kEtLT0zGZTISFhbm7lFrBZrNx22238dBDD9GuXTt3lyM1RPPX6qX5a8Vp/lo5mr9Wjeav1Ufz1+ql+WvFeNr81cvdBcj5paamYrVaiY6OdhmPjo5m9+7dbqqqdrLZbEyePJnLL7+c9u3bu7ucWmHx4sVs3ryZDRs2uLuUWufXX3/l1VdfZcqUKTz88MNs2LCB+++/Hx8fH+644w53l+fxpk2bRkZGBq1bt8ZisWC1WnnqqacYPXq0u0urdZKTkwHK/D5ydp+UT15eHlOnTmXUqFGEhIS4u5xa4ZlnnsHLy4v777/f3aVIDdL8tfpo/lpxmr9WnuavVaP5a/XR/LX6aP5acZ42f1VoK5eE8ePHs2PHDn788Ud3l1IrHDlyhEmTJrFq1Sr8/PzcXU6tY7PZ6N69O08//TQAXbp0YceOHbz22mua9JbDhx9+yH/+8x8WLVpEu3bt2LJlC5MnTyYuLk7XT9yisLCQESNGYLfbefXVV91dTq2wadMmXnzxRTZv3ozJZHJ3OSK1kuavFaP5a9Vo/lo1mr+Kp9H8teI8cf6q9ggerF69elgsFk6cOOEyfuLECWJiYtxUVe0zYcIEPv/8c7755hsaNGjg7nJqhU2bNpGSkkLXrl3x8vLCy8uL7777jn/96194eXlhtVrdXaJHi42NpW3bti5jbdq04fDhw26qqHZ56KGHmDZtGrfeeisdOnTgtttu44EHHmDOnDnuLq3WOfu9Qt9HKu/shPfQoUOsWrVKqxTK6YcffiAlJYWGDRs6vo8cOnSIBx98kMaNG7u7PLmINH+tHpq/Vpzmr1Wj+WvVaP5afTR/rTrNXyvHE+evCm09mI+PD926dSMxMdExZrPZSExMpHfv3m6srHaw2+1MmDCBpUuX8vXXX9OkSRN3l1Rr9O/fn+3bt7NlyxbHo3v37owePZotW7ZgsVjcXaJHu/zyy9mzZ4/L2N69e2nUqJGbKqpdcnJyMJtdvz1ZLBZsNpubKqq9mjRpQkxMjMv3kYyMDNatW6fvI+VwdsK7b98+vvrqKyIjI91dUq1x2223sW3bNpfvI3FxcTz00EOsWLHC3eXJRaT5a9Vo/lp5mr9WjeavVaP5a/XR/LVqNH+tPE+cv6o9goebMmUKd9xxB927d6dnz57MmzeP7Oxsxo4d6+7SPN748eNZtGgRn376KcHBwY7+N6Ghofj7+7u5Os8WHBxcqndaYGAgkZGR6qlWDg888AB9+vTh6aefZsSIEaxfv5433niDN954w92l1Qo33HADTz31FA0bNqRdu3b8/PPPPP/889x5553uLs0jZWVlsX//fsf2wYMH2bJlCxERETRs2JDJkyfz5JNP0qJFC5o0acLMmTOJi4tj6NCh7ivaQ1zo2sXGxnLzzTezefNmPv/8c6xWq+P7SEREBD4+Pu4q22P83t+9c39I8Pb2JiYmhlatWtV0qVLDNH+tPM1fK0/z16rR/LVqNH+tGM1fK0/z16qpdfNXu3i8+fPn2xs2bGj38fGx9+zZ07527Vp3l1QrAGU+3n77bXeXVitdeeWV9kmTJrm7jFrjf//7n719+/Z2X19fe+vWre1vvPGGu0uqNTIyMuyTJk2yN2zY0O7n52dv2rSp/ZFHHrHn5+e7uzSP9M0335T5/7o77rjDbrfb7TabzT5z5kx7dHS03dfX196/f3/7nj173Fu0h7jQtTt48OB5v49888037i7dI/ze371zNWrUyP7CCy/UaI3iPpq/Vo7mr9VL89eK0fy18jR/rRjNXytP89eqqW3zV5PdbrdXZwgsIiIiIiIiIiIiIpWnnrYiIiIiIiIiIiIiHkShrYiIiIiIiIiIiIgHUWgrIiIiIiIiIiIi4kEU2oqIiIiIiIiIiIh4EIW2IiIiIiIiIiIiIh5Eoa2IiIiIiIiIiIiIB1FoKyIiIiIiIiIiIuJBFNqKiIiIiIiIiIiIeBCFtiIiUmEmk4lPPvnE3WWIiIiIiJSL5q8iUtsotBURqWXGjBmDyWQq9Rg0aJC7SxMRERERKUXzVxGRivNydwEiIlJxgwYN4u2333YZ8/X1dVM1IiIiIiIXpvmriEjFaKWtiEgt5OvrS0xMjMsjPDwcMH7169VXX2Xw4MH4+/vTtGlTPvroI5fXb9++nauvvhp/f38iIyO55557yMrKcjnmrbfeol27dvj6+hIbG8uECRNc9qempjJs2DACAgJo0aIFn3322cX90CIiIiJSa2n+KiJSMQptRUTqoJkzZzJ8+HC2bt3K6NGjufXWW9m1axcA2dnZDBw4kPDwcDZs2MCSJUv46quvXCa1r776KuPHj+eee+5h+/btfPbZZzRv3tzlPR577DFGjBjBtm3bGDJkCKNHj+b06dM1+jlFREREpG7Q/FVExJXJbrfb3V2EiIiU35gxY1i4cCF+fn4u4w8//DAPP/wwJpOJcePG8eqrrzr2XXbZZXTt2pVXXnmFBQsWMHXqVI4cOUJgYCAAX3zxBTfccAPHjh0jOjqa+Ph4xo4dy5NPPllmDSaTiRkzZvDEE08AxkQ6KCiIL7/8Ur3JRERERMSF5q8iIhWnnrYiIrXQVVdd5TKpBYiIiHA87927t8u+3r17s2XLFgB27dpFp06dHBNegMsvvxybzcaePXswmUwcO3aM/v37X7CGjh07Op4HBgYSEhJCSkpKZT+SiIiIiNRhmr+KiFSMQlsRkVooMDCw1K97VRd/f/9yHeft7e2ybTKZsNlsF6MkEREREanlNH8VEakY9bQVEamD1q5dW2q7TZs2ALRp04atW7eSnZ3t2P/TTz9hNptp1aoVwcHBNG7cmMTExBqtWUREREQuXZq/ioi40kpbEZFaKD8/n+TkZJcxLy8v6tWrB8CSJUvo3r07f/jDH/jPf/7D+vXrefPNNwEYPXo0jz76KHfccQezZ8/m5MmTTJw4kdtuu43o6GgAZs+ezbhx44iKimLw4MFkZmby008/MXHixJr9oCIiIiJSJ2j+KiJSMQptRURqoeXLlxMbG+sy1qpVK3bv3g0Yd8ZdvHgx9913H7Gxsbz//vu0bdsWgICAAFasWMGkSZPo0aMHAQEBDB8+nOeff95xrjvuuIO8vDxeeOEF/va3v1GvXj1uvvnmmvuAIiIiIlKnaP4qIlIxJrvdbnd3ESIiUn1MJhNLly5l6NCh7i5FREREROR3af4qIlKaetqKiIiIiIiIiIiIeBCFtiIiIiIiIiIiIiIeRO0RRERERERERERERDyIVtqKiIiIiIiIiIiIeBCFtiIiIiIiIiIiIiIeRKGtiIiIiIiIiIiIiAdRaCsiIiIiIiIiIiLiQRTaioiIiIiIiIiIiHgQhbYiIiIiIiIiIiIiHkShrYiIiIiIiIiIiIgHUWgrIiIiIiIiIiIi4kEU2oqIiIiIiIiIiIh4kP8H3TxbJKN+7SgAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAACIUAAAfGCAYAAACDcpw1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAnwBJREFUeJzs3XnY1XWd//HXFw+bGODCImW4TSKjjbhkqLgkSQY15ko6BrigDZb7liMulUy45TLqWCSMo5M6k7YwKuQSkzFKlqamZrn9SkFLkFRChfv3RxdnvAP1htBvfc7jcV3nyvt7Puec94GDf8iz96na2traAgAAAAAAAABAUTrVPQAAAAAAAAAAAKufKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAOCv0GOPPZY99tgjvXr1SlVVuemmm1br8z/55JOpqipTp05drc/712zXXXfNrrvuWvcYtbrzzjtTVVXuvPPOukf5izd27NhsuOGGdY8BAAAAtDhRCAAAwCr61a9+lSOOOCIbb7xxunXrlp49e2bHHXfMRRddlEWLFr2jrz1mzJg88MAD+fKXv5yrr74622677Tv6eu+msWPHpqqq9OzZc4W/jo899liqqkpVVTnvvPNW+vmfeeaZnHnmmbnvvvtWw7Tvjg033LD5nquqSo8ePfKhD30o//Zv/7bc2WXhxopuo0ePfsvXOfPMM9/0sVdcccU79fbe1LI4qSO3J5988l2fDwAAAOAvXaPuAQAAAP4aTZ8+Pfvtt1+6du2az3zmM9liiy3y6quv5oc//GFOPPHEPPTQQ7nyyivfkddetGhRZs+endNOOy1HHXXUO/IaAwcOzKJFi9K5c+d35PnfTqPRyCuvvJLvfve72X///dvdd80116Rbt275wx/+sErP/cwzz+Sss87KhhtumK222qrDj5sxY8Yqvd7qstVWW+X4449Pkjz77LP5+te/njFjxmTx4sU5/PDDlzv/+c9/Ptttt127ax3dXHH55ZdnrbXWandt++23zyabbJJFixalS5cuq/YmVlKfPn1y9dVXt7t2/vnn59e//nUuvPDC5c4CAAAA0J4oBAAAYCU98cQTGT16dAYOHJjbb78966+/fvO+CRMm5Je//GWmT5/+jr3+888/nyTp3bv3O/YaVVWlW7du79jzv52uXbtmxx13zH/8x38sF4Vce+21GTlyZP7rv/7rXZnllVdeyZprrvmuhRBv5r3vfW/+4R/+ofnz2LFjs/HGG+fCCy9cYRQybNiw7Lvvvqv0Wvvuu2/WW2+9Fd73bn4uevTo0e49J8k3v/nNzJ8/f7nrAAAAACzP18cAAACspMmTJ+ell17KlClT2gUhy2y66aY5+uijmz+//vrr+eIXv5hNNtkkXbt2zYYbbpgvfOELWbx4cbvHbbjhhhk1alR++MMf5kMf+lC6deuWjTfeuN1XhJx55pkZOHBgkuTEE09MVVXN7Q9jx45d4SaIZV8J8kYzZ87MTjvtlN69e2ettdbKZpttli984QvN+5d9bcfUqVPbPe7222/PsGHD0qNHj/Tu3Tt///d/n4cffniFr/fLX/4yY8eOTe/evdOrV6+MGzcur7zyypv/wv6JAw88MDfffHMWLFjQvDZnzpw89thjOfDAA5c7/8ILL+SEE07IlltumbXWWis9e/bMnnvumfvvv7955s4772xuzxg3blzzq0eWvc9dd901W2yxRe69997svPPOWXPNNZu/Lrvuumt23XXX5nONGTMm3bp1W+79jxgxImuvvXaeeeaZDr/XVdGnT58MGjQov/rVr97R13mjZV9Nc+eddzavLfs1+/nPf57ddtsta665Zt773vdm8uTJyz1+8eLFOeOMM7Lpppuma9eu2WCDDXLSSSct92dhZVVVlTPPPHO56xtuuGHGjh3b/Hnq1Kmpqip33XVXjjvuuPTp0yc9evTIpz71qWZs9UY333xz8/P+nve8JyNHjsxDDz203LmbbropW2yxRbp165YtttgiN95445/1fgAAAABWF1EIAADASvrud7+bjTfeODvssEOHzh922GGZOHFitt5661x44YXZZZddMmnSpIwePXq5s7/85S+z77775qMf/WjOP//8rL322hk7dmzzL6L33nvv5tdmfPrTn87VV1+dr371qys1/0MPPZRRo0Zl8eLFOfvss3P++efnk5/8ZO666663fNz3v//9jBgxIs8991zOPPPMHHfccfnRj36UHXfcMU8++eRy5/fff//8/ve/z6RJk7L//vtn6tSpOeusszo85957752qqvKtb32ree3aa6/NoEGDsvXWWy93/vHHH89NN92UUaNG5YILLsiJJ56YBx54ILvssksz0Nh8881z9tlnJ0nGjx+fq6++OldffXV23nnn5vP87ne/y5577pmtttoqX/3qV7PbbrutcL6LLrooffr0yZgxY7JkyZIkyb/+679mxowZueSSSzJgwIAOv9dV8frrr+fXv/511l577RXe//vf/z6//e1v292WLl3aoed+4YUX2j1u/vz5b3l+/vz5+djHPpa/+7u/y/nnn59Bgwbl5JNPzs0339w8s3Tp0nzyk5/Meeedl0984hO55JJLstdee+XCCy/MAQcc0PE3vhp87nOfy/33358zzjgjn/3sZ/Pd7353ua9iuvrqqzNy5MistdZa+cpXvpLTTz89P//5z7PTTju1+7zPmDEj++yzT6qqyqRJk7LXXntl3Lhx+fGPf/yuvicAAACAFfH1MQAAACth4cKF+c1vfpO///u/79D5+++/P9OmTcthhx2Wr33ta0mSf/zHf0zfvn1z3nnn5Y477mgXHTz66KOZNWtWhg0bluSPYcUGG2yQq666Kuedd14++MEPpmfPnjn22GOz9dZbr9JXaMycOTOvvvpqbr755jf9ipAVOfHEE7POOutk9uzZWWeddZIke+21V4YMGZIzzjgj06ZNa3d+yJAhmTJlSvPn3/3ud5kyZUq+8pWvdOj13vOe92TUqFG59tprc8ghh2Tp0qX55je/mc9+9rMrPL/lllvmF7/4RTp1+r///8PBBx+cQYMGZcqUKTn99NPTr1+/7Lnnnpk4cWKGDh26wl+/uXPn5oorrsgRRxzxlvP17t07U6ZMyYgRI/LP//zPOfDAA3PCCSdkr732eke+2uS1117Lb3/72+aMkydPzty5czNhwoQVnj/kkEOWu/bEE0+scJvMn9pss83a/Txw4MAVhj/LPPPMM/m3f/u3HHzwwUmSQw89NAMHDsyUKVOy5557Jvlj0PP9738/P/jBD7LTTjs1H7vFFlvkyCOPzI9+9KMOh1Z/rnXXXTczZsxobtBZunRpLr744rz44ovp1atXXnrppXz+85/PYYcdliuvvLL5uDFjxmSzzTbLOeec07x+8sknp1+/fvnhD3+YXr16JUl22WWX7LHHHs2tPgAAAAB1EYUAAACshIULFyb5Y7DQEf/93/+dJDnuuOPaXT/++ONz3nnnZfr06e2ikMGDBzeDkOSPXxGy2Wab5fHHH/9zR2/q3bt3kuTb3/52xo0b1y6ieDPPPvts7rvvvpx00knNICRJPvjBD+ajH/1o832+0ZFHHtnu52HDhuXGG2/MwoUL07Nnzw7NeuCBB2a//fbL3Llz8+CDD2bu3Lkr/OqYJOnatWvzn5csWZIFCxY0vxrnJz/5SYdeb9nzjBs3rkNn99hjjxxxxBE5++yz85//+Z/p1q1b/vVf/7XDr7UyZsyYkT59+rS7Nm7cuJx77rkrPD9x4sR2n6Uk6d+/f4de67/+67/a/R517979Lc+vtdZa7UKYLl265EMf+lC7z+0NN9yQzTffPIMGDWrGLUnykY98JElyxx13vGtRyPjx49t9pdKwYcNy4YUX5qmnnsoHP/jBzJw5MwsWLMinP/3pdrOuscYa2X777XPHHXck+b8/F6ecckozCEmSj370oxk8eHBefvnld+X9AAAAALwZUQgAAMBKWPYX5b///e87dP6pp55Kp06dsummm7a73r9///Tu3TtPPfVUu+vvf//7l3uOtdde+22/vmNlHHDAAfn617+eww47LKecckp233337L333tl3333fNBBZNuefbpBI/viVLLfeemtefvnl9OjRo3n9T9/Lsq85mT9/foejkI9//ON5z3vek+uuuy733Xdftttuu2y66aYr3FqxdOnSXHTRRbnsssvyxBNPNL/SJfnjZoiOeu9735suXbp0+Px5552Xb3/727nvvvty7bXXpm/fvm/7mOeff77dfGuttVbWWmutt3zM9ttvny996UtZsmRJHnzwwXzpS1/K/Pnz33TWLbfcMsOHD+/w+3ijnXfeeaW2yLzvfe9rF1kkf/z9/tnPftb8+bHHHsvDDz+8XNiyzHPPPZfkj19d8+qrrzavd+/evV1wsTq81Wdz2azJ/wUrf2rZ53fZn4u/+Zu/We7MysZIAAAAAO8EUQgAAMBK6NmzZwYMGJAHH3xwpR73p39h/mbWWGONFV5va2tb5dd4Y3yQ/PEv2WfNmpU77rgj06dPzy233JLrrrsuH/nIRzJjxow3nWFl/TnvZZmuXbtm7733zrRp0/L444/nzDPPfNOz55xzTk4//fQccsgh+eIXv5h11lknnTp1yjHHHJOlS5d2+DXfbivGn/rpT3/aDBoeeOCBfPrTn37bx2y33XbtgqAzzjjjLd9bkqy33nrNyGPEiBEZNGhQRo0alYsuumi5TTTvto78Xi9dujRbbrllLrjgghWe3WCDDZIke++9d37wgx80r48ZMyZTp05dpbn+9LPf0XmXfV6uvvrqFW5XaTT85xQAAADgr4P/igEAALCSRo0alSuvvDKzZ8/O0KFD3/LswIEDs3Tp0jz22GPZfPPNm9fnzZuXBQsWZODAgattrrXXXjsLFixY7vqfbiNJkk6dOmX33XfP7rvvngsuuCDnnHNOTjvttNxxxx0r3C6xbM5HH310ufseeeSRrLfeeu22hKxOBx54YL7xjW+kU6dOGT169Jue+8///M/stttumTJlSrvrCxYsaLf1oqOBTke8/PLLGTduXAYPHpwddtghkydPzqc+9alst912b/m4a665JosWLWr+vPHGG6/0a48cOTK77LJLzjnnnBxxxBHv2K//6rLJJpvk/vvvz+677/6Wvwfnn39+u804AwYMeNvnXtFn/9VXX82zzz67yrMmSd++fd9y28qyPxfLNou80Yr+rAAAAAC8297+i6MBAABo56STTkqPHj1y2GGHZd68ecvd/6tf/SoXXXRRkj9+/UmSfPWrX213Ztm2hJEjR662uTbZZJO8+OKL7b6y49lnn82NN97Y7twLL7yw3GO32mqrJMnixYtX+Nzrr79+ttpqq0ybNq3dX74/+OCDmTFjRvN9vhN22223fPGLX8yll166wq0Ny6yxxhrLbSG54YYb8pvf/KbdtWXxxIoCmpV18skn5+mnn860adNywQUXZMMNN8yYMWPe9NdxmR133DHDhw9v3lYlCln2+r/73e/yta99bZUe/27af//985vf/GaFsy5atCgvv/xykmSbbbZp92szePDgt33uTTbZJLNmzWp37corr3zTTSFvZ8SIEenZs2fOOeecvPbaa8vd//zzzydp/+fixRdfbN4/c+bM/PznP1+l1wYAAABYnWwKAQAAWEmbbLJJrr322hxwwAHZfPPN85nPfCZbbLFFXn311fzoRz/KDTfckLFjxyZJ/u7v/i5jxozJlVdemQULFmSXXXbJPffck2nTpmWvvfbKbrvtttrmGj16dE4++eR86lOfyuc///m88sorufzyy/OBD3wgP/nJT5rnzj777MyaNSsjR47MwIED89xzz+Wyyy7L+973vuy0005v+vznnntu9txzzwwdOjSHHnpoFi1alEsuuSS9evV6268++XN06tQp//RP//S250aNGpWzzz4748aNyw477JAHHngg11xzzXLBxSabbJLevXvniiuuyHve85706NEj22+/fTbaaKOVmuv222/PZZddljPOOCNbb711kuSqq67KrrvumtNPPz2TJ09eqedbFXvuuWe22GKLXHDBBZkwYUI6d+78jr/mqjr44INz/fXX58gjj8wdd9yRHXfcMUuWLMkjjzyS66+/Prfeemu23XbbVXruww47LEceeWT22WeffPSjH83999+fW2+9td2GmJXRs2fPXH755Tn44IOz9dZbZ/To0enTp0+efvrpTJ8+PTvuuGMuvfTSJMmkSZMycuTI7LTTTjnkkEPywgsv5JJLLsnf/u3f5qWXXlql1wcAAABYXWwKAQAAWAWf/OQn87Of/Sz77rtvvv3tb2fChAk55ZRT8uSTT+b888/PxRdf3Dz79a9/PWeddVbmzJmTY445JrfffntOPfXUfPOb31ytM6277rq58cYbs+aaa+akk07KtGnTMmnSpHziE59Ybvb3v//9+cY3vpEJEybkX/7lX7Lzzjvn9ttvT69evd70+YcPH55bbrkl6667biZOnJjzzjsvH/7wh3PXXXetdFDxTvjCF76Q448/PrfeemuOPvro/OQnP8n06dOzwQYbtDvXuXPnTJs2LWussUaOPPLIfPrTn84PfvCDlXqt3//+9znkkEMyZMiQnHbaac3rw4YNy9FHH53zzz8///u//7ta3tfbOeGEE/L//t//yzXXXPOuvN6q6tSpU2666ab88z//cx544IGccMIJzT8XRx99dD7wgQ+s8nMffvjhOfnkkzNr1qwcf/zxeeKJJzJz5sw/6yt1DjzwwNx2221573vfm3PPPTdHH310vvnNb2arrbbKuHHjmuc+9rGP5YYbbsiSJUty6qmn5lvf+lauuuqqVQ5cAAAAAFanqu1Pd+sCAAAAAAAAAPBXz6YQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKFCj7gHeCd2HHFX3CAAAALSY+XMurXsEAAAAWky3Iv+2t3X5e+76LPppuf9dx6YQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKFCj7gEAAAAAAAAAoOVVdjqw+vlUAQAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFCgRt0DAAAAAAAAAEDLq6q6J6BANoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgRp1DwAAAAAAAAAALa+y04HVz6cKAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAI16h4AAAAAAAAAAFpeVdU9AQWyKQQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAK1Kh7AAAAAAAAAABoeZWdDqx+PlUAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFKhR9wAAAAAAAAAA0PKqqu4JKJBNIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUqFH3AAAAAAAAAADQ8io7HVj9fKoAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQI26BwAAAAAAAACAlldVdU9AgWwKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAjboHAAAAAAAAAICWV9npwOrnUwUAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFatQ9AAAAAAAAAAC0vKqqewIKZFMIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAVq1D0AAAAAAAAAALS8yk4HVj+fKgAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAAChQo+4BAAAAAAAAAKDlVVXdE1Agm0IAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKFCj7gEAAAAAAAAAoOVVdjqw+vlUAQAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFCgRt0DAAAAAAAAAEDLq+x0YPXzqQIAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACNeoeAAAAAAAAAABaXqeq7gkokE0hAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABSoUfcAAAAAAAAAANDyKjsdWP18qgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgA5YsmRJTj/99Gy00Ubp3r17Ntlkk3zxi19MW1tb80xbW1smTpyY9ddfP927d8/w4cPz2GOPtXueF154IQcddFB69uyZ3r1759BDD81LL73U7szPfvazDBs2LN26dcsGG2yQyZMnr/S8ohAAAAAAAAAAgA74yle+kssvvzyXXnppHn744XzlK1/J5MmTc8kllzTPTJ48ORdffHGuuOKK3H333enRo0dGjBiRP/zhD80zBx10UB566KHMnDkz3/ve9zJr1qyMHz++ef/ChQuzxx57ZODAgbn33ntz7rnn5swzz8yVV165UvNWbW/MVQrRfchRdY8AAABAi5k/59K6RwAAAKDFdGvUPQGrU/ePfLnuEVrWottP6/DZUaNGpV+/fpkyZUrz2j777JPu3bvn3//939PW1pYBAwbk+OOPzwknnJAkefHFF9OvX79MnTo1o0ePzsMPP5zBgwdnzpw52XbbbZMkt9xySz7+8Y/n17/+dQYMGJDLL788p512WubOnZsuXbokSU455ZTcdNNNeeSRRzo8r00hAAAAAAAAAEDLWrx4cRYuXNjutnjx4hWe3WGHHXLbbbflF7/4RZLk/vvvzw9/+MPsueeeSZInnngic+fOzfDhw5uP6dWrV7bffvvMnj07STJ79uz07t27GYQkyfDhw9OpU6fcfffdzTM777xzMwhJkhEjRuTRRx/N/PnzO/zeRCEAAAAAAAAAULeqcqvpNmnSpPTq1avdbdKkSSv8bTrllFMyevToDBo0KJ07d86QIUNyzDHH5KCDDkqSzJ07N0nSr1+/do/r169f8765c+emb9++7e5vNBpZZ5112p1Z0XO88TU6wkIhAAAAAAAAAKBlnXrqqTnuuOPaXevatesKz15//fW55pprcu211+Zv//Zvc9999+WYY47JgAEDMmbMmHdj3JUiCgEAAAAAAAAAWlbXrl3fNAL5UyeeeGJzW0iSbLnllnnqqacyadKkjBkzJv3790+SzJs3L+uvv37zcfPmzctWW22VJOnfv3+ee+65ds/7+uuv54UXXmg+vn///pk3b167M8t+XnamI3x9DAAAAAAAAABAB7zyyivp1Kl9arHGGmtk6dKlSZKNNtoo/fv3z2233da8f+HChbn77rszdOjQJMnQoUOzYMGC3Hvvvc0zt99+e5YuXZrtt9++eWbWrFl57bXXmmdmzpyZzTbbLGuvvXaH5xWFAAAAAAAAAAB0wCc+8Yl8+ctfzvTp0/Pkk0/mxhtvzAUXXJBPfepTSZKqqnLMMcfkS1/6Ur7zne/kgQceyGc+85kMGDAge+21V5Jk8803z8c+9rEcfvjhueeee3LXXXflqKOOyujRozNgwIAkyYEHHpguXbrk0EMPzUMPPZTrrrsuF1100XJfc/N2fH0MAAAAAAAAAEAHXHLJJTn99NPzj//4j3nuuecyYMCAHHHEEZk4cWLzzEknnZSXX34548ePz4IFC7LTTjvllltuSbdu3Zpnrrnmmhx11FHZfffd06lTp+yzzz65+OKLm/f36tUrM2bMyIQJE7LNNttkvfXWy8SJEzN+/PiVmrdqa2tr+/Pf9l+W7kOOqnsEAAAAWsz8OZfWPQIAAAAtppsVAEXpvvs5dY/Qshbd9oW6R3jH+NcEAAAAAAAAANSt6lT3BBTIpwoAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAK1Kh7AAAAAAAAAABoeVVV9wQUyKYQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAArUqHsAAAAAAAAAAGh5lZ0OrH4+VQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFCgRt0DAAAAAAAAAEDLq6q6J6BANoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUKBG3QMAAAAAAAAAQMur7HRg9fOpAgAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAjboHAAAAAAAAAICWV1V1T0CBbAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAjXqHgAAAAAAAAAAWl5lpwOrn08VAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAVq1D0AAAAAAAAAALS8qqp7AgpkUwgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUqFH3AAAAAAAAAADQ8io7HVj9fKoAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKFCj7gEAAAAAAAAAoOVVdjqw+vlUAQAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIEadQ8AAAAAAAAAAC2vquqegALZFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgRp1DwAAAAAAAAAALa+y04HVz6cKAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACtSoewAAAAAAAAAAaHlVVfcEFMimEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAK1Kh7AAAAAAAAAABoeZWdDqx+PlUAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFKhR9wAAAAAAAAAA0PKqqu4JKJBNIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFCgRt0DAAAAAAAAAECrq6qq7hEokE0hAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABSoUfcAAAAAAAAAANDqqqqqewQKZFMIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFKhR9wAAAAAAAAAA0PKqugegRDaFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFCgRt0DAAAAAAAAAECrq6qq7hEokE0hAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUKBG3QMAAAAAAAAAQKurqqruESiQTSEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFKhR9wAAAAAAAAAA0Oqqqqp7BApkUwgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABWrUPQAAAAAAAAAAtLqqquoegQLZFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFatQ9AAAAAAAAAAC0vKruASiRTSEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFKhR9wAAAAAAAAAA0Oqqqqp7BApkUwgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUqFH3AAAAAAAAAADQ6qqqqnsECmRTCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFatQ9AAAAAAAAAAC0uqqq6h6BAtkUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAVq1D0AAAAAAAAAALS6qqrqHoEC2RQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIEadQ8AAAAAAAAAAC2vqnsASmRTCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABSoUfcAAAAAAAAAANDqqqqqewQKZFMIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAVq1D0AAAAAAAAAALS6qqrqHoEC2RQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAAHbDhhhumqqrlbhMmTEiS/OEPf8iECROy7rrrZq211so+++yTefPmtXuOp59+OiNHjsyaa66Zvn375sQTT8zrr7/e7sydd96ZrbfeOl27ds2mm26aqVOnrtK8ohAAAAAAAAAAgA6YM2dOnn322eZt5syZSZL99tsvSXLsscfmu9/9bm644Yb84Ac/yDPPPJO99967+fglS5Zk5MiRefXVV/OjH/0o06ZNy9SpUzNx4sTmmSeeeCIjR47Mbrvtlvvuuy/HHHNMDjvssNx6660rPW/V1tbW9me+57843YccVfcIAAAAtJj5cy6tewQAAABaTLdG3ROwOvUZd13dI7Ss5686YJUfe8wxx+R73/teHnvssSxcuDB9+vTJtddem3333TdJ8sgjj2TzzTfP7Nmz8+EPfzg333xzRo0alWeeeSb9+vVLklxxxRU5+eST8/zzz6dLly45+eSTM3369Dz44IPN1xk9enQWLFiQW265ZaXmsykEAAAAAAAAAGAlvfrqq/n3f//3HHLIIamqKvfee29ee+21DB8+vHlm0KBBef/735/Zs2cnSWbPnp0tt9yyGYQkyYgRI7Jw4cI89NBDzTNvfI5lZ5Y9x8rQjgEAAAAAAABAzaqqqnuElrV48eIsXry43bWuXbuma9eub/m4m266KQsWLMjYsWOTJHPnzk2XLl3Su3fvduf69euXuXPnNs+8MQhZdv+y+97qzMKFC7No0aJ07969w+/NphAAAAAAAAAAoGVNmjQpvXr1anebNGnS2z5uypQp2XPPPTNgwIB3YcpVY1MIAAAAAAAAANCyTj311Bx33HHtrr3dlpCnnnoq3//+9/Otb32rea1///559dVXs2DBgnbbQubNm5f+/fs3z9xzzz3tnmvevHnN+5b977JrbzzTs2fPldoSktgUAgAAAAAAAAC0sK5du6Znz57tbm8XhVx11VXp27dvRo4c2by2zTbbpHPnzrntttua1x599NE8/fTTGTp0aJJk6NCheeCBB/Lcc881z8ycOTM9e/bM4MGDm2fe+BzLzix7jpUhCgEAAAAAAAAA6KClS5fmqquuypgxY9Jo/N8XtPTq1SuHHnpojjvuuNxxxx259957M27cuAwdOjQf/vCHkyR77LFHBg8enIMPPjj3339/br311vzTP/1TJkyY0AxRjjzyyDz++OM56aST8sgjj+Syyy7L9ddfn2OPPXalZ/X1MQAAAAAAAAAAHfT9738/Tz/9dA455JDl7rvwwgvTqVOn7LPPPlm8eHFGjBiRyy67rHn/Gmuske9973v57Gc/m6FDh6ZHjx4ZM2ZMzj777OaZjTbaKNOnT8+xxx6biy66KO973/vy9a9/PSNGjFjpWau2tra2VXubf7m6Dzmq7hEAAABoMfPnXFr3CAAAALSYblYAFKXvIdfXPULLeu4b+9c9wjvG18cAAAAAAAAAABRIOwYAAAAAAAAAdavqHoAS2RQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIEadQ8AAAAAAAAAAK2uqqq6R6BANoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgRp1DwAAAAAAAAAAra6qqrpHoEA2hQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQoEbdAwAAAAAAAABAq6uqqu4RKJBNIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFCgRt0DAAAAAAAAAECrq6qq7hEokE0hAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABSoUfcAAAAAAAAAANDyqroHoEQ2hQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQoEbdAwAAAAAAAABAq6uqqu4RKJBNIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFCgRt0DAAAAAAAAAECrq6qq7hEokE0hAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABSoUfcAAAAAAAAAANDqqqqqewQKZFMIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFKhR9wAAAAAAAAAA0PKqugegRDaFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFCgRt0DAAAAAAAAAECrq6qq7hEokE0hAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUKBG3QMAAAAAAAAAQKurqqruESiQTSEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFKhR9wAAAAAAAAAA0Oqqqqp7BApkUwgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUqFH3AAAAAAAAAADQ6qqqqnsECmRTCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFatQ9AAAAAAAAAAC0vKruASiRTSEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBGnW++G9/+9t84xvfyOzZszN37twkSf/+/bPDDjtk7Nix6dOnT53jAQAAAAAAAAD81aptU8icOXPygQ98IBdffHF69eqVnXfeOTvvvHN69eqViy++OIMGDcqPf/zjt32exYsXZ+HChe1ubUuXvAvvAAAAAAAAAADgL1dtm0I+97nPZb/99ssVV1yRqqra3dfW1pYjjzwyn/vc5zJ79uy3fJ5JkyblrLPOandtjX7bpfP6H1rtMwMAAAAAAADAO+FP/94cVoeqra2trY4X7t69e376059m0KBBK7z/kUceyZAhQ7Jo0aK3fJ7Fixdn8eLF7a71HXZyqk5rrLZZAQAA4O3Mn3Np3SMAAADQYrrVtgKAd8LGx/133SO0rMcv+HjdI7xjavvXRP/+/XPPPfe8aRRyzz33pF+/fm/7PF27dk3Xrl3bXROEAAAAAAAAAACtrrYo5IQTTsj48eNz7733Zvfdd28GIPPmzcttt92Wr33taznvvPPqGg8AAAAAAAAA4K9abVHIhAkTst566+XCCy/MZZddliVLliRJ1lhjjWyzzTaZOnVq9t9//7rGAwAAAAAAAAD4q1brt0wdcMABOeCAA/Laa6/lt7/9bZJkvfXWS+fOnescCwAAAAAAAADgr16tUcgynTt3zvrrr1/3GAAAAAAAAAAAxehU9wAAAAAAAAAAAKx+fxGbQgAAAAAAAACglVVVVfcIFMimEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAK1Kh7AAAAAAAAAABodVVV9wSUyKYQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKFCj7gEAAAAAAAAAoNVVVVX3CBTIphAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACtSoewAAAAAAAAAAaHVVVfcElMimEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAAChQo+4BAAAAAAAAAKDVVVVV9wgUyKYQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAArUqHsAAAAAAAAAAGh1VVX3BJTIphAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAoUKPuAQAAAAAAAACg1XXqVNU9AgWyKQQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAjXqHgAAAAAAAAAAWl1V1T0BJbIpBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACNeoeAAAAAAAAAABaXVVVdY9AgWwKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAI16h4AAAAAAAAAAFpdVdU9ASWyKQQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAjXqHgAAAAAAAAAAWl1VVXWPQIFsCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACNeoeAAAAAAAAAABaXVVVdY9AgWwKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAjboHAAAAAAAAAIBWV1V1T0CJbAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAjXqHgAAAAAAAAAAWl1VVXWPQIFsCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIAO+s1vfpN/+Id/yLrrrpvu3btnyy23zI9//OPm/W1tbZk4cWLWX3/9dO/ePcOHD89jjz3W7jleeOGFHHTQQenZs2d69+6dQw89NC+99FK7Mz/72c8ybNiwdOvWLRtssEEmT5680rOKQgAAAAAAAAAAOmD+/PnZcccd07lz59x88835+c9/nvPPPz9rr71288zkyZNz8cUX54orrsjdd9+dHj16ZMSIEfnDH/7QPHPQQQfloYceysyZM/O9730vs2bNyvjx45v3L1y4MHvssUcGDhyYe++9N+eee27OPPPMXHnllSs1b9XW1tb257/tvyzdhxxV9wgAAAC0mPlzLq17BAAAAFpMt0bdE7A6DTnr9rpHaFk/PeMjHT57yimn5K677sr//M//rPD+tra2DBgwIMcff3xOOOGEJMmLL76Yfv36ZerUqRk9enQefvjhDB48OHPmzMm2226bJLnlllvy8Y9/PL/+9a8zYMCAXH755TnttNMyd+7cdOnSpfnaN910Ux555JEOz2tTCAAAAAAAAABAB3znO9/Jtttum/322y99+/bNkCFD8rWvfa15/xNPPJG5c+dm+PDhzWu9evXK9ttvn9mzZydJZs+end69ezeDkCQZPnx4OnXqlLvvvrt5Zuedd24GIUkyYsSIPProo5k/f36H5xWFAAAAAAAAAEDNqsqtrtvixYuzcOHCdrfFixev8Pfp8ccfz+WXX56/+Zu/ya233prPfvaz+fznP59p06YlSebOnZsk6devX7vH9evXr3nf3Llz07dv33b3NxqNrLPOOu3OrOg53vgaHSEKAQAAAAAAAABa1qRJk9KrV692t0mTJq3w7NKlS7P11lvnnHPOyZAhQzJ+/PgcfvjhueKKK97lqTtGFAIAAAAAAAAAtKxTTz01L774YrvbqaeeusKz66+/fgYPHtzu2uabb56nn346SdK/f/8kybx589qdmTdvXvO+/v3757nnnmt3/+uvv54XXnih3ZkVPccbX6MjRCEAAAAAAAAAQMvq2rVrevbs2e7WtWvXFZ7dcccd8+ijj7a79otf/CIDBw5Mkmy00Ubp379/brvttub9CxcuzN13352hQ4cmSYYOHZoFCxbk3nvvbZ65/fbbs3Tp0my//fbNM7Nmzcprr73WPDNz5sxsttlmWXvttTv83kQhAAAAAAAAAAAdcOyxx+Z///d/c8455+SXv/xlrr322lx55ZWZMGFCkqSqqhxzzDH50pe+lO985zt54IEH8pnPfCYDBgzIXnvtleSPm0U+9rGP5fDDD88999yTu+66K0cddVRGjx6dAQMGJEkOPPDAdOnSJYceemgeeuihXHfddbnoooty3HHHrdS8jdX67gEAAAAAAAAACrXddtvlxhtvzKmnnpqzzz47G220Ub761a/moIMOap456aST8vLLL2f8+PFZsGBBdtppp9xyyy3p1q1b88w111yTo446Krvvvns6deqUffbZJxdffHHz/l69emXGjBmZMGFCttlmm6y33nqZOHFixo8fv1LzVm1tbW1//tv+y9J9yFF1jwAAAECLmT/n0rpHAAAAoMV0swKgKFuffXvdI7Ssn0z8SN0jvGP8awIAAAAAAAAAalZVVd0jUKBOdQ8AAAAAAAAAAMDqJwoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECNugcAAAAAAAAAgFZXVXVPQIlsCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQI26BwAAAAAAAACAVldVVd0jUCCbQgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAjboHAAAAAAAAAIBWV1V1T0CJbAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECNugcAAAAAAAAAgFZXVVXdI1Agm0IAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQI26BwAAAAAAAACAVldVdU9AiWwKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAjboHAAAAAAAAAIBWV1VV3SNQIJtCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECNugcAAAAAAAAAgFZXVXVPQIlsCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQI26BwAAAAAAAACAVldVVd0jUCCbQgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAoUKPuAQAAAAAAAACg1VVV3RNQIptCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECNugcAAAAAAAAAgFZXVVXdI1Agm0IAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKFCj7gEAAAAAAAAAoNVVVVX3CBTIphAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAoUKPuAQAAAAAAAACg1VVV3RNQIptCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAAChQo+4BAAAAAAAAAKDVVVVV9wgUyKYQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKFCj7gEAAAAAAAAAoNVVVd0TUCKbQgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAoUKPuAQAAAAAAAACg1VVVVfcIFMimEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAA4P+zd/9Bdtf1vcff383JriFhE8KQH0wam04sYQsoxA7Zaa2FRnZwRTHBVoehWGCmZBY0CQYuDuZaHAxNa1MUYlphCNNOoIBihQzEFEgYzFIxGg1wYaqkLk7YDVjDAk02YbP3jzs5l5Uf7iEbvvT9fTxmzgjn+zknr9WMfz3nswmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkVCt7AAAAAAAAAABUXVGUvYCM3BQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkVCt7AAAAAAAAAABUXVNRlD2BhNwUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABKqlT0AAAAAAAAAAKquKMpeQEZuCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABKqlT0AAAAAAAAAAKquKIqyJ5CQm0IAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQrWyBwAAAAAAAABA1TUVZS8gIzeFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACdXKHgAAAAAAAAAAVVcURdkTSMhNIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACChWtkDAAAAAAAAAKDqiqLsBWTkphAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACChWtkDAAAAAAAAAKDqiijKnkBCbgoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACdXKHgAAAAAAAAAAVddUlL2AjNwUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABKqlT0AAAAAAAAAAKquKIqyJ5CQm0IAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICEamUPAAAAAAAAAICqK4qyF5CRm0IAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQrWyBwAAAAAAAABA1TUVRdkTSMhNIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEK1sgcAAAAAAAAAQNUVRdkLyMhNIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACChWtkDAAAAAAAAAKDqiqIoewIJuSkEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAj8MUvfjGKohj2mjNnTv353r17o6urK44++uiYMGFCLFy4MPr6+oZ9R09PT3R2dsYRRxwRU6ZMiWXLlsUrr7wy7MymTZvilFNOiZaWlpg9e3asXbv2Le0VhQAAAAAAAAAAjNDv/d7vxbPPPlt/Pfzww/VnS5YsibvvvjvuuOOO2Lx5c+zcuTMWLFhQfz44OBidnZ2xb9++2LJlS9xyyy2xdu3aWL58ef3Mjh07orOzM0477bTYtm1bLF68OC666KLYsGFDw1trh/ajAgAAAAAAAABUR61Wi2nTpr3m/RdeeCFuuummWLduXZx++ukREXHzzTfH8ccfH4888kjMmzcvvvvd78YTTzwR//Zv/xZTp06N973vffGlL30prrjiivjiF78Yzc3NsWbNmpg1a1Z85StfiYiI448/Ph5++OFYtWpVdHR0NLTVTSEAAAAAAAAAQGUNDAxEf3//sNfAwMAbnv+P//iPOPbYY+N3fud34txzz42enp6IiNi6dWvs378/5s+fXz87Z86cmDlzZnR3d0dERHd3d5x44okxderU+pmOjo7o7++Pxx9/vH7m1d9x8MzB72iEKAQAAAAAAAAASlYUXmW9VqxYERMnThz2WrFixev+73TqqafG2rVr47777ouvf/3rsWPHjvjABz4QL774YvT29kZzc3NMmjRp2GemTp0avb29ERHR29s7LAg5+Pzgszc709/fH3v27Gno75VfHwMAAAAAAAAAVNaVV14ZS5cuHfZeS0vL654988wz6/980kknxamnnhrvfve74/bbb49x48Yd1p1vhZtCAAAAAAAAAIDKamlpidbW1mGvN4pCft2kSZPid3/3d+OnP/1pTJs2Lfbt2xe7d+8edqavry+mTZsWERHTpk2Lvr6+1zw/+OzNzrS2tjYcnohCAAAAAAAAAADegpdeeil+9rOfxfTp02Pu3LkxduzYuP/+++vPn3rqqejp6Yn29vaIiGhvb4/t27fHrl276mc2btwYra2t0dbWVj/z6u84eObgdzRCFAIAAAAAAAAAMAKf+9znYvPmzfGf//mfsWXLlvj4xz8eY8aMiU996lMxceLEuPDCC2Pp0qXx4IMPxtatW+Mv/uIvor29PebNmxcREWeccUa0tbXFeeedFz/+8Y9jw4YNcdVVV0VXV1f9dpKLL744nn766bj88svjySefjNWrV8ftt98eS5YsaXhvbVR/egAAAAAAAACApH7xi1/Epz71qfjlL38ZxxxzTPzhH/5hPPLII3HMMcdERMSqVauiqakpFi5cGAMDA9HR0RGrV6+uf37MmDFxzz33xKJFi6K9vT3Gjx8f559/flx99dX1M7NmzYr169fHkiVL4rrrrosZM2bEjTfeGB0dHQ3vLYaGhoYO/cd+Zxl38iVlTwAAAKBifvXo9WVPAAAAoGLe5QqAVD6x9odlT6isOz59StkTDhv/NwEAAAAAAAAAJWsqirInkFBT2QMAAAAAAAAAABh9ohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQUK3sAQAAAAAAAABQdUXZA0jJTSEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgoVrZAwAAAAAAAACg6oqiKHsCCbkpBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACRUK3sAAAAAAAAAAFRdU1H2AjJyUwgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJBQrewBAAAAAAAAAFB1RVGUPYGE3BQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEqqVPQAAAAAAAAAAqq4oyl5ARm4KAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEqqVPQAAAAAAAAAAqq4oirInkJCbQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCtbIHAAAAAAAAAEDVNRVlLyAjN4UAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJ1coeAAAAAAAAAABVVxRF2RNIyE0hAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAIKFa2QMAAAAAAAAAoOqKsgeQkptCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEK1sgcAAAAAAAAAQNU1FUXZE0jITSEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCtbIHAAAAAAAAAEDVFUXZC8jITSEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgoVrZAwAAAAAAAACg6oqiKHsCCbkpBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASKhW9gAAAAAAAAAAqLqiKHsBGbkpBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACRUK3sAAAAAAAAAAFRdU1GUPYGE3BQCAAAAAAAAAJCQKAQAAAAAAAAAIKER/fqY73znOyP+wo9+9KNveQwAAAAAAAAAAKNjRFHI2WefPaIvK4oiBgcHD2UPAAAAAAAAAACjYERRyIEDBw73DgAAAAAAAAAARlFT2QMAAAAAAAAAABh9I7op5Ne9/PLLsXnz5ujp6Yl9+/YNe/aZz3xmVIYBAAAAAAAAAPDWNRyF/OhHP4oPf/jD8d///d/x8ssvx+TJk+P555+PI444IqZMmSIKAQAAAAAAAIAGFUXZC8io4V8fs2TJkjjrrLPiV7/6VYwbNy4eeeSR+PnPfx5z586Nv/3bvz0cGwEAAAAAAAAAaFDDUci2bdvisssui6amphgzZkwMDAzEb/3Wb8XKlSvj85///OHYCAAAAAAAAABAgxqOQsaOHRtNTf/vY1OmTImenp6IiJg4cWI888wzo7sOAAAAAAAAAIC3pNboB04++eR49NFH4z3veU988IMfjOXLl8fzzz8f//RP/xQnnHDC4dgIAAAAAAAAAECDGr4p5Mtf/nJMnz49IiKuueaaOOqoo2LRokXx3HPPxT/+4z+O+kAAAAAAAAAAABrX8E0h73//++v/PGXKlLjvvvtGdRAAAAAAAAAAAIeu4SgEAAAAAAAAABhdRVGUPYGEGo5CZs2a9aZ/GZ9++ulDGgQAAAAAAAAAwKFrOApZvHjxsH/fv39//OhHP4r77rsvli1bNlq7AAAAAAAAAAA4BA1HIZ/97Gdf9/0bbrghfvCDHxzyIAAAAAAAAAAADl3TaH3RmWeeGd/85jdH6+sAAAAAAAAAADgEoxaF3HnnnTF58uTR+joAAAAAAAAAAA5Bw78+5uSTT46iKOr/PjQ0FL29vfHcc8/F6tWrR3UcAAAAAAAAAABvTcNRyMc+9rFhUUhTU1Mcc8wx8cd//McxZ86cUR0HAAAAAAAAAMBbUwwNDQ2VPWK07d4zWPYEAAAAKmb6/OVlTwAAAKBi9nzvmrInMIouvev/lD2hsr728ePLnnDYNDX6gTFjxsSuXbte8/4vf/nLGDNmzKiMAgAAAAAAAADg0DQchbzRxSIDAwPR3Nx8yIMAAAAAAAAAADh0tZEe/OpXvxoREUVRxI033hgTJkyoPxscHIyHHnoo5syZM/oLAQAAAAAAAABo2IijkFWrVkXE/7spZM2aNcN+VUxzc3P89m//dqxZs2b0FwIAAAAAAAAA0LARRyE7duyIiIjTTjstvvWtb8VRRx112EYBAAAAAAAAAHBoRhyFHPTggw8ejh0AAAAAAAAAAIyipkY/sHDhwvjrv/7r17y/cuXK+MQnPjEqowAAAAAAAACgSoqi8CrplVnDUchDDz0UH/7wh1/z/plnnhkPPfTQqIwCAAAAAAAAAODQNByFvPTSS9Hc3Pya98eOHRv9/f2jMgoAAAAAAAAAgEPTcBRy4oknxr/8y7+85v3bbrst2traRmUUAAAAAAAAAACHptboB77whS/EggUL4mc/+1mcfvrpERFx//33x7p16+LOO+8c9YEAAAAAAAAAADSu4SjkrLPOim9/+9vx5S9/Oe68884YN25cvPe9740HHnggJk+efDg2AgAAAAAAAADQoIajkIiIzs7O6OzsjIiI/v7+uPXWW+Nzn/tcbN26NQYHB0d1IAAAAAAAAAAAjXtLUUhExEMPPRQ33XRTfPOb34xjjz02FixYEDfccMNobgMAAAAAAACASmgqyl5ARg1FIb29vbF27dq46aabor+/P/70T/80BgYG4tvf/na0tbUdro0AAAAAAAAAADSoaaQHzzrrrDjuuOPiJz/5Sfz93/997Ny5M772ta8dzm0AAAAAAAAAALxFI74p5N57743PfOYzsWjRonjPe95zODcBAAAAAAAAAHCIRnxTyMMPPxwvvvhizJ07N0499dS4/vrr4/nnnz+c2wAAAAAAAAAAeItGHIXMmzcvvvGNb8Szzz4bf/mXfxm33XZbHHvssXHgwIHYuHFjvPjii4dzJwAAAAAAAAAADRhxFHLQ+PHj44ILLoiHH344tm/fHpdddllce+21MWXKlPjoRz96ODYCAAAAAAAAANCghqOQVzvuuONi5cqV8Ytf/CJuvfXW0doEAAAAAAAAAMAhqo3Gl4wZMybOPvvsOPvss0fj6wAAAAAAAACgUpqKsheQ0SHdFAIAAAAAAAAAwDuTKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEqqVPQAAAAAAAAAAqq4oirInkJCbQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIRqZQ8AAAAAAAAAgKprKspeQEZuCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJ1coeAAAAAAAAAABVVxRlLyAjN4UAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJ1coeAAAAAAAAAABV11QUZU8gITeFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIRqZQ8AAAAAAAAAgKpzowOHg79XAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAIKFa2QMAAAAAAAAAoOqKouwFZOSmEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAIKFa2QMAAAAAAAAAoOqaiqLsCSTkphAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQUK3sAQAAAAAAAABQdUVR9gIyclMIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQUK3sAQAAAAAAAABQdU1F2QvIyE0hAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAAB4C6699tooiiIWL15cf2/v3r3R1dUVRx99dEyYMCEWLlwYfX19wz7X09MTnZ2dccQRR8SUKVNi2bJl8corrww7s2nTpjjllFOipaUlZs+eHWvXrm14nygEAAAAAAAAAKBBjz76aPzDP/xDnHTSScPeX7JkSdx9991xxx13xObNm2Pnzp2xYMGC+vPBwcHo7OyMffv2xZYtW+KWW26JtWvXxvLly+tnduzYEZ2dnXHaaafFtm3bYvHixXHRRRfFhg0bGtooCgEAAAAAAAAAaMBLL70U5557bnzjG9+Io446qv7+Cy+8EDfddFP83d/9XZx++ukxd+7cuPnmm2PLli3xyCOPRETEd7/73XjiiSfin//5n+N973tfnHnmmfGlL30pbrjhhti3b19ERKxZsyZmzZoVX/nKV+L444+PSy65JM4555xYtWpVQztFIQAAAAAAAABQsqai8CrpNTAwEP39/cNeAwMDb/q/V1dXV3R2dsb8+fOHvb9169bYv3//sPfnzJkTM2fOjO7u7oiI6O7ujhNPPDGmTp1aP9PR0RH9/f3x+OOP18/8+nd3dHTUv2PEf68aOg0AAAAAAAAAkMiKFSti4sSJw14rVqx4w/O33XZb/PCHP3zdM729vdHc3ByTJk0a9v7UqVOjt7e3fubVQcjB5wefvdmZ/v7+2LNnz4h/ttqITwIAAAAAAAAAJHPllVfG0qVLh73X0tLyumefeeaZ+OxnPxsbN26Md73rXW/HvEPiphAAAAAAAAAAoLJaWlqitbV12OuNopCtW7fGrl274pRTTolarRa1Wi02b94cX/3qV6NWq8XUqVNj3759sXv37mGf6+vri2nTpkVExLRp06Kvr+81zw8+e7Mzra2tMW7cuBH/bKIQAAAAAAAAAIAR+JM/+ZPYvn17bNu2rf56//vfH+eee279n8eOHRv3339//TNPPfVU9PT0RHt7e0REtLe3x/bt22PXrl31Mxs3bozW1tZoa2urn3n1dxw8c/A7RsqvjwEAAAAAAAAAGIEjjzwyTjjhhGHvjR8/Po4++uj6+xdeeGEsXbo0Jk+eHK2trXHppZdGe3t7zJs3LyIizjjjjGhra4vzzjsvVq5cGb29vXHVVVdFV1dX/YaSiy++OK6//vq4/PLL44ILLogHHnggbr/99li/fn1De0UhAAAAAAAAAACjZNWqVdHU1BQLFy6MgYGB6OjoiNWrV9efjxkzJu65555YtGhRtLe3x/jx4+P888+Pq6++un5m1qxZsX79+liyZElcd911MWPGjLjxxhujo6OjoS3F0NDQ0Kj9ZO8Qu/cMlj0BAACAipk+f3nZEwAAAKiYPd+7puwJjKKrN/607AmVtfxDs8uecNi4KQQAAAAAAAAASlYUZS8go6ayBwAAAAAAAAAAMPpEIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQUK3sAQAAAAAAAABQdU1F2QvIyE0hAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQrWyBwAAAAAAAABA1RVRlD2BhNwUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABKqlT0AAAAAAAAAAKquqSh7ARm5KQQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkVCt7AAAAAAAAAABUXVNR9gIyclMIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQUK3sAQAAAAAAAABQdUVRlD2BhNwUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABKqlT0AAAAAAAAAAKquqSh7ARm5KQQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEioVvYAAAAAAAAAAKi6oih7ARm5KQQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkVCt7AAAAAAAAAABUXVNRlD2BhNwUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJFQrewAAAAAAAAAAVF1TUfYCMnJTCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEioVvYAAAAAAAAAAKi6oih7ARm5KQQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEioVvYAAAAAAAAAAKi6pijKnkBCbgoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACdXKHgAAAAAAAAAAVVcUZS8gIzeFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIRqZQ8AAAAAAAAAgKprKspeQEZuCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABKqlT0AAAAAAAAAAKquqSjKnkBCbgoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACdXKHgAAAAAAAAAAVVcUZS8gIzeFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACdXKHgAAAAAAAAAAVddUFGVPICE3hQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICEamUPAAAAAAAAAICqK4qyF5CRm0IAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICEamUPAAAAAAAAAICqc6MDh4O/VwAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACChWtkDAAAAAAAAAKDqiqIoewIJuSkEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJFQrewAAAAAAAAAAVF1R9gBSclMIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQUK3sAQAAAAAAAABQdU1FUfYEEnJTCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEioVvYAAAAAAAAAAKi6ouwBpOSmEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAIKFa2QMAAAAAAAAAoOqKouwFZOSmEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJBQrewBAAAAAAAAAFB1RVGUPYGE3BQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkVCt7AAAAAAAAAABUnRsdOBz8vQIAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJ1coeAAAAAAAAAABVVxRF2RNIyE0hAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQrWyBwAAAAAAAABA1RVlDyAlN4UAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhGplDwAAAAAAAACAqiuKouwJJOSmEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJBQrewBAAAAAAAAAFB1bnTgcPD3CgAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAAI/D1r389TjrppGhtbY3W1tZob2+Pe++9t/5879690dXVFUcffXRMmDAhFi5cGH19fcO+o6enJzo7O+OII46IKVOmxLJly+KVV14ZdmbTpk1xyimnREtLS8yePTvWrl37lvaKQgAAAAAAAAAARmDGjBlx7bXXxtatW+MHP/hBnH766fGxj30sHn/88YiIWLJkSdx9991xxx13xObNm2Pnzp2xYMGC+ucHBwejs7Mz9u3bF1u2bIlbbrkl1q5dG8uXL6+f2bFjR3R2dsZpp50W27Zti8WLF8dFF10UGzZsaHhvMTQ0NHToP/Y7y+49g2VPAAAAoGKmz1/+mw8BAADAKNrzvWvKnsAo+taPny17QmUteO/0Q/r85MmT42/+5m/inHPOiWOOOSbWrVsX55xzTkREPPnkk3H88cdHd3d3zJs3L+699974yEc+Ejt37oypU6dGRMSaNWviiiuuiOeeey6am5vjiiuuiPXr18djjz1W/zM++clPxu7du+O+++5raJubQgAAAAAAAAAAGjQ4OBi33XZbvPzyy9He3h5bt26N/fv3x/z58+tn5syZEzNnzozu7u6IiOju7o4TTzyxHoRERHR0dER/f3/9tpHu7u5h33HwzMHvaETtrfxgAAAAAAAAAMDoKYqi7AmVNTAwEAMDA8Pea2lpiZaWltc9v3379mhvb4+9e/fGhAkT4q677oq2trbYtm1bNDc3x6RJk4adnzp1avT29kZERG9v77Ag5ODzg8/e7Ex/f3/s2bMnxo0bN+KfzU0hAAAAAAAAAEBlrVixIiZOnDjstWLFijc8f9xxx8W2bdvi3//932PRokVx/vnnxxNPPPE2Lh45N4UAAAAAAAAAAJV15ZVXxtKlS4e990a3hERENDc3x+zZsyMiYu7cufHoo4/GddddF3/2Z38W+/bti927dw+7LaSvry+mTZsWERHTpk2L73//+8O+r6+vr/7s4H8efO/VZ1pbWxu6JSTCTSEAAAAAAAAAQIW1tLREa2vrsNebRSG/7sCBAzEwMBBz586NsWPHxv33319/9tRTT0VPT0+0t7dHRER7e3ts3749du3aVT+zcePGaG1tjba2tvqZV3/HwTMHv6MRbgoBAAAAAAAAABiBK6+8Ms4888yYOXNmvPjii7Fu3brYtGlTbNiwISZOnBgXXnhhLF26NCZPnhytra1x6aWXRnt7e8ybNy8iIs4444xoa2uL8847L1auXBm9vb1x1VVXRVdXVz1Eufjii+P666+Pyy+/PC644IJ44IEH4vbbb4/169c3vFcUAgAAAAAAAAAwArt27Yo///M/j2effTYmTpwYJ510UmzYsCE+9KEPRUTEqlWroqmpKRYuXBgDAwPR0dERq1evrn9+zJgxcc8998SiRYuivb09xo8fH+eff35cffXV9TOzZs2K9evXx5IlS+K6666LGTNmxI033hgdHR0N7y2GhoaGDv3HfmfZvWew7AkAAABUzPT5y8ueAAAAQMXs+d41ZU9gFN31k96yJ1TWx0+aVvaEw8ZNIQAAAAAAAABQsqLsAaTUVPYAAAAAAAAAAABGnygEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJFQrewAAAAAAAAAAVF1RlL2AjNwUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABKqlT0AAAAAAAAAAKquKYqyJ5CQm0IAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICEamUPAAAAAAAAAICqK4qyF5CRm0IAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQrWyBwAAAAAAAABA1RVRlD2BhNwUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABKqlT0AAAAAAAAAAKquKMpeQEZuCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABKqlT0AAAAAAAAAAKquKYqyJ5CQm0IAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQrWyBwAAAAAAAABA1RVF2QvIyE0hAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQrWyBwAAAAAAAABA1RVF2QvIyE0hAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAIKFa2QMAAAAAAAAAoOqKKMqeQEJuCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABKqlT0AAAAAAAAAAKquqSh7ARm5KQQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkVCt7AAAAAAAAAABUXRFF2RNIyE0hAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQrWyBwAAAAAAAABA1RVF2QvIyE0hAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAIKFa2QMAAAAAAAAAoOqKKMqeQEJuCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJ1coeAAAAAAAAAABV11SUvYCM3BQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkVCt7AAAAAAAAAABUXRFF2RNIyE0hAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAIKFa2QMAAAAAAAAAoOqKouwFZOSmEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAIKFa2QMAAAAAAAAAoOqKsgeQkptCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEK1sgcAAAAAAAAAQNU1FUXZE0jITSEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkNA7Ogp55pln4oILLih7BgAAAAAAAADA/zjv6Cjkv/7rv+KWW2550zMDAwPR398/7DUwMPA2LQQAAAAAAAAAeGeqlfmHf+c733nT508//fRv/I4VK1bEX/3VXw1774rPfyH+11X/+5C2AQAAAAAAAMDbpSh7ACkVQ0NDQ2X94U1NTVEURbzZhKIoYnBw8A2fDwwMvOZmkD0HatHS0jJqOwEAAOA3mT5/edkTAAAAqJg937um7AmMokd+urvsCZU1b/aksiccNqX++pjp06fHt771rThw4MDrvn74wx/+xu9oaWmJ1tbWYS9BCAAAAAAAAABQdaVGIXPnzo2tW7e+4fPfdIsIAAAAAAAAAACvr1bmH75s2bJ4+eWX3/D57Nmz48EHH3wbFwEAAAAAAAAA5FBqFPKBD3zgTZ+PHz8+PvjBD75NawAAAAAAAAAA8ij118cAAAAAAAAAAHB4lHpTCAAAAAAAAAAQEUXZA8jITSEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCtbIHAAAAAAAAAEDVFVGUPYGE3BQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEqqVPQAAAAAAAAAAqq4oyl5ARm4KAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAnVyh4AAAAAAAAAAFVXlD2AlNwUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJFQrewAAAAAAAAAAVF5R9gAyclMIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASKhW9gAAAAAAAAAAqLoiirInkJCbQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIRqZQ8AAAAAAAAAgKorirIXkJGbQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCtbIHAAAAAAAAAEDVFWUPICU3hQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAnVyh4AAAAAAAAAAJVXlD2AjNwUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABKqlT0AAAAAAAAAAKquiKLsCSTkphAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAAIzAihUr4vd///fjyCOPjClTpsTZZ58dTz311LAze/fuja6urjj66KNjwoQJsXDhwujr6xt2pqenJzo7O+OII46IKVOmxLJly+KVV14ZdmbTpk1xyimnREtLS8yePTvWrl3b8F5RCAAAAAAAAADACGzevDm6urrikUceiY0bN8b+/fvjjDPOiJdffrl+ZsmSJXH33XfHHXfcEZs3b46dO3fGggUL6s8HBwejs7Mz9u3bF1u2bIlbbrkl1q5dG8uXL6+f2bFjR3R2dsZpp50W27Zti8WLF8dFF10UGzZsaGhvMTQ0NHToP/Y7y+49g2VPAAAAoGKmz1/+mw8BAADAKNrzvWvKnsAo+tHPXyx7QmWd/O4j3/Jnn3vuuZgyZUps3rw5/uiP/iheeOGFOOaYY2LdunVxzjnnRETEk08+Gccff3x0d3fHvHnz4t57742PfOQjsXPnzpg6dWpERKxZsyauuOKKeO6556K5uTmuuOKKWL9+fTz22GP1P+uTn/xk7N69O+67774R73NTCAAAAAAAAACUrCi8ynodihdeeCEiIiZPnhwREVu3bo39+/fH/Pnz62fmzJkTM2fOjO7u7oiI6O7ujhNPPLEehEREdHR0RH9/fzz++OP1M6/+joNnDn7HSNUa/5EAAAAAAAAAAHIYGBiIgYGBYe+1tLRES0vLm37uwIEDsXjx4viDP/iDOOGEEyIiore3N5qbm2PSpEnDzk6dOjV6e3vrZ14dhBx8fvDZm53p7++PPXv2xLhx40b0s7kpBAAAAAAAAACorBUrVsTEiROHvVasWPEbP9fV1RWPPfZY3HbbbW/DyrfGTSEAAAAAAAAAQGVdeeWVsXTp0mHv/aZbQi655JK455574qGHHooZM2bU3582bVrs27cvdu/ePey2kL6+vpg2bVr9zPe///1h39fX11d/dvA/D7736jOtra0jviUkwk0hAAAAAAAAAECFtbS0RGtr67DXG0UhQ0NDcckll8Rdd90VDzzwQMyaNWvY87lz58bYsWPj/vvvr7/31FNPRU9PT7S3t0dERHt7e2zfvj127dpVP7Nx48ZobW2Ntra2+plXf8fBMwe/Y6TcFAIAAAAAAAAAMAJdXV2xbt26+Nd//dc48sgjo7e3NyIiJk6cGOPGjYuJEyfGhRdeGEuXLo3JkydHa2trXHrppdHe3h7z5s2LiIgzzjgj2tra4rzzzouVK1dGb29vXHXVVdHV1VWPUS6++OK4/vrr4/LLL48LLrggHnjggbj99ttj/fr1De0thoaGhkb3v4Ly7d4zWPYEAAAAKmb6/OVlTwAAAKBi9nzvmrInMIq29bxY9oTKet/MI0d8tiiK133/5ptvjk9/+tMREbF379647LLL4tZbb42BgYHo6OiI1atX1381TETEz3/+81i0aFFs2rQpxo8fH+eff35ce+21Uav9/7s9Nm3aFEuWLIknnngiZsyYEV/4whfqf8aI94pCAAAA4NCJQgAAAHi7iUJyEYWUp5Eo5H8avz4GAAAAAAAAAEr2+vdPwKFpKnsAAAAAAAAAAACjTxQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAnVyh4AAAAAAAAAAJVXlD2AjNwUAgAAAAAAAACQkCgEAAAA4P+2d/+xWtf1/8cfb7ziSIggmcBx+KNchpvD1GJspbFOwtqcZK05LbFMV/4oRTNYSy1TSuemJAObJbas6TKZQ6cRDVFnWDjKOSV1OHPzoM2AQQnIOd8/muf7OZ/s84HE3n2e1+12xh/nfb2v63qcw19nu+91AQAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgjptDwAAAAAAAACAbtekaXsCBTkpBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABTUaXsAAAAAAAAAAHS7pml7ARU5KQQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAACio0/YAAAAAAAAAAOh2TdsDKMlJIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQkCgEAAAAAAAAAKCgTtsDAAAAAAAAAKDrNW0PoCInhQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAV12h4AAAAAAAAAAN2uSdP2BApyUggAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoqNP2AAAAAAAAAADodk3T9gIqclIIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKKjT9gAAAAAAAAAA6HZN2wMoyUkhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQZ22BwAAAAAAAABA12vaHkBFTgoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABXXaHgAAAAAAAAAA3a5J0/YECnJSCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUFCn7QEAAAAAAAAA0O2apu0FVOSkEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFBQp+0BAAAAAAAAANDtmrYHUJKTQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAAAAAAAAAgII6bQ8AAAAAAAAAgK7XtD2AipwUAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAArqtD0AAAAAAAAAALpdk6btCRTkpBAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQUKftAQAAAAAAAADQ7Zqm7QVU5KQQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgoE7bAwAAAAAAAACg2zVtD6AkJ4UAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgjptDwAAAAAAAACArte0PYCKnBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAU1Gl7AAAAAAAAAAB0uyZN2xMoyEkhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoKBO2wMAAAAAAAAAoNs1TdsLqMhJIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGdtgcAAAAAAAAAQLdr2h5ASU4KAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAV12h4AAAAAAAAAAF2vaXsAFTkpBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKKjT9gAAAAAAAAAA6HZNmrYnUJCTQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBnbYHAAAAAAAAAEC3a5q2F1CRk0IAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQZ22BwAAAAAAAABAt2vaHkBJTgoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAK6rQ9AAAAAAAAAAC6XdO0vYCKnBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAACuq0PQAAAAAAAAAAaNoeQEFOCgEAAAAAAAAAKEgUAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAArqtD0AAAAAAAAAALpd07S9gIqcFAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAK6rQ9AAAAAAAAAAC6XdP2AEpyUggAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFBQp+0BAAAAAAAAANDtmqbtBVTkpBAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAAOyG1atX5+STT05vb2+apsmyZcuGPT44OJjLL788kyZNyqhRo9LX15dnnnlm2D2vvvpqzjjjjOy///4ZN25czj777GzdunXYPX/4wx/ykY98JPvuu28mT56ca6+99l/aKwoBAAAAAAAAANgN27Zty9SpU7No0aI3ffzaa6/NwoULs2TJkqxZsyajR4/OzJkz89prrw3dc8YZZ+TJJ5/MihUrsnz58qxevTrnnnvu0ONbtmzJSSedlEMPPTRr167NddddlyuvvDI/+MEP9nhvMzg4OLjnP+Z/tk1/29X2BAAAALrMpL7L254AAABAl/nbI1e3PYG96KXNO9qe0LUmjR35Lz2vaZrcfffdmT17dpK/nxLS29ubSy65JJdeemmSZPPmzZkwYUKWLl2a0047LU899VSOOuqo/Pa3v83xxx+fJLn//vvziU98Ii+++GJ6e3uzePHifOMb30h/f39Gjvz7tnnz5mXZsmV5+umn92ijk0IAAAAAAAAAoGWNr9a+tm/fni1btgz7t3379j3+P9ywYUP6+/vT19c3dG3s2LGZNm1aHn300STJo48+mnHjxg0FIUnS19eXESNGZM2aNUP3nHDCCUNBSJLMnDkz69evz1/+8pc92iQKAQAAAAAAAAC61oIFCzJ27Nhh/xYsWLDHr9Pf358kmTBhwrDrEyZMGHqsv78/Bx100LDHO51Oxo8fP+yeN3uN//oeu6uzR3cDAAAAAAAAABQyf/78zJ07d9i1np6eltbsXaIQAAAAAAAAAKBr9fT07JUIZOLEiUmSjRs3ZtKkSUPXN27cmGOOOWbonpdffnnY815//fW8+uqrQ8+fOHFiNm7cOOyeN75/457d5eNjAAAAAAAAAADeosMPPzwTJ07MypUrh65t2bIla9asyfTp05Mk06dPz6ZNm7J27dqhe379619nYGAg06ZNG7pn9erV2blz59A9K1asyJFHHpkDDjhgjzaJQgAAAAAAAAAAdsPWrVuzbt26rFu3LkmyYcOGrFu3Li+88EKapslFF12U73znO7nnnnvyxBNP5Mwzz0xvb29mz56dJJkyZUpmzZqVc845J4899lgeeeSRXHDBBTnttNPS29ubJDn99NMzcuTInH322XnyySdzxx135MYbb/yHj7jZHT4+BgAAAAAAAABgN/zud7/LjBkzhr5/I9SYM2dOli5dmssuuyzbtm3Lueeem02bNuXDH/5w7r///uy7775Dz7n99ttzwQUX5GMf+1hGjBiRT33qU1m4cOHQ42PHjs0vf/nLnH/++TnuuONy4IEH5vLLL8+55567x3ubwcHBwbfw8/5H2vS3XW1PAAAAoMtM6ru87QkAAAB0mb89cnXbE9iL+jfv/N9v4m0xcew72p7wtnFSCAAAAAAAAAC0rWl7ABWNaHsAAAAAAAAAAAB7nygEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAArqtD0AAAAAAAAAALpd0/YASnJSCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAACio0/YAAAAAAAAAAOh2TdP2AipyUggAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFBQp+0BAAAAAAAAANDtmjRtT6AgJ4UAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgjptDwAAAAAAAACArte0PYCKnBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAU1Gl7AAAAAAAAAAB0u6btAZTkpBAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQUKftAQAAAAAAAADQ7Zqm7QVU5KQQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgoE7bAwAAAAAAAACg2zVp2p5AQU4KAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAV12h4AAAAAAAAAAN2uadpeQEVOCgEAAAAAAAAAKEgUAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAV12h4AAAAAAAAAAN2uadpeQEVOCgEAAAAAAAAAKEgUAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFddoeAAAAAAAAAADdrknT9gQKclIIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQUKftAQAAAAAAAADQ7Zqm7QVU5KQQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUFCn7QEAAAAAAAAA0O2atgdQkpNCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgjptDwAAAAAAAACArte0PYCKnBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAACuq0PQAAAAAAAAAAul2Tpu0JFOSkEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoKBO2wMAAAAAAAAAoNs1TdsLqMhJIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQkCgEAAAAAAAAAKCgTtsDAAAAAAAAAKDbNW0PoCQnhQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCOm0PAAAAAAAAAICu17Q9gIqcFAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABTUaXsAAAAAAAAAAHS7Jk3bEyjISSEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgoE7bAwAAAAAAAACg2zVN2wuoyEkhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQc3g4OBg2yMAgP8M27dvz4IFCzJ//vz09PS0PQcAAIDi/B0KAABvL1EIADBky5YtGTt2bDZv3pz999+/7TkAAAAU5+9QAAB4e/n4GAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAQ3p6enLFFVekp6en7SkAAAB0AX+HAgDA26sZHBwcbHsEAAAAAAAAAAB7l5NCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAkSRYtWpTDDjss++67b6ZNm5bHHnus7UkAAAAUtXr16px88snp7e1N0zRZtmxZ25MAAKAkUQgAkDvuuCNz587NFVdckccffzxTp07NzJkz8/LLL7c9DQAAgIK2bduWqVOnZtGiRW1PAQCA0prBwcHBtkcAAO2aNm1aPvjBD+amm25KkgwMDGTy5Mm58MILM2/evJbXAQAAUFnTNLn77rsze/bstqcAAEA5TgoBgC63Y8eOrF27Nn19fUPXRowYkb6+vjz66KMtLgMAAAAAAOCtEIUAQJf785//nF27dmXChAnDrk+YMCH9/f0trQIAAAAAAOCtEoUAAAAAAAAAABQkCgGALnfggQdmn332ycaNG4dd37hxYyZOnNjSKgAAAAAAAN4qUQgAdLmRI0fmuOOOy8qVK4euDQwMZOXKlZk+fXqLywAAAAAAAHgrOm0PAADaN3fu3MyZMyfHH398PvShD+WGG27Itm3b8vnPf77taQAAABS0devWPPvss0Pfb9iwIevWrcv48eNzyCGHtLgMAABqaQYHBwfbHgEAtO+mm27Kddddl/7+/hxzzDFZuHBhpk2b1vYsAAAAClq1alVmzJjxD9fnzJmTpUuX/vsHAQBAUaIQAAAAAAAAAICCRrQ9AAAAAAAAAACAvU8UAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAgD101llnZfbs2UPff/SjH81FF130b9+xatWqNE2TTZs2/dvfGwAAAID/fKIQAAAAyjjrrLPSNE2apsnIkSNzxBFH5Nvf/nZef/31t/V9f/GLX+Sqq67arXuFHAAAAAD8u3TaHgAAAAB706xZs3Lrrbdm+/btue+++3L++efnHe94R+bPnz/svh07dmTkyJF75T3Hjx+/V14HAAAAAPYmJ4UAAABQSk9PTyZOnJhDDz00X/7yl9PX15d77rln6CNfrr766vT29ubII49MkvzpT3/KZz7zmYwbNy7jx4/PKaeckueff37o9Xbt2pW5c+dm3Lhxede73pXLLrssg4ODw97zv398zPbt2/P1r389kydPTk9PT4444oj88Ic/zPPPP58ZM2YkSQ444IA0TZOzzjorSTIwMJAFCxbk8MMPz6hRozJ16tT8/Oc/H/Y+9913X973vvdl1KhRmTFjxrCdAAAAAPDfiUIAAAAobdSoUdmxY0eSZOXKlVm/fn1WrFiR5cuXZ+fOnZk5c2bGjBmThx56KI888kj222+/zJo1a+g5119/fZYuXZof/ehHefjhh/Pqq6/m7rvv/h/f88wzz8zPfvazLFy4ME899VRuvvnm7Lfffpk8eXLuuuuuJMn69evz0ksv5cYbb0ySLFiwID/+8Y+zZMmSPPnkk7n44ovz2c9+Ng8++GCSv8crp556ak4++eSsW7cuX/ziFzNv3ry369cGAAAAQAE+PgYAAICSBgcHs3LlyjzwwAO58MIL88orr2T06NG55ZZbhj425ic/+UkGBgZyyy23pGmaJMmtt96acePGZdWqVTnppJNyww03ZP78+Tn11FOTJEuWLMkDDzzwT9/3j3/8Y+68886sWLEifX19SZL3vOc9Q4+/8VEzBx10UMaNG5fk7yeLXHPNNfnVr36V6dOnDz3n4Ycfzs0335wTTzwxixcvznvf+95cf/31SZIjjzwyTzzxRL73ve/txd8aAAAAAJWIQgAAAChl+fLl2W+//bJz584MDAzk9NNPz5VXXpnzzz8/Rx999FAQkiS///3v8+yzz2bMmDHDXuO1117Lc889l82bN+ell17KtGnThh7rdDo5/vjj/+EjZN6wbt267LPPPjnxxBN3e/Ozzz6bv/71r/n4xz8+7PqOHTvygQ98IEny1FNPDduRZCggAQAAAIA3IwoBAACglBkzZmTx4sUZOXJkent70+n8/z99R48ePezerVu35rjjjsvtt9/+D6/z7ne/+196/1GjRu3xc7Zu3Zokuffee3PwwQcPe6ynp+df2gEAAAAAohAAAABKGT16dI444ojduvfYY4/NHXfckYMOOij777//m94zadKkrFmzJieccEKS5PXXX8/atWtz7LHHvun9Rx99dAYGBvLggw8OfXzMf/XGSSW7du0aunbUUUelp6cnL7zwwj89YWTKlCm55557hl37zW9+87//kAAAAAB0rRFtDwAAAIC2nHHGGTnwwANzyimn5KGHHsqGDRuyatWqfOUrX8mLL76YJPnqV7+a7373u1m2bFmefvrpnHfeedm0adM/fc3DDjssc+bMyRe+8IUsW7Zs6DXvvPPOJMmhhx6apmmyfPnyvPLKK9m6dWvGjBmTSy+9NBdffHFuu+22PPfcc3n88cfz/e9/P7fddluS5Etf+lKeeeaZfO1rX8v69evz05/+NEuXLn27f0UAAAAA/B8mCgEAAKBrvfOd78zq1atzyCGH5NRTT82UKVNy9tln57XXXhs6OeSSSy7J5z73ucyZMyfTp0/PmDFj8slPfvJ/fN3Fixfn05/+dM4777y8//3vzznnnJNt27YlSQ4++OB861vfyrx58zJhwoRccMEFSZKrrroq3/zmN7NgwYJMmTIls2bNyr333pvDDz88SXLIIYfkrrvuyrJlyzJ16tQsWbIk11xzzdv42wEAAADg/7pmcHBwsO0RAAAAAAAAAADsXU4KAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBB/w9f+HEcFSovmgAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["# ✅ استيراد المكتبات\n","# اجرب ال fine tuning for CNN + Bilstm for the all catagories\n","# ✅ استيراد المكتبات\n","#!pip install tensorflow\n","\n","import os\n","import pickle\n","import numpy as np\n","import matplotlib.pyplot as plt\n","import seaborn as sns\n","import pandas as pd\n","from tensorflow.keras.models import load_model\n","from tensorflow.keras.optimizers import Adam\n","from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau\n","from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, precision_score, recall_score, f1_score\n","\n","# ✅ المسارات\n","base_path = \"/content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/\"\n","models_info = {\n"," \"main\": {\"classes\": 22, \"data_file\": \"train_test_data_main-deep-new.pkl\", \"model_file\": \"cnn+bilstm_main_with_attention.h5\"},\n"," \"sub\": {\"classes\": 75, \"data_file\": \"train_test_data_sub-deep-new.pkl\", \"model_file\": \"cnn+bilstm_sub.h5\"},\n"," \"rf\": {\"classes\": 2, \"data_file\": \"train_test_data_rf-deep-new.pkl\", \"model_file\": \"cnn+bilstm_rf.h5\"}\n","}\n","\n","# ✅ دالة الفاين تيونينغ\n","def fine_tune_model(name, classes, data_file, model_file):\n"," print(f\"\\n🚀 بدء Fine-Tuning لموديل {name.upper()}\")\n","\n"," # المسارات\n"," model_path = os.path.join(base_path, model_file)\n"," data_path = os.path.join(base_path, data_file)\n"," fine_tuned_model_path = os.path.join(base_path, f\"CNN + Bilstm_{name}_finetuned1.h5\")\n"," acc_loss_plot_path = os.path.join(base_path, f\"CNN + Bilstm_{name}_finetuned_acc_loss1.png\")\n"," conf_matrix_path = os.path.join(base_path, f\"CNN + Bilstm_{name}_finetuned_conf_matrix1.png\")\n","\n"," # تحميل البيانات\n"," with open(data_path, \"rb\") as f:\n"," X_train, X_test, y_train, y_test = pickle.load(f)\n","\n"," if os.path.exists(fine_tuned_model_path):\n"," print(f\"✅ [LOADED] تم العثور على نموذج Fine-Tuned لموديل {name.upper()}. سيتم تحميله بدون إعادة تدريب.\")\n"," model = load_model(fine_tuned_model_path, compile=False)\n"," model.compile(\n"," optimizer=Adam(learning_rate=0.00005),\n"," loss=\"sparse_categorical_crossentropy\",\n"," metrics=[\"accuracy\"]\n"," )\n"," history = None\n"," else:\n"," model = load_model(model_path, compile=False)\n"," print(f\"✅ تم تحميل النموذج الأساسي لموديل {name.upper()}\")\n","\n"," model.compile(\n"," optimizer=Adam(learning_rate=0.00005),\n"," loss=\"sparse_categorical_crossentropy\",\n"," metrics=[\"accuracy\"]\n"," )\n","\n"," history = model.fit(\n"," X_train, y_train,\n"," validation_data=(X_test, y_test),\n"," epochs=15,\n"," batch_size=64,\n"," callbacks=[ ]\n"," )\n","\n"," model.save(fine_tuned_model_path)\n"," print(f\"✅ تم حفظ النموذج الجديد بعد Fine-Tuning: {fine_tuned_model_path}\")\n","\n"," # التقييم\n"," preds = model.predict(X_test)\n"," preds = np.argmax(preds, axis=1)\n","\n"," print(\"\\n📊 Classification Report:\")\n"," print(classification_report(y_test, preds))\n","\n"," accuracy = accuracy_score(y_test, preds)\n"," precision = precision_score(y_test, preds, average='macro', zero_division=0)\n"," recall = recall_score(y_test, preds, average='macro', zero_division=0)\n"," f1 = f1_score(y_test, preds, average='macro', zero_division=0)\n","\n"," print(f\"\\n🔄 Summary for {name.upper()}:\")\n"," print(f\"✅ Accuracy: {accuracy:.4f}\")\n"," print(f\"✅ Precision: {precision:.4f}\")\n"," print(f\"✅ Recall: {recall:.4f}\")\n"," print(f\"✅ F1-Score: {f1:.4f}\")\n","\n"," # رسم Accuracy & Loss\n"," if history:\n"," plt.figure(figsize=(14, 5))\n"," plt.subplot(1, 2, 1)\n"," plt.plot(history.history['accuracy'], label='Train Accuracy')\n"," plt.plot(history.history['val_accuracy'], label='Val Accuracy', linestyle='--')\n"," plt.title(f\"{name.upper()} Fine-Tuning Accuracy\")\n"," plt.xlabel(\"Epoch\")\n"," plt.ylabel(\"Accuracy\")\n"," plt.legend()\n","\n"," plt.subplot(1, 2, 2)\n"," plt.plot(history.history['loss'], label='Train Loss')\n"," plt.plot(history.history['val_loss'], label='Val Loss', linestyle='--')\n"," plt.title(f\"{name.upper()} Fine-Tuning Loss\")\n"," plt.xlabel(\"Epoch\")\n"," plt.ylabel(\"Loss\")\n"," plt.legend()\n","\n"," plt.tight_layout()\n"," plt.savefig(acc_loss_plot_path, dpi=300)\n"," plt.show()\n","\n"," elif os.path.exists(acc_loss_plot_path):\n"," from PIL import Image\n"," print(f\"✅ عرض رسم Accuracy & Loss المخزن: {acc_loss_plot_path}\")\n"," img = Image.open(acc_loss_plot_path)\n"," plt.figure(figsize=(14, 5))\n"," plt.imshow(img)\n"," plt.axis('off')\n"," plt.title(f\"{name.upper()} Fine-Tuning Accuracy & Loss (Loaded)\")\n"," plt.show()\n"," else:\n"," print(\"⚠️ لا يوجد ملف رسم محفوظ لعرضه.\")\n","\n"," # رسم Confusion Matrix\n"," plt.figure(figsize=(24, 20))\n"," cm = confusion_matrix(y_test, preds)\n"," sns.heatmap(cm, annot=False, fmt=\"d\", cmap=\"Blues\")\n"," plt.title(f\"Confusion Matrix - {name.upper()} Fine-Tuned\")\n"," plt.xlabel(\"Predicted\")\n"," plt.ylabel(\"Actual\")\n"," plt.tight_layout()\n"," plt.savefig(conf_matrix_path, dpi=300)\n"," plt.show()\n","\n","# ✅ تنفيذ Fine-Tuning أو تحميل النماذج الثلاثة\n","for name, info in models_info.items():\n"," fine_tune_model(name, info[\"classes\"], info[\"data_file\"], info[\"model_file\"])\n"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"executionInfo":{"elapsed":94027,"status":"ok","timestamp":1745841137459,"user":{"displayName":"noor alqudah","userId":"09593972035402767777"},"user_tz":-180},"id":"ohhFoHl01c85","outputId":"85856239-1d56-4dae-c8c2-247f991c2b2a"},"outputs":[{"name":"stdout","output_type":"stream","text":["\n","🚀 بدء Fine-Tuning لموديل MAIN\n"]},{"name":"stderr","output_type":"stream","text":["WARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n"]},{"name":"stdout","output_type":"stream","text":["✅ [LOADED] تم العثور على نموذج Fine-Tuned لموديل MAIN. سيتم تحميله بدون إعادة تدريب.\n","\u001b[1m1287/1287\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m14s\u001b[0m 11ms/step\n","\n","📊 Classification Report:\n"," precision recall f1-score support\n","\n"," 0 0.99 1.00 0.99 1871\n"," 1 0.99 1.00 1.00 1871\n"," 2 0.81 0.75 0.78 1872\n"," 3 0.93 0.97 0.95 1872\n"," 4 0.68 0.72 0.70 1872\n"," 5 0.49 0.44 0.46 1871\n"," 6 0.83 0.81 0.82 1872\n"," 7 0.40 0.35 0.38 1872\n"," 8 0.96 0.99 0.98 1871\n"," 9 0.94 0.98 0.96 1872\n"," 10 0.72 0.74 0.73 1872\n"," 11 0.63 0.54 0.58 1871\n"," 12 0.40 0.43 0.41 1872\n"," 13 0.64 0.65 0.64 1871\n"," 14 0.48 0.50 0.49 1872\n"," 15 0.73 0.77 0.75 1871\n"," 16 0.49 0.47 0.48 1872\n"," 17 0.93 0.95 0.94 1872\n"," 18 0.99 1.00 1.00 1872\n"," 19 0.95 0.99 0.97 1872\n"," 20 0.85 0.88 0.87 1871\n"," 21 0.95 0.95 0.95 1872\n","\n"," accuracy 0.77 41176\n"," macro avg 0.76 0.77 0.76 41176\n","weighted avg 0.76 0.77 0.76 41176\n","\n","\n","🔄 Summary for MAIN:\n","✅ Accuracy: 0.7670\n","✅ Precision: 0.7632\n","✅ Recall: 0.7670\n","✅ F1-Score: 0.7646\n","✅ عرض رسم Accuracy & Loss المخزن: /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/main_finetuned_acc_loss.png\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABEkAAAGrCAYAAAA8UcljAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4FFUXwOHfbE/vBQKhBAjSe1N6lyICIqA0EbErVqwUOyiKih92UCnSVQTpIAgCAor0FkoogSSkty33+2PYJSGhChLwvM+zT2DKnTuTsjNnzz1XU0ophBBCCCGEEEIIIf7jDNe7A0IIIYQQQgghhBDFgQRJhBBCCCGEEEIIIZAgiRBCCCGEEEIIIQQgQRIhhBBCCCGEEEIIQIIkQgghhBBCCCGEEIAESYQQQgghhBBCCCEACZIIIYQQQgghhBBCABIkEUIIIYQQQgghhAAkSCKEEEIIIYQQQggBSJBECCHEDaBFixa0aNHienfjmlu5ciWaprFy5crr3RUhLtmMGTMIDg4mIyPjenelSNfi74emaYwcOdLz/4kTJxIdHU1ubu5VPY4QQoh/nwRJhBDiBjdp0iQ0TUPTNNasWVNovVKK0qVLo2kanTt3LrKNlJQUbDYbmqaxc+fOIrcZOHAgvr6+BZa1aNECTdPo0qVLoe0PHjyIpmm8++67Fz0Hd//PfUVGRl5032th4MCB5+1T/tfAgQOvS/+utU8++QRN02jYsOH17soNad26dTRv3hx/f3/Cw8Pp2LEjv/322yXvfzm/O9eb0+lkxIgRPPbYYwX+PpQtW/a8f29uRgMHDiQvL49PP/30endFCCHEP2S63h0QQghxddhsNqZOncptt91WYPmqVauIj4/HarWed9+ZM2d6ghJTpkzh9ddfv6xjz58/n02bNlG3bt0r6jtA27Zt6d+/f4FlXl5eACxevPiK270SQ4cOpU2bNp7/x8XF8eqrr/LAAw/QtGlTz/KYmJiretxmzZqRnZ2NxWK5qu1erilTplC2bFk2bNjAvn37qFChwnXtz43k8OHDtG/fnpCQEEaNGoXL5WLJkiUsW7aMW2+99Xp376r76aef2L17Nw888MD17sp1ZbPZGDBgAOPGjeOxxx5D07Tr3SUhhBBXSIIkQghxk7j99tuZOXMmH374ISbT2T/vU6dOpW7duiQmJp533++++47bb7+dMmXKMHXq1MsKkkRHR5Oens6oUaP48ccfr7j/lSpV4t577y1y3b8dNGjcuDGNGzf2/P+PP/7g1VdfpXHjxuft49VgMBiw2WzXrP1LERcXx9q1a5kzZw5Dhw5lypQpjBgx4rr26XwyMzPx8fG53t0o4OeffyY9PZ1ly5ZRv359AJ5++umbdhjG119/za233kpUVNT17sp116tXL8aMGcOKFSto1arV9e6OEEKIKyTDbYQQ4ibRp08fkpKSWLJkiWdZXl4es2bNom/fvufd7/Dhw6xevZrevXvTu3dvz0PypfLz82PYsGH89NNPbN68+R+dw/mcW1PAXbtjxowZvPHGG5QqVQqbzUbr1q3Zt29fof3Xr19Phw4dCAgIwNvbm+bNm1/W8IeijBw5sshPi93Dnw4ePOhZ5h56sGbNGho0aIDNZqN8+fJ88803BfYtqiZJixYtqFatGjt27KBly5Z4e3sTFRXFmDFjCh370KFDdO3aFR8fH8LDwxk2bBiLFi26rDonU6ZMISgoiE6dOtGzZ0+mTJlS5HYpKSkMGzaMsmXLYrVaKVWqFP379y8QjMvJyWHkyJFUqlQJm81GiRIl6N69O/v37z/v+cLZ4SaTJk3yLHMP99q/fz+33347fn5+3HPPPQCsXr2au+66i+joaKxWK6VLl2bYsGFkZ2cX6veuXbvo1asXYWFheHl5ERsby0svvQTAihUr0DSNuXPnFtpv6tSpaJrGunXrLnj9DAb91kopVWD5hTK5rtTJkycZPHgwERER2Gw2atasyeTJkwttN336dOrWrYufnx/+/v5Ur16d8ePHe9bb7XZGjRpFxYoVsdlshISEcNtttxX4W1KUnJwcfvnllwJZV5fD4XDw2muvERMTg9VqpWzZsrz44ouFAko//PADnTp1omTJklitVmJiYnjttddwOp2F2vzss8+IiYnBy8uLBg0asHr16iKPnZuby4gRI6hQoYLnZ+a5554rdOzc3FyGDRtGWFgYfn5+dO3alfj4+CLbrFu3LsHBwfzwww9XdD2EEEIUDxIkEUKIm0TZsmVp3Lgx06ZN8yxbuHAhqamp9O7d+7z7TZs2DR8fHzp37kyDBg2IiYk574Px+TzxxBMEBQUVKGR4uXJyckhMTCzwutin72+//TZz587lmWee4YUXXuD333/3PDi7LV++nGbNmpGWlsaIESN48803SUlJoVWrVmzYsOGK+3u59u3bR8+ePWnbti3vvfceQUFBDBw4kO3bt19039OnT9OhQwdq1qzJe++9R+XKlXn++edZuHChZ5vMzExatWrF0qVLefzxx3nppZdYu3Ytzz///GX1c8qUKXTv3h2LxUKfPn3Yu3cvGzduLLBNRkYGTZs25aOPPqJdu3aMHz+eBx98kF27dnkeIJ1OJ507d2bUqFHUrVuX9957jyeeeILU1FS2bdt2WX1yczgctG/fnvDwcN5991169OgB6MPFsrKyeOihh/joo49o3749H330UaHhW1u3bqVhw4YsX76cIUOGMH78eLp168ZPP/0E6AGp0qVLF/nzP2XKFGJiYgpkGBWle/fuBAQE8Oyzz5KXl3dF53kpsrOzadGiBd9++y333HMPY8eOJSAggIEDBxYIgCxZsoQ+ffoQFBTEO++8w9tvv02LFi0KBAlHjhzJqFGjaNmyJR9//DEvvfQS0dHRFw16btq0iby8POrUqXNF53D//ffz6quvUqdOHd5//32aN2/OW2+9Vejv1aRJk/D19eWpp55i/Pjx1K1bl1dffZXhw4cX2O7LL79k6NChREZGMmbMGG699Va6du3KkSNHCmzncrno2rUr7777Ll26dOGjjz6iW7duvP/++9x9992F+vjBBx/Qrl073n77bcxmM506dTrvOdWpU+cfB2CFEEJcZ0oIIcQN7euvv1aA2rhxo/r444+Vn5+fysrKUkopddddd6mWLVsqpZQqU6aM6tSpU6H9q1evru655x7P/1988UUVGhqq7HZ7ge0GDBigfHx8Cixr3ry5qlq1qlJKqVGjRilAbdq0SSmlVFxcnALU2LFjL3oOQJGvr7/+2nOc5s2be7ZfsWKFAtQtt9yicnNzPcvHjx+vAPX3338rpZRyuVyqYsWKqn379srlcnm2y8rKUuXKlVNt27a9aN+UUmrjxo0F+qOUUiNGjFBFvY26vx9xcXGeZWXKlFGA+vXXXz3LTp48qaxWq3r66acLndeKFSs8y5o3b64A9c0333iW5ebmqsjISNWjRw/Psvfee08Bat68eZ5l2dnZqnLlyoXaPJ8//vhDAWrJkiVKKf36lSpVSj3xxBMFtnv11VcVoObMmVOoDfd1/uqrrxSgxo0bd95tijpfpc7+7OS/3gMGDFCAGj58eKH23D/v+b311ltK0zR16NAhz7JmzZopPz+/Asvy90cppV544QVltVpVSkqKZ9nJkyeVyWRSI0aMKHScc61du1YFBQUpi8Wi7rrrLuVwOC66z7ku5Xfngw8+UID67rvvPMvy8vJU48aNla+vr0pLS1NKKfXEE08of3//C/ajZs2aRf5tuJgvvviiwO9bfuf7e+P2559/KkDdf//9BZY/88wzClDLly/3LCvq+zt06FDl7e2tcnJylFL6uYeHh6tatWoV+Jvw2WefKaDA349vv/1WGQwGtXr16gJtTpw4UQHqt99+K9DHhx9+uMB2ffv2VUCRPw8PPPCA8vLyOu95CyGEKP4kk0QIIW4ivXr1Ijs7m/nz55Oens78+fMvONRm69at/P333/Tp08ezrE+fPiQmJrJo0aLLOrY7m2TUqFFX1Pc77riDJUuWFHi1b9/+gvsMGjSoQL0Sd1HVAwcOAPDnn3+yd+9e+vbtS1JSkidDJTMzk9atW/Prr7/icrmuqL+Xq0qVKgWKvoaFhREbG+vp64X4+voWqIVisVho0KBBgX1/+eUXoqKi6Nq1q2eZzWZjyJAhl9zHKVOmEBERQcuWLQF91qG7776b6dOnFxjaMHv2bGrWrMmdd95ZqA33EKTZs2cTGhrKY489dt5trsRDDz1UaJm7wC/oGTWJiYk0adIEpRRbtmwB4NSpU/z666/cd999REdHn7c//fv3Jzc3l1mzZnmWff/99zgcjovWozl06BC33347gwcPZt68ecydO5chQ4YUGHozdOhQSpcufXknXYQFCxYQGRlZ4HfXbDbz+OOPk5GRwapVqwAIDAwkMzPzgkNnAgMD2b59O3v37r2sPiQlJQEQFBR0Rf0HeOqppwosf/rppwG9totb/u9veno6iYmJNG3alKysLHbt2gXodYNOnjzJgw8+WOBvwsCBAwkICChwjJkzZ3LLLbdQuXLlAplr7joiK1asKNDHxx9/vMD+Tz755HnPKygoiOzsbLKysi5+EYQQQhRLUrhVCCFuImFhYbRp04apU6eSlZWF0+mkZ8+e593+u+++w8fHh/Lly3tqedhsNsqWLcuUKVMumFZ+roCAAJ588klGjBjBli1bLvvBqVSpUpdd2+Dch133MU+fPg3geegbMGDAedtITU3Fx8eH5OTkAsvDwsIwGo2X1Z/L6Svo/XX39UJKlSpVKLAQFBTE1q1bPf8/dOgQMTExhba71JlpnE4n06dPp2XLlsTFxXmWN2zYkPfee49ly5bRrl07APbv3+8Z6nI++/fvJzY2tkAR4X/KZDJRqlSpQssPHz7Mq6++yo8//ljoeqampgJnA2fVqlW74DEqV65M/fr1mTJlCoMHDwb04FGjRo0uei3feustDAYDr7/+Olarla+++ooBAwbg5+fnGQKzbdu2qzK18qFDh6hYsaKnBorbLbfc4lkP8PDDDzNjxgw6duxIVFQU7dq1o1evXnTo0MGzz+jRo7njjjuoVKkS1apVo0OHDvTr148aNWpcUl/UOfVXLrX/BoOh0DWNjIwkMDDQ03+A7du38/LLL7N8+XLS0tIKbO/+/rq3r1ixYoH1ZrOZ8uXLF1i2d+9edu7cSVhYWJF9O3nyZIE+njuLVWxs7HnPy30tZHYbIYS4cUmQRAghbjJ9+/ZlyJAhnDhxgo4dOxIYGFjkdkoppk2bRmZmJlWqVCm0/uTJk2RkZODr63vJx37iiSd4//33GTVqFB988MEVnsGlO18Qw/2g4s4SGTt2LLVq1SpyW19fX3777TdP9oRbXFwcZcuWPe+xz/cQVFQxyUvp64X8k30v1fLlyzl+/DjTp09n+vTphdZPmTLFEyS5Wi73Glqt1kJBAafTSdu2bUlOTub555+ncuXK+Pj4cPToUQYOHHhFmUL9+/fniSeeID4+ntzcXH7//Xc+/vjji+63du1aatWq5SnS2q9fPxISEnj22Wfx8/Ojd+/erFu3jtmzZ192n65UeHg4f/75J4sWLWLhwoUsXLiQr7/+mv79+3uKvDZr1oz9+/fzww8/sHjxYr744gvef/99Jk6cyP3333/etkNCQgA9KFlU8OpSXCyYkJKSQvPmzfH392f06NHExMRgs9nYvHkzzz///BV9f10uF9WrV2fcuHFFrv8nmT6nT5/G29u7QPaLEEKIG4sESYQQ4iZz5513MnToUH7//Xe+//778263atUq4uPjGT16tOfTZ7fTp0/zwAMPMG/evMua8tadTTJy5MgLZm/8W9yfAPv7+18wS6VmzZqFhiNERkZesG131kpKSkqBQFT+T8D/TWXKlGHHjh0opQo8eBY1209RpkyZQnh4OBMmTCi0bs6cOcydO5eJEyfi5eVFTEzMRYuvxsTEsH79eux2O2azucht8l/D/C7nGv7999/s2bOHyZMnFyjUeu73051NcClFY3v37s1TTz3FtGnTyM7Oxmw2FyroWRRN0woVCX3mmWdISEjgjTfeYMqUKdSuXZs77rjjUk7tgsqUKcPWrVtxuVwFAkfu4SdlypTxLLNYLHTp0oUuXbrgcrl4+OGH+fTTT3nllVc8mRzBwcEMGjSIQYMGkZGRQbNmzRg5cuQFgySVK1cG9IBi9erVL7v/LpeLvXv3Fvj7k5CQQEpKiqf/K1euJCkpiTlz5tCsWTPPdvmznfKf7969ewtMv2u324mLi6NmzZqeZTExMfz111+0bt36gkEadx/dWVFuu3fvPu8+cXFxhf6eCiGEuLFITRIhhLjJ+Pr68r///Y+RI0fSpUuX827nHmrz7LPP0rNnzwKvIUOGULFixcue5Qb08fqBgYGMHj36n5zGVVG3bl1iYmJ49913ycjIKLT+1KlTgP6w3qZNmwIvm812wbbdAZhff/3VsywzM7PIKVj/De3bt+fo0aP8+OOPnmU5OTl8/vnnF903OzubOXPm0Llz50I/Cz179uTRRx8lPT3d03aPHj3466+/ipwq153d0qNHDxITE4vMwHBvU6ZMGYxGY4FrCPDJJ59c8nm7s2zyZ9UopQrM8AL68KlmzZrx1Vdfcfjw4SL74xYaGkrHjh357rvvmDJlCh06dCA0NPSifWnTpg179+7l22+/LbD87bffpkqVKhw8eJCuXbsWyoa5ErfffjsnTpwoEAh1OBx89NFH+Pr60rx5c+Bs3RA3g8HgGUbjnj3q3G18fX2pUKHCRWeXqlu3LhaLhT/++OOK+g8UyjhzZ3e4h/oV9f3Ny8sr9DNSr149wsLCmDhxYoFZhSZNmlQoCNerVy+OHj1a5O9GdnY2mZmZAHTs2BGADz/8sMA2F8qS27x5M02aNDnveiGEEMWfZJIIIcRN6GJZHLm5ucyePZu2bdueNxjQtWtXxo8fz8mTJwkPD7/kYwcEBPDEE09ccQHXq8lgMPDFF1/QsWNHqlatyqBBg4iKiuLo0aOsWLECf39/z/Svl6tdu3ZER0czePBgnn32WYxGI1999RVhYWGFHsL/DUOHDuXjjz+mT58+PPHEE5QoUYIpU6Z4vr8X+sT8xx9/JD09vUDR1/waNWpEWFgYU6ZM4e677+bZZ59l1qxZ3HXXXdx3333UrVuX5ORkfvzxRyZOnEjNmjXp378/33zzDU899RQbNmygadOmZGZmsnTpUh5++GHuuOMOAgICuOuuu/joo4/QNI2YmBjmz5/vqQlxKSpXrkxMTAzPPPMMR48exd/fn9mzZxdZ6+XDDz/ktttuo06dOjzwwAOUK1eOgwcP8vPPP/Pnn38W2LZ///6eej6vvfbaJfXlhRdeYN68eQwYMIAlS5bQpEkTMjIymDZtGnFxcdSvX5/XX3+dxo0bX9LQpWXLlpGTk1Noebdu3XjggQf49NNPGThwIJs2baJs2bLMmjWL3377jQ8++AA/Pz9An8I2OTmZVq1aUapUKQ4dOsRHH31ErVq1PBkPVapUoUWLFtStW5fg4GD++OMPZs2axaOPPnrB/tlsNtq1a8fSpUuLDIru27eP119/vdDy2rVr06lTJwYMGMBnn33mGVKzYcMGJk+eTLdu3TzD35o0aUJQUBADBgzg8ccfR9M0vv3220KBLbPZzOuvv87QoUNp1aoVd999N3FxcXz99deFapL069ePGTNm8OCDD7JixQpuvfVWnE4nu3btYsaMGSxatIh69epRq1Yt+vTpwyeffEJqaipNmjRh2bJl583O2rRpE8nJyVclU0gIIcR19O9PqCOEEOJqyj8F8IXkn5Jz9uzZClBffvnlebdfuXKlAtT48eOVUhefAji/06dPq4CAgMuaAviRRx457/rzTQE8c+bMAtsVNXWsUkpt2bJFde/eXYWEhCir1arKlCmjevXqpZYtW3bRvilV9BTASim1adMm1bBhQ2WxWFR0dLQaN27ceacALmo61POd17lTABd1jQcMGKDKlClTYNmBAwdUp06dlJeXlwoLC1NPP/2053v9+++/n/f8unTpomw2m8rMzDzvNgMHDlRms1klJiYqpZRKSkpSjz76qIqKilIWi0WVKlVKDRgwwLNeKX3q1pdeekmVK1dOmc1mFRkZqXr27Kn279/v2ebUqVOqR48eytvbWwUFBamhQ4eqbdu2FTkF8Lk/f247duxQbdq0Ub6+vio0NFQNGTJE/fXXX0V+z7Zt26buvPNOFRgYqGw2m4qNjVWvvPJKoTZzc3NVUFCQCggIUNnZ2ee9LudKTExUjz76qCpdurQymUwqMjJS9e/fX+3atUulpaWpypUrK39//yKnzXVz/xyf7/Xtt98qpZRKSEhQgwYNUqGhocpisajq1asXOt9Zs2apdu3aqfDwcM/P6dChQ9Xx48c927z++uuqQYMGKjAwUHl5eanKlSurN954Q+Xl5V30fOfMmaM0TVOHDx8usNw97XVRr8GDByullLLb7WrUqFGen4/SpUurF154wTOtr9tvv/2mGjVqpLy8vFTJkiXVc889pxYtWlTk9NGffPKJKleunLJarapevXrq119/LfR7ppQ+ZfA777yjqlatqqxWqwoKClJ169ZVo0aNUqmpqZ7tsrOz1eOPP65CQkKUj4+P6tKlizpy5EiRUwA///zzKjo6usCU0kIIIW48mlJXseqbEEIIIYqVDz74gGHDhhEfH09UVNT17s4Nw+FwULJkSbp06cKXX355vbtTbDmdTqpUqUKvXr0uOePmZpSbm0vZsmUZPnw4TzzxxPXujhBCiH9AapIIIYQQN4ns7OwC/8/JyeHTTz+lYsWKEiC5TPPmzePUqVMFisGKwoxGI6NHj2bChAlF1v35r/j6668xm808+OCD17srQggh/iHJJBFCCCFuEh07diQ6OppatWqRmprKd999x/bt25kyZQp9+/a93t27Iaxfv56tW7fy2muvERoayubNm693l4QQQgjxL5LCrUIIIcRNon379nzxxRdMmTLFMwxi+vTplzR9rdD973//47vvvqNWrVpMmjTpendHCCGEEP8yySQRQgghhBBCCCGEQGqSCCGEEEIIIYQQQgASJBFCCCGEEEIIIYQAJEgihBBCCCGEEEIIAUiQRAghhBBCCCGEEAKQIIkQQgghhBBCCCEEIEESIYQQQgghhBBCCECCJEIIIYQQQgghhBCABEmEEEIIIYQQQgghAAmSCCGEEEIIIYQQQgASJBFCCCGEEEIIIYQAJEgihBBCCCGEEEIIAUiQRAghhBBCCCGEEAKQIIkQQgghhBBCCCEEIEESIYQQQgghhBBCCECCJEIIIYQQQgghhBAAmK53B4T4r1NKkZWVBYCXlxcGw9nYpcPhICcnB5PJhNVqRdM0zz52ux273V5oH5fLRXZ2NjabDaPR6GnDYrFgNps9beTl5eF0OrHZbJ5l+fuUm5uLw+EosNxoNHL69GmWL19Oz549sdlsV+062O12cnNzz7vebDZjtVqvqO2MjAzmzJnD7bffTmho6JV28aLc183lcuHl5VXougohhBDFiVKKnJwcnE4nXl5eGI1GzzqXy0VWVhYGg6HQe5r73uLcfZRSZGdnYzabMZvNOJ1OsrOzC93HOBwOcnNz8fb2LvK9Mi8vj7y8vALLNE3D6XQyd+5cunbtSlBQ0FW7Du7zOZ9z+3857HY7c+bMoX79+pQvX/6fdLNI515zIcQ/J5kkQlxnGRkZdOnShcaNG7Nz506UUoD+pjdt2jRq167Niy++6FnuXvfqq6/SoEEDNm/eXKC9o0eP0rp1a/7++28AVq5cSe3atXn++edxOp2e7aZNm8agQYOw2+1F9uull16iQYMGtGjRwvN65pln2L9/P2PHjiU7O/uqXocff/zRc5ymTZtSu3ZtbrvtNs+yL7744orbTktL46233uL48eNXsceF5eTkcM8999C2bVtOnjx5TY8lhBBC/FNOp5MhQ4ZQt25dlixZUuBeY82aNdSrV4/+/fsXCFgopfjqq6+oU6cOP/zwQ4F9MjMz6datGwsWLABg7969NGzYkH79+hW4b1i7di1dunQhJSWlyH59+eWX1KtXj+bNm3vuA/r168exY8d46623OHXq1FW9Dlu2bKFVq1a0aNGC5s2bU6dOHZo0aeI59iuvvHLFbdvtdj744AO2b99+FXt8VmZmJj169OCnn366Ju0L8V8kmSRCXGcul4v4+Hhyc3OZPXs2VapUASA3N5fvvvuO3NxcEhISCuyTkJDAnDlzMBgMTJs2jTp16niySRwOBwcPHvRkZWRmZhIfH8/UqVPp3bs3DRo0QNM0UlNTOXr0aIGbm/xOnjxJtWrVeOuttzzLvL29CQgIYO7cufj7+xfYXimFy+VC0zTPK/8693qj0VjkJzFt27aldu3aKKU4dOgQd955J5MnT6Z69eoAl/SJkfs4SikMBoPnOGFhYcyfP5+oqKjL7vO5bV3o2Fu3bmXDhg0YjUYWL17MvffeW6hN0G9KDQZDgQwg93r3unP7c7nnnv/8znfN3euBSzpHIYQQN59jx46Rk5PDd999R5s2bTCZTDidTqZMmUJOTg7x8fEF7hWys7P59ttvsVgsTJ48mS5dungyGFwuF4cPHyYjIwPQM0IOHz7MsWPHmD9/PnfddReappGVlcXhw4c970HnOn36NP7+/kyZMsXznmaxWAgPD2f+/PmULl26wPYXej93rz/fey9AtWrVmD59OkopMjIyuP3223nkkUfo3LkzAD4+Ppd0Ld3Hyf++a7PZmDp1aqFM1ovdZ7hcrku6B3Ff8/T09Av260L3O+5jnXu/4D4fTdPkPkH8p0iQRIhiQNM0evTowc8//8wTTzxBQEAA27dvJyEhgdtuu63AtkopFi9ejL+/P0899RSvvfYaw4cPJyws7LztR0VFUb9+fd59912+++67Sx624ufnR0xMTIFle/fu5dtvv+X555/H29ubiRMnEhERwfHjx1m5ciWhoaE8+uijVKlSxZMa+9tvvzFt2jROnjxJhQoVGDJkCDExMQXebP39/T2BF5fLhcFgICoqipiYGH777Tfmzp3LU089hcFgQCnFF198QYkSJejUqRMHDhzg66+/pkOHDkyZMoXExETatGnDgAEDsNlsZGZm8uWXX/Lwww9TqlQpFixYwMGDBwkPD2fu3LkYjUYGDBhAy5YtMRgMuFwuli9fzrfffovdbqdr164kJiYSExNDhw4dzhtw+P7772natCmxsbFMmzaNu+++G4vFAuiBkTVr1vD9999z4sQJwsLCuO+++2jQoAFKKdavX8/UqVM5evQoISEh3HvvvTRv3py5c+eSmprKgAED0DQNu93OuHHjaNmyJQ0aNGDDhg0sW7aM6tWrM2vWLEqXLs1LL73EnDlzWL58OcnJyZQsWZIBAwZQr149NE1DKcXRo0eZPHkyf/75JyaTiRYtWtC/f38+/fRTKleuTPv27T3brlixgk2bNvHkk09KKq8QQtyEOnTowNq1azl8+DDly5fnxIkTrFu3js6dO7Np0ybPdkopNm/ezLFjxxg/fjyPPvooe/fu9XzAUxRfX1+6devGuHHjaNeuHYGBgZfUJ5vNRrly5TCZzj6uJCYm8uWXX/LEE08QERHB3LlzSU5OxsfHhx9//BGr1cp9991H06ZNPe9hf//9N5MnT+bgwYOUKFGCgQMHUrdu3QLv5V5eXp6hMKmpqZhMJsLDw4mJiWHv3r1MmDCBF198ES8vL5RSzJ8/n5MnTzJo0CBSUlJ499136dy5M3PmzCEuLo569erx8MMPExAQgMPhYMqUKXTu3JlatWqxefNmFi5cSIMGDZg6dSrZ2dnceeed9OjRA5PJhFKKLVu28Nlnn5GcnEyLFi0IDAwkLy/Pcy9wqZRSHDt2jC+++IK///6bwMBAevfuTcuWLTEajWRmZvLtt9+ycuVK7HY7pUqV4pFHHqFixYrEx8fz6aefsnPnTkwmEzVq1ODxxx/Hz8/vko8vxI1KhtsIUUzUrVsXi8XC2rVrUUoxc+ZMWrVqVeiTh7y8PKZNm8Ydd9xBhw4dMBqNLF++/LwZIaCPpX3yySfZtGkTq1atuuC2+WVlZXHs2DHPKzs7mxMnTvD999+Tm5vrCdi8+OKLnDp1iv79+5ORkcHQoUPJyMhAKcXPP//Mo48+SuXKlbnvvvtwOBz069ePEydOXPK12b17Nz/++KPnEyelFMuWLfPcuCUkJDBhwgTee+89WrRoQfv27XnrrbeYN28eSikyMzOZNm0aycnJAGzevJnXX3+dlStXcvfdd1O6dGmGDBlCXFwcSinWrFnDkCFDqFixIr1792bJkiW89tpr/Pnnn+ftY2JiIgsWLODuu++me/fubN++3TN8SinFvHnzGDRoEJGRkdx///3UrVuXI0eOALBkyRLuueceAgICGDx4MI0aNfKs27hxIytXrvQcx+l0Mm/ePPbt2wfAvn37GDNmDFOmTKFr1660bNkSu93O4cOHadu2LUOGDPEEZNz7nDhxgrvvvpstW7bQp08fevbsyenTpz2fFo0dO9YzNjsvL4/33nuP3NzcAjeqQgghbh5ly5alevXqzJ8/H6UUixYtoly5clSqVKnAdu6hwE2aNKFVq1bExsYye/bsC95XaJrGgAEDyM3N9WRrXIq8vDyOHz/uuQdJT08nIyODqVOnkpqaCsCGDRsYNWoU69evp2/fvoSFhXH//fd7sl82b95Mv3798Pf357777iMqKopBgwZ5hiRfiuPHjzN9+vQCQ442bdrEsmXLPJknX3/9Na+88gpVq1blrrvuYtq0aXz00UcopXA4HMyZM4eDBw8CcODAAd59911PFk7Dhg15+umnWbduHaC/r99zzz3YbDb69evHgQMHePHFF1m5cuUlXzu3lJQU+vXrx5YtW7j33nupWLEi999/PwsWLEApxaRJk5g4cSJdu3Zl8ODBlC9fnuTkZOx2O0888QR79uxhwIAB9OnTB5PJdMG6LULcTOSOV4hiwsfHhzvuuIPvv/+eunXrsnjxYj755BOmT59eYLsdO3awfft2xowZQ1BQELfffjtTp06le/fuF/yUv1KlSvTp04exY8dy6623XlKfFi9eTKdOnQD9JufNN98sMuW0Xr16vPzyyxiNRqpUqULLli05fPgwMTExjBs3jnvvvZfevXsDUL16dX7//XeWLl3KvffeWyDV9p+kchqNRl5++WXq1KkDwNatW1myZAl33313kdtHRkby5ptv4ufnR6tWrViwYAGbN2+mXLlyfPXVV7Rr144XXngBg8FA48aNWbNmzXmPrZRi+fLlGI1GbrvtNnx9falSpQqzZs2iRo0a5OTkMG7cOO677z5efPFFTzYM4MkM6dmzJ6NGjSoyDfhivL29eeuttyhTpoxn2bBhwzhw4AAnT56kcePGLFy4kOXLl1OhQgVmzZpFTk4On332WaFhTHfeeScTJkxgy5YtNG7cmG3btrFjxw7GjRsnabZCCHGTMhqN9O7dm/fff59+/foxY8YMBgwYUKhmSEJCAosXL2bcuHF4eXlx1113MWHCBB5//HECAgLO235oaCiPP/447733Ht26dbukPm3bto0uXbp43nsefPBB2rdvX2i76Oho3njjDby9vWnatCkLFixg69atREVFMWHCBBo3bszQoUPRNI06deqwdetWZsyYQfXq1a/aPQjAI488wp133glAUlISM2bM4Pnnny9yWy8vL9544w2io6NxOp2sXLmSVatWcdtttzFr1ixKlizJW2+9hc1mo02bNhf8kOZCVq5cyaFDh/j1118pWbIkSikSExOZMGECHTp0YN++fVSvXp2uXbvi7e1Nx44dAX2o9sGDB3nsscfo0KGDZJGK/xzJJBGiGOnatSubNm1i6tSpBAYGUqNGjQLrlVLMmjWL6OhogoKCOHnyJM2aNWPDhg3s3bv3gm1rmsaDDz7IkSNHmD9//iX1p2PHjixbtoxly5axdOlSWrZsWeR2VatWxWQyoWkafn5+mM1mMjMzSUtLY+/evXz22Wd06NCBDh060LVrV+Lj40lOTmbXrl10796dLl260KNHj4uew4UEBARQpkwZzw1OREQEaWlp5x3vXL58eXx8fNA0DYvFQmBgIGlpaTidTvbt2+ep86JpGsHBwYU+TcvP4XAwdepUGjdujN1uJyUlhdatWzNv3jxSUlJIT0/n8OHDNG3a1BMEcY8JzsjI4MCBAzRv3rxALZLLuVGLiooiMjLSs19qaiqDBw+mV69evPbaa7z//vscOnTIU9tm69at1K5dm6CgoALH0zSNUqVK0bZtW7777jucTifTpk2jUaNGhYZdCSGEuLk0bdrUk6lx4sQJWrVqVWC9O3tUKUWFChU4efIktWrV4uTJk6xbt+6i2SQ9evQgKCiIL7/88pIyIqpXr86SJUs89yH9+/cvcrsKFSp4Zt+x2Wz4+fmRnp5OXl4eW7du5eeff6Zjx4506NCBjh07smHDBlJSUjh16hT33HMPXbp0oWvXrqxevfryLlg+FouF2NhYz3tpREQEWVlZhWYJdCtRogRhYWFomobRaCQsLMwTkNq1axc1atTwzD5os9moWbPmFfVr165dxMTEEB4e7ulb48aNOXToEJmZmfTt25ddu3bRtm1bHn30UebPn++ZdeiBBx5g7NixdO7cmVdeeYXNmzdfdiaLEDcqySQRohgpV64ct9xyC6+//jqjRo3Cy8urwPrTp08zb948MjIy6Nq1K6APv8jKymLu3LnccsstF2y/VKlSPPDAA4wbN86TIXIhVquV4ODgi253vuwHg8GA2WxmxIgRdOjQocA6b29vHA4HTz75pKcGSWRkZJHtaJrmKSoG+o1aUVMD5g8sXCzIUFSflVJomobVaiUzM9Oz3H2Ni6KUYs+ePaxbt46goCDPpzDuYnVr1qyhcePGGI1GcnJyPMdwMxqNF0xhddd1cXO5XIVmJDq30NrSpUv566+/+PHHHylVqhSgZ4i4A0ZWq5WUlJRCfXFfl379+jFw4EC2bNnC/Pnz+eCDDwpM8SiEEOLmExgYSLt27RgxYgT33HNPoVpndrudadOmkZGRQZ8+fTw1P/Ly8pg6dSpt27a9YPt+fn48/fTTPPvss5d0b2E2mwkKCrroUM9z35/c/dI0DbPZzODBg3n44YcLvN9ZrVYsFguPPPIIeXl5aJpGbGxske3nL4bu5i6On/+Y596DXCigcG7Wyrn1UfLfg7iHDV8Ji8XiGR6dv+9GoxGj0Ui9evVYvHgx27dvZ82aNTz99NM8+OCDDBs2jAceeIDOnTuzdetWFi5cSM+ePZk+fbpnAgAhbmaSSSJEMeKuHXL//fd7Ujbz+/XXX8nKymLBggUsXryYxYsXs2zZMkaNGsXs2bMvWNkc9Dfhfv36kZeXx+zZs6/VaXgEBARQr149li5dire3N6GhoYSGhmK1WjEYDAQEBNCyZUtat25Ny5YtC82Y4xYZGcmpU6dISkpCKUV8fDxbt269Jn02Go00a9aMn376iaSkJFwuF1u2bOGvv/467z6zZ88mNjaWFStWeL4vK1asoFevXkydOhVfX1/q1KnDjBkzyM7O9lSLz8nJwdfXlwYNGjBjxgwyMzM9VebdQZOSJUty8OBBsrKyUEqxY8cO4uLiLngOp0+fxtfXl/DwcEwmE7t27SpQeK958+b8/vvv7Nmzx1MzJScnxxNEqVWrFuXKlePpp58mICCAW2+9VW6IhBDiP2DAgAHcd999DBkypNDf/R07drB161amT5/OkiVLWLx4MUuWLOHzzz9n1apVxMfHX7BtTdNo3749lSpV4tNPP73mWQlms5nmzZuzcuVKDAaD5x7EPWzYZrPRtGlTWrduTatWrYiIiCiyneDgYHJycjhy5AhKKVJTUy84BPef0DSNZs2asXr1auLi4nC5XBw8eJAVK1Zc0v75Z8xRSlGvXj0OHDjAtm3bPO/1P/zwA7Vr18bb25uUlBR8fX259dZbee655+jUqRPr1q3D6XSSmppKyZIl6dixI2+88QZBQUHs2LHjmpy3EMWNZJIIUYy40yAbN25caJ17SEfz5s2pXLlygU9Ounbtynvvvce6devOOyzEfbMTGhrKE088wZAhQ2jUqNG1OZEzTCYTI0eO5P7776dbt27UqlWL1NRUduzYwfjx46lbt+4ltVO/fn1CQ0Pp168f1atXZ//+/Vit1mvy4K5pGg888ACrV6/m9ttvJzo6moyMDKKioorMpkhLS2POnDkMGDCAkiVLevqklOLuu+/mvvvuIz4+nhEjRjBo0CC6d+9O9erVOXbsGE2aNOHhhx/mxRdfZMCAAXTr1o3atWuTkJBAtWrVeO6552jfvj0TJkygX79+lC5dmri4OHx9fQv1Ob/mzZvz3nvvefbZsWOH51M7TdO4/fbbWbJkCb169aJ58+YopUhJSeF///sffn5+WK1WBgwYQP/+/XnnnXcKHU8IIcTNR9M0KlasyDvvvOP5f36zZs2iQoUKNGzYsECma4sWLQgICODnn3/m3nvvveAxbDYbzz77LF26dClUmP5qMxgMPP7442zdupWuXbvSqFEj8vLy2LZtG48//jjdu3e/4P7u8y9fvjyNGzdm8ODBNG3alLi4OM8wmmtxH9KlSxcWLlxIt27diI2N5fTp00RGRl40o/PTTz9l8eLFnv+Hh4fz8ssv061bNwYMGECrVq2Ii4vj8OHDfPvttxgMBkaPHs2+ffuIjY0lLS2NVatWMXr0aNLT0+nduzdhYWFERUWxb98+lFLyoYn4z9CUDC4T4rqy2+2eKVyjoqIKrFNK8ddff5Gbm0vt2rU9hTfPnT7X6XSyYsUKoqKiiI6OZvny5TRp0oSQkBCOHTvG1q1bad26tafwVmZmJsuWLcPPz49mzZoVeuNVSrFx40YMBgP16tUrsO7UqVNs2rSJVq1aYTabWbduHcHBwVSuXBnQ0ziXL19Ow4YNCQ4ORilFUlISq1ev5tChQ/j7+1OjRg1q1KjhmR73XOnp6SxfvpymTZt62jh27BiLFy8mNzeXli1bkpycTEBAALfccgtJSUls3LiRVq1aYbVaUUqxa9cuUlJSaNSoETk5OaxYsYImTZoQGBjIzp07SU1NpWHDhp6hPKtXryY6Oppy5cp5Pin6448/yMvLo3Llytxzzz08/PDD3HvvvQWufVpaGitXrqRx48aFUpOzsrJYtmwZ9erVIzIykoSEBFatWsXx48cpUaIEzZs393xylZiY6PkkLiIigmbNmhEVFYVSir1797JixQrMZjNt2rRh3759VKhQgejoaA4fPsy+ffto3ry55/voHgK0YsUKDAYDLVu2JCkpCT8/P6pWrYpSitzcXH7//Xf+/vtvrFYr9erVo1atWp6isitXrmTQoEGsXLmSsmXLXuqPsxBCiBuI+/0vMjKyyOEm+/fv59ChQzRr1oy1a9fi5+dHrVq1CrwPuqexNxgM1K5dm2XLllGlShWio6NJSUlhzZo1tGjRwhNwt9vtrFixAofDQevWrbFarYWOu3PnTk6cOOGp1+WWmZnJypUradasGb6+vmzbto2cnBzPFPdOp5NVq1Z53iOVUqSnp7N27Vr27NmDxWKhatWq1KlTp8hC9O7+LV68mOrVq3vaOH36NIsWLSIpKYnGjRtjsVjIysqiQYMGZGdns3LlSm677TZPRmx8fDy7du2iZcuWKKVYsWIFVapUISoqivj4eHbv3k2LFi0wGo0opdi0aRNms5maNWuilCI7O5tNmzZx+vRpqlSpwssvv0yFChV47bXXCgUp7HY7y5cvJy0trcByHx8f2rRpg8vlYu3atWzbto3g4GBatGjhud+Mj49n48aNHD58GG9vbxo2bEi1atUA2L59O3/++SeJiYlERkZ67kskSCL+CyRIIoQQ58jMzGThwoWeG8aZM2fy/fff88svv1CuXLnr3LtrKysri7i4OF566SVKlSrF+PHjpR6JEEII8S9xOBz89NNPlClTBpvNxooVKxgzZoxn6mUhxLUnw22EEOIcSimWLl3KuHHjsNvtlC5dms8///w/kVGxdetWHn/8caKjo3nuueeuaEpiIYQQQly5LVu2MG7cOHJycggNDWXcuHE0bNjwendLiP8MySQRQohzuIun5uXloZTCYrEUmkHmZuUuKGuxWDzTOgshhBDi3+O+B3E6nfJ+LMR1IEESIYQQQgghhBBCCGS4zSWROJIQQghxbd3Mn5LKfYQQQghxbV3N+wgJklyCnJwcxowZQ3p6+k19EyeEEEL82+x2O/fff79nRoWbUW5uLmPHjiU1NVXuI4QQQoirRCmFyWTiueeeIzg4+Kq1K0GSS+BwOFi8eDFDhw71TO0lhBBCiH9GKcVnn33GsWPHbuogifs+YvDgwQQGBl7v7gghhBA3hby8PN577z0ee+yxq9quBEkugaZpeHt707FjR8LCwq53d4QQQoibglKKRYsW3fTTTBsMBry8vOjQoQORkZHXuztCCCHETSErK4svvvjiqs/GKHM7CiGEEEIIIYQQQiBBEiGEEEIIIYQQQghAhtv8I0op7HY7OTk5OJ3O690d8Q+4U6HNZrMU1RNCCCGEEEJclFIKl8tFVlYWDofjenfnpmUwGPD29sZkMv0rz2oSJLlCSimys7M5fvw4JpPpph9PfbNzOp0kJiYSFRWFzWa73t0RQgghhBBCFHMul4tjx47hcDgwm83Xuzs3LafTSVJSElFRUVit1mt+PAmS/AMpKSn4+voSFhYm2Qc3OKUUJ06cIC0tDavVKt9PIYQQQgghxAXl5ORgt9uJjo6WD82vIaUUx48fJy0tjdDQ0Gv+rCZBkn/A4XDg4+Nz1avpiuvDarWSm5t7vbshhBBCCCGEuAE4nU7PqAL5kPXaslqt2O32f+VY8nQvhBBCCCGEEEIIgWSS3BSUUqSmphYZWbNYLPj7+180snns2DGWLl1K3759MZku78fC6XSSkpKCn58fFovlsvYVQgghhBBCCHHllFLk5OSQkZFRaJ2maQQGBl70Gc/pdDJlyhRat25NVFTUJR87PT0do9GIl5fXTZNNI0GSm4DdbueVV15hz5495OXlERcXR0xMDCaTidq1a/P6669f9JciLS2NTZs20adPn8s6tlKKTZs20bt3b1599VUGDBhw0/xyCCGEEEIIIcSN4JdffmHixIkAHDp0CD8/P4KDg7HZbLz//vuUL1/+gvu7XC42b95MvXr1LitIMmrUKMqVK8fDDz/8j/pfnEiQ5CZgNpsZO3YsTqeTgwcP0rNnT7744gtCQ0Ox2+04nU4SEhIIDg7GbDaTkpJCVlYWwcHB+Pj4oGkaFSpU8ARTHA4HeXl5GAwGTp06RWBgIL6+vucNfsyaNYvY2FhmzpxJnz59PBWHlVJkZGRw+vRpfH19CQwMxGAweDJf0tLSCAgIwN/fH6fTSV5enicCabfbcTgc2Gw28vLyPNMtp6WlERkZicPhICkpCaUUYWFhnql7lVI4HA4SExNxuVyEhoZiNBrJzc3F29vbs012djZms1mqUAshhBBCCCFueJ07d6Zdu3a4XC4GDhxImzZt6N+/P9nZ2fj5+ZGYmAhASEiI5xnN29ub4OBgNE3DZDLx2muv4eXlhVKKrKwsLBYLycnJAISGhmIwGAo9E6alpZGVlVWoP+5nvvT0dEJCQjzPeUop0tLSSElJwcfHh8DAQIxGI06nk1OnTmG32ws8p14PEiS5SpRS+tdr1L4G5/0h0TTNM22tzWbDYDDg5eXF0aNHefzxxylbtiwJCQm88MILbNiwgSVLluByubDb7bz22ms0aNCAHTt2MGbMGL766is2bNjAmDFjiIiI4OjRo2RnZ/PJJ59wyy23FDp2cnIyq1at4v333+eZZ55h586d1KpVC5fLxQ8//MBHH32El5cXTqeTN954g1q1avH111/z3Xff4evri8Fg4MMPPyQuLo6ZM2fy8ccfo2kaCxcuZM2aNbzzzjt88803rFq1CrvdjslkYuzYsYwcOZLjx4+Tm5tLZGQk48aNIyQkhISEBIYPH058fDwWi4U6deowcOBAnnnmGb7++muCgoLIzs7mvvvu49lnn6Vu3brX6DsmhBA3Nvf7GoBTKRxOhcOl8LFIcbpiw/09ku+HEEJcd//G8yAU/UyoaZrnA2Cn04nRaMRisWCz2Rg6dChBQUEcOXKE+vXr07lzZ0aOHInT6SQ9PZ3bb7+dYcOG4XK5eOihh3jmmWeIjY2lb9++VKxYkb1793Lq1CnuvfdeHnzwwUu6B3C5XMyYMYP//e9/eHt7o5TirbfeolatWvzyyy+MGTMGX19f8vLyGDZsGC1atOCFF15g69ateHl54e/vz8SJE/H397/KV/HSSJDkKvpm3SHWHUi66u1qwMMtK1A9KuCy9rPb7WzdupXhw4fTpEkTTCYT5cqVo3///gDMnz+fcePGMWXKFPLy8khISPBkWWzdupUffviBSpUq8frrr/PNN9/w5ptvFvilUEqxevVqwsPDqVu3Li1atGDu3LnUrFmTw4cPM3r0aMaPH0/Dhg3JzMzEbDazZcsW/ve///H1118TGxtLWloavr6+7Nixg5MnT3razsrKIilJv5ZpaWns3r2buXPnejJDRo4cia+vLzk5Obz66qvMnj2bIUOG8M477+Dv78/s2bOxWCykpqYSHByM0Whk9erVdOnShT///JOEhARiY2P/+TdHCCFuUEopFOB0KexOF5m5TjJy7ZzOtHMqI5eT6bkkpOZwIi2HU+m5JGbk4mcz8eWA+vhY5fbhulMKMk/B37OgVl+wBUiwRAghrrMFfx/np63Hr0nbdaODuL9pucve7+jRo4SHh/Pdd99hNpvJy8vj008/xWazceLECQYPHkzXrl0pV64cCQkJniz+gwcP0rx5c0aPHs22bdt4+OGH6dOnD0FBQRc9Znx8PG+//TaffPIJtWvXZvLkybz88svMnDmTSZMm8cADD9C9e3dycnIAfXjQunXrmDdvHkFBQaSmpuLt7X3Z53q1yF3OVXQ0JZvtx1KversGNDJyrmy6ozJlytCoUSNsNpunfsjnn39OZmYmWVlZZGVlFVnwtUqVKlSrVg2j0UidOnX44YcfUEoVCJI4nU5mzJhBq1atyM7OpmXLlrz88ss89dRTbN26laioKE9wxmq1opTi999/p169elSvXh1N0wgLC7uk82jWrBlRUVFomkZOTg7Tpk1j2bJlOBwOjh49ire3N7m5ufz++++MHz+egAA9oOROF+vTpw/Tp0+nQ4cOTJ8+na5du+Lj43NF11QIIYoz9ydZLqUHQHLsTjLzHKRlO0jKyNUDIGm5nEjLISEth8SMXBIz8kjPsZOZ6yTX4UQp/XnbajLgbTHhZzMR4mulXKgPLnWtPiMTl233Alg6EvYthU7vQlA5CZQIIcR1dCo995o8DwJE+FlRnM0ouVRGo5HOnTvj6+uLUopTp07x5ptvsn//fpRS7Nu3j2PHjlGuXMEAjM1mo0OHDnh7e1OhQgWMRiMZGRmXFCTZtWsXYWFh1K9fH7PZTOfOnfn0009JSUmhYcOGfPbZZxw5coTmzZtTp04dwsLCCAgI4MUXX6Rly5a0bNkSo9F4mWd69UiQ5Coa1qYSj7ascE3a9rZc2Q+J1WrFYNBnek5OTmbkyJG89tpr1KxZk927d/Pss8/icrkK7eeu8QF46oic68iRI/z2228cPnyYhQsX4nA4OHToEL///jugp32dm46llPL0Jz/3+DT3Nu4Ipuf880US16xZw/z585kwYQKhoaF89tlnBbJQzj2mpmm0atWKDz/8kLVr17J+/XqefPJJSRcXQtxw3NkfLpfC7lJk5znIzHVyOiuPpIw8TqbrmR8JqbmcTM/hVEYuKVl2MnIcZOY5cLoUSoHBoOFtNuJtNRLobaFkgI2wUgFE+NuIDLAR7mclzM9KkLcFP5sJH4sJk9GAyahd9s2ZuIaq94LMRFjzPkztDZ3eg7K3glb4fVYIIcS116dhNN3rlLombZuNhit6DzYYDJ6akQDjx4/Hx8eHzz//HLPZTN++fXE6nUXu5578w/1cV9QzYVHO/XA9/78fffRRmjVrxpo1a3j22Wfp1asXjzzyCFOnTmXt2rWsWLGCCRMmMG3atEKBm3+LBEmuEk3T8LIY8eL6RbwuJjc3F7vdTsWKFQkICGDVqlWeFKfLpZRiwYIF3Hrrrfzvf//zBD4+++wzZsyYwQsvvEB8fDwbN26kbt26ZGVlYTKZaNiwIZMnT2b37t3ExMSQkZGBl5cXoaGhHD9+nKSkJGw2G8uWLSsymAKQkpJCUFAQZcqUITMzk1WrVnHLLbdgtVqpX78+06dP55ZbbsFsNnsKBQUFBdG6dWueffZZqlatSpkyZa74OgohxL9JKT2wkZiRy+8Hkli9N5FjqdkkZeSRlmMnPcdBnsOF06XfuFhMBrwsRvysJoJ9LFSK8CPC30qkv40Ifz0AEuJrJcDLjJ/NhM1sxGTQMBqKvpkRxZSmgdkLbhsGoRXhlxdg5gBoOwpq3gPneQ8VQghxbWiahtVkxGoqvs+DAElJSdSrV4/IyEi2bNnC7t27/3GbeXl5ZGZmev5foUIFTp48yV9//UWNGjVYtGgRERERBAUFcezYMapUqULNmjUxm82sX7+efv36kZOTQ/v27WnatCldunTh0KFDEiQ517lRqiu5YdNvLM9Gsc6tp3G+dTcyk8lEWFiYJ/IXEhLiObewsDA6dOjAgAEDCA4OJioqitKlS3sK/bgrG1utVoKDgz1t2mw2AgMDCxzHbrezZs0aevfujb+/v+cYnTt3ZsGCBfj5+fH888/z3HPPERQUhN1uZ/To0Z5Cqg888ADBwcG4XC7Gjx9PtWrVqFq1Kr169SI4OJiQkBB8fX0B8PHxKRDdbNq0KZMmTaJHjx7YbDZKly5NQEAAmqbx/PPP8/TTT9O9e3dsNhvVq1dn9OjRGAwGevTowYQJE3j99dfPG4ARQlw/+f/uK9w1KfVioe6ioQ6nizynixy7i+w8B1azkahAL6ymwtXWb2Tua5GabWfL4RQWbDvOb3sTOZmei7+XmTBfa4EASES+AEiQjwV/mxlfqxGzyVDok6eb6Tr952kaaEa4pSsEloEFz0ByHNeubKAQQogbQVBQkCcTPyQkBIvF4lnXv39/hg8fzi+//IK/vz81atTwrA8JCfGMKAgNDfVkkhgMBk9tyHMFBgYye/Zsfv31V8+2b775JsOGDeOpp57C39+f7Oxs3nrrLcxmM++//z67du3CZrORnp7OiBEjOH78OI899hheXl7k5uZSqVIlateufa0v03lp6lJzZv5FSil27NjB5MmTycnJoUePHjRt2rTQg+2KFStYsWJFgWEarVq18tTImDlzJuvWrcPb25vu3bvTuHFjDAYDubm5zJw5kzVr1lC2bFkGDx5MaGjoeW8cMzIyuPPOO5k6daqnhoZSiiNHjhAQEOCpf1EcuKsU+/v743K5yMrKws/Pr8D0uMeOHfMEU7Kzsz1T8Lq3dTgc5OTkeKb9zcvLIy8vr8A0TC6Xi/T0dLy9vQtMo+tyuUhLS8PPzw+DwUBKSgpJSUn4+/t7rrFSiqSkJE9R1cDAQM9xjh07ho+PD/7+/jgcDnx8fMjJyUEpVWDaqKysLE6cOEFgYKAniOLj4+MZqnPixAmUUkRERHhm/vn9998ZPnw4P/30U6FKyUopkpOTyc3NpUSJEvIQIcQlOvct5ExcA6dSOD3BDRcOpyLH4STH7iQ7z0W23Ul2noOMM8VC9a8OMnMcZOTqr8wzX7Pt+n45dhc5did5DhcOl96+yahRMdyXZhXDaFopjEoRvvhaz6aG3miUUmTlOdlxPI1ftp1gxe6THEnOwttiok50IB2rl+DWmBCCvC1YTIYbPvtDKcVDDz3EXXfdRevWra93d66ZrKwsunXrxjfffENkZOS1OYhSkH0aTDY9wyQjAVwO8I+SOiVCCHGNuKeydX/wXBwopcjIyMBisWCxWEhPT8fLy8vzzJb/WSwyMhKXy4XNZsNkMnme74xGo2eCDaPR6Hn2c/8/v8zMzAKjEzRNw8/PD6PRSHJyMqmpqYSHh3s+AM/NzSUxMZGcnBzCwsLw9/f3TAuclJSE2WwmMjKyQPkHd5/tdjuRkZGe5e7318mTJ1OiRImrdg2LZSZJQkICQ4YMoW/fvoSFhfHUU0/x+eefU6dOnQLbRUREUKNGDUC/QCNGjKB+/foopfjyyy+ZNWuWZ9jHAw88wKxZs6hcuTLffPMNM2bM4JlnnuHnn3/mmWee4fPPPy8QYbtRGY1GT9aHwWAoEAxwZ4zkH2riPmeTyeTZ1j19VP5tzr02BoOhyOCQwWAokHUSFBRUqLiPu2DruUVbrVZrkSlVXl5ehfb38fEhJiam0LbuTJj85+h0Opk4cSLTp0/nvvvuw8/Pr9B+QojLp5Qi/nQ287ce51R6zpnghpPMXAdZeWeCG2cCIjkOpydg4jwT4HAPDzEaNAyaPtzDaNAwGw3YzAZsJiM2sxGb2UC4nw1fmwlfqwkfq/HMVxMn03JZdyCJib/u53+r9lMmxJsmMaG0iA2jelQAQd4W/cP2YnLjUhSlFHlOF/tPZrJ0ZwJLdiSwNyEdg0Gjakl/+jaIpmXlcKKDvTEZCtd6EgLQAyHeZ7JAHTmw4FlI2qfXKYluJHVKhBDiP8IdpHA798Nhd5ZIaGhooX3zb5v/We98z36gZ/2fb0KMoo5js9koVapg3RZN0wgMDCw0euF6KXZBEqUUS5YsISIigqFDh2Iymdi6dSvTp0+ndu3aBW4Oq1SpQpUqVVBKsXbtWgIDA7nttts8s7h07dqVdu3akZeXx6RJkzzjmr777jtefPFF2rVrR82aNWnfvj0HDhygcuXK1/HMxbWiaRr16tWjXr161KlTRx4whPiHlFLYnYpfth3nvSV7OJaSjZdZD2hYTQb9q9mAl9lImK8VH6vJE9Twdb9sZ5d5W4x4mY16Xacz+5oNepFQ05mvBu1MwVCtcFX3zFwne0+m8+veRH7dc4rZm+KZsv4QEf426pUJomXlcOqVCSLC34axmAQZ1JlMm/jT2azcc4pfth3n76OpOJyKmDBfHmhWnrZVI6kY7nvTDSUS/wKDGap2g0Uvwoz+0GYU1OgFBpNklQghhBAXUeyCJAB///03VatW9YyBqlmzJt988w1Op9OzLD+lFDNnzqRt27YEBQWhaRpdu3Zl4sSJlC1blqNHjxIQEECtWrVITU0lMTGRSpUqoWkaISEhBAcHFwqS5OXlkZ6e7hnaUVTFX3FjMBgMNGzY8Hp3Q4ibglKKoynZfLB0Lz/9dYzSwd6M712bWqUDMRsNmI0aJqMB85msEK2I4MbVfuD3tZmoHR1ErdKBDG1WnsPJWazbn8TK3SdZvTeR+VuPE+BtpkZUAC1iw2kcE0KZYG8sJsM16c/5KKVwKX16wLX7E1nw9wk2HUomI9dBVKAXd9UtTYdqkVQrGYCP1fiv9k3cZAxGqNodAsvCz8Pg56chcQ80ewYsvhIoEUIIIS6gWAZJMjMzPUM03EMrsrKyipyqFvQKvStWrODzzz/3TFdbsWJFAObNm0dycjIlSpTAy8uL1NRUz7ATd/ve3t5kZGQUaPOPP/5g1KhRuFwunE4n8fHx1/CMhRCieHNnjyzafoL3Fu8mIS2HHnVK8VjrCkT624rFw7ymadjMRipF+FEx3Jd7GkaTkJbDpkOnWbH7FBsPJrNmXyJWk5HYSD+aVQylacUwKl7DOibuKXtTsuxsOpTMgr9PsHZ/IkkZeYT6WmlVOZyO1UtQNzqIAG8zhmJwHcVNQtMgqg70ngaLXoANn0HpBhB7+/XumRBCCFGsFcsgiZ+fH+np6YB+g+kuElPUjCRKKVauXEloaCjVq1cH9BoUI0aMoFevXgwcOJDc3Fz69u3L7Nmz6dy5M0opcnNzAb3QaGZmZqGxWg0aNGDWrFmAXu+kb9++1/KUhRCi2FJKcSwlm/HL9vLjn8eICvLi/btr0fqWiGJbI0PTNExGjaggb0oGetGpRklSsvLYdjSVFbtPsW5/Ev9bdaaOSbAPjWNCaBkbRrWrVMdEKUVmroO/j6byy7YTrNxzimMp2fhZTdQrG0zH6iVoXD6EMD8rhmJeM0XcwDQN/EvCHZ/AgZUQc6Y4rj1LL/AqdUqEEEKIQopdkETTNGrVqsV3332H3W7HZDKxefNmqlevjtFoxG63o2kaRqMRTdNwOp3MmDHDM+Ur6EGSEydOUKJECQwGAzabjeDgYBITEwkICCAyMpIdO3ZQvnx5Tp06xenTpwsVATWZTJ6CN5qmyZSxQoj/HHf2yNKdCby7aDfHUrPpVjuKx1tXpERA8cgeuRSapmHUIMTXSvPYcJpVCiMj18HehAx+3XuK1XsTmZWvjkn9ssG0jA2j7mXWMVFKketwsSchnSU7Eli6M4EDpzIxGw1UjwrgvlvL0Tw2jFKBXsWmNor4D9A0sPrCLZ31GXAyTsKPj0G17lCth9QpEUIIIc5R7IIkAK1bt2bixImMGTOG0NBQli9fzqRJk9A0jTfffJOSJUty//33AxAXF8fOnTsZM2aM54bTbDZz++23M3bsWDIyMjh27BgbNmzg4YcfxmKxMGjQIN59910yMzNZtGgRTZo0oWzZstfxjP8ZpRSJiYlYLBb8/f0LTJV08uRJT8Xhc2/IHQ4H//vf/+jUqRPly5cvst309HTS0tIoWbKkBIqE+A9RSnE8NYcPl+1l3p9HKRHgxXt31aRdlUhMxhv7AV/TNPxsZmpHB1I7OpAHm8dwOCmLdQeSWLH7JL/uOcVPfx0j0NtMjVKBtIgNo3H5EEoHexcqoqqUwuFSHErKYsWukyzafoIdx9NwKUWlcD8ebVWBNrdEUD7MB4tRCrCKYiA3HdKPw/xhep2S254Ci48ESoQQ4gamlMLlcqGUKlDDUymF0+n0fOh/7n2IUoqNGzdSsmTJQjPOuMtOmEym/9z9S7EMkoSGhvLVV18xffp0jh07xqeffkrVqlUBaNKkSaGhMSNGjCA6Otrzf4PBwFNPPUWlSpXYvHkzXl5eTJo0yTOzyd13301AQAC//fYbjRo14u677y6yIOyNZNKkSRw+fJjx48d7fojT0tLo1asXb7/9No0aNSq0j8vlYv78+dSrV++8QZLRo0czZ84cli5dWuQ2Qoibj93pYtnOBMYu2k386Wy61izJk20qUjLQ66Z6k3Sfi81spGKELxUj9DomJ9Jy+OPgaVbsPskfB0+zeu8pbGYjsRF+NKsURtOKoVQI9yUt28GafadYuO0EWw6nkJXnoEywD/c0jKZ91UiqlPTHyywFWEUxomkQEgO9p8Ivz8PaDyFxH3R4Sx+WIz+nQghxw5ozZw6bNm3ijTfewGjU7z9cLhfDhw/ntttu44477ii0j1KKCRMm0KVLF3r27Flg3ZYtW/j444+ZOHEiVqv1XzmH4qJYRgY0TaNcuXK88MILBZYBtG3btsC2FStW9BRpzc/Ly4uePXsW+GbnzzTp3LkznTt3LrTuRqRpGu3bt+fee+/l5MmTREZGopRi/fr1OBwOqlatSmJioierJCoq6pKCQklJSaxevZoqVarw888/8+ijj6Jpmv7JqcPB0aNHycrKokSJEp45rXNzc4mPj8dutxMVFYWfnx+pqanYbDZsNhtKKVJSUvD29sZisZCcnIy3tzcnTpzAYrEQGRlJYmIip06dwt/fn5IlS3r6qpQiOTmZEydO4OvrS8mSJcnKysJkMnnm5nY6nZw+fZrg4GDJfBHiMimlOJGWw0fL9jFnSzyR/jbevasm7atGYr7Bs0cuxn1uJqNGqSBvogK96FqzJMlZefwdn8rK3SdZuz+JCSv28cnKfUQFepGW7eB0Vh4R/jY6VIukY7VIakcH4W+7NkVghbgqNA0CSsGdn8Kv78L6TyEjAfpMA+/g6907IYQQV0DTNKpVq8bo0aN55JFHKF26NADx8fEsWrSIoUOH4nK5yMnJwWg0YrVaL3qfkp6ezq5duwpNnqKUQilFdnY2ZrMZs9nseUZ0L9c0DZvt7NBsh8NBbm4uFovFs31xViyDJHB1bi4v1MY1+cYodeH1mnbxbS607wXExsZSqlQpli9fTp8+fVBKMWPGDLp06UJcXByjRo3CYrGQmJhIvXr1GD169AXbcxfELV26NEOHDmXMmDHcf//9nhmCnnvuOQ4cOEBQUBB+fn589NFHpKSkMGzYMNLT0/Hx8aFMmTK89dZbvPDCC3Tq1MlTNPfJJ59kwIAB3HrrrfTr14+IiAgyMzNp1qwZderUYcyYMdhsNk6ePEmrVq0YPnw4RqORuXPn8v777xMREUFOTg5PPvkkBw4c4MCBA7z55ptomsbvv//Oe++9x9SpUz01aoQQF+YeMrJi10nGLtrN4eQsOtcowbC2lYi6ybJHLpWmaWgahPpaaREbRotYvY7JnoR0Vu9JZN2BJCpH+tOxeiQNy4UQ4mtBQwIj4gahaWD1g1YvQ1gspCeA1f/sPYr8HAshxJW5ls+D7v3Po0KFCsTExLBkyRIGDRoEwKJFi6hcuTI+Pj488sgjHDlyBJfLRefOnXnggQc8GSeXyl3m4fXXX2fXrl1YLBaGDh3K7bffTkZGBq+99hpbt27FYDDQpEkTXnzxRTZu3MiYMWPIysrCarXywgsvFDnKoTgptkGSG5JywaZJ+ljf/IxmqDcYfELh1C7YNgc455ejRC2o3AmUEzZ/A2nHzq4r3wLK3nbBQ1ssFnr27MmsWbO46667OHXqFBs3buSpp56ifPnyfPXVV7hcLpKTk7nvvvvYvXs3sbGx523P4XAwc+ZM7rzzTho2bEhWVhZbt26lQYMGfPPNN6SkpDBr1iz8/PzIyMjAZrPx/vvvU7JkSd58800sFguZmZkYjUbS09PJy8vztJ2eno7dbgf0bJUWLVrw5JNPYjQayc3NZdKkSbhcLk6cOMH999/PPffcg81m4/XXX+eDDz6gSZMm2O12lFKUK1eOSZMmcerUKcLCwpg2bRotWrT4z6WECXGllFIkpOXy8Yp9zN4UT7iflTE9a9CxWombPnvkUrmvgZ/NTJ3oIOpEB/GwswJGgyYz04gbm9EMNfvo9y+aAZIPwL6lUPteMHtLsEQIIa7E37MgcXfBZZoBavaF4LL6c97mb/TnvvyCy0ON3vrf3m2z4FS+NnxC9edJo/m8hzWZTPTq1YspU6Zw7733opRizpw5DB48GF9fXx5++GEiIyNJTk7mscceo169etSvX/+yTk0pxdtvv01OTg5fffUVu3bt4umnnyY2NpY9e/awY8cOvvzyS0wmE0lJSSileO+99+jSpQtdunQhJSXFMwKgOJMgydWknPD3TDjxd8HlZm+o2l3/4U4+AOv/VziCWLM3VL4dXE74ezYc//PsOqv/RYMkmqbRrl07PvjgAw4cOMD69espW7YsFSpU4MiRI7zyyiskJCRgNBrZs2cPJ06cuGCQ5ODBg2zfvp3nn3+ejIwM6tSpw+zZs6lbty5r167ljjvuICAgAE3TCAgIIDc3l02bNjFy5Ei8vb0BCAgIKJSedS6z2UyrVq2wWCwopYiLi2PkyJEkJydjMBiIi4vj5MmT5Obm4u/vT4MGDTCZTJ4hOGXLlqVy5cosWbKEVq1asXHjRp555hl5aBHiIpRSOF2KlXtOMeaXXRxKyqJj9UiealOJ0sHe8jt0Hu7rYjHJ9RE3CU0DzagHSv6aDr99AId/h/Zvgl+kBEqEEOJy7VkIexYVXGYwQrnmepAkIwE2fApOe8FtyjWDGr0AA+z+Bfb8cnZdaEWoM/CCQRJN02jVqhVjxoxhz549OBwOEhISaNGiBWazmY0bN/Lrr7+SnZ3NwYMH2bFjx2UHSbKysvjtt9/4+OOPiYqKIjIyksqVK7N+/XoqVqxIQkIC8+fPp0mTJsTGxmIwGIiKimLJkiWEhYVRu3ZtIiIiLuuY14MESa4mgxl6fAGO3ILL3eN/Qf/leGBV4X2tfoAGRgt0/7RgG5c4RrhEiRLUq1ePefPm8dtvv9GrVy/MZjMTJkygQoUKfPTRRxiNRnr06HHB4IVSivnz55Odnc1LL72EpmlkZGSQlpbGs88+i8lk8mSCFDh9gwGHw4FSqsADlsFg8FRbdrlcBbJKDAYDFovFc9x3332XRo0aMWjQIFwuF127dsXlcmE0Gj1tnHvMvn378vHHH5ORkUHVqlU9Y/CEEEVTSnEyPZcJK/Yxa1M8IT4W3u5endtrlJAZWIT4z9KgyaNgz4KNX8Dpg9D5fShRUwIlQghxOdq/CS1fKrzcv6T+NbwK3L+s8Hqzlx60Bmj/BrR88ew6oxlMloseOjw8nCZNmjBv3jwcDgdNmzYlJCSEadOmMXPmTIYPH05wcDBvvPFGgWeyS+V0OnE4HJ5sEIPBgLe3N9nZ2dSrV48JEyawcOFCnn32WcqWLcv48eMZNWoUCxYsYP78+bzxxhu8+OKLdO7cuVjfb0qQ5GrKHww5H6uv/rqQi7VxHgaDgV69evHII4/g5eVF69atAcjOziYyMhKbzcaGDRvYvn37BdvJzs5m3rx5fPTRR7Rp0waAvLw8evTowbp162jTpg3Tp0+ndevWhISEkJSURGRkJC1atGDy5MlUr14db29vTp8+TVRUFNHR0axfv54OHTqwc+dOtm3bdsFj+/n5YbVaWbFiBfv37wf0mit5eXksWLCADh06kJ2djcFgIDg4mEaNGvHmm28yfvx4PvzwQynYKsQFOJwuft17ijG/7OZAYiYdqkbyVLtKlJHsESH+2zRNz1xtMwJCK8GyUTC9L9w+FmJvl0CJEEJcCk3Ts/AuxGzTZxq7kIu1cR4Gg4G77rqLJ598EoCPP/4YTdPYu3cvjRo1olmzZiQnJxMXF3dJ7bk/5HY69aFBXl5elCpVit9++43Y2FiSkpLYuXMnAwcOJCcnh1q1atGgQQMOHTpE586dOXXqFAEBAdx999306tWL8ePH88MPPxSYQKU4kiDJTUTTNBo3bkzFihWpWbMmERERaJrG4MGDefbZZ1m+fDmlSpWiefPm+Pj4oGkapUuXxsvLq0A7Bw8exN/fn8aNG3tqe1gsFnr16sX69et58cUXOXjwIP3798dms1GmTBnGjRvHo48+ysiRI+nduzdWq5XatWszevRoBgwYwGOPPUaPHj0oV64cjRo18hw/OjracwxN03jooYd45ZVXmDt3LmXLlqVp06bYbDZCQkIYO3Ysb775Jp9//jmapjF8+HDPuXTs2JHvv/+eRo0ayYOeEEVQSpGYkcsnK/fz/cYjBPtYeOvO6nSuUQKLSbJHhBDoN/dGC9Tpp4+N/2U4pJ+43r0SQghxGerVq4e3tzdGo5E6deoA+gyxjz32GMePHyc1NRWz2ewp2pr/3/kZDAaOHTvGoEGDPB9Ct2jRgmeeeYbnnnuO33//nfj4eOrXr0+DBg1YuHAhX3/9NWXKlOHIkSM0atQIf39/nnnmGXJycvDz8+Ovv/7iueee+/cuxhXS1LnjF0QhGRkZ3HnnnUydOpWwsDBAf+A4cuQIAQEBBAQEXOcenqWUIjc3t9AwlszMTDIzMwkKCkIphclkwmAwkJubW+gXw+l0YrfbC00N5XA4cDgcWK1WlFKkpqaSl5dHYGCg51gul4uUlBScTieBgYGYzfq4uezsbNLT0z1TBec/vsVi8fziKaVIT08nOzub4OBgnE6np39KKXJyckhNTcXLyws/Pz80TcPhcPDMM89QunRpnn766St62HNPL5ybm0uJEiXkgVHcNNy1R9bsS2TML7vZdyqDdlUieLpdLGVDJHtEXF9KKR566CHuuusuT/bjzSgrK4tu3brxzTffEBl5ZZ8O/uuUgqwksPnrw4lPHwSLD/iESVaJEEKckZaWRkpKCqVLly4291Tu51RN0yhVqhSapuFyuThw4ACHDh2ifPnyWK1WbDYbQUFBHD16FD8/v0LPtJmZmYUyTgIDA4mKiuL48ePs3r2bwMBAqlSpgtVqJTs7m3379nHixAmCg4OpUqWKZ8bS/fv3k52dTfny5SlTpsxlZ/4rpUhKSsJutxMZGem51u7318mTJ1OiRIl/duHykUySm4x7Tupzl/n6+uLrW3iYT1HT5BqNxiKjifkLpmqaRlBQUJH7hoSEFFru7e3tKeh6oeNrmoa/vz/+/v4AniCLe52Xl1eBzJf4+HhefPFFDh06xHPPPVds/jgJURwopUjKyGPiqv1M23CYQG8zr3erRteaJbFK9ogQ4kI0TS84D5CTCnOH6oGTzuMgopoESoQQophyZ+vnZzAYqFChAhUqVCi0falSRZd68PHxoVq1akWuK1myJCVLliywzMvLi+rVq1O9evUCyyMiIm6IYq35SZBE3NCCg4N54oknKFWqFOHh4de7O0IUC0opnEqxdl8S7/yyi70JGbSpEs4z7WIpF+ojwREhxOUxe+vTUi4fDdN6Q4d3ILajPluDEEIIcZORIIm4oXl7e1O3bt3r3Q0hig2lFMmZevbI1A2HCbCZGX1HVbrVjpLsESHElTGaod5ACCkPPz8D8x6EW5+Ehg/qxejdI7fl74sQQoibgARJ/gFN01BKFZryVtyYpDyPuJEppXApWLdfzx7ZfSKNVpUjeKZ9LDFhkj0ihPiHNAOUaw59psOCp2HtR1DlDrBWhITtcHidPgwnuBx4BekFYEECJ0KIm548Q/w7/s3rLEGSf8BqtZKeno6Xl1eRNTzEjcPlcpGZmVlk3RYhijulFKez8vjs1wN89/thfK0mRnatyp21S2EzS/aIEOIq0TR92sq7JsGhtRBwZhx73CpYOlL/t1eQHiiJqA41ekGp+vpy5dIDLe52hBDiJmA2m7Hb7WRnZ3smshBXn9PpJCsrCz8/v3/leBIk+QeCgoJISEggPj7+endF/ENKKWw2GwEBAfJAKW4oSim2HUtjxA/b+PtoKi1iw3m2fSwVw33lZ1kIcfVpmh4Iqdzp7LKafaBETTjxNxzbAid3wLZZEFVHD5JkntKnEw6IhpK1IKwy+JfUZ8vRDBI0EULcsNzPD8ePH7/eXbmpKaXw8vLC39//X7m/lSDJFdI0DZPJRFRUFA6HQ9KsbnDu76cQNxKHy8Uv207w+vyd5DqcvNypCr3qlcJmNkqARAjx7/EOhrK3QZlbAQX2HMg8qQdTNA2yT8PJnbBnEThywGQDvxJQqR20GQUGE+SkgNEKZhtw5u+X/B0TQhRzmqYRGhpKUFAQLpfrenfnpvVvP6vJU+E/4H4IyT9NrRBCXGtKKbLynHy++gCf/XqAqEAvPuhWiwblgjHIQ4UQ4nrRNEADizdYyp5dHloR7lsE6cfg5C44/icc/0sv+GowgnLCT8MgaR9EVIGStSGyOgSXB98ImUVHCFGsyYetNx/5bgohxA1EKcWJ1Bxe/3kni3ecoFnFMEZ0rUrpIC/JHhFCFE+aAWz++iussl7w1eXQ65SggcsF4ZUh44Re32T7XH0//yjoN1evcZJ6VF8fGA22QD37RP7mCSGEuAYkSCKEEDcIpRR/HknhlXnb2Hcqg0G3luOxVhXwtZokQCKEuHFomj6tsJvJAs2fh9ueguxkOH1Qr2+SGg8+YXrGybZZsOJN8A7Rs00qd4byLSEgCjSjBEyEEEJcNRIkEUKIG4Dd6WL+X8d4c+EulFK8dkc1utWOwmTQJEAihLjxaZoeLPGL1F+lGxZcH9NKD5Yc2wJHN8H+lXrNk64fQaX2+joUoEnARAghxD8iQRIhhCjGlFJk5jr4ZOV+vv7tIGVDvXntjmrUKRMk9UeEEDevc/++RVTTX0pBVqI+BfG+pXq9E9CDJ5smQWxHKN1AD6BIwEQIIcQVkCCJEEIUU0opjqZkM/qnHazYfZJWlcN5tXNVSgbaJHtECPHfouWb8cY3XK9rUqUrnplwErbDzp/gz6kQWBoqtIFbukBUXX2qYSGEEOISSZBECCGKIZdSbDp0mlfmbeNQUhZDm8XwYIsYfCwyva8Q/5RSqsD/r+R36mq0If4B90w6oGeX1OwNZRrDvmV6sOSvabD5G7hzIlTppheJddrBZM23vxBCCFGYBEmEEKIYUUrhcCnmbjnKO7/swqhpvNW9Op1rlMAo9UeE+MecTierVq1i0aJFhIaGcs8991CiRIkCv1tOp5Pp06dz/PhxzzKj0cjdd99NiRIlSExMZMaMGRw4cIAyZcrQq1cvIiIi5PfzenEXgg2pAMExUHcgJO7VZ8px1zY5vA6WvwYV20GlDvq2RosES4QQQhRiuN4dEEIIoVNKkZ7j4J1fdvHqD9soGeDFZ/3rcUetkpiMBnkAE+IfUkqxatUqhg8fTs2aNUlKSuLBBx8kMzOz0LYBAQGEhIQQEhJCcnIyH374IUop7HY7jz32GFu2bKFly5bs2LGDhx56iNzc3OtwRqIQTdOzRSKrQaOHwa+EvjwnDXLSYeU78FV7+K47bPgM0o5d3/4KIYQodiSTRAghigGlFIeTsxj543bW7EukfdVIXu50CxH+Un9EiKvF5XIxadIk+vfvT58+fejatSvt2rVj8+bNNGvWzLOd0Wikc+fOgP67+frrr9OqVSsiIyNJS0tj27ZtTJ06lRo1alChQgXuvPNOMjMzsdls1+vURFHy/+2M7Qhlb4Pjf+rDcfYtgyWvgHcoVO8BjhzIOq3XO9EMkmEihBD/YRIkEUKI68ylFL8fSOLVH7ZzLCWbR1tWYEjT8nhJ/REhrqq8vDx27drF0KFD0TQNb29vYmJi2LZtW4EgSX7p6en8/PPPjB49GoPBgJ+fH82aNWPSpEl07dqVhQsX0qZNG/z9/QvsZ7fbyc7OBiArKwun03nNz09cgKaBzR/KNdODJdkpcOxPKFlLX39gFcwfpg/PqXIHlGkCPqF6wEQIIcR/igRJhBDiOspzuJj5xxHeXbwbm9nIu3fVpF3VCEwGuTEX4mqz2+3k5ubi7e0N6MVW/fz8SEtLK3J7pRQbN27E5XLRsGFDNE3DYDDQunVr3nvvPY4fP05cXBwPPvggRqOxwL6bNm1ixIgROJ1OXC4XR44cuebnJy6RZgDvYKjQ6uwy7xAoVQ8OrtYzTfwioXxLaDAEIqtLZokQQvyHSJBECCGuA6UUqdl23l+6h+kbjlClpD+v31GNKiX9JXtEiGvEbDZjsVg8GR5KKTIyMvDz8ytye6UUM2bMoFOnTp5MkePHj/PGG2/w9ddfU716dXbu3EmfPn1o1qwZ5cuX9+xbp04dpk2bBkB2djb9+/e/xmcn/pGoutDzK71Gyf4VsPNH2P0zVGyrB0ly0uDUbgi/RZ9SWP5OCyHETUuCJEII8S9TShGXmMmrP2xnfVwSnWuU5MXbKxPqa5UAiRDXkMVioVKlSvz11180btyY7Oxs9u/fz6BBg1BK4XQ6MRrPDnNLSEhg7dq1TJkyxdNGSkoKubm5lCxZEoPBQIkSemHQ1NTUQscKDg4G9OE252aaiGJG00AzQWA01OkPtfpAajz4Rujr41bBnKEQWkGfUrhyJwguDwaTBEyEEOImI/ncQgjxL3K5FKv3JjJ48h/8eSSFYW0r8ead1SVAIsS/wGAw0L9/fyZNmsS8efMYO3Ys/v7+1KtXj+zsbAYMGMCuXbsAPZi5dOlSSpcuTWxsrOf3s3Tp0kRERPD222+zbNky3nnnHQIDAylXrtz1PDVxNWmaPj1wcHk9awQgsgbc+ji4nLDyLfiyHXzfD+I3glLXt79CCCGuKskkEUKIf4FSijyni6nrD/PB0r34Wk2M61WT1rdEYNCQAIkQ/wJN02jTpg1Op5OFCxcSEhLCp59+iq+vL3l5eTRp0qRAAdaAgACGDx+OxWLxLPPz8+Orr75i6tSpzJo1i6ioKCZNmkRAQMD1OCXxb9A0CCoDzZ/XpxWO/wO2zYaDv0LOmQyi7BRI2gfhVcDsJdklQghxA5MgiRBCXGNKKU5n2Rm7aDezN8VTs3QAr3WrRmyEnwRHhPiXGY1GOnbsSMeOHT3LNE3DarXyyCOPFFjWtWvXQvtrmkbZsmV54YUXCi0XNzn3DDkxLaF8c8hKBFugvm7PIpj/pF6zpMqdULkjBJYFg1ECJkIIcYOR4TZCCHENKaXYdzKDh77bxOxN8dxZO4qJ99aVAIkQ15GmaQVe16sNcYPSND344RsBJqu+rHR9aPwI5GXB8tHwRVuYNQiO/yXDcYQQ4gYjmSRCCHGNOF2KlbtPMuqnHaRk5fFch1jubVQGq8kgD1VCCHGz0DS9fknLl6Dxo3BkvT4c59BayE3Xt8lKgtOH9EwTk02yS4QQohiTIIkQQlwDOXYn36w7yEfL9xHsbWF8n9o0qxiG0SA3xkIIcVPSNPAKhIrtoEIbyDwF3voMR+z4ARa/DBHVodqdULE9BJYGTYbjCCFEcSPDbYQQ4ipSSpGYnsvL87bx7qI9VIsK4MuB9WhRSQIkQgjxn+AejuMXqc+SA1DmVqh/v55Rsvhl+LItzHkATu6U4ThCCFHMSCaJEEJcJUopdp1I5+V52/j7aCq96pfi6baxBHqbZXiNEEL8V2kahMVCm1Fw65P6MJxts+HIBsjL1LfJPAVpx/TtjFbJLhFCiOtIgiRCCPEPKKVwOBVHTmexcvcpvlh9gKw8Jy93uoXe9UtjNkr9ESGEEOiBD+9gqNwJYjtAxinwCdXX/fU9rHwLStSCat2hYlvwjwLNIAETIYT4l0mQRAghLpNSCodLEX86m9/2JbJ4xwn+OpJKVp6DmDBfxtxVkyYxIRjkxlYIIcS5NA00E/iX0P+vlD6tcNpR2PMLLHweVr0D5VtCs2cgpIIESoQQ4l8kQRIhhLgE7sDIsRR3YCSBP4+kkJHjoESAjfZVI2hfNZI6ZYII9JLhNUIIIS6RpkF4FWj/BjR9Gg6ugW2z4PBasGfr649u1pcbLWA0n/lqgcjqEFEFnHY4ukn/ajSB4czLZNODLEYz5KZBTpq+XDOCwQAYwOwFZpserHHkANqZQI4hXyaLJoEaIcR/hgRJhBDiPJRSOF2KY6k5rD0TGNly+DTpOQ4i/G20vSWCdlUjqBMdRJCPBQ0kOCKEEOLyuQMRPqFQ5Q6o3BkyEsAvQl9/ZAOsfFMPZCjXmWKvCpoP14Mkuekw90FIPXKmrTMBDr9IGLwYfMNh60xY/pp+HIPxbCCl8SPQ6CHIy4BZ9+n1UQz5Ai1+JaDjO+AVBBkn9GFCvmFg8dODK5rxnPMQQogbmwRJhBAiH6UUTqU4kZrD2v1JLN5+gs2HU0jLthPuZ6Vl5XDaV4mkbpkggn0s+odtclMohBDiatE0PRskIOrssuo9ILoxuOzgcpx9BZXV11t8oN3rkJMKzjw9o8SZByarvg4gtBLU6A0u9/oz2/jnO47FT882cTn0LBaXQw/KaGcmxPxruj4UyOIL3qF6ACUoGqr3gjJNwOXUAykWXzB56Rks+c9LCCFuABIkEUL857kDIwmpuaw7oAdGNh0+TWqWnTA/K80qhtKuaiT1ygYR4mPFIIERIYQQ/yafMP11PiYr3NL5wm2UvU1/AVDEtMMWX+jxub5OKVBOPUDicp4NtJRrpi87fRBSDut1VBL+hlIN9CBJRgJM7qrv41cCAkrpgZyIKnp2jMEEzlz98EbL2cCJvKcKIYoRCZIIIf6TlFK4FCSk5fD7gSQWbU9g06FkUrLshPpaua1CKO2qRFK/bBAhvhIYEUIIcYMr8B5WxPuZphUcOoO58DZRdaFkHfRAigvsOfpQH6vfmQwYM8TeDkn7IS0eDv0Gu3+GiKpQqaMeJFk1FvYt1TNYgspAUDkIjIZS9cEn5MxwItfZvsh7rxDiXyZBEiHEf4Y7MHIyLYf1ccks2n6CPw6d5nRmHiG+FhrHhNCuSiQNygUTKoERIYQQojBPIVcDWH31l5tPGLQdrQc5nHbIS4es02eG/lgABTZ/vaDsye16EMWepbfVeypUaK0HWJa8qtdRKVlHD54ElQGztwRMhBD/CgmSCCFuau7AyKn0HDbEJbNoRwIb45JJzswj2MdCg7LBtKsaQcNywYT52SQwIoQQQvwT7owUg1Ev7Jp/mJBS0OQxaPiQHhzJSYH0BEg/BiVq6NvkpkFynF6sdssUfShRUDmo1UcvMIumDwXSjBI0EUJcExIkEULcdNyBkcSMXDbGJbNoxwk2xCWTlJFHkLeFemWDaFc1gkblQgj3l8CIEEII8a9wZ6GYLPrLK1CvWaLy1UgpUQuGLIPsZEjYCYfWwKF1eiFZNH2a4oXPg3eIXmMloqr+b4NJgiZCiKtCgiRCiGtCKaWXhVMFy8OpMwsU+j2RS6kzrzPBDVcRy85s53ApHE4XTteZf7sUTqfr7L/PfD2dmceK3SdZH5dMYnougd5m6pYJol3VSBqVDyFSAiNCCCFE8ZH//dhg1AvFWnzAvxRUbHum2KvSt8tNh1O74MQ2WPuRPm1yRDWo2A7qDtAzT9xBF3mfF0JcAQmSCCGuKqUUp7PsTN9wmD0J6didCofLpX91ujz/dzj1oIZTnfma/3WeZUqdDb4opQdclCfgojz3RAoI9DJTJ1rPGGkcE0JkgA2jpklgRAghhLhRuN+zTbazy3zC4N45cPrMkJyDq+HYFn165LoD9BuErdP1orKlG0BgGbB4o9dRKUb3AJ6bFpdesyXvzPAjo1kvamswXnB3IcS1I0ESIcRV43QpNh1K5q0Fu9h2LJVgHwtmowGTQcN45mUyGDz/NpsMeLn/bTRgMmqYDQbMRg2TUf+qLzdgNpy7rPC2pjP/97KYqBzpR4kAG0aDBEaEEEKIm4am6cViI6vrGSR1B0JOKuRl6tMKO+3w9yw4sEof0hNUTp+iuHwzqNC2YKHZayX/8CHl0ocI2bMgKxm8gvRAT246rHwbEvfoUydnJenL/EvCwJ/1IUQZJ/U2fEKkBosQ/6JiGyRRSuFwOHC5XFgsliIfclT+P0BXgTxICXFllFKk5Tj4+rc4vvotDqvJyMudqtCpRglMBg2DpqFpnPerhqZPRnjOr+CFfiPl91UIIYT4j3MXifUO1l+gZ2LcMQFO/A0H18DhdbB9Luyar9c6sfjAqd36FMUR1c7WM3G3dynyP4O4HODIhbwMPcgRVE7PAjn0G/w1HVLjIfMkZCbp2zR7Fm59Qg+eHPpND+74hEJoJQiIAt9IsAUACla9A7sX6gGhck0hujGEVjwz5bLhql5KIcRZxTJI4nK5+OWXX/jss8+w2+1069aNgQMHYjYXnK991qxZzJw50/P/7Oxs7r33Xnr27MmYMWPYsmULoD/A5ebmMnr0aGrWrMnbb7/Nxo0bMZn00+/Tpw/dunX7185PiJuJSyn+PJzC2wt3suVICk1iQhnesTKxkX4YJJAhhBBCiH+TpoFfJPhGQIU2ej2TtOOQchj8Sujb/DUV1n2iB0giq0GZW6FME/3fFt+CQRCnXW8jJ1XPVPEJ04fHbPhMD8SkHdMzPrKTweQF9y3Uh8ukHIG9S/TMEd9wiKwJAaUguqHers0f7p2tt2n2OjO8Jv99k9IL02Yl6cOJDqzUzy2oLPT4Qg+cOPPA5Tw7HEnuu4S4KoplkOTAgQO8/PLLjBkzhtDQUB566CHKlStH69atC3x63Lx5c2655RYAUlJSuO+++4iIiMBgMNC3b1+6dOkCwLZt23j11VcJDw8H4K+//qJly5a0bNkSgIiIiH/5DIW48SmlyMh18O26Q3y++gAGTeO59pXp0zAaH4tRMj2EEEIIcf3kr2cSXE5/gR4AqTNAz/g4uBqObta/akbo9Y1eKPbUbvhrmh5YST+uB0FyUqH6XdDhLb2N3b9A8gHwDjob/AgqD2Zv/dhVukJMKz1zxWw7k/mRvy6KpmeQnP8EoOqdUOUOvVbJqd165knCDvAJ1/uwawH89gGUbghlm0KJmuAXAQazBEyE+AeKXZBEKcWSJUuoUqUKLVu2xGAw0K1bN+bMmUPr1q0LbBseHk54eDhKKRYuXEhoaCh169ZF0zTKlCnjaW/WrFm0aNGiQDAkPDycUqVK4ePjg8lkkgc6IS6DSym2H03j7V92siEumfplgxnesTLVogIke0QIIYQQxZemQUgMBJeHOv0hJw2S9sDRLRBZQ98m7ShsnqxnlXgH60Nc/KMgupG+3mTVszkMRr3GidGiB1nc7cPZGXr+aV81o57xUqaJPtxGOc8eS7kADf6cChu/0LNWwm+B256GmBZnqtyfmRVI7s+EuGTFLkgCsHfvXipWrIjBYEDTNCpWrMjKlStxOByFhtyAPjzn+++/p2vXrvj6FizGlJaWxoIFC3jrrbcwGPSxexaLhY8++ojPPvuM0NBQRowYwS233FIgUJKSkkJcXBxKKbKzs8nJybm2Jy3EDUApRVaek2kbDvO/VftxuhRPtK5I/yZl8bNKsFEIIYQQNwhPACIIvBvqxV3dohvDkBVg9dcDHUZT4cKp/iWuU5/zPb5VvRNiO0LqEYj/A+J+hWN/Ai59fcphWPEmRNXVM12Cy58J3EjQRIgLKZZBktzcXCwWi+f/FouFvLy88xZqPXr0KJs2bWL48OEFHtKUUqxfvx6DwUD9+vXRNA2lFKNHj8bf3x+Xy8Unn3zCsGHDmDdvHl5eXp599+3bx7hx43C5XDidTpKSkq7dCQtxA3Apxe4T6Yz5ZRdr9iVSs3QgL3SsTO3SQRgM8kYrhBBCiBtY/qCBxfvs8JziTNP0eiahlSCkItTsrReCNVn19alH9CE622frQ3ACy0Dp+npwpXzLgu0IITyKZZAkNDTUE5RQSpGcnExgYCBGY+H5wpVS/PLLL1SoUIGYmJgC61wuFzNmzKBz5874+fkB+owYZcuW9WzTv39/pk2bRnJyMlFRUZ7ldevW5dtvvwUgKyuL7t27X+3TFOKGoJQix+5k1qZ4Plq+jxy7k4eax3DfbeUI8DJL9ogQQgghxPWmaYCmz3zjFt0YhiyHhO16sOTgb/osP96hepDEmQebv9GLwUZUPZtlYjDqtVXgTHFYu77cXVhW0/RZhAwmfTiPM8/dCTzTFbozdUAfFqRcZ7dxf9EM+kspfRhR4ZM6O4uPcgFFfGB+qW1oml7k9qJtuM5Zl6+GzIXI/fBNpdgFSTRNo2HDhowdO5bMzExsNhurV6+mYcOGGAwGTp8+jdFoxM/PD03TyMvLY/bs2QwYMKDQUJzjx4/z+++/8+STT3qWuVyuAsN24uLiMJvNeHt7F+qHOygjD4Hiv0opxf5TGYz5ZTcrdp+kSgl/Xrj9FuqXDcagye+GEEIIIUSxZTDqM+v4hEH5FnowI/3E2dlwMk7Cmvf1r97BZwIsmp6Z0vNLfbu1H8HfM88GYbQzQYeWL0NsB71+y5wH9AyW/EGSkApwx0dgtML6ibDzR8Bwtj6KZoDbhunFbTMS4OenIC/rTMfPBDICy8DtY/WaL398Cbt+LnyOtz4JMS31aZZ/eiJfG5xto9NY/Vw2fqkHifLTNH1K5phWehuLXgZ7NhgMepDHYISA0tDief1cdszThzVpxnzbmPTsnKg6kJ0Cmybp19pgPNuGdyhU76lvG78RTu7U+2S26bMimawQFqvPzOS061lABpMejNJMehtGs14nB/IFjfIFruDs96i4KGokSHHq33kUuyAJQLNmzZg8eTIPPvggAQEB7N27lxEjRqBpGqNHj6ZUqVI89dRTAOzcuZOEhARatWpVaKjNsmXLKF++PJUqVfKsS0lJ4amnnqJUqVI4HA6WLl3Kww8/TEBAwHU5VyGKI6UUuQ4X8/48yvile0nPcTD4tnI80CyGIG/JHhFCCCGEuGF4ZvqxQlCZs8v9IuGeWXBkAxz5XZ/BRykILHU2g8MWAP4lzzzsnikEi3Z2SA+anoFSYL3SAwhuLic48gquBz0Y4F6fmXgm0JKP1f/sv/My9W3O5cg904YLsk4XbsMWeDZ5xJ6lT9V8vjacdkjae+Y6nMl+cbkg9JT+1Qic2AY7fix8LiVq6EGSnFTY+LkeLPGsVxAaq894ZDDBjh/0wJFn/Znsna4fQs0++oxKkzpDbvqZQIlFD5CExcLdU/Rrv+FzPfBk9joTbDnztU5/KN1AL0j85xS9bbPX2fU+IfpsSAaTPmNSymE9A8d15nyVE0rWgcDS+vH3LNKvj3KeuR5OvUDwLV30NuJ+heN/ntnfefa6Ve6kT1OdnQzrP9W/LxZfaPJowWynYkpT5yv0cR0ppUhLS2PNmjXk5OTQpEkTIiMj0TSNXbt2YbPZKFOmDJqmkZCQwPHjx6lRo4anMKu7jX379mEwGChfvrznoc7hcLB161b27t0LQLVq1ahcuXKRQ3ncMjIyuPPOO5k6dSphYWHX9uSFuM6UUhxKyuLdxbtZvD2BihG+DO9YmSYxoZI9IoS4qpRSPPTQQ9x1112FZrC7mWRlZdGtWze++eYbIiMjr3d3hBCiIM/jYP7Hwvz3e+qc7TibDaIUuBznbHdmd8OZLH+Xo4ihLkp/+DeY9Idqe84569Hbd2e9OO1nhv2c0z9TvjYcOYVH02ia3oam6dkdTsc5Gyg9Q8R4po28zLNDbtxBDM1wNmCTl6Fnq7iDAe6Xd4g+05EzD04f1vuaf73Rqs+SpBkg5ZAeCHHYwZGtZ644cvTgRXA5yEqGP77Sp36255xZnw2+EdBmlB4wWfsh/D3rzDnl6UEoZ56eeVO1G5w+BF+0gdy0s0EQFIRXgfuX6kGTBc/pAZ1zdZsINe+G5Dj4vJXeRv4MlYiqMPBnfUjW4pf1LB/3cCz3MKrO7+tTZp8+BJM768Ej30gYOF/PbrpK3O+vkydPpkSJq1dMuVhmkmiaRkBAAJ06dSq0rnLlygX+HxERUWBq3/xtVKxYsdByk8lEnTp1qFOnztXrsBA3AaUUdqeLn/8+zrjFe0jKzOOeRtE83KICob4WCY4IIYQQQtyMLlp3Qzv/and9kgsxmi+8jWbQi+VeiMkCWM6/XjOcraNy3n5Y9NeF2rhYloPV78LbGC0QWuHCbQSV1V/n4xUETZ/Ot6CI4FWjh6HBED345M7wcDnP9s0vEvrP0wMszjw9G8SRoweM3Neg9j1QpvGZmZsMZ4YHGfQMEHcbvb/TAyzuui2apmeEuINXjR6GGr3yrT/z8jvzgYB/ST2gAnowyzvkwtemmCiWQRIhxL9LKcXRlGzGLdnDz1uPUybEm4+61qZ5pTBMRsPFGxBCCCGEEEL8c4U+mCwiOnWxwJPJqmd8XEiJmvrrfMxeUObWC7cREKW/zsdohsDoC7dRDEmQRIj/MKUUDpdi8fYTvLt4D8dTs+lRtxSPt6pAhL9NskeEEEIIIYQQ/ykSJBHiP0opxYm0HD5cupe5fx6lZIAX7/eqRZsqEZgMmgRIhBBCCCGEEP85EiQR4j9GKYXTpVix+xRjftnF4eQsutQsybA2FSkZ6CXBESGEEEIIIcR/lgRJhPgPUUpxKiOXCSv2MfOPeEJ9rYzpWYOO1UpgNkr2iBBCCCGEEOK/TYIkQvwHKKVwKsWavYm888su9p/KpEPVSJ5uV4noYG8JjgghhBBCCCEEEiQR4qanlCI5M4+Jq/Yzdf1hAr0tvNGtGl1rlsRiMkiARAghhBBCCCHOkCCJEDcppRQuBevjknh7wS52nkij9S0RPNs+lvKhPhIcEUKIG5hLKY6nZGMyGgj3s8rfdCGEEOIqkSCJEDcZpRS5DhfbjqYyc1M8C/4+jrfFyMguVelepxQ2s2SPCCHEje54ag79v9pAw3IhvNatGkb5sy6EEEJcFRIkEeImoJQCIDkzj1V7TjFrU/z/2bvv+Cjq/I/jr9mazab33gghhN6LNFEUFJCqoNh79+yeP9vpeefZ9dSz94ZS7CJFmvTeCT2N9F432f3+/hgSiGAnbLL5PB+PQHZ3ZvY7u5uZ77z3W9iYUYrJoDG0Ywi3nplCSriPhCNCCOEhwnytJIf58P32XK4cmigtBIUQQoiTREISIdqwxgFZDxRU8eXmHL7ecpjM4moi/L2YMTCOCb2iSQn3xWSQmWuEEMKTmAwaMwbGs3h3AZ+ty+Tu0anIUV4IIYT46yQkEaINUkpR7XCy9mAxn63PYvmeQmrrnXSL9ueaYUmckRpGiK8VDSQcEUIID6RpGv0SgugTH8gXm3K4ZFACUQE2dxdLCCGEaPMkJBGiDXEpRW5ZLT/syGPOhix25lbgYzUxMjWMqX1i6BkXgM1slGBECCHaAavJwIyB8dz6yUa+3JzDtcOS5PgvhBBC/EUSkgjRyimlqHcqdh4uZ/aGLH7YkUdhZR0JwXZuPj2Zc7tHEh9sx6BJqxEhhGhPNE1jWMcQOkf68dm6TKb2iSHYx+ruYgkhhBBtmoQkQrRSSinKaupZvreQz9dlsfZgMQB9E4L4+zmdGdoxBH+bWYIRIYT4g5RSKKWajp9/5jjauI3G9d11LLZbTUzvH8cDc7fxw448pvWLlfOCEEII8RdISCJEK6KUwqUgo7iab7bk8MWmHA4WVRFstzK5TwyTeseQFumH2SgDsQohxJ9RX1/P3Llz+e677wgMDOS6664jOTm52TG1oaGBl19+mYyMDEA/NhsMBm666Sbi4+NpaGhgwYIFzJ07F4fDwRlnnMGFF17oluOypmmc3SWcN5bt5+M1GYztHomvl/mUl0MIIYTwFBKSCNEKKKWorXexMbOEz9dnsXh3AZW1DaRG+PL3czpzdpcIIvy9ZCBWIYT4C5RSfP/99zz77LM88sgjbN68meuvv55Zs2bh7+/ftJzBYKBv37506NABgG3btvHmm29y5513opRi9uzZvPPOO9x66634+flRXl7url0CINDbwpQ+sTwzfzfL9hQypmuEnCuEEEKIP0lCEiHcRCmFAgor61i4M59Z67PYml2Gl9nIkOQQpvaNoV9CEN4WGYhVCCFOBpfLxQcffMAVV1zBmWeeyZAhQ/jyyy9Zu3YtZ555ZtNyBoOBwYMHA/qx+qeffmLUqFGEhoZSVVXFyy+/zD//+U86d+6MxWLBbre7a5eanNczivdXHuSDVYcYmRqGl9no7iIJIYQQbZKEJEKcYkopGlyKPXmVzN2UzXdbD3O4rJaYQBtXD01ifM8okkLsGA3SpUYIIU6muro69u3bx2233YamaVitVpKSkti1a1ezkORYpaWlzJs3j2eeeQZN0zh8+DA5OTm88847ZGZmUldXxy233MKECROarVdbW0tJSQkANTU1NDQ0tNh+aZpGhL8X5/WM5q2fDrD2YDFDkkPkHCKEEEL8CRKSCHGKKKWorGtg1f4iPluXxcr9RdQ7XfSMDeC2M1MY0SmUILsFkC41QgjREhoaGqivr8fLywvQj7Xe3t5UVVWdcHmlFCtWrMDLy4s+ffqgaRo1NTXk5OTQoUMHnnrqKVasWME999zDwIEDiYyMbFp38+bNPPzww7hcLpxOJ5mZmS26bxowpU8Mn67L5INVhxiYFIzZKOcSIYQQ4o+SkESIFqaUIru0hu+25jJnYzZ78ivwt5k5p1skk3vH0D3GH6vJIMGIEEK0MLPZjJeXF5WVlcCRWcTKypqNR3Isl8vFzJkzOe+885q61NhsNvz9/Rk3bhz+/v4MHToUs9nMoUOHmoUkffv2Zfbs2SilqKmp4YILLmjRfdM0jYQQO2d3CefLzTlszy6jR2yAnFuEEEKIP8jg7gII4clcLsV323KZ+r+V/GfeLlxKcedZnZh9w2k8PrEb/RIC8TLLmCNCCHEqWK1W0tLSWLdund66r7KSffv20a1bt6Yww+l0Ni2fnZ3N+vXrGT9+fNNxOjw8nKioKIqKilBKUVVVhcPhOG5cEqPRiM1mw9vbG5vNhsHQ8lUuo0Fjev84NDQ+WpOBS7X4UwohhBAeR1qSCNFCnC7F3I3Z/OPrHYT6WnlwbBqnJYfg62WSUEQIIdxA0zSuvPJK/va3v+Hl5cX27duJjY2lV69eVFdXc/755/Pvf/+7KTSZN28eHTt2bJrlBsDX15crr7ySRx99lIsvvpgff/yRnj170rFjRzfu2VGdI/0YnhLK/B15XD20kuQwHznnCCGEEH+AhCRCtIAGp4tP1mby7+92kRDszTMX9KSjVFSFEMKtNE1j8ODBvPjiiyxYsICuXbvy0EMPYbPZaGho4LLLLiMiIqJp+ZSUFPr164fJZGq2jSuuuIK4uDjWrVvHiBEjOO+887Bare7YpeOYDBoXDYxj4a48Zq7L5L5zOiNnHiGEEOL3k5BEiJOs3uninRUHeeaHdNKi/Hh6ag/ig70lIBFCiFbAYDAwYMAABgwY0HSfpmmYzWamTp3a7L7hw4efcBsWi4UxY8YwZsyYpmVbC03T6B0XSL+EIL7afJhLBycQE+jt7mIJIYQQbYaMSSLESaKUoq7BySuL9/HUvN30jgvghem9JCARQohWRtO0Zj9/dRutjdVkYMbAeIqq6pi7MRulZHASIYQQ4veSkESIk0ApRW29i2fnp/PfRXs5LTmEZy/oSZS/V6usQAshhPBcmqZxWnIIXaP8+Xx9FkVVDncXSQghhGgzJCQR4i9SSlHtcPLv73by5vIDnJkWxpNTuxPqa5WARAghhFvYLUYuHBBHVkkN32/LldYkQgghxO8kIYkQf4FSioraBh75ajsfrclgfI8o/jWpO0HeFglIhBBCuI2maZyZFk5iiJ2P12RQUdvg7iIJIYQQbYKEJEL8SUopSqvruX/uNuZszOaCvrE8Mr4rfjLFrxBCiFYgwGbmgn6xpOdVsCS9QFqTCCGEEL+DhCRC/AlKKQorHdw9awvztuVy2eAE/n5uZ+xWowQkQgghWgVN0xjbPYowXy8+WHWI2nqXu4skhBBCtHoSkgjxBymlyC2v5Y6Zm1iaXsB1I5K486xO2MwSkAghhGhdwv2sTOwVzabMUlYfKJLWJEIIIcRvkJBEiD9AKUVmcQ23fLyRtQdL+NuoFG46vSNWCUiEEEK0QpqmMblPDL5eJj5YdYh6p4QkQgghxK+RkESI30kpxb6CKm76eAM7csq5d0wqVw1JxGKSPyMhhBCtV3yQN2O6RrJiXxFbs0ulNYkQQgjxK+TqTojfQSnFzsMV3PTRBg4UVvHguC7MGBiPySh/QkIIIVo3TYNp/WMxGTQ+XJ2BU0ISIYQQ4hfJFZ4Qv0EpxebMUm76aAO55bX8c2I3pvaJwWiQ7jVCCCFaP03T6BTuy4hOYSzcmc/evEp3F0kIIYRotSQkEeJXKKVYfaCYmz7eSHltPU9O6c7Y7pEYJCARQgjRhhgNGhcNjMPR4OLTdZm4XNKaRAghhDgRCUmE+AUupVi6p5BbP9lIg0vx7Pk9OaNzOAYZoFUIIUQbo2kaPWMDGJAUxDdbDpNVUu3uIgkhhBCtkoQkQpyASynm78jj9pmbsJgMvDCtF0M6hkhAIoQQos2yGA3MGBBPaXU9czZmywCuQgghxAlISCLEzzhdii835XDP51sIsJl56cLe9EsIlCl+hRBCtGmapjE4OZjuMf7M2pBNQUWdu4skhBBCtDoSkghxjAaXi5nrMnngi21EBnjx0oW96RbtLwGJEEIIj2AzG7lwQByHy2r4duthaU0ihBBC/IyEJEIcUe908f7KQzz69Q46hPrw0oW96RThKwGJEEIIj6FpGiNTw+gQ6sMnazMpr21wd5GEEEKIVkVCEiEAR4OL15bu54nvd9Et2p8Xp/ciMcQuAYkQQgiP428zc0G/WPYVVLJoV560JhFCCCGO0aIhidPpxOFwyMlXtFpKKWrrnbywcA8vLNzDgMRgnp/Wk5hAmwQkQgghPJKmaZzbLZJIfxsfrsqgpt7p7iIJIYQQrUaLhiQHDx7koosu4sMPPyQvLw+XyyWBiWg1lFLU1Dt5ct5uXlu6jxGdQnn6/B6E+3lJQCKEEMKjhfpamdQ7mi3ZZazcVyT1MyGEEOKIFg1JYmJiuPzyy5k3bx4TJkzg7rvvZu3atdTW1srJWLiVUorKugYe+3on7608yJhukTwxuTvBdosEJEIIITyepmlM6hWNv83MB6sOUe+UepkQQggBLRySWK1WxowZw9tvv837779PYGAg06dPZ+zYsbz77ruUlJRIWCJOOaUUZTX1PPjFdj5bn8nk3jE8NqEr/jazBCRCCCHajZhAb87tFsmq/cVsyiyVOpkQQghBC4ckSimUUhQUFLB8+XJWrVpFUlISZ599NosWLeLKK6+kqqqqJYsgRDNKKYqrHNw7eytfb8lhxsB4HhyXho/VJAGJEEKIdsVg0LigXywWk4EPVx/C6ZKQRAghhDC15MZLSkp47LHHWLVqFd26dePOO++kb9++eHt7U1NTw7Rp0yguLsbHx6cliyEEoAck+RV13DNrCyv2FXH10CRuOaMjVpNBAhIhhBDtUscwH0amhrFwZx7peRV0jvSTc6IQQoh2rUVDkpqaGlJSUrjllluIjY3FYDh6MWqz2Xj22WcJDw8/br3GFijFxcU4nU6Cg4MxGo3HnbQdDgcOh6PZfWazGYvFQm1tLU5n89Havby8MJlM+owmtbUUFxfj7++P3S5TvXo6pRTZpTXc+dlmNmWUcsvIZK4Z1gGzUZP3XgghRLtlNGhcNCCOedtz+WRtJg+P64KcFoUQQrRnLRqSBAcHk5qaSnR0NEajEYCcnBxyc3Pp1asXHTp0OOF6TqeTl19+mdmzZ2MwGOjduzf/+Mc/8Pb2brbcp59+yvvvvw/oF8GHDx/mtttu4/LLL+exxx5j7dq1ADQ0NJCXl8fbb79Nv3792Lt3L3fccUfTALKPPPIIgwYNkotlD6WUYmt2GffP2ca+gkruGt2JSwYlYDa2aG8zIYQQotXTNI3uMQEMSgrm262HueK0RBJC7O4ulhBCCOE2LXqVuHPnTt54441m4UNVVRX//Oc/qa+v/8X1tmzZwjvvvMNrr73GJ598wpYtW/jqq6+OG1BsypQpfPrpp3z66ae88MILNDQ00Lt3bwwGA/fdd1/TY7fffjsmk4nk5GScTiePPfYYAwcOZM6cOVx++eU88MADVFdXt9jrINynweniy805XP3eOrJLa3h4XBcuHSwBiRBCCNHIbNSYMTCe8toGZm3IwiUDuAohhGjHWvRKsaSkBD8/v6ZWJAD+/v5UV1cf102mkVKKH3/8kb59+5KcnExoaCjjx4/nu+++Oy4ksdlsBAYGEhAQwIYNG4iLiyMtLQ1N0/Dx8SEwMBB/f3/mz5/P6NGjCQwMpKSkhI0bNzJ58mTsdjujR4+mqKiIAwcOtORLIU4xpRQVtfU8Mz+de2dtJdDbwv9m9GZK3xhMBglIhBBCiEaapjEwKYiesQHM2ZhNfnmdu4skhBBCuE2LdrdJSEhg69at7Nixg5SUFBoaGvjiiy8IDg7Gy8vrF9fLyMggLi4OTdPHi4iNjeXLL7/E6XRiOMEFbkNDAzNnzmTKlClYrdZmjxUWFrJ48WLeeOMNAEpL9SnuAgMDAfDx8cHb25v8/Pxm62VmZrJkyRKUUtTV1VFWVvZXXw5xiiilyCyp4R9fbWdJegEjU8N4cGwaUQE26VIlhBBCnICX2ciMAXHc8dlmvt6Sw5VDEuWcKYQQol1q0ZAkPj6eadOmMWPGDEJDQ6mtrUXTNF588cVmrUt+zuVyNTsxGwwGXC7XcS1JGu3du5d9+/YxevToZusppVi8eDEhISF07doVTdOatnHscpqm4XK5mm2zurqaAwcOoJQ64QCxonVyKcXq/UU8+MV2sktruG54B64d3gG75fiBf4UQQgih0zSNEZ3CSAn35dO1mUzuE0Ogt8XdxRJCCCFOuRYNSYxGI9dddx1jxoxh//792Gw20tLSCAgI+NUL1sjISHJycgA96MjNzSUsLOyEwYpSii+//JI+ffoQHR3d7LHGFiaTJ09uarni5+end8WoqCA0NJSamhqqq6sJCQlptm5KSgr/93//B+jjqKxevfovvRaiZSmlcDhdzFybydPz07GZjfxnSndGd4nAaJAZbIQQQojf4utlYlq/WB75agcLduQxpU+MnD+FEEK0Oy06OINSqqlVSGBgIFarlX379pGenv6LrUI0TWPYsGGsXbuW/Px8qqur+f777xk5ciQGg4H09HQOHTrUtH5VVRVffvklF1xwwXFdcQ4cOMCuXbsYM2ZM00k+ODiYlJQU5s+fT0NDA6tWrcJms5GYmHhcORp/ROumlKKkup5Hv97Bo9/sJCnEzhuX9uXcbpGYjAZ5D4UQQojfQdM0xnSNJCbQxkdrMqh2ON1dJCGEEOKUa9GWJA6HgwcffJAlS5aQnZ1NZGQkBw8eZNKkSbz00ku/2OWmf//+jBgxggsvvBAvLy/8/f2ZPHkymqbx8ssvExsby+233w7A9u3bMRqNDB48+LiuNj/++CP9+/cnLi7u6A6bTNx3333cfvvtzJ8/n8OHD3Pvvffi5+fXki+FaCFKKfbkV/LgF9vYcKiU8T2juGd0KiE+FglHhBDCwzkcDmpra/H19aW2tpY1a9YQGBhI165dTziGmfhtwT4WpvSJ4YWFe/lpbyGj0sLlfCqEEKJdadGQZNeuXWzfvp3//ve/PPbYY7zzzjt8/vnnZGdn/+oJ12w289hjj7F//37q6+tJSkrCZrMB8OCDD2IyHS12165dmTVrFv7+/sdt5/zzz2fatGnNKkqaptG3b1/mzJlDZmYm4eHhRERESAWgjVFK4VKwaFc+//hqO2U19dx1dicuHhSP1SStR4QQwtMppZg1axb5+fncfPPNvPDCC8ydO5eGhgaefvpphg4dKueCP2lCr2jeX3WID1YdYnhKKFbzL48jJ4QQQniaFg1JioqKSEpKIjQ0lPr6ery8vBg3bhxXXHEFNTU12O32E66naRpms5lOnTod91hQUFCz23a7/YTbaezi80vbDwkJOW4cEtE2KKWoqXfy9k8HeWXxPkJ8LLw4vRdDOoZiNEiFWAgh2osdO3bQs2dPampqWLhwIe+++y4bNmzg22+/ZejQoe4uXpukaRpRATbGdY/ig9WH2JBRwsCkYAmchBBCtBstGpJERUVRUlKCn58fdXV1fPbZZxQVFWE0GjGbzS351MJDKaXIK6/j8W938t22wwxMCuaR8V1IDLFLBU4IIdoZb29vcnJy2L59O1arlfj4ePbt20ddXZ27i9amacD5/WL5fEMWH6zKoF9CECajnGOFEEK0Dy3aYTcpKYmrrroKu93OQw89xNdff83atWt56KGHJCQRf5hSis2ZpVz93jp+2J7LxQPj+e+FvSUgEUKIdmrs2LF88skn3HDDDUyZMgWLxcLGjRtP2BJV/H6aptEh1IdRncNZml7AzsPlvzjgvhBCCOFpWrQlyYEDB8jMzGTYsGEMGTKEwYMHA2AwyJgR4o+pd7r4anMO//puF0op/nFeVyb2jsZslIH5hBCiPdI0ja5duzJnzhyqq6uJiYnB5XJxwQUXEBISIvWMv8igwYUD4vh262E+XpPJoxP8kcYkQggh2oMWvcIsLy9n+fLlKKXQNA2j0YjRaJSKi/jdlFKU19Tz1Lzd/H3OVkJ9rPzv4j5M6RsjAYkQQrRjSikOHDhAeno68fHxpKenc+WVV/LWW2+5u2geQdM0ukb7M6RjCPO253KoqEpakwghhGgXWvQqMzk5maKiIt599122bNnC9u3b2b59OwcPHpQTrfhNSikyiqu59ZONvPXTAUZ2CuONS/vSJy4QgwRtQgjR7s2ZM4cdO3bgdDr597//TXJyMllZWXz66adSzzgJTAaNGQPiqaxr4LP1WcgrKoQQoj1o0e42paWlFBYW8sorr+Dl5dXUgqRnz54888wzGI0ypZw4MZdSrNxXxINfbCO3rJYbT0/m6qFJeFukJZIQQghdcXExiYmJlJSUkJOTw3PPPce6dev45ptv3F00j6BpGn0Tg+gdF8gXm7K5eGA8UQE2dxdLCCGEaFEtGpLEx8efsKJiMBgwGKSrhDieUgqH08XHazJ5bn463hYjT07twVldwjFqmgQkQgghmiQnJ/Pll1+yZ88eYmNj8ff3p7i4GB8fH3cXzWN4mQzMGBjHbZ9u4qvNOVwzLEnOxUIIITxai4YkNTU1bNiwAZfL1ez+gIAAunfv3pJPLdogpRTFVQ6e+mE3s9Zn0z3Wn0fP60pqhK9UyIQQQjSjaRqTJk1i//79pKenc/fdd6NpGvn5+YwcOdLdxfMYmqYxLCWU1Ag/Zq7LZGrfGILsVncXSwghhGgxLRqSFBYW8txzz+FwOAA9NNm5cyeTJk3i+eeflwtf0UQpxe7cCh74YhubM8uY2Duau8/uRJDdIp8TIYQQJ+Tn58fDDz9MSUkJFRUVFBcXc/3112MymX713PHz8UrkPPPrfKwmpveP5cEvtjNvex7T+sXKayaEEMJjtWhIEhcXx6efftp02+VyMX/+fFasWCEDqokmTpdi/o5cHv16J5V1Ddw7JpWLBsRhMclU0UIIIX5ZbW0tTz/9NHPmzEHTNJRSjB49mr///e/Y7fYTruNyuVizZg0LFiwgODiYKVOmHDdlsNPp5MsvvyQ/P7/pPqPRyLhx4wgPDweOzq6zaNGiZvd7Ik3TOLtLBG8sP8DHazIY1z0SHy+zu4slhBBCtIgWHRhE0zRMJlPTj8VioU+fPmzYsIHa2tqWfGrRBiilqKpr4KUf93LHzM1YzQb+e2EvLhucgNUsA7QKIYT4ZUopvv32W1avXs0777zD999/zwcffMDu3bv5/PPPT/hljFKKFStWcPPNNxMSEsKOHTu44YYbqKmpOW7Zuro6ampqqKmpYdeuXfzjH/+grq6u6fGamhoefPBB7rzzTg4cONCi+9oaBNktTO0Ty87D5SzdUyhfdgkhhPBYLdqSpKKiguXLl+N0OgH9m5kFCxYQFBSExWJpyacWrZxSisNltfzzm538sCOX05JDeHhcF+KDvSUcEUII8bts2rSJiy66iG7dugEQEhLC5ZdfzoIFC7jkkkuOW14pxZtvvsmFF17ItddeS0VFBWeddRYbN27ktNNOa1rOaDQybdq0pnX+85//MGLECKKjo5vu+/TTT4mKiiIhIaHld7QV0DSN83pG8d7Kg3y46hAjU8PwMssshUIIITxPi7YkKS0t5cMPP+T999/n/fff55NPPiEoKIh///vfmEwtms+IVsylFBszSrn6vXUs3JXHZYMTeGFaLwlIhBBC/CHx8fEsWrSI4uJiGhoaKCsrY+HChcTFxZ1w+bq6Onbs2EG/fv3QNA0fHx+Sk5PZunXrLz5HVVUVX3zxBRdccAEGgwGlFHv37uXLL7/khhtu+MXZ+pxOJ9XV1VRXV1NTU3PcIPZtUYS/F+f1jGLdoRLWHSyW1iRCCCE8UosmFTExMbz77rvNKhByQm2/lFI0uBRzN2bzxPe70NB4bEI3zusZhckg0/sKIYT4/Rpnt1m0aBFnn302wcHBlJSUEBMTwz333HPCc0p9fT21tbVN45Vomoafnx9lZWUnfA6lFOvXr6euro7BgwejaRp1dXU8+eSTXHHFFYSFhf1i+datW8fDDz+M0+nE5XJx6NChk7PjbqQBU/vEMnNtFh+szmBAUjBmo5y7hRBCeJYWDUny8vJ4/vnneeihh/Dy8gJg27ZtfPfdd9x5551yUdyOKKUora7nhUV7+Hh1BslhPjw6oSs9YwPkcyCEEOJPCQwM5K233mLXrl0UFBQQHBxMbW0tO3fuPOFAqiaTCbPZ3DQumlKKqqqqXxzkVSnFZ599xpgxYwgICABgyZIl7Nq1i/Hjx7NgwQLKy8tZs2YNiYmJzZ6zR48evP3224A+fsmVV155kvf+1NM0jYQQO2d3CeeLzTks2pnPqC7hGOQ8LoQQwoO0aHeb9PR0SkpKsFqtTfeFhoayZMkSGbi1HVFKsSOnnGvfX88Hqw5xVpcIXr+0rwQkQggh/hJN0/Dy8qJnz56MGjWK3r17s3//flauXHnC5a1WKx06dGDbtm0opaitrWX//v2kpqailMLlcjVr8VpQUMDSpUuZNGlS030BAQH06dOHhQsXMn/+fMrLy1m1ahV5eXnNnsvLy4uIiAgiIiIIDw/3mG7GBg0uH5JImK+Ve2ZtYc6GbJwuaSUshBDCc7ToGdtsNlNRUYHT6cRkMqGUorKyEqfTKRfH7YBSinqn4svN2Tw5bzd19S7uHZ3KhQPi8TLL9L5CCCFOLYPBwIwZM/jXv/5FQkICmzdvxmq10q9fP2pqarj11lu56667SElJQSnFjz/+SEREBGlpaU3nrH79+tGvXz8Aqqur+emnn7jllluaBo/1dJqm0THMh1dm9OHOzzbzwBfbKK52cOmgBCymFv3uTQghhDglWjQk6dy5M3l5eTz55JOMGjWKiooKXnrpJYYOHdrU/UZ4JqUUxVUOnluwh5nrMukQ6sND49LolxCEwSDhiBBCiD/P5XL94kCojTPqnYimaYwePZra2lo+/vhjgoKCeOWVV/Dz88PhcJCcnNysfmI0GrnzzjubtYg9NuA3m81cdNFFREZGtqvgX9M0UiN8eWVGb+75fCtPzdtNcZWDW0Ym42U2tqvXQgghhOdp0ZDE39+f//73vzz11FN89dVXWK1Wzj33XK677jo5gXowpRRbs8t4+MvtbMsuZ2yPSO4+uxPhfl7yvgshhPjLPvvsM959990TPpaTk8MFF1zwi+uazWamTJnC5MmTm85JmqZhtVq55557mpbTNI2pU6f+ajksFgt33HHHn9iDtk/TNGIDvXlhei8e/GIbbyzbT0mVg/vO6Yyfl0nO90IIIdqsFu8gm5iYyKuvvkp9fT0GgwGDwdDU51dOoJ6lsXvN7I1ZPP1DOk6X4v5zO3NBv1isJuleI4QQ4uTo0aPHrw6E2qVLl19dX9NkRrWTQdM0QnwsPDG5O//+bhefrc+kpNrBoxO6EupjlddYCCFEm9SiIUlWVhaPP/44zz77bFPz1U2bNvHxxx/z+OOPYzQaW/LpxSmklKKw0sEz83cze0M2KeG+PDQujd7xgTLqvRBCiJMqNTWV1NRUdxdDcGQaZZuZB8amEWS38Pqy/dzy8UaemNyduCBvCUqEEEK0OS06wtbevXubmrA2ioqKYuvWrTK7jQdxKcWmzFKuem8tszZkc17PKN68tC99JCARQggh2gWbxcitZ3TkntGpbM0q4/oPNrDjcHmz2YKEEEKItqBFQxIfHx/y8/NxOBwopVBKkZ+fDyCtSDyAUoq6eicfrc7gqnfXkV1Sw8Pj0vRmtr7SzFYIIYRoT8wmA5cOTuCfE7txuKyG6z/YwKr9RRKUCCGEaFNafHabhoYG/va3v3H22WdTVlbGO++8w9SpU5u1LhFtj1KK/Io6npy3my835ZAW5cfD49LoHhsgrUeEEEKIdspo0BjfM4oAbzP3zd7KzR9v5NHzunJWlwiMMrudEEKINqBFW5LY7XZefvllwsPDeeutt/juu++4+uqrmT59eks+rWhhLqVYd6iEK99Zy1ebc5jaN4Y3Lu1LDwlIhBBCiHbPoGkMTwnl5Yt6E+Bt4e5ZW/h0bQYNzhNP2yyEEEK0Ji3akkTTNKKionjwwQepqqpi8+bNzJo1i8WLF/Pyyy9Ll5s2RilFXYOLT9Zk8PzCPZiMBh49rysTekVjNspMAUIIIYTQaZpGz9gAXpnRm7s/28KjX++kuMrB1cOSsBhlxjshhBCtV4uFJEopnE4nBw4c4Ouvv2bOnDnk5ORw8cUXc/nll2MwtGgjFnGSKaXILa/lP9/v5psth+kW489D49LoFu0vFR0hxKmjFCgXOB3QUAeuBjB5gdGs/2gGfRkAOTYJ4VaappEc6sNLF/XmvtlbeWHhXkqq67l9VAreFqPUH4QQQrRKLRKSVFdX88033/D5559z8OBB+vbty/Tp01m0aBEPPPCABCRtjEsp1hwo5pGvtnOgoIpp/WO59cyOBHlbpIIjhPjrjg01lDoagNSVQU0pVObrjyWOAA1Y/izs/BqqC8FVDxZf8A6CMx+G+MFQUwI7vgBbANhDwRYIVj/w8ger74nL0B6OZX9o8EylL68Z9NfG5QRnPZgs+n1C/E6aphHp78WzF/Tkka+2897KgxRXOXhwbBoB3mapRwghhGh1WiQk2bVrF9dccw3Tp0/nscceIykpiZ07d7J48WI5GbYhSilq6118uPoQ/120Fy+zkccndWNcjyhMBuleI4T4HX4egLgaoKEW6iqgtkwPQCpzIaYfBCVBWRbMvR7KMvVlHFX6OhHd4fLBYLLq2zF7QUxfMNmgukgPRgxHunCWZsD8B6G+BlB6CxOzDeJPg6nvgGaENa9D8V7wCQd7mB6m2EMgNBWsPkdaq9Tr29R+1jX0jxz7fimYaHw9ji545PaR/w2mY8KJuqOvnatBv89o0UMf0F8zR6X+mNMBDQ5QDRDZS9+X8hw4uEwPnhoDqAYHhHSE1HNBOWHVK1CwW3+uBoe+nGaAsx7V35fM1bDwEZjwPwhK/P37LwR6UBLobeafE7sRZLfw4aoMSqodPD6xG5H+XlKfEEII0aq0SEjSsWNHnnzySebOnctll13G8OHDSU1NbZoGWE6GrZ9SipzSWv793U6+355L77hAHhqXRudIP3n/hHC3xi4noF/EuxqgLPvIRb3hyLf/BjCYwSdM/72hVg8Nmh4z6Bf/BjMYTUcuwuuPPMGRv3FN039vbE1w7EX9iY4DSunPUVcBdeVQVQAVufoFd9fJ+oX/mtdh3ZtQW65f2Dvr9ac79xkITNRDEJMVwruCbyT4x4BfFATEH+lOo8GQ22DIrXr5NU1/LVyuoyFJSEe4eA5UFeqtTSrzoCIPAmKPdMdxQc4GSJ8H9dV6SKDQtz9jNsQPgrzt8O2dYPXXwxOfcP21DEuDxGH685Qe0oMe55FQoaFeDydi+oOXn/6e7Fukv/YNdUcCiDoI7QRdJunlWP4cFOzUX4fG7QCc8+TRcOLr2/V1XU69rC4ndDoHzn1K//2rWyBjpf47St8Xkxdc/g1E9oD8HfDlrXrZaHxPNegyUd+OUpCxCrLW6a+hwaT/b/bWyw56KGPxbR8tbkSL0DQNH6uJe0anEmS38PKP+7jxow08OaUHHULtUrcQQgjRarRISOLr68uVV17JxRdfzM6dO5kzZw4vvvgiJSUlPPfcc4wdO5aOHTvKCbGVcroUK/cV8o+vd5BZXMMlgxK4aWQyATZpFitEi1FHWhAo59EWAVZf/aK+5CDkbNJDh8o8/aeqUL/Q7j5Vv1D/aKreokA7En5oBvCNgEu/Au9g2DITlj55pGWE4ehyA66FflfqLTbmXKe3yjCajlwom/R1xzyht1rYtxC2zjrm8SMBS/IoSBoBNcXw8YV6eFBXrl/4K6WHEylng1eA3vUlqINetsYAxDcSwrvor4M9FKZ/fHQfTnTMMZqb39YMzedqs9j1ViY/f32bltf0fTr973qgU10EVUdaowQl6cs0hhXF+yB3Mziq9cAgdSwkDtUDia//Bgd/Qk8l0P83WuHyb/VwonA3fHMH4EIPJoz66995nP7eARzeBNnrjwknzGDxPvr8Zpv+OhlMR8ZdseghUkS3o/vedYreSsZk1Z/fZNVb2vjH6stE9YILPznyfjVuw6K/H5oGmgnGPa9/7hoDEoNJL6/ZS99GdG/9fTG06Hjvoh3wMhu5fngHgrwt/Pv7XVz/wXr+M6U7PWMDpI4hhBCiVWix2o6maVitVnr06EGPHj24/fbbWbVqFTNnzmTr1q288cYbMrtNK6OUosbh5N2VB3ll8T58rCaemNyNMd0ipXuNEH9WY6sPl/Noaw5HpX4h7BuptyzY+D4U7tFDkKrCI0GFBaZ/Ar7hsHchfHc3oOkXrSab3o2iulDfvsUHel1yNJhwNeitQsx2vUUB6KFETL/mXTZcDXqLB72gekDTUAOOYx6vLdXLrxSUZsL+H4/cPubHN1IPSUxWCE7Wgwb/aPCLPtIaJFovo6ZB9/P1YOfYLiw/P7YYLSf/ffj5c3j5H+2uAsd3i4nqBZd8qb+e9VVHugeV66EFmh4k9LwIOpxxJJw4EjyYvCAg7sg2esMlXxwNJhrDJeuR11wzwPgX9NewMZRoDIZMVn2ZyB56wNHY+oOf7YemQc8Lf31/vYP19+fX2EN+/XHNAEYZi0ScHCajgWn94wi0W3jwi23c+OEG/jWpG0NTQjFIXUMIIYSbtfhXQo0X1v7+/px11lmceeaZVFZWyuCtrYxSisySGh7/dicLd+bRPyGIB8elkRLuK+GIEL+m8eK6oU4fW6P0yFgaicP0IOPQT7DiRT38qC3TgwxHFfS9Akb9Qw8jNn0ExQf0C3BboP7jF613iQFIPhMu+EC/kPXy1y+yLccEIEYLDLrxl8uoadDxLP1HL/TR8S8aB+G0+OjjdRw7LkZjCwmzt/5/j2nQeazetaWx24dy6i0SQA9lxr/QfGDPnx8/DK00HP95OTXD0a4/Vh+9u82xFHoXol9aH/SBY+MH/frz2gJ/o1wGGShVeCSjQWNM1wgCvM3cM2sLt326iYfHd2Fs9yiMBql3CCGEcJ9T2m5W0zSMRiP+/v6/vbA4ZZwuxfI9Bfzj6x3klNVyxWmJ3HB6Mn5eJglIhPi5Y1scKJc+5sS+RZC1For2gaNCb+lx1QJ97In6Gv1+W4A+4KVPmH7BHTdY34bZCya/caSFga/eXcJobt6tITBe//krmv0ta8c1SGjWeuGXmG1HWlL82vO00hDkZJNjoxB/maZpDEoK5pWL+nDXZ5u5f85WSqocXDQwHrO0XBJCCOEm0rm4HVNKUe1w8tbyA7y2dD/+3maentqDs9LCMUr3GiF0TS1FaqAsB3K36INodr8AUPogpAd/0gcdTZsAUT31ViB+0fp6SSPgmh+PdLcw0yydaOw+0TgOhhBCtDOaptElyo9XZvTh7llb+Nd3uyiqcnDD6cl4mQxSFxFCCHHKSUjSTimlOFRUzT+/3cni3fkMSgrmwXFpdAj1kQqJaN+OnbLWUQ3p3+khSPZ6KDmgd5WJ6gWdz9NbVZz5iN4dwi/6aCuLY/+GjObjBxoVQgjRRNM04oO9eXF6L/5v7jb+t2QfxVUO7h2Tio9VWrUKIYQ4tSQkaYecLsXi3fk89s0O8srruGZYEtcO64CvdK8R7VFjKFJfBaVZ+mwjgQkQO0AfYHXBw/oYI0FJ0GM6xA2EyJ56NxlN07vUCCGE+Es0TSPM18pTU7rzz293MnNdJiXVDv4xvivBPhapnwghhDhlJCRph3YdLueOmZvxs5l59oKenJEahkn6/or24tiWIpX5sGc+ZKyAnI1QkqF3q+l7hR6SeAfBpNf1MUR8I/SBUqWiLoQQLULTNPy9LTw8vgtBdgtv/3SQ0uqNPDG5OzGBNglKhBBCnBISkrQzSimWpBdQXe/kxem9GNIxRCodwvMpF9RVQukhyN0KScP17jH5u+DbO/XZW0I6Qt/L9ZYiUb309Qwm/bYQQohTxtti4vZRnQiyW3huwR5u+HADT07pTqcImXFPCCFEy5OQpJ2pdyqW7ikgJtBG99gAqWwIz6UUFO+HA0sgYyXkbIayTHA1wMRXoeskfZDVaR9CcEd91hmjRVqKCCFEK2AxGbhiSCJBdguPfb2T6z9YzxNTetAvIVDqLkIIIVqU9LFoZ7JLa9h5uIIBiUH4eklGJjyAUtDggIrD+gCrmz/Rp90F2DYLvr0b9i8B33AYdANM+0ifcQbAyw86jISAWH36W6l4CyFEq2EyGJjUO4anzu9Bdb2Tmz/ewIKdebhc6rdXFkIIIf4kuUpuR5RSrD1QTFVdAyNSwpDLQdHmqGMqxsoJu7+Hg8vg8Ga91UhNCVj99PFEAhOg62SI6acPrmoPAcORWWYkDBFCiDbBoGmckRqG/4W9ufvzLdz52RbuHt2J83pEY7capVWJEEKIk05CknbEpWBxej7Bdgs9pKuNaO2UAhQ01EFVARTu0QdXtQXoA6sqF6x5XZ+Nxj8Gkk6H6N56FxrfSD0ICUrSf+SzLoQQbZamafSND+R/M/pw9+ebefjL7cxcm8mMgfGMSgvH32aWOo0QQoiTRkKSdqS4qo6NGaX0iA0gxNfi7uIIcVRjCxHlBDQwGPXuM0ufOjLrzEF9Gl6DCTqMgN6X6K1CxjyhjyPiGw5mm77usRVlqTQLIYRH0DSNlHAfXr+0L5+vz+KzdVncN3srbyw/wPT+cZzbLZIQmSpYCCHESSAhSTuhlGJLVhkFFXUM7xSKUSoRwp0aW4nU10BFLhTshpwNeiDS7yroNEZvKXJgqd59Jm08RPeB8G4QlKAHJJoGYanu3hMhhBCniKZphPpYuX54B87vE8s3Ww/z8ZoMHvt6B+/8dICpfWOZ2CuaCH8vtCPLCyGEEH+UhCTthAKWpBfgbTEyIDFYKg7i1GlsJeKq16fh9fIHzQA7vtBbipRlgqMKjFbwi4DqIn1530i4/Buw+oPJwnGtRIQQQrQ7jfWXEF8rlwyK57yeUSzYkccHqzN4bkE6H646xIRe0UztG0t8kDeaJmGJEEKIP0ZCknaiqq6BVfuLSInwJTbQ5u7iCE+nlB58lGVC/g7I3qCPHVJVANM/haBEsPrqgUnCkCOtRLroY4tYfPRtGIzgE+7W3RBCCNF6aZpGgLeFyX1iGN01kqV7Cnh/5SHeXH6AmesyObdbJNP7x9Ex3BeDhCVCCCF+JwlJ2ok9+ZVkFFVz/enJWEwy87M4SRpbiTjroKoI6qshOFkfW+Trv8Hub6GhVh8vxC8GInpA47xKSSMgcZjMOCOEEOIv0TQNHy8TY7pGcHqnMFYfKOL9lYeYuS6LuZtyGJUWzowBcXSJ9sdk0CQsEUII8askJGkHlFIs31OIAoYmh0jlQPx1Tgfk74K8rZC1HnK36IOrBifDJXP1rjNxA8A/GqJ6Q1hnvfuM2aZ3tQF9EFYhhBDiJNE0DZvFyPCUUAZ3CGZTZinvrzzEvG25fL8tl2EdQ7h4UDy94wKxmAxSHxJCCHFCrfIqRSmFw+Fg586dOBwOOnfujI+Pz3Ens6KiIoqKiprdFxQUREhICAD19fXs27ePgoICIiMjSUxMxGAwkJubS0VFRbN1goM9d5wOR4OLZXsKiAvypmO4j7uLI9qKpsFVa6EyDwp3Q0A8hKZCZQF8PA0q8/VuMwFxkDIaEk47GoL0vQIZR0QIIcSppmkaFpOR/onB9I4LZOfhcj5cncG87bks2p3PgMRgLh4Uz+AOwdjMRo+t/wkhhPhzWmVIUldXx1133cWePXuw2+0opXjttdeawo9GCxcu5NNPPwXA6XSyZs0aHn74Ya655hpqamp4+OGH2bp1K9HR0VRXV/Pcc88REhLCgw8+yI4dO4iIiADg/PPP5/zzzz/l+3mqZJXUsDu3gvN6RuNjbZVvuWgNGrvOgD6WSPoPkL0e8rZBaYY+xshpt8DIB8AeAsPvAb8oCEkBnzAweenrNlU2pdIphBDCvUxGA91iAvhnlD9XDknkk7WZfLU5hxs+3ECPGH8uHhTP6Z3C8LGaJCwRQggBtNKQZNWqVaxbt46vv/4au93OZZddxsyZM7n++uubncCmTJnCpEmTADhw4ADnnXceI0aMQCnFnDlzyMjI4JNPPsHX15f6+npMJn13HQ4HN998M1OmTAHAYPDcMTqUUqw+UEy1w8nwlFB3F0e0FkrpU+zWV0P5YX1w1fyd0Pcy8ImAw5vhh7/rM8sEJUK3qfrgqnED9PWNFuh9if67VCqFEEK0ckaDRnKYD/ef25lLBycwa30WszZkccfMzaRG+HHhgDjO7hJBoLdZwhIhhGjnWl1IopRi+fLl9O/fn6CgIABGjRrF/PnzufbaazEajU3LGgwGDAYDSinmzZtHWloaiYmJuFwu5syZw+DBg3n77bepqalh7NixdOnSpWndzZs3YzabSU1NJTU19bigRB37rXob5lSKJen5hPha6R7jLyf+9qjxs6xcR7rCKNg2G3Z9o4cj5dlQX6PPKpM4VB87JP40mDFHD0i8g/VQBCQQEUII0WZpmoYGxAbauO3MjkzvH8eXm7P5dG0mD8zdxlvLD3BBv1jG9YgizNcqdSYhhGinWl1IApCbm0tUVBSgn9DCwsIoLCzE6XQ2C0ka1dbWMnv2bK6//npMJhMOh4MDBw6wd+9errrqKjRN4+KLL+bjjz+mU6dOpKWlUVBQwMqVK/nXv/7FFVdcwXXXXdcsKNm+fTvvvfceLpeL+vp68vLyTtn+n0xFlQ42ZZbSOy6QYB+ru4sjTpXG8UTKsuHQCr3bjKsBRv8bjGb9dsYqfaDVjmdBdG8IS4PABH197yB9fBEhhBDCwzSGH+F+Vq4emsTk3jF8vy2XD9dk8MT3u3hv5SGm9IlhUu9oogJsaMj0wUII0Z60ypDEaDTidDqbbrtcLgyGE49CrpRi27ZtFBUVMXz48KZlNE1j7Nix3HDDDbhcLrZv384333xDp06duOOOO5rClmXLlnHjjTdy/vnnNxvzJDg4mCFDhqCUora2ltWrV7fwXreMzZmlFFU6GNEpFIOc39sH5YKifbDxfdjyGVTl661EInvq3WuM/jD0DhjyN7AFHp1lRiqAQggh2pHGOmOwj5ULB8QxrkcUC3fl8cGqDP67aC8frc5gfM8oLugbS0KIHYMmYYkQQrQHrTIkSUxMZOvWrU1dXg4dOkRMTMwJW5EAfP7555x++ulNIYfJZCI+Pr7ptsFgICQkhPLycjRNaxqbBCApKQmn00llZWWzkCQyMpLx48cDUFlZyRtvvNEi+9qSXEqxOL0Au9VEv4QgObF7smO7hzU44Js7IHM1xA2Esx+DqF76WCNmmx6G2EN+eVtCCCFEO6NpGn42MxN6RnNWWgQ/7S3kvZWHeHfFQT5fn8WYrhFcOCCO1AhfDJomdSohhPBgrW7EUk3TGDlyJBs2bGDbtm1kZ2czd+5cxo4di6ZpLFy4kDVr1jQFKCUlJcyfP5+pU6c2dZcxGAycd955/PDDD+Tm5rJ//35WrFjBwIEDcTgcbN26lbKyMkpKSvjkk08IDQ0lNNTzBjWtrG1g9f4iUiN8iQm0ubs4oiUoBU4HZK2Fn56DhlowWeG0W2H6J/pPl0kQlAQWb2ktIoQQQvwKTdOwW02MSgvnjUv78ualfembEMicjdlMf20Vj3+7i9Lqeo8Zu04IIcTxWmVLki5dunDjjTdy2223ATB06FDGjBmDpmksW7aMqKgo+vXrB0B6ejqpqan06tWraX1N05g8eTK7du1ixowZAEyaNImRI0ficDj4z3/+Q15eHkop/Pz8eP755/H29j7l+9mSlFLszqsgq6SGSb1jMBtbXR4m/gqlwFkHGath7euw70cwe+vji4R3gQ4j9eUkFBFCCCH+ME3T8DIbOS05hP6JwWzNLuP1Zft5b+VBtmaX8dC4NNIi/aRFiRBCeKBWGZIYjUauvPJKzj//fJxOJ35+fk1dbe6///5mJ6R+/frxzjvvYDabm23D29ubf/zjH5SXl2MwGPD19cVgMGCxWHjzzTeprKxsCklMJpNHnuSW7SlA0+C0ZOla4VGU0gdjXfa0/r/FG7pNgb5XQGgnfRkP/DwLIYQQp5qmaVhMGn3iA0mL7MlHaw7x4sK9XPHOWu4+O5VxPaKwmOSLKCGE8CStMiSBI31D/fyOu//nYYjRaPzFsUqMRiOBgYHHbddisTRNL+yp6hpcLN9TSEKwneRQH48MgdoVpfRBV01W0IxQcgAKdkG/K6H3JfosNYYT/x0IIYQQ4q+zWYxcfloiXaL8+cdX2/n7nK1syizltjM7EmS3SF1LCCE8hETfHiqjuJr0vEoGJQVjt8rFc5ulFFQX6zPVvDcB9i/W7+8yCa6cD2c9CiEpEpAIIYQQp4BB0xiQGMRbl/Xj3G6RfLo2k6vfW8eWrDJcMk6JEEJ4BAlJPJBSilX7i6hrcDKsU6h8s9EWKQUVubD6FXj7HPj6dqgpAUe1/rjFG/yjQTNI1xohhBDiFNI0jXA/Lx6f1I37z+3MwaJqrnp3HZ+ty8TR4JJBXYUQoo1rtd1txJ/ndCmWpBcQ5utFt2h/dxdH/Bl52+Czy6DkEISlwpgnIG08eIdIKCKEEH/Rzy9i/+iXCX91fdH2NQ7sevGgeLpE+fHIVzt48IvtbMos5fZRnQjxke43QgjRVklI4oEKKurYklXGwMQgAr0t7i6O+C1KgXLp44y4nHr3Gf8YiO4Dw+6ClNHg5S/hiBBCnAROp5N58+bx3XffERISwuWXX05sbGyzC1qn08k777xDVlZW031Go5HLLruMkJAQvv76a1atWoXD4WDIkCGMHz8eq9UqF8XtkEHTB3V989K+PPnDbmZtyGbn4QoeGpdGj9gADPKZEEKINke623gYpRQbM0spqXIwolMYBjk3t15KgasB8rbDd/fAW6NhwcP6fV4BcN7L0P0CsAVIQCKEECeBUooFCxbwyCOPcMYZZwBw7bXXUllZ2Ww5TdOIj48nNTWV1NRUAN5++20MBgOFhYUsW7aM0047jbPOOouXX36Z//3vf6d8X0TroWkaob5WHpvQlYfGpZFVone/+Wh1BnX1Tul+I4QQbYy0JPEwCli8Ox8fLxN9EwLlW63WyuWEnI2w9k3Y/S04HZA0HAZce3ScEaP8eQohxMnkcrl47733uPzyyznvvPMYNWoUZ511FuvWreP0009vWs5gMHDmmWcCerDSGKqEh4ejaRrPPPMMBoP+PVNFRQXvvPMON910EyaTHLfbK03TsJqMTO8fR1qk3v3mH1/vYHNmKXee3YkwX2lpJIQQbYW0JPEw5TX1rDlYTJdIPyL9be4ujjhWY7capaChFub9HXZ9DclnwozZMPVdSBwuM9UIIUQLcTgcpKen0717dzRNw2az0aFDB3bs2PGL65SXl/Ptt99ywQUXYDAYMBgMGI1GNE3D5XKxZcsWkpKSmkKTY5+ruLi46cfpdLb07olWwKBp9IwN4I1L+jKldwxfbs7hynfWsu5Qicx+I4QQbYR85eFBlFLsyq0gp6SW6f3iMBvlG4tWQSmor4GDSyFzLQy/C8zeMPIBsPpCeBcwmKRLjRBCtLD6+nocDgc2m/4lgqZp+Pj4UFFRccLllVKsXr0ag8FAv379mrUEUEoxb9485s+fz/vvv39cK4ENGzbw0EMP4XK5cDqdZGZmttyOiVZF0zRCfK08PL4LPWIDePqH3Vzz3jpuPaMj0/rH4WWWL0OEEKI1k5DEwyxNL8Bo0BicHCLNOt2tscXI3oWw6hXIWgu+EdDzQgjuAIlD3V1CIYRoV8xmM1arlepqfTp1pRQVFRX4+fmdcHmXy8Wnn37K2LFj8fX1bbpfKcXy5ct55JFHeOqpp0hNTT3unNunTx8+++wzAGpqarjoootaaK9Ea2UxGTi/bwxpkb48/NUOHv92F5uzyrh7dCci/LykniaEEK2UdLfxILX1Ln7aW0hSqJ2kELu7i9O+KQUZq+Dj6fD5FVByEE67FS75AoIS3V06IYRolywWC6mpqWzcuBGlFNXV1ezbt4+uXbuilMLhcOByuZqWz83NZfXq1UyYMKHpglYpxdq1a7nrrrt4+OGHGT58+Akvds1mM35+fvj5+eHr63tcdxzRPmiaRtdof167pA/T+sfy3dbDXPHOWlbtL8blku43QgjRGskZ24McKqpib34lgzsE422RppynXONsNepIBbswHQp3w+Cb4Irv4PS/Q2CCPjCrEEKIU85gMHDZZZfx3nvv8eGHH/Loo48SGhpKnz59qK6uZvr06ezcuRPQw5AffviBxMREUlJSmraRm5vLFVdcQXR0NFlZWbz11lt8+eWXMuaI+EWaphHkbeGBsWk8PqkbJVX1XPfBet5cfoAah8x+I4QQrY10t/EQSilW7i/C4XQxLCXU3cVpX5TSZ6s5vAnWvKZ3p0kcDt2mQIeR4B8NaDLmiBBCuJmmaQwfPpwnnniC77//npCQEF555RW8vb2pr69n7NixBAcHNy0fFRXF/fffj9lsbrrPbDZz9dVXU19fT3l5OQA2m00udMWv0jQNs1FjYq9oUiP8+MdX2/nPvF1szirl3jGpRAfYpPuNEEK0EhKSeIgGl2JJegERfl50ifKXE+2p0DhbTd52WP0K7PxKbyUS1UsPSSx2/UcIIUSrYTQaGTFiBCNGjGi6T9M0LBYLl19+ebP7zj777OPWDwkJ4dZbbz0VRRUeSNM0Okf68r+L+/Dior18tPoQu3MreGhcGoM6hGA0SP1NCCHcTUISD5FfXsvWrDKGpYQSYDP/9grir6sthUX/hG2fg7MeUs+FgTdARFd3l0wIIcSvkC8ShDtpmoa/zcy9Y1LpERPAv7/fyQ0fbuD6ER24dHACNrNRPqNCCOFGEpJ4AKUUGzJKKaupZ0SnUOnV0VKUApQeiBgt+u2cjZAwFAbdBNG9ZSpfIYQQQvymxu4343pE0inCl0e+2s4z89PZnFXG38/pTGygdL8RQgh3kZDEAygFi3fn42cz0zsuUE6qJ1tjP/PybNjwHpRlwthnwRYI0z4EWxAYzRKOCCGEEOIP0TSNlHAfXpnRh5d/3Mt7qw6xJ6+CB8amMbRjqHS/EUIIN5BpNjxAWU09aw+W0DXKjwh/L3cXx7MoBZX5sPxZeHuM/n9lPtRV6qGIbwSYLBKQCCGEEOJPaex+c9fZnXh6ag8cDS5u+mgjL/24l8q6BhkUWAghTjFpSeIBth8u53BZDZcOisck3zicPErB1s9gyRNQekgfkPWsxyB5FJht7i6dEEIIITyIyWhgTNcIUsJ9efTrHby4aA9bskr5v3PTiA/2lpbCQghxikhLkjZOKcXS9ALMRgODOoTICfSvUgocVeBq0G87qsHqB+P/CzNmQ+fxYPGWliNCCCGEOOk0TaNDqJ3/XtiLa4d3YOW+Ii57ew0/7MijtNpBvdOFUkpalwghRAuSliRtXE29kxV7C+kQ6kNiiLe7i9N2KQWOStj9Hax9E0bcB0nDoec06DYZLD4SjAghhBCixWmahq+XmdvO7EiPGH8e+2Ynt3y8kXA/K1EBNhJD7CSH+ZAU4kNskDfBPhZ8rCaMBg0Nmb1JCCH+KglJ2rj9BVXsL6zikkHxeJmN7i5O26MU1NfAvoWw4r+QswH8Y8FRoT9u8tJ/hBBCCCFOIZPBwJmdw+kY5svsDVnsyq0go7iaH7bnMWt9Ni6lsJoMBNktRAbYSAqx0yHMhw6hPsQG2gjxseLjJeGJEEL8URKStGFKKVbuK6LBqRiWEuru4rRNZZnw5S1waAX4hMHwe6DXDPAJl5YjQgghhHArTdOID/bmb6NSUApqG5yUVdeTW17LgcIq9hVUsje/ksziaubvyGP2xmxcLj08CbRbiPT3amp5oocn3oT4WvGxmjAZJTwRQogTkZCkDWtwKpakFxAZ4EXnSD85yf0eSoGrXm89YvUDix2UCwbfDH0uA/8YCUeEEEII0Wo01u80DbwtJrwtJiIDbPSMDQBAAbX1TsprGsgtq+FgUTV78yvZV1BJRnE1i3bl88WmHBoawxPvo+FJhzAfkkN9iAmyEebrhY/VhNmoNXteIYRobyQkacMOl9eyPaeMMzqH428zu7s4rZtS4HJCzkZY+RJowMRXwRYE0z7UwxI0CUiEEEII0SY0hSccDU8i/L3o0RieKKhrcFFeW09uWS0Hi6qawpNDRdX8uDufrzbnUH8kPPG3mYkKsJEQ7E1ymC8dQu3EBXkTGWDDz8vU7DmFEMKTSUjSRimlWHewmIraBkZ0CkVOWb9AKUBB4V746TnY+SVoRuhxgd6ixGQFq6+7SymEEEIIcVIc2/LEZjFisxgJ99PDE31mHHA4XZTX6N12MoqPtDzJr+RgUTXL9hTyzdbD1DsVFpOB6AAbE3pGMb5nNDGBNumiI4TweBKStFEuBUvSCwjwNtM7LlBOVr9Iwfp3YfG/oa4COo+DQTdAeFfQZAZsIYQQQrQfmqahaeBlMOJlNhLm50X3mJ+FJ7X15JXXkVFUzZ68Cn7cnc8LC/fw3spDjOkawdS+sXSK8MVk0KT+KYTwSBKStFGl1Q7WHyqhe0wAYb5WdxendWnsWmMw0NSFJqQjDL0DEoaAwSTdaoQQQgghjjguPPH1olu0P0pFcNWwJFbuK+TjNZl8tj6L2RuzGdoxhOn94+gbH4SX2SBhiRDCo0hI0gYppdiWXU5eeS1XD03CaJATUxOXE/K2wYoXofclkDAUelwI3aaC2VvCESGEEEKI30nTNHysJs7sHM7wlDC2ZpfxydoMFu7MZ+HOfHrGBjCtfxyndwrF32aWsEQI4REkJGmjlqQXYDUZGZgULCck0FuPVObB6ldh/Tt6WBLTTw9JTBbA4u4SCiGEEEK0SZqmYTFp9I4LoGdsAAcLq5i9MYsvN+Vw9+ebSQyxM6VPLGO7RxLh74VB6qZCiDZMQpI2qNrhZOX+QjqG+RAf7O3u4rhfgwO2z4Jlz0DJQUgcDsPvhug+7i6ZEEIIIYTH0DQNowZJoXbuPKsTlwxK4Pttucxcl8mT83bx9k8HGNs9ksl9YkgO9cEo45YIIdogCUnaGKUU+woqOVhYzZVDE7Ga2ungo0od/b2+Glb9Tx+Idfx/IW0cmGzStUYIIYQQogU0Bh/hfl5cMiieib2jWZZeyMdrMnh/1SFmrstiRKdQpvePo2dsAFaTjFsihGg7JCRpg37aW4hLKYZ1DGmfJxyloDQD9i/Wp/L18ocJL4M9BOxhEo4IIYQQQpwimqbh52XmnG4RnNk5jE2ZpXy8JpMfd+czb3sufeIDubB/HEM7huLrZWqfdVchRJsiIUkbU+9ULE0vJDrARqcIP3cX59RSSp/Gd/PHsPK/UFsG4Wn62CPhXdxdOiGEEEKIdkvTNKxmI/0Tg+iTEMi+/Cpmrc/iqy053PbpJjqG+3J+nxjGdItsmplRAhMhRGvUTvtqtF05pTXsPFxO/8QgfL3aUcblrId9i+DDqTDvfvAOhgmvQEQPd5dMCCGEEEIcoWkaJoOBThG+3HtOKrOuH8zdZ6fidCoe+2Ynk19ZwZPzdrOvoAqnS6GO7UIthBCtQDu6ym77lFKsPVhMZV0DIzqFtq+Rww8ug88uBYsPnPEA9LoEbAHStUYIIYQQopUyaBpRATauGprI1L4xLN5dwMdrMnhz+QE+XpPBmZ3DmdY/lm7RAZiNMsirEKJ1kJCkDXEpferfILuFnrEB7i5Oy1IKaorBUQ3+MfpMNUNuh87jIThJH6RVCCGEEEK0epqmEeBt4byeUZzdJYJ1h4r5eE0G32/P5ZuthxmQGMSFA+IY1CEEu8UoYYkQwq0kJGlDiqscbMgooUdsACE+VncXp2UoBc46SJ8HS58CnzC44AOw+sGQv+nLyIlTCCGEEKLN0TQNm8XIkOQQBiYFk55bwcx1mXy3LZcbP9xI50hfLugXy1ldIgi2WyQsEUK4hXwd30YopdiaXUZ+eR0jUkIxGjzwpOFywuHNMOsqmH2NPkhr53FgMOrBSOOPEEIIIYRoszRNw2w0kBblx0PjujDr+sHcckZHKusaePCL7Ux5ZQXPL9zD9uwyymvrccnYJUKIU0hakrQhS9LzsVmMDEgK8rxkXblg9auw9ElQTuh7BQy8Qe9q42n7KoQQQggh0DQNTYPYIG9uPL0DFw6IZcHOfD5Zk8HLi/fx6pL9RAV40TXan34JQfSI8Scu2I6P1YRBk9lxhBAtQ0KSNqKqroGV+4pICfclJtDb3cU5OZQCpwMMJn2MEZ9QiBsIQ2+HqN76fXLyE0IIIYTweJqmEWS3MrVPDGO7R7Ixo5TVB4pYf6iElfuK+HbrYYwGjQg/L7pE+dM3IZBesQHEh9jx8zJLaCKEOGkkJGkj9uRXklFczXXDOmA1eUAvKVcDZK6B5c/prUZSzoYuE/WBWY0WCUeEEEIIIdohTdPwtpgY3CGYwR2CaXApiqsc7MmrZH1GCesPFrP+UAk/7MjFoGmE+3mRFumnhyZxASSG+OBvk9BECPHnSUjSBiilWL63EKVgSMeQtn3AVwpKD8GKF2HLp2C0Quo5+mMGk/4jhBBCCCHatcb6rtmoByFhvlZOSw7G6VKUVNezN7+SDRklrDtYzJasUhbtykfTINTXSueIxtAkkA6hdvy9zRg1mWJYCPH7yBVpG+Bwuli2p5DYIG9Swn3dXZw/r74G1rwOa16DqgLodA4MuxPCOru7ZEIIIYQQohVrDDhMRo1QXyuhvlYGJgXhVEmUVdezr6CSDRmlrDtYzI7D5SzdU4BSEOJrITXCjz7xgfSOCyQ5zIdAbzNGg4QmQogTk5CkDcguqWHX4XLG9YjCx6sNvWVKAQoa6sDkpc9es/tb8AmHMf+B5DOka40QQgghhPhTNE3DpGkE+1gJ9rHSLyGIq4cmUVZTz/6CSjZm6qHJzsPl/LS3EJdSBNutdIrwpU98IH3iA+kY5kOg3YLpyMyREpwIIdrQFXf7pJRi9YFiqh1ORnQKpU0cthvDkZKDsOF9KN4PE14Bix0mvgq2QLD6SjgihBBCCCFOGk3TMGoQZLcQZA+iT3wgV5yWSHltPQcLq9iUWcrag8XsyCln9YEinC5FoLeFlPCjoUlKuA/BPlZM0tJEiHZLQpJWzqVg8e4CQnys9IgJaN0Ha6X0qXyL9sL6d2Hb51BbCglDoa4CLN4QGO/uUgohhBBCiHagMTQJ9LYQGGehZ2wAlwxKoLKugUNFVWzOLGXtwRK25ZSxfmkJ9U4XAd5mUsJ9GZUWzoiUUGKCvCUwEaKdkZCklSusrGNTZgm94gIJ9rG6uzi/QcHKl+Cn58FRBQlDYMC1+v8mL3cXTgghhBBCtGONoYm/zUz3mAC6Rftz0YB4KusayCypZnNmGesOFrMho4THv93J8wv30CcukHO6RTI4OZgwXy+ZNUeIdkBCklZMKcXmzFKKKh2MSAnF0NqOx0rpU/kWH4CAODBZwS8a4gdDv6sgboA+e42cSIQQQgghRCujaRqaBn42M11s/qRF+jGtfyxlNfVsOFTCt1sPs2JfEUvSCwj2sTC4QwhjukbQNyGIAG8zBqnjCuGRJCRpxRSwJL0Au9VE/8Sg1pNaKwWuesjZqM9Ws28RnPcypJwNXc6DtPH6VL6tpbxCCCGEEEL8Bk3T0NC754xMDeP0TmEUVNaxcl8R3249zOLd+Xy9JYeoABsjUkIZ3TWCbtH+2K2m1lNPF0L8Za0yJFFKUVRUxIIFC6itreX0008nLi7uuIPP7t272b17d7P7UlJSSE1NRSlFRUUFS5YsISsri6SkJE4//XQsFgtOp5MNGzawYcMGEhMTGT58OBaLpdUd3CprG1i1v4jUCF+iA23uLo6uwQFZq2H1a7BvoR6GdDoHghL1xw2t8iMlhBBCCCHE79bYyiTcz4vzekYxtnskWaU1LNldwPfbcpm1IZtP1maSFGrnzM7hnJUWTsdwX6wmQ6u7phBC/DGt8oq2oqKCK6+8koiICAIDA3n99df58MMPSUhIaLZcZmYmK1asAKC+vp6PPvqIJ554gtTUVEpKSrjhhhvw9/enc+fOLF68mL59+xIUFMRXX33FE088wfjx45k7dy5r1qzh73//e6s7oKXnVZBVUsPEXtFYjAb3FUQp/X9Ng8zV8Ml0MJih61TodyWEp4FmlJYjQgghhBDC42iahsmokRBsJ36QN9P6x7K/oIoFO/P4YXsery/dz5vLD5AW5cfoLhGc3imMuGAZ8FWItqpVhiSLFy+mqqqKZ599FqvVys0338xHH33Efffd1+xAc8YZZ3DGGWcAsHXrVubNm8fIkSNRSvHBBx8QEhLCM888g8l0tAmcw+HgpZde4q677mLixIlMnDiRCy64gMsvv5zo6Gi37O+JKKVYtqcQTYMhySHuKgTU18CBpWALgNgBENkDht0NHUdBSApoBglHhBBCCCFEu6BpGlaTkdQIX1IjfLlySCI7csqZtz2XRbvyeeL7Xby4aC+94gIY0zWSIR1DiPCTAV+FaEtaXUiilGLt2rX07t0bm03vYjJ48GBmz56N0+nEZDpa5MYDjVKKuXPnMnDgQCIjI3E6nfzwww/06dOHm2++maqqKs4//3zOPfdcSkpKOHz4ML169ULTNOLj47HZbOzfv79ZSOJyuXC5XAA4nc5T+Aro6hpcLNtTQHywneQw31N7UFVKn51m7wJ9zJGstZB6DkT3BasvDL5ZX04O9EIIIYQQoh1qrJt7W0z0iQ+kT3wgN53ekY2ZJXy7NZflewtYvqeQQLuFgUnBnNMtgv4JQQTaLWhIYCJEa9bqQhKA4uJiYmJiAP0AEhgYSFlZWVNo8XMVFRV88803PPbYYxgMBhwOBzk5OeTn5/Of//yHyspK7rvvPsLCwggNDUXTtKYAxmQyYbfbKS0tbbbNtWvX8sQTT+ByuWhoaCAzM7NF9/nnMour2ZNXyeQ+MditxlP3xE4H7PhCH3Pk8CbwCYPTboVeM8AgXWqEEEIIIYQ4VmPg4e9tZnhKKMM6hlJYVcfq/cX6DDl7C/lu62EiA7wY3jGU0d0i6RHjj4/V1Gx9IUTr0CpDEi8vL2pra5tu19bW/uLAqkop1qxZA0D//v2blrFYLEycOJHhw4ejlOKbb75hwYIFXHLJJSilaGhoaFrf4XBgtVqbbTctLY1//etfAFRXV3Pbbbe1xK6ekFKK1QeKqW1wMjwl9FQ8IbicegjS4NADkqoCGH4P9JgGflF6txohhBBCCCHEL2oc8DXM14ux3SMZ0zWCnLJalqbrA75+sTmHmeuySAyxc0bnMM7qEkGncF+8zIam9YUQ7tUqQ5LU1FQWLVqEy+XCYDCwe/dukpOTm3W1aaSUYubMmZx77rn4+fkBYDab6dSpEwbD0YNN4+9BQUHYbDaysrKIiYmhtLSU8vJy4uLimm3X19eXTp06AVBZWYnFYmnJXW7G6VIs3p1PqK+VbtH+LXewVAqqi2D7XMjdDGOeAIsdxj8PtiDwCZeWI0IIIYQQQvwJjQO+xgV5c9GAOM7vG8uBwkoW7sznhx15vP3TQd7+6SCdI305u0sEI1PDiA+2YzbKgK9CuFOrC0k0TePMM8/kf//7H19//TUhISHMnTuXJ598Ek3TeOuttwgJCWHcuHFomkZubi4rV67kww8/bDqYaJrGtGnT+Oc//8mwYcOoqqpixYoVvPLKK9jtdsaNG8eLL76Ir68vs2bNomPHjiQmJrp5z48qqKxjS1YZ/RP1fosnnVJQmQ/bPoP170LxAQjvAlWFEBAHYWkn/zmFEEIIIYRopzRNw2LS6BThR0q4L5edlsCuwxXM25HLop35PP1DOi/9uJdu0