Dataset URL: https://www.kaggle.com/datasets/an0gieg/pancreatic-cancer https://www.cancerimagingarchive.net/collection/pancreas-ct/ Computing infrastructure: Hardware: Intel(R) Core(TM)2 Duo, Harddisk-1 TB, RAM- 8 GB Software: OS- Windows-10, IDE: MATLAB R2017a Program Explanation: 1. Median Filtering for Image Enhancement: Reduced noise and enhanced edges for better visualization. 2. Segmentation Using Multilevel Thresholding and PSO: Precisely identified regions of interest with optimized thresholds. 3. Grayscale Conversion: Simplified image data for efficient segmentation and processing. 4. Feature Extraction Using CNN: Extracted critical patterns from segmented images for accurate classification. 5. Classification with Pre-Trained CNN: Predicted benign or malignant conditions using trained model layers. 6. Performance Evaluation: Measured accuracy using sensitivity and specificity metrics. Implementation Steps: Step 1: Initialize clc; clear; Step 2: Load Input CT Images images = load_images('dataset_path'); % Load CT images from dataset Step 3: Pre-Processing (Image Enhancement) for i = 1:length(images) enhanced_images{i} = median_filter(images{i}); function enhanced_image = median_filter(image) end Step 4: Segmentation using Multilevel Thresholding and PSO for i = 1:length(enhanced_images) Convert to Grayscale grayscale_image = convert_to_grayscale(enhanced_images{i}); Compute initial thresholds using Otsu's method initial_thresholds = otsu_thresholding(grayscale_image); function thresholds = otsu_thresholding(image) Optimize thresholds using PSO optimal_thresholds = PSO_optimize_thresholds(grayscale_image, initial_thresholds); function optimal_thresholds = PSO_optimize_thresholds(image, initial_thresholds) Apply optimized thresholds for segmentation segmented_images{i} = apply_thresholds(grayscale_image, optimal_thresholds); function segmented_image = apply_thresholds(image, thresholds) end Step 5: Feature Extraction and Classification using CNN trained_CNN = load_trained_CNN_model('model_path'); % Load pre-trained CNN for i = 1:length(segmented_images) features = extract_features(trained_CNN, segmented_images{i}); % Extract Features classification_results{i} = classify_CNN(trained_CNN, features); % Classify as Benign/Malignant function features = extract_features(model, image) function label = classify_CNN(model, features) end Step 6: Performance Evaluation metrics = evaluate_performance(classification_results, ground_truth_labels); % Sensitivity, Specificity, etc. function metrics = evaluate_performance(predictions, ground_truth) Step 7: Display Results for i = 1:length(segmented_images) figure; subplot(1, 2, 1), imshow(images{i}), title('Original Image'); subplot(1, 2, 2), imshow(segmented_images{i}), title('Segmented Image'); end disp('Performance Metrics:'); disp(metrics);