f4M7RjKoA7BdAj1wW41SmAixCnW6kISgISEBJ566ilee+01HA4Ht912G6eddhoADQ0NzQZSzc3NZeLEiaSmpjbd1xi0FBYW8uSTT2IymXj44Yfp168fALfeeivPPfcc999/P9HR0Tz11FOntKXIb9mUWUpxlYMRnUIxnOxjolKQsRK+uvVIOJIG5z4NnceBLfAkP5kQQgjRurhcLrZt28bixYsJDg7m3HPPxd+/eatNl8vFwoULKSwsbLrPaDQycuRIQkJCcDgcLF68mG3bttG1a1dGjBjRquoRQojWTdM0vC0mescH0isugBtHJLMps5Tvt+Wycn8RzyxIx7hQIy7YmwGJQQzrGEq3GH+CfSwYNWllIkRLa5UhiaZpjBgxgmHDhqGUwmg8mqBeffXVTcsA9OrVi169eh23DbPZzIwZM5g+fTpAs234+fnx4IMP0tDQ0HR/aznYuJRiye4CfKwm+iUEtUy5ig+AcsH4FyD1XLD6SbcaIYQQHk8pxbp167jxxhuZOnUqCxcu5Pvvv+f111/Hy8ur2XIZGRlkZ2cDkJWVxbfffsvy5csJDg7m9ddfZ/bs2UyYMIEnnniCPXv2cMMNN7SauoQQou3QNA0/m5mhHUMY0jGE8pp6dudV8NOeQn7aV8Scjdl8tDqDYB8LPWICGJYSSv/EIOKCvLGaDHLcEaIFtMqQBPQDhtF4/KwuPz8Q/NqBQdO0E45j0riO2Wz+i6U8+Spq6ll9oJi0KD8i/W0nb8NKQUMdmKzQ4wLoMBJ8IyQcEUII0W4opXj99deZOnUqd911F2VlZZx11lls2rSJgQMHNi1nMBi44oormm4/88wzVFZWEhMTQ1lZGe+88w4vvvgiAwYMoF+/ftx8881cdNFFBAQEuGGvhBCeQNM0NCDA20L/hCD6JwRx4+kuskpqWHuwmKXpBWzKLGXRrny8zEaSw3wY3CGYIR1D6Bzhh7/NjKbJwK9CnAytNiRpj5RS7MqtILu0hgv6xmI2nqSDnFKQtRaWPgVnPwbBHcEv8uRsWwghhGgjHA4HW7du5eKLLwb0lqXJycls2bKlWUhy7EVGVVUVc+fO5c4778RoNHL48GHq6upISUlB0zQ6duyIw+EgJyenWUjicrmaZtJzOBwopU7NTgoh2rzGY5DVbKRDmA9JoXam9o2luMrBtuwylu0pYNX+Yt5ecZA3lh0gwt+LPvGBDE8JpXd8IBF+XjL4qxB/gYQkrcyyPYUYNY3BycEnZ4NKQfZ6mH011NdAdTGcpE0LIYQQbYnD4aCmpgZfX9+mi4eAgABKSkpOuLxSik2bNlFZWcmQIUPQNI2qqioMBkNT9xyr1YrJZKKysrLZuuvWrePRRx/F5XLhdDo5dOhQy+6cEMJjaZqGUYNQXysjOoUyolMo1Q4nBwqrWLm/iGXpBSxNL+CrzTn4epnoHOnH0I4hDO4Q0jT4a+N2hBC/TUKSVqS2wcXyvYUkhtjpEOrz1w9kSkHORj0gcVTDhJchdoB0sRFCCNEumUwmzGYzdXV1gB6C1NTUYLOduHurUorPP/+cUaNGERQUBIDFYsHlclFfXw/oA8q7XC6sVmuzdbt27cqLL76IUora2lquv/76FtwzIUR70Xh9YLea6BrtT5coPy4bnEBeeS2bMkpZsqeAdQdLeHbBHp5fuIf4IDsDko4O/hriY8HQisZjFKI1kpCkFTlUVMXe/Eou6BeLt+X48Vj+EKUgd4sekNRVwHkvQfIZEpAIIYRotywWCwkJCezatYsBAwbgcDg4cOAA06ZNa9YdpvHioaioiB9//JHXXnut6bHw8HA0TSM3Nxc/Pz/y8vJwOp1EREQ0ey5vb28SEhIAqK6ultlvhBAtQtM0zEaNmEBvogNsnNM9koojg78u31vET3sLmfsbg782bkcIoZOQpJVQSrFqXxF1DU6Gp4SenI3mbdMHax3/InQcBZrh5GxXCCGEaIOMRiPTp0/n+eefJyUlhc2bN6OUon///tTW1vL3v/+dG2+8keTkZJRSLF26lKCgILp169Z0ARESEsKIESN45plnuPbaa3n11VebpgYWQgh3ahz81d/bQv/EYPolBHHDiA5kHxn8dcmRwV9/3J2P1fSzwV8jjwz+igQmQkhI0ko4XYol6QWE+3nRJcrvzx+clAJXPRjM0O0CiBsMgfESkAghhGj3NE1j3LhxlJeX88ILLxAQEMBLL71EQEAAdXV1+Pj4NJtZr7q6mltvvbXZ9MAGg4EHH3yQF154gX/961+kpaVxyy23YDDIeVYI0bpomobXbwz++s6RwV8j/b0Y2CGYs9LC6RUXSIC3GYOEJaKdkpCklcgrr2NrdhlDkkMI8P6TTXKVgvwdsORJGHk/BCdDUOLJLagQQgjRhlksFi677DIuvvhiDAaD/s2rpuHl5cWjjz7atJymaU2z4BxL0zSCg4N5+OGHcTqdGI1G+dZVCNHqHTv46+mpYc0Gf121v4il6QXM25bL7A1ZRPrbGJIcwlldwukRG4C/TQIT0b5ISNIKKKXYkFFCaXU9wzuFYfgzxyCloGAXzLoKKg5D2SV6SCKEEEKIZjRNw2T6a1Wgk7ENIYRwF03Tmg3+eungBDKLq1m2p5D5O/L4eksOn63PJDrQxrCOoYxKC6d7TAC+XibpkiM8npzdWwEFLN5dgJ/NTN/4wD9+0FEKCnfrAUl5Dox9FpJGyCCtQgghhBBCiF/VOPhrUqgPiSF2pvePI6O4mqXpBczfkcecDdl8siaT2CAbw1JCOSstnC5R/vh6mZrWF8KTSEjSCpTV1LPuYDFdovyI8Pf67RWOpRQU7dEDkrJMOPdp6DJBxiARQgghhBBC/CGapmExaXQItdMh1M5FA+M4WFjNkvR85u/IY+a6TD5cnUFCsDcjUsI4My2MtEh/7Fbpeig8h4QkbqaUYmdOOTllNcwYFI/pz/S1yVoPlXkw5j/QZbIEJEIIIYQQQog/rTHwsJqMdIrwJSXch0sGJbC/oIrFu/NZsDOPD1Yf4t2VB0kKsTMiNYwzO4eTGuGLt0UCE9G2SUjSCizdU4DZaGBwh+Dff0BRCpQTNCN0mwJRvSCkI8jo+kIIIYQQQoiTqHGmnLQoPzpH+nL5kET25leyaFc+i3bm8c5PB3n7pwMkh/pw+pHApGO4DzazsWl9IdoKCUncrKbeyU97i0gKtZMYYv99KykFJQdh2dMw5HZ9Bpuw1BYtpxBCCCGEEEJomobNbKRbtD9do/y4emgi6XmVLNqZx6Jd+by+bD9vLDtASrgPZ3QO5/TUMJLDfPAyGZrWF6I1k5DEzQ4UVrGvoJKLB8Y3Ja2/SikoPQSzr4b8XZAyWqb5FUIIIYQQQpxymqbhbTHRMzaAHjH+XDu8A7tzK1iwM48fd+fz0o97+d+SfXSK8OWM1HBGpoaSFOqDVQIT0YpJSOJGSilW7iuiweliWErobx8klNIHZ519DeTvgLP+CZ3GyCw2QgghhBBCCLdqnFa4d3wgveICuOH0ZHbmlDN/Zx5Ldhfw4qI9vLJ4L50j/RiVFs7wTqEkhtixGA0SlohWRUISN2pwKZakFxDpbyMt0u/XF1YKyrL0gCR3G5z1KPS+GAy/o/WJEEIIIYQQQpwimqbhYzXRLzGIvgmB3Dwyme055czfkceS9AKe/iGdFxftpWuUH2ekhTMwMYiEEDt2qwmDBCbCzSQkcaPcslq255Rzeqcw/G3m314hYyUU7IZRj0CfS8Egb58QQgghhBCi9dI0DV8vMwOTghmQGMQtZ3Rka1YZ83fksnRPIU9+vxujQSMm0EbvuEAGJwfTIyaASH8vLCZpZSJOPbnKdhOlFOsPlVBeU8+ITqG/3GNGKVAufVrfLhP1GWwiuklAIoQQQgghhGhTNE3D32bmtORgTksOpqymnh2Hy1m1v5jV+4v4YUcuszZkYbeaSA7zYUBiEAOTgukc6UugtwWjQZPQRLQ4udJ2E6Vg8e58ArzN9I4LPPEfu1JQkQs/PQcDroPABIjsKWOQCCGEEEIIIdqsxmufAG8Lg5KCGZQUTL0zmbzyWrZklbJiXxHrD5XwzoqDvL5sP8F2K12j/RjUIZh+CUEkHumaoyGDv4qTT0ISN6mpd5JbXkuvuEDC/azHL6AUVObB3OshYxVE99ZDEjkICCGEEEIIITxEY8hhMWnEBnkTE2jjnG6RVDucHCqqZt2hYlbuK2JLVhlL0guOdM3xpndcAIM7hNAjNoCoI11zjt2eEH+WhCRu4m0x8sqMPtTWOzEafvaHrBRU5cPcG/RxSEbcB10mSUAihBBCCCGE8GiNIYfdaiItyo/Okb5cNCCe0moH6XkVTV1z5u/IY/aGbOxWEx1C7Qw40iIlNdKXILsFoyZdc8SfIyGJm2iaRqC35fgHlIKqAvjiJjj0Ewy/BwbdCMbfMbCrEEIIIYQQQngQTdMwahDsY2Wg3cLAI11z8itq2ZpVxop9Raw7VMy7Kw7y+tL9BPtY6BLlz6AOwfRPCCIx1I6PdM0Rf4CEJK3RgWV6F5thd8HgmyQgEUIIIYQQQrR7x3bNiQn0JjrAxuiuEVQ7nGQUV7P+UAkr9hWyJauM5XsKMRggOsBGr7hABncIpmdsAFEBNqzSNUf8CglJWgulAAVo0Hkc+EVCdF8wnqC1iRBCCCGEEEK0c8d2zekc6UdqhC/T+8dRVlNPel4Fq/cXsWp/MYt25TN3YzbeFiMdwnzonxDEoA7BxAV5Y9A0NI2m/zV+dlsDA42/axiO/K9B0+96WY6Uiea39fv0fxofO5ZC6ZeC6FeDKP0+0C8RXUo1/e9qun30d5fSZ051uRpvn3h5pwKnS2E0aAR6mwmwWbCaDZiOGfpBQiOdhCStgVJQUwwrX4bel0BAHMQPdnephBBCCCGEEKLNaOyaE3SkW86AxCCuH6H0rjnZZazcV8S6gyV8sOoQby4/gJfZ2Cz00H7td46GJj//3XAkVDEYjvm9KWjRMBga7zt6f2OI4XQpXC6FUx393+k6+phSemRyNPzQQxGlwHUkYFHHhiXqaPDSuE7jNkAvr91qJMDbQqS/FzGBNhKC7cQFexMTYCPE10qAzYzVbMTUTqdclpDE3ZSCmhL46m+Q/j34x0KfS91dKiGEEEIIIYRo0zRNa+qaExPozegueteczOJqNmaUkl1a0yyccB0TTriOvV9x5LFjW3A0b73xe5ZxuhT1R35vDE2MBg2L0YDBAEaDhvFI2GI88pih2X1HljFoGA2Gpt9Njfdp2jGP/+yxIz91DS4yi6vJLK4mp7SWPXmVVNTm0ODSy/TzACU+2E58kDfRgTZCfa3428x4HQlQGl9jTyMhiTspBbWl8M3tkP6dPkBrz2kyi40QQgghhBBCnGSapmG3mkiN9KNThO+f3o465hd1zL3Nus003nvMDdV8hWZdcI521/nZ/U23Ty6nUjgaXJTXNFBcVUd2aS2ZxdUcLKrSA5SyIwFKXQ4NToXBoOFtMRLobSHC34vYYwKUqEAbYccEKEZDYwuctnldKyGJuygFtWXwzR2w6xsYeD0MvxeMVneXTAghhBBCCCE82l+5gNeO++W4G62eSdMwWQx4W0xE+HvROdKv6TGXQg9QauspqnKQU1pzJECpJqO4msOlNezNq6SyLgeHUx/nxGY2EmS3EO5nJTbQm7hgbxKC7UQF2Aj3s+LnZcbbciRAaeXhiYQk7rR/CaTPgwHXwoj7wGSVViRCCCGEEEIIIU6pY4MLowY2ixGbxUi4nxdpkX6oI01iXArqGpxU1jZQWOXgcGkNGcXVHDomQNmXX0BlXQMOp6tZgNI3PpB/TuyGxdS6r3klJHGnTqPh/Hch/jQweUlAIoQQQgghhBCi1WkMUYwaeFtMeFtMhP1SgFLXQGGFg8NlzQMUm8WI0eDOvfh9JCRxF03Tp/ftcMbR20IIIYQQQgghRBtywgDF14u0qOYBivPI4LCtnYQk7tQGPiBCCCGEEEIIIcSfcWyAYjS0jevfNtDYRQghhBBCCCGEEKLlSUgihBBCCCGEEEIIgYQkQgghhBBCCCGEEICEJEIIIYQQQgghhBCAhCRCCCGEEEIIIYQQgIQkQgghhBBCCCGEEICEJEIIIYQQQgghhBCAhCRCCCGEEEIIIYQQgIQkQgghhBBCCCGEEICEJEIIIYQQQgghhBAAmNxdgLairq6O1atXExAQ4O6iCCGEEB5BKUVeXh4ul8vdRWlRSinq6upYs2YNQUFB7i6OEEII4RHq6uqoqqpCKXVStyshye9gMBjo1asXs2bNQtO0k7bdzMxMCgsL6dWr10nbZmtXV1fHsmXLGDFiBCZT+/n4rVq1iqSkJMLCwtxdlFMmOzubw4cP07dvX3cX5ZQpLCwkPT2dwYMHu7sop4zT6WTx4sUMHjwYm83m7uKcMps3b8bf35+EhAR3F+WUKS4uZseOHZx22mkn9Vxot9sJDg4+adtrjQwGA71792bOnDkn9bVbv3494eHhxMTEnLRttnYFBQXs3buXQYMGubsop0xDQwNLlizhtNNOw8vLy93FOWU2bdpEYGAg8fHx7i7KKVNUVMSuXbs47bTT3F2UU6a91iO2bNmCr68viYmJ7i7KKZOeno7T6aRz584ndbtpaWlYLJaTuk1NnezYxQMppU56OgUwZ84c1qxZw7/+9a+Tvu3WqrCwkIsuuohZs2bh4+Pj7uKcEkoprr32WmbMmMGwYcPcXZxT5ttvv2XBggU888wz7i7KKbNq1SpeffVV3nrrrZN6IdSa1dTUMHHiRN59913Cw8PdXZxT5qGHHqJz585MmzbN3UU5ZTZs2MDTTz/N+++/j8Fwcnvraprm0X8zLVWPuOuuuxg6dCjjx48/6dturVasWMGbb77JG2+84dGfmWNVV1czceJE3n///Xb1Zcv//d//0bNnT6ZMmeLuopwy69at4/nnn+fdd9896cfZ1qq2tpaJEyfy5ptvEhUV5e7inDKPPvooiYmJzJgxw91FOWVeffVVqqur+dvf/nbSt32y6xHt56v8v6ClKm+N2/X0yuGxGvfTYDC0m4N/YzNyTdPazT4fqz1+vtvTe90e91kp1fS5bi/7DDTb5/a03ydDSxwH2/PnsPH/9rLf7bHudGyo2F72Gdrncba9fr7b6/G7rVz7SkjiRhaLpV01KwP9AOjr6+vuYpxydrsds9ns7mKcUhaLBbvd7u5inFImk6nd7bOmafj6+rb6k93JZrPZTnrTztbOaDS2u893a+ft7d3uzi1ynG0/vL295TjbDrTXz7eXl1e7+3xbrdY2MwaZdLdxo6qqKmprawkKCmo3Bwan00l+fj7h4eHtJjlVSlFYWIiPj0+7CsWqqqqoqakhODi43Xy+a2trKS8vJzQ0tN3ss8vlIi8vj9DQ0HYzzpBSipKSEiwWS7vpNgj6mFKlpaWEhYW1m893a6aUori4GC8vr3Z1UdWej7NhYWEYjUZ3F+eUaK/H2fb8+W5v9YjS0lJMJlO7+vK4vLwcl8uFv79/q/98S0gihBBCCCGEEEIIAbSPr/KFEEIIIYQQQgghfkP7aNPUyiilmpqWOZ1OIiIiMJlMrb7Z0V+hlKK2tpbCwkKUUoSHh2OxWDx6n49VX19PZWUlvr6+7aIpoVKKyspKCgoK8Pb2JiQkxKP3u3HmiuLiYsrKyggKCiIgIMDjPt+Nx67q6mqUUs36EDf+jefm5uLr6+sx3awaG1vW1tZSW1vb9Dfc+J6Xl5dTXFyM3W4nJCTEY5rCK6VoaGigqqoKi8WCt7f3cY/X19dTXV2Nr6+vx+x3W9Fe6xEVFRUUFRXh5eVFaGgoRqPRo/f5WFKP8Px6RGOX9Lq6OsLCwvD29va4z/dv1SPq6urIzc1tmhreE7rm/1Y9oqKiguLi4qbPucFgaPPve+M+19XVUVNTg91uP278FaUUNTU1NDQ0tMoxadr+J68Nqq+v59FHH+XCCy/k0ksv5e6776ampsbdxWpR+/btY/LkyVxzzTVcddVVzJgxg6ysLHcX65RwuVy8+OKL9OvXj+3bt7u7OC1OKcXChQuZOnUqt956K5dffjmrV692d7FalFKKN954gwkTJnDbbbcxbtw45syZ0yJTfrpTUVERV1xxBcOHD2fq1KnU1dUB+v7n5ORw0UUXcd111zFx4kRmzpzpEfvvcrl4+umnOfvss+nfvz9bt25teuyTTz5h4sSJ3HrrrUydOpXHHnus6TVp63766SfOO+88Bg4cyLPPPnvc4y6Xi8cff5zBgwdz4MABN5SwfWtoaODxxx9vqkfccccdVFdXu7tYLerbb79lwoQJ3HzzzUyfPp177rnH4/e5kcvl4pVXXqFfv35s2bLF3cVpcUopfvzxx2b1iJUrV7q7WC2qtraWu+++mwsvvJAbb7yRCRMmsHXrVo84jx6ruLiYq666ihEjRjBp0iRqa2sB/T3Pzc1lxowZXHvttUyaNIlPPvmkzQzy+WuUUjz33HNN9YhNmzY1PfbZZ58xYcIEbrnlFs4//3weeeQRHA6H+wp7Er311luMGTOGvn37smTJkuMer6ys5OKLL2by5Mmt81iuxCm3ZMkSNWDAAJWZmakKCgrUyJEj1ezZs5XL5XJ30VpMfn6+2rRpk6qurlYVFRXqyiuvVPfee69H77NSSrlcLrVhwwY1fvx41bFjR7VmzRp3F6nFZWRkqKFDh6pVq1apuro6VVFRoaqqqtxdrBaVn5+v0tLS1LJly1RdXZ2aOXOmGjBggMftd3l5ufruu+/Ue++9p/r27auqq6uVUko5nU51zz33qFtuuUVVVVWpn376SfXu3Vvl5OS4ucR/ndPpVEuXLlVLlixRXbt2VatWrVJK6X/b27ZtUxkZGaqurk7t27dPde/eXS1fvtzNJT459uzZoxYuXKiuvfZadffddzd7zOVyqaVLl6rzzjtPJScnq507d7qplO3X8uXLVb9+/VRGRoYqLCxUo0aNUjNnzvToc+ru3bvVvn37VF1dncrOzlYDBw5Uc+fO9eh9Vkr/e9u0aZMaN26cSklJUStXrnR3kVpcZmamGjp0qFqxYkW7qUcsX75cde/eXWVmZqqamhp19913q2uuucbjPt8VFRXqu+++Ux988IHq3bt30/vqcrnU/fffr2644QZVWVmpVq1apXr16qWysrLcXOK/zul0qmXLlqmlS5eq7t27q59++kkppe/z9u3b1aFDh1RdXZ06cOCA6tGjh1qyZImbS/zXuVwutWrVKrVs2TI1aNAg9cUXXzR73Ol0qv/+979q0qRJqk+fPqqiosJNJf1l0pLkFFNHvmUfMmQI0dHRBAcHM3r0aObNm+dxafGxQkND6dGjBzabDbvdTkpKCvn5+e4uVourqqri6aef5qabbmo3o7P/8MMPxMfHU1tby2effcahQ4fw8vJyd7FalMFgwGKxYLVaMRgMWK1WvL29PaKZ6LF8fX0ZPXo0iYmJze6vra1l6dKlTJ48GW9vb/r06YO/v3+zb0vaKoPBwNChQ+ndu3ezpqKaptGlSxdiY2OxWCxERUUREBBASUmJG0t78iQnJ3P66acTFBR03GOlpaW88MIL3HbbbVitVjeUrn1TSrFo0SIGDx5MTEwMQUFBnHPOOfzwww8eXY9ISUkhKSkJi8VCWFgY4eHhFBUVubtYLa66urrd1SMWLFhAdHQ09fX1zJw5k4MHD3p8PcJkMmE2mzGbzU31CE98v318fBg9ejRJSUnN7q+trWXx4sVMnjwZu91Or169CAoKYuPGjW4q6cljMBgYMmQIffr0Oa4ekZaWRlxcHBaLhcjISIKCgiguLnZjaU8OTdMYMGAAAwYMOG5mT6UUO3bs4Mcff+TKK69sdd1sGnlu575WSilFVlYW3bp1A/QPUUxMDMuWLcPlcnncRdXPKaU4fPgwc+bM4d5773V3cVqUUooPPviA5ORk+vfv7+7inBJKKXbu3MmqVauwWCxERETw9NNP88QTT3DmmWe22gPhXxUYGMgdd9zBddddR1xcHFlZWfznP/9pNxeQ1dXVVFZWEhYWBoDFYiE4OJicnBw3l+zUaLxoraqqok+fPu4uTotyuVy89tprDBo0iC5duri7OO1WZmYmKSkpwNF6xPz589tNPWLNmjUcOHCAIUOGeOx5BfR9/eijj4iPj2fgwIEeva+NlFLs2rWLtWvXYrPZiIqK4plnnuFf//oXZ511lse+Bj179uTMM89k4sSJBAYGUltby5tvvunuYp0yNTU1VFRUNNUjzGYzoaGh7aoesXjxYkpLS+nXr5+7i9OiampqePLJJ7nhhhuOC1BaEwlJ3EAp1ewgr2maR3/700gdmRP89ttvZ8SIEYwZM8ZjT3YA6enpfPXVV7z22ms4nc6mgQ49vRLrdDoJCgri+eefx263Ex4ezuuvv87IkSM9dnDHiooKvvjiCy666CKGDBnCF198wdtvv82gQYM8/tuvX+LJf9vHUkqxYcMGHnnkER577DEiIiLcXaQWtXHjRlasWMEbb7xBQ0NDuzmutUY//xtrL/WI9PR07r77bu69916Sk5PdXaQWtXfvXubMmcOrr76K0+nE5XK1i783p9OJv78/zz//PD4+PkRFRfHqq69yxhlneOTgrUopDhw4wPr167ntttuIjo7mv//9L5999hl33HFHuzmfQvs9rm3atImHHnqIRx99lKioKHcXqcUopZg5cyZBQUEMHDiQdevWNdUjfn597G6ee4RtpTRNIzo6umnQUqUU2dnZREVFefQJTx0ZvfmOO+4gNDSUBx54ALPZ7O5itaj169eTkZHBVVddxbRp09i/fz93330369atc3fRWlRsbCzR0dFNs2F06NCBgoICnE6nm0vWcnbu3Mn+/fu59tpr6d+/PzfeeCMbNmxoN4MTe3t7Y7fbKSwsBPTBqYuKioiMjHRzyVqWUort27dzyy23cOedd3r0t5yNVq1axaFDh7jkkku4+OKLycjI4NZbb2Xnzp3uLlq7Eh0dTXZ2NnB04OTIyEiPr0ccPHiQ66+/nksuuYTzzz/fo/cX9FAyIyODa665hgsuuIB9+/Zx7733evxg6LGxsURFRWG32wFISkqisLDQIwbx/CXz5s0jJiaGKVOmMHjwYK655hrmzJnjMYOB/xabzYaPjw8FBQVA+6pH7Ny5k5tvvpnbbrvN479AdrlcLFmyhDVr1jB58mTuuece9uzZw4033khZWZm7i9eM58WxrZymaYwcOZK///3v5OXlYbVamTdvHldffbVH/1HU1NRw77334nA4+Pe//w2Aw+Hw6GmAzzvvPEaMGAHoY5NMmjSJ+++/n+7du7u3YC1I0zSGDx/ORx99RGZmJuHh4SxevJguXbp45Lc/jXx9famqquLQoUOkpKSwZ88elFJNFTxPoY5Mz1dXV9c0dZvRaMTLy4vTTjuNuXPn0rdvX7Zu3UpxcTE9evRwd5FPCofDQU1NDS6Xi7q6Ompra7Farezbt49rr72Wiy++mDFjxlBbW4vFYvGIz7rT6aSuro6GhgYaGhqorq7GarVyySWXMHHiRABKSkqYPHkyDz/8sMd/o9+aaJrG6aefzt13301ubi42m43vvvuOSy65xGPPpwA5OTlcc801jBo1iunTp1NXV4fZbPboqY/Hjh3LkCFDAL1b46RJk7jvvvvo1auXm0vWcjRNY9iwYbz77rscOnSIqKiodlGPCAoK4uDBg5SUlODr68vWrVsJCAjwuH0+UT3CZDLh5eXF0KFDmTt3LgMHDmTHjh0UFBR4zGf9l+oRjV+wTZ8+nbFjx3pUPaK+vr5pnxv332q18vTTTzfNarR+/XoeeOABHnvsMXx9fd1c4uba/jvQBg0ePJjhw4czffp0jEYjHTt25JxzzvHYkzzA9u3b+frrr4mLi+OSSy4BYNCgQTzwwAMeu992u73pIrlxvIaIiAiP737Ro0cPpk6dyqWXXto06NgLL7zgse8z6AMKXnTRRVx99dWEh4eTk5PDrbfeSnh4uLuLdlLV1NRw4403smfPHoqKipg2bRoTJkzg+uuv55ZbbuGGG25g8uTJlJWV8be//c1jvgF68803mTNnDiUlJfzf//0fycnJvPDCC3z88cdkZ2cza9Ys5s6di6Zp3H777YwaNcrdRf7LduzYwb333ktmZiZKKXbv3s0jjzxC3759myoyXl5ehIWFERkZ2W7G32ktBg4cyBlnnMGFF16IyWQiKSmJcePGefRx9ssvv2TXrl0opZqmk7zyyiuZMmWKm0vWcry9vZtaZVZXVxMeHk5kZKTH1yO6du3K9OnTufzyy/Hx8UEpxfPPP++xn29N0xg7dizz589n6tSp+Pj4UFxczOOPP+4RF8vHqq2t5eabb2b37t0UFxczffp0xo0bx0033cSNN97IjTfe2FSPuOWWW4iOjnZ3kU+Kd955h88//5zi4mIefPBBOnTowIsvvsjMmTPJyMhg7ty5fPXVV2iaxq233sro0aPdXeS/bPbs2bz11ltkZGTw9NNP8/nnn/Piiy8SGhratExOTk7TQNytrUu+ptpDZ69WRilFQ0MD2dnZuFwuYmJiMJvNHnvwBz1BLS0tbXaf1WrFz8/Po/e7kcvlorS0FF9fX4/vZgT6t9CHDx+murq6qeuNJ7/PSilcLhd5eXmUlZURHBxMSEgImqZ51H67XC5KSkqadZ1qbCILeiU+KysLPz8/wsPDPaYpfEVFBTU1NU23jUYjgYGBVFVVNbsf9FZFrXkgst/rRMdsf3//ZmFI43HNz8/P4yryrZ1SCqfTSVZWFk6nk9jYWI+vR1RVVVFVVdXsPh8fH2w2m0fvdyOlVFMrA6lHeJ7GcRlycnKoq6sjIiLCI+vI7bUeUVlZSXV1ddPtxnpEdXV1s/vBc+oRPz9mGwz/3969vUZ17mEc/65xkkkmoiZGIYbaQD3FSqMgqdKUIo2Kf0LAi1awIlR7URKpLZ4PqKB4IanBphERUVp6I4qg4IVS2nqCHtKkJFEJSbWxEdOYZJxZa1+IA267oVDbTNzfD8zFzEDWeiEXD8965/3FKC4ufqoMefToEQMDAxQXF+fc/7oliSRJkiRJEh7cKkmSJEmSBFiSSJIkSZIkAZYkkiRJkiRJgCWJJEmSJEkSYEkiKQc9OeU9lUo99Xre50zfvXuXy5cvE4bhc/27kiRp9PxbOeK3337j0qVL5gjpBePMPkk5J51Os3r1arq7u8nPzwcej4g7cOAA06dPf27X+eGHHzh48CBffvnlCzNmTpKk/3fpdJo1a9Zw+/btbI4oKChg//79VFRUPLfrtLa2snfvXr766itzhPQCsSSRlHPCMKS9vZ3169dTU1MDQBAETJ06Nfu0JgxDRkZGKCgoIBaLEQQBURQRhiHDw8Pk5eWRl5eXnbseRRHpdJqRkRESiQTxePyp6w0ODpJIJBg3blzOzWqXJEl/XRRFtLe3s3btWt566y3g38kR+fn5xONxc4Q0xlmSSMpZpaWllJeXP/XZ6dOnuXTpEvfv36ezs5N58+axefNmJk6cSE9PD9u2bePmzZsUFhayfv16lixZQhRFnDt3jqamJoaGhpg8eTL79u0DYGBggM2bN3P9+nVKSkrYu3cv5eXlBhxJksawIAj+NEecPXuWixcv8uDBAzo6Opg7dy5btmxh0qRJ9Pb2sn37djo7OykoKGDdunW8/fbbRFHE+fPnaWxsZGhoiJKSkmyO+OOPP9i6dSvXrl2juLiYPXv28NJLL5kjpDHMfWGSclIYhjQ1NdHQ0EBDQwO7d+/m4cOH9Pb2cvLkSVauXMlnn31GT08Phw8fJpPJsGnTJiZMmEBLSwurVq2ivr6enp4eWltb2bhxI2vXruXYsWN89NFHjB8/HoC2tjbefPNNWlpamDRpEkeOHBnllUuSpL8rDEOOHDmSzRE7d+5kcHCQX3/9lZMnT1JXV0dzczN9fX0cOnSITCbDli1bKCws5PPPP2f16tU0NDTQ3d1NW1sbGzZsYM2aNRw7doyPP/44myPa29tZvHgxLS0tlJaW0tTUNMorl/R3uZNEUk4KgoCqqiqqqqoASCaT5OXlAVBTU8Mbb7xBEAS8++677N+/n3feeYerV69y6tQpysrKWLFiBY2Njdy4cbrspwkAAAQcSURBVIOuri4WLlxIbW0tsViMKVOmZK/z6quvUltbS35+PrW1tXzxxRejsl5JkvT8BEHAa6+9xoIFC4DHZ5s9yRGLFy+mpqaGWCzGqlWr2LVrF++99x7fffcdJ06cYNq0aUyZMoVPP/2Ua9eu0dvby4IFC1i2bNkzOaKyspJly5aRSCRYunQpx48fH5X1Snp+LEkk5aQgCHj99depra195ruioiKCICAIAoqKikilUjx69IhMJkMymQQgFouRTCYZHh5mcHCQiRMn/unW18LCwuxha/F4nEwm888uTJIk/eOCIKC6uprly5c/811RUVH2HJJkMpnNEel0Opsjxo0bRzKZZGhoiMHBQSZMmPCXc0QURf7cRhrD/LmNpJwVhiGZTCb7ejK67/r16/T395PJZLh8+TIzZsygpKSEqVOn8s033xCGIb29vXR1dTFjxgzmz5/Pt99+y71794iiiFQqZRkiSdIL7n/liBs3bvD7779nc8Qrr7xCSUkJZWVlfP3119kc0dHRwaxZs6iqquLKlSv09fVlc0Q6nR7l1Un6p7iTRFLOCYKAeDzOnj17aG5uBh4/nfnkk0+Ax6Hn/fffJ5FI0NrayuHDhyksLKS+vp6tW7dy7tw5Ojo6WLFiBXPnzmXWrFmcOXOGuro6Zs+eTX9/Pzt27CAWi2VHA8Ljp0ZPtuJKkqSxKx6Ps2/fPo4ePZp9v3HjRuDxpJp169aRSCT46aefaGxspKCggPr6ejZt2sSFCxfo7Oxk6dKlzJs3jzAMqa6upq6ujjlz5tDf38+2bduIxWJP5Yb/fi9pbAqiJ5WqJOWIMAzp6upiaGgo+1kQBFRUVHD8+HG+//57PvjgA27fvs2cOXMoKyvLju7r7u7ml19+obS0lMrKymxYSaVS/Pzzz9y9e5fy8nJmzpzJ8PAw9+7dY/r06QRBwIMHD7h//76n0kuSNIZFUURnZ+dTOQKgoqKCU6dOceXKFT788ENu3brF7NmzmTZt2jM5YvLkyVRWVmYfpqRSKdra2rhz5042R4yMjNDX15fNEQMDA/T395sjpDHOkkTSmNLU1MSPP/7IwYMHR/tWJEnSGNPc3MzVq1c5dOjQaN+KpBzlz20kjSmLFi1i5syZo30bkiRpDKqurubll18e7duQlMPcSSJJkiRJkoTTbSRJkiRJkgBLEkmSJEmSJMCSRJIkSZIkCbAkkSRJkiRJAixJJEmSJEmSAEsSSZIkSZIkwJJEkiRJkiQJsCSRJEmSJEkCLEkkSZIkSZIASxJJkiRJkiTAkkSSJEmSJAmwJJEkSZIkSQIsSSRJkiRJkgBLEkmSJEmSJMCSRJIkSZIkCbAkkSRJkiRJAixJJEmSJEmSAEsSSZIkSZIkwJJEkiRJkiQJsCSRJEmSJEkC4D/bILn8z0xqVwAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAACIUAAAfGCAYAAACDcpw1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA1QhJREFUeJzs3XucVXW9P/73GjYMR4QBQQUSwUuihhe85Fe5e0O8InkQSAPSUDNvpBKZAtZxUETFe3QkyQOinkxT06DAMMNUDDQ1EkWtFO9CKI5c5veHP+a45TaDAws+83w+HuvxcK/ra2/3ZoaZF++VVVZWVgYAAAAAAAAAAEkpyTsAAAAAAAAAAAC1TykEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAYDPx0ksvxZFHHhllZWWRZVncd999tXr+V199NbIsi9tvv71Wz7sl6969e3Tv3j3vGEl69NFHI8uyePTRR/OOstkbNGhQtGvXLu8YAAAAQIKUQgAAAD7n5ZdfjjPOOCN23nnnaNiwYTRp0iQ6deoU48aNi6VLl27Uaw8cODCee+65+K//+q+444474oADDtio19uUBg0aFFmWRZMmTdb4Or700kuRZVlkWRZXX311jc//xhtvxMiRI2POnDm1kHbTaNeuXWRZFocffvgat//sZz+rek2efvrpNe5z8cUXR5ZlcfLJJ69x+6oi0Odf01VljSzLYvbs2asdM2jQoNh6663Xm3/kyJFV5/nicuutt673+Nq26rlWZ3n11Vc3eT4AAACAPBTyDgAAALC5eOihh+I///M/o7S0NL71rW9Fhw4d4tNPP40//vGPcdFFF8Xzzz8f48eP3yjXXrp0acyaNSsuueSS+N73vrdRrtG2bdtYunRp1K9ff6Ocf30KhUJ8/PHH8cADD0Tfvn2Ltk2aNCkaNmwYn3zyyQad+4033ohRo0ZFu3btYt999632cVOnTt2g69WWhg0bxowZM2LhwoXRsmXLom3re00qKyvjzjvvjHbt2sUDDzwQ//73v6Nx48Y1uv7IkSPjgQce2OD8ERG33HLLaiWSgw46KHbZZZdYunRpNGjQ4Eudv7q23XbbuOOOO4rWjR07Nv75z3/Gtddeu9q+AAAAAHWBUggAAEBELFiwIPr16xdt27aN6dOnR6tWraq2nX322TF//vx46KGHNtr133nnnYiIaNq06Ua7RpZl0bBhw412/vUpLS2NTp06xZ133rlaKWTy5MlxzDHHxC9/+ctNkuXjjz+OrbbaapMVFtamU6dO8dRTT8Vdd90V5513XtX6f/7zn/HYY4/FiSeeuNbX5NFHH41//vOfMX369OjZs2fce++9MXDgwGpfe999940HH3wwnnnmmdhvv/02+DmcdNJJ0aJFizVu25Tvt0aNGsUpp5xStG7KlCnxwQcfrLYeAAAAoK5w+xgAAICIuOqqq2LJkiVx2223FRVCVtl1112Lfmm/fPny+PGPfxy77LJLlJaWRrt27eKHP/xhVFRUFB3Xrl27OPbYY+OPf/xjfP3rX4+GDRvGzjvvHL/4xS+q9hk5cmS0bds2IiIuuuiiyLIs2rVrFxGf3cpj1X9/3qpbd3zetGnTonPnztG0adPYeuuto3379vHDH/6wavuq22vcfvvtRcdNnz49unTpEo0aNYqmTZvGCSecEC+++OIarzd//vwYNGhQNG3aNMrKymLw4MHx8ccfr/2F/YIBAwbEww8/HB9++GHVuqeeeipeeumlGDBgwGr7v//++3HhhRfGXnvtFVtvvXU0adIkevXqFXPnzq3a59FHH40DDzwwIiIGDx5cdYuQVc+ze/fu0aFDh5g9e3Z07do1ttpqq6rXpXv37tG9e/eqcw0cODAaNmy42vPv2bNnNGvWLN54441qP9fqaNiwYfTp0ycmT55ctP7OO++MZs2aRc+ePdd67KRJk2LPPfeMHj16xOGHHx6TJk2q0bXPOeecaNasWYwcOXJDoq/XqtvUPProo1XrVv2/eOGFF6JHjx6x1VZbxVe+8pW46qqrVju+oqIiRowYEbvuumuUlpZGmzZt4uKLL17tM1ZTWZat8Tm3a9cuBg0aVPX49ttvjyzL4vHHH4+hQ4fGtttuG40aNYoTTzyxqsT1eQ8//HDV56hx48ZxzDHHxPPPP7/afvfdd1906NAhGjZsGB06dIhf/epXX+r5AAAAAKyLUggAAEBEPPDAA7HzzjvHIYccUq39Tz/99Ljssstiv/32i2uvvTa6desW5eXl0a9fv9X2nT9/fpx00klxxBFHxNixY6NZs2YxaNCgql8Y9+nTp+r2Fv3794877rgjrrvuuhrlf/755+PYY4+NioqKuPzyy2Ps2LFx/PHHx+OPP77O4373u99Fz5494+23346RI0fG0KFD409/+lN06tQpXn311dX279u3b/z73/+O8vLy6Nu3b9x+++0xatSoaufs06dPZFkW9957b9W6yZMnx+67777GaRWvvPJK3HfffXHsscfGNddcExdddFE899xz0a1bt6qCxh577BGXX355REQMGTIk7rjjjrjjjjuia9euVed57733olevXrHvvvvGddddFz169FhjvnHjxsW2224bAwcOjBUrVkRExE9/+tOYOnVq3HDDDdG6detqP9fqGjBgQDz55JPx8ssvV62bPHlynHTSSWu91U9FRUX88pe/jP79+0fEZ++b6dOnx8KFC6t93SZNmsQFF1wQDzzwQDzzzDMbnP/999+Pd999t2r54IMP1rn/Bx98EEcddVTss88+MXbs2Nh9991j2LBh8fDDD1fts3Llyjj++OPj6quvjuOOOy5uuOGG6N27d1x77bVx8sknb3DWDXHOOefE3LlzY8SIEXHWWWfFAw88sNotnu6444445phjYuutt44rr7wyLr300njhhReic+fORZ+jqVOnxje+8Y3IsizKy8ujd+/eMXjw4Hj66ac36XMCAAAA6g63jwEAAOq8xYsXx7/+9a844YQTqrX/3LlzY+LEiXH66afHz372s4iI+O53vxvbbbddXH311TFjxoyi0sG8efNi5syZ0aVLl4j4rFjRpk2b+PnPfx5XX3117L333lW/oN9vv/026FYX06ZNi08//TQefvjhtd7KY00uuuii2GabbWLWrFmxzTbbRERE7969o2PHjjFixIiYOHFi0f4dO3aM2267rerxe++9F7fddltceeWV1bpe48aN49hjj43JkyfHt7/97Vi5cmVMmTIlzjrrrDXuv9dee8Xf//73KCn5v3/TcOqpp8buu+8et912W1x66aWx/fbbR69eveKyyy6Lgw8+eI2v38KFC+PWW2+NM844Y535mjZtGrfddlv07NkzRo8eHQMGDIgLL7wwevfuvdFuQXLooYdGy5Yt484774wf/ehH8eKLL8acOXNi3Lhx8corr6zxmAcffDA+/PDDqhJS7969Y8iQITFlypQ4//zzq33tc889N6699toYNWpU3H///RuUv3379kWP27Ztu8ZC0SpvvPFG/OIXv4hTTz01IiJOO+20aNu2bdx2223Rq1eviPisFPO73/0u/vCHP0Tnzp2rju3QoUOceeaZ8ac//anaBa4vq3nz5jF16tSqyTwrV66M66+/PhYtWhRlZWWxZMmSOPfcc+P000+P8ePHVx03cODAaN++fVxxxRVV64cNGxbbb799/PGPf4yysrKIiOjWrVsceeSRVdOCAAAAAGqTSSEAAECdt3jx4oj4rLBQHb/5zW8iImLo0KFF67///e9HRMRDDz1UtH7PPfesKoRERGy77bbRvn37tf7Cf0M0bdo0IiLuv//+WLlyZbWOefPNN2POnDkxaNCgqkJIRMTee+8dRxxxRNXz/Lwzzzyz6HGXLl3ivffeq3oNq2PAgAHx6KOPxsKFC6umW6zp1jEREaWlpVWFkBUrVsR7771XdWucmky3KC0tjcGDB1dr3yOPPDLOOOOMuPzyy6NPnz7RsGHD+OlPf1rta9VUvXr1om/fvnHnnXdGxGe3hWnTpk3Re+aLJk2aFAcccEDsuuuuERFVtyup6S1kysrK4vzzz49f//rX8Ze//GWD8v/yl7+MadOmVS3ry7D11lsXFWwaNGgQX//614s+D/fcc0/ssccesfvuuxdNITn00EMjImLGjBkblHVDDBkypOhWTV26dIkVK1bEa6+9FhGfFbI+/PDD6N+/f1HWevXqxUEHHVSVddXnbeDAgVWFkIiII444Ivbcc89N9nwAAACAukUpBAAAqPOaNGkSERH//ve/q7X/a6+9FiUlJVW/kF+lZcuW0bRp06pfFq+y4447rnaOZs2arfc2GzVx8sknR6dOneL000+P7bffPvr16xd33333Ogsiq3J+cdJDxGe3ZHn33Xfjo48+Klr/xefSrFmziIgaPZejjz46GjduHHfddVdMmjQpDjzwwNVey1VWrlwZ1157bXz1q1+N0tLSaNGiRWy77bbx7LPPxqJFi6p9za985SvRoEGDau9/9dVXxzbbbBNz5syJ66+/Prbbbrv1HvPOO+/EwoULq5YlS5ZU+3oDBgyIF154IebOnRuTJ0+Ofv36FRURPu/DDz+M3/zmN9GtW7eYP39+1dKpU6d4+umn4+9//3u1rxsRcd5550XTpk1j5MiRNTpula5du8bhhx9etXTq1Gmd+++www6rPbcvfh5eeumleP7552PbbbctWnbbbbeIiHj77bcj4rNb13z+Na/Je6K61veef+mllyLis4kvX8w7derUqqyrPm9f/epXV7vGmj6DAAAAALXB7WMAAIA6r0mTJtG6dev461//WqPj1vZL+y+qV6/eGtdXVlZu8DVWrFhR9Pg//uM/YubMmTFjxox46KGH4pFHHom77rorDj300Jg6depaM9TUl3kuq5SWlkafPn1i4sSJ8corr6yzjHDFFVfEpZdeGt/+9rfjxz/+cWyzzTZRUlIS559/frUnokR89vrUxF/+8peqX+Y/99xz0b9///Uec+CBBxYVgkaMGFHtosVBBx0Uu+yyS5x//vmxYMGCtU5OifhsikZFRUWMHTs2xo4du9r2SZMmxahRo6p13Yj/mxYycuTIDZ4WUhPVeQ+tXLky9tprr7jmmmvWuG+bNm0iIqJPnz7xhz/8oWr9wIED4/bbb9+gXF/8TFU376r34R133BEtW7Zcbb9CwY9eAAAAgPz4yQQAAEBEHHvssTF+/PiYNWtWHHzwwevct23btrFy5cp46aWXYo899qha/9Zbb8WHH34Ybdu2rbVczZo1iw8//HC19V+cRhIRUVJSEocddlgcdthhcc0118QVV1wRl1xyScyYMSMOP/zwNT6PiIh58+attu1vf/tbtGjRIho1avTln8QaDBgwICZMmBAlJSXRr1+/te73v//7v9GjR4+47bbbitZ/+OGH0aJFi6rH1S3oVMdHH30UgwcPjj333DMOOeSQuOqqq+LEE0+MAw88cJ3HTZo0KZYuXVr1eOedd67Rdfv37x8/+clPYo899oh99913ndfp0KFDjBgxYrVtP/3pT2Py5Mk1KoVERJx//vlx3XXXxahRo6puRZSnXXbZJebOnRuHHXbYOv/fjh07tmjCSOvWrdd77jV9pj799NN48803NzhrRMR22223xs/ZKqs+b6smi3zemj6DAAAAALXB7WMAAAAi4uKLL45GjRrF6aefHm+99dZq219++eUYN25cRHx2+5OIiOuuu65on1VTDY455phay7XLLrvEokWL4tlnn61a9+abb8avfvWrov3ef//91Y5dVSyoqKhY47lbtWoV++67b0ycOLHol+R//etfY+rUqVXPc2Po0aNH/PjHP44bb7xxjdMVVqlXr95qU0juueee+Ne//lW0blV5ZU0FmpoaNmxYvP766zFx4sS45pprol27djFw4MC1vo6rdOrUqeg2KjUthZx++ukxYsSINU7/WOUf//hHzJw5M/r27RsnnXTSasvgwYNj/vz58ec//7lG1141LeT++++POXPm1OjYjaFv377xr3/9K372s5+ttm3p0qVVtzXaf//9i17zPffcc73n3mWXXWLmzJlF68aPH7/WSSHr07Nnz2jSpElcccUVsWzZstW2v/POOxFR/Hn7/G1upk2bFi+88MIGXRsAAABgfUwKAQAAiM9+UTx58uQ4+eSTY4899ohvfetb0aFDh/j000/jT3/6U9xzzz0xaNCgiIjYZ599YuDAgTF+/Pj48MMPo1u3bvHkk0/GxIkTo3fv3tGjR49ay9WvX78YNmxYnHjiiXHuuefGxx9/HLfcckvstttu8cwzz1Ttd/nll8fMmTPjmGOOibZt28bbb78dN998c+ywww7RuXPntZ5/zJgx0atXrzj44IPjtNNOi6VLl8YNN9wQZWVl1b71yYYoKSmJH/3oR+vd79hjj43LL788Bg8eHIccckg899xzMWnSpNUKF7vssks0bdo0br311mjcuHE0atQoDjrooNhpp51qlGv69Olx8803x4gRI2K//faLiIif//zn0b1797j00kvjqquuqtH5aqJt27brfc0nT54clZWVcfzxx69x+9FHHx2FQiEmTZoUBx10UI2uf95558W1114bc+fO3WgTYqrr1FNPjbvvvjvOPPPMmDFjRnTq1ClWrFgRf/vb3+Luu++O3/72t3HAAQds0LlPP/30OPPMM+Mb3/hGHHHEETF37tz47W9/WzR5piaaNGkSt9xyS5x66qmx3377Rb9+/WLbbbeN119/PR566KHo1KlT3HjjjRERUV5eHsccc0x07tw5vv3tb8f7778fN9xwQ3zta1+LJUuWbND1AQAAANbFpBAAAID/3/HHHx/PPvtsnHTSSXH//ffH2WefHT/4wQ/i1VdfjbFjx8b1119fte9///d/x6hRo+Kpp56K888/P6ZPnx7Dhw+PKVOm1Gqm5s2bx69+9avYaqut4uKLL46JEydGeXl5HHfccatl33HHHWPChAlx9tlnx0033RRdu3aN6dOnR1lZ2VrPf/jhh8cjjzwSzZs3j8suuyyuvvrq+H//7//F448/XuNCxcbwwx/+ML7//e/Hb3/72zjvvPPimWeeiYceeijatGlTtF/9+vVj4sSJUa9evTjzzDOjf//+8Yc//KFG1/r3v/8d3/72t6Njx45xySWXVK3v0qVLnHfeeTF27Nh44oknauV5bahJkybFjjvuGPvss88atzdt2jQ6d+4cd911VyxfvrxG527atGmcf/75tZDyyyspKYn77rsvRo8eHc8991xceOGFVZ+38847L3bbbbcNPvd3vvOdGDZsWMycOTO+//3vx4IFC2LatGlfqggzYMCA+P3vfx9f+cpXYsyYMXHeeefFlClTYt99943BgwdX7XfUUUfFPffcEytWrIjhw4fHvffeGz//+c83uOACAAAAsD5Z5Rfn8AIAAAAAAAAAsMUzKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABBXyDrAx/EfH7+UdITkfPHVj3hEAAAAAAACAz2mY5G976y6/587P0r+k+/twk0IAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASFAh7wAAAAAAAAAAUOdlZjpQ+7yrAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJKuQdAAAAAAAAAADqvCzLOwEJMikEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQV8g4AAAAAAAAAAHVeZqYDtc+7CgAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQoELeAQAAAAAAAACgzsuyvBOQIJNCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEhQIe8AAAAAAAAAAFDnZWY6UPu8qwAAAAAAAAAAEqQUAgAAAAAAAACQoFxvH/Puu+/GhAkTYtasWbFw4cKIiGjZsmUccsghMWjQoNh2223zjAcAAAAAAAAAsMXKbVLIU089Fbvttltcf/31UVZWFl27do2uXbtGWVlZXH/99bH77rvH008/nVc8AAAAAAAAAIAtWm6TQs4555z4z//8z7j11lsjy7KibZWVlXHmmWfGOeecE7NmzVrneSoqKqKioqL4+JUrIiupV+uZAQAAAAAAAAC2FLlNCpk7d25ccMEFqxVCIiKyLIsLLrgg5syZs97zlJeXR1lZWdGy/K3ZGyExAAAAAAAAAMCWI7dSSMuWLePJJ59c6/Ynn3wytt9++/WeZ/jw4bFo0aKipbD9/rUZFQAAAAAAAAA2riyz5LUkLLfbx1x44YUxZMiQmD17dhx22GFVBZC33norfv/738fPfvazuPrqq9d7ntLS0igtLS1a59YxAAAAAAAAAEBdl1sp5Oyzz44WLVrEtddeGzfffHOsWLEiIiLq1asX+++/f9x+++3Rt2/fvOIBAAAAAAAAAGzRciuFREScfPLJcfLJJ8eyZcvi3XffjYiIFi1aRP369fOMBQAAAAAAAACwxcu1FLJK/fr1o1WrVnnHAAAAAAAAAABIRkneAQAAAAAAAAAAqH1KIQAAAAAAAAAACdosbh8DAAAAAAAAAHVaZqYDtc+7CgAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEFfIOAAAAAAAAAAB1XpblnYAEmRQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEhQIe8AAAAAAAAAAFDnZWY6UPu8qwAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIUCHvAAAAAAAAAABQ52VZ3glIkEkhAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEFfIOAAAAAAAAAAB1XmamA7XPuwoAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECCCnkH2Bg+eOrGvCMkp9mB38s7QlK8RwEAAAAAAADY2EwKAQAAAAAAAABIkFIIAAAAAAAAAECCkrx9DAAAAAAAAABsUbIs7wQkyKQQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECCCnkHAAAAAAAAAIA6LzPTgdrnXQUAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASFAh7wAAAAAAAAAAUOdlZjpQ+7yrAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEhQIe8AAAAAAAAAAFDnlWR5JyBBJoUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABJUyDsAAAAAAAAAANR5mZkO1D7vKgAAAAAAAACAapg5c2Ycd9xx0bp168iyLO67776i7VmWrXEZM2ZM1T7t2rVbbfvo0aOLzvPss89Gly5domHDhtGmTZu46qqrNiivUggAAAAAAAAAQDV89NFHsc8++8RNN920xu1vvvlm0TJhwoTIsiy+8Y1vFO13+eWXF+13zjnnVG1bvHhxHHnkkdG2bduYPXt2jBkzJkaOHBnjx4+vcV63jwEAAAAAAAAAqIZevXpFr1691rq9ZcuWRY/vv//+6NGjR+y8885F6xs3brzavqtMmjQpPv3005gwYUI0aNAgvva1r8WcOXPimmuuiSFDhtQor0khAAAAAAAAAECdVVFREYsXLy5aKioqvvR533rrrXjooYfitNNOW23b6NGjo3nz5tGxY8cYM2ZMLF++vGrbrFmzomvXrtGgQYOqdT179ox58+bFBx98UKMMSiEAAAAAAAAAQJ1VXl4eZWVlRUt5efmXPu/EiROjcePG0adPn6L15557bkyZMiVmzJgRZ5xxRlxxxRVx8cUXV21fuHBhbL/99kXHrHq8cOHCGmVw+xgAAAAAAAAAoM4aPnx4DB06tGhdaWnplz7vhAkT4pvf/GY0bNiwaP3nr7X33ntHgwYN4owzzojy8vJaue7nKYUAAAAAAAAAAHVWaWlprZcxHnvssZg3b17cdddd6933oIMOiuXLl8err74a7du3j5YtW8Zbb71VtM+qxy1btqxRDrePAQAAAAAAAIC8ZZklr2UjuO2222L//fePffbZZ737zpkzJ0pKSmK77baLiIiDDz44Zs6cGcuWLavaZ9q0adG+ffto1qxZjXIohQAAAAAAAAAAVMOSJUtizpw5MWfOnIiIWLBgQcyZMydef/31qn0WL14c99xzT5x++umrHT9r1qy47rrrYu7cufHKK6/EpEmT4oILLohTTjmlqvAxYMCAaNCgQZx22mnx/PPPx1133RXjxo1b7RY31bFZ3z7mH//4R4wYMSImTJiw1n0qKiqioqKiaF1lvdof7QIAAAAAAAAA1G1PP/109OjRo+rxqqLGwIED4/bbb4+IiClTpkRlZWX0799/teNLS0tjypQpMXLkyKioqIiddtopLrjggqLCR1lZWUydOjXOPvvs2H///aNFixZx2WWXxZAhQ2qcN6usrKys8VGbyNy5c2O//faLFStWrHWfkSNHxqhRo4rWXXLpiPjRZSM3crq6pdmB38s7QlI+eOrGvCMAAAAAAACwhWu4WY8AoKb+47Ar8o5QZy39/Q/zjrDR5PrHxK9//et1bn/llVfWe47hw4evNiKlsp4pIQAAAAAAAABA3ZZrKaR3796RZVmsa1hJlmXrPEdp6eq3ivlkea3EAwAAAAAAAADYYpXkefFWrVrFvffeGytXrlzj8swzz+QZDwAAAAAAAABgi5XrpJD9998/Zs+eHSeccMIat69viggAAAAAAAAAJCHLdaYDicq1FHLRRRfFRx99tNbtu+66a8yYMWMTJgIAAAAAAAAASEOupZAuXbqsc3ujRo2iW7dumygNAAAAAAAAAEA6zJ8BAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEFfIOAAAAAAAAAAB1XpblnYAEmRQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEhQIe8AAAAAAAAAAFDnZWY6UPu8qwAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIUCHvAAAAAAAAAABQ52VZ3glIkEkhAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEFfIOAAAAAAAAAAB1XmamA7XPuwoAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkKBC3gEAAAAAAAAAoM7LsrwTkCCTQgAAAAAAAAAAEpTkpJDKyrwTpOeDp27MO0JS9rz4N3lHSM5fr+yVd4TkrFjpD9PatHJl3gnSU1pft7W2+R6KzZ1/KMHmbtkKX/Brm++haleJP0drXT0vaq3KfLGvdct9bap19Qv+Lgp1iZ+R1j7fPwFser6DBQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABBXyDgAAAAAAAAAAdV5mpgO1z7sKAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJCgQt4BAAAAAAAAAKDOy7K8E5Agk0IAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASFAh7wAAAAAAAAAAUOdlZjpQ+7yrAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJKuQdAAAAAAAAAADqvMxMB2qfdxUAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACSrkHQAAAAAAAAAA6rwsyzsBCTIpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEpR7KWTp0qXxxz/+MV544YXVtn3yySfxi1/8IodUAAAAAAAAAABbtkKeF//73/8eRx55ZLz++uuRZVl07tw5pkyZEq1atYqIiEWLFsXgwYPjW9/61lrPUVFRERUVFUXrVpaURmlp6UbNDgAAAAAAAAC1Jst9pgMJyvVdNWzYsOjQoUO8/fbbMW/evGjcuHF06tQpXn/99Wqfo7y8PMrKyoqWMVeWb8TUAAAAAAAAAACbv1wnhfzpT3+K3/3ud9GiRYto0aJFPPDAA/Hd7343unTpEjNmzIhGjRqt9xzDhw+PoUOHFq1bWWJKCAAAAAAAAABQt+U6KWTp0qVRKPxfLyXLsrjlllviuOOOi27dusXf//739Z6jtLQ0mjRpUrS4dQwAAAAAAAAAUNflOilk9913j6effjr22GOPovU33nhjREQcf/zxecQCAAAAAAAAANji5Top5MQTT4w777xzjdtuvPHG6N+/f1RWVm7iVAAAAAAAAAAAW75cSyHDhw+P3/zmN2vdfvPNN8fKlSs3YSIAAAAAAAAAgDTkWgoBAAAAAAAAAGDjKOQdAAAAAAAAAADqvCzLOwEJMikEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJCgQt4BAAAAAAAAAKDOy8x0oPZ5VwEAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAElTIOwAAAAAAAAAA1HlZlncCEmRSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJKuQdAAAAAAAAAADquizL8o5AgkwKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkqJB3AAAAAAAAAACo67IsyzsCCTIpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQoELeATaGLMs7AazbC1cdnXeE5DTr8oO8IyTng8dG5x0hLfXyDpCelSsr846QnJIS30QBfBn16/l3F7XO91AAX0r9gq9NAF9GPT8rASABSZZCAAAAAAAAAGCLoovGRqAqDgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIUCHvAAAAAAAAAABQ12VZlncEEmRSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJKuQdAAAAAAAAAADquizL8o5AgkwKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkqJB3AAAAAAAAAACo67IsyzsCCTIpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQoELeAQAAAAAAAACgrsuyLO8IJMikEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASVMg7AAAAAAAAAADUeVneAUiRSSEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAggp5B3jxxRfjiSeeiIMPPjh23333+Nvf/hbjxo2LioqKOOWUU+LQQw9d5/EVFRVRUVFRtK6yXmmUlpZuzNgAAAAAAAAAAJu1XCeFPPLII7HvvvvGhRdeGB07doxHHnkkunbtGvPnz4/XXnstjjzyyJg+ffo6z1FeXh5lZWVFy5gryzfRMwAAAAAAAAAA2DxllZWVlXld/JBDDolDDz00fvKTn8SUKVPiu9/9bpx11lnxX//1XxERMXz48Jg9e3ZMnTp1recwKQSIiGjW5Qd5R0jOB4+NzjsCrNPKlbl9C5OskpIs7wgAAAAAQA00zP2+ENSmsgF35B2hzlo0+dS8I2w0uf4x8fzzz8cvfvGLiIjo27dvnHrqqXHSSSdVbf/mN78ZP//5z9d5jtLS1Qsgnyyv/awAAAAAAAAAsLFkmX+4R+3L9fYxEf/3xi4pKYmGDRtGWVlZ1bbGjRvHokWL8ooGAAAAAAAAALDFyrUU0q5du3jppZeqHs+aNSt23HHHqsevv/56tGrVKo9oAAAAAAAAAABbtFxvH3PWWWfFihUrqh536NChaPvDDz8chx566KaOBQAAAAAAAACwxcu1FHLmmWeuc/sVV1yxiZIAAAAAAAAAAKQl19vHAAAAAAAAAACwcSiFAAAAAAAAAAAkSCkEAAAAAAAAACBBhbwDAAAAAAAAAEBdl2VZ3hFIkEkhAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEFfIOAAAAAAAAAAB1XZZleUcgQSaFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJCgQt4BAAAAAAAAAKCuy7Is7wgkyKQQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECCCnkHAAAAAAAAAIA6L8s7ACkyKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABBXyDgAAAAAAAAAAdV2WZXlHIEEmhQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJKuQdAOqiFSsr846QnA8eG513hOTsd9nUvCMk5ckRR+QdITklqq21btmKlXlHSErBm7TWuaVq7Vq+wvektc3Hvvat8D6tVfXq+YOUzVuJL/a1bskny/OOkJytG/qROpu3lZW+f6pN/t5U+wq+J90IvKbAuvmRFQAAAAAAAABAgpRCAAAAAAAAAAASZNYdAAAAAAAAAOQsc0tFNgKTQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACSrkHQAAAAAAAAAA6rosy/KOQIJMCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQYW8AwAAAAAAAABAnZflHYAUmRQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEhQIe8AAAAAAAAAAFDXZVmWdwQSZFIIAAAAAAAAAECClEIAAAAAAAAAAKph5syZcdxxx0Xr1q0jy7K47777irYPGjQosiwrWo466qiifd5///345je/GU2aNImmTZvGaaedFkuWLCna59lnn40uXbpEw4YNo02bNnHVVVdtUF6lEAAAAAAAAACAavjoo49in332iZtuummt+xx11FHx5ptvVi133nln0fZvfvOb8fzzz8e0adPiwQcfjJkzZ8aQIUOqti9evDiOPPLIaNu2bcyePTvGjBkTI0eOjPHjx9c4b6HGRwAAAAAAAAAA1EG9evWKXr16rXOf0tLSaNmy5Rq3vfjii/HII4/EU089FQcccEBERNxwww1x9NFHx9VXXx2tW7eOSZMmxaeffhoTJkyIBg0axNe+9rWYM2dOXHPNNUXlkeowKQQAAAAAAAAAoJY8+uijsd1220X79u3jrLPOivfee69q26xZs6Jp06ZVhZCIiMMPPzxKSkriz3/+c9U+Xbt2jQYNGlTt07Nnz5g3b1588MEHNcpiUggAAAAAAAAAUGdVVFRERUVF0brS0tIoLS2t8bmOOuqo6NOnT+y0007x8ssvxw9/+MPo1atXzJo1K+rVqxcLFy6M7bbbruiYQqEQ22yzTSxcuDAiIhYuXBg77bRT0T7bb7991bZmzZpVO49JIQAAAAAAAABAnVVeXh5lZWVFS3l5+Qadq1+/fnH88cfHXnvtFb17944HH3wwnnrqqXj00UdrN3Q1mRQCAAAAAAAAADnLsizvCHXW8OHDY+jQoUXrNmRKyJrsvPPO0aJFi5g/f34cdthh0bJly3j77beL9lm+fHm8//770bJly4iIaNmyZbz11ltF+6x6vGqf6jIpBAAAAAAAAACos0pLS6NJkyZFS22VQv75z3/Ge++9F61atYqIiIMPPjg+/PDDmD17dtU+06dPj5UrV8ZBBx1Utc/MmTNj2bJlVftMmzYt2rdvX6Nbx0QohQAAAAAAAAAAVMuSJUtizpw5MWfOnIiIWLBgQcyZMydef/31WLJkSVx00UXxxBNPxKuvvhq///3v44QTTohdd901evbsGRERe+yxRxx11FHxne98J5588sl4/PHH43vf+17069cvWrduHRERAwYMiAYNGsRpp50Wzz//fNx1110xbty41aaZVIdSCAAAAAAAAABANTz99NPRsWPH6NixY0REDB06NDp27BiXXXZZ1KtXL5599tk4/vjjY7fddovTTjst9t9//3jssceKJo9MmjQpdt999zjssMPi6KOPjs6dO8f48eOrtpeVlcXUqVNjwYIFsf/++8f3v//9uOyyy2LIkCE1zlv48k8ZAAAAAAAAACB93bt3j8rKyrVu/+1vf7vec2yzzTYxefLkde6z9957x2OPPVbjfF9kUggAAAAAAAAAQII2u1LIuho1AAAAAAAAAABUz2Z3+5jS0tKYO3du7LHHHnlHAQAAAAAAAIBNIsuyvCOQoNxKIUOHDl3j+hUrVsTo0aOjefPmERFxzTXXbMpYAAAAAAAAAABJyK0Uct1118U+++wTTZs2LVpfWVkZL774YjRq1KhaTaiKioqoqKgoPke90igtLa3NuAAAAAAAAAAAW5SSvC58xRVXxKJFi+LSSy+NGTNmVC316tWL22+/PWbMmBHTp09f73nKy8ujrKysaBlzZfkmeAYAAAAAAAAAAJuv3CaF/OAHP4jDDjssTjnllDjuuOOivLw86tevX+PzDB8+fLVb0VTWMyUEAAAAAAAAAKjbcpsUEhFx4IEHxuzZs+Odd96JAw44IP76179W65Yxn1daWhpNmjQpWtw6BgAAAAAAAACo63KbFLLK1ltvHRMnTowpU6bE4YcfHitWrMg7EgAAAAAAAADAFi/3Usgq/fr1i86dO8fs2bOjbdu2eccBAAAAAAAAANiibTalkIiIHXbYIXbYYYe8YwAAAAAAAADAJpVlWd4RSFBJ3gEAAAAAAAAAAKh9SiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJCgQt4BAAAAAAAAAKDOy/IOQIpMCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJKiQdwAAAAAAAAAAqOuyLMs7AgkyKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABBXyDgAAAAAAAAAAdV2WZXlHIEEmhQAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAElTIOwAAAAAAAAAA1HVZluUdgQSZFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAggp5BwAAAAAAAACAOi/LOwApUgqBHKxYWZl3hORkvkjWusd/dFjeEZJy/R9fyTtCci7oukveEZJTsWxF3hGSUr+hoXy1rdK3ULXK96S1b+mnK/OOkBzf59euBgbG1rqKZT73talBwXu0tvn+qfZ5TWuXr/W1r8SLWqsK9fJOkB7vUYBNz9+0AAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQYW8AwAAAAAAAABAXZdlWd4RSJBJIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkqJB3AAAAAAAAAACo67IsyzsCCTIpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQoELeAQAAAAAAAACgrsuyLO8IJMikEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASVMg7AAAAAAAAAADUdVmW5R2BBJkUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIUCHvAAAAAAAAAABQ52V5ByBFJoUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECCCnkH+LyPPvoo7r777pg/f360atUq+vfvH82bN1/nMRUVFVFRUVG0rrJeaZSWlm7MqAAAAAAAAAAAm7VcJ4Xsueee8f7770dExD/+8Y/o0KFDXHDBBTFt2rQYMWJE7LnnnrFgwYJ1nqO8vDzKysqKljFXlm+K+AAAAAAAAABQK7Iss+S0pCzXUsjf/va3WL58eUREDB8+PFq3bh2vvfZaPPnkk/Haa6/F3nvvHZdccsk6zzF8+PBYtGhR0XLRsOGbIj4AAAAAAAAAwGZrs7l9zKxZs+LWW2+NsrKyiIjYeuutY9SoUdGvX791HldauvqtYj5ZvtFiAgAAAAAAAABsEXKdFBIRVaNYPvnkk2jVqlXRtq985Svxzjvv5BELAAAAAAAAAGCLlvukkMMOOywKhUIsXrw45s2bFx06dKja9tprr0Xz5s1zTAcAAAAAAAAAsGXKtRQyYsSIosdbb7110eMHHnggunTpsikjAQAAAAAAAAAkYbMqhXzRmDFjNlESAAAAAAAAAIC0lOQdAAAAAAAAAACA2pfrpBAAAAAAAAAAICLLsrwjkCCTQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACSrkHQAAAAAAAAAA6rosyzsBKTIpBAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEFfIOAAAAAAAAAAB1XZZleUcgQSaFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASVMg7AAAAAAAAAADUdVmWdwJSZFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAkq5B0AAAAAAAAAAOq6LMvyjkCCTAoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEFfIOAHVRg4I+Vm1bsbIy7wjJqV/P+7Q2nd9157wjJKftmXfnHSE5L4zrk3cEYBOqX8jyjpCc+oV6eUeAdSrJfO5rm9e0dhXqeT1rW2l9f7eHuqbSj0lrla/1tW+lN+lG4H0KrJtSCAAAAAAAAADkTBeNjUFVHAAAAAAAAAAgQUohAAAAAAAAAAAJUgoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEFfIOAAAAAAAAAAB1XUlJlncEEmRSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQphQAAAAAAAAAAJEgpBAAAAAAAAAAgQYW8AwAAAAAAAABAXZdleScgRSaFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASVMg7AAAAAAAAAADUdVmW5R2BBJkUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECCCnkHAAAAAAAAAIC6LsvyTkCKTAoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACSokHcAAAAAAAAAAKjrsizLOwIJMikEAAAAAAAAACBBSiEAAAAAAAAAAAnKtRTyzDPPxIIFC6oe33HHHdGpU6do06ZNdO7cOaZMmZJjOgAAAAAAAACALVeupZDBgwfHyy+/HBER//3f/x1nnHFGHHDAAXHJJZfEgQceGN/5zndiwoQJ6zxHRUVFLF68uGipqKjYFPEBAAAAAAAAADZbuZZCXnrppfjqV78aERE333xzjBs3LsaNGxdnnnlmXHvttfHTn/40xo4du85zlJeXR1lZWdEy5sryTREfAAAAAAAAAGCzVcjz4ltttVW8++670bZt2/jXv/4VX//614u2H3TQQUW3l1mT4cOHx9ChQ4vWVdYrrfWsAAAAAAAAAABbklwnhfTq1StuueWWiIjo1q1b/O///m/R9rvvvjt23XXXdZ6jtLQ0mjRpUrSUliqFAAAAAAAAAAB1W66TQq688sro1KlTdOvWLQ444IAYO3ZsPProo7HHHnvEvHnz4oknnohf/epXeUYEAAAAAAAAgI0uy7K8I5CgXCeFtG7dOv7yl7/EwQcfHI888khUVlbGk08+GVOnTo0ddtghHn/88Tj66KPzjAgAAAAAAAAAsEXKdVJIRETTpk1j9OjRMXr06LyjAAAAAAAAAAAkI9dJIQAAAAAAAAAAbBxKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECCCnkHAAAAAAAAAIC6LsvyTkCKTAoBAAAAAAAAAEiQUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEGFvAMAAAAAAAAAQF2XZVneEUiQSSEAAAAAAAAAAAlSCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAJAgpRAAAAAAAAAAgAQV8g4AAAAAAAAAAHVdluWdgBSZFAIAAAAAAAAAkCClEAAAAAAAAACABCmFAAAAAAAAAAAkSCkEAAAAAAAAACBBSiEAAAAAAAAAAAlSCgEAAAAAAAAASFAh7wAAAAAAAAAAUNdlWZZ3BBJkUggAAAAAAAAAQIKUQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACSrkHQAAAAAAAAAA6rosyzsBKTIpBAAAAAAAAAAgQUohAAAAAAAAAAAJcvsYyEFlZd4J0lNinlatW7ZyZd4RkvLR0hV5R0jO8+P65B0hOVP/vjDvCEnps/cOeUdITqVvomrVpyt8ra9t9Up8T1rbPlnmfVqbGtb3b4Nq2xsffJJ3hKRsX1aad4TkLFvh+6fatnWpH6nXJj/SY3O30t9Da10WPvgAm5qfBgAAAAAAAAAAJEgpBAAAAAAAAAAgQUohAAAAAAAAAAAJcgNEAAAAAAAAAMhZlmV5RyBBJoUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkKBC3gEAAAAAAAAAoK7LsrwTkCKTQgAAAAAAAAAAEqQUAgAAAAAAAACQIKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACSrkHQAAAAAAAAAA6rosy/KOQIJMCgEAAAAAAAAASJBSCAAAAAAAAABAgpRCAAAAAAAAAAASpBQCAAAAAAAAAFANM2fOjOOOOy5at24dWZbFfffdV7Vt2bJlMWzYsNhrr72iUaNG0bp16/jWt74Vb7zxRtE52rVrF1mWFS2jR48u2ufZZ5+NLl26RMOGDaNNmzZx1VVXbVBepRAAAAAAAAAAgGr46KOPYp999ombbrpptW0ff/xxPPPMM3HppZfGM888E/fee2/Mmzcvjj/++NX2vfzyy+PNN9+sWs4555yqbYsXL44jjzwy2rZtG7Nnz44xY8bEyJEjY/z48TXOW6jxEQAAAAAAAAAAdVCvXr2iV69ea9xWVlYW06ZNK1p34403xte//vV4/fXXY8cdd6xa37hx42jZsuUazzNp0qT49NNPY8KECdGgQYP42te+FnPmzIlrrrkmhgwZUqO8JoUAAAAAAAAAAHVWRUVFLF68uGipqKiolXMvWrQosiyLpk2bFq0fPXp0NG/ePDp27BhjxoyJ5cuXV22bNWtWdO3aNRo0aFC1rmfPnjFv3rz44IMPanR9pRAAAAAAAAAAyFmWWfJaysvLo6ysrGgpLy//0v9PP/nkkxg2bFj0798/mjRpUrX+3HPPjSlTpsSMGTPijDPOiCuuuCIuvvjiqu0LFy6M7bffvuhcqx4vXLiwRhncPgYAAAAAAAAAqLOGDx8eQ4cOLVpXWlr6pc65bNmy6Nu3b1RWVsYtt9xStO3z19p7772jQYMGccYZZ0R5efmXvu4XKYUAAAAAAAAAAHVWaWlprZYxVhVCXnvttZg+fXrRlJA1Oeigg2L58uXx6quvRvv27aNly5bx1ltvFe2z6nHLli1rlMXtYwAAAAAAAAAAasGqQshLL70Uv/vd76J58+brPWbOnDlRUlIS2223XUREHHzwwTFz5sxYtmxZ1T7Tpk2L9u3bR7NmzWqUx6QQAAAAAAAAAIBqWLJkScyfP7/q8YIFC2LOnDmxzTbbRKtWreKkk06KZ555Jh588MFYsWJFLFy4MCIittlmm2jQoEHMmjUr/vznP0ePHj2icePGMWvWrLjgggvilFNOqSp8DBgwIEaNGhWnnXZaDBs2LP7617/GuHHj4tprr61xXqUQAAAAAAAAAIBqePrpp6NHjx5Vj4cOHRoREQMHDoyRI0fGr3/964iI2HfffYuOmzFjRnTv3j1KS0tjypQpMXLkyKioqIiddtopLrjggqrzRESUlZXF1KlT4+yzz479998/WrRoEZdddlkMGTKkxnmVQgAAAAAAAAAAqqF79+5RWVm51u3r2hYRsd9++8UTTzyx3uvsvffe8dhjj9U43xcphQAAAAAAAABAzrIsyzsCCSrJOwAAAAAAAAAAALVPKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIkFIIAAAAAAAAAECClEIAAAAAAAAAABKkFAIAAAAAAAAAkKBcSyHnnHNOPPbYY3lGAAAAAAAAAIDcZZklryVluZZCbrrppujevXvstttuceWVV8bChQtrfI6KiopYvHhx0VJRUbER0gIAAAAAAAAAbDlyv33M1KlT4+ijj46rr746dtxxxzjhhBPiwQcfjJUrV1br+PLy8igrKytaxlxZvpFTAwAAAAAAAABs3nIvhey1115x3XXXxRtvvBH/8z//ExUVFdG7d+9o06ZNXHLJJTF//vx1Hj98+PBYtGhR0XLRsOGbKD0AAAAAAAAAwOYp91LIKvXr14++ffvGI488Eq+88kp85zvfiUmTJkX79u3XeVxpaWk0adKkaCktLd1EqQEAAAAAAAAANk+bTSnk83bccccYOXJkLFiwIB555JG84wAAAAAAAAAAbHFyLYW0bds26tWrt9btWZbFEUccsQkTAQAAAAAAAACkoZDnxRcsWJDn5QEAAAAAAABgs5BlWd4RSNBmefsYAAAAAAAAAAC+HKUQAAAAAAAAAIAEKYUAAAAAAAAAACRIKQQAAAAAAAAAIEFKIQAAAAAAAAAACVIKAQAAAAAAAABIUCHvAAAAAAAAAABQ12VZ3glIkUkhAP8fe/cfZmVd5w38c585MCIuA6Ywg2ukYilmWniF7EZkurBIJOm6j+UGXra6ma4piYS5/s5R7MnWrLzaXLUfZpuSy+W2/sDcSMNfoItLPaZCoSuDCeogLAPDnOeP53G2WWBg5Axf5nter677ujj39z73vGc6w/zwzecLAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhsqpAwAAAAAAAABArSuKInUEMmRSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ+XUAQAAAAAAAACg1hVFkToCGTIpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMlVMHAAAAAAAAAIBaVxSpE5Ajk0IAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABkqpw4AAAAAAAAAALWuKIrUEciQUggk4O9z+oL+ZcOkqsnHk77gxPf9ceoIWRly9PmpI2TntUevTx0hK3uU6lJHgO3qV+d7KHZvI/bZM3UE6NYe/VInAHY1v3uuriJ8QAHo+/x2BQAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQoXLqAAAAAAAAAABQ64oidQJyZFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBD5dQBAAAAAAAAAKDWFUWROgIZMikEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJChcuoAAAAAAAAAAFDriiJ1AnJkUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGSqnDgAAAAAAAAAAta5UFKkjkCGTQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGSqnDgAAAAAAAAAAta4oUicgRyaFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpKXQm688caYNm1a3HHHHRER8b3vfS9GjRoVhxxySFx00UXR3t7e7fPb2tqitbW1y9HW1rYrogMAAAAAAAAA7LaSlkKuuuqquOiii2L9+vVx/vnnx7XXXhvnn39+nHrqqTF9+vT4zne+E1deeWW392hubo6GhoYux3XXNu+i9wAAAAAAAAAAYPdUVCqVSqo3PnLkyJgzZ06ceOKJ8e///u8xevTouO222+LUU0+NiIif/OQnceGFF8Zzzz23zXu0tbVtMRmkUlcf9fX1vZodAAC6M+To81NHyM5rj16fOgIAAADAbmWPcuoEVNPEbz6WOkLNuu9zY1JH6DVJ/5p4+eWX46ijjoqIiCOOOCJKpVIceeSRnesf+MAH4uWXX+72HvX1WxZANnS/4wwAAAAAAAAAQPaSbh/T2NgYv/rVryIi4rnnnovNmzd3Po6IWLp0aQwdOjRVPAAAAAAAAACAPivppJBTTz01pk2bFieccEI8+OCDceGFF8YFF1wQq1evjqIo4stf/nL8xV/8RcqIAAAAAAAAAAB9UtJSyOWXXx4DBgyIhQsXxhlnnBFf/OIX44gjjogLL7ww1q9fH1OmTIkrr7wyZUQAAAAAAAAAgD6pqFQqldQhqm1De+oEAADUuiFHn586QnZee/T61BEAAAAAdit7JB0BQLVN/OZjqSPUrPs+NyZ1hF5TSh0AAAAAAAAAAIDq0x0DAAAAAAAAgMRKReoE5MikEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAyVE4dAAAAAAAAAABqXVEUqSOQIZNCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZKqcOAAAAAAAAAAC1rihSJyBHJoUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkKFy6gAAAAAAAAAAUOuKKFJHIEMmhQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMlROHQAAAAAAAAAAal2pSJ2AHJkUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIEPl1AEAACBHrz16feoI2RkydkbqCFl5beFXU0cA6PMqldQJ8lIUqRMAAADkx6QQAAAAAAAAAIAMmRQCAAAAAAAAAIkVxufRC0wKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBD5dQBAAAAAAAAAKDWFUXqBOTIpBAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIbKqQMAAAAAAAAAQK0rFUXqCGTIpBAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMlROHQAAAAAAAAAAal1RpE5AjkwKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkqJw6AAAAAAAAAADUuqIoUkcgQyaFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJChcuoAAAAAAAAAAFDriiJ1AnKUtBSycuXK+Na3vhUPP/xwrFy5MkqlUhx44IExderUOO2006Kuri5lPAAAAAAAAACAPivZ9jFPPvlkHHroofHTn/40Nm3aFM8991yMHj06Bg4cGBdccEF8+MMfjrVr16aKBwAAAAAAAADQpyUrhZx33nlx/vnnx5NPPhm/+MUv4tZbb43f/OY3cccdd8SyZcti/fr1cfHFF2/3Pm1tbdHa2trlaGtr2wXvAQAAAAAAAADA7itZKWTx4sXx6U9/uvPxpz71qVi8eHGsWrUqhgwZEnPmzIk777xzu/dpbm6OhoaGLsd11zb3ZnQAAAAAAAAAgN1eOdUbHjp0aKxcuTIOPPDAiIhYtWpVtLe3x6BBgyIi4uCDD441a9Zs9z6zZ8+OGTNmdDlXqauvfmAAAAAAAAAAgD4kWSlk6tSp8dnPfjauu+66qK+vjyuvvDLGjx8fAwYMiIiIZ599Nvbbb7/t3qe+vj7q67uWQDa090pkAAAAAAAAAIA+I1kp5KqrroqVK1fGlClTYvPmzTF27Nj4/ve/37leFEU0N9sGBgAAAAAAAID8lYoidQQylKwUstdee8WPfvSj2LBhQ7S3t8dee+3VZX3ChAmJkgEAAAAAAAAA9H3JSiFv2WOPPVJHAAAAAAAAAADITil1AAAAAAAAAAAAqk8pBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIbKqQMAAAAAAAAAQK0rUgcgSyaFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAyVE4dAAAAAAAAAABqXVEUqSOQIZNCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZKqcOAAAAAAAAAAC1rlSkTkCOTAoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIEPl1AEAAAAAAAAAoNYVRZE6AhkyKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkKFy6gAAAAAAAAAAUOuKInUCcmRSCAAAAAAAAABAhpRCAAAAAAAAAAAyZPsYALZq0+aO1BGyUoSZb9VWV/IxrbaN7T7vq6m+n/51tb228KupI2TlsFn/mjpCdpZeOyl1hOy0b66kjpAVY4irz4e0unzGV1/rf7WnjpCdQQP8Sr2aSr44AQD0Or+pBgAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkKFy6gAAAAAAAAAAUOuKokgdgQyZFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyFA5dQAAAAAAAAAAqHWlInUCcmRSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAA7IAFCxbElClTYvjw4VEURdx9991d1iuVSlxyySXR1NQUAwYMiOOOOy6ee+65LtesWbMmTj311Bg0aFAMHjw4PvOZz8Sbb77Z5ZolS5bEuHHjYo899oj9998/5syZ87byKoUAAAAAAAAAAOyAdevWxRFHHBHf+MY3tro+Z86cuOGGG+Kmm26Kxx57LAYOHBgTJ06MDRs2dF5z6qmnxtKlS+OBBx6Ie+65JxYsWBBnnnlm53pra2tMmDAhRowYEYsWLYrrrrsuLrvssvj2t7/d47zlnr+LAAAAAAAAAAC1Z9KkSTFp0qStrlUqlfja174WF198cZxwwgkREfHd7343hg0bFnfffXeccsop8etf/zruvffeeOKJJ+Koo46KiIivf/3rcfzxx8dXvvKVGD58ePzgBz+IjRs3xj/+4z9G//7947DDDounn346vvrVr3Ypj+wIk0IAAAAAAAAAILGiKByJjra2tmhtbe1ytLW19fj/w+XLl0dLS0scd9xxnecaGhpizJgxsXDhwoiIWLhwYQwePLizEBIRcdxxx0WpVIrHHnus85oPf/jD0b9//85rJk6cGM8++2y89tprPcqkFAIAAAAAAAAA1Kzm5uZoaGjocjQ3N/f4Pi0tLRERMWzYsC7nhw0b1rnW0tISQ4cO7bJeLpdj77337nLN1u7xh29jR9k+BgAAAAAAAACoWbNnz44ZM2Z0OVdfX58oTXUphQAAAAAAAAAANau+vr4qJZDGxsaIiFi1alU0NTV1nl+1alUceeSRnde88sorXZ7X3t4ea9as6Xx+Y2NjrFq1qss1bz1+65odZfsYAAAAAAAAAICddMABB0RjY2M8+OCDnedaW1vjsccei7Fjx0ZExNixY+P111+PRYsWdV7zs5/9LDo6OmLMmDGd1yxYsCA2bdrUec0DDzwQ73nPe2LIkCE9yqQUAgAAAAAAAACwA9588814+umn4+mnn46IiOXLl8fTTz8dK1asiKIo4rzzzourrroq5s2bF88880xMmzYthg8fHlOnTo2IiEMPPTT+/M//PM4444x4/PHH45FHHolzzjknTjnllBg+fHhERHzqU5+K/v37x2c+85lYunRp/OhHP4q///u/32KLmx1h+xgAAAAAAAAAgB3w5JNPxjHHHNP5+K2ixvTp0+PWW2+NCy+8MNatWxdnnnlmvP766/GhD30o7r333thjjz06n/ODH/wgzjnnnDj22GOjVCrFSSedFDfccEPnekNDQ9x///1x9tlnx+jRo2OfffaJSy65JM4888we5y0qlUplJ97f3dKG9tQJAPq+TZs7UkfIShFF6gjZqSv5mFbbxnaf99VU389QPnZvh83619QRsrP02kmpI2SnfXN2v7JIqvDtU9X5kFaZD2jVtf6XX5RW26AB/p1lNZV8cQLYaXv40pSV0+94JnWEmvWPpxyeOkKv8ZtqAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGyqkDAAAAAAAAAECtKxVF6ghkyKQQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIEPl1AE2btwYd999dyxcuDBaWloiIqKxsTH+5E/+JE444YTo379/4oQAAAAAAAAAAH1P0kkhzz//fBx66KExffr0eOqpp6KjoyM6OjriqaeeimnTpsVhhx0Wzz//fMqIAAAAAAAAAAB9UtJJIWeddVYcfvjh8dRTT8WgQYO6rLW2tsa0adPi7LPPjvvuuy9RQgAAAAAAAACAvilpKeSRRx6Jxx9/fItCSETEoEGD4sorr4wxY8YkSAYAAAAAAAAA0LclLYUMHjw4fvvb38Z73/vera7/9re/jcGDB3d7j7a2tmhra+tyrlJXH/X19dWKCQAAAAAAAAC9qihSJyBHpZRv/K//+q9j2rRpcf3118eSJUti1apVsWrVqliyZElcf/31cdppp8WZZ57Z7T2am5ujoaGhy3Hdtc276D0AAAAAAAAAANg9JZ0UcsUVV8TAgQPjuuuuiy984QtR/P/qU6VSicbGxpg1a1ZceOGF3d5j9uzZMWPGjC7nKnWmhAAAAAAAAAAAtS1pKSQiYtasWTFr1qxYvnx5tLS0REREY2NjHHDAATv0/Pr6LbeK2dBe9ZgAAAAAAAAAAH1K0u1j/tABBxwQY8eOjbFjx3YWQl588cU4/fTTEycDAAAAAAAAAOh7dptSyNasWbMmbrvtttQxAAAAAAAAAAD6nKTbx8ybN6/b9WXLlu2iJAAAAAAAAAAAeUlaCpk6dWoURRGVSmWb1xRFsQsTAQAAAAAAAMCu57+N0xuSbh/T1NQUc+fOjY6Ojq0eixcvThkPAAAAAAAAAKDPSloKGT16dCxatGib69ubIgIAAAAAAAAAwNYl3T5m5syZsW7dum2ujxw5Mh566KFdmAgAAAAAAAAAIA9JSyHjxo3rdn3gwIExfvz4XZQGAAAAAAAAACAfSbePAQAAAAAAAACgdyiFAAAAAAAAAABkSCkEAAAAAAAAACBD5dQBAAAAAAAAAKDWFUXqBOTIpBAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIbKqQMAAAAAAAAAQK0rFUXqCGTIpBAAAAAAAAAAgAwphQAAAAAAAAAAZGiHto+ZN2/eDt/w4x//+NsOAwAAAAAAAABAdexQKWTq1Kk7dLOiKGLz5s07kwcAAAAAAAAAgCrYoVJIR0dHb+cAAAAAAAAAAKCKSqkDAAAAAAAAAABQfTs0KeR/WrduXfz85z+PFStWxMaNG7usnXvuuVUJBgAAAAAAAADA29fjUshTTz0Vxx9/fKxfvz7WrVsXe++9d7z66qux5557xtChQ5VCAAAAAAAAAKCHiiJ1AnLU4+1jzj///JgyZUq89tprMWDAgHj00Ufjd7/7XYwePTq+8pWv9EZGAAAAAAAAAAB6qMelkKeffjq+8IUvRKlUirq6umhra4v9998/5syZExdddFFvZAQAAAAAAAAAoId6XArp169flEr/72lDhw6NFStWREREQ0NDvPjii9VNBwAAAAAAAADA21Lu6RPe//73xxNPPBEHH3xwjB8/Pi655JJ49dVX43vf+168973v7Y2MAAAAAAAAAAD0UI8nhVx99dXR1NQUERFf/vKXY8iQIXHWWWfF73//+/j2t79d9YAAAAAAAAAAAPRcjyeFHHXUUZ1/Hjp0aNx7771VDQQAAAAAAAAAwM7rcSkEAAAAAAAAAKiuoihSRyBDPS6FHHDAAd2+GJctW7ZTgQAAAAAAAAAA2Hk9LoWcd955XR5v2rQpnnrqqbj33ntj5syZ1coFAAAAAAAAAMBO6HEp5POf//xWz3/jG9+IJ598cqcDAQAAAAAAAACw80rVutGkSZPirrvuqtbtAAAAAAAAAADYCVUrhdx5552x9957V+t2AAAAAAAAAADshB5vH/P+978/iqLofFypVKKlpSV+//vfxze/+c2qhgMAAAAAAAAA4O3pcSnkhBNO6FIKKZVKse+++8ZHPvKROOSQQ6oaDgAAAAAAAACAt6eoVCqV1CGqbUN76gTQvc0d2X3aJVdXKrZ/ET3SvtnrtJrWb/TFqdr22qPH3Va2o21TR+oIWRnQvy51hOzk95MLuTnzn/49dYTsfG3qYakjZKW+7GtTtbX+16bUEbLyRwN8j19tvn+qvv7lqu3IDvQBG9v9rqTa+tX5e7TaBvRLnYBq+tuf/Dp1hJr19U8cmjpCr+nx37x1dXXxyiuvbHF+9erVUVfnlwsAAAAAAAAAALuDHpdCtjVYpK2tLfr377/TgQAAAAAAAAAA2Hk7PJPxhhtuiIiIoijiO9/5Tuy1116da5s3b44FCxbEIYccUv2EAAAAAAAAAAD02A6XQq6//vqI+H+TQm666aYuW8X0798/3vWud8VNN91U/YQAAAAAAAAAAPTYDpdCli9fHhERxxxzTMydOzeGDBnSa6EAAAAAAAAAANg5O1wKectDDz3UGzkAAAAAAAAAAKiiUk+fcNJJJ8W11167xfk5c+bEySefXJVQAAAAAAAAAFBLiqJwJDpy1uNSyIIFC+L444/f4vykSZNiwYIFVQkFAAAAAAAAAMDO6XEp5M0334z+/ftvcb5fv37R2tpalVAAAAAAAAAAAOycHpdCDj/88PjRj360xfk77rgjRo0aVZVQAAAAAAAAAADsnHJPn/B3f/d3ceKJJ8YLL7wQH/3oRyMi4sEHH4zbb7897rzzzqoHBAAAAAAAAACg53pcCpkyZUrcfffdcfXVV8edd94ZAwYMiCOOOCJ+9rOfxd57790bGQEAAAAAAAAA6KEel0IiIiZPnhyTJ0+OiIjW1tb44Q9/GBdccEEsWrQoNm/eXNWAAAAAAAAAAAD03NsqhURELFiwIG6++ea46667Yvjw4XHiiSfGN77xjWpmAwAAAAAAAICaUCpSJyBHPSqFtLS0xK233ho333xztLa2xl/+5V9GW1tb3H333TFq1KjeyggAAAAAAAAAQA+VdvTCKVOmxHve855YsmRJfO1rX4uXX345vv71r/dmNgAAAAAAAAAA3qYdnhTyr//6r3HuuefGWWedFQcffHBvZgIAAAAAAAAAYCft8KSQhx9+ONauXRujR4+OMWPGxI033hivvvpqb2YDAAAAAAAAAOBt2uFSyNFHHx3/8A//ECtXroy/+Zu/iTvuuCOGDx8eHR0d8cADD8TatWt7MycAAAAAAAAAAD2ww6WQtwwcODBOP/30ePjhh+OZZ56JL3zhC3HNNdfE0KFD4+Mf/3hvZAQAAAAAAAAAoId6XAr5Q+95z3tizpw58dJLL8UPf/jDamUCAAAAAAAAAGAnlatxk7q6upg6dWpMnTq1GrcDAAAAAAAAgJpSKlInIEc7NSkEAAAAAAAAAIDdk1IIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkqJw6AAAAAAAAAADUuqIoUkcgQyaFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJChcuoAAAAAAAAAAFDrSkXqBORot54UsmrVqrjiiitSxwAAAAAAAAAA6HN261JIS0tLXH755aljAAAAAAAAAAD0OUm3j1myZEm3688+++wuSgIAAAAAAAAAkJekpZAjjzwyiqKISqWyxdpb54vCxkkAAAAAAAAAAD2VtBSy9957x5w5c+LYY4/d6vrSpUtjypQp3d6jra0t2traupyr1NVHfX191XICAAAAAAAAAPQ1pZRvfPTo0fHyyy/HiBEjtnrst99+W50i8oeam5ujoaGhy3Hdtc276D0AAAAAAAAAANg9JZ0U8tnPfjbWrVu3zfV3vvOdccstt3R7j9mzZ8eMGTO6nKvUmRICAAAAAAAAQN9RFKkTkKOkpZBPfOIT3a4PGTIkpk+f3u019fVbbhWzoX2nowEAAAAAAAAA9GlJt4/ZnhdffDFOP/301DEAAAAAAAAAAPqc3boUsmbNmrjttttSxwAAAAAAAAAA6HOSbh8zb968bteXLVu2i5IAAAAAAAAAAOQlaSlk6tSpURRFVCqVbV5TFMUuTAQAAAAAAAAAkIek28c0NTXF3Llzo6OjY6vH4sWLU8YDAAAAAAAAAOizkpZCRo8eHYsWLdrm+vamiAAAAAAAAAAAsHVJt4+ZOXNmrFu3bpvrI0eOjIceemgXJgIAAAAAAACAXa9UFKkjkKGkpZBx48Z1uz5w4MAYP378LkoDAAAAAAAAAJCPpNvHAAAAAAAAAADQO5RCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZKicOgAAAAAAAAAA1DoTHegNXlcAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAyVUwcAAAAAAAAAgFpXFKkTkCOTQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIUDl1AAAAAAAAAACodaWiSB2BDJkUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIUDl1AAAAAAAAAACodUWROgE5MikEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhsqpA0At2txRSR0hO6WiSB0hO5XwOq2mAf3qUkfIThE+79m9Vfw1ym6ufXNH6gjZufHEw1NHyM63Fi5PHSEr/+t9+6WOkJ0B/X2fX00b231tqra6kp+bqs3v9arLa7T6/CxaXV6j1edX+QC7nkkhAAAAAAAAAAAZUgoBAAAAAAAAAMiQ7WMAAAAAAAAAIDG7VtEbTAoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGSonDoAAAAAAAAAANS6UlGkjkCGTAoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIEPl1AEAAAAAAAAAoNYVReoE5MikEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhsqpAwAAAAAAAABArSsVqROQI5NCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMhQOXUAAAAAAAAAAKh1RRSpI5Ahk0IAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkaLcohbz00kvx5ptvbnF+06ZNsWDBggSJAAAAAAAAAAD6tqSlkJUrV8YHP/jBGDFiRAwePDimTZvWpRyyZs2aOOaYYxImBAAAAAAAAADom8op3/gXv/jFKJVK8dhjj8Xrr78eX/ziF+OYY46J+++/P4YMGRIREZVKJWVEAAAAAAAAAOh1pSJ1AnKUdFLI/Pnz44YbboijjjoqjjvuuHjkkUeiqakpPvrRj8aaNWsiIqIovPIBAAAAAAAAAHoqaSnkjTfe6JwIEhFRX18fc+fOjXe9611xzDHHxCuvvLLde7S1tUVra2uXo62trTdjAwAAAAAAAADs9pKWQg488MBYsmRJl3Plcjl+/OMfx4EHHhgf+9jHtnuP5ubmaGho6HJcd21zb0UGAAAAAAAAAOgTkpZCJk2aFN/+9re3OP9WMeTII4+MSqXS7T1mz54db7zxRpdj5qzZvRUZAAAAAAAAAKBPKKd841/+8pdj/fr1W10rl8tx1113xX/+5392e4/6+vqor6/vcm5De9UiAgAAAAAAAAD0SUknhZTL5Rg0aNA211euXBmXX375LkwEAAAAAAAAAJCHpKWQ7VmzZk3cdtttqWMAAAAAAAAAQK8qFY5UR86Sbh8zb968bteXLVu2i5IAAAAAAAAAAOQlaSlk6tSpURRFVCqVbV5TFJnXcgAAAAAAAAAAekHS7WOamppi7ty50dHRsdVj8eLFKeMBAAAAAAAAAPRZSUsho0ePjkWLFm1zfXtTRAAAAAAAAAAA2Lqk28fMnDkz1q1bt831kSNHxkMPPbQLEwEAAAAAAAAA5CFpKWTcuHHdrg8cODDGjx+/i9IAAAAAAAAAAOQj6fYxAAAAAAAAAAD0jqSTQgAAAAAAAACAiKIoUkcgQyaFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAyVE4dAAAAAAAAAABqXalInYAcmRQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIbKqQMAAAAAAAAAQK0ritQJyJFJIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADJVTBwAAAAAAAACAWlcqitQRyJBJIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkqJw6AAAAAAAAAADUulKROgE5MikEAAAAAAAAACBDJoVAAmU1v6orfEirrs4Htao2RyV1hOx4iVZffT99YXZvPu+rq/ABrbqyv0ar7pT37Zc6Qlb+6tYnUkfIzv3nfih1hKy0d/i5qdraN/uYVlup7Hsodm++za+uUviAAtD3+ZUVAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADJVTBwAAAAAAAACAWlcUqROQI5NCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAA74F3velcURbHFcfbZZ0dExEc+8pEt1j772c92uceKFSti8uTJseeee8bQoUNj5syZ0d7e3it5y71yVwAAAAAAAACAzDzxxBOxefPmzsf/8R//EX/2Z38WJ598cue5M844I6644orOx3vuuWfnnzdv3hyTJ0+OxsbG+OUvfxkrV66MadOmRb9+/eLqq6+uel6lEAAAAAAAAABIrBRF6gjsgH333bfL42uuuSYOOuigGD9+fOe5PffcMxobG7f6/Pvvvz9+9atfxfz582PYsGFx5JFHxpVXXhmzZs2Kyy67LPr371/VvLaPAQAAAAAAAADooY0bN8b3v//9OP3006Mo/rvU84Mf/CD22WefeO973xuzZ8+O9evXd64tXLgwDj/88Bg2bFjnuYkTJ0Zra2ssXbq06hlNCgEAAAAAAAAAalZbW1u0tbV1OVdfXx/19fXdPu/uu++O119/PU477bTOc5/61KdixIgRMXz48FiyZEnMmjUrnn322Zg7d25ERLS0tHQphERE5+OWlpYqvDddKYUAAAAAAAAAADWrubk5Lr/88i7nLr300rjsssu6fd7NN98ckyZNiuHDh3eeO/PMMzv/fPjhh0dTU1Mce+yx8cILL8RBBx1U1dw7QikEAAAAAAAAAKhZs2fPjhkzZnQ5t70pIb/73e9i/vz5nRNAtmXMmDEREfH888/HQQcdFI2NjfH44493uWbVqlUREdHY2NjT6NtVqvodAQAAAAAAAAD6iPr6+hg0aFCXY3ulkFtuuSWGDh0akydP7va6p59+OiIimpqaIiJi7Nix8cwzz8Qrr7zSec0DDzwQgwYNilGjRu3cO7IVJoUAAAAAAAAAAOygjo6OuOWWW2L69OlRLv937eKFF16I22+/PY4//vh4xzveEUuWLInzzz8/PvzhD8f73ve+iIiYMGFCjBo1Kj796U/HnDlzoqWlJS6++OI4++yzt1tEeTuUQgAAAAAAAAAgsaJInYAdNX/+/FixYkWcfvrpXc73798/5s+fH1/72tdi3bp1sf/++8dJJ50UF198cec1dXV1cc8998RZZ50VY8eOjYEDB8b06dPjiiuu6JWsSiEAAAAAAAAAADtowoQJUalUtji///77x89//vPtPn/EiBHx05/+tDeibaG0S94KAAAAAAAAAAC7lFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADJVTBwAAAAAAAACAWlcqUicgRyaFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJChcuoAAAAAAAAAAFDrSkWROgIZMikEAAAAAAAAACBDSiEAAAAAAAAAABlKvn3M6tWrY8mSJXHEEUfE3nvvHa+++mrcfPPN0dbWFieffHIceuihqSMCAAAAAAAAAPQ5SUshjz/+eEyYMCFaW1tj8ODB8cADD8TJJ58c5XI5Ojo64pprromHH344PvCBD6SMCQAAAAAAAADQ5yTdPuZLX/pSnHzyyfHGG2/ERRddFFOnTo1jjz02fvOb38Tzzz8fp5xySlx55ZUpIwIAAAAAAAAA9ElJSyGLFi2KGTNmxB/90R/F5z//+Xj55ZfjjDPO6Fw/55xz4oknnkiYEAAAAAAAAACgb0q6fczGjRtjwIABERHRr1+/2HPPPWOfffbpXN9nn31i9erV3d6jra0t2traupyr1NVHfX199QMDAAAAAAAAQC8oitQJyFHSSSH7779/LFu2rPPxHXfcEU1NTZ2PV65c2aUksjXNzc3R0NDQ5bju2uZeywwAAAAAAAAA0BcknRRyyimnxCuvvNL5ePLkyV3W582bFx/84Ae7vcfs2bNjxowZXc5V6kwJAQAAAAAAAABqW9JSyKWXXtrt+pe+9KWoq6vr9pr6+i23itnQvtPRAAAAAAAAAAD6tKTbx2zP6tWr46yzzkodAwAAAAAAAACgz9mtSyFr1qyJ2267LXUMAAAAAAAAAIA+J+n2MfPmzet2fdmyZbsoCQAAAAAAAABAXpKWQqZOnRpFUUSlUtnmNUVR7MJEAAAAAAAAAAB5SLp9TFNTU8ydOzc6Ojq2eixevDhlPAAAAAAAAADYJUpF4Uh05CxpKWT06NGxaNGiba5vb4oIAAAAAAAAAABbl3T7mJkzZ8a6deu2uT5y5Mh46KGHdmEiAAAAAAAAAIA8JC2FjBs3rtv1gQMHxvjx43dRGgAAAAAAAACAfCTdPgYAAAAAAAAAgN6hFAIAAAAAAAAAkCGlEAAAAAAAAACADJVTBwAAAAAAAACAWlcUqROQI5NCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMhQOXUAAAAAAAAAAKh1JjrQG7yuAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZKqcOAAAAAAAAAAC1riiK1BHIkEkhAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMlVMHAAAAAAAAAIBaV6QOQJZMCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZKicOgDUpCJ1ANi+ovBCraaNmzanjgDbtXrtxtQRstI4eI/UEbLTUamkjpCVki/1Vbdxc0fqCNnpV/ZvWarpvnM/lDpCdmb9y/9JHSErl004OHWE7NSX61JHAAAAElMKAQAAAAAAAIDESv7BLr3AP7kBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGSonDoAAAAAAAAAANS6InUAsmRSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZKqcOAAAAAAAAAAC1rihSJyBHJoUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADJUTh0AAAAAAAAAAGpdURSpI5Ahk0IAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyFA5dQAAAAAAAAAAqHUmOtAbvK4AAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABkqpw6wNQceeGDcd999cfDBB6eOAgAAAAAAAAC9riiK1BHIUNJSyA033LDV8ytWrIhbbrklGhsbIyLi3HPP3ZWxAAAAAAAAAAD6vKSlkPPOOy/222+/KJe7xujo6Ijvfve70a9fvyiKQikEAAAAAAAAAKCHkpZCzjzzzHjsscfi9ttvj0MPPbTzfL9+/eL++++PUaNGJUwHAAAAAAAAANB3lVK+8ZtuuikuueSSmDhxYtx4441v6x5tbW3R2tra5Whra6tyUgAAAAAAAACAviVpKSQi4hOf+EQsXLgwfvKTn8SkSZOipaWlR89vbm6OhoaGLsd11zb3UloAAAAAAAAAgL4h6fYxb9lvv/1i/vz5cc0118T73//+qFQqO/zc2bNnx4wZM7qcq9TVVzsiAAAAAAAAAECfsluUQiIiiqKI2bNnx4QJE+Lhhx+OpqamHXpefX191Nd3LYFsaO+NhAAAAAAAAAAAfUfy7WP+p9GjR8fnP//5GDJkSLz44otx+umnp44EAAAAAAAAAL2qcCQ7crbblUL+0Jo1a+K2225LHQMAAAAAAAAAoM9Jun3MvHnzul1ftmzZLkoCAAAAAAAAAJCXpKWQqVOnRlEUUalUtnlNUeQ+rAUAAAAAAAAAoPqSbh/T1NQUc+fOjY6Ojq0eixcvThkPAAAAAAAAAKDPSloKGT16dCxatGib69ubIgIAAAAAAAAAwNYl3T5m5syZsW7dum2ujxw5Mh566KFdmAgAAAAAAAAAIA9JSyHjxo3rdn3gwIExfvz4XZQGAAAAAAAAANIoiiJ1BDKUdPsYAAAAAAAAAAB6h1IIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkqJw6AAAAAAAAAADUOhMd6A1eVwAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkqJw6AAAAAAAAAADUuqIoUkcgQyaFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAyVE4dAAAAAAAAAABqXZE6AFkyKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADJVTBwAAAAAAAACAWlcUqROQI5NCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAyVUweAWlSyIRh9gJdpde3Rry51hOzUlbxIq22fP6pPHQG65Xuo6uqISuoIsF0DfA9VVR0Vn/fVdtWfvyd1hKwcfuE9qSNk5/98dUrqCNnxLSnUFp/zAOTApBAAAAAAAAAAgAwphQAAAAAAAAAAZMj2MQAAAAAAAACQWCnsW0X1mRQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIbKqQMAAAAAAAAAQK0ritQJyJFJIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADJVTBwAAAAAAAACAWldEkToCGTIpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQoXLqAAAAAAAAAABQ64oidQJyZFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABkqpw4AAAAAAAAAALWuFEXqCGTIpBAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZKqcO8IcqlUr827/9Wzz//PPR1NQUEydOjH79+qWOBQAAAAAAAADQ5yQthRx//PHxwx/+MBoaGmLNmjVx/PHHx+OPPx777LNPrF69Ot797nfHggULYt99900ZEwAAAAAAAACgz0m6fcy9994bbW1tERFx8cUXx9q1a+OFF16IV155JX73u9/FwIED45JLLkkZEQAAAAAAAAB6XVE4Uh05S1oK+UM/+9nPorm5OQ444ICIiPjjP/7juPbaa+O+++5LnAwAAAAAAAAAoO9Jun1MRETx/2s3r732Whx00EFd1kaOHBkvv/xyt89va2vrnDbylkpdfdTX11c3KAAAAAAAAABAH5J8Ushpp50WJ554YmzatCmWL1/eZa2lpSUGDx7c7fObm5ujoaGhy3Hdtc29mBgAAAAAAAAAYPeXdFLI9OnTO/98wgknxPr167us33XXXXHkkUd2e4/Zs2fHjBkzupyr1JkSAgAAAAAAAADUtqSlkFtuuaXb9UsvvTTq6uq6vaa+fsutYja073Q0AAAAAAAAAIA+Lfn2Md1Zs2ZNfO5zn0sdAwAAAAAAAACgz9ntSyG33XZb6hgAAAAAAAAAAH1O0u1j5s2b1+36smXLdlESAAAAAAAAAEinKFInIEdJSyFTp06NoiiiUqls85rCKx8AAAAAAAAAoMeSbh/T1NQUc+fOjY6Ojq0eixcvThkPAAAAAAAAAKDPSloKGT16dCxatGib69ubIgIAAAAAAAAAwNYl3T5m5syZsW7dum2ujxw5Mh566KFdmAgAAAAAAAAAIA9JSyHjxo3rdn3gwIExfvz4XZQGAAAAAAAAACAfSbePAQAAAAAAAACgdySdFAIAAAAAAAAARBRRpI5AhkwKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBD5dQBAAAAAAAAAKDWlYrUCciRSSEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAyVUwcAAAAAAAAAgFpXRJE6AhkyKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADJVTBwAAAAAAAACAWlcUqROQI5NCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZKqcOAAAAAAAAAAC1rogidQQypBQCCWxq70gdITvlOoOPqm3thk2pI2SlKHwjV2171fs2ptrWb2xPHSErgwb0Sx0BurX2v3zOV9tAX5uqbsPmzakjZGWTT/uqq+/nZ9Fq+vX/npI6QnaueuC51BGyc/GfHZw6QlZKfl9SdZVK6gR5qfiAVl2p5PMeYFfzkysAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGSonDoAAAAAAAAAANS6UpE6ATkyKQQAAAAAAAAAYAdcdtllURRFl+OQQw7pXN+wYUOcffbZ8Y53vCP22muvOOmkk2LVqlVd7rFixYqYPHly7LnnnjF06NCYOXNmtLe390pek0IAAAAAAAAAAHbQYYcdFvPnz+98XC7/d/Xi/PPPj3/5l3+JH//4x9HQ0BDnnHNOnHjiifHII49ERMTmzZtj8uTJ0djYGL/85S9j5cqVMW3atOjXr19cffXVVc+qFAIAAAAAAAAAsIPK5XI0NjZucf6NN96Im2++OW6//fb46Ec/GhERt9xySxx66KHx6KOPxtFHHx33339//OpXv4r58+fHsGHD4sgjj4wrr7wyZs2aFZdddln079+/qlltHwMAAAAAAAAA1Ky2trZobW3tcrS1tW3z+ueeey6GDx8eBx54YJx66qmxYsWKiIhYtGhRbNq0KY477rjOaw855JB45zvfGQsXLoyIiIULF8bhhx8ew4YN67xm4sSJ0draGkuXLq36+6YUAgAAAAAAAADUrObm5mhoaOhyNDc3b/XaMWPGxK233hr33ntvfOtb34rly5fHuHHjYu3atdHS0hL9+/ePwYMHd3nOsGHDoqWlJSIiWlpauhRC3lp/a63abB8DAAAAAAAAANSs2bNnx4wZM7qcq6+v3+q1kyZN6vzz+973vhgzZkyMGDEi/umf/ikGDBjQqznfDpNCAAAAAAAAAICaVV9fH4MGDepybKsU8j8NHjw43v3ud8fzzz8fjY2NsXHjxnj99de7XLNq1apobGyMiIjGxsZYtWrVFutvrVWbUggAAAAAAAAAJFb4X7L/7Yw333wzXnjhhWhqaorRo0dHv3794sEHH+xcf/bZZ2PFihUxduzYiIgYO3ZsPPPMM/HKK690XvPAAw/EoEGDYtSoUTuVZWtsHwMAAAAAAAAAsAMuuOCCmDJlSowYMSJefvnluPTSS6Ouri4++clPRkNDQ3zmM5+JGTNmxN577x2DBg2Kv/3bv42xY8fG0UcfHREREyZMiFGjRsWnP/3pmDNnTrS0tMTFF18cZ5999g5PJ+kJpRAAAAAAAAAAgB3w0ksvxSc/+clYvXp17LvvvvGhD30oHn300dh3330jIuL666+PUqkUJ510UrS1tcXEiRPjm9/8Zufz6+rq4p577omzzjorxo4dGwMHDozp06fHFVdc0St5i0qlUumVOye0oT11AujepvaO1BGyU66zG1a1rd2wKXWErBTFzo0eY0t71eu2VpvP++oaNKBf6gjQrTfW+5yvtoG+NlXdhk2bU0fISsn3pFVX38/Pouzevjz/udQRsnPxnx2cOkJWfG2qvvz+i09aGf4ntORKJZ/31baHH0Wz8ovfvJY6Qs0a9+4hqSP0Gj+5AgAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABmyyxQAAAAAAAAAJFYUqROQI5NCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMhQOXUAAAAAAAAAAKh1ReoAZMmkEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhsqpAwAAAAAAAABArSsVReoIZMikEAAAAAAAAACADCmFAAAAAAAAAABkKGkp5KWXXopXX3218/EvfvGLOPXUU2PcuHHxV3/1V7Fw4cKE6QAAAAAAAAAA+q6kpZCTTjopHn300YiI+Od//uf4yEc+Em+++Wb86Z/+aaxfvz7Gjx8f99xzT8qIAAAAAAAAAAB9UjnlG1+6dGkcdthhERHR3NwcV199dcyaNatz/cYbb4xLLrkkPvaxj6WKCAAAAAAAAADQJyWdFFIul2Pt2rUREbF8+fKYNGlSl/VJkybFs8/+3/buPNzKst4b+G/BZm8QmZVJAxUMUJEUh3BCkwD1UlFPmqmhmO8xoQQ7ZOaYllvrqDm9qGUOmR6zHFA7EhqgliPESdNw4ogGiKWAIGyG/bx/nCves5NJXeybde/P57qe63I/z9prfbld07PWd9/3rBTRAAAAAAAAAAAqWtJSyODBg+Ouu+6KiIjddtstpk6d2uD4lClTYptttlnvddTV1cXixYsbbHV1dZsqMgAAAAAAAABARUi6fMxll10W+++/f8ydOzf222+/OPfcc+O5556Lfv36xaxZs+Luu++OG264Yb3XUVtbG9/73vca7Dv3/AvjvAsu2oTJAQAAAAAAAKB8SqkDkKVSURRFygCvv/56nHfeefHwww/HkiVLIuJ/lpXZc889Y/z48TFixIj1/n5dXd1HZgYpmtdETU3NpooMn9rKVfWpI2SnqnnSiY+y9MHylakjZKVU8lau3LasSdptzZLHfXm1bdUidQRYr0UfesyXW2uvTWW3fOXq1BGy0sx70rKraeFclM3bDx59NXWE7Jz3xR1TR8iK16byS/uNT34Sf4WWpWbNPO7LraVT0aw8/drC1BGarM/3bp86wiaT/GmiV69ecdddd0VRFLFgwYKor6+PrbbaKlq02LgP0WtqPloAWb5qUyQFAAAAAAAAAKgcm82fM5RKpejSpUt069ZtTSHkrbfeilGjRiVOBgAAAAAAAABQeTabUsjavPfee3HbbbeljgEAAAAAAAAAUHGSLh8zceLE9R5/4403GikJAAAAAAAAAEBekpZCRowYEaVSKYqiWOdlSqVSIyYCAAAAAAAAAMhD0uVjunXrFvfee2/U19evdZsxY0bKeAAAAAAAAADQOEq2ZFvGkpZCBg4cGNOnT1/n8Q3NIgIAAAAAAAAAwNolXT5m/PjxsXTp0nUe7927d0yZMqUREwEAAAAAAAAA5CFpKWT//fdf7/HWrVvH4MGDGykNAAAAAAAAAEA+ki4fAwAAAAAAAADApqEUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGSoKnUAAAAAAAAAAGjqSlFKHYEMmSkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJChqtQBAAAAAAAAAKCpK5VSJyBHZgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGSoKnUAAAAAAAAAAGjqSqkDkCUzhQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQoarUAQAAAAAAAACgySulDkCOzBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZKhVFUaQOUW7LV6VOAAAN5fdqm16plDoBQGWr9+JUds28OJVdfb37aTmV3EfLzpCyufNyX34dv3BB6ghZeX/KxakjAFS8llWpE1BOz81elDpCk7Xn9u1SR9hkPE0AAAAAAAAAQGKl0Dyn/CwfAwAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGqlIHAAAAAAAAAICmrlRKnYAcmSkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJChqtQBAAAAAAAAAKCpK6UOQJbMFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhqpSBwAAAAAAAACAJq+UOgA5MlMIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDVakDAAAAAAAAAEBTV4pS6ghkyEwhAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMJS2FXHHFFfHmm2+mjAAAAAAAAAAAyZVKtlRbzpKWQsaPHx+9evWKL37xi3H33XfHihUrUsYBAAAAAAAAAMhG8uVjfvrTn0br1q3jpJNOiu7du8fYsWPjxRdfTB0LAAAAAAAAAKCiJS+FHHrooXH//ffH22+/Hd/+9rdj0qRJMWDAgNhrr73iJz/5SXzwwQepIwIAAAAAAAAAVJzkpZB/6Ny5c3z729+Ol19+OaZOnRo77bRTjBs3Lrp167be36urq4vFixc32Orq6hopNQAAAAAAAADA5ilpKaRUKq11//777x+33nprzJ07N6666qr1XkdtbW20a9euwfajy2s3RVwAAAAAAAAAgIpRKoqiSHXjzZo1i/nz50fnzp0/8XXU1dV9ZGaQonlN1NTUfNp4AFA26V5t87WObikAG6nei1PZNfPiVHb19e6n5bSuP87hkzOkbO683Jdfxy9ckDpCVt6fcnHqCAAVr2VV6gSU08w5H6SO0GR9rkeb1BE2maRPE/X19Z/6OmpqPloAWb7qU18tAAAAAAAAAEBFS7p8zIa89dZbMWrUqNQxAAAAAAAAAGCTKtmSbTnbrEsh7733Xtx2222pYwAAAAAAAAAAVJyky8dMnDhxvcffeOONRkoCAAAAAAAAAJCXpKWQESNGRKlUiqIo1nmZUin3yVoAAAAAAAAAAMov6fIx3bp1i3vvvTfq6+vXus2YMSNlPAAAAAAAAACAipW0FDJw4MCYPn36Oo9vaBYRAAAAAAAAAADWLunyMePHj4+lS5eu83jv3r1jypQpjZgIAAAAAAAAACAPSUsh+++//3qPt27dOgYPHtxIaQAAAAAAAAAgkVLqAOQo6fIxAAAAAAAAAABsGkohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMVaUOAAAAAAAAAABNXSlKqSOQITOFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAyVJU6AAAAAAAAAAA0daVS6gTkyEwhAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGSoKnUAAAAAAAAAAGjqSqkDkCUzhQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMlSVOgAAAAAAAAAANHml1AHIkZlCAAAAAAAAAAAypBQCAAAAAAAAAJChUlEUReoQ5bZ8VeoEAAAAAADA+nTYc0zqCNl5/7nrUkcAGlnLqtQJKKcX/7okdYQma5dttkwdYZMxUwgAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMVaUOAAAAAAAAAABNXSlKqSOQITOFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAyVJU6AAAAAAAAAAA0daVS6gTkyEwhAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMVaUOAAAAAAAAAABNXSl1ALJkphAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMlSVOgAAAAAAAAAANHml1AHIkZlCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZqkodAAAAAAAAAACaulKUUkcgQ2YKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkKHkpZCHHnooLrjggvj9738fERG/+93v4tBDD43hw4fHTTfdlDgdAAAAAAAAAEBlSloKufHGG+Ooo46K3/zmN3HooYfGHXfcESNGjIhtttkmtttuuxg7dmxcffXVKSMCAAAAAAAAAFSkqpQ3fs0118T//b//N0477bSYMmVKHHrooXHFFVfEGWecERERn//85+OHP/xhnHnmmSljAgAAAAAAAABUnKQzhcyePTuGDRsWEREHHXRQrF69Og444IA1xw888MB48803U8UDAAAAAAAAgEZRKtlSbTlLWgrp1KnTmtLH3LlzY9WqVTFnzpw1x998883o2LHjeq+jrq4uFi9e3GCrq6vbpLkBAAAAAAAAADZ3SUshRx55ZJx66qnxgx/8II466qj46le/Gt/61rfikUceiUmTJsU3vvGNGDp06Hqvo7a2Ntq1a9dg+9HltY30LwAAAAAAAAAA2DyViqIoUt340qVLY9y4cfHUU0/FPvvsE9dee21cc801ce6558bKlStj8ODBcffdd0fnzp3XeR11dXUfmRmkaF4TNTU1mzo+AAAAAADwCXXYc0zqCNl5/7nrUkcAGlnLqtQJKKdZ8z9MHaHJ6tN1i9QRNpmkpZB1Wb58eaxcuTLatGnzyX5/VZkDAQAAAAAAZaUUUn5KIdD0KIXkRSkknZxLIUmXj1mXli1bRps2beKtt96KUaNGpY4DAAAAAAAAAFBxNstSyD+89957cdttt6WOAQAAAAAAAABQcZJOKDRx4sT1Hn/jjTcaKQkAAAAAAAAApFNKHYAsJS2FjBgxIkqlUhRFsc7LlEru+gAAAAAAAAAAH1fS5WO6desW9957b9TX1691mzFjRsp4AAAAAAAAAAAVK2kpZODAgTF9+vR1Ht/QLCIAAAAAAAAAAKxd0uVjxo8fH0uXLl3n8d69e8eUKVMaMREAAAAAAAAAQB6SlkL233//9R5v3bp1DB48uJHSAAAAAAAAAADkI+nyMQAAAAAAAAAAbBpKIQAAAAAAAAAAGUq6fAwAAAAAAAAAEBGl1AHIkZlCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZqkodAAAAAAAAAACaulKUUkcgQ2YKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkqCp1AAAAAAAAAABo6kql1AnIkZlCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMhQVeoAAAAAAAAAANDUlVIHIEtmCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZKgqdQAAAAAAAAAAaPJKqQOQo1JRFEXqEOW2fFXqBACVL79Xh7RK3sgBAAAAsIl1+Py41BGy8v7TV6WOABvU0hQAWXn93WWpIzRZvbZulTrCJmP5GAAAAAAAAACAjVBbWxt77rlntGnTJjp37hwjRoyIWbNmNbjMgQceGKVSqcF2+umnN7jMnDlz4rDDDostttgiOnfuHOPHj49Vq8o/A4buGAAAAAAAAADARpg2bVqMHj069txzz1i1alV897vfjaFDh8ZLL70UrVu3XnO50047LS6++OI1P2+xxRZr/nv16tVx2GGHRdeuXeMPf/hDzJs3L7761a9GixYt4tJLLy1rXqUQAAAAAAAAAICN8MgjjzT4+dZbb43OnTvH9OnT44ADDlizf4sttoiuXbuu9Tp++9vfxksvvRSPPvpodOnSJT73uc/FJZdcEmeffXZcdNFFUV1dXba8lo8BAAAAAAAAAJqsurq6WLx4cYOtrq5uo3530aJFERHRsWPHBvt/8YtfxFZbbRW77LJLnHPOOfHhhx+uOfbUU09F//79o0uXLmv2DRs2LBYvXhx//vOfy/Av+v+UQgAAAAAAAACAJqu2tjbatWvXYKutrd3g79XX18fYsWNj3333jV122WXN/q985Stxxx13xJQpU+Kcc86Jn//853HiiSeuOT5//vwGhZCIWPPz/Pnzy/Sv+h+WjwEAAAAAAAAAmqxzzjknzjrrrAb7ampqNvh7o0ePjhdffDGefPLJBvv/z//5P2v+u3///tGtW7c4+OCD4/XXX49evXqVJ/RGUgoBAAAAAAAAgMRKUUodocmqqanZqBLI/zZmzJh46KGH4vHHH49tt912vZfde++9IyLitddei169ekXXrl3j2WefbXCZd955JyIiunbt+rFybIjlYwAAAAAAAAAANkJRFDFmzJi477774ne/+11sv/32G/ydmTNnRkREt27dIiJi0KBB8cILL8SCBQvWXGby5MnRtm3b2Gmnncqa10whAAAAAAAAAAAbYfTo0XHnnXfGAw88EG3atIn58+dHRES7du2iVatW8frrr8edd94Zhx56aHTq1Cn+9Kc/xbhx4+KAAw6IXXfdNSIihg4dGjvttFOcdNJJ8cMf/jDmz58f5513XowePfpjz1iyIaWiKIqyXuNmYPmq1AkAKl9+rw5plcz4BgAAAMAm1uHz41JHyMr7T1+VOgJsUEtTAGTljXeXp47QZO2wdcuNvmxpHV/63HLLLXHyySfHW2+9FSeeeGK8+OKLsXTp0vjMZz4TRx11VJx33nnRtm3bNZd/88034+tf/3pMnTo1WrduHSNHjozLLrssqqrK+8BWCgFgrfJ7dUhLKQQAAACATU0ppLyUQqgESiF5UQpJ5+OUQipNs9QBAAAAAAAAAAAoP6UQAAAAAAAAAIAMmVAIAAAAAAAAABKzFD2bgplCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMhQVeoAAAAAAAAAANDUlVIHIEtmCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZKgqdQAAAAAAAAAAaPJKqQOQIzOFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJChqtQBAAAAAAAAAKCpK0UpdQQylLwUsmzZsrjrrrviySefjHnz5kWzZs1ihx12iBEjRsTBBx+cOh4AAAAAAAAAQEVKunzMa6+9Fv369YtzzjknHn300Zg0aVKUSqV47rnnYtiwYXHsscfGqlWrUkYEAAAAAAAAAKhISUsh3/zmN2P48OExf/78mDNnTtTW1kZ9fX08/fTT8fLLL8dzzz0X3//+91NGBAAAAAAAAACoSKWiKIpUN966deuYOXNm7LjjjhERsWLFithyyy1j3rx50alTp3jggQdi7NixMXv27I91vctNLgLwqaV7dchTyTKAAAAAAGxiHT4/LnWErLz/9FWpI8AGtaxKnYByevPvdakjNFk9O9WkjrDJJH2aaN++fXzwwQdrfv7www9j1apVUV1dHRERu+66a8ybN2+911FXVxd1dQ0fHEXzmqipyfd/GgAAAAAAAADAhiRdPuaLX/xinHXWWfGXv/wlZs+eHaeffnp87nOfizZt2kRExJw5c6Jz587rvY7a2tpo165dg+1Hl9c2RnwAAAAAAAAAgM1W0uVjFixYEEceeWQ888wzUSqV4jOf+Uzcd999sdtuu0VExK9+9auYN29efOMb31jndZgpBGDTsHxMeVk+BgAAAIBNzfIx5WX5GCqB5WPyMuc9y8ek0qNjvv2CpKWQf3j11Vejrq4u+vbtG1VVn/6Za/mqMoQCaOLSvzrkRSkEAAAAgE1NKaS8lEKoBEoheVEKSSfnUkjS5WP+Yccdd4xddtnlI4WQt956K0aNGpUoFQAAAAAAAABA5dosSiHr8t5778Vtt92WOgYAAAAAAAAAQMVJOqHQxIkT13v8jTfeaKQkAAAAAAAAAAB5SVoKGTFiRJRKpSiKYp2XKZVKjZgIAAAAAAAAACAPSZeP6datW9x7771RX1+/1m3GjBkp4wEAAAAAAAAAVKykpZCBAwfG9OnT13l8Q7OIAAAAAAAAAEAOSrZkW86SLh8zfvz4WLp06TqP9+7dO6ZMmdKIiQAAAAAAAAAA8pC0FLL//vuv93jr1q1j8ODBjZQGAAAAAAAAACAfSZePAQAAAAAAAABg01AKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkKGq1AEAAAAAAAAAoKkrlVInIEdmCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZKgqdQAAAAAAAAAAoJQ6ABkyUwgAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGapKHQAAAAAAAAAAmrpSKXUCcmSmEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhqpSBwAAAAAAAACApq6UOgBZMlMIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkqFQURZE6RLktX5U6AaxffX12D7vkmjUrpY6QnbqV9akjZKW6Sg+z3Eoe9gBsZlat9j6/3LzNLy/nTeWX36dqaXmPX37uo+XnfgpNS4djbkwdITvv//pfU0fITsuq1Akop7kLV6SO0GR1b1+dOsIm4xsqAAAAAAAAAIAM6Y4BAAAAAAAAQGJmJWNTMFMIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDVakDAAAAAAAAAEBTV4pS6ghkyEwhAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGSoKnUAAAAAAAAAAGjySqkDkCMzhQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZUgoBAAAAAAAAAMiQUggAAAAAAAAAQIaUQgAAAAAAAAAAMlSVOgAAAAAAAAAANHWl1AHIkplCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZqkodAAAAAAAAAACaulIpdQJyZKYQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIUFXqABERzz77bDz11FMxf/78iIjo2rVrDBo0KPbaa6/EyQAAAAAAAAAAKlPSUsiCBQvimGOOid///vfRo0eP6NKlS0REvPPOOzFu3LjYd99949e//nV07tw5ZUwAAAAAAAAAgIqTtBRyxhlnxOrVq+Pll1+OPn36NDg2a9asGDVqVIwePTruueeeRAkBAAAAAAAAYNMrRSl1BDKUtBQyadKkePzxxz9SCImI6NOnT1xzzTVx4IEHNn4wAAAAAAAAAIAK1yzljdfU1MTixYvXefyDDz6ImpqaRkwEAAAAAAAAAJCHpKWQ4447LkaOHBn33Xdfg3LI4sWL47777otTTjkljj/++PVeR11dXSxevLjBVldXt6mjAwAAAAAAAABs1pKWQq688so45JBD4stf/nJ06NAhWrVqFa1atYoOHTrEl7/85TjkkEPi3//939d7HbW1tdGuXbsG248ur22kfwEAAAAAAAAAwOapVBRFkTrE4sWLY/r06TF//vyIiOjatWsMHDgw2rZtu8Hfraur+8jMIEXzGsvOsFmrr0/+sMtOs2al1BGyU7eyPnWErFRXJe1hZqnkYQ/AZmbVau/zy83b/PJy3lR+6T9Vy4v3+OXnPlp+7qfQtHQ45sbUEbLz/q//NXWE7LSsSp2Acnr3g1WpIzRZW7fJ98G0WfzL2rZtGwcddNAn+t2amo8WQJZ7rAAAAAAAAAAATVzyP1tetmxZPPnkk/HSSy995Njy5cvj9ttvT5AKAAAAAAAAABpRyZZsy1jSUsgrr7wS/fr1iwMOOCD69+8fgwcPjrlz5645vmjRojjllFMSJgQAAAAAAAAAqExJSyFnn3127LLLLrFgwYKYNWtWtGnTJvbbb7+YM2dOylgAAAAAAAAAABUvaSnkD3/4Q9TW1sZWW20VvXv3jgcffDCGDRsW+++/f7zxxhspowEAAAAAAAAAVLSkpZBly5ZFVVXVmp9LpVJMmDAhDj/88Bg8eHC88sorCdMBAAAAAAAAAFSuqg1fZNPp27dvPP/889GvX78G+6+77rqIiDjiiCNSxAIAAAAAAAAAqHhJZwo56qij4q677lrrseuuuy6OP/74KIqikVMBAAAAAAAAAFS+UpFh62L5qtQJYP3q67N72CXXrFkpdYTs1K2sTx0hK9VVSXuYWSp52AOwmVm12vv8cvM2v7ycN5Vffp+qpeU9fvm5j5af+yk0LR2OuTF1hOy8/+t/TR0hOy2TrgtBub27xBfdqWy9Zb4Ppnz/ZQAAAAAAAABQIfRP2RT82TIAAAAAAAAAQIaUQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENVqQMAAAAAAAAAQFNXKqVOQI7MFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhqpSBwAAAAAAAACApq4UpdQRyJCZQgAAAAAAAAAAMqQUAgAAAAAAAACQIaUQAAAAAAAAAIAMKYUAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGapKHQAAAAAAAAAAmrpSKXUCcmSmEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAyViqIoUocot+WrUicAGlt+z2TpFWFQy6lZqZQ6QnbqPfDLzv0UAAAAKpuPS9jcdfzCBakjZGfZExenjkAZvf/h6tQRmqwOWzRPHWGTMVMIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADFWlDgAAAAAAAAAATV2plDoBOTJTCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ1WpAwAAAAAAAABAU1eKUuoIZMhMIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkqCp1AAAAAAAAAABo6kql1AnIkZlCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ0ohAAAAAAAAAAAZqkodAAAAAAAAAACaulLqAGTJTCEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZKgqdQAAAAAAAAAAaPJKqQOQIzOFAAAAAAAAAABkaLMuhbz//vtx++23p44BAAAAAAAAAFBxNutSyJw5c+KUU05JHQMAAAAAAAAAoOJUpbzxxYsXr/f4Bx980EhJAAAAAAAAAADykrQU0r59+yiVSus8XhTFeo8DAAAAAAAAALB2SUshbdq0iXPPPTf23nvvtR5/9dVX41//9V8bORUAAAAAAAAAQOVLWgrZfffdIyJi8ODBaz3evn37KIpivddRV1cXdXV1DfYVzWuipqamPCEBAAAAAAAAYBMrhVU0KL9mKW/8K1/5SrRs2XKdx7t27RoXXnjheq+jtrY22rVr12D70eW15Y4KAAAAAAAAAFBRSsWGpuLYzJkpBIiIqOxnss1TEQa1nJqVtHvLrd4Dv+zcTwEAAKCy+biEzV3HL1yQOkJ2lj1xceoIlNGSOk/kqWxZk+/n40mXjymHmpqPFkCWr0oUBgAAAAAAAABgM5F0+ZiIiGXLlsWTTz4ZL7300keOLV++PG6//fYEqQAAAAAAAAAAKlvSUsgrr7wS/fr1iwMOOCD69+8fgwcPjnnz5q05vmjRojjllFMSJgQAAAAAAAAAqExJSyFnn3127LLLLrFgwYKYNWtWtGnTJvbdd9+YM2dOylgAAAAAAAAAABUvaSnkD3/4Q9TW1sZWW20VvXv3jgcffDCGDRsW+++/f7zxxhspowEAAAAAAAAAVLSkpZBly5ZFVVXVmp9LpVJMmDAhDj/88Bg8eHC88sorCdMBAAAAAAAAQOMolWyptpxVbfgim07fvn3j+eefj379+jXYf91110VExBFHHJEiFgAAAAAAAABAxUs6U8hRRx0Vd91111qPXXfddXH88cdHURSNnAoAAAAAAAAAoPKVigxbF8tXpU4ANLb8nsnSK8KgllOz3OceS6DeA7/s3E8BAACgsvm4hM1dxy9ckDpCdpY9cXHqCJTR0hWeyFNpXZ3v5+NJZwoBAAAAAAAAAGDTUAoBAAAAAAAAAMiQUggAAAAAAAAAQIaqUgcAAAAAAAAAgKaulDoAWTJTCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAwphQAAAAAAAAAAZEgpBAAAAAAAAAAgQ1WpAwAAAAAAAABAk1dKHYAcmSkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAAAAAAAAAypBQCAAAAAAAAAJAhpRAAAAAAAAAAgAxVpQ4AAAAAAAAAAE1dKUqpI5AhM4UAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADJUlToAAAAAAAAAADR1pVLqBOTITCEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAADAx3D99dfHdtttFy1btoy99947nn322dSR1kopBAAAAAAAAABgI919991x1llnxYUXXhgzZsyIAQMGxLBhw2LBggWpo32EUggAAAAAAAAAwEa68sor47TTTotTTjkldtppp7jhhhtiiy22iJ/97Gepo32EUggAAAAAAAAAwEZYsWJFTJ8+PYYMGbJmX7NmzWLIkCHx1FNPJUy2dlWpAwAAAAAAAAAApFJXVxd1dXUN9tXU1ERNTc1HLvu3v/0tVq9eHV26dGmwv0uXLvGXv/xlk+b8JLIshbSskH9VXV1d1NbWxjnnnLPWOxMfj/EsP2NaXpU3nqXUATao8sZ081dZY+o+2hQZ0/IynuVnTMvPmJaX8Sw/Y1pexrP8jGn5GdPyMp7lZ0zLz5iWl/Esv0oa02VPXJw6wgZV0niSn0r5njtHF32/Nr73ve812HfhhRfGRRddlCZQGZWKoihSh2iqFi9eHO3atYtFixZF27ZtU8epeMaz/IxpeRnP8jOm5WdMy8t4lp8xLS/jWX7GtPyMaXkZz/IzpuVlPMvPmJafMS0v41l+xrT8jGl5Gc/yM6blZTyhafo4M4WsWLEitthii/jVr34VI0aMWLN/5MiRsXDhwnjggQc2ddyPpVnqAAAAAAAAAAAAqdTU1ETbtm0bbOuaLai6ujoGDhwYjz322Jp99fX18dhjj8WgQYMaK/JGMwENAAAAAAAAAMBGOuuss2LkyJGxxx57xF577RU//vGPY+nSpXHKKaekjvYRSiEAAAAAAAAAABvpuOOOi3fffTcuuOCCmD9/fnzuc5+LRx55JLp06ZI62kcohSRUU1MTF1544TqnneHjMZ7lZ0zLy3iWnzEtP2NaXsaz/IxpeRnP8jOm5WdMy8t4lp8xLS/jWX7GtPyMaXkZz/IzpuVnTMvLeJafMS0v4wlsrDFjxsSYMWNSx9igUlEUReoQAAAAAAAAAACUV7PUAQAAAAAAAAAAKD+lEAAAAAAAAACADCmFAAAAAAAAAABkSCkkkeuvvz622267aNmyZey9997x7LPPpo5UsR5//PE4/PDDo3v37lEqleL+++9PHami1dbWxp577hlt2rSJzp07x4gRI2LWrFmpY1W0CRMmxK677hpt27aNtm3bxqBBg+I///M/U8fKxmWXXRalUinGjh2bOkrFuuiii6JUKjXY+vbtmzpWxfvrX/8aJ554YnTq1ClatWoV/fv3j+effz51rIq13XbbfeR+WiqVYvTo0amjVaTVq1fH+eefH9tvv320atUqevXqFZdcckkURZE6WsX64IMPYuzYsdGzZ89o1apV7LPPPvHcc8+ljlUxNvSeviiKuOCCC6Jbt27RqlWrGDJkSLz66qtpwlaIDY3pvffeG0OHDo1OnTpFqVSKmTNnJslZSdY3pitXroyzzz47+vfvH61bt47u3bvHV7/61Zg7d266wJu5Dd1HL7rooujbt2+0bt06OnToEEOGDIlnnnkmTdgK8XE+Hzn99NOjVCrFj3/840bLV2k2NJ4nn3zyR96bDh8+PE3YCrEx99GXX345jjjiiGjXrl20bt069txzz5gzZ07jh60QGxrTtZ1DlUql+NGPfpQm8GZuQ+O5ZMmSGDNmTGy77bbRqlWr2GmnneKGG25IE7ZCbGhM33nnnTj55JOje/fuscUWW8Tw4cO9z1+Pjfnsfvny5TF69Ojo1KlTbLnllnHMMcfEO++8kyjx5m9jxvSmm26KAw88MNq2bRulUikWLlyYJizAp6AUksDdd98dZ511Vlx44YUxY8aMGDBgQAwbNiwWLFiQOlpFWrp0aQwYMCCuv/761FGyMG3atBg9enQ8/fTTMXny5Fi5cmUMHTo0li5dmjpaxdp2223jsssui+nTp8fzzz8fX/jCF+LII4+MP//5z6mjVbznnnsubrzxxth1111TR6l4O++8c8ybN2/N9uSTT6aOVNHef//92HfffaNFixbxn//5n/HSSy/FFVdcER06dEgdrWI999xzDe6jkydPjoiIL33pS4mTVabLL788JkyYENddd128/PLLcfnll8cPf/jDuPbaa1NHq1hf+9rXYvLkyfHzn/88XnjhhRg6dGgMGTIk/vrXv6aOVhE29J7+hz/8YVxzzTVxww03xDPPPBOtW7eOYcOGxfLlyxs5aeXY0JguXbo09ttvv7j88ssbOVnlWt+YfvjhhzFjxow4//zzY8aMGXHvvffGrFmz4ogjjkiQtDJs6D762c9+Nq677rp44YUX4sknn4ztttsuhg4dGu+++24jJ60cG/v5yH333RdPP/10dO/evZGSVaaNGc/hw4c3eI961113NWLCyrOhMX399ddjv/32i759+8bUqVPjT3/6U5x//vnRsmXLRk5aOTY0pv/7/jlv3rz42c9+FqVSKY455phGTloZNjSeZ511VjzyyCNxxx13xMsvvxxjx46NMWPGxMSJExs5aeVY35gWRREjRoyIN954Ix544IH44x//GD179owhQ4b4LHodNuaz+3HjxsWDDz4Y99xzT0ybNi3mzp0bRx99dMLUm7eNGdMPP/wwhg8fHt/97ncTJgX4lAoa3V577VWMHj16zc+rV68uunfvXtTW1iZMlYeIKO67777UMbKyYMGCIiKKadOmpY6SlQ4dOhQ//elPU8eoaB988EGx4447FpMnTy4GDx5cnHnmmakjVawLL7ywGDBgQOoYWTn77LOL/fbbL3WMrJ155plFr169ivr6+tRRKtJhhx1WjBo1qsG+o48+ujjhhBMSJapsH374YdG8efPioYcearB/9913L84999xEqSrXP7+nr6+vL7p27Vr86Ec/WrNv4cKFRU1NTXHXXXclSFh51neeNHv27CIiij/+8Y+NmqnSbcy557PPPltERPHmm282TqgKtjHjuWjRoiIiikcffbRxQlW4dY3p22+/XWyzzTbFiy++WPTs2bO46qqrGj1bJVrbeI4cObI48sgjk+TJwdrG9LjjjitOPPHENIEysDHPpUceeWTxhS98oXECVbi1jefOO+9cXHzxxQ32ec+/8f55TGfNmlVERPHiiy+u2bd69epi6623Ln7yk58kSFh5/vmz+4ULFxYtWrQo7rnnnjWXefnll4uIKJ566qlUMSvK+r4PmTJlShERxfvvv9/4wQA+JTOFNLIVK1bE9OnTY8iQIWv2NWvWLIYMGRJPPfVUwmSwdosWLYqIiI4dOyZOkofVq1fHf/zHf8TSpUtj0KBBqeNUtNGjR8dhhx3W4PmUT+7VV1+N7t27xw477BAnnHCC6Xk/pYkTJ8Yee+wRX/rSl6Jz586x2267xU9+8pPUsbKxYsWKuOOOO2LUqFFRKpVSx6lI++yzTzz22GPxyiuvRETEf/3Xf8WTTz4ZhxxySOJklWnVqlWxevXqj/wVa6tWrcy8VAazZ8+O+fPnN3jNb9euXey9997OodisLVq0KEqlUrRv3z51lIq3YsWKuOmmm6Jdu3YxYMCA1HEqVn19fZx00kkxfvz42HnnnVPHycLUqVOjc+fO0adPn/j6178ef//731NHqlj19fXx8MMPx2c/+9kYNmxYdO7cOfbee2/LRJfRO++8Ew8//HCceuqpqaNUrH322ScmTpwYf/3rX6MoipgyZUq88sorMXTo0NTRKlJdXV1ERIPzqGbNmkVNTY3zqI30z5/dT58+PVauXNng3Klv377Ro0cP504byfchQK6UQhrZ3/72t1i9enV06dKlwf4uXbrE/PnzE6WCtauvr4+xY8fGvvvuG7vsskvqOBXthRdeiC233DJqamri9NNPj/vuuy922mmn1LEq1n/8x3/EjBkzora2NnWULOy9995x6623xiOPPBITJkyI2bNnx/777x8ffPBB6mgV64033ogJEybEjjvuGJMmTYqvf/3r8c1vfjNuu+221NGycP/998fChQvj5JNPTh2lYn3nO9+JL3/5y9G3b99o0aJF7LbbbjF27Ng44YQTUkerSG3atIlBgwbFJZdcEnPnzo3Vq1fHHXfcEU899VTMmzcvdbyK94/zJOdQVJLly5fH2WefHccff3y0bds2dZyK9dBDD8WWW24ZLVu2jKuuuiomT54cW221VepYFevyyy+Pqqqq+OY3v5k6ShaGDx8et99+ezz22GNx+eWXx7Rp0+KQQw6J1atXp45WkRYsWBBLliyJyy67LIYPHx6//e1v46ijjoqjjz46pk2bljpeFm677bZo06aNZSQ+hWuvvTZ22mmn2HbbbaO6ujqGDx8e119/fRxwwAGpo1Wkf5QVzjnnnHj//fdjxYoVcfnll8fbb7/tPGojrO2z+/nz50d1dfVHSsnOnTaO70OAnFWlDgBsvkaPHh0vvviiZnYZ9OnTJ2bOnBmLFi2KX/3qVzFy5MiYNm2aYsgn8NZbb8WZZ54ZkydPtq5wmfzvmQF23XXX2HvvvaNnz57xy1/+0l8QfUL19fWxxx57xKWXXhoREbvttlu8+OKLccMNN8TIkSMTp6t8N998cxxyyCHRvXv31FEq1i9/+cv4xS9+EXfeeWfsvPPOMXPmzBg7dmx0797dffQT+vnPfx6jRo2KbbbZJpo3bx677757HH/88TF9+vTU0YBGtnLlyjj22GOjKIqYMGFC6jgV7aCDDoqZM2fG3/72t/jJT34Sxx57bDzzzDPRuXPn1NEqzvTp0+Pqq6+OGTNmmGmtTL785S+v+e/+/fvHrrvuGr169YqpU6fGwQcfnDBZZaqvr4+IiCOPPDLGjRsXERGf+9zn4g9/+EPccMMNMXjw4JTxsvCzn/0sTjjhBJ+lfArXXnttPP300zFx4sTo2bNnPP744zF69Ojo3r27mWw/gRYtWsS9994bp556anTs2DGaN28eQ4YMiUMOOSSKokgdb7Pns/vyM6ZAzswU0si22mqraN68ebzzzjsN9r/zzjvRtWvXRKngo8aMGRMPPfRQTJkyJbbddtvUcSpedXV19O7dOwYOHBi1tbUxYMCAuPrqq1PHqkjTp0+PBQsWxO677x5VVVVRVVUV06ZNi2uuuSaqqqr8VVYZtG/fPj772c/Ga6+9ljpKxerWrdtHSl/9+vWzLE8ZvPnmm/Hoo4/G1772tdRRKtr48ePXzBbSv3//OOmkk2LcuHFmYPoUevXqFdOmTYslS5bEW2+9Fc8++2ysXLkydthhh9TRKt4/zpOcQ1EJ/lEIefPNN2Py5MlmCfmUWrduHb17947Pf/7zcfPNN0dVVVXcfPPNqWNVpCeeeCIWLFgQPXr0WHMe9eabb8a3vvWt2G677VLHy8IOO+wQW221lfOoT2irrbaKqqoq51GbyBNPPBGzZs1yHvUpLFu2LL773e/GlVdeGYcffnjsuuuuMWbMmDjuuOPi3//931PHq1gDBw6MmTNnxsKFC2PevHnxyCOPxN///nfnURuwrs/uu3btGitWrIiFCxc2uLxzpw3zfQiQO6WQRlZdXR0DBw6Mxx57bM2++vr6eOyxx2LQoEEJk8H/KIoixowZE/fdd1/87ne/i+233z51pCzV19evWTeTj+fggw+OF154IWbOnLlm22OPPeKEE06ImTNnRvPmzVNHrHhLliyJ119/Pbp165Y6SsXad999Y9asWQ32vfLKK9GzZ89EifJxyy23ROfOneOwww5LHaWiffjhh9GsWcNTgebNm6/5C00+udatW0e3bt3i/fffj0mTJsWRRx6ZOlLF23777aNr164NzqEWL14czzzzjHMoNiv/KIS8+uqr8eijj0anTp1SR8qO86hP7qSTToo//elPDc6junfvHuPHj49JkyaljpeFt99+O/7+9787j/qEqqurY88993QetYncfPPNMXDgwBgwYEDqKBVr5cqVsXLlSudRm0i7du1i6623jldffTWef/5551HrsKHP7gcOHBgtWrRocO40a9asmDNnjnOndfB9CNBUWD4mgbPOOitGjhwZe+yxR+y1117x4x//OJYuXRqnnHJK6mgVacmSJQ3+CmP27Nkxc+bM6NixY/To0SNhsso0evTouPPOO+OBBx6INm3arFlrsF27dtGqVavE6SrTOeecE4ccckj06NEjPvjgg7jzzjtj6tSpPnj7hNq0afORNR1bt24dnTp1stbjJ/Rv//Zvcfjhh0fPnj1j7ty5ceGFF0bz5s3j+OOPTx2tYo0bNy722WefuPTSS+PYY4+NZ599Nm666aa46aabUkeraPX19XHLLbfEyJEjo6rK29hP4/DDD48f/OAH0aNHj9h5553jj3/8Y1x55ZUxatSo1NEq1qRJk6IoiujTp0+89tprMX78+Ojbt6/3+BtpQ+/px44dG9///vdjxx13jO233z7OP//86N69e4wYMSJd6M3chsb0vffeizlz5sTcuXMjItZ8Cde1a1d/RbgO6xvTbt26xb/8y7/EjBkz4qGHHorVq1evOZfq2LFjVFdXp4q92VrfeHbq1Cl+8IMfxBFHHBHdunWLv/3tb3H99dfHX//61/jSl76UMPXmbUOP+38uKrVo0SK6du0affr0aeyoFWF949mxY8f43ve+F8ccc0x07do1Xn/99fj2t78dvXv3jmHDhiVMvXnb0H10/Pjxcdxxx8UBBxwQBx10UDzyyCPx4IMPxtSpU9OF3sxtzOeiixcvjnvuuSeuuOKKVDErxobGc/DgwTF+/Pho1apV9OzZM6ZNmxa33357XHnllQlTb942NKb33HNPbL311tGjR4944YUX4swzz4wRI0bE0KFDE6befG3os/t27drFqaeeGmeddVZ07Ngx2rZtG9/4xjdi0KBB8fnPfz5x+s3TxnwfMn/+/Jg/f/6a+/ILL7wQbdq0iR49ekTHjh2TZQf4WAqSuPbaa4sePXoU1dXVxV577VU8/fTTqSNVrClTphQR8ZFt5MiRqaNVpLWNZUQUt9xyS+poFWvUqFFFz549i+rq6mLrrbcuDj744OK3v/1t6lhZGTx4cHHmmWemjlGxjjvuuKJbt25FdXV1sc022xTHHXdc8dprr6WOVfEefPDBYpdddilqamqKvn37FjfddFPqSBVv0qRJRUQUs2bNSh2l4i1evLg488wzix49ehQtW7Ysdthhh+Lcc88t6urqUkerWHfffXexww47FNXV1UXXrl2L0aNHFwsXLkwdq2Js6D19fX19cf755xddunQpampqioMPPthzwQZsaExvueWWtR6/8MILk+benK1vTGfPnr3Oc6kpU6akjr5ZWt94Llu2rDjqqKOK7t27F9XV1UW3bt2KI444onj22WdTx96sfdzPR3r27FlcddVVjZqxkqxvPD/88MNi6NChxdZbb120aNGi6NmzZ3HaaacV8+fPTx17s7Yx99Gbb7656N27d9GyZctiwIABxf33358ucAXYmDG98cYbi1atWnlvuhE2NJ7z5s0rTj755KJ79+5Fy5Ytiz59+hRXXHFFUV9fnzb4ZmxDY3r11VcX2267bdGiRYuiR48exXnnnee8dD025rP7ZcuWFWeccUbRoUOHYosttiiOOuqoYt68eelCb+Y2ZkwvvPBC35kAFa9UFEWxsQUSAAAAAAAAAAAqQ7MNXwQAAAAAAAAAgEqjFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyJBSCAAAAAAAAABAhpRCAAAA4GM6+eSTY8SIEWt+PvDAA2Ps2LGNnmPq1KlRKpVi4cKFjX7bAAAAAGz+lEIAAADIxsknnxylUilKpVJUV1dH79694+KLL45Vq1Zt0tu9995745JLLtmoyypyAAAAANBYqlIHAAAAgHIaPnx43HLLLVFXVxe/+c1vYvTo0dGiRYs455xzGlxuxYoVUV1dXZbb7NixY1muBwAAAADKyUwhAAAAZKWmpia6du0aPXv2jK9//esxZMiQmDhx4polX37wgx9E9+7do0+fPhER8dZbb8Wxxx4b7du3j44dO8aRRx4Z//3f/73m+lavXh1nnXVWtG/fPjp16hTf/va3oyiKBrf5z8vH1NXVxdlnnx2f+cxnoqamJnr37h0333xz/Pd//3ccdNBBERHRoUOHKJVKcfLJJ0dERH19fdTW1sb2228frVq1igEDBsSvfvWrBrfzm9/8Jj772c9Gq1at4qCDDmqQEwAAAAD+mVIIAAAAWWvVqlWsWLEiIiIee+yxmDVrVkyePDkeeuihWLlyZQwbNizatGkTTzzxRPz+97+PLbfcMoYPH77md6644oq49dZb42c/+1k8+eST8d5778V999233tv86le/GnfddVdcc8018fLLL8eNN94YW265ZXzmM5+JX//61xERMWvWrJg3b15cffXVERFRW1sbt99+e9xwww3x5z//OcaNGxcnnnhiTJs2LSL+p7xy9NFHx+GHHx4zZ86Mr33ta/Gd73xnUw0bAAAAABmwfAwAAABZKooiHnvssZg0aVJ84xvfiHfffTdat24dP/3pT9csG3PHHXdEfX19/PSnP41SqRQREbfccku0b98+pk6dGkOHDo0f//jHcc4558TRRx8dERE33HBDTJo0aZ23+8orr8Qvf/nLmDx5cgwZMiQiInbYYYc1x/+x1Eznzp2jffv2EfE/M4tceuml8eijj8agQYPW/M6TTz4ZN954YwwePDgmTJgQvXr1iiuuuCIiIvr06RMvvPBCXH755WUcNQAAAAByohQCAABAVh566KHYcsstY+XKlVFfXx9f+cpX4qKLLorRo0dH//791xRCIiL+67/+K1577bVo06ZNg+tYvnx5vP7667Fo0aKYN29e7L333muOVVVVxR577PGRJWT+YebMmdG8efMYPHjwRmd+7bXX4sMPP4wvfvGLDfavWLEidtttt4iIePnllxvkiIg1BRIAAAAAWBulEAAAALJy0EEHxYQJE6K6ujq6d+8eVVX//9S3devWDS67ZMmSGDhwYPziF7/4yPVsvfXWn+j2W7Vq9bF/Z8mSJRER8fDDD8c222zT4FhNTc0nygEAAAAASiEAAABkpXXr1tG7d++Nuuzuu+8ed999d3Tu3Dnatm271st069YtnnnmmTjggAMiImLVqlUxffr02H333dd6+f79+0d9fX1MmzZtzfIx/9s/ZipZvXr1mn077bRT1NTUxJw5c9Y5w0i/fv1i4sSJDfY9/fTTG/5HAgAAANBkNUsdAAAAAFI54YQTYquttoojjzwynnjiiZg9e3ZMnTo1vvnNb8bbb78dERFnnnlmXHbZZXH//ffHX/7ylzjjjDNi4cKF67zO7bbbLkaOHBmjRo2K+++/f811/vKXv4yIiJ49e0apVIqHHnoo3n333ViyZEm0adMm/u3f/i3GjRsXt912W7z++usxY8aMuPbaa+O2226LiIjTTz89Xn311Rg/fnzMmjUr7rzzzrj11ls39RABAAAAUMGUQgAAAGiytthii3j88cejR48ecfTRR0e/fv3i1FNPjeXLl6+ZOeRb3/pWnHTSSTFy5MgYNGhQtGnTJo466qj1Xu+ECRPiX/7lX+KMM86Ivn37xmmnnRZLly6NiIhtttkmvve978V3vvOd6NKlS4wZMyYiIi655JI4//zzo7a2Nvr16xfDhw+Phx9+OLbffvuIiOjRo0f8+te/jvvvvz8GDBgQN9xwQ1x66aWbcHQAAAAAqHSloiiK1CEAAAAAAAAAACgvM4UAAAAAAAAAAGRIKQQAAAAAAAAAIENKIQAAAAAAAAAAGVIKAQAAAAAAAADIkFIIAAAAAAAAAECGlEIAAAAAAAAAADKkFAIAAAAAAAAAkCGlEAAAAAAAAACADCmFAAAAAAAAAABkSCkEAAAAAAAAACBDSiEAAAAAAAAAABlSCgEAAAAAAAAAyND/A9+6SLJT7fovAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["\n","🚀 بدء Fine-Tuning لموديل SUB\n"]},{"name":"stderr","output_type":"stream","text":["WARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n"]},{"name":"stdout","output_type":"stream","text":["✅ [LOADED] تم العثور على نموذج Fine-Tuned لموديل SUB. سيتم تحميله بدون إعادة تدريب.\n","\u001b[1m3390/3390\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m58s\u001b[0m 17ms/step\n","\n","📊 Classification Report:\n"," precision recall f1-score support\n","\n"," 0 0.99 1.00 1.00 1446\n"," 1 0.80 0.85 0.82 1447\n"," 2 1.00 1.00 1.00 1447\n"," 3 0.99 0.99 0.99 1446\n"," 4 0.99 1.00 0.99 1446\n"," 5 0.97 0.99 0.98 1446\n"," 6 1.00 1.00 1.00 1446\n"," 7 0.98 0.99 0.99 1446\n"," 8 0.99 1.00 0.99 1446\n"," 9 0.99 1.00 1.00 1446\n"," 10 1.00 1.00 1.00 1446\n"," 11 0.99 1.00 0.99 1447\n"," 12 0.97 0.98 0.98 1446\n"," 13 0.89 0.94 0.91 1446\n"," 14 0.98 0.99 0.99 1447\n"," 15 0.99 1.00 1.00 1447\n"," 16 0.96 0.98 0.97 1446\n"," 17 0.97 1.00 0.98 1446\n"," 18 0.98 0.99 0.99 1446\n"," 19 0.65 0.67 0.66 1446\n"," 20 0.63 0.67 0.65 1447\n"," 21 0.86 0.87 0.86 1447\n"," 22 1.00 1.00 1.00 1446\n"," 23 0.99 1.00 0.99 1447\n"," 24 1.00 1.00 1.00 1447\n"," 25 0.98 0.99 0.99 1446\n"," 26 0.99 0.99 0.99 1447\n"," 27 0.98 1.00 0.99 1447\n"," 28 1.00 1.00 1.00 1446\n"," 29 0.81 0.85 0.83 1447\n"," 30 0.99 1.00 0.99 1446\n"," 31 0.89 0.93 0.91 1446\n"," 32 0.93 0.90 0.91 1447\n"," 33 0.98 0.99 0.98 1446\n"," 34 1.00 1.00 1.00 1446\n"," 35 0.96 0.99 0.97 1446\n"," 36 0.24 0.09 0.13 1446\n"," 37 0.54 0.54 0.54 1447\n"," 38 0.79 0.78 0.78 1446\n"," 39 0.49 0.57 0.53 1446\n"," 40 0.98 0.99 0.99 1446\n"," 41 1.00 1.00 1.00 1447\n"," 42 0.35 0.29 0.32 1446\n"," 43 0.98 0.99 0.99 1447\n"," 44 0.93 0.95 0.94 1446\n"," 45 1.00 1.00 1.00 1446\n"," 46 0.98 0.99 0.98 1447\n"," 47 0.98 1.00 0.99 1446\n"," 48 0.98 0.99 0.99 1447\n"," 49 0.82 0.88 0.85 1446\n"," 50 0.97 0.99 0.98 1446\n"," 51 0.66 0.60 0.63 1447\n"," 52 0.32 0.27 0.30 1447\n"," 53 1.00 1.00 1.00 1446\n"," 54 0.99 1.00 0.99 1446\n"," 55 0.82 0.81 0.82 1447\n"," 56 0.99 1.00 1.00 1446\n"," 57 0.99 1.00 1.00 1447\n"," 58 0.97 0.98 0.98 1446\n"," 59 0.37 0.30 0.34 1447\n"," 60 1.00 1.00 1.00 1447\n"," 61 0.98 0.99 0.98 1446\n"," 62 1.00 1.00 1.00 1446\n"," 63 1.00 1.00 1.00 1446\n"," 64 0.99 1.00 1.00 1446\n"," 65 1.00 1.00 1.00 1447\n"," 66 0.92 0.96 0.94 1446\n"," 67 0.98 0.99 0.98 1447\n"," 68 1.00 1.00 1.00 1447\n"," 69 0.95 0.97 0.96 1446\n"," 70 0.85 0.91 0.88 1447\n"," 71 0.99 1.00 1.00 1447\n"," 72 0.99 1.00 0.99 1446\n"," 73 0.92 0.95 0.94 1447\n"," 74 0.54 0.59 0.56 1446\n","\n"," accuracy 0.91 108480\n"," macro avg 0.90 0.91 0.90 108480\n","weighted avg 0.90 0.91 0.90 108480\n","\n","\n","🔄 Summary for SUB:\n","✅ Accuracy: 0.9055\n","✅ Precision: 0.8976\n","✅ Recall: 0.9055\n","✅ F1-Score: 0.9008\n","✅ عرض رسم Accuracy & Loss المخزن: /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/sub_finetuned_acc_loss.png\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABEkAAAGrCAYAAAA8UcljAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4FFX3wPHvbM+m90oSemjSpfdeFVAQVIoi2JAi2F8Ldt9XUUF/NgQVRAERLKiggBTp0ntL6AmppJfd+/tj3JWQ0BRIgPN5njxJpt7Z3WRmzpx7rqaUUgghhBBCCCGEEELc4Axl3QAhhBBCCCGEEEKI8kCCJEIIIYQQQgghhBBIkEQIIYQQQgghhBACkCCJEEIIIYQQQgghBCBBEiGEEEIIIYQQQghAgiRCCCGEEEIIIYQQgARJhBBCCCGEEEIIIQAJkgghhBBCCCGEEEIAEiQRQgghhBBCCCGEACRIIoQQopxp27Ytbdu2LetmXHHLli1D0zSWLVtW1k0R4qLNnj2bgIAAsrKyyroppboS/z80TeP55593//7BBx8QHR1Nfn7+Zd2PEEKI8kGCJEIIcR3atm0bt912GzExMdhsNiIjI+nUqROTJ08utpymaTz88MOlbmPu3LklbuKHDh2KpmnuL5PJRIUKFbjjjjvYuXPnRbXtzPXP/AoLC/vHx/tvnH1M5/oaOnRombTvSnv//ffRNI0mTZqUdVOuSatXr6ZNmzb4+PgQEhJCt27dWLVq1UWvHx8fj6Zp/O9//7uCrbw8HA4Hzz33HKNGjcLLy8s9PTY2lp49e5Zhy66uoUOHUlBQwIcffljWTRFCCHEFmMq6AUIIIS6vP/74g3bt2hEdHc19991HWFgYR44cYc2aNbzzzjuMGjXqX23farXyySefAFBUVMSBAwf44IMP+Pnnn9m5cycREREX3EanTp0YPHhwsWkeHh4ALFq06F+171KNHDmSjh07un8/dOgQzz77LCNGjKBVq1bu6ZUrV76s+23dujW5ublYLJbLut1LNXPmTGJjY1m3bh379++nSpUqZdqea8nhw4fp0qULgYGBvPDCCzidThYvXsxvv/1GixYtyrp5l93333/Pnj17GDFiRFk3pUzZbDaGDBnCW2+9xahRo9A0raybJIQQ4jKSIIkQQlxnXn75ZXx9fVm/fj1+fn7F5iUlJf3r7ZtMJu66665i05o2bUrPnj358ccfue+++y64jWrVqpXYhsvVDho0a9aMZs2auX/fsGEDzz77LM2aNTtnGy8Hg8GAzWa7Ytu/GIcOHeKPP/5g3rx5jBw5kpkzZ/Lcc8+VaZvOJTs7G09Pz7JuRjE//vgjmZmZ/PbbbzRu3BiARx999LrthjFt2jRatGhBZGRkWTelzPXv35833niDpUuX0r59+7JujhBCiMtIutsIIcR15sCBA9SqVatEgAQgJCTkiuzT1VXGZPr3sfezawq4anfMnj2bl19+maioKGw2Gx06dGD//v0l1l+7di1du3bF19cXu91OmzZtLqn7Q2mef/75Up8WT58+HU3TiI+Pd09zdT1YuXIlN998MzabjUqVKvH5558XW7e0miRt27aldu3a7Ny5k3bt2mG324mMjOSNN94ose+EhAR69+6Np6cnISEhjB07ll9++eWS6pzMnDkTf39/evTowW233cbMmTNLXS49PZ2xY8cSGxuL1WolKiqKwYMHk5yc7F4mLy+P559/nmrVqmGz2QgPD6dv374cOHDgnMcLf3c3mT59unva0KFD8fLy4sCBA3Tv3h1vb2/uvPNOAFasWMHtt99OdHQ0VquVChUqMHbsWHJzc0u0e/fu3fTv35/g4GA8PDyoXr06Tz/9NABLly5F0zS+/fbbEut9+eWXaJrG6tWrz/v6GQz6ZZRSqth0q9V63vX+iaSkJO69915CQ0Ox2WzUrVuXzz77rMRyX331FQ0bNsTb2xsfHx/q1KnDO++8455fWFjICy+8QNWqVbHZbAQGBtKyZUsWL1583v3n5eXx888/F8u6uhRFRUW8+OKLVK5cGavVSmxsLE899VSJgNKCBQvo0aMHERERWK1WKleuzIsvvojD4SixzY8++ojKlSvj4eHBzTffzIoVK0rdd35+Ps899xxVqlRxf2Yee+yxEvvOz89n7NixBAcH4+3tTe/evTl69Gip22zYsCEBAQEsWLDgH70eQgghyi/JJBFCiOtMTEwMq1evZvv27dSuXfuK7MN1c+xwODh48CCPP/44gYGBF12XIC8vr9gNNoC3t/d5by5fe+01DAYD48ePJyMjgzfeeIM777yTtWvXupdZsmQJ3bp1o2HDhjz33HMYDAamTZtG+/btWbFiBTfffPM/ONpLt3//fm677TbuvfdehgwZwqeffsrQoUNp2LAhtWrVOu+6aWlpdO3alb59+9K/f3/mzp3L448/Tp06dejWrRugZ1W0b9+eEydOMHr0aMLCwvjyyy9ZunTpJbVz5syZ9O3bF4vFwsCBA/m///s/1q9f786KAMjKyqJVq1bs2rWLe+65hwYNGpCcnMx3333H0aNHCQoKwuFw0LNnT3777TfuuOMORo8eTWZmJosXL2b79u3/qKtSUVERXbp0oWXLlvzvf//DbrcDMGfOHHJycnjggQcIDAxk3bp1TJ48maNHjzJnzhz3+lu3bqVVq1aYzWZGjBhBbGwsBw4c4Pvvv+fll1+mbdu2VKhQgZkzZ9KnT58Sr0vlypWLZRiVpm/fvjz++ONMmDCBxYsXX7EsqNzcXNq2bcv+/ft5+OGHqVixInPmzGHo0KGkp6czevRoABYvXszAgQPp0KEDr7/+OgC7du1i1apV7mWef/55Xn31VYYPH87NN9/M6dOn2bBhA3/++SedOnU6Zxs2btxIQUEBDRo0+EfHMHz4cD777DNuu+02Hn30UdauXcurr77Krl27igWqpk+fjpeXF+PGjcPLy4slS5bw7LPPcvr0af773/+6l5s6dSojR46kefPmjBkzhoMHD9K7d28CAgKoUKGCezmn00nv3r1ZuXIlI0aMoEaNGmzbto1Jkyaxd+9e5s+fX6yNM2bMYNCgQTRv3pwlS5bQo0ePcx5TgwYN/nUAVgghRDmkhBBCXFcWLVqkjEajMhqNqlmzZuqxxx5Tv/zyiyooKCixLKAeeuihUrczZ84cBailS5e6pw0ZMkQBJb4iIyPVxo0bL6p9pa0PqGnTpimllGrTpo1q06aNe/mlS5cqQNWoUUPl5+e7p7/zzjsKUNu2bVNKKeV0OlXVqlVVly5dlNPpdC+Xk5OjKlasqDp16nRR7Vu/fn2x9iil1HPPPadKO2VOmzZNAerQoUPuaTExMQpQy5cvd09LSkpSVqtVPfrooyWO68zXt02bNgpQn3/+uXtafn6+CgsLU/369XNPe/PNNxWg5s+f756Wm5ur4uLiSmzzXDZs2KAAtXjxYqWU/vpFRUWp0aNHF1vu2WefVYCaN29eiW24XudPP/1UAeqtt9465zKlHa9SSh06dKjE6+36nD3xxBMltpeTk1Ni2quvvqo0TVMJCQnuaa1bt1be3t7Fpp3ZHqWUevLJJ5XValXp6enuaUlJScpkMqnnnnuuxH7O9scffyh/f39lsVjU7bffroqKii64ztlcx//f//73nMu8/fbbClAzZsxwTysoKFDNmjVTXl5e6vTp00oppUaPHq18fHzO2466deuqHj16XHI7P/nkk2J/b2eKiYk57zY3b96sADV8+PBi08ePH68AtWTJEve00t7fkSNHKrvdrvLy8pRS+rGHhISoevXqFfuf8NFHHymg2P+PL774QhkMBrVixYpi2/zggw8UoFatWlWsjQ8++GCx5QYNGqSAUj8PI0aMUB4eHuc8biGEENcm6W4jhBDXmU6dOrF69Wp69+7Nli1beOONN+jSpQuRkZF89913/3r7NpuNxYsXs3jxYn755Rc+/PBDvLy86N69O3v37r2obdxyyy3ubbi+unTpct51hg0bVuxJvauo6sGDBwHYvHkz+/btY9CgQaSkpJCcnExycjLZ2dl06NCB5cuX43Q6/+FRX5qaNWsWK/oaHBxM9erV3W09Hy8vr2K1UCwWCzfffHOxdX/++WciIyPp3bu3e5rNZruoejAuM2fOJDQ0lHbt2gH6qEMDBgzgq6++Kta14ZtvvqFu3bolsi1c67iWCQoKKrUo8L8pavnAAw+UmOYq8At6Rk1ycjLNmzdHKcWmTZsAOHXqFMuXL+eee+4hOjr6nO0ZPHgw+fn5zJ071z3t66+/pqio6IL1aBISEujevTv33nsv8+fP59tvv+W+++4r1vVm5MiRxbIa/qmFCxcSFhbGwIED3dPMZjOPPPIIWVlZ/P777wD4+fmRnZ193q4zfn5+7Nixg3379l1SG1JSUgDw9/f/R+0HGDduXLHpjz76KKDXdnE58/3NzMwkOTmZVq1akZOTw+7duwG9blBSUhL3339/sf8JQ4cOxdfXt9g+5syZQ40aNYiLi3P/T0hOTnbXEXFlX7na+MgjjxRbf8yYMec8Ln9/f3Jzc8nJybnwiyCEEOKaId1thBDiOtS4cWPmzZtHQUEBW7Zs4dtvv2XSpEncdtttbN68mZo1a170ts6+yTUajSXqEnTv3p2qVavy5JNP8s0331xwm1FRUZdc2+Dsm13XzVpaWhqA+6ZvyJAh59xGRkYGnp6epKamFpseHByM0Wi8pPZcSltBb6+rrecTFRVV4jX39/dn69at7t8TEhKoXLlyieUudmQah8PBV199Rbt27Th06JB7epMmTXjzzTf57bff6Ny5M6DXuOnXr995t3fgwAGqV69+WWrSuJhMJqKiokpMP3z4MM8++yzfffddidczIyMD+DtwdqHuZnFxcTRu3JiZM2dy7733AnrwqGnTphd8LV999VUMBgMvvfQSVquVTz/9lCFDhuDt7e2uAbJ9+/bLMrRyQkICVatWdddAcalRo4Z7PsCDDz7I7Nmz6datG5GRkXTu3Jn+/fvTtWtX9zoTJ07klltuoVq1atSuXZuuXbty9913c9NNN11UW9RZ9Vcutv0Gg6HEaxoWFoafn5+7/QA7duzgmWeeYcmSJZw+fbrY8q7317V81apVi803m81UqlSp2LR9+/axa9cugoODS22bq5i1q41ndw2rXr36OY/L9VrI6DZCCHF9kSCJEEJcxywWC40bN6Zx48ZUq1aNYcOGMWfOHPcIJlartdSCl4D76ejFjMASFRVF9erVWb58+eVr/FnOFcRw3ai4skT++9//Uq9evVKX9fLyYtWqVe7sCZdDhw4RGxt7zn2f6yaotGKSF9PW8/k3616sJUuWcOLECb766iu++uqrEvNnzpzpDpJcLpf6Glqt1hJBAYfDQadOnUhNTeXxxx8nLi4OT09Pjh07xtChQ/9RptDgwYMZPXo0R48eJT8/nzVr1jBlypQLrvfHH39Qr149dx2du+++m8TERCZMmIC3tzd33HEHq1evvqig4eUSEhLC5s2b+eWXX/jpp5/46aefmDZtGoMHD3YXeW3dujUHDhxgwYIFLFq0iE8++YRJkybxwQcfMHz48HNuOzAwENCDkqUFry7GhYIJ6enptGnTBh8fHyZOnEjlypWx2Wz8+eefPP744//o/XU6ndSpU4e33nqr1Pn/JtMnLS0Nu91eLPtFCCHEtU+CJEIIcYNo1KgRACdOnHBPi4mJYc+ePaUu75oeExNzUdsvKioiKyvrX7byn3M9Afbx8TlvlkrdunVLdEdwjc5zLq6slfT09GKjBp35BPxqiomJYefOnSilit14ljbaT2lmzpxJSEgI7733Xol58+bN49tvv+WDDz7Aw8ODypUrs3379vNur3Llyqxdu5bCwkLMZnOpy5z5Gp7pUl7Dbdu2sXfvXj777DMGDx7snn72++nKJrhQuwHuuOMOxo0bx6xZs8jNzcVsNjNgwIALrqdpGkeOHCk2bfz48SQmJvLyyy8zc+ZM6tevzy233HIxh3ZeMTExbN26FafTWSxw5Op+cubfqMVioVevXvTq1Qun08mDDz7Ihx9+yH/+8x93JkdAQADDhg1j2LBhZGVl0bp1a55//vnzBkni4uIAPaBYp06dS26/0+lk37597uwXgMTERNLT093tX7ZsGSkpKcybN4/WrVu7lzsz2+nM4923b1+x4XcLCws5dOgQdevWdU+rXLkyW7ZsoUOHDucN0rja6MqKcjnX/0dXu848HiGEENcHqUkihBDXmaVLl5aadeDqc3/mDUD37t1Zs2YNGzduLLZseno6M2fOpF69ehcMIADs3buXPXv2FLs5udoaNmxI5cqV+d///ldqsObUqVOAfrPesWPHYl8XypZxBWDOzJTJzs4udQjWq6FLly4cO3asWI2ZvLw8Pv744wuum5uby7x58+jZsye33XZbia+HH36YzMxM97b79evn7rJ1NtfnrF+/fiQnJ5eageFaJiYmBqPRWCLb6P3337/o43Zl2Zz5+VZKFRviFvTuU61bt+bTTz/l8OHDpbbHJSgoiG7dujFjxgxmzpxJ165dCQoKumBbOnbsyL59+/jiiy+KTX/ttdeoWbMm8fHx9O7du0Q2zD/RvXt3Tp48yddff+2eVlRUxOTJk/Hy8qJNmzbA33VDXAwGg7sbjWu427OX8fLyokqVKiWGwz1bw4YNsVgsbNiw4R+1H+Dtt98uNt2V3eEaQaa097egoKDEZ6RRo0YEBwfzwQcfUFBQ4J4+ffr0EkG4/v37c+zYsVL/NnJzc8nOzgZwjxz17rvvFlvm7Daf6c8//6R58+bnnC+EEOLaJJkkQghxnRk1ahQ5OTn06dOHuLg4CgoK+OOPP/j666+JjY1l2LBh7mWfeOIJ5syZQ+vWrRk5ciRxcXEcP36c6dOnc+LECaZNm1Zi+0VFRcyYMQPQU9nj4+P54IMPcDqd7m48ZcFgMPDJJ5/QrVs3atWqxbBhw4iMjOTYsWMsXboUHx8fvv/++3+07c6dOxMdHc29997LhAkTMBqNfPrppwQHB5e4Cb8aRo4cyZQpUxg4cCCjR48mPDycmTNnuoM953ti/t1335GZmVms6OuZmjZtSnBwMDNnzmTAgAFMmDCBuXPncvvtt3PPPffQsGFDUlNT+e677/jggw+oW7cugwcP5vPPP2fcuHGsW7eOVq1akZ2dza+//sqDDz7ILbfcgq+vL7fffjuTJ09G0zQqV67MDz/84K4JcTHi4uKoXLky48eP59ixY/j4+PDNN9+UWuvl3XffpWXLljRo0IARI0ZQsWJF4uPj+fHHH9m8eXOxZQcPHsxtt90GwIsvvnhRbXnyySeZP38+Q4YMYfHixTRv3pysrCxmzZrFoUOHaNy4MS+99BLNmjW7qK5Lv/32G3l5eSWm33rrrYwYMYIPP/yQoUOHsnHjRmJjY5k7dy6rVq3i7bffxtvbG9CHsE1NTaV9+/ZERUWRkJDA5MmTqVevnjvjoWbNmrRt25aGDRsSEBDAhg0bmDt3Lg8//PB522ez2ejcuTO//vorEydOLDF///79vPTSSyWm169fnx49ejBkyBA++ugjd5eadevW8dlnn3Hrrbe6u781b94cf39/hgwZwiOPPIKmaXzxxRclAltms5mXXnqJkSNH0r59ewYMGMChQ4eYNm1aiZokd999N7Nnz+b+++9n6dKltGjRAofDwe7du5k9eza//PILjRo1ol69egwcOJD333+fjIwMmjdvzm+//XbO7KyNGzeSmpp6WTKFhBBClDNXf0AdIYQQV9JPP/2k7rnnHhUXF6e8vLyUxWJRVapUUaNGjVKJiYkllj969KgaPny4ioyMVCaTSQUEBKiePXuqNWvWlFi2tCGAfXx8VIcOHdSvv/56Ue3jPMMOK3XuIYDnzJlTbLnSho5VSqlNmzapvn37qsDAQGW1WlVMTIzq37+/+u233y6qfaUNAayUUhs3blRNmjRRFotFRUdHq7feeuucQwCXNhzquY7r7CGAa9WqVWLdIUOGqJiYmGLTDh48qHr06KE8PDxUcHCwevTRR9U333yjgFLfO5devXopm82msrOzz7nM0KFDldlsVsnJyUoppVJSUtTDDz+sIiMjlcViUVFRUWrIkCHu+UrpQ7c+/fTTqmLFispsNquwsDB12223qQMHDriXOXXqlOrXr5+y2+3K399fjRw5Um3fvr3UIYA9PT1LbdvOnTtVx44dlZeXlwoKClL33Xef2rJlS6nv2fbt21WfPn2Un5+fstlsqnr16uo///lPiW3m5+crf39/5evrq3Jzc8/5upwtOTlZPfzww6pChQrKZDKpsLAwNXjwYLV79251+vRpFRcXp3x8fEodNtfF9Tk+19cXX3yhlFIqMTFRDRs2TAUFBSmLxaLq1KlT4njnzp2rOnfurEJCQtyf05EjR6oTJ064l3nppZfUzTffrPz8/JSHh4eKi4tTL7/8cqlDhJ9t3rx5StM0dfjw4WLTXcNel/Z17733KqWUKiwsVC+88IL781GhQgX15JNPuof1dVm1apVq2rSp8vDwUBEREe4hzM/+W1FKqffff19VrFhRWa1W1ahRI7V8+fISf2dK6UMGv/7666pWrVrKarUqf39/1bBhQ/XCCy+ojIwM93K5ubnqkUceUYGBgcrT01P16tVLHTlypNQhgB9//HEVHR1dbEhpIYQQ1wdNqctYCU4IIYQQZebtt99m7NixHD16lMjIyLJuzjWjqKiIiIgIevXqxdSpU8u6OeWWw+GgZs2a9O/f/6Izbq5H+fn5xMbG8sQTTzB69Oiybo4QQojLTGqSCCGEENegs0clysvL48MPP6Rq1aoSILlE8+fP59SpU8WKwYqSjEYjEydO5L333ivTIs1lbdq0aZjNZu6///6ybooQQogrQDJJhBBCiGtQt27diI6Opl69emRkZDBjxgx27NjBzJkzGTRoUFk375qwdu1atm7dyosvvkhQUBB//vlnWTdJCCGEEGVMCrcKIYQQ16AuXbrwySefMHPmTHc3iK+++uqihq8Vuv/7v/9jxowZ1KtXj+nTp5d1c4QQQghRDkgmiRBCCCGEEEIIIQRSk0QIIYQQQgghhBACkCCJEEIIIYQQQgghBCBBEiGEEEIIIYQQQghAgiRCCCGEEEIIIYQQgARJhBBCCCGEEEIIIQAJkgghhBBCCCGEEEIAEiQRQgghhBBCCCGEACRIIoQQQgghhBBCCAFIkEQIIYQQQgghhBACkCCJEEIIIYQQQgghBCBBEiGEEEIIIYQQQghAgiRCCCGEEEIIIYQQgARJhBBCCCGEEEIIIQAJkgghhBBCCCGEEEIAEiQRQgghhBBCCCGEAMBU1g0QQvxNKUV2djYZGRmYTCZ8fHyw2WxomobT6SQnJwcPDw+MRqN7naKiIvLz8/Hw8MBgMJCXl0dRUZF7vslkwmq1AqBpWqn7zMvLw+FwFJtuMpk4evQof/75J3379sVkunz/LgoKCigoKDjnfKvVislkKrW9F5Kamsr3339P37598fb2/jfNPC/X6wa43yMhhBDieqCUoqioiPT0dPLz8/Hy8sLLywuj0Yimae7zn9VqdZ//XOdFg8GA1Wp1X7e4aJqG1Wp1b6M0RUVF7m2fyWKxsGDBAurVq0fVqlUv23E6nU5yc3NRSpU6X9M07Hb7PzrHK6VYunQpNpuN5s2b/9umlrr9/Px8oPj7IIT49yRIIkQ5UVBQwIcffsgXX3yB0+lEKYXVamXChAn06dOHAwcOMGDAAL788kvi4uLc661Zs4ZHH32U7777jpCQEF588UXmzZuHp6cnoJ84O3fuzNixY/Hx8SmxX4fDwQMPPMCGDRuw2Wzu6T169OCmm25i8uTJ9O7d+7IGST799FM++eQTQL8gys7Odl98ATz22GPcfvvt/2jbiYmJvPrqq3To0OGKBkkyMjK47bbbMBqNzJkzp9TXVgghhLjWKKXYvXs3zz77LPv27cNsNuNwOKhduzZTpkzB29ubZ555BofDwVtvveVez+FwMHz4cBo0aMCjjz5KfHw8ffr0wWAwuAMjFSpUYOzYsbRs2bLUm/p169Zx7733uh/8gP4g4sMPP2Ty5Mk88sgjlzVIkpKSwp133klqaioA2dnZ7sAIQFRUFDNmzMDLy+sfbX/OnDkEBgZesSDJk08+iaenJy+++OJl374QNzIJkghRTvzyyy+8/vrrTJkyhWbNmlFUVMSuXbvcWSCFhYUcPHiwRAZGbm4u8fHx7uyRpKQkqlatyqRJk1BKsXfvXh566CG8vb0ZO3ZsqRclx48fp23btowdO9Y9zdvbG5vNRsOGDbFYLMWWV0rhdDoxGAwltqeUcn+VNh+gf//+dOrUCYBNmzZx33338dFHHxEdHQ1AUFDQBV+vc+2nUqVK/PDDD4SGhpbaZk3T3F9nzwPO2eazt7Vy5Ur27t2LUorVq1fTuXPnEtt0bbe0p2ZOp9M9D0rP8jnf/s9s75nTzvWE7nzHL4QQQrjk5eUxatQowsLCmDNnDn5+fiQnJ/Pnn3+6zx2JiYklMlCVUhw7dozY2FhAf/hz9OhRZsyYQbVq1cjNzeWDDz7gvvvuY/ny5YSEhJTYd25uLmlpaUybNo3g4GBAP8+Fh4fz+eefExAQUGKf57vmuNC5z9/fn48//piioiKUUowcOZLIyEiee+45AMxmsztgcj5nXhfB3+f0Z599tlj2r4vrYdi52uxwOM6bceOSmJh43gdC57u+OfM6xWAwuNt+5npKqYtqhxDXGwmSCFFOrF+/ntjYWLp16+YOjERERPyjbXl5eVGpUiU0TaNSpUo0atSIHTt2oJQ654nO39/fvY7Lxo0bWbRoEePHj0cpxZtvvslNN93E1q1bWbduHVFRUYwePZrY2Fg0TaOoqIjFixfzzTffkJ6eTq1atbjvvvuIjIwstt2AgAD3hU5SUhJGo5EKFSpQqVIlfvrpJ3799VdGjBgB6BcSkyZN4uabb6ZVq1Zs3ryZ7777jlatWjFjxgyysrK45ZZb6N+/PyaTiZSUFKZOncqECRMICAhg5syZ7oDETz/9hN1uZ+TIkdx8883uNv/www/MmTMHg8FA//792bFjB23atKFZs2alvlYOh4Mvv/ySfv36UVBQwJdffknHjh3dF0KFhYX8+uuvzJs3j5SUFCIjI7n//vupVasWDoeDZcuWMWfOHJKSkggLC2P48OHUr1+fzz77DF9fX/r06QPoF4uvv/46d9xxB3FxcSxevJidO3cSERHBggULqF+/Pg888ABffvklK1euJDMzk5iYGO69915q1qyJpmkopThw4ACfffYZu3btwmaz0a1bN/r06cOkSZNo3749TZs2dS+7YMECTp48yYgRI4pdMAkhhLgxpKamsmvXLh555BGqVKmCpmkEBwcTFxfnPldcLE3TiIqKonLlygAMHjyYr7/+mlOnTpUaJAEwGo3ExMQQHh7unlZYWMisWbPo1KkTjRo1YuvWrcyfP58WLVrw5ZdfkpWVRe/evenfvz9msxmlFMePH2f69Ols2bIFu91O37596d69e7HMWJPJRExMDKBfb9jtdnx8fKhUqRKZmZm8/vrrjBgxwr3Mzp07mTNnDo899hgmk4lJkyZRt25dNm/ezPr166lQoQKjR492L7948WK8vLzo27cvSUlJTJo0iZ49ezJnzhyOHDlC8+bNGTlyJF5eXu4g0/vvv8+ePXuoVasWrVu3ZvXq1Tz22GPua8OLoZQiKyuLmTNnsmzZMoxGI126dOH222/Hw8ODoqIiFi5cyLx588jIyCAwMJBBgwbRrl07MjMzmTZtGn/88QcOh4Po6OhixyTEjUCugIUoJ6pXr86uXbuYPHkyW7duJS0t7ZIuRM6Uk5PD4cOHOXToEIsWLWL79u20adPmvE8CsrKyOHHiBMePH+f48ePk5+dz8OBB5s2bR1FREU6nk/nz5/P4448D+oXOgQMHGD16NAUFBSil+Pzzz3n66adp3LgxQ4cO5cSJEwwbNoyMjIyLbvumTZv49ddf3ceulOL7779n9+7dACQkJDBp0iQ++eQTunfvTosWLXjsscf4/fffUUqRlpbGrFmzyM7OBmDlypU8++yz7NixgzvvvBO73c69995LUlKSe9tjx46lUaNG9O3bl1mzZvHGG2+wZ8+ec7YxISGBP/74g9tvv53+/fuzfPlyjhw54m7vtGnTGDVqFHFxcQwfPpzq1atz7NgxlFJ89dVX3HfffcTExDB8+HDq1KnD0aNHUUqxbNky1q1b595PYWEhs2fP5tixYwBs3bqVl156iZ9//pnbb7+dJk2akJOTQ1JSEj179uSee+7BZDIxZMgQEhMT3QGSfv36ceTIEe6++2569epFYmIiRqORzMxM3n77bffTwOzsbF5//fV/XA9GCCHEtc/Hx4fIyEimTJnCokWLOHLkiLv2xaVSSnHixAkSEhLYuXMnM2fOpHr16kRGRp5zHafTSWJiovt6JCUlhaKiIubPn8+BAwcAOHz4cLFrgZYtW/L444+zfPlyAE6dOsXdd99NQkICd911F61ateI///kPc+fOvehrq9zcXL766itOnTrlnnb06FHmzJlDYWEhTqeTBQsW8Pjjj2MwGBg8eDD79u1jzJgxFBYWAvD777+zdu1aQO+m+/HHHzNx4kQaNmxI3759+fjjj5k6dao7qDF8+HB27tzJ3XffjZ+fH48++qh7f5fC4XDw9NNP88knn9CrVy86duzI66+/zv/+9z+cTifr1q1jzJgxNGzYkJEjR9K8eXP3cb733nt8+eWX9O3bl2HDhhEVFUV6evol7V+Ia51kkghRTvTp04eDBw/y8ccf8/rrrxMQEEDnzp15/PHHz3sxUZrly5fTp08flFIkJydTu3ZtOnTocN51Zs2axbJlywD9ycr7779f6nKdOnVi/PjxaJpGeHg4t99+O6dOncLb25t3332X0aNH0717dwDi4uLo06cP69ato1OnTu6UT7i4bi3n4uHhwcSJE6lUqRIOh4MVK1awbNky2rdvX+ryVatWZeLEiVitVpo0acLPP//M7t27CQgI4KOPPuLuu+9m9OjRaJpGvXr13K9DaZRSfPfdd0RERFCvXj2cTifBwcH8+OOPPPjgg6Snp/Puu+/y+OOPM3z48GJP3bKzs5k0aRIPP/wwY8aMwWAwFAsGXYyAgABee+21Yl2SxowZw8GDB0lOTqZdu3b88MMPrF27lt69ezN9+nSCg4N57733SqQM33nnndx6663s27ePuLg4/vjjD1JTU+nRo4cESYQQ4gbl5eXFlClTePbZZxk6dCiaplG9enUeeughbr311lK7j5xLYWEhY8aMwWazkZeXR0ZGBi+//PJ5u4ikp6dz1113YTabAWjevDlvvPFGieWsVisvvfQSlSpVwul0smLFCpYuXUqHDh2YP38+eXl5PP300+56axkZGUydOpV+/foVy5T8t11QO3fuzKOPPoqmaYSGhjJgwACSk5OLZcKcady4cXTu3BnQgz2LFi3i4YcfZt26dezdu5dly5ZRoUIFlFIkJSWxcOHCS25TfHw88+bNY8aMGbRp0wbQu1E//vjjjBgxgqNHj+Lr68ttt91GaGhoseK7+/bto1GjRvTs2RO73e6+phPiRiJBEiHKCQ8PD55++mkeeughDh06xJo1a5g0aRJHjx7lq6++Aig1zdXVhebME3yHDh3chVHT0tIYP34848eP57PPPitRX8Tlrrvu4qmnnnL/7u3tTXx8fLFlNE2jVq1a7v35+fm5q6vn5eURHx/P66+/zrvvvutuW3p6OikpKaxdu5aXX34Zh8OBl5cXb7/99j/uThQUFER4eDiapmE0GgkJCeH06dPnXL569eruyu92ux273U52djb5+fkkJCRw//33uy+YIiIiqFChwjm3lZOTw+zZs2nfvj2ZmZkAtG3blq+//pp77rmHU6dOkZKSQvPmzd3viet7amoqiYmJtGjRokS/5YsNklSsWJGAgAD3ZyExMZGRI0cSHx9PSEgIRqORpKQkd6bMli1baNasWanV+ePi4qhfvz6zZ8/m6aef5vPPP6dbt24l6rkIIYS4cWiaRuPGjVmwYAHHjx9n9+7dzJo1ixEjRhAYGEjbtm0vOqhgsViYOnUqNWvWdHc3HTduHJUrV6ZVq1alruPn58ecOXPc5yKz2VxqYCY0NNR9g28wGAgJCSEjIwOlFJs2bWL37t3ccsst7rbm5eURHBxMTk4OEydOZNeuXQDccsst7i6+/0Tt2rXd5/TAwECUUuTm5pa6rN1up3Llyu42hYaGcvr0aXfmZ0REhPuYXO/DTz/9dMltOnLkCGazmRo1arj31aBBA3Jzczl58iStW7fms88+o3v37tSuXZv27dtz66234ufnx5AhQxgzZgxdunShfv369OjRg/bt25/z+lGI65EESYQoJ1wnRFe9jgYNGuDp6clTTz1FamoqVqsVs9nsPpm6bpLT09Ox2WzuJy6gX1D4+PigaRo+Pj706dOHCRMmkJqaSlhYWKn79/DwwN/f/4IXPmdmgJy5rNFoxGq18vbbb9OwYcNi63h5eZGVlcXYsWNRSmE2m/Hz8zvn9s/MOHE6nSXSTM8uMAbnDzKUVlvDVTDNarWSk5Pjfk1dQyqfy8aNG9m5cyfp6enupzuui47Nmze7L27y8/NL1IAxmUwYDIZzbt917Ge25czhnF3bOHObc+bMISUlhZ9//pmgoCCKiopo27at+zW0Wq3nvFgzmUwMGzaMp59+mq5du/LHH3/w9ddfSy0SIYS4wbmG661YsSKxsbG0aNGCLVu2sHz5ctq2bYuPjw/x8fE4HA53jY/CwkKysrLw9fUtti0vLy/3tC5duuDv78+SJUvOGSQxGAz4+fkVK9Ja2rDApWWAuK4FzGYzzZs3Z+rUqcXOaUajES8vLwYOHOjuCnyuByOu7bvOp66HQmdfb1xKZs3ZbT7zZw8PD/Ly8txdYJVS7q7Dl8o1ItGZ10+uwv8mk4nQ0FDmzJnDnj17WL9+PR9//DG//vor06dPp3Xr1vz6669s376dFStW8NBDD/HEE0+4s2OFuBHIlbAQ5cShQ4dISUlx3yQ7HA5OnjyJj48PNpuN0NBQYmNjWbhwobsKe35+PgsXLqRWrVolLkpAP8EWFBSwefNmfH19iw3xe7mFhoZSo0YNfvvtN3x8fAgKCiIoKAiz2YzBYCA4OJj27dvToUMHWrdufc5q8eHh4Rw+fJisrCyUUuzZs8fdB/lys9lsNGnShG+++YbMzEwcDgfLly8/5/6cTidfffUV7dq1Y+nSpSxatIhFixaxbNkyWrVqxezZswkJCaFKlSruPsSu9zI/P5/AwEBq1qzJ7NmzycvLc8/Ly8tzd1/au3evu8bLxo0bSUxMLNaGsy9Q0tLSCAgIIDAwEJPJxIYNG9z1VDRNo23btixevNhd98T1hMsViGnVqhU2m40JEyZQvXp1brrppivyWgshhLg25ObmsmfPHve5CPQuMNnZ2e4RZ5o1a8b27ds5ePCg+9yydetWjh49SuPGjYtt78xRVBISEkhKSjpn0dbLwXXu27lzJ6dOnXJfj7iukwwGA40aNaJDhw506NCBatWqlXrzb7fb8fT0ZM+ePSilKCwsZPHixf+4XtyFNGjQgFOnTrFq1SqcTienT5/mm2++uej9nTnST+XKlbFYLCxZsgSn04nD4eDHH38kJCSEqKgosrKyMBgM1KtXj/vuu48xY8awceNG9+hCvr6+tG7dmieffJJ27dq566oIcaOQTBIhyonvvvuOTz/9lPr16xMaGsqhQ4dYv349Tz75JL6+vmiaxnPPPce4cePYv38/FStWZNeuXRw6dIiPP/64WCbJ6tWrueuuu1BKcerUKQ4dOsTzzz9faiDlQi72qYGHhwevvPIKDz74ILt27aJmzZqkpKSwf/9+pk6dSpUqVS5qX+3bt+ett97irrvuolKlSsTHx+Ph4XHJ7b7QflzfH330UQYPHkz37t0JDQ2loKCA0NDQUp8MnTx5kl9++YWXX365RB/eO+64gxdeeIEnnniCl156iQceeIBdu3ZRrVo1EhIS6Nu3L/3792fixIkMHz6cfv36UatWLY4cOUKnTp0YNmyYu3DsPffcg7+/P0eOHLng0INdu3Zl+vTpDB06lICAAPbu3UtgYKD7adWdd97J77//Tp8+fWjZsqU7OPPuu+9itVrx9vZm4MCBTJgwgenTp0s6rRBC3OAyMzMZMmQIvr6+1KxZE6fTycqVK4mJiaFPnz5omkavXr344YcfGDBgAK1bt6awsJBly5bRv3//YiPDFRUV8dRTT+Hr60tBQQE7d+6kYcOG9OvX74oeQ7du3Vi2bBkDBw6kVatWeHh4sHv3bho0aMDEiRMvaht2u5077riDiRMnsmHDBpKTk0lNTf1X2RTnWzcuLo7777+fBx98kNq1a5OdnY3dbr/gELxLlizhrrvucv9usVh45plneOyxx3jxxRdZsWIFhYWFrFy5ktdffx0fHx8+//xzPvvsM3dXoWXLltGnTx9sNhujRo0iKSmJKlWqkJqaysqVK3nzzTf/8TELcS3S1JUKhwohLklWVhbbt29n165dpKWlERgYSOPGjalevbr7ht3pdBIfH88ff/xBcnIyYWFhtGzZ0j3ErlKKP//8k4MHDwL6ydjLy4uaNWsSFRVVajcK18VPQECAu96Iy9GjR9mzZ4+7//GyZcuoVKkSsbGx7jb//vvvtGnTxj183YkTJ1i5ciXHjh0jICCAevXqUatWrWJD7p0pJSWFVatW0b59e/c2Dh06xK+//orBYKBjx47Ex8cTHR1NpUqVOHbsGDt37qR9+/YYjUZ332NX0dXMzExWrlxJ27Ztsdvt/PnnnxgMBurWrevuwrJkyRLq1KlDeHg4SilSUlLYuHEjAJUqVeKWW27hnXfeoVOnTsXampyczKpVq2jbtm2JgFNGRga///47LVu2dAc4li9fTnJyMtHR0bRt25aAgAD3sITLly8nMTGRyMhI2rZtS1BQEEopduzYwYoVK/D29qZ9+/Zs376d+vXrExISwt69e0lKSqJFixbu98npdLpTYu12O+3btyc+Pt49pLJSipycHFauXMnu3bvx8vKiWbNm7n7KSilmz57NCy+8wPLly4sVhBVCCHHjcTqdHD58mC1btpCQkICmaVStWpVmzZq5u/K6shLXrFnDzp073efZRo0aYbFY0DSNzMxMfv31V3e3UZPJRGRkJLVr18bDw6PUG/+kpCTWrVtHhw4dij0gcdUzqVatGhUqVOD48ePs2LGDdu3aYTKZUEqxefNmAOrXrw9Afn4+f/75J5s3b6aoqIgqVarQuHFj94OEsyml+OOPP7Db7dSrVw9N08jLy2Pp0qXs3buXmjVrukcibN++PQaDgd9//53KlSu7h8c987rI09OTjRs3YrFYuOmmm8jMzGT58uXuaybQs4jj4+PdIxA6HA62b99OQkICsbGx/Pbbb/z0008sXLiw2MMwV3vXrVvH4cOHi003Go3u65QtW7awdu1ajEYjLVq0oEaNGhgMBtLS0li3bh379u1DKcVNN91E06ZNsVgsJCQksH79eo4dO1bsmkG64oobiQRJhBA3tJSUFJYtW0ZcXByFhYV8+umnrFixgsWLF1/3AYPTp09z8OBBRo8eTceOHXnmmWekv7EQQghRBpRSLFu2DLPZTHBwMLt27eLJJ59k1KhRPPDAA3J+FuIqku42QogbmtPpZMGCBfzvf//D4XBQuXJlpk6dSmBgYFk37YpbsWIFzz77LLVr1+b++++XCzAhhBCiDB0/fpypU6eSmZmJ3W5nxIgR7mGYhRBXj2SSCCFuaK5icq4RZ6xWa7ERfK5nrpF8rFbrBfs8CyGEEOLKchXcLyoqwmQyubsuCSGurnIdJHFVaC5tiK8zl3F9P3u588272O0LIYQQQgghhBDixlAuu9sopUhKSuKjjz4iISGBli1bcscdd5QYvtRVpGnGjBlkZWXRvXt3evToUayA02effUZBQQEDBgygVatWGAwGlFIkJCTw2WefcfjwYWJiYnjkkUfw8/M7Z3uEEEIIcXndiA8o5JpCCCGEuPwu5zVFuQySFBYWMm7cOMLCwhg4cCCvv/46BQUF3HfffcUO/tChQ9x777088MADVKhQgVdffRWz2Uy3bt04evQo999/P/fddx++vr6MGzeOTz/9lJtuuonjx48zYsQIevXqRadOnThx4gQOh+Oc7VFK8dlnn7Ft27ZShwUVQgghxMVRSuHp6cljjz2Gp6dnWTenTMybN4+VK1eec9QvIYQQQlyYUgqTycRjjz1GQEDAZdtuuTw7HzhwgB07djBp0iSCg4MpKiri1VdfZfDgwcWySZYvX050dDTDhg3DaDRy9OhRpk+fTpcuXfj555+pWLEiw4YNw2AwsGHDBmbPns1NN93EjBkzqFu3LkOHDkUpRdOmTS8YeVqxYgWVKlWidu3aV/rwhRBCiOtWVlYW7733HmPHji3rppSZ9evXYzKZaNGiRVk3RQghhLhmFRQU8OabbzJq1KjLut1yGSQ5ePAg/v7++Pv7o2kaVapUISUlhfT0dMLCwtzLlZayunv3bvLy8ti2bRt16tRxj+l90003MWfOHAoLC1m1ahX+/v4MGjSIrKwsmjVrxjPPPIPdbndvx+FwkJqa6q5bUlRURMuWLWnbtu0VP34hhBDiepWamsr06dPd5+cbkdFopEGDBtx6661l3RQhhBDimpWTk8Mnn3xy2a8pymWQJDs7G5vN5u7aYrFYcDqdFBQUFFuuRYsWvPXWW0yfPp3o6Gi++OIL8vLyKCoqIjs7253Gq2kadrudnJwcioqKyMjIIC0tjRkzZqCUYvDgwSxYsIA77rjDnVGSnJzMQw89REZGBgB79+7lnnvuuYqvghBCCCGEEEIIIa6mcvkYx8fHh9zcXHedkLy8PAwGA1artdhyVatW5aOPPmLr1q38+OOP9O3bl8DAQCwWCz4+Ppw+fRrQM04yMzPx9vbGZDLh5eVFp06diI6OJiYmhnbt2rFu3bpi2w4ODubzzz9n/vz5fPvtt3To0OHqHLwQQgghhBBCCCHKRLnMJKlcuTKpqakkJSURERHBjh07CAsLw8/PD4fDgcPhwGw2A9C0aVOaNm2K0+nklVdeoUWLFlitVurXr8+3335LUVERRqORDRs2UK9ePcxmMw0aNCAlJcXdXSclJYWgoKBibTAYDO7uN06ns9TiakopHA4HOTk55y38Kso/TdOw2WxYrdYbcrQFIYQQQgghxKVRSuF0Ot09FsSV4bo3N5lMV+VerVwGSWJjY2nZsiVPPfUUHTt25KOPPuKhhx7CYrHw008/MX/+fN5//33y8/P59NNPCQ8PZ+/evSxZsoSpU6diMBjo0qULn3zyCa+99ho+Pj6sWbOGGTNmAHDnnXcyZMgQpkyZglKK1atXM3369EtuZ1FREceOHQOQCvXXOKUUycnJBAcH4+PjI4ESIYQQQgghxHk5nU6OHz9OUVGR+yG+uPwcDgcpKSlERkaW6F1yJZTLO3uTycSrr77KnDlz2LNnjztY4iri2qNHDwwGA2azmeDgYDZt2kRISIi7Ngng/n3u3LlkZmYydepUqlatiqZpVK9enalTp7JgwQI0TWP69OnUrl37km6MlVJkZ2ejaRpRUVE3dAG660VGRgbp6en4+PiUdVOEEEIIIYQQ5VxeXh6FhYVER0e762mKy08pxYkTJzh9+jRBQUFX/IF2uQySaJqGr68v9957b7FpANWqVaNatWqAXtB1wIABDBgwoMRymqZRsWJFJkyYUOq8WrVqUatWrRLzLoWr24/BYJDMg+uAxWLB4XCglJL3UwghhBBCCHFeDocDk8mE0WiU+4crzGq1UlhYeFX2VS6DJC4X80E73zL/dN7Fkpvp64u8l0IIIYQQQghxYyvXQRJxcVxdf3Jzc0vMMxgM+Pn5XTD9Ky8vjxkzZnDbbbfh5+d3yfvPyMjAbDZjt9sl2CCEEEIIIYQQV4lSiry8PLKyskrM0zQNPz+/C9bQdDgczJw5kw4dOhAZGXnR+87MzMRoNOLh4XHd3AdKkOQ68cUXXzB//nyUUhw4cICwsDC8vLwICAhg8uTJJUbvOVtRURHr1q2jR48elxwkSUtLo0ePHtStW5f33ntP+uMJIYQQQgghxFX0888/88EHHwCQkJCAt7c3AQEB2Gw2Jk2aRKVKlc67vtPp5M8//6RRo0aXFCR54YUXqFixIg8++OC/an95IkGS68S9997L4MGDyc/Pp2fPnjz55JO0a9eOnJwcfHx8SExMxGKx4OvrS2ZmJhkZGXh5eeHn5+ceUul///sfnp6e7mGsrFYrp06dwmKxEBAQUGpxWqUUK1aswGAwsH79eo4dO+YunquUIj8/n+TkZEwmE0FBQZhMJpRS5ObmkpKSgs1mIyAgAE3TyMnJwdPTE03TcDqd5ObmYrfbcTgc5OfnYzQaSU5Odm8nLS2N3NxcAgMD3RksSimUUqSlpZGdnU1AQAB2u52cnBzsdrv7GAoKCnA4HNhstusm4imEEEIIIYS4MfXs2ZPOnTvjdDoZOnQoHTt2ZPDgweTm5uLt7U1ycjIAgYGBZGVlkZaWht1ud9+LmUwmXnzxRTw8PFBKkZOTg8ViITU1FYCgoKBSa3GePn2anJycEu1x9TbIzMwkMDDQnWmilOL06dOkp6fj6enp7vXgcDg4deoUhYWFBAQEuO8Ly4IESS4jpRTqCm3b9fEo7YOiaRoWiwWLxYLRaMRgMGCz2TAYDAwbNoxKlSqRkJBAr169qFixIu+88w5KKbKyshgyZAiDBw92/zx58mSsVit33nkntWvXZv/+/Zw6dYoJEybQp0+fEvt3OBzMmTOH++67jxUrVvDLL78wfPhwALZv387TTz9NQUEBAAMGDGDo0KGsXLmSl156CaPRiNPpZPTo0TRo0IDhw4czY8YMfH19OXz4MOPGjWPGjBns3r2bZ555hvDwcJKTk3nhhRdYtGgRK1aswOl04nQ6efXVV6lbty75+fm88cYbLFmyBC8vL3x8fHjzzTcZO3Ysjz/+OPXr18fpdPLaa68RHh7ubqsQQpRL6q+zSlGe/rPZBpoBnA5wFoGmAVrJ7xeiaX9v+8xp4pqklKLIocguKMLXwyzBfyGEKAPqr/NqWd0Pms1mzGYzDocDo9GIxWLBZrMxcuRI/P39OXLkCI0bN6Znz548//zzOBwOMjMz6d69O2PHjsXpdPLAAw8wfvx4qlevzqBBg6hatSr79u3j1KlT3HXXXdx///0XdY5xOp3Mnj2b//u//8Nut6OU4tVXX6VevXr8/PPPvPHGG3h5eVFQUMDYsWNp27YtTz75JFu3bsXDwwMfHx8++OCDMht1VIIkl9Gag6l8tjr+imy7c81Q+tS/+LQn0D+cBw8epF27drz22muYTCays7OZNm0aJpOJ/fv388gjj9C9e3csFgsnTpxwj/G9Z88ehg0bxiuvvMLixYt5++236dGjR4lxqY8cOcKuXbt47bXXCA4O5r333uPuu+8G4IknnqB79+4MGzYMp9NJXl4e6enpPP7444wbN46ePXuSn5/vzho5ceIEDocDgMLCQk6ePInT6SQ/P58tW7bw9NNP07BhQ0wmE2FhYYwcORKn08k333zD22+/zdSpU/n+++9ZtmwZn3/+OaGhoaSlpREYGEiDBg346quvqFu3LqmpqSxcuJBp06bJhaQQonxSCpQDUg7A9nmw9yd9+u2fQUBFSFgFS18BzQhGExjMYDBBlQ7QeLgeQFn5Npw+BkYLGM36l8ULGg4FzyBIOwQHlujrGf6abzBBQCUIr6u3IXE7BFUFs0dZvhriAoqciv8s2E7i6Tz+766G2MzS7VUIIcrCwm0n+H7riSuy7YbR/gxvVfGS1zt27BghISHMmDEDs9lMQUEBH374ITabjZMnT3LvvffSu3dvKlasSGJiIgUFBSiliI+Pp02bNkycOJHt27fz4IMPMnDgQPz9/S+4z6NHj/Laa6/x/vvvU79+fT777DOeeeYZ5syZw/Tp0xkxYgR9+/YlLy8P0LsHrV69mvnz5+Pv709GRgZ2u/2Sj/VykSDJZZSeW8CO4xlXZNt1o3wvetkzb/w9PDzo3r27O4J38uRJXnvtNU6cOOEOoqSmphIWFlZsG/7+/rRv3x6bzUatWrXIyckhPz+/WJBEKcXChQupUqUKHh4e1KhRgxMnTrBr1y6CgoI4cuQIt99+u/sD7uXlxZ9//onD4aBbt27YbDZsNhtAqUVnz1S1alUaNmyIzWbD6XSyZs0apk+fTk5OjrtAUWFhIcuWLaN3795UqFABTdPcx9W3b1+GDBlCSkoKS5YsISYmhipVqlz0ayqEEFeNUnoQZP0ncHAZFOZAcA3wi9YDHgBOpx4IceSAo1D/2VkEYX8Nba8ccHg1nNym/6ycevaJxRNq3qIHSU5shV+e1qefqcHd0OMtcBTAby/oP/vHXNWXQFwak0HDy2riu0Op7EvMos4lXDMIIYS4fE5l5l+x+8FQbyuKi8oXLcZoNNKzZ0+8vLxQSnHq1CleeeUVDhw4gFKK/fv3c/z4cSpWLB6AsdlsdO3aFbvdTpUqVTAajWRlZV1UkGT37t0EBwfTuHFjzGYzPXv25MMPPyQ9PZ0mTZrw0UcfceTIEdq0aUODBg0IDg7G19eXp556inbt2tGuXbsyrXMpQZLLqGNcKC0qn79A6j9lMZWsB3IxTCYTFot+Ue10OnnhhRe4+eabeeWVVygsLKRv377u7I0zGY1G9wfTVcdDnZWanZ+fzzfffENqaioDBw5EKUV6ejrffvutuxvL2Zkarm2cPd3VP83F4XAUa5fVanW3IzExkZdeeok33niDWrVqsWXLFl544QV3PZLSskMqVqxItWrV+Omnn1iwYAF33XXXBSs8CyHEVaGUHsTITQMPf707zYGlcGgFVO0MdQdCVOO/utr8dcFQsRXE/PhXlxn113cnaH/9XzNaod/HUJSvB0mczr+CJQp8K/y1jTYwdCE4C/8KtPz13eevrEWjCZo+qAdURLnXpXYYM9YmsHjnSWpH+kimpBBClIGBTaLp2yDqimzbbDRccoAE9Hu5Mx90v/POO3h6evLxxx9jNpsZNGhQqfeDBoPBfb+kaVqJ+7XzOfue7MyfH374YVq3bs3KlSuZMGEC/fv356GHHuLLL7/kjz/+YOnSpbz33nvMmjWrRODmapG7xMvIbDJg/ofBjMvpXB9eV0HTqlWrEhwczOLFizl27Ng/3s/27dvJyMjghx9+wNdXf2q1adMmHnvsMR588EEiIiKYP38+d999t3tYqooVK6JpGr/++itdu3aloKAAp9OJh4cHBoOBgwcP4unpyZIlS0otAAR61olSiqpVq+Lt7c3SpUspLCxE0zTatGnDJ598Qv/+/QkKCuL06dP4+vpiNBoZNGgQjz32GFarlbZt28oFpBCibCml1xo5vgm2zILDa6D/5xBSA5qMhPp3gl+MHjQ5+/+Vwah/nY898ALz/cHe8Nzztb+674hyT9M0aoX7UC3Em8W7EhnRuhJeNnNZN0sIIW4omqZhNRmxmsp3l8eUlBQaNWpEWFgYmzZtYs+ePf96mwUFBWRnZ7t/r1KlCklJSWzZsoWbbrqJX375hdDQUPz9/Tl+/Dg1a9akbt26mM1m1q5dy913301eXh5dunShVatW9OrVi4SEBAmSiMtD0zSCgoKwWCzun10ZIUajkXvuuYeXXnqJTz75hMDAQGrVqoXJZMJgMBAcHOwu/BocHOzO3DAajQQFBRULKiilWLZsGZ07dyYiIsK9bMOGDQkODubAgQO8+uqrPPnkk8yfPx+Afv36MWzYMF5++WVefvllPv74YxwOBw8//DBdu3Zl8ODBjBo1irCwMKKiotxdZiwWC4GBge79R0VF0bp1a+688078/f2pUKEC4eHhaJpGr1692LJlC3fccQf+/v7Y7Xbef/99/Pz8aNq0KZqm0aVLl0se5lgIIS4bpSAnBfb8pAdHjv2p1wOJbfn3Ml4hQEiZNVFcezwsRjrVCmXKkv1sO5ZB00qB8jBACCFuUK77INBHs3H1LAAYPHgwTzzxBD///DM+Pj7cdNNN7vmBgYGYzWb3faQrk8RgMBS7rzyTn58f33zzDcuXL3cv+8orrzB27FjGjRuHj48Pubm5vPrqq5jNZiZNmsTu3bux2WxkZmby3HPPceLECUaNGoWHhwf5+flUq1aN+vXrX+mX6Zw0dbE5Mzcwp9PJ/fffz6BBg2jbti2gBwlSUlIoLCwkLCys3FyIKKXIzMzEw8MDk8nE6dOn8fLycn+gnU4nSUlJ5ObmEh4eTkFBgXto3MzMTLy8vNA0jczMTLy9vTEYDDgcDrKysty/u/aTnZ2N0WgsNoyua9Qc12g7OTk57uGHQ0NDMZvN7jaeOnUKu91OcHAwJpMJh8PhLtYaGhpKbm4uPj4+OBwOcnJy8Pb2dqd5FRYWcvz4cSwWC0FBQeTl5eHt7V3sGHNycggKCnJXRU5OTqZ379589NFH1K5du8R75ioeGxsbW+pwx0II8Y+5CrFqBkCDtR/Aov+Ab5ReI6TObRAcpxdOLSfnkyslNTWV/v37M2/evDKrWl+WlFI888wz1K1bl/79+1/W7e4+mcntH6ymb4NInu9dC8N1/lkSQoiy5hrK1vVwtzw4+37MdW9oNpvd81NSUsjIyCAsLAyn04nNZsNkMpGZmYndbsdoNBa7j3Q6ne57xbMDJdnZ2e4CrKA/tPf29sZoNJKamkpGRgYhISF4eXkBesmG5ORk8vLyCA4OxsfHxz0scEpKCmazmbCwMHew5sw2n33vnZOTw6233spnn31GeHj4ZXsNJZPkOqNpWrGLTlc3GBeDwVCsSKurcOrZy575s9FoLLEdTdPcH/Szp7uCFQCenp5UqlSp1DaefXFsNBqJjPx7BB9XRNNkMhVb1pVdEhsbW2JZ13bO/CNRSvHLL7/wwQcfUL9+feLi4srNPzEh/pUzY9zymS5/XO9PXjoc/B12fAutx0NobYjrqdf6qNgWPAP5e/heIf4ZTdOoFOxJnShfft97ivScQgI8LRdeUQghxHXl7Puxs++5XFkiQUEla46d6z7SYDCUuB908fT0xNPTs9R5pe3HZrMRFVW8boumafj5+ZWbbH8JkogbQqVKlRg9erR7CGEhrmlnBkeOrIVDy6H+XeD9V3BQbrbLlitrJPWQHhjZ/o0+lK9nEKQc1IMkvlHge5u8V+KyshgNdKsdxos/7GRDfCqdaobKQwEhhBDiEsndorjuaZpGtWrVqFatWlk3RYh/zp2VkKEPCxtQEcJuAs9gWP8xbP4SmtwPNw0AD7/r9+b7XD1Ey8Pxntm2fb/CggchPwtCa0HnlyCuB/hE6PPLQ3vFdUfTNNpUC+Ztm5mF207QoUYoRvmoCSGEEJdEgiRCCFGeuYZ4TT8CO+bD1q8geR80HArd39AzErq9AavegUXPwOYZ0PwRqNETzPYybvwV4CiEZa/C6WP6ULU+EeAdBl5hEBIHVm99OF2nQ6/vcaYrEZhQfw2/e/oY7P0JopvrQZHQmnqtkbieUKEJWDwlMCKuikg/DxrH+rP6QApJp/MI9/Mo6yYJIYQQ1xQJkgghRHmWkwK/vw47v4PcVAiuAZ1f1G/A0cBkhZq3QqV2sG0urP0/+HEc+EVDdNOybv2/pxQU5UPaIQiqBkYTmG1waAUUZOrzlNKnD/waKrWB5L3wyzPg4a8HUXwi9UBKQCU9gAHgLAS0v4bR/Qf1QFztOrEZtnylB0hyUqDVBH0fvhWgx5v/bNtC/AtGg0b3OuH8tiuJlfuTua1hlHS5EUIIIS6BBEmEEKI8UQoKsqAwV+9Kg4LDqyG8LjQYDBVb69kSZ970aJrexabxvXoGSfwKiKinbyt+JZg99N/Pzqwoz5SCwhy94Om6j+HULrh7HoTUhBajoeEwyM/UAxNZiZB9CoL/6lKXnwVZJyFph/5zUZ6+vbjucNs0QMFPT0DKPvAKBe8I8P0rmFKxNdh89YwVRwEYLaUHUpL3wcLxcHS9Pj+mBdQbBBXb6PM1TV9HiKtM0zSaVgokxNvKT9tPcmv9SMzS50YIIYS4aNfQFbM4F6UUycnJWCwWfHx8ig2VlJSU5K44fPaTpKKiIv7v//6PHj16lBiBxrV+ZmYmp0+fJiIiQobFFeJKUk7ITIRd3+v1RQIqQt+PwB4Eg2br343m82claJqeMVH7Nv33wlxY+gokbofafaHpgxBUlXKd3eAKEu1brAdHjm0EewDUuR08AvVlTDbwsoFXCARWLlmnJKIB3LsICrIh7zTkpOqBFA9/fQheZ5F+/DkpkLJfX64wV9/uPT/rQZKEP+DnJ8Hur3fl8QnXgylVOuqvocVTD740uhduuh1CaoDhAu+PEFdJsJeVFlWDWLQjkcOpOVQOLjkanRBCiOuHUgqn04lSqtggFUopHA4HmqZhMBhK3A8qpVi/fj0RERElRpxxOp04HA5MJtMNl5Eod73XienTp/PMM8+gzrhZOH36NP3792fbtm2lruN0Ovnhhx9ITEwsdb5SiokTJ9K6dWvi4+OvRLOFEE4nJO6Exc/B1E7wy1NQlAtRjfSbf03Tu4yYLBd/A679FQQx26Drq1C1E2ydDdN7wpKXIPP4uQuglhVXbQ/Q2/rtSDh9FFqOgXt+gU4v6EGR0riO1/X6GAx6PRbPYD2IUqGxXjQ1pvlf803Q9XW491cYuRLuWwrDfoLbPgW/mL+WMYJ3qF4o9/Bq+PNz+PU5WD0FUHrQ5K5voPNEvYCu8RLeHyGuME2D7rXDySkoYtnupGLXBkIIIa5P8+bN45lnnsHhcLinOZ1OnnjiCb7//vtS11FK8d5777FmzZoS8zZt2sSIESMoKCi4Ym0uryST5DqgaRpdunThrrvuIikpibCwMJRSrF27lqKiImrVqkVycrI7qyQyMvKihsFNSUlhxYoV1KxZkx9//JGHH34YTdNQSlFUVMSxY8fIyckhPDzcPaZ1fn4+R48epbCwkMjISLy9vcnIyMBms2Gz2VBKkZ6ejt1ux2KxkJqait1u5+TJk1gsFsLCwkhOTubUqVP4+PgQERHhbqtSitTUVE6ePImXlxcRERHk5ORgMpncY3M7HA7S0tIICAiQzBdRfrkCApqmB0S+fwRObtdv5js8q2crePj/+5tuzaB30+nzASSshpWT4I/JkHEUbn0fMP61XBne3CsFOcmweyFEN9OzNKp21guv1uh5+YY1Pnt9o0n/stjBM7Dk8jEt9JouRQV6xkheOuSm6V2XQH9trd7/rk1CXCGaplE/2o/oADs/7zjJnU1jsJmNZd0sIYQQV4imadSuXZuJEyfy0EMPUaFCBQCOHj3KL7/8wsiRI3E6neTl5WE0GrFarRfMDsnMzGT37t04nc5i05VSKKXIzc3FbDZjNpvd94iu6ZqmYbPZ3PsoKioiPz8fi8XiXr48kyDJ5Xa+pzWaduGnt+db5jwfpurVqxMVFcWSJUsYOHAgSilmz55Nr169OHToEC+88AIWi4Xk5GQaNWrExIkTL3AYimXLllGhQgVGjhzJG2+8wfDhw/Hw8CAjI4PHHnuMgwcP4u/vj7e3N5MnTyY9PZ2xY8eSmZmJp6cnMTExvPrqqzz55JP06NGDnj17opRizJgxDBkyhBYtWnD33XcTGhpKdnY2rVu3pkGDBrzxxhvYbDaSkpJo3749TzzxBEajkW+//ZZJkyYRGhpKXl4eY8aM4eDBgxw8eJBXXnkFTdNYs2YNb775Jl9++SU2m+38r7UQV5Pr7zonGfb8rBcXbf+MnvHQajzYvCGioV6I9XKeODRNz3Ko2FoPwuz7Vc9M0Yx64dOENXqGxdUcfcX1WmSehG1z9CyNtHhoMwFaP6aP2HPzfWUbvNE00Exg+SuQYg8ou7aIf8WVgnzy5ElycnKIiooqduHm4gqyp6SkYDabiYiIcF9EFhQUkJGR4V7WaDTi7++Ppmnk5OSQnZ3tnme1WvH29i7zC0BfDzPt4kL4cu1h9iVlUTvCp8zbJIQQ171/c693Mc7zf7xKlSpUrlyZxYsXM2zYMAB++eUX4uLi8PT05KGHHuLIkSM4nU569uzJiBEjMBovLYDuKvPw0ksvsXv3biwWCyNHjqR79+5kZWXx4osvsnXrVgwGA82bN+epp55i/fr1vPHGG+Tk5GC1WnnyySdp2rR8Dy4gQZLLbd8ivZDf2Wr0hvCb9NTt9Z/oTybP5BmsFyI0WWD/Yjiy7u95ARWh7qDz7tZisXDbbbcxd+5cbr/9dk6dOsX69esZN24clSpV4tNPP8XpdJKamso999zDnj17qF69+jm3V1RUxJw5c+jTpw9NmjQhJyeHrVu3cvPNN/P555+Tnp7O3Llz8fb2JisrC5vNxqRJk4iIiOCVV17BYrGQnZ2N0WgkMzOzWJpWZmYmhYWFgJ6t0rZtW8aMGYPRaCQ/P5/p06e7L2iHDx/OnXfeic1m46WXXuLtt9+mefPmFBYWopSiYsWKTJ8+nVOnThEcHMysWbNo27YtVqv1wu+VEFeDUnq9kdSDekBg21xIPwzBcdD0AT1gUa2LvuyVvIHRND0gU6PX39P2LoIFD0NkA71bS8U2V6fbSF4GrPsQNs3Uu/6E1Iaek/TMEVdbhbhMnE4n7733HnPnzsVut+Pr68uUKVMICgoqFjTYtWsX48ePx263k5mZia+vL++++y7h4eGsXLmShx56iOjoaDRNIzo6msmTJ2O1Wvn444+ZNm0aYWFhALRu3ZonnniizAMSmqbRtVYYM1YnsHjHSWpH+JRpe4QQ4oaxbS4k7yk+TTPo93MBsXD6uP6ASDmKLxNQCW66Q78O2j4XTp2xDc8gvQ6a0XzO3ZpMJvr378/MmTO56667UEoxb9487r33Xry8vHjwwQcJCwsjNTWVUaNG0ahRIxo3bnxJh6aU4rXXXiMvL49PP/2U3bt38+ijj1K9enX27t3Lzp07mTp1KiaTiZSUFJRSvPnmm/Tq1YtevXqRnp7u7gFQnkmQ5HKLXwUbppacHlRdD5LkZ8L6qZB/uvj84OpQ/y7Aom9j/Sd/z6vYCuoO5HwjJWiaRufOnXn77bc5ePAga9euJTY2lipVqnDkyBH+85//kJiYiNFoZO/evZw8efK8QZL4+Hh27NjB448/TlZWFg0aNOCbb76hYcOG/PHHH9xyyy34+vqiaRq+vr7k5+ezceNGnn/+eex2OwC+vr4l0rPOZjabad++PRaLBaUUhw4d4vnnnyc1NRWDwcChQ4dISkoiPz8fHx8fbr75Zkwmk7sLTmxsLHFxcSxevJj27duzfv16xo8fX+YXp0K4nxIopz6E7/pP9JFWIurpAYlq3fQTHlzdoIBrX0rpQZFW42DDp/D13Xo3nxaj9aDJ5RwJRylA6QVTDWb9/+CmmXqR2Q7P6t1rzh6xR4jLZP/+/Xz66ad89dVXVKhQgYceeojp06czfvz4YstVqVKFr776Ci8vL3Jzcxk8eDBz585l1KhR5OfnExcXxxdffIHBYMBgMGCxWADIzs6md+/ePPHEE4CeZVJezkE1wn2oGurN4l2JjGhdGS+bXPYJIcQVt/cn2PtL8WkGo37dFRCrF5Nf96E+kt6ZKraGm/oDBj3reO/Pf88LqgoNhp43SKJpGu3bt+eNN95g7969FBUVkZiYSNu2bTGbzaxfv57ly5eTm5tLfHw8O3fuvOQgSU5ODqtWrWLKlClERkYSFhZGXFwca9eupWrVqiQmJvLDDz/QvHlzqlevjsFgIDIyksWLFxMcHEz9+vUJDQ29pH2WBTlbXm4tHoGGQ0pOdxUc9A6DYQv1G6czGS1/93VvPkof6tPF7MHFDCUZHh5Oo0aNmD9/PqtWraJ///6YzWbee+89qlSpwuTJkzEajfTr1++8wQulFD/88AO5ubk8/fTTaJpGVlYWp0+fZsKECZhMJncmyJkMBgNFRUUopYpdIBoMBne1ZafTWSyr5MwLTaUU//vf/2jatCnDhg3D6XTSu3dvnE4nRqPRvY2z9zlo0CCmTJlCVlYWtWrVcvfBE6JMKKXXrzi5DSo00f+2vUL0E1/9u/U6F2Z72QcENA28gqH1eKhzG6z5ALbNhiNr4a55elDX9ff2T9vqyqI5tQc2Tte7EnV8HnwjYdDX4FcBzFexm4+44SilWLNmDVWrVqVq1aoYjUZuueUWPvzwQ8aMGYPZ/PfFps1mw2q1ugveGY3GYk+7srOz2bRpE4GBgVSpUqXYfpKTk9m0aRPh4eHExMSU2o6yYLcY6VwrlClL9rPtWAZNKwWUmwCOEEJct7q8Au2eLjndJ0L/HlIThv9Wcr7ZQ+8ODdDlZWj31N/zjGa9x8EFhISE0Lx5c+bPn09RURGtWrUiMDCQWbNmMWfOHJ544gkCAgJ4+eWX/1FBVofDQVFRkfv8aDAYsNvt5Obm0qhRI9577z1++uknJkyYQGxsLO+88w4vvPACCxcu5IcffuDll1/mqaeeomfPnuX6fCRBksvNM+jvp8OlMZr17jP/ZhvnYDAY6N+/Pw899BAeHh506NABgNzcXMLCwrDZbKxbt44dO3acdzu5ubnMnz+fyZMn07FjRwAKCgro168fq1evpmPHjnz11Vd06NCBwMBAUlJSCAsLo23btnz22WfUqVMHu91OWloakZGRREdHs3btWrp27cquXbvYvn37efft7e2N1Wpl6dKlHDhwANBrrhQUFLBw4UK6du1Kbm4uBoOBgIAAmjZtyiuvvMI777zDu+++KwVbRdlQTkg/Aju+hS1f6amUd8/TR6lpMET/MpjKX0BAM4B/RX0UnPp3wsFlEFRND3Cc3KbX4vCJvLR2K6UXXk3crmfW7fpB72IY1xOK8vUaHyE1rtghicvnzJv78nwxcz7Hjh0jLCzMfW5wpRoXFBQUC5IAnDhxgscff5yDBw8SERFB37590TQNT09PLBYLn3/+OXv27KF27dr897//xdPTk6CgIDZt2sTUqVPZvn07/fv3Z8yYMcUKpOfl5fHll19y+rSeRbpu3Trq1q17xY9d0zQ61gjlw98P8vP2EzSpFHARj1yEEEL8Y5qmPxQ/H7NNH33vfC60jXMwGAzcfvvtjBkzBoApU6agaRr79u2jadOmtG7dmtTUVA4dOnRR23M95HY9QPDw8CAqKopVq1ZRvXp1UlJS2LVrF0OHDiUvL4969epx8803k5CQQM+ePTl16hS+vr4MGDCA/v37884777BgwQJ69uz5j47vapEgyXVE0zSaNWtG1apVqVu3LqGhoWiaxr333suECRNYsmQJUVFRtGnTBk9PTzRNo0KFCnh4eBTbTnx8PD4+PjRr1sxd28NisdC/f3/Wrl3LU089RXx8PIMHD8ZmsxETE8Nbb73Fww8/zPPPP88dd9yB1Wqlfv36TJw4kSFDhjBq1Cj69etHxYoVadq0qXv/0dHR7n1omsYDDzzAf/7zH7799ltiY2Np1aoVNpuNwMBA/vvf//LKK6/w8ccfo2kaTzzxhPtYunXrxtdff03Tpk2v2Qt5cY1SCk7t1rvT7PoBclP1JwTtn9b7lsJ5UyPLBU3Tn1yE3aR/gV7U9fsxeqHZJiOh7h3gEXBxwRJnIfzyDGyZpQePqnTUC7FGNdYza0S5ppTC4VScyMhj7aFUTucWMqR5LMZr9F+rq+K+y/myOoKCgvjPf/7DkSNHeOWVV1i4cCGDBg2iWbNmfPvtt5hMJk6ePMktt9zCsmXL6N69O0OGDOGee+7BYDCwdetWBg4cSO/evalWrVqxNlgsFvf57mJGmLtcKgV7UifSl2V7TzE6p5AAT/kbFEKI61mjRo2w2+0YjUYaNGgAQKdOnRg1ahQnTpwgIyMDs9nsLtp65s9nMhgMHD9+nGHDhrkfNLRt25bx48fz2GOPsWbNGo4ePUrjxo25+eab+emnn5g2bRoxMTEcOXKEpk2b4uPjw/jx48nLy8Pb25stW7bw2GOPXb0X4x+SIMl1xsfHh/nz57v7TAM0bNiQ77//nuzsbPz9/VFKYTKZMBgMTJkypcSTtOrVqzNnzpxixU81TWPo0KEUFRVhtVp59tlnycjIoKCgAD8/PywWCx4eHrz11lukp6fjcDjw8/PDaDRSpUoV5s2bR2ZmpnuoYNf+P/nkE3d3G03TaN26tburT0BAAA6Hwz1MVMuWLZk3bx4ZGRl4eHjg7e3tHo746NGj3HHHHXh5eV2dF1rc2JTSi49aPPXskCPrYOtsiGkG9QfrXWuuxRobZ7bX5AEtR8Oqd2Dxc7D5S70rYFzPkiPhKAWOfEhLgMAq+mtiD4S4HtB4uD4McXnMohFuSimKHIpj6bn8cSCF33YlsvlIOhm5hdSM8OG2hlH4eJTzYN85REZGsnHjRnfXzZMnTxIYGOg+95zJYrFQrVo1qlatyr59+1iwYAGDBg0qdp4MCwujSpUqJCQkABQ7V1atWhUfHx9OnjxZLEhis9m4++67Af21Pnbs2JU63BIsRgPd6oQx8fudbIhPpVPNUHmYIIQQ1zEvLy++/vprNE3Dbre7H6TPnj2bhIQEKlWqhNVqdY/09vzzz+Pt7V1iOw0bNmThwoXFpvn5+REZGcncuXPZs2cPfn5+1KxZE6vVSteuXalSpQonT54kICCAmjVrYrPZePHFFzlw4AC5ubmMHz+emJiYcn8ekiDJdcY1JvXZ07y8vEoNIJQ2TK7RaCw1mnhmwVRN0/D39y913cDAwBLT7Xa7u6Dr+favaRo+Pj74+OhV+M+8MNU0DQ8Pj2KZL0ePHuWpp54iISGBxx57rNz/wYlrmPqr8GjyPr3i+O6F0O11PSBS8xa92Glwdb0w6fXwOTSa9VG5KrWFbd/Amvfhu1FwYgt0fvnvIewKcyF+Baz7CJJ2wt3f6oWqW44Fg0HPULkeXo/rkFKKQoeTw6m5rNqfzG+7Etl6LIOsvCJCfKy0qhpExxqhNIoNuGYLfmqaRtOmTXnrrbfYvXs3MTExfPvtt3Ts2BGTycTOnTspKCigbt26nDp1CrPZjJeXF9nZ2axbt47KlfV06BMnTri7gh44cIAdO3YwfPhwlFIcPXqUoKAgjEYja9asITMzk+jo6DI+8r9pmkabasH4eJhZuO0EHWqEXrNZQUIIIS7Mla1/JoPBQJUqVUrU1AKIiooqdTuenp7Url271HkRERFEREQUm+bh4UGdOnWoU6dOsemhoaHXRLHWM12bVz1C/CUgIIDRo0cTFRVFSEhIWTdHXI+UgoJsOPS7nk0Rv0KvqxFRX6/nAeDhp39dbzQNbL7QaBjU6AGbvoQKjfXp+Vmw63vY9AUc3QAe/noBWJu/Pv8iiouJq08pRX6Rk0PJ2azYl8yS3YnsPH6a3EIH4b4edK4ZRscaIdSP9ifQ06L3xLrGg1xVqlRh5MiRPPDAA9hsNkJCQhg6dCgACxcuJD09nbp167J8+XI+/PBDPD09yczMJDIyklGjRgEwc+ZMfvnlF+x2OykpKQwcOJCWLVvidDp55ZVXiI+Px2QykZ6ezn/+859yFSQBiPTzoHGsP38cSCHxdB4Rfh4XXkkIIYS4QUmQRFzT7HY7DRs2LOtmiOuNa1QWTQM0OLQc5t4DVh+I6wX1BkJkQzDZbowsCU0DzxB96GKXnQvg+9F6YbEWj0C9O8E/hosZiUtcXUop8god7D+Vze97kli65xR7Tp4mv8hJlL+d3nUj6FAjlLoV/PCzm9G49gMjZ9I0jZEjR9K3b19yc3MJDw/HYrGgaRoPPfSQu0bJrbfeStu2bUlPT8dutxMcHOzOnhw1ahSDBg0iJycHPz8/AgICMBgMKKV48803SUlJoaCggKCgIHx8fMrd62c0aHSvE85vu5JYtT+Z2xpGlbs2CiGEEOWFBEn+hbOLwYlrl1JK3kvxd/eRYxtg69dQux9UaqcP29vtdb3riW8FPYPkRrvBOLsGSVQj6P0uVGwDPuGAduO9JuWU639ZToGDvYmZLNtzimV7ktiXlIXDqYgOsNO/UQXax4VQO9IXH4/rLzByJk3T0DSt1FTfM7tvmkwmgoKCCAoqObqc1WotkVbs2va5upOWJ5qm0bRSIMHeVn7afpJb60dilj43QghxWcg9xNVxNV9nCZL8CxaLhYyMDPLz869qpXpx+SmlyMzMdD9dFDcY5YTMk7D3Z3343hNb9CyR4Dg9SOLhrw/hK58Nnabp9VeCq5d1S8RfXBcOWflF7DqRydLdSfy+9xQHk7MAqBjkyd1NY2gfF0KNCB+8rX/XlxI3hmAvKy2rBLF4ZyJHUnOoFCyFzoUQ4t8ym80UFhaSm5tbakFwcXk4HA5ycnJKLTB7Jcid/T+kaRqenp5kZ2df1Sr14spwjfhzrRUVEv+CKxqtaXByG8weDBnH9C4jzR7W62sEVvl7GSHKGVdg5HReEduPZbBkdxIr9p0iISUHg6ZRNdSL+1pVol31EKqFeeNp0QtyS2DkxqRp0L1OOPM3H2PpniQqBnnKZ0EIIf4lm82Gr68vJ06cKOumXNeUUnh4eFy1Lq0SJPkXXOm7RUVFkmZ1HTCZTO60bHGdcv2d5qbCgaXgEwHRzcA3GmJbQ8VWULm9PnytfA5EOaSUQgHpOYVsPZqu15g4kMzR1FzMJo3qod483L4KbaoFUyXECw+zUf6nCUC/Zqkf7Ud0gJ2ft5/kziYx2MwlR7ITQghx8TRNIygoCH9/f5xOZ1k357qladpV7bkhQZJ/wXXheeYwtUKIcsg1fG/Kftg+D3Z8C2nxUOd2qNBEH5mm19s3Zq0RUa65AvBOBWnZBWw6ks5vuxJZfSCF4xm52MxGaob7MKBRBVpVC6ZSkCdWk0ECI6JUvh5m2lUP4ct1h9mXmEWdKN+ybpIQQlzzrvYNvLjy5N0UQlz/sk/Bz0/A/t+gKA/Cb4KmD0Bc978DI5o8URWlU0pR6FAkZeaRdDqfIqcTh1PpXwqc7p+Ve7rzjJ+LnGf/7Cwx/XzLOZyKrPwith87TVJmHp4WE3WifBnWIpYWVYKIDrRjMUpgRFycrrXDmLE2gcU7T1I7svyNxCOEEEKUNQmSCCGuL67hezOO6CPVBMfpRVizk6F697+G720EZg/JGhGlUkoPeKRnF7InMZO1h1JYdzCVvUlZZOUV6cugzlqnlO1QckBkTQODpv39Hf0JlEFzjcLy93TXcpoGJoOB6mHePNiuMs0rBxHl54HJKN0DxaXRNI2a4T5UC/Fm8a5ERrSuhJdNsmGFEEKIM0mQRAhxfVAKCnPg+CbYPAv2LYKw2jDwK7B6w4AvwOIlXWpECfoQ4PrIMIeSs9mQkMqaA6lsP55BclY+JoOBSH8POvw1ZK7VZMBo0P7+0rTiv59nukFzfYHBcMbPZwRIDJqGwUCxZY0GDS+rCaNBAiPi3/GwGOlUK5QpS/az7VgGTSsFymdKCCGEOEO5DZI4nU5OnjxJamoqFSpUKLWSrVKKoqIijh49Sl5eHtHR0djtdjRNc887fPgwRUVFxMTEYLVai23D6XSSkpKCxWK5apVyhRCXyZmP7gtzYNU7sHcRnNoFJivEtoIGg8Fg1IMiNul7L3SuOh95hU6Opeew6XA6qw+msPlIOsfTc3E4FSHeNm6K8qVZpUAaxgQQG2TH02pyZ34IcS3rWCOUD38/yE/bT9K0UmBZN0cIIYQoV8plkEQpxZw5c3j33XcJCgoiOzubKVOmUL169WIXp3l5eTzzzDNs2rQJLy8vTCYT7733HuHh4RQUFPDss8+yfv16zGYzkZGRvPPOO+6xlZVSbN68mTvuuIN+/frxyiuvlNXhCiEuhiso4iiE00fhyDow26FGLz0IEr8KcOrD99buC0HVwGCSrBHhDooUOhSnMvPZfjyDNQdT2BCfxqHkbPIKHfh6mKke5s0tdSO4uWIg1UK98LNb3N1ghLheaJpGpWBP6kT58vveU6TlFBLgaSnrZgkhhBDlRrkMkqSkpPDf//6Xt99+myZNmvDf//6X//73v3z00UcYjX8XV1y5ciUrVqzg+++/x8/PjyeeeIIPP/yQ5557jtWrV7N8+XLmz5+Ph4cHgwYNYsGCBdx5551omkZ2djaTJk0iLi6OnJycMjxaIcQFFRXAya1w6Hd96N7EHZB/Gqp0gurdwOQBt03Vu9WY7fo6cmN7Q1NK4VSQnlPA3sRM1h5KZe3BVPYmZpKRW4iHxUjFIE/6N4qiaeVAakf4EuxtxSTdWcQNwGI00K12GC/+sJONCal0rBEqn3shhBDiL+UySLJr1y7MZjMNGjTAbDbTo0cPhg4dSmZmJn5+fu7l9u/fT9WqVQkODkbTNJo0acJ7773Hk08+ybJly2jevDkhISEAdOnShd9++41BgwYB8MUXX1C9enWKiopIS0sr0QZVWhU+IcSVpxQohz4ijdECHgF65shXAyEvA3yjIa4nVOkAFRr/nS3iHVbWLRdlSCm9lGq2q65IfBprDqaw/XgGpzLzMRo0Iv08aFs9mOaVg6hbwY9IPw9sZgMg2SLixqJpGm2qBfO2zczCbSdpHxeKUf4EhBBCCKCcBkmSkpLw8fHBarUC4O/vT2FhIVlZWcWCJLGxsUybNo2UlBR8fX3ZsGEDSUlJ5Ofnc+zYMeLi4gD9YiAiIoIff/wRp9PJ3r17WbRoER9//DHvv/9+qW04ffo006ZNc2eZbN261R1gEUJcZkrpQ/OmHoKEVXDgN70Aa/3B0O4p8ImE9s9CUFUIrgE2b0CTbJEbWPG6IrlsPpLG6gN6XZFj6bk4nRDsbaV2hC/NKgfSMMafikGeUldEiL9E+nnQONafPw4kk5SZR7ivR1k3SQghhCgXymWQxFV41eVcWR2tWrWibt26DBgwgMDAQPLy8jCbzX8No1hyG5qmUVBQwGuvvcbdd9+Nh4cHhYWFFBYWkp+fX6ywq9FoJCQkhLy8PAA8POTiQYjLRilwDaGqGeDEZlg4AZJ2gyMPvEIhuhlENtSXMVqg/l0SFLkBnfl/vNChyC9ykJZTyO4Tp1l9MIWNCXpdkdwCva5ItTBvetWNoEnFAKqFektdESHOwWjQ6F4nnN92JbFqfwr9GkTK34kQQghBOQ2ShIWFkZGRQV5eHp6enqSkpGC1Wt1FV108PT2ZMmUK8fHxAPz555/MmjULm81GdHQ0hw8fBvSL7CNHjhAVFUVmZiYHDhzgvffe44MPPuDgwYMUFhYSHh7OM8884962l5eXO3PE6XSyZs2aq3PwQlyvlPqr6OoxvejqwaXQcChUaAJWXz0Q0mAwVG4P4TeBPVCG672BKKVwKEWhQ5GVV0R6TgGJp/M4lp7LkbRcjqTmcCIjj6TTeaTnFJKVX6TXFQn05LaGUTSrFEitv+qKmI1SV0SIC9E0jaaVAgn2trJw2wluqReBWfrcCCGEEOUzSFKjRg00TWP58uW0bt2auXPn0qxZM7y9vYmPj+fgwYO0bdsWpRQZGRnExsaSkpLCrFmzuPPOOzGZTHTo0IFHHnmEhIQE7HY7P/74I/fffz/BwcH88MMPOJ1OAP73v/+RmprKmDFjyvaghbheKQVph2DHAj0wcnKbXnTVwx9imutBkoBYuGuePnSv3Nxel5RSeq8qpyK30MHpvEKSM/M5kZHH0bQcDqfmciw9l5MZuaRmF5KZV0ihw4lSYDUZ8LaZCfSyUDnEiyh/D+pE+lHvjLoiEhQR4tIFe1lpUSWIX3cmciQ1h0rBXmXdJCGEEKLMlcsgiZ+fH88//zyvvfYakyZNwm638/bbb6NpGlu3bmXOnDm0bt2a3Nxcxo0bR1paGrm5uXTt2pVbb70VTdNo1KgR/fr1Y8iQIRgMBho0aED37t0xGAz4+/u79xUeHo7NZsPLy0susoX4N1xdaByFkJOid52JaqSPOHNsIyx/Xa8tEtdDL7oa2ejvYquaAcy2Mm2++Hdc3WIcSlFQ5CQrv4i07AIST+fr2SCpORxNy+FYeh7JWfmk5xSSW+jA6VQYDRqeVhO+HmZCfazEhfkQHWAnyt+DSH8PQrxt+NvNeFpNmI0GDH/9q5b/2UL8O5oG3euEs2DzMZbuOUXFIE/5uxJCCHHDK5dBEk3T6NKlC02bNuX06dMEBwdjs9nQNI1u3brRoUMHjEYjXl5e/N///R9paWnY7XYCAgIwGPSRCkwmExMmTGDYsGE4HA5CQkKKDR/sMnLkSBnJRohL4fp7UervrI9jGyBhNSTtguS9kHEE8k7DwFlQuR1U7gCDv4OgamDzQYquXptcI8g4nIqcAgcZuYWcyszjREYeR1JzOJKWy7G0XE6eziMtu4DMvCIKHXrWnofZiJfNRJCXlWqh3kT5e1DBXw+EhPt5EOBpwddmxmo2YDL8/dmQGzYhrhxN02gQ7UcFfzs/bz/BnU2isZlLXisJIYQQN5JyGSQB/cTt5+dXbDQbALPZjNlsdv/u7e1dolaJa32j0UhoaOh59+MaQUcIcQ5KQWEO5KZC+hE9CJK0S5/X+UUwmGHzLNg8Uw+A+ERBpbYQ0wJCa+nL2QPAfnOZHYK4eK6gsVNB3l/dYpJO53M0LZf4lGzik7M5nJrjDoTkFTlxOBRmk4bdYsLfbibE20adSF8q+HsQFWAn0s+DYG8rAXYLHhYjFpMBV+hDgiBClC0fDzPt4kKYte4w+5KyqBPpW9ZNEkIIIcpUuQ2SCCGuIld2iKNArxdy+rge2PCtANnJMGew3n2mIEtf1uKpF1ctzAWbBZo+APXuBN9IsPnqtUUkW6TccgVCFLi7xiRn5XMiPY/4lGwOJWeTkJLDiYxckrMKyM4vosihsJgMeFqNBHtbqRriRUygJxUC9IyQUB8bQV4WvKxmbGYDRskGEeKaoAFda4UxY00Ci3cmUjvCR/5mhRBC3NAkSCLEjcTdVcb598gxyfth70+QtBOS90HGUchLh2YPQ7unwWIH/1gIrgEhNSC4OvhFgz1ID5YABFUtqyMS53D20Lk5BUWkZhdw8nQeCSk5xCdnE5+SzbH0XJJO55OVX0R+oROTUcPDYiTQ00K4rweNYwOIDfQkNsiTCD8bId5WvKwmrCajOwYmN1RCXLs0TaNmhA/VQr1ZvDOREa0q4WWTy0MhhBA3LjkLCnE9UwqK8iAnGdKP/t1VJuModHsNfKMgcRsseVkvsOoTAbEt9YBIpbb6Nsx26D1FD6qAZIeUM+6CqU5FXpGT9JwCkjLzOZKa81f3mByO/NU9JiO3kNwCB5oGVpMRf7uZUB8bLaoEERtkp2KgJ1H+dkJ9bfjYTHhYjBj/er8lECLE9ctuMdK5ZihTlu5n27EMmlYKkL95IYQQNywJkghxPXF3mykEoxmUA34YC/sW6d1oQA96+ERBbpoeJKnYBoYtBJ9wsPmDyUKJrjKaFPIrb5TSi6cu3pnIukOpHE7N4XhGLmnZBWTlF6EUmI0GfDxMBHtZqR3pS0ygnYpBnkQH2An39cDfbsZuMWEyamhIIESIG5WmaXSsGcqHyw/y8/YTNKkUgPw3EEIIcaOSIIkQ1wOl9C40qYdg22zIOAY939IDJSE1wWTTvwdXA78Y8Dyjq4w9QP8S1wyHU7H1aDqTFu9l9cEUvG1mAj0tRPvbaVkliIpBnsQE2In09yDA04q37e+hcyUQIoQoTaVgT+pE+rJs7ylG5xQS4Gkp6yYJIYQQZUKCJEJcy5TSi62e2AJ/fg57foKCTIhupg/B6xkEzR76u/6IuKYppUjJLmDaqkPMWHMYgwYPtq3CbQ2jCPC0YDXpBVMlECKEuFQWo4FudcKY+MNONsSn0qlmqPwvEUIIcUOSIIkQ1zLlgMXPwp9fgMGo1xFpOEQPkpjtemBEuspc85RSFDoUS/ck8fave9mflEXLKkGM7VSN2hG+GAxyIyOE+Hc0TaNNtWB8bGYWbjtBhxqhGOVfixBCiBuQBEmEuJYoJ2QmwrENUKWTPtRueF1oANQbpHepMZgka+Q6opTiYHI2k3/bx8/bTxLiY+PlW+vQq24ENrNBnvQKcQFKKTIyMli0aBFpaWm0adOG6tWrl/jbyczMZPny5cTHx2Oz2WjZsiVVq1bFYDBw8uRJVq9e7S6U7OPjQ7t27TAajSil2LlzJytWrCAoKIjOnTvj7e19Tf5tRvp50DjWnz8OpJCUmUe4r0dZN0kIIYS46gxl3QAhxAUoBc4iOLUbfpsIn3aG+Q/AyW16MOSmAdD1VQi7Sa9Bcg1emIuSlFJk5RXx2R/x3PnJWhbtTKRvwyi+vK8JtzeKwsNivCZvwoS42vLy8nj44YdZuHAhiYmJDB48mG3bthUbJhvg6NGjLF68GKfTyaFDhxgwYAAbNmxAKcWmTZt4+umn2bBhAxs3bmTHjh04nU6UUmzYsIGhQ4eSkpLCt99+y9ixYykoKCijo/13jAaN7nXCSc0uYNX+lBKvkRBCCHEjkEwSIcozpeDkVlj9vj5CTWEORDWC9v+BkDh9GYN0p7meKKVwKth0OI03F+9lQ3wqtSJ8eaPfTTSvHCg1R4S4RH/++Sf79+/n559/xsfHB4CPP/6Yd999t9hycXFxTJo0CdD/Dk+ePMlvv/1G48aNAahZsyYvvvgiBsPfz5eUUnz00Uf079+f8ePHk5qaSpcuXdi6dat7vWuJpmk0rRRIsLeVhdtOcEu9CMzS50YIIcQNRjJJhChvlIL8LHAU6b+f3KYHSCq3g0Gz4c65UOd2sHqXbTvFZaeU4lRmPq//vJt7pq9n78lMRneoyvRhjWlVNQiTUbrXCHEplFJs3ryZuLg4fHx8MBgMNGvWjK1bt5bI9tA0jaKiIo4cOcKGDRs4dOgQDRs2dM/ft28fTz/9NJMnT+bIkSMA5Ofns3XrVpo1a4amafj7+1O5cmW2bt1aoh1FRUUUFhZSVFSE0+m88gf/DwV7WWlZJYg/E9I4kppT1s0RQgghrjrJJBGiPFAKUHD6BOycD9vm6NkildtDzVugws3gX0nPGpGb5OuOUooCh5Nfdybxzm97iU/OoU31YMZ2rEpcuA8Gec+F+MfS0tLw9fV1Bxh9fHzIzs6msLAQq9VabNmkpCQeffRRDh48SGxsLA0aNAAgOjqakSNHEhERwbJly7jjjjuYM2cOXl5e5Ofn4+2tB601TcPPz4/U1NRi283MzOTRRx8lMTERgN27d1O/fv0rfej/iKZBtzrhzN98jGV7TlExyFOCs0IIIW4oEiQRoiwppY9Qc2oPbJ4FO76FrEQIrg6OQn0Zq7dkjVzHlFIcOJXFO7/uY9HORMJ9bbzatw7dbwrHZpLMESH+LZvNRn5+vvv3/Px8zGZzsW4zLhEREXz55ZfuoMbkyZN5/vnnqVmzJjVr1gSgW7du3HrrrSxZsoQ+ffpgNBqLZaXk5eXh4VG84KmnpydPPfUUhYX6/3VXt57ySNM0GkT7UcHfzs/bTzKoSTQ2s3TrFEIIceOQIIkQZeHMYnhH1sHXd+n1Rio0hS4v6RkkVh/JGrmOKaXIyi/i6/VH+Hj5QbIKihjQuAL3t6lMuK9NgiNCXCbVqlVj0aJFFBQUYLFY2Lt3L9HR0VitVndhUk3T3D+bzWb8/f1p0qQJS5YsKbYtTdMwmUx4eHiQl5eHzWYjKiqKvXv30qhRI/Lz84mPj+fOO+8stp7RaKRixYqA/rcfEBBwFY78n/P1MNMuLoSv1h1mX1IWdSJ9y7pJQgghxFUjQRIhrialIDcN9v8KfhX0oEhwDWgwWB/SN6ohGK0SHLmO6YVZFevj03hr0V42HUnjpig/xnWqRpOKAZiMUipKiMtF0zSaNWvGa6+9xqxZs6hZsyaff/4548aNw2Aw8M0335Cdnc3gwYNZv349mZmZVKhQgRMnTvDll19y9913A7BkyRLsdjuBgYGsXLmSvXv38tJLL2E0Grnjjjv46KOPqF69Ops2bUIpRaNGjcr4yP+9rrXDmLkmgcU7E6kd4SOBWyGEEDcMCZIIcTUoJ2Qche3zYMssSDkAdQdA1M3g4QcdnpPAyA1AKUXi6Tw+Wn6Q2RuO4mEx8mjn6gy8ORofm0luQoS4AoKCgpg8eTJTpkzhhx9+YMiQIXTv3h1NKz5SlFKKWbNmkZaWhs1m47777uP2228H4PTp03z66afk5uYSGBjIhx9+SFxcHJqm0bdvX9LT03n11Vfx8/Nj8uTJ+Pv7l9XhXhaaplEz3Ieqod78ujOREa0q4WWTS0YhhBA3BjnjCXG5ubvSKNAMkJsOv7+u1xvJSYGQmtD1VajRS58vN8bXPaUU+UVOftlxknd/28fRtFzax4UwpmNVqoZ6S2FWIa4gTdNo0KABn3zyCUopjEajOzjSt29f9zI333wzjRs3xuFwYDAYMBj+rgl066230rt3b5xOp3t91zyr1cr999/Pfffd517negh42i1GOtUM5b2l+9l+PIMmFQOui+MSQgghLkSCJEL8W8oJRXmQkwrph/UirIk7ILwu1L8L0ODoBgitDQ2HQKW2YPGS4MgNwqkUexMzeefXffy2O4kK/h68cdtNdK0VhkUKswpxVWiahtFYsvjomX9/ruBGaQVdXeuXtg3XfJPp+ruk6lgjlI+WH+Sn7SdoUrF811ERQgghLpfr74wuxJXgyg5RDsjPguxT4BMJFjscXQ8LJ+jdafIz9WWtXvpwvUqBzQcGfAEe/mC0SHDkBqGU4nReEbPWHmbqykPkFjq4q0k0I1pXJtTHKsERIUS5pmkalUM8qRPpy+97TpHWoZAAT0tZN0sIIYS44iRIIsTZzhx5BuDUbjj2p54dcmoXpB6CvHTo/zlUbK0Pz2vzg/B6EFoLQmqAXwx4BusBEU0D77AyOBBRFpRSOJyKtYdSeWvxXrYeTad+BX/Gda5G49gADBoSIBFCXBMsRgNda4fx0o872ZiQSscaofL/SwghxHVPgiTixqaU3l2mMAeykiDtECTtgqICaPGIng2y9kPY9AWY7XqwI7i6XlfEO1xfPzgO7poLBrO+TbmAvGEppTiRkccHvx/gm41H8bSaeLxrHAMaV8DLKoVZhRDXFk3TaFMtmLd/NbFw20nax4VilH9jQgghrnMSJBHXvzMzQxwFkHcajGaw+eoZIT+Mg5PbICtRD5YYTPqwvDcPB6sPNBqmF1kNqKhnh5jtZxVc1fRuNOKG5SrM+uPWE0xeso8TGXl0rhXK6A5VqRTsJYVZhRDXrCh/DxrHBvDHgWSSMvMI9/Uo6yYJIYQQV5QEScS16+xuMc4icBSCI18PbhiMkBYPh1ZA1klIS4DkvXpx1cbDodWjevZH/mnwi4ZqXfTiqkFVwa+C3o1G0/QCrEKcQf312Sty6kP6bjmSwbw/j7JiXzKxQXbe6l+PjjVDsBilMKsQ4tpmNGh0rxPOkt1JrNqfQr8GkfJ/TQghxHVNgiSifFNKL5bqKNJHkMnP1LM2vELA6YCtX+u1QrJO6sVUs5P17jMDv9IzP479CQsfBQx60MMnHGJbQFB1ffsWT722iNGqB1Xkwk+cx/+zd9/hUVVbH8e/e2p6770QQigh9CII2BBBQaSIYi8v99qxe1GvvXfs5YoNqYKCgg1RBKSG3iEQIIH0nsxkZr9/HBLIRb0WQgrr8zzzEDJnzuwTwpkzv9l7LbfWlFfXsjOvnOW7C1i6s4AtOaWUVDnx87Ry1WkJXNMvkVBfKcwqhGgdlFL0SQ4m1NfOlxtyGJ4RhVXW3AghhGjFJCQRTaOuFoi71lgCU1NuBCDVxUbhU7uvEX4se+1oAFJVDI5yaDcUzn/JePz6aZCzzugm4+FvhCd+UcZyGoCEfnDpLPAKBs8Ao8OMxQ6oo4GIzbtpfgai2dNa43QZs0Uys4v5aUc+q/cWcqCoCg1EBXgyMDWUfikhdI0LJCbQC7NJ3jwIIVqXEB87p7UJ4dvNh8gurCQp1KephySEEEI0GglJxMmhNdTWGCGHV7AxO2TRE7BnMVQWgqMMaiqM4OKyORDbw1gGs2cxWD3BK8ToGOMbAbG9MeqAWOGCl439232NWiEmizEjhCNvVH3CjJsQf4DWGq2hrKaWHYfKWHZktsjW3FLKqmvx9bCQGuHLiIxoeicH0zbMB19PKwrpWCOEaL1MCs7rFMHczAMs2pZHYoi3nPOEEEK0WhKSiMan3ZC3DX54AhyVMOZ9I9CoKTPCk5A24BNudIvxjTTqgwBEdYXrvjdmepisYLZQH36AEagEJjTBAYnWRGuNw+Umt6SatfuM2SJr9hVxsLgKMIoWnt0+nH5tQsiICyTCz6N+qrm8SRBCnAqUUnSNCyQ20IsFG3O4tFccHlZzUw9LCCGEaBQSkojGo7URhKz9EH5+GRwV0O2KI3cqOOdh40uT1egWU6fujafFLrNAxAlXN1uktNrJ9kNlLN1VwLJdBWzLLaO8phY/Tytpkb6M7hZD76Rg2oT54ONhkdkiQohTmr+nlUHtwpi6Yh87D5fTMdq/qYckhBBCNAoJSUTj0BoOroWv74fsXyC6K5xxP8T3AXWkQKrFo6lHKU4RWmsctW4OFFexZl8xS3bksXZfMTkl1ZhMEBvoxZBOkfRPCSE9xp9wPw8sJpktIoQQxzq3YwQfL9/LN5sP0SHKT86PQgghWiUJScSJdWxb3sLdULQbBt0H3a82CqvKBZU4CepmixRXOdmaW8rSnQUs213AjsNlVNa4CPCy0j7Sj0t6xdE7KZikUG+87TJbRAghfotSivaRfqSE+/LN5kNcd3oSPna5jBRCCNH6yKubODG0NjrV7PzOKKIa3xfSzoeYHhAQ23A5jRCNoK4TTXZhJav2FrFkZx6Z+4rJLa3GYjIRF+zFBZ2j6NcmlPQYf0J97VhMSkIRIYT4g7xsZs5pH87kRTvZeKCEXolBcg4VQgjR6khIIv4+raF4Lyx+BjbNgsQBENPdqCkSGN/UoxOnAK01lQ4XD32xia825lLlcBHobaNjlB9X9E2gV2IwiaHeeNnMMltECCH+IqUUZ7UP540fd7FgYy49E4OQs6kQQojWRkIS8ddpDbVVsGEm/PgsVByGjhfB6XeC2dbUoxOnkFq3ZvKinXy29gCDO0QwPCOKjtH+hPrYMctsESGEOGGSQr3pFO3PD9sOc/OZKQR5y+u9EEKI1kXWQIi/Trvh+8dg/u3GEpuL3oNhLxhteeVNqThJ3Fozc/V+/vPzHs5sF84TIztxdvsIIv09sZhNEpAIIcQJZDObGNIxkgPFVazeW4g+thaZEEII0QpISCL+HK2NVr4up1FnpM1ZcNqtcNlnkDpEZpCIk0przZId+Ty1YCup4b78+4L2UkhQCCEakVKKAW1D8bFb+HJDLm7JSIQQQrQyEpKIP85dC1k/wcejYcMM43tJA2HQveATJrNHxEmltWb7oXImzdmIj93CEyPTCffzkJkjQgjRyGICPemREMTSXfkcLqtu6uEIIYQQJ5SEJOJ/0xpKc2DhJJh6CRTuMpbaoI1gRDrXiJNMa01eWQ33fbaBkionjwzvSFqkrwQkQghxEphNivM6RVJQ7uDnnQWy5EYIIUSrIu9uxe9zu2DL5/DhcFj1HrQ5Ay6bAxmXgNS0F02grpPNI/M2s/FACXec05YBbUMlIBFCiJNEKUWf5GBCfe18tSGHWllzI4QQohVplov3tdY4HA6WLVvG/v376dKlC2lpaZhMpuO2Ky4uZsmSJZSXl9O7d28SEhJQSqG1pqioiB9//BGn00m/fv2IiIgAID8/n8zMTHJycoiLi6NXr154eMg0/QbqPhVy10LmVOPP4a9A2nCjta/8rEQTqXVrXl20kwWbcrmybwJje8TJr6MQQpxkoT52TmsTwrebD5FdWElSqE9TD0kIIYQ4IZrlTBK3283TTz/NE088wdatW7nqqqv44YcfjpvOWVRUxGWXXcasWbNYt24dl112GRs3bgSgtLSUa665hrlz57J48WIuvfRScnJy0Frz+OOPM3XqVPbt28dTTz3F7bffjsPhaIpDbX60Bkc5bPkCakqNQqxDnoLLv4BOY8DqIQGJaDJurZm1ej/vHelkc/OZKdgs0sFGCCFONqXgvE4RVDhq+WFbniy5EUII0Wo0y5kkBw4cYObMmcyYMYOUlBRSUlJ4+eWX6d+/P1artX67RYsWUVlZyWuvvYaHhwfPPPMMr7/+OpMnT+a7776joqKCjz/+GKvVynXXXcf06dO55ZZbeOCBB/Dz88NkMrF3717OO+889u3bR0pKShMedRPT2rjlrIXvH4W9S2Ho88aymsD4ph6dEGit+Xnn0U42D0onGyGEaDJKKbrGBRIb6MWCjblc0isOD6u5qYclhBBC/G3NcibJ9u3b8fPzIz4+HqUUvXr1Ys+ePZSUlDTYLi8vj7CwsPqlMrGxsaxcuZKamhp++eUXevbsiaenJxaLhX79+rF8+XLcbjeBgYGYzcYLudPpBGgQvoDxhszlcuFyuXC73a37ExKtoaoIFj8FH42Cg5lGW9/UIU09MiEA4//jjiOdbLxsFh4f2YkI6WQjhBBNyt/TyqB2YWw8WMK67OLWfa0khBDilNEsQ5KioiJ8fHzqgwtvb29cLhdVVVUNtktPT2fTpk2sX7+eQ4cO8cUXX1BcXIzD4SA/P5/g4GDA+LQjODiYwsLCBi/gVVVVPPHEEwwePJiYmJgG+87Pz+f6669n3LhxjBs3jh9++KFxD7opVeTBp5fAkucgqguMnwUD7gavIFlaI5pcXSebez/bQFGlg0dGdKR9pJ8EJEKIP6yuhtmhQ4dwOp2/+mbe7XZTUVFBTk4OeXl51NbWHred1prq6mqqq6vr73M4HFRUVNTfjr3vVDA8IwpPm5m7Z61nzT4JSoQQQrR8zXKuut1ux+l04na7MZlM1NbWAtTP/qjTo0cPrr/+eiZOnIinpyeJiYn4+PhgsViw2+3U1NTUb1tTU4Pdbq9/Y1VTU8Ojjz5KRUUFzz333HH79vf3Z+LEifUXSY8++mgjH/VJpjXUVoPFAzz8jXCk0yjofDFYvSUcEc1GpcPFw0c62fxraBoDpZONEOJPcLvdfPzxx7z77ruYzWbatm3Lk08+ib+/f4Pttm3bxu233w5AdXU1bdq04Yknnqj/wEVrTW5uLuPHj6djx4688MILKKV47733+M9//lO/vwEDBnDvvfeeEucppRQdo/15ZlQ698zawM1T1/LMqHT6JAefEscvhBCidWqWM0ni4uIoLCykrKwMrTX79+/H19f3uAsaq9XKjTfeyBdffMG0adPo3LkzHTt2xMPDg9TUVLZv347WGq0127dvp02bNphMJhwOB88++yybNm3ilVdeISAg4LgXc5vNRocOHejcuTPp6ekEBQWdzB9B46kLR9ZPh+mXQ1mu0a3m7Ieh+zVg85GARDQbTpebVxftZOGmXC7vE8/FPeIwmeT3Uwjxx2VlZfH888/z7LPPMmPGDAoKCvjwww+Pm/EQGxvL22+/zaxZs5g2bRrZ2dnMmDGjfjuXy8VLL72E1WqtLwQPUFhYyJlnnsmnn37Kp59+yi233HJKBQQmpRiUGsYLYzPQaG6dlsmibXm4ZUaJEEKIFqpZhiRt27YlPDycDz74gJ07d/L6669z/vnn4+XlxcqVK3nllVdwuVzU1NSwYsUKCgoKWLNmDR9++CHXX389JpOJwYMHk5mZyaJFi1i1ahXz5s3jwgsvRGvNm2++ySeffMKECRPIyclh48aNVFZWNvVhNz6tofwQzJsIn98ExdlQmW/cZ7ZKOCKald/qZCOEEH+U1pply5aRkJBARkYGgYGBjB49mq+++gqXy9VgWx8fH6KiorDb7fj5+REUFITb7a7fz6JFiygoKOD8888/LgSpqanh0KFD1NbW4uXldUqFJGDMKOmbHMwr47rgZTNzx4x1LNiYi9stQYkQQoiWp1kut/H09OSFF17gySef5Ouvv6ZLly7ccMMNKKWoqqoiP994Y+9yuZg2bRrbt2/H29ube++9l9NOOw2lFG3btuXhhx9m8uTJuFwubrzxRvr27Yvb7ebw4cOkpqYyZcoUwJiR8u9//5vk5OSmPOzGpd2QvRK+ugvythhdawbcDb4RTT0yIY5T18nmySOdbP4tnWyEEH9RdnY20dHRmM1mlFJER0eTn59PTU0NFkvD88qhQ4d49NFH2bNnD3a7ndGjRwNQUFDAa6+9xuOPP87PP//c4DG+vr4sWrSI++67j4MHD/J///d/XHHFFQ2W8dbU1LBw4UIqKioA2Lx5M507d27kIz+56rrdTL6kK7dNy+Te2eupdroYnhGNWWYACiGEaEGa5bsOpRSpqam8++671NbWYrPZ6u/r378//fv3B4ww5dlnn8XhcGCxWOovgABMJhNDhw5l8ODBaK2xWq0opdBa8/DDDzfJcTWpkv3w2fXgqITznoX0sWC2yewR0ezUd7L5bCPeNgtPjOxEuHSyEUL8RS6Xq8H5QylVP0Pkv/n7+zN+/HiysrJ4/fXXWbZsGUOHDmXy5MkMHDiQlJQUlixZgta6vm7a1VdfzfXXX4/ZbGbZsmVcf/31DBw4kKSkpAZj2LVrF0VFRQD1H/a0NkopOkT58eolXblteiYPzN1ElcPF2B6xWMwyE1AIIUTL0CxDEjBeaM1m83EFVf/7jZJSCg8Pj9/cx3+39j2l3mhpDS6HEYb4RUP/OyC8A0RlgJKLFdH8HNvJprjKwQtju5AmnWyEEH9DZGQk69evx+12YzabycvLIzAw8LjrAzA+fOnduze9evUiPz+fTz75hIEDB/Ltt9/i5eXF999/z969e8nLy+OBBx7gkUcewdvbu/7xXbt2xc/Pj/379zcISTw9Pbn11lvr//7fS31aE6UUKeE+vHpJVyZOz+TR+VuodLi48rQErBKUCCGEaAGabUgi/ibthv0rYckLcOaDENoOuow37pM3nKIZ0lpT6XDxiHSyEUKcIEopevXqxSuvvMK+ffuIiopi/vz5nH766VitVvbu3UttbS1JSUmUlpZis9nw8PCgurqabdu2ERkZibe3N5988glOpxOA6dOns2TJEv75z39iMpkoKCjA398fk8nEpk2bKCkpISoq6rhx1DkVWuQqpYgP9uKVcV25c+Y6nv16G1VOF/83IAm7xfy/dyCEEEI0IQlJWpu62SNrP4JFjxszRoqzjZBE3myKZqzWrXl10U4WbMrlir4J0slGCHFCpKamMmrUKK666ioCAgJwuVz8+9//BuCTTz6huLiYJ598kq+++ooPPviAkJAQ8vPzMZvNvPTSS5hMJuLi4ur3Fx0dTWhoKFFRUbhcLu69914KCgqw2+3s3r2bm266icTExCY62uZDKUVUgAcvjs3gntkbmLxoJ1UOF7eclYLdYpIAXAghRLMlIUlrojWUH4bvHzFa/EZ0giFPQXRXCUhEs+bWmtlrjnayuUU62QghThCz2czdd9/NmDFjqKioIDk5GR8fH5RS/OMf/6ivT3LhhRfSs2dPCgoK8PX1JS4uDk9Pz+PezI8cOZIhQ4ZgMpkwmUw8+eSTHDhwAIfDQVRUFOHh4ZhMcv4CIygJ9bXzzKh07p+7kXeW7KbK6eLOwal42cwSlAghhGiWJCRpTZyVMPefkPUTdB4HZ/wLvEMlIBHNmtaapTvzefIro5PNg9LJRghxAimlsFgspKSkHHdfQEBA/dd2u52kpKQGtUR+jY+PDz4+PvV/DwoKIigo6ISNt7VRShHkbeOJkel4Wjfx8S97qXK6mDQ0DR+7RYISIYQQzY68E2kN3C5jWY3VEzqNhvbDje41FntTj0yI36W1Zsfhcv41ZyNeNguPj+xEhHSyEUKIVkUphb+nlYcu6IiH1cz0VdlUOVw8NLwDAZ5WOecLIYRoViQkacm0horD8NML0P4CiOsD6WMAJbNHRLOntSavvIb7Zm+gqMLBC2MzaC+dbIQQotXy8bDwr6FpeFrNfLBsL9VOF49d2IkQH5uc+4UQQjQbsmi2pdJuOLAKpo6DVe9B1hJAGzNK5EJDtACVDhePztvChgMl3H5OKoNSw+QiWQghWjlPq5k7BqfyfwOSWLw9j9unZ5JbWn1KdP0RQgjRMkhI0tJoDbU1sHqKEZAU74MhT8NptwDyBlO0DE6Xm1cX7eSrjTlc1juecT2lk40QQpwKlFLYLSZuOiOFW89KYUVWITdPXUt2UZUEJUIIIZoFCUlaGu2GxU/DV3dDQByMmwrdLjfqj8in8KIFcGvNrNVGJ5sz2oVxy1kpWM3yuyuEEKcKpRQ2i4nr+idxz5B2bD5Yyo2frGF3XoUEJUIIIZqchCQthdbGTZkgtgd0u8IISKK7G98TogXQWvPzznyeXLCVtuG+/PuCDtLdQAghTlEWs4nLeifwwPnt2ZNfwQ2frGFrbpkEJUIIIZqUvLtu7uqW16z9CLZ9ZXwv5Rw49wnwDpPZI6LFqOtkM2nORrxtFp6QTjZCCHHKM5sUo7rF8tiIjuSWVnPDJ2tYv79EghIhhBBNRkKS5kxrqMiDL++CL2+HtR8agYkygckiAYloMbTW5JfXcN9nRiebh4d3kE42QgghACMoGdY5iqcvSqe0ysmNn6xhZVahBCVCCCGahIQkzZV2w4E1RnHWdVOh02gY9oJRe0SIFqbS4eKReVvYsF862QghhDieSSnObh/O82MycLo0N3+ayU878iUoEUIIcdJJSNIcaW0srZl6MRRlGUtrhj4HPuEye0S0OE6Xm9d/2MVXG3MYL51shBBC/AalFP1TQnjp4gysJsXE6Zl8s/kQbglKhBBCnEQSkjQndcVZwQhEIjoZxVm7XwUWDwlIRIvj1prZa/bzzpLdnNEujFvPSsFmkdOOEEKIX6eUomdiEJMv6Yq/p5W7Zq7ni3UHcbklKBFCCHFyyLuV5kK74eAa2DQH0BDdDS7+GGJ6SPca0SJprVm6M58nv2rYyUYIIYT4PUop0mP8mXxJVyIDPJg0ZyMzV2dT63Y39dCEEEKcAuTdd1M7tnvNJxfDoseg/LAxa8TqKbNHxF+mtcbt1ri1Rh9zO1nPveNwOf+asxEv6WQjhBDiT1JK0S7Cl1cv6UpSiDcPfbGZD5ftxemSoEQIIUTjko91m5LWUJFvBCPrPoHQNBjyNPiENfXIRAtlBCGwv7iKL9fnsPFgCXaLCU+bGU+r+cifFrxs5vrvednM2K1m7BbTkduRr60mrCYTZpNqcLOYFEopFMCRzOO/o4+88hrum210snlhbIZ0shFCCPGnKaVIDPFm8iVduX3GOp5asJUqh4tr+yfJ0k0hhBCNRkKSplSwC+b8A3Iyje41Zz4gxVnFX6K1xunSbD5YwozV+/l68yGKKx0E+9hxuzVOlxuXW+PW4HJrXMfMMgHjQtSsFCaT0WHApIxAxGpW2Cwm7GYzNoup/uZhNR0JXSx4Wc3/FcKYWba7gA0HSrjvvDTpZCOEEOIvU0oRE+jJSxdncPfM9bz03Q6qnC5uGNQGD6u5qYcnhBCiFZKQpCmZTKBdMPhx6HoZmO0SkIg/RWtNeU0tS3cV8OmKfazYUwgKeicFc3GPWLrGBaKUwuly46h1U1PrpqbWdfRrp4tKp4sqx5Gb00XlkT+rfuXPaqeLmlo35TW1OGrdR28uN+668OVI8HJZH+lkI4QQ4u9TShHh58HzYzK477MNvLl4N1UOFxPPaYun1SxBvBBCiBNKQpKmFJgI42eBh78UZxV/mNYaDRwqrWbBxlxmrt7P9kNlBHrZGNk1hlHdYkiL9MNqVn/pwvHYuiX6mC/0kftcbk2t2/iz7uZ0uxsELxpICffFapYLVyGEEH+fUopgHxtPjUrnwbmbmLIsiyqni3vPS8PbJkGJEEKIE0dCkqakFHgGNvUoRAuhtRFO7DhUzqw1+/lyQw755TUkhfhwxzmpDE2PJMrfE6X4WxeLxz5W/coXFjPY//LehRBCiL9GKUWAp5XHLuyIl83M9FXZVDtdPHh+B3w9LBKUCCGEOCEkJBGimdNaU+VwsSKrkGkrs1myM59al6ZbfCD3nZfG6Skh+Hla5eJQCCFEq6eUwtfDyv3D2uNhNfPxL3txuTUPDe+InwQlQgghTgAJSYRoprTW5Jc7+HbLIWasymbjwVJ87RbO7RjBmO6xpEf7Y7OY5IJQCCHEKcfbbuHuc9thNik+WJaFy615ZERH/OVDAyGEEH+ThCRCNCNaG8VPs/IrmbP2AF+sO8iB4ipig7z458BkhmdEERfkjelvLqkRQgghWjpPm5k7BqdiVor3l2bh0prHRnQiwEuCEiGEEH9do4YkLpcLl8uF1SovVkL8Hq01NbVu1u4rZvqqbBZtO0yVw0V6jD83ntGGM9qFEeRtAyQcEUIIIep4WExMPKctZpPi3SV7cLnX8/iFnQjytsnrpRBCiL+kUUOSrKws7rnnHoYPH87ZZ59NaGgoSv21jhtCtEZaa4qrnPywLY/pK7NZm12E3WLm9JQQxvaIpVt8EB5WWVIjhBBC/BqlFHaLiVvPSsFsUrz1027unrWeJy9KJ1iCEiGEEH9Bo4YkMTExXHXVVUydOpVXX32V0047jTFjxpCeno7dbpcXLnFK0lrj1nCgqJIv1ufw2doDZOVXEOHvwZV9E7iwSwzJod6YTRIoCiGEEP+LUgqbxcRNZ7bBbFK8sXgXd85Yx9Oj0gnxketNIYQQf06jhiR2u50hQ4ZwzjnnkJWVxbRp0xg3bhyJiYmMHz+e4cOHExAQIC9e4pSgtcbp0mw6WMKMVfv5ZnMuxVVO0iL8eOD89gzuEEGorx2FLKkRQogTTWtd//VvnWOP3eb3tjtRjxMnjlIKm9nEDYOMoOTVRTu5Y8Z6nhmVbry2yr+JEEKIP6hRQxKtNVpr8vLyWLJkCcuXLycpKYlzzjmH77//ns8//5wPPvgAHx+fxhyGEE1Ka01ZdS0/78pn2opsVmQVYlKKPsnBXNwjll5JwXjbzHIBJ4QQjUBrTXZ2Nh9++CGFhYUMHTqUAQMGYDabG2yXn5/PRx99RFZWFna7ncGDBx+3ncPh4KOPPiIwMJDhw4djMplwuVx89913LFiwgNDQUC6//HKioqLknN4ElFJYzfCPAclYTIqXv9vB7TPW8cyozoT7SVAihBDijzE15s6Lioq44447uOiii1i2bBl33HEHc+bM4Y477uCNN96gtraWwsLCxhyCEE1Ga01ptZMpy/Zy8VvLuXnqWrbkljK6WwxTr+vNa5d25Yx2YfjYLXLhJoQQjaSsrIzrr78eh8NB9+7dueeee/j555+Pm/1RVlaGxWJhyJAhtG/fnttuu43vv/++fjutNV988QWPP/44U6dOrf8g6LvvvuP++++nd+/elJWV8Y9//IPKysqmOFSBEZRYzIrrTk/itrPbsjKrkInTM8ktqT7u31wIIYT4NY06k6Sqqoq2bdty8803Exsbi8l0tAClp6cnL7zwAuHh4Y05BCGahFtr1mUX89SCrazeW0RyqA93Dk5laKdIIv09UdLCVwghTooVK1ZQVVXFXXfdhZeXF4cOHeL999+nX79+Dc7DCQkJ3HDDDSil0FqzdOlSVq1axVlnnYXWmgMHDvDxxx8zfvx4tmzZAoDb7eb999/nqquuYvTo0fVLjNesWUP//v2b6pBPecaMEsXV/RIxKcVz32zjtumZPDc6g6gAD3n9FUII8bsadSZJcHAw7dq1Izo6GrPZWE5w8OBB1qxZA0BycjJ2u70xhyDESaW1prTKyes/7OLq91ey/VA5E89uy6fX9+a6/klEB3phkoKsQghxUmit2bhxIykpKXh5eaGUonPnzmzfvp2ampoG2yqlqK6uZvny5cyYMYMdO3Zw5plnAlBbW8vzzz/PmDFjiImJqX9MTU0NO3bsICMjA6UU3t7eJCUlsWnTpgb7drvdlJaWUlxcTElJyXHPLRqH1WziqtMSuGtwO9Zll3DrtLXsL6qSGSVCCCF+V6OGJFu2bOGdd95p8IawoqKCxx57DKfT2ZhPLcRJ53Zr1mYXc/2Hq3jx2+20j/TjP1f24P8GJBPgJW0IhRCiKZSVleHt7V3/dy8vL6qrq3G5XMdtW1JSwkcffcR//vMfPD0962e7fvvtt5SUlDBixIgG2zscDpxOJ56enoARtPj4+FBWVtZgu/Lycv75z38yatQoRo0axezZs0/wUQJaQ3E21DpO/L5bMIvZxOV94rlnSDs2HSzl1k/Xkl1YKUGJEEKI39ToNUn8/PwaFD3z9/ensrISh0NexEXroLWmpMrJqz/srJ89cvvZqbxxWTfSY/wxSTgihBBNxtfXl4qKivq/V1ZW4uHhcVzhVoDw8HBeeeUV5syZQ7t27Xj++eepqqri2WefJT4+njlz5rBy5Ur27dvHokWLsFgsWCwWqqqqAOP1oLy8HF9f3wb79fHx4bXXXmPGjBnMmDGDCy+88MQfaPE++HgUfHUXlOUaoYkAjKDk0t5x3HdeGltzy7j500z2FkhQIoQQ4tc1akiSkJDAhg0b2Lx5M06nk6qqKubOnUtwcDAeHh6N+dRCnBRut2bNviKum7KKl7/bQccof96/qgfXD0iSgqxCCNHElFJ06NCBHTt2UFVlLLNYt24dKSkp2O12XC4XLpervghr3WNsNhvx8fHk5eVhMpkYOXIkANu3b+fQoUOUlZWRnZ2NzWYjJSWFdevWobWmoqKC3bt30759+wbjMJlM+Pn5ERgYSEBAQONcA9m8IbobrPsEPh4Ne34C9/GzZU5VFpOJcT3juH9Ye3YeLuemqWvZk18hQYkQQojjNGrh1vj4eC6++GLGjx9PaGgo1dXVKKV45ZVXfvUTHCFaCqNzTS3vL93De0uysJgUdw5O5ZKe8XjbpZ2vEEI0F7169cLDw4Onn36adu3a8fHHH/Pss8+ilOKdd96htLSU22+/na+//pq9e/eSlJTEvn37mDJlCpMmTcJut/PPf/6zfn/vvvsuX3/9NZdffjkmk4krr7ySBx54gKCgIDIzMwkJCaFr164n/0C9gmHYCxDfF75/DKaPhz43Qe9/gN3n5I+nGTKbFKO7x2I2KR6et5mbpq7lpYu7kBzqLa/bQggh6jVqSGI2m5kwYQJDhgxh9+7deHp60r59ewICAv7ni5HWmtraWpxOJx4eRiXyX3uM1hqHw4Hb7cZut2MymX71vrp9HHtfdXU1JpMJm03qRYg/xvi0EdbsK+KpBVvJzC6md1Iwd53bjg5Rfiika40QQjQnvr6+vPXWW3zwwQesWLGCJ598sr6zTWpqKtXV1QAkJiayevVqNmzYgL+/Py+++CJ9+/Y97pzevXt3goKC6q9L6rrfLFy4kNDQUF5//fUGNVBOGqXAYoeMSyGqC3w9CVa9A+3Ph9B2J388zZTZpBjZNQazSfHg55u4aeoaXrq4CylhPvL6LYQQAmjkkERrjdvtRilFYGAgWmt27dqFr68vbdu2/c0XI601GzZs4LHHHqOoqIiOHTsyadIkgoKCGmzncrmYOXMmH374IbW1tfTv35/bbrsNLy8v3G43s2bN4j//+Q9ut5sRI0ZwzTXXYLVaqamp4dVXX2XhwoVYrVb+8Y9/cN5558mLo/hd9bNHft7Dez8bs0fuGtyOcb3i8LbJ7BEhhGiOlFLEx8czadKkBt8DGDBgQP33UlJSuPfee4977H/LyMggIyOj/u9ms5nBgwczePDg333cSaMUhLWH0VMgbxuEtAXthvwdEJgAZpuxzSnMbFKMyIjGpBQPfL7xyIySDFLDfeW1XAghROPWJHE4HEyaNIlx48YxYsQI/vnPf3Leeefxwgsv4Ha7f/NxlZWV3H777Zx55pm88847FBUV8fLLLx/3mPXr1/PYY49x77338vrrr7N69WqmTp2K1potW7bwxBNPMGnSJJ555hnef/99fvrpJ7TWfPXVV8ydO5eXXnqJ2267jfvvv5+srKzG/FGIFswI+zSr9xZx7ZSVTF60k/QYf6Zc3ZNr+idK7REhhDhJtNYUFxfX1xHZsmUL33//PWVlZf+ztkTdzI/fOl8fe//vbfdHHtvklAIPP4jtAcoEhzbBhxfC/NuhLEeKugImk+KCzlE8NqITuSXV3PzJWrbk/O/fIyGEEK1fo4YkW7duZdOmTUyePJlu3brx9ddf8/jjjxMZGfm7FxHbtm2jsLCQsWPHEhsby3XXXcdXX31FZWVlg+1WrlxJWloavXv3JiEhgYsuuohZs2ZRW1vLwoUL6datG71796Zjx46cf/75zJkzB7fbzezZsxkzZgypqakMGDCANm3asGjRInlhFMep61zz8vc7uGbKKnbnV3DX4Ha8Pr4bHaL8pHONEEKcRAUFBUyYMIGKigq2bt3K+PHjefjhh7n//vt/98OXU55vBLQ5EzbMMDrg7P5BirpiBCVD0yN5/MKO5JXXcPPUtWw6WCrXg0IIcYpr1JCkoKCApKQkQkND62uLnH/++axYsaK+Xd6vyc7OJjAwEB8fY31oVFQUFRUVlJaWNtjO19eXoqIiamtrATh8+DBZWVnU1NSwY8cO2rRpU/+pTps2bdi9ezc1NTVkZ2eTlJSEUgqz2UxSUhK7du1qsO+amhpWrlzJsmXLWL58OYcPHz7xPyDRbGmtcbk1K7OKuGbKKl5dtJOM2AA+kNkjQgjRZA4fPozWGm9vb7766ivGjBnDjBkz2Lx5M0VFRU09vObLKwTOew7OfwmqS2D65bD4aXCUN/XImpxJKYZ0iuTJkekUVjq4aepaNhwokaBECCFOYY1akyQqKoqioiL8/PyoqalhxowZFBQUYDabsVqtv/k4h8OBxXL0TWhdJxyXq+GnHgMHDuS1117jjjvuICYmhs8//xy3243L5cLpdGKz2eq3tdlsOByO+oKwdc+vlMJqtdYXbqtTVlbGlClTKCsrA4zZLeLUUDd75L2f9/D+0izsZhP3DEnj4h6xeEntESGEaDJ2u53S0lIKCgr4+eefueOOO/Dy8sJsNh93jSCOoRRYbJA+FiIz4Jv7YeMs6HoZ2KTzjUkpzu4QjsmkuGfWeqNGydgMOsf+70YDQgghWp9GDUmSkpK49tpr8fb25sEHH2Ty5MlYLBYefPDB3w1JgoKCKC8vx+Fw4OHhQXl5OWazGS8vrwbbRURE8Omnn/LNN98AMGHCBN577z08PDwICQkhLy8PMN705ufnExISgtVqxd/fn8LCwvr7CgoKiI+Pb7Dv4OBgXn755fptJkyYcMJ+LqL5crk1q/YW8vSCbazfX8xpySHcdW4q7SJlaY0QQjS1mJgY4uLiuOCCC4iLi6NTp07s378fs9mMn59fUw+v+VMKQlNh1HtQegD8osFVCznrIKIDmO2nbFFXk1KcmRbGM6PTuXvmBm7+NJMXxmbQNU6CEiGEONU06nKbPXv2kJ2djdVqpV+/fnzyySd88MEHdO3a9XdfcFJTUykrK2P37t1orfn5559p06YNfn5+lJeXk5ubWz8NMjw8nCuuuIJx48axfPlyhgwZgs1mo2/fvvzyyy9UVFTgdDpZvHgxffv2xWq10rt3b3744Qdqa2spLi4mMzOTXr16NRiTUgqTyYTJZGo+hdhEo9FaU1Tp4MVvt3PdlFXsK6jk3iFpvHppV9IkIBFCiGbBZrPx4osv8tFHH/Huu+/i7e1NWFgYL7/8Mh4eHk09vJZBKbD7Qkiq8fW+ZUadki9uNYKTU3iZiUkpBqWG8ezodKqdLm75dC2rsopk6Y0QQpxiGjUkKS0tZcmSJWit6+t/mM3/e7lCVFQU48eP58Ybb2TixIm8/fbb3HrrrVgsFhYuXMgNN9yAy+WivLyc2267jfvuu4+rrrqKgoICrrnmGpRSDBo0iJCQEK699lomTJhAXl4eo0ePBuDyyy9n8+bN3HDDDVx77bW0a9eOXr16NeaPQjRjLrdmxZ5Crnl/JW8s3kW3+ECmXN2TK09LwFtqjwghRLPhdDr55ptviIqKwmKx8Pjjj3PzzTfXzxwVf0Lda1tYO+gwAjZ9Bh9dBDu/BXdtkw6tKSmlOL1tKM+N6YzT5eaWaWv5ZU+hBCVCCHEKadTlNm3atKGgoIApU6bQrVu3+toi3t7exMfH/24bvltvvZUBAwZw4MABbrjhBpKTk1FKMWDAANLS0uqX31x77bXs2rWLc889l27duuHt7Q2Aj48Pb7/9Nr/88gtOp5OePXsSHByMUorY2FimTZvGypUr8fLyolevXvIJ1ClIa01xlZN3f9rDB8uysFvN3HdeGmO6S+0RIYRojnJycnj77bc555xzWLRoEUuWLGHYsGE8/PDDzJw5E09Pz6YeYsvjFQJDnoL4vvDdwzDjSug1AfpPBJt3U4+uSSil6NcmhBfGZHD7jHXcNi2T50Z3pk9ysFwbCCHEKaBRQ5Li4mLy8/N5/fXX8fDwqH9hycjI4Pnnn68PTf5bXTHVnj17HndfSEgIISEhgFHQtXPnznTu3PlX9+Hn58fZZ5/9q/eFh4czbNiwv3N4ogUzOtcU8tSCrWw8UEL/lBDuHNyO1AhfWVojhBDNVFlZGV5eXlitVhYtWsTll1/O8OHDmT9/PsXFxRKS/BVKgdkGHUdBZGf4+gGjRXCfG8DqdXSbU4xSij7JwbwwNoOJ0zO5bXomz47uTL82IRKUCCFEK9eoIUl8fDzz588/7vt1tT6EONm01hRXOnlnyW4+WLYXD6uZfw1NY0y3WDxl9ogQQjRroaGh5OTkMG3aNJYuXcr1119PTU0NtbW12O32ph5ey6YUBKfAqHehqgg8A6G2BrJ/gdheYDn1iroqpeiVGMSLY7swcXomt09fxzOj0jm9bahcLwghRCvWqCFJVVUVa9aswe12N/h+QEAA6enpjfnUQjSgtcatYcWeAp5asI1NB0s4PSWUOwen0lZmjwghRIsQGhrKxIkTmTlzJtdeey2JiYls27aNnj17SnebE0EpY4mNzdso4Lrja5jzD0gdAmc+AP6xp2RQ0iMhkJcu7sJt0zK5Y8Y6nhrVmUGpEpQIIURr1aghSX5+Pi+++CIOhwMwQpMtW7YwcuRIXnrpJXlxESeF1pqSKidv/bibD5fvxctq5v6h7RnVPQZPq8weEUKIlsJkMjF8+HDOOussCgsLycnJITExkYceekhmqDaG+L6QcSms/cBoE3z2I5ByFijzKRWWKKXoGhfASxdncNu0TO6cuY4nR6ZzZloY6sj9QgghWo9GDUni4uKYNm1a/d/dbjfffPMNS5culSrh4qSoK856z6z1fL/1MAPaHpk9Eu4rFzVCCNHCaK1ZvHgxDz/8MCUlJWitiYqK4rHHHpMZqieaUuAdAoMfg/g+8O2/YdY10PN6GHAXWE+t+i9KKTJiA3h5XBdu+TSTO2es47I+8VzaK55wP7tcUwghRCvSqB+7KKWwWCz1N5vNRrdu3VizZg3V1dWN+dRCoLWmtLqWB+ZsZNHWPK4/PYmXx3WRgEQIIVqo4uJiHnzwQSZMmMCXX37JvHnzGDp0KPfffz81NTVNPbzWyWyF9iNg/GxIGgSHN4N2/8+HtUZKKTpF+/PqJV3pGO3Pm4t3c/Fby/ho+V5KqpzyAaAQQrQSjTqTpKysjCVLluByuQBwuVx8++23BAUFYbPZGvOpxSlOa015TS0Pfb6JBZtyueq0RG46IwUP6693VBJCCNH85eTkEBISwsiRI7FYjEuYyy+/nLlz51JcXExEREQTj7CVUgqCkmDkW1BbZXS9qS6BrCWQfAZYPE6Z5TdKKdIifXnr8m58u/kQb/64m4fnbWbm6v38Y2AyA1PDsFtM8mGMEEK0YI3eAvjjjz/G6XQCxlritm3bctddd9Vf3AhxommtqXS4eGz+Fr5Yf5BLe8Vz29ltsVtkvboQQrRkQUFBHD58mA0bNtCxY0e01ixfvhyXy4WPj09TD691UwpsXsZNa9g0B766G1LPhbP+DQHxp1RQ4mWzcH7nKPq3DWXW6v28vzSLWz7N5LQ2IfxjYDJdYgMwm5SEJUII0QI1alIRExPDlClTGhRTk6mIorFVOV08+dVWZq3Zz+husdx1bioe8qmOEEK0eGFhYVx55ZVcffXVBAcH43a7KS0t5cEHH8Tb27uph3dqaTcM8rbC6veNoq59b4YOI8Aj4JQKSwI8rVzTL5EhHSOZsiyLGauyueo/KzmvUyTX9U8kOcxHirsKIUQL06gfrR86dIhJkyZRU1ODUkaavmnTJp599lkJS0SjqHa6eO7r7Xy6ch8jMqK5b2iadLARQohWwmQycdVVVzF37lz+9a9/8e9//5vp06eTl5dXP2tVnARKgVeQ0e1m5NvGcpsv74SPx0BFXlOP7qSqu76NCvDgnnPb8cl1vTm7fTjz1h9k3NvLef7r7RwqrZHrXiGEaEEaNSTZvn07RUVF2O32+u+FhoayePFiKdwqTriaWhcvfbuDD5ZlcV6nSO4/vz3eNglIhBCiNTGZTMTFxTFo0CBOP/10/P39mTZtmoQkJ5tSYLZAu6Fw5Tw49wmI6wWegcZynEOboarY+PoUoJTCZFK0i/Dl6VHpvHNFd9Ii/Xjrx92MfWsZH0pxVyGEaDEadbmN1WqlrKwMl8uFxWIximmWl+NyueSNqzihHLVuXlu0i3eX7OHs9uE8dEEHfO0W+T0TQgghGpNS4BUMPa4F7QJlhsp8mHElWD2g1/8ZS3PsfqfEMhylFFazok9SMF1iA/l2yyHeWLyLh+dtZtbq/UwYkMygdlLcVQghmrNGnUmSlpbGoUOHeOaZZ1i1ahU//PAD99xzD/3798fDw6Mxn1qcQpwuN2//tJs3Fu/i9LahPDqiE/6eVrn4EEKIVkJrTW1t7a/e6jroiSamFJgsxp9WL+h+FTgq4PNb4IPhsH4aVJeeUjNLPG1mhqVH8vG1vbh3SBqFFQ5umZbJPz5azcqsImpdbplZIoQQzVCjziTx9/dn8uTJPPvss3zxxRfY7XaGDh3KhAkT5A2sOCFqXW7eX5rFK9/voHdSEE+O7ESglwQkQgjRmhw+fJgbbriBysrK4+5zOp0UFBQ0wajEb7J5Q68J0PEiWD8dVr0Hn98IfW6CM++HulzgFHitVkoR4GXj6tMSOLdDBB8sy2LG6v1c9f4KhnaK5Lr+SVLcVQghmplG78ObmJjIm2++idPpxGQyYTKZcLuN5FxeDMTf4XJrPv5lH89/vZ2ucYE8PaozwT42+b0SQohWxsfHh8suu4za2trfvP/Y+meiGVAKfMKgzw3QaTRsnAXxfQAFlYWwfwUk9AObzykTlkQHenL3ue0Y0SWat37czbz1OXy/9TBje8RyWe94wv085BpGCCGagUYNSfbv38/jjz/OCy+8UL+8JjMzk6lTp/L4449jNpsb8+lFK+Zya6avyuapBVvpGO3Hs6M7E+Zrl4sLIYRohby9vRk+fHhTD0P8FUqBbzj0/sfR7235AhbcBRGdje+nnGPMPjkFXsNNJkVapB9Pj0pnTPcYXvthF2//uIf563O4+rREhneJxs9DaqoJIURTatSaJDt37kQp1eDTnaioKDZs2CDdbcRf5nZr5qw9wGPzt9A23Jfnx2QQ6S+fvgghhBDNllJHQ5DUIXD63VB+CD77P/joItg8F5xVTTvGk8hqNtE7KZi3LuvOc2M642238Mj8zVz27i8s2JhLtdMl9UqEEKKJNOpMEh8fHw4fPozD4cBmswHGumJAZpGIv8StNV+sP8i/v9hEQogXL4zNICbQUwISIYQQv0prjcvlIisri4qKCpKSkvDx8TnudaO2tpbc3FwOHz6MzWYjISEBb29vlFLU1NSQk5NDQUEBPj4+xMfHY7cbsxdLS0spLi6u34+npychISHyuvRb6pbh9J8IGeMg8xNYMwXm3QpXzIOIjkeLu7byn+GxxV37p4Qwe80B/rM0i1umZdI3KZh/DEyma3wgFpOS3ychhDiJGjUkSUtLo7a2lttuu43BgwdTUlLC+++/z+jRo2XtsPjT3Frz9aZcHpi7iegAT14c24WEYC+5cBBCCPGbXC4XzzzzDAsXLsTf3x+tNW+++SYRERENXj+2bNnC3XffTWBgICUlJbhcLt544w3i4uL47rvvePXVVwkKCiInJ4fIyEheeeUVAgIC+PDDD3njjTdISEgAoFevXtx3333y2vR76n42vpHQ/3boPA72r4LQVCMg2TzH6JSTfCZYPU+JsCTAy8ZVpyVwbscIPlyWxbRV+7n6/ZUM6RTJ9acn0UaKuwohxEnTqCGJt7c3r732Gm+//TbvvfceXl5eXHfddQwZMqQxn1a0QlprFm09zH2fbSTU186LYzNIDvWWiwUhhBC/a9u2bUyfPp3Zs2cTFRXFzTffzLvvvsu//vWvBtulpqYyY8YMPD09qamp4YorrmD27NnceuutDBo0iDPOOAObzUZxcTFDhw7l559/ZujQodTU1DBs2DAeeughAEwmk7w2/VF1Pye/KGh/gfG1sxJWvGMUdo3tBb3/CckDwXJqhCWR/h7cOfhocdcvN+SwaOthLu4Ry/g+8URIcVchhGh0jVqTRClFVFQUDzzwAB9//DE33ngjK1eu5O6778btdjfmU4tWRGvNTzvyuXvWevw8LLw4NoPUCF+5SBBCCPG7tNb88ssvtG3blri4OOx2O0OHDuXHH388rlOOzWbDy8uL2tpaqqqqcDgcBAUFAcYSGpvNhtPppKKiAqUU/v7+9Y89cOAA3333Hdu2bfvVOhJa6/qb+BV19UqUAqsXXPg6nHYLFO6CGVfCJxfDzm/B7WrqkTY6pRQmk6JtuC9PXpTOe1f2oEOUH2//tIeL31zOB8v2UlzpkN8lIYRoRI02k6RuDfCePXuYN28en332GQcPHuSyyy7jqquuwmRq1HxGtBJaa5bvLuTOmevwtJp5YWwGHaL8JCARQgjxh+Tm5hIWFlZ/3REaGkpxcTEOhwOr1dpg24MHD3LrrbeyZ88ekpKSGD58eP3rTWZmJg8++CBZWVmcc8459OjRA4CIiAhMJhMLFixgxYoVnHHGGTz44IP1tdgAqqqqeOutt+prl/z000907tz5JBx9C6QUBMTBoPugy2VGvZLMT2DdVEgaZCzH0W5QplY9s0QphdWs6JUYROeY7ny39RBv/LCLR+dvZtrKbC7vG8+QDpH4eUonHCGEONEaJSSprKxk/vz5zJw5k6ysLLp37864ceP4/vvvuf/++yUgEX+I1prVe4u4Y8Y6zErx/JgMMmID5GJACCHEH6aUavCpu9b6N19HwsLCeP755zl48CAPPPAAs2bN4uqrr0YpRVpaGpMnT2bHjh3cf//9/PzzzwwaNIgxY8Zw8cUXo5Ri586dDB8+nLFjx5Kenl6/X7PZTGJiIuXl5YARuIj/QZkgMB7OmARdLwcUmMxQkQffPwJpwyGhH1jsrT4s8bSZGdopkn5tQpibeZAPl+1l0mcb+WDpXq7oG8+5HSOlbbAQQpxAjZJWbN26leuvv57g4GA++ugjXn75Zfr37y/rdMUfprVm3f5iJk5fR63bzbNjOtM9IVB+f4QQQvwpcXFxHDhwAJfLWKpx4MABQkJCfrWAvNVqJTY2lp49ezJy5EgWLFhQf5+npyfx8fGceeaZ9OzZk8WLFwNgsVjqr29iYmIICAio7+RXx263M3z4cC699FIuueQSOnTo0IhH3MooEwQmGIEJQMFO2PENTLvUuG35HIqzweU82hWnFaor7np5n3im/V9vJg1rj8PlZtKcjYx7aznTVmbLMhwhhDhBGiUkSUlJ4ZlnnmHfvn1ceeWV3H///axZs0bW44o/RGvNpoOl3DZtHZWOWp4e1Zk+ScESkAghhPhTlFL06dOHPXv2sG7dOgoLC5kxYwZDhgzBbDazZs0ali1bhtaa/fv3k5ubS3V1NXl5eSxevJj27dsDsHv3bgoLC6murmbv3r2sXbuW1NRUtNbs2LGD0tJSKisr+eGHHyguLiYpKamJj7yVUgriesOV86Hn9ZC7AWZeA28PgnWfGtu4XVBdYvzZCq85lVIE+9i5ok88067vzb+GpuFwubl/7kYuefsXCUuEEOIEaJTlNr6+vlxzzTVcdtllbNmyhc8++4xXXnmFoqIiXnzxRYYNG0ZKSoq86RXH0Vqz/VAZt03LpKTKydOj0jk9JUR+V4QQQvwlCQkJTJw4kdtvvx2z2UybNm0YP348Sil++ukniouL6d27N6tWreLVV1/FZrNRVVVFu3btuPHGGwGYN28e8+bNw2q1UllZyaBBgxg+fDhut5s33niD9evXY7FYqKmp4ZFHHqlvBywagTJBcDKc/RD0uAb2LoWsJRDa1ri/cA/MvBKCUyBxAMT2NGahWL2OPL51XE8cDUsSOD89ii/WH+Sj5fu4f+5GPli2l8v7xnNuhwj8Pa1yDSWEEH+S0o0cNdftvrS0lOXLlzN9+nTcbjfvvPMOZrO5MZ/6hHG73UyYMIFLLrmEgQMHNvVwWi2tNbvyKrhp6hpyiqt5YmQnBneMwCQv7kII0WoUFhYyZswYZs+ejZ+f30l5Tq01xcXF1NTUEBwcjMVi1G9wOIxP3G02G1prysvLKSsrw8PDg4CAgPoaai6Xi7KyMiorK/H29sbP72gBcafTSUlJCU6nE39/f7y8vH73TanWmkmTJtG5c2fGjBlzUo6/VdMaOHIpq0xweAt88yDkroOKAqNmSVAyZIyDXv8HqFZZ+FVrTWGFoz4sySqooG2YL5f3iefcjhKWCCFap8rKSkaMGMGUKVOIjIw8YftttO42depOyP7+/pxzzjmcddZZlJeXS/FW0YDWmr0Fldw2LZP9RVU8OqKjBCRCCCFOCKUUgYGBx33/2A40Sin8/Px+NbixWCwEBgb+5j5CQ0NP7IDFH6cUcMy1Qmg7uPgTo8Br7gbI+hH2LgNHhbFdbTV8fT/4hEPCacb2Hv4tPjQ5bmbJuoN89Ms+Js05MrNEwhIhhPjDGj0kOZZSCrPZjL+//8l8WtHMaa3ZX1TFbdMz2Z1fzr/P78D56VESkAghhBDiz1EKzBbwiwTfCEg52whG6mabVJfAgVXGjJMfnzG2i+4GKedAx4vAZGm4rxamPizpm8D5nY8uwzk2LBnSMQI/CUuEEOI3ndSQRIj/prUmp6SaidMz2ZZbxqShaYzsGoPJJC/cQgghhPgb6kIAq+fR7/mEw+VzIX+HUc9kz4+Q9bMx86TDhcY2W+cBCiI7g284mKwtLjBpMLOkcxTz1uXw4fK9TJqzkSnLsriiT4LMLBFCiN8gIYloMlprDpfVcMeMdWw8UMrdQ1IZ0yMWswQkQgghhGgMShnLa2K6GzNIev/TCEicFWC2gcsBv7wJ+5aBZyCEtYeE/pDQD6K7GjVOWhClFMHedi7vE8+w9EjmrZewRAgh/hcpDCKahNaaggoHd89cz5q9Rdx2dgrje8VjkVo1QgghhDgZjl2aE9zmyN+tcP5LcMEr0OYsKD0APz0LM68ywhStoXgfHNoMNeVGEdgW0G63bmbJ5UdaB08alobTpZk0ZyPj3l4urYOFEOIYMpNEnHRaa4orndw7ewPLdhdw8xkpXHVaIhazBCRCCCGEaEJ1LYaDkqDzxVBdCgU7oGivsVQHjJkmq98H/1iITIfYXhDVBUJTwebdpMP/X36rdbDMLBFCiKMkJBEnldaa0upaJs3ZyOJteUwYmMx1pydhlYBECCGEEM1FXdcczwCI6WHcwJg1kna+UeB1/yrY/QNsmm0s1Rn7ESSfAVXFkLcVghLBM8jYtpkFDseHJTl8tHwv98+VbjhCCCEhiThptNaU19Ty4Ocb+WZzLlf3S+KGgclYzfLiK4QQQogWQCmI623MHnE5oTIf8rYZ7YbD2hvb7FtmLM/xCDRml9SFLJGdwSesWQUmR8OSeM5Pj6yfWSJhiRDiVCYhiTgptNYUVTp5bP5m5q/P4bLe8dx6Vgp2q7mphyaEEEII8ecoBRYb+EUZt+RBR+8L7wBnPgjZK4zwJPsXI1A57WY4437j671Ljz7W6gmoJg1PfmsZjoQlQohTkYQkotFprdmZV84Dczaxem8R43rGccfgVOwWWWIjhBBCiFbGPxZ6TYCe/weOMqPQ68FMIzwBKD8En10PjkoIjIfIDIjrZXTbCWkHTVjE/ndrlizNYlzPOIZ0iiTExyZhiRCi1ZKQRDQql1vz4/Y8Hvx8E0WVDu4cnMplfeKxW0zy4iqEEEKI1qfu+qau3XBEJwjvePR7noEw5GnYtxwOrIZtX8G6qcaSnMvmgLIbs09QRhFZzwBQ5pM60+TYsOSCzlF8sS6HT1bs4+F5m3n35z1c1DWGC7tEEx3oiTqyvRBCtBYSkohGobXGUevmo+V7eem7Hfh7WXnp4gwGtA3DbJIXUiGEEEKcQo4NEWzekHaBcXM5oOIwHN4K7lqw2I0/f3jSWJLjEwZhaUaAEtvTuFm9TuKwFUHeRuvg4RlRfLflMB//spfJ3+/k41/2Miw9irE9YkkO9cGkJCwRQrQOzTIk0VrjdrvJycnB6XQSHR2N1Xr8GkitNQ6Hg5ycHNxuN5GRkXh4eKCUQmtNZWUlOTk5+Pj4EBYWhunI9EWtNSUlJRw+fBhfX9/6++TEfmLU1R95ZuFWZq0+QJe4AB4Z0ZGUMB/5GQshhBBC1F0PWezG8hy/mGPuM8EZ/zJCkuwVcGgT7PkJbF5wzbdG15zKAqitAd8IY/tGvr5SShHgZWNk12jO7RjBz7vy+WjZXj7+ZS+z1uzn7LRwLukVR8dofywmJdd7QogWrVmGJLW1tTz11FN8++23WK1WEhMTee655/D19W2wXUFBATfffDN5eXmYzWasViuTJ08mLi6OrVu3ctttt2GxWCgvL2fcuHFce+21mEwmvv32Wx5++GGCgoIoKChg8ODB3HPPPVit1iY64tZDa83Ow+XcP3cja/YWM7JrNHcOTiXIW9auCiGEEEL8qmOvkZTZmDkS3R20G2pKoXAPFO8F/yhjm1/ehDUfQEI/aD8c4vuAVzCNXQBWKYW33cLZaeEMSAllzb5iPv5lL19tzOXLDTn0SwlhfO94eiQEydJqIUSL1SwrZ65Zs4Y5c+bwwQcfMHPmTHJycvjss8/QWjfYbsGCBRw+fJiZM2cye/ZsfHx8mDp1Km63myeeeIK+ffsya9Ys3nzzTd5++2127dpFbW0tzz//PJdddhkzZ87kjTfe4OOPP2bv3r1NdLSth9ut+WFbHtdMWcWmg6XcdW4q/76ggwQkQgghhBB/llJgMhs1TKK7QocLweJh3Fe39Gb3DzDzanj7LJh/B5TsN+7X2rg12tAUdquZ3klBvDA2g6nX9WJ4RjQrs4q4dsoqrn5/JV9tzKW82nnc9bsQQjR3zS4k0Vrzww8/0LNnT2JjY/Hz82Po0KF88803x51kPTw8MJvN9W/ALRYLfn5+1NbWsm3bNk4//XTsdjvJycn4+/uzfPlylFJ4enrWP8ZkMuHp6YnNZjtuHHU38fu01tQ4Xfxn6R5u+XQtoHnp4gyuOi0RD6tZAhIhhBBCiBNFKWhzFoz+D1z3HZz3tLEEZ+d3Ro0TrY1ZJwdWGR10GjEwUUphNZvoGO3PIyM6MmNCH646LZGs/Apu+XQtl7zzC9NWZlNY4ZBraiFEi9Esl9scOHCA6OhowDj5RkVFkZubi8vlqq8rAjB48GDmz5/P0KFDsVqtBAUFMXbsWMxmM1FRUWRmZtK/f39yc3PZt28f2dnZmM1m7r33Xm644Qbmzp1LTk4OEyZMICYmpsEYysrKmDZtGlVVVWit2bx580n9GbQURv0RB88s2MasNVJ/RAghhBCi0SkFygKBCdDtKsi4FMoPg9+R5Tgr34OVbxtFX1OHQuq5ENwGzLZGWY6jlMKsIDnUh7vOTeXyPvHMzTzIzNXZTJqzkXd+2sPo7jFc0DmKcH8PTHKNKIRoxpplSAL8z7RZa82qVas4ePAgDz74IB4eHjzxxBN8+eWXjB8/nokTJ3LHHXewYsUKqqqq8PDwwGQy4XK5+PTTT+nfvz+XXnop69atY8qUKQwbNqw+mAHjZK+UwmQyobWWN/y/QmvNjsPl3D9nI2v3GfVH7jo3lUAvWV4jhBBCCHFSKGUUgA2INf6uNXQeC2YrbP8KfnwKfn4BoroarYfD2h2dWdII12smpYgK8GTCgCTG9Ijh602H+OSXfTz79TamLMtieEY0o7rFkBDsLR0PhRDNUrMMSWJiYtizZw9gvBE/cOAAERERmM3mBtvNnj2b/v37c+aZZwIwevRoPvvsM8aNG0e/fv2YO3cu+/btIzQ0lJtuuom2bdtSWFjIggULmDNnDikpKXTs2JGPPvqIlStXNghJfHx8uOaaa+rHsGHDhpN09C2Dy61ZvP0wD36+iZJKJ3cPSWV8r3jsVvP/frAQQgghhGgcSkF4BwhrD/1ugYOZsOUL40+btxGQ5K432g4n9gOfxumQo5Qi2NvOxT1iGZYeyY/b8/ho+T7eW7KH6SuzGdwxgkt6xpEa4fvbHXG0BjSNXZBWCCGO1exCEqUUAwYMYPr06ezbtw9/f3/mz5/P2LFjUUqxdu1avLy8aNu2LWFhYWzatIny8nLMZjOZmZmEh4djMpmorKzE19eXjIwMfvzxR0pKSujfvz8eHh54eHiwYcMGEhIS2L9/P4cPHyY0NPS4cdSRNZRHaa2pqXXz4fK9vPzdDoK8bLw0rgsDUkIxyacBQgghhBDNg1Jg94OE/kYXHEel0UYYYMMsWP4qeIdCYn9IGw5xvcEryAhMTugwFL4eVs7rFMmZaeGs2FPIR8v3MnftAeatO8CgtiFc2Tua9DArZkcZ2H3AKwSclbD0FSjJhpiexpIh71AkMBFCNLZmF5IAdO3alQsvvJDLL78cq9VKcnIyI0aMQCnFJ598QnR0NG3btuWqq67ipptuYuTIkfWzTF588UWUUixdupTnnnsOm81GTU0Njz/+eH0Qct999/Hcc8/x/vvvU1hYyLBhw+jWrVtTHnKLoLWmsMLB0wu38dmaA3SND+CR4R1pI/VHhBBCCCGaJ6UAZYQPYMzO6HODMdtk81yj4OvGzyAgDi56x+ikc+wHhH/lGq/u8VqDuxZqq1A15XjUlNI/uQ19koPZtGwh279+i7AtBfjuLEN71aCdZei+N6FOvxPldsHWL6F0P6ybBkuehw4jjaVEIW1PeJgjhBB1mmVIYrFYuOeee7jiiiuora0lKioKq9UKwIMPPlhfvDU6OpqpU6eSm5uL2+0mIiKivnPNwIEDad++PVVVVYSHh+Pjc/SN/MiRIznjjDPIz8/Hx8eHsLCwBgVhxfHq6o9MmrORzH3FXNQtmjsHtyPQyyoBiRBCCCFES6EU+IZD+hjoeBGU7DOCkr3LjMKvWkPWT7B7MaSeB+FpYPFsGJbULYNxu6G22pj1UVUEVk/wjwW3E5a8aCzrKcuFygKoKgaLHXX1QqwBcWT4V5LhtxE8Aqj1DGdVgZ31FT7sW+1FV98DnJEaiv+4qSiAPYth7Uew/DU4vBnGfgQmBdoFyiwzS4QQJ1SzDEmUUpjN5uM6zoBRK+RYHh4eJCQkHLed1WptUGPkv/cfGBhIYGDgCRlva6a1xq1h8bbDPPhFw/ojNotJAhIhhBBCiJZIKTBbICgJeiRC96uMwAEga4mxHGf5a8aMk3ZDIa4vRHQyluzkrodlr0LpQajIh6pCcFRAp9Ew7HkjRNm3HAp3gWcQhLYzApiAeLD7Gs+deq6xDMjmhdnsQUypgxVrDvDTmgN8OnM9bcJ8GNsjlqGdIgntPA7V4ULYvxJMFuPmKIcF90JsT2hbtxQHCUyEEH9bswxJRPNQV3/ko+V7eem7HQR62Xjp4i4MaCv1R4QQQgghWo26lsJgBByn3QptzoKt82H7Qlj0uNE++IovjOU4NaWwb5kRePhGGN/zi4LYXoAyth35NphMYPUyQo265TF1IYbN27gZjyAmyMpNZ6Zwca84vtyQy6cr9vHY/C28/3MWd56bynmdIjEl9D+6j7IcyF4B6z4F/+eh40joNAZC2sjsEiHE3yIhifhV9fVHFmzjs7UH6BYfyMMjOtAmVOqPCCGEEEK0WkoZs0Vie0JMD+g/0eiMU7DTCEIAYnrBdYuMAMRiOxKA/FdBVe/gv/DUijBfD67oE8+FXaL5fushXl20i0mfbcRmNnF2+/Cj16HBKXDVfNj+tbEUZ9mrsOo96Hsz9LutUdscCyFaNwlJxHG01mw/VM79czaSmV3MRd1iuHNwqtQfEUII0SJprY3lo243ZrP5V1/L6jrZ1dbWYjKZMJmOLimte7zL5Truvrr76+5T6jdamQrREikFHv6QNMC41bHYwBLSiE+r8Pe0MiIjmnYRftzwyRr+9dkGvGxmTmsTYvwfU8pYYpNxCXS8ELJXQuYnRlFXgJoy2P2D0bXHO1TCEiHEHyYhiWjA5db8sO0w//58EyVVTu4Z0o5Le8Vht5qbemhCCCHEn6a1Zu3atUyePJmysjKGDBnC+PHjsdlsDbbbv38/Tz/9NDk5OZjNZs455xzGjx+P3W4nMzOT1157jcLCQjw9PRkzZgxDhw7FbDbjcDj48MMPWbBgAb6+vtx0001kZGRIUCLECaCUol2EL8+N7sxNU9dy16z1vDKuC13jAo/+H1PKmNGSeLpR46Tue/uWwezrwTfSWIqTPhqCZSmOEOJ/k5BE1Kt2uvhgWRavfL+TIG8bL4/rwukpUn9ECCFEy1VQUMCNN97I9ddfT1paGnfccQdBQUEMHz68QZBhsVgYOnQoCQkJ5OXlMXHiRPz9/bnooovw8vLikksuISoqih07dnD33XcTFRVFt27dmDdvHlOmTOHZZ59l06ZN3HjjjcydO5eQkMb7lF2IU4lSiozYAJ4elc6tn2Zyx4z1vHpJF9Ii/RqGkUodLTwLxnKh856BzI9g2WRY9a5RZ+W0W4wCtEII8Ruk761Aa01BeQ33z93Iswu30zHan3ev6CEFWoUQQrRoWmuWLVuGj48P48aNo2fPnlxxxRV8+umnuN3uBttGREQwePBg2rVrx2mnnUaXLl3YvXs3AG3btmXgwIGkpqZy9tlnExkZyYEDB3C73UybNo0rrriCHj16cMkll+Dp6cmyZcua4nCFaLWUUvRJCuaJkZ0ornQwcfo6dudX1C+T+1WegdBlPIz/DC6ZZgQkuxdDyX7jfmc1VBYerV0ihBBHyEySU1xd/ZFJczawbn8Jo7vHcMc5qQRI/REhhBCtwLZt20hMTMRms6GUom3btrz33nvU1NTg5eVVv51SipKSEubPn8/u3bvJysri9ttvr7/v4MGDfPPNN2zevBk/Pz/69u2Lw+Fgz549tGvXDqUUNpuN5ORktm3bxvnnn1+/b5fLRXZ2NrW1tWitKSoqOuk/ByFaOqUUg9qF8dDwjvzrsw3cPn0dky/pQnSA529fs9YVoU0cYCzFKc42lt9oDVvmwuJnoMOFRuvi4CRZiiOEACQkOaW53JpF2w7z0JH6I/cOacclveKwmU0SkAghhGgVqqur8fDwqP+73W7H4XAcN5MEjDAjJyeHgwcP4nK5qKmpqb+vpqaGgwcPkpubi9vtxuFw4HK5qK2tbVDfxMPDg6qqqgb7raio4NFHH+XQoUOAEdwMHDjwBB+pEK2fSSmGdoqkoqaWR+Zt5s4Z63np4gxCfe2/f+1a1+I4KNH4u9bgEQBeQbD0JVj5DqScbcw8ie0JFo/f3pcQotWT5TanIK011U4X7y7ZzW3TMjGZFK+M68IVfRIkIBFCCNGqBAYGUlJSUj8tv7S0FG9vbyyW4z8nCgoKYuLEiUyePJmBAwfy8ssv19+XmJjIPffcwzvvvIOvry+ffvopVqsVLy8vSktL6/dfXFxMUFBQg/36+vry+uuvM3v2bGbPns1FF13UiEcsROtmNilGd49h4tltWbOviHtnb6Co0vn7S2/+m1KQcg5cNgfGfQrJg2D7Qvh0PORuNLbRblmKI8QpSkKSU1Bpde2R+iPb6HSk/sjpR+qPSEAihBCitVBKkZGRwdatWyktLcXtdrNs2TLS09Ox2+1UVVVRWVmJ1rp+KUwdi8VCbW0tQIP7lFKYzWZcLhdWq5WMjAyWLl0KQElJCdu2bSMjI+O4cVitVqxWKxaLBZNJLr+E+DssJhNX9E3gnwOT+WlHPg/O3UhZde2fD0psXpA0CEa+BVcvgLMehLD2RjiyaQ4sehwObwGXUwITIU4hstzmFKO1Ztbq/Xy25gBjusdy52CpPyKEEKL16tq1K8nJydx6660kJyczb9483n77bQBeffVViouLeeSRR5g7dy7Lly8nMTGR7Oxsvv76a1544QUAXnvtNfLz84mMjGTTpk1s376df/3rXyiluOaaa7j++utRSrFz507atGlD165dm/KQhTglWM0mJgxIprymlveXZuFtt/DA+e3xtJr/3HVt3VKc0HbGDYxZJHt+hHVTYcVbRnvhzuMg4TSw+0ndEiFaOQlJTjHVTjfzN+QQH+zNneemEuApAYkQQojWy8PDg1dffZUFCxZQXFzMlClT6gutnnfeeTgcDgD69euH1pqDBw+SlpbGtddeS1JSEgDDhg1j2bJlFBQU0L9/f+677z4iIyPrZ6pMmTKFxYsXk5KSwuDBgxvUQBFCNB6bxcRtZ7elosbFjNXZeNst3Dk4FQ+r+X8/+L81uB42weDHjKKu6z+FHd/A9gVG6+AxH4J/9NGZJXIdLUSrIyHJKWZrbimbD5ZyeZ94CUiEEEK0ekopAgICuPjii4+7r3379vVfh4eHM2rUqF/dR1JSUn1g8mv7b9++fYN9CSFODqUUnlYz957XjgpHLR8u24u33cJNg9pgtfyNZW1Kgc3bmEGS0A+K98HWeZC/wyj2qjXs/NbYNq432HwkLBGiFZGQ5BSitWbhplwAzu0YIQGJEEIIIYRo0ZRS+Ngt/PuCDlTWuHhz8S587RauOi0Bi/lv1v9RymgLHJQIfW4EtwtMZnA5YNlk2LsMwtKMFsJpw8A/FpRJAhMhWjipHHYKKa2u5dsth0mL9KVdhF9TD0cIIYQQQoi/TSlFgKeVx0Z2pHtCIC98u53pq7JxuU9gsVWlwGw58qcVhj4HA+4yirp+9xC8czZ8eSc4Kk7ccwohmoSEJKcIrTVr9hWxt6CCIZ0i8bDKP70QQgghhGgdlFKE+th5elRn2kX48viXW/li3UHcjdGVRpkgKBn63w5XfwWj34e4XlCZbwQoWsOBtVCy35h9Ip1xhGhRZLnNKcKt4cv1OXjbLJzZLkyW2gghhBBCiFZFKUWUvwfPju7MDZ+s4d9fbMLbbuastPATf+1btz8Pf0g9D1LOAWcVmG3gKIcvboaKPGh7LqSPhagMsHjIUhwhWgCZTnCKyCur4aed+XRLCCQ2yKuphyOEEEIIIcQJp5QiMcSb58dkEORl477ZG/l5VwG6MWdz1C3B8TjSHthsh9PvgIh02DgTProQPhoJ66eBq7bxxiGEOCEkJDkFaK35eVc++WU1DO0UicUkCbYQQgghhGidlFK0i/DluTGdsVlM3DVzHWv3FTduUHIsiw3SLoCLP4Irv4Se10NpDmydD2hj+U3pQaitkaU4QjRDEpKcAmrdmvnrcwj1tXNamxBZaiOEEEIIIVo1pRQZsQE8Myodp0tz+4x1bMkpO3lBiVLG0puITnDWv+Gab+DcJ8BkgapC+GSscVs/zViWo7UEJkI0ExKSnAL2FVSyem8R/dqEEOpjb+rhCCGEEEII0eiUUvRJDuaJkZ0ornQwcXome/IrTl5QYgzCKPTqEwr+MUdqkihI6A8FO2HujUZnnG8fhMObJSgRohmQkKSV01rz3dZDVDpqGZoeKbWihBBCCCHEKUMpxRntwnjogo4cKK5i4vR1HCiuOrlByX/zCoLBj8K138Kw58EvCla8BcteBe026pbk74CSA1BTaizLcbtltokQJ4l0t2nlqp1uFmzMJSHYmy5xgbLURgghhBBCnFJMSjE0PZIKRy2PzNvMnTPX89LYDEJ97U13baxM4BsBXS6DTqMhZ92Rwq8mKM+BD0cY4YjdF7xDwDscwjtAv1vB6gnF2UYXHQ9/Yxuz3VjKo5R00BHib5KQpJXbklvKlpwyruybgJ+H/HMLIYQQQohTj9mkGN09hoqaWp5ZuI17P9vAs6M6E+BlbdoPEZUyQo+43ke/Z/OGHtdB8V4oy4Hyw5C7HqqLod9txmySZZNhzQdg8zHCFe8Q8ImAPjdAbE9wVELuBvAMMIIUmw9Y7GAyAxKkCPF75F1zK6a1ZsHGXFAwuGNEUw9HCCGEEEKIJmMxmbiibwLlNbW8tmgXD36+kccu7ISP3dK8Zlvb/eC0W4yvtRvcTnDWgKvGCDoAUoeAZxCUHjgapBxcC44K4/7ivfDJaGPpjt3HCEq8QyG2Fwy6z5h1krvBmI3iHXokSPE2WhmbLMaMFq3BXdeyWEH9j+hInRU4svznv5cAqaMzWhrc/ys/4+b0cxfiCAlJWrGSKiffbTlE+0g/2kX4Nq+TvxBCCCGEECeZ1WziHwOSqaip5f2lWXjZLDxwfns8rebmc6187DiU2Zj9YfFouE3iAOMGR+qYOIzlOVZP43s+YXDOo1Cy3whSSnOMLjqlB48EHBp+fBa2f2V04bH7Hl26M+wFoyvP4S3w1V3Gtsp09BbdzQhaAH561lgqdOz9Ziv0vwNC20Lhbvj5JSMsUSbj2EwmCGsP3a4CFKz92Ah1IjoZ3/eLOnIcMuNFNA0JSVoprTVr9hWzr7CScT3jsFukRq8QQgghhBA2i4nbzm5LeU0tM1fvx8du4c7Bqdit5qYe2h93XJDieTQgAfAKNuqd1NFuYyaK5mhI0vsfkDTACE5KD0BZrhG01M340C5wVhqzUXAb+9AaKguO7rck+0hXnrrCsm4j1HGUGfdXFcHOb8HlNJ6zbmZJVTF0u9IYz+5FsH0h1FaD1QsCYiEyAwbcDYHx4HYZj1FmCU3ESSEhSSulNcxffxBvu4Uz2oU1n2RcCCGEEEKIJqSUwtNq5r7z0qiocfHBsr34eFi4YVAbrOZW9MHicUGK17F3QnyfhrVQtMsIJMxW4+9hHeDK+RjhBtQvm1Em6oOUc586siTnyH113XdsPsafkZ3h/37CCFn00TDFYjPGBHDuk3D6ncbMlf2r4OAayF5hbAuwZzEsfx2iukJMNwhtZywRsnhIaCIahYQkrdThsmp+3llA9/hAYoO8/vcDhBBCCCGEOEUopfCxW3jogg5UOmp5/YddeNstXNU3AUtrCkr+lwZBisWoR1LHZDJmqPwe2/94n2G2gnfw72/jE2bcQttBhwuNpUM1pUbNFTDqrRTshKwlxn12PwhKhL43Q4cRRpjirDoSmpiOPy4h/iQJSVohrTVLduaTX17D0PQoLCY5SQghhBBCCHEspRQBXlYeH9mJWz/N5Pmvt+NtMzO2RxxmuX4++eqCDYsdLKFHv99pNLQ911jak7Me9q80uv3UBTqlB2H6FeAXCdHdIborBKcYS47MVglMxJ8mIUkrVOvWzF+fQ5ivnb7JwbLURgghhBBCiF+hlCLUx87To9K5aepaHv9yK952C+d3jsIk19DNg8lstDL2DIDwjpAxDmodR9oZY9RR8QqGg5mw42twu8ErCFLPg/OeNbarzAeL55GZLyeoIGzd0qLjvl9Xv8VljMVsNW7uWqOQrrPKqL+CAr9o47hMFglzmhEJSVqhvQUVrNlXzLkdIgj1sTf1cIQQQgghhGi2lFJEB3jy3OjO3PDxGh78fBNeNjNnpYXLh43NjVKAAusx3X6CkuDij6G6BAr3QE6mUdvEL8pYMuRywpwbjJkoEZ2M2SZRGcbjvIKM/dWFGtptBBsuh3GzeRs3lxMObTSew1Fx9GayQPpYIwTZ8gVs+swoduuoBGeF8XW/icZsmMpC+GAElB8y2jorE3iFQExPGP6KUcelptT4vtXraDcgcdJJSNLKaK35dsthqhwuzkuPxCRTBYUQQgghhPhdSikSQ7x5fmwG//x4Dfd9thG7xUzf5GDMJiVhSXOm1JHaJyHGLaY79LjmSOFXBbiNtsWOctj9gxFkKGWEJONng28kbJgJa6YYwYez0pid4nLCgLuMLjzVxfDpeCPgqH9ewD8W0s4Hs7/RIWj/SqMorcXTCFd8I492HbJ5Q5fxgDYCEWc15K47MtPEZmyz+GljNkxYGkR1Mbr8BLcB34ijBXVFo5OQpJWpdrpYsDGXhBAvusQGNPVwhBBCCCGEaBGUUrSL8OW5MZ256ZO13PjJGvqnhHJRtxh6JATiY7dIWNIS1M02qSviavEwwo5+txntiwt2Gh10yg+DR4CxjdtpBCQ2LyNosR6ZQRIQa9xv94UzJhlf180usXmDhx/YfYzn7Hr5kVkltqPLZ5Tp6LIgmzecfsfRcdZ1+3HXHglJtFGQ1i8KDqw22iJrl1HAdswHRieiqmIoygL/GPDwl2U6jURCklZEa83mnDK25pZy9WmJ+HrIP68QQgghhBB/lFKKLrEBvD6+K//5OYvF2/P4ZvMhUsJ9GJ4RxbkdIogO9MKkkMCkJVHKmOHhF2nMykjo1/D+9LHQcZSxPEeZGrY5VgrMduh88dG//5q64OTPjEmZj4YoGuh+DXS9wljWU7TXKFCbtxUC4oxt9vwIn/2fUYMlJMWYaRLVxShW6xctgckJIu+iW5kFG3MwKcXgDhFy4hZCCCGEEOJPUkrRKdqfZ0d3Jruwki835PD5uoM8s3Abb/24m4GpYYzsGk1GbACeVrNcc7c0v/bvVVdc9c885kSre45jlw5Fd224TVh7YzbKgbVGeJK9wigC228iDLrPWCa06TMjMAlOPtLhx3byjqGVkJCkFSmpcvLdlsN0iPIjNcK3qYcjhBBCCCFEi6SUwqwgIcSbfwxMZnyfeFbsLmTmmv18s/kQX6w7SPsoPy7sEs3ZaeGE+3kYEwPkjag4kf779yk42QhEtNtYHlR6AA5vgZC2xrYVefDtg8ayIo8ACEyAyM4Q3xfSLjjaNpn/7sxzzKyZ3+ra81tjaoWabUii/+sf57dOOL+33V+9ryXSWrN6bxHZRZWM7x2P3WJq6iEJIYQQQgjR4iml8POwcmZaGANTQ9mdX8G8dQeZvyGHh7/YzGuLdnFW+zAu7BJDxyg/bBZTi39vIZqput8rZTbqoXj4QWi7o/d7h8KYjyBnnVF35dBG2DgLDm2CdsOMbVa9C/uWHV3qo8xGeNLnBmMJT8l++OVNY1uT6eh2QUnGkiON0cmnaM8x+zAZ+0gdYtRUqciHXd8dHavJDCYrJPY3aqk0c80yJNFas3PnTj7++GOqqqq48MIL6dmzJyZTwzf+LpeLn3/+mS+//BKXy8XAgQM555xzsFqtOBwO5s2bx5IlSwgPD2f8+PFERUWhlDJqd2zezMyZMykuLqZbt25cfPHFWCzN8sfxh7g1zN+Qg4/dwqB2YXJiFkIIITCuKaqqqlixYgUlJSV07969/nrgWFVVVWzYsIHs7Gw8PDzo0qULkZGRAJSVlbF582b2799PeHg43bp1w9PTE6UU+/btIzs7u34/YWFhtGnTRl6HhWiFlFJYzIqUMB9uO7stV52WyJKd+cxavZ/P1h5g1uoDZMQGMLJrNANTwwjxsdU/TohGc+zvl8UOsT2MDj9cbSzFKT8Mzipj2Y3bZSzR2bf8aOFY7TZCjoxxxj4q8mDdJ0Z3HwC0sW3i6UbtFqWM4GXHwiMTUo5MPlBmCE01QpKiPfDFrUYbZTAeb7HBtd9LSPJX5eXlcfXVV3PBBRcQHx/PjTfeyHvvvUd6enqD7VauXMkNN9zA7bffjqenJ5MmTaK2tpYLLriA9957j2nTpnHzzTezbt06JkyYwCeffIKPjw9r165l4sSJXHrppfTs2ZP8/HxcLleLDkkOl1bz8858eiQEERvo2dTDEUIIIZoFp9PJnXfeyf79+4mJieGZZ57hP//5z3FBxu7du3nllVeIi4sjLy+Phx9+mHfffZcOHTrw8ssvk5mZSdu2bVm/fj3BwcG8/vrreHl58d5777Fw4UI6duwIQJ8+fWjTpk1THa4Q4iSoO3cEetsYlh7J4A4RbMstY27mARZuyuXe2RuICvBgcIdIRmREkRLui9UsbYTFSVTX4cfqZSy5qWMyw9DnjPBCa+oDEDR4BhrbhHeE//vJ6KxTF6Jot9HWuK5j0NkPQf+JDe/X+uislpBUuGSa0blHa2NfqKPdgpq5ZpcKaK359ttvCQwM5JZbbsFqtbJt2zamTp1Kp06dGpxc1q9fT1paGpdddhkmk4lly5axevVqhgwZwrRp07jlllsYPnw45557LmeffTYrVqxg4MCBvPDCC1x99dWMHj0apRR2u70Jj/jv01qzZGc+BeUOhqZHYjbJCVgIIYQAWLduHStWrODLL78kKCiIf/3rX7z99ts89dRTDbZLS0vjP//5D2azGZfLxbXXXsv8+fPp0KEDEyZMwM/PD6vVSl5eHmeddRYbN26kZ8+euN1uRo4cye233w7IJ8ZCnGqUUtgsik4x/nSI9uP6AUn8sC2P2Wv289HyvUxdsY8eCYFc1C2G09qEEOBprX+cECedUkY7499jsYF/9O9vc2zw8ms8/IyZJy1UsyxcsX79ejp16oTVapxEunTpwsaNG3G5XA2269OnDzk5OcyYMYO5c+eyefNmzj33XLTWOJ3O+vDDZDKhtWb9+vWUlZWxdu1aNmzYwOjRoxkxYgTTp08/rkaJ2+2mtLSUkpISSktLcTgcJ+fg/4Jal2b++hzC/Oz0SQ6Wk64QQgjBkXpdq1fTrl07goODMZvNDBgwgJUrVx73um4yGTUEioqK2LNnDzk5OaSmpgIQEhKCzWZDqaOfBB87+3TlypVMnjyZr7/+mqqqquNeh7XWuN1u3G43WuvjrjmEEK2DSSnCfD0Y3S2G96/qyYfX9GR4RhSbc8q4bVomo19fxovf7mDn4XJqXW45FwjRTDW7mSRgrP2NiYkBjJTVx8eHiooK3G53g+2io6NJTk7mww8/xGq1YrfbiYqKwmq1cuaZZ/L6668TGhrKunXr2L59O2VlZVRVVVFYWEheXh5vvPEGO3bs4MYbbyQ9PZ20tLT6fefl5fHPf/6TkpISALZv386VV1550n4Gf0ZWQQVr9hVxXqdIQnxa9qwYIYQQ4kTKz88nKCjo6PT4wEDKy8sbfJhSJycnhxtvvJHdu3fTrl07Bg4c2CDwcDqdvPLKK6SlpdVfM3Tq1Alvb2+UUjz33HN8/vnnvPjii9hstvrHVVRU8OCDD5KXlwdAZmYmGRkZjXzkQoimopTCw2qmW3wgXeMCuWFQNd9sPsSctQd4Y/Eu3l+axWnJwVzULYaeiUH42C3yIacQzUizDEl8fHwoLy8HjE9fysvL8fb2blC4VWvNO++8g9VqZdasWZjNZh5++GGeffZZXn75ZSZOnMibb77Js88+S2pqKr179yY4OBi73Y6npydjxowhJiaG8PBw4uPj65fu1AkNDeXdd9+t/8Rn4sSJJ/3n8Edorfl2yyGqnW7O6xSJnF6FEEKIo2w2W4NZI06nE7PZfFwxeICoqCg+/vhjCgsLuf3223nrrbe48847UUrhcrl4++23Wbp0Ke+99x4eHh4AjBo1qv7x559/PkOGDGHnzp20b9++/vt2u53x48dTU1MDwJtvvtlYhyuEaEaM2WcQFeDJ5X3iGd0thjX7ipm9Zj+Lt+fxzZZDpIT5ckFGFEM6RhAT6IVJ2ggL0eSaZUiSnp7O9OnTqa2txWKxkJmZSYcOHerXCYMxLXbfvn1ER0fXfxIUHx/P5s2b0Vrj5+fHnXfeidaa4uJihg0bRq9evfDx8aFNmzaUlZWhtcblclFZWYmXl1eDMZhMJgICAgBj6c2xnwg1J1VOFws25pIY4k2XuAA5qQohhBDHSE5O5ocffsDpdGK1WtmzZw9RUVG/Wo/MZDLh7e2Nl5cXZ511Ft988w1gdNP74IMPmD59Ou+88w6xsbH1r7fHvu4GBgZit9upqKhosF+r1UqXLl0A48ONL774orEOVwjRTCml8LJbOK1NMH2Sg9lfVMlXG3P5PPMgz329jbd/3M2AtqGM7BpDl7gAvGxmua4Xook0u5BEKcVZZ53F66+/ziuvvEJISAhff/017733HkopnnrqKSIjI7nyyis5++yzeeCBB2jbti12u523336ba665BpPJxLp169i8eTOBgYHMmDGDnj17kp6ejtVq5ZprruHVV1/FbrezadMmXC4XvXv3bupD/0s2Hyxl26Eyru2XhI+92f1zCiGEEE1GKUXfvn154oknWLhwIe3ateOjjz7iiiuuwGQysXDhQiorKxkxYgSbN2+mtraWiIgI8vLymDVrFkOGDAFg7ty5PPnkkzz55JO4XC62b99OdHQ0np6eLFmyhISEBCwWC9OnT8dut5OUlNTERy6EaK6UUpgVxAV58X+nJ3FprzhW7Clk1pr9fLf1MPM35NAuwpfT24bSKzGI1Ag/Ar2tmJV0xxHiZGmW76rDwsJ49913+fDDDzl48CCvvPIKnTp1AqBz5874+xu9lYcOHYrdbufbb7/F5XJx1113MWzYsPo6Jps3b6a0tJRBgwYxcuRIrFYrSikuvPBCPDw8+P777wkODmbKlCmEhIQ05SH/JW6t+WpjLialGNwhvKmHI4QQQjQ7ERERPP3007z00ktUV1fXXxMopcjJyaGsrAyAQ4cO8eqrr1JZWYnZbObss8/m2muvRWvN1q1bSUxM5MMPPwSMGSf33HMPGRkZfPPNN6xZswa32014eDhvvvkmQUFBTXnIQogWoC7w8PWwcka7MAa0DWVPfgXz1uewcFMu7/y0hzcW7yLEx06HKD/6JAfTPT6IxBBvfDwsKGRZjhCNRelmWlb5v4f1WyeB39rufz3+j+4fjOU2EyZM4JJLLmHgwIG/O+6TqajSwcjXlhLqY+eDa3riYTU39ZCEEEKI31VYWMiYMWOYPXs2fn5+J+U567reuVyu+loiSqn6umN11wAul4uamhqsVmt9h726x/+3Y683HA4Hbrcbu91e3yXn98YyadIkOnfuzJgxY07kYQohWgGtNRU1LrIKKli9t4hluwrYcKCEvLJqTCZFdIAnXWID6ZMcTEZcANEBntgtRo0lCU3EqaZuNuiUKVOIjIw8YfttljNJ4I//J/+t7f7X41v6SURrzaqsIvYXVXJ5n/j6k6MQQgghGlJK/WptMfVf09ctFkuD1r7Hbvd7+64LXoQQ4u9SSuHjYaFjtD8dovwY3zue4koH2w+V88ueAn7ZXciibYeZk3kAT5uZpBBveiQE0Ts5mA5RfoT42LGYjq+ZJIT445ptSCJ+n1vD/PU5+NgtDEoNk5OgEEIIIYQQrUhd/ZJgHzt9fOz0TgrCOVCTV1bNxoOlLNtVwKq9hXy6Mpv3l2YR6GUjNcKX3klB9EwMJiXMBz9Pq3TMEeJPkpCkhTpUWs3SXfn0TAwiJtCzqYcjhBBCCCGEaERKKWwWRXSgF9GBXpzTPpxqp5v9RZWszS5m2a4CMrOLmfz9Ttx6J+F+djrF+NMnOYRucYHEB3vhZTPX70sI8eskJGmBtNb8tCOPwgoHw9KjMJvkJCeEEEIIIcSpRCmFp81MSrgvbcJ8GNU1hrKaWnbnlbMyq4jluwtYs7eYbzYfwmo2ERfkRdc4o55Jeow/Ef4e2My/X0dJiFORhCQtkNOlmb8+hwg/D3onBcuJTQghhBBCiFOYUWMJ/D2tdIkLJCM2gKtPS6CwwsHW3DKW7y5gxZ5CvtyQw/RV2fjYLbQJ86FnYhC9k4JpF+FLkLcNs0laDQshIUkLo7UmK7+CtdnFnJ8eRbDP8YXohBBCCCGEEKcupRQWsyLMz4NQXzv9U0JwuNzkllSzfn8Jy3YVsGZfEe8vzeLtn3YT7G2nfZQfvZOC6B4fRFKoN74eUs9EnJokJGmBvtlyiJpaN+d1ikROWUIIIYQQQojfUhdy2C1m4oO9iQvyYlh6JJUOF3sLKo1Ww7vz2bC/hCU78lEKIvw9SI/2p3dSMF3iAok7Us9EIaGJaP0kJGlhqpwuFm7KJSnEm86x/nKSEkIIIYQQQvxhde8fvO0W2kf5kRbpyyW94iipcrLzcDkrswpZsaeQX/YU8tXGXGwWE7GBXnSJC6B3klHPJCrAE7vF1GB/QrQWEpK0IFprNh0sZXtuGdefnoSPXf75hBBCCCGEEH9dXavhIG8bPROD6JEQyP+dnlRfz+SXPQWs3FPEwk25zFy9H0+bmcQQb7rHB9IrKZgOUX6E+XpgNav6/QnRksm77Bbmqw05mE2KczpEyAlICCGEEEIIcUL9Wj0Tp0tzqLSaTQdLWL67kNV7i5ixej8fLNuLn6eVlCNFYHsmBpEa4UuQl62+A6e8ZxEtjYQkLUhxpZNF2/LoGO1PSphPUw9HCCGEEEII0YrVBRw2iyI2yIuYQE8Gd4ig2unmQHEV67KLWb67gMzsYt75aQ9vLN5FsLeNtEg/eiUG0z0hkOQwH/ykCKxoQSQkaSG01qzKKmR/USVX9k3AdmQNoBBCCCGEEEKcDHUhh6fNTJswH5JDvbmwazQVNbXsK6hkzb4ilu8uZMOBEpbuKgAg3M+DTtH+9E4KomtcIPHBXnjZLVIEVjRbEpK0EG4N8zbk4OthZWBqqJxQhBBCCCGEEE1KKYUCfD2sdIj2p32UH5f0iqe0ysmuvHJWZRXxy54CVu8t4uvNuVhMJmICPck4UgS2c0wA0QGeeFhN8v5GNBsSkrQQuaXVLNtVQM+EIKIDPJt6OEIIIYQQQgjRQF0R2EBvG929g+gWH8i1/RMprHCw7VAZK/YYnXO+23KYz9YcwNNmJiHYm+4JgQxMDSM92h9/LysmCUxEE5KQpAXQWvPT9jwKKxwMTY+sL4IkhBBCCCGEEM3VsUVgw/w86NfGKAJ7uKyaTQdLWb7bmGUyY9V+Plq+l6gAT/omB3NmWjgZsQEEedlQUstEnGQSkrQATpdm/oYcIvw96J0ULCcJIYQQQgghRIujlMJmUcQEehEd4Mk57cOprnWTXVjJkh35fLf1EF9uMFoNh/t50CsxiLPSwukWH0iwj12Kv4qTQkKSFmBPfjmZ2cVc0DmKYB9bUw9HCCGEEEIIIf6W+iKwVjMpYT6khPkwvnc8+4sqWbqrgO+2HGLR1jzmZh4kxMdOj4RAzmofTo+EIML87JiVksBENAoJSZo5rTXfbD5ETa2b8zpFIqcBIYQQQgghRGtybKvhpFAfEkO8GdsjlpziapbvLuDbLYdYtruArzbmEuhto2tcAGelhdM7KZhIfw/MJglMxIkjIUkzV+lwsXDTIZJDvUmP8Zf//EIIIYQQQohWTSmF1ayIC/YiNsiTkV2jOVRaw4qsAr7dfJhVe43ir36eVjJiAzgrLYy+ySFEB3pikcBE/E0SkjRjWms2HSxh+6Ey/m9AMj52+ecSQgghhBBCnDrqir9GB3oyIiCaCzpHk1dWw+q9hXyz5RAr9hTy4/Y8fDwspEf7c2ZaOKe1CSYuyBurWQIT8efJu+5mTANfbsjFYlYM7hAu/8GFEEIIIYQQp6y6FsMR/h6c1ymScztGUljhYO2+ovolOY/O34yn1Uz7KD/ObBdO/5QQEkK8sVtM9fsQ4vdISNKMFVc6WbTtMJ2i/WkT5tPUwxFCCCGEEEKIZqEuMAn1tXN2+3DOSgunuMrBuuwSvttyiJ93FfDMwm289N0O2kX4MqhdGAPahpIc6oOHVQIT8dskJGmmtNas3FPIgaIqrumXiM1sauohCSGEEEIIIUSzo5RCKQjytjMwNZQBqaGUVjnZeKCU77YeYsmOfF7+bgevLtpJSpgPA1PDGJgaSttwX7xsZglLRAMSkjRTbg3z1h/E39PKwNQw+Y8rhBBCCCGEEP+DUgoFBHjZ6JcSwmltgimvqWVzTimLth7mx+35vPnjLt78cRfJoT4M7hDBBZ2jiA3ywmyS91xCQpJmK6ekimW7C+iVFERUgEdTD0cIIYQQQgghWhylFL4eVnolBtMzIYibznCxLbeMH7YdZtG2PCZ/v5MPlmVxdvtwxnSPpUOUvxR8PcVJSNIMaa35cXs+xZVOhqVHYZb/oEIIIcRfprWmurqa2tpavL29j0zLVsdtU1tbS1VVFSaTCS8vr/rttNY4nU6qqqqw2+3Y7fb6x2utcbvdVFRUYLPZGtwnhBCieVFK4W230CUugC5xAfzfgGR+2VPIpyv28cW6HOZmHqR3UjAX94ilb3II3nZZinMqkpCkGXK6NF9uyCEywIOeiUHyH1MIIYT4i7TWfPnll7zyyivU1tbSp08f7rnnHry9vRtst3PnTu6++24qKyupra2lV69e3H333fj6+jJz5kw+/PBDampqMJvNXHvttYwYMQKTyURpaSkPP/ww69atw263c8cddzBw4EB57RZCiGas7hztbbcwKDWU/ikhbMkpZcaq/SzclMsNO/JoF+HHmO6xDO4QToivHZOc108ZEpI0Q7vzylmXXcyILtEEeduaejhCCCFEi3XgwAEeeOABnn76adq2bcuECROYPn06V155ZYMgIzQ0lEcffZSIiAiKi4u55pprmDVrFldeeSV+fn489NBDxMfHs2bNGm6++WbS09NJTk7mvffeIzs7mw8++IBVq1Zxzz33MG/ePEJDQ5vwqIUQQvxRSimsZkWnaH86Rvlz/elJfLHuILPXHuChLzbx1o+7OL9zFCO7RpMY4oNJSVec1k5apjQzWmu+2XIIh8vNeZ0ikP9+QgghxF+jtWbp0qVERUVx+umnExMTwyWXXMLcuXNxuVwNtg0ICCAtLY3AwEDi4uKIj4+npKQEgHPOOYeMjAyCgoLo06cP3t7e5OTk4HQ6+eKLL7jyyiuJjIxk8ODBeHp6smbNmqY4XCGEEH+DUgqTSREb5MU/BiYz4//68PSodKICPHl3yR5GvbGMO2esY8WeQmqcLrTWTT1k0UhkJkkzU+lwsXBTLsmhPnSKCZCUUgghhPgb9uzZQ2xsLBaLBaUU8fHx5Obm4nA4sFgaXgYVFBTw6quvsnv3bgoLCxk9ejRAg/ojS5cuxeVykZKSQmVlJYWFhcTExKCUwmazERUVRVZWVoP9Op1OVq5cSXV1NQB79+6lc+fOjX/wQggh/hKlFIHeNi7sEs2QjpGs3lfEpyv28e2WQ3y5MYdu8YGM6xlH/5RQ/Dws9Y8RrYOEJM2I1pqNB0rYcaicfwxMxttmbuohCSHE/7d35/FRlvfexz/37MlkDyEJBAhEEBAiUgG1KEK14oIsrrgA4oIsPiDWovZo5bgiUIu7WK0eT630HBGr1g1qVRRRUARBQJDNsITsZJklc1/PHzFzTLHP6VOTTDL5vl8vXy+ZCXd+F3PPPdd872sRadfq6+ubhCEul4tI5IfvAPp8PgYPHkxaWhrLly9n27ZtdOnSBWj4jN6yZQu33347t99+O9nZ2ZSVlWGMwel0Njl+OBxuctxgMMhf/vIXSkpKAPjqq684//zzW6K5IiLSjCzLIsHj5KcFmZzUM4Mdh6t5af23vL7pADcu20BBVhIXDM7j3MJcclJ9WCgsiQcKSdoQA/zlywO4nQ5+3j871uWIiIi0e1lZWWzZsgVjDJZlUVZWRkpKCm63+6ifTUpKYsyYMdEda5555hlGjhyJMYadO3cyc+ZMpk2bxvnnn9/QcU5IwOfzUVFRAYBt25SWltK5c+cmx/X7/dx1111AQ9hy++23t3i7RUSk+ViWhctpcWx2Mree04+pw3vyxqaD/Pf6b3ngra08/eEuzhmQw4U/6Uaf7CScDm0h3J5pTZI2pLw2xN+2HqYwL5WCzkl6Y4mIiPwIlmUxZMgQtm7dyqFDh6ivr2flypUMGzYMt9vN4cOHOXjwIMYY6urqCIfD0a2ADx06REpKCgD79u3j+uuv54ILLuDyyy8HGsIOn8/HT37yE1atWkUkEmHv3r0UFRUdNZWmcSvhH9p6WERE2g/LsnBYFrmpCVz103xevO4kllx6An06J/HHT/ZxydI1/J8XP+eDr0uoDdVr3ZJ2SiNJ2ghjDJ/uKmN/ZR3XntYLj1P5lYiIyI81YMAARo4cydSpU8nJyWH37t0888wzADz11FNUVFSwYMECVqxYwcsvv0xeXh4HDhzgwIEDPPLIIxhjWLRoEVu2bCEzM5O1a9ficDi48cYbOeGEE6KjS/bu3cvu3bsZP348BQUFMW61iIi0NMuySElwc/aAHH7WrzMbv61k2af7+OvWYlZ9VUxhXiqXDOnGqL7ZpCe6FZK3IwpJ2gjbwGsbD5CS4GZEnyy9iURERJqBy+Xinnvu4YsvvqCqqorjjz+eTp06YVkWV111VXSXmzFjxnDsscdGR5D079+ftLQ0AObOncvUqVOjx7Qsi/z8fAD69+/Pf/3Xf/Hll1+SkZHBwIEDm6xRIiIi8c2yLLwuJyf2SGdw93R2l9aw4vMiXtmwn1te2kSPzJ2MP6ErY47vQl56orYQbgcUkrQRByrq+PibUk7qmUlumi/W5YiIiMQFy7Lwer0MHTr0qOdyc3Oj/5+UlMTgwYN/8BiNgcg/On5ubm6TY4mISMdjWRZOC3p18jP3zD5MOjmft7cc5E+f7uOhVTt47qPd/Py4HC4+sRv9clNwOzUFs61SSNIGGGN4b/thKmrDnFuYi1NvFhERERERkXanMfjISvZy2dDujBvUlTXflPLiJ3tZ8XkRKz4v4uSCTMaf0JWenZLolOTB73XhcztxWE2PIbGhkKQNCEcMf9l0gC5pCQzrmaE3hYiIiIiISDtnWRZ+r4uf9e3MiN5ZbDlQxZ/W7ePtzYd4d9thPE4Hfq+TTL+XzileuqUn0i0jgW4ZiXRJTSAr2Utqghuf24nLaWF977jSctpsSNK4urwxBrf7Hy90Y4yJrkbv8XiAhpOmcSXhUCiE0+nE6XQedYzvrzYcqxPNGMPOw9V88W0lEwZ3Jd3viUkdIiIiIiIi0vwsy8LtsijMS2Vg11SuH1HAhn0V7C2rZW9ZLd+W13KwMsDm/VXUhuoJRwxOyyLB4yQ1wU1WspeuaQkNAUp6InkZiWQne8nwe0j0uPC6HFgahdJs2mRIYts2b731FkuXLiUcDjN+/HgmTZqE2+1u8nOBQIClS5fyzjvvYIxh2LBhzJkzh+TkZMrLy1m8eDEbNmwgOTmZOXPmMGzYsOhJY4zh888/55577uGGG27g9NNPj0FLG7y9+SDhiM05A3Nx6KQWERERERGJOw1bwUO3jES6ZSRijMEAtjEEwjbVgXpKqoMcqgqwLxqg1LG/so5Pd5ex6qswoYiNbcDndpDkddEpyUtOii96zG7pCeSmJpCZ5CElwY3X5cDlsJrUIP9vbTIk+eabb/jVr37FggULyMzMZObMmeTn5zNq1KgmL+qqVat47rnnePrpp/F6vcyYMYOcnByuvvpqFi1axN69e1wjblkAACNESURBVHnooYfYtGkTN910E8uXLyc7OxuA6upqFi5cyBdffMH+/ftj1VRqQhHe3nKIYzonMaBraszqEBERERERkdZjWQ1TaByWRZK3IfTISfUxoGtqdNaDbSAcsakJ1lNRF+ZQZYCiijr2ldWyr7yOovI6dh6uZv2ecurCESK2welomOaTlugmJ8VHl7QEun8XoHRNT6Bzso90v4cEtxO3UwHK32tzIYkxhpUrV9K/f39GjRqFw+Fg3LhxvPTSS4waNarJzxYXF5Ofn8+AAQNwOBwcd9xxFBcXEw6Hee+997jzzjvp1asX3bt3Z8mSJXz00UeMHz8e27Z57rnnGDBgANXV1TFqaUNbN31byY7iamaOPAa/R1sGioiIiIiIdHSNgYXTAqfDic/tJDPJS0FWEkB0FErENtSFIlQFwhw+EuRA5f+MQimqqONAZYAdxdUcCdRTb9sAJLgbpvFkp/jomp5Aj0w/PTISyctIIDvZR3qimwSPK7oOSkcLT9pcSAKwfft2jjnmGBwOB5Zl0bt3b/72t79RX1/fZMrNz3/+c1566SV++ctf4vP52LVrF3PmzMGyLHw+H+Xl5QAEg0EqKyvZvn07xhi2bNnCu+++y+OPP87atWt/sIZQKMS2bduIRCIYYygrK2v2dhrgL5sO4HY6OLN/doc7+UREREREROT/X3QUitPCneAgJcFNXnoiJ3z3vDGGiG0IRwxHAmHKa0McqAxQVF7H7tKaaIiydlcZ72w5RKjexrKaBih5jQFKZiJd0xPISfGRmuAmMc4DlDYZkgSDQbxeb/TPHo+HUCjUZKFVYwyBQACXy4Xf78fr9RIKhSgpKaGgoIDLL7+cxYsXU1ZWxrZt2zh06BChUIhAIMADDzzA9OnTycjI+Ic1VFZW8tBDD1FVVQXAxo0bm72d5TUh/ra9mOPzUumV5W/244uIiIiIiEjHY1kWLqeFywkJHiedU3wcm5Ny1DSe6mA95TWh6AiUxgBlf0WAj78p4+3vBSg+t5P0RA+dk71NApS89ASyvwtQ/B4XznYeoLTJkCQzM5PS0lKgIQwpLy8nLS0Np7PpdJTf/e53HHvsscyfPx/LskhJSeGRRx5hyJAhXHnllfTo0YP169dz+umns3v3bvLy8ti0aRNr1qwhNTWVV199lc2bN/P888+Tk5PTZDpPp06dePLJJxuGMRnD9OnTm7WNxhjW7irjQEWA6SMK8DgdzXp8ERERERERke/7oWk8nZK89M5OjgYoxkDou3VQyhoDlPJa9pTWsqe0JhqgvLPlEIF6G6dl4XU7SE/0kJXspVt6At0zE8nP9NM1LYGc1O8CFK8Ll8Nq8+FJmwtJLMti2LBhLFq0iJqaGnw+H++//z7Dhg3D4XBQUVGB0+kkKSmJUCgE/M9WvuFwGPu7eVZOp5ORI0cyatQodu3aRVFREcOHDyczM5NHH320YfhRJMInn3zC8ccfT69evY6qo/HFs2272V/IiDG8vvEAaYluTuuT1eZPFBEREREREYlfjd9JLQt831sHpUmAAoTqGwKU0poQBysDDVsZl9ayp6whQFnzTekPBii9Oyex+OLjSUv0xLCV/7s2F5IAjBgxgueee47p06eTlpbG9u3bueOOO7Asi/nz55OXl8fcuXO55JJLmDZtGjfddBMej4e33nqLBQsW4HA4eO+991ixYgVpaWmsXr2aKVOmUFBQgMPh4Oc//zkA9fX1LF26lMLCQvLz81u1jfURQ6dkD2cPyCU3NaFVf7eIiIiIiIjIPysaoNAw7aYxQOnzTwQoe0pr2FNai8tp4XG1/RkUbTIk8fv9LF26lA8++IBAIMCtt95Kbm4uANdddx0+nw+AIUOGsHz5ctatW0ckEuHqq6+md+/eWJZFYWEhR44coaqqivHjx0d3wPk+p9PJv//7v9O5c+dWb6PX5eCO846jPmLj0CASERERERERaYf+qQDFQL1tmmw53Fa1yZDEsizS0tIYM2bMUc/169evyZ979uxJz549j/q5jIyMH/z7f/97CgsLf1yx/yLLsqLzwERERERERETizfen8HjayeiAtj/WRURERERERESkFSgkERERERERERFBIYmIiIiIiIiICKCQREREREREREQEUEgiIiIiIiIiIgIoJBERERERERERARSSiIiIiIiIiIgACklERERERERERACFJCIiIiIiIiIigEISEREREREREREAXLEuoL2IRCJs2rQJl0v/ZCIiIv+qI0eOEAgEMMbEupSYsW2brVu3snr16liXIiIi0m4Fg0FqamqavU+hb/z/pMLCQtatW8fnn3/ebMfct28fJSUlnHDCCc12zLZu06ZNJCYmUlBQEOtSWs1HH31Enz596NSpU6xLaTXr1q0jNzeXrl27xrqUVmGM4f3332fQoEGkpqbGupxWEQ6Hee+99zjttNPweDyxLqdVHDlyhHXr1jFixAgcjo4xEPPgwYPs2bOHYcOGNdsxjTEMGjQIp9PZbMdsb/r27cuqVavYvXt3sx2zuLiYnTt3cvLJJzfbMdu6HTt2EAwGOe6442JdSqtZv3492dnZ5OXlxbqUVtERP18B1qxZwzHHHENWVlasS2kVtm3zt7/9jWHDhuH3+2NdTqsIBAKsXr2a008/vcPchC8vL+fLL79k+PDhWJbVbMft379/s/dFLdORb+X8k4wxLXLH6+WXX+aTTz7hvvvua/Zjt1X33nsvXbt2ZfLkybEupVUYY5g6dSrTpk3jpJNOinU5rWbu3LmcccYZnHPOObEupVVEIhEuvvhi7r77bvr16xfrclpFVVUVF154IcuWLSM9PT3W5bSKnTt3cuONN/LSSy/hdrtjXU6r+Otf/8p///d/8+ijjzZrhwbAsqxmP2Z70FJ9itWrV/Pss8/y1FNPdZh/12eeeYbS0lJuvvnmWJfSam6++WZOO+00xowZE+tSWkUkEuGSSy5h/vz5HSYMM8Zw7bXXMnXqVE455ZRYl9MqQqEQ48eP54knnqBbt26xLqdVHD58mCuuuILly5d3mGDoiy++4P777+cPf/hDs99sau4+RceIrX6klurINR63o3QUGzuFlmV1mLuwtm0DHavN3+/8d5Q227YdfY07Spsb29mRzu3Ga3VHep0bP5scDkeH+JxqDa3Rp+go52cj9aPilzGmw113O2LfsfH9qzbHt/bU5rZdXZzzeDwkJCTEuoxWlZCQgNfrjXUZrcrv93eYYXSN/H5/h5mCAQ0X+6SkpDZ/wW9OlmWRkpLSIb6YNHI6nSQlJcW6jFbldrs7zB2u9s7lcnW418rr9Xa4flRiYmKHGcnWKCkpqcNNz+uIfcfk5OQO1Y9yOBwkJyd3qH6Uy+VqN/0oTbeJoZqaGgKBABkZGR3iDWKMoaKiApfLRXJycqzLaRXGGA4fPkxKSgo+ny/W5bQKYwylpaUkJCR0mA67MYZDhw6RkZHRYcIh27Y5dOgQnTt37jCd13A4TGlpKdnZ2R3img1QV1dHdXU1nTp16jBtbq864mtVVVWFbdukpqZ2iDYbYygrK8Pn8+nzNY511L7jwYMHycrK6jDhUCQSobi4mOzs7A4TDgWDQSoqKujcuXObv2YrJBERERERERERQdNtREREREREREQALdwaM41TEo4cOUJOTg4+n6/NDzv6VxljsG2b8vJyqqqqSEtLIz09PW7b+/ds26aqqqrDrMdi2zZlZWVUVlaSkZFBWlpaXL/WxhiOHDlCSUkJSUlJdOrUKe6GTTa+h2tra4GG+eGNr6kxhrq6Og4dOkRKSkrcTB80xhCJRKipqcHlcpGYmIhlWRhjCAaDlJSUUF9fT3Z2dtxcv40xhMNhamtr8fl8Rw3zNsYQCoWoq6sjJSUl7s7z9qxxOmt5eTmdO3fG7/fHxTn5j9i2TWVlJeXl5U2uO/Hc5ka2bXPkyJEOs66dMYby8nLKy8uj/cd4vvYYY6ipqeHw4cMkJCSQlZUVdwtnN+7wVVNTg23bTdY3a/yMPXjwIH6/n8zMzLh4vRv7FLW1tTgcjug1uvFzt6SkhGAwSOfOnaP9jfbOGEN9fT21tbW43W4SExOPer6xz5GcnNzmpm63/7OuHTLG8NJLLzFhwgSmT5/OZZddxrffftsiWwK2BcYY7rvvPi6++GLmzJnD2LFj+f3vfx9dvTueGWNYtWoVQ4YMYdmyZbEup8WFw2EefvhhLr30UubOncu1115LWVlZrMtqMY2v75gxY5g9ezYTJkxg8eLF1NfXx7q0ZnXw4EGuvPJKTj31VK688spo+4wx7N69m0suuYTp06czfvx4Xn311bi4lm3atIkJEyZw8sknc/vtt0cfP3ToEBMnTuTqq69m+vTpXHjhhWzdujUu2vzmm29y3nnnMXToUJ599tmjnq+vr2fevHmMHDmSgwcPtn6B8oMar0Pjxo1j5syZXHTRRWzbti0uzskfYozhiSeeYMKECcyePZvx48ezZMkSIpFIrEtrccYY1q9fzymnnMKjjz4a63JaXCQS4dlnn+Xiiy9m7ty5XHXVVXz77bexLqvFGGP49NNPGTt2LLNmzeLiiy/mjjvuIBQKxbq0ZlVZWcl1113H6aefztixY6M3YIwxFBcXM3nyZKZNm8aECRP4z//8z7j4vrBr1y4uvfRShg8fzowZM6LX56qqKq666iqmTJnCrFmzGDduHOvWrYuL6/fHH3/MuHHjGDZsGIsWLTrqedu2WbBgASeddBI7duyIQYX/CyOt7uDBg2bw4MHmvffeMzU1NWbu3LnmpptuMpFIJNaltQjbts2nn35qiouLTTAYNB9++KHp16+f2bt3b6xLa3HFxcVmwoQJ5uSTTzaPPfZYrMtpUbZtm1dffdWcd955pqioyIRCIVNWVmbC4XCsS2sxwWDQnHnmmWbp0qUmGAyazz77zPTp08fs2rUr1qU1q/LycvPGG2+YpUuXmuHDh5tgMGiMMSYSiZiZM2eaW2+91dTW1pqVK1eaIUOGmJKSkhhX/OPt3bvXvP322+a2224zkydPNrZtG2OMqaioMOvWrTPV1dWmtrbW3HLLLWbKlCmmvr4+xhX/eJs3bzbvvvuuueSSS8zChQubPNf4/h43bpzp3bt3h7h+txdVVVVm+PDhZsWKFaaurs7cd999ZtKkSXF77bVt23z++edm//79JhgMmo0bN5q+ffuaL7/8MtaltbiqqiozceJEM2rUKHP77bfHupwWZdu2+fDDD82oUaPMzp07TSgUMuXl5dHPn3gUiUTMxIkTzd13320CgYD5+uuvTd++fc2GDRtiXVqzqq6uNm+88YZ58cUXTWFhoTly5IgxpuE1nz9/vrn22mtNdXW1WbdunRk0aJDZs2dPjCv+8YqLi82bb75pFi1aZM4555zod76amhqzdu1aU1VVZerq6szixYvNeeedZ0KhUIwr/vF27txpVq1aZWbOnGnmzp3b5Dnbts3q1avN2LFjzTHHHGM2bdoUoyr/MY0kiYFNmzbh9/sZOnQoiYmJXHDBBXzwwQfU1dXFurQWYVkWJ554IllZWXg8Ho455hiMMdHkOF5FIhEeffRRzjrrLHr27Bnrclqcbdu88MILnH322axbt45XXnmFYDDY5obPNSfLsvB4PHi9XizLwuv1xuX2jGlpaYwePZru3bs3eby6upo1a9YwYcIEEhISOPnkk3E6nWzZsiVGlTafbt26ceaZZ5KVldXk8dTUVH7yk5/g9/vx+Xz069ePkpKSuLjr079/f0477TRSUlKaPG6+213imWeeYc6cOR1m54H2YseOHdTU1HD66afj8/kYN24cGzZsoKKiItaltQjLshg0aBC5ubl4PB7y8/Px+XxUVVXFurQWZds2zz77LIWFhRQWFsa6nFaxbNkyRo4cybZt21i+fDlVVVVx9/n69xr7FA6HIzqlKt529fH7/YwePZqCgoIm00pCoRB//etfmTBhAn6/n8LCQnJycuJiZEVWVhZnnXUWXbt2bfJ4YmIiQ4cOJTk5Ga/XS79+/SgvL4+LkXG9evVi5MiRZGRkHPVcZWUlDz30EHPmzGmzOzgpJImBAwcONNnKLCsri9raWmpqamJcWcuzbZsXX3yRnj170q1bt1iX02KMMaxZs4avv/6aiRMnxsXcwv9NOBxm+/btPPfcc6xevZp33nmHiy++mP3798e6tBbjcrm47bbbeOSRR7jooouYNGkSM2bMIDc3N9altYrq6mqCwSCdOnUCwOfzkZaW1iGmYpjv1oD4wx/+wJgxY+I6DIxEIixZsoQxY8Z0iMC3vSkuLsbv90fne6elpUXX7Ih3xhj+/Oc/4/f76du3b6zLaTHGGDZv3sy7777LddddFxdrNPxvbNvmq6++4qWXXuKtt97io48+4qKLLmL79u3t/gvzP2JZFr/4xS94+eWXueCCC7jooou49NJL6d27d6xLaxWBQIDKykqys7OBhj5WdnY2RUVFMa6sddTW1vL73/+es88+O67XMLRtm9/97neceOKJDBw4MNbl/EPxf5Vtg4wxHWaBse+zbZs///nPvPDCCyxYsCCuFxw7cuQIixcvZtasWbjdbmzbpr6+nkgkErcf7tCwZsGpp57K/fffz8MPP0xmZiavvfZarMtqMfX19Sxfvpzhw4dz6623cvXVV7Ns2TKKi4tjXVrMNC5EFs8aR8Lddttt9OjRgyuuuCJur+fGGFavXs2uXbsYP3484XAYaDj342GeuLRfxhjee+89lixZwgMPPEBaWlqsS2oxgUCABQsWcO211+L3+7Ftm0gkQn19fVxfbyORCAMHDmTRokX85je/4fjjj+fFF1+MdVktpjH069+/P7feeiuzZs3i9ddfZ8+ePbEurVX9/edpPJ/jjYLBIPfeey+WZTFz5sy47VMAbNy4kffff5/JkydHr2FtsU+hMbMxkJOTQ1lZGcFgEJ/PR2lpKQkJCUet+htPjDGsXLmS+++/n9/+9rcMGDAgri8A+/btY9u2bcyfPx/Lsti4cSNffPEFqampXHnllbEur0W4XC66dOkSHT7pdrvp0aNHXI8qKCsr4/XXX+f111+nZ8+eDBo0iGXLlrF+/XrOPffcWJfX4vx+P16vl7KyMvLz8wkEAlRUVETvAsWrQCDAr3/9a6qrq3n44YfjOvAFWL16NTt27GDixIkEAgH27t3LjBkzeOyxxzSypA3IysqipqaGuro63G43lZWVWJZ11LSpeGKMYe3atdxyyy3cfffdnHzyyXHdpygpKWHjxo0UFxfz0EMPsXXrVpxOJ1lZWcyePTvW5bUIy7LIy8sjPz8/OlKvV69ecR0Y1NTU8Kc//Ymnn36awYMHM2TIEF5++WXef/99CgoKYl1ei/P5fKSkpERvNNXX13P48GG6dOkS48paVigUYvHixXz55Zc89dRTpKamxrqkFrV27Vr27NnD5MmTCYfD7NmzhxtvvJElS5a0qamECkliYODAgRw5coQNGzZwwgknsGLFCk455ZS4DUka70Tecsst3HPPPRQWFhIIBKJzLuNRnz59WLlyJdAwgmb27NmceOKJjBs3LraFtSCn08lZZ53F6tWrmTRpEnV1dXz22WfMmTMn1qW1GK/Xi8fj4auvvqJ79+4UFRVRWlr6g/Mv2zNjDIFAgGAwiG3b1NXVYVkWSUlJDBkyhFdeeYXjjjuOdevWEQqF6N+/f6xL/tFs2yYYDBIOh4lEItTV1eHxeLBtm3vvvZdt27bx2GOP4fF4CAaD0XVp2rNIJEIgEKC+vp5wOBxt8w033MDUqVMBKCoq4vLLL+eee+4hLy8vxhULQEFBAT6fjw8//JCf/exnvP766wwcOJD09PRYl9YijDFs3LiRG264gblz5/LTn/6Uuro6vF5v3E57y83N5a233opunXrXXXeRkJDAlClTYl1ai7Esi9GjR/P8889TWVmJw+FgzZo1nH322bEurcW43W6SkpL48ssvKSwspLS0lKKioqPWxmrvzHfb/H6/T+HxePB4PIwYMYIVK1Zw6qmn8vXXX1NUVMSJJ57Y7j9fG/sUoVAI27apra2N9hsee+wx3nnnHZYuXUpSUlJc9Ska+1GNWwF7vV4uv/xyxowZA0BFRQUXXHABd9xxB8cee2yMK27KMh1hDFMbY4zhhRde4PHHHyc1NRVjDI899hg9evRo92+IH2LbNldccQXr168nPz8/Ospg4cKFcT2HuJFt28yaNYuhQ4fGdYcGGkZWzJkzh+LiYsLhMAMGDODee+/F7/fHurQWYYzhj3/8Iw8//DA5OTkcPnyY4cOHc+edd7bZhaj+FVVVVcyYMYNvvvmGgwcP0rt3by699FKmTJnCjh07uOGGG3C5XFRUVDB79mwuvPDCdn8t27VrF3PmzGHfvn3U1dWRn5/PzTffTF5eHueeey6ZmZnR4f19+/Zl4cKF7X5BwY8++oi77rqLPXv24PP5yMvL44EHHmhynS4qKuLSSy9l2bJlcX93r70wxvDGG29w7733kp6eTm1tLUuWLOG4445r9+/DH2KMYc6cObz22msUFBTgcDhwOBzceeedDB06NNbltThjDHfeeSeJiYnMmzcv1uW0qOrqaubNm8f27duxLIuuXbvym9/8Jq4DwDfeeIO7776bzp07U15eTv/+/Vm4cCFJSUmxLq/ZBAIBZs+ezVdffcXevXvp06cPo0eP5sYbb+TAgQPMnDmTYDBIVVUVkyZN4pprrmn3N1UPHz7MjBkz2Lt3L2VlZRQUFHDNNdfw05/+lLPOOguPxxNd3y0vL4+HHnqo3d8837x5M/PmzWPfvn3Ytk337t254447GDZsWPRnKioqGDt2LE8++WSb+06okCRGbNumuLiYyspKunbtit/vj8vODDRc9CsrK5vs825ZFmlpae3+S8U/wxjDkSNHcLvdcT8s3xhDKBRi3759uN1uunTpgsvlittzGxraXFpayuHDh0lOTiYnJwen0xlXbbZtm7KysibzRRMTE0lKSsIYQ3V1Nfv37yctLY2srKx235mBhmG+5eXlTeZCp6Sk4HK5jnrc7XaTlpbW7l/zYDDYZLHPH7pORyIRKisrSU1Njdu79u2RMYaSkhJKS0vJzc0lJSWl3Z+P/4gxhqqqKoLBYJPHU1NT43qxw0bGGGpqarAsK25vQDQyxhAOhykqKsIYQ15eHm63O27PbfifRcEPHTpEYmIiubm5cdePMsZQXl5OfX199DGfz0dycjIAdXV1fPvttyQlJZGTkxMXfYpIJEJ5eXmTflRSUhJer/eox51OJ+np6e2+3eFwmPLy8iaP/f112rZtKioqov2rtkQhiYiIiIiIiIgI2t1GRERERERERARQSCIiIiIiIiIiAigkEREREREREREBFJKIiIiIiIiIiADQtpaRFZEOr3E1+++zLKtZV3c3xrB582Y8Hg99+vRplmOKiIhI22LbdpNdVAAcDkez7kJnjGHt2rX06NGD3NzcZjmmiMSWQhIRaVP27dvH5MmT8Xq90e3PevfuzQMPPNCs2zv+8Y9/pFOnTgpJRERE4tSnn37KTTfdREpKSvSxU089lXnz5jVbSGLbNg8++CCTJk3i3HPPbZZjikhsKSQRkTYlEAhw4MAB/vSnP5GRkQGAx+PB4/Fg2zaWZREKhbBtG5/PF+3kGGOor68nFArh8/lwOBxNngsGg0QikehzjcLhMKFQiISEhHa/J72IiIj8j6qqKkKhEI888ggejweAhIQELMsiEongcDgIBAJYloXX623SbwiFQtTX10d/3rIsjDHRPoUxBp/P1+T3/f3fEZH2SSGJiLQ5TqeT3NxcOnXq1OTx+fPnk5SUxCeffEJFRQUXXnghV199NU6nk48++ojFixdTU1ND165dueOOO+jRowfBYJAnn3ySN998E4DBgwfz61//GoCvv/6aadOmsXfvXk466ST+7d/+7agOj4iIiLRfHo+HLl26NBmNGg6HufHGG+nZsycffPABgUCAmTNnct555wHwyiuv8PTTTxMOhxkwYAC/+tWvSE9Pp7KyksWLF/Ppp5/icDg455xzuP766zHG8PHHH/P8889TUlLC+PHjuf7663E6nbFqtoj8CApJRKTNqaioYP78+SQkJABw/PHHc9lll7F582aqq6t55JFHqKqq4rrrrmPgwIH07t2buXPnMnfuXEaMGMETTzzBLbfcwn/8x3/wwgsv8Nprr7FkyRIyMzM5dOhQdMTIhg0beOqpp/B6vUyePJkzzzyTESNGxLLpIiIi0oz27NnDbbfdFg0szjjjDEaMGMHHH39MKBTi0Ucf5auvvuKXv/wlAwcOpK6ujvnz5/Pb3/6WY445httvv51FixZx1113sXDhQvbt28fjjz+O1+ulvLwcaJhys3XrVh544AHKysq45pprGD16NAUFBbFsuoj8ixSSiEib4/V6OeWUU6JziLt06RJ9buLEidFOx6hRo3j33XcJh8P4fD7Gjh2Lz+dj6tSpnH/++RQXF/Paa69x7bXX0q9fPyzLIjs7G2MMAOeccw79+/cHoLCwkF27dikkERERiSMpKSmcdtppuFwNX3vy8/MBcLlcTJkyha5du5KTk0N+fj7r16+nsrKSwsJCTjvtNBwOB9dddx2/+MUvKCsrY9WqVTz88MPk5+djWRZdunSJTtu56KKLyM/Pp1u3bnTu3JkDBw4oJBFppxSSiEibk5CQwJlnnklWVlb0MWMMlmWRlJQUnReclJREbW0tgUAAr9cb7QD5fL7ofOK6uromC7Z9n9/vj84ZdrlcR62ALyIiIu1beno6Z599dpPpNoFAAIfDEe0HOBwOEhMTqa2tpba2NtrXgIa+QjgcJhwOU19f36Tv0MiyLBITE6NrlzidTiKRSKu2U0Saj1YpFJE2xxiDbdtEIpHof42LpX3wwQeEw2Fqa2v55JNPGDhwID179qS4uJg9e/ZgjOGzzz4jOTmZrKwsCgsLefvttwmHwxhjCAQC0ZEkIiIiEt+MMU36E7ZtAw2LrK5evRrbtikpKWH79u0ce+yx9O/fn40bN1JeXo5t26xevZqePXuSkZFBfn4+7777brRfEggEYtw6EWkJGkkiIm2KZVlUV1czffr06Er02dnZ3HPPPViWxbZt25g2bRplZWV4vV5Gjx5NUlJSdBHXY489lo0bN/LLX/6SpKQkZs6cyfXXX8/ll19Op06d8Hg8LFiwAJfLFR15Ag0jSbTAmoiISPxwOBzs3buXKVOmRNcj69+/PzfddBNut5uVK1eyceNGdu3axUknncSgQYOwbZuBAwdyxRVXkJuby9atW3nwwQfxer3cdtttzJkzh7Vr1+Lz+ejevTvz5s3D7XY32SHP4/FoxzyRdswyuqUqIm1IMBhk586d0Ts90NDZ6NWrF5dddhkTJ06kR48e1NbWUlhYSHJyMpZlEQ6H2b59O4cOHaJXr150794dh8OBMYYjR46wefNmAoEAffr0oUuXLhQXF+N0OqM76Ozfvx+fzxfddlhERETat+rqanbv3t3kMb/fT05ODmeeeSYPPvgg9fX1OJ1OCgsLo1NygsEgW7Zsoaqqir59+5KdnR2d6ltaWsqWLVuwLIt+/fqRmZnJvn37SE9PJzk5GWMMe/bsISsrC7/fH4NWi8iPpZBERNoFYwyXXHIJkyZNim7RJyIiIvL/KxAIcMYZZ/Dkk09y3HHHxbocEWljNA5MRNqNK6+8MrobjYiIiMi/wuVyMWvWLLKzs2Ndioi0QRpJIiIiIiIiIiKCRpKIiIiIiIiIiAAKSUREREREREREAIUkIiIiIiIiIiKAQhIREREREREREUAhiYiIiIiIiIgIoJBERERERERERARQSCIiIiIiIiIiAigkEREREREREREBFJKIiIiIiIiIiAAKSUREREREREREAIUkIiIiIiIiIiKAQhIREREREREREUAhiYiIiIiIiIgIoJBERERERERERARQSCIiIiIiIiIiAigkEREREREREREBFJKIiIiIiIiIiAAKSUREREREREREAIUkIiIiIiIiIiKAQhIREREREREREQD+LyJTGNJ9SHMaAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAACIUAAAfGCAYAAACDcpw1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XeYVdX9PuzPHgYPCjKgiIBRLCSKYsUSyzAqlmDFEmsUrLEnEpEQVCzREbEiicbEgsaaiMYSsXyFGBUDQtTEFhQFIyIqCEo5lDnvH/kxb06AAXTObGZz39e1r8vZa5+1ngMzA8LDWkmhUCgEAAAAAAAAAACZUpZ2AAAAAAAAAAAA6p9SCAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGKYUAAAAAAAAAAGSQUggAAAAAAAAAQAYphQAAAAAAAAAAZJBSCAAAAAAAAABABimFAAAAAAAAAABkkFIIAADAKmrChAmx3377RUVFRSRJEo8++mi9zv/hhx9GkiRx11131eu8jdmee+4Ze+65Z9oxGp1Ro0ZFkiQxatSotKOs8nr37h0bb7xx2jEAAACA1YRSCAAAQB3ef//9+PGPfxybbrppNGvWLFq2bBm777573HTTTTF37tySrt2rV6/4xz/+EVdeeWXcc889seOOO5Z0vYbUu3fvSJIkWrZsudQfxwkTJkSSJJEkSVx77bUrPf+UKVPi0ksvjddee60e0jaM+fPnx0033RTbb799tGzZMlq1ahVbbbVVnH766fHOO+/UPnfppZdGkiTx+eefL3WeLl26FBVbFpd//vtq2bJlbLfddjF06NBYtGjRcrMtXnNp16233vqt3/vKWtp7Wtb14YcfNng+AAAAgFVFedoBAAAAVlVPPvlk/PCHP4xcLhcnnnhidOnSJebPnx8vvvhi9O3bN95888247bbbSrL23LlzY/To0TFgwIA455xzSrJGx44dY+7cudG0adOSzL885eXlMWfOnHj88cfjqKOOKhq79957o1mzZjFv3rxvNPeUKVPisssui4033ji22267FX7dM888843Wqw9HHHFEPPXUU3HsscfGaaedFgsWLIh33nknnnjiidhtt91iiy22+FbzH3vssXHAAQdERMTMmTPjz3/+c5x77rkxadKkGDx48ArNccstt0SLFi2K7u2yyy6x2Wabxdy5c2ONNdb4VhlX1HrrrRf33HNP0b3rrrsu/v3vf8cNN9ywxLMAAAAAqyulEAAAgKX44IMP4phjjomOHTvG888/H+3bt68dO/vss+O9996LJ598smTrf/bZZxER0apVq5KtkSRJNGvWrGTzL08ul4vdd9897r///iVKIffdd18ceOCB8fDDDzdIljlz5sRaa63VYKWG/zV27Nh44okn4sorr4xf/OIXRWNDhw6NL7/88luvscMOO8SPfvSj2o/POuus2GWXXeK+++5b4VLIkUceGW3atFnqWEN+LjVv3rzovUREPPDAAzFjxowl7gMAAACszhwfAwAAsBTXXHNNfP3113H77bcXFUIW69SpU/zkJz+p/XjhwoVxxRVXxGabbRa5XC423njj+MUvfhH5fL7odRtvvHEcdNBB8eKLL8bOO+8czZo1i0033TTuvvvu2mcuvfTS6NixY0RE9O3bN5IkiY033jgi/nPsyuL//m+Lj/f4b88++2zsscce0apVq2jRokVsvvnmRYWDxUdw3HXXXUWve/7556OysjKaN28erVq1ikMPPTTefvvtpa733nvvRe/evaNVq1ZRUVERJ510UsyZM2fZP7D/47jjjounnnqqqPQwduzYmDBhQhx33HFLPD99+vS44IILYuutt44WLVpEy5Yto0ePHvH666/XPjNq1KjYaaedIiLipJNOqj1GZPH73HPPPaNLly4xbty46NatW6y11lq1Py577rln0dErvXr1imbNmi3x/vfff/9o3bp1TJkyZYXfa13ef//9iIjYfffdlxhr0qRJrLvuuvWyzn9LkiTWX3/9KC//9v9eZNSoUZEkSYwaNar23uIf57feeiv22muvWGuttWKDDTaIa665ZonX5/P5GDhwYHTq1ClyuVxsuOGGceGFFy7x9bOykiSJSy+9dIn7G2+8cfTu3bv247vuuiuSJImXXnop+vTpE+utt140b948DjvssNqC1n976qmnar9G1l577TjwwAPjzTffXOK5Rx99NLp06RLNmjWLLl26xCOPPPKt3g8AAADAylIKAQAAWIrHH388Nt1009htt91W6PlTTz01Lrnkkthhhx3ihhtuiKqqqqiuro5jjjlmiWffe++9OPLII2PfffeN6667Llq3bh29e/eu/Uvlww8/vPYIjGOPPTbuueeeuPHGG1cq/5tvvhkHHXRQ5PP5uPzyy+O6666LQw45JF566aU6X/fcc8/F/vvvH9OmTYtLL700+vTpEy+//HLsvvvu8eGHHy7x/FFHHRVfffVVVFdXx1FHHRV33XVXXHbZZSuc8/DDD48kSWL48OG19+67777YYostYocddlji+YkTJ8ajjz4aBx10UFx//fXRt2/f+Mc//hFVVVW1BY3OnTvH5ZdfHhERp59+etxzzz1xzz33RLdu3Wrn+eKLL6JHjx6x3XbbxY033hh77bXXUvPddNNNsd5660WvXr1i0aJFERHxm9/8Jp555pm4+eabo0OHDiv8XuuyuAR07733xsKFC+tlzv81Z86c+Pzzz+Pzzz+PiRMnxq9+9asYMWJE9OrVa4XnmD59eu0cn3/+ecyYMaPO52fMmBE/+MEPYtttt43rrrsutthii+jXr1889dRTtc/U1NTEIYccEtdee20cfPDBcfPNN0fPnj3jhhtuiKOPPvobv99v4txzz43XX389Bg4cGGeeeWY8/vjjSxzfdM8998SBBx4YLVq0iEGDBsXFF18cb731Vuyxxx5FXyPPPPNMHHHEEZEkSVRXV0fPnj3jpJNOildffbVB3xMAAACwenN8DAAAwP+YNWtWfPzxx3HooYeu0POvv/56DBs2LE499dT47W9/GxH/OZqjbdu2ce2118bIkSOLSgfvvvtuvPDCC1FZWRkR/ylWbLjhhnHnnXfGtddeG9tss020bNkyzj///CWO/FhRzz77bMyfPz+eeuqpZR73sTR9+/aNddZZJ0aPHh3rrLNORET07Nkztt9++xg4cGAMGzas6Pntt98+br/99tqPv/jii7j99ttj0KBBK7Te2muvHQcddFDcd999cfLJJ0dNTU088MADceaZZy71+a233jr+9a9/RVnZ//9vHE444YTYYost4vbbb4+LL7441l9//ejRo0dccsklseuuuy71x2/q1Klx6623xo9//OM687Vq1Spuv/322H///ePqq6+O4447Li644ILo2bNnvR5T8v3vfz+qqqrit7/9bTz22GOx9957xx577BEHHXRQbLTRRvWyxsCBA2PgwIFF984888yVKvFsvvnmRR937NhxqWWhxaZMmRJ33313nHDCCRERccopp0THjh3j9ttvjx49ekTEf0pAzz33XPzlL3+JPfbYo/a1Xbp0iTPOOCNefvnlFS5nfVvrrrtuPPPMM7W77tTU1MSQIUNi5syZUVFREV9//XWcd955ceqpp8Ztt91W+7pevXrF5ptvHldddVXt/X79+sX6668fL774YlRUVERERFVVVey33361JSAAAACAUrNTCAAAwP+YNWtWRPynsLAi/vznP0dERJ8+fYru/+xnP4uIiCeffLLo/pZbbllbCImIWG+99WLzzTePiRMnfuPM/6tVq1YREfGnP/0pampqVug1n3zySbz22mvRu3fv2kJIRMQ222wT++67b+37/G9nnHFG0ceVlZXxxRdf1P4YrojjjjsuRo0aFVOnTo3nn38+pk6dutSjYyIicrlcbSFk0aJF8cUXX9QejTN+/PgVXjOXy8VJJ520Qs/ut99+8eMf/zguv/zyOPzww6NZs2bxm9/8ZoXXWhFJksTTTz8dv/zlL6N169Zx//33x9lnnx0dO3aMo48+uuh4nW/q9NNPj2effTaeffbZePjhh+Pss8+O3/zmN0t83tbl4Ycfrp3j2WefjXvvvbfO51u0aFFUnlljjTVi5513Lvpc/8Mf/hCdO3eOLbbYomgXkr333jsiIkaOHLmS7/SbO/3004uOYaqsrIxFixbFpEmTIuI/Zasvv/wyjj322KKsTZo0iV122aU26+KvpV69etUWQiIi9t1339hyyy0b7P0AAAAA2CkEAADgf7Rs2TIiIr766qsVen7SpElRVlYWnTp1Krrfrl27aNWqVe1fKC+2tJ0fWrduvdyjOFbG0UcfHb/73e/i1FNPjZ///OfRvXv3OPzww+PII48s2mXjf99HxJK7QUT850iWp59+OmbPnh3Nmzevvf+/76V169YR8Z9jQxb/OC7PAQccEGuvvXY8+OCD8dprr8VOO+0UnTp1WuoOFDU1NXHTTTfFr3/96/jggw9qj3SJ+M8uDytqgw02iDXWWGOFn7/22mvjT3/6U7z22mtx3333Rdu2bZf7ms8++6woX4sWLaJFixbLfD6Xy8WAAQNiwIAB8cknn8Rf/vKXuOmmm+Khhx6Kpk2bxu9///sVzvvfxYbFvvvd78Y+++xT+/Hio3tuvPHGOPnkk2Prrbde7rzdunVbqZ1nvvOd7yyRpXXr1vHGG2/UfjxhwoR4++23Y7311lvqHNOmTYuI/xxdM3/+/Nr7a665ZlHhoj7U9fm8OGtE1BZW/tfiz/nFX0vf/e53l3hmZQtMAAAAAN+GUggAAMD/aNmyZXTo0CH++c9/rtTrlvYX8UvTpEmTpd4vFArfeI3/Lh9E/OcvzF944YUYOXJkPPnkkzFixIh48MEHY++9945nnnlmmRlW1rd5L4vlcrk4/PDDY9iwYTFx4sS49NJLl/nsVVddFRdffHGcfPLJccUVV8Q666wTZWVl8dOf/nSFd0SJ+M+Pz8r4+9//XltO+Mc//hHHHnvscl+z0047FRWCBg4cWOd7+2/t27ePY445Jo444ojYaqut4qGHHoq77rorysvLo1mzZhERMXfu3KW+ds6cObXPLE/37t1j6NCh8cILL6xQKWRlrcjnR01NTWy99dZx/fXXL/XZDTfcMCL+U2L5y1/+Unu/V69ecdddd32jXP/79bKieRd/jt1zzz3Rrl27JZ4rL/fHLAAAAMCqxZ9WAAAALMVBBx0Ut912W4wePTp23XXXOp/t2LFj1NTUxIQJE6Jz58619z/99NP48ssvo2PHjvWWq3Xr1ks9SuR/dyOJiCgrK4vu3btH9+7d4/rrr4+rrroqBgwYECNHjizaMeK/30dExLvvvrvE2DvvvBNt2rQp2iWkPh133HFxxx13RFlZWRxzzDHLfO6Pf/xj7LXXXnH77bcX3f/yyy+LdrBY0YLOipg9e3acdNJJseWWW8Zuu+0W11xzTRx22GGx00471fm6e++9t6i4semmm6702k2bNo1tttkmJkyYEJ9//nm0a9eu6OdpcWFisTlz5sRHH30U++233wrNv3DhwoiI+Prrr1c6W33ZbLPN4vXXX4/u3bvX+fN23XXXFe2m06FDh+XOvbSvl/nz58cnn3zyjbNGRLRt23apX0OLLf45WryzyH9b2tcXAAAAQKksfc9gAACA1dyFF14YzZs3j1NPPTU+/fTTJcbff//9uOmmmyLiP8efRETceOONRc8s3vngwAMPrLdcm222WcycObPo+I1PPvkkHnnkkaLnpk+fvsRrt9tuu4iIyOfzS527ffv2sd1228WwYcOK/iL9n//8ZzzzzDO177MU9tprr7jiiiti6NChS92BYbEmTZossQvJH/7wh/j444+L7i0uryytQLOy+vXrF5MnT45hw4bF9ddfHxtvvHH06tVrmT+Oi+2+++6xzz771F51lUImTJgQkydPXuL+l19+GaNHj47WrVvXHq/SvXv3WGONNeKWW25ZYneU2267LRYuXBg9evRYoff2+OOPR0TEtttuu0LPl8JRRx0VH3/8cfz2t79dYmzu3Lkxe/bsiIjo2rVr0Y/nlltuudy5N9tss3jhhReK7t12223L3Clkefbff/9o2bJlXHXVVbFgwYIlxj/77LOIKP5amjlzZu34s88+G2+99dY3WhsAAADgm7BTCAAAwFJsttlmcd9998XRRx8dnTt3jhNPPDG6dOkS8+fPj5dffjn+8Ic/RO/evSPiP3+h3qtXr7jtttviyy+/jKqqqhgzZkwMGzYsevbsGXvttVe95TrmmGOiX79+cdhhh8V5550Xc+bMiVtuuSW+973vxfjx42ufu/zyy+OFF16IAw88MDp27BjTpk2LX//61/Gd73wn9thjj2XOP3jw4OjRo0fsuuuuccopp8TcuXPj5ptvjoqKihU++uSbKCsri4suumi5zx100EFx+eWXx0knnRS77bZb/OMf/4h77713icLFZpttFq1atYpbb7011l577WjevHnssssusckmm6xUrueffz5+/etfx8CBA2OHHXaIiIg777wz9txzz7j44ovjmmuuWan5luX111+P4447Lnr06BGVlZWxzjrrxMcffxzDhg2LKVOmxI033lh7tEnbtm3jkksuiYsuuii6desWhxxySKy11lrx8ssvx/333x/77bdfHHzwwUusMX78+Pj9738fERFfffVV/N///V88/PDDsdtuu63wziKlcMIJJ8RDDz0UZ5xxRowcOTJ23333WLRoUbzzzjvx0EMPxdNPPx077rjjN5r71FNPjTPOOCOOOOKI2HfffeP111+Pp59+umhXmZXRsmXLuOWWW+KEE06IHXbYIY455phYb731YvLkyfHkk0/G7rvvHkOHDo2IiOrq6jjwwANjjz32iJNPPjmmT58eN998c2y11Vap7swCAAAArF6UQgAAAJbhkEMOiTfeeCMGDx4cf/rTn+KWW26JXC4X22yzTVx33XVx2mmn1T77u9/9LjbddNO466674pFHHol27dpF//79Y+DAgfWaad11141HHnkk+vTpExdeeGFssskmUV1dHRMmTCgqhRxyyCHx4Ycfxh133BGff/55tGnTJqqqquKyyy6LioqKZc6/zz77xIgRI2LgwIFxySWXRNOmTaOqqioGDRq00oWKUvjFL34Rs2fPjvvuuy8efPDB2GGHHeLJJ5+Mn//850XPNW3aNIYNGxb9+/ePM844IxYuXBh33nnnSr2Hr776Kk4++eTYfvvtY8CAAbX3Kysr4yc/+Ulcd911cfjhh8f3v//9b/2+unXrFldccUU89dRTcf3118dnn30Wa6+9dmy//fYxaNCgOOKII4qeHzBgQGy88cYxdOjQuPzyy2PhwoWxySabxGWXXRb9+vWLsrIlNwa9//774/7774+IiPLy8thoo42ib9++cckllyz1+YZSVlYWjz76aNxwww1x9913xyOPPBJrrbVWbLrppvGTn/wkvve9733juU877bT44IMP4vbbb48RI0ZEZWVlPPvss9G9e/dvPOdxxx0XHTp0iKuvvjoGDx4c+Xw+Nthgg6isrIyTTjqp9rkf/OAH8Yc//CEuuuii6N+/f2y22WZx5513xp/+9KcYNWrUN14fAAAAYGUkhf/ddxcAAAAAAAAAgEYvvX8KBAAAAAAAAABAySiFAAAAAAAAAABkkFIIAAAAAAAAAEAGKYUAAAAAAAAAAGSQUggAAAAAAAAAQAYphQAAAAAAAAAAZJBSCAAAAAAAAABABpWnHaAU1tz+nJKvMWPs0JKvAQAAAAAAALAszTL5t72rr4b4e26Wbu7fs/v3/3YKAQAAAAAAAADIIKUQAAAAAAAAAIAMUgoBAAAAAAAAAMggpRAAAAAAAAAAgAxSCgEAAAAAAAAAyCClEAAAAAAAAACADFIKAQAAAAAAAADIoPK0AwAAAAAAAADAai+xpwP1z2cVAAAAAAAAAEAGpbpTyOeffx533HFHjB49OqZOnRoREe3atYvddtstevfuHeutt16a8QAAAAAAAAAAGq3UdgoZO3ZsfO9734shQ4ZERUVFdOvWLbp16xYVFRUxZMiQ2GKLLeLVV19NKx4AAAAAAAAAQKOW2k4h5557bvzwhz+MW2+9NZIkKRorFApxxhlnxLnnnhujR4+uc558Ph/5fL749TWLIilrUu+ZAQAAAAAAAAAai9R2Cnn99dfj/PPPX6IQEhGRJEmcf/758dprry13nurq6qioqCi6Fn46rgSJAQAAAAAAAAAaj9RKIe3atYsxY8Ysc3zMmDGx/vrrL3ee/v37x8yZM4uu8vW71mdUAAAAAAAAAIBGJ7XjYy644II4/fTTY9y4cdG9e/faAsinn34a//d//xe//e1v49prr13uPLlcLnK5XNE9R8cAAAAAAAAA0Kgs5ZQN+LZSK4WcffbZ0aZNm7jhhhvi17/+dSxatCgiIpo0aRJdu3aNu+66K4466qi04gEAAAAAAAAANGqplUIiIo4++ug4+uijY8GCBfH5559HRESbNm2iadOmacYCAAAAAAAAAGj0Ui2FLNa0adNo37592jEAAAAAAAAAADKjLO0AAAAAAAAAAADUP6UQAAAAAAAAAIAMUgoBAAAAAAAAAMggpRAAAAAAAAAAgAwqTzsAAAAAAAAAAKz2Ens6UP98VgEAAAAAAAAAZJBSCAAAAAAAAABABmXy+JgZY4eWfI22P7q75GtM+/2JJV8DAFZUoVD6NZKktPPXNMCbKCv1m4ASyMLXN6ufhvieHiVeoqys9F8YCxbVlHyNpk2y8e9NampK+xPeED/f0Bg1yPfzBuD/A6hvpf7S8CkL2eZ7yIppkP+tbJDf62TkJwQomWz8yQ0AAAAAAAAAAEWUQgAAAAAAAAAAMkgpBAAAAAAAAAAgg8rTDgAAAAAAAAAAq70kSTsBGWSnEAAAAAAAAACADFIKAQAAAAAAAADIIKUQAAAAAAAAAIAMUgoBAAAAAAAAAMggpRAAAAAAAAAAgAxSCgEAAAAAAAAAyKBVuhTy0Ucfxcknn1znM/l8PmbNmlV05fP5BkoIAAAAAAAAALBqWqVLIdOnT49hw4bV+Ux1dXVUVFQUXYMHVTdQQgAAAAAAAACoB0mZK60rw8rTXPyxxx6rc3zixInLnaN///7Rp0+fonuFJrlvlQsAAAAAAAAAoLFLtRTSs2fPSJIkCoXCMp9JkqTOOXK5XORyxSWQeQvrJR4AAAAAAAAAQKOV6j4o7du3j+HDh0dNTc1Sr/Hjx6cZDwAAAAAAAACg0Uq1FNK1a9cYN27cMseXt4sIAAAAAAAAAABLl+rxMX379o3Zs2cvc7xTp04xcuTIBkwEAAAAAAAAAJANqZZCKisr6xxv3rx5VFVVNVAaAAAAAAAAAIDsSLUUAgAAAAAAAABERJKknYAMKks7AAAAAAAAAAAA9U8pBAAAAAAAAAAgg5RCAAAAAAAAAAAySCkEAAAAAAAAACCDlEIAAAAAAAAAADKoPO0AjdW0359Y8jVa73ROydeYMXZoydcAIBuSJO0E315ZFt4ElIAvDRqjBvmenoGvjaZN/FuQFVVWloGfcGiE/B4dls6XBvBt+B6yYhrkfyv9ZACrAKUQAAAAAAAAAEhb4h93UP98VgEAAAAAAAAAZJBSCAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGKYUAAAAAAAAAAGSQUggAAAAAAAAAwAp44YUX4uCDD44OHTpEkiTx6KOPLvPZM844I5IkiRtvvLHo/vTp0+P444+Pli1bRqtWreKUU06Jr7/+uuiZN954IyorK6NZs2ax4YYbxjXXXPON8iqFAAAAAAAAAACsgNmzZ8e2224bv/rVr+p87pFHHolXXnklOnTosMTY8ccfH2+++WY8++yz8cQTT8QLL7wQp59+eu34rFmzYr/99ouOHTvGuHHjYvDgwXHppZfGbbfdttJ5y1f6FQAAAAAAAABA/UqStBOwAnr06BE9evSo85mPP/44zj333Hj66afjwAMPLBp7++23Y8SIETF27NjYcccdIyLi5ptvjgMOOCCuvfba6NChQ9x7770xf/78uOOOO2KNNdaIrbbaKl577bW4/vrri8ojK8JOIQAAAAAAAADAaiufz8esWbOKrnw+/43mqqmpiRNOOCH69u0bW2211RLjo0ePjlatWtUWQiIi9tlnnygrK4u//e1vtc9069Yt1lhjjdpn9t9//3j33XdjxowZK5Un9VLI3Llz48UXX4y33npribF58+bF3XffnUIqAAAAAAAAAGB1UF1dHRUVFUVXdXX1N5pr0KBBUV5eHuedd95Sx6dOnRpt27YtuldeXh7rrLNOTJ06tfaZ9ddfv+iZxR8vfmZFpXp8zL/+9a/Yb7/9YvLkyZEkSeyxxx7xwAMPRPv27SMiYubMmXHSSSfFiSeeuMw58vn8Eg2dQpNc5HK5kmYHAAAAAAAAABq//v37R58+fYrufZPOwbhx4+Kmm26K8ePHR7KKHAeU6k4h/fr1iy5dusS0adPi3XffjbXXXjt23333mDx58grPsbTGzuBB36yxAwAAAAAAAACsXnK5XLRs2bLo+ialkL/+9a8xbdq02GijjaK8vDzKy8tj0qRJ8bOf/Sw23njjiIho165dTJs2reh1CxcujOnTp0e7du1qn/n000+Lnln88eJnVlSqO4W8/PLL8dxzz0WbNm2iTZs28fjjj8dZZ50VlZWVMXLkyGjevPly51haY6fQxC4hAAAAAAAAAEDDOeGEE2KfffYpurf//vvHCSecECeddFJEROy6667x5Zdfxrhx46Jr164REfH8889HTU1N7LLLLrXPDBgwIBYsWBBNmzaNiIhnn302Nt9882jduvVKZUq1FDJ37twoL///IyRJErfcckucc845UVVVFffdd99y58jlljwqZt7Ceo8KAAAAAAAAAKzmvv7663jvvfdqP/7ggw/itddei3XWWSc22mijWHfddYueb9q0abRr1y4233zziIjo3Llz/OAHP4jTTjstbr311liwYEGcc845ccwxx0SHDh0iIuK4446Lyy67LE455ZTo169f/POf/4ybbropbrjhhpXOm2opZIsttohXX301OnfuXHR/6NChERFxyCGHpBELAAAAAAAAABpWUpZ2AlbAq6++GnvttVftx4tPNunVq1fcddddKzTHvffeG+ecc0507949ysrK4ogjjoghQ4bUjldUVMQzzzwTZ599dnTt2jXatGkTl1xySZx++ukrnTcpFAqFlX5VPamuro6//vWv8ec//3mp42eddVbceuutUVNTs1LzZmWnkNY7nVPyNWaMHVryNQAAAAAAAID61yzVLQCob2vu9ou0I6y25r58VdoRSibVUkipKIWsOKUQAAAAAAAAaJyUQrJFKSQ9WS6F2H8GAAAAAAAAACCDlEIAAAAAAAAAADJIKQQAAAAAAAAAIIOUQgAAAAAAAAAAMkgpBAAAAAAAAAAgg8rTDgAAAAAAAAAAq70kSTsBGWSnEAAAAAAAAACADLJTyCpsxtihJV+j9c7nlXyNGWOGlHwNAAAotUKh9Gv4xyAAAAAAQH2yUwgAAAAAAAAAQAYphQAAAAAAAAAAZJBSCAAAAAAAAABABimFAAAAAAAAAABkUHnaAQAAAAAAAABgtZfY04H657MKAAAAAAAAACCDlEIAAAAAAAAAADJIKQQAAAAAAAAAIIOUQgAAAAAAAAAAMkgpBAAAAAAAAAAgg8rTDvD222/HK6+8ErvuumtsscUW8c4778RNN90U+Xw+fvSjH8Xee+9d5+vz+Xzk8/mie4UmucjlcqWMDQAAAAAAAACwSkt1p5ARI0bEdtttFxdccEFsv/32MWLEiOjWrVu89957MWnSpNhvv/3i+eefr3OO6urqqKioKLoGD6puoHcAAAAAAAAAALBqSgqFQiGtxXfbbbfYe++945e//GU88MADcdZZZ8WZZ54ZV155ZURE9O/fP8aNGxfPPPPMMuewU8i303rn80q+xowxQ0q+BgAAlFpD/J9TkpR+DQAAACA7mqV+LgT1ac3KS9KOsNqa+9fL045QMqnuFPLmm29G7969IyLiqKOOiq+++iqOPPLI2vHjjz8+3njjjTrnyOVy0bJly6JLIQQAAAAAAAAAWN2lWgqJiEj+3z+FKysri2bNmkVFRUXt2Nprrx0zZ85MKxoAAAAAAAAAQKOVailk4403jgkTJtR+PHr06Nhoo41qP548eXK0b98+jWgAAAAAAAAAAI1aqqdMnXnmmbFo0aLaj7t06VI0/tRTT8Xee+/d0LEAAAAAAAAAABq9VEshZ5xxRp3jV111VQMlAQAAAAAAAADIllSPjwEAAAAAAAAAoDRS3SkEAAAAAAAAAIiIxJ4O1D+fVQAAAAAAAAAAGaQUAgAAAAAAAACQQUohAAAAAAAAAAAZpBQCAAAAAAAAAJBB5WkHIF0zxgwp+RqtdzqnpPPPGDu0pPMDAEBERJKknQAAAAAAYOXYKQQAAAAAAAAAIIPsFAIAAAAAAAAAaUvs6UD981kFAAAAAAAAAJBBSiEAAAAAAAAAABmkFAIAAAAAAAAAkEFKIQAAAAAAAAAAGaQUAgAAAAAAAACQQUohAAAAAAAAAAAZtMqVQgqFQtoRAAAAAAAAAAAavfK0A/yvXC4Xr7/+enTu3DntKAAAAAAAAADQMMqStBOQQamVQvr06bPU+4sWLYqrr7461l133YiIuP766xsyFgAAAAAAAABAJqRWCrnxxhtj2223jVatWhXdLxQK8fbbb0fz5s0jSZbfhMrn85HP54vnaJKLXC5Xn3EBAAAAAAAAABqVsrQWvuqqq2LmzJlx8cUXx8iRI2uvJk2axF133RUjR46M559/frnzVFdXR0VFRdE1eFB1A7wDAAAAAAAAAIBVV2o7hfz85z+P7t27x49+9KM4+OCDo7q6Opo2bbrS8/Tv33+Jo2gKTewSAgAAAAAAAACs3lLbKSQiYqeddopx48bFZ599FjvuuGP885//XKEjY/5bLpeLli1bFl2OjgEAAAAAAAAAVnep7RSyWIsWLWLYsGHxwAMPxD777BOLFi1KOxIAAAAAAAAAQKOXeilksWOOOSb22GOPGDduXHTs2DHtOAAAAAAAAADQcJJUD/ogo1aZUkhExHe+8534zne+k3YMAAAAAAAAAIBGT9UIAAAAAAAAACCDlEIAAAAAAAAAADJIKQQAAAAAAAAAIIOUQgAAAAAAAAAAMkgpBAAAAAAAAAAgg5RCAAAAAAAAAAAyqDztAGTfjLFDSzp/6++fX9L5IyJmvHJDydcAAAAgPYVCaedPktLODwAAQAb4n0dKwE4hAAAAAAAAAAAZpBQCAAAAAAAAAJBBSiEAAAAAAAAAABmkFAIAAAAAAAAAkEFKIQAAAAAAAAAAGaQUAgAAAAAAAACQQeVpBwAAAAAAAACA1V5iTwfqn88qAAAAAAAAAIAMUgoBAAAAAAAAAMggpRAAAAAAAAAAgAwqTzvAf5s9e3Y89NBD8d5770X79u3j2GOPjXXXXTftWAAAAAAAAAAAjU6qpZAtt9wyXnzxxVhnnXXio48+im7dusWMGTPie9/7Xrz//vtxxRVXxCuvvBKbbLLJMufI5/ORz+eL7hWa5CKXy5U6PgAAAAAAAADAKivV42PeeeedWLhwYURE9O/fPzp06BCTJk2KMWPGxKRJk2KbbbaJAQMG1DlHdXV1VFRUFF2DB1U3RHwAAAAAAAAAgFXWKnN8zOjRo+PWW2+NioqKiIho0aJFXHbZZXHMMcfU+br+/ftHnz59iu4VmtglBAAAAAAAAABYvaVeCkmSJCIi5s2bF+3bty8a22CDDeKzzz6r8/W53JJHxcxbWL8ZAQAAAAAAAKCk/t/fnUN9Sr0U0r179ygvL49Zs2bFu+++G126dKkdmzRpUqy77roppgMAAAAAAAAAaJxSLYUMHDiw6OMWLVoUffz4449HZWVlQ0YCAAAAAAAAAMiEVaoU8r8GDx7cQEkAAAAAAAAAALKlLO0AAAAAAAAAAADUP6UQAAAAAAAAAIAMUgoBAAAAAAAAAMig8rQDAAAAAAAAAMBqL7GnA/XPZxUAAAAAAAAAQAYphQAAAAAAAAAAZJBSCAAAAAAAAABABpWnHQC+rRmv3FDyNVrvdE7J15gxdmjJ1wAAAGDpkiTtBAAAAAD1z04hAAAAAAAAAAAZpBQCAAAAAAAAAJBBSiEAAAAAAAAAABlUnnYAAAAAAAAAAFjtJUnaCcggO4UAAAAAAAAAAGSQUggAAAAAAAAAQAYphQAAAAAAAAAAZJBSCAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGpVoKGT9+fHzwwQe1H99zzz2x++67x4Ybbhh77LFHPPDAA8udI5/Px6xZs4qufD5fytgAAAAAAAAAUL+SMldaV4al+u5OOumkeP/99yMi4ne/+138+Mc/jh133DEGDBgQO+20U5x22mlxxx131DlHdXV1VFRUFF2DB1U3RHwAAAAAAAAAgFVWUigUCmktvtZaa8Xbb78dHTt2jB122CHOPPPMOO2002rH77vvvrjyyivjzTffXOYc+Xx+iZ1BCk1ykcvlSpab1U/rnc4p+Rozxg4t+RoAAAAAAABkR7PytBNQn9b8wfVpR1htzR3RJ+0IJZPqt4m11lorPv/88+jYsWN8/PHHsfPOOxeN77LLLkXHyyxNLrdkAWTewnqPCgAAAAAAAADQqKR6fEyPHj3illtuiYiIqqqq+OMf/1g0/tBDD0WnTp3SiAYAAAAAAAAA0KilulPIoEGDYvfdd4+qqqrYcccd47rrrotRo0ZF586d4913341XXnklHnnkkTQjAgAAAAAAAAA0SqnuFNKhQ4f4+9//HrvuumuMGDEiCoVCjBkzJp555pn4zne+Ey+99FIccMABaUYEAAAAAAAAAGiUUt0pJCKiVatWcfXVV8fVV1+ddhQAAAAAAAAASEeSpJ2ADEp1pxAAAAAAAAAAAEpDKQQAAAAAAAAAIIOUQgAAAAAAAAAAMkgpBAAAAAAAAAAgg5RCAAAAAAAAAAAySCkEAAAAAAAAACCDytMOAI3BjLFDS75G653PK/kaM8YMKfkaAAAAAAAAAKwalEIAAAAAAAAAIG2Jgz6ofz6rAAAAAAAAAAAySCkEAAAAAAAAACCDlEIAAAAAAAAAADJIKQQAAAAAAAAAIIOUQgAAAAAAAAAAMkgpBAAAAAAAAAAgg8rTDgAAAAAAAAAAq70kSTsBGWSnEAAAAAAAAACADFIKAQAAAAAAAADIoFRLIeeee2789a9/TTMCAAAAAAAAAEAmpVoK+dWvfhV77rlnfO9734tBgwbF1KlTV3qOfD4fs2bNKrry+XwJ0gIAAAAAAAAANB6pHx/zzDPPxAEHHBDXXnttbLTRRnHooYfGE088ETU1NSv0+urq6qioqCi6Bg+qLnFqAAAAAAAAAIBVW1IoFAppLV5WVhZTp06Ntm3bxoIFC+KRRx6JO+64I5577rlYf/31o3fv3nHSSSdFp06dljlHPp9fYmeQQpNc5HK5UseHetV65/NKvsaMMUNKvgYAAAAAAAANo1l52gmoT2se6O/y0jL3ydL/XW1aUt8pZLGmTZvGUUcdFSNGjIiJEyfGaaedFvfee29svvnmdb4ul8tFy5Ytiy6FEAAAAAAAAABgdbdKdsc22mijuPTSS2PgwIHx3HPPpR0HAAAAAAAAAEorWWX2dCBDUv2s6tixYzRp0mSZ40mSxL777tuAiQAAAAAAAAAAsiHVnUI++OCDNJcHAAAAAAAAAMgs+88AAAAAAAAAAGSQUggAAAAAAAAAQAYphQAAAAAAAAAAZJBSCAAAAAAAAABABpWnHQAAAAAAAAAAVnuJPR2ofz6rAAAAAAAAAAAyyE4hsIqYMWZIyddovdM5JV9jxtihJV8DAAAAAAAAgOWzUwgAAAAAAAAAQAYphQAAAAAAAAAAZJBSCAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGlacdAAAAAAAAAABWe0mSdgIyyE4hAAAAAAAAAAAZpBQCAAAAAAAAAJBBSiEAAAAAAAAAABmkFAIAAAAAAAAAkEFKIQAAAAAAAAAAGZR6KWTo0KFx4oknxgMPPBAREffcc09sueWWscUWW8QvfvGLWLhwYZ2vz+fzMWvWrKIrn883RHQAAAAAAAAAgFVWqqWQX/7yl/GLX/wi5syZE+eff34MGjQozj///Dj++OOjV69e8bvf/S6uuOKKOueorq6OioqKomvwoOoGegcAAAAAAAAAUA+SMldaV4YlhUKhkNbinTp1imuuuSYOP/zweP3116Nr164xbNiwOP744yMi4pFHHokLL7wwJkyYsMw58vn8EjuDFJrkIpfLlTQ7NEatdzqn5GvMGDu05GsAAAAAAAAQ0aw87QTUpzUP/U3aEVZbc//047QjlEyq3yamTJkSO+64Y0REbLvttlFWVhbbbbdd7fgOO+wQU6ZMqXOOXG7JAsi8uk+cAQAAAAAAAADIvFT3QWnXrl289dZbERExYcKEWLRoUe3HERFvvvlmtG3bNq14AAAAAAAAAACNVqo7hRx//PFx4oknxqGHHhr/93//FxdeeGFccMEF8cUXX0SSJHHllVfGkUcemWZEAAAAAAAAAIBGKdVSyGWXXRZrrrlmjB49Ok477bT4+c9/Httuu21ceOGFMWfOnDj44IPjiiuuSDMiAAAAAAAAAECjlBQKhULaIerbvIVpJ4BVU+udzin5GjPGDi35GgAAAAAAAEQ0S3ULAOrbmof+Ju0Iq625f/px2hFKpiztAAAAAAAAAAAA1D/dMQAAAAAAAABIW5KknYAMslMIAAAAAAAAAEAGKYUAAAAAAAAAAGSQUggAAAAAAAAAQAYphQAAAAAAAAAAZFB52gGAhjNj7NCSr9F6p3NKOn9DvAcAAAAAAACALLBTCAAAAAAAAABABtkpBAAAAAAAAADSltjTgfrnswoAAAAAAAAAIIOUQgAAAAAAAAAAMkgpBAAAAAAAAAAgg5RCAAAAAAAAAAAySCkEAAAAAAAAACCDlEIAAAAAAAAAADKoPO0AAAAAAAAAALDaS5K0E5BBqZZCPvnkk7jlllvixRdfjE8++STKyspi0003jZ49e0bv3r2jSZMmacYDAAAAAAAAAGi0Ujs+5tVXX43OnTvHn//851iwYEFMmDAhunbtGs2bN48LLrggunXrFl999VVa8QAAAAAAAAAAGrXUSiE//elP4/zzz49XX301/vrXv8Zdd90V//rXv+KBBx6IiRMnxpw5c+Kiiy5a7jz5fD5mzZpVdOXz+QZ4BwAAAAAAAAAAq67USiHjx4+PE044ofbj4447LsaPHx+ffvpptG7dOq655pr44x//uNx5qquro6KiougaPKi6lNEBAAAAAAAAAFZ55Wkt3LZt2/jkk09i0003jYiITz/9NBYuXBgtW7aMiIjvfve7MX369OXO079//+jTp0/RvUKTXP0HBgAAAAAAAABoRFIrhfTs2TPOOOOMGDx4cORyubjiiiuiqqoq1lxzzYiIePfdd2ODDTZY7jy5XC5yueISyLyFJYkMAAAAAAAAANBopFYK+eUvfxmffPJJHHzwwbFo0aLYdddd4/e//33teJIkUV3tGBgAAAAAAAAAgG8itVJIixYt4sEHH4x58+bFwoULo0WLFkXj++23X0rJAAAAAAAAAKBhJUmSdgQyKLVSyGLNmjVLOwIAAAAAAAAAQOaUpR0AAAAAAAAAAID6pxQCAAAAAAAAAJBBSiEAAAAAAAAAABmkFAIAAAAAAAAAkEFKIQAAAAAAAAAAGVSedgAAAAAAAAAAWN0lSZJ2BDJIKQSoVzPGDi3p/K13Oqek80eU/j0AAAAAAAAANATHxwAAAAAAAAAAZJBSCAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGKYUAAAAAAAAAAGSQUggAAAAAAAAAQAaVpx0AAAAAAAAAAFZ7SdoByKLUSyHz58+PRx99NEaPHh1Tp06NiIh27drFbrvtFoceemisscYaKScEAAAAAAAAAGh8Uj0+5r333ovOnTtHr1694u9//3vU1NRETU1N/P3vf48TTzwxttpqq3jvvffSjAgAAAAAAAAA0CilulPImWeeGVtvvXX8/e9/j5YtWxaNzZo1K0488cQ4++yz4+mnn04pIQAAAAAAAABA45RqKeSll16KMWPGLFEIiYho2bJlXHHFFbHLLrukkAwAAAAAAAAAoHFLtRTSqlWr+PDDD6NLly5LHf/www+jVatWdc6Rz+cjn88X3Ss0yUUul6uvmAAAAAAAAAAAjU5ZmoufeuqpceKJJ8YNN9wQb7zxRnz66afx6aefxhtvvBE33HBD9O7dO04//fQ656iuro6Kioqia/Cg6gZ6BwAAAAAAAAAAq6akUCgU0gwwaNCguOmmm2Lq1KmRJElERBQKhWjXrl389Kc/jQsvvLDO19spBFYvrXc6p+RrzBg7tORrAAAAAAAAfFvNUj0XgvrW4qi70o6w2vr6od5pRyiZ1L9N9OvXL/r16xcffPBBTJ06NSIi2rVrF5tssskKvT6XW7IAMm9hvccEAAAAAAAAAGhUUj0+5r9tsskmseuuu8auu+5aWwj56KOP4uSTT045GQAAAAAAAABA47PKlEKWZvr06TFs2LC0YwAAAAAAAAAANDqpHh/z2GOP1Tk+ceLEBkoCAAAAAAAAAJAtqZZCevbsGUmSRKFQWOYzSZI0YCIAAAAAAAAAgGxI9fiY9u3bx/Dhw6Ompmap1/jx49OMBwAAAAAAAADQaKVaCunatWuMGzdumePL20UEAAAAAAAAAIClS/X4mL59+8bs2bOXOd6pU6cYOXJkAyYCAAAAAAAAgIaXJEnaEcigVEshlZWVdY43b948qqqqGigNAAAAAAAAAEB2pHp8DAAAAAAAAAAApaEUAgAAAAAAAACQQakeHwOwsmaMHVryNVrvdE7J12iI9wEAAAAAAACs3uwUAgAAAAAAAACQQUohAAAAAAAAAAAZ5PgYAAAAAAAAAEhZkiRpRyCD7BQCAAAAAAAAAJBBSiEAAAAAAAAAABmkFAIAAAAAAAAAkEGrdCnk008/jcsvvzztGAAAAAAAAAAAjc4qXQqZOnVqXHbZZWnHAAAAAAAAAABodMrTXPyNN96oc/zdd99toCQAAAAAAAAAANmSailku+22iyRJolAoLDG2+H6SJCkkAwAAAAAAAICG4+/GKYVUSyHrrLNOXHPNNdG9e/eljr/55ptx8MEH1zlHPp+PfD5fdK/QJBe5XK7ecgIAAAAAAAAANDZlaS7etWvXmDJlSnTs2HGp1wYbbLDUXUT+W3V1dVRUVBRdgwdVN9A7AAAAAAAAAABYNaW6U8gZZ5wRs2fPXub4RhttFHfeeWedc/Tv3z/69OlTdK/QxC4hAAAAAAAAAMDqLdVSyGGHHVbneOvWraNXr151PpPLLXlUzLyF3zoaAAAAAAAAAECjlurxMcvz0Ucfxcknn5x2DAAAAAAAAACARmeVLoVMnz49hg0blnYMAAAAAAAAAIBGJ9XjYx577LE6xydOnNhASQAAAAAAAAAAsiXVUkjPnj0jSZIoFArLfCZJkgZMBAAAAAAAAAAp8FfjlECqx8e0b98+hg8fHjU1NUu9xo8fn2Y8AAAAAAAAAIBGK9VSSNeuXWPcuHHLHF/eLiIAAAAAAAAAACxdqsfH9O3bN2bPnr3M8U6dOsXIkSMbMBEAAAAAAAAAQDakWgqprKysc7x58+ZRVVXVQGkAAAAAAAAAALIj1eNjAAAAAAAAAAAoDaUQAAAAAAAAAIAMSvX4GIBV0YyxQ0u+Rutd+5R8jRmjry/5GqxeCoXSr5EkpV8DAAAAAABWRYk/JKcE7BQCAAAAAAAAAJBBSiEAAAAAAAAAABmkFAIAAAAAAAAAkEFKIQAAAAAAAAAAGaQUAgAAAAAAAACQQUohAAAAAAAAAAAZpBQCAAAAAAAAAJBB5WkHiIj497//Ha1atYoWLVoU3V+wYEGMHj06unXrllIyAAAAAAAAACi9JEnSjkAGpbpTyCeffBI777xzdOzYMVq1ahUnnnhifP3117Xj06dPj7322ivFhAAAAAAAAAAAjVOqpZCf//znUVZWFn/7299ixIgR8dZbb8Vee+0VM2bMqH2mUCikmBAAAAAAAAAAoHFKtRTy3HPPxZAhQ2LHHXeMffbZJ1566aVo37597L333jF9+vSIsEUOAAAAAAAAAMA3kWopZObMmdG6devaj3O5XAwfPjw23njj2GuvvWLatGnLnSOfz8esWbOKrnw+X8rYAAAAAAAAAACrvFRLIZtuumm88cYbRffKy8vjD3/4Q2y66aZx0EEHLXeO6urqqKioKLoGD6ouVWQAAAAAAAAAgEYh1VJIjx494rbbblvi/uJiyHbbbReFQqHOOfr37x8zZ84suvr261+qyAAAAAAAAAAAjUJ5motfeeWVMWfOnKWOlZeXx8MPPxwff/xxnXPkcrnI5XJF9+YtrLeIAAAAAAAAAFBySZKkHYEMSnWnkPLy8mjZsuUyxz/55JO47LLLGjARAAAAAAAAAMDSvfDCC3HwwQdHhw4dIkmSePTRR2vHFixYEP369Yutt946mjdvHh06dIgTTzwxpkyZUjTH9OnT4/jjj4+WLVtGq1at4pRTTomvv/666Jk33ngjKisro1mzZrHhhhvGNddc843yploKWZ7p06fHsGHD0o4BAAAAAAAAABCzZ8+ObbfdNn71q18tMTZnzpwYP358XHzxxTF+/PgYPnx4vPvuu3HIIYcUPXf88cfHm2++Gc8++2w88cQT8cILL8Tpp59eOz5r1qzYb7/9omPHjjFu3LgYPHhwXHrppXHbbbetdN5Uj4957LHH6hyfOHFiAyUBAAAAAAAAAKhbjx49okePHksdq6ioiGeffbbo3tChQ2PnnXeOyZMnx0YbbRRvv/12jBgxIsaOHRs77rhjRETcfPPNccABB8S1114bHTp0iHvvvTfmz58fd9xxR6yxxhqx1VZbxWuvvRbXX399UXlkRaRaCunZs2ckSRKFQmGZzzg3CQAAAAAAAAAolXw+H/l8vuheLpeLXC73reeeOXNmJEkSrVq1ioiI0aNHR6tWrWoLIRER++yzT5SVlcXf/va3OOyww2L06NHRrVu3WGONNWqf2X///WPQoEExY8aMaN269Qqvn+rxMe3bt4/hw4dHTU3NUq/x48enGQ8AAAAAAAAAyLjq6uqoqKgouqqrq7/1vPPmzYt+/frFscceGy1btoyIiKlTp0bbtm2LnisvL4911lknpk6dWvvM+uuvX/TM4o8XP7OiUi2FdO3aNcaNG7fM8eXtIgIAAAAAAAAA8G30798/Zs6cWXT179//W825YMGCOOqoo6JQKMQtt9xST0lXXqrHx/Tt2zdmz569zPFOnTrFyJEjGzARAAAAAAAAALA6qa+jYhZbXAiZNGlSPP/887W7hEREtGvXLqZNm1b0/MKFC2P69OnRrl272mc+/fTTomcWf7z4mRWVaimksrKyzvHmzZtHVVVVA6UBAAAAAAAAgHQkSZJ2BOrB4kLIhAkTYuTIkbHuuusWje+6667x5Zdfxrhx46Jr164REfH8889HTU1N7LLLLrXPDBgwIBYsWBBNmzaNiIhnn302Nt9882jduvVK5Un1+BgAAAAAAAAAgMbi66+/jtdeey1ee+21iIj44IMP4rXXXovJkyfHggUL4sgjj4xXX3017r333li0aFFMnTo1pk6dGvPnz4+IiM6dO8cPfvCDOO2002LMmDHx0ksvxTnnnBPHHHNMdOjQISIijjvuuFhjjTXilFNOiTfffDMefPDBuOmmm6JPnz4rnTcpFAqFenv3q4h5C9NOAJC+1vtdWfI1ZjwzoORrQH1qiN/1KHIDNAzf01dMTQP8QJVl4QcKyDS/ZgAAaWmI34es2bT0a9Bw1j3x/rQjrLa+uPvYFX521KhRsddeey1xv1evXnHppZfGJptsstTXjRw5Mvbcc8+IiJg+fXqcc8458fjjj0dZWVkcccQRMWTIkGjRokXt82+88UacffbZMXbs2GjTpk2ce+650a9fv5V7Y5Hy8TEAAAAAAAAAAI3FnnvuGXXtvbEi+3Kss846cd9999X5zDbbbBN//etfVzrf/3J8DAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGlacdAAAAAAAAAABWe0naAcgiO4UAAAAAAAAAAGSQUggAAAAAAAAAQAalfnzMF198EW+88UZsu+22sc4668Tnn38et99+e+Tz+fjhD38YnTt3TjsiAAAAAAAAAECjk2opZMyYMbHffvvFrFmzolWrVvHss8/GD3/4wygvL4+ampq4+uqr48UXX4wddtghzZgAAAAAAAAAAI1OqsfHDBgwIH74wx/GzJkz4xe/+EX07NkzunfvHv/617/ivffei2OOOSauuOKKNCMCAAAAAAAAADRKqZZCxo0bF3369Im11147fvKTn8SUKVPitNNOqx0/55xzYuzYsSkmBAAAAAAAAABonFI9Pmb+/Pmx5pprRkRE06ZNY6211oo2bdrUjrdp0ya++OKLOufI5/ORz+eL7hWa5CKXy9V/YAAAAAAAAACARiLVnUI23HDDmDhxYu3HDzzwQLRv3772408++aSoJLI01dXVUVFRUXQNHlRdsswAAAAAAAAAUN+SJHGldGVZqjuFHHPMMTFt2rTajw888MCi8cceeyx23nnnOufo379/9OnTp+heoYldQgAAAAAAAACA1VuqpZCBAwfWOT5gwIBo0qRJnc/kckseFTNv4beOBgAAAAAAAADQqKV6fMzyfPHFF3HmmWemHQMAAAAAAAAAoNFZpUsh06dPj2HDhqUdAwAAAAAAAACg0Un1+JjHHnuszvGJEyc2UBIAAAAAAAAAgGxJtRTSs2fPSJIkCoXCMp9JkqQBEwEAAAAAAAAAZEOqx8e0b98+hg8fHjU1NUu9xo8fn2Y8AAAAAAAAAGgQSZK4UrqyLNVSSNeuXWPcuHHLHF/eLiIAAAAAAAAAACxdqsfH9O3bN2bPnr3M8U6dOsXIkSMbMBEAAAAAAAAAQDakWgqprKysc7x58+ZRVVXVQGkAAAAAAAAAALIj1eNjAAAAAAAAAAAoDaUQAAAAAAAAAIAMSvX4GABKZ8YzA0q+Ruudzyv5GjPGDCn5Gqw+kiTtBADUF9/TV0yZHygAv2YAAKnx+xBgVaAUAgAAAAAAAAApSzSJKAHHxwAAAAAAAAAAZJBSCAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGKYUAAAAAAAAAAGTQKlkK2XTTTWPChAlpxwAAAAAAAAAAaLTK01x8yJAhS70/efLkuPPOO6Ndu3YREXHeeec1ZCwAAAAAAAAAgEYv1VLIT3/609hggw2ivLw4Rk1NTdx9993RtGnTSJJEKQQAAAAAAACAbEvSDkAWpVoKOf300+Nvf/tb3HfffdG5c+fa+02bNo1nnnkmttxyyxTTAQAAAAAAAAA0XmVpLn7rrbfGJZdcEvvvv38MHTo0zSgAAAAAAAAAAJmSaikkIuKwww6L0aNHxyOPPBI9evSIqVOnrtTr8/l8zJo1q+jK5/MlSgsAAAAAAAAA0DikXgqJiNhggw3iueeei27dusX2228fhUJhhV9bXV0dFRUVRdfgQdUlTAsAAAAAAAAAsOpLCivTwGgA48aNixdffDFOPPHEaN269XKfz+fzS+wMUmiSi1wuV6qIAPw/rXc+r+RrzBgzpORrAAAAAABAY9SsPO0E1Ke2pzyUdoTV1rTbj0o7Qsmsct8munbtGl27do2IiI8++igGDhwYd9xxxzKfz+WWLIDMW1jSiAAAAAAAAAAAq7xV4viYZZk+fXoMGzYs7RgAAAAAAAAAUFJJkrhSurIs1Z1CHnvssTrHJ06c2EBJAAAAAAAAAACyJdVSSM+ePSNJkigUCst8JuutHAAAAAAAAACAUkj1+Jj27dvH8OHDo6amZqnX+PHj04wHAAAAAAAAANBopVoK6dq1a4wbN26Z48vbRQQAAAAAAAAAgKVL9fiYvn37xuzZs5c53qlTpxg5cmQDJgIAAAAAAAAAyIZUSyGVlZV1jjdv3jyqqqoaKA0AAAAAAAAAQHakenwMAAAAAAAAAAClkepOIQAAAAAAAABARJIkaUcgg5RCAPjGZowZUvI1Wu90TknnnzF2aEnnBwAAAAAAgLQ4PgYAAAAAAAAAIIOUQgAAAAAAAAAAMkgpBAAAAAAAAAAgg5RCAAAAAAAAAAAySCkEAAAAAAAAACCDytMOAAAAAAAAAACruyRJ0o5ABtkpBAAAAAAAAAAgg1apnUIKhUKMGjUq3nvvvWjfvn3sv//+0bRp07RjAQAAAAAAAAA0OqmWQg444IC4//77o6KiIqZPnx4HHHBAjBkzJtq0aRNffPFFfO9734sXXngh1ltvvTRjAgAAAAAAAAA0OqkeHzNixIjI5/MREXHRRRfFV199Fe+//35MmzYtJk2aFM2bN49LLrkkzYgAAAAAAAAAAI1SqqWQ//b8889HdXV1bLLJJhER8Z3vfCcGDRoUTz/9dMrJAAAAAAAAAAAan1SPj4mISJIkIiJmzJgRm222WdFYp06dYsqUKXW+Pp/P1+42slihSS5yuVz9BgUAAAAAAAAAaERS3ymkd+/ecfjhh8eCBQvigw8+KBqbOnVqtGrVqs7XV1dXR0VFRdE1eFB1CRMDAAAAAAAAAKz6Ut0ppFevXrX/feihh8acOXOKxh9++OHYbrvt6pyjf//+0adPn6J7hSZ2CQEAAAAAAACg8Vh8ygbUp1RLIXfeeWed4wMHDowmTZrU+Uwut+RRMfMWfutoAAAAAAAAAACNWurHx9Rl+vTpcdZZZ6UdAwAAAAAAAACg0VnlSyHDhg1LOwYAAAAAAAAAQKOT6vExjz32WJ3jEydObKAkAAAAAAAAAADZkmoppGfPnpEkSRQKhWU+kyRJAyYCAAAAAAAAAMiGVI+Pad++fQwfPjxqamqWeo0fPz7NeAAAAAAAAAAAjVaqpZCuXbvGuHHjljm+vF1EAAAAAAAAACATEldqV4alenxM3759Y/bs2csc79SpU4wcObIBEwEAAAAAAAAAZEOqpZDKyso6x5s3bx5VVVUNlAYAAAAAAAAAIDtSPT4GAAAAAAAAAIDSUAoBAAAAAAAAAMigVI+PAYDlmTF2aEnnb73bBSWdPyJixsvXlnwNAAC+nZqaQknnLytLSjo/AAAAwNLYKQQAAAAAAAAAIIPsFAIAAAAAAAAAKUsSu0xS/+wUAgAAAAAAAACQQUohAAAAAAAAAAAZpBQCAAAAAAAAAJBBSiEAAAAAAAAAABmUaink3//+d3z++ee1H//1r3+N448/PiorK+NHP/pRjB49OsV0AAAAAAAAAACNV6qlkCOOOCJeeeWViIj405/+FHvuuWd8/fXXsfvuu8ecOXOiqqoqnnjiiTQjAgAAAAAAAAA0SuVpLv7mm2/GVlttFRER1dXVcdVVV0W/fv1qx4cOHRqXXHJJHHTQQWlFBAAAAAAAAABolFIthZSXl8dXX30VEREffPBB9OjRo2i8R48eRSURAAAAAAAAAMiiJEnSjkAGpXp8TFVVVdx///0REbH99tvHqFGjisZHjhwZG2ywQZ1z5PP5mDVrVtGVz+dLFRkAAAAAAAAAoFFIdaeQq6++OiorK2PKlCmxxx57xIABA2Ls2LHRuXPnePfdd+PBBx+MW2+9tc45qqur47LLLiu6N+DigXHRJZeWMDkAAAAAAAAAwKotKRQKhTQDvP/++3HRRRfFk08+GV9//XVE/OdYmZ122in69u0bPXv2rPP1+Xx+iZ1BCk1ykcvlShUZgAxpvdsFJV9jxsvXlnwNAAC+nZqa0v7xSFmZLYABAID61yzVLQCob98569G0I6y2/v3rnmlHKJnUv01sttlmcf/990ehUIhp06ZFTU1NtGnTJpo2bbpCr8/lliyAzFtYiqQAAAAAAAAAAI1HWdoBFkuSJNZff/1o3759bSHko48+ipNPPjnlZAAAAAAAAAAAjc8qUwpZmunTp8ewYcPSjgEAAAAAAAAA0OikenzMY489Vuf4xIkTGygJAAAAAAAAAKQnSZK0I5BBqZZCevbsGUmSRKFQWOYzPvEBAAAAAAAAAFZeqsfHtG/fPoYPHx41NTVLvcaPH59mPAAAAAAAAACARivVUkjXrl1j3Lhxyxxf3i4iAAAAAAAAAAAsXarHx/Tt2zdmz569zPFOnTrFyJEjGzARAAAAAAAAAEA2pFoKqaysrHO8efPmUVVV1UBpAAAAAAAAAACyI9XjYwAAAAAAAAAAKA2lEAAAAAAAAACADEr1+BgASNuMl68t+Rqtdz6v5GvMGDOk5GsAAGRZWVmSdgQAAABWd/7XlBKwUwgAAAAAAAAAQAYphQAAAAAAAAAAZJBSCAAAAAAAAABABimFAAAAAAAAAABkkFIIAAAAAAAAAEAGKYUAAAAAAAAAAGRQedoBAAAAAAAAAGB1lyRJ2hHIoFR3Crnuuuti0qRJaUYAAAAAAAAAAMikVEshffv2jc022yz23XffePDBB2P+/PlpxgEAAAAAAAAAyIxUSyEREb/73e+iefPmccIJJ0SHDh3ipz/9afzzn/9MOxYAAAAAAAAAQKOWeinkgAMOiEcffTT+/e9/x4UXXhhPP/10bLvttrHzzjvHb3/72/jqq6/SjggAAAAAAAAA0OikXgpZrG3btnHhhRfG22+/HaNGjYott9wyzj///Gjfvn2dr8vn8zFr1qyiK5/PN1BqAAAAAAAAAIBVU6qlkCRJlnq/srIy7rrrrpgyZUrccMMNdc5RXV0dFRUVRdfgQdWliAsAAAAAAAAA0GgkhUKhkNbiZWVlMXXq1Gjbtu03niOfzy+xM0ihSS5yudy3jQcA9aL1zueVfI0ZY4aUfA0AAAAAAFYtzcrTTkB92ujcx9KOsNqafPMhaUcomVS/TdTU1HzrOXK5JQsg8xZ+62kBAAAAAAAAoMEs66QN+DZSPT5meT766KM4+eST044BAAAAAAAAANDorNKlkOnTp8ewYcPSjgEAAAAAAAAA0OikenzMY4/VfSbSxIkTGygJAAAAAAAAAEC2pFoK6dmzZyRJEoVCYZnPODcJAAAAAAAAAGDlpXp8TPv27WP48OFRU1Oz1Gv8+PFpxgMAAAAAAAAAaLRSLYV07do1xo0bt8zx5e0iAgAAAAAAAADA0qV6fEzfvn1j9uzZyxzv1KlTjBw5sgETAQAAAAAAAEDDS5Ik7QhkUKqlkMrKyjrHmzdvHlVVVQ2UBgAAAAAAAAAgO1I9PgYAAAAAAAAAgNJIdacQAFgdzBgzpORrtN75vJKv0RDvAwAAAAAAgPpjpxAAAAAAAAAAgAxSCgEAAAAAAAAAyCClEAAAAAAAAACADFIKAQAAAAAAAADIoPK0AwAAAAAAAADA6i5JkrQjkEF2CgEAAAAAAAAAyCClEAAAAAAAAACADEq9FPLEE0/EJZdcEi+99FJERDz//PNxwAEHxA9+8IO47bbbUk4HAAAAAAAAANA4pVoK+c1vfhOHHXZY/PnPf44DDjggfv/730fPnj1jgw02iI033jh++tOfxk033ZRmRAAAAAAAAACARqk8zcWHDBkSv/71r+O0006LkSNHxgEHHBDXXXddnHXWWRER8f3vfz+uueaa+MlPfpJmTAAAAAAAAACARifVnUI++OCD2H///SMiYq+99opFixZFt27dasf33HPPmDRpUlrxAAAAAAAAAAAarVR3Cll33XVj0qRJsdFGG8WUKVNi4cKFMXny5OjSpUtEREyaNCnWWWedOufI5/ORz+eL7hWa5CKXy5UsNwAAAAAAAADUqyTtAGRRqjuFHHrooXHKKafElVdeGYcddliceOKJ8bOf/SxGjBgRTz/9dJx77rmx33771TlHdXV1VFRUFF2DB1U30DsAAAAAAAAAAFg1pbpTyKBBg2L+/PnxwAMPxG677RY333xzDBkyJA499NBYsGBBVFVVRXV13QWP/v37R58+fYruFZrYJQQAAAAAAAAAWL0lhUKhkHaI/zVv3rxYsGBBrL322t/s9QvrORAArOJa73xeydeYMWZIydcAAAAAAGDFNUt1CwDq2ybnP5l2hNXWBzccmHaEkkn1+JhladasWay99trx0Ucfxcknn5x2HAAAAAAAAACARmeVLIUsNn369Bg2bFjaMQAAAAAAAAAAGp1UNxR67LHH6hyfOHFiAyUBAAAAAAAAAMiWVEshPXv2jCRJolAoLPOZJEkaMBEAAAAAAAAANDx/N04ppHp8TPv27WP48OFRU1Oz1Gv8+PFpxgMAAAAAAAAAaLRSLYV07do1xo0bt8zx5e0iAgAAAAAAAADA0qV6fEzfvn1j9uzZyxzv1KlTjBw5sgETAQAAAAAAAABkQ6qlkMrKyjrHmzdvHlVVVQ2UBgAAAAAAAAAgO1I9PgYAAAAAAAAAgNJQCgEAAAAAAAAAyKBUj49pzGpqCiVfo6wsKfkaQDpqCg3wPSTxPWR1MmPMkJKvUTX4LyVfY9QFpT02zpcF8G00wC/fvk+thEUN8P9kc+YvKun8azcr/f+S5xfUlHyNXNNs/HuThYtK+zlV3sQX+KokC9/TG+L7YJMG+LOpBYtK/32qSQP8ApuFP8ebt6C0v+5FRDRr2qTka2RFqb9P+X0n9S0Lv7ay+vF5C6wulEIAAAAAAAAAIGWJJhElkI1/zgMAAAAAAAAAQBGlEAAAAAAAAACADFIKAQAAAAAAAADIIKUQAAAAAAAAAIAMUgoBAAAAAAAAAMig8rQDzJ07N+6///548cUX45NPPomysrLYdNNNo2fPntG9e/e04wEAAAAAAAAANEqplkLee++92GeffWLu3LmRy+Xi3//+dxxwwAExduzYuOWWW+Lwww+P++67L8rLU++uAAAAAAAAAEDJJEnaCciiVI+POe+88+IHP/hBTJ06NSZPnhzV1dVRU1MTr7zySrz99tsxduzY+OUvf5lmRAAAAAAAAACARinVUshf/vKX+NnPfhbJ/6s8nX/++fHcc8/FF198Ed/97nfjxhtvjGHDhqUZEQAAAAAAAACgUUr1XJZWrVrFV199VfvxnDlzYuHChbHGGmtERMQ222wTn3zySZ1z5PP5yOfzRfcKTXKRy+XqPzAAAAAAAAAAQCOR6k4h++67b/Tp0yfeeeed+OCDD+KMM86I7bbbLtZee+2IiJg8eXK0bdu2zjmqq6ujoqKi6Bo8qLoh4gMAAAAAAAAArLJS3SnkmmuuiUMPPTS23HLLSJIkNtxww3jkkUdqxz/77LPo27dvnXP0798/+vTpU3Sv0MQuIQAAAAAAAADA6i3VUkjbtm1j9OjRMWHChMjn87HFFltEefn/H+nII49c7hy53JJHxcxbWO9RAQAAAAAAAAAalVSPj1nsu9/9bnTp0qWoEBIR8dFHH8XJJ5+cUioAAAAAAAAAgMZrlSiFLMv06dNj2LBhaccAAAAAAAAAgJJKksSV0pVlqR4f89hjj9U5PnHixAZKAgAAAAAAAACQLamWQnr27BlJkkShUFjmM1lv5QAAAAAAAAAAlEKqx8e0b98+hg8fHjU1NUu9xo8fn2Y8AAAAAAAAAIBGK9VSSNeuXWPcuHHLHF/eLiIAAAAAAAAAACxdqsfH9O3bN2bPnr3M8U6dOsXIkSMbMBEAAAAAAAAAQDakWgqprKysc7x58+ZRVVXVQGkAAAAAAAAAALIj1VIIAAAAAAAAABCRJGknIIvK0g4AAAAAAAAAAED9s1PIN1RWpqYFfHNlqp40QqMuKP2RblWDR5V0/r/03bOk80dockOW+fpetTTE76fWblba/2WeOWdBSeePiMg19W9BVtS8BYtKOn+LJqX/I5hCoeRLZOZ7YRbeR5OM/NlUkwb4yViwqPRfHLkM/Hys0cSvGauSBYtqSjr/GuV+vqlfWfi1ldVPQ3zeNsTv0QGWx+/8AAAAAAAAAAAySCkEAAAAAAAAACCDlEIAAAAAAAAAADJIKQQAAAAAAAAAIIOUQgAAAAAAAAAAMqg87QAAAAAAAAAAsLpLkiTtCGTQKlEKGTNmTIwePTqmTp0aERHt2rWLXXfdNXbeeeeUkwEAAAAAAAAANE6plkKmTZsWRxxxRLz00kux0UYbxfrrrx8REZ9++mmcf/75sfvuu8fDDz8cbdu2TTMmAAAAAAAAAECjU5bm4meddVYsWrQo3n777fjwww/jb3/7W/ztb3+LDz/8MN5+++2oqamJs88+O82IAAAAAAAAAACNUqo7hTz99NPxwgsvxOabb77E2Oabbx5DhgyJPffcs+GDAQAAAAAAAAA0cqnuFJLL5WLWrFnLHP/qq68il8s1YCIAAAAAAAAAgGxItRRy9NFHR69eveKRRx4pKofMmjUrHnnkkTjppJPi2GOPrXOOfD4fs2bNKrry+XypowMAAAAAAAAArNJSPT7m+uuvj5qamjjmmGNi4cKFscYaa0RExPz586O8vDxOOeWUuPbaa+uco7q6Oi677LKiewMuHhgXXXJpqWIDAAAAAAAAQL1KkrQTkEVJoVAopB1i1qxZMW7cuJg6dWpERLRr1y66du0aLVu2XO5r8/n8EjuDFJrkHDsDAPWsIX7HUDV4VEnn/0vfPUs6f4TftAM0lIb4danU39NnzllQ2gUiIte09BuENmvapORrNISv5y0s6fwtmpX+3+Vk4euC1U9NTek/cRcsKv0aDfH9ttQa4ueirMw3kRU1f2FNSedfo7zxf84CNAYN8Xv0NZuWfg0azhY/fzrtCKutd67eP+0IJZPqTiGLtWzZMvbaa69v9NpcbskCSIn/HAcAAAAAAAAAYJWXeh147ty58eKLL8Zbb721xNi8efPi7rvvTiEVAAAAAAAAAEDjlmop5F//+ld07tw5unXrFltvvXVUVVXFlClTasdnzpwZJ510UooJAQAAAAAAAAAap1RLIf369YsuXbrEtGnT4t13342111479thjj5g8eXKasQAAAAAAAAAAGr1USyEvv/xyVFdXR5s2baJTp07x+OOPx/777x+VlZUxceLENKMBAAAAAAAAADRqqZZC5s6dG+Xl5bUfJ0kSt9xySxx88MFRVVUV//rXv1JMBwAAAAAAAADQeJUv/5HS2WKLLeLVV1+Nzp07F90fOnRoREQccsghacQCAAAAAAAAgAZVVpakHYEMSnWnkMMOOyzuv//+pY4NHTo0jj322CgUCg2cCgAAAAAA4P9j7//jrKzr/PH/cYaBQWEccUmFNfyxtILiommZPynyDWkL6mYmUqa5lphZUWRsq6WrDv5YU6Owem8Ubam7m7biNwjUbm8+JqFo6qYItKKzewuEEAEFjjJzvn/su9n3rIagc+biHO732+263biu13Ver8fMOec6P3jO6wUAUPsKLQqZOnVqfvazn/3R9m9961vp6OjowUQAAAAAAAAAAPWh0KIQAAAAAAAAAACqQ1EIAAAAAAAAAEAdaiw6QK3q6KhUfYyGhlLVxwDqV6X6l6mU6uAy5fe0/Xri5/g/U95b1f4HTphZ1f6TZO3t51V9DOhuroXUop54TFX7udGye+/qDpCeeX7Xi6bG2v+7mUoP3OElF3S6WU98/9XH43a7+C5y59KnDl6XAOiZ9+iJ13Bg27yzBAAAAAAAAACoQ2YKAQAAAAAAAICCmeSOajBTCAAAAAAAAABAHVIUAgAAAAAAAABQhxSFAAAAAAAAAADUoZ26KGTdunWZNWtW0TEAAAAAAAAAAGrOTl0U0tbWlvPOO6/oGAAAAAAAAAAANaexyME3bNiwzfaNGzf2UBIAAAAAAAAAgPpSaFHInnvumVKp9EfbK5XKNtsBAAAAAAAAoB74v3GqodCikObm5nzlK1/J0Ucf/brty5cvz6c+9akeTgUAAAAAAAAAUPsKLQp55zvfmSQZNWrU67bvueeeqVQq2+yjXC6nXC53OVbp1ZSmpqbuCQkAAAAAAAAAUIMaihz87LPPTt++ff9o+7777puvfvWr2+yjtbU1LS0tXbbrr23t7qgAAAAAAAAAADWlVHmjqTh2ckXNFNLRUf1fW0ODNaOAN68nru71sLSd39POpdr3x8AJM6s7QJK1t59X9TGgu7kWwuur9nOjJ54Xnt/b79WtHVXtv3dj9f8ux3cV8PpcCwGAovTEe/Td+3gjUk9G/O38oiPssn5z1f8qOkLVFLp8THdoanptAciWrQWFAQAAAAAAAADYSRS6fEySbN68OQ888ECeeuqp17Rt2bIls2bNKiAVAAAAAAAAAEBtK7QoZNmyZRk+fHhOPPHEHHbYYRk1alRWrlzZ2b5+/fqcd54p2AEAAAAAAAAAdlShRSGXXnppRowYkdWrV2fp0qVpbm7Occcdl7a2tiJjAQAAAAAAAECPKpVsRW31rNCikAcffDCtra0ZOHBghg4dmtmzZ2fs2LE54YQT8swzzxQZDQAAAAAAAACgphVaFLJ58+Y0NjZ27pdKpcyYMSPjxo3LqFGjsmzZsgLTAQAAAAAAAADUrsY3PqV6hg0blsWLF2f48OFdjk+fPj1JMn78+CJiAQAAAAAAAADUvEJnCjn99NNz2223vW7b9OnTM2HChFQqlR5OBQAAAAAAAABQ+wotCpk6dWp+9rOf/dH2b33rW+no6OjBRAAAAAAAAAAA9aHQohAAAAAAAAAAAKqjsegAAAAAAAAAALCrK5VKRUegDikKeZMaGjwhgZ2b9w3bx+9p51Lt+2Pt7edVd4AkA951cdXHWPfw9KqPwa7FtRBeXz08N+rhZ+gpvRtrfzJV31XA63MtBACK4j06sDOo/W88AAAAAAAAAAB4DUUhAAAAAAAAAAB1SFEIAAAAAAAAAEAdUhQCAAAAAAAAAFCHFIUAAAAAAAAAANShnaIopKOj448eb2tr6+E0AAAAAAAAAAC1r9CikA0bNuTMM89Mv379ss8+++Tyyy9Pe3t7Z/uaNWty4IEHFpgQAAAAAAAAAKqvVCrZCtrqWWORg1922WV5/PHH88Mf/jAvvvhirrrqqjz66KO5884706dPnyRJpVIpMiIAAAAAAAAAQE0qdKaQn/70p/n2t7+dM844I3/913+dxYsXZ82aNRk3blzK5XKS1H1VDgAAAAAAAABANRRaFLJmzZrsv//+nfsDBw7Mvffem40bN+aUU07Jpk2bCkwHAAAAAAAAAFC7Ci0KGTJkSJYsWdLlWHNzc+bNm5fNmzfn9NNPLygZAAAAAAAAAEBtK7QoZMyYMZk5c+Zrjvfv3z8///nP07dv3zfso1wuZ8OGDV22Pyw9AwAAAAAAAACwqyq0KOSKK67I1772tddta25uzvz583P//fdvs4/W1ta0tLR02a6/trUKaQEAAAAAAAAAakepUqlUig7xVpTL5dfMDFLp1ZSmpqaCEgEAu7IB77q46mOse3h61ccAAAAAAHZ+fRuLTkB3Ovxr9xUdYZf12NfeX3SEqil0ppAk2bx5cx544IE89dRTr2nbsmVLZs2atc3bNzU1ZY899uiyKQgBAAAAAAAAAHZ1hRaFLFu2LMOHD8+JJ56Yww47LKNGjcrKlSs729evX5/zzjuvwIQAAAAAAAAAALWp0KKQSy+9NCNGjMjq1auzdOnSNDc357jjjktbW1uRsQAAAAAAAAAAal6hRSEPPvhgWltbM3DgwAwdOjSzZ8/O2LFjc8IJJ+SZZ54pMhoAAAAAAAAAQE0rtChk8+bNaWxs7NwvlUqZMWNGxo0bl1GjRmXZsmUFpgMAAAAAAAAAqF2Nb3xK9QwbNiyLFy/O8OHDuxyfPn16kmT8+PFFxAIAAAAAAAAAqHmFzhRy+umn57bbbnvdtunTp2fChAmpVCo9nAoAAAAAAAAAoPaVKnVYdbFla9EJAIBd1YB3XVz1MdY9PL3qYwAAAAAAO7++ha4LQXc74or7i46wy/r1V0cXHaFqCp0pBAAAAAAAAACA6lAUAgAAAAAAAABQh0woBADQjXpiaZcB776k6mOse+iWqo8BAAAAAAC1ZsGCBbn++uvzyCOPZOXKlbnrrrty2mmndbZXKpV89atfzXe/+928+OKLOe644zJjxoy84x3v6DznhRdeyGc+85nMnj07DQ0N+dCHPpSbb745/fv37zzniSeeyKc//ek8/PDDedvb3pbPfOYz+dKXvrTDec0UAgAAAAAAAACwHV5++eWMHDky3/zmN1+3/brrrsstt9ySW2+9NYsWLUq/fv0yduzYbNmypfOciRMn5sknn8z8+fNzzz33ZMGCBfnkJz/Z2b5hw4aMGTMm+++/fx555JFcf/31+drXvpbvfOc7O5zXTCEAAAAAAAAAANvh5JNPzsknn/y6bZVKJTfddFP+9m//NqeeemqSZNasWdlnn33y05/+NGeddVaWLFmSuXPn5uGHH85RRx2VJPnGN76RU045JTfccEMGDx6cH/3oR3nllVfyve99L3369Mmhhx6axx57LDfeeGOX4pHtYaYQAAAAAAAAAIC3aMWKFVm1alVOOumkzmMtLS05+uijs3DhwiTJwoULs+eee3YWhCTJSSedlIaGhixatKjznBNPPDF9+vTpPGfs2LFZunRp1q1bt0OZzBQCAAAAAAAAAAUrlYpOsOsql8spl8tdjjU1NaWpqWmH+lm1alWSZJ999ulyfJ999ulsW7VqVfbee+8u7Y2Njdlrr726nHPggQe+po8/tA0YMGC7M5kpBAAAAAAAAADYZbW2tqalpaXL1traWnSsbmGmEAAAAAAAAABglzV16tRMnjy5y7EdnSUkSfbdd98kyfPPP59BgwZ1Hn/++edz+OGHd56zevXqLrfbunVrXnjhhc7b77vvvnn++ee7nPOH/T+cs70KnymkUqlkxYoV2bp1a5LklVdeyR133JFZs2bl97//fcHpAAAAAAAAAIB61tTUlD322KPL9maKQg488MDsu+++ue+++zqPbdiwIYsWLcoxxxyTJDnmmGPy4osv5pFHHuk85/77709HR0eOPvroznMWLFiQV199tfOc+fPn5+CDD96hpWOSgotCli5dmgMPPDBDhw7N8OHDs2LFihx77LE5//zzM2nSpAwfPjzLly8vMiIAAAAAAAAAQJLkpZdeymOPPZbHHnssSbJixYo89thjaWtrS6lUyuc+97lcddVVufvuu/Nv//ZvOeecczJ48OCcdtppSZLhw4fnAx/4QC644II89NBD+eUvf5mLL744Z511VgYPHpwkOfvss9OnT5+cf/75efLJJ3PHHXfk5ptvfs1sJtuj0KKQSy+9NCNHjsxjjz2Wv/zLv8wHP/jB7Lffflm3bl1eeOGFHHPMMbnyyiuLjAgAAAAAAAAAkCRZvHhxjjjiiBxxxBFJksmTJ+eII47I5ZdfniT50pe+lM985jP55Cc/mXe961156aWXMnfu3PTt27ezjx/96EcZNmxY3v/+9+eUU07J8ccfn+985zud7S0tLZk3b15WrFiRI488Ml/4whdy+eWX55Of/OQO5y1VKpXKW/yZ37S999478+bNy+GHH56XX345zc3NWbBgQY4//vgkyYMPPpgJEybkueee26F+t2ytRloAgJ3DgHdfUvUx1j10S9XHAAAAAADemr6NRSegO73zyvuLjrDLevTy0UVHqJpCLxMvvfRS9tprryRJv3790q9fvwwaNKiz/e1vf3uef/75ouIBAAAAAAAAQI8olUpFR6AOFVoUMnjw4LS1tWXIkCFJkuuuuy577713Z/uaNWsyYMCAbfZRLpdTLpe7HKv0akpTU1P3BwYAAAAAAAAAqBENRQ5+0kkn5emnn+7cnzRpUpqbmzv3582bl3e+853b7KO1tTUtLS1dtuuvba1aZgAAAAAAAACAWlCqVCqVokP8MStWrEjfvn27LCnzP5kpBADY1Qx49yVVH2PdQ7dUfQwAAAAA4K3pW+i6EHS3I//uF0VH2GU9ctn7io5QNTv1ZeLAAw98w3Oaml5bALJla7USAQAAAAAAAADUhkKXj0mSzZs354EHHshTTz31mrYtW7Zk1qxZBaQCAAAAAAAAAKhthRaFLFu2LMOHD8+JJ56Yww47LKNGjcrKlSs729evX5/zzjuvwIQAAAAAAAAAALWp0KKQSy+9NCNGjMjq1auzdOnSNDc357jjjktbW1uRsQAAAAAAAAAAal5jkYM/+OCDuffeezNw4MAMHDgws2fPzkUXXZQTTjghv/jFL9KvX78i4wEAAAAAAABAjyiVik5APSp0ppDNmzensfG/61JKpVJmzJiRcePGZdSoUVm2bFmB6QAAAAAAAAAAalehM4UMGzYsixcvzvDhw7scnz59epJk/PjxRcQCAAAAAAAAAKh5hc4Ucvrpp+e222573bbp06dnwoQJqVQqPZwKAAAAAAAAAKD2lSp1WHWxZWvRCQAAqmfAuy+p+hjrHrql6mMAAAAAAG9N30LXhaC7HXXVL4qOsMta/LfvKzpC1RQ6UwgAAAAAAAAAANWhKAQAAAAAAAAAoA6ZUAgAoMb0xNIuA951cdXHWPfw9KqPAQAAAABQK0qlUtERqENmCgEAAAAAAAAAqEOKQgAAAAAAAAAA6pCiEAAAAAAAAACAOqQoBAAAAAAAAACgDikKAQAAAAAAAACoQztlUcjo0aPz3HPPFR0DAAAAAAAAAKBmNRY5+N133/26xxcsWJB77rknb3/725Mk48eP78lYAAAAAAAAAAA1r9CikNNOOy2lUimVSuU1bZ/5zGeSJKVSKe3t7T0dDQAAAAAAAAB6TKlUdALqUaHLx4wdOzYnn3xyVq1alY6Ojs6tV69e+c1vfpOOjg4FIQAAAAAAAAAAb0KhRSFz5szJ+9///hx11FG55557iowCAAAAAAAAAFBXCl0+Jkk+//nP533ve18mTpyY2bNn5+tf//oO3b5cLqdcLnc5VunVlKampu6MCQAAAAAAAABQUwqdKeQPDj/88CxevDilUimHH354KpXKdt+2tbU1LS0tXbbrr22tYloAAAAAAAAAgJ1f4TOF/MFuu+2WW2+9NXfffXd+8YtfZODAgdt1u6lTp2by5MldjlV6mSUEAAAAAAAAANi17TRFIX8wfvz4jB8/frvPb2p67VIxW7Z2dyoAAAAAAAAAgNpS+PIxmzdvzgMPPJCnnnrqNW1btmzJrFmzCkgFAAAAAAAAAD2nVCrZCtrqWaFFIcuWLcvw4cNz4okn5rDDDsuoUaOycuXKzvb169fnvPPOKzAhAAAAAAAAAEBtKrQo5NJLL82IESOyevXqLF26NM3NzTnuuOPS1tZWZCwAAAAAAAAAgJpXaFHIgw8+mNbW1gwcODBDhw7N7NmzM3bs2Jxwwgl55plniowGAAAAAAAAAFDTCi0K2bx5cxobGzv3S6VSZsyYkXHjxmXUqFFZtmxZgekAAAAAAAAAAGpX4xufUj3Dhg3L4sWLM3z48C7Hp0+fniQZP358EbEAAAAAAAAAAGpeoTOFnH766bnttttet2369OmZMGFCKpVKD6cCAAAAAAAAAKh9pUodVl1s2Vp0AgCA2jbgXRdXfYx1D0+v+hgAAAAAUM/6FrouBN3t6Nb/U3SEXdaiqaOKjlA1LhMAAAAAAAAAULBSqegE1KNCl48BAAAAAAAAAKA6zBQCAMBr9MTSLgPefUnVx1j30C1VHwMAAAAAAHZWZgoBAAAAAAAAAKhDikIAAAAAAAAAAOqQohAAAAAAAAAAgDqkKAQAAAAAAAAAoA41Fh0AAAAAAAAAAHZ1pVKp6AjUITOFAAAAAAAAAADUoZ1uppAVK1bkt7/9bQYNGpQRI0YUHQcAAAAAAAAAoCYVOlPIRRddlJdeeilJsnnz5pxxxhkZOnRoxo4dm5EjR2b06NGd7QAAAAAAAAAAbL9Ci0K+/e1vZ9OmTUmSv/u7v8uiRYty77335qWXXsqCBQvS1taWq6++usiIAAAAAAAAAAA1qdCikEql0vnv2bNn57rrrsv73ve+7L777jnuuONy44035s477ywwIQAAAAAAAABAbSq0KCRJSqVSkmTVqlX5i7/4iy5tI0eOzH/8x38UEQsAAAAAAAAAoKY1Fh3gsssuy+67756Ghob87ne/y6GHHtrZtnbt2vTr12+bty+XyymXy12OVXo1pampqSp5AQAAAAAAAABqQaEzhZx44olZunRpfv3rX+eQQw7Jc88916X9Zz/7WZcikdfT2tqalpaWLtv117ZWMzYAAAAAAAAAdKtSyVbUVs9KlUqlUnSIP+aZZ55Jnz59st9++/3Rc8wUAgBQmwa8+5Kqj7HuoVuqPgYAAAAAFKVv4etC0J2OvW5B0RF2WQ9+6cSiI1TNTn2ZOOigg97wnKam1xaAbNlarUQAAAAAAAAAALWh0OVjkmTz5s154IEH8tRTT72mbcuWLZk1a1YBqQAAAAAAAAAAaluhRSHLli3L8OHDc+KJJ+awww7LqFGjsnLlys729evX57zzziswIQAAAAAAAABAbSq0KOTSSy/NiBEjsnr16ixdujTNzc057rjj0tbWVmQsAAAAAAAAAICaV2hRyIMPPpjW1tYMHDgwQ4cOzezZszN27NiccMIJeeaZZ4qMBgAAAAAAAABQ0xqLHHzz5s1pbPzvCKVSKTNmzMjFF1+cUaNG5cc//nGB6QAAAAAAAACgZ5RKpaIjUIcKLQoZNmxYFi9enOHDh3c5Pn369CTJ+PHji4gFAAAAAAAAAFDzCl0+5vTTT89tt932um3Tp0/PhAkTUqlUejgVAAAAAAAAAEDtK1XqsOpiy9aiEwAA8EYGvPuSqo+x7qFbqj4GAAAAABSlb6HrQtDdjrv+/ys6wi7rl1NOKDpC1RQ6UwgAAAAAAAAAANWhKAQAAAAAAAAAoA6ZUAgAgEL0xNIu1V6ixvI0APWj2ovrlkrV7R8AAADg9SgKAQAAAAAAAICC+YMCqsHyMQAAAAAAAAAAdUhRCAAAAAAAAABAHVIUAgAAAAAAAABQhxSFAAAAAAAAAADUocYiBy+Xy2loaEjv3r2TJP/+7/+e733ve2lra8v++++f888/PwceeGCREQEAAAAAAAAAalKhM4WMHTs2//qv/5ok+eUvf5lDDz0099xzT1599dX87Gc/y4gRI7Jw4cIiIwIAAAAAAAAA1KRCi0J+/etfZ+TIkUmSr3zlK7nooovy+OOP5/bbb8+jjz6ayZMnZ8qUKUVGBAAAAAAAAACoSYUuH9Pe3p729vYkydNPP52bb765S/u5556bm266qYBkAAAAAAAAANBzSqVS0RGoQ4XOFHL00Udn9uzZSZI/+7M/y+OPP96l/bHHHstee+1VRDQAAAAAAAAAgJpW6EwhV111VU4++eS8/PLLmTBhQr7whS9k+fLlGT58eJYuXZpbbrklU6dO3WYf5XI55XK5y7FKr6Y0NTVVMzoAAAAAAAAAwE6t0KKQY445JnPmzMnkyZOzaNGiJMnVV1+dJBk8eHC+9rWv5bOf/ew2+2htbc0VV1zR5dhXLvtq/vbyr1UlMwAAAAAAAABALShVKpVK0SGSZM2aNXnmmWfS0dGRQYMG5YADDtiu25kpBACAP2bAuy+pav/rHrqlqv0D0HOq/e2IZaEBAIBq6FvoFAB0txP+/oGiI+yy/r8vHF90hKrZaS4Tb3vb2/K2t71th2/X1PTaApAtW7srFQAAAAAAAABAbWooOsDmzZvzwAMP5KmnnnpN25YtWzJr1qwCUgEAAAAAAAAA1LZCi0KWLVuW4cOH58QTT8xhhx2WUaNGZeXKlZ3t69evz3nnnVdgQgAAAAAAAACovlKpZCtoq2eFFoVceumlGTFiRFavXp2lS5emubk5xx13XNra2oqMBQAAAAAAAABQ8wotCnnwwQfT2tqagQMHZujQoZk9e3bGjh2bE044Ic8880yR0QAAAAAAAAAAalqhRSGbN29OY2Nj536pVMqMGTMybty4jBo1KsuWLSswHQAAAAAAAABA7Wp841OqZ9iwYVm8eHGGDx/e5fj06dOTJOPHjy8iFgAAAAAAAABAzSt0ppDTTz89t9122+u2TZ8+PRMmTEilUunhVAAAAAAAAAAAta9UqcOqiy1bi04AAMDOYMC7L6lq/+seuqWq/QPQc6r97UipVN3+AQCAXVPfQteFoLudeOMvi46wy1ow+biiI1RNoTOFAAAAAAAAAABQHWrHAAAAAAAAAKBgZpmkGhSFAABQt6q9vEu1l6dJLFED0FN88QYAAADUI8vHAAAAAAAAAADUIUUhAAAAAAAAAAB1SFEIAAAAAAAAAEAdUhQCAAAAAAAAAFCHFIUAAAAAAAAAANShxiIH/8lPfpKTTz45u+++e5ExAAAAAAAAAKBQpVKp6AjUoUJnCvnwhz+cQYMG5ZOf/GQWLVpUZBQAAAAAAAAAgLpS+PIxX/ziF7N48eIcc8wxGTFiRG666aasXbu26FgAAAAAAAAAADWt8KKQT33qU3n00Ufz8MMP58QTT8wVV1yRP/3TP82ZZ56Z+fPnFx0PAAAAAAAAAKAmFV4U8gdHHnlkvvWtb2XlypX57ne/mzVr1uQDH/hADjzwwKKjAQAAAAAAAADUnEKLQkql0muO9e3bNx/72Mfyi1/8IkuXLs3ZZ59dQDIAAAAAAAAAgNrWWOTglUplm+1Dhw7N1Vdfvc1zyuVyyuVy1357NaWpqekt5wMAAAAAAAAAqFWFzhSyYsWKvO1tb3tLfbS2tqalpaXLdv21rd2UEAAAAAAAAACgNhU6U8j+++//lvuYOnVqJk+e3OVYpZdZQgAAAAAAAACoHaVS0QmoR4XOFJIkmzdvzgMPPJCnnnrqNW1btmzJrFmztnn7pqam7LHHHl02S8cAAAAAAAAAALu6QotCli1bluHDh+fEE0/MYYcdllGjRmXlypWd7evXr895551XYEIAAAAAAAAAgNpUaFHIpZdemhEjRmT16tVZunRpmpubc9xxx6Wtra3IWAAAAAAAAAAANa/QopAHH3wwra2tGThwYIYOHZrZs2dn7NixOeGEE/LMM88UGQ0AAAAAAAAAoKYVWhSyefPmNDY2du6XSqXMmDEj48aNy6hRo7Js2bIC0wEAAAAAAAAA1K7GNz6leoYNG5bFixdn+PDhXY5Pnz49STJ+/PgiYgEAAAAAAAAA1LxCZwo5/fTTc9ttt71u2/Tp0zNhwoRUKpUeTgUAAAAAAAAAPatUKtkK2upZqVKHVRdbthadAACAXcGAd19S9THWPXRL1ccAAAAAoDb1LXRdCLrb6FsWFh1hl3X/JccUHaFqCp0pBAAAAAAAAACA6lAUAgAAAAAAAABQh0woBAAAb1JPLO0y4F0XV32MdQ9Pr/oYAAAAAAD0PDOFAAAAAAAAAADUIUUhAAAAAAAAAAB1yPIxAAAAAAAAAFCwUqnoBNQjM4UAAAAAAAAAANQhRSEAAAAAAAAAAHVIUQgAAAAAAAAAQB1qLDrA448/nkceeSTvfe97c9BBB+XJJ5/MN7/5zXR0dOT000/P2LFji44IAAAAAAAAAFBzCp0p5M4778yRRx6ZL33pSxk5cmTuvffeHH/88Vm+fHmeffbZfPCDH8yPf/zjIiMCAAAAAAAAANSkQotCrr766lxxxRX5/e9/n+9+97v58Ic/nMmTJ2f+/PmZO3durr322lx//fVFRgQAAAAAAAAAqEmFFoUsXbo0EydOTJJ85CMfycsvv5zTTjuts/3000/Pb3/724LSAQAAAAAAAADUrsYiB29ubs7atWtzwAEH5MUXX8zWrVuzdu3azva1a9emf//+BSYEAAAAAAAAgOprKJWKjkAdKrQo5KSTTsqnP/3pfOYzn8kdd9yRMWPGZOrUqZk5c2ZKpVKmTJmS448/fpt9lMvllMvlLscqvZrS1NRUzegAAAAAAAAAADu1QpePueGGG7LHHnvkwgsvzCuvvJI77rgjRx11VA455JAccsgh+d3vfpdp06Zts4/W1ta0tLR02a6/trWHfgIAAAAAAAAAgJ1TqVKpVIoO8T8988wz2bRpU4YNG5bGxm1PZmKmEAAA6tmAd11c9THWPTy96mMAAAAA0P36FrouBN3tf03/VdERdlnzL35P0RGqZqe8TBx00EHbfW5T02sLQLZs7e5EAAAAAAAAAAC1pdDlY5Jk8+bNeeCBB/LUU0+9pm3Lli2ZNWtWAakAAAAAAAAAAGpboUUhy5Yty/Dhw3PiiSfmsMMOy6hRo7Jy5crO9vXr1+e8884rMCEAAAAAAAAAQG0qtCjk0ksvzYgRI7J69eosXbo0zc3NOe6449LW1lZkLAAAAAAAAADoUaWSraitnhVaFPLggw+mtbU1AwcOzNChQzN79uyMHTs2J5xwQp555pkiowEAAAAAAAAA1LRCi0I2b96cxsbGzv1SqZQZM2Zk3LhxGTVqVJYtW1ZgOgAAAAAAAACA2tX4xqdUz7Bhw7J48eIMHz68y/Hp06cnScaPH19ELAAAAAAAAACAmlfoTCGnn356brvtttdtmz59eiZMmJBKpdLDqQAAAAAAAAAAal+pUodVF1u2Fp0AAAC6x4B3XVz1MdY9PL3qYwAAAADQ/foWui4E3W3MN39VdIRd1rxPv6foCFVT6EwhAAAAAAAAAABUh6IQAAAAAAAAAIA6ZEKhN6knFt0plao/Rj1wXwAA9awnlnbZ+6Ozqj7G6n88p+pj1MPCmN53bj+fA+hur27tqGr/vRv9Xc6upqPKF6oGF6nt5jWDWlTtx63HLEDPqPbnjCTp67NGXSl5kaYKXCUAAAAAAAAAAOqQohAAAAAAAAAAgDqkKAQAAAAAAAAAoA4pCgEAAAAAAAAAqEOKQgAAAAAAAAAA6lBj0QGS5P77788DDzyQlStXpqGhIQcddFDGjx+fd7zjHUVHAwAAAAAAAACoSYUWhaxevTrjxo3L4sWL09DQkI6OjhxxxBG58847c+mll2by5Mm57rrriowIAAAAAAAAAFXXUCo6AfWo0OVjLrnkkgwePDjr1q3LSy+9lIsuuiiHHnpoVq5cmXnz5uV73/tebr755iIjAgAAAAAAAADUpEKLQubMmZOrrroqe+yxR5qamjJt2rTcdttt2bBhQ0aPHp2bbropM2bMKDIiAAAAAAAAAEBNKrQopKmpKaXSf8+B09DQkPb29mzdujVJcuyxx+bZZ58tKB0AAAAAAAAAQO0qtCjk+OOPz+WXX56XX345r776av7mb/4mBx10UPbaa68kyZo1azJgwIBt9lEul7Nhw4YuW7lc7on4AAAAAAAAAAA7rUKLQm644YY89thj2XPPPdOvX798//vf77JczJIlS3Luuedus4/W1ta0tLR02a6/trXKyQEAAAAAAAAAdm6lSqVSKTLApk2b8sADD+SVV17Je97zngwcOHCHbl8ul18zM0ilV1Oampq6M+Zr9MRv7f9ZWYdtcF8AALw1e390VtXHWP2P51R9jGI/2XQP7zu3n88BdLdXt3ZUtf/ejYX+XQ4F6KjyharBRWq7ec2gFlX7cesxC9Azqv05I0ma+/qsUU9OnrGo6Ai7rDmTji46QtU0Fh1g9913z5gxY9707ZuaXlsAsmXrW00FAAAAAAAAAFDbCi8d27x5cx544IE89dRTr2nbsmVLZs2q/l8tAgAAAAAAAECRSqWSraCtnhVaFLJs2bIMHz48J554Yg477LCMGjUqK1eu7Gxfv359zjvvvAITAgAAAAAAAADUpkKLQi699NKMGDEiq1evztKlS9Pc3JzjjjsubW1tRcYCAAAAAAAAAKh5hRaFPPjgg2ltbc3AgQMzdOjQzJ49O2PHjs0JJ5yQZ555pshoAAAAAAAAAAA1rdCikM2bN6exsbFzv1QqZcaMGRk3blxGjRqVZcuWFZgOAAAAAAAAAKB2Nb7xKdUzbNiwLF68OMOHD+9yfPr06UmS8ePHFxELAAAAAAAAAKDmFTpTyOmnn57bbrvtddumT5+eCRMmpFKp9HAqAAAAAAAAAIDaV6rUYdXFlq3VH6MnfmulUvXHqAfuCwCAt2bvj86q+hir//Gcqo9RD59svO/cfj4H0N1e3dpR1f57Nxb6dzkUoKPKF6oGF6nt5jWDWlTtx63HLEDPqPbnjCRp7uuzRj354LcfKjrCLuv/96l3Fx2halwlAAAAAAAAAADqkKIQAAAAAAAAAIA61Fh0gFpler2dh/sCAOCt6YmlXQa86+Kqj7Hu4elVH4Odh88BdDfLu9DdLO+y83BXUIs8bgHqg88ZwM7AlQgAAAAAAAAAoA4pCgEAAAAAAAAAqEOKQgAAAAAAAAAA6pCiEAAAAAAAAACAOtRYdAAAAAAAAAAA2NWVUio6AnXITCEAAAAAAAAAAHVIUQgAAAAAAAAAQB3aKZaPeeihh7Jw4cKsWrUqSbLvvvvmmGOOybvf/e6CkwEAAAAAAAAA1KZCi0JWr16dD33oQ/nlL3+ZIUOGZJ999kmSPP/88/n85z+f4447Lj/5yU+y9957FxkTAAAAAAAAAKDmFLp8zEUXXZT29vYsWbIkzz77bBYtWpRFixbl2WefzZIlS9LR0ZFPf/rTRUYEAAAAAAAAAKhJhc4U8vOf/zwLFizIwQcf/Jq2gw8+OLfcckve+9739nwwAAAAAAAAAIAaV2hRSFNTUzZs2PBH2zdu3JimpqZt9lEul1Mul7scq/RqesPbAQAAAAAAAMDOoqFUdALqUaHLx3zkIx/Jxz/+8dx1111dikM2bNiQu+66K+edd14mTJiwzT5aW1vT0tLSZbv+2tZqRwcAAAAAAAAA2KkVOlPIjTfemI6Ojpx11lnZunVr+vTpkyR55ZVX0tjYmPPPPz833HDDNvuYOnVqJk+e3OVYpZdZQgAAAAAAAACAXVvhy8fMmDEj1157bR555JGsWrUqSbLvvvvmyCOPzB577LFdffzPpWK2bK1KXAAAAAAAAACAmlHo8jFJsmTJkvzkJz/JoEGDMmHChBxxxBH5p3/6p3zuc5/L/fffX3Q8AAAAAAAAAICaVOhMIXPnzs2pp56a/v37Z9OmTbnrrrtyzjnnZOTIkeno6MiYMWMyb968jB49usiYAAAAAAAAAAA1p9CZQq688spMmTIla9euzcyZM3P22WfnggsuyPz583PfffdlypQpmTZtWpERAQAAAAAAAABqUqFFIU8++WTOPffcJMmZZ56ZjRs35owzzuhsnzhxYp544omC0gEAAAAAAABAzyiVSraCtnpWaFFIks5fcENDQ/r27ZuWlpbOtubm5qxfv76oaAAAAAAAAAAANavQopADDjggy5cv79xfuHBhhgwZ0rnf1taWQYMGFRENAAAAAAAAAKCmNRY5+KRJk9Le3t65P2LEiC7tc+bMyejRo3s6FgAAAAAAAABAzSu0KOTCCy/cZvs111zTQ0kAAAAAAAAAAOpLocvHAAAAAAAAAABQHYXOFAIAABSvo1Kp+hjrHp5e9TEGjLm6qv2vm/eVqvYPFKval8JSqbr9A1BfOjqq+8LU0OCFCaAnVPt6/l9c04FtM1MIAAAAAAAAAEAdMlMIAAAAAAAAABTMLJNUg5lCAAAAAAAAAADqkKIQAAAAAAAAAIA6pCgEAAAAAAAAAKAOKQoBAAAAAAAAAKhDikIAAAAAAAAAAOrQTl0Usm7dusyaNavoGAAAAAAAAAAANaex6ADb0tbWlvPOOy/nnHNO0VEAAAAAAAAAoGoaSqWiI1CHCi0K2bBhwzbbN27c2ENJAAAAAAAAAADqS6FFIXvuuWdK26h2qlQq22wHAAAAAAAAAOD1FVoU0tzcnK985Ss5+uijX7d9+fLl+dSnPrXNPsrlcsrlcpdjlV5NaWpq6racAAAAAAAAAAC1ptCikHe+851JklGjRr1u+5577plKpbLNPlpbW3PFFVd0OfaVy76av738a92SEQAAAAAAAACgFhVaFHL22Wdn06ZNf7R93333zVe/+tVt9jF16tRMnjy5y7FKL7OEAAAAAAAAAAC7tkKLQi644IJttu+zzz5vWBTS1PTapWK2bH3L0QAAAAAAAAAAalpD0QGWLFmSmTNn5umnn06SPP3005k0aVI+8YlP5P777y84HQAAAAAAAABAbSp0ppC5c+fm1FNPTf/+/bNp06bcddddOeecczJy5Mh0dHRkzJgxmTdvXkaPHl1kTAAAAAAAAACoqlKp6ATUo0JnCrnyyiszZcqUrF27NjNnzszZZ5+dCy64IPPnz899992XKVOmZNq0aUVGBAAAAAAAAACoSYUWhTz55JM599xzkyRnnnlmNm7cmDPOOKOzfeLEiXniiScKSgcAAAAAAAAAULsKLQpJktL/nQOnoaEhffv2TUtLS2dbc3Nz1q9fX1Q0AAAAAAAAAICaVWhRyAEHHJDly5d37i9cuDBDhgzp3G9ra8ugQYOKiAYAAAAAAAAAUNMaixx80qRJaW9v79wfMWJEl/Y5c+Zk9OjRPR0LAAAAAAAAAKDmFVoUcuGFF26z/ZprrumhJAAAAAAAAAAA9aXQohAAAAAAAAAAICmVSkVHoA41FB0AAAAAAAAAAIDuZ6aQXVylUv0xFLQBAOzcSqmPN2zr5n2lqv0POG16VftPknU/vbjqY9QLn2XobpUqP6j8tRe8vo4euKA3eP5Rg7xuAADQXcwUAgAAAAAAAABQhxSFAAAAAAAAAADUIUUhAAAAAAAAAAB1SFEIAAAAAAAAAEAdUhQCAAAAAAAAAFCHGosOAAAAAAAAAAC7ulKp6ATUo51ippCOjo4/erytra2H0wAAAAAAAAAA1L5Ci0I2bNiQM888M/369cs+++yTyy+/PO3t7Z3ta9asyYEHHlhgQgAAAAAAAACA2lTo8jGXXXZZHn/88fzwhz/Miy++mKuuuiqPPvpo7rzzzvTp0ydJUqlUiowIAAAAAAAAAFCTCp0p5Kc//Wm+/e1v54wzzshf//VfZ/HixVmzZk3GjRuXcrmcJClZOAkAAAAAAAAAYIcVWhSyZs2a7L///p37AwcOzL333puNGzfmlFNOyaZNmwpMBwAAAAAAAABQuwotChkyZEiWLFnS5Vhzc3PmzZuXzZs35/TTT3/DPsrlcjZs2NBl+8MsIwAAAAAAAAAAu6pCi0LGjBmTmTNnvuZ4//798/Of/zx9+/Z9wz5aW1vT0tLSZbv+2tZqxAUAAAAAAACAqmgolWwFbfWsscjBr7jiivzud7973bbm5ubMnz8/jz766Db7mDp1aiZPntzlWKVXU7dlBAAAAAAAAACoRYUWhQwYMCCrVq3KzJkzc8wxx2TYsGF5+umnc/PNN6dcLuejH/1oRo8evc0+mpqa0tTUtQhky9ZqpgYAAAAAAAAA2PkVWhQyd+7cnHrqqenfv382bdqUu+66K+ecc05GjhyZjo6OjBkzJvPmzXvDwhAAAAAAAAAAALpqKHLwK6+8MlOmTMnatWszc+bMnH322bngggsyf/783HfffZkyZUqmTZtWZEQAAAAAAAAAgJpUaFHIk08+mXPPPTdJcuaZZ2bjxo0544wzOtsnTpyYJ554oqB0AAAAAAAAAAC1q9CikCQplUpJkoaGhvTt2zctLS2dbc3NzVm/fn1R0QAAAAAAAAAAalahRSEHHHBAli9f3rm/cOHCDBkypHO/ra0tgwYNKiIaAAAAAAAAAEBNayxy8EmTJqW9vb1zf8SIEV3a58yZk9GjR/d0LAAAAAAAAADoUaWiA1CXCi0KufDCC7fZfs011/RQEgAAAAAAAACA+lLo8jEAAAAAAAAAAFSHohAAAAAAAAAAgDpU6PIxFK9kYSoAgF2e94TbZ91PL676GAOO/mzVx1i36Oaqj9ETPG7pbg0NHlRQhAYXdHhdnhoA9cHnDGBnYKYQAAAAAAAAAIA6pCgEAAAAAAAAAKAOWT4GAAAAAAAAAApWsoYcVWCmEAAAAAAAAACAOqQoBAAAAAAAAACgDikKAQAAAAAAAACoQ4pCAAAAAAAAAADqUOFFIZVKJStWrMjWrVuTJK+88kruuOOOzJo1K7///e8LTgcAAAAAAAAAUJsKLQpZunRpDjzwwAwdOjTDhw/PihUrcuyxx+b888/PpEmTMnz48CxfvrzIiAAAAAAAAAAASZL29vZcdtllOfDAA7Pbbrvlz/7sz/J3f/d3qVQqnedUKpVcfvnlGTRoUHbbbbecdNJJr6l9eOGFFzJx4sTsscce2XPPPXP++efnpZde6va8hRaFXHrppRk5cmQee+yx/OVf/mU++MEPZr/99su6devywgsv5JhjjsmVV15ZZEQAAAAAAAAAqLqGkq2obUdce+21mTFjRqZPn54lS5bk2muvzXXXXZdvfOMbnedcd911ueWWW3Lrrbdm0aJF6devX8aOHZstW7Z0njNx4sQ8+eSTmT9/fu65554sWLAgn/zkJ7vr4dSpVPl/y1V62N5775158+bl8MMPz8svv5zm5uYsWLAgxx9/fJLkwQcfzIQJE/Lcc8/tUL9btlYjLQAAQHUNOPqzVR9j3aKbqz4GAAAA0DP6NhadgO408YePFR1hl/Wjjx2+3ef+5V/+ZfbZZ5/8wz/8Q+exD33oQ9ltt93yj//4j6lUKhk8eHC+8IUv5Itf/GKSZP369dlnn33y/e9/P2eddVaWLFmSQw45JA8//HCOOuqoJMncuXNzyimn5D//8z8zePDgbvvZCp0p5KWXXspee+2VJOnXr1/69euXQYMGdba//e1vz/PPP7/NPsrlcjZs2NBlK5fLVc0NAAAAAAAAAOx6jj322Nx3331ZtmxZkuTxxx/PAw88kJNPPjlJsmLFiqxatSonnXRS521aWlpy9NFHZ+HChUmShQsXZs899+wsCEmSk046KQ0NDVm0aFG35i20KGTw4MFpa2vr3L/uuuuy9957d+6vWbMmAwYM2GYfra2taWlp6bJdf21r1TIDAAAAAAAAAPVjRyaj+PKXv5yzzjorw4YNS+/evXPEEUfkc5/7XCZOnJgkWbVqVZJkn3326XK7ffbZp7Nt1apVXWojkqSxsTF77bVX5zndpdCikJNOOilPP/105/6kSZPS3NzcuT9v3ry8853v3GYfU6dOzfr167tsUy6dWrXMAAAAAAAAAED9eL3JKFpbX38yin/6p3/Kj370o/z4xz/Oo48+mh/84Ae54YYb8oMf/KCHU2+fQleZuvXWW7fZ/pGPfCQf//jHt3lOU1NTmpqauhzbsvUtRwMAAAAAAAAAdgFTp07N5MmTuxz7n3UIfzBlypTO2UKS5LDDDstzzz2X1tbWfPzjH8++++6bJHn++eczaNCgzts9//zzOfzww5Mk++67b1avXt2l361bt+aFF17ovH13KXSmkCRZsmRJZs6c2TljyNNPP51JkyblE5/4RFasWNHllwQAAAAAAAAA0J2ampqyxx57dNn+WFHIpk2b0tDQtdSiV69e6ejoSJIceOCB2XfffXPfffd1tm/YsCGLFi3KMccckyQ55phj8uKLL+aRRx7pPOf+++9PR0dHjj766G792QqdKWTu3Lk59dRT079//2zatCl33XVXzjnnnIwcOTIdHR0ZM2ZM5s2bl9GjRxcZEwAAAAAAAAAg48aNy9VXX50hQ4bk0EMPza9//evceOON+cQnPpEkKZVK+dznPperrroq73jHO3LggQfmsssuy+DBg3PaaaclSYYPH54PfOADueCCC3Lrrbfm1VdfzcUXX5yzzjorgwcP7ta8pUqlUunWHnfAsccem9GjR+eqq67K7bffnosuuiiTJk3K1VdfneS/pmh55JFHMm/evB3q1/IxAABALRpw9GerPsa6RTdXfQwAAACgZ/QtdAoAuttH//HxoiPssv7xoyO3+9yNGzfmsssuy1133ZXVq1dn8ODBmTBhQi6//PL06dMnSVKpVPLVr3413/nOd/Liiy/m+OOPz7e+9a38+Z//eWc/L7zwQi6++OLMnj07DQ0N+dCHPpRbbrkl/fv379afrdCikJaWljzyyCMZOnRoOjo60tTUlIceeihHHHFEkuQ3v/lNTjrppKxatWqH+lUUAgAA1CJFIQAAAMCOUBRSXxSFFGdHikJqTcMbn1JdpVIpSdLQ0JC+ffumpaWls625uTnr168vKhoAAAAAAAAAQM0qtCjkgAMOyPLlyzv3Fy5cmCFDhnTut7W1ZdCgQUVEAwAAAAAAAACoaYVOKDRp0qS0t7d37o8YMaJL+5w5czJ69OiejgUAAAAAAAAAUPMKLQq58MILt9l+zTXX9FASAAAAAAAAAID6UujyMQAAAAAAAAAAVEehM4UAAAAAAAAAAEmpVHQC6pGiEAAAgJ3EukU3V32MAe+6uOpjrHt4etXHAAAAAADemOVjAAAAAAAAAADqkKIQAAAAAAAAAIA6pCgEAAAAAAAAAKAOKQoBAAAAAAAAAKhDikIAAAAAAAAAAOqQohAAAAAAAAAAgDq0UxaFjB49Os8991zRMQAAAAAAAACgR5RKJVtBWz1rLHLwu++++3WPL1iwIPfcc0/e/va3J0nGjx/fk7EAAAAAAAAAAGpeoUUhp512WkqlUiqVymvaPvOZzyT5r2qo9vb2no4GAAAAAAAAAFDTCl0+ZuzYsTn55JOzatWqdHR0dG69evXKb37zm3R0dCgIAQAAAAAAAAB4EwotCpkzZ07e//7356ijjso999zzpvool8vZsGFDl61cLndzUgAAAAAAAACA2lJoUUiSfP7zn8/dd9+dSy+9NJ/61KeyadOmHbp9a2trWlpaumzXX9tapbQAAAAAAAAAALWh8KKQJDn88MOzePHilEqlHH744alUKtt926lTp2b9+vVdtimXTq1iWgAAAAAAAACAnV9j0QH+YLfddsutt96au+++O7/4xS8ycODA7bpdU1NTmpqauhzbsrUaCQEAAAAAAACgOhpKRSegHhU+U8iSJUsyc+bMPP3000mSP//zP8/mzZvz5S9/Offff3/B6QAAAAAAAAAAalOhM4XMnTs3p556avr3759NmzblrrvuyjnnnJORI0emo6MjY8aMybx58zJ69OgiYwIAAAAAAAAA1JxCZwq58sorM2XKlKxduzYzZ87M2WefnQsuuCDz58/PfffdlylTpmTatGlFRgQAAAAAAAAAqEmFFoU8+eSTOffcc5MkZ555ZjZu3Jgzzjijs33ixIl54oknCkoHAAAAAAAAAFC7Ci0KSZJSqZQkaWhoSN++fdPS0tLZ1tzcnPXr1xcVDQAAAAAAAACgZhVaFHLAAQdk+fLlnfsLFy7MkCFDOvfb2toyaNCgIqIBAAAAAAAAANS0xiIHnzRpUtrb2zv3R4wY0aV9zpw5GT16dE/HAgAAAAAAAACoeYUWhVx44YXbbL/mmmt6KAkAAAAAAAAAFKdUKhUdgTpU6PIxAAAAAAAAAABUh6IQAAAAAAAAAIA6VOjyMQAAAPSsdQ9Pr/oYA97z+aqPse5XX6/6GOxaKpXq9m8GYAAAAKAIZgoBAAAAAAAAAKhDikIAAAAAAAAAAOqQohAAAAAAAAAAgDrUWHQAAAAAAAAAANjVlYoOQF0yUwgAAAAAAAAAQB1SFAIAAAAAAAAAUId2uuVjVqxYkd/+9rcZNGhQRowYUXQcAAAAAAAAAICaVOhMIRdddFFeeumlJMnmzZtzxhlnZOjQoRk7dmxGjhyZ0aNHd7YDAAAAAAAAALD9Ci0K+fa3v51NmzYlSf7u7/4uixYtyr333puXXnopCxYsSFtbW66++uoiIwIAAAAAAAAA1KRCi0IqlUrnv2fPnp3rrrsu73vf+7L77rvnuOOOy4033pg777yzwIQAAAAAAAAAALWpsegApVIpSbJq1ar8xV/8RZe2kSNH5j/+4z+KiAUAAAAAAAAAPabh//7fOXSnwotCLrvssuy+++5paGjI7373uxx66KGdbWvXrk2/fv22eftyuZxyudzlWKVXU5qamqqSFwAAAAAAAACgFhS6fMyJJ56YpUuX5te//nUOOeSQPPfcc13af/azn3UpEnk9ra2taWlp6bJdf21rNWMDAAAAAAAAAOz0SpVKpVJ0iD/mmWeeSZ8+fbLffvv90XPMFAIAALBzGfCez1d9jHW/+nrVx2DXUu1vR8wADAAAVEPfwteFoDv99R2/KTrCLut/f2RE0RGqpvDLxJIlS/KrX/0qxx57bA4++OA8/fTTufnmm1Mul/PRj340o0eP3ubtm5peWwCyZWs1EwMAAAAAAAAA7PwKLQqZO3duTj311PTv3z+bNm3KXXfdlXPOOScjR45MR0dHxowZk3nz5r1hYQgAAAAAAAAAAF01FDn4lVdemSlTpmTt2rWZOXNmzj777FxwwQWZP39+7rvvvkyZMiXTpk0rMiIAAAAAAAAAQE0qtCjkySefzLnnnpskOfPMM7Nx48acccYZne0TJ07ME088UVA6AAAAAAAAAIDaVejyMUlSKpWSJA0NDenbt29aWlo625qbm7N+/fqiogEAAAAAAABAj/i//3UO3arQmUIOOOCALF++vHN/4cKFGTJkSOd+W1tbBg0aVEQ0AAAAAAAAAICaVuhMIZMmTUp7e3vn/ogRI7q0z5kzJ6NHj+7pWAAAAAAAAAAANa/QopALL7xwm+3XXHNNDyUBAAAAAAAAAKgvhS4fAwAAAAAAAABAdSgKAQAAAAAAAACoQ4UuH1PLXtnaUfUx+jSq2dkelUr1xyiVqj9GvfwcbJ+euL/bO6o/SGOv2n9Q9cR90RN64vm9+ZX2qo/Ru1d1X/saeuD31NATg0A364nXjF498NzY2l7dn6Mnnt6lHrig98RrxgsLv179MV56pepjlKv8uW+fPZqq2n+S/OcLm6s+xtv/ZPeqj9ETj9tNr2ytav/9mqr/FUxHD7y5beiBO8Pn4+3zanv1v5vqidfvV7dW/w7vic8ye/brXfUxqs1zb+dSfrW6z/Gm3r57pntV+/NYUh/fRSY9854tVR6iXr7/6om7YmtH9d+z9fX/icAbUBQCAAAAAAAAAAXriT8YYtejdAwAAAAAAAAAoA4pCgEAAAAAAAAAqEOKQgAAAAAAAAAA6pCiEAAAAAAAAACAOqQoBAAAAAAAAACgDikKAQAAAAAAAACoQ41FDl4ul9PQ0JDevXsnSf793/893/ve99LW1pb9998/559/fg488MAiIwIAAAAAAAAA1KRCZwoZO3Zs/vVf/zVJ8stf/jKHHnpo7rnnnrz66qv52c9+lhEjRmThwoVFRgQAAAAAAACAqiuVbEVt9azQopBf//rXGTlyZJLkK1/5Si666KI8/vjjuf322/Poo49m8uTJmTJlSpERAQAAAAAAAABqUqFFIe3t7Wlvb0+SPP300/n4xz/epf3cc8/N448/XkQ0AAAAAAAAAICaVmhRyNFHH53Zs2cnSf7sz/7sNQUgjz32WPbaa69t9lEul7Nhw4YuW7lcrlpmAAAAAAAAAIBa0Fjk4FdddVVOPvnkvPzyy5kwYUK+8IUvZPny5Rk+fHiWLl2aW265JVOnTt1mH62trbniiiu6HPvKZV/N317+tSomBwAAAAAAAADYuZUqlUqlyAALFy7M5MmTs2jRoi7HBw8enClTpuSzn/3sNm9fLpdfMzNIpVdTmpqauj3r/+uVrR1V7T9J+jQWOpFLzeiJR3CpVP0x6uXnYPv0xP3d3lH9QRp71f6DqthXwe7TE8/vza+0V32M3r2q+9rX0AO/p4aeGAS6WU+8ZvTqgefG1vbq/hw98fQu9cAFvV7e2657+ZWqj1Gu8ue+ffao7ufWJPnPFzZXfYy3/8nuVR+jJx63L5e3VrX/fk3V/7ucjh548jX0wJ3h8/H2ebW9+t9N9cTr96tbq3+H98RnmT379a76GNXmubdzKb9a3ed4U2/fPdO9qv15LKmP7yKTnnnPlioPUS/ff/XEXbG1o/rv2ZqbXNPryaf+5cmiI+yyvn3GoUVHqJpCZwpJkmOOOSYLFy7MmjVr8swzz6SjoyODBg3KAQccsF23b2p6bQHIlup+jwMAAAAAAAAAsNMrvChkyZIl+dWvfpVjjz02Rx99dJ5++ulce+21KZfL+ehHP5rRo0cXHREAAAAAAAAAqqonZmdk11NoUcjcuXNz6qmnpn///tm0aVPuuuuunHPOORk5cmQ6OjoyZsyYzJs3T2EIAAAAAAAAAMAOKnSRqSuvvDJTpkzJ2rVrM3PmzJx99tm54IILMn/+/Nx3332ZMmVKpk2bVmREAAAAAAAAAICatF0zhdx9993b3eH48eO3+9wnn3wys2bNSpKceeaZ+djHPpYzzjijs33ixImZOXPmdvcHAAAAAAAAAMB/2a6ikNNOO227OiuVSmlvb9+hAKX/uy5SQ0ND+vbtm5aWls625ubmrF+/fof6AwAAAAAAAABgO5eP6ejo2K5tRwtCDjjggCxfvrxzf+HChRkyZEjnfltbWwYNGrRDfQIAAAAAAAAAsJ0zhVTLpEmTuhSSjBgxokv7nDlzMnr06J6OBQAAAAAAAABQ895UUcjLL7+c//N//k/a2tryyiuvdGm75JJLtrufCy+8cJvt11xzzZuJBwAAAAAAAACwy9vhopBf//rXOeWUU7Jp06a8/PLL2WuvvfL73/8+u+++e/bee+8dKgoBAAAAAAAAAJJSqegE1KOGHb3B5z//+YwbNy7r1q3Lbrvtll/96ld57rnncuSRR+aGG26oRkYAAAAAAAAAAHbQDs8U8thjj+Xb3/52Ghoa0qtXr5TL5Rx00EG57rrr8vGPfzx/9Vd/VY2cO53GBmVaO4t6qZirl5+DnUdjLw+q7eG5t/02v9Je9TH69utV9TGA1+pVJ+9tvfbtPHri9XW3PtV/zfibOU9Xtf9vfeiwqvafJC279676GPXyfqonHlPVVkp93Bn18piqtp64vxt64M7o3QNPvfIO/1kcFK+397bUmEoqPTBKfTwveuL1tU5+VXWhscEbEaB4O3wl6t27dxr+7wVs7733TltbW5KkpaUl//Ef/9G96QAAAAAAAAAAeFN2eKaQI444Ig8//HDe8Y53ZNSoUbn88svz+9//Pj/84Q8zYsSIamQEAAAAAAAAAGAH7fBMIddcc00GDRqUJLn66qszYMCATJo0KWvWrMl3vvOdbg8IAAAAAAAAAMCO2+GZQo466qjOf++9996ZO3dutwYCAAAAAAAAAOCt2+GiEAAAAAAAAACge5VKpaIjUId2uCjkwAMP3OaD8ZlnnnlLgQAAAAAAAAAAeOt2uCjkc5/7XJf9V199Nb/+9a8zd+7cTJkyZYf6+slPfpKTTz45u++++47GAAAAAAAAAABgG3a4KOSzn/3s6x7/5je/mcWLF+9QXx/+8IfT3Nycj3zkIzn//PNz9NFH72gcAAAAAAAAAABeR0N3dXTyySfnJz/5yQ7f7otf/GIWL16cY445JiNGjMhNN92UtWvXdlcsAAAAAAAAAIBdUrcVhfzLv/xL9tprrx2+3ac+9ak8+uijefjhh3PiiSfmiiuuyJ/+6Z/mzDPPzPz587srHgAAAAAAAADALmWHl4854ogjUiqVOvcrlUpWrVqVNWvW5Fvf+tabDnLkkUfmyCOPzI033ph//ud/zve+97184AMfyJAhQ7JixYo33S8AAAAAAAAAwK5oh4tCTj311C5FIQ0NDXnb296W9773vRk2bNgO9fX/9vMHffv2zcc+9rF87GMfy29/+9vMnDlzm32Uy+WUy+Uuxyq9mtLU1LRDWQAAAAAAAAAA6skOF4V87Wtf67bBK5XKNtuHDh2aq6++epvntLa25oorruhy7CuXfTV/e/nX3mo8AAAAAAAAAOgRDUUHoC7tcFFIr169snLlyuy9995djq9duzZ777132tvbt7uvFStW5G1ve9uORuhi6tSpmTx5cpdjlV5mCQEAAAAAAAAAdm07XBTyx2b3KJfL6dOnzw71tf/++2fJkiX51a9+lWOOOSbDhg3L008/nZtvvjnlcjkf/ehHM3r06G320dT02qVitmzdoRgAAAAAAAAAAHVnu4tCbrnlliRJqVTK//7f/zv9+/fvbGtvb8+CBQsybNiwHRp87ty5OfXUU9O/f/9s2rQpd911V84555yMHDkyHR0dGTNmTObNm/eGhSEAAAAAAAAAAHS13UUhX//615P810wht956a3r16tXZ1qdPnxxwwAG59dZbd2jwK6+8MlOmTMlVV12V22+/PWeffXYmTZqUq6++Osl/LQ0zbdo0RSEAAAAAAAAAADtou4tCVqxYkSR53/velzvvvDMDBgx4y4M/+eSTmTVrVpLkzDPPzMc+9rGcccYZne0TJ07MzJkz3/I4AAAAAAAAAAC7mu0uCvmDX/ziF90aoFQqJUkaGhrSt2/ftLS0dLY1Nzdn/fr13ToeAAAAAAAAAMCuoGFHb/ChD30o11577WuOX3fddfnwhz+8Q30dcMABWb58eef+woULM2TIkM79tra2DBo0aEcjAgAAAAAAAEBNKZVKtoK2erbDRSELFizIKaec8prjJ598chYsWLBDfU2aNCnt7e2d+yNGjEhj439PXjJnzpyMHj16RyMCAAAAAAAAAOzydnj5mJdeeil9+vR5zfHevXtnw4YNO9TXhRdeuM32a665Zof6AwAAAAAAAADgv+zwTCGHHXZY7rjjjtccv/3223PIIYd0SygAAAAAAAAAAN6aHZ4p5LLLLstf/dVf5d///d87l3a577778uMf/zj/8i//0u0BAQAAAAAAAADYcTtcFDJu3Lj89Kc/zTXXXJN/+Zd/yW677ZaRI0fm/vvvz1577VWNjDulUqlUdASghrmEUIv26v/a5eO624bNr1a1/z12613V/gHoObv16VX1MWac8RdV7f8dn/1pVftPkt/eclrVx6gXpdT+m3SfM3YtvRrq4w6v9MAY/Zt2+CvQXZJryM6lvaO6z46GOrmGsPPo3WuHJ6anijoqVb6G1MmLRk/8GB1Vvp7/l/q4P4DqeVOfiD74wQ/mgx/8YJJkw4YNue222/LFL34xjzzySNrb27s1IAAAAAAAAAAAO+5Nl8kvWLAg//AP/5Cf/OQnGTx4cP7qr/4q3/zmN7szGwAAAAAAAADsEkzmRTXsUFHIqlWr8v3vfz//8A//kA0bNuTMM89MuVzOT3/60xxyyCHVyggAAAAAAAAAwA7a7kXexo0bl4MPPjhPPPFEbrrppvzud7/LN77xjWpmAwAAAAAAAADgTdrumULmzJmTSy65JJMmTco73vGOamYCAAAAAAAAAOAt2u6ZQh544IFs3LgxRx55ZI4++uhMnz49v//976uZDQAAAAAAAACAN2m7i0Le85735Lvf/W5WrlyZT33qU7n99tszePDgdHR0ZP78+dm4cWM1cwIAAAAAAAAAsAO2uyjkD/r165dPfOITeeCBB/Jv//Zv+cIXvpBp06Zl7733zvjx43c4wOOPP57vfe97eeaZZ5IkTz75ZC666KJceOGF+fnPf77D/QEAAAAAAAAA8CaKQv5fBx98cK677rr853/+Z2677bYdvv2dd96ZI488Ml/60pcycuTI3HvvvTn++OOzfPnyPPvss/ngBz+YH//4x28lIgAAAAAAAADALuktFYX8Qa9evXLaaafl7rvv3qHbXX311bniiivy+9//Pt/97nfz4Q9/OJMnT878+fMzd+7cXHvttbn++uu7IyIAAAAAAAAA7LQaSraitnrWLUUhb9bSpUszceLEJMlHPvKRvPzyyznttNM6208//fT89re/LSgdAAAAAAAAAEDtaixy8Obm5qxduzYHHHBAXnzxxWzdujVr167tbF+7dm369++/zT7K5XLK5XKXY5VeTWlqaqpKZgAAAAAAAACAWlDoTCEnnXRSPv3pT+dHP/pRPv7xj2fMmDGZOnVqnn766SxdujRTpkzJ8ccfv80+Wltb09LS0mW7/trWHvoJAAAAAAAAAAB2ToUWhdxwww3ZY489cuGFF+aVV17JHXfckaOOOiqHHHJIhg8fnt/97neZNm3aNvuYOnVq1q9f32WbcunUHvoJAAAAAAAAAAB2ToUuH7PPPvtk3rx5XY594xvfyOc///ls2rQpw4YNS2PjtiM2Nb12qZgtW7s9KgAAAAAAAABATSl0ppAkWbJkSWbOnJmlS5cmSZ5++ulcf/31ufHGG7NgwYKC0wEAAAAAAAAA1KZCZwqZO3duTj311PTv3z+bNm3KXXfdlXPOOScjR45MR0dHxowZk3nz5mX06NFFxgQAAAAAAACAqiqVSkVHoA4VOlPIlVdemSlTpmTt2rWZOXNmzj777FxwwQWZP39+7rvvvkyZMiXTpk0rMiIAAAAAAAAAQE0qtCjkySefzLnnnpskOfPMM7Nx48acccYZne0TJ07ME088UVA6AAAAAAAAAIDaVWhRSPLfU+A0NDSkb9++aWlp6Wxrbm7O+vXri4oGAAAAAAAAAFCzCi0KOeCAA7J8+fLO/YULF2bIkCGd+21tbRk0aFAR0QAAAAAAAAAAalpjkYNPmjQp7e3tnfsjRozo0j5nzpyMHj26p2MBAAAAAAAAANS8QotCLrzwwm22X3PNNT2UBAAAAAAAAACgvhS6fAwAAAAAAAAAANVR6EwhAAAAAAAAAEDSUCo6AfVIUcibtLW9o+pj9G40kcuupFKp/hglLyS7FI8puturPfHa16u6r32eFwD1Y8ur7VUfo6PKL33Lbj61ugMk+dg/Plr1MX740XdWfYyeUO3H1G59elW1f3Y9lR54c1vqgTe3PfEe/ZUe+CzjOU53a/A/QruUal8Le+K7io4euKA3+NJlu/ldbZ+e+a7QfQEUT9UBAAAAAAAAAEAdUhQCAAAAAAAAAFCHFIUAAAAAAAAAANQhRSEAAAAAAAAAAHVIUQgAAAAAAAAAQB1qLDoAAAAAAAAAAOzqSqWiE1CPdoqikPvvvz8PPPBAVq5cmYaGhhx00EEZP3583vGOdxQdDQAAAAAAAACgJhVaFLJ69eqMGzcuixcvTkNDQzo6OnLEEUfkzjvvzKWXXprJkyfnuuuuKzIiAAAAAAAAAEBNaihy8EsuuSSDBw/OunXr8tJLL+Wiiy7KoYcempUrV2bevHn53ve+l5tvvrnIiAAAAAAAAAAANanQopA5c+bkqquuyh577JGmpqZMmzYtt912WzZs2JDRo0fnpptuyowZM4qMCAAAAAAAAABQkwpdPqapqSmlUqlzv6GhIe3t7dm6dWuS5Nhjj82zzz67zT7K5XLK5XKXY5VeTWlqaur2vAAAAAAAAAAAtaLQmUKOP/74XH755Xn55Zfz6quv5m/+5m9y0EEHZa+99kqSrFmzJgMGDNhmH62trWlpaemyXX9ta0/EBwAAAAAAAADYaRU6U8gNN9yQMWPGZM8990ypVEq/fv3yz//8z53tS5YsybnnnrvNPqZOnZrJkyd3OVbpZZYQAAAAAAAAAGDXVmhRyEEHHZQnnngiv/zlL1Mul/Oe97wnAwcO7Gx/o4KQ5L+WoPmfS8Vs2drdSQEAAAAAAACgehpKpaIjUIcKXT4mSZ577rn853/+Z4YOHZqBAwfm6aefzqRJk/KJT3wi999/f9HxAAAAAAAAAABqUqEzhcydOzennnpq+vfvn02bNuWuu+7KOeeck5EjR6ajoyNjxozJvHnzMnr06CJjAgAAAAAAAADUnEJnCrnyyiszZcqUrF27NjNnzszZZ5+dCy64IPPnz899992XKVOmZNq0aUVGBAAAAAAAAACoSYUWhTz55JM599xzkyRnnnlmNm7cmDPOOKOzfeLEiXniiScKSgcAAAAAAAAAULsKLQpJklKplCRpaGhI375909LS0tnW3Nyc9evXFxUNAAAAAAAAAKBmFVoUcsABB2T58uWd+wsXLsyQIUM699va2jJo0KAiogEAAAAAAAAA1LTGIgefNGlS2tvbO/dHjBjRpX3OnDkZPXp0T8cCAAAAAAAAgB5V+DIf1KVCi0IuvPDCbbZfc801PZQEAAAAAAAAAKC+KDYCAAAAAAAAAKhDikIAAAAAAAAAAOpQocvH1LLejepp6F6lUtEJqDceU3S33r2q/9rXu1fVhwCgTvT1orFdZk18Z9XHGPDuS6o+xrqHbqn6GLv18ZiitjQ01MeHvsZe1f85Gnt5flN7etXJc5ztUw/f4zXUww/BLsfDFthVqGwAAAAAAAAAAKhDikIAAAAAAAAAAOqQ5WMAAAAAAAAAoGCWNaIazBQCAAAAAAAAAFCHFIUAAAAAAAAAANShwpePeeihh7Jw4cKsWrUqSbLvvvvmmGOOybvf/e6CkwEAAAAAAAAA1K7CikJWr16dD33oQ/nlL3+ZIUOGZJ999kmSPP/88/n85z+f4447Lj/5yU+y9957FxURAAAAAAAAAKBmFbZ8zEUXXZT29vYsWbIkzz77bBYtWpRFixbl2WefzZIlS9LR0ZFPf/rTRcUDAAAAAAAAAKhphc0U8vOf/zwLFizIwQcf/Jq2gw8+OLfcckve+9739nwwAAAAAAAAAIA6UNhMIU1NTdmwYcMfbd+4cWOampp6MBEAAAAAAAAAQP0obKaQj3zkI/n4xz+er3/963n/+9+fPfbYI0myYcOG3HfffZk8eXImTJhQVDwAAAAAAAAA6DENpVLREahDhRWF3Hjjjeno6MhZZ52VrVu3pk+fPkmScrmc3r175/zzz88NN9zwhv2Uy+WUy+Uuxyq9mswyAgAAAAAAAADs0gorCmlqasqMGTNy7bXXZvHixXn++eeTJPvss0+OOuqozplD3khra2uuuOKKLse+ctlX87eXf627IwMAAAAAAAAA1IzCikL+YI899sjo0aM79/v06ZPHH398u4tCpk6dmsmTJ3c5VulllhAAAAAAAAAAYNdWWFHI/yzk+IP29vZMmzYtf/Inf5Lkv5aZ2ZamptcuFbNla/dkBAAAAAAAAACoVYUVhdx0000ZOXJk9txzzy7HK5VKlixZkn79+qVUKhUTDgAAAAAAAACgxhVWFHLNNdfkO9/5Tv7+7/++y/IxvXv3zve///0ccsghRUUDAAAAAAAAAKh5hRWFfPnLX8773//+fPSjH824cePS2tqa3r17FxUHAAAAAAAAAApjIQ2qoaHIwd/1rnflkUceyZo1a3LUUUflN7/5jSVjAAAAAAAAAAC6QWEzhfxB//7984Mf/CC33357TjrppLS3txcdCQAAAAAAAACg5hVeFPIHZ511Vo4//vg88sgj2X///YuOAwAAAAAAAABQ03aaopAk2W+//bLffvsVHQMAAAAAAAAAoOY1FB0AAAAAAAAAAIDupygEAAAAAAAAAKAO7VTLxwAAAADdp1Sq/hjrHrql6mMMeNfFVR9j3cPTqz4GAAAAQE9TFAIAAAAAAAAABWvogT/uYNdj+RgAAAAAAAAAgDqkKAQAAAAAAAAAoA4pCgEAAAAAAAAAqEOKQgAAAAAAAAAA6pCiEAAAAAAAAACAOrTTFoWsW7cus2bNKjoGAAAAAAAAAEBNaiw6wB/T1taW8847L+ecc07RUQAAAAAAAACgqhpKpaIjUIcKKwrZsGHDNts3btzYQ0kAAAAAAAAAAOpPYUUhe+65Z0rbqHSqVCrbbAcAAAAAAAAA4I8rrCikubk5X/nKV3L00Ue/bvvy5cvzqU99qodTAQAAAAAAAADUh8KKQt75zncmSUaNGvW67XvuuWcqlcob9lMul1Mul7scq/RqSlNT01sPCQAAAAAAAABQoxqKGvjss89O3759/2j7vvvum69+9atv2E9ra2taWlq6bNdf29qdUQEAAAAAAAAAak6psj3TcfSgSqWSUqm03eebKQQAAADq24B3XVz1MdY9PL3qYwAAAHS3voWtC0E1XDn/t0VH2GVd/r+GFh2hana6y0RTU1Mef/zxDB8+fLvP/58FIFu2ViMZAAAAAAAAAEDtKKwoZPLkya97vL29PdOmTcuf/MmfJEluvPHGnowFAAAAAAAAAD1uBxbUgO1WWFHITTfdlJEjR2bPPffscrxSqWTJkiXp16/fDi0jAwAAAAAAAADAfyusKOSaa67Jd77znfz93/99Ro8e3Xm8d+/e+f73v59DDjmkqGgAAAAAAAAAADWvoaiBv/zlL+eOO+7IpEmT8sUvfjGvvvpqUVEAAAAAAAAAAOpOYUUhSfKud70rjzzySNasWZOjjjoqv/nNbywZAwAAAAAAAADQDQpbPuYP+vfvnx/84Ae5/fbbc9JJJ6W9vb3oSAAAAAAAAAAANa/wopA/OOuss3L88cfnkUceyf777190HAAAAAAAAACAmrbTFIUkyX777Zf99tuv6BgAAAAAAAAA0KMaSkUnoB41FB0AAAAAAAAAAIDupygEAAAAAAAAAKAO7VTLx9SS9o5K1cfoVSfzA1Wq/KuqpPr3RUOpPu4Ldi3Vfu71lGo//erlet4T93dP/K5eLm+tav99e/eqav9J0tRbze32qofrVL28RdhUbq/6GLv1qf7zr+rvC3vgMdtQJ58BtrZX/5fVE58DGhuqe03viZ9hyysdVR9j96bqP7/XPTy96mMsWL6mqv2f+I63VbX/pGeee4296uM61RPq4fuQUqp/f2/tqP51qidew3s31v7nANeQ7dcTn2U2vVLdz8f9mvzXALWnoweefD3xfwE98XNUW0/8nnri11TpgUG29sB3qn3r4H0IUF2uEgAAAAAAAAAAdUhRCAAAAAAAAABAHVIUAgAAAAAAAABQhxSFAAAAAAAAAADUocaiAwAAAAAAAADArq6UUtERqEOFzxTS0dHxR4+3tbX1cBoAAAAAAAAAgPpQWFHIhg0bcuaZZ6Zfv37ZZ599cvnll6e9vb2zfc2aNTnwwAOLigcAAAAAAAAAUNMKWz7msssuy+OPP54f/vCHefHFF3PVVVfl0UcfzZ133pk+ffokSSqVSlHxAAAAAAAAAABqWmEzhfz0pz/Nt7/97Zxxxhn567/+6yxevDhr1qzJuHHjUi6XkySlkjWTAAAAAAAAAADejMKKQtasWZP999+/c3/gwIG59957s3HjxpxyyinZtGlTUdEAAAAAAAAAAGpeYUUhQ4YMyZIlS7oca25uzrx587J58+acfvrp29VPuVzOhg0bumx/mGkEAAAAAAAAAGBXVVhRyJgxYzJz5szXHO/fv39+/vOfp2/fvtvVT2tra1paWrps11/b2t1xAQAAAAAAAKBqGkq2orZ61ljUwFdccUV+97vfveZ4pVJJc3Nz5s///7P372F2loW5+H+vyYQJyZDJAYEcMIYCNSESlASMCVCTbCiiVqvYUOp5o0VQawpCmgpEDsNBKLCpIFoOtXWH1EJruBQB/Sq/QEggIG6UpCSEIRUCAQIjwQzJZP3+cJPtCHLQWfPMWvl8ruu9Ltb7rvU895zWmjW5eZ5bcs8997zqOPPmzcvcuXN7jjGgpddyAgAAAAAAAADUo2KlkOHDh2f48OEvOd/S0pL77rsvEyZMyGGHHfaq47S0tKSlpWcJZPPWXosJAAAAAAAAAFCXipVCfnt1jxd1d3fn3HPPzciRI5MkF110UV/GAgAAAAAAAABoCMVKIRdffHEmT56cYcOG9ThfrVbzwAMPZMiQIalUGnzzHgAAAAAAAACAGilWCjnnnHNy5ZVX5sILL8zMmTO3nx84cGCuueaaTJw4sVQ0AAAAAAAAAIC611Rq4lNPPTXXXXddjj/++Jx00knZsmVLqSgAAAAAAAAAAA2nWCkkSaZOnZoVK1Zkw4YNmTJlSu6//35bxgAAAAAAAACww2mqOEodjazY9jEvam1tzbXXXpuFCxdm9uzZ6e7uLh0JAAAAAAAAAKDuFS+FvGjOnDmZMWNGVqxYkXHjxpWOAwAAAAAAAABQ1/pNKSRJxo4dm7Fjx5aOAQAAAAAAAABQ95pKBwAAAAAAAAAAoPcphQAAAAAAAAAANKB+tX1MPRnQVCkdoW5UavypqsTXAl5OrX/2GkWjPJ/3xde7eUDtJ2kbPLDmc9B/eJ7qPwa3DCgdoVfU/PdC37OvWV+8ZjTCF6Qv3ss0ys93Xzhk7zfUdPzhB3++puMnycZll9R8Dl47fw95bQYO8P+s9Rd98/rdGPrivcyQFn+6h9/W1CB/SGiUj6PW+uLTVOmDSXZqkL8/A/XNuy4AAAAAAAAAgAakbgwAAAAAAAAAhfXFCjbseKwUAgAAAAAAAADQgJRCAAAAAAAAAAAakFIIAAAAAAAAAEADUgoBAAAAAAAAAGhARUsh1Wo1a9euzdatW5MkL7zwQq677rr88z//c5588smS0QAAAAAAAAAA6lpzqYlXrVqVI444IuvWrctee+2Vm2++OUcffXRWrlyZarWawYMH54477sg+++xTKiIAAAAAAAAAQN0qtlLIKaecksmTJ+cnP/lJ3v3ud+eoo47K2LFjs3Hjxjz99NOZNm1avvzlL5eKBwAAAAAAAAB9pqniKHU0smKlkDvuuCMLFizIW97ylpx11llZuXJlTjrppAwcODAtLS059dRTc9ttt5WKBwAAAAAAAABQ14qVQp577rmMGDEiSTJkyJAMGTIko0aN2n59zz33zOOPP14qHgAAAAAAAABAXWsuNfHo0aPzyCOP5I1vfGOS5Pzzz89uu+22/fqGDRsyfPjwVx2nq6srXV1dPc5VB7SkpaWldwMDAAAAAAAAANSRYiuFzJ49OytXrtx++/jjj88uu+yy/fbNN9+ct73tba86Tnt7e9ra2nocF5zXXpPMAAAAAAAAAAD1olKtVqulQ/ymarWaSqWStWvXZtCgQT22lHk5VgoBAAAA/lC1/uvIiLd/vrYTJNm47JKazwEAAPQvg4rtC0EtXPjjh0pH2GH97WF7lY5QM/3uaaKlpSX33XdfJkyY8Jrv/9sFkM1ba5EMAAAAAAAAAKB+FCuFzJ0792XPd3d359xzz83IkSOTJBdddFFfxgIAAAAAAAAAaAjFSiEXX3xxJk+enGHDhvU4X61W88ADD2TIkCGpVCplwgEAAAAAAABAH/LP49RCsVLIOeeckyuvvDIXXnhhZs6cuf38wIEDc80112TixImlogEAAAAAAAAA1L2mUhOfeuqpue6663L88cfnpJNOypYtW0pFAQAAAAAAAAB4TX7xi1/kr/7qrzJy5MjsvPPOectb3pK77757+/VqtZrTTjsto0aNys4775zZs2fnwQcf7DHG008/nWOPPTZDhw7NsGHD8slPfjLPPfdcr2ctVgpJkqlTp2bFihXZsGFDpkyZkvvvv9+WMQAAAAAAAABAv7Rx48ZMnz49AwcOzPe+9738/Oc/z4UXXpjhw4dvv8/555+fSy+9NFdccUWWLVuWIUOG5IgjjsjmzZu33+fYY4/Nz372s9xyyy258cYbc9ttt+VTn/pUr+cttn3Mi1pbW3Pttddm4cKFmT17drq7u0tHAgAAAAAAAAB4ifPOOy977rlnrr766u3nxo8fv/2/q9VqLr744vz93/99/uzP/ixJ8s///M/Zfffd8x//8R+ZM2dOHnjggdx000256667MmXKlCTJ//pf/yvvete78pWvfCWjR4/utbxFVwr5TXPmzMndd9+d66+/PuPGjSsdBwAAAAAAAADYAXR1daWzs7PH0dXV9bL3/c53vpMpU6bk6KOPzm677Za3vvWt+frXv779+tq1a7N+/frMnj17+7m2trYcfPDBWbp0aZJk6dKlGTZs2PZCSJLMnj07TU1NWbZsWa9+bP2mFJIkY8eOzZ/92Z9lyJAhpaMAAAAAAAAAADuA9vb2tLW19Tja29tf9r4PPfRQLr/88uyzzz75/ve/n+OPPz6f+9zncu211yZJ1q9fnyTZfffdezxu9913335t/fr12W233Xpcb25uzogRI7bfp7cU3z4GAAAAAAAAAHZ0TZVK6Qg7rHnz5mXu3Lk9zrW0tLzsfbdt25YpU6bknHPOSZK89a1vzf33358rrrgiH/3oR2ue9fXqVyuFAAAAAAAAAAD0pZaWlgwdOrTH8btKIaNGjcrEiRN7nJswYUIeeeSRJMkee+yRJHn88cd73Ofxxx/ffm2PPfbIE0880eP61q1b8/TTT2+/T2+xUggAsMPo3lat+RwDmjS5Aeg/tlVr/9rXKP8XUzW1/VxtXHZJTcdPkuEzz6j5HBt/WPs5AAAAoD+bPn16Vq1a1ePcf/3Xf2XcuHFJkvHjx2ePPfbID37wgxxwwAFJks7OzixbtizHH398kmTatGl55plnsmLFihx44IFJkh/+8IfZtm1bDj744F7NqxQCAAAAAAAAAPAafOELX8g73vGOnHPOOfnQhz6U5cuX58orr8yVV16ZJKlUKvmbv/mbnHXWWdlnn30yfvz4fOlLX8ro0aPzvve9L8mvVxb50z/90xx33HG54oorsmXLlpx44omZM2dORo8e3at5lUIAAAAAAAAAAF6DqVOn5oYbbsi8efPy5S9/OePHj8/FF1+cY489dvt9vvjFL2bTpk351Kc+lWeeeSYzZszITTfdlEGDBm2/z7/+67/mxBNPzKxZs9LU1JQPfOADufTSS3s9b6Va7YO1ZPvY5q2lEwAA/ZHtYwDY0dg+5rWr9eeqLz5Pw2eeUfM5bB8DAAD9yyBLADSUi/9/a0tH2GH9zSHjS0eomabSAQAAAAAAAAAA6H1KIQAAAAAAAAAADajflUJmzpyZjo6O0jEAAAAAAAAAoM80VRyljkZWbJep73znOy97/rbbbsuNN96YPffcM0ny3ve+ty9jAQAAAAAAAAA0hGKlkPe9732pVCqpVqsvufbZz342SVKpVNLd3d3X0QAAAAAAAAAA6l6x7WOOOOKIHHnkkVm/fn22bdu2/RgwYEDuv//+bNu2TSEEAAAAAAAAAOD3VKwU8r3vfS+zZs3KlClTcuONN5aKAQAAAAAAAADQkIptH5MkX/jCF/LOd74zxx57bBYvXpx/+Id/eN1jdHV1paurq8e56oCWtLS09FZMAAAAAAAAAIC6U2ylkBcdcMABufvuu1OpVHLAAQekWq2+rse3t7enra2tx3HBee01SgsAAAAAAAAAUB+KrhTyop133jlXXHFFvvOd7+QHP/hBdt1119f82Hnz5mXu3Lk9zlUHWCUEAAAAAAAAgPpRqZROQCMqvlLIb3rve9+byy+/PE899dRrfkxLS0uGDh3a47B1DAAAAAAAAACwoyu2Ushvr+7xou7u7px77rkZOXJkkuSiiy7qy1gAAAAAAAAAAA2hWCnk4osvzuTJkzNs2LAe56vVah544IEMGTIkFevjAAAAAAAAAAD8XoqVQs4555xceeWVufDCCzNz5szt5wcOHJhrrrkmEydOLBUNAAAAAAAAAKDuNZWa+NRTT811112X448/PieddFK2bNlSKgoAAAAAAAAAQMMpVgpJkqlTp2bFihXZsGFDpkyZkvvvv9+WMQAAAAAAAAAAvaDY9jEvam1tzbXXXpuFCxdm9uzZ6e7uLh0JAAAAAAAAAKDuFS+FvGjOnDmZMWNGVqxYkXHjxpWOAwAAAAAAAAB9pil21aD39ZtSSJKMHTs2Y8eOLR0DAAAAAAAAAKDuNZUOAAAAAAAAAABA71MKAQAAAAAAAABoQP1q+xgAgFoa0GQ/RgB2LE0Vr32vVSN8rjb+8IyazzF86ok1n2PjXZfVfA4AAADYUVgpBAAAAAAAAACgASmFAAAAAAAAAAA0INvHAAAAAAAAAEBhDbCzKf2QlUIAAAAAAAAAABqQUggAAAAAAAAAQAPqV9vHrF27NqtXr86oUaMyadKk0nEAAAAAAAAAAOpWsZVCPvOZz+S5555LkvzqV7/KBz/4wey999454ogjMnny5MycOXP7dQAAAAAAAAAAXp9ipZCvfe1ref7555MkZ555ZpYtW5Zbb701zz33XG677bY88sgjOfvss0vFAwAAAAAAAACoa8VKIdVqdft/L168OOeff37e+c53ZvDgwZk+fXouuuiiXH/99aXiAQAAAAAAAADUteaSk1cqlSTJ+vXrs//++/e4Nnny5Kxbt65ELAAAAAAAAADoU02V0gloREVLIV/60pcyePDgNDU15dFHH81+++23/dpTTz2VIUOGFEwHAAAAAAAAAFC/ipVCDj300KxatSpJMnHixHR0dPS4/t3vfrdHSeR36erqSldXV49z1QEtaWlp6b2wAAAAAAAAAAB1plgp5Ec/+tHLnq9Wq6lUKvnLv/zLfOxjH3vVcdrb27NgwYIe5+Z/6fT8/Wln/OEhAQAAAAAAAADqVNHtY15OS0tL7rvvvkyYMOE13X/evHmZO3duj3PVAVYJAQAAAAAAAAB2bMVKIb9d5HhRd3d3zj333IwcOTJJctFFF73iOC0tL90qZvPW3skIAAAAAAAAAFCvipVCLr744kyePDnDhg3rcb5areaBBx7IkCFDUqlUyoQDAAAAAAAAAKhzxUoh55xzTq688spceOGFmTlz5vbzAwcOzDXXXJOJEyeWigYAAAAAAAAAUPeKlUJOPfXUzJo1K3/1V3+V97znPWlvb8/AgQNLxQEAAAAAAACAYprspEENNJWcfOrUqVmxYkU2bNiQKVOm5P7777dlDAAAAAAAAABALyi2UsiLWltbc+2112bhwoWZPXt2uru7S0cCAAAAAAAAAKh7xUshL5ozZ05mzJiRFStWZNy4caXjAAAAAAAAAADUtX5TCkmSsWPHZuzYsaVjAAAAAAAAAADUvabSAQAAAAAAAAAA6H1KIQAAAAAAAAAADahfbR8DAAAAQP+18a7Laj7H8IM/X/M5Ni67pOZzAAAAvF6VSukENCIrhQAAAAAAAAAANCClEAAAAAAAAACABqQUAgAAAAAAAADQgJRCAAAAAAAAAAAakFIIAAAAAAAAAEADUgoBAAAAAAAAAGhAzaUm7urqSlNTUwYOHJgkWbNmTa666qo88sgjGTduXD75yU9m/PjxpeIBAAAAAAAAANS1YiuFHHHEEfnP//zPJMntt9+e/fbbLzfeeGO2bNmS7373u5k0aVKWLl1aKh4AAAAAAAAA9JmmSsVR6GhkxUoh9957byZPnpwkmT9/fj7zmc/kvvvuy8KFC3PPPfdk7ty5Ofnkk0vFAwAAAAAAAACoa8VKId3d3enu7k6SrFy5Mh/96Ed7XP/Yxz6W++67r0Q0AAAAAAAAAIC6V6wUcvDBB2fx4sVJkj/6oz96SQHkJz/5SUaMGFEiGgAAAAAAAABA3WsuNfFZZ52VI488Mps2bcoxxxyTv/3bv82DDz6YCRMmZNWqVbn00kszb968Vx2nq6srXV1dPc5VB7SkpaWlVtEBAAAAAAAAAPq9YqWQadOm5Xvf+17mzp2bZcuWJUnOPvvsJMno0aNzxhln5POf//yrjtPe3p4FCxb0ODf/S6fn7087o9czAwAAAAAAAADUi0q1Wq2WDrFhw4Y89NBD2bZtW/bYY4+MHz/+NT/WSiEAAAAAjWP4wa/+Pwn9oTYuu6TmcwAAQF8YVGwJAGrhn5Y/UjrCDuuTB72xdISa6RdPE294wxvyhje8IUmy00475b777suECRNe02NbWl5aANm8tdcjAgAAAAAAAEDNVCqlE9CIipVC5s6d+7Lnu7u7c+6552bkyJFJkosuuqgvYwEAAAAAAAAANIRipZCLL744kydPzrBhw3qcr1areeCBBzJkyJBUVKEAAAAAAAAAAH4vxUoh55xzTq688spceOGFmTlz5vbzAwcOzDXXXJOJEyeWigYAAAAAAAAAUPeaSk186qmn5rrrrsvxxx+fk046KVu2bCkVBQAAAAAAAACg4RQrhSTJ1KlTs2LFimzYsCFTpkzJ/fffb8sYAAAAAAAAAIBeUGz7mBe1trbm2muvzcKFCzN79ux0d3eXjgQAAAAAAAAAUPeKl0JeNGfOnMyYMSMrVqzIuHHjSscBAAAAAAAAAKhr/aYUkiRjx47N2LFjS8cAAAAAAAAAgD7VVDoADcn3FQAAAAAAAABAA1IKAQAAAAAAAABoQP1q+xgAAAAAdmwbl11S8zmGH/S5ms+xcfmlNZ8DAAAAXo2VQgAAAAAAAAAAGpBSCAAAAAAAAABAA1IKAQAAAAAAAABoQM2lAwAAAAAAAADAjq5SqZSOQAOyUggAAAAAAAAAQAMqVgr593//9zz//POlpgcAAAAAAAAAaGjFSiFHH310Ro0alU996lNZtmxZqRgAAAAAAAAAAA2p6PYxJ510Uu6+++5MmzYtkyZNysUXX5ynnnqqZCQAAAAAAAAAgIZQtBTy6U9/Ovfcc0/uuuuuHHrooVmwYEHGjBmTD33oQ7nllltKRgMAAAAAAAAAqGtFSyEvOvDAA/PVr341jz32WL7+9a9nw4YN+dM//dOMHz++dDQAAAAAAAAAgLrUXGriSqXyknODBg3Khz/84Xz4wx/O6tWrc/XVV7/qOF1dXenq6upxrjqgJS0tLb2WFQAAAAAAAABq6aX/gg5/uGIrhVSr1Ve8vvfee+fss89+1XHa29vT1tbW47jgvPbeigkAAAAAAAAAUJeKrRSydu3a7Lrrri85X61WX3YVkd9l3rx5mTt3bs8xBlglBAAAAAAAAADYsRUrhYwbN+5lz7e0tOS+++7LhAkTXtM4LS0v3Spm89Y/OB4AAAAAAAAAQF0rVgr57dU9XtTd3Z1zzz03I0eOTJJcdNFFfRkLAAAAAAAAAKAhFCuFXHzxxZk8eXKGDRvW43y1Ws0DDzyQIUOGvK5tZAAAAAAAAAAA+H+KlULOOeecXHnllbnwwgszc+bM7ecHDhyYa665JhMnTiwVDQAAAAAAAACg7jWVmvjUU0/Nddddl+OPPz4nnXRStmzZUioKAAAAAAAAAEDDKVYKSZKpU6dmxYoV2bBhQ6ZMmZL777/fljEAAAAAAAAA7HCaKhVHoaORFds+5kWtra259tprs3DhwsyePTvd3d2lIwEAAAAAAAAA1L3ipZAXzZkzJzNmzMiKFSsybty40nEAAAAAAAAAAOpavymFJMnYsWMzduzY0jEAAAAAAAAAAOpeU+kAAAAAAAAAAAD0PqUQAAAAAAAAAIAG1K+2jwEAAACAWtu4/NKazzH8oM/VdPy++BgAAACof0ohAAAAAAAAAFBYpXQAGpLtYwAAAAAAAAAAGpBSCAAAAAAAAABAA1IKAQAAAAAAAABoQEohAAAAAAAAAAANSCkEAAAAAAAAAKABNZec/L777suKFSvyJ3/yJ9lrr73ys5/9LP/4j/+Ybdu25f3vf3+OOOKIkvEAAAAAAAAAAOpWsZVCrr/++hx44IH54he/mMmTJ+fWW2/NjBkz8uCDD+bhhx/OUUcdlW9961ul4gEAAAAAAAAA1LVipZCzzz47CxYsyJNPPpmvf/3rOfroozN37tzccsstuemmm3LeeeflggsuKBUPAAAAAAAAAPpMpeIodTSyYqWQVatW5dhjj02S/MVf/EU2bdqU973vfduvv//978/q1asLpQMAAAAAAAAAqG/FSiG77LJLnnrqqSTJM888k61bt26/nSRPPfVUWltbS8UDAAAAAAAAAKhrzaUmnj17dk444YR89rOfzXXXXZfDDz888+bNy9VXX51KpZKTTz45M2bMeNVxurq60tXV1eNcdUBLWlpaahUdAAAAAAAAAKDfK7ZSyFe+8pUMHTo0f/3Xf50XXngh1113XaZMmZKJEydm4sSJefTRR3Puuee+6jjt7e1pa2vrcVxwXnsffAQAAAAAAAAAAP1XpVqtVkuH+E0PPfRQnn/++bz5zW9Oc/OrL2RipRAAAAAA+pvhB32upuNvXH5pTccHAKA+DCq2LwS18K17/rt0hB3WX75tbOkINdPvnibe/OY357777ntNhZAkaWl5aQFk89ZaJAMAAAAAAAAAqB/FSiFz58592fPd3d0599xzM3LkyCTJRRdd1JexAAAAAAAAAKDPVSqV0hFoQMVKIRdffHEmT56cYcOG9ThfrVbzwAMPZMiQIb7pAQAAAAAAAAB+T8VKIeecc06uvPLKXHjhhZk5c+b28wMHDsw111yTiRMnlooGAAAAAAAAAFD3mkpNfOqpp+a6667L8ccfn5NOOilbtmwpFQUAAAAAAAAAoOEUK4UkydSpU7NixYps2LAhU6ZMyf3332/LGAAAAAAAAACAXlBs+5gXtba25tprr83ChQsze/bsdHd3l44EAAAAAAAAAFD3ipdCXjRnzpzMmDEjK1asyLhx40rHAQAAAAAAAACoa/2mFJIkY8eOzdixY0vHAAAAAAAAAACoe/2qFAIAAAAAAAAAO6Km0gFoSL6vAAAAAAAAAAAakJVCfk/Vau3nqFRqPwcAvFbd22r/4tdU4xc/r60AjWNbX7wuNdX2haMv3ldW+2CSWn+eoF5tXH5pTccf/qF/qun4SbJx0SdrPsfW7r54n1HzKTwX0uu21fg1vNbvvwEA6D+sFAIAAAAAAAAA0ICUQgAAAAAAAAAAGpBSCAAAAAAAAABAA1IKAQAAAAAAAABoQM2lAwAAAAAAAADAjq5SqZSOQAMqXgr54Q9/mCVLluSxxx5LU1NT9tprr7z3ve/NPvvsUzoaAAAAAAAAAEDdKlYKeeKJJ/Ke97wnd999d5qamrJt27a89a1vzfXXX59TTjklc+fOzfnnn18qHgAAAAAAAABAXWsqNfHnPve5jB49Ohs3bsxzzz2Xz3zmM9lvv/3y2GOP5eabb85VV12VSy65pFQ8AAAAAAAAAIC6VqlWq9USE7e1teWOO+7IfvvtlyTZtGlThg8fnieffDJDhw7Nv/zLv+Sss87KypUrX/fYm7f2dtqX6ovPmi2jAOhPurfV/sWvqcYvfl5bARrHtr54XWqq7QtHX7yv7Iu3/LX+PAEvb/iH/qnmc2xc9Mmaz7G1uy/eZ9R8Cs+F9LptNX4Nr/X7bwD6zqBi+0JQC4t+8mjpCDusDx0wunSEmim2UkhLS0sqv/GLZ1NTU7q7u7N1668bHe94xzvy8MMPF0oHAAAAAAAAAFDfipVCZsyYkdNOOy2bNm3Kli1b8nd/93fZa6+9MmLEiCTJhg0bMnz48Fcdp6urK52dnT2Orq6uWscHAAAAAAAAAOjXipVCvvKVr+QnP/lJhg0bliFDhuSaa67J5Zdfvv36Aw88kI997GOvOk57e3va2tp6HBec117D5AAAAAAAAAAA/V+l2hcbDP8Ozz//fJYsWZIXXnghb3/727PrrrumWq322Fbm1XR1db1kZZDqgJa0tLT0dtyec/TBZ822jgD0J93b+mKv79q++HltBWgc2/ridampti8cffG+si/e8tf68wS8vOEf+qeaz7Fx0SdrPsfW7r54n1HzKTwX0uu21fg1vNbvvwHoO4OaSyegN/3bTx4tHWGHdfQBo0tHqJmiTxODBw/O4Ycf3uNcS0tL7rvvvkyYMOE1jdHS8tICyOatvRYRAAAAAAAAAKAuFSuFzJ0792XPd3d359xzz83IkSOTJBdddFFfxgIAAAAAAAAAaAjFSiEXX3xxJk+enGHDhvU4X61W88ADD2TIkCGvaxsZAAAAAAAAAAD+n2KlkHPOOSdXXnllLrzwwsycOXP7+YEDB+aaa67JxIkTS0UDAAAAAAAAAKh7TaUmPvXUU3Pdddfl+OOPz0knnZQtW7aUigIAAAAAAAAA0HCKlUKSZOrUqVmxYkU2bNiQKVOm5P7777dlDAAAAAAAAABALyi2fcyLWltbc+2112bhwoWZPXt2uru7S0cCAAAAAAAAgD5lAQVqoXgp5EVz5szJjBkzsmLFiowbN650HAAAAAAAAACAutZvSiFJMnbs2IwdO7Z0DAAAAAAAAACAutdUOgAAAAAAAAAAAL1PKQQAAAAAAAAAoAH1q+1j6kmlUjoBAPStAU1e/ADoP5oa4HWpL95XVrx5hYa1cdEnaz7H8IM/X/M5Ni67pOZzQD1q8hoOAEAvsVIIAAAAAAAAAEADslIIAAAAAAAAABRmRQdqwfcVAAAAAAAAAEADUgoBAAAAAAAAAGhASiEAAAAAAAAAAA1IKQQAAAAAAAAAoAE1lw6QJMuXL8/SpUuzfv36JMkee+yRadOm5aCDDiqcDAAAAAAAAACgPhUthTzxxBP5wAc+kNtvvz1vfOMbs/vuuydJHn/88XzhC1/I9OnT8+///u/ZbbfdSsYEAAAAAAAAAKg7RbeP+cxnPpPu7u488MADefjhh7Ns2bIsW7YsDz/8cB544IFs27YtJ5xwQsmIAAAAAAAAAAB1qehKId///vdz22235Y//+I9fcu2P//iPc+mll+ZP/uRP+j4YAAAAAAAAAPShSqVSOgINqOhKIS0tLens7Pyd13/5y1+mpaWlDxMBAAAAAAAAADSGoqWQv/iLv8hHP/rR3HDDDT3KIZ2dnbnhhhvy8Y9/PMccc8wrjtHV1ZXOzs4eR1dXV62jAwAAAAAAAAD0a0VLIRdddFGOPPLIzJkzJ8OHD8/OO++cnXfeOcOHD8+cOXNy5JFH5itf+corjtHe3p62trYexwXntffRRwAAAAAAAAAA0D9VqtVqtXSIzs7OrFixIuvXr0+S7LHHHjnwwAMzdOjQV31sV1fXS1YGqQ5ose0MAAAAAPwBhh/8+ZrPsXHZJTWfAwCgkQ1qLp2A3nTDT9eXjrDDev/+e5SOUDP94mli6NCheec735lNmzZl0aJFufXWW/Pzn/88c+bMyciRI1/xsS0tLy2AbN5ay7QAAAAAAAAAAP1f0e1jJk6cmKeffjpJsm7dukyaNClf+MIXcsstt+S0007LxIkTs3bt2pIRAQAAAAAAAADqUtFSyMqVK7N166+X9Zg3b15Gjx6djo6OLF++PB0dHdl///0zf/78khEBAAAAAAAAoOYqjmJHIytaCvlNS5cuzRlnnJG2trYkSWtraxYsWJAlS5YUTgYAAAAAAAAAUH+Kl0IqlV/3bjZv3pxRo0b1uDZmzJhs2LChRCwAAAAAAAAAgLrWXDrArFmz0tzcnM7OzqxatSqTJk3afq2joyMjR44smA4AAAAAAAAAoD4VLYWcfvrpPW63trb2uL148eIccsghfRkJAAAAAAAAAKAhVKrVarV0iN62eWvpBAAAAABQ34Yf/Pmaz7Fx2SU1nwMAoJENKr4vBL3pP366vnSEHdb79t+jdISaaSodAAAAAAAAAACA3qcUAgAAAAAAAADQgCwo9Hva0r2t5nMMHKCzA/z++mJzsEql9nM0gkb5WnRvq/0Hsq3Gcwxs9toK/P4aZePNRnn97ovXpVp/zZv64GvRtbX2710HDRxQ8zn64vu21r+HNPXFF5wdytbu2j8P9sXWLh/4p+U1n2PRx6fWfI4BDfAz3rWl9q8ZLQO9J3utav33Z397hsZW6+d0z+evXaP8LYG+0yh/t6F/8awNAAAAAAAAANCAlEIAAAAAAAAAABqQUggAAAAAAAAAQANSCgEAAAAAAAAAaEBKIQAAAAAAAAAADUgpBAAAAAAAAACgATWXDgAAAAAAAAAAO7qmVEpHoAH165VCNm7cmH/+538uHQMAAAAAAAAAoO7061LII488ko9//OOlYwAAAAAAAAAA1J2i28d0dna+4vVf/vKXfZQEAAAAAAAAAKCxFC2FDBs2LJXK794XqVqtvuJ1AAAAAAAAAABeXtFSyC677JL58+fn4IMPftnrDz74YD796U+/4hhdXV3p6urqca46oCUtLS29lhMAAAAAAAAAoN4ULYW87W1vS5IcdthhL3t92LBhqVarrzhGe3t7FixY0OPc/C+dnr8/7YxeyQgAAAAAAAAAUI+KlkL+8i//Mr/61a9+5/U99tgjp59++iuOMW/evMydO7fHueoAq4QAAAAAAAAAADu2oqWQ44477hWv77777q9aCmlpeelWMZu3/sHRAAAAAAAAAKDPVCqlE9CIipZCftumTZuyaNGirF69OqNGjcoxxxyTkSNHlo4FAAAAAAAAAFB3ipZCJk6cmCVLlmTEiBFZt25dDj300GzcuDH77rtv1qxZkzPPPDN33nlnxo8fXzImAAAAAAAAAEDdaSo5+cqVK7N166/3epk3b15Gjx6djo6OLF++PB0dHdl///0zf/78khEBAAAAAAAAAOpS0VLIb1q6dGnOOOOMtLW1JUlaW1uzYMGCLFmypHAyAAAAAAAAAID6U7wUUqlUkiSbN2/OqFGjelwbM2ZMNmzYUCIWAAAAAAAAAEBday4dYNasWWlubk5nZ2dWrVqVSZMmbb/W0dGRkSNHFkwHAAAAAAAAAFCfipZCTj/99B63W1tbe9xevHhxDjnkkL6MBAAAAAAAAAB9rpJK6Qg0oH5VCvltF1xwQR8lAQAAAAAAAABoLE2lAwAAAAAAAAAA0PuUQgAAAAAAAAAAGlDR7WPq2YCK/ZyA/m1r97aazzGwWbfwtfCS8dp1V6s1HX9AjcdPkiZfcOpQ97ba/2wMaKr9z8a2Gv+M+/nuX2r99U6SX/5qa03HHzZkYE3HT5Kt3bX/PFV2qvkUfeKFGv/+PKhpQE3HT5I++LHwu20/Uk0ffMH7YD/zRR+fWvM5lq99uuZzTPujkTWfo9ZaBnqP3588+/yWmo6/6y4tNR2fHU9f/H7uPdlrt5O/274mffF9u/6ZrprPsdcbBtV8DqC+eVUAAAAAAAAAAGhASiEAAAAAAAAAAA3I9jEAAAAAAAAAUJidsqgFK4UAAAAAAAAAADQgpRAAAAAAAAAAgAakFAIAAAAAAAAA0ID6RSlk27Ztv/P8I4880sdpAAAAAAAAAADqX9FSSGdnZz70oQ9lyJAh2X333XPaaaelu7t7+/UNGzZk/PjxBRMCAAAAAAAAANSn5pKTf+lLX8p9992Xb37zm3nmmWdy1lln5Z577sn111+fnXbaKUlSrVZLRgQAAAAAAAAAqEtFVwr5j//4j3zta1/LBz/4wfzP//k/c/fdd2fDhg15z3vek66uriRJpVIpGREAAAAAAAAAoC4VLYVs2LAh48aN23571113za233ppf/vKXede73pXnn3/+Vcfo6upKZ2dnj+PFQgkAAAAAAAAA1IOmVByFjkZWtBTyxje+MQ888ECPc7vssktuvvnm/OpXv8r73//+Vx2jvb09bW1tPY4LzmuvVWQAAAAAAAAAgLpQtBRy+OGH5+qrr37J+dbW1nz/+9/PoEGDXnWMefPm5dlnn+1xnHzKvFrEBQAAAAAAAACoG80lJ1+wYEEeffTRl722yy675JZbbsk999zzimO0tLSkpaWlx7nNW3stIgAAAAAAAABAXSpaChk+fHiGDx++/famTZuyaNGirF69OqNGjcoxxxyTww47rGBCAAAAAAAAAID6VLQUMnHixCxZsiQjRozIunXrcuihh2bjxo3Zd999s2bNmpx55pm58847M378+JIxAQAAAAAAAADqTlPJyVeuXJmtW3+918u8efMyevTodHR0ZPny5eno6Mj++++f+fPnl4wIAAAAAAAAAFCXiq4U8puWLl2aK664Im1tbUmS1tbWLFiwIHPmzCmcDAAAAAAAAABqq1IpnYBGVHSlkCSp/N/v7M2bN2fUqFE9ro0ZMyYbNmwoEQsAAAAAAAAAoK4VXylk1qxZaW5uTmdnZ1atWpVJkyZtv9bR0ZGRI0cWTAcAAAAAAAAAUJ+KlkJOP/30HrdbW1t73F68eHEOOeSQvowEAAAAAAAAANAQ+lUp5LddcMEFfZQEAAAAAAAAAKCxNJUOAAAAAAAAAABA71MKAQAAAAAAAABoQJVqtVotHaK3bd5aOgEAAAAAsKMYPvXEmo6/8a7Lajo+AFC/BjWXTkBv+v7PN5SOsMM6YuIbSkeoGU8TAAAAAAAAAFBYpVI6AY3I9jEAAAAAAAAAAA1IKQQAAAAAAAAAoAEphQAAAAAAAAAANCClEAAAAAAAAACABqQUAgAAAAAAAADQgJRCAAAAAAAAAAAaUHPpANVqNQ8//HD23HPPNDc354UXXsgNN9yQrq6uvOtd78quu+5aOiIAAAAAAAAA1FQlldIRaEBFSyGrVq3KEUcckXXr1mWvvfbKzTffnKOPPjorV65MtVrN4MGDc8cdd2SfffYpGRMAAAAAAAAAoO4U3T7mlFNOyeTJk/OTn/wk7373u3PUUUdl7Nix2bhxY55++ulMmzYtX/7yl0tGBAAAAAAAAACoS5VqtVotNfluu+2Wm2++OQcccEA2bdqUXXbZJbfddltmzJiRJLnjjjtyzDHHpKOj43WNu3lrLdICAAAAALzU8Kkn1nT8jXddVtPxAYD6NajovhD0tlseeLJ0hB3W/5iwa+kINVP0aeK5557LiBEjkiRDhgzJkCFDMmrUqO3X99xzzzz++OOvOEZXV1e6urp6nKsOaElLS0vvBwYAAAAAAAAAqBNFt48ZPXp0Hnnkke23zz///Oy2227bb2/YsCHDhw9/xTHa29vT1tbW47jgvPaaZQYAAAAAAAAAqAdFVwqZPXt2Vq5cuX27mOOPP77H9Ztvvjlve9vbXnGMefPmZe7cuT3OVQdYJQQAAAAAAAAA2LFVqtVqtXSI32Xt2rUZNGhQjy1lXovNW2sUCAAAAADgtwyfemJNx99412U1HR8AqF+Dii4BQG+75YEnS0fYYf2PCbuWjlAz/eppYtOmTVm0aFFWr16dUaNG5ZhjjsnIkSNLxwIAAAAAAACAmmqqlE5AIypaCpk4cWKWLFmSESNGZN26dTn00EOzcePG7LvvvlmzZk3OPPPM3HnnnRk/fnzJmAAAAAAAAAAAdaep5OQrV67M1q2/3utl3rx5GT16dDo6OrJ8+fJ0dHRk//33z/z580tGBAAAAAAAAACoS0VLIb9p6dKlOeOMM9LW1pYkaW1tzYIFC7JkyZLCyQAAAAAAAAAA6k/xUkil8uuNkTZv3pxRo0b1uDZmzJhs2LChRCwAAAAAAAAAgLrWXDrArFmz0tzcnM7OzqxatSqTJk3afq2joyMjR44smA4AAAAAAAAAoD4VLYWcfvrpPW63trb2uL148eIccsghfRkJAAAAAAAAAKAhVKrVarV0iN62eWvpBAAAAADAjmL41BNrOv7Guy6r6fgAQP0aVHxfCHrTD1c+VTrCDmvmmxt3B5Om0gEAAAAAAAAAAOh9umMAAAAAAH+AWq/kUeuVSBKrkQAAQKOyUggAAAAAAAAAQANSCgEAAAAAAAAAaEBKIQAAAAAAAAAAv4dzzz03lUolf/M3f7P93ObNm3PCCSdk5MiRaW1tzQc+8IE8/vjjPR73yCOP5KijjsrgwYOz22675eSTT87WrVt7PZ9SCAAAAAAAAADA63TXXXfla1/7Wvbff/8e57/whS9k8eLF+bd/+7f8+Mc/zqOPPpo///M/3369u7s7Rx11VF544YXccccdufbaa3PNNdfktNNO6/WMSiEAAAAAAAAAAK/Dc889l2OPPTZf//rXM3z48O3nn3322fzTP/1TLrroosycOTMHHnhgrr766txxxx258847kyQ333xzfv7zn+df/uVfcsABB+TII4/MmWeemX/8x3/MCy+80Ks5lUIAAAAAAAAAoLBKxVHq6OrqSmdnZ4+jq6vrFb9eJ5xwQo466qjMnj27x/kVK1Zky5YtPc6/+c1vzhvf+MYsXbo0SbJ06dK85S1vye677779PkcccUQ6Ozvzs5/9rBe/q5RCAAAAAAAAAIAdWHt7e9ra2noc7e3tv/P+CxcuzD333POy91m/fn122mmnDBs2rMf53XffPevXr99+n98shLx4/cVrvalflkJmzpyZjo6O0jEAAAAAAAAAgAY3b968PPvssz2OefPmvex9161bl89//vP513/91wwaNKiPk75+zSUn/853vvOy52+77bbceOON2XPPPZMk733ve/syFgAAAAAAAACwg2hpaUlLS8truu+KFSvyxBNP5G1ve9v2c93d3bntttty2WWX5fvf/35eeOGFPPPMMz1WC3n88cezxx57JEn22GOPLF++vMe4jz/++PZrvaloKeR973tfKpVKqtXqS6599rOfTZJUKpV0d3f3dTQAAAAAAAAAgB5mzZqV//N//k+Pcx//+Mfz5je/Oaecckr23HPPDBw4MD/4wQ/ygQ98IEmyatWqPPLII5k2bVqSZNq0aTn77LPzxBNPZLfddkuS3HLLLRk6dGgmTpzYq3mLlkKOOOKIDBgwIFddddX2DzRJBg4cmPvuu6/XP1gAAAAAAAAAgN/XLrvskkmTJvU4N2TIkIwcOXL7+U9+8pOZO3duRowYkaFDh+azn/1spk2blre//e1JksMPPzwTJ07Mhz/84Zx//vlZv359/v7v/z4nnHDCa16x5LVq6tXRXqfvfe97mTVrVqZMmZIbb7zx9xqjq6srnZ2dPY6urq5eTgoAAAAAAAAA8Or+4R/+Ie9+97vzgQ98IIceemj22GOPXH/99duvDxgwIDfeeGMGDBiQadOm5a/+6q/ykY98JF/+8pd7PUul+nJ7t/Sxn/zkJzn22GMzY8aM/MM//EPa2tpe80ohZ5xxRhYsWNDj3PwvnZ6/P+2MGqUFAAAAAOg7w6eeWPM5Nt51Wc3nAAB636Ci+0LQ23606unSEXZYf/LHI0pHqJmiK4W86IADDsjdd9+dSqWSAw44IK+npzJv3rw8++yzPY6TT5lXw7QAAAAAAAAAAP1fv+mO7bzzzrniiiuyePHi/PCHP8yuu+76mh7X0tLykj11Nm+tRUIAAAAAAAAAgPrRL1YKedGmTZvy5JNPZvDgwVm0aFGeeuqp0pEAAAAAAAAAAOpS0ZVCJk6cmCVLlmTEiBFZt25dDjnkkDzzzDPZd999s2bNmpx55pm58847M378+JIxAQAAAAAAAADqTtGVQlauXJmtW3+918u8efMyZsyYdHR0ZPny5eno6Mj++++f+fPnl4wIAAAAAAAAAFCX+s32MUuXLs0ZZ5yRtra2JElra2sWLFiQJUuWFE4GAAAAAAAAAFB/im4fkySVSiVJsnnz5owaNarHtTFjxmTDhg0lYgEAAAAAAABAn2mqlE5AIypeCpk1a1aam5vT2dmZVatWZdKkSduvdXR0ZOTIkQXTAQAAAAAAAADUp6KlkNNPP73H7dbW1h63Fy9enEMOOaQvIwEAAAAAAAAANIRKtVqtlg7R2zZvLZ0AAAAAAKB3DJ96Ys3n2HjXZTWfAwDofYOK7wtBb7rtv54uHWGHdei+I0pHqJmm0gEAAAAAAAAAAOh9SiEAAAAAAAAAAA3IgkIAwGvyyz7Yn21Iy4Cajt9UqdR0fKCsWm+M6Slkx7NtW22/qZqaav9Nta0PdoxtlNfXRvh689r1xWbKtf7RaISPIan9z16SVPrgA6n1FH2xtcsbP7Wo5nM8cuWHaj5Ho/C6BPwhav0+oFHeAwDsKKwUAgAAAAAAAADQgKwUAgAAAAAAAACFVWIlHnqflUIAAAAAAAAAABqQUggAAAAAAAAAQANSCgEAAAAAAAAAaEBKIQAAAAAAAAAADai5dIDftnbt2qxevTqjRo3KpEmTSscBAAAAAAAAAKhLRVcK+cxnPpPnnnsuSfKrX/0qH/zgB7P33nvniCOOyOTJkzNz5szt1wEAAAAAAAAAeO2KlkK+9rWv5fnnn0+SnHnmmVm2bFluvfXWPPfcc7ntttvyyCOP5Oyzzy4ZEQAAAAAAAABqrlJxlDoaWdFSSLVa3f7fixcvzvnnn593vvOdGTx4cKZPn56LLroo119/fcGEAAAAAAAAAAD1qWgpJEkq/7d2s379+uy///49rk2ePDnr1q0rEQsAAAAAAAAAoK41lw7wpS99KYMHD05TU1MeffTR7LffftuvPfXUUxkyZMgrPr6rqytdXV09zlUHtKSlpaUmeQEAAAAAAAAA6kHRlUIOPfTQrFq1Kvfee28mTpyYjo6OHte/+93v9iiJvJz29va0tbX1OC44r72WsQEAAAAAAAAA+r1KtVqtlg7xuzz00EPZaaedMnbs2N95HyuFAEDf+OXmrTWfY0jLgJqO3/R/t60DGlOt39l4CtnxbNtW22+qpqbaf1Nt64O3/I3y+toIX29eu774a1itfzQa4WNIav+zl/y/7atrO0fNp6i5N35qUc3neOTKD9V8jkbhdQn4Q9T6fUCjvAdoFIOK7wtBb1ry4MbSEXZYM/YZXjpCzfSrp4lNmzZl0aJFWb16dUaNGpVjjjkmI0eOfMXHtLS8tADSB/9mBQAAAAAAAADQrxUthUycODFLlizJiBEjsm7duhxyyCF55plnsu+++2bNmjU588wzc+edd2b8+PElYwIAAAAAAAAA1J2mkpOvXLkyW7f+elmPefPmZcyYMeno6Mjy5cvT0dGR/fffP/Pnzy8ZEQAAAAAAAABqruIodjSyoqWQ37R06dKcccYZaWtrS5K0trZmwYIFWbJkSeFkAAAAAAAAAAD1p3gppFL5de9m8+bNGTVqVI9rY8aMyYYNG0rEAgAAAAAAAACoa82lA8yaNSvNzc3p7OzMqlWrMmnSpO3XOjo6MnLkyILpAAAAAAAAAADqU9FSyOmnn97jdmtra4/bixcvziGHHNKXkQAAAAAAAAAAGkK/KoX8tgsuuKCPkgAAAAAAAAAANJam0gEAAAAAAAAAAOh9RVcKAQAAAAAAAACSpkqldAQaUKVarVZLh+htm7eWTgAAAAAAwG8aPvXEms+x8a7Laj4HAPQngywB0FCWrn6mdIQd1rS9h5WOUDO2jwEAAAAAAAAAaEBKIQAAAAAAAAAADUgpBAAAAAAAAACgASmFAAAAAAAAAAA0IKUQAAAAAAAAAIAGpBQCAAAAAAAAANCAmksHAAAAAAAAAIAdXaV0ABpS0VJIV1dXmpqaMnDgwCTJmjVrctVVV+WRRx7JuHHj8slPfjLjx48vGREAAAAAAAAAoC4V3T7miCOOyH/+538mSW6//fbst99+ufHGG7Nly5Z897vfzaRJk7J06dKSEQEAAAAAAAAA6lLRUsi9996byZMnJ0nmz5+fz3zmM7nvvvuycOHC3HPPPZk7d25OPvnkkhEBAAAAAAAAAOpS0VJId3d3uru7kyQrV67MRz/60R7XP/axj+W+++4rEQ0AAAAAAAAAoK4VLYUcfPDBWbx4cZLkj/7oj15SAPnJT36SESNGvOIYXV1d6ezs7HF0dXXVLDMAAAAAAAAAQD1oLjn5WWedlSOPPDKbNm3KMccck7/927/Ngw8+mAkTJmTVqlW59NJLM2/evFcco729PQsWLOhxbv6XTs/fn3ZGDZMDAAAAAAAAAPRvlWq1Wi0ZYOnSpZk7d26WLVvW4/zo0aNz8skn5/Of//wrPr6rq+slK4NUB7SkpaWl17MCAAAAAPD7GT71xJrPsfGuy2o+BwD0J4OKLgFAb7tzzTOlI+yw3v5Hw0pHqJniTxPTpk3L0qVLs2HDhjz00EPZtm1bRo0alTe96U2v6fEtLS8tgGzeWoOgAAAAAAAAAAB1pHgp5EVveMMbMnjw4CxatCg33nhjRo8enTlz5mTkyJGlowEAAAAAAAAA1J2mkpNPnDgxTz/9dJJk3bp1mTRpUr7whS/klltuyWmnnZaJEydm7dq1JSMCAAAAAAAAANSloqWQlStXZuvWX+/1Mm/evIwePTodHR1Zvnx5Ojo6sv/++2f+/PklIwIAAAAAAAAA1KWipZDftHTp0pxxxhlpa2tLkrS2tmbBggVZsmRJ4WQAAAAAAAAAAPWneCmkUqkkSTZv3pxRo0b1uDZmzJhs2LChRCwAAAAAAAAAgLrWXDrArFmz0tzcnM7OzqxatSqTJk3afq2joyMjR44smA4AAAAAAAAAoD4VLYWcfvrpPW63trb2uL148eIccsghfRkJAAAAAAAAAPpcJZXSEWhAlWq1Wi0dordt3lo6AQAAAAAAv2n41BNrPsfGuy6r+RwA0J8MKr4vBL1p2ZpnS0fYYR38R22lI9RMU+kAAAAAAAAAAAD0PqUQAAAAAAAAAIAGZEEhAAAAAABqri+2drFFDQAA9GSlEAAAAAAAAACABqQUAgAAAAAAAADQgGwfAwAAAAAAAACFVSqlE9CIrBQCAAAAAAAAANCAlEIAAAAAAAAAABqQUggAAAAAAAAAQAMqWgr593//9zz//PMlIwAAAAAAAAAANKSipZCjjz46o0aNyqc+9aksW7asZBQAAAAAAAAAgIZSfPuYk046KXfffXemTZuWSZMm5eKLL85TTz1VOhYAAAAAAAAAQF0rXgr59Kc/nXvuuSd33XVXDj300CxYsCBjxozJhz70odxyyy2l4wEAAAAAAABAzVUcxY5GVrwU8qIDDzwwX/3qV/PYY4/l61//ejZs2JA//dM/zfjx41/xcV1dXens7OxxdHV19VFqAAAAAAAAAID+qWgppFJ5aedm0KBB+fCHP5z/7//7/7Jq1ar85V/+5SuO0d7enra2th7HBee11yoyAAAAAAAAAEBdqFSr1WqpyZuamrJ+/frstttuv/cYXV1dL1kZpDqgJS0tLX9oPAAAAAAA6sjwqSfWfI6Nd11W8zkA4LUa1Fw6Ab3proeeLR1hhzV1r7bSEWqm6NPE2rVr84Y3vOEPGqOl5aUFkM1b/6AhAQAAAAAAAADqXtFSyLhx43rc3rRpUxYtWpTVq1dn1KhROeaYYzJy5MhC6QAAAAAAAAAA6lfRUsjEiROzZMmSjBgxIuvWrcuhhx6ajRs3Zt99982aNWty5pln5s4778z48eNLxgQAAAAAAAAAqDtNJSdfuXJltm799V4v8+bNy+jRo9PR0ZHly5eno6Mj+++/f+bPn18yIgAAAAAAAABAXSq6UshvWrp0aa644oq0tbUlSVpbW7NgwYLMmTOncDIAAAAAAAAAqLFK6QA0oqIrhSRJpfLr7+zNmzdn1KhRPa6NGTMmGzZsKBELAAAAAAAAAKCuFV8pZNasWWlubk5nZ2dWrVqVSZMmbb/W0dGRkSNHFkwHAAAAAAAAAFCfipZCTj/99B63W1tbe9xevHhxDjnkkL6MBAAAAAAAAADQECrVarVaOkRv27y1dAIAAAAAAPra8Kkn1nyOjXddVvM5AOC1GlR8Xwh6011rny0dYYc1dXxb6Qg101Q6AAAAAAAAAAAAvU8pBAAAAAAAAACgAVlQCAAAAACAhtAXW7sMnza35nNsXHpRzecAAPqfSiqlI9CArBQCAAAAAAAAANCAlEIAAAAAAAAAABqQUggAAAAAAAAAQANSCgEAAAAAAAAAaEBKIQAAAAAAAAAADUgpBAAAAAAAAACgASmFAAAAAAAAAAA0oObSAe67776sWLEif/Inf5K99torP/vZz/KP//iP2bZtW97//vfniCOOKB0RAAAAAAAAAGqqUimdgEZUdKWQ66+/PgceeGC++MUvZvLkybn11lszY8aMPPjgg3n44Ydz1FFH5Vvf+lbJiAAAAAAAAAAAdaloKeTss8/OggUL8uSTT+brX/96jj766MydOze33HJLbrrpppx33nm54IILSkYEAAAAAAAAAKhLRUshq1atyrHHHpsk+Yu/+Its2rQp73vf+7Zff//735/Vq1cXSgcAAAAAAAAAUL+aS06+yy675Kmnnsqb3vSmPPPMM9m6dWueeuqp7defeuqptLa2vuIYXV1d6erq6nGuOqAlLS0tNckMAAAAAAAAAFAPiq4UMnv27Jxwwgn513/913z0ox/N4Ycfnnnz5mXlypVZtWpVTj755MyYMeMVx2hvb09bW1uP44Lz2vvoIwAAAAAAAAAA6J+KlkK+8pWvZOjQofnrv/7rvPDCC7nuuusyZcqUTJw4MRMnTsyjjz6ac8899xXHmDdvXp599tkex8mnzOujjwAAAAAAAAAAoH+qVKvVaukQv+2hhx7K888/nze/+c1pbn79O9xs3lqDUAAAAAAA7PCGT5tb8zk2Lr2o5nMA0BgGvf5/SqUfu+fhztIRdlhve9PQ0hFqpl89TWzatCmLFi3K6tWrM3r06IwaNSojR44sHQsAAAAAAAAAoO4ULYVMnDgxS5YsyYgRI7Ju3boccsgheeaZZ7LvvvtmzZo1+fKXv5w777wz48ePLxkTAAAAAAAAAKDuNJWcfOXKldm69dd7vcybNy9jxoxJR0dHli9fno6Ojuy///6ZP39+yYgAAAAAAAAAAHWpaCnkNy1dujRnnHFG2trakiStra1ZsGBBlixZUjgZAAAAAAAAAED9KV4KqVQqSZLNmzdn1KhRPa6NGTMmGzZsKBELAAAAAAAAAKCuNZcOMGvWrDQ3N6ezszOrVq3KpEmTtl/r6OjIyJEjC6YDAAAAAAAAAKhPRUshp59+eo/bra2tPW4vXrw4hxxySF9GAgAAAAAAAABoCJVqtVotHaK3bd5aOgEAAAAAAI1o+LS5NZ9j49KLaj4HAI1hUPF9IehN93R0lo6ww3rbuKGlI9RMU+kAAAAAAAAAAAD0Pt2x39O2PlhgpalSqfkcQOPyPEVv64vvqRe2bqvp+Ds1174P6+dix9IXa+71xbdU97bafyADmmr/gdT64+iLj6FRvqf6wtbu2n+yav252tYXP3sDav8Fb5TXvl+90F3T8XfeaUBNx2fH0yiv31u6a/seIEme/OULNZ9j1LBBNR2/L35H6Iv3fH3xPdUX+mIVjx+sfKKm48968241HT/xuy2U5Hfb16YvnqcefnJTzeeYMGpIzecA6puVQgAAAAAAAAAAGpBSCAAAAAAAAABAA1IKAQAAAAAAAABoQEohAAAAAAAAAAANqLl0AAAAAAAAAADY0VVSKR2BBmSlEAAAAAAAAACABqQUAgAAAAAAAADQgPrF9jE//OEPs2TJkjz22GNpamrKXnvtlfe+973ZZ599SkcDAAAAAAAAAKhLRUshTzzxRN7znvfk7rvvTlNTU7Zt25a3vvWtuf7663PKKadk7ty5Of/880tGBAAAAAAAAACoS0W3j/nc5z6X0aNHZ+PGjXnuuefymc98Jvvtt18ee+yx3HzzzbnqqqtyySWXlIwIAAAAAAAAAFCXipZCvve97+Wss87K0KFD09LSknPPPTf/+3//73R2dmbmzJm5+OKLc/nll5eMCAAAAAAAAABQl4puH9PS0pJKpbL9dlNTU7q7u7N169YkyTve8Y48/PDDrzhGV1dXurq6epyrDmhJS0tLr+cFAAAAAAAAgFr4jX86h15TdKWQGTNm5LTTTsumTZuyZcuW/N3f/V322muvjBgxIkmyYcOGDB8+/BXHaG9vT1tbW4/jgvPa+yI+AAAAAAAAAEC/VXSlkK985Ss5/PDDM2zYsFQqlQwZMiSLFi3afv2BBx7Ixz72sVccYyeiG3cAAGr2SURBVN68eZk7d26Pc9UBVgkBAAAAAAAAAHZsRUshe+21V37605/m9ttvT1dXV97+9rdn11133X791Qohya+3oPntrWI2b+3tpAAAAAAAAAAA9aVoKSRJBg8enP/xP/5HkmTTpk25+uqrs3r16owaNSrHHHNMRo4cWTghAAAAAAAAAED9KVoKmThxYpYsWZIRI0Zk3bp1OeSQQ/LMM89k3333zZo1a3LmmWfmzjvvzPjx40vGBAAAAAAAAACoO00lJ1+5cmW2bv31Xi/z5s3LmDFj0tHRkeXLl6ejoyP7779/5s+fXzIiAAAAAAAAAEBdKloK+U1Lly7NGWeckba2tiRJa2trFixYkCVLlhROBgAAAAAAAABQf4puH5MklUolSbJ58+aMGjWqx7UxY8Zkw4YNJWIBAAAAAAAAQJ+plA5AQypeCpk1a1aam5vT2dmZVatWZdKkSduvdXR0ZOTIkQXTAQAAAAAAAADUp6KlkNNPP73H7dbW1h63Fy9enEMOOaQvIwEAAAAAAAAANIR+VQr5bRdccEEfJQEAAAAAAAAAaCxNpQMAAAAAAAAAAND7lEIAAAAAAAAAABpQpVqtVkuH6G2bt5ZOAAAAAAAA/dPwqSfWfI6Nd11W8zkASAY1l05Ab7rvkV+WjrDDmvzGXUpHqBlPEwAAAAAAAABQWqV0ABqR7WMAAAAAAAAAABqQUggAAAAAAAAAQANSCgEAAAAAAAAAaEBKIQAAAAAAAAAADai5dIAXXngh//Ef/5GlS5dm/fr1SZI99tgj73jHO/Jnf/Zn2WmnnQonBAAAAAAAAACoP0VXClm9enUmTJiQj370o7n33nuzbdu2bNu2Lffee28+8pGPZL/99svq1atLRgQAAAAAAAAAqEtFVwo5/vjj85a3vCX33ntvhg4d2uNaZ2dnPvKRj+SEE07I97///UIJAQAAAAAAAADqU9FSyO23357ly5e/pBCSJEOHDs2ZZ56Zgw8+uEAyAAAAAAAAAOg7lVRKR6ABFd0+ZtiwYXn44Yd/5/WHH344w4YN67M8AAAAAAAAAACNouhKIf/zf/7PfOQjH8mXvvSlzJo1K7vvvnuS5PHHH88PfvCDnHXWWfnsZz9bMiIAAAAAAAAAQF0qWgr58pe/nCFDhuSCCy7I3/7t36ZS+fVyONVqNXvssUdOOeWUfPGLX3zFMbq6utLV1dXjXHVAS1paWmqWGwAAAAAAAACgvyu6fUySnHLKKXn00UezZs2aLFmyJEuWLMmaNWvy6KOPvmohJEna29vT1tbW47jgvPY+SA4AAAAAAAAA0H9VqtVqtXSIP4SVQgAAAAAA4LUbPvXEms+x8a7Laj4HAMmgovtC0Nt+uu650hF2WPvv2Vo6Qs0UXSnknnvuydq1a7ff/uY3v5np06dnzz33zIwZM7Jw4cJXHaOlpSVDhw7tcSiEAAAAAAAAAAA7uqKlkI9//ONZs2ZNkuQb3/hGPv3pT2fKlCmZP39+pk6dmuOOOy5XXXVVyYgAAAAAAAAAUHOViqPU0ciKLij04IMPZp999kmSfPWrX80ll1yS4447bvv1qVOn5uyzz84nPvGJUhEBAAAAAAAAAOpS0ZVCBg8enCeffDJJ8otf/CIHHXRQj+sHH3xwj+1lAAAAAAAAAAB4bYqWQo488shcfvnlSZLDDjss3/72t3tcX7RoUfbee+8S0QAAAAAAAAAA6lrR7WPOO++8TJ8+PYcddlimTJmSCy+8MD/60Y8yYcKErFq1KnfeeWduuOGGkhEBAAAAAAAAAOpS0ZVCRo8enXvvvTfTpk3LTTfdlGq1muXLl+fmm2/O2LFjc/vtt+dd73pXyYgAAAAAAAAAAHWpUq1Wq6VD9LbNW0snAAAAAACA/mn41BNrPsfGuy6r+RwAJIOK7gtBb/s///1c6Qg7rLeMbS0doWaKrhQCAAAAAAAAAEBt6I4BAAAAAAAAQGGV0gFoSEohAAAAAACwA+mLrV2GH/z5ms+xcdklNZ8DAKDe2T4GAAAAAAAAAKABKYUAAAAAAAAAADQgpRAAAAAAAAAAgAakFAIAAAAAAAAA0ICUQgAAAAAAAAAAGlBz6QAAAAAAAAAAsMOrlA5AI+rXK4U8/vjj+fKXv1w6BgAAAAAAAABA3enXpZD169dnwYIFpWMAAAAAAAAAANSdotvH/PSnP33F66tWreqjJAAAAAAAAAAAjaVoKeSAAw5IpVJJtVp9ybUXz1cqNk4CAAAAAAAAAHi9ipZCRowYkfPPPz+zZs162es/+9nP8p73vKePUwEAAAAAAAAA1L+ipZADDzwwjz76aMaNG/ey15955pmXXUXkN3V1daWrq6vHueqAlrS0tPRaTgAAAAAAAACAetNUcvK//uu/zpve9Kbfef2Nb3xjrr766lcco729PW1tbT2OC85r7+WkAAAAAAAAAAD1pVJ9taU4+jkrhQAAAAAAQP8y/ODP13yOjcsuqfkcAP3doKL7QtDbfvaLTaUj7LD2GzOkdISaqfuniZaWlxZANm8tFAYAAAAAAAAAoJ8oun3MPffck7Vr126//c1vfjPTp0/PnnvumRkzZmThwoUF0wEAAAAAAAAA1K+ipZCPf/zjWbNmTZLkG9/4Rj796U9nypQpmT9/fqZOnZrjjjsuV111VcmIAAAAAAAAAAB1qej2MQ8++GD22WefJMlXv/rVXHLJJTnuuOO2X586dWrOPvvsfOITnygVEQAAAAAAAACgLhVdKWTw4MF58sknkyS/+MUvctBBB/W4fvDBB/fYXgYAAAAAAAAAgNemaCnkyCOPzOWXX54kOeyww/Ltb3+7x/VFixZl7733LhENAAAAAAAAAKCuFd0+5rzzzsv06dNz2GGHZcqUKbnwwgvzox/9KBMmTMiqVaty55135oYbbigZEQAAAAAAAABqrlIpnYBGVHSlkNGjR+fee+/NtGnTctNNN6VarWb58uW5+eabM3bs2Nx+++1517veVTIiAAAAAAAAAEBdqlSr1WrpEL1t89bSCQAAAAAAYMc1/ODP13yOjcsuqfkcAP3doKL7QtDbfv7optIRdlgTRw8pHaFmiq4UAgAAAAAAAABAbSiFAAAAAAAAAAA0IAsKAQAAAAAAvaovtnYZPvXEms+x8a7Laj4HAEAtWSkEAAAAAAAAAKABWSkEAAAAAAAAAAqrlA5AQ7JSCAAAAAAAAABAA1IKAQAAAAAAAABoQEohAAAAAAAAAAANqF+UQv77v/87zz333EvOb9myJbfddluBRAAAAAAAAAAA9a1oKeSxxx7LQQcdlHHjxmXYsGH5yEc+0qMc8vTTT+ed73xnwYQAAAAAAAAAAPWpaCnk1FNPTVNTU5YtW5abbropP//5z/POd74zGzdu3H6farVaMCEAAAAAAAAAQH0qWgq59dZbc+mll2bKlCmZPXt2br/99owaNSozZ87M008/nSSpVColIwIAAAAAAAAA1KWipZBnn302w4cP3367paUl119/fd70pjflne98Z5544omC6QAAAAAAAACgj1QcxY4GVrQUstdee+WnP/1pj3PNzc35t3/7t+y1115597vf/apjdHV1pbOzs8fR1dVVq8gAAAAAAAAAAHWhaCnkyCOPzJVXXvmS8y8WQw444IBXHaO9vT1tbW09jgvOa69BWgAAAAAAAACA+lGpVqvVUpNv3bo1zz//fIYOHfo7r//iF7/IuHHjfucYXV1dL1kZpDqgJS0tLb2aFQAAAAAA6D+GTz2x5nNsvOuyms8B8IcY1Fw6Ab3pgcc2lY6ww5owakjpCDVT9Gmiubn5dxZCXrz+SoWQJGlpeWkBZPPWXokHAAAAAAAAAFC3im4fc88992Tt2rXbb3/zm9/M9OnTs+eee2bGjBlZuHBhwXQAAAAAAAAAAPWraCnk4x//eNasWZMk+cY3vpFPf/rTmTJlSubPn5+pU6fmuOOOy1VXXVUyIgAAAAAAAABAXSq6fcyDDz6YffbZJ0ny1a9+NZdcckmOO+647denTp2as88+O5/4xCdKRQQAAAAAAACAmqukUjoCDajoSiGDBw/Ok08+mST5xS9+kYMOOqjH9YMPPrjH9jIAAAAAAAAAALw2RUshRx55ZC6//PIkyWGHHZZvf/vbPa4vWrQoe++9d4loAAAAAAAAAAB1rej2Meedd16mT5+eww47LFOmTMmFF16YH/3oR5kwYUJWrVqVO++8MzfccEPJiAAAAAAAAAAAdanoSiGjR4/Ovffem2nTpuWmm25KtVrN8uXLc/PNN2fs2LG5/fbb8653vatkRAAAAAAAAACAulSpVqvV0iF62+atpRMAAAAAAAC1NHzqiTWfY+Ndl9V8DoA/xKCi+0LQ21Y+9nzpCDusN48aXDpCzRRdKQQAAAAAAAAAgNpQCgEAAAAAAAAAaEC2jwEAAAAAAHgZtqgB+jvbxzSWVettH1PKH+9h+xgAAAAAAAAAAOqIUggAAAAAAAAAQANSCgEAAAAAAAAAaEBKIQAAAAAAAAAADUgpBAAAAAAAAACgASmFAAAAAAAAAAA0oObSAZ566qn89Kc/zeTJkzNixIg8+eST+ad/+qd0dXXl6KOPzoQJE0pHBAAAAAAAAICaqpQOQEMqWgpZvnx5Dj/88HR2dmbYsGG55ZZbcvTRR6e5uTnbtm3LueeemyVLluRtb3tbyZgAAAAAAAAAAHWn6PYx8+fPz9FHH51nn302f/d3f5f3ve99mTVrVv7rv/4rq1evzpw5c3LmmWeWjAgAAAAAAAAAUJcq1Wq1WmryESNG5Pbbb8+ECROyZcuWDBo0KEuXLs1BBx2UJLnnnnvy3ve+N//93//9usbdvLUWaQEAAAAAgB3J8Kkn1nyOjXddVvM5gMY1qOi+EPS2/1r/fOkIO6x99xhcOkLNFF0p5IUXXsjOO++cJBk4cGAGDx6cXXfddfv1XXfdNU899VSpeAAAAAAAAAAAdatod2zPPffMQw89lDe96U1JkoULF2bUqFHbrz/22GM9SiIvp6urK11dXT3OVQe0pKWlpdfzAgAAAAAAAADUi6IrhcyZMydPPPHE9ttHHXXU9pVDkuQ73/nO9q1kfpf29va0tbX1OC44r71mmQEAAAAAAAAA6kGlWq1WS4f4XZ5//vkMGDDgFVf9sFIIAAAAAABQC8OnnljzOTbedVnN5wAa16Ci+0LQ2/5r/fOlI+yw9t1jcOkINdOvnyYGD371T3xLy0sLIJu31ioRAAAAAAAAANRApXQAGlHR7WPuueeerF27dvvtb37zm5k+fXr23HPPzJgxIwsXLiyYDgAAAAAAAACgfhUthXz84x/PmjVrkiTf+MY38ulPfzpTpkzJ/PnzM3Xq1Bx33HG56qqrSkYEAAAAAAAAAKhLRbePefDBB7PPPvskSb761a/mkksuyXHHHbf9+tSpU3P22WfnE5/4RKmIAAAAAAAAAAB1qehKIYMHD86TTz6ZJPnFL36Rgw46qMf1gw8+uMf2MgAAAAAAAAAAvDZFSyFHHnlkLr/88iTJYYcdlm9/+9s9ri9atCh77713iWgAAAAAAAAAAHWt6PYx5513XqZPn57DDjssU6ZMyYUXXpgf/ehHmTBhQlatWpU777wzN9xwQ8mIAAAAAAAAAAB1qWgpZPTo0bn33ntz7rnnZvHixalWq1m+fHnWrVuX6dOn5/bbb8+UKVNKRgQAAAAAAACAmqukUjoCDahSrVarpUP0ts1bSycAAAAAAADq3fCpJ9Z8jo13XVbzOYDGNajoEgD0tgcf/1XpCDusfXbfuXSEmmkqHQAAAAAAAAAAgN5npRAAAAAAAIBCar0aiZVIoLFZKaSxWCmkHCuFAAAAAAAAAABQV5RCAAAAAAAAAAAakFIIAAAAAAAAAEADsssUAAAAAAAAABRWqZROQCOyUggAAAAAAAAAQANSCgEAAAAAAAAAaED9shSy11575cEHHywdAwAAAAAAAACgbjWXnPzSSy992fOPPPJIrr766uyxxx5Jks997nN9GQsAAAAAAAAAoO5VqtVqtdTkTU1NGTNmTJqbe3ZTOjo6Mnr06AwcODCVSiUPPfTQ6xp389beTAkAAAAAAFAbw6eeWNPxN951WU3HB8oaVHQJAHrb6id+VTrCDmvv3XYuHaFmij5NfOpTn8qyZcvyrW99KxMmTNh+fuDAgbn55pszceLEgukAAAAAAAAAAOpXU8nJr7jiipx22mk54ogjctllmqoAAAAAAAAAAL2laCkkSd7//vdn6dKlueGGG3LkkUdm/fr1r+vxXV1d6ezs7HF0dXXVKC0AAAAAAAAA9L6Ko9jxerS3t2fq1KnZZZddsttuu+V973tfVq1a1eM+mzdvzgknnJCRI0emtbU1H/jAB/L444/3uM8jjzySo446KoMHD85uu+2Wk08+OVu3bn2daV5d8VJIkowZMya33nprDj300Lz1rW9NtVp9zY9tb29PW1tbj+OC89prmBYAAAAAAAAA2BH9+Mc/zgknnJA777wzt9xyS7Zs2ZLDDz88mzZt2n6fL3zhC1m8eHH+7d/+LT/+8Y/z6KOP5s///M+3X+/u7s5RRx2VF154IXfccUeuvfbaXHPNNTnttNN6PW+l+noaGH1gxYoVWbJkST7ykY9k+PDhr3r/rq6ul6wMUh3QkpaWllpFBAAAAAAA6BXDp55Y0/E33nVZTccHyhrUXDoBvWnNE78qHWGH9Ue77fx7P3bDhg3Zbbfd8uMf/ziHHnponn322bzhDW/It771rXzwgx9MkqxcuTITJkzI0qVL8/a3vz3f+9738u53vzuPPvpodt999yTJFVdckVNOOSUbNmzITjvt1CsfV9JPVgr5TQceeGA+//nPv6ZCSJK0tLRk6NChPQ6FEAAAAAAAAACg1p599tkkyYgRI5L8eiGMLVu2ZPbs2dvv8+Y3vzlvfOMbs3Tp0iTJ0qVL85a3vGV7ISRJjjjiiHR2duZnP/tZr+YrWgq55557snbt2u23v/nNb2b69OnZc889M2PGjCxcuLBgOgAAAAAAAACg0XV1daWzs7PH8ds7lrycbdu25W/+5m8yffr0TJo0KUmyfv367LTTThk2bNj/v71/j7OyrPfH//fiNBwExAMqwqCGIrZNUw4RKpQKSltR29Gno6dNWmIe2qZuMq22IaZbLY9lWB62hyzUsABPqJmICmq1FQFHLRAPCYIiw2Gu3x/7B18GYWbNrHtxM4vn8/FYf7DWmuv1vmZ4z73Wta6573rP3WmnnWLRokXrnrP+hpC1j699LEu5bgo58cQTY/78+RERceONN8Ypp5wS/fv3j3HjxsWAAQNizJgxMXHixDxLBAAAAAAAAAAq2Pjx46Nr1671buPHj2/060477bT461//ukWf8CLXq0zNnTs39txzz4iIuPbaa+Oqq66KMWPGrHt8wIABcfHFF8dJJ52UV4kAAAAAAAAAQAU7//zz4+yzz653X1VVVYNfM3bs2Jg8eXI89thj0bNnz3X377zzzrFy5cpYsmRJvbOFvPnmm7Hzzjuve87MmTPrjffmm2+ueyxLuZ4ppGPHjvHOO+9ERMSCBQti4MCB9R4fNGhQvcvLAAAAAAAAAEBFKrjldauqqoouXbrUu21qU0hKKcaOHRuTJk2Khx9+OHbfffd6jx944IHRtm3beOihh9bdN2fOnHj99ddj8ODBERExePDg+Mtf/hJvvfXWuuc88MAD0aVLl9hnn302mttcuW4KOfLII+O6666LiIihQ4fG3XffXe/xu+66K/r06ZNHaQAAAAAAAAAA9Zx22mlx6623xv/8z/9E586dY9GiRbFo0aL48MMPIyKia9eucfLJJ8fZZ58djzzySDz77LNx4oknxuDBg+NTn/pUREQMHz489tlnn/ja174Wzz//fEydOjW+973vxWmnndboGUqaqpBSSpmO2AQLFy6MIUOGRHV1dfTv3z+uu+66OPDAA6Nfv34xZ86cmDFjRkyaNClGjhzZpHFXrC5TwQAAAAAAABnqNmBsWcdf/PTVZR0fyFf7NnlXQJbmv/1h3iVstT62Y4ein1soFDZ6/0033RQnnHBCRESsWLEivvOd78Ttt98etbW1MWLEiLj22mvrXRrmtddei29+85sxffr06NSpUxx//PFxySWXRJs22TZ2rptCIiKWLFkSl1xySfz+97+PV155Jerq6mKXXXaJIUOGxFlnnRX9+/dv8pg2hQAAAAAAAC2BTSFAKWwKqSw2heSnKZtCWprcN4WUg00hAAAAAABAS2BTCFAKm0Iqi00h+ankTSGt8i4AAAAAAAAAAIDs2RQCAAAAAAAAAFCBXD4GAAAAAACgQpX78jQRLlEDeXL5mMri8jH5qeTLx/g1AQAAAAAAAAA5K0Qh7xKoQC4fAwAAAAAAAABQgWwKAQAAAAAAAACoQDaFAAAAAAAAAABUIJtCAAAAAAAAAAAqUJu8C1hfSimmT58e8+bNi1122SVGjBgRbdu2zbssAAAAAAAAAIAWJ9dNISNHjozbb789unbtGu+++26MHDkyZs6cGTvssEP885//jL322isee+yx2HHHHfMsEwAAAAAAAACgxcn18jFTpkyJ2traiIj43ve+F8uWLYv58+fHW2+9Fa+99lp06tQpvv/97+dZIgAAAAAAAACUXaHgltetkuW6KWR9Dz/8cIwfPz523333iIjo2bNnTJgwIaZOnZpzZQAAAAAAAAAALU/um0IK//9tN4sXL46Pfexj9R7r06dPLFy4MI+yAAAAAAAAAABatDZ5F3DCCSdEVVVVrFq1KmpqauLjH//4uscWLVoU2267bYNfX1tbu+4SNGul1lVRVVVVjnIBAAAAAAAAAFqEXM8Ucvzxx0f37t2ja9euMWrUqFi+fHm9x3/729/G/vvv3+AY48ePj65du9a7/WTC+DJWDQAAAAAAAACw5SuklFLeRWzKBx98EK1bt4727dtv8jnOFAIAAAAAALBx3QaMLXvG4qevLnsGsHHtc78uBFmqeWdF3iVstXbfYdN7Elq6LfrXRKdOnRp9TlXVRzeArFhdrooAAAAAAAAAAFqGXC8fM2vWrKipqVn371tuuSWGDBkSvXr1ioMOOijuuOOOHKsDAAAAAAAAAGi5ct0UcuKJJ8b8+fMjIuLGG2+MU045Jfr37x/jxo2LAQMGxJgxY2LixIl5lggAAAAAAAAAZVdwy+1WyXK9fMzcuXNjzz33jIiIa6+9Nq666qoYM2bMuscHDBgQF198cZx00kl5lQgAAAAAAAAA0CLleqaQjh07xjvvvBMREQsWLIiBAwfWe3zQoEH1Li8DAAAAAAAAAEBxct0UcuSRR8Z1110XERFDhw6Nu+++u97jd911V/Tp0yeP0gAAAAAAAAAAWrRcLx8zYcKEGDJkSAwdOjT69+8fl19+eUyfPj369esXc+bMiRkzZsSkSZPyLBEAAAAAAAAAoEXK9UwhPXr0iNmzZ8fgwYNjypQpkVKKmTNnxrRp06Jnz57xxBNPxMiRI/MsEQAAAAAAAACgRSqklFLeRWRtxeq8KwAAAAAAAMhftwFjy56x+Omry54BbFz7XK8LQdZefWdF3iVstXbboX3eJZSNXxMAAAAAAAAAkLdC3gVQiXK9fAwAAAAAAAAAAOXh8jEAAAC0OHUV8Fa2VaH8f/6zOb5Pm2MeAABs2boNHVf2jMWPXlz2DGiJXD6msrz6T5ePyctu21fu5WOcKQQAAAAAAAAAoALZFAIAAAAAAAAAUIFsCgEAAAAAAAAAqEA2hQAAAAAAAAAAVCCbQgAAAAAAAAAAKlCbvAsAAAAAAAAAgK1dIQp5l0AFyvVMIf/4xz/inXfeWffvxx9/PL7yla/EwQcfHF/96lfjySefzLE6AAAAAAAAAICWK9dNIZ///OdjxowZERFx7733xrBhw+L999+PIUOGxPLly2Po0KExefLkPEsEAAAAAAAAAGiRcr18zN/+9rf4+Mc/HhER48ePjx//+Mdx7rnnrnv86quvju9///vxr//6r3mVCAAAAAAAAADQIuV6ppA2bdrEsmXLIiKipqYmjjzyyHqPH3nkkTFnzpw8SgMAAAAAAAAAaNFy3RQydOjQuP322yMi4pOf/GRMnz693uOPPPJI7LrrrjlUBgAAAAAAAADQsuV6+ZhLLrkkDj744Fi4cGEcdNBBMW7cuHj66aejX79+MWfOnLjzzjvj+uuvb3CM2traqK2trXdfal0VVVVV5SwdAAAAAAAAAGCLluuZQvr16xdPPfVUrFy5Mi699NL44IMP4rbbbouLLroo5s2bF3fccUeccMIJDY4xfvz46Nq1a73bTyaM3zwTAAAAAAAAAIAMFApued0qWSGllPIuIiIipRRvvfVW1NXVxQ477BBt27Yt6uucKQQAAGDrU7dlvJUtSavNsOKwOb5Pm2MeAABs2boNHVf2jMWPXlz2DGiJ2ud6XQiy9vq7tY0/ibKo3q5y9xdsMb8mCoVC7LTTTk3+uqqqj24AWbE6q6oAAAAAAAAAAFqmXC8fM2vWrKipqVn371tuuSWGDBkSvXr1ioMOOijuuOOOHKsDAAAAAAAAAGi5ct0UcuKJJ8b8+fMjIuLGG2+MU045Jfr37x/jxo2LAQMGxJgxY2LixIl5lggAAAAAAAAA0CLlevmYuXPnxp577hkREddee21cddVVMWbMmHWPDxgwIC6++OI46aST8ioRAAAAAAAAAKBFyvVMIR07dox33nknIiIWLFgQAwcOrPf4oEGD6l1eBgAAAAAAAACA4uS6KeTII4+M6667LiIihg4dGnfffXe9x++6667o06dPHqUBAAAAAAAAwGZTcMvtVslyvXzMhAkTYsiQITF06NDo379/XH755TF9+vTo169fzJkzJ2bMmBGTJk3Ks0QAAAAAAAAAgBYp1zOF9OjRI2bPnh2DBw+OKVOmREopZs6cGdOmTYuePXvGE088ESNHjsyzRAAAAAAAAACAFqmQUkp5F5G1FavzrgAAAIByqquAt7KtCuU/Oenm+D5tjnkAALBl6zZ0XNkzFj96cdkzoCVqn+t1Icja39+tzbuErVav7aryLqFscj1TCAAAAAAAAAAA5WFTCAAAAAAAAABABXL5GAAAAGCrV+7VEVfZAQAoTbdPnVX2jMUzrih7BmTN5WMqi8vH5MflYwAAAAAAAAAAaFHsHQMAAAAAAACAnDnLJOXgTCEAAAAAAAAAABXIphAAAAAAAAAAgApkUwgAAAAAAAAAQAXKdVPI5ZdfHq+99lqeJQAAAAAAAAAAVKRcN4Wcc8458bGPfSwOP/zwuPPOO2PlypV5lgMAAAAAAAAAUDFyv3zMjTfeGJ06dYqvfe1r0aNHjzjzzDPjr3/9a95lAQAAAAAAAAC0aLlvChk5cmTcc8898Y9//CO++93vxtSpU2O//faLgQMHxi9+8YtYtmxZ3iUCAAAAAAAAQJkV3HK7Va7cN4Ws1b179/jud78bL774YkyfPj322WefOOuss2KXXXbJuzQAAAAAAAAAgBanTZ7hhcLGd9wcfPDBcfDBB8dPf/rTuPPOOxsco7a2Nmpra+vdl1pXRVVVVWZ1AgAAAAAAAAC0NLmeKSSl1ODjXbp0iTFjxjT4nPHjx0fXrl3r3X4yYXyWZQIAAAAAAAAAtDiF1NjOjC2cM4UAAAAApSr36sgmTpYKAECRun3qrLJnLJ5xRdkzIGvtc70uBFn7x+KVeZew1erZrV3eJZRNi/81UVX10Q0gK1bnVAwAAAAAAAAAwBYi18vHzJo1K2pqatb9+5ZbbokhQ4ZEr1694qCDDoo77rgjx+oAAAAAAAAAAFquXDeFnHjiiTF//vyIiLjxxhvjlFNOif79+8e4ceNiwIABMWbMmJg4cWKeJQIAAAAAAAAAtEi5Xj5m7ty5seeee0ZExLXXXhtXXXVVjBkzZt3jAwYMiIsvvjhOOumkvEoEAAAAAAAAgLIrFPKugEqU65lCOnbsGO+8805ERCxYsCAGDhxY7/FBgwbVu7wMAAAAAAAAAADFyXVTyJFHHhnXXXddREQMHTo07r777nqP33XXXdGnT588SgMAAAAAAAAAaNFyvXzMhAkTYsiQITF06NDo379/XH755TF9+vTo169fzJkzJ2bMmBGTJk3Ks0QAAAAAAAAAgBYp1zOF9OjRI2bPnh2DBw+OKVOmREopZs6cGdOmTYuePXvGE088ESNHjsyzRAAAAAAAAACAFqmQUkp5F5G1FavzrgAAAABoScq9OlIolHd8AIBK1+1TZ5U9Y/GMK8qeAVlrn+t1IcjagiUr8y5hq7Xrtu3yLqFscj1TCAAAAAAAAAAA5WHvGAAAAAAAAADkzEkmKQeXjwEAAAAAAGCr123A2LJnLH766rJnsHVx+ZjKstDlY3LTw+VjAAAAAAAAAABoSWwKAQAAAAAAAACoQDaFAAAAAAAAAABUIJtCAAAAAAAAAAAqkE0hAAAAAAAAAAAVyKYQAAAAAAAAAIAK1CbvAiZPnhwzZ86MESNGxJAhQ+Lhhx+Oyy67LOrq6uK4446Lb3zjG3mXCAAAAAAAAABlVSjkXQGVKNczhdxwww1x7LHHxh/+8IcYOXJk3HrrrXHMMcfErrvuGrvttluceeaZcdVVV+VZIgAAAAAAAABAi5TrmUJ++tOfxrXXXhtjxoyJRx55JEaOHBmXX355fOtb34qIiE996lNx6aWXxhlnnJFnmQAAAAAAAAAALU6uZwqpqamJESNGRETEZz7zmVizZk0ccsgh6x4fNmxYvPbaa3mVBwAAAAAAAADQYuW6KWT77bdft+lj4cKFsXr16nj99dfXPf7aa6/Fdtttl1d5AAAAAAAAAAAtVq6Xjxk1alScfPLJcfzxx8d9990XX//61+M73/lOtGrVKgqFQpxzzjkxfPjwBseora2N2traevel1lVRVVVVztIBAAAAAAAAALZouZ4pZMKECTFs2LC44447Yv/994+f//zncfLJJ8eoUaPiyCOPjO233z7Gjx/f4Bjjx4+Prl271rv9ZELDXwMAAAAAAAAAUOkKKaWUdxEbWrFiRaxatSo6d+7c6HOdKQQAAAAAAIBSdRswtuwZi5++uuwZbF3a53pdCLK26L1VeZew1dq5a9u8SyibLfLXRPv27aN9+/ZFPbeq6qMbQFasLkdVAAAAAAAAAAAtR66Xj5k1a1bU1NSs+/ctt9wSQ4YMiV69esVBBx0Ud9xxR47VAQAAAAAAAAC0XLluCjnxxBNj/vz5ERFx4403ximnnBL9+/ePcePGxYABA2LMmDExceLEPEsEAAAAAAAAAGiRcr18zNy5c2PPPfeMiIhrr702rrrqqhgzZsy6xwcMGBAXX3xxnHTSSXmVCAAAAAAAAADQIuV6ppCOHTvGO++8ExERCxYsiIEDB9Z7fNCgQfUuLwMAAAAAAAAAQHFy3RRy5JFHxnXXXRcREUOHDo2777673uN33XVX9OnTJ4/SAAAAAAAAAABatFwvHzNhwoQYMmRIDB06NPr37x+XX355TJ8+Pfr16xdz5syJGTNmxKRJk/IsEQAAAAAAAACgRcr1TCE9evSI2bNnx+DBg2PKlCmRUoqZM2fGtGnTomfPnvHEE0/EyJEj8ywRAAAAAAAAAMqv4JbbrYIVUkop7yKytmJ13hUAAAAAAADQknQbMLbsGYufvrrsGWxd2ud6XQiytmjpqrxL2Grt3KVt3iWUTa5nCgEAAAAAAAAAoDycKQQAAADY6tWVeXmkVaHCz0ULAEBRuh18XtkzFj9+SdkzKM7m+BS2Q+We3GCr5Ewh+XGmEAAAAAAAAAAAWhSbQgAAAAAAAAAAKpBNIQAAAAAAAAAAFahN3gUAAAAAAAAAwNaukHcBVCRnCgEAAAAAAAAAqEA2hQAAAAAAAAAAVKDcLx/z4Ycfxu233x5/+tOf4o033ohWrVrFHnvsEcccc0wceuiheZcHAAAAAAAAANAi5XqmkHnz5kW/fv3i/PPPjwcffDCmTp0ahUIhnn766RgxYkSMHj06Vq9enWeJAAAAAAAAAAAtUq6bQr797W/HEUccEYsWLYrXX389xo8fH3V1dTFjxox48cUX4+mnn47/+q//yrNEAAAAAAAAAIAWqZBSSnmFd+rUKZ577rnYc889IyJi5cqVsc0228Qbb7wR22+/fdx7771x5plnRk1NTZPGXeHkIgAAAEAT1JV5eaRVoVDW8QEAaBm6HXxe2TMWP35J2TMozub4FLZD2/JnsPm8uXRV3iVstXbqUrnN1CbP8G233TaWLVu27t/Lly+P1atXR7t27SIi4hOf+ES88cYbeZUHAAAAAAAAAJuFvyegHHK9fMzhhx8eZ599drz00ktRU1MTp556auy///7RuXPniIh4/fXXo3v37g2OUVtbG0uXLq13q62t3RzlAwAAAAAAAABssXLdFHLppZdGbW1t7LPPPtGnT5+YMWNG/PKXv1z3+Ntvvx3nnHNOg2OMHz8+unbtWu/2kwnjy106AAAAAAAAAMAWrZDS5riaVcPmzp0btbW1sffee0ebNk27ok1tbe1HzgySWldFVVVVliUCAAAAFayuzMsjrZwDGACAiOh28Hllz1j8+CVlz6A4m+NT2A5ty5/B5vPWslV5l7DV6t65cpupaTswymTPPfds9tdWVX10A8iK1aVWBAAAAAAAAADQsuV6+ZhZs2ZFTU3Nun/fcsstMWTIkOjVq1ccdNBBcccdd+RYHQAAAAAAAABAy5XrppATTzwx5s+fHxERN954Y5xyyinRv3//GDduXAwYMCDGjBkTEydOzLNEAAAAAAAAAIAWKdfLx8ydO3fdpWOuvfbauOqqq2LMmDHrHh8wYEBcfPHFcdJJJ+VVIgAAAAAAAABAi5TrppCOHTvGO++8E717944FCxbEwIED6z0+aNCgepeXAQAAAAAAAIBKVIhC3iVQgXK9fMyRRx4Z1113XUREDB06NO6+++56j991113Rp0+fPEoDAAAAAAAAAGjRcj1TyIQJE2LIkCExdOjQ6N+/f1x++eUxffr06NevX8yZMydmzJgRkyZNyrNEAAAAAAAAAIAWKdczhfTo0SNmz54dgwcPjilTpkRKKWbOnBnTpk2Lnj17xhNPPBEjR47Ms0QAAAAAAAAAgBapkFJKeReRtRWr864AAAAAaEnqyrw80qrgutAAAER0O/i8smcsfvySsmdQnM3xKWyHtuXPYPN5e5kPuvOyY+dcL7JSVrmeKQQAAAAAAAAAgPKwKQQAAAAAAAAAoAK5fEwzbY7vmjPLArC1Kffx1bEVANgUr0MgH6vW1JU9o21rfxdHy1NXV+bLmrVyYIJK1u1zl5V1/MX3/0dZx68kLh9DU739vsvH5GXHbVw+BgAAAAAAAACAFsSmEAAAAAAAAACACmRTCAAAAAAAAABABbIpBAAAAAAAAACgAtkUAgAAAAAAAABQgWwKAQAAAAAAAACoQG3yLiAiYubMmfHkk0/GokWLIiJi5513jsGDB8fAgQNzrgwAAAAAAAAAoGXKdVPIW2+9FZ///OfjiSeeiOrq6thpp50iIuLNN9+Ms846K4YMGRK//e1vo3v37nmWCQAAAAAAAABlVci7ACpSrpeP+da3vhVr1qyJF198MV599dV46qmn4qmnnopXX301Xnzxxairq4vTTjstzxIBAAAAAAAAAFqkXM8UMnXq1Hjssceib9++H3msb9++8dOf/jSGDRu2+QsDAAAAAAAAAGjhct0UUlVVFUuXLt3k48uWLYuqqqoGx6itrY3a2tp696XWVY1+HQAAAAAAAABAJcv18jFf/OIX4/jjj49JkybV2xyydOnSmDRpUpx44onxpS99qcExxo8fH127dq13+8mE8eUuHQAAAAAAAABgi1ZIKaW8wmtra+PMM8+MiRMnxurVq6Ndu3YREbFy5cpo06ZNnHzyyXHFFVc0eNaPvM4Usjm+a4VC+TMAYEtS7uOrYysAsCleh0A+Vq2pK3tG29a5/l0cNEtdXXkPTK1aOTBBJev2ucvKOv7i+/+jrONXks3xeWKHtuXPYPN55/3VeZew1dphm1wvslJWuW4KWWvp0qXxzDPPxJtvvhkRETvvvHMceOCB0aVLl2aNt2Iz9IpNIQCQPR/GAAB58ToE8mFTCGycTSFAKWwK2XLYFEJT2RSSn0reFJLrzE4//fQYPXp0HHzwwfHZz342z1IAAAAAAAAAIDf+oIByyHWb/DXXXBPDhg2LvfbaKyZMmBCLFi3KsxwAAAAAAAAAgIqR+7kTp02bFiNHjozLLrssqqurY9SoUTF58uSoqyv/qSMBAAAAAAAAACpV7ptC9t1337jyyitj4cKFceutt0ZtbW0cc8wx0atXrxg3blzMmzcv7xIBAAAAAAAAAFqc3DeFrNW2bdsYPXp0TJkyJV555ZUYM2ZM3HbbbdG3b9+8SwMAAAAAAAAAaHG2mE0h66uuro6LLrooampqYsqUKXmXAwAAAAAAAADQ4uS6KaR3797RunXrTT5eKBTi8MMP34wVAQAAAAAAAABUhjZ5htfU1OQZDwAAAAAAAABQsXLdFAIAAAAAAAAARBSikHcJVKBcLx8DAAAAAAAAAEB5FFJKKe8isrZidd4VAAAAAAAAQOXpNmBs2TMWP3112TMqRXvXhago736wJu8StlrbdWqddwll40whAAAAAAAAAAAVyKYQAAAAAAAAAIAKZFMIAAAAAAAAAEAFsikEAAAAAAAAAKACtcm7AAAAAAAAAADY2hUKeVdAJXKmEAAAAAAAAACACmRTCAAAAAAAAABABdqiN4UsXrw4br755rzLAAAAAAAAAABocbboTSGvv/56nHjiiXmXAQAAAAAAAADQ4rTJM3zp0qUNPr5s2bLNVAkAAAAAAAAAQGXJdVPItttuG4VCYZOPp5QafBwAAAAAAAAAgI3LdVNI586dY9y4cTFo0KCNPj537tw45ZRTGhyjtrY2amtr692XWldFVVVVZnUCAAAAAAAAALQ0uW4KOeCAAyIiYujQoRt9fNttt42UUoNjjB8/Pn7wgx/Uu2/cBRfG975/USY1AgAAAAAAAAC0RLluCvnyl78cy5cv3+TjO++8c1x44YUNjnH++efH2WefXe++1NpZQgAAAAAAAACArVshNXYqjhZoxeq8KwAAAAAAAIDK023A2LJnLH766rJnVIr2uZ4CgKwtXr4m7xK2Wt06ts67hLJplWf46aefHo8//nieJQAAAAAAAAAAVKRcN4Vcc801MWzYsNhrr71iwoQJsWjRojzLAQAAAAAAAACoGLluComImDZtWowcOTIuu+yyqK6ujlGjRsXkyZOjrq4u79IAAAAAAAAAAFqs3DeF7LvvvnHllVfGwoUL49Zbb43a2to45phjolevXjFu3LiYN29e3iUCAAAAAAAAALQ4hZRSyiu8VatWsWjRoujevXu9+19//fWYOHFi/OpXv4q///3vsWbNmiaNu2J1llUCAAAAAAAAERHdBowte8bip68ue0alaN8m7wrI0pIPm/a5ONnZtkPrvEsom9zPFLIx1dXVcdFFF0VNTU1MmTIl73IAAAAAAAAAAFqcXDeF9O7dO1q33vSOm0KhEIcffvhmrAgAAAAAAAAAoDLkekKhmpqaPOMBAAAAAAAAACrWFnn5GAAAAAAAAAAASmNTCAAAAAAAAABABSqklFLeRWRtxeq8KwAAAAAAAACao9vAb5c9Y/HMn5Y9Y3No3ybvCsjSkg/X5F3CVmvbDq3zLqFs/JoAAAAAAAAAgJwVopB3CVQgl48BAAAAAAAAAKhANoUAAAAAAAAAAFQgm0IAAAAAAAAAACqQTSEAAAAAAAAAABXIphAAAAAAAAAAgAq0RWwKqaur2+T9r7/++mauBgAAAAAAAACg5ct1U8jSpUtj9OjR0alTp9hpp53i+9//fqxZs2bd42+//XbsvvvuOVYIAAAAAAAAANAytckz/IILLojnn38+brnllliyZEn813/9V8yaNSt+97vfRbt27SIiIqWUZ4kAAAAAAAAAUHaFQt4VUIlyPVPIPffcEzfccEP827/9W/z7v/97PPPMM/H222/HUUcdFbW1tRERUfA/HwAAAAAAAACgyXLdFPL2229H79691/17hx12iAcffDCWLVsWI0eOjOXLlzc6Rm1tbSxdurTebe2GEgAAAAAAAACArVWum0Kqq6vjxRdfrHdf586dY9q0afHhhx/Gscce2+gY48ePj65du9a7/WTC+HKVDAAAAAAAAADQIhRSSimv8NNPPz0WLVoUv/nNbz7y2LJly+Lwww+Pp59+OtasWbPJMWpraz9yZpDUuiqqqqoyrxcAAAAAAAAor24Dv132jMUzf1r2jM2hfZu8KyBLS1fU5V3CVqtL+1zPp1FWuf6a+OEPfxgLFy7c6GOdO3eOBx54IGbNmtXgGFVVH90AsmJ1ZiUCAAAAAAAAALRIuW53+f73vx/vvvvuJh/v3LlzDB06dDNWBAAAAAAAAABQGXLdFHLNNdfEsGHDYq+99ooJEybEokWL8iwHAAAAAAAAAHJRcMvtVslyvzDOtGnTYuTIkXHZZZdFdXV1jBo1KiZPnhx1da6XBAAAAAAAAADQXLlvCtl3333jyiuvjIULF8att94atbW1ccwxx0SvXr1i3LhxMW/evLxLBAAAAAAAAABocXLfFLJW27ZtY/To0TFlypR45ZVXYsyYMXHbbbdF37598y4NAAAAAAAAAKDF2WI2hayvuro6LrrooqipqYkpU6bkXQ4AAAAAAAAAQIuT66aQ3r17R+vWrTf5eKFQiMMPP3wzVgQAAAAAAAAAUBna5BleU1OTZzwAAAAAAAAAQMXaIi8fAwAAAAAAAABAaXI9UwgAAAAAAAAAEBGFvAugEhVSSinvIrK2YnXeFQAAAFBOm+OdbMFCzFal3P+n/H8ia34PAgCUptuwC8qe8e4jPyp7Roe2ZY9gM1pWW5d3CVutzlWVe5GVyp0ZAAAAAAAAAMBWzKYQAAAAAAAAAIAKZFMIAAAAAAAAAEAFsikEAAAAAAAAAKAC2RQCAAAAAAAAAFCB2uRdAAAAAAAAAABs7QpRyLsEKlDuZwpJKUVNTU2sXr06IiJWrlwZd955Z9x8883xzjvv5FwdAAAAAAAAAEDLlOuZQubMmRMjRoyIv//977HHHnvEtGnT4gtf+EK89NJLkVKKjh07xp///OfYc8898ywTAAAAAAAAAKDFyfVMIeeee27st99+8dxzz8W//uu/xuc+97no2bNnLF68ON59990YPHhw/PCHP8yzRAAAAAAAAACAFqmQUkp5hXfv3j2mTZsW+++/f3zwwQfRuXPneOyxx+Kggw6KiIg///nP8aUvfSlee+21Jo27YnU5qgUAAGBLsTneyRZcxnerUu7/U/4/kTW/BwEAStNt2AVlz3j3kR+VPaND27JHsBm9X5vbR/dbvW2qKvcNUK5nCnn//fdju+22i4iITp06RadOnWKXXXZZ93ivXr3izTffzKs8AAAAAAAAAIAWq02e4T169IjXX389qqurIyLi0ksvje7du697/O23345u3bo1OEZtbW3U1tbWuy+1roqqqqrsCwYAAAAAAAAAaCFyPVPIYYcdFi+99NK6f3/zm9+Mzp07r/v3tGnT4oADDmhwjPHjx0fXrl3r3X4yYXzZagYAAAAAAAAAaAkKKW2OK5A2T01NTbRv377eJWU25EwhAAAAW5/N8U62ULmXkmUjyv1/yv8nsub3IABAaboNu6DsGe8+8qOyZ3RoW/YINqMPVm6xH91XvE7tKvcNUK5nCjn99NPj8ccf3+Tju+++e4MbQiIiqqqqokuXLvVuNoQAAAAAAAAAAFu7XDeFXHPNNTFs2LDYa6+9YsKECbFo0aI8ywEAAAAAAAAAqBi5bgqJiJg2bVqMHDkyLrvssqiuro5Ro0bF5MmTo66uLu/SAAAAAAAAAABarNw3hey7775x5ZVXxsKFC+PWW2+N2traOOaYY6JXr14xbty4mDdvXt4lAgAAAAAAAAC0OLlvClmrbdu2MXr06JgyZUq88sorMWbMmLjtttuib9++eZcGAAAAAAAAANDibDGbQtZXXV0dF110UdTU1MSUKVPyLgcAAAAAAAAAoMVpk2d47969o3Xr1pt8vFAoxOGHH74ZKwIAAAAAAACAza+QdwFUpFw3hdTU1OQZDwAAAAAAAABQsbbIy8cAAAAAAAAAAFAam0IAAAAAAAAAACpQIaWU8i4iaytWlz9jc3zXCi4aBZSgbjP8omrlF9VWZXMc+8r9sqSwGf7PagtaolWr68qe0bZN+fejr6kr7++Q1q00+JakEt7Jbo634638vy1auX8Xbo7fg2xdKmVtanO8d/1gxZqyZ3TukOtVujNRKf+nKsXbS2vLOv6OXarKOj6waXVlfu+6OVTK+4zN8bP40q+fLXvGvWP6lz2DzWf5ypb/O6Kl6tiuMn63bYwVCQAAAAAAAACACmRTCAAAAAAAAABABWr55zUEAAAAAAAAgJaucq9gQo6cKQQAAAAAAAAAoALZFAIAAAAAAAAAUIFsCgEAAAAAAAAAqEA2hQAAAAAAAAAAVKAtclPIZz/72XjttdfyLgMAAAAAAAAAoMVqk2f4fffdt9H7H3vssZg8eXL06tUrIiKOPvrozVkWAAAAAAAAAECLl+umkGOOOSYKhUKklD7y2Omnnx4REYVCIdasWbO5SwMAAAAAAAAAaNFy3RQyYsSIaN26dUycODG6d+++7v62bdvG888/H/vss0+O1QEAAAAAAADA5lGIQt4lUIFa5Rn+xz/+MQ499NDo379/TJ48uVlj1NbWxtKlS+vdamtrM64UAAAAAAAAAKBlyXVTSETEWWedFffdd1+ce+65ccopp8Ty5cub9PXjx4+Prl271rv9ZML4MlULAAAAAAAAANAy5L4pJCJi//33j2eeeSYKhULsv//+kVIq+mvPP//8eO+99+rdzjn3/DJWCwAAAAAAAACw5WuTdwFrdejQIa6//vq477774pFHHokddtihqK+rqqqKqqqqevetWF2OCgEAAAAAAAAAWo5czxRy+umnx+OPP17vvqOPPjquuOKK6N69e05VAQAAAAAAAAC0fLluCrnmmmti2LBhsddee8WECRNi0aJFeZYDAAAAAAAAAFAxct0UEhExbdq0GDlyZFx22WVRXV0do0aNismTJ0ddXV3epQEAAAAAAADAZlEouOV1q2S5bwrZd99948orr4yFCxfGrbfeGrW1tXHMMcdEr169Yty4cTFv3ry8SwQAAAAAAAAAaHFy3xSyVtu2bWP06NExZcqUeOWVV2LMmDFx2223Rd++ffMuDQAAAAAAAACgxdliNoWsr7q6Oi666KKoqamJKVOm5F0OAAAAAAAAAMA611xzTey2227Rvn37GDRoUMycOTPvkjYq100hvXv3jtatW2/y8UKhEIcffvhmrAgAAAAAAAAAYNPuvPPOOPvss+PCCy+MWbNmxX777RcjRoyIt956K+/SPiLXTSE1NTWx/fbb51kCAAAAAAAAAEDR/vu//zvGjBkTJ554Yuyzzz5x/fXXR8eOHWPixIl5l/YRW+TlYwAAAAAAAAAAtjQrV66MZ599Ng477LB197Vq1SoOO+ywePLJJ3OsbOPa5F0AAAAAAAAAAEBeamtro7a2tt59VVVVUVVV9ZHnvvPOO7FmzZrYaaed6t2/0047xUsvvVTWOpslkVasWJEuvPDCtGLFihabUQlzkLHljC9j68uohDnI2HLGl7H1ZVTCHGRsOePL2PoyKmEOMrac8WVsfRmVMAcZW874Mra+jEqYg4wtZ3wZW19GJcxBxpYz/ubKADbtwgsvTBFR73bhhRdu9LkLFixIEZH+/Oc/17v/nHPOSQMHDtwM1TZNIaWUct2VsgVYunRpdO3aNd57773o0qVLi8yohDnI2HLGl7H1ZVTCHGRsOePL2PoyKmEOMrac8WVsfRmVMAcZW874Mra+jEqYg4wtZ3wZW19GJcxBxpYzvoytL6MS5iBjyxl/c2UAm9aUM4WsXLkyOnbsGHfffXccc8wx6+4//vjjY8mSJXHvvfeWu9wmaZV3AQAAAAAAAAAAeamqqoouXbrUu21sQ0hERLt27eLAAw+Mhx56aN19dXV18dBDD8XgwYM3V8lFa5N3AQAAAAAAAAAALcXZZ58dxx9/fPTv3z8GDhwYV155ZXzwwQdx4okn5l3aR9gUAgAAAAAAAABQpC9+8Yvx9ttvx/e///1YtGhR7L///jFlypTYaaed8i7tI2wKif87FcyFF164ydO/tISMSpiDjC1nfBlbX0YlzEHGljO+jK0voxLmIGPLGV/G1pdRCXOQseWML2Pry6iEOcjYcsaXsfVlVMIcZGw548vY+jIqYQ4ytpzxN1cGkK2xY8fG2LFj8y6jUYWUUsq7CAAAAAAAAAAAstUq7wIAAAAAAAAAAMieTSEAAAAAAAAAABXIphAAAAAAAAAAgAq01W8Kueaaa2K33XaL9u3bx6BBg2LmzJmZjv/YY4/FUUcdFT169IhCoRD33HNPpuOPHz8+BgwYEJ07d47u3bvHMcccE3PmzMk047rrrotPfOIT0aVLl+jSpUsMHjw4/vjHP2aasb5LLrkkCoVCnHnmmZmNedFFF0WhUKh323vvvTMbf60FCxbEV7/61dh+++2jQ4cOse+++8YzzzyT2fi77bbbR+ZRKBTitNNOyyxjzZo1ccEFF8Tuu+8eHTp0iI997GPxox/9KFJKmWUsW7YszjzzzOjdu3d06NAhPv3pT8fTTz9d0piN9VpKKb7//e/HLrvsEh06dIjDDjss5s6dm9n4v/vd72L48OGx/fbbR6FQiOeeey7TOaxatSrOPffc2HfffaNTp07Ro0eP+PrXvx4LFy7MLCPi/3pl7733jk6dOkW3bt3isMMOi6eeeirTjPWdeuqpUSgU4sorr8w044QTTvhInxxxxBGZzuHFF1+Mo48+Orp27RqdOnWKAQMGxOuvv55ZxsZ6vVAoxE9+8pPMMt5///0YO3Zs9OzZMzp06BD77LNPXH/99UWPX0zGm2++GSeccEL06NEjOnbsGEcccUSTeq+Y49yKFSvitNNOi+233z622Wab+PznPx9vvvlmphk///nPY9iwYdGlS5coFAqxZMmSoscvJuPdd9+N008/Pfr27RsdOnSI6urq+Pa3vx3vvfdepvM45ZRT4mMf+1h06NAhdtxxxxg1alS89NJLmWaslVKKI488skmvf4oZf9iwYR/pi1NPPTXzOTz55JPx2c9+Njp16hRdunSJQw45JD788MNMMl599dVN9vhvfvObzOaxaNGi+NrXvhY777xzdOrUKQ444ID47W9/W9T4xWbMnz8/jj322Nhxxx2jS5cuMXr06Cb1X2OvM0vt78bGL7W3G8vIoreLmUepvV1MxlrN6e1iM0rt72LmUEpvN5aRRW8XM49Se7uYjFJ7e0Mbe49Xan8Xk5FFjzeUkVWPNzaPLHq8sYy1SunxhsYvtb+LyYgovccbysiqxxubRxY93lhGqT3e2BpLFv3dWEYW/d1QRhb93dgcsujtYte7SuntxjKy6O9i5lFqfzeUkUV/NzaHLHq7sYysjt+NrW+WusZWTEYW62wNZWSxztbYHLJYY2vKWnNz19gayyh1ja3YeZS6ztZYRqnrbI2Nn8UaW2MZpa6xNfbZQhbH78Yysjh+N5SR1evzxuaRxTG82M96snh9DhCxlW8KufPOO+Pss8+OCy+8MGbNmhX77bdfjBgxIt56663MMj744IPYb7/94pprrslszPU9+uijcdppp8WMGTPigQceiFWrVsXw4cPjgw8+yCyjZ8+ecckll8Szzz4bzzzzTHz2s5+NUaNGxd/+9rfMMtZ6+umn44YbbohPfOITmY/98Y9/PN544411tz/96U+Zjr948eIYMmRItG3bNv74xz/G//7v/8bll18e3bp1yyzj6aefrjeHBx54ICIivvCFL2SWMWHChLjuuuvi6quvjhdffDEmTJgQl156afzsZz/LLOPf//3f44EHHohbbrkl/vKXv8Tw4cPjsMMOiwULFjR7zMZ67dJLL42f/vSncf3118dTTz0VnTp1ihEjRsSKFSsyGf+DDz6Igw46KCZMmFCWOSxfvjxmzZoVF1xwQcyaNSt+97vfxZw5c+Loo4/OLCMiYq+99oqrr746/vKXv8Sf/vSn2G233WL48OHx9ttvZ5ax1qRJk2LGjBnRo0ePJs2h2IwjjjiiXr/cfvvtmY0/f/78OOigg2LvvfeO6dOnxwsvvBAXXHBBtG/fPrOM9Wt/4403YuLEiVEoFOLzn/98Zhlnn312TJkyJW699dZ48cUX48wzz4yxY8fGfffdl0lGSimOOeaYeOWVV+Lee++N2bNnR+/eveOwww4r+jhVzHHurLPOit///vfxm9/8Jh599NFYuHBhHHfccUXPoZiM5cuXxxFHHBH/+Z//WfS4TclYuHBhLFy4MC677LL461//Gr/61a9iypQpcfLJJ2c6jwMPPDBuuummePHFF2Pq1KmRUorhw4fHmjVrMstY68orr4xCoVB0/U0Zf8yYMfX649JLL80048knn4wjjjgihg8fHjNnzoynn346xo4dG61aFffSubGMXr16faTHf/CDH8Q222wTRx55ZGbz+PrXvx5z5syJ++67L/7yl7/EcccdF6NHj47Zs2dnkvHBBx/E8OHDo1AoxMMPPxxPPPFErFy5Mo466qioq6srKqOx15ml9ndj45fa241lZNHbxcyj1N4uJmOt5vR2UzJK6e/Gxi+1txvLyKK3i5lHqb3dWEYWvb2+Tb3HK7W/i8nIoscbysiqxxvKiMimxxvLWKuUHm9s/FL6u5iMLHq8oYyseryxeWTR4w1lZNXjDa2xZNXfDWVk1d+bysiqvxuaQ1a9Xcx6V6m93VhGFv3dUEZW/b2pjKz6u6E5ZNXbm8rIqreLWd8sdY2tmIxS19kayyh1na2YOZS6xtaUtebmrrEVm1HKGlsxGaWusxWTUco6WzHjl7rG1lhGFmtsjX22kMXxu7GMLI7fDWVkdfxubB5ZHMOL/ayn1GM4wDppKzZw4MB02mmnrfv3mjVrUo8ePdL48ePLkhcRadKkSWUZe6233norRUR69NFHy5rTrVu3dOONN2Y65rJly9Kee+6ZHnjggTR06NB0xhlnZDb2hRdemPbbb7/MxtuYc889Nx100EFlzdjQGWeckT72sY+lurq6zMb83Oc+l0466aR69x133HHpK1/5SibjL1++PLVu3TpNnjy53v0HHHBAGjduXCYZG/ZaXV1d2nnnndNPfvKTdfctWbIkVVVVpdtvv73k8ddXU1OTIiLNnj27yeMWm7HWzJkzU0Sk1157rWwZ7733XoqI9OCDD2aa8Y9//CPtuuuu6a9//Wvq3bt3uuKKK5o1/qYyjj/++DRq1Khmj9nY+F/84hfTV7/61UzG31TGhkaNGpU++9nPZprx8Y9/PP3whz+sd18pvbhhxpw5c1JEpL/+9a/r7luzZk3acccd0y9+8YtmZWx4nFuyZElq27Zt+s1vfrPuOS+++GKKiPTkk09mkrG+Rx55JEVEWrx4cbPGLiZjrbvuuiu1a9curVq1qmwZzz//fIqING/evEwzZs+enXbdddf0xhtvlPT6Z2PjZ/0aYWMZgwYNSt/73vfKmrGh/fff/yPH31IzOnXqlG6++eZ6z9tuu+0y67+pU6emVq1apffee2/dc5YsWZIKhUJ64IEHmpWR0v/3OrMc/b3++OvLqrcbylir1N4uJqPU3t5URla9vamMrPt7w/Gz7u2NZWyo1N7eWEbWvb1hRpa9van3eFn2dzHvI0vt8aa8V21ujzclo7k93lhGqT3e0PhZ9XdDGVn1eFN+Fs3t8YYysurxTWVk0eMNrbFk1d/FruOU0t9NXStqan83dfzm9HYxGaX2dmMZWfR3YxlZ9HdTfx5N7e/Gxs+itxvKyOr43dj6ZhZrbE1ZQ23uOltz1mmbss7WnPGbusZWbEYpa2zFZJS6xlZMRqnrbM35eTRlna2Y8UtdY2ssoxxrbOt/tlCu99+b+vwiy/fgjX1GksV78MYysngPvrGMcrwHB7ZeW+2ZQlauXBnPPvtsHHbYYevua9WqVRx22GHx5JNP5lhZadaeBmu77bYry/hr1qyJO+64Iz744IMYPHhwpmOfdtpp8bnPfa7ezyRLc+fOjR49esQee+wRX/nKV5p0+rli3HfffdG/f//4whe+EN27d49PfvKT8Ytf/CLTjPWtXLkybr311jjppJMy3Sn66U9/Oh566KF4+eWXIyLi+eefjz/96U/N+sunjVm9enWsWbPmIzu9O3TokPnZW9aqqamJRYsW1fu/1bVr1xg0aFCL7/dCoRDbbrttWcZfuXJl/PznP4+uXbvGfvvtl9m4dXV18bWvfS3OOeec+PjHP57ZuBuaPn16dO/ePfr27Rvf/OY345///Gcm49bV1cX9998fe+21V4wYMSK6d+8egwYNKuvp+9588824//77m/1Xp5vy6U9/Ou67775YsGBBpJTikUceiZdffjmGDx+eyfi1tbUREfX6vVWrVlFVVdXsft/wOPfss8/GqlWr6vX33nvvHdXV1c3u73IfS4vNeO+996JLly7Rpk2bsmR88MEHcdNNN8Xuu+8evXr1yixj+fLl8eUvfzmuueaa2HnnnZs1bkPjR0TcdtttscMOO8S//Mu/xPnnnx/Lly/PLOOtt96Kp556Krp37x6f/vSnY6eddoqhQ4eWdIxq7Gfx7LPPxnPPPVdSj28s49Of/nTceeed8e6770ZdXV3ccccdsWLFihg2bFgmGbW1tVEoFKKqqmrdc9q3bx+tWrVq1vdrw9eZWfd3OV/HNiWj1N5uLCOL3t5YRpa9vamMiOz6e8Pxy9Hbjf0ssujtjWVk3dsbZmTZ25t6j5dlf5f7fWRTM5rb48VmlNLjDWVk0eONzSGL/t5URpY9XuzPopQebygjqx7fVEZWPb6pNZYs+7vc6zhNzWhOfxc7fim93VBGVsfvxuaRRX9vKiPL/i7259Hc/m5o/Kx6e1MZWfV2Y+ubWayxbY411OZkNGWdranjN2eNrZiMUtfYip1HKWtsjWVksc7W1J9HU9fZihm/1DW2xjKyXmPb8LOFcqyvlevzi6ZmlPoevLGMLN6Dbywj6/fgAFvtmUIWLFiQIiL9+c9/rnf/OeeckwYOHFiWzCjzTr41a9akz33uc2nIkCGZj/3CCy+kTp06pdatW6euXbum+++/P9Pxb7/99vQv//Iv6cMPP0wpZf9Xgn/4wx/SXXfdlZ5//vk0ZcqUNHjw4FRdXZ2WLl2aWUZVVVWqqqpK559/fpo1a1a64YYbUvv27dOvfvWrzDLWd+edd6bWrVunBQsWZDrumjVr0rnnnpsKhUJq06ZNKhQK6cc//nGmGYMHD05Dhw5NCxYsSKtXr0633HJLatWqVdprr70yGX/DXnviiSdSRKSFCxfWe94XvvCFNHr06JLHX9/mOlPIhx9+mA444ID05S9/OfOM3//+96lTp06pUCikHj16pJkzZ2aa8eMf/zgdfvjh63Y9l+NMIbfffnu699570wsvvJAmTZqU+vXrlwYMGJBWr15d8vhrd2Z37Ngx/fd//3eaPXt2Gj9+fCoUCmn69OmZzWF9EyZMSN26dVv3OzKrjBUrVqSvf/3rKSJSmzZtUrt27dKvf/3rzDJWrlyZqqur0xe+8IX07rvvptra2nTJJZekiEjDhw9v8vgbO87ddtttqV27dh957oABA9J3v/vdTDLWl8VfMhRzvH777bdTdXV1+s///M/MM6655prUqVOnFBGpb9++zf4rhk1lfOMb30gnn3zyun839/XPpsa/4YYb0pQpU9ILL7yQbr311rTrrrumY489NrM5PPnkkyki0nbbbZcmTpyYZs2alc4888zUrl279PLLL2c2j/V985vfTP369WvWHBrKWLx4cRo+fPi6Hu/SpUuaOnVqZhlvvfVW6tKlSzrjjDPSBx98kN5///00duzYFBHpG9/4RtFjb+p1Zlb9Xczr2FJ7u9jXyqX0dmMZWfR2QxlZ9XZDGVn096bGz7K3i/15l9LbDWVk1dubysiqtxt6j5dVfxf7PrKUHm/Ke9Xm9ngxGaX2eGMZpfZ4Y+Nn0d8NZWTV4035eTe3xxvLyKLHG8rIoscbWmPJqr+LXccppb+bslbUnP4uZvxSe7uxjCyO341lZNHfDWVk1d9N+Xk3p78bGz+L3m4oI6vjd2Prm1mssTVlDbW562xNXadt6jpbseOXssZWTEapa2zFZJS6xtZYRhbrbE39eTd1na2Y8UtdY2ssI+s1tg0/W8h6fW1jGevL6kwhjX1GUur6WkMZWa2vbSojq/fgAGvZFFJBm0JOPfXU1Lt37/T3v/8987Fra2vT3Llz0zPPPJPOO++8tMMOO6S//e1vmYz9+uuvp+7du6fnn39+3X3lOHX0+hYvXpy6dOmS6SVw2rZtmwYPHlzvvtNPPz196lOfyixjfcOHD0//+q//mvm4t99+e+rZs2e6/fbb0wsvvJBuvvnmtN1222W6uWXevHnpkEMOSRGRWrdunQYMGJC+8pWvpL333juT8St9U8jKlSvTUUcdlT75yU/WOy1oVhnvv/9+mjt3bnryySfTSSedlHbbbbf05ptvZpLxzDPPpJ122qneC9xybArZ0Pz585t9GZwNx197/PjSl75U73lHHXVU+n//7/81efyNZWyob9++aezYsc0au6GMn/zkJ2mvvfZK9913X3r++efTz372s7TNNts0+7IPG8t45pln0n777beu30eMGJGOPPLIdMQRRzR5/I0d57J+09rYsTSLN62NZbz33ntp4MCB6YgjjkgrV67MPGPJkiXp5ZdfTo8++mg66qij0gEHHNCsDUcby7j33ntTnz590rJly9bd19zXP8W+rnnooYeafYrOjWWsPWacf/759Z677777pvPOOy+TjPUtX748de3aNV122WVNHruxjLFjx6aBAwemBx98MD333HPpoosuSl27dk0vvPBCZhlTp05Ne+yxRyoUCql169bpq1/9ajrggAPSqaeeWvTYm3qdmVV/F/M6ttTeLiaj1N5uLCOL3t5URpa93ZT3Fc3p702Nn2VvFzOHUnu7oYyseruhjFJ7u7H3eFn0d1PeRza3x5uS0dweLzajlB5vLKPUHm/Oe/qm9ndjGVn0eFPm0dweLyaj1B4vJiOL4/f61l9jKceHShtmrC/L089vKiOL1+ebGj+r1+Yby8jy+L2pjI0p5fX5xjKyfn2+sYz1ZfH6fGPjZ/nafFMZWfR2Y+ubWayxNWUNtbnrbE3JaM46W7Hjl7LG1lhGFmtszVnPbuoaW2MZWayzNXUeTV1nK2b8UtfYisnIco1tw88WynH8bujzi6yO3w1lZHX83lRGlsfwDTPKdQwHtm5b7aaQ2tra1Lp164/8Ev3617+ejj766LJklvOX9mmnnZZ69uyZXnnllbKMv6FDDz20SbvMGzJp0qR1L2TW3iJi3RuY5vxlfzH69+9f0pvHDVVXV9fbuZlSStdee23q0aNHZhlrvfrqq6lVq1bpnnvuyXzsnj17pquvvrrefT/60Y9S3759M896//33172JHD16dBo5cmQm427Ya2vfrGz4BvKQQw5J3/72t0sef33l3hSycuXKdMwxx6RPfOIT6Z133ilLxob69OnT7LPFbJhxxRVXrOvt9fu9VatWqXfv3plkbMoOO+yQrr/++pLHr62tTW3atEk/+tGP6j3vu9/9bvr0pz/d5PE3lrG+xx57LEVEeu6555o19qYyli9fntq2bZsmT55c73knn3xyGjFiRCYZ61uyZEl66623UkopDRw4MH3rW99q0tibOs6tXXDc8E1kdXV1+u///u9MMtZX6pvWxjKWLl2aBg8enA499NBmv5FsymuC2tra1LFjx/Q///M/mWScccYZm+zxoUOHlmUO77//foqINGXKlEzm8Morr6SISLfccku9+0ePHt3kszMVM4+bb745tW3bdl1/NNWmMubNm/eR6w2n9H+v4U455ZRMMtb39ttvr+uLnXbaKV166aVNytiwxm984xuZ9vfGxl9flh8obSwji95uLGN9ze3tTWVk1dsNZWxMc/t7Y+Nn2dubylhfqb29qYwse3tTGetrbm839h7vwQcfLLm/m/I+srk9XmxGKT3enPfDTe3xxjLGjh1bUo83Zw5N7e/GMtb2Rik93pR5NLfHi51HKT3elHlkefxeu8ZSruP3+hnry/oYvmFG1sfwhtaisjp+r80o5/G7oXlkcfxeP6Ocx/CNzSPLY/ja8ct5/N7YHErp7cbWN7NYY2vKGmpz19mKzWjuOltz14GbssbWWEYWa2zNnUdT1tgay8hina0p82jOOltj42exxtaUOZS6xraxzxayPn439vlFFsfvhjKyOn4X+zlMKcfwjWWU8xgObL1axVaqXbt2ceCBB8ZDDz207r66urp46KGHynaN8XJIKcXYsWNj0qRJ8fDDD8fuu+++WXLr6urWXceuVIceemj85S9/ieeee27drX///vGVr3wlnnvuuWjdunUmOet7//33Y/78+bHLLrtkNuaQIUNizpw59e57+eWXo3fv3pllrHXTTTdF9+7d43Of+1zmYy9fvjxatar/q6F169ZRV1eXeVanTp1il112icWLF8fUqVNj1KhRmWdEROy+++6x88471+v3pUuXxlNPPdWi+n3VqlUxevTomDt3bjz44IOx/fbbb5bcLPv9a1/7Wrzwwgv1+r1Hjx5xzjnnxNSpUzPJ2Jh//OMf8c9//jOTnm/Xrl0MGDBgs/X7L3/5yzjwwAOLvuZssVatWhWrVq3abP3etWvX2HHHHWPu3LnxzDPPFN3vjR3nDjzwwGjbtm29/p4zZ068/vrrRff35jiWFpOxdOnSGD58eLRr1y7uu+++eteJzSpjY1+TUiq6xxvLOO+88z7S4xERV1xxRdx0001lmcPajGL7u7GM3XbbLXr06FFSjzdlHr/85S/j6KOPjh133LGosYvNWHsd91J6vCnz2GGHHWLbbbeNhx9+ON566604+uijmzSf9a097mTR3w2NX07rZ5Ta28VkbKipvd1YRqm9XUzGxjS1vxsaP4vebixjfc3t7cYysujtxjLW19zebuw9Xv/+/Uvu783xPrKYjFJ7vDnzaGqPN5Yxbty4knq8OXNoan83lrHHHnuU3ONNmUdze7yxjCx6vCnzyOr4vf4aS7mO3+VYx2ksI+tjeGNzyOL4vX5GuY7fjc0ji+P3+hnlOoZvah5ZHcPXH79cx+9NzaGU3m5sfTOLNbbNsYZaTEYp62zNnUNT3os0lpHFGltz5tHUNbbGMrJYZ2vKPJqzztbY+FmssTVlDs1dY1trY58tZH38LufnF41lZHn8LnYepRzDN5ZRzvfgwFZss25B2cLccccdqaqqKv3qV79K//u//5u+8Y1vpG233TYtWrQos4xly5al2bNnp9mzZ6eIWHddvNdeey2T8b/5zW+mrl27punTp6c33nhj3W358uWZjJ9SSuedd1569NFHU01NTXrhhRfSeeedlwqFQpo2bVpmGRvK+vIx3/nOd9L06dNTTU1NeuKJJ9Jhhx2Wdthhh8z+ci+llGbOnJnatGmTLr744jR37tx02223pY4dO6Zbb701s4yUUlqzZk2qrq5O5557bqbjrnX88cenXXfdNU2ePDnV1NSk3/3ud2mHHXYo6TSvG5oyZUr64x//mF555ZU0bdq0tN9++6VBgwaVdBq3xnrtkksuSdtuu+26a2COGjUq7b777kXvFG5s/H/+859p9uzZ6f77708Rke644440e/bs9MYbb2Qyh5UrV6ajjz469ezZMz333HP1+r22tjaTjPfffz+df/756cknn0yvvvpqeuaZZ9KJJ56YqqqqPvLXLKV8rzbUnMvHNJSxbNmy9B//8R/pySefTDU1NenBBx9MBxxwQNpzzz3TihUrMpnD7373u9S2bdv085//PM2dOzf97Gc/S61bt06PP/54JnNY67333ksdO3ZM1113XZO+P8VmDB06NH384x9PjzzySHrllVfSTTfdlNq3b5+uvfbazDLuuuuu9Mgjj6T58+ene+65J/Xu3Tsdd9xxRY9fzHHu1FNPTdXV1enhhx9OzzzzTBo8ePBHTrlZasYbb7yRZs+enX7xi1+kiEiPPfZYmj17dvrnP/+ZScZ7772XBg0alPbdd980b968es8p9oxZjWXMnz8//fjHP07PPPNMeu2119ITTzyRjjrqqLTddtsVffra5rzuiCacKa2x8efNm5d++MMfpmeeeSbV1NSke++9N+2xxx7pkEMOKWr8YudwxRVXpC5duqTf/OY3ae7cuel73/teat++fdGnwC72+zR37txUKBTSH//4x6LrLzZj5cqVqU+fPunggw9OTz31VJo3b1667LLLUqFQSPfff39m85g4cWJ68skn07x589Itt9yStttuu3T22WcXPY/GXmeW2t+NjV9qbzeWkUVvN5aRRW8X873aUFN6u5iMLPq7sTmU2tvFZKRUWm83lpFFbxczj1J7e2M2fI9Xan8Xk5FFjzeUkVWPN5SRVY83lLExzenxTY2fRX83lpFSNj3eWEZKpfd4QxlZ9XhDGSmV3uONrbFk0d+NZWTR3w1lZNHfDY2fVW83db2rOb3dUEZW/d3YPLLo72K+V6X0d0PjZ9Xbjc0hi+N3Meubpa6xFZNR6jpbYxmlrrM1Nn4Wa2zNWWtu6hpbYxlZrLEVM49S19mK/V41d52tmPFLXWMrJqPUNbaUGv5sIavX5w1lZPX6fFMZWb4+31RGlq/Pm/JZT6mvzwG26k0hKaX0s5/9LFVXV6d27dqlgQMHphkzZmQ6/trTYG14O/744zMZf2NjR0S66aabMhk/pZROOumk1Lt379SuXbu04447pkMPPbSsG0JSyn5TyBe/+MW0yy67pHbt2qVdd901ffGLXyxpYWhTfv/736d/+Zd/SVVVVWnvvfdOP//5zzPPmDp1aoqINGfOnMzHTun/Tq12xhlnpOrq6tS+ffu0xx57pHHjxjVp40Fj7rzzzrTHHnukdu3apZ133jmddtppacmSJSWN2Viv1dXVpQsuuCDttNNOqaqqKh166KFN+h42Nv5NN9200ccvvPDCTDLWni5zY7dHHnkkk4wPP/wwHXvssalHjx6pXbt2aZdddklHH310mjlzZtHjF/O92lBzNoU0lLF8+fI0fPjwtOOOO6a2bdum3r17pzFjxjRpw18xc/jlL3+Z+vTpk9q3b5/222+/Jl/OqZiMG264IXXo0KHZ/dFYxhtvvJFOOOGE1KNHj9S+ffvUt2/fdPnll6e6urrMMq666qrUs2fP1LZt21RdXZ2+973vNen3STHHuQ8//DB961vfSt26dUsdO3ZMxx57bJM2ZBWTceGFF5Z0vG0sY1Pfx4hINTU1mWQsWLAgHXnkkal79+6pbdu2qWfPnunLX/5yeumllzL9Xm3sa4p909rY+K+//no65JBD0nbbbZeqqqpSnz590jnnnFP0dZ+bMofx48ennj17po4dO6bBgwc3adNXsRnnn39+6tWrV1qzZk3RYzcl4+WXX07HHXdc6t69e+rYsWP6xCc+kW6++eZMM84999y00047pbZt26Y999yzyb9DGnudWWp/NzZ+qb3dWEYWvd1YRha93VjGxjSlt4vJyKK/i5lDKb1dbEYpvV1MRqm9XUxGqb29MRu+xyu1v4vJyKLHG8rIqscbysiqxxvK2Jjm9Pimxs+ivxvLWKvUHi8mo9Qebywjix5vLKPUHm9sjSWL/m4sI4v+bigji/5uaPyserup613N6e2GMrLq72LmUWp/F5NRSn83Nn4Wvd1YRlbH78bWN0tdYysmI4t1toYyslhna2j8rNbYmrrW3Jw1toYyslhjK3Yepa6zFZNRyjpbY+NnscbWWEapa2wpNfzZQlavzxvKyOr1+aYysnx9vqmMLF+fN+WznlJfnwMUUkopAAAAAAAAAACoKK0afwoAAAAAAAAAAC2NTSEAAAAAAAAAABXIphAAAAAAAAAAgApkUwgAAAAAAAAAQAWyKQQAAAAAAAAAoALZFAIAAAAAAAAAUIFsCgEAAAAAAAAAqEA2hQAAAAAAAAAAVCCbQgAAAKCJTjjhhDjmmGPW/XvYsGFx5plnbvY6pk+fHoVCIZYsWbLZswEAAADY8tkUAgAAQMU44YQTolAoRKFQiHbt2kWfPn3ihz/8Yaxevbqsub/73e/iRz/6UVHPtZEDAAAAgM2lTd4FAAAAQJaOOOKIuOmmm6K2tjb+8Ic/xGmnnRZt27aN888/v97zVq5cGe3atcskc7vttstkHAAAAADIkjOFAAAAUFGqqqpi5513jt69e8c3v/nNOOyww+K+++5bd8mXiy++OHr06BF9+/aNiIi///3vMXr06Nh2221ju+22i1GjRsWrr766brw1a9bE2WefHdtuu21sv/328d3vfjdSSvUyN7x8TG1tbZx77rnRq1evqKqqij59+sQvf/nLePXVV+Mzn/lMRER069YtCoVCnHDCCRERUVdXF+PHj4/dd989OnToEPvtt1/cfffd9XL+8Ic/xF577RUdOnSIz3zmM/XqBAAAAIAN2RQCAABARevQoUOsXLkyIiIeeuihmDNnTjzwwAMxefLkWLVqVYwYMSI6d+4cjz/+eDzxxBOxzTbbxBFHHLHuay6//PL41a9+FRMnTow//elP8e6778akSZMazPz6178et99+e/z0pz+NF198MW644YbYZpttolevXvHb3/42IiLmzJkTb7zxRlx11VURETF+/Pi4+eab4/rrr4+//e1vcdZZZ8VXv/rVePTRRyPi/zavHHfccXHUUUfFc889F//+7/8e5513Xrm+bQAAAABUAJePAQAAoCKllOKhhx6KqVOnxumnnx5vv/12dOrUKW688cZ1l4259dZbo66uLm688cYoFAoREXHTTTfFtttuG9OnT4/hw4fHlVdeGeeff34cd9xxERFx/fXXx9SpUzeZ+/LLL8ddd90VDzzwQBx22GEREbHHHnuse3ztpWa6d+8e2267bUT835lFfvzjH8eDDz4YgwcPXvc1f/rTn+KGG26IoUOHxnXXXRcf+9jH4vLLL4+IiL59+8Zf/vKXmDBhQobfNQAAAAAqiU0hAAAAVJTJkyfHNttsE6tWrYq6urr48pe/HBdddFGcdtppse+++67bEBIR8fzzz8e8efOic+fO9cZYsWJFzJ8/P95777144403YtCgQesea9OmTfTv3/8jl5BZ67nnnovWrVvH0KFDi6553rx5sXz58jj88MPr3b9y5cr45Cc/GRERL774Yr06ImLdBhIAAAAA2BibQgAAAKgon/nMZ+K6666Ldu3aRY8ePaJNm//vrW+nTp3qPff999+PAw88MG677baPjLPjjjs2K79Dhw5N/pr3338/IiLuv//+2HXXXes9VlVV1aw6AAAAAMCmEAAAACpKp06dok+fPkU994ADDog777wzunfvHl26dNnoc3bZZZd46qmn4pBDDomIiNWrV8ezzz4bBxxwwEafv++++0ZdXV08+uij6y4fs761ZypZs2bNuvv22WefqKqqitdff32TZxjp169f3HffffXumzFjRuOTBAAAAGCr1SrvAgAAACAvX/nKV2KHHXaIUaNGxeOPPx41NTUxffr0+Pa3vx3/+Mc/IiLijDPOiEsuuSTuueeeeOmll+Jb3/pWLFmyZJNj7rbbbnH88cfHSSedFPfcc8+6Me+6666IiOjdu3cUCoWYPHlyvP322/H+++9H586d4z/+4z/irLPOil//+tcxf/78mDVrVvzsZz+LX//61xERceqpp8bcuXPjnHPOiTlz5sT//M//xK9+9atyf4sAAAAAaMFsCgEAAGCr1bFjx3jssceiuro6jjvuuOjXr1+cfPLJsWLFinVnDvnOd74TX/va1+L444+PwYMHR+fOnePYY49tcNzrrrsu/u3f/i2+9a1vxd577x1jxoyJDz74ICIidt111/jBD34Q5513Xuy0004xduzYiIj40Y9+FBdccEGMHz8++vXrF0cccUTcf//9sfvuu0dERHV1dfz2t7+Ne+65J/bbb7+4/vrr48c//nEZvzsAAAAAtHSFlFLKuwgAAAAAAAAAALLlTCEAAAAAAAAAABXIphAAAAAAAAAAgApkUwgAAAAAAAAAQAWyKQQAAAAAAAAAoALZFAIAAAAAAAAAUIFsCgEAAAAAAAAAqEA2hQAAAAAAAAAAVCCbQgAAAAAAAAAAKpBNIQAAAAAAAAAAFcimEAAAAAAAAACACmRTCAAAAAAAAABABbIpBAAAAAAAAACgAv3/ADxQrjsvjSxnAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["\n","🚀 بدء Fine-Tuning لموديل RF\n"]},{"name":"stderr","output_type":"stream","text":["WARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.\n"]},{"name":"stdout","output_type":"stream","text":["✅ [LOADED] تم العثور على نموذج Fine-Tuned لموديل RF. سيتم تحميله بدون إعادة تدريب.\n","\u001b[1m553/553\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 2ms/step\n","\n","📊 Classification Report:\n"," precision recall f1-score support\n","\n"," 0 0.92 0.96 0.94 8846\n"," 1 0.96 0.92 0.94 8846\n","\n"," accuracy 0.94 17692\n"," macro avg 0.94 0.94 0.94 17692\n","weighted avg 0.94 0.94 0.94 17692\n","\n","\n","🔄 Summary for RF:\n","✅ Accuracy: 0.9431\n","✅ Precision: 0.9439\n","✅ Recall: 0.9431\n","✅ F1-Score: 0.9431\n","✅ عرض رسم Accuracy & Loss المخزن: /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/rf_finetuned_acc_loss.png\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAABEkAAAGrCAYAAAA8UcljAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA2MxJREFUeJzs3Xd4FOXCxuHfbE3vCS0QIPQiCIiCNBERxIoIioooCNj1iKCecyzY67F/6kEFFAVBUayIgoqA0kSkSu+dFNKzu+/3x2SXhAREj6H53Ne1Jpn6zuzizjzzFssYYxARERERERER+ZtzHOsCiIiIiIiIiIgcDxSSiIiIiIiIiIigkEREREREREREBFBIIiIiIiIiIiICKCQREREREREREQEUkoiIiIiIiIiIAApJREREREREREQAhSQiIiIiIiIiIoBCEhERERERERERQCGJiIgcI126dKFLly7HuhiV7ttvv8WyLL799ttjXRSRI/b++++TkJBATk7OsS5KhSrj/x+WZfHAAw+E/n711VepVasWhYWFf+l+RETk+KaQRETkb2TMmDFYlhV6uVwuatSowcCBA9m6dWu55bt06VJm+dKvlStXHnZfh1qvatWqlXV4hzVw4MBDlqn0a+DAgcekfJXtlVdewbIsTj/99GNdlBPS3Llz6dy5MzExMaSkpNCzZ09mz559xOtv2LABy7J4+umnK7GUfw2/38/999/PLbfcQlRUVGh67dq1Of/8849hyY6ugQMHUlRUxGuvvXasiyIiIkeR61gXQEREjr5Ro0ZRp04dCgoK+PHHHxkzZgw//PADS5cuJSwsrMyyqampPPbYY+W2Ub169d/dzznnnMOAAQPKTAsPDwfgq6+++h+O4I8bOnQo3bp1C/29fv167rvvPoYMGULHjh1D09PT0//S/Xbq1In8/Hw8Hs9fut0/avz48dSuXZt58+axZs0a6tWrd0zLcyLZtGkT5557LomJiTz44IMEAgGmT5/ON998w5lnnnmsi/eX++STT1i1ahVDhgw51kU5psLCwrjmmmt49tlnueWWW7As61gXSUREjgKFJCIif0M9e/akTZs2AAwePJikpCSeeOIJpk6dSt++fcssGxsby1VXXfWn9tOgQYNDrnu0Q4N27drRrl270N8LFizgvvvuo127dn/6+I6Ew+EoFzwdbevXr2fOnDl8+OGHDB06lPHjx3P//fcf0zIdSm5uLpGRkce6GGV89tln7N+/n2+++YbTTjsNgDvvvPOkbYbx1ltvceaZZ1KjRo1jXZRjrm/fvjz55JPMnDmTrl27HuviiIjIUaDmNiIiEqpJsXbt2qO2z4P7FAj23fH+++/zyCOPkJqaSlhYGGeffTZr1qwpt/5PP/1Ejx49iI2NJSIigs6dO/+h5g8VeeCBByp8WhxsprRhw4bQtGDTgx9++IG2bdsSFhZG3bp1GTduXJl1K+qTpEuXLjRr1ozly5dz1llnERERQY0aNXjyySfL7Xvjxo1ceOGFREZGkpKSwh133MG0adP+UD8n48ePJz4+nl69etGnTx/Gjx9f4XKZmZnccccd1K5dG6/XS2pqKgMGDGDPnj2hZQoKCnjggQdo0KABYWFhVKtWjd69e4c+O4fqgyXY3GTMmDGhaQMHDiQqKoq1a9dy3nnnER0dzZVXXgnArFmzuOyyy6hVqxZer5eaNWtyxx13kJ+fX67cK1eupG/fviQnJxMeHk7Dhg355z//CcDMmTOxLIspU6aUW+/dd9/Fsizmzp172PPncNiXS8aYMtO9Xu9h1/szdu3axaBBg6hSpQphYWG0aNGCsWPHlltuwoQJtG7dmujoaGJiYmjevDnPP/98aH5xcTEPPvgg9evXJywsjMTERDp06MD06dMPu/+CggK+/PLLMrWu/gifz8dDDz1Eeno6Xq+X2rVrc++995YLlD7++GN69epF9erV8Xq9pKen89BDD+H3+8tt8/XXXyc9PZ3w8HDatm3LrFmzKtx3YWEh999/P/Xq1Qt9ZkaMGFFu34WFhdxxxx0kJycTHR3NhRdeyJYtWyrcZuvWrUlISODjjz/+U+dDREROPKpJIiIioZv/+Pj4cvP8fn+Zm2Swq6GX7qvgUAoKCsqtGx0dfdiby8cffxyHw8Hw4cPJysriySef5Morr+Snn34KLTNjxgx69uxJ69atuf/++3E4HLz11lt07dqVWbNm0bZt298t219hzZo19OnTh0GDBnHNNdfw5ptvMnDgQFq3bk3Tpk0Pu25GRgY9evSgd+/e9O3bl8mTJzNy5EiaN29Oz549AbtWRdeuXdm+fTu33XYbVatW5d1332XmzJl/qJzjx4+nd+/eeDwerrjiCv7v//6P+fPnh2pFAOTk5NCxY0dWrFjBddddR6tWrdizZw9Tp05ly5YtJCUl4ff7Of/88/nmm2+4/PLLue2229i/fz/Tp09n6dKlf6qpks/n49xzz6VDhw48/fTTREREADBp0iTy8vK44YYbSExMZN68ebz44ots2bKFSZMmhdZfsmQJHTt2xO12M2TIEGrXrs3atWv55JNPeOSRR+jSpQs1a9Zk/PjxXHLJJeXOS3p6epkaRhXp3bs3I0eO5K677mL69OmVVgsqPz+fLl26sGbNGm6++Wbq1KnDpEmTGDhwIJmZmdx2220ATJ8+nSuuuIKzzz6bJ554AoAVK1Ywe/bs0DIPPPAAjz32GIMHD6Zt27ZkZ2ezYMECFi1axDnnnHPIMixcuJCioiJatWr1p45h8ODBjB07lj59+nDnnXfy008/8dhjj7FixYoyQdWYMWOIioriH//4B1FRUcyYMYP77ruP7OxsnnrqqdByb7zxBkOHDqV9+/bcfvvtrFu3jgsvvJCEhARq1qwZWi4QCHDhhRfyww8/MGTIEBo3bsyvv/7Kf/7zH3777Tc++uijMmV855136N+/P+3bt2fGjBn06tXrkMfUqlWr/zmAFRGRE4gREZG/jbfeessA5uuvvza7d+82mzdvNpMnTzbJycnG6/WazZs3l1m+c+fOBij3uuaaa353XxWtB5i33nortO3OnTuHlp85c6YBTOPGjU1hYWFo+vPPP28A8+uvvxpjjAkEAqZ+/frm3HPPNYFAILRcXl6eqVOnjjnnnHOO6FzMnz+/THmMMeb+++83FX01Bs/b+vXrQ9PS0tIMYL7//vvQtF27dhmv12vuvPPOcsc1c+bM0LTgeR03blxoWmFhoalataq59NJLQ9OeeeYZA5iPPvooNC0/P980atSo3DYPZcGCBQYw06dPN8bY5y81NdXcdtttZZa77777DGA+/PDDctsInuc333zTAObZZ5895DIVHa8xxqxfv77c+b7mmmsMYO6+++5y28vLyys37bHHHjOWZZmNGzeGpnXq1MlER0eXmVa6PMYYc8899xiv12syMzND03bt2mVcLpe5//77y+3nYHPmzDHx8fHG4/GYyy67zPh8vt9d52DB43/qqacOucxzzz1nAPPOO++EphUVFZl27dqZqKgok52dbYwx5rbbbjMxMTGHLUeLFi1Mr169/nA5R48eXebfW2lpaWmH3ebixYsNYAYPHlxm+vDhww1gZsyYEZpW0fs7dOhQExERYQoKCowx9rGnpKSYli1blvl/wuuvv26AMv//ePvtt43D4TCzZs0qs81XX33VAGb27NllynjjjTeWWa5///4GqPDzMGTIEBMeHn7I4xYRkZOLmtuIiPwNdevWjeTkZGrWrEmfPn2IjIxk6tSppKamllu2du3aTJ8+vcxrxIgRR7Sfiy66qNy655577mHXufbaa8s8qQ82BVq3bh0AixcvZvXq1fTv35+9e/eyZ88e9uzZQ25uLmeffTbff/89gUDgSE/F/6RJkyZlOn1NTk6mYcOGobIeTlRUVJm+UDweD23bti2z7pdffkmNGjW48MILQ9PCwsK4/vrrj7iM48ePp0qVKpx11lmAPepQv379mDBhQpmmDR988AEtWrQoV9siuE5wmaSkJG655ZZDLvNn3HDDDeWmBTv4BbtGzZ49e2jfvj3GGH7++WcAdu/ezffff891111HrVq1DlmeAQMGUFhYyOTJk0PTJk6ciM/n+93+aDZu3Mh5553HoEGD+Oijj5gyZQrXX399maY3Q4cOLVOr4c/6/PPPqVq1KldccUVomtvt5tZbbyUnJ4fvvvsOgLi4OHJzcw/bdCYuLo5ly5axevXqP1SGvXv3AhXXKjuS8gP84x//KDP9zjvvBOy+XYJKv7/79+9nz549dOzYkby8vNDIWQsWLGDXrl0MGzaszP8TBg4cSGxsbJl9TJo0icaNG9OoUaPQ/xP27NkT6kckWPsqWMZbb721zPq33377IY8rPj6e/Px88vLyfv8kiIjICU/NbURE/oZefvllGjRoQFZWFm+++Sbff//9IZvAREZG/un+CVJTU//wugff7AZv1jIyMgBCN33XXHPNIbeRlZVFZGQk+/btKzM9OTkZp9P5h8rzR8oKdnmDZT2c1NTUcsFCfHw8S5YsCf29ceNG0tPTyy13pCPT+P1+JkyYwFlnncX69etD008//XSeeeYZvvnmG7p37w7Y/dFceumlh93e2rVradiwIS7XX3f54HK5KgznNm3axH333cfUqVPLnc+srCzgQHDWrFmzw+6jUaNGnHbaaYwfP55BgwYBdnh0xhln/O65fOyxx3A4HDz88MN4vV7efPNNrrnmGqKjo0N9gCxduvQvGVp548aN1K9fP9QHSlDjxo1D8wFuvPFG3n//fXr27EmNGjXo3r07ffv2pUePHqF1Ro0axUUXXUSDBg1o1qwZPXr04Oqrr+aUU045orKYg/pfOdLyOxyOcue0atWqxMXFhcoPsGzZMv71r38xY8YMsrOzyywffH+Dy9evX7/MfLfbTd26dctMW716NStWrCA5ObnCsu3atatMGQ9uGtawYcNDHlfwXGh0GxGRvweFJCIif0Nt27YNjW5z8cUX06FDB/r378+qVauOqK+RynSoECN4oxKsJfLUU0/RsmXLCpeNiopi9uzZodoTQevXr6d27dqH3PehboIq6kzySMp6OP/LukdqxowZbN++nQkTJjBhwoRy88ePHx8KSf4qf/Qcer3ecqGA3+/nnHPOYd++fYwcOZJGjRoRGRnJ1q1bGThw4J+qKTRgwABuu+02tmzZQmFhIT/++CMvvfTS7643Z84cWrZsGQoRr776anbu3Mldd91FdHQ0l19+OXPnzuWDDz74w2X6s1JSUli8eDHTpk3jiy++4IsvvuCtt95iwIABoU5eO3XqxNq1a/n444/56quvGD16NP/5z3949dVXGTx48CG3nZiYCNihZEXh1ZH4vTAhMzOTzp07ExMTw6hRo0hPTycsLIxFixYxcuTIP/X+BgIBmjdvzrPPPlvh/P+lpk9GRgYRERFlar+IiMjJSyGJiMjfnNPp5LHHHuOss87ipZde4u677z7WRTqs4BPgmJiYw9ZSadGiRbnmCFWrVj3stoO1VjIzM4mLiwtNL/0E/GhKS0tj+fLlGGPK3HhWNNpPRcaPH09KSgovv/xyuXkffvghU6ZM4dVXXyU8PJz09HSWLl162O2lp6fz008/UVxcjNvtrnCZ0uewtD9yDn/99Vd+++03xo4dy4ABA0LTD34/g7UJfq/cAJdffjn/+Mc/eO+998jPz8ftdtOvX7/fXc+yLDZv3lxm2vDhw9m5cyePPPII48eP59RTT+Wiiy46kkM7rLS0NJYsWUIgECgTHAWbn6SlpYWmeTweLrjgAi644AICgQA33ngjr732Gv/+979DNTkSEhK49tprufbaa8nJyaFTp0488MADhw1JGjVqBNiBYvPmzf9w+QOBAKtXrw7VfgHYuXMnmZmZofJ/++237N27lw8//JBOnTqFlitd26n08a5evbrM8LvFxcWsX7+eFi1ahKalp6fzyy+/cPbZZx82pAmWMVgrKmjVqlWHXGf9+vVljkdERE5u6pNERETo0qULbdu25bnnnqOgoOBYF+ewWrduTXp6Ok8//TQ5OTnl5u/evRuwb9a7detW5hUWFnbYbQcDmO+//z40LTc3t8IhWI+Gc889l61btzJ16tTQtIKCAv773//+7rr5+fl8+OGHnH/++fTp06fc6+abb2b//v2hbV966aX88ssvFQ6VG6zdcumll7Jnz54Ka2AEl0lLS8PpdJY5hwCvvPLKER93sJZN6Vo1xpgyQ9yC3XyqU6dOvPnmm2zatKnC8gQlJSXRs2dP3nnnHcaPH0+PHj1ISkr63bJ069aN1atX8/bbb5eZ/vjjj9OkSRM2bNjAhRdeWK42zJ9x3nnnsWPHDiZOnBia5vP5ePHFF4mKiqJz587AgX5DghwOR6gZTXC424OXiYqKol69euWGwz1Y69at8Xg8LFiw4E+VH+C5554rMz1YuyM4gkxF729RUVG5z0ibNm1ITk7m1VdfpaioKDR9zJgx5UK4vn37snXr1gr/beTn55ObmwsQGjnqhRdeKLPMwWUubdGiRbRv3/6Q80VE5OSimiQiIgLAXXfdxWWXXcaYMWMYNmzYsS7OITkcDkaPHk3Pnj1p2rQp1157LTVq1GDr1q3MnDmTmJgYPvnkkz+17e7du1OrVi0GDRrEXXfdhdPp5M033yQ5ObncTfjRMHToUF566SWuuOIKbrvtNqpVq8b48eNDYc/hnphPnTqV/fv3l+n0tbQzzjiD5ORkxo8fT79+/bjrrruYPHkyl112Gddddx2tW7dm3759TJ06lVdffZUWLVowYMAAxo0bxz/+8Q/mzZtHx44dyc3N5euvv+bGG2/koosuIjY2lssuu4wXX3wRy7JIT0/n008/DfUJcSQaNWpEeno6w4cPZ+vWrcTExPDBBx9U2NfLCy+8QIcOHWjVqhVDhgyhTp06bNiwgc8++4zFixeXWXbAgAH06dMHgIceeuiIynLPPffw0Ucfcc011zB9+nTat29PTk4O7733HuvXr+e0007j4Ycfpl27dkfUdOmbb76pMIi8+OKLGTJkCK+99hoDBw5k4cKF1K5dm8mTJzN79myee+45oqOjAXsI23379tG1a1dSU1PZuHEjL774Ii1btgzVeGjSpAldunShdevWJCQksGDBAiZPnszNN9982PKFhYXRvXt3vv76a0aNGlVu/po1a3j44YfLTT/11FPp1asX11xzDa+//nqoSc28efMYO3YsF198caj5W/v27YmPj+eaa67h1ltvxbIs3n777XLBltvt5uGHH2bo0KF07dqVfv36sX79et56661yfZJcffXVvP/++wwbNoyZM2dy5pln4vf7WblyJe+//z7Tpk2jTZs2tGzZkiuuuIJXXnmFrKws2rdvzzfffHPI2lkLFy5k3759f0lNIREROUEcgxF1RETkGAkOZTt//vxy8/x+v0lPTzfp6emhoUU7d+5smjZt+qf2BZibbrrpkPMPNQTwpEmTyixX0dCxxhjz888/m969e5vExETj9XpNWlqa6du3r/nmm2+OqHwVDQFsjDELFy40p59+uvF4PKZWrVrm2WefPeQQwBUNh3qo4zp4COCKzus111xj0tLSykxbt26d6dWrlwkPDzfJycnmzjvvNB988IEBzI8//njI47vgggtMWFiYyc3NPeQyAwcONG632+zZs8cYY8zevXvNzTffbGrUqGE8Ho9JTU0111xzTWi+MfbQrf/85z9NnTp1jNvtNlWrVjV9+vQxa9euDS2ze/duc+mll5qIiAgTHx9vhg4dapYuXVrhEMCRkZEVlm358uWmW7duJioqyiQlJZnrr7/e/PLLLxW+Z0uXLjWXXHKJiYuLM2FhYaZhw4bm3//+d7ltFhYWmvj4eBMbG2vy8/MPeV4OtmfPHnPzzTebmjVrGpfLZapWrWoGDBhgVq5cabKzs02jRo1MTExMhcPmBgU/x4d6vf3228YYY3bu3GmuvfZak5SUZDwej2nevHm54508ebLp3r27SUlJCX1Ohw4darZv3x5a5uGHHzZt27Y1cXFxJjw83DRq1Mg88sgjpqio6HeP98MPPzSWZZlNmzaVmR4c9rqi16BBg4wxxhQXF5sHH3ww9PmoWbOmueeee0LD+gbNnj3bnHHGGSY8PNxUr17djBgxwkybNq3C4aNfeeUVU6dOHeP1ek2bNm3M999/X+7fmTH2kMFPPPGEadq0qfF6vSY+Pt60bt3aPPjggyYrKyu0XH5+vrn11ltNYmKiiYyMNBdccIHZvHlzhUMAjxw50tSqVavMkNIiInJys4z5C3uIExERkUr33HPPcccdd7BlyxZq1KhxrItzwvD5fFSvXp0LLriAN95441gX57jl9/tp0qQJffv2PeIaNyejwsJCateuzd13381tt912rIsjIiJHifokEREROY7l5+eX+bugoIDXXnuN+vXrKyD5gz766CN2795dpjNYKc/pdDJq1ChefvnlCvv9+bt46623cLvdx3XzQxER+eupJomIiMhxrGfPntSqVYuWLVuSlZXFO++8w7Jlyxg/fjz9+/c/1sU7Ifz0008sWbKEhx56iKSkJBYtWnSsiyQiIiLHKXXcKiIichw799xzGT16NOPHjw81g5gwYcIRDV8rtv/7v//jnXfeoWXLlowZM+ZYF0dERESOY6pJIiIiIiIiIiKC+iQREREREREREQEUkoiIiIiIiIiIAApJREREREREREQAhSQiIiIiIiIiIoBCEhERERERERERQCGJiIiIiIiIiAigkEREREREREREBFBIIiIiIiIiIiICKCQREREREREREQEUkoiIiIiIiIiIAApJREREREREREQAhSQiIiIiIiIiIoBCEhERERERERERQCGJiIiIiIiIiAigkEREREREREREBADXsS6AiByeMYbi4mKKiopC09xuNx6PB8uyQssUFRVRXFxcZl2Hw0F4eHhouaBAIEBeXl65fYWFhfHVV19RpUoVWrdu/ZceQ35+PoFA4JDLRERE4HD8udx2/vz57N27l3PPPbfcsf6V/H4/+fn5eL1e3G53pe1HRETkeOHz+SgoKAj97XK58Hq9AKHv3OLiYgoLC8usZ1kW4eHh5b7bjTHk5eVhjCkz3ePxsGDBAvLz8+natetf9n1ujKGgoAC/33/IZcLDw3E6nX9q+2vWrOHnn3/mkksuweX662+tiouLKS4urvB6TkQqh0ISkRPAO++8wxNPPEFUVBSWZREdHc1ll13GoEGDQhcqTz31FOPHjyciIiL0JdqsWTNee+210DJBGzZs4JJLLsHhcIQuCizL4vnnn2fs2LG0bdv2Lw1JCgoKGDhwIOvWrQMgPz8fv99PVFQUAFFRUUyYMIGqVav+qe1//fXXLF++nO7du1fqBcS3337LjTfeyODBgxk+fLguVkRE5KQ3a9Yshg0bRmRkJA6Hg7CwMLp3787tt99OdHQ0lmUxefJkHnjggdB1CkBKSgrvvPMOCQkJZbaXnZ3NBRdcQFZWVpkHDnfddRdLly5l165ddO3a9S8rvzGGu+++m9mzZwNQWFhIYWFhqOxOp5PXX3+dFi1a/KntL1myhBdffJELLrigUkKSzz77jFdffZXJkyeHrptEpHIpJBE5AWRmZhIREcH48eNxOBx899133HPPPVSpUoXevXsDsHfvXmrVqsVLL70UemoTFhZWYY2HoqIitmzZwjvvvEODBg0AOySpWrUqzzzzDOHh4eXWCQQCGGNwOBzlwgFjTKiWSEXzvV4vzzzzTKg2zKhRo9i0aROjR48GwOl0kpSU9LvnIbgfy7LKPJm6/vrrKSwsrLBcfr8fp9N5yDJXVN6K+P1+xo0bh8vl4t1332XIkCHExsYe8Xn4vXN0JMde+lh+b3vGmNAyFR2/iIjIkcjLyyMnJ4fx48cTFxfH0qVLueWWW/B6vYwYMQKwgw+Xy8W4ceMICwsD7BonB39Pgn09sXHjRu699166desWmp6UlMRZZ51VYY2PI/k+h4q/Dy3L4u677w7VoH333XcZO3Ysb7/9Nl6vF8uyqF69+u+eh9LXIMEXQLdu3WjVqhUej6fC5Q933XTwtiqyf/9+Nm3adMjauMHv+8Ndo/n9/tC1U+layKXL+Gdr84qcjBSSiJwgvF4vderUwev1kpaWxujRo5k7d24oJAGIjIykbt26R1Rl1LIsUlNTSU9PD00zxvDJJ59Qp04devTowaZNm3jttdfo2bMn7733Hjt37uSss87iuuuuIzw8HGMMGRkZvP3228ydOxen00mPHj247LLLQhdJYF+01KxZM/R3bGwsERER1KlTB5/Px1NPPUWvXr1o2bIlANu2beOll17irrvuIi4ujtGjRxMfH8+ePXuYMWMG8fHx3HTTTTRv3hzLsvjpp5/YunUr119/PXl5eTz66KN0796dadOmsXLlSpo1a8Ytt9xCYmIiABkZGbz22mssXLiQtLQ0LrzwQr766itGjBhR4QUdwObNm/nhhx945plnQk+kevbsGQosMjIyeOedd5gzZw6BQIA2bdpw4403EhkZSXZ2Nu+++y6zZs2iuLiYU045hdtuuw1jDE8++SRDhw6lVq1aAPz6669MmTKFESNG4HQ6efbZZznllFNYuHAhixcvZuTIkSQmJjJ27FhWrlwJwJlnnsk111xDTEwMlmXh8/n45ptv+OCDD9izZw/VqlVj2LBheL1exowZw8iRI0PHmZ+fz5NPPkmvXr1o06bNkXwURUTkb8blcpGWlkZycjJ169bl/fffZ/bs2aEgHuzrlNq1axMZGfm72ws+mCl9DQLw4Ycfsn//fgYMGEBWVhZPPPEE5513Hp988glr1qyhZcuW3HzzzcTFxQH2d9ikSZOYPn06xcXFoe/D0t/llmVRrVq10N9JSUl4PB5q165NWFgYr7/+OrVr16ZHjx4A5OTk8PjjjzNo0CDq1KnD1KlT2b59O/Hx8Xz00Ue4XC6uu+46OnfujGVZrF69mq+++orhw4djjOHpp5+mRYsWLFmyhHnz5pGamsptt91G7dq1sSyLvLw8xo0bx4wZM0hISODyyy/nq6++YujQoaSlpf2h98Xn8zF9+nQmTZrE/v37adGiBYMHD6ZKlSqAfU3xxhtvsHnzZsLDw+nUqRPXXXcdlmXx+eef8+GHH5KVlUViYiL9+/fnrLPO0kMVEdRxq8gJxxjDvn37yMjIICUlpcy8goICtm3bFnrl5uYedlu7d+8OLbtr1y4CgQBfffUVixcvBmDPnj288sorPPHEE3To0IFevXrxzDPP8P7774faFA8bNozZs2fTt29fevXqxf/93//x0ksvlWtrfCg+n48PPviADRs2hKbt27ePd999l5ycHIwxfP3119x7771s27aNq6++mqKiIq6//nqys7MBWLRoEV9//TXGGAoLC3n77be55557qFWrFldccQVffvkljz76aKh/lzvvvJMvvviCfv360bBhQ+6++27Gjh17yPNljOHTTz+lSpUqdOvWjW7duvHuu++Gnurk5OQwaNAgPv74Yy666CKuvPJKiouLyc3NpaCggBtvvJHx48dz3nnncfXVVwP2k6G8vDzee+899u7dG9rX5s2bmTx5Mj6fD7/fz5QpUxg+fDgej4drrrmGKlWqsGnTJuLi4hgwYACXXnopn332GaNGjQrV9hk3bhw33ngj9evXZ/DgwTRp0oStW7eSlJTE559/HjpXxhjmz5/P22+/TXJy8hG9XyIi8vcV/O7fvn07ycnJZW6oi4uL2bFjR+i6Iisr67Db2bdvX2jZHTt24Pf7mTdvHt9++y1gByBjx47ln//8J/Xr16dfv358+OGHPPPMM4B9/XDfffcxbtw4evXqRb9+/Zg2bRr33HNPuT7aDleO6dOnh657wL6Weu+999i1axcACxYsYNSoUfzwww9cccUVVK9encGDB7Nx40YA1q1bx5QpU/D7/QQCAT766CNGjhwJwIABA1i7di233347RUVFBAIBnnnmGV5++WV69epFx44defTRR/m///s/9uzZc8TvQ7DsU6ZM4YYbbqBp06b079+fuXPnMnDgQPbv309mZiaDBg3CsiwGDx7MxRdfTG5ubug833777bRu3ZqhQ4fSvn17du/e/Yf2L3IyU00SkRPEpk2buPvuuzHGMG/ePOrUqcOVV15ZZpk5c+ZwwQUXhC5a7rnnHvr27Vvh9oqKirjxxhtDTWvq16/PW2+9VWaZYNXMe++9lzPOOAOAFStWMH36dK6++mpmzZrFr7/+ygcffBCqpeF0OnnssccYMmQIUVFRobDkSKqUHs6pp57Kv//9b1wuF82aNaNLly5s2LChwjbExhgGDhzI4MGDAftC6sknnyQ/P5+NGzfy9ddf8/HHH3PqqacCdtXfhx566JD7zs/PZ+LEifTu3ZvIyEguu+wyrrnmGjZu3EjdunX5/vvvWbx4MTNmzKB27doAXHjhhQB8//33fP/993z11Vc0atQIgAsuuACAHTt2/O5xG2Po0aNHmT5QUlNTadq0KevWrSM8PJzzzz+fl19+mX/96184HA6ee+45hg8fzrBhw0I1XYIuu+wyxo0bxwUXXIDT6eTtt9/m7LPPJjU19XfLIiIif0+ZmZk88MADeL1eli5dSk5ODrfffnuZ7/S1a9fSu3fvULONyy+/PBQWVOShhx7ihRdeACAhIYHx48eXW8YYw5AhQ+jfvz9gP5QYPXo0//rXv1i3bh0ffPABb7/9NvXr1wfsflAGDhzI1q1bqVWrVpnvvz/T1DUoNTWVRx55hKioKDp16sRnn33G4sWLQ9/5B+vevXvoe7tq1ar07duXPXv24PV6eeedd3j88ce5+OKLQ2U+1LXa4RQVFfHKK68wYMAA7rjjDizL4tRTT6Vz587Mnj2bpk2bsmfPHi655BLOPPPMMrWMt2zZQmxsLH369KFKlSqqPSJyEIUkIicIj8dDamoqhYWF+Hw+UlJSiIuLK3MT3KFDB956663QF2FERMRhtzd69GiaNGkC2OFGRX2RxMTEkJaWFtpPlSpVWLlyJcYYli5dyubNm7niiitCF0XBpzf5+fm88sorfP/99wCcccYZ/POf//zTvcc3btwYl8uFZVnExMTg9XoPWfPD7XbTqFGj0Jd+cnJyqLPYrVu3Eh4eTp06dULzK2pLHGSMYfHixaxZs4a2bduya9cuUlNTiY6O5tNPP+WWW25h2bJl1K1bl9TU1HIXGitWrKBGjRpl9vdHWJZFy5YtQwGTMSb0pCw8PJzY2Fhyc3PJzs4mJyeHoqIi9uzZQ/v27UP7K73fvn37MmbMGFasWEFsbCwzZ85kzJgxaossIiKH5HQ6qV69Oh6Ph6VLlxITE0NKSkqZ75d69erx2Wefha49Du40vjTLsnjooYfo2bNn6O+Kmrt6PJ5y3+fB2hBr1qxhx44d3HDDDaEOU/1+Pz6fj+zsbMaPH897770HQJ06dXj66acrvM45EnXr1g11ShsWFkZsbGyoNmtFx9a0adPQ93Z8fHyopmtubi65ubmh+WBf38TExPzhMuXk5LBlyxbOOOOM0L6qV69OWloaK1eu5Oyzz6Zfv37ccMMN1KtXj/bt29OnTx/S09Pp1KkTY8eO5bzzzqNZs2Z07dqViy++ONSMSeTvTiGJyAmiatWq3HzzzXg8Hvr27RvqJ2TQoEGhZTweDwkJCUccRMTGxpbpdb6iTsFK1/4ofaMOdhjRoEEDPv744zJ9kAQvCs4//3xOO+00wL6wOdSNuMPhKLPvoqKics11DtVZ26Ecal9er7fckMq5ubmH7RBtwoQJFBYWcsstt+BwOELVhCdOnMjgwYPxeDwUFhZWuA2v10tRUVGFHdEFjye4XvAi6uBlguEQ2L3yP/744/Tr149bb72VsLAw5s+fz2WXXYYxJrRsYWEhxphy56xOnTq0b9+e9957jypVqlCzZk1at26tp0giInJI0dHRDBkyhKSkJK677jouuOAC/vOf//Doo4+Gvm9dLhfx8fFH1CcJ2CPbHTzyzcEO7qi99HeV2+0mMTGRiRMnlmsyGhcXR1RUVKhD1qioqEM+DLEsK9RcNdiv18Hf2QeX4eBamgc7VAeqwc70CwoKQvsLPvz6o5xOJ06ns8x1QyAQoKioCK/Xi8fj4eGHH2bw4MEsXryYKVOmMH78eD7//HNSU1OZNGkSq1atYv78+fz3v//l66+/ZsyYMRV2+C/yd6NHhyInGMuySE9P5/rrr+fFF18s05/F0XbGGWewa9cu1qxZQ2JiIklJScTHxwP2BUKzZs04++yzOfvssznllFMqvBF3u90kJSWxfPlyAoEAfr+fmTNnlgsL/ir169fH4/Hw5Zdf4vP5yM/PZ/LkyYdsv7x7926++OILnn32Wb7++mu++uorpk+fzkcffcTGjRtZtGgR7dq1Y+PGjcybNy90oVVYWIjf76dNmzbs3r2bH374ody8iIgIIiMj+e2330L9pXz99deHDGyA0BOymjVrEhEREeq3JBj6pKSk0LBhQyZNmhQKm/x+f+h8Op1OBg4cyAcffMDrr7/OVVddVSbgEhERORTLskhISODOO+/k3XffZfXq1UfcB9lfrWnTpng8HubPn09CQgJJSUkkJiaGRmqpW7du6Brk9NNPr/ABksPhoGrVqqxcuTLUp8jcuXPJyMiolDKnpKRQp04dPvzwQ4qLiykuLubjjz8+bP8tQaVHsTHGEBUVRfPmzZk6dWrowcjPP//M5s2badWqFUVFReTm5pKens6ll17Ko48+SmZmJps3byYnJweHw0HLli25/vrruf3221m4cCEFBQWVctwiJxrVJBE5QZQOGCzL4uqrr+bNN99k4sSJ3HjjjcekLK1bt+bGG2/khhtu4MwzzyQhIYG1a9eSkJDAa6+9dkQ1WlwuF1dddRX//Oc/2bp1K4WFhezevft/epJxuFoRVapU4d577+Whhx4KdZAaERGBx+MpV/sk2KFbIBCgR48eZZ5UxcXF0apVKyZMmMCzzz7LoEGDuP766+ncuTPh4eFs3ryZF154gSZNmnDrrbdyyy230KlTJ2JiYlizZg0vvPACtWrVol+/ftx333389NNP7N69mz179hy2/BEREVx00UWMGjWK+fPns2vXLrKysnC73aFqwA899BBDhw5l1apVNGrUiI0bN3LhhRdy5ZVXYlkWp59+OlWrVmXLli2cd955qkUiIiJHzLIsevTowUsvvcSrr74a6kj1aEtNTeXBBx/kkUceYdq0aaSmpoYCgAkTJhxxjZa+ffsyYMAABg0aREREBNu2bfvTzXJ+T0REBA888AA333wzc+fOxev14na7iYmJOew107Zt27j++uvLXBtdfvnl3H333QwcOJArrriCmjVr8s0333DFFVfQqlUrNmzYwHXXXUejRo1ISEjg559/plGjRjRq1IgPP/yQsWPH0qxZMxwOB99++y2XXHLJYZtpi/ydWOZYxb8ickSMMaxevZotW7bQuXPn0JdosANXn89Hu3btWLJkCXl5ebRr1+53b3r379/PzJkz6dy5c5k2wMYY5s6dS0JCAo0aNSIjI4O5c+fStWvXUG2D3377jd27d9O+fXvAbv+7dOlS5s+fT15eHmlpabRt25Zq1aodshw///wzubm5nHnmmaGqrbNnz+aXX34hLS2N0047jcWLF9OlSxfCw8P56aefiImJCfWfUlhYyMyZM2nTpk2oFkp2djann346xcXFfPPNN5x22mkkJSUBsGvXLn7++We6du2K2+3G7/ezevVqVq1aRbVq1di4cSMPPfQQs2fPJjo6usz5WLx4MdnZ2XTs2LFMiGKMYfny5ezcuZPOnTsTCARYtGgRCxcuBKBFixa0bdsWt9uNz+fjl19+Yf78+fh8Ppo3b067du3weDwUFBQwY8YMVq9eTdOmTalfvz6rVq2ia9euWJbFd999R7169UJDBIPd30twnXr16tG6dWsWLVrEWWedRUREBMYYtmzZwvfff8/u3bupWbMmXbp0CXWuW1xcTL9+/ahTpw5PPfWU+iMREZFD2r59O4sWLaJbt26hfkaMMaxYsYItW7bQtWtXNm3axNq1aznrrLNC/YMcSlFREdOnT6dly5bUqFGjzLxff/2VgoIC2rRpQ2FhITNmzKBdu3ahWqrbtm1j2bJlof0EAgHWrFnDnDlzyMzMpFq1arRp04Y6deoc8rtt7dq1rFmzhm7duuF0OgkEAixevJg5c+aQkJDAWWedxeLFi2nbti2JiYksW7aMnJwc2rZtG2qa891331GnTh1q167Nli1bWLVqFV26dMGyLL799lvS09NDw/nu37+f77//ns6dO4c6tN+0aRNLliwhNjYWl8tF//79+e677yocAnjjxo3Mnz+/XI2d5s2b07BhQzZv3sy3335LVlZW6Poi2NR30aJFLF26lP3791O7dm06d+5MfHw8mZmZzJs3L1QT6JRTTuGMM87A4/HowYkICklE5G9o/vz5ZGdnh546/fOf/+Sss84q07b6ZGSMYfv27cydO5e77rqLKVOmHLIZlIiIiPz1gg9p6tWrx759+3jssccICwtj/Pjxh+w3RUSOLjW3EZG/nczMTJ5++mkyMjJwu92ce+65oeHzTmZ+v5/HH3+cH3/8keHDh9OsWbOT/phFRESOJwUFBbz++uvs3LkTy7Jo06YNI0eOVIepIscR1SQRkb+dYCepxcXFOJ1OvF7v3yIsCHYaa4zB6/We1LVmREREjkfGGHw+H8XFxViWFboG+Ttch4icKBSSiIiIiIiIiIig5jZHRDmSiIhI5TqZn6LqOkJERKRy/ZXXEQpJjoAxhrFjx/Lrr78e0ZCmIiIicmSKi4sZPHgwzZo1O9ZFqTSFhYU89dRTZGVlndRhkIiIyNFkjMHlcjFixAgSEhL+su0qJDlCs2bNom7duif1RZyIiMjRZIzh9ddfZ9u2bSf196vP5+Orr75i0KBBxMXFHeviiIiInBSKiop45plnuOWWW/7S7SokOUIul4sOHTrQpUuXY10UERGRk4IxhmnTpp30tTQdDgfh4eH06NGDqlWrHuviiIiInBTy8vIYPXr0Xz4YgYY2EBERERERERFBIYmIiIiIiIiICKCQREREREREREQEUEgiIiIiIiIiIgIoJBERERERERERARSSiIiIiIiIiIgACklERERERERERACFJCIiIiIiIiIigEISERERERERERFAIYmIiIiIiIiICACuY10AERGRY8UYE/rdHzAU+w2WBU7LwuGwcFjl17GsCiaKHAsmAL5CsBxlXxXR51ZEROSIKCQREZG/DWMMvoAhv8jPvtwitmbms35PLmt35bBuTy7bs/JxOx1EeV1Eh7mICXMTG+EmLtxNbMkrOsxNdLg9L9ztJMztJMztwOty4HQ4cFjgcFhYKFCRSpa9HSYNtMMST6T98kZBYj3ocAc43LBlPuxbb0/3BF+REFsdPNGAgeJ8sJx2wOIIBi2WghUREflbUkgiIiInFWMMBvD5DbmFPvbmFrE5Iy8Uhqzfk8vWzHz25RZRUOwHIMLjIjHSQ7XYMPzGsL/Ax87sAgqKAxT6/BT6AhT7Axhz4L7RYVl4XHY4EuZ2Eu52EhV2IFwpE7BE2H9Hh7nskMXrIsztxFsSrnhcDhyWVfKyt6+ARX6fgchkyNtjvzI3gb8IcnbDmbfZiyyZCAvH2r9bJf9xuODi/4OmF0PGJph4lb2tYIDiiYKkBtB5hL3shlmQsQG80QfmeyIhvg6ExUDAD4U54HSDw1mqVouFwpZKUqoWHJiSv0t+Bt+DgB98BfbPgM/+aXx2eBaRaK/qL7Lfn2BIpvdKREQhiYiInJiMMRgDxYEA+wt87NlfyKZ9eawrCUM27M1le1YBGblFFPoCOCyICnOTFOWhXkoUdZOiqJcSSe3ESKrFhZMQ4cHrtpsq+AN2jZOCYn/JK0BuoY/sgmL2F/jIzi8mK7+YzPxisvLs3/cXFLO/0Mf2zALWFuVS6PNT5AtQ6AvgD9g3NJZlhx9Oy8LrdoRqokR4nKFwJTrMTWy4i7gIT6j2SkyYi6iSkCXS68LrOhCuuJ0OLAscWKH7GwUsfxMxNaDvODB+uzZJwGc3v8GA02svc8aN0Oh8KNwPRTkHfqY0tudbDjvsyN8HRbmQt8+uWeLLt7cDsGQS/PJuyU5LQg/LAX3ehEa9IHMjvNffXt4dYYco3ihIaQJd7raDljVfHwhaQmFLJCTWh/A4u+wFWfYNvNNtr2NZgCP4D+contgjEAopzIG/gyGDCZQEEoFS4YTfDiK80fbyuXugaD/4iuygwl8E/mKo0gTCYiFvL6z7ruS9KLTDDl8BxKZC88vsbcz7L2z/2Z7vL7J/BnzQ/SGo0gx2LoMpQw9MD75qd4De/7XLOv1+2PYzRFeFmOr29mNToXZHiEiwl/cX2++JahiJyN+EQhIRETmuGWMIGCjyBcguKGZndgGb9uWxdlcOa3fnsnFvLjuzC8nKL6bYH8DpsIgJd1Ml2kvzGrGkp0SRnhRJ7aRIqsSEERfhxutyHrbGhttp/4zyVvw1aco8xbX5jcEfMKG+TQqK/eQX+ckv9pNTYAcs2fnFZBX4yMovJiuviMx8e1pOoY+cAh87sgrIL7bDlSJfgCJ/gICxKwA4LAuHA1wOB2ElAUu4x0mEx0VMSZASW6pZUGxESfMgr5uoMBdRXhcRHmcoXPE4HTgdFpZlhyvBs6CA5QRiWeB0UeZyLngTHpSYbr/goNoHJWJT4bK37Bt644dAAALFJTUS3PYynYZDyyvs2iJF+0t+lgpaHC775j4/E4pzoSATsreW1Ggo+Twt+9AOW0zgQOhhueyQp0F32LsWJvS39+sOA3dJ06FqLeGsf9rbWvmp3XQoLAa8MQdqtVRpAuHx9s18foZdHqfHXidY/csVZpejIMsOHozfXj4YTsTXtveXnwlbF5aEEoUHAoqoKtCwh72NXybAjl9LwomSZQJ+6HSXXZZdK+DTO6Aozz6XAR/4fVDrdLsGD8CXd8NvX5Sc95JaIJYTrpxkhxj71sNHN9jrU1LTw+GEOp2h2aV2YLF9MaydYZ9Hp9s+ZndYSVCG/Xtc2oHjd3ntn1WaHvg8uLz2Odi6CNZ/Z5fZ4YBrPrVDkm0/w6f/sGuexFSzg7nYVKjSHGq0srdTnGefc4frQJ84+v+IiJzAFJKIiMgxFwwdAgYKiv1k5RezPauATXtzWbM7h3W7c9m0L4+d2QXkFPgoDhi8LgcxYW6qxoZxet0E0pOjSE+OpFZiJFWivUSHu/G6HJVy81/RtlyWhatUn5mx4e7DHmvobw7UXPH7DYU+O1jJK7JDlv0FxWTl2yFLVqmaK5n5RWTn+8gt9LE9K581u3wUFtvBSrE/QLHfYIzB4bBrrjgdFm6nww5WSgKWKK8drMSUDlfC3cSVNA+KCnMR6bEDlvCSgCUqzIVDN0Anporet2BTC5xAxZ9Z4tPsV9DBYUtsTbj0jVI1KEpqTwRv7gG63ANtBpetzVJYKmhxh0PqaXZIUZRrhy37t0NE0oFyr/gEln9shw4mYN+QO91w+XuQfhbsXmkHLVh2QOD02uVIbQ3n/8defto/7XAiVMOjpHnK5eOhTifYuwbevxqKC7D/dZYEOnXPgvrn2NtY9x2snlYSXDjscMAVDoXZJefUaZcrPNYOLpweO5xIalgy3wH1u0NCnQPBRfBnMNBKagBXTChZ13Ogho035kAQce6j9nE4XAcCKctxoBZRYn37uA7VmS/A2feX1EIpsMOtvAy76VZSg5L3GjuAytkBu5bbIYovH5r3hRqv2PufejNkbDxQGyUmFeJqQf1udnn9RXaNGVeYfb6C/1fW/0dE5DilkERERI6aA2GIIa/IT2ZeMdsy81m/N5e1u3JZtzuHLRn57NpfQG6RH3/AEOZ2EBfuoXpcGGc1TLFrhiRHkhofQUq0lyivC0+pdOJ4rwlxcPkswOG07Norbog6xFdzRbVXAgZ8gQA+/4HmQXlFfvIKfeQW+cjOL6m1UnAgXAm+9hfYNVh2Ztvnuqik3xV7WwHArrXidFi4nHb/K7UTI3lz4GmHDIDkb+Lgf2Ohdl4ltR3wlF8nrpb9Kq30Zzq2ZkktC2PXZgkFLRy4yT/7Pmh3k10TpLBU2JLcyJ7vjYb0rnbQUrjfvvF3uA70vwF2YHJwMOEOt2tcACTUhYtesWvoOEuWcXrsoMDhBCw4ZxR0/WeppkEl/Xl4Iu1tJDeAqz4s3zdLaaf0Pfw5DYuxg5/DCY87/HyrVEh1uGUcYXaoFB5n16gpLbWNfSz+AjsgyS8JUbyx9nwTsIOszM2wczlsnGuHKE4vDJlphySrv4ZvRkFkIkRXh9gado2U1LZQ7RR7O0U5B2oAqTaKiBxjx2VIYoxh//79zJkzh4KCAtq1a0dKSkq5C0tjDFu3bmX+/PmEhYXRrl07YmPt/2kvXbqUjIyMMss3a9aMhIQEAoEAK1asYOnSpdSpU4dWrVrhdDqP+wtrEZETRfCG3heww5C9OYVsy8y3+wvZncv63TlszcxnT04ReUU+jIFwj5PESA/V48JpUzue9OQo6iZHUiMunKRoL5EeF26n/f/pv+P/rys6ZqcFToeTYKugI6m9EvzNHzD4/Kak1kmA/GI/uYV+cot85Bb47GAlv2y4EuxoVuQvUfozHfrdAqeDCi9Rg/1lHEpcGpz/HHYHppRt2hMMKVpfe/iyRCTYHdoeTnSVw8+3HHa4cjIINulyloyMFJUCNDww3+mBnk/YTZZ8BXY4lbcXCrIhupq9jMtj1zLJ3Q1715X0xVII7W+xQ5LiXLsGUOF+iEwpadJTww5sGvWygyx/ob0Pl9cOU1QbRUQq0XEZkuTm5jJ06FAsyyI2NpYXXniBt99+mxo1aoSWMcawdOlShgwZwmmnncb+/ft54403eOONN4iKiuK7775j6dKlAGRnZzN9+nS++uor4uPj+fzzz3n44Yfp3Lkzr7zyCv369eOGG244VocrInJCKn3jXew35Bb52L2/kK0Z+azbncOa3blsKBlJJiOviPwiPw7LItzjJCnKS2p8BJ3qJ5OeEkWdJDsMiY/0EOlx4nT8fcOQylD6PAZ/C9ZeCefwT5oPDlj0jshxq3TQYgEo0Kt0wQDK5bVfYbHlg6z0s+3mSr5Cu/+Sgky749qoKvb6gYBdg2fXCti3FrYusGsLRabY67nC4Ofx8OP/2aM5RVc9UBulbmdIbgwYO5hxlTRvKl2DRt8jIn9cRX1YBVnW4eeHthEo2+9SsFPxE+Df5HEZksyaNYvt27fzySefEB4eztChQ3nvvfe48847y1zovfnmm3Tq1IlHH30Un89H3759+fLLL+nbty833XRT6MJu0qRJbN++nUaNGlFYWMjzzz/PiBEjuOSSS1i4cCFDhgyhb9++JCUlHatDFhE5bgX/X2qAYl+A/YV2GLJpX54dhuzKYePePLZl5ZOVV0yBL4DLYRHpdZEc7aVhlWjqJEdSLyWK2okRVI8LJy7cTZjHidNSGHK8qyhgERE5YsFmP54I+xWZBIn1Dsz3RkOvZ+3OdIsL7KY3wVGWwmLsZcLj7T5c9u+ALfPt0ZL8RdDjMTskydkN4/tgD4udcmCknqT60PhCu/ZJUa59w+by2s2kSv8fTd9B8nuOJBQ4nGCwYAKlthd8lQzNDnaNqYDvwLzgOu4I+3PrL7ZrawVHzQr2BeXy2sEhQNYWe8Sy0PDfJc0XqzSxmx8WZNtDu/uKyo58FZEIDXrYZV39ld2ELtj5dHAbLa6AlEaQvQ1mPWMHn8H5fp/dr1LXf9nHM/s5WDPjQPPJ8Di45HW7xt5x7rgLSYwx/Pjjj7Rp04aoqCgAOnfuzNSpUwkEAjidztByO3fupGPHjjgcDjweD9WqVWP27Nn07du3pLd+i+LiYiZNmsSll15KWFgYW7duZfv27bRp0wbLsmjUqBGWZbF+/foyIYk9tKQp97uIyMmqdOepRb4AWfnF7NpfwMa9eazdncPaXTls2pfHjuwCsvKL8fkNrpKRZFJivJxaM566JWFIrYQIqsaGERt+YCQZBSEiIlJO6c6DnR47GImpfmC+MdD0EmhyoX0TVpxrN83J3WP3ZRNsUlWtBWSst28Qdy61l0luBA16Hrhh+3VySW2UKgdG6ml4nn1j5/fZtVzcESWjRgWb9DgO9JNiAlRYpy40/HPwprfMzD92Ln7vCX7wnPzZbRzpfiq1HKXOYbC2QXC6KfkZ7JDYBOxaSMYAgZI+iwJ2J8CektG8CrLsm/XgtoKdMkdXsfsKKi6AfetKddhc8tMTWTLak2WPWJW9pSRY8B/oILp2B/vzmLcPVnx8YEhtf0kwEFPNDg4sB/w6yR4dKzS/2N7GGTfYn8/MjfDVfaWChZKyJDe2m605nPDtYyWdS/sPLANwwfN2P0V718C7fe0+gkrX1KjRyh4dK7iNXyeV/zxe/i40ONcefezDIfaxWBx4L1Lb2B0uW25YMdX+9xKsLWY57X8XaWfaIUlRDqydafdXZDkP/Dtxug6878X5dofWwdGvnB7K//s4Ph13IQnA3r17Q01rLMsiISGBjIwM/H5/KCSxLItWrVrx5Zdfcskll5Cdnc2cOXNo1qwZxpjQxfj69etZsWIFTz31FJZlkZubi8PhICIiAgCPx0N4eDiZmZnlyvCvf/2L7Gy7p/KFCxdy5ZVXHqUzICJSuYwx+I2hsDhAZl4RO7IL2LCnJAzZbYchu/cXsr/Ahz9gcDsdxEXYI8m0T08iPTmSusl2GJIS7SUm3I3b6VAYIiIif61Qx8AlN1ruMPuJd+lOZiOT4cIX7BtKX6F9A1eQZdc2cZcM/xxbE1Ka2CP1bP8VNsy2+1FJrGeHJPvWwntX2DdykYkHhsCu2hy63W/fAM55ATbOKXXjWDKUdafhUL0lZGyAGQ+XGrq5ZLnkhvYylgPmv2HXhgmtX3IDesYN9g179lb44Tn7BjnUp47Drklz+jB7G8FhqMuUwwGnXmXXnsnZCQvesmsalN5PbC1ocbm9vVWf2yNCYR0IeSwHNDrf3lfeXlg2xT6npfcTXQ0a9rSX/W0a7F5RtiaBCdj7SG5oH8vs5+2b5dK1ERLrQZeRJef0RXv46VAwURJwnDMKap1hhwKTB5eEIP4DwUC1lvbw5ZYTZjxkj3wVrHURDLP6vAX1zrYDkjfPtd9vIBTG1GwLAz62P1c/vmKHAnAg17Kc9jDlMdXtz83XD9rHEvpcWvbQ3s372p2EbfoRln9UqtNmh/05CnbU7C+yP2f+ogMdXTtcdu2QoLBY+xwHgwVHyRDfYbEH5jfoaR+j02Vv3+GyO8a2SkaPanoJVG12YF5wG1WalfxbSIU+b9rLBsvgcNrbDtZo6XIPnHFTqdGzSo4nMtmen1AXBk0r9fkpFZI4S/7tdB5pD40eagJZqsbMce64LKXH46GoqCj0d1FREW63u2yVX8viuuuuY+3atVxxxRXExcVRv359IiIiQssZY/j0009p0aIFNWvWBMDlctk3B35/aBmfz4fbXbazu+joaIYNG4bP58MYw2OPPVbZhy0ickRK1/gwGPuawNgdcRYHAvhKhn8t9gco9gXILw5QUGwPK5tf5Gd3TiFrduWwfk8um/flsSenkNxCPwFjCHM7iY9wUz0unOY1YqmXEkXdpChqJkSQFOUhKsyF22kPq6swREREjgvBG1ZnybDQ3ii775LSWg2wQ4SA78AT7vyMA2GLywu12tk39sHmDBjIq25/yVpAzi7Yt55QMwiMfbNblGtvozjPDi98wSGkObBccBu7V8KGHyhTa8JyHLiRLsiC3760w57QU3cDNdrA6UPtPzfNgRWflt2HZdk1DZLq2+WfP9ru8NaU2kbN0+39WA57/WVTyu7Dcti1bxLq2ENwz3ioJBQo9fS/Zjt7CGunZQcTy4IjOVkHQoG0M+2QpCDbDlJ8hWWXCQYhFvZ7sH97SWhQckPuKHVf5vRAbHX7/XA4S8IyZ8kw1SXXIdValtQuOShYiLXv/4hKgS5327+HQgEXRFU9UEvotMF2+BMKBUqWq9rcnh9fB67+yD4Gh/PAMsFmMABn/RM63FEqIHHYy3hLarwkpMOgrygToFmULFtyW97+FnsUr9IdTpf+PaY6nPckh1X/HPt1KN5ou0bJ4cSmQuxh5jvdJR05/84yJ6jjMiSpX78+c+bMIRAI4HA4WLNmDXXq1AnVIgmKj4/nxRdfJCcnB5fLxa233krr1q1D8/Py8vjoo4+48847Q+smJCTgdDrZuXMnVapUISMjg7y8PKpXr15m216vl5YtWwIQCATUX4mI/GGl+/IwJYEG5sCwrcV+g88fwBewA41CX4CCIjvMsEONAPnFPvJKRhwJ/swttJfJK/KRX2QP+Rpcp8gXoMgfoNhn7J/+AP6AKSmDCV0rRXidJER4SI2P4PS6idRLjqROchSpceEkRnmIKDWSDCgQERGRE1ywxobDaQci4XFlh6WOS4OLXjpQ4yG0Xqkb2G4PQNd/U7bJgLE7lwU7YBj8NQdClJL5wZvy4Da63EOZkAQO1BRIamBv4+C+K5xeQh3Snn0/dBx+YPvBfQVHXkqsZ9+Ml+73wmDXqgmWo+u/4MxbD2qSYQ4Mh51YD6759ECgEdyPJ+pAc6Su/7Rv6suEAg47fAA7sAmFAqXmB2s4AJx1r12rhFKhAdaBG+y4NOj3TvDNOFCzqHQzplOvsl+HEpEIZ9xY8bzg9lLbAG0OvQ1PBNQ49dDzwa6BROKh5zucB4YKP5Rg0zM5po67kMSyLLp168brr7/Od999R1JSElOmTOHBBx/EsiwmTpxIfHw855xzDhkZGWzZsoWkpCRmzZrF2rVrefjhh0MX87/88gs5OTl07NgxNC02NpauXbvy6quvMmLECCZMmED9+vVJS0s7loctIsfQwaN3BP80xtjDpAZfJYFGkS9Aoc8fqqERfOUV2UOo5hX5yC30kVcSYOQVHfg9vyTQKPSVBBq+AIV++6c/YAgYY9cQKfXTsiycDgtX8OV04HJYeFwOwtxOwkp+xoS5CXM7iPS4iPA6y/70OInwuAj3OEmI9FA1NozESA/h7gMjyYDCEBER+ZsKfv853Yd+Av57Qzs7nAc6mz0Ub/SBmgUVcbrL14I5WGSS/ToUl9duQnQ4sTWAGoee7w63h2g+7DaOoLbB7x3L753TYJOm/4WubeQPOu5CEoD09HRGjRrFc889h8/n45prruGss87Csiy2b98eaiqTmZnJI488QnZ2NlWqVOGFF16gWjV7THZjDOvWrWPgwIHEx8eHtm1ZFnfffTcPP/www4YNo2rVqjzxxBN4PJ5jcqxSseDNqQEcFY2scHB/WYfZlm76jl+H6xDZVPDHgeccwSYmwSABAiW1JOyQwe5vw+e3+9wo8NkhRvD3/KLSNTNKQozCsmFG8PfCkkDE/mmHGcHaGQFjCAQO7BPsz6vLYYcazlKBRpjbibckzPC6HcSGu0uCCyeR3gMhRqTX/hmcFww2wlwOPC57G16XA4/LgdvpwOmwcDgsnJaFw0FotJiK6N+CiIiIiMjhHZchicPh4Pzzz+fcc8/FGIPH4wld3N92222h5erUqcP48eMpLi7G4/HgcDjK3ARU1NGqZVkkJyfz3HPPUVhYWOF6cmwYY4ciO7MLmLZsB9OX7aTAF8AZfIruDD5Jd+Bylr0BdYXmO8r+ftA6wafwzoOeyJdf98CNZ/Bm174JLft38HeHFfxp3yRbJZ1X2v02lJpGcB44KLVcBR+//+UTWVH0UCZUwJQJFoyBQLngwQ4a/IGKX77g7wct4/MHKA7+9JeqgeEP9pdhNy3xHbSsPf9AbY0D6x+8jj3Nf4j9B1/BGhrBvwMlywUC9vFbVqlgoeT9dDkdeJwOvG4HYS47zAhzO4iPcBNREmRElg4wvC4iPWVDjTC3MxSIeF0OvG4nnpLPXOmXw7I/LxXR/49ERERERI6N4zIkAfsmoaLaHQffPLhcLlyu8odxuJuM4PDA4eHh/3tB5X9mSp74r9yxnw9/3sKXS3ewe38hqfHhxIS7KSx1IxwIcOD3UjfHoRtgcyBsMQf/HgwBKNs3Q6iviFJKhxnBsONA0HEg2HCUCkKskpveCkOUgwOXCv6uKMw5uHlFMMxxOu39HjJ4qChcOGTYEag4CKmg2cfBHYWGQhYOLHPI80j58xf6vdQ5LHtu+N1z53E4cDkcuJ0HzpPb6SA8VBPjQIgRWSroCPc4CXM78LoO/PS6HKFtlH5fHMHCUj68UqAhIiIiInLyOG5DEjn5GWPYX+Bjztq9TFqwmZ/W7yNgDK3T4rn3vMZ0qJdEhNd5UI2H4I162eYVB+YZ/AHwBwKHrgVhKg4MStdSCP0sN610TYeDlzH4A+VrO4TWK9lGcF+F/kCpcOdAyFP27/LTTakwIhg2BEOD0oGC/TvlarsEX2FuOxBwV1SjxmnhPiiwcZeeVyqMKLNsqe25nQdCBnuf5cOHsr87ytXGqeinIxRIBadB6eiidJOs0vGFwgwREREREfk9CknkqArW4NiWlc/nv25nys9bWbMrh/gIDxe1rM6lrVJpWiMGj/PEaAJ1cM0JU+qXg5u8mFITg7VbygY9dhhycPgT6siTsjVpoHQAUj5AODhsKDu/VMFKanmU+lO1JkRERERE5G9JIYkcFcbYw5Eu25rNB4u2MH35TjLyiqiXEsWIcxvRs3lVqseGh5pcnCgOLuuhOpY9zEQRERERERE5TigkkUpljCErv5jvV+9h0oLNLNyYgcOyOL1OAn1Pq0m7uolEh7lOqGBERERERERETk4KSeQvF2w2smlfHp8u2cbUxdvYsDeXpCgv/U6rSe9TU2lYNRq301I4IiIiIiIiIscNhSTylzHGUOgL8MvmTCYt3MLMlbvYX+CjUbVo/tWrCd2bVqFKTFhoRBMRERERERGR44lCEvmfGWPYl1vEzFW7mLRgC79sycTjdNChfhKXtalJ29oJRHicCkZERERERETkuKaQRP4UUzLCyvo9uUz9ZRuf/LKNLRn5VIsLY2D72lx8ag3qJUfhdKhJjYiIiIiIiJwYFJLIH2KMIb/Yz8KNGUxasIXvf9tNfrGf5jViGdY5nbMbVyEpygOoSY2IiIiIiIicWBSSyO8yxgCwe38hX6/YyeSFW1i2LZtwj5PODZPp26Ymp9aKI9ytJjUiIiIiIiJy4lJIIocUbFKzelcOU37eyue/bmdHVgE1EyIY2jmdC1tUp3ZSBE5LTWpERERERETkxKeQRMoxxpBb5Gfe+r28v2ALc9bsocgf4NSa8fzjnAZ0bpBMQqRHwYiIiIiIiIicVBSSSEjAGHZkFfDVsh18sGgrq3bsJzrMxblNq3JZm1ROSY3D63IoHBEREREREZGTkkKSvzljDMV+w8od2XywcAvTlu9kb04hdZIiua1bfc4/pRqp8RE4HQpGRETk5ODz+cjKysLr9RIZGVlh+G+MIRAI4PP5cDqduFxlL5kCgQD79+/H5/MRExODy+XSQwQREZGTgEKSvyljDPsLfMxeu4dJCzbz0/p9GAOn1U7gsl6N6VAvidhwty74RETkpJKVlcW///1vli5disPh4Oabb+aiiy4q9303Y8YMRo8ezZo1a7jrrrvo27cvUNIkNTeXZ555hh9++AGHw0Hr1q156KGHcDqdx+KQRERE5C+kkORvxBhDwMC2zHw+/3U7U37eytrdOSREerjk1Br0aZVKk+qxuJ3qiFVERE4+xhjGjRvH9u3bmThxIitWrOCOO+6gTZs2pKamllk2LCyM3r1788Ybb7Bv374y815++WV27NjB22+/TUREBNnZ2TgcjqN5KCIiIlJJFJL8DRhjKPIFWLoti8kLt/D1il1k5hVRPyWakT0a0aNZVarHhWOBwhERETlp+Xw+PvvsM4YMGUJSUhLt2rUjJSWFefPmlQtJ2rdvjzGGjz76qMz0rKwsPvzwQ55++mlWrlxJTEwMTZs2PYpHISIiIpVJIclJyhgDQGZ+Md//tptJC7awcGMGTofFGXUT6NumJu3SE4nyqg21iIj8PRQWFrJz505q1aqFZVm4XC5SU1PZsGFDuWUtywp9l5a2e/dutm3bxiOPPEKdOnVYuXIlp512Go888ghutzu03M6dO5k3bx7GGAoLC8nOzq7MQxMREZG/iEKSk0ywSc2mfXl88ss2pv6yjQ17ckmJ8XJF25r0bpVKw6rRuBxqUiMiIn8vxhiMMWWaxjidTnw+3xFvw+fzkZOTw4ABA7j88svZsGED559/PgMHDqRJkyah5fbu3cv3338f6vw1Nzf3Lz0WERERqRwKSU4SxhgKfQEWb85k0oLNzFy1m5wCH42rRXPfBU3o3qQqKTFeNakREZG/LY/HQ2xsLHv27AmNXrNr1y7at29/xNuIiYkhLi6O5s2b43A4qFGjBtHR0ezatatMSNK4cWOefPJJAPLy8rjkkkv+8uMRERGRv55CkhNYsBrw3twiZq7cxaSFW1iyOROv28mZ9RLp26Ymp9VOIMLjVDAiIiJ/ex6Ph/bt2/Pll1/StWtXtmzZwvr162nTpg1+v5+VK1dSu3ZtIiMjQzVAAoEAfr8/NBRwcnIyzZo1Y9GiRTRt2pSNGzeSm5tL9erVy+yr9PeuvoNFREROHApJTkDGGPwBw7o9uXy8eBufLtnG1ox8qseFc22HOlzcsjrpyVE41aRGREQkxLIshg4dyuDBg7nqqqvYtWsXvXv3pkGDBuTn5zNo0CBeeeUVWrVqxQ8//MDzzz/PL7/8wtq1a5k9ezaPPvooaWlp3HPPPYwYMYIZM2awceNGrrzySurWrXusD09ERET+AgpJTiDGGPKL/CzYmMH7CzYza/UeCor9nJIay41d0unaqApJUR4FIyIiIoeQlpbG+++/z6pVq4iJiaFBgwa4XC4iIiKYMGECVatWBaBly5Y89thjofUsy6JatWpYlkW7du2YNGkSa9euJTk5mfT0dFwuXVKJiIicDPSNfgIIGMPu/YV8vXwnkxdtYfm2bCI8Tro2SuGy1qmcWiueMLdD4YiIiMjvsCyLhIQE2rVrV2a6w+Ggdu3aob9jYmKIiYk55DaqVatGtWrVKrOoIiIicgwoJDlOGWPwBQyrd+5nys9b+eLXHezILqBWQgQ3dEnnghbVqZ0YicNSW2cRERERERGRv4JCkuOMMYbcQh8/rt/H+/M3M3fdXnx+w6m14rjz3AZ0bpBCfIQbUDgiIiIiIiIi8ldSSHIcMMZggB1ZBXy5bAcfLtrCqh37iQ13c16zavRpk0rzGrF4XWpSIyIiIiIiIlJZFJIcQ8YYiv2GFduz+XDRFqYt28ne3ELqJEVyR7cG9DqlGqnxEWpSIyIiIiIiInIUKCQ5RnyBADNW7OLdeZuYv34fBmhbO4HL2jShQ/0kYsLst0bhiIiIiIiIiMjRoZDkGDEG3l+wmRXbs+ndKpVLW6fSpFoMbqelYERERERERETkGFBIcoy4HBb/PK8xHreTajFhWGpSIyIiIiIiInJMKSQ5RizLok5y1LEuhoiIiIiIiIiUcBzrAoiIiIiIiIiIHA8UkoiIiIiIiIiIoJBERERERERERAQ4TvskMcawb98+vvnmGwoKCujSpQs1a9Ys17GpMYZ169Yxe/ZswsLCOOuss0hKSsKyLIwx7N+/n1mzZrF161bq1KlD586dcbvd/PLLL2zZsiW0nQYNGlC/fn11nCoiIiIiIiLyN3ZchiT79+9n8ODBJCUlERcXx+uvv8748eNJS0sLLWOMYdGiRQwbNozu3buTlZXFuHHjGDduHAkJCWRmZnLjjTcSGRlJ48aN+frrr2nVqhUJCQn85z//ISMjg4YNGwLg8XioX7/+sTpcERERERERETkOHJchyXfffUd2djbjx4/H6/Vy88038+6773L33XeXqe0xduxYzj33XEaNGoXP5+Pyyy/n888/58orr+Sdd94JBSJutxtjTJl1r7rqKi677LJjcXgiIiIiIiIichw67vokMcYwb948WrduTXh4OA6HgzPPPJP58+fj9/vLLLd3716qV6+OZVm43W6SkpL48ccf8fl8TJs2jZSUFG6//XYGDhzIF198QSAQCK0/depURo0axSeffEJBQUGF5fD7/fh8Pvx+P8aYo3L8IiIiIiIiInJsHJc1Sfbt20dqaioAlmURFxdHVlZWmZDDsizatm3LJ598Qq9evcjOzmb27Nm0aNECn8/Htm3b+PTTT3n88cfJycnh7rvvJikpibZt23LOOefg8/kAeO6555gzZw6PPPIITqcztP09e/Zw1113kZ2djTGGX3/9lSuvvPLonggREREREREROWqOy5AkLCyMwsLC0N+FhYV4PJ4yzWUsy2LgwIFs2bKFQYMGkZCQwCmnnEJkZCQOhwOPx8PFF19M165dMcbw5Zdf8vXXX9O2bdsyYUfr1q3p168ft912G9WqVQtNj4uL49577w3VInnggQeOyrGLiIiIiIiIyLFxXIYkDRs2ZObMmQQCARwOB6tWrSI9PR2Xq2xxY2NjeeKJJ8jPz8fhcDB06FDatm2L2+2mQYMGoZohlmXhcDjK9UsCEB0djTGG4uLiMtOD2wAIBALExcVV3gGLiIiIiIiIyDF33PVJYlkW3bp1Y9WqVXzxxRf89NNPfPzxx/Tp0wfLshgzZgyffPIJxhh2797NTz/9xI4dO3j33XfZunUrF154IZZlcfnllzN16lQWLFjAd999x5w5czj77LPJz89n6tSprFq1ihUrVvDUU0/RuHFjqlSpcqwPXURERERERESOoeOyJkmdOnV46qmneP311ykuLuaWW26hQ4cOgN30pqioCIC8vDxee+01MjIyqFmzJq+88gopKSlYlsU555zD7t27eeyxx3C5XNx33320bduWoqIi5s6dy1tvvYUxhsaNG3Pvvffi8XiO5SGLiIiIiIiIyDF2XIYklmXRtWtXOnfujDEGl8sVaiYzZMiQ0DK1atXijTfewO/3h5YJLud2uxkwYAD9+/fHsiycTieWZREWFsajjz4a6rg12ITn4GY4IiIiIiIiIvL3clyGJGCHFgf3QRKcXvp3p9NZZlSag5d1u90Vrn/wdBERERERERH5ezvu+iQRERERERERETkWFJKIiIiIiIiIiKCQREREREREREQEUEgiIiIiIiIiIgIoJBERERERERERARSSiIiIiIiIiIgACklERERERERERACFJCIiIiIiIiIigEISERERERERERFAIYmIiIiIiIiICKCQREREREREREQEUEgiIiIiIiIiIgIoJBERERERERERARSSiIiIiIiIiIgACklERERERERERACFJCIiIiIiIiIigEISERERERERERFAIYmIiIiIiIiICKCQREREREREREQEUEgiIiIiIiIiIgIoJBERERERERERARSSiIiIiIiIiIgACklERERERERERACFJCIiIiIiIiIigEISERERERERERFAIYmIiIiIiIiICKCQREREREREREQEUEgiIiIiIiIiIgIoJBERERERERERARSSiIiIiIiIiIgACklERERERERERACFJCIiIiIiIiIigEISERERERERERFAIYmIiIiIiIiICKCQRERERP5GjDHs27eP2bNns3TpUoqLiytczu/3s3fvXn777TcyMzMrXCYvL4/ffvuNvLy8SiyxiIiIHE3HZUhijKGwsJBff/2VhQsXkpOTgzGmwuWys7NZuHAhv/76KwUFBWWW8/l8rF69mrlz57J+/Xr8fn9ovZ07d/Ljjz+yYcMGAoHAUTs2EREROXY2btxI3759efnll7n11lt57LHH8Pl85ZZ755136NGjB507d2by5Mnl5vv9fp555hnatWvHwoULj0bRRURE5ChwHesCVKSoqIiRI0eyfPlyIiIicLlcvPbaayQmJpZZbuPGjQwbNoyoqCjy8/NJS0vj6aefJiIigvz8fB566CEWLVpEtWrVKCgo4IUXXiApKYkFCxZwxx13UKtWLTZu3MhNN93EFVdcgWVZx+iIRUREpLIZY3jttddo0aIFTzzxBFu3buXiiy+mT58+NGnSpMyyXbt2pUOHDtx9993lQhRjDPPmzWP58uVUr15dD1tEREROIsdlTZIff/yRn376iXfffZf33nsPp9PJpEmTytQSMcbw3//+l7p16/Luu+8yYcIE1qxZw4wZMzDG8PHHH7N27VomTpzIm2++yZgxY0hMTMTv9/Pkk09y5ZVX8vbbb/PEE0/wn//8h3379h3DIxYREZHKVlRUxOzZszn33HNxOp2kpqZSt25dFixYUG7ZmjVrUqdOHTweT5npwVqszz33HLfffjvh4eEV7ssYU+YlIiIiJ4bjriaJMYYffviB0047LVRzpHv37kyfPp3rr78ep9MZWm7dunV06dIFt9uN2+0mPT2dmTNn0qNHDz788EPat2/P22+/TUFBAeeddx6NGzcmMzOTlStX8sgjj+B0Ojn11FMBWLNmTZmaKrqgERERObkUFRWRnZ1NUlISlmXhcDhITk5mx44dR7wNYwxvvPEGrVq1okWLFodcbvny5bz55psEAgF8Ph/bt2//Kw5BREREKtlxF5IA7Nixg2rVqgFgWRYpKSns2bMHv98fCkksy6JBgwbMmTOHq666iry8PH7++WfS09MpLi5m/fr1rF69mmuvvZbCwkKuuuoq3nvvPdxuNwDR0dEAeDweoqOj2b17d5kyZGZm8uKLL5KXl4cxhgULFtC/f/+jeBZERETkr2RZFpZllWke4/f7cbmO/HJoxYoVfPnll7z88svs27cPn89HVlYWhYWFeL3e0HJJSUl07do11M/a/Pnz/9JjERERkcpxXIYkDocj1MkqQCAQwOFwlOkzxLIsrr/+em666SYuueQSvF4vUVFRuN1uLMvCGEOvXr245ZZbCAQCrFy5kk8//ZRLL720XNXXQCAQCl+CvF4vrVq1orCwEICff/65ko9aREREKpPX66Vq1aps2rSJ1q1b4/P52LJlCz179jzibWzevJmcnBxuvvlmjDGsXbuWRx55hJiYGLp06RJarkqVKvTq1QuwR8F57bXX/urDERERkUpwXIYktWvXZtmyZaEgY+PGjdSoUaNckFGjRg3ee+89duzYQUREBKNGjaJu3bq43W7S0tJISUkBCFWnzcrKIi4uDpfLxd69e6levTq5ublkZWWFaq4ERUREcP755wN2iDJt2rSjcOQiIiJSWVwuF+eddx7vvvsuHTp0YMWKFezatYu2bdtSVFTEhAkT6N69O1WrViU/P5+MjAzy8/PJyspi586dJCQk0K1bNzp27AjYzXfOOeccRo0aRYcOHY7x0YmIiMhf4bjruNWyLLp27crChQtZsWIF27dv5+OPP6ZXr15YlsW3337LggULMMaEAo4qVaqwZs0aFi9ezMUXX4zD4eDCCy/kq6++YteuXWzcuJG5c+dy+umnEx0dTbt27Xj33XfJysriiy++IC4ujnr16h3rQxcREZFKZFkWAwYMoEaNGlx++eU89NBD3HfffdSoUYPi4mKmTJnC3r17AZg7dy7XXXcd27Zt47PPPmPo0KFs3rwZl8tFZGQkkZGRREVF0bBhQxITE/9Qkx0RERE5fh2X3+jNmjVj6NCh3HzzzQC0b98+FJLMmDGD6tWr07p1a7Zu3co//vGPUF8lDz74IOnp6ViWRZ8+fVi+fDn9+/fHGMMFF1xAt27dcDgc3H333YwYMYJLL70Up9PJI488QmRk5DE+ahEREalssbGxPPPMM2RnZ+PxeIiMjMSyLCIiIpg4cWIo7OjcuTNnnnlmmXWD/ZoFuVwu3nrrLQUkIiIiJ5Hj8lvd6XQyZMgQLr/8cvx+P3FxcaGmNv/6179CfZPUr1+fCRMmkJeXR0xMDGFhYaF5kZGRPProo2RmZuJ0OomJicHhsCvO1KpVi7fffpvMzEyioqIIDw8v09+JiIiInLxcLhcJCQllplmWVWa4X6fTWa6Z78EOXkdEREROfMdlSAJ2PyJxcXHlppe+GLEsi+jo6NBINQdzOp1lhvUtvZ7H4wn1WSIiIiIiIiIictz1SSIiIiIiIiIiciwoJBERERERERERQSGJiIiIiIiIiAigkEREREREREREBFBIIiIiIiIiIiICKCQREREREREREQEUkoiIiIiIiIiIAApJREREREREREQAhSQiIiIiIiIiIkAlhyR+v5+ioiKMMZW5GxERERERERGR/1mlhiQbNmzgyiuvZPz48ezcuZNAIKDARERERERERESOS5UakqSmpnLttdcybdo0Lr74YkaMGMH8+fMpKChQWCIiIiIiIiIix5VKDUm8Xi89e/bkrbfe4u233yY+Pp4rrriC888/n7Fjx5KRkaGwRERERERERESOC5UakhhjMMawe/dufvjhB3788Ufq1q3Lueeey4wZMxg0aBC5ubmVWQQRERERERERkSPiqsyNZ2Rk8PDDD/Pjjz/SvHlzhg8fTps2bYiIiCA/P5/LL7+cffv2ERUVVZnFEBGRE5RqG55cLMs61kUQERH5S+la5eg5WtcRlRqS5Ofn06BBA2699VZq1qyJw+EIHVh4eDj/+c9/qFKlSmUWQURETlDGGHJzc8nOzsbv9x/r4sj/wOFwEBkZSUxMDA5HpVZiFREROWqMMRQUFJCZmYnP5zvWxTlpORwOoqOjiY6OPipBSaWGJImJiTRq1IgaNWrgdDoB2LZtGzt27ODUU08lPT29MncvIiInsIKCAnbs2EFsbCwRERHHujjyP/D7/ezbtw+/309CQoJqlIiIyEnB5/Oxbds2IiMjiY6OPtbFOWn5fD527dqFw+E4Kq1QKjUkWbFiBaNHj6ZDhw6habm5uTzyyCO89957eDyeyty9iIicoIK1SCIiIkhKStJN9QnOGIPb7Wbfvn0kJCQc6+KIiIj8JQoKCnA6naSkpKimZCUyxuD3+8nNzSUyMrLSrwsr9Z3MyMggJiYmVIsEIDY2lry8PIqKiipz1yIicoIzxuiC4yRhWRZOpzPUobuIiMjJIHitooc5lc/pdBIIBI7Kvir16rN27dr8+uuvLF++nOLiYvLz8/n4449JTEwkLCysMnctIiJy3PD7/ezYsUPtlUVEROS4ZIzB5/PpYQaV3NwmLS2Nyy+/nKuuuork5GQKCgqwLIsXX3yxTO0SERGR45Uxhg8++IB58+YBEAgEQjVc4uLiuPXWW3+3fWxWVhZXX30148aNo1q1an9o/wUFBbzwwgs0adKEXr166WmViIiIlGGMYcOGDSxbtqzcPJfLRfv27YmJiTnsNnw+H//4xz8YNmwYTZs2PeJ9L1myhMjISOrWrXvSXKNUakjidDoZNmwYPXv2ZN26dYSHh9OkSRPi4uJOmhMoIiInv/r16+P1eiksLOTee+9l0KBBNGnShLCwMNxu9yGfugS/66Kjo3nqqafK9Mdx8DoVfS8aY1iyZAkvvfQS6enpdO3atUwntofaxpFsu6J9HUrp9f/MtkVERKRybdmyhe+++w5jDJ9++im1a9emefPmeDweTjnllN8NSRwOB+3atSM+Pv4P7ffll1+mXr16DB8+/H8p/nGlUkMSYwyBQADLsoiPj8cYw9q1a4mOjqZBgwa6sBIRkeOeZVm0aNGCFi1akJuby1NPPcWZZ57Jaaedxrhx43C5XEybNo1OnTrRuHFjJk6cyJYtW0hNTeXqq6+mevXqFBcXs3DhQtLT0yksLGTixImkp6fz2WefER8fz+DBg6lSpUqF34sffPABAwYM4IcffmDx4sW0b98egLy8PKZMmcJPP/1EREQE/fv3p3nz5mRlZfH+++/z66+/Eh8fz7XXXkt8fDyTJ0/m6quvxuv1smvXLj7//HOuvPJKtm7dyqxZswgLC2Pu3LnceuutbNy4kWnTprF//37atGnDZZddRkRERCi0+eCDD8jIyKBVq1b07t2b999/nz59+oS+62fOnInL5aJjx476rhcRETkKOnToQIcOHQgEAmzatIlzzz2Xa6+9lqVLl2KMYfr06URERNC6dWuWLFnCunXriI+P54wzziAmJgbLsmjWrBlRUVH4/X6WLFlC1apVWbhwIZZl0bFjxwqH4K3oIYsxhsLCQubPn8+2bdto0qQJTZo0wel0UlhYyIIFC9i4cSOJiYm0bduWuLg4du7cyU8//URBQQH16tWjZcuWx6z1SaWGJEVFRdx333189913bN26lWrVqrFhwwZ69+7Nyy+/rCY3IiJyRIwx5BT6KPJVTodd4R4n4W7nH7qhLyws5KmnnqJt27ZceeWV1K1bl23btpGWlkbbtm2ZNWsWd9xxB+PGjSMvL4/XX3+dHj16EAgEeOihh7j44ovp1asXH3zwAaNGjeKll14qt/+MjAy+/fZbRo8eTVRUFB988AFnnHEGxhhGjRrFqlWrGDx4MAUFBezZs4eioiJuu+02nE4n/fr1Y9++fezbtw+Hw8Hrr79Ov3798Hq97N69mzfeeIN+/fqxYcMGRo4cydChQ+nZsydRUVFs3bqV9u3b43K5GDNmDFlZWdxyyy388ssvDB48mOuuu46OHTuyadMmAL799luio6Pp168f+fn5PP7449x7771/6XtUkaKiIgoKCoiOjqagoIB58+YRHx9Ps2bN1OmviIgcVcYY8ov95Bf5K2X7HpeDKK+rwmuVQ12/GGMYPnw4Docj9MAnLCyMt956i2rVqrFmzRrGjBnD6NGjcbvd3HXXXTz00EM0a9aMIUOGULt2bRo0aMCyZcuYOnUqL730Em63+3fLWlxczL333svKlStp2bIlzz33HDfddBP9+/fnxRdf5Ouvv6Zdu3bMnTsXy7Jo06YNV199NfXr1yclJYUffviBhx9+mNjY2P/5vP0ZlRqSrFy5kmXLlvHSSy/x8MMPM2bMGCZPnszWrVv1ZElERI6YAR77YiVfL99ZKdu/vmNdBnes84fXc7vd3HHHHbRq1QqAWrVqUVBQwIoVK/B4PCxZsoQ9e/aU66w8MjKS4cOHU7NmTapWrcrNN99MYWEh4eHhoWWMMfzwww8kJCSEal9ee+217Nu3j6KiIr788ksmT55Menp6aJ2lS5eydOlSpk2bRlJSUujpTjDMOJSaNWty5513EhUVhTGGc845h2+//Zbt27eTkpLCV199xQ033MD48eM577zzGDZsGA6HI7T9/v3788Ybb9C7d29+/vlnfD4fp512WqV+1wf7itm1axe33HILL7zwAh999BE+n49nnnlGtVhEROSoe/enTbz+/bpK2Xa3xlV4+JJm/NFvtuLiYvr06cMNN9yAZVkEAgFGjRrFtm3byMnJYfjw4axatYpmzZqVGT3G5/Nx9dVXc8EFF7B582YuueQSMjIySElJ+d19rlq1ipkzZ/LZZ59RrVo1vv32W+69914uuOAC5s2bx5VXXkm/fv1wuVwYY1i9ejVZWVnce++9VK9e/ZiPcFipIcnevXupW7cuycnJFBcXExYWxgUXXMB1111Hfn4+kZGRlbl7ERE5SVhAk2oxFPsrpyZJWmLE7y9UgfDwcJKTk0MXHY8//jgLFy7k7LPPJjIyEmMMBQUFFYYksbGxWJZFWFgYgUAAv7/skye/38+ECRMoLCzk6aefpqioiB07dvD999/TpEkTLMsq10Rn7969xMTEhJ68HO7JUunfU1JS8Hq9AOzfv59rrrmGWrVq0bx5c6KiosjJySEQCLBt2zZ69OgR2m7wZ8eOHXnqqadYvnw5EydO5MILLyzTd0plWb58OS1btiQ/P59vvvmGsWPHsmjRIj7//HM6duxY6fsXEREpLS0xks4Nkytl202qx/zhgATsjltPOeWU0MONuXPncu+995KSkkJERATbt28nIyOj3Hper5eGDRtiWRbR0dG43W4KCgqOaJ+bNm2iWrVqpKSkYFkWjRs3pqCggOzsbAYPHswTTzzBpEmTOOOMMxg8eDC1a9fmrLPO4qqrriItLY1LL72U8847D5erUuOKQ6rUvVavXp2MjAxiYmIoLCxk0qRJ7N27F6fTeUTVdERERIKuPL0WV55e61gXo4zSIURxcTEzZ87kmWeeoU2bNqxbt47nn3/+d9c7lM2bN/Prr79y0003ER0dDUDfvn2ZNGkSTz/9NGB30taoUaPQOikpKWRmZrJ3716qVq0aCkNcLhd+v5/CwkKioqLYsWMHhYWFZcoTLNOmTZvIysriqaeeIioqinfeeYfZs2djWRa1a9cOtW22LCu0/ejoaM477zxefvlllixZwh133HFUanFERESwbds2li1bhtfrJS0tjbVr15Y5NhERkaOlW+MUujX+/ZoWR5NlWWVqZbz11ltceeWVDBo0iKKiIrp3715hvyKlrw3+qOjoaHJyciguLsbpdJKTkwNAWFgY55xzDu3atWP9+vU8//zzPPbYYzzzzDM8+uij7N69m0WLFnHvvfdSo0YNWrdu/ecO+n9UqSFJ3bp1GTx4MJGRkdx///289NJLuFwu7r//foUkIiJyxE6EZhMul4sGDRrw6quvcvbZZ/PFF19QVFT0p7ZljOGLL76gSZMmDB48OPQkpWPHjlxwwQXk5eXRp08fbr/9dq666iry8/OpUaMG55xzDmeeeSY333wzl156KXv37qV169aceuqp1KhRg8cee4wWLVrw0UcfhfZ18LlNSUmhuLiYV155hfj4eCZOnBiad9VVV3HttdfyyCOP0KBBA7Zs2cLQoUOJioqid+/edOnShW7dulGr1tEJs84//3yGDRvG2LFjueWWW/B4PPz88880bNjwqOxfREQk6ES4VgGIjY1lxYoVrF+/nm+++YZVq1b9z9vcsmULCxcuDP2dlpZGIBBg3LhxdOnShZdeeonTTjuN2NhYPv74Y2rXrk10dDSJiYkUFBSwdetWFi5cSNOmTUlJScHtdpdp+nO0VWpIsn79ejZv3kynTp3o0KFDqEd+h8NxwnyIREREgjweDyNGjCA9PZ2wsDBGjhwZGtbX4XDw6KOPMmHCBNatW8fNN9/MJZdcQnJyMl6vl5EjRxIXF4cxhpEjR4aa4FSpUoXhw4eHmrsENWzYkPbt25fp5LxGjRo8+OCDuN1uhg8fzqmnnsq8efOIjo6mYcOGuN1unnjiCT7//HN+/fVXkpOTSUtLw+v18uKLL/L++++ze/du7r//ftavX4/b7aZ+/frccMMNoadMycnJ/Pe//2Xq1KkUFBTwn//8hw0bNuB0OmnUqBHvvPMOn3zyCStWrODUU08NHUe1atWoVasW/fv3Pyodswd74Z8yZQp5eXmkpqYSCATo168fSUlJus4QEZG/JcuyaNeuHXXq1MGyLDp16kRSUlJo/m233cZDDz3EiBEjOOOMM7j55ptJSUnB4XDQqVMnEhIScDqddO3aNVST1ePxcPbZZ1fYlLZ169Z89913vPDCC6H9jxw5kldeeYXnn3+eL774gkaNGvHvf/8bp9PJjh07GD9+PMXFxdSpU4e77roLp9PJ9OnTGTNmDG63mxtvvJGWLVselfNVEctUVLfmLzJ//nzeeOMNXnnllRO6l/lAIMCwYcPo378/Xbp0OdbFERE56Rlj2LNnD36//5BD4x6PDv5KrexyH2p/padXNO33yna4ZSu6bNi5cyfTpk3j7bffZsqUKaGLqtJyc3PZtWsXaWlpoWsCYww33HADl112GWefffYhy3OoMq5fv55t27Zx5plnsmLFCp588klq1KjBiBEjjlmP+BXJy8vj4osvZty4cVStWvVYF0dERP4i2dnZZGZmUrNmzePmWuVQt/elrweMMfh8viNq3VG6eW3p7fze/oLzKtqP3+8nEAiUm15cXIzD4cDpdJa79ti7dy/FxcVUrVo1NC/4/Tp27FiqVav2u8dypCo1uahXrx579+5l7NixLFmyhGXLlrFs2TI2bNhw2JMpIiJyIgq23/1f2vH+Ffv7vWm/V7bDLVvRvK+++orp06fz8MMPExUV9Rce4eFNmTKF5cuX4/f7efzxx6lXrx5btmxh4sSJus4QEZG/pYO/pyu6HnA4HHg8nkMue/B6h7t+ONy6h9qPy+WqcLrH48HlqniY46OpUpvbZGZmsmfPHv7v//6PsLCw0MG2bNmSZ5999qhUxxUREZHKdfXVV3PVVVcdtXAoaN++fdSpU4eMjAy2bdvGc889x4IFC/jss8+OWhlERETk5FKpIUlaWlqFFyoOh+OEbn4jIiIitoOHAz6a6tWrx9SpU1m9ejU1a9YkNjaWffv2HdXaLCIiInJyqdSQJD8/n0WLFpXrmTYuLo5TTjmlMnctIiIiJzHLsujduzfr1q3jt99+Y8SIEViWxa5du+jateuxLp6IiIicoCo1JNmzZw/PPfdcaAjE/Px8VqxYQe/evXn++eePeVsjEREROXHFxMTwwAMPkJGRwf79+9m3bx833HDDcdGeWURERE5MlRqS1KpVi4kTJ4b+DgQCTJ8+nTlz5vxuL7gFBQUsWbKEwsJCTjnlFGJjYyvsSXffvn0sW7YMj8fDKaecQnh4OJZlsWfPHrZv3x5aNjo6mrS0NMAexzkzMzM0LyUlhZSUFF1QiYjIX8YYQ2FhIR6PR01MK0lBQQHPPPMMU6ZMCfW+36NHD+69914iIyOPdfFERETkBFSpIUmw59rSWrduzUsvvURBQcEhL2AKCgq4/fbb2bZtG1FRUezfv58333yTlJSUMsutWbOGIUOGULNmTXJzc4mJieHFF18kKiqK9957j9GjR9OkSRMAWrVqxZ133ollWTzwwAOsXr2aGjVqAHDppZdy6aWXVsIZEBGRE50xhlmzZpGYmEiTJk1Cgbrf7+err76iadOm1KpVq9x6RUVFDB06lLvvvpvGjRtXuN1ffvmF9evX06tXLzweT6Ufy8nEGMPnn3/OTz/9xJgxY6hWrRq7d+/m3//+N5MnT2bAgAF6+CEiIn8Lxhj27NmD3++nSpUqZYb73bFjB263m8TExHLfi4FAgNGjR3Pqqady2mmnlZmXl5fHrl27qFWr1t/uYU+lHu3+/fv54osv+PTTT/n000/5+OOPeeSRR0hISDjsxeCcOXNYunQp48aNY8yYMcTFxZUbzs8Yw+jRoznllFN48803GTduHDt27ODrr78G7IvX8847j3feeYd33nknFJAA+Hw+brrpptC83r17V+ZpEBGRE9zixYt5+OGH8fv9oWmbN29mxIgRFBYWVriOMYbNmzdTUFBQ4fzi4mLuu+8+brzxRlauXFkp5T7ZLV68mCuvvJLmzZuTlJRE48aNufbaa1m8ePGxLpqIiMhRNXPmTIYMGRLq6gKgsLCQwYMHM2vWrEOuN3v2bDZu3Fhu+sKFCxk4cGCZ7f1dVPoQwOPHj6e4uBiwR7Vp0KABI0aMKFfDJMgYw+zZs2nbti1xcXEAnH322XzxxRfceOONoWGDjTFs2rSJzp0743Q6iYiIoHbt2nz33XdcdNFFAKxevZrx48dTu3ZtTjvtNMLCwkL7mTdvHsXFxTRp0oRTTjmlXHkO1xxIRET+PizLolevXvz3v/9l8+bN1KlTB2MMX375JY0bNyY5OZkvvviCtWvXkpiYSLdu3UhKSvrd7a5Zs4Zdu3Zx6aWXMmXKFJo3bx5qMrJ582a+/fZbcnJyOPXUUzn99NOxLIvVq1cza9YsiouLad++Pc2aNWPevHnUrl2bqlWrEggEmDt3Lg0bNiQ+Pp5Zs2ZRo0YNfvzxR9LS0mjRogXff/89GzZsoGrVqnTr1o24uDgsy6KgoIAffviBlStXkpycTPfu3Vm/fj2xsbHUrVsXy7LIyspi4cKFdOzYEbfbfRTO/uGlpaUxY8YMunfvTkxMDLm5uXzzzTcV1uwRERE5WVmWRceOHXnkkUf47bffaNasGZZlsXLlSrZu3Ur79u3ZvXs3W7Zswev1Urdu3TL3xhXx+/0UFhaWuy82xpCRkcGGDRuIiYkhLS0Nt9uNMYbMzEzWr1+Pw+GgZs2aJCQkEAgE2Lx5M7t27SIuLo60tDS8Xm9lno7/WaWGJKmpqYwdO7ZM9ZwjCR927dpF9erVAfsNT05OZu/evfj9/lBIYlkWTZs25bvvvuOKK64gJyeH+fPn06BBA4wxpKWlsWXLFjZt2sSYMWNo1KgRzz77LF6vl5YtW7Jv3z5WrVrF888/T//+/bntttvKlDMjI4MnnniCnJwcAObOnUv//v3/ytMjIiJ/hAnA/u3gLy473XJAdDVwuqEwB/L2lF/XGw3hCYCB/TvAX+qpiDsCIpPhME0z0tLSaNq0KV988QU33HADhYWFfPjhh1x//fWsW7eOWbNmkZqaypw5c5g8eTJjx4495MMAsL8LP/74Yzp06EC/fv24/fbbuf3224mNjWX58uVcf/31dOjQgdTUVL766itatmzJvHnzuOuuuzjvvPOIiYlh+vTpNGrUiGeeeYbrrruOnj17EggEePTRRxk5ciSnnXYad955J9WrV6dLly5Ur16dJUuW8NNPP1G9enWmT5/O1KlT+e9//4vD4eDee+/lt99+o3v37ixdupRatWqxatUqvvvuO0aPHo3D4eDjjz9m+vTpdOrU6Q++eX+94Og2M2bM4NxzzyUxMZGMjAxSU1MZOXKkmtqIiMjRZwzk7obivINmWBCVAu5w8BXa1yIcdF/sCreXgfLbcLrtax3r0A1BqlSpQrt27fjoo49o1qwZxhimTJlCp06dKCgoYOTIkXg8HjIyMoiLi+Pll18mKirqDx6e4eeff+aOO+6gSpUq7N69mzPPPJP77ruP7du3M2jQIBISEnA6nVSvXp0nn3ySt956i3HjxlG7dm2ys7O55ZZbOPvss//Qfo+2Sg1Jdu7cyfPPP8/9998fSqqWLl3KF198wfDhww95AeNyufD5fKG/fT5fuZ7qLcti8ODB3HHHHVxyySVERkaSkpKC1+vFsiwuuugiLr74YgAGDhxIjx49WLZsGa1ateK2224Lbeu8887j+uuv56qrriI5OTm0/fDwcHr27ElxcTHGmAqrIImIyFHkL4KJA2DPqrLTvTFw7RcQnwarp8Ent1PuwqP1tXDOKPvC5P1rYPeKA/Pqd4dL3zjsrp1OJ3379uWVV17huuuuY8WKFezevZsuXbqQkJBAYmIi69ato2bNmjz44IOsXr26wn5IgnJycvj88895/PHHadasGWFhYcybN49u3brx2muv0b17d+67775QzZJAIMDzzz/PsGHDuPbaawH7QqWiBw8HN00dOnQovXr1sk+h30+NGjXYsGED1apV48EHHww1Cfr222/57LPPqFq1amjdOnXq8Prrr7Np0yaqV6/OpEmTuOGGG0IPLI61+Ph43nzzTVauXMnu3btJTEykoKCAFStWUKVKlWNdPBER+Tuadg/8Nq3sNMsJl78Ltc+Encth/KVlH9gA1OkEfcfZQci0f8JvXxyYl9QABn4O7kPX/rAsi759+/Kvf/2L22+/nUAgwJdffsnTTz9N9erVee211ygqKiI3N5dbb72VH374gR49evyhQ/P7/Tz22GP06dOHG264gZ07d3LxxRfTq1cvtm/fTlxcHOPGjcPj8ZCfn48xhqlTpzJ8+HDOP/98fD7fCdFio1JDkt9++42MjIwy1WmSk5P57rvvuPnmm4mIiKhwvbp16/Lzzz+HTuD69eupWbNmuYuyKlWqMGbMGPbu3UtYWBj33HNP6KK0dK2QxMREoqOjyczMxLKsMmFLamoqgUCA3NzcciFJly5dALtDm8mTJ/9vJ0NERP43lhOa9YacXWWnu8LsoAQgsR6cNsh+klNazdPtnw4XNL0EctofmJfc8Pd3bVl06tSJhx9+mGXLlvHxxx/TuXNnEhMT+fzzz3n00Udp0qQJkZGR7Nu3j/379x9yW8YYFi5cyLZt21i/fj07d+4kMTGRiRMn0qlTJ9avX0/37t1D31eWZZGfn8/27dtp2bJl6DvMsqwyfaRUxOv1kp6eHgpb3n//fV5++WWaNm2K1+slOzubnJwctm3bRvXq1UlOTi6z/ZSUFNq3b88nn3xChw4dyMzM5MwzzzxuamlYlkVYWBgtW7YMTXvnnXfYvHlz6DtcRETkqKrXDWJSy077//buO06q6v7/+OtO39mZ7X2XIh2kCAhG8lVRUERNVBQxarAbxRIFYyHoD2PUqDESa+yxomLvvWJXighSpJdlKbtsn51y7++POzu7S4sxwAzwfj4ew7S7d869O+zc+55zPsdwQIY9UoJAPgw8A8zNPsNzO2OXDDWgy7CW5cHu8erY/hcUhmEkiq9+++23RKNR3G43AwYMYMOGDVxxxRWsXr0aj8eTGIbz32poaGDp0qVMnjwZl8tFSUkJvXv3Zu7cuQwbNoy7776b008/nSFDhnDcccfRvn17jjnmGG655Rbeffddhg8fzhFHHIFlWSlzLLE1OzUkcbvd1NbWEovFcLlcWJZFXV0dsVhsmzvFMAyGDRvGI488wsyZM8nJyeGll15KFF598803ycjIYMiQIdTW1lJZWUlWVhZfffUVP/zwA1dffTWWZTFr1ixKSkrweDy8/fbb1NbW0rVrV5qamvjhhx/o2LEjpmny2GOPUVxcvMXMOSIikmIcLvjVuO0vU9TXvmx3HRf8opfPycnh0EMP5dFHH+Wrr77itttuA+Dpp5/moosu4uSTT6a+vp7PPvtsu+uxLItp06ax77778uOPdo+WsrIy3n33XdavX09OTg6rVq1qs7zb7SYYDFJeXp44sGj+IsHtdhMKhbAsi3A4TE1NTeJnW38xYJomTz75JJMmTWLEiBFUVVXx8ccfY1kWubm5VFZW0tjY2KbrrWEYnHzyyVx99dX89NNPjBw5koyMjF+0/0RERPYKfU/e/vMZpXDYNf9hHWN+0UsHAgGOPvponnnmGWKxGL/5zW/w+/3cd999BAIBnnvuOXw+H+effz6maf7X63c4HDidzkQxV8uyaGpqwu1207FjR55//nnmzp3L66+/zu9//3teeeUVzj77bI444ghmzJjBPffcw08//cT48eN/0fbtKjs1JOnZsycVFRXceuutHH744dTW1nL33Xdz0EEHbbdQTI8ePRg/fjxXXnkllmUxYsQIRowYgWEYzJgxg6KiIoYMGUJFRQUTJkwgFAoRCAS45ZZb6NChA6Zp8sILL/DVV18B4PP5mDJlSmKq4LvvvptVq1ZhWRb5+fnccccdpKWl7cxdISIi/6uf843DTvxWwjAMTjzxRH7729/SvXt3+vfvj2EYFBYW8umnn9KtWzfefvvt/zg8c926dUyfPp0nnniCPn36APaw0pNOOon333+fU089lUmTJlFSUkJpaSmrVq3iyCOP5JRTTuHWW2/F6/WSkZHBhg0bGDFiBP3792fq1KmUlZXxxRdfsGTJkm22v7CwkA8//JD8/HxefPFFKioqAOjduze5ubnceOONnHjiiaxfv5599tmH7t2706dPHzweDy+99BLvvPNOSnzzY5rmNg/u/lPvGhERkZ0mBY5Vjj32WI499lgMw0iEEc3DXAzD4IcffuCzzz7j17/+9X9cXyQSoaKiIjEyxOfzsf/++/PEE0/QoUMHFi1axLx585g0aRLLli0jGo3St29f0tPTee2116irq2Px4sW0b9+e4cOHM2fOHJYuXbrTtn9H2akhSWZmJnfddRd///vfefXVV/F6vRx99NGcf/752z3IcjqdnHbaaYwaNYpYLEYgEEgMn2ldjK1Lly4888wzhEIh0tPTcbvdGIaBw+Fg8uTJNDQ0EIvF8Pv9iefS09O5//77aWhowLIs0tPTcTqdKXHQJyIiqcswDPbbbz8uvvhi+vTpkxgyOmHCBP7xj3/wz3/+k6FDh/LnP/+Z4uJinE4nxx577BYz3WzatIlTTjmFbt26JR5zOp1ceOGFrF69msMOO4zrr7+e5557jqamJoYMGYLD4eCUU07B7/fz5JNPYlkWRx55ZKI+V11dHXfccQeHHnooV1xxBSUlJTidTkaNGkV2dnai/ddeey233347d955J8OHD+eKK64gPz+f9PR0/vWvf/HAAw/wj3/8g7y8PC655BIAPB4PQ4cOJS0tjc6dO++ivb1906ZN49FHH93qc2vWrGHMmF/2DZyIiMjurlu3bgwdOhSn00mXLl0wDIMxY8bwxz/+kZNOOonS0lJGjhxJbm4uAO3bt0/MKttaIBDA7Xa3OXc/4ogjuPrqq5k0aVLis/aKK66gR48efPjhh9x6662JmmkXXXQReXl53HnnncyYMQOHw0FGRgZ/+ctfdtm++KUMaydWTmnu+utyuYhEIjgcDhwOB6ZpJkKL3YFpmpx//vmccsopGuMsIrILWJbFhg0biMViFBYWpvznhWmaWJaFw+HYIW1tPsDYfJ3be9w0zf/4+tv6+dbPm6aZGKYTi8VYu3Yt5513HhdccAHHHHPML96++vp61q1bR4cOHRJffFiWxQUXXMDo0aP/q0r38+fPZ+7cudt8ft9996VHjx6/qJ07Q0NDA8cddxyPPfZYojCuiIjs/mpqati0aRPt2rVLmWMVy7ISk6A0T37SfF5eV1dHMBhMHAM4HA6i0WhiGE1rpmkSibSdUdDhcOByuYjFYtTU1OD1evH7/YnXCIVC1NfX4/P5SE9PT6ynrq6OaDRKMBj8RTmAZVls3LiRSCRCUVFR4uebP18fffRRiouLf+ku28JO7UmyatUqbrzxRm6//fbE8JpZs2YxdepUbrzxxpSpji8iIvK/aF0sfEfYvMj4z3n853ymbuvnt7WeJUuWcMkll9CzZ0+GDRuWMgeAPXr0SKkQREREJFUYhoHb7d7iMa/X22ZClWabL9vM4XBsdXmww5ecnJwtXiMtLW2LMhZOp5PMzMz/ZhOSbqeGJD/99FPiF9KspKSEOXPmJIbIiIiISGrq3LkzL7zwAh6PB5drpx4yiIiIiKSEHfvV12YCgQDr1q0jHA4nuveuW2dP3aheJCIiIqnN6XTi9/sVkIiIiMheY6fPbhONRrnssssYMWIE1dXV/Pvf/2b06NHb7LojIiICdjfP5inmZPfWPD56R9VsERERSQXN9TabZ46Rnaf5OGJX2KkhSXp6Ovfccw8PPPAADz/8MH6/n3PPPZeRI0fuzJcVEZHdnGEY+P1+qqqqqKysxOPx6OBjNxaNRqmqqiIjIyPZTREREdlhvF4vsViMDRs2kJaWpmOVnSQSiVBXV9emaOvOtFNDEsMwKCkp4dprr6W+vp7Zs2fz/PPP89FHH3HPPfdoyI2IiGyTz+ejoKCA6upqamtrk90c+R84HA4yMzPJysrSAaSIiOwxXC4XxcXFVFVV0dDQkOzm7LEcDgf5+fm7rKbpTgtJLMsiFouxdOlSXnvtNV588UXWrFnD73//e84888xd1lVGRER2T4ZhEAwGCQaDyW6K7CAKSEREZE+yrRldZOfYVccROyUkaWho4PXXX+e5555j2bJl7L///vzud7/jgw8+4JprrlFAIiIiP4tOqkVERCSV6Vhlz7NT0or58+dz3nnnkZubyxNPPMEdd9zBQQcdpIJtIiIiIiIiIpKydkpPkq5du3Lrrbfy0ksvccYZZ3DIIYfQo0ePxDTACkpEREQkGSzLorKyknnz5pGZmUnPnj1xu91bLBeNRtm0aRMbN26koKCA7OzsxM9v3LiRJUuWEAqF6Nq16y4rJCciIiI7307pSRIMBjn77LN5/vnnufvuu3G73dx5553MmDGDKVOmsHDhQizL2hkvLSIiIrJNy5Yt46STTuK+++7jsssu44YbbiAajW6x3BNPPMHIkSMZOnQozz33XOLxiooKxo4dy5QpU3jkkUc4/vjj+fDDD3VcIyIisofYaYVbDcPA6/XSr18/+vXrx/jx4/nyyy959tlnmTNnDg8++KBmtxEREZFdxrIs7rvvPvr378/f/vY31qxZw7HHHsvo0aPZd9992yw7fPhwDjnkEK688kpisVji8aysLB544IFE75F7772XKVOmcPDBB+Ny7dRJA0VERGQX2Omf5s3dTzMzMzniiCMYPnw4dXV1Kt4qIiIiu1Q4HObzzz/nmmuuwel0UlpaSqdOnfjuu++2CEnKysowTXOLoTg+n4/S0lLADl2CweBWe6K07lmiXiYiIiK7j136lYdhGDidTjIzM3fly4qIiIgQDoepqakhNzcXwzBwOBzk5+ezdu3a/3pdlmVRXl7OAw88wLhx47boHTtv3jweeughTNMkEomwZs2aHbUZIiIishOpX6iIiIjsFZpn2TNNM/FYLBb7r4fJWJZFVVUVf/zjHznkkEM44YQTtijcmp+fz+GHH45lWTQ1NTFjxowdsg0iIiKyc2nMi4iIiOwVPB4PRUVFLF++HMuyiEajrFy5ko4dO/7sdViWRU1NDePHj6esrIw///nPW50dp6CggJEjR3LUUUcxYsQIgsHgDtwSERER2VkUkoiIiMheweVycfTRR/PUU0+xbt06pk+fzvr16znggAMIh8M88sgjiaE3jY2NlJeX09jYSHV1NeXl5UQiEUKhEFdccQXV1dWMGzeOqqoqNmzYoLojIiIiewgNtxEREZG9gmEYjB07lsWLF3PKKafgcDiYPHkyJSUlNDQ08NprrzF48GCKior48ssvueWWW6iuruaNN97gyy+/5B//+AdOp5P58+fjdDq55JJLAOjSpQt///vf8Xq9Sd5CERER+V8pJBEREZG9RkZGBn//+9+pqanB4/Hg9/sxDAO/38/UqVMT9UkOPvhghgwZkvg5wzBwuVwYhsG7777bpueIYRhbHXIjIiIiux+FJCIiIrJXcTqdZGdnt3nMMAw8Hk+bZTafsaZZ6+VERERkz6KaJCIiIiIiIiIiKCQREREREREREQEUkoiIiIiIiIiIAApJREREREREREQAhSQiIiIiIiIiIoBCEhERERERERERQCGJiIiIiIiIiAigkEREREREREREBFBIIiIiIiIiIiICKCQREREREREREQEUkoiIiIiIiIiIAApJREREREREREQAhSQiIiIiIiIiIoBCEhERERERERERQCGJiIiIiIiIiAgArmQ3YGssy6K+vp6vv/6apqYmBg0aRG5uLoZhbLFcRUUFM2bMwOv1MnjwYAKBAIZhUF5ezvLlyxPLZmdn061bNwzDwDRNFi9ezLx582jXrh19+/bF6XRusX4RERERERER2XukZEjS0NDABRdcQCgUIiMjg3/84x889thjFBcXJ5axLIsff/yRc889l759+1JbW8sDDzzA/fffT0ZGBtOmTePf//43/fv3B2C//faja9euAHz44YdMnDiRIUOGMGPGDEaPHs24ceMUkoiIiIiIiIjsxVIyJJk+fTrLly/ntddeIy0tjfPOO4+pU6dy2WWXtQkyHnroIQ488EBuvvlmIpEIo0eP5u2332b06NGYpsmIESO44YYbEssbhkEkEuH222/n4osv5tRTT2XWrFmcddZZjB49msLCwmRsroiIiIiIiIikgJSrSWJZFl988QWDBg0iGAzicrkYOnQoX3zxBaZptlmuvLycLl264HA48Hq9lJaWMn36dCzLAuCHH37gnnvu4a233qKhoQGAqqoqli1bxoEHHohhGHTv3h23283ixYu3aIdpmpimiWVZiXWKiIiIiIiIyJ4p5UISgA0bNpCXlwfYvT9yc3OprKwkFoslljEMg379+vHOO++wYcMGli5dypdffsn69euxLIuuXbsyaNAgTNPkrrvu4qKLLiIUClFfX49hGKSnpwPgdrsJBoNs3LixTRs2btzIH//4R8466yzOPvtspk+fvut2gIiIiIiIiIjscik53MbtdhMOhxP3I5EIbre7zVAbwzA4++yzWbhwISeddBIZGRl07NiRtLQ0DMNg5MiRHHXUUQCcdNJJHH744cyZM4fCwkIsy0oELpZlEY1G8Xg8bdoQDAYZO3YskUgEy7LYtGnTzt9wEREREREREUmalAxJunTpwldffZUY4rJ48WI6dOiA0+lss1xubi733Xcf1dXVuN1uxo8fz3777QeAw9HSSSYjI4P09HTq6uro0aMHHo+HtWvXUlpaSm1tLdXV1ZSWlrZZt9frZdCgQQCYpklBQcFO3GIRERERERERSbaUG25jGAbDhw9nzpw5fP7558yfP58XX3yR4447DsMweOGFF/jggw8SvTsWLVpELBbj/fffZ8GCBRx33HGYpsnnn3/O8uXLqaio4Omnn6axsZHu3bsTCAQYNmwYDz74IKtXr2bq1KmUlJTQuXPnZG+6iIiIiIiIiCRRSvYk6dq1K5MmTeLGG28kFosxZswYhg0bhmEYLFmyJDELTWVlJZMmTaK+vp7c3FymTJlCaWkppmny4YcfMn36dEzTJCsri3vuuYeSkhIA/vSnP3Hddddx5plnkpOTw6233orP50vmJouIiIiIiIhIkqVkSOJwOBg1ahTHHHMMpmni8/kS9UjGjx+fWK5Tp05MnTqVcDiMz+fD6XRiGAYOh4Orr76acDhMLBbD6/UmngPIz8/njjvuIBQK4fF4cLlcbeqdiIiIiIiIiMjeJyVDErCH3Xi93i0eb11rBMDj8WxRdNUwDAzD2GbvEMMwcDqdiRluRERERERERERSriaJiIiIiIiIiEgyKCQREREREREREUEhiYiIiIiIiIgIoJBERERERERERARQSCIiIiIiIiIiAigkEREREREREREBFJKIiIiIiIiIiAAKSUREREREREREAIUkIiIiIiIiIiKAQhIREREREREREUAhiYiIiIiIiIgIoJBERERERERERARQSCIiIiIiIiIiAigkEREREREREREBFJKIiIiIiIiIiAAKSUREREREREREAIUkIiIiIiIiIiKAQhIREREREREREUAhiYiIiIiIiIgIoJBERERERERERARQSCIiIiIiIiIiAigkEREREREREREBFJKIiIiIiIiIiAAKSUREREREREREAIUkIiIiIiIiIiKAQhIREREREREREUAhiYiIiIiIiIgIoJBERERERERERARQSCIiIiIiIiIiAoAr2Q0QERER2ZUsy0rcNgwjaesQERGR1KOQRERERPYapmny7bff8t5775GXl8eoUaPIzc3dIuioqqrihx9+YPHixRxwwAH07Nkz8Vw4HObtt99m1qxZ7Lvvvhx11FH4fL5dvSkiIiKyE2i4jYiIiOwVLMviiy++4MILLyQzM5PZs2dz4YUX0tjYuMWy06ZN4y9/+QvXXXcdH3/8cZt1PPDAA9xxxx2Ulpby0EMPMWXKFEzT3JWbgmVZmJbVpkeLiIiI/O8UkoiIiMhewbIsHnroIX73u98xbtw4brzxRpYtW8asWbO2WHbs2LG8+uqrHHjggW0er62t5bHHHmPy5MmceeaZ3HjjjTzzzDNUVlbuoq2wmRbc/8kSXpixmo11TQpLREREdhCFJCIiIrJXaGpqYu7cuQwaNAjDMAgGg3Tp0oXvv/9+i2V9Ph8ej2eLYTgVFRU0NDTQtWtXDMOgY8eOGIbBypUr2ywXi8VobGxMXHZ0T5OaUIQ355Rz5fPfM+rez7ntnYUsrKglGjMVmIiIiPwPVJNERERE9gqRSIRQKEQgEADsgquZmZlUV1f/7HU0NjZiGEaiBonH48HpdNLQ0NBmuW+//ZbJkydjmiaxWIzly5fvuA0BstLcPHj6IN7/sYLnZ6zigU+X8PiXy/m/rnmcNLCM/Tvm4Pc4VVRWRETkv5SSIYllWcRiMVavXk0kEqFdu3Zb/TbHsixCoRCrV6/G5XJRVlaG09n2gMA0TaqqqvB6vQQCASzLora2llAolFjG7/eTnp6uAwkREZE9mMvlwu12J44BLMuioaEBv9//s9fh8XiwLItIJAJANBrFNE28Xm+b5fr168fDDz+MZVk0NjZyzjnn7LgNwQ548oNexgxqx7H7lTJzRRXTvlvFxwvW8+68CnoVZzBqQClH9CqiIMOLgWbhERER+TlSMiSJRqPccMMNfPTRR3g8Htq1a8ftt99ORkZGm+XWrl3LxRdfTH19PZFIhEGDBjF58uTEgYplWXz11VeMHTuWs88+m6uuugqAiRMn8s0335CdnQ3AqaeeymmnnbZrN1JERER2Ka/XS+fOnZk7dy6/+tWvaGpqYsmSJZx22mk/e0rfgoICXC4Xq1atIicnh4qKCiKRCCUlJW2W8/l8FBcXA9DQ0IDb7d4p22QYBmkeJwd2zuWATrks31jPq9+X88qs1fzl1Xn866PFHNm7iOMHlNGjMIjLaSgsERER2Y6UDEm+++47Xn/9dV588UUyMjI47bTTeOGFFzj99NMTH+zN1eUDgQCPPfYYDQ0NjB49mk8//ZThw4cDUFNTwz//+U86depEfX19Yv21tbVcfPHFnHDCCYD9zZKIiIjs2RwOB6eeeio333wz++yzD7Nnz8btdjNo0CBCoRCXXnopEyZMoFu3bqxZs4ZZs2axZs0a5s6dyzvvvMOvfvUrsrKyOProo7nlllsYN24c//73vzn00EMpLCxM6rYZhoHTgE75AS45rAtjf9WBTxat57lvV/H0Nyt59ttVHLBPDqP3L2NI5zyCPpfCEhERka1IuXTAsiw+/vhjBg8eTGlpKQBHH3007733HmPHjm0Tkvz4448MHTqUtLQ00tLS6NGjB++99x7Dhg1LVLDff//9KS8v3+J1Vq1axXfffUfHjh0pKSnZ6lAeERER2XMYhsHIkSNpaGjg8ccfJzs7m3vvvZeMjAyampro0KFDotZIeXk57733Hv369cMwDD744AN69+5NMBjkiiuu4P777+df//oXPXv25Pzzz8fhSJ1a+IZhkJ3u4bf9SjiydxFzV9fw/IxVvDuvgk8WradzfoDj+pdyVJ9iyrLSMAwNxREREWmWciEJ2AFGc7dVwzAoLi6moqKCaDSKx+NJPN6xY0dmzpxJOBwmFAoxb9482rVrh2VZzJ49m88//5wHH3yQv/71r23W3759e3788Ud+/PFH5s6dy4QJEzj55JPbHCDU1tby+OOP09jYCMAPP/ywi7ZeREREdha3282YMWM46aSTAPt4orkQ68SJExPLDRw4kIEDB251HRkZGUyYMAHTNHE4HCkbMBiGgdflpH/7LPZrl8UFQzvz1g9reXHmam57ZwEPfrqEYT0LOXFAGX3KMvG6UndbREREdpWUDEkMw9hqT47WH9yGYXDOOedw7rnnJgKOaDSKw+GgsbGRm2++mXPOOQePx0M0GiUajRIOh3G73UyaNAm3241lWbz99ttMnDiRESNGkJOT02b9gUAAl8uFZVk7bSyxiIiI7FrNwcj/ug6n07mDWrRz2dsLZdl+zv6/fRgzqB1fLank2W9X8saccl6ZtYb92mcxemAZh3TLJyd9y2L5IiIie4uUDEnatWvH4sWLAXvYy+rVqykuLt7iYKRTp0688MILLF26lMzMTKZMmUJxcTFVVVUsWrSI2267jdtvv50FCxbgdDrJz8/nsssua1OBvl+/foTDYaqrq9uEJMFgkNNPPx2wZ8iZMWPGLthyERERkZ3HMAyCPjfDehZwSPd8FlXU8tLMNbzxQzlXPPc97XL8HNO3mN/2K2GfvHScDhV6FRGRvUvKhSSGYTB06FCefvppli1bRmZmJq+++iqnnHIKhmHw7bffkp6eTo8ePWhqagJg33335ccff+Sbb77hoYceori4mLfffjvRG2Xy5Mn4fD7OPfdcotEo5eXlFBYWYpomb7/9NhkZGeTm5iZzs0VERER2GcMwcDsNehZn0KM4g3MO2of3flzH8zNWcf8nS3j8i+Uc1C2f0QPL2L9DNmkep8ISERHZK6RcSALQv39/Ro8ezRlnnIHL5aJ79+4cd9xxGIbBs88+S1lZGT169GDJkiVcfvnlOJ1OGhoauPzyy+nRowcOh4O8vDzA7olSVFSEz+cjGAxSU1PD+PHjaWxsxDRNwuEwN998M8FgMMlbLSIiIrJrGYaBARRk+Pjd4HYc17+EmSs2Me3blXy8cD3vzF1Lr5IMThhQxuG9CskPejFQoVcREdlzpWRI4nQ6+dOf/sTpp59ONBqlqKgoMU3v5MmTExXku3fvzqOPPkptbS25ublkZGRs9UP78ssvT9wOBoP8+9//ZuPGjViWRX5+Pn6/Xx/2IiIislczDAO/x8WQzrn8qlMuyzbU8+r3a3hl9homvzKXez9azJG9ixjVv5RuRUFcGoojIiJ7oJQMSZqLoRUXF2/xnN/vT9xurjOSn5+/3XWlpaW1uR8IBAgEAju20SIiIiJ7AMMwcBrQuSDAH4d15fQDO/LJovVM+3YVT321gme+WckBnXI4af92HNgpl6DPpbBERET2GCkZkoiIiIhI8hmGQXa6h9/2K+HIfYv4YU0Nz3+3ivd+rOCThevpUhDguP1KOapPMaVZaRiGhuKIiMjuTSGJiIiIiGyXYRh43U4GtM+if7ssLhjamTd/WMtLM1fz93cW8OD0pQzvWcAJA8roU5qJx+VQWCIiIrslhSQiIiIi8rMYhoFhQLscP+cetA8nD27Hl4s38uy3q3h1djkvzVzDgA5ZjB7YjoO75ZPtdyd+TkREZHegkERERERE/muGYZDhc3N4r0IO7VHAwrW1vDhzNW/+sJbLp82mfa6f3/Qt4bf9SuiQ58cVL7wvIiKSyhSSiIiISFuWBVhgxsCKQbQJPAFwOJPdMklBhmHgdhrsW5pJz5IMzj24E+/Oq+D5Gav418eLeeyLZRzcLZ/RA8sY0CGbNLdTPUtERCRlKSQRERHZW1gmmFGIRSDSCJEGaKoFlxdyOtvPz3wCKn6A+g3QWAkNlfbyYx6HvK7J3gJJcQ7DoDDDx6kHtGfUgFK+W17FtG9X8fHC9bz1w1p6l2ZywoBShvcsJC/oxaGwREREUoxCEhERkd2NZTXfsG8b8WEMjZXQuAlCm6Cxyg44Gqug13EQLITy2fDW1fZj4TpoqrN7iXQfCSc+ZK9vwRuw6htwp4E3E9KyID2/5TVEfgbDMPB7XPxflzwO7JzLsg31vDJ7Da/OLufal+dyz0eLGdm7iOP7l9K1MIjLYah3iYiIpASFJCIiIsm2eehhmRBrsgMMbxCcHjv8WP4Z1K9vddkIuZ1h6FX2j79+OSx6x+4tYkbtdbnToKivHZIYTvuxjFLw50J6nh2AFPa2f95wwtH/sNvhCdiv63SBwwXoBFb+e4Zh4DIMOucHuGx4N84Ysg8fL1jHtO9W8cSXK5j69UoO7JzL6IFlHNg5l4DXpbBERESSSiGJiIjIztAcfBiGfbs59Ig22UNcQtV2jY+ivvZy3z8Dyz+Hhg3QsBFCNRCuh+PuhY6/hqpl8PzZEIva4YXLA24/ON127RCHCzofBjmd7PDDn2dfp2VDbhf7NQr3hdNfBod7y54hzSemmaW7ZPfI3qU5+MhJ93Bc/1KO6lPMnNXVPPfdKt7/cR0fLVhH14Igxw8oZWTvIkoy0zAMzYojIiK7nkISEdm9NZ+ImlFoqoGqFbDxJ/vb824j7BPItT9A1VL7JNJw2iemDhfkd4dgkX3Sum6e/e294bRPHg2HvY7sjvbtxip7/c3POxz2bW/QXs40IVwbH/pgxE84DXsZd1pLG61Y/HGj5br59ZqLZSb8lycHOpnYuazWv5vNhrk0bLR7doSq7SEuDRvsmh49joH8bnbA8dL59mOhGoiGIBaGkv1g7Kv2+3TVN/ZQF28QvBkQKLB7eXgD9mvk7AOj/20/58u0rz3p4PbFe3oA/U9raeLW3g8Op4qvStIZhoHX7WRgh2z6t8/mwkMbeWNOOS/OXM0tb83ngU+WcHivQk4YUMa+pRl4nA6FJSIisssoJBGR3UfzSaplApZ9YthUA5/fZZ9gbvzJPgk1I3YA0vlQ++Rz9lT48p7NVmbAb++wTyrrKuCpMXYdh9YBRn53OP01+0T0y3vg6we2DDdG3Ah9T4K68vg6auyTUCMeouR0sms9uP3wzUMwZ1o8ZHG2XB94kR3oNGy060VEG+Nhjst+PqMEhl5t9x5Y8AYs/bTlZLd5me5HQ3E/u+fB7Kfs3gbNzzmcdm+C7kfFQ6M5sGFRSzjTvC1FfSCrvV3Qc+XXdqjTehlPuv0ahhOqV0Lt2lb7w2FfZ7Wzey/EwrBxsd3DofU+c3khq4O9fEOlvc9bP48B/hw7KDBjdvCwefDkcNnbA3bYEG2K/0qNlt+t22f3lsCCcEOrX3t8GcMBLp99Pxaxt7WZGbXX604Hj9/ep4vetd8n9Rviw1w22MNVjr7Vfp1Pb4MZj9ltsWLx/e62Q7b8bvZ+d/sht2u8l0euHYDkdrYDN4ChE+HgK+y2Oz32pXmbwQ5Guh35i//7iKQawzBwGtAux895B3fid4Pb8/nijUz7diUvz1rDizNXM6B9NiftX8ZB3fLJSnMnfk5ERGRnUUgiIqnNsuzQoG49bFxkF55cMxO6jYT9TrEDkwWvQzT+rXzxfvbJvj/XPgkG6P976Ph/9km3GY1PaxqFskH282nZcNgk+2TairYsl5Ztn6gClA6E/qFWz8enRs1qZz/v9EBJfzskSbxGLF4HIn4S3BxGmFE7RLDM+DCMsP18LGwHPY1V8efil+x94j1QgDWz4Pun47OUxMMiLMjuZAcYTdXwyd/tHg1Y8Y4pln1y3mW4fbI+Zxp8cffmOxqOmQIDxtoBwHNn2e1oLa8rnPOeXavim4fgi7uwww1IhBxH/d1eR906eOJEu5Bo87Zj2MM+znjNXsfX98NX98ZX3ioEGfFX2O9UO5R49Lfx8KrVMtkd4fcv2qHDl/fA1w9u1nvHAcOuhd4n2DU7po6xh7ckwi3DDoNOfMQOfr59GGY9Ff89WfayTXVwxF+h72g7zHljgv24wwWuNDvEKehpByxOD+xzMPiyWmp8pGXbBU+zOthNzyiFU55tCZyag4/WJ3vpudv8byCypzMMg4w0NyP2LeSwHgUsqKjlxRmreGvuWsY/O5sOuX5+u18Jv+lbQofcdBwaiiMiIjuJQhIRSQ3NvURiYfsEPy3LPvlc+gm8ew1sWmn3GnG47JPQkv728r5M++SzeehB4iS0lYIe9mVbvEH7xH57uo+0L22GXLTiz4Nj/knb4TIWLb0sgEHnwP5ntdreeEjitL8dJVgEY19uCUewWoYAueJDdoZcBANPbynuaZl2gJKeb293ej6c9kI8hGkOc0xweltCo/1OhQ7/1/L6zesqjtfG8OfCb/5p96Zo/TreYMs6eh4D2R02a4cFpfvH92kG/PoSe4rZ1oFPWk5L8NRuUKuwqNU258anmXWn2fs8XNeyfsu0t7F5yEhWR7teR/NzzfvMn2vvD4fTHqbSVNuqrZb9+2r+vTg99nvHMu376QX2zweL7PuBfDjhYbs9adl2wOP22fedXnuZbkfal22dtBlGy+9ZRLbJMAw8LoM+pZnsW5LBeQd34p15FbwwYzV3f7iYRz9bziHd8xk9sIz+7bPxuTUUR0REdiyFJCKSPJZlByKblkPFXLuHyNo5ULPGrr1QOsA+MfcEYN/j7fuF+0JmO/tbe7BPdDPLdl2bt3cS/J8O1A0nsJ16EIYDfBnbX4cv075si9MDRb23v4787vZlWzx+OwTZnrJBLT1xttrODDjgD9tfR5fh9mVb0rLh8L9sfx29R0Hv4+3bVuKflgAkLRuOv7/l8eZFDOK/D+yAbPNaHs3Dh8AOhjodsv126CRNZIdzGAZFmWn8/lcdOGFAGd8ur2Tat6v4YP463phTTp/STE4cWMawngXkBrw49P9QRER2AIUkIrLzNX+DH2mAmnJ7+ETpQPvE8oPrYeaT9hAUb8AOPDoMsb+pB3sIye9fsr+F1wHw3udn/c6NNldb/LyxnWAK4r1SVMxUJFUZhkG618XBXfP5dec8lm6o55XZa3jt+3ImvfQDd3/oY2SfYo7rX0rXggAuh7Fb9S6x4j0Um3NeexCl1XLbsu9bFsRMy75YVstt08KM34+aFpGYSSRqEo7Fb2/lfjhq4nAYpLmdpLmd+DxO0twOfG4nPrcTj9OBy2ngdjpwO+zbLqeBgZEY6mTQqszTbrS/RUT+E4UkIrJjtZ72NBqGFZ/D6hlQPgvWzbd7iWSWwtnv2r1EOg2FQJEdhuR1hUBhPCCJH3BpNg4REcE+EXc5DboWBhl/eDfOGNKRjxas57nvVvH4F8uY+vUKhnTOZfTAdhzQKYeA17XFybvVashk61Ci9XPNwURz8NB8HbMsTJNWt5tDh1ZhRJvb9v1w1A4lmmIm4Wis5X78OhxruY60uh+JWW0ei8TMRCgSbRWQRBPXJqZpb0frcKVl21u2e/NIwzDAwLBHKRoG7uaAxOXA43Tgdhp4XU58bgdpHjtYab72e1z4Pc74peV2mseZCF18bic+lwOv24nbaeByOBLXLqeB09Ecuhit2tPyexcR2ZUUkojIL5eYfjcCDVX2NLtrf7Bn7Og0FCL18Np4qFlt14DI7WLP4tJusD3LiWHYU6T2iA/t0IGQiIj8DIZhkBvwMmpAKUf3Leb7VdU8991KPpi/jg/mr6NbYZAR+xYR9LkSoUQ41jaYiPyHgCIaM4luFkJEY22DCdOy4qWdrC16fUCrMlbxk36Hw8Bp2L0xErcT1+A0DFzxUMLtdMQvBgGvq6Vnh9MOLrwuB55WF6+z9X0nHqdh324VdrS+b5oWDZEYjeH4JRKjIRyjIRzd7DpGKBwjFI0RiphsrAvTFDUJRWL2/onvp5hp2fvHshJJjGOz8MXpsAMYz2bt8bpbghe/p+3trYUwdvDiiAc39m2Py2GHLg47THM5DJwOR5sivwpfROTnUEgiIj9f87CZ5poNGxfBNw/D2tlQudSeBcQy7cKinYbaxTtH3gL+bHuWD1+mXXgVWvfRTdrmiIjI7s0wDHxuJ4M6ZjOwQzarqxp4fU45L81aw90f/oSFfaLuMIz4SXrLbYfDSJxQNw8paQ4hvG4HAa8rEVYkggiXo+0JvstpPxa/33pZO6RoCSvcTgcuZ/wk3mEkbjsTJ/WO+FAhu41bXNNy/7/ZPz9X6142mzPjPWvM5l408aE/4Ta9YWI0xXvINMbDlcZwNBHEbB68NISjNIbt4CUUjVHdGGFdbYhQxF5fdCs9Z8x4GxO/QwOMeMjkdBhb/H68LnsIUevwxe9xtQpgNu/94kr0ePG77ccSvV+cDtyOlmFHGG175Ch0EdlzKCQRka2z4lPLhhugdi1sWGBPP7tuHhw60S6g2lAJPzwHgQJ7hpHi/vawmeaioA4ndN1OYU4REZEdwDAMnAa0y/Fz/iGdOfWADizbWI9l0RJAOFvCCXf8unWAYiRu2+trfm7zk+HttWF3tr32Ow1wYvzi8k3bCmAsaAleTIuYCTHL7p3SekiSHb7ECEWaw5cYDZFWQcxWQpjGSIymSIy6pigb68M0RewQJzFsqVVdF9O0ewAZ2D16mnu9uBx2wOVr3dPF7STgcxH0uQn6XAS8LoKt7gd9btK99nJp8UDG52oVkMXfj8ZW3le7+3tIZE+hkEREWvoDR5vsITJpOfb9L+62i6rWrLYfd/rsaVHr1tkhSfF+cM77kJ5nT4fKz5jhRUREZCdpPsnMSHPTtywruY2RhG2d/BuAw2n8TyckmwcwLTVmaFPctjkUicTMRGDSEr6YNCZ6vESpb7LDldpQhNpQ1L40RahvilETilJR20RjxA5tmodgNb+GZVk4jLa9g9wuR7wXizNxHWgTrLgIeuOhS/zxgNfZJpzxuZyJdTrjPZAcW9mtClpE/ncKSUT2VpZp9wRpriOyZiZU/GAPhzn1ObuoqtNjByBdDoOS/lDQCzJK7WE0YBdYze6Q3O0QERGRvdbmoYDR6oZzaynCz7S1WYdMy667EomZRE2TcNSK13Kxhw7VhzcLVxoj1DbZIUtdKEpdk33ZUB9m1aZGQhE7oInEzFbDmUgELS3DfBy4XcYWhXJbBy0Zm/VsCXjti8/TErZ448O+mkMW5zaGbylokb2dQhKRPVmiclwMmursHiFOj11AtakWpo6B8jmACd5MO/Ao3q/l5/Y/E/Y/a8s6IiIiIiJ7sESx18Q/9pAjtxPSfua4o81nTAI7aGkzE1LUTBTNrQ9HadisF0tNyL7dOmSpa4pSXR0htDFGU8QuohuJ2TVbWooJ24dt7laFgD2terT4vXbYEvC2BCyJIUQ+F0GvfR3wuuKzE8WL5cbDFq/LscW+EtlTKCQR2ZO0nn63cROs+MKeenfNLFi/EOoqoPfx8Ns7wZ0O3UZCz2PtOiK5ne0ZaFweEsNmnJ7kbYuIiIjIbmzbQYtjmz+zuc2DFiteOLd5munmGZlCEZP6pugWQUtzyLJ5b5a6pigb65oIRewhR831Wprrs7Q+pEzMqhQvipsX8NC1MMi+JRn0KArSPiednIAHr8vRZipnkd2VQhJJDc1FQmMRCNVAbTlUr7Snid3nYPtkvXIJVC0Dw2kXBHU47dtZHSBYaP9s1dJ4dO6IX+In+sFie/mmWrtHRfNzzct5/ODy2UNQIqH4B5mj1aeaAU53vK2mfSH+XPMyzevbWnGynfVhYVkQa4L6jVC5GCrmQfeRdo+QdT/Cc2fZywUKIa8r9DkROh1iP+ZwwkETdm77REREROQX2zJose97XD8/aIGWaaqbe5o0Dx1KFMiN2T1S6pui1DdFqWuyb7cOWmriQcvqTY18vGA9r8xag4VF0OemJNNH18IgvUoy6FkUpENuOrkBDz6X0z5E1rGm7EYUksiulehrGIVwvT2Mw5MOTTXw/vVQPtseEtJQaS+T3QHO/cAOOr5/Fj69bct1jrgBBp9n/8zjJ0D9+rYBSHYHOP01SMuCbx+BL+5q+7zhgEOuhP6n2et4Jn5tOFrCmIwyGHUfeAJ2O2Y/1Sqscdm3B/zeDiiaauGD6+0wxtFqGX8u/N9ldhiz7FNY+on9uMMVD3xcsM9Bdq+OaAh+fBVi4Zb1O5zgDdhT6zrcsOQjmPcyrJ0Dm5ZDqNpuc7DQ3ubCXnDcvXYPkcwyu8aI4VQgIiIiIrKXMVpNI93M64J0789fR3PQEomaVDVEWFnVwIK1tcxdU83Cijo++2kDr88px7Is0r0uijN9dC1oCU465qWTF/DiczsTs0iJpCKFJLLztBn6UWUXB924yO7hsH4BbFoBA0+HX18KGHbR0FgE2v/KLhCa2xnSssHtt9fT4xjI3seur2HGL1YU2h9oP+9JhyEX2iGFGbNDFjMGvgy7RwrYvSm6j2x5rvk6UBhvqwMy29mvaZktr+Vq9QkSbbS3x4zFn48v11BpPx9rghVf2mGNZcb3g2kXPB1yEeCDVd/CV/+K95s0W3rSuK+3Q5JwHbx7DdRvIFEtzDAgqz2c+yH4Mu11/PiK/VjXEVDaH4r6QH5Pux3eDOh1rEIREREREfmfNQctXreTokwnRZk+9u+QDUA4ZlLdEGFVVSMLKmqZu6aGBWtr+HppJW/PXUvMskj3uCjK8NGlIGAHJ8UZ7JOXTn7QS5qCE0khCknkf9d8gh9tsnszVK+Gyp+garld+DM9HxZ/CC+dbwcK3oAdSuT3sHtogN3L4XdT7V4WLi+JgZut/1AW9bYvW7x2nCcdBv9h+23tdqR92Za0bDj+XySCCeLbBnbvDYD+v4d+J7d93iJeywO7x8jpr9gBTPPQHNOMD+sJ2MsMPB16/qYliGleJqPEft6XBWOetPep1SrMcXnt7TQMu6BqvzH2/nX5ttxf+pARERERkZ2oOdTwupwUZDgpyPDRv30WAJGYRU1jhNWb7OBk3poa5q+tYcaKKt6fX0E0ZpHmcVKU4aNzfoCeJRn0Ks6gU346BUEvfo9LwYkkhUIS+fkSQ2Uidm+NaBiCRfYJ/sc3w6J37KEyoRp7GW8mdBlun8SX7Q9H3mzPqpLV3g4S3Gl2cAD2CX1a9n/fpv82FPhPyxiGPSRle5zulvokW12H4z9viz/XvmzvNcr23/460nOB7axDRERERGQXaw41PC6DvKCXvKCXvmWZMBCipkVNKMKaqkYWrquzg5PyGuasrubjhesJx0zS3E4KM7x0yrODk33jwUlhho90rx2ctH4dkR1NIYlsqXXvDMOAcAOs/ArWz4d182HDQruoakFPOPkpu2ZGqMa+7jLcHu6R3wOyO9q1McAewjLwDPVuEBERERHZyzQHGm6nQW66l9x0L71LMxnVv5SoaVEXirKmupGf1tUxd00NP5bXML+ihs8Wb6ApauJzO8gPeOmUH6BncZBeJZl0yU+nKDONdK8TZ3OBW51ryA6gkETiM7rE62xUr4QNi+xApNex0O4AqF1rz5ISrreHxWQUQ+nAeC2QeKAy/Fq7B4bTTWKml9b0B0tEREREROJaByfZ6R6y0z30Ks7gt/1KiJkWdU1R1laHWLy+JThZsr6Or5ZsJBQ18boc5AW8dMz107M4g31LMuhSEKA4K42g14XToeAkFVhbmfkz1X8nCkn2Bq3fmLEmu9dHYxXkdLZnTJn9NHxxtz3tblOtvbzHDzldoGywHYr8ZgoEiiCrDHzZdm2M5ml0oaW4qoiIiIiIyC/QfPLschpk+T1k+T30KM7gqD7FmBbUNUWpqAmxpE1wUs+MFZsIRWK4nQ5yAx465KbbPU6KM+hWGKQkK42gz4VLwcn/ZGuBR8y0iJoWkcQ00vb00dWhCJsaIlQ1hKmqD1NZHyY/6OO8gzvhTPHdr5BkT5N441qAYRf9XPoJlH9vzyqz8Se7bojDCWe/C8FicKfbhULLBtlDaPK62UNlmmd8cafZvUpERERERER2McMwcBqQmeYmM81Nt8IgI/YtwrSgPhxlfU0Ti9fXMa/cDk4Wr6/n+1WbaAzHcDkNctI9dMhJp0er4KQ0O40Mnxu3c+8NTjYPPUzLDj1ipkVTNEZD2L7UNTUHHhE2NdiBR/OlujFCTWOEmlCUxkiMpkiMpqhJ1LQS0047HHZx34Edsjn7//ZJ9PJJVQpJdneWadcMqd9gT6m7YSGsm2eHHYPOgVgUPrjBnl7Xl2XPntLxIHuWGHea3ROk59HQ4yi7pghoaIyIiIiIiKS05uAkw+cmw+emc0GAw3sVYlrQGI6xvq6JJevr+LG8hnnlNfy0ro7nZ1TzeDiG07CH+LTP8dO9MMi+JRl0L7KDk6w0N26nY7cOTSzLwgJM0yJmWURjFo3hGA2RGA1NUaobI2xqjAcf9WEq48HHpgY79KhujFDfFCMUsS/hmIllxee4MAzcDoM0j5M0txO/10VmmpuSrDSy/G5y0j2JS1aah8w0NxlpbgJee1l3qncjQSHJ7sGy7DAkFraHydSW27PE+DJh9Ux45UKoKYdIPWDYU+w2Tyvr8sCIG8HpsYfNpGXZt1vXDXHobSAiIiIiIru35uAk4HMR8LnYJy+dw3oUYFoQisTYUNfE0g31/Fhey7w11SxaV8er36/h6W9WYBgG2X43Zdnx4KQ0g+6FQdrl+Mnyx4MTdn2Pk+beHqYFphXv5RGJ0RgxaYzEqA3ZocameC+PjfEeHlUNEarjoUdNKEpjOEZjPPQwW/UgcRgGPrcDn9sOPYI+N4UZPjLT3GT7WwKPbL+bTL+HrDQ3QZ8rEZL43E6cDsPuMbKHzDyks+NUYllAPBBpnoZ2xZf2cJn18+2hMrVrIVwHox+FbkeAPxuy94F9DmkZKpNZBul5LTVD2h+Q1M0SERERERFJhubgJN3rIt3rokNuOod0y8fCDk421oVZtrGe+eW1zI0HJ2/9UM6071ZiYJDpd1OWlUa3oniPk8Ig7XP8ZKd78Lj+++Ak0cvDsuxBAfFaHqGoSX1TlJp4T45NjZHEkJaq+nAiBNnUGIkPg7GHt0Rjlr2ueE8Pt9MOPHwuB+nxXh775KW37eURr/eS5beHL6V7nKR57ODD7TDs0MNhsPlW7e7hx8+VkiGJZVlEIhGWLFlCOBymS5cupKWlbfFLsSyL+vp6lixZgtvtpnPnzrjd7jbLxWIx1q5dS3p6OllZWYmf27hxI8uXL6egoIDS0lIcDseu3MT4Bph2EdX69VC1DNYvgPU/2s8dfRs4vfDjK/DdvyEtG7LaQ7cRUNAL8rvZy2XvA2MebwlV9pI3roiIiIiIyC9hGHYA4Pe48Oe4KMtO4/+65GEBTVGTyrowKyrrmb+2lrlralhYUct7P1bwwoxVgD3EpyQrjW6FAfYtyaRHUZAOuX6y/B5ipkUoGqMxHKM21BJ6NA9pqYr38qhqsIOPulCUhnCU+nCMcNQkZsZDD8DlMPC6HHhdTtI8TjJ8LnLSPeyTt2Uvj+bQI+hz2dvlceJxOXA5HPGeHlvuA9m6lAxJwuEwkyZNYubMmfh8PoLBIPfccw/Z2dltllu5ciUXXHABbrebUChE9+7d+dvf/kZaWhpghyHTp09n7NixnHvuuUyaNAnLspg5cyaXXnophYWFrFmzhksvvZQTTzxx179RGqvgydF2HZFIox10+DKgqC9EQnZIcsD5sN+pdoFVbyA+VIaWMMQwwEjJX6OIiIiIiEjKaz4PNIA0t5PS7DRKs9P4VadcwA5OqhrCrKxsaAlO1tbyycINvDq7HAuLgNdFXsBLJGZSH7ZDkqgZDz1M+7TN43LgcTnwuhwEvS6CaW67DkqrXh7Z/vgl3a61YveAsYe2uJwOXA4jMUvP1rZB/ncpeXb99ddf88knn/Dqq68SCAQYO3Yszz33HOecc07il29ZFg888AClpaXceeedhEIhTjjhBD766CNGjhwJQFVVFXfffTd9+vShqakJsHuW3HzzzYwePZpx48Yxffp0/vSnPzFs2DBycnJ27Ya6/VC2v11INb8H5HWFjFK7bojLZ/9Pyu6wa9skIiIiIiIiiXNPn9tJcWYaxZlpDOponzOGoyabGiOsrGxgwdpa5pbXsGJjA2keJzl+N9mbhR5ZfrddK8XrIt3jwu1y4HYauBwO9fJIMSkXkliWxaeffsrgwYPJz88HYMSIEXz44YecddZZOJ3OxHI//fQTQ4cOxePx4PF46Nq1Kx988AFHHnkkpmly3333cdBBB7Fs2bLE+jdt2sS8efP4y1/+gtPpZODAgZimyU8//cTgwYPbtGOnc/ngyL8BrXqFiIiIiIiISEpqDjC8bieFbieFGT4GdrBHPJjNM8BsZXnZfSShEMd/Vl5eTlFREWC/qYqKili3bh2xWCyxjGEYdOnSha+++opQKERlZSXff/89a9aswbIsvvvuO2bNmsXpp5/e5o1ZU1ODZVlkZGQA4PV6ycjIYN26dW3aUF1dzS233MLkyZOZPHkyM2fO3PEbahgtxVX1n0dERERERGS3YxiGXSA2PsuL0eoiu5+U60kC4HA42vTkME0Th6PtXNWGYXDOOedwwQUXcMIJJ+ByufB4PLhcLhoaGrj55pv5wx/+ANg1TpxOJ42NjW2G62y+/tbcbjddunShqakJy7L4/PPPd+Ymi4iIiIiIiEiSpWRI0r59exYsWJAIMlauXElJSUliqE3r5aZNm8bq1atJT0/nxhtvpEOHDlRXV1NeXs4tt9yCw+Fg4cKFOBwOCgoKOPPMM3E6nVRWVlJSUkJDQwM1NTUUFxe3WXd6ejonnHACYIcoH3/88a7ZeBERERERERFJipQLSQzD4LDDDuPJJ59k0aJFZGVl8fLLL3PuuediGAbTp08nEAjQr18/GhoaqK+vp127dsyePZsZM2bwxz/+keLiYt566y17DmrL4pprriEtLY0LLrgAr9fLAQccwDPPPEOHDh145513CAaDdOnSJdmbLiIiIiIiIiJJlHIhCUCfPn0488wz+cMf/oBhGAwaNIhjjjkGwzB46623KCkpoV+/fqxcuZLx48cnwpBrr72Wrl27YhhGouaIZVmUlpbi8/nw+/1YlsXVV1/NhAkTGDVqFJZl8de//pVAIJDkrRYRERERERGRZErJkMTlcnHhhRdyyimnEIvFyM3NTQy1ueaaaxJ1Rbp168bUqVOpr68nMzMTv9+/1eI448ePT9w2DIOOHTvy1FNPUVVVRTAYJD09XUV1RERERERERPZyKRmSgF28NTc3d4vHvV5v4rZhGGRmZpKZmbnN9RiGgcfj2eIxn8+3RR0SEREREREREdl7peQUwCIiIiIiIiIiu5pCEhERERERERERFJKIiIiIiIiIiAAKSUREREREREREgBQu3JpqYrEYc+bMweXSLhMREdkRLMuioqIC0zST3ZSdyrIsmpqa+Prrr8nJyUl2c0RERPYITU1N1NfXY1nWDl2vzvh/pr59+/Ltt98yc+bMHbbOlStXsmHDBvr377/D1rmnsCyL6dOn07t3b7Kzs5PdnJRTU1PDjBkzOOSQQzR99WYsy+KTTz5hv/322+7MV3urTZs28f3333PQQQfpvbMZ0zT5+OOPGTRoEIFAINnNSTmVlZXMmzePX//61zv0vZOenr7V2ez2JA6HgwEDBvDiiy/u0H23atUqKioqGDhw4A5b554iHA7zySefcMghh+B2u5PdnJSzfPlyqqqq2G+//ZLdlJRjWRaffvopffv2JSsrK9nNSTmLFy+moaGBPn36JLspKceyLD7++GMGDBhARkZGspuTchYuXEgsFqNnz547dL29evXaYjbb/5Vh7ejYZQ9kWdYOT6cAXnzxRb7++mtuuummHb7u3Z1pmpxyyilcffXV9OvXL9nNSTmLFi3iT3/6E88995x6N20mFotx0kkn8de//nWH/xHeE8ydO5frrruOp59+GodDIy5bi0QinHDCCUyZMoVOnToluzkpZ8aMGdx22208/vjjO/y9YxjGHh3a7azjiFdffZVPPvmEW2+9dYeve3dXVVXFmDFjeO6553SyshXPPvssc+bM4frrr092U1JOLBbj5JNPZvLkyey7777Jbk7KefTRR1m9ejUTJ05MdlNSTjQa5cQTT+TWW2+la9euyW5OyrnvvvtoaGjgsssu2+Hr3tHHETq7+hl21sFb83r39IPDX6L5YNIwDJ3IbUXr9432T1vN3fYdDof2zVY0/63Re2dL2jfb1/pvjvbPf2dnHkfszPXvzpr3h96vW6dj0G3TMej26e/Otun4fPt2p787CkmSyOPxkJaWluxmpKxAIKBeEtvgcDgIBAIp/wcmWQKBgD6ctsHpdGooyTYYhkEwGNR7ZxucTifp6enJboa04na78fv9yW5GSnI4HGRkZOhzcht0DLp9gUAAp9OZ7GakJK/Xq/fONhiGoWPQ7fB6vbtNDTINt0mi+vp6QqEQOTk5+hDfjGVZrFu3jqysLLxeb7Kbk3LC4TCVlZUUFhbqvbOZ5kKQOTk5O3x84p4gHA5TVVVFQUGB3jubaX7v5ObmqobBVjQ1NbFp0ya9d1KIjiO2LRaLsW7dOgoLC3XCshV1dXWEw2Gys7P13tlM8zFodna2jiO2ora2lmg0SlZWlt47m9Ex6PbV1NRgmiaZmZkp/95RSCIiIiIiIiIiAihaFxERERERERFBNUmSxrIsNm7cSG1tLUVFRfh8vpTvdrQrNHdsCofDNDY24vf71V2tFdM0qa6upqqqimAwSG5u7m5R/GhXsCyLpqYmKisraWxsJDc3d7fozrerWZZFKBQiHA6r/kbctjpU6r3TwrIsotEoa9euxTRN8vPzSUtL0z5KEsuyME2TiooKYrEYRUVFuFwu/T7QccR/YpomNTU1VFZWEggEyMvL03FEnGVZ1NfXU1lZSSwWo6CgAL/fr32zGcuyqKurwzAM0tPTtX/QccTPYVkWjY2NVFRU4PV6yc/PT+mhzQpJksCyLJ5//nnuuOMO/H4/aWlp3HHHHZSVlek/E/Dkk0/y8MMPs2LFCm6//XZ+85vfJLtJKePhhx/mySefJBAIUF1dzVFHHcWECRNS+o/MrmJZFpMnT2b27Nm43W4qKyu56KKLGDNmjP5ftRIKhTj//PNZtGgRb731lqbGxH7v3HbbbXz11VeJYtFjxozh+OOPT3LLUkPzGOuJEyeyZs0aXC4XgwYN4tprr0120/Za0WiUv/3tb7z//vs4HA569+7NTTfdpMK6cU8//TQPPvggy5cv59Zbb9X/5VYee+wxHn300cRxxJFHHsnll1+uIAm71sa5555LfX09sVgs8f9swIABOo6IsyyL1atXc/LJJ9O9e3ceeOAB7Rvs/TJlyhQ+//zzxHHEiSeeyIknnpjklqUGy7KYOXMmkydPxjRNTNPknHPOYdSoUclu2jYpJEmCdevWcdNNN3H77bez//77c8011/DPf/6TW265RX9ogB49enDddddx7bXX0tDQkOzmpJRBgwYxcuRI8vPzWbJkCSeccAJHHHEEAwYMSHbTks4wDMaPH5+YFendd99l0qRJHHnkkWRlZSW7eSnBsiymTZtGXV0dmzZt2m0qjO8Ks2bN4uCDD2bo0KEAFBUVJbdBKSQWi3H99dfTvXt37rzzTlwul/42J9nXX3/Nq6++yvPPP4/f7+d3v/sdb7zxBieeeKKOI4Du3bszefJkrrvuOhobG5PdnJQyYMAADj/8cPLz81m2bBmjRo3i8MMPZ9CgQcluWtL5/X7uuOMOsrKysCyLW265hdtuu43HH39cM93ERaNRpkyZQl5eHhs3bkx2c1LKrFmzGDJkCMOHDwegsLAwyS1KHdXV1Vx11VVccsklHH744cRiMWKxWLKbtV3qZ50Ec+bMIT09ncGDB+P3+znhhBP49NNP9UGOfaK7//77c+CBB2paw63o168fpaWleDwe2rdvT3p6OtXV1cluVkowDIP8/Hx8Ph8OhwO/34/X69VwklaWLl3Kiy++yLhx47RftqKwsJAOHTrQq1cv8vPzk92clLF27Vq++OILhgwZwssvv8z06dPx+XzJbtZey7IsPvjgA4YMGUJZWRk5OTkcddRRvPPOO9vs8r03MQyDAQMGMGTIEPWs2Yq+ffsmjiPatWtHIBBg06ZNyW5WSnC5XBQUFOByuXA6nYnjCLFZlsX7779PbW0tRx99dLKbk5KajyN69uxJQUFBspuTMr755hssyyInJ4dp06Yxb968lD/P01FyEpSXl7eZGio/P5+Ghgbq6+uT3DLZXViWxZtvvpnoZi0tHnzwQcaMGcOll17KlVdeSTAYTHaTUkJTUxN///vfOeOMM/TBvRVut5s777yTUaNG8fvf/5758+frhDOuoqKClStX8re//Y2ffvqJW265hUmTJqX8t0B7spUrV1JWVgbYoUBZWRlr1qxR7zD52SzL4u2338Y0Tfr165fs5qSMcDjMn//8Z44//nief/55JkyYoC8V4tavX8+//vUvJkyYoOFZW+HxeLjnnnsYNWoUp512GvPmzdNxBPbfmkWLFjF//nzuuusufvrpJ8aNG8dTTz2V0vtH/+uTwLIsFcmSX8yyLL744gtuvvlmbrrpJvLy8pLdpJRy1FFHcfXVV3PsscfyyCOPUFtbm+wmJZ1lWbz++utEIhGGDRtGNBrFsiwikUhKf0DtKoZhMHnyZF5++WWefvppevTowWWXXUYoFEp201KCaZo0NTVx5ZVXcs0113D33Xfz5ptvsmLFimQ3ba+2+TGE/i/Lz2VZFl999RU33ngjN910k3rOteJ2uznrrLO46qqr6Ny5M0888YTCR+xhl3fccQeHHXYYHTp0IBaLYZpm4nhib2cYBpMmTUocR/Tp04dLL71UowTiYrEYLpeL2267jf/3//4fEydO5P7770/p4yyFJElQVFREZWUlTU1NAGzcuJG0tLSU73YkyWdZFjNmzGDChAlcc801DB06VGFbK83fqO6///6MHz+eJUuWsHTp0mQ3KyV89NFHzJkzh9GjR3PJJZewYsUKzj//fDZs2JDspiWdYRh07NiR3Nxc8vPzGTt2LCtWrNB467icnBzy8vJo164dhmGQl5eHx+PRUL8kKi0tZfXq1YD9ubBmzRqKi4v1jbf8R5ZlMWvWLC677DL+/Oc/c+ihh+o4ohWHw0G3bt349a9/zWWXXcYbb7xBXV1dspuVdOFwmM8++4yXXnqJ4447jilTpvDVV19x1VVXEY1Gk928pGs+jsjLy0scR6xevVrHWNj7prS0lIKCArKzszEMgw4dOlBTU0M4HE5287ZJhVuToE+fPtTW1jJr1iz69+/PSy+9xJAhQxSSxEWjURobG4nFYokp/FRbwjZv3jzGjRvHuHHjOOyww2hsbMTj8SQqae/NIpEI69evJz8/H8MwmDdvHqZpkp2dneympYTWBQznz5/PuHHjuOmmm8jJyUlyy5LPNM3EtxwAy5cvx+12k5aWluSWpYbS0lK6du3K559/TllZGd9//z2WZVFSUpLspu2VDMPg0EMP5YorrmDt2rWkpaXx5ptvMnbsWJ3sxkWjUUKhkI4jtmLBggVccMEFnHfeeQwfPpxQKKTjiLi6ujoaGxvJzs4mFovx3XffkZ+fr7okgNfr5ZlnnkkEItOmTePNN9/k6quv1nuHLY8jVqxYgdPp1HFE3P777084HGb+/Pn06tWLTz/9lH322Selz331rk6CoqIiJkyYwOWXX05mZiaWZXHPPffo4Cbu9ddf595772Xx4sXcddddvPLKK9xxxx0UFxcnu2lJ99hjj7Fu3TqefPJJpk6dimEYTJw4kYMOOijZTUu6hoYGLr30UpqamnA4HGzYsIErr7wyMW5/b2YYBtnZ2YnAqLq6moKCAoqKilSxH9i0aROXX3457dq1IxqN8s4773DeeecpYIvzer1MnjyZiRMn8uyzz1JZWcnVV1+t2jZJ9Ktf/Yphw4Zxyimn4HK56NSpE7/5zW90HBH31ltvcdddd7FkyRLuvfdeXnvtNf75z39SWlqa7KYl3eOPP05FRQVPP/00zz77LIZhcNVVV3HIIYcku2lJt2zZMiZMmEAgEKCpqYlQKMT111+vkAS7h03rv/nFxcUUFhaSm5urvzvYx1WXX345paWlmKbJO++8w7nnnktubm6ym5YSysrK+OMf/8gll1xCdnY2dXV13HrrrSkdsBmWBpIlhWmarFu3jurqakpLS0lPT9cfmbiGhoY2XRsNwyAnJ0cnc0BNTc0W4/cyMjI00wR2F+La2lrWrVtHNBqlsLCQrKws/b/aimg0Sk1NDVlZWfpmFXt/zJo1i0WLFmFZFn369KFXr176m9OKZVlUV1ezdu1acnNzycvL0/+tJLIsi1gsxqpVq4jFYrRr1w63263fSVxjY2ObelTNQXEqH5DvKrW1tVvUSdBxhM00Taqqqli/fj0ul4vi4mL8fr/+X21FKBSiqamJjIwM7R/s44jZs2ezcOFCLMuid+/e9OrVS39zWml97ltcXEwwGEzp945CEhERERERERERVLhVRERERERERARQSCIiIiIiIiIiAigkEREREREREREBFJKIiIiIiIiIiAAKSUQkRcViMcLhcJuLaZo79DVCoRDvv//+FjMGiYiIyO7LsiwikcgWxxE7er6K9evXM3369B1+fCIiyaV5iUQkJd1xxx289NJLpKenA/YUjpdddhnDhw/fYa9RXV3NxIkTeeWVVzT9oYiIyB4iGo3yhz/8gRUrVuDxeADw+Xz84x//oGPHjjvsdX788UduueUWXnzxRRwOffcssqdQSCIiKWnlypUMGDCACRMmJB7Lzs7GsixM08QwDBobG/F4PLhcLgzDSHxD1NjYiMPhwOv1JuZgb/65UCiEy+VKHDQ1P9fQ0IDT6cTj8aT0vO0iIiKyfZZlsXDhQi644AIOOeQQwP6ypaCgINHrwzRNmpqa8Pl8OByOxHFE87GC2+3G7Xa3OY6IRqM0NTXh9XpxuVpOo0zTpL6+vs0xiYjsvhSSiEjKysjIoLS0tM1jS5cu5cYbb6S4uJhvvvmGzMxMrr/+erp27UpjYyO33347n3zyCQ6Hg+OPP54zzzwTl8vF/PnzufnmmykvL8fr9XLllVfSpUsXYrEYjzzyCJ9//jnRaJQ///nP/PrXv9YBjoiIyG7MMAzy8vK2OI548803+eijj6ipqWHx4sX06tWLyZMnk5WVRXl5Oddffz1LlizB5/Nx8cUXM2zYMCzL4r333uPee++lsbGRnJwcbr31VgDq6uq47rrrmDFjBtnZ2dx88820a9dOxxEiuzGFJCKSst59910aGhoAcDqd/OEPf6C+vp6XX36Zm266iQsvvJBHHnmEq666iqlTp/LUU0/x6aefcvfdd1NfX895551Hp06dGDx4MBdddBHHHXccJ510EnV1dYmeJBs3bsTtdvPAAw/wxhtvcMMNN/Dyyy+36WkiIiIiuxfTNHnwwQd57733AMjMzOTSSy9l7dq1PPPMMzz22GN06tSJq666irvvvpurrrqKyZMnEwgEeOSRR5gxYwZXXHEFL7/8MnV1dVx55ZXcdNNNDBw4kHXr1hEIBABYuHAhEyZM4JJLLuGGG27g/vvv5/rrr0/mpovI/0ghiYikrI4dOya6yTocDjIzM6mrq6O0tJTRo0eTmZnJ2LFjeeaZZ6ioqOCtt95i7NixdO7cGYBjjjmG9957j6ysLOrr6znjjDMIBoMUFhYCUFFRQVZWFmPGjKGoqIhhw4Zx7733EgqFFJKIiIjsxgzDoG/fvvTv3x+AtLQ03G43AAceeCD/93//h8Ph4KyzzuLGG2/kvPPO45tvvmHq1KmUlJSQn5/Pv/71L2bMmEF5eTn9+/fniCOOwOFwkJ+fn3idnj17csQRR+D1ejn88MN58sknk7K9IrLjKCQRkZTVtWtXjj766DZdVlevXo3X600c6Hi9XhwOB+FwmIaGBjIyMhLLBoNB1q1bRygUwufzJX6mNY/HkwhEmouu7ejq9yIiIrJrGYbB4MGDGTFixBbPpaenJ+qQ+P1+wuEwkUiEaDSK3+8H7B6sfr+fxsZG6uvrycjI2OoQmrS0tMTxg8vlIhaLYVmWhtuI7MZUhllEUlZzAbVYLEYsFksUW1u9ejULFizAsizmzJmDx+OhoKCAvn378tFHHxGNRgmFQnz22Wf069ePjh07smnTJubNm4dlWYnphUVERGTP1foYojm8AJg1axaVlZXEYjE+++wzOnfuTE5ODsXFxXzxxReYpkl5eTmLFy+mW7du9OvXj2+//ZYNGzZgWRbhcJhoNJrkrRORnUU9SUQkJblcLl555RUWLlwI2N8InXzyyXTq1Im0tDT+9re/kZ2dzYwZM7j00ksJBoOcd955nHvuuZx55pmEQiEsy+L4448nOzubiy++mIsuuoh+/fpRV1fHKaecwsCBA9sMqzEMQ8NsRERE9gAul4tbb72VRx99NHF/4sSJgP0lzMUXX4zX62XevHnce++9+Hw+/vSnP3Httdfy/vvvs2TJEg4//HB69+6NaZoMHjyY3/3ud/To0YOqqir+8pe/4HA42vRS3fy+iOyeDEv9ykUkBZWXl7Nx48Y2jxUWFrJ27VrGjRvHk08+yeLFiykuLqZr1644nU4sy6Kqqoq5c+fidrvp3bs36enpGIaBaZosW7aMpUuXkpWVRc+ePfF4PCxfvpwOHTrgcrmIRCKsWLGCjh074nQ6k7TlIiIi8r+wLIslS5bQ2NjY5vGOHTvy7LPP8u233zJhwgSWL19O9+7dKSkpSUwBvGrVKhYtWkRubm7iWAEgHA6zYMECKioqKC0tpWvXrjQ1NbFhwwbat2+PYRjU1tZSVVWl2W1EdnMKSURktzJnzhzGjRvHu+++i8/nS3ZzREREZDfy8MMP891333H33XcnuykikqI03EZEdivFxcVceOGFuFz68yUiIiL/ncGDB9OhQ4dkN0NEUph6koiIiIiIiIiIoNltREREREREREQAhSQiIiIiIiIiIoBCEhERERERERERQCGJiIiIiIiIiAigkEREREREREREBFBIIiIiIiIiIiICKCQREREREREREQEUkoiIiIiIiIiIAApJREREREREREQAhSQiIiIiIiIiIoBCEhERERERERERQCGJiIiIiIiIiAigkEREREREREREBFBIIiIiIiIiIiICKCQREREREREREQEUkoiIiIiIiIiIAApJREREREREREQAhSQiIiIiIiIiIoBCEhERERERERERQCGJiIiIiIiIiAgA/x8IvzSzOVpG3QAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAACIUAAAfGCAYAAACDcpw1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAnwpJREFUeJzs3Xnc1XWd///nB44sYoAbIGW4TSKjjbhkuJskGdSYK+kYoIY2WO5bjrhUMiFqLqOORcI4OqkzaQujQi4xGaOkaWpqltu3FLQESSVUuH5/9OOMV6BeEPip97nfb7frNsPnvM85rwOH+UMe8/pUbW1tbQEAAAAAAAAAoCid6h4AAAAAAAAAAIBVTxQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAADwV+jxxx/PXnvtlV69eqWqqtx0002r9PWfeuqpVFWVKVOmrNLX/Wu2++67Z/fdd697jFrdeeedqaoqd955Z92j/MUbPXp0Ntpoo7rHAAAAAFqcKAQAAGAl/epXv8qRRx6ZTTbZJN26dUvPnj2z00475aKLLsrChQtX63uPGjUqDz74YL7yla/k6quvznbbbbda3+/dNHr06FRVlZ49ey739/Hxxx9PVVWpqiqTJk1a4dd/9tlnc9ZZZ+X+++9fBdO+OzbaaKPmZ66qKj169MiHPvSh/Nu//dsyZ5eGG8v7GTly5Nu+z1lnnfWWz73iiitW18d7S0vjpI78PPXUU+/6fAAAAAB/6Rp1DwAAAPDXaNq0aTnggAPStWvXfOYzn8mWW26Z1157LT/60Y9y0kkn5eGHH86VV165Wt574cKFmTVrVk4//fQcffTRq+U9BgwYkIULF2aNNdZYLa//ThqNRl599dV873vfy4EHHtjusWuuuSbdunXLH/7wh5V67WeffTZnn312Ntpoo2y99dYdft706dNX6v1Wla233jonnHBCkuS5557LN77xjYwaNSqLFi3KZz/72WXOf+ELX8j222/f7lpHN1dcfvnlWWuttdpd22GHHbLppptm4cKF6dKly8p9iBW0/vrr5+qrr2537fzzz8+vf/3rXHjhhcucBQAAAKA9UQgAAMAKevLJJzNy5MgMGDAgt99+ezbYYIPmY+PGjcsvf/nLTJs2bbW9/wsvvJAk6d2792p7j6qq0q1bt9X2+u+ka9eu2WmnnfIf//Efy0Qh1157bYYPH57/+q//eldmefXVV7Pmmmu+ayHEW3nve9+bf/iHf2j+evTo0dlkk01y4YUXLjcK2WWXXbL//vuv1Hvtv//+WW+99Zb72Lv5vejRo0e7z5wk3/rWtzJv3rxlrgMAAACwLLePAQAAWEETJ07Myy+/nMmTJ7cLQpbabLPNcswxxzR//cYbb+RLX/pSNt1003Tt2jUbbbRRvvjFL2bRokXtnrfRRhtlxIgR+dGPfpQPfehD6datWzbZZJN2twg566yzMmDAgCTJSSedlKqqmtsfRo8evdxNEEtvCfJmM2bMyM4775zevXtnrbXWyuabb54vfvGLzceX3rZjypQp7Z53++23Z5dddkmPHj3Su3fv/P3f/30eeeSR5b7fL3/5y4wePTq9e/dOr169MmbMmLz66qtv/Rv7Jw4++ODcfPPNmT9/fvPa7Nmz8/jjj+fggw9e5vyLL76YE088MVtttVXWWmut9OzZM3vvvXceeOCB5pk777yzuT1jzJgxzVuPLP2cu+++e7bccsvce++92XXXXbPmmms2f19233337L777s3XGjVqVLp167bM5x82bFjWXnvtPPvssx3+rCtj/fXXz8CBA/OrX/1qtb7Pmy29Nc2dd97ZvLb09+znP/959thjj6y55pp573vfm4kTJy7z/EWLFuXMM8/MZpttlq5du2bDDTfMySefvMzfhRVVVVXOOuusZa5vtNFGGT16dPPXU6ZMSVVVueuuu3L88cdn/fXXT48ePfKpT32qGVu92c0339z8vr/nPe/J8OHD8/DDDy9z7qabbsqWW26Zbt26Zcstt8yNN974Z30eAAAAgFVFFAIAALCCvve972WTTTbJjjvu2KHzRxxxRMaPH59tttkmF154YXbbbbdMmDAhI0eOXObsL3/5y+y///756Ec/mvPPPz9rr712Ro8e3fyH6H333bd524xPf/rTufrqq/O1r31theZ/+OGHM2LEiCxatCjnnHNOzj///Hzyk5/MXXfd9bbP+8EPfpBhw4bl+eefz1lnnZXjjz8+P/7xj7PTTjvlqaeeWub8gQcemN///veZMGFCDjzwwEyZMiVnn312h+fcd999U1VVvv3tbzevXXvttRk4cGC22WabZc4/8cQTuemmmzJixIhccMEFOemkk/Lggw9mt912awYaW2yxRc4555wkydixY3P11Vfn6quvzq677tp8nd/97nfZe++9s/XWW+drX/ta9thjj+XOd9FFF2X99dfPqFGjsnjx4iTJv/7rv2b69Om55JJL0r9//w5/1pXxxhtv5Ne//nXWXnvt5T7++9//Pr/97W/b/SxZsqRDr/3iiy+2e968efPe9vy8efPysY99LH/3d3+X888/PwMHDswpp5ySm2++uXlmyZIl+eQnP5lJkyblE5/4RC655JLss88+ufDCC3PQQQd1/IOvAp///OfzwAMP5Mwzz8znPve5fO9731vmVkxXX311hg8fnrXWWitf/epXc8YZZ+TnP/95dt5553bf9+nTp2e//fZLVVWZMGFC9tlnn4wZMyY/+clP3tXPBAAAALA8bh8DAACwAhYsWJDf/OY3+fu///sOnX/ggQcyderUHHHEEfn617+eJPnHf/zH9OnTJ5MmTcodd9zRLjp47LHHMnPmzOyyyy5J/hhWbLjhhrnqqqsyadKkfPCDH0zPnj1z3HHHZZtttlmpW2jMmDEjr732Wm6++ea3vEXI8px00klZZ511MmvWrKyzzjpJkn322SeDBw/OmWeemalTp7Y7P3jw4EyePLn569/97neZPHlyvvrVr3bo/d7znvdkxIgRufbaa3PYYYdlyZIl+da3vpXPfe5zyz2/1VZb5Re/+EU6dfq///+HQw89NAMHDszkyZNzxhlnpG/fvtl7770zfvz4DBkyZLm/f3PmzMkVV1yRI4888m3n6927dyZPnpxhw4bln//5n3PwwQfnxBNPzD777LNabm3y+uuv57e//W1zxokTJ2bOnDkZN27ccs8fdthhy1x78sknl7tN5k9tvvnm7X49YMCA5YY/Sz377LP5t3/7txx66KFJksMPPzwDBgzI5MmTs/feeyf5Y9Dzgx/8ID/84Q+z8847N5+75ZZb5qijjsqPf/zjDodWf651110306dPb27QWbJkSS6++OK89NJL6dWrV15++eV84QtfyBFHHJErr7yy+bxRo0Zl8803z7nnntu8fsopp6Rv37750Y9+lF69eiVJdtttt+y1117NrT4AAAAAdRGFAAAArIAFCxYk+WOw0BH//d//nSQ5/vjj210/4YQTMmnSpEybNq1dFDJo0KBmEJL88RYhm2++eZ544ok/d/Sm3r17J0m+853vZMyYMe0iirfy3HPP5f7778/JJ5/cDEKS5IMf/GA++tGPNj/nmx111FHtfr3LLrvkxhtvzIIFC9KzZ88OzXrwwQfngAMOyJw5c/LQQw9lzpw5y711TJJ07dq1+b8vXrw48+fPb94a57777uvQ+y19nTFjxnTo7F577ZUjjzwy55xzTv7zP/8z3bp1y7/+6792+L1WxPTp07P++uu3uzZmzJicd955yz0/fvz4dt+lJOnXr1+H3uu//uu/2v0Zde/e/W3Pr7XWWu1CmC5duuRDH/pQu+/tDTfckC222CIDBw5sxi1J8pGPfCRJcscdd7xrUcjYsWPb3VJpl112yYUXXpinn346H/zgBzNjxozMnz8/n/70p9vN2rlz5+ywww654447kvzf34tTTz21GYQkyUc/+tEMGjQor7zyyrvyeQAAAADeiigEAABgBSz9h/Lf//73HTr/9NNPp1OnTtlss83aXe/Xr1969+6dp59+ut3197///cu8xtprr/2Ot+9YEQcddFC+8Y1v5Igjjsipp56aPffcM/vuu2/233//twxEls75pxskkj/ekuXWW2/NK6+8kh49ejSv/+lnWXqbk3nz5nU4Cvn4xz+e97znPbnuuuty//33Z/vtt89mm2223K0VS5YsyUUXXZTLLrssTz75ZPOWLskfN0N01Hvf+9506dKlw+cnTZqU73znO7n//vtz7bXXpk+fPu/4nBdeeKHdfGuttVbWWmutt33ODjvskC9/+ctZvHhxHnrooXz5y1/OvHnz3nLWrbbaKkOHDu3w53izXXfddYW2yLzvfe9rF1kkf/zz/tnPftb89eOPP55HHnlkmbBlqeeffz7JH29d89prrzWvd+/evV1wsSq83Xdz6azJ/wUrf2rp93fp34u/+Zu/WebMisZIAAAAAKuDKAQAAGAF9OzZM/37989DDz20Qs/7038wfyudO3de7vW2traVfo83xwfJH/+RfebMmbnjjjsybdq03HLLLbnuuuvykY98JNOnT3/LGVbUn/NZluratWv23XffTJ06NU888UTOOuustzx77rnn5owzzshhhx2WL33pS1lnnXXSqVOnHHvssVmyZEmH3/OdtmL8qZ/+9KfNoOHBBx/Mpz/96Xd8zvbbb98uCDrzzDPf9rMlyXrrrdeMPIYNG5aBAwdmxIgRueiii5bZRPNu68if9ZIlS7LVVlvlggsuWO7ZDTfcMEmy77775oc//GHz+qhRozJlypSVmutPv/sdnXfp9+Xqq69e7naVRsN/TgEAAAD+OvivGAAAACtoxIgRufLKKzNr1qwMGTLkbc8OGDAgS5YsyeOPP54tttiieX3u3LmZP39+BgwYsMrmWnvttTN//vxlrv/pNpIk6dSpU/bcc8/sueeeueCCC3Luuefm9NNPzx133LHc7RJL53zssceWeezRRx/Neuut125LyKp08MEH55vf/GY6deqUkSNHvuW5//zP/8wee+yRyZMnt7s+f/78dlsvOhrodMQrr7ySMWPGZNCgQdlxxx0zceLEfOpTn8r222//ts+75pprsnDhwuavN9lkkxV+7+HDh2e33XbLueeemyOPPHK1/f6vKptuumkeeOCB7Lnnnm/7Z3D++ee324zTv3//d3zt5X33X3vttTz33HMrPWuS9OnT5223rSz9e7F0s8ibLe/vCgAAAMC77Z1vHA0AAEA7J598cnr06JEjjjgic+fOXebxX/3qV7nooouS/PH2J0nyta99rd2ZpdsShg8fvsrm2nTTTfPSSy+1u2XHc889lxtvvLHduRdffHGZ52699dZJkkWLFi33tTfYYINsvfXWmTp1art/fH/ooYcyffr05udcHfbYY4986UtfyqWXXrrcrQ1Lde7ceZktJDfccEN+85vftLu2NJ5YXkCzok455ZQ888wzmTp1ai644IJstNFGGTVq1Fv+Pi610047ZejQoc2flYlClr7/7373u3z9619fqee/mw488MD85je/We6sCxcuzCuvvJIk2Xbbbdv93gwaNOgdX3vTTTfNzJkz21278sor33JTyDsZNmxYevbsmXPPPTevv/76Mo+/8MILSdr/vXjppZeaj8+YMSM///nPV+q9AQAAAFYlm0IAAABW0Kabbpprr702Bx10ULbYYot85jOfyZZbbpnXXnstP/7xj3PDDTdk9OjRSZK/+7u/y6hRo3LllVdm/vz52W233XLPPfdk6tSp2WeffbLHHnussrlGjhyZU045JZ/61KfyhS98Ia+++mouv/zyfOADH8h9993XPHfOOedk5syZGT58eAYMGJDnn38+l112Wd73vvdl5513fsvXP++887L33ntnyJAhOfzww7Nw4cJccskl6dWr1zve+uTP0alTp/zTP/3TO54bMWJEzjnnnIwZMyY77rhjHnzwwVxzzTXLBBebbrppevfunSuuuCLvec970qNHj+ywww7ZeOONV2iu22+/PZdddlnOPPPMbLPNNkmSq666KrvvvnvOOOOMTJw4cYVeb2Xsvffe2XLLLXPBBRdk3LhxWWONNVb7e66sQw89NNdff32OOuqo3HHHHdlpp52yePHiPProo7n++utz6623Zrvttlup1z7iiCNy1FFHZb/99stHP/rRPPDAA7n11lvbbYhZET179szll1+eQw89NNtss01GjhyZ9ddfP88880ymTZuWnXbaKZdeemmSZMKECRk+fHh23nnnHHbYYXnxxRdzySWX5G//9m/z8ssvr9T7AwAAAKwqNoUAAACshE9+8pP52c9+lv333z/f+c53Mm7cuJx66ql56qmncv755+fiiy9unv3GN76Rs88+O7Nnz86xxx6b22+/Paeddlq+9a1vrdKZ1l133dx4441Zc801c/LJJ2fq1KmZMGFCPvGJTywz+/vf//5885vfzLhx4/Iv//Iv2XXXXXP77benV69eb/n6Q4cOzS233JJ1110348ePz6RJk/LhD384d9111woHFavDF7/4xZxwwgm59dZbc8wxx+S+++7LtGnTsuGGG7Y7t8Yaa2Tq1Knp3LlzjjrqqHz605/OD3/4wxV6r9///vc57LDDMnjw4Jx++unN67vsskuOOeaYnH/++fnf//3fVfK53smJJ56Y//f//l+uueaad+X9VlanTp1y00035Z//+Z/z4IMP5sQTT2z+vTjmmGPygQ98YKVf+7Of/WxOOeWUzJw5MyeccEKefPLJzJgx48+6pc7BBx+c2267Le9973tz3nnn5Zhjjsm3vvWtbL311hkzZkzz3Mc+9rHccMMNWbx4cU477bR8+9vfzlVXXbXSgQsAAADAqlS1/eluXQAAAAAAAAAA/urZFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFatQ9wOrQffDRdY8AAABAi5k3+9K6RwAAAKDFdCvyX3tbl3/nrs/Cn5b733VsCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACNeoeAAAAAAAAAABaXmWnA6uebxUAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABWrUPQAAAAAAAAAAtLyqqnsCCmRTCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABSoUfcAAAAAAAAAANDyKjsdWPV8qwAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAoUKPuAQAAAAAAAACg5VVV3RNQIJtCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECNugcAAAAAAAAAgJZX2enAqudbBQAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBGnUPAAAAAAAAAAAtr6rqnoAC2RQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIEadQ8AAAAAAAAAAC2vstOBVc+3CgAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAArUqHsAAAAAAAAAAGh5VVX3BBTIphAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACtSoewAAAAAAAAAAaHmVnQ6ser5VAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUKBG3QMAAAAAAAAAQMurqronoEA2hQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQoEbdAwAAAAAAAABAy6vsdGDV860CAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAjXqHgAAAAAAAAAAWl5V1T0BBbIpBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACNeoeAAAAAAAAAABaXmWnA6uebxUAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABWrUPQAAAAAAAAAAtLzKTgdWPd8qAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKFCj7gEAAAAAAAAAoOV1quqegALZFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAFC3qpOfun5WwOLFi3PGGWdk4403Tvfu3bPpppvmS1/6Utra2ppn2traMn78+GywwQbp3r17hg4dmscff7zd67z44os55JBD0rNnz/Tu3TuHH354Xn755XZnfvazn2WXXXZJt27dsuGGG2bixIkr/LUShQAAAAAAAAAAdMBXv/rVXH755bn00kvzyCOP5Ktf/WomTpyYSy65pHlm4sSJufjii3PFFVfk7rvvTo8ePTJs2LD84Q9/aJ455JBD8vDDD2fGjBn5/ve/n5kzZ2bs2LHNxxcsWJC99torAwYMyL333pvzzjsvZ511Vq688soVmrdqe3OuUojug4+uewQAAABazLzZl9Y9AgAAAC2mW6PuCViVun/kK3WP0LIW3n56h8+OGDEiffv2zeTJk5vX9ttvv3Tv3j3//u//nra2tvTv3z8nnHBCTjzxxCTJSy+9lL59+2bKlCkZOXJkHnnkkQwaNCizZ8/OdtttlyS55ZZb8vGPfzy//vWv079//1x++eU5/fTTM2fOnHTp0iVJcuqpp+amm27Ko48+2uF5bQoBAAAAAAAAAOiAHXfcMbfddlt+8YtfJEkeeOCB/OhHP8ree++dJHnyySczZ86cDB06tPmcXr16ZYcddsisWbOSJLNmzUrv3r2bQUiSDB06NJ06dcrdd9/dPLPrrrs2g5AkGTZsWB577LHMmzevw/NqxwAAAAAAAACAlrVo0aIsWrSo3bWuXbuma9euy5w99dRTs2DBggwcODCdO3fO4sWL85WvfCWHHHJIkmTOnDlJkr59+7Z7Xt++fZuPzZkzJ3369Gn3eKPRyDrrrNPuzMYbb7zMayx9bO211+7QZ7MpBAAAAAAAAABoWRMmTEivXr3a/UyYMGG5Z6+//vpcc801ufbaa3Pfffdl6tSpmTRpUqZOnfouT90xNoUAAAAAAAAAAC3rtNNOy/HHH9/u2vK2hCTJSSedlFNPPTUjR45Mkmy11VZ5+umnM2HChIwaNSr9+vVLksydOzcbbLBB83lz587N1ltvnSTp169fnn/++Xav+8Ybb+TFF19sPr9fv36ZO3duuzNLf730TEfYFAIAAAAAAAAAtKyuXbumZ8+e7X7eKgp59dVX06lT+9Sic+fOWbJkSZJk4403Tr9+/XLbbbc1H1+wYEHuvvvuDBkyJEkyZMiQzJ8/P/fee2/zzO23354lS5Zkhx12aJ6ZOXNmXn/99eaZGTNmZPPNN+/wrWMSUQgAAAAAAAAA1K+q/NT1swI+8YlP5Ctf+UqmTZuWp556KjfeeGMuuOCCfOpTn/r//xirHHvssfnyl7+c7373u3nwwQfzmc98Jv37988+++yTJNliiy3ysY99LJ/97Gdzzz335K677srRRx+dkSNHpn///kmSgw8+OF26dMnhhx+ehx9+ONddd10uuuiiZTaavBO3jwEAAAAAAAAA6IBLLrkkZ5xxRv7xH/8xzz//fPr3758jjzwy48ePb545+eST88orr2Ts2LGZP39+dt5559xyyy3p1q1b88w111yTo48+OnvuuWc6deqU/fbbLxdffHHz8V69emX69OkZN25ctt1226y33noZP358xo4du0LzVm1tbW1//sf+y9J98NF1jwAAAECLmTf70rpHAAAAoMV0swKgKN33PLfuEVrWwtu+WPcIq43bxwAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAVq1D0AAAAAAAAAALS8yk4HVj3fKgAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAAChQo+4BAAAAAAAAAKDlVVXdE1Agm0IAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKFCj7gEAAAAAAAAAoOVVdjqw6vlWAQAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIEadQ8AAAAAAAAAAC2vquqegALZFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgRp1DwAAAAAAAAAALa+y04FVz7cKAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAI16h4AAAAAAAAAAFpeVdU9AQWyKQQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAK1Kh7AAAAAAAAAABoeZWdDqx6vlUAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFKhR9wAAAAAAAAAA0PKqqu4JKJBNIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFCgRt0DAAAAAAAAAEDLq+x0YNXzrQIAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQI26BwAAAAAAAACAllfZ6cCq51sFAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABWrUPQAAAAAAAAAAtLyqqnsCCmRTCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFatQ9AAAAAAAAAAC0vMpOB1Y93yoAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAoUKPuAQAAAAAAAACg5VVV3RNQIJtCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAAChQo+4BAAAAAAAAAKDlVXY6sOr5VgEAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQoEbdAwAAAAAAAABAy6uquiegQDaFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIEadQ8AAAAAAAAAAK2uqqq6R6BANoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUKBG3QMAAAAAAAAAQKurqqruESiQTSEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQoEbdAwAAAAAAAABAy6vqHoAS2RQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIEadQ8AAAAAAAAAAK2uqqq6R6BANoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgRp1DwAAAAAAAAAAra6qqrpHoEA2hQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQoEbdAwAAAAAAAABAq6uqqu4RKJBNIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUqFH3AAAAAAAAAADQ6qqqqnsECmRTCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABSoUfcAAAAAAAAAANDyqroHoEQ2hQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQoEbdAwAAAAAAAABAq6uqqu4RKJBNIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFCgRt0DAAAAAAAAAECrq6qq7hEokE0hAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABSoUfcAAAAAAAAAANDqqqqqewQKZFMIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFKhR9wAAAAAAAAAA0Oqqqqp7BApkUwgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABWrUPQAAAAAAAAAAtLyq7gEokU0hAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUKBG3QMAAAAAAAAAQKurqqruESiQTSEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFKhR9wAAAAAAAAAA0Oqqqqp7BApkUwgAAAAAAAAAQAdstNFGqapqmZ9x48YlSf7whz9k3LhxWXfddbPWWmtlv/32y9y5c9u9xjPPPJPhw4dnzTXXTJ8+fXLSSSfljTfeaHfmzjvvzDbbbJOuXbtms802y5QpU1ZqXlEIAAAAAAAAAEAHzJ49O88991zzZ8aMGUmSAw44IEly3HHH5Xvf+15uuOGG/PCHP8yzzz6bfffdt/n8xYsXZ/jw4Xnttdfy4x//OFOnTs2UKVMyfvz45pknn3wyw4cPzx577JH7778/xx57bI444ojceuutKzxv1dbW1vZnfua/ON0HH133CAAAALSYebMvrXsEAAAAWky3Rt0TsCqtP+a6ukdoWS9cddBKP/fYY4/N97///Tz++ONZsGBB1l9//Vx77bXZf//9kySPPvpotthii8yaNSsf/vCHc/PNN2fEiBF59tln07dv3yTJFVdckVNOOSUvvPBCunTpklNOOSXTpk3LQw891HyfkSNHZv78+bnllltWaD6bQgAAAAAAAACAlrVo0aIsWLCg3c+iRYve8XmvvfZa/v3f/z2HHXZYqqrKvffem9dffz1Dhw5tnhk4cGDe//73Z9asWUmSWbNmZauttmoGIUkybNiwLFiwIA8//HDzzJtfY+mZpa+xIkQhAAAAAAAAAEDLmjBhQnr16tXuZ8KECe/4vJtuuinz58/P6NGjkyRz5sxJly5d0rt373bn+vbtmzlz5jTPvDkIWfr40sfe7syCBQuycOHCFfpsFgoBAAAAAAAAAC3rtNNOy/HHH9/uWteuXd/xeZMnT87ee++d/v37r67R/myiEAAAAAAAAACoWVVVdY/Qsrp27dqhCOTNnn766fzgBz/It7/97ea1fv365bXXXsv8+fPbbQuZO3du+vXr1zxzzz33tHutuXPnNh9b+j+XXnvzmZ49e6Z79+4rNKfbxwAAAAAAAAAArICrrroqffr0yfDhw5vXtt1226yxxhq57bbbmtcee+yxPPPMMxkyZEiSZMiQIXnwwQfz/PPPN8/MmDEjPXv2zKBBg5pn3vwaS88sfY0VIQoBAAAAAAAAAOigJUuW5KqrrsqoUaPSaPzfDVp69eqVww8/PMcff3zuuOOO3HvvvRkzZkyGDBmSD3/4w0mSvfbaK4MGDcqhhx6aBx54ILfeemv+6Z/+KePGjWtuKznqqKPyxBNP5OSTT86jjz6ayy67LNdff32OO+64FZ7V7WMAAAAAAAAAADroBz/4QZ555pkcdthhyzx24YUXplOnTtlvv/2yaNGiDBs2LJdddlnz8c6dO+f73/9+Pve5z2XIkCHp0aNHRo0alXPOOad5ZuONN860adNy3HHH5aKLLsr73ve+fOMb38iwYcNWeNaqra2tbeU+5l+u7oOPrnsEAAAAWsy82ZfWPQIAAAAtppsVAEXpc9j1dY/Qsp7/5oF1j7DauH0MAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFMhdpgAAAAAAAACgblXdA1Aim0IAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKFCj7gEAAAAAAAAAoNVVVVX3CBTIphAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAoUKPuAQAAAAAAAACg1VVVVfcIFMimEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAK1Kh7AAAAAAAAAABodVVV1T0CBbIpBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAArUqHsAAAAAAAAAAGh1VVXVPQIFsikEAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAI16h4AAAAAAAAAAFpeVfcAlMimEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAK1Kh7AAAAAAAAAABodVVV1T0CBbIpBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAArUqHsAAAAAAAAAAGh1VVXVPQIFsikEAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAI16h4AAAAAAAAAAFpdVVV1j0CBbAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAjXqHgAAAAAAAAAAWl5V9wCUyKYQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAArUqHsAAAAAAAAAAGh1VVXVPQIFsikEAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACtSoewAAAAAAAAAAaHVVVdU9AgWyKQQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAACiQKAQAAAAAAAAAoECiEAAAAAAAAACAAjXqHgAAAAAAAAAAWl1VVXWPQIFsCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACiUIAAAAAAAAAAAokCgEAAAAAAAAAKJAoBAAAAAAAAACgQKIQAAAAAAAAAIACNeoeAAAAAAAAAABaXVVVdY9AgWwKAQAAAAAAAAAokCgEAAAAAAAAAKBAohAAAAAAAAAAgAKJQgAAAAAAAAAACiQKAQAAAAAAAAAokCgEAAAAAAAAAKBAjboHAAAAAAAAAICWV9U9ACWyKQQAAAAAAAAAoECiEAAAAAAAAACAAolCAAAAAAAAAAAKJAoBAAAAAAAAAChQo843/+1vf5tvfvObmTVrVubMmZMk6devX3bccceMHj0666+/fp3jAQAAAAAAAAD81aptU8js2bPzgQ98IBdffHF69eqVXXfdNbvuumt69eqViy++OAMHDsxPfvKTd3ydRYsWZcGCBe1+2pYsfhc+AQAAAAAAAADAX67aNoV8/vOfzwEHHJArrrgiVVW1e6ytrS1HHXVUPv/5z2fWrFlv+zoTJkzI2Wef3e5a577bZ40NPrTKZwYAAAAAAACA1eFP/90cVoWqra2trY437t69e376059m4MCBy3380UcfzeDBg7Nw4cK3fZ1FixZl0aJF7a712eWUVJ06r7JZAQAA4J3Mm31p3SMAAADQYrrVtgKA1WGT4/+77hFa1hMXfLzuEVab2v7PRL9+/XLPPfe8ZRRyzz33pG/fvu/4Ol27dk3Xrl3bXROEAAAAAAAAAACtrrYo5MQTT8zYsWNz7733Zs8992wGIHPnzs1tt92Wr3/965k0aVJd4wEAAAAAAAAA/FWrLQoZN25c1ltvvVx44YW57LLLsnjx4iRJ586ds+2222bKlCk58MAD6xoPAAAAAAAAAOCvWq13mTrooINy0EEH5fXXX89vf/vbJMl6662XNdZYo86xAAAAAAAAAAD+6tUahSy1xhprZIMNNqh7DAAAAAAAAACAYnSqewAAAAAAAAAAAFa9v4hNIQAAAAAAAADQyqqqqnsECmRTCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFatQ9AAAAAAAAAAC0uqqqewJKZFMIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFKhR9wAAAAAAAAAA0Oqqqqp7BApkUwgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABWrUPQAAAAAAAAAAtLqqqnsCSmRTCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABSoUfcAAAAAAAAAANDqqqqqewQKZFMIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAVq1D0AAAAAAAAAALS6qqp7AkpkUwgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUqFH3AAAAAAAAAADQ6jp1quoegQLZFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgRp1DwAAAAAAAAAAra6q6p6AEtkUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBGnUPAAAAAAAAAACtrqqqukegQDaFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIEadQ8AAAAAAAAAAK2uquqegBLZFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgRp1DwAAAAAAAAAAra6qqrpHoEA2hQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBGnUPAAAAAAAAAACtrqqqukegQDaFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFCgRt0DAAAAAAAAAECrq6q6J6BENoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgRp1DwAAAAAAAAAAra6qqrpHoEA2hQAAAAAAAAAAFEgUAgAAAAAAAADQQb/5zW/yD//wD1l33XXTvXv3bLXVVvnJT37SfLytrS3jx4/PBhtskO7du2fo0KF5/PHH273Giy++mEMOOSQ9e/ZM7969c/jhh+fll19ud+ZnP/tZdtlll3Tr1i0bbrhhJk6cuMKzikIAAAAAAAAAADpg3rx52WmnnbLGGmvk5ptvzs9//vOcf/75WXvttZtnJk6cmIsvvjhXXHFF7r777vTo0SPDhg3LH/7wh+aZQw45JA8//HBmzJiR73//+5k5c2bGjh3bfHzBggXZa6+9MmDAgNx7770577zzctZZZ+XKK69coXmrtra2tj//Y/9l6T746LpHAAAAoMXMm31p3SMAAADQYro16p6AVWnw2bfXPULL+umZH+nw2VNPPTV33XVX/ud//me5j7e1taV///454YQTcuKJJyZJXnrppfTt2zdTpkzJyJEj88gjj2TQoEGZPXt2tttuuyTJLbfcko9//OP59a9/nf79++fyyy/P6aefnjlz5qRLly7N977pppvy6KOPdnhem0IAAAAAAAAAgJa1aNGiLFiwoN3PokWLlnv2u9/9brbbbrsccMAB6dOnTwYPHpyvf/3rzceffPLJzJkzJ0OHDm1e69WrV3bYYYfMmjUrSTJr1qz07t27GYQkydChQ9OpU6fcfffdzTO77rprMwhJkmHDhuWxxx7LvHnzOvzZRCEAAAAAAAAAQMuaMGFCevXq1e5nwoQJyz37xBNP5PLLL8/f/M3f5NZbb83nPve5fOELX8jUqVOTJHPmzEmS9O3bt93z+vbt23xszpw56dOnT7vHG41G1llnnXZnlvcab36PjrBQCAAAAAAAAABqVlV1T9C6Tjv1tBx//PHtrnXt2nW5Z5csWZLtttsu5557bpJk8ODBeeihh3LFFVdk1KhRq33WFWVTCAAAAAAAAADQsrp27ZqePXu2+3mrKGSDDTbIoEGD2l3bYost8swzzyRJ+vXrlySZO3duuzNz585tPtavX788//zz7R5/44038uKLL7Y7s7zXePN7dIQoBAAAAAAAAACgA3baaac89thj7a794he/yIABA5IkG2+8cfr165fbbrut+fiCBQty9913Z8iQIUmSIUOGZP78+bn33nubZ26//fYsWbIkO+ywQ/PMzJkz8/rrrzfPzJgxI5tvvnnWXnvtDs8rCgEAAAAAAAAA6IDjjjsu//u//5tzzz03v/zlL3PttdfmyiuvzLhx45IkVVXl2GOPzZe//OV897vfzYMPPpjPfOYz6d+/f/bZZ58kf9ws8rGPfSyf/exnc8899+Suu+7K0UcfnZEjR6Z///5JkoMPPjhdunTJ4YcfnocffjjXXXddLrroomVuc/NOGqv00wMAAAAAAAAAFGr77bfPjTfemNNOOy3nnHNONt5443zta1/LIYcc0jxz8skn55VXXsnYsWMzf/787LzzzrnlllvSrVu35plrrrkmRx99dPbcc8906tQp++23Xy6++OLm47169cr06dMzbty4bLvttllvvfUyfvz4jB07doXmrdra2tr+/I/9l6X74KPrHgEAAIAWM2/2pXWPAAAAQIvpZgVAUbY55/a6R2hZ943/SN0jrDZuHwMAAAAAAAAAUCDtGAAAAAAAAADUrKqqukegQDaFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIEadQ8AAAAAAAAAAK2uquqegBLZFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgRp1DwAAAAAAAAAAra6qqrpHoEA2hQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBGnUPAAAAAAAAAACtrqrqnoAS2RQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIEadQ8AAAAAAAAAAK2uqqq6R6BANoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgRp1DwAAAAAAAAAAra6q6p6AEtkUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBGnUPAAAAAAAAAACtrqqqukegQDaFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIEadQ8AAAAAAAAAAK2uquqegBLZFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgRp1DwAAAAAAAAAAra6qqrpHoEA2hQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQoEbdAwAAAAAAAABAq6uquiegRDaFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIEadQ8AAAAAAAAAAK2uqqq6R6BANoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUKBG3QMAAAAAAAAAQKurqqruESiQTSEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQoEbdAwAAAAAAAABAq6uquiegRDaFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAQIFEIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFCgRt0DAAAAAAAAAECrq6qq7hEokE0hAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUCBRCAAAAAAAAABAgUQhAAAAAAAAAAAFEoUAAAAAAAAAABRIFAIAAAAAAAAAUKBG3QMAAAAAAAAAQKurqronoEQ2hQAAAAAAAAAAFEgUAgAAAAAAAABQIFEIAAAAAAAAAECBRCEAAAAAAAAAAAUShQAAAAAAAAAAFEgUAgAAAAAAAABQoEbdAwAAAAAAAABAq6uqqu4RKJBNIQAAAAAAAAAABRKFAAAAAAAAAAAUSBQCAAAAAAAAAFAgUQgAAAAAAAAAwP/H3v0HWV3f9x5/f5fDbhBcFEdAh9LSIRW3ahJJR3baNNUadszGxIBpk3GsqTpTmdUEMOgl1xjUabC0KTVRShsdcdqiVRPTKKOEquAwrBNDQoJ6dZpos2ZwF02F9QcuuO79o8O5bv2RPbD49b6/j8fMGfV8P+fwWoc/n/PZhEQhAAAAAAAAAAAJiUIAAAAAAAAAABKqlT0AAAAAAAAAAKquKMpeQEZuCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABKqlT0AAAAAAAAAAKquqSjKnkBCbgoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACdXKHgAAAAAAAAAAVVcUZS8gIzeFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACdXKHgAAAAAAAAAAVVcURdkTSMhNIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACChWtkDAAAAAAAAAKDqmoqyF5CRm0IAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICEamUPAAAAAAAAAICqK4qi7Akk5KYQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkFCt7AEAAAAAAAAAUHVFUfYCMnJTCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkFCt7AEAAAAAAAAAUHVFFGVPICE3hQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICEamUPAAAAAAAAAICqayrKXkBGbgoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACdXKHgAAAAAAAAAAVVcURdkTSMhNIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEK1sgcAAAAAAAAAQNUVRdkLyMhNIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACChWtkDAAAAAAAAAKDqmoqi7Akk5KYQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgoVrZAwAAAAAAAACg6oqi7AVk5KYQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkFCt7AEAAAAAAAAAUHVFUZQ9gYTcFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAMAILFu2LIqiGPaaNWtW/fmrr74aXV1dcdRRR8WECRNi/vz50dfXN+w7enp6orOzMw477LCYPHlyLFmyJF577bVhZzZu3Bgnn3xytLS0xMyZM2PNmjUHtFcUAgAAAAAAAAAwQr/7u78bzz77bP21efPm+rNFixbF3XffHXfccUds2rQpduzYEfPmzas/HxwcjM7Ozti7d29s2bIlbrnlllizZk1ceeWV9TNPP/10dHZ2xqmnnhrbtm2LhQsXxoUXXhjr169veGvt4H5UAAAAAAAAAIDqqNVqMXXq1De9v3v37rjpppti7dq1cdppp0VExM033xzHH398PPzwwzFnzpz4/ve/H48//nj8+7//e0yZMiU++MEPxjXXXBOXX355LFu2LJqbm2P16tUxY8aM+PrXvx4REccff3xs3rw5Vq5cGR0dHQ1tdVMIAAAAAAAAAMAI/cd//Ecce+yx8du//dtxzjnnRE9PT0REbN26Nfbt2xenn356/eysWbNi+vTp0d3dHRER3d3dceKJJ8aUKVPqZzo6OqK/vz8ee+yx+pk3fsf+M/u/oxFuCgEAAAAAAAAAKmtgYCAGBgaGvdfS0hItLS1vOnvKKafEmjVr4rjjjotnn302rrrqqvjIRz4Sjz76aPT29kZzc3McccQRwz4zZcqU6O3tjYiI3t7eYUHI/uf7n73Tmf7+/tizZ0+MGzduxD+bKAQAAAAAAAAASlYUZS+oruXLl8dVV1017L2vfvWrsWzZsjedPeOMM+r/ftJJJ8Upp5wSv/mbvxm33357Q7HGu8WvjwEAAAAAAAAAKmvp0qWxe/fuYa+lS5eO6LNHHHFE/M7v/E787Gc/i6lTp8bevXtj165dw8709fXF1KlTIyJi6tSp0dfX96bn+5+905nW1taGwxNRCAAAAAAAAABQWS0tLdHa2jrs9Va/OuatvPTSS/Hzn/88jjnmmJg9e3aMHTs27r///vrzJ598Mnp6eqK9vT0iItrb22P79u2xc+fO+pkNGzZEa2trtLW11c+88Tv2n9n/HY0QhQAAAAAAAAAAjMCXvvSl2LRpU/znf/5nbNmyJT796U/HmDFj4nOf+1xMnDgxLrjggli8eHE8+OCDsXXr1vjzP//zaG9vjzlz5kRExNy5c6OtrS3OPffc+MlPfhLr16+PK664Irq6uuohykUXXRRPPfVUXHbZZfHEE0/EqlWr4vbbb49FixY1vLc2qj89AAAAAAAAAEBSv/zlL+Nzn/tc/OpXv4qjjz46/uAP/iAefvjhOProoyMiYuXKldHU1BTz58+PgYGB6OjoiFWrVtU/P2bMmLjnnntiwYIF0d7eHuPHj4/zzjsvrr766vqZGTNmxLp162LRokVx3XXXxbRp0+LGG2+Mjo6OhvcWQ0NDQwf/Y7+3jPvQxWVPAAAAoGJeeOT6sicAAABQMe9zBUAqn1nzo7InVNYdnz+57AmHjF8fAwAAAAAAAACQkHYMAAAAAAAAAErWVBRlTyAhN4UAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJ1coeAAAAAAAAAABVV5Q9gJTcFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASqpU9AAAAAAAAAACqriiKsieQkJtCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEK1sgcAAAAAAAAAQNU1FWUvICM3hQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAnVyh4AAAAAAAAAAFVXFEXZE0jITSEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgoVrZAwAAAAAAAACg6oqi7AVk5KYQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgoVrZAwAAAAAAAACg6oqiKHsCCbkpBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACRUK3sAAAAAAAAAAFRdU1H2AjJyUwgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJBQrewBAAAAAAAAAFB1RVGUPYGE3BQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEqqVPQAAAAAAAAAAqq4oewApuSkEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJFQrewAAAAAAAAAAVF1TUZQ9gYTcFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACRUK3sAAAAAAAAAAFRdUZS9gIzcFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASqpU9AAAAAAAAAACqriiKsieQkJtCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhGplDwAAAAAAAACAqiuKsheQkZtCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEK1sgcAAAAAAAAAQNU1FUXZE0jITSEAAAAAAAAAAAmJQgAAAAAAAAAAEhrRr4/53ve+N+Iv/OQnP3nAYwAAAAAAAAAAGB0jikLOOuusEX1ZURQxODh4MHsAAAAAAAAAABgFI4pCXn/99UO9AwAAAAAAAACAUdRU9gAAAAAAAAAAAEbfiG4K+Z9efvnl2LRpU/T09MTevXuHPfvCF74wKsMAAAAAAAAAADhwDUchP/7xj+PjH/94vPLKK/Hyyy/HpEmT4vnnn4/DDjssJk+eLAoBAAAAAAAAgAYVRdkLyKjhXx+zaNGiOPPMM+OFF16IcePGxcMPPxy/+MUvYvbs2fE3f/M3h2IjAAAAAAAAAAANajgK2bZtW1x66aXR1NQUY8aMiYGBgfiN3/iNWLFiRXz5y18+FBsBAAAAAAAAAGhQw1HI2LFjo6npvz82efLk6OnpiYiIiRMnxjPPPDO66wAAAAAAAAAAOCC1Rj/woQ99KB555JF4//vfHx/96EfjyiuvjOeffz7+6Z/+KU444YRDsREAAAAAAAAAgAY1fFPI1772tTjmmGMiIuIv//Iv48gjj4wFCxbEc889F//4j/846gMBAAAAAAAAAGhcwzeFfPjDH67/++TJk+O+++4b1UEAAAAAAAAAABy8hqMQAAAAAAAAAGB0FUVR9gQSajgKmTFjxjv+ZXzqqacOahAAAAAAAAAAAAev4Shk4cKFw/5737598eMf/zjuu+++WLJkyWjtAgAAAAAAAADgIDQchXzxi198y/dvuOGG+OEPf3jQgwAAAAAAAAAAOHhNo/VFZ5xxRnz7298era8DAAAAAAAAAOAgjFoUcuedd8akSZNG6+sAAAAAAAAAADgIDf/6mA996ENRFEX9v4eGhqK3tzeee+65WLVq1aiOAwAAAAAAAADgwDQchXzqU58aFoU0NTXF0UcfHX/0R38Us2bNGtVxAAAAAAAAAAAcmGJoaGio7BGj7YVXBsueAAAAQMUcO3dZ2RMAAAComD2bryl7AqPokrv+T9kTKuubnz6+7AmHTFOjHxgzZkzs3LnzTe//6le/ijFjxozKKAAAAAAAAAAADk7DUcjbXSwyMDAQzc3NBz0IAAAAAAAAAICDVxvpwW984xsREVEURdx4440xYcKE+rPBwcF46KGHYtasWaO/EAAAAAAAAACAho04Clm5cmVE/PdNIatXrx72q2Kam5vjt37rt2L16tWjvxAAAAAAAAAAgIaNOAp5+umnIyLi1FNPje985ztx5JFHHrJRAAAAAAAAAAAcnBFHIfs9+OCDh2IHAAAAAAAAAACjqKnRD8yfPz/+6q/+6k3vr1ixIj7zmc+MyigAAAAAAAAAqJKiKLxKemXWcBTy0EMPxcc//vE3vX/GGWfEQw89NCqjAAAAAAAAAAA4OA1HIS+99FI0Nze/6f2xY8dGf3//qIwCAAAAAAAAAODgNByFnHjiifGv//qvb3r/tttui7a2tlEZBQAAAAAAAADAwak1+oGvfOUrMW/evPj5z38ep512WkRE3H///bF27dq48847R30gAAAAAAAAAACNazgKOfPMM+O73/1ufO1rX4s777wzxo0bFx/4wAfigQceiEmTJh2KjQAAAAAAAAAANKjhKCQiorOzMzo7OyMior+/P2699db40pe+FFu3bo3BwcFRHQgAAAAAAAAAQOMOKAqJiHjooYfipptuim9/+9tx7LHHxrx58+KGG24YzW0AAAAAAAAAUAlNRdkLyKihKKS3tzfWrFkTN910U/T398ef/MmfxMDAQHz3u9+Ntra2Q7URAAAAAAAAAIAGNY304JlnnhnHHXdc/PSnP42/+7u/ix07dsQ3v/nNQ7kNAAAAAAAAAIADNOKbQu699974whe+EAsWLIj3v//9h3ITAAAAAAAAAAAHacQ3hWzevDlefPHFmD17dpxyyilx/fXXx/PPP38otwEAAAAAAAAAcIBGHIXMmTMnvvWtb8Wzzz4bf/EXfxG33XZbHHvssfH666/Hhg0b4sUXXzyUOwEAAAAAAAAAaMCIo5D9xo8fH+eff35s3rw5tm/fHpdeemlce+21MXny5PjkJz95KDYCAAAAAAAAANCghqOQNzruuONixYoV8ctf/jJuvfXW0doEAAAAAAAAAMBBqo3Gl4wZMybOOuusOOuss0bj6wAAAAAAAACgUpqKsheQ0UHdFAIAAAAAAAAAwHuTKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEqqVPQAAAAAAAAAAqq4oirInkJCbQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIRqZQ8AAAAAAAAAgKprKspeQEZuCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJ1coeAAAAAAAAAABVVxRlLyAjN4UAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJ1coeAAAAAAAAAABV11QUZU8gITeFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIRqZQ8AAAAAAAAAgKpzowOHgr9XAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAIKFa2QMAAAAAAAAAoOqKouwFZOSmEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAIKFa2QMAAAAAAAAAoOqaiqLsCSTkphAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQUK3sAQAAAAAAAABQdUVR9gIyclMIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQUK3sAQAAAAAAAABQdU1F2QvIyE0hAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAAA4ANdee20URRELFy6sv/fqq69GV1dXHHXUUTFhwoSYP39+9PX1DftcT09PdHZ2xmGHHRaTJ0+OJUuWxGuvvTbszMaNG+Pkk0+OlpaWmDlzZqxZs6bhfaIQAAAAAAAAAIAGPfLII/EP//APcdJJJw17f9GiRXH33XfHHXfcEZs2bYodO3bEvHnz6s8HBwejs7Mz9u7dG1u2bIlbbrkl1qxZE1deeWX9zNNPPx2dnZ1x6qmnxrZt22LhwoVx4YUXxvr16xvaKAoBAAAAAAAAAGjASy+9FOecc05861vfiiOPPLL+/u7du+Omm26Kv/3bv43TTjstZs+eHTfffHNs2bIlHn744YiI+P73vx+PP/54/PM//3N88IMfjDPOOCOuueaauOGGG2Lv3r0REbF69eqYMWNGfP3rX4/jjz8+Lr744jj77LNj5cqVDe0UhQAAAAAAAABAyZqKwquk14Ho6uqKzs7OOP3004e9v3Xr1ti3b9+w92fNmhXTp0+P7u7uiIjo7u6OE088MaZMmVI/09HREf39/fHYY4/Vz/zP7+7o6Kh/x0jVGjoNAAAAAAAAAJDIwMBADAwMDHuvpaUlWlpa3vL8bbfdFj/60Y/ikUceedOz3t7eaG5ujiOOOGLY+1OmTIne3t76mTcGIfuf73/2Tmf6+/tjz549MW7cuBH9bG4KAQAAAAAAAAAqa/ny5TFx4sRhr+XLl7/l2WeeeSa++MUvxr/8y7/E+973vnd5aeNEIQAAAAAAAABAZS1dujR279497LV06dK3PLt169bYuXNnnHzyyVGr1aJWq8WmTZviG9/4RtRqtZgyZUrs3bs3du3aNexzfX19MXXq1IiImDp1avT19b3p+f5n73SmtbV1xLeERIhCAAAAAAAAAIAKa2lpidbW1mGvt/vVMX/8x38c27dvj23bttVfH/7wh+Occ86p//vYsWPj/vvvr3/mySefjJ6enmhvb4+IiPb29ti+fXvs3LmzfmbDhg3R2toabW1t9TNv/I79Z/Z/x0jVGjoNAAAAAAAAAFBRhx9+eJxwwgnD3hs/fnwcddRR9fcvuOCCWLx4cUyaNClaW1vjkksuifb29pgzZ05ERMydOzfa2tri3HPPjRUrVkRvb29cccUV0dXVVY9RLrroorj++uvjsssui/PPPz8eeOCBuP3222PdunUN7RWFAAAAAAAAAACMkpUrV0ZTU1PMnz8/BgYGoqOjI1atWlV/PmbMmLjnnntiwYIF0d7eHuPHj4/zzjsvrr766vqZGTNmxLp162LRokVx3XXXxbRp0+LGG2+Mjo6OhrYUQ0NDQ6P2k71HvPDKYNkTAAAAqJhj5y4rewIAAAAVs2fzNWVPYBRdveFnZU+orCs/NrPsCYeMm0IAAAAAAAAAoGRFUfYCMmoqewAAAAAAAAAAAKNPFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACdXKHgAAAAAAAAAAVddUlL2AjNwUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJFQrewAAAAAAAAAAVF0RRdkTSMhNIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACChWtkDAAAAAAAAAKDqmoqyF5CRm0IAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQrWyBwAAAAAAAABA1TUVZS8gIzeFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACdXKHgAAAAAAAAAAVVcURdkTSMhNIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACChWtkDAAAAAAAAAKDqmoqyF5CRm0IAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICEamUPAAAAAAAAAICqK4qyF5CRm0IAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQrWyBwAAAAAAAABA1TUVRdkTSMhNIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEK1sgcAAAAAAAAAQNU1FWUvICM3hQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICEamUPAAAAAAAAAICqK4qyF5CRm0IAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICEamUPAAAAAAAAAICqa4qi7Akk5KYQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkFCt7AEAAAAAAAAAUHVFUfYCMnJTCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEioVvYAAAAAAAAAAKi6pqLsBWTkphAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACChWtkDAAAAAAAAAKDqmoqi7Akk5KYQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkFCt7AEAAAAAAAAAUHVFUfYCMnJTCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkFCt7AEAAAAAAAAAUHVNRVH2BBJyUwgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABIqFb2AAAAAAAAAACouqIoewEZuSkEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABIqFb2AAAAAAAAAACoOjc6cCj4ewUAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASqpU9AAAAAAAAAACqriiKsieQkJtCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEK1sgcAAAAAAAAAQNUVZQ8gJTeFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACdXKHgAAAAAAAAAAVddUFGVPICE3hQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICEamUPAAAAAAAAAICqK8oeQEpuCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABKqlT0AAAAAAAAAAKquKMpeQEZuCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJ1coeAAAAAAAAAABVVxRF2RNIyE0hAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQrWyBwAAAAAAAABA1bnRgUPB3ysAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASEgUAgAAAAAAAACQUK3sAQAAAAAAAABQdUVRlD2BhNwUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJFQrewAAAAAAAAAAVF1R9gBSclMIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASKhW9gAAAAAAAAAAqLqiKMqeQEJuCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJ1coeAAAAAAAAAABV50YHDgV/rwAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAMAI/P3f/32cdNJJ0draGq2trdHe3h733ntv/fmrr74aXV1dcdRRR8WECRNi/vz50dfXN+w7enp6orOzMw477LCYPHlyLFmyJF577bVhZzZu3Bgnn3xytLS0xMyZM2PNmjUHtFcUAgAAAAAAAAAwAtOmTYtrr702tm7dGj/84Q/jtNNOi0996lPx2GOPRUTEokWL4u6774477rgjNm3aFDt27Ih58+bVPz84OBidnZ2xd+/e2LJlS9xyyy2xZs2auPLKK+tnnn766ejs7IxTTz01tm3bFgsXLowLL7ww1q9f3/DeYmhoaOjgf+z3lhdeGSx7AgAAABVz7NxlZU8AAACgYvZsvqbsCYyiu37aW/aEyvr0SVMP6vOTJk2Kv/7rv46zzz47jj766Fi7dm2cffbZERHxxBNPxPHHHx/d3d0xZ86cuPfee+MTn/hE7NixI6ZMmRIREatXr47LL788nnvuuWhubo7LL7881q1bF48++mj9z/jsZz8bu3btivvuu6+hbW4KAQAAAAAAAAAqa2BgIPr7+4e9BgYGfu3nBgcH47bbbouXX3452tvbY+vWrbFv3744/fTT62dmzZoV06dPj+7u7oiI6O7ujhNPPLEehEREdHR0RH9/f/22ke7u7mHfsf/M/u9ohCgEAAAAAAAAAKis5cuXx8SJE4e9li9f/rbnt2/fHhMmTIiWlpa46KKL4q677oq2trbo7e2N5ubmOOKII4adnzJlSvT2/vdNML29vcOCkP3P9z97pzP9/f2xZ8+ehn62WkOnAQAAAAAAAAASWbp0aSxevHjYey0tLW97/rjjjott27bF7t27484774zzzjsvNm3adKhnHhBRCAAAAAAAAABQWS0tLe8YgfxPzc3NMXPmzIiImD17djzyyCNx3XXXxZ/+6Z/G3r17Y9euXcNuC+nr64upU6dGRMTUqVPjBz/4wbDv6+vrqz/b/8/9773xTGtra4wbN66hn82vjwEAAAAAAAAAOECvv/56DAwMxOzZs2Ps2LFx//331589+eST0dPTE+3t7RER0d7eHtu3b4+dO3fWz2zYsCFaW1ujra2tfuaN37H/zP7vaISbQgAAAAAAAAAARmDp0qVxxhlnxPTp0+PFF1+MtWvXxsaNG2P9+vUxceLEuOCCC2Lx4sUxadKkaG1tjUsuuSTa29tjzpw5ERExd+7caGtri3PPPTdWrFgRvb29ccUVV0RXV1f9tpKLLroorr/++rjsssvi/PPPjwceeCBuv/32WLduXcN7RSEAAAAAAAAAULKi7AGMyM6dO+PP/uzP4tlnn42JEyfGSSedFOvXr4+PfexjERGxcuXKaGpqivnz58fAwEB0dHTEqlWr6p8fM2ZM3HPPPbFgwYJob2+P8ePHx3nnnRdXX311/cyMGTNi3bp1sWjRorjuuuti2rRpceONN0ZHR0fDe4uhoaGhg/+x31teeGWw7AkAAABUzLFzl5U9AQAAgIrZs/masicwir77096yJ1TWWSdNLXvCIdNU9gAAAAAAAAAAAEafKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEqqVPQAAAAAAAAAAqq4oyl5ARm4KAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAnVyh4AAAAAAAAAAFXXFEXZE0jITSEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCtbIHAAAAAAAAAEDVFUXZC8jITSEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgoVrZAwAAAAAAAACg6oooyp5AQm4KAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAnVyh4AAAAAAAAAAFVXFGUvICM3hQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAnVyh4AAAAAAAAAAFXXFEXZE0jITSEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgoVrZAwAAAAAAAACg6oqi7AVk5KYQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgoVrZAwAAAAAAAACg6oqi7AVk5KYQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkFCt7AEAAAAAAAAAUHVFFGVPICE3hQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAnVyh4AAAAAAAAAAFXXVJS9gIzcFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASqpU9AAAAAAAAAACqroii7Akk5KYQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgoVrZAwAAAAAAAACg6oqi7AVk5KYQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkFCt7AEAAAAAAAAAUHVFFGVPICE3hQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICEamUPAAAAAAAAAICqayrKXkBGbgoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASqpU9AAAAAAAAAACqroii7Akk5KYQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkFCt7AEAAAAAAAAAUHVFUfYCMnJTCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkFCt7AEAAAAAAAAAUHVF2QNIyU0hAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAIKFa2QMAAAAAAAAAoOqaiqLsCSTkphAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASOg9HYU888wzcf7555c9AwAAAAAAAADg/zvv6Sjkv/7rv+KWW255xzMDAwPR398/7DUwMPAuLQQAAAAAAAAAeG+qlfmHf+9733vH50899dSv/Y7ly5fHVVddNey9y778lfhf//urB7UNAAAAAAAAAN4tRdkDSKkYGhoaKusPb2pqiqIo4p0mFEURg4ODb/t8YGDgTTeDvDJYi5aWllHbCQAAAL/OsXOXlT0BAACAitmz+ZqyJzCKHv7ZrrInVNacmUeUPeGQKfXXxxxzzDHxne98J15//fW3fP3oRz/6td/R0tISra2tw16CEAAAAAAAAACg6kqNQmbPnh1bt2592+e/7hYRAAAAAAAAAADeWq3MP3zJkiXx8ssvv+3zmTNnxoMPPvguLgIAAAAAAAAAyKHUKOQjH/nIOz4fP358fPSjH32X1gAAAAAAAAAA5FHqr48BAAAAAAAAAODQKPWmEAAAAAAAAAAgIoqyB5CRm0IAAAAAAAAAABIShQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICEamUPAAAAAAAAAICqK6IoewIJuSkEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABIShQAAAAAAAAAAJFQrewAAAAAAAAAAVF1RlL2AjNwUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABKqlT0AAAAAAAAAAKquKHsAKbkpBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACQkCgEAAAAAAAAASKhW9gAAAAAAAAAAqLyi7AFk5KYQAAAAAAAAAICERCEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkFCt7AEAAAAAAAAAUHVFFGVPICE3hQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICERCEAAAAAAAAAAAnVyh4AAAAAAAAAAFVXFGUvICM3hQAAAAAAAAAAJCQKAQAAAAAAAABISBQCAAAAAAAAAJCQKAQAAAAAAAAAICFRCAAAAAAAAABAQqIQAAAAAAAAAICEamUPAAAAAAAAAICqK8oeQEpuCgEAAAAAAAAASEgUAgAAAAAAAACQkCgEAAAAAAAAACAhUQgAAAAAAAAAQEKiEAAAAAAAAACAhEQhAAAAAAAAAAAJiUIAAAAAAAAAABKqlT0AAAAAAAAAACqvKHsAGbkpBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACYlCAAAAAAAAAAASEoUAAAAAAAAAACRUK3sAAAAAAAAAAFRdEUXZE0jITSEAAAAAAAAAAAmJQgAAAAAAAAAAEhKFAAAAAAAAAAAkJAoBAAAAAAAAAEhIFAIAAAAAAAAAkJAoBAAAAAAAAABgBJYvXx6/93u/F4cffnhMnjw5zjrrrHjyySeHnXn11Vejq6srjjrqqJgwYULMnz8/+vr6hp3p6emJzs7OOOyww2Ly5MmxZMmSeO2114ad2bhxY5x88snR0tISM2fOjDVr1jS8VxQCAAAAAAAAACUrCq+yXo3YtGlTdHV1xcMPPxwbNmyIffv2xdy5c+Pll1+un1m0aFHcfffdcccdd8SmTZtix44dMW/evPrzwcHB6OzsjL1798aWLVvilltuiTVr1sSVV15ZP/P0009HZ2dnnHrqqbFt27ZYuHBhXHjhhbF+/frG/l4NDQ0NNfYjvve98Mpg2RMAAAComGPnLit7AgAAABWzZ/M1ZU9gFG3rebHsCZX1wemHH/Bnn3vuuZg8eXJs2rQp/vAP/zB2794dRx99dKxduzbOPvvsiIh44okn4vjjj4/u7u6YM2dO3HvvvfGJT3widuzYEVOmTImIiNWrV8fll18ezz33XDQ3N8fll18e69ati0cffbT+Z332s5+NXbt2xX333TfifW4KAQAAAAAAAAA4ALt3746IiEmTJkVExNatW2Pfvn1x+umn18/MmjUrpk+fHt3d3RER0d3dHSeeeGI9CImI6OjoiP7+/njsscfqZ974HfvP7P+Okao1/iMBAAAAAAAAAOQwMDAQAwMDw95raWmJlpaWd/zc66+/HgsXLozf//3fjxNOOCEiInp7e6O5uTmOOOKIYWenTJkSvb299TNvDEL2P9//7J3O9Pf3x549e2LcuHEj+tncFAIAAAAAAAAAVNby5ctj4sSJw17Lly//tZ/r6uqKRx99NG677bZ3YeWBcVMIAAAAAAAAAFBZS5cujcWLFw9779fdEnLxxRfHPffcEw899FBMmzat/v7UqVNj7969sWvXrmG3hfT19cXUqVPrZ37wgx8M+76+vr76s/3/3P/eG8+0traO+JaQCDeFAAAAAAAAAAAV1tLSEq2trcNebxeFDA0NxcUXXxx33XVXPPDAAzFjxoxhz2fPnh1jx46N+++/v/7ek08+GT09PdHe3h4REe3t7bF9+/bYuXNn/cyGDRuitbU12tra6mfe+B37z+z/jpFyUwgAAAAAAAAAwAh0dXXF2rVr49/+7d/i8MMPj97e3oiImDhxYowbNy4mTpwYF1xwQSxevDgmTZoUra2tcckll0R7e3vMmTMnIiLmzp0bbW1tce6558aKFSuit7c3rrjiiujq6qrHKBdddFFcf/31cdlll8X5558fDzzwQNx+++2xbt26hvYWQ0NDQ6P7v6B8L7wyWPYEAAAAKubYucvKngAAAEDF7Nl8TdkTGEU/6Xmx7AmV9YHph4/4bFEUb/n+zTffHJ///OcjIuLVV1+NSy+9NG699dYYGBiIjo6OWLVqVf1Xw0RE/OIXv4gFCxbExo0bY/z48XHeeefFtddeG7Xa/7vbY+PGjbFo0aJ4/PHHY9q0afGVr3yl/meMeK8oBAAAAA6eKAQAAIB3mygkF1FIeRqJQv5/01T2AAAAAAAAAAAARp8oBAAAAAAAAAAgIVEIAAAAAAAAAEBCohAAAAAAAAAAgIREIQAAAAAAAAAACdXKHgAAAAAAAAAAlVeUPYCM3BQCAAAAAAAAAJCQKAQAAAAAAAD+b3v3H6t1Qfd//PXBS46E/JBM8DhUymW4OUwtxlYa6ySszUnWmtMSy3Tlj1I0g7XUsqR0bko6sFliy5oukzl0GtEQdYaFo5xTUoczNw/aFBh4C8g59x/N8/2e27pvSexT7+vxcPzBdX3OOS+Y/7A9974AoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAU1Gl7AAAAAAAAAAB0uyZN2xMoyKUQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUFCn7QEAAAAAAAAA0O2apu0FVORSCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUFCn7QEAAAAAAAAA0O2atgdQkkshAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoKBO2wMAAAAAAAAAoOs1bQ+gIpdCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgjptDwAAAAAAAACAbtekaXsCBbkUAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAArqtD0AAAAAAAAAALpd07S9gIpcCgEAAAAAAAAAKEgUAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFddoeAAAAAAAAAADdrml7ACW5FAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABTUaXsAAAAAAAAAAHS9pu0BVORSCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAACio0/YAAAAAAAAAAOh2TZq2J1CQSyEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBnbYHAAAAAAAAAEC3a5q2F1CRSyEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgoE7bAwAAAAAAAACg2zVtD6Akl0IAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCOm0PAAAAAAAAAICu17Q9gIpcCgEAAAAAAAAAKEgUAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFddoeAAAAAAAAAADdrknT9gQKcikEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFNRpewAAAAAAAAAAdLumaXsBFbkUAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFNRpewAAAAAAAAAAdLum7QGU5FIIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKKjT9gAAAAAAAAAA6HpN2wOoyKUQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgoE7bAwAAAAAAAACg2zVp2p5AQS6FAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAAAAAAAAAgII6bQ8AAAAAAAAAgG7XNG0voCKXQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAAAAAAAAAgII6bQ8AAAAAAAAAgG7XtD2AklwKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAV12h4AAAAAAAAAAF2vaXsAFbkUAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFNRpewAAAAAAAAAAdLsmTdsTKMilEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFBQp+0BAAAAAAAAANDtmqbtBVTkUggAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoqNP2AAAAAAAAAADodk3bAyjJpRAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQkCgEAAAAAAAAAKCgTtsDAAAAAAAAAKDbNU3bC6jIpRAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQUKftAQAAAAAAAABA0/YACnIpBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKKjT9gAAAAAAAAAA6HZN0/YCKnIpBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABTUaXsAAAAAAAAAAHS7pu0BlORSCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUFCn7QEAAAAAAAAA0O2apu0FVORSCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAALWv819p/u2P16tU58cQT09vbm6ZpsmzZsmHvDw4O5tJLL82BBx6YUaNGpa+vL0899dSwZ15++eWcdtppGTt2bMaPH58zzzwzW7duHfbMn/70p3z0ox/NPvvsk8mTJ+eqq676p/6/EoUAAAAAAAAAALwF27Zty7Rp03LDDTf83fevuuqqLFq0KEuWLMmaNWsyevTozJo1K6+99trQM6eddloef/zxrFixIsuXL8/q1atz9tlnD72/ZcuWnHDCCTnkkEOydu3aXH311bn88svzox/9aLf3NoODg4O7/8f89/bKq7vangAAAECX6T3h8rYnAAAA0GX+68Er2p7AHtS/eWfbE7rWpHF7/1Nf1zRN7rzzzsyZMyfJ366E9Pb25qKLLsrFF1+cJNm8eXMmTpyYpUuX5pRTTskTTzyRI444Ir///e9z7LHHJknuvffefPKTn8zzzz+f3t7eLF68ON/85jfT39+fkSNHJknmz5+fZcuW5cknn9ytjS6FAAAAAAAAAAC8TRs2bEh/f3/6+vqGXhs3blymT5+ehx9+OEny8MMPZ/z48UNBSJL09fVlxIgRWbNmzdAzxx133FAQkiSzZs3K+vXr88orr+zWps7b+QMBAAAAAAAAAPwn2759e7Zv3z7stZ6envT09OzW9+nv70+STJw4cdjrEydOHHqvv78/BxxwwLD3O51OJkyYMOyZKVOmvOl7vPHefvvt95Y3uRQCAAAAAAAAAHSthQsXZty4ccN+LVy4sO1Ze4RLIQAAAAAAAABA11qwYEHmzZs37LXdvRKSJJMmTUqSbNy4MQceeODQ6xs3bsxRRx019MyLL7447Otef/31vPzyy0NfP2nSpGzcuHHYM2/8/o1n3iqXQgAAAAAAAACArtXT05OxY8cO+/XPRCFTpkzJpEmTsnLlyqHXtmzZkjVr1mTGjBlJkhkzZmTTpk1Zu3bt0DO//e1vMzAwkOnTpw89s3r16uzcuXPomRUrVuTwww/frY+OSUQhAAAAAAAAANC+xq/Wfu2GrVu3Zt26dVm3bl2SZMOGDVm3bl2ee+65NE2TCy64IN/97ndz11135bHHHsvpp5+e3t7ezJkzJ0kyderUzJ49O2eddVYeeeSRPPTQQznvvPNyyimnpLe3N0ly6qmnZuTIkTnzzDPz+OOP57bbbst11133pmsmb4WPjwEAAAAAAAAAeAv+8Ic/ZObMmUO/fyPUmDt3bpYuXZpLLrkk27Zty9lnn51NmzblIx/5SO69997ss88+Q19z66235rzzzsvHP/7xjBgxIp/+9KezaNGioffHjRuXX//61zn33HNzzDHHZP/998+ll16as88+e7f3NoODg4Nv48/7b+mVV3e1PQEAAIAu03vC5W1PAAAAoMv814NXtD2BPah/y87/+yHeEZPG7t32hHeMj48BAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBnbYHAAAAAAAAAEC3a9oeQEkuhQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCOm0PAAAAAAAAAIBu1zRtL6Ail0IAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCOm0PAAAAAAAAAIBu16RpewIFuRQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAACuq0PQAAAAAAAAAAul7T9gAqcikEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoqNP2AAAAAAAAAADodk3bAyjJpRAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQUKftAQAAAAAAAADQ7Zqm7QVU5FIIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQUKftAQAAAAAAAADQ7Zo0bU+gIJdCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGdtgcAAAAAAAAAQLdrmrYXUJFLIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoKBO2wMAAAAAAAAAoNs1TdsLqMilEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFBQp+0BAAAAAAAAANDtmjRtT6Agl0IAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCOm0PAAAAAAAAAIBu1zRtL6Ail0IAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQZ22BwAAAAAAAABAt2vaHkBJLoUAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQkCgEAAAAAAAAAKAgUQgAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFddoeAAAAAAAAAABdr2l7ABW5FAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAK6rQ9AAAAAAAAAAC6XZOm7QkU5FIIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKEgUAgAAAAAAAABQUKftAQAAAAAAAADQ7Zqm7QVU5FIIAAAAAAAAAEBBohAAAAAAAAAAgIJEIQAAAAAAAAAABYlCAAAAAAAAAAAKEoUAAAAAAAAAABQkCgEAAAAAAAAAKKjT9gAAAAAAAAAA6HZN2wMoyaUQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUFCn7QEAAAAAAAAA0PWatgdQkUshAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQZ22BwAAAAAAAABAt2vStD2BglwKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAV12h4AAAAAAAAAAN2uadpeQEUuhQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAU1g4ODg22PAAD+PWzfvj0LFy7MggUL0tPT0/YcAAAAivPvUAAAeGeJQgCAIVu2bMm4ceOyefPmjB07tu05AAAAFOffoQAA8M7y8TEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAIb09PTksssuS09PT9tTAAAA6AL+HQoAAO+sZnBwcLDtEQAAAAAAAAAA7FkuhQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQASJLccMMNOfTQQ7PPPvtk+vTpeeSRR9qeBAAAQFGrV6/OiSeemN7e3jRNk2XLlrU9CQAAShKFAAC57bbbMm/evFx22WV59NFHM23atMyaNSsvvvhi29MAAAAoaNu2bZk2bVpuuOGGtqcAAEBpzeDg4GDbIwCAdk2fPj0f+tCHcv311ydJBgYGMnny5Jx//vmZP39+y+sAAACorGma3HnnnZkzZ07bUwAAoByXQgCgy+3YsSNr165NX1/f0GsjRoxIX19fHn744RaXAQAAAAAA8HaIQgCgy/31r3/Nrl27MnHixGGvT5w4Mf39/S2tAgAAAAAA4O0ShQAAAAAAAAAAFCQKAYAut//++2evvfbKxo0bh72+cePGTJo0qaVVAAAAAAAAvF2iEADociNHjswxxxyTlStXDr02MDCQlStXZsaMGS0uAwAAAAAA4O3otD0AAGjfvHnzMnfu3Bx77LH58Ic/nGuvvTbbtm3LF77whbanAQAAUNDWrVvz9NNPD/1+w4YNWbduXSZMmJCDDz64xWUAAFBLMzg4ONj2CACgfddff32uvvrq9Pf356ijjsqiRYsyffr0tmcBAABQ0KpVqzJz5sw3vT537twsXbr0Xz8IAACKEoUAAAAAAAAAABQ0ou0BAAAAAAAAAADseaIQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAAChKFAAAAAAAAAAAUJAoBAAAAAAAAAChIFAIAAAAAAAAAUJAoBAAAAAAAAACgIFEIAAAA7KYzzjgjc+bMGfr9xz72sVxwwQX/8h2rVq1K0zTZtGnTv/xnAwAAAPDvTxQCAABAGWeccUaapknTNBk5cmQOO+ywfOc738nrr7/+jv7cX/3qV7niiive0rNCDgAAAAD+VTptDwAAAIA9afbs2bn55puzffv23HPPPTn33HOz9957Z8GCBcOe27FjR0aOHLlHfuaECRP2yPcBAAAAgD3JpRAAAABK6enpyaRJk3LIIYfkK1/5Svr6+nLXXXcNfeTL9773vfT29ubwww9PkvzlL3/JZz/72YwfPz4TJkzISSedlGeffXbo++3atSvz5s3L+PHj8+53vzuXXHJJBgcHh/3M//nxMdu3b883vvGNTJ48OT09PTnssMPy4x//OM8++2xmzpyZJNlvv/3SNE3OOOOMJMnAwEAWLlyYKVOmZNSoUZk2bVp++ctfDvs599xzT97//vdn1KhRmTlz5rCdAAAAAPA/iUIAAAAobdSoUdmxY0eSZOXKlVm/fn1WrFiR5cuXZ+fOnZk1a1bGjBmTBx54IA899FD23XffzJ49e+hrrrnmmixdujQ/+clP8uCDD+bll1/OnXfe+b/+zNNPPz2/+MUvsmjRojzxxBO58cYbs++++2by5Mm54447kiTr16/PCy+8kOuuuy5JsnDhwvz0pz/NkiVL8vjjj+fCCy/M5z73udx///1J/havnHzyyTnxxBOzbt26fOlLX8r8+fPfqb82AAAAAArw8TEAAACUNDg4mJUrV+a+++7L+eefn5deeimjR4/OTTfdNPSxMT/72c8yMDCQm266KU3TJEluvvnmjB8/PqtWrcoJJ5yQa6+9NgsWLMjJJ5+cJFmyZEnuu+++f/hz//znP+f222/PihUr0tfXlyR573vfO/T+Gx81c8ABB2T8+PFJ/nZZ5Morr8xvfvObzJgxY+hrHnzwwdx44405/vjjs3jx4rzvfe/LNddckyQ5/PDD89hjj+UHP/jBHvxbAwAAAKASUQgAAAClLF++PPvuu2927tyZgYGBnHrqqbn88stz7rnn5sgjjxwKQpLkj3/8Y55++umMGTNm2Pd47bXX8swzz2Tz5s154YUXMn369KH3Op1Ojj322Dd9hMwb1q1bl7322ivHH3/8W9789NNP59VXX80nPvGJYa/v2LEjH/zgB5MkTzzxxLAdSYYCEgAAAAD4e0QhAAAAlDJz5swsXrw4I0eOTG9vbzqd//dP39GjRw97duvWrTnmmGNy6623vun7vOc97/mnfv6oUaN2+2u2bt2aJLn77rtz0EEHDXuvp6fnn9oBAAAAAKIQAAAAShk9enQOO+ywt/Ts0Ucfndtuuy0HHHBAxo4d+3efOfDAA7NmzZocd9xxSZLXX389a9euzdFHH/13nz/yyCMzMDCQ+++/f+jjY/5/b1wq2bVr19BrRxxxRHp6evLcc8/9wwsjU6dOzV133TXstd/97nf/9x8SAAAAgK41ou0BAAAA0JbTTjst+++/f0466aQ88MAD2bBhQ1atWpWvfvWref7555MkX/va1/L9738/y5Yty5NPPplzzjknmzZt+off89BDD83cuXPzxS9+McuWLRv6nrfffnuS5JBDDknTNFm+fHleeumlbN26NWPGjMnFF1+cCy+8MLfcckueeeaZPProo/nhD3+YW265JUny5S9/OU899VS+/vWvZ/369fn5z3+epUuXvtN/RQAAAAD8BxOFAAAA0LXe9a53ZfXq1Tn44INz8sknZ+rUqTnzzDPz2muvDV0Oueiii/L5z38+c+fOzYwZMzJmzJh86lOf+l+/7+LFi/OZz3wm55xzTj7wgQ/krLPOyrZt25IkBx10UL797W9n/vz5mThxYs4777wkyRVXXJFvfetbWbhwYaZOnZrZs2fn7rvvzpQpU5IkBx98cO64444sW7Ys06ZNy5IlS3LllVe+g387AAAAAPynawYHBwfbHgEAAAAAAAAAwJ7lUggAAAAAAAAAQEGiEAAAAAAAAACAgkQhAAAAAAAAAAAFiUIAAAAAAAAAAAoShQAAAAAAAAAAFCQKAQAAAAAAAAAoSBQCAAAAAAAAAFCQKAQAAAAAAAAAoCBRCAAAAAAAAABAQaIQAAAAAAAAAICCRCEAAAAAAAAAAAWJQgAAAAAAAAAACvpvNhlt/0U8WKwAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["# ✅ استيراد المكتبات\n","# اجرب ال fine tuning for CNN + BiGRU for the all catagories\n","import os\n","import pickle\n","import numpy as np\n","import matplotlib.pyplot as plt\n","import seaborn as sns\n","import pandas as pd\n","from tensorflow.keras.models import load_model\n","from tensorflow.keras.optimizers import Adam\n","from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint\n","from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, precision_score, recall_score, f1_score\n","\n","# ✅ المسارات\n","base_path = \"/content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/\"\n","models_info = {\n"," \"main\": {\"classes\": 22, \"data_file\": \"train_test_data_main-deep-new.pkl\", \"model_file\": \"CNN + BiGRU_model_all_main.h5\"},\n"," \"sub\": {\"classes\": 75, \"data_file\": \"train_test_data_sub-deep-new.pkl\", \"model_file\": \"CNN + BiGRU_model_all_sub.h5\"},\n"," \"rf\": {\"classes\": 2, \"data_file\": \"train_test_data_rf-deep-new.pkl\", \"model_file\": \"CNN + BiGRU_model_all_rf.h5\"}\n","}\n","\n","# ✅ دالة الفاين تيونينغ\n","def fine_tune_model(name, classes, data_file, model_file):\n"," print(f\"\\n🚀 بدء Fine-Tuning لموديل {name.upper()}\")\n","\n"," model_path = os.path.join(base_path, model_file)\n"," data_path = os.path.join(base_path, data_file)\n"," fine_tuned_model_path = os.path.join(base_path, f\"CNN + BiGRU_{name}_finetuned.h5\")\n"," acc_loss_plot_path = os.path.join(base_path, f\"CNN + BiGRU_{name}_finetuned_acc_loss.png\")\n"," conf_matrix_path = os.path.join(base_path, f\"CNN + BiGRU_{name}_finetuned_conf_matrix.png\")\n","\n"," # تحميل البيانات\n"," with open(data_path, \"rb\") as f:\n"," X_train, X_test, y_train, y_test = pickle.load(f)\n","\n"," if os.path.exists(fine_tuned_model_path):\n"," print(f\"✅ [LOADED] تم العثور على نموذج Fine-Tuned لموديل {name.upper()}. سيتم تحميله بدون إعادة تدريب.\")\n"," model = load_model(fine_tuned_model_path)\n"," history = None\n"," else:\n"," # تحميل النموذج الأساسي\n"," model = load_model(model_path)\n"," print(f\"✅ تم تحميل النموذج الأساسي لموديل {name.upper()}\")\n","\n"," # تعديل الoptimizer\n"," model.compile(\n"," optimizer=Adam(learning_rate=0.00005),\n"," loss=\"sparse_categorical_crossentropy\",\n"," metrics=[\"accuracy\"]\n"," )\n","\n"," # Fine-Tuning\n"," history = model.fit(\n"," X_train, y_train,\n"," validation_data=(X_test, y_test),\n"," epochs=15,\n"," batch_size=64,\n"," callbacks=[\n"," ModelCheckpoint(checkpoint_path, monitor=\"val_loss\", save_best_only=True, verbose=1),\n"," EarlyStopping(patience=2, restore_best_weights=True),\n"," ReduceLROnPlateau(monitor=\"val_loss\", factor=0.5, patience=1, min_lr=1e-6, verbose=1)\n"," ]\n"," )\n","\n"," # حفظ النموذج الجديد\n"," model.save(fine_tuned_model_path)\n"," print(f\"✅ تم حفظ النموذج الجديد بعد Fine-Tuning: {fine_tuned_model_path}\")\n","\n"," # التقييم\n"," preds = model.predict(X_test)\n"," preds = np.argmax(preds, axis=1)\n","\n"," print(\"\\n📊 Classification Report:\")\n"," print(classification_report(y_test, preds))\n","\n"," accuracy = accuracy_score(y_test, preds)\n"," precision = precision_score(y_test, preds, average='macro', zero_division=0)\n"," recall = recall_score(y_test, preds, average='macro', zero_division=0)\n"," f1 = f1_score(y_test, preds, average='macro', zero_division=0)\n","\n"," print(f\"\\n🔄 Summary for {name.upper()}:\")\n"," print(f\"✅ Accuracy: {accuracy:.4f}\")\n"," print(f\"✅ Precision: {precision:.4f}\")\n"," print(f\"✅ Recall: {recall:.4f}\")\n"," print(f\"✅ F1-Score: {f1:.4f}\")\n","\n"," # رسم Accuracy & Loss إذا history موجود\n"," if history:\n"," plt.figure(figsize=(14, 5))\n"," plt.subplot(1, 2, 1)\n"," plt.plot(history.history['accuracy'], label='Train Accuracy')\n"," plt.plot(history.history['val_accuracy'], label='Val Accuracy', linestyle='--')\n"," plt.title(f\"{name.upper()} Fine-Tuning Accuracy\")\n"," plt.xlabel(\"Epoch\")\n"," plt.ylabel(\"Accuracy\")\n"," plt.legend()\n","\n"," plt.subplot(1, 2, 2)\n"," plt.plot(history.history['loss'], label='Train Loss')\n"," plt.plot(history.history['val_loss'], label='Val Loss', linestyle='--')\n"," plt.title(f\"{name.upper()} Fine-Tuning Loss\")\n"," plt.xlabel(\"Epoch\")\n"," plt.ylabel(\"Loss\")\n"," plt.legend()\n","\n"," plt.tight_layout()\n"," plt.savefig(acc_loss_plot_path, dpi=300)\n"," plt.show()\n","\n"," else:\n"," # إذا ما فيه history لكن في ملف موجود\n"," if os.path.exists(acc_loss_plot_path):\n"," from PIL import Image\n"," print(f\"✅ عرض رسم Accuracy & Loss المخزن: {acc_loss_plot_path}\")\n"," img = Image.open(acc_loss_plot_path)\n"," plt.figure(figsize=(14, 5))\n"," plt.imshow(img)\n"," plt.axis('off')\n"," plt.title(f\"{name.upper()} Fine-Tuning Accuracy & Loss (Loaded)\")\n"," plt.show()\n"," else:\n"," print(\"⚠️ لا يوجد ملف رسم محفوظ لعرضه.\")\n","\n","\n","\n"," # رسم Confusion Matrix\n"," plt.figure(figsize=(24, 20))\n"," cm = confusion_matrix(y_test, preds)\n"," sns.heatmap(cm, annot=False, fmt=\"d\", cmap=\"Blues\")\n"," plt.title(f\"Confusion Matrix - {name.upper()} Fine-Tuned\")\n"," plt.xlabel(\"Predicted\")\n"," plt.ylabel(\"Actual\")\n"," plt.tight_layout()\n"," plt.savefig(conf_matrix_path, dpi=300)\n"," plt.show()\n","\n","# ✅ تنفيذ Fine-Tuning أو تحميل النماذج الثلاثة\n","for name, info in models_info.items():\n"," fine_tune_model(name, info[\"classes\"], info[\"data_file\"], info[\"model_file\"])\n"]},{"cell_type":"code","execution_count":null,"metadata":{"executionInfo":{"elapsed":1222927,"status":"ok","timestamp":1747035579522,"user":{"displayName":"noor alqudah","userId":"09593972035402767777"},"user_tz":-180},"id":"AmewsmDB3xSi","colab":{"base_uri":"https://localhost:8080/","height":1000},"outputId":"d5dd38bf-84f3-4909-c911-bb958b87ed58"},"outputs":[{"output_type":"stream","name":"stdout","text":["🚀 [TRAINING] MAIN model not found. Building and training...\n"]},{"output_type":"display_data","data":{"text/plain":["\u001b[1mModel: \"functional_2\"\u001b[0m\n"],"text/html":["
Model: \"functional_2\"\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n","┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mConnected to \u001b[0m\u001b[1m \u001b[0m┃\n","┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n","│ input_layer_4 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m894\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ - │\n","│ (\u001b[38;5;33mInputLayer\u001b[0m) │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_7 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m114,560\u001b[0m │ input_layer_4[\u001b[38;5;34m0\u001b[0m]… │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ reshape_5 (\u001b[38;5;33mReshape\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ dense_7[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ layer_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │ reshape_5[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","│ (\u001b[38;5;33mLayerNormalizatio…\u001b[0m │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ multi_head_attenti… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m131,968\u001b[0m │ layer_normalizat… │\n","│ (\u001b[38;5;33mMultiHeadAttentio…\u001b[0m │ │ │ layer_normalizat… │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ add_10 (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ multi_head_atten… │\n","│ │ │ │ reshape_5[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │ add_10[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ layer_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │ batch_normalizat… │\n","│ (\u001b[38;5;33mLayerNormalizatio…\u001b[0m │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_8 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m16,512\u001b[0m │ layer_normalizat… │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_14 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ dense_8[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","│ (\u001b[38;5;33mDropout\u001b[0m) │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ add_11 (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n","│ │ │ │ dropout_14[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ global_average_poo… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ add_11[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","│ (\u001b[38;5;33mGlobalAveragePool…\u001b[0m │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_15 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ global_average_p… │\n","│ (\u001b[38;5;33mDropout\u001b[0m) │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_9 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m8,256\u001b[0m │ dropout_15[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_16 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ dense_9[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","│ (\u001b[38;5;33mDropout\u001b[0m) │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_10 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m22\u001b[0m) │ \u001b[38;5;34m1,430\u001b[0m │ dropout_16[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n"],"text/html":["
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n","┃ Layer (type)         Output Shape          Param #  Connected to      ┃\n","┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n","│ input_layer_4       │ (None, 894)       │          0 │ -                 │\n","│ (InputLayer)        │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_7 (Dense)     │ (None, 128)       │    114,560 │ input_layer_4[0]… │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ reshape_5 (Reshape) │ (None, 1, 128)    │          0 │ dense_7[0][0]     │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ layer_normalizatio… │ (None, 1, 128)    │        256 │ reshape_5[0][0]   │\n","│ (LayerNormalizatio… │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ multi_head_attenti… │ (None, 1, 128)    │    131,968 │ layer_normalizat… │\n","│ (MultiHeadAttentio… │                   │            │ layer_normalizat… │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ add_10 (Add)        │ (None, 1, 128)    │          0 │ multi_head_atten… │\n","│                     │                   │            │ reshape_5[0][0]   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ batch_normalizatio… │ (None, 1, 128)    │        512 │ add_10[0][0]      │\n","│ (BatchNormalizatio… │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ layer_normalizatio… │ (None, 1, 128)    │        256 │ batch_normalizat… │\n","│ (LayerNormalizatio… │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_8 (Dense)     │ (None, 1, 128)    │     16,512 │ layer_normalizat… │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_14          │ (None, 1, 128)    │          0 │ dense_8[0][0]     │\n","│ (Dropout)           │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ add_11 (Add)        │ (None, 1, 128)    │          0 │ batch_normalizat… │\n","│                     │                   │            │ dropout_14[0][0]  │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ global_average_poo… │ (None, 128)       │          0 │ add_11[0][0]      │\n","│ (GlobalAveragePool… │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_15          │ (None, 128)       │          0 │ global_average_p… │\n","│ (Dropout)           │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_9 (Dense)     │ (None, 64)        │      8,256 │ dropout_15[0][0]  │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_16          │ (None, 64)        │          0 │ dense_9[0][0]     │\n","│ (Dropout)           │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_10 (Dense)    │ (None, 22)        │      1,430 │ dropout_16[0][0]  │\n","└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Total params: \u001b[0m\u001b[38;5;34m273,750\u001b[0m (1.04 MB)\n"],"text/html":["
 Total params: 273,750 (1.04 MB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m273,494\u001b[0m (1.04 MB)\n"],"text/html":["
 Trainable params: 273,494 (1.04 MB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m256\u001b[0m (1.00 KB)\n"],"text/html":["
 Non-trainable params: 256 (1.00 KB)\n","
\n"]},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Epoch 1/15\n","\u001b[1m643/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.4889 - loss: 1.8028\n","Epoch 1: val_loss improved from inf to 0.92777, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_main.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m644/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m22s\u001b[0m 31ms/step - accuracy: 0.4892 - loss: 1.8015 - val_accuracy: 0.7158 - val_loss: 0.9278 - learning_rate: 5.0000e-04\n","Epoch 2/15\n","\u001b[1m642/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7178 - loss: 0.9608\n","Epoch 2: val_loss improved from 0.92777 to 0.77756, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_main.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m644/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 31ms/step - accuracy: 0.7178 - loss: 0.9606 - val_accuracy: 0.7611 - val_loss: 0.7776 - learning_rate: 5.0000e-04\n","Epoch 3/15\n","\u001b[1m643/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7603 - loss: 0.7999\n","Epoch 3: val_loss improved from 0.77756 to 0.75973, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_main.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m644/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 31ms/step - accuracy: 0.7603 - loss: 0.7998 - val_accuracy: 0.7659 - val_loss: 0.7597 - learning_rate: 5.0000e-04\n","Epoch 4/15\n","\u001b[1m642/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.7823 - loss: 0.7162\n","Epoch 4: val_loss improved from 0.75973 to 0.68981, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_main.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m644/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 30ms/step - accuracy: 0.7823 - loss: 0.7161 - val_accuracy: 0.7870 - val_loss: 0.6898 - learning_rate: 5.0000e-04\n","Epoch 5/15\n","\u001b[1m642/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8026 - loss: 0.6481\n","Epoch 5: val_loss improved from 0.68981 to 0.66533, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_main.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m644/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 31ms/step - accuracy: 0.8026 - loss: 0.6481 - val_accuracy: 0.7908 - val_loss: 0.6653 - learning_rate: 5.0000e-04\n","Epoch 6/15\n","\u001b[1m643/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 28ms/step - accuracy: 0.8163 - loss: 0.6005\n","Epoch 6: val_loss improved from 0.66533 to 0.64465, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_main.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m644/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 30ms/step - accuracy: 0.8163 - loss: 0.6005 - val_accuracy: 0.8029 - val_loss: 0.6447 - learning_rate: 5.0000e-04\n","Epoch 7/15\n","\u001b[1m642/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8267 - loss: 0.5625\n","Epoch 7: val_loss improved from 0.64465 to 0.61664, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_main.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m644/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 30ms/step - accuracy: 0.8267 - loss: 0.5625 - val_accuracy: 0.8080 - val_loss: 0.6166 - learning_rate: 5.0000e-04\n","Epoch 8/15\n","\u001b[1m643/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8361 - loss: 0.5312\n","Epoch 8: val_loss improved from 0.61664 to 0.57193, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_main.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m644/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 31ms/step - accuracy: 0.8361 - loss: 0.5312 - val_accuracy: 0.8257 - val_loss: 0.5719 - learning_rate: 5.0000e-04\n","Epoch 9/15\n","\u001b[1m643/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 28ms/step - accuracy: 0.8457 - loss: 0.5002\n","Epoch 9: val_loss did not improve from 0.57193\n","\u001b[1m644/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 29ms/step - accuracy: 0.8457 - loss: 0.5002 - val_accuracy: 0.8251 - val_loss: 0.5897 - learning_rate: 5.0000e-04\n","Epoch 10/15\n","\u001b[1m643/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 28ms/step - accuracy: 0.8534 - loss: 0.4755\n","Epoch 10: val_loss improved from 0.57193 to 0.52484, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_main.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m644/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 30ms/step - accuracy: 0.8534 - loss: 0.4755 - val_accuracy: 0.8411 - val_loss: 0.5248 - learning_rate: 5.0000e-04\n","Epoch 11/15\n","\u001b[1m643/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 28ms/step - accuracy: 0.8597 - loss: 0.4534\n","Epoch 11: val_loss did not improve from 0.52484\n","\u001b[1m644/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 29ms/step - accuracy: 0.8597 - loss: 0.4534 - val_accuracy: 0.8338 - val_loss: 0.5475 - learning_rate: 5.0000e-04\n","Epoch 12/15\n","\u001b[1m643/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8670 - loss: 0.4304\n","Epoch 12: val_loss improved from 0.52484 to 0.50048, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_main.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m644/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 31ms/step - accuracy: 0.8670 - loss: 0.4304 - val_accuracy: 0.8455 - val_loss: 0.5005 - learning_rate: 5.0000e-04\n","Epoch 13/15\n","\u001b[1m642/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8705 - loss: 0.4176\n","Epoch 13: val_loss improved from 0.50048 to 0.49710, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_main.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m644/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m20s\u001b[0m 30ms/step - accuracy: 0.8705 - loss: 0.4177 - val_accuracy: 0.8552 - val_loss: 0.4971 - learning_rate: 5.0000e-04\n","Epoch 14/15\n","\u001b[1m643/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 28ms/step - accuracy: 0.8744 - loss: 0.4045\n","Epoch 14: val_loss improved from 0.49710 to 0.49236, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_main.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m644/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 30ms/step - accuracy: 0.8744 - loss: 0.4045 - val_accuracy: 0.8561 - val_loss: 0.4924 - learning_rate: 5.0000e-04\n","Epoch 15/15\n","\u001b[1m642/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8800 - loss: 0.3901\n","Epoch 15: val_loss did not improve from 0.49236\n","\u001b[1m644/644\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m19s\u001b[0m 30ms/step - accuracy: 0.8800 - loss: 0.3901 - val_accuracy: 0.8489 - val_loss: 0.5089 - learning_rate: 5.0000e-04\n","\u001b[1m1287/1287\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step\n","\n","📊 Report - MAIN:\n"," precision recall f1-score support\n","\n"," 0 0.96 1.00 0.98 1871\n"," 1 0.99 1.00 0.99 1871\n"," 2 0.91 0.76 0.83 1872\n"," 3 0.99 0.90 0.94 1872\n"," 4 0.93 0.76 0.83 1872\n"," 5 0.79 0.67 0.72 1871\n"," 6 0.96 0.81 0.88 1872\n"," 7 0.67 0.64 0.66 1872\n"," 8 0.98 0.98 0.98 1871\n"," 9 0.96 0.98 0.97 1872\n"," 10 0.89 0.89 0.89 1872\n"," 11 0.79 0.73 0.76 1871\n"," 12 0.53 0.57 0.55 1872\n"," 13 0.83 0.81 0.82 1871\n"," 14 0.61 0.55 0.58 1872\n"," 15 0.76 0.81 0.78 1871\n"," 16 0.55 0.90 0.68 1872\n"," 17 0.96 0.99 0.97 1872\n"," 18 0.98 1.00 0.99 1872\n"," 19 0.99 0.97 0.98 1872\n"," 20 0.88 0.97 0.93 1871\n"," 21 0.98 0.96 0.97 1872\n","\n"," accuracy 0.85 41176\n"," macro avg 0.86 0.85 0.85 41176\n","weighted avg 0.86 0.85 0.85 41176\n","\n","✅ Accuracy: 0.8489 | Precision: 0.8590 | Recall: 0.8489 | F1: 0.8503\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABW0AAAHqCAYAAAB/bWzAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAA0HtJREFUeJzs3Xd4FOX6xvHv7qb3hDRKSGih1wSQIuARBQSsKEVB7AULop4jR1HEwvkdFVGP5egBUbFiARWxoVgAgQRp0qQlQAghvbfd/f0xISFSA0km5f5c11zszrwz8yxYhjvvPq/F6XQ6EREREREREREREZE6wWp2ASIiIiIiIiIiIiJSQaGtiIiIiIiIiIiISB2i0FZERERERERERESkDlFoKyIiIiIiIiIiIlKHKLQVERERERERERERqUMU2oqIiIiIiIiIiIjUIQptRUREREREREREROoQhbYiIiIiIiIiIiIidYhCWxEREREREREREZE6RKGtiIiIiIiIiIiISB2i0FZEGpwFCxZgsViwWCz8+uuvxx13Op1ERERgsVgYNWrUCa+RmZmJh4cHFouFbdu2nXDM5MmT8fHxqbRvyJAhWCwWRo8efdz4ffv2YbFYePbZZ8/4s5xJHSIiIiIix2oIz8MWi4W77rrrtONERBoqhbYi0mB5eHjw3nvvHbf/p59+4sCBA7i7u5/03EWLFmGxWAgPD+fdd9+t8r2//PJL4uPjq3xeddchIiIiIo1XQ3geFhFprBTaikiDdckll7Bo0SJKS0sr7X/vvfeIiYkhPDz8pOcuXLiQSy65hPHjx5/wQfdUWrZsSWBgII8//vhZ1V1dddSmwsJCHA6H2WWIiIiIyDEawvOwiEhjpdBWRBqs8ePHk5aWxnfffVe+r7i4mI8//pgJEyac9LzExER++eUXxo0bx7hx49i7dy+rVq064/v6+vpy33338cUXX7B+/fqzrr8qdSxcuJA+ffrg5eVFYGAggwYN4ttvv600ZtmyZQwePBhfX1/8/Pzo3bt3pQfwqKgoJk+efNy1hwwZwpAhQ8rfr1ixAovFwgcffMAjjzxC8+bN8fLyIjs7m/T0dB544AG6du2Kj48Pfn5+jBgxgo0bNx533cLCQmbOnEl0dDQeHh40bdqUK6+8kt27d+N0OomKiuKyyy474Xn+/v7cdtttZ/g7KSIiItI41ffn4dPJy8vj/vvvJyIiAnd3d9q3b8+zzz6L0+msNO67775j4MCBBAQE4OPjQ/v27fnnP/9ZacxLL71E586dy5+nY2Nj6/SkCRFp+BTaikiDFRUVRb9+/Xj//ffL9y1btoysrCzGjRt30vPef/99vL29GTVqFH369KFNmzZV/krYvffeS2BgIDNnzjzb8s+4jscff5yJEyfi6urKrFmzePzxx4mIiOCHH34oH7NgwQJGjhxJeno606dP51//+hc9evTg66+/Puv6nnjiCZYuXcoDDzzA008/jZubG3v27GHx4sWMGjWKOXPm8OCDD7J582YGDx5MUlJS+bl2u51Ro0bx+OOPExMTw3PPPce9995LVlYWW7ZswWKxcN1117Fs2TLS09Mr3feLL74gOzub66677qxrFxEREWkM6vvz8Kk4nU4uvfRSnn/+eYYPH86cOXNo3749Dz74INOmTSsf98cffzBq1CiKioqYNWsWzz33HJdeeikrV64sH/PGG29wzz330KlTJ+bOncvjjz9Ojx49WLNmTY3ULiJyJlzMLkBEpCZNmDCB6dOnU1BQgKenJ++++y6DBw+mWbNmJz3n3Xff5bLLLsPT0xOAsWPH8vrrr/PCCy/g4nJm/9n08/Nj6tSpPPbYY6xfv55evXpVufYzqWPXrl3MmjWLK664go8//hirteJncUdnGGRlZXHPPffQp08fVqxYgYeHx3FjzkZhYSFxcXHl9QF07dqVnTt3Vqpj4sSJdOjQgXnz5jFjxgwA3n77bZYvX86cOXO47777ysc+9NBD5TVNmjSJp556io8++ojbb7+9fMzChQuJiopi4MCBZ127iIiISGNRn5+HT+Xzzz/nhx9+4Mknn+Thhx8GYMqUKVx99dW88MIL3HXXXbRp04bvvvuO4uJili1bRnBw8AmvtXTpUjp37syiRYuqtUYRkXOhmbYi0qBdc801FBQU8OWXX5KTk8OXX355yq+Cbdq0ic2bNzN+/PjyfePHjyc1NZVvvvmmSvc+OrvgbHp5nWkdixcvxuFw8Oijj1YKSsFYcReMr4Pl5OTw0EMPVQpsjx1zNq6//vpKgS2Au7t7eR12u520tLTyr6Ad+9W4Tz75hODgYO6+++7jrnu0pujoaPr27VtpVkd6ejrLli3j2muvPafaRURERBqL+vo8fDpfffUVNpuNe+65p9L++++/H6fTybJlywAICAgAYMmSJSddgyEgIIADBw6wbt26aq9TRORsKbQVkQYtJCSEoUOH8t577/Hpp59it9sZM2bMSccvXLgQb29vWrduza5du9i1axceHh5ERUVV+Sth/v7+TJ06lc8//5zff/+9SueeaR27d+/GarXSqVOnk15r9+7dAHTp0qVKNZxOq1atjtvncDh4/vnnadeuHe7u7gQHBxMSEsKmTZvIysqqVFP79u1PO1Nj0qRJrFy5koSEBMBYxbikpISJEydW62cRERERaajq6/Pw6SQkJNCsWTN8fX0r7e/YsWP5cTBmCQ8YMICbb76ZsLAwxo0bx0cffVQpwP3HP/6Bj48Pffr0oV27dkyZMqVS+wQRETMotBWRBm/ChAksW7aM1157jREjRpT/tP2vnE4n77//Pnl5eXTq1Il27dqVb/v27WPJkiXk5uZW6d733nsvAQEBVZpdUBN1nImTzVy12+0n3P/XWbYATz/9NNOmTWPQoEEsXLiQb775hu+++47OnTufdGbDqYwbNw5XV9fyvyAsXLiQ2NhY2rdvX+VriYiIiDRW9e15uDp5enry888/8/333zNx4kQ2bdrE2LFjueiii8qfczt27MiOHTv44IMPGDhwIJ988gkDBw7kscceM6VmERFQaCsijcAVV1yB1Wrlt99+O+VXwX766ScOHDjArFmzWLRoUaXt9ddfJz8/n8WLF1fp3kdnFyxZsuSMZxdUpY42bdrgcDjYunXrSa/Xpk0bALZs2XLK+wYGBpKZmXnc/qOzFM7Exx9/zAUXXMC8efMYN24cF198MUOHDj3uum3atGHHjh2UlJSc8npBQUGMHDmSd999l4SEBFauXKlZtiIiIiJVVN+eh89EZGQkSUlJ5OTkVNq/ffv28uNHWa1WLrzwQubMmcPWrVt56qmn+OGHH/jxxx/Lx3h7ezN27FjefPNNEhMTGTlyJE899RSFhYXVVrOISFUotBWRBs/Hx4dXX32VmTNnMnr06JOOO/pVsAcffJAxY8ZU2m655RbatWtX5a+EAUydOpWAgABmzZp1RuOrUsfll1+O1Wpl1qxZx81kPbqg18UXX4yvry+zZ88+7qHz2IXI2rRpw2+//UZxcXH5vi+//JL9+/ef8We12WzHLW62aNEiDh48WGnfVVddRWpqKv/5z3+Ou8Zfz584cSJbt27lwQcfxGaznXKlYxERERE5Xn17Hj4Tl1xyCXa7/bjnyeeffx6LxcKIESMAY02Ev+rRowcARUVFAKSlpVU67ubmRqdOnXA6naedZCAiUlPObNlHEZF67vrrrz/l8aKiIj755BMuuuii4xbrOurSSy/lhRdeICUlhdDQ0DO+t7+/P/fee+8ZfSWsqnW0bduWhx9+mCeeeILzzz+fK6+8End3d9atW0ezZs2YPXs2fn5+PP/889x888307t2bCRMmEBgYyMaNG8nPz+ett94C4Oabb+bjjz9m+PDhXHPNNezevZuFCxeWz9Q9E6NGjWLWrFnccMMN9O/fn82bN/Puu+/SunXrSuMmTZrE22+/zbRp01i7di3nn38+eXl5fP/999x5551cdtll5WNHjhxJkyZNWLRoESNGjKjS772IiIiIGOrL8/Cx4uLiePLJJ4/bP2TIEEaPHs0FF1zAww8/zL59++jevTvffvstS5YsYerUqeXPsLNmzeLnn39m5MiRREZGkpKSwiuvvEKLFi0YOHAgYExyCA8PZ8CAAYSFhbFt2zb+85//MHLkyON65oqI1BbNtBURAZYuXUpmZuYpZx6MHj2a0tJSPvjggypff+rUqfj7+9dIHbNmzWL+/PkUFBTw8MMP8+ijj5KQkMCFF15Yfs5NN93E559/jp+fH0888QT/+Mc/WL9+ffkMBIBhw4bx3HPPsXPnTqZOncrq1av58ssvadGixRl/zn/+85/cf//9fPPNN9x7772sX7+epUuXEhERUWmczWbjq6++4uGHH2bNmjVMnTqVOXPm4OfnR9euXSuNdXNzY+zYsQBqjSAiIiJSQ+rK8/Cx1qxZw4wZM47bVqxYgdVq5fPPP2fq1Kl8+eWXTJ06la1bt/LMM88wZ86c8mtceumltGzZkvnz5zNlyhRefvllBg0axA8//FBez2233UZubi5z5sxhypQpLF68mHvuuYeFCxdW+XOKiFQXi/Ov30MVERGpY+677z7mzZtHcnIyXl5eZpcjIiIiIiIiUqM001ZEROq0wsJCFi5cyFVXXaXAVkRERERERBoF9bQVEZE6KSUlhe+//56PP/6YtLQ07r33XrNLEhEREREREakVCm1FRKRO2rp1K9deey2hoaG8+OKL5av8ioiIiIiIiDR06mkrIiIiIiIiIiIiUoeop62IiIiIiIiIiIhIHaLQVkRERERERERERKQOaRA9bR0OB0lJSfj6+mKxWMwuR0RERERqidPpJCcnh2bNmmG11q/5CHqGFREREWl8zvT5tUGEtklJSURERJhdhoiIiIiYZP/+/bRo0cLsMqpEz7AiIiIijdfpnl8bRGjr6+sLGB/Wz8/P5GpEREREpLZkZ2cTERFR/jxYn+gZVkRERKTxOdPn1wYR2h79Opmfn58eeEVEREQaofrYXkDPsCIiIiKN1+meX+tX4y8RERERERERERGRBk6hrYiIiIiIiIiIiEgdotBWREREREREREREpA5pED1tz5TdbqekpMTsMqQKXF1dsdlsZpchIiIiDdjPP//MM888Q3x8PIcOHeKzzz7j8ssvP6NzV65cyeDBg+nSpQsbNmyo0TpFRESkYVNu1TBUV5bVKEJbp9NJcnIymZmZZpciZyEgIIDw8PB6ucCIiIiI1H15eXl0796dG2+8kSuvvPKMz8vMzGTSpElceOGFHD58uAYrFBERkYZMuVXDUx1ZVqMIbY/+gx8aGoqXl5fCv3rC6XSSn59PSkoKAE2bNjW5IhEREWmIRowYwYgRI6p83u23386ECROw2WwsXry4+gsTERGRRkG5VcNRnVlWgw9t7XZ7+T/4TZo0MbscqSJPT08AUlJSCA0NVasEERERqRPefPNN9uzZw8KFC3nyySfP6JyioiKKiorK32dnZ9dUeSIiIlJPKLdqeKory2rwC5Ed7QXi5eVlciVyto7+2amvi4iIiNQFf/75Jw899BALFy7ExeXM50DMnj0bf3//8i0iIqIGqxQREZH6QLlVw1QdWVaDD22P0tTy+kt/diIiIlJX2O12JkyYwOOPP050dHSVzp0+fTpZWVnl2/79+2uoShEREalvlH00LNXx59ng2yOIiIiIiFSXnJwc4uLi+P3337nrrrsAcDgcOJ1OXFxc+Pbbb/nb3/52wnPd3d1xd3evzXJFREREpJ5qNDNtxRAVFcXcuXPNLkNERESkXvLz82Pz5s1s2LChfLv99ttp3749GzZsoG/fvmaXKCIiIlIvKbOqTKFtHWWxWE65zZw586yuu27dOm699dZqqfH999/HZrMxZcqUarmeiIiIiBlyc3PLA1iAvXv3smHDBhITEwGjrcGkSZMAsFqtdOnSpdIWGhqKh4cHXbp0wdvb26yPISIiIlIr6nJmNWTIEKZOnXpO16gr1B6hjjp06FD56w8//JBHH32UHTt2lO/z8fEpf+10OrHb7We0EEZISEi11Thv3jz+/ve/89///pfnnnsODw+Paru2iIiISG2Ji4vjggsuKH8/bdo0AK6//noWLFjAoUOHygNcERERkcauPmRWDYFm2tZR4eHh5Zu/vz8Wi6X8/fbt2/H19WXZsmXExMTg7u7Or7/+yu7du7nssssICwvDx8eH3r178/3331e67l+nmlssFv73v/9xxRVX4OXlRbt27fj8889PW9/evXtZtWoVDz30ENHR0Xz66afHjZk/fz6dO3fG3d2dpk2blvd9A8jMzOS2224jLCysfGbKl19+efa/YSIiIiJnaciQITidzuO2BQsWALBgwQJWrFhx0vNnzpxZPktXREREpKGr65nVqXzyySflWVVUVBTPPfdcpeOvvPIK7dq1w8PDg7CwMMaMGVN+7OOPP6Zr1654enrSpEkThg4dSl5e3jnVcyqNcqat0+mkoMRuyr09XW3VtiLgQw89xLPPPkvr1q0JDAxk//79XHLJJTz11FO4u7vz9ttvM3r0aHbs2EHLli1Pep3HH3+cf//73zzzzDO89NJLXHvttSQkJBAUFHTSc958801GjhyJv78/1113HfPmzWPChAnlx1999VWmTZvGv/71L0aMGEFWVhYrV64EjMU6RowYQU5ODgsXLqRNmzZs3boVm81WLb8vIiIiIiIiIiL1kTKrys4mszqZ+Ph4rrnmGmbOnMnYsWNZtWoVd955J02aNGHy5MnExcVxzz338M4779C/f3/S09P55ZdfAGN28fjx4/n3v//NFVdcQU5ODr/88gtOp/Osf49Op1GGtgUldjo9+o0p9946axhebtXz2z5r1iwuuuii8vdBQUF07969/P0TTzzBZ599xueff15plutfTZ48mfHjxwPw9NNP8+KLL7J27VqGDx9+wvEOh4MFCxbw0ksvATBu3Djuv/9+9u7dS6tWrQB48sknuf/++7n33nvLz+vduzcA33//PWvXrmXbtm1ER0cD0Lp167P5LRAREZE6oKDYztZD2fyRlIW/pyuX9WhudklyAgczC/hhewo+7jau6NnC7HJERETkBJRZVVbVzOpU5syZw4UXXsiMGTMAiI6OZuvWrTzzzDNMnjyZxMREvL29GTVqFL6+vkRGRtKzZ0/ACG1LS0u58soriYyMBKBr165VrqEq1B6hHouNja30Pjc3lwceeICOHTsSEBCAj48P27ZtO20Ptm7dupW/9vb2xs/Pj5SUlJOO/+6778jLy+OSSy4BIDg4mIsuuoj58+cDkJKSQlJSEhdeeOEJz9+wYQMtWrQoD2xFRESk/sgtKmXt3nTm/bqXaR9u4OLnf6LzY19z1aureHTJH7z7m3q/1lXxCRnMWLyF+b/uM7sUERERaeDMyqxOZdu2bQwYMKDSvgEDBvDnn39it9u56KKLiIyMpHXr1kycOJF3332X/Px8ALp3786FF15I165dufrqq3njjTfIyMg4qzrOVKOcaevpamPrrGGm3bu6/HV14gceeIDvvvuOZ599lrZt2+Lp6cmYMWMoLi4+5XVcXV0rvbdYLDgcjpOOnzdvHunp6Xh6epbvczgcbNq0iccff7zS/hM53XERERGpG7LyS/gjKYstSVlsOZjNloNZ7E3L40TfAgv2cadrcz9io6r+VTWpHbGRgQBsPZRNXlEp3u6N8q8CIiIidZoyq8qqmlmdC19fX9avX8+KFSv49ttvefTRR5k5cybr1q0jICCA7777jlWrVvHtt9/y0ksv8fDDD7NmzZryb51Xt0b5pGaxWKptunddsnLlSiZPnswVV1wBGD/F2LdvX7XeIy0tjSVLlvDBBx/QuXPn8v12u52BAwfy7bffMnz4cKKioli+fHmllZiP6tatGwcOHGDnzp2abSsiIlJHpOcVs+VgFpsPZhlB7cFsEtPzTzi2qb8HXZr706WZP12a+9GluT9hfh61XLFUVbMAT5r5e5CUVcjG/Zn0bxtsdkkiIiLyF8qsak7Hjh3L11s6tq7o6OjydZZcXFwYOnQoQ4cO5bHHHiMgIIAffviBK6+8EovFwoABAxgwYACPPvookZGRfPbZZ0ybNq1G6m14/xQ0Yu3atePTTz9l9OjRWCwWZsyYUe0/fXjnnXdo0qQJ11xzzXHNqS+55BLmzZvH8OHDmTlzJrfffjuhoaHli46tXLmSu+++m8GDBzNo0CCuuuoq5syZQ9u2bdm+fTsWi+WsepKIiIhI1aRkF5bPnt18MIs/DmaRlFV4wrERQZ5l4ayxdW7mR7CPey1XLNUlJiqIpI1JxCVkKLQVERGRWlMbmdVRR44cYcOGDZX2NW3alPvvv5/evXvzxBNPMHbsWFavXs1//vMfXnnlFQC+/PJL9uzZw6BBgwgMDOSrr77C4XDQvn171qxZw/Lly7n44osJDQ1lzZo1HDlyhI4dO9bIZwCFtg3KnDlzuPHGG+nfvz/BwcH84x//IDs7u1rvMX/+fK644ooTriZ41VVXMXHiRFJTU7n++uspLCzk+eef54EHHiA4OJgxY8aUj/3kk0944IEHGD9+PHl5ebRt25Z//etf1VqriIhIY+d0OjmUVciWg1nGlmS0OEjJKTrh+FbB3mUzaP3KA9oAL7darlpqUmxkIF+UhbYiIiIitaU2Mquj3nvvPd57771K+5544gkeeeQRPvroIx599FGeeOIJmjZtyqxZs5g8eTIAAQEBfPrpp8ycOZPCwkLatWvH+++/T+fOndm2bRs///wzc+fOJTs7m8jISJ577jlGjBhRI58BwOJ0nqgrWf2SnZ2Nv78/WVlZ+Pn5VTpWWFjI3r17adWqFR4e+tpefaQ/QxERkdNzOp3sTy8om0F7tM1BNul5x/cJs1qgTYhPeTDbtbk/nZr54evheoIr122neg6s68yofcvBLEa99Cu+7i5seOxibNbjfxAvIiIitUeZR8N0qj/XM30G1ExbERERkXrG4XCyLy2vfObs0S27sPS4sTarhXahPnRtfrTFgR8dm/o1yF5pcnodwn3xcrORU1TKzsM5dGxav4JuERERkcZCT+siIiIidVRhiZ3U3CJSc4vZcySXLQez2ZKUxdakbHKLjg9o3WxW2of70qW5H52b+dO1uT/tw33xqMaVgKV+c7FZ6dkygJW70ohPyFBoKyIiIlJHKbQVERERqUWFJXaO5BSVh7GpuUXHvC8iNadiX84Jgtmj3F2sdGzqVzaD1ghpo8N8cXOx1uKnkfooJjKoPLS97rxIs8sRERERkRNQaCsiIiJyjgqKjRmxR3KLSM05SRibW0zqaYLYE3FzsRLi406zAA86NzNaHHRt7k+bEG9cbApopepiIwMBiEtIN7kSERERETkZhbYiIiIiJ3A0iE05ySzYY8PYE7UqOJWjQWywrzshPm4E+7iXbW6E+HoQ7ONGsK+xz8/DBYtFi0VJ9enZMgCrBfanF5CSXUionxY9EREREalrFNqKiIhIo+NwONmfkc8fSdn8eTiXI7mFpOYUGzNly2bL5hXbq3RNdxerEbyWBbEhvu7HhLFHA1njuK+7glgxj6+HK+3D/dh2KJu4hAwu6drU7JJERERE5C8U2oqIiEiDVlRq58/DuWxNyuaPpCy2Hspm26GcM5odezSIPRrAhvi6VXp/NIxVECv1TWxkoBHa7lNoKyIiIlIXKbQVERGRBiMzv5ith7LZmpRd/uuulFxKHc7jxrq5WOkQ7kv7MF+a+nuUtyOoCGXd8FEQKw1UTGQg7/yWQLz62oqIiIjUSQptRUREpN5xOp0cyCg4LqA9mFlwwvEBXq50buZHp6Z+dGrmR6emWshLGreYssXI/kjKpqDYjqebzeSKRERERORYCm0buCFDhtCjRw/mzp1rdikiIiJnpcTuYFdKLn8kHQ1os9ialE124YnbG0QEedKpqR+dm/mXh7RN/T00Y1bkGC0CPQnzc+dwdhEbD2RyXusmZpckIiIijYwyq1NTaFtHjR49mpKSEr7++uvjjv3yyy8MGjSIjRs30q1bt2q5X0FBAc2bN8dqtXLw4EHc3d2r5boiIiJVkVNYwrZDOWwt6z17dKGwYrvjuLGuNgvtQn3LZs760bmZHx2a+uHv6WpC5SL1i8ViITYyiKWbDxGfkKHQVkRERM5YbWVWCxYsYOrUqWRmZp7TdeorhbZ11E033cRVV13FgQMHaNGiRaVjb775JrGxsdUW2AJ88skndO7cGafTyeLFixk7dmy1XVtEROSvnE4nydmFxszZo+0NDmWTkJZ/wvG+Hi7HtDYwfm0X6oubi9obiJytmMhAlm4+RNw+9bUVERGRM1fbmVVjpb/p1FGjRo0iJCSEBQsWVNqfm5vLokWLuOmmm0hLS2P8+PE0b94cLy8vunbtyvvvv39W95s3bx7XXXcd1113HfPmzTvu+B9//MGoUaPw8/PD19eX888/n927d5cfnz9/Pp07d8bd3Z2mTZty1113nVUdIiLS8JTaHfx5OIfFvx/k6a+2cd3/1hDz5Pf0m/0DN70Vx3Pf7WTZluTywLaZvwdDO4Zyz4XteO26GH75+wVseuxiPrytH4+N7szVsRF0buavwFbkHMVGGX1t4xMycJxgsT4RERGRE6ntzOpkEhMTueyyy/Dx8cHPz49rrrmGw4cPlx/fuHEjF1xwAb6+vvj5+RETE0NcXBwACQkJjB49msDAQLy9vencuTNfffVVtdZ3rhr3TNvivJMfs9jA1eMMx1rB1fP0Y928z7g0FxcXJk2axIIFC3j44YfL+/AtWrQIu93O+PHjyc3NJSYmhn/84x/4+fmxdOlSJk6cSJs2bejTp88Z32v37t2sXr2aTz/9FKfTyX333UdCQgKRkZEAHDx4kEGDBjFkyBB++OEH/Pz8WLlyJaWlRi/BV199lWnTpvGvf/2LESNGkJWVxcqVK8/4/iIi0nDYHU52peSyYX8GG/ZnsTUpi+3JORSVHt/ewGa10DbEp1J7g45N/Qj0djOhcpHGp2NTPzxdbWQXlrLrSC7RYb5mlyQiIiJHKbM6JYfDUR7Y/vTTT5SWljJlyhTGjh3LihUrALj22mvp2bMnr776KjabjQ0bNuDqarRSmzJlCsXFxfz88894e3uzdetWfHx8zrmu6tS4Q9unm538WLuL4dpFFe+faQslJ/7KJpED4YalFe/ndoX8tOPHzcyqUnk33ngjzzzzDD/99BNDhgwBjGnmV111Ff7+/vj7+/PAAw+Uj7/77rv55ptv+Oijj6r0L8D8+fMZMWIEgYHGbIthw4bx5ptvMnPmTABefvll/P39+eCDD8r/4Y6Oji4//8knn+T+++/n3nvvLd/Xu3fvKn1WERGpf5xOJ4eyCtm4P5MNBzLZkJjJ5oNZ5Bfbjxvr7Waj41/aG0SH+eLhqhXrRcziarPSIyKA1XvSiNuXodBWRESkLlFmdUrLly9n8+bN7N27l4iICADefvttOnfuzLp16+jduzeJiYk8+OCDdOjQAYB27dqVn5+YmMhVV11F165dAWjduvU511TdGndoW8d16NCB/v37M3/+fIYMGcKuXbv45ZdfmDVrFgB2u52nn36ajz76iIMHD1JcXExRURFeXl5nfA+73c5bb73FCy+8UL7vuuuu44EHHuDRRx/FarWyYcMGzj///PLA9lgpKSkkJSVx4YUXnvsHFhGROi27sIRN+7PYeCCTDfuN7UhO0XHjvN1sdG3hT/eIALo1D6BTMz8ig7ywWi0mVC0ipxITGWiEtgnpTOjb0uxyREREpJ6ojczqVLZt20ZERER5YAvQqVMnAgIC2LZtG71792batGncfPPNvPPOOwwdOpSrr76aNm3aAHDPPfdwxx138O233zJ06FCuuuqqOteHt3GHtv9MOvkxy19m/jy46xRj/9JTb+rms6/pL2666SbuvvtuXn75Zd58803atGnD4MGDAXjmmWd44YUXmDt3Ll27dsXb25upU6dSXFx8xtf/5ptvOHjw4HELj9ntdpYvX85FF12Ep6fnSc7mlMdERKT+Ki51sD05m437M/l9fyYb92ey+8jxX6WyWS20D/OlR8sAerQIoHtEAG1DfbApoBWpF2KO6WsrIiIidYgyq3M2c+ZMJkyYwNKlS1m2bBmPPfYYH3zwAVdccQU333wzw4YNY+nSpXz77bfMnj2b5557jrvvvrvW6judxh3aVqFfR42NPY1rrrmGe++9l/fee4+3336bO+64o7xXyMqVK7nsssu47rrrAKOfx86dO+nUqdMZX3/evHmMGzeOhx9+uNL+p556innz5nHRRRfRrVs33nrrLUpKSo6bbevr60tUVBTLly/nggsuOMdPKyIiZnA6nSSk5bPxQCa/J2ay8UAmfyRlU3yCPrQRQZ50bxFAjwhj69zMH083tTgQqa96tQzEYoGEtHyO5BQR4utudkkiIiICyqxOo2PHjuzfv5/9+/eXz7bdunUrmZmZle4RHR1NdHQ09913H+PHj+fNN9/kiiuuACAiIoLbb7+d22+/nenTp/PGG28otJUz5+Pjw9ixY5k+fTrZ2dlMnjy5/Fi7du34+OOPWbVqFYGBgcyZM4fDhw+f8b8AR44c4YsvvuDzzz+nS5culY5NmjSJK664gvT0dO666y5eeuklxo0bx/Tp0/H39+e3336jT58+tG/fnpkzZ3L77bcTGhrKiBEjyMnJYeXKlXXqH3QREamQlltU1uIgi437jZA2M7/kuHH+nq50jzga0PrTrUUAwT4KdEQaEn9PV6JDfdlxOIf4hAyGdwk3uyQRERGpJ2oyszrKbrezYcOGSvvc3d0ZOnQoXbt25dprr2Xu3LmUlpZy5513MnjwYGJjYykoKODBBx9kzJgxtGrVigMHDrBu3TquuuoqAKZOncqIESOIjo4mIyODH3/8kY4dO57rb0m1UmhbD9x0003MmzePSy65hGbNKhpRP/LII+zZs4dhw4bh5eXFrbfeyuWXX05W1pk1j3777bfx9vY+YT/aCy+8EE9PTxYuXMg999zDDz/8wIMPPsjgwYOx2Wz06NGDAQMGAHD99ddTWFjI888/zwMPPEBwcDBjxoypng8vIiLnpKDYzh9JWeU9aDceyGR/esFx49xsVjo18yufQdsjIoDIJl7lPykXkYYrJiqwLLRNV2grIiIiVVJTmdVRubm59OzZs9K+Nm3asGvXLpYsWcLdd9/NoEGDsFqtDB8+nJdeegkAm81GWloakyZN4vDhwwQHB3PllVfy+OOPA0YYPGXKFA4cOICfnx/Dhw/n+eefP8ffjeplcTqdTrOLOFfZ2dn4+/uTlZWFn59fpWOFhYXs3buXVq1a4eHhYVKFci70ZygicmbsDie7j+SyITGTDQeMPrTbk3OwO47/X32bEO9jZtEG0CHcDzcX6wmuKlK3neo5sK6rK7V/uv4A0z7aSM+WAXx25wDT6hAREWmMlHk0TKf6cz3TZ0DNtBUREamnDmUVsHG/0eZgw/4MNh/IIq/Yfty4YB93ekQE0LNlAN1bBNC1hT/+nq4nuKKINEaxkUEAbDmYRWGJHQ9X9akWERERMZtCWxERkTrO4XCSkJ7PtkPZ5dvmg1kczi46bqynq42uLfzpGRFQPpO2qb+H2hyIyElFBHkS4uvOkZwiNh3Iok+rILNLEhEREWn0FNqKiIjUIblFpexIzmbroZzygHZHcg75J5hBa7VA+3A/ekT4071FAD1aBtA2xAcXm9ociMiZs1gsxEYGsmxLMnEJ6QptRUREROoAhbYiIiImcDqdHMwsYFtZOLs1KZttydkkpOWfcLybi5X2Yb50bOpLx6Z+dG7mT5fmfni56X/lInLuYspC2/h9GWaXIiIiIiIotBUREalxhSV2dh4+OnM2h62Hstl+KJvswtITjg/1dadjU7+yzZdOTf1oFeytGbSNhcNubC5uxnunE47sAM8A8A03tTRpuGIiAwGIT8zA4XBitaqlioiIiIiZGk1o63A4zC5BzpL+7ESkvnA6nRzJKWLroWy2lgW02w5ls+dILg7n8eNdrBbahvrQsakfnY4JaZv4uNd+8WKEo45S49ejgam9BNJ2QWkhlBYdsxWCvRgCo6BFrDG2OA9Wvlgx1v6X8ZH9od8UY2xJAbw+pGxsceVzHKXQ6XK45q2Kul7pa7wObAWRA4xrRfY37q9+xVINOjfzx93FSmZ+CXtS82gb6mN2SSIiIo2Kso+GpTr+PBt8aOvm5obVaiUpKYmQkBDc3Ny0GEs94XQ6KS4u5siRI1itVtzc3MwuSUSkXHGpg91Hco9ZHMwIaNPyik84PtDL9ZjZs0Y42zbUB3cXrdJuisIs2PE1bPscEldDcb4RnOKE86bA8KeNcbmH4ZXzTn6dmMkVoa29GH7618nHunhUvLa6wJHtJx9beswic1Yr+IRDXgpk7DW2DQuNY75NIfZGGPz3U31akdNyc7HSPSKAtXvTiU9IV2grIiJSS5RbNSzVmWU1+NDWarXSqlUrDh06RFJSktnlyFnw8vKiZcuWWK36WrCImCM9r7g8nD06g3ZXSg4l9uOnz1ot0CrYuzycPTqDNszPXQ9fdUXabni5LzhKTny8tLDitYsneAWDi3vZ5gE2N+NXF3do0q5irKsXxN5Uceyv5zRpWzHW6gLXf3H89Y6Od/WsXNMDO6AwG/avhYSVkLAKDsZDzqHKAW9BBiyeUjETN7wb2Br8455Uk9jIQNbuTSduXwZje7c0uxwREZFGQblVw1QdWVajeIp3c3OjZcuWlJaWYrcfv/q21F02mw0XFxcFHSJSK5xOJ3tS84xFwY6ZQZucXXjC8b7uLnQoWxjsaEAbHeaLp5tmz9YZuSmw7QsoyYf+dxv7glqDX1MjkO10KUSPAO9jgllXr4rzvZvA33ef2b1c3GHUnDMba7FAq0FV+yweftBuqLGB0WLhQBz4NasYk7gGdiw1NgA3H4joWxbiDoDmvYw6RU4gNqqsr22CFiMTERGpTcqtGpbqyrIaRWgLYLFYcHV1xdXV1exSRESkDknOKuSXP4+wclcqv+5KIzW36ITjWgZ50fEvAW2LQE/9UKkuyjpoBLXbPjdmpOIED3/oc5vRq9ZigVt/Aq8gsys9N66e0Or8yvtCO8DQx43PnfgbFGXB7uXGBjD6BaOlA0BRDlis4OZdq2VL3dWrpRHa7knNIy23SP21RUREapFyK/mrswptX375ZZ555hmSk5Pp3r07L730En369Dnp+Llz5/Lqq6+SmJhIcHAwY8aMYfbs2Xh4GL3dZs6cyeOPP17pnPbt27N9+yl6vYmIiJyF3KJSftudxq+7Uvl1Vyq7UnIrHXd3sR4TzBohbftwX3w99PBU5238ENa9AQfWVd7frBd0uqysHUJZT6n6HtieTGAUDJxqbA47HP7DCHCPtlSIHFgxdsP78M10aNqjYiZuy77gGWhO7WK6AC832oX68GdKLvEJGVzcOdzskkREREQarSqHth9++CHTpk3jtddeo2/fvsydO5dhw4axY8cOQkNDjxv/3nvv8dBDDzF//nz69+/Pzp07mTx5MhaLhTlzKr5C2LlzZ77//vuKwlwazSRgERGpQSV2B5sOZPLLn6ms3JXK74mZlDoqetFaLNCtuT8D2wUzsG0IvSIDtDhYfZG6C/ybV/R/TdtVFthajJYAnS6FjqMhoJH25rTaoGk3YzvvdnD+pQdzylZwlMLBOGNb9SJggbAuRog76EHwCTGldDFPTGSgQlsRERGROqDKyeicOXO45ZZbuOGGGwB47bXXWLp0KfPnz+ehhx46bvyqVasYMGAAEyZMACAqKorx48ezZs2ayoW4uBAergdDERE5N0f70v76Zyq//JnKb3vSyC0qrTQmsokXA9oGc37bYPq1aUKA19mv6Cm1yOmElG2wdYnR+iBlK4xdaASzAN3Ggk8odBhl9KyVyv7aymP0XDh/GiSsrpiJm/YnHN5s/N5e+GjF2D8+g5JCI8wNjKzVsqV2xUQG8sG6/cSpr62IiIiIqaoU2hYXFxMfH8/06dPL91mtVoYOHcrq1atPeE7//v1ZuHAha9eupU+fPuzZs4evvvqKiRMnVhr3559/0qxZMzw8POjXrx+zZ8+mZcsTz4wpKiqiqKii52B2dnZVPoaIiDQwqblFRk/astm0SVmVFw4L8HJlQJvgstm0wUQEeZ3kSlLnOJ1waKMR0m5dYsymPcrqAmnHLBIW3NbY5MwFtDS27mON97kpRnibmQDuPhXjVr4ISeuN134tytoplLVUCG53fCAs9VZslNE6ZPOBLIpK7frmgYiIiIhJqhTapqamYrfbCQsLq7Q/LCzspP1nJ0yYQGpqKgMHDsTpdFJaWsrtt9/OP//5z/Ixffv2ZcGCBbRv355Dhw7x+OOPc/7557NlyxZ8fX2Pu+bs2bOP64ErIiKNR0GxnbX70lm5y5hNu+1Q5R/eudmsxEYFMrBdMOe3DaFTMz9sVoVK9VLGXnh9cMV7mzu0+ZvRo7b9cPVfrW4+odD58sr7nE5oPcRYtCzpd8g+AJs/MjYw2incsbK2K5UaEtXEiybebqTlFbPlYBYxkQ20/7OIiIhIHVfjjWNXrFjB008/zSuvvELfvn3ZtWsX9957L0888QQzZswAYMSIEeXju3XrRt++fYmMjOSjjz7ipptuOu6a06dPZ9q0aeXvs7OziYiIqOmPIiIiJrE7nPyRlFXelzZuXwbFdkelMZ2a+pXPpO0dFYSnm2aH1SsOOyT+Zsymddph5HPG/qDW0KIP+IYbQW30MHA//ge6UoMsFhj6mPG6KNfoG5ywytgOrDNm2kqDYbFYiIkM5Nuth4nbl6HQVkRERMQkVQptg4ODsdlsHD58uNL+w4cPn7Qf7YwZM5g4cSI333wzAF27diUvL49bb72Vhx9+GKvVetw5AQEBREdHs2vXruOOAbi7u+Pu7l6V0kVEpJ7Zn55fHtKu3J1KZn5JpePN/D0Y2C6YAW2NLdhH/1+od+wlsO9XI6jd/iXkHTH2u3jCRbPAzdt4f9O3+vp9XeHuA20uMDaA0iIozDK3Jql2sVFloW1CBreZXYyIiIhII1Wl0NbNzY2YmBiWL1/O5ZdfDoDD4WD58uXcddddJzwnPz//uGDWZjNmPzn/uopxmdzcXHbv3n1c31sREWm4svJLWLU7lV92GUFtQlp+peO+7i6c16YJ55fNpm0V7I1FQV799evzsPIFKDhmsSMPf2g/0phRaztmcTj9OdddLu5GSwVpUI7Orl2fkIHT6dR/a0VERERMUOX2CNOmTeP6668nNjaWPn36MHfuXPLy8rjhhhsAmDRpEs2bN2f27NkAjB49mjlz5tCzZ8/y9ggzZsxg9OjR5eHtAw88wOjRo4mMjCQpKYnHHnsMm83G+PHjq/GjiohIXVJUamd9Qia/7jrCr3+msvlgFo5jfpbnYrXQq2UgA9oaC4h1b+GPi+34b2dIPVBSALuWQ9RA8Aww9llsRmDrFQwdyoLaVoPA5mpqqSICXZr74eZiJS2vmL2pebQO8Tn9SSIiIiJSraoc2o4dO5YjR47w6KOPkpycTI8ePfj666/LFydLTEysNLP2kUcewWKx8Mgjj3Dw4EFCQkIYPXo0Tz31VPmYAwcOMH78eNLS0ggJCWHgwIH89ttvhISEVMNHFBGRusDpdLI9Oad88bC1e9MpKLFXGtMu1Ke8L23f1k3wca/x1utSU0qLYMdX8Mdi+PM7KMmDy1+DHmU/kO12DTTrAS37g01/ziJ1ibuLjW7N/YlLyCAuIUOhrYiIiIgJLM6T9SioR7Kzs/H39ycrKws/Pz+zyxEREYyQNiEtn1W701i9J43Vu9NIzS2qNCbE152BbY2QdkDbYML9PUyqVqpNyjZY/zZsfL9y6wP/CBjyEPS8zrzapEGqz8+Bdbn22cu28d+f9jA2NoL/G9PN7HJEREREGowzfQbU1BYREak2BzMLWL07jVW7U/ltdxpJWYWVjnu62ujbOoiBbYM5v10I0WE+6pXYkGQnwSv9gLKfB/s1h65XG60PmvVUb1qReiQ2Moj/sof4xIzTDxYRERGRaqfQVkREzlpKTiGrd6fx2540Vu1OO27xMDeblZ4tA+jXpgn92wTTPcIfdxebSdVKtXI6IWk9HFwPfW4x9vk1g7ZDjcWpel0PbS8Eq/68ReqjmMhAAHal5JKZX0yAl9tpzhARERGR6qTQVkREzlhGXjFr9hoB7ardaexKya103Ga10K2FP/3LQtpeLQPxdFNo16AUZMCmRUYLhMObjQXFOowCv6bG8QkfKqgVaQCCvN1oHeLNniN5xCdkcGHHMLNLEhEREWlUFNqKiMhJ5RSWsHZvutGXdnca25KzObYTusUCnZv50a+1EdL2bhWkxcMaIqcTElZC/FuwdQnYy3oT29yN1gf2Y3oVK7AVaTBiIwPZcySPOIW2IiIiIrVOf7MWEZFy+cWlxO3LYHVZu4MtB7OwOyqvVxkd5kP/NsH0a9OEvq2CGtZXZh12SN8L/i3AVYuildvwHiy5s+J9aGeIud7oV+sVZF5dIlKjYiOD+CjuAPH71NdWREREpLYptBURacSKSu38npjJqt1p/LY7jd/3Z1BirxzStgr2pl+bJvRr3YTzWjchxNfdpGprkNMJO5bB8llwZJsxg7RFLMRMhm7XmF1d7XLYYfcPYLEaPWkBOoyE70Og/SVGr9rmvbSomEgjEBNl9LXdeCCT4lIHbi5WkysSERERaTwU2oqINCIldgebDmSVLRyWSty+DIpKHZXGNA/wLFs4rAn92jShqb+nSdXWkoRV8P1M2L/GeG+xGl/3T1gJ7S6uGJd9CNa8BpEDoGVf8PA3pdwak5kIv78Lvy+E7APQrGdFaOsZANO2gc3V1BJFpHa1DvYm0MuVjPwStiRl0atloNkliYiIiDQaCm1FRBowu8PJtkPZrNqdyqrdaazbm05esb3SmBBfdyOgLetLGxHkiaWxzKK0l8Cnt0FWIrh4wnm3w4B7IS/NCG0jB1SM3fcLrJxrbBYrhHeFyIEQ2d/Y6mObgNJi2LnM6FW7+wegbJa1ZyBEnGccdylrf6HAVqTRsVgsxEQG8v22FOL3ZSi0FREREalFCm1FRBoQp9PJzsO5rNqdyurdafy2J43swtJKYwK8XMsCWmMmbZsQn8YT0gJk7gffpmBzMYLIvz0Ciatg8EPg19QY4xkIwW0rnxcQCT2vg30rIWMvHNpobL+9bByf8BFEDzNeOxxgrQdfI158B2z5uOJ9q0FG+4MOo9TTV0QAiIkMMkLbhAxuMbsYERERkUZEoa2ISD13ICOfn3YeYdXuNNbsSSM1t7jScV93F/q2DuK8spm0HcJ9sVobUUh7VF4q/PwsxM2Dkc9Br0nG/u5jje10WvY1NoDsJKOtQsJKI8RN3QFNe1SM/XUObPwAogYYs3UjB4B/82r/SFVSnA9bl0Cr842F1gA6X2HMIO5xLfSaCEGtza1RROqc2LK+tnEJGTidzsb1Qz4REREREym0FRGph/YcyWXZlmS+3pLM5oNZlY55utqIjQqkf5tg+rVpQpdmfrjY6sGsz5pSlAurX4ZVL0FxjrFv38qK0PZs+DWDrmOMDSA/vXJ7hISVkPanscUvMPYFREJUWTuFLmNqbybroY2w/m3YtAiKsowZxRdMN461HwHRw41ZxyIiJ9C1uT9uNiupuUUkpucT2cTb7JJEREREGgX9LU1EpB442vZg2ZZDfL0lme3JOeXHrBaIjQxiQNtg+rdtQvcWAVrhG4x+rPEL4Od/Q94RY1/T7jB0JrT5W/Xe66/9bK+aZyxstu9XY0buoY2QmQAbEuCPxdDtmJm9+1aCdzAER0N1zWArzIbNi4yw9tCGiv0BkeATWvHeaque+4lIg+XhaqNLcz/WJ2YSty9Doa2IiIhILVFoKyJSRzmdTv5IyuarzUZQuyc1r/yYi9VC/7bBjOgSzkWdwgj2cTex0jpqyRTY/JHxOqi10bu20xW102vWK8iYxdp+hPG+KKcsxF0JpUWVF/X64l5jRq53SNmiZmXtFEI7nV2t9lJ4KQbyUoz3NjejR22vSdBqcP3otSsidUpsVJAR2iZkcFVMC7PLEREREWkUFNqKiNQhDoeT3/dn8vWWQyzbksyBjILyY24uVga1C2Z4l6Zc1DEMfy/XU1ypEXI6wVFaEYj2uRX2/gSD/24srmUz8ffL3RfaDjW2Y5UWgW84ZO03ZgNvXWJsAB4BxozcS/596mvnpcKOZcYiaRaL0eqg/XBIXAMx10O3ceDdpEY+log0DjGRRl/b+IR0kysRERERaTwU2oqImMzucLJuXzpfl/WoTc4uLD/m6WpjSPsQhncJ528dQvH1UFB7Qgfi4PuZ0KwnXPyEsS+iN0zdDC51eBayiztM/tIIbw+uN3rhJqw0AtfCTCit+GcBewl8NAlaxELkQCjJM9ofbPsSHCUQ1gmaxxhjh/8fuHpWX7sFEWnUerU0Qtudh3PJyi/RDw1FREREaoFCWxERE5TYHfy2J42vNifz3dZkUnOLy4/5uLtwYcdQRnQJZ3B0KJ5u6jt6Ukd2wg+zYNsXxvvkTTD4H+DuY7yvy4HtsVzcIbKfsfGAEdAe2gRuXhVjDm2CHV8Z21816wklFbOyK50nInKOQnzdiWrixb60fNYnZnBBh9DTnyQiIiIi50ShrYhILSkqtfPrn6ks25LMd1sPk1VQUn7M39OVizqFMaJLOAPaBuPhqqD2lLIOwk//gt8XgtMBFit0nwBDHqoIbOszmyu0iKm8z7+5MYM2oWxxM4cdul5t9Kpt2s2cOkWk0YiJDGJfWj7xCQptRURERGqDQlsRkRpUUGznp50pLNuSzPJtKeQWlZYfa+LtxsWdwxnRJZx+bZrgatMCUWdk6+fw6S0VrQPaj4QLZ0BoR3Prqmm+4XDe7cbmdKr1gUg1+vnnn3nmmWeIj4/n0KFDfPbZZ1x++eUnHf/pp5/y6quvsmHDBoqKiujcuTMzZ85k2LBhtVd0LYuNCuST9QeIU19bERERkVqh0FZEpJrlFJbww/YUvt6SzIodRygosZcfC/NzZ3jncEZ0bUrvqCBsVgVvVdYi1vi1ZX8YOhNa9jW1HFMosBWpVnl5eXTv3p0bb7yRK6+88rTjf/75Zy666CKefvppAgICePPNNxk9ejRr1qyhZ8+etVBx7YstW4xsw/5MSuwO/aBRREREpIYptBURqQZZ+SV8t+0wX285xM9/plJc6ig/1iLQkxFdwhnepSk9IwKwKqg9c/ZS+P0dOLQBRr9g7PNrBrevhCZtFF6KSLUYMWIEI0aMOOPxc+fOrfT+6aefZsmSJXzxxRcNNrRtE+KDv6crWQUlbE3KpntEgNkliYiIiDRoCm1FRM5SWm4R3249zLItyazalUqpw1l+rHWwN8O7hDOiS1O6NPfDonCxapxO2LoEfngC0nYZ+3pcCxF9jNfBbc2rTUTkLxwOBzk5OQQFBZldSo2xWi3ERAbyw/YU4hIyFNqKiIiI1DCFtiIiVXA4u5CvtySzbMsh1u5N55iclvZhvgzvEs4lXZsSHeajoPZs7fkJvp8JSeuN915NYNDfoWl3U8sSETmZZ599ltzcXK655ppTjisqKqKoqKj8fXZ2dk2XVq2OhrbxCencNLCV2eWIiIiINGgKbUVETuNARn5ZUJtMfEJGpWNdm/uXzagNp3WIj0kVNhDZh2DJnbD7B+O9mw/0uwv63wXuvubWJiJyEu+99x6PP/44S5YsITQ09JRjZ8+ezeOPP15LlVW/mLK+tnH7MnA6nfrhpIiIiEgNUmgrInICablFLNmQxOINB9l0IKvSsV4tAxjRpSnDu4QTEeRlUoUNkGcgHNkJVleIvREGPQg+IWZXJSJyUh988AE333wzixYtYujQoacdP336dKZNm1b+Pjs7m4iIiJossVp1bxGAi9VCSk4RBzIK9P9AERERkRqk0FZEpEyJ3cGP21P4OP4AP2xPKe9Ra7VA76ig8sXEwv09TK60gcg5DHHzYfDfwWoDVw+48r/g1xyC9LVbEanb3n//fW688UY++OADRo4ceUbnuLu74+7uXsOV1RxPNxudm/uzcX8m8QkZCm1FREREapBCWxFp9LYmZfNx/AGWbDhIWl5x+f5uLfy5qlcLRnZrSrBP/f1Ldp1TmAUrX4TfXoGSfAiIgJ7XGceiBppbm4g0Srm5uezatav8/d69e9mwYQNBQUG0bNmS6dOnc/DgQd5++23AaIlw/fXX88ILL9C3b1+Sk5MB8PT0xN/f35TPUFtiIwPZuD+TuIR0Lu/Z3OxyRERERBoshbYi0iil5xWz+PeDfBx/gK2HKhaCCfZx58pezbmqVwvah9eDPqo5h+HHJyFhNVhdwOYKoZ2MGatHfXEv5Kcbx2xuxq/Wste+4TBwasXYDe9BYTbYXIzjVteK89x9oM3fKsambAd7Udk13cru71Yx3sOvcq0lhbDuf/DLc1CQbuxrHgtN2tbYb4+IyJmIi4vjggsuKH9/tIXB9ddfz4IFCzh06BCJiYnlx19//XVKS0uZMmUKU6ZMKd9/dHxDFhsZyLxf9xK3L+P0g0VERETkrCm0FZFGo8TuYMWOI3wcv58ftqdQYjfaH7jZrAztFMqYmBYMaheCi81qcqVnwF4Ca/4LK/4FxTmVj9lcK7//83vIPnDi64R0qBza/joXUneceKx/S7hvc8X7xbdD0u8nHuvVBP6+p+L9O1fAvl/BXjaTOTgaLnwUOowCLWQjIiYbMmQITqfzpMf/GsSuWLGiZguqw2KijMXIdhzOIbuwBD8P19OcISIiIiJnQ6GtiDR42w4Z7Q8W/358+4MxMS0Y3a0Zgd5uJlZ4FhbfAZsXGa+b9YTB/wBXT7CXgpt35bFDZ0JhJjhKjdDUXmyMsxcb4eqxoi+G8C6Vx9iLjXO9/7IomFcT8G1aeayjxBhr/ctf4ovzjOO+zeCC6dB9gjGbV0RE6pVQXw9aBnmRmJ7P74mZDI7WgpEiIiIiNUF/YxaRBik9r5glG4z2B38kVW5/cEXPZoyJiagf7Q9Ops9tsGcF/G0G9JwI1lPMDu529Zlf9+Inz3zsdZ+ceL/DYQS3x7rmHaN/rX+L42cCi4hIvRIbGUhiej7x+9IV2oqIiIjUEIW2ItJglNgd/LTjCIv+0v7A1WZhaMcwo/1BdAiu9aH9wbFKCmHVi2CxwqAHjH0RvWHqZmN2bV1jtYL1LzOXfcPMqUVERKpdr8hAPv39IHEJ6msrIiIiUlMU2opIvbc9OZuP4w6weMNBUnMr2h90bW60P7i0ez1sfwDgdMKOr+Dr6ZCZADZ36D7OmK0KdTOwFRGRBi+2rK/thv2ZlNod9aMXvIiIiEg9o9BWROql9LxiPt9wkI/XH2DLwWPbH7hxRc/mXBXTgg7hfiZWeI5S/4Rl/4Ddy433vs3g4ifAr7m5dYmISKMXHeqLr4cLOYWlbE/OoUtzf7NLEhEREWlwFNqKSL1xtP3Bx/EHWL79cKX2Bxd2COPq2Hra/uBYRTnw8zOw+hVjUS+rK/S/C85/ANx9zK5OREQEq9VCr5aB/LTzCHH70hXaioiIiNQAhbYiUuedrP1Bl+Z+jOnVgkt7NCeoPrY/OJGCDFjzXyOwbXsRjPg/aNLG7KpEREQqiY0sC20TMpg8oJXZ5YiIiIg0OAptRaROysgr5vONSXwcf4DNB7PK9wf7uHF5D6P9Qcem9bj9wbGyDlT0qQ1oCcOeBr9mED0cLBZzaxMRETmBmLK+tvFajExERESkRii0FZE6o9Tu4KedRvuD77dVtD9wsVq4sGMoV8dEMLh9PW9/cKz8dPjxaYibD5OXQmQ/Y3/vm8ytS0RE5DR6RARgs1o4lFXIwcwCmgdocUwRERGR6qTQVkRMtyM5h4/j9/PZ70mk5haV7+/czI8xMS24tHszmvi4m1hhNXPYYf3bsHwWFKQb+3YvrwhtRURE6jgvNxc6N/Nj04Es4val07yHFsoUERERqU4KbUXEFJn5RvuDRXGV2x808Xbj8p7NuapXCzo1ayDtD461fy189SAc2mC8D+kIl/wbWg0ytSwREZGq6tUykE0HsohPyOAyhbYiIiIi1UqhrYjUqn2pebzxyx4+jj9AUakDqGh/MCYmgiENqf3BX307A1a9aLx294ML/gm9bwabq7l1iYiInIXYqEAWrNpH3D71tRURERGpbgptRaRW/J6Ywes/7+HrP5JxGq1q6djUj6tjWnBZjwbW/uBkwjobv/a4DoY+Bj6h5tYjIiJyDmIjgwDYnpxNblEpPu76q4WIiIhIddGTlYjUGIfDyY87Uvjvz3tYuze9fP8F7UO4dVAbzmsdhMViMbHCGrb7RygtgvbDjffdxhrBbXhXc+sSERGpBuH+HjQP8ORgZgEbEjMZ2C7Y7JJEREREGgyFtiJS7YpK7SzZkMQbP+/hz5RcAFxtFi7t3pxbB7WmfbivyRXWsMxE+OafsO0L8AmHqDhw9wWLRYGtiIg0KLFRgRzcUEBcQrpCWxEREZFqpNBWRKpNdmEJ761J5M2VezmcXQSAj7sLE/q25IYBUTT19zS5whpWUgArX4Rf50BpIVis0OkyyvtBiIiINDCxkYEs2ZBEfIL62oqIiIhUJ4W2InLOkrMKmb9yL++tSSS3qBSAMD93bhjQigl9W+Ln0cAX2nI6YcdX8PVDxixbgMiBcMm/K/rYioiINEAxZX1tf0/MxO5wYrM24LZHIiIiIrVIoa2InLUdyTm8/vMePt94kBK7MZu0XagPtwxqzWU9muHuYjO5wlpy+A/4YILx2rcZDHsSOl9ptEMQERFpwNqH++Lj7kJuUSnbk7Pp3Mzf7JJEREREGgSFtiJSJU6nkzV70/nvT7v5cceR8v19WgVx++DWDIkOxdoYZtk4HGC1Gq/Du0CP68AnFM6/H9x9zK1NRESkltisFnq2DOCXP1OJT8hQaCsiIiJSTRTaisgZsTucfPNHMv/9aTcbD2QBxkTS4Z3DuXVQa3q2DDS5wlridMLmRfDj03D95xDQ0th/2X80s1ZERBqlmMhAfvkzlbh9GUzqF2V2OSIiIiINgkJbETmlwhI7i+IP8L9f9pCQlg+Au4uVMTEtuPn81rQK9ja5wlp0aBMs+zskrjber3wRRj5rvFZgKyIijVRsWV9bLUYmIiIiUn0U2orICaXnFfPO6gTeWr2P9LxiAAK8XJl0XiST+kcR7ONucoW1KD8dfnwK4uaD0wGuXnD+NOh3t9mViYiImK5HywCsFjiYWcChrAKa+nuaXZKIiIhIvafQVkQqSUzL53+/7uGjuP0UljgAaBHoyc0DW3FN7wi83BrZfzZ+XwjfzoCCdON95yvg4ifBv4W5dYmIiNQRPu4udGzqxx9J2cQnZDCqm0JbERERkXPVyNIXETmZTQcy+e/Pe1i2+RAOp7GvS3M/bhvUhhFdwnGxWc0tsCYVZEDKdjiyDVK2QexNENrBOJaxzwhsQzvBiP+DVoNMLVVERKQuio0M5I+kbOL2ZTCqWzOzyxERERGp9xTaijRiTqeTn3Ye4b8/7WH1nrTy/YOiQ7htUGv6t2mCpSH2ak3ZZsygTSkLaXOSKh8P71oR2g6cBn7NoOcksOk/mSIiIicSExXEW6sT1NdWREREpJoogRBphErsDr7YmMTrP+9he3IOADarhUu7N+OW81vTqZmfyRWeo5JCSN0JR7ZDylYjmO11PXS4xDiekwyr/1P5HL8WENrRCGtDO1fsd/OC2Btrr3YREZF6KDYyEICth7LJKyrF211/zRARERE5F3qaEmlEcgpL+GDtfuav3MuhrEIAvN1sjOvTkhsHtqJ5QD3uQZe6C5bPNNocpO82Fgw7VmjHitA2vCv0vaMspO0IIe3Bw7/WSxYREWkomgV40szfg6SsQjbuz6R/22CzSxIRERGp1xTaijQCKdmFzF+5j3fXJJBTWApAsI87NwyI4rq+kfh7uZpc4Wk47EZv2ZRtFX1nU7ZB1zFw/v3GGJsrbPui4hyPAKMP7dFgNrJ/xTHvYBjxr9r8BCIiIg1er8hAkjYdIi4hQ6GtiIiIyDlSaCvSgO1KyeH1n/ew+Pckiu3GzNPWId7cen5rLu/ZHA9Xm8kV/oXTCSX54OZtvM9NgXfHwJGdUFpw/PhDmype+0fA8H8Zs2ZDO4FPGDTEfrwiIiJ1VGxkIF+WhbYiIiIicm4U2oo0ME6nk7iEDP77026+35ZSvj82MpBbB7VmaMcwrNY6EGbmp8OhDUY7g5StZf1ntxstDK583RjjGWTMqLUXg4sHBEdXnj0b1qXielYrnHeHKR9FREREIDYqCIDfEzJwOJx143lDREREpJ46q9D25Zdf5plnniE5OZnu3bvz0ksv0adPn5OOnzt3Lq+++iqJiYkEBwczZswYZs+ejYeHx1lfU0SOt3F/Jk9/tY01e9MBY6LpRR3DuG1wa2Iig0yurkxRLiy+A3Z8BY7S44+n7qx4bXOBaxcZs2gDo8Bax2YGi4iISLkO4b54udnIKSplZ0oOHcLr+cKmIiIiIiaqcmj74YcfMm3aNF577TX69u3L3LlzGTZsGDt27CA0NPS48e+99x4PPfQQ8+fPp3///uzcuZPJkydjsViYM2fOWV1TRCpLTMvnmW938MXGJADcbFauimnOzee3pk2Ij8nVAaVF4OJuvHbzhrTdRmAb1AbCOkFIx4rZs0FtKp/bekitlysiIiJV52Kz0rNlACt3pRG3L0OhrYiIiMg5sDidTmdVTujbty+9e/fmP//5DwAOh4OIiAjuvvtuHnrooePG33XXXWzbto3ly5eX77v//vtZs2YNv/7661ld86+ys7Px9/cnKysLPz89HErjkZlfzEs/7OLt1fsosTuxWOCKns25/+L2NA/wNLc4pxP2r4W4+bB7OdyzAdzLAuR9K8EzAMI6m1mhiIg0APX5ObA+134yc77byYvL/+SKns15fmwPs8sRERERqXPO9BmwSjNti4uLiY+PZ/r06eX7rFYrQ4cOZfXq1Sc8p3///ixcuJC1a9fSp08f9uzZw1dffcXEiRPP+poijV1hiZ23Vu3j5R93kV1otBg4v10wD43oQOdm/iYXlw2bPoS4NyHlj4r9f34DXa4yXkcNMKc2ERERqVGxkYEAxCWkm1yJiIiISP1WpdA2NTUVu91OWFhYpf1hYWFs3779hOdMmDCB1NRUBg4ciNPppLS0lNtvv51//vOfZ33NoqIiioqKyt9nZ2dX5WOI1FsOh5PPNybxzDc7OJhZABj946Zf0pHB0SHmFpe5H35+BjZ/DCV5xj4XTyOojb0Rmvcytz4RERGpcT1bBmCxwP70AlKyCwn18zj9SSIiIiJynLNaiKwqVqxYwdNPP80rr7xC37592bVrF/feey9PPPEEM2bMOKtrzp49m8cff7yaKxWp21btSuXpZdvYctD4IUW4nwf3XxzNlb1aYKsTqzM7Yf3bxq/B7Y2gtvtY8Aw0uzARERGpJb4errQP82V7cg5xCRlc0rWp2SWJiIiI1EtVCm2Dg4Ox2WwcPny40v7Dhw8THh5+wnNmzJjBxIkTufnmmwHo2rUreXl53HrrrTz88MNndc3p06czbdq08vfZ2dlERERU5aOI1Bs7D+cw+6tt/LjjCAA+7i7cMaQNNw5ohaebzZyiUrYZ7Q8KM+HK1419AS3hoseheSxE9gdLXQiSRUREpLbFRgUaoe0+hbYiIiIiZ8talcFubm7ExMRUWlTM4XCwfPly+vXrd8Jz8vPzsVor38ZmM4Imp9N5Vtd0d3fHz8+v0ibS0BzOLuShTzYxfO7P/LjjCC5WC9f3i+SnB4cw5YK2tR/YlhbBpkUwfwS8ch6s/S9sXgRZByrGDLjX6FerwFZERKTRio0MAiA+McPkSkRERETqryq3R5g2bRrXX389sbGx9OnTh7lz55KXl8cNN9wAwKRJk2jevDmzZ88GYPTo0cyZM4eePXuWt0eYMWMGo0ePLg9vT3dNkcYkt6iU13/azRu/7KWgxA7AiC7hPDisPa1DfGq/oIx9EDcffl8I+WnGPosN2o8wWiD4Nqv9mkRERKTOiilbjOyPg1kUFNvN+2aQiIiISD1W5dB27NixHDlyhEcffZTk5GR69OjB119/Xb6QWGJiYqWZtY888ggWi4VHHnmEgwcPEhISwujRo3nqqafO+JoijUGJ3cEH6/bzwvc7Sc0tBqBXywAeHtmRmLIZK6bYtRxWvmC89m0GMZOh10TwU1grIiIix2sR6EmYnzuHs4vYeCCT81o3MbskERERkXrH4nQ6nWYXca6ys7Px9/cnKytLrRKk3nE6nXy39TD/+no7e47kARDVxIt/DO/A8C7hWGqz1UDWAWMxseBo6DrG2FeUA5/eBj2vhXbDwFbj6xeKiIicsfr8HFifaz+dKe+uZ+nmQzw4rD1TLmhrdjkiIiIidcaZPgMqfREx0e+JGcz+ajtr96UDEOTtxr0XtmNC35a42qrUcvrsORyw+wejBcLOZeB0QFhX6HKV0ZvW3RfGv1c7tYiIiEiDEBMZyNLNh4gre8YRERERkapRaCtigoS0PP79zQ6WbjoEgLuLlZvPb8Vtg9vg5+FaO0XkHoHf34H4BZCZULE/6nyIvQGcTi0oJiIiImclNsroaxufkIHD4cRq1TOFiIiISFUotBWpRRl5xbz4w58s/C2BErsTiwWu6tWC+y+Opqm/Z+0W88W9sGOp8drDH7pPMMLakPa1W4eIiIg0OB2b+uHpaiO7sJRdR3KJDvM1uyQRERGRekWhrUgtKCyxs2DVPl7+cRc5haUADIoO4aHhHejUrBZ62BVkwIb3oeMoCGhp7Iu5HnIPQ+yN0PkKcPOq+TpERESkUXC1Weke4c9ve9KJ25eh0FZERESkihTaitQgh8PJ4g0Hee7bnRzMLACMmSf/vKQD57cLqdmbO51wMN7oVbvlEygthPw0uHCGcbzdxRA9rGZrEBERkUYrNjKI3/akE5+QwYS+Lc0uR0RERKReUWgrUkNW7krl6a+28UdSNgBN/T144OL2XN6zObaa7OuWuR92fWeEtcmbK/aHdanc+kD9akVERKQGxZT3tdViZCIiIiJVpdBWpJrtSM5h9rJtrNhxBABfdxfuuKANNw5ohYer7dwubi+F7IOQmVixOUorZs8CvHcNpGw1Xrt4QOcrjRYILWIV1IqIiEit6dUyEIsF9qXlcySniBBfd7NLEhEREak3FNqKVJPkrELmfLeDj+MP4HCCi9XCdedFcvff2tLE5wz/knI0lM1PheYxFfsXT4G9PxvHnPbK57j7wd8eqQhkm7QFixV6TIDu48ErqHo+oIiIiEgV+Hu6Eh3qy47DOcQnZDC8S7jZJYmIiIjUGwptRc5RblEp//1pN2/8sofCEgcAl3QN5+/DOhAV7H3yE7cvhUObKs+aPRrKuvvD9MSKsXlHIKvsvc3NWEzs2M1hB1vZv85j36mhTyoiIiJSNTFRgWWhbbpCWxEREZEqUGgrcpZK7A4+WJvI3O//JC2vGIA+Lf14dLA/XbyyYP9i2HxMIFuQAXeuqrhA/AL489vjL2xzA+9gKM4HNy9j35CHYNADRkDrHQpWa41/PhEREZFzFRsZyHtrEolLyDC7FBEREZF6RaGtSFXYS3FmH2Ddho38+Fsc1txk0uyX0zrYm78P78CwjXdjWXSCIPaogkzwDDBet7sY/JqVzZaNrJg1e6JQtnmvmvpEIiIiIjUmJtJYjGzLwSwKS+zn3t9fREREpJFQaCtyJhx2+PV5HD89g9VeSB+gD4ArRAy7m6sGdMHVZoV9EWBzh4CIv7QwKAtlXb0qrtnnFpM+jIiIiEjtaBnkRbCPO6m5RWw6kEWfVuq1LyIiInImFNqKnE5GAo5Pb8W6/zesQJHThSRCIKAlzVu1Z1xMM7CVzYy9+Em45Fm1LxAREREBLBYLsZGBfP1HMvEJGQptRURERM6QQluR0ziyaz0h+38j1+nBYyWTsfUYx7RhHQn39zh+sJvX8ftEREREGrHYqKOhbTrQxuxyREREROoFhbYiJ+J0gsXC11sO8eBSL64puZbf3Ppx/6SL+VuHMLOrExEREak3jva1jU/IwOl0YrFYTK5IREREpO5TaCvyV/tW4vj6IeY0mcV/4vMB2BB5HW+M70mzAE+TixMRERGpXzo388fdxUpGfgm7j+TRNtTH7JJERERE6jw13hQ5qrQYvn8c54KRWJM30XLj8wDcNrg1H9x6ngJbERERkbPg5mKle0QAQFmLBBERERE5HYW2IgCpf8K8i+DXOVhw8lHpYF5wvYk3J/dm+oiOuNr0r4qIiIjI2Yota5EQty/D5EpERERE6ge1R5DGzemE+DdxfvMwlpJ8Mp3ePFRyC6kRw1ikdggiIiIi1eLYvrYiIiIicnoKbaVxi5sPS6dhAX61d+b+kju4ckhvXrooWrNrRURERKrJ0dB2T2oeablFNPFxN7kiERERkbpNoa00al/ZhtDaGcmi0oEsdr+MZ6/ryQXtQ80uS0RERKRBCfByo22oD7tSclmfmMlFncLMLklERESkTtNUQmlcSgpgzX8pLC7hkcWbufOj7YwsepLNERNZeu9gBbYiIiIiNaS8r60WIxMRERE5Lc20lcYjeQt8cjMc2ca7K7axMOMiAG6/IJr7hkbjonYIIiIiIjUmJjKQD9btJ16LkYmIiIiclkJbafgcDvjtFVj+ONiLSXX683NWKEHebjw/tgeDo0PMrlBERESkwYuNCgJg08EsikrtuLvYTK5IREREpO5SaCsNW3YSLL4D9qwA4Dt7DP8ouYW2raL4alxPwv09zK1PREREpJGIauJFE2830vKK2XIwi5jIILNLEhEREamz9H1wabh2fQ+v9oc9KyjEjX+W3MStpdO49m+9eO/mvgpsRURERGqRxWIh5mhfW7VIEBERETklhbbScHmH4ijMYYuzNZcUPc03HiN464a+3H9xe/WvFRERkXI///wzo0ePplmzZlgsFhYvXnzac1asWEGvXr1wd3enbdu2LFiwoMbrbAjKQ9sEhbYiIiIip6LkShqW3CMAFJbYmb4axhb+kyuKZhLaqgtf3Xs+g9S/VkRERP4iLy+P7t278/LLL5/R+L179zJy5EguuOACNmzYwNSpU7n55pv55ptvarjS+i82yght1ydk4HQ6Ta5GREREpO5ST1tpGOyl8Mtz8Ovz7L/8U275vpTtyTlYLB24+8J23HthO2xWi9lVioiISB00YsQIRowYccbjX3vtNVq1asVzzz0HQMeOHfn11195/vnnGTZsWE2V2SB0ae6Pm4uVtLxi9qXl0yrY2+ySREREROokzbSV+i99Lyy4BFY8DaUFLFv0X7Yn5xDs48Y7N/Zl2kXRCmxFRESk2qxevZqhQ4dW2jds2DBWr15tUkX1h7uLjW7N/QGI25ducjUiIiIidZdCW6m/nE7Y8D68dj7sX0Oh1Zt7i+/k6aJr6Ne6CV/dcz4D2wWbXaWIiIg0MMnJyYSFhVXaFxYWRnZ2NgUFBSc9r6ioiOzs7EpbYxRT1iIhXn1tRURERE5Koa3UTwUZ8PENsPh2KM5hi60TQwue5nPnQO69sB0Lb+5LqJ+H2VWKiIiIlJs9ezb+/v7lW0REhNklmSI2MgjQYmQiIiIip6LQVuqnLZ/CH5/hsLjwvGMcl+b9k0LvFiy8qS/3qR2CiIiI1KDw8HAOHz5cad/hw4fx8/PD09PzpOdNnz6drKys8m3//v01XWqdFBNpzLTdlZJLZn6xydWIiIiI1E1aiEzqpYJuk9iwagWzk3uzydmG/m2aMHdcD0J9NbtWREREala/fv346quvKu377rvv6Nev3ynPc3d3x93dvSZLqxeCvN1oHeLNniN5xCdkcGHHsNOfJCIiItLIaKat1A9HdsBH10NRLn8ezuGyV1Yx/tA4ttCG+4ZG885NfRXYioiIyFnJzc1lw4YNbNiwAYC9e/eyYcMGEhMTAWOG7KRJk8rH33777ezZs4e///3vbN++nVdeeYWPPvqI++67z4zy66WYlsZsW7VIEBERETkxzbSVus3phHX/g28fgdJCdhb4ctmuURSU2AnxdeeFcT3o30aLjYmIiMjZi4uL44ILLih/P23aNACuv/56FixYwKFDh8oDXIBWrVqxdOlS7rvvPl544QVatGjB//73P4YNG1brtddXsVGBLIo/QPw+hbYiIiIiJ6LQVuqu3BRYchf8+Q0A2737MHHbeRRgZ2DbYJ4f24MQX33FUERERM7NkCFDcDqdJz2+YMGCE57z+++/12BVDVtM2WJkGw9kUlzqwM1FXwAUEREROZZCW6mbdn4DS6ZA3hEcNndecZnEc2mDsVis3D80mjsvaKvFxkRERETqqTYh3gR6uZKRX8IfSVn0LGuXICIiIiIGhbZS98TNhy+NnnCZvu2YmHkrm/OaE+rrzovje3Je6yYmFygiIiIi58JisRATGcj321KIT8hQaCsiIiLyF/oektQ97S/B6RXMiqCr6XvkYTaXNOf8dsF8de/5CmxFREREGoijLRLi1NdWRERE5DiaaSvmsZdCxl44sgMKs6DntQBsz/PiH9YX2JhkwWqBBy9uzx2D22BVOwQRERGRBiM2yphdG5eQgdPpxGLRs56IiIjIUQptpfYk/Q7bvoTUHXBkJ6TvAUdJ+WGnmzcf5ffi0SV/UFRqIczPnRfH9aSvZteKiIiINDhdm/vjarOQmltEYno+kU28zS5JREREpM5QaCvVw+mEvFQjkE3daYSyqTvgb49A8xhjTPJm+OXZyue5ekFwO0qD2vHWqkSe2O0KwKDoEJ6/pjtNfNxr+YOIiIiISG3wcLXRpbk/vydmErcvQ6GtiIiIyDEU2krVOOzG5uJmvN/7C/zwhBHUFpygH1nHSytC2+YxEDMZgttDSLTxq19z0vJLGPf6b/yZkovNauH+i6O5fZDaIYiIiIg0dLGRgUZom5DBVTEtzC5HREREpM5QaCsnVloEabuMfrOpf1a0NEj7E0bOKe8/C8D+NWUvLBDQEoKjIaS98Wur8yvGhXWG0S9Uuk1BsZ2b3orjz5RcwvzceWl8L/q0Cqr5zyciIiIipouJDOKNX/YSn5BudikiIiIidYpC28auINMIZb2bQFBrY1/CKlgwEpyOE5+TurPidXhXuGqeEdA2aQtuXmd8a7vDyb0f/M6G/Zn4e7ry7s3n0TbU5+w/i4iIiIjUKzGRxmJkOw/nklVQgr+nq8kViYiIiNQNCm0bi+J8Y0Zs6s6ynrNlvWdzDxvHz38ALpxhvA5oaQS27v4VbQxCoo1gNjgaAqMqrusZAF3HVLkcp9PJE19u5duth3FzsfK/62MV2IqIiIg0MiG+7kQ18WJfWj7rEzO4oH2o2SWJiIiI1AkKbRuL3GR45/ITH/NtBrZjZjX4NYf7d4JPKFhqpq/svF/3smDVPgDmXNOd3lFqiSAiIiLSGMVEBrEvLZ/4fQptRURERI5SaNuQOZ0VoWtAJIR2NmbJHjt7tkk78PCrfJ7FAr5hNVbW0k2HeHLpNgAevqQjo7o1q7F7iYiIiEjdFhsVyCfrDxCnvrYiIiIi5RTaNlQlhfDWKIiZDD2uBasN7lxldlWs25fOfR9tAOD6fpHcfH4rcwsSEREREVPFlvW13bA/kxK7A1eb1eSKRERERMynJ6KGasVsOLAOls+ComyzqwFg95Fcbnk7juJSBxd1CuPR0Z2x1FD7BRERERGpH9qE+ODn4UJhiYOtSXXjuVVERETEbAptG6KD8bDqReP1qOfBw9/ceoAjOUVMfnMtmfkl9IgI4MVxPbFZFdiKiIiINHZWq4WYstm2cQkZJlcjIiIiUjcotG1oSotg8RRwOqDLGOgw0uyKyC8u5aa31rE/vYDIJl7Muz4WTzeb2WWJiIiISB0RW7Yobbz62oqIiIgACm0bnp+fgSPbwDsERvzb7GootTu4+73f2XQgi0AvVxbc0IcmPu5mlyUiIiIidcjRmbbxCRk4nU6TqxERERExn0LbhuTQRvhljvH6kmfBu4mp5TidTmZ+8QfLt6fg7mLlf9f3plWwt6k1iYiIiEjd071FAC5WC4eziziQUWB2OSIiIiKmU2jbkCSsMtoidLwUOl9udjX89+c9LPwtEYsFXhjXo3wGhYiIiIjIsTzdbHRubqzDEK++tiIiIiIKbRuU8+6AG7+Gkc+ZXQlLNhzkX8u2AzBjZCeGd2lqckUiIiIiUpfFli9Gpr62IiIiIgptG5qW54FPqKkl/LYnjQcXbQLgpoGtuHFgK1PrEREREZG6rzy03aeZtiIiIiIKbes7eyl8OQ3SdptdCQB/Hs7h1rfjKLY7GNElnIcv6Wh2SSIiIiJyrJRtZldwQkdbae04nEN2YYnJ1YiIiIiY66xC25dffpmoqCg8PDzo27cva9euPenYIUOGYLFYjttGjhxZPmby5MnHHR8+fPjZlNb4rHoR4ubBgpFQWmRqKSnZhUx+cx3ZhaXERAby/NgeWK0WU2sSERERkTIOOyyeAq/0g32/ml3NcUL9PIgI8sTphN8TM80uR0RERMRUVQ5tP/zwQ6ZNm8Zjjz3G+vXr6d69O8OGDSMlJeWE4z/99FMOHTpUvm3ZsgWbzcbVV19dadzw4cMrjXv//ffP7hM1Jkd2wIrZxusLHwUXd9NKySsq5YYF6ziYWUCrYG/emBSLh6vNtHpERERE5C+sNrAAOOHT26Ag0+SCjhcbGQRA/D71tRUREZHGrcqh7Zw5c7jlllu44YYb6NSpE6+99hpeXl7Mnz//hOODgoIIDw8v37777ju8vLyOC23d3d0rjQsMDDy7T9RYOOywZArYi6HtRdB9vGmllNodTHlvPX8kZdPE240FN/QmyNvNtHpERERE5CSG/x8EtoLsA7D0frOrOc7RFgnxieprKyIiIo1blULb4uJi4uPjGTp0aMUFrFaGDh3K6tWrz+ga8+bNY9y4cXh7e1fav2LFCkJDQ2nfvj133HEHaWlpVSmt8fntFTiwDtz9YPQLYDGnDYHT6eSRxVtYseMIHq5W5k3uTWQT79OfKCIiIiK1z90HrvofWGyw5WPY9JHZFVUSG2WEtr8nZlJqd5hcjYiIiIh5qhTapqamYrfbCQsLq7Q/LCyM5OTk056/du1atmzZws0331xp//Dhw3n77bdZvnw5//d//8dPP/3EiBEjsNvtJ7xOUVER2dnZlbZGJXUX/PCk8friJ8G/uWmlvPzjLj5Ytx+rBV4a34seEQGm1SIiIiIiZ6BFLAx5yHi99H7ISDC3nmNEh/ri6+FCfrGd7ck5ZpcjIiIiYpqzWojsbM2bN4+uXbvSp0+fSvvHjRvHpZdeSteuXbn88sv58ssvWbduHStWrDjhdWbPno2/v3/5FhERUQvV1yGrX4LSQmg9BHpNMq2Mz34/wLPf7gRg5qWduahT2GnOEBEREZE6YeA0iOgLRdnw2W3gdJpdEQBWq4VeLY3Ztu+uqTthsoiIiEhtq1JoGxwcjM1m4/Dhw5X2Hz58mPDw8FOem5eXxwcffMBNN9102vu0bt2a4OBgdu3adcLj06dPJysrq3zbv3//mX+IhuCSZ+FvM2D0i6a1RVi1K5W/f7wJgNsGtWZSvyhT6hARERGRs2BzgStfh6DWMPA+054pT+TGga2wWOD9tftZ+JuCWxEREWmcqhTaurm5ERMTw/Lly8v3ORwOli9fTr9+/U557qJFiygqKuK666477X0OHDhAWloaTZs2PeFxd3d3/Pz8Km2Nis0VBj0AgZGm3H5Hcg63vRNPid3JqG5N+cfwDqbUISIiIiLnIDAK7oqD6GFmV1LJ4OgQHri4PQAzP/+D3/ZorQsRERFpfKrcHmHatGm88cYbvPXWW2zbto077riDvLw8brjhBgAmTZrE9OnTjztv3rx5XH755TRp0qTS/tzcXB588EF+++039u3bx/Lly7nsssto27Ytw4bVrQdIUzkcsP4dKC02tYzkrEImv7mWnKJS+kQF8ezV3bFa687MDBERERGpAqut4nXWASjKNa+WY9w5pA2juzej1OHkznfXsz893+ySRERERGpVlUPbsWPH8uyzz/Loo4/So0cPNmzYwNdff12+OFliYiKHDh2qdM6OHTv49ddfT9gawWazsWnTJi699FKio6O56aabiImJ4ZdffsHd3f0sP1YDFP8mfH4XLLjECHBNkFNYwg0L1nEoq5A2Id68PikGD1fb6U8UERERkbptxzJ4tT98c/zkCzNYLBb+fVU3ujT3Iz2vmFvejiOvqNTsskRERERqjcXprCOrDpyD7Oxs/P39ycrKapitEjIT4ZV+UJwLw/8F591R6yWU2B3cuGAdv/yZSrCPO5/d2Z+IIK9ar0NERETkWPX5ObBO1b73Z3jrUsAJYxdCx9Hm1lMmKbOAS//zK6m5xYzoEs7LE3rpW14iIiJSr53pM2CVZ9pKLXM64fN7jMA24jzoc5sJJTiZ/ulmfvkzFU9XG/MnxyqwFREREWlIWg2CAfcYrz+/B7IPnXp8LWkW4Mlr18XgarOwbEsyL/1w4oWKRURERBoahbZ13e/vwJ4fwcUDLnsZrLX/R/bC8j/5OP4AVgu8fG1PurUIqPUaRERERKSGXfAIhHeDgnRYcqdpLbn+KjYqiKcu7wrA89/v5OstySZXJCIiIlLzFNrWZdlJ8M3DxusLHobgtrVewkdx+5n7/Z8APHF5F/7WIazWaxARERGRWuDiBlf9z5gssPsHWPtfsysqd03vCCb3jwJg2kcb2J6cbW5BIiIiIjVMoW1d9vVDUJQNzWOh35Rav/3PO4/wz083A8YKvtf2jaz1GkRERESkFoW0h2FPGa+/ewxStplbzzEeGdmRAW2bkF9s5+a34kjPKza7JBEREZEao9C2LrvwMWjzt7K2CLZavfXWpGzufHc9pQ4nl/VoxoPD2tfq/UVERETEJLE3QfQIiJkMgVFmV1POxWblP+N7EdnEiwMZBdz5bjwl9rrRwkFERESkuim0rcuatIGJn0Foh1q9bVJmATcsWEtuUSnntQ7i32O6YbFolV4RERGRRsFigbEL4ZJ/g6un2dVUEujtxhuTYvF2s/HbnnRmfbHV7JJEREREaoRC27rG6YTD5j18ZhWUcMOb6zicXUS7UB/+OzEWd5faneUrIiIiIiazuVS8dtghfY95tfxFdJgvc8f1xGKBd35L4L01iWaXJCIiIlLtFNrWNVs+gVf7VyxAVouKSx3csTCeHYdzCPV1Z8GNffD3dK31OkRERESkjshNgbdGw/wRkJdmdjXlLuoUxgMXG+27Hl2yhTV76k5tIiIiItVBoW1dkpsCXz0IOMHdt1Zv7XQ6eeiTTazanYa3m435k3vTPKBufR1ORERERGqZmw/kpUJuMnxxj/GtsDriziFtGNWtKaUOJ3e8u54DGflmlyQiIiJSbRTa1iVfPQAF6RDWBQZOq9Vbz/luJ5/+fhCb1cIr18XQpbl/rd5fREREROogNy+46n9gdYXtX8L6t82uqJzFYuGZMd3p3MyP9Lxibnk7nvziUrPLEhEREakWCm3rij8Ww9YlYLHBZS+Di1ut3fr9tYm89MMuAJ6+oguDo0Nq7d4iIiIiUsc17QYXzjBef/0QpO4yt55jeLrZeH1SLME+bmw7lM0DizbirEOzgUVERETOlkLbuiAvzZhlCzDwPmjWo9Zu/eOOFB5ZvAWAe/7WlrG9W9bavUVERESknuh3N0SdDyX58OktYC8xu6JyzQM8ee26GFxtFr7anFw+GUFERESkPlNoWxd8/Q/IOwIhHWHw32vttlsOZjHl3fXYHU6u7NWc+y6KrrV7i4iIiEg9YrXCFa+BRwAkrYef/s/siiqJjQriicu6AEbbr2/+SDa5IhEREZFzo9C2LmhzIXg1gctfBhf3Wrnl/vR8bliwjvxiOwPbBvOvK7thsVhq5d4iIiIiUg/5t4DRcyG0E3S+wuxqjjOuT0sm948CYNqHG9ienG1uQSIiIiLnQKFtXdBjPEzdAs1jauV2Wfkl3LBgHUdyiugQ7ssr1/XCzUX/KIiIiIjIaXS+Am77GcI6m13JCT08siP92zQhr9jOLW/HkZ5XbHZJIiIiImdFSZ2ZSgoqXrt51coti0rt3PpOHLtScgn38+DNG3rj5+FaK/cWERERkQbAdsyzY/oe8+o4AVeblZcn9KJlkBf70wuY8u56SuwOs8sSERERqTKFtmb58zt4oQfsWFZrt3Q4nDywaBNr9qbj4+7Cmzf0pqm/Z63dX0REREQakF/mwH96w+aPza6kkkBvN96YFIu3m43Ve9J48sutZpckIiIiUmUKbc1QmAWf3wO5ybD3l1q77b+/2cEXG5NwsVp49bpedGzqV2v3FhEREZEGprQQHKXw5TTITDS7mkrah/vy/NgeALy1OoH319at+kREREROR6GtGb59BHKSIKg1/O2RWrnlO78l8NpPuwH411XdOL9dSK3cV0REREQaqEF/h+axUJQFn90ODrvZFVVycedwHrg4GoBHl2xh3b50kysSEREROXMKbWvb7h9g/dvG60v/Uyu9bL/fepjHlmwB4L6h0YyJaVHj9xQRERGRBs7mAle9AW4+kLASVs41u6LjTLmgLSO7NaXE7uT2d+I5mFlw+pNERERE6gCFtrWpKMdoiwDQ51aIGlDjt9x0IJO73/8dhxOuiW3BPRe2rfF7ioiIiEgjEdQaRvyf8frHp+HgenPr+QuLxcIzY7rRqakfaXnF3PJWHPnFpWaXJSIiInJaCm1r03ePQdZ+CIiECx+rlVs+8eVWCkrsDIoO4akrumKxWGrlviIiIiLSSPS4FjpeavS3/fQWKM43u6JKvNxceOP6WJp4u7H1UDYPLtqE0+k0uywRERGRU1JoW1scDijOM15f+hK4+9T4LQuK7WzYnwnAk5d1wdWmP24RERERqWYWC4x+AQJbGd8mc/U0u6LjNA/w5LWJMbjaLCzdfIiXf9xldkkiIiIip6QUr7ZYrXDlf+GOVdB6cK3ccuOBTErsTsL83IkIqnsPzyIiIiLSQHgFwZS10Pc2I8Stg3pHBTHrsi4APPvtTr79I9nkikREREROTqFtbQvrXGu3iitbITc2KkhtEURERESkZrm4VbwuyoG8VPNqOYnxfVpyfb9IAO77cAM7knNMrkhERETkxBTa1rSE1fD+BMg+VOu3XrcvA4DekYG1fm8RERERaaSSNsBr58Nnt0Ed7B37yKhO9GvdhLxiO7e8HUdGXrHZJYmIiIgcR6FtTSopgCVTYMdS+OXZWr213eFkfYIR2sZGBdXqvUVERESkEXPxgJxDsOt7WPu62dUcx9Vm5ZVrexER5Eliej5T3ltPid1hdlkiIiIilSi0rUk/PgXpu8G3KfxtRq3eekdyDjlFpfi4u9Ah3LdW7y0iIiIijVhoB7joCeP1tzMgZZu59ZxAoLcb/5vUG283G6t2p/HU0rpXo4iIiDRuCm1ryoE4WP2y8XrUXPAMqNXbxyUY/Wx7tgzAxaY/ZhERERGpRX1ugbYXgb0IPrkZSovMrug47cN9eX5sDwAWrNrHh+sSzS1IRERE5BhK82pCSSEsvhOcDug2FtoPr/USyvvZqjWCiIiIiNQ2iwUuexm8guHwFlg+y+yKTujizuFMuygagEcWbylfyFdERETEbApta8JP/wepO8A7FIb/q9Zv73Q6WbfXeOBUaCsiIiIipvANM4JbgNX/gT0rTC3nZO7+W1tGdm1Kid3J7QvjOZhZYHZJIiIiIgptq11JIWz73Hg9ag541X5oeiCjgOTsQlysFnpEBNT6/UVEREREAOMbZ7E3QruLIbST2dWckMVi4Zmru9GpqR+pucXc+nYcBcV2s8sSERGRRk6hbXVz9YDbfobLXoGOo00p4Wg/2y7N/fF0s5lSg4iIiIgIAMP/DyZ8BD6hZldyUl5uLrw+KYYm3m78kZTNgx9vxOl0ml2WiIiINGIKbWuCmzf0vNa021f0sw00rQYREREREQBc3Iwet0dl1s0Fv1oEevHqdTG4WC18uekQr6zYbXZJIiIi0ogptK0uyZthzevgcJhdSfkCCrHqZysiIiIidUVJAXx2O7x8HqTVzUC0T6sgZl3WBYBnv93B91sPm1yRiIiINFYKbauDvQQW3wHLHoSfan/hsWNl5hez83AuALGRmmkrIiIicqZefvlloqKi8PDwoG/fvqxdu/aU4+fOnUv79u3x9PQkIiKC++67j8LCwlqqth6yuUHmfijJg09vNZ6h66AJfVsy8bxInE6494Pf2Xk4x+ySREREpBFSaFsdVs41Ztp6BkLvm00tJT7BaI3QOsSbJj7uptYiIiIiUl98+OGHTJs2jccee4z169fTvXt3hg0bRkpKygnHv/feezz00EM89thjbNu2jXnz5vHhhx/yz3/+s5Yrr0esNrjiNXD3h4Nx8PMzZld0Uo+O7sR5rYPIK7Zzy9txZOYXm12SiIiINDIKbc9Vyjb46d/G6xH/Nn2BhfJ+tpFqjSAiIiJypubMmcMtt9zCDTfcQKdOnXjttdfw8vJi/vz5Jxy/atUqBgwYwIQJE4iKiuLiiy9m/Pjxp52d2+gFRMCoOcbrn5+BxDXm1nMSrjYrr1wbQ4tATxLS8rnrvd8ptZvfBk1EREQaD4W258JeCovvBHsxRI+ArlebXdEx/WzVGkFERETkTBQXFxMfH8/QoUPL91mtVoYOHcrq1atPeE7//v2Jj48vD2n37NnDV199xSWXXHLS+xQVFZGdnV1pa5S6joFuY8HpgE9vgcK6+fsQ5O3G/66PxcvNxq+7Unnqq21mlyQiIiKNiELbc7H6P5C0Hjz8YdTzlVfFNUFhiZ1NB7IA6K1FyERERETOSGpqKna7nbCwsEr7w8LCSE5OPuE5EyZMYNasWQwcOBBXV1fatGnDkCFDTtkeYfbs2fj7+5dvERER1fo56pVLnoGAlpCZAMv+YXY1J9Uh3I851/QA4M2V+/ho3X5zCxIREZFGQ6Ht2SrIqOjDNWw2+DU1tx5g88Esiu0OQnzdiWziZXY5IiIiIg3WihUrePrpp3nllVdYv349n376KUuXLuWJJ5446TnTp08nKyurfNu/vxEHgB7+cOUb4NsUulxpdjWnNLxLOPcNjQbg4cWbiU9IN7kiERERaQxczC6g3vIMhMlLYdOH0GOC2dUAsHav8QDZOyoQi8mzfkVERETqi+DgYGw2G4cPH660//Dhw4SHh5/wnBkzZjBx4kRuvtlYhLZr167k5eVx66238vDDD2O1Hj83wt3dHXd3LRRbruV5cM8GcPUwu5LTuvtvbdlxOJuvNidz2zvr+fyuATQL8DS7LBEREWnANNP2XDTrAcNnm94W4ajyfrZahExERETkjLm5uRETE8Py5cvL9zkcDpYvX06/fv1OeE5+fv5xwazNZgPA6XTWXLENzbGBbfYhcNjNq+UUrFYLz17dnY5N/UjNLeLWd+IoKK6btYqIiEjDoNC2gXA4nMQlZADqZysiIiJSVdOmTeONN97grbfeYtu2bdxxxx3k5eVxww03ADBp0iSmT59ePn706NG8+uqrfPDBB+zdu5fvvvuOGTNmMHr06PLwVqrgj8/g5b6w6iWzKzkpLzcX3pgUQ5C3G1sOZvP3TzYpoBcREZEao/YIDcTOlBxyCkvxcrPRsamv2eWIiIiI1Ctjx47lyJEjPProoyQnJ9OjRw++/vrr8sXJEhMTK82sfeSRR7BYLDzyyCMcPHiQkJAQRo8ezVNPPWXWR6jfinKgKAt+eBJaDzG+0VYHtQj04tVre3Ht/9bwxcYkOoT7MuWCtmaXJSIiIg2QxdkAfjycnZ2Nv78/WVlZ+Pn5mV2OKd75LYEZi7cwsG0wC2/ua3Y5IiIiIrWiPj8H1ufaq53TCR9eB9u/hOBouPUncKu7C+u+uyaBhz/bAsCkfpE8PLIj7i6aYS0iIiKnd6bPgGqP0ECU97ONCjS5EhERERGRKrJY4NKXwCccUnfCdzPMruiUru0bydSh7QB4e3UCY15dzf70fJOrEhERkYZEoW0DEbdP/WxFREREpB7zCoIrXjVer/sfvHwe7FlRcbykEOwlppR2IlOHRvPmDb0J8HJl88EsRr74C9/+kWx2WSIiItJAKLRtAA5mFnAwswCb1UKPiACzyxEREREROTtt/gaD/2G8PrINXI9pkbDxPXiqKbzSDxbdAD/9G7Z+Dql/gr3UlHIvaB/K0nvOp2fLALILS7n1nXieWrqVErvDlHpERESk4dBCZA3A0dYInZv54e2uP1IRERERqccu+Cf0mgQp2yCsc8X+1F3gKIGUrcb2xzHn2Nzghq+hRYzxPusAlBZBYBRYa7bXbPMATz68tR///no7//t1L2/8spf4hAz+M6EXzQI8a/TeIiIi0nAp4WsA1BpBRERERBoU/xbGdqyLn4S+t8GR7Uage2SHMRv3yA4oyYfAyIqxa/4Lq14EFw8IbgchHYwttKPxa2ArsFbflw7dXKw8MqoTsVFBPPjxRtYnZjLyxV94fmwPhrQPrbb7iIiISOOh0LYBWFc207a3FiETERERkYbKajWC2cBIiB5Wsd/hgKz94B1csc9eDC6eUFoAyZuN7Vj3/VERCiesgoJMCO0AAVHnFOYO7xJOp6Z+3PlePFsOZnPDgnVMGdKWqUPb4WJTZzoRERE5cwpt67ms/BJ2HM4BICZSM21FREREpJE5GuYea8T/wbCnIfP/27vv+Crrs4/jn3NO9t6TLEbYMyGRoTiwOOpo66hVoWhtK6goHUqtWtsqrT611FFRH1efVkWtGzdaFAEhYcsII4tABtl7nHOeP+7khEisBE5yzgnf9+t1v5LzO7/7znXfRvLj4sr1K4Ty3UZFbtfH+jIISeyeu+4x2P2O8bmXP0SnQ/RoI4kbPRqGzwbL8f+1KTkygFd/Pp0/rtzJP9cX8ein+8gprOLhH04mJsTPCTcsIiIipwIlbT3cpqJq7HZIiwokOtjX1eGIiIiIiLgHswUihhrHqAu6x+12MJm6X0cMhdjxcCTPqMw9vNU4wGiv8JtD3XM3/i+0NXYndUOTel6rk5+3hT9eOp6stEiW/Hsb6w9UccHDa3j4qklMHxZ1zHwRERGRr1PS1sN1tUbITFFrBBERERGRb/X1JOt3/mB8tHZAdUHPqly7vedGZhufgfKjdkALT4Xv/hWGnd3rl7p4YgJjE0JY+K9N7C6t55r//ZLbZqez8KzhmM3HJntFREREuihp6+G0CZmIiIiIiBNYvCBquHGMvqj3ORMuh8Mjjc3Qjuw1krz/9z2YfK2xUZp/2DGnDIsO4vUFM7j7zR28knuQv3yUx8bCav56xUQig/SbciIiItI7dcP3YK0dVrYcrAEgU5uQiYiIiIj0r5m3weXPwoJ1cHsBZP3MGN/8f/Dpfd94mr+PhQcvn8gDl03Az9vMZ3kVXPjwGnI6f2tORERE5OuUtPVgO0pqaeuwERnoQ1pUoKvDERERERE5dfgGwQUPwPz3IHkanLnkW0+5IjOJNxbOYGh0IKV1LVz55Hqe/Gw/drt9AAIWERERT6KkrQfb2NkaITM1HFMvGyCIiIiIiEg/S5kO170PAZ3tyux2eOsW2PlWr9NHxYXw1k0zuXhiAlabnfvf3c0N/8iltql9AIMWERERd3dCSdvHHnuM1NRU/Pz8yM7OZsOGDd8498wzz8RkMh1zXHjhhY45drudu+++m/j4ePz9/Zk9ezZ79+49kdBOKV2/TqV+tiIiIiIibmL3Stj0PLx8Lbw8DxoqjpkS5OvF3344ifu+Nw4fi5mPd5Vx4SOfs7W4ZuDjFREREbfU56TtihUrWLx4Mffccw+bNm1i4sSJzJkzh/Ly8l7nv/baaxw+fNhx7NixA4vFwuWXX+6Y88ADD/Dwww+zfPlyvvzySwIDA5kzZw4tLS0nfmeDnM1mJ6ewq9JWSVsREREREbcw4lw4/RdgssDON+CxLNj+qlGBexSTycTV2Sm8tmA6yREBHKxu5rLla3l+bYHaJYiIiEjfk7YPPfQQN9xwA/Pnz2fMmDEsX76cgIAAnnnmmV7nR0REEBcX5zg++ugjAgICHElbu93OsmXL+O1vf8sll1zChAkT+Mc//sGhQ4d44403TurmBrP9FQ3UNLXj721hbEKIq8MREREREREAL18452644ROIHQfNVfDv6+Glq6G+9Jjp4xJDefvmmcwZG0u71c49b33FTS9upr5F7RJEREROZX1K2ra1tZGbm8vs2bO7L2A2M3v2bNatW3dc13j66af54Q9/SGCgsXFWfn4+paWlPa4ZGhpKdnb2N16ztbWVurq6HsepZkNna4TJyWF4W9SaWERERETErSRMghs+hbPuBLM37FkJL1xxTMUtQKi/N8uvyeCu747By2xi5bbDXPzoF+w8dOr9PUdEREQMfcr2HTlyBKvVSmxsbI/x2NhYSkuP/Vfjr9uwYQM7duzgJz/5iWOs67y+XHPp0qWEhoY6jqSkpL7cxqCQU6DWCCIiIiIibs3LB2b9Gn62GhKmwLl/gG/YQNhkMnH9zDRe/vk0EkL9yD/SyPf+/gUvbShSuwQREZFT0ICWaD799NOMHz+erKysk7rOkiVLqK2tdRzFxcVOitBzbHRsQhbu4khEREREROS/ih1rtEsYOqt7bNP/Qc6zx1TeTkkOZ+Utp3PWyGhaO2zc8dp2fvHyVpraOgY4aBEREXGlPiVto6KisFgslJWV9RgvKysjLi7uv57b2NjISy+9xPXXX99jvOu8vlzT19eXkJCQHsep5HBtMwermzGbYHKykrYiIiIiIm7v6Arb2hJ473Z451b4x8VQld9janigD0/Pm8qvzxuJ2QSvbS7hkke/YG9Z/cDGLCIiIi7Tp6Stj48PGRkZrFq1yjFms9lYtWoV06ZN+6/nvvLKK7S2tnLNNdf0GE9LSyMuLq7HNevq6vjyyy+/9Zqnqq7WCGMSQgjy9XJxNCIiIiIi0ifBcXD2b8HLH/I/g8enw5dPgM3mmGI2m1hw5nBeuOE0YoJ92VvewMWPfsHrmw+6MHAREREZKH1uj7B48WKeeuopnn/+eXbt2sWNN95IY2Mj8+fPB2Du3LksWbLkmPOefvppLr30UiIjI3uMm0wmbr31Vv74xz/y1ltvsX37dubOnUtCQgKXXnrpid3VIJfT2RohM0X9bEVEREREPI7ZAtMWwIK1kDIT2pvgvV/DcxfAkX09pp42NJKVt5zOjOGRNLdbuW3FVpa8to2WdquLghcREZGB0OcyzSuvvJKKigruvvtuSktLmTRpEu+//75jI7GioiLM5p654D179rBmzRo+/PDDXq/561//msbGRn76059SU1PDzJkzef/99/Hz8zuBWxr8NnZW2k7VJmQiIiIiIp4rYijMextyn4GP7oGidfDkLLh1OwR0r/Wjg335x3XZPLxqLw9/spcXNxSzpbiWv189hbSoQBfegIiIiPQXk30QbEVaV1dHaGgotbW1g76/bV1LO5Pu/RCbHb78zTnEhiixLSIiIqcuT14HenLs0g9qiuDtRZAwGc65+xunfb63gltf2kJlYxtBvl78+QcTuHBC/AAGKiIiIifjeNeAfW6PIK61uagGmx2SIwKUsBURERERGSzCkuGa1+DM33SPlX0Fnz0I1nbH0Okjoll5y+lMTQ2nobWDhS9s4ndvfUVbh62Xi4qIiIinUtLWw3T1s1VrBBERERGRQcZkAktnBztrB7y5ED75Izx1Nhze5pgWF+rHizecxs9nDQPgubUFXP7EOoqrmlwRtYiIiPQDJW09zEZH0jbcxZGIiIiIiEi/MVvgtAXgHw6l2+Cps+CT+6CjFQAvi5k7zh/F0/MyCfX3ZmtxDd99ZA0f7yxzceAiIiLiDEraepC2Dhubi2oAyFSlrYiIiIjI4GUywYQrYMGXMPoisHXAZw/AE7OgJNcx7ZzRsay8ZSYTk8KobW7nJ//IYem7u2i3ql2CiIiIJ1PS1oPsOFRLa4eN8ABvhkVrl1gRERERkUEvOBau/Cdc/hwEREHFLvjf2VDwhWPKkPAAXvnZNObPSAXgic8OcNWT6zlc2+yamEVEROSkKWnrQbr62WamRmAymVwcjYiIiIiIDJix34OFG2D85ZAwBZJP6/G2j5eZey4ay+NXTyHY14ucwmoufHgNn+VVuChgERERORlK2nqQjQXVgPrZioiIiIickgIj4Qf/C/PeMnreArQ3w+oHoK0RgPPHx/P2zTMZEx9CVWMb857dwL1vf0VNU5sLAxcREZG+UtLWQ9jt9h6VtiIiIiIicoryOapV2qf3w6f3wePTIf8zAFKjAnltwXR+lJ2M3Q7PflHArAf/w/9+foDWDquLghYREZG+UNLWQ+yvaKS6qR1fLzPjEkJdHY6IiIiIiLiDobMgZAhUF8DzF8E7t0FLHX7eFu7/3nj+cV0Wo+KCqW1u548rd3HuQ5+xctth7Ha7qyMXERGR/0JJWw/RVWU7KSkMHy/9ZxMREREREWD4bFiwDjKvN17nPAN/nwb7PgbgjPRoVt5yOg/8YAIxwb4UVTWx8IVN/ODxteQWVrkwcBEREflvlP3zEN39bNUaQUREREREjuIXAt99COa9DeGpUHcQ/vkDWL8cAIvZxBVTk/j0l2dy6+wR+Htb2FRUww8eX8eCf+VSWNno2vhFRETkGEraeoiczn8Fn5qmpK2IiIiIiPQi7Qy4cS1k3wi+oTDqwu73qvIJNHdw6+x0Vv/qTH44NQmzCd7dXsrsh1bzh3d2arMyERERN6KkrQcor2uhsLIJswmmJIe5OhwREREREXFXPoFw/p/gls0QltQ9/tKPYOkQ+N/ZxKz7A38aU8gHPx3NGenRtFvtPL0mnzMe+FSblYmIiLgJJW09QFdrhFFxIQT7ebs4GhERERERcXuBkd2ft7dAczXY2uHgRlj3KKy4hhHPT+YfDT/jsymfMSoumLqWDv64chezH1rNO9sOabMyERERF/JydQDy7TZ2bkI2NTXcxZGIiIiIiIjH8faDxbugugCKv4Si9cbH8l1QdYDkpFpW3nI6/849yEMf7GRJ/VJ2rEhj3SdT+MFFFzNlWIKr70BEROSUo6StB+jqZ5upTchEREREROREmEwQkWYcE39ojDXXGJW3ARGOzcouiq3E/5kNXGDZADUraPvHb8j3Tydy1BmEpM+E5GkQFO3SWxERETkVqD2Cm2to7WDnoToAMlVpKyIiIiIizuIfBiPOhcSM7qHweJizlJYRF1HnFYmPyUpayy5CtjwBL19Ly9onus9vrYeynWCzDXzsIiIig5wqbd3c5qJqbHYYEu5PfKi/q8MREREREZHBLDgWpi3Ab9oC/Ox29u/9io8+eJvAshwyzXk8tNaPbP8DXDstBd8Dq2HF1eAXCkOyIDkbkk4zksA+Aa6+ExEREY+mpK2b69qEbKpaI4iIiIiIyEAymRiWPo5h6eP4LK+C297dxe7Sej5auYvn1xXwWHoe470DMbXUwr6PjAPA7AVxE+DCv0DiFNfeg4iIiIdS0tbN5RR09bNVawQREREREXGNM9KjmTE8in/nHuR/PtxDcVUzF68fSUbSS/wh286Yjl1QvB6KvoT6Q3Bok9F+ocuWF2D/p93VuDGjwWxx2f2IiIi4OyVt3Vi71cbmohpAlbYiIiIiIuJaXZuVfXdiPE99ls8Tn+0nt7ieC4rh/HFTuf28a0mNCoSaYmODs/C07pP3vAu73obtLxuvfUNgyFRIPg2SsiFlOli8XXNjIiIibkhJWze281Adze1WQv29GR4d5OpwRERERERECPDxYtHsEVyVlcRDH+Xxck4x7+0o5eNdZVx7Wio3nz2c8HHf73nSaQsgZgwUrYeDOdBaB/tXGYfZG5YUdydt960CL1+IG2/0yxURETkFKWnrxjZ2tkaYmhqO2WxycTQiIiIiIiLdYkL8+NMPJvDjGaksfXc3q/MqeOaLfF7NLebms0cwd3oKvl6dLRBSphsHgLUDynZA8QajpYK1DbyP2nT543ugdLvxeXgaxE/sPCZA/CQIjBrQ+xQREXEFJW3dWE7nJmSZao0gIiIiIiJualRcCM9fl8VneRXc37lZ2X3v7uIf6wv49ZxRfHdCPCbTUUUoFi9ImGQc2T/teTG7HSJHQHMt1BZBdb5x7HzDeD9iKNyyuXt+4ToIS4aQBDCp0EVERAYPJW3dlN1u71FpKyIiIiIi4s5626zs5hc38/SafH574ejjK0YxmeDyZ43Pm6rg8FbjKN1mfIyf2D3XZoN/XQ5t9RAQdVRFbmdVbniaErkiIuKxlLR1U/lHGqlsbMPHy8y4RPVxEhERERER99fbZmVbimu4bPk6zh8Xx+3njTI2KzseAREw7Czj6GKzdn/eXGVU2VbshqYj3T1yu4z6LvzwX92vK/IgchiYLSd3kyIiIgNASVs31dUaYdKQsO4+UCIiIiIiIh7guDYrC/Tp+4WPTrgGRsGCtdDeDGU7oXRrd2Vu2VcQPap7bn0ZPDYVvAMgdlxnf9zOqtzo0eB1ArGIiIj0IyVt3VRXa4RMtUYQEREREREP1afNyk6Utz8MyTCOLtZ26Gjpfl1TCN6B0N4IBzcYRxezN5z1Gzh9cee5HcbmaD4BJxeXiIjISVDS1k3lFBqVtlO1CZmIiIiIiHi4Pm9WdrIs3sbRJSkLlhRD1YHOatwt3VW5LbUQFNs9tyQHnj0fokb2rMiNGw9+al0nIiIDQ0lbN1RR30r+kUZMJpiSrEpbEREREREZHByblW06yP980HOzsgVnDuOc0bFYzP20eZjZAlEjjGP8ZcaY3Q41ReAX0j2vfBfYbVCxyzi2reh+L2okzLkPRpzbPzGKiIh0UtLWDeUWGq0RRsYGExrg/S2zRUREREREPIfFbOKKzCS+O6HnZmU//b9cUiID+PH0VC7PTCLIdwD+umoyQXhKz7HM+TDy/O5K3K6jthiO7AHf4O65+Z/B/k9h6CxIOg28/fo/ZhEROSUoaeuGNnZuQqZ+tiIiIiIiMlgdvVnZM18U8OKGIgorm7j37Z089GEeV0xN4sfTU0mKcEFv2eA440if0z3WWAlFayHxqN65X70OOc/AmofAyw+SsmHomUYSN35Sz43TRERE+kBJWzeU07kJmfrZioiIiIjIYBcT4scd54/ilnOG8+9NJTz7RT4HKhp5ek0+z36Rz3fGxHHdzDSmpoY7t+9tXwVGwuiLeo4Nnw1tTXDgP9BQCvmrjWMVRv/bW7ZAgP5eJyIifaekrZtpautgx6E6QElbERERERE5dQT4eHHtaSlcnZXM6r0VPLMmn8/3HuH9r0p5/6tSxieGct3MVC4cn4CPl9nV4RpGXWgcdjscyTOStwdWQ8Hn4B/RM2H79iLoaOuuxA2Oc1XUIiLiAZS0dTNbimqw2uwkhvmTEObv6nBEREREREQGlNls4qyRMZw1Moa8snqe/SKf1zaVsL2klttWbGXpu7uZOy2FH2WnEBHo4+pwDSYTRI80juyfgbUD6g91v2/tgO3/hrZ62PqCMRY9CtJmGQnc1JlGZa6IiEgnN/nnSemyobM1gvrZioiIiIjIqS49Npil35/A2jvO5pffSScm2Jfy+lb+58M8pi1dxZLXtpFXVu/qMI9l8YKw5J5jV/4fzLgVEiYDJqjYDRuegJd+BC9d3XOutX2gIhURETelSls3k+PYhEytEURERERERAAig3y56ewR/PSMYby7/TBPr8lne0ktL24o5sUNxZw+IorrZqQxKz0as9mFfW+/icULhp1lHABNVUYLhQOrjZYKabO65zZWwrLxkJTV3UohboI2NRMROcUoaetGOqw2NhUZSdupqrQVERERERHpwcfLzKWTE7lkUgI5hdU8syafD74q5fO9R/h87xGGRgcyf0YaP5iSSICPG/91NyACxlxiHAA2a/d7hV9AeyMc+NQ4APzDIfV0I4mbfh6EJg54yCIiMrDc+KfYqWfX4Xqa2qwE+3mRHhPs6nBERERERETckslkYmpqBFNTIyiuauL5tQWs2FjMgYpG7npjB//zwR6uykpm7rQUz9gr5Ogq2tEXwYL1R21qtgaaq2HXW8bh5QeTO9spNFUZrRSCY10StoiI9B8lbd3Ixq5+tinh7vkrPSIiIiIiIm4mKSKA3353DLeem84rOcU8t7aAwsomlq/ez1OfH+D8cXFcPzONycke8tuMJhPEjDaO0240NjE7tMlI4OavNtoldNn6InzwG4ge3d1KIWUG+IW4LHwREXEOJW3dSE5h1yZk6mcrIiIiIiLSF0G+Xsyfkcbcaal8srucp9ccYP2BKt7Zdph3th1mcnIY189M47yxcXhZPGhPbouX0d82KQtm/arnezVFGJua7TKOLx8HkwXS50DWDZB2Jpg96F5FRMTBZLfb7a4O4mTV1dURGhpKbW0tISGe+S+KdrudrPtXUVHfyss/m0ZWmhK3IiIiIt/Gk9eBnhy7iKf46lAtz35RwFtbDtFmtQGQEOrH3OmpXDU1mdAAbxdH6ARNVZD/mdFOIX81VB0wxi0+cNtOCIp2aXgiItLT8a4BlbR1E4WVjcx68D/4WMxs+9138PPWzqAiIiIi38aT14GeHLuIpymvb+Ff64v45/pCKhvbAPD3tnBZxhB+PCOVYdFBLo7QiSr2wManwdYB332oe3ztozDsbIgd47rYRETkuNeA+j0JN7GxoBqACUNClbAVERERcYHHHnuM1NRU/Pz8yM7OZsOGDf91fk1NDQsXLiQ+Ph5fX1/S09N59913ByhaEemLmGA/bjs3nS/uOJsHL5vAqLhgmtut/N/6Qs75y2que24ja/YeYRDUNEH0SLjggZ4J27Kd8OGd8Pg0ePZC+OoNYwMzERFxW+pp6yZyCtTPVkRERMRVVqxYweLFi1m+fDnZ2dksW7aMOXPmsGfPHmJiYo6Z39bWxrnnnktMTAyvvvoqiYmJFBYWEhYWNvDBi8hx8/O2cHlmEpdlDGHdgUqeWZPPqt3lfNJ5jIwN5rqZqVwyKXFwFdOYzDD6Yti9EgrXGEdwAmTOhynzIDjW1RGKiMjXqD2Cmzj7L//hQEUjT8/L5JzR+oEpIiIicjyctQ7Mzs5m6tSpPProowDYbDaSkpK4+eabueOOO46Zv3z5ch588EF2796Nt/eJ9cQcDGtYkcEg/0gjz68t4OWcYprarABEBPpwTXYy15yWQkyIn4sjdKLaEsh9FnKfg8YKY8zsDfPehpRpLg1NRORUofYIHqSyoZUDFY0AZKSEuzgaERERkVNLW1sbubm5zJ492zFmNpuZPXs269at6/Wct956i2nTprFw4UJiY2MZN24c999/P1ardaDCFhEnSYsK5HcXj2XdknO484LRJIb5U9XYxsOf7GPGnz9h8Yot7CipdXWYzhGaCGf/Fm77Cr7/vzAkC/zDIHFK95yyndDW5LIQRUTEoPYIbiCn0Ohnmx4bRFiAj4ujERERETm1HDlyBKvVSmxsz992io2NZffu3b2ec+DAAT755BOuvvpq3n33Xfbt28eCBQtob2/nnnvu6fWc1tZWWltbHa/r6uqcdxMictJC/b254YyhzJ+Rykc7y3h6TT45hdW8trmE1zaXkJUWwY+npzJ7dCw+Xh5e/+TlCxMuN46GCuM1gM0GL10FzTUw+RqY+hOISHNpqCIipyolbd2A+tmKiIiIeBabzUZMTAxPPvkkFouFjIwMSkpKePDBB78xabt06VLuvffeAY5URPrKy2Lm/PHxnD8+nq3FNTz7RT7vbDvMhvwqNuRXERHowyWTErg8I4kxCYOgtUlQdPfntcVgt0FLDax7FNY9BiO+A1k3wLBzwOzhyWoREQ+iP3HdwMYCo9J2aqpaI4iIiIgMtKioKCwWC2VlZT3Gy8rKiIuL6/Wc+Ph40tPTsVi6NyoaPXo0paWltLW19XrOkiVLqK2tdRzFxcXOuwkR6RcTk8JY9sPJrLn9bG46azixIb5UNbbx7BcFXPDw51z48Oc890U+1Y29/3/vccJT4JYtcNUKI0mLHfZ+AP+6DB7NgLwPXR2hiMgpQ0lbF2tuszr6I2WmqNJWREREZKD5+PiQkZHBqlWrHGM2m41Vq1YxbVrvG/PMmDGDffv2YbPZHGN5eXnEx8fj49N7uytfX19CQkJ6HCLiGeJC/fjlnJF8cfvZPDt/KheOj8fHYuarQ3X87u2dZN+/igX/yuXT3eV0WG3ffkF3ZrbAyPPg2tfgplw4bQH4hkLVAfA76s8ta4frYuxv7c1weBtsfxUO5ro6GhE5Rak9gottKa6hw2YnLsSPIeH+rg5HRERE5JS0ePFi5s2bR2ZmJllZWSxbtozGxkbmz58PwNy5c0lMTGTp0qUA3HjjjTz66KMsWrSIm2++mb1793L//fdzyy23uPI2RKSfeVnMnDUyhrNGxlDd2MZbWw/xck4xXx2q493tpby7vZSYYF++P2UIl2cOYVh0kKtDPjlRw+G8pcbmZXveg6Ts7vc++A2Uboesn8Doi8Hi7bo4T1R7i5Gk7op9ywvw2YNQXWC0iegy7jKYcx8E9/7bFyIi/UFJWxfr7mcbjslkcnE0IiIiIqemK6+8koqKCu6++25KS0uZNGkS77//vmNzsqKiIsxH9XJMSkrigw8+4LbbbmPChAkkJiayaNEibr/9dlfdgogMsPBAH+ZNT2Xe9FR2Hqrjldxi3txyiPL6Vpav3s/y1fuZkhzG5ZlJfHdCPMF+HpjU7OITCOMv637d0QbbX4bmaihaC0FxkPFj4wiJd1WU36y9BSr3QvluqNjV+XE3VOfD3Dch7YzuuVUHjI/+4RAxFA5thh2vwt4PYcE6CB3imnsQkVOOyW63210dxMmqq6sjNDSU2tpaj/s1s7nPbOCzvAp+f8lY5k5LdXU4IiIiIh7Fk9eBnhy7iPSurcPGJ7vLeCXnIP/Jq8BqM/667edt5vxx8VyeOYTT0iIxmwdBwU7dYch9DnKfhYbOnuBmL6Pq9rQFkDR14GPqaIUje42K2MAoY2z7q/DaDT0rZ4924UMw9Xrj8/oyI5kbMxoCo8FkMpK27yyGkAT44b8G5j5EZFA73jWgKm1dyGqzs6nQ2IRM/WxFREREREQ8m4+XmfPGxXPeuHjK61p4fXMJr+QeZF95A69vLuH1zSUMCffnsowh/GDKEJIiAlwd8okLiYezlsDpv4Ddb8OGp6BoHXz1mrGhWX8mbTvaOitndxlJ1q6PVQeM5OxFfzOqfsGojLXbwC8UokdDzKieH4Niuq8bHGscR0uYDD/5GNoauscayuHzv8Cs2yFAf5cXkf6hpK0L7S6to6G1g2BfL0bGBbs6HBEREREREXGSmBA/fjZrGD89Yyhbimt4Jfcgb285xMHqZpZ9vJdlH+9l+rBILs8cwnlj4/H3sbg65BPj5QPjfmAcpduN5G3mdd3vH1gNee/D1J9A5LC+XbujDSr3GS0NIkdA/ARjvGgd/OPi3s/xC4W2pu7XCZNh8W6j+vZEWxKaLcZ1u3x4F2x7Cba/Auf+ASb96MSvLSLyDZS0daGN+UY/2ykp4VgGw6/HiIiIiIiISA8mk4nJyeFMTg7n7u+O4YOvSnkl5yBf7D/C2v2VrN1fyd2+X/HdifFclpHElOQwz93vJG48XPxwz7H1fzeStuv/DsNnw9QbYMS5RiL0aK31sPejoypn90DVfrB1GO/PWNSdtI0ZDb6hndWyI3tWzn49Oevl6/w+u1PmwuGtRjL5zQWw+f/gwr9A7Fjnfh0ROaUpaetCGztbI0xNDXdxJCIiIiIiItLf/LwtXDIpkUsmJXKwuonXNpXwSm4xxVXNvLihmBc3FDMsOpDLMpL4/pREYkP8XB3yycu6Aex2YyOvfR8bR1gKjL4IEjNg3PeNec018Or8Y8/3DTESsyGJ3WOB0XBHoeuqW1NnwM8/h/WPw3/+ZFT+Lj8dpi2AWXeAb5Br4hKRQcX87VOO9dhjj5Gamoqfnx/Z2dls2LDhv86vqalh4cKFxMfH4+vrS3p6Ou+++67j/d/97neYTKYex6hRo04kNI9ht9vJKTAqbTNT1QNHRERERETkVDIkPIBbzhnB6l+exYs3nMb3pyTi721hf0Ujf35/N9OWrmL+sxt4d/thWjusrg73xA2fDVe/DLdsgmk3GW0Gagph3aNG/9suoUMg9XSYfC185z645t9w2064o8joKZv9s+65JpPr2xFYvGHGLXDTBiMBbbfC2kdgzV9dG5eIDBp9rrRdsWIFixcvZvny5WRnZ7Ns2TLmzJnDnj17iImJOWZ+W1sb5557LjExMbz66qskJiZSWFhIWFhYj3ljx47l448/7g7Ma3AXAR+sbqasrhVvi4mJQ8JcHY6IiIiIiIi4gNlsYtqwSKYNi+T3l3SwctshXsk5SE5hNZ/uqeDTPRWEB3hzyaRELssYwrjE0G+/qDuKGApz7oOz7oQdr8KhLTAks/t9kwl+/I7LwjthoUPgyn9C3ofG5mQzbul+z253fXJZRDxWnzOjDz30EDfccAPz5xu/trB8+XJWrlzJM888wx133HHM/GeeeYaqqirWrl2Lt7c3AKmpqccG4uVFXFxcX8PxWBs7q2zHJYZ6bsN5ERERERERcZogXy+unJrMlVOTOVDRwKu5B/n3poOU1bXy3NoCnltbwOj4EC7PGMKlkxOJCPRxdch95xNg9ISdMtfVkThX+neMo4vdDv+6DIZMhRm3gvcgaHUhIgOqT+0R2trayM3NZfbs2d0XMJuZPXs269at6/Wct956i2nTprFw4UJiY2MZN24c999/P1Zrz1/v2Lt3LwkJCQwdOpSrr76aoqKiE7gdz7GxoKufrVojiIiIiIiISE9Do4P49XmjWHvHOTw3fyoXTojHx2Jm1+E6fv/OTrLv/5gb/5nLJ7vL6LDaXB2ufN3+VUb/3v8shcenwb5Vro5IRDxMnyptjxw5gtVqJTY2tsd4bGwsu3fv7vWcAwcO8Mknn3D11Vfz7rvvsm/fPhYsWEB7ezv33HMPANnZ2Tz33HOMHDmSw4cPc++993L66aezY8cOgoODj7lma2srra2tjtd1dXV9uQ234Ohnm6JNyERERERERKR3FrOJM0fGcObIGGqa2nhzyyFeyS1mR0kd7+0o5b0dpcQE+/K9KYlcnpHE8BhtguUWhp0Dlz8H7y+BqgPwz+/DmEvhvKUQkuDq6ETEA/R741ibzUZMTAxPPvkkFouFjIwMSkpKePDBBx1J2/PPP98xf8KECWRnZ5OSksLLL7/M9ddff8w1ly5dyr333tvfofeb6sY29pY3ANqETERERERERI5PWIAP86anMm96KrsO1/FKzkHe2FJCeX0rT6w+wBOrDzA5OYwLxsUza2Q0I2KCMKmnqmuYTDD2e0by9j9/gi+Xw843jOrbM5dA9s/BMrj38hGRk9On9ghRUVFYLBbKysp6jJeVlX1jP9r4+HjS09OxWLr7to4ePZrS0lLa2tp6PScsLIz09HT27dvX6/tLliyhtrbWcRQXF/flNlwut9BojTA8JsgzexCJiIiIiIiIS42OD+Hui8awfsk5LL8mg9mjY7CYTWwuquG+d3fxnb9+xvQ/fcId/97Ge9sPU9vc7uqQT01+IXDe/fCz1TAkC9oaYMu/ALurIxMRN9enf9bx8fEhIyODVatWcemllwJGJe2qVau46aabej1nxowZvPDCC9hsNsxmI0ecl5dHfHw8Pj69JywbGhrYv38/1157ba/v+/r64uvr25fQ3crGQqM1wtRUtUYQERERERGRE+fjZea8cXGcNy6O8voW3tl6mNV5Faw/UMnh2hZe2ljMSxuLsZhNTEkOY1Z6NLPSYxibEILZrCrcARM3Hq77ALb8E6LSwWJs1E5HK7Q2QGCka+MTEbfT51r8xYsXM2/ePDIzM8nKymLZsmU0NjYyf/58AObOnUtiYiJLly4F4MYbb+TRRx9l0aJF3Hzzzezdu5f777+fW265xXHNX/7yl1x00UWkpKRw6NAh7rnnHiwWC1dddZWTbtO95HRuQpaZotYIIiIiIiIi4hwxwX5cNzON62am0dJu5cv8KlbvqWB1Xjn7KxrZWFDNxoJq/ufDPCIDfTgjPZpZ6dGcPiKKyCDPLYzyGGYzTJnbc2ztI7DuUZj9O5g815gjIsIJJG2vvPJKKioquPvuuyktLWXSpEm8//77js3JioqKHBW1AElJSXzwwQfcdtttTJgwgcTERBYtWsTtt9/umHPw4EGuuuoqKisriY6OZubMmaxfv57o6Ggn3KJ7aWm3su1gDQBT1c9WRERERERE+oGft6WzqjYaGENxVROf7a1g9Z4Kvth3hMrGNl7fXMLrm0swmWB8Yiiz0qM5Iz2ayUlheFmUPOx3NhvkfQDN1fD2Itj8T7jwIYif4OrInKPuMJTkQEkuHMyB0CHwveWujkrEY5jsdrvHN1Kpq6sjNDSU2tpaQkJCXB3Of/XlgUqufHI9McG+fPmbc9QUXkREROQkeNI68Os8OXYR8WxtHTY2FVWzOs9I4u48XNfj/WA/L2YOj3IkcRPC/F0U6SnA2gEbnoRP7zP63ZrMkPUzOOs3Rj9cT9JUBZue70zS5kL9oZ7vX/Q3yPix8XlbEzRXGYlckVPM8a4BtVXhAMvp3IRsamqEErYiIiIiIiIy4Hy8zJw2NJLThkZy+3mjKK9r4bO9R/gsr4LP9lZQ09TOeztKeW9HKQDpsUGOXrhT08Lx9bJ8y1eQ42bxgmkLYOyl8MGd8NVr8OXj8NXr8IOnIO0MV0d4LGsHVOwykrMBkTD6ImPcboOPf9c9z2SGmDGQOAUSpsCYS7vf2/oivPsr475PWwhDMgbwBkQ8g5K2A2xjgbEJWaY2IRMRERERERE3EBPix2UZQ7gsYwhWm53tJbWOXrhbimvIK2sgr6yBpz7Px9/bwrRhkY7WC6lRga4Of3AISYDLn4Up18LKX0LtQQhJdHVUYLcbsTjaHOTC4S3Q3mS8P/TM7qRtYBRkXgfhqZCYAfGTwDeo9+se3gJ2K+z4t3EknWYkr0d9F8z6RwERUHuEAWW12Zn0+w+pb+ngnZtnMi4x1NUhiYiIiHg0T1kH9saTYxeRU0dNUxtr9h3pTOJWUF7f2uP9lMgARwL3tKGRBPqqNuykdbTCwY2QOrN7bPdKGHoW+AT079duroG6QxA7xnhts8EDqdBS23OebwgkTIahs+D0X5zY1zq8FdY/DttfBVu7MRaWDKctgOyfg347WQap410DKmk7gHYdruP8v31OoI+Frfd8R43dRURERE6Sp6wDe+PJsYvIqclut7O7tN7RCzensIp2a3dKwcdiZmpauKOVQnpskNoCOsPBHPjf2RCWBBf8D6TPcc51O9qgbIdRQdt1HMmDsBS4dVv3vH9dAQ1lRvXskEzjY+QIMDspp1FfChuegpxnjD636efBj1Y459oibkg9bd1QTmdrhCkp4UrYioiIiIiIiEcxmUyMjg9hdHwIP581jIbWDtbtr2R1Xjn/2VPBwepmvthXyRf7Krn/3d3Ehfg5NjObOTyK0ABvV9+CZ2prMNon1BTBC1cYLQTO+5ORxD1ednvPytU3FsL2V8DaeuxckwnaGsGns/XFj1b0b9VrcBycc5dRsbttBcSO636vphg+vNOovk3KVvWtnFKUtB1AGwu6NyETERERERER8WRBvl6cOyaWc8fEYrfbyT/SaFTh5lWw/kAlpXUtrMgpZkVOMWYTTE4Od7RSGJ8YitmsBNxxGXomLNwAq/8M6/8Ou9+B/Z/ArF8bm3h5+Rx7TmPlURW0OVC6w6ie9fI13vfyMRK2/uFG5WxiZwVtYgYERva81kAlSn0CIHN+z7ENT8DON40jYQpMWwhjLgGL/gFABj+1RxhA05eu4lBtCy/ckM30YVGuDkdERETE43nKOrA3nhy7iMi3aWm3siG/is86k7h7yxt6vB8e4E1WWgRZaZFkp0UwOj4Ei5K4365sJ6z8BRStNV4nT4f57xqJ1bwPjUrVkhyoLjj23J+sMtobAFTlg90GEUPdu3q1fBesewy2vdxdFRySCFk/hYx5RtJZxMOop62bKalpZsafPsHLbGLb775DgI+KnEVEREROliesA7+JJ8cuItJXJTXNRgJ3TwVf7DtCfWtHj/eDfb3ISA0nOy2SrLQIxieG4uOltoK9stth64vw4W9h9u9gylxj/Iu/wUd3d8+LHHFUH9opEDu+96pcT9BQYfS83fgUNFYYY0GxcNtXqroVj6Oetm5mY77Rz3ZsYqgStiIiIiIiInJKSQzz56qsZK7KSqbdamPbwVo25FexIb+SnIJq6ls7+M+eCv6zx0jI+XmbmZIc3lmNG8HkpHD8fSwuvgs3YTLBpB/ByPPBN7R7fPhsY3OxIRmQMHlwVaEGRcOZt8OMRbDjVVj3d0g7oztha7cbrSASM9y7clikD5Q9HCAbOzchm5oyiP7QFBEREREREekjb4uZjJRwMlLCufHMYVhtdnYdrutM4laxoaCKqsY21u6vZO3+ys5zTEwYEkZWWgTZaRFkpIQT7HeKV1h+PSkbO9Y4BjNvP5h8DUy6GjpauscL18JzF0DceKPP77gfeG5VsUgnJW0HSE7nJmSZ2oRMRERERERExMFiNjEuMZRxiaFcNzMNu93OvvIGvuxM4n6ZX0lZXSu5hdXkFlbz+H/2YzbB2IRQRyXu1NQIIgKVpDtlmEzg7d/9unIvePlD6XZ44+fw8T2QdQNkXHfsxmoiHkI9bQdAbVM7E3//IQA5v51NVJCviyMSERERGRzcfR3433hy7CIiA8lut1Nc1cyX+ZWOStzCyqZj5qXHBnVW4hp9cWND/FwQrbhMUxXkPgsbnoL6w8aYlx9M/CGc+wfw089acQ/qaetGcouM1ghDowKVsBURERERERHpA5PJRHJkAMmRAVyemQTA4drm7nYK+VXsLW8gr8w4/rm+CIDUyIDOStxIstMiGBLuj0n9TgevgAg4/Rcw7WbY+QasexQOb4X8z8An0NXRifSZkrYDYKOjNYL62YqIiIiIiIicrPhQfy6ZlMglkxIBqGxoZWNBtaOdws7DdRRUNlFQ2cTLOQc7z/HrUYk7LDpQSdzByMsHJlwB4y83et22N4G5cxO79hZ4ofO98ZcbPXLl1NTWCKt+byT0z7nb1dH0SknbAZDTuQmZ+tmKiIiIiIiIOF9kkC/njYvjvHFxANS1tJNbUN3ZF7eSbQdrOVzbwptbDvHmlkPGOYE+jp64WWkRjIoLwWJWEnfQMJkgdUbPsR3/hvzVxrHqXsi8HqZeD0ExrolR+kdHK1Tlw5G8zmOv8TF2LFzyqDHHyx9yn4PAGCVtT1Ut7Va2FtcCkKWkrYiIiIiIiEi/C/Hz5qxRMZw1ykjGNbV1sKWohi87K3E3F9VQ2djGeztKeW9HKQDBfl5MTY0guzOJOy4xFG+L2ZW3Ic426kJo+gNseBJqi2H1n2DNQ0Zl7mkLjKSeeI7GSmipgchhxmu7Hf5+mpGgtduOnW9t6/7cbIazfwt+YcZ5blh1r6RtP9tRUkub1UZUkC8pkQGuDkdERERERETklBPg48X04VFMHx4FQGuHle0HazsrcavILaymvqWDT3aX88nucgD8vS1MSQkjMyWCzNRwJieHE+SrNIpH8w+DGbcYCdpdb8H6v8PBjbD5n8axaCuEpxpzd75lJPm8/DoP3+6PvkEQMbT7utZ2MHu5ZeJvUKg6ABV5x1bONldB/CT42WpjXtfzt9vAJxii0yFyBESNgKh0iB7V87rTbx7Q2+gr/WnTz7r62U5NDVevHBERERERERE34OtlITM1gszUCBaeBR1WG7sO1/NlfqWxuVlBFTVN7Xyxr5Iv9lUCYDbBmIQQRxI3MyWCuFD1RPVIFi8Y933jKN4A6x4zepx2JWwBPrwTaop6Pz8qHW7a2P36iTOgfOdRyV3/7iRvWBJc8+/uuR//DmoPHpUEPioh7BcK2T/rnlvwBbTW90wYe/kZvXi9AyE41plPxbVa6qByr5GQbWuAqT/pfu+fl0HV/t7P62jt+fqyZ41N6YJiPT6JrqRtP1M/WxERERERERH35mUxM35IKOOHhPKT04dis9nZW97AxoIqcgqqyCms5mB1MztK6thRUsdzawsAGBLuz9TU7iTuiJggzOqL61mSsozDZu05njzNSOJ2tEJHi7GJWUeL8Towuufcjpbujx0tQG33e7b2nnP3fQyl23uPJTCmZ9L2kz9A0bre53oHwJ2Hu1//+ydQ/KWRzPUJBJ+Anp9f9HB3EnPfx1B3uPO9zsM7AHyCjLnBCUb7gP609SWjyrmrcrb+qHvxCzX6DXfFGz/BiK+rYrbrY+QwI/ajxY7p37gHkJK2/chms5NT2F1pKyIiIiIiIiLuz2w2MTIumJFxwVxzWgoAh2ubySmodiRxdx2u42B1MwerS3h9cwkAIX5enRW8RhJ3wpBQ/LwtrrwVOV7mr/13+v6Tx3/uT1d3J2y/nuQ1fy31NuNWaCjvObfr49cTkNEjjRYN7V+7dm9z6w5/c2Wwlx9c/Ej36w1PQd7733w/v60As4/x+duLIO9DI5nrE9gzEewTBBf8j/E5wP5PoTrfGPcOMOKs3GckZhvK4cfvdH+N7a8YyeOjBcV2J2WtbUZlMcDlz31zrIOYkrb9aG95A7XN7QT4WBgTH+LqcERERERERETkBMWH+nPRRH8umpgAQH1LO5uLasgpNBK5m4tqqPtaX1wfi5lxiSGd1bgRZKSEExHo48rbkP7gFwIcZ95n/GXHf92L/vbN79ntPV9f8gg0VRutBdqbjHYPXYf9a1XEiRnG+e1Nxvy2zvntjUZ/Xq+jvkcbyqH+0DfH8d2/dn++5QXY/vI3z22qMloXAIz9HsRNOKpqdrjRc1gclLTtRxs7WyNMTg7DSztOioiIiIiIiAwawX7enJEezRnpxq/Kt1tt7Dpcx8bOatyNBdUcaWhlU1ENm4pqeOKzAwAMiw5kamcCd2pqBCmRAdoDR/ru698zEUPheDtzzvr18X+dCx6EWbf3TAQf/bnlqARvwuSeiWCTGaKGdyZlR4C3f/fcydccfwynKCVt+5Gjn22K+tmKiIiIiIiIDGbeFjMThoQxYUgY189Mw263U1TVxMaCanILjSTuvvIG9lc0sr+ikZc2FgMQFeTL1NRwRxJ3TEII3ir8EncROsQ4jse0BcYhTqGkbT/aWNDVz1ZJWxEREREREZFTiclkIiUykJTIQC7LMJJe1Y1t5BZWs7GwipyCarYfrOVIQyvv7SjlvR2lAPh7W5iUFMbU1HAyUyOYnBxGsJ+3K29FRFxASdt+cqimmZKaZixmE5OTw1wdjoiIiIiIiIi4WHigD7PHxDJ7TCwALe1WtpfUsrGgityCanIKq6ltbmfdgUrWHagEwGyCUXEhRjVuagRTU8OJD/X/b19GRAYBJW37SU6hUWU7NiGEQF89ZhERERERERHpyc/bwtTUCMdv6NpsdvZVNJDT1Re3sIriqmZ2Hq5j5+E6nl9XCEBimD+ZnZW4mSnhpMcGYzGrL67IYKJsYj9RP1sRERERERER6Quz2UR6bDDpscH8KDsZgLK6FnIKqtlYUEVOYRU7D9VRUtNMyZZm3txyCDBaKoyOD2ZcYijjEkIZlxjKiNgg9cYV8WBK2vaT7n624S6OREREREREREQ8VWyIHxdOiOfCCfEANLR2sKWoxmipUFjNpqJqmtqsbCqqYVNRjeM8H4uZUfHBjE0IZXxiKOMSQ0iPDcbP2+KiOxGRvlDSth/UtbSzu7QOgAwlbUVERERERETESYJ8vZg5IoqZI6IAsNrs5B9p5KtDtewoqWV7SS1fldRR39rBtoO1bDtYy4ud53qZTYyIDWZcQgjjh4QyNiGUMfEh+PsokSvibpS07Qe5hdXY7ZAaGUBMsJ+rwxERERERERGRQcpiNjE8JojhMUFcMikRMHrjFlc3saOkjh2dydwdJbVUN7Wz63Aduw7X8UruQcDY6GxYdBDjE0MZmxjKuIQQxiSEEOzn7crbEjnlKWnbDxz9bFPVz1ZEREREREREBpbZbCIlMpCUyEBHWwW73c6h2hZ2lNTyVUktOw7Vsb2klor6VvaWN7C3vIHXNpc4rpEWFdjZIzeEcYmhjE0IISzAx1W3JHLKUdK2H6ifrYiIiIiIiIi4E5PJRGKYP4lh/swZG+cYL69r6azGrXNU5B6qbSH/SCP5Rxp5e+shx9wh4f6d/XGNJO64xFCignxdcTsig56Stk7W2mFla3ENoEpbEREREREREXFvMSF+nB3ix9mjYh1jlQ2tfHXIaK3wVYlRkVtU1cTB6mYOVjfz3o5Sx9y4ED+jIjcxhHEJRkI3NsQXk8nkitsRGTSUtHWyHSV1tHbYiAj0YWhUoKvDERERERERERHpk8ggX85Ij+aM9GjHWG1TO18dNpK4Ow4ZG57lH2mktK6F0roWPt5V5pgbFeR7VBI3hLEJoQwJ91ciV6QPlLR1Mkc/25Rw/WEkIiIiIiIiIoNCaIA304dFMX1YlGOsobWDXYe72ioYH/eW13OkoZX/7KngP3squs/392ZkXDCj4oIZGRfMyNhg0uOCCdGGZyK9UtLWybr72ao1goiIiIiIiIgMXkG+XkxNjeiRA2lus7K7tI4dh+o6NzyrZU9pPbXN7WzIr2JDflWPaySG+RtJ3KMSukOjgvDxMg/07Yi4FSVtnchms5NbaPzhMzVNSVsRERERERERObX4+1iYnBzO5OTuzdlbO6zsK29gT2m9cZQZHw/XtlBS00xJTTOf7C53zPcymxgaHcjIuBAjkRtrJHPVYkFOJUraOtGBIw1UN7Xj521mbEKIq8MREREREREREXE5Xy8LYxNCGZsQ2mO8tqm9M4Fbx+6uhG5pPfWtHeSVNZBX1sDbW7vnB/l6kR4b5Giv0JXUDQ/0GeA7Eul/Sto6UVdrhMlJ4XhbVMYvIiIiIiIiIvJNQgO8yUqLIOuo31a22+0cqm0hr7S+M5FrJHT3VzTQ0NrBpqIaNhXV9LhOTLDvUe0VQhgZG8yI2CD8vC0DfEcizqOkrRNt7NyEbGpq+LfMFBERERERERGRrzOZTCSG+ZMY5s9Zo2Ic4+1WG/lHGh2J3K42C8VVzZTXt1Je38rne4845ptNkBoZ+LV+uSEkRwRgMavFgrg/JW2dqCtpm6lNyEREREREREREnMbbYiY9Npj02GCYmOAYb2jtIK+su7XC7s6EbnVTOweONHLgSCPv7Sh1zPfzNjMipufGZyPjgokO8lW/XHErSto6SWltC8VVzZhNMDk5zNXhiIiIiIiIiIgMekG+XkxJDmfKURuf2e12Khpaj0rkGh/zyuppabexvaSW7SW1Pa4TEehj9MuNDWZEbDAjYoIYERtMhPrliosoaeskOYVGle3o+BCC/bxdHI2IiIiIiIiIyKnJZDIRE+xHTLAfp4+IdoxbbXYKKxsdidyuCt2CykaqGttYf6CK9QeqelwrMtCH4TFBjIgNYkSMkcwdHhukylzpd0raOklO5yZkU9UaQURERERERETE7VjMJoZGBzE0Oojzx8c7xlvarewta2B3aR37yhvYW97A3nKjX25lYxuV+VV8md8zmRvq791ZjRvE8Jhgx+dxIX5K5opTKGnrJN39bLUJmYiIiIiIiIiIp/DztjB+SCjjh4T2GG9q6+BARSN7y+vZW9ZAXlkD+8rrKapqora5nZzCanIKq3ucE+TrZVTmxgSRHhvM8Fjj84RQf8zaAE36QElbJ6hvaWfX4TpAlbYiIiIiIiIiIoNBgI8X4xJDGZfYM5nb0m51JHP3lTewt8yozC2obKKhtYMtxTVsKa752rUsDI8J6kzodlfmDgkPwKJkrvRCSVsn2FxUg80OyREBxIb4uTocERERERERERHpJ37eFsYkhDAmIaTHeFuHjYLKRkcSd295A/vKGjhwpIGmNivbDtay7WDPDdB8vcwMi+7qmdvZaiE2iJSIALws5oG8LXEzSto6QY5aI4iIiIiIiIiInNJ8vMykxwaTHhsMdPfM7bDaKKxqYm9ne4W9ndW5+ysaaO2wsfNwHTs7f4PbcS2LmbSoQEd7hRGdydzUyEB8vJTMPRUoaesEG7UJmYiIiIiIiIiI9MLLYlTTDosOAuIc41abnYPVTZ2VuQ092i00t1vZU1bPnrL6ntcym0iJDCApIoDEMH8SwvwZEu5PYpg/ieH+xAT7qd3CIKGk7Ulqt9rYXNyVtFWlrYiIiIiIiIiIfDuL2URKZCApkYHMHhPrGLfZ7JTUNBsJ3M5N0PaWN7CvvIGG1g72VzSyv6Kx12t6mU3Ehfo5kriJYf49Pk8I88fP2zJQtygnQUnbk/TVoTpa2m2EB3h3/ouJiIiIiIiIiIjIiTGbTSRFGNW0Z42KcYzb7XZK61rYV95ASXUzJTWdR+fnpbUtdNjsHKxu5mB1M+T3fv2oIB9HIjch9KjkbufHUH9vTCZV67qakrYnaWO+0c82IyVC39AiIiIiIiIiItIvTCYT8aH+xIf69/q+1WanvL7FkcQ9WN3Moa8ldpvarBxpaONIQxtbv7YpWpdAH0uPytyuz4eEG6/VgmFgKGl7kjZ2bkKm1ggiIiIinu2xxx7jwQcfpLS0lIkTJ/LII4+QlZX1ree99NJLXHXVVVxyySW88cYb/R+oiIiISC8s5u6kbmYv79vtdmqb2znYmcA9dFQyt+v1kYY2Gtus5JU1kFfW0OvX8TKbiA/z6+6p60jsBpAQ5qcWDE6ipO1JsNvt5BQa/WwztQmZiIiIiMdasWIFixcvZvny5WRnZ7Ns2TLmzJnDnj17iImJ+cbzCgoK+OUvf8npp58+gNGKiIiI9J3JZCIswIewAB/GJYb2Oqel3eqozD26SvdgZ1L3cGcLhuKqZoqrmr/xa0UF+ZIY7k9qZAApEQGdvXuNj1FBPvpt9eOgpO1JOHCkkarGNny9zIxLDHF1OCIiIiJygh566CFuuOEG5s+fD8Dy5ctZuXIlzzzzDHfccUev51itVq6++mruvfdePv/8c2pqagYwYhERERHn8/O2MCw66Bv3bbLa7JTVtTgqc7uqdo9O8hotGFo50tDK1uKaY64R6GMhOTLQSOZGBZDq+DyQuBC1XuiipO1JyOlsjTAxKQxfL5V9i4iIiHiitrY2cnNzWbJkiWPMbDYze/Zs1q1b943n/f73vycmJobrr7+ezz//fCBCFREREXEpi9lEQmdbhN7Y7XZqmtopqWmmuKqJwqomCiubKKxspLCyiUO1zTS2Wdl1uI5dh+uOOd/HYiYpwr+7MrczmZsSEcCQ8AB8vMz9fYtuQ0nbk7CxwGiNkKXWCCIiIiIe68iRI1itVmJjY3uMx8bGsnv37l7PWbNmDU8//TRbtmw57q/T2tpKa2ur43Vd3bF/URERERHxZCaTifBAH8IDe2/B0NphpbiqmaKqRgqONFFU1URBZSNFlU0UVzfRZrWxv6KR/RWNx5xrNkFCmD+pkYEkRwaQGhlAckQgqVEBJEcEEOAzuNKcg+tuBlhXpW2mNiETEREROWXU19dz7bXX8tRTTxEVFXXc5y1dupR77723HyMTERERcW++XhaGxwQxPObY9gtWm51DNc1GZW5VY48K3cLKJprbrRysNloysO/Ya8cE+zr65h5doZsaGUhogPcA3J1zKWl7gsrrWyiobMJkgikpStqKiIiIeKqoqCgsFgtlZWU9xsvKyoiLiztm/v79+ykoKOCiiy5yjNlsNgC8vLzYs2cPw4YNO+a8JUuWsHjxYsfruro6kpKSnHUbIiIiIh7NYjaRFBFAUkQAM+n5D+N2u52K+lYKq5ooONLYWaFrJHULjjRS19JBeX0r5fWtjt+MP1qov7dRmRsZ2FmhG0BqZ1I3OtjXLTdGO6Gk7WOPPcaDDz5IaWkpEydO5JFHHiErK+sb59fU1HDnnXfy2muvUVVVRUpKCsuWLeOCCy444Wu6Wm7nN8CouBBC/DwvWy8iIiIiBh8fHzIyMli1ahWXXnopYCRhV61axU033XTM/FGjRrF9+/YeY7/97W+pr6/nb3/72zcmYn19ffH19XV6/CIiIiKDnclkIibEj5gQP6b20qa0pqmNwsruVgsFlU1GC4bKJirqW6ltbmfrwVq2Hqw95tzIQB9yfjvb7RK3fU7arlixgsWLF7N8+XKys7NZtmwZc+bMYc+ePcTExBwzv62tjXPPPZeYmBheffVVEhMTKSwsJCws7ISv6Q66qmynqjWCiIiIiMdbvHgx8+bNIzMzk6ysLJYtW0ZjYyPz588HYO7cuSQmJrJ06VL8/PwYN25cj/O71rZfHxcRERGR/hcW4ENYgA8Tk8KOea+xtYOiozdEqzpqY7SaZiKDfNwuYQsnkLR96KGHuOGGGxwL2OXLl7Ny5UqeeeYZ7rjjjmPmP/PMM1RVVbF27Vq8vY2K1NTU1JO6pju48cxhXH1aMi3tVleHIiIiIiIn6corr6SiooK7776b0tJSJk2axPvvv+/YnKyoqAiz+dTZrVhERERksAj09WJ0fAij40OOea+tw0Z1U5sLovp2Jrvdbj/eyW1tbQQEBPDqq686fnUMYN68edTU1PDmm28ec84FF1xAREQEAQEBvPnmm0RHR/OjH/2I22+/HYvFckLX7G3n3aSkJGprawkJOfY/gIiIiIgMTnV1dYSGhnrkOtCTYxcRERGRE3O8a8A+lQscOXIEq9XqqDjoEhsbS2lpaa/nHDhwgFdffRWr1cq7777LXXfdxV/+8hf++Mc/nvA1ly5dSmhoqOPQBg4iIiIiIiIiIiIyWPT773jZbDZiYmJ48sknycjI4Morr+TOO+9k+fLlJ3zNJUuWUFtb6ziKi4udGLGIiIiIiIiIiIiI6/Spp21UVBQWi4WysrIe42VlZcTFxfV6Tnx8PN7e3lgsFsfY6NGjKS0tpa2t7YSuqZ13RUREREREREREZLDqU6Wtj48PGRkZrFq1yjFms9lYtWoV06ZN6/WcGTNmsG/fPmw2m2MsLy+P+Ph4fHx8TuiaIiIiIiIiIiIiIoNVn9sjLF68mKeeeornn3+eXbt2ceONN9LY2Mj8+fMBmDt3LkuWLHHMv/HGG6mqqmLRokXk5eWxcuVK7r//fhYuXHjc1xQRERERERERERE5VfSpPQLAlVdeSUVFBXfffTelpaVMmjSJ999/37GRWFFREWZzdy44KSmJDz74gNtuu40JEyaQmJjIokWLuP3224/7miIiIiIiIiIiIiKnCpPdbre7OoiTVVdXR2hoKLW1tYSEhLg6HBEREREZIJ68DvTk2EVERETkxBzvGrDP7RFEREREREREREREpP8oaSsiIiIiIiIiIiLiRpS0FREREREREREREXEjStqKiIiIiIiIiIiIuBElbUVERERERERERETciJK2IiIiIiIiIiIiIm5ESVsRERERERERERERN6KkrYiIiIiIiIiIiIgb8XJ1AM5gt9sBqKurc3EkIiIiIjKQutZ/XetBT6I1rIiIiMip53jXr4MiaVtfXw9AUlKSiyMREREREVeor68nNDTU1WH0idawIiIiIqeub1u/muyeWJbwNTabjUOHDhEcHIzJZBqwr1tXV0dSUhLFxcWEhIQM2NcdjPQsnUfP0rn0PJ1Hz9J59CydR8/SuVzxPO12O/X19SQkJGA2e1bnL1esYfU97zx6ls6jZ+lcep7Oo2fpPHqWzqXn6TzuvH4dFJW2ZrOZIUOGuOzrh4SE6H8SJ9GzdB49S+fS83QePUvn0bN0Hj1L5xro5+lpFbZdXLmG1fe88+hZOo+epXPpeTqPnqXz6Fk6l56n87jj+tWzyhFEREREREREREREBjklbUVERERERERERETciJK2J8HX15d77rkHX19fV4fi8fQsnUfP0rn0PJ1Hz9J59CydR8/SufQ83Z/+GzmPnqXz6Fk6l56n8+hZOo+epXPpeTqPOz/LQbERmYiIiIiIiIiIiMhgoUpbERERERERERERETeipK2IiIiIiIiIiIiIG1HSVkRERERERERERMSNKGkrIiIiIiIiIiIi4kaUtD1Bjz32GKmpqfj5+ZGdnc2GDRtcHZJHWrp0KVOnTiU4OJiYmBguvfRS9uzZ4+qwBoU//elPmEwmbr31VleH4pFKSkq45ppriIyMxN/fn/Hjx5OTk+PqsDyO1WrlrrvuIi0tDX9/f4YNG8Yf/vAHtAfm8fnss8+46KKLSEhIwGQy8cYbb/R43263c/fddxMfH4+/vz+zZ89m7969rgnWzf23Z9ne3s7tt9/O+PHjCQwMJCEhgblz53Lo0CHXBezGvu378mg///nPMZlMLFu2bMDik2+m9atzaP3af7R+PTlavzqP1rAnTutX59H61bk8cQ2rpO0JWLFiBYsXL+aee+5h06ZNTJw4kTlz5lBeXu7q0DzO6tWrWbhwIevXr+ejjz6ivb2d73znOzQ2Nro6NI+2ceNGnnjiCSZMmODqUDxSdXU1M2bMwNvbm/fee4+dO3fyl7/8hfDwcFeH5nH+/Oc/8/jjj/Poo4+ya9cu/vznP/PAAw/wyCOPuDo0j9DY2MjEiRN57LHHen3/gQce4OGHH2b58uV8+eWXBAYGMmfOHFpaWgY4Uvf3355lU1MTmzZt4q677mLTpk289tpr7Nmzh4svvtgFkbq/b/u+7PL666+zfv16EhISBigy+W+0fnUerV/7h9avJ0frV+fSGvbEaf3qPFq/OpdHrmHt0mdZWVn2hQsXOl5brVZ7QkKCfenSpS6ManAoLy+3A/bVq1e7OhSPVV9fbx8xYoT9o48+ss+aNcu+aNEiV4fkcW6//Xb7zJkzXR3GoHDhhRfar7vuuh5j3//+9+1XX321iyLyXID99ddfd7y22Wz2uLg4+4MPPugYq6mpsfv6+tpffPFFF0ToOb7+LHuzYcMGO2AvLCwcmKA81Dc9y4MHD9oTExPtO3bssKekpNj/+te/Dnhs0pPWr/1H69eTp/XrydP61bm0hnUOrV+dR+tX5/KUNawqbfuora2N3NxcZs+e7Rgzm83Mnj2bdevWuTCywaG2thaAiIgIF0fiuRYuXMiFF17Y43tU+uatt94iMzOTyy+/nJiYGCZPnsxTTz3l6rA80vTp01m1ahV5eXkAbN26lTVr1nD++ee7ODLPl5+fT2lpaY//10NDQ8nOztbPIyeora3FZDIRFhbm6lA8js1m49prr+VXv/oVY8eOdXU4gtav/U3r15On9evJ0/rVubSG7R9av/YvrV9PjjuuYb1cHYCnOXLkCFarldjY2B7jsbGx7N6920VRDQ42m41bb72VGTNmMG7cOFeH45FeeuklNm3axMaNG10dikc7cOAAjz/+OIsXL+Y3v/kNGzdu5JZbbsHHx4d58+a5OjyPcscdd1BXV8eoUaOwWCxYrVbuu+8+rr76aleH5vFKS0sBev151PWenJiWlhZuv/12rrrqKkJCQlwdjsf585//jJeXF7fccourQ5FOWr/2H61fT57Wr86h9atzaQ3bP7R+7T9av548d1zDKmkrbmPhwoXs2LGDNWvWuDoUj1RcXMyiRYv46KOP8PPzc3U4Hs1ms5GZmcn9998PwOTJk9mxYwfLly/XorePXn75Zf71r3/xwgsvMHbsWLZs2cKtt95KQkKCnqW4pfb2dq644grsdjuPP/64q8PxOLm5ufztb39j06ZNmEwmV4cj0u+0fj05Wr86j9avzqU1rHgSrV9PnruuYdUeoY+ioqKwWCyUlZX1GC8rKyMuLs5FUXm+m266iXfeeYdPP/2UIUOGuDocj5Sbm0t5eTlTpkzBy8sLLy8vVq9ezcMPP4yXlxdWq9XVIXqM+Ph4xowZ02Ns9OjRFBUVuSgiz/WrX/2KO+64gx/+8IeMHz+ea6+9lttuu42lS5e6OjSP1/UzRz+PnKdrwVtYWMhHH32kKoUT8Pnnn1NeXk5ycrLjZ1FhYSG/+MUvSE1NdXV4pyytX/uH1q8nT+tX59H61bm0hu0fWr86n9avzuGua1glbfvIx8eHjIwMVq1a5Riz2WysWrWKadOmuTAyz2S327npppt4/fXX+eSTT0hLS3N1SB7rnHPOYfv27WzZssVxZGZmcvXVV7NlyxYsFourQ/QYM2bMYM+ePT3G8vLySElJcVFEnqupqQmzueePGovFgs1mc1FEg0daWhpxcXE9fh7V1dXx5Zdf6ufRCeha8O7du5ePP/6YyMhIV4fkka699lq2bdvW42dRQkICv/rVr/jggw9cHd4pS+tX59L61Xm0fnUerV+dS2vY/qH1q3Np/eo87rqGVXuEE7B48WLmzZtHZmYmWVlZLFu2jMbGRubPn+/q0DzOwoULeeGFF3jzzTcJDg529LEJDQ3F39/fxdF5luDg4GN6qQUGBhIZGakea3102223MX36dO6//36uuOIKNmzYwJNPPsmTTz7p6tA8zkUXXcR9991HcnIyY8eOZfPmzTz00ENcd911rg7NIzQ0NLBv3z7H6/z8fLZs2UJERATJycnceuut/PGPf2TEiBGkpaVx1113kZCQwKWXXuq6oN3Uf3uW8fHxXHbZZWzatIl33nkHq9Xq+HkUERGBj4+Pq8J2S9/2ffn1vzB4e3sTFxfHyJEjBzpUOYrWr86j9avzaP3qPFq/OpfWsCdO61fn0frVuTxyDWuXE/LII4/Yk5OT7T4+PvasrCz7+vXrXR2SRwJ6PZ599llXhzYozJo1y75o0SJXh+GR3n77bfu4cePsvr6+9lGjRtmffPJJV4fkkerq6uyLFi2yJycn2/38/OxDhw6133nnnfbW1lZXh+YRPv30017/jJw3b57dbrfbbTab/a677rLHxsbafX197eecc459z549rg3aTf23Z5mfn/+NP48+/fRTV4fudr7t+/LrUlJS7H/9618HNEbpndavzqH1a//S+vXEaf3qPFrDnjitX51H61fn8sQ1rMlut9udmQQWERERERERERERkROnnrYiIiIiIiIiIiIibkRJWxERERERERERERE3oqStiIiIiIiIiIiIiBtR0lZERERERERERETEjShpKyIiIiIiIiIiIuJGlLQVERERERERERERcSNK2oqIiIiIiIiIiIi4ESVtRURERERERERERNyIkrYiIiIiIiIiIiIibkRJWxERERERERERERE3oqStiIiIiIiIiIiIiBtR0lZERERERERERETEjfw/WDZ02ufOKZ0AAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABtIAAAZGCAYAAAAyCzVuAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAqFNJREFUeJzs3Xu8VHW9P/732gzMNoUNanIpxVsh3hGNHymgaRLmLY9HET2KN9RjpqJoaClouVUUxSzN0iRDsc7XLK1M8nIwwxuKKBpholYKlqIo6iDs/fvD2IeJD8LAhrW05/PxWI9Hs9aatV4zzZ4NvnivlTU3NzcHAAAAAAAAUKUu7wAAAAAAAABQRIo0AAAAAAAASFCkAQAAAAAAQIIiDQAAAAAAABIUaQAAAAAAAJCgSAMAAAAAAIAERRoAAAAAAAAkKNIAAAAAAAAgQZEGAAAAAAAACYo0AABYyqxZs2LvvfeOhoaGyLIsbr/99lY9/gsvvBBZlsWNN97Yqsf9KNt9991j9913zzsGAAAALEORBgBA4fz5z3+OE044ITbffPOor6+PDh06xK677hrjxo2Ld999d42e+6ijjoqnnnoqvv3tb8dNN90UO++88xo939o0dOjQyLIsOnTokHwfZ82aFVmWRZZlcdlll9V8/JdffjlGjRoV06ZNa4W0a8emm24aWZbFXnvtldz+gx/8oOU9eeyxx5L7nHXWWZFlWRx66KHJ7UvK06Xf0/vvv7/luFOnTl3mOUOHDo311ltvFV4RAAAAramUdwAAAFjar371q/jP//zPKJfLceSRR8a2224bCxcujN///vcxYsSImDFjRlx33XVr5NzvvvtuTJkyJc4999z46le/ukbO0b1793j33Xejbdu2a+T4K1IqleKdd96JO+64Iw455JCqbRMmTIj6+vp47733VunYL7/8cowePTo23XTT2HHHHVf6eXffffcqna+11NfXx3333Rdz5syJLl26VG1b0XvS3Nwct9xyS2y66aZxxx13xFtvvRXt27ev6fyjRo2KO+64Y5XzAwAAsOaYSAMAoDBmz54dgwcPju7du8czzzwT48aNi+OPPz5OPvnkuOWWW+KZZ56JbbbZZo2d/+9//3tERHTs2HGNnSPLsqivr482bdqssXN8mHK5HHvuuWfccssty2y7+eab48tf/vJay/LOO+9ERES7du2iXbt2a+28/2rXXXeN9dZbL2699daq9X/961/jgQce+ND35P7774+//vWvccMNN8SiRYvitttuq+ncO+64Y9x5553x+OOPr1J2AAAA1ixFGgAAhXHppZfG22+/Hddff3107dp1me1bbrllnHrqqS2PFy1aFBdeeGFsscUWUS6XY9NNN41zzjknKpVK1fM23XTT2HfffeP3v/99fO5zn4v6+vrYfPPN48c//nHLPqNGjYru3btHRMSIESMiy7LYdNNNI+KDy+wt+d9LGzVqVGRZVrVu0qRJsdtuu0XHjh1jvfXWix49esQ555zTsn1590i79957o1+/frHuuutGx44d44ADDohnn302eb7nnnsuhg4dGh07doyGhoY4+uijW0qplTFkyJD4zW9+E2+88UbLukcffTRmzZoVQ4YMWWb/119/Pc4888zYbrvtYr311osOHTrEoEGD4sknn2zZ5/77749ddtklIiKOPvrolssWLnmdu+++e2y77bYxderU6N+/f3ziE59oeV/+9R5pRx11VNTX1y/z+gcOHBidOnWKl19+eaVf68qor6+Pgw46KG6++eaq9bfcckt06tQpBg4cuNznTpgwIbbeeuvYY489Yq+99ooJEybUdO5TTjklOnXqFKNGjVqV6AAAAKxhijQAAArjjjvuiM033zw+//nPr9T+xx13XJx33nmx0047xRVXXBEDBgyIxsbGGDx48DL7Pvfcc3HwwQfHF7/4xbj88sujU6dOMXTo0JgxY0ZERBx00EFxxRVXRETEYYcdFjfddFNceeWVNeWfMWNG7LvvvlGpVOKCCy6Iyy+/PPbff/948MEHP/R5v/vd72LgwIHx6quvxqhRo2L48OHxhz/8IXbdddd44YUXltn/kEMOibfeeisaGxvjkEMOiRtvvDFGjx690jkPOuigyLKsanrq5ptvjq222ip22mmnZfZ//vnn4/bbb4999903xo4dGyNGjIinnnoqBgwY0FJq9ezZMy644IKIiBg2bFjcdNNNcdNNN0X//v1bjvPaa6/FoEGDYscdd4wrr7wy9thjj2S+cePGxSc/+ck46qijYvHixRER8f3vfz/uvvvu+M53vhPdunVb6de6soYMGRKPPPJI/PnPf25Zd/PNN8fBBx+83MtwViqV+H//7//FYYcdFhEffG7uvffemDNnzkqft0OHDnH66afHHXfcYSoNAACggNwjDQCAQpg/f3787W9/iwMOOGCl9n/yySdj/Pjxcdxxx8UPfvCDiIj47//+79hoo43isssui/vuu6+qqJk5c2ZMnjw5+vXrFxEflFEbb7xx/OhHP4rLLrsstt9++5ZSY6eddoojjjii5tcwadKkWLhwYfzmN7+JDTfccKWfN2LEiFh//fVjypQpsf7660dExIEHHhi9evWK888/P8aPH1+1f69eveL6669vefzaa6/F9ddfH5dccslKna99+/ax7777xs033xzHHHNMNDU1xcSJE+Okk05K7r/ddtvFn/70p6ir+79/h/df//VfsdVWW8X1118f3/zmN6Nz584xaNCgOO+886Jv377J92/OnDlx7bXXxgknnPCh+Tp27BjXX399DBw4MC6++OIYMmRInHnmmXHggQeu0v8vK+MLX/hCdOnSJW655Zb4xje+Ec8++2xMmzYtxo0bF88//3zyOXfeeWe88cYbLcXtgQceGMOGDYuJEyfGaaedttLn/trXvhZXXHFFjB49On7xi1+0xssBAACglZhIAwCgEObPnx8RH5Q8K+PXv/51REQMHz68av0ZZ5wRERG/+tWvqtZvvfXWLSVaRMQnP/nJ6NGjx3JLklWx5N5qv/jFL6KpqWmlnvPKK6/EtGnTYujQoS0lWkTE9ttvH1/84hdbXufSTjzxxKrH/fr1i9dee63lPVwZQ4YMifvvvz/mzJnTMkWVuqxjxAf3VVtSoi1evDhee+21lstW1jJFVS6X4+ijj16pfffee+844YQT4oILLoiDDjoo6uvr4/vf//5Kn6tWbdq0iUMOOaTl3nETJkyIjTfeuOoz868mTJgQO++8c2y55ZYR8cFn98tf/nLNl3dsaGiI0047LX75y1/GE088seovAgAAgFanSAMAoBA6dOgQERFvvfXWSu3/4osvRl1dXUuJsUSXLl2iY8eO8eKLL1at32STTZY5RqdOnWLevHmrmHhZhx56aOy6665x3HHHRefOnWPw4MHx05/+9ENLtSU5e/Toscy2nj17xj/+8Y9YsGBB1fp/fS2dOnWKiKjpteyzzz7Rvn37uPXWW2PChAmxyy67LPNeLtHU1BRXXHFFfOYzn4lyuRwbbrhhfPKTn4zp06fHm2++udLn/NSnPhXt2rVb6f0vu+yyWH/99WPatGlx1VVXxUYbbbTC5/z973+POXPmtCxvv/32Sp9vyJAh8cwzz8STTz4ZN998cwwePHiZe+At8cYbb8Svf/3rGDBgQDz33HMty6677hqPPfZY/OlPf1rp80ZEnHrqqdGxY0f3SgMAACgYRRoAAIXQoUOH6NatWzz99NM1PW95Rce/atOmTXJ9c3PzKp9jyf27llhnnXVi8uTJ8bvf/S7+67/+K6ZPnx6HHnpofPGLX1xm39WxOq9liXK5HAcddFCMHz8+fv7zny93Gi0i4qKLLorhw4dH//794yc/+Un89re/jUmTJsU222yz0pN3ER+8P7V44okn4tVXX42IiKeeemqlnrPLLrtE165dW5bLLrtspc/Xp0+f2GKLLeK0006L2bNnf+h78rOf/SwqlUpcfvnl8ZnPfKZlWTIhaSoNAADg48E90gAAKIx99903rrvuupgyZUr07dv3Q/ft3r17NDU1xaxZs6Jnz54t6+fOnRtvvPFGdO/evdVyderUKd54441l1v/r1FtERF1dXey5556x5557xtixY+Oiiy6Kc889N+67777Ya6+9kq8j4oN7uP2rP/7xj7HhhhvGuuuuu/ovImHIkCFxww03RF1dXct9vlL+53/+J/bYY4+q+7JFfDCVtfS94Fa21FwZCxYsiKOPPjq23nrr+PznPx+XXnppfOUrX4lddtnlQ583YcKEePfdd1seb7755jWd97DDDotvfetb0bNnz9hxxx0/9DzbbrttnH/++cts+/73vx8333xzjB49uqZzn3baaXHllVfG6NGjWy4TCgAAQL4UaQAAFMZZZ50VEyZMiOOOOy7uvffe6Ny5c9X2P//5z3HnnXfGqaeeGvvss0+cc845ceWVV1bdO2vs2LEREfHlL3+51XJtscUW8eabb8b06dNj++23j4gP7m3285//vGq/119/veo+ZxHRUsZUKpXksbt27Ro77rhjjB8/PkaOHNlSoDz99NNx9913xxFHHNFqr+Nf7bHHHnHhhRfGBhtsEF26dFnufm3atFlm2u1nP/tZ/O1vf6u6HOSSwi9VOtbq7LPPjpdeeikeeuih6NGjR9xzzz1x1FFHxRNPPBHlcnm5z9t1111X67zHHXdctGnTJvr06bPcff7yl7/E5MmTY/To0XHwwQcvs33hwoVx+OGHx8MPP/yhx/lXS6bSRo0aFTvssMMq5QcAAKB1KdIAACiMLbbYIm6++eY49NBDo2fPnnHkkUfGtttuGwsXLow//OEP8bOf/SyGDh0aERE77LBDHHXUUXHdddfFG2+8EQMGDIhHHnkkxo8fHwceeGDssccerZZr8ODBcfbZZ8dXvvKV+NrXvhbvvPNOXHPNNfHZz342Hn/88Zb9Lrjggpg8eXJ8+ctfju7du8err74a3/ve9+LTn/507Lbbbss9/pgxY2LQoEHRt2/fOPbYY+Pdd9+N73znO9HQ0LBG75lVV1cX3/jGN1a437777hsXXHBBHH300fH5z38+nnrqqZgwYcIy015bbLFFdOzYMa699tpo3759rLvuutGnT5/YbLPNasp17733xve+9704//zzY6eddoqIiB/96Eex++67xze/+c249NJLazpeLbp3777C9/zmm2+O5ubm2H///ZPb99lnnyiVSjFhwoSairSID+6VdsUVV8STTz65xiYRAQAAWHnukQYAQKHsv//+MX369Dj44IPjF7/4RZx88snx9a9/PV544YW4/PLL46qrrmrZ94c//GGMHj06Hn300TjttNPi3nvvjZEjR8bEiRNbNdMGG2wQP//5z+MTn/hEnHXWWTF+/PhobGyM/fbbb5nsm2yySdxwww1x8sknx3e/+93o379/3HvvvdHQ0LDc4++1115x1113xQYbbBDnnXdeXHbZZfH//X//Xzz44IM1l1BrwjnnnBNnnHFG/Pa3v41TTz01Hn/88fjVr34VG2+8cdV+bdu2jfHjx0ebNm3ixBNPjMMOOyz+93//t6ZzvfXWW3HMMcdEr1694txzz21Z369fvzj11FPj8ssvj4ceeqhVXteqmjBhQmyyySbLnRrr2LFj7LbbbnHrrbfGokWLajp2x44d47TTTmuFlAAAALSGrLmWO5IDAAAAAADAvwkTaQAAAAAAAJCgSAMAAAAAAIAERRoAAAAAAAAkKNIAAAAAAAAgQZEGAAAAAAAACYo0AAAAAAAASFCkAQAAAAAAQEIp7wBLrNPrq3lHKIx5j16ddwQAAAAAAAqivjD/Jf/fh86idu8+8fHsNkykAQAAAAAAQIIiDQAAAAAAABIUaQAAAAAAAJCgSAMAAAAAAIAERRoAAAAAAAAklPIOAAAAAAAAUCiZOSQ+4JMAAAAAAAAACYo0AAAAAAAASFCkAQAAAAAAQIIiDQAAAAAAABIUaQAAAAAAAJBQyjsAAAAAAABAoWRZ3gkoCBNpAAAAAAAAkKBIAwAAAAAAgARFGgAAAAAAACQo0gAAAAAAACBBkQYAAAAAAAAJpbwDAAAAAAAAFEpmDokP+CQAAAAAAABAgiINAAAAAAAAEhRpAAAAAAAAkKBIAwAAAAAAgARFGgAAAAAAACSU8g4AAAAAAABQKFmWdwIKwkQaAAAAAAAAJCjSAAAAAAAAIEGRBgAAAAAAAAmKNAAAAAAAAEhQpAEAAAAAAEBCKe8AAAAAAAAAhZKZQ+IDPgkAAAAAAACQoEgDAAAAAACAhJov7fiPf/wjbrjhhpgyZUrMmTMnIiK6dOkSn//852Po0KHxyU9+stVDAgAAAAAAwNpW00Tao48+Gp/97GfjqquuioaGhujfv3/0798/Ghoa4qqrroqtttoqHnvssRUep1KpxPz586uW5qbFq/wiAAAAAAAAoLXVNJF2yimnxH/+53/GtddeG1mWVW1rbm6OE088MU455ZSYMmXKhx6nsbExRo8eXbWuTeddom3Xz9USBwAAAAAAANaYrLm5uXlld15nnXXiiSeeiK222iq5/Y9//GP06tUr3n333Q89TqVSiUqlUrVuo35nR1bXZmWjfKzNe/TqvCMAAAAAAFAQ9TXfpInVtU6fEXlH+Mh59+ExeUdYI2r68evSpUs88sgjyy3SHnnkkejcufMKj1Mul6NcLletU6IBAAAAAABQJDUVaWeeeWYMGzYspk6dGnvuuWdLaTZ37ty455574gc/+EFcdtllayQoAAAAAAAArE01FWknn3xybLjhhnHFFVfE9773vVi8eHFERLRp0yZ69+4dN954YxxyyCFrJCgAAAAAAACsTTVfWfXQQw+NQw89NN5///34xz/+ERERG264YbRt27bVwwEAAAAAAEBeVvkWhW3bto2uXbu2ZhYAAAAAAAAojFUu0gAAAAAAAD6Wsrq8E1AQPgkAAAAAAACQoEgDAAAAAACABEUaAAAAAAAAJCjSAAAAAAAAIEGRBgAAAAAAAAmlvAMAAAAAAAAUSpblnYCCMJEGAAAAAAAACYo0AAAAAAAASFCkAQAAAAAAQIIiDQAAAAAAABIUaQAAAAAAAJBQyjsAAAAAAABAoWTmkPiATwIAAAAAAAAkKNIAAAAAAAAgQZEGAAAAAAAACYo0AAAAAAAASFCkAQAAAAAAQEIp7wAAAAAAAACFkmV5J6AgTKQBAAAAAABAgiINAAAAAAAAEhRpAAAAAAAAkKBIAwAAAAAAgARFGgAAAAAAACSU8g4AAAAAAABQKJk5JD7gkwAAAAAAAAAJijQAAAAAAABIUKQBAAAAAABAQmHukTbv0avzjlAYnXb5at4RCsVnAwAAAAAAyIOJNAAAAAAAAEgozEQaAAAAAABAIWRZ3gkoCBNpAAAAAAAAkKBIAwAAAAAAgARFGgAAAAAAACQo0gAAAAAAACBBkQYAAAAAAAAJpbwDAAAAAAAAFEpmDokP+CQAAAAAAABAgiINAAAAAAAAEhRpAAAAAAAAkKBIAwAAAAAAgARFGgAAAAAAACSU8g4AAAAAAABQKJk5JD7gkwAAAAAAAAAJijQAAAAAAABIUKQBAAAAAABAgiINAAAAAAAAEhRpAAAAAAAAkKBIAwAAAAAAgIRS3gEAAAAAAAAKpS7LOwEFYSINAAAAAAAAEhRpAAAAAAAAkKBIAwAAAAAAgARFGgAAAAAAACQo0gAAAAAAAFhrJk+eHPvtt19069YtsiyL22+/vWp7lmXJZcyYMS37bLrppstsv/jii6uOM3369OjXr1/U19fHxhtvHJdeemnNWUur9AoBAAAAAAA+rjJzSGvSggULYocddohjjjkmDjrooGW2v/LKK1WPf/Ob38Sxxx4b//Ef/1G1/oILLojjjz++5XH79u1b/vf8+fNj7733jr322iuuvfbaeOqpp+KYY46Jjh07xrBhw1Y6qyINAAAAAACAtWbQoEExaNCg5W7v0qVL1eNf/OIXsccee8Tmm29etb59+/bL7LvEhAkTYuHChXHDDTdEu3btYptttolp06bF2LFjayrSVKoAAAAAAAAU0ty5c+NXv/pVHHvssctsu/jii2ODDTaIXr16xZgxY2LRokUt26ZMmRL9+/ePdu3atawbOHBgzJw5M+bNm7fS5zeRBgAAAAAAwGqpVCpRqVSq1pXL5SiXy6t13PHjx0f79u2XuQTk1772tdhpp51i/fXXjz/84Q8xcuTIeOWVV2Ls2LERETFnzpzYbLPNqp7TuXPnlm2dOnVaqfObSAMAAAAAAGC1NDY2RkNDQ9XS2Ni42se94YYb4vDDD4/6+vqq9cOHD4/dd989tt9++zjxxBPj8ssvj+985zvLlHmry0QaAAAAAAAAq2XkyJExfPjwqnWrO432wAMPxMyZM+PWW29d4b59+vSJRYsWxQsvvBA9evSILl26xNy5c6v2WfJ4efdVS1GkAQAAAAAALC3L8k7wkdMal3H8V9dff3307t07dthhhxXuO23atKirq4uNNtooIiL69u0b5557brz//vvRtm3biIiYNGlS9OjRY6Uv6xixBi7t+Je//CWOOeaYD92nUqnE/Pnzq5bWHrUDAAAAAACgeN5+++2YNm1aTJs2LSIiZs+eHdOmTYuXXnqpZZ/58+fHz372szjuuOOWef6UKVPiyiuvjCeffDKef/75mDBhQpx++ulxxBFHtJRkQ4YMiXbt2sWxxx4bM2bMiFtvvTXGjRu3zNTcirR6kfb666/H+PHjP3Sf1HUyx1yy+tfJBAAAAAAAoNgee+yx6NWrV/Tq1SsiPrjfWa9eveK8885r2WfixInR3Nwchx122DLPL5fLMXHixBgwYEBss8028e1vfztOP/30uO6661r2aWhoiLvvvjtmz54dvXv3jjPOOCPOO++8GDZsWE1Zs+bm5uZanvDLX/7yQ7c///zzccYZZ8TixYuXu0+lUllmAq25TeuP/H1Uddrlq3lHKJR5j16ddwQAAAAAgNzUu0nTWrfOnhflHeEj5917zsk7whpR84/fgQceGFmWxYf1b9kKrh2auk7me4tqTQIAAAAAAABrTs2XduzatWvcdttt0dTUlFwef/zxNZETAAAAAAAA1qqai7TevXvH1KlTl7t9RdNqAAAAAAAAhZbVWWpdPqZqvrTjiBEjYsGCBcvdvuWWW8Z99923WqEAAAAAAAAgbzUXaf369fvQ7euuu24MGDBglQMBAAAAAABAEXx8Z+0AAAAAAABgNSjSAAAAAAAAIEGRBgAAAAAAAAk13yMNAAAAAADgYy3L8k5AQZhIAwAAAAAAgARFGgAAAAAAACQo0gAAAAAAACBBkQYAAAAAAAAJijQAAAAAAABIKOUdAAAAAAAAoFAyc0h8wCcBAAAAAAAAEhRpAAAAAAAAkKBIAwAAAAAAgARFGgAAAAAAACQo0gAAAAAAACChlHcAAAAAAACAQsmyvBNQECbSAAAAAAAAIEGRBgAAAAAAAAmKNAAAAAAAAEhQpAEAAAAAAECCIg0AAAAAAAASSnkHAAAAAAAAKJTMHBIf8EkAAAAAAACABEUaAAAAAAAAJCjSAAAAAAAAIEGRBgAAAAAAAAmKNAAAAAAAAEgo5R0AAAAAAACgULIs7wQURGGKtEWLm/OOUBjzHr067wiF0mP4HXlHKJSZY/fLO0JhNDX53qjid3uVOn/YadHsR4Xl8GNSzc8Ky/PuwsV5RyiUddq1yTtCoTSHL48l/Pmr2hvvvJ93hELp+Im2eUeAwvPfOarV1fm9AhSDSzsCAAAAAABAgiINAAAAAAAAEhRpAAAAAAAAkKBIAwAAAAAAgIRS3gEAAAAAAAAKJTOHxAd8EgAAAAAAACBBkQYAAAAAAAAJijQAAAAAAABIUKQBAAAAAABAgiINAAAAAAAAEkp5BwAAAAAAACiULMs7AQVhIg0AAAAAAAASFGkAAAAAAACQoEgDAAAAAACABEUaAAAAAAAAJCjSAAAAAAAAIKGUdwAAAAAAAIBCycwh8QGfBAAAAAAAAEhQpAEAAAAAAECCIg0AAAAAAAASFGkAAAAAAACQoEgDAAAAAACAhFLeAQAAAAAAAAolM4fEB3wSAAAAAAAAIEGRBgAAAAAAAAmKNAAAAAAAAEhQpAEAAAAAAECCIg0AAAAAAAASSnkHAAAAAAAAKJQsyzsBBWEiDQAAAAAAABIUaQAAAAAAAJCgSAMAAAAAAIAERRoAAAAAAAAk1Fykvfvuu/H73/8+nnnmmWW2vffee/HjH/94hceoVCoxf/78qqVSqdQaBQAAAAAAANaYmoq0P/3pT9GzZ8/o379/bLfddjFgwIB45ZVXWra/+eabcfTRR6/wOI2NjdHQ0FC1XH5pY+3pAQAAAAAAWltWZ6l1+Ziq6ZWdffbZse2228arr74aM2fOjPbt28euu+4aL730Uk0nHTlyZLz55ptVyxlnjazpGAAAAAAAALAmlWrZ+Q9/+EP87ne/iw033DA23HDDuOOOO+K///u/o1+/fnHffffFuuuuu1LHKZfLUS6Xq9a9XWmuJQoAAAAAAACsUTVNpL377rtRKv1f95ZlWVxzzTWx3377xYABA+JPf/pTqwcEAAAAAACAPNQ0kbbVVlvFY489Fj179qxaf/XVV0dExP777996yQAAAAAAACBHNU2kfeUrX4lbbrklue3qq6+Oww47LJqbXaIRAAAAAACAj76suSDNl3uk/Z9SmyzvCIXSY/gdeUcolJlj98s7QmE0NfneqOKro0pd5g1Zohi/6SkiPybV/KywPO8uXJx3hEJZp12bvCMUSnP48ljCn7+qvfHO+3lHKJSOn2ibdwQoPP+do1pdnd8rS6uv6dpytIZ1Drwu7wgfOe/ePizvCGtETRNpAAAAAAAA8O9CkQYAAAAAAAAJijQAAAAAAABIUKQBAAAAAABAgiINAAAAAAAAEkp5BwAAAAAAACiUzBwSH/BJAAAAAAAAgARFGgAAAAAAACQo0gAAAAAAACBBkQYAAAAAAAAJijQAAAAAAABIKOUdAAAAAAAAoFCyLO8EFISJNAAAAAAAAEhQpAEAAAAAAECCIg0AAAAAAAASFGkAAAAAAACQoEgDAAAAAACAhFLeAQAAAAAAAIoky7K8I1AQJtIAAAAAAAAgQZEGAAAAAAAACYo0AAAAAAAASFCkAQAAAAAAQIIiDQAAAAAAABJKeQcAAAAAAAAokizL8o5AQZhIAwAAAAAAgARFGgAAAAAAACQo0gAAAAAAACBBkQYAAAAAAAAJpbwDLNGmzo37SJs5dr+8IxRKpwOuyjtCYbx2+yl5R4CPBPfGhZXjZ4XlKbf17w+X5melWhbeENLWadsm7wjAR0zmlyxAIRWmSAMAAAAAACgE3Tb/5J9WAgAAAAAAQIIiDQAAAAAAABIUaQAAAAAAAJCgSAMAAAAAAIAERRoAAAAAAAAklPIOAAAAAAAAUCRZluUdgYIwkQYAAAAAAAAJijQAAAAAAABIUKQBAAAAAABAgiINAAAAAAAAEhRpAAAAAAAAkFDKOwAAAAAAAECRZFmWdwQKwkQaAAAAAAAAJCjSAAAAAAAAIEGRBgAAAAAAAAmKNAAAAAAAAEhQpAEAAAAAAEBCKe8AAAAAAAAARZJlWd4RKAgTaQAAAAAAAJCgSAMAAAAAAIAERRoAAAAAAAAkKNIAAAAAAAAgQZEGAAAAAAAACaW8AwAAAAAAABRJlmV5R6AgTKQBAAAAAABAgiINAAAAAAAAEhRpAAAAAAAAkKBIAwAAAAAAgARFGgAAAAAAACSU8g4AAAAAAABQKFneASgKE2kAAAAAAACQoEgDAAAAAACAhJov7fjss8/GQw89FH379o2tttoq/vjHP8a4ceOiUqnEEUccEV/4whdWeIxKpRKVSqVqXVNdOcrlcq1xAAAAAAAAYI2oaSLtrrvuih133DHOPPPM6NWrV9x1113Rv3//eO655+LFF1+MvffeO+69994VHqexsTEaGhqqljGXNK7yiwAAAAAAAIDWVlORdsEFF8SIESPitddeix/96EcxZMiQOP7442PSpElxzz33xIgRI+Liiy9e4XFGjhwZb775ZtUy4uyRq/wiAAAAAAAAoLXVVKTNmDEjhg4dGhERhxxySLz11ltx8MEHt2w//PDDY/r06Ss8Trlcjg4dOlQtLusIAAAAAAAUQZZllhqXj6uairSIaHkz6urqor6+PhoaGlq2tW/fPt58883WSwcAAAAAAAA5qalI23TTTWPWrFktj6dMmRKbbLJJy+OXXnopunbt2nrpAAAAAAAAICelWnY+6aSTYvHixS2Pt91226rtv/nNb+ILX/hC6yQDAAAAAACAHNVUpJ144okfuv2iiy5arTAAAAAAAABQFDXfIw0AAAAAAAD+HdQ0kQYAAAAAAPBxl2VZ3hEoCBNpAAAAAAAAkKBIAwAAAAAAgARFGgAAAAAAACQo0gAAAAAAACBBkQYAAAAAAAAJpbwDAAAAAAAAFEmWZXlHoCBMpAEAAAAAAECCIg0AAAAAAAASFGkAAAAAAACQoEgDAAAAAACABEUaAAAAAAAAJJTyDgAAAAAAAFAkWZblHYGCMJEGAAAAAAAACYo0AAAAAAAASFCkAQAAAAAAQIIiDQAAAAAAABIUaQAAAAAAAJBQyjsAAAAAAABAoWR5B6AoTKQBAAAAAABAgiINAAAAAAAAEhRpAAAAAAAAkKBIAwAAAAAAgARFGgAAAAAAACSU8g4AAAAAAABQJFmW5R2BgjCRBgAAAAAAAAmKNAAAAAAAAEhwaUcKr6m5Oe8IhTLvF1/LO0Jh9DzzV3lHKJQZY/bJOwIF5Wu0miszsDx+Vqo1hzdkiaYm78XSfI1Wq6vzjpD21nuL8o5QKOW27fKOAIX3/uKmvCMUSruSGRCgGHwbAQAAAAAAQIIiDQAAAAAAABJc2hEAAAAAAGApmXtD8E8m0gAAAAAAACBBkQYAAAAAAAAJijQAAAAAAABIUKQBAAAAAABAgiINAAAAAAAAEkp5BwAAAAAAACiSLMvyjkBBmEgDAAAAAACABEUaAAAAAAAAJCjSAAAAAAAAIEGRBgAAAAAAAAmKNAAAAAAAAEgo5R0AAAAAAACgULK8A1AUJtIAAAAAAAAgQZEGAAAAAAAACYo0AAAAAAAASFCkAQAAAAAAQIIiDQAAAAAAABJKeQcAAAAAAAAokizL8o5AQZhIAwAAAAAAYK2ZPHly7LffftGtW7fIsixuv/32qu1Dhw6NLMuqli996UtV+7z++utx+OGHR4cOHaJjx45x7LHHxttvv121z/Tp06Nfv35RX18fG2+8cVx66aU1Z1WkAQAAAAAAsNYsWLAgdthhh/jud7+73H2+9KUvxSuvvNKy3HLLLVXbDz/88JgxY0ZMmjQp7rzzzpg8eXIMGzasZfv8+fNj7733ju7du8fUqVNjzJgxMWrUqLjuuutqyurSjgAAAAAAAKw1gwYNikGDBn3oPuVyObp06ZLc9uyzz8Zdd90Vjz76aOy8884REfGd73wn9tlnn7jsssuiW7duMWHChFi4cGHccMMN0a5du9hmm21i2rRpMXbs2KrCbUVMpAEAAAAAALBaKpVKzJ8/v2qpVCqrfLz7778/Ntpoo+jRo0ecdNJJ8dprr7VsmzJlSnTs2LGlRIuI2GuvvaKuri4efvjhln369+8f7dq1a9ln4MCBMXPmzJg3b95K51CkAQAAAAAAsFoaGxujoaGhamlsbFylY33pS1+KH//4x3HPPffEJZdcEv/7v/8bgwYNisWLF0dExJw5c2KjjTaqek6pVIr1118/5syZ07JP586dq/ZZ8njJPivDpR0BAAAAAACWkmVZ3hE+ckaOHBnDhw+vWlcul1fpWIMHD27539ttt11sv/32scUWW8T9998fe+6552rlrJWJNAAAAAAAAFZLuVyODh06VC2rWqT9q8033zw23HDDeO655yIiokuXLvHqq69W7bNo0aJ4/fXXW+6r1qVLl5g7d27VPkseL+/eaymKNAAAAAAAAArrr3/9a7z22mvRtWvXiIjo27dvvPHGGzF16tSWfe69995oamqKPn36tOwzefLkeP/991v2mTRpUvTo0SM6deq00udWpAEAAAAAALDWvP322zFt2rSYNm1aRETMnj07pk2bFi+99FK8/fbbMWLEiHjooYfihRdeiHvuuScOOOCA2HLLLWPgwIEREdGzZ8/40pe+FMcff3w88sgj8eCDD8ZXv/rVGDx4cHTr1i0iIoYMGRLt2rWLY489NmbMmBG33nprjBs3bpnLT66IIg0AAAAAAIC15rHHHotevXpFr169IiJi+PDh0atXrzjvvPOiTZs2MX369Nh///3js5/9bBx77LHRu3fveOCBB6ouFTlhwoTYaqutYs8994x99tkndtttt7juuutatjc0NMTdd98ds2fPjt69e8cZZ5wR5513XgwbNqymrKXWeMHNzc1uvAcAAAAAAMAK7b777tHc3Lzc7b/97W9XeIz1118/br755g/dZ/vtt48HHnig5nxLa5UirVwux5NPPhk9e/ZsjcMBAAAAAADkxvAQS9RUpC3vupGLFy+Oiy++ODbYYIOIiBg7duyHHqdSqUSlUqla11RXrhrJAwAAAAAAgDzVVKRdeeWVscMOO0THjh2r1jc3N8ezzz4b66677kq1tI2NjTF69Oiqded84/z4xnmjaokDAAAAAAAAa0xNRdpFF10U1113XVx++eXxhS98oWV927Zt48Ybb4ytt956pY4zcuTIZabbmupMowEAAAAAAFAcNRVpX//612PPPfeMI444Ivbbb79obGyMtm3b1nzScnnZyzi++37NhwEAAAAAAIA1pq7WJ+yyyy4xderU+Pvf/x4777xzPP300266BwAAAAAAwMdOTRNpS6y33noxfvz4mDhxYuy1116xePHi1s4FAAAAAACQCwNELLFKRdoSgwcPjt122y2mTp0a3bt3b61MAAAAAAAAkLvVKtIiIj796U/Hpz/96dbIAgAAAAAAAIVR8z3SAAAAAAAA4N+BIg0AAAAAAAASFGkAAAAAAACQsNr3SAMAAAAAAPhYyfIOQFGYSAMAAAAAAIAERRoAAAAAAAAkKNIAAAAAAAAgQZEGAAAAAAAACYo0AAAAAAAASCjlHQAAAAAAAKBIsizLOwIFYSINAAAAAAAAEhRpAAAAAAAAkKBIAwAAAAAAgARFGgAAAAAAACQo0gAAAAAAACChlHcAAAAAAACAIsmyLO8IFISJNAAAAAAAAEhQpAEAAAAAAECCIg0AAAAAAAASFGkAAAAAAACQoEgDAAAAAACAhFLeAQAAAAAAAIoky7K8I1AQJtIAAAAAAAAgQZEGAAAAAAAACYo0AAAAAAAASFCkAQAAAAAAQIIiDQAAAAAAABJKeQcAAAAAAAAolCzvABRFYYq0zIeS5WnOO0DB+FlpMWPMPnlHKJQvXD457wiFct8ZA/KOUBiLmpryjlAobdsYyF+iqdkv2SrejiqLfT5avL/Ye7G0ku/RKgsqi/KOUBj1bdvkHaFQ2pX85Y00v2Kr+W+C/6dU580AKCJ/AwIAAAAAAIAERRoAAAAAAAAkKNIAAAAAAAAgQZEGAAAAAAAACaW8AwAAAAAAABRJlmV5R6AgTKQBAAAAAABAgiINAAAAAAAAEhRpAAAAAAAAkKBIAwAAAAAAgARFGgAAAAAAACSU8g4AAAAAAABQJFmW5R2BgjCRBgAAAAAAAAmKNAAAAAAAAEhQpAEAAAAAAECCIg0AAAAAAAASFGkAAAAAAACQUMo7AAAAAAAAQJFkWZZ3BArCRBoAAAAAAAAkKNIAAAAAAAAgQZEGAAAAAAAACYo0AAAAAAAASFCkAQAAAAAAQEIp7wAAAAAAAABFkmVZ3hEoCBNpAAAAAAAAkKBIAwAAAAAAgARFGgAAAAAAACQo0gAAAAAAACBBkQYAAAAAAAAJpbwDAAAAAAAAFEqWdwCKwkQaAAAAAAAAJCjSAAAAAAAAIEGRBgAAAAAAAAmKNAAAAAAAAEgorc6TFyxYED/96U/jueeei65du8Zhhx0WG2ywwQqfV6lUolKpVK1rblOOcrm8OnEAAAAAAACg1dQ0kbb11lvH66+/HhERf/nLX2LbbbeN008/PSZNmhTnn39+bL311jF79uwVHqexsTEaGhqqljGXNK7aKwAAAAAAAGhFWZZZalw+rmoq0v74xz/GokWLIiJi5MiR0a1bt3jxxRfjkUceiRdffDG23377OPfcc1d4nJEjR8abb75ZtYw4e+SqvQIAAAAAAABYA1b50o5TpkyJa6+9NhoaGiIiYr311ovRo0fH4MGDV/jccnnZyzi+t2hVkwAAAAAAAEDrq2kiLSJaxvPee++96Nq1a9W2T33qU/H3v/+9dZIBAAAAAABAjmqeSNtzzz2jVCrF/PnzY+bMmbHtttu2bHvxxRdjgw02aNWAAAAAAAAAkIeairTzzz+/6vF6661X9fiOO+6Ifv36rX4qAAAAAAAAyNlqFWn/asyYMasVBgAAAAAAIG9LbnMFNd8jDQAAAAAAAP4dKNIAAAAAAAAgQZEGAAAAAAAACYo0AAAAAAAASFCkAQAAAAAAQEIp7wAAAAAAAABFkmV5J6AoTKQBAAAAAABAgiINAAAAAAAAEhRpAAAAAAAAkKBIAwAAAAAAgARFGgAAAAAAACSU8g4AAAAAAABQJFmW5R2BgjCRBgAAAAAAAAmKNAAAAAAAAEhQpAEAAAAAAECCIg0AAAAAAAASFGkAAAAAAACQUMo7AAAAAAAAQJFkWd4JKAoTaQAAAAAAAJCgSAMAAAAAAIAERRoAAAAAAAAkKNIAAAAAAAAgQZEGAAAAAAAACaW8AwAAAAAAABRJlmV5R6AgTKQBAAAAAABAgiINAAAAAAAAEhRpAAAAAAAAkKBIAwAAAAAAgIRS3gFgRerq3NSRtCx8NpZ2/5kD8o5QKBsff2veEQrjmav+I+8IhdJ2Hf+OaIk6N06u0hTNeUcolDZ+z7aoa+u9YPnKpTZ5RyiMNv7uVmWddj4bpPkjGMuT+XAAFJIiDQAAAAAAYCm6bZbwT7IBAAAAAAAgQZEGAAAAAAAACYo0AAAAAAAASFCkAQAAAAAAQIIiDQAAAAAAABJKeQcAAAAAAAAokrq6LO8IFISJNAAAAAAAAEhQpAEAAAAAAECCIg0AAAAAAAASFGkAAAAAAACQoEgDAAAAAACAhFLeAQAAAAAAAIoky/JOQFGYSAMAAAAAAIAERRoAAAAAAAAkKNIAAAAAAAAgQZEGAAAAAAAACYo0AAAAAAAASCjlHQAAAAAAAKBIsizLOwIFYSINAAAAAAAAEhRpAAAAAAAAkKBIAwAAAAAAgARFGgAAAAAAACQo0gAAAAAAACChlHcAAAAAAACAIsmyvBNQFCbSAAAAAAAAIEGRBgAAAAAAAAmKNAAAAAAAAEhQpAEAAAAAAECCIg0AAAAAAAASSnkHAAAAAAAAKJIsy/KOQEGYSAMAAAAAAIAERRoAAAAAAAAk1FSkPf744zF79uyWxzfddFPsuuuusfHGG8duu+0WEydOXKnjVCqVmD9/ftVSqVRqSw4AAAAAAABrUE1F2tFHHx1//vOfIyLihz/8YZxwwgmx8847x7nnnhu77LJLHH/88XHDDTes8DiNjY3R0NBQtYy5pHHVXgEAAAAAAACsAaVadp41a1Z85jOfiYiI733vezFu3Lg4/vjjW7bvsssu8e1vfzuOOeaYDz3OyJEjY/jw4VXrmtuUa4kCAAAAAAAAa1RNRdonPvGJ+Mc//hHdu3ePv/3tb/G5z32uanufPn2qLv24POVyOcrl6uLsvUW1JAEAAAAAAFgzsizLOwIFUdOlHQcNGhTXXHNNREQMGDAg/ud//qdq+09/+tPYcsstWy8dAAAAAAAA5KSmibRLLrkkdt111xgwYEDsvPPOcfnll8f9998fPXv2jJkzZ8ZDDz0UP//5z9dUVgAAAAAAAFhrappI69atWzzxxBPRt2/fuOuuu6K5uTkeeeSRuPvuu+PTn/50PPjgg7HPPvusqawAAAAAAACw1tQ0kRYR0bFjx7j44ovj4osvXhN5AAAAAAAAoBBqmkgDAAAAAACAfxc1T6QBAAAAAAB8nGVZ3gkoChNpAAAAAAAAkKBIAwAAAAAAgARFGgAAAAAAACQo0gAAAAAAACBBkQYAAAAAAAAJpbwDAAAAAAAAFEmWZXlHoCBMpAEAAAAAAECCIg0AAAAAAAASFGkAAAAAAACQoEgDAAAAAACABEUaAAAAAAAAJCjSAAAAAAAAIKGUdwAAAAAAAIAiybK8E1AUJtIAAAAAAAAgQZEGAAAAAAAACYo0AAAAAAAASFCkAQAAAAAAQIIiDQAAAAAAABJKeQcAAAAAAAAokizL8o5AQZhIAwAAAAAAgARFGgAAAAAAACQo0gAAAAAAACBBkQYAAAAAAAAJijQAAAAAAABIKOUdAAAAAAAAoEiyLO8EFIWJNAAAAAAAAEgwkQZ8ZPlXIdWamprzjlAoL153SN4RCmPgVQ/mHaFQJp26W94RCqPZ1wYfwq+V//P+4qa8IxRKfds2eUcolHkLFuYdoTAaPtE27wiFsqCyKO8IhdJp3XZ5R4DC8985AIrJRBoAAAAAAAAkKNIAAAAAAAAgQZEGAAAAAAAACe6RBgAAAAAAsJTMjQv5JxNpAAAAAAAAkKBIAwAAAAAAgARFGgAAAAAAACQo0gAAAAAAACBBkQYAAAAAAAAJpbwDAAAAAAAAFEmW5Z2AojCRBgAAAAAAAAmKNAAAAAAAAEhQpAEAAAAAAECCIg0AAAAAAAASFGkAAAAAAACQUMo7AAAAAAAAQJFkWZZ3BArCRBoAAAAAAAAkKNIAAAAAAABYayZPnhz77bdfdOvWLbIsi9tvv71l2/vvvx9nn312bLfddrHuuutGt27d4sgjj4yXX3656hibbrppZFlWtVx88cVV+0yfPj369esX9fX1sfHGG8ell15ac1ZFGgAAAAAAAGvNggULYocddojvfve7y2x755134vHHH49vfvOb8fjjj8dtt90WM2fOjP3333+ZfS+44IJ45ZVXWpZTTjmlZdv8+fNj7733ju7du8fUqVNjzJgxMWrUqLjuuutqyuoeaQAAAAAAAKw1gwYNikGDBiW3NTQ0xKRJk6rWXX311fG5z30uXnrppdhkk01a1rdv3z66dOmSPM6ECRNi4cKFccMNN0S7du1im222iWnTpsXYsWNj2LBhK53VRBoAAAAAAACrpVKpxPz586uWSqXSKsd+8803I8uy6NixY9X6iy++ODbYYIPo1atXjBkzJhYtWtSybcqUKdG/f/9o165dy7qBAwfGzJkzY968eSt9bkUaAAAAAADAUrLMUuvS2NgYDQ0NVUtjY+Nq/3/x3nvvxdlnnx2HHXZYdOjQoWX91772tZg4cWLcd999ccIJJ8RFF10UZ511Vsv2OXPmROfOnauOteTxnDlzVvr8Lu0IAAAAAADAahk5cmQMHz68al25XF6tY77//vtxyCGHRHNzc1xzzTVV25Y+1/bbbx/t2rWLE044IRobG1f7vEtTpAEAAAAAALBayuVyqxZYS0q0F198Me69996qabSUPn36xKJFi+KFF16IHj16RJcuXWLu3LlV+yx5vLz7qqW4tCMAAAAAAACFsaREmzVrVvzud7+LDTbYYIXPmTZtWtTV1cVGG20UERF9+/aNyZMnx/vvv9+yz6RJk6JHjx7RqVOnlc5iIg0AAAAAAIC15u23347nnnuu5fHs2bNj2rRpsf7660fXrl3j4IMPjscffzzuvPPOWLx4ccs9zdZff/1o165dTJkyJR5++OHYY489on379jFlypQ4/fTT44gjjmgpyYYMGRKjR4+OY489Ns4+++x4+umnY9y4cXHFFVfUlFWRBgAAAAAAwFrz2GOPxR577NHyeMn9zo466qgYNWpU/PKXv4yIiB133LHqeffdd1/svvvuUS6XY+LEiTFq1KioVCqx2Wabxemnn15137SGhoa4++674+STT47evXvHhhtuGOedd14MGzaspqyKNAAAAAAAgKVkWZZ3hI+13XffPZqbm5e7/cO2RUTstNNO8dBDD63wPNtvv3088MADNedbmnukAQAAAAAAQIIiDQAAAAAAABIUaQAAAAAAAJCgSAMAAAAAAIAERRoAAAAAAAAklGrZ+ZRTTolDDjkk+vXrt1onrVQqUalUqtY1tylHuVxereMCAAAAAACsrizLOwFFUdNE2ne/+93Yfffd47Of/WxccsklMWfOnFU6aWNjYzQ0NFQtYy5pXKVjAQAAAAAAwJpQ86Ud77777thnn33isssui0022SQOOOCAuPPOO6OpqWmljzFy5Mh48803q5YRZ4+sNQoAAAAAAACsMTUXadttt11ceeWV8fLLL8dPfvKTqFQqceCBB8bGG28c5557bjz33HMrPEa5XI4OHTpULS7rCAAAAAAAQJHUXKQt0bZt2zjkkEPirrvuiueffz6OP/74mDBhQvTo0aM18wEAAAAAAEAuVrlIW9omm2wSo0aNitmzZ8ddd93VGocEAAAAAACAXJVq2bl79+7Rpk2b5W7Psiy++MUvrnYoAAAAAACAvGRZlncECqKmIm327NlrKgcAAAAAAAAUSqtc2hEAAAAAAAA+bhRpAAAAAAAAkKBIAwAAAAAAgARFGgAAAAAAACSU8g4AAAAAAABQJFmWdwKKwkQaAAAAAAAAJCjSAAAAAAAAIEGRBgAAAAAAAAmKNAAAAAAAAEhQpAEAAAAAAEBCKe8AAAAAAAAARZJlWd4RKAgTaQAAAAAAAJCgSAMAAAAAAIAERRoAAAAAAAAkKNIAAAAAAAAgQZEGAAAAAAAACaW8AwAAAAAAABRJlmV5R6AgTKQBAAAAAABAgiINAAAAAAAAEhRpAAAAAAAAkKBIAwAAAAAAgARFGgAAAAAAACSU8g4AAAAAAABQJFmWdwKKwkQaAAAAAAAAJCjSAAAAAAAAIEGRBgAAAAAAAAmKNAAAAAAAAEhQpAEAAAAAAEBCKe8AALSOuros7wgU1KRTd8s7QqF02nVE3hEKY96DY/KOUChZ+B5dWl2bvBMURxtvRpXMj0qVT3Yo5x2BgmpT1zbvCADAasj8wZd/MpEGAAAAAAAACYo0AAAAAAAASFCkAQAAAAAAQIIiDQAAAAAAABIUaQAAAAAAAJBQyjsAAAAAAABAkWRZ3gkoChNpAAAAAAAAkKBIAwAAAAAAgARFGgAAAAAAACQo0gAAAAAAACBBkQYAAAAAAAAJpbwDAAAAAAAAFEmWZXlHoCBMpAEAAAAAAECCIg0AAAAAAAASFGkAAAAAAACQoEgDAAAAAACABEUaAAAAAAAAJJTyDgAAAAAAAFAkWZZ3AorCRBoAAAAAAAAkKNIAAAAAAAAgQZEGAAAAAAAACYo0AAAAAAAASFCkAQAAAAAAQEIp7wAAAAAAAABFUpdleUegIEykAQAAAAAAQIIiDQAAAAAAABIUaQAAAAAAAJCgSAMAAAAAAIAERRoAAAAAAAAklPIOAAAAAAAAUCRZlncCisJEGgAAAAAAACQo0gAAAAAAACBBkQYAAAAAAAAJNRdpV199dRx55JExceLEiIi46aabYuutt46tttoqzjnnnFi0aNEKj1GpVGL+/PlVS6VSqT09AAAAAAAArCE1FWnf+ta34pxzzol33nknTj/99Ljkkkvi9NNPj8MPPzyOOuqo+OEPfxgXXnjhCo/T2NgYDQ0NVcuYSxpX+UUAAAAAAABAa8uam5ubV3bnLbfcMi699NI46KCD4sknn4zevXvH+PHj4/DDD4+IiJ///Odx1llnxaxZsz70OJVKZZkJtOY25SiXy6vwEgAAVl6nXUfkHaEw5j04Ju8I8JGw8n9j+veQZXkngI+GxU2+PJbWps6XB8DqqC/lneDfz8DvPZx3hI+c3/53n7wjrBE1/fi9/PLLsfPOO0dExA477BB1dXWx4447tmzfaaed4uWXX17hccrlZUuz91Z8RUgAAAAAAABYa2q6tGOXLl3imWeeiYiIWbNmxeLFi1seR0TMmDEjNtpoo9ZNCAAAAAAAADmoaSLt8MMPjyOPPDIOOOCAuOeee+Kss86KM888M1577bXIsiy+/e1vx8EHH7ymsgIAAAAAAMBaU1ORNnr06FhnnXViypQpcfzxx8fXv/712GGHHeKss86Kd955J/bbb7+48MIL11RWAAAAAAAAWGuy5uZi3DrbPdIAgLWh064j8o5QGPMeHJN3BPhIKMbfmIojy/JOAB8Ni5t8eSytTZ0vD4DVUV/TSAytYeD3Hs47wkfOb/+7T94R1gg/fgAAAAAAAEvxb0BYoi7vAAAAAAAAAFBEijQAAAAAAABIUKQBAAAAAABAgiINAAAAAAAAEhRpAAAAAAAAkFDKOwAAAAAAAECRZFmWdwQKwkQaAAAAAAAAJCjSAAAAAAAAIEGRBgAAAAAAAAmKNAAAAAAAAEhQpAEAAAAAAEBCKe8AAAAAAAAARZJleSegKEykAQAAAAAAQIIiDQAAAAAAABIUaQAAAAAAAJCgSAMAAAAAAIAERRoAAAAAAAAklPIOAAAAAAAAUCRZZHlHoCBMpAEAAAAAAECCIg0AAAAAAAASFGkAAAAAAACQoEgDAAAAAACABEUaAAAAAAAAJJTyDgAAAAAAAFAkdVneCSgKE2kAAAAAAACQoEgDAAAAAACABEUaAAAAAAAAJLhHGgDwb2Xeg2PyjlAYnfoOzztCocybMjbvCBRU5t4IfIjm5rwTFIeflWpt3FgFAOBjwUQaAAAAAAAAJJhIAwAAAAAAWEpm3J5/MpEGAAAAAAAACYo0AAAAAAAASFCkAQAAAAAAQIIiDQAAAAAAABIUaQAAAAAAAJBQyjsAAAAAAABAkWRZ3gkoChNpAAAAAAAAkKBIAwAAAAAAgARFGgAAAAAAACQo0gAAAAAAACBBkQYAAAAAAAAJpbwDAAAAAAAAFEldluUdgYIwkQYAAAAAAAAJijQAAAAAAABIUKQBAAAAAABAgiINAAAAAAAAEhRpAAAAAAAAkFDKOwAAAAAAAECRZFneCSgKE2kAAAAAAACQoEgDAAAAAACABEUaAAAAAAAAJCjSAAAAAAAAIEGRBgAAAAAAAAmlvAMAAAAAAAAUSZZleUegIEykAQAAAAAAQIIiDQAAAAAAABIUaQAAAAAAAJCgSAMAAAAAAIAERRoAAAAAAAAklPIOAAAAAAAAUCRZlncCiqLmIu2VV16Ja665Jn7/+9/HK6+8EnV1dbH55pvHgQceGEOHDo02bdqsiZwAAAAAAACwVtV0acfHHnssevbsGb/+9a/j/fffj1mzZkXv3r1j3XXXjTPPPDP69+8fb7311gqPU6lUYv78+VVLpVJZ5RcBAAAAAAAAra2mIu20006L008/PR577LF44IEH4sYbb4w//elPMXHixHj++efjnXfeiW984xsrPE5jY2M0NDRULWMuaVzlFwEAAAAAAACtLWtubm5e2Z0/8YlPxNNPPx2bb755REQ0NTVFfX19/OUvf4nOnTvHpEmTYujQofG3v/3tQ49TqVSWmUBrblOOcrm8Ci8BAIBV0anv8LwjFMq8KWPzjgB8BK3836g//txHBADWnPqab9LE6vrPGx/PO8JHzs+G7pR3hDWiph+/jTbaKF555ZWWIm3u3LmxaNGi6NChQ0REfOYzn4nXX399hccpl5ctzd5bVEsSAAAAAAAAWLNqKtIOPPDAOPHEE2PMmDFRLpfjwgsvjAEDBsQ666wTEREzZ86MT33qU2skKAAAAAAAwNpQZ9yef6qpSPvWt74Vr7zySuy3336xePHi6Nu3b/zkJz9p2Z5lWTQ2utcZAAAAAAAAH301FWnrrbde3HrrrfHee+/FokWLYr311qvavvfee7dqOAAAAAAAAMjLKt2isL6+vrVzAAAAAAAAQKHU5R0AAAAAAAAAikiRBgAAAAAAAAmrdGlHAAAAAACAj6ss7wAUhok0AAAAAAAASFCkAQAAAAAAQIIiDQAAAAAAABIUaQAAAAAAAJCgSAMAAAAAAICEUt4BAAAAAAAAiiTLsrwjUBAm0gAAAAAAACBBkQYAAAAAAAAJijQAAAAAAABIUKQBAAAAAABAgiINAAAAAAAAEkp5BwAAAAAAACiSuizvBBSFiTQAAAAAAABIUKQBAAAAAABAgiINAAAAAAAAEhRpAAAAAAAAkKBIAwAAAAAAgIRS3gEAAAAAAACKJMuyvCNQECbSAAAAAAAAIEGRBgAAAAAAAAmKNAAAAAAAAEhQpAEAAAAAAECCIg0AAAAAAAASSnkHAAAAAAAAKJIsyzsBRWEiDQAAAAAAABJMpAHAx1xTc3PeEQqlzj8pazFvyti8IxRKp4OuyTtCocy77aS8IxTG4ibfo0vzPVqtOXw+lvBHjmoLFzXlHaFQ6tu2yTsCAMAqMZEGAAAAAAAACYo0AAAAAAAASFCkAQAAAAAAQIJ7pAEAAAAAACwlc29g/slEGgAAAAAAACQo0gAAAAAAACBBkQYAAAAAAAAJijQAAAAAAABIUKQBAAAAAABAQinvAAAAAAAAAEVSl+WdgKIwkQYAAAAAAAAJijQAAAAAAABIUKQBAAAAAACw1kyePDn222+/6NatW2RZFrfffnvV9ubm5jjvvPOia9eusc4668Ree+0Vs2bNqtrn9ddfj8MPPzw6dOgQHTt2jGOPPTbefvvtqn2mT58e/fr1i/r6+th4443j0ksvrTmrIg0AAAAAAIC1ZsGCBbHDDjvEd7/73eT2Sy+9NK666qq49tpr4+GHH4511103Bg4cGO+9917LPocffnjMmDEjJk2aFHfeeWdMnjw5hg0b1rJ9/vz5sffee0f37t1j6tSpMWbMmBg1alRcd911NWUtrdpLBAAAAAAAgNoNGjQoBg0alNzW3NwcV155ZXzjG9+IAw44ICIifvzjH0fnzp3j9ttvj8GDB8ezzz4bd911Vzz66KOx8847R0TEd77zndhnn33isssui27dusWECRNi4cKFccMNN0S7du1im222iWnTpsXYsWOrCrcVMZEGAAAAAACwlCzLLDUurWX27NkxZ86c2GuvvVrWNTQ0RJ8+fWLKlCkRETFlypTo2LFjS4kWEbHXXntFXV1dPPzwwy379O/fP9q1a9eyz8CBA2PmzJkxb968lc5jIg0AAAAAAIDVUqlUolKpVK0rl8tRLpdrOs6cOXMiIqJz585V6zt37tyybc6cObHRRhtVbS+VSrH++utX7bPZZpstc4wl2zp16rRSeUykAQAAAAAAsFoaGxujoaGhamlsbMw71mozkQYAAAAAAMBqGTlyZAwfPrxqXa3TaBERXbp0iYiIuXPnRteuXVvWz507N3bccceWfV599dWq5y1atChef/31lud36dIl5s6dW7XPksdL9lkZJtIAAAAAAABYLeVyOTp06FC1rEqRttlmm0WXLl3innvuaVk3f/78ePjhh6Nv374REdG3b9944403YurUqS373HvvvdHU1BR9+vRp2Wfy5Mnx/vvvt+wzadKk6NGjx0pf1jFCkQYAAAAAAMBa9Pbbb8e0adNi2rRpERExe/bsmDZtWrz00kuRZVmcdtpp8a1vfSt++ctfxlNPPRVHHnlkdOvWLQ488MCIiOjZs2d86UtfiuOPPz4eeeSRePDBB+OrX/1qDB48OLp16xYREUOGDIl27drFscceGzNmzIhbb701xo0bt8zU3Iq4tCMAAAAAAMBSsrwDfMw99thjsccee7Q8XlJuHXXUUXHjjTfGWWedFQsWLIhhw4bFG2+8EbvttlvcddddUV9f3/KcCRMmxFe/+tXYc889o66uLv7jP/4jrrrqqpbtDQ0Ncffdd8fJJ58cvXv3jg033DDOO++8GDZsWE1Zs+bm5ubVfL2t4r1FeScAgI+npmL8qi+MuswfhUnrdNA1eUcolHm3nZR3hMJY3OR7dGm+R6s1h88HaQsXNeUdoVDq27bJOwLAR1q9kZi17piJT+Ud4SPnhsHb5R1hjXBpRwAAAAAAAEhQpAEAAAAAAECCIg0AAAAAAAASFGkAAAAAAACQ4BaFAAAAAAAAS6nLsrwjUBAm0gAAAAAAACBhlSbSFi5cGLfffntMmTIl5syZExERXbp0ic9//vNxwAEHRLt27Vo1JAAAAAAAAKxtNU+kPffcc9GzZ8846qij4oknnoimpqZoamqKJ554Io488sjYZptt4rnnnlsTWQEAAAAAAGCtqXki7aSTTortttsunnjiiejQoUPVtvnz58eRRx4ZJ598cvz2t79ttZAAAAAAAACwttVcpD344IPxyCOPLFOiRUR06NAhLrzwwujTp0+rhAMAAAAAAIC81FykdezYMV544YXYdtttk9tfeOGF6Nix44ceo1KpRKVSqVrX3KYc5XK51jgAAAAAAACtKsvyTkBR1HyPtOOOOy6OPPLIuOKKK2L69Okxd+7cmDt3bkyfPj2uuOKKGDp0aAwbNuxDj9HY2BgNDQ1Vy5hLGlf5RQAAAAAAAEBry5qbm5trfdIll1wS48aNizlz5kT2z1q2ubk5unTpEqeddlqcddZZH/p8E2kAsPY01f6r/mOtzj8pYzk6HXRN3hEKZd5tJ+UdoTAWN/keXZrv0WrN4fNB2sJFTXlHKJT6tm3yjgDwkVZf87XlWF3H//TpvCN85PzgkPSVDD/qVunH7+yzz46zzz47Zs+eHXPmzImIiC5dusRmm222Us8vl5ctzd5btCpJAAAAAAAAYM2o+dKOS9tss82ib9++0bdv35YS7S9/+Uscc8wxrRIOAAAAAAAA8rJaRVrK66+/HuPHj2/twwIAAAAAAMBaVfOlHX/5y19+6Pbnn39+lcMAAAAAAADkLXNvYP6p5iLtwAMPjCzLorl5+TdU9gEDAAAAAADgo67mSzt27do1brvttmhqakoujz/++JrICQAAAAAAAGtVzUVa7969Y+rUqcvdvqJpNQAAAAAAAPgoqPnSjiNGjIgFCxYsd/uWW24Z991332qFAgAAAAAAgLzVXKT169fvQ7evu+66MWDAgFUOBAAAAAAAAEVQc5EGAAAAAADwcZZleSegKGq+RxoAAAAAAAD8O1CkAQAAAAAAQIIiDQAAAAAAABIUaQAAAAAAAJCgSAMAAAAAAICEUt4BAAAAAAAAiqQuy/KOQEGYSAMAAAAAAIAERRoAAAAAAAAkKNIAAAAAAAAgQZEGAAAAAAAACYo0AAAAAAAASCjlHQAAAAAAAKBIsizvBBSFiTQAAAAAAABIUKQBAAAAAABAgiINAAAAAAAAEhRpAAAAAAAAkKBIAwAAAAAAgIRS3gEAAAAAAACKJMuyvCNQECbSAAAAAAAAIEGRBgAAAAAAAAmKNAAAAAAAAEhQpAEAAAAAAECCIg0AAAAAAAASSnkHAFhVzc15JyiWRU1NeUcolLZt/FuRJXw0qtW1yTsBRTXvtpPyjlAo259zV94RCuPhUV/MO0KhlNv6Hbu0BZXFeUcojPqSz8bS2mRZ3hGAj5imJv+hY2l1db5HyZc/2bCEzwIAAAAAAAAkKNIAAAAAAAAgQZEG/P/s3X2cVnWdP/73gQtGHGHkRmDQRIUSUdRCJVQcTQPRNTG/pmaK0tpmuIrsTixpYro5otud2erammGmlb8wyXY1MMRMFIP4ert4gwsqdyUICDLczPX745uDVxxuLpiZc4Dn8/E4jwdzznUdX3yc6+LM9ZrP5wAAAAAAACkUaQAAAAAAAJBCkQYAAAAAAAApClkHAAAAAAAAyJMkSbKOQE6YkQYAAAAAAAApFGkAAAAAAACQQpEGAAAAAAAAKRRpAAAAAAAAkEKRBgAAAAAAACkKWQcAAAAAAADIk1ZJ1gnICzPSAAAAAAAAIIUiDQAAAAAAAFIo0gAAAAAAACCFIg0AAAAAAABSKNIAAAAAAAAgRSHrAAAAAAAAAHnSKsk6AXlhRhoAAAAAAACkUKQBAAAAAABACkUaAAAAAAAApFCkAQAAAAAAQApFGgAAAAAAAKQoZB0AAAAAAAAgT5IkyToCOWFGGgAAAAAAAKRQpAEAAAAAAEAKRRoAAAAAAACkUKQBAAAAAABACkUaAAAAAAAApGjyIm3x4sVx/fXXN/VpAQAAAAAAWkSrxFbutqtq8iJt0aJF8Y1vfKOpTwsAAAAAAAAtqlDuE5577rktHp8zZ852hwEAAAAAAIC8KLtIO/LIIyNJkigWi5sc+2B/kuzCc/gAAAAAAADYLZRdpHXq1CluvvnmOPnkk1OPv/jii3HGGWds8Rz19fVRX19fsq/YuiIqKirKjQMAAAAAAADNoux7pPXv3z8WLFgQPXv2TN323Xff1NlqH1ZXVxdVVVUl2y3j67b7LwEAAAAAAABNrewZaV/+8pdj1apVmz2+//77x913373Fc4wdOzZGjx5dsq/Y2mw0AAAAAAAge+5gxQfKLtLOOuusLR7v2LFjDB8+fIuPqajYdBnHNevLTQIAAAAAAADNp+ylHbfmzTffjBEjRjT1aQEAAAAAAKBFNXmRtnTp0pgwYUJTnxYAAAAAAABaVNlLO06aNGmLx+fOnbvdYQAAAAAAACAvyi7Shg0bFkmSRLFY3OxjEnfhAwAAAAAAYCdX9tKO1dXVMXHixGhoaEjdZs2a1Rw5AQAAAAAAWkSrJLGVue2qyi7S+vfvHzNnztzs8a3NVgMAAAAAAICdQdlLO9bW1saqVas2e7x3794xderUHQoFAAAAAAAAWSu7SBs0aNAWj1dWVkZNTc12BwIAAAAAAIA8KHtpRwAAAAAAANgdKNIAAAAAAAAgRdlLOwIAAAAAAOzKzELiA74XAAAAAAAAIIUiDQAAAAAAAFIo0gAAAAAAACCFIg0AAAAAAABSKNIAAAAAAAAgRSHrAAAAAAAAAHmSJFknIC/MSAMAAAAAAIAUijQAAAAAAABIoUgDAAAAAACAFIo0AAAAAAAASKFIAwAAAAAAgBSFrAMAAAAAAADkSaskyToCOWFGGgAAAAAAAKRQpAEAAAAAAEAKRRoAAAAAAACkUKQBAAAAAABACkUaAAAAAAAApChkHQAAAAAAACBPkiTrBOSFGWkAAAAAAACQQpEGAAAAAAAAKRRpAAAAAAAAkMI90si99RuKWUfIlUJri/N+wDrFpVoZEDajWPQ+WsprhXQNDV4rHzbrhiFZR8iN4T+dlXWEXLnjnCOyjpArrs83WrOuIesIubLBvysl9vLzSiPvG2xO4nUCkEtmpAEAAAAAAEAKM9IAAAAAAAA+pJVJovyVGWkAAAAAAACQQpEGAAAAAAAAKRRpAAAAAAAAkEKRBgAAAAAAACkUaQAAAAAAAJCikHUAAAAAAACAPGmVJFlHICfMSAMAAAAAAIAUijQAAAAAAABIoUgDAAAAAACAFIo0AAAAAAAASKFIAwAAAAAAgBSFrAMAAAAAAADkSZJknYC8MCMNAAAAAAAAUijSAAAAAAAAIIUiDQAAAAAAAFIo0gAAAAAAACCFIg0AAAAAAABSKNIAAAAAAAAgRSHrAAAAAAAAAHnSKsk6AXlhRhoAAAAAAACkUKQBAAAAAABACkUaAAAAAAAApFCkAQAAAAAAQApFGgAAAAAAAKQoZB0AAAAAAAAgT5JIso5ATpiRBgAAAAAAACkUaQAAAAAAAJBiu4u0t956K957771N9q9bty6eeOKJHQoFAAAAAAAAWSu7SFu4cGEcc8wx0bNnz9h7773joosuKinUli5dGieddFKThgQAAAAAAICWVnaR9i//8i/RqlWreOaZZ+KRRx6Jl156KU466aRYtmxZ42OKxWKThgQAAAAAAICWVij3CVOmTIkHH3wwjjrqqIiI+MMf/hDnnHNOfOpTn4rHHnssIiKSJGnalAAAAAAAAC2klZqDvyp7Rtry5cujY8eOjV9XVFTExIkT44ADDoiTTjoplixZstVz1NfXx4oVK0q2+vr6cqMAAAAAAABAsym7SDvooIPiueeeK9lXKBTigQceiIMOOij+7u/+bqvnqKuri6qqqpLtlvF15UYBAAAAAACAZlN2kTZ06NC48847N9n/QZl25JFHbvUeaWPHjo3ly5eXbLVjxpYbBQAAAAAAAJpN2fdI++Y3vxmrV69OP1mhEL/85S/j7bff3uI5KioqoqKiomTfmvXlJgEAAAAAAIDmU/aMtEKhEB06dNjs8YULF8Y3vvGNHQoFAAAAAAAAWSu7SNuapUuXxoQJE5r6tAAAAAAAAC2iVWIrd9tVlb2046RJk7Z4fO7cudsdBgAAAAAAAPKi7CJt2LBhkSRJFIvFzT4mSXbh6hEAAAAAAIDdQtlLO1ZXV8fEiROjoaEhdZs1a1Zz5AQAAAAAAIAWVXaR1r9//5g5c+Zmj29tthoAAAAAAADsDMpe2rG2tjZWrVq12eO9e/eOqVOn7lAoAAAAAAAAyFrZRdqgQYO2eLyysjJqamq2OxAAAAAAAECWkiTJOgI5UfbSjgAAAAAAALA7UKQBAAAAAABACkUaAAAAAAAApFCkAQAAAAAAQApFGgAAAAAAAKQoZB0AAAAAAAAgT1olWScgL8xIAwAAAAAAgBSKNAAAAAAAAEihSAMAAAAAAIAUijQAAAAAAABIoUgDAAAAAACAFIWsAwAAAAAAAORJkmSdgLwwIw0AAAAAAABSKNIAAAAAAAAghSINAAAAAAAAUijSAAAAAAAAIIUiDQAAAAAAAFIUsg4AAAAAAACQJ62SJOsI5IQZaQAAAAAAAJBCkQYAAAAAAAApFGkAAAAAAACQQpEGAAAAAAAAKRRpAAAAAAAAkKKQdQAAAAAAAIA8aZVknYC8UKSRe4XW3rFgW7T2rzub0aZgAjpsiyTxPvphLsE2uv2cw7OOkCt9r/hl1hFyZf6d52YdITfWt27IOkKurFtfzDpCrvjZHrbO5ShAPvlkDQAAAAAAAFIo0gAAAAAAACCFIg0AAAAAAABSKNIAAAAAAAAgRSHrAAAAAAAAAHmSJFknIC/MSAMAAAAAAIAUijQAAAAAAABIoUgDAAAAAACAFIo0AAAAAAAAWswBBxwQSZJsso0cOTIiIk488cRNjn35y18uOcf8+fPj9NNPjz333DO6du0atbW1sX79+ibPWmjyMwIAAAAAAMBmPPvss7Fhw4bGr1944YX49Kc/Heecc07jvksvvTSuv/76xq/33HPPxj9v2LAhTj/99OjevXs89dRTsXDhwrjooouiTZs2ceONNzZpVkUaAAAAAADAh7SKJOsIu7R99tmn5OubbropevXqFTU1NY379txzz+jevXvq83/729/GSy+9FFOmTIlu3brFkUceGTfccEOMGTMmrrvuumjbtm2TZbW0IwAAAAAAADukvr4+VqxYUbLV19dv9Xlr166Ne++9N0aMGBFJsrHA/OlPfxpdunSJww47LMaOHRurV69uPDZ9+vTo169fdOvWrXHfkCFDYsWKFfHiiy826d9LkQYAAAAAAMAOqauri6qqqpKtrq5uq8/71a9+Fe+++25cfPHFjfs+//nPx7333htTp06NsWPHxk9+8pP4whe+0Hh80aJFJSVaRDR+vWjRoqb5C/2VpR0BAAAAAADYIWPHjo3Ro0eX7KuoqNjq8+66664YOnRo9OjRo3Hfl770pcY/9+vXL6qrq+Pkk0+O119/PXr16tV0obeBIg0AAAAAAIAdUlFRsU3F2YfNmzcvpkyZEhMnTtzi4wYMGBAREa+99lr06tUrunfvHjNmzCh5zOLFiyMiNntfte1laUcAAAAAAABa3N133x1du3aN008/fYuPmz17dkREVFdXR0TEwIED4/nnn48lS5Y0Pmby5MnRoUOH6Nu3b5NmNCMNAAAAAADgQ5Ik6wS7voaGhrj77rtj+PDhUShsrKtef/31uO++++K0006Lzp07x3PPPRdXXXVVnHDCCXH44YdHRMTgwYOjb9++ceGFF8bNN98cixYtimuuuSZGjhxZ9qy4rVGkAQAAAAAA0KKmTJkS8+fPjxEjRpTsb9u2bUyZMiW++93vxqpVq+IjH/lInH322XHNNdc0PqZ169bx8MMPx2WXXRYDBw6MysrKGD58eFx//fVNnlORBgAAAAAAQIsaPHhwFIvFTfZ/5CMfiWnTpm31+T179oz/+q//ao5oJdwjDQAAAAAAAFIo0gAAAAAAACCFIg0AAAAAAABSuEcaAAAAAADAh7RKsk5AXpiRBgAAAAAAACkUaQAAAAAAAJBCkQYAAAAAAAApFGkAAAAAAACQQpEGAAAAAAAAKQpZBwAAAAAAAMiTVkmSdQRyYruKtHfeeSeee+65OOKII6JTp07xl7/8Je66666or6+Pc845Jw455JCmzgkAAAAAAAAtquwibcaMGTF48OBYsWJF7L333jF58uQ455xzolAoRENDQ9x0003x5JNPxic+8YnmyAsAAAAAAAAtoux7pF199dVxzjnnxPLly+NrX/taDBs2LE4++eR45ZVX4rXXXovzzjsvbrjhhubICgAAAAAAAC2m7CJt5syZMXr06Gjfvn1ceeWVsWDBgrj00ksbj19++eXx7LPPNmlIAAAAAAAAaGllL+24du3aaNeuXUREtGnTJvbcc8/o0qVL4/EuXbrEO++8s8Vz1NfXR319fcm+YuuKqKioKDcOAAAAAAAANIuyZ6R95CMfiblz5zZ+/bOf/Syqq6sbv164cGFJsZamrq4uqqqqSrZbxteVGwUAAAAAAKDJJYmt3G1XVfaMtPPOOy+WLFnS+PXpp59ecnzSpElxzDHHbPEcY8eOjdGjR5fsK7Y2Gw0AAAAAAID8KLtIGzdu3BaPX3311dG6destPqaiYtNlHNesLzcJAAAAAAAANJ+yl3bcmnfeeScuu+yypj4tAAAAAAAAtKgmL9KWLl0aEyZMaOrTAgAAAAAAQIsqe2nHSZMmbfH43LlztzsMAAAAAAAA5EXZRdqwYcMiSZIoFoubfUySJDsUCgAAAAAAICut9Bz8VdlLO1ZXV8fEiROjoaEhdZs1a1Zz5AQAAAAAAIAWVXaR1r9//5g5c+Zmj29tthoAAAAAAADsDMpe2rG2tjZWrVq12eO9e/eOqVOn7lAoAAAAAAAAyFrZRdqgQYO2eLyysjJqamq2OxAAAAAAAADkQdlLOwIAAAAAAMDuoOwZaQAAAAAAALuyJMk6AXlhRhoAAAAAAACkUKQBAAAAAABACkUaAAAAAAAApFCkAQAAAAAAQApFGgAAAAAAAKQoZB0AAAAAAAAgT8xC4gO+FwAAAAAAACCFIg0AAAAAAABSKNIAAAAAAAAghSINAAAAAAAAUijSAAAAAAAAIEUh6wAAAAAAAAB5kiRJ1hHICTPSAAAAAAAAIIUiDQAAAAAAAFIo0gAAAAAAACCFIg0AAAAAAABSKNIAAAAAAAAgRSHrAAAAAAAAAHmSZB2A3DAjDQAAAAAAAFIo0gAAAAAAACCFIg0AAAAAAABSKNIAAAAAAAAgRSHrALA1DcVi1hFypVXiNpekW7NuQ9YRcqVtwe+KfGD56nVZR8iVjpVts46QG/6JLbWhwYB82LoNDVlHyA3fG6Xm/cfnso6QK5f+/P9mHSE3vv/Zw7KOALBT8xlYKZ+BAXmhSAMAAAAAAPgQZS4f8Ov6AAAAAAAAkEKRBgAAAAAAACkUaQAAAAAAAJBCkQYAAAAAAAApFGkAAAAAAACQopB1AAAAAAAAgDxJsg5AbpiRBgAAAAAAACkUaQAAAAAAAJBCkQYAAAAAAAApFGkAAAAAAACQQpEGAAAAAAAAKQpZBwAAAAAAAMiTJMk6AXlhRhoAAAAAAACkUKQBAAAAAABACkUaAAAAAAAApFCkAQAAAAAAQApFGgAAAAAAAKQoZB0AAAAAAAAgT5IkyToCOWFGGgAAAAAAAKRQpAEAAAAAAEAKRRoAAAAAAACkUKQBAAAAAABACkUaAAAAAAAApChkHQAAAAAAACBPzELiA74XAAAAAAAAIIUiDQAAAAAAAFIo0gAAAAAAACCFIg0AAAAAAABSNFmRdtBBB8Wrr77aVKcDAAAAAACATBXKfcKtt96aun/+/Plx9913R/fu3SMi4oorrtixZAAAAAAAABlIkiTrCORE2UXaqFGjYt99941CofSpDQ0Ncc8990SbNm0iSRJFGgAAAAAAADu1sou0L33pS/HMM8/EfffdF4ccckjj/jZt2sRvf/vb6Nu3b5MGBAAAAAAAgCyUfY+0O+64I6699toYMmRI3Hbbbdv1H62vr48VK1aUbPX19dt1LgAAAAAAAGgOZRdpERFnnXVWTJ8+PR588MEYOnRoLFq0qKzn19XVRVVVVcl2y/i67YkCAAAAAAAAzaLspR0/sO+++8aUKVPipptuio9//ONRLBa3+bljx46N0aNHl+wrtq7Y3igAAAAAAADQ5La7SIuISJIkxo4dG4MHD44nn3wyqqurt+l5FRUVUVFRWpytWb8jSQAAAAAAAJpGknUAcmO7lnb8W/37948rr7wyOnbsGG+++WaMGDGiKU4LAAAAAAAAmWmSIu3Dli5dGhMmTGjq0wIAAAAAAECLKntpx0mTJm3x+Ny5c7c7DAAAAAAAAORF2UXasGHDIkmSKBaLm31Mklg9FAAAAAAAgJ1b2Us7VldXx8SJE6OhoSF1mzVrVnPkBAAAAAAAgBZVdpHWv3//mDlz5maPb222GgAAAAAAQJ4lSWIrc9tVlb20Y21tbaxatWqzx3v37h1Tp07doVAAAAAAAACQtbKLtEGDBm3xeGVlZdTU1Gx3IAAAAAAAAMiDspd2BAAAAAAAgN2BIg0AAAAAAABSKNIAAAAAAAAgRdn3SAMAAAAAANiVmYXEB3wvAAAAAAAAQApFGgAAAAAAAKRQpAEAAAAAAEAKRRoAAAAAAACkUKQBAAAAAABAikLWAQAAAAAAAPIkSZKsI5ATZqQBAAAAAABACkUaAAAAAAAApFCkAQAAAAAAQApFGgAAAAAAAKRQpAEAAAAAAECKQtYBAAAAAAAA8iTJOgC5YUYaAAAAAAAApFCkAQAAAAAAQApFGgAAAAAAAKRQpAEAAAAAAEAKRRoAAAAAAACkKGQdAAAAAAAAIE+SJOsE5IUZaQAAAAAAAJBCkQYAAAAAAAApLO1I7rUyhxa2SaGV3434MO8dG+3Z1j/3pPMyKdW6lQH5sGLReHygssL76Ic1FLNOkC93nnt41hFy44B/eCDrCLny+u3/J+sIwE7Gz7EA+eRTVwAAAAAAAEihSAMAAAAAAIAU1igBAAAAAAD4kFZhuVX+HzPSAAAAAAAAIIUiDQAAAAAAAFIo0gAAAAAAACCFIg0AAAAAAABSKNIAAAAAAAAgRSHrAAAAAAAAAHmSJFknIC/MSAMAAAAAAIAUijQAAAAAAABIoUgDAAAAAACAFIo0AAAAAAAASKFIAwAAAAAAgBSFrAMAAAAAAADkSRJJ1hHICTPSAAAAAAAAIIUiDQAAAAAAAFIo0gAAAAAAACCFIg0AAAAAAABSKNIAAAAAAAAgRSHrAAAAAAAAAHmSJFknIC/MSAMAAAAAAIAUijQAAAAAAABIoUgDAAAAAACAFIo0AAAAAAAASKFIAwAAAAAAgBSFrAMAAAAAAADkSatIso5ATpiRBgAAAAAAACkUaQAAAAAAAJBih5d2LBaL8fjjj8drr70W1dXVMWTIkGjTpk1TZAMAAAAAAIDMlF2knXbaaXH//fdHVVVVLF26NE477bSYMWNGdOnSJd5555342Mc+Fk888UTss88+zZEXAAAAAAAAWkTZSzs+8sgjUV9fHxER11xzTaxcuTJef/31WLJkScybNy8qKyvj2muvbfKgAAAAAAAA0JJ2aGnH3/3ud3HzzTfHgQceGBER++23X4wfPz4uvfTSJgkHAAAAAADQ0pIk6wTkxXYVaclfv4OWLVsWvXr1KjnWu3fvWLBgwRafX19f3zir7QPF1hVRUVGxPXEAAAAAAACgyZW9tGNExMUXXxyf/exnY926dfHGG2+UHFu0aFHsvffeW3x+XV1dVFVVlWy3jK/bnigAAAAAAADQLMqekTZ8+PDGP5955pmxevXqkuO//OUv48gjj9ziOcaOHRujR48u2VdsbTYaAAAAAAAA+VF2kXb33Xdv8fi4ceOidevWW3xMRcWmyziuWV9uEgAAAAAAAGg+27W045YsXbo0vvKVrzT1aQEAAAAAAKBFNUuRNmHChKY+LQAAAAAAQItIElu5266q7KUdJ02atMXjc+fO3e4wAAAAAAAAkBdlF2nDhg2LJEmiWCxu9jHJrlw9AgAAAAAAsFsoe2nH6urqmDhxYjQ0NKRus2bNao6cAAAAAAAA0KLKLtL69+8fM2fO3Ozxrc1WAwAAAAAAgJ1B2Us71tbWxqpVqzZ7vHfv3jF16tQdCgUAAAAAAABZK7tIGzRo0BaPV1ZWRk1NzXYHAgAAAAAAyFISSdYRyImyl3YEAAAAAACA3YEiDQAAAAAAAFIo0gAAAAAAACCFIg0AAAAAAABSKNIAAAAAAAAgRSHrAAAAAAAAAHnSKsk6AXlhRhoAAAAAAACkUKQBAAAAAABACkUaAAAAAAAApFCkAQAAAAAAQApFGgAAAAAAAKQoZB0AAAAAAAAgT5JIso5ATpiRBgAAAAAAACkUaQAAAAAAAJBCkQYAAAAAAAApFGkAAAAAAACQQpEGAAAAAAAAKQpZBwAAAAAAAMiTJMk6AXlhRhoAAAAAAACkUKQBAAAAAABACkUaAAAAAAAApFCkAQAAAAAAQApFGgAAAAAAAKQoZB0AAAAAAAAgT5JIso5ATijSyL1iMesE+ZJ4/2YzWvneYDPaFkxAB8rXxntHo3UbGrKOkCutXXSwGf/7H+dkHSFXOg/7ftYRcmXZQ1dkHQEAYLv46RgAAAAAAABSKNIAAAAAAAAghSINAAAAAAAAUijSAAAAAAAAIIUiDQAAAAAA4ENaJbZyt3Jcd911kSRJydanT5/G42vWrImRI0dG586dY6+99oqzzz47Fi9eXHKO+fPnx+mnnx577rlndO3aNWpra2P9+vVN8b+/RKHJzwgAAAAAAABbcOihh8aUKVMavy4UNlZWV111VfzmN7+JBx54IKqqquLyyy+Pz372s/GHP/whIiI2bNgQp59+enTv3j2eeuqpWLhwYVx00UXRpk2buPHGG5s0pyINAAAAAACAFlUoFKJ79+6b7F++fHncddddcd9998WnPvWpiIi4++6745BDDomnn346PvnJT8Zvf/vbeOmll2LKlCnRrVu3OPLII+OGG26IMWPGxHXXXRdt27ZtspyWdgQAAAAAAGCH1NfXx4oVK0q2+vr6zT7+1VdfjR49esRBBx0UF1xwQcyfPz8iImbOnBnr1q2LU045pfGxffr0if333z+mT58eERHTp0+Pfv36Rbdu3RofM2TIkFixYkW8+OKLTfr3UqQBAAAAAACwQ+rq6qKqqqpkq6urS33sgAED4sc//nE88sgjcfvtt8cbb7wRgwYNipUrV8aiRYuibdu2sffee5c8p1u3brFo0aKIiFi0aFFJifbB8Q+ONSVLOwIAAAAAALBDxo4dG6NHjy7ZV1FRkfrYoUOHNv758MMPjwEDBkTPnj3jF7/4RbRr165Zc5ZLkQYAAAAAAPAhSSRZR9jpVFRUbLY425q99947Pvaxj8Vrr70Wn/70p2Pt2rXx7rvvlsxKW7x4ceM91bp37x4zZswoOcfixYsbjzUlSzsCAAAAAACQmffeey9ef/31qK6ujv79+0ebNm3iscceazw+Z86cmD9/fgwcODAiIgYOHBjPP/98LFmypPExkydPjg4dOkTfvn2bNJsZaQAAAAAAALSYf/7nf44zzjgjevbsGQsWLIhx48ZF69at4/zzz4+qqqr44he/GKNHj45OnTpFhw4d4h//8R9j4MCB8clPfjIiIgYPHhx9+/aNCy+8MG6++eZYtGhRXHPNNTFy5MjtnhW3OYo0AAAAAAAAWsxbb70V559/frzzzjuxzz77xPHHHx9PP/107LPPPhER8Z3vfCdatWoVZ599dtTX18eQIUPi3//93xuf37p163j44Yfjsssui4EDB0ZlZWUMHz48rr/++ibPmhSLxWKTn3U7rFmfdQLyKh/fofmRWJqXzWho8GL5sFatvFg+4H20lPdRNsdrpZTXykbrNjRkHSFXCq3cIYB0xfBG+mGdh30/6wi5suyhK7KOALBT28OUmBb3+1eWZR1hpzPoYx2zjtAs/AQEAAAAAAAAKfTYAAAAAAAAH2KVDj5gRhoAAAAAAACkUKQBAAAAAABACkUaAAAAAAAApFCkAQAAAAAAQApFGgAAAAAAAKQoZB0AAAAAAAAgT5KsA5AbZqQBAAAAAABACkUaAAAAAAAApFCkAQAAAAAAQApFGgAAAAAAAKRQpAEAAAAAAECKQtYBAAAAAAAA8qRVkmQdgZwoe0baW2+9FX/5y18av/79738fF1xwQQwaNCi+8IUvxPTp05s0IAAAAAAAAGSh7CLt7LPPjqeffjoiIh566KE48cQT47333ovjjjsuVq9eHTU1NfHwww83eVAAAAAAAABoSWUv7fjiiy/GoYceGhERdXV1ceONN8aYMWMaj992221x7bXXxt/93d81XUoAAAAAAABoYWXPSCsUCrFy5cqIiHjjjTdi6NChJceHDh0ac+bMaZp0AAAAAAAAkJGyi7Sampq4//77IyLi4x//eDz++OMlx6dOnRr77rvvFs9RX18fK1asKNnq6+vLjQIAAAAAAADNpuylHW+66aYYNGhQLFiwII4//vi4+uqr49lnn41DDjkk5syZEz//+c/jjjvu2OI56urq4hvf+EbJvqu/Pi6uufa6cuMAAAAAAAA0qSTrAORGUiwWi+U+6fXXX49rrrkmfvOb38R7770XEf9vycejjz46amtrY9iwYVt8fn19/SYz0IqtK6KioqLcKOwGyv8O3bUl3sHZjIYGL5YPa9XKi+UD3kdLeR9lc7xWSnmtbLRuQ0PWEXKl0KrshU3YTRTDG+mHdR72/awj5Mqyh67IOgLATm2PsqfEsKOefu3drCPsdD7Ze++sIzSL7Xr59erVK+6///4oFouxZMmSaGhoiC5dukSbNm226fkVFZuWZmvWb08SAAAAAAAAaB479KuESZJEt27dorq6urFEe/PNN2PEiBFNEg4AAAAAAACy0uRrcixdujQmTJjQ1KcFAAAAAACAFlX20o6TJk3a4vG5c+dudxgAAAAAAADIi7KLtGHDhkWSJFHcwt3YE3cmBwAAAAAAdlZqDv6q7KUdq6urY+LEidHQ0JC6zZo1qzlyAgAAAAAAQIsqu0jr379/zJw5c7PHtzZbDQAAAAAAAHYGZS/tWFtbG6tWrdrs8d69e8fUqVN3KBQAAAAAAABkrewibdCgQVs8XllZGTU1NdsdCAAAAAAAAPKg7KUdAQAAAAAAYHdQ9ow0AAAAAACAXVkSSdYRyAkz0gAAAAAAACCFIg0AAAAAAABSKNIAAAAAAAAghSINAAAAAAAAUijSAAAAAAAAIEUh6wAAAAAAAAB5kiRZJyAvzEgDAAAAAACAFIo0AAAAAAAASKFIAwAAAAAAgBSKNAAAAAAAAEihSAMAAAAAAIAUhawDAAAAAAAA5EmSdQByw4w0AAAAAAAASKFIAwAAAAAAgBSKNAAAAAAAAEihSAMAAAAAAIAUijQAAAAAAABIUcg6AAAAAAAAQK4kWQcgL8xIAwAAAAAAgBSKNAAAAAAAAEihSAMAAAAAAIAUijQAAAAAAABIUcg6AGxN4qaOsE1atfJiIZ33Udg2XitsTpvWfv8QtkUS3kg/bNlDV2QdIVc6Drgy6wi5seyZ72UdAQAogyINAAAAAADgQ/ySEB/wq5UAAAAAAACQQpEGAAAAAAAAKRRpAAAAAAAAkEKRBgAAAAAAACkUaQAAAAAAAJCikHUAAAAAAACAPEmSrBOQF2akAQAAAAAAQApFGgAAAAAAAKRQpAEAAAAAAEAKRRoAAAAAAACkUKQBAAAAAABAikLWAQAAAAAAAPIkyToAuWFGGgAAAAAAAKRQpAEAAAAAAEAKRRoAAAAAAACkUKQBAAAAAABACkUaAAAAAAAApChkHQAAAAAAACBXkqwDkBdmpAEAAAAAAEAKRRoAAAAAAACkUKQBAAAAAABACkUaAAAAAAAApFCkAQAAAAAAQIpC1gEAAAAAAADyJIkk6wjkhBlpAAAAAAAAkEKRBgAAAAAAACkUaQAAAAAAAJBCkQYAAAAAAAApyi7SvvWtb8W8efOaIwsAAAAAAADkRtlFWm1tbfTq1Ss+/elPx89//vNYu3Ztc+QCAAAAAADIRJLYyt12Vdu1tON//ud/RmVlZVx44YXRo0ePGDVqVLzwwgtNnQ0AAAAAAAAys11F2mmnnRa/+tWv4q233oqvfvWr8eijj8YRRxwRxxxzTPzwhz+MlStXNnVOAAAAAAAAaFHbVaR9oGvXrvHVr341Xn755Xj88cejb9++cdVVV0V1dfUWn1dfXx8rVqwo2err63ckCgAAAAAAADSpsou0ZDMLXQ4aNCh+/OMfx4IFC+I73/nOFs9RV1cXVVVVJdst4+vKjQIAAAAAAADNJikWi8VyntCqVatYtGhRdO3adbv/o/X19ZvMQCu2roiKiortPicAAAAA+dRxwJVZR8iNZc98L+sIwE5oj0LWCXY/s+e7hVW5jty/fdYRmkXZL7+GhoYd/o9WVGxamq1Zv8OnBQAAAAAA2GHpa/OxO9qhe6SlefPNN2PEiBFNfVoAAAAAAABoUU1epC1dujQmTJjQ1KcFAAAAAACAFlX20o6TJk3a4vG5c+dudxgAAAAAAADIi7KLtGHDhkWSJFEsFjf7mCSxeigAAAAAAAA7t7KXdqyuro6JEydGQ0ND6jZr1qzmyAkAAAAAAAAtquwirX///jFz5szNHt/abDUAAAAAAIBcS2xlb7uospd2rK2tjVWrVm32eO/evWPq1Kk7FAoAAAAAAACyVnaRNmjQoC0er6ysjJqamu0OBAAAAAAAAHlQ9tKOAAAAAAAAsDtQpAEAAAAAAEAKRRoAAAAAAACkKPseaQAAAAAAALuyJJKsI5ATZqQBAAAAAABACkUaAAAAAAAApFCkAQAAAAAAQApFGgAAAAAAAKRQpAEAAAAAAEAKRRoAAAAAAACkKGQdAAAAAAAAIE+SJOsE5IUZaQAAAAAAAJBCkQYAAAAAAAApFGkAAAAAAACQQpEGAAAAAAAAKRRpAAAAAAAAkKKQdQAAAAAAAIA8SbIOQG6YkQYAAAAAAAApFGkAAAAAAACQQpEGAAAAAAAAKRRpAAAAAAAAkEKRBgAAAAAAACkKWQcAAAAAAADIlSTrAOSFGWkAAAAAAACQwow0AAAAAJrVsme+l3WE3Oh49OVZR8iVZc/elnUEANgiM9IAAAAAAAAghSINAAAAAAAAUijSAAAAAAAAIIV7pAEAAAAAAHxIEknWEcgJM9IAAAAAAAAghSINAAAAAAAAUijSAAAAAAAAIIUiDQAAAAAAAFIo0gAAAAAAACBFIesAAAAAAAAAeZIkWScgL8xIAwAAAAAAgBSKNAAAAAAAAEihSAMAAAAAAIAUijQAAAAAAABIoUgDAAAAAACAFIWsAwAAAAAAAORJknUAcsOMNAAAAAAAAEihSAMAAAAAAIAUijQAAAAAAABIoUgDAAAAAACAFIo0AAAAAAAASFHIOgAAAAAAAECuJFkHIC/MSAMAAAAAAIAUijQAAAAAAABIoUgDAAAAAACAFIo0AAAAAAAASKFIAwAAAAAAgBSFrAMAAAAAAADkSRJJ1hHICTPSAAAAAAAAIMV2FWkPP/xwXHvttfGHP/whIiJ+97vfxWmnnRannnpq3HnnnU0aEAAAAAAAALJQdpH2H//xH3HWWWfFf/3Xf8Vpp50W9957bwwbNiz23XffOOCAA2LUqFHxve99rzmyAgAAAAAAQIsp+x5pt956a/z7v/97XHrppTF16tQ47bTT4lvf+lZ85StfiYiIT37yk3HzzTfHlVde2eRhAQAAAAAAoKWUPSPtjTfeiCFDhkRExEknnRQbNmyIE044ofH4iSeeGPPmzWu6hAAAAAAAAJCBsmekde7cOebNmxf7779/LFiwINavXx/z58+Pww47LCIi5s2bF506ddriOerr66O+vr5kX7F1RVRUVJQbBwAAAAAAoEklSdYJyIuyZ6SdeeaZ8cUvfjG++c1vxllnnRUXXXRR/NM//VM88sgj8eijj8Y//uM/xuDBg7d4jrq6uqiqqirZbhlft91/CQAAAAAAAGhqSbFYLJbzhFWrVsVVV10V06dPj2OPPTa+//3vx6233hpXX311rFu3LmpqauLnP/95dO3adbPnMCMNAAAAgN1Rx6MvzzpCrix79rasI8BOYY+y15ZjR81ZtDrrCDudg7vvmXWEZlF2kbY5a9asiXXr1kX79u237/nrmyIFAAAAAOSXIq2UIg22jSKt5SnSyrerFmllL+24OXvssUe0b98+3nzzzRgxYkRTnRYAAAAAAAAy0WRF2geWLl0aEyZMaOrTAgAAAAAAQIsqe0LopEmTtnh87ty52x0GAAAAAAAga0nWAciNsou0YcOGRZIksaVbqyWJbzEAAAAAAAB2bmUv7VhdXR0TJ06MhoaG1G3WrFnNkRMAAAAAAABaVNlFWv/+/WPmzJmbPb612WoAAAAAAACwMyh7acfa2tpYtWrVZo/37t07pk6dukOhAAAAAAAAIGtlF2mDBg3a4vHKysqoqanZ7kAAAAAAAACQB2UXaQAAAAAAALu0JOsA5EXZ90gDAAAAAACA3YEiDQAAAAAAAFIo0gAAAAAAACCFIg0AAAAAAABSKNIAAAAAAAAgRSHrAAAAAAAAAHmSRJJ1BHLCjDQAAAAAAABIoUgDAAAAAACAFIo0AAAAAAAASKFIAwAAAAAAgBSKNAAAAAAAAEhRyDoAAAAAAABAniRJ1gnICzPSAAAAAAAAIIUiDQAAAAAAAFIo0gAAAAAAACCFIg0AAAAAAABSKNIAAAAAAAAgRSHrAAAAAAAAAHmSZB2A3DAjDQAAAAAAAFIo0gAAAAAAACCFIg0AAAAAAABSKNIAAAAAAAAghSINAAAAAAAAUiTFYrGYdYiIiDXrs04AAAAA0DQ2NOTi45bcaN0qyToCOdXxuNqsI+TGsj/cknUEcmyPQtYJdj+v//n9rCPsdHrt026bHldXVxcTJ06M//mf/4l27drFscceG+PHj4+DDz648TEnnnhiTJs2reR5//AP/xB33HFH49fz58+Pyy67LKZOnRp77bVXDB8+POrq6qJQaNoXjJcfAAAAAAAALWLatGkxcuTIOProo2P9+vXxta99LQYPHhwvvfRSVFZWNj7u0ksvjeuvv77x6z333LPxzxs2bIjTTz89unfvHk899VQsXLgwLrroomjTpk3ceOONTZpXkQYAAAAAAECLeOSRR0q+/vGPfxxdu3aNmTNnxgknnNC4f88994zu3bunnuO3v/1tvPTSSzFlypTo1q1bHHnkkXHDDTfEmDFj4rrrrou2bds2WV73SAMAAAAAACATy5cvj4iITp06lez/6U9/Gl26dInDDjssxo4dG6tXr248Nn369OjXr19069atcd+QIUNixYoV8eKLLzZpPjPSAAAAAAAA2CH19fVRX19fsq+ioiIqKio2+5yGhoYYNWpUHHfccXHYYYc17v/85z8fPXv2jB49esRzzz0XY8aMiTlz5sTEiRMjImLRokUlJVpENH69aNGipvorRYQiDQAAAAAAgB1UV1cX3/jGN0r2jRs3Lq677rrNPmfkyJHxwgsvxJNPPlmy/0tf+lLjn/v16xfV1dVx8sknx+uvvx69evVq0txbo0gDAAAAAAD4kCSSrCPsdMaOHRujR48u2bel2WiXX355PPzww/HEE0/Efvvtt8VzDxgwICIiXnvttejVq1d07949ZsyYUfKYxYsXR0Rs9r5q28s90gAAAAAAANghFRUV0aFDh5ItrUgrFotx+eWXx4MPPhi/+93v4sADD9zquWfPnh0REdXV1RERMXDgwHj++edjyZIljY+ZPHlydOjQIfr27ds0f6G/MiMNAAAAAACAFjFy5Mi477774qGHHor27ds33tOsqqoq2rVrF6+//nrcd999cdppp0Xnzp3jueeei6uuuipOOOGEOPzwwyMiYvDgwdG3b9+48MIL4+abb45FixbFNddcEyNHjtziLLjtkRSLxWKTnnE7rVmfdQIAAACAprGhIRcft+RG61aWxyJdx+Nqs46QG8v+cEvWEcixPUyJaXFz/7wm6wg7nYP22WObHpck6dcFd999d1x88cXx5ptvxhe+8IV44YUXYtWqVfGRj3wkzjrrrLjmmmuiQ4cOjY+fN29eXHbZZfH4449HZWVlDB8+PG666aYoFJr2BaNIAwAAAGhiirRSijQ2R5G2kSKNLVGktTxFWvm2tUjb2bhHGgAAAAAAAKTQYwMAAAAAAHzIZlYfZDdkRhoAAAAAAACkUKQBAAAAAABACkUaAAAAAAAApFCkAQAAAAAAQApFGgAAAAAAAKQoZB0AAAAAAAAgT5KsA5AbZqQBAAAAAABACkUaAAAAAAAApFCkAQAAAAAAQApFGgAAAAAAAKRQpAEAAAAAAECKQtYBAAAAAAAAciXJOgB5YUYaAAAAAAAApFCkAQAAAAAAQApFGgAAAAAAAKRQpAEAAAAAAEAKRRoAAAAAAACkKGzPk95///24//7748knn4yFCxdGq1at4qCDDophw4bFySef3NQZAQAAAAAAWkwSSdYRyImyZ6S99tprccghh8TYsWNjypQp8eijj0aSJPHss8/GkCFD4nOf+1ysX7++ObICAAAAAABAiym7SLviiivi1FNPjUWLFsX8+fOjrq4uGhoa4umnn46XX345nn322fjXf/3X5sgKAAAAAAAALSYpFovFcp5QWVkZs2fPjo9+9KMREbF27drYa6+9YuHChdG5c+d46KGHYtSoUfHGG2+UFWSNSWwAAADALmJDQ1kft+zyWreyPBbpOh5Xm3WE3Fj2h1uyjkCO7bFdN2liR8x7pz7rCDudnp0rso7QLMp++e29996xcuXKxq9Xr14d69evj7Zt20ZExOGHHx4LFy7c4jnq6+ujvr70m7DYuiIqKnbNQQYAAAAAAGDnU/bSjp/+9Kdj9OjR8T//8z/xxhtvxJe//OU48sgjo3379hERMX/+/OjatesWz1FXVxdVVVUl2y3j67bvbwAAAAAAAADNoOwZaTfffHOceeaZ0bdv30iSJD7ykY/Egw8+2Hj8z3/+c9TWbnlK9tixY2P06NEl+4qtzUYDAAAAAACyl1iVmL8q+x5pH3j11Vejvr4++vTpE4XCji/Q6h5pAAAAwK7CPdJKuUcam+MeaRu5Rxpb4h5pLW/+UvdIK9f+nXbNCVNlL+34gY9+9KNx2GGHbVKivfnmmzFixIgdDgYAAAAAAABZ2u4ibXOWLl0aEyZMaOrTAgAAAAAAQIsqe0LopEmTtnh87ty52x0GAAAAAAAA8qLsIm3YsGGRJEls6dZqibvwAQAAAAAAsJMre2nH6urqmDhxYjQ0NKRus2bNao6cAAAAAAAALSKxlb3tqsou0vr37x8zZ87c7PGtzVYDAAAAAACAnUHZSzvW1tbGqlWrNnu8d+/eMXXq1B0KBQAAAAAAAFkru0gbNGjQFo9XVlZGTU3NdgcCAAAAAACAPCh7aUcAAAAAAADYHSjSAAAAAAAAIEXZSzsCAAAAAADsypIk6wTkhRlpAAAAAAAAkEKRBgAAAAAAACkUaQAAAAAAAJBCkQYAAAAAAAApFGkAAAAAAACQopB1AAAAAAAAgHxJsg5ATpiRBgAAAAAAACkUaQAAAAAAAJBCkQYAAAAAAAApFGkAAAAAAACQQpEGAAAAAAAAKQpZBwAAAAAAAMiTJMk6AXlhRhoAAAAAAACkUKQBAAAAAABACkUaAAAAAAAApFCkAQAAAAAAQApFGgAAAAAAAKQoZB0AAAAAAAAgT5KsA5AbZqQBAAAAAABACkUaAAAAAAAApFCkAQAAAAAAQIqkWCwWsw4REbFmfdYJAACADzTk48eEXEjcHaFEYjhgm3gbLeW9A7au4/Fjso6QK8ueHJ91hFzZo5B1gt3PgnfXZh1hp9Nj77ZZR2gWZqQBAAAAAABACj02AAAAAADAh5hNzQfMSAMAAAAAAIAUijQAAAAAAABIoUgDAAAAAACAFIo0AAAAAAAASKFIAwAAAAAAgBSFrAMAAAAAAADkSRJJ1hHICTPSAAAAAAAAIIUiDQAAAAAAAFIo0gAAAAAAACCFIg0AAAAAAABSKNIAAAAAAAAgRSHrAAAAAAAAALmSZB2AvDAjDQAAAAAAAFIo0gAAAAAAACCFIg0AAAAAAABSKNIAAAAAAAAghSINAAAAAAAAUhSyDgAAAAAAAJAnSdYByA0z0gAAAAAAACCFIg0AAAAAAABSKNIAAAAAAAAghSINAAAAAAAAUijSAAAAAAAAIEUh6wAAAAAAAAB5kiRZJyAvzEgDAAAAAACAFIo0AAAAAAAASLFdSzvOmDEjpk+fHosWLYqIiO7du8fAgQPjmGOOadJwAAAAAAAAkJWyirQlS5bE2WefHX/4wx9i//33j27dukVExOLFi+Oqq66K4447Ln75y19G165dmyUsAAAAAAAAtJSylnb8yle+Ehs2bIiXX345/vd//zeeeeaZeOaZZ+J///d/4+WXX46GhoYYOXJkc2UFAAAAAACAFlPWjLRHH300nnjiiTj44IM3OXbwwQfHrbfeGieeeGJTZQMAAAAAAGhxSSRZRyAnypqRVlFREStWrNjs8ZUrV0ZFRcUOhwIAAAAAAICslVWknXvuuTF8+PB48MEHSwq1FStWxIMPPhiXXHJJnH/++Vs9T319faxYsaJkq6+vLz89AAAAAAAANJOyirRvf/vbMXTo0DjvvPOiY8eO0a5du2jXrl107NgxzjvvvBg6dGj827/921bPU1dXF1VVVSXbLePrtvsvAQAAAAAAAE0tKRaLxXKftGLFipg5c2YsWrQoIiK6d+8e/fv3jw4dOmzT8+vr6zeZgVZsXWFZSAAAyImG8n9M2GW5N0KpxHDANvE2Wsp7B2xdx+PHZB0hV5Y9OT7rCLmyRyHrBLufP69cn3WEnc4+7XfNb9Tt+lt16NAhTjrppO3+j1ZUbFqarfE9CQAAAAAAQI6UtbRjRMT7778fTz75ZLz00kubHFuzZk3cc889TRIMAAAAAAAgE4mt7G0XVVaR9sorr8QhhxwSJ5xwQvTr1y9qampiwYIFjceXL18el1xySZOHBAAAAAAAgJZWVpE2ZsyYOOyww2LJkiUxZ86caN++fRx//PExf/785soHAAAAAAAAmSirSHvqqaeirq4uunTpEr17945f//rXMWTIkBg0aFDMnTu3uTICAAAAAABAiyurSHv//fejUCg0fp0kSdx+++1xxhlnRE1NTbzyyitNHhAAAAAAAACyUNj6Qzbq06dP/PGPf4xDDjmkZP9tt90WERGf+cxnmi4ZAAAAAAAAZKisGWlnnXVW3H///anHbrvttjj//POjWCw2STAAAAAAAIAsJLayt11VUsxJ87VmfdYJAACADzTk48eEXEh26R8Jy5cYDtgm3kZLee+Aret4/JisI+TKsifHZx0hV/Yoa205msJf3lNalKvLXrvmN2pZM9IAAAAAAABgd6FIAwAAAAAAgBSKNAAAAAAAAEihSAMAAAAAAIAUu+ad3wAAAAAAALZTkmSdgLwwIw0AAAAAAABSKNIAAAAAAAAghSINAAAAAAAAUijSAAAAAAAAIIUiDQAAAAAAAFIUsg4AAAAAAACQJ0kkWUcgJ8xIAwAAAAAAgBSKNAAAAAAAAEihSAMAAAAAAIAUijQAAAAAAABIoUgDAAAAAACAFIWsAwAAAAAAAORJkmSdgLwwIw0AAAAAAABSKNIAAAAAAAAghSINAAAAAAAAUijSAAAAAAAAIIUiDQAAAAAAAFIo0gAAAAAAACCFIg0AAAAAAABSJMVisZh1iIiINeuzTgDsbPLx7pUfSZJ1AgBgd+AarJRrMDbHa6WU1wpsnfeNUp1qvpZ1hFx5/6kbs46w21m2ekPWEXY6HfdsnXWEZmFGGgAAAAAAAKRQpAEAAAAAAEAKRRoAAAAAAACkKGQdAAAAAAAAIE/c35MPmJEGAAAAAAAAKRRpAAAAAAAAkEKRBgAAAAAAACkUaQAAAAAAAJBCkQYAAAAAAAApClkHAAAAAAAAyJMkkqwjkBNmpAEAAAAAAEAKRRoAAAAAAACkUKQBAAAAAABACkUaAAAAAAAApFCkAQAAAAAAQIpC1gEAAAAAAADyJEmyTkBemJEGAAAAAAAAKRRpAAAAAAAAkEKRBgAAAAAAACkUaQAAAAAAAJBCkQYAAAAAAAApClkHAAAAAAAAyJMk6wDkhhlpAAAAAAAAkEKRBgAAAAAAACkUaQAAAAAAAJBCkQYAAAAAAAApFGkAAAAAAACQopB1AAAAAAAAgFxJsg5AXjTpjLRly5bFPffc05SnBAAAAAAAgEw0aZE2f/78uOSSS5rylAAAAAAAAJCJspZ2XLFixRaPr1y5cofCAAAAAAAAQF6UVaTtvffekSSbXxi0WCxu8TgAAAAAAADsLMoq0tq3bx9XX311DBgwIPX4q6++Gv/wD//QJMEAAAAAAAAgS2UVaZ/4xCciIqKmpib1+N577x3FYnGr56mvr4/6+vqSfcXWFVFRUVFOHAAAAAAAgCaXhNX3+H9alfPgz3/+87HHHnts9nj37t1j3LhxWz1PXV1dVFVVlWy3jK8rJwoAAAAAAAA0q6S4LVPImpgZaUBTaPl3r3xzi0oAoCW4BivlGozN8Vop5bUCW+d9o1Snmq9lHSFX3n/qxqwj7Hbeq/eiLNdeFbvmP/hlLe3YVCoqNi3N1qzPIgkAAAAAAACkK2tpx4iI999/P5588sl46aWXNjm2Zs2auOeee5okGAAAAAAAAGSprCLtlVdeiUMOOSROOOGE6NevX9TU1MTChQsbjy9fvjwuueSSJg8JAAAAAAAALa2sIm3MmDFx2GGHxZIlS2LOnDnRvn37OO6442L+/PnNlQ8AAAAAAKBFJYmt3G1XVVaR9tRTT0VdXV106dIlevfuHb/+9a9jyJAhMWjQoJg7d25zZQQAAAAAAIAWV1aR9v7770ehUGj8OkmSuP322+OMM86ImpqaeOWVV5o8IAAAAAAAAGShsPWHbNSnT5/44x//GIccckjJ/ttuuy0iIj7zmc80XTIAAAAAAADIUFkz0s4666y4//77U4/ddtttcf7550exWGySYAAAAAAAAJClpJiT5mvN+qwTADubfLx75ceufENPACA/XIOVcg3G5nitlPJaga3zvlGqU83Xso6QK+8/dWPWEXY7q9Z6UZarsu2u+Q9+WUs7AgAAAAAA7Op2zUqI7VHW0o4AAAAAAACwu1CkAQAAAAAAQApFGgAAAAAAAKRQpAEAAAAAAEAKRRoAAAAAAACkKGQdAAAAAAAAIFeSrAOQF2akAQAAAAAAQApFGgAAAAAAAKRQpAEAAAAAAEAKRRoAAAAAAACkUKQBAAAAAABAikLWAQAAAAAAAPIkiSTrCOSEGWkAAAAAAACQQpEGAAAAAAAAKRRpAAAAAAAAkEKRBgAAAAAAACkUaQAAAAAAAJCikHUAAAAAAACAPEmSrBOQF2akAQAAAAAAQApFGgAAAAAAAC3qBz/4QRxwwAGxxx57xIABA2LGjBlZR0qlSAMAAAAAAKDF/PznP4/Ro0fHuHHjYtasWXHEEUfEkCFDYsmSJVlH24QiDQAAAAAAgBbz7W9/Oy699NK45JJLom/fvnHHHXfEnnvuGT/60Y+yjrYJRRoAAAAAAAA7pL6+PlasWFGy1dfXb/K4tWvXxsyZM+OUU05p3NeqVas45ZRTYvr06S0ZedsUabRmzZriuHHjimvWrMk6SuaMRSnjsZGxKGU8ShmPjYxFKeNRynhsZCxKGY9SxmMjY1HKeGxkLEoZj1LGYyNjUcp4lDIeGxmLUsYDyjNu3LhiRJRs48aN2+Rxb7/9djEiik899VTJ/tra2uIxxxzTQmm3XVIsFouZNnk5smLFiqiqqorly5dHhw4dso6TKWNRynhsZCxKGY9SxmMjY1HKeJQyHhsZi1LGo5Tx2MhYlDIeGxmLUsajlPHYyFiUMh6ljMdGxqKU8YDy1NfXbzIDraKiIioqKkr2LViwIPbdd9946qmnYuDAgY37v/rVr8a0adPimWeeaZG826qQdQAAAAAAAAB2bmmlWZouXbpE69atY/HixSX7Fy9eHN27d2+ueNvNPdIAAAAAAABoEW3bto3+/fvHY4891rivoaEhHnvssZIZanlhRhoAAAAAAAAtZvTo0TF8+PA46qij4phjjonvfve7sWrVqrjkkkuyjrYJRdqHVFRUxLhx47Zp6uGuzliUMh4bGYtSxqOU8djIWJQyHqWMx0bGopTxKGU8NjIWpYzHRsailPEoZTw2MhaljEcp47GRsShlPKD5nHvuufHnP/85rr322li0aFEceeSR8cgjj0S3bt2yjraJpFgsFrMOAQAAAAAAAHnjHmkAAAAAAACQQpEGAAAAAAAAKRRpAAAAAAAAkEKRBgAAAAAAACkUaX/1gx/8IA444IDYY489YsCAATFjxoysI2XiiSeeiDPOOCN69OgRSZLEr371q6wjZaauri6OPvroaN++fXTt2jWGDRsWc+bMyTpWZm6//fY4/PDDo0OHDtGhQ4cYOHBg/Pd//3fWsXLhpptuiiRJYtSoUVlHycR1110XSZKUbH369Mk6Vqbefvvt+MIXvhCdO3eOdu3aRb9+/eKPf/xj1rEyccABB2zy/ZEkSYwcOTLraC1uw4YN8fWvfz0OPPDAaNeuXfTq1StuuOGGKBaLWUfLzMqVK2PUqFHRs2fPaNeuXRx77LHx7LPPZh2rRWztmqtYLMa1114b1dXV0a5duzjllFPi1VdfzSZsM9vaWEycODEGDx4cnTt3jiRJYvbs2ZnkbClbGo9169bFmDFjol+/flFZWRk9evSIiy66KBYsWJBd4Ga2te+P6667Lvr06ROVlZXRsWPHOOWUU+KZZ57JJmwzK+dntS9/+cuRJEl897vfbbF8LW1r43HxxRdvcv1x6qmnZhO2mW3L98bLL78cn/nMZ6KqqioqKyvj6KOPjvnz57d82BawtfFIuzZNkiRuueWWbAI3s62Nx3vvvReXX3557LffftGuXbvo27dv3HHHHdmEbWZbG4vFixfHxRdfHD169Ig999wzTj311F32+iti2z73WrNmTYwcOTI6d+4ce+21V5x99tmxePHijBI3n20ZizvvvDNOPPHE6NChQyRJEu+++242YYFMKNIi4uc//3mMHj06xo0bF7NmzYojjjgihgwZEkuWLMk6WotbtWpVHHHEEfGDH/wg6yiZmzZtWowcOTKefvrpmDx5cqxbty4GDx4cq1atyjpaJvbbb7+46aabYubMmfHHP/4xPvWpT8WZZ54ZL774YtbRMvXss8/Gf/zHf8Thhx+edZRMHXroobFw4cLG7cknn8w6UmaWLVsWxx13XLRp0yb++7//O1566aX41re+FR07dsw6WiaeffbZku+NyZMnR0TEOeeck3Gyljd+/Pi4/fbb47bbbouXX345xo8fHzfffHN8//vfzzpaZv7+7/8+Jk+eHD/5yU/i+eefj8GDB8cpp5wSb7/9dtbRmt3WrrluvvnmuPXWW+OOO+6IZ555JiorK2PIkCGxZs2aFk7a/LY2FqtWrYrjjz8+xo8f38LJsrGl8Vi9enXMmjUrvv71r8esWbNi4sSJMWfOnPjMZz6TQdKWsbXvj4997GNx2223xfPPPx9PPvlkHHDAATF48OD485//3MJJm9+2/qz24IMPxtNPPx09evRooWTZ2JbxOPXUU0uuQ+6///4WTNhytjYWr7/+ehx//PHRp0+fePzxx+O5556Lr3/967HHHnu0cNKWsbXx+PD3xMKFC+NHP/pRJEkSZ599dgsnbRlbG4/Ro0fHI488Evfee2+8/PLLMWrUqLj88stj0qRJLZy0+W1pLIrFYgwbNizmzp0bDz30UPzpT3+Knj17ximnnLLLfg60LZ97XXXVVfHrX/86HnjggZg2bVosWLAgPvvZz2aYunlsy1isXr06Tj311Pja176WYVIgM0WKxxxzTHHkyJGNX2/YsKHYo0ePYl1dXYapshcRxQcffDDrGLmxZMmSYkQUp02blnWU3OjYsWPxP//zP7OOkZmVK1cWP/rRjxYnT55crKmpKV555ZVZR8rEuHHjikcccUTWMXJjzJgxxeOPPz7rGLl15ZVXFnv16lVsaGjIOkqLO/3004sjRowo2ffZz362eMEFF2SUKFurV68utm7duvjwww+X7P/EJz5RvPrqqzNKlY2/veZqaGgodu/evXjLLbc07nv33XeLFRUVxfvvvz+DhC1nS9efb7zxRjEiin/6059aNFOWtuV6fMaMGcWIKM6bN69lQmVoW8Zj+fLlxYgoTpkypWVCZWRzY/HWW28V99133+ILL7xQ7NmzZ/E73/lOi2fLQtp4DB8+vHjmmWdmkidLaWNx7rnnFr/whS9kEyhj2/K+ceaZZxY/9alPtUygjKWNx6GHHlq8/vrrS/btDtdjfzsWc+bMKUZE8YUXXmjct2HDhuI+++xT/OEPf5hBwpb3t597vfvuu8U2bdoUH3jggcbHvPzyy8WIKE6fPj2rmC1iS58BTp06tRgRxWXLlrV8MCAzu/2MtLVr18bMmTPjlFNOadzXqlWrOOWUU2L69OkZJiNvli9fHhERnTp1yjhJ9jZs2BA/+9nPYtWqVTFw4MCs42Rm5MiRcfrpp5e8f+yuXn311ejRo0ccdNBBccEFF+yyy8Rsi0mTJsVRRx0V55xzTnTt2jU+/vGPxw9/+MOsY+XC2rVr4957740RI0ZEkiRZx2lxxx57bDz22GPxyiuvRETE//2//zeefPLJGDp0aMbJsrF+/frYsGHDJr8N365du916VmtExBtvvBGLFi0q+felqqoqBgwY4PqUTSxfvjySJIm999476yiZW7t2bdx5551RVVUVRxxxRNZxWlxDQ0NceOGFUVtbG4ceemjWcXLh8ccfj65du8bBBx8cl112WbzzzjtZR2pxDQ0N8Zvf/CY+9rGPxZAhQ6Jr164xYMCA3fo2Dh+2ePHi+M1vfhNf/OIXs46SmWOPPTYmTZoUb7/9dhSLxZg6dWq88sorMXjw4Kyjtaj6+vqIiJJr01atWkVFRcVuc236t597zZw5M9atW1dyTdqnT5/Yf//9d/lrUp8BAn9rty/S/vKXv8SGDRuiW7duJfu7desWixYtyigVedPQ0BCjRo2K4447Lg477LCs42Tm+eefj7322isqKiriy1/+cjz44IPRt2/frGNl4mc/+1nMmjUr6urqso6SuQEDBsSPf/zjeOSRR+L222+PN954IwYNGhQrV67MOlom5s6dG7fffnt89KMfjUcffTQuu+yyuOKKK2LChAlZR8vcr371q3j33Xfj4osvzjpKJv7lX/4lzjvvvOjTp0+0adMmPv7xj8eoUaPiggsuyDpaJtq3bx8DBw6MG264IRYsWBAbNmyIe++9N6ZPnx4LFy7MOl6mPrgGdX3K1qxZsybGjBkT559/fnTo0CHrOJl5+OGHY6+99oo99tgjvvOd78TkyZOjS5cuWcdqcePHj49CoRBXXHFF1lFy4dRTT4177rknHnvssRg/fnxMmzYthg4dGhs2bMg6WotasmRJvPfee3HTTTfFqaeeGr/97W/jrLPOis9+9rMxbdq0rONlbsKECdG+fftdcqm6bfX9738/+vbtG/vtt1+0bds2Tj311PjBD34QJ5xwQtbRWtQHBdHYsWNj2bJlsXbt2hg/fny89dZbu8W1adrnXosWLYq2bdtu8ss6u/o1qc8AgTSFrAPAzmDkyJHxwgsv7Da/hbQ5Bx98cMyePTuWL18e/9//9//F8OHDY9q0abtdmfbmm2/GlVdeGZMnT95l7ytQjg/Ppjn88MNjwIAB0bNnz/jFL36xW/5mZ0NDQxx11FFx4403RkTExz/+8XjhhRfijjvuiOHDh2ecLlt33XVXDB06dJe/Z8vm/OIXv4if/vSncd9998Whhx4as2fPjlGjRkWPHj122++Nn/zkJzFixIjYd999o3Xr1vGJT3wizj///Jg5c2bW0SD31q1bF5/73OeiWCzG7bffnnWcTJ100kkxe/bs+Mtf/hI//OEP43Of+1w888wz0bVr16yjtZiZM2fG9773vZg1a9ZuOes7zXnnndf45379+sXhhx8evXr1iscffzxOPvnkDJO1rIaGhoiIOPPMM+Oqq66KiIgjjzwynnrqqbjjjjuipqYmy3iZ+9GPfhQXXHDBbv1z3fe///14+umnY9KkSdGzZ8944oknYuTIkdGjR4/davWVNm3axMSJE+OLX/xidOrUKVq3bh2nnHJKDB06NIrFYtbxmp3PvTYyFkCa3X5GWpcuXaJ169axePHikv2LFy+O7t27Z5SKPLn88svj4YcfjqlTp8Z+++2XdZxMtW3bNnr37h39+/ePurq6OOKII+J73/te1rFa3MyZM2PJkiXxiU98IgqFQhQKhZg2bVrceuutUSgUdrvfcv1be++9d3zsYx+L1157Lesomaiurt6kXD7kkEN26+UuIyLmzZsXU6ZMib//+7/POkpmamtrG2el9evXLy688MK46qqrduuZrb169Ypp06bFe++9F2+++WbMmDEj1q1bFwcddFDW0TL1wTWo61M254MSbd68eTF58uTdejZaRERlZWX07t07PvnJT8Zdd90VhUIh7rrrrqxjtajf//73sWTJkth///0br0/nzZsX//RP/xQHHHBA1vFy4aCDDoouXbrsdteoXbp0iUKh4Po0xe9///uYM2fObn19+v7778fXvva1+Pa3vx1nnHFGHH744XH55ZfHueeeG//2b/+WdbwW179//5g9e3a8++67sXDhwnjkkUfinXfe2eWvTTf3uVf37t1j7dq18e6775Y8fle+JvUZILA5u32R1rZt2+jfv3889thjjfsaGhriscce263v/UREsViMyy+/PB588MH43e9+FwceeGDWkXKnoaGhcR3x3cnJJ58czz//fMyePbtxO+qoo+KCCy6I2bNnR+vWrbOOmKn33nsvXn/99aiurs46SiaOO+64mDNnTsm+V155JXr27JlRony4++67o2vXrnH66adnHSUzq1evjlatSi+9Wrdu3fib4ruzysrKqK6ujmXLlsWjjz4aZ555ZtaRMnXggQdG9+7dS65PV6xYEc8884zrUxpLtFdffTWmTJkSnTt3zjpS7uyO16gXXnhhPPfccyXXpz169Ija2tp49NFHs46XC2+99Va88847u901atu2bePoo492fZrirrvuiv79+++W91T8wLp162LdunWuUf9GVVVV7LPPPvHqq6/GH//4x1322nRrn3v1798/2rRpU3JNOmfOnJg/f/4ud03qM0BgayztGBGjR4+O4cOHx1FHHRXHHHNMfPe7341Vq1bFJZdcknW0Fvfee++V/IbeG2+8EbNnz45OnTrF/vvvn2Gyljdy5Mi477774qGHHor27ds3rv9cVVUV7dq1yzhdyxs7dmwMHTo09t9//1i5cmXcd9998fjjj++WP5i3b99+k3WyKysro3Pnzrvl+tn//M//HGeccUb07NkzFixYEOPGjYvWrVvH+eefn3W0TFx11VVx7LHHxo033hif+9znYsaMGXHnnXfGnXfemXW0zDQ0NMTdd98dw4cPj0Jh9730OOOMM+Kb3/xm7L///nHooYfGn/70p/j2t78dI0aMyDpaZh599NEoFotx8MEHx2uvvRa1tbXRp0+f3eIabGvXXKNGjYp//dd/jY9+9KNx4IEHxte//vXo0aNHDBs2LLvQzWRrY7F06dKYP39+LFiwICKi8cPg7t2775K/Db2l8aiuro7/83/+T8yaNSsefvjh2LBhQ+M1aqdOnaJt27ZZxW42WxqPzp07xze/+c34zGc+E9XV1fGXv/wlfvCDH8Tbb78d55xzToapm8fWXit/W6q2adMmunfvHgcffHBLR20RWxqPTp06xTe+8Y04++yzo3v37vH666/HV7/61ejdu3cMGTIkw9TNY2vfG7W1tXHuuefGCSecECeddFI88sgj8etf/zoef/zx7EI3o235XGPFihXxwAMPxLe+9a2sYraYrY1HTU1N1NbWRrt27aJnz54xbdq0uOeee+Lb3/52hqmbx9bG4oEHHoh99tkn9t9//3j++efjyiuvjGHDhsXgwYMzTN18tva51//f3h27UtvGcQC/38HtUIgSB51TUgzKJiaDMirTGYksJGVF/gJJJkpmmzKxWGU1KWV0RhnI4vds7/LeL556j+vt8fnUmc7y7dt96jrXd7g7OjqypaWlbGNjI+vq6sra29uztbW1bHJyMpuYmEic/r/1lTvAer2e1ev1v5+h29vbrK2tLatUKllXV1ey7MA3CSIi4uDgICqVSuR5HuPj43F9fZ06UhJXV1eRZdk/PvPz86mjfbuiHrIsi5OTk9TRklhcXIxqtRp5nkd3d3dMT0/H5eVl6lj/G1NTU7G+vp46RhK1Wi3K5XLkeR79/f1Rq9Xi/v4+daykzs/PY3R0NJqbm2NkZCSOjo5SR0rq4uIisiyLu7u71FGSen5+jvX19ahUKlEqlWJwcDA2Nzfj7e0tdbRkTk9PY3BwMPI8j97e3lhdXY2np6fUsb7FZ2eu9/f32N7ejp6enmhubo7p6ek/9jf0WRcnJyeF3+/s7CTN3Sgf9fHw8PCvZ9Srq6vU0Rvioz5eX19jbm4u+vr6Is/zKJfLMTs7Gzc3N6ljN8Tv/lerVquxt7f3rRm/00d9vLy8xMzMTHR3d0dTU1NUq9VYXl6Oer2eOnZDfOXZOD4+jqGhoSiVSjE2NhZnZ2fpAjfYV/o4PDyMlpaWH3Hu+KyPx8fHWFhYiL6+viiVSjE8PBy7u7vx/v6eNngDfNbF/v5+DAwMRFNTU1Qqldja2vqjz+pfufd6fX2NlZWV6OzsjNbW1pibm4vHx8d0oRvkK13s7Oy4J4Qf7K+IH/DGTAAAAAAAAPhNP/4daQAAAAAAAFDEkAYAAAAAAAAFDGkAAAAAAABQwJAGAAAAAAAABQxpAAAAAAAAUMCQBgAAAAAAAAUMaQAAAAAAAFDAkAYAAAAAAAAFDGkAAAAAAABQwJAGAAAAAAAABQxpAAAAAAAAUMCQBgAAAAAAAAV+AeGD/snxqzB2AAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["🚀 [TRAINING] SUB model not found. Building and training...\n"]},{"output_type":"display_data","data":{"text/plain":["\u001b[1mModel: \"functional_3\"\u001b[0m\n"],"text/html":["
Model: \"functional_3\"\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n","┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mConnected to \u001b[0m\u001b[1m \u001b[0m┃\n","┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n","│ input_layer_5 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m894\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ - │\n","│ (\u001b[38;5;33mInputLayer\u001b[0m) │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_11 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m114,560\u001b[0m │ input_layer_5[\u001b[38;5;34m0\u001b[0m]… │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ reshape_6 (\u001b[38;5;33mReshape\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ dense_11[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ layer_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │ reshape_6[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","│ (\u001b[38;5;33mLayerNormalizatio…\u001b[0m │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ multi_head_attenti… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m131,968\u001b[0m │ layer_normalizat… │\n","│ (\u001b[38;5;33mMultiHeadAttentio…\u001b[0m │ │ │ layer_normalizat… │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ add_12 (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ multi_head_atten… │\n","│ │ │ │ reshape_6[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │ add_12[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ layer_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │ batch_normalizat… │\n","│ (\u001b[38;5;33mLayerNormalizatio…\u001b[0m │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_12 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m16,512\u001b[0m │ layer_normalizat… │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_18 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ dense_12[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","│ (\u001b[38;5;33mDropout\u001b[0m) │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ add_13 (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n","│ │ │ │ dropout_18[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ global_average_poo… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ add_13[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","│ (\u001b[38;5;33mGlobalAveragePool…\u001b[0m │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_19 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ global_average_p… │\n","│ (\u001b[38;5;33mDropout\u001b[0m) │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_13 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m8,256\u001b[0m │ dropout_19[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_20 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ dense_13[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","│ (\u001b[38;5;33mDropout\u001b[0m) │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_14 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m75\u001b[0m) │ \u001b[38;5;34m4,875\u001b[0m │ dropout_20[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n"],"text/html":["
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n","┃ Layer (type)         Output Shape          Param #  Connected to      ┃\n","┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n","│ input_layer_5       │ (None, 894)       │          0 │ -                 │\n","│ (InputLayer)        │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_11 (Dense)    │ (None, 128)       │    114,560 │ input_layer_5[0]… │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ reshape_6 (Reshape) │ (None, 1, 128)    │          0 │ dense_11[0][0]    │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ layer_normalizatio… │ (None, 1, 128)    │        256 │ reshape_6[0][0]   │\n","│ (LayerNormalizatio… │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ multi_head_attenti… │ (None, 1, 128)    │    131,968 │ layer_normalizat… │\n","│ (MultiHeadAttentio… │                   │            │ layer_normalizat… │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ add_12 (Add)        │ (None, 1, 128)    │          0 │ multi_head_atten… │\n","│                     │                   │            │ reshape_6[0][0]   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ batch_normalizatio… │ (None, 1, 128)    │        512 │ add_12[0][0]      │\n","│ (BatchNormalizatio… │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ layer_normalizatio… │ (None, 1, 128)    │        256 │ batch_normalizat… │\n","│ (LayerNormalizatio… │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_12 (Dense)    │ (None, 1, 128)    │     16,512 │ layer_normalizat… │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_18          │ (None, 1, 128)    │          0 │ dense_12[0][0]    │\n","│ (Dropout)           │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ add_13 (Add)        │ (None, 1, 128)    │          0 │ batch_normalizat… │\n","│                     │                   │            │ dropout_18[0][0]  │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ global_average_poo… │ (None, 128)       │          0 │ add_13[0][0]      │\n","│ (GlobalAveragePool… │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_19          │ (None, 128)       │          0 │ global_average_p… │\n","│ (Dropout)           │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_13 (Dense)    │ (None, 64)        │      8,256 │ dropout_19[0][0]  │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_20          │ (None, 64)        │          0 │ dense_13[0][0]    │\n","│ (Dropout)           │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_14 (Dense)    │ (None, 75)        │      4,875 │ dropout_20[0][0]  │\n","└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Total params: \u001b[0m\u001b[38;5;34m277,195\u001b[0m (1.06 MB)\n"],"text/html":["
 Total params: 277,195 (1.06 MB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m276,939\u001b[0m (1.06 MB)\n"],"text/html":["
 Trainable params: 276,939 (1.06 MB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m256\u001b[0m (1.00 KB)\n"],"text/html":["
 Non-trainable params: 256 (1.00 KB)\n","
\n"]},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Epoch 1/15\n","\u001b[1m1694/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.5140 - loss: 2.0055\n","Epoch 1: val_loss improved from inf to 0.54294, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_sub.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m1695/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m55s\u001b[0m 31ms/step - accuracy: 0.5142 - loss: 2.0047 - val_accuracy: 0.8476 - val_loss: 0.5429 - learning_rate: 5.0000e-04\n","Epoch 2/15\n","\u001b[1m1694/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 28ms/step - accuracy: 0.8076 - loss: 0.6962\n","Epoch 2: val_loss improved from 0.54294 to 0.42559, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_sub.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m1695/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m52s\u001b[0m 30ms/step - accuracy: 0.8076 - loss: 0.6961 - val_accuracy: 0.8775 - val_loss: 0.4256 - learning_rate: 5.0000e-04\n","Epoch 3/15\n","\u001b[1m1694/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 27ms/step - accuracy: 0.8482 - loss: 0.5375\n","Epoch 3: val_loss improved from 0.42559 to 0.38367, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_sub.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m1695/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m49s\u001b[0m 29ms/step - accuracy: 0.8482 - loss: 0.5374 - val_accuracy: 0.8880 - val_loss: 0.3837 - learning_rate: 5.0000e-04\n","Epoch 4/15\n","\u001b[1m1695/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step - accuracy: 0.8679 - loss: 0.4627\n","Epoch 4: val_loss improved from 0.38367 to 0.33179, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_sub.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m1695/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m51s\u001b[0m 30ms/step - accuracy: 0.8679 - loss: 0.4627 - val_accuracy: 0.9013 - val_loss: 0.3318 - learning_rate: 5.0000e-04\n","Epoch 5/15\n","\u001b[1m1695/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step - accuracy: 0.8804 - loss: 0.4121\n","Epoch 5: val_loss improved from 0.33179 to 0.31399, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_sub.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m1695/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 30ms/step - accuracy: 0.8804 - loss: 0.4121 - val_accuracy: 0.9070 - val_loss: 0.3140 - learning_rate: 5.0000e-04\n","Epoch 6/15\n","\u001b[1m1695/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.8898 - loss: 0.3775\n","Epoch 6: val_loss improved from 0.31399 to 0.28772, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_sub.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m1695/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m51s\u001b[0m 30ms/step - accuracy: 0.8898 - loss: 0.3775 - val_accuracy: 0.9134 - val_loss: 0.2877 - learning_rate: 5.0000e-04\n","Epoch 7/15\n","\u001b[1m1695/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step - accuracy: 0.8956 - loss: 0.3540\n","Epoch 7: val_loss improved from 0.28772 to 0.28387, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_sub.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m1695/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 29ms/step - accuracy: 0.8956 - loss: 0.3540 - val_accuracy: 0.9158 - val_loss: 0.2839 - learning_rate: 5.0000e-04\n","Epoch 8/15\n","\u001b[1m1695/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 28ms/step - accuracy: 0.9012 - loss: 0.3369\n","Epoch 8: val_loss improved from 0.28387 to 0.26945, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_sub.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m1695/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 30ms/step - accuracy: 0.9012 - loss: 0.3369 - val_accuracy: 0.9200 - val_loss: 0.2694 - learning_rate: 5.0000e-04\n","Epoch 9/15\n","\u001b[1m1695/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 27ms/step - accuracy: 0.9059 - loss: 0.3161\n","Epoch 9: val_loss improved from 0.26945 to 0.26327, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_sub.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m1695/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m49s\u001b[0m 29ms/step - accuracy: 0.9059 - loss: 0.3161 - val_accuracy: 0.9201 - val_loss: 0.2633 - learning_rate: 5.0000e-04\n","Epoch 10/15\n","\u001b[1m1694/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9092 - loss: 0.3037\n","Epoch 10: val_loss improved from 0.26327 to 0.25507, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_sub.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m1695/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m51s\u001b[0m 30ms/step - accuracy: 0.9092 - loss: 0.3037 - val_accuracy: 0.9240 - val_loss: 0.2551 - learning_rate: 5.0000e-04\n","Epoch 11/15\n","\u001b[1m1694/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 28ms/step - accuracy: 0.9120 - loss: 0.2928\n","Epoch 11: val_loss improved from 0.25507 to 0.24097, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_sub.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m1695/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 30ms/step - accuracy: 0.9120 - loss: 0.2928 - val_accuracy: 0.9267 - val_loss: 0.2410 - learning_rate: 5.0000e-04\n","Epoch 12/15\n","\u001b[1m1694/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 28ms/step - accuracy: 0.9142 - loss: 0.2836\n","Epoch 12: val_loss improved from 0.24097 to 0.23567, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_sub.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m1695/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 29ms/step - accuracy: 0.9142 - loss: 0.2836 - val_accuracy: 0.9295 - val_loss: 0.2357 - learning_rate: 5.0000e-04\n","Epoch 13/15\n","\u001b[1m1694/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9179 - loss: 0.2743\n","Epoch 13: val_loss did not improve from 0.23567\n","\u001b[1m1695/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m51s\u001b[0m 30ms/step - accuracy: 0.9179 - loss: 0.2743 - val_accuracy: 0.9285 - val_loss: 0.2400 - learning_rate: 5.0000e-04\n","Epoch 14/15\n","\u001b[1m1695/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9190 - loss: 0.2674\n","Epoch 14: val_loss improved from 0.23567 to 0.22445, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_sub.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m1695/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m52s\u001b[0m 31ms/step - accuracy: 0.9190 - loss: 0.2674 - val_accuracy: 0.9331 - val_loss: 0.2245 - learning_rate: 5.0000e-04\n","Epoch 15/15\n","\u001b[1m1694/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 28ms/step - accuracy: 0.9210 - loss: 0.2608\n","Epoch 15: val_loss improved from 0.22445 to 0.22270, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_sub.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\u001b[1m1695/1695\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 29ms/step - accuracy: 0.9210 - loss: 0.2608 - val_accuracy: 0.9332 - val_loss: 0.2227 - learning_rate: 5.0000e-04\n","\u001b[1m3390/3390\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 2ms/step\n","\n","📊 Report - SUB:\n"," precision recall f1-score support\n","\n"," 0 1.00 1.00 1.00 1446\n"," 1 0.92 0.94 0.93 1447\n"," 2 1.00 1.00 1.00 1447\n"," 3 0.99 1.00 1.00 1446\n"," 4 1.00 1.00 1.00 1446\n"," 5 0.99 1.00 0.99 1446\n"," 6 1.00 1.00 1.00 1446\n"," 7 0.99 1.00 0.99 1446\n"," 8 0.99 1.00 0.99 1446\n"," 9 1.00 1.00 1.00 1446\n"," 10 1.00 1.00 1.00 1446\n"," 11 1.00 1.00 1.00 1447\n"," 12 0.96 1.00 0.98 1446\n"," 13 0.94 0.97 0.95 1446\n"," 14 0.99 1.00 0.99 1447\n"," 15 1.00 1.00 1.00 1447\n"," 16 0.95 1.00 0.97 1446\n"," 17 0.98 1.00 0.99 1446\n"," 18 0.96 1.00 0.98 1446\n"," 19 0.83 0.85 0.84 1446\n"," 20 0.56 0.78 0.65 1447\n"," 21 0.93 0.98 0.95 1447\n"," 22 0.99 1.00 1.00 1446\n"," 23 1.00 0.99 0.99 1447\n"," 24 0.99 1.00 0.99 1447\n"," 25 1.00 1.00 1.00 1446\n"," 26 0.99 1.00 0.99 1447\n"," 27 0.98 1.00 0.99 1447\n"," 28 1.00 1.00 1.00 1446\n"," 29 0.90 0.94 0.92 1447\n"," 30 0.97 1.00 0.98 1446\n"," 31 0.94 0.98 0.96 1446\n"," 32 0.98 0.98 0.98 1447\n"," 33 1.00 0.98 0.99 1446\n"," 34 0.99 1.00 0.99 1446\n"," 35 0.98 0.99 0.99 1446\n"," 36 0.51 0.23 0.32 1446\n"," 37 0.64 0.63 0.63 1447\n"," 38 0.88 0.80 0.84 1446\n"," 39 0.66 0.49 0.57 1446\n"," 40 0.99 1.00 0.99 1446\n"," 41 0.99 1.00 1.00 1447\n"," 42 0.60 0.29 0.39 1446\n"," 43 0.98 0.99 0.99 1447\n"," 44 0.97 0.97 0.97 1446\n"," 45 1.00 1.00 1.00 1446\n"," 46 0.98 0.99 0.98 1447\n"," 47 0.99 1.00 1.00 1446\n"," 48 0.98 1.00 0.99 1447\n"," 49 0.94 0.93 0.93 1446\n"," 50 0.98 1.00 0.99 1446\n"," 51 0.86 0.83 0.84 1447\n"," 52 0.40 0.44 0.42 1447\n"," 53 1.00 1.00 1.00 1446\n"," 54 0.99 1.00 0.99 1446\n"," 55 0.96 0.91 0.94 1447\n"," 56 1.00 1.00 1.00 1446\n"," 57 0.99 1.00 1.00 1447\n"," 58 0.98 0.99 0.99 1446\n"," 59 0.47 0.49 0.48 1447\n"," 60 1.00 1.00 1.00 1447\n"," 61 1.00 0.99 0.99 1446\n"," 62 1.00 1.00 1.00 1446\n"," 63 1.00 1.00 1.00 1446\n"," 64 1.00 1.00 1.00 1446\n"," 65 1.00 1.00 1.00 1447\n"," 66 0.96 0.99 0.97 1446\n"," 67 0.99 1.00 0.99 1447\n"," 68 1.00 1.00 1.00 1447\n"," 69 0.96 1.00 0.98 1446\n"," 70 0.95 0.98 0.96 1447\n"," 71 1.00 1.00 1.00 1447\n"," 72 0.99 1.00 0.99 1446\n"," 73 0.94 0.99 0.97 1447\n"," 74 0.61 0.75 0.67 1446\n","\n"," accuracy 0.93 108480\n"," macro avg 0.93 0.93 0.93 108480\n","weighted avg 0.93 0.93 0.93 108480\n","\n","✅ Accuracy: 0.9332 | Precision: 0.9305 | Recall: 0.9332 | F1: 0.9298\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABW0AAAHqCAYAAAB/bWzAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAu2xJREFUeJzs3Xd4VGX6xvF7ZtJ7IBUInSSAFKWtooArCCioiAqoNMuurh11V9aGfX9rX/u6ICgWxN4VUcQCUpSiKfSeHtL7zPn9McmEmFACSc5M8v1c11yZec97Tp4JoIebd57XYhiGIQAAAAAAAACAW7CaXQAAAAAAAAAAoBahLQAAAAAAAAC4EUJbAAAAAAAAAHAjhLYAAAAAAAAA4EYIbQEAAAAAAADAjRDaAgAAAAAAAIAbIbQFAAAAAAAAADdCaAsAAAAAAAAAboTQFgAAAAAAAADcCKEtAAAAAAAAALgRQlsAbcbmzZt10UUXqUuXLvLz81PHjh01ZswYPfPMM3XmWSwWXX/99Q1e45133pHFYtGKFStcY7NmzZLFYnE9vLy8FBcXp6lTpyopKalRNebl5cnPz08Wi0XJycmNfo8AAABAQ9z5XvhI3xMA2iovswsAgJbw008/6cwzz1Tnzp119dVXKyYmRnv37tXq1av19NNP64Ybbjih6/v6+up///ufJKmqqkrbt2/Xiy++qC+++EJJSUnq0KHDMV1n6dKlslgsiomJ0euvv64HH3zwhOoCAAAAPOVeGABQi9AWQJvw0EMPKTQ0VGvXrlVYWFidY5mZmSd8fS8vL11++eV1xv70pz9pwoQJ+vTTT3X11Vcf03UWL16sc845R126dNEbb7zhtqFtWVmZfHx8ZLXygQ0AAAB35yn3wgCAWvxtG0CbsH37dvXt27feTaokRUVFNcv3jImJkeS8iT0We/bs0ffff6+pU6dq6tSp2rlzp3766acG5y5evFhDhw5VQECAwsPDNWLECH311Vd15nz++ecaOXKkgoODFRISoiFDhuiNN95wHe/atatmzZpV79qjRo3SqFGjXK9XrFghi8Wit956S3fddZc6duyogIAAFRQUKDc3V7fddpv69eunoKAghYSEaPz48dq4cWO965aVlWnevHmKj4+Xn5+fYmNjdeGFF2r79u0yDENdu3bV+eef3+B5oaGh+utf/3pMP0cAAADU5Qn3wkdTXFysW2+9VXFxcfL19VVCQoIee+wxGYZRZ96yZct0+umnKywsTEFBQUpISNA///nPOnOeeeYZ9e3b13UvPXjw4Dr3yQDgDlhpC6BN6NKli1atWqXffvtNJ510UrN8j+zsbEmS3W7Xjh079I9//EPt27fXhAkTjun8N998U4GBgZowYYL8/f3Vo0cPvf766zrttNPqzLvvvvs0b948nXbaabr//vvl4+Ojn3/+Wd98843OPvtsSdLChQt1xRVXqG/fvpo7d67CwsL066+/6osvvtCll156XO/vgQcekI+Pj2677TaVl5fLx8dHSUlJ+uCDD3TxxRerW7duysjI0EsvvaSRI0fW+Sic3W7XhAkTtHz5ck2dOlU33XSTCgsLtWzZMv3222/q0aOHLr/8cv373/9Wbm6u2rVr5/q+H3/8sQoKCuqt3gAAAMCx8YR74SMxDEPnnXeevv32W1155ZUaOHCgvvzyS91+++3av3+/nnzySUnS77//rgkTJqh///66//775evrq23btunHH390Xevll1/WjTfeqIsuukg33XSTysrKtGnTJv3888/HfZ8MAM2B0BZAm3Dbbbdp/PjxGjhwoIYOHaozzjhDZ511ls4880x5e3uf8PWLi4sVGRlZZ6xjx4766quv6o0fzuuvv67zzz9f/v7+kqQpU6bov//9r55++mnXCoVt27bp/vvv16RJk/TOO+/UaU9Qs8ogPz9fN954o4YOHaoVK1bIz8+v3pzjUVZWpnXr1rnqk6R+/fppy5YtdeqYPn26EhMTNX/+fN19992SpFdffVXLly/XE088oVtuucU194477nDVNGPGDD300EN6++23dc0117jmLF68WF27dtXpp59+3LUDAAC0ZZ5wL3wkH330kb755hs9+OCDuvPOOyVJ1113nS6++GI9/fTTuv7669WjRw8tW7ZMFRUV+vzzzxUREdHgtT799FP17dtXS5cuPeG6AKA50R4BQJswZswYrVq1Suedd542btyof//73xo7dqw6duyojz766ISv7+fnp2XLlmnZsmX68ssv9dJLLykoKEjnnHOOtmzZctTzN23apM2bN2vatGmusWnTpik7O1tffvmla+yDDz6Qw+HQPffcU6+frMVikeT8SFhhYaHuuOOOOoHtoXOOx8yZM+sEtpJz04maOux2u3JyclwfQ/vll19c8959911FREQ0uMlFTU3x8fEaNmyYXn/9ddex3Nxcff7557rssstOqHYAAIC2zN3vhY/ms88+k81m04033lhn/NZbb5VhGPr8888lydX+4cMPP5TD4WjwWmFhYdq3b5/Wrl17wnUBQHMitAXQZgwZMkTvvfeeDh48qDVr1mju3LkqLCzURRddpKSkpEZd648Bos1m0+jRozV69GidffbZ+stf/qKvv/5a+fn5mjt37lGvt3jxYgUGBqp79+7atm2btm3bJj8/P3Xt2rVOiLl9+3ZZrVb16dPnsNfavn27JDX5R9+6detWb8zhcOjJJ59Ur1695Ovrq4iICEVGRmrTpk3Kz8+vU1NCQsJRe5rNmDFDP/74o3bv3i1JWrp0qSorKzV9+vQmfS8AAABtjTvfCx/N7t271aFDBwUHB9cZ7927t+u45Pyk2vDhw3XVVVcpOjpaU6dO1dtvv10nwP3HP/6hoKAgDR06VL169dJ1111Xp30CALgLQlsAbY6Pj4+GDBmihx9+WC+88IIqKyvrfDzK19dXpaWlDZ5bUlIiSfVWsDakU6dOSkhI0MqVK484zzAMvfnmmyouLlafPn3Uq1cv12PXrl368MMPVVRU1Ih3eGwOt3LVbrc3OP7HVbaS9PDDD2vOnDkaMWKEFi9erC+//FLLli1T3759D7u64UimTp0qb29vV1C9ePFiDR48WAkJCY2+FgAAAOpzt3vhpuTv76+VK1fq66+/1vTp07Vp0yZNmTJFY8aMcd3j9u7dW6mpqXrrrbd0+umn691339Xpp5+ue++9t8XqBIBjQWgLoE0bPHiwJCktLc011qVLF6WmpjY4v2a8S5cux3T9qqqqowau3333nfbt26f7779fS5curfP473//q5KSEn3wwQeSpB49esjhcBxxNUSPHj0kSb/99tsRv294eLjy8vLqjdesVDgW77zzjs4880zNnz9fU6dO1dlnn63Ro0fXu26PHj2UmpqqysrKI16vXbt2Ovfcc/X6669r9+7d+vHHH1llCwAA0Ezc4V74WHTp0kUHDhxQYWFhnfGUlJR69VitVp111ll64oknlJSUpIceekjffPONvv32W9ecwMBATZkyRa+88or27Nmjc889Vw899JDKyspOuFYAaCqEtgDahG+//bbBTbg+++wzSaqzkvOcc87R6tWrtX79+jpz8/Ly9Prrr2vgwIGKiYk56vfcsmWLUlNTNWDAgCPOq2mNcPvtt+uiiy6q87j66qvVq1cv18rTCy64QFarVffff3+9law17+/ss89WcHCwHnnkkXo3nof+DHr06KHVq1eroqLCNfbJJ59o7969R31vNWw2W72f69KlS7V///46Y5MnT1Z2draeffbZetf44/nTp09XUlKSbr/9dtlsNk2dOvWY6wEAAEB97nwvfCzOOecc2e32eveSTz75pCwWi8aPHy/JuR/CHw0cOFCSVF5eLknKycmpc9zHx0d9+vSRYRhHXWAAAC3pyM0FAaCVuOGGG1RSUqJJkyYpMTFRFRUV+umnn7RkyRJ17dpVs2fPds294447tHTpUo0YMUJ//etflZiYqAMHDmjhwoVKS0vTK6+8Uu/6VVVVWrx4sSRnn9ddu3bpxRdflMPhOOJHrcrLy/Xuu+9qzJgxh/2Y2Xnnnaenn35amZmZ6tmzp+6880498MADOuOMM3ThhRfK19dXa9euVYcOHfTII48oJCRETz75pK666ioNGTJEl156qcLDw7Vx40aVlJRo0aJFkqSrrrpK77zzjsaNG6dLLrlE27dv1+LFi10rdY/FhAkTdP/992v27Nk67bTTtHnzZr3++uvq3r17nXkzZszQq6++qjlz5mjNmjU644wzVFxcrK+//lp/+9vfdP7557vmnnvuuWrfvr2WLl2q8ePHKyoq6pjrAQAAQH3uei98qHXr1unBBx+sNz5q1ChNnDhRZ555pu68807t2rVLAwYM0FdffaUPP/xQN998s+v+9f7779fKlSt17rnnqkuXLsrMzNTzzz+vTp066fTTT5fkXOAQExOj4cOHKzo6WsnJyXr22Wd17rnn1uuZCwCmMgCgDfj888+NK664wkhMTDSCgoIMHx8fo2fPnsYNN9xgZGRk1Ju/b98+46qrrjI6duxoeHl5Ge3atTMmTJhgrF69ut7cmTNnGpLqPEJCQoyzzjrL+Prrr49Y17vvvmtIMubPn3/YOStWrDAkGU8//bRrbMGCBcbJJ59s+Pr6GuHh4cbIkSONZcuW1Tnvo48+Mk477TTD39/fCAkJMYYOHWq8+eabdeY8/vjjRseOHQ1fX19j+PDhxrp164yRI0caI0eOdM359ttvDUnG0qVL69VWVlZm3HrrrUZsbKzh7+9vDB8+3Fi1alW9axiGYZSUlBh33nmn0a1bN8Pb29uIiYkxLrroImP79u31rvu3v/3NkGS88cYbR/rxAQAA4Bi4671wjT+ef+jjgQceMAzDMAoLC41bbrnF6NChg+Ht7W306tXLePTRRw2Hw+G6zvLly43zzz/f6NChg+Hj42N06NDBmDZtmrFlyxbXnJdeeskYMWKE0b59e8PX19fo0aOHcfvttxv5+fmN/bECQLOyGEYDn5EAAMBEt9xyi+bPn6/09HQFBASYXQ4AAAAAAC2KnrYAALdSVlamxYsXa/LkyQS2AAAAAIA2iZ62AAC3kJmZqa+//lrvvPOOcnJydNNNN5ldEgAAAAAApiC0BQC4haSkJF122WWKiorSf/7zH9dOvwAAAAAAtDX0tAUAAAAAAAAAN0JPWwAAAAAAAABwI4S2AAAAAAAAAOBGWkVPW4fDoQMHDig4OFgWi8XscgAAANBCDMNQYWGhOnToIKvVs9YjcA8LAADQ9hzr/WurCG0PHDiguLg4s8sAAACASfbu3atOnTqZXUajcA8LAADQdh3t/rVVhLbBwcGSnG82JCTE5GoAAADQUgoKChQXF+e6H/Qk3MMCAAC0Pcd6/9oqQtuaj5OFhIRwwwsAANAGeWJ7Ae5hAQAA2q6j3b96VuMvAAAAAAAAAGjlCG0BAAAAAAAAwI0Q2gIAAAAAAACAG2kVPW2Pld1uV2VlpdlloBG8vb1ls9nMLgMAAAAAAKBZkVu1Dk2VZbWJ0NYwDKWnpysvL8/sUnAcwsLCFBMT45EbjAAAAAAAABwJuVXr0xRZVpsIbWt+40dFRSkgIIDwz0MYhqGSkhJlZmZKkmJjY02uCAAAAAAAoGmRW7UeTZlltfrQ1m63u37jt2/f3uxy0Ej+/v6SpMzMTEVFRdEqAQAAAAAAtBrkVq1PU2VZrX4jsppeIAEBASZXguNV82tHXxcAAAAAANCakFu1Tk2RZbX60LYGS8s9F792AAAAAACgNSP7aF2a4tezzYS2AAAAAAAAAOAJCG3bmK5du+qpp54yuwwAAAAAAADAhcyqLkJbN2WxWI74mDdv3nFdd+3atfrLX/7SJDW++eabstlsuu6665rkegAAAAAAAHBv7pxZjRo1SjfffPMJXcNdeJldABqWlpbmer5kyRLdc889Sk1NdY0FBQW5nhuGIbvdLi+vo/9yRkZGNlmN8+fP19///ne99NJLevzxx+Xn59dk1wYAAAAAAID78YTMqjVgpa2biomJcT1CQ0NlsVhcr1NSUhQcHKzPP/9cgwYNkq+vr3744Qdt375d559/vqKjoxUUFKQhQ4bo66+/rnPdPy41t1gs+t///qdJkyYpICBAvXr10kcffXTU+nbu3KmffvpJd9xxh+Lj4/Xee+/Vm7NgwQL17dtXvr6+io2N1fXXX+86lpeXp7/+9a+Kjo6Wn5+fTjrpJH3yySfH/wMDAAAAAABAs3P3zOpI3n33XVdW1bVrVz3++ON1jj///PPq1auX/Pz8FB0drYsuush17J133lG/fv3k7++v9u3ba/To0SouLj6heo6kTa60NQxDpZV2U763v7etyXYEvOOOO/TYY4+pe/fuCg8P1969e3XOOefooYcekq+vr1599VVNnDhRqamp6ty582Gvc9999+nf//63Hn30UT3zzDO67LLLtHv3brVr1+6w57zyyis699xzFRoaqssvv1zz58/XpZde6jr+wgsvaM6cOfrXv/6l8ePHKz8/Xz/++KMkyeFwaPz48SosLNTixYvVo0cPJSUlyWazNcnPBQAAAAAAwBORWdV1PJnV4axfv16XXHKJ5s2bpylTpuinn37S3/72N7Vv316zZs3SunXrdOONN+q1117TaaedptzcXH3//feSnKuLp02bpn//+9+aNGmSCgsL9f3338swjOP+GR1NmwxtSyvt6nPPl6Z876T7xyrAp2l+7Pfff7/GjBnjet2uXTsNGDDA9fqBBx7Q+++/r48++qjOKtc/mjVrlqZNmyZJevjhh/Wf//xHa9as0bhx4xqc73A4tHDhQj3zzDOSpKlTp+rWW2/Vzp071a1bN0nSgw8+qFtvvVU33XST67whQ4ZIkr7++mutWbNGycnJio+PlyR17979eH4EAAC0boYhFWdJ2Vukkhwppr/Uzvn/WhVmSLt/lGQ459XMdz6RYgdKkc7/z6ooS9r29SFzjfpzY/s7XxbnSMkfHWaupNgBUtxQ5/PSPGnjW7VzwuKk3hOb4QeBprA3t0QrUjMV6OulC0/pZHY5AACgAWRWdTU2szqSJ554QmeddZbuvvtuSVJ8fLySkpL06KOPatasWdqzZ48CAwM1YcIEBQcHq0uXLjr55JMlOUPbqqoqXXjhherSpYskqV+/fo2uoTHaZGjbWgwePLjO66KiIs2bN0+ffvqp6zdTaWmp9uzZc8Tr9O/f3/U8MDBQISEhyszMPOz8ZcuWqbi4WOecc44kKSIiQmPGjNGCBQv0wAMPKDMzUwcOHNBZZ53V4PkbNmxQp06dXIEtAACodnCX9PsHUvZWZ1CbvUUqy6s9PuGp2tA283fpndmHv9bYh2tD29wd0gfXHH7umXfVhrYF+6VPbj783NPn1Ia2JTnSF/+oPdbjLEJbN7Z5f77u/vB39e8USmgLAACalVmZ1ZEkJyfr/PPPrzM2fPhwPfXUU7Lb7RozZoy6dOmi7t27a9y4cRo3bpyrNcOAAQN01llnqV+/fho7dqzOPvtsXXTRRQoPDz+uWo5Fmwxt/b1tSrp/rGnfu6kEBgbWeX3bbbdp2bJleuyxx9SzZ0/5+/vroosuUkVFxRGv4+3tXee1xWKRw+E47Pz58+crNzdX/v7+rjGHw6FNmzbpvvvuqzPekKMdBwCg1SovknK21oayWanSwMukhOqVArk7pa/v/cNJFim8ixQUIwVF1w77h0tdzzhkmsU5t+YjbaGHhHJ+oVLP0bXX++Pc9t3rzk2ccPjrRvWpPeYTJJ00ufa6MScd608CJkiICZYkbckolN1hyGZtmo8/AgCApkNmVVdjM6sTERwcrF9++UUrVqzQV199pXvuuUfz5s3T2rVrFRYWpmXLlumnn37SV199pWeeeUZ33nmnfv75Z9enzptamwxtLRZLky33dic//vijZs2apUmTJkly/ivGrl27mvR75OTk6MMPP9Rbb72lvn37usbtdrtOP/10ffXVVxo3bpy6du2q5cuX68wzz6x3jf79+2vfvn3asmULq20BAK2PYUiOKslWfYOZlSp9/g9nUFuwr/78iF61oW1UH2cIGpHgHI+Il9r3kLwb+AfPDidLs45xE8+oROnyd49tbngXaerrxzY3OFq6aMGxzYXpurYPlK+XVWWVDu3JLVG3iMCjnwQAAFoUmVXz6d27t2u/pUPrio+Pd+2z5OXlpdGjR2v06NG69957FRYWpm+++UYXXnihLBaLhg8fruHDh+uee+5Rly5d9P7772vOnDnNUm/r+13QhvXq1UvvvfeeJk6cKIvForvvvrvJ//XhtddeU/v27XXJJZfUa059zjnnaP78+Ro3bpzmzZuna665RlFRUa5Nx3788UfdcMMNGjlypEaMGKHJkyfriSeeUM+ePZWSkiKLxXJcPUkAADCFvUo6uLO2jUFW9dfsrdKpf5NG3eGc5+Ur7fi29rzASGcYWxPKdhlee4wQFM3IZrUoPjpYm/fnKyWtgNAWAAC0mJbIrGpkZWVpw4YNdcZiY2N16623asiQIXrggQc0ZcoUrVq1Ss8++6yef/55SdInn3yiHTt2aMSIEQoPD9dnn30mh8OhhIQE/fzzz1q+fLnOPvtsRUVF6eeff1ZWVpZ69+7dLO9BIrRtVZ544gldccUVOu200xQREaF//OMfKigoaNLvsWDBAk2aNKnB3QQnT56s6dOnKzs7WzNnzlRZWZmefPJJ3XbbbYqIiNBFF13kmvvuu+/qtttu07Rp01RcXKyePXvqX//6V5PWCgAwmWFIRRnO0NLL3/m1iXajbVHlhc4g1stPiq5uDXBwl/TMYMlR2fA5Wam1z0PjpPOeqV09G9D4nW6BppIQUx3aphdqfL9Ys8sBAABtREtkVjXeeOMNvfHGG3XGHnjgAd111116++23dc899+iBBx5QbGys7r//fs2aNUuSFBYWpvfee0/z5s1TWVmZevXqpTfffFN9+/ZVcnKyVq5cqaeeekoFBQXq0qWLHn/8cY0fP75Z3oMkWQzj0O2APVNBQYFCQ0OVn5+vkJCQOsfKysq0c+dOdevWTX5+fiZViBPBryEAuBF7lZS32xnGFqZLRZlSUfXXwnSp51nSqdc555YVSP+Kq3u+l191iOsn9T5POvcx57jDIb12Qd3j3n61r6P7SQOm1F5nw5vO9gNeh8zxrg6G/cKksEO+r71SsnodPTC2V0q7f6pdOVuzerbwgPN4/6nShS/Vzn0o1llD+55SZMIhq2cTpHbdnfWj2R3pPtDdmVH7/77foQc/Tda4vjF6cfqgFvmeAADg8Mg8Wqcj/boe6z0gK20BAGjrHA6pOKtu+FqUURvIdj1DGnq1c25xpvTMKYe/VkD72uf2CslilYxDPvZUVeZ8KF+qKKo7vvO7w1+398Ta0NYwpA+ulXSYf3fu8Wdp+vu1r//d3fm9XAHvISFvx1Ok85+rvm51cGw08DGtwCjJJ6D2tc1bunmzc2Mwq/XwdQNupmYzstSMQpMrAQAAwJEQ2gIA0FpVFDe8GrYoU4obIg2a5ZxXnCk9nnD461i9a0PbwCjJN8TZlzUo2tmDNShaCoqSgmKkyMTa8wIjpHtynZtyVZZKVeVSVc3XMsk3uHauzVuaPL96Xln9uZGH9Ipy2KVeY5zjlWX15/v/of1AVZkziK0scT4OFRhR+9zLV+o20hnqRsZXr5ytXj3rH17/5xLCR8vheRJjnKs5duUUq6SiqlVudAIAANAacJcGAIAnsVdJJdnVQWxNGFu9KjZ2gDTwUue8wgzp8fjDX6eqtDa0DYhwtg8IaF8dvkY7A9ia59F9a8+zeUlz9x57vRaLM5C1eR95ns1b6nfRkeccWsNlS4+9htu21Ia/fwx5fYLrzp3xwbFfF/BAkcG+ah/oo5ziCm3NKNKAuDCzSwIAAEADCG0BADBbVXl1e4JMqTjbufK1KNM5FtNfGjjNOa84W3q0pw7bFuCkybWhbWCEszWBl/8hq2EPWRUbO6D2PJuXdFemZLU169s0TUOrZIE2LCEmWD9tz1FqeiGhLQAAgJsitAUAoDlUlFSHr1l1Q9iaFbGnTHfOK86RHu1++Ov0nVQb2vqHV2+mZaleFRtTtz1Bh5Nrz7PapLn7JJ/AY6u3tQa2AOqpCW2T05tnx2YAAACcOEJbAACOhWFI5YWHrIj9QxDb4WRp0Ezn3GMJYmtCW/8w54pYi9XZJzYw0hnABkZJQZH1g9jbtjrD22MJWY81sAXQpvSu7mubms5mZAAAAO6K0BYAgMpS6eBu6eAuKW+Ps0dscXUQO/gK55yS3CMHsaUHa0Nb/3DJYnP2iQ2KOiSIjazfmsBqk27fLvmFSVbr0Ws9dOMsADgOCTHOXs6EtgAAAO6L0BYA0PoZhnNF7MFdkpdvbWhakiu9cJpUmNbweWX5taFtTRDr7f+HFbHVX2P6155ntUr/2CX5Ble3MziKgHYn8u4AoFHio4NlsUg5xRXKKixXZLCv2SUBAADgDwhtAQCtS1WF9MsiZ0B7cJeUu9P5tbLYebz3edKU15zP/cKcK2QlyTdECu8qhXdx9ooNipJi+tVe12qV/rnfGdoeC7+QJnk7ANDU/H1s6tIuQLtySpSSXqDI4EizSwIAAMAfENq2cqNGjdLAgQP11FNPmV0KAJy40oO1IezBnbXBbGSidM6jzjlWL+nLOyV7+R9OtkghHZ0rZmtYrdJVy6WQDods8nUExxrYAoCbS4wJ0a6cEqWmF+qMXoS2AACg5ZFZHRmhrZuaOHGiKisr9cUXX9Q79v3332vEiBHauHGj+vfv38DZjVdaWqqOHTvKarVq//798vXlY3IATGCvkgr2O4NYGVL3Uc5xw5Aei3f2mW1I2SE7oFutzk2+bL5Su27Vq2e7SWFxztYIfxRzUtO+B6CNqahyqLCsUoVlVSosq5K3l0WJMaw0d3cJMcH64vd0pdDXFgAANFJLZVYLFy7UzTffrLy8vBO6jqcitHVTV155pSZPnqx9+/apU6dOdY698sorGjx4cJMFtpL07rvvqm/fvjIMQx988IGmTJnSZNcGgMNa/aKUvaV21WzeHslR5TzW4WTpLyuczy0WZ7uB4kwpKLo2iK0JZSN61b3uuY+33HsAPFil3VEdtjpD14JDwteC0so6xwrLa+YcMlZWqbJKR51rntq9vd78y59Mekc4VolsRgYAAI5TS2dWbRWhrZuaMGGCIiMjtXDhQt11112u8aKiIi1dulSPPvqocnJydP3112vlypU6ePCgevTooX/+85+aNm1ao7/f/Pnzdfnll8swDM2fP79eaPv777/rH//4h1auXCnDMDRw4EAtXLhQPXr0kCQtWLBAjz/+uLZt26Z27dpp8uTJevbZZ0/shwCgYWX5Us52KXeHsydrr9G1x96YIlWVOZ8bRvVg9dfoftK4h2vnvnmpVJZ3yFyj9nlkvHTeM7Vzl1wuFaY3PDe8i3Txwtq5b89wBrB//P6GIQXHSpe/Uzt3zX+l3O1135/NRwrrIrXrUXd8+vtSQHvJJ7DhnwvQxlS5AtfasLWg7A9B66Eh7CFjBYcJXE9EgI9NwX5eCgvwbrJrovkkxjpXQ2/JKJTdYchmPYZNEwEAANTymdXh7NmzRzfccIOWL18uq9WqcePG6ZlnnlF0dLQkaePGjbr55pu1bt06WSwW9erVSy+99JIGDx6s3bt36/rrr9cPP/ygiooKde3aVY8++qjOOeecJqvvRLXt0Lai+PDHLDbJ2+8Y51rr9jk83NxGBA1eXl6aMWOGFi5cqDvvvFOW6j6LS5culd1u17Rp01RUVKRBgwbpH//4h0JCQvTpp59q+vTp6tGjh4YOHXrM32v79u1atWqV3nvvPRmGoVtuuUW7d+9Wly5dJEn79+/XiBEjNGrUKH3zzTcKCQnRjz/+qKoq52q4F154QXPmzNG//vUvjR8/Xvn5+frxxx+P+fsDOAKHXfrhCSlnhzPczNkulWTXHu9xVt3Qdsd3UlXpYa71h3Bm72qpJKfhuX/sB3tgo5S/p+G5lSV1X2emSNmpDc8tOFD39cmXOf+beeiq2eAOzhYHfxTWueFrAh7OMAyVVNiVW1yh7KJy5RZXKKe4QrnVj5yiCuUWl+tgSWWdELa00t5kNdQErsF+3nW+htQ89/VyjYf418zxUkj1vCBfL3nZGvhzC7fVuV2A/LytKqt0aFdOsXpEBpldEgAAOBSZ1RE5HA6df/75CgoK0nfffaeqqipdd911mjJlilasWCFJuuyyy3TyySfrhRdekM1m04YNG+Tt7VxgcN1116miokIrV65UYGCgkpKSFBTkXvdDbTu0fbjD4Y/1Olu6bGnt60d71g8manQ5XZr9ae3rp/o1HITMy29UeVdccYUeffRRfffddxo1apQk5zLzyZMnKzQ0VKGhobrttttc82+44QZ9+eWXevvttxv1B2DBggUaP368wsOdm/OMHTtWr7zyiubNmydJeu655xQaGqq33nrL9Zs7Pj7edf6DDz6oW2+9VTfddJNrbMiQIY16r0CbVFnqXC2bs702kM3d4VxlOukF5xyrTVr1nHMDrkMFRknte0ixf/jIyfnPSoZDUvWKqUM31gqMqDv3vGcke0X1C8shcy2SX2jduROfql3B+8e5f/yf+4Qnq/97aXFNcT0JjHCuuK05/4xb6/1YAE9nGIYKy6uUW3Ro+FrufF49llM9VvO6vOr4V7z6e9tcIWpt2OqtEP/6gesf5wT7eSnIz0veBK5tjs1qUXx0sDbty1dqeiGhLQAA7obM6oiWL1+uzZs3a+fOnYqLi5Mkvfrqq+rbt6/Wrl2rIUOGaM+ePbr99tuVmJgoSerVq7at3p49ezR58mT169dPktS9e/cTrqmpte3Q1s0lJibqtNNO04IFCzRq1Cht27ZN33//ve6//35Jkt1u18MPP6y3335b+/fvV0VFhcrLyxUQEHDM38Nut2vRokV6+umnXWOXX365brvtNt1zzz2yWq3asGGDzjjjDFdge6jMzEwdOHBAZ5111om/YaA1qiqXcndKFUVSp8G148+fKmUmNXxOTRuCGsOucf5LavvuzpYB7bo7+7s2pN9Fx15b4rnHPrdnI/6Mdx1+7HMBD2AYhgpKq5RTXHcVbE5ReQMrYp2PCnvjQ1hfL6signzVLtBH7QJ91L76a7sg5/OwAB9X0ErgiqaQUB3apqQX6px+sWaXAwAAPEhLZFZHkpycrLi4OFdgK0l9+vRRWFiYkpOTNWTIEM2ZM0dXXXWVXnvtNY0ePVoXX3yxq83njTfeqGuvvVZfffWVRo8ercmTJ7tdH962Hdr+88Dhj1lsdV/fvu0Ic//wl6WbNx9/TX9w5ZVX6oYbbtBzzz2nV155RT169NDIkSMlSY8++qiefvppPfXUU+rXr58CAwN18803q6Ki4ihXrfXll19q//799XrY2u12LV++XGPGjJG/v/9hztYRjwFtzvZvnK0BalbN5myX8vdKMqSIeOn6tbVzbT7Or36hziC2fY/ar+171r3uqDta7C0AbYFhGCooq3KFrjlF5co+JHCtWQWbU70K9mBxhaocxtEv/AcBPra64WugryKCfGpD2SDnWM3xAB+b66NlQEuo6WubklZgciUAAKAeMqsTNm/ePF166aX69NNP9fnnn+vee+/VW2+9pUmTJumqq67S2LFj9emnn+qrr77SI488oscff1w33HBDi9V3NG07tG3MZjbNNfcoLrnkEt10001644039Oqrr+raa691/YXuxx9/1Pnnn6/LL79ckrOfx5YtW9SnT59jvv78+fM1depU3XnnnXXGH3roIc2fP19jxoxR//79tWjRIlVWVtZbbRscHKyuXbtq+fLlOvPMM0/w3QJuzF7l7Ol6aG9Ze4WzbUCNZfdK6Zvqn+sT7Nww7NC2ABctcI4FtKvbwgDAcSmrtCu7qCZodYawOUW1q2FrjjlD2XJV2hsfwgb5ernC1kOD2ENXxEYE+rpWxvp5245+UcBEiTHBkqTUjEKTKwEAAPWQWR1R7969tXfvXu3du9e12jYpKUl5eXl1vkd8fLzi4+N1yy23aNq0aXrllVc0adIkSVJcXJyuueYaXXPNNZo7d65efvllQlscu6CgIE2ZMkVz585VQUGBZs2a5TrWq1cvvfPOO/rpp58UHh6uJ554QhkZGcf8ByArK0sff/yxPvroI5100kl1js2YMUOTJk1Sbm6urr/+ej3zzDOaOnWq5s6dq9DQUK1evVpDhw5VQkKC5s2bp2uuuUZRUVEaP368CgsL9eOPP7rVb3SgQYYhleU7+/nUPCqK67YY+OpuKfUz6eAuyVFV93wvP+ncJ2o3zerxZ+dmWn9cORsYWT+Ybd+jWd8a4Omq7A7lltS2HDg0kM0pqnCGsjWrYYvKVVzR+E25gn29qle7+qh90CHha6BP3TYFQT4KDyCEReuTUB3a7sktUUlFlQJ8+KsBAAA4ds2ZWdWw2+3asGFDnTFfX1+NHj1a/fr102WXXaannnpKVVVV+tvf/qaRI0dq8ODBKi0t1e23366LLrpI3bp10759+7R27VpNnjxZknTzzTdr/Pjxio+P18GDB/Xtt9+qd+/eJ/ojaVLcmXmAK6+8UvPnz9c555yjDh1qG1Hfdddd2rFjh8aOHauAgAD95S9/0QUXXKD8/GNrHv3qq68qMDCwwX60Z511lvz9/bV48WLdeOON+uabb3T77bdr5MiRstlsGjhwoIYPd/atnDlzpsrKyvTkk0/qtttuU0REhC66qBF9NYGmUllaG74WZ0sluc7nVaXS6bfUznv/Wmnb11Jpbv0g1uotnTS5NmTN3SHlVH/UxObr7CfbvkftV0eVZK1udTDmvuZ/j4CHOlxLgrpBbO2xvNJKGY1cDOtjsyoiqDqADfJR++p2BDXP2wfVDWMJYdHWRQQ5/4xkF1VoS0aRBsaFmV0SAADwMM2VWdUoKirSySefXGesR48e2rZtmz788EPdcMMNGjFihKxWq8aNG6dnnnlGkmSz2ZSTk6MZM2YoIyNDERERuvDCC3Xffc6/t9vtdl133XXat2+fQkJCNG7cOD355JMn+NNoWhbDaOxfidxPQUGBQkNDlZ+fr5CQupvzlJWVaefOnerWrZv8/PxMqhAngl/DNqwkVyrKrA5isw9ZEZvrbE1w7uO1c1+9QNrxbcPXsXpLd2fVBrFLLpeSP6497hPkbFMQ0F4KiJCmLJa8q3+v7V4l2cudq2ZDOtauqgXaMMMwVFhepbziSh0sqdDBkgrlldQ8r1TeIa9rNug6npYEFovULqB+6No+sDaYjTjkWJCvFz1h26Aj3Qe6O3eo/fL//awftmXrXxf209ShnU2pAQCAtozMo3U60q/rsd4DstIWQMsyDClvj7R/nZS/v25rAsMhXbqkdu6S6dLuHxq+jtVLOuex2iDWN6h63NsZvgZGHBLEtpfslZJX9YrYP98tjfh77THvI/yPscupJ/6eATdWUeVQXnXY6gxfawLXyurxikOe1wayx7Mxl1S/JcGhoWv7IF9FHBLIhgf4yGYlhAWaU0JMsH7Ylq2UdPraAgAAuBNCWwDNq6qiNiyVpEUTpV3fNzzXYqu7WVdge8k/vHYFbED7ukGswy7Zqv8zNuFp6fznJd/go2/sFZlw4u8LcDM17QfySw6/+rVOEFvsfH48vWBr+HlbFR7go7AAH4UHeFc/91aY67lzlWxEdShLSwLA/dT0tU0ltAUAAHArhLYAmo5hODfs2rdW2rvG+TVnu/T3HbXBbbtu0p5VUkw/qX2v+itiDYczvJWkixcdPYCtEdi+Wd4SYKbSCruyCsuVVVTm/Fr9yCx09oPNOySczSutlP04V79aLVKof23oWieIDfRxHQsP8HaOB3qzMRfQSiRWh7Yp6QUyDIMWIwAAAG6C0BbAiUv6SNr4pjOkLc6qfzzzd6lDdePws+6Vxv9b8vY/+nX5iyNaIbvDUG5xRXUYW67MgjJlFf0hkK1+XlhedfQL/oG/t61OuFp3FayPwvy9Dxl3Hgvx85aVNgRAm9QrKlhWi3SwpFJZheWKCqGXHgAAgDsgtAVwbAxDyt1Ru4L2jFul0I7OYznbpNTPnM+t3lLsACluqNRpsNRpqBTaqfY6gREtXzvQAorLq5R5yGrYrMKy2teHhLI5xRWNWhHr62VVVIivIoN8FRXsp8hgX0UG1/Z8rVkZW/Oc1a8AGsPfx6au7QO1I7tYKemFhLYAAABuos2Etg6Hw+wScJz4tTNJeZFzs7B9a6W9a51fS3Nrj3cdLoVOdj6PHyfZfJxBbUz/I2/sBXiQKrtDOTWrYgvLlVl4SJuConJlFtQGsiWN6A1rsUjtA31dAWxkkK8rmK0Zi6r+GuTrxceVATSrhJhg7cguVmp6oUbER5pdDgAAbRLZR+vSFL+erT609fHxkdVq1YEDBxQZGSkfHx/+8ushDMNQRUWFsrKyZLVa5ePjc/STcHwcDudqWd9gKSTWObb1K+md2XXn2XylDgOlTkOc/WhrRPdxPgAPYncYyiws076Dpdp/sFT7DpY4n+eVuoLZ3JIKGY1oExvoYzskdPWrE8pGulbL+qpdoI+8bNbme3MA0AiJMSH6/Ld0JacXmF0KAABtDrlV69KUWVarD22tVqu6deumtLQ0HThwwOxycBwCAgLUuXNnWa0EHE2mLF/at676scb5tSxP+vPd0ojbnHPihkqhnZ0tDuKGOtscxJwkefmaWjpwrKrsDqUXHBrKlmp/njOY3XewVGn5paq0Hz2RtVktigjyqQ1fDxfKBvsq0LfV/28VQCuUUL0ZWWp6ocmVAADQ9pBbtU5NkWW1ib9d+vj4qHPnzqqqqpLdfuwfX4X5bDabvLz4aHCTydsrvX6xlJUi6Q9hlZe/VH7IX9ZCO0m3bG7R8oDGqLQ7lJZX5lwhm1dab8VsekHZUXvHelktig3zU6ewAHUM91encH91DPNXdEhtIBse4CMbm3QBaMUSq0PbrZlFqrI7+CQAAAAtjNyqdWmqLKtNhLaSZLFY5O3tLW9vb7NLAZpXcY504FfnCtq9a6SoPtK4h53HgmOkg7skGVJ4V+fq2U5DpLghUvRJko0/H3Af5VV2HagOZWtXytaGshkFZTrafl7eNos6hvmrU3hA9Vd/dWrnr45hAeoU7gxnCWQBtHWd2wXI39um0kq7duWUqGdUkNklAQDQ5pBb4Y/aTGgLtFqGIa18zBnUpm2UCvbVPV6YXvvc5i1Nf19q31MKYqMRmKus0l4viD10pWxmYflRr+HrZa1eIXtIKOt6BCgyyFdWQlkAOCKr1aL4mGBt3JunlPQCQlsAAAA3QGgLeAKHQ8rdIaVvdAaz9qra1bMWi7RpiZSztXZ+ux61K2g7Da17rS6ntlzdaNMqqhw6kFeqPbkl2pNbor0Ha/vJ7j9YouyiiqNew9/b5gph64ezAYoIokk/ADSFxGhnaJuaXqgJ/c2uBgAAAIS2gLtK+lDa9aOUvklK3yxVFNUe8w6Uzn5Qqmlo/adrJXuFFDvA2ebAL8ScmtGmGIah7KIKZyBb/agJZ/fmOjf6Olr7giBfL1cf2ZogtuMhK2XDA7wJZQE0u5UrV+rRRx/V+vXrlZaWpvfff18XXHDBYee/9957euGFF7RhwwaVl5erb9++mjdvnsaOHdtyRTexms3IUtiMDAAAwC0Q2gJmqiiRMn53rqDN2S6Nfdi5claSNrwhbfmidq6XnxTd1xnMxvSXHJWS1dd5bMiVLV872oSSiirtzS11BbN7cku072B1OJtbqtLKIzfJ9/O2qnO7AMWFByiunfNRE9DGhQcoxJ+NBgGYr7i4WAMGDNAVV1yhCy+88KjzV65cqTFjxujhhx9WWFiYXnnlFU2cOFE///yzTj755BaouOnVbEaWSmgLAADgFghtgZaUtlHa+b1z9WzaRil7i2Q4ao+fdqMUEut83vs8Z5uD2P7OkDYiXrLxRxZNy+4wlJZfqr25pXVWytaEtEdrYWCxSB1CnSFs53YBzoC2+tG5He0LAHiG8ePHa/z48cc8/6mnnqrz+uGHH9aHH36ojz/+2GND25qVtntyS1RUXqUgX+45AAAAzMTdGNAcCjOqg9kN0rBrJF/nX4S04U3p5xfqzg2MrF09e2i4dfJlLVYuWi/DMJRfWulaLVvbvsD5/EBeqSrtR+5hEOrvrbh2/nVWzHY+ZNWsj5e1hd4NALgnh8OhwsJCtWvXzuxSjlv7IF9FBvsqq7BcWzIKdUrncLNLAgAAaNOOK7R97rnn9Oijjyo9PV0DBgzQM888o6FDhzY4t7KyUo888ogWLVqk/fv3KyEhQf/3f/+ncePGHfc1AbdSlCntWV27ejZtk1SUXnu8y3Cpy2nO511Pl/L3OkPamqA2OKZuWAs0UqXdUbtKNrdEew+Wak9O7YrZwrKqI57vbbOoU037gj+umA0PUGiAdwu9EwDwTI899piKiop0ySWXHHFeeXm5ysvLXa8LCgqau7RGSYwJVlZhuVLTCW0BAADM1ujQdsmSJZozZ45efPFFDRs2TE899ZTGjh2r1NRURUVF1Zt/1113afHixXr55ZeVmJioL7/8UpMmTdJPP/3k+vhYY68JmCZ7q3TgV2cIG9rJOZb0ofTZbXXnWaxS+17O1gbeAbXjvSc4H8BxKi6vUkp6gX4/UKDf9xcoKa1AqRmFqqhyHPG8yGDf6pWyzlC2U3Uw27ldgKJD/GSz8g8HAHA83njjDd1333368MMPj3rf+sgjj+i+++5rocoaLyE6WN9vzaavLQAAgBuwGIZxlL296xo2bJiGDBmiZ599VpLz42BxcXG64YYbdMcdd9Sb36FDB91555267rrrXGOTJ0+Wv7+/Fi9efFzX/KOCggKFhoYqPz9fISEhjXk7wNE57FLKp9JPz0j71jjHzntWOmW68/m+ddKnc5yrZmtW0Eb3lXwCzasZrUJOUbkznD1QoN8P5CsprUA7s4vV0H+1/b1trtWxzq+1K2Y7hQfI38fW8m8AAFpAU98HWiwWvf/++7rggguOOvett97SFVdcoaVLl+rcc8896vyGVtrGxcW5zT3sO+v36balGzWsWzst+eupZpcDAADQKh3r/WujVtpWVFRo/fr1mjt3rmvMarVq9OjRWrVqVYPnlJeXy8/Pr86Yv7+/fvjhh+O+JtAiKkqkDa9Lq56TDu50jtl8pA4nS75BtfM6DZb+utKcGtEqGIahfQdL9fuBfFdIm3SgQOkFZQ3Ojwr2Vd8OIerbIVR9OoSob4cQxYUHyMpqWQBoMW+++aauuOIKvfXWW8cU2EqSr6+vfH19m7my45dYvRlZakahDMNgI0kAAAATNSq0zc7Olt1uV3R0dJ3x6OhopaSkNHjO2LFj9cQTT2jEiBHq0aOHli9frvfee092u/24r+nu/cDQCpQVSP85WSrJdr72C5OGXCUN/YsUHH3EU4EjqbQ7tD2rSL/vr7uC9nB9Z7tFBLqC2T6xzqA2Mth9/8IPAJ6oqKhI27Ztc73euXOnNmzYoHbt2qlz586aO3eu9u/fr1dffVWSsyXCzJkz9fTTT2vYsGFKT3f2svf391doaKgp76Ep9IwKktUi5ZVUKrOwXNEhfkc/CQAAAM3iuDYia4ynn35aV199tRITE2WxWNSjRw/Nnj1bCxYsOO5runs/MHiownTnpmCS5Bcidf6TlPGb9KfrpJMvo90BGq2kokrJaYVKOmQF7eH6z3rbLIqPDnatoO3bIUSJsSEK8m32/0wDQJu3bt06nXnmma7Xc+bMkSTNnDlTCxcuVFpamvbs2eM6/t///ldVVVW67rrr6rQAq5nvqfy8beoWEajtWcVKTisgtAUAADBRo9KAiIgI2Ww2ZWRk1BnPyMhQTExMg+dERkbqgw8+UFlZmXJyctShQwfdcccd6t69+3Ffc+7cua6baam2HxjQaIYh7f7R2a926zLphvVSu27OY+c9I/mFSlZ6geLoavrPJqXVrqA9XP/ZIF8v9YkNca2g7dshVD2jguTjZW35wgEAGjVqlI60zcMfg9gVK1Y0b0EmSowJ0fasYqWmF2pUAhsCAwAAmKVRoa2Pj48GDRqk5cuXuzZncDgcWr58ua6//vojnuvn56eOHTuqsrJS7777ri655JLjvqa79wODB7BXSckfOsPaA79WD1qknd/VhrYB7UwrD+7r0P6zSa5Nwo7cf/bQcJb+swAAd5YQE6xPN6cpNb3Q7FIAAADatEZ/7nbOnDmaOXOmBg8erKFDh+qpp55ScXGxZs+eLUmaMWOGOnbsqEceeUSS9PPPP2v//v0aOHCg9u/fr3nz5snhcOjvf//7MV8TaDIVJdIvi6RVz0v51R9z9PKTBl7qbIMQ0dPc+uBWquwObc8qPmSDMGdQW3CU/rPO3rP0nwUAeJ6E6s3IUghtAQAATNXo0HbKlCnKysrSPffco/T0dA0cOFBffPGFayOxPXv2yGqt/YhvWVmZ7rrrLu3YsUNBQUE655xz9NprryksLOyYrwk0GcMuffuIVJ4vBbR3biw25CopMMLsymAywzC0O6dEG/fladO+fG3al6ff9heotNJeb+6h/Wf7xIaob8dQ9ab/LACgFegdEyJJ2pZZpEq7Q942WvcAAACYwWIcqYGXhygoKFBoaKjy8/MVEhJidjlwJxlJ0u/vSWfeKVmqP46++gXJy1caME3y9je3Ppgmo6BMG/c6A9qN+/K0eX++8koq680L9LGpb4dQ5wra6jYHvaKC6T8LAG7Ck+8D3bF2h8PQSfO+VEmFXctuGaFe0cFmlwQAANCqHOs9IMvC0PoYhrRjhbTqWWnb186xrmdI3Uc6n//pWtNKgznySyq1aX91QLs3Txv35SmjoLzePB+bVb07hGhgp1D17xSmAXGh6h4RRP9ZAECbYbU6P02yYW+eUtILCW0BAABMQmiL1sNeKf32nnNzsYzNzjGLVeo9UQqMNLc2tJjSCrt+P5CvjdUB7aZ9edqVU1JvntUi9YoK1oC46oC2U5gSYlhBCwBAYowztE1NL9TEAWZXAwAA0DYR2qJ1OLhbemW8VLDf+do7QDp5unNVbbtu5taGZlNpdyg1vdDZh3avs83B1swi2R31u750bhegAXFhGlC9irZvhxAF0oMWAIB6El2bkRWYXAkAAEDbRWIBz1VZWtuTNjRO8gmUAqOkYX+VBl8hBbQztz40KYfD0I7sYm3aV9uHNulAgcqrHPXmRgb7akCn6oA2Lkz9O4YqPNDHhKoBAPA8CdWbkaWkF5pcCQAAQNtFaAvPk7bJ2a92x3fSTRucwa3VKk19UwrtJHn7mV0hTpBhGDqQX6ZNe/O0cV++Nu3L0+Z9+Sosr6o3N8TPS/07han/IX1oY0L8ZLHQhxYAgONRs9J238FSFZVXKYhPpgAAALQ47sDgGQxD2r7c2a92x4ra8W1fO3vWSlJET1NKw4nLLa5wtTjYtM8Z1GYX1d8ozNfLqpM6hqp/p1ANqA5qu7YPZKMwAACaUHigj6KCfZVZWK7U9EIN6hJudkkAAABtDqEt3FtVhfTbO86wNjPJOWaxSX0nSaddL3U42dz60GiGYWhbZpFWbs3WL3sOatO+PO3NLa03z2a1KCG67kZh8dFB8rKxURgAAM0tMTZEmYVZSkkvILQFAAAwAaEt3NvBndIH1zqf+wRJg2ZJw66RwuJMLQuNk19aqR+3ZWvllix9tyVLafll9eZ0jwg8pMWBc6MwP2+bCdUCAIDEmGCt3JKlVPraAgAAmILQFu7l4G5pzyppwFTn68gE6ZSZUrvuzsDWP8zM6nCM7A5Dm/fn67vULK3cmqUNe/Nkdxiu4z5eVg3r1k5/6t5eA+PCdFLHUIX6e5tYMQAAOFRCtLOvLZuRAQAAmIPQFuYzDGnfOmn181LSB5LFKnU93bmpmCSd9x9Ty8OxySwo03dbsrRya7a+35qlvJLKOsd7RAZqZHyURsRHaFi39vL3YRUtAADuKjHWGdqmphfKMAw2+AQAAGhhhLYwT852adPb0ualUu722vFuI6XyIvPqwjEpr7Jr/a6D+q665cEfV+IE+3ppeM8IjYiP1Ij4CHUKDzCpUgAA0Fg9o4Jks1qUX1qp9IIyxYb6m10SAABAm0JoC3MkfyItuaz2tZe/1PcC6dTrpJh+ppWFI9uVXexcTbslS6t25Kikwu46ZrFI/TqGamR8pEbER2pgXJi82TQMAACP5OtlU7eIQG3LLFJKeiGhLQAAQAsjtEXzKy+UUj51biTWe4JzrNsZkneg1PlPUv9LpMRzJd9gc+tEPUXlVVq1Pce1gdie3JI6xyOCfDUiPkIj4yN1es8ItQ/yNalSAADQ1BJigrUts0ip6YU6MyHK7HIAAADaFEJbNA97pbRtubT5bSnlM6mqVIodWBva+oVKt6US1LoZwzCUlFbgWk27fvdBVdprNxDztlk0qEu4qzdt75gQWa30uAMAoDXqHROsTzelKSWtwOxSAAAA2hxCWzStvWuljW9Kv78vlebWjrfrISWMlxx2yVq9ARWBrVvIKSrXD9uyq4PabGUXldc53rldgKvlwak92ivIl/9sAADQFiTEhEhSvb71AAAAaH6kL2haPz0tJX/sfB4YJZ00Wep/sdThFGfTU5iuyu7Qr3vz9F1qllZuzdLm/fkyahfTKsDHplO7t9fIhEiN6BWprhGB5hULAABMkxjj/Af27VlFqrQ76FUPAADQgghtcXwKDkib35E2L5UuekWK6OkcH3i5s3dtv4ulbiMlG7/F3MG+gyVauSVbK7dk6cdt2Sosr6pzvHdsiLM3ba9IDeoaLl8vm0mVAgAAd9ExzF+BPjYVV9i1M7tY8dF8SgoAAKClkKjh2JXmSckfSZvelnb9IKl6eebmpdKZc53PE8Y5HzBVWaVdq3fkaOWWbH23JVPbs4rrHA8P8NbpvSKdbQ96RSgqxM+kSgEAgLuyWi1KiAnWL3vylJxWQGgLAADQgghtcXQFadLnt0tbvpLsh/Q7jfuTs/VBn0nm1QaXKrtDK7dmacnavVqRmqXyKofrmNUindI5XCOqe9P26xgqGxuIAQCAo0iICdEve/KUSl9bAACAFkVoi/ocDqnwgBTayfnaP0zavsIZ2EYmOlsf9LtYCu9iZpWotje3RG+v26ul6/YpvaDMNd4h1E8j4p2raU/rGaFQf28TqwQAAJ6opq8toS0AAEDLIrSFk2FI6ZulzW9Lm9+VfAKl69c6Nw/z9pfO+4/UvqcU048NxdxAWaVdXyVlaMnaPfpxW45rPDzAW5NO7qSLBnVS79hgWfi1AgAAJyChOrRNIbQFAABoUYS2bd3B3c6etJuXSlkpteO+oVL+Pikszvn6pAvNqQ91JKcVaMnavXr/1/3KL62U5MzQT+8ZoSlD4jSmTzSbiAEAgCZTs9J2f16pCsoqFeLHJ3cAAABaAqFtW7byUembB2tf23yk+LFSv0ukXmdL3mxO5Q4Kyyr18cY0LVm7Rxv35bvGO4T66aLBcbp4UCfFtQswsUIAANBahQX4KCbET+kFZdqSXqjBXduZXRIAAECbQGjbVlSUSFs+l2L6SxG9nGMdB0mySF1Pl/pfIvU+z9m/FqYzDEPrdx/UW2v36tNNaSqttEuSvG0Wje4drSlD4nRGr0g2EwMAAM0uISZY6QVlSiG0BQAAaDGEtq1dZor041NS8sdSRZF06vXS2Iecx7qNlG75XQrtaGqJqJVdVK73ftmnJWv3antWsWu8Z1SQpgyO06RTOioiyNfECgEAQFuTGBOs77ZksRkZAABACyK0bc0ObJBePU8qq/5IfVhnKTi29rjVRmDrBuwOQyu3ZmnJmr36OjlDVQ5DkuTvbdOE/rGaOjROp3QOZ1MxAABgisTYms3ICkyuBAAAoO0gtG2t0jdLr57vDGw7DZXOfkCKG+bctQpuYW9uiZau26ul6/cpLb/MNT4gLkxTh8RpQv9YBbPZBwAAMFlCdIgkKSW9UIZh8A/JAAAALYDQtjXK2lId2OZJnYZIl78r+YWYXRUklVfZ9dXvGXp73V79sC1bhnNRrcICvDXp5I6aMiROiTH8WgEAAPfRIypQNqtFhWVVSssvU4cwf7NLAgAAaPUIbVuj4GipfU9nOwQCW7eQml6oJWv36v1f9+lgSaVr/PSeEZoyJE5j+kTLz9tmYoUAAAAN8/WyqUdkoLZkFCk1vZDQFgAAoAUQ2rZGfqHOsNZR5XwOUxSVV+njjQe0ZO1ebdib5xqPCfHTJYM76eLBcYprF2BegQAAAMcoISZEWzKKlJxeoDMTo8wuBwAAoNUjtG0tcrZL27+Rhl7tfO0bbG49bZRhGPplz0EtWbtXn2xKU0mFXZLkZbVodO9oTRkSpxHxkbJZ6QUHAAA8R2JMsD7e6Pz0EAAAAJofoW1rcHCXtOg8qWCfZPWSBs82u6I2J6eoXO//ul9vrd2rbZlFrvHukYGaOiROk07upMhgXxMrBAAAOH4J0c4FAYS2AAAALYPQ1tPl7ZEWTnQGthHxUuK5ZlfUZtgdhr7fmqW31+3VsqQMVdqdu4r5eVs1oX8HTRkSp8FdwtlhGQAAeLzEWGdouy2zSBVVDvl4WU2uCAAAoHUjtPVk+fulRROl/D1Sux7SzI+lIHqMNbd9B0u0dN0+LV23Vwfyy1zjAzqF6pIhcZo4oINC/LxNrBAAAKBpdQzzV7CvlwrLq7Qju0iJMWx0CwAA0JwIbT1VQZq0aIKzNUJ4V2dgGxxjdlWt2q97DurJr7fq+61ZMpyLahXq761JJ3fUJYPj1KcDf3kBAACtk8ViUXxMsNbvPqjU9EJCWwAAgGZGaOuJKkqcK2xzd0hhnaWZn0ihHc2uqtXKKSrX/32RorfX7XONDe/ZXpcMjtPYvjHy87aZWB0AAEDLSKgObVPSC3W+2cUAAAC0coS2nsgnwLnZ2OoXnIFtWJzZFbVKVXaHXv95jx7/KlUFZVWSpMmndNKNZ/VUl/aBJlcHAADQsnrHOPvapqQVmFwJAABA60do66lOvU46ZYbkG2x2Ja3Sul25uvvD35Vc/ZeSPrEheuCCvhrUpZ3JlQEAAJgjobolQmp6ocmVAAAAtH6Etp6iJFdadrd09kOSf5hzjMC2yWUWlulfn6XovV/3S5JC/Lx0+9gEXTqsi2xWi8nVAQAAmCch2nnveSC/TPmllQr1Z+NVAACA5kJo6wlK86TXJklpG6SiLOmyt82uqNWptDu06KddeurrrSoqr5LFIk0ZHKfbxyaofZCv2eUBAACYLjTAW7GhfkrLL9OWjEIN6conkAAAAJoLoa27K8uXFl/oDGwDIqQx95tdUauzanuO7v3oN23JKJIk9e8UqvvPP0kD48LMLQwAAMDNJMYEKy2/TClpBYS2AAAAzYjQ1p2VF0qLL5L2r5f820kzP5KiEs2uqtVIzy/TQ58l6+ONByRJ4QHe+vu4RE0ZHCcrrRAAAADqSYgJ0bepWUqhry0AAECzIrR1V+VF0usXS/vWSH5h0owPpei+ZlfVKlRUObTgx536z/KtKqmwy2KRLhvWWbednaCwAB+zywMAAHBbiTHOvrZsRgYAANC8CG3d1Uc3SHtWSb6h0owPpNj+ZlfUKny/NUv3fvS7dmQVS5JO6Rym+88/SSd1DDW5MgAAAPeXGFsb2hqGIYuFTycBAAA0B0JbdzVqrpTxm3TBC1KHk82uxuPtzyvVg58k6fPf0iVJEUE+umN8b114ckdaIQAAAByj7hFB8rJaVFhepf15peoUHmB2SQAAAK0Soa27ioyX/rZastrMrsSjlVfZ9fLKHXr2220qq3TIZrVoxqlddPPoeIX6e5tdHgAAgEfx8bKqR2SQUjMKlZpeSGgLAADQTAht3UVVufTeX6RTZkg9z3KOEdiekG9TMnXfx79rV06JJGlo13a67/y+6h0bYnJlAAAAnishJlipGYVKSS/UWb2jzS4HAACgVSK0dQf2SmnpbCn1U2nHCunmzZIfweLx2pNTovs/+V1fJ2dKkqKCfXXnub113oAO9F0DAAA4QYmxwfpoI5uRAQAANCdCW7PZK6V3rnAGtjZf6eKFBLbHqazSrhdWbNcL321XRZVDXlaLrji9m274c08F+9EKAQAAoCkkxjg3I0tJLzC5EgAAgNaL0NZM9ipnS4TkjySbjzT1DanHmWZX5XEMw9CypAzd/0mS9h0slSSd1qO97juvr3pFB5tcHQAAQOuSEONcYLAjq1gVVQ75eFlNrggAAKD1IbQ1i8MufXCt9Pt7ktVbuuQ1qddos6vyODuzizXvo9/13ZYsSVJsqJ/uOrePzukXQysEAACAZtAh1E/Bfl4qLKvS9qwi9gsAAABoBoS2Zlm/UNr8tmT1crZESBhndkUepaSiSs99u00vr9ypCrtD3jaLrj6ju67/c08F+PDbGgAAoLlYLBYlxgRr7a6DSkkvILQFAABoBqRbZjllprRvrRQ/Tuo9wexqPIZhGPr8t3Q9+EmSDuSXSZJGxEdq3sQ+6h4ZZHJ1AAAAbUOCK7RlMzIAAIDmQGjbkgzD+bBaJZuXNOlFsyvyKNsyCzXvoyT9sC1bktQxzF/3TOyjs/tE0woBAACgBdX0tU0ltAUAAGgWhLYtxTCkz/8uVZZIE/8jWW1mV+Qxisqr9J/lW7Xgh52qchjy8bLqmpE9dO3IHvL34ecIAADQ0hJjnJu9EtoCAAA0D7Z6bQmGIX15p7Tmv9Kvr0t7VptdkUcwDEMfbtivsx5fof+u3KEqh6HRvaP09S0jNWdMPIEtAABoEitXrtTEiRPVoUMHWSwWffDBB0c9Z8WKFTrllFPk6+urnj17auHChc1epztJqA5t0/LLlF9SaXI1AAAArQ+hbXMzDOnre6XVzzlfT3xa6jrc3Jo8QEp6gab8d7VuemuDMgrK1aV9gBbMGqz/zRyizu0DzC4PAAC0IsXFxRowYICee+65Y5q/c+dOnXvuuTrzzDO1YcMG3Xzzzbrqqqv05ZdfNnOl7iPEz1sdw/wlOe/bAAAA0LRoj9CcDEP65kHpx6edr899Qho009ya3FxBWaWeXLZFr67aLbvDkJ+3VdeN6qmrR3SXnzcrawEAQNMbP368xo8ff8zzX3zxRXXr1k2PP/64JKl379764Ycf9OSTT2rs2LHNVabbSYgJ1v68UqVmFGpY9/ZmlwMAANCqENo2p+/+T/r+Mefz8Y9KQ640tx435nAYeu/X/frX58nKLqqQJI3rG6O7JvRWp3BW1gIAAPexatUqjR49us7Y2LFjdfPNN5tTkEkSY4L1TUqmUuhrCwAA0OQIbZtL9jZpZXVgO/ZhadhfzK3HjRWVV+mqRWu1ekeuJKl7ZKDmTeyrEfGRJlcGAABQX3p6uqKjo+uMRUdHq6CgQKWlpfL392/wvPLycpWXl7teFxR4dluBmr62KWme/T4AAADc0XH1tH3uuefUtWtX+fn5adiwYVqzZs0R5z/11FNKSEiQv7+/4uLidMstt6isrMx1fN68ebJYLHUeiYmJx1Oa+4joKU15TRrzgHTqdWZX47Yq7Q797fVftHpHrgJ8bPrHuER9cdMIAlsAANDqPPLIIwoNDXU94uLizC7phCTGhEiStmQUyTAMk6sBAABoXRod2i5ZskRz5szRvffeq19++UUDBgzQ2LFjlZmZ2eD8N954Q3fccYfuvfdeJScna/78+VqyZIn++c9/1pnXt29fpaWluR4//PDD8b0js5UX1T5PGC8Nv9G8WtycYRi66/3ftHJLlvy9bXrz6j/p2lE95OPF/ngAAMB9xcTEKCMjo85YRkaGQkJCDrvKVpLmzp2r/Px812Pv3r3NXWqz6h4ZKG+bRUXlVdp3sNTscgAAAFqVRqdjTzzxhK6++mrNnj1bffr00YsvvqiAgAAtWLCgwfk//fSThg8frksvvVRdu3bV2WefrWnTptVbnevl5aWYmBjXIyIi4vjekZl+fkl6/lQpd6fZlXiEZ77ZpiXr9spqkZ699GQNiAszuyQAAICjOvXUU7V8+fI6Y8uWLdOpp556xPN8fX0VEhJS5+HJvG1W9YgMkiSl0tcWAACgSTUqtK2oqND69evrbLxgtVo1evRorVq1qsFzTjvtNK1fv94V0u7YsUOfffaZzjnnnDrztm7dqg4dOqh79+667LLLtGfPnsa+F3OtnS99/ncpf4+U9KHZ1bi9d9bv0xPLtkiS7j//JJ3VO/ooZwAAADSPoqIibdiwQRs2bJAk7dy5Uxs2bHDdj86dO1czZsxwzb/mmmu0Y8cO/f3vf1dKSoqef/55vf3227rlllvMKN9UiTV9bdPpawsAANCUGrURWXZ2tux2e4MbL6SkpDR4zqWXXqrs7GydfvrpMgxDVVVVuuaaa+q0Rxg2bJgWLlyohIQEpaWl6b777tMZZ5yh3377TcHBwfWu6XabOKxfJH06x/n8tBul4TeZW4+b+2Frtu54d5Mk6ZqRPXT5n7qYXBEAAGjL1q1bpzPPPNP1es4c533dzJkztXDhQqWlpdVZUNCtWzd9+umnuuWWW/T000+rU6dO+t///qexY8e2eO1mS4gJkXRAKay0BQAAaFKNCm2Px4oVK/Twww/r+eef17Bhw7Rt2zbddNNNeuCBB3T33XdLksaPH++a379/fw0bNkxdunTR22+/rSuvvLLeNR955BHdd999zV36sfn1denj6pD2T3+TxtwvWSzm1uTGktMKdM3i9apyGDpvQAf9fWyC2SUBAIA2btSoUUfcSGvhwoUNnvPrr782Y1WeoWalLe0RAAAAmlajQtuIiAjZbLYGN16IiYlp8Jy7775b06dP11VXXSVJ6tevn4qLi/WXv/xFd955p6zW+h0awsLCFB8fr23btjV4zblz57pWQEjOlbam7L67cYn04XWSDGnoX6SxDxPYHkFafqlmv7JWReVVGtatnR69uL+sVn5eAAAAniox1hna7sguVnmVXb5eNpMrAgAAaB0a1dPWx8dHgwYNqrPxgsPh0PLlyw+78UJJSUm9YNZmc97MHW5FQ1FRkbZv367Y2NgGj7vFJg72KmnVM5IMadBsafy/CWyPoKCsUrNfWav0gjL1igrSf6cP5qYeAADAw8WE+CnEz0t2h6FtmUVmlwMAANBqNCq0lZw9vl5++WUtWrRIycnJuvbaa1VcXKzZs2dLkmbMmKG5c+e65k+cOFEvvPCC3nrrLe3cuVPLli3T3XffrYkTJ7rC29tuu03fffeddu3apZ9++kmTJk2SzWbTtGnTmuhtNgOblzT9Q+nPd0nnPkFgewQVVQ5du3i9UtILFRnsq1dmD1FogLfZZQEAAOAEWSwWJcY4F1DQIgEAAKDpNLqn7ZQpU5SVlaV77rlH6enpGjhwoL744gvX5mR79uyps7L2rrvuksVi0V133aX9+/crMjJSEydO1EMPPeSas2/fPk2bNk05OTmKjIzU6aefrtWrVysyMrIJ3mIzCmwvjbjd7CrcmmEYuuO9TfpxW44CfGx6ZdYQdQoPMLssAAAANJGEmGCt2ZVLaAsAANCELMaRdl3wEAUFBQoNDVV+fr45rRJwWE98lar/fLNNNqtF82cO1qiEKLNLAgAArYgn3wd6cu2Hev3n3brz/d80Ij5Sr14x1OxyAAAA3Nqx3gM2uj0CcKzeWrNH//nGuZncQxecRGALAADQCiXGODcjS00vMLkSAACA1oPQFs1iRWqm7vzgN0nSDX/uqalDO5tcEQAAAJpDfLQztM0oKFdeSYXJ1QAAALQOhLZocr/tz9d1r/8iu8PQhad01Jwx8WaXBAAAgGYS7OetTuH+kqQU+toCAAA0CUJbNKl9B0s0e+FaFVfYNbxne/3rwv6yWCxmlwUAAIBmVNMiISWNFgkAAABNgdAWTSa/pFKzX1mrrMJyJcYE64XLB8nHi99iAAAArV1CTV/bDFbaAgAANAUSNTSJ8iq7/vLaOm3NLFJMiJ9emT1EIX7eZpcFAACAFpAQ49z5mPYIAAAATYPQFifM4TB0+9JN+nlnroJ8vfTK7CGKDfU3uywAAAC0kN7VK223pBfK4TBMrgYAAMDzEdrihD36Vao+2nhAXlaLXrj8FPWODTG7JAAAALSgrhGB8rFZVVxh176DpWaXAwAA4PEIbXFCFq/erRdWbJck/Wtyf53RK9LkigAAANDSvG1W9YgKkiSlpLMZGQAAwIkitMVxW56coXs+/E2SdMvoeF00qJPJFQEAAMAsiTWbkdHXFgAA4IQR2uK4bNybp+vf+FUOQ7pkcCfdeFZPs0sCAACAiWpC25QMQlsAAIATRWiLRtubW6IrF61VaaVdI+Ij9dCkfrJYLGaXBQAAABMl1IS2abRHAAAAOFGEtmiUg8UVmvnKGmUXVahPbIiev+wUedv4bQQAANDWJcY4N6PdlVOiskq7ydUAAAB4NtI2HLOySruufnWddmQVq0Oon16ZPURBvl5mlwUAAAA3EB3iq1B/b9kdhrZlFpldDgAAgEcjtMUxcTgM3fr2Rq3bfVDBfl5aeMVQRYf4mV0WAAAA3ITFYmEzMgAAgCZCaItj8sjnyfp0c5q8bRa9NH2Q4qODzS4JAAAAbsa1GVk6fW0BAABOBKEtjmrhjzv18vc7JUmPXTxAp/WIMLkiAAAAuKOE6r62Kay0BQAAOCGEtjiiL39P132fJEmSbh+boPMHdjS5IgAAALirxFjaIwAAADQFQlsc1i97DurGN3+VYUiXDuusv43qYXZJAAAAcGM1LbQyC8uVW1xhcjUAAACei9AWDdqVXayrFq1TeZVDf06M0v3n9ZXFYjG7LAAAALixIF8vxbXzl0RfWwAAgBNBaIt6corKNeuVNcotrlC/jqF6ZtrJ8rLxWwUAAABHlxDt7GtLiwQAAIDjRxKHOkor7Lrq1XXalVOiTuH+mj9rsAJ9vcwuCwAAAB6iN31tAQAAThihLVzsDkM3L/lVv+7JU6i/txbOHqqoYD+zywIAAIAHSYhxhrbJhLYAAADHjdAWkiTDMPTAJ0n68vcM+XhZ9fKMweoZFWR2WQAAAPAwidWh7daMQjkchsnVAAAAeCZCW0iS5v+wUwt/2iVJeuKSARrarZ25BQEAAMAjdW0fKB8vq0oq7Np7sMTscgAAADwSoS306aY0PfhpsiTpn+ckakL/DiZXBAAAAE/lZbOqV/UntlJokQAAAHBcCG3buLW7cnXL2xskSTNP7aKrz+hubkEAAADweDV9bVPSCG0BAACOB6FtG7Y9q0hXv7pOFVUOjekTrXsm9pXFYjG7LAAAAHi4mr62qRkFJlcCAADgmQht26iswnLNemWN8koqNTAuTP+ZerJsVgJbAAAAnLiEmBBJtEcAAAA4XoS2bVBJRZWuXLRWe3NL1aV9gObPHCx/H5vZZQEAAKCV6F290nZXdrHKKu0mVwMAAOB5CG3bmCq7Qze88as27ctXeIC3Fs4eqvZBvmaXBQAAgFYkMthX4QHechjS1owis8sBAADwOIS2bYhhGJr38e9anpIpXy+r/jdziLpFBJpdFgAAAFoZi8VSuxlZOn1tAQAAGovQtg158bsdWrx6jywW6empAzWoS7jZJQEAAKCVSqzua5tKX1sAAIBGI7RtIz7csF//90WKJOnuc/to3EmxJlcEAACA1iyxeqVtagahLQAAQGMR2rYBq3fk6PalmyRJV57eTVec3s3kigAAANDa1bRHSE4jtAUAAGgsQttWbmtGof7y6jpV2B0af1KM7jynt9klAQAAoA2Ij3aGttlF5copKje5GgAAAM9CaNvK3f9JkgrKqjSoS7ienDJQVqvF7JIAAADQBgT6eqlL+wBJ9LUFAABoLELbVswwDG3YmydJuv/8vvLztplbEAAAANqUhOrVtsmEtgAAAI1CaNuK7TtYqsKyKnnbLOoVFWx2OQAAAGhjXJuRpReYXAkAAIBnIbRtxZLSnDfHvaKC5ePFLzUAAABaVkJMiCTaIwAAADQWSV4rllwd2vaODTG5EgAAALRFibHOlbZbMopkdxgmVwMAAOA5CG1bsaQDztC2TwdCWwAAALS8ru0D5etlVWmlXXtyS8wuBwAAwGMQ2rZiydW9w/qw0hYAAAAmsFkt6hUdJIm+tgAAAI1BaNtKFZRVam9uqSRCWwAAAJgnIdp5L5pCX1sAAIBjRmjbSqWkOW+KO4b5KzTA2+RqAAAA0Fb1ru5ry2ZkAAAAx47QtpVKOpAvqfYmGQAAADBDQozzfpSVtgAAAMeO0LaVSq5eaUtrBAAAAJipJrTdlVOs0gq7ydUAAAB4BkLbViopzbnRQ29CWwAAAJgoMshX7QN9ZBjS1kxW2wIAABwLQttWqMruUGpG9UrbDoS2AAAAMI/FYqFFAgAAQCMR2rZCO7KLVVHlUKCPTXHhAWaXAwAAgDbOFdqmEdoCAAAcC0LbVijpQG1rBKvVYnI1AAAAaOsSq0Pb1IwCkysBAADwDIS2rVAy/WwBAADgRhJjnPelqbRHAAAAOCaEtq1QzSZk9LMFAACAO4iPDpbFImUXVSirsNzscgAAANweoW0rYxhGnfYIAAAAgNn8fWzq0s651wKrbQEAAI6O0LaVySosV05xhawWKSE62OxyAAAAPMZzzz2nrl27ys/PT8OGDdOaNWuOOP+pp55SQkKC/P39FRcXp1tuuUVlZWUtVK3ncW1Glk5fWwAAgKMhtG1lalojdIsIlL+PzeRqAAAAPMOSJUs0Z84c3Xvvvfrll180YMAAjR07VpmZmQ3Of+ONN3THHXfo3nvvVXJysubPn68lS5bon//8ZwtX7jnoawsAAHDsCG1bmdp+tqEmVwIAAOA5nnjiCV199dWaPXu2+vTpoxdffFEBAQFasGBBg/N/+uknDR8+XJdeeqm6du2qs88+W9OmTTvq6ty2LNG10pbQFgAA4GgIbVuZ5DTnTXDvWFojAAAAHIuKigqtX79eo0ePdo1ZrVaNHj1aq1atavCc0047TevXr3eFtDt27NBnn32mc845p0Vq9kQ17RG2ZBTK7jBMrgYAAMC9eZldAJpW0oF8SVIfNiEDAAA4JtnZ2bLb7YqOjq4zHh0drZSUlAbPufTSS5Wdna3TTz9dhmGoqqpK11xzzRHbI5SXl6u8vNz1uqCgbfV27dI+UH7eVpVVOrQ7p1jdI4PMLgkAAMBtsdK2FSmtsGtndrEkQlsAAIDmtGLFCj388MN6/vnn9csvv+i9997Tp59+qgceeOCw5zzyyCMKDQ11PeLi4lqwYvPZrBbFV2+US19bAACAIzuu0LY5dtZt7DVRX2pGoRyGFBHko8hgX7PLAQAA8AgRERGy2WzKyMioM56RkaGYmJgGz7n77rs1ffp0XXXVVerXr58mTZqkhx9+WI888ogcDkeD58ydO1f5+fmux969e5v8vbi7hOrQNpnQFgAA4IgaHdo2x866jb0mGpZcvQlZ79gQWSwWk6sBAADwDD4+Pho0aJCWL1/uGnM4HFq+fLlOPfXUBs8pKSmR1Vr3Vtpms0mSDKPhfq2+vr4KCQmp82hravrapqa3rdYQAAAAjdXo0LY5dtZt7DXRsKQDzptfWiMAAAA0zpw5c/Tyyy9r0aJFSk5O1rXXXqvi4mLNnj1bkjRjxgzNnTvXNX/ixIl64YUX9NZbb2nnzp1atmyZ7r77bk2cONEV3qK+3tX3qbRHAAAAOLJGbURWs7PuoTesx7Kz7uLFi7VmzRoNHTrUtbPu9OnTj/uaaFjNSts+HQhtAQAAGmPKlCnKysrSPffco/T0dA0cOFBffPGFa3OyPXv21FlZe9ddd8liseiuu+7S/v37FRkZqYkTJ+qhhx4y6y14hJqVtrtzS1RSUaUAH/ZFBgAAaEij7pKaY2fd47lmW995tyEOh1GnPQIAAAAa5/rrr9f111/f4LEVK1bUee3l5aV7771X9957bwtU1npEBPkqIshH2UUV2pJRpIFxYWaXBAAA4JaOayOyxjienXWPpq3vvNuQvQdLVFxhl4+XVd0jAs0uBwAAAGgQfW0BAACOrlGhbXPsrHs812Tn3fpq+tkmRAfLy9bsWTwAAABwXBJjnJ8KS6GvLQAAwGE1Kt1rjp11j+ea7LxbX1Iam5ABAADA/dWutCW0BQAAOJxGd/6fM2eOZs6cqcGDB2vo0KF66qmn6u2s27FjRz3yyCOSnDvrPvHEEzr55JM1bNgwbdu2rd7Ouke7Jo6utp9tsMmVAAAAAIeXWB3apqQXyjAMWSwWkysCAABwP40ObZtjZ92jXRNHV9MeoU+HUJMrAQAAAA6vV1SwLBYpt7hCWUXligr2M7skAAAAt2MxDMMwu4gTVVBQoNDQUOXn57fJVgl5JRUaeP8ySdKmeWcrxM/b5IoAAABahiffB3py7Sfqz4+t0I7sYr125VCd0SvS7HIAAABazLHeA7JjVStQ0882rp0/gS0AAADcHn1tAQAAjozQthVITnPe7PaOaVsrNAAAAOCZakLbmvtYAAAA1EVo2wrU9rMltAUAAID7q9mMLDWjwORKAAAA3BOhbSuQXN0eoXcsoS0AAADcX2L1J8S2ZhSpyu4wuRoAAAD3Q2jr4SqqHNqa6fxYWR9CWwAAAHiAzu0C5O9tU3mVQ7tySswuBwAAwO0Q2nq47VlFqrQbCvbzUqdwf7PLAQAAAI7KarUoPjpIEpuRAQAANITQ1sPV9LPtHRsii8VicjUAAADAsalpkZCaTl9bAACAPyK09XA1/WxpjQAAAABPklC9GVkKK20BAADqIbT1cEmEtgAAAPBAiYS2AAAAh0Vo68EMw6hdaduB0BYAAACeo2al7Z7cEhWXV5lcDQAAgHshtPVg6QVlOlhSKZvVop5RQWaXAwAAAByz9kG+igz2lSRtyWC1LQAAwKEIbT1YzSrbnpFB8vO2mVwNAAAA0Dg1LRJSaZEAAABQB6GtB0s64Axte8cGm1wJAAAA0HgJ0fS1BQAAaAihrQdLTnPe3NLPFgAAAJ4owbUZWYHJlQAAALgXQlsPlpRWs9KW0BYAAACep+Y+NjW9UIZhmFwNAACA+yC09VDF5VXalVMsidAWAAAAnqlnVJCsFulgSaWyCsvNLgcAAMBtENp6qJT0QhmGFBXsq4ggX7PLAQAAABrNz9umrhGBkqRk+toCAAC4ENp6qJrWCPSzBQAAgCdLrO5rm0pfWwAAABdCWw+VTD9bAAAAtAKJMc772RRW2gIAALgQ2nqopAPVK20JbQEAAODBElwrbQltAQAAahDaeiC7w3Dd1LLSFgAAAJ6spj3C1swiVdkdJlcDAADgHghtPdCunGKVVtrl521Vt+qNGwAAAABPFBceoAAfmyqqHNqVU2x2OQAAAG6B0NYD1fSzTYgJkc1qMbkaAAAA4PhZrRbFRztX29LXFgAAwInQ1gPRzxYAAACtSU2LhJQ0QlsAAACJ0NYj1ay07RMbbHIlAAAAwImr2YyMlbYAAABOhLYeKKkmtO3ASlsAAAB4vsQY531takaByZUAAAC4B0JbD5NTVK6MgnJZLM6etgAAAICnq2mPsDe3VEXlVSZXAwAAYD5CWw+TXN3nq0u7AAX5eplcDQAAAHDiwgN9FBXsK0lKpUUCAAAAoa2nSaY1AgAAAFqhmr62hLYAAACEth6npp9tb1ojAAAAoBXpHVvd1zadvrYAAACEth6GlbYAAABojRKinSttU1hpCwAAQGjrScqr7NqWWSSpdiUCAAAA0BrUtEdISS+UYRgmVwMAAGAuQlsPsjWjSFUOQ2EB3ooN9TO7HAAAAKDJ9IwKks1qUX5ppTIKys0uBwAAwFSEth7k0H62FovF5GoAAACApuPnbVO3iEBJUgp9bQEAQBtHaOtBkg7QzxYAAACtV02LhFT62gIAgDaO0NaD1GxCRj9bAAAAtEaJbEYGAAAgidDWYxiG4WqP0IfQFgAAAK3QoZuRAQAAtGWEth5if16pCsuq5G2zqGdUkNnlAAAAAE2u5hNl2zOLVGl3mFwNAACAeQhtPURNP9ueUcHy8eKXDQAAAK1PxzB/BfrYVGF3aFd2sdnlAAAAmIb0z0Mkpzk/ItY7NtjkSgAAAIDmYbVaFF/dIuHXPXnmFgMAAGAiQlsPkZSWL4l+tgAAAGjd/tS9vSTpgU+TlJJeYHI1AAAA5iC09RA1K20JbQEAANCa3XRWLw3uEq7CsirNXLBG+/NKzS4JAACgxRHaeoDCskrtyS2RVLs5AwAAANAa+Xnb9L+Zg9UrKkgZBeWauWCN8koqzC4LAACgRRHaeoCUdOcq29hQP4UH+phcDQAAANC8wgJ8tOiKoYoJ8dO2zCJduWidyirtZpcFAADQYghtPUDSAWcvL1ojAAAAoK3oEOavRVcMVYifl9bvPqgb3vxVVXaH2WUBAAC0CEJbD5CcVh3adiC0BQAAQNuREBOsl2cMlo+XVcuSMnT3h7/LMAyzywIAAGh2hLYeIKk6tKWfLQAAANqaYd3b6z9TB8pikd5cs0f/Wb7N7JIAAACaHaGtm6uyO5Ra3dOW9ggAAABoi8adFKv7z+srSXry6y16c80ekysCAABoXoS2bm5ndrHKqxwK9LGpc7sAs8sBAAAATDH91K66/syekqQ739+sZUkZJlcEAADQfAht3VxNa4TE2BBZrRaTqwEAAADMc+vZ8bpkcCc5DOn6N37R+t25ZpcEAADQLAht3VxtP9tgkysBAAAAzGWxWPTQpH46MyFS5VUOXblonbZlFpldFgAAQJMjtHVzyWk1/WxDTa4EAAAAMJ+3zarnLjtFA+LClFdSqZkL1iijoMzssgAAAJoUoa2bSzrASlsAAADgUAE+Xnpl1hB1jwjU/rxSzVywRvmllWaXBQAA0GQIbd1YZmGZsovKZbVIiTEhZpcDAADQqj333HPq2rWr/Pz8NGzYMK1Zs+aI8/Py8nTdddcpNjZWvr6+io+P12effdZC1aJdoI8WXTFUkcG+Skkv1F9fW6fyKrvZZQEAADQJQls3VtMaoWtEoPx9bCZXAwAA0HotWbJEc+bM0b333qtffvlFAwYM0NixY5WZmdng/IqKCo0ZM0a7du3SO++8o9TUVL388svq2LFjC1fetsW1C9Ars4YoyNdLq3fkas6SjXI4DLPLAgAAOGGEtm6spjVCn1hW2QIAADSnJ554QldffbVmz56tPn366MUXX1RAQIAWLFjQ4PwFCxYoNzdXH3zwgYYPH66uXbtq5MiRGjBgQAtXjpM6huql6YPkbbPo081puv+TJBkGwS0AAPBshLZuLDmtpp8toS0AAEBzqaio0Pr16zV69GjXmNVq1ejRo7Vq1aoGz/noo4906qmn6rrrrlN0dLROOukkPfzww7Lb+Xi+GYb3jNDjlwyUJC38aZdeWrnD3IIAAABOkJfZBeDwkqpD2z4dCG0BAACaS3Z2tux2u6Kjo+uMR0dHKyUlpcFzduzYoW+++UaXXXaZPvvsM23btk1/+9vfVFlZqXvvvbfBc8rLy1VeXu56XVBQ0HRvAjpvQAdlFpTpwU+T9a/PUxQZ5KvJgzqZXRYAAMBxYaWtmyqrtGtHVpEk2iMAAAC4G4fDoaioKP33v//VoEGDNGXKFN1555168cUXD3vOI488otDQUNcjLi6uBStuG646o7v+MqK7JOkf727SitSGexIDAAC4O0JbN5WaXiiHIbUP9FFUsK/Z5QAAALRaERERstlsysjIqDOekZGhmJiYBs+JjY1VfHy8bLbazWJ79+6t9PR0VVRUNHjO3LlzlZ+f73rs3bu36d4EXO4Yl6gLBnZQlcPQ317/RZv25ZldEgAAQKMdV2j73HPPqWvXrvLz89OwYcO0Zs2aw84dNWqULBZLvce5557rmjNr1qx6x8eNG3c8pbUah/aztVgsJlcDAADQevn4+GjQoEFavny5a8zhcGj58uU69dRTGzxn+PDh2rZtmxwOh2tsy5Ytio2NlY+PT4Pn+Pr6KiQkpM4DTc9qtejfFw3Q6T0jVFJh1+xX1mpXdrHZZQEAADRKo0PbJUuWaM6cObr33nv1yy+/aMCAARo7dqwyMxv+6NF7772ntLQ01+O3336TzWbTxRdfXGfeuHHj6sx78803j+8dtRL0swUAAGg5c+bM0csvv6xFixYpOTlZ1157rYqLizV79mxJ0owZMzR37lzX/GuvvVa5ubm66aabtGXLFn366ad6+OGHdd1115n1FnAIHy+rXpw+SCd1DFFOcYVmLFijrMLyo58IAADgJhod2j7xxBO6+uqrNXv2bPXp00cvvviiAgICtGDBggbnt2vXTjExMa7HsmXLFBAQUC+09fX1rTMvPDz8+N5RK1G70jbY5EoAAABavylTpuixxx7TPffco4EDB2rDhg364osvXJuT7dmzR2lpaa75cXFx+vLLL7V27Vr1799fN954o2666SbdcccdZr0F/EGQr5demTVUndsFaE9uia5YuFZF5VVmlwUAAHBMvBozuaKiQuvXr6+zysBqtWr06NFatWrVMV1j/vz5mjp1qgIDA+uMr1ixQlFRUQoPD9ef//xnPfjgg2rfvn2D12jtO+86HIaS0wolSX1iQ02uBgAAoG24/vrrdf311zd4bMWKFfXGTj31VK1evbqZq8KJiAz21aIrhmryCz9p8/58Xbt4vebPHCIfL7b2AAAA7q1RdyvZ2dmy2+2uFQc1oqOjlZ6eftTz16xZo99++01XXXVVnfFx48bp1Vdf1fLly/V///d/+u677zR+/HjZ7fYGr9Pad97dd7BUReVV8vGyqntk4NFPAAAAANCgbhGBemXWEPl72/T91mz9491NcjgMs8sCAAA4ohb9J+b58+erX79+Gjp0aJ3xqVOn6rzzzlO/fv10wQUX6JNPPtHatWsbXNEgtf6dd5PS8iVJ8dFB8raxCgAAAAA4EQPiwvTC5afIy2rR+7/u1/99mWJ2SQAAAEfUqEQwIiJCNptNGRkZdcYzMjIUExNzxHOLi4v11ltv6corrzzq9+nevbsiIiK0bdu2Bo+39p13k1ytEVrX+wIAAADMMiohSv+a3F+S9NJ3OzT/h50mVwQAAHB4jQptfXx8NGjQIC1fvtw15nA4tHz5cp166qlHPHfp0qUqLy/X5ZdfftTvs2/fPuXk5Cg2NrYx5bUaSQdqNiEjtAUAAACaykWDOunv4xIkSQ98kqSPNx4wuSIAAICGNfqz93PmzNHLL7+sRYsWKTk5Wddee62Ki4s1e/ZsSdKMGTPqbFRWY/78+brgggvqbS5WVFSk22+/XatXr9auXbu0fPlynX/++erZs6fGjh17nG/LsyWnOUNbVtoCAAAATevakT0067SukqRb396on7Zlm1sQAABAA7wae8KUKVOUlZWle+65R+np6Ro4cKC++OIL1+Zke/bskdVaNwtOTU3VDz/8oK+++qre9Ww2mzZt2qRFixYpLy9PHTp00Nlnn60HHnhAvr6+x/m2PFd+SaX255VKkhIJbQEAAIAmZbFYdPeEPsosLNNnm9P1l9fWa8lf/6S+HULNLg0AAMDFYhiGx2+dWlBQoNDQUOXn53t8f9vVO3I09b+r1SncXz/8489mlwMAAODWPPk+0JNrbw3KKu2auWCNft6Zq8hgX7137WmKaxdgdlkAAKCVO9Z7wEa3R0Dzop8tAAAA0Pz8vG3674zBSowJVlZhuWa+ska5xRVmlwUAACCJ0NbtJNHPFgAAAGgRof7eWjh7qDqG+WtHVrGuWLhWJRVVZpcFAABAaOtuajYhY6UtAAAA0PxiQv206IohCvX31oa9ebrhjV9VZXeYXRYAAGjjCG3dSKXdoa0ZRZKkvh0IbQEAAICW0DMqWAtmDZavl1XLUzJ15/u/qRVs/QEAADwYoa0b2Z5VpAq7Q8G+XuoU7m92OQAAAECbMahLOz176SmyWqQl6/bqyWVbzC4JAAC0YYS2buTQTcgsFovJ1QAAAABty5g+0Xrwgn6SpP98s02LV+82uSIAANBWEdq6kdp+tsEmVwIAAIBWqSBNenOaVJhhdiVu69JhnXXz6F6SpHs+/E1f/JZuckUAAKAtIrR1I0nVoW0f+tkCAACgOXxwjZT6mbTwXGeAiwbddFYvTRsaJ4ch3fjWr1q7K9fskgAAQBtDaOsmDMNQclqhJGd7BAAAAKDJTXhSCukk5WytDm4PmF2RW7JYLHrg/JM0une0KqocunLhWm3JKDS7LAAA0IYQ2rqJjIJy5RZXyGa1KD6a9ggAAABoBu26S7M/lUI7S7nbncFt/n6zq3JLXjarnpl2sgZ1CVdBWZVmLlijtPxSs8sCAABtBKGtm6jpZ9s9IlB+3jaTqwEAAECrFd5VmvWJFNZZyt0hLTxHyttrdlVuyd/HpvkzB6tHZKDS8ss0c8Ea5ZdUml0WAABoAwht3QT9bAEAANBiwrtIsz5zBrgHd0kf32R2RW4rLMBHi64YqugQX23JKNLVr65TWaXd7LIAAEArR2jrJlyhLf1sAQAA0BLC4qRZn0o9R0vnP2t2NW6tU3iAFl0xVMF+XlqzK1c3v7VBdodhdlkAAKAVI7R1E8kHnKEtm5ABAACgxYR2ki5/VwrpUDtWSd/WhiTGhOi/0wfLx2bVF7+na95Hv8swCG4BAEDzILR1AyUVVdqZUyyJ0BYAAAAm2vyO9OxQKWe72ZW4pVN7tNeTUwbKYpFeW71bT329VQ5W3AIAgGZAaOsGUtILZRhSZLCvIoN9zS4HAAAAbZG9SvrhSSl/j7TwXCl7q9kVuaVz+8fq3gl9JElPL9+qic/+oB+3ZZtcFQAAaG0Ibd1AMv1sAQAAYDablzT9Aymyt1SY5gxus7aYXZVbmjW8m+4/v6+Cfb30+4ECXfa/nzVzwRqlpBeYXRoAAGglCG3dQBL9bAEAAOAOgiKlWZ9IUX2logxncJuZYnZVbmnGqV313d/P1OzhXeVts+i7LVka//T3un3pRqXnl5ldHgAA8HCEtm7AtdK2A6EtAAAATBYYIc38WIruJxVnOoPbjCSzq3JL7QJ9dO/Evvp6zkid2y9WhiEtXb9Pox77Vo9+maLCskqzSwQAAB6K0NZkdoehlPRCSVKf2GCTqwEAAAAkBbaXZn4kxfSXSrKl398zuyK31qV9oJ677BS9/7fTNKRruMoqHXru2+0a9egKvbpqlyrtDrNLBAAAHobQ1mS7c4pVUmGXn7dV3SKCzC4HAAAAcApo5wxuz35QOvNOs6vxCCd3Dtfbfz1V/50+SN0jA5VTXKF7PvxdZz+5Ul/8libDMMwuEQAAeAhCW5MlpzlX2SZEB8tmtZhcDQAAAHAI/3DptBskS/V9alU5m5MdhcVi0dl9Y/TlzSP04AUnKSLIRzuzi3XN4l900YurtH53rtklAgAAD0Boa7KktHxJ9LMFAACAm6uqkN6eKc0fLe3/xexq3J63zarL/9RFK24/Uzee1Uv+3jat331Qk19YpWsXr9fO7GKzSwQAAG6M0NZkNStte8cS2gIAAMCN2cul0lypLF969QJp33qzK/IIQb5emjMmXituH6WpQ+JktUif/5auMU98p3s//E05ReVmlwgAANwQoa3Jkg4USJL6ENoCAADAnfkGS5e/K3U+VSrPl167QNq7xuyqPEZ0iJ/+Nbm/vrh5hP6cGKUqh6FFq3Zr5KMr9Ny321RaYTe7RAAA4EYIbU2UW1yh9IIySVIioS0AAADcnW+wdNk7UpfhUnmB9NqF0p6fza7Ko8RHB2vBrCF64+phOqljiIrKq/Tol6k687EVenvdXtkdbFYGAAAIbU2VnOZcZdulfYCCfL1MrgYAAAA4Br5B0mVLpa5nSBWF0uILpd0/mV2VxzmtR4Q+uu50PT11oDqG+Su9oEx/f2eTzv3P91qRminDILwFAKAtI7Q1UU1o2zuGVbYAAADwID6B0qVvS91HSYYhyWJ2RR7JarXo/IEdtfzWkbrznN4K8fNSSnqhZr2yVtPnr9HvB/LNLhEAAJiE0NZErn62HQhtAQAA4GF8AqRpb0mzP5O6nGp2NR7Nz9umq0d018q/n6mrz+gmH5tVP2zL1oRnftCcJRu0P6/U7BIBAEALI7Q1UVIam5ABAADAg3n7Sx0G1r5O3yztWGFWNR4vLMBHd57bR8tvHanzBnSQYUjv/bpfZz62Qo98nqz80kqzSwQAAC2E0NYk5VV2bcsskiT1ZqUtAAAAPF3OdmnRedIbU6Rty82uxqPFtQvQf6adrI+uH64/dW+niiqHXvpuh0Y++q3m/7BTFVUOs0sEAADNjNDWJNsyi1TlMBTq760OoX5mlwMAAACcmNBOUtwwqapMenOatPVrsyvyeP07henNq/+kBbMGq1dUkPJKKvXAJ0ka/cR3+njjATYrAwCgFSO0NUlNP9vescGyWNi4AQAAAB7Oy1e65FUpcYJkL5femiZt+dLsqjyexWLRnxOj9flNZ+hfF/ZTVLCv9uSW6IY3f9UFz/+kNTtzzS4RAAA0A0JbkySnFUqS+sSGmlwJAAAA0ES8fKSLF0q9J0r2Cumty6TUz82uqlXwslk1dWhnrbh9lG4ZHa8AH5s27s3TJS+t0lWL1rlarwEAgNaB0NYkSWn5kpwrbQEAAIBWw+YtXfSK1OcCyVEpLZku7fze7KpajQAfL900upe+u/1MXTass2xWi75OztDYp1bqzvc3K7OwzOwSAQBAEyC0NYFhGLUrbdmEDAAAAK2NzVuaPF86abLUaYjU4WSzK2p1IoN99dCkfvry5hEa0ydadoeh13/eo1GPrtDTX29VcXmV2SUCAIATQGhrggP5ZcovrZSX1aKeUUFmlwMAAAA0PZuXNOm/0uXvSL7c8zaXnlFBennGYC35y580IC5MJRV2Pfn1Fo16bIXeXLNHVXaH2SUCAIDjQGhrguTqTch6RgXJ18tmcjUAAABAM7F5ST6Bta+/e1Ta/I559bRiw7q31wd/O03PXnqyOrcLUFZhuea+t1njn/5e7/+6T6UVdrNLBAAAjeBldgFtUVKaM7TtE0trBAAAALQRqV9I3z4oWayS4ZD6X2J2Ra2OxWLRhP4dNKZPtF5fvUf/+WartmYW6ZYlG3WP7++aOLCDLh7USQPjwmSxWMwuFwAAHAErbU2QVL3Sln62AAAAaDN6nS2dPN0Z2L7/V2njW2ZX1Gr5etl0xend9N3tZ2rOmHh1CvdXYXmV3vh5jyY9/5POfnKl/rtyu7IKy80uFQAAHAYrbU2QnO4MbXuz0hYAAABthdUqTfyPZLVJ6xdK718jOezSyZeZXVmrFervrRvP6qXrz+yp1TtytHT9Pn22OU1bM4v08Gcp+vcXqTozMUoXD+qkMxOj5G1jTQ8AAO6C0LaFFZZVandOiSRCWwAAALQxVqt07pOSxSatmy99eJ1k2KVTZphdWatmtVp0Ws8IndYzQved31efbEzT2+v2asPePC1LytCypAxFBPlo0skddfHgOMVHB5tdMgAAbR6hbQtLTS+UJMWE+KldoI/J1QDA/7d35/FRlvf+/1+zT9bJRvawo+ygLBEQbSuVWo89nNa1Vjna5bQH3GitWgu2dqFqF+pyoFrbnvP91SpdtIstLhStC4iCKMgiO4FsJJBMMklmkpn798edzGRIkAQmmUx4Px+P+8HMfV8z+cwNmos3Vz6XiIhIP7Na4fKfmCtuNz4Of7kVSkphyLnxruyskO528PnSoXy+dCi7qxr4/abD/GnzYWoaAzzx2n6eeG0/U0oyuHp6MVdMKSTd7Yh3ySIiImclhbb9LLwJmfrZioiIiMjZymKByx4Eqx0yRyiwjZMxeWl869PjuHP+ubyy6yir3ylj3c5q3iur472yOu7/63Yum5jP1dNLuGBkNlarNi8TERHpLwpt+9mOio5+tvqRIxERERE5i1ks8Knl0efaAmDXT6P1N4fNyifH5/HJ8XkcbfDz3LtHWP1OGburG3luSznPbSmnODOJK6cV87nziynJSo53ySIiIoOeOs33s+3l7SttCzxxrkREREREZABpOgZPzoP1/xPvSs5qQ9JcfPmikbx4x0U8t2gO15cOJc1l5/DxZla8vJu5D67j+l9u4M9bjtDSGox3uSIiIoOWVtr2o7ZgiJ3tPW210lZEREREpJNtf4SK98zDCMLsW+Jd0VnNYrEwtSSDqSUZLP238bzwQSWr3ynjjT214SPNbeczUwq5anoJU4o9WCxqnyAiIhIrCm370YFaH/62EMlOG8OyU+JdjoiIiIjIwDHjS9BYDf96EF78Nmz9PUy6GiZ+FtIL413dWc3tsPHvU4v496lFlB1r4o+bD/P7dw5zpK6Z3751iN++dYhz8lK5aloJC84rYkiaK94li4iIJDyLYRhGvIs4U16vF4/HQ319PenpA3eDr7+8V86tv3uX84dm8Kf/nhPvckREREQSXqLMA7uTyLX3qX89BOuWm6ttAbDAeV+Af380rmVJtFDIYMO+Wla/U8Y/tlXibwsBYLda+MTYXK6aXsLHzh2Cw6aOfCIiIp31dA6olbb9qKOf7bgCTcpFRERERLp10Z0w7Sb44FnY+gco2wCe4sj11hb4cA2cMx8cSfGr8yxntVqYPTqH2aNz+G5zK397v5zV7xzmvbI6XtxexYvbq8hJdfHZ84u4aloxY/LUHk5ERKQ3FNr2ox0V7ZuQFSq0FRERERE5qZQcmPll8zh+MDqc3f0i/H4hONNg3BUw+SoYfhHY9FebePEkObi+dBjXlw7jw6oGfv9OGc++e4SaRj+P/2sfj/9rH1NLMrh6egn/NqWAdLcj3iWLiIgMeJrZ9KPtFVppKyIiIiLSK5nDop+3+cFTAvVl8N5T5pGSa/a+nXQVFE0DbYgVN+fkpXHv5eP55qfGsm5nNb/fdJh/7qxmS1kdW8rquP9vH3DZxAKuml7MBSOysVr1eyUiItIdNRjqJ0cb/Bxt8GOxwNh8/WiQiIiIyEDz2GOPMXz4cNxuN6WlpWzcuLFHr3v66aexWCwsWLCgbwsU0+Sr4Lb34aY1MP2LkJQFvmp4axX88hI4ti/eFQrgsFm5dEI+T9w4nQ33XMK9nx7HmNxUWlpDPPvuET7/xFtc/ON1/Pzl3Rw+3hTvckVERAYcrbTtJx2tEUZkp5Ds1G0XERERGUieeeYZlixZwqpVqygtLWXFihXMnz+fXbt2kZube9LXHThwgG984xvMnTu3H6sVrFYYNss8LnsA9q6DravBWw7ZoyLj1t4PSZkw8XOQXhi/es9yQ9JcfPmikXxp7gjeO1zP6nfK+OuWcsqONfOzlz9kxdoPmTUym4+fm8vs0dmMy0/XClwRETnrWQzDMOJdxJlKhJ13f/HqXpb/YyeXTy7gsc+fH+9yRERERAaFWM0DS0tLmTFjBo8++igAoVCIkpISbrnlFu6+++5uXxMMBrnooou4+eabee2116irq+O5557r99qlE8OItEZo8cJDoyHoByww/EKzfcL4z5hBrsRVcyDICx9UsvqdMt7cWxt1LSvFyaxR2cwZlcOc0dkMzUrGopYXIiIySPR0Dqgln/2ko5/tePWzFRERERlQAoEAmzZt4p577gmfs1qtzJs3j/Xr15/0dffffz+5ubl88Ytf5LXXXuuPUuVUOgd7Vht8ajls/QMcehMOvGYez38dxlxqbnI26uPxq/Usl+S0seC8IhacV0TZsSZe+KCSN/bU8Nb+YxzzBXj+/Qqef78CgKKMJOaMzmbO6Bxmj8phSJorztWLiIj0PYW2/WSHQlsRERGRAammpoZgMEheXl7U+by8PHbu3Nnta15//XWefPJJtmzZ0uOv4/f78fv94eder/e06pUecqbAjC+aR90h2PZHM8Ct2ga7nodhsyOhbVsALFaw6a9H8VCSlcyX5o7kS3NH0hoM8V5ZHa/vqeHNPbW8W3acI3XNrH7nMKvfOQzAuXlpzB5trsQtHZlFmtsR508gIiISe5qV9IOW1iB7j/oAGKfQVkRERCShNTQ0cMMNN/DEE0+Qk5PT49ctX76c7373u31YmZxUxlC48A7zqNoO2/4AEz8bub719/DyfTDhs2YLheLp0at2pd84bFamD89i+vAsbp8HTYE2Nu4/xpt7a3l9dw3bK7zsqmpgV1UDv37jADarhSnFnvAq3POHZeCy2+L9MURERM6YQtt+sLuqkWDIICvFSV66fpRHREREZCDJycnBZrNRVVUVdb6qqor8/Pwu4/fu3cuBAwe44oorwudCoRAAdrudXbt2MWrUqC6vu+eee1iyZEn4udfrpaSkJFYfQ3oqbzzkLYs+9+Ea8B2Fjb8wj4xhZng76SrIHRufOgWAZKedj52by8fONTcEPOYLsH5vLW/sreHNPTUcqG1i86E6Nh+q45F/7sHtsDJjeBaz2/vhTij0YNOmZiIikoAU2vaD7RX1AIwrSFMDfREREZEBxul0Mm3aNNauXcuCBQsAM4Rdu3Ytixcv7jJ+7NixbN26Nerct7/9bRoaGvj5z39+0iDW5XLhcukf8AekK38F+16B91fDzueh7iC89mPzKJgCX3wJ7Pq9GwiyUpxcPrmAyycXAHD4eBNv7jFD3Df21FLT6Oe13TW8trsGAE+Sg1kjs5kzOpvZo3MYmZOiv5OJiEhCOK3Q9rHHHuOhhx6isrKSKVOm8MgjjzBz5sxux37sYx/j1Vdf7XL+05/+NM8//zwAhmFw33338cQTT1BXV8ecOXNYuXIlY8aMOZ3yBpzt5epnKyIiIjKQLVmyhIULFzJ9+nRmzpzJihUr8Pl83HTTTQDceOONFBUVsXz5ctxuNxMnTox6fUZGBkCX85IgbA4Y80nzCPhg1z/M/rd7XgJXenRgu2sNlMyE5Kz41SthxZnJXD0jmatnlGAYBrurG3ljT425qdm+Y9Q3t7Lmg0rWfFAJQIHHHV6FO2d0Dnnp7jh/AhERke71OrR95plnWLJkCatWraK0tJQVK1Ywf/58du3aRW5ubpfxf/rTnwgEAuHntbW1TJkyhauuuip87sEHH+Thhx/mf//3fxkxYgRLly5l/vz5bN++Hbc78b+J7qhoANTPVkRERGSguuaaazh69CjLli2jsrKSqVOnsmbNmvDmZIcOHcJqtca5SukXzhSYdKV5NB0DX03kWmM1PH0dWGwweh5MuRbG/ps2MBsgLBYL5+SlcU5eGjfNGUFbMMT7R+p5c4+5CnfTweNU1Lfwx82H+eNmc1OzUUNSwv1wZ43MxpOsTc1ERGRgsBiGYfTmBaWlpcyYMYNHH30UMH90rKSkhFtuuYW77777lK9fsWIFy5Yto6KigpSUFAzDoLCwkK9//et84xvfAKC+vp68vDx+85vfcO21157yPb1eLx6Ph/r6etLTB1YwahgGk7/zIg3+NtbcPpex+QOrPhEREZFENpDngaeSyLWftcrfhT/fAlWd2mOkF8PML8H5C7X6doBraQ3yzoHjvL6nhjf31rD1SD2d/zZstcCkIg+zR+cwZ1QO04dn4nZoUzMREYmtns4Be/VPwoFAgE2bNnHPPfeEz1mtVubNm8f69et79B5PPvkk1157LSkpKQDs37+fyspK5s2bFx7j8XgoLS1l/fr13Ya2fr8fv98ffu71envzMfrV4ePNNPjbcNqsjBqSGu9yRERERETkdBWeB197Hap3mP1vN/8feA/Dy9+BVx6Aa38Loy+Jd5VyEm6HjQvH5HDhmBwA6ptaWb+vljf31vD6nhr2HfXx3uF63jtcz8pX9uK0W5k2NJMLx+Qwe1Q2k4o82G1acS8iIv2jV6FtTU0NwWAw/GNiHfLy8ti5c+cpX79x40a2bdvGk08+GT5XWVkZfo8T37Pj2omWL1/Od7/73d6UHjcftPezHZOXikPf4EVEREREEl/uOJh3H1x8F2z7I2xYCcf2QdH5kTGN1ZCcA2qrMWB5kh18amI+n5qYD0BlfYvZD3dvDW/uqaXS28L6fbWs31cLQJrLzvThmUwqzmBSkYfJxR71xBURkT7Tr82XnnzySSZNmnTSTct66p577mHJkiXh516v96S79MbbjgoztFU/WxERERGRQcbhhvOuh6mfN0PbpMzItd9dB34vlH7V7H3rTIlfndIj+R43n5tWzOemFWMYBnuP+nhzr7mp2fq9tXhb2li36yjrdh0NvyY3zcWkIg+Tis0Qd2KRh9w0BbkiInLmehXa5uTkYLPZqKqqijpfVVVFfn7+R77W5/Px9NNPc//990ed73hdVVUVBQUFUe85derUbt/L5XLhcrm6vTbQbG8PbccrtBURERERGZwsFsgeFXlefxiO7oJAAzy/BNbeD9P+E2Z+GTzFcStTes5isTA6N5XRuancOGs4wZDBB+X1vHuojq1H6tl6uJ7d1Q1UN/hZu7OatTurw6/NT3czqdgTDnMnFXnISU2Mv7+KiMjA0avQ1ul0Mm3aNNauXcuCBQsAcyOytWvXsnjx4o987e9//3v8fj9f+MIXos6PGDGC/Px81q5dGw5pvV4vb731Fl/72td6U96A1LHSdnyhQlsRERERkbOCpxiWbIctT8Fbq+D4fnhjBbz5CIz/DMz9OuRPineV0gs2q4XJxRlMLs4In2sKtLGjwsv7h80Qd+uRevYcbaTS20Ll9hZe2h5Z7FTo6Rzkmu0VslKccfgkIiKSKHrdHmHJkiUsXLiQ6dOnM3PmTFasWIHP5+Omm24C4MYbb6SoqIjly5dHve7JJ59kwYIFZGdnR523WCzcfvvtfP/732fMmDGMGDGCpUuXUlhYGA6GE1V9cyuHjzcDMC5foa2IiIiIyFnDnQ4XfNVcXbv7RdjwP7D/X/DBszDhswptB4Fkp51pw7KYNiwrfM7nb+ODcm/7atw63j9Sz/4aH+X1LZTXt/DCB5EgtygjicnFkdW4k4o8ZCQryBUREVOvQ9trrrmGo0ePsmzZMiorK5k6dSpr1qwJbyR26NAhrCc029+1axevv/46L774Yrfv+c1vfhOfz8dXvvIV6urquPDCC1mzZg1ud2L3AtrZvsq2KCMJT7IjztWIiIiIiEi/s9rg3MvMo3IbvPc7GHt55Prbv4TmOph2E6Rkn/RtJDGkuOzMHJHFzBGRILehpZUPyr1sO1JvrsptD3KP1DVzpK6Zf2yLbMA9NCs50iO3yMOEIg+eJP1dUkTkbGQxDMOIdxFnyuv14vF4qK+vJz194Kxo/fUb+/nuX7czb1wev1w4Pd7liIiIiAw6A3Ue2BOJXLvESFsAVkyCxkqwu2Hy1VD6NcgbH+/KpI95W1rZdiTSVmHrkXoO1jZ1O3Z4djITi8yNziYVZTCxKJ00t4JcEZFE1dM5YK9X2krPqZ+tiIiIiIiclMUCn7zfbJ1QsQU2/595jLgYLvhvGHMpnPBTjDI4pLsdzB6Vw+xROeFz9U2tbCvvWI1rbnhWdqyZA7VNHKht4m/vV4THjsxJiWqrMKHIQ6pLf70XERlM9H/1PrS9I7QtSItzJSIiIiIiMuDYHDDlGnOFbdlbZni746+w/1XzmH0LXPr9eFcp/cST7GDO6BzmjI4Eucd9gUiQ274q90hdM/tqfOyr8fHnLeWAmf+PzElhcnEGE4s8jMlNZUROCoUZSdislnh9JBEROQMKbftIazDEh1WNAIwv8MS5GhERERERGbAsFhh6gXnUHYKNT8Dm/4VJV0fG1B0CIwSZw+NWpvS/zBQnc8cMYe6YIeFztY1+th6pj+qRW1Hfwt6jPvYe9fHsu0fCY502K0OzkxmRk8KInBSGZ6cwPCeZkTmp5KW7sFgU6IqIDFQKbfvIvqM+Am0hUl12ijOT4l2OiIiIiIgkgoyhcOn34OPfAkenv0e88gC895S5iVnp12DYbDPslbNOdqqLj52by8fOzQ2fO9rgN3vkHolsdHaotolAMMSe6kb2VDd2eZ8kh41h2cmMHNIR5qYwMsf8NTvFqUBXRCTOFNr2kY5+tuMK0rDqx1FERERERKQ3Oge2hgHNx82Vtjv+ah75k82+txM/C3ZX/OqUAWFImouPj83l42MjQW4wZFBe18z+Gl/4OFDr40CNj7LjzTS3BtlZ2cDOyoYu75fmsjOimzB3RHYKnmRtgiYi0h8U2vaR7eHQVpuQiYiIiIjIGbBY4LqnoHonvLUK3nsaKt+H574KLy2Di74Bpf8V7yplgLFZLZRkJVOSlcxF5wyJutYaDFF2rIkDtT72He0Ic5vYX+OjvL6ZBn8b7x822y+cKDPZYbZaaA9xO8LdETkppGgzNBGRmNH/UfvIjvAmZAptRUREREQkBnLHwhUr4JJlsOk3Zu/bhnJo8UbGGIbaJsgpOWxWRg5JZeSQVD4xNvpaS2uQQ8eaOoW5kZW61Q1+jje1cvxQHZsP1XV539w0V7dh7rDsZNwOW/98OBGRQUKhbR8wDIPt5VppKyIiIiIifSA5C+Yugdm3wPY/w8iPRa7tfB42/A9c8DU499NgVVAmveN22DgnL41z8tK6XPP52zhQ295qocbH/pom9tc0cqC2iWO+ANUNfqob/GzcfyzqdRYLFHqSGJ6THA5yO46SrGQcNmt/fTwRkYSh0LYPVDf4qfUFsFrg3Pyu3+hERERERETOmM0Bk66MPrfxF3DwDfPIGAoz/wvOmQ8Zw8DujE+dMmikuOxMKPQwodDT5Vp9Uyv7T1iZ2xHwNrS0caSumSN1zbyxpzbqdTarheLMJLPlwgmBbmFGEjbtESMiZymFtn2go5/tyCGp+hEQERERERHpPwtWwdu/hE2/hrpD8OK95mGxQUkp3PyPyNiK9yFlCKTlq6WCnDFPsoOpyRlMLcmIOm8YBsd8gS5B7v6aJg7U+GhuDXKwtomDtU3A0ajXOm1Whmabq3NHhjdGS2ZkTip56S4s+nMrIoOYQts+0NEaQf1sRURERESkX3mKYN59cNGdsHU1bP5/UL0dWpu6tkr43bXgPQKOFMgeBTljIHu0eeSOg/xJ8fkMMqhYLBayU11kp7qYPjwr6pphGFR5/d0Euj4O1TYRCIbYU93InupG2BH9vkkOm9k/94SWC8NzUshOcSrQFZGEp9C2D3RsQqZ+tiIiIiIiEhfOZJj2n+ZhGNBQAQFf5HqwFexucwVuqw8q3zePDkNnwc1rIs9fWgbJ2e2h7hjIHK52C3LGLBYL+R43+R43s0ZlR10LhgzK65q7hLkHanyUHW+muTXIjgpv+O/fnaW57ZEQ94RA15Pk6K+PJyJyRhTa9oGO9gjjCxXaioiIiIhInFkskF4Yfc7mgFs3Q1sA6g5CzW6o3dN+7IWi8yNjW1vgjYcBo9N7Ws0+udmjYfQ8uOCrkWuGoXYLcsZsVgslWcmUZCVzEUOirrUGQ5Qda+JArY99R81Q90BNE/trfJTXN9PQ0sb7h+t5/3B9l/fNSnGGw9zOLRdG5KSQ7FREIiIDh/6PFGNNgTb215j/gj2uQJuQiYiIiIjIAGZ3mm0RcsacfEwwABd/MzrUDTTC8f3mkdIpUGsLwEOjIXNoZFVuR8uF7FGQlNHnH0kGP4fNysghqYwcksonxkZfa2kNcuhYUzjM3X/UF94grbrBzzFfgGO+AJsOHu/yvnnprhPC3BSGZiVT6EkiPcmulgsi0q8U2sbYrsoGDANyUl3kprnjXY6IiIiIiMiZcafDx78VeW4Y0FDZHuDuhqyRkWvHD4C/Hiq3mseJpt0EV6wwHwfb4MM1ZqCbNQLsrr78FHKWcDtsnJOXxjl5XRdRNfrbOFDTNczdX+PjeFMrVV4/VV4/b+0/1uW1yU4b+R43hZ6k9l/dFGQkhc8VZLhJcynYFZHYUWgbYzsqGgC1RhARERERkUHKYoH0AvMYMTf6WtZIWLyp06rc3ebK3No9Zl/dtILI2LqD8Mz15mOr3dz4rHgGFM+Ekhlm+wUFYBJDqS47E4s8TCzydLlW1xTo1D+3Kdw/90hdM8d8AZoCQfYdNdsxnEyK00ZBRhIFHnf70f44I4nC9t69aW711BWRnlFoG2PbK8yeOWqNICIiIiIiZx2bHXJGm8eJ/A0QCkaeB3xQMNUMdAONUP6ueWx83Lx+0TfhE/eaj9sCEGoFZ0qffwQ5O2UkOzlvqJPzhmZ2udbSGqSivoWK+mYq6tp/rW+hor6F8rpmKr0t1DW14gsE2VPdyJ7qxpN+nTSXnYIMN/keM8iNBLuRoDfFpahGRBTaxlx4pW2BVtqKiIiIiIiEuU5Y2FIwGf7rVbPdQt0hOPIOlL0Nh9+GivfM6x0Ovg7/35WQNwFKZravyJ1hruzValzpY26HjRE5KYzIOfk/GjQF2qiob6GyPcjtCHU7B73eljYa/G00VDXyYdXJg910t90MczM6hboeN4Wd2jEkOW198VFFZABRaBtDoZDBjgovoNBWRERERESkRywWyBxmHhM/Z55rbYkOYyu3gRGEyvfN4+1fmueTs83w9mP3QOHUfi9dpEOy086oIamMGpJ60jE+f9sJQa75uLy+hcr2cw3+NrwtbXhbGthV1XDS98pIdpCfHgly89LcDElzRR+pLpx2a198XBHpBwptY+jQsSaaAkFcdutH/guciIiIiIiIfATHCZs6z7nVDHQPb4TD70DZRqjYAk215mZmn/h2ZOz2v8Def5phbslMc6MzrcaVASDFZWd0biqjc08e7Da0tJqrdetbqAiv2O20creuGV8gSF1TK3VNreysPHmwC2a4OyQ1OsjNTe94HAl6M5IcWK3670RkIFFoG0Pb21fZnpufht2mf80SERERERGJGU8ReP4DJvyH+bzND5VbzXYKQ8ZFxu36B7z3FGz6tfncnREJcIunw7A5YHf1e/kiPZHmdpDmdjAmr/t9cgzDoMHfRkVdC+X1zVS2B7lHG/0cbeh0NPppDRrhcHf3R/TZBXDYLOSkRoLdzit2c9OiQ161ZhDpHwptY0itEURERERERPqJ3WWGsMXTo89PvhpSss0VueXvQksd7HnJPLDA3Qcjoe2RTeBIgZxzwKqFNzLwWSwW0t0O0vMdnJt/8g3QDcMMbLsLc6u9LVHnjze10ho0wqt5TyXVZe/ShqG7kDc7xYVNq3dFTptC2xjaXm6GtuMU2oqIiIiIiMTHqI+bB0BbAKq2mQHu4Y3QXAduT2TsC9+GQ2+CywPF06B4JpTMgKJpkJQZl/JFYsFisZCZ4iQzxck5J1m12yHQFqLWZwa41V5/t0Hv0QY/1Q0ttLSGaPS30ehvY3+N7yPf12qBrJRImJuT6iQjyUlGsoOMZAeeJAcZyU4yksznGUlO0tx2tWkQaafQNobCK20LFdqKiIiIiIjEnd0JReebR+lXoq8ZBjhTwJEM/nqzD+7ef0auD5sDN/09erx648og5LRbKfAkUeBJ+shxhmHQ6G/rEuaagW50yFvb6CdkQE2jn5pGPzsqelaLxYIZ5iY58EQFuic8T3bg6QiAk8wAWG0qZbBRaBsjdU0Bytt/jGDsR/yIgoiIiIiIiAwAFgt84Q8QbIPqD8zNzTpW5B7bB65Oi3EMAx6bCXY3OJLM9gp2d+QomgYXfDUy/vWfgdUePcbR/mtqLhRMiYytPww2Z/t7JoHNoXBYBiSLxRLuuTtyyMk3UwMIhgyO+QLhFbpHG/zU+gLUNbVS3xwI99qta26lvilAfXMrvkAQwyB8jdqmXtWX5rLjSY6s2vW0B7rhVb1R55zh826HevTKwKTQNkY6NiEbmpVMmtsR52pERERERESkR2x2M0QtmAIzv2ye89Waq287eI9AzYcnf4+25khoaxjw8ncBo/uxoz4BNzwbef7YBRBo6DTAEgl5h86C634XufS7z0OgsT0IdkUHyJnDYdaiyNiK98GVBulF5opjkX5ks1rCbRHG07OfRg60hahv7hrq1rWHut0+bwrgbWkDoMHfRoO/jcPHm3tVq9thDbdt8CRFjvSox/bIY3fkugJf6UsKbWMk0s9Wq2xFREREREQSWkq2eXRIK4CvvgENlWZA2+aHthZobX+cNSIy1gjB+TeY51s7je04skdHf60uq2qN9q/RbAa0nR18w9xYrTtF06JD29U3wPEDgMWsP6MEPCXmr7njzQ3bRAYQp90aDnp7Ixgy8DZHAl1z9W7ksbm694Rr7c9DBrS0hqhsbaHSe+pN2LqrORLm2rsPfN2R553D31SXHYtW1ctHUGgbIx0rbccXeE4xUkRERERERBKK1Qb5E82jJ2M/80jP3/ueMnN1bjDQNeS1nfBTnAtWQsAXHQK3tZivSc2LjDMMs1evzQVBPzSUm0fZW+b1ounRoe0Tn4BQsD3YHRod8GYM1aZsMqDZrJFN1yClx68LhQwaA23tAW8rdc2BcMBb39yKt6UVb8fj5rYu50OGuTq4o5dvb1ktRMJcd/Sq3vQu5xxR4XB6kgOHevgOegptY2RHhfnjLFppKyIiIiIiIr1isbS3OTjFCsOxn+75+/33ejO89R2FujKoOwj1ZeZjT3FkbChktlIItULFlq7vVTQNvtxpg7Z//sDcwK1zwJuSC1YFSJJYrFaLuQrW7aAkq3evDYUMfIFOQW57qOttD3Uj5zuHwJEx/rYQoc79e09DuttOdqqL7BQnWSlOslOdZKe4un2cleJUyJuAFNrGQKAtxJ5qM7QdX9izXi0iIiIiIiIifcpiMTc+S82F4mknH/eVdWaYW18GdYci4W59mbnStkMoZG6yFjohZLI5zSB49Dz49EOR82VvQ+oQs6/uiauGRRKY1RrZlK34NBait7QGuwl427qEvZHrbeb45lYa/GYPX29LG96WNvbX+Hr0NXsa8uakmquWFfLGn0LbGNhT3Uhr0CDdbacoIyne5YiIiIiIiIj0jNUK+ZPMozuhUORxMABzbosOdhvKzfPH9kFjdfTrfn2ZGfBarGZf3Y6WC54SGHoBnDM/Mr58CzhTwZVqbqDmSO6m36/I4OB22HA7bOSmu3v92rZgCG9LG8d8AY75AtQ2+qnt9nGg/bGfkHF6IW9OqhnkmsFu94GvQt6+o9A2Bjr62Y4rSFcTaRERERERERk8Orc9cLjhkqXR14Ot4C03Q1xnp36iLXVmQFt/2Ax1vUfMo2yDeX3i5yKhbbANHr84+n0t1vYQNw3GXApXrIhc+8stZr9eV5oZ8jrTImFvehEUnR8Z6280A2C1b5BBwm6zhoPUngiFDOqbW6ltD3WP+QLtj81AN/I4QK3PvN455N13BiFvZrKDFJed1PYjJfyrLfy845zNqjztRAptY2BHp9BWRERERERE5Kxhc0DmMPPoLDkLbn3XXHHrq25vt3Ao0nYhd1xkbFszpBVCoBH8DYABRgj8XvNoqY+MDQVh8/+dvJ7R8+ALf4w8/8m55vs6UiLBbkcYXHQ+fPL+yNj1/2Ou7u247koFd4Z5JGeZh0iCsXbaqG10buopx0dCXn84zK3xBTjWHvJ2PO4IeE835D1RksPWHuDaosLcjnOpJ5wLj3Waj9Pckesuu3VQLKpUaBsD28vN0Fb9bEVEREREREQ6sVohLd88SmZ0P8aVBl/fYT42DGhtMsNbfyMEGswQtYMRgnnfjQS8HWP87c87h8GhkDkOoNVnHo1Vkeu2E1Yqrvuh+V7dKZoOX14bef7bq6GtBZIy24+MyGNPMYz6RGRsa4u5ydwgCJFk8IsOeU89PhQyqGtuNVfttrdkqG0Pdo83BfD52/AF2mj0B/H522hsaaOx/ZzP30Zr0ACguTVIc2uQmsYz/ww2q4UUZ9fVvJ1D4M7nM1OcfGZK4Zl/4RhTaHuGDMNgR2V7aKuVtiIiIiIiIiKnz2Ix2yw4UyCtm+s2B1x4e8/f696q9oDX2x7wdoS9DZCcHT1+0uegxds+pmNcPTTXmWFsZwff/OiAt3No++h0MyxOyjRX7XYOenPOgblLOr3vevMzdoxze8Cm6EYGLqvVEm6J0JOQ90T+tiC+9kC3oaUj4DUDXZ8/Evb6/G00RJ1vC7+usf1oCgQBCIaM8MrfnshLdym0HYwq6luoa2rFbrUwJu/Uy8xFREREREREpB9YLGYfXocbUnJOPf6Kn5/8WucN2QCu+jU0H28/6jo9Pg45Y6LHNteZfX0bq6JX+oIZ8HYObf/0ZbN9RGeudDPgzZ8M1/42cv6tX0RW+6YXmhu8eYqjewuLDHAuuw2X3dbjHr0fJRQy2lfwBqOC34ZuQuDw9UAbaS5HDD5J7Cm0PUMd/WxH56bistviXI2IiIiIiIiIxNyJG5mN+WTPX/v1HZFgt6UuOuw9cbWvpxiwmOP8Zt4Q7u2bcsIyxjcf6RrwAiRlQfEMuH515Nz+f5l9fT3FkDJEG7PJoGS1WkhzO0hzD8wQtrcU2p6hjn622oRMRERERERERLpwpZlHRsmpx968JvI42GpuwtYR+J4YtE78HDRUQlMteMvNANfvheZjkcC3w7NfA+9h87HNBZ4iM8D1DIX8iXDB1zp93Ta1ZBAZAPRf4RlSP1sRERERERERiTmbw2zrcLLWDp/8btdzLfVQfxhCnXp5GgZkDDU3cWuogKAfju0zD4Chs6JD24enQpvfDJk9xZG2C54SyBoJeeNj9hFF5OQU2p4hrbQVERERERERkQHB7TGPziwWuPkf5uNgK3iPmMFu/WFzdW5qXmRssM28boTAVw1HNkW/19BZ0auB//QVsLvbA96OcLcY0ovM0FlETptC2zPQ6G/j4LEmAMYVdLetpYiIiIiIiIjIAGFzQOZw8+iO1QZ37jXD3LqySLBb3/44f1JkbLANtv7eDHi7sMDYy6M3Ttv0v2CxgjMZnKngSDY3TXOmmJuppeZ28z4SZhjmCui2ZjN8T842f79k0FJoewZ2VXoxDMhLd5Gd6op3OSIiIiIiIiIip89igeQs8yiY8tFjjSB85hEzzK0riw53gwFwJEXGBtvgb3eYr+nO6E/CF/4Qef6TseavzpTocNeRbNZ10TciY9/+JWAxg2Bn+1hHivk4KbN9c7c+1nQMAj5oa4HWJmhtMcPV1mawOWH0JZGxG58w21S0NkeOtmbzNUkZ8NnHI2P/32eh/N32920GjMg1RzLcczgS3O78uzmuI5RPyjR/PyVhKbQ9A9srGgD1sxURERERERGRs4zdBed9oev5UAiaaqL76rb6YPxnINBkhpqBxujHSZnRr2+oOPnXDfiin790n/ke3SmeCV96KfL84fOgxdv9at+cc6L7BD+3CBorzTC1tSk6kM0ZA//5t8jYxy+GukPd15A9Bm55J/L8nV9D9Qfdj00riH7ubzA3lutOal70StvXfgJHOn0dVzpkDoOMYWa9874TuRYKapVuAlBoewbUz1ZEREREREREpBOrtWurA7cHrvpNz15vscDiTWbQG/C1h7sdj31dg81xV5jhZsf1zqHwiZu4+WrA74Wmbr5uY3X0832vgPdw9zUmZUQ/tyeZK2odSeZjh9sMhO1uMzjtbNLnoHGuec2RbI61J5mvPbEf8YKVZvjdeYwjyWwz0Xw8emzRNLDa4fgBM2z2e6Fyq3lkDo8ObX/1KXNVdMawyMrczE6P0wu7/9zSrxTanoEdFWZoO75Qoa2IiIiIiIiIyBmzWCBndM/H/8eqno/96mvdBMHdrPYFc9VtMNAeriZ1CmSTwHXCvkb/vcEMq3ti7td7Xu9H3YcTA+lPPxh53Npsrvw9ftAMcU+s7fh+8B01VzSXbYi+ljEMbn8/8vyNn5u/dgS6GcO6htbSJxTanqZgyGBnpVbaioiIiIiIiIgkhJNtwNadSVf2fGxPA9v+4kiCIeeaR3f++y2oO2AGuh3Bbl37r1mjoseufwwaq6LPuTPMe1kyEz79UOR8/RFIGQJ2Z6w+yVlNoe1p2l/jo6U1RJLDxvDslHiXIyIiIiIiIiIicmop2eZRNK3rNcOIfnz+jXBsfyTU9R2Fljqo2NJ1xfETnzAD3vQis91CWj5YHWbbhtyxMPuWyNh1yyHoB4vNvG61m312rXazPUPn0HzbH6Et0GlMp9e4PTD0gsjYyq3mCunwe9rbv4bN7MPcufWDv9FsNeFMPoOb2XcU2p6mjtYI5+anYbNqNz4REREREREREUlwFkv04098O/q6v9FsvVB30AxBO7QFzN7CGGYv4BP7AY/8WHRou2El+Ou7r6F4ZnRo+8K9J9+cLm8ifO2NyPPVC+HY3u7HZo6A27ZEnv/6U2Z7jFs3dz8+zhTanqYjdc2A+tmKiIiIiIiIiMhZwpUKeePNozO7E751xFyJe7zTqtxQGxhB8JREjy/9ihmYhtoiY0JtEAqa4Wpnw+dCU237uFDkNaG2ru0c0vKhzd/1PUNt5sZvnYWC5krcAcpiGJ3XPScmr9eLx+Ohvr6e9PT+C1Eb/W00B4IMSXOderCIiIiIxFy85oGxkMi1i4iIiCS8Nr8Z3PZze4SezgEHbpycAFJddlJduoUiIiIiIiIiIiIJxT6wF2EOsO3tRERERETi47HHHmP48OG43W5KS0vZuHHjScc+8cQTzJ07l8zMTDIzM5k3b95HjhcRERER6Q2FtiIiIiJy1nvmmWdYsmQJ9913H5s3b2bKlCnMnz+f6urqbse/8sorXHfddaxbt47169dTUlLCpZdeypEjR/q5chEREREZjNTTVkREREQSVqzmgaWlpcyYMYNHH30UgFAoRElJCbfccgt33333KV8fDAbJzMzk0Ucf5cYbb+zX2kVEREQkcfR0DqiVtiIiIiJyVgsEAmzatIl58+aFz1mtVubNm8f69et79B5NTU20traSlZXVV2WKiIiIyFlEu2iJiIiIyFmtpqaGYDBIXl5e1Pm8vDx27tzZo/e46667KCwsjAp+T+T3+/H7/eHnXq/39AoWERERkUFPK21FRERERM7Aj370I55++mmeffZZ3G73ScctX74cj8cTPkpKSvqxShERERFJJAptRUREROSslpOTg81mo6qqKup8VVUV+fn5H/naH//4x/zoRz/ixRdfZPLkyR859p577qG+vj58lJWVnXHtIiIiIjI4KbQVERERkbOa0+lk2rRprF27NnwuFAqxdu1aZs2addLXPfjgg3zve99jzZo1TJ8+/ZRfx+VykZ6eHnWIiIiIiHRHPW1FRERE5Ky3ZMkSFi5cyPTp05k5cyYrVqzA5/Nx0003AXDjjTdSVFTE8uXLAXjggQdYtmwZTz31FMOHD6eyshKA1NRUUlNT4/Y5RERERGRwOK2Vto899hjDhw/H7XZTWlrKxo0bP3J8XV0dixYtoqCgAJfLxTnnnMPf//738PXvfOc7WCyWqGPs2LGnU5qIiIiISK9dc801/PjHP2bZsmVMnTqVLVu2sGbNmvDmZIcOHaKioiI8fuXKlQQCAa688koKCgrCx49//ON4fQQRERERGUR6vdL2mWeeYcmSJaxatYrS0lJWrFjB/Pnz2bVrF7m5uV3GBwIBPvnJT5Kbm8sf/vAHioqKOHjwIBkZGVHjJkyYwMsvvxwpzK5FwCIiIiLSfxYvXszixYu7vfbKK69EPT9w4EDfFyQiIiIiZ61eJ6M//elP+fKXvxz+UbFVq1bx/PPP86tf/Yq77767y/hf/epXHDt2jDfffBOHwwHA8OHDuxZit59yowcRERERERERERGRwa5X7RECgQCbNm1i3rx5kTewWpk3bx7r16/v9jV/+ctfmDVrFosWLSIvL4+JEyfywx/+kGAwGDVu9+7dFBYWMnLkSK6//noOHTp00jr8fj9erzfqEBERERERERERERkMehXa1tTUEAwGw729OuTl5YU3XzjRvn37+MMf/kAwGOTvf/87S5cu5Sc/+Qnf//73w2NKS0v5zW9+w5o1a1i5ciX79+9n7ty5NDQ0dPuey5cvx+PxhI+SkpLefAwRERERERERERGRAavPG8eGQiFyc3N5/PHHsdlsTJs2jSNHjvDQQw9x3333AXDZZZeFx0+ePJnS0lKGDRvG6tWr+eIXv9jlPe+55x6WLFkSfu71ehXcioiIiIiIiIiIyKDQq9A2JycHm81GVVVV1PmqqqqT9qMtKCjA4XBgs9nC58aNG0dlZSWBQACn09nlNRkZGZxzzjns2bOn2/d0uVy4XK7wc8MwANQmQUREROQs0zH/65gPJhLNYUVERETOPj2dv/YqtHU6nUybNo21a9eyYMECwFxJu3bt2pPutDtnzhyeeuopQqEQVqvZjeHDDz+koKCg28AWoLGxkb1793LDDTf0qK6ONgpabSsiIiJydmpoaMDj8cS7jF7RHFZERETk7HWq+avF6OWyhGeeeYaFCxfyi1/8gpkzZ7JixQpWr17Nzp07ycvL48Ybb6SoqIjly5cDUFZWxoQJE1i4cCG33HILu3fv5uabb+bWW2/l3nvvBeAb3/gGV1xxBcOGDaO8vJz77ruPLVu2sH37doYMGXLKmkKhEOXl5aSlpWGxWHrzcc5IR1uGsrIy0tPT++3rDka6l7Gjexlbup+xo3sZO7qXsaN7GVvxuJ+GYdDQ0EBhYWF4gUCiiMccVn/mY0f3MnZ0L2NL9zN2dC9jR/cytnQ/Y2cgz1973dP2mmuu4ejRoyxbtozKykqmTp3KmjVrwpuTHTp0KOoLlpSU8MILL3DHHXcwefJkioqKuO2227jrrrvCYw4fPsx1111HbW0tQ4YM4cILL2TDhg09CmwBrFYrxcXFvf0oMZOenq7/SGJE9zJ2dC9jS/czdnQvY0f3MnZ0L2Orv+9noq2w7RDPOaz+zMeO7mXs6F7Glu5n7Ohexo7uZWzpfsbOQJy/ntZGZIsXLz5pO4RXXnmly7lZs2axYcOGk77f008/fTpliIiIiIiIiIiIiAw6ifUzZCIiIiIiIiIiIiKDnELbM+ByubjvvvtwuVzxLiXh6V7Gju5lbOl+xo7uZezoXsaO7mVs6X4OfPo9ih3dy9jRvYwt3c/Y0b2MHd3L2NL9jJ2BfC97vRGZiIiIiIiIiIiIiPQdrbQVERERERERERERGUAU2oqIiIiIiIiIiIgMIAptRURERERERERERAYQhbYiIiIiIiIiIiIiA4hC29P02GOPMXz4cNxuN6WlpWzcuDHeJSWk5cuXM2PGDNLS0sjNzWXBggXs2rUr3mUNCj/60Y+wWCzcfvvt8S4lIR05coQvfOELZGdnk5SUxKRJk3jnnXfiXVbCCQaDLF26lBEjRpCUlMSoUaP43ve+h/bA7Jl//etfXHHFFRQWFmKxWHjuueeirhuGwbJlyygoKCApKYl58+axe/fu+BQ7wH3UvWxtbeWuu+5i0qRJpKSkUFhYyI033kh5eXn8Ch7ATvXnsrOvfvWrWCwWVqxY0W/1yclp/hobmr/2Hc1fz4zmr7GjOezp0/w1djR/ja1EnMMqtD0NzzzzDEuWLOG+++5j8+bNTJkyhfnz51NdXR3v0hLOq6++yqJFi9iwYQMvvfQSra2tXHrppfh8vniXltDefvttfvGLXzB58uR4l5KQjh8/zpw5c3A4HPzjH/9g+/bt/OQnPyEzMzPepSWcBx54gJUrV/Loo4+yY8cOHnjgAR588EEeeeSReJeWEHw+H1OmTOGxxx7r9vqDDz7Iww8/zKpVq3jrrbdISUlh/vz5tLS09HOlA99H3cumpiY2b97M0qVL2bx5M3/605/YtWsXn/nMZ+JQ6cB3qj+XHZ599lk2bNhAYWFhP1UmH0Xz19jR/LVvaP56ZjR/jS3NYU+f5q+xo/lrbCXkHNaQXps5c6axaNGi8PNgMGgUFhYay5cvj2NVg0N1dbUBGK+++mq8S0lYDQ0NxpgxY4yXXnrJuPjii43bbrst3iUlnLvuusu48MIL413GoHD55ZcbN998c9S5z372s8b1118fp4oSF2A8++yz4eehUMjIz883HnroofC5uro6w+VyGb/73e/iUGHiOPFedmfjxo0GYBw8eLB/ikpQJ7uXhw8fNoqKioxt27YZw4YNM372s5/1e20STfPXvqP565nT/PXMaf4aW5rDxobmr7Gj+WtsJcocVitteykQCLBp0ybmzZsXPme1Wpk3bx7r16+PY2WDQ319PQBZWVlxriRxLVq0iMsvvzzqz6j0zl/+8hemT5/OVVddRW5uLueddx5PPPFEvMtKSLNnz2bt2rV8+OGHALz33nu8/vrrXHbZZXGuLPHt37+fysrKqP/WPR4PpaWl+n4UA/X19VgsFjIyMuJdSsIJhULccMMN3HnnnUyYMCHe5Qiav/Y1zV/PnOavZ07z19jSHLZvaP7atzR/PTMDcQ5rj3cBiaampoZgMEheXl7U+by8PHbu3BmnqgaHUCjE7bffzpw5c5g4cWK8y0lITz/9NJs3b+btt9+OdykJbd++faxcuZIlS5bwrW99i7fffptbb70Vp9PJwoUL411eQrn77rvxer2MHTsWm81GMBjkBz/4Addff328S0t4lZWVAN1+P+q4JqenpaWFu+66i+uuu4709PR4l5NwHnjgAex2O7feemu8S5F2mr/2Hc1fz5zmr7Gh+WtsaQ7bNzR/7Tuav565gTiHVWgrA8aiRYvYtm0br7/+erxLSUhlZWXcdtttvPTSS7jd7niXk9BCoRDTp0/nhz/8IQDnnXce27ZtY9WqVZr09tLq1av57W9/y1NPPcWECRPYsmULt99+O4WFhbqXMiC1trZy9dVXYxgGK1eujHc5CWfTpk38/Oc/Z/PmzVgslniXI9LnNH89M5q/xo7mr7GlOawkEs1fz9xAncOqPUIv5eTkYLPZqKqqijpfVVVFfn5+nKpKfIsXL+Zvf/sb69ato7i4ON7lJKRNmzZRXV3N+eefj91ux2638+qrr/Lwww9jt9sJBoPxLjFhFBQUMH78+Khz48aN49ChQ3GqKHHdeeed3H333Vx77bVMmjSJG264gTvuuIPly5fHu7SE1/E9R9+PYqdjwnvw4EFeeuklrVI4Da+99hrV1dUMHTo0/L3o4MGDfP3rX2f48OHxLu+spflr39D89cxp/ho7mr/GluawfUPz19jT/DU2BuocVqFtLzmdTqZNm8batWvD50KhEGvXrmXWrFlxrCwxGYbB4sWLefbZZ/nnP//JiBEj4l1SwrrkkkvYunUrW7ZsCR/Tp0/n+uuvZ8uWLdhstniXmDDmzJnDrl27os59+OGHDBs2LE4VJa6mpias1uhvNTabjVAoFKeKBo8RI0aQn58f9f3I6/Xy1ltv6fvRaeiY8O7evZuXX36Z7OzseJeUkG644Qbef//9qO9FhYWF3HnnnbzwwgvxLu+spflrbGn+Gjuav8aO5q+xpTls39D8NbY0f42dgTqHVXuE07BkyRIWLlzI9OnTmTlzJitWrMDn83HTTTfFu7SEs2jRIp566in+/Oc/k5aWFu5j4/F4SEpKinN1iSUtLa1LL7WUlBSys7PVY62X7rjjDmbPns0Pf/hDrr76ajZu3Mjjjz/O448/Hu/SEs4VV1zBD37wA4YOHcqECRN49913+elPf8rNN98c79ISQmNjI3v27Ak/379/P1u2bCErK4uhQ4dy++238/3vf58xY8YwYsQIli5dSmFhIQsWLIhf0QPUR93LgoICrrzySjZv3szf/vY3gsFg+PtRVlYWTqczXmUPSKf6c3niXxgcDgf5+fmce+65/V2qdKL5a+xo/ho7mr/GjuavsaU57OnT/DV2NH+NrYScwxpyWh555BFj6NChhtPpNGbOnGls2LAh3iUlJKDb49e//nW8SxsULr74YuO2226LdxkJ6a9//asxceJEw+VyGWPHjjUef/zxeJeUkLxer3HbbbcZQ4cONdxutzFy5Ejj3nvvNfx+f7xLSwjr1q3r9v+RCxcuNAzDMEKhkLF06VIjLy/PcLlcxiWXXGLs2rUrvkUPUB91L/fv33/S70fr1q2Ld+kDzqn+XJ5o2LBhxs9+9rN+rVG6p/lrbGj+2rc0fz19mr/Gjuawp0/z19jR/DW2EnEOazEMw4hlCCwiIiIiIiIiIiIip089bUVEREREREREREQGEIW2IiIiIiIiIiIiIgOIQlsRERERERERERGRAUShrYiIiIiIiIiIiMgAotBWREREREREREREZABRaCsiIiIiIiIiIiIygCi0FRERERERERERERlAFNqKiIiIiIiIiIiIDCAKbUVEREREREREREQGEIW2IiIiIiIiIiIiIgOIQlsRERERERERERGRAUShrYiIiIiIiIiIiMgA8v8DBN7IWjlGXQUAAAAASUVORK5CYII=\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABtIAAAZGCAYAAAAyCzVuAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XmclWXdP/DvDQMHRRhAVAZTXDBBccUlRRhJgiBBtHLNBU0zpUUSiVRc0kbcpSmsnkosxeoJDc1UTPrhQsrikhugoFiAqCDIdgTm/P7wYR7n4bDcw5k5A77fr9f1enXu67q/53NwZiC+XNed5HK5XAAAAAAAAAA1NCp2AAAAAAAAAGiINNIAAAAAAAAgD400AAAAAAAAyEMjDQAAAAAAAPLQSAMAAAAAAIA8NNIAAAAAAAAgD400AAAAAAAAyEMjDQAAAAAAAPLQSAMAAAAAAIA8NNIAAGAjZs2aFb17947S0tJIkiQeeOCBgtZ/6623IkmSuOuuuwpad2t27LHHxrHHHlvsGAAAAKCRBgBAw/fmm2/Gt771rdhrr72iWbNm0bJly+jWrVvccccdsXLlyjp977PPPjv+9a9/xfXXXx+/+93v4rDDDqvT96tP55xzTiRJEi1btsz76zhr1qxIkiSSJImbb745df158+bF1VdfHS+88EIB0taPjz/+OO6444445JBDomXLltGqVavYf//944ILLojXX3+9et3VV18dSZLE+++/n7dOly5dajQD1zVMPz1atmwZBx98cFRWVsbatWvr+qMBAABQCyXFDgAAABvz17/+Nb7+9a9HJpOJs846K7p06RIff/xxPPXUUzF06NB45ZVX4pe//GWdvPfKlStj8uTJcfnll8fgwYPr5D06dOgQK1eujCZNmtRJ/U0pKSmJFStWxIMPPhgnn3xyjbl77rknmjVrFqtWrapV7Xnz5sU111wTe+yxRxx88MGbfd9jjz1Wq/crhK9+9avxt7/9LU477bQ4//zzY/Xq1fH666/HQw89FEcffXR06tRpi+qfdtpp0a9fv4iIWLJkSTz88MPxne98J95+++246aabCvERAAAAKCCNNAAAGqw5c+bEqaeeGh06dIgnnngiysrKqucuvvjieOONN+Kvf/1rnb3/e++9FxERrVq1qrP3SJIkmjVrVmf1NyWTyUS3bt1i7Nix6zXS7r333vjKV74Sf/7zn+sly4oVK2L77bePpk2b1sv7/V9TpkyJhx56KK6//vr40Y9+VGOusrIyPvzwwy1+j0MPPTS+8Y1vVL++6KKL4sgjj4x7771XIw0AAKABcrQjAAAN1o033hjLli2LX//61zWaaOt07Ngxvve971W/XrNmTfz4xz+OvffeOzKZTOyxxx7xox/9KLLZbI379thjjzj++OPjqaeeiiOOOCKaNWsWe+21V9x9993Va66++uro0KFDREQMHTo0kiSJPfbYIyI+ORJx3f/+tHXH/X3ahAkT4phjjolWrVrFDjvsEPvuu2+NJs2GnpH2xBNPRPfu3aN58+bRqlWrOOGEE+K1117L+35vvPFGnHPOOdGqVasoLS2NQYMGxYoVKzb8C/t/nH766fG3v/2tRqNoypQpMWvWrDj99NPXW79o0aK49NJL44ADDogddtghWrZsGX379o0XX3yxes0//vGPOPzwwyMiYtCgQdXHGa77nMcee2x06dIlpk2bFj169Ijtt9+++tfl/z4j7eyzz45mzZqt9/n79OkTrVu3jnnz5m32Z92YN998MyIiunXrtt5c48aNY8cddyzI+3xakiSxyy67REmJf+MIAADQEGmkAQDQYD344IOx1157xdFHH71Z67/5zW/GiBEj4tBDD43bbrstysvLo6KiIk499dT11r7xxhvxta99Lb70pS/FLbfcEq1bt45zzjknXnnllYiIOOmkk+K2226LiE+O4/vd734Xt99+e6r8r7zyShx//PGRzWbj2muvjVtuuSUGDBgQTz/99Ebve/zxx6NPnz6xcOHCuPrqq2PIkCHxzDPPRLdu3eKtt95ab/3JJ58cH330UVRUVMTJJ58cd911V1xzzTWbnfOkk06KJEli3Lhx1dfuvffe6NSpUxx66KHrrZ89e3Y88MADcfzxx8ett94aQ4cOjX/9619RXl5e3dTq3LlzXHvttRERccEFF8Tvfve7+N3vfhc9evSorvPBBx9E37594+CDD47bb789evbsmTffHXfcETvttFOcffbZ1c8S+8UvfhGPPfZY/PSnP4327dtv9mfdmHWN03vuuSfWrFlTkJr/14oVK+L999+P999/P2bPnh0/+9nP4pFHHomzzz67Tt4PAACALeOfPQIA0CAtXbo0/vOf/8QJJ5ywWetffPHFGDNmTHzzm9+MX/3qVxHxybF5O++8c9x8880xceLEGo2aGTNmxKRJk6J79+4R8Ukzarfddovf/va3cfPNN8eBBx4YLVu2jEsuuWS94/g214QJE+Ljjz+Ov/3tb9G2bdvNvm/o0KHRpk2bmDx5crRp0yYiIgYOHBiHHHJIXHXVVTFmzJga6w855JD49a9/Xf36gw8+iF//+tcxcuTIzXq/Fi1axPHHHx/33ntvnHvuuVFVVRX33XdffPvb3867/oADDoiZM2dGo0b/++/yzjzzzOjUqVP8+te/jiuvvDJ22WWX6Nu3b4wYMSKOOuqovL9+CxYsiDvvvDO+9a1vbTRfq1at4te//nX06dMnbrjhhjj99NPj0ksvjYEDB9bqv8uGfOELX4jy8vL41a9+FePHj48vfvGLccwxx8Txxx8fu+++e0He46qrroqrrrqqxrVvf/vbqRqfAAAA1B870gAAaJCWLl0aEZ80eTbHww8/HBERQ4YMqXH9Bz/4QUTEes9S22+//aqbaBERO+20U+y7774xe/bsWmf+v9Y9W+0vf/lLVFVVbdY98+fPjxdeeCHOOeec6iZaRMSBBx4YX/rSl6o/56ddeOGFNV537949Pvjgg+pfw81x+umnxz/+8Y9YsGBBPPHEE7FgwYK8xzpGfPJctXVNtLVr18YHH3xQfWzl9OnTN/s9M5lMDBo0aLPW9u7dO771rW/FtddeGyeddFI0a9YsfvGLX2z2e22OJEni0Ucfjeuuuy5at24dY8eOjYsvvjg6dOgQp5xySkGekXbBBRfEhAkTYsKECfHnP/85Lr744vjFL36x3tctAAAADYNGGgAADVLLli0jIuKjjz7arPVvv/12NGrUKDp27Fjjert27aJVq1bx9ttv17ieb4dR69atY/HixbVMvL5TTjklunXrFt/85jdjl112iVNPPTX++Mc/brSpti7nvvvuu95c586d4/3334/ly5fXuP5/P0vr1q0jIlJ9ln79+kWLFi3iD3/4Q9xzzz1x+OGHr/druU5VVVXcdtttsc8++0Qmk4m2bdvGTjvtFC+99FIsWbJks99z1113jaZNm272+ptvvjnatGkTL7zwQowaNSp23nnnTd7z3nvvxYIFC6rHsmXLNro+k8nE5ZdfHq+99lrMmzcvxo4dG1/4whfij3/8YwwePHizs0bEes/Li4jYZ599olevXtGrV6846aSTorKyMi666KK4/fbb41//+leq+gAAANQ9jTQAABqkli1bRvv27ePll19OdV++5kU+jRs3zns9l8vV+j3WPb9rne222y4mTZoUjz/+eJx55pnx0ksvxSmnnBJf+tKX1lu7Jbbks6yTyWTipJNOijFjxsT999+/wd1oERE/+clPYsiQIdGjR4/4/e9/H48++mhMmDAh9t9//83eeRfxya9PGs8//3wsXLgwImKzm06HH354lJWVVY+bb755s9+vrKwsTj311Jg0aVLss88+8cc//rH62WnNmjWLiIiVK1fmvXfFihXVazbluOOOi4iISZMmbXY2AAAA6odGGgAADdbxxx8fb775ZkyePHmTazt06BBVVVUxa9asGtfffffd+PDDD6NDhw4Fy9W6deu8x/z9311vERGNGjWK4447Lm699dZ49dVX4/rrr48nnngiJk6cmLf2upwzZsxYb+7111+Ptm3bRvPmzbfsA2zA6aefHs8//3x89NFHceqpp25w3X//939Hz54949e//nWceuqp0bt37+jVq9d6vyab29TcHMuXL49BgwbFfvvtFxdccEHceOONMWXKlE3ed88991QfpThhwoQ466yzUr93kyZN4sADD4zVq1fH+++/HxEb/++0YsWKeOeddzb7a25dc25Tu+UAAACofxppAAA0WJdddlk0b948vvnNb8a777673vybb74Zd9xxR0R8cjRhRMTtt99eY82tt94aERFf+cpXCpZr7733jiVLlsRLL71UfW3+/Plx//3311i3aNGi9e49+OCDIyIim83mrV1WVhYHH3xwjBkzpkZj6uWXX47HHnus+nPWhZ49e8aPf/zjqKysjHbt2m1wXePGjdfb7fanP/0p/vOf/9S4tq7hV4hniw0bNizmzp0bY8aMiVtvvTX22GOPOPvsszf467hOt27dqo9S7NWrV+y1114bXDtr1qyYO3fuetc//PDDmDx5crRu3Tp22mmniPhkF1nTpk1j9OjR6+3C++Uvfxlr1qyJvn37btZne/DBByMi4qCDDtqs9QAAANSfkmIHAACADdl7773j3nvvjVNOOSU6d+4cZ511VnTp0iU+/vjjeOaZZ+JPf/pTnHPOORHxSRPi7LPPjl/+8pfx4YcfRnl5eTz33HMxZsyYGDhwYPTs2bNguU499dQYNmxYnHjiifHd7343VqxYEaNHj47Pf/7zMX369Op11157bUyaNCm+8pWvRIcOHWLhwoXx85//PD73uc/FMcccs8H6N910U/Tt2zeOOuqoOO+882LlypXx05/+NEpLS+Pqq68u2Of4vxo1ahRXXHHFJtcdf/zxce2118agQYPi6KOPjn/9619xzz33rNek2nvvvaNVq1Zx5513RosWLaJ58+Zx5JFHxp577pkq1xNPPBE///nP46qrropDDz00IiJ++9vfxrHHHhtXXnll3HjjjanqbciLL74Yp59+evTt2ze6d+8ebdq0if/85z8xZsyYmDdvXtx+++3Vx2juvPPOMWLEiLjiiiuiR48eMWDAgNh+++3jmWeeibFjx0bv3r2jf//+673H9OnT4/e//31EfPL8v7///e/x5z//OY4++ujo3bt3QT4HAAAAhaORBgBAgzZgwIB46aWX4qabboq//OUvMXr06MhkMnHggQfGLbfcEueff3712v/6r/+KvfbaK+666664//77o127djF8+PC46qqrCpppxx13jPvvvz+GDBkSl112Wey5555RUVERs2bNqtFIGzBgQLz11lvxm9/8Jt5///1o27ZtlJeXxzXXXBOlpaUbrN+rV6945JFH4qqrrooRI0ZEkyZNory8PEaOHJm6CVUXfvSjH8Xy5cvj3nvvjT/84Q9x6KGHxl//+tf44Q9/WGNdkyZNYsyYMTF8+PC48MILY82aNfHb3/421Wf46KOP4txzz41DDjkkLr/88urr3bt3j+9973txyy23xEknnRRf+MIXtvhz9ejRI3784x/H3/72t7j11lvjvffeixYtWsQhhxwSI0eOjK9+9as11l9++eWxxx57RGVlZVx77bWxZs2a2HPPPeOaa66JYcOGRaNG6x8AMnbs2Bg7dmxERJSUlMTuu+8eQ4cOjREjRuRdDwAAQHEluTRPIAcAAAAAAIDPCP/kEQAAAAAAAPLQSAMAAAAAAIA8NNIAAAAAAAAgD400AAAAAAAAyEMjDQAAAAAAAPLQSAMAAAAAAIA8NNIAAAAAAAAgj5JiB1hnu0MGF7Te4imVBa0HAAAAAADF0KzB/E3+Z0ehexafBSuf3zb7MnakAQAAAAAAQB4aaQAAAAAAAJCHRhoAAAAAAADkoZEGAAAAAAAAeWikAQAAAAAAQB4lxQ4AAAAAAADQoCT2IfEJXwkAAAAAAACQR+odae+//3785je/icmTJ8eCBQsiIqJdu3Zx9NFHxznnnBM77bRTwUMCAAAAAABAfUu1I23KlCnx+c9/PkaNGhWlpaXRo0eP6NGjR5SWlsaoUaOiU6dOMXXq1LrKCgAAAAAAAPUm1Y6073znO/H1r3897rzzzkiSpMZcLpeLCy+8ML7zne/E5MmTN1onm81GNputeX/V2kgaNU4TBwAAAAAAAOpMqh1pL774YlxyySXrNdEiIpIkiUsuuSReeOGFTdapqKiI0tLSGmPNu9PSRAEAAAAAAIA6laqR1q5du3juuec2OP/cc8/FLrvsssk6w4cPjyVLltQYJbt0TRMFAAAAAACgbiSJkXZso1Id7XjppZfGBRdcENOmTYvjjjuuumn27rvvxt///vf41a9+FTfffPMm62QymchkMjWuOdYRAAAAAACAhiRVI+3iiy+Otm3bxm233RY///nPY+3atRER0bhx4+jatWvcddddcfLJJ9dJUAAAAAAAAKhPqRppERGnnHJKnHLKKbF69ep4//33IyKibdu20aRJk4KHAwAAAAAAgGJJ3Uhbp0mTJlFWVlbILAAAAAAAANBgNCp2AAAAAAAAAGiIar0jDQAAAAAAYJuU2IfEJ3wlAAAAAAAAQB4aaQAAAAAAAJBHgznacfGUyoLWa/2lHxes1uIJVxasFluuKpcrWK1GSVKwWgAAbJkC/jEvIiL8UQ+2PlVVhf1B0KiRHwTbKr9nAA1dIf8O8xN+UEGx2JEGAAAAAAAAeWikAQAAAAAAQB4N5mhHAAAAAACABsG5v/wPO9IAAAAAAAAgD400AAAAAAAAyEMjDQAAAAAAAPLQSAMAAAAAAIA8NNIAAAAAAAAgj4I30t55550499xzN7omm83G0qVLa4xsNlvoKAAAAAAAAOkljYy0YxtV8E+2aNGiGDNmzEbXVFRURGlpaY1x08iKQkcBAAAAAACAWitJe8P48eM3Oj979uxN1hg+fHgMGTKkxrVc40zaKAAAAAAAAFBnUjfSBg4cGEmSRC6X2+CaJEk2WiOTyUQmU7NxtmpN2iQAAAAAAABQd1If7VhWVhbjxo2LqqqqvGP69Ol1kRMAAAAAAADqVepGWteuXWPatGkbnN/UbjUAAAAAAADYGqQ+2nHo0KGxfPnyDc537NgxJk6cuEWhAAAAAAAAimYTj7DisyN1I6179+4bnW/evHmUl5fXOhAAAAAAAAA0BKmPdgQAAAAAAIDPAo00AAAAAAAAyEMjDQAAAAAAAPJI/Yy0rcXiCVcWrFbrwwcXrFZExOIplQWt91nTyEMeAQC2Sf6YBzRq5AcBm8fvGUBD5+8wYduxzTbSAAAAAAAAaiVxoB+f8JUAAAAAAAAAeWikAQAAAAAAQB4aaQAAAAAAAJCHRhoAAAAAAAD1ZtKkSdG/f/9o3759JEkSDzzwwAbXXnjhhZEkSdx+++01ri9atCjOOOOMaNmyZbRq1SrOO++8WLZsWY01L730UnTv3j2aNWsWu+22W9x4442ps2qkAQAAAAAAUG+WL18eBx10UPzsZz/b6Lr7778//vnPf0b79u3XmzvjjDPilVdeiQkTJsRDDz0UkyZNigsuuKB6funSpdG7d+/o0KFDTJs2LW666aa4+uqr45e//GWqrCWpVgMAAAAAAGzrkqTYCbZpffv2jb59+250zX/+85/4zne+E48++mh85StfqTH32muvxSOPPBJTpkyJww47LCIifvrTn0a/fv3i5ptvjvbt28c999wTH3/8cfzmN7+Jpk2bxv777x8vvPBC3HrrrTUabptiRxoAAAAAAABbJJvNxtKlS2uMbDZbq1pVVVVx5plnxtChQ2P//fdfb37y5MnRqlWr6iZaRESvXr2iUaNG8eyzz1av6dGjRzRt2rR6TZ8+fWLGjBmxePHizc6SupG2cuXKeOqpp+LVV19db27VqlVx9913py0JAAAAAADAVqyioiJKS0trjIqKilrVGjlyZJSUlMR3v/vdvPMLFiyInXfeuca1kpKSaNOmTSxYsKB6zS677FJjzbrX69ZsjlRHO86cOTN69+4dc+fOjSRJ4phjjon77rsvysrKIiJiyZIlMWjQoDjrrLM2Wiebza7Xhcw1zkQmk0kTBwAAAAAAgAZg+PDhMWTIkBrXatP3mTZtWtxxxx0xffr0SBrAEZupdqQNGzYsunTpEgsXLowZM2ZEixYtolu3bjF37txUb5qvK3nTyNp1JQEAAAAAACiuTCYTLVu2rDFq00h78sknY+HChbH77rtHSUlJlJSUxNtvvx0/+MEPYo899oiIiHbt2sXChQtr3LdmzZpYtGhRtGvXrnrNu+++W2PNutfr1myOVDvSnnnmmXj88cejbdu20bZt23jwwQfjoosuiu7du8fEiROjefPmm1UnX1cy19huNAAAAAAAgM+yM888M3r16lXjWp8+feLMM8+MQYMGRUTEUUcdFR9++GFMmzYtunbtGhERTzzxRFRVVcWRRx5Zvebyyy+P1atXR5MmTSIiYsKECbHvvvtG69atNztPqkbaypUro6Tkf29JkiRGjx4dgwcPjvLy8rj33ns3q04ms/4xjqvWpEkCAAAAAABQR5JUB/qR0rJly+KNN96ofj1nzpx44YUXok2bNrH77rvHjjvuWGN9kyZNol27drHvvvtGRETnzp3jy1/+cpx//vlx5513xurVq2Pw4MFx6qmnRvv27SMi4vTTT49rrrkmzjvvvBg2bFi8/PLLcccdd8Rtt92WKmuqRlqnTp1i6tSp0blz5xrXKysrIyJiwIABqd4cAAAAAACAz5apU6dGz549q1+vO8Xw7LPPjrvuumuzatxzzz0xePDgOO6446JRo0bx1a9+NUaNGlU9X1paGo899lhcfPHF0bVr12jbtm2MGDEiLrjgglRZk1wul9vcxRUVFfHkk0/Gww8/nHf+oosuijvvvDOqqqpShYho2DvSWh8+uKD1Fk+pLGg9AAAAAAC2Xc1SbYmhELY7+kfFjrDVWfnMT4odoU6kaqTVJY00AAAAAABYn0Za/dNIS29bbaQ55BMAAAAAAADy0EgDAAAAAACAPGwIBQAAAAAA+LQkKXYCGgg70gAAAAAAACAPO9I2w+IplQWt1/rwwQWtV+h8AAAAAAAA2JEGAAAAAAAAeWmkAQAAAAAAQB4aaQAAAAAAAJCHZ6QBAAAAAAB8WmIfEp/wlQAAAAAAAAB5aKQBAAAAAABAHhppAAAAAAAAkIdGGgAAAAAAAORRkvaG1157Lf75z3/GUUcdFZ06dYrXX3897rjjjshms/GNb3wjvvjFL26yRjabjWw2W+NarnEmMplM2jgAAAAAAABQJ1LtSHvkkUfi4IMPjksvvTQOOeSQeOSRR6JHjx7xxhtvxNtvvx29e/eOJ554YpN1KioqorS0tMa4aWRFrT8EAAAAAABAwSSJkXZso5JcLpfb3MVHH310fPGLX4zrrrsu7rvvvrjooovi29/+dlx//fURETF8+PCYNm1aPPbYYxut81nfkdb68MEFrbd4SmVB6wEAAAAA0HA0S322HFtqu+4jih1hq7PyyWuLHaFOpNqR9sorr8Q555wTEREnn3xyfPTRR/G1r32tev6MM86Il156aZN1MplMtGzZssb4rDTRAAAAAAAA2DqkaqRFRCT/sz2vUaNG0axZsygtLa2ea9GiRSxZsqRw6QAAAAAAAKBIUjXS9thjj5g1a1b168mTJ8fuu+9e/Xru3LlRVlZWuHQAAAAAAABQJKlOVv32t78da9eurX7dpUuXGvN/+9vf4otf/GJhkgEAAAAAAEARpWqkXXjhhRud/8lPfrJFYQAAAAAAAIouSf1kLLZRvhIAAAAAAAAgD400AAAAAAAAyEMjDQAAAAAAAPJI9Yw0CmPxlMqC1mt9+OCC1it0PgAAAAAAgK2RHWkAAAAAAACQhx1pAAAAAAAAn5bYh8QnfCUAAAAAAABAHhppAAAAAAAAkIdGGgAAAAAAAOShkQYAAAAAAAB5FKSRlsvlClEGAAAAAAAAGoyCNNIymUy89tprhSgFAAAAAAAADUJJmsVDhgzJe33t2rVxww03xI477hgREbfeeuuWJwMAAAAAACiGRkmxE9BApGqk3X777XHQQQdFq1atalzP5XLx2muvRfPmzSNJNv3Flc1mI5vN1qzROBOZTCZNHAAAAAAAAKgzqY52/MlPfhJLliyJK6+8MiZOnFg9GjduHHfddVdMnDgxnnjiiU3WqaioiNLS0hrjppEVtf4QAAAAAAAAUGipdqT98Ic/jOOOOy6+8Y1vRP/+/aOioiKaNGmS+k2HDx++3jGRucZ2owEAAAAAANBwpNqRFhFx+OGHx7Rp0+K9996Lww47LF5++eXNOs7x0zKZTLRs2bLGcKwjAAAAAAAADUmqHWnr7LDDDjFmzJi47777olevXrF27dpC5wIAAAAAAICiqlUjbZ1TTz01jjnmmJg2bVp06NChUJkAAAAAAACKJ0l9oB/bqC1qpEVEfO5zn4vPfe5zhcgCAAAAAAAADYaWKgAAAAAAAOShkQYAAAAAAAB5aKQBAAAAAABAHhppAAAAAAAAkEdJsQOw5RZPqSxovdZHfLeg9RY/N6qg9QAAAAAAoE4lSbET0EDYkQYAAAAAAAB5aKQBAAAAAABAHhppAAAAAAAAkIdGGgAAAAAAAOShkQYAAAAAAAB5lBQ7AAAAAAAAQIOS2IfEJ3wlAAAAAAAAQB4aaQAAAAAAAJDHFh3tuHz58vjjH/8Yb7zxRpSVlcVpp50WO+644ybvy2azkc1ma1zLNc5EJpPZkjgAAAAAAABQMKl2pO23336xaNGiiIh45513okuXLnHJJZfEhAkT4qqrror99tsv5syZs8k6FRUVUVpaWmPcNLKidp8AAAAAAAAA6kCSy+Vym7u4UaNGsWDBgth5553jG9/4RsyZMycefvjhKC0tjWXLlsWJJ54YO+20U9x7770brWNHWsPW+ojvFrTe4udGFbQeAAAAAMBnSbMtOluO2tiu1w3FjrDVWfn4D4sdoU7U+ttv8uTJceedd0ZpaWlEROywww5xzTXXxKmnnrrJezOZ9Ztmq9bUNgkAAAAAAEABJUmxE9BApDraMSIi+Z8vnlWrVkVZWVmNuV133TXee++9wiQDAAAAAACAIkq9I+24446LkpKSWLp0acyYMSO6dOlSPff222/HjjvuWNCAAAAAAAAAUAypGmlXXXVVjdc77LBDjdcPPvhgdO/efctTAQAAAAAAQJFtUSPt/7rpppu2KAwAAAAAAAA0FKmfkQYAAAAAAACfBamfkQYAAAAAALBNS+xD4hO+EgAAAAAAACAPO9JYz+LnRhW0XuvDBxe03uIplQWtBwAAAAAAkI8daQAAAAAAAJCHRhoAAAAAAADkoZEGAAAAAAAAeXhGGgAAAAAAwKclSbET0EDYkQYAAAAAAAB5aKQBAAAAAABAHhppAAAAAAAAkIdGGgAAAAAAAOSRqpE2ffr0mDNnTvXr3/3ud9GtW7fYbbfd4phjjon77ruv4AEBAAAAAACgGFI10gYNGhRvvvlmRET813/9V3zrW9+Kww47LC6//PI4/PDD4/zzz4/f/OY3m6yTzWZj6dKlNUY2m63dJwAAAAAAACikpJGRdmyjUn2yWbNmxT777BMRET//+c/jjjvuiDvuuCMuvPDCuO222+IXv/hF3HLLLZusU1FREaWlpTXGTSMravcJAAAAAAAAoA6UpFm8/fbbx/vvvx8dOnSI//znP3HEEUfUmD/yyCNrHP24IcOHD48hQ4bUuJZrnEkTBQAAAAAAAOpUqh1pffv2jdGjR0dERHl5efz3f/93jfk//vGP0bFjx03WyWQy0bJlyxojk9FIAwAAAAAAoOFItSNt5MiR0a1btygvL4/DDjssbrnllvjHP/4RnTt3jhkzZsQ///nPuP/+++sqKwAAAAAAANSbVDvS2rdvH88//3wcddRR8cgjj0Qul4vnnnsuHnvssfjc5z4XTz/9dPTr16+usgIAAAAAAEC9SbUjLSKiVatWccMNN8QNN9xQF3kAAAAAAACKK0mKnYAGItWONAAAAAAAAPis0EgDAAAAAACAPDTSAAAAAAAAIA+NNAAAAAAAAMijpNgB2PYtnlJZ0HqtDx9csFqFzgYAAAAAAGw7NNIAAAAAAAA+LXGgH5/wlQAAAAAAAAB5aKQBAAAAAABAHhppAAAAAAAAkIdGGgAAAAAAAOShkQYAAAAAAAB5lBQ7AAAAAAAAQIOSJMVOQANhRxoAAAAAAADkkaqR9p3vfCeefPLJLX7TbDYbS5curTGy2ewW1wUAAAAAAIBCSdVI+9nPfhbHHntsfP7zn4+RI0fGggULavWmFRUVUVpaWmPcNLKiVrUAAAAAAACgLqQ+2vGxxx6Lfv36xc033xy77757nHDCCfHQQw9FVVXVZtcYPnx4LFmypMYYOmx42igAAAAAAABQZ1I30g444IC4/fbbY968efH73/8+stlsDBw4MHbbbbe4/PLL44033thkjUwmEy1btqwxMplMrT4AAAAAAAAA1IXUjbR1mjRpEieffHI88sgjMXv27Dj//PPjnnvuiX333beQ+QAAAAAAAOpX0shIO7ZRBflku+++e1x99dUxZ86ceOSRRwpREgAAAAAAAIoqVSOtQ4cO0bhx4w3OJ0kSX/rSl7Y4FAAAAAAAABRbSZrFc+bMqascAAAAAAAA0KBsu4dWAgAAAAAAwBbQSAMAAAAAAIA8Uh3tCAAAAAAAsM1L7EPiE74SAAAAAAAAIA870tjqLJ5SWbBarY/4bsFqRUQsfm5UQesBAAAAAADFY0caAAAAAAAA5KGRBgAAAAAAAHlopAEAAAAAAEAenpEGAAAAAADwaUlS7AQ0EHakAQAAAAAAQB4aaQAAAAAAAJCHRhoAAAAAAADkkbqRVllZGWeddVbcd999ERHxu9/9Lvbbb7/o1KlT/OhHP4o1a9YUPCQAAAAAAADUt5I0i6+77rq48cYbo3fv3nHJJZfE22+/HTfddFNccskl0ahRo7jtttuiSZMmcc0112y0TjabjWw2W+NarnEmMplM+k8AAAAAAAAAdSBVI+2uu+6Ku+66K0466aR48cUXo2vXrjFmzJg444wzIiKiU6dOcdlll22ykVZRUbHemsuvvCquGHF1uvQAAAAAAACFlngyFp9I1UibN29eHHbYYRERcdBBB0WjRo3i4IMPrp4/9NBDY968eZusM3z48BgyZEiNa7nGdqMBAAAAAADQcKRqqbZr1y5effXViIiYNWtWrF27tvp1RMQrr7wSO++88ybrZDKZaNmyZY3hWEcAAAAAAAAaklQ70s4444w466yz4oQTToi///3vcdlll8Wll14aH3zwQSRJEtdff3187Wtfq6usAAAAAAAAUG9SNdKuueaa2G677WLy5Mlx/vnnxw9/+MM46KCD4rLLLosVK1ZE//7948c//nFdZQUAAAAAAIB6k+RyuVyxQ0RErFpT7AR8FrU+4rsFrbf4uVEFrQcAAAAA0CzVlhgKYbsTflHsCFudlX/5VrEj1AnffgAAAAAAAJ+WJMVOQAPRqNgBAAAAAAAAoCHSSAMAAAAAAIA8NNIAAAAAAAAgD89I4zNt8XOjClqv9eGDC1pv8ZTKgtYDAAAAAAA2nx1pAAAAAAAAkIcdaQAAAAAAAJ+W2IfEJ3wlAAAAAAAAQB4aaQAAAAAAAJCHRhoAAAAAAADkoZEGAAAAAAAAeWikAQAAAAAAQB4laW+YP39+jB49Op566qmYP39+NGrUKPbaa68YOHBgnHPOOdG4ceO6yAkAAAAAAFA/kqTYCWggUu1Imzp1anTu3DkefvjhWL16dcyaNSu6du0azZs3j0svvTR69OgRH3300SbrZLPZWLp0aY2RzWZr/SEAAAAAAACg0FI10r7//e/HJZdcElOnTo0nn3wy7rrrrpg5c2bcd999MXv27FixYkVcccUVm6xTUVERpaWlNcZNIytq/SEAAAAAAACg0JJcLpfb3MXbb799vPzyy7HXXntFRERVVVU0a9Ys3nnnndhll11iwoQJcc4558R//vOfjdbJZrPr7UDLNc5EJpOpxUeAhqP14YMLWm/xlMqC1gMAAAAAtj7NUj+kiS213Um/LnaErc7KcecVO0KdSPXtt/POO8f8+fOrG2nvvvturFmzJlq2bBkREfvss08sWrRok3UymfWbZqvWpEkCAAAAAAAAdSvV0Y4DBw6MCy+8MB555JGYOHFinHHGGVFeXh7bbbddRETMmDEjdt111zoJCgAAAAAAAPUp1Y606667LubPnx/9+/ePtWvXxlFHHRW///3vq+eTJImKCs86AwAAAAAAtl5JkhQ7Ag1EqkbaDjvsEH/4wx9i1apVsWbNmthhhx1qzPfu3bug4QAAAAAAAKBYavWIwmbNmhU6BwAAAAAAADQoqZ6RBgAAAAAAAJ8VGmkAAAAAAACQh0YaAAAAAAAA5FGrZ6QBAAAAAABsq5IkKXYEGgiNNCigxVMqC1qv9eGDC1qv0PkAAAAAAGBb5mhHAAAAAAAAyEMjDQAAAAAAAPLQSAMAAAAAAIA8NNIAAAAAAAAgj5La3PTxxx/HAw88EJMnT44FCxZERES7du3i6KOPjhNOOCGaNm1a0JAAAAAAAAD1Jil2ABqK1DvS3njjjejcuXOcffbZ8fzzz0dVVVVUVVXF888/H2eddVbsv//+8cYbb9RFVgAAAAAAAKg3qXekffvb344DDjggnn/++WjZsmWNuaVLl8ZZZ50VF198cTz66KMFCwkAAAAAAAD1LXUj7emnn47nnntuvSZaRETLli3jxz/+cRx55JEFCQcAAAAAAADFkrqR1qpVq3jrrbeiS5cueeffeuutaNWq1UZrZLPZyGazNa7lGmcik8mkjQMAAAAAAAB1IvUz0r75zW/GWWedFbfddlu89NJL8e6778a7774bL730Utx2221xzjnnxAUXXLDRGhUVFVFaWlpj3DSyotYfAgAAAAAAAAotyeVyubQ3jRw5Mu64445YsGBBJEkSERG5XC7atWsX3//+9+Oyyy7b6P12pMHmaX344ILWWzylsqD1AAAAAIC61yz12XJsqR1OvqvYEbY6y/54TrEj1IlaffsNGzYshg0bFnPmzIkFCxZERES7du1izz333Kz7M5n1m2ar1tQmCQAAAAAAANSN1Ec7ftqee+4ZRx11VBx11FHVTbR33nknzj333IKEAwAAAAAAgGLZokZaPosWLYoxY8YUuiwAAAAAAADUq9RHO44fP36j87Nnz651GAAAAAAAAGgoUjfSBg4cGEmSRC6X2+CaJEm2KBQAAAAAAAAUW+qjHcvKymLcuHFRVVWVd0yfPr0ucgIAAAAAANSLJEmMlGNblbqR1rVr15g2bdoG5ze1Ww0AAAAAAAC2BqmPdhw6dGgsX758g/MdO3aMiRMnblEoAAAAAAAAKLYk10C2j61aU+wEsO1rffjggtZbPKWyoPUAAAAAgPU1S70lhi3V4pQxxY6w1fnoD2cXO0KdSH20IwAAAAAAAHwWaKQBAAAAAABAHjaEAgAAAAAAfEqSJMWOQANhRxoAAAAAAADkUfBG2rvvvhvXXnttocsCAAAAAABAvSp4I23BggVxzTXXFLosAAAAAAAA1KvUz0h76aWXNjo/Y8aMWocBAAAAAACAhiJ1I+3ggw+OJEkil8utN7fuuofwAQAAAAAAsLVL3Uhr06ZN3HjjjXHcccflnX/llVeif//+G62RzWYjm83WuJZrnIlMJpM2DgAAAAAAQEHZMMQ6qZ+R1rVr15g3b1506NAh79h1113z7lb7tIqKiigtLa0xbhpZUesPAQAAAAAAAIWWekfahRdeGMuXL9/g/O677x6//e1vN1pj+PDhMWTIkBrXco3tRgMAAAAAAKDhSN1IO/HEEzc637p16zj77LM3uiaTWf8Yx1Vr0iYBAAAAAACAupP6aMdNeeedd+Lcc88tdFkAAAAAAACoVwVvpC1atCjGjBlT6LIAAAAAAABQr1If7Th+/PiNzs+ePbvWYQAAAAAAAIouKXYAGorUjbSBAwdGkiSRy+U2uCZJfIUBAAAAAACwdUt9tGNZWVmMGzcuqqqq8o7p06fXRU4AAAAAAACoV6kbaV27do1p06ZtcH5Tu9UAAAAAAABga5D6aMehQ4fG8uXLNzjfsWPHmDhx4haFAgAAAAAAgGJL3Ujr3r37RuebN28e5eXltQ4EAAAAAAAADUHqRhqw9Vo8pbKg9VofPrig9QqdDwAAAACgNpIkKXYEGojUz0gDAAAAAACAzwKNNAAAAAAAAMhDIw0AAAAAAADy0EgDAAAAAACAPGrdSPv3v/8dy5YtW+/66tWrY9KkSVsUCgAAAAAAAIotdSNt/vz5ccQRR0SHDh2iVatWcdZZZ9VoqC1atCh69uxZ0JAAAAAAAAD1JUkSI+XYVqVupP3whz+MRo0axbPPPhuPPPJIvPrqq9GzZ89YvHhx9ZpcLlfQkAAAAAAAAFDfUjfSHn/88Rg1alQcdthh0atXr3j66aejrKwsvvjFL8aiRYsiIrbpziMAAAAAAACfDakbaUuWLInWrVtXv85kMjFu3LjYY489omfPnrFw4cJN1shms7F06dIaI5vNpo0CAAAAAAAAdSZ1I22vvfaKl156qca1kpKS+NOf/hR77bVXHH/88ZusUVFREaWlpTXGTSMr0kYBAAAAAACAOpO6kda3b9/45S9/ud71dc20gw8+eJPPSBs+fHgsWbKkxhg6bHjaKAAAAAAAAFBnUjfSrr/++vjTn/6Ud66kpCT+/Oc/x5w5czZaI5PJRMuWLWuMTCaTNgoAAAAAAEDBJUlipBxpTJo0Kfr37x/t27ePJEnigQceqJ5bvXp1DBs2LA444IBo3rx5tG/fPs4666yYN29ejRqLFi2KM844I1q2bBmtWrWK8847L5YtW1ZjzUsvvRTdu3ePZs2axW677RY33nhj6q+F1I20kpKSaNmy5Qbn58+fH9dcc03qIAAAAAAAAGz7li9fHgcddFD87Gc/W29uxYoVMX369Ljyyitj+vTpMW7cuJgxY0YMGDCgxrozzjgjXnnllZgwYUI89NBDMWnSpLjggguq55cuXRq9e/eODh06xLRp0+Kmm26Kq6++Ou+pixuT5DZ1DmNKL774Yhx66KGxdu3aVPetWlPIFEB9aH344ILWWzylsqD1AAAAAGBb0Kyk2Ak+e9qceW+xI2x1Fv3u9FrdlyRJ3H///TFw4MANrpkyZUocccQR8fbbb8fuu+8er732Wuy3334xZcqUOOywwyIi4pFHHol+/frFv//972jfvn2MHj06Lr/88liwYEE0bdo0IiJ++MMfxgMPPBCvv/76ZudL/e03fvz4jc7Pnj07bUkAAAAAAAC2YtlsNrLZbI1rmUymII/2WrJkSSRJEq1atYqIiMmTJ0erVq2qm2gREb169YpGjRrFs88+GyeeeGJMnjw5evToUd1Ei4jo06dPjBw5MhYvXhytW7ferPdO3UgbOHBgJEkSG9vIlvYsTAAAAAAAALZeFRUV6z3666qrroqrr756i+quWrUqhg0bFqeddlr1o8cWLFgQO++8c411JSUl0aZNm1iwYEH1mj333LPGml122aV6bnMbaamfkVZWVhbjxo2LqqqqvGP69OlpSwIAAAAAALAVGz58eCxZsqTGGD58+BbVXL16dZx88smRy+Vi9OjRBUqaTuodaV27do1p06bFCSeckHd+U7vVAAAAAAAAGjIn76VXqGMc11nXRHv77bfjiSeeqN6NFhHRrl27WLhwYY31a9asiUWLFkW7du2q17z77rs11qx7vW7N5ki9I23o0KFx9NFHb3C+Y8eOMXHixLRlAQAAAAAAoLqJNmvWrHj88cdjxx13rDF/1FFHxYcffhjTpk2rvvbEE09EVVVVHHnkkdVrJk2aFKtXr65eM2HChNh33303+1jHiIgk10C2j61aU+wEQLG17vGjgtVaPOknBatFw1NVwN+6GvnXRQAADUYh/5wX4c9627JC/22WLxWgoWuW+mw5ttSOZ40tdoStzgd3n7bZa5ctWxZvvPFGREQccsghceutt0bPnj2jTZs2UVZWFl/72tdi+vTp8dBDD1U/1ywiok2bNtG0adOIiOjbt2+8++67ceedd8bq1atj0KBBcdhhh8W9994bERFLliyJfffdN3r37h3Dhg2Ll19+Oc4999y47bbb4oILLtjsrL79AAAAAAAAqDdTp06Nnj17Vr8eMmRIREScffbZcfXVV8f48eMjIuLggw+ucd/EiRPj2GOPjYiIe+65JwYPHhzHHXdcNGrUKL761a/GqFGjqteWlpbGY489FhdffHF07do12rZtGyNGjEjVRIvQSAMAAAAAAKAeHXvssbGxAxM35zDFNm3aVO8+25ADDzwwnnzyydT5Pi31M9IAAAAAAADgs8CONAAAAAAAgE/z/Ez+R60aaR988EG89NJLcdBBB0WbNm3i/fffj1//+teRzWbj61//enTu3LnQOQEAAAAAAKBepW6kPffcc9G7d+9YunRptGrVKiZMmBBf//rXo6SkJKqqquKGG26Ip556Kg499NC6yAsAAAAAAAD1IvUz0i6//PL4+te/HkuWLIkf/ehHMXDgwDjuuONi5syZ8cYbb8Spp54aP/7xj+siKwAAAAAAANSb1I20adOmxZAhQ6JFixbxve99L+bNmxfnn39+9fzgwYNjypQpBQ0JAAAAAAAA9S310Y4ff/xxbLfddhER0aRJk9h+++2jbdu21fNt27aNDz74YKM1stlsZLPZGtdyjTORyWTSxgEAAAAAAIA6kXpH2m677RazZ8+ufn3fffdFWVlZ9ev58+fXaKzlU1FREaWlpTXGTSMr0kYBAAAAAAAouCRJjJRjW5V6R9qpp54aCxcurH79la98pcb8+PHj44gjjthojeHDh8eQIUNqXMs1thsNAAAAAACAhiN1I+2qq67a6Pzll18ejRs33uiaTGb9YxxXrUmbBAAAAAAAAOpO6qMdN+WDDz6Ib3/724UuCwAAAAAAAPWq4I20RYsWxZgxYwpdFgAAAAAAAOpV6qMdx48fv9H52bNn1zoMAAAAAAAANBSpG2kDBw6MJEkil8ttcE2SJFsUCgAAAAAAoFj0OVgn9dGOZWVlMW7cuKiqqso7pk+fXhc5AQAAAAAAoF6lbqR17do1pk2btsH5Te1WAwAAAAAAgK1B6qMdhw4dGsuXL9/gfMeOHWPixIlbFAoAAAAAAACKLXUjrXv37hudb968eZSXl9c6EAAAAAAAADQEqRtpAHVl8aSfFKxW6yO+W7BaERGLnxtV0HpsmUYe9goAsE3y5zw2ly8VAKC+aKQBAAAAAAB8SuJfbfA/GhU7AAAAAAAAADREGmkAAAAAAACQh0YaAAAAAAAA5FGwRtpee+0Vs2bNKlQ5AAAAAAAAKKqStDeMGjUq7/W5c+fGb3/722jXrl1ERHz3u9/dsmQAAAAAAABQRKkbad///vdj1113jZKSmrdWVVXF3XffHU2aNIkkSTTSAAAAAACArVNS7AA0FKkbaRdccEE8++yzce+990bnzp2rrzdp0iQee+yx2G+//QoaEAAAAAAAAIoh9TPS7rzzzhgxYkT06dMnKisra/Wm2Ww2li5dWmNks9la1QIAAAAAAIC6kLqRFhFx4oknxuTJk+P++++Pvn37xoIFC1LdX1FREaWlpTXGTSMrahMFAAAAAAAA6kTqox3X2XXXXePxxx+PG264IQ455JDI5XKbfe/w4cNjyJAhNa7lGmdqGwUAAAAAAAAKrtaNtIiIJEli+PDh0bt373jqqaeirKxss+7LZDKRydRsnK1asyVJAAAAAAAAoLC2qJG2TteuXaNr164REfHOO+/EVVddFb/5zW8KURoAAAAAAKBeJUlS7Ag0ELV6RtrGLFq0KMaMGVPosgAAAAAAAFCvUu9IGz9+/EbnZ8+eXeswAAAAAAAA0FCkbqQNHDgwkiSJXC63wTW2PAIAAAAAALC1S320Y1lZWYwbNy6qqqryjunTp9dFTgAAAAAAAKhXqRtpXbt2jWnTpm1wflO71QAAAAAAAGBrkPpox6FDh8by5cs3ON+xY8eYOHHiFoUCAAAAAAAoFo+wYp0k10C2j61aU+wEABvW+vDBBa23eEplQesBAAAAsO1qlnpLDFuq3fn/XewIW50Fv/pasSPUidRHOwIAAAAAAMBngUYaAAAAAAAA5KGRBgAAAAAAAHlopAEAAAAAAEAeW/yIwlwuF//4xz/ijTfeiLKysujTp080adKkENkAAAAAAADqXZIkxY5AA5G6kdavX78YO3ZslJaWxqJFi6Jfv37x3HPPRdu2beODDz6Iz3/+8zFp0qTYaaed6iIvAAAAAAAA1IvURzs+8sgjkc1mIyLiiiuuiI8++ijefPPNWLhwYbz99tvRvHnzGDFiRMGDAgAAAAAAQH3aomekPfHEE1FRURF77rlnRER87nOfi5EjR8ajjz5akHAAAAAAAABQLLVqpK07G3Tx4sWx995715jr2LFjzJs3b8uTAQAAAAAAQBGlfkZaRMQ555wTmUwmVq9eHXPmzIn999+/em7BggXRqlWrjd6fzWarj4dcJ9c4E5lMpjZxAAAAAAAAoOBS70g7++yzY+edd47S0tI44YQTYsWKFTXm//znP8fBBx+80RoVFRVRWlpaY9w0siJtFAAAAAAAgIJLksRIObZVSS6XyxWy4PLly6Nx48bRrFmzDa6xIw3Y2rQ+fHBB6y2eUlnQegAAAABsu5rV6mw5tkT7b40rdoStzrxfnFTsCHWiVs9I25hFixbFRRddtNE1mUwmWrZsWWNoogEAAAAAANCQ1EkjbcyYMYUuCwAAAAAAAPUq9YbQ8ePHb3R+9uzZtQ4DAAAAAAAADUXqRtrAgQMjSZLY2KPVtuWHygEAAAAAAPDZkPpox7Kyshg3blxUVVXlHdOnT6+LnAAAAAAAAPUjMVKPbVTqRlrXrl1j2rRpG5zf1G41AAAAAAAA2BqkPtpx6NChsXz58g3Od+zYMSZOnLhFoQAAAAAAAKDYUjfSunfvvtH55s2bR3l5ea0DAQAAAAAAQEOQupEG8Fm0eEplQeu1PnxwQesVOh8AAAAAALV4RhoAAAAAAAB8FtiRBgAAAAAA8ClJkhQ7Ag2EHWkAAAAAAACQh0YaAAAAAAAA5JG6kfbvf/873n///erXTz75ZJxxxhnRvXv3+MY3vhGTJ08uaEAAAAAAAAAohtSNtK9+9avxz3/+MyIi/vKXv8Sxxx4by5Yti27dusWKFSuivLw8HnrooYIHBQAAAAAAgPpUkvaGV155Jfbff/+IiKioqIif/OQnMWzYsOr5ysrKGDFiRBx//PGFSwkAAAAAAAD1LPWOtJKSkvjoo48iImLOnDnRt2/fGvN9+/aNGTNmFCYdAAAAAABAPUuSxEg5tlWpG2nl5eUxduzYiIg45JBD4h//+EeN+YkTJ8auu+660RrZbDaWLl1aY2Sz2bRRAAAAAAAAoM6kPtrxhhtuiO7du8e8efPimGOOicsvvzymTJkSnTt3jhkzZsQf/vCHuPPOOzdao6KiIq655poa1y6/8qq4YsTVaeMAAAAAAABAnUhyuVwu7U1vvvlmXHHFFfHXv/41li1bFhGfHPl4+OGHx9ChQ2PgwIEbvT+bza63Ay3XOBOZTCZtFICtUuvDBxe03uIplQWtBwAAAEDD0Sz1lhi21OcueqDYEbY6//75wGJHqBO1+vbbe++9Y+zYsZHL5WLhwoVRVVUVbdu2jSZNmmzW/ZnM+k2zVWtqkwQAAAAAAADqRupnpH1akiSxyy67RFlZWXUT7Z133olzzz23IOEAAAAAAACgWLaokZbPokWLYsyYMYUuCwAAAAAAUC+SJDFSjm1V6qMdx48fv9H52bNn1zoMAAAAAAAANBSpG2kDBw6MJEkil8ttcM223HkEAAAAAADgsyH10Y5lZWUxbty4qKqqyjumT59eFzkBAAAAAACgXqVupHXt2jWmTZu2wflN7VYDAAAAAACArUHqox2HDh0ay5cv3+B8x44dY+LEiVsUCgAAAAAAAIotyTWQ7WOr1hQ7AcDWq/Xhgwtab/GUyoLWAwAAAKD2mqXeEsOW2m3wX4odYavzTuUJxY5QJ1If7QgAAAAAAACfBRppAAAAAAAAkIdGGgAAAAAAAOShkQYAAAAAAAB5pG6k3XLLLfH222/XRRYAAAAAAABoMFI30oYOHRp77713fOlLX4o//OEP8fHHH9dFLgAAAAAAgKJIksRIObZVtTra8b/+67+iefPmceaZZ0b79u3j+9//frz88suFzgYAAAAAAABFU6tGWr9+/eKBBx6If//733HZZZfFo48+GgcddFAcccQR8atf/So++uijQucEAAAAAACAelWrRto6O++8c1x22WXx2muvxT/+8Y/Yb7/94pJLLomysrJC5QMAAAAAAICiKEl7w4bOuezevXt07949Ro0aFX/4wx82WiObzUY2m61xLdc4E5lMJm0cAAAAAAAAqBOpd6TlcrmNzrds2TLOP//8ja6pqKiI0tLSGuOmkRVpowAAAAAAAECdSb0jraqqaovfdPjw4TFkyJAa13KN7UYDAAAAAACKb0On8/HZs0XPSMvnnXfeiXPPPXejazKZTLRs2bLGcKwjAAAAAAAADUnBG2mLFi2KMWPGFLosAAAAAAAA1KvURzuOHz9+o/OzZ8+udRgAAAAAAABoKFI30gYOHBhJkkQul9vgGmeHAgAAAAAAsLVLfbRjWVlZjBs3LqqqqvKO6dOn10VOAAAAAAAAqFepG2ldu3aNadOmbXB+U7vVAAAAAAAAGrIkSYyUY1uV+mjHoUOHxvLlyzc437Fjx5g4ceIWhQIAAAAAAIBiS91I6969+0bnmzdvHuXl5bUOBAAAAAAAAA1B6kYaAA3P4imVBa3X+vDBBa1X6HwAAAAAAPUh9TPSAAAAAAAA4LNAIw0AAAAAAADycLQjAAAAAADApyRJUuwINBB2pAEAAAAAAEAetWqkPfTQQzFixIh4+umnIyLiiSeeiH79+sWXv/zl+OUvf1nQgAAAAAAAAFAMqRtpv/jFL+LEE0+Mhx9+OPr16xe///3vY+DAgbHrrrvGHnvsEd///vfjjjvuqIusAAAAAAAAUG9SPyNt1KhR8fOf/zzOP//8mDhxYvTr1y9uueWWuOiiiyIi4gtf+ELceOON8b3vfa/gYQEAAAAAAKC+pN6RNmfOnOjTp09ERPTs2TPWrl0bPXr0qJ4/9thj4+233y5cQgAAAAAAACiC1I20HXfcsbpRNm/evFizZk3MnTu3ev7tt9+ONm3abLRGNpuNpUuX1hjZbDZtFAAAAAAAgMJLjNRjG5W6kXbCCSfEeeedF9dff32ceOKJcdZZZ8UPfvCDeOSRR+LRRx+N73znO9G7d++N1qioqIjS0tIa46aRFbX+EAAAAAAAAFBoqZ+RNnLkyPj444/jvvvui6OPPjp++tOfxqhRo+KEE06I1atXR3l5eVRUbLwpNnz48BgyZEiNa7nGmbRRAAAAAAAAoM4kuVwuV4hCq1atitWrV0eLFi1qd/+aQqQAoBBaHz64oPUWT6ksaD0AAACAz5JmqbfEsKX2vOSvxY6w1Zlz21eKHaFOpD7acUOaNWsWLVq0iHfeeSfOPffcQpUFAAAAAACAoihYI22dRYsWxZgxYwpdFgAAAAAAAOpV6g2h48eP3+j87Nmzax0GAAAAAACg2JIkKXYEGojUjbSBAwdGkiSxsUer+QIDAAAAAABga5f6aMeysrIYN25cVFVV5R3Tp0+vi5wAAAAAAABQr1I30rp27RrTpk3b4PymdqsBAAAAAADA1iD10Y5Dhw6N5cuXb3C+Y8eOMXHixC0KBQAAAAAAAMWW5BrI9rFVawpbr5CfyiPfIL9C//Twvbbt2umMMQWt9+7vzipYrUaNfOEBDVtVgX/D/XhNVUHrNWvSuGC1qqoK+1kb+s94f5ZiW1HIr+VC/xWFnwMAbK6G/jO5WeotMWypvYY8XOwIW53Zt/YrdoQ64dsPAAAAAADgUxL/QoX/kfoZaQAAAAAAAPBZoJEGAAAAAAAAeWikAQAAAAAAQB4aaQAAAAAAAJBHSW1uWrlyZYwdOzaeeuqpmD9/fjRq1Cj22muvGDhwYBx33HGFzggAAAAAAAD1LnUj7Y033ohevXrFypUrI5PJxL///e/o169fTJkyJUaPHh0nnXRS3HvvvVFSUqseHQAAAAAAQFElSbET0FCkPtrxu9/9bnz5y1+OBQsWxNy5c6OioiKqqqrin//8Z7z22msxZcqUuO666+oiKwAAAAAAANSb1I20//f//l/84Ac/iOR/2rGXXHJJPP744/HBBx/EPvvsE7fffnuMGTOm4EEBAAAAAACgPqU+f7FVq1bx0UcfVb9esWJFrFmzJpo2bRoREQceeGDMnz9/ozWy2Wxks9ka13KNM5HJZNLGAQAAAAAAgDqRekfal770pRgyZEi8/vrrMWfOnLjwwgvj4IMPjhYtWkRExNy5c2PnnXfeaI2KioooLS2tMW4aWVG7TwAAAAAAAAB1IPWOtBtvvDFOOOGE2G+//SJJkthtt93i/vvvr55/7733YujQoRutMXz48BgyZEiNa7nGdqMBAAAAAADQcKRupO28884xefLkmDVrVmSz2ejUqVOUlPxvma997WubrJHJrH+M46o1aZMAAAAAAAAUXpIkxY5AA5H6aMd19tlnn+jSpUuNJlpExDvvvBPnnnvuFgcDAAAAAACAYqp1I21DFi1aFGPGjCl0WQAAAAAAAKhXqY92HD9+/EbnZ8+eXeswAAAAAAAA0FCkbqQNHDgwkiSJXC63wTXODgUAAAAAAGBrl/pox7Kyshg3blxUVVXlHdOnT6+LnAAAAAAAAFCvUjfSunbtGtOmTdvg/KZ2qwEAAAAAADRkSWKkHduq1Ec7Dh06NJYvX77B+Y4dO8bEiRO3KBQAAAAAAAAUW5JrINvHVq0pdgIA6kqhf6fZ53sPFKzWG6MGFqwWwNag0D+TlxXwD/Ittkv97/y2alVVhf2P0ajRNvxPQGnQ1hbwa7nQ3xdNSlIfxFOvqgr8Q7nRtvxPwf+Pj9dUFbRe0wb+tQJsfQr95+7tmhS2Hpv2+cseKXaErc7MG79c7Ah1wp8SAAAAAAAAIA+NNAAAAAAAAMhDIw0AAAAAAADyqNVDCJ577rmYPHlyLFiwICIi2rVrF0cddVQcccQRBQ0HAAAAAABQ35LP0LNH2bhUjbSFCxfGV7/61Xj66adj9913j1122SUiIt5999245JJLolu3bvHnP/85dt555zoJCwAAAAAAAPUl1dGOF110UaxduzZee+21eOutt+LZZ5+NZ599Nt5666147bXXoqqqKi6++OK6ygoAAAAAAAD1JtWOtEcffTQmTZoU++6773pz++67b4waNSqOPfbYQmUDAAAAAACAokm1Iy2TycTSpUs3OP/RRx9FJpPZ4lAAAAAAAABQbKkaaaecckqcffbZcf/999doqC1dujTuv//+GDRoUJx22mmbrJPNZmPp0qU1RjabTZ8eAAAAAAAA6kiqox1vvfXWqKqqilNPPTXWrFkTTZs2jYiIjz/+OEpKSuK8886Lm2++eZN1Kioq4pprrqlx7fIrr4orRlydJg4AAAAAAEDBJUmxE9BQJLlcLpf2pqVLl8a0adNiwYIFERHRrl276Nq1a7Rs2XKz7s9ms+vtQMs1zjgWEmAblf53mo3b53sPFKzWG6MGFqwWwNag0D+Tl61aU7BaLbZL9e/8tnpVVYX9j9Gokf+nT3GsLeDXcqG/L5qUpDqIp95VFfiHcqPP0N/4fbymqqD1mjbwrxVg61PoP3dv16Sw9di0Tj98tNgRtjqv39Cn2BHqRK3+n2rLli2jZ8+etX7TTGb9plkB//83AAAAAAAAbLHU/9xm5cqV8dRTT8Wrr7663tyqVavi7rvvLkgwAAAAAAAAKKZUjbSZM2dG586do0ePHnHAAQdEeXl5zJs3r3p+yZIlMWjQoIKHBAAAAAAAgPqWqpE2bNiw6NKlSyxcuDBmzJgRLVq0iGOOOSbmzp1bV/kAAAAAAACgKFI9I+2ZZ56Jxx9/PNq2bRtt27aNBx98MC666KLo3r17TJw4MZo3b15XOQEAAAAAAOpFo0ZJsSPQQKTakbZy5cooKfnf3luSJDF69Ojo379/lJeXx8yZMwseEAAAAAAAAIoh1Y60Tp06xdSpU6Nz5841rldWVkZExIABAwqXDAAAAAAAAIoo1Y60E088McaOHZt3rrKyMk477bTI5XIFCQYAAAAAAADFlOQaSOdr1ZpiJwBga1HI37naHDO0cMUiYvHTNxW0HgDAZ0mh/4Yi8WgTALYRzVKdLUch7Pejx4odYavz6k96FztCnUi1Iw0AAAAAAAA+K/SxAQAAAAAAPsXOdtaxIw0AAAAAAADy0EgDAAAAAACAPAraSFu8eHHcfffdhSwJAAAAAAAARVHQRtrcuXNj0KBBhSwJAAAAAAAARVGSZvHSpUs3Ov/RRx9tURgAAAAAAABoKFI10lq1ahVJkmxwPpfLbXQeAAAAAACgodPrYJ1UjbQWLVrE5ZdfHkceeWTe+VmzZsW3vvWtggQDAAAAAACAYkrVSDv00EMjIqK8vDzvfKtWrSKXy22yTjabjWw2W+NarnEmMplMmjgAAAAAAABQZxqlWXz66adHs2bNNjjfrl27uOqqqzZZp6KiIkpLS2uMm0ZWpIkCAAAAAAAAdSrJbc4WsgKzIw2ALVHI37naHDO0cMUiYvHTNxW0HgDAZ0mh/4bCo00A2FY0S3W2HIXQ5YoJxY6w1Xn5ui8VO0KdKMq3XyazftNs1ZpiJAEAAAAAAID8Uh3tGBGxcuXKeOqpp+LVV19db27VqlVx9913FyQYAAAAAABAMSSJkXZsq1I10mbOnBmdO3eOHj16xAEHHBDl5eUxf/786vklS5bEoEGDCh4SAAAAAAAA6luqRtqwYcOiS5cusXDhwpgxY0a0aNEiunXrFnPnzq2rfAAAAAAAAFAUqRppzzzzTFRUVETbtm2jY8eO8eCDD0afPn2ie/fuMXv27LrKCAAAAAAAAPUuVSNt5cqVUVJSUv06SZIYPXp09O/fP8rLy2PmzJkFDwgAAAAAAADFULLpJf+rU6dOMXXq1OjcuXON65WVlRERMWDAgMIlAwAAAAAAgCJKtSPtxBNPjLFjx+adq6ysjNNOOy1yuVxBggEAAAAAABRDkiRGyrGtSnINpPO1ak2xEwDAlmt9+OCC1ls8pbKg9QAAAICtT7NUZ8tRCAeOeLzYEbY6L13bq9gR6kSqHWkAAAAAAADwWaGRBgAAAAAAAHlopAEAAAAAAEAetWqkVVVVbfD63LlztygQAAAAAAAANASpGmlLly6Nk08+OZo3bx677LJLjBgxItauXVs9/95778Wee+5Z8JAAAAAAAAD1JUkSI+XYVpWkWXzllVfGiy++GL/73e/iww8/jOuuuy6mT58e48aNi6ZNm0ZERC6Xq5OgAAAAAAAAUJ9S7Uh74IEH4he/+EV87Wtfi29+85sxderUeO+996J///6RzWYjIrbpriMAAAAAAACfHakaae+991506NCh+nXbtm3j8ccfj48++ij69esXK1asKHhAAAAAAAAAKIZUjbTdd989XnvttRrXWrRoEY899lisXLkyTjzxxM2qk81mY+nSpTXGuh1tAAAAAAAA0BCkaqT17t07fvvb3653fYcddohHH300mjVrtll1KioqorS0tMa4aWRFmigAAAAAAABQp5JcLpfb3MWLFy+OefPmxf777593/qOPPorp06dHeXn5Rutks9n1dqDlGmcik8lsbhQAaJBaHz64oPUWT6ksaD0AAABg69OspNgJPnsOvvrvxY6w1Xnh6uOKHaFOpPr2a926dbRu3XqD8y1atNhkEy0iIpNZv2m2ak2aJAAAAAAAAFC3Uh3tGBGxcuXKeOqpp+LVV19db27VqlVx9913FyQYAAAAAAAAFFOqRtrMmTOjc+fO0aNHjzjggAOivLw85s+fXz2/ZMmSGDRoUMFDAgAAAAAAQH1L1UgbNmxYdOnSJRYuXBgzZsyIFi1aRLdu3WLu3Ll1lQ8AAAAAAACKIlUj7ZlnnomKiopo27ZtdOzYMR588MHo06dPdO/ePWbPnl1XGQEAAAAAAKDepWqkrVy5MkpKSqpfJ0kSo0ePjv79+0d5eXnMnDmz4AEBAAAAAADqU5IkRsqxrSrZ9JL/1alTp5g6dWp07ty5xvXKysqIiBgwYEDhkgEAAAAAAEARpdqRduKJJ8bYsWPzzlVWVsZpp50WuVyuIMEAAAAAAACgmFI10oYPHx4PP/zwBud//vOfR1VV1RaHAgAAAAAAYNs0adKk6N+/f7Rv3z6SJIkHHnigxnwul4sRI0ZEWVlZbLfddtGrV6+YNWtWjTWLFi2KM844I1q2bBmtWrWK8847L5YtW1ZjzUsvvRTdu3ePZs2axW677RY33nhj6qypjnYEADZu8ZTKgtZrfcR3C1pv8XOjCloPAAAAANJavnx5HHTQQXHuuefGSSedtN78jTfeGKNGjYoxY8bEnnvuGVdeeWX06dMnXn311WjWrFlERJxxxhkxf/78mDBhQqxevToGDRoUF1xwQdx7770REbF06dLo3bt39OrVK+68887417/+Feeee260atUqLrjggs3OqpEGAAAAAABAvenbt2/07ds371wul4vbb789rrjiijjhhBMiIuLuu++OXXbZJR544IE49dRT47XXXotHHnkkpkyZEocddlhERPz0pz+Nfv36xc033xzt27ePe+65Jz7++OP4zW9+E02bNo39998/Xnjhhbj11ltTNdJSHe0IAAAAAAAA/1c2m42lS5fWGNlsNnWdOXPmxIIFC6JXr17V10pLS+PII4+MyZMnR0TE5MmTo1WrVtVNtIiIXr16RaNGjeLZZ5+tXtOjR49o2rRp9Zo+ffrEjBkzYvHixZudRyMNAAAAAADgU5LESDsqKiqitLS0xqioqEj9a79gwYKIiNhll11qXN9ll12q5xYsWBA777xzjfmSkpJo06ZNjTX5anz6PTZH6qMdc7lcvPXWW7HbbrtFSUlJfPzxx3H//fdHNpuNfv36Rdu2bdOWBAAAAAAAYCs2fPjwGDJkSI1rmUymSGkKJ1UjbcaMGdGnT5945513Yq+99orHHnssvv71r8frr78euVwutt9++3jmmWdin332qau8AAAAAAAANDCZTKYgjbN27dpFRMS7774bZWVl1dfffffdOPjgg6vXLFy4sMZ9a9asiUWLFlXf365du3j33XdrrFn3et2azZHqaMdhw4bFQQcdFC+88EIcf/zx8ZWvfCU+97nPxeLFi2PRokVx1FFHxbXXXpumJAAAAAAAAERExJ577hnt2rWLv//979XXli5dGs8++2wcddRRERFx1FFHxYcffhjTpk2rXvPEE09EVVVVHHnkkdVrJk2aFKtXr65eM2HChNh3332jdevWm50nVSPtmWeeiWuuuSYOOOCAuO666+L111+PSy+9NJo0aRKZTCZ++MMfxqRJk9KUBAAAAAAA4DNk2bJl8cILL8QLL7wQERFz5syJF154IebOnRtJksT3v//9uO6662L8+PHxr3/9K84666xo3759DBw4MCIiOnfuHF/+8pfj/PPPj+eeey6efvrpGDx4cJx66qnRvn37iIg4/fTTo2nTpnHeeefFK6+8En/4wx/ijjvuWO/4yU1JdbTjsmXLok2bNhER0bx582jevHmNbXW77bbbetvkAAAAAAAAYJ2pU6dGz549q1+va26dffbZcdddd8Vll10Wy5cvjwsuuCA+/PDDOOaYY+KRRx6JZs2aVd9zzz33xODBg+O4446LRo0axVe/+tUYNWpU9XxpaWk89thjcfHFF0fXrl2jbdu2MWLEiLjgggtSZU3VSGvfvn3MnTs3dt9994iIuPHGG2PnnXeunn/vvfc2aztcNpuNbDZb41qucWHOzgQAAAAAANgSSZIUO8I27dhjj41cLrfB+SRJ4tprr93o48TatGkT995770bf58ADD4wnn3yy1jkjUh7t2KtXr3j99derX3/729+OFi1aVL9+7LHH4tBDD91knYqKiigtLa0xbhpZkSYKAAAAAAAA1Kkkt7GWX0pz5syJZs2a1TjuMR870gBg87Q+4rsFrbf4uVGbXgQAAAA0KM1SnS1HIXT98cRiR9jqTLuy56YXbYUK+u235557bta6TGb9ptmqNYVMAgAAAAAAAFsm1dGOERErV66Mp556Kl599dX15latWhV33313QYIBAAAAAABAMaVqpM2cOTM6d+4cPXr0iAMOOCDKy8tj/vz51fNLliyJQYMGFTwkAAAAAAAA1LdUjbRhw4ZFly5dYuHChTFjxoxo0aJFdOvWLebOnVtX+QAAAAAAAOpVkhhpx7YqVSPtmWeeiYqKimjbtm107NgxHnzwwejTp0907949Zs+eXVcZAQAAAAAAoN6laqStXLkySkpKql8nSRKjR4+O/v37R3l5ecycObPgAQEAAAAAAKAYSja95H916tQppk6dGp07d65xvbKyMiIiBgwYULhkAAAAAAAAUESpdqSdeOKJMXbs2LxzlZWVcdppp0UulytIMAAAAAAAACimJNdAOl+r1hQ7AQBs+1ofPrig9RZPqSxoPQAAAGB9zVKdLUchHHbdxGJH2OpMvaJnsSPUCd9+AAAAAAAAn5IkSbEj0ECkOtoRAAAAAAAAPis00gAAAAAAACCPgjTSvvjFL8bbb79diFIAAAAAAADQIKR6Rtr48ePzXp80aVI89NBDsdtuu0VExIABA7Y8GQAAAAAAABRRqkbawIEDI0mSyOVy68195zvfiYhPHsC3du3awqQDAAAAAACAIkl1tGOfPn2ib9++sWDBgqiqqqoejRs3jpdffjmqqqo00QAAAAAAgK1akhhpx7YqVSPtb3/7Wxx33HFx2GGHxUMPPVRXmQAAAAAAAKDoUh3tGBFxySWXRM+ePeOMM86IBx98MG677bbUb5rNZiObzda4lmuciUwmk7oWAAAAAAAA1IVUO9LWOfjgg2Pq1KmRJEkcfPDBeZ+ZtjEVFRVRWlpaY9w0sqI2UQAAAAAAAKBOpN6Rts52220Xd955Z4wfPz4mTpwYbdu23ex7hw8fHkOGDKlxLdfYbjQAAAAAAAAajlo30tYZMGBADBgwINU9mcz6xziuWrOlSQAAAAAAAKBwUh/tuHLlynjqqafi1VdfXW9u1apVcffddxckGAAAAAAAQDEkSWKkHNuqVI20mTNnRufOnaNHjx5xwAEHRHl5ecyfP796fsmSJTFo0KCChwQAAAAAAID6lqqRNmzYsOjSpUssXLgwZsyYES1atIhu3brF3Llz6yofAAAAAAAAFEWqRtozzzwTFRUV0bZt2+jYsWM8+OCD0adPn+jevXvMnj27rjICAAAAAABAvUvVSFu5cmWUlJRUv06SJEaPHh39+/eP8vLymDlzZsEDAgAAAAAAQDGUbHrJ/+rUqVNMnTo1OnfuXON6ZWVlREQMGDCgcMkAAAAAAACgiFLtSDvxxBNj7NixeecqKyvjtNNOi1wuV5BgAAAAAAAAxZAkRtqxrUpyDaTztWpNsRMAwLav9eGDC1pv8ZTKgtYDAAAA1tcs1dlyFMIXbvh/xY6w1fnnD8uLHaFO+PYDgM+QQje+NOYAAAAA2JalOtoRAAAAAAAAPis00gAAAAAAACAPjTQAAAAAAADIY4ufkTZnzpx44403oqysLLp06VKITAAAAAAAAEWTJEmxI9BApNqRdtFFF8WyZcsiImLlypXxta99LTp27Bh9+vSJgw46KL74xS9WzwMAAAAAAMDWLFUj7Re/+EWsWLEiIiJ+/OMfx7PPPhuPP/54LFu2LCZNmhRz586N66+/vk6CAgAAAAAAQH1K1UjL5XLV//vBBx+MG2+8MXr27Bnbb799dOvWLW699dYYN25cwUMCAAAAAABAfUvVSIv433NBFyxYEAceeGCNuYMOOijeeeedwiQDAAAAAACAIipJe8OVV14Z22+/fTRq1CjmzZsX+++/f/XcBx98EM2bN99kjWw2G9lstsa1XONMZDKZtHEAAAAAAACgTqTakdajR4+YMWNGPP/887HffvvF22+/XWP+4YcfrtFY25CKioooLS2tMW4aWZEuOQAAAAAAQB1IEiPt2FYluU8/+GwLzZ49O5o2bRqf+9znNrrOjjQA2Da0PnxwQestnlJZ0HoAAACwLWiW+mw5ttTRN04qdoStzjOX9Sh2hDpR0G+/vfbaa7PWZTLrN81WrSlkEgAAAAAAANgyqY52jIhYuXJlPPXUU/Hqq6+uN7dq1aq4++67CxIMAAAAAAAAiilVI23mzJnRuXPn6NGjRxxwwAFRXl4e8+fPr55fsmRJDBo0qOAhAQAAAAAAoL6laqQNGzYsunTpEgsXLowZM2ZEixYtolu3bjF37ty6ygcAAAAAAABFkeoZac8880w8/vjj0bZt22jbtm08+OCDcdFFF0X37t1j4sSJ0bx587rKCQAAAAAAUC+SJCl2BBqIVDvSVq5cGSUl/9t7S5IkRo8eHf3794/y8vKYOXNmwQMCAAAAAABAMaTakdapU6eYOnVqdO7cucb1ysrKiIgYMGBA4ZIBAAAAAABAEaXakXbiiSfG2LFj885VVlbGaaedFrlcriDBAAAAAAAAoJiSXAPpfK1aU+wEAECxtT7iuwWrtfi5UQWrBQAAsDUo9N/0ekRUw9Es1dlyFEK3m54sdoStztNDuxc7Qp1ItSMNAAAAAAAAPiv0sQEAAAAAAD7FjkzWsSMNAAAAAAAA8ki1Iy2bzUajRo2iSZMmERHx5ptvxm9+85uYO3dudOjQIc4777zYc8896yQoAAAAAAAA1KdUO9L69OkTf/nLXyIi4umnn479998/HnrooVi9enU8/PDD0aVLl5g8eXKdBAUAAAAAAID6lKqR9vzzz8dBBx0UERGXX355XHTRRfHiiy/GfffdF9OnT48hQ4bE0KFD6yQoAAAAAAAA1KdUjbS1a9fG2rVrIyLi9ddfj7PPPrvG/DnnnBMvvvhi4dIBAAAAAABAkaRqpB155JHx4IMPRkTE3nvvvV7T7IUXXog2bdoULh0AAAAAAEA9S5LESDm2VSVpFl933XXRt2/fWL58eZx22mnxgx/8IGbNmhWdO3eOGTNmxKhRo2L48OGbrJPNZiObzda4lmuciUwmky49AAAAAAAA1JFUjbSjjjoq/va3v8WQIUPi2WefjYiI66+/PiIi2rdvH1dffXV873vf22SdioqKuOaaa2pcu/zKq+KKEVeniQMAAAAAAAB1Jsnlcrna3Pjee+/F7Nmzo6qqKsrKymKPPfbY7HvtSAMA8ml9xHcLVmvxc6MKVgsAAGBrULu/6d2wbfiktq1Os1RbYiiE7rc8VewIW50nf3BMsSPUiVp/++20006x00471ereTGb9ptmqNbVNAgAAAAAAAIXXKO0NK1eujKeeeipeffXV9eZWrVoVd999d0GCAQAAAAAAQDGlaqTNnDkzOnfuHD169IgDDjggysvLY/78+dXzS5YsiUGDBhU8JAAAAAAAQH1JksRIObZVqRppw4YNiy5dusTChQtjxowZ0aJFi+jWrVvMnTu3rvIBAAAAAABAUaRqpD3zzDNRUVERbdu2jY4dO8aDDz4Yffr0ie7du8fs2bPrKiMAAAAAAADUu1SNtJUrV0ZJSUn16yRJYvTo0dG/f/8oLy+PmTNnFjwgAAAAAAAAFEPJppf8r06dOsXUqVOjc+fONa5XVlZGRMSAAQMKlwwAAAAAAACKKNWOtBNPPDHGjh2bd66ysjJOO+20yOVyBQkGAAAAAAAAxZTkGkjna9WaYicAAIqt9RHfLVitxc+NKlgtAACArUGh/6Y3SQpbj9prlupsOQqh/Lanix1hq/P/LulW7Ah1wrcfANBgFLL51frwwQWrFRGxeEplQesBAAAUmsYXQOGlOtoRAAAAAAAAPis00gAAAAAAACAPjTQAAAAAAADII1Uj7c9//nOsWLGirrIAAAAAAABAg1GSZvHXv/71aNGiRZxyyilx3nnnxZFHHllXuQAAAAAAAIoiSZJiR6CBSH2046WXXhpTp06No446Krp06RK33357fPDBB3WRDQAAAAAAAIomdSPtW9/6VkyfPj2mTJkSPXr0iGuuuSZ23XXXOPnkk2PChAl1kREAAAAAAADqXepG2jpdu3aNn//85zF//vz41a9+Fe+99158+ctfjj333LOQ+QAAAAAAAKAoUj0jLd+ZoM2aNYszzzwzzjzzzHjjjf/P3v2HaVnWeeN/3wN4o/wYEBNBQjErIQorWCNRa+SLman5ZIbimtZaYdYmKynrquGvwZ+Z665lxy5aW2n7pLvZNw3S3ccl8RcmrgaEqWBfRYkQUGSUmfv7RzlPs5JwwTVzD/h6eVzH4XWd1/3hPTP3fc8MH87zfDyzZ8/ebJ2Wlpa0tLR0uFbrUU21Wi0SBwAAAAAAADpNoRlptVrtDcf33XffXHzxxZut09zcnMbGxg7H5Zc2F4kCAAAAAAAAnarQjLQnn3wyb3nLW7b5D50xY0amTZvW4Vqth9loAAAAAABA/W1igT7epAo10vbaa69S/tBq9fXLOG7YWEppAAAAAAAAKEWhpR2T5OWXX868efPyq1/96nVjGzZsyHe+851SggEAAAAAAEA9FWqk/frXv87IkSNz8MEH593vfncOOeSQPPvss+3ja9asySmnnFJ6SAAAAAAAAOhqhRppZ511VkaPHp3nn38+S5YsSb9+/XLggQdm+fLlnZUPAAAAAAAA6qJQI+2ee+5Jc3Nzdtttt+y777657bbbcthhh+Wggw7KE0880VkZAQAAAAAAoMsVaqS9/PLL6dmzZ/t5pVLJddddlyOPPDKHHHJIfv3rX5ceEAAAAAAAoCtVKhVHwWNH1XPzt/xf++23Xx588MGMHDmyw/Vrr702SXLUUUeVlwwAAAAAAADqqNCMtGOOOSY/+MEPNjl27bXX5vjjj0+tVislGAAAAAAAANRTpdZNOl8bNtY7AQDAnzdw3Oml1lv9wLWl1gMAAGDH1bvQ2nKUoema+fWOsN2568vj6x2hUxSakQYAAAAAAABvFhppAAAAAAAAsAkmhAIAAAAAAPyJSqXeCeguCjfSFi5cmAULFuRDH/pQ9tlnnzz22GP5h3/4h7S1teWYY47JYYcd1hk5AQAAAAAAoEsVWtrxlltuyfvf//589atfzZgxY/Lzn/88EyZMyNKlS/PUU0/liCOOyPe///3OygoAAAAAAABdplAj7eKLL87MmTPzu9/9Lt/+9rfzyU9+MtOmTcvcuXNzxx135NJLL83ll1/eWVkBAAAAAACgyxRqpC1ZsiRTpkxJknzqU5/KSy+9lI9//OPt48ccc0wef/zxUgMCAAAAAABAPRRqpPXr1y+rVq1KkrzwwgvZuHFj+3mSrFq1Kn379i03IQAAAAAAANRBzyI3T5w4MV/84hfzpS99KTfffHMmTZqUGTNmZPbs2alUKpk+fXomTJiw2TotLS1paWnpcK3Wo5pqtVosPQAAAAAAQMkaKpV6R6CbKDQj7Yorrkj//v3zhS98Ia+88kpuvvnmjB07NqNGjcqoUaPyzDPPZNasWZut09zcnMbGxg7H5Zc2b/UHAQAAAAAAAGWr1Gq12rYWeeKJJ7J+/frst99+6dlz85PczEgDALY3A8edXmq91Q9cW2o9AAAAdly9C60tRxn+n2vvrXeE7c7c0z9Q7widopSX3z777FPo/mr19U2zDRvLSAIAAAAAAADlKLS0Y5K8/PLLmTdvXn71q1+9bmzDhg35zne+U0owAAAAAAAAqKdCjbRf//rXGTlyZA4++OC8+93vziGHHJJnn322fXzNmjU55ZRTSg8JAAAAAAAAXa1QI+2ss87K6NGj8/zzz2fJkiXp169fDjzwwCxfvryz8gEAAAAAAHSpSsVR9NhRFWqk3XPPPWlubs5uu+2WfffdN7fddlsOO+ywHHTQQXniiSc6KyMAAAAAAAB0uUKNtJdffjk9e/ZsP69UKrnuuuty5JFH5pBDDsmvf/3r0gMCAAAAAABAPfTc/C3/13777ZcHH3wwI0eO7HD92muvTZIcddRR5SUDAAAAAACAOio0I+2YY47JD37wg02OXXvttTn++ONTq9VKCQYAAAAAAAD1VKl1k87Xho31TgAA8OcNHHd6qfVWP3BtqfUAAADYcfUutLYcZZj0D/fWO8J2Z84XP1DvCJ3Cyw8AYAuU3fgaOOniUuutnnNOqfWAztfWVu6/aWxoqJRaj61X9j9XrfjSwut4nQHdXWvJP+sl3qi6WsU3B/6o0NKOAAAAAAAA8GahkQYAAAAAAACboJEGAAAAAAAAm7BVe6TdddddmTdvXp599tk0NDRkn332yVFHHZW3v/3tZecDAAAAAACAuijUSHv++edz5JFH5sEHH0xDQ0Pa2try3ve+N7fcckvOOuusTJs2LZdddllnZQUAAAAAAIAuU6iR9uUvfzlDhw7N6tWrU61Wc+aZZ2bt2rV58MEHc9ddd+W4447Lnnvumb/+67/urLwAAAAAAACdqqFS7wR0F4X2SLv99ttz0UUXpX///qlWq5k1a1Z+8IMfZO3atWlqasrVV1+d6667rrOyAgAAAAAAQJcp1EirVqupVP5vG7ahoSGtra3ZuHFjkuSDH/xgnnrqqVIDAgAAAAAAQD0UaqRNmDAh5513Xl566aW8+uqr+du//dvss88+2XXXXZMkK1euzMCBAzdbp6WlJWvXru1wtLS0bN1HAAAAAAAAAJ2gUCPtiiuuyMMPP5wBAwakT58+ueGGGzos5bho0aKcfPLJm63T3NycxsbGDsfllzYXDg8AAAAAAACdpVKr1WpFHrB+/frMmzcvr7zySj7wgQ9kt912K/yHtrS0vG4GWq1HNdVqtXAtAIDt0cBJF5dab/Wcc0qtB3S+trZCv4ptVoPd0LuNYr9lb17FlxZex+sM6O5aS/5Zr89O3qi62uHX3VfvCNud26ceUO8InaJn0QfssssumTRp0jb9odXq65tmGzZuU0kAAAAAAIBSVPwrC/6o0NKOSfLyyy9n3rx5+dWvfvW6sQ0bNuQ73/lOKcEAAAAAAACgngo10n79619n5MiROfjgg/Pud787hxxySJ599tn28TVr1uSUU04pPSQAAAAAAAB0tUKNtLPOOiujR4/O888/nyVLlqRfv3458MADs3z58s7KBwAAAAAAAHVRqJF2zz33pLm5Obvttlv23Xff3HbbbTnssMNy0EEH5YknnuisjAAAAAAAANDlCjXSXn755fTs2bP9vFKp5LrrrsuRRx6ZQw45JL/+9a9LDwgAAAAAAAD10HPzt/xf++23Xx588MGMHDmyw/Vrr702SXLUUUeVlwwAAAAAAKAOKpV6J6C7KDQj7ZhjjskPfvCDTY5de+21Of7441Or1UoJBgAAAAAAAPVUqXWTzteGjfVOAACw/Ro47vRS661+4NpS6wEAALD1ehdaW44yHPGt++sdYbvz/37+L+odoVMUmpEGAAAAAAAAbxYaaQAAAAAAALAJGmkAAAAAAACwCVZWBQAAAAAA+BOVVOodgW5iqxpp999/f+bPn58VK1YkSfbYY4+MHz8+f/EXO+ZGcgAAAAAAALz5FGqkPf/88/nEJz6RX/ziFxk+fHgGDx6cJHnuuedyxhln5MADD8yPfvSj7L777p0SFgAAAAAAALpKoT3STjvttLS2tmbRokV56qmnct999+W+++7LU089lUWLFqWtrS1f/OIXOysrAAAAAAAAdJlCM9J+9rOf5e6778473/nO1429853vzDXXXJMPfehDZWUDAAAAAACAuik0I61arWbt2rV/dnzdunWpVqvbHAoAAAAAAADqrdCMtE996lP59Kc/na9//es59NBD079//yTJ2rVrc+edd2batGk5/vjjN1unpaUlLS0tHa7VelQ14QAAAAAAgLprqNQ7Ad1FoRlpV111VQ4//PBMnjw5AwcOzM4775ydd945AwcOzOTJk3P44Yfniiuu2Gyd5ubmNDY2djguv7R5qz8IAAAAAAAAKFulVqvVij5o7dq1WbBgQVasWJEk2WOPPfL+97+/fYba5piRBgBQroHjTi+13uoHri21HgAAAFuvd6G15SjDUdc/UO8I250ff25cvSN0ikIz0pJk0aJF+dGPfpQhQ4bk+OOPz3vf+9788Ic/zFe+8pXcddddW1SjWq2mf//+HQ5NNAAAAAAAALqTQn3sO+64I0cffXT69u2b9evX59Zbb81JJ52UMWPGpK2tLZMmTcqcOXPS1NTUWXkBAAAAAACgSxSakXbBBRdk+vTpWbVqVWbPnp0TTjghp556aubOnZs777wz06dPz6xZszorKwAAAAAAAHSZQo20xx57LCeffHKS5Ljjjsu6dety7LHHto9PmTIljzzySKkBAQAAAAAAulKlUnEUPHZUhfdIe+2T0dDQkN69e6exsbF9rF+/flmzZk156QAAAAAAAKBOCjXS9t577yxdurT9fP78+Rk+fHj7+fLlyzNkyJDy0gEAAAAAAECd9Cxy89SpU9Pa2tp+Pnr06A7jt99+e5qamspJBgAAAAAAAHVUqJH2hS984Q3HL7nkkm0KAwAAAAAAAN1FoUYaAADd0+oHri213sAPnllqvdX3XFFqPQDgza1WK7depVJuPYCy36eA+tFIAwAAAAAA+BP+kQWvaah3AAAAAAAAAOiONNIAAAAAAABgEzTSAAAAAAAAYBNKbaStXr063/nOd8osCQAAAAAAAHVRaiNt+fLlOeWUU8osCQAAAAAAAHXRs8jNa9eufcPxdevWbVMYAAAAAACAemuoVOodgW6iUCNtwIABqbzBk6dWq73hOAAAAAAAAGwvCjXS+vXrl3POOScHHHDAJseXLl2az3/+85ut09LSkpaWlg7Xaj2qqVarReIAAAAAAABApynUSHvf+96XJDnkkEM2OT5gwIDUarXN1mlubs7MmTM7XDvn3PPzd+d9rUgcAAAAAAAA6DSFGmknnHBC1q9f/2fH99hjj5x//vmbrTNjxoxMmzatw7VaD7PRAAAAAAAA6D4KNdJOPfXUNxwfPHjwFjXSqtXXL+O4YWORJAAAAAAAANC5CjXSkmTRokW59957M378+Oy3335ZvHhxvvGNb6SlpSUnnnhimpqaOiMnAAAAAABAl6hU6p2A7qJQI+2OO+7I0Ucfnb59+2b9+vW59dZbc9JJJ2XMmDFpa2vLpEmTMmfOHM00AAAAAAAAtnsNRW6+4IILMn369KxatSqzZ8/OCSeckFNPPTVz587NnXfemenTp2fWrFmdlRUAAAAAAAC6TKFG2mOPPZaTTz45SXLcccdl3bp1OfbYY9vHp0yZkkceeaTUgAAAAAAAAFAPhRppSVL548KgDQ0N6d27dxobG9vH+vXrlzVr1pSXDgAAAAAAAOqkUCNt7733ztKlS9vP58+fn+HDh7efL1++PEOGDCkvHQAAAAAAANRJzyI3T506Na2tre3no0eP7jB+++23p6mpqZxkAAAAAAAAdfDa6nxQqdVqtXqHSJING+udoOuU/Rn3egYAuruB46eVVmv1/KtKqwUAALA96F1oSgxlOHb2Q/WOsN3536e8r94ROkXhPdIAAAAAAADgzUAjDQAAAAAAADZBIw0AAAAAAAA2QSMNAAAAAAAANmGrtihsa2tLQ8Pre3BtbW357W9/m+HDh29zMAAAAAAAgHqoVOqdgO6i0Iy0tWvX5rjjjkufPn0yePDgnHfeeWltbW0fX7lyZUaMGFF6SAAAAAAAAOhqhWaknXvuuVm4cGG++93v5oUXXshFF12Uhx56KLfcckt22mmnJEmtVuuUoAAAAAAAANCVCs1I+7d/+7d861vfyrHHHpu/+qu/yoMPPpiVK1fmyCOPTEtLS5KkYr4jAAAAAAAAO4BCjbSVK1dmr732aj/fbbfd8vOf/zzr1q3LRz/60axfv770gAAAAAAAAFAPhRppw4cPz6JFizpc69evX+bMmZOXX345xxxzzBbVaWlpydq1azscr81oAwAAAAAAgO6gUCNt0qRJmT179uuu9+3bNz/72c/Su3fvLarT3NycxsbGDsfllzYXiQIAAAAAANApGioVR8FjR1Wp1Wq1Lb159erVeeaZZ/Kud71rk+Pr1q3LQw89lEMOOeQN67S0tLxuBlqtRzXVanVLo2zXtvwzvmV24OcnALCDGDh+Wmm1Vs+/qrRaAAAA24PePeud4M3nUzf+st4Rtjs3f/q99Y7QKQq9/AYOHJgVK1Zk9uzZGT9+fPbbb78sXrw43/jGN9LS0pITTzwxTU1Nm61Trb6+abZhY7HgAAAAAAAA0JkKNdLuuOOOHH300enbt2/Wr1+fW2+9NSeddFLGjBmTtra2TJo0KXPmzNmiZhoAAAAAAAB0Z4X2SLvgggsyffr0rFq1KrNnz84JJ5yQU089NXPnzs2dd96Z6dOnZ9asWZ2VFQAAAAAAALpMoUbaY489lpNPPjlJctxxx2XdunU59thj28enTJmSRx55pNSAAAAAAAAAUA+FtyisVCpJkoaGhvTu3TuNjY3tY/369cuaNWvKSwcAAAAAANDFKvUOQLdRaEba3nvvnaVLl7afz58/P8OHD28/X758eYYMGVJeOgAAAAAAAKiTQjPSpk6dmtbW1vbz0aNHdxi//fbb09TUVE4yAAAAAAAAqKNCjbQvfOELbzh+ySWXbFMYAAAAAAAA6C4K75HGtqtYXBUAeJNZPf+q0moN/OCZpdVKktX3XFFqPaDztdVqpdZr8EsabHdKfhvwdzUAwJ9VaI80AAAAAAAAeLMwIw0AAAAAAOBPVExX5o/MSAMAAAAAAIBN0EgDAAAAAACATSjcSKvVannyySezcePGJMkrr7ySm2++Od/5znfyu9/9rvSAAAAAAAAAUA+FGmlLlizJiBEjsu+++2bkyJF58skn88EPfjCf/exnM3Xq1IwcOTJLly7trKwAAAAAAABsx1pbW3PuuedmxIgR2XnnnfO2t70tF154YWq1Wvs9tVot5513XoYMGZKdd945EydOfF3/6fe//32mTJmS/v37Z8CAAfnsZz+bF198sfS8hRppZ511VsaMGZOHH344H/vYx3LEEUdk2LBhWb16dX7/+99n/PjxueCCC0oPCQAAAAAAwPbv0ksvzXXXXZdrr702ixYtyqWXXprLLrssf//3f99+z2WXXZZrrrkm3/zmN3PfffelT58+Oeyww7Jhw4b2e6ZMmZLHHnssc+fOzU9+8pPcfffd+dznPld63krtT1t8m7H77rtnzpw52X///fPSSy+lX79+ufvuuzNhwoQkyT333JPjjz8+y5YtKxxkw8bCDwEA4E1o4AfPLLXe6nuuKLUe0PnatvzX2C3SUKmUWg/ofCW/DcTbANDd9e5Z7wRvPlO++3C9I2x3vveX+2/RfR/72McyePDg/NM//VP7tU984hPZeeed8y//8i+p1WoZOnRo/uZv/iZnnvmHvwNYs2ZNBg8enBtuuCGTJ0/OokWLMmrUqDzwwAMZO3ZskuSOO+7IRz/60fz2t7/N0KFDS/u4Cs1Ie/HFF7PrrrsmSfr06ZM+ffpkyJAh7eNvfetb89xzz222TktLS9auXdvhaGlpKRgdAAAAAACA7ckHP/jB3Hnnnfn1r3+dJFm4cGHmzZuXww8/PEny5JNPZsWKFZk4cWL7YxobG3PAAQdk/vz5SZL58+dnwIAB7U20JJk4cWIaGhpy3333lZq3UCNt6NChWb58efv5ZZddlt133739fOXKlRk4cOBm6zQ3N6exsbHDcfmlzUWiAAAAAAAA0E1s6SSqs88+O5MnT85+++2XXr165b3vfW++8pWvZMqUKUmSFStWJEkGDx7c4XGDBw9uH1uxYkWH/lSS9OzZM7vuumv7PWUp1EibOHFiFi9e3H4+derU9OvXr/18zpw5ed/73rfZOjNmzMiaNWs6HNPPmlEkCgAAAAAAAN3EpiZRNTe/fhLVD3/4w3zve9/L97///Tz00EO58cYbc8UVV+TGG2+sQ+rNK7Sy6je/+c03HP/Upz6VT3/605utU61WU61WO1yzRxoAAAAAAMD2acaMGZk2bVqHa/+zF5Qk06dPb5+VliTvfve7s2zZsjQ3N+fTn/509thjjyTJc88912F7seeeey77779/kmSPPfbI888/36Huxo0b8/vf/7798WUpNCMtSRYtWpTZs2e3z0xbvHhxpk6dms985jN58sknO3xQAAAAAAAA7Piq1Wr69+/f4dhUI239+vVpaOjYnurRo0fa2tqSJCNGjMgee+yRO++8s3187dq1ue+++zJ+/Pgkyfjx4/PCCy9kwYIF7ffcddddaWtrywEHHFDqx1VoRtodd9yRo48+On379s369etz66235qSTTsqYMWPS1taWSZMmZc6cOWlqaio1JAAAAAAAQFepVCr1jrDDOvLII3PxxRdn+PDhede73pVf/vKXueqqq/KZz3wmyR8+91/5yldy0UUX5e1vf3tGjBiRc889N0OHDs3HP/7xJMnIkSPzkY98JKeeemq++c1v5tVXX83pp5+eyZMnZ+jQoaXmLTQj7YILLsj06dOzatWqzJ49OyeccEJOPfXUzJ07N3feeWemT5+eWbNmlRoQAAAAAACAHcPf//3f59hjj81pp52WkSNH5swzz8znP//5XHjhhe33fPWrX82XvvSlfO5zn8u4cePy4osv5o477kjv3r3b7/ne976X/fbbL4ceemg++tGPZsKECbn++utLz1up1Wq1Lb25sbExCxYsyL777pu2trZUq9Xcf//9ee9735skefTRRzNx4sSsWLGicBB7pAEAsCUGfvDMUuutvueKUusBna9ty3+N3SIN/rUxbHdKfhuItwGgu+tdaG05ynDivyysd4Ttzr+cOKbeETpF4T3SXpvO2NDQkN69e6exsbF9rF+/flmzZk156QAAAAAAAKBOCjXS9t577yxdurT9fP78+Rk+fHj7+fLlyzNkyJDy0gEAAAAAAECdFJoQOnXq1LS2trafjx49usP47bffnqampnKSAQAAAAAAQB0V2iOtM9kjDQCAehg47vRS661+4NpS6wEAANgjrev95ffskVbUd6fYIw0AAAAAAADeNDTSAAAAAAAAYBM00gAAAAAAAGATNNIAAAAAAABgE0pppDU1NWXZsmVllAIAAAAAAIBuoWeRm3/84x9v8vrdd9+dn/zkJ3nrW9+aJDnqqKO2PRkAAAAAAEAdVCqVekegmyjUSPv4xz+eSqWSWq32urEvfelLSf7w5GptbS0nHQAAAAAAANRJoaUdDzvssBx++OFZsWJF2tra2o8ePXrk0UcfTVtbmyYaAAAAAAAAO4RCjbTbb789hx56aMaOHZuf/OQnnZUJAAAAAAAA6q7Q0o5JcsYZZ+TDH/5wpkyZkttuuy1f//rXC/+hLS0taWlp6XCt1qOaarVauBYAAAAAAAB0hkIz0l6z//7758EHH0ylUsn++++/yT3T3khzc3MaGxs7HJdf2rw1UQAAAAAAAKBTFJ6R9pqdd9453/zmN/PjH/84//Ef/5Hddtttix87Y8aMTJs2rcO1Wg+z0QAAAAAAgPprqNQ7Ad1F4RlpixYtyuzZs7N48eIkyTve8Y68/PLLOfvss3PXXXdtUY1qtZr+/ft3OCzrCAAAAAAAQHdSaEbaHXfckaOPPjp9+/bN+vXrc+utt+akk07KmDFj0tbWlkmTJmXOnDlpamrqrLwAAAAAAADQJQrNSLvgggsyffr0rFq1KrNnz84JJ5yQU089NXPnzs2dd96Z6dOnZ9asWZ2VFQAAAAAAALpMoUbaY489lpNPPjlJctxxx2XdunU59thj28enTJmSRx55pNSAAAAAAAAAUA+F90irVP6ww15DQ0N69+6dxsbG9rF+/fplzZo15aUDAAAAAACAOim0R9ree++dpUuX5m1ve1uSZP78+Rk+fHj7+PLlyzNkyJByEwIAAAAAAHSh1yYVQaFG2tSpU9Pa2tp+Pnr06A7jt99+e5qamspJBgAAAAAAAHVUqJH2hS984Q3HL7nkkm0KAwAAAAAAAN1FoUYaAADsaFY/cG2p9Qb+xZdLrbf6/mtKrQcAAABsuYZ6BwAAAAAAAIDuSCMNAAAAAAAANsHSjgAAAAAAAH+iUu8AdBtmpAEAAAAAAMAmbPOMtCeffDKPP/54hgwZktGjR5eRCQAAAAAAAOqu0Iy00047LS+++GKS5OWXX86xxx6bfffdN4cddljGjBmTpqam9nEAAAAAAADYnhVqpH3rW9/K+vXrkyQXXnhh7rvvvvz85z/Piy++mLvvvjvLly/PxRdf3ClBAQAAAAAAoCsVaqTVarX2/7/tttty2WWX5cMf/nB22WWXHHjggbnqqqtyyy23lB4SAAAAAAAAulrhPdIqlUqSZMWKFXnPe97TYWzMmDF5+umnN1ujpaUlLS0tHa7VelRTrVaLxgEAAAAAAChVwx97IVBoRlqSnHvuuZk2bVoaGhryzDPPdBhbtWpV+vTps9kazc3NaWxs7HBcfmlz0SgAAAAAAADQaQrNSDv44IOzZMmSJMmoUaOybNmyDuM//elP8653vWuzdWbMmJFp06Z1uFbrYTYaAAAAAAAA3UehRtp//ud/vuH4CSeckJNPPnmzdarV1y/juGFjkSQAAAAAAADQuQov7bho0aLMnj27fWba4sWLM3Xq1HzmM5/JU089lWHDhpUeEgAAAAAAALpaoRlpd9xxR44++uj07ds369evz6233pqTTjopY8aMSVtbWyZNmpQ5c+akqamps/ICAAAAAABAlyg0I+2CCy7I9OnTs2rVqsyePTsnnHBCTj311MydOzd33nlnpk+fnlmzZnVWVgAAAAAAgE5XqTiKHjuqQo20xx57rH0PtOOOOy7r1q3Lscce2z4+ZcqUPPLII6UGBAAAAAAAgHoovEda5Y9txYaGhvTu3TuNjY3tY/369cuaNWvKSwcAAAAAAAB1UqiRtvfee2fp0qXt5/Pnz8/w4cPbz5cvX54hQ4aUlw4AAAAAAADqpGeRm6dOnZrW1tb289GjR3cYv/3229PU1FROMgAAAAAAAKijSq1Wq9U7RJJs2FhuvTI/qh15kzzYFmW/e7S2lVewZ4/u/cIt+3NX9vtUd/7aJkmZ37p69ii8yvEb8j2j++jur7O2kgNWUm7Aja1tpdYr87X2Znud/ffycpdOH9SvWmq9IQN6l1br+bUtpdVKksGN5X6sZXv5ldbN31TAzjv1KLVed38ffTMp+2epHg3lfjHKzLfihQ2l1UqSPXfdudR6dB8bXi33PbR3r3LfQ+k+2kp+D20o+T20bN3jb3o3rbv/LFD2c6XsL0Wfnbr5J3AHdOoPH613hO3Ot48bvfmbtkOFZqQBAAAAAADs6CrdvftLlyn3n+EDAAAAAADADkIjDQAAAAAAADZBIw0AAAAAAAA2QSMNAAAAAAAANqFnkZtbWlrS0NCQXr16JUl+85vf5J//+Z+zfPny7LXXXvnsZz+bESNGdEpQAAAAAAAA6EqFZqQddthh+fd///ckyS9+8Yu8613vyk9+8pO8+uqr+elPf5rRo0dn/vz5nRIUAAAAAACgK1QqjqLHjqpQI+2Xv/xlxowZkyQ555xzctppp2XhwoW56aab8tBDD2XatGmZPn16pwQFAAAAAACArlSokdba2prW1tYkyeLFi/PpT3+6w/jJJ5+chQsXlpcOAAAAAAAA6qRQI+2AAw7IbbfdliR529ve9rqm2cMPP5xdd911s3VaWlqydu3aDkdLS0uRKAAAAAAAANCpeha5+aKLLsrhhx+el156Kccff3z+5m/+JkuXLs3IkSOzZMmSXHPNNZkxY8Zm6zQ3N2fmzJkdrp1z7vn5u/O+Vig8AAAAAAAAdJZKrVarFXnA/PnzM23atNx3330drg8dOjTTp0/PX//1X2+2RktLy+tmoNV6VFOtVotEeUPFPqo3tiNvkgfboszXWZK0tpVXsGeP7v3CLftzV/b7VHf+2iZJwW9db6hnj0KTszfL94zuo7u/ztpKDlhJuQE3traVWq/M19qb7XX238vXlFpvUL/yfuZOkiEDepdW6/m15a5SMbix3I+1bC+/0lpqvZ136lFqve7+PvpmUvbPUj0ayv1ilJlvxQsbSquVJHvuunOp9eg+Nrxa7nto717lvofSfbSV/B7aUPJ7aNnK/v5dpu7+s0DZz5WyvxR9durmn8Ad0Of/92P1jrDd+dax76p3hE5RaEZakowfPz7z58/PypUr88QTT6StrS1DhgzJ3nvvvcU1qtXXN802bCyaBAAAAAAAoHwN3b37S5cp/E+DFy1alNmzZ+f3v/99DjjggAwcODCXXnppPvOZz+Suu+7qjIwAAAAAAADQ5QrNSLvjjjty9NFHp2/fvlm/fn1uvfXWnHTSSRkzZkza2toyadKkzJkzJ01NTZ2VFwAAAAAAALpEoRlpF1xwQaZPn55Vq1Zl9uzZOeGEE3Lqqadm7ty5ufPOOzN9+vTMmjWrs7ICAAAAAABAlynUSHvsscdy8sknJ0mOO+64rFu3Lscee2z7+JQpU/LII4+UGhAAAAAAAADqofAeaZU/brDX0NCQ3r17p7GxsX2sX79+WbNmTXnpAAAAAAAAoE4K7ZG29957Z+nSpXnb296WJJk/f36GDx/ePr58+fIMGTKk3IQAAAAAAABd6I9ziqBYI23q1KlpbW1tPx89enSH8dtvvz1NTU3lJAMAAAAAAIA6qtRqtVq9QyTJho3l1ivzo9J5hk3rHu8em+Z12728WPKbfLVn4ZWJ/6xeJdYC6AzrSn4P/dQ/P1BqvZ+eNr60Wi2vtpVWK0mqvbzHw/bmmdUbSq03dGDvUuvRfZT9+6jfIXdcbSU/WRo8WaiT3oWmxFCG0275Vb0jbHf+8X+NqneETuE3SwAAAAAAANgEjTQAAAAAAADYBI00AAAAAAAA2AQrqwIAAAAAAPyJij0R+aNCM9J+9KMfZf369Z2VBQAAAAAAALqNQo20T37ykxkyZEg+97nP5b777uusTAAAAAAAAFB3hfdIO/PMM/Pggw9m/PjxGT16dK6++uqsWrWqM7IBAAAAAABA3RRupH3+85/PQw89lAceeCAHH3xwZs6cmT333DPHHXdc5s6d2xkZAQAAAAAAoMsVbqS95v3vf3/+8R//Mc8++2y+/e1vZ+XKlfnIRz6SESNGbPaxLS0tWbt2bYejpaVla6MAAAAAAABA6Qo10iqVyuuu9e7dO3/5l3+Z//iP/8iSJUtywgknbLZOc3NzGhsbOxyXX9pcJAoAAAAAAECnaHAUPnZUPYvcXKvV3nB83333zcUXX7zZOjNmzMi0adM61u5RLRIFAAAAAAAAOlWhRtqTTz6Zt7zlLdv8h1ar1VSrHRtnGzZuc1kAAAAAAAAoTaHZdnvttVcWL16c2bNnZ/HixUmSxYsXZ+rUqfnMZz6Tu+66q1NCAgAAAAAAQFcrNCPtjjvuyNFHH52+fftm/fr1ufXWW3PSSSdlzJgxaWtry6RJkzJnzpw0NTV1Vl4AAAAAAADoEoVmpF1wwQWZPn16Vq1aldmzZ+eEE07Iqaeemrlz5+bOO+/M9OnTM2vWrM7KCgAAAAAAAF2mUCPtsccey8knn5wkOe6447Ju3boce+yx7eNTpkzJI488UmpAAAAAAACArlSpVBwFjx1VoUZakvZPRkNDQ3r37p3Gxsb2sX79+mXNmjXlpQMAAAAAAIA6KdRI23vvvbN06dL28/nz52f48OHt58uXL8+QIUPKSwcAAAAAAAB10rPIzVOnTk1ra2v7+ejRozuM33777WlqaionGQAAAAAAANRRoUbaF77whTccv+SSS7YpDAAAAAAAAHQXhRpp25MdeF876Da8zthSfXuX++1mxQsbSqu1x4DepdUC6Az9Sn4P/elp40utt/fU/11araeuO7a0WkDXqdXKqzXEz2ZsoZaNrZu/qYDevXqUWo/uo8FfXgCwjXbYRhoAAAAAAMDWaNCH548a6h0AAAAAAAAAuiONNAAAAAAAANgEjTQAAAAAAADYhMJ7pC1cuDALFizIhz70oeyzzz557LHH8g//8A9pa2vLMccck8MOO6wzcgIAAAAAAECXKjQj7ZZbbsn73//+fPWrX82YMWPy85//PBMmTMjSpUvz1FNP5Ygjjsj3v//9zsoKAAAAAAAAXaZQI+3iiy/OzJkz87vf/S7f/va388lPfjLTpk3L3Llzc8cdd+TSSy/N5Zdf3llZAQAAAAAAOl1DxVH02FEVaqQtWbIkU6ZMSZJ86lOfyksvvZSPf/zj7ePHHHNMHn/88VIDAgAAAAAAQD0U2iOtX79+WbVqVfbee++88MIL2bhxY1atWtU+vmrVqvTt23ezdVpaWtLS0tLhWq1HNdVqtUgcAAAAAAAA6DSFZqRNnDgxX/ziF/O9730vn/70pzNp0qTMmDEjixcvzpIlSzJ9+vRMmDBhs3Wam5vT2NjY4bj80uat/iAAAAAAAACgbIUaaVdccUX69++fL3zhC3nllVdy8803Z+zYsRk1alRGjhyZZ555JrNmzdpsnRkzZmTNmjUdjulnzdjqDwIAAAAAAADKVmhpx8GDB2fOnDkdrv393/99zjjjjKxfvz777bdfevbcfMlq9fXLOG7YWCQJAAAAAAAAdK5CjbQkWbRoUe6999588IMfzDvf+c4sXrw43/jGN9LS0pITTzwxTU1NnZETAAAAAACgS1QqlXpHoJso1Ei74447cvTRR6dv375Zv359br311px00kkZM2ZM2traMmnSpMyZM0czDQAAAAAAgO1eoT3SLrjggkyfPj2rVq3K7Nmzc8IJJ+TUU0/N3Llzc+edd2b69OlbtEcaAAAAAAAAdHeFGmmPPfZYTj755CTJcccdl3Xr1uXYY49tH58yZUoeeeSRUgMCAAAAAABAPRRqpCX/d13QhoaG9O7dO42Nje1j/fr1y5o1a8pLBwAAAAAAAHVSqJG29957Z+nSpe3n8+fPz/Dhw9vPly9fniFDhpSXDgAAAAAAAOqkZ5Gbp06dmtbW1vbz0aNHdxi//fbb09TUVE4yAAAAAACAOmio1DsB3UWlVqvV6h0iSTZsLLfeKxvbSqu1U8/CK2DCm0LZ7x5lvh01vMm+07WV/MVoqJT7+WttKzff+pbWzd+0hfrtXOjflAB0uZdfKe89L0laSvw5OUkad+5VWq2z/t/FpdVKkss+tl+p9crWVvL3x5T840/ZPw+w9cp+rpT9s/KrreW9r7xY8l8ODOyzU6n16D7KfN4lSa8e/u5nR9Xd30PLVvbf1fhxYOuV/bUo8cduttD0nyypd4TtzuUfe2e9I3QKPyUAAAAAAADAJmikAQAAAAAAwCZopAEAAAAAAMAmaKQBAAAAAADAJvTcmgfdddddmTdvXp599tk0NDRkn332yVFHHZW3v/3tZecDAAAAAADoUpVKvRPQXRRqpD3//PM58sgj8+CDD6ahoSFtbW1573vfm1tuuSVnnXVWpk2blssuu6yzsgIAAAAAAECXKbS045e//OUMHTo0q1evzosvvpjTTjst73rXu/Lss89mzpw5+ed//ud84xvf6KysAAAAAAAA0GUKNdJuv/32XHTRRenfv3+q1WpmzZqVH/zgB1m7dm2amppy9dVX57rrruusrAAAAAAAANBlCi3tWK1WU/mThUEbGhrS2tqajRs3Jkk++MEP5qmnntpsnZaWlrS0tHS4VutRTbVaLRIHAAAAAAAAOk2hGWkTJkzIeeedl5deeimvvvpq/vZv/zb77LNPdt111yTJypUrM3DgwM3WaW5uTmNjY4fj8kubt+4jAAAAAAAAgE5QaEbaFVdckUmTJmXAgAGpVCrp06dP/vVf/7V9fNGiRTn55JM3W2fGjBmZNm1ah2u1HmajAQAAAAAA9dfwJ6vz8eZWqJG2zz775JFHHskvfvGLtLS05AMf+EB222239vEtaaIlf1gi8n8u47hhY5EkAAAAAAAA0LkKLe2YJMuWLctvf/vb7Lvvvtltt92yePHiTJ06NZ/5zGdy1113dUZGAAAAAAAA6HKFZqTdcccdOfroo9O3b9+sX78+t956a0466aSMGTMmbW1tmTRpUubMmZOmpqbOygsAAAAAAABdotCMtAsuuCDTp0/PqlWrMnv27Jxwwgk59dRTM3fu3Nx5552ZPn16Zs2a1VlZAQAAAAAAoMsUaqQ99thj7fugHXfccVm3bl2OPfbY9vEpU6bkkUceKTUgAAAAAAAA1EOhpR2TpFKpJEkaGhrSu3fvNDY2to/169cva9asKS8dAAAAAABAFys0C4kdWqHnwt57752lS5e2n8+fPz/Dhw9vP1++fHmGDBlSXjoAAAAAAACok0Iz0qZOnZrW1tb289GjR3cYv/3229PU1FROMgAAAAAAAKijQo20L3zhC284fskll2xTGAAAAAAAAOguCu+Rtr3YqacVTKGz/XHLxBLrlVzwTaShm3/uejSUm6/fzjvsty+A19l5px7dul6ZLvvYfqXWGzju9FLrrX7g2lLrNZT8/ZEdV3d/rvTqUd7v3wP77FRaLXZsZT7v2LF19/fQsnXzvx54U/G1gB2HnzoAAAAAAABgE/yTfgAAAAAAgD9hViGvMSMNAAAAAAAANmGrZqTdf//9mT9/flasWJEk2WOPPTJ+/Pj8xV/8RanhAAAAAAAAoF4KNdKef/75fOITn8gvfvGLDB8+PIMHD06SPPfccznjjDNy4IEH5kc/+lF23333TgkLAAAAAAAAXaXQ0o6nnXZaWltbs2jRojz11FO57777ct999+Wpp57KokWL0tbWli9+8YudlRUAAAAAAAC6TKEZaT/72c9y9913553vfOfrxt75znfmmmuuyYc+9KGysgEAAAAAAEDdFGqkVavVrF279s+Or1u3LtVqdZtDAQAAAAAA1EtDpVLvCHQThZZ2/NSnPpVPf/rTufXWWzs01NauXZtbb701p5xySo4//vjN1mlpacnatWs7HC0tLcXTAwAAAAAAQCcp1Ei76qqrcvjhh2fy5MkZOHBgdt555+y8884ZMGBAJk+enMMPPzxXXHHFZus0NzensbGxw3H5pc1b/UEAAAAAAABA2Sq1Wq1W9EFr167Ngw8+mOeeey5JMnjw4IwdOzb9+/ffose3tLS8bgZarUfVspAAAEBpBo47vdR6qx+4ttR6AACwpXoX2qSJMpx7x9J6R9juXPiRt9c7QqfYqpdf//7909TU1H6+0047ZeHChVvcSKtWX98027Bxa5IAAAAAAABA5yjUSJs2bdomr7e2tmbWrFkZNGhQkj8sAQkAAAAAAADbs0KNtKuvvjpjxozJgAEDOlyv1WpZtGhR+vTpk0qlUmY+AAAAAACALqXVwWsKNdIuueSSXH/99bnyyis7LO3Yq1ev3HDDDRk1alTpAQEAAAAAAKAeGorcfPbZZ+fmm2/O1KlTc+aZZ+bVV1/trFwAAAAAAABQV4UaaUkybty4LFiwICtXrszYsWPz6KOPWs4RAAAAAACAHU6hpR1f07dv39x444256aabMnHixLS2tpadCwAAAAAAAOpqqxppr5k8eXImTJiQBQsWZK+99iorEwAAAAAAANTdNjXSkmTYsGEZNmxYGVkAAABKs/qBa0utN3Dc6aXWKzsfAABQngY7WvFHhfdIAwAAAAAAgDcDjTQAAAAAAADYBI00AAAAAAAA2IRSG2mrV6/Od77znTJLAgAAAAAAQF2U2khbvnx5TjnllDJLAgAAAAAAQF30LHLz2rVr33B83bp12xQGAAAAAACg3hoqlXpHoJso1EgbMGBAKm/w5KnVam84DgAAAAAAANuLQo20fv365ZxzzskBBxywyfGlS5fm85//fCnBAAAAAAAAoJ4KNdLe9773JUkOOeSQTY4PGDAgtVpts3VaWlrS0tLS4VqtRzXVarVIHAAAAAAAAOg0DUVuPuGEE9K7d+8/O77HHnvk/PPP32yd5ubmNDY2djguv7S5SBQAAAAAAADoVJXalkwh24yie6OZkQYAAGxvBo47vdR6qx+4ttR6AADsuHoXWluOMlww9/F6R9junPf/7FvvCJ2ilJdftVrNwoULM3LkyC2+/382zTZsLCMJAAAAAADAtikwd4gdXKFG2rRp0zZ5vbW1NbNmzcqgQYOSJFddddW2JwMAAAAAAIA6KtRIu/rqqzNmzJgMGDCgw/VarZZFixalT58+hZZ4BAAAAAAAgO6qUCPtkksuyfXXX58rr7wyTU1N7dd79eqVG264IaNGjSo9IAAAAAAAANRDQ5Gbzz777Nx8882ZOnVqzjzzzLz66qudlQsAAAAAAADqqlAjLUnGjRuXBQsWZOXKlRk7dmweffRRyzkCAAAAAACwwym0tONr+vbtmxtvvDE33XRTJk6cmNbW1rJzAQAAAAAAQF1tVSPtNZMnT86ECROyYMGC7LXXXmVlAgAAAAAAqJsGC/HxR9vUSEuSYcOGZdiwYWVkAQAAAAAAgG5jmxtp3VWtVl6tN9sWcGV+7pLu/fl7M32snaHsz1+ZuvvX4tWNbaXW69Wz8JaXb2hja7lf3LK/HmvWv1parX69y/1WWPbXomzd/X3vzfS+sr6l3KWxe+/UvZ97lZT3Cezuz7u2kguW/Z7cq2e5n8Ayv7a1kj93DSX/E9LVD1xbar3/Wvq7UutN2He3UuuV/VzuUeLXozt/v+gM3f19b2NbeT/bllgqSVLtVe73x7JfF2W+hybd+7lSdrYXN2wstV7fkn8vYMfV3X+nKvt9KiWWK/tns+7+c/wrJf/dT++ePUqtB2y57v03LgAAAAAAAFAnGmkAAAAAAACwCRppAAAAAAAAsAlbtQB0W1tbGhpe34Nra2vLb3/72wwfPnybgwEAAAAAANRD2XuZsv0qNCNt7dq1Oe6449KnT58MHjw45513XlpbW9vHV65cmREjRpQeEgAAAAAAALpaoRlp5557bhYuXJjvfve7eeGFF3LRRRfloYceyi233JKddtopSVKr1TolKAAAAAAAAHSlQjPS/u3f/i3f+ta3cuyxx+av/uqv8uCDD2blypU58sgj09LSkiSpVEx3BAAAAAAAYPtXqJG2cuXK7LXXXu3nu+22W37+859n3bp1+ehHP5r169eXHhAAAAAAAADqoVAjbfjw4Vm0aFGHa/369cucOXPy8ssv55hjjtmiOi0tLVm7dm2H47UZbQAAAAAAANAdFGqkTZo0KbNnz37d9b59++ZnP/tZevfuvUV1mpub09jY2OG4/NLmIlEAAAAAAAA6RUPFUfTYUfUscvPMmTPzzDPPvO56rVZLv379Mnfu3Dz00EObrTNjxoxMmzatY40e1SJRAAAAAAAAoFMVaqQNHDgwAwcOfN31arWahQsXZuTIkTnkkEM2W6daraZa7dg427CxSBIAAAAAAADoXIUaaf9zFtlrWltbM2vWrAwaNChJctVVV217MgAAAAAAAKijQo20q6++OmPGjMmAAQM6XK/Valm0aFH69OmTSmUHXggTAAAAAACAN41CjbRLLrkk119/fa688so0NTW1X+/Vq1duuOGGjBo1qvSAAAAAAAAAUA+FGmlnn312Dj300Jx44ok58sgj09zcnF69enVWNgAAAAAAgC7XYPE9/qih6APGjRuXBQsWZOXKlRk7dmweffRRyzkCAAAAAACwwyk0I+01ffv2zY033pibbropEydOTGtra9m5AAAAAAAAoK62qpH2msmTJ2fChAlZsGBB9tprr7IyAQAAAAAAQN1VarVard4hkmTDxnonAAAA6Dpl/ya26wFfLrXe6vuvKbUeAABbr/c2TYlha1z2H7+pd4Ttzlc//LZ6R+gUhfdIAwAAAAAAgDcDfWwAAAAAAIA/UalU6h2BbsKMNAAAAAAAANiEwo20Wq2WJ598Mhs3/mFTs1deeSU333xzvvOd7+R3v/td6QEBAAAAAACgHgot7bhkyZIcdthhefrpp7PPPvtkzpw5+eQnP5nFixenVqtll112yT333JO3v/3tnZUXAAAAAAAAukShGWlnnXVWxowZk4cffjgf+9jHcsQRR2TYsGFZvXp1fv/732f8+PG54IILOisrAAAAAAAAdJlCjbR77rknM2fOzLvf/e5cdNFFWbx4cc4888z06tUr1Wo1Z599du6+++7OygoAAAAAAABdptDSji+++GJ23XXXJEmfPn3Sp0+fDBkypH38rW99a5577rlyEwIAAAAAAHShhkq9E9BdFGqkDR06NMuXL8/w4cOTJJdddll233339vGVK1dm4MCBm63T0tKSlpaWDtdqPaqpVqtF4gAAAAAAAECnKbS048SJE7N48eL286lTp6Zfv37t53PmzMn73ve+zdZpbm5OY2Njh+PyS5uLRAEAAAAAAIBOVanVarVtLVKr1VKpVPLkk0+md+/eHZZ73BQz0gAAgDe7bf9NrKNdD/hyqfVW339NqfUAANh6vQutLUcZrvw/T9Q7wnbnbw7Zp94ROkUpL79qtZqFCxdm5MiRW3z//2yabdhYRhIAAAAAAAAoR6FG2rRp0zZ5vbW1NbNmzcqgQYOSJFddddW2JwMAAAAAAIA6KrRH2tVXX53/+I//yC9/+csOR61Wy6JFi/LLX/4yDz/8cCdFBQAAAAAA6HyViqPoUcT/9//9fznxxBMzaNCg7Lzzznn3u9+dBx98sH28VqvlvPPOy5AhQ7Lzzjtn4sSJWbp0aYcav//97zNlypT0798/AwYMyGc/+9m8+OKLZXz5Oyg0I+2SSy7J9ddfnyuvvDJNTU3t13v16pUbbrgho0aNKj0gAAAAAAAAO4bVq1fnwAMPzIc//OHcfvvtectb3pKlS5dm4MCB7fdcdtllueaaa3LjjTdmxIgROffcc3PYYYflV7/6VXr37p0kmTJlSp599tnMnTs3r776ak455ZR87nOfy/e///1S81ZqtWJbXD/wwAM58cQTc+SRR6a5uTm9evVKr169snDhwm1qpNkjDQAAeDMp9pvY5u16wJdLrbf6/mtKrQcAwNbrXWhKDGW46u4n6h1huzPt4H226L6zzz47v/jFL/Jf//Vfmxyv1WoZOnRo/uZv/iZnnnlmkmTNmjUZPHhwbrjhhkyePDmLFi3KqFGj8sADD2Ts2LFJkjvuuCMf/ehH89vf/jZDhw4t54NKwaUdk2TcuHFZsGBBVq5cmbFjx+bRRx9NpeicPQAAAAAAAN50fvzjH2fs2LH55Cc/md133z3vfe978+1vf7t9/Mknn8yKFSsyceLE9muNjY054IADMn/+/CTJ/PnzM2DAgPYmWpJMnDgxDQ0Nue+++0rNW7iRliR9+/bNjTfemBkzZmTixIlpbW0tNRQAAAAAAADbj5aWlqxdu7bD0dLS8rr7nnjiiVx33XV5+9vfnp/97GeZOnVqvvzlL+fGG29MkqxYsSJJMnjw4A6PGzx4cPvYihUrsvvuu3cY79mzZ3bdddf2e8qyVY2010yePDkPPvhgbrnlluy1115lZQIAAAAAAGA70tzcnMbGxg5Hc3Pz6+5ra2vL+973vlxyySV573vfm8997nM59dRT881vfrMOqTdvm1dWHTZsWIYNG1ZGFgAAAAAAgLprsKVVYTNmzMi0adM6XKtWq6+7b8iQIRk1alSHayNHjsyPfvSjJMkee+yRJHnuuecyZMiQ9nuee+657L///u33PP/88x1qbNy4Mb///e/bH18WWxQC8KbWVquVWs8PWQBsqVrK/R60+v5rSq038KCzS623+r9mlVoPeHMr+cf4+DEeALZdtVrdZOPsfzrwwAOzZMmSDtd+/etft698OGLEiOyxxx6588472xtna9euzX333ZepU6cmScaPH58XXnghCxYsyPvf//4kyV133ZW2trYccMABJX5UGmkAAAAAAAB0kTPOOCMf/OAHc8kll+S4447L/fffn+uvvz7XX399kqRSqeQrX/lKLrroorz97W/PiBEjcu6552bo0KH5+Mc/nuQPM9g+8pGPtC8J+eqrr+b000/P5MmTM3To0FLzaqQBAAAAAADQJcaNG5dbb701M2bMyAUXXJARI0bk6quvzpQpU9rv+epXv5qXXnopn/vc5/LCCy9kwoQJueOOO9K7d+/2e773ve/l9NNPz6GHHpqGhoZ84hOfyDXXlLtSR5JUarWyJ8NvnQ0b650AgDcjSzsCUC/d/XuQpR2B7szSjsCbTW9TYrrc1f/1ZL0jbHe+ctCIekfoFA1lFGlqasqyZcvKKAUAAAAAAADdQqE+9o9//ONNXr/77rvzk5/8JG9961uTJEcdddS2JwMAAAAAAKiDBrOV+aNCjbSPf/zjqVQq2dRqkF/60peS/GETuNbW1nLSAQAAAAAAQJ0UWtrxsMMOy+GHH54VK1akra2t/ejRo0ceffTRtLW1aaIBAAAAAACwQyjUSLv99ttz6KGHZuzYsfnJT37SWZkAAAAAAACg7got7ZgkZ5xxRj784Q9nypQpue222/L1r3+98B/a0tKSlpaWDtdqPaqpVquFawEAAAAAAEBnKDQj7TX7779/HnzwwVQqley///6b3DPtjTQ3N6exsbHDcfmlzVsTBQAAAAAAADpF4Rlpr9l5553zzW9+Mz/+8Y9z5513Zrfddtvix86YMSPTpk3rcK3Ww2w0AAAAAACg/iqVeiegu9iqGWl/6qijjsp1112XVatWbfFjqtVq+vfv3+GwrCMAAAAAAADdSaEZaf9zFtlrWltbM2vWrAwaNChJctVVV217MgAAAAAAAKijQo20q6++OmPGjMmAAQM6XK/Valm0aFH69OmTivmOAAAAAAAA7AAKNdIuueSSXH/99bnyyivT1NTUfr1Xr1654YYbMmrUqNIDAgAAAAAAQD0U2iPt7LPPzs0335ypU6fmzDPPzKuvvtpZuQAAAAAAAKCuCjXSkmTcuHFZsGBBVq5cmbFjx+bRRx+1nCMAAAAAALDDaEjFUfDYURVa2vE1ffv2zY033pibbropEydOTGtra9m5AAAAAAAAoK62qpH2msmTJ2fChAlZsGBB9tprr7IyAQAAAAAAQN1tUyMtSYYNG5Zhw4aVkQUAulyD5YkBqJPu/j1o9X/NKrXewHGnl1Zr9QPXllYL2D5187dQAGAHUniPNAAAAAAAAHgz0EgDAAAAAACATdjmpR0BAAAAAAB2JJYR5jXb3Eh78skn8/jjj2fIkCEZPXp0GZkAAAAAAACg7got7XjaaaflxRdfTJK8/PLLOfbYY7PvvvvmsMMOy5gxY9LU1NQ+DgAAAAAAANuzQo20b33rW1m/fn2S5MILL8x9992Xn//853nxxRdz9913Z/ny5bn44os7JSgAAAAAAAB0pUKNtFqt1v7/t912Wy677LJ8+MMfzi677JIDDzwwV111VW655ZbSQwIAAAAAAEBXK9RIS5LKH3fYW7FiRd7znvd0GBszZkyefvrpcpIBAAAAAABAHfUs+oBzzz03u+yySxoaGvLMM8/kXe96V/vYqlWr0qdPn1IDAgAAAAAAdKWGSr0T0F0UaqQdfPDBWbJkSZJk1KhRWbZsWYfxn/70px0aa39OS0tLWlpaOlyr9aimWq0WiQMAAAAAAACdplAj7T//8z83eb1Wq6VSqeSEE07IySefvNk6zc3NmTlzZodr55x7fv7uvK8ViQMAAAAAAACdpvDSjptSrVazcOHCjBw5covunzFjRqZNm9bhWq2H2WgAAAAAAAB0H4Uaaf+z+fWa1tbWzJo1K4MGDUqSXHXVVW9Yp1p9/TKOGzYWSQIAAAAAAACdq1Aj7eqrr86YMWMyYMCADtdrtVoWLVqUPn36pFKxAx8AAAAAAADbv0KNtEsuuSTXX399rrzyyjQ1NbVf79WrV2644YaMGjWq9IAAAAAAAABdqcGkIf6oocjNZ599dm6++eZMnTo1Z555Zl599dXOygUAAAAAAAB1VaiRliTjxo3LggULsnLlyowdOzaPPvqo5RwBAAAAAADY4RRa2vE1ffv2zY033pibbropEydOTGtra9m5AAAAAAAAoK62qpH2msmTJ2fChAlZsGBB9tprr7IyAQAAAAAAQN1tUyMtSYYNG5Zhw4aVkQUAAAAAAAC6jW1upAEAAMDmrH7g2tJqDfzAGaXVSpLV93691HoAAGz/KpV6J6C7aKh3AAAAAAAAAOiONNIAAAAAAABgEzTSAAAAAAAAYBMK7ZHW0tKShoaG9OrVK0nym9/8Jv/8z/+c5cuXZ6+99spnP/vZjBgxolOCAgAAAAAAQFcqNCPtsMMOy7//+78nSX7xi1/kXe96V37yk5/k1VdfzU9/+tOMHj068+fP75SgAAAAAAAA0JUKzUj75S9/mTFjxiRJzjnnnJx22mm56qqr2sfPPffcTJ8+PfPmzSs3JQAAAAAAQBdpqFTqHYFuotCMtNbW1rS2tiZJFi9enE9/+tMdxk8++eQsXLiwvHQAAAAAAABQJ4UaaQcccEBuu+22JMnb3va21zXNHn744ey6667lpQMAAAAAAIA6KbS040UXXZTDDz88L730Uo4//vj8zd/8TZYuXZqRI0dmyZIlueaaazJjxozN1mlpaUlLS0uHa7Ue1VSr1WLpAQAAAAAAoJMUaqSNHz8+t99+e6ZNm5b77rsvSXLxxRcnSYYOHZqvfe1r+eu//uvN1mlubs7MmTM7XDvn3PPzd+d9rUgcAAAAAAAA6DSVWq1W25oHrly5Mk888UTa2tqyxx57ZMSIEVv8WDPSAAAA2FoDP3BGqfVW3/v1UusBAJStd6EpMZThn+5fXu8I253P/sXwekfoFFv98nvLW96St7zlLUmSnXbaKQsXLszIkSO36LHV6uubZhs2bm0SAAAAAACA8lQq9U5Ad1GokTZt2rRNXm9tbc2sWbMyaNCgJMlVV1217ckAAAAAAACgjgo10q6++uqMGTMmAwYM6HC9Vqtl0aJF6dOnTyratAAAAAAAAOwACjXSLrnkklx//fW58sor09TU1H69V69eueGGGzJq1KjSAwIAAAAAAEA9NBS5+eyzz87NN9+cqVOn5swzz8yrr77aWbkAAAAAAACgrgo10pJk3LhxWbBgQVauXJmxY8fm0UcftZwjAAAAAAAAO5xCSzu+pm/fvrnxxhtz0003ZeLEiWltbS07FwAAAAAAQF0UnoXEDmurGmmvmTx5ciZMmJAFCxZkr732KisTAAAAAAAA1N02NdKSZNiwYRk2bFgZWQAAAGCzVt/79VLrDRx3eqn1Vj9wban1AACA+jE7EQAAAAAAADZBIw0AAAAAAAA2QSMNAAAAAAAANqHQHmk/+tGPcvjhh2eXXXbprDwAAAAAAAB1ValU6h2BbqLQjLRPfvKTGTJkSD73uc/lvvvu66xMAAAAAAAAUHeFl3Y888wz8+CDD2b8+PEZPXp0rr766qxataozsgEAAAAAAEDdFG6kff7zn89DDz2UBx54IAcffHBmzpyZPffcM8cdd1zmzp3bGRkBAAAAAACgyxVupL3m/e9/f/7xH/8xzz77bL797W9n5cqV+chHPpIRI0aUmQ8AAAAAAADqolAjbVOb6/Xu3Tt/+Zd/mf/4j//IkiVLcsIJJ5QWDgAAAAAAAOqlZ5Gba7XaG47vu+++ufjiizdbp6WlJS0tLR1r96imWq0WiQMAAAAAAFC6108r4s2q0Iy0J598Mrvtttvrrm+uwfY/NTc3p7GxscNx+aXNhWoAAAAAAABAZ6rUinbBNmGnnXbKwoULM3LkyC2634w0AAAAuouB404vtd7qB64ttR4AQO9Ca8tRhu88+HS9I2x3Thr71npH6BSFXn7Tpk3b5PXW1tbMmjUrgwYNSpJcddVVb1inWn1902zDxiJJAAAAAAAAoHMVaqRdffXVGTNmTAYMGNDheq1Wy6JFi9KnT59UKlYOBQAAAAAAYPtXqJF2ySWX5Prrr8+VV16Zpqam9uu9evXKDTfckFGjRpUeEAAAAAAAAOqhUCPt7LPPzqGHHpoTTzwxRx55ZJqbm9OrV6/OygYAAAAAANDlGqy+xx81FH3AuHHjsmDBgqxcuTJjx47No48+ajlHAAAAAAAAdjiFZqS9pm/fvrnxxhtz0003ZeLEiWltbS07FwAAAAAAANTVVjXSXjN58uRMmDAhCxYsyF577VVWJgAAAAAAAKi7bWqkJcmwYcMybNiwMrIAAAAAAABAt7HNjTQAAADYnq1+4NpS6w0cd3qp9crOBwAAbDmNNAAAAAAAgD9RqXcAuo2GegcAAAAAAACA7kgjDQAAAAAAADah8NKOCxcuzIIFC/KhD30o++yzTx577LH8wz/8Q9ra2nLMMcfksMMO64ycAAAAAAAA0KUKzUi75ZZb8v73vz9f/epXM2bMmPz85z/PhAkTsnTp0jz11FM54ogj8v3vf7+zsgIAAAAAAECXKdRIu/jiizNz5sz87ne/y7e//e188pOfzLRp0zJ37tzccccdufTSS3P55Zd3VlYAAAAAAADoMoUaaUuWLMmUKVOSJJ/61Kfy0ksv5eMf/3j7+DHHHJPHH3+81IAAAAAAAABdqVJxFD12VIUaaf369cuqVauSJC+88EI2btzYfp4kq1atSt++fctNCAAAAAAAAHXQs8jNEydOzBe/+MV86Utfys0335xJkyZlxowZmT17diqVSqZPn54JEyZstk5LS0taWlo6XKv1qKZarRZLDwAAAAAAAJ2k0Iy0K664Iv37988XvvCFvPLKK7n55pszduzYjBo1KqNGjcozzzyTWbNmbbZOc3NzGhsbOxyXX9q81R8EAAAAAAAAlK1Sq9Vq21rkiSeeyPr167PffvulZ8/NT3IzIw0AAIAd1cBxp5dab/UD15ZaDwDY/vQutLYcZfj+Q7+td4TtzgnvG1bvCJ2ilJfffvvtl4ULF25REy1JqtXXN802bCwjCQAAAAAAAJSjUCNt2rRpm7ze2tqaWbNmZdCgQUmSq666atuTAQAAAAAA1EGlUql3BLqJQo20q6++OmPGjMmAAQM6XK/Valm0aFH69OnjyQUAAAAAAMAOoVAj7ZJLLsn111+fK6+8Mk1NTe3Xe/XqlRtuuCGjRo0qPSAAAAAAAADUQ0ORm88+++zcfPPNmTp1as4888y8+uqrnZULAAAAAAAA6qpQIy1Jxo0blwULFmTlypUZO3ZsHn30Ucs5AgAAAAAAsMMptLTja/r27Zsbb7wxN910UyZOnJjW1taycwEAAAAAAEBdbVUj7TWTJ0/OhAkTsmDBguy1115lZQIAAAAAAKibwsv5scPapkZakgwbNizDhg0rIwsAbJG2Wq20Wg2WJwbeZNraynsPTZKGhvLeR7tzNihi9QPXllpv4EdmlVpv9R1nl1qvTN4H2FKeKwBAV9FUBQAAAAAAgE3QSAMAAAAAAIBN0EgDAAAAAACATdBIAwAAAAAAgE3ouTUPuuuuuzJv3rw8++yzaWhoyD777JOjjjoqb3/728vOBwAAAAAA0KUqlUq9I9BNFGqkPf/88znyyCPz4IMPpqGhIW1tbXnve9+bW265JWeddVamTZuWyy67rLOyAgAAAAAAQJcptLTjl7/85QwdOjSrV6/Oiy++mNNOOy3vete78uyzz2bOnDn553/+53zjG9/orKwAAAAAAADQZSq1Wq22pTc3Njbmnnvuybve9a4kyUsvvZSBAwfmd7/7Xfr3759/+Zd/yUUXXZTFixcXDrJhY+GHAPAm1bbl37o2q8E0feBNpq2tvPfQJGloKO99tDtng3oa+JFZpdZbfcfZpdYrk/cBtpTnCvBm03urNmliW/zw4WfqHWG7c9z+Q+sdoVMUmpFWrVY7rAva0NCQ1tbWbNz4hy7YBz/4wTz11FOlBgQAAAAAAIB6KNRImzBhQs4777y89NJLefXVV/O3f/u32WeffbLrrrsmSVauXJmBAwdutk5LS0vWrl3b4Whpadm6jwAAAAAAAAA6QaFG2hVXXJGHH344AwYMSJ8+fXLDDTfkuuuuax9ftGhRTj755M3WaW5uTmNjY4fj8kubC4cHAAAAAAAoW8VR+NhRFdojLUnWr1+fefPm5ZVXXskHPvCB7LbbbqnVah2WfNyclpaW181Aq/WoplqtFokCwJuUPdIAtl533lOmO2eDerJH2tbzPrDj8lwB3mzskdb1/tUeaYV9cgfdI63wy2+XXXbJpEmTOlyrVqtZuHBhRo4cuUU1qtXXN802bCyaBAAAAAAAADpPoUbatGnTNnm9tbU1s2bNyqBBg5IkV1111bYnAwAAAAAAgDoq1Ei7+uqrM2bMmAwYMKDD9VqtlkWLFqVPnz6FlngEAAAAAACA7qpQI+2SSy7J9ddfnyuvvDJNTU3t13v16pUbbrgho0aNKj0gAAAAAAAA1EOhRtrZZ5+dQw89NCeeeGKOPPLINDc3p1evXp2VDQAAAAAAoMtZfY/XNBR9wLhx47JgwYKsXLkyY8eOzaOPPuoJBQAAAAAAwA6n0Iy01/Tt2zc33nhjbrrppkycODGtra1l5wIAAAAAAIC62qpG2msmT56cCRMmZMGCBdlrr73KygQAAAAAAAB1V6nVarV6h0iSDRvrnQAAAAB2fAP/4sul1lt9/zWl1gMAXq/3Nk2JYWv874XP1jvCdufYMUPqHaFTFN4jDQAAAAAAAN4M9LEBAAAAAAD+hFlIvMZzAQAAAAAAADZBIw0AAAAAAAA2YauWdrz//vszf/78rFixIkmyxx57ZPz48fmLv/iLUsMBAAAAAABAvRRqpD3//PP5xCc+kV/84hcZPnx4Bg8enCR57rnncsYZZ+TAAw/Mj370o+y+++6dEhYAAAAAAAC6SqGlHU877bS0trZm0aJFeeqpp3Lfffflvvvuy1NPPZVFixalra0tX/ziFzsrKwAAAAAAAHSZQjPSfvazn+Xuu+/OO9/5zteNvfOd78w111yTD33oQ2VlAwAAAAAA6HKVSqXeEegmCjXSqtVq1q5d+2fH161bl2q1utk6LS0taWlp6XCt1qO6RY8FAAAAAACArlBoacdPfepT+fSnP51bb721Q0Nt7dq1ufXWW3PKKafk+OOP32yd5ubmNDY2djguv7S5eHoAAAAAAADoJIVmpF111VVpa2vL5MmTs3Hjxuy0005JkldeeSU9e/bMZz/72VxxxRWbrTNjxoxMmzatw7VaD7PRAAAAAAAA6D4qtVqtVvRBa9euzYIFC7JixYokyR577JH3v//96d+//1YH2bBxqx8KAAAAbKGBf/HlUuutvv+aUusBAK/Xu9CUGMpw6yMr6h1hu3PMe/aod4ROUWhpx9f0798/H/7wh3PUUUdlw4YN+fnPf57vfve7WbVqVdn5AAAAAAAAoC4K9bFHjRqVefPmZdddd83TTz+dgw8+OKtXr8473vGO/OY3v8kFF1yQe++9NyNGjOisvAAAAAAAAJ2qUu8AdBuFZqQtXrw4Gzf+YQ3GGTNmZOjQoVm2bFnuv//+LFu2LO95z3tyzjnndEpQAAAAAAAA6EpbtbRjksyfPz9f+9rX0tjYmCTp27dvZs6cmXnz5pUWDgAAAAAAAOqlcCOtUvnDhMYNGzZkyJAhHcb23HPPrFy5spxkAAAAAAAAUEeF9khLkkMPPTQ9e/bM2rVrs2TJkowePbp9bNmyZRk0aFCpAQEAAAAAAKAeCjXSzj///A7nffv27XB+22235aCDDtr2VAAAAAAAAFBnlVqtVqt3iCTZsLHeCQDoLGV/p9nwamtptXbeqUdptQA6Q/f4af3P++PK76XY2FruB9uzR4nhOkFbyV/chjK/GFDA0FO+X1qtZ2afUFotdmyvtraVWq9Xj8K7n8CbQpk/r/hZZdv0Lry2HNvq3/97Rb0jbHeOfvce9Y7QKfyUAAAAAAAAAJugkQYAAAAAAACboJEGAAAAAAAAm6CRBgAAAAAAAJugkQYAAAAAAACbUGojbfXq1fnOd75TZkkAAAAAAIAu1ZCKo+Cxoyq1kbZ8+fKccsopZZYEAAAAAACAuuhZ5Oa1a9e+4fi6deu2KQwAAAAAAAB0F4UaaQMGDEil8uen59VqtTccBwAAAAAAgO1FoUZav379cs455+SAAw7Y5PjSpUvz+c9/frN1Wlpa0tLS0uFarUc11Wq1SBwAAAAAAADoNIUaae973/uSJIcccsgmxwcMGJBarbbZOs3NzZk5c2aHa+ece37+7ryvFYkDAAAAAAAAnaZQI+2EE07Iyy+//GfH99hjj5x//vmbrTNjxoxMmzatw7VaD7PRAAAAAACA+rOLFa8p1Eg79dRT33B88ODBW9RIq1Zfv4zjho1FkgAAAAAAAEDnKtRI+59eeuml/PCHP8zjjz+eIUOG5Pjjj8+gQYPKygYAAAAAAAB1U6iRNmrUqMybNy+77rprnn766Rx88MFZvXp13vGOd+Q3v/lNLrzwwtx7770ZMWJEZ+UFAAAAAACALtFQ5ObFixdn48Y/rME4Y8aMDB06NMuWLcv999+fZcuW5T3veU/OOeecTgkKAAAAAAAAXalQI+1PzZ8/P1/72tfS2NiYJOnbt29mzpyZefPmlRYOAAAAAAAA6qXwHmmVSiVJsmHDhgwZMqTD2J577pmVK1eWkwwAAAAAAKAOKqnUOwLdROFG2qGHHpqePXtm7dq1WbJkSUaPHt0+tmzZsgwaNKjUgAAAAAAAAFAPhRpp559/fofzvn37dji/7bbbctBBB217KgAAAAAAAKizSq1Wq9U7RJJs2FhuvbYSP6yGiimcsCnd491j07xsu5cy35OT5MUSv2n0692rtFpJ93/ulf267e4fb3fWnd9DO4PnytZ7tbWt1HobW8t98u28U4/SapX9sfbqsdVbQncJ78lsqbJ/lir7d9wy83397t+UVitJ/uaQfUutR/exYs2GUuvt0di71HoAy3+3vtR679hjl1LrsXn/76PP1zvCdueI0bvXO0Kn6N6/WQIAAAAAAECdaKQBAAAAAADAJhTaIw0AAAAAAGBHZ+l0XmNGGgAAAAAAAGzCVjXS2to2vQl4W1tbli9fvk2BAAAAAAAAoDso1Ehbu3ZtjjvuuPTp0yeDBw/Oeeedl9bW1vbxlStXZsSIEaWHBAAAAAAAgK5WaI+0c889NwsXLsx3v/vdvPDCC7nooovy0EMP5ZZbbslOO+2UJKnVap0SFAAAAAAAALpSoRlp//Zv/5ZvfetbOfbYY/NXf/VXefDBB7Ny5coceeSRaWlpSZJU7MAHAAAAAADADqBQI23lypXZa6+92s932223/PznP8+6devy0Y9+NOvXr9+iOi0tLVm7dm2H47VGHAAAAAAAQD01pOIoeOyoCjXShg8fnkWLFnW41q9fv8yZMycvv/xyjjnmmC2q09zcnMbGxg7H5Zc2F4kCAAAAAAAAnapQI23SpEmZPXv266737ds3P/vZz9K7d+8tqjNjxoysWbOmwzH9rBlFogAAAAAAAECn6lnk5pkzZ+aZZ57Z5Fi/fv0yd+7cPPTQQ5utU61WU61WO1zbsLFIEgAAAAAAAOhchRppAwcOzMCBA9vPX3rppfzwhz/M448/niFDhuT444/PIYccUnpIAAAAAAAA6GqFGmmjRo3KvHnzsuuuu+bpp5/OwQcfnNWrV+cd73hHfvOb3+TCCy/MvffemxEjRnRWXgAAAAAAAOgShfZIW7x4cTZu/MMajDNmzMjQoUOzbNmy3H///Vm2bFne85735JxzzumUoAAAAAAAAF2hUnEUPXZUhRppf2r+/Pn52te+lsbGxiRJ3759M3PmzMybN6+0cAAAAAAAAFAvhRtplT+2FTds2JAhQ4Z0GNtzzz2zcuXKcpIBAAAAAABAHRXaIy1JDj300PTs2TNr167NkiVLMnr06PaxZcuWZdCgQaUGBAAAAAAAgHoo1Eg7//zzO5z37du3w/ltt92Wgw46aNtTAQAAAAAAQJ1tUyPtf7r88su3KQwAAAAAAAB0F5VarVard4gk2bCx3gkAAACAHcnAcaeXWm/1A9eWWg8AtlTvwps0sa3mLFpZ7wjbnUkj31LvCJ2iod4BAAAAAAAAoDvSSAMAAAAAAIBN0EgDAAAAAACATdBIAwAAAAAAgE0o3Eir1Wp58skns3HjxiTJK6+8kptvvjnf+c538rvf/a70gAAAAAAAAFAPPYvcvGTJkhx22GF5+umns88++2TOnDn55Cc/mcWLF6dWq2WXXXbJPffck7e//e2dlRcAAAAAAKBTVVKpdwS6iUIz0s4666yMGTMmDz/8cD72sY/liCOOyLBhw7J69er8/ve/z/jx43PBBRd0VlYAAAAAAADoMpVarVbb0pt33333zJkzJ/vvv39eeuml9OvXL3fffXcmTJiQJLnnnnty/PHHZ9myZYWDbNhY+CEAAAAAf9bAcaeXWm/1A9eWWg8AtlTvQmvLUYa5i2xlVdT/M3K3ekfoFIVefi+++GJ23XXXJEmfPn3Sp0+fDBkypH38rW99a5577rnN1mlpaUlLS0uHa7Ue1VSr1SJxAAAAAAAAoNMUWtpx6NChWb58efv5ZZddlt133739fOXKlRk4cOBm6zQ3N6exsbHDcfmlzUWiAAAAAAAAQKcqNCNt4sSJWbx4cftSjlOnTu0wPmfOnLzvfe/bbJ0ZM2Zk2rRpHa7VepiNBgAAAAAAQPdRaI+0zXnyySfTu3fvDss9bil7pAEAAABlskcaADsKe6R1vTsX2yOtqEP3s0fa67z00kv54Q9/mMcffzxDhgzJ8ccfn0GDBpWVDQAAAAAAAOqmUCNt1KhRmTdvXnbdddc8/fTTOfjgg7N69eq84x3vyG9+85tceOGFuffeezNixIjOygsAAAAAAABdoqHIzYsXL87GjX9Yg3HGjBkZOnRoli1blvvvvz/Lli3Le97znpxzzjmdEhQAAAAAAAC6UqFG2p+aP39+vva1r6WxsTFJ0rdv38ycOTPz5s0rLRwAAAAAAADUS+FGWqVSSZJs2LAhQ4YM6TC25557ZuXKleUkAwAAAAAAgDoqtEdakhx66KHp2bNn1q5dmyVLlmT06NHtY8uWLcugQYNKDQgAAAAAANCVKqnUOwLdRKFG2vnnn9/hvG/fvh3Ob7vtthx00EHbngoAAAAAAADqrFKr1Wr1DpEkGzbWOwEAAADAnzdw3Oml1lv9wLWl1gNgx9W78NpybKu7Fq+qd4TtTtN+O+aKhYX3SAMAAAAAAIAyzJo1K5VKJV/5ylfar23YsCFf/OIXM2jQoPTt2zef+MQn8txzz3V43PLly3PEEUdkl112ye67757p06dn48byZ21ppAEAAAAAANDlHnjggXzrW9/Ke97zng7XzzjjjNx2223513/91/yf//N/8swzz+R//a//1T7e2tqaI444Iq+88kruueee3Hjjjbnhhhty3nnnlZ5RIw0AAAAAAIAu9eKLL2bKlCn59re/nYEDB7ZfX7NmTf7pn/4pV111VZqamvL+978/s2fPzj333JN77703STJnzpz86le/yr/8y79k//33z+GHH54LL7ww//AP/5BXXnml1JwaaQAAAAAAAH+iUnEUPYr64he/mCOOOCITJ07scH3BggV59dVXO1zfb7/9Mnz48MyfPz9JMn/+/Lz73e/O4MGD2+857LDDsnbt2jz22GNb90X/M0rZorCpqSmzZ8/OXnvtVUY5AAAAAAAAtiMtLS1paWnpcK1araZarb7u3ptuuikPPfRQHnjggdeNrVixIjvttFMGDBjQ4frgwYOzYsWK9nv+tIn22vhrY2Uq1Ej78Y9/vMnrd999d37yk5/krW99a5LkqKOO2vZkAAAAAAAAbBeam5szc+bMDtfOP//8fO1rX+tw7emnn85f//VfZ+7cuendu3cXJtw6hRppH//4x1OpVFKr1V439qUvfSlJUqlU0traWk46AAAAAAAAur0ZM2Zk2rRpHa5tajbaggUL8vzzz+d973tf+7XW1tbcfffdufbaa/Ozn/0sr7zySl544YUOs9Kee+657LHHHkmSPfbYI/fff3+Hus8991z7WJkK7ZF22GGH5fDDD8+KFSvS1tbWfvTo0SOPPvpo2traNNEAAAAAAADeZKrVavr379/h2FQj7dBDD81///d/5+GHH24/xo4dmylTprT/f69evXLnnXe2P2bJkiVZvnx5xo8fnyQZP358/vu//zvPP/98+z1z585N//79M2rUqFI/rkIz0m6//fZ8/etfz9ixY/OP//iP+djHPrZVf+im1sms9dj0OpkAAAAAAADsGPr165fRo0d3uNanT58MGjSo/fpnP/vZTJs2Lbvuumv69++fL33pSxk/fnw+8IEPJEkmTZqUUaNG5S//8i9z2WWXZcWKFfm7v/u7fPGLXyy911RoRlqSnHHGGfnxj3+cs846K5///Oezfv36wn9oc3NzGhsbOxyXX9pcuA4AAAAAAEDZKv4r/F+Zvv71r+djH/tYPvGJT+Tggw/OHnvskVtuuaV9vEePHvnJT36SHj16ZPz48TnxxBNz0kkn5YILLig1R5JUapva8GwLvPzyyznjjDNy11135YknnsgjjzyyxdPlzEgDAAAAtjcDx51ear3VD1xbaj0Adly9C60tRxn+c8nv6x1hu/Ohd+5a7widYqtffjvvvHO++c1v5rbbbstdd92V3XbbbYsfW62+vmm2YePWJgEAAAAAAIDyFV7a8U+99NJL+d3vfpdddtklP/zhD7Nq1aqycgEAAAAAAEBdFZqRNmrUqMybNy+77rprnn766Rx00EF54YUX8o53vCO/+c1vcuGFF+bee+/NiBEjOisvAAAAAAAAdIlCM9IWL16cjRv/sAbjjBkzsueee2bZsmW5//77s2zZsrznPe/JOeec0ylBAQAAAAAAoCtt9R5p8+fPzze/+c00NjYmSfr27ZuZM2dm8uTJpYUDAAAAAADoag2Veieguyi8R1ql8odnz4YNGzJkyJAOY3vuuWdWrlxZTjIAAAAAAACoo8Iz0g499ND07Nkza9euzZIlSzJ69Oj2sWXLlmXQoEGlBgQAAAAAAIB6KNRIO//88zuc9+3bt8P5bbfdloMOOmjbUwEAAAAAAECdVWq1Wq3eIZJkw8Z6JwAAAAD48waOO73UeqsfuLbUegDsuHoXXluObXX3r39f7wjbnYPfsWu9I3QKLz8AOt2rrW31jvBn9epReLtQgO1a2f+MrmID7q3ma8GOoszncnd/Hpfd+Bp45NdLrbf6tjNKrdedeQ8FALqKRhoAAAAAAMCfqMS/suAP/DN8AAAAAAAA2ASNNAAAAAAAANgEjTQAAAAAAADYhG3eI+3JJ5/M448/niFDhmT06NFlZAIAAAAAAIC6KzQj7bTTTsuLL76Y/7+9e4+Lusz///8cUAfxgGcFFQ95SLNsCzRCw03TpINWm23tdtA+ZJt2cr+usZSHWpew3LIt7eDafrI2szY7uBtpB2t1UTQptzYJkLBUPIXiIUaR6/dHH/k5Csxcw3sY0Md9b+/bbZn38PQF8WLmmhfvayTpxx9/1C9+8Qv16tVLo0aN0sCBA3XppZdWngcAAAAAAAAAAAAaMqtB2nPPPafDhw9Lkh555BGtW7dOH3zwgQ4ePKhPP/1UW7du1ezZs4NSKAAAAAAAAAAAQF1wuThsj9OV1SDNGFP5/999913NmTNHP//5zxUZGanExET96U9/0ptvvul4kQAAAAAAAAAAAEBds36PNNf/jRWLi4t13nnneZ0bOHCgvvvuO58ZHo9HHo/H6zYT7pbb7bYtBwAAAAAAAAAAAAgKqyvSJOmhhx7SlClTFBYWpu3bt3ud27t3r5o1a+YzIz09XVFRUV7HYxnptqUAAAAAAAAAAAAAQWN1Rdoll1yi3NxcSVL//v1VVFTkdf6f//ynzjnnHJ85qampmjJlitdtJpyr0QAAAAAAAAAAAFB/WA3SVq1aVeP5m266SbfddpvPHLf71G0cy8ptKgEAAAAAAAAAAACCy/o90k506NAhLV26VPn5+YqOjtaNN96otm3bOlUbAAAAAAAAAABAnXOFugDUG1aDtP79+2v16tVq06aNvvvuOw0dOlT79u1Tnz59VFBQoEceeURr165Vjx49glUvAAAAAAAAAAAAUCfCbO68efNmlZf/tAdjamqqOnfurKKiImVnZ6uoqEjnnXee0tLSglIoAAAAAAAAAAAAUJesBmknysrK0syZMxUVFSVJat68uWbNmqXVq1c7VhwAAAAAAAAAAAAQKtaDNJfrp51By8rKFB0d7XWuc+fO2r17tzOVAQAAAAAAAAAAACFk9R5pkjR8+HA1atRIpaWlys3N1YABAyrPFRUVqW3bto4WCAAAAAAAAAAAAISC1SBtxowZXh83b97c6+N3331XQ4cOrX1VAAAAAAAAAAAAIRL2f7vzAS5jjAl1EZJUVh7qCgAAAAAAABqu1vGTHc0rWf+0o3kAgMBFWO8th9rKyt8X6hIanIRerUJdQlBYv0caAAAAAAAAAAAAcCZgkAYAAAAAAAAAAABUgUEaAAAAAAAAAAAAUAUGaQAAAAAAAAAAAEAVrN6i0OPxKCwsTI0bN5YkFRQUaNGiRdq6dau6deum22+/XT169AhKoQAAAAAAAAAAAHXBFeoCUG9YXZE2atQovf3225KkNWvW6JxzztHy5ct19OhR/fOf/9SAAQOUlZUVlEIBAAAAAAAAAACAumQ1SMvJydHAgQMlSWlpabrrrrv0xRdfaMmSJdq4caOmTJmiqVOnBqVQAAAAAAAAAAAAoC5ZDdKOHTumY8eOSZI2b96sW2+91ev8bbfdpi+++MK56gAAAAAAAAAAAIAQsRqkDR48WO+++64k6ayzzjplaPb555+rTZs2PnM8Ho9KS0u9Do/HY1MKAAAAAAAAAAAAEFSNbO78hz/8QaNHj9ahQ4d044036re//a3y8vLUr18/5ebm6qmnnlJqaqrPnPT0dM2aNcvrtrSHZujB6TOtigcAAAAAAAAAAACCxWWMMTafkJWVpSlTpmjdunVet8fExGjq1Km69957fWZ4PJ5TrkAz4W653W6bUgAAAAAAAPB/WsdPdjSvZP3TjuYBAAIXYXVJDJywtmBfqEtocC46q1WoSwgK6/ZLSEhQVlaWdu/erS1btqiiokLR0dHq3r273xlu96lDs7Jy20oAAAAAAAAAAACA4Al4jt2+fXtFRkZq6dKlWr58uWJiYvTLX/5Sbdu2dbI+AAAAAAAAAAAAICTCbO7cv39//fDDD5Kk7777TgMGDND999+vlStXavr06erfv78KCwuDUigAAAAAAAAAAABQl6wGaZs3b1Z5+U97MKampiomJkZFRUXKzs5WUVGRzjvvPKWlpQWlUAAAAAAAAAAAAKAuWQ3STpSVlaWZM2cqKipKktS8eXPNmjVLq1evdqw4AAAAAAAAAAAAIFSs3yPN5XJJksrKyhQdHe11rnPnztq9e7czlQEAAAAAAAAAAISAS65Ql4B6wnqQNnz4cDVq1EilpaXKzc3VgAEDKs8VFRWpbdu2jhYIAAAAAAAAAAAAhILVIG3GjBleHzdv3tzr43fffVdDhw6tfVUAAAAAAAAAAABAiLmMMSbURUhSWXmoKwAAAAAAAGi4WsdPdjSvZP3TjuYBAAIXYb23HGprXcH+UJfQ4Aw+KyrUJQQF7QcAAAAAAHAacHrw5eRgjqEcAABoqMJCXQAAAAAAAAAAAABQH3FFGgAAAAAAAAAAwAlcrlBXgPqCK9IAAAAAAAAAAACAKjBIAwAAAAAAAAAAAKpgNUj7+9//rsOHDwerFgAAAAAAAAAAAKDesBqkXX/99YqOjtYdd9yhdevWBasmAAAAAAAAAAAAIOSst3b8f//v/2nDhg1KSEjQgAED9OSTT2rv3r3BqA0AAAAAAAAAAAAIGetB2sSJE7Vx40atX79el1xyiWbNmqXOnTtr3LhxWrlyZTBqBAAAAAAAAAAAqDMuDuvjdGU9SDvuwgsv1Pz587Vjxw698MIL2r17ty6//HL16NHD5+d6PB6VlpZ6HR6PJ9BSAAAAAAAAAAAAAMdZDdJcrlNnihEREbr55pv18ccfKzc3VzfddJPPnPT0dEVFRXkdj2Wk25QCAAAAAAAAAAAABJXLGGP8vXNYWJiKi4vVoUOHWv2jHo/nlCvQTLhbbre7VrkAAAAAAABwRuv4yY5llax/2rEsADgTRTQKdQVnnvVb9oe6hAYnvmdUqEsICqv2KywsVPv27Wv9j7rdpw7NysprHQsAAAAAAAAAAAA4xmqQ1q1bN6+PDx06pKVLlyo/P1/R0dG68cYb1bZtW0cLBAAAAAAAAAAAAELBapDWv39/rV69Wm3atNF3332nSy65RCUlJerTp48KCgr0yCOPaO3aterRo0ew6gUAAAAAAAAAAAguV6gLQH0RZnPnzZs3q7z8pz0YU1NTFRMTo6KiImVnZ6uoqEjnnXee0tLSglIoAAAAAAAAAAAAUJesBmknysrK0syZMxUV9dObxzVv3lyzZs3S6tWrHSsOAAAAAAAAAAAACBXrQZrL9dP1jGVlZYqOjvY617lzZ+3evduZygAAAAAAAAAAAIAQsnqPNEkaPny4GjVqpNLSUuXm5mrAgAGV54qKitS2bVtHCwQAAAAAAAAAAABCwWqQNmPGDK+Pmzdv7vXxu+++q6FDh9a+KgAAAAAAAAAAACDEXMYYE+oiJKmsPNQVAAAAAAAAIBhaD77X0bySdfMczQOA+i7Cem851NaGwtJQl9DgxPVoGeoSgsL6PdIAAAAAAAAAAACAMwGDNAAAAAAAAAAAAKAKDNIAAAAAAAAAAACAKjBIAwAAAAAAAAAAAKpg/RaFX3zxhT777DMNGzZMPXv21FdffaVnnnlGFRUVuuaaazRq1Khg1AkAAAAAAAAAAADUKatB2ptvvqlx48apVatW8ng8WrZsma6//nrFxcUpPDxcV1xxhV566SXddNNNwaoXAAAAAAAAAAAgqFyuUFeA+sJqa8fZs2dr1qxZ2rNnj1544QVdf/31mjJlilauXKnMzExlZGToscceC1atAAAAAAAAAAAAQJ2xGqTl5ubqV7/6lSTphhtu0KFDhzR27NjK89dcc43y8/MdLRAAAAAAAAAAAAAIBautHVu0aKG9e/eqe/fu2rdvn8rLy7V3797K83v37lXz5s195ng8Hnk8Hq/bTLhbbrfbphwAAAAAAAAAAAAgaKyuSBsxYoQmTZqkV155RbfeeqtGjhyp1NRUbd68Wbm5uZo6daqGDBniMyc9PV1RUVFex2MZ6QF/EQAAAAAAAAAAAIDTrAZpjz/+uFq2bKk777xTR44c0Wuvvaa4uDj1799f/fv31/bt2/Xoo4/6zElNTdX+/fu9jqnTUgP+IgAAAAAAAAAAAACnuYwxprYhW7Zs0eHDh3X22WerUSOr3SIrlZXXtgoAAAAAAADUR60H3+toXsm6eY7mAUB9FxHYy+6ohY3floa6hAbngu4tQ11CUNSq/Q4dOqSlS5cqPz9fMTExio6OVtu2bZ2qDQAAAAAAAAAAAAgZq0Fa//79tXr1arVp00bfffedhg4dqn379qlPnz4qKCjQww8/rLVr16pHjx7BqhcAAAAAAAAAAACoE1bvkbZ582aVl/+0B2Nqaqo6d+6soqIiZWdnq6ioSOedd57S0tKCUigAAAAAAAAAAABQl6wGaSfKysrSzJkzFRUVJUlq3ry5Zs2apdWrVztWHAAAAAAAAAAAABAq1oM0l8slSSorK1N0dLTXuc6dO2v37t3OVAYAAAAAAAAAAACEkNV7pEnS8OHD1ahRI5WWlio3N1cDBgyoPFdUVKS2bds6WiAAAAAAAAAAAECdcoW6ANQXVoO0GTNmeH3cvHlzr4/fffddDR06tPZVAQAAAAAAAAAAACHmMsaYUBchSWXloa4AAAAAAAAAwdB68L2O5pWsm+doHgDUdxHWe8uhtjYWlYa6hAbngm4tQ11CUNB+AIAG58CPzv31RXOHn4m6uOwffnL6T5mc/tmr7/WdSSoc/o8R5vB/jGMVztUXHnZm/aCUH3P2v22j8DPr+3cmqe+/kysc/D3ww6GjjmVJUrsWTRzNQ+CcHnz9/p+bHc37Y/LZjuYBpwsnn4s6/Ty0flweUr1vig84mjewawtH8wD4LyzUBQAAAAAAAAAAAAD1EYM0AAAAAAAAAAAAoAps7QgAAAAAAAAAAHACl9g6HT/hijQAAAAAAAAAAACgCgFdkfbRRx9p9erV2rFjh8LCwtSzZ09dffXV6t27t9P1AQAAAAAAAAAAACFhNUjbtWuXrrrqKm3YsEFhYWGqqKjQz372M7355puaNm2apkyZojlz5gSrVgAAAAAAAAAAAKDOWG3teM899ygmJkYlJSU6ePCg7rrrLp1zzjnasWOHVqxYoUWLFmnevHnBqhUAAAAAAAAAAACoM1aDtPfee09/+MMf1LJlS7ndbj366KN69dVXVVpaqksvvVRPPvmkFixYEKxaAQAAAAAAAAAAgDpjtbWj2+2Wy+Wq/DgsLEzHjh1TeXm5JOniiy/Wt99+6zPH4/HI4/F43WbC3XK73TblAAAAAAAAAAAAOO6EUQjOcFZXpA0ZMkTTp0/XoUOHdPToUf3+979Xz5491aZNG0nS7t271bp1a5856enpioqK8joey0gP7CsAAAAAAAAAAAAAgsDqirTHH39cI0eOVKtWreRyudSsWTMtXbq08vzXX3+t2267zWdOamqqpkyZ4nWbCedqNAAAAAAAAAAAANQfVoO0nj17atOmTVqzZo08Ho8uuugitWvXrvK8P0M06actIk/exrGs3KYSAAAAAAAAAAAAILisBmmSFBkZqcsuu0ySdOjQIb344ovKz89XdHS0brzxRrVt29bxIgEAAAAAAAAAAIC6ZjVI69+/v1avXq02bdrou+++09ChQ7Vv3z716dNHBQUFeuSRR7R27Vr16NEjWPUCAAAAAAAAAAAAdSLM5s6bN29WeflPezCmpqaqc+fOKioqUnZ2toqKinTeeecpLS0tKIUCAAAAAAAAAADUBReH9XG6shqknSgrK0szZ85UVFSUJKl58+aaNWuWVq9e7VhxAAAAAAAAAAAAQKhYD9Jcrp/mimVlZYqOjvY617lzZ+3evduZygAAAAAAAAAAAIAQsnqPNEkaPny4GjVqpNLSUuXm5mrAgAGV54qKitS2bVtHCwQAAAAAAAAAAABCwWqQNmPGDK+Pmzdv7vXxu+++q6FDh9a+KgAAAAAAAAAAACDEXMYYE+oiJKmsPNQVAAAAAAAA4EzUOn6yo3kl6592NA8AIqz3lkNtfbH1QKhLaHAGxrYIdQlBQfsBAAAAAAAAAACcyBXqAlBfhIW6AAAAAAAAAAAAAKA+YpAGAAAAAAAAAAAAVMF6a8cjR47orbfeUlZWloqLiyVJnTp10sUXX6wxY8aoSZMmjhcJAAAAAAAAAAAA1DWrK9Ly8/PVr18/3XrrrcrJyVFFRYUqKiqUk5OjW265Reecc47y8/ODVSsAAAAAAAAAAABQZ6yuSPvNb36jc889Vzk5OWrZsqXXudLSUt1yyy2aNGmS3n//fUeLBAAAAAAAAAAAAOqa1SBtzZo1ys7OPmWIJkktW7bUI488osGDBztWHAAAAAAAAAAAQF1zyRXqElBPWG3t2KpVK3377bfVnv/222/VqlWrWpYEAAAAAAAAAAAAhJ7VFWn/8z//o1tuuUUPPfSQhg8fro4dO0qSdu7cqQ8//FB/+MMfdPfddwelUAAAAAAAAAAAAKAuWQ3SHn74YTVr1kyPPfaYfvvb38rl+unSRmOMOnXqpGnTpul3v/udzxyPxyOPx+N1mwl3y+1225QDAAAAAAAAAAAABI3V1o6SNG3aNG3fvl0FBQVavXq1Vq9erYKCAm3fvt2vIZokpaenKyoqyut4LCPdungAAAAAAAAAAAAgWFzGGFPX/yhXpAEAAAAAAKC+aB0/2dG8kvVPO5oHABFWe8vBCZu+OxjqEhqc87o2D3UJQWF1RdrGjRtVWFhY+fHixYuVmJiorl27asiQIVqyZIlfOW63Wy1btvQ6GKIBAAAAAAAAAACgPrEapI0fP14FBQWSpIULF2rixImKi4tTWlqa4uPjlZKSokWLFgWlUAAAAAAAAAAAgLrgcnHYHqcrqwtC8/Ly1Lt3b0nS/PnzNW/ePKWkpFSej4+P1+zZszVhwgRnqwQAAAAAAAAAAADqmNUVaZGRkdqzZ48kadu2bRo0aJDX+cGDB3tt/QgAAAAAAAAAAAA0VFaDtNGjR2vBggWSpKSkJL3xxhte55cuXapevXo5Vx0AAAAAAAAAAAAQIlZbO2ZkZCgxMVFJSUmKi4vT3LlztWrVKvXr10+5ublau3atli1bFqxaAQAAAAAAAAAAgDpjdUVaTEyMcnJylJCQoMzMTBljlJ2drRUrVqhLly5as2aNkpOTg1UrAAAAAAAAAAAAUGdcxhgT6iIkqaw81BUAAAAAAADgTNQ6frKjeSXrn3Y0DwAirPaWgxO+/P5gqEtocAZ0aR7qEoKC9gMAAAAAAECDUuHw34U7PfhqfdH9juaVrH3C0TwAAOA/q60dAQAAAAAAAAAAgDMFgzQAAAAAAAAAAACgCgzSAAAAAAAAAAAAgCo4OkjbuXOnHn74YScjAQAAAAAAAAAAgJBwdJBWXFysWbNmORkJAAAAAAAAAABQt1wc1sdpqpHNnTdt2lTj+dzc3FoVAwAAAAAAAAAAANQXVoO0888/Xy6XS8aYU84dv93lOo3HjgAAAAAAAAAAADhjWA3S2rRpozlz5mj48OFVnv/qq6901VVXOVIYAAAAAAAAAAAAEEpWg7QLL7xQ27dvV7du3ao8v2/fviqvVjuZx+ORx+Pxus2Eu+V2u23KAQAAAAAAAAAAAIImzObOd955p7p3717t+djYWL344os+c9LT0xUVFeV1PJaRblMKAAAAAAAAAAAAEFQu488lZA7jijQAAAAAAAAEqsLhl7PCXC5H81pfdL+jeSVrn3A0D0DDE2G1txyc8NW2Q6EuocE5p3OzUJcQFCFpP7f71KFZWXkoKgEAAAAAAAAAAACqZrW148aNG1VYWFj58eLFi5WYmKiuXbtqyJAhWrJkieMFAgAAAAAAAAAAAKFgNUgbP368CgoKJEkLFy7UxIkTFRcXp7S0NMXHxyslJUWLFi0KSqEAAAAAAAAAAABAXbLa2jEvL0+9e/eWJM2fP1/z5s1TSkpK5fn4+HjNnj1bEyZMcLZKAAAAAAAAAAAAoI5ZXZEWGRmpPXv2SJK2bdumQYMGeZ0fPHiw19aPAAAAAAAAAAAAQENlNUgbPXq0FixYIElKSkrSG2+84XV+6dKl6tWrl3PVAQAAAAAAAAAA1DGXi8P2OF1Zbe2YkZGhxMREJSUlKS4uTnPnztWqVavUr18/5ebmau3atVq2bFmwagUAAAAAAAAAAADqjNUVaTExMcrJyVFCQoIyMzNljFF2drZWrFihLl26aM2aNUpOTg5WrQAAAAAAAAAAAECdcRljTKiLkKSy8lBXAAAAAAAAANQ/reMnO5pXsv5pR/MABF+E1d5ycMJ/tx8KdQkNTv+YZqEuISisrkgDAAAAAAAAAAAAzhQM0gAAAAAAAAAAAIAqcEEoAAAAAAAAAADACVyhLgD1RkBXpH3//fc6ePDgKbcfPXpUn376aa2LAgAAAAAAAAAAAELNapC2Y8cODRo0SN26dVOrVq10yy23eA3UfvjhB/385z93vEgAAAAAAAAAAACgrlkN0h544AGFhYVp3bp1yszM1H//+1/9/Oc/V0lJSeV9jDGOFwkAAAAAAAAAAADUNatB2gcffKCnnnpKcXFxGjFihNasWaPo6Ghdeuml+uGHHyRJLhc7hwIAAAAAAAAAAKDhsxqk7d+/X61bt6782O12680331T37t3185//XLt27XK8QAAAAAAAAAAAACAUrAZpPXv21KZNm7xua9SokV5//XX17NlTV155paPFAQAAAAAAAAAA1DkXh/VxmrIapI0ePVrPP//8KbcfH6adf/75fuV4PB6VlpZ6HR6Px6YUAAAAAAAAAAAAIKisBmmzZ8/W66+/XuW5Ro0a6e9//7u2bNniMyc9PV1RUVFex2MZ6TalAAAAAAAAAAAAAEHlMsaYuv5HPR7PKVegmXC33G53XZcCAAAAAAAA1Gut4yc7mley/mlH8wAEX0SjUFdw5vl6x6FQl9Dg9ItuFuoSgsLqirSNGzeqsLCw8uPFixcrMTFRXbt21ZAhQ7RkyRK/ctxut1q2bOl1MEQDAAAAAAAAAABAfWI1SBs/frwKCgokSQsXLtTEiRMVFxentLQ0xcfHKyUlRYsWLQpKoQAAAAAAAAAAAEBdsrogNC8vT71795YkzZ8/X/PmzVNKSkrl+fj4eM2ePVsTJkxwtkoAAAAAAAAAAIA64pIr1CWgnrC6Ii0yMlJ79uyRJG3btk2DBg3yOj948GCvrR8BAAAAAAAAAACAhspqkDZ69GgtWLBAkpSUlKQ33njD6/zSpUvVq1cv56oDAAAAAAAAAAAAQsRqa8eMjAwlJiYqKSlJcXFxmjt3rlatWqV+/fopNzdXa9eu1bJly4JVKwAAAAAAAAAAAFBnrK5Ii4mJUU5OjhISEpSZmSljjLKzs7VixQp16dJFa9asUXJycrBqBQAAAAAAAAAAAOqMyxhjQl2EJJWVh7oCAAAAAAAAoP5pHT/Z0byS9U87mgcg+CKs9paDEzbvOBzqEhqcs6MjQ11CUDBIAwAAAAAAAM4gTg7mGMoBdYNBWt3LLWaQZqtvp9NzkGa1tSMAAAAAAAAAAABwpmCQBgAAAAAAAAAAAFSBQRoAAAAAAAAAAABQBeudVffu3atNmzZp4MCBatOmjfbs2aO//OUv8ng8uv7669WvX79g1AkAAAAAAAAAAADUKatBWnZ2tkaOHKnS0lK1atVKK1eu1PXXX69GjRqpoqJCjz76qFavXq0LLrggWPUCAAAAAAAAAAAAdcJqa8e0tDRdf/312r9/v37/+99r7NixGj58uL755hvl5+frl7/8pR555JFg1QoAAAAAAAAAABB0Lg7r43TlMsYYf+/cpk0brVmzRv369dPRo0cVERGhrKwsDRo0SJK0ceNGXX311fr++++tCykrt/4UAAAAAAAAAJZax092LKtk/dOOZQGoXoT1mzShtr4pPhzqEhqcPp0iQ11CUFhdkXbkyBE1bdpUktS4cWNFRkaqXbt2lefbtWunvXv3OlshAAAAAAAAAAAAEAJWc+yuXbtqy5Yt6t69uyRpyZIlio6Orjy/Y8cOr8FadTwejzwej9dtJtwtt9ttUw4AAAAAAAAAAAAQNFZXpP3yl7/Url27Kj++4oorKq9Qk6R33nmncpvHmqSnpysqKsrreCwj3aYUAAAAAAAAAAAAIKis3iPNl8OHDys8PNznlWVckQYAAAAAAACEBu+RBjQ8vEda3eM90uydru+R5mj7RUb6901yu08dmpWVO1kJAAAAAAAAAABAgFyhLgD1hdXWjhs3blRhYWHlx4sXL1ZiYqK6du2qIUOGaMmSJY4XCAAAAAAAAAAAAISC1SBt/PjxKigokCQtXLhQEydOVFxcnNLS0hQfH6+UlBQtWrQoKIUCAAAAAAAAAAAAdclqa8e8vDz17t1bkjR//nzNmzdPKSkplefj4+M1e/ZsTZgwwdkqAQAAAAAAAAAAgDpmdUVaZGSk9uzZI0natm2bBg0a5HV+8ODBXls/AgAAAAAAAAAAAA2V1SBt9OjRWrBggSQpKSlJb7zxhtf5pUuXqlevXs5VBwAAAAAAAAAAAISI1daOGRkZSkxMVFJSkuLi4jR37lytWrVK/fr1U25urtauXatly5YFq1YAAAAAAAAAAICgc8kV6hJQT1hdkRYTE6OcnBwlJCQoMzNTxhhlZ2drxYoV6tKli9asWaPk5ORg1QoAAAAAAAAAAADUGZcxxoS6CEkqKw91BQAAAAAAAABstI6f7GheyfqnHc0DThcRVnvLwQl5O38MdQkNTu+OTUNdQlBYXZEGAAAAAAAAAAAAnCkYpAEAAAAAAAAAAABVYJAGAAAAAAAAAAAAVIGdVQEAAAAAAAAAAE7gcoW6AtQXjlyR1rNnT+Xl5TkRBQAAAAAAAAAAANQLVlekPfXUU1XevnXrVr344ovq1KmTJOmee+6pfWUAAAAAAAAAAABACLmMMcbfO4eFhalz585q1Mh7/lZUVKSYmBg1btxYLpdLW7ZssS6krNz6UwAAAAAAAACEUOv4yY7mlax/2tE84HQRwZs01bn8XT+GuoQGp1eHpqEuISis2u+OO+7QunXr9Le//U39+vWrvL1x48ZasWKF+vfv73iBAAAAAAAAAAAAQChYvUfas88+q+nTp2vUqFF6+mn+OgQAAAAAAAAAAAD+S09PV3x8vFq0aKEOHTpo7Nixys3N9bpPWVmZJk2apLZt26p58+a67rrrtHPnTq/7bN26VVdccYUiIyPVoUMHTZ06VeXlzm9/aDVIk6RrrrlGWVlZWrZsmUaPHq3i4mLrf9Tj8ai0tNTr8Hg81jkAAAAAAAAAAABOc3FYH/765JNPNGnSJK1du1YrV67U0aNHNXLkSB06dKjyPvfff7/effddvf766/rkk0+0fft2XXvttZXnjx07piuuuEJHjhzRv//9b/3v//6v/vrXv2r69OkWlfjH6j3STmSM0aOPPqqnnnpKu3fv1qZNm/ze2nHmzJmaNWuW121pD83Qg9NnBlIKAAAAAAAAgBDgPdKAusF7pNW9At4jzdpZAb5H2u7du9WhQwd98sknuuSSS7R//361b99ef/vb3/SLX/xCkrR582b169dPWVlZuuiii/Tee+/pyiuv1Pbt29WxY0dJP+2qOG3aNO3evVtNmjRx7OuyviLtOJfLpdTUVC1fvlxz585VdHS035+bmpqq/fv3ex1Tp6UGWgoAAAAAAAAAAABCKNDdCPfv3y9JatOmjSTps88+09GjRzVixIjK+5x99tmKjY1VVlaWJCkrK0vnnntu5RBNkkaNGqXS0lJ99dVXTn5ZgQ/Sjrvwwgt17733qnXr1n5/jtvtVsuWLb0Ot9td21IAAAAAAAAAAAAQAunp6YqKivI60tPTa/yciooK3XfffUpMTNSAAQMkScXFxWrSpIlatWrldd+OHTtWvt1YcXGx1xDt+Pnj55xkNUjbuHGjCgsLKz9evHixEhMT1bVrVw0ZMkRLlixxtDgAAAAAAAAAAADUf1XtRpiaWvNuhJMmTdKXX35Zr+dLVoO08ePHq6CgQJK0cOFCTZw4UXFxcUpLS1N8fLxSUlK0aNGioBQKAAAAAAAAAACA+sl2N8LJkydr+fLl+vjjj9WlS5fK2zt16qQjR45o3759XvffuXOnOnXqVHmfnTt3nnL++DknWb1FYV5ennr37i1Jmj9/vubNm6eUlJTK8/Hx8Zo9e7YmTJjgaJEAAAAAAAAAAAB1xhXqAk5fxhjdfffdWrZsmVatWqUePXp4nb/wwgvVuHFjffjhh7ruuuskSbm5udq6dasSEhIkSQkJCZo9e7Z27dqlDh06SJJWrlypli1bqn///o7WazVIi4yM1J49e9StWzdt27ZNgwYN8jo/ePBgr60fAQAAAAAAAAAAgOMmTZqkv/3tb3r77bfVokWLyvc0i4qKUtOmTRUVFaXbb79dU6ZMUZs2bdSyZUvdfffdSkhI0EUXXSRJGjlypPr376+bb75Zc+bMUXFxsR588EFNmjSpxqvgAmG1tePo0aO1YMECSVJSUpLeeOMNr/NLly5Vr169nKsOAAAAAAAAAAAAp40FCxZo//79GjZsmKKjoyuP1157rfI+TzzxhK688kpdd911uuSSS9SpUye9+eablefDw8O1fPlyhYeHKyEhQb/+9a91yy236OGHH3a8Xpcxxvh75+3btysxMVGxsbGKi4vTggULdOGFF6pfv37Kzc3V2rVrtWzZMiUnJ1sXUlZu/SkAAAAAAAAAQqh1/GRH80rWP+1oHnC6iLDaWw5OKNj9Y6hLaHDOat801CUEhdUVaTExMcrJyVFCQoIyMzNljFF2drZWrFihLl26aM2aNQEN0QAAAAAAAAAAAID6xuqKtGDiijQAAAAAAADgzMYVbkDVuCKt7nFFmr3T9Yo02g8AAAAAAAAAAOAELrlCXQLqCautHQEAAAAAAAAAAIAzBYM0AAAAAAAAAAAAoAq12trRGKNVq1YpPz9f0dHRGjVqlBo3buxUbQAAAAAAAAAAAEDIWA3SkpOT9eqrryoqKko//PCDkpOTlZ2drXbt2mnv3r3q06ePPv30U7Vv3z5Y9QIAAAAAAAAAAAB1wmprx8zMTHk8HknSgw8+qAMHDqigoEC7du1SUVGRmjVrpunTpwelUAAAAAAAAAAAAKAuBby140cffaQ5c+aoR48ekqQuXbooIyNDKSkpjhUHAAAAAAAAAABQ11yuUFeA+sLqijRJcv3fT09JSYnOOussr3O9evXS9u3bnakMAAAAAAAAAAAACCHrK9Juu+02ud1uHT16VIWFhTrnnHMqzxUXF6tVq1Y+MzweT+UWkceZcLfcbrdtOQAAAAAAAAAAAEBQWF2Rduutt6pDhw6KiorSmDFjdPjwYa/zf//733X++ef7zElPT1dUVJTX8VhGulXhAAAAAAAAAAAAQDC5jDHGqbBDhw4pPDxcERERNd6PK9IAAAAAAAAAnKx1/GRH80rWP+1oHhAqEdZ7y6G2CveUhbqEBqdHu5pnQw2Vo+3XrFkzv+7ndp86NCsrd7ISAAAAAAAAAAAAoHastnbcuHGjCgsLKz9evHixEhMT1bVrVw0ZMkRLlixxvEAAAAAAAAAAAIC65OKwPk5XVoO08ePHq6CgQJK0cOFCTZw4UXFxcUpLS1N8fLxSUlK0aNGioBQKAAAAAAAAAAAA1CWrrR3z8vLUu3dvSdL8+fM1b948paSkVJ6Pj4/X7NmzNWHCBGerBAAAAAAAAAAAAOqY1RVpkZGR2rNnjyRp27ZtGjRokNf5wYMHe239CAAAAAAAAAAAADRUVoO00aNHa8GCBZKkpKQkvfHGG17nly5dql69ejlXHQAAAAAAAAAAABAiVls7ZmRkKDExUUlJSYqLi9PcuXO1atUq9evXT7m5uVq7dq2WLVsWrFoBAAAAAAAAAACAOmN1RVpMTIxycnKUkJCgzMxMGWOUnZ2tFStWqEuXLlqzZo2Sk5ODVSsAAAAAAAAAAEDwuTisj9OUyxhjQl2EJJWVh7oCAAAAAAAAAKeT1oPvdTSvZN08R/MAf0VY7S0HJ3y7tyzUJTQ43dtGhLqEoLC6Ig0AAAAAAAAAAAA4UzBIAwAAAAAAAAAAAKrAIA0AAAAAAAAAAACoAoM0AAAAAAAAAAAAoApWb1H4/fffKyIiQu3atZMk/etf/9Kzzz6rrVu3qlu3bpo0aZISEhKCUigAAAAAAAAAAEBdcMkV6hJQT1hdkXbddddp7dq1kqS3335bw4YN08GDB5WYmKjDhw8rKSlJy5cvD0qhAAAAAAAAAAAAQF2yuiLtq6++0jnnnCNJSk9P1x//+EdNmzat8vzTTz+t6dOn68orr3S2SgAAAAAAAAAAAKCOWV2R1qhRIx04cECSVFhYqNGjR3udHz16tHJzc52rDgAAAAAAAAAAAAgRq0FaUlKSXn31VUnSz372M61atcrr/Mcff6zOnTs7VhwAAAAAAAAAAAAQKlZbOz766KMaOnSotm/friFDhigtLU3r169Xv379lJubq9dee03PPvuszxyPxyOPx+N1mwl3y+1221UPAAAAAAAAAAAABInVFWn9+vXTunXrdOTIEc2ZM0eHDh3SK6+8opkzZyo/P19LlizRbbfd5jMnPT1dUVFRXsdjGemBfg0AAAAAAAAAAACOcbk4bI/TlcsYYwL5RGOMdu3apYqKCrVr106NGzf2+3O5Ig0AAAAAAABAsLUefK+jeSXr5jmaB/grwmpvOThh6w8e33eCl9g2p+eMJ+D2c7lc6tixY0Cf63afOjQrKw+0EgAAAAAAAAAAAMB5Vls7bty4UYWFhZUfL168WImJieratauGDBmiJUuWOF4gAAAAAAAAAAAAEApWg7Tx48eroKBAkrRw4UJNnDhRcXFxSktLU3x8vFJSUrRo0aKgFAoAAAAAAAAAAADUJautHfPy8tS7d29J0vz58zVv3jylpKRUno+Pj9fs2bM1YcIEZ6sEAAAAAAAAAAAA6pjVFWmRkZHas2ePJGnbtm0aNGiQ1/nBgwd7bf0IAAAAAAAAAADQ0Lg4rI/TldUgbfTo0VqwYIEkKSkpSW+88YbX+aVLl6pXr17OVQcAAAAAAAAAAACEiNXWjhkZGUpMTFRSUpLi4uI0d+5crVq1Sv369VNubq7Wrl2rZcuWBatWAAAAAAAAAAAAoM5YXZEWExOjnJwcJSQkKDMzU8YYZWdna8WKFerSpYvWrFmj5OTkYNUKAAAAAAAAAAAA1BmXMcaEughJKisPdQUAAAAAAAAAUL3Wg+5xNK8k+ylH83D6irDaWw5O+O4HT6hLaHC6tnGHuoSgsLoiDQAAAAAAAAAAADhTMMcGAAAAAAAAAAA4gcsV6gpQX3BFGgAAAAAAAAAAAFAFq0Ha3LlzVVRUFKxaAAAAAAAAAAAAgHrDapA2depUnXXWWbrsssv02muv6ciRI8GqCwAAAAAAAAAAAAgp660dFy5cqGbNmunmm29WTEyM7rvvPn355ZfBqA0AAAAAAAAAAAAIGetBWnJyst566y19//33+t3vfqf3339fAwcO1KBBg/TCCy/owIEDwagTAAAAAAAAAAAAqFPWg7TjOnTooN/97nf6+uuvtWrVKvXv31/333+/oqOjnawPAAAAAAAAAACgjrk4rI/TUyObO7tcVX8jhg4dqqFDh+qpp57Sa6+95jPH4/HI4/F43WbC3XK73TblAAAAAAAAAAAAAEFjdUWaMabG8y1btlRKSorPnPT0dEVFRXkdj2Wk25QCAAAAAAAAAAAABJXL+JqOBQFXpAEAAAAAAABoaFoPusfRvJLspxzNw+krwmpvOTjh+5IjoS6hwenSukmoSwiKkLSf233q0KysPBSVAAAAAAAAAAAAAFWz2tpx48aNKiwsrPx48eLFSkxMVNeuXTVkyBAtWbLE8QIBAAAAAAAAAACAULAapI0fP14FBQWSpIULF2rixImKi4tTWlqa4uPjlZKSokWLFgWlUAAAAAAAAAAAgLrgcnHYHqcrq60d8/Ly1Lt3b0nS/PnzNW/ePKWkpFSej4+P1+zZszVhwgRnqwQAAAAAAAAAAADqmNUVaZGRkdqzZ48kadu2bRo0aJDX+cGDB3tt/QgAAAAAAAAAAAA0VFaDtNGjR2vBggWSpKSkJL3xxhte55cuXapevXo5Vx0AAAAAAAAAAAAQIlZbO2ZkZCgxMVFJSUmKi4vT3LlztWrVKvXr10+5ublau3atli1bFqxaAQAAAAAAAAAAgDpjdUVaTEyMcnJylJCQoMzMTBljlJ2drRUrVqhLly5as2aNkpOTg1UrAAAAAAAAAAAAUGdcxhgT6iIkqaw81BUAAAAAAAAAQPVaD7rH0byS7KcczcPpK8Jqbzk4Yfu+I6EuocGJadUk1CUEBYM0AAAAAAAAAAiB1vGTHc0rWf+0o3moPxik1T0GafZO10Ga1daOAAAAAAAAAAAAwJmCQRoAAAAAAAAAAABQBQZpAAAAAAAAAAAAQBWsB2nLly/X9OnTtWbNGknSRx99pOTkZF1++eV6/vnnHS8QAAAAAAAAAAAACAWrQdpzzz2na665Rv/85z+VnJysl19+WWPHjlXnzp3VvXt33XfffZo3b16wagUAAAAAAAAAAAg6l4vD9jhdNbK581NPPaX58+crJSVFH3/8sZKTkzV37lzdddddkqSLLrpIc+bM0b333huUYgEAAAAAAAAAAIC6YnVFWmFhoUaNGiVJ+vnPf65jx47pkksuqTw/bNgwFRUVOVshAAAAAAAAAAAAEAJWg7S2bdtWDsq2b9+u8vJybd26tfJ8UVGR2rRp42yFAAAAAAAAAAAAQAhYbe04ZswY3X777br11lv1zjvv6JZbbtFvf/tbhYWFyeVyaerUqRo5cqTPHI/HI4/H43WbCXfL7XbbVQ8AAAAAAAAAAAAEidUVaRkZGRo2bJiWLFmi888/X88//7xuv/12jRkzRqNHj1bbtm2Vnp7uMyc9PV1RUVFex2MZvj8PAAAAAAAAAAAAqCsuY4ypbUhZWZmOHj2qFi1a+HV/rkgDAAAAAAAAcKZrHT/Z0byS9U87mof6I8Jqbzk4oXj/0VCX0OB0imoc6hKCwpH2i4iIUEREhN/3d7tPHZqVlTtRCQAAAAAAAAAAAOAMq60dN27cqMLCwsqPFy9erMTERHXt2lVDhgzRkiVLHC8QAAAAAAAAAAAACAWrQdr48eNVUFAgSVq4cKEmTpyouLg4paWlKT4+XikpKVq0aFFQCgUAAAAAAAAAAADqktXWjnl5eerdu7ckaf78+Zo3b55SUlIqz8fHx2v27NmaMGGCs1UCAAAAAAAAAAAAdczqirTIyEjt2bNHkrRt2zYNGjTI6/zgwYO9tn4EAAAAAAAAAAAAGiqrQdro0aO1YMECSVJSUpLeeOMNr/NLly5Vr169nKsOAAAAAAAAAACgrrk4rI/TlNXWjhkZGUpMTFRSUpLi4uI0d+5crVq1Sv369VNubq7Wrl2rZcuWBatWAAAAAAAAAAAAoM5YXZEWExOjnJwcJSQkKDMzU8YYZWdna8WKFerSpYvWrFmj5OTkYNUKAAAAAAAAAAAA1BmXMcaEughJKisPdQUAAAAAAAAA0HC1HnSPo3kl2U85mofARVjtLQcnFJceDXUJDU6nlo1DXUJQWF2RBgAAAAAAAAAAAJwpGKQBAAAAAAAAAAAAVeCCUAAAAAAAAAAAgBO4Ql0A6g3rQdqPP/6oV199VatXr9aOHTsUFhamnj17auzYsRo+fHgwagQAAAAAAAAAAADqnNXWjvn5+erXr59SU1P1wQcf6P3335fL5dL69es1atQojRs3TuXl5cGqFQAAAAAAAAAAAKgzVoO0e+65R5dffki9Lp8AADZbSURBVLmKi4u1detWpaenq6KiQmvXrtXXX3+t9evX6w9/+EOwagUAAAAAAAAAAADqjMsYY/y9c7NmzfT555+rd+/ekqQjR46oefPm2rFjh9q2bau3335b9913nwoLC60LKeNCNgAAAAAAAAAIWOtB9ziaV5L9lKN5CFyE9Zs0obZ2lh4NdQkNTseWjUNdQlBYXZHWqlUrHThwoPLjw4cPq7y8XE2aNJEknXfeedqxY4ezFQIAAAAAAAAAAAAhYDXHvuyyyzRlyhQ9++yzcrvdSk1N1fnnn68WLVpIkrZu3aoOHTr4zPF4PPJ4PF63mXC33G63TTkAAAAAAAAAAACOc7lCXQHqC6sr0ubMmSOPx6P+/furV69eWrt2rf7yl79Unt+9e7emTp3qMyc9PV1RUVFex2MZ6fbVAwAAAAAAAAAAAEFi9R5px+Xl5cnj8ejss89Wo0b2m7NyRRoAAAAAAAAAOIv3SDt98R5pdW/XAd4jzVaHFqfne6QF1H69e/eu1T/qdp86NCsrr1UkAAAAAAAAAAAA4CirrR03btyowsLCyo8XL16sxMREde3aVUOGDNGSJUscLxAAAAAAAAAAAAAIBatB2vjx41VQUCBJWrhwoSZOnKi4uDilpaUpPj5eKSkpWrRoUVAKBQAAAAAAAAAAAOqS1daOeXl5lds6zp8/X/PmzVNKSkrl+fj4eM2ePVsTJkxwtkoAAAAAAAAAAIA64pIr1CWgnrC6Ii0yMlJ79uyRJG3btk2DBg3yOj948GCvrR8BAAAAAAAAAACAhspqkDZ69GgtWLBAkpSUlKQ33njD6/zSpUvVq1cv56oDAAAAAAAAAAAAQsRqa8eMjAwlJiYqKSlJcXFxmjt3rlatWqV+/fopNzdXa9eu1bJly4JVKwAAAAAAAAAAAFBnrK5Ii4mJUU5OjhISEpSZmSljjLKzs7VixQp16dJFa9asUXJycrBqBQAAAAAAAAAAAOqMyxhjQl2EJJWVh7oCAAAAAAAAAGi4Wg+6x9G8kuynHM1D4CKs9paDE3YfYGhhq32L0/MHlUEaAKDBcfKRy+VyLgsAAABA3aiocPblrLAwFgZAVVonTnUsq2TNY45lnYkYpNW93QcZWthq3/z0/EG12toRAAAAAAAAAAAAOFMwSAMAAAAAAAAAAACqwCANAAAAAAAAAAAAqAKDNAAAAAAAAAAAAKAKAb3zW3Z2trKyslRcXCxJ6tSpkxISEjRo0CBHiwMAAAAAAAAAAABCxWqQtmvXLl133XVas2aNYmNj1bFjR0nSzp07df/99ysxMVF///vf1aFDh6AUCwAAAAAAAAAAEGyuUBeAesNqa8e77rpLx44d09dff61vv/1W69at07p16/Ttt9/q66+/VkVFhSZNmhSsWgEAAAAAAAAAAIA6Y3VF2vvvv69PP/1Uffv2PeVc37599dRTT2nYsGFO1QYAAAAAAAAAAACEjNUgze12q7S0tNrzBw4ckNvt9pnj8Xjk8Xi8bjPhbr8+FwAAAAAAAAAAAKgLVls73nDDDbr11lu1bNkyr4FaaWmpli1bpvHjx+vGG2/0mZOenq6oqCiv47GMdPvqAQAAAAAAAAAAgCBxGWOMv3f2eDy67777tGjRIpWXl6tJkyaSpCNHjqhRo0a6/fbb9cQTT/i8sowr0gAAteH/I5dvLt45FgAAAGhwKiocXBRICgtjYQBUpXXiVMeyStY85ljWmSjCam85OGHPwfJQl9DgtGt+ev6gWg3SjistLdWGDRu0c+dOSVKnTp104YUXqmXLlgEXUsbPJADATwzSAAAAgDMbgzSgbjBIqz8YpNW9vYcYWthq2+z0/EG1+qruvvtujRs3TkOHDtWll14arJoAAAAAAAAAAACAkLN6j7RnnnlGw4YNU58+fZSRkaHi4uJg1QUAAAAAAAAAAACElNUgTZJWrFih5ORkPf7444qNjdWYMWO0fPlyVVRUBKM+AAAAAAAAAAAAICSsB2nnnnuunnzySW3fvl0vv/yyPB6Pxo4dq65duyotLU35+fnBqBMAAAAAAAAAAACoU9aDtOMaN26scePGKTMzU1u2bFFKSopeeeUV9e3b18n6AAAAAAAAAAAAgJAIeJB2otjYWM2cOVOFhYXKzMx0IhIAAAAAAAAAACAkXPzP+n+nK6tBWrdu3RQeHl7teZfLpcsuu6zWRQEAAAAAAAAAAACh5jLGmFAXIUll5aGuAAAAAAAAAAAQDK3jJzuaV7L+aUfz6ruIRqGu4Mzzw6FjoS6hwWnTrPoLsRoyR7Z2BAAAAAAAAAAAAE43DNIAAAAAAAAAAACAKjBIAwAAAAAAAAAAAKrAzqoAAAAAAAAAAAAncLlCXQHqC0evSCspKdFLL73kZCQAAAAAAAAAAAAQEo4O0rZu3arx48c7GQkAAAAAAAAAAACEhNXWjqWlpTWeP3DgQK2KAQAAAAAAAAAAAOoLq0Faq1at5KphY1BjTI3nAQAAAAAAAAAAgIbCapDWokULpaWlafDgwVWez8vL08SJE33meDweeTwer9tMuFtut9umHAAAAAAAAAAAACBorAZpF1xwgSQpKSmpyvOtWrWSMcZnTnp6umbNmuV1W9pDM/Tg9Jk25QAAAAAAAAAAAABBYzVIu+mmm3T48OFqz3fq1EkzZszwmZOamqopU6Z43WbCuRoNAAAAAAAAAAAA9YfL+HMJWR0oKw91BQAAAAAAAACAYGgdP9nRvJL1TzuaV99FWF0SAyeUHD4W6hIanNaR4aEuISjCbO58991361//+lewagEAAAAAAAAAAADqDatB2jPPPKNhw4apT58+ysjIUHFxcbDqAgAAAAAAAAAAAELKapAmSStWrFBycrIef/xxxcbGasyYMVq+fLkqKiqCUR8AAAAAAAAAAAAQEtaDtHPPPVdPPvmktm/frpdfflkej0djx45V165dlZaWpvz8/GDUCQAAAAAAAAAAUCdcLg7b43RlPUg7rnHjxho3bpwyMzO1ZcsWpaSk6JVXXlHfvn2drA8AAAAAAAAAAAAIiYAHaSeKjY3VzJkzVVhYqMzMTCciAQAAAAAAAAAAgJCyGqR169ZN4eHh1Z53uVy67LLLal0UAAAAAAAAAAAAEGqNbO5cWFgYrDoAAAAAAAAAAACAesVljDGhLkKSyspDXQEAAAAAAAAAoCFoHT/Z0byS9U87mue0CKtLYuCEfT8eC3UJDU6rptXvaNiQ0X4AAAAAAAAAAAAncMkV6hJQT1i9RxoAAAAAAAAAAABwpmCQBgAAAAAAAAAAAFSBQRoAAAAAAAAAAABQhYAGaRUVFdXevnXr1loVBAAAAAAAAAAAANQHVoO00tJSjRs3Ts2aNVPHjh01ffp0HTt2rPL87t271aNHD8eLBAAAAAAAAAAAAOpaI5s7P/TQQ/riiy+0ePFi7du3T3/4wx+0ceNGvfnmm2rSpIkkyRgTlEIBAAAAAAAAAADqgssV6gpQX1hdkfbWW2/pueee0y9+8Qv9z//8jzZs2KDdu3frqquuksfjkSS5+OkCAAAAAAAAAADAacBqkLZ7925169at8uN27drpgw8+0IEDB5ScnKzDhw/7lePxeFRaWup1HB/EAQAAAAAAAAAAAPWB1SAtNjZWX3/9tddtLVq00IoVK/Tjjz/qmmuu8SsnPT1dUVFRXsdjGek2pQAAAAAAAAAAAABB5TIWb2p29913q7i4WK+//vop5w4cOKDLLrtM69ev17Fjx2rM8Xg8p1yBZsLdcrvd/pYCAAAAAAAAADhDtY6f7GheyfqnHc1zWkSjUFdw5iktqwh1CQ1Oywira7caDKv2e/jhh7V9+/Yqz7Vo0UIrV67Uxo0bfea43acOzcrKbSoBAAAAAAAAAAAAgstqPDh9+nT98MMP1Z5v0aKFkpKSal0UAAAAAAAAAABAqLg4rI/TldUg7ZlnntGwYcPUp08fZWRkqLi4OFh1AQAAAAAAAAAAACFlvWHlihUrlJycrMcff1yxsbEaM2aMli9frooK9gsFAAAAAAAAAADA6cN6kHbuuefqySef1Pbt2/Xyyy/L4/Fo7Nix6tq1q9LS0pSfnx+MOgEAAAAAAAAAAIA6ZT1IO65x48YaN26cMjMztWXLFqWkpOiVV15R3759nawPAAAAAAAAAAAACImAB2knio2N1cyZM1VYWKjMzEwnIgEAAAAAAAAAAICQamRz527duik8PLza8y6XS5dddlmtiwIAAAAAAAAAAAgZV6gLQH3hMsaYUBchSWXloa4AAAAAAAAAAHAmaj34XkfzStbNczQvwuqSGDjhgKci1CU0OC3cjmyCWO+cnl8VAAAAAAAAAAAAUEsM0gAAAAAAAAAAAIAqMEgDAAAAAAAAAAAAqsAgDQAAAAAAAAAAAKiC9VsUGmP07bffqmvXrmrUqJGOHDmiZcuWyePxKDk5We3atQtGnQAAAAAAAAAAAHXCJVeoS0A9YTVIy83N1ahRo/Tdd9+pZ8+eWrFiha6//npt3rxZxhhFRkbq3//+t3r37h2segEAAAAAAAAAAIA6YbW147Rp0zRw4EB9/vnnuvLKK3XFFVeoS5cuKikp0Q8//KCEhAQ9/PDDwaoVAAAAAAAAAAAAqDMuY4zx984dOnTQihUrdP755+vQoUNq0aKFPv30Uw0ZMkSS9O9//1s33nijioqKrAspK7f+FAAAAAAAAAAAaq314HsdzStZN8/RvAjrN2lCbR30+D06wf9p7j49t8O0ar+DBw+qTZs2kqRmzZqpWbNmio6OrjzftWtX7dy502eOx+ORx+Pxus2Eu+V2u23KAQAAAAAAAAAAAILGamvHmJgYbd26tfLjOXPmqEOHDpUf7969W61bt/aZk56erqioKK/jsYx0m1IAAAAAAAAAAACAoLK6Im3EiBHavHlz5VaOv/nNb7zOr1ixQhdccIHPnNTUVE2ZMsXrNhPO1WgAAAAAAAAAACD0XKfnLoUIgNV7pPlSWFioiIgIr+0e/cV7pAEAAAAAAAAAQoH3SMPJDh3hPdJsNWtyek4frbZ2vPvuu/Wvf/2r2vM9evQIaIgGAAAAAAAAAAAA1DdWg7RnnnlGw4YNU58+fZSRkaHi4uJg1QUAAAAAAAAAAACElNUgTfrpfdCSk5P1+OOPKzY2VmPGjNHy5ctVUVERjPoAAAAAAAAAAACAkLAepJ177rl68skntX37dr388svyeDwaO3asunbtqrS0NOXn5wejTgAAAAAAAAAAAKBOuYwxfr9jXlhYmIqLi9WhQwev27du3apFixbpr3/9q7777jsdO3bMupCycutPAQAAAAAAAACg1loPvtfRvJJ18xzNi2jkaBz8cPiI36MT/J/IJq5QlxAU1lekVSU2NlYzZ85UYWGhMjMznYgEAAAAAAAAAAAAQspqkNatWzeFh4dXe97lcumyyy6rdVEAAAAAAAAAAABAqFldEFpYWBisOgAAAAAAAAAAAIB6xeo90oKJ90gDAPjLyUcu1+m5dTMagIoKZ5+CuRz+YaY3gOA75vDvgfAwGre+cHqVXd9/Jzv59R70OPviQAveUKbecLov9h484mheuxZNHM0DgP6/+6ejeVv+lOxoHnzjPdLs8R5pAAAAAAAAAAAAwBmEP80CAAAAAAAAAAA40el5cRUCwBVpAAAAAAAAAAAAQBUYpAEAAAAAAAAAAABVcGSQdumll6qoqMiJKAAAAAAAAAAAAKBesHqPtHfeeafK2z/99FMtX75cXbt2lSRdffXVta8MAAAAAAAAAAAACCGrQdrYsWPlcrlkjDnl3N133y1JcrlcOnbsmDPVAQAAAAAAAAAAACFitbXjqFGjNHr0aBUXF6uioqLyCA8P15dffqmKigqGaAAAAAAAAAAAoEFz8T/r/52urAZp7733noYPH664uDgtX7484H/U4/GotLTU6/B4PAHnAQAAAAAAAAAAAE6zGqRJ0v3336933nlH06ZN08SJE3X48GHrfzQ9PV1RUVFex2MZ6dY5AAAAAAAAAAAAQLBYD9Ik6fzzz9eGDRvkcrl0/vnnV/meaTVJTU3V/v37vY6p01IDKQUAAAAAAAAAAAAIikaBfmLTpk317LPP6p133tHHH3+sdu3a+f25brdbbrfb67ay8kArAQAAAAAAAAAAAJxndUXa3XffrX/9619et1199dV64okn1KFDB0cLAwAAAAAAAAAAAELJapD2zDPPaNiwYerTp48yMjJUXFwcrLoAAAAAAAAAAABCwuXisD1OV9bvkbZixQolJyfr8ccfV2xsrMaMGaPly5eroqIiGPUBAAAAAAAAAAAAIWE9SDv33HP15JNPavv27Xr55Zfl8Xg0duxYde3aVWlpacrPzw9GnQAAAAAAAAAAADhNPPPMM+revbsiIiI0ePBgZWdnh7qkKlkP0o5r3Lixxo0bp8zMTG3ZskUpKSl65ZVX1LdvXyfrAwAAAAAAAAAAwGnktdde05QpUzRjxgxt3LhRAwcO1KhRo7Rr165Ql3aKgAdpJ4qNjdXMmTNVWFiozMxMJyIBAAAAAAAAAABwGvrTn/6klJQUjR8/Xv3799ezzz6ryMhILVq0KNSlncJqkNatWzeFh4dXe97lcumyyy6rdVEAAAAAAAAAAABoODwej0pLS70Oj8dzyv2OHDmizz77TCNGjKi8LSwsTCNGjFBWVlZdluwf04CUlZWZGTNmmLKysnqVRd7pnVefayOv/mSRV7/y6nNt5NWfLPJO77z6XBt59SeLvPqVV59rI6/+ZJF3eufV59rIqz9Z5NWvvPpc25mYB4TajBkzjCSvY8aMGafcb9u2bUaS+fe//+11+9SpU82gQYPqqFr/NahB2v79+40ks3///nqVRd7pnVefayOv/mSRV7/y6nNt5NWfLPJO77z6XBt59SeLvPqVV59rI6/+ZJF3eufV59rIqz9Z5NWvvPpc25mYB4RaWVmZ2b9/v9dR1aC4oQ3SGllfwgYAAAAAAAAAAACcwO12y+12+7xfu3btFB4erp07d3rdvnPnTnXq1ClY5QXM6j3SAAAAAAAAAAAAgEA1adJEF154oT788MPK2yoqKvThhx8qISEhhJVVjSvSAAAAAAAAAAAAUGemTJmiW2+9VXFxcRo0aJCefPJJHTp0SOPHjw91aadoUIM0t9utGTNm+HVpYF1mkXd659Xn2sirP1nk1a+8+lwbefUni7zTO68+10Ze/ckir37l1efayKs/WeSd3nn1uTby6k8WefUrrz7XdibmAQ3JDTfcoN27d2v69OkqLi7W+eefr8zMTHXs2DHUpZ3CZYwxoS4CAAAAAAAAAAAAqG94jzQAAAAAAAAAAACgCgzSAAAAAAAAAAAAgCowSAMAAAAAAAAAAACqwCANAAAAAAAAAAAAqEKDGaQ988wz6t69uyIiIjR48GBlZ2cHnPXpp5/qqquuUkxMjFwul956662As9LT0xUfH68WLVqoQ4cOGjt2rHJzcwPOW7Bggc477zy1bNlSLVu2VEJCgt57772A80706KOPyuVy6b777gs4Y+bMmXK5XF7H2WefHXDetm3b9Otf/1pt27ZV06ZNde6552rDhg0BZXXv3v2U2lwulyZNmhRQ3rFjx/TQQw+pR48eatq0qc466yw98sgjMsYElCdJBw4c0H333adu3bqpadOmuvjii7V+/Xq/PtfXz60xRtOnT1d0dLSaNm2qESNGKC8vL+C8N998UyNHjlTbtm3lcrn0+eefB5R19OhRTZs2Teeee66aNWummJgY3XLLLdq+fXvAtc2cOVNnn322mjVrptatW2vEiBFat25dwHknuvPOO+VyufTkk08GnHfbbbed8nN4+eWX16q+r7/+WldffbWioqLUrFkzxcfHa+vWrQHlVdUnLpdLjz32mHXWwYMHNXnyZHXp0kVNmzZV//799eyzzwb8te7cuVO33XabYmJiFBkZqcsvv7zGn2N/fgeXlZVp0qRJatu2rZo3b67rrrtOO3fuDCjr+eef17Bhw9SyZUu5XC7t27cv4Np++OEH3X333erbt6+aNm2q2NhY3XPPPdq/f3/AX+vEiRN11llnqWnTpmrfvr3GjBmjzZs3B5x3nDFGo0ePrrF//MkbNmzYKT93d955Z63qy8rK0qWXXqpmzZqpZcuWuuSSS/Tjjz9a53377bfV9sbrr79uXVtxcbFuvvlmderUSc2aNdMFF1ygv//97wF/rQUFBbrmmmvUvn17tWzZUuPGjavy51jy/VzC357wN8+mL3zl2faFP/XZ9IU/ecf50xe+smx6wt/a/O0JX3k2PeFvfTZ94U+eTV+crKrnxba94SvPtjdqygukN3zVZ9sbvvKO86c3fGXZ9oY/tdn0Rk15gfSGr/pse8NXnk1v+Frf2faFrzzbvqgpz7YvfNVm2xP+ro397QlfebZ94U99Nn1RU14gfeGrPpu+8JUVyOOFr9cqbNffvvJs1t++8gJZg/uqz3YNbvNaj681uK8s2/W3P7XZrL995dmsv/3Js12D+8qzWYP7et3N9jHDV57NY0ZNWYE8j/JVm+1jhr+vWdo+jwJQdxrEIO21117TlClTNGPGDG3cuFEDBw7UqFGjtGvXroDyDh06pIEDB+qZZ56pdW2ffPKJJk2apLVr12rlypU6evSoRo4cqUOHDgWU16VLFz366KP67LPPtGHDBl166aUaM2aMvvrqq1rVuX79ej333HM677zzapUjSeecc4527NhReaxevTqgnJKSEiUmJqpx48Z677339N///ldz585V69atA8pbv369V10rV66UJF1//fUB5WVkZGjBggV6+umn9fXXXysjI0Nz5szRn//854DyJOl//ud/tHLlSi1evFj/+c9/NHLkSI0YMULbtm3z+bm+fm7nzJmjp556Ss8++6zWrVunZs2aadSoUSorKwso79ChQxoyZIgyMjJqVdvhw4e1ceNGPfTQQ9q4caPefPNN5ebm6uqrrw74a+3Tp4+efvpp/ec//9Hq1avVvXt3jRw5Urt37w4o77hly5Zp7dq1iomJqfF+/uRdfvnlXj+Pr776asB5BQUFGjJkiM4++2ytWrVKmzZt0kMPPaSIiIiA8k6sa8eOHVq0aJFcLpeuu+4666wpU6YoMzNTL7/8sr7++mvdd999mjx5st555x3r2owxGjt2rLZs2aK3335bOTk56tatm0aMGFHt71R/fgfff//9evfdd/X666/rk08+0fbt23XttdcGlHX48GFdfvnl+v3vf19lPTZ527dv1/bt2/X444/ryy+/1F//+ldlZmbq9ttvD/hrvfDCC/Xiiy/q66+/1vvvvy9jjEaOHKljx44FlHfck08+KZfLVauv97iUlBSvn785c+YEnJeVlaXLL79cI0eOVHZ2ttavX6/JkycrLOzUpze+8rp27XpKb8yaNUvNmzfX6NGjrWu75ZZblJubq3feeUf/+c9/dO2112rcuHHKycmxru3QoUMaOXKkXC6XPvroI61Zs0ZHjhzRVVddpYqKilPyfD2X8Lcn/M2z6QtfebZ94U99Nn3hT95x/vSFP1n+9oQ/eTY94SvPpif8rc+mL3zl2fbFiap7XmzbG77ybHujprxAesNXfba94SvvOH96w58sm97wlWfbGzXlBdIbvuqz7Y2a8gLpjZrWd4H0RU15gfRFdXmB9EVNtQXSE/6sjW16wleebV/UlBdIX1SXF2hf1FSfbV9UlxVIT/jzWoXN+tufPJv1t6882zW4P/XZrMFtXuvxtQb3N8vf9bc/eTbrb3/ybNbf/uTZrMF95dmuwX297mb7mOErz+Yxo6asQB4vfNVm+5jh72uWNo8ZAOqYaQAGDRpkJk2aVPnxsWPHTExMjElPT691tiSzbNmyWucct2vXLiPJfPLJJ45ltm7d2ixcuDDgzz9w4IDp3bu3WblypUlKSjL33ntvwFkzZswwAwcODPjzTzRt2jQzZMgQR7Kqcu+995qzzjrLVFRUBPT5V1xxhZkwYYLXbddee6351a9+FVDe4cOHTXh4uFm+fLnX7RdccIFJS0uzyjr557aiosJ06tTJPPbYY5W37du3z7jdbvPqq69a552osLDQSDI5OTkB1VaV7OxsI8kUFRU5krd//34jyXzwwQcB533//femc+fO5ssvvzTdunUzTzzxhM+s6vJuvfVWM2bMGL8+35+8G264wfz61792LO9kY8aMMZdeemlAWeecc455+OGHvW7z92f65Lzc3FwjyXz55ZeVtx07dsy0b9/evPDCCz7zjDn1d/C+fftM48aNzeuvv155n6+//tpIMllZWVZZJ/r444+NJFNSUuJXXb7yjlu6dKlp0qSJOXr0qCN5X3zxhZFk8vPzA87LyckxnTt3Njt27LB6zKwqrzaPQVXlDR482Dz44IOO5Z3s/PPPP+VxwN+sZs2amZdeesnrfm3atPHrZ/nkvPfff9+EhYWZ/fv3V95n3759xuVymZUrV/rMM+b/fy5Rm56oKu9EgfRFTXnH2fSFP3k2fVFdXqB9cXJWbZ+XnZxXm56oKu9k/vZEdXm16YuT8wLti+qeFwfaG/48z7bpDZvn7f70hk2eP73hK8+mN2rKCqQ3asoLpDdsvnf+9EZNeYH0RnV5tr1R0/oukL7wd73ob1/Yrj9r6gvbLF894U+eTU/4yrPtC195tn1h+/3z1Re+8mz6oqasQB4vfL1WYbv+tnntw5/1dyCvpdS0Bg8kr6Y1uL95/qzB/cmyWX/7k2ez/g7ke1fT+tufPJs1uK+82q7BT3zdzYl1RnWv4wWyzvD1mqDtGsNXnu0ao6q82qwxAARfvb8i7ciRI/rss880YsSIytvCwsI0YsQIZWVlhbCyqh2/LLhNmza1zjp27JiWLFmiQ4cOKSEhIeCcSZMm6YorrvD6HtZGXl6eYmJi1LNnT/3qV7+q9vJ2X9555x3FxcXp+uuvV4cOHfSzn/1ML7zwgiM1HjlyRC+//LImTJgQ8F9yXHzxxfrwww/1zTffSJK++OILrV692udfmlanvLxcx44dO+WvmJo2bRrwVX3HFRYWqri42Ou/cVRUlAYPHlxv+8TlcqlVq1a1zjpy5Iief/55RUVFaeDAgQFlVFRU6Oabb9bUqVN1zjnn1LomSVq1apU6dOigvn376je/+Y327t0bcG3/+Mc/1KdPH40aNUodOnTQ4MGDHbvEf+fOnfrHP/7h11+0V+Xiiy/WO++8o23btskYo48//ljffPONRo4caZ3l8XgkyatHwsLC5Ha7/e6Rk38Hf/bZZzp69KhXb5x99tmKjY312RtO/j73N2///v1q2bKlGjVqVOu8Q4cO6cUXX1SPHj3UtWvXgPIOHz6sm266Sc8884w6derkM8Of+l555RW1a9dOAwYMUGpqqg4fPhxQ3q5du7Ru3Tp16NBBF198sTp27KikpKSAf1ZO9tlnn+nzzz/3qzeqyrr44ov12muv6YcfflBFRYWWLFmisrIyDRs2zDrP4/HI5XLJ7XZX3iciIkJhYWE+v96Tn0vUpieqyqstf/Js+sJXnm1fVJUXaF9UV1ugPXFyXm17wtf3zqYnqsurTV+cnBdoX1T3vDjQ3nD6ebZNnj+94W+ev71RU55tb/iqzbY3qssLtDf8/d752xs15QXSG9XlBdIb1a3vAu0Lp9aLgeT56gt/s/ztiZryAnm88FWfbV9UlxdoX/j7/fO3L2rKs+2L6rIC6Qlfr1XYrr+dfu0jkLya1uC2eb7W4P7k+bsG97c2f9ffvvJs19+23ztf629/8mzW4L7yarMGP/l1t9quM5x4Hc8my2aN4SvPdo1RVV5t1t4A6kioJ3m+bNu2zUgy//73v71unzp1qhk0aFCt8+XghP/YsWPmiiuuMImJibXK2bRpk2nWrJkJDw83UVFR5h//+EfAWa+++qoZMGCA+fHHH40xtf/L53/+859m6dKl5osvvjCZmZkmISHBxMbGmtLSUusst9tt3G63SU1NNRs3bjTPPfeciYiIMH/9618Dru+41157zYSHh5tt27YFnHHs2DEzbdo043K5TKNGjYzL5TJ//OMfa1VXQkKCSUpKMtu2bTPl5eVm8eLFJiwszPTp08cq5+Sf2zVr1hhJZvv27V73u/766824ceOs807k9BVpP/74o7ngggvMTTfdVKu8d9991zRr1sy4XC4TExNjsrOzA8774x//aC677LLKvwSq7RVpr776qnn77bfNpk2bzLJly0y/fv1MfHy8KS8vt847/pdIkZGR5k9/+pPJyckx6enpxuVymVWrVgVU34kyMjJM69atK39H2GaVlZWZW265xUgyjRo1Mk2aNDH/+7//6zOrqrwjR46Y2NhYc/3115sffvjBeDwe8+ijjxpJZuTIkT7zqvod/Morr5gmTZqcct/4+Hjzu9/9zirrRLZ/EefP48Pu3btNbGys+f3vf1+rvGeeecY0a9bMSDJ9+/b16y/iqsu74447zO233175sb+PmdXlPffccyYzM9Ns2rTJvPzyy6Zz587mmmuuCSgvKyvLSDJt2rQxixYtMhs3bjT33XefadKkifnmm28Cqu9Ev/nNb0y/fv0Cqs0YY0pKSszIkSMre6Nly5bm/fffDyhv165dpmXLlubee+81hw4dMgcPHjSTJ082kswdd9xRZU51zyUC7Ql/npvY9IW/z3X87QtfebZ9UVOebV/UlBVIT1SXF2hP+Pvfwt+eqCkvkL6oLi+QvqjpeXEgveHv82x/e8Pmebs/veFPnk1v+Mqz6Q1fWba9UVNeIL1h89/Cn97wlWfbGzXl2fZGTeu7QPrC3/Wiv31hs/701Rf+ZNn0hK8828cLX3m2fVFTXiB9YfPfwp++8JVn0xc1ZQXyeOHrtQrb9bfNax/+rL9tX0vxtQb3N8/fNbg/ef6uwf3Jsll/+8qzXX/b/rfwtf72J89mDe4rrzZr8JNfdwt0nVFd3ols19++XhO0WXvXlBfI2ru6vEDX3gDqDoM0B38x3XnnnaZbt27mu+++q1WOx+MxeXl5ZsOGDeaBBx4w7dq1M1999ZV1ztatW02HDh3MF198UXmbE1sInaikpMS0bNkyoK0nGzdubBISErxuu/vuu81FF11U67pGjhxprrzyylplvPrqq6ZLly7m1VdfNZs2bTIvvfSSadOmTa0Gffn5+eaSSy4xkkx4eLiJj483v/rVr8zZZ59tldNQB2lHjhwxV111lfnZz37mtbVGIHkHDx40eXl5Jisry0yYMMF0797d7Ny50zpvw4YNpmPHjl5PYGo7SDtZQUFBwFtPHv8deOONN3rd76qrrjK//OUva11f3759zeTJk33mVJf12GOPmT59+ph33nnHfPHFF+bPf/6zad68uV/bzVWVt2HDBjNw4MDKHhk1apQZPXq0ufzyy33mVfU7ONAn875+n9s+kfeVt3//fjNo0CBz+eWXmyNHjtQqb9++feabb74xn3zyibnqqqvMBRdc4HNQWlXe22+/bXr16mUOHDhQeZu/j5n+Ph5++OGHfm1/UVXe8d97qampXvc999xzzQMPPFCr+g4fPmyioqLM448/XmNOTVmTJ082gwYNMh988IH5/PPPzcyZM01UVJTZtGlTQHnvv/++6dmzp3G5XCY8PNz8+te/NhdccIG58847q8yp7rlEoD3hz3MTm77wJ8+mL3zl2fZFdXmB9IXN8zp/eqK6vEB7wp/6bHqiprxA+qKmPJu+8PW82LY3bJ5n+9MbNnn+9Ia/ef72hq88m94IZI1SU2/4yrPtDZv6/OkNf/JsesOfPNvHjBOduL6r7YuiJ+edKNDtgKvLs30uVV1WIM+jqsqrzfOomuo7kb/Po6rKq83zKF/12Txm1JQX6HOpqrJse8LXaxW262+b1z78WX/b5PmzBvc3z981uK88mzV4IK8b1bT+9pVnu/62rc/X+tufPJs1uD95ga7BT37drbaPGTW9jmf7mFFTViCPF9XlBfqYcXKeE48ZAIKv3g/SPB6PCQ8PP+WXxy233GKuvvrqWuc79Ytp0qRJpkuXLmbLli21zjrZ8OHDq/1LqZosW7as8oHw+CGp8smjP1fH+CMuLs7vJ9snio2N9fprC2OMmT9/vomJialVPd9++60JCwszb731Vq1yunTpYp5++mmv2x555BHTt2/fWuUa89MT0ONPuseNG2eSk5OtPv/kn9vjTxRPfrJ9ySWXmHvuucc670RODdKOHDlixo4da8477zyzZ88ev7J81XaiXr16+XXF4Ml5TzzxRGVPnNgnYWFhplu3bo7V165dO/Pss89a53k8HtOoUSPzyCOPeN3vd7/7nbn44otrVd+nn35qJJnPP//cZ05VWYcPHzaNGzc+5X3/br/9djNq1Kha1bZv3z6za9cuY8xP75N511131ZhV3e/g4y8wnPyEOzY21vzpT3+yyjqRzRN5X3mlpaUmISHBDB8+3K8n3TaPNx6Px0RGRpq//e1v1nn33ntvtb2RlJTkSH0HDx40kkxmZqZ13pYtW4wks3jxYq/bx40bV+MVr/7U99JLL5nGjRtX/gzaZuXn55/yXgPG/PR4PnHixFrVtnv37sqfu44dO5o5c+bUWOOJ//Ydd9wRUE/UlHei2rxH2sl5tn3hT33H+dMX1eUF2hf+1uZPT1SXF2hP+FOfvz1RU16gfeFPff70ha/nxR988IFVb9g8z/anN/zN87c3AlkH1NQbvvImT57sd28EUltNveEr7/jPnr+9YVOfP73hb33+9oZNfYE+Zhxf3zn1mFHVerE2jxkn59XmMaOmtWwgjxfH85x4vPBVXyCPGcfznHrMqKq+2jxmHM9z4jGjqtr87Qlfr1XYrr9tXvvwZ/3tb56/a/BAX5upbg3uK89mDR5obdWtv33l2a6/berzZ/3tK892DW5Tn80avKrX3WrzmOHrdTybx4yasgJ5vPD3NUZ/HzOqynPqMQNAcNX790hr0qSJLrzwQn344YeVt1VUVOjDDz905L05assYo8mTJ2vZsmX66KOP1KNHD8f/jYqKisp9i20MHz5c//nPf/T5559XHnFxcfrVr36lzz//XOHh4bWu7eDBgyooKFB0dLT15yYmJio3N9frtm+++UbdunWrVU0vvviiOnTooCuuuKJWOYcPH1ZYmHeLhIeHq6Kiola5ktSsWTNFR0erpKRE77//vsaMGVOrvB49eqhTp05efVJaWqp169bViz45evSoxo0bp7y8PH3wwQdq27at4/9GoH1y8803a9OmTV59EhMTo6lTp+r99993pLbvv/9ee/fuDahPmjRpovj4+KD0yl/+8hddeOGFAb+33NGjR3X06NGg9ElUVJTat2+vvLw8bdiwodoe8fU7+MILL1Tjxo29eiM3N1dbt249pTec/n3uT15paalGjhypJk2a6J133jnlPRRrW5/56Q9mquwNX3kPPPDAKb0hSU888YRefPFFR+o7nllVb/jK6969u2JiYvzuDZv6/vKXv+jqq69W+/btqzzvK+v4+5X42xs2tbVr106tWrXSRx99pF27dunqq6+u9r4nOv470qYn/Mlzyol5Nn0RSH019YWvPNu+sK2tpp7wlWfbEzb1+eoJf/Js+8KmPn/6wtfz4ri4OKvecPp5tj95Nr0RSH019YavvLS0NL97I5DaauoNX3k9e/a06g2b+vzpDV95tr1hU18gjxknru+ceMyozXrRn7zaPGb4qs328eLEPCceL3zVZ/uYcWKeE48Z1dUX6GPGiXm1fcyorjZ/e8LXaxW262+nX/vwJ89mDR5ofdU9p/GVZ7MGD6S2mtbfvvJs19829fmz/vaVZ7sGt6nP3zW4VPXrbrV5zHDqdbyasgJ9vPC3Nn8fM6rKc+IxA0AdqNOxXYCWLFli3G63+etf/2r++9//mjvuuMO0atXKFBcXB5R34MABk5OTY3Jycoykyn2Pi4qKrLN+85vfmKioKLNq1SqzY8eOyuPw4cMB1fbAAw+YTz75xBQWFppNmzaZBx54wLhcLrNixYqA8k5W260df/vb35pVq1aZwsJCs2bNGjNixAjTrl27gP7aLDs72zRq1MjMnj3b5OXlmVdeecVERkaal19+OeD6jh07ZmJjY820adMCzjju1ltvNZ07dzbLly83hYWF5s033zTt2rXzexuTqmRmZpr33nvPbNmyxaxYscIMHDjQDB482K/LyX393D766KOmVatWlXuDjxkzxvTo0aPav7Lxlbd3716Tk5Nj/vGPfxhJZsmSJSYnJ8fs2LHDKuvIkSPm6quvNl26dDGff/65V594PB7r2g4ePGhSU1NNVlaW+fbbb82GDRvM+PHjjdvtPuUvFv39Wk/ma2vHmvIOHDhg/t//+38mKyvLFBYWmg8++MBccMEFpnfv3qasrCyg+t58803TuHFj8/zzz5u8vDzz5z//2YSHh5t//etfAX+9+/fvN5GRkWbBggXVfp3+ZCUlJZlzzjnHfPzxx2bLli3mxRdfNBEREWb+/PkB5S1dutR8/PHHpqCgwLz11lumW7du5tprr622Pn9+B995550mNjbWfPTRR2bDhg0mISHhlO0t/M3asWOHycnJMS+88IKRZD799FOTk5Nj9u7da523f/9+M3jwYHPuueea/Px8r/tU9df4vvIKCgrMH//4R7NhwwZTVFRk1qxZY6666irTpk2bKrdcCeTxSzVcRegrLz8/3zz88MNmw4YNprCw0Lz99tumZ8+e5pJLLgkoz5if/pq1ZcuW5vXXXzd5eXnmwQcfNBEREVVuceTv15uXl2dcLpd57733qv0++Mo6cuSI6dWrlxk6dKhZt26dyc/PN48//rhxuVxVvv+UP7UtWrTIZGVlmfz8fLN48WLTpk0bM2XKlCrr8/Vcwt+e8DfPpi985dn2ha88277w5+s9WU19UVOWbU/4U5tNT/j7tfrTE/7k2faFP/XZ9EVVTn5ebNsbvvJse6OmvEB6o6a8QHrD19d7spp6o6asQHrDV222veErzxi73qgpL5De8FWfTW/4Wt/Z9oWvPNu+qCnPti9qygqkJ2zXxr56oqa8QPrCV322feHP12vTFzXl2faFr9psHy/8ea3CZv3tT57N+ttXnu0a3Fee7Ro8kNd6qluD+8qyXX/7U5vN+tvfr9Xf9bc/eTZrcH/ybNfgNb3uFshzqZrybB8zqssK9HlUdXmBPo+yec3S5nkUgLrRIAZpxhjz5z//2cTGxpomTZqYQYMGmbVr1wacdfyS4JOPW2+91TqrqhxJ5sUXXwyotgkTJphu3bqZJk2amPbt25vhw4c7NkQzpvaDtBtuuMFER0ebJk2amM6dO5sbbrjB7wVoVd59910zYMAA43a7zdlnn22ef/75gLOM+Wnvc0kmNze3VjnG/HTJ97333mtiY2NNRESE6dmzp0lLS6t2+OOP1157zfTs2dM0adLEdOrUyUyaNMns27fPr8/19XNbUVFhHnroIdOxY0fjdrvN8OHDa/w++Mp78cUXqzw/Y8YMq6zjW1NUdXz88cfWtf3444/mmmuuMTExMaZJkyYmOjraXH311dW+0bE/X+vJfA3Saso7fPiwGTlypGnfvr1p3Lix6datm0lJSalx8O9PfX/5y19Mr169TEREhBk4cGCN2wr4k/fcc8+Zpk2b+vz585W1Y8cOc9ttt5mYmBgTERFh+vbta+bOnVv5ptG2efPmzTNdunQxjRs3NrGxsebBBx+ssef8+R38448/mrvuusu0bt3aREZGmmuuuabKBak/WTNmzPD7d76vvOq+F5JMYWGhdd62bdvM6NGjTYcOHUzjxo1Nly5dzE033WQ2b94c8Peuqs+p7sm8r7ytW7eaSy65xLRp08a43W7Tq1cvM3Xq1Grfq8Hf+tLT002XLl1MZGSkSUhIqHbA7G9eamqq6dq1qzl27FiN3wdfWd9884259tprTYcOHUxkZKQ577zzzEsvvRRw3rRp00zHjh1N48aNTe/evWvsM1/PJfztCX/zbPrCV55tX/jKs+0Lf77ek9XUFzVl2faEv7X52xP+5vnTE/7m2fSFP3k2fVGVk58X2/aGrzzb3qgpL5DeqCkvkN7w9fWerKbeqCkrkN7wpzab3vAnz6Y3fOXZ9oavPJve8LW+s+0LX3m2fVFTnm1f1JQVSE/Yro199URNeYH0hT/12fSFP3k2feErz6YvfGUF8njh67UK2/W3rzyb9bevvEDW4DXlBbIGt32tp6Y1eE1Zgay//anNZv3tT56/629/8mzX4L7ybNfgNb3uFshzqZrybB8zqssK9HlUdXmBPo+yec3S5nkUgLrhMsYYAQAAAAAAAAAAAPBS798jDQAAAAAAAAAAAAgFBmkAAAAAAAAAAABAFRikAQAAAAAAAAAAAFVgkAYAAAAAAAAAAABUgUEaAAAAAAAAAAAAUAUGaQAAAAAAAAAAAEAVGKQBAAAAAAAAAAAAVWCQBgAAAAAAAAAAAFSBQRoAAAAAAAAAAABQBQZpAAAAAAAAAAAAQBUYpAEAAAAAAAAAAABVYJAGAAAAAAAAAAAAVOH/A973FjjrV6m1AAAAAElFTkSuQmCC\n"},"metadata":{}},{"output_type":"stream","name":"stdout","text":["🚀 [TRAINING] RF model not found. Building and training...\n"]},{"output_type":"display_data","data":{"text/plain":["\u001b[1mModel: \"functional_4\"\u001b[0m\n"],"text/html":["
Model: \"functional_4\"\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n","┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mConnected to \u001b[0m\u001b[1m \u001b[0m┃\n","┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n","│ input_layer_6 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m894\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ - │\n","│ (\u001b[38;5;33mInputLayer\u001b[0m) │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_15 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m114,560\u001b[0m │ input_layer_6[\u001b[38;5;34m0\u001b[0m]… │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ reshape_7 (\u001b[38;5;33mReshape\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ dense_15[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ layer_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │ reshape_7[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","│ (\u001b[38;5;33mLayerNormalizatio…\u001b[0m │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ multi_head_attenti… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m131,968\u001b[0m │ layer_normalizat… │\n","│ (\u001b[38;5;33mMultiHeadAttentio…\u001b[0m │ │ │ layer_normalizat… │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ add_14 (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ multi_head_atten… │\n","│ │ │ │ reshape_7[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ batch_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m512\u001b[0m │ add_14[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ layer_normalizatio… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m256\u001b[0m │ batch_normalizat… │\n","│ (\u001b[38;5;33mLayerNormalizatio…\u001b[0m │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_16 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m16,512\u001b[0m │ layer_normalizat… │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_22 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ dense_16[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","│ (\u001b[38;5;33mDropout\u001b[0m) │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ add_15 (\u001b[38;5;33mAdd\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ batch_normalizat… │\n","│ │ │ │ dropout_22[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ global_average_poo… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ add_15[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","│ (\u001b[38;5;33mGlobalAveragePool…\u001b[0m │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_23 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ global_average_p… │\n","│ (\u001b[38;5;33mDropout\u001b[0m) │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_17 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m8,256\u001b[0m │ dropout_23[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_24 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ dense_17[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","│ (\u001b[38;5;33mDropout\u001b[0m) │ │ │ │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_18 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m2\u001b[0m) │ \u001b[38;5;34m130\u001b[0m │ dropout_24[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n","└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n"],"text/html":["
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n","┃ Layer (type)         Output Shape          Param #  Connected to      ┃\n","┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n","│ input_layer_6       │ (None, 894)       │          0 │ -                 │\n","│ (InputLayer)        │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_15 (Dense)    │ (None, 128)       │    114,560 │ input_layer_6[0]… │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ reshape_7 (Reshape) │ (None, 1, 128)    │          0 │ dense_15[0][0]    │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ layer_normalizatio… │ (None, 1, 128)    │        256 │ reshape_7[0][0]   │\n","│ (LayerNormalizatio… │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ multi_head_attenti… │ (None, 1, 128)    │    131,968 │ layer_normalizat… │\n","│ (MultiHeadAttentio… │                   │            │ layer_normalizat… │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ add_14 (Add)        │ (None, 1, 128)    │          0 │ multi_head_atten… │\n","│                     │                   │            │ reshape_7[0][0]   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ batch_normalizatio… │ (None, 1, 128)    │        512 │ add_14[0][0]      │\n","│ (BatchNormalizatio… │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ layer_normalizatio… │ (None, 1, 128)    │        256 │ batch_normalizat… │\n","│ (LayerNormalizatio… │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_16 (Dense)    │ (None, 1, 128)    │     16,512 │ layer_normalizat… │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_22          │ (None, 1, 128)    │          0 │ dense_16[0][0]    │\n","│ (Dropout)           │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ add_15 (Add)        │ (None, 1, 128)    │          0 │ batch_normalizat… │\n","│                     │                   │            │ dropout_22[0][0]  │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ global_average_poo… │ (None, 128)       │          0 │ add_15[0][0]      │\n","│ (GlobalAveragePool… │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_23          │ (None, 128)       │          0 │ global_average_p… │\n","│ (Dropout)           │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_17 (Dense)    │ (None, 64)        │      8,256 │ dropout_23[0][0]  │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dropout_24          │ (None, 64)        │          0 │ dense_17[0][0]    │\n","│ (Dropout)           │                   │            │                   │\n","├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n","│ dense_18 (Dense)    │ (None, 2)         │        130 │ dropout_24[0][0]  │\n","└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Total params: \u001b[0m\u001b[38;5;34m272,450\u001b[0m (1.04 MB)\n"],"text/html":["
 Total params: 272,450 (1.04 MB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m272,194\u001b[0m (1.04 MB)\n"],"text/html":["
 Trainable params: 272,194 (1.04 MB)\n","
\n"]},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m256\u001b[0m (1.00 KB)\n"],"text/html":["
 Non-trainable params: 256 (1.00 KB)\n","
\n"]},"metadata":{}},{"output_type":"stream","name":"stdout","text":["Epoch 1/15\n","\u001b[1m275/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 31ms/step - accuracy: 0.7516 - loss: 0.5862\n","Epoch 1: val_loss improved from inf to 1.62450, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_rf.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m12s\u001b[0m 34ms/step - accuracy: 0.7521 - loss: 0.5849 - val_accuracy: 0.5792 - val_loss: 1.6245 - learning_rate: 5.0000e-04\n","Epoch 2/15\n","\u001b[1m275/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 33ms/step - accuracy: 0.8485 - loss: 0.3434\n","Epoch 2: val_loss improved from 1.62450 to 1.31896, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_rf.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 35ms/step - accuracy: 0.8486 - loss: 0.3432 - val_accuracy: 0.6979 - val_loss: 1.3190 - learning_rate: 5.0000e-04\n","Epoch 3/15\n","\u001b[1m276/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 32ms/step - accuracy: 0.8856 - loss: 0.2692\n","Epoch 3: val_loss improved from 1.31896 to 0.43427, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_rf.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m10s\u001b[0m 34ms/step - accuracy: 0.8856 - loss: 0.2691 - val_accuracy: 0.8314 - val_loss: 0.4343 - learning_rate: 5.0000e-04\n","Epoch 4/15\n","\u001b[1m275/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 0.9066 - loss: 0.2271\n","Epoch 4: val_loss improved from 0.43427 to 0.29924, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_rf.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 32ms/step - accuracy: 0.9066 - loss: 0.2270 - val_accuracy: 0.8767 - val_loss: 0.2992 - learning_rate: 5.0000e-04\n","Epoch 5/15\n","\u001b[1m276/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 0.9222 - loss: 0.1894\n","Epoch 5: val_loss did not improve from 0.29924\n","\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 31ms/step - accuracy: 0.9222 - loss: 0.1895 - val_accuracy: 0.8750 - val_loss: 0.3170 - learning_rate: 5.0000e-04\n","Epoch 6/15\n","\u001b[1m275/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 0.9339 - loss: 0.1615\n","Epoch 6: val_loss improved from 0.29924 to 0.24109, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_rf.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 32ms/step - accuracy: 0.9339 - loss: 0.1615 - val_accuracy: 0.9010 - val_loss: 0.2411 - learning_rate: 5.0000e-04\n","Epoch 7/15\n","\u001b[1m275/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 0.9435 - loss: 0.1408\n","Epoch 7: val_loss did not improve from 0.24109\n","\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 31ms/step - accuracy: 0.9434 - loss: 0.1409 - val_accuracy: 0.8806 - val_loss: 0.3017 - learning_rate: 5.0000e-04\n","Epoch 8/15\n","\u001b[1m275/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 0.9479 - loss: 0.1276\n","Epoch 8: val_loss did not improve from 0.24109\n","\n","Epoch 8: ReduceLROnPlateau reducing learning rate to 0.0002500000118743628.\n","\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 31ms/step - accuracy: 0.9479 - loss: 0.1276 - val_accuracy: 0.8942 - val_loss: 0.4007 - learning_rate: 5.0000e-04\n","Epoch 9/15\n","\u001b[1m276/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 0.9677 - loss: 0.0851\n","Epoch 9: val_loss did not improve from 0.24109\n","\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 31ms/step - accuracy: 0.9677 - loss: 0.0851 - val_accuracy: 0.9216 - val_loss: 0.2542 - learning_rate: 2.5000e-04\n","Epoch 10/15\n","\u001b[1m276/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 0.9723 - loss: 0.0696\n","Epoch 10: val_loss did not improve from 0.24109\n","\n","Epoch 10: ReduceLROnPlateau reducing learning rate to 0.0001250000059371814.\n","\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 31ms/step - accuracy: 0.9723 - loss: 0.0696 - val_accuracy: 0.9118 - val_loss: 0.2588 - learning_rate: 2.5000e-04\n","Epoch 11/15\n","\u001b[1m276/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 29ms/step - accuracy: 0.9822 - loss: 0.0482\n","Epoch 11: val_loss improved from 0.24109 to 0.22189, saving model to /content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/transformer_model_rf.h5\n"]},{"output_type":"stream","name":"stderr","text":["WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')` or `keras.saving.save_model(model, 'my_model.keras')`. \n"]},{"output_type":"stream","name":"stdout","text":["\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 32ms/step - accuracy: 0.9822 - loss: 0.0482 - val_accuracy: 0.9323 - val_loss: 0.2219 - learning_rate: 1.2500e-04\n","Epoch 12/15\n","\u001b[1m276/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 0.9848 - loss: 0.0394\n","Epoch 12: val_loss did not improve from 0.22189\n","\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 32ms/step - accuracy: 0.9848 - loss: 0.0394 - val_accuracy: 0.9270 - val_loss: 0.3076 - learning_rate: 1.2500e-04\n","Epoch 13/15\n","\u001b[1m276/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 0.9871 - loss: 0.0352\n","Epoch 13: val_loss did not improve from 0.22189\n","\n","Epoch 13: ReduceLROnPlateau reducing learning rate to 6.25000029685907e-05.\n","\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 31ms/step - accuracy: 0.9871 - loss: 0.0352 - val_accuracy: 0.9330 - val_loss: 0.2889 - learning_rate: 1.2500e-04\n","Epoch 14/15\n","\u001b[1m276/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 0.9904 - loss: 0.0259\n","Epoch 14: val_loss did not improve from 0.22189\n","\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 31ms/step - accuracy: 0.9904 - loss: 0.0259 - val_accuracy: 0.9249 - val_loss: 0.4160 - learning_rate: 6.2500e-05\n","Epoch 15/15\n","\u001b[1m276/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m0s\u001b[0m 30ms/step - accuracy: 0.9920 - loss: 0.0208\n","Epoch 15: val_loss did not improve from 0.22189\n","\n","Epoch 15: ReduceLROnPlateau reducing learning rate to 3.125000148429535e-05.\n","\u001b[1m277/277\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m9s\u001b[0m 31ms/step - accuracy: 0.9920 - loss: 0.0208 - val_accuracy: 0.9352 - val_loss: 0.3448 - learning_rate: 6.2500e-05\n","\u001b[1m553/553\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 3ms/step\n","\n","📊 Report - RF:\n"," precision recall f1-score support\n","\n"," 0 0.91 0.96 0.94 8846\n"," 1 0.96 0.91 0.93 8846\n","\n"," accuracy 0.94 17692\n"," macro avg 0.94 0.94 0.94 17692\n","weighted avg 0.94 0.94 0.94 17692\n","\n","✅ Accuracy: 0.9352 | Precision: 0.9364 | Recall: 0.9352 | F1: 0.9351\n"]},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABW0AAAHqCAYAAAB/bWzAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAw9hJREFUeJzs3XlcFfXixvHPYd9BUBAQRXFHRXNLrdTUzMzKJS0rzbLftb1sudliZovd283stnlvaVa2aml1M80sc801zH1FQURcAdnhnPn9MQqSuKDAAOd5v17zmjNzZs55Dnq7w+P3fMdmGIaBiIiIiIiIiIiIiFQJLlYHEBEREREREREREZFiKm1FREREREREREREqhCVtiIiIiIiIiIiIiJViEpbERERERERERERkSpEpa2IiIiIiIiIiIhIFaLSVkRERERERERERKQKUWkrIiIiIiIiIiIiUoWotBURERERERERERGpQlTaioiIiIiIiIiIiFQhKm1FREREREREREREqhCVtiJS482YMQObzVa0uLm5ERkZyZ133klycvIZx/fo0aPE8acv27Ztu6D3TEtLw8vLC5vNxtatW8v7I4mIiIiIXJLKvEa22Ww88MADFfVRRERqJDerA4iIVJaJEyfSsGFDcnNz+f3335kxYwbLli1j06ZNeHl5lTi2Xr16TJo06YzXiIiIuKD3mjVrFjabjbp16/Lpp5/y0ksvlctnEBEREREpT5V5jSwiIhdOpa2IOI1+/frRoUMHAEaPHk3t2rX5xz/+wXfffcfQoUNLHBsYGMjtt99+0e81c+ZMrrvuOho0aMBnn31WZUvb3NxcPDw8cHHRFy9EREREnFFlXiOLiMiF02/pIuK0rrzySgB2795drq+bmJjI0qVLueWWW7jllltISEhgxYoVpR47c+ZMOnXqhI+PD7Vq1eKqq67ip59+KnHMjz/+SPfu3fH39ycgIICOHTvy2WefFT0fHR3NnXfeecZr9+jRgx49ehRtL168GJvNxhdffMGzzz5LZGQkPj4+ZGRkcOzYMR5//HFat26Nn58fAQEB9OvXjw0bNpzxurm5uUyYMIGmTZvi5eVFeHg4gwYNYvfu3RiGQXR0NDfeeGOp5wUGBvK3v/3tAn+SIiIiIlLZKuoa+XyysrJ47LHHiIqKwtPTk2bNmvGvf/0LwzBKHLdw4UKuuOIKgoKC8PPzo1mzZjz99NMljnnrrbeIjY0tusbu0KFDietnEZHqQCNtRcRp7d27F4BatWqd8ZzdbufIkSMl9nl5eeHn53fe1/3888/x9fXl+uuvx9vbm5iYGD799FO6du1a4rgXXniBCRMm0LVrVyZOnIiHhwerVq3il19+4ZprrgHMucbuuusuYmNjGTduHEFBQfzxxx/Mnz+f4cOHX9TnfvHFF/Hw8ODxxx8nLy8PDw8PtmzZwty5c7n55ptp2LAhqamp/Oc//6F79+5s2bKl6Ctvdrud66+/nkWLFnHLLbfw8MMPc+LECRYuXMimTZuIiYnh9ttv55///CfHjh0jODi46H2///57MjIyNDpDREREpAqrqGvkczEMgxtuuIFff/2Vu+++m7Zt27JgwQKeeOIJkpOTeeONNwDYvHkz119/PW3atGHixIl4enqya9culi9fXvRa77//Pg899BBDhgzh4YcfJjc3lz///JNVq1Zd9PWziIglDBGRGu7DDz80AOPnn382Dh8+bCQlJRmzZ8826tSpY3h6ehpJSUklju/evbsBnLGMHDnygt6vdevWxm233Va0/fTTTxu1a9c2CgoKivbt3LnTcHFxMQYOHGjY7fYS5zscDsMwDCMtLc3w9/c3OnfubOTk5JR6jGEYRoMGDUrN1r17d6N79+5F27/++qsBGI0aNTKys7NLHJubm3tGjoSEBMPT09OYOHFi0b7p06cbgDF58uQz3u9Upu3btxuA8d5775V4/oYbbjCio6NLZBcRERERa1TmNTJg3H///Wd9fu7cuQZgvPTSSyX2DxkyxLDZbMauXbsMwzCMN954wwCMw4cPn/W1brzxRiM2Nva8mUREqjqNtBURp9G7d+8S29HR0cycOZN69eqdcWx0dDTvv/9+iX0XcoOFP//8k40bN5a4QcOtt97KK6+8woIFC+jfvz8Ac+fOxeFwMH78+DPmk7XZbID51a8TJ07w1FNPnXETiFPHXIyRI0fi7e1dYp+np2fRY7vdTlpaWtHXzdavX1/03Ndff03t2rV58MEHz3jdU5maNm1K586d+fTTTxkzZgwAx44d48cff+TJJ5+8pOwiIiIiUr4q4xr5fObNm4erqysPPfRQif2PPfYYs2fP5scff+SBBx4gKCgIgG+//ZZRo0aVel+GoKAg9u/fz5o1a+jYseMlZxMRsYpKWxFxGu+88w5NmzYlPT2d6dOns2TJkhJl5el8fX3PuIC9EDNnzsTX15dGjRqxa9cuwPzKWHR0NJ9++mlRabt7925cXFxo2bLlWV/r1DxirVq1KnOOc2nYsOEZ+xwOB2+++SbvvvsuCQkJ2O32oudCQkJKZGrWrBlubuf+v48RI0bwwAMPsG/fPho0aMCsWbMoKCjgjjvuKL8PIiIiIiKXrDKukc9n3759RERE4O/vX2J/ixYtip4HGDZsGB988AGjR4/mqaeeolevXgwaNIghQ4YUFbh///vf+fnnn+nUqRONGzfmmmuuYfjw4XTr1q3cc4uIVCTdiExEnEanTp3o3bs3gwcP5rvvvqNVq1YMHz6czMzMcnl9wzD4/PPPycrKomXLljRp0qRo2bt3L99++225vdfpzjZy9fTi9XR/HWUL8MorrzB27FiuuuoqZs6cyYIFC1i4cCGxsbE4HI4yZ7rllltwd3fn008/Bcwyu0OHDjRr1qzMryUiIiIiFaeir5HLk7e3N0uWLOHnn3/mjjvu4M8//2TYsGH06dOn6Nq3RYsWbN++nS+++IIrrriCr7/+miuuuILnn3/e4vQiImWj0lZEnJKrqyuTJk3iwIEDvP322+Xymr/99hv79+9n4sSJzJo1q8Ty3//+l+zsbObOnQtATEwMDoeDLVu2nPX1YmJiANi0adM537dWrVqkpaWdsf/UiIQLMXv2bHr27Mm0adO45ZZbuOaaa+jdu/cZrxsTE8P27dspKCg45+sFBwfTv39/Pv30U/bt28fy5cs1ylZERESkiquIa+QL0aBBAw4cOMCJEydK7N+2bVvR86e4uLjQq1cvJk+ezJYtW3j55Zf55Zdf+PXXX4uO8fX1ZdiwYXz44YckJibSv39/Xn75ZXJzcyvnA4mIlAOVtiLitHr06EGnTp2YMmVKuVzAnZoa4YknnmDIkCEllnvuuYcmTZoUjTy96aabcHFxYeLEiWeMZDUMA4BrrrkGf39/Jk2adEa+U8eAWaT+/vvv5OfnF+373//+R1JS0gVnd3V1LfGaALNmzSI5ObnEvsGDB3PkyJFSL+L/ev4dd9zBli1beOKJJ3B1deWWW2654DwiIiIiYo3yvka+ENdddx12u/2Ma8w33ngDm81Gv379APM+CX/Vtm1bAPLy8gA4evRoiec9PDxo2bIlhmGcd+CBiEhVojltRcSpPfHEE9x8883MmDGj6KZZFyMvL4+vv/6aPn36nHHTsFNuuOEG3nzzTQ4dOkTjxo155plnePHFF7nyyisZNGgQnp6erFmzhoiICCZNmkRAQABvvPEGo0ePpmPHjgwfPpxatWqxYcMGsrOz+eijjwAYPXo0s2fP5tprr2Xo0KHs3r2bmTNnFo3UvRDXX389EydOZNSoUXTt2pWNGzfy6aef0qhRoxLHjRgxgo8//pixY8eyevVqrrzySrKysvj555+57777uPHGG4uO7d+/PyEhIcyaNYt+/foRGhp6ET9ZEREREals5XWNfLq1a9fy0ksvnbG/R48eDBgwgJ49e/LMM8+wd+9e4uLi+Omnn/j222955JFHiq5rJ06cyJIlS+jfvz8NGjTg0KFDvPvuu9SrV48rrrgCMAc+1K1bl27duhEWFsbWrVt5++236d+//xlz5oqIVGmGiEgN9+GHHxqAsWbNmjOes9vtRkxMjBETE2MUFhYahmEY3bt3N2JjY8v0Hl9//bUBGNOmTTvrMYsXLzYA48033yzaN336dKNdu3aGp6enUatWLaN79+7GwoULS5z33XffGV27djW8vb2NgIAAo1OnTsbnn39e4pjXX3/diIyMNDw9PY1u3boZa9euNbp3725079696Jhff/3VAIxZs2adkS03N9d47LHHjPDwcMPb29vo1q2bsXLlyjNewzAMIzs723jmmWeMhg0bGu7u7kbdunWNIUOGGLt37z7jde+77z4DMD777LNz/fhEREREpJJVxjXyKcBZlxdffNEwDMM4ceKE8eijjxoRERGGu7u70aRJE+O1114zHA5H0essWrTIuPHGG42IiAjDw8PDiIiIMG699VZjx44dRcf85z//Ma666iojJCTE8PT0NGJiYownnnjCSE9Pv6jsIiJWsRnGX77PKiIiUk4effRRpk2bxsGDB/Hx8bE6joiIiIiIiEi1oDltRUSkQuTm5jJz5kwGDx6swlZERERERESkDDSnrYiIlKtDhw7x888/M3v2bI4ePcrDDz9sdSQRERERERGRakWlrYiIlKstW7Zw2223ERoayr///e+iO/qKiIiIiIiIyIXRnLYiIiIiIiIiIiIiVYjmtBURERERERERERGpQlTaioiIiIiIiIiIiFQh1WJOW4fDwYEDB/D398dms1kdR0REREQsYBgGJ06cICIiAheX6jX2QNezIiIiIgIXfk1bLUrbAwcOEBUVZXUMEREREakCkpKSqFevntUxykTXsyIiIiJyuvNd01aL0tbf3x8wP0xAQIDFaURERETEChkZGURFRRVdG1Ynup4VEREREbjwa9pqUdqe+gpZQECALnJFREREnFx1nF5A17MiIiIicrrzXdNWr8nARERERERERERERGo4lbYiIiIiIiIiIiIiVYhKWxEREREREREREZEqpFrMaXshHA4H+fn5VseQMnB3d8fV1dXqGCIiIiIiIiIilrPb7RQUFFgdQy5RefVdNaK0zc/PJyEhAYfDYXUUKaOgoCDq1q1bLW8oIiIiIiIiIiJyqQzD4ODBg6SlpVkdRcpJefRdZS5tlyxZwmuvvca6detISUlhzpw53HTTTec8Z/HixYwdO5bNmzcTFRXFs88+y5133nmRkUsyDIOUlBRcXV2JiorCxUUzPlQHhmGQnZ3NoUOHAAgPD7c4kYiIiIiIiIhI5TtV2IaGhuLj46OBbdVYefZdZS5ts7KyiIuL46677mLQoEHnPT4hIYH+/fszZswYPv30UxYtWsTo0aMJDw+nb9++FxX6dIWFhWRnZxMREYGPj88lv55UHm9vbwAOHTpEaGiopkoQEREREREREadit9uLCtuQkBCr40g5KK++q8ylbb9+/ejXr98FHz916lQaNmzI66+/DkCLFi1YtmwZb7zxRrmUtna7HQAPD49Lfi2pfKeK9oKCApW2IiIiIiIiIuJUTs1hq4GINUt59F0VPpfAypUr6d27d4l9ffv2ZeXKlWc9Jy8vj4yMjBLL+WjoePWkPzcRERERERERcXbqR2qW8vjzrPDS9uDBg4SFhZXYFxYWRkZGBjk5OaWeM2nSJAIDA4uWqKioio4pIiIiIiIiIiIiUiVUybt2jRs3jvT09KIlKSnJ6kjVQnR0NFOmTLE6hoiIiIiIiIiISJmo1yqpwkvbunXrkpqaWmJfamoqAQEBRRPz/pWnpycBAQEllprEZrOdc5kwYcJFve6aNWv4v//7v3LJ+Pnnn+Pq6sr9999fLq8nIiIiIiIiIiLVX1XutXr06MEjjzxySa9RVZT5RmRl1aVLF+bNm1di38KFC+nSpUtFv3WVlZKSUvT4yy+/ZPz48Wzfvr1on5+fX9FjwzCw2+24uZ3/j6pOnTrllnHatGk8+eST/Oc//+H111/Hy8ur3F5bRERERERERESqp+rQa9UEZR5pm5mZSXx8PPHx8QAkJCQQHx9PYmIiYE5tMGLEiKLjx4wZw549e3jyySfZtm0b7777Ll999RWPPvpo+XyCaqhu3bpFS2BgIDabrWh727Zt+Pv78+OPP9K+fXs8PT1ZtmwZu3fv5sYbbyQsLAw/Pz86duzIzz//XOJ1/zqM3Gaz8cEHHzBw4EB8fHxo0qQJ33333XnzJSQksGLFCp566imaNm3KN998c8Yx06dPJzY2Fk9PT8LDw3nggQeKnktLS+Nvf/sbYWFheHl50apVK/73v/9d/A9MRERERERERESqhKrea53L119/XdRnRUdH8/rrr5d4/t1336VJkyZ4eXkRFhbGkCFDip6bPXs2rVu3xtvbm5CQEHr37k1WVtYl5TmXMo+0Xbt2LT179izaHjt2LAAjR45kxowZpKSkFBW4AA0bNuSHH37g0Ucf5c0336RevXp88MEH9O3btxzin8kwDHIK7BXy2ufj7e5abnf7e+qpp/jXv/5Fo0aNqFWrFklJSVx33XW8/PLLeHp68vHHHzNgwAC2b99O/fr1z/o6L7zwAv/85z957bXXeOutt7jtttvYt28fwcHBZz3nww8/pH///gQGBnL77bczbdo0hg8fXvT8e++9x9ixY3n11Vfp168f6enpLF++HACHw0G/fv04ceIEM2fOJCYmhi1btuDq6louPxcRERERERERkZpKvVZJF9Nrnc26desYOnQoEyZMYNiwYaxYsYL77ruPkJAQ7rzzTtauXctDDz3EJ598QteuXTl27BhLly4FzNHFt956K//85z8ZOHAgJ06cYOnSpRiGcdE/o/Mpc2nbo0ePcwaaMWNGqef88ccfZX2ri5JTYKfl+AWV8l5/tWViX3w8ymfGiYkTJ9KnT5+i7eDgYOLi4oq2X3zxRebMmcN3331XYpTrX915553ceuutALzyyiv8+9//ZvXq1Vx77bWlHu9wOJgxYwZvvfUWALfccguPPfYYCQkJNGzYEICXXnqJxx57jIcffrjovI4dOwLw888/s3r1arZu3UrTpk0BaNSo0cX8CERERKSSGYZBgd38RSG3wE5Ovp2cAjvZ+SW3Tz2fnW/njssb4OtZ4TNuiYiIiDgF9VollbXXOpfJkyfTq1cvnnvuOQCaNm3Kli1beO2117jzzjtJTEzE19eX66+/Hn9/fxo0aEC7du0As7QtLCxk0KBBNGjQAIDWrVuXOUNZ6Aq7iurQoUOJ7czMTCZMmMAPP/xQ9BclJyenxKjm0rRp06bosa+vLwEBARw6dOisxy9cuJCsrCyuu+46AGrXrk2fPn2YPn06L774IocOHeLAgQP06tWr1PPj4+OpV69eUWErIiIi5cMwDPIKHWZ5enqB+pf1qXI1u8BO7mkla06+42TRWnhyn6PE87knz7E7yjZa4Po24SptqyrDgK3fwZbvYPAHUE4jZ0RERETOx6pe61y2bt3KjTfeWGJft27dmDJlCna7nT59+tCgQQMaNWrEtddey7XXXls0NUNcXBy9evWidevW9O3bl2uuuYYhQ4ZQq1ati8pyIWrcFba3uytbJlbM1AsX8t7lxdfXt8T2448/zsKFC/nXv/5F48aN8fb2ZsiQIeTn55/zddzd3Uts22w2HA7HWY+fNm0ax44dw9vbu2ifw+Hgzz//5IUXXiixvzTne15ERMTZZecXcjQzn6NZ+RzNzONoZj5Hssz10cw8jmblk55TcEYJm1Ngp4x96iVxsYGPhxveHq54u5uLl4cr3u4u5raHK97ubni4lfkWCVJZso7AnDFQkA3N+kHrIec/R0RERCylXquksvZal8Lf35/169ezePFifvrpJ8aPH8+ECRNYs2YNQUFBLFy4kBUrVvDTTz/x1ltv8cwzz7Bq1aqib6aXtxpX2tpstnIbyl2VLF++nDvvvJOBAwcC5r9Q7N27t1zf4+jRo3z77bd88cUXxMbGFu232+1cccUV/PTTT1x77bVER0ezaNGiEnMbn9KmTRv279/Pjh07NNpWREScQoHdwbGsfI5k5nEsK98sYU+Wr8WlbPHj8pijzN3Vdlpx6orXaY99PE5ul/J8iedO7vM6ec7p297urri72sptTrOqZsmSJbz22musW7eOlJQU5syZw0033XTOc/Ly8pg4cSIzZ87k4MGDhIeHM378eO66667KCX0x/OrAFWPh15dg4fPQ7Drw8LE6lYiIiJyDeq2K06JFi6J7Mp2eq2nTpkX3YnJzc6N379707t2b559/nqCgIH755RcGDRqEzWajW7dudOvWjfHjx9OgQQPmzJlTdL+v8lbz/hbUUE2aNOGbb75hwIAB2Gw2nnvuuXL/l4VPPvmEkJAQhg4desYvaddddx3Tpk3j2muvZcKECYwZM4bQ0NCim44tX76cBx98kO7du3PVVVcxePBgJk+eTOPGjdm2bRs2m+2i5hsRERGpbA6HQXpOAUez8jiSaZawx049LhoRWzw6Nj2noMzv4enmQm0/T0L8PAjx9SDk5OPavuY60Nv9ZMnqdtooV5eiAtbdVaNbL0VWVhZxcXHcddddDBo06ILOGTp0KKmpqUybNo3GjRuTkpJSYaM8ylXXB2DdDMjYDyvfhu5PWp1IREREnFBl9FqnHD58mPj4+BL7wsPDeeyxx+jYsSMvvvgiw4YNY+XKlbz99tu8++67APzvf/9jz549XHXVVdSqVYt58+bhcDho1qwZq1atYtGiRVxzzTWEhoayatUqDh8+TIsWLSrkM4BK22pj8uTJ3HXXXXTt2pXatWvz97//nYyMjHJ9j+nTpzNw4MBSR9UMHjyYO+64gyNHjjBy5Ehyc3N54403ePzxx6lduzZDhhR/3e7rr7/m8ccf59ZbbyUrK4vGjRvz6quvlmtWERGR8ym0O05OL2DO5ZpbYOdEXmGJaQiOnlbEnhodeywrv8zzurrYINjXk9p+HieL2JMlrJ9niVL21GNfj/K7M6+UXb9+/ejXr98FHz9//nx+++039uzZU3Sn4ujo6ApKV87cvaHPC/D13bDsDWh3OwREWJ1KREREnExl9FqnfPbZZ3z22Wcl9r344os8++yzfPXVV4wfP54XX3yR8PBwJk6cyJ133glAUFAQ33zzDRMmTCA3N5cmTZrw+eefExsby9atW1myZAlTpkwhIyODBg0a8Prrr5fpmrKsbIZhVOLsaBcnIyODwMBA0tPTCQgIKPFcbm4uCQkJNGzYEC8vL4sSysXSn5+IiHNxOAxyC80i9fT5WnML/rKvwF5UtObkO8gtNI/LKzz9hlvm8XkFp91M6+TNtXIL7RTYL+0SJ8DL7bTRsCfXfieLWd+SJWyQtzsuLiphK9q5rgkvls1mO+/0CPfddx87duygQ4cOfPLJJ/j6+nLDDTfw4osvnnU+/7y8PPLy8kpkj4qKKtfsF8wwYHpfSFoFcbfCwKmV+/4iIiJyVupFaqZz/ble6DWtRtqKiIjIWRmGQVa+nfScAjJyCkg/uWScts7ILSQjt6C4eM0vWbqeXsbmFVrzdXKvkzfP8vFwOzkatngE7KnRscG+5r7afp4E+3roBltSZM+ePSxbtgwvLy/mzJnDkSNHuO+++zh69CgffvhhqedMmjSJF154oZKTnoXNBtdOgvevhg2fw5WPQe0mVqcSERERkXNQaSsiIlLD2R3GyXL19NK1sPhxbskytkQ5m1tY5qkCLpSHq4tZpp528ytPd1e83V1K3CzL89ScrieLV2+PM/d5uRe/RtFrup081s1FUxHIJXE4HNhsNj799FMCAwMB8yt+Q4YM4d133y11tO24ceNK3JTi1Ehby0S2hx7joF5HFbYiIiIi1YBKWxERkWogt8BORu7pI1wLzxj1WrKALSwqYE/kFV7y+7u72gj0difA250AL3cCvd1PbrsR6O2Ov5f7aSVrcbl6epFa/NhcXDWdgFQT4eHhREZGFhW2YN592DAM9u/fT5MmZ5agnp6eeHp6VmbM8+vxlNUJREREROQCqbQVERGpQg6fyCM+KY0NSWls2J/GjtQTpGUXlMu0Aj4ermbR6uVeXMCeLF0Dzyhjix8Hervj5a7RquK8unXrxqxZs8jMzMTPzw+AHTt24OLiQr169SxOd5EyD4Gnv3mjMhERERGpclTaioiIWCQ7v5CN+9PZsD+NDUnpxCelkZyWc9bjbTYI8Dp30Xp62RrgVXycv5e75mgVOSkzM5Ndu3YVbSckJBAfH09wcDD169dn3LhxJCcn8/HHHwMwfPhwXnzxRUaNGsULL7zAkSNHeOKJJ7jrrrvOeiOyKm3dR7DgGej2MHR/wuo0IiIiIlIKlbYiIiKVoNDuYOehTDYkpRF/ctmReoK/Thdrs0GTUD/i6gURFxVEq8hAQnw9CPB2x9/TDRdNKSByydauXUvPnj2Ltk/NPTty5EhmzJhBSkoKiYmJRc/7+fmxcOFCHnzwQTp06EBISAhDhw7lpZdeqvTs5cLDF/JPwLLJ0O52CAi3OpGIiIiI/IVKWxERkXJmGAYH0nOJTzSnOIhPSmPj/nRyCuxnHFs3wIu4qEDaRtUiLiqQ1pGB+Hu5W5BaxHn06NEDwzj7DfZmzJhxxr7mzZuzcOHCCkxViVoNhlVTYf8aWDQRBr5ndSIRERER+QuVtiIiIpcoPaeAP/ennRxFa05zcCQz74zj/DzdaFMvkLioIOLqBdE2Koi6gV4WJBYRp2azwbX/gA+uhg2fQad7IPIyq1OJiIiIyGlU2oqIiJRBXqGdbSknzBG0iWnE709jz+GsM45zc7HRPNy/qJxtGxVEozp+uGp6AxGpCuq1hza3wJ9fwPxxcNd8s8wVERERkSpBpW011qNHD9q2bcuUKVOsjiIiUiMZhsHeo9nEJx0vulHYlgMZ5NsdZxxbP9iHuKhTBW0gsRGBeLm7WpBaROQC9RoPW7+DpN9h8xxoNcjqRCIiIuJE1Gudm0pbCwwYMICCggLmz59/xnNLly7lqquuYsOGDbRp06Zc3i8nJ4fIyEhcXFxITk7G09OzXF5XRKSmOZKZx4akk9Mc7E9nQ1Ia6TkFZxwX5ONO29OmOIiLCiLY18OCxCIilyAwEro9Akv+Ccf3Wp1GREREqonK6rVmzJjBI488Qlpa2iW9TnWl0tYCd999N4MHD2b//v3Uq1evxHMffvghHTp0KLfCFuDrr78mNjYWwzCYO3cuw4YNK7fXFhGprnLy7Ww6YBazf5wsavcfzznjOA83F1pFBJw2ijaI+sE+2PQ1YhGpCbo+aI6wrd3E6iQiIiJSTVR2r+WsXKwO4Iyuv/566tSpc8adiTMzM5k1axZ33303R48e5dZbbyUyMhIfHx9at27N559/flHvN23aNG6//XZuv/12pk2bdsbzmzdv5vrrrycgIAB/f3+uvPJKdu/eXfT89OnTiY2NxdPTk/DwcB544IGLyiEiUtEcDoNjWflsP3iC5buOMPePZD5YuodJ87Yy9qt47pi2in5vLqXjyz8T+/x8bp66kpd+2MoPf6aw/3gONhs0DvVj8GX1ePGmVnz/wBVsmtCXb+7rxvMDYrmxbSQNQnxV2IpIzeHho8JWREREyqSye62zSUxM5MYbb8TPz4+AgACGDh1Kampq0fMbNmygZ8+e+Pv7ExAQQPv27Vm7di0A+/btY8CAAdSqVQtfX19iY2OZN29euea7VDV3pG3+mTeFKWJzBXevCzzWBdy9z3+sh+8FR3Nzc2PEiBHMmDGDZ555puiX/1mzZmG327n11lvJzMykffv2/P3vfycgIIAffviBO+64g5iYGDp16nTB77V7925WrlzJN998g2EYPProo+zbt48GDRoAkJyczFVXXUWPHj345ZdfCAgIYPny5RQWFgLw3nvvMXbsWF599VX69etHeno6y5cvv+D3FxG5VIZhkJ5TwOETeRzOzOPwiTyOZOafXOcVrc0lH7vDuODXDvX3LJreoG1UEK3rBRLg5V6Bn0ZEpAo7uBH2/AZd9Q/0IiIillOvdU4Oh6OosP3tt98oLCzk/vvvZ9iwYSxevBiA2267jXbt2vHee+/h6upKfHw87u7m73v3338/+fn5LFmyBF9fX7Zs2YKfn98l5ypPNbe0fSXi7M81uQZum1W8/VpjKMgu/dgGV8CoH4q3p7SG7KNnHjchvUzx7rrrLl577TV+++03evToAZhDyAcPHkxgYCCBgYE8/vjjRcc/+OCDLFiwgK+++qpMf7mnT59Ov379qFWrFgB9+/blww8/ZMKECQC88847BAYG8sUXXxT9xW3atGnR+S+99BKPPfYYDz/8cNG+jh07lumzioj8lWEYZOQWnlG8llznF5WxBfYLL2LBnHO2jp8ntf08qeN/+tqjaDsswIvafh4aNSsiApCWCP/pDoYdortBRDurE4mIiDg39VrntGjRIjZu3EhCQgJRUVEAfPzxx8TGxrJmzRo6duxIYmIiTzzxBM2bNwegSZPibxclJiYyePBgWrduDUCjRo0uOVN5q7mlbRXXvHlzunbtyvTp0+nRowe7du1i6dKlTJw4EQC73c4rr7zCV199RXJyMvn5+eTl5eHj43PB72G32/noo4948803i/bdfvvtPP7444wfPx4XFxfi4+O58soriwrb0x06dIgDBw7Qq1evS//AIuIUDMMg6VgOBzNyz1rInholm293lOm1A73dqe3ncUYRW+cv28G+Hni4afYfEZEyCaoPrYfAn1/C/HEw6kfQP2qJiIjIWVRGr3UuW7duJSoqqqiwBWjZsiVBQUFs3bqVjh07MnbsWEaPHs0nn3xC7969ufnmm4mJiQHgoYce4t577+Wnn36id+/eDB48uMrNw1tzS9unD5z9OZtrye0ndp3j2L/84v/IxovP9Bd33303Dz74IO+88w4ffvghMTExdO/eHYDXXnuNN998kylTptC6dWt8fX155JFHyM/Pv+DXX7BgAcnJyWfceMxut7No0SL69OmDt7f3Wc7mnM+JiJwuv9DBvI0pfLBsD5uSMy74PH8vN3NE7Mny9fSRsKevQ/w88HRzPf8LiojIxev1PGz5DhJXwpa5EDvQ6kQiIiLOS73WJZswYQLDhw/nhx9+4Mcff+T555/niy++YODAgYwePZq+ffvyww8/8NNPPzFp0iRef/11HnzwwUrLdz41t7Qtw1wcFXbseQwdOpSHH36Yzz77jI8//ph777236Gu6y5cv58Ybb+T2228HzLk6duzYQcuWLS/49adNm8Ytt9zCM888U2L/yy+/zLRp0+jTpw9t2rTho48+oqCg4IzRtv7+/kRHR7No0SJ69ux5iZ9WRGqitOx8Pl2VyMcr95KakQeAh6sLEUFeZ5SvpU1R4OWuIlZEpMoIjIQrHoHFk+Cn8dC0X8n58kRERKTyqNc6pxYtWpCUlERSUlLRaNstW7aQlpZW4j2aNm1K06ZNefTRR7n11lv58MMPGTjQ/IfpqKgoxowZw5gxYxg3bhzvv/++Slsx+fn5MWzYMMaNG0dGRgZ33nln0XNNmjRh9uzZrFixglq1ajF58mRSU1Mv+C/34cOH+f777/nuu+9o1apViedGjBjBwIEDOXbsGA888ABvvfUWt9xyC+PGjSMwMJDff/+dTp060axZMyZMmMCYMWMIDQ2lX79+nDhxguXLl1epv8QiUvn2HM5k+vIEvl6XTE6BHYA6/p6MuLwBt13egGBfD4sTiojIRen6EKz/GNIT4fd34MrHrE4kIiIiVVRF9lqn2O124uPjS+zz9PSkd+/etG7dmttuu40pU6ZQWFjIfffdR/fu3enQoQM5OTk88cQTDBkyhIYNG7J//37WrFnD4MGDAXjkkUfo168fTZs25fjx4/z666+0aNHiUn8k5UqT/lns7rvv5vjx4/Tt25eIiOJJpp999lkuu+wy+vbtS48ePahbty433XTTBb/uxx9/jK+vb6nz0fbq1Qtvb29mzpxJSEgIv/zyC5mZmXTv3p327dvz/vvvF426HTlyJFOmTOHdd98lNjaW66+/np07d17y5xaR6scwDFbsOsLdM9Zw9eu/MfP3RHIK7LQID+BfN8ex7O89ebBXExW2IiLVmYcP9J5gPl46GU4ctDSOiIiIVG0V1WudkpmZSbt27UosAwYMwGaz8e2331KrVi2uuuoqevfuTaNGjfjyyy8BcHV15ejRo4wYMYKmTZsydOhQ+vXrxwsvvACYZfD9999PixYtuPbaa2natCnvvvtuufxMyovNMIyy3ZLbAhkZGQQGBpKenk5AQECJ53Jzc0lISKBhw4Z4eenrW9WN/vxEqr68Qjvfb0hh2rIEtqYUz1fbq3kod1/ZkC6NQoq+AiMiUpHOdU1Y1VWr7IYBnw2DJn2g/Z3geuYNa0VERKR8qBepmc7153qh14WaHkFEREp1LCufT3/fx8e/7+PwCXO+Wm93V4a0r8eobtE0quNncUIREakQNhvc9pXVKUREREScmkpbEREpYWfqCaYvT+Cb9cnkFToACAvwZGTXaIZ3qk+Qj6Y/EBFxKoX55mhbfatCREREpNKotBUREQzDYOnOI0xblsBvOw4X7W8dGcjdVzTkutbheLhpGnQREaez/UeYP86c5zb2JqvTiIiIiDgNlbYiIk4st8DOt/HJTFuWwI7UTMAcSNWnRRijr2xEx+hamq9WRMSZHYiH4wmw8Dloei24a649ERERkcqg0lZExAkdPpHHzN/3MfP3fRzNygfA18OVmztEMapbNA1CfC1OKCIiVUK3h2D9x5CWCL+/C1eOtTqRiIiIiFOoMaWtYRhWR5CL4HA4rI4g4lS2Hcxg2tIEvo0/QL7d/N9fRKAXd3aLZljH+gR66w7hIiJyGg9fc2qEOf8HS1+HtreBf5jVqURERGoc9SM1S3n8eVb70tbd3R2bzcbhw4epU6eOvsZbTRiGQX5+PocPH8bFxQUPD93YSKSiOBwGv+04zLRlCSzbdaRof9uoIO6+oiH9WtXFzVXz1YqIyFm0vhlW/weS18EvL8KNb1udSEREpMbw8PDAxcWFAwcOUKdOHTw8PNRtVWPl2XdV+9LW1dWVevXqsX//fvbu3Wt1HCkjHx8f6tevj4uLCiOR8paTb+ebP/YzfVkCuw9nAeBig36twrnrioa0b1DL4oQiIlItuLjAta/CtD7wx0zodA+Ex1mdSkREpEZwcXGhYcOGpKSkcODAAavjSDkpj76r2pe2AH5+fjRp0oSCggKro0gZuLq64ubmpn9BEilnhzJy+XjlPj5dtY/j2eZ/F/093RjWMYqRXaOJCvaxOKGIiFQ7UZ2g1RDYNBu2fKfSVkREpBx5eHhQv359CgsLsdvtVseRS1RefVeNKG3B/IG4urpaHUNExDKbktOZviyB7/88QIHdnOc7KtibO7s2ZGiHevh7ab5aERG5BL0nQNyt0KS31UlERERqHJvNhru7O+7u+r1NTDWmtBURcUYOh8Ev2w7xwbI9/L7nWNH+Dg1qMfrKhvRpWRdXF41mFxGRchAUZS4iIiIiUuFU2oqIVEPZ+YXMXrefD5fvJeGIOV+tq4uN/q3DufuKhsRFBVkbUEREarbMw3BwAzTWqFsRERGRiqDSVkSkGklJz+GjFfv4bNU+MnILAQjwcuPWzvUZ2SWaiCBvixOKiEiNd3g7fNAbDAMeXAf+YVYnEhEREalxVNqKiFRRuQV2Eo9ls/dIFonHsvkjKY0Fmw5S6DDnq40O8WFUt4YMaV8PX0/951xERCpJSBMIaQwH1sOvL8ENb1mdSERERKTG0W/5IiIWSs8uYO/RLPYdyybxaBb7jmaby7EsUjPySj2nc8NgRl/ZiKubh2q+WhERqXwuLnDtqzD9Glj/CXS8B8LbWJ1KREREpEZRaSsiUoEMw+DQiTz2HjlVzGaz71g2+04WtOk5Bec839/LjegQX+qH+BAd4kO/VuG0igyspPQiIiJnUb8ztBoMm76G+ePgzv+BTf+QKCIiIlJeVNqKiFyiAruDA2k57D1aPFp279FsEo+Z0xrkFjjOeX4df0+iQ3yoH+xLgxCfk4svDYJ9CPJxx6ZfgkVEpCrqPQG2/QD7lsHW76HlDVYnEhEREakxVNqKiFyAnHw7+46ZhWziyekLTk1lkJyWg/3kPLOlcbFBZC1vc8RssFnK1g/2Jbq2D/WDffDx0H+KRUSkGgqqD10fhCWvwU/PQtO+4OZpdSoRERGRGkFNgYjISWnZ+ew9ak5d8NdpDA6dKH1+2VM83VyKCtkGIb4ni1kfokN8iazljburSyV9ChERkUrU7RHY8AU0vRbs+SptRURERMqJSlsRcTq5BXZ2pJ5gY3I6m5Iz2HIgnYQjWWTkFp7zvAAvNxqcNr9sg+BTj30J9ffERTcFExERZ+PpBw+sAXdvq5OIiIiI1CgqbUWkRsstsLM1JYNNyelFJe2O1BMUnmU6g1B/z+LpC0J8qH9y5Gx0iA9BPh6VnF5ERKQaUGErIiIiUu5U2opIjZGdX8jWlAw27k9nY3IGmw+ks/NQZqnzzQb5uNM6MpDYiEBaRQbQONRP88uKiIhcioObzLlt+0yE8DZWpxERERGp1tROiEi1lJlXyJYDGSdHz5rL7sOZlDaANsTXg1aRZjnbOjKQVpGBRAZ5Y7NpOgMREZFys+wN2PMrLHgaRn4P+v9ZERERkYum0lZEqryM3AI2J582xcHJOWiNUgraOv6eRcVsq4gAWtcLpG6AlwpaEREpsmTJEl577TXWrVtHSkoKc+bM4aabbrqgc5cvX0737t1p1aoV8fHxFZqz2un9PGz7H+xdaq5bDLA6kYiIiEi1pdJWRKqUtOx8NiVnsOmAWdBuTk5n79HsUo+tG+BFq8jAkyWtOYo2NMCrkhOLiEh1k5WVRVxcHHfddReDBg264PPS0tIYMWIEvXr1IjU1tQITVlNB9aHrg7DkNXOahCbXgJun1alEREREqiWVtiJimWNZ+SWmN9h0IJ2kYzmlHhsZ5F1UzMZGBtIqIpA6/vpFUETEEoV5cHh7tZ23tF+/fvTr16/M540ZM4bhw4fj6urK3Llzyz9YTdDtEVj/CRzfC6umQreHrU4kIiIiUi2ptBWRSnH4RF5RObsxOZ3NBzJITiu9oK0f7EOryICTUxyYUx0E+3pUcmIRETlD9jH4/FY48Ac4CuCpRPD0tzpVpfjwww/Zs2cPM2fO5KWXXrI6TtXl6WdOkzD3XvjtNYi7FfxCrU4lIiIiUu2otBWRcpdbYCc+KY3VCcf4c38aG5PTSc3IK/XYhrV9iY0wR9C2jgwkNiKQQB/3Sk4sIjVe3gk4vg8KsqF2U/AOsjpR1eVwwOFtkLQKklaDTzD0fdl8zrsWHNkB9jzwqW2Opqzb2tK4lWHnzp089dRTLF26FDe3C7t8zsvLIy+v+P/7MjIyKipe1dPmFlj1H0iJN9e9nrM6kYiIiEi1o9JWRC5ZboGdPxLT+H3PUX7fc5Q/ktLIL3SUOMZmg0a1fU+bgzaQlhEBBHipoBU5r6wjsOELCIqCwChz3kifEN2Z/XQOB7i4FG9v+AJ2LjRLxeN7IftIyePvXwN1mpqPj+wEhx1CGoOrk14a7V0G+1acLGrXQF568XMB9YpLW5sNhkw3/w4GN3KKv4N2u53hw4fzwgsv0LRp0ws+b9KkSbzwwgsVmKwKc3GBfv80R2R3vNvqNCIiIiLVks0wSrv/etWSkZFBYGAg6enpBAQEWB1HxOnlFthZn3ic3/cc4/c9R4kvpaSt4+9J54bBXFa/Fq3rBdIiPAA/TyctQ0TKIvsYrJ0Gke0h5mpzX8JS+Oj6kse5eUNgPbPI7XBX8V3aC3IgMxUCIsG1hv2jSF4mHE8oLmJPX9IS4fEd5khQgHlPwOr/ljzfJwTcvMwS/Onk4p/PnHthw2fg6mkWuWGtICzWXEJjza9215Ry0jAgPcmcj7ZJn+L9/+1hFmynuPtCvfYQ1dlcGveuEj+DirgmtNlszJkzh5tuuqnU59PS0qhVqxaurq5F+xwOB4Zh4Orqyk8//cTVV199xnmljbSNiorS9ayIiIiIk7vQa1o1KCJyXrkFdtbvO26OpE04RnxiGvn2kiVtqL8nlzcKoXOjYC5vFEKj2r7YqsAv+CLVxvF98Pu75g18CrKgfpfi0tbTD2IHmWVbWhJkHoTCHDi601xa3FD8OvvXmgWvzQX8w81iNzCquOCNvqp4hGlV47DDiRQ4dloxe8UjxXOm/vw8rPng7Ocf31tc2ja/3vzctaJPLg3AK9B8Lu9EyULbZgMPP8jPhIMbzaX4SXj6AHj4mJtJq81z6zQHd+9y+NAVzF4AKX+eHEF7cjmRAi5u8FRS8edq3h+CY06WtJ3M4tpZRx3/RUBAABs3biyx79133+WXX35h9uzZNGzYsNTzPD098fTUDTMBKMw3//sVEmN1EhEREZFqQ1fjInKGnHxzJO2qPUf5fc8xcyRtKSVtl5gQOjcM4fJGwTRUSStycVI2wPJ/w+Y5YNjNfWGtzdGzhmEWihHt4OYPi88pzIOMZEjfb5a49S8vfi7nuDli1H7ymIxks6g75fopxaVt4ir44bHiQreo3K1vPvatU3LKgfKQd8IcJXyqENz0NcR/Vjxa1p5f8viWN0B4nPm4VkPwDjZL2OCGpxWyJ5eAyOLzGnU3l9L89cZZN70LN7wNafvg0BZI3Qypm8y1zaW42AT46TlI+t3cHxxzckRuKwhraT6uFX2RP5gK8Osr5t+twr/c9NHFDeq2MUdkB58sHK96ovLzWSgzM5Ndu3YVbSckJBAfH09wcDD169dn3LhxJCcn8/HHH+Pi4kKrVq1KnB8aGoqXl9cZ+6UUh7bCF8PN/57dvwrcVGSLiIiIXAiVtiJSVNKempM2PimNAnvJmVPCAsyRtKeW6BAflbQil2rek7D6P8XbjXpAt4ehUc9zfxXdzdOcTzS40ZnPtbwBmh+ErMNmqZueaBa76fvNkW6hLYuPPbYHUjeaS2munwIdRpmPD++Azd+UHLkbWK/0AibrKBzeWjxa9vSRs9lHYMyy4ptXpSfDrp+Lz3VxM0vjU0Wsu2/xc5ffB10fOPvP5VK4uJgFZnBDc9TpKfbCksf51jaL45xjxSOdt8w1nwuIhLFbio/dNs8c+RvWsniUb3lyOMz3T1plFvBJq+DWL6B2Y/N5ryCzsPWuVTyCNupy8x8BTi+indDatWvp2bNn0fbYsWMBGDlyJDNmzCAlJYXExESr4tUsgVGQn2X+I8Gq/0C3h6xOJCIiIlItaE5bESeUnV/I+n3FNw7bsP/MkrZugBeXn5zq4PJGITRQSSty6ewF5hQA7l7m9sbZ8M3/QatB0PXB4hGllSXzEByIN8vc9KTikbvpSeZX6IfPgia9zWPjP4e5Y858Db8ws5S5+lmIOVmCLZtiTmVwNrd8VlyMpm6B/WuKR8/6R1T9r+UbhllApW4uudRqALd8Wnzca00g65D5ODDqtHlyW5p/1rWblP29j+42R2UnrYb9q82R1ae78V1od5v5OPMQ5KSZN1gr7xHTFqnO14TVOfsl++NT+PY+8AyAB9eDXx2rE4mIiIhYRnPaikiR7PxC1p2ak3bPMf4spaQND/Q6WdCaRW39YJW0IuUm7wSs+wh+fw8uv7d4tGjLm8zRj0H1rcnlFwpNryn9OXtBye1aDeCyEacVu/vNUZyZqebisBcfG9LYnMqgtCkMakWXHHUa1tJcqhObDfzrmkvjXsX7T/938IJcc0Rr6mbI2F9cjO+Ybz4ffSXc+b/i49d+aP6Mw1qZfy5gjkJOWmWWvKHNzX2Ht8MvLxaf5+Zt3rQuqpM5TUZU5+Ln/EKLX0vESnG3mt8qSNkAv74MA6ZYnUhERESkylNpK1IDZeWZJe2qBLOk3ZCURqHjzJK2y2nTHUQFe6ukFSlvJw7CqqmwZjrkpZv7Ns0uLm1d3awrbM/n9Bt1ATToai6nGAZkHzXnoU3fbxaUp7S43lyczen/DXX3gtu+Mh/nHDfn9SyaK3cL1OtQfGxuBvzvkeJtn9rmtBMZyeZ2979D6NPm46hOZtlf/3Lzcd02Z/5ZiVQ1Li5w7avwYT9Y/xF0HA11NR+wiIiIyLmotBWpAU6VtKemO/hzf/oZJW1EoBeXx5wsaRuqpBWpUId3wIp/w59fFt9YK6SxOQVCm1uszVZebDZzflff2hB5mdVpqjbvWmeW3qfLz4QWN5il7rE95ry/ADZXc+5f39O+Su5bG4Z+VPGZRcpbg67mPzhsmQsLnoYR35577m4RERERJ6fSVqQaysorZO1pJe3GUkrayCBvLm8UQudGwXRpFEK9WippRSrN4lfMeUfBvPFTt4egab8aM6+olLOACBj2ifk4PwsObYPCXHPeW08/a7OJlKc+L8D2H80bDuZn6e+3iIiIyDmotBWpBgzDYPfhLH7ddohftx9izd5jZ8xJW6+WN50bFs9JGxXs3HcGlyogP8v8Cn1N/6XcYYft88y5SIMbmvu6PmTOCdv1Iajf+dzni5zOwxfqtbc6hUjFqBUN962E4EYaZSsiIiJyHiptRaqo3AI7K/ccLSpqk47llHi+Xi3vovloOzcMVkkr1so6Aj9PgC4PFN8wact35t3CQ2PN+TvrdTSXmnIn+4Ic2PA5rHgbju2GDnfB9W+Yz0VeBrd8am0+EZGqKCTG6gQiIiIi1YJKW5EqJOlYNou3H+KXbYdYsfsoeYWOouc8XF3o3CiYns1C6dk8lIa1fS1MKnKSw2HeVObnCZCbBsf3wp3/M587vA0MB6RuNJd1H5r7vQIhsgP0+wfUbmJR8EuQfQzWTDNvMHZq7lGvQPAPtzaXiEh1knUElvwLrnwM/Oqc/3gRERERJ6PSVsRCBXYHa/YeY/H2w/y67RA7D2WWeD480IuezUPp2SyUrjEh+Hrqf7JShRyIhx/GQvI6czusNfQaX/x8nxeg899g/1rYv8ZcH/gDctNh9yKz6DxlzQewf505IjeqE9RpAa5V8O/7r6/AiregINvcDqwPXe6DdnfU/GkgRETK0+xRkLAE7HnF31IQERERkSJV8DdikZrtUEauWdJuP8TSnUfIzCsses7VxUb7+rXMorZ5HZqF+evmYVL15KTBry+bRavhAA9/uPpZ6Dj6zKI1IAJa3mAuYM7zmrrZXPxCi4/b9gPs/gU2fGZuu/uaUwycmlahSd+qUeI67GZhW7cNdHvYvBN6VcglIlLddH/KLG3XzTD//yMs1upEIiIiIlWKftMUqWB2h8GG/WlFc9NuSs4o8XxtPw+6NzVL2isb1yHQx92ipCIXaMMXsPq/5uNWg+GalyHgAqcGcHWHiLbmcrquD0Fk+5MjctdB/gnYu9RcPPzhqX3Fx+76GbyCzOLUzaMcPlApDAN2LYIVb5rlbOPe5v7OYyD6CmjUQzfRERG5FNHdoOWNsOVbmD8ORnyr/66KiIiInEalrUgFSMvO57cd5pQHv+04zPHsghLPx9ULpEezUK5uHkrryEBcXPRLilRx9gKzcAXoeDfsWwYd7oaYnuXz+jE9i1/LYYcjO04WuGvA5gIursXHznvSvPGXqyeEx528wdnJEbmB9S7tl357AWz6Gpb/Gw5tNvfZXItLW7864FdOn1lExNn1mQjbf4SE32DHfGjWz+pEIiIiIlWGSluRcmAYBltSMli8/TC/bDvEH4nHcRjFz/t7uXFV0zr0bBZK96Z1qOPvaV1YkbLIz4Ilr8GOn+D/fgU3T7O8HTaz4t7TxRVCW5jLZSNKPmcvgNpNzZueZR+F/avN5ZSG3WHkd8XbhXlm5vPJOwHrPoLf34WMZHOfuy+0vxMuv/dSP5GIiJSmVjR0uR+WvQELnoGYXhX3DQoRERGRakalrchFyswrZNnOIyzebk57kJqRV+L55nX96dEslJ7N6tC+QS3cXF0sSipyEQwDts+DH/8O6Unmvq3fQ+sh1uZydYfhX5j5jicU3+QsaTWkboLghsXHFubDPxpCSMzJ0bgnl5CYM0fjfnozJK40H/uGwuVjoMNd4F2r8j6biIgzuvIx+ONT8xsU62ZA5/+zOpGIiIhIlaDSVuQCGYbBniNZRXPTrk44RoG9eDitt7sr3RrXpmfzOvRoFkpkkLeFaUUuwfG9Zlm7Y765HRgF/f4Jza+zNFYJNhsENzKXNkPNffnZ5k3CTjm0GQqy4OCf5rJ2mrnfuxZEdoABU8zpFMAc0Zt1BLo+CG2GgbtXpX4cERGn5ekP/f8FqVsgop3VaURERESqDJthGMb5D7NWRkYGgYGBpKenExAQYHUccSK5BXZ+33P0ZFF7mMRj2SWejw7xoWfzUHo2C6VTw2C83F3P8koi1YDDDssmw5J/QWEuuLibJeZVj4OHr9XpLk56cvHcuPvXwoE/wH5yVHy/14pHdDnsgA1cNCJepCqrzteE1Tm7iIiIiJSfC70u1Ehbkb/YfzybX7ebNxFbsfsIuQWOouc8XF3o3CiYns1C6dk8lIa1q2mRJVIamwvsXW4WttFXQv/XoU4zq1NdmsBIc4m9ydwuzDenUdi/Fjjt3yxd9A8uIiIiIiIiUnWotBUBCuwOvos/wLRlCWxJySjxXHigFz2ahXJ181C6xoTg66n/2UgNcuKgeaMu71rmlAP9X4fk9ebctX+d97UmcPOAyMvMRUREqo4TB83//wlpDHWaWp1GRERExHJqn8SpZecX8uWaJD5YmkByWg4Ari422tevRY/mdejZLJTmdf2x1cTySpybvRDWvA+/vGwWtAOmmPtDYsxFRESkMv38Amz4DLo/BT3HWZ1GRERExHIqbcUppWXn89GKfcxYkcDx7AIAavt5cNcVDRneqT5BPh4WJxSpQEmr4X9jIXWjuZ262Zw2wE1/70VExCIRbc3SNiXe6iQiIiIiVYJKW3EqKek5fLA0gc9XJ5KdbwegfrAP/3dVI4a0r6cbiUnNlnUUfn4e/vjE3PYKgj4vQLsRugGXiIhYKzzOXKdssDaHiIiISBWh0lacwq5Dmfznt93MjU+mwG7efKhFeAD39ojhulZ1cXNVYSU13N7l8OVtkHPc3G53O/R+AXxrW5tLREQEoG5r84aYJ1LgRCr4h1mdSERERMRSF9VUvfPOO0RHR+Pl5UXnzp1ZvXr1WY8tKChg4sSJxMTE4OXlRVxcHPPnz7/owCJlEZ+Uxt8+WUufN35j1rr9FNgNOjcMZsaojsx76ApuiItQYSvOoU5zcx0aC3ctgBvfUWErIiJVh4cv1D55AzKNthUREREp+0jbL7/8krFjxzJ16lQ6d+7MlClT6Nu3L9u3byc0NPSM45999llmzpzJ+++/T/PmzVmwYAEDBw5kxYoVtGvXrlw+hMjpDMNg2a4jvLd4Nyt2Hy3a36dlGGO6x9C+QS0L04lUktwM2DgLOtwFNhv4hsCdP5i/ELu6W51ORETkTOFxcHibOa9t02usTiMiIiJiKZthGEZZTujcuTMdO3bk7bffBsDhcBAVFcWDDz7IU089dcbxERERPPPMM9x///1F+wYPHoy3tzczZ868oPfMyMggMDCQ9PR0AgICyhJXnIjdYTB/00He+20Xm5IzAHBzsXFj20jGdG9EkzB/ixM6mYIc2DwHQltAhP6BptIYBmz6GhY8A5kHYdhMaDHA6lQiIuWiOl8TVufslWblu7BgHDS/Hm751Oo0IiIiIhXiQq8LyzTSNj8/n3Xr1jFu3LiifS4uLvTu3ZuVK1eWek5eXh5eXl4l9nl7e7Ns2bKyvLXIWeUV2vlmfTL/+W03e49mA+Dt7sotnaIYfWUjIoO8LU7ohLZ8a5aG6UnmdvSV0PVBaNxHN7yqSEd2wg+PQcJv5nZwI/NmYyIiItVB077m1D2R7a1OIiIiImK5MpW2R44cwW63ExZW8sYAYWFhbNu2rdRz+vbty+TJk7nqqquIiYlh0aJFfPPNN9jt9rO+T15eHnl5eUXbGRkZZYkpTuJEbgGfrUpk2rIEDp0w/74EertzZ9doRnaNJtjXw+KETmzvcrOw9a1j3vhq71JzqdMcrngU4m6xOmHNkp8NS1+H5W+CowDcvODKx6DrQ+Dudf7zRUREqoKQGHMRERERkbLPaVtWb775Jvfccw/NmzfHZrMRExPDqFGjmD59+lnPmTRpEi+88EJFR5Nq6vCJPGasSODjlfs4kVsIQHigF6OvbMQtHaPw9azwv9byV1lHID8TakWb2z2eAr86cPn9kHMMVk2FtTPMeep2LVJpW96+GA57fjUfN7kG+v0Tghtam0lERERERERELlqZ2q3atWvj6upKampqif2pqanUrVu31HPq1KnD3Llzyc3N5ejRo0RERPDUU0/RqFGjs77PuHHjGDt2bNF2RkYGUVFRZYkqNVDSsWz+u2QPX61NIq/QAUBMHV/GdI/hxraReLjpa/eVzl4Aq9+Hxa9CeBsY+b150yufYLjqCfMYDx+45iVze91HEHN18fmHd8C6D+HyeyGovjWfoSbo+qA5NUK/V815AG02qxOJiIhcnEPbYPcic4qfZv2sTiMiIiJimTKVth4eHrRv355FixZx0003AeaNyBYtWsQDDzxwznO9vLyIjIykoKCAr7/+mqFDh571WE9PTzw9PcsSTWqwrSkZTP1tN//7MwW7w7xvXlxUEPf1iKFPizBcXFRQWWLXzzB/HBzZYW7npptTIfgEl368VyB0e6jkvpVvwfqPYdV/oNUgs3wMj6vY3NVdYT6sfNv8eXa829zXuBc8tB7c9N9NERGp5nb+BAufgxY3qLQVERERp1bm75GPHTuWkSNH0qFDBzp16sSUKVPIyspi1KhRAIwYMYLIyEgmTZoEwKpVq0hOTqZt27YkJyczYcIEHA4HTz75ZPl+EqlRDMNgzd7jvLd4F79uP1y0/6qmdbi3ewyXNwrGptGE1ji6GxY8DTvmm9s+taHXeGh3O7i4lu21YgfB8X3mjbM2zjKXht3Ncjeml0aM/lXCEvNGY0d2gIc/tBgAfqHmcypsRUSkJjj1j7cpG6zNISIiImKxMpe2w4YN4/Dhw4wfP56DBw/Stm1b5s+fX3RzssTERFxOuzt8bm4uzz77LHv27MHPz4/rrruOTz75hKCgoHL7EFJzOBwGv2w7xHu/7WbdvuMAuNjgutbhjOkeQ6vIQIsTOrl9K+GjAebNrlzcoPMYc9oD76CLe72YnuZyIN4cPbrpG7PATfgNGl5lTrfgzBx22L8Gts+D7T8Wj2r2rQPXvGyuRUREapLwNuY6bR9kHzv7N3hEREREajibYRiG1SHOJyMjg8DAQNLT0wkICLA6jlSAAruD7zccYOpvu9mRmgmAh6sLQzrU4/+ubER0bV+LEwpgzmH7Xjeo1QD6vgK1m5Tv66clwu9TYf1H0OUB6DnO3O9wQP4Jc0oAZ7Lqv/DjE8XbLu7QfiRc/dzFF+UiItVYdb4mrM7ZK92bcXB8L4z4Fhr1sDqNiIiISLm60OvCMo+0FSlPOfl2vlyTyPtLE0hOywHAz9ON2y9vwF3dogkN8LI4oZNL/B1+fw8GvQ9uHuDqDnfNr7hRL0H14dpXoPsTYDvtxnI7f4KvR5uF5eX3QmC9inl/q2QcMEfSbv8RWg+BuFvM/U16w6+B0KSvOa9f417OV1yLiIjzCT9Z2h6IV2krIiIiTkulrVgiLTufj1fuY8aKvRzLygegtp8Hd13RkNs6NyDQ293ihE4ufT8sfB42zTa363UwbxIGlfM1Re9aJbe3fm+OtF35NqyaCq0Gm3nqtq74LBXBMODgxpNF7TxIiS9+ztWjuLQNbgRP7AFX/adaREScSHhb2PKt5rUVERERp6YmQCpVSnoO05Ym8NnqRLLz7QBEBXvzf1fFcHP7eni5l/FGVlK+CnJg+b9h2RtQmAPY4LIR0OYWa3Pd8Ba0vAFWvAV7l8KfX5pLzNVmeduoZ/W5aVlhHrzdwZwKoogN6nU0R9M2u67k8SpsRUTE2Zy6GdnBjdbmEBEREbGQ2gCpFHsOZzL1t93M+SOZArs5jXLzuv7c2yOG/q3DcXN1Oc8rSIUyDNgyF356DtKTzH31u0K/V4t/cbKSiws07WsuyevN8nbLXNj9C2Qdhr8ttTph6bKPwc6FcGw39Hza3OfmCQGRkHnYLJ2b9TM/l1+otVlFRESqiqjOcPfPEBZrdRIRERERy6i0lQpVYHfwzq+7ePuXXRQ6zLK2U8Ng7u0RQ4+mdbBVl9GRzuCPmWZhG1APrpkIsYOq5ujVyMvg5g/h+PPmfLv1Ly/OmXcC1n8C7W4HL4tu8nJ0d/H8tIkrwbCb8/N2HlM8tcRN74F/XXD3tiajiIhIVebpB1EdrU4hIiIiYimVtlJhtqZk8PisDWw+kAFA96Z1eKhXY9o3qIQ5UeX8so6YZaJPsFl69p0EkR2g28Pg4WN1uvOrFQ39/lFy3/qPYcHTsPhV6HCnWZQGRFROng1fwNLJcGR7yf2hseZoWoe9eF9ww8rJJCIipVqyZAmvvfYa69atIyUlhTlz5nDTTTed9fhvvvmG9957j/j4ePLy8oiNjWXChAn07du38kKLiIiIiFPRd9Kl3BXYHfx70U5ueHsZmw9kEOTjzpu3tGXGqI4qbKsCewGsfBf+fRn88mLx/jpNoee46lHYnk1ABIQ0gbx0WP4mTGkDc+6F1C3l+z75WbD1f5CRUryvMM8sbF3czDtd9/snPPwn3LcCej0HfnXKN4OIiFy0rKws4uLieOeddy7o+CVLltCnTx/mzZvHunXr6NmzJwMGDOCPP/6o4KROLOVP+OExWPyP8x8rIiIiUgPZDMMwrA5xPhkZGQQGBpKenk5AgEVfeZYLsu2gObp2U7I5urZPyzBeHtiKUH8vi5MJADt/hgXj4MgOczuiHdz1E7h5WJurPDkcsHOBeUO1xBXF+5v0hVs/B5eLvNldRgrsmG9Oe7BnMdjz4Np/wOVjzOezjkDCb9C4N3gFXvLHEBGRM1XENaHNZjvvSNvSxMbGMmzYMMaPH39Bx+t6tox2/ASf3Qy1m8IDa6xOIyIiIlJuLvS6UNMjSLkosDuYung3//5lJwV2g0Bvd164IZYb20Zo3tqq4Mguc9qAnQvMbZ/a0Gu8OffrxZaYVZWLizkdQbN+sH8trPg3bP3enD/29M/qcJjHnkvOcVj9AWyfBwfWl3wuqAG4uhdv+9aGVoPL73OIiEiV5XA4OHHiBMHB+gZRhYloa66P7IS8THOeWxEREREnotJWLtn2gyd4bFZ80eja3i3CeGVgK0IDNLq2Stj6PcwaBY4C86v7ncfAVU+Ad5DVySpevQ4w9GM4tgdO/1LB0d0wc5D5s2h3R/EvgoX5cOKAOV8umD+vJf8Ee765HdnhZCF8HYS2qJo3ahMRkQr3r3/9i8zMTIYOHXrWY/Ly8sjLyyvazsjIqIxoNYdfKPiHw4kUOLgRGnSxOpGIiIhIpVJpKxet0O5g6m+7eXNR8ejaCTe05Ka2kRpdW5U06AYevlCvI1w7CWo3sTpR5QtuVHJ77XQ4vhfmPwWLJ5nFbUYy7Fpk3iTsb0vM4zz94crHzF8am14L/mGVHl1ERKqWzz77jBdeeIFvv/2W0NDQsx43adIkXnjhhUpMVgOFtzVL25QNKm1FRETE6ai0lYuyI/UEj8/awJ/70wHo3SKUVwa21ujaqiDxd9jyLfR9xRwJ6hMM9y6HwHpWJ6s6rn4WQmJgxdtwbDesfLv4uRMHITcDvE7OK9PjKWsyiohIlfPFF18wevRoZs2aRe/evc957Lhx4xg7dmzRdkZGBlFRURUdsWYJj4MdP5qlrYiIiIiTUWkrZVJod/CfJXt48+ed5NsdBHi5MeGGWAa20+hay6Xvh4XPw6bZ5nb0FdC8v/lYhW1J7t7Q4S64bKR5Y7HN35hTIjS7DiIuO/9ctyIi4nQ+//xz7rrrLr744gv69+9/3uM9PT3x9PSshGQ12Kl5bVPirUwhIiIiYgmVtnLBdp4cXbvh5OjaXs1DeWVQa8I0utZaBTmw/N+w7A0ozAFscNkIqNfJ6mRVn4srtLjeXERExGlkZmaya9euou2EhATi4+MJDg6mfv36jBs3juTkZD7++GPAnBJh5MiRvPnmm3Tu3JmDBw8C4O3tTWBgoCWfwSmEx5nr/CywF4KrfnURERER56ErHzmvQruD/y7dw5SFxaNrnx8Qy6DLatjoWnsBzHvcvEmVuw+4e51ce4Obt7lufycEnfxq4+EdcGhL8TFF55x87B0Mbh4Vl9cwYMtc+Ok5SE8y99XvCv1eLf4lR0RERM6wdu1aevbsWbR9ahqDkSNHMmPGDFJSUkhMTCx6/r///S+FhYXcf//93H///UX7Tx0vFcQ/HJ7YA74hVicRERERqXQqbeWcdqae4PHZf7IhKQ2Aq5ubc9fWDayBo2td3aFOc1g34+zHNO9fXNpunwc/P3/2Y0d+Dw2vMh+v/xgWTSwuf09f3Lyh+xMQ0c489kA87FhQXBq7eZUsheu2Ad/a4CiEX14yC9uAenDNRIgdZM5jKyIiImfVo0cPDMM46/N/LWIXL15csYGkdDabClsRERFxWiptpVSFdgfvL03gjZ93kF/owN/LjfHXt2RI+3o1a3TtX3X6G/iFQn62Oe1AYY65LsiGglzwr1t8rH9dc2Rrwclj/3q8m3fxsbnpkHX4HO87uvjxgfWw+JWzHztsJrQYYJbM1/4DktdC14fAw+fiP7eIiIiIiIiIiFQZKm3lDLsOZfL4rA3Enxxd26NZHV4d1KZmjq7NO2HevKvXc+Bdy7wBVavBF3Zu3C3mUpq/jt5pexvEXF1c7v614K3TvPjY2k2h/SgozC1ZCBfkmPt8Thtx0qS3uYiIiIjURIe2wYJxYDhgxLdWpxERERGpNCptpYjdYfDB0j28vvDk6FpPN54b0JKba+ro2rxM+PRmSFwJx3aX7y8Cf/15+QSby4WIvsJcRERERJydhy/s/gVc3MxvPbnXwEEEIiIiIqVQaSuAObr2idkb+CMxDYDuTevw6uDWhAd6n/vE6io/Cz4baha2noHQa7zViURERETkrwLrmTd3zTlm3gA28jKrE4mIiIhUCpW2Tq7U0bXXt+TmDjV0dC2cLGyHwb7l4BkAd8yByPZWpxIRERGRv7LZIKKtOdo2JV6lrYiIiDgNlbZObPfhTJ6YtYH1J0fXXtW0Dq8Oak1EUA0dXQvmDcY+GwZ7l4KHv1nY1lNhKyIiIlJlhcedLG03WJ1EREREpNKotHVCdofB9GUJ/Oun7eQVOvDzdOPZ/i0Y1jGq5o6uPeX7h08rbL+Beh2sTiQiIiIi5xLe1lwfiLcyhYiIiEilUmnrZPYczuSJ2X+ybt9xAK5sUptXB7chsiaPrj1d9yfhwB9w4zsQ1cnqNCIiIiJyPuFx5vrQFijMBzcPa/OIiIiIVAKVtk7C7jD4cHkCry0oHl37TP8W3OIMo2tPV7sJ3Pc7uOqvvoiIiEi1UCsaghpAUH3zhmT+da1OJCIiIlLh1Fw5gT2HM3ly9p+sdcbRtQW58PXd0GEUNO5t7lNhKyIiIlJ92Gzw8AZzLSIiIuIk1F7VYH8dXevr4coz/VtyaycnGV1bmAdf3g67FsK+5fDIRvD0tzqViIiIiJSVM1y7ioiIiJxGpW0NtfdIFk/M3sCavebo2isa1+bVwa2pV8vH4mSVpDAPvrzDLGzdvGHoJypsRURERKq7vEzw9LM6hYiIiEiFU2lbwzgcBjNW7OWfC7aRW2COrn26fwuGd6rvHKNrwSxsvxoBOxeYhe3wL6HhlVanEhEREZGLlXkIpvWBE6kwbr+muxIREZEaT1c7NcjeI1k8OftPVu89BkC3xiG8OqgNUcFOMroWzDsKz7oTdswHNy8Y/gU06m51KhERERG5FD61IesoFObAke0QFmt1IhEREZEKpdK2BnA4DD5auZd/zDdH1/p4uPL0dS24rbMTja49Ze002D7PLGxv/QIa9bA6kYiIiIhcKhcXCG9j3qfgQLxKWxEREanxVNpWc/uOZvHE7D9ZnWCOru0aE8I/BjvZ6NrTdbwHUjdB7CCI6Wl1GhEREREpL+FtzdI2ZQO0u83qNCIiIiIVSqVtNZaSnsON7ywnLbsAHw9XxvVrzm2dG+Di4mSja+0FYHM1R2C4usGN71idSERERETKW3icuU6JtzSGiIiISGVQaVtNGYbBk7P/JC27gOZ1/Xl/RAfnHF1rL4Cv7wYPP7jhLXBxtTqRiIiIiFSEU6XtwY3gsOu6T0RERGo0F6sDyMX55Pd9LN15BE83F9657TInLWwL4Zt7YMu3sHGWeQEvIiIiIjVT7Sbg7gMF2XBkp9VpRERERCqURtpWQ3sOZ/LKvK0AjOvXnJg6fhYnsoC9EOb8H2yeAy7uMPQTiGhrdSoRERERqSgurtBqMNhcwNXd6jQiIiIiFUqlbTVTaHfw6FcbyC1w0K1xCCO6RFsdqfLZC2HO32DT12ZhO+wTaHat1alEREREpKLd+LbVCUREREQqhaZHqGbeW7ybDUlp+Hu58dqQOOe76ZjDDnPvhU2zwcUNhn4EzfpZnUpERERERERERKTcqLStRjbuT+fNReb8XRNvjCUiyNviRBZI2XBySgQ3uHkGNO9vdSIRERERqUyFeXDgD3A4rE4iIiIiUmE0PUI1kVtg59Gv4il0GFzXui43tY20OpI1Ii8zp0OwF0CLAVanEREREZHK5LDDa40hLwMeWAe1G1udSERERKRCaKRtNfGvBdvZdSiT2n6evHRTa2w2J5oWweGAE6nF2836QcsbrMsjIiIiItZwcYXaTczHKfGWRhERERGpSCptq4GVu48ybXkCAP8c0ppgXw+LE1UihwO+fxA+6AXHEqxOIyIiIiJWC29rrlM2WBpDREREpCKptK3iTuQW8PisDRgG3Nopiqubh1kdqfI4HPC/h+GPmZCRDKmbrE4kIiIiIlaLaGuuNdJWREREajCVtlXcC99vITkth/rBPjzbv6XVcSqPwwH/ewTWfww2Fxj0vuawFREREREIjzPXKRvAMKzNIiIiIlJBVNpWYQs2H2T2uv3YbPD60Dh8PZ3kvnEOB/wwFtZ/ZBa2A/8LrYdYnUpEREREqoI6LcDVA3LT4fheq9OIiIiIVAiVtlXUkcw8nv5mIwB/uyqGjtHBFieqJIYB8x6HdR8CNrhpKrS52epUIiIiIlJVuHlA6MlvoGleWxEREamhnGToZvViGAbjvtnI0ax8mtf159E+TayOVHnyTkDSKszC9j2IG2Z1IhERERGpajqMgpw0CGtldRIRERGRCqHStgqatW4/C7ek4u5qY/LQtni6uVodqfJ4BcCI7yBxheawFREREZHStb/T6gQiIiIiFUrTI1QxSceymfj9FgDG9mlGy4gAixNVAsOAxFXF274hKmxFRERERERERMRpqbStQhwOg8dnbSAzr5AODWrxf1c1sjpSxTMMWPA0TL8G1kyzOo2IiIiIVBdHd8OmryHrqNVJRERERMqdStsqZPryBFYlHMPHw5XXh8bh6mKzOlLFMgz46Vn4/V1z26a/jiIiIiJygb4aCbPvgsSVVicRERERKXdqyaqIHakn+OeC7QA8278lDUJ8LU5UwQwDFj4HK982t69/w7yhhIiIiIjIhYiIM9cp8ZbGEBEREakIKm2rgPxCB49+GU9+oYOezepwa6coqyNVLMOAn5+HFW+Z2/1fhw53WZtJRERERKqX8LbmOmWDpTFEREREKoJK2yrgrV92svlABrV83PnH4DbYbDV4WgTDgEUTYfmb5vZ1/4KOo63NJCIiIk5lyZIlDBgwgIiICGw2G3Pnzj3vOYsXL+ayyy7D09OTxo0bM2PGjArPKedxqrQ9EG9eY4qIiIjUICptLbY+8Tjv/LoLgJcHtiY0wMviRJXA1d1c9/sndLrH2iwiIiLidLKysoiLi+Odd965oOMTEhLo378/PXv2JD4+nkceeYTRo0ezYMGCCk4q51S3FdhcIesQnDhodRoRERGRcuVmdQBnlp1fyGNfbcBhwE1tI7iudbjVkSqezQY9n4bGfSCqo9VpRERExAn169ePfv36XfDxU6dOpWHDhrz++usAtGjRgmXLlvHGG2/Qt2/fioop5+PuDXWawaEt5ry2AU5wLS0iIiJOQyNtLTRp3jYSjmRRN8CLF25sZXWcirXhS8jPLt5WYSsiIiLVxMqVK+ndu3eJfX379mXlypUWJZIimtdWREREaiiNtLXIbzsO88nv+wB47eY2BHq7W5yoAh3ZCXP+D/64Eu6YC676ayciIiLVx8GDBwkLCyuxLywsjIyMDHJycvD29j7jnLy8PPLy8oq2MzIyKjynU+owCpr1g3oaECAiIiI1i0baWiA9u4AnZ5ujAUZ2acCVTepYnKiCbZ5jrl3dVdiKiIiIU5g0aRKBgYFFS1RUlNWRaqaoTtDyBk2NICIiIjWOSlsLPPftJlIz8mhU25en+rWwOk7FO1Xatr7Z2hwiIiIiF6Fu3bqkpqaW2JeamkpAQECpo2wBxo0bR3p6etGSlJRUGVFFREREpIbQsMdK9v2GA3y34QCuLjYmD2uLt4er1ZEq1qFt5s0hXNyh2XVWpxEREREpsy5dujBv3rwS+xYuXEiXLl3Oeo6npyeenp4VHU0A9q2EfcugcW+IaGd1GhEREZFyoZG2lSg1I5dn524C4P6ejWkbFWRtoMqwZa65btwLvIOsTCIiIiICQGZmJvHx8cTHxwOQkJBAfHw8iYmJgDlKdsSIEUXHjxkzhj179vDkk0+ybds23n33Xb766iseffRRK+LLX62dDr+8BDt/tjqJiIiISLlRaVtJDMPgydl/kp5TQOvIQB68urHVkSrHqakRYgdam0NERETkpLVr19KuXTvatTNHZY4dO5Z27doxfvx4AFJSUooKXICGDRvyww8/sHDhQuLi4nj99df54IMP6Nu3ryX55S/C48x1SrylMURERETKk6ZHqCSfrkrktx2H8XBz4Y1hcbi7OkFffng7HN4Grh7mXX1FREREqoAePXpgGMZZn58xY0ap5/zxxx8VmEouWkRbc52ywdIYIiIiIuVJpW0l2Hski5d/2ArA369tTuNQf4sTVZLaTeFvSyB1M3gFWp1GRERERGqiuq3NdXoSZB0F3xBr84iIiIiUAycY7mmtQruDsV/Fk1Ngp0ujEEZ1jbY6UuWx2cyvq7UdbnUSEREREampvAIhOMZ8rCkSREREpIZQaVvB/rNkD+sT0/D3dONfQ+NwcbFZHUlEREREpGbRFAkiIiJSw6i0rUCbD6Qz5ecdAEy4IZbIIG+LE1WipZNhzhhIXmd1EhERERGp6U7djOzgRmtziIiIiJQTzWlbQXIL7Iz9cgMFdoO+sWEMuizS6kiVxzDgj0/g2B5o3Bsi21udSERERERqstZDIaYX1GlmdRIRERGRcqHStoK8sXAH21NPUNvPg1cGtsZmc6JpEQ7+aRa2bl7Q9Fqr04iIiIhITRcQbi4iIiIiNYSmR6gAq/Yc5b9L9wAwaVAbQvw8LU5UyTbPMddNrgFPP2uziIiIiIiIiIiIVDMqbctZZl4hj83agGHA0A716NMyzOpIlcswikvb2IHWZhERERER57HzZ5h7P2z4wuokIiIiIpdMpW05e/H7Lew/nkO9Wt48d31Lq+NUvpR4OL4X3LyhaV+r04iIiIiIszi4AeJnws6frE4iIiIicslU2pajn7ek8uXaJGw2eP3mOPy93K2OVPlOjbJt2hc8fK3NIiIiIiLOI7ytuT4Qb2UKERERkXKh0racHM3M46lv/gTgnisb0blRiMWJLBIYBbWbaWoEEREREalc4XHm+thuyM2wNouIiIjIJVJpWw4Mw+CZOZs4kplPszB/xvZpanUk63S6Bx5YDS1usDqJiIiIiDgT39oQUM98fPBPa7OIiIiIXCKVtuVgzh/JzN98EHdXG5OHxeHl7mp1JOu56K+WiIiIiFSyiLbmOmWDpTFERERELpWatUuUnJbD899uBuCR3k2JjQi0OJFFDAO2zYP8bKuTiIiIiIizOjVFgua1FRERkWpOpe0lcDgMnpi1gRN5hbSrH8TfrmpkdSTr7F8LX9wK/24LDrvVaURERETEGYXHATbITbM6iYiIiMglcbM6QHU2Y8VeVuw+ire7K5OHtsXN1Yk78M1zzHX0leCi6SFERERExAINu8O4JPD0tzqJiIiIyCVRaXuRdh06wT/mbwPg6f4taFjb1+JEFnI4YMtc83GrQZZGEREREREn5u4FeFmdQkREROSSOfHQ0ItXYHfw6JcbyCt0cFXTOtzeub7Vkay1fw1kJIOHP8T0sjqNiIiIiIiIiIhItXZRpe0777xDdHQ0Xl5edO7cmdWrV5/z+ClTptCsWTO8vb2Jiori0UcfJTc396ICVwVv/7KLjcnpBHq789qQNthsNqsjWevU1AjNrzs5ukFERERExCI7F8L0a+GHx61OIiIiInLRyjw9wpdffsnYsWOZOnUqnTt3ZsqUKfTt25ft27cTGhp6xvGfffYZTz31FNOnT6dr167s2LGDO++8E5vNxuTJk8vlQ1SmDUlpvP3rLgBeuqkVYQFOXlKePjVC7EBLo4iIiIiIYC+AxJWQm2F1EhEREZGLVuaRtpMnT+aee+5h1KhRtGzZkqlTp+Lj48P06dNLPX7FihV069aN4cOHEx0dzTXXXMOtt9563tG5VVFOvp1Hv4rH7jAYEBfBgLgIqyNZ7+AGOJECngEQc7XVaURERETE2YXHmevD26Agx9osIiIiIhepTKVtfn4+69ato3fv3sUv4OJC7969WblyZanndO3alXXr1hWVtHv27GHevHlcd911lxDbGv+Yv409h7MIC/DkxRtjrY5TNUS0gwfXw6D/gpun1WlERERExNkFRIBvHTDskLrZ6jQiIiIiF6VM0yMcOXIEu91OWFhYif1hYWFs27at1HOGDx/OkSNHuOKKKzAMg8LCQsaMGcPTTz991vfJy8sjLy+vaDsjw/qvNi3beYQZK/YC8M8hcQT5eFgbqCoJiTEXERERERGr2WzmaNtdP0NKPNTrYHUiERERkTK7qBuRlcXixYt55ZVXePfdd1m/fj3ffPMNP/zwAy+++OJZz5k0aRKBgYFFS1RUVEXHPKf0nAKemL0BgDsub0D3pnUszSMiIiIiIucQ3tZcH4i3MoWIiIjIRStTaVu7dm1cXV1JTU0tsT81NZW6deuWes5zzz3HHXfcwejRo2ndujUDBw7klVdeYdKkSTgcjlLPGTduHOnp6UVLUlJSWWKWuwnfbSYlPZfoEB/GXdfc0ixVyoJn4IvbIGmN1UlERERERIqdmtc2ZYO1OUREREQuUplKWw8PD9q3b8+iRYuK9jkcDhYtWkSXLl1KPSc7OxsXl5Jv4+rqCoBhGKWe4+npSUBAQInFKvM2pjDnj2RcbDB5WFt8PMo0o0TN5bDDn1/Ctv9BbrrVaUREREREikW0Bb8wCKoPZ/mdQ0RERKQqK3MDOXbsWEaOHEmHDh3o1KkTU6ZMISsri1GjRgEwYsQIIiMjmTRpEgADBgxg8uTJtGvXjs6dO7Nr1y6ee+45BgwYUFTeVlWHMnJ5Zs5GAO7r0ZjL6teyOFEVsm85ZB0G71rQqLvVaUREREREigVGweM7rE4hIiIictHKXNoOGzaMw4cPM378eA4ePEjbtm2ZP39+0c3JEhMTS4ysffbZZ7HZbDz77LMkJydTp04dBgwYwMsvv1x+n6ICGIbBU99s5Hh2AbERATzUq4nVkaqWzXPMdYsB4OpubRYRERERkdPZbFYnEBEREbkkNuNscxRUIRkZGQQGBpKenl5pUyV8sTqRp77ZiIebC/978AqahvlXyvtWC/ZCeL0ZZB+BO+ZAzNVWJxIREREnYMU1YXmpztmrvbxM8PSzOoWIiIgIcOHXhWWa09ZZJB3L5sX/bQHgiWuaqbD9q33LzMLWOxiir7I6jYiIiIjImfatgH81hY+utzqJiIiISJnprlqlCA3w5I4u0fy5P427r2hodZyq59TUCC1vAFf9FRIRERGRKsi/LmSmQs5xsBdoSi8RERGpVtS4lcLTzZWn+jWn0O7AxUXzYZ0hsj2kbobYgVYnEREREREpXa2G4BkIeelwaCuEt7E6kYiIiMgF0/QI5+Dmqh9PqS4bAaN/hkY9rE4iIiIiIlI6m624qE3ZYG0WERERkTJSKykiIiIiIjVTRFtznRJvZQoRERGRMlNpKxfOXgB/fGrOCyYiIiIiUtWFtzXXGmkrIiIi1YxKW7lwe36Db++D97qBYVidRkRERETk3E6Vtgc3gb3Q0igiIiIiZaEbkcmF2zzHXDfrZ84RJiIiIiJSlQU3gkY9oU5zKMgG1wCrE4mIiIhcEI20lQtTmA/bvjcfxw6yNouIiIjIJXrnnXeIjo7Gy8uLzp07s3r16nMeP2XKFJo1a4a3tzdRUVE8+uij5ObmVlJauWguLjBiLvR7FbxU2IqIiEj1odJWLsyeXyE3HfzqQv3LrU4jIiIictG+/PJLxo4dy/PPP8/69euJi4ujb9++HDp0qNTjP/vsM5566imef/55tm7dyrRp0/jyyy95+umnKzm5iIiIiDgLlbZyYU5NjdDyRnBxtTaLiIiIyCWYPHky99xzD6NGjaJly5ZMnToVHx8fpk+fXurxK1asoFu3bgwfPpzo6GiuueYabr311vOOzpUqJO8EpPxpdQoRERGRC6bSVs6vMA+2/WA+jh1obRYRERGRS5Cfn8+6devo3bt30T4XFxd69+7NypUrSz2na9eurFu3rqik3bNnD/PmzeO6666rlMxyiY7uhklRMP1acNitTiMiIiJyQXQjMjm/5PXm6AT/cIjqbHUaERERkYt25MgR7HY7YWFhJfaHhYWxbdu2Us8ZPnw4R44c4YorrsAwDAoLCxkzZsw5p0fIy8sjLy+vaDsjI6N8PoCUXa1ocPeGgiw4ugvqNLM6kYiIiMh5aaStnF+DLvDYdhgy3byZg4iIiIgTWbx4Ma+88grvvvsu69ev55tvvuGHH37gxRdfPOs5kyZNIjAwsGiJioqqxMRSgosr1G1tPk7ZYG0WERERkQukBk4ujH8YNOhqdQoRERGRS1K7dm1cXV1JTU0tsT81NZW6deuWes5zzz3HHXfcwejRo2ndujUDBw7klVdeYdKkSTgcjlLPGTduHOnp6UVLUlJSuX8WKYPwOHN9IN7SGCIiIiIXSqWtnNtZfhERERERqY48PDxo3749ixYtKtrncDhYtGgRXbp0KfWc7OxsXP7ybSNXV/PGrIZhlHqOp6cnAQEBJRaxUHhbc62RtiIiIlJNaE5bObe5Y+BECvR8FuprPlsRERGp/saOHcvIkSPp0KEDnTp1YsqUKWRlZTFq1CgARowYQWRkJJMmTQJgwIABTJ48mXbt2tG5c2d27drFc889x4ABA4rKW6niTo20TdlgDkrQlF8iIiJSxam0lbMryIGt/zNv2nC1LmxFRESkZhg2bBiHDx9m/PjxHDx4kLZt2zJ//vyim5MlJiaWGFn77LPPYrPZePbZZ0lOTqZOnToMGDCAl19+2aqPIGVVpxm4ekL+CTieACExVicSEREROSebcbbvdFUhGRkZBAYGkp6erq+WVaYt38FXd0BgFDyyEWw2qxOJiIiIE6vO14TVOXuNsfgf4F0LWg0C39pWpxEREREndaHXhRppK2e3eY65jr1Jha2IiIiIVG89/m51AhEREZELpu+8S+nys2HHfPNx7EBrs4iIiIiIiIiIiDgRlbZSup0/QUE2BNWHiMusTiMiIiIicmkcDji4CeI/h6o/Q5yIiIg4OU2PIKUrmhphoKZGEBEREZHqz1EI7/cEez406AK1oq1OJCIiInJWGmkrpWveH2J6Qewgq5OIiIiIiFw6Nw8IbWk+TtlgbRYRERGR81BpK6VrMxTu+AYi2lqdRERERESkfITHmesD8ZbGEBERETkflbYiIiIiIuIcTg1I0EhbERERqeJU2kpJeSfg9/cg44DVSUREREREytepkbYp8boZmYiIiFRpKm2lpB0LYP5T8NEAq5OIiIiIiJSv0FhwcYPso5CRbHUaERERkbNSaSslbZ5jrlveZGkMEREREZFy5+4FdVqYjzVFgoiIiFRhblYHkCokNwN2LjQfxw60NouIiIiISEW4+hlztG29jlYnERERETkrlbZSbMd8sOdBSBMIi7U6jYiIiIhI+WvWz+oEIiIiIuel6RGk2KmpEWIHgs1mbRYREREREREREREnpdJWTLnpsOtn83GrQdZmERERERGpSNt+gEUTIfOQ1UlERERESqXSVkwH4s11neYQ2sLSKCIiIiIiFWrRi7D0dUheZ3USERERkVKptBVTo+7wxC4YPM3qJCIiIiIiFSs8zlynbLA2h4iIiMhZqLSVYl6BULeV1SlERERERCpWRFtzrdJWREREqiiVtgIFuVYnEBERERGpPKdG2p6aIkxERESkilFpK/Dl7fCf7pC4yuokIiIiIiIVr24bwAYnDuhmZCIiIlIlqbR1dtnHYM+vkBIPPsFWpxERERERqXieflC7ifk45U9rs4iIiIiUQqWts9v2AzgKIax18YWriIiIiEhNd2qKhIMqbUVERKTqcbM6gFhs8xxzHXuTpTFERERERCpV96egxzio1dDqJCIiIiJnUGnrzLKPwZ7F5uPYgZZGERERERGpVLUbW51ARERE5Kw0PYIz2/o9GHbzRgwhMVanEREREREREREREVTaOreiqRE0ylZEREREnND6T2DWnZC4yuokIiIiIiVoegRn1uEu8ArQfLYiIiIi4px2LzIHMoTHQf3OVqcRERERKaKRts6s5Q0w9GMIbmR1EhERERGRyhfe1lwfiLcyhYiIiMgZVNqKiIiIiIhzCo8z1ykbrM0hIiIi8hcqbZ1R5mFY/A84vMPqJCIiIiIi1jlV2h5PgJw0S6OIiIiInE6lrTPa+i0sfgXm/M3qJCIiIiIi1vEJhqD65uODf1qbRUREROQ0Km2d0ea55rrVIEtjiIiIiIhYTvPaioiISBWk0tbZnEiFvcvMxy1vtDaLiIiIiIjVItqCiztkH7U6iYiIiEgRN6sDSCXb8i1gQL2OxV8FExERERFxVp3+D7o8AG6eVicRERERKaLS1tlsnmOuYwdam0NEREREpCrw9Lc6gYiIiMgZND2CM8k4AIkrzceaGkFERERERERERKRKUmnrTA5tAQ8/iOoMgfWsTiMiIiIiUjWs+QD+0x1Wv291EhERERFA0yM4l8a94YldkHnQ6iQiIiIiIlVH9jFIiYc6zaDTPVanEREREdFIW6fj7gW1oq1OISIiImKpd955h+joaLy8vOjcuTOrV68+5/FpaWncf//9hIeH4+npSdOmTZk3b14lpZUKFx5nrlM2WJtDRERE5CSNtHUWOcfBKwhsNquTiIiIiFjqyy+/ZOzYsUydOpXOnTszZcoU+vbty/bt2wkNDT3j+Pz8fPr06UNoaCizZ88mMjKSffv2ERQUVPnhpWKcKm2P7ID8LPDwtTaPiIiIOD2NtHUWnw6FtztA0hqrk4iIiIhYavLkydxzzz2MGjWKli1bMnXqVHx8fJg+fXqpx0+fPp1jx44xd+5cunXrRnR0NN27dycuLq6Sk0uF8a8LfnXBcMDBTVanEREREVFp6xTSkmD/aji6WzcgExEREaeWn5/PunXr6N27d9E+FxcXevfuzcqVK0s957vvvqNLly7cf//9hIWF0apVK1555RXsdntlxZbKUDRFQrylMURERERA0yM4hy1zzXWDrhAQbmkUERERESsdOXIEu91OWFhYif1hYWFs27at1HP27NnDL7/8wm233ca8efPYtWsX9913HwUFBTz//POlnpOXl0deXl7RdkZGRvl9CKkYEW1h5wLNaysiIiJVgkbaOoPNc8x17EBrc4iIiIhUQw6Hg9DQUP773//Svn17hg0bxjPPPMPUqVPPes6kSZMIDAwsWqKioioxsVyU8Djzhr0+IVYnEREREdFI2xrv+D5IXgc2F2hxg9VpRERERCxVu3ZtXF1dSU1NLbE/NTWVunXrlnpOeHg47u7uuLq6Fu1r0aIFBw8eJD8/Hw8PjzPOGTduHGPHji3azsjIUHFb1TW7Dpr3tzqFiIiICKCRtjVf0dQI3cA/7JyHioiIiNR0Hh4etG/fnkWLFhXtczgcLFq0iC5dupR6Trdu3di1axcOh6No344dOwgPDy+1sAXw9PQkICCgxCJVnM1mdQIRERGRIiptazpNjSAiIiJSwtixY3n//ff56KOP2Lp1K/feey9ZWVmMGjUKgBEjRjBu3Lii4++9916OHTvGww8/zI4dO/jhhx945ZVXuP/++636CFKRDAPys6xOISIiIk5O0yPUdFc/B5u/0dQIIiIiIicNGzaMw4cPM378eA4ePEjbtm2ZP39+0c3JEhMTcXEpHtsQFRXFggULePTRR2nTpg2RkZE8/PDD/P3vf7fqI0hFWfcR/PQcxN4IN7xldRoRERFxYjbDMAyrQ5xPRkYGgYGBpKen66tlIiIiIk6qOl8TVufsTmXLt/DVCKjbBsYstTqNiIiI1EAXel2o6RFEREREREQAwtua60NboTDP0igiIiLi3FTa1lTHEuCnZyF5vdVJRERERESqh6D64BUEjgI4tMXqNCIiIuLEVNrWVJu+hhVvwaKJVicREREREakebDaIaGs+TtlgaRQRERFxbipta6rNc8117EBLY4iIiIiIVCvhceZapa2IiIhYSKVtTXRkJ6RuBBc3aDHA6jQiIiIiItXHqXltD8RbmUJEREScnJvVAaQCnBpl26gH+ARbmUREREREpHqJvAxiroZ6naxOIiIiIk5MpW1NtHmOudbUCCIiIiIiZVMrGu6YY3UKERERcXKaHqGmObwdDm0GF3do3t/qNCIiIiIiIiIiIlJGKm1rmuP7wDfU/EqXdy2r04iIiIiIVE9ZR+DwDqtTiIiIiJPS9Ag1TdNr4LFtkH3M6iQiIiIiItXTlm/hqxHmvLajF1qdRkRERJyQRtrWRC6u4FfH6hQiIiIiItVTaEtzfXAj2AutzSIiIiJOSaVtTZK+Hxx2q1OIiIiIiFRvwTHg4QeFOXB0p9VpRERExAmptK0pDAM+GQSTW0LyeqvTiIiIiIhUXy4uULeN+fhAvKVRRERExDmptK0pDm2BI9sh5ziENLY6jYiIiIhI9RYeZ65TNlibQ0RERJySStuaYvMcc924N3gFWJtFRERERKS6i2hrrlPirUwhIiIiTkqlbU1gGMWlbatB1mYREREREakJikba/gkOh7VZRERExOlcVGn7zjvvEB0djZeXF507d2b16tVnPbZHjx7YbLYzlv79+190aPmL1E1wdBe4eUHTvlanERERERGp/mo3hU5/g37/AEeh1WlERETEybiV9YQvv/ySsWPHMnXqVDp37syUKVPo27cv27dvJzQ09Izjv/nmG/Lz84u2jx49SlxcHDfffPOlJZdip0bZNukDnv7WZhERERERqQlcXOG6f1qdQkRERJxUmUfaTp48mXvuuYdRo0bRsmVLpk6dio+PD9OnTy/1+ODgYOrWrVu0LFy4EB8fH5W25eX0qRFiB1qbRURERERERERERC5ZmUrb/Px81q1bR+/evYtfwMWF3r17s3Llygt6jWnTpnHLLbfg6+t71mPy8vLIyMgoscg5DPwvdHkAmmhqBBERERGRclOYB0lrYOv3VicRERERJ1Om0vbIkSPY7XbCwsJK7A8LC+PgwYPnPX/16tVs2rSJ0aNHn/O4SZMmERgYWLRERUWVJaZzsdkgqiP0fRk8/axOIyIiIiJScxzZAdN6w9z7dDMyERERqVQXdSOyizVt2jRat25Np06dznncuHHjSE9PL1qSkpIqKaGIiIiIiMhJdZqDqyfkZcDxBKvTiIiIiBMpU2lbu3ZtXF1dSU1NLbE/NTWVunXrnvPcrKwsvvjiC+6+++7zvo+npycBAQElFilF0hrzX/0TV1mdRERERESk5nF1h7BY83HKBmuziIiIiFMpU2nr4eFB+/btWbRoUdE+h8PBokWL6NKlyznPnTVrFnl5edx+++0Xl1TOtP4jiP/UXIuIiIiISPmLaGuuU+KtTCEiIiJOpszTI4wdO5b333+fjz76iK1bt3LvvfeSlZXFqFGjABgxYgTjxo0747xp06Zx0003ERIScumpBfKzYPMc83Hb26zNIiIiIiJVjmEYfLB0D1l5hVZHqd7C25prjbQVERGRSuRW1hOGDRvG4cOHGT9+PAcPHqRt27bMnz+/6OZkiYmJuLiU7IK3b9/OsmXL+Omnn8ontcCW7yA/E2o1hAZdrU4jIiIiIlXMu4t389qC7cxau5/3R3SgfoiP1ZGqp/A4c30gHgzDvBGwiIiISAUrc2kL8MADD/DAAw+U+tzixYvP2NesWTMMw7iYt5Kzif/UXLe9TReOIiIiInKGyxuFUMffk+2pJxjw9jLeGX4ZVzSpbXWs6ie0Jbi4Q24apCVCrQZWJxIREREnUObpEaQKOJYAe5cCNoi7xeo0IiIiIlIFtW9Qi+8fuIK4qCDScwoYMX0VHyzdo8EUZeXmATe8BXf+AH5hVqcRERERJ6HStjra8Lm5btQdgqKszSIiIiIiVVbdQC++/L/LGdK+Hg4DXvphK2O/2kBugd3qaNVL21sh+gpw97I6iYiIiDgJlbbVkV8oBDWAtrdbnUREREREqjgvd1deG9KG5we0xNXFxpw/krl56koOpOVYHU1EREREzkKlbXXUcTQ8FA+xA61OIiIiIiLVgM1mY1S3hnxydydq+bizMTmdG95exuqEY1ZHqx4KcmDDl/DzC+bNyEREREQqmErb6srFBVwv6j5yIiIiIuKkusbU5rsHrqBFeABHMvMZ/v7vzPx9n9WxqgEbzL0Xlk2GjGSrw4iIiIgTUGlbneRmwOa5UJhndRIRERERqaaign34+t4uXN8mnEKHwbNzNzHum43kFzqsjlZ1uXtBaAvzccoGa7OIiIiIU1BpW51s/gZmjYSPb7Q6iYiIiIhUYz4ebrx1azv+fm1zbDb4fHUiw9//nUMncv+/vXsPb7K+/z/+zKFJzy1t6ZGWs4CAlIOAoMMDE6dT2eZhisLUHVRUFPXnacrXbYrKNlFhIEydbqKoE3BOcYhOh4AgBxWUIudjSw/0fEia3L8/7rahcoa0d1Jej+vKleTOneSdm9J8+son74/VpYWujFzz/NM/Qplm24qIiEjLUmgbTta8ap73+JG1dYiIiIhI2LPZbNxybldeHHcmcZFOvti+n8ue+4wvd5ZaXVpoGvwrcCfAntXw/A9gyydWVyQiIiJtmELbcFG4EXatAJsDzrja6mpEREREpI04r2cqC8YPp2v7GPLLa7ny+WX8c9Uuq8sKPZm58OuPIa0PVBfB30fDV29YXZWIiIi0UQptw8Xahlm23UZCXLq1tYiIiIhIm9KlfSzzxw9nZK9UPPV+7n7zS373r2+o96nPbTPJXeGmRdDvWohKgk5nW12RiIiItFEKbcOB3wdfzTUv9x9jbS0iIiIibcT06dPp1KkTkZGRDBkyhBUrVhzT/V5//XVsNhujR49u2QJbWVxkBLOuH8Qd53cD4MXPtjLupRXsr/JYXFmIcUXD6L/AzUsgPjOwvaLAuppERERClc8Lfn0IfCIU2oaDzR9BxV7z0/zT1M9WRERE5GTNnTuXiRMnMmnSJFavXk2/fv0YNWoU+/btO+L9tm3bxj333MM555zTSpW2LrvdxsQLezDzugFEuxx8tqmYy6Yv4du95VaXFlpsNojPCFz/5h14ph+snWNdTSIiIlar98B/HoY9awPbvngRpg2Epc9BdYllpYUjhbbhYPtS8/yMq8DpsrYWERERkTbgz3/+M7/61a+44YYbOP3005k5cybR0dG8+OKLh72Pz+djzJgxPProo3Tp0qUVq219F/XJYN6tw8lJimZnSQ0//ctS3vt6r9Vlha7186C+BubfAv+aAN5aqysSERFpXcWb4cULYemz8M+bzAAX4Os3oWQL/Oe38Kee8PZvYMfnYBjW1hsGFNqGg5GT4NblcNZ4qysRERERCXsej4dVq1YxcuTIpm12u52RI0eybNmyw97vd7/7Hampqdx0002tUableqTH8c5twzmnewo1Xh+3vrqaKR9swO/XH1kH+dkLcO6DgA1W/Q1eugj2b7e6KpHQU1MKZVroUKTN+eoNeP4HsGcNRLWDH/4uMOlw7AK49FnI6Ae+OvjqdTPcnXm2+Z4ph6XQNlyk9oLEHKurEBEREQl7RUVF+Hw+0tLSmm1PS0sjPz//kPdZsmQJL7zwArNnzz6m56irq6O8vLzZKRwlRrt46Rdn8qtzOgMw/ePN/PKVLyiv9VpcWYix2+Hc++C6t8w/VvesgVkj4LsPra5MJDTU18GSqfB0H5h6Bqz8q9UViUgw1FXCvJvh7V+BpxI6DoebP4OelwT2ccXAwHHw60/glx9B7hhwRkLBOtik98kjUWgb6mrDc4AvIiIi0lZUVFRw/fXXM3v2bFJSUo7pPpMnTyYhIaHplJ2d3cJVthynw85Dl5zO01f3w+2089GGfYye/hmbCyutLi30dBsJv/kUMgdAzX549QrYt8HqqkSsYxjwzQKYPhg+nASeCjB88O+7YeGDVlcnIiejIt+cXfvla2Czw7kPwLh/QULWofe32aDDQHMxz7s3wKjJcNbtgduLN8MLF8KXr6vNUAOn1QXIEeSvg9nnQ++fwE9mmj/gIiIiInJSUlJScDgcFBQUNNteUFBAenr6Qftv3ryZbdu2cemllzZt8zesgux0OsnLy6Nr167N7vPAAw8wceLEpuvl5eVhHdwC/KR/B7q1j+PXf/+CLYVVjJ72Gc9ck8v5PdOOfudTSWIO3LgQFt4PDjek9rS6IhHrrH7Z7PMMEJtutv6r2AuLfwftOllamoicpJhU8z2vvhZ+9lfoOOzY7xvVDs66tfm2VS/Bzs/N08L7zRm5g26E5K6HfoxTgM0wQr/zb3l5OQkJCZSVlREfH291Oa1n4YOwfDr0uhSu/ofV1YiIiIhYKphjwiFDhjB48GCee+45wAxhc3JyuO2227j//vub7VtbW8umTZuabfvtb39LRUUFzzzzDKeddhou15EXi21L49nCijpufXUVK7ftx2aDey7swa3ndsWmCQYH8/vN1glgzkgq3w1ZA62tSaSlGUZgwlFdJTx/DvS5AoZPAHesuX3vV5BxxqHvIyKhq6oIIqLBFW1erywEuwOik07+sSvyYc3fYdXLULYzsL3LuTDoJuhxMTjaxtzTYx0Xqj1CqPJ54au55uXc66ytRURERKSNmThxIrNnz+bll1/m22+/5ZZbbqGqqoobbrgBgLFjx/LAAw8AEBkZSZ8+fZqdEhMTiYuLo0+fPkcNbNua9nFuXv3lUK4bmoNhwJQP8hg/ZzVVdfVWlxZ6GgNbnxfe/AW8eBF88aJWzJa2yVsDn0yBly81P7AAM6QdvwLOfygQ2ELzwLZmP7z0I9h++IUgRSQEbPkvzBhmzoJtFNs+OIEtQFw6/OBemPAlXDMXul8I2Mznfec28HmC8zxhpG1E1G3Rxg+gughi08zeWCIiIiISNFdffTWFhYU88sgj5Ofnk5uby8KFC5sWJ9uxYwd2u+Y3HI7LaecPo/vSOzOBRxas472v89lSWMXssYPIToq2urzQU18H0cnmH5zv3gU7V8Alfw7MVBIJZ4YB6/4JiyZB+S5z28aF0PNi87Ij4sj3/+8TsGMZvHKZucJ87jUtW6+IHB+fFz5+HJY8DRhm+4K6CnDHtczz2R3Q4yLztH+72WbFGRl4zzQMeO8eOO1H0PX8wAekbZDaI4Sq166BvPdg2B1w4e+trkZERETEcuE8Jgzn2o/mi20l3PyP1RRV1pEYHcH0awcwvNuxLdh2SjEMWPosfPh/YPghrQ9c9cop3atP2oCdK+GDB2DXSvN6fAf44aPQ52fH3u7AUw3zfgPfvmNeP/suOP+RNh3EiISN/dvgn78M/B8f+AtzATErP3Tc+j94+cfm5XadYOAN0P86iAmfsYfaI4Szyn3mTFswGy+LiIiIiISoQZ2S+Nftw+nXIYHSai9jX1zBC0u2EgZzQ1qXzWb29Bz7DsS0h4J1MOtc+PZdqysTOX51FWaQ88JIM8yJiIHzfgu3fwF9rzi+/rSuaLjyZTjnHvP6kqfhjevBU9UytYvIsVn3T5h5jvl/3J0AV/4NLn3G+m+JJGbDkJvNmvZvgw8nwZ97mb+Tti9rUy2IFNqGoq/eAMNnLlKg1WZFREREJMRlJEQx9zdn8dMBWfj8Br9/9xvufvNLar0+q0sLPZ3Pgd/8D7KHQl05fPR786unIuEkIgaKNwE2cw2W21fBiHshIurEHs9uhwsehp/MAocLNrwLL46C8j1BLVtEjlFNKfz7HvN9KnsI3LIEev/E6qpM7TrBj56Eu7+Fy6ZBZn+z/dDXb8JLF5ntVtoI9bQNRX2vNL8y1a6j1ZWIiIiIiByTyAgHf7qyH30yE3jsvW95e/VuNu+rZOb1A8lIOMEgp62Kz4BfvGsGtrnXHb3np4jV/H4zEOn1Y3DFmCHrpc+YM9oyc4P3PP2uNgOZ16+FmjKw6/+GiCWiEmH0DHOW7bkPgCME40NXDAy43jztXm0u9Ll3rfmhaKNvFpi/UzL6WVXlSVFPWxEREREJC+E8Jgzn2k/EZ5uKGD9nNaXVXlJi3cy8bgCDOgVpdem27IsXIfV0yBl69H1FWsu2z8y+tXu/hBH3wXkPtvxz7t8O3mpI7dXyzyUi5gcwK/8KcRnmhzPhyu8P9MP21phtE2r2Q9YgOPMmc7bwiX4jIIjU01ZERERERCwxvFsK/7rtbHqmx1FUWcc1s5cz5/MdVpcV2nYsh3/fDX+7BJbPaFM9+SRMlWyFudfD3y42A1tXHES10ocv7To2D2zXzoFPntL/C5GWUF1izm5/7x5YMN5cZylcHbiAYW05dDnPnLG/+wuYfwv8qScsfBCKvrOuxuOg0DaUeGvhtWvgy9fV10pEREREwlp2UjRv3zqMS/pm4PUZPDjvax6a9zWeer/VpYWmtD7mDCB/PSy8H966Eeoqra5KTkW1ZfCfh2H6YPj2HbDZzdXZ71gDQ29u/XpKtsI7d8DHj8HbvzL/bhaR4Ni2BGYMh7z3zH7S5z5gLpbZFsSlwZUvwcRv4IJHICEHakth+XSYNgg+n2V1hUel0DaU5P3b/I+y+PfmG6OIiIiISBiLdjmZdm1/7h3VA5sNXv18B2P+upzCijqrSws97lj42Qvwo6fA7oT1b8Ps86Ewz+rK5FTzn4dh6bPmwj5dzoWbl8ClUyHWoiAnqTNc3PD/4us34eVLw3smoEgo8NXDR4/B334MFXsguRv88kPzgxmbzerqgis2Fc65GyashWvfhNMuApsDup5ndWVHpWQwlKx51TzPvQbsDmtrEREREREJApvNxvjzuvHCuEHEuZ2s3Lafy6Yt4atdpVaXFnpsNhjyG7jhfYjLhKI8mHUerHvb6sqkrav3BC7/4B5I6wvXzIXr50Nab8vKajLoRrjubYhMgF0rzA80CtZbXZVIeKqvg5d/DJ8+BRjmgpi//iRsF+s6ZnYHnHYhXDsX7t4AKd2truioFNqGirLdsPkj83K/a6ytRUREREQkyM7vmcb824bTpX0Me8tquXLmMuav2W11WaEpezD85lPo/APwVkFVodUVSVtVtAnm/BwW3BrYlpgDN/8PelwUWjPuuoyAX34ESV2hbCe8cCFs/MDqqkTCj9NtLnrpijO/4TF6uvltj1NJbKrVFRwThbah4svXAANyhkFyV6urEREREREJuq7tY5k/fjgX9Eylrt7PnXPX8od3v6Hepz63B4ltb85y/NkLMPjXge1aiEmCoWY/LHwA/jIENr4P6+dB6c7A7aEU1h4opeEr3J3OAU8l7F5ldUUi4cFbA1VFgeujHoNblkDfK6yrSY5KoW0oMAxY29Aaof8Ya2sREREREWlB8ZERzB47iNvO6wbAX5ds5Ya/rWRnSbXFlYUgu8P8g7oxQKstgxcvgi2fWFuXhC+f11x859n+sPwv5sJ33UfBLcsgMdvq6o5NdBJcPw8ufdZcNElEjmzft2arnTd/AX6fuS0iCtp1srIqOQYKbUPBjuVQsgUiYuD00VZXIyIiIiLSoux2G/eM6sFfxgwgKsLB/74r4pynPuaKGUv5+/LtlFR5jv4gp6JPp8DO5fD30fC/P4NfM5TlOBRuhBnD4P17zZm27XuZfWLHvAHtT7O6uuPjiICB4wIfaHiq4f37oLrE2rpEQolhwBcvwqxzofBbc2HL/dusrkqOg9PqAgSw2c2vdyR2PPX6iIiIiIjIKevivhl0TonhsX9/y2ebi/hi+36+2L6fR99Zz4jT2nN5/yx+2CuNKJcW6QXg3Aehqhi+nAOLH4VdK2H0DIhKtLoyCQfxmVBbDtHJcN5DMGAcONpIJPDePea3V79bBNe+YbZREDmV1eyHd+6Ab98xr3e9AH4yM2x6uYrJZhih3xSpvLychIQEysrKiI+Pt7qcluP3mV+BEhEREZGDhPOYMJxrby35ZbX868s9zF+7m/V7ypu2x7gcjOqdzuj+WQzrmozTcYp/WdAwYPXL8N694PNAu85w9d8hva/VlQVUFED5LqjIh4q9zc89VXDjwsC+331oBoedR4RuH9VwVVUMa16BYRPA3vD/Ztcqcw2Vthb0F6w3F1Qr2wGRCXDVK9DlXKurErHGjuXwz1+aC/bZI2DkJBg6PvB7QCx3rONChbYiIiIiEhbCeUwYzrVbYdO+CuavMQPcXftrmranxLq5tF8Go3OzOKNDArZTOeTbvRreGGeGVM5I+Pmr0G1kyz2f3w/VxQeHsBV7oa4crngxsO8ro2HLx4d/rIcKICLSfMy/DIGijeZK5kNuhjOuMnstyomr98CK5+GTKVBXBj+dbR7Xtq6yEF6/FnatALsTLv4jDLrB6qpEWpffDzPPhn3rzQ/1rngRsgZYXZV8j0LbcPH1W9D5B5qiLiIiInIU4TwmDOfarWQYBqt37Gf+mj28+9Ue9ld7m27rkhLDZbmZjM7NolNKjIVVWqi6BN7+lbnIzG8+hZiU438Mw4Da0uZBbPke86u1ox4L7PePK2DTosM/TmMQC7DgNti0GOLSza/kx6U3nDLM804/AKfLnHW7aBKsnQPeKvO+UUkw8Bcw+FfmfeXYGQZs+DcsethcMwUg/Qy4eArkDLW2ttbirYV3boev3zCvD70VLvyDvtEqR2YYZmuNz2dAXSXEZ0B8lvk7q/915uJ3jfuFw4eF+etg+Qy4aDJEaswRihTahoOSrfBsLjhccHde4BeBiIiIiBwknMeE4Vx7qPD6/Hy6sZD5a/ew6Jt8ar2BRbhysxMZnZvJj/tlkhLrtrBKC/j9UL4bErMD26pLzL8t6iqbh7HVRTD0lsB+826B9W9Dfe2hH/uh/MCs1/m3muFqTPvmAWzjeb+fn/gM2ZpSWPN3WDELSneY2+xOGPkoDLvtxB7zVLN9GXz8GGz7n3k9Ng3Ofxhyrz31AkvDgE//CB//wezf+5v/QUKW1VVJqNryCSx6BPauPfTtE78NfID0n9+avwfjMyEu0zyPzzR/D8ZnQsdh1nxTIO99KNtlftglYeFYx4VtpOt4mPryNfO843AFtiIiIiIiRxDhsHNBrzQu6JVGZV09/1mfz/y1e1jyXSFrd5aydmcpv//3t5zdLYWf9M/ih6enEeM+Bf7csdubB7ZrX4P5N4MrFjyVB+8/8BeBUMFmDwS2Ue0ODmL99YH7/ehJuPQZcEQE/zVEJcKw281ZkXnvmTPEtn/WvE9vXYXZBqIlnr8tWPK0Gdg63GbQffZd4I6zuipr2Gww4l5zMbLYdAW2cmQV+WZgGxENg26EDmeaH3SV7zFPMQd8K7pst9kmproY8r8++LEmbgj8fv3sGdj04aHD3fhM83FPtsest9YMnFc8b37QlT0YMvqd3GNKSDkFRjEhyu83B1QAuWOsrUVEREREJIzEup38dEAHfjqgA/sqann3y70sWLubL3eV8cnGQj7ZWEhUhIMLe6cxOjeLs7unEHEqLGBmGLDmH+blxsDWFRdoTxCfCd6aQKhw7v1muBWbHmhtcDitEQDaHdDrUvNU8A2k9grc9slTZmu5M2+CgTdATHLL1xOKCjfCun+ap+v+Ce06mtv7X2e23Bvx/yAxx9oaQ0XvnzS//t0icMdDzhBr6hHr+X3wzXzzA6vGn48+PzO/rTBg7NFbzPz4aTjnbjPMrdgTCHbL90BlQfO2l3vWwtZPD/9Yd+eZv5fBzIb2fhkIdBsD3riMw/9uLtwIb90IBQ3h8ZCboX3PYzkKEkbUHsEqWz6BVy4DdwLck6dm+yIiIiJHEc5jwnCuPZxsKaxkwdo9LFi7m23F1U3bk2NcXHJGBqP7Z9E/O7FtL2Dmqzf/iHfFQVxa25hteeCCZWDOuD3jKhhyC6Sdbm1traF0p9nG4us3m8/uG/l/5oxaObp938JfR4LPA5dPPzUWZpMAX735f+jTKebvkfgsuGMNOFuwnc7eL2HfhoPD3Yq95kzdh/IDrUve/AWsn3fox4lOhvErAx9Ubf4Idq2CJX8GbzVEp8DoGXDahS33WiTo1NM21L39a/hqrvkp8aVTra5GREREJOSF85gwnGsPR4Zh8OWuMuav2c27X+2hqNLTdFvH5Ggu75fJ5f2z6No+1sIq5bjU15mhxvK/mGFIo84jYPgd0G2kdbW1lOLNsGA87FgW2GZ3Qtfzoc8V0PPithHKtwZPlfk3+IZ3zevn3APnPXTyX0+X0Obzmh92fPpHKNlsbotMNFuxDLsdXNEW1VUPjgO++P7NAti9qiHY3WvO/K3Ya7avsTng4cJDB7ydR8BPZwVm7ErYUGgbymrL4I89oL4GfrkYOgyyuiIRERGRkBfOY8Jwrj3c1fv8LNlUxIK1e/hgfT7VHl/TbX2zErg8N5PL+mWSGn+U9gASGgwDdiw3V3n/9l9g+M0A5qLJVld28mrLzMWE0nqb1+sqYUo3M7jpOBz6/gx6XX7qtoY4WX4/fPQ7s/8vwOmXw+iZ1gV30rI2LYZ374LS7eb1qCSz3/OZv4LIMHgfNgyo2Q+V+yD1gLYHS542fwd2ORcG/0YfPIQphbahbPPHMOcqaNcZxn9uNkoXERERkSMK5zFhONfellR76ln0TQEL1u7hk42F+Pzmn0J2GwzvlsLluVmM6p1GXKQWuwoLpTtgxWwYdAMkdTG37Vhuzlob/GtI6mxtfcfCWwMbF5r9er9bBMnd4NalgdvzFpoLsmkxreBZOwfeuQP8XsjIhWteh/gMq6uSYNu1Cv56PsS0N2fVDroJ3Pp2hYQGhbahrroEynZqZT8RERGRYxTOY8Jwrr2tKq6s499f72X+mt2s3lHatN3ttDPydHMBsxGntcfl1CymsPL6mIavwNugx8Uw9GbodE5oTZTxec2JPOvegg3/DiwaB5DSA276AKLaWVffqWD7UvNnpabEXFjqgkesrkhOhrcGVr9izlYf8f8C279ZAN1+qNnUEnIU2oqIiIhImxLOY8Jwrv1UsKO4mgVrdzN/7W42F1Y1bU+MjuCSvuYCZgNz2mG3h1DwJ4e26UNY9hfYvDiwLa2PubJ63ysPvxJ7a1pwG6z5e+B6Qg70+Sn0vcKsNZQC5rasZCssmwYXPdm8v6iED08VfPESLH0WKgvA4YYJX2rmtIQ8hbahqma/PjUVEREROQHhPCYM59pPJYZhsH5POfPW7OZfX+5hX0Vd021ZiVFcnpvJuT1S6ZedgNvpsLBSOarCPPj8efjyNXOFdYAOg+GXi1qvBsOAPWtg3T9hwFho38Pcnvc+vHM79P6JuaBY9mAFtaHA54X1883wXP8eoa2uAla+AEufg+oic1tCNpx9F/S/Dpxua+sTOQqFtqHI74One0NCB/jZC9Cuo9UViYiIiISNcB4ThnPtpyqf32DZ5mLmr93NwnX5VNbVN93mdtoZkNOOoV2SGdolidycRIW4oapmv/m16RWzzb6WQ35jbvfWwr5vIGtA8J+zMM/sUbvuLSjZYm478Cv4voafJc3uDC3vToQvXoB+18Clz4R28Of3mcGlzwPuOIiIsrqi1rPlv/DmL8z/2wCJHeEH98AZPweny8rKRI7ZsY4L9S7RmjZ/BBV7ob4O4jRdX0REREQkVDnsNs7unsLZ3VP4w+g+LP52H++v28vyLSUUVdaxbEsxy7YUA4EQd0iXJIZ2SSY3O5HICIW4ISGqHQyfAEPHg+ELbF/3T1hwK2QPgaG3QM9LTy5E9VTBilnw9T+h4OvAdmcU9LjI7KvbSGFtaEo7HWwOc3Z2yVa4+u/gjgdfnfnv2BgI1pRC6XZzZm59nXl7vccMUH0e6DAI2nUy9y3aBN/Ma7j9wP0aLvcfA13ONffdvQrev//gx2t8jvMfhsG/MvfdtRJeHGVetjnM2rMGBk7te4K9jf4Oat/L7GGb1NUMa/teCQ4tHiltk94tWtOaf5jnZ1ylT4BERERERMJEZISDS87I4JIzMjAMg82FVSzfUszyLcV8vrWEwooDQ9zvcDntDMhJbJiJqxA3JDicNPvzt2wn2CNg5+fmKb6DGYgNGAvRScf2mPV1gdmY9ghYMhVqS8HuhK4XmF+z73GxVqwPF2f+EpK6wBu/gJ3L4Y/dA7dd+TL0Hm1e3rwY3rrx8I8zekYgtC3eBB/94fD7Zg8OhLaeati14vD7Hrhg3YEhpeGD/K/N06q/mdvOeyiwIJenypyVGp8Vfm0fqktg2XQo2miG6ABxaXDjQkg/o+0G0yINFNq2luoSyHvPvJx7rbW1iIiIiIjICbHZbHRLjaVbaizXDe2IYRhsKWoMcUtYvqWYwoq6hsslNIa4/bMDIW7/HIW4ljv3fhj4C/jiRbM3Zvku+HAS/PcJyL0GLv7joQOhmlL49l/mTN3S7XD7ajMIc7pgxH3m19RPv/zYg18JLV3Ph19+CHPHmEFhI583cNkVZ35z1hFhLnzldIPDZZ6cLohpH9g3Mcf8IOBQ+znc5kzvRqmnw9WvHno/pxtiUgL7ZvSH3xaaNZTvNmfp7l4Fu1ebfZQzD2j7sflj8/XEpjXMxB1gnmcOgKjEoB/CoKgsNBeJW/nXQFi9e3WgnUlmf+tqE2lF6mnbWj6fBe/fC2l94ZYlVlcjIiIiEnbCeUwYzrXL8TkwxP18SwnLGkLcAynEDTHeWjOE/XyGOVuxy7kwdkHgdk81bHzfbH2waZH5lfVGNy+B9L6tXrK0ML8fakoC4anDBXa71VUdG7/PXASvsQ3H8pnwn4fAX3/wvsnd4PLpkDO0dWs8nIoCWPqs+WFK4wKC6X3ND0R6XBI+/wYiR6GFyELN8yNg71q46AmzZ5KIiIiIHJdwHhOGc+1ycgzDYGtRVdMs3OVbitn3/RDXYSe3qZ1CEgNy2inEtYJhwPbPzP6lHQaa2yry4U89mu/Xvhf0/Rn0+Zn5dXqRUOetgb1fHTAjdxXs32redvtqSO5qXv78ebOnb9agQH/c5G6tE5buXAkv/xjqa83rmQPMFg+nXRR+bR1EjkILkYWSgvVmYGuPgL5XWV2NiIiIiIi0EpvNRpf2sXRpH8u1Q3Kahbifby1m2WYzxF2xtYQVW0t4dvH3QtzOSQzoqBC3Vdhs0Ons5tsae4Qm5kCfK8w+tWm9W700kZMSEQU5Q8xTo6pis5XCgR887FhmbtuzBlbONre5EyCrvxngDrsjuC0V6j2B9X4y+pmtJeIyzJm13S5QWCunPM20bQ31dWY/25ItcM7dVlcjIiIiEpbCeUwYzrVLyzIMg23F1U2zcJdvKaag/BAzcbMTGdoliaFdkhXitqa6SqgsMIMtBUjS1pXugF0rzf6xu1fBnrVQX2PeZnfCA7shItK8vupv5gJnWQMhIxcij+O9bf82+N+fzZD4lqWBhdUqCiA2Vf/XpM1TewQRERERaVPCeUwYzrVL6zIMg+0HhLjLjhDiDmkMcXPaEeVSiCsiQearh8JvzQC3ogDOvS9wW2MLSABs0L5HoKVC1kDIzD348Yo3m2Htl6+B4TO3XfsmnHZhC78QkdCi0FZERERE2pRwHhOGc+1ire+HuMu3lJBfXttsnwiHrWEmbrJCXBFpHctnmDNld6+Gsp3Nb0vMgTu/Dlzf8G9YPx/WvQWG39zW9QKzZ22oLIIm0ooU2oaK9/4fxKTAwBsgtr3V1YiIiIiErXAeE4Zz7RJaDMNgR0l1U4C7bHPxQSGu026jS/sYTkuLo2d6HD3S4+mZHkdWYhR2u752LCJBVlEAe1YHFjlLyIbLnjVvMwx4siPUlpnXu48yw9oOg6yrV8RiWogsFFTug5V/Naf997pMoa2IiIiIiJwUm81Gx+QYOibHcPWZOQeFuMu3FLO3rJaNBZVsLKjk3a/2Nt03xuWge1OQa556pseTFOOy8BWJSNiLS4MePzJP31ezH9r3hPhMGD4BMvu3fn0iYUqhbUv66g0zsM0aCKk9ra5GRERERA4wffp0pkyZQn5+Pv369eO5555j8ODBh9x39uzZvPLKK6xbtw6AgQMH8vjjjx92f5HWcqgQd29ZLXn5FWzIr2BjgXm+eV8lVR4fa3eWsnZnabPHSIl1fy/IjaN7apxaLIjIyYtOgpv+Y3UVImFJoW1LMQxY+6p5OXeMtbWIiIiISDNz585l4sSJzJw5kyFDhjB16lRGjRpFXl4eqampB+3/3//+l2uuuYZhw4YRGRnJk08+yYUXXsj69evJysqy4BWIHJrNZiMzMYrMxCjO6xn4Wfb6/GwrqmoW5OblV7CjpJqiyjqWbKpjyaaiAx4HOiZFNwS58fRIMwPdTsnROB12K16aiIjIKUU9bVvK7tUw+zxwRsLdeRCVaHVFIiIiImEtmGPCIUOGcOaZZzJt2jQA/H4/2dnZ3H777dx///1Hvb/P56Ndu3ZMmzaNsWPHtmrtIsFUVVfPd/sqycsvbwpy8/IrKK7yHHJ/l9NO99RYM8xNC7RYSIt3Y7OpX66IiMjRqKet1Rpn2fb8sQJbERERkRDi8XhYtWoVDzzwQNM2u93OyJEjWbZs2TE9RnV1NV6vl6SkpEPeXldXR11dXdP18vLykytapIXEuJ3kZieSm53YbHtRZV1Ti4W8/HLy8ivYWFBJjdfH+j3lrN/T/Gc6ISrie0FuHKelxxEfGdGKr0ZERKTtUGjbEry18PVb5uX+ao0gIiIiEkqKiorw+XykpaU1256WlsaGDRuO6THuu+8+MjMzGTly5CFvnzx5Mo8++uhJ1ypilZRYNynd3AzvltK0ze832Lm/utmM3LyCCrYWVVFW42XF1hJWbC1p9jhZiVGclhZLj/T4pr65XdvH4nKqxYKIiMiRKLRtCXUV0PMS2PUFdB5hdTUiIiIiEkRPPPEEr7/+Ov/973+JjIw85D4PPPAAEydObLpeXl5OdnZ2a5Uo0iLs9sCiZ6N6pzdtr/X62FxY2SzIzcuvYG9ZLbtLa9hdWsPHeYVN+zvtNjqnxDQFuF1TY+mSEkOX9jFEu/QnqoiICCi0bRmx7WH0X8DvB7s+QRYREREJJSkpKTgcDgoKCpptLygoID09/TD3Mv3xj3/kiSee4MMPP+SMM8447H5utxu32x2UekVCXWSEg96ZCfTOTGi2vazaawa4BYEWCxvyK6ioNfvofrev8qDHykyIpGtqLF3bx9KlfUzTeXp8pHrmiojIKUWhbUtSYCsiIiISclwuFwMHDmTx4sWMHj0aMBciW7x4Mbfddtth7/fUU0/x2GOP8cEHHzBo0KBWqlYkfCVERzC4cxKDOwd6PxuGwd6yWvIKKtiYX8GWwiq2FFWyubCKkioPe8pq2VNWy/++K2r2WDEuB12+F+R2bR9L55QYIiMcrf3SREREWpxC22Db/BFEJUFGP9AnwSIiIiIhaeLEiYwbN45BgwYxePBgpk6dSlVVFTfccAMAY8eOJSsri8mTJwPw5JNP8sgjjzBnzhw6depEfn4+ALGxscTGxlr2OkTCjc1mIzMxiszEKM7rkdrstv1VHjPA3VfF5obzLYWVbC+ppsrj4+vdZXy9u+x7j2f2zT0wyDVPMbSPc2t2roiIhC2FtsFkGPDve6BkM1z1Cpx+udUViYiIiMghXH311RQWFvLII4+Qn59Pbm4uCxcubFqcbMeOHdgP+NbUjBkz8Hg8XHHFFc0eZ9KkSfzf//1fa5Yu0ma1i3ExMCaJgR2Tmm331PvZUVLNlkJzRq55bl4uq/Gya38Nu/bX8MnGwmb3i3M7A0FuQ9/crqmxdEyOxu3U7FwREQltNsMwDKuLOJry8nISEhIoKysjPj7e6nIOb8dyeHEURMTAPRvBrVkXIiIiIsESNmPCQwjn2kVClWEYlFR5DgpytxRWsqOkGv9h/tK12yA7KdqcndsQ5DaeJ8e4NDtXRERa1LGOCzXTNpjW/MM87z1aga2IiIiIiEgLstlsJMe6SY51N+ubC1BX72NHcXVTkHtgoFtRW8/24mq2F1fz0fceMyEq4qC+uV1SYshIjCLWrT+fRUSk9ehdJ1g8VbB+nnk5d4y1tYiIiIiIiJzC3E4H3dPi6J4W12y7YRgUVtaxpTHI3de4EFolu/bXUFbjZc2OUtbsKD3oMePcTjISI0lPiCIjPpKMxEgyEszrmQmRpCdEEhcZ0UqvUERE2jqFtsHyzTvgqYR2naHjMKurERERERERke+x2WykxkWSGhfJ0C7JzW6r9frYVlxlBrr7zCB3S1EV24qqKK+tp6KunoqCSjYWVB728WPdzoYgN5LMhCjSE8xgNyMxqml7vIJdERE5Bgptg2Xtq+Z57hhzCVMREREREREJG5ERDnqmx9Mz/eD+glV19ewtqyW/rJa9ZTXsLattuB64XFbjpbKunu/2VfLdviMHu01h7vdm6mYkRJGRGEmc26neuiIipziFtsFQVwHFmwAb9Pu51dWIiIiIiIhIEMW4nXRLjaVb6uHXLqn2HBjs1rK3tIa95Q3nZbXkl9dSWm0Gu5v2VbLpCMFujMthztZNjCI9PjBbNxD2RhEfqWBXRKQtU2gbDO44uHMd7FkNidlWVyMiIiIiIiKtLNrlpGv7WLq2P3Kwm98Q7O753kzdxpm7+6u9VHl8DQuoVR3h+RxNAW56QiTp8ZGkxLpoH2eep8S5SYl1K9wVEQlTCm2DxeGE7MFWVyEiIiIiIiIhKtrlpEv7WLocIdit8fjIL29ow1BqztDdU1oTmMHbEOxWH0OwC+By2kmJMUPc9rFmkJsS5zLPG07t41y0j40kPkoBr4hIqFBoe7KqSyAyAewOqysRERERERGRMBflctA5JYbOKTGH3afW62uYrRsIcwvKaymqrKOowkNRZR2FFXVU1NXjqfezp2Fm79G4HHaSYxsD3YbzxrA3ztzWGPwmRkco4BURaUEKbU/Wwvth66dw8R+h14+trkZERERERETauMgIB51SYuh0hGAXzHC3qLKOokoPRRV1TWFu47bCyobLFXWU19bj8fmbWjUcjdNuIznWRfs4d7NZuykHbGs8T4yKwG5XwCsicjwU2p6M2jL45h2or4G4dKurEREREREREWkSGeGgQ7toOrSLPuq+tV4fxVWBcLcp2D1E2FtW46Xeb1BQXkdBed1RH9tht5EcY87czUmKZmiXJIZ3S6Fbaqxm64qIHIZC25Oxfp4Z2Kb0gKyBVlcjIiIiIiIickIiIxxkJUaRlRh11H099X6Kq8xWDIWVtQ3ndQfP6q2so7Tai89vsK+ijn0VdXyzt5yF6/MBaB/nZljX5IZTCtlJRw+XRUROFQptT8aaV83z3GtBnw6KiIiIiIjIKcDltJOREEVGQhSQcMR9vT4/xZWephB3w94Klm4uYuW2Egor6liwdg8L1u4BIDspimFdUhjWLZmzuiaTGhfZCq9GRCQ0nVBoO336dKZMmUJ+fj79+vXjueeeY/DgwYfdv7S0lIceeoi3336bkpISOnbsyNSpU7n44otPuHDLFX0Hu1aAzQH9fm51NSIiIiIiIiIhJ8JhJz0hkvQEM4A9r0cqt5zblbp6H2t2lLJ0czFLNxWxdmcpO0tqmFuyk7lf7ATgtLRYhnVNYVjXZIZ0SSYhKsLKlyIi0qqOO7SdO3cuEydOZObMmQwZMoSpU6cyatQo8vLySE1NPWh/j8fDD3/4Q1JTU3nrrbfIyspi+/btJCYmBqN+66xtmGXbbaT62YqIiIiIiIgcB7fTwdAuyQztkszEH55GVV09K7aVsGxzMZ9tKuKbveVsLKhkY0Elf1u6DbsN+mYlcFZDiHtmpySiXA6rX4aISIuxGYZhHM8dhgwZwplnnsm0adMA8Pv9ZGdnc/vtt3P//fcftP/MmTOZMmUKGzZsICLixD4VKy8vJyEhgbKyMuLj40/oMYLK74One0PFXrjqFTj9cqsrEhEREWnzQm5MeBzCuXYRESvsr/KwfEsxSzcX89nmIrYUVjW7PcJho39OO4Z3Ndsp9OuQiMtpt6haEZFjd6zjwuMKbT0eD9HR0bz11luMHj26afu4ceMoLS1lwYIFB93n4osvJikpiejoaBYsWED79u259tprue+++3A4ju1TsZAb5BoG7FkNX78FI/8PnG6rKxIRERFp80JuTHgcwrl2EZFQkF9Wy9LNRU3tFPaU1Ta7Pdrl4MxOSQzrmszwbin0yojHYdfaMyISeo51XHhc7RGKiorw+XykpaU1256WlsaGDRsOeZ8tW7bw0UcfMWbMGN577z02bdrErbfeitfrZdKkSYe8T11dHXV1dc1eTEix2SBroHkSERERERERkRaVnhDJTwd04KcDOmAYBtuLq/msIcRdtrmYkioPn2ws5JONhQAkREVwVpdkhnVLZljXFLq2j8GmBcRFJIyc0EJkx8Pv95OamsqsWbNwOBwMHDiQ3bt3M2XKlMOGtpMnT+bRRx9t6dJEREREREREJMzYbDY6pcTQKSWGMUM64vcb5BVU8NmmIpZtLubzrSWU1XhZuD6fhevzAUiLdzOsawpndU1mWNdkOrSLtvhViIgc2XGFtikpKTgcDgoKCpptLygoID390ItxZWRkEBER0awVQq9evcjPz8fj8eByuQ66zwMPPMDEiRObrpeXl5OdnX08pbacNf+AHcvgzF9BZq7V1YiIiIiIiIic0ux2G70y4umVEc8vz+lCvc/PV7vLWLrJnIn7xfb9FJTXMW/Nbuat2Q1Ax+RohnVNbgpyU2LV9lBEQstxhbYul4uBAweyePHipp62fr+fxYsXc9tttx3yPsOHD2fOnDn4/X7sdrMp+MaNG8nIyDhkYAvgdrtxu0P0F+aK2bB3LaT1UWgrIiIiIiIiEmKcDjsDctoxIKcdt53fnVqvj9Xb9zctavbVrjK2F1ezvbia11bsBKBnehxndU1meNcUBndJIj7yxBZSFxEJluNujzBx4kTGjRvHoEGDGDx4MFOnTqWqqoobbrgBgLFjx5KVlcXkyZMBuOWWW5g2bRoTJkzg9ttv57vvvuPxxx/njjvuCO4raQ0F683A1h4Bfa+yuhoREREREREROYrICAfDuqUwrFsK99CDilovK7aWmCHupiI25Fc0nV76bBt2G3ROiSEpxkVClIvE6AgSoiJIjIowL0e7ApejIkiMchEX6cSuhc9EJIiOO7S9+uqrKSws5JFHHiE/P5/c3FwWLlzYtDjZjh07mmbUAmRnZ/PBBx9w1113ccYZZ5CVlcWECRO47777gvcqWsuaV83zHhdBTLK1tYiIiIiIiIjIcYuLjOCCXmlc0MvMMYor61i2pZilm4tZuqmIbcXVbC6sYnNh1TE/ps1GU7DbGOomNAS7B25rCnqjI0iIcpEQFYHLaT/6E4jIKcdmGIZhdRFHU15eTkJCAmVlZcTHx1tThM8Lf+oJ1UVwzVwzuBURERGRVhMSY8ITFM61i4icanaX1rC9qIqyGi+lNV5Kq72U1ngoqzYvN24vq/ZQWuOl2uM7qeeLcTlIjDYD3KagtyHUbQp9oyJIiDZn9TbeHhXhwGbT7F6RcHOs48Ljnml7yvruP2ZgG5sG3UZaXY2IiIiIiIiItICsxCiyEqOOef+6eh9lNV7KGgPd6saw19PsetkBQW9ptZfyWi+GAVUeH1WeGnaX1hxXnS6HnfZxbjq0iyInKdo8JUeTnRRNdrtoUmJdCnVFwphC22PV2BrhjKvBocMmIiIiIiIiIuB2OkiNc5AaF3lc9/P5DSpqm8/ebRb0NszwLW8WBHspq/Hg9Rl4fH52l5ph7+dbSw56/KgIBzlJDSFu0gHBblI0HdpFE+VyBOsQiEgLUPp4rLL6Q8HX0P86qysRERERERERkTDnsNtIjHaRGO06rvsZhkG1x0dpjZf8slp2llSzs6SaHQ2nnSXV7C2vpcbrI6+ggryCikM+Tvs4d1OIm90uiuwDZuumxUVqYTURi6mn7fEwDLO7uIiIiIi0upAZE56AcK5dRETCT129jz2ltU1B7q4DQt0dxdVU1NUf8f4uh50OBwa5DbN1G6/HRUa00isRaXvU07YlKLAVERERERERkRDndjronBJD55SYg24zDIOyGi87S2oCQW5JNbv2m+e799fg8fnZUlTFlqKqQz5+u+iIhrYLB4S67czzjMRIIhz2ln6JIm2eQtujKdwIRXnQfRQ4j+8rCyIiIiIiIiIiocRmC7Rl6Nsh4aDb631+9pbVsnP/gW0XapraMBRXedhf7WV/dRlf7So76P4Ou43MxMimEDc7yVwULcrlJDrCQZTLPEW7HERHOIl02Yl2OYmKcOBQSwaRJgptj2bF87DyrzBgLFz2nNXViIiIiIiIiIi0GKfD3jSLlq4H315ZV9+sj27T+X4z2K2r97OzpIadJTUs3Vx8XM/tdtrNQPfAcDfC2RTyRkU4vnfZaV5uuB7dFAg7m12PijBP6tMr4USh7ZF4a+HrN83LvX9ibS0iIiIiIiIiIhaLdTvplRFPr4yDe3H6/QaFlXXNwtwdJdWUVXup9vio9vqo8dRT4/VR4/FR7fFR4/XRuNpSXb2funo/pXhbpPbIiMCs3sbwN7Ih3I12OXA7HUQ4bEQ47EQ47Lic9ubXHQ3XnQdeD2xrdr3p/ub1ptsaH9NuV4gsR6TQ9kjy/g21ZRDfATqPsLoaEREREREREZGQZbfbSIuPJC0+kjM7JR3TfQzDoK7eb4a6nnpqvb6Gy2awW+NtvFzfFPI2Br7VHl/D/vUHXPY126/G62t6rlqvn1qvp6Ve/nFz2m2BULcp4D106HtgSBzjdhIX6SQ+KoL4SCfxkRHER5nncc0uO3Gqv3DYUmh7JGteNc9zrwG7w9paRERERERERETaGJvNRmSEOeM1KSb4awn5/Qa19YcKgX3UeOubBcSeej8enx9v08nAU/+96z4/3vrvXW881Rt4fQc+hoG34TE9Pn/TjOJG9X6Der+PmpaZWAxAtMvRFOA2hrxxhwl546Ma9jtgm9tpx2bTjGArKLQ9nPI9sOVj83LutdbWIiIiIiIiIiIix81utxHtchLtsj4C8/kPCHXrG0LdA0Pe+u+FwD4/noYgOHDdT5XHR3mNl/JaLxW19Q2XzfOK2nrKa812FEBTKJ1ffmI1uxx24qMagt6G4DcQ7EYQ524Ig6OcxLkjApcjI4h0BmYLuxxqB3G8rP+JDVVfvgaGH3KGQVIXq6sREREREREREZEw5rDbcNjNWcUtzevzU9kQ4JbX1FNR6226XF57cMh70OW6egwDPD4/RZUeiipPvq2E0968DYTb2bw1ROO5+8CewQ29gl3OQF/gA/d3fe96hMMWuP/R9nM4iGh43FBsI6HQ9nDy15nn/cdYW4eIiIiIiIiIiMhxiHDYaRfjot0Jtpzw+w2qPPWU1zYEvjUNIW/dgZfrDznjt3F/j8/f7DHr/Qb1Hh/gO/STWuT8nqm8+IszrS7jIAptD+fKl+AH90JijtWViIiIiIiIiIiItBq73UZcQ89biDqhx/D7A+0ePPWBHsGepuuBVhF1B7SM8Ph8eOuNpm2eA86b3fdwj9lwXtfsOYxmz+WpDwTKEY7QbNug0PZI0k63ugIRERERaSHTp09nypQp5Ofn069fP5577jkGDx582P3ffPNNHn74YbZt20b37t158sknufjii1uxYhEREZHwYbfbiGyldhDHyzAM6ht6DIeq0GvYICIiIiLSwubOncvEiROZNGkSq1evpl+/fowaNYp9+/Ydcv+lS5dyzTXXcNNNN7FmzRpGjx7N6NGjWbduXStXLiIiIiIny2azEeGwh8widYdiMwzDsLqIoykvLychIYGysjLi4+OtLkdERERELBDMMeGQIUM488wzmTZtGgB+v5/s7Gxuv/127r///oP2v/rqq6mqquLdd99t2jZ06FByc3OZOXNmq9YuIiIiIuHrWMeFmmkrIiIiIqcUj8fDqlWrGDlyZNM2u93OyJEjWbZs2SHvs2zZsmb7A4waNeqw+9fV1VFeXt7sJCIiIiJyrBTaioiIiMgppaioCJ/PR1paWrPtaWlp5OfnH/I++fn5x7X/5MmTSUhIaDplZ2cHp3gREREROSUotBURERERCbIHHniAsrKyptPOnTutLklEREREwkhodtoVEREREWkhKSkpOBwOCgoKmm0vKCggPT39kPdJT08/rv3dbjdutzs4BYuIiIjIKUczbUVERETklOJyuRg4cCCLFy9u2ub3+1m8eDFnnXXWIe9z1llnNdsfYNGiRYfdX0RERETkZGimrYiIiIicciZOnMi4ceMYNGgQgwcPZurUqVRVVXHDDTcAMHbsWLKyspg8eTIAEyZMYMSIEfzpT3/ikksu4fXXX+eLL75g1qxZVr4MEREREWmjFNqKiIiIyCnn6quvprCwkEceeYT8/Hxyc3NZuHBh02JjO3bswG4PfClt2LBhzJkzh9/+9rc8+OCDdO/enfnz59OnTx+rXoKIiIiItGE2wzAMq4s4mvLychISEigrKyM+Pt7qckRERETEAuE8Jgzn2kVEREQkeI51XKietiIiIiIiIiIiIiIhRKGtiIiIiIiIiIiISAhRaCsiIiIiIiIiIiISQhTaioiIiIiIiIiIiIQQhbYiIiIiIiIiIiIiIUShrYiIiIiIiIiIiEgIcVpdwLEwDAOA8vJyiysREREREas0jgUbx4bhRONZEREREYFjH9OGRWhbUVEBQHZ2tsWViIiIiIjVKioqSEhIsLqM46LxrIiIiIgc6GhjWpsRBlMV/H4/e/bsIS4uDpvN1irPWV5eTnZ2Njt37iQ+Pr5VnrMt0/EMLh3P4NLxDC4dz+DRsQwuHc/gsuJ4GoZBRUUFmZmZ2O3h1eXLivEs6Oc+mHQsg0vHM7h0PINLxzO4dDyDS8czuEJ5TBsWM23tdjsdOnSw5Lnj4+P1nyCIdDyDS8czuHQ8g0vHM3h0LINLxzO4Wvt4htsM20ZWjmdBP/fBpGMZXDqewaXjGVw6nsGl4xlcOp7BFYpj2vCaoiAiIiIiIiIiIiLSxim0FREREREREREREQkhCm0Pw+12M2nSJNxut9WltAk6nsGl4xlcOp7BpeMZPDqWwaXjGVw6nuFB/07Bo2MZXDqewaXjGVw6nsGl4xlcOp7BFcrHMywWIhMRERERERERERE5VWimrYiIiIiIiIiIiEgIUWgrIiIiIiIiIiIiEkIU2oqIiIiIiIiIiIiEEIW2IiIiIiIiIiIiIiFEoe1hTJ8+nU6dOhEZGcmQIUNYsWKF1SWFpcmTJ3PmmWcSFxdHamoqo0ePJi8vz+qy2oQnnngCm83GnXfeaXUpYWv37t1cd911JCcnExUVRd++ffniiy+sLiss+Xw+Hn74YTp37kxUVBRdu3bl97//PVrr8th8+umnXHrppWRmZmKz2Zg/f36z2w3D4JFHHiEjI4OoqChGjhzJd999Z02xYeBIx9Pr9XLffffRt29fYmJiyMzMZOzYsezZs8e6gkPc0X4+D3TzzTdjs9mYOnVqq9Unh6fxbHBoPNuyNKY9eRrTBo/GtCdHY9rg0pg2eMJ1PKvQ9hDmzp3LxIkTmTRpEqtXr6Zfv36MGjWKffv2WV1a2Pnkk08YP348y5cvZ9GiRXi9Xi688EKqqqqsLi2srVy5kueff54zzjjD6lLC1v79+xk+fDgRERG8//77fPPNN/zpT3+iXbt2VpcWlp588klmzJjBtGnT+Pbbb3nyySd56qmneO6556wuLSxUVVXRr18/pk+ffsjbn3rqKZ599llmzpzJ559/TkxMDKNGjaK2traVKw0PRzqe1dXVrF69mocffpjVq1fz9ttvk5eXx2WXXWZBpeHhaD+fjebNm8fy5cvJzMxspcrkSDSeDR6NZ1uOxrQnT2Pa4NKY9uRoTBtcGtMGT9iOZw05yODBg43x48c3Xff5fEZmZqYxefJkC6tqG/bt22cAxieffGJ1KWGroqLC6N69u7Fo0SJjxIgRxoQJE6wuKSzdd999xtlnn211GW3GJZdcYtx4443Ntv30pz81xowZY1FF4Qsw5s2b13Td7/cb6enpxpQpU5q2lZaWGm6323jttdcsqDC8fP94HsqKFSsMwNi+fXvrFBXGDnc8d+3aZWRlZRnr1q0zOnbsaDz99NOtXps0p/Fsy9F4Njg0pg0OjWmDS2Pa4NGYNrg0pg2ecBrPaqbt93g8HlatWsXIkSObttntdkaOHMmyZcssrKxtKCsrAyApKcniSsLX+PHjueSSS5r9jMrxe+eddxg0aBBXXnklqamp9O/fn9mzZ1tdVtgaNmwYixcvZuPGjQB8+eWXLFmyhB/96EcWVxb+tm7dSn5+frP/8wkJCQwZMkTvS0FSVlaGzWYjMTHR6lLCkt/v5/rrr+fee++ld+/eVpcjaDzb0jSeDQ6NaYNDY9rg0pi25WhM2/I0pj1xoTqedVpdQKgpKirC5/ORlpbWbHtaWhobNmywqKq2we/3c+eddzJ8+HD69OljdTlh6fXXX2f16tWsXLnS6lLC3pYtW5gxYwYTJ07kwQcfZOXKldxxxx24XC7GjRtndXlh5/7776e8vJyePXvicDjw+Xw89thjjBkzxurSwl5+fj7AId+XGm+TE1dbW8t9993HNddcQ3x8vNXlhKUnn3wSp9PJHXfcYXUp0kDj2Zaj8WxwaEwbPBrTBpfGtC1HY9qWpTHtyQnV8axCW2k148ePZ926dSxZssTqUsLSzp07mTBhAosWLSIyMtLqcsKe3+9n0KBBPP744wD079+fdevWMXPmTA1wT8Abb7zBq6++ypw5c+jduzdr167lzjvvJDMzU8dTQpbX6+Wqq67CMAxmzJhhdTlhadWqVTzzzDOsXr0am81mdTkiLU7j2ZOnMW1waUwbXBrTSjjSmPbkhPJ4Vu0RviclJQWHw0FBQUGz7QUFBaSnp1tUVfi77bbbePfdd/n444/p0KGD1eWEpVWrVrFv3z4GDBiA0+nE6XTyySef8Oyzz+J0OvH5fFaXGFYyMjI4/fTTm23r1asXO3bssKii8Hbvvfdy//338/Of/5y+ffty/fXXc9dddzF58mSrSwt7je89el8KrsbB7fbt21m0aJFmJJyg//3vf+zbt4+cnJym96bt27dz991306lTJ6vLO2VpPNsyNJ4NDo1pg0tj2uDSmLblaEzbMjSmPXmhPJ5VaPs9LpeLgQMHsnjx4qZtfr+fxYsXc9ZZZ1lYWXgyDIPbbruNefPm8dFHH9G5c2erSwpbF1xwAV9//TVr165tOg0aNIgxY8awdu1aHA6H1SWGleHDh5OXl9ds28aNG+nYsaNFFYW36upq7PbmbykOhwO/329RRW1H586dSU9Pb/a+VF5ezueff673pRPUOLj97rvv+PDDD0lOTra6pLB1/fXX89VXXzV7b8rMzOTee+/lgw8+sLq8U5bGs8Gl8WxwaUwbXBrTBpfGtC1HY9rg05g2OEJ5PKv2CIcwceJExo0bx6BBgxg8eDBTp06lqqqKG264werSws748eOZM2cOCxYsIC4urqlXTUJCAlFRURZXF17i4uIO6p0WExNDcnKyeqqdgLvuuothw4bx+OOPc9VVV7FixQpmzZrFrFmzrC4tLF166aU89thj5OTk0Lt3b9asWcOf//xnbrzxRqtLCwuVlZVs2rSp6frWrVtZu3YtSUlJ5OTkcOedd/KHP/yB7t2707lzZx5++GEyMzMZPXq0dUWHsCMdz4yMDK644gpWr17Nu+++i8/na3pvSkpKwuVyWVV2yDraz+f3/0CIiIggPT2dHj16tHapcgCNZ4NH49ng0pg2uDSmDS6NaU+OxrTBpTFt8ITteNaQQ3ruueeMnJwcw+VyGYMHDzaWL19udUlhCTjk6aWXXrK6tDZhxIgRxoQJE6wuI2z961//Mvr06WO43W6jZ8+exqxZs6wuKWyVl5cbEyZMMHJycozIyEijS5cuxkMPPWTU1dVZXVpY+Pjjjw/5u3LcuHGGYRiG3+83Hn74YSMtLc1wu93GBRdcYOTl5VlbdAg70vHcunXrYd+bPv74Y6tLD0lH+/n8vo4dOxpPP/10q9Yoh6bxbHBoPNvyNKY9ORrTBo/GtCdHY9rg0pg2eMJ1PGszDMMIZggsIiIiIiIiIiIiIidOPW1FREREREREREREQohCWxEREREREREREZEQotBWREREREREREREJIQotBUREREREREREREJIQptRUREREREREREREKIQlsRERERERERERGREKLQVkRERERERERERCSEKLQVERERERERERERCSEKbUVERERERERERERCiEJbERERERERERERkRCi0FZEREREREREREQkhCi0FREREREREREREQkh/x9fkG6op1I6JgAAAABJRU5ErkJggg==\n"},"metadata":{}},{"output_type":"display_data","data":{"text/plain":["
"],"image/png":"iVBORw0KGgoAAAANSUhEUgAABtIAAAZGCAYAAAAyCzVuAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAc0FJREFUeJzs3XuclXW96PHvMywYEJsBRWZgp4haAqVbUFNSvCQ5IVamqaQp4IU0LAXvmYSYUoii6FZSSdgmu7Sdlrq9oHjZKiphXsJL3sl0hkxxvOCgMOcPZR0mfuqMCM/j7v1+vdbrHJ/nt9b6Ls7af5zzOd81WXNzc3MAAAAAAAAALVTkPQAAAAAAAAAUkZAGAAAAAAAACUIaAAAAAAAAJAhpAAAAAAAAkCCkAQAAAAAAQIKQBgAAAAAAAAlCGgAAAAAAACQIaQAAAAAAAJAgpAEAAAAAAECCkAYAAB/Tk08+GbvvvntUV1dHlmVxzTXXfKKv/9xzz0WWZTFjxoxP9HU/zXbZZZfYZZdd8h4DAACAfxFCGgAAn2pPP/10fO9734tNNtkkOnbsGFVVVbHDDjvEeeedF0uWLFmj7z18+PB45JFH4owzzojLL788ttlmmzX6fmvTiBEjIsuyqKqqSv47Pvnkk5FlWWRZFpMnT27z67/44osxfvz4ePDBBz+BadeOjTfeuPyZsyyLzp07x5e+9KX4z//8z1XO3n777S3OrvwYNmxYDtMDAADwcZTyHgAAAD6u66+/Pvbdd9+orKyMgw8+OL74xS/G0qVL46677orjjz8+FixYEBdffPEaee8lS5bE3Llz45RTTomjjjpqjbxHr169YsmSJdG+ffs18vofpVQqxVtvvRXXXntt7Lfffi3uXXHFFdGxY8d4++23P9Zrv/jii3HaaafFxhtvHFtttVWrn3fzzTd/rPf7pGy11VZx7LHHRkTESy+9FJdeemkMHz48mpqa4vDDD1/l/A9/+MPYdtttW1zbeOON18aoAAAAfAKENAAAPpWeffbZGDZsWPTq1SvmzJkTPXr0KN8bPXp0PPXUU3H99devsff/+9//HhERXbp0WWPvkWVZdOzYcY29/keprKyMHXbYIf7rv/5rlZA2a9asGDp0aPz3f//3WpnlrbfeinXWWSc6dOiwVt7vg/zbv/1bfPe73y3/94gRI2KTTTaJKVOmJEPaoEGD4tvf/vbaHBEAAIBPkJ92BADgU2nSpEnxxhtvxPTp01tEtBU222yzOProo8v//e6778bpp58em266aVRWVsbGG28cP/rRj6KpqanF8zbeeOPYc88946677oovfelL0bFjx9hkk01a/Hzf+PHjo1evXhERcfzxx0eWZeUtoxEjRiQ3jsaPHx9ZlrW4Nnv27Nhxxx2jS5cuse6668bmm28eP/rRj8r3P+hvpM2ZMycGDRoUnTt3ji5dusQ3v/nNeOyxx5Lv99RTT8WIESOiS5cuUV1dHSNHjoy33nrrg/9h/8kBBxwQN9xwQyxevLh8bd68efHkk0/GAQccsMr5V155JY477rjYYostYt11142qqqoYMmRIPPTQQ+Uzt99+e3lLa+TIkeWfPFzxOXfZZZf44he/GPPnz4+ddtop1llnnfK/yz//jbThw4dHx44dV/n8dXV10bVr13jxxRdb/Vk/jg022CD69OkTTz/99Bp9HwAAAPIhpAEA8Kl07bXXxiabbBJf/vKXW3X+sMMOi3HjxsWAAQNiypQpsfPOO8fEiROTf6/qqaeeim9/+9vx1a9+Nc4+++zo2rVrjBgxIhYsWBAREXvvvXdMmTIlIiK+853vxOWXXx7nnntum+ZfsGBB7LnnntHU1BQTJkyIs88+O77xjW/E3Xff/aHPu+WWW6Kuri4WLVoU48ePj7Fjx8Y999wTO+ywQzz33HOrnN9vv/3i9ddfj4kTJ8Z+++0XM2bMiNNOO63Vc+69996RZVn87ne/K1+bNWtW9OnTJwYMGLDK+WeeeSauueaa2HPPPeOcc86J448/Ph555JHYeeedy1Grb9++MWHChIiIGDVqVFx++eVx+eWXx0477VR+nX/84x8xZMiQ2GqrreLcc8+NXXfdNTnfeeedFxtssEEMHz48li1bFhERv/jFL+Lmm2+O888/P3r27Nnqz/pxvPvuu/HCCy9E165dk/dff/31ePnll1s8li9fvkZnAgAA4JPjpx0BAPjUaWxsjL/97W/xzW9+s1XnH3rooZg5c2Ycdthhcckll0RExPe///3o3r17TJ48OW677bYWoeaJJ56IO++8MwYNGhQR78WoDTfcMC677LKYPHlybLnlllFVVRVjxoyJAQMGtPipv9aaPXt2LF26NG644Ybo1q1bq593/PHHx3rrrRdz586N9dZbLyIi9tprr+jfv3/85Cc/iZkzZ7Y4379//5g+fXr5v//xj3/E9OnT4+c//3mr3u8zn/lM7LnnnjFr1qw45JBDYvny5fHrX/86jjzyyOT5LbbYIv7yl79ERcX///+zd9BBB0WfPn1i+vTpceqpp0ZNTU0MGTIkxo0bFwMHDkz++9XX18e0adPie9/73ofO16VLl5g+fXrU1dXFz372szjggAPiuOOOi7322utj/Z/LR3nnnXfi5ZdfLs84adKkqK+vj9GjRyfPH3LIIatce/bZZ/2dNAAAgE8JIQ0AgE+dxsbGiHgv8rTG//zP/0RExNixY1tcP/bYY2Py5Mlx/fXXtwhp/fr1K0e0iPd+vm/zzTePZ555ZnVHL1vxt9V+//vfx8iRI1uEpw/y0ksvxYMPPhgnnHBCOaJFRGy55Zbx1a9+tfw5V3bEEUe0+O9BgwbF1VdfHY2NjVFVVdWqWQ844IDYd999o76+Pv785z9HfX198mcdI977u2orLFu2LBYvXlz+2coHHnigVe+34nVGjhzZqrO77757fO9734sJEybEb3/72+jYsWP84he/aPV7tcXNN98cG2ywQYtrI0eOjLPOOit5fty4cS2+SxERtbW1a2Q2AAAAPnl+2hEAgE+dFQHo9ddfb9X5559/PioqKmKzzTZrcb22tja6dOkSzz//fIvrG2200Sqv0bVr13j11Vc/5sSr2n///WOHHXaIww47LGpqamLYsGFx5ZVXfujP/q2Yc/PNN1/lXt++fePll1+ON998s8X1f/4sK36CsC2fZY899ojPfOYz8Zvf/CauuOKK2HbbbVf5t1xh+fLlMWXKlPjc5z4XlZWV0a1bt9hggw3i4Ycfjtdee63V7/lv//Zv0aFDh1afnzx5cqy33nrx4IMPxtSpU6N79+4f+Zy///3vUV9fX3688cYbH/mc7bbbLmbPnh033nhjTJ48Obp06RKvvvrqB866xRZbxODBg1s8Onbs2OrPBQAAQL6ENAAAPnWqqqqiZ8+e8ec//7lNz8uyrFXn2rVrl7ze3Nz8sd9jxd/vWqFTp05x5513xi233BIHHXRQPPzww7H//vvHV7/61VXOro7V+SwrVFZWxt577x0zZ86Mq6+++gO30SIizjzzzBg7dmzstNNO8atf/SpuuummmD17dnzhC19o098G69SpU6vPRkT86U9/ikWLFkVExCOPPNKq52y77bbRo0eP8mPy5Mkf+Zxu3brF4MGDo66uLo499tj41a9+Fddcc02cd955bZoXAACATwchDQCAT6U999wznn766Zg7d+5Hnu3Vq1csX748nnzyyRbXGxoaYvHixdGrV69PbK6uXbvG4sWLV7n+z1tvEREVFRWx2267xTnnnBOPPvponHHGGTFnzpy47bbbkq+9Ys4nnnhilXuPP/54dOvWLTp37rx6H+ADHHDAAfGnP/0pXn/99Rg2bNgHnvvtb38bu+66a0yfPj2GDRsWu+++ewwePHiVf5PWRs3WePPNN2PkyJHRr1+/GDVqVEyaNCnmzZv3kc+74oorYvbs2eXHwQcf3Ob3Hjp0aOy8885x5plnrrINCAAAwKefkAYAwKfSCSecEJ07d47DDjssGhoaVrn/9NNPl7eE9thjj4iIOPfcc1ucOeeccyLivRjySdl0003jtddei4cffrh87aWXXoqrr766xblXXnllledutdVWERHR1NSUfO0ePXrEVlttFTNnzmwRpv785z/HzTffXP6ca8Kuu+4ap59+elxwwQUf+je+2rVrt8q221VXXRV/+9vfWlxbEfxS0bGtTjzxxFi4cGHMnDkzzjnnnNh4441j+PDhH/jvuMIOO+zQ4icXN9lkk4/9/v/4xz/ikksu+VjPBwAAoLhKeQ8AAAAfx6abbhqzZs2K/fffP/r27RsHH3xwfPGLX4ylS5fGPffcE1dddVWMGDEiIiL+/d//PYYPHx4XX3xxLF68OHbeeee4//77Y+bMmbHXXnvFrrvu+onNNWzYsDjxxBPjW9/6Vvzwhz+Mt956Ky666KL4/Oc/Hw888ED53IQJE+LOO++MoUOHRq9evWLRokVx4YUXxmc/+9nYcccdP/D1zzrrrBgyZEgMHDgwDj300FiyZEmcf/75UV1dHePHj//EPsc/q6ioiB//+McfeW7PPfeMCRMmxMiRI+PLX/5yPPLII3HFFVesEqk23XTT6NKlS0ybNi0+85nPROfOnWO77baL3r17t2muOXPmxIUXXhg/+clPYsCAARERcdlll8Uuu+wSp556akyaNKlNr/dxDBkyJL74xS/GOeecE6NHj4727duv8fcEAABg7bCRBgDAp9Y3vvGNePjhh+Pb3/52/P73v4/Ro0fHSSedFM8991ycffbZMXXq1PLZSy+9NE477bSYN29eHHPMMTFnzpw4+eST49e//vUnOtP6668fV199dayzzjpxwgknxMyZM2PixInx9a9/fZXZN9poo/jlL38Zo0ePjv/4j/+InXbaKebMmRPV1dUf+PqDBw+OG2+8MdZff/0YN25cTJ48Obbffvu4++672xyh1oQf/ehHceyxx8ZNN90URx99dDzwwANx/fXXx4YbbtjiXPv27WPmzJnRrl27OOKII+I73/lO3HHHHW16r9dffz0OOeSQ6N+/f5xyyinl64MGDYqjjz46zj777Lj33ns/kc/1UY477rj461//GldcccVaeT8AAADWjqy5LX9lHAAAAAAAAP5F2EgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASBDSAAAAAAAAIEFIAwAAAAAAgAQhDQAAAAAAABKENAAAAAAAAEgo5T3ACp36H5X3CAAAwPtenXdB3iMAAADv61iY/5f8fx2aRdst+dP/zf97pI00AAAAAAAASBDSAAAAAAAAIEFIAwAAAAAAgAQhDQAAAAAAABKENAAAAAAAAEgo5T0AAAAAAABAoWT2kHiPbwIAAAAAAAAkCGkAAAAAAACQIKQBAAAAAABAgpAGAAAAAAAACUIaAAAAAAAAJJTyHgAAAAAAAKBQsizvCSgIG2kAAAAAAACQIKQBAAAAAABAgpAGAAAAAAAACUIaAAAAAAAAJAhpAAAAAAAAkFDKewAAAAAAAIBCyewh8R7fBAAAAAAAAEgQ0gAAAAAAACBBSAMAAAAAAIAEIQ0AAAAAAAAShDQAAAAAAABIKOU9AAAAAAAAQKFkWd4TUBA20gAAAAAAACBBSAMAAAAAAIAEIQ0AAAAAAAAShDQAAAAAAABIENIAAAAAAAAgoZT3AAAAAAAAAIWS2UPiPb4JAAAAAAAAkCCkAQAAAAAAQIKQBgAAAAAAAAlCGgAAAAAAACQIaQAAAAAAAJBQynsAAAAAAACAQsmyvCegIGykAQAAAAAAQIKQBgAAAAAAAAlCGgAAAAAAACQIaQAAAAAAAJAgpAEAAAAAAEBCKe8BAAAAAAAACiWzh8R7fBMAAAAAAAAgQUgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASBDSAAAAAAAAIKGU9wAAAAAAAACFkmV5T0BB2EgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASBDSAAAAAAAAIEFIAwAAAAAAgIRS3gMAAAAAAAAUSmYPiff4JgAAAAAAAECCkAYAAAAAAAAJQhoAAAAAAAAkCGkAAAAAAACQIKQBAAAAAABAQinvAQAAAAAAAAoly/KegIKwkQYAAAAAAAAJQhoAAAAAAAAkCGkAAAAAAACQIKQBAAAAAABAgpAGAAAAAAAACaW8BwAAAAAAACiUzB4S7/FNAAAAAAAAgAQhDQAAAAAAABKENAAAAAAAAEgQ0gAAAAAAACBBSAMAAAAAAICEUt4DAAAAAAAAFEqW5T0BBWEjDQAAAAAAABKENAAAAAAAAEgQ0gAAAAAAACBBSAMAAAAAAIAEIQ0AAAAAAAASSnkPAAAAAAAAUCiZPSTe45sAAAAAAAAACUIaAAAAAAAAJAhpAAAAAAAAkCCkAQAAAAAAQIKQBgAAAAAAAAmlvAcAAAAAAAAolMweEu/xTQAAAAAAAIAEIQ0AAAAAAAAShDQAAAAAAABIENIAAAAAAAAgQUgDAAAAAACABCENAAAAAAAAEoQ0AAAAAACAlVVkHm19tNKyZcvi1FNPjd69e0enTp1i0003jdNPPz2am5vLZ5qbm2PcuHHRo0eP6NSpUwwePDiefPLJFq/zyiuvxIEHHhhVVVXRpUuXOPTQQ+ONN95ocebhhx+OQYMGRceOHWPDDTeMSZMmtf2r0OZnAAAAAAAAwMfw85//PC666KK44IIL4rHHHouf//znMWnSpDj//PPLZyZNmhRTp06NadOmxX333RedO3eOurq6ePvtt8tnDjzwwFiwYEHMnj07rrvuurjzzjtj1KhR5fuNjY2x++67R69evWL+/Plx1llnxfjx4+Piiy9u07xZ88qJL0ed+h+V9wgAAMD7Xp13Qd4jAAAA7+tYynuCfz2ddj097xE+dZbcdmqrzu25555RU1MT06dPL1/bZ599olOnTvGrX/0qmpubo2fPnnHsscfGcccdFxERr732WtTU1MSMGTNi2LBh8dhjj0W/fv1i3rx5sc0220RExI033hh77LFHvPDCC9GzZ8+46KKL4pRTTon6+vro0KFDREScdNJJcc0118Tjjz/e6s9lIw0AAAAAAIC14stf/nLceuut8Ze//CUiIh566KG46667YsiQIRER8eyzz0Z9fX0MHjy4/Jzq6urYbrvtYu7cuRERMXfu3OjSpUs5okVEDB48OCoqKuK+++4rn9lpp53KES0ioq6uLp544ol49dVXWz2vjg0AAAAAAMBqaWpqiqamphbXKisro7KyssW1k046KRobG6NPnz7Rrl27WLZsWZxxxhlx4IEHRkREfX19RETU1NS0eF5NTU35Xn19fXTv3r3F/VKpFOutt16LM717917lNVbc69q1a6s+l400AAAAAAAAVsvEiROjurq6xWPixImrnLvyyivjiiuuiFmzZsUDDzwQM2fOjMmTJ8fMmTNzmPqj2UgDAAAAAABYWWYPqa1OPvmEGDt2bItr/7yNFhFx/PHHx0knnRTDhg2LiIgtttginn/++Zg4cWIMHz48amtrIyKioaEhevToUX5eQ0NDbLXVVhERUVtbG4sWLWrxuu+++2688sor5efX1tZGQ0NDizMr/nvFmdbwTQAAAAAAAGC1VFZWRlVVVYtHKqS99dZbUVHRMk+1a9culi9fHhERvXv3jtra2rj11lvL9xsbG+O+++6LgQMHRkTEwIEDY/HixTF//vzymTlz5sTy5ctju+22K5+5884745133imfmT17dmy++eat/lnHCCENAAAAAACAteTrX/96nHHGGXH99dfHc889F1dffXWcc8458a1vfSsiIrIsi2OOOSZ++tOfxh/+8Id45JFH4uCDD46ePXvGXnvtFRERffv2ja997Wtx+OGHx/333x933313HHXUUTFs2LDo2bNnREQccMAB0aFDhzj00ENjwYIF8Zvf/CbOO++8VbbmPoqfdgQAAAAAAGCtOP/88+PUU0+N73//+7Fo0aLo2bNnfO9734tx48aVz5xwwgnx5ptvxqhRo2Lx4sWx4447xo033hgdO3Ysn7niiiviqKOOit122y0qKipin332ialTp5bvV1dXx8033xyjR4+OrbfeOrp16xbjxo2LUaNGtWnerLm5uXn1P/bq69T/qLxHAAAA3vfqvAvyHgEAAHhfRysxa12nr5yR9wifOkvmnJL3CGuEn3YEAAAAAACABB0bAAAAAABgZVmW9wQUhI00AAAAAAAASBDSAAAAAAAAIEFIAwAAAAAAgAQhDQAAAAAAABKENAAAAAAAAEgo5T0AAAAAAABAoWT2kHiPbwIAAAAAAAAkCGkAAAAAAACQIKQBAAAAAABAgpAGAAAAAAAACUIaAAAAAAAAJJTyHgAAAAAAAKBQsizvCSgIG2kAAAAAAACQIKQBAAAAAABAgpAGAAAAAAAACUIaAAAAAAAAJAhpAAAAAAAAkFDKewAAAAAAAIBCyewh8R7fBAAAAAAAAEgQ0gAAAAAAACBBSAMAAAAAAIAEIQ0AAAAAAAAShDQAAAAAAABIKOU9AAAAAAAAQKFkWd4TUBA20gAAAAAAACBBSAMAAAAAAIAEIQ0AAAAAAAAShDQAAAAAAABIENIAAAAAAAAgoZT3AAAAAAAAAIWS2UPiPb4JAAAAAAAAkCCkAQAAAAAAQIKQBgAAAAAAAAlCGgAAAAAAACQIaQAAAAAAAJBQynsAAAAAAACAQsmyvCegIGykAQAAAAAAQIKQBgAAAAAAAAlCGgAAAAAAACQIaQAAAAAAAJAgpAEAAAAAAEBCKe8BAAAAAAAACiWzh8R7fBMAAAAAAAAgQUgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASBDSAAAAAAAAIKGU9wAAAAAAAACFkmV5T0BB2EgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASBDSAAAAAAAAIEFIAwAAAAAAgIRS3gMAAAAAAAAUSmYPiff4JgAAAAAAAECCkAYAAAAAAAAJQhoAAAAAAAAkCGkAAAAAAACQIKQBAAAAAABAQinvAQAAAAAAAAols4fEe3wTAAAAAAAAIEFIAwAAAAAAgAQhDQAAAAAAABKENAAAAAAAAEgQ0gAAAAAAACChlPcAAAAAAAAAhZJleU9AQdhIAwAAAAAAgAQhDQAAAAAAABKENAAAAAAAAEgQ0gAAAAAAACBBSAMAAAAAAICEUt4DAAAAAAAAFEpmD4n3+CYAAAAAAABAgpAGAAAAAAAACUIaAAAAAAAAJAhpAAAAAAAAkCCkAQAAAAAAQEIp7wEAAAAAAAAKJcvynoCCsJEGAAAAAAAACUIaAAAAAAAAJAhpAAAAAAAAkCCkAQAAAAAAQIKQBgAAAAAAAAmlvAcAAAAAAAAolMweEu/xTQAAAAAAAIAEIQ0AAAAAAAAShDQAAAAAAABIENIAAAAAAAAgQUgDAAAAAACAhFLeAwAAAAAAABRKluU9AQVhIw0AAAAAAAAShDQAAAAAAABIENIAAAAAAAAgQUgDAAAAAACABCENAAAAAAAAEkp5DwAAAAAAAFAkWZblPQIFYSMNAAAAAAAAEoQ0AAAAAAAASBDSAAAAAAAAIEFIAwAAAAAAgAQhDQAAAAAAABJKeQ8AAAAAAABQJFmW5T0CBWEjDQAAAAAAABKENAAAAAAAAEgQ0gAAAAAAACBBSAMAAAAAAIAEIQ0AAAAAAAASSnkPAAAAAAAAUChZ3gNQFDbSAAAAAAAAIEFIAwAAAAAAgAQhDQAAAAAAABKENAAAAAAAAEgQ0gAAAAAAACChlPcAAAAAAAAARZJlWd4jUBA20gAAAAAAACBBSAMAAAAAAIAEIQ0AAAAAAAAShDQAAAAAAABIENIAAAAAAAAgoZT3AAAAAAAAAEWSZVneI1AQNtIAAAAAAAAgQUgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASBDSAAAAAAAAIKGU9wAAAAAAAABFkmVZ3iNQEDbSAAAAAAAAIEFIAwAAAAAAgAQhDQAAAAAAABKENAAAAAAAAEgQ0gAAAAAAACChlPcAAAAAAAAARZJlWd4jUBA20gAAAAAAACBBSAMAAAAAAIAEIQ0AAAAAAAAShDQAAAAAAABIENIAAAAAAAAgoZT3AAAAAAAAAIWS5T0ARWEjDQAAAAAAABKENAAAAAAAAEgQ0gAAAAAAACBBSAMAAAAAAIAEIQ0AAAAAAAASSnkPAAAAAAAAUCRZluU9AgVhIw0AAAAAAAAShDQAAAAAAABIENIAAAAAAAAgQUgDAAAAAACABCENAAAAAAAAEkp5DwAAAAAAAFAkWZblPQIFYSMNAAAAAAAAEoQ0AAAAAAAASBDSAAAAAAAAIEFIAwAAAAAAgAQhDQAAAAAAABJKeQ8AAAAAAABQJFmW5T0CBWEjDQAAAAAAABKENAAAAAAAAEgQ0gAAAAAAACBBSAMAAAAAAIAEIQ0AAAAAAAASSnkPAAAAAAAAUCRZluU9AgVhIw0AAAAAAAAShDQAAAAAAABIENIAAAAAAAAgQUgDAAAAAACABCENAAAAAAAAEkp5DwAAAAAAAFAoWd4DUBQ20gAAAAAAACBBSAMAAAAAAIAEIQ0AAAAAAAAShDQAAAAAAABIENIAAAAAAAAgoZT3AAAAAAAAAEWSZVneI1AQNtIAAAAAAAAgQUgDAAAAAACABCENAAAAAACAtWbjjTeOLMtWeYwePToiIt5+++0YPXp0rL/++rHuuuvGPvvsEw0NDS1eY+HChTF06NBYZ511onv37nH88cfHu+++2+LM7bffHgMGDIjKysrYbLPNYsaMGW2eVUgDAAAAAABgrZk3b1689NJL5cfs2bMjImLfffeNiIgxY8bEtddeG1dddVXccccd8eKLL8bee+9dfv6yZcti6NChsXTp0rjnnnti5syZMWPGjBg3blz5zLPPPhtDhw6NXXfdNR588ME45phj4rDDDoubbrqpTbNmzc3NzZ/AZ15tnfoflfcIAADA+16dd0HeIwAAAO/rWMp7gn893Ub8Ou8RPnVenjHsYz/3mGOOieuuuy6efPLJaGxsjA022CBmzZoV3/72tyMi4vHHH4++ffvG3LlzY/vtt48bbrgh9txzz3jxxRejpqYmIiKmTZsWJ554Yvz973+PDh06xIknnhjXX399/PnPfy6/z7Bhw2Lx4sVx4403tno2G2kAAAAAAAArSf3soMeHP5qamqKxsbHFo6mp6SP/rZcuXRq/+tWv4pBDDoksy2L+/PnxzjvvxODBg8tn+vTpExtttFHMnTs3IiLmzp0bW2yxRTmiRUTU1dVFY2NjLFiwoHxm5ddYcWbFa7SWkAYAAAAAAMBqmThxYlRXV7d4TJw48SOfd80118TixYtjxIgRERFRX18fHTp0iC5durQ4V1NTE/X19eUzK0e0FfdX3PuwM42NjbFkyZJWfy4LoQAAAAAAAKyWk08+OcaOHdviWmVl5Uc+b/r06TFkyJDo2bPnmhpttQhpAAAAAAAArJbKyspWhbOVPf/883HLLbfE7373u/K12traWLp0aSxevLjFVlpDQ0PU1taWz9x///0tXquhoaF8b8X/uuLaymeqqqqiU6dOrZ7RTzsCAAAAAACw1l122WXRvXv3GDp0aPna1ltvHe3bt49bb721fO2JJ56IhQsXxsCBAyMiYuDAgfHII4/EokWLymdmz54dVVVV0a9fv/KZlV9jxZkVr9FaQhoAAAAAAABr1fLly+Oyyy6L4cOHR6n0/39Asbq6Og499NAYO3Zs3HbbbTF//vwYOXJkDBw4MLbffvuIiNh9992jX79+cdBBB8VDDz0UN910U/z4xz+O0aNHl7fijjjiiHjmmWfihBNOiMcffzwuvPDCuPLKK2PMmDFtmtNPOwIAAAAAAKwky7K8R/g/75ZbbomFCxfGIYccssq9KVOmREVFReyzzz7R1NQUdXV1ceGFF5bvt2vXLq677ro48sgjY+DAgdG5c+cYPnx4TJgwoXymd+/ecf3118eYMWPivPPOi89+9rNx6aWXRl1dXZvmzJqbm5s//sf85HTqf1TeIwAAAO97dd4FeY8AAAC8r6OVmLWu+yFX5j3Cp86iX+6X9whrhJ92BAAAAAAAgAQhDQAAAAAAABKENAAAAAAAAEgQ0gAAAAAAACDBnygEAAAAAABYWZb3ABSFjTQAAAAAAABIENIAAAAAAAAgQUgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASCjlPQAAAAAAAECRZFmW9wgUhI00AAAAAAAASBDSAAAAAAAAIEFIAwAAAAAAgAQhDQAAAAAAABKENAAAAAAAAEgo5T0AAAAAAABAkWRZlvcIFISNNAAAAAAAAEgQ0gAAAAAAACBBSAMAAAAAAIAEIQ0AAAAAAAAShDQAAAAAAABIKOU9AAAAAAAAQJFkWZb3CBSEjTQAAAAAAABIENIAAAAAAAAgQUgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASCjlPQAAAAAAAECRZFmW9wgUhI00AAAAAAAASBDSAAAAAAAAIEFIAwAAAAAAgAQhDQAAAAAAABKENAAAAAAAAEgo5T0AAAAAAABAoWR5D0BR2EgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASBDSAAAAAAAAIEFIAwAAAAAAgIRS3gMAAAAAAAAUSZZleY9AQdhIAwAAAAAAgAQhDQAAAAAAABKENAAAAAAAAEgQ0gAAAAAAACBBSAMAAAAAAICEUt4DAAAAAAAAFEmWZXmPQEHYSAMAAAAAAIAEIQ0AAAAAAAAShDQAAAAAAABIENIAAAAAAAAgQUgDAAAAAACAhFLeAwAAAAAAABRJlmV5j0BB2EgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASBDSAAAAAAAAIEFIAwAAAAAAgIRS3gMAAAAAAAAUSpb3ABSFjTQAAAAAAABIENIAAAAAAAAgQUgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASCjlPQAAAAAAAECRZFmW9wgUhI00AAAAAAAASBDSAAAAAAAAIEFIAwAAAAAAgAQhDQAAAAAAABKENAAAAAAAAEgo5T0AAAAAAABAkWRZlvcIFISNNAAAAAAAAEgQ0gAAAAAAACBBSAMAAAAAAIAEIQ0AAAAAAAAShDQAAAAAAABIKOU9AAAAAAAAQJFkWZb3CBSEjTQAAAAAAABIENIAAAAAAAAgQUgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASCjlPQAAAAAAAECRZFmW9wgUhI00AAAAAAAASBDSAAAAAAAAIEFIAwAAAAAAgAQhDQAAAAAAABKENAAAAAAAAEgo5T0AAAAAAABAoWR5D0BR2EgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASGjz30h7+eWX45e//GXMnTs36uvrIyKitrY2vvzlL8eIESNigw02+MSHBAAAAAAAgLWtTRtp8+bNi89//vMxderUqK6ujp122il22mmnqK6ujqlTp0afPn3ij3/840e+TlNTUzQ2NrZ4NC9f9rE/BAAAAAAAAHzS2rSR9oMf/CD23XffmDZtWmRZ1uJec3NzHHHEEfGDH/wg5s6d+6GvM3HixDjttNNaXGtXs2207/GltowDAAAAAADwifvnBsK/rqy5ubm5tYc7deoUf/rTn6JPnz7J+48//nj0798/lixZ8qGv09TUFE1NTS2udR90YmQV7Vo7CgAAsAa9Ou+CvEcAAADe17HNf6SJ1bXJ2P/Je4RPnWfO2SPvEdaINv2PX21tbdx///0fGNLuv//+qKmp+cjXqaysjMrKyhbXRDQAAAAAAACKpE0h7bjjjotRo0bF/PnzY7fdditHs4aGhrj11lvjkksuicmTJ6+RQQEAAAAAAGBtalNIGz16dHTr1i2mTJkSF154YSxbtiwiItq1axdbb711zJgxI/bbb781MigAAAAAAACsTW3+ZdX9998/9t9//3jnnXfi5ZdfjoiIbt26Rfv27T/x4QAAAAAAACAvH/tPFLZv3z569OjxSc4CAAAAAACQuyzL8h6BgqjIewAAAAAAAAAoIiENAAAAAAAAEoQ0AAAAAAAASBDSAAAAAAAAIEFIAwAAAAAAgIRS3gMAAAAAAAAUSZblPQFFYSMNAAAAAAAAEoQ0AAAAAAAASBDSAAAAAAAAIEFIAwAAAAAAgAQhDQAAAAAAABJKeQ8AAAAAAABQJFmW5T0CBWEjDQAAAAAAABKENAAAAAAAAEgQ0gAAAAAAACBBSAMAAAAAAIAEIQ0AAAAAAAASSnkPAAAAAAAAUCRZlvcEFIWNNAAAAAAAAEgQ0gAAAAAAACBBSAMAAAAAAIAEIQ0AAAAAAAAShDQAAAAAAABIKOU9AAAAAAAAQJFkWZb3CBSEjTQAAAAAAABIENIAAAAAAAAgQUgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASCjlPQAAAAAAAECRZFneE1AUNtIAAAAAAAAgQUgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASBDSAAAAAAAAIKGU9wAAAAAAAABFUlGR5T0CBWEjDQAAAAAAABKENAAAAAAAAEgQ0gAAAAAAACBBSAMAAAAAAIAEIQ0AAAAAAAASSnkPAAAAAAAAUCRZlvcEFIWNNAAAAAAAAEgQ0gAAAAAAACBBSAMAAAAAAIAEIQ0AAAAAAAAShDQAAAAAAABIKOU9AAAAAAAAQJFkWZb3CBSEjTQAAAAAAABIENIAAAAAAAAgQUgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASCjlPQAAAAAAAECRZFneE1AUNtIAAAAAAAAgQUgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASBDSAAAAAAAAIKGU9wAAAAAAAABFkmVZ3iNQEDbSAAAAAAAAIEFIAwAAAAAAgAQhDQAAAAAAABKENAAAAAAAAEgQ0gAAAAAAACChlPcAAAAAAAAARZJlWd4jUBA20gAAAAAAACBBSAMAAAAAAIAEIQ0AAAAAAAAShDQAAAAAAABIENIAAAAAAAAgoZT3AAAAAAAAAEWSZXlPQFHYSAMAAAAAAIAEIQ0AAAAAAAAShDQAAAAAAABIENIAAAAAAAAgQUgDAAAAAABgrfnb3/4W3/3ud2P99dePTp06xRZbbBF//OMfy/ebm5tj3Lhx0aNHj+jUqVMMHjw4nnzyyRav8corr8SBBx4YVVVV0aVLlzj00EPjjTfeaHHm4YcfjkGDBkXHjh1jww03jEmTJrV5ViENAAAAAABgJVmWebTx0Vqvvvpq7LDDDtG+ffu44YYb4tFHH42zzz47unbtWj4zadKkmDp1akybNi3uu+++6Ny5c9TV1cXbb79dPnPggQfGggULYvbs2XHdddfFnXfeGaNGjSrfb2xsjN133z169eoV8+fPj7POOivGjx8fF198cdu+C83Nzc1tesYa0qn/UXmPAAAAvO/VeRfkPQIAAPC+jqW8J/jX0/+0OXmP8Knzp598pVXnTjrppLj77rvjf//3f5P3m5ubo2fPnnHsscfGcccdFxERr732WtTU1MSMGTNi2LBh8dhjj0W/fv1i3rx5sc0220RExI033hh77LFHvPDCC9GzZ8+46KKL4pRTTon6+vro0KFD+b2vueaaePzxx1v9uWykAQAAAAAAsFb84Q9/iG222Sb23Xff6N69e/Tv3z8uueSS8v1nn3026uvrY/DgweVr1dXVsd1228XcuXMjImLu3LnRpUuXckSLiBg8eHBUVFTEfffdVz6z0047lSNaRERdXV088cQT8eqrr7Z6XiENAAAAAACA1dLU1BSNjY0tHk1NTauce+aZZ+Kiiy6Kz33uc3HTTTfFkUceGT/84Q9j5syZERFRX18fERE1NTUtnldTU1O+V19fH927d29xv1QqxXrrrdfiTOo1Vn6P1hDSAAAAAAAAWC0TJ06M6urqFo+JEyeucm758uUxYMCAOPPMM6N///4xatSoOPzww2PatGk5TP3RhDQAAAAAAABWy8knnxyvvfZai8fJJ5+8yrkePXpEv379Wlzr27dvLFy4MCIiamtrIyKioaGhxZmGhobyvdra2li0aFGL+++++2688sorLc6kXmPl92gNIQ0AAAAAAIDVUllZGVVVVS0elZWVq5zbYYcd4oknnmhx7S9/+Uv06tUrIiJ69+4dtbW1ceutt5bvNzY2xn333RcDBw6MiIiBAwfG4sWLY/78+eUzc+bMieXLl8d2221XPnPnnXfGO++8Uz4ze/bs2HzzzaNr166t/lxCGgAAAAAAwEqyzKOtj9YaM2ZM3HvvvXHmmWfGU089FbNmzYqLL744Ro8e/f6/fRbHHHNM/PSnP40//OEP8cgjj8TBBx8cPXv2jL322isi3ttg+9rXvhaHH3543H///XH33XfHUUcdFcOGDYuePXtGRMQBBxwQHTp0iEMPPTQWLFgQv/nNb+K8886LsWPHtum7UGrTaQAAAAAAAPiYtt1227j66qvj5JNPjgkTJkTv3r3j3HPPjQMPPLB85oQTTog333wzRo0aFYsXL44dd9wxbrzxxujYsWP5zBVXXBFHHXVU7LbbblFRURH77LNPTJ06tXy/uro6br755hg9enRsvfXW0a1btxg3blyMGjWqTfNmzc3Nzav/sVdfp/5H5T0CAADwvlfnXZD3CAAAwPs6WolZ6wZMmJP3CJ86D4z7St4jrBF+2hEAAAAAAAAShDQAAAAAAABIENIAAAAAAAAgwS+rAgAAAAAArCTLsrxHoCBspAEAAAAAAECCkAYAAAAAAAAJQhoAAAAAAAAkCGkAAAAAAACQIKQBAAAAAABAQinvAQAAAAAAAIoky/KegKKwkQYAAAAAAAAJQhoAAAAAAAAkCGkAAAAAAACQIKQBAAAAAABAgpAGAAAAAAAACaW8BwAAAAAAACiSLMvyHoGCsJEGAAAAAAAACUIaAAAAAAAAJAhpAAAAAAAAkCCkAQAAAAAAQIKQBgAAAAAAAAmlvAcAAAAAAAAokizLewKKwkYaAAAAAAAAJAhpAAAAAAAAkCCkAQAAAAAAQIKQBgAAAAAAAAlCGgAAAAAAACSU8h4AAAAAAACgSLIsy3sECsJGGgAAAAAAACQIaQAAAAAAAJAgpAEAAAAAAECCkAYAAAAAAAAJQhoAAAAAAAAklPIeAAAAAAAAoEiyLO8JKAobaQAAAAAAAJAgpAEAAAAAAECCkAYAAAAAAAAJQhoAAAAAAAAkCGkAAAAAAACQUMp7AAAAAAAAgCLJsizvESgIG2kAAAAAAACQIKQBAAAAAABAgpAGAAAAAAAACUIaAAAAAAAAJAhpAAAAAAAAkFDKewAAAAAAAIAiybK8J6AobKQBAAAAAABAgpAGAAAAAAAACUIaAAAAAAAAJAhpAAAAAAAAkCCkAQAAAAAAQEIp7wEAAAAAAACKJMuyvEegIGykAQAAAAAAQIKQBgAAAAAAAAlCGgAAAAAAACQIaQAAAAAAAJAgpAEAAAAAAEBCKe8BAAAAAAAAiiTL8p6AorCRBgAAAAAAAAlCGgAAAAAAACQIaQAAAAAAAJAgpAEAAAAAAECCkAYAAAAAAAAJpbwHAAAAAAAAKJIsy/IegYKwkQYAAAAAAAAJQhoAAAAAAAAkCGkAAAAAAACQIKQBAAAAAABAgpAGAAAAAAAACaW8BwAAAAAAACiSLMvyHoGCsJEGAAAAAAAACUIaAAAAAAAAJAhpAAAAAAAAkCCkAQAAAAAAQIKQBgAAAAAAAAmlvAcAAAAAAAAokizLewKKwkYaAAAAAAAAJAhpAAAAAAAAkCCkAQAAAAAAQIKQBgAAAAAAAAlCGgAAAAAAACSU8h4AAAAAAACgSLIsy3sECsJGGgAAAAAAACQIaQAAAAAAAJAgpAEAAAAAAECCkAYAAAAAAAAJQhoAAAAAAAAklPIeAAAAAAAAoEiyLO8JKAobaQAAAAAAAJAgpAEAAAAAAECCkAYAAAAAAAAJQhoAAAAAAAAkCGkAAAAAAACQUMp7AAAAAAAAgCLJsizvESgIG2kAAAAAAACQIKQBAAAAAABAgpAGAAAAAAAACUIaAAAAAAAAJAhpAAAAAAAAkFDKewAAAAAAAIAiybK8J6AobKQBAAAAAABAgpAGAAAAAAAACUIaAAAAAAAAJAhpAAAAAAAAkCCkAQAAAAAAQEIp7wEAAAAAAACKpCLL8h6BgrCRBgAAAAAAAAlCGgAAAAAAACQIaQAAAAAAAJAgpAEAAAAAAECCkAYAAAAAAAAJpbwHAAAAAAAAKJIsy3sCisJGGgAAAAAAACQIaQAAAAAAAJAgpAEAAAAAAECCkAYAAAAAAAAJQhoAAAAAAAAklPIeAAAAAAAAoEiyLMt7BArCRhoAAAAAAAAkCGkAAAAAAACQIKQBAAAAAABAgpAGAAAAAAAACUIaAAAAAAAAJJTyHgAAAAAAAKBIKrK8J6AobKQBAAAAAABAgpAGAAAAAAAACUIaAAAAAAAAJAhpAAAAAAAAkCCkAQAAAAAAQEIp7wEAAAAAAACKJMuyvEegIGykAQAAAAAAQIKQBgAAAAAAAAlCGgAAAAAAACQIaQAAAAAAAJAgpAEAAAAAAEBCKe8BAAAAAAAAiiTL8p6AorCRBgAAAAAAAAlCGgAAAAAAACQIaQAAAAAAAJAgpAEAAAAAAECCkAYAAAAAAAAJpbwHAAAAAAAAKJIssrxHoCBspAEAAAAAAECCkAYAAAAAAAAJQhoAAAAAAAAkCGkAAAAAAACQIKQBAAAAAABAQinvAQAAAAAAAIqkIst7AorCRhoAAAAAAAAkCGkAAAAAAACQIKQBAAAAAABAgpAGAAAAAAAACUIaAAAAAAAAJJTyHgAAAAAAAKBIsizLewQKwkYaAAAAAAAAJAhpAAAAAAAAkCCkAQAAAAAAQIKQBgAAAAAAAAlCGgAAAAAAACSU8h4AAAAAAACgSLIs7wkoChtpAAAAAAAAkCCkAQAAAAAAQIKQBgAAAAAAAAlCGgAAAAAAACQIaQAAAAAAAJBQynsAAAAAAACAIqnIsrxHoCBspAEAAAAAAECCkAYAAAAAAAAJQhoAAAAAAAAkCGkAAAAAAACQIKQBAAAAAABAQinvAQAAAAAAAIoky/KegKKwkQYAAAAAAAAJQhoAAAAAAAAkCGkAAAAAAACQIKQBAAAAAABAgpAGAAAAAAAACaW8BwAAAAAAACiSLMvyHoGCsJEGAAAAAADAWjN+/PjIsqzFo0+fPuX7b7/9dowePTrWX3/9WHfddWOfffaJhoaGFq+xcOHCGDp0aKyzzjrRvXv3OP744+Pdd99tceb222+PAQMGRGVlZWy22WYxY8aMNs8qpAEAAAAAALBWfeELX4iXXnqp/LjrrrvK98aMGRPXXnttXHXVVXHHHXfEiy++GHvvvXf5/rJly2Lo0KGxdOnSuOeee2LmzJkxY8aMGDduXPnMs88+G0OHDo1dd901HnzwwTjmmGPisMMOi5tuuqlNc/ppRwAAAAAAANaqUqkUtbW1q1x/7bXXYvr06TFr1qz4yle+EhERl112WfTt2zfuvffe2H777ePmm2+ORx99NG655ZaoqamJrbbaKk4//fQ48cQTY/z48dGhQ4eYNm1a9O7dO84+++yIiOjbt2/cddddMWXKlKirq2v1nDbSAAAAAAAAWC1NTU3R2NjY4tHU1PSB55988sno2bNnbLLJJnHggQfGwoULIyJi/vz58c4778TgwYPLZ/v06RMbbbRRzJ07NyIi5s6dG1tssUXU1NSUz9TV1UVjY2MsWLCgfGbl11hxZsVrtJaQBgAAAAAAwGqZOHFiVFdXt3hMnDgxeXa77baLGTNmxI033hgXXXRRPPvsszFo0KB4/fXXo76+Pjp06BBdunRp8Zyampqor6+PiIj6+voWEW3F/RX3PuxMY2NjLFmypNWfy087AgAAAAAArCTL8p7g0+fkk0+OsWPHtrhWWVmZPDtkyJDy/37LLbeM7bbbLnr16hVXXnlldOrUaY3O2VY20gAAAAAAAFgtlZWVUVVV1eLxQSHtn3Xp0iU+//nPx1NPPRW1tbWxdOnSWLx4cYszDQ0N5b+pVltbGw0NDavcX3Hvw85UVVW1KdYJaQAAAAAAAOTmjTfeiKeffjp69OgRW2+9dbRv3z5uvfXW8v0nnngiFi5cGAMHDoyIiIEDB8YjjzwSixYtKp+ZPXt2VFVVRb9+/cpnVn6NFWdWvEZrCWkAAAAAAACsNccdd1zccccd8dxzz8U999wT3/rWt6Jdu3bxne98J6qrq+PQQw+NsWPHxm233Rbz58+PkSNHxsCBA2P77bePiIjdd989+vXrFwcddFA89NBDcdNNN8WPf/zjGD16dHkL7ogjjohnnnkmTjjhhHj88cfjwgsvjCuvvDLGjBnTpln9jTQAAAAAAADWmhdeeCG+853vxD/+8Y/YYIMNYscdd4x77703Nthgg4iImDJlSlRUVMQ+++wTTU1NUVdXFxdeeGH5+e3atYvrrrsujjzyyBg4cGB07tw5hg8fHhMmTCif6d27d1x//fUxZsyYOO+88+Kzn/1sXHrppVFXV9emWbPm5ubmT+Zjr55O/Y/KewQAAOB9r867IO8RAACA93W0ErPW7TvjgbxH+NS5asSAvEdYI/yPHwAAAAAAwEoqsizvESgIfyMNAAAAAAAAEoQ0AAAAAAAASBDSAAAAAAAAIEFIAwAAAAAAgAQhDQAAAAAAABJKeQ8AAAAAAABQJFneA1AYNtIAAAAAAAAgQUgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASBDSAAAAAAAAIKGU9wAAAAAAAABFkmVZ3iNQEDbSAAAAAAAAIEFIAwAAAAAAgAQhDQAAAAAAABKENAAAAAAAAEgQ0gAAAAAAACChlPcAAAAAAAAARVKR5T0BRWEjDQAAAAAAABKENAAAAAAAAEgQ0gAAAAAAACBBSAMAAAAAAIAEIQ0AAAAAAAASSnkPAAAAAAAAUCRZluU9AgVhIw0AAAAAAAAShDQAAAAAAABIENIAAAAAAAAgQUgDAAAAAACABCENAAAAAAAAEkp5DwAAAAAAAFAkWZb3BBSFjTQAAAAAAABIENIAAAAAAAAgQUgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASCjlPQAAAAAAAECRZFmW9wgUhI00AAAAAAAASBDSAAAAAAAAIEFIAwAAAAAAgAQhDQAAAAAAABKENAAAAAAAAEgo5T0AAAAAAABAkVRkeU9AUdhIAwAAAAAAgAQhDQAAAAAAABKENAAAAAAAAEgQ0gAAAAAAACBBSAMAAAAAAICEUt4DAAAAAAAAFEmWZXmPQEHYSAMAAAAAAIAEIQ0AAAAAAAAShDQAAAAAAABIENIAAAAAAAAgQUgDAAAAAACAhFLeAwAAAAAAABRJlvcAFIaNNAAAAAAAAEgQ0gAAAAAAACBBSAMAAAAAAIAEIQ0AAAAAAAAShDQAAAAAAABIKOU9AAAAAAAAQJFUZFneI1AQNtIAAAAAAAAgQUgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASBDSAAAAAAAAIKGU9wAAAAAAAABFkmV5T0BR2EgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASBDSAAAAAAAAIEFIAwAAAAAAgIRS3gMAAAAAAAAUSZZleY9AQdhIAwAAAAAAgAQhDQAAAAAAABKENAAAAAAAAEgQ0gAAAAAAACBBSAMAAAAAAICEUt4DAAAAAAAAFEmW5T0BRWEjDQAAAAAAABKENAAAAAAAAEgQ0gAAAAAAACBBSAMAAAAAAIAEIQ0AAAAAAAASSnkPAAAAAAAAUCQVWZb3CBSEjTQAAAAAAABIENIAAAAAAAAgQUgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASCjlPQAAAAAAAECRZFneE1AUNtIAAAAAAAAgQUgDAAAAAACABCENAAAAAAAAEoQ0AAAAAAAASBDSAAAAAAAAIKGU9wAAAAAAAABFkmVZ3iNQEDbSAAAAAAAAIEFIAwAAAAAAgAQhDQAAAAAAABKENAAAAAAAAEgQ0gAAAAAAACChlPcAK7xw17l5jwAAALyv624T8h4BAAB435I7xuU9wr8cW0is4LsAAAAAAAAACUIaAAAAAAAAJAhpAAAAAAAAkCCkAQAAAAAAQIKQBgAAAAAAAAmlvAcAAAAAAAAokizL8h6BgrCRBgAAAAAAAAlCGgAAAAAAACQIaQAAAAAAAJAgpAEAAAAAAECCkAYAAAAAAAAJpbwHAAAAAAAAKJKKLO8JKAobaQAAAAAAAJAgpAEAAAAAAECCkAYAAAAAAAAJQhoAAAAAAAAkCGkAAAAAAACQUMp7AAAAAAAAgCKpyPKegKKwkQYAAAAAAAAJQhoAAAAAAAAkCGkAAAAAAACQIKQBAAAAAABAgpAGAAAAAAAACaW8BwAAAAAAACiSLMvyHoGCsJEGAAAAAAAACUIaAAAAAAAAJAhpAAAAAAAAkCCkAQAAAAAAQIKQBgAAAAAAAAmlvAcAAAAAAAAokoos7wkoChtpAAAAAAAAkCCkAQAAAAAAQIKQBgAAAAAAAAlCGgAAAAAAACQIaQAAAAAAAJBQynsAAAAAAACAIsmyvCegKGykAQAAAAAAQIKQBgAAAAAAAAlCGgAAAAAAACQIaQAAAAAAAJAgpAEAAAAAAEBCKe8BAAAAAAAAiqQiy/IegYKwkQYAAAAAAAAJQhoAAAAAAAAkCGkAAAAAAACQIKQBAAAAAABAgpAGAAAAAAAACaW8BwAAAAAAACgSW0is4LsAAAAAAAAACUIaAAAAAAAAJAhpAAAAAAAAkCCkAQAAAAAAQIKQBgAAAAAAAAmlvAcAAAAAAAAokizLewKKwkYaAAAAAAAAJAhpAAAAAAAAkCCkAQAAAAAAQIKQBgAAAAAAAAlCGgAAAAAAACSU8h4AAAAAAACgSCqyLO8RKAgbaQAAAAAAAJAgpAEAAAAAAECCkAYAAAAAAAAJQhoAAAAAAAAkCGkAAAAAAACQUMp7AAAAAAAAgCLJsrwnoChspAEAAAAAAECCkAYAAAAAAAAJQhoAAAAAAAAkCGkAAAAAAACQIKQBAAAAAABAQinvAQAAAAAAAIqkIst7AorCRhoAAAAAAAAkCGkAAAAAAACQIKQBAAAAAABAgpAGAAAAAABALn72s59FlmVxzDHHlK+9/fbbMXr06Fh//fVj3XXXjX322ScaGhpaPG/hwoUxdOjQWGeddaJ79+5x/PHHx7vvvtvizO233x4DBgyIysrK2GyzzWLGjBltnk9IAwAAAAAAYK2bN29e/OIXv4gtt9yyxfUxY8bEtddeG1dddVXccccd8eKLL8bee+9dvr9s2bIYOnRoLF26NO65556YOXNmzJgxI8aNG1c+8+yzz8bQoUNj1113jQcffDCOOeaYOOyww+Kmm25q04yl1fuIAAAAAAAA/7dUZFneI/yf98Ybb8SBBx4Yl1xySfz0pz8tX3/ttddi+vTpMWvWrPjKV74SERGXXXZZ9O3bN+69997Yfvvt4+abb45HH300brnllqipqYmtttoqTj/99DjxxBNj/Pjx0aFDh5g2bVr07t07zj777IiI6Nu3b9x1110xZcqUqKura/WcNtIAAAAAAABYLU1NTdHY2Nji0dTU9IHnR48eHUOHDo3Bgwe3uD5//vx45513Wlzv06dPbLTRRjF37tyIiJg7d25sscUWUVNTUz5TV1cXjY2NsWDBgvKZf37turq68mu0lpAGAAAAAADAapk4cWJUV1e3eEycODF59te//nU88MADyfv19fXRoUOH6NKlS4vrNTU1UV9fXz6zckRbcX/FvQ8709jYGEuWLGn15/LTjgAAAAAAAKyWk08+OcaOHdviWmVl5Srn/vrXv8bRRx8ds2fPjo4dO66t8T42G2kAAAAAAACslsrKyqiqqmrxSIW0+fPnx6JFi2LAgAFRKpWiVCrFHXfcEVOnTo1SqRQ1NTWxdOnSWLx4cYvnNTQ0RG1tbURE1NbWRkNDwyr3V9z7sDNVVVXRqVOnVn8uIQ0AAOD/tXfHsV7X973H39/jV44WPcdhy0GCbCQkraRVU+zgZGsXV8bppE25xWRmxrJJZzRHEzmdWjJLl97F04s3aTVozdJk+Mdca5PhWok6LgzI1jNtac6KdpI1I6OLOweng1NP5ADyu39Mfpdz+65yPMjnS3k8kl9af7/vOb4w/mHyzPscAAAAzoiPf/zjsWfPnhgeHm6/rrnmmrjxxhvb///888+Pbdu2tb9m7969sX///ujt7Y2IiN7e3tizZ08cOHCg/czWrVujq6srFi1a1H7m5O9x4pkT3+NU+dGOAAAAAAAAJ6mq0gt+eV188cXxwQ9+cNJ7M2fOjEsvvbT9/po1a2JgYCBmzZoVXV1dcccdd0Rvb28sXbo0IiKWL18eixYtiptuuik2bNgQIyMjce+990Z/f3/7Cu7WW2+NjRs3xt133x0333xzbN++PR5//PHYsmXLlPYKaQAAAAAAADTGV7/61ejo6IhVq1bFxMRE9PX1xcMPP9z+/Lzzzosnn3wybrvttujt7Y2ZM2fG6tWr48tf/nL7mQULFsSWLVti7dq18cADD8S8efPiG9/4RvT19U1pS9VqtVqn7U82Da+MHys9AQAAeNO86+4rPQEAAHjT6zvXl55wzvmf/+cnpSecdb64bGHpCe8KvyMNAAAAAAAAEkIaAAAAAAAAJIQ0AAAAAAAASAhpAAAAAAAAkKhLDwAAAAAAAGiSjqr0AprCRRoAAAAAAAAkhDQAAAAAAABICGkAAAAAAACQENIAAAAAAAAgIaQBAAAAAABAoi49AAAAAAAAoEmqqEpPoCFcpAEAAAAAAEBCSAMAAAAAAICEkAYAAAAAAAAJIQ0AAAAAAAASQhoAAAAAAAAk6tIDAAAAAAAAmqSjKr2ApnCRBgAAAAAAAAkhDQAAAAAAABJCGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJCoSw8AAAAAAABoko6q9AKawkUaAAAAAAAAJIQ0AAAAAAAASAhpAAAAAAAAkBDSAAAAAAAAICGkAQAAAAAAQKIuPQAAAAAAAKBJqqoqPYGGcJEGAAAAAAAACSENAAAAAAAAEkIaAAAAAAAAJIQ0AAAAAAAASAhpAAAAAAAAkKhLDwAAAAAAAGiSjqr0AprCRRoAAAAAAAAkhDQAAAAAAABICGkAAAAAAACQENIAAAAAAAAgIaQBAAAAAABAoi49AAAAAAAAoEmqqvQCmsJFGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJAQ0gAAAAAAACAhpAEAAAAAAECiLj0AAAAAAACgSTqqqvQEGsJFGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJAQ0gAAAAAAACAhpAEAAAAAAECiLj0AAAAAAACgSTqq0gtoChdpAAAAAAAAkBDSAAAAAAAAICGkAQAAAAAAQEJIAwAAAAAAgISQBgAAAAAAAIm69AAAAAAAAIAmqarSC2gKF2kAAAAAAACQENIAAAAAAAAgIaQBAAAAAABAQkgDAAAAAACAhJAGAAAAAAAAibr0AAAAAAAAgCbpiKr0BBrCRRoAAAAAAAAkhDQAAAAAAABICGkAAAAAAACQENIAAAAAAAAgIaQBAAAAAABAoi49AAAAAAAAoEmqqvQCmsJFGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJAQ0gAAAAAAACAhpAEAAAAAAECiLj0AAAAAAACgSTqq0gtoChdpAAAAAAAAkBDSAAAAAAAAICGkAQAAAAAAQEJIAwAAAAAAgISQBgAAAAAAAIm69AAAAAAAAIAm6aiq0hNoCBdpAAAAAAAAkBDSAAAAAAAAICGkAQAAAAAAQEJIAwAAAAAAgISQBgAAAAAAAIm69AAAAAAAAIAmqarSC2gKF2kAAAAAAACQENIAAAAAAAAgIaQBAAAAAABAQkgDAAAAAACAhJAGAAAAAAAAibr0AAAAAAAAgCbpqKrSE2gIF2kAAAAAAACQENIAAAAAAAAgIaQBAAAAAABAQkgDAAAAAACAhJAGAAAAAAAAibr0AAAAAAAAgCapqtILaAoXaQAAAAAAAJAQ0gAAAAAAACAhpAEAAAAAAEBCSAMAAAAAAICEkAYAAAAAAACJuvQAAAAAAACAJnGFxAn+XQAAAAAAAICEkAYAAAAAAAAJIQ0AAAAAAAASQhoAAAAAAAAkhDQAAAAAAABI1KUHAAAAAAAANElVVaUn0BAu0gAAAAAAACAhpAEAAAAAAEBCSAMAAAAAAICEkAYAAAAAAAAJIQ0AAAAAAAASdekBAAAAAAAATVKVHkBjuEgDAAAAAACAhJAGAAAAAAAACSENAAAAAAAAEkIaAAAAAAAAJIQ0AAAAAAAASNSlBwAAAAAAADRJR1WVnkBDuEgDAAAAAACAhJAGAAAAAAAACSENAAAAAAAAEkIaAAAAAAAAJIQ0AAAAAAAASNSlBwAAAAAAADRJVXoAjeEiDQAAAAAAABJCGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJAQ0gAAAAAAACBRlx4AAAAAAADQJFVVegFN4SINAAAAAAAAEkIaAAAAAAAAJIQ0AAAAAAAASAhpAAAAAAAAkBDSAAAAAAAAIFGXHgAAAAAAANAkVVWVnkBDuEgDAAAAAACAhJAGAAAAAAAACSENAAAAAAAAEkIaAAAAAAAAJIQ0AAAAAAAASNSlBwAAAAAAADSJKyRO8O8CAAAAAAAAJIQ0AAAAAAAASAhpAAAAAAAAkBDSAAAAAAAAICGkAQAAAAAAQKIuPQAAAAAAAKBJqqoqPYGGcJEGAAAAAAAACSENAAAAAAAAEkIaAAAAAAAAJIQ0AAAAAAAASAhpAAAAAAAAkKhLDwAAAAAAAGiSqvQAGsNFGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJAQ0gAAAAAAACAhpAEAAAAAAECiLj0AAAAAAACgSaqqKj2BhnCRBgAAAAAAAAkhDQAAAAAAABJCGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJCoSw8AAAAAAABoEldInODfBQAAAAAAAEgIaQAAAAAAAJAQ0gAAAAAAACAhpAEAAAAAAEBCSAMAAAAAAOCM+frXvx5XXnlldHV1RVdXV/T29sZTTz3V/vzw4cPR398fl156aVx00UWxatWqGB0dnfQ99u/fHytWrIj3vOc9MXv27Ljrrrvi2LFjk57ZsWNHfPjDH47Ozs5YuHBhbNq0acpbhTQAAAAAAICTVFXlNcXXVMybNy++8pWvxO7du+MHP/hB/PZv/3Z8+tOfjhdeeCEiItauXRvf/e5349vf/nbs3LkzXnrppfjMZz7T/vo33ngjVqxYEUeOHInvfe978eijj8amTZti/fr17Wf27dsXK1asiGuvvTaGh4fjzjvvjM997nPxzDPPTO3fhVar1ZrSV7xLXhk/9vYPAQAAZ8S86+4rPQEAAHjT6zvXv/1DnFabfzRSesJZ539cOWdaXz9r1qy4//774/rrr4/3ve998dhjj8X1118fEREvvvhiXHHFFTE0NBRLly6Np556Kj75yU/GSy+9FD09PRER8cgjj8Q999wTL7/8csyYMSPuueee2LJlSzz//PPtv8cNN9wQBw8ejKeffvqUd7lIAwAAAAAAoIg33ngjvvnNb8b4+Hj09vbG7t274+jRo7Fs2bL2Mx/4wAdi/vz5MTQ0FBERQ0ND8aEPfagd0SIi+vr6YmxsrH3VNjQ0NOl7nHjmxPc4VfU7/YMBAAAAAABARMTExERMTExMeq+zszM6OzvT5/fs2RO9vb1x+PDhuOiii2Lz5s2xaNGiGB4ejhkzZsQll1wy6fmenp4YGfnvS8GRkZFJEe3E5yc+e6tnxsbG4vXXX48LL7zwlP5cLtIAAAAAAACYlsHBweju7p70Ghwc/IXPv//974/h4eF49tln47bbbovVq1fHj3/84zO4+NS4SAMAAAAAAGBa1q1bFwMDA5Pe+0XXaBERM2bMiIULF0ZExOLFi+P73/9+PPDAA/F7v/d7ceTIkTh48OCkq7TR0dGYM+e/fw/bnDlz4rnnnpv0/UZHR9ufnfjfE++d/ExXV9cpX6NFuEgDAAAAAACYpPKa8quzszO6uromvd4qpP3/jh8/HhMTE7F48eI4//zzY9u2be3P9u7dG/v374/e3t6IiOjt7Y09e/bEgQMH2s9s3bo1urq6YtGiRe1nTv4eJ5458T1OlYs0AAAAAAAAzph169bF7/7u78b8+fPjZz/7WTz22GOxY8eOeOaZZ6K7uzvWrFkTAwMDMWvWrOjq6oo77rgjent7Y+nSpRERsXz58li0aFHcdNNNsWHDhhgZGYl77703+vv72/Hu1ltvjY0bN8bdd98dN998c2zfvj0ef/zx2LJly5S2CmkAAAAAAACcMQcOHIjPfvaz8R//8R/R3d0dV155ZTzzzDPxO7/zOxER8dWvfjU6Ojpi1apVMTExEX19ffHwww+3v/68886LJ598Mm677bbo7e2NmTNnxurVq+PLX/5y+5kFCxbEli1bYu3atfHAAw/EvHnz4hvf+Eb09fVNaWvVarVap+ePPT2vjB8rPQEAAHjTvOvuKz0BAAB40+s715eecM554kcjpSecdVZeOaf0hHeF35EGAAAAAAAACSENAAAAAAAAEn5HGgAAAAAAwEmqqvQCmsJFGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJAQ0gAAAAAAACAhpAEAAAAAAECiLj0AAAAAAACgSTqiKj2BhnCRBgAAAAAAAAkhDQAAAAAAABJCGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJCoSw8AAAAAAABokqoqvYCmcJEGAAAAAAAACSENAAAAAAAAEkIaAAAAAAAAJIQ0AAAAAAAASAhpAAAAAAAAkKhLDwAAAAAAAGiSKqrSE2gIF2kAAAAAAACQENIAAAAAAAAgIaQBAAAAAABAQkgDAAAAAACAhJAGAAAAAAAAibr0AAAAAAAAgCapqtILaAoXaQAAAAAAAJAQ0gAAAAAAACAhpAEAAAAAAEBCSAMAAAAAAICEkAYAAAAAAACJuvQAAAAAAACAJumIqvQEGsJFGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJAQ0gAAAAAAACAhpAEAAAAAAECiLj0AAAAAAACgSaqq9AKawkUaAAAAAAAAJIQ0AAAAAAAASAhpAAAAAAAAkBDSAAAAAAAAICGkAQAAAAAAQKIuPQAAAAAAAKBJqqr0AprCRRoAAAAAAAAkhDQAAAAAAABICGkAAAAAAACQENIAAAAAAAAgIaQBAAAAAABAoi49AAAAAAAAoEmqqEpPoCFcpAEAAAAAAEBCSAMAAAAAAICEkAYAAAAAAAAJIQ0AAAAAAAASQhoAAAAAAAAk6tIDAAAAAAAAmqSjKr2ApnCRBgAAAAAAAAkhDQAAAAAAABJCGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJCoSw8AAAAAAABokiqq0hNoCBdpAAAAAAAAkBDSAAAAAAAAICGkAQAAAAAAQEJIAwAAAAAAgISQBgAAAAAAAIm69AAAAAAAAIAmqarSC2gKF2kAAAAAAACQENIAAAAAAAAgIaQBAAAAAABAQkgDAAAAAACAhJAGAAAAAAAAibr0AAAAAAAAgCapoio9gYZwkQYAAAAAAAAJIQ0AAAAAAAASQhoAAAAAAAAkhDQAAAAAAABICGkAAAAAAACQqEsPAAAAAAAAaJKOqvQCmsJFGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJAQ0gAAAAAAACAhpAEAAAAAAECiLj0AAAAAAACgSaqoSk+gIVykAQAAAAAAQEJIAwAAAAAAgISQBgAAAAAAAAkhDQAAAAAAABJCGgAAAAAAACTq0gMAAAAAAACapKpKL6ApXKQBAAAAAABAQkgDAAAAAACAhJAGAAAAAAAACSENAAAAAAAAEkIaAAAAAAAAJOrSAwAAAAAAAJqkKj2AxnCRBgAAAAAAAAkhDQAAAAAAABJCGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJCoSw8AAAAAAABoko6qKj2BhnCRBgAAAAAAAAkhDQAAAAAAABJCGgAAAAAAACSENAAAAAAAAEic9pD205/+NG6++ea3fGZiYiLGxsYmvSYmJk73FAAAAAAAAHjHTntIe/XVV+PRRx99y2cGBweju7t70utr//t/ne4pAAAAAAAAU1Z5Tfn1y6qe6hd85zvfecvP//Vf//Vtv8e6detiYGBg0nuvHTtvqlMAAAAAAADgXTPlkLZy5cqoqipardYvfKaq3ro9dnZ2Rmdn56T3jo4fm+oUAAAAAAAAeNdM+Uc7XnbZZfHXf/3Xcfz48fT1wx/+8N3YCQAAAAAAAGfUlEPa4sWLY/fu3b/w87e7VgMAAAAAAICzwZR/tONdd90V4+Pjv/DzhQsXxt/93d9NaxQAAAAAAACUNuWQ9tGPfvQtP585c2b81m/91jseBAAAAAAAUFRVegBNMeUf7QgAAAAAAADnAiENAAAAAAAAEkIaAAAAAAAAJIQ0AAAAAAAASAhpAAAAAAAAkKhLDwAAAAAAAGiSKqrSE2gIF2kAAAAAAACQENIAAAAAAAAgIaQBAAAAAABAQkgDAAAAAACAhJAGAAAAAAAAibr0AAAAAAAAgCapqtILaAoXaQAAAAAAAJAQ0gAAAAAAACAhpAEAAAAAAEBCSAMAAAAAAICEkAYAAAAAAACJuvQAAAAAAACAJqlKD6AxXKQBAAAAAABAQkgDAAAAAACAhJAGAAAAAAAACSENAAAAAAAAEkIaAAAAAAAAJOrSAwAAAAAAABqlKj2ApnCRBgAAAAAAAAkhDQAAAAAAABJCGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJCoSw8AAAAAAABokiqq0hNoCBdpAAAAAAAAkBDSAAAAAAAAICGkAQAAAAAAQEJIAwAAAAAAgISQBgAAAAAAAIm69AAAAAAAAIAmqarSC2gKF2kAAAAAAACQENIAAAAAAAAgIaQBAAAAAABAQkgDAAAAAACAhJAGAAAAAAAAibr0AAAAAAAAgCapSg+gMVykAQAAAAAAQEJIAwAAAAAAgISQBgAAAAAAAAkhDQAAAAAAABJCGgAAAAAAACTq0gMAAAAAAAAapSo9gKZwkQYAAAAAAAAJIQ0AAAAAAAASQhoAAAAAAAAkhDQAAAAAAABICGkAAAAAAACQqEsPAAAAAAAAaJIqqtITaAgXaQAAAAAAAJAQ0gAAAAAAACAhpAEAAAAAAEBCSAMAAAAAAICEkAYAAAAAAACJuvQAAAAAAACAJqmq0gtoChdpAAAAAAAAkBDSAAAAAAAAOCMGBwfjIx/5SFx88cUxe/bsWLlyZezdu3fSM4cPH47+/v649NJL46KLLopVq1bF6OjopGf2798fK1asiPe85z0xe/bsuOuuu+LYsWOTntmxY0d8+MMfjs7Ozli4cGFs2rRpynuFNAAAAAAAAM6InTt3Rn9/f/zjP/5jbN26NY4ePRrLly+P8fHx9jNr166N7373u/Htb387du7cGS+99FJ85jOfaX/+xhtvxIoVK+LIkSPxve99Lx599NHYtGlTrF+/vv3Mvn37YsWKFXHttdfG8PBw3HnnnfG5z30unnnmmSntrVqtVmv6f+zpe2X82Ns/BAAAnBHzrruv9AQAAOBNr+9c//YPcVoN7/9Z6QlnnavnX/yOvu7ll1+O2bNnx86dO+NjH/tYHDp0KN73vvfFY489Ftdff31ERLz44otxxRVXxNDQUCxdujSeeuqp+OQnPxkvvfRS9PT0RETEI488Evfcc0+8/PLLMWPGjLjnnntiy5Yt8fzzz7f/XjfccEMcPHgwnn766VPe5yINAAAAAACAaZmYmIixsbFJr4mJibf9ukOHDkVExKxZsyIiYvfu3XH06NFYtmxZ+5kPfOADMX/+/BgaGoqIiKGhofjQhz7UjmgREX19fTE2NhYvvPBC+5mTv8eJZ058j1MlpAEAAAAAAJyk8prya3BwMLq7uye9BgcH3/Kf8/Hjx+POO++M3/iN34gPfvCDERExMjISM2bMiEsuuWTSsz09PTEyMtJ+5uSIduLzE5+91TNjY2Px+uuvv+Wuk9Wn/CQAAAAAAAAk1q1bFwMDA5Pe6+zsfMuv6e/vj+effz7+/u///t2cNi1CGgAAAAAAANPS2dn5tuHsZLfffns8+eSTsWvXrpg3b177/Tlz5sSRI0fi4MGDk67SRkdHY86cOe1nnnvuuUnfb3R0tP3Zif898d7Jz3R1dcWFF154yjv9aEcAAAAAAADOiFarFbfffnts3rw5tm/fHgsWLJj0+eLFi+P888+Pbdu2td/bu3dv7N+/P3p7eyMiore3N/bs2RMHDhxoP7N169bo6uqKRYsWtZ85+XuceObE9zhVLtIAAAAAAAA4I/r7++Oxxx6Lv/mbv4mLL764/TvNuru748ILL4zu7u5Ys2ZNDAwMxKxZs6KrqyvuuOOO6O3tjaVLl0ZExPLly2PRokVx0003xYYNG2JkZCTuvffe6O/vb1/F3XrrrbFx48a4++674+abb47t27fH448/Hlu2bJnS3qrVarVO7z+Cd+aV8WOlJwAAAG+ad919pScAAABven3n+tITzjn/tP9npSecda6af/EpPVdVVfr+X/zFX8Qf/MEfRETE4cOH4/Of/3z81V/9VUxMTERfX188/PDD7R/bGBHxb//2b3HbbbfFjh07YubMmbF69er4yle+EnX9/27IduzYEWvXro0f//jHMW/evPjiF7/Y/nucKiENAAD4OUIaAAA0h5B25v3TT4W0qbrq8lMLaWcbvyMNAAAAAAAAEkIaAAAAAAAAJIQ0AAAAAAAASAhpAAAAAAAAkBDSAAAAAAAAIFGXHgAAAAAAANAkVVSlJ9AQLtIAAAAAAAAgIaQBAAAAAABAQkgDAAAAAACAhJAGAAAAAAAACSENAAAAAAAAEkIaAAAAAAAAJOrSAwAAAAAAAJqkqkovoClcpAEAAAAAAEBCSAMAAAAAAICEkAYAAAAAAAAJIQ0AAAAAAAASQhoAAAAAAAAk6tIDAAAAAAAAmqQqPYDGcJEGAAAAAAAACSENAAAAAAAAEkIaAAAAAAAAJIQ0AAAAAAAASAhpAAAAAAAAkKhLDwAAAAAAAGiUqvQAmsJFGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJAQ0gAAAAAAACAhpAEAAAAAAECiLj0AAAAAAACgSaqoSk+gIVykAQAAAAAAQEJIAwAAAAAAgISQBgAAAAAAAAkhDQAAAAAAABJCGgAAAAAAACTq0gMAAAAAAACapKpKL6ApXKQBAAAAAABAQkgDAAAAAACAhJAGAAAAAAAACSENAAAAAAAAEkIaAAAAAAAAJOrSAwAAAAAAAJqkKj2AxnCRBgAAAAAAAAkhDQAAAAAAABJCGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJCoSw8AAAAAAABolKr0AJrCRRoAAAAAAAAkhDQAAAAAAABICGkAAAAAAACQENIAAAAAAAAgIaQBAAAAAABAoi49AAAAAAAAoEmqqEpPoCFcpAEAAAAAAEBCSAMAAAAAAICEkAYAAAAAAAAJIQ0AAAAAAAASQhoAAAAAAAAk6tIDAAAAAAAAmqSqSi+gKVykAQAAAAAAQEJIAwAAAAAAgISQBgAAAAAAAAkhDQAAAAAAABJCGgAAAAAAACTq0gMAAAAAAACapCo9gMZwkQYAAAAAAAAJIQ0AAAAAAAASQhoAAAAAAAAkhDQAAAAAAABICGkAAAAAAACQqEsPAAAAAAAAaJSq9ACawkUaAAAAAAAAJIQ0AAAAAAAASAhpAAAAAAAAkBDSAAAAAAAAICGkAQAAAAAAQKIuPQAAAAAAAKBJqqhKT6AhXKQBAAAAAABAQkgDAAAAAACAhJAGAAAAAAAACSENAAAAAAAAEkIaAAAAAAAAJOrSAwAAAAAAAJqkqkovoClcpAEAAAAAAEBCSAMAAAAAAICEkAYAAAAAAAAJIQ0AAAAAAAASQhoAAAAAAAAk6tIDAAAAAAAAmqQqPYDGcJEGAAAAAAAACSENAAAAAAAAEkIaAAAAAAAAJIQ0AAAAAAAASAhpAAAAAAAAkKhLDwAAAAAAAGiUqvQAmsJFGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJAQ0gAAAAAAACAhpAEAAAAAAECiLj0AAAAAAACgSaqoSk+gIVykAQAAAAAAQEJIAwAAAAAAgISQBgAAAAAAAAkhDQAAAAAAABJCGgAAAAAAACTq0gMAAAAAAACapKpKL6ApXKQBAAAAAABAQkgDAAAAAACAhJAGAAAAAAAACSENAAAAAAAAEkIaAAAAAAAAJOrSAwAAAAAAAJqkKj2AxnCRBgAAAAAAAAkhDQAAAAAAABJCGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJCoSw8AAAAAAABolKr0AJrCRRoAAAAAAAAkhDQAAAAAAABICGkAAAAAAACQENIAAAAAAAAgIaQBAAAAAABAoi49AAAAAAAAoEmqqEpPoCFcpAEAAAAAAEBCSAMAAAAAAICEkAYAAAAAAAAJIQ0AAAAAAAASQhoAAAAAAAAk6tIDAAAAAAAAmqSqSi+gKVykAQAAAAAAQEJIAwAAAAAAgISQBgAAAAAAAAkhDQAAAAAAABJCGgAAAAAAACTq0gMAAAAAAACapCo9gMZwkQYAAAAAAAAJIQ0AAAAAAAASQhoAAAAAAAAkhDQAAAAAAABICGkAAAAAAACQqEsPAAAAAAAAaJKqKr2ApnCRBgAAAAAAAAkhDQAAAAAAABJCGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJCoSw8AAAAAAABolqr0ABrCRRoAAAAAAAAkhDQAAAAAAABICGkAAAAAAACQENIAAAAAAAAgIaQBAAAAAABAoi49AAAAAAAAoEmqqvQCmsJFGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJAQ0gAAAAAAACAhpAEAAAAAAECiLj0AAAAAAACgSarSA2gMF2kAAAAAAACQENIAAAAAAAAgIaQBAAAAAABAQkgDAAAAAACAhJAGAAAAAAAAibr0AAAAAAAAgCapqtILaAoXaQAAAAAAAJAQ0gAAAAAAACAhpAEAAAAAAEBCSAMAAAAAAICEkAYAAAAAAACJuvQAAAAAAACAJqmiKj2BhnCRBgAAAAAAAAkhDQAAAAAAABJCGgAAAAAAAGfMrl274lOf+lTMnTs3qqqKJ554YtLnrVYr1q9fH5dddllceOGFsWzZsviXf/mXSc+8+uqrceONN0ZXV1dccsklsWbNmnjttdcmPfOjH/0oPvrRj8YFF1wQl19+eWzYsGHKW4U0AAAAAAAAzpjx8fG46qqr4qGHHko/37BhQzz44IPxyCOPxLPPPhszZ86Mvr6+OHz4cPuZG2+8MV544YXYunVrPPnkk7Fr16645ZZb2p+PjY3F8uXL41d/9Vdj9+7dcf/998ef/umfxp//+Z9PaWvVarVa7+yPeXq9Mn6s9AQAAOBN8667r/QEAADgTa/vXF96wjln5NDR0hPOOnO6z39HX1dVVWzevDlWrlwZEf99jTZ37tz4/Oc/H3/8x38cERGHDh2Knp6e2LRpU9xwww3xz//8z7Fo0aL4/ve/H9dcc01ERDz99NNx3XXXxb//+7/H3Llz4+tf/3r8yZ/8SYyMjMSMGTMiIuILX/hCPPHEE/Hiiy+e8j4XaQAAAAAAACervKb8Ok327dsXIyMjsWzZsvZ73d3dsWTJkhgaGoqIiKGhobjkkkvaES0iYtmyZdHR0RHPPvts+5mPfexj7YgWEdHX1xd79+6N//qv/zrlPfV0/0AAAAAAAACc2yYmJmJiYmLSe52dndHZ2Tml7zMyMhIRET09PZPe7+npaX82MjISs2fPnvR5Xdcxa9asSc8sWLDg577Hic9+5Vd+5ZT2uEgDAAAAAABgWgYHB6O7u3vSa3BwsPSsaXORBgAAAAAAwLSsW7cuBgYGJr031Wu0iIg5c+ZERMTo6Ghcdtll7fdHR0fj6quvbj9z4MCBSV937NixePXVV9tfP2fOnBgdHZ30zIm/PvHMqXCRBgAAAAAAwLR0dnZGV1fXpNc7CWkLFiyIOXPmxLZt29rvjY2NxbPPPhu9vb0REdHb2xsHDx6M3bt3t5/Zvn17HD9+PJYsWdJ+ZteuXXH06NH2M1u3bo33v//9p/xjHSOENAAAAAAAAM6g1157LYaHh2N4eDgiIvbt2xfDw8Oxf//+qKoq7rzzzvizP/uz+M53vhN79uyJz372szF37txYuXJlRERcccUV8YlPfCL+6I/+KJ577rn4h3/4h7j99tvjhhtuiLlz50ZExO///u/HjBkzYs2aNfHCCy/Et771rXjggQd+7mru7fjRjgAAAAAAACepSg/4JfeDH/wgrr322vZfn4hbq1evjk2bNsXdd98d4+Pjccstt8TBgwfjN3/zN+Ppp5+OCy64oP01f/mXfxm33357fPzjH4+Ojo5YtWpVPPjgg+3Pu7u742//9m+jv78/Fi9eHO9973tj/fr1ccstt0xpa9VqtVrT/POeFq+MHys9AQAAeNO86+4rPQEAAHjT6zvXl55wzhkdO/r2DzFJT9f5pSe8K/xoRwAAAAAAAEgIaQAAAAAAAJAQ0gAAAAAAACAhpAEAAAAAAECiLj0AAAAAAACgSaqq9AKawkUaAAAAAAAAJIQ0AAAAAAAASAhpAAAAAAAAkBDSAAAAAAAAICGkAQAAAAAAQKIuPQAAAAAAAKBJqqhKT6AhXKQBAAAAAABAQkgDAAAAAACAhJAGAAAAAAAACSENAAAAAAAAEkIaAAAAAAAAJOrSAwAAAAAAABqlKj2ApnCRBgAAAAAAAAkhDQAAAAAAABJCGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJCoSw8AAAAAAABokqr0ABrDRRoAAAAAAAAkhDQAAAAAAABICGkAAAAAAACQENIAAAAAAAAgIaQBAAAAAABAoi49AAAAAAAAoEmqqvQCmsJFGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJAQ0gAAAAAAACAhpAEAAAAAAECiLj0AAAAAAACgSaqoSk+gIVykAQAAAAAAQEJIAwAAAAAAgISQBgAAAAAAAAkhDQAAAAAAABJCGgAAAAAAACTq0gMAAAAAAACapKpKL6ApXKQBAAAAAABAQkgDAAAAAACAhJAGAAAAAAAACSENAAAAAAAAEkIaAAAAAAAAJIQ0AAAAAAAASAhpAAAAAAAAkBDSAAAAAAAAICGkAQAAAAAAQEJIAwAAAAAAgISQBgAAAAAAAIm69AAAAAAAAIAmqarSC2gKF2kAAAAAAACQENIAAAAAAAAgIaQBAAAAAABAQkgDAAAAAACAhJAGAAAAAAAAibr0AAAAAAAAgCapoio9gYZwkQYAAAAAAAAJIQ0AAAAAAAASQhoAAAAAAAAkhDQAAAAAAABICGkAAAAAAACQqEsPAAAAAAAAaJKqKr2ApnCRBgAAAAAAAAkhDQAAAAAAABJCGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJCoSw8AAAAAAABokqr0ABrDRRoAAAAAAAAkhDQAAAAAAABICGkAAAAAAACQENIAAAAAAAAgIaQBAAAAAABAoi49AAAAAAAAoFGq0gNoChdpAAAAAAAAkBDSAAAAAAAAICGkAQAAAAAAQEJIAwAAAAAAgISQBgAAAAAAAIm69AAAAAAAAIAmqaIqPYGGcJEGAAAAAAAACSENAAAAAAAAEkIaAAAAAAAAJIQ0AAAAAAAASAhpAAAAAAAAkKhLDwAAAAAAAGiSqiq9gKZwkQYAAAAAAAAJIQ0AAAAAAAASQhoAAAAAAAAkhDQAAAAAAABICGkAAAAAAACQqEsPAAAAAAAAaJKq9AAaw0UaAAAAAAAAJIQ0AAAAAAAASAhpAAAAAAAAkBDSAAAAAAAAICGkAQAAAAAAQKIuPQAAAAAAAKBRqtIDaAoXaQAAAAAAAJAQ0gAAAAAAACAhpAEAAAAAAEBCSAMAAAAAAICEkAYAAAAAAACJuvQAAAAAAACAJqmiKj2BhnCRBgAAAAAAAAkhDQAAAAAAABJCGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJCoSw8AAAAAAABokqoqvYCmcJEGAAAAAAAACSENAAAAAAAAEkIaAAAAAAAAJIQ0AAAAAAAASAhpAAAAAAAAkKharVar9AgAfjlMTEzE4OBgrFu3Ljo7O0vPAQCAc5r/PgcAmD4hDYDTZmxsLLq7u+PQoUPR1dVVeg4AAJzT/Pc5AMD0+dGOAAAAAAAAkBDSAAAAAAAAICGkAQAAAAAAQEJIA+C06ezsjC996Ut+kTkAADSA/z4HAJi+qtVqtUqPAAAAAAAAgKZxkQYAAAAAAAAJIQ0AAAAAAAASQhoAAAAAAAAkhDQAAAAAAABICGkAnBYPPfRQ/Nqv/VpccMEFsWTJknjuuedKTwIAgHPSrl274lOf+lTMnTs3qqqKJ554ovQkAICzlpAGwLR961vfioGBgfjSl74UP/zhD+Oqq66Kvr6+OHDgQOlpAABwzhkfH4+rrroqHnroodJTAADOelWr1WqVHgHA2W3JkiXxkY98JDZu3BgREcePH4/LL7887rjjjvjCF75QeB0AAJy7qqqKzZs3x8qVK0tPAQA4K7lIA2Bajhw5Ert3745ly5a13+vo6Ihly5bF0NBQwWUAAAAAANMjpAEwLf/5n/8Zb7zxRvT09Ex6v6enJ0ZGRgqtAgAAAACYPiENAAAAAAAAEkIaANPy3ve+N84777wYHR2d9P7o6GjMmTOn0CoAAAAAgOkT0gCYlhkzZsTixYtj27Zt7feOHz8e27Zti97e3oLLAAAAAACmpy49AICz38DAQKxevTquueaa+PVf//X42te+FuPj4/GHf/iHpacBAMA557XXXouf/OQn7b/et29fDA8Px6xZs2L+/PkFlwEAnH2qVqvVKj0CgLPfxo0b4/7774+RkZG4+uqr48EHH4wlS5aUngUAAOecHTt2xLXXXvtz769evTo2bdp05gcBAJzFhDQAAAAAAABI+B1pAAAAAAAAkBDSAAAAAAAAICGkAQAAAAAAQEJIAwAAAAAAgISQBgAAAAAAAAkhDQAAAAAAABJCGgAAAAAAACSENAAAAAAAAEgIaQAAAAAAAJAQ0gAAAAAAACAhpAEAAAAAAEBCSAMAAAAAAIDE/wW2wa0m+JJJTAAAAABJRU5ErkJggg==\n"},"metadata":{}}],"source":["# ✅ نسخة محسّنة من كود Transformer Encoder\n","import os\n","import pickle\n","import numpy as np\n","import matplotlib.pyplot as plt\n","import pandas as pd\n","import seaborn as sns\n","from sklearn.utils import shuffle, class_weight\n","from sklearn.metrics import classification_report, confusion_matrix, accuracy_score, precision_score, recall_score, f1_score\n","\n","import tensorflow as tf\n","from tensorflow.keras.models import Model, load_model\n","from tensorflow.keras.layers import Input, Dense, Dropout, LayerNormalization, MultiHeadAttention, Add, Reshape, GlobalAveragePooling1D, Conv1D, BatchNormalization\n","from tensorflow.keras.optimizers import RMSprop\n","from tensorflow.keras.callbacks import ReduceLROnPlateau, ModelCheckpoint, CSVLogger\n","\n","# إعداد المسارات\n","base_path = \"/content/drive/MyDrive/PHD Dream/THESIS/dataset/1-csv/DEEP L files/\"\n","comparison_path = os.path.join(base_path, \"transformer_comparison.csv\")\n","\n","models_info = {\n"," \"main\": {\"classes\": 22, \"data_file\": \"train_test_data_main-deep-new.pkl\"},\n"," \"sub\": {\"classes\": 75, \"data_file\": \"train_test_data_sub-deep-new.pkl\"},\n"," \"rf\": {\"classes\": 2, \"data_file\": \"train_test_data_rf-deep-new.pkl\"}\n","}\n","\n","# Transformer Encoder Block\n","\n","def transformer_encoder(inputs, num_heads=2, ff_dim=128, dropout=0.1):\n"," x = LayerNormalization(epsilon=1e-6)(inputs)\n"," attention_output = MultiHeadAttention(num_heads=num_heads, key_dim=inputs.shape[-1])(x, x)\n"," x = Add()([attention_output, inputs])\n"," x = BatchNormalization()(x)\n"," x_norm = LayerNormalization(epsilon=1e-6)(x)\n"," ff_output = Dense(ff_dim, activation=\"relu\")(x_norm)\n"," ff_output = Dropout(dropout)(ff_output)\n"," return Add()([x, ff_output])\n","\n","\n","def train_or_resume_transformer(name, X_train, y_train, X_test, y_test, num_classes, total_epochs=15):\n"," model_path = os.path.join(base_path, f\"transformer_model_{name}.h5\")\n"," acc_loss_plot_path = os.path.join(base_path, f\"transformer_acc_loss_{name}.png\")\n"," conf_matrix_path = os.path.join(base_path, f\"transformer_conf_matrix_{name}.png\")\n"," log_csv_path = os.path.join(base_path, f\"transformer_log_{name}.csv\")\n","\n"," X_train, y_train = shuffle(X_train, y_train, random_state=42)\n"," class_weights = class_weight.compute_class_weight(class_weight=\"balanced\", classes=np.unique(y_train), y=y_train)\n"," class_weight_dict = dict(enumerate(class_weights))\n","\n"," initial_epoch = 0\n"," if os.path.exists(log_csv_path):\n"," prev_log = pd.read_csv(log_csv_path)\n"," initial_epoch = len(prev_log)\n","\n"," if os.path.exists(model_path):\n"," print(f\"✅ [LOADED] {name.upper()} model loaded\")\n"," model = load_model(model_path)\n"," model.compile(optimizer=RMSprop(0.0005), loss=\"sparse_categorical_crossentropy\", metrics=[\"accuracy\"])\n"," else:\n"," print(f\"🚀 [TRAINING] {name.upper()} model not found. Building and training...\")\n"," input_layer = Input(shape=(894,))\n"," x = Dense(128, activation=\"relu\")(input_layer)\n"," x = Reshape((1, 128))(x)\n"," x = transformer_encoder(x)\n"," x = GlobalAveragePooling1D()(x)\n"," x = Dropout(0.3)(x)\n"," x = Dense(64, activation=\"relu\")(x)\n"," x = Dropout(0.3)(x)\n"," output = Dense(num_classes, activation=\"softmax\")(x)\n","\n"," model = Model(inputs=input_layer, outputs=output)\n"," model.compile(optimizer=RMSprop(0.0005), loss=\"sparse_categorical_crossentropy\", metrics=[\"accuracy\"])\n"," model.summary()\n","\n"," callbacks = [\n"," ModelCheckpoint(filepath=model_path, save_best_only=True, monitor=\"val_loss\", verbose=1),\n"," ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=2, min_lr=1e-6, verbose=1),\n"," CSVLogger(log_csv_path, append=True)\n"," ]\n","\n"," history = model.fit(\n"," X_train, y_train,\n"," validation_data=(X_test, y_test),\n"," epochs=total_epochs,\n"," initial_epoch=initial_epoch,\n"," batch_size=256,\n"," class_weight=class_weight_dict,\n"," callbacks=callbacks\n"," )\n","\n"," preds = model.predict(X_test)\n"," preds = np.argmax(preds, axis=1)\n","\n"," print(f\"\\n📊 Report - {name.upper()}:\")\n"," print(classification_report(y_test, preds))\n","\n"," acc = accuracy_score(y_test, preds)\n"," prec = precision_score(y_test, preds, average='macro', zero_division=0)\n"," rec = recall_score(y_test, preds, average='macro', zero_division=0)\n"," f1 = f1_score(y_test, preds, average='macro', zero_division=0)\n","\n"," print(f\"✅ Accuracy: {acc:.4f} | Precision: {prec:.4f} | Recall: {rec:.4f} | F1: {f1:.4f}\")\n","\n"," if history:\n"," plt.figure(figsize=(14, 5))\n"," plt.subplot(1, 2, 1)\n"," plt.plot(history.history['accuracy'], label='Train Acc')\n"," plt.plot(history.history['val_accuracy'], label='Val Acc', linestyle='--')\n"," plt.title(f\"{name.upper()} Accuracy\")\n"," plt.legend()\n","\n"," plt.subplot(1, 2, 2)\n"," plt.plot(history.history['loss'], label='Train Loss')\n"," plt.plot(history.history['val_loss'], label='Val Loss', linestyle='--')\n"," plt.title(f\"{name.upper()} Loss\")\n"," plt.legend()\n"," plt.tight_layout()\n"," plt.savefig(acc_loss_plot_path)\n"," plt.show()\n","\n"," cm = confusion_matrix(y_test, preds)\n"," plt.figure(figsize=(24, 20))\n"," sns.heatmap(cm, cmap=\"Blues\", fmt=\"d\")\n"," plt.title(f\"Confusion Matrix - {name.upper()}\")\n"," plt.savefig(conf_matrix_path)\n"," plt.show()\n","\n"," result = pd.DataFrame({\n"," \"Model\": [f\"Transformer_{name}\"],\n"," \"Accuracy\": [acc],\n"," \"Precision\": [prec],\n"," \"Recall\": [rec],\n"," \"F1_Score\": [f1]\n"," })\n","\n"," if os.path.exists(comparison_path):\n"," result.to_csv(comparison_path, mode='a', header=False, index=False)\n"," else:\n"," result.to_csv(comparison_path, index=False)\n","\n","# تنفيذ التدريب\n","for name, info in models_info.items():\n"," try:\n"," with open(os.path.join(base_path, info[\"data_file\"]), \"rb\") as f:\n"," X_train, X_test, y_train, y_test = pickle.load(f)\n"," train_or_resume_transformer(name, X_train, y_train, X_test, y_test, info[\"classes\"])\n"," except Exception as e:\n"," print(f\"⚠️ خطأ أثناء معالجة {name.upper()}: {e}\")\n"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"41RSNs9ROp9W"},"outputs":[],"source":[]}],"metadata":{"accelerator":"TPU","colab":{"gpuType":"V28","machine_shape":"hm","provenance":[],"authorship_tag":"ABX9TyO/WnCLN7kOIgwtGmJC6LMy"},"kernelspec":{"display_name":"Python 3","name":"python3"},"language_info":{"name":"python"},"widgets":{"application/vnd.jupyter.widget-state+json":{"0cb0b53f9b5244eda49ecc3b20b6ccea":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"DescriptionStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"134dc0d8099449c3a34cdd37bc1743ba":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HTMLModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_66f8eafa9aee446d8f8fc899da318c66","placeholder":"​","style":"IPY_MODEL_eaecd7e0a2f046119e39f03c382c50d4","value":" 543M/543M [00:02<00:00, 258MB/s]"}},"1acc9b939d7446ae9e83f0bfdfe72790":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"ProgressStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"1be52cf050834eefaea6c024e1d7caa2":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"DescriptionStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"28f29bcac77444948c73673bd32dfd3a":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HTMLModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_5fffa93c9c6642088533dcecd6aaa9d7","placeholder":"​","style":"IPY_MODEL_a0b0026441a24b29aa222b8fb1b5642e","value":"special_tokens_map.json: 100%"}},"2c3daf038947449e897e5a75118e3bd0":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"DescriptionStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"336cf126ce174c99a1f6733409b79ca6":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"DescriptionStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"361c3015b4b04a988ed7a7d0cc999a74":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"DescriptionStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"36b93cb23b6046dfaa533de14f2dc496":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"FloatProgressModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_c5f0be2838414679a137bc42f684634a","max":719993,"min":0,"orientation":"horizontal","style":"IPY_MODEL_812603c20b034ffcac97cbf591c646a5","value":719993}},"392944106e51430b8d73ffe3d5c928c2":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HBoxModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_a58ffdcc2fe2462894c9d16cb81896bb","IPY_MODEL_9b903bf3096142459e7ab80ca3a82318","IPY_MODEL_de2a6d6f5e0349569449a9cff18d5ab7"],"layout":"IPY_MODEL_857e726214184f92a6d7883aa05b6809"}},"3aa0d27ec6fd4d56b4271e0f1820fe03":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"ProgressStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"44f21c8b53a34b0bbb6818698b516696":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HTMLModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_5e5f248a1bfa4354982203887f769796","placeholder":"​","style":"IPY_MODEL_336cf126ce174c99a1f6733409b79ca6","value":"vocab.txt: 100%"}},"495a44147f2c403486e7467964019d30":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HTMLModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_a68f0590ce774ff8a9ed4b1f68bd781d","placeholder":"​","style":"IPY_MODEL_1be52cf050834eefaea6c024e1d7caa2","value":"tokenizer_config.json: 100%"}},"4b3bac8afbac4b34bddb8a4005eb3d5d":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"4eceebe404f64dd4a4dbb40eac8853c3":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HTMLModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_e0c1b44a9f3e40de87c39a5a7ac4838b","placeholder":"​","style":"IPY_MODEL_ef4d05eba61b4660aab0ab24f5da69a8","value":" 720k/720k [00:00<00:00, 5.04MB/s]"}},"515d3ac5843a4ad1827ba488798e2335":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"ProgressStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"5806da7a25e04b4eb984fe21f5a67560":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HBoxModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_495a44147f2c403486e7467964019d30","IPY_MODEL_9177dcb1420a4110bef9aa72fb686514","IPY_MODEL_95433b1db0224152aa816d141ed42dca"],"layout":"IPY_MODEL_fd4323b621ce424ea09094c8dd4d257e"}},"59d9ae437fc5471fb33c9042a71c5723":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HBoxModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_44f21c8b53a34b0bbb6818698b516696","IPY_MODEL_36b93cb23b6046dfaa533de14f2dc496","IPY_MODEL_4eceebe404f64dd4a4dbb40eac8853c3"],"layout":"IPY_MODEL_fa1541378a1c4afa81c47a19c7c1e769"}},"5e5f248a1bfa4354982203887f769796":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"5fffa93c9c6642088533dcecd6aaa9d7":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"62dd457dd842402a9477b1c61a35c7da":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"FloatProgressModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_8169318f4410432c9bdbc35331b99d5b","max":543432324,"min":0,"orientation":"horizontal","style":"IPY_MODEL_6e7d861d5845411eafb36ebe024e59f6","value":543432324}},"66f8eafa9aee446d8f8fc899da318c66":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"6e7d861d5845411eafb36ebe024e59f6":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"ProgressStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"7104503498d640e98f043306c63cbef7":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"FloatProgressModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_9a584b60308649f88d7b90352af727ad","max":112,"min":0,"orientation":"horizontal","style":"IPY_MODEL_515d3ac5843a4ad1827ba488798e2335","value":112}},"73852b884c2243ca835208bb39d97db8":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"DescriptionStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"79bc1d671b8a4ff9a4c3910e0b7d3416":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"7bf6f19bb18249f386ec1ff97cba922d":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"7cb3c2edbfb24e5b831e36cb761883d1":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"ProgressStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"812603c20b034ffcac97cbf591c646a5":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"ProgressStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"ProgressStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","bar_color":null,"description_width":""}},"8169318f4410432c9bdbc35331b99d5b":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"857e726214184f92a6d7883aa05b6809":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"88868f346e4a4161a526c748e7385888":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HBoxModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_c930b36d4e2147dd93b6785e173c70ad","IPY_MODEL_a130a49a1e1f43d7bd93cdbd2a2d2b1c","IPY_MODEL_bc8c436c81324aeba27d9b2ccf7e8b4d"],"layout":"IPY_MODEL_8c34ca1bc5ed48dca6fec81c49664e2e"}},"8c34ca1bc5ed48dca6fec81c49664e2e":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"916902fa32e94371b5038a89a599f090":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HTMLModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_79bc1d671b8a4ff9a4c3910e0b7d3416","placeholder":"​","style":"IPY_MODEL_73852b884c2243ca835208bb39d97db8","value":"model.safetensors: 100%"}},"9177dcb1420a4110bef9aa72fb686514":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"FloatProgressModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_fd5366b287a44835b9a8780317fc415d","max":611,"min":0,"orientation":"horizontal","style":"IPY_MODEL_7cb3c2edbfb24e5b831e36cb761883d1","value":611}},"95433b1db0224152aa816d141ed42dca":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HTMLModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_9e58752eb880403fb8646453e8b446ec","placeholder":"​","style":"IPY_MODEL_361c3015b4b04a988ed7a7d0cc999a74","value":" 611/611 [00:00<00:00, 41.6kB/s]"}},"95f0a998533e46cdab2d0c2a16f0c1a8":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"DescriptionStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"9a584b60308649f88d7b90352af727ad":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"9b903bf3096142459e7ab80ca3a82318":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"FloatProgressModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_4b3bac8afbac4b34bddb8a4005eb3d5d","max":2306039,"min":0,"orientation":"horizontal","style":"IPY_MODEL_1acc9b939d7446ae9e83f0bfdfe72790","value":2306039}},"9e58752eb880403fb8646453e8b446ec":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"a0b0026441a24b29aa222b8fb1b5642e":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"DescriptionStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"a130a49a1e1f43d7bd93cdbd2a2d2b1c":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"FloatProgressModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"FloatProgressModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"ProgressView","bar_style":"success","description":"","description_tooltip":null,"layout":"IPY_MODEL_be7d0fd22a9e40578d8abf1df134116e","max":384,"min":0,"orientation":"horizontal","style":"IPY_MODEL_3aa0d27ec6fd4d56b4271e0f1820fe03","value":384}},"a58ffdcc2fe2462894c9d16cb81896bb":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HTMLModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_cfcf62ab084f49eb8a66e3add4e5306c","placeholder":"​","style":"IPY_MODEL_dee6856c979d4466b5682d26893f0493","value":"tokenizer.json: 100%"}},"a68f0590ce774ff8a9ed4b1f68bd781d":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"aef48f723df3436589b9e40cbacac024":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"DescriptionStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"b05ddb25974e487a86faf1bc5e55c2a7":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"bc8c436c81324aeba27d9b2ccf7e8b4d":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HTMLModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_e07ad77683e844579efbdd5ab9fc26a6","placeholder":"​","style":"IPY_MODEL_0cb0b53f9b5244eda49ecc3b20b6ccea","value":" 384/384 [00:00<00:00, 26.4kB/s]"}},"be7d0fd22a9e40578d8abf1df134116e":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"c5f0be2838414679a137bc42f684634a":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"c8b5fd8d2f784cae81c97a1749e37a40":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"c930b36d4e2147dd93b6785e173c70ad":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HTMLModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_cb185d27c9554471b04a2878c69a3b53","placeholder":"​","style":"IPY_MODEL_aef48f723df3436589b9e40cbacac024","value":"config.json: 100%"}},"ca8ef99c78a44da1ac33cfbe1eb0a638":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HBoxModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_916902fa32e94371b5038a89a599f090","IPY_MODEL_62dd457dd842402a9477b1c61a35c7da","IPY_MODEL_134dc0d8099449c3a34cdd37bc1743ba"],"layout":"IPY_MODEL_c8b5fd8d2f784cae81c97a1749e37a40"}},"cb185d27c9554471b04a2878c69a3b53":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"cfcf62ab084f49eb8a66e3add4e5306c":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"dc54d9fd8609451785d4da6e1924b40d":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HTMLModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_b05ddb25974e487a86faf1bc5e55c2a7","placeholder":"​","style":"IPY_MODEL_95f0a998533e46cdab2d0c2a16f0c1a8","value":" 112/112 [00:00<00:00, 4.93kB/s]"}},"de2a6d6f5e0349569449a9cff18d5ab7":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HTMLModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HTMLModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HTMLView","description":"","description_tooltip":null,"layout":"IPY_MODEL_e659e19897294c5bb1f9d68943c0f113","placeholder":"​","style":"IPY_MODEL_2c3daf038947449e897e5a75118e3bd0","value":" 2.31M/2.31M [00:00<00:00, 16.2MB/s]"}},"dee6856c979d4466b5682d26893f0493":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"DescriptionStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"e07ad77683e844579efbdd5ab9fc26a6":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"e0c1b44a9f3e40de87c39a5a7ac4838b":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"e659e19897294c5bb1f9d68943c0f113":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"e95ca740d95347c28a2e9ff42cb84e3b":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"HBoxModel","state":{"_dom_classes":[],"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"HBoxModel","_view_count":null,"_view_module":"@jupyter-widgets/controls","_view_module_version":"1.5.0","_view_name":"HBoxView","box_style":"","children":["IPY_MODEL_28f29bcac77444948c73673bd32dfd3a","IPY_MODEL_7104503498d640e98f043306c63cbef7","IPY_MODEL_dc54d9fd8609451785d4da6e1924b40d"],"layout":"IPY_MODEL_7bf6f19bb18249f386ec1ff97cba922d"}},"eaecd7e0a2f046119e39f03c382c50d4":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"DescriptionStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"ef4d05eba61b4660aab0ab24f5da69a8":{"model_module":"@jupyter-widgets/controls","model_module_version":"1.5.0","model_name":"DescriptionStyleModel","state":{"_model_module":"@jupyter-widgets/controls","_model_module_version":"1.5.0","_model_name":"DescriptionStyleModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"StyleView","description_width":""}},"fa1541378a1c4afa81c47a19c7c1e769":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"fd4323b621ce424ea09094c8dd4d257e":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}},"fd5366b287a44835b9a8780317fc415d":{"model_module":"@jupyter-widgets/base","model_module_version":"1.2.0","model_name":"LayoutModel","state":{"_model_module":"@jupyter-widgets/base","_model_module_version":"1.2.0","_model_name":"LayoutModel","_view_count":null,"_view_module":"@jupyter-widgets/base","_view_module_version":"1.2.0","_view_name":"LayoutView","align_content":null,"align_items":null,"align_self":null,"border":null,"bottom":null,"display":null,"flex":null,"flex_flow":null,"grid_area":null,"grid_auto_columns":null,"grid_auto_flow":null,"grid_auto_rows":null,"grid_column":null,"grid_gap":null,"grid_row":null,"grid_template_areas":null,"grid_template_columns":null,"grid_template_rows":null,"height":null,"justify_content":null,"justify_items":null,"left":null,"margin":null,"max_height":null,"max_width":null,"min_height":null,"min_width":null,"object_fit":null,"object_position":null,"order":null,"overflow":null,"overflow_x":null,"overflow_y":null,"padding":null,"right":null,"top":null,"visibility":null,"width":null}}}}},"nbformat":4,"nbformat_minor":0}